Merge branch 'linus' into tracing/ftrace
[deliverable/linux.git] / arch / x86 / xen / time.c
CommitLineData
15c84731
JF
1/*
2 * Xen time implementation.
3 *
4 * This is implemented in terms of a clocksource driver which uses
5 * the hypervisor clock as a nanosecond timebase, and a clockevent
6 * driver which uses the hypervisor's timer mechanism.
7 *
8 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
9 */
10#include <linux/kernel.h>
11#include <linux/interrupt.h>
12#include <linux/clocksource.h>
13#include <linux/clockchips.h>
f91a8b44 14#include <linux/kernel_stat.h>
f595ec96 15#include <linux/math64.h>
15c84731 16
1c7b67f7 17#include <asm/pvclock.h>
15c84731
JF
18#include <asm/xen/hypervisor.h>
19#include <asm/xen/hypercall.h>
20
21#include <xen/events.h>
22#include <xen/interface/xen.h>
23#include <xen/interface/vcpu.h>
24
25#include "xen-ops.h"
26
27#define XEN_SHIFT 22
28
29/* Xen may fire a timer up to this many ns early */
30#define TIMER_SLOP 100000
f91a8b44 31#define NS_PER_TICK (1000000000LL / HZ)
15c84731 32
ab550288
JF
33static cycle_t xen_clocksource_read(void);
34
f91a8b44
JF
35/* runstate info updated by Xen */
36static DEFINE_PER_CPU(struct vcpu_runstate_info, runstate);
37
38/* snapshots of runstate info */
39static DEFINE_PER_CPU(struct vcpu_runstate_info, runstate_snapshot);
40
41/* unused ns of stolen and blocked time */
42static DEFINE_PER_CPU(u64, residual_stolen);
43static DEFINE_PER_CPU(u64, residual_blocked);
44
45/* return an consistent snapshot of 64-bit time/counter value */
46static u64 get64(const u64 *p)
47{
48 u64 ret;
49
50 if (BITS_PER_LONG < 64) {
51 u32 *p32 = (u32 *)p;
52 u32 h, l;
53
54 /*
55 * Read high then low, and then make sure high is
56 * still the same; this will only loop if low wraps
57 * and carries into high.
58 * XXX some clean way to make this endian-proof?
59 */
60 do {
61 h = p32[1];
62 barrier();
63 l = p32[0];
64 barrier();
65 } while (p32[1] != h);
66
67 ret = (((u64)h) << 32) | l;
68 } else
69 ret = *p;
70
71 return ret;
72}
73
74/*
75 * Runstate accounting
76 */
77static void get_runstate_snapshot(struct vcpu_runstate_info *res)
78{
79 u64 state_time;
80 struct vcpu_runstate_info *state;
81
f120f13e 82 BUG_ON(preemptible());
f91a8b44
JF
83
84 state = &__get_cpu_var(runstate);
85
86 /*
87 * The runstate info is always updated by the hypervisor on
88 * the current CPU, so there's no need to use anything
89 * stronger than a compiler barrier when fetching it.
90 */
91 do {
92 state_time = get64(&state->state_entry_time);
93 barrier();
94 *res = *state;
95 barrier();
96 } while (get64(&state->state_entry_time) != state_time);
f91a8b44
JF
97}
98
f0d73394
JF
99/* return true when a vcpu could run but has no real cpu to run on */
100bool xen_vcpu_stolen(int vcpu)
101{
102 return per_cpu(runstate, vcpu).state == RUNSTATE_runnable;
103}
104
f91a8b44
JF
105static void setup_runstate_info(int cpu)
106{
107 struct vcpu_register_runstate_memory_area area;
108
109 area.addr.v = &per_cpu(runstate, cpu);
110
111 if (HYPERVISOR_vcpu_op(VCPUOP_register_runstate_memory_area,
112 cpu, &area))
113 BUG();
114}
115
116static void do_stolen_accounting(void)
117{
118 struct vcpu_runstate_info state;
119 struct vcpu_runstate_info *snap;
120 s64 blocked, runnable, offline, stolen;
121 cputime_t ticks;
122
123 get_runstate_snapshot(&state);
124
125 WARN_ON(state.state != RUNSTATE_running);
126
127 snap = &__get_cpu_var(runstate_snapshot);
128
129 /* work out how much time the VCPU has not been runn*ing* */
130 blocked = state.time[RUNSTATE_blocked] - snap->time[RUNSTATE_blocked];
131 runnable = state.time[RUNSTATE_runnable] - snap->time[RUNSTATE_runnable];
132 offline = state.time[RUNSTATE_offline] - snap->time[RUNSTATE_offline];
133
134 *snap = state;
135
136 /* Add the appropriate number of ticks of stolen time,
137 including any left-overs from last time. Passing NULL to
138 account_steal_time accounts the time as stolen. */
139 stolen = runnable + offline + __get_cpu_var(residual_stolen);
140
141 if (stolen < 0)
142 stolen = 0;
143
f595ec96 144 ticks = iter_div_u64_rem(stolen, NS_PER_TICK, &stolen);
f91a8b44
JF
145 __get_cpu_var(residual_stolen) = stolen;
146 account_steal_time(NULL, ticks);
147
148 /* Add the appropriate number of ticks of blocked time,
149 including any left-overs from last time. Passing idle to
150 account_steal_time accounts the time as idle/wait. */
151 blocked += __get_cpu_var(residual_blocked);
152
153 if (blocked < 0)
154 blocked = 0;
155
f595ec96 156 ticks = iter_div_u64_rem(blocked, NS_PER_TICK, &blocked);
f91a8b44
JF
157 __get_cpu_var(residual_blocked) = blocked;
158 account_steal_time(idle_task(smp_processor_id()), ticks);
159}
160
ab550288
JF
161/*
162 * Xen sched_clock implementation. Returns the number of unstolen
163 * nanoseconds, which is nanoseconds the VCPU spent in RUNNING+BLOCKED
164 * states.
165 */
166unsigned long long xen_sched_clock(void)
167{
168 struct vcpu_runstate_info state;
f120f13e
JF
169 cycle_t now;
170 u64 ret;
ab550288
JF
171 s64 offset;
172
f120f13e
JF
173 /*
174 * Ideally sched_clock should be called on a per-cpu basis
175 * anyway, so preempt should already be disabled, but that's
176 * not current practice at the moment.
177 */
178 preempt_disable();
179
180 now = xen_clocksource_read();
181
ab550288
JF
182 get_runstate_snapshot(&state);
183
184 WARN_ON(state.state != RUNSTATE_running);
185
186 offset = now - state.state_entry_time;
187 if (offset < 0)
188 offset = 0;
189
f120f13e 190 ret = state.time[RUNSTATE_blocked] +
ab550288
JF
191 state.time[RUNSTATE_running] +
192 offset;
f120f13e
JF
193
194 preempt_enable();
195
196 return ret;
ab550288 197}
f91a8b44
JF
198
199
200/* Get the CPU speed from Xen */
15c84731
JF
201unsigned long xen_cpu_khz(void)
202{
88a5ac89 203 u64 xen_khz = 1000000ULL << 32;
1c7b67f7 204 const struct pvclock_vcpu_time_info *info =
15c84731
JF
205 &HYPERVISOR_shared_info->vcpu_info[0].time;
206
88a5ac89 207 do_div(xen_khz, info->tsc_to_system_mul);
15c84731 208 if (info->tsc_shift < 0)
88a5ac89 209 xen_khz <<= -info->tsc_shift;
15c84731 210 else
88a5ac89 211 xen_khz >>= info->tsc_shift;
15c84731 212
88a5ac89 213 return xen_khz;
15c84731
JF
214}
215
ab550288 216static cycle_t xen_clocksource_read(void)
15c84731 217{
1c7b67f7 218 struct pvclock_vcpu_time_info *src;
15c84731 219 cycle_t ret;
15c84731 220
1c7b67f7
GH
221 src = &get_cpu_var(xen_vcpu)->time;
222 ret = pvclock_clocksource_read(src);
223 put_cpu_var(xen_vcpu);
15c84731
JF
224 return ret;
225}
226
227static void xen_read_wallclock(struct timespec *ts)
228{
1c7b67f7
GH
229 struct shared_info *s = HYPERVISOR_shared_info;
230 struct pvclock_wall_clock *wall_clock = &(s->wc);
231 struct pvclock_vcpu_time_info *vcpu_time;
15c84731 232
1c7b67f7
GH
233 vcpu_time = &get_cpu_var(xen_vcpu)->time;
234 pvclock_read_wallclock(wall_clock, vcpu_time, ts);
235 put_cpu_var(xen_vcpu);
15c84731
JF
236}
237
238unsigned long xen_get_wallclock(void)
239{
240 struct timespec ts;
241
242 xen_read_wallclock(&ts);
15c84731
JF
243 return ts.tv_sec;
244}
245
246int xen_set_wallclock(unsigned long now)
247{
248 /* do nothing for domU */
249 return -1;
250}
251
252static struct clocksource xen_clocksource __read_mostly = {
253 .name = "xen",
254 .rating = 400,
255 .read = xen_clocksource_read,
256 .mask = ~0,
257 .mult = 1<<XEN_SHIFT, /* time directly in nanoseconds */
258 .shift = XEN_SHIFT,
259 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
260};
261
262/*
263 Xen clockevent implementation
264
265 Xen has two clockevent implementations:
266
267 The old timer_op one works with all released versions of Xen prior
268 to version 3.0.4. This version of the hypervisor provides a
269 single-shot timer with nanosecond resolution. However, sharing the
270 same event channel is a 100Hz tick which is delivered while the
271 vcpu is running. We don't care about or use this tick, but it will
272 cause the core time code to think the timer fired too soon, and
273 will end up resetting it each time. It could be filtered, but
274 doing so has complications when the ktime clocksource is not yet
275 the xen clocksource (ie, at boot time).
276
277 The new vcpu_op-based timer interface allows the tick timer period
278 to be changed or turned off. The tick timer is not useful as a
279 periodic timer because events are only delivered to running vcpus.
280 The one-shot timer can report when a timeout is in the past, so
281 set_next_event is capable of returning -ETIME when appropriate.
282 This interface is used when available.
283*/
284
285
286/*
287 Get a hypervisor absolute time. In theory we could maintain an
288 offset between the kernel's time and the hypervisor's time, and
289 apply that to a kernel's absolute timeout. Unfortunately the
290 hypervisor and kernel times can drift even if the kernel is using
291 the Xen clocksource, because ntp can warp the kernel's clocksource.
292*/
293static s64 get_abs_timeout(unsigned long delta)
294{
295 return xen_clocksource_read() + delta;
296}
297
298static void xen_timerop_set_mode(enum clock_event_mode mode,
299 struct clock_event_device *evt)
300{
301 switch (mode) {
302 case CLOCK_EVT_MODE_PERIODIC:
303 /* unsupported */
304 WARN_ON(1);
305 break;
306
307 case CLOCK_EVT_MODE_ONESHOT:
18de5bc4 308 case CLOCK_EVT_MODE_RESUME:
15c84731
JF
309 break;
310
311 case CLOCK_EVT_MODE_UNUSED:
312 case CLOCK_EVT_MODE_SHUTDOWN:
313 HYPERVISOR_set_timer_op(0); /* cancel timeout */
314 break;
315 }
316}
317
318static int xen_timerop_set_next_event(unsigned long delta,
319 struct clock_event_device *evt)
320{
321 WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
322
323 if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
324 BUG();
325
326 /* We may have missed the deadline, but there's no real way of
327 knowing for sure. If the event was in the past, then we'll
328 get an immediate interrupt. */
329
330 return 0;
331}
332
333static const struct clock_event_device xen_timerop_clockevent = {
334 .name = "xen",
335 .features = CLOCK_EVT_FEAT_ONESHOT,
336
337 .max_delta_ns = 0xffffffff,
338 .min_delta_ns = TIMER_SLOP,
339
340 .mult = 1,
341 .shift = 0,
342 .rating = 500,
343
344 .set_mode = xen_timerop_set_mode,
345 .set_next_event = xen_timerop_set_next_event,
346};
347
348
349
350static void xen_vcpuop_set_mode(enum clock_event_mode mode,
351 struct clock_event_device *evt)
352{
353 int cpu = smp_processor_id();
354
355 switch (mode) {
356 case CLOCK_EVT_MODE_PERIODIC:
357 WARN_ON(1); /* unsupported */
358 break;
359
360 case CLOCK_EVT_MODE_ONESHOT:
361 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
362 BUG();
363 break;
364
365 case CLOCK_EVT_MODE_UNUSED:
366 case CLOCK_EVT_MODE_SHUTDOWN:
367 if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, cpu, NULL) ||
368 HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
369 BUG();
370 break;
18de5bc4
TG
371 case CLOCK_EVT_MODE_RESUME:
372 break;
15c84731
JF
373 }
374}
375
376static int xen_vcpuop_set_next_event(unsigned long delta,
377 struct clock_event_device *evt)
378{
379 int cpu = smp_processor_id();
380 struct vcpu_set_singleshot_timer single;
381 int ret;
382
383 WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
384
385 single.timeout_abs_ns = get_abs_timeout(delta);
386 single.flags = VCPU_SSHOTTMR_future;
387
388 ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, cpu, &single);
389
390 BUG_ON(ret != 0 && ret != -ETIME);
391
392 return ret;
393}
394
395static const struct clock_event_device xen_vcpuop_clockevent = {
396 .name = "xen",
397 .features = CLOCK_EVT_FEAT_ONESHOT,
398
399 .max_delta_ns = 0xffffffff,
400 .min_delta_ns = TIMER_SLOP,
401
402 .mult = 1,
403 .shift = 0,
404 .rating = 500,
405
406 .set_mode = xen_vcpuop_set_mode,
407 .set_next_event = xen_vcpuop_set_next_event,
408};
409
410static const struct clock_event_device *xen_clockevent =
411 &xen_timerop_clockevent;
412static DEFINE_PER_CPU(struct clock_event_device, xen_clock_events);
413
414static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
415{
416 struct clock_event_device *evt = &__get_cpu_var(xen_clock_events);
417 irqreturn_t ret;
418
419 ret = IRQ_NONE;
420 if (evt->event_handler) {
421 evt->event_handler(evt);
422 ret = IRQ_HANDLED;
423 }
424
f91a8b44
JF
425 do_stolen_accounting();
426
15c84731
JF
427 return ret;
428}
429
f87e4cac 430void xen_setup_timer(int cpu)
15c84731
JF
431{
432 const char *name;
433 struct clock_event_device *evt;
434 int irq;
435
436 printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
437
438 name = kasprintf(GFP_KERNEL, "timer%d", cpu);
439 if (!name)
440 name = "<timer kasprintf failed>";
441
442 irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
443 IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING,
444 name, NULL);
445
f87e4cac 446 evt = &per_cpu(xen_clock_events, cpu);
15c84731
JF
447 memcpy(evt, xen_clockevent, sizeof(*evt));
448
449 evt->cpumask = cpumask_of_cpu(cpu);
450 evt->irq = irq;
15c84731 451
f91a8b44 452 setup_runstate_info(cpu);
f87e4cac
JF
453}
454
455void xen_setup_cpu_clockevents(void)
456{
457 BUG_ON(preemptible());
f91a8b44 458
f87e4cac 459 clockevents_register_device(&__get_cpu_var(xen_clock_events));
15c84731
JF
460}
461
462__init void xen_time_init(void)
463{
464 int cpu = smp_processor_id();
465
15c84731
JF
466 clocksource_register(&xen_clocksource);
467
468 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL) == 0) {
f91a8b44 469 /* Successfully turned off 100Hz tick, so we have the
15c84731
JF
470 vcpuop-based timer interface */
471 printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
472 xen_clockevent = &xen_vcpuop_clockevent;
473 }
474
475 /* Set initial system time with full resolution */
476 xen_read_wallclock(&xtime);
477 set_normalized_timespec(&wall_to_monotonic,
478 -xtime.tv_sec, -xtime.tv_nsec);
479
404ee5b1 480 setup_force_cpu_cap(X86_FEATURE_TSC);
15c84731
JF
481
482 xen_setup_timer(cpu);
f87e4cac 483 xen_setup_cpu_clockevents();
15c84731 484}
This page took 0.144259 seconds and 5 git commands to generate.