xen: implement ptep_modify_prot_start/commit
[deliverable/linux.git] / arch / x86 / xen / mmu.c
CommitLineData
3b827c1b
JF
1/*
2 * Xen mmu operations
3 *
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
7 *
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
12 *
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
17 *
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
23 *
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
30 *
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
38 *
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40 */
f120f13e 41#include <linux/sched.h>
f4f97b3e 42#include <linux/highmem.h>
3b827c1b 43#include <linux/bug.h>
3b827c1b
JF
44
45#include <asm/pgtable.h>
46#include <asm/tlbflush.h>
47#include <asm/mmu_context.h>
f4f97b3e 48#include <asm/paravirt.h>
3b827c1b
JF
49
50#include <asm/xen/hypercall.h>
f4f97b3e 51#include <asm/xen/hypervisor.h>
3b827c1b
JF
52
53#include <xen/page.h>
54#include <xen/interface/xen.h>
55
f4f97b3e 56#include "multicalls.h"
3b827c1b
JF
57#include "mmu.h"
58
d451bb7a 59#define P2M_ENTRIES_PER_PAGE (PAGE_SIZE / sizeof(unsigned long))
cf0923ea 60#define TOP_ENTRIES (MAX_DOMAIN_PAGES / P2M_ENTRIES_PER_PAGE)
d451bb7a 61
cf0923ea
JF
62/* Placeholder for holes in the address space */
63static unsigned long p2m_missing[P2M_ENTRIES_PER_PAGE]
64 __attribute__((section(".data.page_aligned"))) =
65 { [ 0 ... P2M_ENTRIES_PER_PAGE-1 ] = ~0UL };
66
67 /* Array of pointers to pages containing p2m entries */
68static unsigned long *p2m_top[TOP_ENTRIES]
69 __attribute__((section(".data.page_aligned"))) =
70 { [ 0 ... TOP_ENTRIES - 1] = &p2m_missing[0] };
d451bb7a 71
d5edbc1f
JF
72/* Arrays of p2m arrays expressed in mfns used for save/restore */
73static unsigned long p2m_top_mfn[TOP_ENTRIES]
74 __attribute__((section(".bss.page_aligned")));
75
b20aeccd
IM
76static unsigned long p2m_top_mfn_list[
77 PAGE_ALIGN(TOP_ENTRIES / P2M_ENTRIES_PER_PAGE)]
d5edbc1f
JF
78 __attribute__((section(".bss.page_aligned")));
79
d451bb7a
JF
80static inline unsigned p2m_top_index(unsigned long pfn)
81{
8006ec3e 82 BUG_ON(pfn >= MAX_DOMAIN_PAGES);
d451bb7a
JF
83 return pfn / P2M_ENTRIES_PER_PAGE;
84}
85
86static inline unsigned p2m_index(unsigned long pfn)
87{
88 return pfn % P2M_ENTRIES_PER_PAGE;
89}
90
d5edbc1f
JF
91/* Build the parallel p2m_top_mfn structures */
92void xen_setup_mfn_list_list(void)
93{
94 unsigned pfn, idx;
95
96 for(pfn = 0; pfn < MAX_DOMAIN_PAGES; pfn += P2M_ENTRIES_PER_PAGE) {
97 unsigned topidx = p2m_top_index(pfn);
98
99 p2m_top_mfn[topidx] = virt_to_mfn(p2m_top[topidx]);
100 }
101
102 for(idx = 0; idx < ARRAY_SIZE(p2m_top_mfn_list); idx++) {
103 unsigned topidx = idx * P2M_ENTRIES_PER_PAGE;
104 p2m_top_mfn_list[idx] = virt_to_mfn(&p2m_top_mfn[topidx]);
105 }
106
107 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
108
109 HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list =
110 virt_to_mfn(p2m_top_mfn_list);
111 HYPERVISOR_shared_info->arch.max_pfn = xen_start_info->nr_pages;
112}
113
114/* Set up p2m_top to point to the domain-builder provided p2m pages */
d451bb7a
JF
115void __init xen_build_dynamic_phys_to_machine(void)
116{
d451bb7a 117 unsigned long *mfn_list = (unsigned long *)xen_start_info->mfn_list;
8006ec3e 118 unsigned long max_pfn = min(MAX_DOMAIN_PAGES, xen_start_info->nr_pages);
d5edbc1f 119 unsigned pfn;
d451bb7a 120
8006ec3e 121 for(pfn = 0; pfn < max_pfn; pfn += P2M_ENTRIES_PER_PAGE) {
d451bb7a
JF
122 unsigned topidx = p2m_top_index(pfn);
123
124 p2m_top[topidx] = &mfn_list[pfn];
125 }
126}
127
128unsigned long get_phys_to_machine(unsigned long pfn)
129{
130 unsigned topidx, idx;
131
8006ec3e
JF
132 if (unlikely(pfn >= MAX_DOMAIN_PAGES))
133 return INVALID_P2M_ENTRY;
134
d451bb7a 135 topidx = p2m_top_index(pfn);
d451bb7a
JF
136 idx = p2m_index(pfn);
137 return p2m_top[topidx][idx];
138}
15ce6005 139EXPORT_SYMBOL_GPL(get_phys_to_machine);
d451bb7a 140
d5edbc1f 141static void alloc_p2m(unsigned long **pp, unsigned long *mfnp)
d451bb7a
JF
142{
143 unsigned long *p;
144 unsigned i;
145
146 p = (void *)__get_free_page(GFP_KERNEL | __GFP_NOFAIL);
147 BUG_ON(p == NULL);
148
149 for(i = 0; i < P2M_ENTRIES_PER_PAGE; i++)
150 p[i] = INVALID_P2M_ENTRY;
151
cf0923ea 152 if (cmpxchg(pp, p2m_missing, p) != p2m_missing)
d451bb7a 153 free_page((unsigned long)p);
d5edbc1f
JF
154 else
155 *mfnp = virt_to_mfn(p);
d451bb7a
JF
156}
157
158void set_phys_to_machine(unsigned long pfn, unsigned long mfn)
159{
160 unsigned topidx, idx;
161
162 if (unlikely(xen_feature(XENFEAT_auto_translated_physmap))) {
163 BUG_ON(pfn != mfn && mfn != INVALID_P2M_ENTRY);
8006ec3e
JF
164 return;
165 }
166
167 if (unlikely(pfn >= MAX_DOMAIN_PAGES)) {
168 BUG_ON(mfn != INVALID_P2M_ENTRY);
d451bb7a
JF
169 return;
170 }
171
172 topidx = p2m_top_index(pfn);
cf0923ea 173 if (p2m_top[topidx] == p2m_missing) {
d451bb7a
JF
174 /* no need to allocate a page to store an invalid entry */
175 if (mfn == INVALID_P2M_ENTRY)
176 return;
d5edbc1f 177 alloc_p2m(&p2m_top[topidx], &p2m_top_mfn[topidx]);
d451bb7a
JF
178 }
179
180 idx = p2m_index(pfn);
181 p2m_top[topidx][idx] = mfn;
182}
183
3b827c1b
JF
184xmaddr_t arbitrary_virt_to_machine(unsigned long address)
185{
da7bfc50 186 unsigned int level;
f0646e43 187 pte_t *pte = lookup_address(address, &level);
de067814 188 unsigned offset = address & ~PAGE_MASK;
3b827c1b
JF
189
190 BUG_ON(pte == NULL);
191
192 return XMADDR((pte_mfn(*pte) << PAGE_SHIFT) + offset);
193}
194
195void make_lowmem_page_readonly(void *vaddr)
196{
197 pte_t *pte, ptev;
198 unsigned long address = (unsigned long)vaddr;
da7bfc50 199 unsigned int level;
3b827c1b 200
f0646e43 201 pte = lookup_address(address, &level);
3b827c1b
JF
202 BUG_ON(pte == NULL);
203
204 ptev = pte_wrprotect(*pte);
205
206 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
207 BUG();
208}
209
210void make_lowmem_page_readwrite(void *vaddr)
211{
212 pte_t *pte, ptev;
213 unsigned long address = (unsigned long)vaddr;
da7bfc50 214 unsigned int level;
3b827c1b 215
f0646e43 216 pte = lookup_address(address, &level);
3b827c1b
JF
217 BUG_ON(pte == NULL);
218
219 ptev = pte_mkwrite(*pte);
220
221 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
222 BUG();
223}
224
225
e2426cf8
JF
226static bool page_pinned(void *ptr)
227{
228 struct page *page = virt_to_page(ptr);
229
230 return PagePinned(page);
231}
232
233void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
3b827c1b 234{
d66bf8fc
JF
235 struct multicall_space mcs;
236 struct mmu_update *u;
3b827c1b 237
d66bf8fc
JF
238 preempt_disable();
239
240 mcs = xen_mc_entry(sizeof(*u));
241 u = mcs.args;
242 u->ptr = virt_to_machine(ptr).maddr;
243 u->val = pmd_val_ma(val);
244 MULTI_mmu_update(mcs.mc, u, 1, NULL, DOMID_SELF);
245
246 xen_mc_issue(PARAVIRT_LAZY_MMU);
247
248 preempt_enable();
3b827c1b
JF
249}
250
e2426cf8
JF
251void xen_set_pmd(pmd_t *ptr, pmd_t val)
252{
253 /* If page is not pinned, we can just update the entry
254 directly */
255 if (!page_pinned(ptr)) {
256 *ptr = val;
257 return;
258 }
259
260 xen_set_pmd_hyper(ptr, val);
261}
262
3b827c1b
JF
263/*
264 * Associate a virtual page frame with a given physical page frame
265 * and protection flags for that frame.
266 */
267void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
268{
269 pgd_t *pgd;
270 pud_t *pud;
271 pmd_t *pmd;
272 pte_t *pte;
273
274 pgd = swapper_pg_dir + pgd_index(vaddr);
275 if (pgd_none(*pgd)) {
276 BUG();
277 return;
278 }
279 pud = pud_offset(pgd, vaddr);
280 if (pud_none(*pud)) {
281 BUG();
282 return;
283 }
284 pmd = pmd_offset(pud, vaddr);
285 if (pmd_none(*pmd)) {
286 BUG();
287 return;
288 }
289 pte = pte_offset_kernel(pmd, vaddr);
290 /* <mfn,flags> stored as-is, to permit clearing entries */
291 xen_set_pte(pte, mfn_pte(mfn, flags));
292
293 /*
294 * It's enough to flush this one mapping.
295 * (PGE mappings get flushed as well)
296 */
297 __flush_tlb_one(vaddr);
298}
299
300void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
301 pte_t *ptep, pte_t pteval)
302{
2bd50036
JF
303 /* updates to init_mm may be done without lock */
304 if (mm == &init_mm)
305 preempt_disable();
306
d66bf8fc 307 if (mm == current->mm || mm == &init_mm) {
8965c1c0 308 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
d66bf8fc
JF
309 struct multicall_space mcs;
310 mcs = xen_mc_entry(0);
311
312 MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
313 xen_mc_issue(PARAVIRT_LAZY_MMU);
2bd50036 314 goto out;
d66bf8fc
JF
315 } else
316 if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
2bd50036 317 goto out;
d66bf8fc
JF
318 }
319 xen_set_pte(ptep, pteval);
2bd50036
JF
320
321out:
322 if (mm == &init_mm)
323 preempt_enable();
3b827c1b
JF
324}
325
e57778a1
JF
326pte_t xen_ptep_modify_prot_start(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
327{
328 /* Just return the pte as-is. We preserve the bits on commit */
329 return *ptep;
330}
331
332void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
333 pte_t *ptep, pte_t pte)
334{
335 struct multicall_space mcs;
336 struct mmu_update *u;
337
338 mcs = xen_mc_entry(sizeof(*u));
339 u = mcs.args;
340 u->ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
341 u->val = pte_val_ma(pte);
342 MULTI_mmu_update(mcs.mc, u, 1, NULL, DOMID_SELF);
343
344 xen_mc_issue(PARAVIRT_LAZY_MMU);
345}
346
a987b16c
JF
347/* Assume pteval_t is equivalent to all the other *val_t types. */
348static pteval_t pte_mfn_to_pfn(pteval_t val)
947a69c9 349{
a987b16c
JF
350 if (val & _PAGE_PRESENT) {
351 unsigned long mfn = (val & PTE_MASK) >> PAGE_SHIFT;
352 pteval_t flags = val & ~PTE_MASK;
353 val = (mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
354 }
947a69c9 355
a987b16c
JF
356 return val;
357}
947a69c9 358
a987b16c
JF
359static pteval_t pte_pfn_to_mfn(pteval_t val)
360{
361 if (val & _PAGE_PRESENT) {
362 unsigned long pfn = (val & PTE_MASK) >> PAGE_SHIFT;
363 pteval_t flags = val & ~PTE_MASK;
364 val = (pfn_to_mfn(pfn) << PAGE_SHIFT) | flags;
365 }
366
367 return val;
368}
369
370pteval_t xen_pte_val(pte_t pte)
371{
372 return pte_mfn_to_pfn(pte.pte);
947a69c9
JF
373}
374
375pgdval_t xen_pgd_val(pgd_t pgd)
376{
a987b16c 377 return pte_mfn_to_pfn(pgd.pgd);
947a69c9
JF
378}
379
380pte_t xen_make_pte(pteval_t pte)
381{
a987b16c
JF
382 pte = pte_pfn_to_mfn(pte);
383 return native_make_pte(pte);
947a69c9
JF
384}
385
386pgd_t xen_make_pgd(pgdval_t pgd)
387{
a987b16c
JF
388 pgd = pte_pfn_to_mfn(pgd);
389 return native_make_pgd(pgd);
947a69c9
JF
390}
391
392pmdval_t xen_pmd_val(pmd_t pmd)
393{
a987b16c 394 return pte_mfn_to_pfn(pmd.pmd);
947a69c9 395}
3843fc25 396
e2426cf8 397void xen_set_pud_hyper(pud_t *ptr, pud_t val)
f4f97b3e 398{
d66bf8fc
JF
399 struct multicall_space mcs;
400 struct mmu_update *u;
f4f97b3e 401
d66bf8fc
JF
402 preempt_disable();
403
404 mcs = xen_mc_entry(sizeof(*u));
405 u = mcs.args;
406 u->ptr = virt_to_machine(ptr).maddr;
407 u->val = pud_val_ma(val);
408 MULTI_mmu_update(mcs.mc, u, 1, NULL, DOMID_SELF);
409
410 xen_mc_issue(PARAVIRT_LAZY_MMU);
411
412 preempt_enable();
f4f97b3e
JF
413}
414
e2426cf8
JF
415void xen_set_pud(pud_t *ptr, pud_t val)
416{
417 /* If page is not pinned, we can just update the entry
418 directly */
419 if (!page_pinned(ptr)) {
420 *ptr = val;
421 return;
422 }
423
424 xen_set_pud_hyper(ptr, val);
425}
426
f4f97b3e
JF
427void xen_set_pte(pte_t *ptep, pte_t pte)
428{
429 ptep->pte_high = pte.pte_high;
430 smp_wmb();
431 ptep->pte_low = pte.pte_low;
432}
433
3b827c1b
JF
434void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
435{
436 set_64bit((u64 *)ptep, pte_val_ma(pte));
437}
438
439void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
440{
441 ptep->pte_low = 0;
442 smp_wmb(); /* make sure low gets written first */
443 ptep->pte_high = 0;
444}
445
446void xen_pmd_clear(pmd_t *pmdp)
447{
e2426cf8 448 set_pmd(pmdp, __pmd(0));
3b827c1b
JF
449}
450
abf33038 451pmd_t xen_make_pmd(pmdval_t pmd)
3b827c1b 452{
a987b16c 453 pmd = pte_pfn_to_mfn(pmd);
947a69c9 454 return native_make_pmd(pmd);
3b827c1b 455}
3b827c1b 456
f4f97b3e
JF
457/*
458 (Yet another) pagetable walker. This one is intended for pinning a
459 pagetable. This means that it walks a pagetable and calls the
460 callback function on each page it finds making up the page table,
461 at every level. It walks the entire pagetable, but it only bothers
462 pinning pte pages which are below pte_limit. In the normal case
463 this will be TASK_SIZE, but at boot we need to pin up to
464 FIXADDR_TOP. But the important bit is that we don't pin beyond
465 there, because then we start getting into Xen's ptes.
466*/
74260714 467static int pgd_walk(pgd_t *pgd_base, int (*func)(struct page *, enum pt_level),
f4f97b3e 468 unsigned long limit)
3b827c1b
JF
469{
470 pgd_t *pgd = pgd_base;
f4f97b3e
JF
471 int flush = 0;
472 unsigned long addr = 0;
473 unsigned long pgd_next;
474
475 BUG_ON(limit > FIXADDR_TOP);
3b827c1b
JF
476
477 if (xen_feature(XENFEAT_auto_translated_physmap))
f4f97b3e
JF
478 return 0;
479
480 for (; addr != FIXADDR_TOP; pgd++, addr = pgd_next) {
481 pud_t *pud;
482 unsigned long pud_limit, pud_next;
3b827c1b 483
f4f97b3e
JF
484 pgd_next = pud_limit = pgd_addr_end(addr, FIXADDR_TOP);
485
486 if (!pgd_val(*pgd))
3b827c1b 487 continue;
f4f97b3e 488
3b827c1b
JF
489 pud = pud_offset(pgd, 0);
490
491 if (PTRS_PER_PUD > 1) /* not folded */
74260714 492 flush |= (*func)(virt_to_page(pud), PT_PUD);
f4f97b3e
JF
493
494 for (; addr != pud_limit; pud++, addr = pud_next) {
495 pmd_t *pmd;
496 unsigned long pmd_limit;
497
498 pud_next = pud_addr_end(addr, pud_limit);
499
500 if (pud_next < limit)
501 pmd_limit = pud_next;
502 else
503 pmd_limit = limit;
3b827c1b 504
3b827c1b
JF
505 if (pud_none(*pud))
506 continue;
f4f97b3e 507
3b827c1b
JF
508 pmd = pmd_offset(pud, 0);
509
510 if (PTRS_PER_PMD > 1) /* not folded */
74260714 511 flush |= (*func)(virt_to_page(pmd), PT_PMD);
f4f97b3e
JF
512
513 for (; addr != pmd_limit; pmd++) {
514 addr += (PAGE_SIZE * PTRS_PER_PTE);
515 if ((pmd_limit-1) < (addr-1)) {
516 addr = pmd_limit;
517 break;
518 }
3b827c1b 519
3b827c1b
JF
520 if (pmd_none(*pmd))
521 continue;
522
74260714 523 flush |= (*func)(pmd_page(*pmd), PT_PTE);
3b827c1b
JF
524 }
525 }
526 }
527
74260714 528 flush |= (*func)(virt_to_page(pgd_base), PT_PGD);
f4f97b3e
JF
529
530 return flush;
3b827c1b
JF
531}
532
74260714
JF
533static spinlock_t *lock_pte(struct page *page)
534{
535 spinlock_t *ptl = NULL;
536
537#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
538 ptl = __pte_lockptr(page);
539 spin_lock(ptl);
540#endif
541
542 return ptl;
543}
544
545static void do_unlock(void *v)
546{
547 spinlock_t *ptl = v;
548 spin_unlock(ptl);
549}
550
551static void xen_do_pin(unsigned level, unsigned long pfn)
552{
553 struct mmuext_op *op;
554 struct multicall_space mcs;
555
556 mcs = __xen_mc_entry(sizeof(*op));
557 op = mcs.args;
558 op->cmd = level;
559 op->arg1.mfn = pfn_to_mfn(pfn);
560 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
561}
562
563static int pin_page(struct page *page, enum pt_level level)
f4f97b3e 564{
d60cd46b 565 unsigned pgfl = TestSetPagePinned(page);
f4f97b3e
JF
566 int flush;
567
568 if (pgfl)
569 flush = 0; /* already pinned */
570 else if (PageHighMem(page))
571 /* kmaps need flushing if we found an unpinned
572 highpage */
573 flush = 1;
574 else {
575 void *pt = lowmem_page_address(page);
576 unsigned long pfn = page_to_pfn(page);
577 struct multicall_space mcs = __xen_mc_entry(0);
74260714 578 spinlock_t *ptl;
f4f97b3e
JF
579
580 flush = 0;
581
74260714
JF
582 ptl = NULL;
583 if (level == PT_PTE)
584 ptl = lock_pte(page);
585
f4f97b3e
JF
586 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
587 pfn_pte(pfn, PAGE_KERNEL_RO),
74260714
JF
588 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
589
590 if (level == PT_PTE)
591 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
592
593 if (ptl) {
594 /* Queue a deferred unlock for when this batch
595 is completed. */
596 xen_mc_callback(do_unlock, ptl);
597 }
f4f97b3e
JF
598 }
599
600 return flush;
601}
3b827c1b 602
f4f97b3e
JF
603/* This is called just after a mm has been created, but it has not
604 been used yet. We need to make sure that its pagetable is all
605 read-only, and can be pinned. */
3b827c1b
JF
606void xen_pgd_pin(pgd_t *pgd)
607{
f4f97b3e 608 xen_mc_batch();
3b827c1b 609
f87e4cac
JF
610 if (pgd_walk(pgd, pin_page, TASK_SIZE)) {
611 /* re-enable interrupts for kmap_flush_unused */
612 xen_mc_issue(0);
f4f97b3e 613 kmap_flush_unused();
f87e4cac
JF
614 xen_mc_batch();
615 }
f4f97b3e 616
3843fc25 617 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
f4f97b3e 618 xen_mc_issue(0);
3b827c1b
JF
619}
620
0e91398f
JF
621/*
622 * On save, we need to pin all pagetables to make sure they get their
623 * mfns turned into pfns. Search the list for any unpinned pgds and pin
624 * them (unpinned pgds are not currently in use, probably because the
625 * process is under construction or destruction).
626 */
627void xen_mm_pin_all(void)
628{
629 unsigned long flags;
630 struct page *page;
631
632 spin_lock_irqsave(&pgd_lock, flags);
633
634 list_for_each_entry(page, &pgd_list, lru) {
635 if (!PagePinned(page)) {
636 xen_pgd_pin((pgd_t *)page_address(page));
637 SetPageSavePinned(page);
638 }
639 }
640
641 spin_unlock_irqrestore(&pgd_lock, flags);
642}
643
f4f97b3e
JF
644/* The init_mm pagetable is really pinned as soon as its created, but
645 that's before we have page structures to store the bits. So do all
646 the book-keeping now. */
74260714 647static __init int mark_pinned(struct page *page, enum pt_level level)
3b827c1b 648{
f4f97b3e
JF
649 SetPagePinned(page);
650 return 0;
651}
3b827c1b 652
f4f97b3e
JF
653void __init xen_mark_init_mm_pinned(void)
654{
655 pgd_walk(init_mm.pgd, mark_pinned, FIXADDR_TOP);
656}
3b827c1b 657
74260714 658static int unpin_page(struct page *page, enum pt_level level)
f4f97b3e 659{
d60cd46b 660 unsigned pgfl = TestClearPagePinned(page);
3b827c1b 661
f4f97b3e
JF
662 if (pgfl && !PageHighMem(page)) {
663 void *pt = lowmem_page_address(page);
664 unsigned long pfn = page_to_pfn(page);
74260714
JF
665 spinlock_t *ptl = NULL;
666 struct multicall_space mcs;
667
668 if (level == PT_PTE) {
669 ptl = lock_pte(page);
670
671 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
672 }
673
674 mcs = __xen_mc_entry(0);
f4f97b3e
JF
675
676 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
677 pfn_pte(pfn, PAGE_KERNEL),
74260714
JF
678 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
679
680 if (ptl) {
681 /* unlock when batch completed */
682 xen_mc_callback(do_unlock, ptl);
683 }
f4f97b3e
JF
684 }
685
686 return 0; /* never need to flush on unpin */
3b827c1b
JF
687}
688
f4f97b3e
JF
689/* Release a pagetables pages back as normal RW */
690static void xen_pgd_unpin(pgd_t *pgd)
691{
f4f97b3e
JF
692 xen_mc_batch();
693
74260714 694 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
f4f97b3e
JF
695
696 pgd_walk(pgd, unpin_page, TASK_SIZE);
697
698 xen_mc_issue(0);
699}
3b827c1b 700
0e91398f
JF
701/*
702 * On resume, undo any pinning done at save, so that the rest of the
703 * kernel doesn't see any unexpected pinned pagetables.
704 */
705void xen_mm_unpin_all(void)
706{
707 unsigned long flags;
708 struct page *page;
709
710 spin_lock_irqsave(&pgd_lock, flags);
711
712 list_for_each_entry(page, &pgd_list, lru) {
713 if (PageSavePinned(page)) {
714 BUG_ON(!PagePinned(page));
715 printk("unpinning pinned %p\n", page_address(page));
716 xen_pgd_unpin((pgd_t *)page_address(page));
717 ClearPageSavePinned(page);
718 }
719 }
720
721 spin_unlock_irqrestore(&pgd_lock, flags);
722}
723
3b827c1b
JF
724void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
725{
f4f97b3e 726 spin_lock(&next->page_table_lock);
3b827c1b 727 xen_pgd_pin(next->pgd);
f4f97b3e 728 spin_unlock(&next->page_table_lock);
3b827c1b
JF
729}
730
731void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
732{
f4f97b3e 733 spin_lock(&mm->page_table_lock);
3b827c1b 734 xen_pgd_pin(mm->pgd);
f4f97b3e 735 spin_unlock(&mm->page_table_lock);
3b827c1b
JF
736}
737
3b827c1b 738
f87e4cac
JF
739#ifdef CONFIG_SMP
740/* Another cpu may still have their %cr3 pointing at the pagetable, so
741 we need to repoint it somewhere else before we can unpin it. */
742static void drop_other_mm_ref(void *info)
743{
744 struct mm_struct *mm = info;
3b827c1b 745
f87e4cac
JF
746 if (__get_cpu_var(cpu_tlbstate).active_mm == mm)
747 leave_mm(smp_processor_id());
9f79991d
JF
748
749 /* If this cpu still has a stale cr3 reference, then make sure
750 it has been flushed. */
751 if (x86_read_percpu(xen_current_cr3) == __pa(mm->pgd)) {
752 load_cr3(swapper_pg_dir);
753 arch_flush_lazy_cpu_mode();
754 }
f87e4cac 755}
3b827c1b 756
f87e4cac
JF
757static void drop_mm_ref(struct mm_struct *mm)
758{
9f79991d
JF
759 cpumask_t mask;
760 unsigned cpu;
761
f87e4cac
JF
762 if (current->active_mm == mm) {
763 if (current->mm == mm)
764 load_cr3(swapper_pg_dir);
765 else
766 leave_mm(smp_processor_id());
9f79991d
JF
767 arch_flush_lazy_cpu_mode();
768 }
769
770 /* Get the "official" set of cpus referring to our pagetable. */
771 mask = mm->cpu_vm_mask;
772
773 /* It's possible that a vcpu may have a stale reference to our
774 cr3, because its in lazy mode, and it hasn't yet flushed
775 its set of pending hypercalls yet. In this case, we can
776 look at its actual current cr3 value, and force it to flush
777 if needed. */
778 for_each_online_cpu(cpu) {
779 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
780 cpu_set(cpu, mask);
3b827c1b
JF
781 }
782
9f79991d
JF
783 if (!cpus_empty(mask))
784 xen_smp_call_function_mask(mask, drop_other_mm_ref, mm, 1);
f87e4cac
JF
785}
786#else
787static void drop_mm_ref(struct mm_struct *mm)
788{
789 if (current->active_mm == mm)
790 load_cr3(swapper_pg_dir);
791}
792#endif
793
794/*
795 * While a process runs, Xen pins its pagetables, which means that the
796 * hypervisor forces it to be read-only, and it controls all updates
797 * to it. This means that all pagetable updates have to go via the
798 * hypervisor, which is moderately expensive.
799 *
800 * Since we're pulling the pagetable down, we switch to use init_mm,
801 * unpin old process pagetable and mark it all read-write, which
802 * allows further operations on it to be simple memory accesses.
803 *
804 * The only subtle point is that another CPU may be still using the
805 * pagetable because of lazy tlb flushing. This means we need need to
806 * switch all CPUs off this pagetable before we can unpin it.
807 */
808void xen_exit_mmap(struct mm_struct *mm)
809{
810 get_cpu(); /* make sure we don't move around */
811 drop_mm_ref(mm);
812 put_cpu();
3b827c1b 813
f120f13e 814 spin_lock(&mm->page_table_lock);
df912ea4
JF
815
816 /* pgd may not be pinned in the error exit path of execve */
e2426cf8 817 if (page_pinned(mm->pgd))
df912ea4 818 xen_pgd_unpin(mm->pgd);
74260714 819
f120f13e 820 spin_unlock(&mm->page_table_lock);
3b827c1b 821}
This page took 0.161541 seconds and 5 git commands to generate.