[PATCH] x86_64: Implement is_compat_task the right way
[deliverable/linux.git] / arch / x86_64 / mm / fault.c
CommitLineData
1da177e4
LT
1/*
2 * linux/arch/x86-64/mm/fault.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 2001,2002 Andi Kleen, SuSE Labs.
6 */
7
8#include <linux/config.h>
9#include <linux/signal.h>
10#include <linux/sched.h>
11#include <linux/kernel.h>
12#include <linux/errno.h>
13#include <linux/string.h>
14#include <linux/types.h>
15#include <linux/ptrace.h>
16#include <linux/mman.h>
17#include <linux/mm.h>
18#include <linux/smp.h>
19#include <linux/smp_lock.h>
20#include <linux/interrupt.h>
21#include <linux/init.h>
22#include <linux/tty.h>
23#include <linux/vt_kern.h> /* For unblank_screen() */
24#include <linux/compiler.h>
25#include <linux/module.h>
0f2fbdcb 26#include <linux/kprobes.h>
1da177e4
LT
27
28#include <asm/system.h>
29#include <asm/uaccess.h>
30#include <asm/pgalloc.h>
31#include <asm/smp.h>
32#include <asm/tlbflush.h>
33#include <asm/proto.h>
34#include <asm/kdebug.h>
35#include <asm-generic/sections.h>
36#include <asm/kdebug.h>
37
38void bust_spinlocks(int yes)
39{
40 int loglevel_save = console_loglevel;
41 if (yes) {
42 oops_in_progress = 1;
43 } else {
44#ifdef CONFIG_VT
45 unblank_screen();
46#endif
47 oops_in_progress = 0;
48 /*
49 * OK, the message is on the console. Now we call printk()
50 * without oops_in_progress set so that printk will give klogd
51 * a poke. Hold onto your hats...
52 */
53 console_loglevel = 15; /* NMI oopser may have shut the console up */
54 printk(" ");
55 console_loglevel = loglevel_save;
56 }
57}
58
59/* Sometimes the CPU reports invalid exceptions on prefetch.
60 Check that here and ignore.
61 Opcode checker based on code by Richard Brunner */
62static noinline int is_prefetch(struct pt_regs *regs, unsigned long addr,
63 unsigned long error_code)
64{
f1290ec9 65 unsigned char *instr;
1da177e4
LT
66 int scan_more = 1;
67 int prefetch = 0;
f1290ec9 68 unsigned char *max_instr;
1da177e4
LT
69
70 /* If it was a exec fault ignore */
71 if (error_code & (1<<4))
72 return 0;
73
f1290ec9
AK
74 instr = (unsigned char *)convert_rip_to_linear(current, regs);
75 max_instr = instr + 15;
1da177e4 76
76381fee 77 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
1da177e4
LT
78 return 0;
79
80 while (scan_more && instr < max_instr) {
81 unsigned char opcode;
82 unsigned char instr_hi;
83 unsigned char instr_lo;
84
85 if (__get_user(opcode, instr))
86 break;
87
88 instr_hi = opcode & 0xf0;
89 instr_lo = opcode & 0x0f;
90 instr++;
91
92 switch (instr_hi) {
93 case 0x20:
94 case 0x30:
95 /* Values 0x26,0x2E,0x36,0x3E are valid x86
96 prefixes. In long mode, the CPU will signal
97 invalid opcode if some of these prefixes are
98 present so we will never get here anyway */
99 scan_more = ((instr_lo & 7) == 0x6);
100 break;
101
102 case 0x40:
103 /* In AMD64 long mode, 0x40 to 0x4F are valid REX prefixes
104 Need to figure out under what instruction mode the
105 instruction was issued ... */
106 /* Could check the LDT for lm, but for now it's good
107 enough to assume that long mode only uses well known
108 segments or kernel. */
76381fee 109 scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS);
1da177e4
LT
110 break;
111
112 case 0x60:
113 /* 0x64 thru 0x67 are valid prefixes in all modes. */
114 scan_more = (instr_lo & 0xC) == 0x4;
115 break;
116 case 0xF0:
117 /* 0xF0, 0xF2, and 0xF3 are valid prefixes in all modes. */
118 scan_more = !instr_lo || (instr_lo>>1) == 1;
119 break;
120 case 0x00:
121 /* Prefetch instruction is 0x0F0D or 0x0F18 */
122 scan_more = 0;
123 if (__get_user(opcode, instr))
124 break;
125 prefetch = (instr_lo == 0xF) &&
126 (opcode == 0x0D || opcode == 0x18);
127 break;
128 default:
129 scan_more = 0;
130 break;
131 }
132 }
133 return prefetch;
134}
135
136static int bad_address(void *p)
137{
138 unsigned long dummy;
139 return __get_user(dummy, (unsigned long *)p);
140}
141
142void dump_pagetable(unsigned long address)
143{
144 pgd_t *pgd;
145 pud_t *pud;
146 pmd_t *pmd;
147 pte_t *pte;
148
149 asm("movq %%cr3,%0" : "=r" (pgd));
150
151 pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
152 pgd += pgd_index(address);
153 printk("PGD %lx ", pgd_val(*pgd));
154 if (bad_address(pgd)) goto bad;
155 if (!pgd_present(*pgd)) goto ret;
156
157 pud = __pud_offset_k((pud_t *)pgd_page(*pgd), address);
158 if (bad_address(pud)) goto bad;
159 printk("PUD %lx ", pud_val(*pud));
160 if (!pud_present(*pud)) goto ret;
161
162 pmd = pmd_offset(pud, address);
163 if (bad_address(pmd)) goto bad;
164 printk("PMD %lx ", pmd_val(*pmd));
165 if (!pmd_present(*pmd)) goto ret;
166
167 pte = pte_offset_kernel(pmd, address);
168 if (bad_address(pte)) goto bad;
169 printk("PTE %lx", pte_val(*pte));
170ret:
171 printk("\n");
172 return;
173bad:
174 printk("BAD\n");
175}
176
177static const char errata93_warning[] =
178KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
179KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
180KERN_ERR "******* Please consider a BIOS update.\n"
181KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
182
183/* Workaround for K8 erratum #93 & buggy BIOS.
184 BIOS SMM functions are required to use a specific workaround
185 to avoid corruption of the 64bit RIP register on C stepping K8.
186 A lot of BIOS that didn't get tested properly miss this.
187 The OS sees this as a page fault with the upper 32bits of RIP cleared.
188 Try to work around it here.
189 Note we only handle faults in kernel here. */
190
191static int is_errata93(struct pt_regs *regs, unsigned long address)
192{
193 static int warned;
194 if (address != regs->rip)
195 return 0;
196 if ((address >> 32) != 0)
197 return 0;
198 address |= 0xffffffffUL << 32;
199 if ((address >= (u64)_stext && address <= (u64)_etext) ||
200 (address >= MODULES_VADDR && address <= MODULES_END)) {
201 if (!warned) {
202 printk(errata93_warning);
203 warned = 1;
204 }
205 regs->rip = address;
206 return 1;
207 }
208 return 0;
209}
210
211int unhandled_signal(struct task_struct *tsk, int sig)
212{
213 if (tsk->pid == 1)
214 return 1;
5e5ec104 215 if (tsk->ptrace & PT_PTRACED)
1da177e4
LT
216 return 0;
217 return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) ||
218 (tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL);
219}
220
221static noinline void pgtable_bad(unsigned long address, struct pt_regs *regs,
222 unsigned long error_code)
223{
1209140c 224 unsigned long flags = oops_begin();
6e3f3617 225 struct task_struct *tsk;
1209140c 226
1da177e4
LT
227 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
228 current->comm, address);
229 dump_pagetable(address);
6e3f3617
JB
230 tsk = current;
231 tsk->thread.cr2 = address;
232 tsk->thread.trap_no = 14;
233 tsk->thread.error_code = error_code;
1da177e4 234 __die("Bad pagetable", regs, error_code);
1209140c 235 oops_end(flags);
1da177e4
LT
236 do_exit(SIGKILL);
237}
238
239/*
f95190b2 240 * Handle a fault on the vmalloc area
3b9ba4d5
AK
241 *
242 * This assumes no large pages in there.
1da177e4
LT
243 */
244static int vmalloc_fault(unsigned long address)
245{
246 pgd_t *pgd, *pgd_ref;
247 pud_t *pud, *pud_ref;
248 pmd_t *pmd, *pmd_ref;
249 pte_t *pte, *pte_ref;
250
251 /* Copy kernel mappings over when needed. This can also
252 happen within a race in page table update. In the later
253 case just flush. */
254
255 pgd = pgd_offset(current->mm ?: &init_mm, address);
256 pgd_ref = pgd_offset_k(address);
257 if (pgd_none(*pgd_ref))
258 return -1;
259 if (pgd_none(*pgd))
260 set_pgd(pgd, *pgd_ref);
261
262 /* Below here mismatches are bugs because these lower tables
263 are shared */
264
265 pud = pud_offset(pgd, address);
266 pud_ref = pud_offset(pgd_ref, address);
267 if (pud_none(*pud_ref))
268 return -1;
269 if (pud_none(*pud) || pud_page(*pud) != pud_page(*pud_ref))
270 BUG();
271 pmd = pmd_offset(pud, address);
272 pmd_ref = pmd_offset(pud_ref, address);
273 if (pmd_none(*pmd_ref))
274 return -1;
275 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
276 BUG();
277 pte_ref = pte_offset_kernel(pmd_ref, address);
278 if (!pte_present(*pte_ref))
279 return -1;
280 pte = pte_offset_kernel(pmd, address);
3b9ba4d5
AK
281 /* Don't use pte_page here, because the mappings can point
282 outside mem_map, and the NUMA hash lookup cannot handle
283 that. */
284 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
1da177e4 285 BUG();
1da177e4
LT
286 return 0;
287}
288
289int page_fault_trace = 0;
290int exception_trace = 1;
291
292/*
293 * This routine handles page faults. It determines the address,
294 * and the problem, and then passes it off to one of the appropriate
295 * routines.
296 *
297 * error_code:
298 * bit 0 == 0 means no page found, 1 means protection fault
299 * bit 1 == 0 means read, 1 means write
300 * bit 2 == 0 means kernel, 1 means user-mode
8b1bde93
JB
301 * bit 3 == 1 means use of reserved bit detected
302 * bit 4 == 1 means fault was an instruction fetch
1da177e4 303 */
0f2fbdcb
PP
304asmlinkage void __kprobes do_page_fault(struct pt_regs *regs,
305 unsigned long error_code)
1da177e4
LT
306{
307 struct task_struct *tsk;
308 struct mm_struct *mm;
309 struct vm_area_struct * vma;
310 unsigned long address;
311 const struct exception_table_entry *fixup;
312 int write;
1209140c 313 unsigned long flags;
1da177e4
LT
314 siginfo_t info;
315
1da177e4
LT
316 /* get the address */
317 __asm__("movq %%cr2,%0":"=r" (address));
318 if (notify_die(DIE_PAGE_FAULT, "page fault", regs, error_code, 14,
319 SIGSEGV) == NOTIFY_STOP)
320 return;
321
322 if (likely(regs->eflags & X86_EFLAGS_IF))
323 local_irq_enable();
324
325 if (unlikely(page_fault_trace))
326 printk("pagefault rip:%lx rsp:%lx cs:%lu ss:%lu address %lx error %lx\n",
327 regs->rip,regs->rsp,regs->cs,regs->ss,address,error_code);
328
329 tsk = current;
330 mm = tsk->mm;
331 info.si_code = SEGV_MAPERR;
332
333
334 /*
335 * We fault-in kernel-space virtual memory on-demand. The
336 * 'reference' page table is init_mm.pgd.
337 *
338 * NOTE! We MUST NOT take any locks for this case. We may
339 * be in an interrupt or a critical region, and should
340 * only copy the information from the master page table,
341 * nothing more.
342 *
343 * This verifies that the fault happens in kernel space
344 * (error_code & 4) == 0, and that the fault was not a
8b1bde93 345 * protection error (error_code & 9) == 0.
1da177e4 346 */
84929801 347 if (unlikely(address >= TASK_SIZE64)) {
f95190b2
AK
348 /*
349 * Don't check for the module range here: its PML4
350 * is always initialized because it's shared with the main
351 * kernel text. Only vmalloc may need PML4 syncups.
352 */
8b1bde93 353 if (!(error_code & 0xd) &&
f95190b2 354 ((address >= VMALLOC_START && address < VMALLOC_END))) {
1da177e4
LT
355 if (vmalloc_fault(address) < 0)
356 goto bad_area_nosemaphore;
357 return;
358 }
359 /*
360 * Don't take the mm semaphore here. If we fixup a prefetch
361 * fault we could otherwise deadlock.
362 */
363 goto bad_area_nosemaphore;
364 }
365
366 if (unlikely(error_code & (1 << 3)))
367 pgtable_bad(address, regs, error_code);
368
369 /*
370 * If we're in an interrupt or have no user
371 * context, we must not take the fault..
372 */
373 if (unlikely(in_atomic() || !mm))
374 goto bad_area_nosemaphore;
375
376 again:
377 /* When running in the kernel we expect faults to occur only to
378 * addresses in user space. All other faults represent errors in the
379 * kernel and should generate an OOPS. Unfortunatly, in the case of an
380 * erroneous fault occuring in a code path which already holds mmap_sem
381 * we will deadlock attempting to validate the fault against the
382 * address space. Luckily the kernel only validly references user
383 * space from well defined areas of code, which are listed in the
384 * exceptions table.
385 *
386 * As the vast majority of faults will be valid we will only perform
387 * the source reference check when there is a possibilty of a deadlock.
388 * Attempt to lock the address space, if we cannot we then validate the
389 * source. If this is invalid we can skip the address space check,
390 * thus avoiding the deadlock.
391 */
392 if (!down_read_trylock(&mm->mmap_sem)) {
393 if ((error_code & 4) == 0 &&
394 !search_exception_tables(regs->rip))
395 goto bad_area_nosemaphore;
396 down_read(&mm->mmap_sem);
397 }
398
399 vma = find_vma(mm, address);
400 if (!vma)
401 goto bad_area;
402 if (likely(vma->vm_start <= address))
403 goto good_area;
404 if (!(vma->vm_flags & VM_GROWSDOWN))
405 goto bad_area;
406 if (error_code & 4) {
407 // XXX: align red zone size with ABI
408 if (address + 128 < regs->rsp)
409 goto bad_area;
410 }
411 if (expand_stack(vma, address))
412 goto bad_area;
413/*
414 * Ok, we have a good vm_area for this memory access, so
415 * we can handle it..
416 */
417good_area:
418 info.si_code = SEGV_ACCERR;
419 write = 0;
420 switch (error_code & 3) {
421 default: /* 3: write, present */
422 /* fall through */
423 case 2: /* write, not present */
424 if (!(vma->vm_flags & VM_WRITE))
425 goto bad_area;
426 write++;
427 break;
428 case 1: /* read, present */
429 goto bad_area;
430 case 0: /* read, not present */
431 if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
432 goto bad_area;
433 }
434
435 /*
436 * If for any reason at all we couldn't handle the fault,
437 * make sure we exit gracefully rather than endlessly redo
438 * the fault.
439 */
440 switch (handle_mm_fault(mm, vma, address, write)) {
96800216 441 case VM_FAULT_MINOR:
1da177e4
LT
442 tsk->min_flt++;
443 break;
96800216 444 case VM_FAULT_MAJOR:
1da177e4
LT
445 tsk->maj_flt++;
446 break;
96800216 447 case VM_FAULT_SIGBUS:
1da177e4
LT
448 goto do_sigbus;
449 default:
450 goto out_of_memory;
451 }
452
453 up_read(&mm->mmap_sem);
454 return;
455
456/*
457 * Something tried to access memory that isn't in our memory map..
458 * Fix it, but check if it's kernel or user first..
459 */
460bad_area:
461 up_read(&mm->mmap_sem);
462
463bad_area_nosemaphore:
1da177e4
LT
464 /* User mode accesses just cause a SIGSEGV */
465 if (error_code & 4) {
466 if (is_prefetch(regs, address, error_code))
467 return;
468
469 /* Work around K8 erratum #100 K8 in compat mode
470 occasionally jumps to illegal addresses >4GB. We
471 catch this here in the page fault handler because
472 these addresses are not reachable. Just detect this
473 case and return. Any code segment in LDT is
474 compatibility mode. */
475 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) &&
476 (address >> 32))
477 return;
478
479 if (exception_trace && unhandled_signal(tsk, SIGSEGV)) {
480 printk(
481 "%s%s[%d]: segfault at %016lx rip %016lx rsp %016lx error %lx\n",
482 tsk->pid > 1 ? KERN_INFO : KERN_EMERG,
483 tsk->comm, tsk->pid, address, regs->rip,
484 regs->rsp, error_code);
485 }
486
487 tsk->thread.cr2 = address;
488 /* Kernel addresses are always protection faults */
489 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
490 tsk->thread.trap_no = 14;
491 info.si_signo = SIGSEGV;
492 info.si_errno = 0;
493 /* info.si_code has been set above */
494 info.si_addr = (void __user *)address;
495 force_sig_info(SIGSEGV, &info, tsk);
496 return;
497 }
498
499no_context:
500
501 /* Are we prepared to handle this kernel fault? */
502 fixup = search_exception_tables(regs->rip);
503 if (fixup) {
504 regs->rip = fixup->fixup;
505 return;
506 }
507
508 /*
509 * Hall of shame of CPU/BIOS bugs.
510 */
511
512 if (is_prefetch(regs, address, error_code))
513 return;
514
515 if (is_errata93(regs, address))
516 return;
517
518/*
519 * Oops. The kernel tried to access some bad page. We'll have to
520 * terminate things with extreme prejudice.
521 */
522
1209140c 523 flags = oops_begin();
1da177e4
LT
524
525 if (address < PAGE_SIZE)
526 printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference");
527 else
528 printk(KERN_ALERT "Unable to handle kernel paging request");
529 printk(" at %016lx RIP: \n" KERN_ALERT,address);
530 printk_address(regs->rip);
531 printk("\n");
532 dump_pagetable(address);
6e3f3617
JB
533 tsk->thread.cr2 = address;
534 tsk->thread.trap_no = 14;
535 tsk->thread.error_code = error_code;
1da177e4
LT
536 __die("Oops", regs, error_code);
537 /* Executive summary in case the body of the oops scrolled away */
538 printk(KERN_EMERG "CR2: %016lx\n", address);
1209140c 539 oops_end(flags);
1da177e4
LT
540 do_exit(SIGKILL);
541
542/*
543 * We ran out of memory, or some other thing happened to us that made
544 * us unable to handle the page fault gracefully.
545 */
546out_of_memory:
547 up_read(&mm->mmap_sem);
1da177e4
LT
548 if (current->pid == 1) {
549 yield();
550 goto again;
551 }
552 printk("VM: killing process %s\n", tsk->comm);
553 if (error_code & 4)
554 do_exit(SIGKILL);
555 goto no_context;
556
557do_sigbus:
558 up_read(&mm->mmap_sem);
559
560 /* Kernel mode? Handle exceptions or die */
561 if (!(error_code & 4))
562 goto no_context;
563
564 tsk->thread.cr2 = address;
565 tsk->thread.error_code = error_code;
566 tsk->thread.trap_no = 14;
567 info.si_signo = SIGBUS;
568 info.si_errno = 0;
569 info.si_code = BUS_ADRERR;
570 info.si_addr = (void __user *)address;
571 force_sig_info(SIGBUS, &info, tsk);
572 return;
573}
9e43e1b7
AK
574
575static int __init enable_pagefaulttrace(char *str)
576{
577 page_fault_trace = 1;
578 return 0;
579}
580__setup("pagefaulttrace", enable_pagefaulttrace);
This page took 0.159324 seconds and 5 git commands to generate.