[PATCH] x86_64: Explain why HPET T0_CMP register is written twice
[deliverable/linux.git] / arch / x86_64 / kernel / time.c
CommitLineData
1da177e4
LT
1/*
2 * linux/arch/x86-64/kernel/time.c
3 *
4 * "High Precision Event Timer" based timekeeping.
5 *
6 * Copyright (c) 1991,1992,1995 Linus Torvalds
7 * Copyright (c) 1994 Alan Modra
8 * Copyright (c) 1995 Markus Kuhn
9 * Copyright (c) 1996 Ingo Molnar
10 * Copyright (c) 1998 Andrea Arcangeli
11 * Copyright (c) 2002 Vojtech Pavlik
12 * Copyright (c) 2003 Andi Kleen
13 * RTC support code taken from arch/i386/kernel/timers/time_hpet.c
14 */
15
16#include <linux/kernel.h>
17#include <linux/sched.h>
18#include <linux/interrupt.h>
19#include <linux/init.h>
20#include <linux/mc146818rtc.h>
1da177e4
LT
21#include <linux/time.h>
22#include <linux/ioport.h>
23#include <linux/module.h>
24#include <linux/device.h>
25#include <linux/sysdev.h>
26#include <linux/bcd.h>
27#include <linux/kallsyms.h>
312df5f1 28#include <linux/acpi.h>
8d916406 29#ifdef CONFIG_ACPI
312df5f1 30#include <acpi/achware.h> /* for PM timer frequency */
8d916406 31#endif
1da177e4
LT
32#include <asm/8253pit.h>
33#include <asm/pgtable.h>
34#include <asm/vsyscall.h>
35#include <asm/timex.h>
36#include <asm/proto.h>
37#include <asm/hpet.h>
38#include <asm/sections.h>
39#include <linux/cpufreq.h>
40#include <linux/hpet.h>
41#ifdef CONFIG_X86_LOCAL_APIC
42#include <asm/apic.h>
43#endif
44
1da177e4
LT
45#ifdef CONFIG_CPU_FREQ
46static void cpufreq_delayed_get(void);
47#endif
48extern void i8254_timer_resume(void);
49extern int using_apic_timer;
50
e8b91777
AK
51static char *time_init_gtod(void);
52
1da177e4
LT
53DEFINE_SPINLOCK(rtc_lock);
54DEFINE_SPINLOCK(i8253_lock);
55
73dea47f 56int nohpet __initdata = 0;
1da177e4
LT
57static int notsc __initdata = 0;
58
42211338
VP
59#define USEC_PER_TICK (USEC_PER_SEC / HZ)
60#define NSEC_PER_TICK (NSEC_PER_SEC / HZ)
61#define FSEC_PER_TICK (FSEC_PER_SEC / HZ)
62
63#define NS_SCALE 10 /* 2^10, carefully chosen */
64#define US_SCALE 32 /* 2^32, arbitralrily chosen */
65
1da177e4
LT
66unsigned int cpu_khz; /* TSC clocks / usec, not used here */
67static unsigned long hpet_period; /* fsecs / HPET clock */
68unsigned long hpet_tick; /* HPET clocks / interrupt */
33042a9f 69int hpet_use_timer; /* Use counter of hpet for time keeping, otherwise PIT */
1da177e4
LT
70unsigned long vxtime_hz = PIT_TICK_RATE;
71int report_lost_ticks; /* command line option */
72unsigned long long monotonic_base;
73
74struct vxtime_data __vxtime __section_vxtime; /* for vsyscalls */
75
76volatile unsigned long __jiffies __section_jiffies = INITIAL_JIFFIES;
77unsigned long __wall_jiffies __section_wall_jiffies = INITIAL_JIFFIES;
78struct timespec __xtime __section_xtime;
79struct timezone __sys_tz __section_sys_tz;
80
1da177e4
LT
81/*
82 * do_gettimeoffset() returns microseconds since last timer interrupt was
83 * triggered by hardware. A memory read of HPET is slower than a register read
84 * of TSC, but much more reliable. It's also synchronized to the timer
85 * interrupt. Note that do_gettimeoffset() may return more than hpet_tick, if a
86 * timer interrupt has happened already, but vxtime.trigger wasn't updated yet.
87 * This is not a problem, because jiffies hasn't updated either. They are bound
88 * together by xtime_lock.
89 */
90
91static inline unsigned int do_gettimeoffset_tsc(void)
92{
93 unsigned long t;
94 unsigned long x;
c818a181 95 t = get_cycles_sync();
7351c0bf
AK
96 if (t < vxtime.last_tsc)
97 t = vxtime.last_tsc; /* hack */
42211338 98 x = ((t - vxtime.last_tsc) * vxtime.tsc_quot) >> US_SCALE;
1da177e4
LT
99 return x;
100}
101
102static inline unsigned int do_gettimeoffset_hpet(void)
103{
a3a00751 104 /* cap counter read to one tick to avoid inconsistencies */
105 unsigned long counter = hpet_readl(HPET_COUNTER) - vxtime.last;
42211338 106 return (min(counter,hpet_tick) * vxtime.quot) >> US_SCALE;
1da177e4
LT
107}
108
109unsigned int (*do_gettimeoffset)(void) = do_gettimeoffset_tsc;
110
111/*
112 * This version of gettimeofday() has microsecond resolution and better than
113 * microsecond precision, as we're using at least a 10 MHz (usually 14.31818
114 * MHz) HPET timer.
115 */
116
117void do_gettimeofday(struct timeval *tv)
118{
119 unsigned long seq, t;
120 unsigned int sec, usec;
121
122 do {
123 seq = read_seqbegin(&xtime_lock);
124
125 sec = xtime.tv_sec;
42211338 126 usec = xtime.tv_nsec / NSEC_PER_USEC;
1da177e4
LT
127
128 /* i386 does some correction here to keep the clock
129 monotonous even when ntpd is fixing drift.
130 But they didn't work for me, there is a non monotonic
131 clock anyways with ntp.
132 I dropped all corrections now until a real solution can
133 be found. Note when you fix it here you need to do the same
134 in arch/x86_64/kernel/vsyscall.c and export all needed
135 variables in vmlinux.lds. -AK */
136
42211338 137 t = (jiffies - wall_jiffies) * USEC_PER_TICK +
1da177e4
LT
138 do_gettimeoffset();
139 usec += t;
140
141 } while (read_seqretry(&xtime_lock, seq));
142
42211338
VP
143 tv->tv_sec = sec + usec / USEC_PER_SEC;
144 tv->tv_usec = usec % USEC_PER_SEC;
1da177e4
LT
145}
146
147EXPORT_SYMBOL(do_gettimeofday);
148
149/*
150 * settimeofday() first undoes the correction that gettimeofday would do
151 * on the time, and then saves it. This is ugly, but has been like this for
152 * ages already.
153 */
154
155int do_settimeofday(struct timespec *tv)
156{
157 time_t wtm_sec, sec = tv->tv_sec;
158 long wtm_nsec, nsec = tv->tv_nsec;
159
160 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
161 return -EINVAL;
162
163 write_seqlock_irq(&xtime_lock);
164
42211338
VP
165 nsec -= do_gettimeoffset() * NSEC_PER_USEC +
166 (jiffies - wall_jiffies) * NSEC_PER_TICK;
1da177e4
LT
167
168 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
169 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
170
171 set_normalized_timespec(&xtime, sec, nsec);
172 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
173
b149ee22 174 ntp_clear();
1da177e4
LT
175
176 write_sequnlock_irq(&xtime_lock);
177 clock_was_set();
178 return 0;
179}
180
181EXPORT_SYMBOL(do_settimeofday);
182
183unsigned long profile_pc(struct pt_regs *regs)
184{
185 unsigned long pc = instruction_pointer(regs);
186
7351c0bf
AK
187 /* Assume the lock function has either no stack frame or only a single
188 word. This checks if the address on the stack looks like a kernel
189 text address.
1da177e4
LT
190 There is a small window for false hits, but in that case the tick
191 is just accounted to the spinlock function.
192 Better would be to write these functions in assembler again
193 and check exactly. */
194 if (in_lock_functions(pc)) {
195 char *v = *(char **)regs->rsp;
196 if ((v >= _stext && v <= _etext) ||
197 (v >= _sinittext && v <= _einittext) ||
198 (v >= (char *)MODULES_VADDR && v <= (char *)MODULES_END))
199 return (unsigned long)v;
200 return ((unsigned long *)regs->rsp)[1];
201 }
202 return pc;
203}
204EXPORT_SYMBOL(profile_pc);
205
206/*
207 * In order to set the CMOS clock precisely, set_rtc_mmss has to be called 500
208 * ms after the second nowtime has started, because when nowtime is written
209 * into the registers of the CMOS clock, it will jump to the next second
210 * precisely 500 ms later. Check the Motorola MC146818A or Dallas DS12887 data
211 * sheet for details.
212 */
213
214static void set_rtc_mmss(unsigned long nowtime)
215{
216 int real_seconds, real_minutes, cmos_minutes;
217 unsigned char control, freq_select;
218
219/*
220 * IRQs are disabled when we're called from the timer interrupt,
221 * no need for spin_lock_irqsave()
222 */
223
224 spin_lock(&rtc_lock);
225
226/*
227 * Tell the clock it's being set and stop it.
228 */
229
230 control = CMOS_READ(RTC_CONTROL);
231 CMOS_WRITE(control | RTC_SET, RTC_CONTROL);
232
233 freq_select = CMOS_READ(RTC_FREQ_SELECT);
234 CMOS_WRITE(freq_select | RTC_DIV_RESET2, RTC_FREQ_SELECT);
235
236 cmos_minutes = CMOS_READ(RTC_MINUTES);
237 BCD_TO_BIN(cmos_minutes);
238
239/*
240 * since we're only adjusting minutes and seconds, don't interfere with hour
241 * overflow. This avoids messing with unknown time zones but requires your RTC
242 * not to be off by more than 15 minutes. Since we're calling it only when
243 * our clock is externally synchronized using NTP, this shouldn't be a problem.
244 */
245
246 real_seconds = nowtime % 60;
247 real_minutes = nowtime / 60;
248 if (((abs(real_minutes - cmos_minutes) + 15) / 30) & 1)
249 real_minutes += 30; /* correct for half hour time zone */
250 real_minutes %= 60;
251
1da177e4
LT
252 if (abs(real_minutes - cmos_minutes) >= 30) {
253 printk(KERN_WARNING "time.c: can't update CMOS clock "
254 "from %d to %d\n", cmos_minutes, real_minutes);
28456ede 255 } else {
0b91317e
AK
256 BIN_TO_BCD(real_seconds);
257 BIN_TO_BCD(real_minutes);
1da177e4
LT
258 CMOS_WRITE(real_seconds, RTC_SECONDS);
259 CMOS_WRITE(real_minutes, RTC_MINUTES);
260 }
261
262/*
263 * The following flags have to be released exactly in this order, otherwise the
264 * DS12887 (popular MC146818A clone with integrated battery and quartz) will
265 * not reset the oscillator and will not update precisely 500 ms later. You
266 * won't find this mentioned in the Dallas Semiconductor data sheets, but who
267 * believes data sheets anyway ... -- Markus Kuhn
268 */
269
270 CMOS_WRITE(control, RTC_CONTROL);
271 CMOS_WRITE(freq_select, RTC_FREQ_SELECT);
272
273 spin_unlock(&rtc_lock);
274}
275
276
277/* monotonic_clock(): returns # of nanoseconds passed since time_init()
278 * Note: This function is required to return accurate
279 * time even in the absence of multiple timer ticks.
280 */
281unsigned long long monotonic_clock(void)
282{
283 unsigned long seq;
284 u32 last_offset, this_offset, offset;
285 unsigned long long base;
286
287 if (vxtime.mode == VXTIME_HPET) {
288 do {
289 seq = read_seqbegin(&xtime_lock);
290
291 last_offset = vxtime.last;
292 base = monotonic_base;
a3a00751 293 this_offset = hpet_readl(HPET_COUNTER);
1da177e4
LT
294 } while (read_seqretry(&xtime_lock, seq));
295 offset = (this_offset - last_offset);
42211338 296 offset *= NSEC_PER_TICK / hpet_tick;
0b91317e 297 } else {
1da177e4
LT
298 do {
299 seq = read_seqbegin(&xtime_lock);
300
301 last_offset = vxtime.last_tsc;
302 base = monotonic_base;
303 } while (read_seqretry(&xtime_lock, seq));
c818a181 304 this_offset = get_cycles_sync();
42211338
VP
305 /* FIXME: 1000 or 1000000? */
306 offset = (this_offset - last_offset)*1000 / cpu_khz;
1da177e4 307 }
7351c0bf 308 return base + offset;
1da177e4
LT
309}
310EXPORT_SYMBOL(monotonic_clock);
311
312static noinline void handle_lost_ticks(int lost, struct pt_regs *regs)
313{
7351c0bf
AK
314 static long lost_count;
315 static int warned;
316 if (report_lost_ticks) {
317 printk(KERN_WARNING "time.c: Lost %d timer tick(s)! ", lost);
318 print_symbol("rip %s)\n", regs->rip);
319 }
320
321 if (lost_count == 1000 && !warned) {
322 printk(KERN_WARNING "warning: many lost ticks.\n"
323 KERN_WARNING "Your time source seems to be instable or "
1da177e4 324 "some driver is hogging interupts\n");
7351c0bf
AK
325 print_symbol("rip %s\n", regs->rip);
326 if (vxtime.mode == VXTIME_TSC && vxtime.hpet_address) {
327 printk(KERN_WARNING "Falling back to HPET\n");
328 if (hpet_use_timer)
329 vxtime.last = hpet_readl(HPET_T0_CMP) -
330 hpet_tick;
331 else
332 vxtime.last = hpet_readl(HPET_COUNTER);
333 vxtime.mode = VXTIME_HPET;
334 do_gettimeoffset = do_gettimeoffset_hpet;
335 }
336 /* else should fall back to PIT, but code missing. */
337 warned = 1;
338 } else
339 lost_count++;
1da177e4
LT
340
341#ifdef CONFIG_CPU_FREQ
7351c0bf
AK
342 /* In some cases the CPU can change frequency without us noticing
343 Give cpufreq a change to catch up. */
344 if ((lost_count+1) % 25 == 0)
345 cpufreq_delayed_get();
1da177e4
LT
346#endif
347}
348
73dea47f 349void main_timer_handler(struct pt_regs *regs)
1da177e4
LT
350{
351 static unsigned long rtc_update = 0;
352 unsigned long tsc;
9ede6b09 353 int delay = 0, offset = 0, lost = 0;
1da177e4
LT
354
355/*
356 * Here we are in the timer irq handler. We have irqs locally disabled (so we
357 * don't need spin_lock_irqsave()) but we don't know if the timer_bh is running
358 * on the other CPU, so we need a lock. We also need to lock the vsyscall
359 * variables, because both do_timer() and us change them -arca+vojtech
360 */
361
362 write_seqlock(&xtime_lock);
363
a3a00751 364 if (vxtime.hpet_address)
365 offset = hpet_readl(HPET_COUNTER);
366
367 if (hpet_use_timer) {
368 /* if we're using the hpet timer functionality,
369 * we can more accurately know the counter value
370 * when the timer interrupt occured.
371 */
1da177e4
LT
372 offset = hpet_readl(HPET_T0_CMP) - hpet_tick;
373 delay = hpet_readl(HPET_COUNTER) - offset;
9ede6b09 374 } else if (!pmtmr_ioport) {
1da177e4
LT
375 spin_lock(&i8253_lock);
376 outb_p(0x00, 0x43);
377 delay = inb_p(0x40);
378 delay |= inb(0x40) << 8;
379 spin_unlock(&i8253_lock);
380 delay = LATCH - 1 - delay;
381 }
382
c818a181 383 tsc = get_cycles_sync();
1da177e4
LT
384
385 if (vxtime.mode == VXTIME_HPET) {
386 if (offset - vxtime.last > hpet_tick) {
387 lost = (offset - vxtime.last) / hpet_tick - 1;
388 }
389
390 monotonic_base +=
42211338 391 (offset - vxtime.last) * NSEC_PER_TICK / hpet_tick;
1da177e4
LT
392
393 vxtime.last = offset;
312df5f1
AK
394#ifdef CONFIG_X86_PM_TIMER
395 } else if (vxtime.mode == VXTIME_PMTMR) {
396 lost = pmtimer_mark_offset();
397#endif
1da177e4
LT
398 } else {
399 offset = (((tsc - vxtime.last_tsc) *
42211338 400 vxtime.tsc_quot) >> US_SCALE) - USEC_PER_TICK;
1da177e4
LT
401
402 if (offset < 0)
403 offset = 0;
404
42211338
VP
405 if (offset > USEC_PER_TICK) {
406 lost = offset / USEC_PER_TICK;
407 offset %= USEC_PER_TICK;
1da177e4
LT
408 }
409
42211338
VP
410 /* FIXME: 1000 or 1000000? */
411 monotonic_base += (tsc - vxtime.last_tsc) * 1000000 / cpu_khz;
1da177e4
LT
412
413 vxtime.last_tsc = tsc - vxtime.quot * delay / vxtime.tsc_quot;
414
415 if ((((tsc - vxtime.last_tsc) *
42211338 416 vxtime.tsc_quot) >> US_SCALE) < offset)
1da177e4 417 vxtime.last_tsc = tsc -
42211338 418 (((long) offset << US_SCALE) / vxtime.tsc_quot) - 1;
1da177e4
LT
419 }
420
421 if (lost > 0) {
422 handle_lost_ticks(lost, regs);
423 jiffies += lost;
424 }
425
426/*
427 * Do the timer stuff.
428 */
429
430 do_timer(regs);
431#ifndef CONFIG_SMP
432 update_process_times(user_mode(regs));
433#endif
434
435/*
436 * In the SMP case we use the local APIC timer interrupt to do the profiling,
437 * except when we simulate SMP mode on a uniprocessor system, in that case we
438 * have to call the local interrupt handler.
439 */
440
441#ifndef CONFIG_X86_LOCAL_APIC
442 profile_tick(CPU_PROFILING, regs);
443#else
444 if (!using_apic_timer)
445 smp_local_timer_interrupt(regs);
446#endif
447
448/*
449 * If we have an externally synchronized Linux clock, then update CMOS clock
450 * accordingly every ~11 minutes. set_rtc_mmss() will be called in the jiffy
451 * closest to exactly 500 ms before the next second. If the update fails, we
452 * don't care, as it'll be updated on the next turn, and the problem (time way
453 * off) isn't likely to go away much sooner anyway.
454 */
455
b149ee22 456 if (ntp_synced() && xtime.tv_sec > rtc_update &&
1da177e4
LT
457 abs(xtime.tv_nsec - 500000000) <= tick_nsec / 2) {
458 set_rtc_mmss(xtime.tv_sec);
459 rtc_update = xtime.tv_sec + 660;
460 }
461
462 write_sequnlock(&xtime_lock);
73dea47f 463}
1da177e4 464
73dea47f
AK
465static irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
466{
467 if (apic_runs_main_timer > 1)
468 return IRQ_HANDLED;
469 main_timer_handler(regs);
d25bf7e5
VP
470#ifdef CONFIG_X86_LOCAL_APIC
471 if (using_apic_timer)
472 smp_send_timer_broadcast_ipi();
473#endif
1da177e4
LT
474 return IRQ_HANDLED;
475}
476
68ed0040 477static unsigned int cyc2ns_scale __read_mostly;
1da177e4 478
dacb16b1 479static inline void set_cyc2ns_scale(unsigned long cpu_khz)
1da177e4 480{
42211338 481 cyc2ns_scale = (NSEC_PER_MSEC << NS_SCALE) / cpu_khz;
1da177e4
LT
482}
483
484static inline unsigned long long cycles_2_ns(unsigned long long cyc)
485{
42211338 486 return (cyc * cyc2ns_scale) >> NS_SCALE;
1da177e4
LT
487}
488
489unsigned long long sched_clock(void)
490{
491 unsigned long a = 0;
492
493#if 0
494 /* Don't do a HPET read here. Using TSC always is much faster
495 and HPET may not be mapped yet when the scheduler first runs.
496 Disadvantage is a small drift between CPUs in some configurations,
497 but that should be tolerable. */
498 if (__vxtime.mode == VXTIME_HPET)
42211338 499 return (hpet_readl(HPET_COUNTER) * vxtime.quot) >> US_SCALE;
1da177e4
LT
500#endif
501
502 /* Could do CPU core sync here. Opteron can execute rdtsc speculatively,
503 which means it is not completely exact and may not be monotonous between
504 CPUs. But the errors should be too small to matter for scheduling
505 purposes. */
506
507 rdtscll(a);
508 return cycles_2_ns(a);
509}
510
bdf2b1c9 511static unsigned long get_cmos_time(void)
1da177e4 512{
641f71f5 513 unsigned int year, mon, day, hour, min, sec;
1da177e4 514 unsigned long flags;
6954bee8 515 unsigned extyear = 0;
1da177e4 516
1da177e4
LT
517 spin_lock_irqsave(&rtc_lock, flags);
518
641f71f5
MM
519 do {
520 sec = CMOS_READ(RTC_SECONDS);
521 min = CMOS_READ(RTC_MINUTES);
522 hour = CMOS_READ(RTC_HOURS);
523 day = CMOS_READ(RTC_DAY_OF_MONTH);
524 mon = CMOS_READ(RTC_MONTH);
525 year = CMOS_READ(RTC_YEAR);
6954bee8 526#ifdef CONFIG_ACPI
641f71f5
MM
527 if (acpi_fadt.revision >= FADT2_REVISION_ID &&
528 acpi_fadt.century)
529 extyear = CMOS_READ(acpi_fadt.century);
6954bee8 530#endif
641f71f5 531 } while (sec != CMOS_READ(RTC_SECONDS));
6954bee8 532
1da177e4
LT
533 spin_unlock_irqrestore(&rtc_lock, flags);
534
0b91317e
AK
535 /*
536 * We know that x86-64 always uses BCD format, no need to check the
537 * config register.
7351c0bf 538 */
1da177e4 539
0b91317e
AK
540 BCD_TO_BIN(sec);
541 BCD_TO_BIN(min);
542 BCD_TO_BIN(hour);
543 BCD_TO_BIN(day);
544 BCD_TO_BIN(mon);
545 BCD_TO_BIN(year);
1da177e4 546
6954bee8
AK
547 if (extyear) {
548 BCD_TO_BIN(extyear);
549 year += extyear;
550 printk(KERN_INFO "Extended CMOS year: %d\n", extyear);
551 } else {
552 /*
553 * x86-64 systems only exists since 2002.
554 * This will work up to Dec 31, 2100
555 */
556 year += 2000;
557 }
1da177e4
LT
558
559 return mktime(year, mon, day, hour, min, sec);
560}
561
562#ifdef CONFIG_CPU_FREQ
563
564/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
565 changes.
566
567 RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
568 not that important because current Opteron setups do not support
569 scaling on SMP anyroads.
570
571 Should fix up last_tsc too. Currently gettimeofday in the
572 first tick after the change will be slightly wrong. */
573
574#include <linux/workqueue.h>
575
576static unsigned int cpufreq_delayed_issched = 0;
577static unsigned int cpufreq_init = 0;
578static struct work_struct cpufreq_delayed_get_work;
579
580static void handle_cpufreq_delayed_get(void *v)
581{
582 unsigned int cpu;
583 for_each_online_cpu(cpu) {
584 cpufreq_get(cpu);
585 }
586 cpufreq_delayed_issched = 0;
587}
588
589/* if we notice lost ticks, schedule a call to cpufreq_get() as it tries
590 * to verify the CPU frequency the timing core thinks the CPU is running
591 * at is still correct.
592 */
593static void cpufreq_delayed_get(void)
594{
595 static int warned;
596 if (cpufreq_init && !cpufreq_delayed_issched) {
597 cpufreq_delayed_issched = 1;
598 if (!warned) {
599 warned = 1;
7351c0bf
AK
600 printk(KERN_DEBUG
601 "Losing some ticks... checking if CPU frequency changed.\n");
1da177e4
LT
602 }
603 schedule_work(&cpufreq_delayed_get_work);
604 }
605}
606
607static unsigned int ref_freq = 0;
608static unsigned long loops_per_jiffy_ref = 0;
609
610static unsigned long cpu_khz_ref = 0;
611
612static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
613 void *data)
614{
615 struct cpufreq_freqs *freq = data;
616 unsigned long *lpj, dummy;
617
c29601e9
AK
618 if (cpu_has(&cpu_data[freq->cpu], X86_FEATURE_CONSTANT_TSC))
619 return 0;
620
1da177e4
LT
621 lpj = &dummy;
622 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
623#ifdef CONFIG_SMP
7351c0bf 624 lpj = &cpu_data[freq->cpu].loops_per_jiffy;
1da177e4 625#else
7351c0bf 626 lpj = &boot_cpu_data.loops_per_jiffy;
1da177e4
LT
627#endif
628
1da177e4
LT
629 if (!ref_freq) {
630 ref_freq = freq->old;
631 loops_per_jiffy_ref = *lpj;
632 cpu_khz_ref = cpu_khz;
633 }
634 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
635 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
636 (val == CPUFREQ_RESUMECHANGE)) {
637 *lpj =
638 cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
639
640 cpu_khz = cpufreq_scale(cpu_khz_ref, ref_freq, freq->new);
641 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
42211338 642 vxtime.tsc_quot = (USEC_PER_MSEC << US_SCALE) / cpu_khz;
1da177e4
LT
643 }
644
dacb16b1 645 set_cyc2ns_scale(cpu_khz_ref);
1da177e4
LT
646
647 return 0;
648}
649
650static struct notifier_block time_cpufreq_notifier_block = {
651 .notifier_call = time_cpufreq_notifier
652};
653
654static int __init cpufreq_tsc(void)
655{
656 INIT_WORK(&cpufreq_delayed_get_work, handle_cpufreq_delayed_get, NULL);
657 if (!cpufreq_register_notifier(&time_cpufreq_notifier_block,
658 CPUFREQ_TRANSITION_NOTIFIER))
659 cpufreq_init = 1;
660 return 0;
661}
662
663core_initcall(cpufreq_tsc);
664
665#endif
666
667/*
668 * calibrate_tsc() calibrates the processor TSC in a very simple way, comparing
669 * it to the HPET timer of known frequency.
670 */
671
672#define TICK_COUNT 100000000
673
674static unsigned int __init hpet_calibrate_tsc(void)
675{
676 int tsc_start, hpet_start;
677 int tsc_now, hpet_now;
678 unsigned long flags;
679
680 local_irq_save(flags);
681 local_irq_disable();
682
683 hpet_start = hpet_readl(HPET_COUNTER);
684 rdtscl(tsc_start);
685
686 do {
687 local_irq_disable();
688 hpet_now = hpet_readl(HPET_COUNTER);
c818a181 689 tsc_now = get_cycles_sync();
1da177e4
LT
690 local_irq_restore(flags);
691 } while ((tsc_now - tsc_start) < TICK_COUNT &&
692 (hpet_now - hpet_start) < TICK_COUNT);
693
694 return (tsc_now - tsc_start) * 1000000000L
695 / ((hpet_now - hpet_start) * hpet_period / 1000);
696}
697
698
699/*
700 * pit_calibrate_tsc() uses the speaker output (channel 2) of
701 * the PIT. This is better than using the timer interrupt output,
702 * because we can read the value of the speaker with just one inb(),
703 * where we need three i/o operations for the interrupt channel.
704 * We count how many ticks the TSC does in 50 ms.
705 */
706
707static unsigned int __init pit_calibrate_tsc(void)
708{
709 unsigned long start, end;
710 unsigned long flags;
711
712 spin_lock_irqsave(&i8253_lock, flags);
713
714 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
715
716 outb(0xb0, 0x43);
717 outb((PIT_TICK_RATE / (1000 / 50)) & 0xff, 0x42);
718 outb((PIT_TICK_RATE / (1000 / 50)) >> 8, 0x42);
c818a181 719 start = get_cycles_sync();
1da177e4 720 while ((inb(0x61) & 0x20) == 0);
c818a181 721 end = get_cycles_sync();
1da177e4
LT
722
723 spin_unlock_irqrestore(&i8253_lock, flags);
724
725 return (end - start) / 50;
726}
727
728#ifdef CONFIG_HPET
729static __init int late_hpet_init(void)
730{
731 struct hpet_data hd;
732 unsigned int ntimer;
733
734 if (!vxtime.hpet_address)
3d34ee68 735 return 0;
1da177e4
LT
736
737 memset(&hd, 0, sizeof (hd));
738
739 ntimer = hpet_readl(HPET_ID);
740 ntimer = (ntimer & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
741 ntimer++;
742
743 /*
744 * Register with driver.
745 * Timer0 and Timer1 is used by platform.
746 */
747 hd.hd_phys_address = vxtime.hpet_address;
dd42b151 748 hd.hd_address = (void __iomem *)fix_to_virt(FIX_HPET_BASE);
1da177e4
LT
749 hd.hd_nirqs = ntimer;
750 hd.hd_flags = HPET_DATA_PLATFORM;
751 hpet_reserve_timer(&hd, 0);
752#ifdef CONFIG_HPET_EMULATE_RTC
753 hpet_reserve_timer(&hd, 1);
754#endif
755 hd.hd_irq[0] = HPET_LEGACY_8254;
756 hd.hd_irq[1] = HPET_LEGACY_RTC;
757 if (ntimer > 2) {
758 struct hpet *hpet;
759 struct hpet_timer *timer;
760 int i;
761
762 hpet = (struct hpet *) fix_to_virt(FIX_HPET_BASE);
7351c0bf
AK
763 timer = &hpet->hpet_timers[2];
764 for (i = 2; i < ntimer; timer++, i++)
1da177e4
LT
765 hd.hd_irq[i] = (timer->hpet_config &
766 Tn_INT_ROUTE_CNF_MASK) >>
767 Tn_INT_ROUTE_CNF_SHIFT;
768
769 }
770
771 hpet_alloc(&hd);
772 return 0;
773}
774fs_initcall(late_hpet_init);
775#endif
776
777static int hpet_timer_stop_set_go(unsigned long tick)
778{
779 unsigned int cfg;
780
781/*
782 * Stop the timers and reset the main counter.
783 */
784
785 cfg = hpet_readl(HPET_CFG);
786 cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
787 hpet_writel(cfg, HPET_CFG);
788 hpet_writel(0, HPET_COUNTER);
789 hpet_writel(0, HPET_COUNTER + 4);
790
791/*
792 * Set up timer 0, as periodic with first interrupt to happen at hpet_tick,
793 * and period also hpet_tick.
794 */
a3a00751 795 if (hpet_use_timer) {
796 hpet_writel(HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
1da177e4 797 HPET_TN_32BIT, HPET_T0_CFG);
b2df3ddb
VP
798 hpet_writel(hpet_tick, HPET_T0_CMP); /* next interrupt */
799 hpet_writel(hpet_tick, HPET_T0_CMP); /* period */
a3a00751 800 cfg |= HPET_CFG_LEGACY;
801 }
1da177e4
LT
802/*
803 * Go!
804 */
805
a3a00751 806 cfg |= HPET_CFG_ENABLE;
1da177e4
LT
807 hpet_writel(cfg, HPET_CFG);
808
809 return 0;
810}
811
812static int hpet_init(void)
813{
814 unsigned int id;
815
816 if (!vxtime.hpet_address)
817 return -1;
818 set_fixmap_nocache(FIX_HPET_BASE, vxtime.hpet_address);
819 __set_fixmap(VSYSCALL_HPET, vxtime.hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
820
821/*
822 * Read the period, compute tick and quotient.
823 */
824
825 id = hpet_readl(HPET_ID);
826
a3a00751 827 if (!(id & HPET_ID_VENDOR) || !(id & HPET_ID_NUMBER))
1da177e4
LT
828 return -1;
829
830 hpet_period = hpet_readl(HPET_PERIOD);
831 if (hpet_period < 100000 || hpet_period > 100000000)
832 return -1;
833
42211338 834 hpet_tick = (FSEC_PER_TICK + hpet_period / 2) / hpet_period;
1da177e4 835
a3a00751 836 hpet_use_timer = (id & HPET_ID_LEGSUP);
837
1da177e4
LT
838 return hpet_timer_stop_set_go(hpet_tick);
839}
840
841static int hpet_reenable(void)
842{
843 return hpet_timer_stop_set_go(hpet_tick);
844}
845
73dea47f
AK
846#define PIT_MODE 0x43
847#define PIT_CH0 0x40
848
849static void __init __pit_init(int val, u8 mode)
1da177e4
LT
850{
851 unsigned long flags;
852
853 spin_lock_irqsave(&i8253_lock, flags);
73dea47f
AK
854 outb_p(mode, PIT_MODE);
855 outb_p(val & 0xff, PIT_CH0); /* LSB */
856 outb_p(val >> 8, PIT_CH0); /* MSB */
1da177e4
LT
857 spin_unlock_irqrestore(&i8253_lock, flags);
858}
859
73dea47f
AK
860void __init pit_init(void)
861{
862 __pit_init(LATCH, 0x34); /* binary, mode 2, LSB/MSB, ch 0 */
863}
864
865void __init pit_stop_interrupt(void)
866{
867 __pit_init(0, 0x30); /* mode 0 */
868}
869
870void __init stop_timer_interrupt(void)
871{
872 char *name;
873 if (vxtime.hpet_address) {
874 name = "HPET";
875 hpet_timer_stop_set_go(0);
876 } else {
877 name = "PIT";
878 pit_stop_interrupt();
879 }
880 printk(KERN_INFO "timer: %s interrupt stopped.\n", name);
881}
882
1da177e4
LT
883int __init time_setup(char *str)
884{
885 report_lost_ticks = 1;
886 return 1;
887}
888
889static struct irqaction irq0 = {
890 timer_interrupt, SA_INTERRUPT, CPU_MASK_NONE, "timer", NULL, NULL
891};
892
1da177e4
LT
893void __init time_init(void)
894{
895 char *timename;
e8b91777 896 char *gtod;
1da177e4 897
1da177e4
LT
898 if (nohpet)
899 vxtime.hpet_address = 0;
900
901 xtime.tv_sec = get_cmos_time();
902 xtime.tv_nsec = 0;
903
904 set_normalized_timespec(&wall_to_monotonic,
905 -xtime.tv_sec, -xtime.tv_nsec);
906
a3a00751 907 if (!hpet_init())
42211338 908 vxtime_hz = (FSEC_PER_SEC + hpet_period / 2) / hpet_period;
68e18891
AK
909 else
910 vxtime.hpet_address = 0;
a3a00751 911
912 if (hpet_use_timer) {
b20367a6
JH
913 /* set tick_nsec to use the proper rate for HPET */
914 tick_nsec = TICK_NSEC_HPET;
1da177e4
LT
915 cpu_khz = hpet_calibrate_tsc();
916 timename = "HPET";
312df5f1 917#ifdef CONFIG_X86_PM_TIMER
fd495471 918 } else if (pmtmr_ioport && !vxtime.hpet_address) {
312df5f1
AK
919 vxtime_hz = PM_TIMER_FREQUENCY;
920 timename = "PM";
921 pit_init();
922 cpu_khz = pit_calibrate_tsc();
923#endif
1da177e4
LT
924 } else {
925 pit_init();
926 cpu_khz = pit_calibrate_tsc();
927 timename = "PIT";
928 }
929
e8b91777
AK
930 vxtime.mode = VXTIME_TSC;
931 gtod = time_init_gtod();
932
933 printk(KERN_INFO "time.c: Using %ld.%06ld MHz WALL %s GTOD %s timer.\n",
934 vxtime_hz / 1000000, vxtime_hz % 1000000, timename, gtod);
1da177e4
LT
935 printk(KERN_INFO "time.c: Detected %d.%03d MHz processor.\n",
936 cpu_khz / 1000, cpu_khz % 1000);
42211338
VP
937 vxtime.quot = (USEC_PER_SEC << US_SCALE) / vxtime_hz;
938 vxtime.tsc_quot = (USEC_PER_MSEC << US_SCALE) / cpu_khz;
c818a181 939 vxtime.last_tsc = get_cycles_sync();
1da177e4
LT
940 setup_irq(0, &irq0);
941
dacb16b1 942 set_cyc2ns_scale(cpu_khz);
1da177e4
LT
943}
944
312df5f1
AK
945/*
946 * Make an educated guess if the TSC is trustworthy and synchronized
947 * over all CPUs.
948 */
396bd50f 949__cpuinit int unsynchronized_tsc(void)
312df5f1
AK
950{
951#ifdef CONFIG_SMP
f8bf3c65 952 if (apic_is_clustered_box())
312df5f1
AK
953 return 1;
954 /* Intel systems are normally all synchronized. Exceptions
f8bf3c65 955 are handled in the check above. */
312df5f1
AK
956 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
957 return 0;
312df5f1
AK
958#endif
959 /* Assume multi socket systems are not synchronized */
737c5c3b 960 return num_present_cpus() > 1;
312df5f1
AK
961}
962
a8ab26fe 963/*
e8b91777 964 * Decide what mode gettimeofday should use.
a8ab26fe 965 */
e8b91777 966__init static char *time_init_gtod(void)
1da177e4
LT
967{
968 char *timetype;
969
312df5f1 970 if (unsynchronized_tsc())
1da177e4
LT
971 notsc = 1;
972 if (vxtime.hpet_address && notsc) {
a3a00751 973 timetype = hpet_use_timer ? "HPET" : "PIT/HPET";
33042a9f
CM
974 if (hpet_use_timer)
975 vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick;
976 else
977 vxtime.last = hpet_readl(HPET_COUNTER);
1da177e4
LT
978 vxtime.mode = VXTIME_HPET;
979 do_gettimeoffset = do_gettimeoffset_hpet;
312df5f1
AK
980#ifdef CONFIG_X86_PM_TIMER
981 /* Using PM for gettimeofday is quite slow, but we have no other
982 choice because the TSC is too unreliable on some systems. */
983 } else if (pmtmr_ioport && !vxtime.hpet_address && notsc) {
984 timetype = "PM";
985 do_gettimeoffset = do_gettimeoffset_pm;
986 vxtime.mode = VXTIME_PMTMR;
987 sysctl_vsyscall = 0;
988 printk(KERN_INFO "Disabling vsyscall due to use of PM timer\n");
989#endif
1da177e4 990 } else {
a3a00751 991 timetype = hpet_use_timer ? "HPET/TSC" : "PIT/TSC";
1da177e4
LT
992 vxtime.mode = VXTIME_TSC;
993 }
e8b91777 994 return timetype;
1da177e4
LT
995}
996
997__setup("report_lost_ticks", time_setup);
998
999static long clock_cmos_diff;
1000static unsigned long sleep_start;
1001
0b91317e
AK
1002/*
1003 * sysfs support for the timer.
1004 */
1005
0b9c33a7 1006static int timer_suspend(struct sys_device *dev, pm_message_t state)
1da177e4
LT
1007{
1008 /*
1009 * Estimate time zone so that set_time can update the clock
1010 */
1011 long cmos_time = get_cmos_time();
1012
1013 clock_cmos_diff = -cmos_time;
1014 clock_cmos_diff += get_seconds();
1015 sleep_start = cmos_time;
1016 return 0;
1017}
1018
1019static int timer_resume(struct sys_device *dev)
1020{
1021 unsigned long flags;
1022 unsigned long sec;
1023 unsigned long ctime = get_cmos_time();
1024 unsigned long sleep_length = (ctime - sleep_start) * HZ;
1025
1026 if (vxtime.hpet_address)
1027 hpet_reenable();
1028 else
1029 i8254_timer_resume();
1030
1031 sec = ctime + clock_cmos_diff;
1032 write_seqlock_irqsave(&xtime_lock,flags);
1033 xtime.tv_sec = sec;
1034 xtime.tv_nsec = 0;
0dd2ea9a
SL
1035 if (vxtime.mode == VXTIME_HPET) {
1036 if (hpet_use_timer)
1037 vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick;
1038 else
1039 vxtime.last = hpet_readl(HPET_COUNTER);
1040#ifdef CONFIG_X86_PM_TIMER
1041 } else if (vxtime.mode == VXTIME_PMTMR) {
1042 pmtimer_resume();
1043#endif
1044 } else
1045 vxtime.last_tsc = get_cycles_sync();
1da177e4
LT
1046 write_sequnlock_irqrestore(&xtime_lock,flags);
1047 jiffies += sleep_length;
1048 wall_jiffies += sleep_length;
0dd2ea9a 1049 monotonic_base += sleep_length * (NSEC_PER_SEC/HZ);
8446f1d3 1050 touch_softlockup_watchdog();
1da177e4
LT
1051 return 0;
1052}
1053
1054static struct sysdev_class timer_sysclass = {
1055 .resume = timer_resume,
1056 .suspend = timer_suspend,
1057 set_kset_name("timer"),
1058};
1059
1da177e4
LT
1060/* XXX this driverfs stuff should probably go elsewhere later -john */
1061static struct sys_device device_timer = {
1062 .id = 0,
1063 .cls = &timer_sysclass,
1064};
1065
1066static int time_init_device(void)
1067{
1068 int error = sysdev_class_register(&timer_sysclass);
1069 if (!error)
1070 error = sysdev_register(&device_timer);
1071 return error;
1072}
1073
1074device_initcall(time_init_device);
1075
1076#ifdef CONFIG_HPET_EMULATE_RTC
1077/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
1078 * is enabled, we support RTC interrupt functionality in software.
1079 * RTC has 3 kinds of interrupts:
1080 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
1081 * is updated
1082 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1083 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1084 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
1085 * (1) and (2) above are implemented using polling at a frequency of
1086 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
1087 * overhead. (DEFAULT_RTC_INT_FREQ)
1088 * For (3), we use interrupts at 64Hz or user specified periodic
1089 * frequency, whichever is higher.
1090 */
1091#include <linux/rtc.h>
1092
1da177e4
LT
1093#define DEFAULT_RTC_INT_FREQ 64
1094#define RTC_NUM_INTS 1
1095
1096static unsigned long UIE_on;
1097static unsigned long prev_update_sec;
1098
1099static unsigned long AIE_on;
1100static struct rtc_time alarm_time;
1101
1102static unsigned long PIE_on;
1103static unsigned long PIE_freq = DEFAULT_RTC_INT_FREQ;
1104static unsigned long PIE_count;
1105
1106static unsigned long hpet_rtc_int_freq; /* RTC interrupt frequency */
7811fb8f 1107static unsigned int hpet_t1_cmp; /* cached comparator register */
1da177e4
LT
1108
1109int is_hpet_enabled(void)
1110{
1111 return vxtime.hpet_address != 0;
1112}
1113
1114/*
1115 * Timer 1 for RTC, we do not use periodic interrupt feature,
1116 * even if HPET supports periodic interrupts on Timer 1.
1117 * The reason being, to set up a periodic interrupt in HPET, we need to
1118 * stop the main counter. And if we do that everytime someone diables/enables
1119 * RTC, we will have adverse effect on main kernel timer running on Timer 0.
1120 * So, for the time being, simulate the periodic interrupt in software.
1121 *
1122 * hpet_rtc_timer_init() is called for the first time and during subsequent
1123 * interuppts reinit happens through hpet_rtc_timer_reinit().
1124 */
1125int hpet_rtc_timer_init(void)
1126{
1127 unsigned int cfg, cnt;
1128 unsigned long flags;
1129
1130 if (!is_hpet_enabled())
1131 return 0;
1132 /*
1133 * Set the counter 1 and enable the interrupts.
1134 */
1135 if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
1136 hpet_rtc_int_freq = PIE_freq;
1137 else
1138 hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
1139
1140 local_irq_save(flags);
1141 cnt = hpet_readl(HPET_COUNTER);
1142 cnt += ((hpet_tick*HZ)/hpet_rtc_int_freq);
1143 hpet_writel(cnt, HPET_T1_CMP);
7811fb8f 1144 hpet_t1_cmp = cnt;
1da177e4
LT
1145 local_irq_restore(flags);
1146
1147 cfg = hpet_readl(HPET_T1_CFG);
5f819949
CL
1148 cfg &= ~HPET_TN_PERIODIC;
1149 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1da177e4
LT
1150 hpet_writel(cfg, HPET_T1_CFG);
1151
1152 return 1;
1153}
1154
1155static void hpet_rtc_timer_reinit(void)
1156{
1157 unsigned int cfg, cnt;
1158
f00c96f3
CL
1159 if (unlikely(!(PIE_on | AIE_on | UIE_on))) {
1160 cfg = hpet_readl(HPET_T1_CFG);
1161 cfg &= ~HPET_TN_ENABLE;
1162 hpet_writel(cfg, HPET_T1_CFG);
1da177e4 1163 return;
f00c96f3 1164 }
1da177e4
LT
1165
1166 if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
1167 hpet_rtc_int_freq = PIE_freq;
1168 else
1169 hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
1170
1171 /* It is more accurate to use the comparator value than current count.*/
7811fb8f 1172 cnt = hpet_t1_cmp;
1da177e4
LT
1173 cnt += hpet_tick*HZ/hpet_rtc_int_freq;
1174 hpet_writel(cnt, HPET_T1_CMP);
7811fb8f 1175 hpet_t1_cmp = cnt;
1da177e4
LT
1176}
1177
1178/*
1179 * The functions below are called from rtc driver.
1180 * Return 0 if HPET is not being used.
1181 * Otherwise do the necessary changes and return 1.
1182 */
1183int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1184{
1185 if (!is_hpet_enabled())
1186 return 0;
1187
1188 if (bit_mask & RTC_UIE)
1189 UIE_on = 0;
1190 if (bit_mask & RTC_PIE)
1191 PIE_on = 0;
1192 if (bit_mask & RTC_AIE)
1193 AIE_on = 0;
1194
1195 return 1;
1196}
1197
1198int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1199{
1200 int timer_init_reqd = 0;
1201
1202 if (!is_hpet_enabled())
1203 return 0;
1204
1205 if (!(PIE_on | AIE_on | UIE_on))
1206 timer_init_reqd = 1;
1207
1208 if (bit_mask & RTC_UIE) {
1209 UIE_on = 1;
1210 }
1211 if (bit_mask & RTC_PIE) {
1212 PIE_on = 1;
1213 PIE_count = 0;
1214 }
1215 if (bit_mask & RTC_AIE) {
1216 AIE_on = 1;
1217 }
1218
1219 if (timer_init_reqd)
1220 hpet_rtc_timer_init();
1221
1222 return 1;
1223}
1224
1225int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
1226{
1227 if (!is_hpet_enabled())
1228 return 0;
1229
1230 alarm_time.tm_hour = hrs;
1231 alarm_time.tm_min = min;
1232 alarm_time.tm_sec = sec;
1233
1234 return 1;
1235}
1236
1237int hpet_set_periodic_freq(unsigned long freq)
1238{
1239 if (!is_hpet_enabled())
1240 return 0;
1241
1242 PIE_freq = freq;
1243 PIE_count = 0;
1244
1245 return 1;
1246}
1247
1248int hpet_rtc_dropped_irq(void)
1249{
1250 if (!is_hpet_enabled())
1251 return 0;
1252
1253 return 1;
1254}
1255
1256irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1257{
1258 struct rtc_time curr_time;
1259 unsigned long rtc_int_flag = 0;
1260 int call_rtc_interrupt = 0;
1261
1262 hpet_rtc_timer_reinit();
1263
1264 if (UIE_on | AIE_on) {
1265 rtc_get_rtc_time(&curr_time);
1266 }
1267 if (UIE_on) {
1268 if (curr_time.tm_sec != prev_update_sec) {
1269 /* Set update int info, call real rtc int routine */
1270 call_rtc_interrupt = 1;
1271 rtc_int_flag = RTC_UF;
1272 prev_update_sec = curr_time.tm_sec;
1273 }
1274 }
1275 if (PIE_on) {
1276 PIE_count++;
1277 if (PIE_count >= hpet_rtc_int_freq/PIE_freq) {
1278 /* Set periodic int info, call real rtc int routine */
1279 call_rtc_interrupt = 1;
1280 rtc_int_flag |= RTC_PF;
1281 PIE_count = 0;
1282 }
1283 }
1284 if (AIE_on) {
1285 if ((curr_time.tm_sec == alarm_time.tm_sec) &&
1286 (curr_time.tm_min == alarm_time.tm_min) &&
1287 (curr_time.tm_hour == alarm_time.tm_hour)) {
1288 /* Set alarm int info, call real rtc int routine */
1289 call_rtc_interrupt = 1;
1290 rtc_int_flag |= RTC_AF;
1291 }
1292 }
1293 if (call_rtc_interrupt) {
1294 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1295 rtc_interrupt(rtc_int_flag, dev_id, regs);
1296 }
1297 return IRQ_HANDLED;
1298}
1299#endif
1300
1da177e4
LT
1301static int __init nohpet_setup(char *s)
1302{
1303 nohpet = 1;
9b41046c 1304 return 1;
1da177e4
LT
1305}
1306
1307__setup("nohpet", nohpet_setup);
1308
7fd67843 1309int __init notsc_setup(char *s)
1da177e4
LT
1310{
1311 notsc = 1;
9b41046c 1312 return 1;
1da177e4
LT
1313}
1314
1315__setup("notsc", notsc_setup);
This page took 0.238037 seconds and 5 git commands to generate.