Revert accidental checkin.
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
CommitLineData
252b5132 1/* 32-bit ELF support for ARM
e44a2c9c 2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
81694485 3 2008, 2009 Free Software Foundation, Inc.
252b5132
RH
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
cd123cb7 9 the Free Software Foundation; either version 3 of the License, or
252b5132
RH
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
cd123cb7
NC
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
252b5132 21
6e6718a3 22#include "sysdep.h"
2468f9c9
PB
23#include <limits.h>
24
3db64b00 25#include "bfd.h"
00a97672 26#include "libiberty.h"
7f266840
DJ
27#include "libbfd.h"
28#include "elf-bfd.h"
00a97672 29#include "elf-vxworks.h"
ee065d83 30#include "elf/arm.h"
7f266840 31
00a97672
RS
32/* Return the relocation section associated with NAME. HTAB is the
33 bfd's elf32_arm_link_hash_entry. */
34#define RELOC_SECTION(HTAB, NAME) \
35 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
36
37/* Return size of a relocation entry. HTAB is the bfd's
38 elf32_arm_link_hash_entry. */
39#define RELOC_SIZE(HTAB) \
40 ((HTAB)->use_rel \
41 ? sizeof (Elf32_External_Rel) \
42 : sizeof (Elf32_External_Rela))
43
44/* Return function to swap relocations in. HTAB is the bfd's
45 elf32_arm_link_hash_entry. */
46#define SWAP_RELOC_IN(HTAB) \
47 ((HTAB)->use_rel \
48 ? bfd_elf32_swap_reloc_in \
49 : bfd_elf32_swap_reloca_in)
50
51/* Return function to swap relocations out. HTAB is the bfd's
52 elf32_arm_link_hash_entry. */
53#define SWAP_RELOC_OUT(HTAB) \
54 ((HTAB)->use_rel \
55 ? bfd_elf32_swap_reloc_out \
56 : bfd_elf32_swap_reloca_out)
57
7f266840
DJ
58#define elf_info_to_howto 0
59#define elf_info_to_howto_rel elf32_arm_info_to_howto
60
61#define ARM_ELF_ABI_VERSION 0
62#define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
63
24718e3b 64static struct elf_backend_data elf32_arm_vxworks_bed;
00a97672 65
3e6b1042
DJ
66static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
67 struct bfd_link_info *link_info,
68 asection *sec,
69 bfd_byte *contents);
70
7f266840
DJ
71/* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
72 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
73 in that slot. */
74
c19d1205 75static reloc_howto_type elf32_arm_howto_table_1[] =
7f266840 76{
8029a119 77 /* No relocation. */
7f266840
DJ
78 HOWTO (R_ARM_NONE, /* type */
79 0, /* rightshift */
80 0, /* size (0 = byte, 1 = short, 2 = long) */
81 0, /* bitsize */
82 FALSE, /* pc_relative */
83 0, /* bitpos */
84 complain_overflow_dont,/* complain_on_overflow */
85 bfd_elf_generic_reloc, /* special_function */
86 "R_ARM_NONE", /* name */
87 FALSE, /* partial_inplace */
88 0, /* src_mask */
89 0, /* dst_mask */
90 FALSE), /* pcrel_offset */
91
92 HOWTO (R_ARM_PC24, /* type */
93 2, /* rightshift */
94 2, /* size (0 = byte, 1 = short, 2 = long) */
95 24, /* bitsize */
96 TRUE, /* pc_relative */
97 0, /* bitpos */
98 complain_overflow_signed,/* complain_on_overflow */
99 bfd_elf_generic_reloc, /* special_function */
100 "R_ARM_PC24", /* name */
101 FALSE, /* partial_inplace */
102 0x00ffffff, /* src_mask */
103 0x00ffffff, /* dst_mask */
104 TRUE), /* pcrel_offset */
105
106 /* 32 bit absolute */
107 HOWTO (R_ARM_ABS32, /* type */
108 0, /* rightshift */
109 2, /* size (0 = byte, 1 = short, 2 = long) */
110 32, /* bitsize */
111 FALSE, /* pc_relative */
112 0, /* bitpos */
113 complain_overflow_bitfield,/* complain_on_overflow */
114 bfd_elf_generic_reloc, /* special_function */
115 "R_ARM_ABS32", /* name */
116 FALSE, /* partial_inplace */
117 0xffffffff, /* src_mask */
118 0xffffffff, /* dst_mask */
119 FALSE), /* pcrel_offset */
120
121 /* standard 32bit pc-relative reloc */
122 HOWTO (R_ARM_REL32, /* type */
123 0, /* rightshift */
124 2, /* size (0 = byte, 1 = short, 2 = long) */
125 32, /* bitsize */
126 TRUE, /* pc_relative */
127 0, /* bitpos */
128 complain_overflow_bitfield,/* complain_on_overflow */
129 bfd_elf_generic_reloc, /* special_function */
130 "R_ARM_REL32", /* name */
131 FALSE, /* partial_inplace */
132 0xffffffff, /* src_mask */
133 0xffffffff, /* dst_mask */
134 TRUE), /* pcrel_offset */
135
c19d1205 136 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
4962c51a 137 HOWTO (R_ARM_LDR_PC_G0, /* type */
7f266840
DJ
138 0, /* rightshift */
139 0, /* size (0 = byte, 1 = short, 2 = long) */
4962c51a
MS
140 32, /* bitsize */
141 TRUE, /* pc_relative */
7f266840 142 0, /* bitpos */
4962c51a 143 complain_overflow_dont,/* complain_on_overflow */
7f266840 144 bfd_elf_generic_reloc, /* special_function */
4962c51a 145 "R_ARM_LDR_PC_G0", /* name */
7f266840 146 FALSE, /* partial_inplace */
4962c51a
MS
147 0xffffffff, /* src_mask */
148 0xffffffff, /* dst_mask */
149 TRUE), /* pcrel_offset */
7f266840
DJ
150
151 /* 16 bit absolute */
152 HOWTO (R_ARM_ABS16, /* type */
153 0, /* rightshift */
154 1, /* size (0 = byte, 1 = short, 2 = long) */
155 16, /* bitsize */
156 FALSE, /* pc_relative */
157 0, /* bitpos */
158 complain_overflow_bitfield,/* complain_on_overflow */
159 bfd_elf_generic_reloc, /* special_function */
160 "R_ARM_ABS16", /* name */
161 FALSE, /* partial_inplace */
162 0x0000ffff, /* src_mask */
163 0x0000ffff, /* dst_mask */
164 FALSE), /* pcrel_offset */
165
166 /* 12 bit absolute */
167 HOWTO (R_ARM_ABS12, /* type */
168 0, /* rightshift */
169 2, /* size (0 = byte, 1 = short, 2 = long) */
170 12, /* bitsize */
171 FALSE, /* pc_relative */
172 0, /* bitpos */
173 complain_overflow_bitfield,/* complain_on_overflow */
174 bfd_elf_generic_reloc, /* special_function */
175 "R_ARM_ABS12", /* name */
176 FALSE, /* partial_inplace */
00a97672
RS
177 0x00000fff, /* src_mask */
178 0x00000fff, /* dst_mask */
7f266840
DJ
179 FALSE), /* pcrel_offset */
180
181 HOWTO (R_ARM_THM_ABS5, /* type */
182 6, /* rightshift */
183 1, /* size (0 = byte, 1 = short, 2 = long) */
184 5, /* bitsize */
185 FALSE, /* pc_relative */
186 0, /* bitpos */
187 complain_overflow_bitfield,/* complain_on_overflow */
188 bfd_elf_generic_reloc, /* special_function */
189 "R_ARM_THM_ABS5", /* name */
190 FALSE, /* partial_inplace */
191 0x000007e0, /* src_mask */
192 0x000007e0, /* dst_mask */
193 FALSE), /* pcrel_offset */
194
195 /* 8 bit absolute */
196 HOWTO (R_ARM_ABS8, /* type */
197 0, /* rightshift */
198 0, /* size (0 = byte, 1 = short, 2 = long) */
199 8, /* bitsize */
200 FALSE, /* pc_relative */
201 0, /* bitpos */
202 complain_overflow_bitfield,/* complain_on_overflow */
203 bfd_elf_generic_reloc, /* special_function */
204 "R_ARM_ABS8", /* name */
205 FALSE, /* partial_inplace */
206 0x000000ff, /* src_mask */
207 0x000000ff, /* dst_mask */
208 FALSE), /* pcrel_offset */
209
210 HOWTO (R_ARM_SBREL32, /* type */
211 0, /* rightshift */
212 2, /* size (0 = byte, 1 = short, 2 = long) */
213 32, /* bitsize */
214 FALSE, /* pc_relative */
215 0, /* bitpos */
216 complain_overflow_dont,/* complain_on_overflow */
217 bfd_elf_generic_reloc, /* special_function */
218 "R_ARM_SBREL32", /* name */
219 FALSE, /* partial_inplace */
220 0xffffffff, /* src_mask */
221 0xffffffff, /* dst_mask */
222 FALSE), /* pcrel_offset */
223
c19d1205 224 HOWTO (R_ARM_THM_CALL, /* type */
7f266840
DJ
225 1, /* rightshift */
226 2, /* size (0 = byte, 1 = short, 2 = long) */
e95de063 227 25, /* bitsize */
7f266840
DJ
228 TRUE, /* pc_relative */
229 0, /* bitpos */
230 complain_overflow_signed,/* complain_on_overflow */
231 bfd_elf_generic_reloc, /* special_function */
c19d1205 232 "R_ARM_THM_CALL", /* name */
7f266840
DJ
233 FALSE, /* partial_inplace */
234 0x07ff07ff, /* src_mask */
235 0x07ff07ff, /* dst_mask */
236 TRUE), /* pcrel_offset */
237
238 HOWTO (R_ARM_THM_PC8, /* type */
239 1, /* rightshift */
240 1, /* size (0 = byte, 1 = short, 2 = long) */
241 8, /* bitsize */
242 TRUE, /* pc_relative */
243 0, /* bitpos */
244 complain_overflow_signed,/* complain_on_overflow */
245 bfd_elf_generic_reloc, /* special_function */
246 "R_ARM_THM_PC8", /* name */
247 FALSE, /* partial_inplace */
248 0x000000ff, /* src_mask */
249 0x000000ff, /* dst_mask */
250 TRUE), /* pcrel_offset */
251
c19d1205 252 HOWTO (R_ARM_BREL_ADJ, /* type */
7f266840
DJ
253 1, /* rightshift */
254 1, /* size (0 = byte, 1 = short, 2 = long) */
c19d1205
ZW
255 32, /* bitsize */
256 FALSE, /* pc_relative */
7f266840
DJ
257 0, /* bitpos */
258 complain_overflow_signed,/* complain_on_overflow */
259 bfd_elf_generic_reloc, /* special_function */
c19d1205 260 "R_ARM_BREL_ADJ", /* name */
7f266840 261 FALSE, /* partial_inplace */
c19d1205
ZW
262 0xffffffff, /* src_mask */
263 0xffffffff, /* dst_mask */
264 FALSE), /* pcrel_offset */
7f266840
DJ
265
266 HOWTO (R_ARM_SWI24, /* type */
267 0, /* rightshift */
268 0, /* size (0 = byte, 1 = short, 2 = long) */
269 0, /* bitsize */
270 FALSE, /* pc_relative */
271 0, /* bitpos */
272 complain_overflow_signed,/* complain_on_overflow */
273 bfd_elf_generic_reloc, /* special_function */
274 "R_ARM_SWI24", /* name */
275 FALSE, /* partial_inplace */
276 0x00000000, /* src_mask */
277 0x00000000, /* dst_mask */
278 FALSE), /* pcrel_offset */
279
280 HOWTO (R_ARM_THM_SWI8, /* type */
281 0, /* rightshift */
282 0, /* size (0 = byte, 1 = short, 2 = long) */
283 0, /* bitsize */
284 FALSE, /* pc_relative */
285 0, /* bitpos */
286 complain_overflow_signed,/* complain_on_overflow */
287 bfd_elf_generic_reloc, /* special_function */
288 "R_ARM_SWI8", /* name */
289 FALSE, /* partial_inplace */
290 0x00000000, /* src_mask */
291 0x00000000, /* dst_mask */
292 FALSE), /* pcrel_offset */
293
294 /* BLX instruction for the ARM. */
295 HOWTO (R_ARM_XPC25, /* type */
296 2, /* rightshift */
297 2, /* size (0 = byte, 1 = short, 2 = long) */
298 25, /* bitsize */
299 TRUE, /* pc_relative */
300 0, /* bitpos */
301 complain_overflow_signed,/* complain_on_overflow */
302 bfd_elf_generic_reloc, /* special_function */
303 "R_ARM_XPC25", /* name */
304 FALSE, /* partial_inplace */
305 0x00ffffff, /* src_mask */
306 0x00ffffff, /* dst_mask */
307 TRUE), /* pcrel_offset */
308
309 /* BLX instruction for the Thumb. */
310 HOWTO (R_ARM_THM_XPC22, /* type */
311 2, /* rightshift */
312 2, /* size (0 = byte, 1 = short, 2 = long) */
313 22, /* bitsize */
314 TRUE, /* pc_relative */
315 0, /* bitpos */
316 complain_overflow_signed,/* complain_on_overflow */
317 bfd_elf_generic_reloc, /* special_function */
318 "R_ARM_THM_XPC22", /* name */
319 FALSE, /* partial_inplace */
320 0x07ff07ff, /* src_mask */
321 0x07ff07ff, /* dst_mask */
322 TRUE), /* pcrel_offset */
323
ba93b8ac 324 /* Dynamic TLS relocations. */
7f266840 325
ba93b8ac
DJ
326 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
327 0, /* rightshift */
328 2, /* size (0 = byte, 1 = short, 2 = long) */
329 32, /* bitsize */
330 FALSE, /* pc_relative */
331 0, /* bitpos */
332 complain_overflow_bitfield,/* complain_on_overflow */
333 bfd_elf_generic_reloc, /* special_function */
334 "R_ARM_TLS_DTPMOD32", /* name */
335 TRUE, /* partial_inplace */
336 0xffffffff, /* src_mask */
337 0xffffffff, /* dst_mask */
338 FALSE), /* pcrel_offset */
7f266840 339
ba93b8ac
DJ
340 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
341 0, /* rightshift */
342 2, /* size (0 = byte, 1 = short, 2 = long) */
343 32, /* bitsize */
344 FALSE, /* pc_relative */
345 0, /* bitpos */
346 complain_overflow_bitfield,/* complain_on_overflow */
347 bfd_elf_generic_reloc, /* special_function */
348 "R_ARM_TLS_DTPOFF32", /* name */
349 TRUE, /* partial_inplace */
350 0xffffffff, /* src_mask */
351 0xffffffff, /* dst_mask */
352 FALSE), /* pcrel_offset */
7f266840 353
ba93b8ac
DJ
354 HOWTO (R_ARM_TLS_TPOFF32, /* type */
355 0, /* rightshift */
356 2, /* size (0 = byte, 1 = short, 2 = long) */
357 32, /* bitsize */
358 FALSE, /* pc_relative */
359 0, /* bitpos */
360 complain_overflow_bitfield,/* complain_on_overflow */
361 bfd_elf_generic_reloc, /* special_function */
362 "R_ARM_TLS_TPOFF32", /* name */
363 TRUE, /* partial_inplace */
364 0xffffffff, /* src_mask */
365 0xffffffff, /* dst_mask */
366 FALSE), /* pcrel_offset */
7f266840
DJ
367
368 /* Relocs used in ARM Linux */
369
370 HOWTO (R_ARM_COPY, /* type */
371 0, /* rightshift */
372 2, /* size (0 = byte, 1 = short, 2 = long) */
373 32, /* bitsize */
374 FALSE, /* pc_relative */
375 0, /* bitpos */
376 complain_overflow_bitfield,/* complain_on_overflow */
377 bfd_elf_generic_reloc, /* special_function */
378 "R_ARM_COPY", /* name */
379 TRUE, /* partial_inplace */
380 0xffffffff, /* src_mask */
381 0xffffffff, /* dst_mask */
382 FALSE), /* pcrel_offset */
383
384 HOWTO (R_ARM_GLOB_DAT, /* type */
385 0, /* rightshift */
386 2, /* size (0 = byte, 1 = short, 2 = long) */
387 32, /* bitsize */
388 FALSE, /* pc_relative */
389 0, /* bitpos */
390 complain_overflow_bitfield,/* complain_on_overflow */
391 bfd_elf_generic_reloc, /* special_function */
392 "R_ARM_GLOB_DAT", /* name */
393 TRUE, /* partial_inplace */
394 0xffffffff, /* src_mask */
395 0xffffffff, /* dst_mask */
396 FALSE), /* pcrel_offset */
397
398 HOWTO (R_ARM_JUMP_SLOT, /* type */
399 0, /* rightshift */
400 2, /* size (0 = byte, 1 = short, 2 = long) */
401 32, /* bitsize */
402 FALSE, /* pc_relative */
403 0, /* bitpos */
404 complain_overflow_bitfield,/* complain_on_overflow */
405 bfd_elf_generic_reloc, /* special_function */
406 "R_ARM_JUMP_SLOT", /* name */
407 TRUE, /* partial_inplace */
408 0xffffffff, /* src_mask */
409 0xffffffff, /* dst_mask */
410 FALSE), /* pcrel_offset */
411
412 HOWTO (R_ARM_RELATIVE, /* type */
413 0, /* rightshift */
414 2, /* size (0 = byte, 1 = short, 2 = long) */
415 32, /* bitsize */
416 FALSE, /* pc_relative */
417 0, /* bitpos */
418 complain_overflow_bitfield,/* complain_on_overflow */
419 bfd_elf_generic_reloc, /* special_function */
420 "R_ARM_RELATIVE", /* name */
421 TRUE, /* partial_inplace */
422 0xffffffff, /* src_mask */
423 0xffffffff, /* dst_mask */
424 FALSE), /* pcrel_offset */
425
c19d1205 426 HOWTO (R_ARM_GOTOFF32, /* type */
7f266840
DJ
427 0, /* rightshift */
428 2, /* size (0 = byte, 1 = short, 2 = long) */
429 32, /* bitsize */
430 FALSE, /* pc_relative */
431 0, /* bitpos */
432 complain_overflow_bitfield,/* complain_on_overflow */
433 bfd_elf_generic_reloc, /* special_function */
c19d1205 434 "R_ARM_GOTOFF32", /* name */
7f266840
DJ
435 TRUE, /* partial_inplace */
436 0xffffffff, /* src_mask */
437 0xffffffff, /* dst_mask */
438 FALSE), /* pcrel_offset */
439
440 HOWTO (R_ARM_GOTPC, /* type */
441 0, /* rightshift */
442 2, /* size (0 = byte, 1 = short, 2 = long) */
443 32, /* bitsize */
444 TRUE, /* pc_relative */
445 0, /* bitpos */
446 complain_overflow_bitfield,/* complain_on_overflow */
447 bfd_elf_generic_reloc, /* special_function */
448 "R_ARM_GOTPC", /* name */
449 TRUE, /* partial_inplace */
450 0xffffffff, /* src_mask */
451 0xffffffff, /* dst_mask */
452 TRUE), /* pcrel_offset */
453
454 HOWTO (R_ARM_GOT32, /* type */
455 0, /* rightshift */
456 2, /* size (0 = byte, 1 = short, 2 = long) */
457 32, /* bitsize */
458 FALSE, /* pc_relative */
459 0, /* bitpos */
460 complain_overflow_bitfield,/* complain_on_overflow */
461 bfd_elf_generic_reloc, /* special_function */
462 "R_ARM_GOT32", /* name */
463 TRUE, /* partial_inplace */
464 0xffffffff, /* src_mask */
465 0xffffffff, /* dst_mask */
466 FALSE), /* pcrel_offset */
467
468 HOWTO (R_ARM_PLT32, /* type */
469 2, /* rightshift */
470 2, /* size (0 = byte, 1 = short, 2 = long) */
ce490eda 471 24, /* bitsize */
7f266840
DJ
472 TRUE, /* pc_relative */
473 0, /* bitpos */
474 complain_overflow_bitfield,/* complain_on_overflow */
475 bfd_elf_generic_reloc, /* special_function */
476 "R_ARM_PLT32", /* name */
ce490eda 477 FALSE, /* partial_inplace */
7f266840
DJ
478 0x00ffffff, /* src_mask */
479 0x00ffffff, /* dst_mask */
480 TRUE), /* pcrel_offset */
481
482 HOWTO (R_ARM_CALL, /* type */
483 2, /* rightshift */
484 2, /* size (0 = byte, 1 = short, 2 = long) */
485 24, /* bitsize */
486 TRUE, /* pc_relative */
487 0, /* bitpos */
488 complain_overflow_signed,/* complain_on_overflow */
489 bfd_elf_generic_reloc, /* special_function */
490 "R_ARM_CALL", /* name */
491 FALSE, /* partial_inplace */
492 0x00ffffff, /* src_mask */
493 0x00ffffff, /* dst_mask */
494 TRUE), /* pcrel_offset */
495
496 HOWTO (R_ARM_JUMP24, /* type */
497 2, /* rightshift */
498 2, /* size (0 = byte, 1 = short, 2 = long) */
499 24, /* bitsize */
500 TRUE, /* pc_relative */
501 0, /* bitpos */
502 complain_overflow_signed,/* complain_on_overflow */
503 bfd_elf_generic_reloc, /* special_function */
504 "R_ARM_JUMP24", /* name */
505 FALSE, /* partial_inplace */
506 0x00ffffff, /* src_mask */
507 0x00ffffff, /* dst_mask */
508 TRUE), /* pcrel_offset */
509
c19d1205
ZW
510 HOWTO (R_ARM_THM_JUMP24, /* type */
511 1, /* rightshift */
512 2, /* size (0 = byte, 1 = short, 2 = long) */
513 24, /* bitsize */
514 TRUE, /* pc_relative */
7f266840 515 0, /* bitpos */
c19d1205 516 complain_overflow_signed,/* complain_on_overflow */
7f266840 517 bfd_elf_generic_reloc, /* special_function */
c19d1205 518 "R_ARM_THM_JUMP24", /* name */
7f266840 519 FALSE, /* partial_inplace */
c19d1205
ZW
520 0x07ff2fff, /* src_mask */
521 0x07ff2fff, /* dst_mask */
522 TRUE), /* pcrel_offset */
7f266840 523
c19d1205 524 HOWTO (R_ARM_BASE_ABS, /* type */
7f266840 525 0, /* rightshift */
c19d1205
ZW
526 2, /* size (0 = byte, 1 = short, 2 = long) */
527 32, /* bitsize */
7f266840
DJ
528 FALSE, /* pc_relative */
529 0, /* bitpos */
530 complain_overflow_dont,/* complain_on_overflow */
531 bfd_elf_generic_reloc, /* special_function */
c19d1205 532 "R_ARM_BASE_ABS", /* name */
7f266840 533 FALSE, /* partial_inplace */
c19d1205
ZW
534 0xffffffff, /* src_mask */
535 0xffffffff, /* dst_mask */
7f266840
DJ
536 FALSE), /* pcrel_offset */
537
538 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
539 0, /* rightshift */
540 2, /* size (0 = byte, 1 = short, 2 = long) */
541 12, /* bitsize */
542 TRUE, /* pc_relative */
543 0, /* bitpos */
544 complain_overflow_dont,/* complain_on_overflow */
545 bfd_elf_generic_reloc, /* special_function */
546 "R_ARM_ALU_PCREL_7_0", /* name */
547 FALSE, /* partial_inplace */
548 0x00000fff, /* src_mask */
549 0x00000fff, /* dst_mask */
550 TRUE), /* pcrel_offset */
551
552 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
553 0, /* rightshift */
554 2, /* size (0 = byte, 1 = short, 2 = long) */
555 12, /* bitsize */
556 TRUE, /* pc_relative */
557 8, /* bitpos */
558 complain_overflow_dont,/* complain_on_overflow */
559 bfd_elf_generic_reloc, /* special_function */
560 "R_ARM_ALU_PCREL_15_8",/* name */
561 FALSE, /* partial_inplace */
562 0x00000fff, /* src_mask */
563 0x00000fff, /* dst_mask */
564 TRUE), /* pcrel_offset */
565
566 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
567 0, /* rightshift */
568 2, /* size (0 = byte, 1 = short, 2 = long) */
569 12, /* bitsize */
570 TRUE, /* pc_relative */
571 16, /* bitpos */
572 complain_overflow_dont,/* complain_on_overflow */
573 bfd_elf_generic_reloc, /* special_function */
574 "R_ARM_ALU_PCREL_23_15",/* name */
575 FALSE, /* partial_inplace */
576 0x00000fff, /* src_mask */
577 0x00000fff, /* dst_mask */
578 TRUE), /* pcrel_offset */
579
580 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
581 0, /* rightshift */
582 2, /* size (0 = byte, 1 = short, 2 = long) */
583 12, /* bitsize */
584 FALSE, /* pc_relative */
585 0, /* bitpos */
586 complain_overflow_dont,/* complain_on_overflow */
587 bfd_elf_generic_reloc, /* special_function */
588 "R_ARM_LDR_SBREL_11_0",/* name */
589 FALSE, /* partial_inplace */
590 0x00000fff, /* src_mask */
591 0x00000fff, /* dst_mask */
592 FALSE), /* pcrel_offset */
593
594 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
595 0, /* rightshift */
596 2, /* size (0 = byte, 1 = short, 2 = long) */
597 8, /* bitsize */
598 FALSE, /* pc_relative */
599 12, /* bitpos */
600 complain_overflow_dont,/* complain_on_overflow */
601 bfd_elf_generic_reloc, /* special_function */
602 "R_ARM_ALU_SBREL_19_12",/* name */
603 FALSE, /* partial_inplace */
604 0x000ff000, /* src_mask */
605 0x000ff000, /* dst_mask */
606 FALSE), /* pcrel_offset */
607
608 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
609 0, /* rightshift */
610 2, /* size (0 = byte, 1 = short, 2 = long) */
611 8, /* bitsize */
612 FALSE, /* pc_relative */
613 20, /* bitpos */
614 complain_overflow_dont,/* complain_on_overflow */
615 bfd_elf_generic_reloc, /* special_function */
616 "R_ARM_ALU_SBREL_27_20",/* name */
617 FALSE, /* partial_inplace */
618 0x0ff00000, /* src_mask */
619 0x0ff00000, /* dst_mask */
620 FALSE), /* pcrel_offset */
621
622 HOWTO (R_ARM_TARGET1, /* type */
623 0, /* rightshift */
624 2, /* size (0 = byte, 1 = short, 2 = long) */
625 32, /* bitsize */
626 FALSE, /* pc_relative */
627 0, /* bitpos */
628 complain_overflow_dont,/* complain_on_overflow */
629 bfd_elf_generic_reloc, /* special_function */
630 "R_ARM_TARGET1", /* name */
631 FALSE, /* partial_inplace */
632 0xffffffff, /* src_mask */
633 0xffffffff, /* dst_mask */
634 FALSE), /* pcrel_offset */
635
636 HOWTO (R_ARM_ROSEGREL32, /* type */
637 0, /* rightshift */
638 2, /* size (0 = byte, 1 = short, 2 = long) */
639 32, /* bitsize */
640 FALSE, /* pc_relative */
641 0, /* bitpos */
642 complain_overflow_dont,/* complain_on_overflow */
643 bfd_elf_generic_reloc, /* special_function */
644 "R_ARM_ROSEGREL32", /* name */
645 FALSE, /* partial_inplace */
646 0xffffffff, /* src_mask */
647 0xffffffff, /* dst_mask */
648 FALSE), /* pcrel_offset */
649
650 HOWTO (R_ARM_V4BX, /* type */
651 0, /* rightshift */
652 2, /* size (0 = byte, 1 = short, 2 = long) */
653 32, /* bitsize */
654 FALSE, /* pc_relative */
655 0, /* bitpos */
656 complain_overflow_dont,/* complain_on_overflow */
657 bfd_elf_generic_reloc, /* special_function */
658 "R_ARM_V4BX", /* name */
659 FALSE, /* partial_inplace */
660 0xffffffff, /* src_mask */
661 0xffffffff, /* dst_mask */
662 FALSE), /* pcrel_offset */
663
664 HOWTO (R_ARM_TARGET2, /* type */
665 0, /* rightshift */
666 2, /* size (0 = byte, 1 = short, 2 = long) */
667 32, /* bitsize */
668 FALSE, /* pc_relative */
669 0, /* bitpos */
670 complain_overflow_signed,/* complain_on_overflow */
671 bfd_elf_generic_reloc, /* special_function */
672 "R_ARM_TARGET2", /* name */
673 FALSE, /* partial_inplace */
674 0xffffffff, /* src_mask */
675 0xffffffff, /* dst_mask */
676 TRUE), /* pcrel_offset */
677
678 HOWTO (R_ARM_PREL31, /* type */
679 0, /* rightshift */
680 2, /* size (0 = byte, 1 = short, 2 = long) */
681 31, /* bitsize */
682 TRUE, /* pc_relative */
683 0, /* bitpos */
684 complain_overflow_signed,/* complain_on_overflow */
685 bfd_elf_generic_reloc, /* special_function */
686 "R_ARM_PREL31", /* name */
687 FALSE, /* partial_inplace */
688 0x7fffffff, /* src_mask */
689 0x7fffffff, /* dst_mask */
690 TRUE), /* pcrel_offset */
c19d1205
ZW
691
692 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
693 0, /* rightshift */
694 2, /* size (0 = byte, 1 = short, 2 = long) */
695 16, /* bitsize */
696 FALSE, /* pc_relative */
697 0, /* bitpos */
698 complain_overflow_dont,/* complain_on_overflow */
699 bfd_elf_generic_reloc, /* special_function */
700 "R_ARM_MOVW_ABS_NC", /* name */
701 FALSE, /* partial_inplace */
39623e12
PB
702 0x000f0fff, /* src_mask */
703 0x000f0fff, /* dst_mask */
c19d1205
ZW
704 FALSE), /* pcrel_offset */
705
706 HOWTO (R_ARM_MOVT_ABS, /* type */
707 0, /* rightshift */
708 2, /* size (0 = byte, 1 = short, 2 = long) */
709 16, /* bitsize */
710 FALSE, /* pc_relative */
711 0, /* bitpos */
712 complain_overflow_bitfield,/* complain_on_overflow */
713 bfd_elf_generic_reloc, /* special_function */
714 "R_ARM_MOVT_ABS", /* name */
715 FALSE, /* partial_inplace */
39623e12
PB
716 0x000f0fff, /* src_mask */
717 0x000f0fff, /* dst_mask */
c19d1205
ZW
718 FALSE), /* pcrel_offset */
719
720 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
721 0, /* rightshift */
722 2, /* size (0 = byte, 1 = short, 2 = long) */
723 16, /* bitsize */
724 TRUE, /* pc_relative */
725 0, /* bitpos */
726 complain_overflow_dont,/* complain_on_overflow */
727 bfd_elf_generic_reloc, /* special_function */
728 "R_ARM_MOVW_PREL_NC", /* name */
729 FALSE, /* partial_inplace */
39623e12
PB
730 0x000f0fff, /* src_mask */
731 0x000f0fff, /* dst_mask */
c19d1205
ZW
732 TRUE), /* pcrel_offset */
733
734 HOWTO (R_ARM_MOVT_PREL, /* type */
735 0, /* rightshift */
736 2, /* size (0 = byte, 1 = short, 2 = long) */
737 16, /* bitsize */
738 TRUE, /* pc_relative */
739 0, /* bitpos */
740 complain_overflow_bitfield,/* complain_on_overflow */
741 bfd_elf_generic_reloc, /* special_function */
742 "R_ARM_MOVT_PREL", /* name */
743 FALSE, /* partial_inplace */
39623e12
PB
744 0x000f0fff, /* src_mask */
745 0x000f0fff, /* dst_mask */
c19d1205
ZW
746 TRUE), /* pcrel_offset */
747
748 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
749 0, /* rightshift */
750 2, /* size (0 = byte, 1 = short, 2 = long) */
751 16, /* bitsize */
752 FALSE, /* pc_relative */
753 0, /* bitpos */
754 complain_overflow_dont,/* complain_on_overflow */
755 bfd_elf_generic_reloc, /* special_function */
756 "R_ARM_THM_MOVW_ABS_NC",/* name */
757 FALSE, /* partial_inplace */
758 0x040f70ff, /* src_mask */
759 0x040f70ff, /* dst_mask */
760 FALSE), /* pcrel_offset */
761
762 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
763 0, /* rightshift */
764 2, /* size (0 = byte, 1 = short, 2 = long) */
765 16, /* bitsize */
766 FALSE, /* pc_relative */
767 0, /* bitpos */
768 complain_overflow_bitfield,/* complain_on_overflow */
769 bfd_elf_generic_reloc, /* special_function */
770 "R_ARM_THM_MOVT_ABS", /* name */
771 FALSE, /* partial_inplace */
772 0x040f70ff, /* src_mask */
773 0x040f70ff, /* dst_mask */
774 FALSE), /* pcrel_offset */
775
776 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
777 0, /* rightshift */
778 2, /* size (0 = byte, 1 = short, 2 = long) */
779 16, /* bitsize */
780 TRUE, /* pc_relative */
781 0, /* bitpos */
782 complain_overflow_dont,/* complain_on_overflow */
783 bfd_elf_generic_reloc, /* special_function */
784 "R_ARM_THM_MOVW_PREL_NC",/* name */
785 FALSE, /* partial_inplace */
786 0x040f70ff, /* src_mask */
787 0x040f70ff, /* dst_mask */
788 TRUE), /* pcrel_offset */
789
790 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
791 0, /* rightshift */
792 2, /* size (0 = byte, 1 = short, 2 = long) */
793 16, /* bitsize */
794 TRUE, /* pc_relative */
795 0, /* bitpos */
796 complain_overflow_bitfield,/* complain_on_overflow */
797 bfd_elf_generic_reloc, /* special_function */
798 "R_ARM_THM_MOVT_PREL", /* name */
799 FALSE, /* partial_inplace */
800 0x040f70ff, /* src_mask */
801 0x040f70ff, /* dst_mask */
802 TRUE), /* pcrel_offset */
803
804 HOWTO (R_ARM_THM_JUMP19, /* type */
805 1, /* rightshift */
806 2, /* size (0 = byte, 1 = short, 2 = long) */
807 19, /* bitsize */
808 TRUE, /* pc_relative */
809 0, /* bitpos */
810 complain_overflow_signed,/* complain_on_overflow */
811 bfd_elf_generic_reloc, /* special_function */
812 "R_ARM_THM_JUMP19", /* name */
813 FALSE, /* partial_inplace */
814 0x043f2fff, /* src_mask */
815 0x043f2fff, /* dst_mask */
816 TRUE), /* pcrel_offset */
817
818 HOWTO (R_ARM_THM_JUMP6, /* type */
819 1, /* rightshift */
820 1, /* size (0 = byte, 1 = short, 2 = long) */
821 6, /* bitsize */
822 TRUE, /* pc_relative */
823 0, /* bitpos */
824 complain_overflow_unsigned,/* complain_on_overflow */
825 bfd_elf_generic_reloc, /* special_function */
826 "R_ARM_THM_JUMP6", /* name */
827 FALSE, /* partial_inplace */
828 0x02f8, /* src_mask */
829 0x02f8, /* dst_mask */
830 TRUE), /* pcrel_offset */
831
832 /* These are declared as 13-bit signed relocations because we can
833 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
834 versa. */
835 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
836 0, /* rightshift */
837 2, /* size (0 = byte, 1 = short, 2 = long) */
838 13, /* bitsize */
839 TRUE, /* pc_relative */
840 0, /* bitpos */
2cab6cc3 841 complain_overflow_dont,/* complain_on_overflow */
c19d1205
ZW
842 bfd_elf_generic_reloc, /* special_function */
843 "R_ARM_THM_ALU_PREL_11_0",/* name */
844 FALSE, /* partial_inplace */
2cab6cc3
MS
845 0xffffffff, /* src_mask */
846 0xffffffff, /* dst_mask */
c19d1205
ZW
847 TRUE), /* pcrel_offset */
848
849 HOWTO (R_ARM_THM_PC12, /* type */
850 0, /* rightshift */
851 2, /* size (0 = byte, 1 = short, 2 = long) */
852 13, /* bitsize */
853 TRUE, /* pc_relative */
854 0, /* bitpos */
2cab6cc3 855 complain_overflow_dont,/* complain_on_overflow */
c19d1205
ZW
856 bfd_elf_generic_reloc, /* special_function */
857 "R_ARM_THM_PC12", /* name */
858 FALSE, /* partial_inplace */
2cab6cc3
MS
859 0xffffffff, /* src_mask */
860 0xffffffff, /* dst_mask */
c19d1205
ZW
861 TRUE), /* pcrel_offset */
862
863 HOWTO (R_ARM_ABS32_NOI, /* type */
864 0, /* rightshift */
865 2, /* size (0 = byte, 1 = short, 2 = long) */
866 32, /* bitsize */
867 FALSE, /* pc_relative */
868 0, /* bitpos */
869 complain_overflow_dont,/* complain_on_overflow */
870 bfd_elf_generic_reloc, /* special_function */
871 "R_ARM_ABS32_NOI", /* name */
872 FALSE, /* partial_inplace */
873 0xffffffff, /* src_mask */
874 0xffffffff, /* dst_mask */
875 FALSE), /* pcrel_offset */
876
877 HOWTO (R_ARM_REL32_NOI, /* type */
878 0, /* rightshift */
879 2, /* size (0 = byte, 1 = short, 2 = long) */
880 32, /* bitsize */
881 TRUE, /* pc_relative */
882 0, /* bitpos */
883 complain_overflow_dont,/* complain_on_overflow */
884 bfd_elf_generic_reloc, /* special_function */
885 "R_ARM_REL32_NOI", /* name */
886 FALSE, /* partial_inplace */
887 0xffffffff, /* src_mask */
888 0xffffffff, /* dst_mask */
889 FALSE), /* pcrel_offset */
7f266840 890
4962c51a
MS
891 /* Group relocations. */
892
893 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
894 0, /* rightshift */
895 2, /* size (0 = byte, 1 = short, 2 = long) */
896 32, /* bitsize */
897 TRUE, /* pc_relative */
898 0, /* bitpos */
899 complain_overflow_dont,/* complain_on_overflow */
900 bfd_elf_generic_reloc, /* special_function */
901 "R_ARM_ALU_PC_G0_NC", /* name */
902 FALSE, /* partial_inplace */
903 0xffffffff, /* src_mask */
904 0xffffffff, /* dst_mask */
905 TRUE), /* pcrel_offset */
906
907 HOWTO (R_ARM_ALU_PC_G0, /* type */
908 0, /* rightshift */
909 2, /* size (0 = byte, 1 = short, 2 = long) */
910 32, /* bitsize */
911 TRUE, /* pc_relative */
912 0, /* bitpos */
913 complain_overflow_dont,/* complain_on_overflow */
914 bfd_elf_generic_reloc, /* special_function */
915 "R_ARM_ALU_PC_G0", /* name */
916 FALSE, /* partial_inplace */
917 0xffffffff, /* src_mask */
918 0xffffffff, /* dst_mask */
919 TRUE), /* pcrel_offset */
920
921 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
922 0, /* rightshift */
923 2, /* size (0 = byte, 1 = short, 2 = long) */
924 32, /* bitsize */
925 TRUE, /* pc_relative */
926 0, /* bitpos */
927 complain_overflow_dont,/* complain_on_overflow */
928 bfd_elf_generic_reloc, /* special_function */
929 "R_ARM_ALU_PC_G1_NC", /* name */
930 FALSE, /* partial_inplace */
931 0xffffffff, /* src_mask */
932 0xffffffff, /* dst_mask */
933 TRUE), /* pcrel_offset */
934
935 HOWTO (R_ARM_ALU_PC_G1, /* type */
936 0, /* rightshift */
937 2, /* size (0 = byte, 1 = short, 2 = long) */
938 32, /* bitsize */
939 TRUE, /* pc_relative */
940 0, /* bitpos */
941 complain_overflow_dont,/* complain_on_overflow */
942 bfd_elf_generic_reloc, /* special_function */
943 "R_ARM_ALU_PC_G1", /* name */
944 FALSE, /* partial_inplace */
945 0xffffffff, /* src_mask */
946 0xffffffff, /* dst_mask */
947 TRUE), /* pcrel_offset */
948
949 HOWTO (R_ARM_ALU_PC_G2, /* type */
950 0, /* rightshift */
951 2, /* size (0 = byte, 1 = short, 2 = long) */
952 32, /* bitsize */
953 TRUE, /* pc_relative */
954 0, /* bitpos */
955 complain_overflow_dont,/* complain_on_overflow */
956 bfd_elf_generic_reloc, /* special_function */
957 "R_ARM_ALU_PC_G2", /* name */
958 FALSE, /* partial_inplace */
959 0xffffffff, /* src_mask */
960 0xffffffff, /* dst_mask */
961 TRUE), /* pcrel_offset */
962
963 HOWTO (R_ARM_LDR_PC_G1, /* type */
964 0, /* rightshift */
965 2, /* size (0 = byte, 1 = short, 2 = long) */
966 32, /* bitsize */
967 TRUE, /* pc_relative */
968 0, /* bitpos */
969 complain_overflow_dont,/* complain_on_overflow */
970 bfd_elf_generic_reloc, /* special_function */
971 "R_ARM_LDR_PC_G1", /* name */
972 FALSE, /* partial_inplace */
973 0xffffffff, /* src_mask */
974 0xffffffff, /* dst_mask */
975 TRUE), /* pcrel_offset */
976
977 HOWTO (R_ARM_LDR_PC_G2, /* type */
978 0, /* rightshift */
979 2, /* size (0 = byte, 1 = short, 2 = long) */
980 32, /* bitsize */
981 TRUE, /* pc_relative */
982 0, /* bitpos */
983 complain_overflow_dont,/* complain_on_overflow */
984 bfd_elf_generic_reloc, /* special_function */
985 "R_ARM_LDR_PC_G2", /* name */
986 FALSE, /* partial_inplace */
987 0xffffffff, /* src_mask */
988 0xffffffff, /* dst_mask */
989 TRUE), /* pcrel_offset */
990
991 HOWTO (R_ARM_LDRS_PC_G0, /* type */
992 0, /* rightshift */
993 2, /* size (0 = byte, 1 = short, 2 = long) */
994 32, /* bitsize */
995 TRUE, /* pc_relative */
996 0, /* bitpos */
997 complain_overflow_dont,/* complain_on_overflow */
998 bfd_elf_generic_reloc, /* special_function */
999 "R_ARM_LDRS_PC_G0", /* name */
1000 FALSE, /* partial_inplace */
1001 0xffffffff, /* src_mask */
1002 0xffffffff, /* dst_mask */
1003 TRUE), /* pcrel_offset */
1004
1005 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1006 0, /* rightshift */
1007 2, /* size (0 = byte, 1 = short, 2 = long) */
1008 32, /* bitsize */
1009 TRUE, /* pc_relative */
1010 0, /* bitpos */
1011 complain_overflow_dont,/* complain_on_overflow */
1012 bfd_elf_generic_reloc, /* special_function */
1013 "R_ARM_LDRS_PC_G1", /* name */
1014 FALSE, /* partial_inplace */
1015 0xffffffff, /* src_mask */
1016 0xffffffff, /* dst_mask */
1017 TRUE), /* pcrel_offset */
1018
1019 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1020 0, /* rightshift */
1021 2, /* size (0 = byte, 1 = short, 2 = long) */
1022 32, /* bitsize */
1023 TRUE, /* pc_relative */
1024 0, /* bitpos */
1025 complain_overflow_dont,/* complain_on_overflow */
1026 bfd_elf_generic_reloc, /* special_function */
1027 "R_ARM_LDRS_PC_G2", /* name */
1028 FALSE, /* partial_inplace */
1029 0xffffffff, /* src_mask */
1030 0xffffffff, /* dst_mask */
1031 TRUE), /* pcrel_offset */
1032
1033 HOWTO (R_ARM_LDC_PC_G0, /* type */
1034 0, /* rightshift */
1035 2, /* size (0 = byte, 1 = short, 2 = long) */
1036 32, /* bitsize */
1037 TRUE, /* pc_relative */
1038 0, /* bitpos */
1039 complain_overflow_dont,/* complain_on_overflow */
1040 bfd_elf_generic_reloc, /* special_function */
1041 "R_ARM_LDC_PC_G0", /* name */
1042 FALSE, /* partial_inplace */
1043 0xffffffff, /* src_mask */
1044 0xffffffff, /* dst_mask */
1045 TRUE), /* pcrel_offset */
1046
1047 HOWTO (R_ARM_LDC_PC_G1, /* type */
1048 0, /* rightshift */
1049 2, /* size (0 = byte, 1 = short, 2 = long) */
1050 32, /* bitsize */
1051 TRUE, /* pc_relative */
1052 0, /* bitpos */
1053 complain_overflow_dont,/* complain_on_overflow */
1054 bfd_elf_generic_reloc, /* special_function */
1055 "R_ARM_LDC_PC_G1", /* name */
1056 FALSE, /* partial_inplace */
1057 0xffffffff, /* src_mask */
1058 0xffffffff, /* dst_mask */
1059 TRUE), /* pcrel_offset */
1060
1061 HOWTO (R_ARM_LDC_PC_G2, /* type */
1062 0, /* rightshift */
1063 2, /* size (0 = byte, 1 = short, 2 = long) */
1064 32, /* bitsize */
1065 TRUE, /* pc_relative */
1066 0, /* bitpos */
1067 complain_overflow_dont,/* complain_on_overflow */
1068 bfd_elf_generic_reloc, /* special_function */
1069 "R_ARM_LDC_PC_G2", /* name */
1070 FALSE, /* partial_inplace */
1071 0xffffffff, /* src_mask */
1072 0xffffffff, /* dst_mask */
1073 TRUE), /* pcrel_offset */
1074
1075 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1076 0, /* rightshift */
1077 2, /* size (0 = byte, 1 = short, 2 = long) */
1078 32, /* bitsize */
1079 TRUE, /* pc_relative */
1080 0, /* bitpos */
1081 complain_overflow_dont,/* complain_on_overflow */
1082 bfd_elf_generic_reloc, /* special_function */
1083 "R_ARM_ALU_SB_G0_NC", /* name */
1084 FALSE, /* partial_inplace */
1085 0xffffffff, /* src_mask */
1086 0xffffffff, /* dst_mask */
1087 TRUE), /* pcrel_offset */
1088
1089 HOWTO (R_ARM_ALU_SB_G0, /* type */
1090 0, /* rightshift */
1091 2, /* size (0 = byte, 1 = short, 2 = long) */
1092 32, /* bitsize */
1093 TRUE, /* pc_relative */
1094 0, /* bitpos */
1095 complain_overflow_dont,/* complain_on_overflow */
1096 bfd_elf_generic_reloc, /* special_function */
1097 "R_ARM_ALU_SB_G0", /* name */
1098 FALSE, /* partial_inplace */
1099 0xffffffff, /* src_mask */
1100 0xffffffff, /* dst_mask */
1101 TRUE), /* pcrel_offset */
1102
1103 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1104 0, /* rightshift */
1105 2, /* size (0 = byte, 1 = short, 2 = long) */
1106 32, /* bitsize */
1107 TRUE, /* pc_relative */
1108 0, /* bitpos */
1109 complain_overflow_dont,/* complain_on_overflow */
1110 bfd_elf_generic_reloc, /* special_function */
1111 "R_ARM_ALU_SB_G1_NC", /* name */
1112 FALSE, /* partial_inplace */
1113 0xffffffff, /* src_mask */
1114 0xffffffff, /* dst_mask */
1115 TRUE), /* pcrel_offset */
1116
1117 HOWTO (R_ARM_ALU_SB_G1, /* type */
1118 0, /* rightshift */
1119 2, /* size (0 = byte, 1 = short, 2 = long) */
1120 32, /* bitsize */
1121 TRUE, /* pc_relative */
1122 0, /* bitpos */
1123 complain_overflow_dont,/* complain_on_overflow */
1124 bfd_elf_generic_reloc, /* special_function */
1125 "R_ARM_ALU_SB_G1", /* name */
1126 FALSE, /* partial_inplace */
1127 0xffffffff, /* src_mask */
1128 0xffffffff, /* dst_mask */
1129 TRUE), /* pcrel_offset */
1130
1131 HOWTO (R_ARM_ALU_SB_G2, /* type */
1132 0, /* rightshift */
1133 2, /* size (0 = byte, 1 = short, 2 = long) */
1134 32, /* bitsize */
1135 TRUE, /* pc_relative */
1136 0, /* bitpos */
1137 complain_overflow_dont,/* complain_on_overflow */
1138 bfd_elf_generic_reloc, /* special_function */
1139 "R_ARM_ALU_SB_G2", /* name */
1140 FALSE, /* partial_inplace */
1141 0xffffffff, /* src_mask */
1142 0xffffffff, /* dst_mask */
1143 TRUE), /* pcrel_offset */
1144
1145 HOWTO (R_ARM_LDR_SB_G0, /* type */
1146 0, /* rightshift */
1147 2, /* size (0 = byte, 1 = short, 2 = long) */
1148 32, /* bitsize */
1149 TRUE, /* pc_relative */
1150 0, /* bitpos */
1151 complain_overflow_dont,/* complain_on_overflow */
1152 bfd_elf_generic_reloc, /* special_function */
1153 "R_ARM_LDR_SB_G0", /* name */
1154 FALSE, /* partial_inplace */
1155 0xffffffff, /* src_mask */
1156 0xffffffff, /* dst_mask */
1157 TRUE), /* pcrel_offset */
1158
1159 HOWTO (R_ARM_LDR_SB_G1, /* type */
1160 0, /* rightshift */
1161 2, /* size (0 = byte, 1 = short, 2 = long) */
1162 32, /* bitsize */
1163 TRUE, /* pc_relative */
1164 0, /* bitpos */
1165 complain_overflow_dont,/* complain_on_overflow */
1166 bfd_elf_generic_reloc, /* special_function */
1167 "R_ARM_LDR_SB_G1", /* name */
1168 FALSE, /* partial_inplace */
1169 0xffffffff, /* src_mask */
1170 0xffffffff, /* dst_mask */
1171 TRUE), /* pcrel_offset */
1172
1173 HOWTO (R_ARM_LDR_SB_G2, /* type */
1174 0, /* rightshift */
1175 2, /* size (0 = byte, 1 = short, 2 = long) */
1176 32, /* bitsize */
1177 TRUE, /* pc_relative */
1178 0, /* bitpos */
1179 complain_overflow_dont,/* complain_on_overflow */
1180 bfd_elf_generic_reloc, /* special_function */
1181 "R_ARM_LDR_SB_G2", /* name */
1182 FALSE, /* partial_inplace */
1183 0xffffffff, /* src_mask */
1184 0xffffffff, /* dst_mask */
1185 TRUE), /* pcrel_offset */
1186
1187 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1188 0, /* rightshift */
1189 2, /* size (0 = byte, 1 = short, 2 = long) */
1190 32, /* bitsize */
1191 TRUE, /* pc_relative */
1192 0, /* bitpos */
1193 complain_overflow_dont,/* complain_on_overflow */
1194 bfd_elf_generic_reloc, /* special_function */
1195 "R_ARM_LDRS_SB_G0", /* name */
1196 FALSE, /* partial_inplace */
1197 0xffffffff, /* src_mask */
1198 0xffffffff, /* dst_mask */
1199 TRUE), /* pcrel_offset */
1200
1201 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1202 0, /* rightshift */
1203 2, /* size (0 = byte, 1 = short, 2 = long) */
1204 32, /* bitsize */
1205 TRUE, /* pc_relative */
1206 0, /* bitpos */
1207 complain_overflow_dont,/* complain_on_overflow */
1208 bfd_elf_generic_reloc, /* special_function */
1209 "R_ARM_LDRS_SB_G1", /* name */
1210 FALSE, /* partial_inplace */
1211 0xffffffff, /* src_mask */
1212 0xffffffff, /* dst_mask */
1213 TRUE), /* pcrel_offset */
1214
1215 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1216 0, /* rightshift */
1217 2, /* size (0 = byte, 1 = short, 2 = long) */
1218 32, /* bitsize */
1219 TRUE, /* pc_relative */
1220 0, /* bitpos */
1221 complain_overflow_dont,/* complain_on_overflow */
1222 bfd_elf_generic_reloc, /* special_function */
1223 "R_ARM_LDRS_SB_G2", /* name */
1224 FALSE, /* partial_inplace */
1225 0xffffffff, /* src_mask */
1226 0xffffffff, /* dst_mask */
1227 TRUE), /* pcrel_offset */
1228
1229 HOWTO (R_ARM_LDC_SB_G0, /* type */
1230 0, /* rightshift */
1231 2, /* size (0 = byte, 1 = short, 2 = long) */
1232 32, /* bitsize */
1233 TRUE, /* pc_relative */
1234 0, /* bitpos */
1235 complain_overflow_dont,/* complain_on_overflow */
1236 bfd_elf_generic_reloc, /* special_function */
1237 "R_ARM_LDC_SB_G0", /* name */
1238 FALSE, /* partial_inplace */
1239 0xffffffff, /* src_mask */
1240 0xffffffff, /* dst_mask */
1241 TRUE), /* pcrel_offset */
1242
1243 HOWTO (R_ARM_LDC_SB_G1, /* type */
1244 0, /* rightshift */
1245 2, /* size (0 = byte, 1 = short, 2 = long) */
1246 32, /* bitsize */
1247 TRUE, /* pc_relative */
1248 0, /* bitpos */
1249 complain_overflow_dont,/* complain_on_overflow */
1250 bfd_elf_generic_reloc, /* special_function */
1251 "R_ARM_LDC_SB_G1", /* name */
1252 FALSE, /* partial_inplace */
1253 0xffffffff, /* src_mask */
1254 0xffffffff, /* dst_mask */
1255 TRUE), /* pcrel_offset */
1256
1257 HOWTO (R_ARM_LDC_SB_G2, /* type */
1258 0, /* rightshift */
1259 2, /* size (0 = byte, 1 = short, 2 = long) */
1260 32, /* bitsize */
1261 TRUE, /* pc_relative */
1262 0, /* bitpos */
1263 complain_overflow_dont,/* complain_on_overflow */
1264 bfd_elf_generic_reloc, /* special_function */
1265 "R_ARM_LDC_SB_G2", /* name */
1266 FALSE, /* partial_inplace */
1267 0xffffffff, /* src_mask */
1268 0xffffffff, /* dst_mask */
1269 TRUE), /* pcrel_offset */
1270
1271 /* End of group relocations. */
c19d1205 1272
c19d1205
ZW
1273 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1274 0, /* rightshift */
1275 2, /* size (0 = byte, 1 = short, 2 = long) */
1276 16, /* bitsize */
1277 FALSE, /* pc_relative */
1278 0, /* bitpos */
1279 complain_overflow_dont,/* complain_on_overflow */
1280 bfd_elf_generic_reloc, /* special_function */
1281 "R_ARM_MOVW_BREL_NC", /* name */
1282 FALSE, /* partial_inplace */
1283 0x0000ffff, /* src_mask */
1284 0x0000ffff, /* dst_mask */
1285 FALSE), /* pcrel_offset */
1286
1287 HOWTO (R_ARM_MOVT_BREL, /* type */
1288 0, /* rightshift */
1289 2, /* size (0 = byte, 1 = short, 2 = long) */
1290 16, /* bitsize */
1291 FALSE, /* pc_relative */
1292 0, /* bitpos */
1293 complain_overflow_bitfield,/* complain_on_overflow */
1294 bfd_elf_generic_reloc, /* special_function */
1295 "R_ARM_MOVT_BREL", /* name */
1296 FALSE, /* partial_inplace */
1297 0x0000ffff, /* src_mask */
1298 0x0000ffff, /* dst_mask */
1299 FALSE), /* pcrel_offset */
1300
1301 HOWTO (R_ARM_MOVW_BREL, /* type */
1302 0, /* rightshift */
1303 2, /* size (0 = byte, 1 = short, 2 = long) */
1304 16, /* bitsize */
1305 FALSE, /* pc_relative */
1306 0, /* bitpos */
1307 complain_overflow_dont,/* complain_on_overflow */
1308 bfd_elf_generic_reloc, /* special_function */
1309 "R_ARM_MOVW_BREL", /* name */
1310 FALSE, /* partial_inplace */
1311 0x0000ffff, /* src_mask */
1312 0x0000ffff, /* dst_mask */
1313 FALSE), /* pcrel_offset */
1314
1315 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1316 0, /* rightshift */
1317 2, /* size (0 = byte, 1 = short, 2 = long) */
1318 16, /* bitsize */
1319 FALSE, /* pc_relative */
1320 0, /* bitpos */
1321 complain_overflow_dont,/* complain_on_overflow */
1322 bfd_elf_generic_reloc, /* special_function */
1323 "R_ARM_THM_MOVW_BREL_NC",/* name */
1324 FALSE, /* partial_inplace */
1325 0x040f70ff, /* src_mask */
1326 0x040f70ff, /* dst_mask */
1327 FALSE), /* pcrel_offset */
1328
1329 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1330 0, /* rightshift */
1331 2, /* size (0 = byte, 1 = short, 2 = long) */
1332 16, /* bitsize */
1333 FALSE, /* pc_relative */
1334 0, /* bitpos */
1335 complain_overflow_bitfield,/* complain_on_overflow */
1336 bfd_elf_generic_reloc, /* special_function */
1337 "R_ARM_THM_MOVT_BREL", /* name */
1338 FALSE, /* partial_inplace */
1339 0x040f70ff, /* src_mask */
1340 0x040f70ff, /* dst_mask */
1341 FALSE), /* pcrel_offset */
1342
1343 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1344 0, /* rightshift */
1345 2, /* size (0 = byte, 1 = short, 2 = long) */
1346 16, /* bitsize */
1347 FALSE, /* pc_relative */
1348 0, /* bitpos */
1349 complain_overflow_dont,/* complain_on_overflow */
1350 bfd_elf_generic_reloc, /* special_function */
1351 "R_ARM_THM_MOVW_BREL", /* name */
1352 FALSE, /* partial_inplace */
1353 0x040f70ff, /* src_mask */
1354 0x040f70ff, /* dst_mask */
1355 FALSE), /* pcrel_offset */
1356
8029a119 1357 EMPTY_HOWTO (90), /* Unallocated. */
c19d1205
ZW
1358 EMPTY_HOWTO (91),
1359 EMPTY_HOWTO (92),
1360 EMPTY_HOWTO (93),
1361
1362 HOWTO (R_ARM_PLT32_ABS, /* type */
1363 0, /* rightshift */
1364 2, /* size (0 = byte, 1 = short, 2 = long) */
1365 32, /* bitsize */
1366 FALSE, /* pc_relative */
1367 0, /* bitpos */
1368 complain_overflow_dont,/* complain_on_overflow */
1369 bfd_elf_generic_reloc, /* special_function */
1370 "R_ARM_PLT32_ABS", /* name */
1371 FALSE, /* partial_inplace */
1372 0xffffffff, /* src_mask */
1373 0xffffffff, /* dst_mask */
1374 FALSE), /* pcrel_offset */
1375
1376 HOWTO (R_ARM_GOT_ABS, /* type */
1377 0, /* rightshift */
1378 2, /* size (0 = byte, 1 = short, 2 = long) */
1379 32, /* bitsize */
1380 FALSE, /* pc_relative */
1381 0, /* bitpos */
1382 complain_overflow_dont,/* complain_on_overflow */
1383 bfd_elf_generic_reloc, /* special_function */
1384 "R_ARM_GOT_ABS", /* name */
1385 FALSE, /* partial_inplace */
1386 0xffffffff, /* src_mask */
1387 0xffffffff, /* dst_mask */
1388 FALSE), /* pcrel_offset */
1389
1390 HOWTO (R_ARM_GOT_PREL, /* type */
1391 0, /* rightshift */
1392 2, /* size (0 = byte, 1 = short, 2 = long) */
1393 32, /* bitsize */
1394 TRUE, /* pc_relative */
1395 0, /* bitpos */
1396 complain_overflow_dont, /* complain_on_overflow */
1397 bfd_elf_generic_reloc, /* special_function */
1398 "R_ARM_GOT_PREL", /* name */
1399 FALSE, /* partial_inplace */
1400 0xffffffff, /* src_mask */
1401 0xffffffff, /* dst_mask */
1402 TRUE), /* pcrel_offset */
1403
1404 HOWTO (R_ARM_GOT_BREL12, /* type */
1405 0, /* rightshift */
1406 2, /* size (0 = byte, 1 = short, 2 = long) */
1407 12, /* bitsize */
1408 FALSE, /* pc_relative */
1409 0, /* bitpos */
1410 complain_overflow_bitfield,/* complain_on_overflow */
1411 bfd_elf_generic_reloc, /* special_function */
1412 "R_ARM_GOT_BREL12", /* name */
1413 FALSE, /* partial_inplace */
1414 0x00000fff, /* src_mask */
1415 0x00000fff, /* dst_mask */
1416 FALSE), /* pcrel_offset */
1417
1418 HOWTO (R_ARM_GOTOFF12, /* type */
1419 0, /* rightshift */
1420 2, /* size (0 = byte, 1 = short, 2 = long) */
1421 12, /* bitsize */
1422 FALSE, /* pc_relative */
1423 0, /* bitpos */
1424 complain_overflow_bitfield,/* complain_on_overflow */
1425 bfd_elf_generic_reloc, /* special_function */
1426 "R_ARM_GOTOFF12", /* name */
1427 FALSE, /* partial_inplace */
1428 0x00000fff, /* src_mask */
1429 0x00000fff, /* dst_mask */
1430 FALSE), /* pcrel_offset */
1431
1432 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1433
1434 /* GNU extension to record C++ vtable member usage */
1435 HOWTO (R_ARM_GNU_VTENTRY, /* type */
ba93b8ac
DJ
1436 0, /* rightshift */
1437 2, /* size (0 = byte, 1 = short, 2 = long) */
c19d1205 1438 0, /* bitsize */
ba93b8ac
DJ
1439 FALSE, /* pc_relative */
1440 0, /* bitpos */
c19d1205
ZW
1441 complain_overflow_dont, /* complain_on_overflow */
1442 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1443 "R_ARM_GNU_VTENTRY", /* name */
1444 FALSE, /* partial_inplace */
1445 0, /* src_mask */
1446 0, /* dst_mask */
1447 FALSE), /* pcrel_offset */
1448
1449 /* GNU extension to record C++ vtable hierarchy */
1450 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1451 0, /* rightshift */
1452 2, /* size (0 = byte, 1 = short, 2 = long) */
1453 0, /* bitsize */
1454 FALSE, /* pc_relative */
1455 0, /* bitpos */
1456 complain_overflow_dont, /* complain_on_overflow */
1457 NULL, /* special_function */
1458 "R_ARM_GNU_VTINHERIT", /* name */
1459 FALSE, /* partial_inplace */
1460 0, /* src_mask */
1461 0, /* dst_mask */
1462 FALSE), /* pcrel_offset */
1463
1464 HOWTO (R_ARM_THM_JUMP11, /* type */
1465 1, /* rightshift */
1466 1, /* size (0 = byte, 1 = short, 2 = long) */
1467 11, /* bitsize */
1468 TRUE, /* pc_relative */
1469 0, /* bitpos */
1470 complain_overflow_signed, /* complain_on_overflow */
1471 bfd_elf_generic_reloc, /* special_function */
1472 "R_ARM_THM_JUMP11", /* name */
1473 FALSE, /* partial_inplace */
1474 0x000007ff, /* src_mask */
1475 0x000007ff, /* dst_mask */
1476 TRUE), /* pcrel_offset */
1477
1478 HOWTO (R_ARM_THM_JUMP8, /* type */
1479 1, /* rightshift */
1480 1, /* size (0 = byte, 1 = short, 2 = long) */
1481 8, /* bitsize */
1482 TRUE, /* pc_relative */
1483 0, /* bitpos */
1484 complain_overflow_signed, /* complain_on_overflow */
1485 bfd_elf_generic_reloc, /* special_function */
1486 "R_ARM_THM_JUMP8", /* name */
1487 FALSE, /* partial_inplace */
1488 0x000000ff, /* src_mask */
1489 0x000000ff, /* dst_mask */
1490 TRUE), /* pcrel_offset */
ba93b8ac 1491
c19d1205
ZW
1492 /* TLS relocations */
1493 HOWTO (R_ARM_TLS_GD32, /* type */
ba93b8ac
DJ
1494 0, /* rightshift */
1495 2, /* size (0 = byte, 1 = short, 2 = long) */
1496 32, /* bitsize */
1497 FALSE, /* pc_relative */
1498 0, /* bitpos */
1499 complain_overflow_bitfield,/* complain_on_overflow */
c19d1205
ZW
1500 NULL, /* special_function */
1501 "R_ARM_TLS_GD32", /* name */
ba93b8ac
DJ
1502 TRUE, /* partial_inplace */
1503 0xffffffff, /* src_mask */
1504 0xffffffff, /* dst_mask */
c19d1205 1505 FALSE), /* pcrel_offset */
ba93b8ac 1506
ba93b8ac
DJ
1507 HOWTO (R_ARM_TLS_LDM32, /* type */
1508 0, /* rightshift */
1509 2, /* size (0 = byte, 1 = short, 2 = long) */
1510 32, /* bitsize */
1511 FALSE, /* pc_relative */
1512 0, /* bitpos */
1513 complain_overflow_bitfield,/* complain_on_overflow */
1514 bfd_elf_generic_reloc, /* special_function */
1515 "R_ARM_TLS_LDM32", /* name */
1516 TRUE, /* partial_inplace */
1517 0xffffffff, /* src_mask */
1518 0xffffffff, /* dst_mask */
c19d1205 1519 FALSE), /* pcrel_offset */
ba93b8ac 1520
c19d1205 1521 HOWTO (R_ARM_TLS_LDO32, /* type */
ba93b8ac
DJ
1522 0, /* rightshift */
1523 2, /* size (0 = byte, 1 = short, 2 = long) */
1524 32, /* bitsize */
1525 FALSE, /* pc_relative */
1526 0, /* bitpos */
1527 complain_overflow_bitfield,/* complain_on_overflow */
1528 bfd_elf_generic_reloc, /* special_function */
c19d1205 1529 "R_ARM_TLS_LDO32", /* name */
ba93b8ac
DJ
1530 TRUE, /* partial_inplace */
1531 0xffffffff, /* src_mask */
1532 0xffffffff, /* dst_mask */
c19d1205 1533 FALSE), /* pcrel_offset */
ba93b8ac 1534
ba93b8ac
DJ
1535 HOWTO (R_ARM_TLS_IE32, /* type */
1536 0, /* rightshift */
1537 2, /* size (0 = byte, 1 = short, 2 = long) */
1538 32, /* bitsize */
1539 FALSE, /* pc_relative */
1540 0, /* bitpos */
1541 complain_overflow_bitfield,/* complain_on_overflow */
1542 NULL, /* special_function */
1543 "R_ARM_TLS_IE32", /* name */
1544 TRUE, /* partial_inplace */
1545 0xffffffff, /* src_mask */
1546 0xffffffff, /* dst_mask */
c19d1205 1547 FALSE), /* pcrel_offset */
7f266840 1548
c19d1205 1549 HOWTO (R_ARM_TLS_LE32, /* type */
7f266840
DJ
1550 0, /* rightshift */
1551 2, /* size (0 = byte, 1 = short, 2 = long) */
c19d1205 1552 32, /* bitsize */
7f266840
DJ
1553 FALSE, /* pc_relative */
1554 0, /* bitpos */
c19d1205
ZW
1555 complain_overflow_bitfield,/* complain_on_overflow */
1556 bfd_elf_generic_reloc, /* special_function */
1557 "R_ARM_TLS_LE32", /* name */
1558 TRUE, /* partial_inplace */
1559 0xffffffff, /* src_mask */
1560 0xffffffff, /* dst_mask */
1561 FALSE), /* pcrel_offset */
7f266840 1562
c19d1205
ZW
1563 HOWTO (R_ARM_TLS_LDO12, /* type */
1564 0, /* rightshift */
1565 2, /* size (0 = byte, 1 = short, 2 = long) */
1566 12, /* bitsize */
1567 FALSE, /* pc_relative */
7f266840 1568 0, /* bitpos */
c19d1205 1569 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1570 bfd_elf_generic_reloc, /* special_function */
c19d1205 1571 "R_ARM_TLS_LDO12", /* name */
7f266840 1572 FALSE, /* partial_inplace */
c19d1205
ZW
1573 0x00000fff, /* src_mask */
1574 0x00000fff, /* dst_mask */
1575 FALSE), /* pcrel_offset */
7f266840 1576
c19d1205
ZW
1577 HOWTO (R_ARM_TLS_LE12, /* type */
1578 0, /* rightshift */
1579 2, /* size (0 = byte, 1 = short, 2 = long) */
1580 12, /* bitsize */
1581 FALSE, /* pc_relative */
7f266840 1582 0, /* bitpos */
c19d1205 1583 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1584 bfd_elf_generic_reloc, /* special_function */
c19d1205 1585 "R_ARM_TLS_LE12", /* name */
7f266840 1586 FALSE, /* partial_inplace */
c19d1205
ZW
1587 0x00000fff, /* src_mask */
1588 0x00000fff, /* dst_mask */
1589 FALSE), /* pcrel_offset */
7f266840 1590
c19d1205 1591 HOWTO (R_ARM_TLS_IE12GP, /* type */
7f266840
DJ
1592 0, /* rightshift */
1593 2, /* size (0 = byte, 1 = short, 2 = long) */
c19d1205
ZW
1594 12, /* bitsize */
1595 FALSE, /* pc_relative */
7f266840 1596 0, /* bitpos */
c19d1205 1597 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1598 bfd_elf_generic_reloc, /* special_function */
c19d1205 1599 "R_ARM_TLS_IE12GP", /* name */
7f266840 1600 FALSE, /* partial_inplace */
c19d1205
ZW
1601 0x00000fff, /* src_mask */
1602 0x00000fff, /* dst_mask */
1603 FALSE), /* pcrel_offset */
1604};
1605
1606/* 112-127 private relocations
1607 128 R_ARM_ME_TOO, obsolete
1608 129-255 unallocated in AAELF.
7f266840 1609
c19d1205
ZW
1610 249-255 extended, currently unused, relocations: */
1611
4962c51a 1612static reloc_howto_type elf32_arm_howto_table_2[4] =
7f266840
DJ
1613{
1614 HOWTO (R_ARM_RREL32, /* type */
1615 0, /* rightshift */
1616 0, /* size (0 = byte, 1 = short, 2 = long) */
1617 0, /* bitsize */
1618 FALSE, /* pc_relative */
1619 0, /* bitpos */
1620 complain_overflow_dont,/* complain_on_overflow */
1621 bfd_elf_generic_reloc, /* special_function */
1622 "R_ARM_RREL32", /* name */
1623 FALSE, /* partial_inplace */
1624 0, /* src_mask */
1625 0, /* dst_mask */
1626 FALSE), /* pcrel_offset */
1627
1628 HOWTO (R_ARM_RABS32, /* type */
1629 0, /* rightshift */
1630 0, /* size (0 = byte, 1 = short, 2 = long) */
1631 0, /* bitsize */
1632 FALSE, /* pc_relative */
1633 0, /* bitpos */
1634 complain_overflow_dont,/* complain_on_overflow */
1635 bfd_elf_generic_reloc, /* special_function */
1636 "R_ARM_RABS32", /* name */
1637 FALSE, /* partial_inplace */
1638 0, /* src_mask */
1639 0, /* dst_mask */
1640 FALSE), /* pcrel_offset */
1641
1642 HOWTO (R_ARM_RPC24, /* type */
1643 0, /* rightshift */
1644 0, /* size (0 = byte, 1 = short, 2 = long) */
1645 0, /* bitsize */
1646 FALSE, /* pc_relative */
1647 0, /* bitpos */
1648 complain_overflow_dont,/* complain_on_overflow */
1649 bfd_elf_generic_reloc, /* special_function */
1650 "R_ARM_RPC24", /* name */
1651 FALSE, /* partial_inplace */
1652 0, /* src_mask */
1653 0, /* dst_mask */
1654 FALSE), /* pcrel_offset */
1655
1656 HOWTO (R_ARM_RBASE, /* type */
1657 0, /* rightshift */
1658 0, /* size (0 = byte, 1 = short, 2 = long) */
1659 0, /* bitsize */
1660 FALSE, /* pc_relative */
1661 0, /* bitpos */
1662 complain_overflow_dont,/* complain_on_overflow */
1663 bfd_elf_generic_reloc, /* special_function */
1664 "R_ARM_RBASE", /* name */
1665 FALSE, /* partial_inplace */
1666 0, /* src_mask */
1667 0, /* dst_mask */
1668 FALSE) /* pcrel_offset */
1669};
1670
1671static reloc_howto_type *
1672elf32_arm_howto_from_type (unsigned int r_type)
1673{
906e58ca 1674 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
c19d1205 1675 return &elf32_arm_howto_table_1[r_type];
ba93b8ac 1676
c19d1205 1677 if (r_type >= R_ARM_RREL32
906e58ca 1678 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_2))
4962c51a 1679 return &elf32_arm_howto_table_2[r_type - R_ARM_RREL32];
7f266840 1680
c19d1205 1681 return NULL;
7f266840
DJ
1682}
1683
1684static void
1685elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1686 Elf_Internal_Rela * elf_reloc)
1687{
1688 unsigned int r_type;
1689
1690 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1691 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1692}
1693
1694struct elf32_arm_reloc_map
1695 {
1696 bfd_reloc_code_real_type bfd_reloc_val;
1697 unsigned char elf_reloc_val;
1698 };
1699
1700/* All entries in this list must also be present in elf32_arm_howto_table. */
1701static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1702 {
1703 {BFD_RELOC_NONE, R_ARM_NONE},
1704 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
39b41c9c
PB
1705 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1706 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
7f266840
DJ
1707 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1708 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1709 {BFD_RELOC_32, R_ARM_ABS32},
1710 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1711 {BFD_RELOC_8, R_ARM_ABS8},
1712 {BFD_RELOC_16, R_ARM_ABS16},
1713 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1714 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
c19d1205
ZW
1715 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1716 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1717 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1718 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1719 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1720 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
7f266840
DJ
1721 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1722 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1723 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
c19d1205 1724 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
7f266840
DJ
1725 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1726 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1727 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1728 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1729 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1730 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1731 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
ba93b8ac
DJ
1732 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1733 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1734 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1735 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1736 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1737 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1738 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1739 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1740 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1741 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
c19d1205
ZW
1742 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1743 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
b6895b4f
PB
1744 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1745 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1746 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1747 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1748 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1749 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1750 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1751 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
4962c51a
MS
1752 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1753 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1754 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1755 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1756 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1757 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1758 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1759 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1760 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1761 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1762 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1763 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1764 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1765 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1766 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1767 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1768 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1769 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1770 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1771 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1772 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1773 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1774 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1775 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1776 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1777 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1778 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
845b51d6
PB
1779 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1780 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}
7f266840
DJ
1781 };
1782
1783static reloc_howto_type *
f1c71a59
ZW
1784elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1785 bfd_reloc_code_real_type code)
7f266840
DJ
1786{
1787 unsigned int i;
8029a119 1788
906e58ca 1789 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
c19d1205
ZW
1790 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1791 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
7f266840 1792
c19d1205 1793 return NULL;
7f266840
DJ
1794}
1795
157090f7
AM
1796static reloc_howto_type *
1797elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1798 const char *r_name)
1799{
1800 unsigned int i;
1801
906e58ca 1802 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
157090f7
AM
1803 if (elf32_arm_howto_table_1[i].name != NULL
1804 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1805 return &elf32_arm_howto_table_1[i];
1806
906e58ca 1807 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
157090f7
AM
1808 if (elf32_arm_howto_table_2[i].name != NULL
1809 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1810 return &elf32_arm_howto_table_2[i];
1811
1812 return NULL;
1813}
1814
906e58ca
NC
1815/* Support for core dump NOTE sections. */
1816
7f266840 1817static bfd_boolean
f1c71a59 1818elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7f266840
DJ
1819{
1820 int offset;
1821 size_t size;
1822
1823 switch (note->descsz)
1824 {
1825 default:
1826 return FALSE;
1827
8029a119 1828 case 148: /* Linux/ARM 32-bit. */
7f266840
DJ
1829 /* pr_cursig */
1830 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1831
1832 /* pr_pid */
1833 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1834
1835 /* pr_reg */
1836 offset = 72;
1837 size = 72;
1838
1839 break;
1840 }
1841
1842 /* Make a ".reg/999" section. */
1843 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1844 size, note->descpos + offset);
1845}
1846
1847static bfd_boolean
f1c71a59 1848elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7f266840
DJ
1849{
1850 switch (note->descsz)
1851 {
1852 default:
1853 return FALSE;
1854
8029a119 1855 case 124: /* Linux/ARM elf_prpsinfo. */
7f266840
DJ
1856 elf_tdata (abfd)->core_program
1857 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1858 elf_tdata (abfd)->core_command
1859 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1860 }
1861
1862 /* Note that for some reason, a spurious space is tacked
1863 onto the end of the args in some (at least one anyway)
1864 implementations, so strip it off if it exists. */
7f266840
DJ
1865 {
1866 char *command = elf_tdata (abfd)->core_command;
1867 int n = strlen (command);
1868
1869 if (0 < n && command[n - 1] == ' ')
1870 command[n - 1] = '\0';
1871 }
1872
1873 return TRUE;
1874}
1875
1876#define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1877#define TARGET_LITTLE_NAME "elf32-littlearm"
1878#define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1879#define TARGET_BIG_NAME "elf32-bigarm"
1880
1881#define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1882#define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1883
252b5132
RH
1884typedef unsigned long int insn32;
1885typedef unsigned short int insn16;
1886
3a4a14e9
PB
1887/* In lieu of proper flags, assume all EABIv4 or later objects are
1888 interworkable. */
57e8b36a 1889#define INTERWORK_FLAG(abfd) \
3a4a14e9 1890 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
3e6b1042
DJ
1891 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
1892 || ((abfd)->flags & BFD_LINKER_CREATED))
9b485d32 1893
252b5132
RH
1894/* The linker script knows the section names for placement.
1895 The entry_names are used to do simple name mangling on the stubs.
1896 Given a function name, and its type, the stub can be found. The
9b485d32 1897 name can be changed. The only requirement is the %s be present. */
252b5132
RH
1898#define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
1899#define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
1900
1901#define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
1902#define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
1903
c7b8f16e
JB
1904#define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
1905#define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
1906
845b51d6
PB
1907#define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
1908#define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
1909
7413f23f
DJ
1910#define STUB_ENTRY_NAME "__%s_veneer"
1911
252b5132
RH
1912/* The name of the dynamic interpreter. This is put in the .interp
1913 section. */
1914#define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
1915
5e681ec4
PB
1916#ifdef FOUR_WORD_PLT
1917
252b5132
RH
1918/* The first entry in a procedure linkage table looks like
1919 this. It is set up so that any shared library function that is
59f2c4e7 1920 called before the relocation has been set up calls the dynamic
9b485d32 1921 linker first. */
e5a52504 1922static const bfd_vma elf32_arm_plt0_entry [] =
5e681ec4
PB
1923 {
1924 0xe52de004, /* str lr, [sp, #-4]! */
1925 0xe59fe010, /* ldr lr, [pc, #16] */
1926 0xe08fe00e, /* add lr, pc, lr */
1927 0xe5bef008, /* ldr pc, [lr, #8]! */
1928 };
1929
1930/* Subsequent entries in a procedure linkage table look like
1931 this. */
e5a52504 1932static const bfd_vma elf32_arm_plt_entry [] =
5e681ec4
PB
1933 {
1934 0xe28fc600, /* add ip, pc, #NN */
1935 0xe28cca00, /* add ip, ip, #NN */
1936 0xe5bcf000, /* ldr pc, [ip, #NN]! */
1937 0x00000000, /* unused */
1938 };
1939
1940#else
1941
5e681ec4
PB
1942/* The first entry in a procedure linkage table looks like
1943 this. It is set up so that any shared library function that is
1944 called before the relocation has been set up calls the dynamic
1945 linker first. */
e5a52504 1946static const bfd_vma elf32_arm_plt0_entry [] =
917583ad 1947 {
5e681ec4
PB
1948 0xe52de004, /* str lr, [sp, #-4]! */
1949 0xe59fe004, /* ldr lr, [pc, #4] */
1950 0xe08fe00e, /* add lr, pc, lr */
1951 0xe5bef008, /* ldr pc, [lr, #8]! */
1952 0x00000000, /* &GOT[0] - . */
917583ad 1953 };
252b5132
RH
1954
1955/* Subsequent entries in a procedure linkage table look like
1956 this. */
e5a52504 1957static const bfd_vma elf32_arm_plt_entry [] =
5e681ec4
PB
1958 {
1959 0xe28fc600, /* add ip, pc, #0xNN00000 */
1960 0xe28cca00, /* add ip, ip, #0xNN000 */
1961 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
1962 };
1963
1964#endif
252b5132 1965
00a97672
RS
1966/* The format of the first entry in the procedure linkage table
1967 for a VxWorks executable. */
1968static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
1969 {
1970 0xe52dc008, /* str ip,[sp,#-8]! */
1971 0xe59fc000, /* ldr ip,[pc] */
1972 0xe59cf008, /* ldr pc,[ip,#8] */
1973 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
1974 };
1975
1976/* The format of subsequent entries in a VxWorks executable. */
1977static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
1978 {
1979 0xe59fc000, /* ldr ip,[pc] */
1980 0xe59cf000, /* ldr pc,[ip] */
1981 0x00000000, /* .long @got */
1982 0xe59fc000, /* ldr ip,[pc] */
1983 0xea000000, /* b _PLT */
1984 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1985 };
1986
1987/* The format of entries in a VxWorks shared library. */
1988static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
1989 {
1990 0xe59fc000, /* ldr ip,[pc] */
1991 0xe79cf009, /* ldr pc,[ip,r9] */
1992 0x00000000, /* .long @got */
1993 0xe59fc000, /* ldr ip,[pc] */
1994 0xe599f008, /* ldr pc,[r9,#8] */
1995 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1996 };
1997
b7693d02
DJ
1998/* An initial stub used if the PLT entry is referenced from Thumb code. */
1999#define PLT_THUMB_STUB_SIZE 4
2000static const bfd_vma elf32_arm_plt_thumb_stub [] =
2001 {
2002 0x4778, /* bx pc */
2003 0x46c0 /* nop */
2004 };
2005
e5a52504
MM
2006/* The entries in a PLT when using a DLL-based target with multiple
2007 address spaces. */
906e58ca 2008static const bfd_vma elf32_arm_symbian_plt_entry [] =
e5a52504 2009 {
83a358aa 2010 0xe51ff004, /* ldr pc, [pc, #-4] */
e5a52504
MM
2011 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2012 };
2013
906e58ca
NC
2014#define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2015#define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2016#define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2017#define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2018#define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2019#define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2020
461a49ca
DJ
2021enum stub_insn_type
2022 {
2023 THUMB16_TYPE = 1,
2024 THUMB32_TYPE,
2025 ARM_TYPE,
2026 DATA_TYPE
2027 };
2028
48229727
JB
2029#define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2030/* A bit of a hack. A Thumb conditional branch, in which the proper condition
2031 is inserted in arm_build_one_stub(). */
2032#define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2033#define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2034#define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2035#define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2036#define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2037#define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
461a49ca
DJ
2038
2039typedef struct
2040{
2041 bfd_vma data;
2042 enum stub_insn_type type;
ebe24dd4 2043 unsigned int r_type;
461a49ca
DJ
2044 int reloc_addend;
2045} insn_sequence;
2046
fea2b4d6
CL
2047/* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2048 to reach the stub if necessary. */
461a49ca 2049static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
906e58ca 2050 {
461a49ca
DJ
2051 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2052 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
906e58ca
NC
2053 };
2054
fea2b4d6
CL
2055/* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2056 available. */
461a49ca 2057static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
906e58ca 2058 {
461a49ca
DJ
2059 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2060 ARM_INSN(0xe12fff1c), /* bx ip */
2061 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
906e58ca
NC
2062 };
2063
d3626fb0 2064/* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
461a49ca 2065static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
906e58ca 2066 {
461a49ca
DJ
2067 THUMB16_INSN(0xb401), /* push {r0} */
2068 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2069 THUMB16_INSN(0x4684), /* mov ip, r0 */
2070 THUMB16_INSN(0xbc01), /* pop {r0} */
2071 THUMB16_INSN(0x4760), /* bx ip */
2072 THUMB16_INSN(0xbf00), /* nop */
2073 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
906e58ca
NC
2074 };
2075
d3626fb0
CL
2076/* V4T Thumb -> Thumb long branch stub. Using the stack is not
2077 allowed. */
2078static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2079 {
2080 THUMB16_INSN(0x4778), /* bx pc */
2081 THUMB16_INSN(0x46c0), /* nop */
2082 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2083 ARM_INSN(0xe12fff1c), /* bx ip */
2084 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2085 };
2086
fea2b4d6
CL
2087/* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2088 available. */
461a49ca 2089static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
906e58ca 2090 {
461a49ca
DJ
2091 THUMB16_INSN(0x4778), /* bx pc */
2092 THUMB16_INSN(0x46c0), /* nop */
2093 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2094 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
906e58ca
NC
2095 };
2096
fea2b4d6
CL
2097/* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2098 one, when the destination is close enough. */
461a49ca 2099static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
c820be07 2100 {
461a49ca
DJ
2101 THUMB16_INSN(0x4778), /* bx pc */
2102 THUMB16_INSN(0x46c0), /* nop */
2103 ARM_REL_INSN(0xea000000, -8), /* b (X-8) */
c820be07
NC
2104 };
2105
cf3eccff 2106/* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
fea2b4d6 2107 blx to reach the stub if necessary. */
cf3eccff 2108static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
906e58ca 2109 {
461a49ca
DJ
2110 ARM_INSN(0xe59fc000), /* ldr r12, [pc] */
2111 ARM_INSN(0xe08ff00c), /* add pc, pc, ip */
2112 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
906e58ca
NC
2113 };
2114
cf3eccff
DJ
2115/* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2116 blx to reach the stub if necessary. We can not add into pc;
2117 it is not guaranteed to mode switch (different in ARMv6 and
2118 ARMv7). */
2119static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2120 {
2121 ARM_INSN(0xe59fc004), /* ldr r12, [pc, #4] */
2122 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2123 ARM_INSN(0xe12fff1c), /* bx ip */
2124 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2125 };
2126
ebe24dd4
CL
2127/* V4T ARM -> ARM long branch stub, PIC. */
2128static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2129 {
2130 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2131 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2132 ARM_INSN(0xe12fff1c), /* bx ip */
2133 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2134 };
2135
2136/* V4T Thumb -> ARM long branch stub, PIC. */
2137static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2138 {
2139 THUMB16_INSN(0x4778), /* bx pc */
2140 THUMB16_INSN(0x46c0), /* nop */
2141 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2142 ARM_INSN(0xe08cf00f), /* add pc, ip, pc */
2143 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2144 };
2145
d3626fb0
CL
2146/* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2147 architectures. */
ebe24dd4
CL
2148static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2149 {
2150 THUMB16_INSN(0xb401), /* push {r0} */
2151 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2152 THUMB16_INSN(0x46fc), /* mov ip, pc */
2153 THUMB16_INSN(0x4484), /* add ip, r0 */
2154 THUMB16_INSN(0xbc01), /* pop {r0} */
2155 THUMB16_INSN(0x4760), /* bx ip */
2156 DATA_WORD(0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2157 };
2158
d3626fb0
CL
2159/* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2160 allowed. */
2161static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2162 {
2163 THUMB16_INSN(0x4778), /* bx pc */
2164 THUMB16_INSN(0x46c0), /* nop */
2165 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2166 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2167 ARM_INSN(0xe12fff1c), /* bx ip */
2168 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2169 };
2170
48229727
JB
2171/* Cortex-A8 erratum-workaround stubs. */
2172
2173/* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2174 can't use a conditional branch to reach this stub). */
2175
2176static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2177 {
2178 THUMB16_BCOND_INSN(0xd001), /* b<cond>.n true. */
2179 THUMB32_B_INSN(0xf000b800, -4), /* b.w insn_after_original_branch. */
2180 THUMB32_B_INSN(0xf000b800, -4) /* true: b.w original_branch_dest. */
2181 };
2182
2183/* Stub used for b.w and bl.w instructions. */
2184
2185static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2186 {
2187 THUMB32_B_INSN(0xf000b800, -4) /* b.w original_branch_dest. */
2188 };
2189
2190static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2191 {
2192 THUMB32_B_INSN(0xf000b800, -4) /* b.w original_branch_dest. */
2193 };
2194
2195/* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2196 instruction (which switches to ARM mode) to point to this stub. Jump to the
2197 real destination using an ARM-mode branch. */
2198
2199static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2200 {
2201 ARM_REL_INSN(0xea000000, -8) /* b original_branch_dest. */
2202 };
2203
906e58ca
NC
2204/* Section name for stubs is the associated section name plus this
2205 string. */
2206#define STUB_SUFFIX ".stub"
2207
738a79f6
CL
2208/* One entry per long/short branch stub defined above. */
2209#define DEF_STUBS \
2210 DEF_STUB(long_branch_any_any) \
2211 DEF_STUB(long_branch_v4t_arm_thumb) \
2212 DEF_STUB(long_branch_thumb_only) \
2213 DEF_STUB(long_branch_v4t_thumb_thumb) \
2214 DEF_STUB(long_branch_v4t_thumb_arm) \
2215 DEF_STUB(short_branch_v4t_thumb_arm) \
2216 DEF_STUB(long_branch_any_arm_pic) \
2217 DEF_STUB(long_branch_any_thumb_pic) \
2218 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2219 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2220 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
48229727
JB
2221 DEF_STUB(long_branch_thumb_only_pic) \
2222 DEF_STUB(a8_veneer_b_cond) \
2223 DEF_STUB(a8_veneer_b) \
2224 DEF_STUB(a8_veneer_bl) \
2225 DEF_STUB(a8_veneer_blx)
738a79f6
CL
2226
2227#define DEF_STUB(x) arm_stub_##x,
2228enum elf32_arm_stub_type {
906e58ca 2229 arm_stub_none,
738a79f6 2230 DEF_STUBS
eb7c4339
NS
2231 /* Note the first a8_veneer type */
2232 arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond
738a79f6
CL
2233};
2234#undef DEF_STUB
2235
2236typedef struct
2237{
d3ce72d0 2238 const insn_sequence* template_sequence;
738a79f6
CL
2239 int template_size;
2240} stub_def;
2241
2242#define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2243static const stub_def stub_definitions[] = {
2244 {NULL, 0},
2245 DEF_STUBS
906e58ca
NC
2246};
2247
2248struct elf32_arm_stub_hash_entry
2249{
2250 /* Base hash table entry structure. */
2251 struct bfd_hash_entry root;
2252
2253 /* The stub section. */
2254 asection *stub_sec;
2255
2256 /* Offset within stub_sec of the beginning of this stub. */
2257 bfd_vma stub_offset;
2258
2259 /* Given the symbol's value and its section we can determine its final
2260 value when building the stubs (so the stub knows where to jump). */
2261 bfd_vma target_value;
2262 asection *target_section;
2263
48229727
JB
2264 /* Offset to apply to relocation referencing target_value. */
2265 bfd_vma target_addend;
2266
2267 /* The instruction which caused this stub to be generated (only valid for
2268 Cortex-A8 erratum workaround stubs at present). */
2269 unsigned long orig_insn;
2270
461a49ca 2271 /* The stub type. */
906e58ca 2272 enum elf32_arm_stub_type stub_type;
461a49ca
DJ
2273 /* Its encoding size in bytes. */
2274 int stub_size;
2275 /* Its template. */
2276 const insn_sequence *stub_template;
2277 /* The size of the template (number of entries). */
2278 int stub_template_size;
906e58ca
NC
2279
2280 /* The symbol table entry, if any, that this was derived from. */
2281 struct elf32_arm_link_hash_entry *h;
2282
2283 /* Destination symbol type (STT_ARM_TFUNC, ...) */
2284 unsigned char st_type;
2285
2286 /* Where this stub is being called from, or, in the case of combined
2287 stub sections, the first input section in the group. */
2288 asection *id_sec;
7413f23f
DJ
2289
2290 /* The name for the local symbol at the start of this stub. The
2291 stub name in the hash table has to be unique; this does not, so
2292 it can be friendlier. */
2293 char *output_name;
906e58ca
NC
2294};
2295
e489d0ae
PB
2296/* Used to build a map of a section. This is required for mixed-endian
2297 code/data. */
2298
2299typedef struct elf32_elf_section_map
2300{
2301 bfd_vma vma;
2302 char type;
2303}
2304elf32_arm_section_map;
2305
c7b8f16e
JB
2306/* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2307
2308typedef enum
2309{
2310 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2311 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2312 VFP11_ERRATUM_ARM_VENEER,
2313 VFP11_ERRATUM_THUMB_VENEER
2314}
2315elf32_vfp11_erratum_type;
2316
2317typedef struct elf32_vfp11_erratum_list
2318{
2319 struct elf32_vfp11_erratum_list *next;
2320 bfd_vma vma;
2321 union
2322 {
2323 struct
2324 {
2325 struct elf32_vfp11_erratum_list *veneer;
2326 unsigned int vfp_insn;
2327 } b;
2328 struct
2329 {
2330 struct elf32_vfp11_erratum_list *branch;
2331 unsigned int id;
2332 } v;
2333 } u;
2334 elf32_vfp11_erratum_type type;
2335}
2336elf32_vfp11_erratum_list;
2337
2468f9c9
PB
2338typedef enum
2339{
2340 DELETE_EXIDX_ENTRY,
2341 INSERT_EXIDX_CANTUNWIND_AT_END
2342}
2343arm_unwind_edit_type;
2344
2345/* A (sorted) list of edits to apply to an unwind table. */
2346typedef struct arm_unwind_table_edit
2347{
2348 arm_unwind_edit_type type;
2349 /* Note: we sometimes want to insert an unwind entry corresponding to a
2350 section different from the one we're currently writing out, so record the
2351 (text) section this edit relates to here. */
2352 asection *linked_section;
2353 unsigned int index;
2354 struct arm_unwind_table_edit *next;
2355}
2356arm_unwind_table_edit;
2357
8e3de13a 2358typedef struct _arm_elf_section_data
e489d0ae 2359{
2468f9c9 2360 /* Information about mapping symbols. */
e489d0ae 2361 struct bfd_elf_section_data elf;
8e3de13a 2362 unsigned int mapcount;
c7b8f16e 2363 unsigned int mapsize;
e489d0ae 2364 elf32_arm_section_map *map;
2468f9c9 2365 /* Information about CPU errata. */
c7b8f16e
JB
2366 unsigned int erratumcount;
2367 elf32_vfp11_erratum_list *erratumlist;
2468f9c9
PB
2368 /* Information about unwind tables. */
2369 union
2370 {
2371 /* Unwind info attached to a text section. */
2372 struct
2373 {
2374 asection *arm_exidx_sec;
2375 } text;
2376
2377 /* Unwind info attached to an .ARM.exidx section. */
2378 struct
2379 {
2380 arm_unwind_table_edit *unwind_edit_list;
2381 arm_unwind_table_edit *unwind_edit_tail;
2382 } exidx;
2383 } u;
8e3de13a
NC
2384}
2385_arm_elf_section_data;
e489d0ae
PB
2386
2387#define elf32_arm_section_data(sec) \
8e3de13a 2388 ((_arm_elf_section_data *) elf_section_data (sec))
e489d0ae 2389
48229727
JB
2390/* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2391 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2392 so may be created multiple times: we use an array of these entries whilst
2393 relaxing which we can refresh easily, then create stubs for each potentially
2394 erratum-triggering instruction once we've settled on a solution. */
2395
2396struct a8_erratum_fix {
2397 bfd *input_bfd;
2398 asection *section;
2399 bfd_vma offset;
2400 bfd_vma addend;
2401 unsigned long orig_insn;
2402 char *stub_name;
2403 enum elf32_arm_stub_type stub_type;
2404};
2405
2406/* A table of relocs applied to branches which might trigger Cortex-A8
2407 erratum. */
2408
2409struct a8_erratum_reloc {
2410 bfd_vma from;
2411 bfd_vma destination;
2412 unsigned int r_type;
2413 unsigned char st_type;
2414 const char *sym_name;
2415 bfd_boolean non_a8_stub;
2416};
2417
ba93b8ac
DJ
2418/* The size of the thread control block. */
2419#define TCB_SIZE 8
2420
0ffa91dd 2421struct elf_arm_obj_tdata
ba93b8ac
DJ
2422{
2423 struct elf_obj_tdata root;
2424
2425 /* tls_type for each local got entry. */
2426 char *local_got_tls_type;
ee065d83 2427
bf21ed78
MS
2428 /* Zero to warn when linking objects with incompatible enum sizes. */
2429 int no_enum_size_warning;
a9dc9481
JM
2430
2431 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2432 int no_wchar_size_warning;
ba93b8ac
DJ
2433};
2434
0ffa91dd
NC
2435#define elf_arm_tdata(bfd) \
2436 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
ba93b8ac 2437
0ffa91dd
NC
2438#define elf32_arm_local_got_tls_type(bfd) \
2439 (elf_arm_tdata (bfd)->local_got_tls_type)
2440
2441#define is_arm_elf(bfd) \
2442 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2443 && elf_tdata (bfd) != NULL \
2444 && elf_object_id (bfd) == ARM_ELF_TDATA)
ba93b8ac
DJ
2445
2446static bfd_boolean
2447elf32_arm_mkobject (bfd *abfd)
2448{
0ffa91dd
NC
2449 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2450 ARM_ELF_TDATA);
ba93b8ac
DJ
2451}
2452
252b5132
RH
2453/* The ARM linker needs to keep track of the number of relocs that it
2454 decides to copy in check_relocs for each symbol. This is so that
2455 it can discard PC relative relocs if it doesn't need them when
2456 linking with -Bsymbolic. We store the information in a field
2457 extending the regular ELF linker hash table. */
2458
ba93b8ac
DJ
2459/* This structure keeps track of the number of relocs we have copied
2460 for a given symbol. */
5e681ec4 2461struct elf32_arm_relocs_copied
917583ad
NC
2462 {
2463 /* Next section. */
5e681ec4 2464 struct elf32_arm_relocs_copied * next;
917583ad
NC
2465 /* A section in dynobj. */
2466 asection * section;
2467 /* Number of relocs copied in this section. */
2468 bfd_size_type count;
ba93b8ac
DJ
2469 /* Number of PC-relative relocs copied in this section. */
2470 bfd_size_type pc_count;
917583ad 2471 };
252b5132 2472
ba93b8ac
DJ
2473#define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2474
ba96a88f 2475/* Arm ELF linker hash entry. */
252b5132 2476struct elf32_arm_link_hash_entry
917583ad
NC
2477 {
2478 struct elf_link_hash_entry root;
252b5132 2479
917583ad 2480 /* Number of PC relative relocs copied for this symbol. */
5e681ec4 2481 struct elf32_arm_relocs_copied * relocs_copied;
b7693d02
DJ
2482
2483 /* We reference count Thumb references to a PLT entry separately,
2484 so that we can emit the Thumb trampoline only if needed. */
2485 bfd_signed_vma plt_thumb_refcount;
2486
bd97cb95
DJ
2487 /* Some references from Thumb code may be eliminated by BL->BLX
2488 conversion, so record them separately. */
2489 bfd_signed_vma plt_maybe_thumb_refcount;
2490
b7693d02
DJ
2491 /* Since PLT entries have variable size if the Thumb prologue is
2492 used, we need to record the index into .got.plt instead of
2493 recomputing it from the PLT offset. */
2494 bfd_signed_vma plt_got_offset;
ba93b8ac
DJ
2495
2496#define GOT_UNKNOWN 0
2497#define GOT_NORMAL 1
2498#define GOT_TLS_GD 2
2499#define GOT_TLS_IE 4
2500 unsigned char tls_type;
a4fd1a8e
PB
2501
2502 /* The symbol marking the real symbol location for exported thumb
2503 symbols with Arm stubs. */
2504 struct elf_link_hash_entry *export_glue;
906e58ca 2505
da5938a2 2506 /* A pointer to the most recently used stub hash entry against this
8029a119 2507 symbol. */
da5938a2 2508 struct elf32_arm_stub_hash_entry *stub_cache;
917583ad 2509 };
252b5132 2510
252b5132 2511/* Traverse an arm ELF linker hash table. */
252b5132
RH
2512#define elf32_arm_link_hash_traverse(table, func, info) \
2513 (elf_link_hash_traverse \
2514 (&(table)->root, \
b7693d02 2515 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
252b5132
RH
2516 (info)))
2517
2518/* Get the ARM elf linker hash table from a link_info structure. */
2519#define elf32_arm_hash_table(info) \
2520 ((struct elf32_arm_link_hash_table *) ((info)->hash))
2521
906e58ca
NC
2522#define arm_stub_hash_lookup(table, string, create, copy) \
2523 ((struct elf32_arm_stub_hash_entry *) \
2524 bfd_hash_lookup ((table), (string), (create), (copy)))
2525
9b485d32 2526/* ARM ELF linker hash table. */
252b5132 2527struct elf32_arm_link_hash_table
906e58ca
NC
2528{
2529 /* The main hash table. */
2530 struct elf_link_hash_table root;
252b5132 2531
906e58ca
NC
2532 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2533 bfd_size_type thumb_glue_size;
252b5132 2534
906e58ca
NC
2535 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2536 bfd_size_type arm_glue_size;
252b5132 2537
906e58ca
NC
2538 /* The size in bytes of section containing the ARMv4 BX veneers. */
2539 bfd_size_type bx_glue_size;
845b51d6 2540
906e58ca
NC
2541 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2542 veneer has been populated. */
2543 bfd_vma bx_glue_offset[15];
845b51d6 2544
906e58ca
NC
2545 /* The size in bytes of the section containing glue for VFP11 erratum
2546 veneers. */
2547 bfd_size_type vfp11_erratum_glue_size;
c7b8f16e 2548
48229727
JB
2549 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
2550 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
2551 elf32_arm_write_section(). */
2552 struct a8_erratum_fix *a8_erratum_fixes;
2553 unsigned int num_a8_erratum_fixes;
2554
906e58ca
NC
2555 /* An arbitrary input BFD chosen to hold the glue sections. */
2556 bfd * bfd_of_glue_owner;
ba96a88f 2557
906e58ca
NC
2558 /* Nonzero to output a BE8 image. */
2559 int byteswap_code;
e489d0ae 2560
906e58ca
NC
2561 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2562 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2563 int target1_is_rel;
9c504268 2564
906e58ca
NC
2565 /* The relocation to use for R_ARM_TARGET2 relocations. */
2566 int target2_reloc;
eb043451 2567
906e58ca
NC
2568 /* 0 = Ignore R_ARM_V4BX.
2569 1 = Convert BX to MOV PC.
2570 2 = Generate v4 interworing stubs. */
2571 int fix_v4bx;
319850b4 2572
48229727
JB
2573 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
2574 int fix_cortex_a8;
2575
906e58ca
NC
2576 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2577 int use_blx;
33bfe774 2578
906e58ca
NC
2579 /* What sort of code sequences we should look for which may trigger the
2580 VFP11 denorm erratum. */
2581 bfd_arm_vfp11_fix vfp11_fix;
c7b8f16e 2582
906e58ca
NC
2583 /* Global counter for the number of fixes we have emitted. */
2584 int num_vfp11_fixes;
c7b8f16e 2585
906e58ca
NC
2586 /* Nonzero to force PIC branch veneers. */
2587 int pic_veneer;
27e55c4d 2588
906e58ca
NC
2589 /* The number of bytes in the initial entry in the PLT. */
2590 bfd_size_type plt_header_size;
e5a52504 2591
906e58ca
NC
2592 /* The number of bytes in the subsequent PLT etries. */
2593 bfd_size_type plt_entry_size;
e5a52504 2594
906e58ca
NC
2595 /* True if the target system is VxWorks. */
2596 int vxworks_p;
00a97672 2597
906e58ca
NC
2598 /* True if the target system is Symbian OS. */
2599 int symbian_p;
e5a52504 2600
906e58ca
NC
2601 /* True if the target uses REL relocations. */
2602 int use_rel;
4e7fd91e 2603
906e58ca
NC
2604 /* Short-cuts to get to dynamic linker sections. */
2605 asection *sgot;
2606 asection *sgotplt;
2607 asection *srelgot;
2608 asection *splt;
2609 asection *srelplt;
2610 asection *sdynbss;
2611 asection *srelbss;
5e681ec4 2612
906e58ca
NC
2613 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2614 asection *srelplt2;
00a97672 2615
906e58ca
NC
2616 /* Data for R_ARM_TLS_LDM32 relocations. */
2617 union
2618 {
2619 bfd_signed_vma refcount;
2620 bfd_vma offset;
2621 } tls_ldm_got;
b7693d02 2622
87d72d41
AM
2623 /* Small local sym cache. */
2624 struct sym_cache sym_cache;
906e58ca
NC
2625
2626 /* For convenience in allocate_dynrelocs. */
2627 bfd * obfd;
2628
2629 /* The stub hash table. */
2630 struct bfd_hash_table stub_hash_table;
2631
2632 /* Linker stub bfd. */
2633 bfd *stub_bfd;
2634
2635 /* Linker call-backs. */
2636 asection * (*add_stub_section) (const char *, asection *);
2637 void (*layout_sections_again) (void);
2638
2639 /* Array to keep track of which stub sections have been created, and
2640 information on stub grouping. */
2641 struct map_stub
2642 {
2643 /* This is the section to which stubs in the group will be
2644 attached. */
2645 asection *link_sec;
2646 /* The stub section. */
2647 asection *stub_sec;
2648 } *stub_group;
2649
2650 /* Assorted information used by elf32_arm_size_stubs. */
2651 unsigned int bfd_count;
2652 int top_index;
2653 asection **input_list;
2654};
252b5132 2655
780a67af
NC
2656/* Create an entry in an ARM ELF linker hash table. */
2657
2658static struct bfd_hash_entry *
57e8b36a
NC
2659elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
2660 struct bfd_hash_table * table,
2661 const char * string)
780a67af
NC
2662{
2663 struct elf32_arm_link_hash_entry * ret =
2664 (struct elf32_arm_link_hash_entry *) entry;
2665
2666 /* Allocate the structure if it has not already been allocated by a
2667 subclass. */
906e58ca 2668 if (ret == NULL)
57e8b36a
NC
2669 ret = bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
2670 if (ret == NULL)
780a67af
NC
2671 return (struct bfd_hash_entry *) ret;
2672
2673 /* Call the allocation method of the superclass. */
2674 ret = ((struct elf32_arm_link_hash_entry *)
2675 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2676 table, string));
57e8b36a 2677 if (ret != NULL)
b7693d02
DJ
2678 {
2679 ret->relocs_copied = NULL;
ba93b8ac 2680 ret->tls_type = GOT_UNKNOWN;
b7693d02 2681 ret->plt_thumb_refcount = 0;
bd97cb95 2682 ret->plt_maybe_thumb_refcount = 0;
b7693d02 2683 ret->plt_got_offset = -1;
a4fd1a8e 2684 ret->export_glue = NULL;
906e58ca
NC
2685
2686 ret->stub_cache = NULL;
b7693d02 2687 }
780a67af
NC
2688
2689 return (struct bfd_hash_entry *) ret;
2690}
2691
906e58ca
NC
2692/* Initialize an entry in the stub hash table. */
2693
2694static struct bfd_hash_entry *
2695stub_hash_newfunc (struct bfd_hash_entry *entry,
2696 struct bfd_hash_table *table,
2697 const char *string)
2698{
2699 /* Allocate the structure if it has not already been allocated by a
2700 subclass. */
2701 if (entry == NULL)
2702 {
2703 entry = bfd_hash_allocate (table,
2704 sizeof (struct elf32_arm_stub_hash_entry));
2705 if (entry == NULL)
2706 return entry;
2707 }
2708
2709 /* Call the allocation method of the superclass. */
2710 entry = bfd_hash_newfunc (entry, table, string);
2711 if (entry != NULL)
2712 {
2713 struct elf32_arm_stub_hash_entry *eh;
2714
2715 /* Initialize the local fields. */
2716 eh = (struct elf32_arm_stub_hash_entry *) entry;
2717 eh->stub_sec = NULL;
2718 eh->stub_offset = 0;
2719 eh->target_value = 0;
2720 eh->target_section = NULL;
cedfb179
DK
2721 eh->target_addend = 0;
2722 eh->orig_insn = 0;
906e58ca 2723 eh->stub_type = arm_stub_none;
461a49ca
DJ
2724 eh->stub_size = 0;
2725 eh->stub_template = NULL;
2726 eh->stub_template_size = 0;
906e58ca
NC
2727 eh->h = NULL;
2728 eh->id_sec = NULL;
d8d2f433 2729 eh->output_name = NULL;
906e58ca
NC
2730 }
2731
2732 return entry;
2733}
2734
00a97672 2735/* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
5e681ec4
PB
2736 shortcuts to them in our hash table. */
2737
2738static bfd_boolean
57e8b36a 2739create_got_section (bfd *dynobj, struct bfd_link_info *info)
5e681ec4
PB
2740{
2741 struct elf32_arm_link_hash_table *htab;
2742
e5a52504
MM
2743 htab = elf32_arm_hash_table (info);
2744 /* BPABI objects never have a GOT, or associated sections. */
2745 if (htab->symbian_p)
2746 return TRUE;
2747
5e681ec4
PB
2748 if (! _bfd_elf_create_got_section (dynobj, info))
2749 return FALSE;
2750
5e681ec4
PB
2751 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
2752 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
2753 if (!htab->sgot || !htab->sgotplt)
2754 abort ();
2755
64e77c6d
L
2756 htab->srelgot = bfd_get_section_by_name (dynobj,
2757 RELOC_SECTION (htab, ".got"));
2758 if (htab->srelgot == NULL)
5e681ec4
PB
2759 return FALSE;
2760 return TRUE;
2761}
2762
00a97672
RS
2763/* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
2764 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
5e681ec4
PB
2765 hash table. */
2766
2767static bfd_boolean
57e8b36a 2768elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
5e681ec4
PB
2769{
2770 struct elf32_arm_link_hash_table *htab;
2771
2772 htab = elf32_arm_hash_table (info);
2773 if (!htab->sgot && !create_got_section (dynobj, info))
2774 return FALSE;
2775
2776 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
2777 return FALSE;
2778
2779 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
00a97672
RS
2780 htab->srelplt = bfd_get_section_by_name (dynobj,
2781 RELOC_SECTION (htab, ".plt"));
5e681ec4
PB
2782 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
2783 if (!info->shared)
00a97672
RS
2784 htab->srelbss = bfd_get_section_by_name (dynobj,
2785 RELOC_SECTION (htab, ".bss"));
2786
2787 if (htab->vxworks_p)
2788 {
2789 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
2790 return FALSE;
2791
2792 if (info->shared)
2793 {
2794 htab->plt_header_size = 0;
2795 htab->plt_entry_size
2796 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
2797 }
2798 else
2799 {
2800 htab->plt_header_size
2801 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
2802 htab->plt_entry_size
2803 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
2804 }
2805 }
5e681ec4 2806
906e58ca 2807 if (!htab->splt
e5a52504
MM
2808 || !htab->srelplt
2809 || !htab->sdynbss
5e681ec4
PB
2810 || (!info->shared && !htab->srelbss))
2811 abort ();
2812
2813 return TRUE;
2814}
2815
906e58ca
NC
2816/* Copy the extra info we tack onto an elf_link_hash_entry. */
2817
2818static void
2819elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
2820 struct elf_link_hash_entry *dir,
2821 struct elf_link_hash_entry *ind)
2822{
2823 struct elf32_arm_link_hash_entry *edir, *eind;
2824
2825 edir = (struct elf32_arm_link_hash_entry *) dir;
2826 eind = (struct elf32_arm_link_hash_entry *) ind;
2827
2828 if (eind->relocs_copied != NULL)
2829 {
2830 if (edir->relocs_copied != NULL)
2831 {
2832 struct elf32_arm_relocs_copied **pp;
2833 struct elf32_arm_relocs_copied *p;
2834
2835 /* Add reloc counts against the indirect sym to the direct sym
2836 list. Merge any entries against the same section. */
2837 for (pp = &eind->relocs_copied; (p = *pp) != NULL; )
2838 {
2839 struct elf32_arm_relocs_copied *q;
2840
2841 for (q = edir->relocs_copied; q != NULL; q = q->next)
2842 if (q->section == p->section)
2843 {
2844 q->pc_count += p->pc_count;
2845 q->count += p->count;
2846 *pp = p->next;
2847 break;
2848 }
2849 if (q == NULL)
2850 pp = &p->next;
2851 }
2852 *pp = edir->relocs_copied;
2853 }
2854
2855 edir->relocs_copied = eind->relocs_copied;
2856 eind->relocs_copied = NULL;
2857 }
2858
2859 if (ind->root.type == bfd_link_hash_indirect)
2860 {
2861 /* Copy over PLT info. */
2862 edir->plt_thumb_refcount += eind->plt_thumb_refcount;
2863 eind->plt_thumb_refcount = 0;
2864 edir->plt_maybe_thumb_refcount += eind->plt_maybe_thumb_refcount;
2865 eind->plt_maybe_thumb_refcount = 0;
2866
2867 if (dir->got.refcount <= 0)
2868 {
2869 edir->tls_type = eind->tls_type;
2870 eind->tls_type = GOT_UNKNOWN;
2871 }
2872 }
2873
2874 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2875}
2876
2877/* Create an ARM elf linker hash table. */
2878
2879static struct bfd_link_hash_table *
2880elf32_arm_link_hash_table_create (bfd *abfd)
2881{
2882 struct elf32_arm_link_hash_table *ret;
2883 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
2884
2885 ret = bfd_malloc (amt);
2886 if (ret == NULL)
2887 return NULL;
2888
2889 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
2890 elf32_arm_link_hash_newfunc,
2891 sizeof (struct elf32_arm_link_hash_entry)))
2892 {
2893 free (ret);
2894 return NULL;
2895 }
2896
2897 ret->sgot = NULL;
2898 ret->sgotplt = NULL;
2899 ret->srelgot = NULL;
2900 ret->splt = NULL;
2901 ret->srelplt = NULL;
2902 ret->sdynbss = NULL;
2903 ret->srelbss = NULL;
2904 ret->srelplt2 = NULL;
2905 ret->thumb_glue_size = 0;
2906 ret->arm_glue_size = 0;
2907 ret->bx_glue_size = 0;
2908 memset (ret->bx_glue_offset, 0, sizeof (ret->bx_glue_offset));
2909 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
2910 ret->vfp11_erratum_glue_size = 0;
2911 ret->num_vfp11_fixes = 0;
48229727 2912 ret->fix_cortex_a8 = 0;
906e58ca
NC
2913 ret->bfd_of_glue_owner = NULL;
2914 ret->byteswap_code = 0;
2915 ret->target1_is_rel = 0;
2916 ret->target2_reloc = R_ARM_NONE;
2917#ifdef FOUR_WORD_PLT
2918 ret->plt_header_size = 16;
2919 ret->plt_entry_size = 16;
2920#else
2921 ret->plt_header_size = 20;
2922 ret->plt_entry_size = 12;
2923#endif
2924 ret->fix_v4bx = 0;
2925 ret->use_blx = 0;
2926 ret->vxworks_p = 0;
2927 ret->symbian_p = 0;
2928 ret->use_rel = 1;
87d72d41 2929 ret->sym_cache.abfd = NULL;
906e58ca
NC
2930 ret->obfd = abfd;
2931 ret->tls_ldm_got.refcount = 0;
6cee0a6f
L
2932 ret->stub_bfd = NULL;
2933 ret->add_stub_section = NULL;
2934 ret->layout_sections_again = NULL;
2935 ret->stub_group = NULL;
2936 ret->bfd_count = 0;
2937 ret->top_index = 0;
2938 ret->input_list = NULL;
906e58ca
NC
2939
2940 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2941 sizeof (struct elf32_arm_stub_hash_entry)))
2942 {
2943 free (ret);
2944 return NULL;
2945 }
2946
2947 return &ret->root.root;
2948}
2949
2950/* Free the derived linker hash table. */
2951
2952static void
2953elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
2954{
2955 struct elf32_arm_link_hash_table *ret
2956 = (struct elf32_arm_link_hash_table *) hash;
2957
2958 bfd_hash_table_free (&ret->stub_hash_table);
2959 _bfd_generic_link_hash_table_free (hash);
2960}
2961
2962/* Determine if we're dealing with a Thumb only architecture. */
2963
2964static bfd_boolean
2965using_thumb_only (struct elf32_arm_link_hash_table *globals)
2966{
2967 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2968 Tag_CPU_arch);
2969 int profile;
2970
2971 if (arch != TAG_CPU_ARCH_V7)
2972 return FALSE;
2973
2974 profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2975 Tag_CPU_arch_profile);
2976
2977 return profile == 'M';
2978}
2979
2980/* Determine if we're dealing with a Thumb-2 object. */
2981
2982static bfd_boolean
2983using_thumb2 (struct elf32_arm_link_hash_table *globals)
2984{
2985 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2986 Tag_CPU_arch);
2987 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
2988}
2989
cd1dac3d
DG
2990/* Determine what kind of NOPs are available. */
2991
2992static bfd_boolean
2993arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
2994{
2995 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2996 Tag_CPU_arch);
2997 return arch == TAG_CPU_ARCH_V6T2
2998 || arch == TAG_CPU_ARCH_V6K
2999 || arch == TAG_CPU_ARCH_V7;
3000}
3001
3002static bfd_boolean
3003arch_has_thumb2_nop (struct elf32_arm_link_hash_table *globals)
3004{
3005 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3006 Tag_CPU_arch);
3007 return arch == TAG_CPU_ARCH_V6T2 || arch == TAG_CPU_ARCH_V7;
3008}
3009
f4ac8484
DJ
3010static bfd_boolean
3011arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
3012{
3013 switch (stub_type)
3014 {
fea2b4d6
CL
3015 case arm_stub_long_branch_thumb_only:
3016 case arm_stub_long_branch_v4t_thumb_arm:
3017 case arm_stub_short_branch_v4t_thumb_arm:
ebe24dd4
CL
3018 case arm_stub_long_branch_v4t_thumb_arm_pic:
3019 case arm_stub_long_branch_thumb_only_pic:
f4ac8484
DJ
3020 return TRUE;
3021 case arm_stub_none:
3022 BFD_FAIL ();
3023 return FALSE;
3024 break;
3025 default:
3026 return FALSE;
3027 }
3028}
3029
906e58ca
NC
3030/* Determine the type of stub needed, if any, for a call. */
3031
3032static enum elf32_arm_stub_type
3033arm_type_of_stub (struct bfd_link_info *info,
3034 asection *input_sec,
3035 const Elf_Internal_Rela *rel,
3036 unsigned char st_type,
3037 struct elf32_arm_link_hash_entry *hash,
c820be07
NC
3038 bfd_vma destination,
3039 asection *sym_sec,
3040 bfd *input_bfd,
3041 const char *name)
906e58ca
NC
3042{
3043 bfd_vma location;
3044 bfd_signed_vma branch_offset;
3045 unsigned int r_type;
3046 struct elf32_arm_link_hash_table * globals;
3047 int thumb2;
3048 int thumb_only;
3049 enum elf32_arm_stub_type stub_type = arm_stub_none;
5fa9e92f 3050 int use_plt = 0;
906e58ca 3051
da5938a2 3052 /* We don't know the actual type of destination in case it is of
8029a119 3053 type STT_SECTION: give up. */
da5938a2
NC
3054 if (st_type == STT_SECTION)
3055 return stub_type;
3056
906e58ca
NC
3057 globals = elf32_arm_hash_table (info);
3058
3059 thumb_only = using_thumb_only (globals);
3060
3061 thumb2 = using_thumb2 (globals);
3062
3063 /* Determine where the call point is. */
3064 location = (input_sec->output_offset
3065 + input_sec->output_section->vma
3066 + rel->r_offset);
3067
3068 branch_offset = (bfd_signed_vma)(destination - location);
3069
3070 r_type = ELF32_R_TYPE (rel->r_info);
3071
5fa9e92f 3072 /* Keep a simpler condition, for the sake of clarity. */
329dcd78 3073 if (globals->splt != NULL && hash != NULL && hash->root.plt.offset != (bfd_vma) -1)
5fa9e92f
CL
3074 {
3075 use_plt = 1;
3076 /* Note when dealing with PLT entries: the main PLT stub is in
3077 ARM mode, so if the branch is in Thumb mode, another
3078 Thumb->ARM stub will be inserted later just before the ARM
3079 PLT stub. We don't take this extra distance into account
3080 here, because if a long branch stub is needed, we'll add a
3081 Thumb->Arm one and branch directly to the ARM PLT entry
3082 because it avoids spreading offset corrections in several
3083 places. */
3084 }
906e58ca 3085
155d87d7 3086 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
906e58ca 3087 {
5fa9e92f
CL
3088 /* Handle cases where:
3089 - this call goes too far (different Thumb/Thumb2 max
3090 distance)
155d87d7
CL
3091 - it's a Thumb->Arm call and blx is not available, or it's a
3092 Thumb->Arm branch (not bl). A stub is needed in this case,
3093 but only if this call is not through a PLT entry. Indeed,
3094 PLT stubs handle mode switching already.
5fa9e92f 3095 */
906e58ca
NC
3096 if ((!thumb2
3097 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
3098 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
3099 || (thumb2
3100 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
3101 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
5fa9e92f 3102 || ((st_type != STT_ARM_TFUNC)
155d87d7
CL
3103 && (((r_type == R_ARM_THM_CALL) && !globals->use_blx)
3104 || (r_type == R_ARM_THM_JUMP24))
5fa9e92f 3105 && !use_plt))
906e58ca
NC
3106 {
3107 if (st_type == STT_ARM_TFUNC)
3108 {
3109 /* Thumb to thumb. */
3110 if (!thumb_only)
3111 {
3112 stub_type = (info->shared | globals->pic_veneer)
c2b4a39d 3113 /* PIC stubs. */
155d87d7
CL
3114 ? ((globals->use_blx
3115 && (r_type ==R_ARM_THM_CALL))
3116 /* V5T and above. Stub starts with ARM code, so
3117 we must be able to switch mode before
3118 reaching it, which is only possible for 'bl'
3119 (ie R_ARM_THM_CALL relocation). */
cf3eccff 3120 ? arm_stub_long_branch_any_thumb_pic
ebe24dd4 3121 /* On V4T, use Thumb code only. */
d3626fb0 3122 : arm_stub_long_branch_v4t_thumb_thumb_pic)
c2b4a39d
CL
3123
3124 /* non-PIC stubs. */
155d87d7
CL
3125 : ((globals->use_blx
3126 && (r_type ==R_ARM_THM_CALL))
c2b4a39d
CL
3127 /* V5T and above. */
3128 ? arm_stub_long_branch_any_any
3129 /* V4T. */
d3626fb0 3130 : arm_stub_long_branch_v4t_thumb_thumb);
906e58ca
NC
3131 }
3132 else
3133 {
3134 stub_type = (info->shared | globals->pic_veneer)
ebe24dd4
CL
3135 /* PIC stub. */
3136 ? arm_stub_long_branch_thumb_only_pic
c2b4a39d
CL
3137 /* non-PIC stub. */
3138 : arm_stub_long_branch_thumb_only;
906e58ca
NC
3139 }
3140 }
3141 else
3142 {
3143 /* Thumb to arm. */
c820be07
NC
3144 if (sym_sec != NULL
3145 && sym_sec->owner != NULL
3146 && !INTERWORK_FLAG (sym_sec->owner))
3147 {
3148 (*_bfd_error_handler)
3149 (_("%B(%s): warning: interworking not enabled.\n"
3150 " first occurrence: %B: Thumb call to ARM"),
3151 sym_sec->owner, input_bfd, name);
3152 }
3153
906e58ca 3154 stub_type = (info->shared | globals->pic_veneer)
c2b4a39d 3155 /* PIC stubs. */
155d87d7
CL
3156 ? ((globals->use_blx
3157 && (r_type ==R_ARM_THM_CALL))
c2b4a39d 3158 /* V5T and above. */
cf3eccff 3159 ? arm_stub_long_branch_any_arm_pic
ebe24dd4
CL
3160 /* V4T PIC stub. */
3161 : arm_stub_long_branch_v4t_thumb_arm_pic)
c2b4a39d
CL
3162
3163 /* non-PIC stubs. */
155d87d7
CL
3164 : ((globals->use_blx
3165 && (r_type ==R_ARM_THM_CALL))
c2b4a39d
CL
3166 /* V5T and above. */
3167 ? arm_stub_long_branch_any_any
3168 /* V4T. */
3169 : arm_stub_long_branch_v4t_thumb_arm);
c820be07
NC
3170
3171 /* Handle v4t short branches. */
fea2b4d6 3172 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
c820be07
NC
3173 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
3174 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
fea2b4d6 3175 stub_type = arm_stub_short_branch_v4t_thumb_arm;
906e58ca
NC
3176 }
3177 }
3178 }
155d87d7 3179 else if (r_type == R_ARM_CALL || r_type == R_ARM_JUMP24 || r_type == R_ARM_PLT32)
906e58ca
NC
3180 {
3181 if (st_type == STT_ARM_TFUNC)
3182 {
3183 /* Arm to thumb. */
c820be07
NC
3184
3185 if (sym_sec != NULL
3186 && sym_sec->owner != NULL
3187 && !INTERWORK_FLAG (sym_sec->owner))
3188 {
3189 (*_bfd_error_handler)
3190 (_("%B(%s): warning: interworking not enabled.\n"
c2b4a39d 3191 " first occurrence: %B: ARM call to Thumb"),
c820be07
NC
3192 sym_sec->owner, input_bfd, name);
3193 }
3194
3195 /* We have an extra 2-bytes reach because of
3196 the mode change (bit 24 (H) of BLX encoding). */
4116d8d7
PB
3197 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
3198 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
3199 || ((r_type == R_ARM_CALL) && !globals->use_blx)
3200 || (r_type == R_ARM_JUMP24)
3201 || (r_type == R_ARM_PLT32))
906e58ca
NC
3202 {
3203 stub_type = (info->shared | globals->pic_veneer)
c2b4a39d 3204 /* PIC stubs. */
ebe24dd4
CL
3205 ? ((globals->use_blx)
3206 /* V5T and above. */
3207 ? arm_stub_long_branch_any_thumb_pic
3208 /* V4T stub. */
3209 : arm_stub_long_branch_v4t_arm_thumb_pic)
3210
c2b4a39d
CL
3211 /* non-PIC stubs. */
3212 : ((globals->use_blx)
3213 /* V5T and above. */
3214 ? arm_stub_long_branch_any_any
3215 /* V4T. */
3216 : arm_stub_long_branch_v4t_arm_thumb);
906e58ca
NC
3217 }
3218 }
3219 else
3220 {
3221 /* Arm to arm. */
3222 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
3223 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
3224 {
3225 stub_type = (info->shared | globals->pic_veneer)
c2b4a39d 3226 /* PIC stubs. */
cf3eccff 3227 ? arm_stub_long_branch_any_arm_pic
c2b4a39d 3228 /* non-PIC stubs. */
fea2b4d6 3229 : arm_stub_long_branch_any_any;
906e58ca
NC
3230 }
3231 }
3232 }
3233
3234 return stub_type;
3235}
3236
3237/* Build a name for an entry in the stub hash table. */
3238
3239static char *
3240elf32_arm_stub_name (const asection *input_section,
3241 const asection *sym_sec,
3242 const struct elf32_arm_link_hash_entry *hash,
3243 const Elf_Internal_Rela *rel)
3244{
3245 char *stub_name;
3246 bfd_size_type len;
3247
3248 if (hash)
3249 {
3250 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1;
3251 stub_name = bfd_malloc (len);
3252 if (stub_name != NULL)
3253 sprintf (stub_name, "%08x_%s+%x",
3254 input_section->id & 0xffffffff,
3255 hash->root.root.root.string,
3256 (int) rel->r_addend & 0xffffffff);
3257 }
3258 else
3259 {
3260 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
3261 stub_name = bfd_malloc (len);
3262 if (stub_name != NULL)
3263 sprintf (stub_name, "%08x_%x:%x+%x",
3264 input_section->id & 0xffffffff,
3265 sym_sec->id & 0xffffffff,
3266 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
3267 (int) rel->r_addend & 0xffffffff);
3268 }
3269
3270 return stub_name;
3271}
3272
3273/* Look up an entry in the stub hash. Stub entries are cached because
3274 creating the stub name takes a bit of time. */
3275
3276static struct elf32_arm_stub_hash_entry *
3277elf32_arm_get_stub_entry (const asection *input_section,
3278 const asection *sym_sec,
3279 struct elf_link_hash_entry *hash,
3280 const Elf_Internal_Rela *rel,
3281 struct elf32_arm_link_hash_table *htab)
3282{
3283 struct elf32_arm_stub_hash_entry *stub_entry;
3284 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
3285 const asection *id_sec;
3286
3287 if ((input_section->flags & SEC_CODE) == 0)
3288 return NULL;
3289
3290 /* If this input section is part of a group of sections sharing one
3291 stub section, then use the id of the first section in the group.
3292 Stub names need to include a section id, as there may well be
3293 more than one stub used to reach say, printf, and we need to
3294 distinguish between them. */
3295 id_sec = htab->stub_group[input_section->id].link_sec;
3296
3297 if (h != NULL && h->stub_cache != NULL
3298 && h->stub_cache->h == h
3299 && h->stub_cache->id_sec == id_sec)
3300 {
3301 stub_entry = h->stub_cache;
3302 }
3303 else
3304 {
3305 char *stub_name;
3306
3307 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel);
3308 if (stub_name == NULL)
3309 return NULL;
3310
3311 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3312 stub_name, FALSE, FALSE);
3313 if (h != NULL)
3314 h->stub_cache = stub_entry;
3315
3316 free (stub_name);
3317 }
3318
3319 return stub_entry;
3320}
3321
48229727
JB
3322/* Find or create a stub section. Returns a pointer to the stub section, and
3323 the section to which the stub section will be attached (in *LINK_SEC_P).
3324 LINK_SEC_P may be NULL. */
906e58ca 3325
48229727
JB
3326static asection *
3327elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
3328 struct elf32_arm_link_hash_table *htab)
906e58ca
NC
3329{
3330 asection *link_sec;
3331 asection *stub_sec;
906e58ca
NC
3332
3333 link_sec = htab->stub_group[section->id].link_sec;
3334 stub_sec = htab->stub_group[section->id].stub_sec;
3335 if (stub_sec == NULL)
3336 {
3337 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3338 if (stub_sec == NULL)
3339 {
3340 size_t namelen;
3341 bfd_size_type len;
3342 char *s_name;
3343
3344 namelen = strlen (link_sec->name);
3345 len = namelen + sizeof (STUB_SUFFIX);
3346 s_name = bfd_alloc (htab->stub_bfd, len);
3347 if (s_name == NULL)
3348 return NULL;
3349
3350 memcpy (s_name, link_sec->name, namelen);
3351 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3352 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3353 if (stub_sec == NULL)
3354 return NULL;
3355 htab->stub_group[link_sec->id].stub_sec = stub_sec;
3356 }
3357 htab->stub_group[section->id].stub_sec = stub_sec;
3358 }
48229727
JB
3359
3360 if (link_sec_p)
3361 *link_sec_p = link_sec;
3362
3363 return stub_sec;
3364}
3365
3366/* Add a new stub entry to the stub hash. Not all fields of the new
3367 stub entry are initialised. */
3368
3369static struct elf32_arm_stub_hash_entry *
3370elf32_arm_add_stub (const char *stub_name,
3371 asection *section,
3372 struct elf32_arm_link_hash_table *htab)
3373{
3374 asection *link_sec;
3375 asection *stub_sec;
3376 struct elf32_arm_stub_hash_entry *stub_entry;
3377
3378 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab);
3379 if (stub_sec == NULL)
3380 return NULL;
906e58ca
NC
3381
3382 /* Enter this entry into the linker stub hash table. */
3383 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3384 TRUE, FALSE);
3385 if (stub_entry == NULL)
3386 {
3387 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
3388 section->owner,
3389 stub_name);
3390 return NULL;
3391 }
3392
3393 stub_entry->stub_sec = stub_sec;
3394 stub_entry->stub_offset = 0;
3395 stub_entry->id_sec = link_sec;
3396
906e58ca
NC
3397 return stub_entry;
3398}
3399
3400/* Store an Arm insn into an output section not processed by
3401 elf32_arm_write_section. */
3402
3403static void
8029a119
NC
3404put_arm_insn (struct elf32_arm_link_hash_table * htab,
3405 bfd * output_bfd, bfd_vma val, void * ptr)
906e58ca
NC
3406{
3407 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3408 bfd_putl32 (val, ptr);
3409 else
3410 bfd_putb32 (val, ptr);
3411}
3412
3413/* Store a 16-bit Thumb insn into an output section not processed by
3414 elf32_arm_write_section. */
3415
3416static void
8029a119
NC
3417put_thumb_insn (struct elf32_arm_link_hash_table * htab,
3418 bfd * output_bfd, bfd_vma val, void * ptr)
906e58ca
NC
3419{
3420 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3421 bfd_putl16 (val, ptr);
3422 else
3423 bfd_putb16 (val, ptr);
3424}
3425
48229727
JB
3426static bfd_reloc_status_type elf32_arm_final_link_relocate
3427 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
3428 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
3429 const char *, int, struct elf_link_hash_entry *, bfd_boolean *, char **);
3430
906e58ca
NC
3431static bfd_boolean
3432arm_build_one_stub (struct bfd_hash_entry *gen_entry,
3433 void * in_arg)
3434{
48229727 3435#define MAXRELOCS 2
906e58ca
NC
3436 struct elf32_arm_stub_hash_entry *stub_entry;
3437 struct bfd_link_info *info;
3438 struct elf32_arm_link_hash_table *htab;
3439 asection *stub_sec;
3440 bfd *stub_bfd;
3441 bfd_vma stub_addr;
3442 bfd_byte *loc;
3443 bfd_vma sym_value;
3444 int template_size;
3445 int size;
d3ce72d0 3446 const insn_sequence *template_sequence;
906e58ca
NC
3447 int i;
3448 struct elf32_arm_link_hash_table * globals;
48229727
JB
3449 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
3450 int stub_reloc_offset[MAXRELOCS] = {0, 0};
3451 int nrelocs = 0;
906e58ca
NC
3452
3453 /* Massage our args to the form they really have. */
3454 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3455 info = (struct bfd_link_info *) in_arg;
3456
3457 globals = elf32_arm_hash_table (info);
3458
3459 htab = elf32_arm_hash_table (info);
3460 stub_sec = stub_entry->stub_sec;
3461
eb7c4339
NS
3462 if ((htab->fix_cortex_a8 < 0)
3463 != (stub_entry->stub_type >= arm_stub_a8_veneer_lwm))
3464 /* We have to do the a8 fixes last, as they are less aligned than
3465 the other veneers. */
3466 return TRUE;
3467
906e58ca
NC
3468 /* Make a note of the offset within the stubs for this entry. */
3469 stub_entry->stub_offset = stub_sec->size;
3470 loc = stub_sec->contents + stub_entry->stub_offset;
3471
3472 stub_bfd = stub_sec->owner;
3473
3474 /* This is the address of the start of the stub. */
3475 stub_addr = stub_sec->output_section->vma + stub_sec->output_offset
3476 + stub_entry->stub_offset;
3477
3478 /* This is the address of the stub destination. */
3479 sym_value = (stub_entry->target_value
3480 + stub_entry->target_section->output_offset
3481 + stub_entry->target_section->output_section->vma);
3482
d3ce72d0 3483 template_sequence = stub_entry->stub_template;
461a49ca 3484 template_size = stub_entry->stub_template_size;
906e58ca
NC
3485
3486 size = 0;
461a49ca 3487 for (i = 0; i < template_size; i++)
906e58ca 3488 {
d3ce72d0 3489 switch (template_sequence[i].type)
461a49ca
DJ
3490 {
3491 case THUMB16_TYPE:
48229727 3492 {
d3ce72d0
NC
3493 bfd_vma data = (bfd_vma) template_sequence[i].data;
3494 if (template_sequence[i].reloc_addend != 0)
48229727
JB
3495 {
3496 /* We've borrowed the reloc_addend field to mean we should
3497 insert a condition code into this (Thumb-1 branch)
3498 instruction. See THUMB16_BCOND_INSN. */
3499 BFD_ASSERT ((data & 0xff00) == 0xd000);
3500 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
3501 }
3502 put_thumb_insn (globals, stub_bfd, data, loc + size);
3503 size += 2;
3504 }
461a49ca 3505 break;
906e58ca 3506
48229727 3507 case THUMB32_TYPE:
d3ce72d0
NC
3508 put_thumb_insn (globals, stub_bfd,
3509 (template_sequence[i].data >> 16) & 0xffff,
48229727 3510 loc + size);
d3ce72d0 3511 put_thumb_insn (globals, stub_bfd, template_sequence[i].data & 0xffff,
48229727 3512 loc + size + 2);
d3ce72d0 3513 if (template_sequence[i].r_type != R_ARM_NONE)
48229727
JB
3514 {
3515 stub_reloc_idx[nrelocs] = i;
3516 stub_reloc_offset[nrelocs++] = size;
3517 }
3518 size += 4;
3519 break;
3520
461a49ca 3521 case ARM_TYPE:
d3ce72d0
NC
3522 put_arm_insn (globals, stub_bfd, template_sequence[i].data,
3523 loc + size);
461a49ca
DJ
3524 /* Handle cases where the target is encoded within the
3525 instruction. */
d3ce72d0 3526 if (template_sequence[i].r_type == R_ARM_JUMP24)
461a49ca 3527 {
48229727
JB
3528 stub_reloc_idx[nrelocs] = i;
3529 stub_reloc_offset[nrelocs++] = size;
461a49ca
DJ
3530 }
3531 size += 4;
3532 break;
3533
3534 case DATA_TYPE:
d3ce72d0 3535 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
48229727
JB
3536 stub_reloc_idx[nrelocs] = i;
3537 stub_reloc_offset[nrelocs++] = size;
461a49ca
DJ
3538 size += 4;
3539 break;
3540
3541 default:
3542 BFD_FAIL ();
3543 return FALSE;
3544 }
906e58ca 3545 }
461a49ca 3546
906e58ca
NC
3547 stub_sec->size += size;
3548
461a49ca
DJ
3549 /* Stub size has already been computed in arm_size_one_stub. Check
3550 consistency. */
3551 BFD_ASSERT (size == stub_entry->stub_size);
3552
906e58ca
NC
3553 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
3554 if (stub_entry->st_type == STT_ARM_TFUNC)
3555 sym_value |= 1;
3556
48229727
JB
3557 /* Assume there is at least one and at most MAXRELOCS entries to relocate
3558 in each stub. */
3559 BFD_ASSERT (nrelocs != 0 && nrelocs <= MAXRELOCS);
c820be07 3560
48229727 3561 for (i = 0; i < nrelocs; i++)
d3ce72d0
NC
3562 if (template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP24
3563 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP19
3564 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_CALL
3565 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_XPC22)
48229727
JB
3566 {
3567 Elf_Internal_Rela rel;
3568 bfd_boolean unresolved_reloc;
3569 char *error_message;
3570 int sym_flags
d3ce72d0 3571 = (template_sequence[stub_reloc_idx[i]].r_type != R_ARM_THM_XPC22)
48229727
JB
3572 ? STT_ARM_TFUNC : 0;
3573 bfd_vma points_to = sym_value + stub_entry->target_addend;
3574
3575 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
d3ce72d0
NC
3576 rel.r_info = ELF32_R_INFO (0,
3577 template_sequence[stub_reloc_idx[i]].r_type);
3578 rel.r_addend = template_sequence[stub_reloc_idx[i]].reloc_addend;
48229727
JB
3579
3580 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
3581 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
3582 template should refer back to the instruction after the original
3583 branch. */
3584 points_to = sym_value;
3585
33c6a8fc
JB
3586 /* There may be unintended consequences if this is not true. */
3587 BFD_ASSERT (stub_entry->h == NULL);
3588
48229727
JB
3589 /* Note: _bfd_final_link_relocate doesn't handle these relocations
3590 properly. We should probably use this function unconditionally,
3591 rather than only for certain relocations listed in the enclosing
3592 conditional, for the sake of consistency. */
3593 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
d3ce72d0 3594 (template_sequence[stub_reloc_idx[i]].r_type),
48229727
JB
3595 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
3596 points_to, info, stub_entry->target_section, "", sym_flags,
33c6a8fc 3597 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
48229727
JB
3598 &error_message);
3599 }
3600 else
3601 {
3602 _bfd_final_link_relocate (elf32_arm_howto_from_type
d3ce72d0 3603 (template_sequence[stub_reloc_idx[i]].r_type), stub_bfd, stub_sec,
48229727
JB
3604 stub_sec->contents, stub_entry->stub_offset + stub_reloc_offset[i],
3605 sym_value + stub_entry->target_addend,
d3ce72d0 3606 template_sequence[stub_reloc_idx[i]].reloc_addend);
48229727 3607 }
906e58ca
NC
3608
3609 return TRUE;
48229727 3610#undef MAXRELOCS
906e58ca
NC
3611}
3612
48229727
JB
3613/* Calculate the template, template size and instruction size for a stub.
3614 Return value is the instruction size. */
906e58ca 3615
48229727
JB
3616static unsigned int
3617find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
3618 const insn_sequence **stub_template,
3619 int *stub_template_size)
906e58ca 3620{
d3ce72d0 3621 const insn_sequence *template_sequence = NULL;
48229727
JB
3622 int template_size = 0, i;
3623 unsigned int size;
906e58ca 3624
d3ce72d0 3625 template_sequence = stub_definitions[stub_type].template_sequence;
48229727 3626 template_size = stub_definitions[stub_type].template_size;
906e58ca
NC
3627
3628 size = 0;
461a49ca
DJ
3629 for (i = 0; i < template_size; i++)
3630 {
d3ce72d0 3631 switch (template_sequence[i].type)
461a49ca
DJ
3632 {
3633 case THUMB16_TYPE:
3634 size += 2;
3635 break;
3636
3637 case ARM_TYPE:
48229727 3638 case THUMB32_TYPE:
461a49ca
DJ
3639 case DATA_TYPE:
3640 size += 4;
3641 break;
3642
3643 default:
3644 BFD_FAIL ();
3645 return FALSE;
3646 }
3647 }
3648
48229727 3649 if (stub_template)
d3ce72d0 3650 *stub_template = template_sequence;
48229727
JB
3651
3652 if (stub_template_size)
3653 *stub_template_size = template_size;
3654
3655 return size;
3656}
3657
3658/* As above, but don't actually build the stub. Just bump offset so
3659 we know stub section sizes. */
3660
3661static bfd_boolean
3662arm_size_one_stub (struct bfd_hash_entry *gen_entry,
3663 void * in_arg)
3664{
3665 struct elf32_arm_stub_hash_entry *stub_entry;
3666 struct elf32_arm_link_hash_table *htab;
d3ce72d0 3667 const insn_sequence *template_sequence;
48229727
JB
3668 int template_size, size;
3669
3670 /* Massage our args to the form they really have. */
3671 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3672 htab = (struct elf32_arm_link_hash_table *) in_arg;
3673
3674 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
3675 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
3676
d3ce72d0 3677 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
48229727
JB
3678 &template_size);
3679
461a49ca 3680 stub_entry->stub_size = size;
d3ce72d0 3681 stub_entry->stub_template = template_sequence;
461a49ca
DJ
3682 stub_entry->stub_template_size = template_size;
3683
906e58ca
NC
3684 size = (size + 7) & ~7;
3685 stub_entry->stub_sec->size += size;
461a49ca 3686
906e58ca
NC
3687 return TRUE;
3688}
3689
3690/* External entry points for sizing and building linker stubs. */
3691
3692/* Set up various things so that we can make a list of input sections
3693 for each output section included in the link. Returns -1 on error,
3694 0 when no stubs will be needed, and 1 on success. */
3695
3696int
3697elf32_arm_setup_section_lists (bfd *output_bfd,
3698 struct bfd_link_info *info)
3699{
3700 bfd *input_bfd;
3701 unsigned int bfd_count;
3702 int top_id, top_index;
3703 asection *section;
3704 asection **input_list, **list;
3705 bfd_size_type amt;
3706 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3707
3708 if (! is_elf_hash_table (htab))
3709 return 0;
3710
3711 /* Count the number of input BFDs and find the top input section id. */
3712 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3713 input_bfd != NULL;
3714 input_bfd = input_bfd->link_next)
3715 {
3716 bfd_count += 1;
3717 for (section = input_bfd->sections;
3718 section != NULL;
3719 section = section->next)
3720 {
3721 if (top_id < section->id)
3722 top_id = section->id;
3723 }
3724 }
3725 htab->bfd_count = bfd_count;
3726
3727 amt = sizeof (struct map_stub) * (top_id + 1);
3728 htab->stub_group = bfd_zmalloc (amt);
3729 if (htab->stub_group == NULL)
3730 return -1;
3731
3732 /* We can't use output_bfd->section_count here to find the top output
3733 section index as some sections may have been removed, and
3734 _bfd_strip_section_from_output doesn't renumber the indices. */
3735 for (section = output_bfd->sections, top_index = 0;
3736 section != NULL;
3737 section = section->next)
3738 {
3739 if (top_index < section->index)
3740 top_index = section->index;
3741 }
3742
3743 htab->top_index = top_index;
3744 amt = sizeof (asection *) * (top_index + 1);
3745 input_list = bfd_malloc (amt);
3746 htab->input_list = input_list;
3747 if (input_list == NULL)
3748 return -1;
3749
3750 /* For sections we aren't interested in, mark their entries with a
3751 value we can check later. */
3752 list = input_list + top_index;
3753 do
3754 *list = bfd_abs_section_ptr;
3755 while (list-- != input_list);
3756
3757 for (section = output_bfd->sections;
3758 section != NULL;
3759 section = section->next)
3760 {
3761 if ((section->flags & SEC_CODE) != 0)
3762 input_list[section->index] = NULL;
3763 }
3764
3765 return 1;
3766}
3767
3768/* The linker repeatedly calls this function for each input section,
3769 in the order that input sections are linked into output sections.
3770 Build lists of input sections to determine groupings between which
3771 we may insert linker stubs. */
3772
3773void
3774elf32_arm_next_input_section (struct bfd_link_info *info,
3775 asection *isec)
3776{
3777 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3778
3779 if (isec->output_section->index <= htab->top_index)
3780 {
3781 asection **list = htab->input_list + isec->output_section->index;
3782
3783 if (*list != bfd_abs_section_ptr)
3784 {
3785 /* Steal the link_sec pointer for our list. */
3786#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3787 /* This happens to make the list in reverse order,
07d72278 3788 which we reverse later. */
906e58ca
NC
3789 PREV_SEC (isec) = *list;
3790 *list = isec;
3791 }
3792 }
3793}
3794
3795/* See whether we can group stub sections together. Grouping stub
3796 sections may result in fewer stubs. More importantly, we need to
07d72278 3797 put all .init* and .fini* stubs at the end of the .init or
906e58ca
NC
3798 .fini output sections respectively, because glibc splits the
3799 _init and _fini functions into multiple parts. Putting a stub in
3800 the middle of a function is not a good idea. */
3801
3802static void
3803group_sections (struct elf32_arm_link_hash_table *htab,
3804 bfd_size_type stub_group_size,
07d72278 3805 bfd_boolean stubs_always_after_branch)
906e58ca 3806{
07d72278 3807 asection **list = htab->input_list;
906e58ca
NC
3808
3809 do
3810 {
3811 asection *tail = *list;
07d72278 3812 asection *head;
906e58ca
NC
3813
3814 if (tail == bfd_abs_section_ptr)
3815 continue;
3816
07d72278
DJ
3817 /* Reverse the list: we must avoid placing stubs at the
3818 beginning of the section because the beginning of the text
3819 section may be required for an interrupt vector in bare metal
3820 code. */
3821#define NEXT_SEC PREV_SEC
e780aef2
CL
3822 head = NULL;
3823 while (tail != NULL)
3824 {
3825 /* Pop from tail. */
3826 asection *item = tail;
3827 tail = PREV_SEC (item);
3828
3829 /* Push on head. */
3830 NEXT_SEC (item) = head;
3831 head = item;
3832 }
07d72278
DJ
3833
3834 while (head != NULL)
906e58ca
NC
3835 {
3836 asection *curr;
07d72278 3837 asection *next;
e780aef2
CL
3838 bfd_vma stub_group_start = head->output_offset;
3839 bfd_vma end_of_next;
906e58ca 3840
07d72278 3841 curr = head;
e780aef2 3842 while (NEXT_SEC (curr) != NULL)
8cd931b7 3843 {
e780aef2
CL
3844 next = NEXT_SEC (curr);
3845 end_of_next = next->output_offset + next->size;
3846 if (end_of_next - stub_group_start >= stub_group_size)
3847 /* End of NEXT is too far from start, so stop. */
8cd931b7 3848 break;
e780aef2
CL
3849 /* Add NEXT to the group. */
3850 curr = next;
8cd931b7 3851 }
906e58ca 3852
07d72278 3853 /* OK, the size from the start to the start of CURR is less
906e58ca 3854 than stub_group_size and thus can be handled by one stub
07d72278 3855 section. (Or the head section is itself larger than
906e58ca
NC
3856 stub_group_size, in which case we may be toast.)
3857 We should really be keeping track of the total size of
3858 stubs added here, as stubs contribute to the final output
7fb9f789 3859 section size. */
906e58ca
NC
3860 do
3861 {
07d72278 3862 next = NEXT_SEC (head);
906e58ca 3863 /* Set up this stub group. */
07d72278 3864 htab->stub_group[head->id].link_sec = curr;
906e58ca 3865 }
07d72278 3866 while (head != curr && (head = next) != NULL);
906e58ca
NC
3867
3868 /* But wait, there's more! Input sections up to stub_group_size
07d72278
DJ
3869 bytes after the stub section can be handled by it too. */
3870 if (!stubs_always_after_branch)
906e58ca 3871 {
e780aef2
CL
3872 stub_group_start = curr->output_offset + curr->size;
3873
8cd931b7 3874 while (next != NULL)
906e58ca 3875 {
e780aef2
CL
3876 end_of_next = next->output_offset + next->size;
3877 if (end_of_next - stub_group_start >= stub_group_size)
3878 /* End of NEXT is too far from stubs, so stop. */
8cd931b7 3879 break;
e780aef2 3880 /* Add NEXT to the stub group. */
07d72278
DJ
3881 head = next;
3882 next = NEXT_SEC (head);
3883 htab->stub_group[head->id].link_sec = curr;
906e58ca
NC
3884 }
3885 }
07d72278 3886 head = next;
906e58ca
NC
3887 }
3888 }
07d72278 3889 while (list++ != htab->input_list + htab->top_index);
906e58ca
NC
3890
3891 free (htab->input_list);
3892#undef PREV_SEC
07d72278 3893#undef NEXT_SEC
906e58ca
NC
3894}
3895
48229727
JB
3896/* Comparison function for sorting/searching relocations relating to Cortex-A8
3897 erratum fix. */
3898
3899static int
3900a8_reloc_compare (const void *a, const void *b)
3901{
3902 const struct a8_erratum_reloc *ra = a, *rb = b;
3903
3904 if (ra->from < rb->from)
3905 return -1;
3906 else if (ra->from > rb->from)
3907 return 1;
3908 else
3909 return 0;
3910}
3911
3912static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
3913 const char *, char **);
3914
3915/* Helper function to scan code for sequences which might trigger the Cortex-A8
3916 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
81694485 3917 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
48229727
JB
3918 otherwise. */
3919
81694485
NC
3920static bfd_boolean
3921cortex_a8_erratum_scan (bfd *input_bfd,
3922 struct bfd_link_info *info,
48229727
JB
3923 struct a8_erratum_fix **a8_fixes_p,
3924 unsigned int *num_a8_fixes_p,
3925 unsigned int *a8_fix_table_size_p,
3926 struct a8_erratum_reloc *a8_relocs,
eb7c4339
NS
3927 unsigned int num_a8_relocs,
3928 unsigned prev_num_a8_fixes,
3929 bfd_boolean *stub_changed_p)
48229727
JB
3930{
3931 asection *section;
3932 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3933 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
3934 unsigned int num_a8_fixes = *num_a8_fixes_p;
3935 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
3936
3937 for (section = input_bfd->sections;
3938 section != NULL;
3939 section = section->next)
3940 {
3941 bfd_byte *contents = NULL;
3942 struct _arm_elf_section_data *sec_data;
3943 unsigned int span;
3944 bfd_vma base_vma;
3945
3946 if (elf_section_type (section) != SHT_PROGBITS
3947 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3948 || (section->flags & SEC_EXCLUDE) != 0
3949 || (section->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3950 || (section->output_section == bfd_abs_section_ptr))
3951 continue;
3952
3953 base_vma = section->output_section->vma + section->output_offset;
3954
3955 if (elf_section_data (section)->this_hdr.contents != NULL)
3956 contents = elf_section_data (section)->this_hdr.contents;
3957 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
81694485 3958 return TRUE;
48229727
JB
3959
3960 sec_data = elf32_arm_section_data (section);
3961
3962 for (span = 0; span < sec_data->mapcount; span++)
3963 {
3964 unsigned int span_start = sec_data->map[span].vma;
3965 unsigned int span_end = (span == sec_data->mapcount - 1)
3966 ? section->size : sec_data->map[span + 1].vma;
3967 unsigned int i;
3968 char span_type = sec_data->map[span].type;
3969 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
3970
3971 if (span_type != 't')
3972 continue;
3973
3974 /* Span is entirely within a single 4KB region: skip scanning. */
3975 if (((base_vma + span_start) & ~0xfff)
3976 == ((base_vma + span_end) & ~0xfff))
3977 continue;
3978
3979 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
3980
3981 * The opcode is BLX.W, BL.W, B.W, Bcc.W
3982 * The branch target is in the same 4KB region as the
3983 first half of the branch.
3984 * The instruction before the branch is a 32-bit
81694485 3985 length non-branch instruction. */
48229727
JB
3986 for (i = span_start; i < span_end;)
3987 {
3988 unsigned int insn = bfd_getl16 (&contents[i]);
3989 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
3990 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
3991
3992 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
3993 insn_32bit = TRUE;
3994
3995 if (insn_32bit)
3996 {
3997 /* Load the rest of the insn (in manual-friendly order). */
3998 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
3999
4000 /* Encoding T4: B<c>.W. */
4001 is_b = (insn & 0xf800d000) == 0xf0009000;
4002 /* Encoding T1: BL<c>.W. */
4003 is_bl = (insn & 0xf800d000) == 0xf000d000;
4004 /* Encoding T2: BLX<c>.W. */
4005 is_blx = (insn & 0xf800d000) == 0xf000c000;
4006 /* Encoding T3: B<c>.W (not permitted in IT block). */
4007 is_bcc = (insn & 0xf800d000) == 0xf0008000
4008 && (insn & 0x07f00000) != 0x03800000;
4009 }
4010
4011 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
4012
81694485
NC
4013 if (((base_vma + i) & 0xfff) == 0xffe
4014 && insn_32bit
4015 && is_32bit_branch
4016 && last_was_32bit
4017 && ! last_was_branch)
48229727 4018 {
81694485 4019 bfd_signed_vma offset;
48229727
JB
4020 bfd_boolean force_target_arm = FALSE;
4021 bfd_boolean force_target_thumb = FALSE;
4022 bfd_vma target;
4023 enum elf32_arm_stub_type stub_type = arm_stub_none;
4024 struct a8_erratum_reloc key, *found;
4025
4026 key.from = base_vma + i;
4027 found = bsearch (&key, a8_relocs, num_a8_relocs,
4028 sizeof (struct a8_erratum_reloc),
4029 &a8_reloc_compare);
4030
4031 if (found)
4032 {
4033 char *error_message = NULL;
4034 struct elf_link_hash_entry *entry;
4035
4036 /* We don't care about the error returned from this
4037 function, only if there is glue or not. */
4038 entry = find_thumb_glue (info, found->sym_name,
4039 &error_message);
4040
4041 if (entry)
4042 found->non_a8_stub = TRUE;
4043
4044 if (found->r_type == R_ARM_THM_CALL
4045 && found->st_type != STT_ARM_TFUNC)
4046 force_target_arm = TRUE;
4047 else if (found->r_type == R_ARM_THM_CALL
4048 && found->st_type == STT_ARM_TFUNC)
4049 force_target_thumb = TRUE;
4050 }
4051
4052 /* Check if we have an offending branch instruction. */
4053
4054 if (found && found->non_a8_stub)
4055 /* We've already made a stub for this instruction, e.g.
4056 it's a long branch or a Thumb->ARM stub. Assume that
4057 stub will suffice to work around the A8 erratum (see
4058 setting of always_after_branch above). */
4059 ;
4060 else if (is_bcc)
4061 {
4062 offset = (insn & 0x7ff) << 1;
4063 offset |= (insn & 0x3f0000) >> 4;
4064 offset |= (insn & 0x2000) ? 0x40000 : 0;
4065 offset |= (insn & 0x800) ? 0x80000 : 0;
4066 offset |= (insn & 0x4000000) ? 0x100000 : 0;
4067 if (offset & 0x100000)
81694485 4068 offset |= ~ ((bfd_signed_vma) 0xfffff);
48229727
JB
4069 stub_type = arm_stub_a8_veneer_b_cond;
4070 }
4071 else if (is_b || is_bl || is_blx)
4072 {
4073 int s = (insn & 0x4000000) != 0;
4074 int j1 = (insn & 0x2000) != 0;
4075 int j2 = (insn & 0x800) != 0;
4076 int i1 = !(j1 ^ s);
4077 int i2 = !(j2 ^ s);
4078
4079 offset = (insn & 0x7ff) << 1;
4080 offset |= (insn & 0x3ff0000) >> 4;
4081 offset |= i2 << 22;
4082 offset |= i1 << 23;
4083 offset |= s << 24;
4084 if (offset & 0x1000000)
81694485 4085 offset |= ~ ((bfd_signed_vma) 0xffffff);
48229727
JB
4086
4087 if (is_blx)
81694485 4088 offset &= ~ ((bfd_signed_vma) 3);
48229727
JB
4089
4090 stub_type = is_blx ? arm_stub_a8_veneer_blx :
4091 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
4092 }
4093
4094 if (stub_type != arm_stub_none)
4095 {
4096 bfd_vma pc_for_insn = base_vma + i + 4;
4097
4098 /* The original instruction is a BL, but the target is
4099 an ARM instruction. If we were not making a stub,
4100 the BL would have been converted to a BLX. Use the
4101 BLX stub instead in that case. */
4102 if (htab->use_blx && force_target_arm
4103 && stub_type == arm_stub_a8_veneer_bl)
4104 {
4105 stub_type = arm_stub_a8_veneer_blx;
4106 is_blx = TRUE;
4107 is_bl = FALSE;
4108 }
4109 /* Conversely, if the original instruction was
4110 BLX but the target is Thumb mode, use the BL
4111 stub. */
4112 else if (force_target_thumb
4113 && stub_type == arm_stub_a8_veneer_blx)
4114 {
4115 stub_type = arm_stub_a8_veneer_bl;
4116 is_blx = FALSE;
4117 is_bl = TRUE;
4118 }
4119
4120 if (is_blx)
81694485 4121 pc_for_insn &= ~ ((bfd_vma) 3);
48229727
JB
4122
4123 /* If we found a relocation, use the proper destination,
4124 not the offset in the (unrelocated) instruction.
4125 Note this is always done if we switched the stub type
4126 above. */
4127 if (found)
81694485
NC
4128 offset =
4129 (bfd_signed_vma) (found->destination - pc_for_insn);
48229727
JB
4130
4131 target = pc_for_insn + offset;
4132
4133 /* The BLX stub is ARM-mode code. Adjust the offset to
4134 take the different PC value (+8 instead of +4) into
4135 account. */
4136 if (stub_type == arm_stub_a8_veneer_blx)
4137 offset += 4;
4138
4139 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
4140 {
eb7c4339 4141 char *stub_name = NULL;
48229727
JB
4142
4143 if (num_a8_fixes == a8_fix_table_size)
4144 {
4145 a8_fix_table_size *= 2;
4146 a8_fixes = bfd_realloc (a8_fixes,
4147 sizeof (struct a8_erratum_fix)
4148 * a8_fix_table_size);
4149 }
4150
eb7c4339
NS
4151 if (num_a8_fixes < prev_num_a8_fixes)
4152 {
4153 /* If we're doing a subsequent scan,
4154 check if we've found the same fix as
4155 before, and try and reuse the stub
4156 name. */
4157 stub_name = a8_fixes[num_a8_fixes].stub_name;
4158 if ((a8_fixes[num_a8_fixes].section != section)
4159 || (a8_fixes[num_a8_fixes].offset != i))
4160 {
4161 free (stub_name);
4162 stub_name = NULL;
4163 *stub_changed_p = TRUE;
4164 }
4165 }
4166
4167 if (!stub_name)
4168 {
4169 stub_name = bfd_malloc (8 + 1 + 8 + 1);
4170 if (stub_name != NULL)
4171 sprintf (stub_name, "%x:%x", section->id, i);
4172 }
48229727
JB
4173
4174 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
4175 a8_fixes[num_a8_fixes].section = section;
4176 a8_fixes[num_a8_fixes].offset = i;
4177 a8_fixes[num_a8_fixes].addend = offset;
4178 a8_fixes[num_a8_fixes].orig_insn = insn;
4179 a8_fixes[num_a8_fixes].stub_name = stub_name;
4180 a8_fixes[num_a8_fixes].stub_type = stub_type;
4181
4182 num_a8_fixes++;
4183 }
4184 }
4185 }
4186
4187 i += insn_32bit ? 4 : 2;
4188 last_was_32bit = insn_32bit;
4189 last_was_branch = is_32bit_branch;
4190 }
4191 }
4192
4193 if (elf_section_data (section)->this_hdr.contents == NULL)
4194 free (contents);
4195 }
4196
4197 *a8_fixes_p = a8_fixes;
4198 *num_a8_fixes_p = num_a8_fixes;
4199 *a8_fix_table_size_p = a8_fix_table_size;
4200
81694485 4201 return FALSE;
48229727
JB
4202}
4203
906e58ca
NC
4204/* Determine and set the size of the stub section for a final link.
4205
4206 The basic idea here is to examine all the relocations looking for
4207 PC-relative calls to a target that is unreachable with a "bl"
4208 instruction. */
4209
4210bfd_boolean
4211elf32_arm_size_stubs (bfd *output_bfd,
4212 bfd *stub_bfd,
4213 struct bfd_link_info *info,
4214 bfd_signed_vma group_size,
4215 asection * (*add_stub_section) (const char *, asection *),
4216 void (*layout_sections_again) (void))
4217{
4218 bfd_size_type stub_group_size;
07d72278 4219 bfd_boolean stubs_always_after_branch;
906e58ca 4220 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
48229727 4221 struct a8_erratum_fix *a8_fixes = NULL;
eb7c4339 4222 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
48229727
JB
4223 struct a8_erratum_reloc *a8_relocs = NULL;
4224 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
4225
4226 if (htab->fix_cortex_a8)
4227 {
4228 a8_fixes = bfd_zmalloc (sizeof (struct a8_erratum_fix)
4229 * a8_fix_table_size);
4230 a8_relocs = bfd_zmalloc (sizeof (struct a8_erratum_reloc)
4231 * a8_reloc_table_size);
4232 }
906e58ca
NC
4233
4234 /* Propagate mach to stub bfd, because it may not have been
4235 finalized when we created stub_bfd. */
4236 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4237 bfd_get_mach (output_bfd));
4238
4239 /* Stash our params away. */
4240 htab->stub_bfd = stub_bfd;
4241 htab->add_stub_section = add_stub_section;
4242 htab->layout_sections_again = layout_sections_again;
07d72278 4243 stubs_always_after_branch = group_size < 0;
48229727
JB
4244
4245 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
4246 as the first half of a 32-bit branch straddling two 4K pages. This is a
4247 crude way of enforcing that. */
4248 if (htab->fix_cortex_a8)
4249 stubs_always_after_branch = 1;
4250
906e58ca
NC
4251 if (group_size < 0)
4252 stub_group_size = -group_size;
4253 else
4254 stub_group_size = group_size;
4255
4256 if (stub_group_size == 1)
4257 {
4258 /* Default values. */
4259 /* Thumb branch range is +-4MB has to be used as the default
4260 maximum size (a given section can contain both ARM and Thumb
4261 code, so the worst case has to be taken into account).
4262
4263 This value is 24K less than that, which allows for 2025
4264 12-byte stubs. If we exceed that, then we will fail to link.
4265 The user will have to relink with an explicit group size
4266 option. */
4267 stub_group_size = 4170000;
4268 }
4269
07d72278 4270 group_sections (htab, stub_group_size, stubs_always_after_branch);
906e58ca 4271
3ae046cc
NS
4272 /* If we're applying the cortex A8 fix, we need to determine the
4273 program header size now, because we cannot change it later --
4274 that could alter section placements. Notice the A8 erratum fix
4275 ends up requiring the section addresses to remain unchanged
4276 modulo the page size. That's something we cannot represent
4277 inside BFD, and we don't want to force the section alignment to
4278 be the page size. */
4279 if (htab->fix_cortex_a8)
4280 (*htab->layout_sections_again) ();
4281
906e58ca
NC
4282 while (1)
4283 {
4284 bfd *input_bfd;
4285 unsigned int bfd_indx;
4286 asection *stub_sec;
eb7c4339
NS
4287 bfd_boolean stub_changed = FALSE;
4288 unsigned prev_num_a8_fixes = num_a8_fixes;
906e58ca 4289
48229727 4290 num_a8_fixes = 0;
906e58ca
NC
4291 for (input_bfd = info->input_bfds, bfd_indx = 0;
4292 input_bfd != NULL;
4293 input_bfd = input_bfd->link_next, bfd_indx++)
4294 {
4295 Elf_Internal_Shdr *symtab_hdr;
4296 asection *section;
4297 Elf_Internal_Sym *local_syms = NULL;
4298
48229727
JB
4299 num_a8_relocs = 0;
4300
906e58ca
NC
4301 /* We'll need the symbol table in a second. */
4302 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4303 if (symtab_hdr->sh_info == 0)
4304 continue;
4305
4306 /* Walk over each section attached to the input bfd. */
4307 for (section = input_bfd->sections;
4308 section != NULL;
4309 section = section->next)
4310 {
4311 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
4312
4313 /* If there aren't any relocs, then there's nothing more
4314 to do. */
4315 if ((section->flags & SEC_RELOC) == 0
4316 || section->reloc_count == 0
4317 || (section->flags & SEC_CODE) == 0)
4318 continue;
4319
4320 /* If this section is a link-once section that will be
4321 discarded, then don't create any stubs. */
4322 if (section->output_section == NULL
4323 || section->output_section->owner != output_bfd)
4324 continue;
4325
4326 /* Get the relocs. */
4327 internal_relocs
4328 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
4329 NULL, info->keep_memory);
4330 if (internal_relocs == NULL)
4331 goto error_ret_free_local;
4332
4333 /* Now examine each relocation. */
4334 irela = internal_relocs;
4335 irelaend = irela + section->reloc_count;
4336 for (; irela < irelaend; irela++)
4337 {
4338 unsigned int r_type, r_indx;
4339 enum elf32_arm_stub_type stub_type;
4340 struct elf32_arm_stub_hash_entry *stub_entry;
4341 asection *sym_sec;
4342 bfd_vma sym_value;
4343 bfd_vma destination;
4344 struct elf32_arm_link_hash_entry *hash;
7413f23f 4345 const char *sym_name;
906e58ca
NC
4346 char *stub_name;
4347 const asection *id_sec;
4348 unsigned char st_type;
48229727 4349 bfd_boolean created_stub = FALSE;
906e58ca
NC
4350
4351 r_type = ELF32_R_TYPE (irela->r_info);
4352 r_indx = ELF32_R_SYM (irela->r_info);
4353
4354 if (r_type >= (unsigned int) R_ARM_max)
4355 {
4356 bfd_set_error (bfd_error_bad_value);
4357 error_ret_free_internal:
4358 if (elf_section_data (section)->relocs == NULL)
4359 free (internal_relocs);
4360 goto error_ret_free_local;
4361 }
4362
155d87d7 4363 /* Only look for stubs on branch instructions. */
906e58ca 4364 if ((r_type != (unsigned int) R_ARM_CALL)
155d87d7
CL
4365 && (r_type != (unsigned int) R_ARM_THM_CALL)
4366 && (r_type != (unsigned int) R_ARM_JUMP24)
48229727
JB
4367 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
4368 && (r_type != (unsigned int) R_ARM_THM_XPC22)
155d87d7
CL
4369 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
4370 && (r_type != (unsigned int) R_ARM_PLT32))
906e58ca
NC
4371 continue;
4372
4373 /* Now determine the call target, its name, value,
4374 section. */
4375 sym_sec = NULL;
4376 sym_value = 0;
4377 destination = 0;
4378 hash = NULL;
7413f23f 4379 sym_name = NULL;
906e58ca
NC
4380 if (r_indx < symtab_hdr->sh_info)
4381 {
4382 /* It's a local symbol. */
4383 Elf_Internal_Sym *sym;
4384 Elf_Internal_Shdr *hdr;
4385
4386 if (local_syms == NULL)
4387 {
4388 local_syms
4389 = (Elf_Internal_Sym *) symtab_hdr->contents;
4390 if (local_syms == NULL)
4391 local_syms
4392 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4393 symtab_hdr->sh_info, 0,
4394 NULL, NULL, NULL);
4395 if (local_syms == NULL)
4396 goto error_ret_free_internal;
4397 }
4398
4399 sym = local_syms + r_indx;
4400 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
4401 sym_sec = hdr->bfd_section;
ffcb4889
NS
4402 if (!sym_sec)
4403 /* This is an undefined symbol. It can never
4404 be resolved. */
4405 continue;
4406
906e58ca
NC
4407 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
4408 sym_value = sym->st_value;
4409 destination = (sym_value + irela->r_addend
4410 + sym_sec->output_offset
4411 + sym_sec->output_section->vma);
4412 st_type = ELF_ST_TYPE (sym->st_info);
7413f23f
DJ
4413 sym_name
4414 = bfd_elf_string_from_elf_section (input_bfd,
4415 symtab_hdr->sh_link,
4416 sym->st_name);
906e58ca
NC
4417 }
4418 else
4419 {
4420 /* It's an external symbol. */
4421 int e_indx;
4422
4423 e_indx = r_indx - symtab_hdr->sh_info;
4424 hash = ((struct elf32_arm_link_hash_entry *)
4425 elf_sym_hashes (input_bfd)[e_indx]);
4426
4427 while (hash->root.root.type == bfd_link_hash_indirect
4428 || hash->root.root.type == bfd_link_hash_warning)
4429 hash = ((struct elf32_arm_link_hash_entry *)
4430 hash->root.root.u.i.link);
4431
4432 if (hash->root.root.type == bfd_link_hash_defined
4433 || hash->root.root.type == bfd_link_hash_defweak)
4434 {
4435 sym_sec = hash->root.root.u.def.section;
4436 sym_value = hash->root.root.u.def.value;
022f8312
CL
4437
4438 struct elf32_arm_link_hash_table *globals =
4439 elf32_arm_hash_table (info);
4440
4441 /* For a destination in a shared library,
4442 use the PLT stub as target address to
4443 decide whether a branch stub is
4444 needed. */
4445 if (globals->splt != NULL && hash != NULL
4446 && hash->root.plt.offset != (bfd_vma) -1)
4447 {
4448 sym_sec = globals->splt;
4449 sym_value = hash->root.plt.offset;
4450 if (sym_sec->output_section != NULL)
4451 destination = (sym_value
4452 + sym_sec->output_offset
4453 + sym_sec->output_section->vma);
4454 }
4455 else if (sym_sec->output_section != NULL)
906e58ca
NC
4456 destination = (sym_value + irela->r_addend
4457 + sym_sec->output_offset
4458 + sym_sec->output_section->vma);
4459 }
69c5861e
CL
4460 else if ((hash->root.root.type == bfd_link_hash_undefined)
4461 || (hash->root.root.type == bfd_link_hash_undefweak))
4462 {
4463 /* For a shared library, use the PLT stub as
4464 target address to decide whether a long
4465 branch stub is needed.
4466 For absolute code, they cannot be handled. */
4467 struct elf32_arm_link_hash_table *globals =
4468 elf32_arm_hash_table (info);
4469
4470 if (globals->splt != NULL && hash != NULL
4471 && hash->root.plt.offset != (bfd_vma) -1)
4472 {
4473 sym_sec = globals->splt;
4474 sym_value = hash->root.plt.offset;
4475 if (sym_sec->output_section != NULL)
4476 destination = (sym_value
4477 + sym_sec->output_offset
4478 + sym_sec->output_section->vma);
4479 }
4480 else
4481 continue;
4482 }
906e58ca
NC
4483 else
4484 {
4485 bfd_set_error (bfd_error_bad_value);
4486 goto error_ret_free_internal;
4487 }
4488 st_type = ELF_ST_TYPE (hash->root.type);
7413f23f 4489 sym_name = hash->root.root.root.string;
906e58ca
NC
4490 }
4491
48229727 4492 do
7413f23f 4493 {
48229727
JB
4494 /* Determine what (if any) linker stub is needed. */
4495 stub_type = arm_type_of_stub (info, section, irela,
4496 st_type, hash,
4497 destination, sym_sec,
4498 input_bfd, sym_name);
4499 if (stub_type == arm_stub_none)
4500 break;
4501
4502 /* Support for grouping stub sections. */
4503 id_sec = htab->stub_group[section->id].link_sec;
4504
4505 /* Get the name of this stub. */
4506 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash,
4507 irela);
4508 if (!stub_name)
4509 goto error_ret_free_internal;
4510
4511 /* We've either created a stub for this reloc already,
4512 or we are about to. */
4513 created_stub = TRUE;
4514
4515 stub_entry = arm_stub_hash_lookup
4516 (&htab->stub_hash_table, stub_name,
4517 FALSE, FALSE);
4518 if (stub_entry != NULL)
4519 {
4520 /* The proper stub has already been created. */
4521 free (stub_name);
eb7c4339 4522 stub_entry->target_value = sym_value;
48229727
JB
4523 break;
4524 }
7413f23f 4525
48229727
JB
4526 stub_entry = elf32_arm_add_stub (stub_name, section,
4527 htab);
4528 if (stub_entry == NULL)
4529 {
4530 free (stub_name);
4531 goto error_ret_free_internal;
4532 }
7413f23f 4533
48229727
JB
4534 stub_entry->target_value = sym_value;
4535 stub_entry->target_section = sym_sec;
4536 stub_entry->stub_type = stub_type;
4537 stub_entry->h = hash;
4538 stub_entry->st_type = st_type;
4539
4540 if (sym_name == NULL)
4541 sym_name = "unnamed";
4542 stub_entry->output_name
4543 = bfd_alloc (htab->stub_bfd,
4544 sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
4545 + strlen (sym_name));
4546 if (stub_entry->output_name == NULL)
4547 {
4548 free (stub_name);
4549 goto error_ret_free_internal;
4550 }
4551
4552 /* For historical reasons, use the existing names for
4553 ARM-to-Thumb and Thumb-to-ARM stubs. */
4554 if ( ((r_type == (unsigned int) R_ARM_THM_CALL)
4555 || (r_type == (unsigned int) R_ARM_THM_JUMP24))
4556 && st_type != STT_ARM_TFUNC)
4557 sprintf (stub_entry->output_name,
4558 THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
4559 else if ( ((r_type == (unsigned int) R_ARM_CALL)
4560 || (r_type == (unsigned int) R_ARM_JUMP24))
4561 && st_type == STT_ARM_TFUNC)
4562 sprintf (stub_entry->output_name,
4563 ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
4564 else
4565 sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
4566 sym_name);
4567
4568 stub_changed = TRUE;
4569 }
4570 while (0);
4571
4572 /* Look for relocations which might trigger Cortex-A8
4573 erratum. */
4574 if (htab->fix_cortex_a8
4575 && (r_type == (unsigned int) R_ARM_THM_JUMP24
4576 || r_type == (unsigned int) R_ARM_THM_JUMP19
4577 || r_type == (unsigned int) R_ARM_THM_CALL
4578 || r_type == (unsigned int) R_ARM_THM_XPC22))
4579 {
4580 bfd_vma from = section->output_section->vma
4581 + section->output_offset
4582 + irela->r_offset;
4583
4584 if ((from & 0xfff) == 0xffe)
4585 {
4586 /* Found a candidate. Note we haven't checked the
4587 destination is within 4K here: if we do so (and
4588 don't create an entry in a8_relocs) we can't tell
4589 that a branch should have been relocated when
4590 scanning later. */
4591 if (num_a8_relocs == a8_reloc_table_size)
4592 {
4593 a8_reloc_table_size *= 2;
4594 a8_relocs = bfd_realloc (a8_relocs,
4595 sizeof (struct a8_erratum_reloc)
4596 * a8_reloc_table_size);
4597 }
4598
4599 a8_relocs[num_a8_relocs].from = from;
4600 a8_relocs[num_a8_relocs].destination = destination;
4601 a8_relocs[num_a8_relocs].r_type = r_type;
4602 a8_relocs[num_a8_relocs].st_type = st_type;
4603 a8_relocs[num_a8_relocs].sym_name = sym_name;
4604 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
4605
4606 num_a8_relocs++;
4607 }
4608 }
906e58ca
NC
4609 }
4610
48229727
JB
4611 /* We're done with the internal relocs, free them. */
4612 if (elf_section_data (section)->relocs == NULL)
4613 free (internal_relocs);
4614 }
4615
4616 if (htab->fix_cortex_a8)
4617 {
4618 /* Sort relocs which might apply to Cortex-A8 erratum. */
eb7c4339
NS
4619 qsort (a8_relocs, num_a8_relocs,
4620 sizeof (struct a8_erratum_reloc),
48229727
JB
4621 &a8_reloc_compare);
4622
4623 /* Scan for branches which might trigger Cortex-A8 erratum. */
4624 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
4625 &num_a8_fixes, &a8_fix_table_size,
eb7c4339
NS
4626 a8_relocs, num_a8_relocs,
4627 prev_num_a8_fixes, &stub_changed)
4628 != 0)
48229727 4629 goto error_ret_free_local;
5e681ec4 4630 }
5e681ec4
PB
4631 }
4632
eb7c4339 4633 if (prev_num_a8_fixes != num_a8_fixes)
48229727
JB
4634 stub_changed = TRUE;
4635
906e58ca
NC
4636 if (!stub_changed)
4637 break;
5e681ec4 4638
906e58ca
NC
4639 /* OK, we've added some stubs. Find out the new size of the
4640 stub sections. */
4641 for (stub_sec = htab->stub_bfd->sections;
4642 stub_sec != NULL;
4643 stub_sec = stub_sec->next)
3e6b1042
DJ
4644 {
4645 /* Ignore non-stub sections. */
4646 if (!strstr (stub_sec->name, STUB_SUFFIX))
4647 continue;
4648
4649 stub_sec->size = 0;
4650 }
b34b2d70 4651
906e58ca
NC
4652 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
4653
48229727
JB
4654 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
4655 if (htab->fix_cortex_a8)
4656 for (i = 0; i < num_a8_fixes; i++)
4657 {
4658 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
4659 a8_fixes[i].section, htab);
4660
4661 if (stub_sec == NULL)
4662 goto error_ret_free_local;
4663
4664 stub_sec->size
4665 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
4666 NULL);
4667 }
4668
4669
906e58ca
NC
4670 /* Ask the linker to do its stuff. */
4671 (*htab->layout_sections_again) ();
ba93b8ac
DJ
4672 }
4673
48229727
JB
4674 /* Add stubs for Cortex-A8 erratum fixes now. */
4675 if (htab->fix_cortex_a8)
4676 {
4677 for (i = 0; i < num_a8_fixes; i++)
4678 {
4679 struct elf32_arm_stub_hash_entry *stub_entry;
4680 char *stub_name = a8_fixes[i].stub_name;
4681 asection *section = a8_fixes[i].section;
4682 unsigned int section_id = a8_fixes[i].section->id;
4683 asection *link_sec = htab->stub_group[section_id].link_sec;
4684 asection *stub_sec = htab->stub_group[section_id].stub_sec;
d3ce72d0 4685 const insn_sequence *template_sequence;
48229727
JB
4686 int template_size, size = 0;
4687
4688 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4689 TRUE, FALSE);
4690 if (stub_entry == NULL)
4691 {
4692 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
4693 section->owner,
4694 stub_name);
4695 return FALSE;
4696 }
4697
4698 stub_entry->stub_sec = stub_sec;
4699 stub_entry->stub_offset = 0;
4700 stub_entry->id_sec = link_sec;
4701 stub_entry->stub_type = a8_fixes[i].stub_type;
4702 stub_entry->target_section = a8_fixes[i].section;
4703 stub_entry->target_value = a8_fixes[i].offset;
4704 stub_entry->target_addend = a8_fixes[i].addend;
4705 stub_entry->orig_insn = a8_fixes[i].orig_insn;
4706 stub_entry->st_type = STT_ARM_TFUNC;
4707
d3ce72d0
NC
4708 size = find_stub_size_and_template (a8_fixes[i].stub_type,
4709 &template_sequence,
48229727
JB
4710 &template_size);
4711
4712 stub_entry->stub_size = size;
d3ce72d0 4713 stub_entry->stub_template = template_sequence;
48229727
JB
4714 stub_entry->stub_template_size = template_size;
4715 }
4716
4717 /* Stash the Cortex-A8 erratum fix array for use later in
4718 elf32_arm_write_section(). */
4719 htab->a8_erratum_fixes = a8_fixes;
4720 htab->num_a8_erratum_fixes = num_a8_fixes;
4721 }
4722 else
4723 {
4724 htab->a8_erratum_fixes = NULL;
4725 htab->num_a8_erratum_fixes = 0;
4726 }
906e58ca
NC
4727 return TRUE;
4728
4729 error_ret_free_local:
4730 return FALSE;
5e681ec4
PB
4731}
4732
906e58ca
NC
4733/* Build all the stubs associated with the current output file. The
4734 stubs are kept in a hash table attached to the main linker hash
4735 table. We also set up the .plt entries for statically linked PIC
4736 functions here. This function is called via arm_elf_finish in the
4737 linker. */
252b5132 4738
906e58ca
NC
4739bfd_boolean
4740elf32_arm_build_stubs (struct bfd_link_info *info)
252b5132 4741{
906e58ca
NC
4742 asection *stub_sec;
4743 struct bfd_hash_table *table;
4744 struct elf32_arm_link_hash_table *htab;
252b5132 4745
906e58ca 4746 htab = elf32_arm_hash_table (info);
252b5132 4747
906e58ca
NC
4748 for (stub_sec = htab->stub_bfd->sections;
4749 stub_sec != NULL;
4750 stub_sec = stub_sec->next)
252b5132 4751 {
906e58ca
NC
4752 bfd_size_type size;
4753
8029a119 4754 /* Ignore non-stub sections. */
906e58ca
NC
4755 if (!strstr (stub_sec->name, STUB_SUFFIX))
4756 continue;
4757
4758 /* Allocate memory to hold the linker stubs. */
4759 size = stub_sec->size;
4760 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
4761 if (stub_sec->contents == NULL && size != 0)
4762 return FALSE;
4763 stub_sec->size = 0;
252b5132
RH
4764 }
4765
906e58ca
NC
4766 /* Build the stubs as directed by the stub hash table. */
4767 table = &htab->stub_hash_table;
4768 bfd_hash_traverse (table, arm_build_one_stub, info);
eb7c4339
NS
4769 if (htab->fix_cortex_a8)
4770 {
4771 /* Place the cortex a8 stubs last. */
4772 htab->fix_cortex_a8 = -1;
4773 bfd_hash_traverse (table, arm_build_one_stub, info);
4774 }
252b5132 4775
906e58ca 4776 return TRUE;
252b5132
RH
4777}
4778
9b485d32
NC
4779/* Locate the Thumb encoded calling stub for NAME. */
4780
252b5132 4781static struct elf_link_hash_entry *
57e8b36a
NC
4782find_thumb_glue (struct bfd_link_info *link_info,
4783 const char *name,
f2a9dd69 4784 char **error_message)
252b5132
RH
4785{
4786 char *tmp_name;
4787 struct elf_link_hash_entry *hash;
4788 struct elf32_arm_link_hash_table *hash_table;
4789
4790 /* We need a pointer to the armelf specific hash table. */
4791 hash_table = elf32_arm_hash_table (link_info);
4792
57e8b36a
NC
4793 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4794 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
252b5132
RH
4795
4796 BFD_ASSERT (tmp_name);
4797
4798 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
4799
4800 hash = elf_link_hash_lookup
b34976b6 4801 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
252b5132 4802
b1657152
AM
4803 if (hash == NULL
4804 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
4805 tmp_name, name) == -1)
4806 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
252b5132
RH
4807
4808 free (tmp_name);
4809
4810 return hash;
4811}
4812
9b485d32
NC
4813/* Locate the ARM encoded calling stub for NAME. */
4814
252b5132 4815static struct elf_link_hash_entry *
57e8b36a
NC
4816find_arm_glue (struct bfd_link_info *link_info,
4817 const char *name,
f2a9dd69 4818 char **error_message)
252b5132
RH
4819{
4820 char *tmp_name;
4821 struct elf_link_hash_entry *myh;
4822 struct elf32_arm_link_hash_table *hash_table;
4823
4824 /* We need a pointer to the elfarm specific hash table. */
4825 hash_table = elf32_arm_hash_table (link_info);
4826
57e8b36a
NC
4827 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4828 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
252b5132
RH
4829
4830 BFD_ASSERT (tmp_name);
4831
4832 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
4833
4834 myh = elf_link_hash_lookup
b34976b6 4835 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
252b5132 4836
b1657152
AM
4837 if (myh == NULL
4838 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
4839 tmp_name, name) == -1)
4840 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
252b5132
RH
4841
4842 free (tmp_name);
4843
4844 return myh;
4845}
4846
8f6277f5 4847/* ARM->Thumb glue (static images):
252b5132
RH
4848
4849 .arm
4850 __func_from_arm:
4851 ldr r12, __func_addr
4852 bx r12
4853 __func_addr:
906e58ca 4854 .word func @ behave as if you saw a ARM_32 reloc.
252b5132 4855
26079076
PB
4856 (v5t static images)
4857 .arm
4858 __func_from_arm:
4859 ldr pc, __func_addr
4860 __func_addr:
906e58ca 4861 .word func @ behave as if you saw a ARM_32 reloc.
26079076 4862
8f6277f5
PB
4863 (relocatable images)
4864 .arm
4865 __func_from_arm:
4866 ldr r12, __func_offset
4867 add r12, r12, pc
4868 bx r12
4869 __func_offset:
8029a119 4870 .word func - . */
8f6277f5
PB
4871
4872#define ARM2THUMB_STATIC_GLUE_SIZE 12
252b5132
RH
4873static const insn32 a2t1_ldr_insn = 0xe59fc000;
4874static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
4875static const insn32 a2t3_func_addr_insn = 0x00000001;
4876
26079076
PB
4877#define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
4878static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
4879static const insn32 a2t2v5_func_addr_insn = 0x00000001;
4880
8f6277f5
PB
4881#define ARM2THUMB_PIC_GLUE_SIZE 16
4882static const insn32 a2t1p_ldr_insn = 0xe59fc004;
4883static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
4884static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
4885
9b485d32 4886/* Thumb->ARM: Thumb->(non-interworking aware) ARM
252b5132 4887
8029a119
NC
4888 .thumb .thumb
4889 .align 2 .align 2
4890 __func_from_thumb: __func_from_thumb:
4891 bx pc push {r6, lr}
4892 nop ldr r6, __func_addr
4893 .arm mov lr, pc
4894 b func bx r6
fcef9eb7
NC
4895 .arm
4896 ;; back_to_thumb
4897 ldmia r13! {r6, lr}
4898 bx lr
8029a119
NC
4899 __func_addr:
4900 .word func */
252b5132
RH
4901
4902#define THUMB2ARM_GLUE_SIZE 8
4903static const insn16 t2a1_bx_pc_insn = 0x4778;
4904static const insn16 t2a2_noop_insn = 0x46c0;
4905static const insn32 t2a3_b_insn = 0xea000000;
4906
c7b8f16e
JB
4907#define VFP11_ERRATUM_VENEER_SIZE 8
4908
845b51d6
PB
4909#define ARM_BX_VENEER_SIZE 12
4910static const insn32 armbx1_tst_insn = 0xe3100001;
4911static const insn32 armbx2_moveq_insn = 0x01a0f000;
4912static const insn32 armbx3_bx_insn = 0xe12fff10;
4913
7e392df6 4914#ifndef ELFARM_NABI_C_INCLUDED
8029a119
NC
4915static void
4916arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
252b5132
RH
4917{
4918 asection * s;
8029a119 4919 bfd_byte * contents;
252b5132 4920
8029a119 4921 if (size == 0)
3e6b1042
DJ
4922 {
4923 /* Do not include empty glue sections in the output. */
4924 if (abfd != NULL)
4925 {
4926 s = bfd_get_section_by_name (abfd, name);
4927 if (s != NULL)
4928 s->flags |= SEC_EXCLUDE;
4929 }
4930 return;
4931 }
252b5132 4932
8029a119 4933 BFD_ASSERT (abfd != NULL);
252b5132 4934
8029a119
NC
4935 s = bfd_get_section_by_name (abfd, name);
4936 BFD_ASSERT (s != NULL);
252b5132 4937
8029a119 4938 contents = bfd_alloc (abfd, size);
252b5132 4939
8029a119
NC
4940 BFD_ASSERT (s->size == size);
4941 s->contents = contents;
4942}
906e58ca 4943
8029a119
NC
4944bfd_boolean
4945bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
4946{
4947 struct elf32_arm_link_hash_table * globals;
906e58ca 4948
8029a119
NC
4949 globals = elf32_arm_hash_table (info);
4950 BFD_ASSERT (globals != NULL);
906e58ca 4951
8029a119
NC
4952 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4953 globals->arm_glue_size,
4954 ARM2THUMB_GLUE_SECTION_NAME);
906e58ca 4955
8029a119
NC
4956 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4957 globals->thumb_glue_size,
4958 THUMB2ARM_GLUE_SECTION_NAME);
252b5132 4959
8029a119
NC
4960 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4961 globals->vfp11_erratum_glue_size,
4962 VFP11_ERRATUM_VENEER_SECTION_NAME);
845b51d6 4963
8029a119
NC
4964 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4965 globals->bx_glue_size,
845b51d6
PB
4966 ARM_BX_GLUE_SECTION_NAME);
4967
b34976b6 4968 return TRUE;
252b5132
RH
4969}
4970
a4fd1a8e 4971/* Allocate space and symbols for calling a Thumb function from Arm mode.
906e58ca
NC
4972 returns the symbol identifying the stub. */
4973
a4fd1a8e 4974static struct elf_link_hash_entry *
57e8b36a
NC
4975record_arm_to_thumb_glue (struct bfd_link_info * link_info,
4976 struct elf_link_hash_entry * h)
252b5132
RH
4977{
4978 const char * name = h->root.root.string;
63b0f745 4979 asection * s;
252b5132
RH
4980 char * tmp_name;
4981 struct elf_link_hash_entry * myh;
14a793b2 4982 struct bfd_link_hash_entry * bh;
252b5132 4983 struct elf32_arm_link_hash_table * globals;
dc810e39 4984 bfd_vma val;
2f475487 4985 bfd_size_type size;
252b5132
RH
4986
4987 globals = elf32_arm_hash_table (link_info);
4988
4989 BFD_ASSERT (globals != NULL);
4990 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4991
4992 s = bfd_get_section_by_name
4993 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
4994
252b5132
RH
4995 BFD_ASSERT (s != NULL);
4996
57e8b36a 4997 tmp_name = bfd_malloc ((bfd_size_type) strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
252b5132
RH
4998
4999 BFD_ASSERT (tmp_name);
5000
5001 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5002
5003 myh = elf_link_hash_lookup
b34976b6 5004 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
252b5132
RH
5005
5006 if (myh != NULL)
5007 {
9b485d32 5008 /* We've already seen this guy. */
252b5132 5009 free (tmp_name);
a4fd1a8e 5010 return myh;
252b5132
RH
5011 }
5012
57e8b36a
NC
5013 /* The only trick here is using hash_table->arm_glue_size as the value.
5014 Even though the section isn't allocated yet, this is where we will be
3dccd7b7
DJ
5015 putting it. The +1 on the value marks that the stub has not been
5016 output yet - not that it is a Thumb function. */
14a793b2 5017 bh = NULL;
dc810e39
AM
5018 val = globals->arm_glue_size + 1;
5019 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5020 tmp_name, BSF_GLOBAL, s, val,
b34976b6 5021 NULL, TRUE, FALSE, &bh);
252b5132 5022
b7693d02
DJ
5023 myh = (struct elf_link_hash_entry *) bh;
5024 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5025 myh->forced_local = 1;
5026
252b5132
RH
5027 free (tmp_name);
5028
27e55c4d
PB
5029 if (link_info->shared || globals->root.is_relocatable_executable
5030 || globals->pic_veneer)
2f475487 5031 size = ARM2THUMB_PIC_GLUE_SIZE;
26079076
PB
5032 else if (globals->use_blx)
5033 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
8f6277f5 5034 else
2f475487
AM
5035 size = ARM2THUMB_STATIC_GLUE_SIZE;
5036
5037 s->size += size;
5038 globals->arm_glue_size += size;
252b5132 5039
a4fd1a8e 5040 return myh;
252b5132
RH
5041}
5042
845b51d6
PB
5043/* Allocate space for ARMv4 BX veneers. */
5044
5045static void
5046record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
5047{
5048 asection * s;
5049 struct elf32_arm_link_hash_table *globals;
5050 char *tmp_name;
5051 struct elf_link_hash_entry *myh;
5052 struct bfd_link_hash_entry *bh;
5053 bfd_vma val;
5054
5055 /* BX PC does not need a veneer. */
5056 if (reg == 15)
5057 return;
5058
5059 globals = elf32_arm_hash_table (link_info);
5060
5061 BFD_ASSERT (globals != NULL);
5062 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5063
5064 /* Check if this veneer has already been allocated. */
5065 if (globals->bx_glue_offset[reg])
5066 return;
5067
5068 s = bfd_get_section_by_name
5069 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
5070
5071 BFD_ASSERT (s != NULL);
5072
5073 /* Add symbol for veneer. */
5074 tmp_name = bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
906e58ca 5075
845b51d6 5076 BFD_ASSERT (tmp_name);
906e58ca 5077
845b51d6 5078 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
906e58ca 5079
845b51d6
PB
5080 myh = elf_link_hash_lookup
5081 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
906e58ca 5082
845b51d6 5083 BFD_ASSERT (myh == NULL);
906e58ca 5084
845b51d6
PB
5085 bh = NULL;
5086 val = globals->bx_glue_size;
5087 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5088 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5089 NULL, TRUE, FALSE, &bh);
5090
5091 myh = (struct elf_link_hash_entry *) bh;
5092 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5093 myh->forced_local = 1;
5094
5095 s->size += ARM_BX_VENEER_SIZE;
5096 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
5097 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
5098}
5099
5100
c7b8f16e
JB
5101/* Add an entry to the code/data map for section SEC. */
5102
5103static void
5104elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
5105{
5106 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5107 unsigned int newidx;
906e58ca 5108
c7b8f16e
JB
5109 if (sec_data->map == NULL)
5110 {
5111 sec_data->map = bfd_malloc (sizeof (elf32_arm_section_map));
5112 sec_data->mapcount = 0;
5113 sec_data->mapsize = 1;
5114 }
906e58ca 5115
c7b8f16e 5116 newidx = sec_data->mapcount++;
906e58ca 5117
c7b8f16e
JB
5118 if (sec_data->mapcount > sec_data->mapsize)
5119 {
5120 sec_data->mapsize *= 2;
515ef31d
NC
5121 sec_data->map = bfd_realloc_or_free (sec_data->map, sec_data->mapsize
5122 * sizeof (elf32_arm_section_map));
5123 }
5124
5125 if (sec_data->map)
5126 {
5127 sec_data->map[newidx].vma = vma;
5128 sec_data->map[newidx].type = type;
c7b8f16e 5129 }
c7b8f16e
JB
5130}
5131
5132
5133/* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
5134 veneers are handled for now. */
5135
5136static bfd_vma
5137record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
5138 elf32_vfp11_erratum_list *branch,
5139 bfd *branch_bfd,
5140 asection *branch_sec,
5141 unsigned int offset)
5142{
5143 asection *s;
5144 struct elf32_arm_link_hash_table *hash_table;
5145 char *tmp_name;
5146 struct elf_link_hash_entry *myh;
5147 struct bfd_link_hash_entry *bh;
5148 bfd_vma val;
5149 struct _arm_elf_section_data *sec_data;
5150 int errcount;
5151 elf32_vfp11_erratum_list *newerr;
906e58ca 5152
c7b8f16e 5153 hash_table = elf32_arm_hash_table (link_info);
906e58ca 5154
c7b8f16e
JB
5155 BFD_ASSERT (hash_table != NULL);
5156 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
906e58ca 5157
c7b8f16e
JB
5158 s = bfd_get_section_by_name
5159 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
906e58ca 5160
c7b8f16e 5161 sec_data = elf32_arm_section_data (s);
906e58ca 5162
c7b8f16e 5163 BFD_ASSERT (s != NULL);
906e58ca 5164
c7b8f16e
JB
5165 tmp_name = bfd_malloc ((bfd_size_type) strlen
5166 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
906e58ca 5167
c7b8f16e 5168 BFD_ASSERT (tmp_name);
906e58ca 5169
c7b8f16e
JB
5170 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5171 hash_table->num_vfp11_fixes);
906e58ca 5172
c7b8f16e
JB
5173 myh = elf_link_hash_lookup
5174 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
906e58ca 5175
c7b8f16e 5176 BFD_ASSERT (myh == NULL);
906e58ca 5177
c7b8f16e
JB
5178 bh = NULL;
5179 val = hash_table->vfp11_erratum_glue_size;
5180 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
5181 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5182 NULL, TRUE, FALSE, &bh);
5183
5184 myh = (struct elf_link_hash_entry *) bh;
5185 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5186 myh->forced_local = 1;
5187
5188 /* Link veneer back to calling location. */
5189 errcount = ++(sec_data->erratumcount);
5190 newerr = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
906e58ca 5191
c7b8f16e
JB
5192 newerr->type = VFP11_ERRATUM_ARM_VENEER;
5193 newerr->vma = -1;
5194 newerr->u.v.branch = branch;
5195 newerr->u.v.id = hash_table->num_vfp11_fixes;
5196 branch->u.b.veneer = newerr;
5197
5198 newerr->next = sec_data->erratumlist;
5199 sec_data->erratumlist = newerr;
5200
5201 /* A symbol for the return from the veneer. */
5202 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
5203 hash_table->num_vfp11_fixes);
5204
5205 myh = elf_link_hash_lookup
5206 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
906e58ca 5207
c7b8f16e
JB
5208 if (myh != NULL)
5209 abort ();
5210
5211 bh = NULL;
5212 val = offset + 4;
5213 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
5214 branch_sec, val, NULL, TRUE, FALSE, &bh);
906e58ca 5215
c7b8f16e
JB
5216 myh = (struct elf_link_hash_entry *) bh;
5217 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5218 myh->forced_local = 1;
5219
5220 free (tmp_name);
906e58ca 5221
c7b8f16e
JB
5222 /* Generate a mapping symbol for the veneer section, and explicitly add an
5223 entry for that symbol to the code/data map for the section. */
5224 if (hash_table->vfp11_erratum_glue_size == 0)
5225 {
5226 bh = NULL;
5227 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
5228 ever requires this erratum fix. */
5229 _bfd_generic_link_add_one_symbol (link_info,
5230 hash_table->bfd_of_glue_owner, "$a",
5231 BSF_LOCAL, s, 0, NULL,
5232 TRUE, FALSE, &bh);
5233
5234 myh = (struct elf_link_hash_entry *) bh;
5235 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
5236 myh->forced_local = 1;
906e58ca 5237
c7b8f16e
JB
5238 /* The elf32_arm_init_maps function only cares about symbols from input
5239 BFDs. We must make a note of this generated mapping symbol
5240 ourselves so that code byteswapping works properly in
5241 elf32_arm_write_section. */
5242 elf32_arm_section_map_add (s, 'a', 0);
5243 }
906e58ca 5244
c7b8f16e
JB
5245 s->size += VFP11_ERRATUM_VENEER_SIZE;
5246 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
5247 hash_table->num_vfp11_fixes++;
906e58ca 5248
c7b8f16e
JB
5249 /* The offset of the veneer. */
5250 return val;
5251}
5252
8029a119 5253#define ARM_GLUE_SECTION_FLAGS \
3e6b1042
DJ
5254 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
5255 | SEC_READONLY | SEC_LINKER_CREATED)
8029a119
NC
5256
5257/* Create a fake section for use by the ARM backend of the linker. */
5258
5259static bfd_boolean
5260arm_make_glue_section (bfd * abfd, const char * name)
5261{
5262 asection * sec;
5263
5264 sec = bfd_get_section_by_name (abfd, name);
5265 if (sec != NULL)
5266 /* Already made. */
5267 return TRUE;
5268
5269 sec = bfd_make_section_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
5270
5271 if (sec == NULL
5272 || !bfd_set_section_alignment (abfd, sec, 2))
5273 return FALSE;
5274
5275 /* Set the gc mark to prevent the section from being removed by garbage
5276 collection, despite the fact that no relocs refer to this section. */
5277 sec->gc_mark = 1;
5278
5279 return TRUE;
5280}
5281
8afb0e02
NC
5282/* Add the glue sections to ABFD. This function is called from the
5283 linker scripts in ld/emultempl/{armelf}.em. */
9b485d32 5284
b34976b6 5285bfd_boolean
57e8b36a
NC
5286bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
5287 struct bfd_link_info *info)
252b5132 5288{
8afb0e02
NC
5289 /* If we are only performing a partial
5290 link do not bother adding the glue. */
1049f94e 5291 if (info->relocatable)
b34976b6 5292 return TRUE;
252b5132 5293
8029a119
NC
5294 return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
5295 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
5296 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
5297 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
8afb0e02
NC
5298}
5299
5300/* Select a BFD to be used to hold the sections used by the glue code.
5301 This function is called from the linker scripts in ld/emultempl/
8029a119 5302 {armelf/pe}.em. */
8afb0e02 5303
b34976b6 5304bfd_boolean
57e8b36a 5305bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
8afb0e02
NC
5306{
5307 struct elf32_arm_link_hash_table *globals;
5308
5309 /* If we are only performing a partial link
5310 do not bother getting a bfd to hold the glue. */
1049f94e 5311 if (info->relocatable)
b34976b6 5312 return TRUE;
8afb0e02 5313
b7693d02
DJ
5314 /* Make sure we don't attach the glue sections to a dynamic object. */
5315 BFD_ASSERT (!(abfd->flags & DYNAMIC));
5316
8afb0e02
NC
5317 globals = elf32_arm_hash_table (info);
5318
5319 BFD_ASSERT (globals != NULL);
5320
5321 if (globals->bfd_of_glue_owner != NULL)
b34976b6 5322 return TRUE;
8afb0e02 5323
252b5132
RH
5324 /* Save the bfd for later use. */
5325 globals->bfd_of_glue_owner = abfd;
cedb70c5 5326
b34976b6 5327 return TRUE;
252b5132
RH
5328}
5329
906e58ca
NC
5330static void
5331check_use_blx (struct elf32_arm_link_hash_table *globals)
39b41c9c 5332{
104d59d1
JM
5333 if (bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
5334 Tag_CPU_arch) > 2)
39b41c9c
PB
5335 globals->use_blx = 1;
5336}
5337
b34976b6 5338bfd_boolean
57e8b36a 5339bfd_elf32_arm_process_before_allocation (bfd *abfd,
d504ffc8 5340 struct bfd_link_info *link_info)
252b5132
RH
5341{
5342 Elf_Internal_Shdr *symtab_hdr;
6cdc0ccc 5343 Elf_Internal_Rela *internal_relocs = NULL;
252b5132
RH
5344 Elf_Internal_Rela *irel, *irelend;
5345 bfd_byte *contents = NULL;
252b5132
RH
5346
5347 asection *sec;
5348 struct elf32_arm_link_hash_table *globals;
5349
5350 /* If we are only performing a partial link do not bother
5351 to construct any glue. */
1049f94e 5352 if (link_info->relocatable)
b34976b6 5353 return TRUE;
252b5132 5354
39ce1a6a
NC
5355 /* Here we have a bfd that is to be included on the link. We have a
5356 hook to do reloc rummaging, before section sizes are nailed down. */
252b5132
RH
5357 globals = elf32_arm_hash_table (link_info);
5358
5359 BFD_ASSERT (globals != NULL);
39ce1a6a
NC
5360
5361 check_use_blx (globals);
252b5132 5362
d504ffc8 5363 if (globals->byteswap_code && !bfd_big_endian (abfd))
e489d0ae 5364 {
d003868e
AM
5365 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
5366 abfd);
e489d0ae
PB
5367 return FALSE;
5368 }
f21f3fe0 5369
39ce1a6a
NC
5370 /* PR 5398: If we have not decided to include any loadable sections in
5371 the output then we will not have a glue owner bfd. This is OK, it
5372 just means that there is nothing else for us to do here. */
5373 if (globals->bfd_of_glue_owner == NULL)
5374 return TRUE;
5375
252b5132
RH
5376 /* Rummage around all the relocs and map the glue vectors. */
5377 sec = abfd->sections;
5378
5379 if (sec == NULL)
b34976b6 5380 return TRUE;
252b5132
RH
5381
5382 for (; sec != NULL; sec = sec->next)
5383 {
5384 if (sec->reloc_count == 0)
5385 continue;
5386
2f475487
AM
5387 if ((sec->flags & SEC_EXCLUDE) != 0)
5388 continue;
5389
0ffa91dd 5390 symtab_hdr = & elf_symtab_hdr (abfd);
252b5132 5391
9b485d32 5392 /* Load the relocs. */
6cdc0ccc 5393 internal_relocs
906e58ca 5394 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
252b5132 5395
6cdc0ccc
AM
5396 if (internal_relocs == NULL)
5397 goto error_return;
252b5132 5398
6cdc0ccc
AM
5399 irelend = internal_relocs + sec->reloc_count;
5400 for (irel = internal_relocs; irel < irelend; irel++)
252b5132
RH
5401 {
5402 long r_type;
5403 unsigned long r_index;
252b5132
RH
5404
5405 struct elf_link_hash_entry *h;
5406
5407 r_type = ELF32_R_TYPE (irel->r_info);
5408 r_index = ELF32_R_SYM (irel->r_info);
5409
9b485d32 5410 /* These are the only relocation types we care about. */
ba96a88f 5411 if ( r_type != R_ARM_PC24
845b51d6 5412 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
252b5132
RH
5413 continue;
5414
5415 /* Get the section contents if we haven't done so already. */
5416 if (contents == NULL)
5417 {
5418 /* Get cached copy if it exists. */
5419 if (elf_section_data (sec)->this_hdr.contents != NULL)
5420 contents = elf_section_data (sec)->this_hdr.contents;
5421 else
5422 {
5423 /* Go get them off disk. */
57e8b36a 5424 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
252b5132
RH
5425 goto error_return;
5426 }
5427 }
5428
845b51d6
PB
5429 if (r_type == R_ARM_V4BX)
5430 {
5431 int reg;
5432
5433 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
5434 record_arm_bx_glue (link_info, reg);
5435 continue;
5436 }
5437
a7c10850 5438 /* If the relocation is not against a symbol it cannot concern us. */
252b5132
RH
5439 h = NULL;
5440
9b485d32 5441 /* We don't care about local symbols. */
252b5132
RH
5442 if (r_index < symtab_hdr->sh_info)
5443 continue;
5444
9b485d32 5445 /* This is an external symbol. */
252b5132
RH
5446 r_index -= symtab_hdr->sh_info;
5447 h = (struct elf_link_hash_entry *)
5448 elf_sym_hashes (abfd)[r_index];
5449
5450 /* If the relocation is against a static symbol it must be within
5451 the current section and so cannot be a cross ARM/Thumb relocation. */
5452 if (h == NULL)
5453 continue;
5454
d504ffc8
DJ
5455 /* If the call will go through a PLT entry then we do not need
5456 glue. */
5457 if (globals->splt != NULL && h->plt.offset != (bfd_vma) -1)
b7693d02
DJ
5458 continue;
5459
252b5132
RH
5460 switch (r_type)
5461 {
5462 case R_ARM_PC24:
5463 /* This one is a call from arm code. We need to look up
2f0ca46a 5464 the target of the call. If it is a thumb target, we
252b5132 5465 insert glue. */
ebe24dd4 5466 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
252b5132
RH
5467 record_arm_to_thumb_glue (link_info, h);
5468 break;
5469
252b5132 5470 default:
c6596c5e 5471 abort ();
252b5132
RH
5472 }
5473 }
6cdc0ccc
AM
5474
5475 if (contents != NULL
5476 && elf_section_data (sec)->this_hdr.contents != contents)
5477 free (contents);
5478 contents = NULL;
5479
5480 if (internal_relocs != NULL
5481 && elf_section_data (sec)->relocs != internal_relocs)
5482 free (internal_relocs);
5483 internal_relocs = NULL;
252b5132
RH
5484 }
5485
b34976b6 5486 return TRUE;
9a5aca8c 5487
252b5132 5488error_return:
6cdc0ccc
AM
5489 if (contents != NULL
5490 && elf_section_data (sec)->this_hdr.contents != contents)
5491 free (contents);
5492 if (internal_relocs != NULL
5493 && elf_section_data (sec)->relocs != internal_relocs)
5494 free (internal_relocs);
9a5aca8c 5495
b34976b6 5496 return FALSE;
252b5132 5497}
7e392df6 5498#endif
252b5132 5499
eb043451 5500
c7b8f16e
JB
5501/* Initialise maps of ARM/Thumb/data for input BFDs. */
5502
5503void
5504bfd_elf32_arm_init_maps (bfd *abfd)
5505{
5506 Elf_Internal_Sym *isymbuf;
5507 Elf_Internal_Shdr *hdr;
5508 unsigned int i, localsyms;
5509
af1f4419
NC
5510 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
5511 if (! is_arm_elf (abfd))
5512 return;
5513
c7b8f16e
JB
5514 if ((abfd->flags & DYNAMIC) != 0)
5515 return;
5516
0ffa91dd 5517 hdr = & elf_symtab_hdr (abfd);
c7b8f16e
JB
5518 localsyms = hdr->sh_info;
5519
5520 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
5521 should contain the number of local symbols, which should come before any
5522 global symbols. Mapping symbols are always local. */
5523 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
5524 NULL);
5525
5526 /* No internal symbols read? Skip this BFD. */
5527 if (isymbuf == NULL)
5528 return;
5529
5530 for (i = 0; i < localsyms; i++)
5531 {
5532 Elf_Internal_Sym *isym = &isymbuf[i];
5533 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
5534 const char *name;
906e58ca 5535
c7b8f16e
JB
5536 if (sec != NULL
5537 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
5538 {
5539 name = bfd_elf_string_from_elf_section (abfd,
5540 hdr->sh_link, isym->st_name);
906e58ca 5541
c7b8f16e
JB
5542 if (bfd_is_arm_special_symbol_name (name,
5543 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
5544 elf32_arm_section_map_add (sec, name[1], isym->st_value);
5545 }
5546 }
5547}
5548
5549
48229727
JB
5550/* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
5551 say what they wanted. */
5552
5553void
5554bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
5555{
5556 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
5557 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
5558
5559 if (globals->fix_cortex_a8 == -1)
5560 {
5561 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
5562 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
5563 && (out_attr[Tag_CPU_arch_profile].i == 'A'
5564 || out_attr[Tag_CPU_arch_profile].i == 0))
5565 globals->fix_cortex_a8 = 1;
5566 else
5567 globals->fix_cortex_a8 = 0;
5568 }
5569}
5570
5571
c7b8f16e
JB
5572void
5573bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
5574{
5575 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
104d59d1 5576 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
906e58ca 5577
c7b8f16e
JB
5578 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
5579 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
5580 {
5581 switch (globals->vfp11_fix)
5582 {
5583 case BFD_ARM_VFP11_FIX_DEFAULT:
5584 case BFD_ARM_VFP11_FIX_NONE:
5585 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
5586 break;
906e58ca 5587
c7b8f16e
JB
5588 default:
5589 /* Give a warning, but do as the user requests anyway. */
5590 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
5591 "workaround is not necessary for target architecture"), obfd);
5592 }
5593 }
5594 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
5595 /* For earlier architectures, we might need the workaround, but do not
5596 enable it by default. If users is running with broken hardware, they
5597 must enable the erratum fix explicitly. */
5598 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
5599}
5600
5601
906e58ca
NC
5602enum bfd_arm_vfp11_pipe
5603{
c7b8f16e
JB
5604 VFP11_FMAC,
5605 VFP11_LS,
5606 VFP11_DS,
5607 VFP11_BAD
5608};
5609
5610/* Return a VFP register number. This is encoded as RX:X for single-precision
5611 registers, or X:RX for double-precision registers, where RX is the group of
5612 four bits in the instruction encoding and X is the single extension bit.
5613 RX and X fields are specified using their lowest (starting) bit. The return
5614 value is:
5615
5616 0...31: single-precision registers s0...s31
5617 32...63: double-precision registers d0...d31.
906e58ca 5618
c7b8f16e
JB
5619 Although X should be zero for VFP11 (encoding d0...d15 only), we might
5620 encounter VFP3 instructions, so we allow the full range for DP registers. */
906e58ca 5621
c7b8f16e
JB
5622static unsigned int
5623bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
5624 unsigned int x)
5625{
5626 if (is_double)
5627 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
5628 else
5629 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
5630}
5631
5632/* Set bits in *WMASK according to a register number REG as encoded by
5633 bfd_arm_vfp11_regno(). Ignore d16-d31. */
5634
5635static void
5636bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
5637{
5638 if (reg < 32)
5639 *wmask |= 1 << reg;
5640 else if (reg < 48)
5641 *wmask |= 3 << ((reg - 32) * 2);
5642}
5643
5644/* Return TRUE if WMASK overwrites anything in REGS. */
5645
5646static bfd_boolean
5647bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
5648{
5649 int i;
906e58ca 5650
c7b8f16e
JB
5651 for (i = 0; i < numregs; i++)
5652 {
5653 unsigned int reg = regs[i];
5654
5655 if (reg < 32 && (wmask & (1 << reg)) != 0)
5656 return TRUE;
906e58ca 5657
c7b8f16e
JB
5658 reg -= 32;
5659
5660 if (reg >= 16)
5661 continue;
906e58ca 5662
c7b8f16e
JB
5663 if ((wmask & (3 << (reg * 2))) != 0)
5664 return TRUE;
5665 }
906e58ca 5666
c7b8f16e
JB
5667 return FALSE;
5668}
5669
5670/* In this function, we're interested in two things: finding input registers
5671 for VFP data-processing instructions, and finding the set of registers which
5672 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
5673 hold the written set, so FLDM etc. are easy to deal with (we're only
5674 interested in 32 SP registers or 16 dp registers, due to the VFP version
5675 implemented by the chip in question). DP registers are marked by setting
5676 both SP registers in the write mask). */
5677
5678static enum bfd_arm_vfp11_pipe
5679bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
5680 int *numregs)
5681{
5682 enum bfd_arm_vfp11_pipe pipe = VFP11_BAD;
5683 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
5684
5685 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
5686 {
5687 unsigned int pqrs;
5688 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
5689 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
5690
5691 pqrs = ((insn & 0x00800000) >> 20)
5692 | ((insn & 0x00300000) >> 19)
5693 | ((insn & 0x00000040) >> 6);
5694
5695 switch (pqrs)
5696 {
5697 case 0: /* fmac[sd]. */
5698 case 1: /* fnmac[sd]. */
5699 case 2: /* fmsc[sd]. */
5700 case 3: /* fnmsc[sd]. */
5701 pipe = VFP11_FMAC;
5702 bfd_arm_vfp11_write_mask (destmask, fd);
5703 regs[0] = fd;
5704 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
5705 regs[2] = fm;
5706 *numregs = 3;
5707 break;
5708
5709 case 4: /* fmul[sd]. */
5710 case 5: /* fnmul[sd]. */
5711 case 6: /* fadd[sd]. */
5712 case 7: /* fsub[sd]. */
5713 pipe = VFP11_FMAC;
5714 goto vfp_binop;
5715
5716 case 8: /* fdiv[sd]. */
5717 pipe = VFP11_DS;
5718 vfp_binop:
5719 bfd_arm_vfp11_write_mask (destmask, fd);
5720 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
5721 regs[1] = fm;
5722 *numregs = 2;
5723 break;
5724
5725 case 15: /* extended opcode. */
5726 {
5727 unsigned int extn = ((insn >> 15) & 0x1e)
5728 | ((insn >> 7) & 1);
5729
5730 switch (extn)
5731 {
5732 case 0: /* fcpy[sd]. */
5733 case 1: /* fabs[sd]. */
5734 case 2: /* fneg[sd]. */
5735 case 8: /* fcmp[sd]. */
5736 case 9: /* fcmpe[sd]. */
5737 case 10: /* fcmpz[sd]. */
5738 case 11: /* fcmpez[sd]. */
5739 case 16: /* fuito[sd]. */
5740 case 17: /* fsito[sd]. */
5741 case 24: /* ftoui[sd]. */
5742 case 25: /* ftouiz[sd]. */
5743 case 26: /* ftosi[sd]. */
5744 case 27: /* ftosiz[sd]. */
5745 /* These instructions will not bounce due to underflow. */
5746 *numregs = 0;
5747 pipe = VFP11_FMAC;
5748 break;
5749
5750 case 3: /* fsqrt[sd]. */
5751 /* fsqrt cannot underflow, but it can (perhaps) overwrite
5752 registers to cause the erratum in previous instructions. */
5753 bfd_arm_vfp11_write_mask (destmask, fd);
5754 pipe = VFP11_DS;
5755 break;
5756
5757 case 15: /* fcvt{ds,sd}. */
5758 {
5759 int rnum = 0;
5760
5761 bfd_arm_vfp11_write_mask (destmask, fd);
5762
5763 /* Only FCVTSD can underflow. */
5764 if ((insn & 0x100) != 0)
5765 regs[rnum++] = fm;
5766
5767 *numregs = rnum;
5768
5769 pipe = VFP11_FMAC;
5770 }
5771 break;
5772
5773 default:
5774 return VFP11_BAD;
5775 }
5776 }
5777 break;
5778
5779 default:
5780 return VFP11_BAD;
5781 }
5782 }
5783 /* Two-register transfer. */
5784 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
5785 {
5786 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
906e58ca 5787
c7b8f16e
JB
5788 if ((insn & 0x100000) == 0)
5789 {
5790 if (is_double)
5791 bfd_arm_vfp11_write_mask (destmask, fm);
5792 else
5793 {
5794 bfd_arm_vfp11_write_mask (destmask, fm);
5795 bfd_arm_vfp11_write_mask (destmask, fm + 1);
5796 }
5797 }
5798
5799 pipe = VFP11_LS;
5800 }
5801 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
5802 {
5803 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
5804 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
906e58ca 5805
c7b8f16e
JB
5806 switch (puw)
5807 {
5808 case 0: /* Two-reg transfer. We should catch these above. */
5809 abort ();
906e58ca 5810
c7b8f16e
JB
5811 case 2: /* fldm[sdx]. */
5812 case 3:
5813 case 5:
5814 {
5815 unsigned int i, offset = insn & 0xff;
5816
5817 if (is_double)
5818 offset >>= 1;
5819
5820 for (i = fd; i < fd + offset; i++)
5821 bfd_arm_vfp11_write_mask (destmask, i);
5822 }
5823 break;
906e58ca 5824
c7b8f16e
JB
5825 case 4: /* fld[sd]. */
5826 case 6:
5827 bfd_arm_vfp11_write_mask (destmask, fd);
5828 break;
906e58ca 5829
c7b8f16e
JB
5830 default:
5831 return VFP11_BAD;
5832 }
5833
5834 pipe = VFP11_LS;
5835 }
5836 /* Single-register transfer. Note L==0. */
5837 else if ((insn & 0x0f100e10) == 0x0e000a10)
5838 {
5839 unsigned int opcode = (insn >> 21) & 7;
5840 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
5841
5842 switch (opcode)
5843 {
5844 case 0: /* fmsr/fmdlr. */
5845 case 1: /* fmdhr. */
5846 /* Mark fmdhr and fmdlr as writing to the whole of the DP
5847 destination register. I don't know if this is exactly right,
5848 but it is the conservative choice. */
5849 bfd_arm_vfp11_write_mask (destmask, fn);
5850 break;
5851
5852 case 7: /* fmxr. */
5853 break;
5854 }
5855
5856 pipe = VFP11_LS;
5857 }
5858
5859 return pipe;
5860}
5861
5862
5863static int elf32_arm_compare_mapping (const void * a, const void * b);
5864
5865
5866/* Look for potentially-troublesome code sequences which might trigger the
5867 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
5868 (available from ARM) for details of the erratum. A short version is
5869 described in ld.texinfo. */
5870
5871bfd_boolean
5872bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
5873{
5874 asection *sec;
5875 bfd_byte *contents = NULL;
5876 int state = 0;
5877 int regs[3], numregs = 0;
5878 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
5879 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
906e58ca 5880
c7b8f16e
JB
5881 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
5882 The states transition as follows:
906e58ca 5883
c7b8f16e
JB
5884 0 -> 1 (vector) or 0 -> 2 (scalar)
5885 A VFP FMAC-pipeline instruction has been seen. Fill
5886 regs[0]..regs[numregs-1] with its input operands. Remember this
5887 instruction in 'first_fmac'.
5888
5889 1 -> 2
5890 Any instruction, except for a VFP instruction which overwrites
5891 regs[*].
906e58ca 5892
c7b8f16e
JB
5893 1 -> 3 [ -> 0 ] or
5894 2 -> 3 [ -> 0 ]
5895 A VFP instruction has been seen which overwrites any of regs[*].
5896 We must make a veneer! Reset state to 0 before examining next
5897 instruction.
906e58ca 5898
c7b8f16e
JB
5899 2 -> 0
5900 If we fail to match anything in state 2, reset to state 0 and reset
5901 the instruction pointer to the instruction after 'first_fmac'.
5902
5903 If the VFP11 vector mode is in use, there must be at least two unrelated
5904 instructions between anti-dependent VFP11 instructions to properly avoid
906e58ca 5905 triggering the erratum, hence the use of the extra state 1. */
c7b8f16e
JB
5906
5907 /* If we are only performing a partial link do not bother
5908 to construct any glue. */
5909 if (link_info->relocatable)
5910 return TRUE;
5911
0ffa91dd
NC
5912 /* Skip if this bfd does not correspond to an ELF image. */
5913 if (! is_arm_elf (abfd))
5914 return TRUE;
906e58ca 5915
c7b8f16e
JB
5916 /* We should have chosen a fix type by the time we get here. */
5917 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
5918
5919 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
5920 return TRUE;
2e6030b9 5921
33a7ffc2
JM
5922 /* Skip this BFD if it corresponds to an executable or dynamic object. */
5923 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
5924 return TRUE;
5925
c7b8f16e
JB
5926 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5927 {
5928 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
5929 struct _arm_elf_section_data *sec_data;
5930
5931 /* If we don't have executable progbits, we're not interested in this
5932 section. Also skip if section is to be excluded. */
5933 if (elf_section_type (sec) != SHT_PROGBITS
5934 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
5935 || (sec->flags & SEC_EXCLUDE) != 0
33a7ffc2
JM
5936 || sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS
5937 || sec->output_section == bfd_abs_section_ptr
c7b8f16e
JB
5938 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
5939 continue;
5940
5941 sec_data = elf32_arm_section_data (sec);
906e58ca 5942
c7b8f16e
JB
5943 if (sec_data->mapcount == 0)
5944 continue;
906e58ca 5945
c7b8f16e
JB
5946 if (elf_section_data (sec)->this_hdr.contents != NULL)
5947 contents = elf_section_data (sec)->this_hdr.contents;
5948 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
5949 goto error_return;
5950
5951 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
5952 elf32_arm_compare_mapping);
5953
5954 for (span = 0; span < sec_data->mapcount; span++)
5955 {
5956 unsigned int span_start = sec_data->map[span].vma;
5957 unsigned int span_end = (span == sec_data->mapcount - 1)
5958 ? sec->size : sec_data->map[span + 1].vma;
5959 char span_type = sec_data->map[span].type;
906e58ca 5960
c7b8f16e
JB
5961 /* FIXME: Only ARM mode is supported at present. We may need to
5962 support Thumb-2 mode also at some point. */
5963 if (span_type != 'a')
5964 continue;
5965
5966 for (i = span_start; i < span_end;)
5967 {
5968 unsigned int next_i = i + 4;
5969 unsigned int insn = bfd_big_endian (abfd)
5970 ? (contents[i] << 24)
5971 | (contents[i + 1] << 16)
5972 | (contents[i + 2] << 8)
5973 | contents[i + 3]
5974 : (contents[i + 3] << 24)
5975 | (contents[i + 2] << 16)
5976 | (contents[i + 1] << 8)
5977 | contents[i];
5978 unsigned int writemask = 0;
5979 enum bfd_arm_vfp11_pipe pipe;
5980
5981 switch (state)
5982 {
5983 case 0:
5984 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
5985 &numregs);
5986 /* I'm assuming the VFP11 erratum can trigger with denorm
5987 operands on either the FMAC or the DS pipeline. This might
5988 lead to slightly overenthusiastic veneer insertion. */
5989 if (pipe == VFP11_FMAC || pipe == VFP11_DS)
5990 {
5991 state = use_vector ? 1 : 2;
5992 first_fmac = i;
5993 veneer_of_insn = insn;
5994 }
5995 break;
5996
5997 case 1:
5998 {
5999 int other_regs[3], other_numregs;
6000 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6001 other_regs,
6002 &other_numregs);
6003 if (pipe != VFP11_BAD
6004 && bfd_arm_vfp11_antidependency (writemask, regs,
6005 numregs))
6006 state = 3;
6007 else
6008 state = 2;
6009 }
6010 break;
6011
6012 case 2:
6013 {
6014 int other_regs[3], other_numregs;
6015 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6016 other_regs,
6017 &other_numregs);
6018 if (pipe != VFP11_BAD
6019 && bfd_arm_vfp11_antidependency (writemask, regs,
6020 numregs))
6021 state = 3;
6022 else
6023 {
6024 state = 0;
6025 next_i = first_fmac + 4;
6026 }
6027 }
6028 break;
6029
6030 case 3:
6031 abort (); /* Should be unreachable. */
6032 }
6033
6034 if (state == 3)
6035 {
6036 elf32_vfp11_erratum_list *newerr
6037 = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
6038 int errcount;
6039
6040 errcount = ++(elf32_arm_section_data (sec)->erratumcount);
6041
6042 newerr->u.b.vfp_insn = veneer_of_insn;
6043
6044 switch (span_type)
6045 {
6046 case 'a':
6047 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
6048 break;
906e58ca 6049
c7b8f16e
JB
6050 default:
6051 abort ();
6052 }
6053
6054 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
6055 first_fmac);
6056
6057 newerr->vma = -1;
6058
6059 newerr->next = sec_data->erratumlist;
6060 sec_data->erratumlist = newerr;
6061
6062 state = 0;
6063 }
6064
6065 i = next_i;
6066 }
6067 }
906e58ca 6068
c7b8f16e
JB
6069 if (contents != NULL
6070 && elf_section_data (sec)->this_hdr.contents != contents)
6071 free (contents);
6072 contents = NULL;
6073 }
6074
6075 return TRUE;
6076
6077error_return:
6078 if (contents != NULL
6079 && elf_section_data (sec)->this_hdr.contents != contents)
6080 free (contents);
906e58ca 6081
c7b8f16e
JB
6082 return FALSE;
6083}
6084
6085/* Find virtual-memory addresses for VFP11 erratum veneers and return locations
6086 after sections have been laid out, using specially-named symbols. */
6087
6088void
6089bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
6090 struct bfd_link_info *link_info)
6091{
6092 asection *sec;
6093 struct elf32_arm_link_hash_table *globals;
6094 char *tmp_name;
906e58ca 6095
c7b8f16e
JB
6096 if (link_info->relocatable)
6097 return;
2e6030b9
MS
6098
6099 /* Skip if this bfd does not correspond to an ELF image. */
0ffa91dd 6100 if (! is_arm_elf (abfd))
2e6030b9
MS
6101 return;
6102
c7b8f16e 6103 globals = elf32_arm_hash_table (link_info);
906e58ca 6104
c7b8f16e
JB
6105 tmp_name = bfd_malloc ((bfd_size_type) strlen
6106 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
6107
6108 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6109 {
6110 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
6111 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
906e58ca 6112
c7b8f16e
JB
6113 for (; errnode != NULL; errnode = errnode->next)
6114 {
6115 struct elf_link_hash_entry *myh;
6116 bfd_vma vma;
6117
6118 switch (errnode->type)
6119 {
6120 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
6121 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
6122 /* Find veneer symbol. */
6123 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
6124 errnode->u.b.veneer->u.v.id);
6125
6126 myh = elf_link_hash_lookup
6127 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6128
6129 if (myh == NULL)
6130 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6131 "`%s'"), abfd, tmp_name);
6132
6133 vma = myh->root.u.def.section->output_section->vma
6134 + myh->root.u.def.section->output_offset
6135 + myh->root.u.def.value;
6136
6137 errnode->u.b.veneer->vma = vma;
6138 break;
6139
6140 case VFP11_ERRATUM_ARM_VENEER:
6141 case VFP11_ERRATUM_THUMB_VENEER:
6142 /* Find return location. */
6143 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
6144 errnode->u.v.id);
6145
6146 myh = elf_link_hash_lookup
6147 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6148
6149 if (myh == NULL)
6150 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6151 "`%s'"), abfd, tmp_name);
6152
6153 vma = myh->root.u.def.section->output_section->vma
6154 + myh->root.u.def.section->output_offset
6155 + myh->root.u.def.value;
6156
6157 errnode->u.v.branch->vma = vma;
6158 break;
906e58ca 6159
c7b8f16e
JB
6160 default:
6161 abort ();
6162 }
6163 }
6164 }
906e58ca 6165
c7b8f16e
JB
6166 free (tmp_name);
6167}
6168
6169
eb043451
PB
6170/* Set target relocation values needed during linking. */
6171
6172void
bf21ed78
MS
6173bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
6174 struct bfd_link_info *link_info,
eb043451 6175 int target1_is_rel,
319850b4 6176 char * target2_type,
33bfe774 6177 int fix_v4bx,
c7b8f16e 6178 int use_blx,
bf21ed78 6179 bfd_arm_vfp11_fix vfp11_fix,
a9dc9481 6180 int no_enum_warn, int no_wchar_warn,
48229727 6181 int pic_veneer, int fix_cortex_a8)
eb043451
PB
6182{
6183 struct elf32_arm_link_hash_table *globals;
6184
6185 globals = elf32_arm_hash_table (link_info);
6186
6187 globals->target1_is_rel = target1_is_rel;
6188 if (strcmp (target2_type, "rel") == 0)
6189 globals->target2_reloc = R_ARM_REL32;
eeac373a
PB
6190 else if (strcmp (target2_type, "abs") == 0)
6191 globals->target2_reloc = R_ARM_ABS32;
eb043451
PB
6192 else if (strcmp (target2_type, "got-rel") == 0)
6193 globals->target2_reloc = R_ARM_GOT_PREL;
6194 else
6195 {
6196 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
6197 target2_type);
6198 }
319850b4 6199 globals->fix_v4bx = fix_v4bx;
33bfe774 6200 globals->use_blx |= use_blx;
c7b8f16e 6201 globals->vfp11_fix = vfp11_fix;
27e55c4d 6202 globals->pic_veneer = pic_veneer;
48229727 6203 globals->fix_cortex_a8 = fix_cortex_a8;
bf21ed78 6204
0ffa91dd
NC
6205 BFD_ASSERT (is_arm_elf (output_bfd));
6206 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
a9dc9481 6207 elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
eb043451 6208}
eb043451 6209
12a0a0fd 6210/* Replace the target offset of a Thumb bl or b.w instruction. */
252b5132 6211
12a0a0fd
PB
6212static void
6213insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
6214{
6215 bfd_vma upper;
6216 bfd_vma lower;
6217 int reloc_sign;
6218
6219 BFD_ASSERT ((offset & 1) == 0);
6220
6221 upper = bfd_get_16 (abfd, insn);
6222 lower = bfd_get_16 (abfd, insn + 2);
6223 reloc_sign = (offset < 0) ? 1 : 0;
6224 upper = (upper & ~(bfd_vma) 0x7ff)
6225 | ((offset >> 12) & 0x3ff)
6226 | (reloc_sign << 10);
906e58ca 6227 lower = (lower & ~(bfd_vma) 0x2fff)
12a0a0fd
PB
6228 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
6229 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
6230 | ((offset >> 1) & 0x7ff);
6231 bfd_put_16 (abfd, upper, insn);
6232 bfd_put_16 (abfd, lower, insn + 2);
252b5132
RH
6233}
6234
9b485d32
NC
6235/* Thumb code calling an ARM function. */
6236
252b5132 6237static int
57e8b36a
NC
6238elf32_thumb_to_arm_stub (struct bfd_link_info * info,
6239 const char * name,
6240 bfd * input_bfd,
6241 bfd * output_bfd,
6242 asection * input_section,
6243 bfd_byte * hit_data,
6244 asection * sym_sec,
6245 bfd_vma offset,
6246 bfd_signed_vma addend,
f2a9dd69
DJ
6247 bfd_vma val,
6248 char **error_message)
252b5132 6249{
bcbdc74c 6250 asection * s = 0;
dc810e39 6251 bfd_vma my_offset;
252b5132 6252 long int ret_offset;
bcbdc74c
NC
6253 struct elf_link_hash_entry * myh;
6254 struct elf32_arm_link_hash_table * globals;
252b5132 6255
f2a9dd69 6256 myh = find_thumb_glue (info, name, error_message);
252b5132 6257 if (myh == NULL)
b34976b6 6258 return FALSE;
252b5132
RH
6259
6260 globals = elf32_arm_hash_table (info);
6261
6262 BFD_ASSERT (globals != NULL);
6263 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6264
6265 my_offset = myh->root.u.def.value;
6266
6267 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6268 THUMB2ARM_GLUE_SECTION_NAME);
6269
6270 BFD_ASSERT (s != NULL);
6271 BFD_ASSERT (s->contents != NULL);
6272 BFD_ASSERT (s->output_section != NULL);
6273
6274 if ((my_offset & 0x01) == 0x01)
6275 {
6276 if (sym_sec != NULL
6277 && sym_sec->owner != NULL
6278 && !INTERWORK_FLAG (sym_sec->owner))
6279 {
8f615d07 6280 (*_bfd_error_handler)
d003868e
AM
6281 (_("%B(%s): warning: interworking not enabled.\n"
6282 " first occurrence: %B: thumb call to arm"),
6283 sym_sec->owner, input_bfd, name);
252b5132 6284
b34976b6 6285 return FALSE;
252b5132
RH
6286 }
6287
6288 --my_offset;
6289 myh->root.u.def.value = my_offset;
6290
52ab56c2
PB
6291 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
6292 s->contents + my_offset);
252b5132 6293
52ab56c2
PB
6294 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
6295 s->contents + my_offset + 2);
252b5132
RH
6296
6297 ret_offset =
9b485d32
NC
6298 /* Address of destination of the stub. */
6299 ((bfd_signed_vma) val)
252b5132 6300 - ((bfd_signed_vma)
57e8b36a
NC
6301 /* Offset from the start of the current section
6302 to the start of the stubs. */
9b485d32
NC
6303 (s->output_offset
6304 /* Offset of the start of this stub from the start of the stubs. */
6305 + my_offset
6306 /* Address of the start of the current section. */
6307 + s->output_section->vma)
6308 /* The branch instruction is 4 bytes into the stub. */
6309 + 4
6310 /* ARM branches work from the pc of the instruction + 8. */
6311 + 8);
252b5132 6312
52ab56c2
PB
6313 put_arm_insn (globals, output_bfd,
6314 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
6315 s->contents + my_offset + 4);
252b5132
RH
6316 }
6317
6318 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
6319
427bfd90
NC
6320 /* Now go back and fix up the original BL insn to point to here. */
6321 ret_offset =
6322 /* Address of where the stub is located. */
6323 (s->output_section->vma + s->output_offset + my_offset)
6324 /* Address of where the BL is located. */
57e8b36a
NC
6325 - (input_section->output_section->vma + input_section->output_offset
6326 + offset)
427bfd90
NC
6327 /* Addend in the relocation. */
6328 - addend
6329 /* Biassing for PC-relative addressing. */
6330 - 8;
252b5132 6331
12a0a0fd 6332 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
252b5132 6333
b34976b6 6334 return TRUE;
252b5132
RH
6335}
6336
a4fd1a8e 6337/* Populate an Arm to Thumb stub. Returns the stub symbol. */
9b485d32 6338
a4fd1a8e
PB
6339static struct elf_link_hash_entry *
6340elf32_arm_create_thumb_stub (struct bfd_link_info * info,
6341 const char * name,
6342 bfd * input_bfd,
6343 bfd * output_bfd,
6344 asection * sym_sec,
6345 bfd_vma val,
8029a119
NC
6346 asection * s,
6347 char ** error_message)
252b5132 6348{
dc810e39 6349 bfd_vma my_offset;
252b5132 6350 long int ret_offset;
bcbdc74c
NC
6351 struct elf_link_hash_entry * myh;
6352 struct elf32_arm_link_hash_table * globals;
252b5132 6353
f2a9dd69 6354 myh = find_arm_glue (info, name, error_message);
252b5132 6355 if (myh == NULL)
a4fd1a8e 6356 return NULL;
252b5132
RH
6357
6358 globals = elf32_arm_hash_table (info);
6359
6360 BFD_ASSERT (globals != NULL);
6361 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6362
6363 my_offset = myh->root.u.def.value;
252b5132
RH
6364
6365 if ((my_offset & 0x01) == 0x01)
6366 {
6367 if (sym_sec != NULL
6368 && sym_sec->owner != NULL
6369 && !INTERWORK_FLAG (sym_sec->owner))
6370 {
8f615d07 6371 (*_bfd_error_handler)
d003868e
AM
6372 (_("%B(%s): warning: interworking not enabled.\n"
6373 " first occurrence: %B: arm call to thumb"),
6374 sym_sec->owner, input_bfd, name);
252b5132 6375 }
9b485d32 6376
252b5132
RH
6377 --my_offset;
6378 myh->root.u.def.value = my_offset;
6379
27e55c4d
PB
6380 if (info->shared || globals->root.is_relocatable_executable
6381 || globals->pic_veneer)
8f6277f5
PB
6382 {
6383 /* For relocatable objects we can't use absolute addresses,
6384 so construct the address from a relative offset. */
6385 /* TODO: If the offset is small it's probably worth
6386 constructing the address with adds. */
52ab56c2
PB
6387 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
6388 s->contents + my_offset);
6389 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
6390 s->contents + my_offset + 4);
6391 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
6392 s->contents + my_offset + 8);
8f6277f5
PB
6393 /* Adjust the offset by 4 for the position of the add,
6394 and 8 for the pipeline offset. */
6395 ret_offset = (val - (s->output_offset
6396 + s->output_section->vma
6397 + my_offset + 12))
6398 | 1;
6399 bfd_put_32 (output_bfd, ret_offset,
6400 s->contents + my_offset + 12);
6401 }
26079076
PB
6402 else if (globals->use_blx)
6403 {
6404 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
6405 s->contents + my_offset);
6406
6407 /* It's a thumb address. Add the low order bit. */
6408 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
6409 s->contents + my_offset + 4);
6410 }
8f6277f5
PB
6411 else
6412 {
52ab56c2
PB
6413 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
6414 s->contents + my_offset);
252b5132 6415
52ab56c2
PB
6416 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
6417 s->contents + my_offset + 4);
252b5132 6418
8f6277f5
PB
6419 /* It's a thumb address. Add the low order bit. */
6420 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
6421 s->contents + my_offset + 8);
8029a119
NC
6422
6423 my_offset += 12;
8f6277f5 6424 }
252b5132
RH
6425 }
6426
6427 BFD_ASSERT (my_offset <= globals->arm_glue_size);
6428
a4fd1a8e
PB
6429 return myh;
6430}
6431
6432/* Arm code calling a Thumb function. */
6433
6434static int
6435elf32_arm_to_thumb_stub (struct bfd_link_info * info,
6436 const char * name,
6437 bfd * input_bfd,
6438 bfd * output_bfd,
6439 asection * input_section,
6440 bfd_byte * hit_data,
6441 asection * sym_sec,
6442 bfd_vma offset,
6443 bfd_signed_vma addend,
f2a9dd69
DJ
6444 bfd_vma val,
6445 char **error_message)
a4fd1a8e
PB
6446{
6447 unsigned long int tmp;
6448 bfd_vma my_offset;
6449 asection * s;
6450 long int ret_offset;
6451 struct elf_link_hash_entry * myh;
6452 struct elf32_arm_link_hash_table * globals;
6453
6454 globals = elf32_arm_hash_table (info);
6455
6456 BFD_ASSERT (globals != NULL);
6457 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6458
6459 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6460 ARM2THUMB_GLUE_SECTION_NAME);
6461 BFD_ASSERT (s != NULL);
6462 BFD_ASSERT (s->contents != NULL);
6463 BFD_ASSERT (s->output_section != NULL);
6464
6465 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
f2a9dd69 6466 sym_sec, val, s, error_message);
a4fd1a8e
PB
6467 if (!myh)
6468 return FALSE;
6469
6470 my_offset = myh->root.u.def.value;
252b5132
RH
6471 tmp = bfd_get_32 (input_bfd, hit_data);
6472 tmp = tmp & 0xFF000000;
6473
9b485d32 6474 /* Somehow these are both 4 too far, so subtract 8. */
dc810e39
AM
6475 ret_offset = (s->output_offset
6476 + my_offset
6477 + s->output_section->vma
6478 - (input_section->output_offset
6479 + input_section->output_section->vma
6480 + offset + addend)
6481 - 8);
9a5aca8c 6482
252b5132
RH
6483 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
6484
dc810e39 6485 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
252b5132 6486
b34976b6 6487 return TRUE;
252b5132
RH
6488}
6489
a4fd1a8e
PB
6490/* Populate Arm stub for an exported Thumb function. */
6491
6492static bfd_boolean
6493elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
6494{
6495 struct bfd_link_info * info = (struct bfd_link_info *) inf;
6496 asection * s;
6497 struct elf_link_hash_entry * myh;
6498 struct elf32_arm_link_hash_entry *eh;
6499 struct elf32_arm_link_hash_table * globals;
6500 asection *sec;
6501 bfd_vma val;
f2a9dd69 6502 char *error_message;
a4fd1a8e 6503
906e58ca 6504 eh = elf32_arm_hash_entry (h);
a4fd1a8e
PB
6505 /* Allocate stubs for exported Thumb functions on v4t. */
6506 if (eh->export_glue == NULL)
6507 return TRUE;
6508
6509 globals = elf32_arm_hash_table (info);
6510
6511 BFD_ASSERT (globals != NULL);
6512 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6513
6514 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6515 ARM2THUMB_GLUE_SECTION_NAME);
6516 BFD_ASSERT (s != NULL);
6517 BFD_ASSERT (s->contents != NULL);
6518 BFD_ASSERT (s->output_section != NULL);
6519
6520 sec = eh->export_glue->root.u.def.section;
0eaedd0e
PB
6521
6522 BFD_ASSERT (sec->output_section != NULL);
6523
a4fd1a8e
PB
6524 val = eh->export_glue->root.u.def.value + sec->output_offset
6525 + sec->output_section->vma;
8029a119 6526
a4fd1a8e
PB
6527 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
6528 h->root.u.def.section->owner,
f2a9dd69
DJ
6529 globals->obfd, sec, val, s,
6530 &error_message);
a4fd1a8e
PB
6531 BFD_ASSERT (myh);
6532 return TRUE;
6533}
6534
845b51d6
PB
6535/* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
6536
6537static bfd_vma
6538elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
6539{
6540 bfd_byte *p;
6541 bfd_vma glue_addr;
6542 asection *s;
6543 struct elf32_arm_link_hash_table *globals;
6544
6545 globals = elf32_arm_hash_table (info);
6546
6547 BFD_ASSERT (globals != NULL);
6548 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6549
6550 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6551 ARM_BX_GLUE_SECTION_NAME);
6552 BFD_ASSERT (s != NULL);
6553 BFD_ASSERT (s->contents != NULL);
6554 BFD_ASSERT (s->output_section != NULL);
6555
6556 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
6557
6558 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
6559
6560 if ((globals->bx_glue_offset[reg] & 1) == 0)
6561 {
6562 p = s->contents + glue_addr;
6563 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
6564 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
6565 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
6566 globals->bx_glue_offset[reg] |= 1;
6567 }
6568
6569 return glue_addr + s->output_section->vma + s->output_offset;
6570}
6571
a4fd1a8e
PB
6572/* Generate Arm stubs for exported Thumb symbols. */
6573static void
906e58ca 6574elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
a4fd1a8e
PB
6575 struct bfd_link_info *link_info)
6576{
6577 struct elf32_arm_link_hash_table * globals;
6578
8029a119
NC
6579 if (link_info == NULL)
6580 /* Ignore this if we are not called by the ELF backend linker. */
a4fd1a8e
PB
6581 return;
6582
6583 globals = elf32_arm_hash_table (link_info);
84c08195
PB
6584 /* If blx is available then exported Thumb symbols are OK and there is
6585 nothing to do. */
a4fd1a8e
PB
6586 if (globals->use_blx)
6587 return;
6588
6589 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
6590 link_info);
6591}
6592
eb043451
PB
6593/* Some relocations map to different relocations depending on the
6594 target. Return the real relocation. */
8029a119 6595
eb043451
PB
6596static int
6597arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
6598 int r_type)
6599{
6600 switch (r_type)
6601 {
6602 case R_ARM_TARGET1:
6603 if (globals->target1_is_rel)
6604 return R_ARM_REL32;
6605 else
6606 return R_ARM_ABS32;
6607
6608 case R_ARM_TARGET2:
6609 return globals->target2_reloc;
6610
6611 default:
6612 return r_type;
6613 }
6614}
eb043451 6615
ba93b8ac
DJ
6616/* Return the base VMA address which should be subtracted from real addresses
6617 when resolving @dtpoff relocation.
6618 This is PT_TLS segment p_vaddr. */
6619
6620static bfd_vma
6621dtpoff_base (struct bfd_link_info *info)
6622{
6623 /* If tls_sec is NULL, we should have signalled an error already. */
6624 if (elf_hash_table (info)->tls_sec == NULL)
6625 return 0;
6626 return elf_hash_table (info)->tls_sec->vma;
6627}
6628
6629/* Return the relocation value for @tpoff relocation
6630 if STT_TLS virtual address is ADDRESS. */
6631
6632static bfd_vma
6633tpoff (struct bfd_link_info *info, bfd_vma address)
6634{
6635 struct elf_link_hash_table *htab = elf_hash_table (info);
6636 bfd_vma base;
6637
6638 /* If tls_sec is NULL, we should have signalled an error already. */
6639 if (htab->tls_sec == NULL)
6640 return 0;
6641 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
6642 return address - htab->tls_sec->vma + base;
6643}
6644
00a97672
RS
6645/* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
6646 VALUE is the relocation value. */
6647
6648static bfd_reloc_status_type
6649elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
6650{
6651 if (value > 0xfff)
6652 return bfd_reloc_overflow;
6653
6654 value |= bfd_get_32 (abfd, data) & 0xfffff000;
6655 bfd_put_32 (abfd, value, data);
6656 return bfd_reloc_ok;
6657}
6658
4962c51a
MS
6659/* For a given value of n, calculate the value of G_n as required to
6660 deal with group relocations. We return it in the form of an
6661 encoded constant-and-rotation, together with the final residual. If n is
6662 specified as less than zero, then final_residual is filled with the
6663 input value and no further action is performed. */
6664
6665static bfd_vma
6666calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
6667{
6668 int current_n;
6669 bfd_vma g_n;
6670 bfd_vma encoded_g_n = 0;
6671 bfd_vma residual = value; /* Also known as Y_n. */
6672
6673 for (current_n = 0; current_n <= n; current_n++)
6674 {
6675 int shift;
6676
6677 /* Calculate which part of the value to mask. */
6678 if (residual == 0)
6679 shift = 0;
6680 else
6681 {
6682 int msb;
6683
6684 /* Determine the most significant bit in the residual and
6685 align the resulting value to a 2-bit boundary. */
6686 for (msb = 30; msb >= 0; msb -= 2)
6687 if (residual & (3 << msb))
6688 break;
6689
6690 /* The desired shift is now (msb - 6), or zero, whichever
6691 is the greater. */
6692 shift = msb - 6;
6693 if (shift < 0)
6694 shift = 0;
6695 }
6696
6697 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
6698 g_n = residual & (0xff << shift);
6699 encoded_g_n = (g_n >> shift)
6700 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
6701
6702 /* Calculate the residual for the next time around. */
6703 residual &= ~g_n;
6704 }
6705
6706 *final_residual = residual;
6707
6708 return encoded_g_n;
6709}
6710
6711/* Given an ARM instruction, determine whether it is an ADD or a SUB.
6712 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
906e58ca 6713
4962c51a 6714static int
906e58ca 6715identify_add_or_sub (bfd_vma insn)
4962c51a
MS
6716{
6717 int opcode = insn & 0x1e00000;
6718
6719 if (opcode == 1 << 23) /* ADD */
6720 return 1;
6721
6722 if (opcode == 1 << 22) /* SUB */
6723 return -1;
6724
6725 return 0;
6726}
6727
252b5132 6728/* Perform a relocation as part of a final link. */
9b485d32 6729
252b5132 6730static bfd_reloc_status_type
57e8b36a
NC
6731elf32_arm_final_link_relocate (reloc_howto_type * howto,
6732 bfd * input_bfd,
6733 bfd * output_bfd,
6734 asection * input_section,
6735 bfd_byte * contents,
6736 Elf_Internal_Rela * rel,
6737 bfd_vma value,
6738 struct bfd_link_info * info,
6739 asection * sym_sec,
6740 const char * sym_name,
6741 int sym_flags,
0945cdfd 6742 struct elf_link_hash_entry * h,
f2a9dd69 6743 bfd_boolean * unresolved_reloc_p,
8029a119 6744 char ** error_message)
252b5132
RH
6745{
6746 unsigned long r_type = howto->type;
6747 unsigned long r_symndx;
6748 bfd_byte * hit_data = contents + rel->r_offset;
6749 bfd * dynobj = NULL;
6750 Elf_Internal_Shdr * symtab_hdr;
6751 struct elf_link_hash_entry ** sym_hashes;
6752 bfd_vma * local_got_offsets;
6753 asection * sgot = NULL;
6754 asection * splt = NULL;
6755 asection * sreloc = NULL;
252b5132 6756 bfd_vma addend;
ba96a88f
NC
6757 bfd_signed_vma signed_addend;
6758 struct elf32_arm_link_hash_table * globals;
f21f3fe0 6759
9c504268
PB
6760 globals = elf32_arm_hash_table (info);
6761
0ffa91dd
NC
6762 BFD_ASSERT (is_arm_elf (input_bfd));
6763
6764 /* Some relocation types map to different relocations depending on the
9c504268 6765 target. We pick the right one here. */
eb043451
PB
6766 r_type = arm_real_reloc_type (globals, r_type);
6767 if (r_type != howto->type)
6768 howto = elf32_arm_howto_from_type (r_type);
9c504268 6769
cac15327
NC
6770 /* If the start address has been set, then set the EF_ARM_HASENTRY
6771 flag. Setting this more than once is redundant, but the cost is
6772 not too high, and it keeps the code simple.
99e4ae17 6773
cac15327
NC
6774 The test is done here, rather than somewhere else, because the
6775 start address is only set just before the final link commences.
6776
6777 Note - if the user deliberately sets a start address of 0, the
6778 flag will not be set. */
6779 if (bfd_get_start_address (output_bfd) != 0)
6780 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
99e4ae17 6781
252b5132
RH
6782 dynobj = elf_hash_table (info)->dynobj;
6783 if (dynobj)
6784 {
6785 sgot = bfd_get_section_by_name (dynobj, ".got");
6786 splt = bfd_get_section_by_name (dynobj, ".plt");
6787 }
0ffa91dd 6788 symtab_hdr = & elf_symtab_hdr (input_bfd);
252b5132
RH
6789 sym_hashes = elf_sym_hashes (input_bfd);
6790 local_got_offsets = elf_local_got_offsets (input_bfd);
6791 r_symndx = ELF32_R_SYM (rel->r_info);
6792
4e7fd91e 6793 if (globals->use_rel)
ba96a88f 6794 {
4e7fd91e
PB
6795 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
6796
6797 if (addend & ((howto->src_mask + 1) >> 1))
6798 {
6799 signed_addend = -1;
6800 signed_addend &= ~ howto->src_mask;
6801 signed_addend |= addend;
6802 }
6803 else
6804 signed_addend = addend;
ba96a88f
NC
6805 }
6806 else
4e7fd91e 6807 addend = signed_addend = rel->r_addend;
f21f3fe0 6808
252b5132
RH
6809 switch (r_type)
6810 {
6811 case R_ARM_NONE:
28a094c2
DJ
6812 /* We don't need to find a value for this symbol. It's just a
6813 marker. */
6814 *unresolved_reloc_p = FALSE;
252b5132
RH
6815 return bfd_reloc_ok;
6816
00a97672
RS
6817 case R_ARM_ABS12:
6818 if (!globals->vxworks_p)
6819 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
6820
252b5132
RH
6821 case R_ARM_PC24:
6822 case R_ARM_ABS32:
bb224fc3 6823 case R_ARM_ABS32_NOI:
252b5132 6824 case R_ARM_REL32:
bb224fc3 6825 case R_ARM_REL32_NOI:
5b5bb741
PB
6826 case R_ARM_CALL:
6827 case R_ARM_JUMP24:
dfc5f959 6828 case R_ARM_XPC25:
eb043451 6829 case R_ARM_PREL31:
7359ea65 6830 case R_ARM_PLT32:
7359ea65
DJ
6831 /* Handle relocations which should use the PLT entry. ABS32/REL32
6832 will use the symbol's value, which may point to a PLT entry, but we
6833 don't need to handle that here. If we created a PLT entry, all
5fa9e92f
CL
6834 branches in this object should go to it, except if the PLT is too
6835 far away, in which case a long branch stub should be inserted. */
bb224fc3 6836 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
5fa9e92f 6837 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
155d87d7
CL
6838 && r_type != R_ARM_CALL
6839 && r_type != R_ARM_JUMP24
6840 && r_type != R_ARM_PLT32)
7359ea65 6841 && h != NULL
c84cd8ee 6842 && splt != NULL
7359ea65
DJ
6843 && h->plt.offset != (bfd_vma) -1)
6844 {
c84cd8ee
DJ
6845 /* If we've created a .plt section, and assigned a PLT entry to
6846 this function, it should not be known to bind locally. If
6847 it were, we would have cleared the PLT entry. */
7359ea65
DJ
6848 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h));
6849
6850 value = (splt->output_section->vma
6851 + splt->output_offset
6852 + h->plt.offset);
0945cdfd 6853 *unresolved_reloc_p = FALSE;
7359ea65
DJ
6854 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6855 contents, rel->r_offset, value,
00a97672 6856 rel->r_addend);
7359ea65
DJ
6857 }
6858
67687978
PB
6859 /* When generating a shared object or relocatable executable, these
6860 relocations are copied into the output file to be resolved at
6861 run time. */
6862 if ((info->shared || globals->root.is_relocatable_executable)
7359ea65 6863 && (input_section->flags & SEC_ALLOC)
3348747a
NS
6864 && !(elf32_arm_hash_table (info)->vxworks_p
6865 && strcmp (input_section->output_section->name,
6866 ".tls_vars") == 0)
bb224fc3 6867 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
ee06dc07 6868 || !SYMBOL_CALLS_LOCAL (info, h))
7359ea65
DJ
6869 && (h == NULL
6870 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6871 || h->root.type != bfd_link_hash_undefweak)
6872 && r_type != R_ARM_PC24
5b5bb741
PB
6873 && r_type != R_ARM_CALL
6874 && r_type != R_ARM_JUMP24
ee06dc07 6875 && r_type != R_ARM_PREL31
7359ea65 6876 && r_type != R_ARM_PLT32)
252b5132 6877 {
947216bf
AM
6878 Elf_Internal_Rela outrel;
6879 bfd_byte *loc;
b34976b6 6880 bfd_boolean skip, relocate;
f21f3fe0 6881
0945cdfd
DJ
6882 *unresolved_reloc_p = FALSE;
6883
252b5132
RH
6884 if (sreloc == NULL)
6885 {
83bac4b0
NC
6886 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
6887 ! globals->use_rel);
f21f3fe0 6888
83bac4b0 6889 if (sreloc == NULL)
252b5132 6890 return bfd_reloc_notsupported;
252b5132 6891 }
f21f3fe0 6892
b34976b6
AM
6893 skip = FALSE;
6894 relocate = FALSE;
f21f3fe0 6895
00a97672 6896 outrel.r_addend = addend;
c629eae0
JJ
6897 outrel.r_offset =
6898 _bfd_elf_section_offset (output_bfd, info, input_section,
6899 rel->r_offset);
6900 if (outrel.r_offset == (bfd_vma) -1)
b34976b6 6901 skip = TRUE;
0bb2d96a 6902 else if (outrel.r_offset == (bfd_vma) -2)
b34976b6 6903 skip = TRUE, relocate = TRUE;
252b5132
RH
6904 outrel.r_offset += (input_section->output_section->vma
6905 + input_section->output_offset);
f21f3fe0 6906
252b5132 6907 if (skip)
0bb2d96a 6908 memset (&outrel, 0, sizeof outrel);
5e681ec4
PB
6909 else if (h != NULL
6910 && h->dynindx != -1
7359ea65 6911 && (!info->shared
5e681ec4 6912 || !info->symbolic
f5385ebf 6913 || !h->def_regular))
5e681ec4 6914 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
252b5132
RH
6915 else
6916 {
a16385dc
MM
6917 int symbol;
6918
5e681ec4 6919 /* This symbol is local, or marked to become local. */
b7693d02
DJ
6920 if (sym_flags == STT_ARM_TFUNC)
6921 value |= 1;
a16385dc 6922 if (globals->symbian_p)
6366ff1e 6923 {
74541ad4
AM
6924 asection *osec;
6925
6366ff1e
MM
6926 /* On Symbian OS, the data segment and text segement
6927 can be relocated independently. Therefore, we
6928 must indicate the segment to which this
6929 relocation is relative. The BPABI allows us to
6930 use any symbol in the right segment; we just use
6931 the section symbol as it is convenient. (We
6932 cannot use the symbol given by "h" directly as it
74541ad4
AM
6933 will not appear in the dynamic symbol table.)
6934
6935 Note that the dynamic linker ignores the section
6936 symbol value, so we don't subtract osec->vma
6937 from the emitted reloc addend. */
10dbd1f3 6938 if (sym_sec)
74541ad4 6939 osec = sym_sec->output_section;
10dbd1f3 6940 else
74541ad4
AM
6941 osec = input_section->output_section;
6942 symbol = elf_section_data (osec)->dynindx;
6943 if (symbol == 0)
6944 {
6945 struct elf_link_hash_table *htab = elf_hash_table (info);
6946
6947 if ((osec->flags & SEC_READONLY) == 0
6948 && htab->data_index_section != NULL)
6949 osec = htab->data_index_section;
6950 else
6951 osec = htab->text_index_section;
6952 symbol = elf_section_data (osec)->dynindx;
6953 }
6366ff1e
MM
6954 BFD_ASSERT (symbol != 0);
6955 }
a16385dc
MM
6956 else
6957 /* On SVR4-ish systems, the dynamic loader cannot
6958 relocate the text and data segments independently,
6959 so the symbol does not matter. */
6960 symbol = 0;
6961 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
00a97672
RS
6962 if (globals->use_rel)
6963 relocate = TRUE;
6964 else
6965 outrel.r_addend += value;
252b5132 6966 }
f21f3fe0 6967
947216bf 6968 loc = sreloc->contents;
00a97672
RS
6969 loc += sreloc->reloc_count++ * RELOC_SIZE (globals);
6970 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
9a5aca8c 6971
f21f3fe0 6972 /* If this reloc is against an external symbol, we do not want to
252b5132 6973 fiddle with the addend. Otherwise, we need to include the symbol
9b485d32 6974 value so that it becomes an addend for the dynamic reloc. */
252b5132
RH
6975 if (! relocate)
6976 return bfd_reloc_ok;
9a5aca8c 6977
f21f3fe0 6978 return _bfd_final_link_relocate (howto, input_bfd, input_section,
252b5132
RH
6979 contents, rel->r_offset, value,
6980 (bfd_vma) 0);
6981 }
6982 else switch (r_type)
6983 {
00a97672
RS
6984 case R_ARM_ABS12:
6985 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
6986
dfc5f959 6987 case R_ARM_XPC25: /* Arm BLX instruction. */
5b5bb741
PB
6988 case R_ARM_CALL:
6989 case R_ARM_JUMP24:
8029a119 6990 case R_ARM_PC24: /* Arm B/BL instruction. */
7359ea65 6991 case R_ARM_PLT32:
906e58ca 6992 {
906e58ca
NC
6993 bfd_signed_vma branch_offset;
6994 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
6995
dfc5f959 6996 if (r_type == R_ARM_XPC25)
252b5132 6997 {
dfc5f959
NC
6998 /* Check for Arm calling Arm function. */
6999 /* FIXME: Should we translate the instruction into a BL
7000 instruction instead ? */
7001 if (sym_flags != STT_ARM_TFUNC)
d003868e
AM
7002 (*_bfd_error_handler)
7003 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
7004 input_bfd,
7005 h ? h->root.root.string : "(local)");
dfc5f959 7006 }
155d87d7 7007 else if (r_type == R_ARM_PC24)
dfc5f959
NC
7008 {
7009 /* Check for Arm calling Thumb function. */
7010 if (sym_flags == STT_ARM_TFUNC)
7011 {
f2a9dd69
DJ
7012 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
7013 output_bfd, input_section,
7014 hit_data, sym_sec, rel->r_offset,
7015 signed_addend, value,
7016 error_message))
7017 return bfd_reloc_ok;
7018 else
7019 return bfd_reloc_dangerous;
dfc5f959 7020 }
252b5132 7021 }
ba96a88f 7022
906e58ca 7023 /* Check if a stub has to be inserted because the
8029a119 7024 destination is too far or we are changing mode. */
155d87d7
CL
7025 if ( r_type == R_ARM_CALL
7026 || r_type == R_ARM_JUMP24
7027 || r_type == R_ARM_PLT32)
906e58ca 7028 {
ffcb4889
NS
7029 bfd_vma from;
7030
5fa9e92f
CL
7031 /* If the call goes through a PLT entry, make sure to
7032 check distance to the right destination address. */
7033 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
7034 {
7035 value = (splt->output_section->vma
7036 + splt->output_offset
7037 + h->plt.offset);
7038 *unresolved_reloc_p = FALSE;
67d74e43
DJ
7039 /* The PLT entry is in ARM mode, regardless of the
7040 target function. */
7041 sym_flags = STT_FUNC;
5fa9e92f
CL
7042 }
7043
7044 from = (input_section->output_section->vma
7045 + input_section->output_offset
7046 + rel->r_offset);
7047 branch_offset = (bfd_signed_vma)(value - from);
7048
906e58ca
NC
7049 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
7050 || branch_offset < ARM_MAX_BWD_BRANCH_OFFSET
155d87d7
CL
7051 || ((sym_flags == STT_ARM_TFUNC)
7052 && (((r_type == R_ARM_CALL) && !globals->use_blx)
7053 || (r_type == R_ARM_JUMP24)
7054 || (r_type == R_ARM_PLT32) ))
7055 )
906e58ca
NC
7056 {
7057 /* The target is out of reach, so redirect the
7058 branch to the local stub for this function. */
7059
7060 stub_entry = elf32_arm_get_stub_entry (input_section,
7061 sym_sec, h,
7062 rel, globals);
7063 if (stub_entry != NULL)
7064 value = (stub_entry->stub_offset
7065 + stub_entry->stub_sec->output_offset
7066 + stub_entry->stub_sec->output_section->vma);
7067 }
7068 }
7069
dea514f5
PB
7070 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
7071 where:
7072 S is the address of the symbol in the relocation.
7073 P is address of the instruction being relocated.
7074 A is the addend (extracted from the instruction) in bytes.
7075
7076 S is held in 'value'.
7077 P is the base address of the section containing the
7078 instruction plus the offset of the reloc into that
7079 section, ie:
7080 (input_section->output_section->vma +
7081 input_section->output_offset +
7082 rel->r_offset).
7083 A is the addend, converted into bytes, ie:
7084 (signed_addend * 4)
7085
7086 Note: None of these operations have knowledge of the pipeline
7087 size of the processor, thus it is up to the assembler to
7088 encode this information into the addend. */
7089 value -= (input_section->output_section->vma
7090 + input_section->output_offset);
7091 value -= rel->r_offset;
4e7fd91e
PB
7092 if (globals->use_rel)
7093 value += (signed_addend << howto->size);
7094 else
7095 /* RELA addends do not have to be adjusted by howto->size. */
7096 value += signed_addend;
23080146 7097
dcb5e6e6
NC
7098 signed_addend = value;
7099 signed_addend >>= howto->rightshift;
9a5aca8c 7100
5ab79981 7101 /* A branch to an undefined weak symbol is turned into a jump to
ffcb4889 7102 the next instruction unless a PLT entry will be created.
cd1dac3d
DG
7103 Do the same for local undefined symbols.
7104 The jump to the next instruction is optimized as a NOP depending
7105 on the architecture. */
ffcb4889
NS
7106 if (h ? (h->root.type == bfd_link_hash_undefweak
7107 && !(splt != NULL && h->plt.offset != (bfd_vma) -1))
7108 : bfd_is_und_section (sym_sec))
5ab79981 7109 {
cd1dac3d
DG
7110 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
7111
7112 if (arch_has_arm_nop (globals))
7113 value |= 0x0320f000;
7114 else
7115 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
5ab79981
PB
7116 }
7117 else
59f2c4e7 7118 {
9b485d32 7119 /* Perform a signed range check. */
dcb5e6e6 7120 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
59f2c4e7
NC
7121 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
7122 return bfd_reloc_overflow;
9a5aca8c 7123
5ab79981 7124 addend = (value & 2);
39b41c9c 7125
5ab79981
PB
7126 value = (signed_addend & howto->dst_mask)
7127 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
39b41c9c 7128
5ab79981
PB
7129 if (r_type == R_ARM_CALL)
7130 {
155d87d7
CL
7131 /* Set the H bit in the BLX instruction. */
7132 if (sym_flags == STT_ARM_TFUNC)
7133 {
7134 if (addend)
7135 value |= (1 << 24);
7136 else
7137 value &= ~(bfd_vma)(1 << 24);
7138 }
7139
5ab79981 7140 /* Select the correct instruction (BL or BLX). */
906e58ca 7141 /* Only if we are not handling a BL to a stub. In this
8029a119 7142 case, mode switching is performed by the stub. */
906e58ca 7143 if (sym_flags == STT_ARM_TFUNC && !stub_entry)
5ab79981
PB
7144 value |= (1 << 28);
7145 else
7146 {
7147 value &= ~(bfd_vma)(1 << 28);
7148 value |= (1 << 24);
7149 }
39b41c9c
PB
7150 }
7151 }
906e58ca 7152 }
252b5132 7153 break;
f21f3fe0 7154
252b5132
RH
7155 case R_ARM_ABS32:
7156 value += addend;
7157 if (sym_flags == STT_ARM_TFUNC)
7158 value |= 1;
7159 break;
f21f3fe0 7160
bb224fc3
MS
7161 case R_ARM_ABS32_NOI:
7162 value += addend;
7163 break;
7164
252b5132 7165 case R_ARM_REL32:
a8bc6c78
PB
7166 value += addend;
7167 if (sym_flags == STT_ARM_TFUNC)
7168 value |= 1;
252b5132 7169 value -= (input_section->output_section->vma
62efb346 7170 + input_section->output_offset + rel->r_offset);
252b5132 7171 break;
eb043451 7172
bb224fc3
MS
7173 case R_ARM_REL32_NOI:
7174 value += addend;
7175 value -= (input_section->output_section->vma
7176 + input_section->output_offset + rel->r_offset);
7177 break;
7178
eb043451
PB
7179 case R_ARM_PREL31:
7180 value -= (input_section->output_section->vma
7181 + input_section->output_offset + rel->r_offset);
7182 value += signed_addend;
7183 if (! h || h->root.type != bfd_link_hash_undefweak)
7184 {
8029a119 7185 /* Check for overflow. */
eb043451
PB
7186 if ((value ^ (value >> 1)) & (1 << 30))
7187 return bfd_reloc_overflow;
7188 }
7189 value &= 0x7fffffff;
7190 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
7191 if (sym_flags == STT_ARM_TFUNC)
7192 value |= 1;
7193 break;
252b5132 7194 }
f21f3fe0 7195
252b5132
RH
7196 bfd_put_32 (input_bfd, value, hit_data);
7197 return bfd_reloc_ok;
7198
7199 case R_ARM_ABS8:
7200 value += addend;
7201 if ((long) value > 0x7f || (long) value < -0x80)
7202 return bfd_reloc_overflow;
7203
7204 bfd_put_8 (input_bfd, value, hit_data);
7205 return bfd_reloc_ok;
7206
7207 case R_ARM_ABS16:
7208 value += addend;
7209
7210 if ((long) value > 0x7fff || (long) value < -0x8000)
7211 return bfd_reloc_overflow;
7212
7213 bfd_put_16 (input_bfd, value, hit_data);
7214 return bfd_reloc_ok;
7215
252b5132 7216 case R_ARM_THM_ABS5:
9b485d32 7217 /* Support ldr and str instructions for the thumb. */
4e7fd91e
PB
7218 if (globals->use_rel)
7219 {
7220 /* Need to refetch addend. */
7221 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
7222 /* ??? Need to determine shift amount from operand size. */
7223 addend >>= howto->rightshift;
7224 }
252b5132
RH
7225 value += addend;
7226
7227 /* ??? Isn't value unsigned? */
7228 if ((long) value > 0x1f || (long) value < -0x10)
7229 return bfd_reloc_overflow;
7230
7231 /* ??? Value needs to be properly shifted into place first. */
7232 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
7233 bfd_put_16 (input_bfd, value, hit_data);
7234 return bfd_reloc_ok;
7235
2cab6cc3
MS
7236 case R_ARM_THM_ALU_PREL_11_0:
7237 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
7238 {
7239 bfd_vma insn;
7240 bfd_signed_vma relocation;
7241
7242 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
7243 | bfd_get_16 (input_bfd, hit_data + 2);
7244
7245 if (globals->use_rel)
7246 {
7247 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
7248 | ((insn & (1 << 26)) >> 15);
7249 if (insn & 0xf00000)
7250 signed_addend = -signed_addend;
7251 }
7252
7253 relocation = value + signed_addend;
7254 relocation -= (input_section->output_section->vma
7255 + input_section->output_offset
7256 + rel->r_offset);
7257
7258 value = abs (relocation);
7259
7260 if (value >= 0x1000)
7261 return bfd_reloc_overflow;
7262
7263 insn = (insn & 0xfb0f8f00) | (value & 0xff)
7264 | ((value & 0x700) << 4)
7265 | ((value & 0x800) << 15);
7266 if (relocation < 0)
7267 insn |= 0xa00000;
7268
7269 bfd_put_16 (input_bfd, insn >> 16, hit_data);
7270 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
7271
7272 return bfd_reloc_ok;
7273 }
7274
e1ec24c6
NC
7275 case R_ARM_THM_PC8:
7276 /* PR 10073: This reloc is not generated by the GNU toolchain,
7277 but it is supported for compatibility with third party libraries
7278 generated by other compilers, specifically the ARM/IAR. */
7279 {
7280 bfd_vma insn;
7281 bfd_signed_vma relocation;
7282
7283 insn = bfd_get_16 (input_bfd, hit_data);
7284
7285 if (globals->use_rel)
7286 addend = (insn & 0x00ff) << 2;
7287
7288 relocation = value + addend;
7289 relocation -= (input_section->output_section->vma
7290 + input_section->output_offset
7291 + rel->r_offset);
7292
7293 value = abs (relocation);
7294
7295 /* We do not check for overflow of this reloc. Although strictly
7296 speaking this is incorrect, it appears to be necessary in order
7297 to work with IAR generated relocs. Since GCC and GAS do not
7298 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
7299 a problem for them. */
7300 value &= 0x3fc;
7301
7302 insn = (insn & 0xff00) | (value >> 2);
7303
7304 bfd_put_16 (input_bfd, insn, hit_data);
7305
7306 return bfd_reloc_ok;
7307 }
7308
2cab6cc3
MS
7309 case R_ARM_THM_PC12:
7310 /* Corresponds to: ldr.w reg, [pc, #offset]. */
7311 {
7312 bfd_vma insn;
7313 bfd_signed_vma relocation;
7314
7315 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
7316 | bfd_get_16 (input_bfd, hit_data + 2);
7317
7318 if (globals->use_rel)
7319 {
7320 signed_addend = insn & 0xfff;
7321 if (!(insn & (1 << 23)))
7322 signed_addend = -signed_addend;
7323 }
7324
7325 relocation = value + signed_addend;
7326 relocation -= (input_section->output_section->vma
7327 + input_section->output_offset
7328 + rel->r_offset);
7329
7330 value = abs (relocation);
7331
7332 if (value >= 0x1000)
7333 return bfd_reloc_overflow;
7334
7335 insn = (insn & 0xff7ff000) | value;
7336 if (relocation >= 0)
7337 insn |= (1 << 23);
7338
7339 bfd_put_16 (input_bfd, insn >> 16, hit_data);
7340 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
7341
7342 return bfd_reloc_ok;
7343 }
7344
dfc5f959 7345 case R_ARM_THM_XPC22:
c19d1205 7346 case R_ARM_THM_CALL:
bd97cb95 7347 case R_ARM_THM_JUMP24:
dfc5f959 7348 /* Thumb BL (branch long instruction). */
252b5132 7349 {
b34976b6 7350 bfd_vma relocation;
e95de063 7351 bfd_vma reloc_sign;
b34976b6
AM
7352 bfd_boolean overflow = FALSE;
7353 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
7354 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
e95de063
MS
7355 bfd_signed_vma reloc_signed_max;
7356 bfd_signed_vma reloc_signed_min;
b34976b6 7357 bfd_vma check;
252b5132 7358 bfd_signed_vma signed_check;
e95de063 7359 int bitsize;
cd1dac3d 7360 const int thumb2 = using_thumb2 (globals);
252b5132 7361
5ab79981 7362 /* A branch to an undefined weak symbol is turned into a jump to
cd1dac3d
DG
7363 the next instruction unless a PLT entry will be created.
7364 The jump to the next instruction is optimized as a NOP.W for
7365 Thumb-2 enabled architectures. */
19540007
JM
7366 if (h && h->root.type == bfd_link_hash_undefweak
7367 && !(splt != NULL && h->plt.offset != (bfd_vma) -1))
5ab79981 7368 {
cd1dac3d
DG
7369 if (arch_has_thumb2_nop (globals))
7370 {
7371 bfd_put_16 (input_bfd, 0xf3af, hit_data);
7372 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
7373 }
7374 else
7375 {
7376 bfd_put_16 (input_bfd, 0xe000, hit_data);
7377 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
7378 }
5ab79981
PB
7379 return bfd_reloc_ok;
7380 }
7381
e95de063
MS
7382 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
7383 with Thumb-1) involving the J1 and J2 bits. */
4e7fd91e
PB
7384 if (globals->use_rel)
7385 {
e95de063
MS
7386 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
7387 bfd_vma upper = upper_insn & 0x3ff;
7388 bfd_vma lower = lower_insn & 0x7ff;
7389 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
7390 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
7391 bfd_vma i1 = j1 ^ s ? 0 : 1;
7392 bfd_vma i2 = j2 ^ s ? 0 : 1;
7393
7394 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
7395 /* Sign extend. */
7396 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
7397
4e7fd91e
PB
7398 signed_addend = addend;
7399 }
cb1afa5c 7400
dfc5f959
NC
7401 if (r_type == R_ARM_THM_XPC22)
7402 {
7403 /* Check for Thumb to Thumb call. */
7404 /* FIXME: Should we translate the instruction into a BL
7405 instruction instead ? */
7406 if (sym_flags == STT_ARM_TFUNC)
d003868e
AM
7407 (*_bfd_error_handler)
7408 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
7409 input_bfd,
7410 h ? h->root.root.string : "(local)");
dfc5f959
NC
7411 }
7412 else
252b5132 7413 {
dfc5f959
NC
7414 /* If it is not a call to Thumb, assume call to Arm.
7415 If it is a call relative to a section name, then it is not a
b7693d02
DJ
7416 function call at all, but rather a long jump. Calls through
7417 the PLT do not require stubs. */
7418 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION
7419 && (h == NULL || splt == NULL
7420 || h->plt.offset == (bfd_vma) -1))
dfc5f959 7421 {
bd97cb95 7422 if (globals->use_blx && r_type == R_ARM_THM_CALL)
39b41c9c
PB
7423 {
7424 /* Convert BL to BLX. */
7425 lower_insn = (lower_insn & ~0x1000) | 0x0800;
7426 }
155d87d7
CL
7427 else if (( r_type != R_ARM_THM_CALL)
7428 && (r_type != R_ARM_THM_JUMP24))
8029a119
NC
7429 {
7430 if (elf32_thumb_to_arm_stub
7431 (info, sym_name, input_bfd, output_bfd, input_section,
7432 hit_data, sym_sec, rel->r_offset, signed_addend, value,
7433 error_message))
7434 return bfd_reloc_ok;
7435 else
7436 return bfd_reloc_dangerous;
7437 }
da5938a2 7438 }
bd97cb95
DJ
7439 else if (sym_flags == STT_ARM_TFUNC && globals->use_blx
7440 && r_type == R_ARM_THM_CALL)
39b41c9c
PB
7441 {
7442 /* Make sure this is a BL. */
7443 lower_insn |= 0x1800;
7444 }
252b5132 7445 }
f21f3fe0 7446
b7693d02
DJ
7447 /* Handle calls via the PLT. */
7448 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
7449 {
7450 value = (splt->output_section->vma
7451 + splt->output_offset
7452 + h->plt.offset);
bd97cb95 7453 if (globals->use_blx && r_type == R_ARM_THM_CALL)
33bfe774
JB
7454 {
7455 /* If the Thumb BLX instruction is available, convert the
7456 BL to a BLX instruction to call the ARM-mode PLT entry. */
39b41c9c 7457 lower_insn = (lower_insn & ~0x1000) | 0x0800;
67d74e43 7458 sym_flags = STT_FUNC;
33bfe774
JB
7459 }
7460 else
67d74e43
DJ
7461 {
7462 /* Target the Thumb stub before the ARM PLT entry. */
7463 value -= PLT_THUMB_STUB_SIZE;
7464 sym_flags = STT_ARM_TFUNC;
7465 }
0945cdfd 7466 *unresolved_reloc_p = FALSE;
b7693d02
DJ
7467 }
7468
155d87d7 7469 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
906e58ca
NC
7470 {
7471 /* Check if a stub has to be inserted because the destination
8029a119 7472 is too far. */
906e58ca
NC
7473 bfd_vma from;
7474 bfd_signed_vma branch_offset;
7475 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
7476
7477 from = (input_section->output_section->vma
7478 + input_section->output_offset
7479 + rel->r_offset);
7480 branch_offset = (bfd_signed_vma)(value - from);
7481
7482 if ((!thumb2
7483 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
7484 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
7485 ||
7486 (thumb2
7487 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
f4ac8484 7488 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
155d87d7
CL
7489 || ((sym_flags != STT_ARM_TFUNC)
7490 && (((r_type == R_ARM_THM_CALL) && !globals->use_blx)
7491 || r_type == R_ARM_THM_JUMP24)))
906e58ca
NC
7492 {
7493 /* The target is out of reach or we are changing modes, so
7494 redirect the branch to the local stub for this
7495 function. */
7496 stub_entry = elf32_arm_get_stub_entry (input_section,
7497 sym_sec, h,
7498 rel, globals);
7499 if (stub_entry != NULL)
7500 value = (stub_entry->stub_offset
7501 + stub_entry->stub_sec->output_offset
7502 + stub_entry->stub_sec->output_section->vma);
7503
f4ac8484 7504 /* If this call becomes a call to Arm, force BLX. */
155d87d7 7505 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
f4ac8484
DJ
7506 {
7507 if ((stub_entry
7508 && !arm_stub_is_thumb (stub_entry->stub_type))
7509 || (sym_flags != STT_ARM_TFUNC))
7510 lower_insn = (lower_insn & ~0x1000) | 0x0800;
7511 }
906e58ca
NC
7512 }
7513 }
7514
ba96a88f 7515 relocation = value + signed_addend;
f21f3fe0 7516
252b5132 7517 relocation -= (input_section->output_section->vma
ba96a88f
NC
7518 + input_section->output_offset
7519 + rel->r_offset);
9a5aca8c 7520
252b5132
RH
7521 check = relocation >> howto->rightshift;
7522
7523 /* If this is a signed value, the rightshift just dropped
7524 leading 1 bits (assuming twos complement). */
7525 if ((bfd_signed_vma) relocation >= 0)
7526 signed_check = check;
7527 else
7528 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
7529
e95de063
MS
7530 /* Calculate the permissable maximum and minimum values for
7531 this relocation according to whether we're relocating for
7532 Thumb-2 or not. */
7533 bitsize = howto->bitsize;
7534 if (!thumb2)
7535 bitsize -= 2;
7536 reloc_signed_max = ((1 << (bitsize - 1)) - 1) >> howto->rightshift;
7537 reloc_signed_min = ~reloc_signed_max;
7538
252b5132 7539 /* Assumes two's complement. */
ba96a88f 7540 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
b34976b6 7541 overflow = TRUE;
252b5132 7542
bd97cb95 7543 if ((lower_insn & 0x5000) == 0x4000)
c62e1cc3
NC
7544 /* For a BLX instruction, make sure that the relocation is rounded up
7545 to a word boundary. This follows the semantics of the instruction
7546 which specifies that bit 1 of the target address will come from bit
7547 1 of the base address. */
7548 relocation = (relocation + 2) & ~ 3;
cb1afa5c 7549
e95de063
MS
7550 /* Put RELOCATION back into the insn. Assumes two's complement.
7551 We use the Thumb-2 encoding, which is safe even if dealing with
7552 a Thumb-1 instruction by virtue of our overflow check above. */
7553 reloc_sign = (signed_check < 0) ? 1 : 0;
7554 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
7555 | ((relocation >> 12) & 0x3ff)
7556 | (reloc_sign << 10);
906e58ca 7557 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
e95de063
MS
7558 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
7559 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
7560 | ((relocation >> 1) & 0x7ff);
c62e1cc3 7561
252b5132
RH
7562 /* Put the relocated value back in the object file: */
7563 bfd_put_16 (input_bfd, upper_insn, hit_data);
7564 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
7565
7566 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
7567 }
7568 break;
7569
c19d1205
ZW
7570 case R_ARM_THM_JUMP19:
7571 /* Thumb32 conditional branch instruction. */
7572 {
7573 bfd_vma relocation;
7574 bfd_boolean overflow = FALSE;
7575 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
7576 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
a00a1f35
MS
7577 bfd_signed_vma reloc_signed_max = 0xffffe;
7578 bfd_signed_vma reloc_signed_min = -0x100000;
c19d1205
ZW
7579 bfd_signed_vma signed_check;
7580
7581 /* Need to refetch the addend, reconstruct the top three bits,
7582 and squish the two 11 bit pieces together. */
7583 if (globals->use_rel)
7584 {
7585 bfd_vma S = (upper_insn & 0x0400) >> 10;
a00a1f35 7586 bfd_vma upper = (upper_insn & 0x003f);
c19d1205
ZW
7587 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
7588 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
7589 bfd_vma lower = (lower_insn & 0x07ff);
7590
a00a1f35
MS
7591 upper |= J1 << 6;
7592 upper |= J2 << 7;
7593 upper |= (!S) << 8;
c19d1205
ZW
7594 upper -= 0x0100; /* Sign extend. */
7595
7596 addend = (upper << 12) | (lower << 1);
7597 signed_addend = addend;
7598 }
7599
bd97cb95
DJ
7600 /* Handle calls via the PLT. */
7601 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
7602 {
7603 value = (splt->output_section->vma
7604 + splt->output_offset
7605 + h->plt.offset);
7606 /* Target the Thumb stub before the ARM PLT entry. */
7607 value -= PLT_THUMB_STUB_SIZE;
7608 *unresolved_reloc_p = FALSE;
7609 }
7610
c19d1205
ZW
7611 /* ??? Should handle interworking? GCC might someday try to
7612 use this for tail calls. */
7613
7614 relocation = value + signed_addend;
7615 relocation -= (input_section->output_section->vma
7616 + input_section->output_offset
7617 + rel->r_offset);
a00a1f35 7618 signed_check = (bfd_signed_vma) relocation;
c19d1205 7619
c19d1205
ZW
7620 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
7621 overflow = TRUE;
7622
7623 /* Put RELOCATION back into the insn. */
7624 {
7625 bfd_vma S = (relocation & 0x00100000) >> 20;
7626 bfd_vma J2 = (relocation & 0x00080000) >> 19;
7627 bfd_vma J1 = (relocation & 0x00040000) >> 18;
7628 bfd_vma hi = (relocation & 0x0003f000) >> 12;
7629 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
7630
a00a1f35 7631 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
c19d1205
ZW
7632 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
7633 }
7634
7635 /* Put the relocated value back in the object file: */
7636 bfd_put_16 (input_bfd, upper_insn, hit_data);
7637 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
7638
7639 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
7640 }
7641
7642 case R_ARM_THM_JUMP11:
7643 case R_ARM_THM_JUMP8:
7644 case R_ARM_THM_JUMP6:
51c5503b
NC
7645 /* Thumb B (branch) instruction). */
7646 {
6cf9e9fe 7647 bfd_signed_vma relocation;
51c5503b
NC
7648 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
7649 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
51c5503b
NC
7650 bfd_signed_vma signed_check;
7651
c19d1205
ZW
7652 /* CZB cannot jump backward. */
7653 if (r_type == R_ARM_THM_JUMP6)
7654 reloc_signed_min = 0;
7655
4e7fd91e 7656 if (globals->use_rel)
6cf9e9fe 7657 {
4e7fd91e
PB
7658 /* Need to refetch addend. */
7659 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
7660 if (addend & ((howto->src_mask + 1) >> 1))
7661 {
7662 signed_addend = -1;
7663 signed_addend &= ~ howto->src_mask;
7664 signed_addend |= addend;
7665 }
7666 else
7667 signed_addend = addend;
7668 /* The value in the insn has been right shifted. We need to
7669 undo this, so that we can perform the address calculation
7670 in terms of bytes. */
7671 signed_addend <<= howto->rightshift;
6cf9e9fe 7672 }
6cf9e9fe 7673 relocation = value + signed_addend;
51c5503b
NC
7674
7675 relocation -= (input_section->output_section->vma
7676 + input_section->output_offset
7677 + rel->r_offset);
7678
6cf9e9fe
NC
7679 relocation >>= howto->rightshift;
7680 signed_check = relocation;
c19d1205
ZW
7681
7682 if (r_type == R_ARM_THM_JUMP6)
7683 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
7684 else
7685 relocation &= howto->dst_mask;
51c5503b 7686 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
cedb70c5 7687
51c5503b
NC
7688 bfd_put_16 (input_bfd, relocation, hit_data);
7689
7690 /* Assumes two's complement. */
7691 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
7692 return bfd_reloc_overflow;
7693
7694 return bfd_reloc_ok;
7695 }
cedb70c5 7696
8375c36b
PB
7697 case R_ARM_ALU_PCREL7_0:
7698 case R_ARM_ALU_PCREL15_8:
7699 case R_ARM_ALU_PCREL23_15:
7700 {
7701 bfd_vma insn;
7702 bfd_vma relocation;
7703
7704 insn = bfd_get_32 (input_bfd, hit_data);
4e7fd91e
PB
7705 if (globals->use_rel)
7706 {
7707 /* Extract the addend. */
7708 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
7709 signed_addend = addend;
7710 }
8375c36b
PB
7711 relocation = value + signed_addend;
7712
7713 relocation -= (input_section->output_section->vma
7714 + input_section->output_offset
7715 + rel->r_offset);
7716 insn = (insn & ~0xfff)
7717 | ((howto->bitpos << 7) & 0xf00)
7718 | ((relocation >> howto->bitpos) & 0xff);
7719 bfd_put_32 (input_bfd, value, hit_data);
7720 }
7721 return bfd_reloc_ok;
7722
252b5132
RH
7723 case R_ARM_GNU_VTINHERIT:
7724 case R_ARM_GNU_VTENTRY:
7725 return bfd_reloc_ok;
7726
c19d1205 7727 case R_ARM_GOTOFF32:
252b5132
RH
7728 /* Relocation is relative to the start of the
7729 global offset table. */
7730
7731 BFD_ASSERT (sgot != NULL);
7732 if (sgot == NULL)
7733 return bfd_reloc_notsupported;
9a5aca8c 7734
cedb70c5 7735 /* If we are addressing a Thumb function, we need to adjust the
ee29b9fb
RE
7736 address by one, so that attempts to call the function pointer will
7737 correctly interpret it as Thumb code. */
7738 if (sym_flags == STT_ARM_TFUNC)
7739 value += 1;
7740
252b5132
RH
7741 /* Note that sgot->output_offset is not involved in this
7742 calculation. We always want the start of .got. If we
7743 define _GLOBAL_OFFSET_TABLE in a different way, as is
7744 permitted by the ABI, we might have to change this
9b485d32 7745 calculation. */
252b5132 7746 value -= sgot->output_section->vma;
f21f3fe0 7747 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 7748 contents, rel->r_offset, value,
00a97672 7749 rel->r_addend);
252b5132
RH
7750
7751 case R_ARM_GOTPC:
a7c10850 7752 /* Use global offset table as symbol value. */
252b5132 7753 BFD_ASSERT (sgot != NULL);
f21f3fe0 7754
252b5132
RH
7755 if (sgot == NULL)
7756 return bfd_reloc_notsupported;
7757
0945cdfd 7758 *unresolved_reloc_p = FALSE;
252b5132 7759 value = sgot->output_section->vma;
f21f3fe0 7760 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 7761 contents, rel->r_offset, value,
00a97672 7762 rel->r_addend);
f21f3fe0 7763
252b5132 7764 case R_ARM_GOT32:
eb043451 7765 case R_ARM_GOT_PREL:
252b5132 7766 /* Relocation is to the entry for this symbol in the
9b485d32 7767 global offset table. */
252b5132
RH
7768 if (sgot == NULL)
7769 return bfd_reloc_notsupported;
f21f3fe0 7770
252b5132
RH
7771 if (h != NULL)
7772 {
7773 bfd_vma off;
5e681ec4 7774 bfd_boolean dyn;
f21f3fe0 7775
252b5132
RH
7776 off = h->got.offset;
7777 BFD_ASSERT (off != (bfd_vma) -1);
5e681ec4 7778 dyn = globals->root.dynamic_sections_created;
f21f3fe0 7779
5e681ec4 7780 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
50d6c878 7781 || (info->shared
5e681ec4
PB
7782 && SYMBOL_REFERENCES_LOCAL (info, h))
7783 || (ELF_ST_VISIBILITY (h->other)
7784 && h->root.type == bfd_link_hash_undefweak))
252b5132
RH
7785 {
7786 /* This is actually a static link, or it is a -Bsymbolic link
7787 and the symbol is defined locally. We must initialize this
7788 entry in the global offset table. Since the offset must
7789 always be a multiple of 4, we use the least significant bit
7790 to record whether we have initialized it already.
f21f3fe0 7791
00a97672 7792 When doing a dynamic link, we create a .rel(a).got relocation
f21f3fe0 7793 entry to initialize the value. This is done in the
9b485d32 7794 finish_dynamic_symbol routine. */
252b5132
RH
7795 if ((off & 1) != 0)
7796 off &= ~1;
7797 else
7798 {
ee29b9fb
RE
7799 /* If we are addressing a Thumb function, we need to
7800 adjust the address by one, so that attempts to
7801 call the function pointer will correctly
7802 interpret it as Thumb code. */
7803 if (sym_flags == STT_ARM_TFUNC)
7804 value |= 1;
7805
252b5132
RH
7806 bfd_put_32 (output_bfd, value, sgot->contents + off);
7807 h->got.offset |= 1;
7808 }
7809 }
0945cdfd
DJ
7810 else
7811 *unresolved_reloc_p = FALSE;
f21f3fe0 7812
252b5132
RH
7813 value = sgot->output_offset + off;
7814 }
7815 else
7816 {
7817 bfd_vma off;
f21f3fe0 7818
252b5132
RH
7819 BFD_ASSERT (local_got_offsets != NULL &&
7820 local_got_offsets[r_symndx] != (bfd_vma) -1);
f21f3fe0 7821
252b5132 7822 off = local_got_offsets[r_symndx];
f21f3fe0 7823
252b5132
RH
7824 /* The offset must always be a multiple of 4. We use the
7825 least significant bit to record whether we have already
9b485d32 7826 generated the necessary reloc. */
252b5132
RH
7827 if ((off & 1) != 0)
7828 off &= ~1;
7829 else
7830 {
b7693d02
DJ
7831 /* If we are addressing a Thumb function, we need to
7832 adjust the address by one, so that attempts to
7833 call the function pointer will correctly
7834 interpret it as Thumb code. */
7835 if (sym_flags == STT_ARM_TFUNC)
7836 value |= 1;
7837
00a97672
RS
7838 if (globals->use_rel)
7839 bfd_put_32 (output_bfd, value, sgot->contents + off);
f21f3fe0 7840
252b5132
RH
7841 if (info->shared)
7842 {
7843 asection * srelgot;
947216bf
AM
7844 Elf_Internal_Rela outrel;
7845 bfd_byte *loc;
f21f3fe0 7846
00a97672
RS
7847 srelgot = (bfd_get_section_by_name
7848 (dynobj, RELOC_SECTION (globals, ".got")));
252b5132 7849 BFD_ASSERT (srelgot != NULL);
f21f3fe0 7850
00a97672 7851 outrel.r_addend = addend + value;
252b5132 7852 outrel.r_offset = (sgot->output_section->vma
f21f3fe0 7853 + sgot->output_offset
252b5132
RH
7854 + off);
7855 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
947216bf 7856 loc = srelgot->contents;
00a97672
RS
7857 loc += srelgot->reloc_count++ * RELOC_SIZE (globals);
7858 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
252b5132 7859 }
f21f3fe0 7860
252b5132
RH
7861 local_got_offsets[r_symndx] |= 1;
7862 }
f21f3fe0 7863
252b5132
RH
7864 value = sgot->output_offset + off;
7865 }
eb043451
PB
7866 if (r_type != R_ARM_GOT32)
7867 value += sgot->output_section->vma;
9a5aca8c 7868
f21f3fe0 7869 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 7870 contents, rel->r_offset, value,
00a97672 7871 rel->r_addend);
f21f3fe0 7872
ba93b8ac
DJ
7873 case R_ARM_TLS_LDO32:
7874 value = value - dtpoff_base (info);
7875
7876 return _bfd_final_link_relocate (howto, input_bfd, input_section,
00a97672
RS
7877 contents, rel->r_offset, value,
7878 rel->r_addend);
ba93b8ac
DJ
7879
7880 case R_ARM_TLS_LDM32:
7881 {
7882 bfd_vma off;
7883
7884 if (globals->sgot == NULL)
7885 abort ();
7886
7887 off = globals->tls_ldm_got.offset;
7888
7889 if ((off & 1) != 0)
7890 off &= ~1;
7891 else
7892 {
7893 /* If we don't know the module number, create a relocation
7894 for it. */
7895 if (info->shared)
7896 {
7897 Elf_Internal_Rela outrel;
7898 bfd_byte *loc;
7899
7900 if (globals->srelgot == NULL)
7901 abort ();
7902
00a97672 7903 outrel.r_addend = 0;
ba93b8ac
DJ
7904 outrel.r_offset = (globals->sgot->output_section->vma
7905 + globals->sgot->output_offset + off);
7906 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
7907
00a97672
RS
7908 if (globals->use_rel)
7909 bfd_put_32 (output_bfd, outrel.r_addend,
7910 globals->sgot->contents + off);
ba93b8ac
DJ
7911
7912 loc = globals->srelgot->contents;
00a97672
RS
7913 loc += globals->srelgot->reloc_count++ * RELOC_SIZE (globals);
7914 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
ba93b8ac
DJ
7915 }
7916 else
7917 bfd_put_32 (output_bfd, 1, globals->sgot->contents + off);
7918
7919 globals->tls_ldm_got.offset |= 1;
7920 }
7921
906e58ca 7922 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
ba93b8ac
DJ
7923 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
7924
7925 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7926 contents, rel->r_offset, value,
00a97672 7927 rel->r_addend);
ba93b8ac
DJ
7928 }
7929
7930 case R_ARM_TLS_GD32:
7931 case R_ARM_TLS_IE32:
7932 {
7933 bfd_vma off;
7934 int indx;
7935 char tls_type;
7936
7937 if (globals->sgot == NULL)
7938 abort ();
7939
7940 indx = 0;
7941 if (h != NULL)
7942 {
7943 bfd_boolean dyn;
7944 dyn = globals->root.dynamic_sections_created;
7945 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
7946 && (!info->shared
7947 || !SYMBOL_REFERENCES_LOCAL (info, h)))
7948 {
7949 *unresolved_reloc_p = FALSE;
7950 indx = h->dynindx;
7951 }
7952 off = h->got.offset;
7953 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
7954 }
7955 else
7956 {
7957 if (local_got_offsets == NULL)
7958 abort ();
7959 off = local_got_offsets[r_symndx];
7960 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
7961 }
7962
7963 if (tls_type == GOT_UNKNOWN)
7964 abort ();
7965
7966 if ((off & 1) != 0)
7967 off &= ~1;
7968 else
7969 {
7970 bfd_boolean need_relocs = FALSE;
7971 Elf_Internal_Rela outrel;
7972 bfd_byte *loc = NULL;
7973 int cur_off = off;
7974
7975 /* The GOT entries have not been initialized yet. Do it
7976 now, and emit any relocations. If both an IE GOT and a
7977 GD GOT are necessary, we emit the GD first. */
7978
7979 if ((info->shared || indx != 0)
7980 && (h == NULL
7981 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7982 || h->root.type != bfd_link_hash_undefweak))
7983 {
7984 need_relocs = TRUE;
7985 if (globals->srelgot == NULL)
7986 abort ();
7987 loc = globals->srelgot->contents;
00a97672 7988 loc += globals->srelgot->reloc_count * RELOC_SIZE (globals);
ba93b8ac
DJ
7989 }
7990
7991 if (tls_type & GOT_TLS_GD)
7992 {
7993 if (need_relocs)
7994 {
00a97672 7995 outrel.r_addend = 0;
ba93b8ac 7996 outrel.r_offset = (globals->sgot->output_section->vma
00a97672
RS
7997 + globals->sgot->output_offset
7998 + cur_off);
ba93b8ac 7999 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
ba93b8ac 8000
00a97672
RS
8001 if (globals->use_rel)
8002 bfd_put_32 (output_bfd, outrel.r_addend,
8003 globals->sgot->contents + cur_off);
8004
8005 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
ba93b8ac 8006 globals->srelgot->reloc_count++;
00a97672 8007 loc += RELOC_SIZE (globals);
ba93b8ac
DJ
8008
8009 if (indx == 0)
8010 bfd_put_32 (output_bfd, value - dtpoff_base (info),
8011 globals->sgot->contents + cur_off + 4);
8012 else
8013 {
00a97672 8014 outrel.r_addend = 0;
ba93b8ac
DJ
8015 outrel.r_info = ELF32_R_INFO (indx,
8016 R_ARM_TLS_DTPOFF32);
8017 outrel.r_offset += 4;
00a97672
RS
8018
8019 if (globals->use_rel)
8020 bfd_put_32 (output_bfd, outrel.r_addend,
8021 globals->sgot->contents + cur_off + 4);
8022
8023
8024 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
ba93b8ac 8025 globals->srelgot->reloc_count++;
00a97672 8026 loc += RELOC_SIZE (globals);
ba93b8ac
DJ
8027 }
8028 }
8029 else
8030 {
8031 /* If we are not emitting relocations for a
8032 general dynamic reference, then we must be in a
8033 static link or an executable link with the
8034 symbol binding locally. Mark it as belonging
8035 to module 1, the executable. */
8036 bfd_put_32 (output_bfd, 1,
8037 globals->sgot->contents + cur_off);
8038 bfd_put_32 (output_bfd, value - dtpoff_base (info),
8039 globals->sgot->contents + cur_off + 4);
8040 }
8041
8042 cur_off += 8;
8043 }
8044
8045 if (tls_type & GOT_TLS_IE)
8046 {
8047 if (need_relocs)
8048 {
00a97672
RS
8049 if (indx == 0)
8050 outrel.r_addend = value - dtpoff_base (info);
8051 else
8052 outrel.r_addend = 0;
ba93b8ac
DJ
8053 outrel.r_offset = (globals->sgot->output_section->vma
8054 + globals->sgot->output_offset
8055 + cur_off);
8056 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
8057
00a97672
RS
8058 if (globals->use_rel)
8059 bfd_put_32 (output_bfd, outrel.r_addend,
ba93b8ac
DJ
8060 globals->sgot->contents + cur_off);
8061
00a97672 8062 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
ba93b8ac 8063 globals->srelgot->reloc_count++;
00a97672 8064 loc += RELOC_SIZE (globals);
ba93b8ac
DJ
8065 }
8066 else
8067 bfd_put_32 (output_bfd, tpoff (info, value),
8068 globals->sgot->contents + cur_off);
8069 cur_off += 4;
8070 }
8071
8072 if (h != NULL)
8073 h->got.offset |= 1;
8074 else
8075 local_got_offsets[r_symndx] |= 1;
8076 }
8077
8078 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
8079 off += 8;
906e58ca 8080 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
ba93b8ac
DJ
8081 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
8082
8083 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8084 contents, rel->r_offset, value,
00a97672 8085 rel->r_addend);
ba93b8ac
DJ
8086 }
8087
8088 case R_ARM_TLS_LE32:
8089 if (info->shared)
8090 {
8091 (*_bfd_error_handler)
8092 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
8093 input_bfd, input_section,
8094 (long) rel->r_offset, howto->name);
906e58ca 8095 return FALSE;
ba93b8ac
DJ
8096 }
8097 else
8098 value = tpoff (info, value);
906e58ca 8099
ba93b8ac 8100 return _bfd_final_link_relocate (howto, input_bfd, input_section,
00a97672
RS
8101 contents, rel->r_offset, value,
8102 rel->r_addend);
ba93b8ac 8103
319850b4
JB
8104 case R_ARM_V4BX:
8105 if (globals->fix_v4bx)
845b51d6
PB
8106 {
8107 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
319850b4 8108
845b51d6
PB
8109 /* Ensure that we have a BX instruction. */
8110 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
319850b4 8111
845b51d6
PB
8112 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
8113 {
8114 /* Branch to veneer. */
8115 bfd_vma glue_addr;
8116 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
8117 glue_addr -= input_section->output_section->vma
8118 + input_section->output_offset
8119 + rel->r_offset + 8;
8120 insn = (insn & 0xf0000000) | 0x0a000000
8121 | ((glue_addr >> 2) & 0x00ffffff);
8122 }
8123 else
8124 {
8125 /* Preserve Rm (lowest four bits) and the condition code
8126 (highest four bits). Other bits encode MOV PC,Rm. */
8127 insn = (insn & 0xf000000f) | 0x01a0f000;
8128 }
319850b4 8129
845b51d6
PB
8130 bfd_put_32 (input_bfd, insn, hit_data);
8131 }
319850b4
JB
8132 return bfd_reloc_ok;
8133
b6895b4f
PB
8134 case R_ARM_MOVW_ABS_NC:
8135 case R_ARM_MOVT_ABS:
8136 case R_ARM_MOVW_PREL_NC:
8137 case R_ARM_MOVT_PREL:
92f5d02b
MS
8138 /* Until we properly support segment-base-relative addressing then
8139 we assume the segment base to be zero, as for the group relocations.
8140 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
8141 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
8142 case R_ARM_MOVW_BREL_NC:
8143 case R_ARM_MOVW_BREL:
8144 case R_ARM_MOVT_BREL:
b6895b4f
PB
8145 {
8146 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8147
8148 if (globals->use_rel)
8149 {
8150 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
39623e12 8151 signed_addend = (addend ^ 0x8000) - 0x8000;
b6895b4f 8152 }
92f5d02b 8153
b6895b4f 8154 value += signed_addend;
b6895b4f
PB
8155
8156 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
8157 value -= (input_section->output_section->vma
8158 + input_section->output_offset + rel->r_offset);
8159
92f5d02b
MS
8160 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
8161 return bfd_reloc_overflow;
8162
8163 if (sym_flags == STT_ARM_TFUNC)
8164 value |= 1;
8165
8166 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
8167 || r_type == R_ARM_MOVT_BREL)
b6895b4f
PB
8168 value >>= 16;
8169
8170 insn &= 0xfff0f000;
8171 insn |= value & 0xfff;
8172 insn |= (value & 0xf000) << 4;
8173 bfd_put_32 (input_bfd, insn, hit_data);
8174 }
8175 return bfd_reloc_ok;
8176
8177 case R_ARM_THM_MOVW_ABS_NC:
8178 case R_ARM_THM_MOVT_ABS:
8179 case R_ARM_THM_MOVW_PREL_NC:
8180 case R_ARM_THM_MOVT_PREL:
92f5d02b
MS
8181 /* Until we properly support segment-base-relative addressing then
8182 we assume the segment base to be zero, as for the above relocations.
8183 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
8184 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
8185 as R_ARM_THM_MOVT_ABS. */
8186 case R_ARM_THM_MOVW_BREL_NC:
8187 case R_ARM_THM_MOVW_BREL:
8188 case R_ARM_THM_MOVT_BREL:
b6895b4f
PB
8189 {
8190 bfd_vma insn;
906e58ca 8191
b6895b4f
PB
8192 insn = bfd_get_16 (input_bfd, hit_data) << 16;
8193 insn |= bfd_get_16 (input_bfd, hit_data + 2);
8194
8195 if (globals->use_rel)
8196 {
8197 addend = ((insn >> 4) & 0xf000)
8198 | ((insn >> 15) & 0x0800)
8199 | ((insn >> 4) & 0x0700)
8200 | (insn & 0x00ff);
39623e12 8201 signed_addend = (addend ^ 0x8000) - 0x8000;
b6895b4f 8202 }
92f5d02b 8203
b6895b4f 8204 value += signed_addend;
b6895b4f
PB
8205
8206 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
8207 value -= (input_section->output_section->vma
8208 + input_section->output_offset + rel->r_offset);
8209
92f5d02b
MS
8210 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
8211 return bfd_reloc_overflow;
8212
8213 if (sym_flags == STT_ARM_TFUNC)
8214 value |= 1;
8215
8216 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
8217 || r_type == R_ARM_THM_MOVT_BREL)
b6895b4f
PB
8218 value >>= 16;
8219
8220 insn &= 0xfbf08f00;
8221 insn |= (value & 0xf000) << 4;
8222 insn |= (value & 0x0800) << 15;
8223 insn |= (value & 0x0700) << 4;
8224 insn |= (value & 0x00ff);
8225
8226 bfd_put_16 (input_bfd, insn >> 16, hit_data);
8227 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8228 }
8229 return bfd_reloc_ok;
8230
4962c51a
MS
8231 case R_ARM_ALU_PC_G0_NC:
8232 case R_ARM_ALU_PC_G1_NC:
8233 case R_ARM_ALU_PC_G0:
8234 case R_ARM_ALU_PC_G1:
8235 case R_ARM_ALU_PC_G2:
8236 case R_ARM_ALU_SB_G0_NC:
8237 case R_ARM_ALU_SB_G1_NC:
8238 case R_ARM_ALU_SB_G0:
8239 case R_ARM_ALU_SB_G1:
8240 case R_ARM_ALU_SB_G2:
8241 {
8242 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8243 bfd_vma pc = input_section->output_section->vma
8244 + input_section->output_offset + rel->r_offset;
8245 /* sb should be the origin of the *segment* containing the symbol.
8246 It is not clear how to obtain this OS-dependent value, so we
8247 make an arbitrary choice of zero. */
8248 bfd_vma sb = 0;
8249 bfd_vma residual;
8250 bfd_vma g_n;
8251 bfd_signed_vma signed_value;
8252 int group = 0;
8253
8254 /* Determine which group of bits to select. */
8255 switch (r_type)
8256 {
8257 case R_ARM_ALU_PC_G0_NC:
8258 case R_ARM_ALU_PC_G0:
8259 case R_ARM_ALU_SB_G0_NC:
8260 case R_ARM_ALU_SB_G0:
8261 group = 0;
8262 break;
8263
8264 case R_ARM_ALU_PC_G1_NC:
8265 case R_ARM_ALU_PC_G1:
8266 case R_ARM_ALU_SB_G1_NC:
8267 case R_ARM_ALU_SB_G1:
8268 group = 1;
8269 break;
8270
8271 case R_ARM_ALU_PC_G2:
8272 case R_ARM_ALU_SB_G2:
8273 group = 2;
8274 break;
8275
8276 default:
906e58ca 8277 abort ();
4962c51a
MS
8278 }
8279
8280 /* If REL, extract the addend from the insn. If RELA, it will
8281 have already been fetched for us. */
8282 if (globals->use_rel)
8283 {
8284 int negative;
8285 bfd_vma constant = insn & 0xff;
8286 bfd_vma rotation = (insn & 0xf00) >> 8;
8287
8288 if (rotation == 0)
8289 signed_addend = constant;
8290 else
8291 {
8292 /* Compensate for the fact that in the instruction, the
8293 rotation is stored in multiples of 2 bits. */
8294 rotation *= 2;
8295
8296 /* Rotate "constant" right by "rotation" bits. */
8297 signed_addend = (constant >> rotation) |
8298 (constant << (8 * sizeof (bfd_vma) - rotation));
8299 }
8300
8301 /* Determine if the instruction is an ADD or a SUB.
8302 (For REL, this determines the sign of the addend.) */
8303 negative = identify_add_or_sub (insn);
8304 if (negative == 0)
8305 {
8306 (*_bfd_error_handler)
8307 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
8308 input_bfd, input_section,
8309 (long) rel->r_offset, howto->name);
906e58ca 8310 return bfd_reloc_overflow;
4962c51a
MS
8311 }
8312
8313 signed_addend *= negative;
8314 }
8315
8316 /* Compute the value (X) to go in the place. */
8317 if (r_type == R_ARM_ALU_PC_G0_NC
8318 || r_type == R_ARM_ALU_PC_G1_NC
8319 || r_type == R_ARM_ALU_PC_G0
8320 || r_type == R_ARM_ALU_PC_G1
8321 || r_type == R_ARM_ALU_PC_G2)
8322 /* PC relative. */
8323 signed_value = value - pc + signed_addend;
8324 else
8325 /* Section base relative. */
8326 signed_value = value - sb + signed_addend;
8327
8328 /* If the target symbol is a Thumb function, then set the
8329 Thumb bit in the address. */
8330 if (sym_flags == STT_ARM_TFUNC)
8331 signed_value |= 1;
8332
8333 /* Calculate the value of the relevant G_n, in encoded
8334 constant-with-rotation format. */
8335 g_n = calculate_group_reloc_mask (abs (signed_value), group,
8336 &residual);
8337
8338 /* Check for overflow if required. */
8339 if ((r_type == R_ARM_ALU_PC_G0
8340 || r_type == R_ARM_ALU_PC_G1
8341 || r_type == R_ARM_ALU_PC_G2
8342 || r_type == R_ARM_ALU_SB_G0
8343 || r_type == R_ARM_ALU_SB_G1
8344 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
8345 {
8346 (*_bfd_error_handler)
8347 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8348 input_bfd, input_section,
8349 (long) rel->r_offset, abs (signed_value), howto->name);
8350 return bfd_reloc_overflow;
8351 }
8352
8353 /* Mask out the value and the ADD/SUB part of the opcode; take care
8354 not to destroy the S bit. */
8355 insn &= 0xff1ff000;
8356
8357 /* Set the opcode according to whether the value to go in the
8358 place is negative. */
8359 if (signed_value < 0)
8360 insn |= 1 << 22;
8361 else
8362 insn |= 1 << 23;
8363
8364 /* Encode the offset. */
8365 insn |= g_n;
8366
8367 bfd_put_32 (input_bfd, insn, hit_data);
8368 }
8369 return bfd_reloc_ok;
8370
8371 case R_ARM_LDR_PC_G0:
8372 case R_ARM_LDR_PC_G1:
8373 case R_ARM_LDR_PC_G2:
8374 case R_ARM_LDR_SB_G0:
8375 case R_ARM_LDR_SB_G1:
8376 case R_ARM_LDR_SB_G2:
8377 {
8378 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8379 bfd_vma pc = input_section->output_section->vma
8380 + input_section->output_offset + rel->r_offset;
8381 bfd_vma sb = 0; /* See note above. */
8382 bfd_vma residual;
8383 bfd_signed_vma signed_value;
8384 int group = 0;
8385
8386 /* Determine which groups of bits to calculate. */
8387 switch (r_type)
8388 {
8389 case R_ARM_LDR_PC_G0:
8390 case R_ARM_LDR_SB_G0:
8391 group = 0;
8392 break;
8393
8394 case R_ARM_LDR_PC_G1:
8395 case R_ARM_LDR_SB_G1:
8396 group = 1;
8397 break;
8398
8399 case R_ARM_LDR_PC_G2:
8400 case R_ARM_LDR_SB_G2:
8401 group = 2;
8402 break;
8403
8404 default:
906e58ca 8405 abort ();
4962c51a
MS
8406 }
8407
8408 /* If REL, extract the addend from the insn. If RELA, it will
8409 have already been fetched for us. */
8410 if (globals->use_rel)
8411 {
8412 int negative = (insn & (1 << 23)) ? 1 : -1;
8413 signed_addend = negative * (insn & 0xfff);
8414 }
8415
8416 /* Compute the value (X) to go in the place. */
8417 if (r_type == R_ARM_LDR_PC_G0
8418 || r_type == R_ARM_LDR_PC_G1
8419 || r_type == R_ARM_LDR_PC_G2)
8420 /* PC relative. */
8421 signed_value = value - pc + signed_addend;
8422 else
8423 /* Section base relative. */
8424 signed_value = value - sb + signed_addend;
8425
8426 /* Calculate the value of the relevant G_{n-1} to obtain
8427 the residual at that stage. */
8428 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
8429
8430 /* Check for overflow. */
8431 if (residual >= 0x1000)
8432 {
8433 (*_bfd_error_handler)
8434 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8435 input_bfd, input_section,
8436 (long) rel->r_offset, abs (signed_value), howto->name);
8437 return bfd_reloc_overflow;
8438 }
8439
8440 /* Mask out the value and U bit. */
8441 insn &= 0xff7ff000;
8442
8443 /* Set the U bit if the value to go in the place is non-negative. */
8444 if (signed_value >= 0)
8445 insn |= 1 << 23;
8446
8447 /* Encode the offset. */
8448 insn |= residual;
8449
8450 bfd_put_32 (input_bfd, insn, hit_data);
8451 }
8452 return bfd_reloc_ok;
8453
8454 case R_ARM_LDRS_PC_G0:
8455 case R_ARM_LDRS_PC_G1:
8456 case R_ARM_LDRS_PC_G2:
8457 case R_ARM_LDRS_SB_G0:
8458 case R_ARM_LDRS_SB_G1:
8459 case R_ARM_LDRS_SB_G2:
8460 {
8461 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8462 bfd_vma pc = input_section->output_section->vma
8463 + input_section->output_offset + rel->r_offset;
8464 bfd_vma sb = 0; /* See note above. */
8465 bfd_vma residual;
8466 bfd_signed_vma signed_value;
8467 int group = 0;
8468
8469 /* Determine which groups of bits to calculate. */
8470 switch (r_type)
8471 {
8472 case R_ARM_LDRS_PC_G0:
8473 case R_ARM_LDRS_SB_G0:
8474 group = 0;
8475 break;
8476
8477 case R_ARM_LDRS_PC_G1:
8478 case R_ARM_LDRS_SB_G1:
8479 group = 1;
8480 break;
8481
8482 case R_ARM_LDRS_PC_G2:
8483 case R_ARM_LDRS_SB_G2:
8484 group = 2;
8485 break;
8486
8487 default:
906e58ca 8488 abort ();
4962c51a
MS
8489 }
8490
8491 /* If REL, extract the addend from the insn. If RELA, it will
8492 have already been fetched for us. */
8493 if (globals->use_rel)
8494 {
8495 int negative = (insn & (1 << 23)) ? 1 : -1;
8496 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
8497 }
8498
8499 /* Compute the value (X) to go in the place. */
8500 if (r_type == R_ARM_LDRS_PC_G0
8501 || r_type == R_ARM_LDRS_PC_G1
8502 || r_type == R_ARM_LDRS_PC_G2)
8503 /* PC relative. */
8504 signed_value = value - pc + signed_addend;
8505 else
8506 /* Section base relative. */
8507 signed_value = value - sb + signed_addend;
8508
8509 /* Calculate the value of the relevant G_{n-1} to obtain
8510 the residual at that stage. */
8511 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
8512
8513 /* Check for overflow. */
8514 if (residual >= 0x100)
8515 {
8516 (*_bfd_error_handler)
8517 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8518 input_bfd, input_section,
8519 (long) rel->r_offset, abs (signed_value), howto->name);
8520 return bfd_reloc_overflow;
8521 }
8522
8523 /* Mask out the value and U bit. */
8524 insn &= 0xff7ff0f0;
8525
8526 /* Set the U bit if the value to go in the place is non-negative. */
8527 if (signed_value >= 0)
8528 insn |= 1 << 23;
8529
8530 /* Encode the offset. */
8531 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
8532
8533 bfd_put_32 (input_bfd, insn, hit_data);
8534 }
8535 return bfd_reloc_ok;
8536
8537 case R_ARM_LDC_PC_G0:
8538 case R_ARM_LDC_PC_G1:
8539 case R_ARM_LDC_PC_G2:
8540 case R_ARM_LDC_SB_G0:
8541 case R_ARM_LDC_SB_G1:
8542 case R_ARM_LDC_SB_G2:
8543 {
8544 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8545 bfd_vma pc = input_section->output_section->vma
8546 + input_section->output_offset + rel->r_offset;
8547 bfd_vma sb = 0; /* See note above. */
8548 bfd_vma residual;
8549 bfd_signed_vma signed_value;
8550 int group = 0;
8551
8552 /* Determine which groups of bits to calculate. */
8553 switch (r_type)
8554 {
8555 case R_ARM_LDC_PC_G0:
8556 case R_ARM_LDC_SB_G0:
8557 group = 0;
8558 break;
8559
8560 case R_ARM_LDC_PC_G1:
8561 case R_ARM_LDC_SB_G1:
8562 group = 1;
8563 break;
8564
8565 case R_ARM_LDC_PC_G2:
8566 case R_ARM_LDC_SB_G2:
8567 group = 2;
8568 break;
8569
8570 default:
906e58ca 8571 abort ();
4962c51a
MS
8572 }
8573
8574 /* If REL, extract the addend from the insn. If RELA, it will
8575 have already been fetched for us. */
8576 if (globals->use_rel)
8577 {
8578 int negative = (insn & (1 << 23)) ? 1 : -1;
8579 signed_addend = negative * ((insn & 0xff) << 2);
8580 }
8581
8582 /* Compute the value (X) to go in the place. */
8583 if (r_type == R_ARM_LDC_PC_G0
8584 || r_type == R_ARM_LDC_PC_G1
8585 || r_type == R_ARM_LDC_PC_G2)
8586 /* PC relative. */
8587 signed_value = value - pc + signed_addend;
8588 else
8589 /* Section base relative. */
8590 signed_value = value - sb + signed_addend;
8591
8592 /* Calculate the value of the relevant G_{n-1} to obtain
8593 the residual at that stage. */
8594 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
8595
8596 /* Check for overflow. (The absolute value to go in the place must be
8597 divisible by four and, after having been divided by four, must
8598 fit in eight bits.) */
8599 if ((residual & 0x3) != 0 || residual >= 0x400)
8600 {
8601 (*_bfd_error_handler)
8602 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8603 input_bfd, input_section,
8604 (long) rel->r_offset, abs (signed_value), howto->name);
8605 return bfd_reloc_overflow;
8606 }
8607
8608 /* Mask out the value and U bit. */
8609 insn &= 0xff7fff00;
8610
8611 /* Set the U bit if the value to go in the place is non-negative. */
8612 if (signed_value >= 0)
8613 insn |= 1 << 23;
8614
8615 /* Encode the offset. */
8616 insn |= residual >> 2;
8617
8618 bfd_put_32 (input_bfd, insn, hit_data);
8619 }
8620 return bfd_reloc_ok;
8621
252b5132
RH
8622 default:
8623 return bfd_reloc_notsupported;
8624 }
8625}
8626
98c1d4aa
NC
8627/* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
8628static void
57e8b36a
NC
8629arm_add_to_rel (bfd * abfd,
8630 bfd_byte * address,
8631 reloc_howto_type * howto,
8632 bfd_signed_vma increment)
98c1d4aa 8633{
98c1d4aa
NC
8634 bfd_signed_vma addend;
8635
bd97cb95
DJ
8636 if (howto->type == R_ARM_THM_CALL
8637 || howto->type == R_ARM_THM_JUMP24)
98c1d4aa 8638 {
9a5aca8c
AM
8639 int upper_insn, lower_insn;
8640 int upper, lower;
98c1d4aa 8641
9a5aca8c
AM
8642 upper_insn = bfd_get_16 (abfd, address);
8643 lower_insn = bfd_get_16 (abfd, address + 2);
8644 upper = upper_insn & 0x7ff;
8645 lower = lower_insn & 0x7ff;
8646
8647 addend = (upper << 12) | (lower << 1);
ddda4409 8648 addend += increment;
9a5aca8c 8649 addend >>= 1;
98c1d4aa 8650
9a5aca8c
AM
8651 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
8652 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
8653
dc810e39
AM
8654 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
8655 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
9a5aca8c
AM
8656 }
8657 else
8658 {
8659 bfd_vma contents;
8660
8661 contents = bfd_get_32 (abfd, address);
8662
8663 /* Get the (signed) value from the instruction. */
8664 addend = contents & howto->src_mask;
8665 if (addend & ((howto->src_mask + 1) >> 1))
8666 {
8667 bfd_signed_vma mask;
8668
8669 mask = -1;
8670 mask &= ~ howto->src_mask;
8671 addend |= mask;
8672 }
8673
8674 /* Add in the increment, (which is a byte value). */
8675 switch (howto->type)
8676 {
8677 default:
8678 addend += increment;
8679 break;
8680
8681 case R_ARM_PC24:
c6596c5e 8682 case R_ARM_PLT32:
5b5bb741
PB
8683 case R_ARM_CALL:
8684 case R_ARM_JUMP24:
9a5aca8c 8685 addend <<= howto->size;
dc810e39 8686 addend += increment;
9a5aca8c
AM
8687
8688 /* Should we check for overflow here ? */
8689
8690 /* Drop any undesired bits. */
8691 addend >>= howto->rightshift;
8692 break;
8693 }
8694
8695 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
8696
8697 bfd_put_32 (abfd, contents, address);
ddda4409 8698 }
98c1d4aa 8699}
252b5132 8700
ba93b8ac
DJ
8701#define IS_ARM_TLS_RELOC(R_TYPE) \
8702 ((R_TYPE) == R_ARM_TLS_GD32 \
8703 || (R_TYPE) == R_ARM_TLS_LDO32 \
8704 || (R_TYPE) == R_ARM_TLS_LDM32 \
8705 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
8706 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
8707 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
8708 || (R_TYPE) == R_ARM_TLS_LE32 \
8709 || (R_TYPE) == R_ARM_TLS_IE32)
8710
252b5132 8711/* Relocate an ARM ELF section. */
906e58ca 8712
b34976b6 8713static bfd_boolean
57e8b36a
NC
8714elf32_arm_relocate_section (bfd * output_bfd,
8715 struct bfd_link_info * info,
8716 bfd * input_bfd,
8717 asection * input_section,
8718 bfd_byte * contents,
8719 Elf_Internal_Rela * relocs,
8720 Elf_Internal_Sym * local_syms,
8721 asection ** local_sections)
252b5132 8722{
b34976b6
AM
8723 Elf_Internal_Shdr *symtab_hdr;
8724 struct elf_link_hash_entry **sym_hashes;
8725 Elf_Internal_Rela *rel;
8726 Elf_Internal_Rela *relend;
8727 const char *name;
b32d3aa2 8728 struct elf32_arm_link_hash_table * globals;
252b5132 8729
4e7fd91e 8730 globals = elf32_arm_hash_table (info);
b491616a 8731
0ffa91dd 8732 symtab_hdr = & elf_symtab_hdr (input_bfd);
252b5132
RH
8733 sym_hashes = elf_sym_hashes (input_bfd);
8734
8735 rel = relocs;
8736 relend = relocs + input_section->reloc_count;
8737 for (; rel < relend; rel++)
8738 {
ba96a88f
NC
8739 int r_type;
8740 reloc_howto_type * howto;
8741 unsigned long r_symndx;
8742 Elf_Internal_Sym * sym;
8743 asection * sec;
252b5132 8744 struct elf_link_hash_entry * h;
ba96a88f
NC
8745 bfd_vma relocation;
8746 bfd_reloc_status_type r;
8747 arelent bfd_reloc;
ba93b8ac 8748 char sym_type;
0945cdfd 8749 bfd_boolean unresolved_reloc = FALSE;
f2a9dd69 8750 char *error_message = NULL;
f21f3fe0 8751
252b5132 8752 r_symndx = ELF32_R_SYM (rel->r_info);
ba96a88f 8753 r_type = ELF32_R_TYPE (rel->r_info);
b32d3aa2 8754 r_type = arm_real_reloc_type (globals, r_type);
252b5132 8755
ba96a88f
NC
8756 if ( r_type == R_ARM_GNU_VTENTRY
8757 || r_type == R_ARM_GNU_VTINHERIT)
252b5132
RH
8758 continue;
8759
b32d3aa2 8760 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
ba96a88f 8761 howto = bfd_reloc.howto;
252b5132 8762
252b5132
RH
8763 h = NULL;
8764 sym = NULL;
8765 sec = NULL;
9b485d32 8766
252b5132
RH
8767 if (r_symndx < symtab_hdr->sh_info)
8768 {
8769 sym = local_syms + r_symndx;
ba93b8ac 8770 sym_type = ELF32_ST_TYPE (sym->st_info);
252b5132 8771 sec = local_sections[r_symndx];
ffcb4889
NS
8772
8773 /* An object file might have a reference to a local
8774 undefined symbol. This is a daft object file, but we
8775 should at least do something about it. V4BX & NONE
8776 relocations do not use the symbol and are explicitly
8777 allowed to use the undefined symbol, so allow those. */
8778 if (r_type != R_ARM_V4BX
8779 && r_type != R_ARM_NONE
8780 && bfd_is_und_section (sec)
8781 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
8782 {
8783 if (!info->callbacks->undefined_symbol
8784 (info, bfd_elf_string_from_elf_section
8785 (input_bfd, symtab_hdr->sh_link, sym->st_name),
8786 input_bfd, input_section,
8787 rel->r_offset, TRUE))
8788 return FALSE;
8789 }
8790
4e7fd91e 8791 if (globals->use_rel)
f8df10f4 8792 {
4e7fd91e
PB
8793 relocation = (sec->output_section->vma
8794 + sec->output_offset
8795 + sym->st_value);
ab96bf03
AM
8796 if (!info->relocatable
8797 && (sec->flags & SEC_MERGE)
8798 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
f8df10f4 8799 {
4e7fd91e
PB
8800 asection *msec;
8801 bfd_vma addend, value;
8802
39623e12 8803 switch (r_type)
4e7fd91e 8804 {
39623e12
PB
8805 case R_ARM_MOVW_ABS_NC:
8806 case R_ARM_MOVT_ABS:
8807 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
8808 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
8809 addend = (addend ^ 0x8000) - 0x8000;
8810 break;
f8df10f4 8811
39623e12
PB
8812 case R_ARM_THM_MOVW_ABS_NC:
8813 case R_ARM_THM_MOVT_ABS:
8814 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
8815 << 16;
8816 value |= bfd_get_16 (input_bfd,
8817 contents + rel->r_offset + 2);
8818 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
8819 | ((value & 0x04000000) >> 15);
8820 addend = (addend ^ 0x8000) - 0x8000;
8821 break;
f8df10f4 8822
39623e12
PB
8823 default:
8824 if (howto->rightshift
8825 || (howto->src_mask & (howto->src_mask + 1)))
8826 {
8827 (*_bfd_error_handler)
8828 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
8829 input_bfd, input_section,
8830 (long) rel->r_offset, howto->name);
8831 return FALSE;
8832 }
8833
8834 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
8835
8836 /* Get the (signed) value from the instruction. */
8837 addend = value & howto->src_mask;
8838 if (addend & ((howto->src_mask + 1) >> 1))
8839 {
8840 bfd_signed_vma mask;
8841
8842 mask = -1;
8843 mask &= ~ howto->src_mask;
8844 addend |= mask;
8845 }
8846 break;
4e7fd91e 8847 }
39623e12 8848
4e7fd91e
PB
8849 msec = sec;
8850 addend =
8851 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
8852 - relocation;
8853 addend += msec->output_section->vma + msec->output_offset;
39623e12
PB
8854
8855 /* Cases here must match those in the preceeding
8856 switch statement. */
8857 switch (r_type)
8858 {
8859 case R_ARM_MOVW_ABS_NC:
8860 case R_ARM_MOVT_ABS:
8861 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
8862 | (addend & 0xfff);
8863 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
8864 break;
8865
8866 case R_ARM_THM_MOVW_ABS_NC:
8867 case R_ARM_THM_MOVT_ABS:
8868 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
8869 | (addend & 0xff) | ((addend & 0x0800) << 15);
8870 bfd_put_16 (input_bfd, value >> 16,
8871 contents + rel->r_offset);
8872 bfd_put_16 (input_bfd, value,
8873 contents + rel->r_offset + 2);
8874 break;
8875
8876 default:
8877 value = (value & ~ howto->dst_mask)
8878 | (addend & howto->dst_mask);
8879 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
8880 break;
8881 }
f8df10f4 8882 }
f8df10f4 8883 }
4e7fd91e
PB
8884 else
8885 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
252b5132
RH
8886 }
8887 else
8888 {
560e09e9 8889 bfd_boolean warned;
560e09e9 8890
b2a8e766
AM
8891 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
8892 r_symndx, symtab_hdr, sym_hashes,
8893 h, sec, relocation,
8894 unresolved_reloc, warned);
ba93b8ac
DJ
8895
8896 sym_type = h->type;
252b5132
RH
8897 }
8898
ab96bf03
AM
8899 if (sec != NULL && elf_discarded_section (sec))
8900 {
8901 /* For relocs against symbols from removed linkonce sections,
8902 or sections discarded by a linker script, we just want the
8903 section contents zeroed. Avoid any special processing. */
8904 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
8905 rel->r_info = 0;
8906 rel->r_addend = 0;
8907 continue;
8908 }
8909
8910 if (info->relocatable)
8911 {
8912 /* This is a relocatable link. We don't have to change
8913 anything, unless the reloc is against a section symbol,
8914 in which case we have to adjust according to where the
8915 section symbol winds up in the output section. */
8916 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
8917 {
8918 if (globals->use_rel)
8919 arm_add_to_rel (input_bfd, contents + rel->r_offset,
8920 howto, (bfd_signed_vma) sec->output_offset);
8921 else
8922 rel->r_addend += sec->output_offset;
8923 }
8924 continue;
8925 }
8926
252b5132
RH
8927 if (h != NULL)
8928 name = h->root.root.string;
8929 else
8930 {
8931 name = (bfd_elf_string_from_elf_section
8932 (input_bfd, symtab_hdr->sh_link, sym->st_name));
8933 if (name == NULL || *name == '\0')
8934 name = bfd_section_name (input_bfd, sec);
8935 }
f21f3fe0 8936
ba93b8ac
DJ
8937 if (r_symndx != 0
8938 && r_type != R_ARM_NONE
8939 && (h == NULL
8940 || h->root.type == bfd_link_hash_defined
8941 || h->root.type == bfd_link_hash_defweak)
8942 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
8943 {
8944 (*_bfd_error_handler)
8945 ((sym_type == STT_TLS
8946 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
8947 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
8948 input_bfd,
8949 input_section,
8950 (long) rel->r_offset,
8951 howto->name,
8952 name);
8953 }
8954
252b5132
RH
8955 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
8956 input_section, contents, rel,
8957 relocation, info, sec, name,
8958 (h ? ELF_ST_TYPE (h->type) :
0945cdfd 8959 ELF_ST_TYPE (sym->st_info)), h,
f2a9dd69 8960 &unresolved_reloc, &error_message);
0945cdfd
DJ
8961
8962 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
8963 because such sections are not SEC_ALLOC and thus ld.so will
8964 not process them. */
8965 if (unresolved_reloc
8966 && !((input_section->flags & SEC_DEBUGGING) != 0
8967 && h->def_dynamic))
8968 {
8969 (*_bfd_error_handler)
843fe662
L
8970 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
8971 input_bfd,
8972 input_section,
8973 (long) rel->r_offset,
8974 howto->name,
8975 h->root.root.string);
0945cdfd
DJ
8976 return FALSE;
8977 }
252b5132
RH
8978
8979 if (r != bfd_reloc_ok)
8980 {
252b5132
RH
8981 switch (r)
8982 {
8983 case bfd_reloc_overflow:
cf919dfd
PB
8984 /* If the overflowing reloc was to an undefined symbol,
8985 we have already printed one error message and there
8986 is no point complaining again. */
8987 if ((! h ||
8988 h->root.type != bfd_link_hash_undefined)
8989 && (!((*info->callbacks->reloc_overflow)
dfeffb9f
L
8990 (info, (h ? &h->root : NULL), name, howto->name,
8991 (bfd_vma) 0, input_bfd, input_section,
8992 rel->r_offset))))
b34976b6 8993 return FALSE;
252b5132
RH
8994 break;
8995
8996 case bfd_reloc_undefined:
8997 if (!((*info->callbacks->undefined_symbol)
8998 (info, name, input_bfd, input_section,
b34976b6
AM
8999 rel->r_offset, TRUE)))
9000 return FALSE;
252b5132
RH
9001 break;
9002
9003 case bfd_reloc_outofrange:
f2a9dd69 9004 error_message = _("out of range");
252b5132
RH
9005 goto common_error;
9006
9007 case bfd_reloc_notsupported:
f2a9dd69 9008 error_message = _("unsupported relocation");
252b5132
RH
9009 goto common_error;
9010
9011 case bfd_reloc_dangerous:
f2a9dd69 9012 /* error_message should already be set. */
252b5132
RH
9013 goto common_error;
9014
9015 default:
f2a9dd69 9016 error_message = _("unknown error");
8029a119 9017 /* Fall through. */
252b5132
RH
9018
9019 common_error:
f2a9dd69
DJ
9020 BFD_ASSERT (error_message != NULL);
9021 if (!((*info->callbacks->reloc_dangerous)
9022 (info, error_message, input_bfd, input_section,
252b5132 9023 rel->r_offset)))
b34976b6 9024 return FALSE;
252b5132
RH
9025 break;
9026 }
9027 }
9028 }
9029
b34976b6 9030 return TRUE;
252b5132
RH
9031}
9032
2468f9c9
PB
9033/* Add a new unwind edit to the list described by HEAD, TAIL. If INDEX is zero,
9034 adds the edit to the start of the list. (The list must be built in order of
9035 ascending INDEX: the function's callers are primarily responsible for
9036 maintaining that condition). */
9037
9038static void
9039add_unwind_table_edit (arm_unwind_table_edit **head,
9040 arm_unwind_table_edit **tail,
9041 arm_unwind_edit_type type,
9042 asection *linked_section,
9043 unsigned int index)
9044{
9045 arm_unwind_table_edit *new_edit = xmalloc (sizeof (arm_unwind_table_edit));
9046
9047 new_edit->type = type;
9048 new_edit->linked_section = linked_section;
9049 new_edit->index = index;
9050
9051 if (index > 0)
9052 {
9053 new_edit->next = NULL;
9054
9055 if (*tail)
9056 (*tail)->next = new_edit;
9057
9058 (*tail) = new_edit;
9059
9060 if (!*head)
9061 (*head) = new_edit;
9062 }
9063 else
9064 {
9065 new_edit->next = *head;
9066
9067 if (!*tail)
9068 *tail = new_edit;
9069
9070 *head = new_edit;
9071 }
9072}
9073
9074static _arm_elf_section_data *get_arm_elf_section_data (asection *);
9075
9076/* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
9077static void
9078adjust_exidx_size(asection *exidx_sec, int adjust)
9079{
9080 asection *out_sec;
9081
9082 if (!exidx_sec->rawsize)
9083 exidx_sec->rawsize = exidx_sec->size;
9084
9085 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
9086 out_sec = exidx_sec->output_section;
9087 /* Adjust size of output section. */
9088 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
9089}
9090
9091/* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
9092static void
9093insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
9094{
9095 struct _arm_elf_section_data *exidx_arm_data;
9096
9097 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
9098 add_unwind_table_edit (
9099 &exidx_arm_data->u.exidx.unwind_edit_list,
9100 &exidx_arm_data->u.exidx.unwind_edit_tail,
9101 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
9102
9103 adjust_exidx_size(exidx_sec, 8);
9104}
9105
9106/* Scan .ARM.exidx tables, and create a list describing edits which should be
9107 made to those tables, such that:
9108
9109 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
9110 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
9111 codes which have been inlined into the index).
9112
9113 The edits are applied when the tables are written
9114 (in elf32_arm_write_section).
9115*/
9116
9117bfd_boolean
9118elf32_arm_fix_exidx_coverage (asection **text_section_order,
9119 unsigned int num_text_sections,
9120 struct bfd_link_info *info)
9121{
9122 bfd *inp;
9123 unsigned int last_second_word = 0, i;
9124 asection *last_exidx_sec = NULL;
9125 asection *last_text_sec = NULL;
9126 int last_unwind_type = -1;
9127
9128 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
9129 text sections. */
9130 for (inp = info->input_bfds; inp != NULL; inp = inp->link_next)
9131 {
9132 asection *sec;
9133
9134 for (sec = inp->sections; sec != NULL; sec = sec->next)
9135 {
9136 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
9137 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
9138
dec9d5df 9139 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
2468f9c9
PB
9140 continue;
9141
9142 if (elf_sec->linked_to)
9143 {
9144 Elf_Internal_Shdr *linked_hdr
9145 = &elf_section_data (elf_sec->linked_to)->this_hdr;
9146 struct _arm_elf_section_data *linked_sec_arm_data
9147 = get_arm_elf_section_data (linked_hdr->bfd_section);
9148
9149 if (linked_sec_arm_data == NULL)
9150 continue;
9151
9152 /* Link this .ARM.exidx section back from the text section it
9153 describes. */
9154 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
9155 }
9156 }
9157 }
9158
9159 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
9160 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
9161 and add EXIDX_CANTUNWIND entries for sections with no unwind table data.
9162 */
9163
9164 for (i = 0; i < num_text_sections; i++)
9165 {
9166 asection *sec = text_section_order[i];
9167 asection *exidx_sec;
9168 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
9169 struct _arm_elf_section_data *exidx_arm_data;
9170 bfd_byte *contents = NULL;
9171 int deleted_exidx_bytes = 0;
9172 bfd_vma j;
9173 arm_unwind_table_edit *unwind_edit_head = NULL;
9174 arm_unwind_table_edit *unwind_edit_tail = NULL;
9175 Elf_Internal_Shdr *hdr;
9176 bfd *ibfd;
9177
9178 if (arm_data == NULL)
9179 continue;
9180
9181 exidx_sec = arm_data->u.text.arm_exidx_sec;
9182 if (exidx_sec == NULL)
9183 {
9184 /* Section has no unwind data. */
9185 if (last_unwind_type == 0 || !last_exidx_sec)
9186 continue;
9187
9188 /* Ignore zero sized sections. */
9189 if (sec->size == 0)
9190 continue;
9191
9192 insert_cantunwind_after(last_text_sec, last_exidx_sec);
9193 last_unwind_type = 0;
9194 continue;
9195 }
9196
22a8f80e
PB
9197 /* Skip /DISCARD/ sections. */
9198 if (bfd_is_abs_section (exidx_sec->output_section))
9199 continue;
9200
2468f9c9
PB
9201 hdr = &elf_section_data (exidx_sec)->this_hdr;
9202 if (hdr->sh_type != SHT_ARM_EXIDX)
9203 continue;
9204
9205 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
9206 if (exidx_arm_data == NULL)
9207 continue;
9208
9209 ibfd = exidx_sec->owner;
9210
9211 if (hdr->contents != NULL)
9212 contents = hdr->contents;
9213 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
9214 /* An error? */
9215 continue;
9216
9217 for (j = 0; j < hdr->sh_size; j += 8)
9218 {
9219 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
9220 int unwind_type;
9221 int elide = 0;
9222
9223 /* An EXIDX_CANTUNWIND entry. */
9224 if (second_word == 1)
9225 {
9226 if (last_unwind_type == 0)
9227 elide = 1;
9228 unwind_type = 0;
9229 }
9230 /* Inlined unwinding data. Merge if equal to previous. */
9231 else if ((second_word & 0x80000000) != 0)
9232 {
9233 if (last_second_word == second_word && last_unwind_type == 1)
9234 elide = 1;
9235 unwind_type = 1;
9236 last_second_word = second_word;
9237 }
9238 /* Normal table entry. In theory we could merge these too,
9239 but duplicate entries are likely to be much less common. */
9240 else
9241 unwind_type = 2;
9242
9243 if (elide)
9244 {
9245 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
9246 DELETE_EXIDX_ENTRY, NULL, j / 8);
9247
9248 deleted_exidx_bytes += 8;
9249 }
9250
9251 last_unwind_type = unwind_type;
9252 }
9253
9254 /* Free contents if we allocated it ourselves. */
9255 if (contents != hdr->contents)
9256 free (contents);
9257
9258 /* Record edits to be applied later (in elf32_arm_write_section). */
9259 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
9260 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
9261
9262 if (deleted_exidx_bytes > 0)
9263 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
9264
9265 last_exidx_sec = exidx_sec;
9266 last_text_sec = sec;
9267 }
9268
9269 /* Add terminating CANTUNWIND entry. */
9270 if (last_exidx_sec && last_unwind_type != 0)
9271 insert_cantunwind_after(last_text_sec, last_exidx_sec);
9272
9273 return TRUE;
9274}
9275
3e6b1042
DJ
9276static bfd_boolean
9277elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
9278 bfd *ibfd, const char *name)
9279{
9280 asection *sec, *osec;
9281
9282 sec = bfd_get_section_by_name (ibfd, name);
9283 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
9284 return TRUE;
9285
9286 osec = sec->output_section;
9287 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
9288 return TRUE;
9289
9290 if (! bfd_set_section_contents (obfd, osec, sec->contents,
9291 sec->output_offset, sec->size))
9292 return FALSE;
9293
9294 return TRUE;
9295}
9296
9297static bfd_boolean
9298elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
9299{
9300 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
9301
9302 /* Invoke the regular ELF backend linker to do all the work. */
9303 if (!bfd_elf_final_link (abfd, info))
9304 return FALSE;
9305
9306 /* Write out any glue sections now that we have created all the
9307 stubs. */
9308 if (globals->bfd_of_glue_owner != NULL)
9309 {
9310 if (! elf32_arm_output_glue_section (info, abfd,
9311 globals->bfd_of_glue_owner,
9312 ARM2THUMB_GLUE_SECTION_NAME))
9313 return FALSE;
9314
9315 if (! elf32_arm_output_glue_section (info, abfd,
9316 globals->bfd_of_glue_owner,
9317 THUMB2ARM_GLUE_SECTION_NAME))
9318 return FALSE;
9319
9320 if (! elf32_arm_output_glue_section (info, abfd,
9321 globals->bfd_of_glue_owner,
9322 VFP11_ERRATUM_VENEER_SECTION_NAME))
9323 return FALSE;
9324
9325 if (! elf32_arm_output_glue_section (info, abfd,
9326 globals->bfd_of_glue_owner,
9327 ARM_BX_GLUE_SECTION_NAME))
9328 return FALSE;
9329 }
9330
9331 return TRUE;
9332}
9333
c178919b
NC
9334/* Set the right machine number. */
9335
9336static bfd_boolean
57e8b36a 9337elf32_arm_object_p (bfd *abfd)
c178919b 9338{
5a6c6817 9339 unsigned int mach;
57e8b36a 9340
5a6c6817 9341 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
c178919b 9342
5a6c6817
NC
9343 if (mach != bfd_mach_arm_unknown)
9344 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
9345
9346 else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
9347 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
e16bb312 9348
e16bb312 9349 else
5a6c6817 9350 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
c178919b
NC
9351
9352 return TRUE;
9353}
9354
fc830a83 9355/* Function to keep ARM specific flags in the ELF header. */
3c9458e9 9356
b34976b6 9357static bfd_boolean
57e8b36a 9358elf32_arm_set_private_flags (bfd *abfd, flagword flags)
252b5132
RH
9359{
9360 if (elf_flags_init (abfd)
9361 && elf_elfheader (abfd)->e_flags != flags)
9362 {
fc830a83
NC
9363 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
9364 {
fd2ec330 9365 if (flags & EF_ARM_INTERWORK)
d003868e
AM
9366 (*_bfd_error_handler)
9367 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
9368 abfd);
fc830a83 9369 else
d003868e
AM
9370 _bfd_error_handler
9371 (_("Warning: Clearing the interworking flag of %B due to outside request"),
9372 abfd);
fc830a83 9373 }
252b5132
RH
9374 }
9375 else
9376 {
9377 elf_elfheader (abfd)->e_flags = flags;
b34976b6 9378 elf_flags_init (abfd) = TRUE;
252b5132
RH
9379 }
9380
b34976b6 9381 return TRUE;
252b5132
RH
9382}
9383
fc830a83 9384/* Copy backend specific data from one object module to another. */
9b485d32 9385
b34976b6 9386static bfd_boolean
57e8b36a 9387elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
252b5132
RH
9388{
9389 flagword in_flags;
9390 flagword out_flags;
9391
0ffa91dd 9392 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
b34976b6 9393 return TRUE;
252b5132 9394
fc830a83 9395 in_flags = elf_elfheader (ibfd)->e_flags;
252b5132
RH
9396 out_flags = elf_elfheader (obfd)->e_flags;
9397
fc830a83
NC
9398 if (elf_flags_init (obfd)
9399 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
9400 && in_flags != out_flags)
252b5132 9401 {
252b5132 9402 /* Cannot mix APCS26 and APCS32 code. */
fd2ec330 9403 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
b34976b6 9404 return FALSE;
252b5132
RH
9405
9406 /* Cannot mix float APCS and non-float APCS code. */
fd2ec330 9407 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
b34976b6 9408 return FALSE;
252b5132
RH
9409
9410 /* If the src and dest have different interworking flags
9411 then turn off the interworking bit. */
fd2ec330 9412 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
252b5132 9413 {
fd2ec330 9414 if (out_flags & EF_ARM_INTERWORK)
d003868e
AM
9415 _bfd_error_handler
9416 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
9417 obfd, ibfd);
252b5132 9418
fd2ec330 9419 in_flags &= ~EF_ARM_INTERWORK;
252b5132 9420 }
1006ba19
PB
9421
9422 /* Likewise for PIC, though don't warn for this case. */
fd2ec330
PB
9423 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
9424 in_flags &= ~EF_ARM_PIC;
252b5132
RH
9425 }
9426
9427 elf_elfheader (obfd)->e_flags = in_flags;
b34976b6 9428 elf_flags_init (obfd) = TRUE;
252b5132 9429
94a3258f
PB
9430 /* Also copy the EI_OSABI field. */
9431 elf_elfheader (obfd)->e_ident[EI_OSABI] =
9432 elf_elfheader (ibfd)->e_ident[EI_OSABI];
9433
104d59d1
JM
9434 /* Copy object attributes. */
9435 _bfd_elf_copy_obj_attributes (ibfd, obfd);
ee065d83
PB
9436
9437 return TRUE;
9438}
9439
9440/* Values for Tag_ABI_PCS_R9_use. */
9441enum
9442{
9443 AEABI_R9_V6,
9444 AEABI_R9_SB,
9445 AEABI_R9_TLS,
9446 AEABI_R9_unused
9447};
9448
9449/* Values for Tag_ABI_PCS_RW_data. */
9450enum
9451{
9452 AEABI_PCS_RW_data_absolute,
9453 AEABI_PCS_RW_data_PCrel,
9454 AEABI_PCS_RW_data_SBrel,
9455 AEABI_PCS_RW_data_unused
9456};
9457
9458/* Values for Tag_ABI_enum_size. */
9459enum
9460{
9461 AEABI_enum_unused,
9462 AEABI_enum_short,
9463 AEABI_enum_wide,
9464 AEABI_enum_forced_wide
9465};
9466
104d59d1
JM
9467/* Determine whether an object attribute tag takes an integer, a
9468 string or both. */
906e58ca 9469
104d59d1
JM
9470static int
9471elf32_arm_obj_attrs_arg_type (int tag)
9472{
9473 if (tag == Tag_compatibility)
3483fe2e 9474 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
2d0bb761 9475 else if (tag == Tag_nodefaults)
3483fe2e
AS
9476 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
9477 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
9478 return ATTR_TYPE_FLAG_STR_VAL;
104d59d1 9479 else if (tag < 32)
3483fe2e 9480 return ATTR_TYPE_FLAG_INT_VAL;
104d59d1 9481 else
3483fe2e 9482 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
104d59d1
JM
9483}
9484
5aa6ff7c
AS
9485/* The ABI defines that Tag_conformance should be emitted first, and that
9486 Tag_nodefaults should be second (if either is defined). This sets those
9487 two positions, and bumps up the position of all the remaining tags to
9488 compensate. */
9489static int
9490elf32_arm_obj_attrs_order (int num)
9491{
9492 if (num == 4)
9493 return Tag_conformance;
9494 if (num == 5)
9495 return Tag_nodefaults;
9496 if ((num - 2) < Tag_nodefaults)
9497 return num - 2;
9498 if ((num - 1) < Tag_conformance)
9499 return num - 1;
9500 return num;
9501}
9502
91e22acd
AS
9503/* Read the architecture from the Tag_also_compatible_with attribute, if any.
9504 Returns -1 if no architecture could be read. */
9505
9506static int
9507get_secondary_compatible_arch (bfd *abfd)
9508{
9509 obj_attribute *attr =
9510 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
9511
9512 /* Note: the tag and its argument below are uleb128 values, though
9513 currently-defined values fit in one byte for each. */
9514 if (attr->s
9515 && attr->s[0] == Tag_CPU_arch
9516 && (attr->s[1] & 128) != 128
9517 && attr->s[2] == 0)
9518 return attr->s[1];
9519
9520 /* This tag is "safely ignorable", so don't complain if it looks funny. */
9521 return -1;
9522}
9523
9524/* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
9525 The tag is removed if ARCH is -1. */
9526
8e79c3df 9527static void
91e22acd 9528set_secondary_compatible_arch (bfd *abfd, int arch)
8e79c3df 9529{
91e22acd
AS
9530 obj_attribute *attr =
9531 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
8e79c3df 9532
91e22acd
AS
9533 if (arch == -1)
9534 {
9535 attr->s = NULL;
9536 return;
8e79c3df 9537 }
91e22acd
AS
9538
9539 /* Note: the tag and its argument below are uleb128 values, though
9540 currently-defined values fit in one byte for each. */
9541 if (!attr->s)
9542 attr->s = bfd_alloc (abfd, 3);
9543 attr->s[0] = Tag_CPU_arch;
9544 attr->s[1] = arch;
9545 attr->s[2] = '\0';
8e79c3df
CM
9546}
9547
91e22acd
AS
9548/* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
9549 into account. */
9550
9551static int
9552tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
9553 int newtag, int secondary_compat)
8e79c3df 9554{
91e22acd
AS
9555#define T(X) TAG_CPU_ARCH_##X
9556 int tagl, tagh, result;
9557 const int v6t2[] =
9558 {
9559 T(V6T2), /* PRE_V4. */
9560 T(V6T2), /* V4. */
9561 T(V6T2), /* V4T. */
9562 T(V6T2), /* V5T. */
9563 T(V6T2), /* V5TE. */
9564 T(V6T2), /* V5TEJ. */
9565 T(V6T2), /* V6. */
9566 T(V7), /* V6KZ. */
9567 T(V6T2) /* V6T2. */
9568 };
9569 const int v6k[] =
9570 {
9571 T(V6K), /* PRE_V4. */
9572 T(V6K), /* V4. */
9573 T(V6K), /* V4T. */
9574 T(V6K), /* V5T. */
9575 T(V6K), /* V5TE. */
9576 T(V6K), /* V5TEJ. */
9577 T(V6K), /* V6. */
9578 T(V6KZ), /* V6KZ. */
9579 T(V7), /* V6T2. */
9580 T(V6K) /* V6K. */
9581 };
9582 const int v7[] =
9583 {
9584 T(V7), /* PRE_V4. */
9585 T(V7), /* V4. */
9586 T(V7), /* V4T. */
9587 T(V7), /* V5T. */
9588 T(V7), /* V5TE. */
9589 T(V7), /* V5TEJ. */
9590 T(V7), /* V6. */
9591 T(V7), /* V6KZ. */
9592 T(V7), /* V6T2. */
9593 T(V7), /* V6K. */
9594 T(V7) /* V7. */
9595 };
9596 const int v6_m[] =
9597 {
9598 -1, /* PRE_V4. */
9599 -1, /* V4. */
9600 T(V6K), /* V4T. */
9601 T(V6K), /* V5T. */
9602 T(V6K), /* V5TE. */
9603 T(V6K), /* V5TEJ. */
9604 T(V6K), /* V6. */
9605 T(V6KZ), /* V6KZ. */
9606 T(V7), /* V6T2. */
9607 T(V6K), /* V6K. */
9608 T(V7), /* V7. */
9609 T(V6_M) /* V6_M. */
9610 };
9611 const int v6s_m[] =
9612 {
9613 -1, /* PRE_V4. */
9614 -1, /* V4. */
9615 T(V6K), /* V4T. */
9616 T(V6K), /* V5T. */
9617 T(V6K), /* V5TE. */
9618 T(V6K), /* V5TEJ. */
9619 T(V6K), /* V6. */
9620 T(V6KZ), /* V6KZ. */
9621 T(V7), /* V6T2. */
9622 T(V6K), /* V6K. */
9623 T(V7), /* V7. */
9624 T(V6S_M), /* V6_M. */
9625 T(V6S_M) /* V6S_M. */
9626 };
9627 const int v4t_plus_v6_m[] =
9628 {
9629 -1, /* PRE_V4. */
9630 -1, /* V4. */
9631 T(V4T), /* V4T. */
9632 T(V5T), /* V5T. */
9633 T(V5TE), /* V5TE. */
9634 T(V5TEJ), /* V5TEJ. */
9635 T(V6), /* V6. */
9636 T(V6KZ), /* V6KZ. */
9637 T(V6T2), /* V6T2. */
9638 T(V6K), /* V6K. */
9639 T(V7), /* V7. */
9640 T(V6_M), /* V6_M. */
9641 T(V6S_M), /* V6S_M. */
9642 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
9643 };
9644 const int *comb[] =
9645 {
9646 v6t2,
9647 v6k,
9648 v7,
9649 v6_m,
9650 v6s_m,
9651 /* Pseudo-architecture. */
9652 v4t_plus_v6_m
9653 };
9654
9655 /* Check we've not got a higher architecture than we know about. */
9656
9657 if (oldtag >= MAX_TAG_CPU_ARCH || newtag >= MAX_TAG_CPU_ARCH)
9658 {
3895f852 9659 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
91e22acd
AS
9660 return -1;
9661 }
9662
9663 /* Override old tag if we have a Tag_also_compatible_with on the output. */
9664
9665 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
9666 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
9667 oldtag = T(V4T_PLUS_V6_M);
9668
9669 /* And override the new tag if we have a Tag_also_compatible_with on the
9670 input. */
9671
9672 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
9673 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
9674 newtag = T(V4T_PLUS_V6_M);
9675
9676 tagl = (oldtag < newtag) ? oldtag : newtag;
9677 result = tagh = (oldtag > newtag) ? oldtag : newtag;
9678
9679 /* Architectures before V6KZ add features monotonically. */
9680 if (tagh <= TAG_CPU_ARCH_V6KZ)
9681 return result;
9682
9683 result = comb[tagh - T(V6T2)][tagl];
9684
9685 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
9686 as the canonical version. */
9687 if (result == T(V4T_PLUS_V6_M))
9688 {
9689 result = T(V4T);
9690 *secondary_compat_out = T(V6_M);
9691 }
9692 else
9693 *secondary_compat_out = -1;
9694
9695 if (result == -1)
9696 {
3895f852 9697 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
91e22acd
AS
9698 ibfd, oldtag, newtag);
9699 return -1;
9700 }
9701
9702 return result;
9703#undef T
8e79c3df
CM
9704}
9705
ee065d83
PB
9706/* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
9707 are conflicting attributes. */
906e58ca 9708
ee065d83
PB
9709static bfd_boolean
9710elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
9711{
104d59d1
JM
9712 obj_attribute *in_attr;
9713 obj_attribute *out_attr;
9714 obj_attribute_list *in_list;
8e79c3df 9715 obj_attribute_list *out_list;
91e22acd 9716 obj_attribute_list **out_listp;
ee065d83
PB
9717 /* Some tags have 0 = don't care, 1 = strong requirement,
9718 2 = weak requirement. */
91e22acd 9719 static const int order_021[3] = {0, 2, 1};
b1cc4aeb
PB
9720 /* For use with Tag_VFP_arch. */
9721 static const int order_01243[5] = {0, 1, 2, 4, 3};
ee065d83 9722 int i;
91e22acd 9723 bfd_boolean result = TRUE;
ee065d83 9724
3e6b1042
DJ
9725 /* Skip the linker stubs file. This preserves previous behavior
9726 of accepting unknown attributes in the first input file - but
9727 is that a bug? */
9728 if (ibfd->flags & BFD_LINKER_CREATED)
9729 return TRUE;
9730
104d59d1 9731 if (!elf_known_obj_attributes_proc (obfd)[0].i)
ee065d83
PB
9732 {
9733 /* This is the first object. Copy the attributes. */
104d59d1 9734 _bfd_elf_copy_obj_attributes (ibfd, obfd);
004ae526
PB
9735
9736 /* Use the Tag_null value to indicate the attributes have been
9737 initialized. */
104d59d1 9738 elf_known_obj_attributes_proc (obfd)[0].i = 1;
004ae526 9739
ee065d83
PB
9740 return TRUE;
9741 }
9742
104d59d1
JM
9743 in_attr = elf_known_obj_attributes_proc (ibfd);
9744 out_attr = elf_known_obj_attributes_proc (obfd);
ee065d83
PB
9745 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
9746 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
9747 {
8e79c3df 9748 /* Ignore mismatches if the object doesn't use floating point. */
ee065d83
PB
9749 if (out_attr[Tag_ABI_FP_number_model].i == 0)
9750 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
9751 else if (in_attr[Tag_ABI_FP_number_model].i != 0)
9752 {
9753 _bfd_error_handler
3895f852 9754 (_("error: %B uses VFP register arguments, %B does not"),
ee065d83 9755 ibfd, obfd);
91e22acd 9756 result = FALSE;
ee065d83
PB
9757 }
9758 }
9759
104d59d1 9760 for (i = 4; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
ee065d83
PB
9761 {
9762 /* Merge this attribute with existing attributes. */
9763 switch (i)
9764 {
9765 case Tag_CPU_raw_name:
9766 case Tag_CPU_name:
91e22acd 9767 /* These are merged after Tag_CPU_arch. */
ee065d83
PB
9768 break;
9769
9770 case Tag_ABI_optimization_goals:
9771 case Tag_ABI_FP_optimization_goals:
9772 /* Use the first value seen. */
9773 break;
9774
9775 case Tag_CPU_arch:
91e22acd
AS
9776 {
9777 int secondary_compat = -1, secondary_compat_out = -1;
9778 unsigned int saved_out_attr = out_attr[i].i;
9779 static const char *name_table[] = {
9780 /* These aren't real CPU names, but we can't guess
9781 that from the architecture version alone. */
9782 "Pre v4",
9783 "ARM v4",
9784 "ARM v4T",
9785 "ARM v5T",
9786 "ARM v5TE",
9787 "ARM v5TEJ",
9788 "ARM v6",
9789 "ARM v6KZ",
9790 "ARM v6T2",
9791 "ARM v6K",
9792 "ARM v7",
9793 "ARM v6-M",
9794 "ARM v6S-M"
9795 };
9796
9797 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
9798 secondary_compat = get_secondary_compatible_arch (ibfd);
9799 secondary_compat_out = get_secondary_compatible_arch (obfd);
9800 out_attr[i].i = tag_cpu_arch_combine (ibfd, out_attr[i].i,
9801 &secondary_compat_out,
9802 in_attr[i].i,
9803 secondary_compat);
9804 set_secondary_compatible_arch (obfd, secondary_compat_out);
9805
9806 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
9807 if (out_attr[i].i == saved_out_attr)
9808 ; /* Leave the names alone. */
9809 else if (out_attr[i].i == in_attr[i].i)
9810 {
9811 /* The output architecture has been changed to match the
9812 input architecture. Use the input names. */
9813 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
9814 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
9815 : NULL;
9816 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
9817 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
9818 : NULL;
9819 }
9820 else
9821 {
9822 out_attr[Tag_CPU_name].s = NULL;
9823 out_attr[Tag_CPU_raw_name].s = NULL;
9824 }
9825
9826 /* If we still don't have a value for Tag_CPU_name,
9827 make one up now. Tag_CPU_raw_name remains blank. */
9828 if (out_attr[Tag_CPU_name].s == NULL
9829 && out_attr[i].i < ARRAY_SIZE (name_table))
9830 out_attr[Tag_CPU_name].s =
9831 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
9832 }
9833 break;
9834
ee065d83
PB
9835 case Tag_ARM_ISA_use:
9836 case Tag_THUMB_ISA_use:
ee065d83 9837 case Tag_WMMX_arch:
91e22acd
AS
9838 case Tag_Advanced_SIMD_arch:
9839 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
ee065d83 9840 case Tag_ABI_FP_rounding:
ee065d83
PB
9841 case Tag_ABI_FP_exceptions:
9842 case Tag_ABI_FP_user_exceptions:
9843 case Tag_ABI_FP_number_model:
91e22acd
AS
9844 case Tag_VFP_HP_extension:
9845 case Tag_CPU_unaligned_access:
9846 case Tag_T2EE_use:
9847 case Tag_Virtualization_use:
9848 case Tag_MPextension_use:
ee065d83
PB
9849 /* Use the largest value specified. */
9850 if (in_attr[i].i > out_attr[i].i)
9851 out_attr[i].i = in_attr[i].i;
9852 break;
9853
91e22acd
AS
9854 case Tag_ABI_align8_preserved:
9855 case Tag_ABI_PCS_RO_data:
9856 /* Use the smallest value specified. */
9857 if (in_attr[i].i < out_attr[i].i)
9858 out_attr[i].i = in_attr[i].i;
9859 break;
9860
9861 case Tag_ABI_align8_needed:
9862 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
9863 && (in_attr[Tag_ABI_align8_preserved].i == 0
9864 || out_attr[Tag_ABI_align8_preserved].i == 0))
ee065d83 9865 {
91e22acd
AS
9866 /* This error message should be enabled once all non-conformant
9867 binaries in the toolchain have had the attributes set
9868 properly.
ee065d83 9869 _bfd_error_handler
3895f852 9870 (_("error: %B: 8-byte data alignment conflicts with %B"),
91e22acd
AS
9871 obfd, ibfd);
9872 result = FALSE; */
ee065d83 9873 }
91e22acd
AS
9874 /* Fall through. */
9875 case Tag_ABI_FP_denormal:
9876 case Tag_ABI_PCS_GOT_use:
9877 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
9878 value if greater than 2 (for future-proofing). */
9879 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
9880 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
9881 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
ee065d83
PB
9882 out_attr[i].i = in_attr[i].i;
9883 break;
91e22acd
AS
9884
9885
9886 case Tag_CPU_arch_profile:
9887 if (out_attr[i].i != in_attr[i].i)
9888 {
9889 /* 0 will merge with anything.
9890 'A' and 'S' merge to 'A'.
9891 'R' and 'S' merge to 'R'.
9892 'M' and 'A|R|S' is an error. */
9893 if (out_attr[i].i == 0
9894 || (out_attr[i].i == 'S'
9895 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
9896 out_attr[i].i = in_attr[i].i;
9897 else if (in_attr[i].i == 0
9898 || (in_attr[i].i == 'S'
9899 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
9900 ; /* Do nothing. */
9901 else
9902 {
9903 _bfd_error_handler
3895f852 9904 (_("error: %B: Conflicting architecture profiles %c/%c"),
91e22acd
AS
9905 ibfd,
9906 in_attr[i].i ? in_attr[i].i : '0',
9907 out_attr[i].i ? out_attr[i].i : '0');
9908 result = FALSE;
9909 }
9910 }
9911 break;
b1cc4aeb 9912 case Tag_VFP_arch:
91e22acd
AS
9913 /* Use the "greatest" from the sequence 0, 1, 2, 4, 3, or the
9914 largest value if greater than 4 (for future-proofing). */
9915 if ((in_attr[i].i > 4 && in_attr[i].i > out_attr[i].i)
9916 || (in_attr[i].i <= 4 && out_attr[i].i <= 4
9917 && order_01243[in_attr[i].i] > order_01243[out_attr[i].i]))
b1cc4aeb
PB
9918 out_attr[i].i = in_attr[i].i;
9919 break;
ee065d83
PB
9920 case Tag_PCS_config:
9921 if (out_attr[i].i == 0)
9922 out_attr[i].i = in_attr[i].i;
9923 else if (in_attr[i].i != 0 && out_attr[i].i != 0)
9924 {
9925 /* It's sometimes ok to mix different configs, so this is only
9926 a warning. */
9927 _bfd_error_handler
9928 (_("Warning: %B: Conflicting platform configuration"), ibfd);
9929 }
9930 break;
9931 case Tag_ABI_PCS_R9_use:
004ae526
PB
9932 if (in_attr[i].i != out_attr[i].i
9933 && out_attr[i].i != AEABI_R9_unused
ee065d83
PB
9934 && in_attr[i].i != AEABI_R9_unused)
9935 {
9936 _bfd_error_handler
3895f852 9937 (_("error: %B: Conflicting use of R9"), ibfd);
91e22acd 9938 result = FALSE;
ee065d83
PB
9939 }
9940 if (out_attr[i].i == AEABI_R9_unused)
9941 out_attr[i].i = in_attr[i].i;
9942 break;
9943 case Tag_ABI_PCS_RW_data:
9944 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
9945 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
9946 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
9947 {
9948 _bfd_error_handler
3895f852 9949 (_("error: %B: SB relative addressing conflicts with use of R9"),
ee065d83 9950 ibfd);
91e22acd 9951 result = FALSE;
ee065d83
PB
9952 }
9953 /* Use the smallest value specified. */
9954 if (in_attr[i].i < out_attr[i].i)
9955 out_attr[i].i = in_attr[i].i;
9956 break;
ee065d83 9957 case Tag_ABI_PCS_wchar_t:
a9dc9481
JM
9958 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
9959 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
ee065d83
PB
9960 {
9961 _bfd_error_handler
a9dc9481
JM
9962 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
9963 ibfd, in_attr[i].i, out_attr[i].i);
ee065d83 9964 }
a9dc9481 9965 else if (in_attr[i].i && !out_attr[i].i)
ee065d83
PB
9966 out_attr[i].i = in_attr[i].i;
9967 break;
ee065d83
PB
9968 case Tag_ABI_enum_size:
9969 if (in_attr[i].i != AEABI_enum_unused)
9970 {
9971 if (out_attr[i].i == AEABI_enum_unused
9972 || out_attr[i].i == AEABI_enum_forced_wide)
9973 {
9974 /* The existing object is compatible with anything.
9975 Use whatever requirements the new object has. */
9976 out_attr[i].i = in_attr[i].i;
9977 }
9978 else if (in_attr[i].i != AEABI_enum_forced_wide
bf21ed78 9979 && out_attr[i].i != in_attr[i].i
0ffa91dd 9980 && !elf_arm_tdata (obfd)->no_enum_size_warning)
ee065d83 9981 {
91e22acd 9982 static const char *aeabi_enum_names[] =
bf21ed78 9983 { "", "variable-size", "32-bit", "" };
91e22acd
AS
9984 const char *in_name =
9985 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
9986 ? aeabi_enum_names[in_attr[i].i]
9987 : "<unknown>";
9988 const char *out_name =
9989 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
9990 ? aeabi_enum_names[out_attr[i].i]
9991 : "<unknown>";
ee065d83 9992 _bfd_error_handler
bf21ed78 9993 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
91e22acd 9994 ibfd, in_name, out_name);
ee065d83
PB
9995 }
9996 }
9997 break;
9998 case Tag_ABI_VFP_args:
9999 /* Aready done. */
10000 break;
10001 case Tag_ABI_WMMX_args:
10002 if (in_attr[i].i != out_attr[i].i)
10003 {
10004 _bfd_error_handler
3895f852 10005 (_("error: %B uses iWMMXt register arguments, %B does not"),
ee065d83 10006 ibfd, obfd);
91e22acd 10007 result = FALSE;
ee065d83
PB
10008 }
10009 break;
7b86a9fa
AS
10010 case Tag_compatibility:
10011 /* Merged in target-independent code. */
10012 break;
91e22acd
AS
10013 case Tag_ABI_HardFP_use:
10014 /* 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP). */
10015 if ((in_attr[i].i == 1 && out_attr[i].i == 2)
10016 || (in_attr[i].i == 2 && out_attr[i].i == 1))
10017 out_attr[i].i = 3;
10018 else if (in_attr[i].i > out_attr[i].i)
10019 out_attr[i].i = in_attr[i].i;
10020 break;
10021 case Tag_ABI_FP_16bit_format:
10022 if (in_attr[i].i != 0 && out_attr[i].i != 0)
10023 {
10024 if (in_attr[i].i != out_attr[i].i)
10025 {
10026 _bfd_error_handler
3895f852 10027 (_("error: fp16 format mismatch between %B and %B"),
91e22acd
AS
10028 ibfd, obfd);
10029 result = FALSE;
10030 }
10031 }
10032 if (in_attr[i].i != 0)
10033 out_attr[i].i = in_attr[i].i;
10034 break;
7b86a9fa 10035
91e22acd 10036 case Tag_nodefaults:
2d0bb761
AS
10037 /* This tag is set if it exists, but the value is unused (and is
10038 typically zero). We don't actually need to do anything here -
10039 the merge happens automatically when the type flags are merged
10040 below. */
91e22acd
AS
10041 break;
10042 case Tag_also_compatible_with:
10043 /* Already done in Tag_CPU_arch. */
10044 break;
10045 case Tag_conformance:
10046 /* Keep the attribute if it matches. Throw it away otherwise.
10047 No attribute means no claim to conform. */
10048 if (!in_attr[i].s || !out_attr[i].s
10049 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
10050 out_attr[i].s = NULL;
10051 break;
3cfad14c 10052
91e22acd 10053 default:
3cfad14c 10054 {
91e22acd
AS
10055 bfd *err_bfd = NULL;
10056
10057 /* The "known_obj_attributes" table does contain some undefined
10058 attributes. Ensure that there are unused. */
10059 if (out_attr[i].i != 0 || out_attr[i].s != NULL)
10060 err_bfd = obfd;
10061 else if (in_attr[i].i != 0 || in_attr[i].s != NULL)
10062 err_bfd = ibfd;
10063
10064 if (err_bfd != NULL)
10065 {
10066 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
10067 if ((i & 127) < 64)
10068 {
10069 _bfd_error_handler
10070 (_("%B: Unknown mandatory EABI object attribute %d"),
10071 err_bfd, i);
10072 bfd_set_error (bfd_error_bad_value);
10073 result = FALSE;
10074 }
10075 else
10076 {
10077 _bfd_error_handler
10078 (_("Warning: %B: Unknown EABI object attribute %d"),
10079 err_bfd, i);
10080 }
10081 }
10082
10083 /* Only pass on attributes that match in both inputs. */
10084 if (in_attr[i].i != out_attr[i].i
10085 || in_attr[i].s != out_attr[i].s
10086 || (in_attr[i].s != NULL && out_attr[i].s != NULL
10087 && strcmp (in_attr[i].s, out_attr[i].s) != 0))
10088 {
10089 out_attr[i].i = 0;
10090 out_attr[i].s = NULL;
10091 }
3cfad14c 10092 }
91e22acd
AS
10093 }
10094
10095 /* If out_attr was copied from in_attr then it won't have a type yet. */
10096 if (in_attr[i].type && !out_attr[i].type)
10097 out_attr[i].type = in_attr[i].type;
ee065d83
PB
10098 }
10099
104d59d1
JM
10100 /* Merge Tag_compatibility attributes and any common GNU ones. */
10101 _bfd_elf_merge_object_attributes (ibfd, obfd);
ee065d83 10102
104d59d1
JM
10103 /* Check for any attributes not known on ARM. */
10104 in_list = elf_other_obj_attributes_proc (ibfd);
91e22acd
AS
10105 out_listp = &elf_other_obj_attributes_proc (obfd);
10106 out_list = *out_listp;
8e79c3df 10107
91e22acd 10108 for (; in_list || out_list; )
ee065d83 10109 {
91e22acd
AS
10110 bfd *err_bfd = NULL;
10111 int err_tag = 0;
8e79c3df
CM
10112
10113 /* The tags for each list are in numerical order. */
10114 /* If the tags are equal, then merge. */
91e22acd 10115 if (out_list && (!in_list || in_list->tag > out_list->tag))
8e79c3df 10116 {
91e22acd
AS
10117 /* This attribute only exists in obfd. We can't merge, and we don't
10118 know what the tag means, so delete it. */
10119 err_bfd = obfd;
10120 err_tag = out_list->tag;
10121 *out_listp = out_list->next;
10122 out_list = *out_listp;
8e79c3df 10123 }
91e22acd 10124 else if (in_list && (!out_list || in_list->tag < out_list->tag))
8e79c3df 10125 {
91e22acd
AS
10126 /* This attribute only exists in ibfd. We can't merge, and we don't
10127 know what the tag means, so ignore it. */
10128 err_bfd = ibfd;
10129 err_tag = in_list->tag;
8e79c3df 10130 in_list = in_list->next;
eb111b1f 10131 }
91e22acd
AS
10132 else /* The tags are equal. */
10133 {
10134 /* As present, all attributes in the list are unknown, and
10135 therefore can't be merged meaningfully. */
10136 err_bfd = obfd;
10137 err_tag = out_list->tag;
10138
10139 /* Only pass on attributes that match in both inputs. */
10140 if (in_list->attr.i != out_list->attr.i
10141 || in_list->attr.s != out_list->attr.s
10142 || (in_list->attr.s && out_list->attr.s
10143 && strcmp (in_list->attr.s, out_list->attr.s) != 0))
10144 {
10145 /* No match. Delete the attribute. */
10146 *out_listp = out_list->next;
10147 out_list = *out_listp;
10148 }
10149 else
10150 {
10151 /* Matched. Keep the attribute and move to the next. */
10152 out_list = out_list->next;
10153 in_list = in_list->next;
10154 }
10155 }
10156
10157 if (err_bfd)
10158 {
10159 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
10160 if ((err_tag & 127) < 64)
10161 {
10162 _bfd_error_handler
10163 (_("%B: Unknown mandatory EABI object attribute %d"),
10164 err_bfd, err_tag);
10165 bfd_set_error (bfd_error_bad_value);
10166 result = FALSE;
10167 }
10168 else
10169 {
10170 _bfd_error_handler
10171 (_("Warning: %B: Unknown EABI object attribute %d"),
10172 err_bfd, err_tag);
10173 }
10174 }
ee065d83 10175 }
91e22acd 10176 return result;
252b5132
RH
10177}
10178
3a4a14e9
PB
10179
10180/* Return TRUE if the two EABI versions are incompatible. */
10181
10182static bfd_boolean
10183elf32_arm_versions_compatible (unsigned iver, unsigned over)
10184{
10185 /* v4 and v5 are the same spec before and after it was released,
10186 so allow mixing them. */
10187 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
10188 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
10189 return TRUE;
10190
10191 return (iver == over);
10192}
10193
252b5132
RH
10194/* Merge backend specific data from an object file to the output
10195 object file when linking. */
9b485d32 10196
b34976b6 10197static bfd_boolean
57e8b36a 10198elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
252b5132
RH
10199{
10200 flagword out_flags;
10201 flagword in_flags;
b34976b6 10202 bfd_boolean flags_compatible = TRUE;
cf919dfd 10203 asection *sec;
252b5132 10204
9b485d32 10205 /* Check if we have the same endianess. */
82e51918 10206 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
b34976b6 10207 return FALSE;
1fe494a5 10208
0ffa91dd 10209 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
b34976b6 10210 return TRUE;
252b5132 10211
ee065d83
PB
10212 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
10213 return FALSE;
10214
252b5132
RH
10215 /* The input BFD must have had its flags initialised. */
10216 /* The following seems bogus to me -- The flags are initialized in
10217 the assembler but I don't think an elf_flags_init field is
9b485d32 10218 written into the object. */
252b5132
RH
10219 /* BFD_ASSERT (elf_flags_init (ibfd)); */
10220
10221 in_flags = elf_elfheader (ibfd)->e_flags;
10222 out_flags = elf_elfheader (obfd)->e_flags;
10223
23684067
PB
10224 /* In theory there is no reason why we couldn't handle this. However
10225 in practice it isn't even close to working and there is no real
10226 reason to want it. */
10227 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
c13bb2ea 10228 && !(ibfd->flags & DYNAMIC)
23684067
PB
10229 && (in_flags & EF_ARM_BE8))
10230 {
3895f852 10231 _bfd_error_handler (_("error: %B is already in final BE8 format"),
23684067
PB
10232 ibfd);
10233 return FALSE;
10234 }
10235
252b5132
RH
10236 if (!elf_flags_init (obfd))
10237 {
fe077fa6
NC
10238 /* If the input is the default architecture and had the default
10239 flags then do not bother setting the flags for the output
10240 architecture, instead allow future merges to do this. If no
10241 future merges ever set these flags then they will retain their
10242 uninitialised values, which surprise surprise, correspond
252b5132 10243 to the default values. */
fe077fa6
NC
10244 if (bfd_get_arch_info (ibfd)->the_default
10245 && elf_elfheader (ibfd)->e_flags == 0)
b34976b6 10246 return TRUE;
252b5132 10247
b34976b6 10248 elf_flags_init (obfd) = TRUE;
252b5132
RH
10249 elf_elfheader (obfd)->e_flags = in_flags;
10250
10251 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
10252 && bfd_get_arch_info (obfd)->the_default)
10253 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
10254
b34976b6 10255 return TRUE;
252b5132
RH
10256 }
10257
5a6c6817
NC
10258 /* Determine what should happen if the input ARM architecture
10259 does not match the output ARM architecture. */
10260 if (! bfd_arm_merge_machines (ibfd, obfd))
10261 return FALSE;
e16bb312 10262
1006ba19 10263 /* Identical flags must be compatible. */
252b5132 10264 if (in_flags == out_flags)
b34976b6 10265 return TRUE;
252b5132 10266
35a0f415
DJ
10267 /* Check to see if the input BFD actually contains any sections. If
10268 not, its flags may not have been initialised either, but it
8e3de13a 10269 cannot actually cause any incompatiblity. Do not short-circuit
35a0f415 10270 dynamic objects; their section list may be emptied by
d1f161ea 10271 elf_link_add_object_symbols.
35a0f415 10272
d1f161ea
NC
10273 Also check to see if there are no code sections in the input.
10274 In this case there is no need to check for code specific flags.
10275 XXX - do we need to worry about floating-point format compatability
10276 in data sections ? */
35a0f415 10277 if (!(ibfd->flags & DYNAMIC))
cf919dfd 10278 {
35a0f415 10279 bfd_boolean null_input_bfd = TRUE;
d1f161ea 10280 bfd_boolean only_data_sections = TRUE;
35a0f415
DJ
10281
10282 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
cf919dfd 10283 {
35a0f415
DJ
10284 /* Ignore synthetic glue sections. */
10285 if (strcmp (sec->name, ".glue_7")
10286 && strcmp (sec->name, ".glue_7t"))
10287 {
d1f161ea
NC
10288 if ((bfd_get_section_flags (ibfd, sec)
10289 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
10290 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
10291 only_data_sections = FALSE;
10292
35a0f415
DJ
10293 null_input_bfd = FALSE;
10294 break;
10295 }
cf919dfd 10296 }
d1f161ea
NC
10297
10298 if (null_input_bfd || only_data_sections)
35a0f415 10299 return TRUE;
cf919dfd 10300 }
cf919dfd 10301
252b5132 10302 /* Complain about various flag mismatches. */
3a4a14e9
PB
10303 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
10304 EF_ARM_EABI_VERSION (out_flags)))
fc830a83 10305 {
d003868e 10306 _bfd_error_handler
3895f852 10307 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
d003868e
AM
10308 ibfd, obfd,
10309 (in_flags & EF_ARM_EABIMASK) >> 24,
10310 (out_flags & EF_ARM_EABIMASK) >> 24);
b34976b6 10311 return FALSE;
fc830a83 10312 }
252b5132 10313
1006ba19 10314 /* Not sure what needs to be checked for EABI versions >= 1. */
00a97672
RS
10315 /* VxWorks libraries do not use these flags. */
10316 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
10317 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
10318 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
1006ba19 10319 {
fd2ec330 10320 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
1006ba19 10321 {
d003868e 10322 _bfd_error_handler
3895f852 10323 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
d003868e
AM
10324 ibfd, obfd,
10325 in_flags & EF_ARM_APCS_26 ? 26 : 32,
10326 out_flags & EF_ARM_APCS_26 ? 26 : 32);
b34976b6 10327 flags_compatible = FALSE;
1006ba19 10328 }
252b5132 10329
fd2ec330 10330 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
1006ba19 10331 {
5eefb65f 10332 if (in_flags & EF_ARM_APCS_FLOAT)
d003868e 10333 _bfd_error_handler
3895f852 10334 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
d003868e 10335 ibfd, obfd);
5eefb65f 10336 else
d003868e 10337 _bfd_error_handler
3895f852 10338 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
d003868e 10339 ibfd, obfd);
63b0f745 10340
b34976b6 10341 flags_compatible = FALSE;
1006ba19 10342 }
252b5132 10343
96a846ea 10344 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
1006ba19 10345 {
96a846ea 10346 if (in_flags & EF_ARM_VFP_FLOAT)
d003868e 10347 _bfd_error_handler
3895f852 10348 (_("error: %B uses VFP instructions, whereas %B does not"),
d003868e 10349 ibfd, obfd);
5eefb65f 10350 else
d003868e 10351 _bfd_error_handler
3895f852 10352 (_("error: %B uses FPA instructions, whereas %B does not"),
d003868e 10353 ibfd, obfd);
fde78edd
NC
10354
10355 flags_compatible = FALSE;
10356 }
10357
10358 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
10359 {
10360 if (in_flags & EF_ARM_MAVERICK_FLOAT)
d003868e 10361 _bfd_error_handler
3895f852 10362 (_("error: %B uses Maverick instructions, whereas %B does not"),
d003868e 10363 ibfd, obfd);
fde78edd 10364 else
d003868e 10365 _bfd_error_handler
3895f852 10366 (_("error: %B does not use Maverick instructions, whereas %B does"),
d003868e 10367 ibfd, obfd);
63b0f745 10368
b34976b6 10369 flags_compatible = FALSE;
1006ba19 10370 }
96a846ea
RE
10371
10372#ifdef EF_ARM_SOFT_FLOAT
10373 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
10374 {
10375 /* We can allow interworking between code that is VFP format
10376 layout, and uses either soft float or integer regs for
10377 passing floating point arguments and results. We already
10378 know that the APCS_FLOAT flags match; similarly for VFP
10379 flags. */
10380 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
10381 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
10382 {
10383 if (in_flags & EF_ARM_SOFT_FLOAT)
d003868e 10384 _bfd_error_handler
3895f852 10385 (_("error: %B uses software FP, whereas %B uses hardware FP"),
d003868e 10386 ibfd, obfd);
96a846ea 10387 else
d003868e 10388 _bfd_error_handler
3895f852 10389 (_("error: %B uses hardware FP, whereas %B uses software FP"),
d003868e 10390 ibfd, obfd);
96a846ea 10391
b34976b6 10392 flags_compatible = FALSE;
96a846ea
RE
10393 }
10394 }
ee43f35e 10395#endif
252b5132 10396
1006ba19 10397 /* Interworking mismatch is only a warning. */
fd2ec330 10398 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
8f615d07 10399 {
e3c8793a
NC
10400 if (in_flags & EF_ARM_INTERWORK)
10401 {
d003868e
AM
10402 _bfd_error_handler
10403 (_("Warning: %B supports interworking, whereas %B does not"),
10404 ibfd, obfd);
e3c8793a
NC
10405 }
10406 else
10407 {
d003868e
AM
10408 _bfd_error_handler
10409 (_("Warning: %B does not support interworking, whereas %B does"),
10410 ibfd, obfd);
e3c8793a 10411 }
8f615d07 10412 }
252b5132 10413 }
63b0f745 10414
1006ba19 10415 return flags_compatible;
252b5132
RH
10416}
10417
9b485d32
NC
10418/* Display the flags field. */
10419
b34976b6 10420static bfd_boolean
57e8b36a 10421elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
252b5132 10422{
fc830a83
NC
10423 FILE * file = (FILE *) ptr;
10424 unsigned long flags;
252b5132
RH
10425
10426 BFD_ASSERT (abfd != NULL && ptr != NULL);
10427
10428 /* Print normal ELF private data. */
10429 _bfd_elf_print_private_bfd_data (abfd, ptr);
10430
fc830a83 10431 flags = elf_elfheader (abfd)->e_flags;
9b485d32
NC
10432 /* Ignore init flag - it may not be set, despite the flags field
10433 containing valid data. */
252b5132
RH
10434
10435 /* xgettext:c-format */
9b485d32 10436 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
252b5132 10437
fc830a83
NC
10438 switch (EF_ARM_EABI_VERSION (flags))
10439 {
10440 case EF_ARM_EABI_UNKNOWN:
4cc11e76 10441 /* The following flag bits are GNU extensions and not part of the
fc830a83
NC
10442 official ARM ELF extended ABI. Hence they are only decoded if
10443 the EABI version is not set. */
fd2ec330 10444 if (flags & EF_ARM_INTERWORK)
9b485d32 10445 fprintf (file, _(" [interworking enabled]"));
9a5aca8c 10446
fd2ec330 10447 if (flags & EF_ARM_APCS_26)
6c571f00 10448 fprintf (file, " [APCS-26]");
fc830a83 10449 else
6c571f00 10450 fprintf (file, " [APCS-32]");
9a5aca8c 10451
96a846ea
RE
10452 if (flags & EF_ARM_VFP_FLOAT)
10453 fprintf (file, _(" [VFP float format]"));
fde78edd
NC
10454 else if (flags & EF_ARM_MAVERICK_FLOAT)
10455 fprintf (file, _(" [Maverick float format]"));
96a846ea
RE
10456 else
10457 fprintf (file, _(" [FPA float format]"));
10458
fd2ec330 10459 if (flags & EF_ARM_APCS_FLOAT)
9b485d32 10460 fprintf (file, _(" [floats passed in float registers]"));
9a5aca8c 10461
fd2ec330 10462 if (flags & EF_ARM_PIC)
9b485d32 10463 fprintf (file, _(" [position independent]"));
fc830a83 10464
fd2ec330 10465 if (flags & EF_ARM_NEW_ABI)
9b485d32 10466 fprintf (file, _(" [new ABI]"));
9a5aca8c 10467
fd2ec330 10468 if (flags & EF_ARM_OLD_ABI)
9b485d32 10469 fprintf (file, _(" [old ABI]"));
9a5aca8c 10470
fd2ec330 10471 if (flags & EF_ARM_SOFT_FLOAT)
9b485d32 10472 fprintf (file, _(" [software FP]"));
9a5aca8c 10473
96a846ea
RE
10474 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
10475 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
fde78edd
NC
10476 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
10477 | EF_ARM_MAVERICK_FLOAT);
fc830a83 10478 break;
9a5aca8c 10479
fc830a83 10480 case EF_ARM_EABI_VER1:
9b485d32 10481 fprintf (file, _(" [Version1 EABI]"));
9a5aca8c 10482
fc830a83 10483 if (flags & EF_ARM_SYMSARESORTED)
9b485d32 10484 fprintf (file, _(" [sorted symbol table]"));
fc830a83 10485 else
9b485d32 10486 fprintf (file, _(" [unsorted symbol table]"));
9a5aca8c 10487
fc830a83
NC
10488 flags &= ~ EF_ARM_SYMSARESORTED;
10489 break;
9a5aca8c 10490
fd2ec330
PB
10491 case EF_ARM_EABI_VER2:
10492 fprintf (file, _(" [Version2 EABI]"));
10493
10494 if (flags & EF_ARM_SYMSARESORTED)
10495 fprintf (file, _(" [sorted symbol table]"));
10496 else
10497 fprintf (file, _(" [unsorted symbol table]"));
10498
10499 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
10500 fprintf (file, _(" [dynamic symbols use segment index]"));
10501
10502 if (flags & EF_ARM_MAPSYMSFIRST)
10503 fprintf (file, _(" [mapping symbols precede others]"));
10504
99e4ae17 10505 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
fd2ec330
PB
10506 | EF_ARM_MAPSYMSFIRST);
10507 break;
10508
d507cf36
PB
10509 case EF_ARM_EABI_VER3:
10510 fprintf (file, _(" [Version3 EABI]"));
8cb51566
PB
10511 break;
10512
10513 case EF_ARM_EABI_VER4:
10514 fprintf (file, _(" [Version4 EABI]"));
3a4a14e9 10515 goto eabi;
d507cf36 10516
3a4a14e9
PB
10517 case EF_ARM_EABI_VER5:
10518 fprintf (file, _(" [Version5 EABI]"));
10519 eabi:
d507cf36
PB
10520 if (flags & EF_ARM_BE8)
10521 fprintf (file, _(" [BE8]"));
10522
10523 if (flags & EF_ARM_LE8)
10524 fprintf (file, _(" [LE8]"));
10525
10526 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
10527 break;
10528
fc830a83 10529 default:
9b485d32 10530 fprintf (file, _(" <EABI version unrecognised>"));
fc830a83
NC
10531 break;
10532 }
252b5132 10533
fc830a83 10534 flags &= ~ EF_ARM_EABIMASK;
252b5132 10535
fc830a83 10536 if (flags & EF_ARM_RELEXEC)
9b485d32 10537 fprintf (file, _(" [relocatable executable]"));
252b5132 10538
fc830a83 10539 if (flags & EF_ARM_HASENTRY)
9b485d32 10540 fprintf (file, _(" [has entry point]"));
252b5132 10541
fc830a83
NC
10542 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
10543
10544 if (flags)
9b485d32 10545 fprintf (file, _("<Unrecognised flag bits set>"));
9a5aca8c 10546
252b5132
RH
10547 fputc ('\n', file);
10548
b34976b6 10549 return TRUE;
252b5132
RH
10550}
10551
10552static int
57e8b36a 10553elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
252b5132 10554{
2f0ca46a
NC
10555 switch (ELF_ST_TYPE (elf_sym->st_info))
10556 {
10557 case STT_ARM_TFUNC:
10558 return ELF_ST_TYPE (elf_sym->st_info);
ce855c42 10559
2f0ca46a
NC
10560 case STT_ARM_16BIT:
10561 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
10562 This allows us to distinguish between data used by Thumb instructions
10563 and non-data (which is probably code) inside Thumb regions of an
10564 executable. */
1a0eb693 10565 if (type != STT_OBJECT && type != STT_TLS)
2f0ca46a
NC
10566 return ELF_ST_TYPE (elf_sym->st_info);
10567 break;
9a5aca8c 10568
ce855c42
NC
10569 default:
10570 break;
2f0ca46a
NC
10571 }
10572
10573 return type;
252b5132 10574}
f21f3fe0 10575
252b5132 10576static asection *
07adf181
AM
10577elf32_arm_gc_mark_hook (asection *sec,
10578 struct bfd_link_info *info,
10579 Elf_Internal_Rela *rel,
10580 struct elf_link_hash_entry *h,
10581 Elf_Internal_Sym *sym)
252b5132
RH
10582{
10583 if (h != NULL)
07adf181 10584 switch (ELF32_R_TYPE (rel->r_info))
252b5132
RH
10585 {
10586 case R_ARM_GNU_VTINHERIT:
10587 case R_ARM_GNU_VTENTRY:
07adf181
AM
10588 return NULL;
10589 }
9ad5cbcf 10590
07adf181 10591 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
252b5132
RH
10592}
10593
780a67af
NC
10594/* Update the got entry reference counts for the section being removed. */
10595
b34976b6 10596static bfd_boolean
ba93b8ac
DJ
10597elf32_arm_gc_sweep_hook (bfd * abfd,
10598 struct bfd_link_info * info,
10599 asection * sec,
10600 const Elf_Internal_Rela * relocs)
252b5132 10601{
5e681ec4
PB
10602 Elf_Internal_Shdr *symtab_hdr;
10603 struct elf_link_hash_entry **sym_hashes;
10604 bfd_signed_vma *local_got_refcounts;
10605 const Elf_Internal_Rela *rel, *relend;
eb043451
PB
10606 struct elf32_arm_link_hash_table * globals;
10607
7dda2462
TG
10608 if (info->relocatable)
10609 return TRUE;
10610
eb043451 10611 globals = elf32_arm_hash_table (info);
5e681ec4
PB
10612
10613 elf_section_data (sec)->local_dynrel = NULL;
10614
0ffa91dd 10615 symtab_hdr = & elf_symtab_hdr (abfd);
5e681ec4
PB
10616 sym_hashes = elf_sym_hashes (abfd);
10617 local_got_refcounts = elf_local_got_refcounts (abfd);
10618
906e58ca 10619 check_use_blx (globals);
bd97cb95 10620
5e681ec4
PB
10621 relend = relocs + sec->reloc_count;
10622 for (rel = relocs; rel < relend; rel++)
eb043451 10623 {
3eb128b2
AM
10624 unsigned long r_symndx;
10625 struct elf_link_hash_entry *h = NULL;
eb043451 10626 int r_type;
5e681ec4 10627
3eb128b2
AM
10628 r_symndx = ELF32_R_SYM (rel->r_info);
10629 if (r_symndx >= symtab_hdr->sh_info)
10630 {
10631 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
10632 while (h->root.type == bfd_link_hash_indirect
10633 || h->root.type == bfd_link_hash_warning)
10634 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10635 }
10636
eb043451 10637 r_type = ELF32_R_TYPE (rel->r_info);
eb043451 10638 r_type = arm_real_reloc_type (globals, r_type);
eb043451
PB
10639 switch (r_type)
10640 {
10641 case R_ARM_GOT32:
eb043451 10642 case R_ARM_GOT_PREL:
ba93b8ac
DJ
10643 case R_ARM_TLS_GD32:
10644 case R_ARM_TLS_IE32:
3eb128b2 10645 if (h != NULL)
eb043451 10646 {
eb043451
PB
10647 if (h->got.refcount > 0)
10648 h->got.refcount -= 1;
10649 }
10650 else if (local_got_refcounts != NULL)
10651 {
10652 if (local_got_refcounts[r_symndx] > 0)
10653 local_got_refcounts[r_symndx] -= 1;
10654 }
10655 break;
10656
ba93b8ac
DJ
10657 case R_ARM_TLS_LDM32:
10658 elf32_arm_hash_table (info)->tls_ldm_got.refcount -= 1;
10659 break;
10660
eb043451 10661 case R_ARM_ABS32:
bb224fc3 10662 case R_ARM_ABS32_NOI:
eb043451 10663 case R_ARM_REL32:
bb224fc3 10664 case R_ARM_REL32_NOI:
eb043451
PB
10665 case R_ARM_PC24:
10666 case R_ARM_PLT32:
5b5bb741
PB
10667 case R_ARM_CALL:
10668 case R_ARM_JUMP24:
eb043451 10669 case R_ARM_PREL31:
c19d1205 10670 case R_ARM_THM_CALL:
bd97cb95
DJ
10671 case R_ARM_THM_JUMP24:
10672 case R_ARM_THM_JUMP19:
b6895b4f
PB
10673 case R_ARM_MOVW_ABS_NC:
10674 case R_ARM_MOVT_ABS:
10675 case R_ARM_MOVW_PREL_NC:
10676 case R_ARM_MOVT_PREL:
10677 case R_ARM_THM_MOVW_ABS_NC:
10678 case R_ARM_THM_MOVT_ABS:
10679 case R_ARM_THM_MOVW_PREL_NC:
10680 case R_ARM_THM_MOVT_PREL:
b7693d02
DJ
10681 /* Should the interworking branches be here also? */
10682
3eb128b2 10683 if (h != NULL)
eb043451
PB
10684 {
10685 struct elf32_arm_link_hash_entry *eh;
10686 struct elf32_arm_relocs_copied **pp;
10687 struct elf32_arm_relocs_copied *p;
5e681ec4 10688
b7693d02 10689 eh = (struct elf32_arm_link_hash_entry *) h;
5e681ec4 10690
eb043451 10691 if (h->plt.refcount > 0)
b7693d02
DJ
10692 {
10693 h->plt.refcount -= 1;
bd97cb95
DJ
10694 if (r_type == R_ARM_THM_CALL)
10695 eh->plt_maybe_thumb_refcount--;
10696
10697 if (r_type == R_ARM_THM_JUMP24
10698 || r_type == R_ARM_THM_JUMP19)
b7693d02
DJ
10699 eh->plt_thumb_refcount--;
10700 }
5e681ec4 10701
eb043451 10702 if (r_type == R_ARM_ABS32
bb224fc3
MS
10703 || r_type == R_ARM_REL32
10704 || r_type == R_ARM_ABS32_NOI
10705 || r_type == R_ARM_REL32_NOI)
eb043451 10706 {
eb043451
PB
10707 for (pp = &eh->relocs_copied; (p = *pp) != NULL;
10708 pp = &p->next)
10709 if (p->section == sec)
10710 {
10711 p->count -= 1;
bb224fc3
MS
10712 if (ELF32_R_TYPE (rel->r_info) == R_ARM_REL32
10713 || ELF32_R_TYPE (rel->r_info) == R_ARM_REL32_NOI)
ba93b8ac 10714 p->pc_count -= 1;
eb043451
PB
10715 if (p->count == 0)
10716 *pp = p->next;
10717 break;
10718 }
10719 }
10720 }
10721 break;
5e681ec4 10722
eb043451
PB
10723 default:
10724 break;
10725 }
10726 }
5e681ec4 10727
b34976b6 10728 return TRUE;
252b5132
RH
10729}
10730
780a67af
NC
10731/* Look through the relocs for a section during the first phase. */
10732
b34976b6 10733static bfd_boolean
57e8b36a
NC
10734elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
10735 asection *sec, const Elf_Internal_Rela *relocs)
252b5132 10736{
b34976b6
AM
10737 Elf_Internal_Shdr *symtab_hdr;
10738 struct elf_link_hash_entry **sym_hashes;
b34976b6
AM
10739 const Elf_Internal_Rela *rel;
10740 const Elf_Internal_Rela *rel_end;
10741 bfd *dynobj;
5e681ec4 10742 asection *sreloc;
b34976b6 10743 bfd_vma *local_got_offsets;
5e681ec4 10744 struct elf32_arm_link_hash_table *htab;
39623e12 10745 bfd_boolean needs_plt;
ce98a316 10746 unsigned long nsyms;
9a5aca8c 10747
1049f94e 10748 if (info->relocatable)
b34976b6 10749 return TRUE;
9a5aca8c 10750
0ffa91dd
NC
10751 BFD_ASSERT (is_arm_elf (abfd));
10752
5e681ec4
PB
10753 htab = elf32_arm_hash_table (info);
10754 sreloc = NULL;
9a5aca8c 10755
67687978
PB
10756 /* Create dynamic sections for relocatable executables so that we can
10757 copy relocations. */
10758 if (htab->root.is_relocatable_executable
10759 && ! htab->root.dynamic_sections_created)
10760 {
10761 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
10762 return FALSE;
10763 }
10764
252b5132
RH
10765 dynobj = elf_hash_table (info)->dynobj;
10766 local_got_offsets = elf_local_got_offsets (abfd);
f21f3fe0 10767
0ffa91dd 10768 symtab_hdr = & elf_symtab_hdr (abfd);
252b5132 10769 sym_hashes = elf_sym_hashes (abfd);
ce98a316
NC
10770 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
10771
252b5132
RH
10772 rel_end = relocs + sec->reloc_count;
10773 for (rel = relocs; rel < rel_end; rel++)
10774 {
10775 struct elf_link_hash_entry *h;
b7693d02 10776 struct elf32_arm_link_hash_entry *eh;
252b5132 10777 unsigned long r_symndx;
eb043451 10778 int r_type;
9a5aca8c 10779
252b5132 10780 r_symndx = ELF32_R_SYM (rel->r_info);
eb043451 10781 r_type = ELF32_R_TYPE (rel->r_info);
eb043451 10782 r_type = arm_real_reloc_type (htab, r_type);
ba93b8ac 10783
ce98a316
NC
10784 if (r_symndx >= nsyms
10785 /* PR 9934: It is possible to have relocations that do not
10786 refer to symbols, thus it is also possible to have an
10787 object file containing relocations but no symbol table. */
10788 && (r_symndx > 0 || nsyms > 0))
ba93b8ac
DJ
10789 {
10790 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
ce98a316 10791 r_symndx);
ba93b8ac
DJ
10792 return FALSE;
10793 }
10794
ce98a316 10795 if (nsyms == 0 || r_symndx < symtab_hdr->sh_info)
252b5132
RH
10796 h = NULL;
10797 else
973a3492
L
10798 {
10799 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
10800 while (h->root.type == bfd_link_hash_indirect
10801 || h->root.type == bfd_link_hash_warning)
10802 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10803 }
9a5aca8c 10804
b7693d02
DJ
10805 eh = (struct elf32_arm_link_hash_entry *) h;
10806
eb043451 10807 switch (r_type)
252b5132 10808 {
5e681ec4 10809 case R_ARM_GOT32:
eb043451 10810 case R_ARM_GOT_PREL:
ba93b8ac
DJ
10811 case R_ARM_TLS_GD32:
10812 case R_ARM_TLS_IE32:
5e681ec4 10813 /* This symbol requires a global offset table entry. */
ba93b8ac
DJ
10814 {
10815 int tls_type, old_tls_type;
5e681ec4 10816
ba93b8ac
DJ
10817 switch (r_type)
10818 {
10819 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
10820 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
10821 default: tls_type = GOT_NORMAL; break;
10822 }
252b5132 10823
ba93b8ac
DJ
10824 if (h != NULL)
10825 {
10826 h->got.refcount++;
10827 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
10828 }
10829 else
10830 {
10831 bfd_signed_vma *local_got_refcounts;
10832
10833 /* This is a global offset table entry for a local symbol. */
10834 local_got_refcounts = elf_local_got_refcounts (abfd);
10835 if (local_got_refcounts == NULL)
10836 {
10837 bfd_size_type size;
906e58ca 10838
ba93b8ac 10839 size = symtab_hdr->sh_info;
906e58ca 10840 size *= (sizeof (bfd_signed_vma) + sizeof (char));
ba93b8ac
DJ
10841 local_got_refcounts = bfd_zalloc (abfd, size);
10842 if (local_got_refcounts == NULL)
10843 return FALSE;
10844 elf_local_got_refcounts (abfd) = local_got_refcounts;
10845 elf32_arm_local_got_tls_type (abfd)
10846 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
10847 }
10848 local_got_refcounts[r_symndx] += 1;
10849 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
10850 }
10851
10852 /* We will already have issued an error message if there is a
10853 TLS / non-TLS mismatch, based on the symbol type. We don't
10854 support any linker relaxations. So just combine any TLS
10855 types needed. */
10856 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
10857 && tls_type != GOT_NORMAL)
10858 tls_type |= old_tls_type;
10859
10860 if (old_tls_type != tls_type)
10861 {
10862 if (h != NULL)
10863 elf32_arm_hash_entry (h)->tls_type = tls_type;
10864 else
10865 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
10866 }
10867 }
8029a119 10868 /* Fall through. */
ba93b8ac
DJ
10869
10870 case R_ARM_TLS_LDM32:
10871 if (r_type == R_ARM_TLS_LDM32)
10872 htab->tls_ldm_got.refcount++;
8029a119 10873 /* Fall through. */
252b5132 10874
c19d1205 10875 case R_ARM_GOTOFF32:
5e681ec4
PB
10876 case R_ARM_GOTPC:
10877 if (htab->sgot == NULL)
10878 {
10879 if (htab->root.dynobj == NULL)
10880 htab->root.dynobj = abfd;
10881 if (!create_got_section (htab->root.dynobj, info))
10882 return FALSE;
10883 }
252b5132
RH
10884 break;
10885
00a97672
RS
10886 case R_ARM_ABS12:
10887 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
10888 ldr __GOTT_INDEX__ offsets. */
10889 if (!htab->vxworks_p)
10890 break;
8029a119 10891 /* Fall through. */
00a97672 10892
252b5132 10893 case R_ARM_PC24:
7359ea65 10894 case R_ARM_PLT32:
5b5bb741
PB
10895 case R_ARM_CALL:
10896 case R_ARM_JUMP24:
eb043451 10897 case R_ARM_PREL31:
c19d1205 10898 case R_ARM_THM_CALL:
bd97cb95
DJ
10899 case R_ARM_THM_JUMP24:
10900 case R_ARM_THM_JUMP19:
39623e12
PB
10901 needs_plt = 1;
10902 goto normal_reloc;
10903
96c23d59
JM
10904 case R_ARM_MOVW_ABS_NC:
10905 case R_ARM_MOVT_ABS:
10906 case R_ARM_THM_MOVW_ABS_NC:
10907 case R_ARM_THM_MOVT_ABS:
10908 if (info->shared)
10909 {
10910 (*_bfd_error_handler)
10911 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
10912 abfd, elf32_arm_howto_table_1[r_type].name,
10913 (h) ? h->root.root.string : "a local symbol");
10914 bfd_set_error (bfd_error_bad_value);
10915 return FALSE;
10916 }
10917
10918 /* Fall through. */
39623e12
PB
10919 case R_ARM_ABS32:
10920 case R_ARM_ABS32_NOI:
10921 case R_ARM_REL32:
10922 case R_ARM_REL32_NOI:
b6895b4f
PB
10923 case R_ARM_MOVW_PREL_NC:
10924 case R_ARM_MOVT_PREL:
b6895b4f
PB
10925 case R_ARM_THM_MOVW_PREL_NC:
10926 case R_ARM_THM_MOVT_PREL:
39623e12
PB
10927 needs_plt = 0;
10928 normal_reloc:
10929
b7693d02 10930 /* Should the interworking branches be listed here? */
7359ea65 10931 if (h != NULL)
5e681ec4
PB
10932 {
10933 /* If this reloc is in a read-only section, we might
10934 need a copy reloc. We can't check reliably at this
10935 stage whether the section is read-only, as input
10936 sections have not yet been mapped to output sections.
10937 Tentatively set the flag for now, and correct in
10938 adjust_dynamic_symbol. */
7359ea65 10939 if (!info->shared)
f5385ebf 10940 h->non_got_ref = 1;
7359ea65 10941
5e681ec4 10942 /* We may need a .plt entry if the function this reloc
c84cd8ee
DJ
10943 refers to is in a different object. We can't tell for
10944 sure yet, because something later might force the
10945 symbol local. */
39623e12 10946 if (needs_plt)
f5385ebf 10947 h->needs_plt = 1;
4f199be3
DJ
10948
10949 /* If we create a PLT entry, this relocation will reference
10950 it, even if it's an ABS32 relocation. */
10951 h->plt.refcount += 1;
b7693d02 10952
bd97cb95
DJ
10953 /* It's too early to use htab->use_blx here, so we have to
10954 record possible blx references separately from
10955 relocs that definitely need a thumb stub. */
10956
c19d1205 10957 if (r_type == R_ARM_THM_CALL)
bd97cb95
DJ
10958 eh->plt_maybe_thumb_refcount += 1;
10959
10960 if (r_type == R_ARM_THM_JUMP24
10961 || r_type == R_ARM_THM_JUMP19)
b7693d02 10962 eh->plt_thumb_refcount += 1;
5e681ec4
PB
10963 }
10964
67687978
PB
10965 /* If we are creating a shared library or relocatable executable,
10966 and this is a reloc against a global symbol, or a non PC
10967 relative reloc against a local symbol, then we need to copy
10968 the reloc into the shared library. However, if we are linking
10969 with -Bsymbolic, we do not need to copy a reloc against a
252b5132
RH
10970 global symbol which is defined in an object we are
10971 including in the link (i.e., DEF_REGULAR is set). At
10972 this point we have not seen all the input files, so it is
10973 possible that DEF_REGULAR is not set now but will be set
10974 later (it is never cleared). We account for that
10975 possibility below by storing information in the
5e681ec4 10976 relocs_copied field of the hash table entry. */
67687978 10977 if ((info->shared || htab->root.is_relocatable_executable)
5e681ec4 10978 && (sec->flags & SEC_ALLOC) != 0
bb224fc3 10979 && ((r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI)
71a976dd
DJ
10980 || (h != NULL && ! h->needs_plt
10981 && (! info->symbolic || ! h->def_regular))))
252b5132 10982 {
5e681ec4
PB
10983 struct elf32_arm_relocs_copied *p, **head;
10984
252b5132
RH
10985 /* When creating a shared object, we must copy these
10986 reloc types into the output file. We create a reloc
10987 section in dynobj and make room for this reloc. */
83bac4b0 10988 if (sreloc == NULL)
252b5132 10989 {
83bac4b0
NC
10990 sreloc = _bfd_elf_make_dynamic_reloc_section
10991 (sec, dynobj, 2, abfd, ! htab->use_rel);
252b5132 10992
83bac4b0 10993 if (sreloc == NULL)
b34976b6 10994 return FALSE;
252b5132 10995
83bac4b0 10996 /* BPABI objects never have dynamic relocations mapped. */
a89e6478 10997 if (htab->symbian_p)
252b5132 10998 {
83bac4b0 10999 flagword flags;
5e681ec4 11000
83bac4b0 11001 flags = bfd_get_section_flags (dynobj, sreloc);
a89e6478 11002 flags &= ~(SEC_LOAD | SEC_ALLOC);
83bac4b0
NC
11003 bfd_set_section_flags (dynobj, sreloc, flags);
11004 }
252b5132
RH
11005 }
11006
5e681ec4
PB
11007 /* If this is a global symbol, we count the number of
11008 relocations we need for this symbol. */
11009 if (h != NULL)
252b5132 11010 {
5e681ec4
PB
11011 head = &((struct elf32_arm_link_hash_entry *) h)->relocs_copied;
11012 }
11013 else
11014 {
11015 /* Track dynamic relocs needed for local syms too.
11016 We really need local syms available to do this
11017 easily. Oh well. */
5e681ec4 11018 asection *s;
6edfbbad 11019 void *vpp;
87d72d41 11020 Elf_Internal_Sym *isym;
6edfbbad 11021
87d72d41
AM
11022 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
11023 abfd, r_symndx);
11024 if (isym == NULL)
5e681ec4 11025 return FALSE;
57e8b36a 11026
87d72d41
AM
11027 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
11028 if (s == NULL)
11029 s = sec;
11030
6edfbbad
DJ
11031 vpp = &elf_section_data (s)->local_dynrel;
11032 head = (struct elf32_arm_relocs_copied **) vpp;
5e681ec4 11033 }
57e8b36a 11034
5e681ec4
PB
11035 p = *head;
11036 if (p == NULL || p->section != sec)
11037 {
11038 bfd_size_type amt = sizeof *p;
57e8b36a 11039
5e681ec4 11040 p = bfd_alloc (htab->root.dynobj, amt);
252b5132 11041 if (p == NULL)
5e681ec4
PB
11042 return FALSE;
11043 p->next = *head;
11044 *head = p;
11045 p->section = sec;
11046 p->count = 0;
ba93b8ac 11047 p->pc_count = 0;
252b5132 11048 }
57e8b36a 11049
bb224fc3 11050 if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
ba93b8ac 11051 p->pc_count += 1;
71a976dd 11052 p->count += 1;
252b5132
RH
11053 }
11054 break;
11055
11056 /* This relocation describes the C++ object vtable hierarchy.
11057 Reconstruct it for later use during GC. */
11058 case R_ARM_GNU_VTINHERIT:
c152c796 11059 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 11060 return FALSE;
252b5132 11061 break;
9a5aca8c 11062
252b5132
RH
11063 /* This relocation describes which C++ vtable entries are actually
11064 used. Record for later use during GC. */
11065 case R_ARM_GNU_VTENTRY:
d17e0c6e
JB
11066 BFD_ASSERT (h != NULL);
11067 if (h != NULL
11068 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 11069 return FALSE;
252b5132
RH
11070 break;
11071 }
11072 }
f21f3fe0 11073
b34976b6 11074 return TRUE;
252b5132
RH
11075}
11076
6a5bb875
PB
11077/* Unwinding tables are not referenced directly. This pass marks them as
11078 required if the corresponding code section is marked. */
11079
11080static bfd_boolean
906e58ca
NC
11081elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
11082 elf_gc_mark_hook_fn gc_mark_hook)
6a5bb875
PB
11083{
11084 bfd *sub;
11085 Elf_Internal_Shdr **elf_shdrp;
11086 bfd_boolean again;
11087
11088 /* Marking EH data may cause additional code sections to be marked,
11089 requiring multiple passes. */
11090 again = TRUE;
11091 while (again)
11092 {
11093 again = FALSE;
11094 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11095 {
11096 asection *o;
11097
0ffa91dd 11098 if (! is_arm_elf (sub))
6a5bb875
PB
11099 continue;
11100
11101 elf_shdrp = elf_elfsections (sub);
11102 for (o = sub->sections; o != NULL; o = o->next)
11103 {
11104 Elf_Internal_Shdr *hdr;
0ffa91dd 11105
6a5bb875 11106 hdr = &elf_section_data (o)->this_hdr;
4fbb74a6
AM
11107 if (hdr->sh_type == SHT_ARM_EXIDX
11108 && hdr->sh_link
11109 && hdr->sh_link < elf_numsections (sub)
6a5bb875
PB
11110 && !o->gc_mark
11111 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
11112 {
11113 again = TRUE;
11114 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11115 return FALSE;
11116 }
11117 }
11118 }
11119 }
11120
11121 return TRUE;
11122}
11123
3c9458e9
NC
11124/* Treat mapping symbols as special target symbols. */
11125
11126static bfd_boolean
11127elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
11128{
b0796911
PB
11129 return bfd_is_arm_special_symbol_name (sym->name,
11130 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
3c9458e9
NC
11131}
11132
0367ecfb
NC
11133/* This is a copy of elf_find_function() from elf.c except that
11134 ARM mapping symbols are ignored when looking for function names
11135 and STT_ARM_TFUNC is considered to a function type. */
252b5132 11136
0367ecfb
NC
11137static bfd_boolean
11138arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
11139 asection * section,
11140 asymbol ** symbols,
11141 bfd_vma offset,
11142 const char ** filename_ptr,
11143 const char ** functionname_ptr)
11144{
11145 const char * filename = NULL;
11146 asymbol * func = NULL;
11147 bfd_vma low_func = 0;
11148 asymbol ** p;
252b5132
RH
11149
11150 for (p = symbols; *p != NULL; p++)
11151 {
11152 elf_symbol_type *q;
11153
11154 q = (elf_symbol_type *) *p;
11155
252b5132
RH
11156 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
11157 {
11158 default:
11159 break;
11160 case STT_FILE:
11161 filename = bfd_asymbol_name (&q->symbol);
11162 break;
252b5132
RH
11163 case STT_FUNC:
11164 case STT_ARM_TFUNC:
9d2da7ca 11165 case STT_NOTYPE:
b0796911 11166 /* Skip mapping symbols. */
0367ecfb 11167 if ((q->symbol.flags & BSF_LOCAL)
b0796911
PB
11168 && bfd_is_arm_special_symbol_name (q->symbol.name,
11169 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
0367ecfb
NC
11170 continue;
11171 /* Fall through. */
6b40fcba 11172 if (bfd_get_section (&q->symbol) == section
252b5132
RH
11173 && q->symbol.value >= low_func
11174 && q->symbol.value <= offset)
11175 {
11176 func = (asymbol *) q;
11177 low_func = q->symbol.value;
11178 }
11179 break;
11180 }
11181 }
11182
11183 if (func == NULL)
b34976b6 11184 return FALSE;
252b5132 11185
0367ecfb
NC
11186 if (filename_ptr)
11187 *filename_ptr = filename;
11188 if (functionname_ptr)
11189 *functionname_ptr = bfd_asymbol_name (func);
11190
11191 return TRUE;
906e58ca 11192}
0367ecfb
NC
11193
11194
11195/* Find the nearest line to a particular section and offset, for error
11196 reporting. This code is a duplicate of the code in elf.c, except
11197 that it uses arm_elf_find_function. */
11198
11199static bfd_boolean
11200elf32_arm_find_nearest_line (bfd * abfd,
11201 asection * section,
11202 asymbol ** symbols,
11203 bfd_vma offset,
11204 const char ** filename_ptr,
11205 const char ** functionname_ptr,
11206 unsigned int * line_ptr)
11207{
11208 bfd_boolean found = FALSE;
11209
11210 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
11211
11212 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
11213 filename_ptr, functionname_ptr,
11214 line_ptr, 0,
11215 & elf_tdata (abfd)->dwarf2_find_line_info))
11216 {
11217 if (!*functionname_ptr)
11218 arm_elf_find_function (abfd, section, symbols, offset,
11219 *filename_ptr ? NULL : filename_ptr,
11220 functionname_ptr);
f21f3fe0 11221
0367ecfb
NC
11222 return TRUE;
11223 }
11224
11225 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
11226 & found, filename_ptr,
11227 functionname_ptr, line_ptr,
11228 & elf_tdata (abfd)->line_info))
11229 return FALSE;
11230
11231 if (found && (*functionname_ptr || *line_ptr))
11232 return TRUE;
11233
11234 if (symbols == NULL)
11235 return FALSE;
11236
11237 if (! arm_elf_find_function (abfd, section, symbols, offset,
11238 filename_ptr, functionname_ptr))
11239 return FALSE;
11240
11241 *line_ptr = 0;
b34976b6 11242 return TRUE;
252b5132
RH
11243}
11244
4ab527b0
FF
11245static bfd_boolean
11246elf32_arm_find_inliner_info (bfd * abfd,
11247 const char ** filename_ptr,
11248 const char ** functionname_ptr,
11249 unsigned int * line_ptr)
11250{
11251 bfd_boolean found;
11252 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11253 functionname_ptr, line_ptr,
11254 & elf_tdata (abfd)->dwarf2_find_line_info);
11255 return found;
11256}
11257
252b5132
RH
11258/* Adjust a symbol defined by a dynamic object and referenced by a
11259 regular object. The current definition is in some section of the
11260 dynamic object, but we're not including those sections. We have to
11261 change the definition to something the rest of the link can
11262 understand. */
11263
b34976b6 11264static bfd_boolean
57e8b36a
NC
11265elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
11266 struct elf_link_hash_entry * h)
252b5132
RH
11267{
11268 bfd * dynobj;
11269 asection * s;
b7693d02 11270 struct elf32_arm_link_hash_entry * eh;
67687978 11271 struct elf32_arm_link_hash_table *globals;
252b5132 11272
67687978 11273 globals = elf32_arm_hash_table (info);
252b5132
RH
11274 dynobj = elf_hash_table (info)->dynobj;
11275
11276 /* Make sure we know what is going on here. */
11277 BFD_ASSERT (dynobj != NULL
f5385ebf 11278 && (h->needs_plt
f6e332e6 11279 || h->u.weakdef != NULL
f5385ebf
AM
11280 || (h->def_dynamic
11281 && h->ref_regular
11282 && !h->def_regular)));
252b5132 11283
b7693d02
DJ
11284 eh = (struct elf32_arm_link_hash_entry *) h;
11285
252b5132
RH
11286 /* If this is a function, put it in the procedure linkage table. We
11287 will fill in the contents of the procedure linkage table later,
11288 when we know the address of the .got section. */
0f88be7a 11289 if (h->type == STT_FUNC || h->type == STT_ARM_TFUNC
f5385ebf 11290 || h->needs_plt)
252b5132 11291 {
5e681ec4
PB
11292 if (h->plt.refcount <= 0
11293 || SYMBOL_CALLS_LOCAL (info, h)
11294 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
11295 && h->root.type == bfd_link_hash_undefweak))
252b5132
RH
11296 {
11297 /* This case can occur if we saw a PLT32 reloc in an input
5e681ec4
PB
11298 file, but the symbol was never referred to by a dynamic
11299 object, or if all references were garbage collected. In
11300 such a case, we don't actually need to build a procedure
11301 linkage table, and we can just do a PC24 reloc instead. */
11302 h->plt.offset = (bfd_vma) -1;
b7693d02 11303 eh->plt_thumb_refcount = 0;
bd97cb95 11304 eh->plt_maybe_thumb_refcount = 0;
f5385ebf 11305 h->needs_plt = 0;
252b5132
RH
11306 }
11307
b34976b6 11308 return TRUE;
252b5132 11309 }
5e681ec4 11310 else
b7693d02
DJ
11311 {
11312 /* It's possible that we incorrectly decided a .plt reloc was
11313 needed for an R_ARM_PC24 or similar reloc to a non-function sym
11314 in check_relocs. We can't decide accurately between function
11315 and non-function syms in check-relocs; Objects loaded later in
11316 the link may change h->type. So fix it now. */
11317 h->plt.offset = (bfd_vma) -1;
11318 eh->plt_thumb_refcount = 0;
bd97cb95 11319 eh->plt_maybe_thumb_refcount = 0;
b7693d02 11320 }
252b5132
RH
11321
11322 /* If this is a weak symbol, and there is a real definition, the
11323 processor independent code will have arranged for us to see the
11324 real definition first, and we can just use the same value. */
f6e332e6 11325 if (h->u.weakdef != NULL)
252b5132 11326 {
f6e332e6
AM
11327 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
11328 || h->u.weakdef->root.type == bfd_link_hash_defweak);
11329 h->root.u.def.section = h->u.weakdef->root.u.def.section;
11330 h->root.u.def.value = h->u.weakdef->root.u.def.value;
b34976b6 11331 return TRUE;
252b5132
RH
11332 }
11333
ba93b8ac
DJ
11334 /* If there are no non-GOT references, we do not need a copy
11335 relocation. */
11336 if (!h->non_got_ref)
11337 return TRUE;
11338
252b5132
RH
11339 /* This is a reference to a symbol defined by a dynamic object which
11340 is not a function. */
11341
11342 /* If we are creating a shared library, we must presume that the
11343 only references to the symbol are via the global offset table.
11344 For such cases we need not do anything here; the relocations will
67687978
PB
11345 be handled correctly by relocate_section. Relocatable executables
11346 can reference data in shared objects directly, so we don't need to
11347 do anything here. */
11348 if (info->shared || globals->root.is_relocatable_executable)
b34976b6 11349 return TRUE;
252b5132 11350
909272ee
AM
11351 if (h->size == 0)
11352 {
11353 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
11354 h->root.root.string);
11355 return TRUE;
11356 }
11357
252b5132
RH
11358 /* We must allocate the symbol in our .dynbss section, which will
11359 become part of the .bss section of the executable. There will be
11360 an entry for this symbol in the .dynsym section. The dynamic
11361 object will contain position independent code, so all references
11362 from the dynamic object to this symbol will go through the global
11363 offset table. The dynamic linker will use the .dynsym entry to
11364 determine the address it must put in the global offset table, so
11365 both the dynamic object and the regular object will refer to the
11366 same memory location for the variable. */
252b5132
RH
11367 s = bfd_get_section_by_name (dynobj, ".dynbss");
11368 BFD_ASSERT (s != NULL);
11369
11370 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
11371 copy the initial value out of the dynamic object and into the
11372 runtime process image. We need to remember the offset into the
00a97672 11373 .rel(a).bss section we are going to use. */
252b5132
RH
11374 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
11375 {
11376 asection *srel;
11377
00a97672 11378 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".bss"));
252b5132 11379 BFD_ASSERT (srel != NULL);
00a97672 11380 srel->size += RELOC_SIZE (globals);
f5385ebf 11381 h->needs_copy = 1;
252b5132
RH
11382 }
11383
027297b7 11384 return _bfd_elf_adjust_dynamic_copy (h, s);
252b5132
RH
11385}
11386
5e681ec4
PB
11387/* Allocate space in .plt, .got and associated reloc sections for
11388 dynamic relocs. */
11389
11390static bfd_boolean
57e8b36a 11391allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
5e681ec4
PB
11392{
11393 struct bfd_link_info *info;
11394 struct elf32_arm_link_hash_table *htab;
11395 struct elf32_arm_link_hash_entry *eh;
11396 struct elf32_arm_relocs_copied *p;
bd97cb95 11397 bfd_signed_vma thumb_refs;
5e681ec4 11398
b7693d02
DJ
11399 eh = (struct elf32_arm_link_hash_entry *) h;
11400
5e681ec4
PB
11401 if (h->root.type == bfd_link_hash_indirect)
11402 return TRUE;
11403
11404 if (h->root.type == bfd_link_hash_warning)
11405 /* When warning symbols are created, they **replace** the "real"
11406 entry in the hash table, thus we never get to see the real
11407 symbol in a hash traversal. So look at it now. */
11408 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11409
11410 info = (struct bfd_link_info *) inf;
11411 htab = elf32_arm_hash_table (info);
11412
11413 if (htab->root.dynamic_sections_created
11414 && h->plt.refcount > 0)
11415 {
11416 /* Make sure this symbol is output as a dynamic symbol.
11417 Undefined weak syms won't yet be marked as dynamic. */
11418 if (h->dynindx == -1
f5385ebf 11419 && !h->forced_local)
5e681ec4 11420 {
c152c796 11421 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5e681ec4
PB
11422 return FALSE;
11423 }
11424
11425 if (info->shared
7359ea65 11426 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
5e681ec4
PB
11427 {
11428 asection *s = htab->splt;
11429
11430 /* If this is the first .plt entry, make room for the special
11431 first entry. */
eea6121a 11432 if (s->size == 0)
e5a52504 11433 s->size += htab->plt_header_size;
5e681ec4 11434
eea6121a 11435 h->plt.offset = s->size;
5e681ec4 11436
b7693d02
DJ
11437 /* If we will insert a Thumb trampoline before this PLT, leave room
11438 for it. */
bd97cb95
DJ
11439 thumb_refs = eh->plt_thumb_refcount;
11440 if (!htab->use_blx)
11441 thumb_refs += eh->plt_maybe_thumb_refcount;
11442
11443 if (thumb_refs > 0)
b7693d02
DJ
11444 {
11445 h->plt.offset += PLT_THUMB_STUB_SIZE;
11446 s->size += PLT_THUMB_STUB_SIZE;
11447 }
11448
5e681ec4
PB
11449 /* If this symbol is not defined in a regular file, and we are
11450 not generating a shared library, then set the symbol to this
11451 location in the .plt. This is required to make function
11452 pointers compare as equal between the normal executable and
11453 the shared library. */
11454 if (! info->shared
f5385ebf 11455 && !h->def_regular)
5e681ec4
PB
11456 {
11457 h->root.u.def.section = s;
11458 h->root.u.def.value = h->plt.offset;
5e681ec4 11459
67d74e43
DJ
11460 /* Make sure the function is not marked as Thumb, in case
11461 it is the target of an ABS32 relocation, which will
11462 point to the PLT entry. */
11463 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
11464 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
11465 }
022f8312 11466
5e681ec4 11467 /* Make room for this entry. */
e5a52504 11468 s->size += htab->plt_entry_size;
5e681ec4 11469
e5a52504 11470 if (!htab->symbian_p)
b7693d02
DJ
11471 {
11472 /* We also need to make an entry in the .got.plt section, which
11473 will be placed in the .got section by the linker script. */
11474 eh->plt_got_offset = htab->sgotplt->size;
11475 htab->sgotplt->size += 4;
11476 }
5e681ec4 11477
00a97672
RS
11478 /* We also need to make an entry in the .rel(a).plt section. */
11479 htab->srelplt->size += RELOC_SIZE (htab);
11480
11481 /* VxWorks executables have a second set of relocations for
11482 each PLT entry. They go in a separate relocation section,
11483 which is processed by the kernel loader. */
11484 if (htab->vxworks_p && !info->shared)
11485 {
11486 /* There is a relocation for the initial PLT entry:
11487 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
11488 if (h->plt.offset == htab->plt_header_size)
11489 htab->srelplt2->size += RELOC_SIZE (htab);
11490
11491 /* There are two extra relocations for each subsequent
11492 PLT entry: an R_ARM_32 relocation for the GOT entry,
11493 and an R_ARM_32 relocation for the PLT entry. */
11494 htab->srelplt2->size += RELOC_SIZE (htab) * 2;
11495 }
5e681ec4
PB
11496 }
11497 else
11498 {
11499 h->plt.offset = (bfd_vma) -1;
f5385ebf 11500 h->needs_plt = 0;
5e681ec4
PB
11501 }
11502 }
11503 else
11504 {
11505 h->plt.offset = (bfd_vma) -1;
f5385ebf 11506 h->needs_plt = 0;
5e681ec4
PB
11507 }
11508
11509 if (h->got.refcount > 0)
11510 {
11511 asection *s;
11512 bfd_boolean dyn;
ba93b8ac
DJ
11513 int tls_type = elf32_arm_hash_entry (h)->tls_type;
11514 int indx;
5e681ec4
PB
11515
11516 /* Make sure this symbol is output as a dynamic symbol.
11517 Undefined weak syms won't yet be marked as dynamic. */
11518 if (h->dynindx == -1
f5385ebf 11519 && !h->forced_local)
5e681ec4 11520 {
c152c796 11521 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5e681ec4
PB
11522 return FALSE;
11523 }
11524
e5a52504
MM
11525 if (!htab->symbian_p)
11526 {
11527 s = htab->sgot;
11528 h->got.offset = s->size;
ba93b8ac
DJ
11529
11530 if (tls_type == GOT_UNKNOWN)
11531 abort ();
11532
11533 if (tls_type == GOT_NORMAL)
11534 /* Non-TLS symbols need one GOT slot. */
11535 s->size += 4;
11536 else
11537 {
11538 if (tls_type & GOT_TLS_GD)
11539 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. */
11540 s->size += 8;
11541 if (tls_type & GOT_TLS_IE)
11542 /* R_ARM_TLS_IE32 needs one GOT slot. */
11543 s->size += 4;
11544 }
11545
e5a52504 11546 dyn = htab->root.dynamic_sections_created;
ba93b8ac
DJ
11547
11548 indx = 0;
11549 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
11550 && (!info->shared
11551 || !SYMBOL_REFERENCES_LOCAL (info, h)))
11552 indx = h->dynindx;
11553
11554 if (tls_type != GOT_NORMAL
11555 && (info->shared || indx != 0)
11556 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11557 || h->root.type != bfd_link_hash_undefweak))
11558 {
11559 if (tls_type & GOT_TLS_IE)
00a97672 11560 htab->srelgot->size += RELOC_SIZE (htab);
ba93b8ac
DJ
11561
11562 if (tls_type & GOT_TLS_GD)
00a97672 11563 htab->srelgot->size += RELOC_SIZE (htab);
ba93b8ac
DJ
11564
11565 if ((tls_type & GOT_TLS_GD) && indx != 0)
00a97672 11566 htab->srelgot->size += RELOC_SIZE (htab);
ba93b8ac
DJ
11567 }
11568 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11569 || h->root.type != bfd_link_hash_undefweak)
11570 && (info->shared
11571 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
00a97672 11572 htab->srelgot->size += RELOC_SIZE (htab);
e5a52504 11573 }
5e681ec4
PB
11574 }
11575 else
11576 h->got.offset = (bfd_vma) -1;
11577
a4fd1a8e
PB
11578 /* Allocate stubs for exported Thumb functions on v4t. */
11579 if (!htab->use_blx && h->dynindx != -1
0eaedd0e 11580 && h->def_regular
a4fd1a8e
PB
11581 && ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
11582 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
11583 {
11584 struct elf_link_hash_entry * th;
11585 struct bfd_link_hash_entry * bh;
11586 struct elf_link_hash_entry * myh;
11587 char name[1024];
11588 asection *s;
11589 bh = NULL;
11590 /* Create a new symbol to regist the real location of the function. */
11591 s = h->root.u.def.section;
906e58ca 11592 sprintf (name, "__real_%s", h->root.root.string);
a4fd1a8e
PB
11593 _bfd_generic_link_add_one_symbol (info, s->owner,
11594 name, BSF_GLOBAL, s,
11595 h->root.u.def.value,
11596 NULL, TRUE, FALSE, &bh);
11597
11598 myh = (struct elf_link_hash_entry *) bh;
11599 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
11600 myh->forced_local = 1;
11601 eh->export_glue = myh;
11602 th = record_arm_to_thumb_glue (info, h);
11603 /* Point the symbol at the stub. */
11604 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
11605 h->root.u.def.section = th->root.u.def.section;
11606 h->root.u.def.value = th->root.u.def.value & ~1;
11607 }
11608
5e681ec4
PB
11609 if (eh->relocs_copied == NULL)
11610 return TRUE;
11611
11612 /* In the shared -Bsymbolic case, discard space allocated for
11613 dynamic pc-relative relocs against symbols which turn out to be
11614 defined in regular objects. For the normal shared case, discard
11615 space for pc-relative relocs that have become local due to symbol
11616 visibility changes. */
11617
67687978 11618 if (info->shared || htab->root.is_relocatable_executable)
5e681ec4 11619 {
7bdca076 11620 /* The only relocs that use pc_count are R_ARM_REL32 and
bb224fc3
MS
11621 R_ARM_REL32_NOI, which will appear on something like
11622 ".long foo - .". We want calls to protected symbols to resolve
11623 directly to the function rather than going via the plt. If people
11624 want function pointer comparisons to work as expected then they
11625 should avoid writing assembly like ".long foo - .". */
ba93b8ac
DJ
11626 if (SYMBOL_CALLS_LOCAL (info, h))
11627 {
11628 struct elf32_arm_relocs_copied **pp;
11629
11630 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
11631 {
11632 p->count -= p->pc_count;
11633 p->pc_count = 0;
11634 if (p->count == 0)
11635 *pp = p->next;
11636 else
11637 pp = &p->next;
11638 }
11639 }
11640
3348747a
NS
11641 if (elf32_arm_hash_table (info)->vxworks_p)
11642 {
11643 struct elf32_arm_relocs_copied **pp;
11644
11645 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
11646 {
11647 if (strcmp (p->section->output_section->name, ".tls_vars") == 0)
11648 *pp = p->next;
11649 else
11650 pp = &p->next;
11651 }
11652 }
11653
ba93b8ac 11654 /* Also discard relocs on undefined weak syms with non-default
7359ea65 11655 visibility. */
22d606e9 11656 if (eh->relocs_copied != NULL
5e681ec4 11657 && h->root.type == bfd_link_hash_undefweak)
22d606e9
AM
11658 {
11659 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
11660 eh->relocs_copied = NULL;
11661
11662 /* Make sure undefined weak symbols are output as a dynamic
11663 symbol in PIEs. */
11664 else if (h->dynindx == -1
11665 && !h->forced_local)
11666 {
11667 if (! bfd_elf_link_record_dynamic_symbol (info, h))
11668 return FALSE;
11669 }
11670 }
11671
67687978
PB
11672 else if (htab->root.is_relocatable_executable && h->dynindx == -1
11673 && h->root.type == bfd_link_hash_new)
11674 {
11675 /* Output absolute symbols so that we can create relocations
11676 against them. For normal symbols we output a relocation
11677 against the section that contains them. */
11678 if (! bfd_elf_link_record_dynamic_symbol (info, h))
11679 return FALSE;
11680 }
11681
5e681ec4
PB
11682 }
11683 else
11684 {
11685 /* For the non-shared case, discard space for relocs against
11686 symbols which turn out to need copy relocs or are not
11687 dynamic. */
11688
f5385ebf
AM
11689 if (!h->non_got_ref
11690 && ((h->def_dynamic
11691 && !h->def_regular)
5e681ec4
PB
11692 || (htab->root.dynamic_sections_created
11693 && (h->root.type == bfd_link_hash_undefweak
11694 || h->root.type == bfd_link_hash_undefined))))
11695 {
11696 /* Make sure this symbol is output as a dynamic symbol.
11697 Undefined weak syms won't yet be marked as dynamic. */
11698 if (h->dynindx == -1
f5385ebf 11699 && !h->forced_local)
5e681ec4 11700 {
c152c796 11701 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5e681ec4
PB
11702 return FALSE;
11703 }
11704
11705 /* If that succeeded, we know we'll be keeping all the
11706 relocs. */
11707 if (h->dynindx != -1)
11708 goto keep;
11709 }
11710
11711 eh->relocs_copied = NULL;
11712
11713 keep: ;
11714 }
11715
11716 /* Finally, allocate space. */
11717 for (p = eh->relocs_copied; p != NULL; p = p->next)
11718 {
11719 asection *sreloc = elf_section_data (p->section)->sreloc;
00a97672 11720 sreloc->size += p->count * RELOC_SIZE (htab);
5e681ec4
PB
11721 }
11722
11723 return TRUE;
11724}
11725
08d1f311
DJ
11726/* Find any dynamic relocs that apply to read-only sections. */
11727
11728static bfd_boolean
8029a119 11729elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
08d1f311 11730{
8029a119
NC
11731 struct elf32_arm_link_hash_entry * eh;
11732 struct elf32_arm_relocs_copied * p;
08d1f311
DJ
11733
11734 if (h->root.type == bfd_link_hash_warning)
11735 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11736
11737 eh = (struct elf32_arm_link_hash_entry *) h;
11738 for (p = eh->relocs_copied; p != NULL; p = p->next)
11739 {
11740 asection *s = p->section;
11741
11742 if (s != NULL && (s->flags & SEC_READONLY) != 0)
11743 {
11744 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11745
11746 info->flags |= DF_TEXTREL;
11747
11748 /* Not an error, just cut short the traversal. */
11749 return FALSE;
11750 }
11751 }
11752 return TRUE;
11753}
11754
d504ffc8
DJ
11755void
11756bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
11757 int byteswap_code)
11758{
11759 struct elf32_arm_link_hash_table *globals;
11760
11761 globals = elf32_arm_hash_table (info);
11762 globals->byteswap_code = byteswap_code;
11763}
11764
252b5132
RH
11765/* Set the sizes of the dynamic sections. */
11766
b34976b6 11767static bfd_boolean
57e8b36a
NC
11768elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
11769 struct bfd_link_info * info)
252b5132
RH
11770{
11771 bfd * dynobj;
11772 asection * s;
b34976b6
AM
11773 bfd_boolean plt;
11774 bfd_boolean relocs;
5e681ec4
PB
11775 bfd *ibfd;
11776 struct elf32_arm_link_hash_table *htab;
252b5132 11777
5e681ec4 11778 htab = elf32_arm_hash_table (info);
252b5132
RH
11779 dynobj = elf_hash_table (info)->dynobj;
11780 BFD_ASSERT (dynobj != NULL);
39b41c9c 11781 check_use_blx (htab);
252b5132
RH
11782
11783 if (elf_hash_table (info)->dynamic_sections_created)
11784 {
11785 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 11786 if (info->executable)
252b5132
RH
11787 {
11788 s = bfd_get_section_by_name (dynobj, ".interp");
11789 BFD_ASSERT (s != NULL);
eea6121a 11790 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
252b5132
RH
11791 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
11792 }
11793 }
5e681ec4
PB
11794
11795 /* Set up .got offsets for local syms, and space for local dynamic
11796 relocs. */
11797 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
252b5132 11798 {
5e681ec4
PB
11799 bfd_signed_vma *local_got;
11800 bfd_signed_vma *end_local_got;
11801 char *local_tls_type;
11802 bfd_size_type locsymcount;
11803 Elf_Internal_Shdr *symtab_hdr;
11804 asection *srel;
3348747a 11805 bfd_boolean is_vxworks = elf32_arm_hash_table (info)->vxworks_p;
5e681ec4 11806
0ffa91dd 11807 if (! is_arm_elf (ibfd))
5e681ec4
PB
11808 continue;
11809
11810 for (s = ibfd->sections; s != NULL; s = s->next)
11811 {
11812 struct elf32_arm_relocs_copied *p;
11813
6edfbbad 11814 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
5e681ec4
PB
11815 {
11816 if (!bfd_is_abs_section (p->section)
11817 && bfd_is_abs_section (p->section->output_section))
11818 {
11819 /* Input section has been discarded, either because
11820 it is a copy of a linkonce section or due to
11821 linker script /DISCARD/, so we'll be discarding
11822 the relocs too. */
11823 }
3348747a
NS
11824 else if (is_vxworks
11825 && strcmp (p->section->output_section->name,
11826 ".tls_vars") == 0)
11827 {
11828 /* Relocations in vxworks .tls_vars sections are
11829 handled specially by the loader. */
11830 }
5e681ec4
PB
11831 else if (p->count != 0)
11832 {
11833 srel = elf_section_data (p->section)->sreloc;
00a97672 11834 srel->size += p->count * RELOC_SIZE (htab);
5e681ec4
PB
11835 if ((p->section->output_section->flags & SEC_READONLY) != 0)
11836 info->flags |= DF_TEXTREL;
11837 }
11838 }
11839 }
11840
11841 local_got = elf_local_got_refcounts (ibfd);
11842 if (!local_got)
11843 continue;
11844
0ffa91dd 11845 symtab_hdr = & elf_symtab_hdr (ibfd);
5e681ec4
PB
11846 locsymcount = symtab_hdr->sh_info;
11847 end_local_got = local_got + locsymcount;
ba93b8ac 11848 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
5e681ec4
PB
11849 s = htab->sgot;
11850 srel = htab->srelgot;
11851 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
11852 {
11853 if (*local_got > 0)
11854 {
eea6121a 11855 *local_got = s->size;
ba93b8ac
DJ
11856 if (*local_tls_type & GOT_TLS_GD)
11857 /* TLS_GD relocs need an 8-byte structure in the GOT. */
11858 s->size += 8;
11859 if (*local_tls_type & GOT_TLS_IE)
11860 s->size += 4;
11861 if (*local_tls_type == GOT_NORMAL)
11862 s->size += 4;
11863
11864 if (info->shared || *local_tls_type == GOT_TLS_GD)
00a97672 11865 srel->size += RELOC_SIZE (htab);
5e681ec4
PB
11866 }
11867 else
11868 *local_got = (bfd_vma) -1;
11869 }
252b5132
RH
11870 }
11871
ba93b8ac
DJ
11872 if (htab->tls_ldm_got.refcount > 0)
11873 {
11874 /* Allocate two GOT entries and one dynamic relocation (if necessary)
11875 for R_ARM_TLS_LDM32 relocations. */
11876 htab->tls_ldm_got.offset = htab->sgot->size;
11877 htab->sgot->size += 8;
11878 if (info->shared)
00a97672 11879 htab->srelgot->size += RELOC_SIZE (htab);
ba93b8ac
DJ
11880 }
11881 else
11882 htab->tls_ldm_got.offset = -1;
11883
5e681ec4
PB
11884 /* Allocate global sym .plt and .got entries, and space for global
11885 sym dynamic relocs. */
57e8b36a 11886 elf_link_hash_traverse (& htab->root, allocate_dynrelocs, info);
252b5132 11887
d504ffc8
DJ
11888 /* Here we rummage through the found bfds to collect glue information. */
11889 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
c7b8f16e 11890 {
0ffa91dd 11891 if (! is_arm_elf (ibfd))
e44a2c9c
AM
11892 continue;
11893
c7b8f16e
JB
11894 /* Initialise mapping tables for code/data. */
11895 bfd_elf32_arm_init_maps (ibfd);
906e58ca 11896
c7b8f16e
JB
11897 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
11898 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
11899 /* xgettext:c-format */
11900 _bfd_error_handler (_("Errors encountered processing file %s"),
11901 ibfd->filename);
11902 }
d504ffc8 11903
3e6b1042
DJ
11904 /* Allocate space for the glue sections now that we've sized them. */
11905 bfd_elf32_arm_allocate_interworking_sections (info);
11906
252b5132
RH
11907 /* The check_relocs and adjust_dynamic_symbol entry points have
11908 determined the sizes of the various dynamic sections. Allocate
11909 memory for them. */
b34976b6
AM
11910 plt = FALSE;
11911 relocs = FALSE;
252b5132
RH
11912 for (s = dynobj->sections; s != NULL; s = s->next)
11913 {
11914 const char * name;
252b5132
RH
11915
11916 if ((s->flags & SEC_LINKER_CREATED) == 0)
11917 continue;
11918
11919 /* It's OK to base decisions on the section name, because none
11920 of the dynobj section names depend upon the input files. */
11921 name = bfd_get_section_name (dynobj, s);
11922
24a1ba0f 11923 if (strcmp (name, ".plt") == 0)
252b5132 11924 {
c456f082
AM
11925 /* Remember whether there is a PLT. */
11926 plt = s->size != 0;
252b5132 11927 }
0112cd26 11928 else if (CONST_STRNEQ (name, ".rel"))
252b5132 11929 {
c456f082 11930 if (s->size != 0)
252b5132 11931 {
252b5132 11932 /* Remember whether there are any reloc sections other
00a97672
RS
11933 than .rel(a).plt and .rela.plt.unloaded. */
11934 if (s != htab->srelplt && s != htab->srelplt2)
b34976b6 11935 relocs = TRUE;
252b5132
RH
11936
11937 /* We use the reloc_count field as a counter if we need
11938 to copy relocs into the output file. */
11939 s->reloc_count = 0;
11940 }
11941 }
0112cd26 11942 else if (! CONST_STRNEQ (name, ".got")
c456f082 11943 && strcmp (name, ".dynbss") != 0)
252b5132
RH
11944 {
11945 /* It's not one of our sections, so don't allocate space. */
11946 continue;
11947 }
11948
c456f082 11949 if (s->size == 0)
252b5132 11950 {
c456f082 11951 /* If we don't need this section, strip it from the
00a97672
RS
11952 output file. This is mostly to handle .rel(a).bss and
11953 .rel(a).plt. We must create both sections in
c456f082
AM
11954 create_dynamic_sections, because they must be created
11955 before the linker maps input sections to output
11956 sections. The linker does that before
11957 adjust_dynamic_symbol is called, and it is that
11958 function which decides whether anything needs to go
11959 into these sections. */
8423293d 11960 s->flags |= SEC_EXCLUDE;
252b5132
RH
11961 continue;
11962 }
11963
c456f082
AM
11964 if ((s->flags & SEC_HAS_CONTENTS) == 0)
11965 continue;
11966
252b5132 11967 /* Allocate memory for the section contents. */
906e58ca 11968 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 11969 if (s->contents == NULL)
b34976b6 11970 return FALSE;
252b5132
RH
11971 }
11972
11973 if (elf_hash_table (info)->dynamic_sections_created)
11974 {
11975 /* Add some entries to the .dynamic section. We fill in the
11976 values later, in elf32_arm_finish_dynamic_sections, but we
11977 must add the entries now so that we get the correct size for
11978 the .dynamic section. The DT_DEBUG entry is filled in by the
11979 dynamic linker and used by the debugger. */
dc810e39 11980#define add_dynamic_entry(TAG, VAL) \
5a580b3a 11981 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
dc810e39 11982
8532796c 11983 if (info->executable)
252b5132 11984 {
dc810e39 11985 if (!add_dynamic_entry (DT_DEBUG, 0))
b34976b6 11986 return FALSE;
252b5132
RH
11987 }
11988
11989 if (plt)
11990 {
dc810e39
AM
11991 if ( !add_dynamic_entry (DT_PLTGOT, 0)
11992 || !add_dynamic_entry (DT_PLTRELSZ, 0)
00a97672
RS
11993 || !add_dynamic_entry (DT_PLTREL,
11994 htab->use_rel ? DT_REL : DT_RELA)
dc810e39 11995 || !add_dynamic_entry (DT_JMPREL, 0))
b34976b6 11996 return FALSE;
252b5132
RH
11997 }
11998
11999 if (relocs)
12000 {
00a97672
RS
12001 if (htab->use_rel)
12002 {
12003 if (!add_dynamic_entry (DT_REL, 0)
12004 || !add_dynamic_entry (DT_RELSZ, 0)
12005 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
12006 return FALSE;
12007 }
12008 else
12009 {
12010 if (!add_dynamic_entry (DT_RELA, 0)
12011 || !add_dynamic_entry (DT_RELASZ, 0)
12012 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
12013 return FALSE;
12014 }
252b5132
RH
12015 }
12016
08d1f311
DJ
12017 /* If any dynamic relocs apply to a read-only section,
12018 then we need a DT_TEXTREL entry. */
12019 if ((info->flags & DF_TEXTREL) == 0)
8029a119
NC
12020 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
12021 info);
08d1f311 12022
99e4ae17 12023 if ((info->flags & DF_TEXTREL) != 0)
252b5132 12024 {
dc810e39 12025 if (!add_dynamic_entry (DT_TEXTREL, 0))
b34976b6 12026 return FALSE;
252b5132 12027 }
7a2b07ff
NS
12028 if (htab->vxworks_p
12029 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
12030 return FALSE;
252b5132 12031 }
8532796c 12032#undef add_dynamic_entry
252b5132 12033
b34976b6 12034 return TRUE;
252b5132
RH
12035}
12036
252b5132
RH
12037/* Finish up dynamic symbol handling. We set the contents of various
12038 dynamic sections here. */
12039
b34976b6 12040static bfd_boolean
906e58ca
NC
12041elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
12042 struct bfd_link_info * info,
12043 struct elf_link_hash_entry * h,
12044 Elf_Internal_Sym * sym)
252b5132
RH
12045{
12046 bfd * dynobj;
e5a52504 12047 struct elf32_arm_link_hash_table *htab;
b7693d02 12048 struct elf32_arm_link_hash_entry *eh;
252b5132
RH
12049
12050 dynobj = elf_hash_table (info)->dynobj;
e5a52504 12051 htab = elf32_arm_hash_table (info);
b7693d02 12052 eh = (struct elf32_arm_link_hash_entry *) h;
252b5132
RH
12053
12054 if (h->plt.offset != (bfd_vma) -1)
12055 {
12056 asection * splt;
252b5132 12057 asection * srel;
e5a52504 12058 bfd_byte *loc;
24a1ba0f 12059 bfd_vma plt_index;
947216bf 12060 Elf_Internal_Rela rel;
252b5132
RH
12061
12062 /* This symbol has an entry in the procedure linkage table. Set
12063 it up. */
12064
12065 BFD_ASSERT (h->dynindx != -1);
12066
12067 splt = bfd_get_section_by_name (dynobj, ".plt");
00a97672 12068 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".plt"));
e5a52504 12069 BFD_ASSERT (splt != NULL && srel != NULL);
252b5132 12070
e5a52504
MM
12071 /* Fill in the entry in the procedure linkage table. */
12072 if (htab->symbian_p)
12073 {
906e58ca 12074 put_arm_insn (htab, output_bfd,
52ab56c2
PB
12075 elf32_arm_symbian_plt_entry[0],
12076 splt->contents + h->plt.offset);
906e58ca 12077 bfd_put_32 (output_bfd,
52ab56c2
PB
12078 elf32_arm_symbian_plt_entry[1],
12079 splt->contents + h->plt.offset + 4);
906e58ca 12080
e5a52504 12081 /* Fill in the entry in the .rel.plt section. */
2a1b9a48
MM
12082 rel.r_offset = (splt->output_section->vma
12083 + splt->output_offset
52ab56c2 12084 + h->plt.offset + 4);
e5a52504 12085 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
b7693d02
DJ
12086
12087 /* Get the index in the procedure linkage table which
12088 corresponds to this symbol. This is the index of this symbol
12089 in all the symbols for which we are making plt entries. The
12090 first entry in the procedure linkage table is reserved. */
906e58ca 12091 plt_index = ((h->plt.offset - htab->plt_header_size)
b7693d02 12092 / htab->plt_entry_size);
e5a52504
MM
12093 }
12094 else
12095 {
00a97672 12096 bfd_vma got_offset, got_address, plt_address;
e5a52504
MM
12097 bfd_vma got_displacement;
12098 asection * sgot;
52ab56c2 12099 bfd_byte * ptr;
906e58ca 12100
e5a52504
MM
12101 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
12102 BFD_ASSERT (sgot != NULL);
12103
b7693d02
DJ
12104 /* Get the offset into the .got.plt table of the entry that
12105 corresponds to this function. */
12106 got_offset = eh->plt_got_offset;
12107
12108 /* Get the index in the procedure linkage table which
12109 corresponds to this symbol. This is the index of this symbol
12110 in all the symbols for which we are making plt entries. The
12111 first three entries in .got.plt are reserved; after that
12112 symbols appear in the same order as in .plt. */
12113 plt_index = (got_offset - 12) / 4;
e5a52504 12114
00a97672
RS
12115 /* Calculate the address of the GOT entry. */
12116 got_address = (sgot->output_section->vma
12117 + sgot->output_offset
12118 + got_offset);
5e681ec4 12119
00a97672
RS
12120 /* ...and the address of the PLT entry. */
12121 plt_address = (splt->output_section->vma
12122 + splt->output_offset
12123 + h->plt.offset);
5e681ec4 12124
52ab56c2 12125 ptr = htab->splt->contents + h->plt.offset;
00a97672
RS
12126 if (htab->vxworks_p && info->shared)
12127 {
12128 unsigned int i;
12129 bfd_vma val;
12130
52ab56c2 12131 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
00a97672
RS
12132 {
12133 val = elf32_arm_vxworks_shared_plt_entry[i];
12134 if (i == 2)
12135 val |= got_address - sgot->output_section->vma;
12136 if (i == 5)
12137 val |= plt_index * RELOC_SIZE (htab);
52ab56c2
PB
12138 if (i == 2 || i == 5)
12139 bfd_put_32 (output_bfd, val, ptr);
12140 else
12141 put_arm_insn (htab, output_bfd, val, ptr);
00a97672
RS
12142 }
12143 }
12144 else if (htab->vxworks_p)
b7693d02 12145 {
00a97672
RS
12146 unsigned int i;
12147 bfd_vma val;
12148
d3753b85 12149 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
00a97672
RS
12150 {
12151 val = elf32_arm_vxworks_exec_plt_entry[i];
12152 if (i == 2)
12153 val |= got_address;
12154 if (i == 4)
12155 val |= 0xffffff & -((h->plt.offset + i * 4 + 8) >> 2);
12156 if (i == 5)
12157 val |= plt_index * RELOC_SIZE (htab);
52ab56c2
PB
12158 if (i == 2 || i == 5)
12159 bfd_put_32 (output_bfd, val, ptr);
12160 else
12161 put_arm_insn (htab, output_bfd, val, ptr);
00a97672
RS
12162 }
12163
12164 loc = (htab->srelplt2->contents
12165 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
12166
12167 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
12168 referencing the GOT for this PLT entry. */
12169 rel.r_offset = plt_address + 8;
12170 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
12171 rel.r_addend = got_offset;
12172 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
12173 loc += RELOC_SIZE (htab);
12174
12175 /* Create the R_ARM_ABS32 relocation referencing the
12176 beginning of the PLT for this GOT entry. */
12177 rel.r_offset = got_address;
12178 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
12179 rel.r_addend = 0;
12180 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
b7693d02 12181 }
00a97672
RS
12182 else
12183 {
bd97cb95 12184 bfd_signed_vma thumb_refs;
00a97672
RS
12185 /* Calculate the displacement between the PLT slot and the
12186 entry in the GOT. The eight-byte offset accounts for the
12187 value produced by adding to pc in the first instruction
12188 of the PLT stub. */
12189 got_displacement = got_address - (plt_address + 8);
b7693d02 12190
00a97672
RS
12191 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
12192
bd97cb95
DJ
12193 thumb_refs = eh->plt_thumb_refcount;
12194 if (!htab->use_blx)
12195 thumb_refs += eh->plt_maybe_thumb_refcount;
12196
12197 if (thumb_refs > 0)
00a97672 12198 {
52ab56c2
PB
12199 put_thumb_insn (htab, output_bfd,
12200 elf32_arm_plt_thumb_stub[0], ptr - 4);
12201 put_thumb_insn (htab, output_bfd,
12202 elf32_arm_plt_thumb_stub[1], ptr - 2);
00a97672
RS
12203 }
12204
52ab56c2
PB
12205 put_arm_insn (htab, output_bfd,
12206 elf32_arm_plt_entry[0]
12207 | ((got_displacement & 0x0ff00000) >> 20),
12208 ptr + 0);
12209 put_arm_insn (htab, output_bfd,
12210 elf32_arm_plt_entry[1]
12211 | ((got_displacement & 0x000ff000) >> 12),
12212 ptr+ 4);
12213 put_arm_insn (htab, output_bfd,
12214 elf32_arm_plt_entry[2]
12215 | (got_displacement & 0x00000fff),
12216 ptr + 8);
5e681ec4 12217#ifdef FOUR_WORD_PLT
52ab56c2 12218 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
5e681ec4 12219#endif
00a97672 12220 }
252b5132 12221
e5a52504
MM
12222 /* Fill in the entry in the global offset table. */
12223 bfd_put_32 (output_bfd,
12224 (splt->output_section->vma
12225 + splt->output_offset),
12226 sgot->contents + got_offset);
906e58ca 12227
00a97672
RS
12228 /* Fill in the entry in the .rel(a).plt section. */
12229 rel.r_addend = 0;
12230 rel.r_offset = got_address;
e5a52504
MM
12231 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
12232 }
57e8b36a 12233
00a97672
RS
12234 loc = srel->contents + plt_index * RELOC_SIZE (htab);
12235 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
252b5132 12236
f5385ebf 12237 if (!h->def_regular)
252b5132
RH
12238 {
12239 /* Mark the symbol as undefined, rather than as defined in
12240 the .plt section. Leave the value alone. */
12241 sym->st_shndx = SHN_UNDEF;
d982ba73
PB
12242 /* If the symbol is weak, we do need to clear the value.
12243 Otherwise, the PLT entry would provide a definition for
12244 the symbol even if the symbol wasn't defined anywhere,
12245 and so the symbol would never be NULL. */
f5385ebf 12246 if (!h->ref_regular_nonweak)
d982ba73 12247 sym->st_value = 0;
252b5132
RH
12248 }
12249 }
12250
ba93b8ac
DJ
12251 if (h->got.offset != (bfd_vma) -1
12252 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_GD) == 0
12253 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_IE) == 0)
252b5132
RH
12254 {
12255 asection * sgot;
12256 asection * srel;
947216bf
AM
12257 Elf_Internal_Rela rel;
12258 bfd_byte *loc;
00a97672 12259 bfd_vma offset;
252b5132
RH
12260
12261 /* This symbol has an entry in the global offset table. Set it
12262 up. */
252b5132 12263 sgot = bfd_get_section_by_name (dynobj, ".got");
00a97672 12264 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".got"));
252b5132
RH
12265 BFD_ASSERT (sgot != NULL && srel != NULL);
12266
00a97672
RS
12267 offset = (h->got.offset & ~(bfd_vma) 1);
12268 rel.r_addend = 0;
252b5132
RH
12269 rel.r_offset = (sgot->output_section->vma
12270 + sgot->output_offset
00a97672 12271 + offset);
252b5132 12272
5e681ec4
PB
12273 /* If this is a static link, or it is a -Bsymbolic link and the
12274 symbol is defined locally or was forced to be local because
12275 of a version file, we just want to emit a RELATIVE reloc.
12276 The entry in the global offset table will already have been
12277 initialized in the relocate_section function. */
252b5132 12278 if (info->shared
5e681ec4
PB
12279 && SYMBOL_REFERENCES_LOCAL (info, h))
12280 {
906e58ca 12281 BFD_ASSERT ((h->got.offset & 1) != 0);
5e681ec4 12282 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
00a97672
RS
12283 if (!htab->use_rel)
12284 {
12285 rel.r_addend = bfd_get_32 (output_bfd, sgot->contents + offset);
12286 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
12287 }
5e681ec4 12288 }
252b5132
RH
12289 else
12290 {
906e58ca 12291 BFD_ASSERT ((h->got.offset & 1) == 0);
00a97672 12292 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
252b5132
RH
12293 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
12294 }
12295
00a97672
RS
12296 loc = srel->contents + srel->reloc_count++ * RELOC_SIZE (htab);
12297 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
252b5132
RH
12298 }
12299
f5385ebf 12300 if (h->needs_copy)
252b5132
RH
12301 {
12302 asection * s;
947216bf
AM
12303 Elf_Internal_Rela rel;
12304 bfd_byte *loc;
252b5132
RH
12305
12306 /* This symbol needs a copy reloc. Set it up. */
252b5132
RH
12307 BFD_ASSERT (h->dynindx != -1
12308 && (h->root.type == bfd_link_hash_defined
12309 || h->root.type == bfd_link_hash_defweak));
12310
12311 s = bfd_get_section_by_name (h->root.u.def.section->owner,
00a97672 12312 RELOC_SECTION (htab, ".bss"));
252b5132
RH
12313 BFD_ASSERT (s != NULL);
12314
00a97672 12315 rel.r_addend = 0;
252b5132
RH
12316 rel.r_offset = (h->root.u.def.value
12317 + h->root.u.def.section->output_section->vma
12318 + h->root.u.def.section->output_offset);
12319 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
00a97672
RS
12320 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
12321 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
252b5132
RH
12322 }
12323
00a97672
RS
12324 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
12325 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
12326 to the ".got" section. */
252b5132 12327 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
00a97672 12328 || (!htab->vxworks_p && h == htab->root.hgot))
252b5132
RH
12329 sym->st_shndx = SHN_ABS;
12330
b34976b6 12331 return TRUE;
252b5132
RH
12332}
12333
12334/* Finish up the dynamic sections. */
12335
b34976b6 12336static bfd_boolean
57e8b36a 12337elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
252b5132
RH
12338{
12339 bfd * dynobj;
12340 asection * sgot;
12341 asection * sdyn;
12342
12343 dynobj = elf_hash_table (info)->dynobj;
12344
12345 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
229fcec5 12346 BFD_ASSERT (elf32_arm_hash_table (info)->symbian_p || sgot != NULL);
252b5132
RH
12347 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
12348
12349 if (elf_hash_table (info)->dynamic_sections_created)
12350 {
12351 asection *splt;
12352 Elf32_External_Dyn *dyncon, *dynconend;
229fcec5 12353 struct elf32_arm_link_hash_table *htab;
252b5132 12354
229fcec5 12355 htab = elf32_arm_hash_table (info);
252b5132 12356 splt = bfd_get_section_by_name (dynobj, ".plt");
24a1ba0f 12357 BFD_ASSERT (splt != NULL && sdyn != NULL);
252b5132
RH
12358
12359 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 12360 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
9b485d32 12361
252b5132
RH
12362 for (; dyncon < dynconend; dyncon++)
12363 {
12364 Elf_Internal_Dyn dyn;
12365 const char * name;
12366 asection * s;
12367
12368 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
12369
12370 switch (dyn.d_tag)
12371 {
229fcec5
MM
12372 unsigned int type;
12373
252b5132 12374 default:
7a2b07ff
NS
12375 if (htab->vxworks_p
12376 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
12377 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
252b5132
RH
12378 break;
12379
229fcec5
MM
12380 case DT_HASH:
12381 name = ".hash";
12382 goto get_vma_if_bpabi;
12383 case DT_STRTAB:
12384 name = ".dynstr";
12385 goto get_vma_if_bpabi;
12386 case DT_SYMTAB:
12387 name = ".dynsym";
12388 goto get_vma_if_bpabi;
c0042f5d
MM
12389 case DT_VERSYM:
12390 name = ".gnu.version";
12391 goto get_vma_if_bpabi;
12392 case DT_VERDEF:
12393 name = ".gnu.version_d";
12394 goto get_vma_if_bpabi;
12395 case DT_VERNEED:
12396 name = ".gnu.version_r";
12397 goto get_vma_if_bpabi;
12398
252b5132
RH
12399 case DT_PLTGOT:
12400 name = ".got";
12401 goto get_vma;
12402 case DT_JMPREL:
00a97672 12403 name = RELOC_SECTION (htab, ".plt");
252b5132
RH
12404 get_vma:
12405 s = bfd_get_section_by_name (output_bfd, name);
12406 BFD_ASSERT (s != NULL);
229fcec5
MM
12407 if (!htab->symbian_p)
12408 dyn.d_un.d_ptr = s->vma;
12409 else
12410 /* In the BPABI, tags in the PT_DYNAMIC section point
12411 at the file offset, not the memory address, for the
12412 convenience of the post linker. */
12413 dyn.d_un.d_ptr = s->filepos;
252b5132
RH
12414 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12415 break;
12416
229fcec5
MM
12417 get_vma_if_bpabi:
12418 if (htab->symbian_p)
12419 goto get_vma;
12420 break;
12421
252b5132 12422 case DT_PLTRELSZ:
00a97672
RS
12423 s = bfd_get_section_by_name (output_bfd,
12424 RELOC_SECTION (htab, ".plt"));
252b5132 12425 BFD_ASSERT (s != NULL);
eea6121a 12426 dyn.d_un.d_val = s->size;
252b5132
RH
12427 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12428 break;
906e58ca 12429
252b5132 12430 case DT_RELSZ:
00a97672 12431 case DT_RELASZ:
229fcec5
MM
12432 if (!htab->symbian_p)
12433 {
12434 /* My reading of the SVR4 ABI indicates that the
12435 procedure linkage table relocs (DT_JMPREL) should be
12436 included in the overall relocs (DT_REL). This is
12437 what Solaris does. However, UnixWare can not handle
12438 that case. Therefore, we override the DT_RELSZ entry
12439 here to make it not include the JMPREL relocs. Since
00a97672 12440 the linker script arranges for .rel(a).plt to follow all
229fcec5
MM
12441 other relocation sections, we don't have to worry
12442 about changing the DT_REL entry. */
00a97672
RS
12443 s = bfd_get_section_by_name (output_bfd,
12444 RELOC_SECTION (htab, ".plt"));
229fcec5
MM
12445 if (s != NULL)
12446 dyn.d_un.d_val -= s->size;
12447 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12448 break;
12449 }
8029a119 12450 /* Fall through. */
229fcec5
MM
12451
12452 case DT_REL:
12453 case DT_RELA:
229fcec5
MM
12454 /* In the BPABI, the DT_REL tag must point at the file
12455 offset, not the VMA, of the first relocation
12456 section. So, we use code similar to that in
12457 elflink.c, but do not check for SHF_ALLOC on the
12458 relcoation section, since relocations sections are
12459 never allocated under the BPABI. The comments above
12460 about Unixware notwithstanding, we include all of the
12461 relocations here. */
12462 if (htab->symbian_p)
12463 {
12464 unsigned int i;
12465 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12466 ? SHT_REL : SHT_RELA);
12467 dyn.d_un.d_val = 0;
12468 for (i = 1; i < elf_numsections (output_bfd); i++)
12469 {
906e58ca 12470 Elf_Internal_Shdr *hdr
229fcec5
MM
12471 = elf_elfsections (output_bfd)[i];
12472 if (hdr->sh_type == type)
12473 {
906e58ca 12474 if (dyn.d_tag == DT_RELSZ
229fcec5
MM
12475 || dyn.d_tag == DT_RELASZ)
12476 dyn.d_un.d_val += hdr->sh_size;
de52dba4
AM
12477 else if ((ufile_ptr) hdr->sh_offset
12478 <= dyn.d_un.d_val - 1)
229fcec5
MM
12479 dyn.d_un.d_val = hdr->sh_offset;
12480 }
12481 }
12482 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12483 }
252b5132 12484 break;
88f7bcd5
NC
12485
12486 /* Set the bottom bit of DT_INIT/FINI if the
12487 corresponding function is Thumb. */
12488 case DT_INIT:
12489 name = info->init_function;
12490 goto get_sym;
12491 case DT_FINI:
12492 name = info->fini_function;
12493 get_sym:
12494 /* If it wasn't set by elf_bfd_final_link
4cc11e76 12495 then there is nothing to adjust. */
88f7bcd5
NC
12496 if (dyn.d_un.d_val != 0)
12497 {
12498 struct elf_link_hash_entry * eh;
12499
12500 eh = elf_link_hash_lookup (elf_hash_table (info), name,
b34976b6 12501 FALSE, FALSE, TRUE);
906e58ca 12502 if (eh != NULL
88f7bcd5
NC
12503 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
12504 {
12505 dyn.d_un.d_val |= 1;
b34976b6 12506 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
88f7bcd5
NC
12507 }
12508 }
12509 break;
252b5132
RH
12510 }
12511 }
12512
24a1ba0f 12513 /* Fill in the first entry in the procedure linkage table. */
e5a52504 12514 if (splt->size > 0 && elf32_arm_hash_table (info)->plt_header_size)
f7a74f8c 12515 {
00a97672
RS
12516 const bfd_vma *plt0_entry;
12517 bfd_vma got_address, plt_address, got_displacement;
12518
12519 /* Calculate the addresses of the GOT and PLT. */
12520 got_address = sgot->output_section->vma + sgot->output_offset;
12521 plt_address = splt->output_section->vma + splt->output_offset;
12522
12523 if (htab->vxworks_p)
12524 {
12525 /* The VxWorks GOT is relocated by the dynamic linker.
12526 Therefore, we must emit relocations rather than simply
12527 computing the values now. */
12528 Elf_Internal_Rela rel;
12529
12530 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
52ab56c2
PB
12531 put_arm_insn (htab, output_bfd, plt0_entry[0],
12532 splt->contents + 0);
12533 put_arm_insn (htab, output_bfd, plt0_entry[1],
12534 splt->contents + 4);
12535 put_arm_insn (htab, output_bfd, plt0_entry[2],
12536 splt->contents + 8);
00a97672
RS
12537 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
12538
8029a119 12539 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
00a97672
RS
12540 rel.r_offset = plt_address + 12;
12541 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
12542 rel.r_addend = 0;
12543 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
12544 htab->srelplt2->contents);
12545 }
12546 else
12547 {
12548 got_displacement = got_address - (plt_address + 16);
12549
12550 plt0_entry = elf32_arm_plt0_entry;
52ab56c2
PB
12551 put_arm_insn (htab, output_bfd, plt0_entry[0],
12552 splt->contents + 0);
12553 put_arm_insn (htab, output_bfd, plt0_entry[1],
12554 splt->contents + 4);
12555 put_arm_insn (htab, output_bfd, plt0_entry[2],
12556 splt->contents + 8);
12557 put_arm_insn (htab, output_bfd, plt0_entry[3],
12558 splt->contents + 12);
5e681ec4 12559
5e681ec4 12560#ifdef FOUR_WORD_PLT
00a97672
RS
12561 /* The displacement value goes in the otherwise-unused
12562 last word of the second entry. */
12563 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
5e681ec4 12564#else
00a97672 12565 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
5e681ec4 12566#endif
00a97672 12567 }
f7a74f8c 12568 }
252b5132
RH
12569
12570 /* UnixWare sets the entsize of .plt to 4, although that doesn't
12571 really seem like the right value. */
74541ad4
AM
12572 if (splt->output_section->owner == output_bfd)
12573 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
00a97672
RS
12574
12575 if (htab->vxworks_p && !info->shared && htab->splt->size > 0)
12576 {
12577 /* Correct the .rel(a).plt.unloaded relocations. They will have
12578 incorrect symbol indexes. */
12579 int num_plts;
eed62c48 12580 unsigned char *p;
00a97672
RS
12581
12582 num_plts = ((htab->splt->size - htab->plt_header_size)
12583 / htab->plt_entry_size);
12584 p = htab->srelplt2->contents + RELOC_SIZE (htab);
12585
12586 for (; num_plts; num_plts--)
12587 {
12588 Elf_Internal_Rela rel;
12589
12590 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
12591 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
12592 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
12593 p += RELOC_SIZE (htab);
12594
12595 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
12596 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
12597 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
12598 p += RELOC_SIZE (htab);
12599 }
12600 }
252b5132
RH
12601 }
12602
12603 /* Fill in the first three entries in the global offset table. */
229fcec5 12604 if (sgot)
252b5132 12605 {
229fcec5
MM
12606 if (sgot->size > 0)
12607 {
12608 if (sdyn == NULL)
12609 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
12610 else
12611 bfd_put_32 (output_bfd,
12612 sdyn->output_section->vma + sdyn->output_offset,
12613 sgot->contents);
12614 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
12615 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
12616 }
252b5132 12617
229fcec5
MM
12618 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
12619 }
252b5132 12620
b34976b6 12621 return TRUE;
252b5132
RH
12622}
12623
ba96a88f 12624static void
57e8b36a 12625elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
ba96a88f 12626{
9b485d32 12627 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
e489d0ae 12628 struct elf32_arm_link_hash_table *globals;
ba96a88f
NC
12629
12630 i_ehdrp = elf_elfheader (abfd);
12631
94a3258f
PB
12632 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
12633 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
12634 else
12635 i_ehdrp->e_ident[EI_OSABI] = 0;
ba96a88f 12636 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
e489d0ae 12637
93204d3a
PB
12638 if (link_info)
12639 {
12640 globals = elf32_arm_hash_table (link_info);
12641 if (globals->byteswap_code)
12642 i_ehdrp->e_flags |= EF_ARM_BE8;
12643 }
ba96a88f
NC
12644}
12645
99e4ae17 12646static enum elf_reloc_type_class
57e8b36a 12647elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
99e4ae17 12648{
f51e552e 12649 switch ((int) ELF32_R_TYPE (rela->r_info))
99e4ae17
AJ
12650 {
12651 case R_ARM_RELATIVE:
12652 return reloc_class_relative;
12653 case R_ARM_JUMP_SLOT:
12654 return reloc_class_plt;
12655 case R_ARM_COPY:
12656 return reloc_class_copy;
12657 default:
12658 return reloc_class_normal;
12659 }
12660}
12661
e16bb312
NC
12662/* Set the right machine number for an Arm ELF file. */
12663
12664static bfd_boolean
57e8b36a 12665elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
e16bb312
NC
12666{
12667 if (hdr->sh_type == SHT_NOTE)
12668 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
12669
12670 return TRUE;
12671}
12672
e489d0ae 12673static void
57e8b36a 12674elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
e16bb312 12675{
5a6c6817 12676 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
e16bb312
NC
12677}
12678
40a18ebd
NC
12679/* Return TRUE if this is an unwinding table entry. */
12680
12681static bfd_boolean
12682is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
12683{
0112cd26
NC
12684 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
12685 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
40a18ebd
NC
12686}
12687
12688
12689/* Set the type and flags for an ARM section. We do this by
12690 the section name, which is a hack, but ought to work. */
12691
12692static bfd_boolean
12693elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
12694{
12695 const char * name;
12696
12697 name = bfd_get_section_name (abfd, sec);
12698
12699 if (is_arm_elf_unwind_section_name (abfd, name))
12700 {
12701 hdr->sh_type = SHT_ARM_EXIDX;
12702 hdr->sh_flags |= SHF_LINK_ORDER;
12703 }
12704 return TRUE;
12705}
12706
6dc132d9
L
12707/* Handle an ARM specific section when reading an object file. This is
12708 called when bfd_section_from_shdr finds a section with an unknown
12709 type. */
40a18ebd
NC
12710
12711static bfd_boolean
12712elf32_arm_section_from_shdr (bfd *abfd,
12713 Elf_Internal_Shdr * hdr,
6dc132d9
L
12714 const char *name,
12715 int shindex)
40a18ebd
NC
12716{
12717 /* There ought to be a place to keep ELF backend specific flags, but
12718 at the moment there isn't one. We just keep track of the
12719 sections by their name, instead. Fortunately, the ABI gives
12720 names for all the ARM specific sections, so we will probably get
12721 away with this. */
12722 switch (hdr->sh_type)
12723 {
12724 case SHT_ARM_EXIDX:
0951f019
RE
12725 case SHT_ARM_PREEMPTMAP:
12726 case SHT_ARM_ATTRIBUTES:
40a18ebd
NC
12727 break;
12728
12729 default:
12730 return FALSE;
12731 }
12732
6dc132d9 12733 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
40a18ebd
NC
12734 return FALSE;
12735
12736 return TRUE;
12737}
e489d0ae 12738
8e3de13a
NC
12739/* A structure used to record a list of sections, independently
12740 of the next and prev fields in the asection structure. */
12741typedef struct section_list
12742{
12743 asection * sec;
12744 struct section_list * next;
12745 struct section_list * prev;
12746}
12747section_list;
12748
12749/* Unfortunately we need to keep a list of sections for which
12750 an _arm_elf_section_data structure has been allocated. This
12751 is because it is possible for functions like elf32_arm_write_section
12752 to be called on a section which has had an elf_data_structure
12753 allocated for it (and so the used_by_bfd field is valid) but
12754 for which the ARM extended version of this structure - the
12755 _arm_elf_section_data structure - has not been allocated. */
12756static section_list * sections_with_arm_elf_section_data = NULL;
12757
12758static void
957c6e41 12759record_section_with_arm_elf_section_data (asection * sec)
8e3de13a
NC
12760{
12761 struct section_list * entry;
12762
957c6e41 12763 entry = bfd_malloc (sizeof (* entry));
8e3de13a
NC
12764 if (entry == NULL)
12765 return;
12766 entry->sec = sec;
12767 entry->next = sections_with_arm_elf_section_data;
12768 entry->prev = NULL;
12769 if (entry->next != NULL)
12770 entry->next->prev = entry;
12771 sections_with_arm_elf_section_data = entry;
12772}
12773
44444f50
NC
12774static struct section_list *
12775find_arm_elf_section_entry (asection * sec)
8e3de13a
NC
12776{
12777 struct section_list * entry;
bd4aae00 12778 static struct section_list * last_entry = NULL;
8e3de13a 12779
bd4aae00
NC
12780 /* This is a short cut for the typical case where the sections are added
12781 to the sections_with_arm_elf_section_data list in forward order and
12782 then looked up here in backwards order. This makes a real difference
12783 to the ld-srec/sec64k.exp linker test. */
44444f50 12784 entry = sections_with_arm_elf_section_data;
bd4aae00
NC
12785 if (last_entry != NULL)
12786 {
12787 if (last_entry->sec == sec)
44444f50
NC
12788 entry = last_entry;
12789 else if (last_entry->next != NULL
12790 && last_entry->next->sec == sec)
12791 entry = last_entry->next;
bd4aae00 12792 }
44444f50
NC
12793
12794 for (; entry; entry = entry->next)
8e3de13a 12795 if (entry->sec == sec)
44444f50 12796 break;
bd4aae00 12797
44444f50
NC
12798 if (entry)
12799 /* Record the entry prior to this one - it is the entry we are most
12800 likely to want to locate next time. Also this way if we have been
12801 called from unrecord_section_with_arm_elf_section_data() we will not
12802 be caching a pointer that is about to be freed. */
12803 last_entry = entry->prev;
12804
12805 return entry;
12806}
12807
12808static _arm_elf_section_data *
12809get_arm_elf_section_data (asection * sec)
12810{
12811 struct section_list * entry;
12812
12813 entry = find_arm_elf_section_entry (sec);
12814
12815 if (entry)
12816 return elf32_arm_section_data (entry->sec);
12817 else
12818 return NULL;
8e3de13a
NC
12819}
12820
12821static void
12822unrecord_section_with_arm_elf_section_data (asection * sec)
12823{
12824 struct section_list * entry;
12825
44444f50
NC
12826 entry = find_arm_elf_section_entry (sec);
12827
12828 if (entry)
12829 {
12830 if (entry->prev != NULL)
12831 entry->prev->next = entry->next;
12832 if (entry->next != NULL)
12833 entry->next->prev = entry->prev;
12834 if (entry == sections_with_arm_elf_section_data)
12835 sections_with_arm_elf_section_data = entry->next;
12836 free (entry);
12837 }
8e3de13a
NC
12838}
12839
e489d0ae 12840
4e617b1e
PB
12841typedef struct
12842{
12843 void *finfo;
12844 struct bfd_link_info *info;
91a5743d
PB
12845 asection *sec;
12846 int sec_shndx;
6e0b88f1
AM
12847 int (*func) (void *, const char *, Elf_Internal_Sym *,
12848 asection *, struct elf_link_hash_entry *);
4e617b1e
PB
12849} output_arch_syminfo;
12850
12851enum map_symbol_type
12852{
12853 ARM_MAP_ARM,
12854 ARM_MAP_THUMB,
12855 ARM_MAP_DATA
12856};
12857
12858
7413f23f 12859/* Output a single mapping symbol. */
4e617b1e
PB
12860
12861static bfd_boolean
7413f23f
DJ
12862elf32_arm_output_map_sym (output_arch_syminfo *osi,
12863 enum map_symbol_type type,
12864 bfd_vma offset)
4e617b1e
PB
12865{
12866 static const char *names[3] = {"$a", "$t", "$d"};
12867 struct elf32_arm_link_hash_table *htab;
12868 Elf_Internal_Sym sym;
12869
12870 htab = elf32_arm_hash_table (osi->info);
91a5743d
PB
12871 sym.st_value = osi->sec->output_section->vma
12872 + osi->sec->output_offset
12873 + offset;
4e617b1e
PB
12874 sym.st_size = 0;
12875 sym.st_other = 0;
12876 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
91a5743d 12877 sym.st_shndx = osi->sec_shndx;
6e0b88f1 12878 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
4e617b1e
PB
12879}
12880
12881
12882/* Output mapping symbols for PLT entries associated with H. */
12883
12884static bfd_boolean
12885elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
12886{
12887 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
12888 struct elf32_arm_link_hash_table *htab;
12889 struct elf32_arm_link_hash_entry *eh;
12890 bfd_vma addr;
12891
12892 htab = elf32_arm_hash_table (osi->info);
12893
12894 if (h->root.type == bfd_link_hash_indirect)
12895 return TRUE;
12896
12897 if (h->root.type == bfd_link_hash_warning)
12898 /* When warning symbols are created, they **replace** the "real"
12899 entry in the hash table, thus we never get to see the real
12900 symbol in a hash traversal. So look at it now. */
12901 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12902
12903 if (h->plt.offset == (bfd_vma) -1)
12904 return TRUE;
12905
12906 eh = (struct elf32_arm_link_hash_entry *) h;
12907 addr = h->plt.offset;
12908 if (htab->symbian_p)
12909 {
7413f23f 12910 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e 12911 return FALSE;
7413f23f 12912 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
4e617b1e
PB
12913 return FALSE;
12914 }
12915 else if (htab->vxworks_p)
12916 {
7413f23f 12917 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e 12918 return FALSE;
7413f23f 12919 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
4e617b1e 12920 return FALSE;
7413f23f 12921 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
4e617b1e 12922 return FALSE;
7413f23f 12923 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
4e617b1e
PB
12924 return FALSE;
12925 }
12926 else
12927 {
bd97cb95
DJ
12928 bfd_signed_vma thumb_refs;
12929
12930 thumb_refs = eh->plt_thumb_refcount;
12931 if (!htab->use_blx)
12932 thumb_refs += eh->plt_maybe_thumb_refcount;
4e617b1e 12933
bd97cb95 12934 if (thumb_refs > 0)
4e617b1e 12935 {
7413f23f 12936 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
4e617b1e
PB
12937 return FALSE;
12938 }
12939#ifdef FOUR_WORD_PLT
7413f23f 12940 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e 12941 return FALSE;
7413f23f 12942 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
4e617b1e
PB
12943 return FALSE;
12944#else
906e58ca 12945 /* A three-word PLT with no Thumb thunk contains only Arm code,
4e617b1e
PB
12946 so only need to output a mapping symbol for the first PLT entry and
12947 entries with thumb thunks. */
bd97cb95 12948 if (thumb_refs > 0 || addr == 20)
4e617b1e 12949 {
7413f23f 12950 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e
PB
12951 return FALSE;
12952 }
12953#endif
12954 }
12955
12956 return TRUE;
12957}
12958
7413f23f
DJ
12959/* Output a single local symbol for a generated stub. */
12960
12961static bfd_boolean
12962elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
12963 bfd_vma offset, bfd_vma size)
12964{
12965 struct elf32_arm_link_hash_table *htab;
12966 Elf_Internal_Sym sym;
12967
12968 htab = elf32_arm_hash_table (osi->info);
12969 sym.st_value = osi->sec->output_section->vma
12970 + osi->sec->output_offset
12971 + offset;
12972 sym.st_size = size;
12973 sym.st_other = 0;
12974 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
12975 sym.st_shndx = osi->sec_shndx;
6e0b88f1 12976 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
7413f23f 12977}
4e617b1e 12978
da5938a2 12979static bfd_boolean
8029a119
NC
12980arm_map_one_stub (struct bfd_hash_entry * gen_entry,
12981 void * in_arg)
da5938a2
NC
12982{
12983 struct elf32_arm_stub_hash_entry *stub_entry;
12984 struct bfd_link_info *info;
12985 struct elf32_arm_link_hash_table *htab;
12986 asection *stub_sec;
12987 bfd_vma addr;
7413f23f 12988 char *stub_name;
9a008db3 12989 output_arch_syminfo *osi;
d3ce72d0 12990 const insn_sequence *template_sequence;
461a49ca
DJ
12991 enum stub_insn_type prev_type;
12992 int size;
12993 int i;
12994 enum map_symbol_type sym_type;
da5938a2
NC
12995
12996 /* Massage our args to the form they really have. */
12997 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
9a008db3 12998 osi = (output_arch_syminfo *) in_arg;
da5938a2 12999
da5938a2
NC
13000 info = osi->info;
13001
13002 htab = elf32_arm_hash_table (info);
13003 stub_sec = stub_entry->stub_sec;
13004
13005 /* Ensure this stub is attached to the current section being
7413f23f 13006 processed. */
da5938a2
NC
13007 if (stub_sec != osi->sec)
13008 return TRUE;
13009
7413f23f
DJ
13010 addr = (bfd_vma) stub_entry->stub_offset;
13011 stub_name = stub_entry->output_name;
da5938a2 13012
d3ce72d0
NC
13013 template_sequence = stub_entry->stub_template;
13014 switch (template_sequence[0].type)
7413f23f 13015 {
461a49ca
DJ
13016 case ARM_TYPE:
13017 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, stub_entry->stub_size))
da5938a2
NC
13018 return FALSE;
13019 break;
461a49ca 13020 case THUMB16_TYPE:
48229727 13021 case THUMB32_TYPE:
461a49ca
DJ
13022 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
13023 stub_entry->stub_size))
da5938a2
NC
13024 return FALSE;
13025 break;
13026 default:
13027 BFD_FAIL ();
48229727 13028 return 0;
7413f23f 13029 }
da5938a2 13030
461a49ca
DJ
13031 prev_type = DATA_TYPE;
13032 size = 0;
13033 for (i = 0; i < stub_entry->stub_template_size; i++)
13034 {
d3ce72d0 13035 switch (template_sequence[i].type)
461a49ca
DJ
13036 {
13037 case ARM_TYPE:
13038 sym_type = ARM_MAP_ARM;
13039 break;
13040
13041 case THUMB16_TYPE:
48229727 13042 case THUMB32_TYPE:
461a49ca
DJ
13043 sym_type = ARM_MAP_THUMB;
13044 break;
13045
13046 case DATA_TYPE:
13047 sym_type = ARM_MAP_DATA;
13048 break;
13049
13050 default:
13051 BFD_FAIL ();
4e31c731 13052 return FALSE;
461a49ca
DJ
13053 }
13054
d3ce72d0 13055 if (template_sequence[i].type != prev_type)
461a49ca 13056 {
d3ce72d0 13057 prev_type = template_sequence[i].type;
461a49ca
DJ
13058 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
13059 return FALSE;
13060 }
13061
d3ce72d0 13062 switch (template_sequence[i].type)
461a49ca
DJ
13063 {
13064 case ARM_TYPE:
48229727 13065 case THUMB32_TYPE:
461a49ca
DJ
13066 size += 4;
13067 break;
13068
13069 case THUMB16_TYPE:
13070 size += 2;
13071 break;
13072
13073 case DATA_TYPE:
13074 size += 4;
13075 break;
13076
13077 default:
13078 BFD_FAIL ();
4e31c731 13079 return FALSE;
461a49ca
DJ
13080 }
13081 }
13082
da5938a2
NC
13083 return TRUE;
13084}
13085
91a5743d 13086/* Output mapping symbols for linker generated sections. */
4e617b1e
PB
13087
13088static bfd_boolean
13089elf32_arm_output_arch_local_syms (bfd *output_bfd,
906e58ca
NC
13090 struct bfd_link_info *info,
13091 void *finfo,
6e0b88f1
AM
13092 int (*func) (void *, const char *,
13093 Elf_Internal_Sym *,
13094 asection *,
13095 struct elf_link_hash_entry *))
4e617b1e
PB
13096{
13097 output_arch_syminfo osi;
13098 struct elf32_arm_link_hash_table *htab;
91a5743d
PB
13099 bfd_vma offset;
13100 bfd_size_type size;
4e617b1e
PB
13101
13102 htab = elf32_arm_hash_table (info);
906e58ca 13103 check_use_blx (htab);
91a5743d 13104
4e617b1e
PB
13105 osi.finfo = finfo;
13106 osi.info = info;
13107 osi.func = func;
906e58ca 13108
91a5743d
PB
13109 /* ARM->Thumb glue. */
13110 if (htab->arm_glue_size > 0)
13111 {
13112 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
13113 ARM2THUMB_GLUE_SECTION_NAME);
13114
13115 osi.sec_shndx = _bfd_elf_section_from_bfd_section
13116 (output_bfd, osi.sec->output_section);
13117 if (info->shared || htab->root.is_relocatable_executable
13118 || htab->pic_veneer)
13119 size = ARM2THUMB_PIC_GLUE_SIZE;
13120 else if (htab->use_blx)
13121 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
13122 else
13123 size = ARM2THUMB_STATIC_GLUE_SIZE;
4e617b1e 13124
91a5743d
PB
13125 for (offset = 0; offset < htab->arm_glue_size; offset += size)
13126 {
7413f23f
DJ
13127 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
13128 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
91a5743d
PB
13129 }
13130 }
13131
13132 /* Thumb->ARM glue. */
13133 if (htab->thumb_glue_size > 0)
13134 {
13135 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
13136 THUMB2ARM_GLUE_SECTION_NAME);
13137
13138 osi.sec_shndx = _bfd_elf_section_from_bfd_section
13139 (output_bfd, osi.sec->output_section);
13140 size = THUMB2ARM_GLUE_SIZE;
13141
13142 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
13143 {
7413f23f
DJ
13144 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
13145 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
91a5743d
PB
13146 }
13147 }
13148
845b51d6
PB
13149 /* ARMv4 BX veneers. */
13150 if (htab->bx_glue_size > 0)
13151 {
13152 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
13153 ARM_BX_GLUE_SECTION_NAME);
13154
13155 osi.sec_shndx = _bfd_elf_section_from_bfd_section
13156 (output_bfd, osi.sec->output_section);
13157
7413f23f 13158 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
845b51d6
PB
13159 }
13160
8029a119
NC
13161 /* Long calls stubs. */
13162 if (htab->stub_bfd && htab->stub_bfd->sections)
13163 {
da5938a2 13164 asection* stub_sec;
8029a119 13165
da5938a2
NC
13166 for (stub_sec = htab->stub_bfd->sections;
13167 stub_sec != NULL;
8029a119
NC
13168 stub_sec = stub_sec->next)
13169 {
13170 /* Ignore non-stub sections. */
13171 if (!strstr (stub_sec->name, STUB_SUFFIX))
13172 continue;
da5938a2 13173
8029a119 13174 osi.sec = stub_sec;
da5938a2 13175
8029a119
NC
13176 osi.sec_shndx = _bfd_elf_section_from_bfd_section
13177 (output_bfd, osi.sec->output_section);
da5938a2 13178
8029a119
NC
13179 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
13180 }
13181 }
da5938a2 13182
91a5743d
PB
13183 /* Finally, output mapping symbols for the PLT. */
13184 if (!htab->splt || htab->splt->size == 0)
13185 return TRUE;
13186
13187 osi.sec_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
8029a119 13188 htab->splt->output_section);
91a5743d 13189 osi.sec = htab->splt;
4e617b1e
PB
13190 /* Output mapping symbols for the plt header. SymbianOS does not have a
13191 plt header. */
13192 if (htab->vxworks_p)
13193 {
13194 /* VxWorks shared libraries have no PLT header. */
13195 if (!info->shared)
13196 {
7413f23f 13197 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
4e617b1e 13198 return FALSE;
7413f23f 13199 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
4e617b1e
PB
13200 return FALSE;
13201 }
13202 }
13203 else if (!htab->symbian_p)
13204 {
7413f23f 13205 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
4e617b1e
PB
13206 return FALSE;
13207#ifndef FOUR_WORD_PLT
7413f23f 13208 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
4e617b1e
PB
13209 return FALSE;
13210#endif
13211 }
13212
13213 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, (void *) &osi);
13214 return TRUE;
13215}
13216
e489d0ae
PB
13217/* Allocate target specific section data. */
13218
13219static bfd_boolean
13220elf32_arm_new_section_hook (bfd *abfd, asection *sec)
13221{
f592407e
AM
13222 if (!sec->used_by_bfd)
13223 {
13224 _arm_elf_section_data *sdata;
13225 bfd_size_type amt = sizeof (*sdata);
e489d0ae 13226
f592407e
AM
13227 sdata = bfd_zalloc (abfd, amt);
13228 if (sdata == NULL)
13229 return FALSE;
13230 sec->used_by_bfd = sdata;
13231 }
e489d0ae 13232
957c6e41 13233 record_section_with_arm_elf_section_data (sec);
8e3de13a 13234
e489d0ae
PB
13235 return _bfd_elf_new_section_hook (abfd, sec);
13236}
13237
13238
13239/* Used to order a list of mapping symbols by address. */
13240
13241static int
13242elf32_arm_compare_mapping (const void * a, const void * b)
13243{
7f6a71ff
JM
13244 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
13245 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
13246
13247 if (amap->vma > bmap->vma)
13248 return 1;
13249 else if (amap->vma < bmap->vma)
13250 return -1;
13251 else if (amap->type > bmap->type)
13252 /* Ensure results do not depend on the host qsort for objects with
13253 multiple mapping symbols at the same address by sorting on type
13254 after vma. */
13255 return 1;
13256 else if (amap->type < bmap->type)
13257 return -1;
13258 else
13259 return 0;
e489d0ae
PB
13260}
13261
2468f9c9
PB
13262/* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
13263
13264static unsigned long
13265offset_prel31 (unsigned long addr, bfd_vma offset)
13266{
13267 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
13268}
13269
13270/* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
13271 relocations. */
13272
13273static void
13274copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
13275{
13276 unsigned long first_word = bfd_get_32 (output_bfd, from);
13277 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
13278
13279 /* High bit of first word is supposed to be zero. */
13280 if ((first_word & 0x80000000ul) == 0)
13281 first_word = offset_prel31 (first_word, offset);
13282
13283 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
13284 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
13285 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
13286 second_word = offset_prel31 (second_word, offset);
13287
13288 bfd_put_32 (output_bfd, first_word, to);
13289 bfd_put_32 (output_bfd, second_word, to + 4);
13290}
e489d0ae 13291
48229727
JB
13292/* Data for make_branch_to_a8_stub(). */
13293
13294struct a8_branch_to_stub_data {
13295 asection *writing_section;
13296 bfd_byte *contents;
13297};
13298
13299
13300/* Helper to insert branches to Cortex-A8 erratum stubs in the right
13301 places for a particular section. */
13302
13303static bfd_boolean
13304make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
13305 void *in_arg)
13306{
13307 struct elf32_arm_stub_hash_entry *stub_entry;
13308 struct a8_branch_to_stub_data *data;
13309 bfd_byte *contents;
13310 unsigned long branch_insn;
13311 bfd_vma veneered_insn_loc, veneer_entry_loc;
13312 bfd_signed_vma branch_offset;
13313 bfd *abfd;
13314 unsigned int index;
13315
13316 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
13317 data = (struct a8_branch_to_stub_data *) in_arg;
13318
13319 if (stub_entry->target_section != data->writing_section
13320 || stub_entry->stub_type < arm_stub_a8_veneer_b_cond)
13321 return TRUE;
13322
13323 contents = data->contents;
13324
13325 veneered_insn_loc = stub_entry->target_section->output_section->vma
13326 + stub_entry->target_section->output_offset
13327 + stub_entry->target_value;
13328
13329 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
13330 + stub_entry->stub_sec->output_offset
13331 + stub_entry->stub_offset;
13332
13333 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
13334 veneered_insn_loc &= ~3u;
13335
13336 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
13337
13338 abfd = stub_entry->target_section->owner;
13339 index = stub_entry->target_value;
13340
13341 /* We attempt to avoid this condition by setting stubs_always_after_branch
13342 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
13343 This check is just to be on the safe side... */
13344 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
13345 {
13346 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub is "
13347 "allocated in unsafe location"), abfd);
13348 return FALSE;
13349 }
13350
13351 switch (stub_entry->stub_type)
13352 {
13353 case arm_stub_a8_veneer_b:
13354 case arm_stub_a8_veneer_b_cond:
13355 branch_insn = 0xf0009000;
13356 goto jump24;
13357
13358 case arm_stub_a8_veneer_blx:
13359 branch_insn = 0xf000e800;
13360 goto jump24;
13361
13362 case arm_stub_a8_veneer_bl:
13363 {
13364 unsigned int i1, j1, i2, j2, s;
13365
13366 branch_insn = 0xf000d000;
13367
13368 jump24:
13369 if (branch_offset < -16777216 || branch_offset > 16777214)
13370 {
13371 /* There's not much we can do apart from complain if this
13372 happens. */
13373 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub out "
13374 "of range (input file too large)"), abfd);
13375 return FALSE;
13376 }
13377
13378 /* i1 = not(j1 eor s), so:
13379 not i1 = j1 eor s
13380 j1 = (not i1) eor s. */
13381
13382 branch_insn |= (branch_offset >> 1) & 0x7ff;
13383 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
13384 i2 = (branch_offset >> 22) & 1;
13385 i1 = (branch_offset >> 23) & 1;
13386 s = (branch_offset >> 24) & 1;
13387 j1 = (!i1) ^ s;
13388 j2 = (!i2) ^ s;
13389 branch_insn |= j2 << 11;
13390 branch_insn |= j1 << 13;
13391 branch_insn |= s << 26;
13392 }
13393 break;
13394
13395 default:
13396 BFD_FAIL ();
13397 return FALSE;
13398 }
13399
13400 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[index]);
13401 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[index + 2]);
13402
13403 return TRUE;
13404}
13405
e489d0ae
PB
13406/* Do code byteswapping. Return FALSE afterwards so that the section is
13407 written out as normal. */
13408
13409static bfd_boolean
c7b8f16e 13410elf32_arm_write_section (bfd *output_bfd,
8029a119
NC
13411 struct bfd_link_info *link_info,
13412 asection *sec,
e489d0ae
PB
13413 bfd_byte *contents)
13414{
48229727 13415 unsigned int mapcount, errcount;
8e3de13a 13416 _arm_elf_section_data *arm_data;
c7b8f16e 13417 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
e489d0ae 13418 elf32_arm_section_map *map;
c7b8f16e 13419 elf32_vfp11_erratum_list *errnode;
e489d0ae
PB
13420 bfd_vma ptr;
13421 bfd_vma end;
c7b8f16e 13422 bfd_vma offset = sec->output_section->vma + sec->output_offset;
e489d0ae 13423 bfd_byte tmp;
48229727 13424 unsigned int i;
57e8b36a 13425
8e3de13a
NC
13426 /* If this section has not been allocated an _arm_elf_section_data
13427 structure then we cannot record anything. */
13428 arm_data = get_arm_elf_section_data (sec);
13429 if (arm_data == NULL)
13430 return FALSE;
13431
13432 mapcount = arm_data->mapcount;
13433 map = arm_data->map;
c7b8f16e
JB
13434 errcount = arm_data->erratumcount;
13435
13436 if (errcount != 0)
13437 {
13438 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
13439
13440 for (errnode = arm_data->erratumlist; errnode != 0;
13441 errnode = errnode->next)
13442 {
13443 bfd_vma index = errnode->vma - offset;
13444
13445 switch (errnode->type)
13446 {
13447 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
13448 {
13449 bfd_vma branch_to_veneer;
13450 /* Original condition code of instruction, plus bit mask for
13451 ARM B instruction. */
13452 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
13453 | 0x0a000000;
13454
13455 /* The instruction is before the label. */
13456 index -= 4;
13457
13458 /* Above offset included in -4 below. */
13459 branch_to_veneer = errnode->u.b.veneer->vma
13460 - errnode->vma - 4;
13461
13462 if ((signed) branch_to_veneer < -(1 << 25)
13463 || (signed) branch_to_veneer >= (1 << 25))
13464 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
13465 "range"), output_bfd);
13466
13467 insn |= (branch_to_veneer >> 2) & 0xffffff;
13468 contents[endianflip ^ index] = insn & 0xff;
13469 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
13470 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
13471 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
13472 }
13473 break;
13474
13475 case VFP11_ERRATUM_ARM_VENEER:
13476 {
13477 bfd_vma branch_from_veneer;
13478 unsigned int insn;
13479
13480 /* Take size of veneer into account. */
13481 branch_from_veneer = errnode->u.v.branch->vma
13482 - errnode->vma - 12;
13483
13484 if ((signed) branch_from_veneer < -(1 << 25)
13485 || (signed) branch_from_veneer >= (1 << 25))
13486 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
13487 "range"), output_bfd);
13488
13489 /* Original instruction. */
13490 insn = errnode->u.v.branch->u.b.vfp_insn;
13491 contents[endianflip ^ index] = insn & 0xff;
13492 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
13493 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
13494 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
13495
13496 /* Branch back to insn after original insn. */
13497 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
13498 contents[endianflip ^ (index + 4)] = insn & 0xff;
13499 contents[endianflip ^ (index + 5)] = (insn >> 8) & 0xff;
13500 contents[endianflip ^ (index + 6)] = (insn >> 16) & 0xff;
13501 contents[endianflip ^ (index + 7)] = (insn >> 24) & 0xff;
13502 }
13503 break;
13504
13505 default:
13506 abort ();
13507 }
13508 }
13509 }
e489d0ae 13510
2468f9c9
PB
13511 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
13512 {
13513 arm_unwind_table_edit *edit_node
13514 = arm_data->u.exidx.unwind_edit_list;
13515 /* Now, sec->size is the size of the section we will write. The original
13516 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
13517 markers) was sec->rawsize. (This isn't the case if we perform no
13518 edits, then rawsize will be zero and we should use size). */
13519 bfd_byte *edited_contents = bfd_malloc (sec->size);
13520 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
13521 unsigned int in_index, out_index;
13522 bfd_vma add_to_offsets = 0;
13523
13524 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
13525 {
13526 if (edit_node)
13527 {
13528 unsigned int edit_index = edit_node->index;
13529
13530 if (in_index < edit_index && in_index * 8 < input_size)
13531 {
13532 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
13533 contents + in_index * 8, add_to_offsets);
13534 out_index++;
13535 in_index++;
13536 }
13537 else if (in_index == edit_index
13538 || (in_index * 8 >= input_size
13539 && edit_index == UINT_MAX))
13540 {
13541 switch (edit_node->type)
13542 {
13543 case DELETE_EXIDX_ENTRY:
13544 in_index++;
13545 add_to_offsets += 8;
13546 break;
13547
13548 case INSERT_EXIDX_CANTUNWIND_AT_END:
13549 {
13550 asection *text_sec = edit_node->linked_section;
13551 bfd_vma text_offset = text_sec->output_section->vma
13552 + text_sec->output_offset
13553 + text_sec->size;
13554 bfd_vma exidx_offset = offset + out_index * 8;
13555 unsigned long prel31_offset;
13556
13557 /* Note: this is meant to be equivalent to an
13558 R_ARM_PREL31 relocation. These synthetic
13559 EXIDX_CANTUNWIND markers are not relocated by the
13560 usual BFD method. */
13561 prel31_offset = (text_offset - exidx_offset)
13562 & 0x7ffffffful;
13563
13564 /* First address we can't unwind. */
13565 bfd_put_32 (output_bfd, prel31_offset,
13566 &edited_contents[out_index * 8]);
13567
13568 /* Code for EXIDX_CANTUNWIND. */
13569 bfd_put_32 (output_bfd, 0x1,
13570 &edited_contents[out_index * 8 + 4]);
13571
13572 out_index++;
13573 add_to_offsets -= 8;
13574 }
13575 break;
13576 }
13577
13578 edit_node = edit_node->next;
13579 }
13580 }
13581 else
13582 {
13583 /* No more edits, copy remaining entries verbatim. */
13584 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
13585 contents + in_index * 8, add_to_offsets);
13586 out_index++;
13587 in_index++;
13588 }
13589 }
13590
13591 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
13592 bfd_set_section_contents (output_bfd, sec->output_section,
13593 edited_contents,
13594 (file_ptr) sec->output_offset, sec->size);
13595
13596 return TRUE;
13597 }
13598
48229727
JB
13599 /* Fix code to point to Cortex-A8 erratum stubs. */
13600 if (globals->fix_cortex_a8)
13601 {
13602 struct a8_branch_to_stub_data data;
13603
13604 data.writing_section = sec;
13605 data.contents = contents;
13606
13607 bfd_hash_traverse (&globals->stub_hash_table, make_branch_to_a8_stub,
13608 &data);
13609 }
13610
e489d0ae
PB
13611 if (mapcount == 0)
13612 return FALSE;
13613
c7b8f16e 13614 if (globals->byteswap_code)
e489d0ae 13615 {
c7b8f16e 13616 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
57e8b36a 13617
c7b8f16e
JB
13618 ptr = map[0].vma;
13619 for (i = 0; i < mapcount; i++)
13620 {
13621 if (i == mapcount - 1)
13622 end = sec->size;
13623 else
13624 end = map[i + 1].vma;
e489d0ae 13625
c7b8f16e 13626 switch (map[i].type)
e489d0ae 13627 {
c7b8f16e
JB
13628 case 'a':
13629 /* Byte swap code words. */
13630 while (ptr + 3 < end)
13631 {
13632 tmp = contents[ptr];
13633 contents[ptr] = contents[ptr + 3];
13634 contents[ptr + 3] = tmp;
13635 tmp = contents[ptr + 1];
13636 contents[ptr + 1] = contents[ptr + 2];
13637 contents[ptr + 2] = tmp;
13638 ptr += 4;
13639 }
13640 break;
e489d0ae 13641
c7b8f16e
JB
13642 case 't':
13643 /* Byte swap code halfwords. */
13644 while (ptr + 1 < end)
13645 {
13646 tmp = contents[ptr];
13647 contents[ptr] = contents[ptr + 1];
13648 contents[ptr + 1] = tmp;
13649 ptr += 2;
13650 }
13651 break;
13652
13653 case 'd':
13654 /* Leave data alone. */
13655 break;
13656 }
13657 ptr = end;
13658 }
e489d0ae 13659 }
8e3de13a 13660
93204d3a 13661 free (map);
8e3de13a 13662 arm_data->mapcount = 0;
c7b8f16e 13663 arm_data->mapsize = 0;
8e3de13a
NC
13664 arm_data->map = NULL;
13665 unrecord_section_with_arm_elf_section_data (sec);
13666
e489d0ae
PB
13667 return FALSE;
13668}
13669
957c6e41
NC
13670static void
13671unrecord_section_via_map_over_sections (bfd * abfd ATTRIBUTE_UNUSED,
13672 asection * sec,
13673 void * ignore ATTRIBUTE_UNUSED)
13674{
13675 unrecord_section_with_arm_elf_section_data (sec);
13676}
13677
13678static bfd_boolean
13679elf32_arm_close_and_cleanup (bfd * abfd)
13680{
b25e3d87
L
13681 if (abfd->sections)
13682 bfd_map_over_sections (abfd,
13683 unrecord_section_via_map_over_sections,
13684 NULL);
957c6e41
NC
13685
13686 return _bfd_elf_close_and_cleanup (abfd);
13687}
13688
b25e3d87
L
13689static bfd_boolean
13690elf32_arm_bfd_free_cached_info (bfd * abfd)
13691{
13692 if (abfd->sections)
13693 bfd_map_over_sections (abfd,
13694 unrecord_section_via_map_over_sections,
13695 NULL);
13696
13697 return _bfd_free_cached_info (abfd);
13698}
13699
b7693d02
DJ
13700/* Display STT_ARM_TFUNC symbols as functions. */
13701
13702static void
13703elf32_arm_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
13704 asymbol *asym)
13705{
13706 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
13707
13708 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_ARM_TFUNC)
13709 elfsym->symbol.flags |= BSF_FUNCTION;
13710}
13711
0beaef2b
PB
13712
13713/* Mangle thumb function symbols as we read them in. */
13714
8384fb8f 13715static bfd_boolean
0beaef2b
PB
13716elf32_arm_swap_symbol_in (bfd * abfd,
13717 const void *psrc,
13718 const void *pshn,
13719 Elf_Internal_Sym *dst)
13720{
8384fb8f
AM
13721 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
13722 return FALSE;
0beaef2b
PB
13723
13724 /* New EABI objects mark thumb function symbols by setting the low bit of
13725 the address. Turn these into STT_ARM_TFUNC. */
0f88be7a 13726 if ((ELF_ST_TYPE (dst->st_info) == STT_FUNC)
0beaef2b
PB
13727 && (dst->st_value & 1))
13728 {
13729 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_ARM_TFUNC);
13730 dst->st_value &= ~(bfd_vma) 1;
13731 }
8384fb8f 13732 return TRUE;
0beaef2b
PB
13733}
13734
13735
13736/* Mangle thumb function symbols as we write them out. */
13737
13738static void
13739elf32_arm_swap_symbol_out (bfd *abfd,
13740 const Elf_Internal_Sym *src,
13741 void *cdst,
13742 void *shndx)
13743{
13744 Elf_Internal_Sym newsym;
13745
13746 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
13747 of the address set, as per the new EABI. We do this unconditionally
13748 because objcopy does not set the elf header flags until after
13749 it writes out the symbol table. */
13750 if (ELF_ST_TYPE (src->st_info) == STT_ARM_TFUNC)
13751 {
13752 newsym = *src;
13753 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
0fa3dcad
PB
13754 if (newsym.st_shndx != SHN_UNDEF)
13755 {
13756 /* Do this only for defined symbols. At link type, the static
13757 linker will simulate the work of dynamic linker of resolving
13758 symbols and will carry over the thumbness of found symbols to
13759 the output symbol table. It's not clear how it happens, but
b0fead2b 13760 the thumbness of undefined symbols can well be different at
0fa3dcad
PB
13761 runtime, and writing '1' for them will be confusing for users
13762 and possibly for dynamic linker itself.
13763 */
13764 newsym.st_value |= 1;
13765 }
906e58ca 13766
0beaef2b
PB
13767 src = &newsym;
13768 }
13769 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
13770}
13771
b294bdf8
MM
13772/* Add the PT_ARM_EXIDX program header. */
13773
13774static bfd_boolean
906e58ca 13775elf32_arm_modify_segment_map (bfd *abfd,
b294bdf8
MM
13776 struct bfd_link_info *info ATTRIBUTE_UNUSED)
13777{
13778 struct elf_segment_map *m;
13779 asection *sec;
13780
13781 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
13782 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
13783 {
13784 /* If there is already a PT_ARM_EXIDX header, then we do not
13785 want to add another one. This situation arises when running
13786 "strip"; the input binary already has the header. */
13787 m = elf_tdata (abfd)->segment_map;
13788 while (m && m->p_type != PT_ARM_EXIDX)
13789 m = m->next;
13790 if (!m)
13791 {
13792 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
13793 if (m == NULL)
13794 return FALSE;
13795 m->p_type = PT_ARM_EXIDX;
13796 m->count = 1;
13797 m->sections[0] = sec;
13798
13799 m->next = elf_tdata (abfd)->segment_map;
13800 elf_tdata (abfd)->segment_map = m;
13801 }
13802 }
13803
13804 return TRUE;
13805}
13806
13807/* We may add a PT_ARM_EXIDX program header. */
13808
13809static int
a6b96beb
AM
13810elf32_arm_additional_program_headers (bfd *abfd,
13811 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b294bdf8
MM
13812{
13813 asection *sec;
13814
13815 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
13816 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
13817 return 1;
13818 else
13819 return 0;
13820}
13821
fcb93ecf 13822/* We have two function types: STT_FUNC and STT_ARM_TFUNC. */
906e58ca 13823
fcb93ecf
PB
13824static bfd_boolean
13825elf32_arm_is_function_type (unsigned int type)
13826{
0f88be7a 13827 return (type == STT_FUNC) || (type == STT_ARM_TFUNC);
fcb93ecf
PB
13828}
13829
0beaef2b 13830/* We use this to override swap_symbol_in and swap_symbol_out. */
906e58ca
NC
13831const struct elf_size_info elf32_arm_size_info =
13832{
0beaef2b
PB
13833 sizeof (Elf32_External_Ehdr),
13834 sizeof (Elf32_External_Phdr),
13835 sizeof (Elf32_External_Shdr),
13836 sizeof (Elf32_External_Rel),
13837 sizeof (Elf32_External_Rela),
13838 sizeof (Elf32_External_Sym),
13839 sizeof (Elf32_External_Dyn),
13840 sizeof (Elf_External_Note),
13841 4,
13842 1,
13843 32, 2,
13844 ELFCLASS32, EV_CURRENT,
13845 bfd_elf32_write_out_phdrs,
13846 bfd_elf32_write_shdrs_and_ehdr,
1489a3a0 13847 bfd_elf32_checksum_contents,
0beaef2b
PB
13848 bfd_elf32_write_relocs,
13849 elf32_arm_swap_symbol_in,
13850 elf32_arm_swap_symbol_out,
13851 bfd_elf32_slurp_reloc_table,
13852 bfd_elf32_slurp_symbol_table,
13853 bfd_elf32_swap_dyn_in,
13854 bfd_elf32_swap_dyn_out,
13855 bfd_elf32_swap_reloc_in,
13856 bfd_elf32_swap_reloc_out,
13857 bfd_elf32_swap_reloca_in,
13858 bfd_elf32_swap_reloca_out
13859};
13860
252b5132
RH
13861#define ELF_ARCH bfd_arch_arm
13862#define ELF_MACHINE_CODE EM_ARM
d0facd1b
NC
13863#ifdef __QNXTARGET__
13864#define ELF_MAXPAGESIZE 0x1000
13865#else
f21f3fe0 13866#define ELF_MAXPAGESIZE 0x8000
d0facd1b 13867#endif
b1342370 13868#define ELF_MINPAGESIZE 0x1000
24718e3b 13869#define ELF_COMMONPAGESIZE 0x1000
252b5132 13870
ba93b8ac
DJ
13871#define bfd_elf32_mkobject elf32_arm_mkobject
13872
99e4ae17
AJ
13873#define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
13874#define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
252b5132
RH
13875#define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
13876#define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
13877#define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
906e58ca 13878#define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
dc810e39 13879#define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
157090f7 13880#define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
252b5132 13881#define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
4ab527b0 13882#define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
e489d0ae 13883#define bfd_elf32_new_section_hook elf32_arm_new_section_hook
3c9458e9 13884#define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
957c6e41 13885#define bfd_elf32_close_and_cleanup elf32_arm_close_and_cleanup
b25e3d87 13886#define bfd_elf32_bfd_free_cached_info elf32_arm_bfd_free_cached_info
3e6b1042 13887#define bfd_elf32_bfd_final_link elf32_arm_final_link
252b5132
RH
13888
13889#define elf_backend_get_symbol_type elf32_arm_get_symbol_type
13890#define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
6a5bb875 13891#define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
252b5132
RH
13892#define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
13893#define elf_backend_check_relocs elf32_arm_check_relocs
dc810e39 13894#define elf_backend_relocate_section elf32_arm_relocate_section
e489d0ae 13895#define elf_backend_write_section elf32_arm_write_section
252b5132 13896#define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
5e681ec4 13897#define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
252b5132
RH
13898#define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
13899#define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
13900#define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
74541ad4 13901#define elf_backend_init_index_section _bfd_elf_init_2_index_sections
ba96a88f 13902#define elf_backend_post_process_headers elf32_arm_post_process_headers
99e4ae17 13903#define elf_backend_reloc_type_class elf32_arm_reloc_type_class
c178919b 13904#define elf_backend_object_p elf32_arm_object_p
e16bb312 13905#define elf_backend_section_flags elf32_arm_section_flags
40a18ebd
NC
13906#define elf_backend_fake_sections elf32_arm_fake_sections
13907#define elf_backend_section_from_shdr elf32_arm_section_from_shdr
e16bb312 13908#define elf_backend_final_write_processing elf32_arm_final_write_processing
5e681ec4 13909#define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
b7693d02 13910#define elf_backend_symbol_processing elf32_arm_symbol_processing
0beaef2b 13911#define elf_backend_size_info elf32_arm_size_info
b294bdf8 13912#define elf_backend_modify_segment_map elf32_arm_modify_segment_map
906e58ca
NC
13913#define elf_backend_additional_program_headers elf32_arm_additional_program_headers
13914#define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
13915#define elf_backend_begin_write_processing elf32_arm_begin_write_processing
13916#define elf_backend_is_function_type elf32_arm_is_function_type
13917
13918#define elf_backend_can_refcount 1
13919#define elf_backend_can_gc_sections 1
13920#define elf_backend_plt_readonly 1
13921#define elf_backend_want_got_plt 1
13922#define elf_backend_want_plt_sym 0
13923#define elf_backend_may_use_rel_p 1
13924#define elf_backend_may_use_rela_p 0
4e7fd91e 13925#define elf_backend_default_use_rela_p 0
252b5132 13926
04f7c78d 13927#define elf_backend_got_header_size 12
04f7c78d 13928
906e58ca
NC
13929#undef elf_backend_obj_attrs_vendor
13930#define elf_backend_obj_attrs_vendor "aeabi"
13931#undef elf_backend_obj_attrs_section
13932#define elf_backend_obj_attrs_section ".ARM.attributes"
13933#undef elf_backend_obj_attrs_arg_type
13934#define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
13935#undef elf_backend_obj_attrs_section_type
104d59d1 13936#define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
5aa6ff7c 13937#define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
104d59d1 13938
252b5132 13939#include "elf32-target.h"
7f266840 13940
906e58ca 13941/* VxWorks Targets. */
4e7fd91e 13942
906e58ca 13943#undef TARGET_LITTLE_SYM
4e7fd91e 13944#define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
906e58ca 13945#undef TARGET_LITTLE_NAME
4e7fd91e 13946#define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
906e58ca 13947#undef TARGET_BIG_SYM
4e7fd91e 13948#define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
906e58ca 13949#undef TARGET_BIG_NAME
4e7fd91e
PB
13950#define TARGET_BIG_NAME "elf32-bigarm-vxworks"
13951
13952/* Like elf32_arm_link_hash_table_create -- but overrides
13953 appropriately for VxWorks. */
906e58ca 13954
4e7fd91e
PB
13955static struct bfd_link_hash_table *
13956elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
13957{
13958 struct bfd_link_hash_table *ret;
13959
13960 ret = elf32_arm_link_hash_table_create (abfd);
13961 if (ret)
13962 {
13963 struct elf32_arm_link_hash_table *htab
00a97672 13964 = (struct elf32_arm_link_hash_table *) ret;
4e7fd91e 13965 htab->use_rel = 0;
00a97672 13966 htab->vxworks_p = 1;
4e7fd91e
PB
13967 }
13968 return ret;
906e58ca 13969}
4e7fd91e 13970
00a97672
RS
13971static void
13972elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
13973{
13974 elf32_arm_final_write_processing (abfd, linker);
13975 elf_vxworks_final_write_processing (abfd, linker);
13976}
13977
906e58ca 13978#undef elf32_bed
4e7fd91e
PB
13979#define elf32_bed elf32_arm_vxworks_bed
13980
906e58ca
NC
13981#undef bfd_elf32_bfd_link_hash_table_create
13982#define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
13983#undef elf_backend_add_symbol_hook
13984#define elf_backend_add_symbol_hook elf_vxworks_add_symbol_hook
13985#undef elf_backend_final_write_processing
13986#define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
13987#undef elf_backend_emit_relocs
13988#define elf_backend_emit_relocs elf_vxworks_emit_relocs
4e7fd91e 13989
906e58ca 13990#undef elf_backend_may_use_rel_p
00a97672 13991#define elf_backend_may_use_rel_p 0
906e58ca 13992#undef elf_backend_may_use_rela_p
00a97672 13993#define elf_backend_may_use_rela_p 1
906e58ca 13994#undef elf_backend_default_use_rela_p
00a97672 13995#define elf_backend_default_use_rela_p 1
906e58ca 13996#undef elf_backend_want_plt_sym
00a97672 13997#define elf_backend_want_plt_sym 1
906e58ca 13998#undef ELF_MAXPAGESIZE
00a97672 13999#define ELF_MAXPAGESIZE 0x1000
4e7fd91e
PB
14000
14001#include "elf32-target.h"
14002
14003
906e58ca 14004/* Symbian OS Targets. */
7f266840 14005
906e58ca 14006#undef TARGET_LITTLE_SYM
7f266840 14007#define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
906e58ca 14008#undef TARGET_LITTLE_NAME
7f266840 14009#define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
906e58ca 14010#undef TARGET_BIG_SYM
7f266840 14011#define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
906e58ca 14012#undef TARGET_BIG_NAME
7f266840
DJ
14013#define TARGET_BIG_NAME "elf32-bigarm-symbian"
14014
14015/* Like elf32_arm_link_hash_table_create -- but overrides
14016 appropriately for Symbian OS. */
906e58ca 14017
7f266840
DJ
14018static struct bfd_link_hash_table *
14019elf32_arm_symbian_link_hash_table_create (bfd *abfd)
14020{
14021 struct bfd_link_hash_table *ret;
14022
14023 ret = elf32_arm_link_hash_table_create (abfd);
14024 if (ret)
14025 {
14026 struct elf32_arm_link_hash_table *htab
14027 = (struct elf32_arm_link_hash_table *)ret;
14028 /* There is no PLT header for Symbian OS. */
14029 htab->plt_header_size = 0;
95720a86
DJ
14030 /* The PLT entries are each one instruction and one word. */
14031 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
7f266840 14032 htab->symbian_p = 1;
33bfe774
JB
14033 /* Symbian uses armv5t or above, so use_blx is always true. */
14034 htab->use_blx = 1;
67687978 14035 htab->root.is_relocatable_executable = 1;
7f266840
DJ
14036 }
14037 return ret;
906e58ca 14038}
7f266840 14039
b35d266b 14040static const struct bfd_elf_special_section
551b43fd 14041elf32_arm_symbian_special_sections[] =
7f266840 14042{
5cd3778d
MM
14043 /* In a BPABI executable, the dynamic linking sections do not go in
14044 the loadable read-only segment. The post-linker may wish to
14045 refer to these sections, but they are not part of the final
14046 program image. */
0112cd26
NC
14047 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
14048 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
14049 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
14050 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
14051 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
5cd3778d
MM
14052 /* These sections do not need to be writable as the SymbianOS
14053 postlinker will arrange things so that no dynamic relocation is
14054 required. */
0112cd26
NC
14055 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
14056 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
14057 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
14058 { NULL, 0, 0, 0, 0 }
7f266840
DJ
14059};
14060
c3c76620 14061static void
906e58ca 14062elf32_arm_symbian_begin_write_processing (bfd *abfd,
a4fd1a8e 14063 struct bfd_link_info *link_info)
c3c76620
MM
14064{
14065 /* BPABI objects are never loaded directly by an OS kernel; they are
14066 processed by a postlinker first, into an OS-specific format. If
14067 the D_PAGED bit is set on the file, BFD will align segments on
14068 page boundaries, so that an OS can directly map the file. With
14069 BPABI objects, that just results in wasted space. In addition,
14070 because we clear the D_PAGED bit, map_sections_to_segments will
14071 recognize that the program headers should not be mapped into any
14072 loadable segment. */
14073 abfd->flags &= ~D_PAGED;
906e58ca 14074 elf32_arm_begin_write_processing (abfd, link_info);
c3c76620 14075}
7f266840
DJ
14076
14077static bfd_boolean
906e58ca 14078elf32_arm_symbian_modify_segment_map (bfd *abfd,
b294bdf8 14079 struct bfd_link_info *info)
7f266840
DJ
14080{
14081 struct elf_segment_map *m;
14082 asection *dynsec;
14083
7f266840
DJ
14084 /* BPABI shared libraries and executables should have a PT_DYNAMIC
14085 segment. However, because the .dynamic section is not marked
14086 with SEC_LOAD, the generic ELF code will not create such a
14087 segment. */
14088 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
14089 if (dynsec)
14090 {
8ded5a0f
AM
14091 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
14092 if (m->p_type == PT_DYNAMIC)
14093 break;
14094
14095 if (m == NULL)
14096 {
14097 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
14098 m->next = elf_tdata (abfd)->segment_map;
14099 elf_tdata (abfd)->segment_map = m;
14100 }
7f266840
DJ
14101 }
14102
b294bdf8
MM
14103 /* Also call the generic arm routine. */
14104 return elf32_arm_modify_segment_map (abfd, info);
7f266840
DJ
14105}
14106
95720a86
DJ
14107/* Return address for Ith PLT stub in section PLT, for relocation REL
14108 or (bfd_vma) -1 if it should not be included. */
14109
14110static bfd_vma
14111elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
14112 const arelent *rel ATTRIBUTE_UNUSED)
14113{
14114 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
14115}
14116
14117
8029a119 14118#undef elf32_bed
7f266840
DJ
14119#define elf32_bed elf32_arm_symbian_bed
14120
14121/* The dynamic sections are not allocated on SymbianOS; the postlinker
14122 will process them and then discard them. */
906e58ca 14123#undef ELF_DYNAMIC_SEC_FLAGS
7f266840
DJ
14124#define ELF_DYNAMIC_SEC_FLAGS \
14125 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
14126
00a97672 14127#undef elf_backend_add_symbol_hook
00a97672 14128#undef elf_backend_emit_relocs
c3c76620 14129
906e58ca
NC
14130#undef bfd_elf32_bfd_link_hash_table_create
14131#define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
14132#undef elf_backend_special_sections
14133#define elf_backend_special_sections elf32_arm_symbian_special_sections
14134#undef elf_backend_begin_write_processing
14135#define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
14136#undef elf_backend_final_write_processing
14137#define elf_backend_final_write_processing elf32_arm_final_write_processing
14138
14139#undef elf_backend_modify_segment_map
7f266840
DJ
14140#define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
14141
14142/* There is no .got section for BPABI objects, and hence no header. */
906e58ca 14143#undef elf_backend_got_header_size
7f266840
DJ
14144#define elf_backend_got_header_size 0
14145
14146/* Similarly, there is no .got.plt section. */
906e58ca 14147#undef elf_backend_want_got_plt
7f266840
DJ
14148#define elf_backend_want_got_plt 0
14149
906e58ca 14150#undef elf_backend_plt_sym_val
95720a86
DJ
14151#define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
14152
906e58ca 14153#undef elf_backend_may_use_rel_p
00a97672 14154#define elf_backend_may_use_rel_p 1
906e58ca 14155#undef elf_backend_may_use_rela_p
00a97672 14156#define elf_backend_may_use_rela_p 0
906e58ca 14157#undef elf_backend_default_use_rela_p
00a97672 14158#define elf_backend_default_use_rela_p 0
906e58ca 14159#undef elf_backend_want_plt_sym
00a97672 14160#define elf_backend_want_plt_sym 0
906e58ca 14161#undef ELF_MAXPAGESIZE
00a97672 14162#define ELF_MAXPAGESIZE 0x8000
4e7fd91e 14163
7f266840 14164#include "elf32-target.h"
This page took 1.448679 seconds and 4 git commands to generate.