bfd/
[deliverable/binutils-gdb.git] / bfd / coff-h8300.c
CommitLineData
c2dcd04e 1/* BFD back-end for Renesas H8/300 COFF binaries.
7898deda 2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
ca9a79a1 3 2000, 2001, 2002, 2003, 2004
5f771d47 4 Free Software Foundation, Inc.
252b5132
RH
5 Written by Steve Chamberlain, <sac@cygnus.com>.
6
e514ac71 7 This file is part of BFD, the Binary File Descriptor library.
252b5132 8
e514ac71
NC
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
252b5132 13
e514ac71
NC
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
252b5132 18
e514ac71
NC
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
252b5132
RH
22
23#include "bfd.h"
24#include "sysdep.h"
25#include "libbfd.h"
26#include "bfdlink.h"
27#include "genlink.h"
28#include "coff/h8300.h"
29#include "coff/internal.h"
30#include "libcoff.h"
0171ee92 31#include "libiberty.h"
252b5132
RH
32
33#define COFF_DEFAULT_SECTION_ALIGNMENT_POWER (1)
34
35/* We derive a hash table from the basic BFD hash table to
5fcfd273 36 hold entries in the function vector. Aside from the
252b5132
RH
37 info stored by the basic hash table, we need the offset
38 of a particular entry within the hash table as well as
39 the offset where we'll add the next entry. */
40
41struct funcvec_hash_entry
f4ffd778
NC
42 {
43 /* The basic hash table entry. */
44 struct bfd_hash_entry root;
252b5132 45
f4ffd778
NC
46 /* The offset within the vectors section where
47 this entry lives. */
48 bfd_vma offset;
49 };
252b5132
RH
50
51struct funcvec_hash_table
f4ffd778
NC
52 {
53 /* The basic hash table. */
54 struct bfd_hash_table root;
252b5132 55
f4ffd778 56 bfd *abfd;
252b5132 57
f4ffd778
NC
58 /* Offset at which we'll add the next entry. */
59 unsigned int offset;
60 };
252b5132
RH
61
62static struct bfd_hash_entry *
63funcvec_hash_newfunc
c6baf75e 64 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
252b5132 65
b34976b6 66static bfd_boolean
252b5132 67funcvec_hash_table_init
c6baf75e
RS
68 (struct funcvec_hash_table *, bfd *,
69 struct bfd_hash_entry *(*) (struct bfd_hash_entry *,
70 struct bfd_hash_table *,
71 const char *));
b34976b6
AM
72
73static bfd_reloc_status_type special
c6baf75e 74 (bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **);
b34976b6 75static int select_reloc
c6baf75e 76 (reloc_howto_type *);
b34976b6 77static void rtype2howto
c6baf75e 78 (arelent *, struct internal_reloc *);
b34976b6 79static void reloc_processing
c6baf75e 80 (arelent *, struct internal_reloc *, asymbol **, bfd *, asection *);
b34976b6 81static bfd_boolean h8300_symbol_address_p
c6baf75e 82 (bfd *, asection *, bfd_vma);
b34976b6 83static int h8300_reloc16_estimate
c6baf75e
RS
84 (bfd *, asection *, arelent *, unsigned int,
85 struct bfd_link_info *);
b34976b6 86static void h8300_reloc16_extra_cases
c6baf75e
RS
87 (bfd *, struct bfd_link_info *, struct bfd_link_order *, arelent *,
88 bfd_byte *, unsigned int *, unsigned int *);
b34976b6 89static bfd_boolean h8300_bfd_link_add_symbols
c6baf75e 90 (bfd *, struct bfd_link_info *);
f4ffd778 91
252b5132
RH
92/* To lookup a value in the function vector hash table. */
93#define funcvec_hash_lookup(table, string, create, copy) \
94 ((struct funcvec_hash_entry *) \
95 bfd_hash_lookup (&(table)->root, (string), (create), (copy)))
96
97/* The derived h8300 COFF linker table. Note it's derived from
98 the generic linker hash table, not the COFF backend linker hash
99 table! We use this to attach additional data structures we
100 need while linking on the h8300. */
bc7eab72 101struct h8300_coff_link_hash_table {
252b5132
RH
102 /* The main hash table. */
103 struct generic_link_hash_table root;
104
105 /* Section for the vectors table. This gets attached to a
106 random input bfd, we keep it here for easy access. */
107 asection *vectors_sec;
108
109 /* Hash table of the functions we need to enter into the function
110 vector. */
111 struct funcvec_hash_table *funcvec_hash_table;
112};
113
c6baf75e 114static struct bfd_link_hash_table *h8300_coff_link_hash_table_create (bfd *);
252b5132
RH
115
116/* Get the H8/300 COFF linker hash table from a link_info structure. */
117
118#define h8300_coff_hash_table(p) \
119 ((struct h8300_coff_link_hash_table *) ((coff_hash_table (p))))
120
121/* Initialize fields within a funcvec hash table entry. Called whenever
122 a new entry is added to the funcvec hash table. */
123
124static struct bfd_hash_entry *
c6baf75e
RS
125funcvec_hash_newfunc (struct bfd_hash_entry *entry,
126 struct bfd_hash_table *gen_table,
127 const char *string)
252b5132
RH
128{
129 struct funcvec_hash_entry *ret;
130 struct funcvec_hash_table *table;
131
132 ret = (struct funcvec_hash_entry *) entry;
133 table = (struct funcvec_hash_table *) gen_table;
134
135 /* Allocate the structure if it has not already been allocated by a
136 subclass. */
137 if (ret == NULL)
138 ret = ((struct funcvec_hash_entry *)
0171ee92
AM
139 bfd_hash_allocate (gen_table,
140 sizeof (struct funcvec_hash_entry)));
252b5132
RH
141 if (ret == NULL)
142 return NULL;
143
144 /* Call the allocation method of the superclass. */
145 ret = ((struct funcvec_hash_entry *)
bc7eab72 146 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, gen_table, string));
252b5132
RH
147
148 if (ret == NULL)
149 return NULL;
150
151 /* Note where this entry will reside in the function vector table. */
152 ret->offset = table->offset;
153
154 /* Bump the offset at which we store entries in the function
155 vector. We'd like to bump up the size of the vectors section,
156 but it's not easily available here. */
d4e2de6b
NC
157 switch (bfd_get_mach (table->abfd))
158 {
159 case bfd_mach_h8300:
160 case bfd_mach_h8300hn:
161 case bfd_mach_h8300sn:
162 table->offset += 2;
163 break;
164 case bfd_mach_h8300h:
165 case bfd_mach_h8300s:
166 table->offset += 4;
167 break;
168 default:
169 return NULL;
170 }
252b5132
RH
171
172 /* Everything went OK. */
173 return (struct bfd_hash_entry *) ret;
174}
175
176/* Initialize the function vector hash table. */
177
b34976b6 178static bfd_boolean
c6baf75e
RS
179funcvec_hash_table_init (struct funcvec_hash_table *table,
180 bfd *abfd,
181 struct bfd_hash_entry *(*newfunc)
182 (struct bfd_hash_entry *,
183 struct bfd_hash_table *,
184 const char *))
252b5132
RH
185{
186 /* Initialize our local fields, then call the generic initialization
187 routine. */
188 table->offset = 0;
189 table->abfd = abfd;
190 return (bfd_hash_table_init (&table->root, newfunc));
191}
192
193/* Create the derived linker hash table. We use a derived hash table
19852a2a 194 basically to hold "static" information during an H8/300 coff link
252b5132
RH
195 without using static variables. */
196
197static struct bfd_link_hash_table *
c6baf75e 198h8300_coff_link_hash_table_create (bfd *abfd)
252b5132
RH
199{
200 struct h8300_coff_link_hash_table *ret;
dc810e39
AM
201 bfd_size_type amt = sizeof (struct h8300_coff_link_hash_table);
202
e2d34d7d 203 ret = (struct h8300_coff_link_hash_table *) bfd_malloc (amt);
252b5132
RH
204 if (ret == NULL)
205 return NULL;
dc810e39
AM
206 if (!_bfd_link_hash_table_init (&ret->root.root, abfd,
207 _bfd_generic_link_hash_newfunc))
252b5132 208 {
e2d34d7d 209 free (ret);
252b5132
RH
210 return NULL;
211 }
212
213 /* Initialize our data. */
214 ret->vectors_sec = NULL;
215 ret->funcvec_hash_table = NULL;
216
2ab1486e 217 /* OK. Everything's initialized, return the base pointer. */
252b5132
RH
218 return &ret->root.root;
219}
220
cc040812 221/* Special handling for H8/300 relocs.
252b5132
RH
222 We only come here for pcrel stuff and return normally if not an -r link.
223 When doing -r, we can't do any arithmetic for the pcrel stuff, because
224 the code in reloc.c assumes that we can manipulate the targets of
5fcfd273 225 the pcrel branches. This isn't so, since the H8/300 can do relaxing,
252b5132 226 which means that the gap after the instruction may not be enough to
d562d2fb 227 contain the offset required for the branch, so we have to use only
cc040812 228 the addend until the final link. */
252b5132
RH
229
230static bfd_reloc_status_type
c6baf75e
RS
231special (bfd *abfd ATTRIBUTE_UNUSED,
232 arelent *reloc_entry ATTRIBUTE_UNUSED,
233 asymbol *symbol ATTRIBUTE_UNUSED,
234 PTR data ATTRIBUTE_UNUSED,
235 asection *input_section ATTRIBUTE_UNUSED,
236 bfd *output_bfd,
237 char **error_message ATTRIBUTE_UNUSED)
252b5132
RH
238{
239 if (output_bfd == (bfd *) NULL)
240 return bfd_reloc_continue;
241
d562d2fb
AM
242 /* Adjust the reloc address to that in the output section. */
243 reloc_entry->address += input_section->output_offset;
252b5132
RH
244 return bfd_reloc_ok;
245}
246
bc7eab72 247static reloc_howto_type howto_table[] = {
b34976b6
AM
248 HOWTO (R_RELBYTE, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "8", FALSE, 0x000000ff, 0x000000ff, FALSE),
249 HOWTO (R_RELWORD, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "16", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
250 HOWTO (R_RELLONG, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, special, "32", FALSE, 0xffffffff, 0xffffffff, FALSE),
251 HOWTO (R_PCRBYTE, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "DISP8", FALSE, 0x000000ff, 0x000000ff, TRUE),
252 HOWTO (R_PCRWORD, 0, 1, 16, TRUE, 0, complain_overflow_signed, special, "DISP16", FALSE, 0x0000ffff, 0x0000ffff, TRUE),
253 HOWTO (R_PCRLONG, 0, 2, 32, TRUE, 0, complain_overflow_signed, special, "DISP32", FALSE, 0xffffffff, 0xffffffff, TRUE),
254 HOWTO (R_MOV16B1, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "relaxable mov.b:16", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
255 HOWTO (R_MOV16B2, 0, 1, 8, FALSE, 0, complain_overflow_bitfield, special, "relaxed mov.b:16", FALSE, 0x000000ff, 0x000000ff, FALSE),
256 HOWTO (R_JMP1, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "16/pcrel", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
257 HOWTO (R_JMP2, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "pcrecl/16", FALSE, 0x000000ff, 0x000000ff, FALSE),
258 HOWTO (R_JMPL1, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, special, "24/pcrell", FALSE, 0x00ffffff, 0x00ffffff, FALSE),
259 HOWTO (R_JMPL2, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "pc8/24", FALSE, 0x000000ff, 0x000000ff, FALSE),
260 HOWTO (R_MOV24B1, 0, 1, 32, FALSE, 0, complain_overflow_bitfield, special, "relaxable mov.b:24", FALSE, 0xffffffff, 0xffffffff, FALSE),
261 HOWTO (R_MOV24B2, 0, 1, 8, FALSE, 0, complain_overflow_bitfield, special, "relaxed mov.b:24", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
252b5132
RH
262
263 /* An indirect reference to a function. This causes the function's address
264 to be added to the function vector in lo-mem and puts the address of
265 the function vector's entry in the jsr instruction. */
b34976b6 266 HOWTO (R_MEM_INDIRECT, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "8/indirect", FALSE, 0x000000ff, 0x000000ff, FALSE),
252b5132 267
e804e836
KH
268 /* Internal reloc for relaxing. This is created when a 16-bit pc-relative
269 branch is turned into an 8-bit pc-relative branch. */
b34976b6 270 HOWTO (R_PCRWORD_B, 0, 0, 8, TRUE, 0, complain_overflow_bitfield, special, "relaxed bCC:16", FALSE, 0x000000ff, 0x000000ff, FALSE),
252b5132 271
b34976b6 272 HOWTO (R_MOVL1, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,special, "32/24 relaxable move", FALSE, 0xffffffff, 0xffffffff, FALSE),
252b5132 273
b34976b6 274 HOWTO (R_MOVL2, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "32/24 relaxed move", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
252b5132 275
b34976b6 276 HOWTO (R_BCC_INV, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "DISP8 inverted", FALSE, 0x000000ff, 0x000000ff, TRUE),
252b5132 277
b34976b6 278 HOWTO (R_JMP_DEL, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "Deleted jump", FALSE, 0x000000ff, 0x000000ff, TRUE),
252b5132
RH
279};
280
cc040812 281/* Turn a howto into a reloc number. */
252b5132
RH
282
283#define SELECT_RELOC(x,howto) \
bc7eab72 284 { x.r_type = select_reloc (howto); }
252b5132 285
8d9cd6b1
NC
286#define BADMAG(x) (H8300BADMAG (x) && H8300HBADMAG (x) && H8300SBADMAG (x) \
287 && H8300HNBADMAG(x) && H8300SNBADMAG(x))
288#define H8300 1 /* Customize coffcode.h */
252b5132
RH
289#define __A_MAGIC_SET__
290
cc040812 291/* Code to swap in the reloc. */
dc810e39
AM
292#define SWAP_IN_RELOC_OFFSET H_GET_32
293#define SWAP_OUT_RELOC_OFFSET H_PUT_32
252b5132
RH
294#define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \
295 dst->r_stuff[0] = 'S'; \
296 dst->r_stuff[1] = 'C';
297
252b5132 298static int
c6baf75e 299select_reloc (reloc_howto_type *howto)
252b5132
RH
300{
301 return howto->type;
302}
303
cc040812 304/* Code to turn a r_type into a howto ptr, uses the above howto table. */
252b5132
RH
305
306static void
c6baf75e 307rtype2howto (arelent *internal, struct internal_reloc *dst)
252b5132
RH
308{
309 switch (dst->r_type)
310 {
311 case R_RELBYTE:
312 internal->howto = howto_table + 0;
313 break;
314 case R_RELWORD:
315 internal->howto = howto_table + 1;
316 break;
317 case R_RELLONG:
318 internal->howto = howto_table + 2;
319 break;
320 case R_PCRBYTE:
321 internal->howto = howto_table + 3;
322 break;
323 case R_PCRWORD:
324 internal->howto = howto_table + 4;
325 break;
326 case R_PCRLONG:
327 internal->howto = howto_table + 5;
328 break;
329 case R_MOV16B1:
330 internal->howto = howto_table + 6;
331 break;
332 case R_MOV16B2:
333 internal->howto = howto_table + 7;
334 break;
335 case R_JMP1:
336 internal->howto = howto_table + 8;
337 break;
338 case R_JMP2:
339 internal->howto = howto_table + 9;
340 break;
341 case R_JMPL1:
342 internal->howto = howto_table + 10;
343 break;
344 case R_JMPL2:
345 internal->howto = howto_table + 11;
346 break;
347 case R_MOV24B1:
348 internal->howto = howto_table + 12;
349 break;
350 case R_MOV24B2:
351 internal->howto = howto_table + 13;
352 break;
353 case R_MEM_INDIRECT:
354 internal->howto = howto_table + 14;
355 break;
356 case R_PCRWORD_B:
357 internal->howto = howto_table + 15;
358 break;
359 case R_MOVL1:
360 internal->howto = howto_table + 16;
361 break;
362 case R_MOVL2:
363 internal->howto = howto_table + 17;
364 break;
365 case R_BCC_INV:
366 internal->howto = howto_table + 18;
367 break;
368 case R_JMP_DEL:
369 internal->howto = howto_table + 19;
370 break;
371 default:
372 abort ();
373 break;
374 }
375}
376
bc7eab72 377#define RTYPE2HOWTO(internal, relocentry) rtype2howto (internal, relocentry)
252b5132 378
cc040812 379/* Perform any necessary magic to the addend in a reloc entry. */
252b5132
RH
380
381#define CALC_ADDEND(abfd, symbol, ext_reloc, cache_ptr) \
bc7eab72 382 cache_ptr->addend = ext_reloc.r_offset;
252b5132 383
252b5132 384#define RELOC_PROCESSING(relent,reloc,symbols,abfd,section) \
bc7eab72 385 reloc_processing (relent, reloc, symbols, abfd, section)
252b5132
RH
386
387static void
c6baf75e
RS
388reloc_processing (arelent *relent, struct internal_reloc *reloc,
389 asymbol **symbols, bfd *abfd, asection *section)
252b5132
RH
390{
391 relent->address = reloc->r_vaddr;
392 rtype2howto (relent, reloc);
393
394 if (((int) reloc->r_symndx) > 0)
2ab1486e 395 relent->sym_ptr_ptr = symbols + obj_convert (abfd)[reloc->r_symndx];
252b5132 396 else
2ab1486e 397 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
252b5132 398
252b5132
RH
399 relent->addend = reloc->r_offset;
400
401 relent->address -= section->vma;
cc040812
NC
402#if 0
403 relent->section = 0;
404#endif
252b5132
RH
405}
406
b34976b6 407static bfd_boolean
c6baf75e 408h8300_symbol_address_p (bfd *abfd, asection *input_section, bfd_vma address)
252b5132
RH
409{
410 asymbol **s;
411
412 s = _bfd_generic_link_get_symbols (abfd);
413 BFD_ASSERT (s != (asymbol **) NULL);
414
415 /* Search all the symbols for one in INPUT_SECTION with
416 address ADDRESS. */
cc040812 417 while (*s)
252b5132
RH
418 {
419 asymbol *p = *s;
2ab1486e 420
252b5132
RH
421 if (p->section == input_section
422 && (input_section->output_section->vma
423 + input_section->output_offset
424 + p->value) == address)
b34976b6 425 return TRUE;
252b5132 426 s++;
cc040812 427 }
b34976b6 428 return FALSE;
252b5132
RH
429}
430
252b5132
RH
431/* If RELOC represents a relaxable instruction/reloc, change it into
432 the relaxed reloc, notify the linker that symbol addresses
433 have changed (bfd_perform_slip) and return how much the current
434 section has shrunk by.
435
436 FIXME: Much of this code has knowledge of the ordering of entries
437 in the howto table. This needs to be fixed. */
438
439static int
c6baf75e
RS
440h8300_reloc16_estimate (bfd *abfd, asection *input_section, arelent *reloc,
441 unsigned int shrink, struct bfd_link_info *link_info)
252b5132 442{
cc040812 443 bfd_vma value;
252b5132
RH
444 bfd_vma dot;
445 bfd_vma gap;
446 static asection *last_input_section = NULL;
447 static arelent *last_reloc = NULL;
448
5fcfd273 449 /* The address of the thing to be relocated will have moved back by
252b5132
RH
450 the size of the shrink - but we don't change reloc->address here,
451 since we need it to know where the relocation lives in the source
452 uncooked section. */
453 bfd_vma address = reloc->address - shrink;
454
455 if (input_section != last_input_section)
456 last_reloc = NULL;
457
458 /* Only examine the relocs which might be relaxable. */
459 switch (reloc->howto->type)
5fcfd273 460 {
e804e836
KH
461 /* This is the 16-/24-bit absolute branch which could become an
462 8-bit pc-relative branch. */
252b5132
RH
463 case R_JMP1:
464 case R_JMPL1:
465 /* Get the address of the target of this branch. */
cc040812 466 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
252b5132
RH
467
468 /* Get the address of the next instruction (not the reloc). */
469 dot = (input_section->output_section->vma
470 + input_section->output_offset + address);
471
472 /* Adjust for R_JMP1 vs R_JMPL1. */
473 dot += (reloc->howto->type == R_JMP1 ? 1 : 2);
474
475 /* Compute the distance from this insn to the branch target. */
476 gap = value - dot;
cc040812 477
252b5132
RH
478 /* If the distance is within -128..+128 inclusive, then we can relax
479 this jump. +128 is valid since the target will move two bytes
480 closer if we do relax this branch. */
bc7eab72 481 if ((int) gap >= -128 && (int) gap <= 128)
5fcfd273 482 {
e514ac71
NC
483 bfd_byte code;
484
485 if (!bfd_get_section_contents (abfd, input_section, & code,
486 reloc->address, 1))
487 break;
488 code = bfd_get_8 (abfd, & code);
489
252b5132
RH
490 /* It's possible we may be able to eliminate this branch entirely;
491 if the previous instruction is a branch around this instruction,
492 and there's no label at this instruction, then we can reverse
493 the condition on the previous branch and eliminate this jump.
494
495 original: new:
496 bCC lab1 bCC' lab2
497 jmp lab2
498 lab1: lab1:
5fcfd273 499
252b5132 500 This saves 4 bytes instead of two, and should be relatively
e514ac71
NC
501 common.
502
503 Only perform this optimisation for jumps (code 0x5a) not
504 subroutine calls, as otherwise it could transform:
b34976b6 505
0171ee92
AM
506 mov.w r0,r0
507 beq .L1
508 jsr @_bar
509 .L1: rts
510 _bar: rts
e514ac71 511 into:
0171ee92
AM
512 mov.w r0,r0
513 bne _bar
514 rts
515 _bar: rts
b34976b6 516
e514ac71
NC
517 which changes the call (jsr) into a branch (bne). */
518 if (code == 0x5a
519 && gap <= 126
252b5132
RH
520 && last_reloc
521 && last_reloc->howto->type == R_PCRBYTE)
522 {
523 bfd_vma last_value;
524 last_value = bfd_coff_reloc16_get_value (last_reloc, link_info,
525 input_section) + 1;
526
527 if (last_value == dot + 2
528 && last_reloc->address + 1 == reloc->address
cc040812 529 && !h8300_symbol_address_p (abfd, input_section, dot - 2))
252b5132
RH
530 {
531 reloc->howto = howto_table + 19;
532 last_reloc->howto = howto_table + 18;
533 last_reloc->sym_ptr_ptr = reloc->sym_ptr_ptr;
534 last_reloc->addend = reloc->addend;
535 shrink += 4;
536 bfd_perform_slip (abfd, 4, input_section, address);
537 break;
538 }
539 }
540
541 /* Change the reloc type. */
cc040812 542 reloc->howto = reloc->howto + 1;
252b5132
RH
543
544 /* This shrinks this section by two bytes. */
545 shrink += 2;
cc040812 546 bfd_perform_slip (abfd, 2, input_section, address);
252b5132
RH
547 }
548 break;
549
e804e836 550 /* This is the 16-bit pc-relative branch which could become an 8-bit
252b5132
RH
551 pc-relative branch. */
552 case R_PCRWORD:
553 /* Get the address of the target of this branch, add one to the value
0171ee92 554 because the addend field in PCrel jumps is off by -1. */
cc040812
NC
555 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section) + 1;
556
252b5132
RH
557 /* Get the address of the next instruction if we were to relax. */
558 dot = input_section->output_section->vma +
559 input_section->output_offset + address;
cc040812 560
252b5132
RH
561 /* Compute the distance from this insn to the branch target. */
562 gap = value - dot;
563
564 /* If the distance is within -128..+128 inclusive, then we can relax
565 this jump. +128 is valid since the target will move two bytes
566 closer if we do relax this branch. */
bc7eab72 567 if ((int) gap >= -128 && (int) gap <= 128)
5fcfd273 568 {
252b5132
RH
569 /* Change the reloc type. */
570 reloc->howto = howto_table + 15;
571
572 /* This shrinks this section by two bytes. */
573 shrink += 2;
cc040812 574 bfd_perform_slip (abfd, 2, input_section, address);
252b5132
RH
575 }
576 break;
577
e804e836
KH
578 /* This is a 16-bit absolute address in a mov.b insn, which can
579 become an 8-bit absolute address if it's in the right range. */
252b5132
RH
580 case R_MOV16B1:
581 /* Get the address of the data referenced by this mov.b insn. */
cc040812 582 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
7a9823f1 583 value = bfd_h8300_pad_address (abfd, value);
252b5132 584
7a9823f1
RS
585 /* If the address is in the top 256 bytes of the address space
586 then we can relax this instruction. */
587 if (value >= 0xffffff00u)
252b5132
RH
588 {
589 /* Change the reloc type. */
590 reloc->howto = reloc->howto + 1;
591
592 /* This shrinks this section by two bytes. */
593 shrink += 2;
cc040812 594 bfd_perform_slip (abfd, 2, input_section, address);
252b5132
RH
595 }
596 break;
597
e804e836
KH
598 /* Similarly for a 24-bit absolute address in a mov.b. Note that
599 if we can't relax this into an 8-bit absolute, we'll fall through
600 and try to relax it into a 16-bit absolute. */
252b5132
RH
601 case R_MOV24B1:
602 /* Get the address of the data referenced by this mov.b insn. */
cc040812 603 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
7a9823f1 604 value = bfd_h8300_pad_address (abfd, value);
252b5132 605
7a9823f1 606 if (value >= 0xffffff00u)
252b5132
RH
607 {
608 /* Change the reloc type. */
609 reloc->howto = reloc->howto + 1;
610
611 /* This shrinks this section by four bytes. */
612 shrink += 4;
cc040812 613 bfd_perform_slip (abfd, 4, input_section, address);
252b5132
RH
614
615 /* Done with this reloc. */
616 break;
617 }
618
e804e836 619 /* FALLTHROUGH and try to turn the 24-/32-bit reloc into a 16-bit
252b5132
RH
620 reloc. */
621
e804e836
KH
622 /* This is a 24-/32-bit absolute address in a mov insn, which can
623 become an 16-bit absolute address if it's in the right range. */
252b5132
RH
624 case R_MOVL1:
625 /* Get the address of the data referenced by this mov insn. */
cc040812 626 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
7a9823f1 627 value = bfd_h8300_pad_address (abfd, value);
252b5132 628
7a9823f1
RS
629 /* If the address is a sign-extended 16-bit value then we can
630 relax this instruction. */
631 if (value <= 0x7fff || value >= 0xffff8000u)
252b5132
RH
632 {
633 /* Change the reloc type. */
634 reloc->howto = howto_table + 17;
635
636 /* This shrinks this section by two bytes. */
637 shrink += 2;
cc040812 638 bfd_perform_slip (abfd, 2, input_section, address);
252b5132
RH
639 }
640 break;
641
642 /* No other reloc types represent relaxing opportunities. */
cc040812
NC
643 default:
644 break;
252b5132
RH
645 }
646
647 last_reloc = reloc;
648 last_input_section = input_section;
649 return shrink;
650}
651
252b5132
RH
652/* Handle relocations for the H8/300, including relocs for relaxed
653 instructions.
654
655 FIXME: Not all relocations check for overflow! */
656
657static void
c6baf75e
RS
658h8300_reloc16_extra_cases (bfd *abfd, struct bfd_link_info *link_info,
659 struct bfd_link_order *link_order, arelent *reloc,
660 bfd_byte *data, unsigned int *src_ptr,
661 unsigned int *dst_ptr)
252b5132
RH
662{
663 unsigned int src_address = *src_ptr;
664 unsigned int dst_address = *dst_ptr;
665 asection *input_section = link_order->u.indirect.section;
666 bfd_vma value;
667 bfd_vma dot;
cc040812 668 int gap, tmp;
ca9a79a1 669 unsigned char temp_code;
252b5132
RH
670
671 switch (reloc->howto->type)
672 {
e804e836 673 /* Generic 8-bit pc-relative relocation. */
252b5132
RH
674 case R_PCRBYTE:
675 /* Get the address of the target of this branch. */
cc040812 676 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
252b5132 677
cc040812
NC
678 dot = (link_order->offset
679 + dst_address
252b5132
RH
680 + link_order->u.indirect.section->output_section->vma);
681
682 gap = value - dot;
683
684 /* Sanity check. */
685 if (gap < -128 || gap > 126)
686 {
687 if (! ((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
688 (link_info, NULL,
689 bfd_asymbol_name (*reloc->sym_ptr_ptr),
252b5132
RH
690 reloc->howto->name, reloc->addend, input_section->owner,
691 input_section, reloc->address)))
692 abort ();
693 }
694
695 /* Everything looks OK. Apply the relocation and update the
696 src/dst address appropriately. */
252b5132
RH
697 bfd_put_8 (abfd, gap, data + dst_address);
698 dst_address++;
699 src_address++;
700
701 /* All done. */
702 break;
703
e804e836 704 /* Generic 16-bit pc-relative relocation. */
252b5132
RH
705 case R_PCRWORD:
706 /* Get the address of the target of this branch. */
cc040812 707 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
252b5132
RH
708
709 /* Get the address of the instruction (not the reloc). */
5fcfd273
KH
710 dot = (link_order->offset
711 + dst_address
252b5132
RH
712 + link_order->u.indirect.section->output_section->vma + 1);
713
714 gap = value - dot;
715
716 /* Sanity check. */
717 if (gap > 32766 || gap < -32768)
718 {
719 if (! ((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
720 (link_info, NULL,
721 bfd_asymbol_name (*reloc->sym_ptr_ptr),
252b5132
RH
722 reloc->howto->name, reloc->addend, input_section->owner,
723 input_section, reloc->address)))
724 abort ();
725 }
726
727 /* Everything looks OK. Apply the relocation and update the
728 src/dst address appropriately. */
dc810e39 729 bfd_put_16 (abfd, (bfd_vma) gap, data + dst_address);
252b5132
RH
730 dst_address += 2;
731 src_address += 2;
732
733 /* All done. */
734 break;
735
e804e836 736 /* Generic 8-bit absolute relocation. */
252b5132
RH
737 case R_RELBYTE:
738 /* Get the address of the object referenced by this insn. */
739 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
740
7a9823f1
RS
741 bfd_put_8 (abfd, value & 0xff, data + dst_address);
742 dst_address += 1;
743 src_address += 1;
252b5132
RH
744
745 /* All done. */
746 break;
747
e804e836 748 /* Various simple 16-bit absolute relocations. */
252b5132
RH
749 case R_MOV16B1:
750 case R_JMP1:
751 case R_RELWORD:
cc040812 752 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
252b5132
RH
753 bfd_put_16 (abfd, value, data + dst_address);
754 dst_address += 2;
755 src_address += 2;
756 break;
757
e804e836 758 /* Various simple 24-/32-bit absolute relocations. */
252b5132
RH
759 case R_MOV24B1:
760 case R_MOVL1:
761 case R_RELLONG:
762 /* Get the address of the target of this branch. */
cc040812 763 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
252b5132
RH
764 bfd_put_32 (abfd, value, data + dst_address);
765 dst_address += 4;
766 src_address += 4;
767 break;
768
e804e836 769 /* Another 24-/32-bit absolute relocation. */
252b5132
RH
770 case R_JMPL1:
771 /* Get the address of the target of this branch. */
772 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
773
774 value = ((value & 0x00ffffff)
775 | (bfd_get_32 (abfd, data + src_address) & 0xff000000));
776 bfd_put_32 (abfd, value, data + dst_address);
777 dst_address += 4;
778 src_address += 4;
779 break;
780
7e89635a
KH
781 /* This is a 24-/32-bit absolute address in one of the following
782 instructions:
783
784 "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
3255318a
NC
785 "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", "ldc.w",
786 "stc.w" and "mov.[bwl]"
7e89635a
KH
787
788 We may relax this into an 16-bit absolute address if it's in
789 the right range. */
252b5132
RH
790 case R_MOVL2:
791 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
7a9823f1 792 value = bfd_h8300_pad_address (abfd, value);
252b5132
RH
793
794 /* Sanity check. */
7a9823f1 795 if (value <= 0x7fff || value >= 0xffff8000u)
252b5132 796 {
e804e836 797 /* Insert the 16-bit value into the proper location. */
252b5132
RH
798 bfd_put_16 (abfd, value, data + dst_address);
799
7e89635a
KH
800 /* Fix the opcode. For all the instructions that belong to
801 this relaxation, we simply need to turn off bit 0x20 in
802 the previous byte. */
bc7eab72 803 data[dst_address - 1] &= ~0x20;
252b5132
RH
804 dst_address += 2;
805 src_address += 4;
806 }
807 else
808 {
809 if (! ((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
810 (link_info, NULL,
811 bfd_asymbol_name (*reloc->sym_ptr_ptr),
252b5132
RH
812 reloc->howto->name, reloc->addend, input_section->owner,
813 input_section, reloc->address)))
814 abort ();
bc7eab72 815 }
252b5132
RH
816 break;
817
e804e836 818 /* A 16-bit absolute branch that is now an 8-bit pc-relative branch. */
252b5132
RH
819 case R_JMP2:
820 /* Get the address of the target of this branch. */
821 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
822
823 /* Get the address of the next instruction. */
824 dot = (link_order->offset
825 + dst_address
826 + link_order->u.indirect.section->output_section->vma + 1);
827
828 gap = value - dot;
829
830 /* Sanity check. */
831 if (gap < -128 || gap > 126)
832 {
833 if (! ((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
834 (link_info, NULL,
835 bfd_asymbol_name (*reloc->sym_ptr_ptr),
252b5132
RH
836 reloc->howto->name, reloc->addend, input_section->owner,
837 input_section, reloc->address)))
838 abort ();
839 }
840
841 /* Now fix the instruction itself. */
842 switch (data[dst_address - 1])
843 {
844 case 0x5e:
845 /* jsr -> bsr */
846 bfd_put_8 (abfd, 0x55, data + dst_address - 1);
847 break;
848 case 0x5a:
7e89635a 849 /* jmp -> bra */
252b5132
RH
850 bfd_put_8 (abfd, 0x40, data + dst_address - 1);
851 break;
852
853 default:
854 abort ();
855 }
856
e804e836 857 /* Write out the 8-bit value. */
252b5132
RH
858 bfd_put_8 (abfd, gap, data + dst_address);
859
860 dst_address += 1;
861 src_address += 3;
862
863 break;
864
e804e836 865 /* A 16-bit pc-relative branch that is now an 8-bit pc-relative branch. */
252b5132
RH
866 case R_PCRWORD_B:
867 /* Get the address of the target of this branch. */
868 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
869
870 /* Get the address of the instruction (not the reloc). */
871 dot = (link_order->offset
872 + dst_address
873 + link_order->u.indirect.section->output_section->vma - 1);
874
875 gap = value - dot;
876
877 /* Sanity check. */
878 if (gap < -128 || gap > 126)
879 {
880 if (! ((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
881 (link_info, NULL,
882 bfd_asymbol_name (*reloc->sym_ptr_ptr),
252b5132
RH
883 reloc->howto->name, reloc->addend, input_section->owner,
884 input_section, reloc->address)))
885 abort ();
886 }
887
888 /* Now fix the instruction. */
889 switch (data[dst_address - 2])
890 {
891 case 0x58:
892 /* bCC:16 -> bCC:8 */
7e89635a
KH
893 /* Get the second byte of the original insn, which contains
894 the condition code. */
252b5132 895 tmp = data[dst_address - 1];
7e89635a
KH
896
897 /* Compute the fisrt byte of the relaxed instruction. The
898 original sequence 0x58 0xX0 is relaxed to 0x4X, where X
899 represents the condition code. */
252b5132
RH
900 tmp &= 0xf0;
901 tmp >>= 4;
252b5132
RH
902 tmp |= 0x40;
903
904 /* Write it. */
905 bfd_put_8 (abfd, tmp, data + dst_address - 2);
906 break;
d562d2fb 907
4259e8b6
JL
908 case 0x5c:
909 /* bsr:16 -> bsr:8 */
910 bfd_put_8 (abfd, 0x55, data + dst_address - 2);
911 break;
252b5132
RH
912
913 default:
914 abort ();
915 }
916
bc7eab72
KH
917 /* Output the target. */
918 bfd_put_8 (abfd, gap, data + dst_address - 1);
252b5132 919
e804e836 920 /* We don't advance dst_address -- the 8-bit reloc is applied at
bc7eab72
KH
921 dst_address - 1, so the next insn should begin at dst_address. */
922 src_address += 2;
252b5132 923
bc7eab72 924 break;
5fcfd273 925
e804e836 926 /* Similarly for a 24-bit absolute that is now 8 bits. */
252b5132
RH
927 case R_JMPL2:
928 /* Get the address of the target of this branch. */
929 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
930
931 /* Get the address of the instruction (not the reloc). */
932 dot = (link_order->offset
933 + dst_address
934 + link_order->u.indirect.section->output_section->vma + 2);
935
936 gap = value - dot;
937
938 /* Fix the instruction. */
939 switch (data[src_address])
940 {
941 case 0x5e:
942 /* jsr -> bsr */
943 bfd_put_8 (abfd, 0x55, data + dst_address);
944 break;
945 case 0x5a:
946 /* jmp ->bra */
947 bfd_put_8 (abfd, 0x40, data + dst_address);
948 break;
949 default:
950 abort ();
951 }
952
953 bfd_put_8 (abfd, gap, data + dst_address + 1);
954 dst_address += 2;
955 src_address += 4;
956
957 break;
958
630a7b0a
KH
959 /* This is a 16-bit absolute address in one of the following
960 instructions:
961
962 "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
963 "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", and
964 "mov.b"
965
966 We may relax this into an 8-bit absolute address if it's in
967 the right range. */
252b5132
RH
968 case R_MOV16B2:
969 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
970
630a7b0a 971 /* All instructions with R_H8_DIR16B2 start with 0x6a. */
252b5132
RH
972 if (data[dst_address - 2] != 0x6a)
973 abort ();
974
ca9a79a1 975 temp_code = data[src_address - 1];
630a7b0a
KH
976
977 /* If this is a mov.b instruction, clear the lower nibble, which
978 contains the source/destination register number. */
ca9a79a1
NC
979 if ((temp_code & 0x10) != 0x10)
980 temp_code &= 0xf0;
981
252b5132 982 /* Fix up the opcode. */
ca9a79a1 983 switch (temp_code)
252b5132
RH
984 {
985 case 0x00:
630a7b0a 986 /* This is mov.b @aa:16,Rd. */
cc040812 987 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x20;
252b5132
RH
988 break;
989 case 0x80:
630a7b0a 990 /* This is mov.b Rs,@aa:16. */
cc040812 991 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x30;
252b5132 992 break;
ca9a79a1 993 case 0x18:
630a7b0a
KH
994 /* This is a bit-maniputation instruction that stores one
995 bit into memory, one of "bclr", "bist", "bnot", "bset",
996 and "bst". */
ca9a79a1
NC
997 data[dst_address - 2] = 0x7f;
998 break;
999 case 0x10:
630a7b0a
KH
1000 /* This is a bit-maniputation instruction that loads one bit
1001 from memory, one of "band", "biand", "bild", "bior",
1002 "bixor", "bld", "bor", "btst", and "bxor". */
ca9a79a1
NC
1003 data[dst_address - 2] = 0x7e;
1004 break;
252b5132
RH
1005 default:
1006 abort ();
1007 }
1008
1009 bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
1010 src_address += 2;
1011 break;
1012
630a7b0a
KH
1013 /* This is a 24-bit absolute address in one of the following
1014 instructions:
1015
1016 "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
1017 "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", and
1018 "mov.b"
1019
1020 We may relax this into an 8-bit absolute address if it's in
1021 the right range. */
252b5132
RH
1022 case R_MOV24B2:
1023 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
1024
630a7b0a 1025 /* All instructions with R_MOV24B2 start with 0x6a. */
252b5132
RH
1026 if (data[dst_address - 2] != 0x6a)
1027 abort ();
1028
ca9a79a1 1029 temp_code = data[src_address - 1];
630a7b0a
KH
1030
1031 /* If this is a mov.b instruction, clear the lower nibble, which
1032 contains the source/destination register number. */
ca9a79a1
NC
1033 if ((temp_code & 0x30) != 0x30)
1034 temp_code &= 0xf0;
1035
252b5132 1036 /* Fix up the opcode. */
ca9a79a1 1037 switch (temp_code)
252b5132
RH
1038 {
1039 case 0x20:
630a7b0a 1040 /* This is mov.b @aa:24/32,Rd. */
cc040812 1041 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x20;
252b5132
RH
1042 break;
1043 case 0xa0:
630a7b0a 1044 /* This is mov.b Rs,@aa:24/32. */
cc040812 1045 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x30;
252b5132 1046 break;
ca9a79a1 1047 case 0x38:
630a7b0a
KH
1048 /* This is a bit-maniputation instruction that stores one
1049 bit into memory, one of "bclr", "bist", "bnot", "bset",
1050 and "bst". */
ca9a79a1
NC
1051 data[dst_address - 2] = 0x7f;
1052 break;
1053 case 0x30:
630a7b0a
KH
1054 /* This is a bit-maniputation instruction that loads one bit
1055 from memory, one of "band", "biand", "bild", "bior",
1056 "bixor", "bld", "bor", "btst", and "bxor". */
ca9a79a1
NC
1057 data[dst_address - 2] = 0x7e;
1058 break;
252b5132
RH
1059 default:
1060 abort ();
1061 }
1062
1063 bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
1064 src_address += 4;
1065 break;
1066
1067 case R_BCC_INV:
1068 /* Get the address of the target of this branch. */
cc040812 1069 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
252b5132 1070
cc040812
NC
1071 dot = (link_order->offset
1072 + dst_address
252b5132
RH
1073 + link_order->u.indirect.section->output_section->vma) + 1;
1074
1075 gap = value - dot;
1076
1077 /* Sanity check. */
1078 if (gap < -128 || gap > 126)
1079 {
1080 if (! ((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
1081 (link_info, NULL,
1082 bfd_asymbol_name (*reloc->sym_ptr_ptr),
252b5132
RH
1083 reloc->howto->name, reloc->addend, input_section->owner,
1084 input_section, reloc->address)))
1085 abort ();
1086 }
1087
1088 /* Everything looks OK. Fix the condition in the instruction, apply
1089 the relocation, and update the src/dst address appropriately. */
1090
1091 bfd_put_8 (abfd, bfd_get_8 (abfd, data + dst_address - 1) ^ 1,
1092 data + dst_address - 1);
1093 bfd_put_8 (abfd, gap, data + dst_address);
1094 dst_address++;
1095 src_address++;
1096
1097 /* All done. */
1098 break;
1099
1100 case R_JMP_DEL:
1101 src_address += 4;
1102 break;
1103
e804e836 1104 /* An 8-bit memory indirect instruction (jmp/jsr).
252b5132
RH
1105
1106 There's several things that need to be done to handle
1107 this relocation.
1108
1109 If this is a reloc against the absolute symbol, then
1110 we should handle it just R_RELBYTE. Likewise if it's
1111 for a symbol with a value ge 0 and le 0xff.
1112
1113 Otherwise it's a jump/call through the function vector,
1114 and the linker is expected to set up the function vector
1115 and put the right value into the jump/call instruction. */
1116 case R_MEM_INDIRECT:
1117 {
1118 /* We need to find the symbol so we can determine it's
1119 address in the function vector table. */
1120 asymbol *symbol;
252b5132 1121 const char *name;
dc810e39 1122 struct funcvec_hash_table *ftab;
252b5132 1123 struct funcvec_hash_entry *h;
0171ee92
AM
1124 struct h8300_coff_link_hash_table *htab;
1125 asection *vectors_sec;
1126
1127 if (link_info->hash->creator != abfd->xvec)
1128 {
1129 (*_bfd_error_handler)
1130 (_("cannot handle R_MEM_INDIRECT reloc when using %s output"),
1131 link_info->hash->creator->name);
1132
1133 /* What else can we do? This function doesn't allow return
1134 of an error, and we don't want to call abort as that
1135 indicates an internal error. */
1136#ifndef EXIT_FAILURE
1137#define EXIT_FAILURE 1
1138#endif
1139 xexit (EXIT_FAILURE);
1140 }
1141 htab = h8300_coff_hash_table (link_info);
1142 vectors_sec = htab->vectors_sec;
252b5132
RH
1143
1144 /* First see if this is a reloc against the absolute symbol
1145 or against a symbol with a nonnegative value <= 0xff. */
1146 symbol = *(reloc->sym_ptr_ptr);
1147 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
1148 if (symbol == bfd_abs_section_ptr->symbol
5f771d47 1149 || value <= 0xff)
252b5132
RH
1150 {
1151 /* This should be handled in a manner very similar to
1152 R_RELBYTES. If the value is in range, then just slam
1153 the value into the right location. Else trigger a
1154 reloc overflow callback. */
5f771d47 1155 if (value <= 0xff)
252b5132
RH
1156 {
1157 bfd_put_8 (abfd, value, data + dst_address);
1158 dst_address += 1;
1159 src_address += 1;
1160 }
1161 else
1162 {
1163 if (! ((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
1164 (link_info, NULL,
1165 bfd_asymbol_name (*reloc->sym_ptr_ptr),
252b5132
RH
1166 reloc->howto->name, reloc->addend, input_section->owner,
1167 input_section, reloc->address)))
1168 abort ();
1169 }
1170 break;
1171 }
1172
1173 /* This is a jump/call through a function vector, and we're
5fcfd273 1174 expected to create the function vector ourselves.
252b5132
RH
1175
1176 First look up this symbol in the linker hash table -- we need
1177 the derived linker symbol which holds this symbol's index
1178 in the function vector. */
1179 name = symbol->name;
1180 if (symbol->flags & BSF_LOCAL)
1181 {
dc810e39 1182 char *new_name = bfd_malloc ((bfd_size_type) strlen (name) + 9);
d4e2de6b 1183
252b5132
RH
1184 if (new_name == NULL)
1185 abort ();
1186
1187 strcpy (new_name, name);
1188 sprintf (new_name + strlen (name), "_%08x",
cc040812 1189 (int) symbol->section);
252b5132
RH
1190 name = new_name;
1191 }
1192
0171ee92 1193 ftab = htab->funcvec_hash_table;
b34976b6 1194 h = funcvec_hash_lookup (ftab, name, FALSE, FALSE);
252b5132
RH
1195
1196 /* This shouldn't ever happen. If it does that means we've got
1197 data corruption of some kind. Aborting seems like a reasonable
0171ee92 1198 thing to do here. */
252b5132
RH
1199 if (h == NULL || vectors_sec == NULL)
1200 abort ();
1201
1202 /* Place the address of the function vector entry into the
1203 reloc's address. */
1204 bfd_put_8 (abfd,
1205 vectors_sec->output_offset + h->offset,
1206 data + dst_address);
1207
1208 dst_address++;
1209 src_address++;
1210
1211 /* Now create an entry in the function vector itself. */
d4e2de6b
NC
1212 switch (bfd_get_mach (input_section->owner))
1213 {
1214 case bfd_mach_h8300:
1215 case bfd_mach_h8300hn:
1216 case bfd_mach_h8300sn:
1217 bfd_put_16 (abfd,
1218 bfd_coff_reloc16_get_value (reloc,
1219 link_info,
1220 input_section),
1221 vectors_sec->contents + h->offset);
1222 break;
1223 case bfd_mach_h8300h:
1224 case bfd_mach_h8300s:
1225 bfd_put_32 (abfd,
1226 bfd_coff_reloc16_get_value (reloc,
1227 link_info,
1228 input_section),
1229 vectors_sec->contents + h->offset);
1230 break;
1231 default:
1232 abort ();
1233 }
252b5132
RH
1234
1235 /* Gross. We've already written the contents of the vector section
1236 before we get here... So we write it again with the new data. */
1237 bfd_set_section_contents (vectors_sec->output_section->owner,
1238 vectors_sec->output_section,
1239 vectors_sec->contents,
dc810e39 1240 (file_ptr) vectors_sec->output_offset,
eea6121a 1241 vectors_sec->size);
252b5132
RH
1242 break;
1243 }
1244
1245 default:
1246 abort ();
1247 break;
1248
1249 }
1250
1251 *src_ptr = src_address;
1252 *dst_ptr = dst_address;
1253}
1254
252b5132
RH
1255/* Routine for the h8300 linker.
1256
1257 This routine is necessary to handle the special R_MEM_INDIRECT
1258 relocs on the h8300. It's responsible for generating a vectors
1259 section and attaching it to an input bfd as well as sizing
1260 the vectors section. It also creates our vectors hash table.
1261
1262 It uses the generic linker routines to actually add the symbols.
1263 from this BFD to the bfd linker hash table. It may add a few
1264 selected static symbols to the bfd linker hash table. */
1265
b34976b6 1266static bfd_boolean
c6baf75e 1267h8300_bfd_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
252b5132
RH
1268{
1269 asection *sec;
1270 struct funcvec_hash_table *funcvec_hash_table;
dc810e39 1271 bfd_size_type amt;
0171ee92
AM
1272 struct h8300_coff_link_hash_table *htab;
1273
1274 /* Add the symbols using the generic code. */
1275 _bfd_generic_link_add_symbols (abfd, info);
1276
1277 if (info->hash->creator != abfd->xvec)
1278 return TRUE;
1279
1280 htab = h8300_coff_hash_table (info);
252b5132
RH
1281
1282 /* If we haven't created a vectors section, do so now. */
0171ee92 1283 if (!htab->vectors_sec)
252b5132
RH
1284 {
1285 flagword flags;
1286
1287 /* Make sure the appropriate flags are set, including SEC_IN_MEMORY. */
1288 flags = (SEC_ALLOC | SEC_LOAD
1289 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_READONLY);
0171ee92 1290 htab->vectors_sec = bfd_make_section (abfd, ".vectors");
252b5132
RH
1291
1292 /* If the section wasn't created, or we couldn't set the flags,
0171ee92
AM
1293 quit quickly now, rather than dying a painful death later. */
1294 if (!htab->vectors_sec
1295 || !bfd_set_section_flags (abfd, htab->vectors_sec, flags))
b34976b6 1296 return FALSE;
252b5132
RH
1297
1298 /* Also create the vector hash table. */
dc810e39
AM
1299 amt = sizeof (struct funcvec_hash_table);
1300 funcvec_hash_table = (struct funcvec_hash_table *) bfd_alloc (abfd, amt);
252b5132
RH
1301
1302 if (!funcvec_hash_table)
b34976b6 1303 return FALSE;
252b5132
RH
1304
1305 /* And initialize the funcvec hash table. */
1306 if (!funcvec_hash_table_init (funcvec_hash_table, abfd,
1307 funcvec_hash_newfunc))
1308 {
1309 bfd_release (abfd, funcvec_hash_table);
b34976b6 1310 return FALSE;
252b5132
RH
1311 }
1312
1313 /* Store away a pointer to the funcvec hash table. */
0171ee92 1314 htab->funcvec_hash_table = funcvec_hash_table;
252b5132
RH
1315 }
1316
1317 /* Load up the function vector hash table. */
0171ee92 1318 funcvec_hash_table = htab->funcvec_hash_table;
252b5132
RH
1319
1320 /* Now scan the relocs for all the sections in this bfd; create
1321 additional space in the .vectors section as needed. */
1322 for (sec = abfd->sections; sec; sec = sec->next)
1323 {
1324 long reloc_size, reloc_count, i;
1325 asymbol **symbols;
1326 arelent **relocs;
1327
1328 /* Suck in the relocs, symbols & canonicalize them. */
1329 reloc_size = bfd_get_reloc_upper_bound (abfd, sec);
1330 if (reloc_size <= 0)
1331 continue;
1332
dc810e39 1333 relocs = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
252b5132 1334 if (!relocs)
b34976b6 1335 return FALSE;
252b5132
RH
1336
1337 /* The symbols should have been read in by _bfd_generic link_add_symbols
1338 call abovec, so we can cheat and use the pointer to them that was
1339 saved in the above call. */
1340 symbols = _bfd_generic_link_get_symbols(abfd);
1341 reloc_count = bfd_canonicalize_reloc (abfd, sec, relocs, symbols);
1342 if (reloc_count <= 0)
1343 {
1344 free (relocs);
1345 continue;
1346 }
1347
1348 /* Now walk through all the relocations in this section. */
1349 for (i = 0; i < reloc_count; i++)
1350 {
1351 arelent *reloc = relocs[i];
1352 asymbol *symbol = *(reloc->sym_ptr_ptr);
1353 const char *name;
1354
1355 /* We've got an indirect reloc. See if we need to add it
1356 to the function vector table. At this point, we have
1357 to add a new entry for each unique symbol referenced
1358 by an R_MEM_INDIRECT relocation except for a reloc
1359 against the absolute section symbol. */
1360 if (reloc->howto->type == R_MEM_INDIRECT
1361 && symbol != bfd_abs_section_ptr->symbol)
1362
1363 {
dc810e39 1364 struct funcvec_hash_table *ftab;
252b5132
RH
1365 struct funcvec_hash_entry *h;
1366
1367 name = symbol->name;
1368 if (symbol->flags & BSF_LOCAL)
1369 {
dc810e39 1370 char *new_name;
252b5132 1371
dc810e39 1372 new_name = bfd_malloc ((bfd_size_type) strlen (name) + 9);
252b5132
RH
1373 if (new_name == NULL)
1374 abort ();
1375
1376 strcpy (new_name, name);
1377 sprintf (new_name + strlen (name), "_%08x",
cc040812 1378 (int) symbol->section);
252b5132
RH
1379 name = new_name;
1380 }
1381
1382 /* Look this symbol up in the function vector hash table. */
0171ee92 1383 ftab = htab->funcvec_hash_table;
b34976b6 1384 h = funcvec_hash_lookup (ftab, name, FALSE, FALSE);
252b5132 1385
252b5132
RH
1386 /* If this symbol isn't already in the hash table, add
1387 it and bump up the size of the hash table. */
1388 if (h == NULL)
1389 {
b34976b6 1390 h = funcvec_hash_lookup (ftab, name, TRUE, TRUE);
252b5132
RH
1391 if (h == NULL)
1392 {
1393 free (relocs);
b34976b6 1394 return FALSE;
252b5132
RH
1395 }
1396
1397 /* Bump the size of the vectors section. Each vector
1398 takes 2 bytes on the h8300 and 4 bytes on the h8300h. */
d4e2de6b
NC
1399 switch (bfd_get_mach (abfd))
1400 {
1401 case bfd_mach_h8300:
1402 case bfd_mach_h8300hn:
1403 case bfd_mach_h8300sn:
eea6121a 1404 htab->vectors_sec->size += 2;
d4e2de6b
NC
1405 break;
1406 case bfd_mach_h8300h:
1407 case bfd_mach_h8300s:
eea6121a 1408 htab->vectors_sec->size += 4;
d4e2de6b
NC
1409 break;
1410 default:
1411 abort ();
1412 }
252b5132
RH
1413 }
1414 }
1415 }
1416
1417 /* We're done with the relocations, release them. */
1418 free (relocs);
1419 }
1420
1421 /* Now actually allocate some space for the function vector. It's
1422 wasteful to do this more than once, but this is easier. */
0171ee92 1423 sec = htab->vectors_sec;
eea6121a 1424 if (sec->size != 0)
252b5132
RH
1425 {
1426 /* Free the old contents. */
dc810e39
AM
1427 if (sec->contents)
1428 free (sec->contents);
252b5132
RH
1429
1430 /* Allocate new contents. */
eea6121a 1431 sec->contents = bfd_malloc (sec->size);
252b5132
RH
1432 }
1433
b34976b6 1434 return TRUE;
252b5132
RH
1435}
1436
1437#define coff_reloc16_extra_cases h8300_reloc16_extra_cases
1438#define coff_reloc16_estimate h8300_reloc16_estimate
1439#define coff_bfd_link_add_symbols h8300_bfd_link_add_symbols
1440#define coff_bfd_link_hash_table_create h8300_coff_link_hash_table_create
1441
1442#define COFF_LONG_FILENAMES
1443#include "coffcode.h"
1444
252b5132
RH
1445#undef coff_bfd_get_relocated_section_contents
1446#undef coff_bfd_relax_section
1447#define coff_bfd_get_relocated_section_contents \
1448 bfd_coff_reloc16_get_relocated_section_contents
1449#define coff_bfd_relax_section bfd_coff_reloc16_relax_section
1450
3fa78519 1451CREATE_BIG_COFF_TARGET_VEC (h8300coff_vec, "coff-h8300", BFD_IS_RELAXABLE, 0, '_', NULL, COFF_SWAP_TABLE)
This page took 0.315507 seconds and 4 git commands to generate.