Merge branch 'linux-3.17' of git://anongit.freedesktop.org/git/nouveau/linux-2.6...
[deliverable/linux.git] / arch / xtensa / kernel / process.c
CommitLineData
5a0015d6
CZ
1/*
2 * arch/xtensa/kernel/process.c
3 *
4 * Xtensa Processor version.
5 *
6 * This file is subject to the terms and conditions of the GNU General Public
7 * License. See the file "COPYING" in the main directory of this archive
8 * for more details.
9 *
10 * Copyright (C) 2001 - 2005 Tensilica Inc.
11 *
12 * Joe Taylor <joe@tensilica.com, joetylr@yahoo.com>
13 * Chris Zankel <chris@zankel.net>
14 * Marc Gauthier <marc@tensilica.com, marc@alumni.uwaterloo.ca>
15 * Kevin Chea
16 */
17
5a0015d6
CZ
18#include <linux/errno.h>
19#include <linux/sched.h>
20#include <linux/kernel.h>
21#include <linux/mm.h>
22#include <linux/smp.h>
5a0015d6
CZ
23#include <linux/stddef.h>
24#include <linux/unistd.h>
25#include <linux/ptrace.h>
5a0015d6
CZ
26#include <linux/elf.h>
27#include <linux/init.h>
28#include <linux/prctl.h>
29#include <linux/init_task.h>
30#include <linux/module.h>
31#include <linux/mqueue.h>
73089cbf 32#include <linux/fs.h>
5a0e3ad6 33#include <linux/slab.h>
11ad47a0 34#include <linux/rcupdate.h>
5a0015d6
CZ
35
36#include <asm/pgtable.h>
37#include <asm/uaccess.h>
5a0015d6
CZ
38#include <asm/io.h>
39#include <asm/processor.h>
40#include <asm/platform.h>
41#include <asm/mmu.h>
42#include <asm/irq.h>
60063497 43#include <linux/atomic.h>
0013a854 44#include <asm/asm-offsets.h>
173d6681 45#include <asm/regs.h>
5a0015d6
CZ
46
47extern void ret_from_fork(void);
3306a726 48extern void ret_from_kernel_thread(void);
5a0015d6 49
5a0015d6
CZ
50struct task_struct *current_set[NR_CPUS] = {&init_task, };
51
47f3fc94
AB
52void (*pm_power_off)(void) = NULL;
53EXPORT_SYMBOL(pm_power_off);
54
5a0015d6 55
c658eac6
CZ
56#if XTENSA_HAVE_COPROCESSORS
57
58void coprocessor_release_all(struct thread_info *ti)
59{
60 unsigned long cpenable;
61 int i;
62
63 /* Make sure we don't switch tasks during this operation. */
64
65 preempt_disable();
66
67 /* Walk through all cp owners and release it for the requested one. */
68
69 cpenable = ti->cpenable;
70
71 for (i = 0; i < XCHAL_CP_MAX; i++) {
72 if (coprocessor_owner[i] == ti) {
73 coprocessor_owner[i] = 0;
74 cpenable &= ~(1 << i);
75 }
76 }
77
78 ti->cpenable = cpenable;
79 coprocessor_clear_cpenable();
80
81 preempt_enable();
82}
83
84void coprocessor_flush_all(struct thread_info *ti)
85{
86 unsigned long cpenable;
87 int i;
88
89 preempt_disable();
90
91 cpenable = ti->cpenable;
92
93 for (i = 0; i < XCHAL_CP_MAX; i++) {
94 if ((cpenable & 1) != 0 && coprocessor_owner[i] == ti)
95 coprocessor_flush(ti, i);
96 cpenable >>= 1;
97 }
98
99 preempt_enable();
100}
101
102#endif
103
104
5a0015d6
CZ
105/*
106 * Powermanagement idle function, if any is provided by the platform.
107 */
f4e2e9a4 108void arch_cpu_idle(void)
5a0015d6 109{
f4e2e9a4 110 platform_idle();
5a0015d6
CZ
111}
112
113/*
c658eac6 114 * This is called when the thread calls exit().
5a0015d6 115 */
5a0015d6
CZ
116void exit_thread(void)
117{
c658eac6
CZ
118#if XTENSA_HAVE_COPROCESSORS
119 coprocessor_release_all(current_thread_info());
120#endif
5a0015d6
CZ
121}
122
c658eac6
CZ
123/*
124 * Flush thread state. This is called when a thread does an execve()
125 * Note that we flush coprocessor registers for the case execve fails.
126 */
5a0015d6
CZ
127void flush_thread(void)
128{
c658eac6
CZ
129#if XTENSA_HAVE_COPROCESSORS
130 struct thread_info *ti = current_thread_info();
131 coprocessor_flush_all(ti);
132 coprocessor_release_all(ti);
133#endif
134}
135
136/*
55ccf3fe
SS
137 * this gets called so that we can store coprocessor state into memory and
138 * copy the current task into the new thread.
c658eac6 139 */
55ccf3fe 140int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
c658eac6
CZ
141{
142#if XTENSA_HAVE_COPROCESSORS
55ccf3fe 143 coprocessor_flush_all(task_thread_info(src));
c658eac6 144#endif
55ccf3fe
SS
145 *dst = *src;
146 return 0;
5a0015d6
CZ
147}
148
149/*
150 * Copy thread.
151 *
3306a726
MF
152 * There are two modes in which this function is called:
153 * 1) Userspace thread creation,
154 * regs != NULL, usp_thread_fn is userspace stack pointer.
155 * It is expected to copy parent regs (in case CLONE_VM is not set
156 * in the clone_flags) and set up passed usp in the childregs.
157 * 2) Kernel thread creation,
158 * regs == NULL, usp_thread_fn is the function to run in the new thread
159 * and thread_fn_arg is its parameter.
160 * childregs are not used for the kernel threads.
161 *
5a0015d6
CZ
162 * The stack layout for the new thread looks like this:
163 *
3306a726 164 * +------------------------+
5a0015d6
CZ
165 * | childregs |
166 * +------------------------+ <- thread.sp = sp in dummy-frame
167 * | dummy-frame | (saved in dummy-frame spill-area)
168 * +------------------------+
169 *
3306a726
MF
170 * We create a dummy frame to return to either ret_from_fork or
171 * ret_from_kernel_thread:
172 * a0 points to ret_from_fork/ret_from_kernel_thread (simulating a call4)
5a0015d6 173 * sp points to itself (thread.sp)
3306a726
MF
174 * a2, a3 are unused for userspace threads,
175 * a2 points to thread_fn, a3 holds thread_fn arg for kernel threads.
5a0015d6
CZ
176 *
177 * Note: This is a pristine frame, so we don't need any spill region on top of
178 * childregs.
84ed3053
MG
179 *
180 * The fun part: if we're keeping the same VM (i.e. cloning a thread,
181 * not an entire process), we're normally given a new usp, and we CANNOT share
182 * any live address register windows. If we just copy those live frames over,
183 * the two threads (parent and child) will overflow the same frames onto the
184 * parent stack at different times, likely corrupting the parent stack (esp.
185 * if the parent returns from functions that called clone() and calls new
186 * ones, before the child overflows its now old copies of its parent windows).
187 * One solution is to spill windows to the parent stack, but that's fairly
188 * involved. Much simpler to just not copy those live frames across.
5a0015d6
CZ
189 */
190
3306a726 191int copy_thread(unsigned long clone_flags, unsigned long usp_thread_fn,
afa86fc4 192 unsigned long thread_fn_arg, struct task_struct *p)
5a0015d6 193{
3306a726 194 struct pt_regs *childregs = task_pt_regs(p);
5a0015d6 195
39070cb8
CZ
196#if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
197 struct thread_info *ti;
198#endif
199
5a0015d6
CZ
200 /* Create a call4 dummy-frame: a0 = 0, a1 = childregs. */
201 *((int*)childregs - 3) = (unsigned long)childregs;
202 *((int*)childregs - 4) = 0;
203
5a0015d6 204 p->thread.sp = (unsigned long)childregs;
c658eac6 205
3306a726
MF
206 if (!(p->flags & PF_KTHREAD)) {
207 struct pt_regs *regs = current_pt_regs();
208 unsigned long usp = usp_thread_fn ?
209 usp_thread_fn : regs->areg[1];
210
211 p->thread.ra = MAKE_RA_FOR_CALL(
212 (unsigned long)ret_from_fork, 0x1);
5a0015d6 213
3306a726
MF
214 /* This does not copy all the regs.
215 * In a bout of brilliance or madness,
216 * ARs beyond a0-a15 exist past the end of the struct.
217 */
218 *childregs = *regs;
5a0015d6 219 childregs->areg[1] = usp;
3306a726 220 childregs->areg[2] = 0;
6ebe7da2
CZ
221
222 /* When sharing memory with the parent thread, the child
223 usually starts on a pristine stack, so we have to reset
224 windowbase, windowstart and wmask.
225 (Note that such a new thread is required to always create
226 an initial call4 frame)
227 The exception is vfork, where the new thread continues to
228 run on the parent's stack until it calls execve. This could
229 be a call8 or call12, which requires a legal stack frame
230 of the previous caller for the overflow handlers to work.
231 (Note that it's always legal to overflow live registers).
232 In this case, ensure to spill at least the stack pointer
233 of that frame. */
234
84ed3053 235 if (clone_flags & CLONE_VM) {
6ebe7da2
CZ
236 /* check that caller window is live and same stack */
237 int len = childregs->wmask & ~0xf;
238 if (regs->areg[1] == usp && len != 0) {
239 int callinc = (regs->areg[0] >> 30) & 3;
240 int caller_ars = XCHAL_NUM_AREGS - callinc * 4;
241 put_user(regs->areg[caller_ars+1],
242 (unsigned __user*)(usp - 12));
243 }
244 childregs->wmask = 1;
245 childregs->windowstart = 1;
246 childregs->windowbase = 0;
84ed3053
MG
247 } else {
248 int len = childregs->wmask & ~0xf;
249 memcpy(&childregs->areg[XCHAL_NUM_AREGS - len/4],
250 &regs->areg[XCHAL_NUM_AREGS - len/4], len);
251 }
c50842df
CZ
252
253 /* The thread pointer is passed in the '4th argument' (= a5) */
5a0015d6 254 if (clone_flags & CLONE_SETTLS)
c50842df 255 childregs->threadptr = childregs->areg[5];
5a0015d6 256 } else {
3306a726
MF
257 p->thread.ra = MAKE_RA_FOR_CALL(
258 (unsigned long)ret_from_kernel_thread, 1);
259
260 /* pass parameters to ret_from_kernel_thread:
261 * a2 = thread_fn, a3 = thread_fn arg
262 */
263 *((int *)childregs - 1) = thread_fn_arg;
264 *((int *)childregs - 2) = usp_thread_fn;
265
266 /* Childregs are only used when we're going to userspace
267 * in which case start_thread will set them up.
268 */
5a0015d6 269 }
c658eac6
CZ
270
271#if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
272 ti = task_thread_info(p);
273 ti->cpenable = 0;
274#endif
275
5a0015d6
CZ
276 return 0;
277}
278
279
5a0015d6
CZ
280/*
281 * These bracket the sleeping functions..
282 */
283
284unsigned long get_wchan(struct task_struct *p)
285{
286 unsigned long sp, pc;
04fe6faf 287 unsigned long stack_page = (unsigned long) task_stack_page(p);
5a0015d6
CZ
288 int count = 0;
289
290 if (!p || p == current || p->state == TASK_RUNNING)
291 return 0;
292
293 sp = p->thread.sp;
294 pc = MAKE_PC_FROM_RA(p->thread.ra, p->thread.sp);
295
296 do {
297 if (sp < stack_page + sizeof(struct task_struct) ||
298 sp >= (stack_page + THREAD_SIZE) ||
299 pc == 0)
300 return 0;
301 if (!in_sched_functions(pc))
302 return pc;
303
304 /* Stack layout: sp-4: ra, sp-3: sp' */
305
306 pc = MAKE_PC_FROM_RA(*(unsigned long*)sp - 4, sp);
307 sp = *(unsigned long *)sp - 3;
308 } while (count++ < 16);
309 return 0;
310}
311
312/*
5a0015d6
CZ
313 * xtensa_gregset_t and 'struct pt_regs' are vastly different formats
314 * of processor registers. Besides different ordering,
315 * xtensa_gregset_t contains non-live register information that
316 * 'struct pt_regs' does not. Exception handling (primarily) uses
317 * 'struct pt_regs'. Core files and ptrace use xtensa_gregset_t.
318 *
319 */
320
c658eac6 321void xtensa_elf_core_copy_regs (xtensa_gregset_t *elfregs, struct pt_regs *regs)
5a0015d6 322{
c658eac6
CZ
323 unsigned long wb, ws, wm;
324 int live, last;
325
326 wb = regs->windowbase;
327 ws = regs->windowstart;
328 wm = regs->wmask;
329 ws = ((ws >> wb) | (ws << (WSBITS - wb))) & ((1 << WSBITS) - 1);
330
331 /* Don't leak any random bits. */
332
688bb415 333 memset(elfregs, 0, sizeof(*elfregs));
c658eac6 334
5a0015d6
CZ
335 /* Note: PS.EXCM is not set while user task is running; its
336 * being set in regs->ps is for exception handling convenience.
337 */
338
339 elfregs->pc = regs->pc;
173d6681 340 elfregs->ps = (regs->ps & ~(1 << PS_EXCM_BIT));
5a0015d6
CZ
341 elfregs->lbeg = regs->lbeg;
342 elfregs->lend = regs->lend;
343 elfregs->lcount = regs->lcount;
344 elfregs->sar = regs->sar;
c658eac6 345 elfregs->windowstart = ws;
5a0015d6 346
c658eac6
CZ
347 live = (wm & 2) ? 4 : (wm & 4) ? 8 : (wm & 8) ? 12 : 16;
348 last = XCHAL_NUM_AREGS - (wm >> 4) * 4;
349 memcpy(elfregs->a, regs->areg, live * 4);
350 memcpy(elfregs->a + last, regs->areg + last, (wm >> 4) * 16);
5a0015d6
CZ
351}
352
c658eac6 353int dump_fpu(void)
5a0015d6 354{
5a0015d6
CZ
355 return 0;
356}
This page took 0.662309 seconds and 5 git commands to generate.