blkfront: do not create a PV cdrom device if xen_hvm_guest
[deliverable/linux.git] / arch / x86 / xen / time.c
CommitLineData
15c84731
JF
1/*
2 * Xen time implementation.
3 *
4 * This is implemented in terms of a clocksource driver which uses
5 * the hypervisor clock as a nanosecond timebase, and a clockevent
6 * driver which uses the hypervisor's timer mechanism.
7 *
8 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
9 */
10#include <linux/kernel.h>
11#include <linux/interrupt.h>
12#include <linux/clocksource.h>
13#include <linux/clockchips.h>
f91a8b44 14#include <linux/kernel_stat.h>
f595ec96 15#include <linux/math64.h>
5a0e3ad6 16#include <linux/gfp.h>
15c84731 17
1c7b67f7 18#include <asm/pvclock.h>
15c84731
JF
19#include <asm/xen/hypervisor.h>
20#include <asm/xen/hypercall.h>
21
22#include <xen/events.h>
409771d2 23#include <xen/features.h>
15c84731
JF
24#include <xen/interface/xen.h>
25#include <xen/interface/vcpu.h>
26
27#include "xen-ops.h"
28
29#define XEN_SHIFT 22
30
31/* Xen may fire a timer up to this many ns early */
32#define TIMER_SLOP 100000
f91a8b44 33#define NS_PER_TICK (1000000000LL / HZ)
15c84731 34
f91a8b44 35/* runstate info updated by Xen */
c6e22f9e 36static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate);
f91a8b44
JF
37
38/* snapshots of runstate info */
c6e22f9e 39static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate_snapshot);
f91a8b44
JF
40
41/* unused ns of stolen and blocked time */
c6e22f9e
TH
42static DEFINE_PER_CPU(u64, xen_residual_stolen);
43static DEFINE_PER_CPU(u64, xen_residual_blocked);
f91a8b44
JF
44
45/* return an consistent snapshot of 64-bit time/counter value */
46static u64 get64(const u64 *p)
47{
48 u64 ret;
49
50 if (BITS_PER_LONG < 64) {
51 u32 *p32 = (u32 *)p;
52 u32 h, l;
53
54 /*
55 * Read high then low, and then make sure high is
56 * still the same; this will only loop if low wraps
57 * and carries into high.
58 * XXX some clean way to make this endian-proof?
59 */
60 do {
61 h = p32[1];
62 barrier();
63 l = p32[0];
64 barrier();
65 } while (p32[1] != h);
66
67 ret = (((u64)h) << 32) | l;
68 } else
69 ret = *p;
70
71 return ret;
72}
73
74/*
75 * Runstate accounting
76 */
77static void get_runstate_snapshot(struct vcpu_runstate_info *res)
78{
79 u64 state_time;
80 struct vcpu_runstate_info *state;
81
f120f13e 82 BUG_ON(preemptible());
f91a8b44 83
c6e22f9e 84 state = &__get_cpu_var(xen_runstate);
f91a8b44
JF
85
86 /*
87 * The runstate info is always updated by the hypervisor on
88 * the current CPU, so there's no need to use anything
89 * stronger than a compiler barrier when fetching it.
90 */
91 do {
92 state_time = get64(&state->state_entry_time);
93 barrier();
94 *res = *state;
95 barrier();
96 } while (get64(&state->state_entry_time) != state_time);
f91a8b44
JF
97}
98
f0d73394
JF
99/* return true when a vcpu could run but has no real cpu to run on */
100bool xen_vcpu_stolen(int vcpu)
101{
c6e22f9e 102 return per_cpu(xen_runstate, vcpu).state == RUNSTATE_runnable;
f0d73394
JF
103}
104
be012920 105void xen_setup_runstate_info(int cpu)
f91a8b44
JF
106{
107 struct vcpu_register_runstate_memory_area area;
108
c6e22f9e 109 area.addr.v = &per_cpu(xen_runstate, cpu);
f91a8b44
JF
110
111 if (HYPERVISOR_vcpu_op(VCPUOP_register_runstate_memory_area,
112 cpu, &area))
113 BUG();
114}
115
116static void do_stolen_accounting(void)
117{
118 struct vcpu_runstate_info state;
119 struct vcpu_runstate_info *snap;
120 s64 blocked, runnable, offline, stolen;
121 cputime_t ticks;
122
123 get_runstate_snapshot(&state);
124
125 WARN_ON(state.state != RUNSTATE_running);
126
c6e22f9e 127 snap = &__get_cpu_var(xen_runstate_snapshot);
f91a8b44
JF
128
129 /* work out how much time the VCPU has not been runn*ing* */
130 blocked = state.time[RUNSTATE_blocked] - snap->time[RUNSTATE_blocked];
131 runnable = state.time[RUNSTATE_runnable] - snap->time[RUNSTATE_runnable];
132 offline = state.time[RUNSTATE_offline] - snap->time[RUNSTATE_offline];
133
134 *snap = state;
135
136 /* Add the appropriate number of ticks of stolen time,
79741dd3 137 including any left-overs from last time. */
c6e22f9e 138 stolen = runnable + offline + __get_cpu_var(xen_residual_stolen);
f91a8b44
JF
139
140 if (stolen < 0)
141 stolen = 0;
142
f595ec96 143 ticks = iter_div_u64_rem(stolen, NS_PER_TICK, &stolen);
c6e22f9e 144 __get_cpu_var(xen_residual_stolen) = stolen;
79741dd3 145 account_steal_ticks(ticks);
f91a8b44
JF
146
147 /* Add the appropriate number of ticks of blocked time,
79741dd3 148 including any left-overs from last time. */
c6e22f9e 149 blocked += __get_cpu_var(xen_residual_blocked);
f91a8b44
JF
150
151 if (blocked < 0)
152 blocked = 0;
153
f595ec96 154 ticks = iter_div_u64_rem(blocked, NS_PER_TICK, &blocked);
c6e22f9e 155 __get_cpu_var(xen_residual_blocked) = blocked;
79741dd3 156 account_idle_ticks(ticks);
f91a8b44
JF
157}
158
ab550288
JF
159/*
160 * Xen sched_clock implementation. Returns the number of unstolen
161 * nanoseconds, which is nanoseconds the VCPU spent in RUNNING+BLOCKED
162 * states.
163 */
409771d2 164static unsigned long long xen_sched_clock(void)
ab550288
JF
165{
166 struct vcpu_runstate_info state;
f120f13e
JF
167 cycle_t now;
168 u64 ret;
ab550288
JF
169 s64 offset;
170
f120f13e
JF
171 /*
172 * Ideally sched_clock should be called on a per-cpu basis
173 * anyway, so preempt should already be disabled, but that's
174 * not current practice at the moment.
175 */
176 preempt_disable();
177
178 now = xen_clocksource_read();
179
ab550288
JF
180 get_runstate_snapshot(&state);
181
182 WARN_ON(state.state != RUNSTATE_running);
183
184 offset = now - state.state_entry_time;
185 if (offset < 0)
186 offset = 0;
187
f120f13e 188 ret = state.time[RUNSTATE_blocked] +
ab550288
JF
189 state.time[RUNSTATE_running] +
190 offset;
f120f13e
JF
191
192 preempt_enable();
193
194 return ret;
ab550288 195}
f91a8b44
JF
196
197
e93ef949 198/* Get the TSC speed from Xen */
409771d2 199static unsigned long xen_tsc_khz(void)
15c84731 200{
3807f345 201 struct pvclock_vcpu_time_info *info =
15c84731
JF
202 &HYPERVISOR_shared_info->vcpu_info[0].time;
203
3807f345 204 return pvclock_tsc_khz(info);
15c84731
JF
205}
206
ee7686bc 207cycle_t xen_clocksource_read(void)
15c84731 208{
1c7b67f7 209 struct pvclock_vcpu_time_info *src;
15c84731 210 cycle_t ret;
15c84731 211
1c7b67f7
GH
212 src = &get_cpu_var(xen_vcpu)->time;
213 ret = pvclock_clocksource_read(src);
214 put_cpu_var(xen_vcpu);
15c84731
JF
215 return ret;
216}
217
8e19608e
MD
218static cycle_t xen_clocksource_get_cycles(struct clocksource *cs)
219{
220 return xen_clocksource_read();
221}
222
15c84731
JF
223static void xen_read_wallclock(struct timespec *ts)
224{
1c7b67f7
GH
225 struct shared_info *s = HYPERVISOR_shared_info;
226 struct pvclock_wall_clock *wall_clock = &(s->wc);
227 struct pvclock_vcpu_time_info *vcpu_time;
15c84731 228
1c7b67f7
GH
229 vcpu_time = &get_cpu_var(xen_vcpu)->time;
230 pvclock_read_wallclock(wall_clock, vcpu_time, ts);
231 put_cpu_var(xen_vcpu);
15c84731
JF
232}
233
409771d2 234static unsigned long xen_get_wallclock(void)
15c84731
JF
235{
236 struct timespec ts;
237
238 xen_read_wallclock(&ts);
15c84731
JF
239 return ts.tv_sec;
240}
241
409771d2 242static int xen_set_wallclock(unsigned long now)
15c84731
JF
243{
244 /* do nothing for domU */
245 return -1;
246}
247
248static struct clocksource xen_clocksource __read_mostly = {
249 .name = "xen",
250 .rating = 400,
8e19608e 251 .read = xen_clocksource_get_cycles,
15c84731
JF
252 .mask = ~0,
253 .mult = 1<<XEN_SHIFT, /* time directly in nanoseconds */
254 .shift = XEN_SHIFT,
255 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
256};
257
258/*
259 Xen clockevent implementation
260
261 Xen has two clockevent implementations:
262
263 The old timer_op one works with all released versions of Xen prior
264 to version 3.0.4. This version of the hypervisor provides a
265 single-shot timer with nanosecond resolution. However, sharing the
266 same event channel is a 100Hz tick which is delivered while the
267 vcpu is running. We don't care about or use this tick, but it will
268 cause the core time code to think the timer fired too soon, and
269 will end up resetting it each time. It could be filtered, but
270 doing so has complications when the ktime clocksource is not yet
271 the xen clocksource (ie, at boot time).
272
273 The new vcpu_op-based timer interface allows the tick timer period
274 to be changed or turned off. The tick timer is not useful as a
275 periodic timer because events are only delivered to running vcpus.
276 The one-shot timer can report when a timeout is in the past, so
277 set_next_event is capable of returning -ETIME when appropriate.
278 This interface is used when available.
279*/
280
281
282/*
283 Get a hypervisor absolute time. In theory we could maintain an
284 offset between the kernel's time and the hypervisor's time, and
285 apply that to a kernel's absolute timeout. Unfortunately the
286 hypervisor and kernel times can drift even if the kernel is using
287 the Xen clocksource, because ntp can warp the kernel's clocksource.
288*/
289static s64 get_abs_timeout(unsigned long delta)
290{
291 return xen_clocksource_read() + delta;
292}
293
294static void xen_timerop_set_mode(enum clock_event_mode mode,
295 struct clock_event_device *evt)
296{
297 switch (mode) {
298 case CLOCK_EVT_MODE_PERIODIC:
299 /* unsupported */
300 WARN_ON(1);
301 break;
302
303 case CLOCK_EVT_MODE_ONESHOT:
18de5bc4 304 case CLOCK_EVT_MODE_RESUME:
15c84731
JF
305 break;
306
307 case CLOCK_EVT_MODE_UNUSED:
308 case CLOCK_EVT_MODE_SHUTDOWN:
309 HYPERVISOR_set_timer_op(0); /* cancel timeout */
310 break;
311 }
312}
313
314static int xen_timerop_set_next_event(unsigned long delta,
315 struct clock_event_device *evt)
316{
317 WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
318
319 if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
320 BUG();
321
322 /* We may have missed the deadline, but there's no real way of
323 knowing for sure. If the event was in the past, then we'll
324 get an immediate interrupt. */
325
326 return 0;
327}
328
329static const struct clock_event_device xen_timerop_clockevent = {
330 .name = "xen",
331 .features = CLOCK_EVT_FEAT_ONESHOT,
332
333 .max_delta_ns = 0xffffffff,
334 .min_delta_ns = TIMER_SLOP,
335
336 .mult = 1,
337 .shift = 0,
338 .rating = 500,
339
340 .set_mode = xen_timerop_set_mode,
341 .set_next_event = xen_timerop_set_next_event,
342};
343
344
345
346static void xen_vcpuop_set_mode(enum clock_event_mode mode,
347 struct clock_event_device *evt)
348{
349 int cpu = smp_processor_id();
350
351 switch (mode) {
352 case CLOCK_EVT_MODE_PERIODIC:
353 WARN_ON(1); /* unsupported */
354 break;
355
356 case CLOCK_EVT_MODE_ONESHOT:
357 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
358 BUG();
359 break;
360
361 case CLOCK_EVT_MODE_UNUSED:
362 case CLOCK_EVT_MODE_SHUTDOWN:
363 if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, cpu, NULL) ||
364 HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
365 BUG();
366 break;
18de5bc4
TG
367 case CLOCK_EVT_MODE_RESUME:
368 break;
15c84731
JF
369 }
370}
371
372static int xen_vcpuop_set_next_event(unsigned long delta,
373 struct clock_event_device *evt)
374{
375 int cpu = smp_processor_id();
376 struct vcpu_set_singleshot_timer single;
377 int ret;
378
379 WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
380
381 single.timeout_abs_ns = get_abs_timeout(delta);
382 single.flags = VCPU_SSHOTTMR_future;
383
384 ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, cpu, &single);
385
386 BUG_ON(ret != 0 && ret != -ETIME);
387
388 return ret;
389}
390
391static const struct clock_event_device xen_vcpuop_clockevent = {
392 .name = "xen",
393 .features = CLOCK_EVT_FEAT_ONESHOT,
394
395 .max_delta_ns = 0xffffffff,
396 .min_delta_ns = TIMER_SLOP,
397
398 .mult = 1,
399 .shift = 0,
400 .rating = 500,
401
402 .set_mode = xen_vcpuop_set_mode,
403 .set_next_event = xen_vcpuop_set_next_event,
404};
405
406static const struct clock_event_device *xen_clockevent =
407 &xen_timerop_clockevent;
408static DEFINE_PER_CPU(struct clock_event_device, xen_clock_events);
409
410static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
411{
412 struct clock_event_device *evt = &__get_cpu_var(xen_clock_events);
413 irqreturn_t ret;
414
415 ret = IRQ_NONE;
416 if (evt->event_handler) {
417 evt->event_handler(evt);
418 ret = IRQ_HANDLED;
419 }
420
f91a8b44
JF
421 do_stolen_accounting();
422
15c84731
JF
423 return ret;
424}
425
f87e4cac 426void xen_setup_timer(int cpu)
15c84731
JF
427{
428 const char *name;
429 struct clock_event_device *evt;
430 int irq;
431
432 printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
433
434 name = kasprintf(GFP_KERNEL, "timer%d", cpu);
435 if (!name)
436 name = "<timer kasprintf failed>";
437
438 irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
f350c792 439 IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER,
15c84731
JF
440 name, NULL);
441
f87e4cac 442 evt = &per_cpu(xen_clock_events, cpu);
15c84731
JF
443 memcpy(evt, xen_clockevent, sizeof(*evt));
444
320ab2b0 445 evt->cpumask = cpumask_of(cpu);
15c84731 446 evt->irq = irq;
f87e4cac
JF
447}
448
d68d82af
AN
449void xen_teardown_timer(int cpu)
450{
451 struct clock_event_device *evt;
452 BUG_ON(cpu == 0);
453 evt = &per_cpu(xen_clock_events, cpu);
454 unbind_from_irqhandler(evt->irq, NULL);
455}
456
f87e4cac
JF
457void xen_setup_cpu_clockevents(void)
458{
459 BUG_ON(preemptible());
f91a8b44 460
f87e4cac 461 clockevents_register_device(&__get_cpu_var(xen_clock_events));
15c84731
JF
462}
463
d07af1f0
JF
464void xen_timer_resume(void)
465{
466 int cpu;
467
468 if (xen_clockevent != &xen_vcpuop_clockevent)
469 return;
470
471 for_each_online_cpu(cpu) {
472 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
473 BUG();
474 }
475}
476
409771d2
SS
477static const struct pv_time_ops xen_time_ops __initdata = {
478 .sched_clock = xen_sched_clock,
479};
480
481static __init void xen_time_init(void)
15c84731
JF
482{
483 int cpu = smp_processor_id();
c4507257 484 struct timespec tp;
15c84731 485
15c84731
JF
486 clocksource_register(&xen_clocksource);
487
488 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL) == 0) {
f91a8b44 489 /* Successfully turned off 100Hz tick, so we have the
15c84731
JF
490 vcpuop-based timer interface */
491 printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
492 xen_clockevent = &xen_vcpuop_clockevent;
493 }
494
495 /* Set initial system time with full resolution */
c4507257
JS
496 xen_read_wallclock(&tp);
497 do_settimeofday(&tp);
15c84731 498
404ee5b1 499 setup_force_cpu_cap(X86_FEATURE_TSC);
15c84731 500
be012920 501 xen_setup_runstate_info(cpu);
15c84731 502 xen_setup_timer(cpu);
f87e4cac 503 xen_setup_cpu_clockevents();
15c84731 504}
409771d2
SS
505
506__init void xen_init_time_ops(void)
507{
508 pv_time_ops = xen_time_ops;
509
510 x86_init.timers.timer_init = xen_time_init;
511 x86_init.timers.setup_percpu_clockev = x86_init_noop;
512 x86_cpuinit.setup_percpu_clockev = x86_init_noop;
513
514 x86_platform.calibrate_tsc = xen_tsc_khz;
515 x86_platform.get_wallclock = xen_get_wallclock;
516 x86_platform.set_wallclock = xen_set_wallclock;
517}
518
519static void xen_hvm_setup_cpu_clockevents(void)
520{
521 int cpu = smp_processor_id();
522 xen_setup_runstate_info(cpu);
523 xen_setup_timer(cpu);
524 xen_setup_cpu_clockevents();
525}
526
527__init void xen_hvm_init_time_ops(void)
528{
529 /* vector callback is needed otherwise we cannot receive interrupts
530 * on cpu > 0 */
531 if (!xen_have_vector_callback && num_present_cpus() > 1)
532 return;
533 if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
534 printk(KERN_INFO "Xen doesn't support pvclock on HVM,"
535 "disable pv timer\n");
536 return;
537 }
538
539 pv_time_ops = xen_time_ops;
540 x86_init.timers.setup_percpu_clockev = xen_time_init;
541 x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
542
543 x86_platform.calibrate_tsc = xen_tsc_khz;
544 x86_platform.get_wallclock = xen_get_wallclock;
545 x86_platform.set_wallclock = xen_set_wallclock;
546}
547
This page took 0.324198 seconds and 5 git commands to generate.