[PATCH] x86_64: Standardize i386/x86_64 handling of NMI_VECTOR
[deliverable/linux.git] / arch / x86_64 / kernel / smpboot.c
CommitLineData
1da177e4
LT
1/*
2 * x86 SMP booting functions
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com>
6 * Copyright 2001 Andi Kleen, SuSE Labs.
7 *
8 * Much of the core SMP work is based on previous work by Thomas Radke, to
9 * whom a great many thanks are extended.
10 *
11 * Thanks to Intel for making available several different Pentium,
12 * Pentium Pro and Pentium-II/Xeon MP machines.
13 * Original development of Linux SMP code supported by Caldera.
14 *
a8ab26fe 15 * This code is released under the GNU General Public License version 2
1da177e4
LT
16 *
17 * Fixes
18 * Felix Koop : NR_CPUS used properly
19 * Jose Renau : Handle single CPU case.
20 * Alan Cox : By repeated request 8) - Total BogoMIP report.
21 * Greg Wright : Fix for kernel stacks panic.
22 * Erich Boleyn : MP v1.4 and additional changes.
23 * Matthias Sattler : Changes for 2.1 kernel map.
24 * Michel Lespinasse : Changes for 2.1 kernel map.
25 * Michael Chastain : Change trampoline.S to gnu as.
26 * Alan Cox : Dumb bug: 'B' step PPro's are fine
27 * Ingo Molnar : Added APIC timers, based on code
28 * from Jose Renau
29 * Ingo Molnar : various cleanups and rewrites
30 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
31 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
32 * Andi Kleen : Changed for SMP boot into long mode.
a8ab26fe
AK
33 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
34 * Andi Kleen : Converted to new state machine.
35 * Various cleanups.
36 * Probably mostly hotplug CPU ready now.
76e4f660 37 * Ashok Raj : CPU hotplug support
1da177e4
LT
38 */
39
a8ab26fe 40
1da177e4
LT
41#include <linux/config.h>
42#include <linux/init.h>
43
44#include <linux/mm.h>
45#include <linux/kernel_stat.h>
46#include <linux/smp_lock.h>
1da177e4
LT
47#include <linux/bootmem.h>
48#include <linux/thread_info.h>
49#include <linux/module.h>
50
51#include <linux/delay.h>
52#include <linux/mc146818rtc.h>
53#include <asm/mtrr.h>
54#include <asm/pgalloc.h>
55#include <asm/desc.h>
56#include <asm/kdebug.h>
57#include <asm/tlbflush.h>
58#include <asm/proto.h>
75152114 59#include <asm/nmi.h>
9cdd304b
AV
60#include <asm/irq.h>
61#include <asm/hw_irq.h>
488fc08d 62#include <asm/numa.h>
1da177e4
LT
63
64/* Number of siblings per CPU package */
65int smp_num_siblings = 1;
1da177e4 66
1e9f28fa
SS
67/* Last level cache ID of each logical CPU */
68u8 cpu_llc_id[NR_CPUS] __cpuinitdata = {[0 ... NR_CPUS-1] = BAD_APICID};
69
1da177e4 70/* Bitmask of currently online CPUs */
6c231b7b 71cpumask_t cpu_online_map __read_mostly;
1da177e4 72
a8ab26fe
AK
73EXPORT_SYMBOL(cpu_online_map);
74
75/*
76 * Private maps to synchronize booting between AP and BP.
77 * Probably not needed anymore, but it makes for easier debugging. -AK
78 */
1da177e4
LT
79cpumask_t cpu_callin_map;
80cpumask_t cpu_callout_map;
a8ab26fe
AK
81
82cpumask_t cpu_possible_map;
83EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
84
85/* Per CPU bogomips and other parameters */
86struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
87
a8ab26fe
AK
88/* Set when the idlers are all forked */
89int smp_threads_ready;
90
94605eff 91/* representing HT siblings of each logical CPU */
6c231b7b 92cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
94605eff
SS
93
94/* representing HT and core siblings of each logical CPU */
6c231b7b 95cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
2df9fa36 96EXPORT_SYMBOL(cpu_core_map);
1da177e4
LT
97
98/*
99 * Trampoline 80x86 program as an array.
100 */
101
a8ab26fe
AK
102extern unsigned char trampoline_data[];
103extern unsigned char trampoline_end[];
1da177e4 104
76e4f660
AR
105/* State of each CPU */
106DEFINE_PER_CPU(int, cpu_state) = { 0 };
107
108/*
109 * Store all idle threads, this can be reused instead of creating
110 * a new thread. Also avoids complicated thread destroy functionality
111 * for idle threads.
112 */
113struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ;
114
115#define get_idle_for_cpu(x) (idle_thread_array[(x)])
116#define set_idle_for_cpu(x,p) (idle_thread_array[(x)] = (p))
117
1da177e4
LT
118/*
119 * Currently trivial. Write the real->protected mode
120 * bootstrap into the page concerned. The caller
121 * has made sure it's suitably aligned.
122 */
123
a8ab26fe 124static unsigned long __cpuinit setup_trampoline(void)
1da177e4
LT
125{
126 void *tramp = __va(SMP_TRAMPOLINE_BASE);
127 memcpy(tramp, trampoline_data, trampoline_end - trampoline_data);
128 return virt_to_phys(tramp);
129}
130
131/*
132 * The bootstrap kernel entry code has set these up. Save them for
133 * a given CPU
134 */
135
a8ab26fe 136static void __cpuinit smp_store_cpu_info(int id)
1da177e4
LT
137{
138 struct cpuinfo_x86 *c = cpu_data + id;
139
140 *c = boot_cpu_data;
141 identify_cpu(c);
dda50e71 142 print_cpu_info(c);
1da177e4
LT
143}
144
145/*
dda50e71
AK
146 * New Funky TSC sync algorithm borrowed from IA64.
147 * Main advantage is that it doesn't reset the TSCs fully and
148 * in general looks more robust and it works better than my earlier
149 * attempts. I believe it was written by David Mosberger. Some minor
150 * adjustments for x86-64 by me -AK
1da177e4 151 *
dda50e71
AK
152 * Original comment reproduced below.
153 *
154 * Synchronize TSC of the current (slave) CPU with the TSC of the
155 * MASTER CPU (normally the time-keeper CPU). We use a closed loop to
156 * eliminate the possibility of unaccounted-for errors (such as
157 * getting a machine check in the middle of a calibration step). The
158 * basic idea is for the slave to ask the master what itc value it has
159 * and to read its own itc before and after the master responds. Each
160 * iteration gives us three timestamps:
161 *
162 * slave master
163 *
164 * t0 ---\
165 * ---\
166 * --->
167 * tm
168 * /---
169 * /---
170 * t1 <---
171 *
172 *
173 * The goal is to adjust the slave's TSC such that tm falls exactly
174 * half-way between t0 and t1. If we achieve this, the clocks are
175 * synchronized provided the interconnect between the slave and the
176 * master is symmetric. Even if the interconnect were asymmetric, we
177 * would still know that the synchronization error is smaller than the
178 * roundtrip latency (t0 - t1).
179 *
180 * When the interconnect is quiet and symmetric, this lets us
181 * synchronize the TSC to within one or two cycles. However, we can
182 * only *guarantee* that the synchronization is accurate to within a
183 * round-trip time, which is typically in the range of several hundred
184 * cycles (e.g., ~500 cycles). In practice, this means that the TSCs
185 * are usually almost perfectly synchronized, but we shouldn't assume
186 * that the accuracy is much better than half a micro second or so.
187 *
188 * [there are other errors like the latency of RDTSC and of the
189 * WRMSR. These can also account to hundreds of cycles. So it's
190 * probably worse. It claims 153 cycles error on a dual Opteron,
191 * but I suspect the numbers are actually somewhat worse -AK]
1da177e4
LT
192 */
193
dda50e71
AK
194#define MASTER 0
195#define SLAVE (SMP_CACHE_BYTES/8)
196
197/* Intentionally don't use cpu_relax() while TSC synchronization
198 because we don't want to go into funky power save modi or cause
199 hypervisors to schedule us away. Going to sleep would likely affect
200 latency and low latency is the primary objective here. -AK */
201#define no_cpu_relax() barrier()
202
a8ab26fe 203static __cpuinitdata DEFINE_SPINLOCK(tsc_sync_lock);
dda50e71
AK
204static volatile __cpuinitdata unsigned long go[SLAVE + 1];
205static int notscsync __cpuinitdata;
206
207#undef DEBUG_TSC_SYNC
1da177e4 208
dda50e71
AK
209#define NUM_ROUNDS 64 /* magic value */
210#define NUM_ITERS 5 /* likewise */
1da177e4 211
dda50e71
AK
212/* Callback on boot CPU */
213static __cpuinit void sync_master(void *arg)
1da177e4 214{
dda50e71
AK
215 unsigned long flags, i;
216
dda50e71
AK
217 go[MASTER] = 0;
218
219 local_irq_save(flags);
220 {
221 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
222 while (!go[MASTER])
223 no_cpu_relax();
224 go[MASTER] = 0;
225 rdtscll(go[SLAVE]);
226 }
227 }
228 local_irq_restore(flags);
a8ab26fe 229}
1da177e4 230
a8ab26fe 231/*
dda50e71
AK
232 * Return the number of cycles by which our tsc differs from the tsc
233 * on the master (time-keeper) CPU. A positive number indicates our
234 * tsc is ahead of the master, negative that it is behind.
a8ab26fe 235 */
dda50e71
AK
236static inline long
237get_delta(long *rt, long *master)
a8ab26fe 238{
dda50e71
AK
239 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
240 unsigned long tcenter, t0, t1, tm;
241 int i;
a8ab26fe 242
dda50e71
AK
243 for (i = 0; i < NUM_ITERS; ++i) {
244 rdtscll(t0);
245 go[MASTER] = 1;
246 while (!(tm = go[SLAVE]))
247 no_cpu_relax();
248 go[SLAVE] = 0;
249 rdtscll(t1);
250
251 if (t1 - t0 < best_t1 - best_t0)
252 best_t0 = t0, best_t1 = t1, best_tm = tm;
253 }
254
255 *rt = best_t1 - best_t0;
256 *master = best_tm - best_t0;
257
258 /* average best_t0 and best_t1 without overflow: */
259 tcenter = (best_t0/2 + best_t1/2);
260 if (best_t0 % 2 + best_t1 % 2 == 2)
261 ++tcenter;
262 return tcenter - best_tm;
1da177e4
LT
263}
264
3d483f47 265static __cpuinit void sync_tsc(unsigned int master)
1da177e4 266{
dda50e71
AK
267 int i, done = 0;
268 long delta, adj, adjust_latency = 0;
269 unsigned long flags, rt, master_time_stamp, bound;
44456d37 270#ifdef DEBUG_TSC_SYNC
dda50e71
AK
271 static struct syncdebug {
272 long rt; /* roundtrip time */
273 long master; /* master's timestamp */
274 long diff; /* difference between midpoint and master's timestamp */
275 long lat; /* estimate of tsc adjustment latency */
276 } t[NUM_ROUNDS] __cpuinitdata;
277#endif
278
3d483f47
EB
279 printk(KERN_INFO "CPU %d: Syncing TSC to CPU %u.\n",
280 smp_processor_id(), master);
281
dda50e71
AK
282 go[MASTER] = 1;
283
3d483f47
EB
284 /* It is dangerous to broadcast IPI as cpus are coming up,
285 * as they may not be ready to accept them. So since
286 * we only need to send the ipi to the boot cpu direct
287 * the message, and avoid the race.
288 */
289 smp_call_function_single(master, sync_master, NULL, 1, 0);
dda50e71
AK
290
291 while (go[MASTER]) /* wait for master to be ready */
292 no_cpu_relax();
293
294 spin_lock_irqsave(&tsc_sync_lock, flags);
295 {
296 for (i = 0; i < NUM_ROUNDS; ++i) {
297 delta = get_delta(&rt, &master_time_stamp);
298 if (delta == 0) {
299 done = 1; /* let's lock on to this... */
300 bound = rt;
301 }
302
303 if (!done) {
304 unsigned long t;
305 if (i > 0) {
306 adjust_latency += -delta;
307 adj = -delta + adjust_latency/4;
308 } else
309 adj = -delta;
310
311 rdtscll(t);
312 wrmsrl(MSR_IA32_TSC, t + adj);
313 }
44456d37 314#ifdef DEBUG_TSC_SYNC
dda50e71
AK
315 t[i].rt = rt;
316 t[i].master = master_time_stamp;
317 t[i].diff = delta;
318 t[i].lat = adjust_latency/4;
319#endif
320 }
321 }
322 spin_unlock_irqrestore(&tsc_sync_lock, flags);
323
44456d37 324#ifdef DEBUG_TSC_SYNC
dda50e71
AK
325 for (i = 0; i < NUM_ROUNDS; ++i)
326 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
327 t[i].rt, t[i].master, t[i].diff, t[i].lat);
328#endif
329
330 printk(KERN_INFO
331 "CPU %d: synchronized TSC with CPU %u (last diff %ld cycles, "
332 "maxerr %lu cycles)\n",
3d483f47 333 smp_processor_id(), master, delta, rt);
a8ab26fe 334}
1da177e4 335
dda50e71 336static void __cpuinit tsc_sync_wait(void)
a8ab26fe 337{
737c5c3b
AK
338 /*
339 * When the CPU has synchronized TSCs assume the BIOS
340 * or the hardware already synced. Otherwise we could
341 * mess up a possible perfect synchronization with a
342 * not-quite-perfect algorithm.
343 */
344 if (notscsync || !cpu_has_tsc || !unsynchronized_tsc())
a8ab26fe 345 return;
349188f6 346 sync_tsc(0);
a8ab26fe 347}
1da177e4 348
dda50e71 349static __init int notscsync_setup(char *s)
a8ab26fe 350{
dda50e71 351 notscsync = 1;
9b41046c 352 return 1;
1da177e4 353}
dda50e71 354__setup("notscsync", notscsync_setup);
1da177e4 355
a8ab26fe 356static atomic_t init_deasserted __cpuinitdata;
1da177e4 357
a8ab26fe
AK
358/*
359 * Report back to the Boot Processor.
360 * Running on AP.
361 */
362void __cpuinit smp_callin(void)
1da177e4
LT
363{
364 int cpuid, phys_id;
365 unsigned long timeout;
366
367 /*
368 * If waken up by an INIT in an 82489DX configuration
369 * we may get here before an INIT-deassert IPI reaches
370 * our local APIC. We have to wait for the IPI or we'll
371 * lock up on an APIC access.
372 */
a8ab26fe
AK
373 while (!atomic_read(&init_deasserted))
374 cpu_relax();
1da177e4
LT
375
376 /*
377 * (This works even if the APIC is not enabled.)
378 */
379 phys_id = GET_APIC_ID(apic_read(APIC_ID));
380 cpuid = smp_processor_id();
381 if (cpu_isset(cpuid, cpu_callin_map)) {
382 panic("smp_callin: phys CPU#%d, CPU#%d already present??\n",
383 phys_id, cpuid);
384 }
385 Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
386
387 /*
388 * STARTUP IPIs are fragile beasts as they might sometimes
389 * trigger some glue motherboard logic. Complete APIC bus
390 * silence for 1 second, this overestimates the time the
391 * boot CPU is spending to send the up to 2 STARTUP IPIs
392 * by a factor of two. This should be enough.
393 */
394
395 /*
396 * Waiting 2s total for startup (udelay is not yet working)
397 */
398 timeout = jiffies + 2*HZ;
399 while (time_before(jiffies, timeout)) {
400 /*
401 * Has the boot CPU finished it's STARTUP sequence?
402 */
403 if (cpu_isset(cpuid, cpu_callout_map))
404 break;
a8ab26fe 405 cpu_relax();
1da177e4
LT
406 }
407
408 if (!time_before(jiffies, timeout)) {
409 panic("smp_callin: CPU%d started up but did not get a callout!\n",
410 cpuid);
411 }
412
413 /*
414 * the boot CPU has finished the init stage and is spinning
415 * on callin_map until we finish. We are free to set up this
416 * CPU, first the APIC. (this is probably redundant on most
417 * boards)
418 */
419
420 Dprintk("CALLIN, before setup_local_APIC().\n");
421 setup_local_APIC();
422
1da177e4
LT
423 /*
424 * Get our bogomips.
b4452218
AK
425 *
426 * Need to enable IRQs because it can take longer and then
427 * the NMI watchdog might kill us.
1da177e4 428 */
b4452218 429 local_irq_enable();
1da177e4 430 calibrate_delay();
b4452218 431 local_irq_disable();
1da177e4
LT
432 Dprintk("Stack at about %p\n",&cpuid);
433
434 disable_APIC_timer();
435
436 /*
437 * Save our processor parameters
438 */
439 smp_store_cpu_info(cpuid);
440
1da177e4
LT
441 /*
442 * Allow the master to continue.
443 */
444 cpu_set(cpuid, cpu_callin_map);
1da177e4
LT
445}
446
1e9f28fa
SS
447/* maps the cpu to the sched domain representing multi-core */
448cpumask_t cpu_coregroup_map(int cpu)
449{
450 struct cpuinfo_x86 *c = cpu_data + cpu;
451 /*
452 * For perf, we return last level cache shared map.
453 * TBD: when power saving sched policy is added, we will return
454 * cpu_core_map when power saving policy is enabled
455 */
456 return c->llc_shared_map;
457}
458
94605eff
SS
459/* representing cpus for which sibling maps can be computed */
460static cpumask_t cpu_sibling_setup_map;
461
cb0cd8d4
AR
462static inline void set_cpu_sibling_map(int cpu)
463{
464 int i;
94605eff
SS
465 struct cpuinfo_x86 *c = cpu_data;
466
467 cpu_set(cpu, cpu_sibling_setup_map);
cb0cd8d4
AR
468
469 if (smp_num_siblings > 1) {
94605eff 470 for_each_cpu_mask(i, cpu_sibling_setup_map) {
f3fa8ebc
RS
471 if (c[cpu].phys_proc_id == c[i].phys_proc_id &&
472 c[cpu].cpu_core_id == c[i].cpu_core_id) {
cb0cd8d4
AR
473 cpu_set(i, cpu_sibling_map[cpu]);
474 cpu_set(cpu, cpu_sibling_map[i]);
94605eff
SS
475 cpu_set(i, cpu_core_map[cpu]);
476 cpu_set(cpu, cpu_core_map[i]);
1e9f28fa
SS
477 cpu_set(i, c[cpu].llc_shared_map);
478 cpu_set(cpu, c[i].llc_shared_map);
cb0cd8d4
AR
479 }
480 }
481 } else {
482 cpu_set(cpu, cpu_sibling_map[cpu]);
483 }
484
1e9f28fa
SS
485 cpu_set(cpu, c[cpu].llc_shared_map);
486
94605eff 487 if (current_cpu_data.x86_max_cores == 1) {
cb0cd8d4 488 cpu_core_map[cpu] = cpu_sibling_map[cpu];
94605eff
SS
489 c[cpu].booted_cores = 1;
490 return;
491 }
492
493 for_each_cpu_mask(i, cpu_sibling_setup_map) {
1e9f28fa
SS
494 if (cpu_llc_id[cpu] != BAD_APICID &&
495 cpu_llc_id[cpu] == cpu_llc_id[i]) {
496 cpu_set(i, c[cpu].llc_shared_map);
497 cpu_set(cpu, c[i].llc_shared_map);
498 }
f3fa8ebc 499 if (c[cpu].phys_proc_id == c[i].phys_proc_id) {
94605eff
SS
500 cpu_set(i, cpu_core_map[cpu]);
501 cpu_set(cpu, cpu_core_map[i]);
502 /*
503 * Does this new cpu bringup a new core?
504 */
505 if (cpus_weight(cpu_sibling_map[cpu]) == 1) {
506 /*
507 * for each core in package, increment
508 * the booted_cores for this new cpu
509 */
510 if (first_cpu(cpu_sibling_map[i]) == i)
511 c[cpu].booted_cores++;
512 /*
513 * increment the core count for all
514 * the other cpus in this package
515 */
516 if (i != cpu)
517 c[i].booted_cores++;
518 } else if (i != cpu && !c[cpu].booted_cores)
519 c[cpu].booted_cores = c[i].booted_cores;
520 }
cb0cd8d4
AR
521 }
522}
523
1da177e4 524/*
a8ab26fe 525 * Setup code on secondary processor (after comming out of the trampoline)
1da177e4 526 */
a8ab26fe 527void __cpuinit start_secondary(void)
1da177e4
LT
528{
529 /*
530 * Dont put anything before smp_callin(), SMP
531 * booting is too fragile that we want to limit the
532 * things done here to the most necessary things.
533 */
534 cpu_init();
5bfb5d69 535 preempt_disable();
1da177e4
LT
536 smp_callin();
537
538 /* otherwise gcc will move up the smp_processor_id before the cpu_init */
539 barrier();
540
1da177e4
LT
541 Dprintk("cpu %d: setting up apic clock\n", smp_processor_id());
542 setup_secondary_APIC_clock();
543
a8ab26fe 544 Dprintk("cpu %d: enabling apic timer\n", smp_processor_id());
1da177e4
LT
545
546 if (nmi_watchdog == NMI_IO_APIC) {
547 disable_8259A_irq(0);
548 enable_NMI_through_LVT0(NULL);
549 enable_8259A_irq(0);
550 }
551
a8ab26fe 552 enable_APIC_timer();
1da177e4 553
cb0cd8d4
AR
554 /*
555 * The sibling maps must be set before turing the online map on for
556 * this cpu
557 */
558 set_cpu_sibling_map(smp_processor_id());
559
1eecd73c
AK
560 /*
561 * Wait for TSC sync to not schedule things before.
562 * We still process interrupts, which could see an inconsistent
563 * time in that window unfortunately.
564 * Do this here because TSC sync has global unprotected state.
565 */
566 tsc_sync_wait();
567
884d9e40
AR
568 /*
569 * We need to hold call_lock, so there is no inconsistency
570 * between the time smp_call_function() determines number of
571 * IPI receipients, and the time when the determination is made
572 * for which cpus receive the IPI in genapic_flat.c. Holding this
573 * lock helps us to not include this cpu in a currently in progress
574 * smp_call_function().
575 */
576 lock_ipi_call_lock();
577
1da177e4 578 /*
a8ab26fe 579 * Allow the master to continue.
1da177e4 580 */
1da177e4 581 cpu_set(smp_processor_id(), cpu_online_map);
884d9e40
AR
582 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
583 unlock_ipi_call_lock();
584
1da177e4
LT
585 cpu_idle();
586}
587
a8ab26fe 588extern volatile unsigned long init_rsp;
1da177e4
LT
589extern void (*initial_code)(void);
590
44456d37 591#ifdef APIC_DEBUG
a8ab26fe 592static void inquire_remote_apic(int apicid)
1da177e4
LT
593{
594 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
595 char *names[] = { "ID", "VERSION", "SPIV" };
596 int timeout, status;
597
598 printk(KERN_INFO "Inquiring remote APIC #%d...\n", apicid);
599
600 for (i = 0; i < sizeof(regs) / sizeof(*regs); i++) {
601 printk("... APIC #%d %s: ", apicid, names[i]);
602
603 /*
604 * Wait for idle.
605 */
606 apic_wait_icr_idle();
607
c1507eb2
AK
608 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
609 apic_write(APIC_ICR, APIC_DM_REMRD | regs[i]);
1da177e4
LT
610
611 timeout = 0;
612 do {
613 udelay(100);
614 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
615 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
616
617 switch (status) {
618 case APIC_ICR_RR_VALID:
619 status = apic_read(APIC_RRR);
620 printk("%08x\n", status);
621 break;
622 default:
623 printk("failed\n");
624 }
625 }
626}
627#endif
628
a8ab26fe
AK
629/*
630 * Kick the secondary to wake up.
631 */
632static int __cpuinit wakeup_secondary_via_INIT(int phys_apicid, unsigned int start_rip)
1da177e4
LT
633{
634 unsigned long send_status = 0, accept_status = 0;
635 int maxlvt, timeout, num_starts, j;
636
637 Dprintk("Asserting INIT.\n");
638
639 /*
640 * Turn INIT on target chip
641 */
c1507eb2 642 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
1da177e4
LT
643
644 /*
645 * Send IPI
646 */
c1507eb2 647 apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
1da177e4
LT
648 | APIC_DM_INIT);
649
650 Dprintk("Waiting for send to finish...\n");
651 timeout = 0;
652 do {
653 Dprintk("+");
654 udelay(100);
655 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
656 } while (send_status && (timeout++ < 1000));
657
658 mdelay(10);
659
660 Dprintk("Deasserting INIT.\n");
661
662 /* Target chip */
c1507eb2 663 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
1da177e4
LT
664
665 /* Send IPI */
c1507eb2 666 apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
1da177e4
LT
667
668 Dprintk("Waiting for send to finish...\n");
669 timeout = 0;
670 do {
671 Dprintk("+");
672 udelay(100);
673 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
674 } while (send_status && (timeout++ < 1000));
675
f2ecfab9 676 mb();
1da177e4
LT
677 atomic_set(&init_deasserted, 1);
678
5a40b7c2 679 num_starts = 2;
1da177e4
LT
680
681 /*
682 * Run STARTUP IPI loop.
683 */
684 Dprintk("#startup loops: %d.\n", num_starts);
685
686 maxlvt = get_maxlvt();
687
688 for (j = 1; j <= num_starts; j++) {
689 Dprintk("Sending STARTUP #%d.\n",j);
1da177e4
LT
690 apic_write(APIC_ESR, 0);
691 apic_read(APIC_ESR);
692 Dprintk("After apic_write.\n");
693
694 /*
695 * STARTUP IPI
696 */
697
698 /* Target chip */
c1507eb2 699 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
1da177e4
LT
700
701 /* Boot on the stack */
702 /* Kick the second */
c1507eb2 703 apic_write(APIC_ICR, APIC_DM_STARTUP | (start_rip >> 12));
1da177e4
LT
704
705 /*
706 * Give the other CPU some time to accept the IPI.
707 */
708 udelay(300);
709
710 Dprintk("Startup point 1.\n");
711
712 Dprintk("Waiting for send to finish...\n");
713 timeout = 0;
714 do {
715 Dprintk("+");
716 udelay(100);
717 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
718 } while (send_status && (timeout++ < 1000));
719
720 /*
721 * Give the other CPU some time to accept the IPI.
722 */
723 udelay(200);
724 /*
725 * Due to the Pentium erratum 3AP.
726 */
727 if (maxlvt > 3) {
1da177e4
LT
728 apic_write(APIC_ESR, 0);
729 }
730 accept_status = (apic_read(APIC_ESR) & 0xEF);
731 if (send_status || accept_status)
732 break;
733 }
734 Dprintk("After Startup.\n");
735
736 if (send_status)
737 printk(KERN_ERR "APIC never delivered???\n");
738 if (accept_status)
739 printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status);
740
741 return (send_status | accept_status);
742}
743
76e4f660
AR
744struct create_idle {
745 struct task_struct *idle;
746 struct completion done;
747 int cpu;
748};
749
750void do_fork_idle(void *_c_idle)
751{
752 struct create_idle *c_idle = _c_idle;
753
754 c_idle->idle = fork_idle(c_idle->cpu);
755 complete(&c_idle->done);
756}
757
a8ab26fe
AK
758/*
759 * Boot one CPU.
760 */
761static int __cpuinit do_boot_cpu(int cpu, int apicid)
1da177e4 762{
1da177e4 763 unsigned long boot_error;
a8ab26fe 764 int timeout;
1da177e4 765 unsigned long start_rip;
76e4f660
AR
766 struct create_idle c_idle = {
767 .cpu = cpu,
768 .done = COMPLETION_INITIALIZER(c_idle.done),
769 };
770 DECLARE_WORK(work, do_fork_idle, &c_idle);
771
c11efdf9
RT
772 /* allocate memory for gdts of secondary cpus. Hotplug is considered */
773 if (!cpu_gdt_descr[cpu].address &&
774 !(cpu_gdt_descr[cpu].address = get_zeroed_page(GFP_KERNEL))) {
775 printk(KERN_ERR "Failed to allocate GDT for CPU %d\n", cpu);
776 return -1;
777 }
778
365ba917
RT
779 /* Allocate node local memory for AP pdas */
780 if (cpu_pda(cpu) == &boot_cpu_pda[cpu]) {
781 struct x8664_pda *newpda, *pda;
782 int node = cpu_to_node(cpu);
783 pda = cpu_pda(cpu);
784 newpda = kmalloc_node(sizeof (struct x8664_pda), GFP_ATOMIC,
785 node);
786 if (newpda) {
787 memcpy(newpda, pda, sizeof (struct x8664_pda));
788 cpu_pda(cpu) = newpda;
789 } else
790 printk(KERN_ERR
791 "Could not allocate node local PDA for CPU %d on node %d\n",
792 cpu, node);
793 }
794
795
d167a518
GH
796 alternatives_smp_switch(1);
797
76e4f660
AR
798 c_idle.idle = get_idle_for_cpu(cpu);
799
800 if (c_idle.idle) {
801 c_idle.idle->thread.rsp = (unsigned long) (((struct pt_regs *)
57eafdc2 802 (THREAD_SIZE + task_stack_page(c_idle.idle))) - 1);
76e4f660
AR
803 init_idle(c_idle.idle, cpu);
804 goto do_rest;
805 }
806
1da177e4 807 /*
76e4f660
AR
808 * During cold boot process, keventd thread is not spun up yet.
809 * When we do cpu hot-add, we create idle threads on the fly, we should
810 * not acquire any attributes from the calling context. Hence the clean
811 * way to create kernel_threads() is to do that from keventd().
812 * We do the current_is_keventd() due to the fact that ACPI notifier
813 * was also queuing to keventd() and when the caller is already running
814 * in context of keventd(), we would end up with locking up the keventd
815 * thread.
1da177e4 816 */
76e4f660
AR
817 if (!keventd_up() || current_is_keventd())
818 work.func(work.data);
819 else {
820 schedule_work(&work);
821 wait_for_completion(&c_idle.done);
822 }
823
824 if (IS_ERR(c_idle.idle)) {
a8ab26fe 825 printk("failed fork for CPU %d\n", cpu);
76e4f660 826 return PTR_ERR(c_idle.idle);
a8ab26fe 827 }
1da177e4 828
76e4f660
AR
829 set_idle_for_cpu(cpu, c_idle.idle);
830
831do_rest:
832
df79efde 833 cpu_pda(cpu)->pcurrent = c_idle.idle;
1da177e4
LT
834
835 start_rip = setup_trampoline();
836
76e4f660 837 init_rsp = c_idle.idle->thread.rsp;
1da177e4
LT
838 per_cpu(init_tss,cpu).rsp0 = init_rsp;
839 initial_code = start_secondary;
e4f17c43 840 clear_tsk_thread_flag(c_idle.idle, TIF_FORK);
1da177e4 841
de04f322
AK
842 printk(KERN_INFO "Booting processor %d/%d APIC 0x%x\n", cpu,
843 cpus_weight(cpu_present_map),
844 apicid);
1da177e4
LT
845
846 /*
847 * This grunge runs the startup process for
848 * the targeted processor.
849 */
850
851 atomic_set(&init_deasserted, 0);
852
853 Dprintk("Setting warm reset code and vector.\n");
854
855 CMOS_WRITE(0xa, 0xf);
856 local_flush_tlb();
857 Dprintk("1.\n");
858 *((volatile unsigned short *) phys_to_virt(0x469)) = start_rip >> 4;
859 Dprintk("2.\n");
860 *((volatile unsigned short *) phys_to_virt(0x467)) = start_rip & 0xf;
861 Dprintk("3.\n");
862
863 /*
864 * Be paranoid about clearing APIC errors.
865 */
11a8e778
AK
866 apic_write(APIC_ESR, 0);
867 apic_read(APIC_ESR);
1da177e4
LT
868
869 /*
870 * Status is now clean
871 */
872 boot_error = 0;
873
874 /*
875 * Starting actual IPI sequence...
876 */
a8ab26fe 877 boot_error = wakeup_secondary_via_INIT(apicid, start_rip);
1da177e4
LT
878
879 if (!boot_error) {
880 /*
881 * allow APs to start initializing.
882 */
883 Dprintk("Before Callout %d.\n", cpu);
884 cpu_set(cpu, cpu_callout_map);
885 Dprintk("After Callout %d.\n", cpu);
886
887 /*
888 * Wait 5s total for a response
889 */
890 for (timeout = 0; timeout < 50000; timeout++) {
891 if (cpu_isset(cpu, cpu_callin_map))
892 break; /* It has booted */
893 udelay(100);
894 }
895
896 if (cpu_isset(cpu, cpu_callin_map)) {
897 /* number CPUs logically, starting from 1 (BSP is 0) */
1da177e4
LT
898 Dprintk("CPU has booted.\n");
899 } else {
900 boot_error = 1;
901 if (*((volatile unsigned char *)phys_to_virt(SMP_TRAMPOLINE_BASE))
902 == 0xA5)
903 /* trampoline started but...? */
904 printk("Stuck ??\n");
905 else
906 /* trampoline code not run */
907 printk("Not responding.\n");
44456d37 908#ifdef APIC_DEBUG
1da177e4
LT
909 inquire_remote_apic(apicid);
910#endif
911 }
912 }
913 if (boot_error) {
914 cpu_clear(cpu, cpu_callout_map); /* was set here (do_boot_cpu()) */
915 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
488fc08d 916 clear_node_cpumask(cpu); /* was set by numa_add_cpu */
a8ab26fe
AK
917 cpu_clear(cpu, cpu_present_map);
918 cpu_clear(cpu, cpu_possible_map);
1da177e4
LT
919 x86_cpu_to_apicid[cpu] = BAD_APICID;
920 x86_cpu_to_log_apicid[cpu] = BAD_APICID;
a8ab26fe 921 return -EIO;
1da177e4 922 }
a8ab26fe
AK
923
924 return 0;
1da177e4
LT
925}
926
a8ab26fe
AK
927cycles_t cacheflush_time;
928unsigned long cache_decay_ticks;
929
1da177e4 930/*
a8ab26fe 931 * Cleanup possible dangling ends...
1da177e4 932 */
a8ab26fe 933static __cpuinit void smp_cleanup_boot(void)
1da177e4 934{
a8ab26fe
AK
935 /*
936 * Paranoid: Set warm reset code and vector here back
937 * to default values.
938 */
939 CMOS_WRITE(0, 0xf);
1da177e4 940
a8ab26fe
AK
941 /*
942 * Reset trampoline flag
943 */
944 *((volatile int *) phys_to_virt(0x467)) = 0;
a8ab26fe
AK
945}
946
947/*
948 * Fall back to non SMP mode after errors.
949 *
950 * RED-PEN audit/test this more. I bet there is more state messed up here.
951 */
e6982c67 952static __init void disable_smp(void)
a8ab26fe
AK
953{
954 cpu_present_map = cpumask_of_cpu(0);
955 cpu_possible_map = cpumask_of_cpu(0);
956 if (smp_found_config)
957 phys_cpu_present_map = physid_mask_of_physid(boot_cpu_id);
958 else
959 phys_cpu_present_map = physid_mask_of_physid(0);
960 cpu_set(0, cpu_sibling_map[0]);
961 cpu_set(0, cpu_core_map[0]);
962}
963
61b1b2d0 964#ifdef CONFIG_HOTPLUG_CPU
420f8f68
AK
965
966int additional_cpus __initdata = -1;
967
61b1b2d0
AK
968/*
969 * cpu_possible_map should be static, it cannot change as cpu's
970 * are onlined, or offlined. The reason is per-cpu data-structures
971 * are allocated by some modules at init time, and dont expect to
972 * do this dynamically on cpu arrival/departure.
973 * cpu_present_map on the other hand can change dynamically.
974 * In case when cpu_hotplug is not compiled, then we resort to current
975 * behaviour, which is cpu_possible == cpu_present.
61b1b2d0 976 * - Ashok Raj
420f8f68
AK
977 *
978 * Three ways to find out the number of additional hotplug CPUs:
979 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
420f8f68 980 * - The user can overwrite it with additional_cpus=NUM
f62a91f6 981 * - Otherwise don't reserve additional CPUs.
420f8f68
AK
982 * We do this because additional CPUs waste a lot of memory.
983 * -AK
61b1b2d0 984 */
421c7ce6 985__init void prefill_possible_map(void)
61b1b2d0
AK
986{
987 int i;
420f8f68
AK
988 int possible;
989
990 if (additional_cpus == -1) {
f62a91f6 991 if (disabled_cpus > 0)
420f8f68 992 additional_cpus = disabled_cpus;
f62a91f6
AK
993 else
994 additional_cpus = 0;
420f8f68
AK
995 }
996 possible = num_processors + additional_cpus;
997 if (possible > NR_CPUS)
998 possible = NR_CPUS;
999
1000 printk(KERN_INFO "SMP: Allowing %d CPUs, %d hotplug CPUs\n",
1001 possible,
1002 max_t(int, possible - num_processors, 0));
1003
1004 for (i = 0; i < possible; i++)
61b1b2d0
AK
1005 cpu_set(i, cpu_possible_map);
1006}
1007#endif
1008
a8ab26fe
AK
1009/*
1010 * Various sanity checks.
1011 */
e6982c67 1012static int __init smp_sanity_check(unsigned max_cpus)
a8ab26fe 1013{
1da177e4
LT
1014 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1015 printk("weird, boot CPU (#%d) not listed by the BIOS.\n",
1016 hard_smp_processor_id());
1017 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1018 }
1019
1020 /*
1021 * If we couldn't find an SMP configuration at boot time,
1022 * get out of here now!
1023 */
1024 if (!smp_found_config) {
1025 printk(KERN_NOTICE "SMP motherboard not detected.\n");
a8ab26fe 1026 disable_smp();
1da177e4
LT
1027 if (APIC_init_uniprocessor())
1028 printk(KERN_NOTICE "Local APIC not detected."
1029 " Using dummy APIC emulation.\n");
a8ab26fe 1030 return -1;
1da177e4
LT
1031 }
1032
1033 /*
1034 * Should not be necessary because the MP table should list the boot
1035 * CPU too, but we do it for the sake of robustness anyway.
1036 */
1037 if (!physid_isset(boot_cpu_id, phys_cpu_present_map)) {
1038 printk(KERN_NOTICE "weird, boot CPU (#%d) not listed by the BIOS.\n",
1039 boot_cpu_id);
1040 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1041 }
1042
1043 /*
1044 * If we couldn't find a local APIC, then get out of here now!
1045 */
11a8e778 1046 if (!cpu_has_apic) {
1da177e4
LT
1047 printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n",
1048 boot_cpu_id);
1049 printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n");
a8ab26fe
AK
1050 nr_ioapics = 0;
1051 return -1;
1da177e4
LT
1052 }
1053
1da177e4
LT
1054 /*
1055 * If SMP should be disabled, then really disable it!
1056 */
1057 if (!max_cpus) {
1da177e4 1058 printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n");
a8ab26fe
AK
1059 nr_ioapics = 0;
1060 return -1;
1da177e4
LT
1061 }
1062
a8ab26fe
AK
1063 return 0;
1064}
1da177e4 1065
a8ab26fe
AK
1066/*
1067 * Prepare for SMP bootup. The MP table or ACPI has been read
1068 * earlier. Just do some sanity checking here and enable APIC mode.
1069 */
e6982c67 1070void __init smp_prepare_cpus(unsigned int max_cpus)
a8ab26fe 1071{
a8ab26fe
AK
1072 nmi_watchdog_default();
1073 current_cpu_data = boot_cpu_data;
1074 current_thread_info()->cpu = 0; /* needed? */
94605eff 1075 set_cpu_sibling_map(0);
1da177e4 1076
a8ab26fe
AK
1077 if (smp_sanity_check(max_cpus) < 0) {
1078 printk(KERN_INFO "SMP disabled\n");
1079 disable_smp();
1080 return;
1da177e4
LT
1081 }
1082
a8ab26fe 1083
1da177e4 1084 /*
a8ab26fe 1085 * Switch from PIC to APIC mode.
1da177e4 1086 */
a8ab26fe
AK
1087 connect_bsp_APIC();
1088 setup_local_APIC();
1da177e4 1089
a8ab26fe
AK
1090 if (GET_APIC_ID(apic_read(APIC_ID)) != boot_cpu_id) {
1091 panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1092 GET_APIC_ID(apic_read(APIC_ID)), boot_cpu_id);
1093 /* Or can we switch back to PIC here? */
1da177e4 1094 }
1da177e4
LT
1095
1096 /*
a8ab26fe 1097 * Now start the IO-APICs
1da177e4
LT
1098 */
1099 if (!skip_ioapic_setup && nr_ioapics)
1100 setup_IO_APIC();
1101 else
1102 nr_ioapics = 0;
1103
1da177e4 1104 /*
a8ab26fe 1105 * Set up local APIC timer on boot CPU.
1da177e4 1106 */
1da177e4 1107
a8ab26fe 1108 setup_boot_APIC_clock();
1da177e4
LT
1109}
1110
a8ab26fe
AK
1111/*
1112 * Early setup to make printk work.
1113 */
1114void __init smp_prepare_boot_cpu(void)
1da177e4 1115{
a8ab26fe
AK
1116 int me = smp_processor_id();
1117 cpu_set(me, cpu_online_map);
1118 cpu_set(me, cpu_callout_map);
884d9e40 1119 per_cpu(cpu_state, me) = CPU_ONLINE;
1da177e4
LT
1120}
1121
a8ab26fe
AK
1122/*
1123 * Entry point to boot a CPU.
a8ab26fe
AK
1124 */
1125int __cpuinit __cpu_up(unsigned int cpu)
1da177e4 1126{
a8ab26fe
AK
1127 int err;
1128 int apicid = cpu_present_to_apicid(cpu);
1da177e4 1129
a8ab26fe 1130 WARN_ON(irqs_disabled());
1da177e4 1131
a8ab26fe
AK
1132 Dprintk("++++++++++++++++++++=_---CPU UP %u\n", cpu);
1133
1134 if (apicid == BAD_APICID || apicid == boot_cpu_id ||
1135 !physid_isset(apicid, phys_cpu_present_map)) {
1136 printk("__cpu_up: bad cpu %d\n", cpu);
1137 return -EINVAL;
1138 }
a8ab26fe 1139
76e4f660
AR
1140 /*
1141 * Already booted CPU?
1142 */
1143 if (cpu_isset(cpu, cpu_callin_map)) {
1144 Dprintk("do_boot_cpu %d Already started\n", cpu);
1145 return -ENOSYS;
1146 }
1147
884d9e40 1148 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
a8ab26fe
AK
1149 /* Boot it! */
1150 err = do_boot_cpu(cpu, apicid);
1151 if (err < 0) {
a8ab26fe
AK
1152 Dprintk("do_boot_cpu failed %d\n", err);
1153 return err;
1da177e4 1154 }
a8ab26fe 1155
1da177e4
LT
1156 /* Unleash the CPU! */
1157 Dprintk("waiting for cpu %d\n", cpu);
1158
1da177e4 1159 while (!cpu_isset(cpu, cpu_online_map))
a8ab26fe 1160 cpu_relax();
76e4f660
AR
1161 err = 0;
1162
1163 return err;
1da177e4
LT
1164}
1165
a8ab26fe
AK
1166/*
1167 * Finish the SMP boot.
1168 */
e6982c67 1169void __init smp_cpus_done(unsigned int max_cpus)
1da177e4 1170{
a8ab26fe
AK
1171 smp_cleanup_boot();
1172
1da177e4
LT
1173#ifdef CONFIG_X86_IO_APIC
1174 setup_ioapic_dest();
1175#endif
1da177e4 1176
75152114 1177 check_nmi_watchdog();
a8ab26fe 1178}
76e4f660
AR
1179
1180#ifdef CONFIG_HOTPLUG_CPU
1181
cb0cd8d4 1182static void remove_siblinginfo(int cpu)
76e4f660
AR
1183{
1184 int sibling;
94605eff 1185 struct cpuinfo_x86 *c = cpu_data;
76e4f660 1186
94605eff
SS
1187 for_each_cpu_mask(sibling, cpu_core_map[cpu]) {
1188 cpu_clear(cpu, cpu_core_map[sibling]);
1189 /*
1190 * last thread sibling in this cpu core going down
1191 */
1192 if (cpus_weight(cpu_sibling_map[cpu]) == 1)
1193 c[sibling].booted_cores--;
1194 }
1195
76e4f660
AR
1196 for_each_cpu_mask(sibling, cpu_sibling_map[cpu])
1197 cpu_clear(cpu, cpu_sibling_map[sibling]);
76e4f660
AR
1198 cpus_clear(cpu_sibling_map[cpu]);
1199 cpus_clear(cpu_core_map[cpu]);
f3fa8ebc
RS
1200 c[cpu].phys_proc_id = 0;
1201 c[cpu].cpu_core_id = 0;
94605eff 1202 cpu_clear(cpu, cpu_sibling_setup_map);
76e4f660
AR
1203}
1204
1205void remove_cpu_from_maps(void)
1206{
1207 int cpu = smp_processor_id();
1208
1209 cpu_clear(cpu, cpu_callout_map);
1210 cpu_clear(cpu, cpu_callin_map);
1211 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
488fc08d 1212 clear_node_cpumask(cpu);
76e4f660
AR
1213}
1214
1215int __cpu_disable(void)
1216{
1217 int cpu = smp_processor_id();
1218
1219 /*
1220 * Perhaps use cpufreq to drop frequency, but that could go
1221 * into generic code.
1222 *
1223 * We won't take down the boot processor on i386 due to some
1224 * interrupts only being able to be serviced by the BSP.
1225 * Especially so if we're not using an IOAPIC -zwane
1226 */
1227 if (cpu == 0)
1228 return -EBUSY;
1229
5e9ef02e 1230 clear_local_APIC();
76e4f660
AR
1231
1232 /*
1233 * HACK:
1234 * Allow any queued timer interrupts to get serviced
1235 * This is only a temporary solution until we cleanup
1236 * fixup_irqs as we do for IA64.
1237 */
1238 local_irq_enable();
1239 mdelay(1);
1240
1241 local_irq_disable();
1242 remove_siblinginfo(cpu);
1243
1244 /* It's now safe to remove this processor from the online map */
1245 cpu_clear(cpu, cpu_online_map);
1246 remove_cpu_from_maps();
1247 fixup_irqs(cpu_online_map);
1248 return 0;
1249}
1250
1251void __cpu_die(unsigned int cpu)
1252{
1253 /* We don't do anything here: idle task is faking death itself. */
1254 unsigned int i;
1255
1256 for (i = 0; i < 10; i++) {
1257 /* They ack this in play_dead by setting CPU_DEAD */
884d9e40
AR
1258 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1259 printk ("CPU %d is now offline\n", cpu);
d167a518
GH
1260 if (1 == num_online_cpus())
1261 alternatives_smp_switch(0);
76e4f660 1262 return;
884d9e40 1263 }
ef6e5253 1264 msleep(100);
76e4f660
AR
1265 }
1266 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1267}
1268
e2c03888 1269__init int setup_additional_cpus(char *s)
420f8f68
AK
1270{
1271 return get_option(&s, &additional_cpus);
1272}
1273__setup("additional_cpus=", setup_additional_cpus);
1274
76e4f660
AR
1275#else /* ... !CONFIG_HOTPLUG_CPU */
1276
1277int __cpu_disable(void)
1278{
1279 return -ENOSYS;
1280}
1281
1282void __cpu_die(unsigned int cpu)
1283{
1284 /* We said "no" in __cpu_disable */
1285 BUG();
1286}
1287#endif /* CONFIG_HOTPLUG_CPU */
This page took 0.198014 seconds and 5 git commands to generate.