Merge branch 'upstream/core' into upstream/xen
[deliverable/linux.git] / arch / x86 / xen / time.c
CommitLineData
15c84731
JF
1/*
2 * Xen time implementation.
3 *
4 * This is implemented in terms of a clocksource driver which uses
5 * the hypervisor clock as a nanosecond timebase, and a clockevent
6 * driver which uses the hypervisor's timer mechanism.
7 *
8 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
9 */
10#include <linux/kernel.h>
11#include <linux/interrupt.h>
12#include <linux/clocksource.h>
13#include <linux/clockchips.h>
f91a8b44 14#include <linux/kernel_stat.h>
f595ec96 15#include <linux/math64.h>
5a0e3ad6 16#include <linux/gfp.h>
15c84731 17
1c7b67f7 18#include <asm/pvclock.h>
15c84731
JF
19#include <asm/xen/hypervisor.h>
20#include <asm/xen/hypercall.h>
21
22#include <xen/events.h>
23#include <xen/interface/xen.h>
24#include <xen/interface/vcpu.h>
25
26#include "xen-ops.h"
27
28#define XEN_SHIFT 22
29
30/* Xen may fire a timer up to this many ns early */
31#define TIMER_SLOP 100000
f91a8b44 32#define NS_PER_TICK (1000000000LL / HZ)
15c84731 33
f91a8b44 34/* runstate info updated by Xen */
c6e22f9e 35static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate);
f91a8b44
JF
36
37/* snapshots of runstate info */
c6e22f9e 38static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate_snapshot);
f91a8b44
JF
39
40/* unused ns of stolen and blocked time */
c6e22f9e
TH
41static DEFINE_PER_CPU(u64, xen_residual_stolen);
42static DEFINE_PER_CPU(u64, xen_residual_blocked);
f91a8b44
JF
43
44/* return an consistent snapshot of 64-bit time/counter value */
45static u64 get64(const u64 *p)
46{
47 u64 ret;
48
49 if (BITS_PER_LONG < 64) {
50 u32 *p32 = (u32 *)p;
51 u32 h, l;
52
53 /*
54 * Read high then low, and then make sure high is
55 * still the same; this will only loop if low wraps
56 * and carries into high.
57 * XXX some clean way to make this endian-proof?
58 */
59 do {
60 h = p32[1];
61 barrier();
62 l = p32[0];
63 barrier();
64 } while (p32[1] != h);
65
66 ret = (((u64)h) << 32) | l;
67 } else
68 ret = *p;
69
70 return ret;
71}
72
73/*
74 * Runstate accounting
75 */
76static void get_runstate_snapshot(struct vcpu_runstate_info *res)
77{
78 u64 state_time;
79 struct vcpu_runstate_info *state;
80
f120f13e 81 BUG_ON(preemptible());
f91a8b44 82
c6e22f9e 83 state = &__get_cpu_var(xen_runstate);
f91a8b44
JF
84
85 /*
86 * The runstate info is always updated by the hypervisor on
87 * the current CPU, so there's no need to use anything
88 * stronger than a compiler barrier when fetching it.
89 */
90 do {
91 state_time = get64(&state->state_entry_time);
92 barrier();
93 *res = *state;
94 barrier();
95 } while (get64(&state->state_entry_time) != state_time);
f91a8b44
JF
96}
97
f0d73394
JF
98/* return true when a vcpu could run but has no real cpu to run on */
99bool xen_vcpu_stolen(int vcpu)
100{
c6e22f9e 101 return per_cpu(xen_runstate, vcpu).state == RUNSTATE_runnable;
f0d73394
JF
102}
103
be012920 104void xen_setup_runstate_info(int cpu)
f91a8b44
JF
105{
106 struct vcpu_register_runstate_memory_area area;
107
c6e22f9e 108 area.addr.v = &per_cpu(xen_runstate, cpu);
f91a8b44
JF
109
110 if (HYPERVISOR_vcpu_op(VCPUOP_register_runstate_memory_area,
111 cpu, &area))
112 BUG();
113}
114
115static void do_stolen_accounting(void)
116{
117 struct vcpu_runstate_info state;
118 struct vcpu_runstate_info *snap;
119 s64 blocked, runnable, offline, stolen;
120 cputime_t ticks;
121
122 get_runstate_snapshot(&state);
123
124 WARN_ON(state.state != RUNSTATE_running);
125
c6e22f9e 126 snap = &__get_cpu_var(xen_runstate_snapshot);
f91a8b44
JF
127
128 /* work out how much time the VCPU has not been runn*ing* */
129 blocked = state.time[RUNSTATE_blocked] - snap->time[RUNSTATE_blocked];
130 runnable = state.time[RUNSTATE_runnable] - snap->time[RUNSTATE_runnable];
131 offline = state.time[RUNSTATE_offline] - snap->time[RUNSTATE_offline];
132
133 *snap = state;
134
135 /* Add the appropriate number of ticks of stolen time,
79741dd3 136 including any left-overs from last time. */
c6e22f9e 137 stolen = runnable + offline + __get_cpu_var(xen_residual_stolen);
f91a8b44
JF
138
139 if (stolen < 0)
140 stolen = 0;
141
f595ec96 142 ticks = iter_div_u64_rem(stolen, NS_PER_TICK, &stolen);
c6e22f9e 143 __get_cpu_var(xen_residual_stolen) = stolen;
79741dd3 144 account_steal_ticks(ticks);
f91a8b44
JF
145
146 /* Add the appropriate number of ticks of blocked time,
79741dd3 147 including any left-overs from last time. */
c6e22f9e 148 blocked += __get_cpu_var(xen_residual_blocked);
f91a8b44
JF
149
150 if (blocked < 0)
151 blocked = 0;
152
f595ec96 153 ticks = iter_div_u64_rem(blocked, NS_PER_TICK, &blocked);
c6e22f9e 154 __get_cpu_var(xen_residual_blocked) = blocked;
79741dd3 155 account_idle_ticks(ticks);
f91a8b44
JF
156}
157
e93ef949
AK
158/* Get the TSC speed from Xen */
159unsigned long xen_tsc_khz(void)
15c84731 160{
3807f345 161 struct pvclock_vcpu_time_info *info =
15c84731
JF
162 &HYPERVISOR_shared_info->vcpu_info[0].time;
163
3807f345 164 return pvclock_tsc_khz(info);
15c84731
JF
165}
166
ee7686bc 167cycle_t xen_clocksource_read(void)
15c84731 168{
1c7b67f7 169 struct pvclock_vcpu_time_info *src;
15c84731 170 cycle_t ret;
15c84731 171
1c7b67f7
GH
172 src = &get_cpu_var(xen_vcpu)->time;
173 ret = pvclock_clocksource_read(src);
174 put_cpu_var(xen_vcpu);
15c84731
JF
175 return ret;
176}
177
8e19608e
MD
178static cycle_t xen_clocksource_get_cycles(struct clocksource *cs)
179{
180 return xen_clocksource_read();
181}
182
15c84731
JF
183static void xen_read_wallclock(struct timespec *ts)
184{
1c7b67f7
GH
185 struct shared_info *s = HYPERVISOR_shared_info;
186 struct pvclock_wall_clock *wall_clock = &(s->wc);
187 struct pvclock_vcpu_time_info *vcpu_time;
15c84731 188
1c7b67f7
GH
189 vcpu_time = &get_cpu_var(xen_vcpu)->time;
190 pvclock_read_wallclock(wall_clock, vcpu_time, ts);
191 put_cpu_var(xen_vcpu);
15c84731
JF
192}
193
194unsigned long xen_get_wallclock(void)
195{
196 struct timespec ts;
197
198 xen_read_wallclock(&ts);
15c84731
JF
199 return ts.tv_sec;
200}
201
202int xen_set_wallclock(unsigned long now)
203{
204 /* do nothing for domU */
205 return -1;
206}
207
208static struct clocksource xen_clocksource __read_mostly = {
209 .name = "xen",
210 .rating = 400,
8e19608e 211 .read = xen_clocksource_get_cycles,
15c84731
JF
212 .mask = ~0,
213 .mult = 1<<XEN_SHIFT, /* time directly in nanoseconds */
214 .shift = XEN_SHIFT,
215 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
216};
217
218/*
219 Xen clockevent implementation
220
221 Xen has two clockevent implementations:
222
223 The old timer_op one works with all released versions of Xen prior
224 to version 3.0.4. This version of the hypervisor provides a
225 single-shot timer with nanosecond resolution. However, sharing the
226 same event channel is a 100Hz tick which is delivered while the
227 vcpu is running. We don't care about or use this tick, but it will
228 cause the core time code to think the timer fired too soon, and
229 will end up resetting it each time. It could be filtered, but
230 doing so has complications when the ktime clocksource is not yet
231 the xen clocksource (ie, at boot time).
232
233 The new vcpu_op-based timer interface allows the tick timer period
234 to be changed or turned off. The tick timer is not useful as a
235 periodic timer because events are only delivered to running vcpus.
236 The one-shot timer can report when a timeout is in the past, so
237 set_next_event is capable of returning -ETIME when appropriate.
238 This interface is used when available.
239*/
240
241
242/*
243 Get a hypervisor absolute time. In theory we could maintain an
244 offset between the kernel's time and the hypervisor's time, and
245 apply that to a kernel's absolute timeout. Unfortunately the
246 hypervisor and kernel times can drift even if the kernel is using
247 the Xen clocksource, because ntp can warp the kernel's clocksource.
248*/
249static s64 get_abs_timeout(unsigned long delta)
250{
251 return xen_clocksource_read() + delta;
252}
253
254static void xen_timerop_set_mode(enum clock_event_mode mode,
255 struct clock_event_device *evt)
256{
257 switch (mode) {
258 case CLOCK_EVT_MODE_PERIODIC:
259 /* unsupported */
260 WARN_ON(1);
261 break;
262
263 case CLOCK_EVT_MODE_ONESHOT:
18de5bc4 264 case CLOCK_EVT_MODE_RESUME:
15c84731
JF
265 break;
266
267 case CLOCK_EVT_MODE_UNUSED:
268 case CLOCK_EVT_MODE_SHUTDOWN:
269 HYPERVISOR_set_timer_op(0); /* cancel timeout */
270 break;
271 }
272}
273
274static int xen_timerop_set_next_event(unsigned long delta,
275 struct clock_event_device *evt)
276{
277 WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
278
279 if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
280 BUG();
281
282 /* We may have missed the deadline, but there's no real way of
283 knowing for sure. If the event was in the past, then we'll
284 get an immediate interrupt. */
285
286 return 0;
287}
288
289static const struct clock_event_device xen_timerop_clockevent = {
290 .name = "xen",
291 .features = CLOCK_EVT_FEAT_ONESHOT,
292
293 .max_delta_ns = 0xffffffff,
294 .min_delta_ns = TIMER_SLOP,
295
296 .mult = 1,
297 .shift = 0,
298 .rating = 500,
299
300 .set_mode = xen_timerop_set_mode,
301 .set_next_event = xen_timerop_set_next_event,
302};
303
304
305
306static void xen_vcpuop_set_mode(enum clock_event_mode mode,
307 struct clock_event_device *evt)
308{
309 int cpu = smp_processor_id();
310
311 switch (mode) {
312 case CLOCK_EVT_MODE_PERIODIC:
313 WARN_ON(1); /* unsupported */
314 break;
315
316 case CLOCK_EVT_MODE_ONESHOT:
317 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
318 BUG();
319 break;
320
321 case CLOCK_EVT_MODE_UNUSED:
322 case CLOCK_EVT_MODE_SHUTDOWN:
323 if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, cpu, NULL) ||
324 HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
325 BUG();
326 break;
18de5bc4
TG
327 case CLOCK_EVT_MODE_RESUME:
328 break;
15c84731
JF
329 }
330}
331
332static int xen_vcpuop_set_next_event(unsigned long delta,
333 struct clock_event_device *evt)
334{
335 int cpu = smp_processor_id();
336 struct vcpu_set_singleshot_timer single;
337 int ret;
338
339 WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
340
341 single.timeout_abs_ns = get_abs_timeout(delta);
342 single.flags = VCPU_SSHOTTMR_future;
343
344 ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, cpu, &single);
345
346 BUG_ON(ret != 0 && ret != -ETIME);
347
348 return ret;
349}
350
351static const struct clock_event_device xen_vcpuop_clockevent = {
352 .name = "xen",
353 .features = CLOCK_EVT_FEAT_ONESHOT,
354
355 .max_delta_ns = 0xffffffff,
356 .min_delta_ns = TIMER_SLOP,
357
358 .mult = 1,
359 .shift = 0,
360 .rating = 500,
361
362 .set_mode = xen_vcpuop_set_mode,
363 .set_next_event = xen_vcpuop_set_next_event,
364};
365
366static const struct clock_event_device *xen_clockevent =
367 &xen_timerop_clockevent;
368static DEFINE_PER_CPU(struct clock_event_device, xen_clock_events);
369
370static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
371{
372 struct clock_event_device *evt = &__get_cpu_var(xen_clock_events);
373 irqreturn_t ret;
374
375 ret = IRQ_NONE;
376 if (evt->event_handler) {
377 evt->event_handler(evt);
378 ret = IRQ_HANDLED;
379 }
380
f91a8b44
JF
381 do_stolen_accounting();
382
15c84731
JF
383 return ret;
384}
385
f87e4cac 386void xen_setup_timer(int cpu)
15c84731
JF
387{
388 const char *name;
389 struct clock_event_device *evt;
390 int irq;
391
392 printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
393
394 name = kasprintf(GFP_KERNEL, "timer%d", cpu);
395 if (!name)
396 name = "<timer kasprintf failed>";
397
398 irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
f350c792 399 IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER,
15c84731
JF
400 name, NULL);
401
f87e4cac 402 evt = &per_cpu(xen_clock_events, cpu);
15c84731
JF
403 memcpy(evt, xen_clockevent, sizeof(*evt));
404
320ab2b0 405 evt->cpumask = cpumask_of(cpu);
15c84731 406 evt->irq = irq;
f87e4cac
JF
407}
408
d68d82af
AN
409void xen_teardown_timer(int cpu)
410{
411 struct clock_event_device *evt;
412 BUG_ON(cpu == 0);
413 evt = &per_cpu(xen_clock_events, cpu);
414 unbind_from_irqhandler(evt->irq, NULL);
415}
416
f87e4cac
JF
417void xen_setup_cpu_clockevents(void)
418{
419 BUG_ON(preemptible());
f91a8b44 420
f87e4cac 421 clockevents_register_device(&__get_cpu_var(xen_clock_events));
15c84731
JF
422}
423
d07af1f0
JF
424void xen_timer_resume(void)
425{
426 int cpu;
427
428 if (xen_clockevent != &xen_vcpuop_clockevent)
429 return;
430
431 for_each_online_cpu(cpu) {
432 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
433 BUG();
434 }
435}
436
15c84731
JF
437__init void xen_time_init(void)
438{
439 int cpu = smp_processor_id();
c4507257 440 struct timespec tp;
15c84731 441
15c84731
JF
442 clocksource_register(&xen_clocksource);
443
444 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL) == 0) {
f91a8b44 445 /* Successfully turned off 100Hz tick, so we have the
15c84731
JF
446 vcpuop-based timer interface */
447 printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
448 xen_clockevent = &xen_vcpuop_clockevent;
449 }
450
451 /* Set initial system time with full resolution */
c4507257
JS
452 xen_read_wallclock(&tp);
453 do_settimeofday(&tp);
15c84731 454
404ee5b1 455 setup_force_cpu_cap(X86_FEATURE_TSC);
15c84731 456
be012920 457 xen_setup_runstate_info(cpu);
15c84731 458 xen_setup_timer(cpu);
f87e4cac 459 xen_setup_cpu_clockevents();
15c84731 460}
This page took 0.292883 seconds and 5 git commands to generate.