Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/livep...
[deliverable/linux.git] / arch / x86 / xen / time.c
CommitLineData
15c84731
JF
1/*
2 * Xen time implementation.
3 *
4 * This is implemented in terms of a clocksource driver which uses
5 * the hypervisor clock as a nanosecond timebase, and a clockevent
6 * driver which uses the hypervisor's timer mechanism.
7 *
8 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
9 */
10#include <linux/kernel.h>
11#include <linux/interrupt.h>
12#include <linux/clocksource.h>
13#include <linux/clockchips.h>
f91a8b44 14#include <linux/kernel_stat.h>
f595ec96 15#include <linux/math64.h>
5a0e3ad6 16#include <linux/gfp.h>
c9d76a24 17#include <linux/slab.h>
5584880e 18#include <linux/pvclock_gtod.h>
76096863 19#include <linux/timekeeper_internal.h>
15c84731 20
1c7b67f7 21#include <asm/pvclock.h>
15c84731
JF
22#include <asm/xen/hypervisor.h>
23#include <asm/xen/hypercall.h>
24
25#include <xen/events.h>
409771d2 26#include <xen/features.h>
15c84731
JF
27#include <xen/interface/xen.h>
28#include <xen/interface/vcpu.h>
29
30#include "xen-ops.h"
31
15c84731
JF
32/* Xen may fire a timer up to this many ns early */
33#define TIMER_SLOP 100000
f91a8b44 34#define NS_PER_TICK (1000000000LL / HZ)
15c84731 35
f91a8b44 36/* snapshots of runstate info */
c6e22f9e 37static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate_snapshot);
f91a8b44 38
0b0c002c 39/* unused ns of stolen time */
c6e22f9e 40static DEFINE_PER_CPU(u64, xen_residual_stolen);
f91a8b44 41
f91a8b44
JF
42static void do_stolen_accounting(void)
43{
44 struct vcpu_runstate_info state;
45 struct vcpu_runstate_info *snap;
0b0c002c 46 s64 runnable, offline, stolen;
f91a8b44
JF
47 cputime_t ticks;
48
4ccefbe5 49 xen_get_runstate_snapshot(&state);
f91a8b44
JF
50
51 WARN_ON(state.state != RUNSTATE_running);
52
89cbc767 53 snap = this_cpu_ptr(&xen_runstate_snapshot);
f91a8b44
JF
54
55 /* work out how much time the VCPU has not been runn*ing* */
f91a8b44
JF
56 runnable = state.time[RUNSTATE_runnable] - snap->time[RUNSTATE_runnable];
57 offline = state.time[RUNSTATE_offline] - snap->time[RUNSTATE_offline];
58
59 *snap = state;
60
61 /* Add the appropriate number of ticks of stolen time,
79741dd3 62 including any left-overs from last time. */
780f36d8 63 stolen = runnable + offline + __this_cpu_read(xen_residual_stolen);
f91a8b44
JF
64
65 if (stolen < 0)
66 stolen = 0;
67
f595ec96 68 ticks = iter_div_u64_rem(stolen, NS_PER_TICK, &stolen);
780f36d8 69 __this_cpu_write(xen_residual_stolen, stolen);
79741dd3 70 account_steal_ticks(ticks);
f91a8b44
JF
71}
72
e93ef949 73/* Get the TSC speed from Xen */
409771d2 74static unsigned long xen_tsc_khz(void)
15c84731 75{
3807f345 76 struct pvclock_vcpu_time_info *info =
15c84731
JF
77 &HYPERVISOR_shared_info->vcpu_info[0].time;
78
3807f345 79 return pvclock_tsc_khz(info);
15c84731
JF
80}
81
ee7686bc 82cycle_t xen_clocksource_read(void)
15c84731 83{
1c7b67f7 84 struct pvclock_vcpu_time_info *src;
15c84731 85 cycle_t ret;
15c84731 86
f1c39625 87 preempt_disable_notrace();
3251f20b 88 src = &__this_cpu_read(xen_vcpu)->time;
1c7b67f7 89 ret = pvclock_clocksource_read(src);
f1c39625 90 preempt_enable_notrace();
15c84731
JF
91 return ret;
92}
93
8e19608e
MD
94static cycle_t xen_clocksource_get_cycles(struct clocksource *cs)
95{
96 return xen_clocksource_read();
97}
98
15c84731
JF
99static void xen_read_wallclock(struct timespec *ts)
100{
1c7b67f7
GH
101 struct shared_info *s = HYPERVISOR_shared_info;
102 struct pvclock_wall_clock *wall_clock = &(s->wc);
103 struct pvclock_vcpu_time_info *vcpu_time;
15c84731 104
1c7b67f7
GH
105 vcpu_time = &get_cpu_var(xen_vcpu)->time;
106 pvclock_read_wallclock(wall_clock, vcpu_time, ts);
107 put_cpu_var(xen_vcpu);
15c84731
JF
108}
109
3565184e 110static void xen_get_wallclock(struct timespec *now)
15c84731 111{
3565184e 112 xen_read_wallclock(now);
15c84731 113}
15c84731 114
3565184e 115static int xen_set_wallclock(const struct timespec *now)
15c84731 116{
47433b8c 117 return -1;
15c84731
JF
118}
119
47433b8c
DV
120static int xen_pvclock_gtod_notify(struct notifier_block *nb,
121 unsigned long was_set, void *priv)
15c84731 122{
47433b8c 123 /* Protected by the calling core code serialization */
187b26a9 124 static struct timespec64 next_sync;
5584880e 125
fdb9eb9f 126 struct xen_platform_op op;
76096863
SS
127 struct timespec64 now;
128 struct timekeeper *tk = priv;
129 static bool settime64_supported = true;
130 int ret;
fdb9eb9f 131
76096863
SS
132 now.tv_sec = tk->xtime_sec;
133 now.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
5584880e 134
47433b8c
DV
135 /*
136 * We only take the expensive HV call when the clock was set
137 * or when the 11 minutes RTC synchronization time elapsed.
138 */
187b26a9 139 if (!was_set && timespec64_compare(&now, &next_sync) < 0)
47433b8c 140 return NOTIFY_OK;
fdb9eb9f 141
76096863
SS
142again:
143 if (settime64_supported) {
144 op.cmd = XENPF_settime64;
145 op.u.settime64.mbz = 0;
146 op.u.settime64.secs = now.tv_sec;
147 op.u.settime64.nsecs = now.tv_nsec;
148 op.u.settime64.system_time = xen_clocksource_read();
149 } else {
150 op.cmd = XENPF_settime32;
151 op.u.settime32.secs = now.tv_sec;
152 op.u.settime32.nsecs = now.tv_nsec;
153 op.u.settime32.system_time = xen_clocksource_read();
154 }
155
156 ret = HYPERVISOR_platform_op(&op);
157
158 if (ret == -ENOSYS && settime64_supported) {
159 settime64_supported = false;
160 goto again;
161 }
162 if (ret < 0)
163 return NOTIFY_BAD;
fdb9eb9f 164
47433b8c
DV
165 /*
166 * Move the next drift compensation time 11 minutes
167 * ahead. That's emulating the sync_cmos_clock() update for
168 * the hardware RTC.
169 */
170 next_sync = now;
171 next_sync.tv_sec += 11 * 60;
172
5584880e 173 return NOTIFY_OK;
15c84731
JF
174}
175
5584880e
DV
176static struct notifier_block xen_pvclock_gtod_notifier = {
177 .notifier_call = xen_pvclock_gtod_notify,
178};
179
15c84731
JF
180static struct clocksource xen_clocksource __read_mostly = {
181 .name = "xen",
182 .rating = 400,
8e19608e 183 .read = xen_clocksource_get_cycles,
15c84731 184 .mask = ~0,
15c84731
JF
185 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
186};
187
188/*
189 Xen clockevent implementation
190
191 Xen has two clockevent implementations:
192
193 The old timer_op one works with all released versions of Xen prior
194 to version 3.0.4. This version of the hypervisor provides a
195 single-shot timer with nanosecond resolution. However, sharing the
196 same event channel is a 100Hz tick which is delivered while the
197 vcpu is running. We don't care about or use this tick, but it will
198 cause the core time code to think the timer fired too soon, and
199 will end up resetting it each time. It could be filtered, but
200 doing so has complications when the ktime clocksource is not yet
201 the xen clocksource (ie, at boot time).
202
203 The new vcpu_op-based timer interface allows the tick timer period
204 to be changed or turned off. The tick timer is not useful as a
205 periodic timer because events are only delivered to running vcpus.
206 The one-shot timer can report when a timeout is in the past, so
207 set_next_event is capable of returning -ETIME when appropriate.
208 This interface is used when available.
209*/
210
211
212/*
213 Get a hypervisor absolute time. In theory we could maintain an
214 offset between the kernel's time and the hypervisor's time, and
215 apply that to a kernel's absolute timeout. Unfortunately the
216 hypervisor and kernel times can drift even if the kernel is using
217 the Xen clocksource, because ntp can warp the kernel's clocksource.
218*/
219static s64 get_abs_timeout(unsigned long delta)
220{
221 return xen_clocksource_read() + delta;
222}
223
955381dd 224static int xen_timerop_shutdown(struct clock_event_device *evt)
15c84731 225{
955381dd
VK
226 /* cancel timeout */
227 HYPERVISOR_set_timer_op(0);
228
229 return 0;
15c84731
JF
230}
231
232static int xen_timerop_set_next_event(unsigned long delta,
233 struct clock_event_device *evt)
234{
955381dd 235 WARN_ON(!clockevent_state_oneshot(evt));
15c84731
JF
236
237 if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
238 BUG();
239
240 /* We may have missed the deadline, but there's no real way of
241 knowing for sure. If the event was in the past, then we'll
242 get an immediate interrupt. */
243
244 return 0;
245}
246
247static const struct clock_event_device xen_timerop_clockevent = {
955381dd
VK
248 .name = "xen",
249 .features = CLOCK_EVT_FEAT_ONESHOT,
15c84731 250
955381dd
VK
251 .max_delta_ns = 0xffffffff,
252 .min_delta_ns = TIMER_SLOP,
15c84731 253
955381dd
VK
254 .mult = 1,
255 .shift = 0,
256 .rating = 500,
15c84731 257
955381dd
VK
258 .set_state_shutdown = xen_timerop_shutdown,
259 .set_next_event = xen_timerop_set_next_event,
15c84731
JF
260};
261
955381dd
VK
262static int xen_vcpuop_shutdown(struct clock_event_device *evt)
263{
264 int cpu = smp_processor_id();
15c84731 265
955381dd
VK
266 if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, cpu, NULL) ||
267 HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
268 BUG();
15c84731 269
955381dd
VK
270 return 0;
271}
272
273static int xen_vcpuop_set_oneshot(struct clock_event_device *evt)
15c84731
JF
274{
275 int cpu = smp_processor_id();
276
955381dd
VK
277 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
278 BUG();
279
280 return 0;
15c84731
JF
281}
282
283static int xen_vcpuop_set_next_event(unsigned long delta,
284 struct clock_event_device *evt)
285{
286 int cpu = smp_processor_id();
287 struct vcpu_set_singleshot_timer single;
288 int ret;
289
955381dd 290 WARN_ON(!clockevent_state_oneshot(evt));
15c84731
JF
291
292 single.timeout_abs_ns = get_abs_timeout(delta);
293 single.flags = VCPU_SSHOTTMR_future;
294
295 ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, cpu, &single);
296
297 BUG_ON(ret != 0 && ret != -ETIME);
298
299 return ret;
300}
301
302static const struct clock_event_device xen_vcpuop_clockevent = {
303 .name = "xen",
304 .features = CLOCK_EVT_FEAT_ONESHOT,
305
306 .max_delta_ns = 0xffffffff,
307 .min_delta_ns = TIMER_SLOP,
308
309 .mult = 1,
310 .shift = 0,
311 .rating = 500,
312
955381dd
VK
313 .set_state_shutdown = xen_vcpuop_shutdown,
314 .set_state_oneshot = xen_vcpuop_set_oneshot,
15c84731
JF
315 .set_next_event = xen_vcpuop_set_next_event,
316};
317
318static const struct clock_event_device *xen_clockevent =
319 &xen_timerop_clockevent;
31620a19
KRW
320
321struct xen_clock_event_device {
322 struct clock_event_device evt;
7be0772d 323 char name[16];
31620a19
KRW
324};
325static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 };
15c84731
JF
326
327static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
328{
89cbc767 329 struct clock_event_device *evt = this_cpu_ptr(&xen_clock_events.evt);
15c84731
JF
330 irqreturn_t ret;
331
332 ret = IRQ_NONE;
333 if (evt->event_handler) {
334 evt->event_handler(evt);
335 ret = IRQ_HANDLED;
336 }
337
f91a8b44
JF
338 do_stolen_accounting();
339
15c84731
JF
340 return ret;
341}
342
09e99da7
KRW
343void xen_teardown_timer(int cpu)
344{
345 struct clock_event_device *evt;
346 BUG_ON(cpu == 0);
347 evt = &per_cpu(xen_clock_events, cpu).evt;
348
349 if (evt->irq >= 0) {
350 unbind_from_irqhandler(evt->irq, NULL);
351 evt->irq = -1;
09e99da7
KRW
352 }
353}
354
f87e4cac 355void xen_setup_timer(int cpu)
15c84731 356{
7be0772d
VK
357 struct xen_clock_event_device *xevt = &per_cpu(xen_clock_events, cpu);
358 struct clock_event_device *evt = &xevt->evt;
15c84731
JF
359 int irq;
360
ef35a4e6 361 WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu);
09e99da7
KRW
362 if (evt->irq >= 0)
363 xen_teardown_timer(cpu);
ef35a4e6 364
15c84731
JF
365 printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
366
7be0772d 367 snprintf(xevt->name, sizeof(xevt->name), "timer%d", cpu);
15c84731
JF
368
369 irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
9d71cee6 370 IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER|
8d5999df 371 IRQF_FORCE_RESUME|IRQF_EARLY_RESUME,
7be0772d 372 xevt->name, NULL);
8785c676 373 (void)xen_set_irq_priority(irq, XEN_IRQ_PRIORITY_MAX);
15c84731 374
15c84731
JF
375 memcpy(evt, xen_clockevent, sizeof(*evt));
376
320ab2b0 377 evt->cpumask = cpumask_of(cpu);
15c84731 378 evt->irq = irq;
f87e4cac
JF
379}
380
d68d82af 381
f87e4cac
JF
382void xen_setup_cpu_clockevents(void)
383{
89cbc767 384 clockevents_register_device(this_cpu_ptr(&xen_clock_events.evt));
15c84731
JF
385}
386
d07af1f0
JF
387void xen_timer_resume(void)
388{
389 int cpu;
390
e7a3481c
JF
391 pvclock_resume();
392
d07af1f0
JF
393 if (xen_clockevent != &xen_vcpuop_clockevent)
394 return;
395
396 for_each_online_cpu(cpu) {
397 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
398 BUG();
399 }
400}
401
fb6ce5de 402static const struct pv_time_ops xen_time_ops __initconst = {
ca50a5f3 403 .sched_clock = xen_clocksource_read,
409771d2
SS
404};
405
fb6ce5de 406static void __init xen_time_init(void)
15c84731
JF
407{
408 int cpu = smp_processor_id();
c4507257 409 struct timespec tp;
15c84731 410
94dd85f6
PI
411 /* As Dom0 is never moved, no penalty on using TSC there */
412 if (xen_initial_domain())
413 xen_clocksource.rating = 275;
414
b01cc1b0 415 clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC);
15c84731
JF
416
417 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL) == 0) {
f91a8b44 418 /* Successfully turned off 100Hz tick, so we have the
15c84731
JF
419 vcpuop-based timer interface */
420 printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
421 xen_clockevent = &xen_vcpuop_clockevent;
422 }
423
424 /* Set initial system time with full resolution */
c4507257
JS
425 xen_read_wallclock(&tp);
426 do_settimeofday(&tp);
15c84731 427
404ee5b1 428 setup_force_cpu_cap(X86_FEATURE_TSC);
15c84731 429
be012920 430 xen_setup_runstate_info(cpu);
15c84731 431 xen_setup_timer(cpu);
f87e4cac 432 xen_setup_cpu_clockevents();
5584880e
DV
433
434 if (xen_initial_domain())
435 pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier);
15c84731 436}
409771d2 437
fb6ce5de 438void __init xen_init_time_ops(void)
409771d2
SS
439{
440 pv_time_ops = xen_time_ops;
441
442 x86_init.timers.timer_init = xen_time_init;
443 x86_init.timers.setup_percpu_clockev = x86_init_noop;
444 x86_cpuinit.setup_percpu_clockev = x86_init_noop;
445
446 x86_platform.calibrate_tsc = xen_tsc_khz;
447 x86_platform.get_wallclock = xen_get_wallclock;
47433b8c
DV
448 /* Dom0 uses the native method to set the hardware RTC. */
449 if (!xen_initial_domain())
450 x86_platform.set_wallclock = xen_set_wallclock;
409771d2
SS
451}
452
ca65f9fc 453#ifdef CONFIG_XEN_PVHVM
409771d2
SS
454static void xen_hvm_setup_cpu_clockevents(void)
455{
456 int cpu = smp_processor_id();
457 xen_setup_runstate_info(cpu);
7918c92a
KRW
458 /*
459 * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence
460 * doing it xen_hvm_cpu_notify (which gets called by smp_init during
461 * early bootup and also during CPU hotplug events).
462 */
409771d2
SS
463 xen_setup_cpu_clockevents();
464}
465
fb6ce5de 466void __init xen_hvm_init_time_ops(void)
409771d2
SS
467{
468 /* vector callback is needed otherwise we cannot receive interrupts
31e7e931
SS
469 * on cpu > 0 and at this point we don't know how many cpus are
470 * available */
471 if (!xen_have_vector_callback)
409771d2
SS
472 return;
473 if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
474 printk(KERN_INFO "Xen doesn't support pvclock on HVM,"
475 "disable pv timer\n");
476 return;
477 }
478
479 pv_time_ops = xen_time_ops;
480 x86_init.timers.setup_percpu_clockev = xen_time_init;
481 x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
482
483 x86_platform.calibrate_tsc = xen_tsc_khz;
484 x86_platform.get_wallclock = xen_get_wallclock;
485 x86_platform.set_wallclock = xen_set_wallclock;
486}
ca65f9fc 487#endif
This page took 0.623439 seconds and 5 git commands to generate.