[PATCH] Kprobes: Use RCU for (un)register synchronization - base changes
[deliverable/linux.git] / arch / x86_64 / kernel / kprobes.c
CommitLineData
1da177e4
LT
1/*
2 * Kernel Probes (KProbes)
3 * arch/x86_64/kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation ( includes contributions from
23 * Rusty Russell).
24 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
25 * interface to access function arguments.
26 * 2004-Oct Jim Keniston <kenistoj@us.ibm.com> and Prasanna S Panchamukhi
27 * <prasanna@in.ibm.com> adapted for x86_64
28 * 2005-Mar Roland McGrath <roland@redhat.com>
29 * Fixed to handle %rip-relative addressing mode correctly.
73649dab
RL
30 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
31 * Added function return probes functionality
1da177e4
LT
32 */
33
34#include <linux/config.h>
35#include <linux/kprobes.h>
36#include <linux/ptrace.h>
37#include <linux/spinlock.h>
38#include <linux/string.h>
39#include <linux/slab.h>
40#include <linux/preempt.h>
9ec4b1f3 41
7e1048b1 42#include <asm/cacheflush.h>
1da177e4
LT
43#include <asm/pgtable.h>
44#include <asm/kdebug.h>
45
46static DECLARE_MUTEX(kprobe_mutex);
1da177e4
LT
47void jprobe_return_end(void);
48
e7a510f9
AM
49DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
50DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
1da177e4
LT
51
52/*
53 * returns non-zero if opcode modifies the interrupt flag.
54 */
55static inline int is_IF_modifier(kprobe_opcode_t *insn)
56{
57 switch (*insn) {
58 case 0xfa: /* cli */
59 case 0xfb: /* sti */
60 case 0xcf: /* iret/iretd */
61 case 0x9d: /* popf/popfd */
62 return 1;
63 }
64
65 if (*insn >= 0x40 && *insn <= 0x4f && *++insn == 0xcf)
66 return 1;
67 return 0;
68}
69
0f2fbdcb 70int __kprobes arch_prepare_kprobe(struct kprobe *p)
1da177e4
LT
71{
72 /* insn: must be on special executable page on x86_64. */
1da177e4 73 down(&kprobe_mutex);
2dd960d6
ZY
74 p->ainsn.insn = get_insn_slot();
75 up(&kprobe_mutex);
1da177e4
LT
76 if (!p->ainsn.insn) {
77 return -ENOMEM;
78 }
79 return 0;
80}
81
82/*
83 * Determine if the instruction uses the %rip-relative addressing mode.
84 * If it does, return the address of the 32-bit displacement word.
85 * If not, return null.
86 */
87static inline s32 *is_riprel(u8 *insn)
88{
89#define W(row,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf) \
90 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
91 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
92 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
93 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
94 << (row % 64))
95 static const u64 onebyte_has_modrm[256 / 64] = {
96 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
97 /* ------------------------------- */
98 W(0x00, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 00 */
99 W(0x10, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 10 */
100 W(0x20, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 20 */
101 W(0x30, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0), /* 30 */
102 W(0x40, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 40 */
103 W(0x50, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 50 */
104 W(0x60, 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0)| /* 60 */
105 W(0x70, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 70 */
106 W(0x80, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 80 */
107 W(0x90, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 90 */
108 W(0xa0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* a0 */
109 W(0xb0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* b0 */
110 W(0xc0, 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0)| /* c0 */
111 W(0xd0, 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1)| /* d0 */
112 W(0xe0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* e0 */
113 W(0xf0, 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1) /* f0 */
114 /* ------------------------------- */
115 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
116 };
117 static const u64 twobyte_has_modrm[256 / 64] = {
118 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
119 /* ------------------------------- */
120 W(0x00, 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1)| /* 0f */
121 W(0x10, 1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0)| /* 1f */
122 W(0x20, 1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1)| /* 2f */
123 W(0x30, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 3f */
124 W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 4f */
125 W(0x50, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 5f */
126 W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 6f */
127 W(0x70, 1,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1), /* 7f */
128 W(0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 8f */
129 W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 9f */
130 W(0xa0, 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1)| /* af */
131 W(0xb0, 1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1), /* bf */
132 W(0xc0, 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0)| /* cf */
133 W(0xd0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* df */
134 W(0xe0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* ef */
135 W(0xf0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0) /* ff */
136 /* ------------------------------- */
137 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
138 };
139#undef W
140 int need_modrm;
141
142 /* Skip legacy instruction prefixes. */
143 while (1) {
144 switch (*insn) {
145 case 0x66:
146 case 0x67:
147 case 0x2e:
148 case 0x3e:
149 case 0x26:
150 case 0x64:
151 case 0x65:
152 case 0x36:
153 case 0xf0:
154 case 0xf3:
155 case 0xf2:
156 ++insn;
157 continue;
158 }
159 break;
160 }
161
162 /* Skip REX instruction prefix. */
163 if ((*insn & 0xf0) == 0x40)
164 ++insn;
165
166 if (*insn == 0x0f) { /* Two-byte opcode. */
167 ++insn;
168 need_modrm = test_bit(*insn, twobyte_has_modrm);
169 } else { /* One-byte opcode. */
170 need_modrm = test_bit(*insn, onebyte_has_modrm);
171 }
172
173 if (need_modrm) {
174 u8 modrm = *++insn;
175 if ((modrm & 0xc7) == 0x05) { /* %rip+disp32 addressing mode */
176 /* Displacement follows ModRM byte. */
177 return (s32 *) ++insn;
178 }
179 }
180
181 /* No %rip-relative addressing mode here. */
182 return NULL;
183}
184
0f2fbdcb 185void __kprobes arch_copy_kprobe(struct kprobe *p)
1da177e4
LT
186{
187 s32 *ripdisp;
188 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE);
189 ripdisp = is_riprel(p->ainsn.insn);
190 if (ripdisp) {
191 /*
192 * The copied instruction uses the %rip-relative
193 * addressing mode. Adjust the displacement for the
194 * difference between the original location of this
195 * instruction and the location of the copy that will
196 * actually be run. The tricky bit here is making sure
197 * that the sign extension happens correctly in this
198 * calculation, since we need a signed 32-bit result to
199 * be sign-extended to 64 bits when it's added to the
200 * %rip value and yield the same 64-bit result that the
201 * sign-extension of the original signed 32-bit
202 * displacement would have given.
203 */
204 s64 disp = (u8 *) p->addr + *ripdisp - (u8 *) p->ainsn.insn;
205 BUG_ON((s64) (s32) disp != disp); /* Sanity check. */
206 *ripdisp = disp;
207 }
7e1048b1 208 p->opcode = *p->addr;
1da177e4
LT
209}
210
0f2fbdcb 211void __kprobes arch_arm_kprobe(struct kprobe *p)
1da177e4 212{
7e1048b1
RL
213 *p->addr = BREAKPOINT_INSTRUCTION;
214 flush_icache_range((unsigned long) p->addr,
215 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
1da177e4
LT
216}
217
0f2fbdcb 218void __kprobes arch_disarm_kprobe(struct kprobe *p)
1da177e4
LT
219{
220 *p->addr = p->opcode;
7e1048b1
RL
221 flush_icache_range((unsigned long) p->addr,
222 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
223}
224
0f2fbdcb 225void __kprobes arch_remove_kprobe(struct kprobe *p)
7e1048b1 226{
7e1048b1 227 down(&kprobe_mutex);
2dd960d6
ZY
228 free_insn_slot(p->ainsn.insn);
229 up(&kprobe_mutex);
1da177e4
LT
230}
231
e7a510f9 232static inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
aa3d7e3d 233{
e7a510f9
AM
234 kcb->prev_kprobe.kp = kprobe_running();
235 kcb->prev_kprobe.status = kcb->kprobe_status;
236 kcb->prev_kprobe.old_rflags = kcb->kprobe_old_rflags;
237 kcb->prev_kprobe.saved_rflags = kcb->kprobe_saved_rflags;
aa3d7e3d
PP
238}
239
e7a510f9 240static inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
aa3d7e3d 241{
e7a510f9
AM
242 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
243 kcb->kprobe_status = kcb->prev_kprobe.status;
244 kcb->kprobe_old_rflags = kcb->prev_kprobe.old_rflags;
245 kcb->kprobe_saved_rflags = kcb->prev_kprobe.saved_rflags;
aa3d7e3d
PP
246}
247
e7a510f9
AM
248static inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
249 struct kprobe_ctlblk *kcb)
aa3d7e3d 250{
e7a510f9
AM
251 __get_cpu_var(current_kprobe) = p;
252 kcb->kprobe_saved_rflags = kcb->kprobe_old_rflags
aa3d7e3d
PP
253 = (regs->eflags & (TF_MASK | IF_MASK));
254 if (is_IF_modifier(p->ainsn.insn))
e7a510f9 255 kcb->kprobe_saved_rflags &= ~IF_MASK;
aa3d7e3d
PP
256}
257
0f2fbdcb 258static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
1da177e4
LT
259{
260 regs->eflags |= TF_MASK;
261 regs->eflags &= ~IF_MASK;
262 /*single step inline if the instruction is an int3*/
263 if (p->opcode == BREAKPOINT_INSTRUCTION)
264 regs->rip = (unsigned long)p->addr;
265 else
266 regs->rip = (unsigned long)p->ainsn.insn;
267}
268
0f2fbdcb
PP
269void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
270 struct pt_regs *regs)
73649dab
RL
271{
272 unsigned long *sara = (unsigned long *)regs->rsp;
ba8af12f
RL
273 struct kretprobe_instance *ri;
274
275 if ((ri = get_free_rp_inst(rp)) != NULL) {
276 ri->rp = rp;
277 ri->task = current;
278 ri->ret_addr = (kprobe_opcode_t *) *sara;
73649dab 279
73649dab
RL
280 /* Replace the return addr with trampoline addr */
281 *sara = (unsigned long) &kretprobe_trampoline;
73649dab 282
ba8af12f
RL
283 add_rp_inst(ri);
284 } else {
285 rp->nmissed++;
286 }
73649dab
RL
287}
288
1da177e4
LT
289/*
290 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
291 * remain disabled thorough out this function.
292 */
0f2fbdcb 293int __kprobes kprobe_handler(struct pt_regs *regs)
1da177e4
LT
294{
295 struct kprobe *p;
296 int ret = 0;
297 kprobe_opcode_t *addr = (kprobe_opcode_t *)(regs->rip - sizeof(kprobe_opcode_t));
e7a510f9 298 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1da177e4 299
1da177e4
LT
300 /* Check we're not actually recursing */
301 if (kprobe_running()) {
302 /* We *are* holding lock here, so this is safe.
303 Disarm the probe we just hit, and ignore it. */
304 p = get_kprobe(addr);
305 if (p) {
e7a510f9 306 if (kcb->kprobe_status == KPROBE_HIT_SS &&
deac66ae 307 *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
1da177e4 308 regs->eflags &= ~TF_MASK;
e7a510f9 309 regs->eflags |= kcb->kprobe_saved_rflags;
1da177e4
LT
310 unlock_kprobes();
311 goto no_kprobe;
e7a510f9 312 } else if (kcb->kprobe_status == KPROBE_HIT_SSDONE) {
aa3d7e3d
PP
313 /* TODO: Provide re-entrancy from
314 * post_kprobes_handler() and avoid exception
315 * stack corruption while single-stepping on
316 * the instruction of the new probe.
317 */
318 arch_disarm_kprobe(p);
319 regs->rip = (unsigned long)p->addr;
e7a510f9 320 reset_current_kprobe();
aa3d7e3d
PP
321 ret = 1;
322 } else {
323 /* We have reentered the kprobe_handler(), since
324 * another probe was hit while within the
325 * handler. We here save the original kprobe
326 * variables and just single step on instruction
327 * of the new probe without calling any user
328 * handlers.
329 */
e7a510f9
AM
330 save_previous_kprobe(kcb);
331 set_current_kprobe(p, regs, kcb);
aa3d7e3d
PP
332 p->nmissed++;
333 prepare_singlestep(p, regs);
e7a510f9 334 kcb->kprobe_status = KPROBE_REENTER;
aa3d7e3d 335 return 1;
1da177e4 336 }
1da177e4 337 } else {
e7a510f9 338 p = __get_cpu_var(current_kprobe);
1da177e4
LT
339 if (p->break_handler && p->break_handler(p, regs)) {
340 goto ss_probe;
341 }
342 }
343 /* If it's not ours, can't be delete race, (we hold lock). */
344 goto no_kprobe;
345 }
346
347 lock_kprobes();
348 p = get_kprobe(addr);
349 if (!p) {
350 unlock_kprobes();
351 if (*addr != BREAKPOINT_INSTRUCTION) {
352 /*
353 * The breakpoint instruction was removed right
354 * after we hit it. Another cpu has removed
355 * either a probepoint or a debugger breakpoint
356 * at this address. In either case, no further
357 * handling of this interrupt is appropriate.
bce06494
JK
358 * Back up over the (now missing) int3 and run
359 * the original instruction.
1da177e4 360 */
bce06494 361 regs->rip = (unsigned long)addr;
1da177e4
LT
362 ret = 1;
363 }
364 /* Not one of ours: let kernel handle it */
365 goto no_kprobe;
366 }
367
66ff2d06
AM
368 /*
369 * This preempt_disable() matches the preempt_enable_no_resched()
370 * in post_kprobe_handler()
371 */
372 preempt_disable();
e7a510f9
AM
373 set_current_kprobe(p, regs, kcb);
374 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1da177e4
LT
375
376 if (p->pre_handler && p->pre_handler(p, regs))
377 /* handler has already set things up, so skip ss setup */
378 return 1;
379
380ss_probe:
381 prepare_singlestep(p, regs);
e7a510f9 382 kcb->kprobe_status = KPROBE_HIT_SS;
1da177e4
LT
383 return 1;
384
385no_kprobe:
1da177e4
LT
386 return ret;
387}
388
73649dab
RL
389/*
390 * For function-return probes, init_kprobes() establishes a probepoint
391 * here. When a retprobed function returns, this probe is hit and
392 * trampoline_probe_handler() runs, calling the kretprobe's handler.
393 */
394 void kretprobe_trampoline_holder(void)
395 {
396 asm volatile ( ".global kretprobe_trampoline\n"
397 "kretprobe_trampoline: \n"
398 "nop\n");
399 }
400
401/*
402 * Called when we hit the probe point at kretprobe_trampoline
403 */
0f2fbdcb 404int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
73649dab 405{
ba8af12f
RL
406 struct kretprobe_instance *ri = NULL;
407 struct hlist_head *head;
408 struct hlist_node *node, *tmp;
409 unsigned long orig_ret_address = 0;
410 unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
73649dab 411
ba8af12f 412 head = kretprobe_inst_table_head(current);
73649dab 413
ba8af12f
RL
414 /*
415 * It is possible to have multiple instances associated with a given
416 * task either because an multiple functions in the call path
417 * have a return probe installed on them, and/or more then one return
418 * return probe was registered for a target function.
419 *
420 * We can handle this because:
421 * - instances are always inserted at the head of the list
422 * - when multiple return probes are registered for the same
423 * function, the first instance's ret_addr will point to the
424 * real return address, and all the rest will point to
425 * kretprobe_trampoline
426 */
427 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
428 if (ri->task != current)
429 /* another task is sharing our hash bucket */
430 continue;
431
432 if (ri->rp && ri->rp->handler)
433 ri->rp->handler(ri, regs);
434
435 orig_ret_address = (unsigned long)ri->ret_addr;
73649dab 436 recycle_rp_inst(ri);
ba8af12f
RL
437
438 if (orig_ret_address != trampoline_address)
439 /*
440 * This is the real return address. Any other
441 * instances associated with this task are for
442 * other calls deeper on the call stack
443 */
444 break;
73649dab 445 }
ba8af12f
RL
446
447 BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
448 regs->rip = orig_ret_address;
449
e7a510f9 450 reset_current_kprobe();
ba8af12f
RL
451 unlock_kprobes();
452 preempt_enable_no_resched();
453
454 /*
455 * By returning a non-zero value, we are telling
456 * kprobe_handler() that we have handled unlocking
66ff2d06 457 * and re-enabling preemption
ba8af12f
RL
458 */
459 return 1;
73649dab
RL
460}
461
1da177e4
LT
462/*
463 * Called after single-stepping. p->addr is the address of the
464 * instruction whose first byte has been replaced by the "int 3"
465 * instruction. To avoid the SMP problems that can occur when we
466 * temporarily put back the original opcode to single-step, we
467 * single-stepped a copy of the instruction. The address of this
468 * copy is p->ainsn.insn.
469 *
470 * This function prepares to return from the post-single-step
471 * interrupt. We have to fix up the stack as follows:
472 *
473 * 0) Except in the case of absolute or indirect jump or call instructions,
474 * the new rip is relative to the copied instruction. We need to make
475 * it relative to the original instruction.
476 *
477 * 1) If the single-stepped instruction was pushfl, then the TF and IF
478 * flags are set in the just-pushed eflags, and may need to be cleared.
479 *
480 * 2) If the single-stepped instruction was a call, the return address
481 * that is atop the stack is the address following the copied instruction.
482 * We need to make it the address following the original instruction.
483 */
e7a510f9
AM
484static void __kprobes resume_execution(struct kprobe *p,
485 struct pt_regs *regs, struct kprobe_ctlblk *kcb)
1da177e4
LT
486{
487 unsigned long *tos = (unsigned long *)regs->rsp;
488 unsigned long next_rip = 0;
489 unsigned long copy_rip = (unsigned long)p->ainsn.insn;
490 unsigned long orig_rip = (unsigned long)p->addr;
491 kprobe_opcode_t *insn = p->ainsn.insn;
492
493 /*skip the REX prefix*/
494 if (*insn >= 0x40 && *insn <= 0x4f)
495 insn++;
496
497 switch (*insn) {
498 case 0x9c: /* pushfl */
499 *tos &= ~(TF_MASK | IF_MASK);
e7a510f9 500 *tos |= kcb->kprobe_old_rflags;
1da177e4 501 break;
0b9e2cac
PP
502 case 0xc3: /* ret/lret */
503 case 0xcb:
504 case 0xc2:
505 case 0xca:
506 regs->eflags &= ~TF_MASK;
507 /* rip is already adjusted, no more changes required*/
508 return;
1da177e4
LT
509 case 0xe8: /* call relative - Fix return addr */
510 *tos = orig_rip + (*tos - copy_rip);
511 break;
512 case 0xff:
513 if ((*insn & 0x30) == 0x10) {
514 /* call absolute, indirect */
515 /* Fix return addr; rip is correct. */
516 next_rip = regs->rip;
517 *tos = orig_rip + (*tos - copy_rip);
518 } else if (((*insn & 0x31) == 0x20) || /* jmp near, absolute indirect */
519 ((*insn & 0x31) == 0x21)) { /* jmp far, absolute indirect */
520 /* rip is correct. */
521 next_rip = regs->rip;
522 }
523 break;
524 case 0xea: /* jmp absolute -- rip is correct */
525 next_rip = regs->rip;
526 break;
527 default:
528 break;
529 }
530
531 regs->eflags &= ~TF_MASK;
532 if (next_rip) {
533 regs->rip = next_rip;
534 } else {
535 regs->rip = orig_rip + (regs->rip - copy_rip);
536 }
537}
538
539/*
540 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
541 * remain disabled thoroughout this function. And we hold kprobe lock.
542 */
0f2fbdcb 543int __kprobes post_kprobe_handler(struct pt_regs *regs)
1da177e4 544{
e7a510f9
AM
545 struct kprobe *cur = kprobe_running();
546 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
547
548 if (!cur)
1da177e4
LT
549 return 0;
550
e7a510f9
AM
551 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
552 kcb->kprobe_status = KPROBE_HIT_SSDONE;
553 cur->post_handler(cur, regs, 0);
aa3d7e3d 554 }
1da177e4 555
e7a510f9
AM
556 resume_execution(cur, regs, kcb);
557 regs->eflags |= kcb->kprobe_saved_rflags;
1da177e4 558
aa3d7e3d 559 /* Restore the original saved kprobes variables and continue. */
e7a510f9
AM
560 if (kcb->kprobe_status == KPROBE_REENTER) {
561 restore_previous_kprobe(kcb);
aa3d7e3d
PP
562 goto out;
563 } else {
564 unlock_kprobes();
565 }
e7a510f9 566 reset_current_kprobe();
aa3d7e3d 567out:
1da177e4
LT
568 preempt_enable_no_resched();
569
570 /*
571 * if somebody else is singlestepping across a probe point, eflags
572 * will have TF set, in which case, continue the remaining processing
573 * of do_debug, as if this is not a probe hit.
574 */
575 if (regs->eflags & TF_MASK)
576 return 0;
577
578 return 1;
579}
580
581/* Interrupts disabled, kprobe_lock held. */
0f2fbdcb 582int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
1da177e4 583{
e7a510f9
AM
584 struct kprobe *cur = kprobe_running();
585 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
586
587 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
1da177e4
LT
588 return 1;
589
e7a510f9
AM
590 if (kcb->kprobe_status & KPROBE_HIT_SS) {
591 resume_execution(cur, regs, kcb);
592 regs->eflags |= kcb->kprobe_old_rflags;
1da177e4 593
e7a510f9 594 reset_current_kprobe();
1da177e4
LT
595 unlock_kprobes();
596 preempt_enable_no_resched();
597 }
598 return 0;
599}
600
601/*
602 * Wrapper routine for handling exceptions.
603 */
0f2fbdcb
PP
604int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
605 unsigned long val, void *data)
1da177e4
LT
606{
607 struct die_args *args = (struct die_args *)data;
66ff2d06
AM
608 int ret = NOTIFY_DONE;
609
610 preempt_disable();
1da177e4
LT
611 switch (val) {
612 case DIE_INT3:
613 if (kprobe_handler(args->regs))
66ff2d06 614 ret = NOTIFY_STOP;
1da177e4
LT
615 break;
616 case DIE_DEBUG:
617 if (post_kprobe_handler(args->regs))
66ff2d06 618 ret = NOTIFY_STOP;
1da177e4
LT
619 break;
620 case DIE_GPF:
1da177e4
LT
621 case DIE_PAGE_FAULT:
622 if (kprobe_running() &&
623 kprobe_fault_handler(args->regs, args->trapnr))
66ff2d06 624 ret = NOTIFY_STOP;
1da177e4
LT
625 break;
626 default:
627 break;
628 }
66ff2d06
AM
629 preempt_enable();
630 return ret;
1da177e4
LT
631}
632
0f2fbdcb 633int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
1da177e4
LT
634{
635 struct jprobe *jp = container_of(p, struct jprobe, kp);
636 unsigned long addr;
e7a510f9 637 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1da177e4 638
e7a510f9
AM
639 kcb->jprobe_saved_regs = *regs;
640 kcb->jprobe_saved_rsp = (long *) regs->rsp;
641 addr = (unsigned long)(kcb->jprobe_saved_rsp);
1da177e4
LT
642 /*
643 * As Linus pointed out, gcc assumes that the callee
644 * owns the argument space and could overwrite it, e.g.
645 * tailcall optimization. So, to be absolutely safe
646 * we also save and restore enough stack bytes to cover
647 * the argument area.
648 */
e7a510f9
AM
649 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
650 MIN_STACK_SIZE(addr));
1da177e4
LT
651 regs->eflags &= ~IF_MASK;
652 regs->rip = (unsigned long)(jp->entry);
653 return 1;
654}
655
0f2fbdcb 656void __kprobes jprobe_return(void)
1da177e4 657{
e7a510f9
AM
658 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
659
1da177e4
LT
660 asm volatile (" xchg %%rbx,%%rsp \n"
661 " int3 \n"
662 " .globl jprobe_return_end \n"
663 " jprobe_return_end: \n"
664 " nop \n"::"b"
e7a510f9 665 (kcb->jprobe_saved_rsp):"memory");
1da177e4
LT
666}
667
0f2fbdcb 668int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1da177e4 669{
e7a510f9 670 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1da177e4 671 u8 *addr = (u8 *) (regs->rip - 1);
e7a510f9 672 unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_rsp);
1da177e4
LT
673 struct jprobe *jp = container_of(p, struct jprobe, kp);
674
675 if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) {
e7a510f9 676 if ((long *)regs->rsp != kcb->jprobe_saved_rsp) {
1da177e4 677 struct pt_regs *saved_regs =
e7a510f9
AM
678 container_of(kcb->jprobe_saved_rsp,
679 struct pt_regs, rsp);
1da177e4 680 printk("current rsp %p does not match saved rsp %p\n",
e7a510f9 681 (long *)regs->rsp, kcb->jprobe_saved_rsp);
1da177e4
LT
682 printk("Saved registers for jprobe %p\n", jp);
683 show_registers(saved_regs);
684 printk("Current registers\n");
685 show_registers(regs);
686 BUG();
687 }
e7a510f9
AM
688 *regs = kcb->jprobe_saved_regs;
689 memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
1da177e4
LT
690 MIN_STACK_SIZE(stack_addr));
691 return 1;
692 }
693 return 0;
694}
ba8af12f
RL
695
696static struct kprobe trampoline_p = {
697 .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
698 .pre_handler = trampoline_probe_handler
699};
700
6772926b 701int __init arch_init_kprobes(void)
ba8af12f
RL
702{
703 return register_kprobe(&trampoline_p);
704}
This page took 0.107397 seconds and 5 git commands to generate.