Automatic date update in version.in
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
CommitLineData
252b5132 1/* 32-bit ELF support for ARM
219d1afa 2 Copyright (C) 1998-2018 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
cd123cb7 8 the Free Software Foundation; either version 3 of the License, or
252b5132
RH
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
cd123cb7
NC
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
252b5132 20
6e6718a3 21#include "sysdep.h"
2468f9c9
PB
22#include <limits.h>
23
3db64b00 24#include "bfd.h"
6034aab8 25#include "bfd_stdint.h"
00a97672 26#include "libiberty.h"
7f266840
DJ
27#include "libbfd.h"
28#include "elf-bfd.h"
b38cadfb 29#include "elf-nacl.h"
00a97672 30#include "elf-vxworks.h"
ee065d83 31#include "elf/arm.h"
7f266840 32
00a97672
RS
33/* Return the relocation section associated with NAME. HTAB is the
34 bfd's elf32_arm_link_hash_entry. */
35#define RELOC_SECTION(HTAB, NAME) \
36 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
37
38/* Return size of a relocation entry. HTAB is the bfd's
39 elf32_arm_link_hash_entry. */
40#define RELOC_SIZE(HTAB) \
41 ((HTAB)->use_rel \
42 ? sizeof (Elf32_External_Rel) \
43 : sizeof (Elf32_External_Rela))
44
45/* Return function to swap relocations in. HTAB is the bfd's
46 elf32_arm_link_hash_entry. */
47#define SWAP_RELOC_IN(HTAB) \
48 ((HTAB)->use_rel \
49 ? bfd_elf32_swap_reloc_in \
50 : bfd_elf32_swap_reloca_in)
51
52/* Return function to swap relocations out. HTAB is the bfd's
53 elf32_arm_link_hash_entry. */
54#define SWAP_RELOC_OUT(HTAB) \
55 ((HTAB)->use_rel \
56 ? bfd_elf32_swap_reloc_out \
57 : bfd_elf32_swap_reloca_out)
58
f3185997 59#define elf_info_to_howto NULL
07d6d2b8 60#define elf_info_to_howto_rel elf32_arm_info_to_howto
7f266840
DJ
61
62#define ARM_ELF_ABI_VERSION 0
63#define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
64
79f08007
YZ
65/* The Adjusted Place, as defined by AAELF. */
66#define Pa(X) ((X) & 0xfffffffc)
67
3e6b1042
DJ
68static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
69 struct bfd_link_info *link_info,
70 asection *sec,
71 bfd_byte *contents);
72
7f266840
DJ
73/* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
74 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
75 in that slot. */
76
c19d1205 77static reloc_howto_type elf32_arm_howto_table_1[] =
7f266840 78{
8029a119 79 /* No relocation. */
7f266840
DJ
80 HOWTO (R_ARM_NONE, /* type */
81 0, /* rightshift */
6346d5ca 82 3, /* size (0 = byte, 1 = short, 2 = long) */
7f266840
DJ
83 0, /* bitsize */
84 FALSE, /* pc_relative */
85 0, /* bitpos */
86 complain_overflow_dont,/* complain_on_overflow */
87 bfd_elf_generic_reloc, /* special_function */
88 "R_ARM_NONE", /* name */
89 FALSE, /* partial_inplace */
90 0, /* src_mask */
91 0, /* dst_mask */
92 FALSE), /* pcrel_offset */
93
94 HOWTO (R_ARM_PC24, /* type */
95 2, /* rightshift */
96 2, /* size (0 = byte, 1 = short, 2 = long) */
97 24, /* bitsize */
98 TRUE, /* pc_relative */
99 0, /* bitpos */
100 complain_overflow_signed,/* complain_on_overflow */
101 bfd_elf_generic_reloc, /* special_function */
102 "R_ARM_PC24", /* name */
103 FALSE, /* partial_inplace */
104 0x00ffffff, /* src_mask */
105 0x00ffffff, /* dst_mask */
106 TRUE), /* pcrel_offset */
107
108 /* 32 bit absolute */
109 HOWTO (R_ARM_ABS32, /* type */
110 0, /* rightshift */
111 2, /* size (0 = byte, 1 = short, 2 = long) */
112 32, /* bitsize */
113 FALSE, /* pc_relative */
114 0, /* bitpos */
115 complain_overflow_bitfield,/* complain_on_overflow */
116 bfd_elf_generic_reloc, /* special_function */
117 "R_ARM_ABS32", /* name */
118 FALSE, /* partial_inplace */
119 0xffffffff, /* src_mask */
120 0xffffffff, /* dst_mask */
121 FALSE), /* pcrel_offset */
122
123 /* standard 32bit pc-relative reloc */
124 HOWTO (R_ARM_REL32, /* type */
125 0, /* rightshift */
126 2, /* size (0 = byte, 1 = short, 2 = long) */
127 32, /* bitsize */
128 TRUE, /* pc_relative */
129 0, /* bitpos */
130 complain_overflow_bitfield,/* complain_on_overflow */
131 bfd_elf_generic_reloc, /* special_function */
132 "R_ARM_REL32", /* name */
133 FALSE, /* partial_inplace */
134 0xffffffff, /* src_mask */
135 0xffffffff, /* dst_mask */
136 TRUE), /* pcrel_offset */
137
c19d1205 138 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
4962c51a 139 HOWTO (R_ARM_LDR_PC_G0, /* type */
7f266840
DJ
140 0, /* rightshift */
141 0, /* size (0 = byte, 1 = short, 2 = long) */
4962c51a
MS
142 32, /* bitsize */
143 TRUE, /* pc_relative */
7f266840 144 0, /* bitpos */
4962c51a 145 complain_overflow_dont,/* complain_on_overflow */
7f266840 146 bfd_elf_generic_reloc, /* special_function */
4962c51a 147 "R_ARM_LDR_PC_G0", /* name */
7f266840 148 FALSE, /* partial_inplace */
4962c51a
MS
149 0xffffffff, /* src_mask */
150 0xffffffff, /* dst_mask */
151 TRUE), /* pcrel_offset */
7f266840
DJ
152
153 /* 16 bit absolute */
154 HOWTO (R_ARM_ABS16, /* type */
155 0, /* rightshift */
156 1, /* size (0 = byte, 1 = short, 2 = long) */
157 16, /* bitsize */
158 FALSE, /* pc_relative */
159 0, /* bitpos */
160 complain_overflow_bitfield,/* complain_on_overflow */
161 bfd_elf_generic_reloc, /* special_function */
162 "R_ARM_ABS16", /* name */
163 FALSE, /* partial_inplace */
164 0x0000ffff, /* src_mask */
165 0x0000ffff, /* dst_mask */
166 FALSE), /* pcrel_offset */
167
168 /* 12 bit absolute */
169 HOWTO (R_ARM_ABS12, /* type */
170 0, /* rightshift */
171 2, /* size (0 = byte, 1 = short, 2 = long) */
172 12, /* bitsize */
173 FALSE, /* pc_relative */
174 0, /* bitpos */
175 complain_overflow_bitfield,/* complain_on_overflow */
176 bfd_elf_generic_reloc, /* special_function */
177 "R_ARM_ABS12", /* name */
178 FALSE, /* partial_inplace */
00a97672
RS
179 0x00000fff, /* src_mask */
180 0x00000fff, /* dst_mask */
7f266840
DJ
181 FALSE), /* pcrel_offset */
182
183 HOWTO (R_ARM_THM_ABS5, /* type */
184 6, /* rightshift */
185 1, /* size (0 = byte, 1 = short, 2 = long) */
186 5, /* bitsize */
187 FALSE, /* pc_relative */
188 0, /* bitpos */
189 complain_overflow_bitfield,/* complain_on_overflow */
190 bfd_elf_generic_reloc, /* special_function */
191 "R_ARM_THM_ABS5", /* name */
192 FALSE, /* partial_inplace */
193 0x000007e0, /* src_mask */
194 0x000007e0, /* dst_mask */
195 FALSE), /* pcrel_offset */
196
197 /* 8 bit absolute */
198 HOWTO (R_ARM_ABS8, /* type */
199 0, /* rightshift */
200 0, /* size (0 = byte, 1 = short, 2 = long) */
201 8, /* bitsize */
202 FALSE, /* pc_relative */
203 0, /* bitpos */
204 complain_overflow_bitfield,/* complain_on_overflow */
205 bfd_elf_generic_reloc, /* special_function */
206 "R_ARM_ABS8", /* name */
207 FALSE, /* partial_inplace */
208 0x000000ff, /* src_mask */
209 0x000000ff, /* dst_mask */
210 FALSE), /* pcrel_offset */
211
212 HOWTO (R_ARM_SBREL32, /* type */
213 0, /* rightshift */
214 2, /* size (0 = byte, 1 = short, 2 = long) */
215 32, /* bitsize */
216 FALSE, /* pc_relative */
217 0, /* bitpos */
218 complain_overflow_dont,/* complain_on_overflow */
219 bfd_elf_generic_reloc, /* special_function */
220 "R_ARM_SBREL32", /* name */
221 FALSE, /* partial_inplace */
222 0xffffffff, /* src_mask */
223 0xffffffff, /* dst_mask */
224 FALSE), /* pcrel_offset */
225
c19d1205 226 HOWTO (R_ARM_THM_CALL, /* type */
7f266840
DJ
227 1, /* rightshift */
228 2, /* size (0 = byte, 1 = short, 2 = long) */
f6ebfac0 229 24, /* bitsize */
7f266840
DJ
230 TRUE, /* pc_relative */
231 0, /* bitpos */
232 complain_overflow_signed,/* complain_on_overflow */
233 bfd_elf_generic_reloc, /* special_function */
c19d1205 234 "R_ARM_THM_CALL", /* name */
7f266840 235 FALSE, /* partial_inplace */
7f6ab9f8
AM
236 0x07ff2fff, /* src_mask */
237 0x07ff2fff, /* dst_mask */
7f266840
DJ
238 TRUE), /* pcrel_offset */
239
07d6d2b8 240 HOWTO (R_ARM_THM_PC8, /* type */
7f266840
DJ
241 1, /* rightshift */
242 1, /* size (0 = byte, 1 = short, 2 = long) */
243 8, /* bitsize */
244 TRUE, /* pc_relative */
245 0, /* bitpos */
246 complain_overflow_signed,/* complain_on_overflow */
247 bfd_elf_generic_reloc, /* special_function */
248 "R_ARM_THM_PC8", /* name */
249 FALSE, /* partial_inplace */
250 0x000000ff, /* src_mask */
251 0x000000ff, /* dst_mask */
252 TRUE), /* pcrel_offset */
253
c19d1205 254 HOWTO (R_ARM_BREL_ADJ, /* type */
7f266840
DJ
255 1, /* rightshift */
256 1, /* size (0 = byte, 1 = short, 2 = long) */
c19d1205
ZW
257 32, /* bitsize */
258 FALSE, /* pc_relative */
7f266840
DJ
259 0, /* bitpos */
260 complain_overflow_signed,/* complain_on_overflow */
261 bfd_elf_generic_reloc, /* special_function */
c19d1205 262 "R_ARM_BREL_ADJ", /* name */
7f266840 263 FALSE, /* partial_inplace */
c19d1205
ZW
264 0xffffffff, /* src_mask */
265 0xffffffff, /* dst_mask */
266 FALSE), /* pcrel_offset */
7f266840 267
0855e32b 268 HOWTO (R_ARM_TLS_DESC, /* type */
7f266840 269 0, /* rightshift */
0855e32b
NS
270 2, /* size (0 = byte, 1 = short, 2 = long) */
271 32, /* bitsize */
7f266840
DJ
272 FALSE, /* pc_relative */
273 0, /* bitpos */
0855e32b 274 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 275 bfd_elf_generic_reloc, /* special_function */
0855e32b 276 "R_ARM_TLS_DESC", /* name */
7f266840 277 FALSE, /* partial_inplace */
0855e32b
NS
278 0xffffffff, /* src_mask */
279 0xffffffff, /* dst_mask */
7f266840
DJ
280 FALSE), /* pcrel_offset */
281
282 HOWTO (R_ARM_THM_SWI8, /* type */
283 0, /* rightshift */
284 0, /* size (0 = byte, 1 = short, 2 = long) */
285 0, /* bitsize */
286 FALSE, /* pc_relative */
287 0, /* bitpos */
288 complain_overflow_signed,/* complain_on_overflow */
289 bfd_elf_generic_reloc, /* special_function */
290 "R_ARM_SWI8", /* name */
291 FALSE, /* partial_inplace */
292 0x00000000, /* src_mask */
293 0x00000000, /* dst_mask */
294 FALSE), /* pcrel_offset */
295
296 /* BLX instruction for the ARM. */
297 HOWTO (R_ARM_XPC25, /* type */
298 2, /* rightshift */
299 2, /* size (0 = byte, 1 = short, 2 = long) */
7f6ab9f8 300 24, /* bitsize */
7f266840
DJ
301 TRUE, /* pc_relative */
302 0, /* bitpos */
303 complain_overflow_signed,/* complain_on_overflow */
304 bfd_elf_generic_reloc, /* special_function */
305 "R_ARM_XPC25", /* name */
306 FALSE, /* partial_inplace */
307 0x00ffffff, /* src_mask */
308 0x00ffffff, /* dst_mask */
309 TRUE), /* pcrel_offset */
310
311 /* BLX instruction for the Thumb. */
312 HOWTO (R_ARM_THM_XPC22, /* type */
313 2, /* rightshift */
314 2, /* size (0 = byte, 1 = short, 2 = long) */
7f6ab9f8 315 24, /* bitsize */
7f266840
DJ
316 TRUE, /* pc_relative */
317 0, /* bitpos */
318 complain_overflow_signed,/* complain_on_overflow */
319 bfd_elf_generic_reloc, /* special_function */
320 "R_ARM_THM_XPC22", /* name */
321 FALSE, /* partial_inplace */
7f6ab9f8
AM
322 0x07ff2fff, /* src_mask */
323 0x07ff2fff, /* dst_mask */
7f266840
DJ
324 TRUE), /* pcrel_offset */
325
ba93b8ac 326 /* Dynamic TLS relocations. */
7f266840 327
ba93b8ac 328 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
07d6d2b8
AM
329 0, /* rightshift */
330 2, /* size (0 = byte, 1 = short, 2 = long) */
331 32, /* bitsize */
332 FALSE, /* pc_relative */
333 0, /* bitpos */
99059e56
RM
334 complain_overflow_bitfield,/* complain_on_overflow */
335 bfd_elf_generic_reloc, /* special_function */
336 "R_ARM_TLS_DTPMOD32", /* name */
337 TRUE, /* partial_inplace */
338 0xffffffff, /* src_mask */
339 0xffffffff, /* dst_mask */
07d6d2b8 340 FALSE), /* pcrel_offset */
7f266840 341
ba93b8ac 342 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
07d6d2b8
AM
343 0, /* rightshift */
344 2, /* size (0 = byte, 1 = short, 2 = long) */
345 32, /* bitsize */
346 FALSE, /* pc_relative */
347 0, /* bitpos */
99059e56
RM
348 complain_overflow_bitfield,/* complain_on_overflow */
349 bfd_elf_generic_reloc, /* special_function */
350 "R_ARM_TLS_DTPOFF32", /* name */
351 TRUE, /* partial_inplace */
352 0xffffffff, /* src_mask */
353 0xffffffff, /* dst_mask */
07d6d2b8 354 FALSE), /* pcrel_offset */
7f266840 355
ba93b8ac 356 HOWTO (R_ARM_TLS_TPOFF32, /* type */
07d6d2b8
AM
357 0, /* rightshift */
358 2, /* size (0 = byte, 1 = short, 2 = long) */
359 32, /* bitsize */
360 FALSE, /* pc_relative */
361 0, /* bitpos */
99059e56
RM
362 complain_overflow_bitfield,/* complain_on_overflow */
363 bfd_elf_generic_reloc, /* special_function */
364 "R_ARM_TLS_TPOFF32", /* name */
365 TRUE, /* partial_inplace */
366 0xffffffff, /* src_mask */
367 0xffffffff, /* dst_mask */
07d6d2b8 368 FALSE), /* pcrel_offset */
7f266840
DJ
369
370 /* Relocs used in ARM Linux */
371
372 HOWTO (R_ARM_COPY, /* type */
07d6d2b8
AM
373 0, /* rightshift */
374 2, /* size (0 = byte, 1 = short, 2 = long) */
375 32, /* bitsize */
376 FALSE, /* pc_relative */
377 0, /* bitpos */
99059e56
RM
378 complain_overflow_bitfield,/* complain_on_overflow */
379 bfd_elf_generic_reloc, /* special_function */
380 "R_ARM_COPY", /* name */
381 TRUE, /* partial_inplace */
382 0xffffffff, /* src_mask */
383 0xffffffff, /* dst_mask */
07d6d2b8 384 FALSE), /* pcrel_offset */
7f266840
DJ
385
386 HOWTO (R_ARM_GLOB_DAT, /* type */
07d6d2b8
AM
387 0, /* rightshift */
388 2, /* size (0 = byte, 1 = short, 2 = long) */
389 32, /* bitsize */
390 FALSE, /* pc_relative */
391 0, /* bitpos */
99059e56
RM
392 complain_overflow_bitfield,/* complain_on_overflow */
393 bfd_elf_generic_reloc, /* special_function */
394 "R_ARM_GLOB_DAT", /* name */
395 TRUE, /* partial_inplace */
396 0xffffffff, /* src_mask */
397 0xffffffff, /* dst_mask */
07d6d2b8 398 FALSE), /* pcrel_offset */
7f266840
DJ
399
400 HOWTO (R_ARM_JUMP_SLOT, /* type */
07d6d2b8
AM
401 0, /* rightshift */
402 2, /* size (0 = byte, 1 = short, 2 = long) */
403 32, /* bitsize */
404 FALSE, /* pc_relative */
405 0, /* bitpos */
99059e56
RM
406 complain_overflow_bitfield,/* complain_on_overflow */
407 bfd_elf_generic_reloc, /* special_function */
408 "R_ARM_JUMP_SLOT", /* name */
409 TRUE, /* partial_inplace */
410 0xffffffff, /* src_mask */
411 0xffffffff, /* dst_mask */
07d6d2b8 412 FALSE), /* pcrel_offset */
7f266840
DJ
413
414 HOWTO (R_ARM_RELATIVE, /* type */
07d6d2b8
AM
415 0, /* rightshift */
416 2, /* size (0 = byte, 1 = short, 2 = long) */
417 32, /* bitsize */
418 FALSE, /* pc_relative */
419 0, /* bitpos */
99059e56
RM
420 complain_overflow_bitfield,/* complain_on_overflow */
421 bfd_elf_generic_reloc, /* special_function */
422 "R_ARM_RELATIVE", /* name */
423 TRUE, /* partial_inplace */
424 0xffffffff, /* src_mask */
425 0xffffffff, /* dst_mask */
07d6d2b8 426 FALSE), /* pcrel_offset */
7f266840 427
c19d1205 428 HOWTO (R_ARM_GOTOFF32, /* type */
07d6d2b8
AM
429 0, /* rightshift */
430 2, /* size (0 = byte, 1 = short, 2 = long) */
431 32, /* bitsize */
432 FALSE, /* pc_relative */
433 0, /* bitpos */
99059e56
RM
434 complain_overflow_bitfield,/* complain_on_overflow */
435 bfd_elf_generic_reloc, /* special_function */
436 "R_ARM_GOTOFF32", /* name */
437 TRUE, /* partial_inplace */
438 0xffffffff, /* src_mask */
439 0xffffffff, /* dst_mask */
07d6d2b8 440 FALSE), /* pcrel_offset */
7f266840
DJ
441
442 HOWTO (R_ARM_GOTPC, /* type */
07d6d2b8
AM
443 0, /* rightshift */
444 2, /* size (0 = byte, 1 = short, 2 = long) */
445 32, /* bitsize */
99059e56 446 TRUE, /* pc_relative */
07d6d2b8 447 0, /* bitpos */
99059e56
RM
448 complain_overflow_bitfield,/* complain_on_overflow */
449 bfd_elf_generic_reloc, /* special_function */
450 "R_ARM_GOTPC", /* name */
451 TRUE, /* partial_inplace */
452 0xffffffff, /* src_mask */
453 0xffffffff, /* dst_mask */
454 TRUE), /* pcrel_offset */
7f266840
DJ
455
456 HOWTO (R_ARM_GOT32, /* type */
07d6d2b8
AM
457 0, /* rightshift */
458 2, /* size (0 = byte, 1 = short, 2 = long) */
459 32, /* bitsize */
99059e56 460 FALSE, /* pc_relative */
07d6d2b8 461 0, /* bitpos */
99059e56
RM
462 complain_overflow_bitfield,/* complain_on_overflow */
463 bfd_elf_generic_reloc, /* special_function */
464 "R_ARM_GOT32", /* name */
465 TRUE, /* partial_inplace */
466 0xffffffff, /* src_mask */
467 0xffffffff, /* dst_mask */
468 FALSE), /* pcrel_offset */
7f266840
DJ
469
470 HOWTO (R_ARM_PLT32, /* type */
07d6d2b8
AM
471 2, /* rightshift */
472 2, /* size (0 = byte, 1 = short, 2 = long) */
473 24, /* bitsize */
99059e56 474 TRUE, /* pc_relative */
07d6d2b8 475 0, /* bitpos */
99059e56
RM
476 complain_overflow_bitfield,/* complain_on_overflow */
477 bfd_elf_generic_reloc, /* special_function */
478 "R_ARM_PLT32", /* name */
479 FALSE, /* partial_inplace */
480 0x00ffffff, /* src_mask */
481 0x00ffffff, /* dst_mask */
482 TRUE), /* pcrel_offset */
7f266840
DJ
483
484 HOWTO (R_ARM_CALL, /* type */
485 2, /* rightshift */
486 2, /* size (0 = byte, 1 = short, 2 = long) */
487 24, /* bitsize */
488 TRUE, /* pc_relative */
489 0, /* bitpos */
490 complain_overflow_signed,/* complain_on_overflow */
491 bfd_elf_generic_reloc, /* special_function */
492 "R_ARM_CALL", /* name */
493 FALSE, /* partial_inplace */
494 0x00ffffff, /* src_mask */
495 0x00ffffff, /* dst_mask */
496 TRUE), /* pcrel_offset */
497
498 HOWTO (R_ARM_JUMP24, /* type */
499 2, /* rightshift */
500 2, /* size (0 = byte, 1 = short, 2 = long) */
501 24, /* bitsize */
502 TRUE, /* pc_relative */
503 0, /* bitpos */
504 complain_overflow_signed,/* complain_on_overflow */
505 bfd_elf_generic_reloc, /* special_function */
506 "R_ARM_JUMP24", /* name */
507 FALSE, /* partial_inplace */
508 0x00ffffff, /* src_mask */
509 0x00ffffff, /* dst_mask */
510 TRUE), /* pcrel_offset */
511
c19d1205
ZW
512 HOWTO (R_ARM_THM_JUMP24, /* type */
513 1, /* rightshift */
514 2, /* size (0 = byte, 1 = short, 2 = long) */
515 24, /* bitsize */
516 TRUE, /* pc_relative */
7f266840 517 0, /* bitpos */
c19d1205 518 complain_overflow_signed,/* complain_on_overflow */
7f266840 519 bfd_elf_generic_reloc, /* special_function */
c19d1205 520 "R_ARM_THM_JUMP24", /* name */
7f266840 521 FALSE, /* partial_inplace */
c19d1205
ZW
522 0x07ff2fff, /* src_mask */
523 0x07ff2fff, /* dst_mask */
524 TRUE), /* pcrel_offset */
7f266840 525
c19d1205 526 HOWTO (R_ARM_BASE_ABS, /* type */
7f266840 527 0, /* rightshift */
c19d1205
ZW
528 2, /* size (0 = byte, 1 = short, 2 = long) */
529 32, /* bitsize */
7f266840
DJ
530 FALSE, /* pc_relative */
531 0, /* bitpos */
532 complain_overflow_dont,/* complain_on_overflow */
533 bfd_elf_generic_reloc, /* special_function */
c19d1205 534 "R_ARM_BASE_ABS", /* name */
7f266840 535 FALSE, /* partial_inplace */
c19d1205
ZW
536 0xffffffff, /* src_mask */
537 0xffffffff, /* dst_mask */
7f266840
DJ
538 FALSE), /* pcrel_offset */
539
540 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
541 0, /* rightshift */
542 2, /* size (0 = byte, 1 = short, 2 = long) */
543 12, /* bitsize */
544 TRUE, /* pc_relative */
545 0, /* bitpos */
546 complain_overflow_dont,/* complain_on_overflow */
547 bfd_elf_generic_reloc, /* special_function */
548 "R_ARM_ALU_PCREL_7_0", /* name */
549 FALSE, /* partial_inplace */
550 0x00000fff, /* src_mask */
551 0x00000fff, /* dst_mask */
552 TRUE), /* pcrel_offset */
553
554 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
555 0, /* rightshift */
556 2, /* size (0 = byte, 1 = short, 2 = long) */
557 12, /* bitsize */
558 TRUE, /* pc_relative */
559 8, /* bitpos */
560 complain_overflow_dont,/* complain_on_overflow */
561 bfd_elf_generic_reloc, /* special_function */
562 "R_ARM_ALU_PCREL_15_8",/* name */
563 FALSE, /* partial_inplace */
564 0x00000fff, /* src_mask */
565 0x00000fff, /* dst_mask */
566 TRUE), /* pcrel_offset */
567
568 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
569 0, /* rightshift */
570 2, /* size (0 = byte, 1 = short, 2 = long) */
571 12, /* bitsize */
572 TRUE, /* pc_relative */
573 16, /* bitpos */
574 complain_overflow_dont,/* complain_on_overflow */
575 bfd_elf_generic_reloc, /* special_function */
576 "R_ARM_ALU_PCREL_23_15",/* name */
577 FALSE, /* partial_inplace */
578 0x00000fff, /* src_mask */
579 0x00000fff, /* dst_mask */
580 TRUE), /* pcrel_offset */
581
582 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
583 0, /* rightshift */
584 2, /* size (0 = byte, 1 = short, 2 = long) */
585 12, /* bitsize */
586 FALSE, /* pc_relative */
587 0, /* bitpos */
588 complain_overflow_dont,/* complain_on_overflow */
589 bfd_elf_generic_reloc, /* special_function */
590 "R_ARM_LDR_SBREL_11_0",/* name */
591 FALSE, /* partial_inplace */
592 0x00000fff, /* src_mask */
593 0x00000fff, /* dst_mask */
594 FALSE), /* pcrel_offset */
595
596 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
597 0, /* rightshift */
598 2, /* size (0 = byte, 1 = short, 2 = long) */
599 8, /* bitsize */
600 FALSE, /* pc_relative */
601 12, /* bitpos */
602 complain_overflow_dont,/* complain_on_overflow */
603 bfd_elf_generic_reloc, /* special_function */
604 "R_ARM_ALU_SBREL_19_12",/* name */
605 FALSE, /* partial_inplace */
606 0x000ff000, /* src_mask */
607 0x000ff000, /* dst_mask */
608 FALSE), /* pcrel_offset */
609
610 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
611 0, /* rightshift */
612 2, /* size (0 = byte, 1 = short, 2 = long) */
613 8, /* bitsize */
614 FALSE, /* pc_relative */
615 20, /* bitpos */
616 complain_overflow_dont,/* complain_on_overflow */
617 bfd_elf_generic_reloc, /* special_function */
618 "R_ARM_ALU_SBREL_27_20",/* name */
619 FALSE, /* partial_inplace */
620 0x0ff00000, /* src_mask */
621 0x0ff00000, /* dst_mask */
622 FALSE), /* pcrel_offset */
623
624 HOWTO (R_ARM_TARGET1, /* type */
625 0, /* rightshift */
626 2, /* size (0 = byte, 1 = short, 2 = long) */
627 32, /* bitsize */
628 FALSE, /* pc_relative */
629 0, /* bitpos */
630 complain_overflow_dont,/* complain_on_overflow */
631 bfd_elf_generic_reloc, /* special_function */
632 "R_ARM_TARGET1", /* name */
633 FALSE, /* partial_inplace */
634 0xffffffff, /* src_mask */
635 0xffffffff, /* dst_mask */
636 FALSE), /* pcrel_offset */
637
638 HOWTO (R_ARM_ROSEGREL32, /* type */
639 0, /* rightshift */
640 2, /* size (0 = byte, 1 = short, 2 = long) */
641 32, /* bitsize */
642 FALSE, /* pc_relative */
643 0, /* bitpos */
644 complain_overflow_dont,/* complain_on_overflow */
645 bfd_elf_generic_reloc, /* special_function */
646 "R_ARM_ROSEGREL32", /* name */
647 FALSE, /* partial_inplace */
648 0xffffffff, /* src_mask */
649 0xffffffff, /* dst_mask */
650 FALSE), /* pcrel_offset */
651
652 HOWTO (R_ARM_V4BX, /* type */
653 0, /* rightshift */
654 2, /* size (0 = byte, 1 = short, 2 = long) */
655 32, /* bitsize */
656 FALSE, /* pc_relative */
657 0, /* bitpos */
658 complain_overflow_dont,/* complain_on_overflow */
659 bfd_elf_generic_reloc, /* special_function */
660 "R_ARM_V4BX", /* name */
661 FALSE, /* partial_inplace */
662 0xffffffff, /* src_mask */
663 0xffffffff, /* dst_mask */
664 FALSE), /* pcrel_offset */
665
666 HOWTO (R_ARM_TARGET2, /* type */
667 0, /* rightshift */
668 2, /* size (0 = byte, 1 = short, 2 = long) */
669 32, /* bitsize */
670 FALSE, /* pc_relative */
671 0, /* bitpos */
672 complain_overflow_signed,/* complain_on_overflow */
673 bfd_elf_generic_reloc, /* special_function */
674 "R_ARM_TARGET2", /* name */
675 FALSE, /* partial_inplace */
676 0xffffffff, /* src_mask */
677 0xffffffff, /* dst_mask */
678 TRUE), /* pcrel_offset */
679
680 HOWTO (R_ARM_PREL31, /* type */
681 0, /* rightshift */
682 2, /* size (0 = byte, 1 = short, 2 = long) */
683 31, /* bitsize */
684 TRUE, /* pc_relative */
685 0, /* bitpos */
686 complain_overflow_signed,/* complain_on_overflow */
687 bfd_elf_generic_reloc, /* special_function */
688 "R_ARM_PREL31", /* name */
689 FALSE, /* partial_inplace */
690 0x7fffffff, /* src_mask */
691 0x7fffffff, /* dst_mask */
692 TRUE), /* pcrel_offset */
c19d1205
ZW
693
694 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
695 0, /* rightshift */
696 2, /* size (0 = byte, 1 = short, 2 = long) */
697 16, /* bitsize */
698 FALSE, /* pc_relative */
699 0, /* bitpos */
700 complain_overflow_dont,/* complain_on_overflow */
701 bfd_elf_generic_reloc, /* special_function */
702 "R_ARM_MOVW_ABS_NC", /* name */
703 FALSE, /* partial_inplace */
39623e12
PB
704 0x000f0fff, /* src_mask */
705 0x000f0fff, /* dst_mask */
c19d1205
ZW
706 FALSE), /* pcrel_offset */
707
708 HOWTO (R_ARM_MOVT_ABS, /* type */
709 0, /* rightshift */
710 2, /* size (0 = byte, 1 = short, 2 = long) */
711 16, /* bitsize */
712 FALSE, /* pc_relative */
713 0, /* bitpos */
714 complain_overflow_bitfield,/* complain_on_overflow */
715 bfd_elf_generic_reloc, /* special_function */
716 "R_ARM_MOVT_ABS", /* name */
717 FALSE, /* partial_inplace */
39623e12
PB
718 0x000f0fff, /* src_mask */
719 0x000f0fff, /* dst_mask */
c19d1205
ZW
720 FALSE), /* pcrel_offset */
721
722 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
723 0, /* rightshift */
724 2, /* size (0 = byte, 1 = short, 2 = long) */
725 16, /* bitsize */
726 TRUE, /* pc_relative */
727 0, /* bitpos */
728 complain_overflow_dont,/* complain_on_overflow */
729 bfd_elf_generic_reloc, /* special_function */
730 "R_ARM_MOVW_PREL_NC", /* name */
731 FALSE, /* partial_inplace */
39623e12
PB
732 0x000f0fff, /* src_mask */
733 0x000f0fff, /* dst_mask */
c19d1205
ZW
734 TRUE), /* pcrel_offset */
735
736 HOWTO (R_ARM_MOVT_PREL, /* type */
737 0, /* rightshift */
738 2, /* size (0 = byte, 1 = short, 2 = long) */
739 16, /* bitsize */
740 TRUE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_bitfield,/* complain_on_overflow */
743 bfd_elf_generic_reloc, /* special_function */
744 "R_ARM_MOVT_PREL", /* name */
745 FALSE, /* partial_inplace */
39623e12
PB
746 0x000f0fff, /* src_mask */
747 0x000f0fff, /* dst_mask */
c19d1205
ZW
748 TRUE), /* pcrel_offset */
749
750 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
751 0, /* rightshift */
752 2, /* size (0 = byte, 1 = short, 2 = long) */
753 16, /* bitsize */
754 FALSE, /* pc_relative */
755 0, /* bitpos */
756 complain_overflow_dont,/* complain_on_overflow */
757 bfd_elf_generic_reloc, /* special_function */
758 "R_ARM_THM_MOVW_ABS_NC",/* name */
759 FALSE, /* partial_inplace */
760 0x040f70ff, /* src_mask */
761 0x040f70ff, /* dst_mask */
762 FALSE), /* pcrel_offset */
763
764 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
765 0, /* rightshift */
766 2, /* size (0 = byte, 1 = short, 2 = long) */
767 16, /* bitsize */
768 FALSE, /* pc_relative */
769 0, /* bitpos */
770 complain_overflow_bitfield,/* complain_on_overflow */
771 bfd_elf_generic_reloc, /* special_function */
772 "R_ARM_THM_MOVT_ABS", /* name */
773 FALSE, /* partial_inplace */
774 0x040f70ff, /* src_mask */
775 0x040f70ff, /* dst_mask */
776 FALSE), /* pcrel_offset */
777
778 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
779 0, /* rightshift */
780 2, /* size (0 = byte, 1 = short, 2 = long) */
781 16, /* bitsize */
782 TRUE, /* pc_relative */
783 0, /* bitpos */
784 complain_overflow_dont,/* complain_on_overflow */
785 bfd_elf_generic_reloc, /* special_function */
786 "R_ARM_THM_MOVW_PREL_NC",/* name */
787 FALSE, /* partial_inplace */
788 0x040f70ff, /* src_mask */
789 0x040f70ff, /* dst_mask */
790 TRUE), /* pcrel_offset */
791
792 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
793 0, /* rightshift */
794 2, /* size (0 = byte, 1 = short, 2 = long) */
795 16, /* bitsize */
796 TRUE, /* pc_relative */
797 0, /* bitpos */
798 complain_overflow_bitfield,/* complain_on_overflow */
799 bfd_elf_generic_reloc, /* special_function */
800 "R_ARM_THM_MOVT_PREL", /* name */
801 FALSE, /* partial_inplace */
802 0x040f70ff, /* src_mask */
803 0x040f70ff, /* dst_mask */
804 TRUE), /* pcrel_offset */
805
806 HOWTO (R_ARM_THM_JUMP19, /* type */
807 1, /* rightshift */
808 2, /* size (0 = byte, 1 = short, 2 = long) */
809 19, /* bitsize */
810 TRUE, /* pc_relative */
811 0, /* bitpos */
812 complain_overflow_signed,/* complain_on_overflow */
813 bfd_elf_generic_reloc, /* special_function */
814 "R_ARM_THM_JUMP19", /* name */
815 FALSE, /* partial_inplace */
816 0x043f2fff, /* src_mask */
817 0x043f2fff, /* dst_mask */
818 TRUE), /* pcrel_offset */
819
820 HOWTO (R_ARM_THM_JUMP6, /* type */
821 1, /* rightshift */
822 1, /* size (0 = byte, 1 = short, 2 = long) */
823 6, /* bitsize */
824 TRUE, /* pc_relative */
825 0, /* bitpos */
826 complain_overflow_unsigned,/* complain_on_overflow */
827 bfd_elf_generic_reloc, /* special_function */
828 "R_ARM_THM_JUMP6", /* name */
829 FALSE, /* partial_inplace */
830 0x02f8, /* src_mask */
831 0x02f8, /* dst_mask */
832 TRUE), /* pcrel_offset */
833
834 /* These are declared as 13-bit signed relocations because we can
835 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
836 versa. */
837 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
838 0, /* rightshift */
839 2, /* size (0 = byte, 1 = short, 2 = long) */
840 13, /* bitsize */
841 TRUE, /* pc_relative */
842 0, /* bitpos */
2cab6cc3 843 complain_overflow_dont,/* complain_on_overflow */
c19d1205
ZW
844 bfd_elf_generic_reloc, /* special_function */
845 "R_ARM_THM_ALU_PREL_11_0",/* name */
846 FALSE, /* partial_inplace */
2cab6cc3
MS
847 0xffffffff, /* src_mask */
848 0xffffffff, /* dst_mask */
c19d1205
ZW
849 TRUE), /* pcrel_offset */
850
851 HOWTO (R_ARM_THM_PC12, /* type */
852 0, /* rightshift */
853 2, /* size (0 = byte, 1 = short, 2 = long) */
854 13, /* bitsize */
855 TRUE, /* pc_relative */
856 0, /* bitpos */
2cab6cc3 857 complain_overflow_dont,/* complain_on_overflow */
c19d1205
ZW
858 bfd_elf_generic_reloc, /* special_function */
859 "R_ARM_THM_PC12", /* name */
860 FALSE, /* partial_inplace */
2cab6cc3
MS
861 0xffffffff, /* src_mask */
862 0xffffffff, /* dst_mask */
c19d1205
ZW
863 TRUE), /* pcrel_offset */
864
865 HOWTO (R_ARM_ABS32_NOI, /* type */
866 0, /* rightshift */
867 2, /* size (0 = byte, 1 = short, 2 = long) */
868 32, /* bitsize */
869 FALSE, /* pc_relative */
870 0, /* bitpos */
871 complain_overflow_dont,/* complain_on_overflow */
872 bfd_elf_generic_reloc, /* special_function */
873 "R_ARM_ABS32_NOI", /* name */
874 FALSE, /* partial_inplace */
875 0xffffffff, /* src_mask */
876 0xffffffff, /* dst_mask */
877 FALSE), /* pcrel_offset */
878
879 HOWTO (R_ARM_REL32_NOI, /* type */
880 0, /* rightshift */
881 2, /* size (0 = byte, 1 = short, 2 = long) */
882 32, /* bitsize */
883 TRUE, /* pc_relative */
884 0, /* bitpos */
885 complain_overflow_dont,/* complain_on_overflow */
886 bfd_elf_generic_reloc, /* special_function */
887 "R_ARM_REL32_NOI", /* name */
888 FALSE, /* partial_inplace */
889 0xffffffff, /* src_mask */
890 0xffffffff, /* dst_mask */
891 FALSE), /* pcrel_offset */
7f266840 892
4962c51a
MS
893 /* Group relocations. */
894
895 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
896 0, /* rightshift */
897 2, /* size (0 = byte, 1 = short, 2 = long) */
898 32, /* bitsize */
899 TRUE, /* pc_relative */
900 0, /* bitpos */
901 complain_overflow_dont,/* complain_on_overflow */
902 bfd_elf_generic_reloc, /* special_function */
903 "R_ARM_ALU_PC_G0_NC", /* name */
904 FALSE, /* partial_inplace */
905 0xffffffff, /* src_mask */
906 0xffffffff, /* dst_mask */
907 TRUE), /* pcrel_offset */
908
07d6d2b8 909 HOWTO (R_ARM_ALU_PC_G0, /* type */
4962c51a
MS
910 0, /* rightshift */
911 2, /* size (0 = byte, 1 = short, 2 = long) */
912 32, /* bitsize */
913 TRUE, /* pc_relative */
914 0, /* bitpos */
915 complain_overflow_dont,/* complain_on_overflow */
916 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 917 "R_ARM_ALU_PC_G0", /* name */
4962c51a
MS
918 FALSE, /* partial_inplace */
919 0xffffffff, /* src_mask */
920 0xffffffff, /* dst_mask */
921 TRUE), /* pcrel_offset */
922
923 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
924 0, /* rightshift */
925 2, /* size (0 = byte, 1 = short, 2 = long) */
926 32, /* bitsize */
927 TRUE, /* pc_relative */
928 0, /* bitpos */
929 complain_overflow_dont,/* complain_on_overflow */
930 bfd_elf_generic_reloc, /* special_function */
931 "R_ARM_ALU_PC_G1_NC", /* name */
932 FALSE, /* partial_inplace */
933 0xffffffff, /* src_mask */
934 0xffffffff, /* dst_mask */
935 TRUE), /* pcrel_offset */
936
07d6d2b8 937 HOWTO (R_ARM_ALU_PC_G1, /* type */
4962c51a
MS
938 0, /* rightshift */
939 2, /* size (0 = byte, 1 = short, 2 = long) */
940 32, /* bitsize */
941 TRUE, /* pc_relative */
942 0, /* bitpos */
943 complain_overflow_dont,/* complain_on_overflow */
944 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 945 "R_ARM_ALU_PC_G1", /* name */
4962c51a
MS
946 FALSE, /* partial_inplace */
947 0xffffffff, /* src_mask */
948 0xffffffff, /* dst_mask */
949 TRUE), /* pcrel_offset */
950
07d6d2b8 951 HOWTO (R_ARM_ALU_PC_G2, /* type */
4962c51a
MS
952 0, /* rightshift */
953 2, /* size (0 = byte, 1 = short, 2 = long) */
954 32, /* bitsize */
955 TRUE, /* pc_relative */
956 0, /* bitpos */
957 complain_overflow_dont,/* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 959 "R_ARM_ALU_PC_G2", /* name */
4962c51a
MS
960 FALSE, /* partial_inplace */
961 0xffffffff, /* src_mask */
962 0xffffffff, /* dst_mask */
963 TRUE), /* pcrel_offset */
964
07d6d2b8 965 HOWTO (R_ARM_LDR_PC_G1, /* type */
4962c51a
MS
966 0, /* rightshift */
967 2, /* size (0 = byte, 1 = short, 2 = long) */
968 32, /* bitsize */
969 TRUE, /* pc_relative */
970 0, /* bitpos */
971 complain_overflow_dont,/* complain_on_overflow */
972 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 973 "R_ARM_LDR_PC_G1", /* name */
4962c51a
MS
974 FALSE, /* partial_inplace */
975 0xffffffff, /* src_mask */
976 0xffffffff, /* dst_mask */
977 TRUE), /* pcrel_offset */
978
07d6d2b8 979 HOWTO (R_ARM_LDR_PC_G2, /* type */
4962c51a
MS
980 0, /* rightshift */
981 2, /* size (0 = byte, 1 = short, 2 = long) */
982 32, /* bitsize */
983 TRUE, /* pc_relative */
984 0, /* bitpos */
985 complain_overflow_dont,/* complain_on_overflow */
986 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 987 "R_ARM_LDR_PC_G2", /* name */
4962c51a
MS
988 FALSE, /* partial_inplace */
989 0xffffffff, /* src_mask */
990 0xffffffff, /* dst_mask */
991 TRUE), /* pcrel_offset */
992
07d6d2b8 993 HOWTO (R_ARM_LDRS_PC_G0, /* type */
4962c51a
MS
994 0, /* rightshift */
995 2, /* size (0 = byte, 1 = short, 2 = long) */
996 32, /* bitsize */
997 TRUE, /* pc_relative */
998 0, /* bitpos */
999 complain_overflow_dont,/* complain_on_overflow */
1000 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1001 "R_ARM_LDRS_PC_G0", /* name */
4962c51a
MS
1002 FALSE, /* partial_inplace */
1003 0xffffffff, /* src_mask */
1004 0xffffffff, /* dst_mask */
1005 TRUE), /* pcrel_offset */
1006
07d6d2b8 1007 HOWTO (R_ARM_LDRS_PC_G1, /* type */
4962c51a
MS
1008 0, /* rightshift */
1009 2, /* size (0 = byte, 1 = short, 2 = long) */
1010 32, /* bitsize */
1011 TRUE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_dont,/* complain_on_overflow */
1014 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1015 "R_ARM_LDRS_PC_G1", /* name */
4962c51a
MS
1016 FALSE, /* partial_inplace */
1017 0xffffffff, /* src_mask */
1018 0xffffffff, /* dst_mask */
1019 TRUE), /* pcrel_offset */
1020
07d6d2b8 1021 HOWTO (R_ARM_LDRS_PC_G2, /* type */
4962c51a
MS
1022 0, /* rightshift */
1023 2, /* size (0 = byte, 1 = short, 2 = long) */
1024 32, /* bitsize */
1025 TRUE, /* pc_relative */
1026 0, /* bitpos */
1027 complain_overflow_dont,/* complain_on_overflow */
1028 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1029 "R_ARM_LDRS_PC_G2", /* name */
4962c51a
MS
1030 FALSE, /* partial_inplace */
1031 0xffffffff, /* src_mask */
1032 0xffffffff, /* dst_mask */
1033 TRUE), /* pcrel_offset */
1034
07d6d2b8 1035 HOWTO (R_ARM_LDC_PC_G0, /* type */
4962c51a
MS
1036 0, /* rightshift */
1037 2, /* size (0 = byte, 1 = short, 2 = long) */
1038 32, /* bitsize */
1039 TRUE, /* pc_relative */
1040 0, /* bitpos */
1041 complain_overflow_dont,/* complain_on_overflow */
1042 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1043 "R_ARM_LDC_PC_G0", /* name */
4962c51a
MS
1044 FALSE, /* partial_inplace */
1045 0xffffffff, /* src_mask */
1046 0xffffffff, /* dst_mask */
1047 TRUE), /* pcrel_offset */
1048
07d6d2b8 1049 HOWTO (R_ARM_LDC_PC_G1, /* type */
4962c51a
MS
1050 0, /* rightshift */
1051 2, /* size (0 = byte, 1 = short, 2 = long) */
1052 32, /* bitsize */
1053 TRUE, /* pc_relative */
1054 0, /* bitpos */
1055 complain_overflow_dont,/* complain_on_overflow */
1056 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1057 "R_ARM_LDC_PC_G1", /* name */
4962c51a
MS
1058 FALSE, /* partial_inplace */
1059 0xffffffff, /* src_mask */
1060 0xffffffff, /* dst_mask */
1061 TRUE), /* pcrel_offset */
1062
07d6d2b8 1063 HOWTO (R_ARM_LDC_PC_G2, /* type */
4962c51a
MS
1064 0, /* rightshift */
1065 2, /* size (0 = byte, 1 = short, 2 = long) */
1066 32, /* bitsize */
1067 TRUE, /* pc_relative */
1068 0, /* bitpos */
1069 complain_overflow_dont,/* complain_on_overflow */
1070 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1071 "R_ARM_LDC_PC_G2", /* name */
4962c51a
MS
1072 FALSE, /* partial_inplace */
1073 0xffffffff, /* src_mask */
1074 0xffffffff, /* dst_mask */
1075 TRUE), /* pcrel_offset */
1076
07d6d2b8 1077 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
4962c51a
MS
1078 0, /* rightshift */
1079 2, /* size (0 = byte, 1 = short, 2 = long) */
1080 32, /* bitsize */
1081 TRUE, /* pc_relative */
1082 0, /* bitpos */
1083 complain_overflow_dont,/* complain_on_overflow */
1084 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1085 "R_ARM_ALU_SB_G0_NC", /* name */
4962c51a
MS
1086 FALSE, /* partial_inplace */
1087 0xffffffff, /* src_mask */
1088 0xffffffff, /* dst_mask */
1089 TRUE), /* pcrel_offset */
1090
07d6d2b8 1091 HOWTO (R_ARM_ALU_SB_G0, /* type */
4962c51a
MS
1092 0, /* rightshift */
1093 2, /* size (0 = byte, 1 = short, 2 = long) */
1094 32, /* bitsize */
1095 TRUE, /* pc_relative */
1096 0, /* bitpos */
1097 complain_overflow_dont,/* complain_on_overflow */
1098 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1099 "R_ARM_ALU_SB_G0", /* name */
4962c51a
MS
1100 FALSE, /* partial_inplace */
1101 0xffffffff, /* src_mask */
1102 0xffffffff, /* dst_mask */
1103 TRUE), /* pcrel_offset */
1104
07d6d2b8 1105 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
4962c51a
MS
1106 0, /* rightshift */
1107 2, /* size (0 = byte, 1 = short, 2 = long) */
1108 32, /* bitsize */
1109 TRUE, /* pc_relative */
1110 0, /* bitpos */
1111 complain_overflow_dont,/* complain_on_overflow */
1112 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1113 "R_ARM_ALU_SB_G1_NC", /* name */
4962c51a
MS
1114 FALSE, /* partial_inplace */
1115 0xffffffff, /* src_mask */
1116 0xffffffff, /* dst_mask */
1117 TRUE), /* pcrel_offset */
1118
07d6d2b8 1119 HOWTO (R_ARM_ALU_SB_G1, /* type */
4962c51a
MS
1120 0, /* rightshift */
1121 2, /* size (0 = byte, 1 = short, 2 = long) */
1122 32, /* bitsize */
1123 TRUE, /* pc_relative */
1124 0, /* bitpos */
1125 complain_overflow_dont,/* complain_on_overflow */
1126 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1127 "R_ARM_ALU_SB_G1", /* name */
4962c51a
MS
1128 FALSE, /* partial_inplace */
1129 0xffffffff, /* src_mask */
1130 0xffffffff, /* dst_mask */
1131 TRUE), /* pcrel_offset */
1132
07d6d2b8 1133 HOWTO (R_ARM_ALU_SB_G2, /* type */
4962c51a
MS
1134 0, /* rightshift */
1135 2, /* size (0 = byte, 1 = short, 2 = long) */
1136 32, /* bitsize */
1137 TRUE, /* pc_relative */
1138 0, /* bitpos */
1139 complain_overflow_dont,/* complain_on_overflow */
1140 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1141 "R_ARM_ALU_SB_G2", /* name */
4962c51a
MS
1142 FALSE, /* partial_inplace */
1143 0xffffffff, /* src_mask */
1144 0xffffffff, /* dst_mask */
1145 TRUE), /* pcrel_offset */
1146
07d6d2b8 1147 HOWTO (R_ARM_LDR_SB_G0, /* type */
4962c51a
MS
1148 0, /* rightshift */
1149 2, /* size (0 = byte, 1 = short, 2 = long) */
1150 32, /* bitsize */
1151 TRUE, /* pc_relative */
1152 0, /* bitpos */
1153 complain_overflow_dont,/* complain_on_overflow */
1154 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1155 "R_ARM_LDR_SB_G0", /* name */
4962c51a
MS
1156 FALSE, /* partial_inplace */
1157 0xffffffff, /* src_mask */
1158 0xffffffff, /* dst_mask */
1159 TRUE), /* pcrel_offset */
1160
07d6d2b8 1161 HOWTO (R_ARM_LDR_SB_G1, /* type */
4962c51a
MS
1162 0, /* rightshift */
1163 2, /* size (0 = byte, 1 = short, 2 = long) */
1164 32, /* bitsize */
1165 TRUE, /* pc_relative */
1166 0, /* bitpos */
1167 complain_overflow_dont,/* complain_on_overflow */
1168 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1169 "R_ARM_LDR_SB_G1", /* name */
4962c51a
MS
1170 FALSE, /* partial_inplace */
1171 0xffffffff, /* src_mask */
1172 0xffffffff, /* dst_mask */
1173 TRUE), /* pcrel_offset */
1174
07d6d2b8 1175 HOWTO (R_ARM_LDR_SB_G2, /* type */
4962c51a
MS
1176 0, /* rightshift */
1177 2, /* size (0 = byte, 1 = short, 2 = long) */
1178 32, /* bitsize */
1179 TRUE, /* pc_relative */
1180 0, /* bitpos */
1181 complain_overflow_dont,/* complain_on_overflow */
1182 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1183 "R_ARM_LDR_SB_G2", /* name */
4962c51a
MS
1184 FALSE, /* partial_inplace */
1185 0xffffffff, /* src_mask */
1186 0xffffffff, /* dst_mask */
1187 TRUE), /* pcrel_offset */
1188
07d6d2b8 1189 HOWTO (R_ARM_LDRS_SB_G0, /* type */
4962c51a
MS
1190 0, /* rightshift */
1191 2, /* size (0 = byte, 1 = short, 2 = long) */
1192 32, /* bitsize */
1193 TRUE, /* pc_relative */
1194 0, /* bitpos */
1195 complain_overflow_dont,/* complain_on_overflow */
1196 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1197 "R_ARM_LDRS_SB_G0", /* name */
4962c51a
MS
1198 FALSE, /* partial_inplace */
1199 0xffffffff, /* src_mask */
1200 0xffffffff, /* dst_mask */
1201 TRUE), /* pcrel_offset */
1202
07d6d2b8 1203 HOWTO (R_ARM_LDRS_SB_G1, /* type */
4962c51a
MS
1204 0, /* rightshift */
1205 2, /* size (0 = byte, 1 = short, 2 = long) */
1206 32, /* bitsize */
1207 TRUE, /* pc_relative */
1208 0, /* bitpos */
1209 complain_overflow_dont,/* complain_on_overflow */
1210 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1211 "R_ARM_LDRS_SB_G1", /* name */
4962c51a
MS
1212 FALSE, /* partial_inplace */
1213 0xffffffff, /* src_mask */
1214 0xffffffff, /* dst_mask */
1215 TRUE), /* pcrel_offset */
1216
07d6d2b8 1217 HOWTO (R_ARM_LDRS_SB_G2, /* type */
4962c51a
MS
1218 0, /* rightshift */
1219 2, /* size (0 = byte, 1 = short, 2 = long) */
1220 32, /* bitsize */
1221 TRUE, /* pc_relative */
1222 0, /* bitpos */
1223 complain_overflow_dont,/* complain_on_overflow */
1224 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1225 "R_ARM_LDRS_SB_G2", /* name */
4962c51a
MS
1226 FALSE, /* partial_inplace */
1227 0xffffffff, /* src_mask */
1228 0xffffffff, /* dst_mask */
1229 TRUE), /* pcrel_offset */
1230
07d6d2b8 1231 HOWTO (R_ARM_LDC_SB_G0, /* type */
4962c51a
MS
1232 0, /* rightshift */
1233 2, /* size (0 = byte, 1 = short, 2 = long) */
1234 32, /* bitsize */
1235 TRUE, /* pc_relative */
1236 0, /* bitpos */
1237 complain_overflow_dont,/* complain_on_overflow */
1238 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1239 "R_ARM_LDC_SB_G0", /* name */
4962c51a
MS
1240 FALSE, /* partial_inplace */
1241 0xffffffff, /* src_mask */
1242 0xffffffff, /* dst_mask */
1243 TRUE), /* pcrel_offset */
1244
07d6d2b8 1245 HOWTO (R_ARM_LDC_SB_G1, /* type */
4962c51a
MS
1246 0, /* rightshift */
1247 2, /* size (0 = byte, 1 = short, 2 = long) */
1248 32, /* bitsize */
1249 TRUE, /* pc_relative */
1250 0, /* bitpos */
1251 complain_overflow_dont,/* complain_on_overflow */
1252 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1253 "R_ARM_LDC_SB_G1", /* name */
4962c51a
MS
1254 FALSE, /* partial_inplace */
1255 0xffffffff, /* src_mask */
1256 0xffffffff, /* dst_mask */
1257 TRUE), /* pcrel_offset */
1258
07d6d2b8 1259 HOWTO (R_ARM_LDC_SB_G2, /* type */
4962c51a
MS
1260 0, /* rightshift */
1261 2, /* size (0 = byte, 1 = short, 2 = long) */
1262 32, /* bitsize */
1263 TRUE, /* pc_relative */
1264 0, /* bitpos */
1265 complain_overflow_dont,/* complain_on_overflow */
1266 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1267 "R_ARM_LDC_SB_G2", /* name */
4962c51a
MS
1268 FALSE, /* partial_inplace */
1269 0xffffffff, /* src_mask */
1270 0xffffffff, /* dst_mask */
1271 TRUE), /* pcrel_offset */
1272
1273 /* End of group relocations. */
c19d1205 1274
c19d1205
ZW
1275 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1276 0, /* rightshift */
1277 2, /* size (0 = byte, 1 = short, 2 = long) */
1278 16, /* bitsize */
1279 FALSE, /* pc_relative */
1280 0, /* bitpos */
1281 complain_overflow_dont,/* complain_on_overflow */
1282 bfd_elf_generic_reloc, /* special_function */
1283 "R_ARM_MOVW_BREL_NC", /* name */
1284 FALSE, /* partial_inplace */
1285 0x0000ffff, /* src_mask */
1286 0x0000ffff, /* dst_mask */
1287 FALSE), /* pcrel_offset */
1288
1289 HOWTO (R_ARM_MOVT_BREL, /* type */
1290 0, /* rightshift */
1291 2, /* size (0 = byte, 1 = short, 2 = long) */
1292 16, /* bitsize */
1293 FALSE, /* pc_relative */
1294 0, /* bitpos */
1295 complain_overflow_bitfield,/* complain_on_overflow */
1296 bfd_elf_generic_reloc, /* special_function */
1297 "R_ARM_MOVT_BREL", /* name */
1298 FALSE, /* partial_inplace */
1299 0x0000ffff, /* src_mask */
1300 0x0000ffff, /* dst_mask */
1301 FALSE), /* pcrel_offset */
1302
1303 HOWTO (R_ARM_MOVW_BREL, /* type */
1304 0, /* rightshift */
1305 2, /* size (0 = byte, 1 = short, 2 = long) */
1306 16, /* bitsize */
1307 FALSE, /* pc_relative */
1308 0, /* bitpos */
1309 complain_overflow_dont,/* complain_on_overflow */
1310 bfd_elf_generic_reloc, /* special_function */
1311 "R_ARM_MOVW_BREL", /* name */
1312 FALSE, /* partial_inplace */
1313 0x0000ffff, /* src_mask */
1314 0x0000ffff, /* dst_mask */
1315 FALSE), /* pcrel_offset */
1316
1317 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1318 0, /* rightshift */
1319 2, /* size (0 = byte, 1 = short, 2 = long) */
1320 16, /* bitsize */
1321 FALSE, /* pc_relative */
1322 0, /* bitpos */
1323 complain_overflow_dont,/* complain_on_overflow */
1324 bfd_elf_generic_reloc, /* special_function */
1325 "R_ARM_THM_MOVW_BREL_NC",/* name */
1326 FALSE, /* partial_inplace */
1327 0x040f70ff, /* src_mask */
1328 0x040f70ff, /* dst_mask */
1329 FALSE), /* pcrel_offset */
1330
1331 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1332 0, /* rightshift */
1333 2, /* size (0 = byte, 1 = short, 2 = long) */
1334 16, /* bitsize */
1335 FALSE, /* pc_relative */
1336 0, /* bitpos */
1337 complain_overflow_bitfield,/* complain_on_overflow */
1338 bfd_elf_generic_reloc, /* special_function */
1339 "R_ARM_THM_MOVT_BREL", /* name */
1340 FALSE, /* partial_inplace */
1341 0x040f70ff, /* src_mask */
1342 0x040f70ff, /* dst_mask */
1343 FALSE), /* pcrel_offset */
1344
1345 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1346 0, /* rightshift */
1347 2, /* size (0 = byte, 1 = short, 2 = long) */
1348 16, /* bitsize */
1349 FALSE, /* pc_relative */
1350 0, /* bitpos */
1351 complain_overflow_dont,/* complain_on_overflow */
1352 bfd_elf_generic_reloc, /* special_function */
1353 "R_ARM_THM_MOVW_BREL", /* name */
1354 FALSE, /* partial_inplace */
1355 0x040f70ff, /* src_mask */
1356 0x040f70ff, /* dst_mask */
1357 FALSE), /* pcrel_offset */
1358
0855e32b
NS
1359 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1360 0, /* rightshift */
1361 2, /* size (0 = byte, 1 = short, 2 = long) */
1362 32, /* bitsize */
1363 FALSE, /* pc_relative */
1364 0, /* bitpos */
1365 complain_overflow_bitfield,/* complain_on_overflow */
1366 NULL, /* special_function */
1367 "R_ARM_TLS_GOTDESC", /* name */
1368 TRUE, /* partial_inplace */
1369 0xffffffff, /* src_mask */
1370 0xffffffff, /* dst_mask */
1371 FALSE), /* pcrel_offset */
1372
1373 HOWTO (R_ARM_TLS_CALL, /* type */
1374 0, /* rightshift */
1375 2, /* size (0 = byte, 1 = short, 2 = long) */
1376 24, /* bitsize */
1377 FALSE, /* pc_relative */
1378 0, /* bitpos */
1379 complain_overflow_dont,/* complain_on_overflow */
1380 bfd_elf_generic_reloc, /* special_function */
1381 "R_ARM_TLS_CALL", /* name */
1382 FALSE, /* partial_inplace */
1383 0x00ffffff, /* src_mask */
1384 0x00ffffff, /* dst_mask */
1385 FALSE), /* pcrel_offset */
1386
1387 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1388 0, /* rightshift */
1389 2, /* size (0 = byte, 1 = short, 2 = long) */
1390 0, /* bitsize */
1391 FALSE, /* pc_relative */
1392 0, /* bitpos */
1393 complain_overflow_bitfield,/* complain_on_overflow */
1394 bfd_elf_generic_reloc, /* special_function */
1395 "R_ARM_TLS_DESCSEQ", /* name */
1396 FALSE, /* partial_inplace */
1397 0x00000000, /* src_mask */
1398 0x00000000, /* dst_mask */
1399 FALSE), /* pcrel_offset */
1400
1401 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1402 0, /* rightshift */
1403 2, /* size (0 = byte, 1 = short, 2 = long) */
1404 24, /* bitsize */
1405 FALSE, /* pc_relative */
1406 0, /* bitpos */
1407 complain_overflow_dont,/* complain_on_overflow */
1408 bfd_elf_generic_reloc, /* special_function */
1409 "R_ARM_THM_TLS_CALL", /* name */
1410 FALSE, /* partial_inplace */
1411 0x07ff07ff, /* src_mask */
1412 0x07ff07ff, /* dst_mask */
1413 FALSE), /* pcrel_offset */
c19d1205
ZW
1414
1415 HOWTO (R_ARM_PLT32_ABS, /* type */
1416 0, /* rightshift */
1417 2, /* size (0 = byte, 1 = short, 2 = long) */
1418 32, /* bitsize */
1419 FALSE, /* pc_relative */
1420 0, /* bitpos */
1421 complain_overflow_dont,/* complain_on_overflow */
1422 bfd_elf_generic_reloc, /* special_function */
1423 "R_ARM_PLT32_ABS", /* name */
1424 FALSE, /* partial_inplace */
1425 0xffffffff, /* src_mask */
1426 0xffffffff, /* dst_mask */
1427 FALSE), /* pcrel_offset */
1428
1429 HOWTO (R_ARM_GOT_ABS, /* type */
1430 0, /* rightshift */
1431 2, /* size (0 = byte, 1 = short, 2 = long) */
1432 32, /* bitsize */
1433 FALSE, /* pc_relative */
1434 0, /* bitpos */
1435 complain_overflow_dont,/* complain_on_overflow */
1436 bfd_elf_generic_reloc, /* special_function */
1437 "R_ARM_GOT_ABS", /* name */
1438 FALSE, /* partial_inplace */
1439 0xffffffff, /* src_mask */
1440 0xffffffff, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1442
1443 HOWTO (R_ARM_GOT_PREL, /* type */
1444 0, /* rightshift */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1446 32, /* bitsize */
1447 TRUE, /* pc_relative */
1448 0, /* bitpos */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 bfd_elf_generic_reloc, /* special_function */
1451 "R_ARM_GOT_PREL", /* name */
1452 FALSE, /* partial_inplace */
1453 0xffffffff, /* src_mask */
1454 0xffffffff, /* dst_mask */
1455 TRUE), /* pcrel_offset */
1456
1457 HOWTO (R_ARM_GOT_BREL12, /* type */
1458 0, /* rightshift */
1459 2, /* size (0 = byte, 1 = short, 2 = long) */
1460 12, /* bitsize */
1461 FALSE, /* pc_relative */
1462 0, /* bitpos */
1463 complain_overflow_bitfield,/* complain_on_overflow */
1464 bfd_elf_generic_reloc, /* special_function */
1465 "R_ARM_GOT_BREL12", /* name */
1466 FALSE, /* partial_inplace */
1467 0x00000fff, /* src_mask */
1468 0x00000fff, /* dst_mask */
1469 FALSE), /* pcrel_offset */
1470
1471 HOWTO (R_ARM_GOTOFF12, /* type */
1472 0, /* rightshift */
1473 2, /* size (0 = byte, 1 = short, 2 = long) */
1474 12, /* bitsize */
1475 FALSE, /* pc_relative */
1476 0, /* bitpos */
1477 complain_overflow_bitfield,/* complain_on_overflow */
1478 bfd_elf_generic_reloc, /* special_function */
1479 "R_ARM_GOTOFF12", /* name */
1480 FALSE, /* partial_inplace */
1481 0x00000fff, /* src_mask */
1482 0x00000fff, /* dst_mask */
1483 FALSE), /* pcrel_offset */
1484
07d6d2b8 1485 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
c19d1205
ZW
1486
1487 /* GNU extension to record C++ vtable member usage */
07d6d2b8
AM
1488 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1489 0, /* rightshift */
1490 2, /* size (0 = byte, 1 = short, 2 = long) */
1491 0, /* bitsize */
1492 FALSE, /* pc_relative */
1493 0, /* bitpos */
99059e56 1494 complain_overflow_dont, /* complain_on_overflow */
07d6d2b8
AM
1495 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1496 "R_ARM_GNU_VTENTRY", /* name */
1497 FALSE, /* partial_inplace */
1498 0, /* src_mask */
1499 0, /* dst_mask */
1500 FALSE), /* pcrel_offset */
c19d1205
ZW
1501
1502 /* GNU extension to record C++ vtable hierarchy */
1503 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
07d6d2b8
AM
1504 0, /* rightshift */
1505 2, /* size (0 = byte, 1 = short, 2 = long) */
1506 0, /* bitsize */
1507 FALSE, /* pc_relative */
1508 0, /* bitpos */
99059e56 1509 complain_overflow_dont, /* complain_on_overflow */
07d6d2b8 1510 NULL, /* special_function */
99059e56 1511 "R_ARM_GNU_VTINHERIT", /* name */
07d6d2b8
AM
1512 FALSE, /* partial_inplace */
1513 0, /* src_mask */
1514 0, /* dst_mask */
1515 FALSE), /* pcrel_offset */
c19d1205
ZW
1516
1517 HOWTO (R_ARM_THM_JUMP11, /* type */
1518 1, /* rightshift */
1519 1, /* size (0 = byte, 1 = short, 2 = long) */
1520 11, /* bitsize */
1521 TRUE, /* pc_relative */
1522 0, /* bitpos */
1523 complain_overflow_signed, /* complain_on_overflow */
1524 bfd_elf_generic_reloc, /* special_function */
1525 "R_ARM_THM_JUMP11", /* name */
1526 FALSE, /* partial_inplace */
1527 0x000007ff, /* src_mask */
1528 0x000007ff, /* dst_mask */
1529 TRUE), /* pcrel_offset */
1530
1531 HOWTO (R_ARM_THM_JUMP8, /* type */
1532 1, /* rightshift */
1533 1, /* size (0 = byte, 1 = short, 2 = long) */
1534 8, /* bitsize */
1535 TRUE, /* pc_relative */
1536 0, /* bitpos */
1537 complain_overflow_signed, /* complain_on_overflow */
1538 bfd_elf_generic_reloc, /* special_function */
1539 "R_ARM_THM_JUMP8", /* name */
1540 FALSE, /* partial_inplace */
1541 0x000000ff, /* src_mask */
1542 0x000000ff, /* dst_mask */
1543 TRUE), /* pcrel_offset */
ba93b8ac 1544
c19d1205
ZW
1545 /* TLS relocations */
1546 HOWTO (R_ARM_TLS_GD32, /* type */
07d6d2b8
AM
1547 0, /* rightshift */
1548 2, /* size (0 = byte, 1 = short, 2 = long) */
1549 32, /* bitsize */
1550 FALSE, /* pc_relative */
1551 0, /* bitpos */
99059e56
RM
1552 complain_overflow_bitfield,/* complain_on_overflow */
1553 NULL, /* special_function */
1554 "R_ARM_TLS_GD32", /* name */
1555 TRUE, /* partial_inplace */
1556 0xffffffff, /* src_mask */
1557 0xffffffff, /* dst_mask */
07d6d2b8 1558 FALSE), /* pcrel_offset */
ba93b8ac 1559
ba93b8ac 1560 HOWTO (R_ARM_TLS_LDM32, /* type */
07d6d2b8
AM
1561 0, /* rightshift */
1562 2, /* size (0 = byte, 1 = short, 2 = long) */
1563 32, /* bitsize */
1564 FALSE, /* pc_relative */
1565 0, /* bitpos */
99059e56
RM
1566 complain_overflow_bitfield,/* complain_on_overflow */
1567 bfd_elf_generic_reloc, /* special_function */
1568 "R_ARM_TLS_LDM32", /* name */
1569 TRUE, /* partial_inplace */
1570 0xffffffff, /* src_mask */
1571 0xffffffff, /* dst_mask */
07d6d2b8 1572 FALSE), /* pcrel_offset */
ba93b8ac 1573
c19d1205 1574 HOWTO (R_ARM_TLS_LDO32, /* type */
07d6d2b8
AM
1575 0, /* rightshift */
1576 2, /* size (0 = byte, 1 = short, 2 = long) */
1577 32, /* bitsize */
1578 FALSE, /* pc_relative */
1579 0, /* bitpos */
99059e56
RM
1580 complain_overflow_bitfield,/* complain_on_overflow */
1581 bfd_elf_generic_reloc, /* special_function */
1582 "R_ARM_TLS_LDO32", /* name */
1583 TRUE, /* partial_inplace */
1584 0xffffffff, /* src_mask */
1585 0xffffffff, /* dst_mask */
07d6d2b8 1586 FALSE), /* pcrel_offset */
ba93b8ac 1587
ba93b8ac 1588 HOWTO (R_ARM_TLS_IE32, /* type */
07d6d2b8
AM
1589 0, /* rightshift */
1590 2, /* size (0 = byte, 1 = short, 2 = long) */
1591 32, /* bitsize */
1592 FALSE, /* pc_relative */
1593 0, /* bitpos */
99059e56
RM
1594 complain_overflow_bitfield,/* complain_on_overflow */
1595 NULL, /* special_function */
1596 "R_ARM_TLS_IE32", /* name */
1597 TRUE, /* partial_inplace */
1598 0xffffffff, /* src_mask */
1599 0xffffffff, /* dst_mask */
07d6d2b8 1600 FALSE), /* pcrel_offset */
7f266840 1601
c19d1205 1602 HOWTO (R_ARM_TLS_LE32, /* type */
07d6d2b8
AM
1603 0, /* rightshift */
1604 2, /* size (0 = byte, 1 = short, 2 = long) */
1605 32, /* bitsize */
1606 FALSE, /* pc_relative */
1607 0, /* bitpos */
99059e56 1608 complain_overflow_bitfield,/* complain_on_overflow */
07d6d2b8 1609 NULL, /* special_function */
99059e56
RM
1610 "R_ARM_TLS_LE32", /* name */
1611 TRUE, /* partial_inplace */
1612 0xffffffff, /* src_mask */
1613 0xffffffff, /* dst_mask */
07d6d2b8 1614 FALSE), /* pcrel_offset */
7f266840 1615
c19d1205
ZW
1616 HOWTO (R_ARM_TLS_LDO12, /* type */
1617 0, /* rightshift */
1618 2, /* size (0 = byte, 1 = short, 2 = long) */
1619 12, /* bitsize */
1620 FALSE, /* pc_relative */
7f266840 1621 0, /* bitpos */
c19d1205 1622 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1623 bfd_elf_generic_reloc, /* special_function */
c19d1205 1624 "R_ARM_TLS_LDO12", /* name */
7f266840 1625 FALSE, /* partial_inplace */
c19d1205
ZW
1626 0x00000fff, /* src_mask */
1627 0x00000fff, /* dst_mask */
1628 FALSE), /* pcrel_offset */
7f266840 1629
c19d1205
ZW
1630 HOWTO (R_ARM_TLS_LE12, /* type */
1631 0, /* rightshift */
1632 2, /* size (0 = byte, 1 = short, 2 = long) */
1633 12, /* bitsize */
1634 FALSE, /* pc_relative */
7f266840 1635 0, /* bitpos */
c19d1205 1636 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1637 bfd_elf_generic_reloc, /* special_function */
c19d1205 1638 "R_ARM_TLS_LE12", /* name */
7f266840 1639 FALSE, /* partial_inplace */
c19d1205
ZW
1640 0x00000fff, /* src_mask */
1641 0x00000fff, /* dst_mask */
1642 FALSE), /* pcrel_offset */
7f266840 1643
c19d1205 1644 HOWTO (R_ARM_TLS_IE12GP, /* type */
7f266840
DJ
1645 0, /* rightshift */
1646 2, /* size (0 = byte, 1 = short, 2 = long) */
c19d1205
ZW
1647 12, /* bitsize */
1648 FALSE, /* pc_relative */
7f266840 1649 0, /* bitpos */
c19d1205 1650 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1651 bfd_elf_generic_reloc, /* special_function */
c19d1205 1652 "R_ARM_TLS_IE12GP", /* name */
7f266840 1653 FALSE, /* partial_inplace */
c19d1205
ZW
1654 0x00000fff, /* src_mask */
1655 0x00000fff, /* dst_mask */
1656 FALSE), /* pcrel_offset */
0855e32b 1657
34e77a92 1658 /* 112-127 private relocations. */
0855e32b
NS
1659 EMPTY_HOWTO (112),
1660 EMPTY_HOWTO (113),
1661 EMPTY_HOWTO (114),
1662 EMPTY_HOWTO (115),
1663 EMPTY_HOWTO (116),
1664 EMPTY_HOWTO (117),
1665 EMPTY_HOWTO (118),
1666 EMPTY_HOWTO (119),
1667 EMPTY_HOWTO (120),
1668 EMPTY_HOWTO (121),
1669 EMPTY_HOWTO (122),
1670 EMPTY_HOWTO (123),
1671 EMPTY_HOWTO (124),
1672 EMPTY_HOWTO (125),
1673 EMPTY_HOWTO (126),
1674 EMPTY_HOWTO (127),
34e77a92
RS
1675
1676 /* R_ARM_ME_TOO, obsolete. */
0855e32b
NS
1677 EMPTY_HOWTO (128),
1678
1679 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1680 0, /* rightshift */
1681 1, /* size (0 = byte, 1 = short, 2 = long) */
1682 0, /* bitsize */
1683 FALSE, /* pc_relative */
1684 0, /* bitpos */
1685 complain_overflow_bitfield,/* complain_on_overflow */
1686 bfd_elf_generic_reloc, /* special_function */
1687 "R_ARM_THM_TLS_DESCSEQ",/* name */
1688 FALSE, /* partial_inplace */
1689 0x00000000, /* src_mask */
1690 0x00000000, /* dst_mask */
1691 FALSE), /* pcrel_offset */
72d98d16
MG
1692 EMPTY_HOWTO (130),
1693 EMPTY_HOWTO (131),
1694 HOWTO (R_ARM_THM_ALU_ABS_G0_NC,/* type. */
1695 0, /* rightshift. */
1696 1, /* size (0 = byte, 1 = short, 2 = long). */
1697 16, /* bitsize. */
1698 FALSE, /* pc_relative. */
1699 0, /* bitpos. */
1700 complain_overflow_bitfield,/* complain_on_overflow. */
1701 bfd_elf_generic_reloc, /* special_function. */
1702 "R_ARM_THM_ALU_ABS_G0_NC",/* name. */
1703 FALSE, /* partial_inplace. */
1704 0x00000000, /* src_mask. */
1705 0x00000000, /* dst_mask. */
1706 FALSE), /* pcrel_offset. */
1707 HOWTO (R_ARM_THM_ALU_ABS_G1_NC,/* type. */
1708 0, /* rightshift. */
1709 1, /* size (0 = byte, 1 = short, 2 = long). */
1710 16, /* bitsize. */
1711 FALSE, /* pc_relative. */
1712 0, /* bitpos. */
1713 complain_overflow_bitfield,/* complain_on_overflow. */
1714 bfd_elf_generic_reloc, /* special_function. */
1715 "R_ARM_THM_ALU_ABS_G1_NC",/* name. */
1716 FALSE, /* partial_inplace. */
1717 0x00000000, /* src_mask. */
1718 0x00000000, /* dst_mask. */
1719 FALSE), /* pcrel_offset. */
1720 HOWTO (R_ARM_THM_ALU_ABS_G2_NC,/* type. */
1721 0, /* rightshift. */
1722 1, /* size (0 = byte, 1 = short, 2 = long). */
1723 16, /* bitsize. */
1724 FALSE, /* pc_relative. */
1725 0, /* bitpos. */
1726 complain_overflow_bitfield,/* complain_on_overflow. */
1727 bfd_elf_generic_reloc, /* special_function. */
1728 "R_ARM_THM_ALU_ABS_G2_NC",/* name. */
1729 FALSE, /* partial_inplace. */
1730 0x00000000, /* src_mask. */
1731 0x00000000, /* dst_mask. */
1732 FALSE), /* pcrel_offset. */
1733 HOWTO (R_ARM_THM_ALU_ABS_G3_NC,/* type. */
1734 0, /* rightshift. */
1735 1, /* size (0 = byte, 1 = short, 2 = long). */
1736 16, /* bitsize. */
1737 FALSE, /* pc_relative. */
1738 0, /* bitpos. */
1739 complain_overflow_bitfield,/* complain_on_overflow. */
1740 bfd_elf_generic_reloc, /* special_function. */
1741 "R_ARM_THM_ALU_ABS_G3_NC",/* name. */
1742 FALSE, /* partial_inplace. */
1743 0x00000000, /* src_mask. */
1744 0x00000000, /* dst_mask. */
1745 FALSE), /* pcrel_offset. */
c19d1205
ZW
1746};
1747
34e77a92 1748/* 160 onwards: */
5c5a4843 1749static reloc_howto_type elf32_arm_howto_table_2[8] =
34e77a92
RS
1750{
1751 HOWTO (R_ARM_IRELATIVE, /* type */
07d6d2b8
AM
1752 0, /* rightshift */
1753 2, /* size (0 = byte, 1 = short, 2 = long) */
1754 32, /* bitsize */
1755 FALSE, /* pc_relative */
1756 0, /* bitpos */
99059e56
RM
1757 complain_overflow_bitfield,/* complain_on_overflow */
1758 bfd_elf_generic_reloc, /* special_function */
1759 "R_ARM_IRELATIVE", /* name */
1760 TRUE, /* partial_inplace */
1761 0xffffffff, /* src_mask */
1762 0xffffffff, /* dst_mask */
188fd7ae
CL
1763 FALSE), /* pcrel_offset */
1764 HOWTO (R_ARM_GOTFUNCDESC, /* type */
1765 0, /* rightshift */
1766 2, /* size (0 = byte, 1 = short, 2 = long) */
1767 32, /* bitsize */
1768 FALSE, /* pc_relative */
1769 0, /* bitpos */
1770 complain_overflow_bitfield,/* complain_on_overflow */
1771 bfd_elf_generic_reloc, /* special_function */
1772 "R_ARM_GOTFUNCDESC", /* name */
1773 FALSE, /* partial_inplace */
1774 0, /* src_mask */
1775 0xffffffff, /* dst_mask */
1776 FALSE), /* pcrel_offset */
1777 HOWTO (R_ARM_GOTOFFFUNCDESC, /* type */
1778 0, /* rightshift */
1779 2, /* size (0 = byte, 1 = short, 2 = long) */
1780 32, /* bitsize */
1781 FALSE, /* pc_relative */
1782 0, /* bitpos */
1783 complain_overflow_bitfield,/* complain_on_overflow */
1784 bfd_elf_generic_reloc, /* special_function */
1785 "R_ARM_GOTOFFFUNCDESC",/* name */
1786 FALSE, /* partial_inplace */
1787 0, /* src_mask */
1788 0xffffffff, /* dst_mask */
1789 FALSE), /* pcrel_offset */
1790 HOWTO (R_ARM_FUNCDESC, /* type */
1791 0, /* rightshift */
1792 2, /* size (0 = byte, 1 = short, 2 = long) */
1793 32, /* bitsize */
1794 FALSE, /* pc_relative */
1795 0, /* bitpos */
1796 complain_overflow_bitfield,/* complain_on_overflow */
1797 bfd_elf_generic_reloc, /* special_function */
1798 "R_ARM_FUNCDESC", /* name */
1799 FALSE, /* partial_inplace */
1800 0, /* src_mask */
1801 0xffffffff, /* dst_mask */
1802 FALSE), /* pcrel_offset */
1803 HOWTO (R_ARM_FUNCDESC_VALUE, /* type */
1804 0, /* rightshift */
1805 2, /* size (0 = byte, 1 = short, 2 = long) */
1806 64, /* bitsize */
1807 FALSE, /* pc_relative */
1808 0, /* bitpos */
1809 complain_overflow_bitfield,/* complain_on_overflow */
1810 bfd_elf_generic_reloc, /* special_function */
1811 "R_ARM_FUNCDESC_VALUE",/* name */
1812 FALSE, /* partial_inplace */
1813 0, /* src_mask */
1814 0xffffffff, /* dst_mask */
1815 FALSE), /* pcrel_offset */
5c5a4843
CL
1816 HOWTO (R_ARM_TLS_GD32_FDPIC, /* type */
1817 0, /* rightshift */
1818 2, /* size (0 = byte, 1 = short, 2 = long) */
1819 32, /* bitsize */
1820 FALSE, /* pc_relative */
1821 0, /* bitpos */
1822 complain_overflow_bitfield,/* complain_on_overflow */
1823 bfd_elf_generic_reloc, /* special_function */
1824 "R_ARM_TLS_GD32_FDPIC",/* name */
1825 FALSE, /* partial_inplace */
1826 0, /* src_mask */
1827 0xffffffff, /* dst_mask */
1828 FALSE), /* pcrel_offset */
1829 HOWTO (R_ARM_TLS_LDM32_FDPIC, /* type */
1830 0, /* rightshift */
1831 2, /* size (0 = byte, 1 = short, 2 = long) */
1832 32, /* bitsize */
1833 FALSE, /* pc_relative */
1834 0, /* bitpos */
1835 complain_overflow_bitfield,/* complain_on_overflow */
1836 bfd_elf_generic_reloc, /* special_function */
1837 "R_ARM_TLS_LDM32_FDPIC",/* name */
1838 FALSE, /* partial_inplace */
1839 0, /* src_mask */
1840 0xffffffff, /* dst_mask */
1841 FALSE), /* pcrel_offset */
1842 HOWTO (R_ARM_TLS_IE32_FDPIC, /* type */
1843 0, /* rightshift */
1844 2, /* size (0 = byte, 1 = short, 2 = long) */
1845 32, /* bitsize */
1846 FALSE, /* pc_relative */
1847 0, /* bitpos */
1848 complain_overflow_bitfield,/* complain_on_overflow */
1849 bfd_elf_generic_reloc, /* special_function */
1850 "R_ARM_TLS_IE32_FDPIC",/* name */
1851 FALSE, /* partial_inplace */
1852 0, /* src_mask */
1853 0xffffffff, /* dst_mask */
1854 FALSE), /* pcrel_offset */
34e77a92 1855};
c19d1205 1856
34e77a92
RS
1857/* 249-255 extended, currently unused, relocations: */
1858static reloc_howto_type elf32_arm_howto_table_3[4] =
7f266840
DJ
1859{
1860 HOWTO (R_ARM_RREL32, /* type */
1861 0, /* rightshift */
1862 0, /* size (0 = byte, 1 = short, 2 = long) */
1863 0, /* bitsize */
1864 FALSE, /* pc_relative */
1865 0, /* bitpos */
1866 complain_overflow_dont,/* complain_on_overflow */
1867 bfd_elf_generic_reloc, /* special_function */
1868 "R_ARM_RREL32", /* name */
1869 FALSE, /* partial_inplace */
1870 0, /* src_mask */
1871 0, /* dst_mask */
1872 FALSE), /* pcrel_offset */
1873
1874 HOWTO (R_ARM_RABS32, /* type */
1875 0, /* rightshift */
1876 0, /* size (0 = byte, 1 = short, 2 = long) */
1877 0, /* bitsize */
1878 FALSE, /* pc_relative */
1879 0, /* bitpos */
1880 complain_overflow_dont,/* complain_on_overflow */
1881 bfd_elf_generic_reloc, /* special_function */
1882 "R_ARM_RABS32", /* name */
1883 FALSE, /* partial_inplace */
1884 0, /* src_mask */
1885 0, /* dst_mask */
1886 FALSE), /* pcrel_offset */
1887
1888 HOWTO (R_ARM_RPC24, /* type */
1889 0, /* rightshift */
1890 0, /* size (0 = byte, 1 = short, 2 = long) */
1891 0, /* bitsize */
1892 FALSE, /* pc_relative */
1893 0, /* bitpos */
1894 complain_overflow_dont,/* complain_on_overflow */
1895 bfd_elf_generic_reloc, /* special_function */
1896 "R_ARM_RPC24", /* name */
1897 FALSE, /* partial_inplace */
1898 0, /* src_mask */
1899 0, /* dst_mask */
1900 FALSE), /* pcrel_offset */
1901
1902 HOWTO (R_ARM_RBASE, /* type */
1903 0, /* rightshift */
1904 0, /* size (0 = byte, 1 = short, 2 = long) */
1905 0, /* bitsize */
1906 FALSE, /* pc_relative */
1907 0, /* bitpos */
1908 complain_overflow_dont,/* complain_on_overflow */
1909 bfd_elf_generic_reloc, /* special_function */
1910 "R_ARM_RBASE", /* name */
1911 FALSE, /* partial_inplace */
1912 0, /* src_mask */
1913 0, /* dst_mask */
1914 FALSE) /* pcrel_offset */
1915};
1916
1917static reloc_howto_type *
1918elf32_arm_howto_from_type (unsigned int r_type)
1919{
906e58ca 1920 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
c19d1205 1921 return &elf32_arm_howto_table_1[r_type];
ba93b8ac 1922
188fd7ae
CL
1923 if (r_type >= R_ARM_IRELATIVE
1924 && r_type < R_ARM_IRELATIVE + ARRAY_SIZE (elf32_arm_howto_table_2))
34e77a92
RS
1925 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1926
c19d1205 1927 if (r_type >= R_ARM_RREL32
34e77a92
RS
1928 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1929 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
7f266840 1930
c19d1205 1931 return NULL;
7f266840
DJ
1932}
1933
f3185997
NC
1934static bfd_boolean
1935elf32_arm_info_to_howto (bfd * abfd, arelent * bfd_reloc,
7f266840
DJ
1936 Elf_Internal_Rela * elf_reloc)
1937{
1938 unsigned int r_type;
1939
1940 r_type = ELF32_R_TYPE (elf_reloc->r_info);
f3185997
NC
1941 if ((bfd_reloc->howto = elf32_arm_howto_from_type (r_type)) == NULL)
1942 {
1943 /* xgettext:c-format */
1944 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1945 abfd, r_type);
1946 bfd_set_error (bfd_error_bad_value);
1947 return FALSE;
1948 }
1949 return TRUE;
7f266840
DJ
1950}
1951
1952struct elf32_arm_reloc_map
1953 {
1954 bfd_reloc_code_real_type bfd_reloc_val;
07d6d2b8 1955 unsigned char elf_reloc_val;
7f266840
DJ
1956 };
1957
1958/* All entries in this list must also be present in elf32_arm_howto_table. */
1959static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1960 {
07d6d2b8 1961 {BFD_RELOC_NONE, R_ARM_NONE},
7f266840 1962 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
39b41c9c
PB
1963 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1964 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
07d6d2b8
AM
1965 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1966 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1967 {BFD_RELOC_32, R_ARM_ABS32},
1968 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1969 {BFD_RELOC_8, R_ARM_ABS8},
1970 {BFD_RELOC_16, R_ARM_ABS16},
1971 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
7f266840 1972 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
c19d1205
ZW
1973 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1974 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1975 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1976 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1977 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1978 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
07d6d2b8
AM
1979 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1980 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1981 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1982 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1983 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1984 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
1985 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1986 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
7f266840
DJ
1987 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1988 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1989 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1990 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
ba93b8ac 1991 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
07d6d2b8
AM
1992 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1993 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
1994 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
0855e32b 1995 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
07d6d2b8 1996 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
0855e32b 1997 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
07d6d2b8 1998 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
ba93b8ac
DJ
1999 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
2000 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
2001 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
2002 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
2003 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
07d6d2b8
AM
2004 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
2005 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
2006 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
2007 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
188fd7ae
CL
2008 {BFD_RELOC_ARM_GOTFUNCDESC, R_ARM_GOTFUNCDESC},
2009 {BFD_RELOC_ARM_GOTOFFFUNCDESC, R_ARM_GOTOFFFUNCDESC},
2010 {BFD_RELOC_ARM_FUNCDESC, R_ARM_FUNCDESC},
2011 {BFD_RELOC_ARM_FUNCDESC_VALUE, R_ARM_FUNCDESC_VALUE},
5c5a4843
CL
2012 {BFD_RELOC_ARM_TLS_GD32_FDPIC, R_ARM_TLS_GD32_FDPIC},
2013 {BFD_RELOC_ARM_TLS_LDM32_FDPIC, R_ARM_TLS_LDM32_FDPIC},
2014 {BFD_RELOC_ARM_TLS_IE32_FDPIC, R_ARM_TLS_IE32_FDPIC},
c19d1205
ZW
2015 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
2016 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
b6895b4f
PB
2017 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
2018 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
2019 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
2020 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
2021 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
2022 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
2023 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
2024 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
4962c51a
MS
2025 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
2026 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
2027 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
2028 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
2029 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
2030 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
2031 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
2032 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
2033 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
2034 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
2035 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
2036 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
2037 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
2038 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
2039 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
2040 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
2041 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
2042 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
2043 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
2044 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
2045 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
2046 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
2047 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
2048 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
2049 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
2050 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
2051 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
845b51d6 2052 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
72d98d16
MG
2053 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX},
2054 {BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC, R_ARM_THM_ALU_ABS_G3_NC},
2055 {BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC, R_ARM_THM_ALU_ABS_G2_NC},
2056 {BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC, R_ARM_THM_ALU_ABS_G1_NC},
2057 {BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC, R_ARM_THM_ALU_ABS_G0_NC}
7f266840
DJ
2058 };
2059
2060static reloc_howto_type *
f1c71a59
ZW
2061elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2062 bfd_reloc_code_real_type code)
7f266840
DJ
2063{
2064 unsigned int i;
8029a119 2065
906e58ca 2066 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
c19d1205
ZW
2067 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
2068 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
7f266840 2069
c19d1205 2070 return NULL;
7f266840
DJ
2071}
2072
157090f7
AM
2073static reloc_howto_type *
2074elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2075 const char *r_name)
2076{
2077 unsigned int i;
2078
906e58ca 2079 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
157090f7
AM
2080 if (elf32_arm_howto_table_1[i].name != NULL
2081 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
2082 return &elf32_arm_howto_table_1[i];
2083
906e58ca 2084 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
157090f7
AM
2085 if (elf32_arm_howto_table_2[i].name != NULL
2086 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
2087 return &elf32_arm_howto_table_2[i];
2088
34e77a92
RS
2089 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
2090 if (elf32_arm_howto_table_3[i].name != NULL
2091 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
2092 return &elf32_arm_howto_table_3[i];
2093
157090f7
AM
2094 return NULL;
2095}
2096
906e58ca
NC
2097/* Support for core dump NOTE sections. */
2098
7f266840 2099static bfd_boolean
f1c71a59 2100elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7f266840
DJ
2101{
2102 int offset;
2103 size_t size;
2104
2105 switch (note->descsz)
2106 {
2107 default:
2108 return FALSE;
2109
8029a119 2110 case 148: /* Linux/ARM 32-bit. */
7f266840 2111 /* pr_cursig */
228e534f 2112 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
7f266840
DJ
2113
2114 /* pr_pid */
228e534f 2115 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
7f266840
DJ
2116
2117 /* pr_reg */
2118 offset = 72;
2119 size = 72;
2120
2121 break;
2122 }
2123
2124 /* Make a ".reg/999" section. */
2125 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2126 size, note->descpos + offset);
2127}
2128
2129static bfd_boolean
f1c71a59 2130elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7f266840
DJ
2131{
2132 switch (note->descsz)
2133 {
2134 default:
2135 return FALSE;
2136
8029a119 2137 case 124: /* Linux/ARM elf_prpsinfo. */
228e534f 2138 elf_tdata (abfd)->core->pid
4395ee08 2139 = bfd_get_32 (abfd, note->descdata + 12);
228e534f 2140 elf_tdata (abfd)->core->program
7f266840 2141 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
228e534f 2142 elf_tdata (abfd)->core->command
7f266840
DJ
2143 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
2144 }
2145
2146 /* Note that for some reason, a spurious space is tacked
2147 onto the end of the args in some (at least one anyway)
2148 implementations, so strip it off if it exists. */
7f266840 2149 {
228e534f 2150 char *command = elf_tdata (abfd)->core->command;
7f266840
DJ
2151 int n = strlen (command);
2152
2153 if (0 < n && command[n - 1] == ' ')
2154 command[n - 1] = '\0';
2155 }
2156
2157 return TRUE;
2158}
2159
1f20dca5
UW
2160static char *
2161elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz,
2162 int note_type, ...)
2163{
2164 switch (note_type)
2165 {
2166 default:
2167 return NULL;
2168
2169 case NT_PRPSINFO:
2170 {
602f1657 2171 char data[124] ATTRIBUTE_NONSTRING;
1f20dca5
UW
2172 va_list ap;
2173
2174 va_start (ap, note_type);
2175 memset (data, 0, sizeof (data));
2176 strncpy (data + 28, va_arg (ap, const char *), 16);
be3e27bb 2177#if GCC_VERSION == 8000 || GCC_VERSION == 8001
95da9854 2178 DIAGNOSTIC_PUSH;
be3e27bb 2179 /* GCC 8.0 and 8.1 warn about 80 equals destination size with
95da9854
L
2180 -Wstringop-truncation:
2181 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85643
2182 */
95da9854
L
2183 DIAGNOSTIC_IGNORE_STRINGOP_TRUNCATION;
2184#endif
1f20dca5 2185 strncpy (data + 44, va_arg (ap, const char *), 80);
be3e27bb 2186#if GCC_VERSION == 8000 || GCC_VERSION == 8001
95da9854 2187 DIAGNOSTIC_POP;
fe75810f 2188#endif
1f20dca5
UW
2189 va_end (ap);
2190
2191 return elfcore_write_note (abfd, buf, bufsiz,
2192 "CORE", note_type, data, sizeof (data));
2193 }
2194
2195 case NT_PRSTATUS:
2196 {
2197 char data[148];
2198 va_list ap;
2199 long pid;
2200 int cursig;
2201 const void *greg;
2202
2203 va_start (ap, note_type);
2204 memset (data, 0, sizeof (data));
2205 pid = va_arg (ap, long);
2206 bfd_put_32 (abfd, pid, data + 24);
2207 cursig = va_arg (ap, int);
2208 bfd_put_16 (abfd, cursig, data + 12);
2209 greg = va_arg (ap, const void *);
2210 memcpy (data + 72, greg, 72);
2211 va_end (ap);
2212
2213 return elfcore_write_note (abfd, buf, bufsiz,
2214 "CORE", note_type, data, sizeof (data));
2215 }
2216 }
2217}
2218
07d6d2b8
AM
2219#define TARGET_LITTLE_SYM arm_elf32_le_vec
2220#define TARGET_LITTLE_NAME "elf32-littlearm"
2221#define TARGET_BIG_SYM arm_elf32_be_vec
2222#define TARGET_BIG_NAME "elf32-bigarm"
7f266840
DJ
2223
2224#define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2225#define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1f20dca5 2226#define elf_backend_write_core_note elf32_arm_nabi_write_core_note
7f266840 2227
252b5132
RH
2228typedef unsigned long int insn32;
2229typedef unsigned short int insn16;
2230
3a4a14e9
PB
2231/* In lieu of proper flags, assume all EABIv4 or later objects are
2232 interworkable. */
57e8b36a 2233#define INTERWORK_FLAG(abfd) \
3a4a14e9 2234 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
3e6b1042
DJ
2235 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2236 || ((abfd)->flags & BFD_LINKER_CREATED))
9b485d32 2237
252b5132
RH
2238/* The linker script knows the section names for placement.
2239 The entry_names are used to do simple name mangling on the stubs.
2240 Given a function name, and its type, the stub can be found. The
9b485d32 2241 name can be changed. The only requirement is the %s be present. */
252b5132
RH
2242#define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2243#define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2244
2245#define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2246#define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2247
c7b8f16e
JB
2248#define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2249#define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2250
a504d23a
LA
2251#define STM32L4XX_ERRATUM_VENEER_SECTION_NAME ".text.stm32l4xx_veneer"
2252#define STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "__stm32l4xx_veneer_%x"
2253
845b51d6
PB
2254#define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2255#define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2256
7413f23f
DJ
2257#define STUB_ENTRY_NAME "__%s_veneer"
2258
4ba2ef8f
TP
2259#define CMSE_PREFIX "__acle_se_"
2260
252b5132
RH
2261/* The name of the dynamic interpreter. This is put in the .interp
2262 section. */
2263#define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2264
cb10292c
CL
2265/* FDPIC default stack size. */
2266#define DEFAULT_STACK_SIZE 0x8000
2267
0855e32b 2268static const unsigned long tls_trampoline [] =
b38cadfb
NC
2269{
2270 0xe08e0000, /* add r0, lr, r0 */
2271 0xe5901004, /* ldr r1, [r0,#4] */
2272 0xe12fff11, /* bx r1 */
2273};
0855e32b
NS
2274
2275static const unsigned long dl_tlsdesc_lazy_trampoline [] =
b38cadfb
NC
2276{
2277 0xe52d2004, /* push {r2} */
2278 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2279 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2280 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2281 0xe081100f, /* 2: add r1, pc */
2282 0xe12fff12, /* bx r2 */
2283 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
99059e56 2284 + dl_tlsdesc_lazy_resolver(GOT) */
b38cadfb
NC
2285 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2286};
0855e32b 2287
7801f98f
CL
2288/* ARM FDPIC PLT entry. */
2289/* The last 5 words contain PLT lazy fragment code and data. */
2290static const bfd_vma elf32_arm_fdpic_plt_entry [] =
2291 {
2292 0xe59fc008, /* ldr r12, .L1 */
2293 0xe08cc009, /* add r12, r12, r9 */
2294 0xe59c9004, /* ldr r9, [r12, #4] */
2295 0xe59cf000, /* ldr pc, [r12] */
2296 0x00000000, /* L1. .word foo(GOTOFFFUNCDESC) */
2297 0x00000000, /* L1. .word foo(funcdesc_value_reloc_offset) */
2298 0xe51fc00c, /* ldr r12, [pc, #-12] */
2299 0xe92d1000, /* push {r12} */
2300 0xe599c004, /* ldr r12, [r9, #4] */
2301 0xe599f000, /* ldr pc, [r9] */
2302 };
2303
59029f57
CL
2304/* Thumb FDPIC PLT entry. */
2305/* The last 5 words contain PLT lazy fragment code and data. */
2306static const bfd_vma elf32_arm_fdpic_thumb_plt_entry [] =
2307 {
2308 0xc00cf8df, /* ldr.w r12, .L1 */
2309 0x0c09eb0c, /* add.w r12, r12, r9 */
2310 0x9004f8dc, /* ldr.w r9, [r12, #4] */
2311 0xf000f8dc, /* ldr.w pc, [r12] */
2312 0x00000000, /* .L1 .word foo(GOTOFFFUNCDESC) */
2313 0x00000000, /* .L2 .word foo(funcdesc_value_reloc_offset) */
2314 0xc008f85f, /* ldr.w r12, .L2 */
2315 0xcd04f84d, /* push {r12} */
2316 0xc004f8d9, /* ldr.w r12, [r9, #4] */
2317 0xf000f8d9, /* ldr.w pc, [r9] */
2318 };
2319
5e681ec4
PB
2320#ifdef FOUR_WORD_PLT
2321
252b5132
RH
2322/* The first entry in a procedure linkage table looks like
2323 this. It is set up so that any shared library function that is
59f2c4e7 2324 called before the relocation has been set up calls the dynamic
9b485d32 2325 linker first. */
e5a52504 2326static const bfd_vma elf32_arm_plt0_entry [] =
b38cadfb
NC
2327{
2328 0xe52de004, /* str lr, [sp, #-4]! */
2329 0xe59fe010, /* ldr lr, [pc, #16] */
2330 0xe08fe00e, /* add lr, pc, lr */
2331 0xe5bef008, /* ldr pc, [lr, #8]! */
2332};
5e681ec4
PB
2333
2334/* Subsequent entries in a procedure linkage table look like
2335 this. */
e5a52504 2336static const bfd_vma elf32_arm_plt_entry [] =
b38cadfb
NC
2337{
2338 0xe28fc600, /* add ip, pc, #NN */
2339 0xe28cca00, /* add ip, ip, #NN */
2340 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2341 0x00000000, /* unused */
2342};
5e681ec4 2343
eed94f8f 2344#else /* not FOUR_WORD_PLT */
5e681ec4 2345
5e681ec4
PB
2346/* The first entry in a procedure linkage table looks like
2347 this. It is set up so that any shared library function that is
2348 called before the relocation has been set up calls the dynamic
2349 linker first. */
e5a52504 2350static const bfd_vma elf32_arm_plt0_entry [] =
b38cadfb 2351{
07d6d2b8
AM
2352 0xe52de004, /* str lr, [sp, #-4]! */
2353 0xe59fe004, /* ldr lr, [pc, #4] */
2354 0xe08fe00e, /* add lr, pc, lr */
2355 0xe5bef008, /* ldr pc, [lr, #8]! */
2356 0x00000000, /* &GOT[0] - . */
b38cadfb 2357};
252b5132 2358
1db37fe6
YG
2359/* By default subsequent entries in a procedure linkage table look like
2360 this. Offsets that don't fit into 28 bits will cause link error. */
2361static const bfd_vma elf32_arm_plt_entry_short [] =
b38cadfb
NC
2362{
2363 0xe28fc600, /* add ip, pc, #0xNN00000 */
2364 0xe28cca00, /* add ip, ip, #0xNN000 */
2365 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2366};
5e681ec4 2367
1db37fe6
YG
2368/* When explicitly asked, we'll use this "long" entry format
2369 which can cope with arbitrary displacements. */
2370static const bfd_vma elf32_arm_plt_entry_long [] =
2371{
07d6d2b8
AM
2372 0xe28fc200, /* add ip, pc, #0xN0000000 */
2373 0xe28cc600, /* add ip, ip, #0xNN00000 */
1db37fe6
YG
2374 0xe28cca00, /* add ip, ip, #0xNN000 */
2375 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2376};
2377
2378static bfd_boolean elf32_arm_use_long_plt_entry = FALSE;
2379
eed94f8f
NC
2380#endif /* not FOUR_WORD_PLT */
2381
2382/* The first entry in a procedure linkage table looks like this.
2383 It is set up so that any shared library function that is called before the
2384 relocation has been set up calls the dynamic linker first. */
2385static const bfd_vma elf32_thumb2_plt0_entry [] =
2386{
2387 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2388 an instruction maybe encoded to one or two array elements. */
07d6d2b8
AM
2389 0xf8dfb500, /* push {lr} */
2390 0x44fee008, /* ldr.w lr, [pc, #8] */
2391 /* add lr, pc */
eed94f8f 2392 0xff08f85e, /* ldr.w pc, [lr, #8]! */
07d6d2b8 2393 0x00000000, /* &GOT[0] - . */
eed94f8f
NC
2394};
2395
2396/* Subsequent entries in a procedure linkage table for thumb only target
2397 look like this. */
2398static const bfd_vma elf32_thumb2_plt_entry [] =
2399{
2400 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2401 an instruction maybe encoded to one or two array elements. */
07d6d2b8
AM
2402 0x0c00f240, /* movw ip, #0xNNNN */
2403 0x0c00f2c0, /* movt ip, #0xNNNN */
2404 0xf8dc44fc, /* add ip, pc */
2405 0xbf00f000 /* ldr.w pc, [ip] */
2406 /* nop */
eed94f8f 2407};
252b5132 2408
00a97672
RS
2409/* The format of the first entry in the procedure linkage table
2410 for a VxWorks executable. */
2411static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
b38cadfb 2412{
07d6d2b8
AM
2413 0xe52dc008, /* str ip,[sp,#-8]! */
2414 0xe59fc000, /* ldr ip,[pc] */
2415 0xe59cf008, /* ldr pc,[ip,#8] */
2416 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
b38cadfb 2417};
00a97672
RS
2418
2419/* The format of subsequent entries in a VxWorks executable. */
2420static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
b38cadfb 2421{
07d6d2b8
AM
2422 0xe59fc000, /* ldr ip,[pc] */
2423 0xe59cf000, /* ldr pc,[ip] */
2424 0x00000000, /* .long @got */
2425 0xe59fc000, /* ldr ip,[pc] */
2426 0xea000000, /* b _PLT */
2427 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
b38cadfb 2428};
00a97672
RS
2429
2430/* The format of entries in a VxWorks shared library. */
2431static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
b38cadfb 2432{
07d6d2b8
AM
2433 0xe59fc000, /* ldr ip,[pc] */
2434 0xe79cf009, /* ldr pc,[ip,r9] */
2435 0x00000000, /* .long @got */
2436 0xe59fc000, /* ldr ip,[pc] */
2437 0xe599f008, /* ldr pc,[r9,#8] */
2438 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
b38cadfb 2439};
00a97672 2440
b7693d02
DJ
2441/* An initial stub used if the PLT entry is referenced from Thumb code. */
2442#define PLT_THUMB_STUB_SIZE 4
2443static const bfd_vma elf32_arm_plt_thumb_stub [] =
b38cadfb
NC
2444{
2445 0x4778, /* bx pc */
2446 0x46c0 /* nop */
2447};
b7693d02 2448
e5a52504
MM
2449/* The entries in a PLT when using a DLL-based target with multiple
2450 address spaces. */
906e58ca 2451static const bfd_vma elf32_arm_symbian_plt_entry [] =
b38cadfb 2452{
07d6d2b8
AM
2453 0xe51ff004, /* ldr pc, [pc, #-4] */
2454 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
b38cadfb
NC
2455};
2456
2457/* The first entry in a procedure linkage table looks like
2458 this. It is set up so that any shared library function that is
2459 called before the relocation has been set up calls the dynamic
2460 linker first. */
2461static const bfd_vma elf32_arm_nacl_plt0_entry [] =
2462{
2463 /* First bundle: */
2464 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
2465 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
2466 0xe08cc00f, /* add ip, ip, pc */
2467 0xe52dc008, /* str ip, [sp, #-8]! */
2468 /* Second bundle: */
edccdf7c
RM
2469 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2470 0xe59cc000, /* ldr ip, [ip] */
b38cadfb 2471 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
edccdf7c 2472 0xe12fff1c, /* bx ip */
b38cadfb 2473 /* Third bundle: */
edccdf7c
RM
2474 0xe320f000, /* nop */
2475 0xe320f000, /* nop */
2476 0xe320f000, /* nop */
b38cadfb
NC
2477 /* .Lplt_tail: */
2478 0xe50dc004, /* str ip, [sp, #-4] */
2479 /* Fourth bundle: */
edccdf7c
RM
2480 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2481 0xe59cc000, /* ldr ip, [ip] */
b38cadfb 2482 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
edccdf7c 2483 0xe12fff1c, /* bx ip */
b38cadfb
NC
2484};
2485#define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
2486
2487/* Subsequent entries in a procedure linkage table look like this. */
2488static const bfd_vma elf32_arm_nacl_plt_entry [] =
2489{
2490 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
2491 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
2492 0xe08cc00f, /* add ip, ip, pc */
2493 0xea000000, /* b .Lplt_tail */
2494};
e5a52504 2495
906e58ca
NC
2496#define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2497#define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2498#define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2499#define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2500#define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2501#define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
c5423981
TG
2502#define THM2_MAX_FWD_COND_BRANCH_OFFSET (((1 << 20) -2) + 4)
2503#define THM2_MAX_BWD_COND_BRANCH_OFFSET (-(1 << 20) + 4)
906e58ca 2504
461a49ca 2505enum stub_insn_type
b38cadfb
NC
2506{
2507 THUMB16_TYPE = 1,
2508 THUMB32_TYPE,
2509 ARM_TYPE,
2510 DATA_TYPE
2511};
461a49ca 2512
48229727
JB
2513#define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2514/* A bit of a hack. A Thumb conditional branch, in which the proper condition
2515 is inserted in arm_build_one_stub(). */
2516#define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2517#define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
d5a67c02
AV
2518#define THUMB32_MOVT(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVT_ABS, 0}
2519#define THUMB32_MOVW(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVW_ABS_NC, 0}
48229727
JB
2520#define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2521#define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2522#define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2523#define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
461a49ca
DJ
2524
2525typedef struct
2526{
07d6d2b8 2527 bfd_vma data;
b38cadfb 2528 enum stub_insn_type type;
07d6d2b8
AM
2529 unsigned int r_type;
2530 int reloc_addend;
461a49ca
DJ
2531} insn_sequence;
2532
fea2b4d6
CL
2533/* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2534 to reach the stub if necessary. */
461a49ca 2535static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
b38cadfb 2536{
07d6d2b8 2537 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
b38cadfb
NC
2538 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2539};
906e58ca 2540
fea2b4d6
CL
2541/* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2542 available. */
461a49ca 2543static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
b38cadfb 2544{
07d6d2b8
AM
2545 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2546 ARM_INSN (0xe12fff1c), /* bx ip */
b38cadfb
NC
2547 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2548};
906e58ca 2549
d3626fb0 2550/* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
461a49ca 2551static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
b38cadfb 2552{
07d6d2b8
AM
2553 THUMB16_INSN (0xb401), /* push {r0} */
2554 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2555 THUMB16_INSN (0x4684), /* mov ip, r0 */
2556 THUMB16_INSN (0xbc01), /* pop {r0} */
2557 THUMB16_INSN (0x4760), /* bx ip */
2558 THUMB16_INSN (0xbf00), /* nop */
b38cadfb
NC
2559 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2560};
906e58ca 2561
80c135e5
TP
2562/* Thumb -> Thumb long branch stub in thumb2 encoding. Used on armv7. */
2563static const insn_sequence elf32_arm_stub_long_branch_thumb2_only[] =
2564{
07d6d2b8 2565 THUMB32_INSN (0xf85ff000), /* ldr.w pc, [pc, #-0] */
80c135e5
TP
2566 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(x) */
2567};
2568
d5a67c02
AV
2569/* Thumb -> Thumb long branch stub. Used for PureCode sections on Thumb2
2570 M-profile architectures. */
2571static const insn_sequence elf32_arm_stub_long_branch_thumb2_only_pure[] =
2572{
2573 THUMB32_MOVW (0xf2400c00), /* mov.w ip, R_ARM_MOVW_ABS_NC */
2574 THUMB32_MOVT (0xf2c00c00), /* movt ip, R_ARM_MOVT_ABS << 16 */
07d6d2b8 2575 THUMB16_INSN (0x4760), /* bx ip */
d5a67c02
AV
2576};
2577
d3626fb0
CL
2578/* V4T Thumb -> Thumb long branch stub. Using the stack is not
2579 allowed. */
2580static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
b38cadfb 2581{
07d6d2b8
AM
2582 THUMB16_INSN (0x4778), /* bx pc */
2583 THUMB16_INSN (0x46c0), /* nop */
2584 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2585 ARM_INSN (0xe12fff1c), /* bx ip */
b38cadfb
NC
2586 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2587};
d3626fb0 2588
fea2b4d6
CL
2589/* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2590 available. */
461a49ca 2591static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
b38cadfb 2592{
07d6d2b8
AM
2593 THUMB16_INSN (0x4778), /* bx pc */
2594 THUMB16_INSN (0x46c0), /* nop */
2595 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
b38cadfb
NC
2596 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2597};
906e58ca 2598
fea2b4d6
CL
2599/* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2600 one, when the destination is close enough. */
461a49ca 2601static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
b38cadfb 2602{
07d6d2b8
AM
2603 THUMB16_INSN (0x4778), /* bx pc */
2604 THUMB16_INSN (0x46c0), /* nop */
b38cadfb
NC
2605 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
2606};
c820be07 2607
cf3eccff 2608/* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
fea2b4d6 2609 blx to reach the stub if necessary. */
cf3eccff 2610static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
b38cadfb 2611{
07d6d2b8
AM
2612 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
2613 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
b38cadfb
NC
2614 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2615};
906e58ca 2616
cf3eccff
DJ
2617/* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2618 blx to reach the stub if necessary. We can not add into pc;
2619 it is not guaranteed to mode switch (different in ARMv6 and
2620 ARMv7). */
2621static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
b38cadfb 2622{
07d6d2b8
AM
2623 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2624 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2625 ARM_INSN (0xe12fff1c), /* bx ip */
b38cadfb
NC
2626 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2627};
cf3eccff 2628
ebe24dd4
CL
2629/* V4T ARM -> ARM long branch stub, PIC. */
2630static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
b38cadfb 2631{
07d6d2b8
AM
2632 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2633 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2634 ARM_INSN (0xe12fff1c), /* bx ip */
b38cadfb
NC
2635 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2636};
ebe24dd4
CL
2637
2638/* V4T Thumb -> ARM long branch stub, PIC. */
2639static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
b38cadfb 2640{
07d6d2b8
AM
2641 THUMB16_INSN (0x4778), /* bx pc */
2642 THUMB16_INSN (0x46c0), /* nop */
2643 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2644 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
b38cadfb
NC
2645 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2646};
ebe24dd4 2647
d3626fb0
CL
2648/* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2649 architectures. */
ebe24dd4 2650static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
b38cadfb 2651{
07d6d2b8
AM
2652 THUMB16_INSN (0xb401), /* push {r0} */
2653 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2654 THUMB16_INSN (0x46fc), /* mov ip, pc */
2655 THUMB16_INSN (0x4484), /* add ip, r0 */
2656 THUMB16_INSN (0xbc01), /* pop {r0} */
2657 THUMB16_INSN (0x4760), /* bx ip */
b38cadfb
NC
2658 DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2659};
ebe24dd4 2660
d3626fb0
CL
2661/* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2662 allowed. */
2663static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
b38cadfb 2664{
07d6d2b8
AM
2665 THUMB16_INSN (0x4778), /* bx pc */
2666 THUMB16_INSN (0x46c0), /* nop */
2667 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2668 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2669 ARM_INSN (0xe12fff1c), /* bx ip */
b38cadfb
NC
2670 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2671};
d3626fb0 2672
0855e32b
NS
2673/* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2674 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2675static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2676{
07d6d2b8
AM
2677 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
2678 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
b38cadfb 2679 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
0855e32b
NS
2680};
2681
2682/* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2683 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2684static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2685{
07d6d2b8
AM
2686 THUMB16_INSN (0x4778), /* bx pc */
2687 THUMB16_INSN (0x46c0), /* nop */
2688 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
2689 ARM_INSN (0xe081f00f), /* add pc, r1, pc */
b38cadfb 2690 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
0855e32b
NS
2691};
2692
7a89b94e
NC
2693/* NaCl ARM -> ARM long branch stub. */
2694static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] =
2695{
2696 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2697 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
07d6d2b8
AM
2698 ARM_INSN (0xe12fff1c), /* bx ip */
2699 ARM_INSN (0xe320f000), /* nop */
2700 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2701 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2702 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2703 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
7a89b94e
NC
2704};
2705
2706/* NaCl ARM -> ARM long branch stub, PIC. */
2707static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] =
2708{
2709 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
07d6d2b8 2710 ARM_INSN (0xe08cc00f), /* add ip, ip, pc */
7a89b94e 2711 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
07d6d2b8
AM
2712 ARM_INSN (0xe12fff1c), /* bx ip */
2713 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2714 DATA_WORD (0, R_ARM_REL32, 8), /* dcd R_ARM_REL32(X+8) */
2715 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2716 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
7a89b94e
NC
2717};
2718
4ba2ef8f
TP
2719/* Stub used for transition to secure state (aka SG veneer). */
2720static const insn_sequence elf32_arm_stub_cmse_branch_thumb_only[] =
2721{
2722 THUMB32_INSN (0xe97fe97f), /* sg. */
2723 THUMB32_B_INSN (0xf000b800, -4), /* b.w original_branch_dest. */
2724};
2725
7a89b94e 2726
48229727
JB
2727/* Cortex-A8 erratum-workaround stubs. */
2728
2729/* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2730 can't use a conditional branch to reach this stub). */
2731
2732static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
b38cadfb 2733{
07d6d2b8 2734 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
b38cadfb
NC
2735 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
2736 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
2737};
48229727
JB
2738
2739/* Stub used for b.w and bl.w instructions. */
2740
2741static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
b38cadfb
NC
2742{
2743 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2744};
48229727
JB
2745
2746static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
b38cadfb
NC
2747{
2748 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2749};
48229727
JB
2750
2751/* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2752 instruction (which switches to ARM mode) to point to this stub. Jump to the
2753 real destination using an ARM-mode branch. */
2754
2755static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
b38cadfb
NC
2756{
2757 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
2758};
48229727 2759
9553db3c
NC
2760/* For each section group there can be a specially created linker section
2761 to hold the stubs for that group. The name of the stub section is based
2762 upon the name of another section within that group with the suffix below
2763 applied.
2764
2765 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2766 create what appeared to be a linker stub section when it actually
2767 contained user code/data. For example, consider this fragment:
b38cadfb 2768
9553db3c
NC
2769 const char * stubborn_problems[] = { "np" };
2770
2771 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2772 section called:
2773
2774 .data.rel.local.stubborn_problems
2775
2776 This then causes problems in arm32_arm_build_stubs() as it triggers:
2777
2778 // Ignore non-stub sections.
2779 if (!strstr (stub_sec->name, STUB_SUFFIX))
2780 continue;
2781
2782 And so the section would be ignored instead of being processed. Hence
2783 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2784 C identifier. */
2785#define STUB_SUFFIX ".__stub"
906e58ca 2786
738a79f6
CL
2787/* One entry per long/short branch stub defined above. */
2788#define DEF_STUBS \
2789 DEF_STUB(long_branch_any_any) \
2790 DEF_STUB(long_branch_v4t_arm_thumb) \
2791 DEF_STUB(long_branch_thumb_only) \
2792 DEF_STUB(long_branch_v4t_thumb_thumb) \
2793 DEF_STUB(long_branch_v4t_thumb_arm) \
2794 DEF_STUB(short_branch_v4t_thumb_arm) \
2795 DEF_STUB(long_branch_any_arm_pic) \
2796 DEF_STUB(long_branch_any_thumb_pic) \
2797 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2798 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2799 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
48229727 2800 DEF_STUB(long_branch_thumb_only_pic) \
0855e32b
NS
2801 DEF_STUB(long_branch_any_tls_pic) \
2802 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
7a89b94e
NC
2803 DEF_STUB(long_branch_arm_nacl) \
2804 DEF_STUB(long_branch_arm_nacl_pic) \
4ba2ef8f 2805 DEF_STUB(cmse_branch_thumb_only) \
48229727
JB
2806 DEF_STUB(a8_veneer_b_cond) \
2807 DEF_STUB(a8_veneer_b) \
2808 DEF_STUB(a8_veneer_bl) \
80c135e5
TP
2809 DEF_STUB(a8_veneer_blx) \
2810 DEF_STUB(long_branch_thumb2_only) \
d5a67c02 2811 DEF_STUB(long_branch_thumb2_only_pure)
738a79f6
CL
2812
2813#define DEF_STUB(x) arm_stub_##x,
b38cadfb
NC
2814enum elf32_arm_stub_type
2815{
906e58ca 2816 arm_stub_none,
738a79f6 2817 DEF_STUBS
4f4faa4d 2818 max_stub_type
738a79f6
CL
2819};
2820#undef DEF_STUB
2821
8d9d9490
TP
2822/* Note the first a8_veneer type. */
2823const unsigned arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond;
2824
738a79f6
CL
2825typedef struct
2826{
d3ce72d0 2827 const insn_sequence* template_sequence;
738a79f6
CL
2828 int template_size;
2829} stub_def;
2830
2831#define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
b38cadfb
NC
2832static const stub_def stub_definitions[] =
2833{
738a79f6
CL
2834 {NULL, 0},
2835 DEF_STUBS
906e58ca
NC
2836};
2837
2838struct elf32_arm_stub_hash_entry
2839{
2840 /* Base hash table entry structure. */
2841 struct bfd_hash_entry root;
2842
2843 /* The stub section. */
2844 asection *stub_sec;
2845
2846 /* Offset within stub_sec of the beginning of this stub. */
2847 bfd_vma stub_offset;
2848
2849 /* Given the symbol's value and its section we can determine its final
2850 value when building the stubs (so the stub knows where to jump). */
2851 bfd_vma target_value;
2852 asection *target_section;
2853
8d9d9490
TP
2854 /* Same as above but for the source of the branch to the stub. Used for
2855 Cortex-A8 erratum workaround to patch it to branch to the stub. As
2856 such, source section does not need to be recorded since Cortex-A8 erratum
2857 workaround stubs are only generated when both source and target are in the
2858 same section. */
2859 bfd_vma source_value;
48229727
JB
2860
2861 /* The instruction which caused this stub to be generated (only valid for
2862 Cortex-A8 erratum workaround stubs at present). */
2863 unsigned long orig_insn;
2864
461a49ca 2865 /* The stub type. */
906e58ca 2866 enum elf32_arm_stub_type stub_type;
461a49ca
DJ
2867 /* Its encoding size in bytes. */
2868 int stub_size;
2869 /* Its template. */
2870 const insn_sequence *stub_template;
2871 /* The size of the template (number of entries). */
2872 int stub_template_size;
906e58ca
NC
2873
2874 /* The symbol table entry, if any, that this was derived from. */
2875 struct elf32_arm_link_hash_entry *h;
2876
35fc36a8
RS
2877 /* Type of branch. */
2878 enum arm_st_branch_type branch_type;
906e58ca
NC
2879
2880 /* Where this stub is being called from, or, in the case of combined
2881 stub sections, the first input section in the group. */
2882 asection *id_sec;
7413f23f
DJ
2883
2884 /* The name for the local symbol at the start of this stub. The
2885 stub name in the hash table has to be unique; this does not, so
2886 it can be friendlier. */
2887 char *output_name;
906e58ca
NC
2888};
2889
e489d0ae
PB
2890/* Used to build a map of a section. This is required for mixed-endian
2891 code/data. */
2892
2893typedef struct elf32_elf_section_map
2894{
2895 bfd_vma vma;
2896 char type;
2897}
2898elf32_arm_section_map;
2899
c7b8f16e
JB
2900/* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2901
2902typedef enum
2903{
2904 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2905 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2906 VFP11_ERRATUM_ARM_VENEER,
2907 VFP11_ERRATUM_THUMB_VENEER
2908}
2909elf32_vfp11_erratum_type;
2910
2911typedef struct elf32_vfp11_erratum_list
2912{
2913 struct elf32_vfp11_erratum_list *next;
2914 bfd_vma vma;
2915 union
2916 {
2917 struct
2918 {
2919 struct elf32_vfp11_erratum_list *veneer;
2920 unsigned int vfp_insn;
2921 } b;
2922 struct
2923 {
2924 struct elf32_vfp11_erratum_list *branch;
2925 unsigned int id;
2926 } v;
2927 } u;
2928 elf32_vfp11_erratum_type type;
2929}
2930elf32_vfp11_erratum_list;
2931
a504d23a
LA
2932/* Information about a STM32L4XX erratum veneer, or a branch to such a
2933 veneer. */
2934typedef enum
2935{
2936 STM32L4XX_ERRATUM_BRANCH_TO_VENEER,
2937 STM32L4XX_ERRATUM_VENEER
2938}
2939elf32_stm32l4xx_erratum_type;
2940
2941typedef struct elf32_stm32l4xx_erratum_list
2942{
2943 struct elf32_stm32l4xx_erratum_list *next;
2944 bfd_vma vma;
2945 union
2946 {
2947 struct
2948 {
2949 struct elf32_stm32l4xx_erratum_list *veneer;
2950 unsigned int insn;
2951 } b;
2952 struct
2953 {
2954 struct elf32_stm32l4xx_erratum_list *branch;
2955 unsigned int id;
2956 } v;
2957 } u;
2958 elf32_stm32l4xx_erratum_type type;
2959}
2960elf32_stm32l4xx_erratum_list;
2961
2468f9c9
PB
2962typedef enum
2963{
2964 DELETE_EXIDX_ENTRY,
2965 INSERT_EXIDX_CANTUNWIND_AT_END
2966}
2967arm_unwind_edit_type;
2968
2969/* A (sorted) list of edits to apply to an unwind table. */
2970typedef struct arm_unwind_table_edit
2971{
2972 arm_unwind_edit_type type;
2973 /* Note: we sometimes want to insert an unwind entry corresponding to a
2974 section different from the one we're currently writing out, so record the
2975 (text) section this edit relates to here. */
2976 asection *linked_section;
2977 unsigned int index;
2978 struct arm_unwind_table_edit *next;
2979}
2980arm_unwind_table_edit;
2981
8e3de13a 2982typedef struct _arm_elf_section_data
e489d0ae 2983{
2468f9c9 2984 /* Information about mapping symbols. */
e489d0ae 2985 struct bfd_elf_section_data elf;
8e3de13a 2986 unsigned int mapcount;
c7b8f16e 2987 unsigned int mapsize;
e489d0ae 2988 elf32_arm_section_map *map;
2468f9c9 2989 /* Information about CPU errata. */
c7b8f16e
JB
2990 unsigned int erratumcount;
2991 elf32_vfp11_erratum_list *erratumlist;
a504d23a
LA
2992 unsigned int stm32l4xx_erratumcount;
2993 elf32_stm32l4xx_erratum_list *stm32l4xx_erratumlist;
491d01d3 2994 unsigned int additional_reloc_count;
2468f9c9
PB
2995 /* Information about unwind tables. */
2996 union
2997 {
2998 /* Unwind info attached to a text section. */
2999 struct
3000 {
3001 asection *arm_exidx_sec;
3002 } text;
3003
3004 /* Unwind info attached to an .ARM.exidx section. */
3005 struct
3006 {
3007 arm_unwind_table_edit *unwind_edit_list;
3008 arm_unwind_table_edit *unwind_edit_tail;
3009 } exidx;
3010 } u;
8e3de13a
NC
3011}
3012_arm_elf_section_data;
e489d0ae
PB
3013
3014#define elf32_arm_section_data(sec) \
8e3de13a 3015 ((_arm_elf_section_data *) elf_section_data (sec))
e489d0ae 3016
48229727
JB
3017/* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
3018 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
3019 so may be created multiple times: we use an array of these entries whilst
3020 relaxing which we can refresh easily, then create stubs for each potentially
3021 erratum-triggering instruction once we've settled on a solution. */
3022
b38cadfb
NC
3023struct a8_erratum_fix
3024{
48229727
JB
3025 bfd *input_bfd;
3026 asection *section;
3027 bfd_vma offset;
8d9d9490 3028 bfd_vma target_offset;
48229727
JB
3029 unsigned long orig_insn;
3030 char *stub_name;
3031 enum elf32_arm_stub_type stub_type;
35fc36a8 3032 enum arm_st_branch_type branch_type;
48229727
JB
3033};
3034
3035/* A table of relocs applied to branches which might trigger Cortex-A8
3036 erratum. */
3037
b38cadfb
NC
3038struct a8_erratum_reloc
3039{
48229727
JB
3040 bfd_vma from;
3041 bfd_vma destination;
92750f34
DJ
3042 struct elf32_arm_link_hash_entry *hash;
3043 const char *sym_name;
48229727 3044 unsigned int r_type;
35fc36a8 3045 enum arm_st_branch_type branch_type;
48229727
JB
3046 bfd_boolean non_a8_stub;
3047};
3048
ba93b8ac
DJ
3049/* The size of the thread control block. */
3050#define TCB_SIZE 8
3051
34e77a92
RS
3052/* ARM-specific information about a PLT entry, over and above the usual
3053 gotplt_union. */
b38cadfb
NC
3054struct arm_plt_info
3055{
34e77a92
RS
3056 /* We reference count Thumb references to a PLT entry separately,
3057 so that we can emit the Thumb trampoline only if needed. */
3058 bfd_signed_vma thumb_refcount;
3059
3060 /* Some references from Thumb code may be eliminated by BL->BLX
3061 conversion, so record them separately. */
3062 bfd_signed_vma maybe_thumb_refcount;
3063
3064 /* How many of the recorded PLT accesses were from non-call relocations.
3065 This information is useful when deciding whether anything takes the
3066 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
3067 non-call references to the function should resolve directly to the
3068 real runtime target. */
3069 unsigned int noncall_refcount;
3070
3071 /* Since PLT entries have variable size if the Thumb prologue is
3072 used, we need to record the index into .got.plt instead of
3073 recomputing it from the PLT offset. */
3074 bfd_signed_vma got_offset;
3075};
3076
3077/* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
b38cadfb
NC
3078struct arm_local_iplt_info
3079{
34e77a92
RS
3080 /* The information that is usually found in the generic ELF part of
3081 the hash table entry. */
3082 union gotplt_union root;
3083
3084 /* The information that is usually found in the ARM-specific part of
3085 the hash table entry. */
3086 struct arm_plt_info arm;
3087
3088 /* A list of all potential dynamic relocations against this symbol. */
3089 struct elf_dyn_relocs *dyn_relocs;
3090};
3091
e8b09b87
CL
3092/* Structure to handle FDPIC support for local functions. */
3093struct fdpic_local {
3094 unsigned int funcdesc_cnt;
3095 unsigned int gotofffuncdesc_cnt;
3096 int funcdesc_offset;
3097};
3098
0ffa91dd 3099struct elf_arm_obj_tdata
ba93b8ac
DJ
3100{
3101 struct elf_obj_tdata root;
3102
3103 /* tls_type for each local got entry. */
3104 char *local_got_tls_type;
ee065d83 3105
0855e32b
NS
3106 /* GOTPLT entries for TLS descriptors. */
3107 bfd_vma *local_tlsdesc_gotent;
3108
34e77a92
RS
3109 /* Information for local symbols that need entries in .iplt. */
3110 struct arm_local_iplt_info **local_iplt;
3111
bf21ed78
MS
3112 /* Zero to warn when linking objects with incompatible enum sizes. */
3113 int no_enum_size_warning;
a9dc9481
JM
3114
3115 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
3116 int no_wchar_size_warning;
e8b09b87
CL
3117
3118 /* Maintains FDPIC counters and funcdesc info. */
3119 struct fdpic_local *local_fdpic_cnts;
ba93b8ac
DJ
3120};
3121
0ffa91dd
NC
3122#define elf_arm_tdata(bfd) \
3123 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
ba93b8ac 3124
0ffa91dd
NC
3125#define elf32_arm_local_got_tls_type(bfd) \
3126 (elf_arm_tdata (bfd)->local_got_tls_type)
3127
0855e32b
NS
3128#define elf32_arm_local_tlsdesc_gotent(bfd) \
3129 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
3130
34e77a92
RS
3131#define elf32_arm_local_iplt(bfd) \
3132 (elf_arm_tdata (bfd)->local_iplt)
3133
e8b09b87
CL
3134#define elf32_arm_local_fdpic_cnts(bfd) \
3135 (elf_arm_tdata (bfd)->local_fdpic_cnts)
3136
0ffa91dd
NC
3137#define is_arm_elf(bfd) \
3138 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
3139 && elf_tdata (bfd) != NULL \
4dfe6ac6 3140 && elf_object_id (bfd) == ARM_ELF_DATA)
ba93b8ac
DJ
3141
3142static bfd_boolean
3143elf32_arm_mkobject (bfd *abfd)
3144{
0ffa91dd 3145 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
4dfe6ac6 3146 ARM_ELF_DATA);
ba93b8ac
DJ
3147}
3148
ba93b8ac
DJ
3149#define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
3150
e8b09b87
CL
3151/* Structure to handle FDPIC support for extern functions. */
3152struct fdpic_global {
3153 unsigned int gotofffuncdesc_cnt;
3154 unsigned int gotfuncdesc_cnt;
3155 unsigned int funcdesc_cnt;
3156 int funcdesc_offset;
3157 int gotfuncdesc_offset;
3158};
3159
ba96a88f 3160/* Arm ELF linker hash entry. */
252b5132 3161struct elf32_arm_link_hash_entry
b38cadfb
NC
3162{
3163 struct elf_link_hash_entry root;
252b5132 3164
b38cadfb
NC
3165 /* Track dynamic relocs copied for this symbol. */
3166 struct elf_dyn_relocs *dyn_relocs;
b7693d02 3167
b38cadfb
NC
3168 /* ARM-specific PLT information. */
3169 struct arm_plt_info plt;
ba93b8ac
DJ
3170
3171#define GOT_UNKNOWN 0
3172#define GOT_NORMAL 1
3173#define GOT_TLS_GD 2
3174#define GOT_TLS_IE 4
0855e32b
NS
3175#define GOT_TLS_GDESC 8
3176#define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
b38cadfb 3177 unsigned int tls_type : 8;
34e77a92 3178
b38cadfb
NC
3179 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
3180 unsigned int is_iplt : 1;
34e77a92 3181
b38cadfb 3182 unsigned int unused : 23;
a4fd1a8e 3183
b38cadfb
NC
3184 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
3185 starting at the end of the jump table. */
3186 bfd_vma tlsdesc_got;
0855e32b 3187
b38cadfb
NC
3188 /* The symbol marking the real symbol location for exported thumb
3189 symbols with Arm stubs. */
3190 struct elf_link_hash_entry *export_glue;
906e58ca 3191
b38cadfb 3192 /* A pointer to the most recently used stub hash entry against this
8029a119 3193 symbol. */
b38cadfb 3194 struct elf32_arm_stub_hash_entry *stub_cache;
e8b09b87
CL
3195
3196 /* Counter for FDPIC relocations against this symbol. */
3197 struct fdpic_global fdpic_cnts;
b38cadfb 3198};
252b5132 3199
252b5132 3200/* Traverse an arm ELF linker hash table. */
252b5132
RH
3201#define elf32_arm_link_hash_traverse(table, func, info) \
3202 (elf_link_hash_traverse \
3203 (&(table)->root, \
b7693d02 3204 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
252b5132
RH
3205 (info)))
3206
3207/* Get the ARM elf linker hash table from a link_info structure. */
3208#define elf32_arm_hash_table(info) \
4dfe6ac6
NC
3209 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
3210 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
252b5132 3211
906e58ca
NC
3212#define arm_stub_hash_lookup(table, string, create, copy) \
3213 ((struct elf32_arm_stub_hash_entry *) \
3214 bfd_hash_lookup ((table), (string), (create), (copy)))
3215
21d799b5
NC
3216/* Array to keep track of which stub sections have been created, and
3217 information on stub grouping. */
3218struct map_stub
3219{
3220 /* This is the section to which stubs in the group will be
3221 attached. */
3222 asection *link_sec;
3223 /* The stub section. */
3224 asection *stub_sec;
3225};
3226
0855e32b
NS
3227#define elf32_arm_compute_jump_table_size(htab) \
3228 ((htab)->next_tls_desc_index * 4)
3229
9b485d32 3230/* ARM ELF linker hash table. */
252b5132 3231struct elf32_arm_link_hash_table
906e58ca
NC
3232{
3233 /* The main hash table. */
3234 struct elf_link_hash_table root;
252b5132 3235
906e58ca
NC
3236 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
3237 bfd_size_type thumb_glue_size;
252b5132 3238
906e58ca
NC
3239 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
3240 bfd_size_type arm_glue_size;
252b5132 3241
906e58ca
NC
3242 /* The size in bytes of section containing the ARMv4 BX veneers. */
3243 bfd_size_type bx_glue_size;
845b51d6 3244
906e58ca
NC
3245 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
3246 veneer has been populated. */
3247 bfd_vma bx_glue_offset[15];
845b51d6 3248
906e58ca
NC
3249 /* The size in bytes of the section containing glue for VFP11 erratum
3250 veneers. */
3251 bfd_size_type vfp11_erratum_glue_size;
c7b8f16e 3252
a504d23a
LA
3253 /* The size in bytes of the section containing glue for STM32L4XX erratum
3254 veneers. */
3255 bfd_size_type stm32l4xx_erratum_glue_size;
3256
48229727
JB
3257 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
3258 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
3259 elf32_arm_write_section(). */
3260 struct a8_erratum_fix *a8_erratum_fixes;
3261 unsigned int num_a8_erratum_fixes;
3262
906e58ca
NC
3263 /* An arbitrary input BFD chosen to hold the glue sections. */
3264 bfd * bfd_of_glue_owner;
ba96a88f 3265
906e58ca
NC
3266 /* Nonzero to output a BE8 image. */
3267 int byteswap_code;
e489d0ae 3268
906e58ca
NC
3269 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
3270 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
3271 int target1_is_rel;
9c504268 3272
906e58ca
NC
3273 /* The relocation to use for R_ARM_TARGET2 relocations. */
3274 int target2_reloc;
eb043451 3275
906e58ca
NC
3276 /* 0 = Ignore R_ARM_V4BX.
3277 1 = Convert BX to MOV PC.
3278 2 = Generate v4 interworing stubs. */
3279 int fix_v4bx;
319850b4 3280
48229727
JB
3281 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
3282 int fix_cortex_a8;
3283
2de70689
MGD
3284 /* Whether we should fix the ARM1176 BLX immediate issue. */
3285 int fix_arm1176;
3286
906e58ca
NC
3287 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
3288 int use_blx;
33bfe774 3289
906e58ca
NC
3290 /* What sort of code sequences we should look for which may trigger the
3291 VFP11 denorm erratum. */
3292 bfd_arm_vfp11_fix vfp11_fix;
c7b8f16e 3293
906e58ca
NC
3294 /* Global counter for the number of fixes we have emitted. */
3295 int num_vfp11_fixes;
c7b8f16e 3296
a504d23a
LA
3297 /* What sort of code sequences we should look for which may trigger the
3298 STM32L4XX erratum. */
3299 bfd_arm_stm32l4xx_fix stm32l4xx_fix;
3300
3301 /* Global counter for the number of fixes we have emitted. */
3302 int num_stm32l4xx_fixes;
3303
906e58ca
NC
3304 /* Nonzero to force PIC branch veneers. */
3305 int pic_veneer;
27e55c4d 3306
906e58ca
NC
3307 /* The number of bytes in the initial entry in the PLT. */
3308 bfd_size_type plt_header_size;
e5a52504 3309
906e58ca
NC
3310 /* The number of bytes in the subsequent PLT etries. */
3311 bfd_size_type plt_entry_size;
e5a52504 3312
906e58ca
NC
3313 /* True if the target system is VxWorks. */
3314 int vxworks_p;
00a97672 3315
906e58ca
NC
3316 /* True if the target system is Symbian OS. */
3317 int symbian_p;
e5a52504 3318
b38cadfb
NC
3319 /* True if the target system is Native Client. */
3320 int nacl_p;
3321
906e58ca 3322 /* True if the target uses REL relocations. */
f3185997 3323 bfd_boolean use_rel;
4e7fd91e 3324
54ddd295
TP
3325 /* Nonzero if import library must be a secure gateway import library
3326 as per ARMv8-M Security Extensions. */
3327 int cmse_implib;
3328
0955507f
TP
3329 /* The import library whose symbols' address must remain stable in
3330 the import library generated. */
3331 bfd *in_implib_bfd;
3332
0855e32b
NS
3333 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
3334 bfd_vma next_tls_desc_index;
3335
3336 /* How many R_ARM_TLS_DESC relocations were generated so far. */
3337 bfd_vma num_tls_desc;
3338
906e58ca
NC
3339 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
3340 asection *srelplt2;
00a97672 3341
0855e32b
NS
3342 /* The offset into splt of the PLT entry for the TLS descriptor
3343 resolver. Special values are 0, if not necessary (or not found
3344 to be necessary yet), and -1 if needed but not determined
3345 yet. */
3346 bfd_vma dt_tlsdesc_plt;
3347
3348 /* The offset into sgot of the GOT entry used by the PLT entry
3349 above. */
b38cadfb 3350 bfd_vma dt_tlsdesc_got;
0855e32b
NS
3351
3352 /* Offset in .plt section of tls_arm_trampoline. */
3353 bfd_vma tls_trampoline;
3354
5c5a4843 3355 /* Data for R_ARM_TLS_LDM32/R_ARM_TLS_LDM32_FDPIC relocations. */
906e58ca
NC
3356 union
3357 {
3358 bfd_signed_vma refcount;
3359 bfd_vma offset;
3360 } tls_ldm_got;
b7693d02 3361
87d72d41
AM
3362 /* Small local sym cache. */
3363 struct sym_cache sym_cache;
906e58ca
NC
3364
3365 /* For convenience in allocate_dynrelocs. */
3366 bfd * obfd;
3367
0855e32b
NS
3368 /* The amount of space used by the reserved portion of the sgotplt
3369 section, plus whatever space is used by the jump slots. */
3370 bfd_vma sgotplt_jump_table_size;
3371
906e58ca
NC
3372 /* The stub hash table. */
3373 struct bfd_hash_table stub_hash_table;
3374
3375 /* Linker stub bfd. */
3376 bfd *stub_bfd;
3377
3378 /* Linker call-backs. */
6bde4c52
TP
3379 asection * (*add_stub_section) (const char *, asection *, asection *,
3380 unsigned int);
906e58ca
NC
3381 void (*layout_sections_again) (void);
3382
3383 /* Array to keep track of which stub sections have been created, and
3384 information on stub grouping. */
21d799b5 3385 struct map_stub *stub_group;
906e58ca 3386
4ba2ef8f
TP
3387 /* Input stub section holding secure gateway veneers. */
3388 asection *cmse_stub_sec;
3389
0955507f
TP
3390 /* Offset in cmse_stub_sec where new SG veneers (not in input import library)
3391 start to be allocated. */
3392 bfd_vma new_cmse_stub_offset;
3393
fe33d2fa 3394 /* Number of elements in stub_group. */
7292b3ac 3395 unsigned int top_id;
fe33d2fa 3396
906e58ca
NC
3397 /* Assorted information used by elf32_arm_size_stubs. */
3398 unsigned int bfd_count;
7292b3ac 3399 unsigned int top_index;
906e58ca 3400 asection **input_list;
617a5ada
CL
3401
3402 /* True if the target system uses FDPIC. */
3403 int fdpic_p;
e8b09b87
CL
3404
3405 /* Fixup section. Used for FDPIC. */
3406 asection *srofixup;
906e58ca 3407};
252b5132 3408
e8b09b87
CL
3409/* Add an FDPIC read-only fixup. */
3410static void
3411arm_elf_add_rofixup (bfd *output_bfd, asection *srofixup, bfd_vma offset)
3412{
3413 bfd_vma fixup_offset;
3414
3415 fixup_offset = srofixup->reloc_count++ * 4;
3416 BFD_ASSERT (fixup_offset < srofixup->size);
3417 bfd_put_32 (output_bfd, offset, srofixup->contents + fixup_offset);
3418}
3419
a504d23a
LA
3420static inline int
3421ctz (unsigned int mask)
3422{
3423#if GCC_VERSION >= 3004
3424 return __builtin_ctz (mask);
3425#else
3426 unsigned int i;
3427
3428 for (i = 0; i < 8 * sizeof (mask); i++)
3429 {
3430 if (mask & 0x1)
3431 break;
3432 mask = (mask >> 1);
3433 }
3434 return i;
3435#endif
3436}
3437
3438static inline int
b25e998d 3439elf32_arm_popcount (unsigned int mask)
a504d23a
LA
3440{
3441#if GCC_VERSION >= 3004
3442 return __builtin_popcount (mask);
3443#else
b25e998d
CG
3444 unsigned int i;
3445 int sum = 0;
a504d23a
LA
3446
3447 for (i = 0; i < 8 * sizeof (mask); i++)
3448 {
3449 if (mask & 0x1)
3450 sum++;
3451 mask = (mask >> 1);
3452 }
3453 return sum;
3454#endif
3455}
3456
e8b09b87
CL
3457static void elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
3458 asection *sreloc, Elf_Internal_Rela *rel);
3459
3460static void
3461arm_elf_fill_funcdesc(bfd *output_bfd,
3462 struct bfd_link_info *info,
3463 int *funcdesc_offset,
3464 int dynindx,
3465 int offset,
3466 bfd_vma addr,
3467 bfd_vma dynreloc_value,
3468 bfd_vma seg)
3469{
3470 if ((*funcdesc_offset & 1) == 0)
3471 {
3472 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
3473 asection *sgot = globals->root.sgot;
3474
3475 if (bfd_link_pic(info))
3476 {
3477 asection *srelgot = globals->root.srelgot;
3478 Elf_Internal_Rela outrel;
3479
3480 outrel.r_info = ELF32_R_INFO (dynindx, R_ARM_FUNCDESC_VALUE);
3481 outrel.r_offset = sgot->output_section->vma + sgot->output_offset + offset;
3482 outrel.r_addend = 0;
3483
3484 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
3485 bfd_put_32 (output_bfd, addr, sgot->contents + offset);
3486 bfd_put_32 (output_bfd, seg, sgot->contents + offset + 4);
3487 }
3488 else
3489 {
3490 struct elf_link_hash_entry *hgot = globals->root.hgot;
3491 bfd_vma got_value = hgot->root.u.def.value
3492 + hgot->root.u.def.section->output_section->vma
3493 + hgot->root.u.def.section->output_offset;
3494
3495 arm_elf_add_rofixup(output_bfd, globals->srofixup,
3496 sgot->output_section->vma + sgot->output_offset
3497 + offset);
3498 arm_elf_add_rofixup(output_bfd, globals->srofixup,
3499 sgot->output_section->vma + sgot->output_offset
3500 + offset + 4);
3501 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + offset);
3502 bfd_put_32 (output_bfd, got_value, sgot->contents + offset + 4);
3503 }
3504 *funcdesc_offset |= 1;
3505 }
3506}
3507
780a67af
NC
3508/* Create an entry in an ARM ELF linker hash table. */
3509
3510static struct bfd_hash_entry *
57e8b36a 3511elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
99059e56
RM
3512 struct bfd_hash_table * table,
3513 const char * string)
780a67af
NC
3514{
3515 struct elf32_arm_link_hash_entry * ret =
3516 (struct elf32_arm_link_hash_entry *) entry;
3517
3518 /* Allocate the structure if it has not already been allocated by a
3519 subclass. */
906e58ca 3520 if (ret == NULL)
21d799b5 3521 ret = (struct elf32_arm_link_hash_entry *)
99059e56 3522 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
57e8b36a 3523 if (ret == NULL)
780a67af
NC
3524 return (struct bfd_hash_entry *) ret;
3525
3526 /* Call the allocation method of the superclass. */
3527 ret = ((struct elf32_arm_link_hash_entry *)
3528 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3529 table, string));
57e8b36a 3530 if (ret != NULL)
b7693d02 3531 {
0bdcacaf 3532 ret->dyn_relocs = NULL;
ba93b8ac 3533 ret->tls_type = GOT_UNKNOWN;
0855e32b 3534 ret->tlsdesc_got = (bfd_vma) -1;
34e77a92
RS
3535 ret->plt.thumb_refcount = 0;
3536 ret->plt.maybe_thumb_refcount = 0;
3537 ret->plt.noncall_refcount = 0;
3538 ret->plt.got_offset = -1;
3539 ret->is_iplt = FALSE;
a4fd1a8e 3540 ret->export_glue = NULL;
906e58ca
NC
3541
3542 ret->stub_cache = NULL;
e8b09b87
CL
3543
3544 ret->fdpic_cnts.gotofffuncdesc_cnt = 0;
3545 ret->fdpic_cnts.gotfuncdesc_cnt = 0;
3546 ret->fdpic_cnts.funcdesc_cnt = 0;
3547 ret->fdpic_cnts.funcdesc_offset = -1;
3548 ret->fdpic_cnts.gotfuncdesc_offset = -1;
b7693d02 3549 }
780a67af
NC
3550
3551 return (struct bfd_hash_entry *) ret;
3552}
3553
34e77a92
RS
3554/* Ensure that we have allocated bookkeeping structures for ABFD's local
3555 symbols. */
3556
3557static bfd_boolean
3558elf32_arm_allocate_local_sym_info (bfd *abfd)
3559{
3560 if (elf_local_got_refcounts (abfd) == NULL)
3561 {
3562 bfd_size_type num_syms;
3563 bfd_size_type size;
3564 char *data;
3565
3566 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
3567 size = num_syms * (sizeof (bfd_signed_vma)
3568 + sizeof (struct arm_local_iplt_info *)
3569 + sizeof (bfd_vma)
e8b09b87
CL
3570 + sizeof (char)
3571 + sizeof (struct fdpic_local));
34e77a92
RS
3572 data = bfd_zalloc (abfd, size);
3573 if (data == NULL)
3574 return FALSE;
3575
e8b09b87
CL
3576 elf32_arm_local_fdpic_cnts (abfd) = (struct fdpic_local *) data;
3577 data += num_syms * sizeof (struct fdpic_local);
3578
34e77a92
RS
3579 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
3580 data += num_syms * sizeof (bfd_signed_vma);
3581
3582 elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
3583 data += num_syms * sizeof (struct arm_local_iplt_info *);
3584
3585 elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
3586 data += num_syms * sizeof (bfd_vma);
3587
3588 elf32_arm_local_got_tls_type (abfd) = data;
3589 }
3590 return TRUE;
3591}
3592
3593/* Return the .iplt information for local symbol R_SYMNDX, which belongs
3594 to input bfd ABFD. Create the information if it doesn't already exist.
3595 Return null if an allocation fails. */
3596
3597static struct arm_local_iplt_info *
3598elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
3599{
3600 struct arm_local_iplt_info **ptr;
3601
3602 if (!elf32_arm_allocate_local_sym_info (abfd))
3603 return NULL;
3604
3605 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
3606 ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
3607 if (*ptr == NULL)
3608 *ptr = bfd_zalloc (abfd, sizeof (**ptr));
3609 return *ptr;
3610}
3611
3612/* Try to obtain PLT information for the symbol with index R_SYMNDX
3613 in ABFD's symbol table. If the symbol is global, H points to its
3614 hash table entry, otherwise H is null.
3615
3616 Return true if the symbol does have PLT information. When returning
3617 true, point *ROOT_PLT at the target-independent reference count/offset
3618 union and *ARM_PLT at the ARM-specific information. */
3619
3620static bfd_boolean
4ba2ef8f
TP
3621elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_table *globals,
3622 struct elf32_arm_link_hash_entry *h,
34e77a92
RS
3623 unsigned long r_symndx, union gotplt_union **root_plt,
3624 struct arm_plt_info **arm_plt)
3625{
3626 struct arm_local_iplt_info *local_iplt;
3627
4ba2ef8f
TP
3628 if (globals->root.splt == NULL && globals->root.iplt == NULL)
3629 return FALSE;
3630
34e77a92
RS
3631 if (h != NULL)
3632 {
3633 *root_plt = &h->root.plt;
3634 *arm_plt = &h->plt;
3635 return TRUE;
3636 }
3637
3638 if (elf32_arm_local_iplt (abfd) == NULL)
3639 return FALSE;
3640
3641 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
3642 if (local_iplt == NULL)
3643 return FALSE;
3644
3645 *root_plt = &local_iplt->root;
3646 *arm_plt = &local_iplt->arm;
3647 return TRUE;
3648}
3649
59029f57
CL
3650static bfd_boolean using_thumb_only (struct elf32_arm_link_hash_table *globals);
3651
34e77a92
RS
3652/* Return true if the PLT described by ARM_PLT requires a Thumb stub
3653 before it. */
3654
3655static bfd_boolean
3656elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3657 struct arm_plt_info *arm_plt)
3658{
3659 struct elf32_arm_link_hash_table *htab;
3660
3661 htab = elf32_arm_hash_table (info);
59029f57
CL
3662
3663 return (!using_thumb_only(htab) && (arm_plt->thumb_refcount != 0
3664 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0)));
34e77a92
RS
3665}
3666
3667/* Return a pointer to the head of the dynamic reloc list that should
3668 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3669 ABFD's symbol table. Return null if an error occurs. */
3670
3671static struct elf_dyn_relocs **
3672elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3673 Elf_Internal_Sym *isym)
3674{
3675 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3676 {
3677 struct arm_local_iplt_info *local_iplt;
3678
3679 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3680 if (local_iplt == NULL)
3681 return NULL;
3682 return &local_iplt->dyn_relocs;
3683 }
3684 else
3685 {
3686 /* Track dynamic relocs needed for local syms too.
3687 We really need local syms available to do this
3688 easily. Oh well. */
3689 asection *s;
3690 void *vpp;
3691
3692 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3693 if (s == NULL)
3694 abort ();
3695
3696 vpp = &elf_section_data (s)->local_dynrel;
3697 return (struct elf_dyn_relocs **) vpp;
3698 }
3699}
3700
906e58ca
NC
3701/* Initialize an entry in the stub hash table. */
3702
3703static struct bfd_hash_entry *
3704stub_hash_newfunc (struct bfd_hash_entry *entry,
3705 struct bfd_hash_table *table,
3706 const char *string)
3707{
3708 /* Allocate the structure if it has not already been allocated by a
3709 subclass. */
3710 if (entry == NULL)
3711 {
21d799b5 3712 entry = (struct bfd_hash_entry *)
99059e56 3713 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
906e58ca
NC
3714 if (entry == NULL)
3715 return entry;
3716 }
3717
3718 /* Call the allocation method of the superclass. */
3719 entry = bfd_hash_newfunc (entry, table, string);
3720 if (entry != NULL)
3721 {
3722 struct elf32_arm_stub_hash_entry *eh;
3723
3724 /* Initialize the local fields. */
3725 eh = (struct elf32_arm_stub_hash_entry *) entry;
3726 eh->stub_sec = NULL;
0955507f 3727 eh->stub_offset = (bfd_vma) -1;
8d9d9490 3728 eh->source_value = 0;
906e58ca
NC
3729 eh->target_value = 0;
3730 eh->target_section = NULL;
cedfb179 3731 eh->orig_insn = 0;
906e58ca 3732 eh->stub_type = arm_stub_none;
461a49ca
DJ
3733 eh->stub_size = 0;
3734 eh->stub_template = NULL;
0955507f 3735 eh->stub_template_size = -1;
906e58ca
NC
3736 eh->h = NULL;
3737 eh->id_sec = NULL;
d8d2f433 3738 eh->output_name = NULL;
906e58ca
NC
3739 }
3740
3741 return entry;
3742}
3743
00a97672 3744/* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
5e681ec4
PB
3745 shortcuts to them in our hash table. */
3746
3747static bfd_boolean
57e8b36a 3748create_got_section (bfd *dynobj, struct bfd_link_info *info)
5e681ec4
PB
3749{
3750 struct elf32_arm_link_hash_table *htab;
3751
e5a52504 3752 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
3753 if (htab == NULL)
3754 return FALSE;
3755
e5a52504
MM
3756 /* BPABI objects never have a GOT, or associated sections. */
3757 if (htab->symbian_p)
3758 return TRUE;
3759
5e681ec4
PB
3760 if (! _bfd_elf_create_got_section (dynobj, info))
3761 return FALSE;
3762
e8b09b87
CL
3763 /* Also create .rofixup. */
3764 if (htab->fdpic_p)
3765 {
3766 htab->srofixup = bfd_make_section_with_flags (dynobj, ".rofixup",
3767 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3768 | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY));
3769 if (htab->srofixup == NULL || ! bfd_set_section_alignment (dynobj, htab->srofixup, 2))
3770 return FALSE;
3771 }
3772
5e681ec4
PB
3773 return TRUE;
3774}
3775
34e77a92
RS
3776/* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3777
3778static bfd_boolean
3779create_ifunc_sections (struct bfd_link_info *info)
3780{
3781 struct elf32_arm_link_hash_table *htab;
3782 const struct elf_backend_data *bed;
3783 bfd *dynobj;
3784 asection *s;
3785 flagword flags;
b38cadfb 3786
34e77a92
RS
3787 htab = elf32_arm_hash_table (info);
3788 dynobj = htab->root.dynobj;
3789 bed = get_elf_backend_data (dynobj);
3790 flags = bed->dynamic_sec_flags;
3791
3792 if (htab->root.iplt == NULL)
3793 {
3d4d4302
AM
3794 s = bfd_make_section_anyway_with_flags (dynobj, ".iplt",
3795 flags | SEC_READONLY | SEC_CODE);
34e77a92 3796 if (s == NULL
a0f49396 3797 || !bfd_set_section_alignment (dynobj, s, bed->plt_alignment))
34e77a92
RS
3798 return FALSE;
3799 htab->root.iplt = s;
3800 }
3801
3802 if (htab->root.irelplt == NULL)
3803 {
3d4d4302
AM
3804 s = bfd_make_section_anyway_with_flags (dynobj,
3805 RELOC_SECTION (htab, ".iplt"),
3806 flags | SEC_READONLY);
34e77a92 3807 if (s == NULL
a0f49396 3808 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
34e77a92
RS
3809 return FALSE;
3810 htab->root.irelplt = s;
3811 }
3812
3813 if (htab->root.igotplt == NULL)
3814 {
3d4d4302 3815 s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags);
34e77a92
RS
3816 if (s == NULL
3817 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3818 return FALSE;
3819 htab->root.igotplt = s;
3820 }
3821 return TRUE;
3822}
3823
eed94f8f
NC
3824/* Determine if we're dealing with a Thumb only architecture. */
3825
3826static bfd_boolean
3827using_thumb_only (struct elf32_arm_link_hash_table *globals)
3828{
2fd158eb
TP
3829 int arch;
3830 int profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3831 Tag_CPU_arch_profile);
eed94f8f 3832
2fd158eb
TP
3833 if (profile)
3834 return profile == 'M';
eed94f8f 3835
2fd158eb 3836 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
eed94f8f 3837
60a019a0 3838 /* Force return logic to be reviewed for each new architecture. */
bff0500d 3839 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8M_MAIN);
60a019a0 3840
2fd158eb
TP
3841 if (arch == TAG_CPU_ARCH_V6_M
3842 || arch == TAG_CPU_ARCH_V6S_M
3843 || arch == TAG_CPU_ARCH_V7E_M
3844 || arch == TAG_CPU_ARCH_V8M_BASE
3845 || arch == TAG_CPU_ARCH_V8M_MAIN)
3846 return TRUE;
eed94f8f 3847
2fd158eb 3848 return FALSE;
eed94f8f
NC
3849}
3850
3851/* Determine if we're dealing with a Thumb-2 object. */
3852
3853static bfd_boolean
3854using_thumb2 (struct elf32_arm_link_hash_table *globals)
3855{
60a019a0
TP
3856 int arch;
3857 int thumb_isa = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3858 Tag_THUMB_ISA_use);
3859
3860 if (thumb_isa)
3861 return thumb_isa == 2;
3862
3863 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3864
3865 /* Force return logic to be reviewed for each new architecture. */
bff0500d 3866 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8M_MAIN);
60a019a0
TP
3867
3868 return (arch == TAG_CPU_ARCH_V6T2
3869 || arch == TAG_CPU_ARCH_V7
3870 || arch == TAG_CPU_ARCH_V7E_M
3871 || arch == TAG_CPU_ARCH_V8
bff0500d 3872 || arch == TAG_CPU_ARCH_V8R
60a019a0 3873 || arch == TAG_CPU_ARCH_V8M_MAIN);
eed94f8f
NC
3874}
3875
5e866f5a
TP
3876/* Determine whether Thumb-2 BL instruction is available. */
3877
3878static bfd_boolean
3879using_thumb2_bl (struct elf32_arm_link_hash_table *globals)
3880{
3881 int arch =
3882 bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3883
3884 /* Force return logic to be reviewed for each new architecture. */
bff0500d 3885 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8M_MAIN);
5e866f5a
TP
3886
3887 /* Architecture was introduced after ARMv6T2 (eg. ARMv6-M). */
3888 return (arch == TAG_CPU_ARCH_V6T2
3889 || arch >= TAG_CPU_ARCH_V7);
3890}
3891
00a97672
RS
3892/* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3893 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
5e681ec4
PB
3894 hash table. */
3895
3896static bfd_boolean
57e8b36a 3897elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
5e681ec4
PB
3898{
3899 struct elf32_arm_link_hash_table *htab;
3900
3901 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
3902 if (htab == NULL)
3903 return FALSE;
3904
362d30a1 3905 if (!htab->root.sgot && !create_got_section (dynobj, info))
5e681ec4
PB
3906 return FALSE;
3907
3908 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3909 return FALSE;
3910
00a97672
RS
3911 if (htab->vxworks_p)
3912 {
3913 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3914 return FALSE;
3915
0e1862bb 3916 if (bfd_link_pic (info))
00a97672
RS
3917 {
3918 htab->plt_header_size = 0;
3919 htab->plt_entry_size
3920 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3921 }
3922 else
3923 {
3924 htab->plt_header_size
3925 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3926 htab->plt_entry_size
3927 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3928 }
aebf9be7
NC
3929
3930 if (elf_elfheader (dynobj))
3931 elf_elfheader (dynobj)->e_ident[EI_CLASS] = ELFCLASS32;
00a97672 3932 }
eed94f8f
NC
3933 else
3934 {
3935 /* PR ld/16017
3936 Test for thumb only architectures. Note - we cannot just call
3937 using_thumb_only() as the attributes in the output bfd have not been
3938 initialised at this point, so instead we use the input bfd. */
3939 bfd * saved_obfd = htab->obfd;
3940
3941 htab->obfd = dynobj;
3942 if (using_thumb_only (htab))
3943 {
3944 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
3945 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
3946 }
3947 htab->obfd = saved_obfd;
3948 }
5e681ec4 3949
7801f98f
CL
3950 if (htab->fdpic_p) {
3951 htab->plt_header_size = 0;
3952 if (info->flags & DF_BIND_NOW)
3953 htab->plt_entry_size = 4 * (ARRAY_SIZE(elf32_arm_fdpic_plt_entry) - 5);
3954 else
3955 htab->plt_entry_size = 4 * ARRAY_SIZE(elf32_arm_fdpic_plt_entry);
3956 }
3957
362d30a1
RS
3958 if (!htab->root.splt
3959 || !htab->root.srelplt
9d19e4fd
AM
3960 || !htab->root.sdynbss
3961 || (!bfd_link_pic (info) && !htab->root.srelbss))
5e681ec4
PB
3962 abort ();
3963
3964 return TRUE;
3965}
3966
906e58ca
NC
3967/* Copy the extra info we tack onto an elf_link_hash_entry. */
3968
3969static void
3970elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
3971 struct elf_link_hash_entry *dir,
3972 struct elf_link_hash_entry *ind)
3973{
3974 struct elf32_arm_link_hash_entry *edir, *eind;
3975
3976 edir = (struct elf32_arm_link_hash_entry *) dir;
3977 eind = (struct elf32_arm_link_hash_entry *) ind;
3978
0bdcacaf 3979 if (eind->dyn_relocs != NULL)
906e58ca 3980 {
0bdcacaf 3981 if (edir->dyn_relocs != NULL)
906e58ca 3982 {
0bdcacaf
RS
3983 struct elf_dyn_relocs **pp;
3984 struct elf_dyn_relocs *p;
906e58ca
NC
3985
3986 /* Add reloc counts against the indirect sym to the direct sym
3987 list. Merge any entries against the same section. */
0bdcacaf 3988 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
906e58ca 3989 {
0bdcacaf 3990 struct elf_dyn_relocs *q;
906e58ca 3991
0bdcacaf
RS
3992 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3993 if (q->sec == p->sec)
906e58ca
NC
3994 {
3995 q->pc_count += p->pc_count;
3996 q->count += p->count;
3997 *pp = p->next;
3998 break;
3999 }
4000 if (q == NULL)
4001 pp = &p->next;
4002 }
0bdcacaf 4003 *pp = edir->dyn_relocs;
906e58ca
NC
4004 }
4005
0bdcacaf
RS
4006 edir->dyn_relocs = eind->dyn_relocs;
4007 eind->dyn_relocs = NULL;
906e58ca
NC
4008 }
4009
4010 if (ind->root.type == bfd_link_hash_indirect)
4011 {
4012 /* Copy over PLT info. */
34e77a92
RS
4013 edir->plt.thumb_refcount += eind->plt.thumb_refcount;
4014 eind->plt.thumb_refcount = 0;
4015 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
4016 eind->plt.maybe_thumb_refcount = 0;
4017 edir->plt.noncall_refcount += eind->plt.noncall_refcount;
4018 eind->plt.noncall_refcount = 0;
4019
e8b09b87
CL
4020 /* Copy FDPIC counters. */
4021 edir->fdpic_cnts.gotofffuncdesc_cnt += eind->fdpic_cnts.gotofffuncdesc_cnt;
4022 edir->fdpic_cnts.gotfuncdesc_cnt += eind->fdpic_cnts.gotfuncdesc_cnt;
4023 edir->fdpic_cnts.funcdesc_cnt += eind->fdpic_cnts.funcdesc_cnt;
4024
34e77a92
RS
4025 /* We should only allocate a function to .iplt once the final
4026 symbol information is known. */
4027 BFD_ASSERT (!eind->is_iplt);
906e58ca
NC
4028
4029 if (dir->got.refcount <= 0)
4030 {
4031 edir->tls_type = eind->tls_type;
4032 eind->tls_type = GOT_UNKNOWN;
4033 }
4034 }
4035
4036 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
4037}
4038
68faa637
AM
4039/* Destroy an ARM elf linker hash table. */
4040
4041static void
d495ab0d 4042elf32_arm_link_hash_table_free (bfd *obfd)
68faa637
AM
4043{
4044 struct elf32_arm_link_hash_table *ret
d495ab0d 4045 = (struct elf32_arm_link_hash_table *) obfd->link.hash;
68faa637
AM
4046
4047 bfd_hash_table_free (&ret->stub_hash_table);
d495ab0d 4048 _bfd_elf_link_hash_table_free (obfd);
68faa637
AM
4049}
4050
906e58ca
NC
4051/* Create an ARM elf linker hash table. */
4052
4053static struct bfd_link_hash_table *
4054elf32_arm_link_hash_table_create (bfd *abfd)
4055{
4056 struct elf32_arm_link_hash_table *ret;
4057 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
4058
7bf52ea2 4059 ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt);
906e58ca
NC
4060 if (ret == NULL)
4061 return NULL;
4062
4063 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
4064 elf32_arm_link_hash_newfunc,
4dfe6ac6
NC
4065 sizeof (struct elf32_arm_link_hash_entry),
4066 ARM_ELF_DATA))
906e58ca
NC
4067 {
4068 free (ret);
4069 return NULL;
4070 }
4071
906e58ca 4072 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
a504d23a 4073 ret->stm32l4xx_fix = BFD_ARM_STM32L4XX_FIX_NONE;
906e58ca
NC
4074#ifdef FOUR_WORD_PLT
4075 ret->plt_header_size = 16;
4076 ret->plt_entry_size = 16;
4077#else
4078 ret->plt_header_size = 20;
1db37fe6 4079 ret->plt_entry_size = elf32_arm_use_long_plt_entry ? 16 : 12;
906e58ca 4080#endif
f3185997 4081 ret->use_rel = TRUE;
906e58ca 4082 ret->obfd = abfd;
617a5ada 4083 ret->fdpic_p = 0;
906e58ca
NC
4084
4085 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
4086 sizeof (struct elf32_arm_stub_hash_entry)))
4087 {
d495ab0d 4088 _bfd_elf_link_hash_table_free (abfd);
906e58ca
NC
4089 return NULL;
4090 }
d495ab0d 4091 ret->root.root.hash_table_free = elf32_arm_link_hash_table_free;
906e58ca
NC
4092
4093 return &ret->root.root;
4094}
4095
cd1dac3d
DG
4096/* Determine what kind of NOPs are available. */
4097
4098static bfd_boolean
4099arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
4100{
4101 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
4102 Tag_CPU_arch);
cd1dac3d 4103
60a019a0 4104 /* Force return logic to be reviewed for each new architecture. */
bff0500d 4105 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8M_MAIN);
60a019a0
TP
4106
4107 return (arch == TAG_CPU_ARCH_V6T2
4108 || arch == TAG_CPU_ARCH_V6K
4109 || arch == TAG_CPU_ARCH_V7
bff0500d
TP
4110 || arch == TAG_CPU_ARCH_V8
4111 || arch == TAG_CPU_ARCH_V8R);
cd1dac3d
DG
4112}
4113
f4ac8484
DJ
4114static bfd_boolean
4115arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
4116{
4117 switch (stub_type)
4118 {
fea2b4d6 4119 case arm_stub_long_branch_thumb_only:
80c135e5 4120 case arm_stub_long_branch_thumb2_only:
d5a67c02 4121 case arm_stub_long_branch_thumb2_only_pure:
fea2b4d6
CL
4122 case arm_stub_long_branch_v4t_thumb_arm:
4123 case arm_stub_short_branch_v4t_thumb_arm:
ebe24dd4 4124 case arm_stub_long_branch_v4t_thumb_arm_pic:
12352d3f 4125 case arm_stub_long_branch_v4t_thumb_tls_pic:
ebe24dd4 4126 case arm_stub_long_branch_thumb_only_pic:
4ba2ef8f 4127 case arm_stub_cmse_branch_thumb_only:
f4ac8484
DJ
4128 return TRUE;
4129 case arm_stub_none:
4130 BFD_FAIL ();
4131 return FALSE;
4132 break;
4133 default:
4134 return FALSE;
4135 }
4136}
4137
906e58ca
NC
4138/* Determine the type of stub needed, if any, for a call. */
4139
4140static enum elf32_arm_stub_type
4141arm_type_of_stub (struct bfd_link_info *info,
4142 asection *input_sec,
4143 const Elf_Internal_Rela *rel,
34e77a92 4144 unsigned char st_type,
35fc36a8 4145 enum arm_st_branch_type *actual_branch_type,
906e58ca 4146 struct elf32_arm_link_hash_entry *hash,
c820be07
NC
4147 bfd_vma destination,
4148 asection *sym_sec,
4149 bfd *input_bfd,
4150 const char *name)
906e58ca
NC
4151{
4152 bfd_vma location;
4153 bfd_signed_vma branch_offset;
4154 unsigned int r_type;
4155 struct elf32_arm_link_hash_table * globals;
5e866f5a 4156 bfd_boolean thumb2, thumb2_bl, thumb_only;
906e58ca 4157 enum elf32_arm_stub_type stub_type = arm_stub_none;
5fa9e92f 4158 int use_plt = 0;
35fc36a8 4159 enum arm_st_branch_type branch_type = *actual_branch_type;
34e77a92
RS
4160 union gotplt_union *root_plt;
4161 struct arm_plt_info *arm_plt;
d5a67c02
AV
4162 int arch;
4163 int thumb2_movw;
906e58ca 4164
35fc36a8 4165 if (branch_type == ST_BRANCH_LONG)
da5938a2
NC
4166 return stub_type;
4167
906e58ca 4168 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
4169 if (globals == NULL)
4170 return stub_type;
906e58ca
NC
4171
4172 thumb_only = using_thumb_only (globals);
906e58ca 4173 thumb2 = using_thumb2 (globals);
5e866f5a 4174 thumb2_bl = using_thumb2_bl (globals);
906e58ca 4175
d5a67c02
AV
4176 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
4177
4178 /* True for architectures that implement the thumb2 movw instruction. */
4179 thumb2_movw = thumb2 || (arch == TAG_CPU_ARCH_V8M_BASE);
4180
906e58ca
NC
4181 /* Determine where the call point is. */
4182 location = (input_sec->output_offset
4183 + input_sec->output_section->vma
4184 + rel->r_offset);
4185
906e58ca
NC
4186 r_type = ELF32_R_TYPE (rel->r_info);
4187
39f21624
NC
4188 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
4189 are considering a function call relocation. */
c5423981 4190 if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
07d6d2b8 4191 || r_type == R_ARM_THM_JUMP19)
39f21624
NC
4192 && branch_type == ST_BRANCH_TO_ARM)
4193 branch_type = ST_BRANCH_TO_THUMB;
4194
34e77a92
RS
4195 /* For TLS call relocs, it is the caller's responsibility to provide
4196 the address of the appropriate trampoline. */
4197 if (r_type != R_ARM_TLS_CALL
4198 && r_type != R_ARM_THM_TLS_CALL
4ba2ef8f
TP
4199 && elf32_arm_get_plt_info (input_bfd, globals, hash,
4200 ELF32_R_SYM (rel->r_info), &root_plt,
4201 &arm_plt)
34e77a92 4202 && root_plt->offset != (bfd_vma) -1)
5fa9e92f 4203 {
34e77a92 4204 asection *splt;
fe33d2fa 4205
34e77a92
RS
4206 if (hash == NULL || hash->is_iplt)
4207 splt = globals->root.iplt;
4208 else
4209 splt = globals->root.splt;
4210 if (splt != NULL)
b38cadfb 4211 {
34e77a92
RS
4212 use_plt = 1;
4213
4214 /* Note when dealing with PLT entries: the main PLT stub is in
4215 ARM mode, so if the branch is in Thumb mode, another
4216 Thumb->ARM stub will be inserted later just before the ARM
2df2751d
CL
4217 PLT stub. If a long branch stub is needed, we'll add a
4218 Thumb->Arm one and branch directly to the ARM PLT entry.
4219 Here, we have to check if a pre-PLT Thumb->ARM stub
4220 is needed and if it will be close enough. */
34e77a92
RS
4221
4222 destination = (splt->output_section->vma
4223 + splt->output_offset
4224 + root_plt->offset);
4225 st_type = STT_FUNC;
2df2751d
CL
4226
4227 /* Thumb branch/call to PLT: it can become a branch to ARM
4228 or to Thumb. We must perform the same checks and
4229 corrections as in elf32_arm_final_link_relocate. */
4230 if ((r_type == R_ARM_THM_CALL)
4231 || (r_type == R_ARM_THM_JUMP24))
4232 {
4233 if (globals->use_blx
4234 && r_type == R_ARM_THM_CALL
4235 && !thumb_only)
4236 {
4237 /* If the Thumb BLX instruction is available, convert
4238 the BL to a BLX instruction to call the ARM-mode
4239 PLT entry. */
4240 branch_type = ST_BRANCH_TO_ARM;
4241 }
4242 else
4243 {
4244 if (!thumb_only)
4245 /* Target the Thumb stub before the ARM PLT entry. */
4246 destination -= PLT_THUMB_STUB_SIZE;
4247 branch_type = ST_BRANCH_TO_THUMB;
4248 }
4249 }
4250 else
4251 {
4252 branch_type = ST_BRANCH_TO_ARM;
4253 }
34e77a92 4254 }
5fa9e92f 4255 }
34e77a92
RS
4256 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
4257 BFD_ASSERT (st_type != STT_GNU_IFUNC);
906e58ca 4258
fe33d2fa
CL
4259 branch_offset = (bfd_signed_vma)(destination - location);
4260
0855e32b 4261 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
c5423981 4262 || r_type == R_ARM_THM_TLS_CALL || r_type == R_ARM_THM_JUMP19)
906e58ca 4263 {
5fa9e92f
CL
4264 /* Handle cases where:
4265 - this call goes too far (different Thumb/Thumb2 max
99059e56 4266 distance)
155d87d7 4267 - it's a Thumb->Arm call and blx is not available, or it's a
99059e56
RM
4268 Thumb->Arm branch (not bl). A stub is needed in this case,
4269 but only if this call is not through a PLT entry. Indeed,
695344c0 4270 PLT stubs handle mode switching already. */
5e866f5a 4271 if ((!thumb2_bl
906e58ca
NC
4272 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4273 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
5e866f5a 4274 || (thumb2_bl
906e58ca
NC
4275 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4276 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
c5423981
TG
4277 || (thumb2
4278 && (branch_offset > THM2_MAX_FWD_COND_BRANCH_OFFSET
4279 || (branch_offset < THM2_MAX_BWD_COND_BRANCH_OFFSET))
4280 && (r_type == R_ARM_THM_JUMP19))
35fc36a8 4281 || (branch_type == ST_BRANCH_TO_ARM
0855e32b
NS
4282 && (((r_type == R_ARM_THM_CALL
4283 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
c5423981 4284 || (r_type == R_ARM_THM_JUMP24)
07d6d2b8 4285 || (r_type == R_ARM_THM_JUMP19))
5fa9e92f 4286 && !use_plt))
906e58ca 4287 {
2df2751d
CL
4288 /* If we need to insert a Thumb-Thumb long branch stub to a
4289 PLT, use one that branches directly to the ARM PLT
4290 stub. If we pretended we'd use the pre-PLT Thumb->ARM
4291 stub, undo this now. */
695344c0
NC
4292 if ((branch_type == ST_BRANCH_TO_THUMB) && use_plt && !thumb_only)
4293 {
4294 branch_type = ST_BRANCH_TO_ARM;
4295 branch_offset += PLT_THUMB_STUB_SIZE;
4296 }
2df2751d 4297
35fc36a8 4298 if (branch_type == ST_BRANCH_TO_THUMB)
906e58ca
NC
4299 {
4300 /* Thumb to thumb. */
4301 if (!thumb_only)
4302 {
d5a67c02 4303 if (input_sec->flags & SEC_ELF_PURECODE)
10463f39 4304 _bfd_error_handler
871b3ab2 4305 (_("%pB(%pA): warning: long branch veneers used in"
10463f39
AM
4306 " section with SHF_ARM_PURECODE section"
4307 " attribute is only supported for M-profile"
90b6238f 4308 " targets that implement the movw instruction"),
10463f39 4309 input_bfd, input_sec);
d5a67c02 4310
0e1862bb 4311 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
c2b4a39d 4312 /* PIC stubs. */
155d87d7 4313 ? ((globals->use_blx
9553db3c 4314 && (r_type == R_ARM_THM_CALL))
155d87d7
CL
4315 /* V5T and above. Stub starts with ARM code, so
4316 we must be able to switch mode before
4317 reaching it, which is only possible for 'bl'
4318 (ie R_ARM_THM_CALL relocation). */
cf3eccff 4319 ? arm_stub_long_branch_any_thumb_pic
ebe24dd4 4320 /* On V4T, use Thumb code only. */
d3626fb0 4321 : arm_stub_long_branch_v4t_thumb_thumb_pic)
c2b4a39d
CL
4322
4323 /* non-PIC stubs. */
155d87d7 4324 : ((globals->use_blx
9553db3c 4325 && (r_type == R_ARM_THM_CALL))
c2b4a39d
CL
4326 /* V5T and above. */
4327 ? arm_stub_long_branch_any_any
4328 /* V4T. */
d3626fb0 4329 : arm_stub_long_branch_v4t_thumb_thumb);
906e58ca
NC
4330 }
4331 else
4332 {
d5a67c02
AV
4333 if (thumb2_movw && (input_sec->flags & SEC_ELF_PURECODE))
4334 stub_type = arm_stub_long_branch_thumb2_only_pure;
4335 else
4336 {
4337 if (input_sec->flags & SEC_ELF_PURECODE)
10463f39 4338 _bfd_error_handler
871b3ab2 4339 (_("%pB(%pA): warning: long branch veneers used in"
10463f39
AM
4340 " section with SHF_ARM_PURECODE section"
4341 " attribute is only supported for M-profile"
90b6238f 4342 " targets that implement the movw instruction"),
10463f39 4343 input_bfd, input_sec);
d5a67c02
AV
4344
4345 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4346 /* PIC stub. */
4347 ? arm_stub_long_branch_thumb_only_pic
4348 /* non-PIC stub. */
4349 : (thumb2 ? arm_stub_long_branch_thumb2_only
4350 : arm_stub_long_branch_thumb_only);
4351 }
906e58ca
NC
4352 }
4353 }
4354 else
4355 {
d5a67c02 4356 if (input_sec->flags & SEC_ELF_PURECODE)
10463f39 4357 _bfd_error_handler
871b3ab2 4358 (_("%pB(%pA): warning: long branch veneers used in"
10463f39
AM
4359 " section with SHF_ARM_PURECODE section"
4360 " attribute is only supported" " for M-profile"
90b6238f 4361 " targets that implement the movw instruction"),
10463f39 4362 input_bfd, input_sec);
d5a67c02 4363
906e58ca 4364 /* Thumb to arm. */
c820be07
NC
4365 if (sym_sec != NULL
4366 && sym_sec->owner != NULL
4367 && !INTERWORK_FLAG (sym_sec->owner))
4368 {
4eca0228 4369 _bfd_error_handler
90b6238f
AM
4370 (_("%pB(%s): warning: interworking not enabled;"
4371 " first occurrence: %pB: %s call to %s"),
4372 sym_sec->owner, name, input_bfd, "Thumb", "ARM");
c820be07
NC
4373 }
4374
0855e32b 4375 stub_type =
0e1862bb 4376 (bfd_link_pic (info) | globals->pic_veneer)
c2b4a39d 4377 /* PIC stubs. */
0855e32b 4378 ? (r_type == R_ARM_THM_TLS_CALL
6a631e86 4379 /* TLS PIC stubs. */
0855e32b
NS
4380 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
4381 : arm_stub_long_branch_v4t_thumb_tls_pic)
4382 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4383 /* V5T PIC and above. */
4384 ? arm_stub_long_branch_any_arm_pic
4385 /* V4T PIC stub. */
4386 : arm_stub_long_branch_v4t_thumb_arm_pic))
c2b4a39d
CL
4387
4388 /* non-PIC stubs. */
0855e32b 4389 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
c2b4a39d
CL
4390 /* V5T and above. */
4391 ? arm_stub_long_branch_any_any
4392 /* V4T. */
4393 : arm_stub_long_branch_v4t_thumb_arm);
c820be07
NC
4394
4395 /* Handle v4t short branches. */
fea2b4d6 4396 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
c820be07
NC
4397 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4398 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
fea2b4d6 4399 stub_type = arm_stub_short_branch_v4t_thumb_arm;
906e58ca
NC
4400 }
4401 }
4402 }
fe33d2fa
CL
4403 else if (r_type == R_ARM_CALL
4404 || r_type == R_ARM_JUMP24
0855e32b
NS
4405 || r_type == R_ARM_PLT32
4406 || r_type == R_ARM_TLS_CALL)
906e58ca 4407 {
d5a67c02 4408 if (input_sec->flags & SEC_ELF_PURECODE)
10463f39 4409 _bfd_error_handler
871b3ab2 4410 (_("%pB(%pA): warning: long branch veneers used in"
10463f39
AM
4411 " section with SHF_ARM_PURECODE section"
4412 " attribute is only supported for M-profile"
90b6238f 4413 " targets that implement the movw instruction"),
10463f39 4414 input_bfd, input_sec);
35fc36a8 4415 if (branch_type == ST_BRANCH_TO_THUMB)
906e58ca
NC
4416 {
4417 /* Arm to thumb. */
c820be07
NC
4418
4419 if (sym_sec != NULL
4420 && sym_sec->owner != NULL
4421 && !INTERWORK_FLAG (sym_sec->owner))
4422 {
4eca0228 4423 _bfd_error_handler
90b6238f
AM
4424 (_("%pB(%s): warning: interworking not enabled;"
4425 " first occurrence: %pB: %s call to %s"),
4426 sym_sec->owner, name, input_bfd, "ARM", "Thumb");
c820be07
NC
4427 }
4428
4429 /* We have an extra 2-bytes reach because of
4430 the mode change (bit 24 (H) of BLX encoding). */
4116d8d7
PB
4431 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4432 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
0855e32b 4433 || (r_type == R_ARM_CALL && !globals->use_blx)
4116d8d7
PB
4434 || (r_type == R_ARM_JUMP24)
4435 || (r_type == R_ARM_PLT32))
906e58ca 4436 {
0e1862bb 4437 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
c2b4a39d 4438 /* PIC stubs. */
ebe24dd4
CL
4439 ? ((globals->use_blx)
4440 /* V5T and above. */
4441 ? arm_stub_long_branch_any_thumb_pic
4442 /* V4T stub. */
4443 : arm_stub_long_branch_v4t_arm_thumb_pic)
4444
c2b4a39d
CL
4445 /* non-PIC stubs. */
4446 : ((globals->use_blx)
4447 /* V5T and above. */
4448 ? arm_stub_long_branch_any_any
4449 /* V4T. */
4450 : arm_stub_long_branch_v4t_arm_thumb);
906e58ca
NC
4451 }
4452 }
4453 else
4454 {
4455 /* Arm to arm. */
4456 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4457 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4458 {
0855e32b 4459 stub_type =
0e1862bb 4460 (bfd_link_pic (info) | globals->pic_veneer)
c2b4a39d 4461 /* PIC stubs. */
0855e32b 4462 ? (r_type == R_ARM_TLS_CALL
6a631e86 4463 /* TLS PIC Stub. */
0855e32b 4464 ? arm_stub_long_branch_any_tls_pic
7a89b94e
NC
4465 : (globals->nacl_p
4466 ? arm_stub_long_branch_arm_nacl_pic
4467 : arm_stub_long_branch_any_arm_pic))
c2b4a39d 4468 /* non-PIC stubs. */
7a89b94e
NC
4469 : (globals->nacl_p
4470 ? arm_stub_long_branch_arm_nacl
4471 : arm_stub_long_branch_any_any);
906e58ca
NC
4472 }
4473 }
4474 }
4475
fe33d2fa
CL
4476 /* If a stub is needed, record the actual destination type. */
4477 if (stub_type != arm_stub_none)
35fc36a8 4478 *actual_branch_type = branch_type;
fe33d2fa 4479
906e58ca
NC
4480 return stub_type;
4481}
4482
4483/* Build a name for an entry in the stub hash table. */
4484
4485static char *
4486elf32_arm_stub_name (const asection *input_section,
4487 const asection *sym_sec,
4488 const struct elf32_arm_link_hash_entry *hash,
fe33d2fa
CL
4489 const Elf_Internal_Rela *rel,
4490 enum elf32_arm_stub_type stub_type)
906e58ca
NC
4491{
4492 char *stub_name;
4493 bfd_size_type len;
4494
4495 if (hash)
4496 {
fe33d2fa 4497 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
21d799b5 4498 stub_name = (char *) bfd_malloc (len);
906e58ca 4499 if (stub_name != NULL)
fe33d2fa 4500 sprintf (stub_name, "%08x_%s+%x_%d",
906e58ca
NC
4501 input_section->id & 0xffffffff,
4502 hash->root.root.root.string,
fe33d2fa
CL
4503 (int) rel->r_addend & 0xffffffff,
4504 (int) stub_type);
906e58ca
NC
4505 }
4506 else
4507 {
fe33d2fa 4508 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
21d799b5 4509 stub_name = (char *) bfd_malloc (len);
906e58ca 4510 if (stub_name != NULL)
fe33d2fa 4511 sprintf (stub_name, "%08x_%x:%x+%x_%d",
906e58ca
NC
4512 input_section->id & 0xffffffff,
4513 sym_sec->id & 0xffffffff,
0855e32b
NS
4514 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
4515 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
4516 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
fe33d2fa
CL
4517 (int) rel->r_addend & 0xffffffff,
4518 (int) stub_type);
906e58ca
NC
4519 }
4520
4521 return stub_name;
4522}
4523
4524/* Look up an entry in the stub hash. Stub entries are cached because
4525 creating the stub name takes a bit of time. */
4526
4527static struct elf32_arm_stub_hash_entry *
4528elf32_arm_get_stub_entry (const asection *input_section,
4529 const asection *sym_sec,
4530 struct elf_link_hash_entry *hash,
4531 const Elf_Internal_Rela *rel,
fe33d2fa
CL
4532 struct elf32_arm_link_hash_table *htab,
4533 enum elf32_arm_stub_type stub_type)
906e58ca
NC
4534{
4535 struct elf32_arm_stub_hash_entry *stub_entry;
4536 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
4537 const asection *id_sec;
4538
4539 if ((input_section->flags & SEC_CODE) == 0)
4540 return NULL;
4541
4542 /* If this input section is part of a group of sections sharing one
4543 stub section, then use the id of the first section in the group.
4544 Stub names need to include a section id, as there may well be
4545 more than one stub used to reach say, printf, and we need to
4546 distinguish between them. */
c2abbbeb 4547 BFD_ASSERT (input_section->id <= htab->top_id);
906e58ca
NC
4548 id_sec = htab->stub_group[input_section->id].link_sec;
4549
4550 if (h != NULL && h->stub_cache != NULL
4551 && h->stub_cache->h == h
fe33d2fa
CL
4552 && h->stub_cache->id_sec == id_sec
4553 && h->stub_cache->stub_type == stub_type)
906e58ca
NC
4554 {
4555 stub_entry = h->stub_cache;
4556 }
4557 else
4558 {
4559 char *stub_name;
4560
fe33d2fa 4561 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
906e58ca
NC
4562 if (stub_name == NULL)
4563 return NULL;
4564
4565 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
4566 stub_name, FALSE, FALSE);
4567 if (h != NULL)
4568 h->stub_cache = stub_entry;
4569
4570 free (stub_name);
4571 }
4572
4573 return stub_entry;
4574}
4575
daa4adae
TP
4576/* Whether veneers of type STUB_TYPE require to be in a dedicated output
4577 section. */
4578
4579static bfd_boolean
4580arm_dedicated_stub_output_section_required (enum elf32_arm_stub_type stub_type)
4581{
4582 if (stub_type >= max_stub_type)
4583 abort (); /* Should be unreachable. */
4584
4ba2ef8f
TP
4585 switch (stub_type)
4586 {
4587 case arm_stub_cmse_branch_thumb_only:
4588 return TRUE;
4589
4590 default:
4591 return FALSE;
4592 }
4593
4594 abort (); /* Should be unreachable. */
daa4adae
TP
4595}
4596
4597/* Required alignment (as a power of 2) for the dedicated section holding
4598 veneers of type STUB_TYPE, or 0 if veneers of this type are interspersed
4599 with input sections. */
4600
4601static int
4602arm_dedicated_stub_output_section_required_alignment
4603 (enum elf32_arm_stub_type stub_type)
4604{
4605 if (stub_type >= max_stub_type)
4606 abort (); /* Should be unreachable. */
4607
4ba2ef8f
TP
4608 switch (stub_type)
4609 {
4610 /* Vectors of Secure Gateway veneers must be aligned on 32byte
4611 boundary. */
4612 case arm_stub_cmse_branch_thumb_only:
4613 return 5;
4614
4615 default:
4616 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4617 return 0;
4618 }
4619
4620 abort (); /* Should be unreachable. */
daa4adae
TP
4621}
4622
4623/* Name of the dedicated output section to put veneers of type STUB_TYPE, or
4624 NULL if veneers of this type are interspersed with input sections. */
4625
4626static const char *
4627arm_dedicated_stub_output_section_name (enum elf32_arm_stub_type stub_type)
4628{
4629 if (stub_type >= max_stub_type)
4630 abort (); /* Should be unreachable. */
4631
4ba2ef8f
TP
4632 switch (stub_type)
4633 {
4634 case arm_stub_cmse_branch_thumb_only:
4635 return ".gnu.sgstubs";
4636
4637 default:
4638 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4639 return NULL;
4640 }
4641
4642 abort (); /* Should be unreachable. */
daa4adae
TP
4643}
4644
4645/* If veneers of type STUB_TYPE should go in a dedicated output section,
4646 returns the address of the hash table field in HTAB holding a pointer to the
4647 corresponding input section. Otherwise, returns NULL. */
4648
4649static asection **
4ba2ef8f
TP
4650arm_dedicated_stub_input_section_ptr (struct elf32_arm_link_hash_table *htab,
4651 enum elf32_arm_stub_type stub_type)
daa4adae
TP
4652{
4653 if (stub_type >= max_stub_type)
4654 abort (); /* Should be unreachable. */
4655
4ba2ef8f
TP
4656 switch (stub_type)
4657 {
4658 case arm_stub_cmse_branch_thumb_only:
4659 return &htab->cmse_stub_sec;
4660
4661 default:
4662 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4663 return NULL;
4664 }
4665
4666 abort (); /* Should be unreachable. */
daa4adae
TP
4667}
4668
4669/* Find or create a stub section to contain a stub of type STUB_TYPE. SECTION
4670 is the section that branch into veneer and can be NULL if stub should go in
4671 a dedicated output section. Returns a pointer to the stub section, and the
4672 section to which the stub section will be attached (in *LINK_SEC_P).
48229727 4673 LINK_SEC_P may be NULL. */
906e58ca 4674
48229727
JB
4675static asection *
4676elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
daa4adae
TP
4677 struct elf32_arm_link_hash_table *htab,
4678 enum elf32_arm_stub_type stub_type)
906e58ca 4679{
daa4adae
TP
4680 asection *link_sec, *out_sec, **stub_sec_p;
4681 const char *stub_sec_prefix;
4682 bfd_boolean dedicated_output_section =
4683 arm_dedicated_stub_output_section_required (stub_type);
4684 int align;
906e58ca 4685
daa4adae 4686 if (dedicated_output_section)
906e58ca 4687 {
daa4adae
TP
4688 bfd *output_bfd = htab->obfd;
4689 const char *out_sec_name =
4690 arm_dedicated_stub_output_section_name (stub_type);
4691 link_sec = NULL;
4692 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
4693 stub_sec_prefix = out_sec_name;
4694 align = arm_dedicated_stub_output_section_required_alignment (stub_type);
4695 out_sec = bfd_get_section_by_name (output_bfd, out_sec_name);
4696 if (out_sec == NULL)
906e58ca 4697 {
90b6238f 4698 _bfd_error_handler (_("no address assigned to the veneers output "
4eca0228 4699 "section %s"), out_sec_name);
daa4adae 4700 return NULL;
906e58ca 4701 }
daa4adae
TP
4702 }
4703 else
4704 {
c2abbbeb 4705 BFD_ASSERT (section->id <= htab->top_id);
daa4adae
TP
4706 link_sec = htab->stub_group[section->id].link_sec;
4707 BFD_ASSERT (link_sec != NULL);
4708 stub_sec_p = &htab->stub_group[section->id].stub_sec;
4709 if (*stub_sec_p == NULL)
4710 stub_sec_p = &htab->stub_group[link_sec->id].stub_sec;
4711 stub_sec_prefix = link_sec->name;
4712 out_sec = link_sec->output_section;
4713 align = htab->nacl_p ? 4 : 3;
906e58ca 4714 }
b38cadfb 4715
daa4adae
TP
4716 if (*stub_sec_p == NULL)
4717 {
4718 size_t namelen;
4719 bfd_size_type len;
4720 char *s_name;
4721
4722 namelen = strlen (stub_sec_prefix);
4723 len = namelen + sizeof (STUB_SUFFIX);
4724 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
4725 if (s_name == NULL)
4726 return NULL;
4727
4728 memcpy (s_name, stub_sec_prefix, namelen);
4729 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4730 *stub_sec_p = (*htab->add_stub_section) (s_name, out_sec, link_sec,
4731 align);
4732 if (*stub_sec_p == NULL)
4733 return NULL;
4734
4735 out_sec->flags |= SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_CODE
4736 | SEC_HAS_CONTENTS | SEC_RELOC | SEC_IN_MEMORY
4737 | SEC_KEEP;
4738 }
4739
4740 if (!dedicated_output_section)
4741 htab->stub_group[section->id].stub_sec = *stub_sec_p;
4742
48229727
JB
4743 if (link_sec_p)
4744 *link_sec_p = link_sec;
b38cadfb 4745
daa4adae 4746 return *stub_sec_p;
48229727
JB
4747}
4748
4749/* Add a new stub entry to the stub hash. Not all fields of the new
4750 stub entry are initialised. */
4751
4752static struct elf32_arm_stub_hash_entry *
daa4adae
TP
4753elf32_arm_add_stub (const char *stub_name, asection *section,
4754 struct elf32_arm_link_hash_table *htab,
4755 enum elf32_arm_stub_type stub_type)
48229727
JB
4756{
4757 asection *link_sec;
4758 asection *stub_sec;
4759 struct elf32_arm_stub_hash_entry *stub_entry;
4760
daa4adae
TP
4761 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab,
4762 stub_type);
48229727
JB
4763 if (stub_sec == NULL)
4764 return NULL;
906e58ca
NC
4765
4766 /* Enter this entry into the linker stub hash table. */
4767 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4768 TRUE, FALSE);
4769 if (stub_entry == NULL)
4770 {
6bde4c52
TP
4771 if (section == NULL)
4772 section = stub_sec;
871b3ab2 4773 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
4eca0228 4774 section->owner, stub_name);
906e58ca
NC
4775 return NULL;
4776 }
4777
4778 stub_entry->stub_sec = stub_sec;
0955507f 4779 stub_entry->stub_offset = (bfd_vma) -1;
906e58ca
NC
4780 stub_entry->id_sec = link_sec;
4781
906e58ca
NC
4782 return stub_entry;
4783}
4784
4785/* Store an Arm insn into an output section not processed by
4786 elf32_arm_write_section. */
4787
4788static void
8029a119
NC
4789put_arm_insn (struct elf32_arm_link_hash_table * htab,
4790 bfd * output_bfd, bfd_vma val, void * ptr)
906e58ca
NC
4791{
4792 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4793 bfd_putl32 (val, ptr);
4794 else
4795 bfd_putb32 (val, ptr);
4796}
4797
4798/* Store a 16-bit Thumb insn into an output section not processed by
4799 elf32_arm_write_section. */
4800
4801static void
8029a119
NC
4802put_thumb_insn (struct elf32_arm_link_hash_table * htab,
4803 bfd * output_bfd, bfd_vma val, void * ptr)
906e58ca
NC
4804{
4805 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4806 bfd_putl16 (val, ptr);
4807 else
4808 bfd_putb16 (val, ptr);
4809}
4810
a504d23a
LA
4811/* Store a Thumb2 insn into an output section not processed by
4812 elf32_arm_write_section. */
4813
4814static void
4815put_thumb2_insn (struct elf32_arm_link_hash_table * htab,
b98e6871 4816 bfd * output_bfd, bfd_vma val, bfd_byte * ptr)
a504d23a
LA
4817{
4818 /* T2 instructions are 16-bit streamed. */
4819 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4820 {
4821 bfd_putl16 ((val >> 16) & 0xffff, ptr);
4822 bfd_putl16 ((val & 0xffff), ptr + 2);
4823 }
4824 else
4825 {
4826 bfd_putb16 ((val >> 16) & 0xffff, ptr);
4827 bfd_putb16 ((val & 0xffff), ptr + 2);
4828 }
4829}
4830
0855e32b
NS
4831/* If it's possible to change R_TYPE to a more efficient access
4832 model, return the new reloc type. */
4833
4834static unsigned
b38cadfb 4835elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
0855e32b
NS
4836 struct elf_link_hash_entry *h)
4837{
4838 int is_local = (h == NULL);
4839
0e1862bb
L
4840 if (bfd_link_pic (info)
4841 || (h && h->root.type == bfd_link_hash_undefweak))
0855e32b
NS
4842 return r_type;
4843
b38cadfb 4844 /* We do not support relaxations for Old TLS models. */
0855e32b
NS
4845 switch (r_type)
4846 {
4847 case R_ARM_TLS_GOTDESC:
4848 case R_ARM_TLS_CALL:
4849 case R_ARM_THM_TLS_CALL:
4850 case R_ARM_TLS_DESCSEQ:
4851 case R_ARM_THM_TLS_DESCSEQ:
4852 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
4853 }
4854
4855 return r_type;
4856}
4857
48229727
JB
4858static bfd_reloc_status_type elf32_arm_final_link_relocate
4859 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
4860 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
34e77a92
RS
4861 const char *, unsigned char, enum arm_st_branch_type,
4862 struct elf_link_hash_entry *, bfd_boolean *, char **);
48229727 4863
4563a860
JB
4864static unsigned int
4865arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
4866{
4867 switch (stub_type)
4868 {
4869 case arm_stub_a8_veneer_b_cond:
4870 case arm_stub_a8_veneer_b:
4871 case arm_stub_a8_veneer_bl:
4872 return 2;
4873
4874 case arm_stub_long_branch_any_any:
4875 case arm_stub_long_branch_v4t_arm_thumb:
4876 case arm_stub_long_branch_thumb_only:
80c135e5 4877 case arm_stub_long_branch_thumb2_only:
d5a67c02 4878 case arm_stub_long_branch_thumb2_only_pure:
4563a860
JB
4879 case arm_stub_long_branch_v4t_thumb_thumb:
4880 case arm_stub_long_branch_v4t_thumb_arm:
4881 case arm_stub_short_branch_v4t_thumb_arm:
4882 case arm_stub_long_branch_any_arm_pic:
4883 case arm_stub_long_branch_any_thumb_pic:
4884 case arm_stub_long_branch_v4t_thumb_thumb_pic:
4885 case arm_stub_long_branch_v4t_arm_thumb_pic:
4886 case arm_stub_long_branch_v4t_thumb_arm_pic:
4887 case arm_stub_long_branch_thumb_only_pic:
0855e32b
NS
4888 case arm_stub_long_branch_any_tls_pic:
4889 case arm_stub_long_branch_v4t_thumb_tls_pic:
4ba2ef8f 4890 case arm_stub_cmse_branch_thumb_only:
4563a860
JB
4891 case arm_stub_a8_veneer_blx:
4892 return 4;
b38cadfb 4893
7a89b94e
NC
4894 case arm_stub_long_branch_arm_nacl:
4895 case arm_stub_long_branch_arm_nacl_pic:
4896 return 16;
4897
4563a860
JB
4898 default:
4899 abort (); /* Should be unreachable. */
4900 }
4901}
4902
4f4faa4d
TP
4903/* Returns whether stubs of type STUB_TYPE take over the symbol they are
4904 veneering (TRUE) or have their own symbol (FALSE). */
4905
4906static bfd_boolean
4907arm_stub_sym_claimed (enum elf32_arm_stub_type stub_type)
4908{
4909 if (stub_type >= max_stub_type)
4910 abort (); /* Should be unreachable. */
4911
4ba2ef8f
TP
4912 switch (stub_type)
4913 {
4914 case arm_stub_cmse_branch_thumb_only:
4915 return TRUE;
4916
4917 default:
4918 return FALSE;
4919 }
4920
4921 abort (); /* Should be unreachable. */
4f4faa4d
TP
4922}
4923
d7c5bd02
TP
4924/* Returns the padding needed for the dedicated section used stubs of type
4925 STUB_TYPE. */
4926
4927static int
4928arm_dedicated_stub_section_padding (enum elf32_arm_stub_type stub_type)
4929{
4930 if (stub_type >= max_stub_type)
4931 abort (); /* Should be unreachable. */
4932
4ba2ef8f
TP
4933 switch (stub_type)
4934 {
4935 case arm_stub_cmse_branch_thumb_only:
4936 return 32;
4937
4938 default:
4939 return 0;
4940 }
4941
4942 abort (); /* Should be unreachable. */
d7c5bd02
TP
4943}
4944
0955507f
TP
4945/* If veneers of type STUB_TYPE should go in a dedicated output section,
4946 returns the address of the hash table field in HTAB holding the offset at
4947 which new veneers should be layed out in the stub section. */
4948
4949static bfd_vma*
4950arm_new_stubs_start_offset_ptr (struct elf32_arm_link_hash_table *htab,
4951 enum elf32_arm_stub_type stub_type)
4952{
4953 switch (stub_type)
4954 {
4955 case arm_stub_cmse_branch_thumb_only:
4956 return &htab->new_cmse_stub_offset;
4957
4958 default:
4959 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4960 return NULL;
4961 }
4962}
4963
906e58ca
NC
4964static bfd_boolean
4965arm_build_one_stub (struct bfd_hash_entry *gen_entry,
4966 void * in_arg)
4967{
7a89b94e 4968#define MAXRELOCS 3
0955507f 4969 bfd_boolean removed_sg_veneer;
906e58ca 4970 struct elf32_arm_stub_hash_entry *stub_entry;
4dfe6ac6 4971 struct elf32_arm_link_hash_table *globals;
906e58ca 4972 struct bfd_link_info *info;
906e58ca
NC
4973 asection *stub_sec;
4974 bfd *stub_bfd;
906e58ca
NC
4975 bfd_byte *loc;
4976 bfd_vma sym_value;
4977 int template_size;
4978 int size;
d3ce72d0 4979 const insn_sequence *template_sequence;
906e58ca 4980 int i;
48229727
JB
4981 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
4982 int stub_reloc_offset[MAXRELOCS] = {0, 0};
4983 int nrelocs = 0;
0955507f 4984 int just_allocated = 0;
906e58ca
NC
4985
4986 /* Massage our args to the form they really have. */
4987 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4988 info = (struct bfd_link_info *) in_arg;
4989
4990 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
4991 if (globals == NULL)
4992 return FALSE;
906e58ca 4993
906e58ca
NC
4994 stub_sec = stub_entry->stub_sec;
4995
4dfe6ac6 4996 if ((globals->fix_cortex_a8 < 0)
4563a860
JB
4997 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
4998 /* We have to do less-strictly-aligned fixes last. */
eb7c4339 4999 return TRUE;
fe33d2fa 5000
0955507f
TP
5001 /* Assign a slot at the end of section if none assigned yet. */
5002 if (stub_entry->stub_offset == (bfd_vma) -1)
5003 {
5004 stub_entry->stub_offset = stub_sec->size;
5005 just_allocated = 1;
5006 }
906e58ca
NC
5007 loc = stub_sec->contents + stub_entry->stub_offset;
5008
5009 stub_bfd = stub_sec->owner;
5010
906e58ca
NC
5011 /* This is the address of the stub destination. */
5012 sym_value = (stub_entry->target_value
5013 + stub_entry->target_section->output_offset
5014 + stub_entry->target_section->output_section->vma);
5015
d3ce72d0 5016 template_sequence = stub_entry->stub_template;
461a49ca 5017 template_size = stub_entry->stub_template_size;
906e58ca
NC
5018
5019 size = 0;
461a49ca 5020 for (i = 0; i < template_size; i++)
906e58ca 5021 {
d3ce72d0 5022 switch (template_sequence[i].type)
461a49ca
DJ
5023 {
5024 case THUMB16_TYPE:
48229727 5025 {
d3ce72d0
NC
5026 bfd_vma data = (bfd_vma) template_sequence[i].data;
5027 if (template_sequence[i].reloc_addend != 0)
48229727 5028 {
99059e56
RM
5029 /* We've borrowed the reloc_addend field to mean we should
5030 insert a condition code into this (Thumb-1 branch)
5031 instruction. See THUMB16_BCOND_INSN. */
5032 BFD_ASSERT ((data & 0xff00) == 0xd000);
5033 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
48229727 5034 }
fe33d2fa 5035 bfd_put_16 (stub_bfd, data, loc + size);
48229727
JB
5036 size += 2;
5037 }
461a49ca 5038 break;
906e58ca 5039
48229727 5040 case THUMB32_TYPE:
fe33d2fa
CL
5041 bfd_put_16 (stub_bfd,
5042 (template_sequence[i].data >> 16) & 0xffff,
5043 loc + size);
5044 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
5045 loc + size + 2);
99059e56
RM
5046 if (template_sequence[i].r_type != R_ARM_NONE)
5047 {
5048 stub_reloc_idx[nrelocs] = i;
5049 stub_reloc_offset[nrelocs++] = size;
5050 }
5051 size += 4;
5052 break;
48229727 5053
461a49ca 5054 case ARM_TYPE:
fe33d2fa
CL
5055 bfd_put_32 (stub_bfd, template_sequence[i].data,
5056 loc + size);
461a49ca
DJ
5057 /* Handle cases where the target is encoded within the
5058 instruction. */
d3ce72d0 5059 if (template_sequence[i].r_type == R_ARM_JUMP24)
461a49ca 5060 {
48229727
JB
5061 stub_reloc_idx[nrelocs] = i;
5062 stub_reloc_offset[nrelocs++] = size;
461a49ca
DJ
5063 }
5064 size += 4;
5065 break;
5066
5067 case DATA_TYPE:
d3ce72d0 5068 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
48229727
JB
5069 stub_reloc_idx[nrelocs] = i;
5070 stub_reloc_offset[nrelocs++] = size;
461a49ca
DJ
5071 size += 4;
5072 break;
5073
5074 default:
5075 BFD_FAIL ();
5076 return FALSE;
5077 }
906e58ca 5078 }
461a49ca 5079
0955507f
TP
5080 if (just_allocated)
5081 stub_sec->size += size;
906e58ca 5082
461a49ca
DJ
5083 /* Stub size has already been computed in arm_size_one_stub. Check
5084 consistency. */
5085 BFD_ASSERT (size == stub_entry->stub_size);
5086
906e58ca 5087 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
35fc36a8 5088 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
906e58ca
NC
5089 sym_value |= 1;
5090
0955507f
TP
5091 /* Assume non empty slots have at least one and at most MAXRELOCS entries
5092 to relocate in each stub. */
5093 removed_sg_veneer =
5094 (size == 0 && stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
5095 BFD_ASSERT (removed_sg_veneer || (nrelocs != 0 && nrelocs <= MAXRELOCS));
c820be07 5096
48229727 5097 for (i = 0; i < nrelocs; i++)
8d9d9490
TP
5098 {
5099 Elf_Internal_Rela rel;
5100 bfd_boolean unresolved_reloc;
5101 char *error_message;
5102 bfd_vma points_to =
5103 sym_value + template_sequence[stub_reloc_idx[i]].reloc_addend;
5104
5105 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
5106 rel.r_info = ELF32_R_INFO (0,
5107 template_sequence[stub_reloc_idx[i]].r_type);
5108 rel.r_addend = 0;
5109
5110 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
5111 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
5112 template should refer back to the instruction after the original
5113 branch. We use target_section as Cortex-A8 erratum workaround stubs
5114 are only generated when both source and target are in the same
5115 section. */
5116 points_to = stub_entry->target_section->output_section->vma
5117 + stub_entry->target_section->output_offset
5118 + stub_entry->source_value;
5119
5120 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
5121 (template_sequence[stub_reloc_idx[i]].r_type),
5122 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
5123 points_to, info, stub_entry->target_section, "", STT_FUNC,
5124 stub_entry->branch_type,
5125 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
5126 &error_message);
5127 }
906e58ca
NC
5128
5129 return TRUE;
48229727 5130#undef MAXRELOCS
906e58ca
NC
5131}
5132
48229727
JB
5133/* Calculate the template, template size and instruction size for a stub.
5134 Return value is the instruction size. */
906e58ca 5135
48229727
JB
5136static unsigned int
5137find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
5138 const insn_sequence **stub_template,
5139 int *stub_template_size)
906e58ca 5140{
d3ce72d0 5141 const insn_sequence *template_sequence = NULL;
48229727
JB
5142 int template_size = 0, i;
5143 unsigned int size;
906e58ca 5144
d3ce72d0 5145 template_sequence = stub_definitions[stub_type].template_sequence;
2a229407
AM
5146 if (stub_template)
5147 *stub_template = template_sequence;
5148
48229727 5149 template_size = stub_definitions[stub_type].template_size;
2a229407
AM
5150 if (stub_template_size)
5151 *stub_template_size = template_size;
906e58ca
NC
5152
5153 size = 0;
461a49ca
DJ
5154 for (i = 0; i < template_size; i++)
5155 {
d3ce72d0 5156 switch (template_sequence[i].type)
461a49ca
DJ
5157 {
5158 case THUMB16_TYPE:
5159 size += 2;
5160 break;
5161
5162 case ARM_TYPE:
48229727 5163 case THUMB32_TYPE:
461a49ca
DJ
5164 case DATA_TYPE:
5165 size += 4;
5166 break;
5167
5168 default:
5169 BFD_FAIL ();
2a229407 5170 return 0;
461a49ca
DJ
5171 }
5172 }
5173
48229727
JB
5174 return size;
5175}
5176
5177/* As above, but don't actually build the stub. Just bump offset so
5178 we know stub section sizes. */
5179
5180static bfd_boolean
5181arm_size_one_stub (struct bfd_hash_entry *gen_entry,
c7e2358a 5182 void *in_arg ATTRIBUTE_UNUSED)
48229727
JB
5183{
5184 struct elf32_arm_stub_hash_entry *stub_entry;
d3ce72d0 5185 const insn_sequence *template_sequence;
48229727
JB
5186 int template_size, size;
5187
5188 /* Massage our args to the form they really have. */
5189 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
48229727
JB
5190
5191 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
5192 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
5193
d3ce72d0 5194 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
48229727
JB
5195 &template_size);
5196
0955507f
TP
5197 /* Initialized to -1. Null size indicates an empty slot full of zeros. */
5198 if (stub_entry->stub_template_size)
5199 {
5200 stub_entry->stub_size = size;
5201 stub_entry->stub_template = template_sequence;
5202 stub_entry->stub_template_size = template_size;
5203 }
5204
5205 /* Already accounted for. */
5206 if (stub_entry->stub_offset != (bfd_vma) -1)
5207 return TRUE;
461a49ca 5208
906e58ca
NC
5209 size = (size + 7) & ~7;
5210 stub_entry->stub_sec->size += size;
461a49ca 5211
906e58ca
NC
5212 return TRUE;
5213}
5214
5215/* External entry points for sizing and building linker stubs. */
5216
5217/* Set up various things so that we can make a list of input sections
5218 for each output section included in the link. Returns -1 on error,
5219 0 when no stubs will be needed, and 1 on success. */
5220
5221int
5222elf32_arm_setup_section_lists (bfd *output_bfd,
5223 struct bfd_link_info *info)
5224{
5225 bfd *input_bfd;
5226 unsigned int bfd_count;
7292b3ac 5227 unsigned int top_id, top_index;
906e58ca
NC
5228 asection *section;
5229 asection **input_list, **list;
5230 bfd_size_type amt;
5231 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5232
4dfe6ac6
NC
5233 if (htab == NULL)
5234 return 0;
906e58ca
NC
5235 if (! is_elf_hash_table (htab))
5236 return 0;
5237
5238 /* Count the number of input BFDs and find the top input section id. */
5239 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
5240 input_bfd != NULL;
c72f2fb2 5241 input_bfd = input_bfd->link.next)
906e58ca
NC
5242 {
5243 bfd_count += 1;
5244 for (section = input_bfd->sections;
5245 section != NULL;
5246 section = section->next)
5247 {
5248 if (top_id < section->id)
5249 top_id = section->id;
5250 }
5251 }
5252 htab->bfd_count = bfd_count;
5253
5254 amt = sizeof (struct map_stub) * (top_id + 1);
21d799b5 5255 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
906e58ca
NC
5256 if (htab->stub_group == NULL)
5257 return -1;
fe33d2fa 5258 htab->top_id = top_id;
906e58ca
NC
5259
5260 /* We can't use output_bfd->section_count here to find the top output
5261 section index as some sections may have been removed, and
5262 _bfd_strip_section_from_output doesn't renumber the indices. */
5263 for (section = output_bfd->sections, top_index = 0;
5264 section != NULL;
5265 section = section->next)
5266 {
5267 if (top_index < section->index)
5268 top_index = section->index;
5269 }
5270
5271 htab->top_index = top_index;
5272 amt = sizeof (asection *) * (top_index + 1);
21d799b5 5273 input_list = (asection **) bfd_malloc (amt);
906e58ca
NC
5274 htab->input_list = input_list;
5275 if (input_list == NULL)
5276 return -1;
5277
5278 /* For sections we aren't interested in, mark their entries with a
5279 value we can check later. */
5280 list = input_list + top_index;
5281 do
5282 *list = bfd_abs_section_ptr;
5283 while (list-- != input_list);
5284
5285 for (section = output_bfd->sections;
5286 section != NULL;
5287 section = section->next)
5288 {
5289 if ((section->flags & SEC_CODE) != 0)
5290 input_list[section->index] = NULL;
5291 }
5292
5293 return 1;
5294}
5295
5296/* The linker repeatedly calls this function for each input section,
5297 in the order that input sections are linked into output sections.
5298 Build lists of input sections to determine groupings between which
5299 we may insert linker stubs. */
5300
5301void
5302elf32_arm_next_input_section (struct bfd_link_info *info,
5303 asection *isec)
5304{
5305 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5306
4dfe6ac6
NC
5307 if (htab == NULL)
5308 return;
5309
906e58ca
NC
5310 if (isec->output_section->index <= htab->top_index)
5311 {
5312 asection **list = htab->input_list + isec->output_section->index;
5313
a7470592 5314 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
906e58ca
NC
5315 {
5316 /* Steal the link_sec pointer for our list. */
5317#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
5318 /* This happens to make the list in reverse order,
07d72278 5319 which we reverse later. */
906e58ca
NC
5320 PREV_SEC (isec) = *list;
5321 *list = isec;
5322 }
5323 }
5324}
5325
5326/* See whether we can group stub sections together. Grouping stub
5327 sections may result in fewer stubs. More importantly, we need to
07d72278 5328 put all .init* and .fini* stubs at the end of the .init or
906e58ca
NC
5329 .fini output sections respectively, because glibc splits the
5330 _init and _fini functions into multiple parts. Putting a stub in
5331 the middle of a function is not a good idea. */
5332
5333static void
5334group_sections (struct elf32_arm_link_hash_table *htab,
5335 bfd_size_type stub_group_size,
07d72278 5336 bfd_boolean stubs_always_after_branch)
906e58ca 5337{
07d72278 5338 asection **list = htab->input_list;
906e58ca
NC
5339
5340 do
5341 {
5342 asection *tail = *list;
07d72278 5343 asection *head;
906e58ca
NC
5344
5345 if (tail == bfd_abs_section_ptr)
5346 continue;
5347
07d72278
DJ
5348 /* Reverse the list: we must avoid placing stubs at the
5349 beginning of the section because the beginning of the text
5350 section may be required for an interrupt vector in bare metal
5351 code. */
5352#define NEXT_SEC PREV_SEC
e780aef2
CL
5353 head = NULL;
5354 while (tail != NULL)
99059e56
RM
5355 {
5356 /* Pop from tail. */
5357 asection *item = tail;
5358 tail = PREV_SEC (item);
e780aef2 5359
99059e56
RM
5360 /* Push on head. */
5361 NEXT_SEC (item) = head;
5362 head = item;
5363 }
07d72278
DJ
5364
5365 while (head != NULL)
906e58ca
NC
5366 {
5367 asection *curr;
07d72278 5368 asection *next;
e780aef2
CL
5369 bfd_vma stub_group_start = head->output_offset;
5370 bfd_vma end_of_next;
906e58ca 5371
07d72278 5372 curr = head;
e780aef2 5373 while (NEXT_SEC (curr) != NULL)
8cd931b7 5374 {
e780aef2
CL
5375 next = NEXT_SEC (curr);
5376 end_of_next = next->output_offset + next->size;
5377 if (end_of_next - stub_group_start >= stub_group_size)
5378 /* End of NEXT is too far from start, so stop. */
8cd931b7 5379 break;
e780aef2
CL
5380 /* Add NEXT to the group. */
5381 curr = next;
8cd931b7 5382 }
906e58ca 5383
07d72278 5384 /* OK, the size from the start to the start of CURR is less
906e58ca 5385 than stub_group_size and thus can be handled by one stub
07d72278 5386 section. (Or the head section is itself larger than
906e58ca
NC
5387 stub_group_size, in which case we may be toast.)
5388 We should really be keeping track of the total size of
5389 stubs added here, as stubs contribute to the final output
7fb9f789 5390 section size. */
906e58ca
NC
5391 do
5392 {
07d72278 5393 next = NEXT_SEC (head);
906e58ca 5394 /* Set up this stub group. */
07d72278 5395 htab->stub_group[head->id].link_sec = curr;
906e58ca 5396 }
07d72278 5397 while (head != curr && (head = next) != NULL);
906e58ca
NC
5398
5399 /* But wait, there's more! Input sections up to stub_group_size
07d72278
DJ
5400 bytes after the stub section can be handled by it too. */
5401 if (!stubs_always_after_branch)
906e58ca 5402 {
e780aef2
CL
5403 stub_group_start = curr->output_offset + curr->size;
5404
8cd931b7 5405 while (next != NULL)
906e58ca 5406 {
e780aef2
CL
5407 end_of_next = next->output_offset + next->size;
5408 if (end_of_next - stub_group_start >= stub_group_size)
5409 /* End of NEXT is too far from stubs, so stop. */
8cd931b7 5410 break;
e780aef2 5411 /* Add NEXT to the stub group. */
07d72278
DJ
5412 head = next;
5413 next = NEXT_SEC (head);
5414 htab->stub_group[head->id].link_sec = curr;
906e58ca
NC
5415 }
5416 }
07d72278 5417 head = next;
906e58ca
NC
5418 }
5419 }
07d72278 5420 while (list++ != htab->input_list + htab->top_index);
906e58ca
NC
5421
5422 free (htab->input_list);
5423#undef PREV_SEC
07d72278 5424#undef NEXT_SEC
906e58ca
NC
5425}
5426
48229727
JB
5427/* Comparison function for sorting/searching relocations relating to Cortex-A8
5428 erratum fix. */
5429
5430static int
5431a8_reloc_compare (const void *a, const void *b)
5432{
21d799b5
NC
5433 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
5434 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
48229727
JB
5435
5436 if (ra->from < rb->from)
5437 return -1;
5438 else if (ra->from > rb->from)
5439 return 1;
5440 else
5441 return 0;
5442}
5443
5444static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
5445 const char *, char **);
5446
5447/* Helper function to scan code for sequences which might trigger the Cortex-A8
5448 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
81694485 5449 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
48229727
JB
5450 otherwise. */
5451
81694485
NC
5452static bfd_boolean
5453cortex_a8_erratum_scan (bfd *input_bfd,
5454 struct bfd_link_info *info,
48229727
JB
5455 struct a8_erratum_fix **a8_fixes_p,
5456 unsigned int *num_a8_fixes_p,
5457 unsigned int *a8_fix_table_size_p,
5458 struct a8_erratum_reloc *a8_relocs,
eb7c4339
NS
5459 unsigned int num_a8_relocs,
5460 unsigned prev_num_a8_fixes,
5461 bfd_boolean *stub_changed_p)
48229727
JB
5462{
5463 asection *section;
5464 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5465 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
5466 unsigned int num_a8_fixes = *num_a8_fixes_p;
5467 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
5468
4dfe6ac6
NC
5469 if (htab == NULL)
5470 return FALSE;
5471
48229727
JB
5472 for (section = input_bfd->sections;
5473 section != NULL;
5474 section = section->next)
5475 {
5476 bfd_byte *contents = NULL;
5477 struct _arm_elf_section_data *sec_data;
5478 unsigned int span;
5479 bfd_vma base_vma;
5480
5481 if (elf_section_type (section) != SHT_PROGBITS
99059e56
RM
5482 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
5483 || (section->flags & SEC_EXCLUDE) != 0
5484 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
5485 || (section->output_section == bfd_abs_section_ptr))
5486 continue;
48229727
JB
5487
5488 base_vma = section->output_section->vma + section->output_offset;
5489
5490 if (elf_section_data (section)->this_hdr.contents != NULL)
99059e56 5491 contents = elf_section_data (section)->this_hdr.contents;
48229727 5492 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
99059e56 5493 return TRUE;
48229727
JB
5494
5495 sec_data = elf32_arm_section_data (section);
5496
5497 for (span = 0; span < sec_data->mapcount; span++)
99059e56
RM
5498 {
5499 unsigned int span_start = sec_data->map[span].vma;
5500 unsigned int span_end = (span == sec_data->mapcount - 1)
5501 ? section->size : sec_data->map[span + 1].vma;
5502 unsigned int i;
5503 char span_type = sec_data->map[span].type;
5504 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
5505
5506 if (span_type != 't')
5507 continue;
5508
5509 /* Span is entirely within a single 4KB region: skip scanning. */
5510 if (((base_vma + span_start) & ~0xfff)
48229727 5511 == ((base_vma + span_end) & ~0xfff))
99059e56
RM
5512 continue;
5513
5514 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
5515
5516 * The opcode is BLX.W, BL.W, B.W, Bcc.W
5517 * The branch target is in the same 4KB region as the
5518 first half of the branch.
5519 * The instruction before the branch is a 32-bit
5520 length non-branch instruction. */
5521 for (i = span_start; i < span_end;)
5522 {
5523 unsigned int insn = bfd_getl16 (&contents[i]);
5524 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
48229727
JB
5525 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
5526
99059e56
RM
5527 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
5528 insn_32bit = TRUE;
48229727
JB
5529
5530 if (insn_32bit)
99059e56
RM
5531 {
5532 /* Load the rest of the insn (in manual-friendly order). */
5533 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
5534
5535 /* Encoding T4: B<c>.W. */
5536 is_b = (insn & 0xf800d000) == 0xf0009000;
5537 /* Encoding T1: BL<c>.W. */
5538 is_bl = (insn & 0xf800d000) == 0xf000d000;
5539 /* Encoding T2: BLX<c>.W. */
5540 is_blx = (insn & 0xf800d000) == 0xf000c000;
48229727
JB
5541 /* Encoding T3: B<c>.W (not permitted in IT block). */
5542 is_bcc = (insn & 0xf800d000) == 0xf0008000
5543 && (insn & 0x07f00000) != 0x03800000;
5544 }
5545
5546 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
fe33d2fa 5547
99059e56 5548 if (((base_vma + i) & 0xfff) == 0xffe
81694485
NC
5549 && insn_32bit
5550 && is_32bit_branch
5551 && last_was_32bit
5552 && ! last_was_branch)
99059e56
RM
5553 {
5554 bfd_signed_vma offset = 0;
5555 bfd_boolean force_target_arm = FALSE;
48229727 5556 bfd_boolean force_target_thumb = FALSE;
99059e56
RM
5557 bfd_vma target;
5558 enum elf32_arm_stub_type stub_type = arm_stub_none;
5559 struct a8_erratum_reloc key, *found;
5560 bfd_boolean use_plt = FALSE;
48229727 5561
99059e56
RM
5562 key.from = base_vma + i;
5563 found = (struct a8_erratum_reloc *)
5564 bsearch (&key, a8_relocs, num_a8_relocs,
5565 sizeof (struct a8_erratum_reloc),
5566 &a8_reloc_compare);
48229727
JB
5567
5568 if (found)
5569 {
5570 char *error_message = NULL;
5571 struct elf_link_hash_entry *entry;
5572
5573 /* We don't care about the error returned from this
99059e56 5574 function, only if there is glue or not. */
48229727
JB
5575 entry = find_thumb_glue (info, found->sym_name,
5576 &error_message);
5577
5578 if (entry)
5579 found->non_a8_stub = TRUE;
5580
92750f34 5581 /* Keep a simpler condition, for the sake of clarity. */
362d30a1 5582 if (htab->root.splt != NULL && found->hash != NULL
92750f34
DJ
5583 && found->hash->root.plt.offset != (bfd_vma) -1)
5584 use_plt = TRUE;
5585
5586 if (found->r_type == R_ARM_THM_CALL)
5587 {
35fc36a8
RS
5588 if (found->branch_type == ST_BRANCH_TO_ARM
5589 || use_plt)
92750f34
DJ
5590 force_target_arm = TRUE;
5591 else
5592 force_target_thumb = TRUE;
5593 }
48229727
JB
5594 }
5595
99059e56 5596 /* Check if we have an offending branch instruction. */
48229727
JB
5597
5598 if (found && found->non_a8_stub)
5599 /* We've already made a stub for this instruction, e.g.
5600 it's a long branch or a Thumb->ARM stub. Assume that
5601 stub will suffice to work around the A8 erratum (see
5602 setting of always_after_branch above). */
5603 ;
99059e56
RM
5604 else if (is_bcc)
5605 {
5606 offset = (insn & 0x7ff) << 1;
5607 offset |= (insn & 0x3f0000) >> 4;
5608 offset |= (insn & 0x2000) ? 0x40000 : 0;
5609 offset |= (insn & 0x800) ? 0x80000 : 0;
5610 offset |= (insn & 0x4000000) ? 0x100000 : 0;
5611 if (offset & 0x100000)
5612 offset |= ~ ((bfd_signed_vma) 0xfffff);
5613 stub_type = arm_stub_a8_veneer_b_cond;
5614 }
5615 else if (is_b || is_bl || is_blx)
5616 {
5617 int s = (insn & 0x4000000) != 0;
5618 int j1 = (insn & 0x2000) != 0;
5619 int j2 = (insn & 0x800) != 0;
5620 int i1 = !(j1 ^ s);
5621 int i2 = !(j2 ^ s);
5622
5623 offset = (insn & 0x7ff) << 1;
5624 offset |= (insn & 0x3ff0000) >> 4;
5625 offset |= i2 << 22;
5626 offset |= i1 << 23;
5627 offset |= s << 24;
5628 if (offset & 0x1000000)
5629 offset |= ~ ((bfd_signed_vma) 0xffffff);
5630
5631 if (is_blx)
5632 offset &= ~ ((bfd_signed_vma) 3);
5633
5634 stub_type = is_blx ? arm_stub_a8_veneer_blx :
5635 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
5636 }
5637
5638 if (stub_type != arm_stub_none)
5639 {
5640 bfd_vma pc_for_insn = base_vma + i + 4;
48229727
JB
5641
5642 /* The original instruction is a BL, but the target is
99059e56 5643 an ARM instruction. If we were not making a stub,
48229727
JB
5644 the BL would have been converted to a BLX. Use the
5645 BLX stub instead in that case. */
5646 if (htab->use_blx && force_target_arm
5647 && stub_type == arm_stub_a8_veneer_bl)
5648 {
5649 stub_type = arm_stub_a8_veneer_blx;
5650 is_blx = TRUE;
5651 is_bl = FALSE;
5652 }
5653 /* Conversely, if the original instruction was
5654 BLX but the target is Thumb mode, use the BL
5655 stub. */
5656 else if (force_target_thumb
5657 && stub_type == arm_stub_a8_veneer_blx)
5658 {
5659 stub_type = arm_stub_a8_veneer_bl;
5660 is_blx = FALSE;
5661 is_bl = TRUE;
5662 }
5663
99059e56
RM
5664 if (is_blx)
5665 pc_for_insn &= ~ ((bfd_vma) 3);
48229727 5666
99059e56
RM
5667 /* If we found a relocation, use the proper destination,
5668 not the offset in the (unrelocated) instruction.
48229727
JB
5669 Note this is always done if we switched the stub type
5670 above. */
99059e56
RM
5671 if (found)
5672 offset =
81694485 5673 (bfd_signed_vma) (found->destination - pc_for_insn);
48229727 5674
99059e56
RM
5675 /* If the stub will use a Thumb-mode branch to a
5676 PLT target, redirect it to the preceding Thumb
5677 entry point. */
5678 if (stub_type != arm_stub_a8_veneer_blx && use_plt)
5679 offset -= PLT_THUMB_STUB_SIZE;
7d24e6a6 5680
99059e56 5681 target = pc_for_insn + offset;
48229727 5682
99059e56
RM
5683 /* The BLX stub is ARM-mode code. Adjust the offset to
5684 take the different PC value (+8 instead of +4) into
48229727 5685 account. */
99059e56
RM
5686 if (stub_type == arm_stub_a8_veneer_blx)
5687 offset += 4;
5688
5689 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
5690 {
5691 char *stub_name = NULL;
5692
5693 if (num_a8_fixes == a8_fix_table_size)
5694 {
5695 a8_fix_table_size *= 2;
5696 a8_fixes = (struct a8_erratum_fix *)
5697 bfd_realloc (a8_fixes,
5698 sizeof (struct a8_erratum_fix)
5699 * a8_fix_table_size);
5700 }
48229727 5701
eb7c4339
NS
5702 if (num_a8_fixes < prev_num_a8_fixes)
5703 {
5704 /* If we're doing a subsequent scan,
5705 check if we've found the same fix as
5706 before, and try and reuse the stub
5707 name. */
5708 stub_name = a8_fixes[num_a8_fixes].stub_name;
5709 if ((a8_fixes[num_a8_fixes].section != section)
5710 || (a8_fixes[num_a8_fixes].offset != i))
5711 {
5712 free (stub_name);
5713 stub_name = NULL;
5714 *stub_changed_p = TRUE;
5715 }
5716 }
5717
5718 if (!stub_name)
5719 {
21d799b5 5720 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
eb7c4339
NS
5721 if (stub_name != NULL)
5722 sprintf (stub_name, "%x:%x", section->id, i);
5723 }
48229727 5724
99059e56
RM
5725 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
5726 a8_fixes[num_a8_fixes].section = section;
5727 a8_fixes[num_a8_fixes].offset = i;
8d9d9490
TP
5728 a8_fixes[num_a8_fixes].target_offset =
5729 target - base_vma;
99059e56
RM
5730 a8_fixes[num_a8_fixes].orig_insn = insn;
5731 a8_fixes[num_a8_fixes].stub_name = stub_name;
5732 a8_fixes[num_a8_fixes].stub_type = stub_type;
5733 a8_fixes[num_a8_fixes].branch_type =
35fc36a8 5734 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
48229727 5735
99059e56
RM
5736 num_a8_fixes++;
5737 }
5738 }
5739 }
48229727 5740
99059e56
RM
5741 i += insn_32bit ? 4 : 2;
5742 last_was_32bit = insn_32bit;
48229727 5743 last_was_branch = is_32bit_branch;
99059e56
RM
5744 }
5745 }
48229727
JB
5746
5747 if (elf_section_data (section)->this_hdr.contents == NULL)
99059e56 5748 free (contents);
48229727 5749 }
fe33d2fa 5750
48229727
JB
5751 *a8_fixes_p = a8_fixes;
5752 *num_a8_fixes_p = num_a8_fixes;
5753 *a8_fix_table_size_p = a8_fix_table_size;
fe33d2fa 5754
81694485 5755 return FALSE;
48229727
JB
5756}
5757
b715f643
TP
5758/* Create or update a stub entry depending on whether the stub can already be
5759 found in HTAB. The stub is identified by:
5760 - its type STUB_TYPE
5761 - its source branch (note that several can share the same stub) whose
5762 section and relocation (if any) are given by SECTION and IRELA
5763 respectively
5764 - its target symbol whose input section, hash, name, value and branch type
5765 are given in SYM_SEC, HASH, SYM_NAME, SYM_VALUE and BRANCH_TYPE
5766 respectively
5767
5768 If found, the value of the stub's target symbol is updated from SYM_VALUE
5769 and *NEW_STUB is set to FALSE. Otherwise, *NEW_STUB is set to
5770 TRUE and the stub entry is initialized.
5771
0955507f
TP
5772 Returns the stub that was created or updated, or NULL if an error
5773 occurred. */
b715f643 5774
0955507f 5775static struct elf32_arm_stub_hash_entry *
b715f643
TP
5776elf32_arm_create_stub (struct elf32_arm_link_hash_table *htab,
5777 enum elf32_arm_stub_type stub_type, asection *section,
5778 Elf_Internal_Rela *irela, asection *sym_sec,
5779 struct elf32_arm_link_hash_entry *hash, char *sym_name,
5780 bfd_vma sym_value, enum arm_st_branch_type branch_type,
5781 bfd_boolean *new_stub)
5782{
5783 const asection *id_sec;
5784 char *stub_name;
5785 struct elf32_arm_stub_hash_entry *stub_entry;
5786 unsigned int r_type;
4f4faa4d 5787 bfd_boolean sym_claimed = arm_stub_sym_claimed (stub_type);
b715f643
TP
5788
5789 BFD_ASSERT (stub_type != arm_stub_none);
5790 *new_stub = FALSE;
5791
4f4faa4d
TP
5792 if (sym_claimed)
5793 stub_name = sym_name;
5794 else
5795 {
5796 BFD_ASSERT (irela);
5797 BFD_ASSERT (section);
c2abbbeb 5798 BFD_ASSERT (section->id <= htab->top_id);
b715f643 5799
4f4faa4d
TP
5800 /* Support for grouping stub sections. */
5801 id_sec = htab->stub_group[section->id].link_sec;
b715f643 5802
4f4faa4d
TP
5803 /* Get the name of this stub. */
5804 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela,
5805 stub_type);
5806 if (!stub_name)
0955507f 5807 return NULL;
4f4faa4d 5808 }
b715f643
TP
5809
5810 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name, FALSE,
5811 FALSE);
5812 /* The proper stub has already been created, just update its value. */
5813 if (stub_entry != NULL)
5814 {
4f4faa4d
TP
5815 if (!sym_claimed)
5816 free (stub_name);
b715f643 5817 stub_entry->target_value = sym_value;
0955507f 5818 return stub_entry;
b715f643
TP
5819 }
5820
daa4adae 5821 stub_entry = elf32_arm_add_stub (stub_name, section, htab, stub_type);
b715f643
TP
5822 if (stub_entry == NULL)
5823 {
4f4faa4d
TP
5824 if (!sym_claimed)
5825 free (stub_name);
0955507f 5826 return NULL;
b715f643
TP
5827 }
5828
5829 stub_entry->target_value = sym_value;
5830 stub_entry->target_section = sym_sec;
5831 stub_entry->stub_type = stub_type;
5832 stub_entry->h = hash;
5833 stub_entry->branch_type = branch_type;
5834
4f4faa4d
TP
5835 if (sym_claimed)
5836 stub_entry->output_name = sym_name;
5837 else
b715f643 5838 {
4f4faa4d
TP
5839 if (sym_name == NULL)
5840 sym_name = "unnamed";
5841 stub_entry->output_name = (char *)
5842 bfd_alloc (htab->stub_bfd, sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5843 + strlen (sym_name));
5844 if (stub_entry->output_name == NULL)
5845 {
5846 free (stub_name);
0955507f 5847 return NULL;
4f4faa4d 5848 }
b715f643 5849
4f4faa4d
TP
5850 /* For historical reasons, use the existing names for ARM-to-Thumb and
5851 Thumb-to-ARM stubs. */
5852 r_type = ELF32_R_TYPE (irela->r_info);
5853 if ((r_type == (unsigned int) R_ARM_THM_CALL
5854 || r_type == (unsigned int) R_ARM_THM_JUMP24
5855 || r_type == (unsigned int) R_ARM_THM_JUMP19)
5856 && branch_type == ST_BRANCH_TO_ARM)
5857 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5858 else if ((r_type == (unsigned int) R_ARM_CALL
5859 || r_type == (unsigned int) R_ARM_JUMP24)
5860 && branch_type == ST_BRANCH_TO_THUMB)
5861 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5862 else
5863 sprintf (stub_entry->output_name, STUB_ENTRY_NAME, sym_name);
5864 }
b715f643
TP
5865
5866 *new_stub = TRUE;
0955507f 5867 return stub_entry;
b715f643
TP
5868}
5869
4ba2ef8f
TP
5870/* Scan symbols in INPUT_BFD to identify secure entry functions needing a
5871 gateway veneer to transition from non secure to secure state and create them
5872 accordingly.
5873
5874 "ARMv8-M Security Extensions: Requirements on Development Tools" document
5875 defines the conditions that govern Secure Gateway veneer creation for a
5876 given symbol <SYM> as follows:
5877 - it has function type
5878 - it has non local binding
5879 - a symbol named __acle_se_<SYM> (called special symbol) exists with the
5880 same type, binding and value as <SYM> (called normal symbol).
5881 An entry function can handle secure state transition itself in which case
5882 its special symbol would have a different value from the normal symbol.
5883
5884 OUT_ATTR gives the output attributes, SYM_HASHES the symbol index to hash
5885 entry mapping while HTAB gives the name to hash entry mapping.
0955507f
TP
5886 *CMSE_STUB_CREATED is increased by the number of secure gateway veneer
5887 created.
4ba2ef8f 5888
0955507f 5889 The return value gives whether a stub failed to be allocated. */
4ba2ef8f
TP
5890
5891static bfd_boolean
5892cmse_scan (bfd *input_bfd, struct elf32_arm_link_hash_table *htab,
5893 obj_attribute *out_attr, struct elf_link_hash_entry **sym_hashes,
0955507f 5894 int *cmse_stub_created)
4ba2ef8f
TP
5895{
5896 const struct elf_backend_data *bed;
5897 Elf_Internal_Shdr *symtab_hdr;
5898 unsigned i, j, sym_count, ext_start;
5899 Elf_Internal_Sym *cmse_sym, *local_syms;
5900 struct elf32_arm_link_hash_entry *hash, *cmse_hash = NULL;
5901 enum arm_st_branch_type branch_type;
5902 char *sym_name, *lsym_name;
5903 bfd_vma sym_value;
5904 asection *section;
0955507f
TP
5905 struct elf32_arm_stub_hash_entry *stub_entry;
5906 bfd_boolean is_v8m, new_stub, cmse_invalid, ret = TRUE;
4ba2ef8f
TP
5907
5908 bed = get_elf_backend_data (input_bfd);
5909 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5910 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
5911 ext_start = symtab_hdr->sh_info;
5912 is_v8m = (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
5913 && out_attr[Tag_CPU_arch_profile].i == 'M');
5914
5915 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
5916 if (local_syms == NULL)
5917 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
5918 symtab_hdr->sh_info, 0, NULL, NULL,
5919 NULL);
5920 if (symtab_hdr->sh_info && local_syms == NULL)
5921 return FALSE;
5922
5923 /* Scan symbols. */
5924 for (i = 0; i < sym_count; i++)
5925 {
5926 cmse_invalid = FALSE;
5927
5928 if (i < ext_start)
5929 {
5930 cmse_sym = &local_syms[i];
5931 /* Not a special symbol. */
5932 if (!ARM_GET_SYM_CMSE_SPCL (cmse_sym->st_target_internal))
5933 continue;
5934 sym_name = bfd_elf_string_from_elf_section (input_bfd,
5935 symtab_hdr->sh_link,
5936 cmse_sym->st_name);
5937 /* Special symbol with local binding. */
5938 cmse_invalid = TRUE;
5939 }
5940 else
5941 {
5942 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
5943 sym_name = (char *) cmse_hash->root.root.root.string;
5944
5945 /* Not a special symbol. */
5946 if (!ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
5947 continue;
5948
5949 /* Special symbol has incorrect binding or type. */
5950 if ((cmse_hash->root.root.type != bfd_link_hash_defined
5951 && cmse_hash->root.root.type != bfd_link_hash_defweak)
5952 || cmse_hash->root.type != STT_FUNC)
5953 cmse_invalid = TRUE;
5954 }
5955
5956 if (!is_v8m)
5957 {
90b6238f
AM
5958 _bfd_error_handler (_("%pB: special symbol `%s' only allowed for "
5959 "ARMv8-M architecture or later"),
4eca0228 5960 input_bfd, sym_name);
4ba2ef8f
TP
5961 is_v8m = TRUE; /* Avoid multiple warning. */
5962 ret = FALSE;
5963 }
5964
5965 if (cmse_invalid)
5966 {
90b6238f
AM
5967 _bfd_error_handler (_("%pB: invalid special symbol `%s'; it must be"
5968 " a global or weak function symbol"),
4eca0228 5969 input_bfd, sym_name);
4ba2ef8f
TP
5970 ret = FALSE;
5971 if (i < ext_start)
5972 continue;
5973 }
5974
5975 sym_name += strlen (CMSE_PREFIX);
5976 hash = (struct elf32_arm_link_hash_entry *)
5977 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
5978
5979 /* No associated normal symbol or it is neither global nor weak. */
5980 if (!hash
5981 || (hash->root.root.type != bfd_link_hash_defined
5982 && hash->root.root.type != bfd_link_hash_defweak)
5983 || hash->root.type != STT_FUNC)
5984 {
5985 /* Initialize here to avoid warning about use of possibly
5986 uninitialized variable. */
5987 j = 0;
5988
5989 if (!hash)
5990 {
5991 /* Searching for a normal symbol with local binding. */
5992 for (; j < ext_start; j++)
5993 {
5994 lsym_name =
5995 bfd_elf_string_from_elf_section (input_bfd,
5996 symtab_hdr->sh_link,
5997 local_syms[j].st_name);
5998 if (!strcmp (sym_name, lsym_name))
5999 break;
6000 }
6001 }
6002
6003 if (hash || j < ext_start)
6004 {
4eca0228 6005 _bfd_error_handler
90b6238f
AM
6006 (_("%pB: invalid standard symbol `%s'; it must be "
6007 "a global or weak function symbol"),
6008 input_bfd, sym_name);
4ba2ef8f
TP
6009 }
6010 else
4eca0228 6011 _bfd_error_handler
90b6238f 6012 (_("%pB: absent standard symbol `%s'"), input_bfd, sym_name);
4ba2ef8f
TP
6013 ret = FALSE;
6014 if (!hash)
6015 continue;
6016 }
6017
6018 sym_value = hash->root.root.u.def.value;
6019 section = hash->root.root.u.def.section;
6020
6021 if (cmse_hash->root.root.u.def.section != section)
6022 {
4eca0228 6023 _bfd_error_handler
90b6238f 6024 (_("%pB: `%s' and its special symbol are in different sections"),
4ba2ef8f
TP
6025 input_bfd, sym_name);
6026 ret = FALSE;
6027 }
6028 if (cmse_hash->root.root.u.def.value != sym_value)
6029 continue; /* Ignore: could be an entry function starting with SG. */
6030
6031 /* If this section is a link-once section that will be discarded, then
6032 don't create any stubs. */
6033 if (section->output_section == NULL)
6034 {
4eca0228 6035 _bfd_error_handler
90b6238f 6036 (_("%pB: entry function `%s' not output"), input_bfd, sym_name);
4ba2ef8f
TP
6037 continue;
6038 }
6039
6040 if (hash->root.size == 0)
6041 {
4eca0228 6042 _bfd_error_handler
90b6238f 6043 (_("%pB: entry function `%s' is empty"), input_bfd, sym_name);
4ba2ef8f
TP
6044 ret = FALSE;
6045 }
6046
6047 if (!ret)
6048 continue;
6049 branch_type = ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
0955507f 6050 stub_entry
4ba2ef8f
TP
6051 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
6052 NULL, NULL, section, hash, sym_name,
6053 sym_value, branch_type, &new_stub);
6054
0955507f 6055 if (stub_entry == NULL)
4ba2ef8f
TP
6056 ret = FALSE;
6057 else
6058 {
6059 BFD_ASSERT (new_stub);
0955507f 6060 (*cmse_stub_created)++;
4ba2ef8f
TP
6061 }
6062 }
6063
6064 if (!symtab_hdr->contents)
6065 free (local_syms);
6066 return ret;
6067}
6068
0955507f
TP
6069/* Return TRUE iff a symbol identified by its linker HASH entry is a secure
6070 code entry function, ie can be called from non secure code without using a
6071 veneer. */
6072
6073static bfd_boolean
6074cmse_entry_fct_p (struct elf32_arm_link_hash_entry *hash)
6075{
42484486 6076 bfd_byte contents[4];
0955507f
TP
6077 uint32_t first_insn;
6078 asection *section;
6079 file_ptr offset;
6080 bfd *abfd;
6081
6082 /* Defined symbol of function type. */
6083 if (hash->root.root.type != bfd_link_hash_defined
6084 && hash->root.root.type != bfd_link_hash_defweak)
6085 return FALSE;
6086 if (hash->root.type != STT_FUNC)
6087 return FALSE;
6088
6089 /* Read first instruction. */
6090 section = hash->root.root.u.def.section;
6091 abfd = section->owner;
6092 offset = hash->root.root.u.def.value - section->vma;
42484486
TP
6093 if (!bfd_get_section_contents (abfd, section, contents, offset,
6094 sizeof (contents)))
0955507f
TP
6095 return FALSE;
6096
42484486
TP
6097 first_insn = bfd_get_32 (abfd, contents);
6098
6099 /* Starts by SG instruction. */
0955507f
TP
6100 return first_insn == 0xe97fe97f;
6101}
6102
6103/* Output the name (in symbol table) of the veneer GEN_ENTRY if it is a new
6104 secure gateway veneers (ie. the veneers was not in the input import library)
6105 and there is no output import library (GEN_INFO->out_implib_bfd is NULL. */
6106
6107static bfd_boolean
6108arm_list_new_cmse_stub (struct bfd_hash_entry *gen_entry, void *gen_info)
6109{
6110 struct elf32_arm_stub_hash_entry *stub_entry;
6111 struct bfd_link_info *info;
6112
6113 /* Massage our args to the form they really have. */
6114 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
6115 info = (struct bfd_link_info *) gen_info;
6116
6117 if (info->out_implib_bfd)
6118 return TRUE;
6119
6120 if (stub_entry->stub_type != arm_stub_cmse_branch_thumb_only)
6121 return TRUE;
6122
6123 if (stub_entry->stub_offset == (bfd_vma) -1)
4eca0228 6124 _bfd_error_handler (" %s", stub_entry->output_name);
0955507f
TP
6125
6126 return TRUE;
6127}
6128
6129/* Set offset of each secure gateway veneers so that its address remain
6130 identical to the one in the input import library referred by
6131 HTAB->in_implib_bfd. A warning is issued for veneers that disappeared
6132 (present in input import library but absent from the executable being
6133 linked) or if new veneers appeared and there is no output import library
6134 (INFO->out_implib_bfd is NULL and *CMSE_STUB_CREATED is bigger than the
6135 number of secure gateway veneers found in the input import library.
6136
6137 The function returns whether an error occurred. If no error occurred,
6138 *CMSE_STUB_CREATED gives the number of SG veneers created by both cmse_scan
6139 and this function and HTAB->new_cmse_stub_offset is set to the biggest
6140 veneer observed set for new veneers to be layed out after. */
6141
6142static bfd_boolean
6143set_cmse_veneer_addr_from_implib (struct bfd_link_info *info,
6144 struct elf32_arm_link_hash_table *htab,
6145 int *cmse_stub_created)
6146{
6147 long symsize;
6148 char *sym_name;
6149 flagword flags;
6150 long i, symcount;
6151 bfd *in_implib_bfd;
6152 asection *stub_out_sec;
6153 bfd_boolean ret = TRUE;
6154 Elf_Internal_Sym *intsym;
6155 const char *out_sec_name;
6156 bfd_size_type cmse_stub_size;
6157 asymbol **sympp = NULL, *sym;
6158 struct elf32_arm_link_hash_entry *hash;
6159 const insn_sequence *cmse_stub_template;
6160 struct elf32_arm_stub_hash_entry *stub_entry;
6161 int cmse_stub_template_size, new_cmse_stubs_created = *cmse_stub_created;
6162 bfd_vma veneer_value, stub_offset, next_cmse_stub_offset;
6163 bfd_vma cmse_stub_array_start = (bfd_vma) -1, cmse_stub_sec_vma = 0;
6164
6165 /* No input secure gateway import library. */
6166 if (!htab->in_implib_bfd)
6167 return TRUE;
6168
6169 in_implib_bfd = htab->in_implib_bfd;
6170 if (!htab->cmse_implib)
6171 {
871b3ab2 6172 _bfd_error_handler (_("%pB: --in-implib only supported for Secure "
90b6238f 6173 "Gateway import libraries"), in_implib_bfd);
0955507f
TP
6174 return FALSE;
6175 }
6176
6177 /* Get symbol table size. */
6178 symsize = bfd_get_symtab_upper_bound (in_implib_bfd);
6179 if (symsize < 0)
6180 return FALSE;
6181
6182 /* Read in the input secure gateway import library's symbol table. */
6183 sympp = (asymbol **) xmalloc (symsize);
6184 symcount = bfd_canonicalize_symtab (in_implib_bfd, sympp);
6185 if (symcount < 0)
6186 {
6187 ret = FALSE;
6188 goto free_sym_buf;
6189 }
6190
6191 htab->new_cmse_stub_offset = 0;
6192 cmse_stub_size =
6193 find_stub_size_and_template (arm_stub_cmse_branch_thumb_only,
6194 &cmse_stub_template,
6195 &cmse_stub_template_size);
6196 out_sec_name =
6197 arm_dedicated_stub_output_section_name (arm_stub_cmse_branch_thumb_only);
6198 stub_out_sec =
6199 bfd_get_section_by_name (htab->obfd, out_sec_name);
6200 if (stub_out_sec != NULL)
6201 cmse_stub_sec_vma = stub_out_sec->vma;
6202
6203 /* Set addresses of veneers mentionned in input secure gateway import
6204 library's symbol table. */
6205 for (i = 0; i < symcount; i++)
6206 {
6207 sym = sympp[i];
6208 flags = sym->flags;
6209 sym_name = (char *) bfd_asymbol_name (sym);
6210 intsym = &((elf_symbol_type *) sym)->internal_elf_sym;
6211
6212 if (sym->section != bfd_abs_section_ptr
6213 || !(flags & (BSF_GLOBAL | BSF_WEAK))
6214 || (flags & BSF_FUNCTION) != BSF_FUNCTION
6215 || (ARM_GET_SYM_BRANCH_TYPE (intsym->st_target_internal)
6216 != ST_BRANCH_TO_THUMB))
6217 {
90b6238f
AM
6218 _bfd_error_handler (_("%pB: invalid import library entry: `%s'; "
6219 "symbol should be absolute, global and "
6220 "refer to Thumb functions"),
4eca0228 6221 in_implib_bfd, sym_name);
0955507f
TP
6222 ret = FALSE;
6223 continue;
6224 }
6225
6226 veneer_value = bfd_asymbol_value (sym);
6227 stub_offset = veneer_value - cmse_stub_sec_vma;
6228 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, sym_name,
6229 FALSE, FALSE);
6230 hash = (struct elf32_arm_link_hash_entry *)
6231 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
6232
6233 /* Stub entry should have been created by cmse_scan or the symbol be of
6234 a secure function callable from non secure code. */
6235 if (!stub_entry && !hash)
6236 {
6237 bfd_boolean new_stub;
6238
4eca0228 6239 _bfd_error_handler
90b6238f 6240 (_("entry function `%s' disappeared from secure code"), sym_name);
0955507f
TP
6241 hash = (struct elf32_arm_link_hash_entry *)
6242 elf_link_hash_lookup (&(htab)->root, sym_name, TRUE, TRUE, TRUE);
6243 stub_entry
6244 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
6245 NULL, NULL, bfd_abs_section_ptr, hash,
6246 sym_name, veneer_value,
6247 ST_BRANCH_TO_THUMB, &new_stub);
6248 if (stub_entry == NULL)
6249 ret = FALSE;
6250 else
6251 {
6252 BFD_ASSERT (new_stub);
6253 new_cmse_stubs_created++;
6254 (*cmse_stub_created)++;
6255 }
6256 stub_entry->stub_template_size = stub_entry->stub_size = 0;
6257 stub_entry->stub_offset = stub_offset;
6258 }
6259 /* Symbol found is not callable from non secure code. */
6260 else if (!stub_entry)
6261 {
6262 if (!cmse_entry_fct_p (hash))
6263 {
90b6238f 6264 _bfd_error_handler (_("`%s' refers to a non entry function"),
4eca0228 6265 sym_name);
0955507f
TP
6266 ret = FALSE;
6267 }
6268 continue;
6269 }
6270 else
6271 {
6272 /* Only stubs for SG veneers should have been created. */
6273 BFD_ASSERT (stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
6274
6275 /* Check visibility hasn't changed. */
6276 if (!!(flags & BSF_GLOBAL)
6277 != (hash->root.root.type == bfd_link_hash_defined))
4eca0228 6278 _bfd_error_handler
90b6238f 6279 (_("%pB: visibility of symbol `%s' has changed"), in_implib_bfd,
0955507f
TP
6280 sym_name);
6281
6282 stub_entry->stub_offset = stub_offset;
6283 }
6284
6285 /* Size should match that of a SG veneer. */
6286 if (intsym->st_size != cmse_stub_size)
6287 {
90b6238f 6288 _bfd_error_handler (_("%pB: incorrect size for symbol `%s'"),
4eca0228 6289 in_implib_bfd, sym_name);
0955507f
TP
6290 ret = FALSE;
6291 }
6292
6293 /* Previous veneer address is before current SG veneer section. */
6294 if (veneer_value < cmse_stub_sec_vma)
6295 {
6296 /* Avoid offset underflow. */
6297 if (stub_entry)
6298 stub_entry->stub_offset = 0;
6299 stub_offset = 0;
6300 ret = FALSE;
6301 }
6302
6303 /* Complain if stub offset not a multiple of stub size. */
6304 if (stub_offset % cmse_stub_size)
6305 {
4eca0228 6306 _bfd_error_handler
90b6238f
AM
6307 (_("offset of veneer for entry function `%s' not a multiple of "
6308 "its size"), sym_name);
0955507f
TP
6309 ret = FALSE;
6310 }
6311
6312 if (!ret)
6313 continue;
6314
6315 new_cmse_stubs_created--;
6316 if (veneer_value < cmse_stub_array_start)
6317 cmse_stub_array_start = veneer_value;
6318 next_cmse_stub_offset = stub_offset + ((cmse_stub_size + 7) & ~7);
6319 if (next_cmse_stub_offset > htab->new_cmse_stub_offset)
6320 htab->new_cmse_stub_offset = next_cmse_stub_offset;
6321 }
6322
6323 if (!info->out_implib_bfd && new_cmse_stubs_created != 0)
6324 {
6325 BFD_ASSERT (new_cmse_stubs_created > 0);
4eca0228 6326 _bfd_error_handler
0955507f
TP
6327 (_("new entry function(s) introduced but no output import library "
6328 "specified:"));
6329 bfd_hash_traverse (&htab->stub_hash_table, arm_list_new_cmse_stub, info);
6330 }
6331
6332 if (cmse_stub_array_start != cmse_stub_sec_vma)
6333 {
4eca0228 6334 _bfd_error_handler
90b6238f 6335 (_("start address of `%s' is different from previous link"),
0955507f
TP
6336 out_sec_name);
6337 ret = FALSE;
6338 }
6339
6340free_sym_buf:
6341 free (sympp);
6342 return ret;
6343}
6344
906e58ca
NC
6345/* Determine and set the size of the stub section for a final link.
6346
6347 The basic idea here is to examine all the relocations looking for
6348 PC-relative calls to a target that is unreachable with a "bl"
6349 instruction. */
6350
6351bfd_boolean
6352elf32_arm_size_stubs (bfd *output_bfd,
6353 bfd *stub_bfd,
6354 struct bfd_link_info *info,
6355 bfd_signed_vma group_size,
7a89b94e 6356 asection * (*add_stub_section) (const char *, asection *,
6bde4c52 6357 asection *,
7a89b94e 6358 unsigned int),
906e58ca
NC
6359 void (*layout_sections_again) (void))
6360{
0955507f 6361 bfd_boolean ret = TRUE;
4ba2ef8f 6362 obj_attribute *out_attr;
0955507f 6363 int cmse_stub_created = 0;
906e58ca 6364 bfd_size_type stub_group_size;
4ba2ef8f 6365 bfd_boolean m_profile, stubs_always_after_branch, first_veneer_scan = TRUE;
906e58ca 6366 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
48229727 6367 struct a8_erratum_fix *a8_fixes = NULL;
eb7c4339 6368 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
48229727
JB
6369 struct a8_erratum_reloc *a8_relocs = NULL;
6370 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
6371
4dfe6ac6
NC
6372 if (htab == NULL)
6373 return FALSE;
6374
48229727
JB
6375 if (htab->fix_cortex_a8)
6376 {
21d799b5 6377 a8_fixes = (struct a8_erratum_fix *)
99059e56 6378 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
21d799b5 6379 a8_relocs = (struct a8_erratum_reloc *)
99059e56 6380 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
48229727 6381 }
906e58ca
NC
6382
6383 /* Propagate mach to stub bfd, because it may not have been
6384 finalized when we created stub_bfd. */
6385 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
6386 bfd_get_mach (output_bfd));
6387
6388 /* Stash our params away. */
6389 htab->stub_bfd = stub_bfd;
6390 htab->add_stub_section = add_stub_section;
6391 htab->layout_sections_again = layout_sections_again;
07d72278 6392 stubs_always_after_branch = group_size < 0;
48229727 6393
4ba2ef8f
TP
6394 out_attr = elf_known_obj_attributes_proc (output_bfd);
6395 m_profile = out_attr[Tag_CPU_arch_profile].i == 'M';
0955507f 6396
48229727
JB
6397 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
6398 as the first half of a 32-bit branch straddling two 4K pages. This is a
6399 crude way of enforcing that. */
6400 if (htab->fix_cortex_a8)
6401 stubs_always_after_branch = 1;
6402
906e58ca
NC
6403 if (group_size < 0)
6404 stub_group_size = -group_size;
6405 else
6406 stub_group_size = group_size;
6407
6408 if (stub_group_size == 1)
6409 {
6410 /* Default values. */
6411 /* Thumb branch range is +-4MB has to be used as the default
6412 maximum size (a given section can contain both ARM and Thumb
6413 code, so the worst case has to be taken into account).
6414
6415 This value is 24K less than that, which allows for 2025
6416 12-byte stubs. If we exceed that, then we will fail to link.
6417 The user will have to relink with an explicit group size
6418 option. */
6419 stub_group_size = 4170000;
6420 }
6421
07d72278 6422 group_sections (htab, stub_group_size, stubs_always_after_branch);
906e58ca 6423
3ae046cc
NS
6424 /* If we're applying the cortex A8 fix, we need to determine the
6425 program header size now, because we cannot change it later --
6426 that could alter section placements. Notice the A8 erratum fix
6427 ends up requiring the section addresses to remain unchanged
6428 modulo the page size. That's something we cannot represent
6429 inside BFD, and we don't want to force the section alignment to
6430 be the page size. */
6431 if (htab->fix_cortex_a8)
6432 (*htab->layout_sections_again) ();
6433
906e58ca
NC
6434 while (1)
6435 {
6436 bfd *input_bfd;
6437 unsigned int bfd_indx;
6438 asection *stub_sec;
d7c5bd02 6439 enum elf32_arm_stub_type stub_type;
eb7c4339
NS
6440 bfd_boolean stub_changed = FALSE;
6441 unsigned prev_num_a8_fixes = num_a8_fixes;
906e58ca 6442
48229727 6443 num_a8_fixes = 0;
906e58ca
NC
6444 for (input_bfd = info->input_bfds, bfd_indx = 0;
6445 input_bfd != NULL;
c72f2fb2 6446 input_bfd = input_bfd->link.next, bfd_indx++)
906e58ca
NC
6447 {
6448 Elf_Internal_Shdr *symtab_hdr;
6449 asection *section;
6450 Elf_Internal_Sym *local_syms = NULL;
6451
8c246a60
AM
6452 if (!is_arm_elf (input_bfd)
6453 || (elf_dyn_lib_class (input_bfd) & DYN_AS_NEEDED) != 0)
99059e56 6454 continue;
adbcc655 6455
48229727
JB
6456 num_a8_relocs = 0;
6457
906e58ca
NC
6458 /* We'll need the symbol table in a second. */
6459 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6460 if (symtab_hdr->sh_info == 0)
6461 continue;
6462
4ba2ef8f
TP
6463 /* Limit scan of symbols to object file whose profile is
6464 Microcontroller to not hinder performance in the general case. */
6465 if (m_profile && first_veneer_scan)
6466 {
6467 struct elf_link_hash_entry **sym_hashes;
6468
6469 sym_hashes = elf_sym_hashes (input_bfd);
6470 if (!cmse_scan (input_bfd, htab, out_attr, sym_hashes,
0955507f 6471 &cmse_stub_created))
4ba2ef8f 6472 goto error_ret_free_local;
0955507f
TP
6473
6474 if (cmse_stub_created != 0)
6475 stub_changed = TRUE;
4ba2ef8f
TP
6476 }
6477
906e58ca
NC
6478 /* Walk over each section attached to the input bfd. */
6479 for (section = input_bfd->sections;
6480 section != NULL;
6481 section = section->next)
6482 {
6483 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
6484
6485 /* If there aren't any relocs, then there's nothing more
6486 to do. */
6487 if ((section->flags & SEC_RELOC) == 0
6488 || section->reloc_count == 0
6489 || (section->flags & SEC_CODE) == 0)
6490 continue;
6491
6492 /* If this section is a link-once section that will be
6493 discarded, then don't create any stubs. */
6494 if (section->output_section == NULL
6495 || section->output_section->owner != output_bfd)
6496 continue;
6497
6498 /* Get the relocs. */
6499 internal_relocs
6500 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
6501 NULL, info->keep_memory);
6502 if (internal_relocs == NULL)
6503 goto error_ret_free_local;
6504
6505 /* Now examine each relocation. */
6506 irela = internal_relocs;
6507 irelaend = irela + section->reloc_count;
6508 for (; irela < irelaend; irela++)
6509 {
6510 unsigned int r_type, r_indx;
906e58ca
NC
6511 asection *sym_sec;
6512 bfd_vma sym_value;
6513 bfd_vma destination;
6514 struct elf32_arm_link_hash_entry *hash;
7413f23f 6515 const char *sym_name;
34e77a92 6516 unsigned char st_type;
35fc36a8 6517 enum arm_st_branch_type branch_type;
48229727 6518 bfd_boolean created_stub = FALSE;
906e58ca
NC
6519
6520 r_type = ELF32_R_TYPE (irela->r_info);
6521 r_indx = ELF32_R_SYM (irela->r_info);
6522
6523 if (r_type >= (unsigned int) R_ARM_max)
6524 {
6525 bfd_set_error (bfd_error_bad_value);
6526 error_ret_free_internal:
6527 if (elf_section_data (section)->relocs == NULL)
6528 free (internal_relocs);
15dd01b1
TP
6529 /* Fall through. */
6530 error_ret_free_local:
6531 if (local_syms != NULL
6532 && (symtab_hdr->contents
6533 != (unsigned char *) local_syms))
6534 free (local_syms);
6535 return FALSE;
906e58ca 6536 }
b38cadfb 6537
0855e32b
NS
6538 hash = NULL;
6539 if (r_indx >= symtab_hdr->sh_info)
6540 hash = elf32_arm_hash_entry
6541 (elf_sym_hashes (input_bfd)
6542 [r_indx - symtab_hdr->sh_info]);
b38cadfb 6543
0855e32b
NS
6544 /* Only look for stubs on branch instructions, or
6545 non-relaxed TLSCALL */
906e58ca 6546 if ((r_type != (unsigned int) R_ARM_CALL)
155d87d7
CL
6547 && (r_type != (unsigned int) R_ARM_THM_CALL)
6548 && (r_type != (unsigned int) R_ARM_JUMP24)
48229727
JB
6549 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
6550 && (r_type != (unsigned int) R_ARM_THM_XPC22)
155d87d7 6551 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
0855e32b
NS
6552 && (r_type != (unsigned int) R_ARM_PLT32)
6553 && !((r_type == (unsigned int) R_ARM_TLS_CALL
6554 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6555 && r_type == elf32_arm_tls_transition
6556 (info, r_type, &hash->root)
6557 && ((hash ? hash->tls_type
6558 : (elf32_arm_local_got_tls_type
6559 (input_bfd)[r_indx]))
6560 & GOT_TLS_GDESC) != 0))
906e58ca
NC
6561 continue;
6562
6563 /* Now determine the call target, its name, value,
6564 section. */
6565 sym_sec = NULL;
6566 sym_value = 0;
6567 destination = 0;
7413f23f 6568 sym_name = NULL;
b38cadfb 6569
0855e32b
NS
6570 if (r_type == (unsigned int) R_ARM_TLS_CALL
6571 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6572 {
6573 /* A non-relaxed TLS call. The target is the
6574 plt-resident trampoline and nothing to do
6575 with the symbol. */
6576 BFD_ASSERT (htab->tls_trampoline > 0);
6577 sym_sec = htab->root.splt;
6578 sym_value = htab->tls_trampoline;
6579 hash = 0;
34e77a92 6580 st_type = STT_FUNC;
35fc36a8 6581 branch_type = ST_BRANCH_TO_ARM;
0855e32b
NS
6582 }
6583 else if (!hash)
906e58ca
NC
6584 {
6585 /* It's a local symbol. */
6586 Elf_Internal_Sym *sym;
906e58ca
NC
6587
6588 if (local_syms == NULL)
6589 {
6590 local_syms
6591 = (Elf_Internal_Sym *) symtab_hdr->contents;
6592 if (local_syms == NULL)
6593 local_syms
6594 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
6595 symtab_hdr->sh_info, 0,
6596 NULL, NULL, NULL);
6597 if (local_syms == NULL)
6598 goto error_ret_free_internal;
6599 }
6600
6601 sym = local_syms + r_indx;
f6d250ce
TS
6602 if (sym->st_shndx == SHN_UNDEF)
6603 sym_sec = bfd_und_section_ptr;
6604 else if (sym->st_shndx == SHN_ABS)
6605 sym_sec = bfd_abs_section_ptr;
6606 else if (sym->st_shndx == SHN_COMMON)
6607 sym_sec = bfd_com_section_ptr;
6608 else
6609 sym_sec =
6610 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
6611
ffcb4889
NS
6612 if (!sym_sec)
6613 /* This is an undefined symbol. It can never
6a631e86 6614 be resolved. */
ffcb4889 6615 continue;
fe33d2fa 6616
906e58ca
NC
6617 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
6618 sym_value = sym->st_value;
6619 destination = (sym_value + irela->r_addend
6620 + sym_sec->output_offset
6621 + sym_sec->output_section->vma);
34e77a92 6622 st_type = ELF_ST_TYPE (sym->st_info);
39d911fc
TP
6623 branch_type =
6624 ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
7413f23f
DJ
6625 sym_name
6626 = bfd_elf_string_from_elf_section (input_bfd,
6627 symtab_hdr->sh_link,
6628 sym->st_name);
906e58ca
NC
6629 }
6630 else
6631 {
6632 /* It's an external symbol. */
906e58ca
NC
6633 while (hash->root.root.type == bfd_link_hash_indirect
6634 || hash->root.root.type == bfd_link_hash_warning)
6635 hash = ((struct elf32_arm_link_hash_entry *)
6636 hash->root.root.u.i.link);
6637
6638 if (hash->root.root.type == bfd_link_hash_defined
6639 || hash->root.root.type == bfd_link_hash_defweak)
6640 {
6641 sym_sec = hash->root.root.u.def.section;
6642 sym_value = hash->root.root.u.def.value;
022f8312
CL
6643
6644 struct elf32_arm_link_hash_table *globals =
6645 elf32_arm_hash_table (info);
6646
6647 /* For a destination in a shared library,
6648 use the PLT stub as target address to
6649 decide whether a branch stub is
6650 needed. */
4dfe6ac6 6651 if (globals != NULL
362d30a1 6652 && globals->root.splt != NULL
4dfe6ac6 6653 && hash != NULL
022f8312
CL
6654 && hash->root.plt.offset != (bfd_vma) -1)
6655 {
362d30a1 6656 sym_sec = globals->root.splt;
022f8312
CL
6657 sym_value = hash->root.plt.offset;
6658 if (sym_sec->output_section != NULL)
6659 destination = (sym_value
6660 + sym_sec->output_offset
6661 + sym_sec->output_section->vma);
6662 }
6663 else if (sym_sec->output_section != NULL)
906e58ca
NC
6664 destination = (sym_value + irela->r_addend
6665 + sym_sec->output_offset
6666 + sym_sec->output_section->vma);
6667 }
69c5861e
CL
6668 else if ((hash->root.root.type == bfd_link_hash_undefined)
6669 || (hash->root.root.type == bfd_link_hash_undefweak))
6670 {
6671 /* For a shared library, use the PLT stub as
6672 target address to decide whether a long
6673 branch stub is needed.
6674 For absolute code, they cannot be handled. */
6675 struct elf32_arm_link_hash_table *globals =
6676 elf32_arm_hash_table (info);
6677
4dfe6ac6 6678 if (globals != NULL
362d30a1 6679 && globals->root.splt != NULL
4dfe6ac6 6680 && hash != NULL
69c5861e
CL
6681 && hash->root.plt.offset != (bfd_vma) -1)
6682 {
362d30a1 6683 sym_sec = globals->root.splt;
69c5861e
CL
6684 sym_value = hash->root.plt.offset;
6685 if (sym_sec->output_section != NULL)
6686 destination = (sym_value
6687 + sym_sec->output_offset
6688 + sym_sec->output_section->vma);
6689 }
6690 else
6691 continue;
6692 }
906e58ca
NC
6693 else
6694 {
6695 bfd_set_error (bfd_error_bad_value);
6696 goto error_ret_free_internal;
6697 }
34e77a92 6698 st_type = hash->root.type;
39d911fc
TP
6699 branch_type =
6700 ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
7413f23f 6701 sym_name = hash->root.root.root.string;
906e58ca
NC
6702 }
6703
48229727 6704 do
7413f23f 6705 {
b715f643 6706 bfd_boolean new_stub;
0955507f 6707 struct elf32_arm_stub_hash_entry *stub_entry;
b715f643 6708
48229727
JB
6709 /* Determine what (if any) linker stub is needed. */
6710 stub_type = arm_type_of_stub (info, section, irela,
34e77a92
RS
6711 st_type, &branch_type,
6712 hash, destination, sym_sec,
48229727
JB
6713 input_bfd, sym_name);
6714 if (stub_type == arm_stub_none)
6715 break;
6716
48229727
JB
6717 /* We've either created a stub for this reloc already,
6718 or we are about to. */
0955507f 6719 stub_entry =
b715f643
TP
6720 elf32_arm_create_stub (htab, stub_type, section, irela,
6721 sym_sec, hash,
6722 (char *) sym_name, sym_value,
6723 branch_type, &new_stub);
7413f23f 6724
0955507f 6725 created_stub = stub_entry != NULL;
b715f643
TP
6726 if (!created_stub)
6727 goto error_ret_free_internal;
6728 else if (!new_stub)
6729 break;
99059e56 6730 else
b715f643 6731 stub_changed = TRUE;
99059e56
RM
6732 }
6733 while (0);
6734
6735 /* Look for relocations which might trigger Cortex-A8
6736 erratum. */
6737 if (htab->fix_cortex_a8
6738 && (r_type == (unsigned int) R_ARM_THM_JUMP24
6739 || r_type == (unsigned int) R_ARM_THM_JUMP19
6740 || r_type == (unsigned int) R_ARM_THM_CALL
6741 || r_type == (unsigned int) R_ARM_THM_XPC22))
6742 {
6743 bfd_vma from = section->output_section->vma
6744 + section->output_offset
6745 + irela->r_offset;
6746
6747 if ((from & 0xfff) == 0xffe)
6748 {
6749 /* Found a candidate. Note we haven't checked the
6750 destination is within 4K here: if we do so (and
6751 don't create an entry in a8_relocs) we can't tell
6752 that a branch should have been relocated when
6753 scanning later. */
6754 if (num_a8_relocs == a8_reloc_table_size)
6755 {
6756 a8_reloc_table_size *= 2;
6757 a8_relocs = (struct a8_erratum_reloc *)
6758 bfd_realloc (a8_relocs,
6759 sizeof (struct a8_erratum_reloc)
6760 * a8_reloc_table_size);
6761 }
6762
6763 a8_relocs[num_a8_relocs].from = from;
6764 a8_relocs[num_a8_relocs].destination = destination;
6765 a8_relocs[num_a8_relocs].r_type = r_type;
6766 a8_relocs[num_a8_relocs].branch_type = branch_type;
6767 a8_relocs[num_a8_relocs].sym_name = sym_name;
6768 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
6769 a8_relocs[num_a8_relocs].hash = hash;
6770
6771 num_a8_relocs++;
6772 }
6773 }
906e58ca
NC
6774 }
6775
99059e56
RM
6776 /* We're done with the internal relocs, free them. */
6777 if (elf_section_data (section)->relocs == NULL)
6778 free (internal_relocs);
6779 }
48229727 6780
99059e56 6781 if (htab->fix_cortex_a8)
48229727 6782 {
99059e56
RM
6783 /* Sort relocs which might apply to Cortex-A8 erratum. */
6784 qsort (a8_relocs, num_a8_relocs,
eb7c4339 6785 sizeof (struct a8_erratum_reloc),
99059e56 6786 &a8_reloc_compare);
48229727 6787
99059e56
RM
6788 /* Scan for branches which might trigger Cortex-A8 erratum. */
6789 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
48229727 6790 &num_a8_fixes, &a8_fix_table_size,
eb7c4339
NS
6791 a8_relocs, num_a8_relocs,
6792 prev_num_a8_fixes, &stub_changed)
6793 != 0)
48229727 6794 goto error_ret_free_local;
5e681ec4 6795 }
7f991970
AM
6796
6797 if (local_syms != NULL
6798 && symtab_hdr->contents != (unsigned char *) local_syms)
6799 {
6800 if (!info->keep_memory)
6801 free (local_syms);
6802 else
6803 symtab_hdr->contents = (unsigned char *) local_syms;
6804 }
5e681ec4
PB
6805 }
6806
0955507f
TP
6807 if (first_veneer_scan
6808 && !set_cmse_veneer_addr_from_implib (info, htab,
6809 &cmse_stub_created))
6810 ret = FALSE;
6811
eb7c4339 6812 if (prev_num_a8_fixes != num_a8_fixes)
99059e56 6813 stub_changed = TRUE;
48229727 6814
906e58ca
NC
6815 if (!stub_changed)
6816 break;
5e681ec4 6817
906e58ca
NC
6818 /* OK, we've added some stubs. Find out the new size of the
6819 stub sections. */
6820 for (stub_sec = htab->stub_bfd->sections;
6821 stub_sec != NULL;
6822 stub_sec = stub_sec->next)
3e6b1042
DJ
6823 {
6824 /* Ignore non-stub sections. */
6825 if (!strstr (stub_sec->name, STUB_SUFFIX))
6826 continue;
6827
6828 stub_sec->size = 0;
6829 }
b34b2d70 6830
0955507f
TP
6831 /* Add new SG veneers after those already in the input import
6832 library. */
6833 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6834 stub_type++)
6835 {
6836 bfd_vma *start_offset_p;
6837 asection **stub_sec_p;
6838
6839 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
6840 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6841 if (start_offset_p == NULL)
6842 continue;
6843
6844 BFD_ASSERT (stub_sec_p != NULL);
6845 if (*stub_sec_p != NULL)
6846 (*stub_sec_p)->size = *start_offset_p;
6847 }
6848
d7c5bd02 6849 /* Compute stub section size, considering padding. */
906e58ca 6850 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
d7c5bd02
TP
6851 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6852 stub_type++)
6853 {
6854 int size, padding;
6855 asection **stub_sec_p;
6856
6857 padding = arm_dedicated_stub_section_padding (stub_type);
6858 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6859 /* Skip if no stub input section or no stub section padding
6860 required. */
6861 if ((stub_sec_p != NULL && *stub_sec_p == NULL) || padding == 0)
6862 continue;
6863 /* Stub section padding required but no dedicated section. */
6864 BFD_ASSERT (stub_sec_p);
6865
6866 size = (*stub_sec_p)->size;
6867 size = (size + padding - 1) & ~(padding - 1);
6868 (*stub_sec_p)->size = size;
6869 }
906e58ca 6870
48229727
JB
6871 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
6872 if (htab->fix_cortex_a8)
99059e56
RM
6873 for (i = 0; i < num_a8_fixes; i++)
6874 {
48229727 6875 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
daa4adae 6876 a8_fixes[i].section, htab, a8_fixes[i].stub_type);
48229727
JB
6877
6878 if (stub_sec == NULL)
7f991970 6879 return FALSE;
48229727 6880
99059e56
RM
6881 stub_sec->size
6882 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
6883 NULL);
6884 }
48229727
JB
6885
6886
906e58ca
NC
6887 /* Ask the linker to do its stuff. */
6888 (*htab->layout_sections_again) ();
4ba2ef8f 6889 first_veneer_scan = FALSE;
ba93b8ac
DJ
6890 }
6891
48229727
JB
6892 /* Add stubs for Cortex-A8 erratum fixes now. */
6893 if (htab->fix_cortex_a8)
6894 {
6895 for (i = 0; i < num_a8_fixes; i++)
99059e56
RM
6896 {
6897 struct elf32_arm_stub_hash_entry *stub_entry;
6898 char *stub_name = a8_fixes[i].stub_name;
6899 asection *section = a8_fixes[i].section;
6900 unsigned int section_id = a8_fixes[i].section->id;
6901 asection *link_sec = htab->stub_group[section_id].link_sec;
6902 asection *stub_sec = htab->stub_group[section_id].stub_sec;
6903 const insn_sequence *template_sequence;
6904 int template_size, size = 0;
6905
6906 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
6907 TRUE, FALSE);
6908 if (stub_entry == NULL)
6909 {
871b3ab2 6910 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
4eca0228 6911 section->owner, stub_name);
99059e56
RM
6912 return FALSE;
6913 }
6914
6915 stub_entry->stub_sec = stub_sec;
0955507f 6916 stub_entry->stub_offset = (bfd_vma) -1;
99059e56
RM
6917 stub_entry->id_sec = link_sec;
6918 stub_entry->stub_type = a8_fixes[i].stub_type;
8d9d9490 6919 stub_entry->source_value = a8_fixes[i].offset;
99059e56 6920 stub_entry->target_section = a8_fixes[i].section;
8d9d9490 6921 stub_entry->target_value = a8_fixes[i].target_offset;
99059e56 6922 stub_entry->orig_insn = a8_fixes[i].orig_insn;
35fc36a8 6923 stub_entry->branch_type = a8_fixes[i].branch_type;
48229727 6924
99059e56
RM
6925 size = find_stub_size_and_template (a8_fixes[i].stub_type,
6926 &template_sequence,
6927 &template_size);
48229727 6928
99059e56
RM
6929 stub_entry->stub_size = size;
6930 stub_entry->stub_template = template_sequence;
6931 stub_entry->stub_template_size = template_size;
6932 }
48229727
JB
6933
6934 /* Stash the Cortex-A8 erratum fix array for use later in
99059e56 6935 elf32_arm_write_section(). */
48229727
JB
6936 htab->a8_erratum_fixes = a8_fixes;
6937 htab->num_a8_erratum_fixes = num_a8_fixes;
6938 }
6939 else
6940 {
6941 htab->a8_erratum_fixes = NULL;
6942 htab->num_a8_erratum_fixes = 0;
6943 }
0955507f 6944 return ret;
5e681ec4
PB
6945}
6946
906e58ca
NC
6947/* Build all the stubs associated with the current output file. The
6948 stubs are kept in a hash table attached to the main linker hash
6949 table. We also set up the .plt entries for statically linked PIC
6950 functions here. This function is called via arm_elf_finish in the
6951 linker. */
252b5132 6952
906e58ca
NC
6953bfd_boolean
6954elf32_arm_build_stubs (struct bfd_link_info *info)
252b5132 6955{
906e58ca
NC
6956 asection *stub_sec;
6957 struct bfd_hash_table *table;
0955507f 6958 enum elf32_arm_stub_type stub_type;
906e58ca 6959 struct elf32_arm_link_hash_table *htab;
252b5132 6960
906e58ca 6961 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
6962 if (htab == NULL)
6963 return FALSE;
252b5132 6964
906e58ca
NC
6965 for (stub_sec = htab->stub_bfd->sections;
6966 stub_sec != NULL;
6967 stub_sec = stub_sec->next)
252b5132 6968 {
906e58ca
NC
6969 bfd_size_type size;
6970
8029a119 6971 /* Ignore non-stub sections. */
906e58ca
NC
6972 if (!strstr (stub_sec->name, STUB_SUFFIX))
6973 continue;
6974
d7c5bd02 6975 /* Allocate memory to hold the linker stubs. Zeroing the stub sections
0955507f
TP
6976 must at least be done for stub section requiring padding and for SG
6977 veneers to ensure that a non secure code branching to a removed SG
6978 veneer causes an error. */
906e58ca 6979 size = stub_sec->size;
21d799b5 6980 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
906e58ca
NC
6981 if (stub_sec->contents == NULL && size != 0)
6982 return FALSE;
0955507f 6983
906e58ca 6984 stub_sec->size = 0;
252b5132
RH
6985 }
6986
0955507f
TP
6987 /* Add new SG veneers after those already in the input import library. */
6988 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
6989 {
6990 bfd_vma *start_offset_p;
6991 asection **stub_sec_p;
6992
6993 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
6994 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6995 if (start_offset_p == NULL)
6996 continue;
6997
6998 BFD_ASSERT (stub_sec_p != NULL);
6999 if (*stub_sec_p != NULL)
7000 (*stub_sec_p)->size = *start_offset_p;
7001 }
7002
906e58ca
NC
7003 /* Build the stubs as directed by the stub hash table. */
7004 table = &htab->stub_hash_table;
7005 bfd_hash_traverse (table, arm_build_one_stub, info);
eb7c4339
NS
7006 if (htab->fix_cortex_a8)
7007 {
7008 /* Place the cortex a8 stubs last. */
7009 htab->fix_cortex_a8 = -1;
7010 bfd_hash_traverse (table, arm_build_one_stub, info);
7011 }
252b5132 7012
906e58ca 7013 return TRUE;
252b5132
RH
7014}
7015
9b485d32
NC
7016/* Locate the Thumb encoded calling stub for NAME. */
7017
252b5132 7018static struct elf_link_hash_entry *
57e8b36a
NC
7019find_thumb_glue (struct bfd_link_info *link_info,
7020 const char *name,
f2a9dd69 7021 char **error_message)
252b5132
RH
7022{
7023 char *tmp_name;
7024 struct elf_link_hash_entry *hash;
7025 struct elf32_arm_link_hash_table *hash_table;
7026
7027 /* We need a pointer to the armelf specific hash table. */
7028 hash_table = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
7029 if (hash_table == NULL)
7030 return NULL;
252b5132 7031
21d799b5 7032 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
99059e56 7033 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
252b5132
RH
7034
7035 BFD_ASSERT (tmp_name);
7036
7037 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
7038
7039 hash = elf_link_hash_lookup
b34976b6 7040 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
252b5132 7041
b1657152 7042 if (hash == NULL
90b6238f
AM
7043 && asprintf (error_message, _("unable to find %s glue '%s' for '%s'"),
7044 "Thumb", tmp_name, name) == -1)
b1657152 7045 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
252b5132
RH
7046
7047 free (tmp_name);
7048
7049 return hash;
7050}
7051
9b485d32
NC
7052/* Locate the ARM encoded calling stub for NAME. */
7053
252b5132 7054static struct elf_link_hash_entry *
57e8b36a
NC
7055find_arm_glue (struct bfd_link_info *link_info,
7056 const char *name,
f2a9dd69 7057 char **error_message)
252b5132
RH
7058{
7059 char *tmp_name;
7060 struct elf_link_hash_entry *myh;
7061 struct elf32_arm_link_hash_table *hash_table;
7062
7063 /* We need a pointer to the elfarm specific hash table. */
7064 hash_table = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
7065 if (hash_table == NULL)
7066 return NULL;
252b5132 7067
21d799b5 7068 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
99059e56 7069 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
252b5132
RH
7070
7071 BFD_ASSERT (tmp_name);
7072
7073 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
7074
7075 myh = elf_link_hash_lookup
b34976b6 7076 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
252b5132 7077
b1657152 7078 if (myh == NULL
90b6238f
AM
7079 && asprintf (error_message, _("unable to find %s glue '%s' for '%s'"),
7080 "ARM", tmp_name, name) == -1)
b1657152 7081 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
252b5132
RH
7082
7083 free (tmp_name);
7084
7085 return myh;
7086}
7087
8f6277f5 7088/* ARM->Thumb glue (static images):
252b5132
RH
7089
7090 .arm
7091 __func_from_arm:
7092 ldr r12, __func_addr
7093 bx r12
7094 __func_addr:
906e58ca 7095 .word func @ behave as if you saw a ARM_32 reloc.
252b5132 7096
26079076
PB
7097 (v5t static images)
7098 .arm
7099 __func_from_arm:
7100 ldr pc, __func_addr
7101 __func_addr:
906e58ca 7102 .word func @ behave as if you saw a ARM_32 reloc.
26079076 7103
8f6277f5
PB
7104 (relocatable images)
7105 .arm
7106 __func_from_arm:
7107 ldr r12, __func_offset
7108 add r12, r12, pc
7109 bx r12
7110 __func_offset:
8029a119 7111 .word func - . */
8f6277f5
PB
7112
7113#define ARM2THUMB_STATIC_GLUE_SIZE 12
252b5132
RH
7114static const insn32 a2t1_ldr_insn = 0xe59fc000;
7115static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
7116static const insn32 a2t3_func_addr_insn = 0x00000001;
7117
26079076
PB
7118#define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
7119static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
7120static const insn32 a2t2v5_func_addr_insn = 0x00000001;
7121
8f6277f5
PB
7122#define ARM2THUMB_PIC_GLUE_SIZE 16
7123static const insn32 a2t1p_ldr_insn = 0xe59fc004;
7124static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
7125static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
7126
07d6d2b8 7127/* Thumb->ARM: Thumb->(non-interworking aware) ARM
252b5132 7128
07d6d2b8
AM
7129 .thumb .thumb
7130 .align 2 .align 2
7131 __func_from_thumb: __func_from_thumb:
7132 bx pc push {r6, lr}
7133 nop ldr r6, __func_addr
7134 .arm mov lr, pc
7135 b func bx r6
99059e56
RM
7136 .arm
7137 ;; back_to_thumb
7138 ldmia r13! {r6, lr}
7139 bx lr
7140 __func_addr:
07d6d2b8 7141 .word func */
252b5132
RH
7142
7143#define THUMB2ARM_GLUE_SIZE 8
7144static const insn16 t2a1_bx_pc_insn = 0x4778;
7145static const insn16 t2a2_noop_insn = 0x46c0;
7146static const insn32 t2a3_b_insn = 0xea000000;
7147
c7b8f16e 7148#define VFP11_ERRATUM_VENEER_SIZE 8
a504d23a
LA
7149#define STM32L4XX_ERRATUM_LDM_VENEER_SIZE 16
7150#define STM32L4XX_ERRATUM_VLDM_VENEER_SIZE 24
c7b8f16e 7151
845b51d6
PB
7152#define ARM_BX_VENEER_SIZE 12
7153static const insn32 armbx1_tst_insn = 0xe3100001;
7154static const insn32 armbx2_moveq_insn = 0x01a0f000;
7155static const insn32 armbx3_bx_insn = 0xe12fff10;
7156
7e392df6 7157#ifndef ELFARM_NABI_C_INCLUDED
8029a119
NC
7158static void
7159arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
252b5132
RH
7160{
7161 asection * s;
8029a119 7162 bfd_byte * contents;
252b5132 7163
8029a119 7164 if (size == 0)
3e6b1042
DJ
7165 {
7166 /* Do not include empty glue sections in the output. */
7167 if (abfd != NULL)
7168 {
3d4d4302 7169 s = bfd_get_linker_section (abfd, name);
3e6b1042
DJ
7170 if (s != NULL)
7171 s->flags |= SEC_EXCLUDE;
7172 }
7173 return;
7174 }
252b5132 7175
8029a119 7176 BFD_ASSERT (abfd != NULL);
252b5132 7177
3d4d4302 7178 s = bfd_get_linker_section (abfd, name);
8029a119 7179 BFD_ASSERT (s != NULL);
252b5132 7180
21d799b5 7181 contents = (bfd_byte *) bfd_alloc (abfd, size);
252b5132 7182
8029a119
NC
7183 BFD_ASSERT (s->size == size);
7184 s->contents = contents;
7185}
906e58ca 7186
8029a119
NC
7187bfd_boolean
7188bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
7189{
7190 struct elf32_arm_link_hash_table * globals;
906e58ca 7191
8029a119
NC
7192 globals = elf32_arm_hash_table (info);
7193 BFD_ASSERT (globals != NULL);
906e58ca 7194
8029a119
NC
7195 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7196 globals->arm_glue_size,
7197 ARM2THUMB_GLUE_SECTION_NAME);
906e58ca 7198
8029a119
NC
7199 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7200 globals->thumb_glue_size,
7201 THUMB2ARM_GLUE_SECTION_NAME);
252b5132 7202
8029a119
NC
7203 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7204 globals->vfp11_erratum_glue_size,
7205 VFP11_ERRATUM_VENEER_SECTION_NAME);
845b51d6 7206
a504d23a
LA
7207 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7208 globals->stm32l4xx_erratum_glue_size,
7209 STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7210
8029a119
NC
7211 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7212 globals->bx_glue_size,
845b51d6
PB
7213 ARM_BX_GLUE_SECTION_NAME);
7214
b34976b6 7215 return TRUE;
252b5132
RH
7216}
7217
a4fd1a8e 7218/* Allocate space and symbols for calling a Thumb function from Arm mode.
906e58ca
NC
7219 returns the symbol identifying the stub. */
7220
a4fd1a8e 7221static struct elf_link_hash_entry *
57e8b36a
NC
7222record_arm_to_thumb_glue (struct bfd_link_info * link_info,
7223 struct elf_link_hash_entry * h)
252b5132
RH
7224{
7225 const char * name = h->root.root.string;
63b0f745 7226 asection * s;
252b5132
RH
7227 char * tmp_name;
7228 struct elf_link_hash_entry * myh;
14a793b2 7229 struct bfd_link_hash_entry * bh;
252b5132 7230 struct elf32_arm_link_hash_table * globals;
dc810e39 7231 bfd_vma val;
2f475487 7232 bfd_size_type size;
252b5132
RH
7233
7234 globals = elf32_arm_hash_table (link_info);
252b5132
RH
7235 BFD_ASSERT (globals != NULL);
7236 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7237
3d4d4302 7238 s = bfd_get_linker_section
252b5132
RH
7239 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
7240
252b5132
RH
7241 BFD_ASSERT (s != NULL);
7242
21d799b5 7243 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
99059e56 7244 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
252b5132
RH
7245
7246 BFD_ASSERT (tmp_name);
7247
7248 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
7249
7250 myh = elf_link_hash_lookup
b34976b6 7251 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
252b5132
RH
7252
7253 if (myh != NULL)
7254 {
9b485d32 7255 /* We've already seen this guy. */
252b5132 7256 free (tmp_name);
a4fd1a8e 7257 return myh;
252b5132
RH
7258 }
7259
57e8b36a
NC
7260 /* The only trick here is using hash_table->arm_glue_size as the value.
7261 Even though the section isn't allocated yet, this is where we will be
3dccd7b7
DJ
7262 putting it. The +1 on the value marks that the stub has not been
7263 output yet - not that it is a Thumb function. */
14a793b2 7264 bh = NULL;
dc810e39
AM
7265 val = globals->arm_glue_size + 1;
7266 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
7267 tmp_name, BSF_GLOBAL, s, val,
b34976b6 7268 NULL, TRUE, FALSE, &bh);
252b5132 7269
b7693d02
DJ
7270 myh = (struct elf_link_hash_entry *) bh;
7271 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7272 myh->forced_local = 1;
7273
252b5132
RH
7274 free (tmp_name);
7275
0e1862bb
L
7276 if (bfd_link_pic (link_info)
7277 || globals->root.is_relocatable_executable
27e55c4d 7278 || globals->pic_veneer)
2f475487 7279 size = ARM2THUMB_PIC_GLUE_SIZE;
26079076
PB
7280 else if (globals->use_blx)
7281 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
8f6277f5 7282 else
2f475487
AM
7283 size = ARM2THUMB_STATIC_GLUE_SIZE;
7284
7285 s->size += size;
7286 globals->arm_glue_size += size;
252b5132 7287
a4fd1a8e 7288 return myh;
252b5132
RH
7289}
7290
845b51d6
PB
7291/* Allocate space for ARMv4 BX veneers. */
7292
7293static void
7294record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
7295{
7296 asection * s;
7297 struct elf32_arm_link_hash_table *globals;
7298 char *tmp_name;
7299 struct elf_link_hash_entry *myh;
7300 struct bfd_link_hash_entry *bh;
7301 bfd_vma val;
7302
7303 /* BX PC does not need a veneer. */
7304 if (reg == 15)
7305 return;
7306
7307 globals = elf32_arm_hash_table (link_info);
845b51d6
PB
7308 BFD_ASSERT (globals != NULL);
7309 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7310
7311 /* Check if this veneer has already been allocated. */
7312 if (globals->bx_glue_offset[reg])
7313 return;
7314
3d4d4302 7315 s = bfd_get_linker_section
845b51d6
PB
7316 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
7317
7318 BFD_ASSERT (s != NULL);
7319
7320 /* Add symbol for veneer. */
21d799b5
NC
7321 tmp_name = (char *)
7322 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
906e58ca 7323
845b51d6 7324 BFD_ASSERT (tmp_name);
906e58ca 7325
845b51d6 7326 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
906e58ca 7327
845b51d6
PB
7328 myh = elf_link_hash_lookup
7329 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
906e58ca 7330
845b51d6 7331 BFD_ASSERT (myh == NULL);
906e58ca 7332
845b51d6
PB
7333 bh = NULL;
7334 val = globals->bx_glue_size;
7335 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
99059e56
RM
7336 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7337 NULL, TRUE, FALSE, &bh);
845b51d6
PB
7338
7339 myh = (struct elf_link_hash_entry *) bh;
7340 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7341 myh->forced_local = 1;
7342
7343 s->size += ARM_BX_VENEER_SIZE;
7344 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
7345 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
7346}
7347
7348
c7b8f16e
JB
7349/* Add an entry to the code/data map for section SEC. */
7350
7351static void
7352elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
7353{
7354 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
7355 unsigned int newidx;
906e58ca 7356
c7b8f16e
JB
7357 if (sec_data->map == NULL)
7358 {
21d799b5 7359 sec_data->map = (elf32_arm_section_map *)
99059e56 7360 bfd_malloc (sizeof (elf32_arm_section_map));
c7b8f16e
JB
7361 sec_data->mapcount = 0;
7362 sec_data->mapsize = 1;
7363 }
906e58ca 7364
c7b8f16e 7365 newidx = sec_data->mapcount++;
906e58ca 7366
c7b8f16e
JB
7367 if (sec_data->mapcount > sec_data->mapsize)
7368 {
7369 sec_data->mapsize *= 2;
21d799b5 7370 sec_data->map = (elf32_arm_section_map *)
99059e56
RM
7371 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
7372 * sizeof (elf32_arm_section_map));
515ef31d
NC
7373 }
7374
7375 if (sec_data->map)
7376 {
7377 sec_data->map[newidx].vma = vma;
7378 sec_data->map[newidx].type = type;
c7b8f16e 7379 }
c7b8f16e
JB
7380}
7381
7382
7383/* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
7384 veneers are handled for now. */
7385
7386static bfd_vma
7387record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
99059e56
RM
7388 elf32_vfp11_erratum_list *branch,
7389 bfd *branch_bfd,
7390 asection *branch_sec,
7391 unsigned int offset)
c7b8f16e
JB
7392{
7393 asection *s;
7394 struct elf32_arm_link_hash_table *hash_table;
7395 char *tmp_name;
7396 struct elf_link_hash_entry *myh;
7397 struct bfd_link_hash_entry *bh;
7398 bfd_vma val;
7399 struct _arm_elf_section_data *sec_data;
c7b8f16e 7400 elf32_vfp11_erratum_list *newerr;
906e58ca 7401
c7b8f16e 7402 hash_table = elf32_arm_hash_table (link_info);
c7b8f16e
JB
7403 BFD_ASSERT (hash_table != NULL);
7404 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
906e58ca 7405
3d4d4302 7406 s = bfd_get_linker_section
c7b8f16e 7407 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
906e58ca 7408
c7b8f16e 7409 sec_data = elf32_arm_section_data (s);
906e58ca 7410
c7b8f16e 7411 BFD_ASSERT (s != NULL);
906e58ca 7412
21d799b5 7413 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
99059e56 7414 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
906e58ca 7415
c7b8f16e 7416 BFD_ASSERT (tmp_name);
906e58ca 7417
c7b8f16e
JB
7418 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
7419 hash_table->num_vfp11_fixes);
906e58ca 7420
c7b8f16e
JB
7421 myh = elf_link_hash_lookup
7422 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
906e58ca 7423
c7b8f16e 7424 BFD_ASSERT (myh == NULL);
906e58ca 7425
c7b8f16e
JB
7426 bh = NULL;
7427 val = hash_table->vfp11_erratum_glue_size;
7428 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
99059e56
RM
7429 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7430 NULL, TRUE, FALSE, &bh);
c7b8f16e
JB
7431
7432 myh = (struct elf_link_hash_entry *) bh;
7433 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7434 myh->forced_local = 1;
7435
7436 /* Link veneer back to calling location. */
c7e2358a 7437 sec_data->erratumcount += 1;
21d799b5
NC
7438 newerr = (elf32_vfp11_erratum_list *)
7439 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
906e58ca 7440
c7b8f16e
JB
7441 newerr->type = VFP11_ERRATUM_ARM_VENEER;
7442 newerr->vma = -1;
7443 newerr->u.v.branch = branch;
7444 newerr->u.v.id = hash_table->num_vfp11_fixes;
7445 branch->u.b.veneer = newerr;
7446
7447 newerr->next = sec_data->erratumlist;
7448 sec_data->erratumlist = newerr;
7449
7450 /* A symbol for the return from the veneer. */
7451 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
7452 hash_table->num_vfp11_fixes);
7453
7454 myh = elf_link_hash_lookup
7455 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
906e58ca 7456
c7b8f16e
JB
7457 if (myh != NULL)
7458 abort ();
7459
7460 bh = NULL;
7461 val = offset + 4;
7462 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7463 branch_sec, val, NULL, TRUE, FALSE, &bh);
906e58ca 7464
c7b8f16e
JB
7465 myh = (struct elf_link_hash_entry *) bh;
7466 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7467 myh->forced_local = 1;
7468
7469 free (tmp_name);
906e58ca 7470
c7b8f16e
JB
7471 /* Generate a mapping symbol for the veneer section, and explicitly add an
7472 entry for that symbol to the code/data map for the section. */
7473 if (hash_table->vfp11_erratum_glue_size == 0)
7474 {
7475 bh = NULL;
7476 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
99059e56 7477 ever requires this erratum fix. */
c7b8f16e
JB
7478 _bfd_generic_link_add_one_symbol (link_info,
7479 hash_table->bfd_of_glue_owner, "$a",
7480 BSF_LOCAL, s, 0, NULL,
99059e56 7481 TRUE, FALSE, &bh);
c7b8f16e
JB
7482
7483 myh = (struct elf_link_hash_entry *) bh;
7484 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7485 myh->forced_local = 1;
906e58ca 7486
c7b8f16e 7487 /* The elf32_arm_init_maps function only cares about symbols from input
99059e56
RM
7488 BFDs. We must make a note of this generated mapping symbol
7489 ourselves so that code byteswapping works properly in
7490 elf32_arm_write_section. */
c7b8f16e
JB
7491 elf32_arm_section_map_add (s, 'a', 0);
7492 }
906e58ca 7493
c7b8f16e
JB
7494 s->size += VFP11_ERRATUM_VENEER_SIZE;
7495 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
7496 hash_table->num_vfp11_fixes++;
906e58ca 7497
c7b8f16e
JB
7498 /* The offset of the veneer. */
7499 return val;
7500}
7501
a504d23a
LA
7502/* Record information about a STM32L4XX STM erratum veneer. Only THUMB-mode
7503 veneers need to be handled because used only in Cortex-M. */
7504
7505static bfd_vma
7506record_stm32l4xx_erratum_veneer (struct bfd_link_info *link_info,
7507 elf32_stm32l4xx_erratum_list *branch,
7508 bfd *branch_bfd,
7509 asection *branch_sec,
7510 unsigned int offset,
7511 bfd_size_type veneer_size)
7512{
7513 asection *s;
7514 struct elf32_arm_link_hash_table *hash_table;
7515 char *tmp_name;
7516 struct elf_link_hash_entry *myh;
7517 struct bfd_link_hash_entry *bh;
7518 bfd_vma val;
7519 struct _arm_elf_section_data *sec_data;
7520 elf32_stm32l4xx_erratum_list *newerr;
7521
7522 hash_table = elf32_arm_hash_table (link_info);
7523 BFD_ASSERT (hash_table != NULL);
7524 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7525
7526 s = bfd_get_linker_section
7527 (hash_table->bfd_of_glue_owner, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7528
7529 BFD_ASSERT (s != NULL);
7530
7531 sec_data = elf32_arm_section_data (s);
7532
7533 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7534 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
7535
7536 BFD_ASSERT (tmp_name);
7537
7538 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
7539 hash_table->num_stm32l4xx_fixes);
7540
7541 myh = elf_link_hash_lookup
7542 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7543
7544 BFD_ASSERT (myh == NULL);
7545
7546 bh = NULL;
7547 val = hash_table->stm32l4xx_erratum_glue_size;
7548 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7549 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7550 NULL, TRUE, FALSE, &bh);
7551
7552 myh = (struct elf_link_hash_entry *) bh;
7553 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7554 myh->forced_local = 1;
7555
7556 /* Link veneer back to calling location. */
7557 sec_data->stm32l4xx_erratumcount += 1;
7558 newerr = (elf32_stm32l4xx_erratum_list *)
7559 bfd_zmalloc (sizeof (elf32_stm32l4xx_erratum_list));
7560
7561 newerr->type = STM32L4XX_ERRATUM_VENEER;
7562 newerr->vma = -1;
7563 newerr->u.v.branch = branch;
7564 newerr->u.v.id = hash_table->num_stm32l4xx_fixes;
7565 branch->u.b.veneer = newerr;
7566
7567 newerr->next = sec_data->stm32l4xx_erratumlist;
7568 sec_data->stm32l4xx_erratumlist = newerr;
7569
7570 /* A symbol for the return from the veneer. */
7571 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
7572 hash_table->num_stm32l4xx_fixes);
7573
7574 myh = elf_link_hash_lookup
7575 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7576
7577 if (myh != NULL)
7578 abort ();
7579
7580 bh = NULL;
7581 val = offset + 4;
7582 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7583 branch_sec, val, NULL, TRUE, FALSE, &bh);
7584
7585 myh = (struct elf_link_hash_entry *) bh;
7586 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7587 myh->forced_local = 1;
7588
7589 free (tmp_name);
7590
7591 /* Generate a mapping symbol for the veneer section, and explicitly add an
7592 entry for that symbol to the code/data map for the section. */
7593 if (hash_table->stm32l4xx_erratum_glue_size == 0)
7594 {
7595 bh = NULL;
7596 /* Creates a THUMB symbol since there is no other choice. */
7597 _bfd_generic_link_add_one_symbol (link_info,
7598 hash_table->bfd_of_glue_owner, "$t",
7599 BSF_LOCAL, s, 0, NULL,
7600 TRUE, FALSE, &bh);
7601
7602 myh = (struct elf_link_hash_entry *) bh;
7603 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7604 myh->forced_local = 1;
7605
7606 /* The elf32_arm_init_maps function only cares about symbols from input
7607 BFDs. We must make a note of this generated mapping symbol
7608 ourselves so that code byteswapping works properly in
7609 elf32_arm_write_section. */
7610 elf32_arm_section_map_add (s, 't', 0);
7611 }
7612
7613 s->size += veneer_size;
7614 hash_table->stm32l4xx_erratum_glue_size += veneer_size;
7615 hash_table->num_stm32l4xx_fixes++;
7616
7617 /* The offset of the veneer. */
7618 return val;
7619}
7620
8029a119 7621#define ARM_GLUE_SECTION_FLAGS \
3e6b1042
DJ
7622 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
7623 | SEC_READONLY | SEC_LINKER_CREATED)
8029a119
NC
7624
7625/* Create a fake section for use by the ARM backend of the linker. */
7626
7627static bfd_boolean
7628arm_make_glue_section (bfd * abfd, const char * name)
7629{
7630 asection * sec;
7631
3d4d4302 7632 sec = bfd_get_linker_section (abfd, name);
8029a119
NC
7633 if (sec != NULL)
7634 /* Already made. */
7635 return TRUE;
7636
3d4d4302 7637 sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
8029a119
NC
7638
7639 if (sec == NULL
7640 || !bfd_set_section_alignment (abfd, sec, 2))
7641 return FALSE;
7642
7643 /* Set the gc mark to prevent the section from being removed by garbage
7644 collection, despite the fact that no relocs refer to this section. */
7645 sec->gc_mark = 1;
7646
7647 return TRUE;
7648}
7649
1db37fe6
YG
7650/* Set size of .plt entries. This function is called from the
7651 linker scripts in ld/emultempl/{armelf}.em. */
7652
7653void
7654bfd_elf32_arm_use_long_plt (void)
7655{
7656 elf32_arm_use_long_plt_entry = TRUE;
7657}
7658
8afb0e02
NC
7659/* Add the glue sections to ABFD. This function is called from the
7660 linker scripts in ld/emultempl/{armelf}.em. */
9b485d32 7661
b34976b6 7662bfd_boolean
57e8b36a
NC
7663bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
7664 struct bfd_link_info *info)
252b5132 7665{
a504d23a
LA
7666 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
7667 bfd_boolean dostm32l4xx = globals
7668 && globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE;
7669 bfd_boolean addglue;
7670
8afb0e02
NC
7671 /* If we are only performing a partial
7672 link do not bother adding the glue. */
0e1862bb 7673 if (bfd_link_relocatable (info))
b34976b6 7674 return TRUE;
252b5132 7675
a504d23a 7676 addglue = arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
8029a119
NC
7677 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
7678 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
7679 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
a504d23a
LA
7680
7681 if (!dostm32l4xx)
7682 return addglue;
7683
7684 return addglue
7685 && arm_make_glue_section (abfd, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
8afb0e02
NC
7686}
7687
daa4adae
TP
7688/* Mark output sections of veneers needing a dedicated one with SEC_KEEP. This
7689 ensures they are not marked for deletion by
7690 strip_excluded_output_sections () when veneers are going to be created
7691 later. Not doing so would trigger assert on empty section size in
7692 lang_size_sections_1 (). */
7693
7694void
7695bfd_elf32_arm_keep_private_stub_output_sections (struct bfd_link_info *info)
7696{
7697 enum elf32_arm_stub_type stub_type;
7698
7699 /* If we are only performing a partial
7700 link do not bother adding the glue. */
7701 if (bfd_link_relocatable (info))
7702 return;
7703
7704 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
7705 {
7706 asection *out_sec;
7707 const char *out_sec_name;
7708
7709 if (!arm_dedicated_stub_output_section_required (stub_type))
7710 continue;
7711
7712 out_sec_name = arm_dedicated_stub_output_section_name (stub_type);
7713 out_sec = bfd_get_section_by_name (info->output_bfd, out_sec_name);
7714 if (out_sec != NULL)
7715 out_sec->flags |= SEC_KEEP;
7716 }
7717}
7718
8afb0e02
NC
7719/* Select a BFD to be used to hold the sections used by the glue code.
7720 This function is called from the linker scripts in ld/emultempl/
8029a119 7721 {armelf/pe}.em. */
8afb0e02 7722
b34976b6 7723bfd_boolean
57e8b36a 7724bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
8afb0e02
NC
7725{
7726 struct elf32_arm_link_hash_table *globals;
7727
7728 /* If we are only performing a partial link
7729 do not bother getting a bfd to hold the glue. */
0e1862bb 7730 if (bfd_link_relocatable (info))
b34976b6 7731 return TRUE;
8afb0e02 7732
b7693d02
DJ
7733 /* Make sure we don't attach the glue sections to a dynamic object. */
7734 BFD_ASSERT (!(abfd->flags & DYNAMIC));
7735
8afb0e02 7736 globals = elf32_arm_hash_table (info);
8afb0e02
NC
7737 BFD_ASSERT (globals != NULL);
7738
7739 if (globals->bfd_of_glue_owner != NULL)
b34976b6 7740 return TRUE;
8afb0e02 7741
252b5132
RH
7742 /* Save the bfd for later use. */
7743 globals->bfd_of_glue_owner = abfd;
cedb70c5 7744
b34976b6 7745 return TRUE;
252b5132
RH
7746}
7747
906e58ca
NC
7748static void
7749check_use_blx (struct elf32_arm_link_hash_table *globals)
39b41c9c 7750{
2de70689
MGD
7751 int cpu_arch;
7752
b38cadfb 7753 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2de70689
MGD
7754 Tag_CPU_arch);
7755
7756 if (globals->fix_arm1176)
7757 {
7758 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
7759 globals->use_blx = 1;
7760 }
7761 else
7762 {
7763 if (cpu_arch > TAG_CPU_ARCH_V4T)
7764 globals->use_blx = 1;
7765 }
39b41c9c
PB
7766}
7767
b34976b6 7768bfd_boolean
57e8b36a 7769bfd_elf32_arm_process_before_allocation (bfd *abfd,
d504ffc8 7770 struct bfd_link_info *link_info)
252b5132
RH
7771{
7772 Elf_Internal_Shdr *symtab_hdr;
6cdc0ccc 7773 Elf_Internal_Rela *internal_relocs = NULL;
252b5132
RH
7774 Elf_Internal_Rela *irel, *irelend;
7775 bfd_byte *contents = NULL;
252b5132
RH
7776
7777 asection *sec;
7778 struct elf32_arm_link_hash_table *globals;
7779
7780 /* If we are only performing a partial link do not bother
7781 to construct any glue. */
0e1862bb 7782 if (bfd_link_relocatable (link_info))
b34976b6 7783 return TRUE;
252b5132 7784
39ce1a6a
NC
7785 /* Here we have a bfd that is to be included on the link. We have a
7786 hook to do reloc rummaging, before section sizes are nailed down. */
252b5132 7787 globals = elf32_arm_hash_table (link_info);
252b5132 7788 BFD_ASSERT (globals != NULL);
39ce1a6a
NC
7789
7790 check_use_blx (globals);
252b5132 7791
d504ffc8 7792 if (globals->byteswap_code && !bfd_big_endian (abfd))
e489d0ae 7793 {
90b6238f 7794 _bfd_error_handler (_("%pB: BE8 images only valid in big-endian mode"),
d003868e 7795 abfd);
e489d0ae
PB
7796 return FALSE;
7797 }
f21f3fe0 7798
39ce1a6a
NC
7799 /* PR 5398: If we have not decided to include any loadable sections in
7800 the output then we will not have a glue owner bfd. This is OK, it
7801 just means that there is nothing else for us to do here. */
7802 if (globals->bfd_of_glue_owner == NULL)
7803 return TRUE;
7804
252b5132
RH
7805 /* Rummage around all the relocs and map the glue vectors. */
7806 sec = abfd->sections;
7807
7808 if (sec == NULL)
b34976b6 7809 return TRUE;
252b5132
RH
7810
7811 for (; sec != NULL; sec = sec->next)
7812 {
7813 if (sec->reloc_count == 0)
7814 continue;
7815
2f475487
AM
7816 if ((sec->flags & SEC_EXCLUDE) != 0)
7817 continue;
7818
0ffa91dd 7819 symtab_hdr = & elf_symtab_hdr (abfd);
252b5132 7820
9b485d32 7821 /* Load the relocs. */
6cdc0ccc 7822 internal_relocs
906e58ca 7823 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
252b5132 7824
6cdc0ccc
AM
7825 if (internal_relocs == NULL)
7826 goto error_return;
252b5132 7827
6cdc0ccc
AM
7828 irelend = internal_relocs + sec->reloc_count;
7829 for (irel = internal_relocs; irel < irelend; irel++)
252b5132
RH
7830 {
7831 long r_type;
7832 unsigned long r_index;
252b5132
RH
7833
7834 struct elf_link_hash_entry *h;
7835
7836 r_type = ELF32_R_TYPE (irel->r_info);
7837 r_index = ELF32_R_SYM (irel->r_info);
7838
9b485d32 7839 /* These are the only relocation types we care about. */
ba96a88f 7840 if ( r_type != R_ARM_PC24
845b51d6 7841 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
252b5132
RH
7842 continue;
7843
7844 /* Get the section contents if we haven't done so already. */
7845 if (contents == NULL)
7846 {
7847 /* Get cached copy if it exists. */
7848 if (elf_section_data (sec)->this_hdr.contents != NULL)
7849 contents = elf_section_data (sec)->this_hdr.contents;
7850 else
7851 {
7852 /* Go get them off disk. */
57e8b36a 7853 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
252b5132
RH
7854 goto error_return;
7855 }
7856 }
7857
845b51d6
PB
7858 if (r_type == R_ARM_V4BX)
7859 {
7860 int reg;
7861
7862 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
7863 record_arm_bx_glue (link_info, reg);
7864 continue;
7865 }
7866
a7c10850 7867 /* If the relocation is not against a symbol it cannot concern us. */
252b5132
RH
7868 h = NULL;
7869
9b485d32 7870 /* We don't care about local symbols. */
252b5132
RH
7871 if (r_index < symtab_hdr->sh_info)
7872 continue;
7873
9b485d32 7874 /* This is an external symbol. */
252b5132
RH
7875 r_index -= symtab_hdr->sh_info;
7876 h = (struct elf_link_hash_entry *)
7877 elf_sym_hashes (abfd)[r_index];
7878
7879 /* If the relocation is against a static symbol it must be within
7880 the current section and so cannot be a cross ARM/Thumb relocation. */
7881 if (h == NULL)
7882 continue;
7883
d504ffc8
DJ
7884 /* If the call will go through a PLT entry then we do not need
7885 glue. */
362d30a1 7886 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
b7693d02
DJ
7887 continue;
7888
252b5132
RH
7889 switch (r_type)
7890 {
7891 case R_ARM_PC24:
7892 /* This one is a call from arm code. We need to look up
99059e56
RM
7893 the target of the call. If it is a thumb target, we
7894 insert glue. */
39d911fc
TP
7895 if (ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
7896 == ST_BRANCH_TO_THUMB)
252b5132
RH
7897 record_arm_to_thumb_glue (link_info, h);
7898 break;
7899
252b5132 7900 default:
c6596c5e 7901 abort ();
252b5132
RH
7902 }
7903 }
6cdc0ccc
AM
7904
7905 if (contents != NULL
7906 && elf_section_data (sec)->this_hdr.contents != contents)
7907 free (contents);
7908 contents = NULL;
7909
7910 if (internal_relocs != NULL
7911 && elf_section_data (sec)->relocs != internal_relocs)
7912 free (internal_relocs);
7913 internal_relocs = NULL;
252b5132
RH
7914 }
7915
b34976b6 7916 return TRUE;
9a5aca8c 7917
252b5132 7918error_return:
6cdc0ccc
AM
7919 if (contents != NULL
7920 && elf_section_data (sec)->this_hdr.contents != contents)
7921 free (contents);
7922 if (internal_relocs != NULL
7923 && elf_section_data (sec)->relocs != internal_relocs)
7924 free (internal_relocs);
9a5aca8c 7925
b34976b6 7926 return FALSE;
252b5132 7927}
7e392df6 7928#endif
252b5132 7929
eb043451 7930
c7b8f16e
JB
7931/* Initialise maps of ARM/Thumb/data for input BFDs. */
7932
7933void
7934bfd_elf32_arm_init_maps (bfd *abfd)
7935{
7936 Elf_Internal_Sym *isymbuf;
7937 Elf_Internal_Shdr *hdr;
7938 unsigned int i, localsyms;
7939
af1f4419
NC
7940 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
7941 if (! is_arm_elf (abfd))
7942 return;
7943
c7b8f16e
JB
7944 if ((abfd->flags & DYNAMIC) != 0)
7945 return;
7946
0ffa91dd 7947 hdr = & elf_symtab_hdr (abfd);
c7b8f16e
JB
7948 localsyms = hdr->sh_info;
7949
7950 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
7951 should contain the number of local symbols, which should come before any
7952 global symbols. Mapping symbols are always local. */
7953 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
7954 NULL);
7955
7956 /* No internal symbols read? Skip this BFD. */
7957 if (isymbuf == NULL)
7958 return;
7959
7960 for (i = 0; i < localsyms; i++)
7961 {
7962 Elf_Internal_Sym *isym = &isymbuf[i];
7963 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
7964 const char *name;
906e58ca 7965
c7b8f16e 7966 if (sec != NULL
99059e56
RM
7967 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
7968 {
7969 name = bfd_elf_string_from_elf_section (abfd,
7970 hdr->sh_link, isym->st_name);
906e58ca 7971
99059e56 7972 if (bfd_is_arm_special_symbol_name (name,
c7b8f16e 7973 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
99059e56
RM
7974 elf32_arm_section_map_add (sec, name[1], isym->st_value);
7975 }
c7b8f16e
JB
7976 }
7977}
7978
7979
48229727
JB
7980/* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
7981 say what they wanted. */
7982
7983void
7984bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
7985{
7986 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
7987 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
7988
4dfe6ac6
NC
7989 if (globals == NULL)
7990 return;
7991
48229727
JB
7992 if (globals->fix_cortex_a8 == -1)
7993 {
7994 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
7995 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
7996 && (out_attr[Tag_CPU_arch_profile].i == 'A'
7997 || out_attr[Tag_CPU_arch_profile].i == 0))
7998 globals->fix_cortex_a8 = 1;
7999 else
8000 globals->fix_cortex_a8 = 0;
8001 }
8002}
8003
8004
c7b8f16e
JB
8005void
8006bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
8007{
8008 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
104d59d1 8009 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
906e58ca 8010
4dfe6ac6
NC
8011 if (globals == NULL)
8012 return;
c7b8f16e
JB
8013 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
8014 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
8015 {
8016 switch (globals->vfp11_fix)
99059e56
RM
8017 {
8018 case BFD_ARM_VFP11_FIX_DEFAULT:
8019 case BFD_ARM_VFP11_FIX_NONE:
8020 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
8021 break;
8022
8023 default:
8024 /* Give a warning, but do as the user requests anyway. */
871b3ab2 8025 _bfd_error_handler (_("%pB: warning: selected VFP11 erratum "
99059e56
RM
8026 "workaround is not necessary for target architecture"), obfd);
8027 }
c7b8f16e
JB
8028 }
8029 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
8030 /* For earlier architectures, we might need the workaround, but do not
8031 enable it by default. If users is running with broken hardware, they
8032 must enable the erratum fix explicitly. */
8033 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
8034}
8035
a504d23a
LA
8036void
8037bfd_elf32_arm_set_stm32l4xx_fix (bfd *obfd, struct bfd_link_info *link_info)
8038{
8039 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8040 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
8041
8042 if (globals == NULL)
8043 return;
8044
8045 /* We assume only Cortex-M4 may require the fix. */
8046 if (out_attr[Tag_CPU_arch].i != TAG_CPU_ARCH_V7E_M
8047 || out_attr[Tag_CPU_arch_profile].i != 'M')
8048 {
8049 if (globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE)
8050 /* Give a warning, but do as the user requests anyway. */
4eca0228 8051 _bfd_error_handler
871b3ab2 8052 (_("%pB: warning: selected STM32L4XX erratum "
a504d23a
LA
8053 "workaround is not necessary for target architecture"), obfd);
8054 }
8055}
c7b8f16e 8056
906e58ca
NC
8057enum bfd_arm_vfp11_pipe
8058{
c7b8f16e
JB
8059 VFP11_FMAC,
8060 VFP11_LS,
8061 VFP11_DS,
8062 VFP11_BAD
8063};
8064
8065/* Return a VFP register number. This is encoded as RX:X for single-precision
8066 registers, or X:RX for double-precision registers, where RX is the group of
8067 four bits in the instruction encoding and X is the single extension bit.
8068 RX and X fields are specified using their lowest (starting) bit. The return
8069 value is:
8070
8071 0...31: single-precision registers s0...s31
8072 32...63: double-precision registers d0...d31.
906e58ca 8073
c7b8f16e
JB
8074 Although X should be zero for VFP11 (encoding d0...d15 only), we might
8075 encounter VFP3 instructions, so we allow the full range for DP registers. */
906e58ca 8076
c7b8f16e
JB
8077static unsigned int
8078bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
99059e56 8079 unsigned int x)
c7b8f16e
JB
8080{
8081 if (is_double)
8082 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
8083 else
8084 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
8085}
8086
8087/* Set bits in *WMASK according to a register number REG as encoded by
8088 bfd_arm_vfp11_regno(). Ignore d16-d31. */
8089
8090static void
8091bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
8092{
8093 if (reg < 32)
8094 *wmask |= 1 << reg;
8095 else if (reg < 48)
8096 *wmask |= 3 << ((reg - 32) * 2);
8097}
8098
8099/* Return TRUE if WMASK overwrites anything in REGS. */
8100
8101static bfd_boolean
8102bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
8103{
8104 int i;
906e58ca 8105
c7b8f16e
JB
8106 for (i = 0; i < numregs; i++)
8107 {
8108 unsigned int reg = regs[i];
8109
8110 if (reg < 32 && (wmask & (1 << reg)) != 0)
99059e56 8111 return TRUE;
906e58ca 8112
c7b8f16e
JB
8113 reg -= 32;
8114
8115 if (reg >= 16)
99059e56 8116 continue;
906e58ca 8117
c7b8f16e 8118 if ((wmask & (3 << (reg * 2))) != 0)
99059e56 8119 return TRUE;
c7b8f16e 8120 }
906e58ca 8121
c7b8f16e
JB
8122 return FALSE;
8123}
8124
8125/* In this function, we're interested in two things: finding input registers
8126 for VFP data-processing instructions, and finding the set of registers which
8127 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
8128 hold the written set, so FLDM etc. are easy to deal with (we're only
8129 interested in 32 SP registers or 16 dp registers, due to the VFP version
8130 implemented by the chip in question). DP registers are marked by setting
8131 both SP registers in the write mask). */
8132
8133static enum bfd_arm_vfp11_pipe
8134bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
99059e56 8135 int *numregs)
c7b8f16e 8136{
91d6fa6a 8137 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
c7b8f16e
JB
8138 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
8139
8140 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
8141 {
8142 unsigned int pqrs;
8143 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
8144 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
8145
8146 pqrs = ((insn & 0x00800000) >> 20)
99059e56
RM
8147 | ((insn & 0x00300000) >> 19)
8148 | ((insn & 0x00000040) >> 6);
c7b8f16e
JB
8149
8150 switch (pqrs)
99059e56
RM
8151 {
8152 case 0: /* fmac[sd]. */
8153 case 1: /* fnmac[sd]. */
8154 case 2: /* fmsc[sd]. */
8155 case 3: /* fnmsc[sd]. */
8156 vpipe = VFP11_FMAC;
8157 bfd_arm_vfp11_write_mask (destmask, fd);
8158 regs[0] = fd;
8159 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
8160 regs[2] = fm;
8161 *numregs = 3;
8162 break;
8163
8164 case 4: /* fmul[sd]. */
8165 case 5: /* fnmul[sd]. */
8166 case 6: /* fadd[sd]. */
8167 case 7: /* fsub[sd]. */
8168 vpipe = VFP11_FMAC;
8169 goto vfp_binop;
8170
8171 case 8: /* fdiv[sd]. */
8172 vpipe = VFP11_DS;
8173 vfp_binop:
8174 bfd_arm_vfp11_write_mask (destmask, fd);
8175 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
8176 regs[1] = fm;
8177 *numregs = 2;
8178 break;
8179
8180 case 15: /* extended opcode. */
8181 {
8182 unsigned int extn = ((insn >> 15) & 0x1e)
8183 | ((insn >> 7) & 1);
8184
8185 switch (extn)
8186 {
8187 case 0: /* fcpy[sd]. */
8188 case 1: /* fabs[sd]. */
8189 case 2: /* fneg[sd]. */
8190 case 8: /* fcmp[sd]. */
8191 case 9: /* fcmpe[sd]. */
8192 case 10: /* fcmpz[sd]. */
8193 case 11: /* fcmpez[sd]. */
8194 case 16: /* fuito[sd]. */
8195 case 17: /* fsito[sd]. */
8196 case 24: /* ftoui[sd]. */
8197 case 25: /* ftouiz[sd]. */
8198 case 26: /* ftosi[sd]. */
8199 case 27: /* ftosiz[sd]. */
8200 /* These instructions will not bounce due to underflow. */
8201 *numregs = 0;
8202 vpipe = VFP11_FMAC;
8203 break;
8204
8205 case 3: /* fsqrt[sd]. */
8206 /* fsqrt cannot underflow, but it can (perhaps) overwrite
8207 registers to cause the erratum in previous instructions. */
8208 bfd_arm_vfp11_write_mask (destmask, fd);
8209 vpipe = VFP11_DS;
8210 break;
8211
8212 case 15: /* fcvt{ds,sd}. */
8213 {
8214 int rnum = 0;
8215
8216 bfd_arm_vfp11_write_mask (destmask, fd);
c7b8f16e
JB
8217
8218 /* Only FCVTSD can underflow. */
99059e56
RM
8219 if ((insn & 0x100) != 0)
8220 regs[rnum++] = fm;
c7b8f16e 8221
99059e56 8222 *numregs = rnum;
c7b8f16e 8223
99059e56
RM
8224 vpipe = VFP11_FMAC;
8225 }
8226 break;
c7b8f16e 8227
99059e56
RM
8228 default:
8229 return VFP11_BAD;
8230 }
8231 }
8232 break;
c7b8f16e 8233
99059e56
RM
8234 default:
8235 return VFP11_BAD;
8236 }
c7b8f16e
JB
8237 }
8238 /* Two-register transfer. */
8239 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
8240 {
8241 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
906e58ca 8242
c7b8f16e
JB
8243 if ((insn & 0x100000) == 0)
8244 {
99059e56
RM
8245 if (is_double)
8246 bfd_arm_vfp11_write_mask (destmask, fm);
8247 else
8248 {
8249 bfd_arm_vfp11_write_mask (destmask, fm);
8250 bfd_arm_vfp11_write_mask (destmask, fm + 1);
8251 }
c7b8f16e
JB
8252 }
8253
91d6fa6a 8254 vpipe = VFP11_LS;
c7b8f16e
JB
8255 }
8256 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
8257 {
8258 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
8259 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
906e58ca 8260
c7b8f16e 8261 switch (puw)
99059e56
RM
8262 {
8263 case 0: /* Two-reg transfer. We should catch these above. */
8264 abort ();
906e58ca 8265
99059e56
RM
8266 case 2: /* fldm[sdx]. */
8267 case 3:
8268 case 5:
8269 {
8270 unsigned int i, offset = insn & 0xff;
c7b8f16e 8271
99059e56
RM
8272 if (is_double)
8273 offset >>= 1;
c7b8f16e 8274
99059e56
RM
8275 for (i = fd; i < fd + offset; i++)
8276 bfd_arm_vfp11_write_mask (destmask, i);
8277 }
8278 break;
906e58ca 8279
99059e56
RM
8280 case 4: /* fld[sd]. */
8281 case 6:
8282 bfd_arm_vfp11_write_mask (destmask, fd);
8283 break;
906e58ca 8284
99059e56
RM
8285 default:
8286 return VFP11_BAD;
8287 }
c7b8f16e 8288
91d6fa6a 8289 vpipe = VFP11_LS;
c7b8f16e
JB
8290 }
8291 /* Single-register transfer. Note L==0. */
8292 else if ((insn & 0x0f100e10) == 0x0e000a10)
8293 {
8294 unsigned int opcode = (insn >> 21) & 7;
8295 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
8296
8297 switch (opcode)
99059e56
RM
8298 {
8299 case 0: /* fmsr/fmdlr. */
8300 case 1: /* fmdhr. */
8301 /* Mark fmdhr and fmdlr as writing to the whole of the DP
8302 destination register. I don't know if this is exactly right,
8303 but it is the conservative choice. */
8304 bfd_arm_vfp11_write_mask (destmask, fn);
8305 break;
8306
8307 case 7: /* fmxr. */
8308 break;
8309 }
c7b8f16e 8310
91d6fa6a 8311 vpipe = VFP11_LS;
c7b8f16e
JB
8312 }
8313
91d6fa6a 8314 return vpipe;
c7b8f16e
JB
8315}
8316
8317
8318static int elf32_arm_compare_mapping (const void * a, const void * b);
8319
8320
8321/* Look for potentially-troublesome code sequences which might trigger the
8322 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
8323 (available from ARM) for details of the erratum. A short version is
8324 described in ld.texinfo. */
8325
8326bfd_boolean
8327bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
8328{
8329 asection *sec;
8330 bfd_byte *contents = NULL;
8331 int state = 0;
8332 int regs[3], numregs = 0;
8333 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8334 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
906e58ca 8335
4dfe6ac6
NC
8336 if (globals == NULL)
8337 return FALSE;
8338
c7b8f16e
JB
8339 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
8340 The states transition as follows:
906e58ca 8341
c7b8f16e 8342 0 -> 1 (vector) or 0 -> 2 (scalar)
99059e56
RM
8343 A VFP FMAC-pipeline instruction has been seen. Fill
8344 regs[0]..regs[numregs-1] with its input operands. Remember this
8345 instruction in 'first_fmac'.
c7b8f16e
JB
8346
8347 1 -> 2
99059e56
RM
8348 Any instruction, except for a VFP instruction which overwrites
8349 regs[*].
906e58ca 8350
c7b8f16e
JB
8351 1 -> 3 [ -> 0 ] or
8352 2 -> 3 [ -> 0 ]
99059e56
RM
8353 A VFP instruction has been seen which overwrites any of regs[*].
8354 We must make a veneer! Reset state to 0 before examining next
8355 instruction.
906e58ca 8356
c7b8f16e 8357 2 -> 0
99059e56
RM
8358 If we fail to match anything in state 2, reset to state 0 and reset
8359 the instruction pointer to the instruction after 'first_fmac'.
c7b8f16e
JB
8360
8361 If the VFP11 vector mode is in use, there must be at least two unrelated
8362 instructions between anti-dependent VFP11 instructions to properly avoid
906e58ca 8363 triggering the erratum, hence the use of the extra state 1. */
c7b8f16e
JB
8364
8365 /* If we are only performing a partial link do not bother
8366 to construct any glue. */
0e1862bb 8367 if (bfd_link_relocatable (link_info))
c7b8f16e
JB
8368 return TRUE;
8369
0ffa91dd
NC
8370 /* Skip if this bfd does not correspond to an ELF image. */
8371 if (! is_arm_elf (abfd))
8372 return TRUE;
906e58ca 8373
c7b8f16e
JB
8374 /* We should have chosen a fix type by the time we get here. */
8375 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
8376
8377 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
8378 return TRUE;
2e6030b9 8379
33a7ffc2
JM
8380 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8381 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8382 return TRUE;
8383
c7b8f16e
JB
8384 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8385 {
8386 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
8387 struct _arm_elf_section_data *sec_data;
8388
8389 /* If we don't have executable progbits, we're not interested in this
99059e56 8390 section. Also skip if section is to be excluded. */
c7b8f16e 8391 if (elf_section_type (sec) != SHT_PROGBITS
99059e56
RM
8392 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8393 || (sec->flags & SEC_EXCLUDE) != 0
dbaa2011 8394 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
33a7ffc2 8395 || sec->output_section == bfd_abs_section_ptr
99059e56
RM
8396 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
8397 continue;
c7b8f16e
JB
8398
8399 sec_data = elf32_arm_section_data (sec);
906e58ca 8400
c7b8f16e 8401 if (sec_data->mapcount == 0)
99059e56 8402 continue;
906e58ca 8403
c7b8f16e
JB
8404 if (elf_section_data (sec)->this_hdr.contents != NULL)
8405 contents = elf_section_data (sec)->this_hdr.contents;
8406 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8407 goto error_return;
8408
8409 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8410 elf32_arm_compare_mapping);
8411
8412 for (span = 0; span < sec_data->mapcount; span++)
99059e56
RM
8413 {
8414 unsigned int span_start = sec_data->map[span].vma;
8415 unsigned int span_end = (span == sec_data->mapcount - 1)
c7b8f16e 8416 ? sec->size : sec_data->map[span + 1].vma;
99059e56
RM
8417 char span_type = sec_data->map[span].type;
8418
8419 /* FIXME: Only ARM mode is supported at present. We may need to
8420 support Thumb-2 mode also at some point. */
8421 if (span_type != 'a')
8422 continue;
8423
8424 for (i = span_start; i < span_end;)
8425 {
8426 unsigned int next_i = i + 4;
8427 unsigned int insn = bfd_big_endian (abfd)
8428 ? (contents[i] << 24)
8429 | (contents[i + 1] << 16)
8430 | (contents[i + 2] << 8)
8431 | contents[i + 3]
8432 : (contents[i + 3] << 24)
8433 | (contents[i + 2] << 16)
8434 | (contents[i + 1] << 8)
8435 | contents[i];
8436 unsigned int writemask = 0;
8437 enum bfd_arm_vfp11_pipe vpipe;
8438
8439 switch (state)
8440 {
8441 case 0:
8442 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
8443 &numregs);
8444 /* I'm assuming the VFP11 erratum can trigger with denorm
8445 operands on either the FMAC or the DS pipeline. This might
8446 lead to slightly overenthusiastic veneer insertion. */
8447 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
8448 {
8449 state = use_vector ? 1 : 2;
8450 first_fmac = i;
8451 veneer_of_insn = insn;
8452 }
8453 break;
8454
8455 case 1:
8456 {
8457 int other_regs[3], other_numregs;
8458 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
c7b8f16e 8459 other_regs,
99059e56
RM
8460 &other_numregs);
8461 if (vpipe != VFP11_BAD
8462 && bfd_arm_vfp11_antidependency (writemask, regs,
c7b8f16e 8463 numregs))
99059e56
RM
8464 state = 3;
8465 else
8466 state = 2;
8467 }
8468 break;
8469
8470 case 2:
8471 {
8472 int other_regs[3], other_numregs;
8473 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
c7b8f16e 8474 other_regs,
99059e56
RM
8475 &other_numregs);
8476 if (vpipe != VFP11_BAD
8477 && bfd_arm_vfp11_antidependency (writemask, regs,
c7b8f16e 8478 numregs))
99059e56
RM
8479 state = 3;
8480 else
8481 {
8482 state = 0;
8483 next_i = first_fmac + 4;
8484 }
8485 }
8486 break;
8487
8488 case 3:
8489 abort (); /* Should be unreachable. */
8490 }
8491
8492 if (state == 3)
8493 {
8494 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
8495 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
8496
8497 elf32_arm_section_data (sec)->erratumcount += 1;
8498
8499 newerr->u.b.vfp_insn = veneer_of_insn;
8500
8501 switch (span_type)
8502 {
8503 case 'a':
8504 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
8505 break;
8506
8507 default:
8508 abort ();
8509 }
8510
8511 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
c7b8f16e
JB
8512 first_fmac);
8513
99059e56 8514 newerr->vma = -1;
c7b8f16e 8515
99059e56
RM
8516 newerr->next = sec_data->erratumlist;
8517 sec_data->erratumlist = newerr;
c7b8f16e 8518
99059e56
RM
8519 state = 0;
8520 }
c7b8f16e 8521
99059e56
RM
8522 i = next_i;
8523 }
8524 }
906e58ca 8525
c7b8f16e 8526 if (contents != NULL
99059e56
RM
8527 && elf_section_data (sec)->this_hdr.contents != contents)
8528 free (contents);
c7b8f16e
JB
8529 contents = NULL;
8530 }
8531
8532 return TRUE;
8533
8534error_return:
8535 if (contents != NULL
8536 && elf_section_data (sec)->this_hdr.contents != contents)
8537 free (contents);
906e58ca 8538
c7b8f16e
JB
8539 return FALSE;
8540}
8541
8542/* Find virtual-memory addresses for VFP11 erratum veneers and return locations
8543 after sections have been laid out, using specially-named symbols. */
8544
8545void
8546bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
8547 struct bfd_link_info *link_info)
8548{
8549 asection *sec;
8550 struct elf32_arm_link_hash_table *globals;
8551 char *tmp_name;
906e58ca 8552
0e1862bb 8553 if (bfd_link_relocatable (link_info))
c7b8f16e 8554 return;
2e6030b9
MS
8555
8556 /* Skip if this bfd does not correspond to an ELF image. */
0ffa91dd 8557 if (! is_arm_elf (abfd))
2e6030b9
MS
8558 return;
8559
c7b8f16e 8560 globals = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
8561 if (globals == NULL)
8562 return;
906e58ca 8563
21d799b5 8564 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
99059e56 8565 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
c7b8f16e
JB
8566
8567 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8568 {
8569 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8570 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
906e58ca 8571
c7b8f16e 8572 for (; errnode != NULL; errnode = errnode->next)
99059e56
RM
8573 {
8574 struct elf_link_hash_entry *myh;
8575 bfd_vma vma;
8576
8577 switch (errnode->type)
8578 {
8579 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
8580 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
8581 /* Find veneer symbol. */
8582 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
c7b8f16e
JB
8583 errnode->u.b.veneer->u.v.id);
8584
99059e56
RM
8585 myh = elf_link_hash_lookup
8586 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
c7b8f16e 8587
a504d23a 8588 if (myh == NULL)
90b6238f
AM
8589 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8590 abfd, "VFP11", tmp_name);
a504d23a
LA
8591
8592 vma = myh->root.u.def.section->output_section->vma
8593 + myh->root.u.def.section->output_offset
8594 + myh->root.u.def.value;
8595
8596 errnode->u.b.veneer->vma = vma;
8597 break;
8598
8599 case VFP11_ERRATUM_ARM_VENEER:
8600 case VFP11_ERRATUM_THUMB_VENEER:
8601 /* Find return location. */
8602 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
8603 errnode->u.v.id);
8604
8605 myh = elf_link_hash_lookup
8606 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8607
8608 if (myh == NULL)
90b6238f
AM
8609 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8610 abfd, "VFP11", tmp_name);
a504d23a
LA
8611
8612 vma = myh->root.u.def.section->output_section->vma
8613 + myh->root.u.def.section->output_offset
8614 + myh->root.u.def.value;
8615
8616 errnode->u.v.branch->vma = vma;
8617 break;
8618
8619 default:
8620 abort ();
8621 }
8622 }
8623 }
8624
8625 free (tmp_name);
8626}
8627
8628/* Find virtual-memory addresses for STM32L4XX erratum veneers and
8629 return locations after sections have been laid out, using
8630 specially-named symbols. */
8631
8632void
8633bfd_elf32_arm_stm32l4xx_fix_veneer_locations (bfd *abfd,
8634 struct bfd_link_info *link_info)
8635{
8636 asection *sec;
8637 struct elf32_arm_link_hash_table *globals;
8638 char *tmp_name;
8639
8640 if (bfd_link_relocatable (link_info))
8641 return;
8642
8643 /* Skip if this bfd does not correspond to an ELF image. */
8644 if (! is_arm_elf (abfd))
8645 return;
8646
8647 globals = elf32_arm_hash_table (link_info);
8648 if (globals == NULL)
8649 return;
8650
8651 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8652 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
8653
8654 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8655 {
8656 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8657 elf32_stm32l4xx_erratum_list *errnode = sec_data->stm32l4xx_erratumlist;
8658
8659 for (; errnode != NULL; errnode = errnode->next)
8660 {
8661 struct elf_link_hash_entry *myh;
8662 bfd_vma vma;
8663
8664 switch (errnode->type)
8665 {
8666 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
8667 /* Find veneer symbol. */
8668 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
8669 errnode->u.b.veneer->u.v.id);
8670
8671 myh = elf_link_hash_lookup
8672 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8673
8674 if (myh == NULL)
90b6238f
AM
8675 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8676 abfd, "STM32L4XX", tmp_name);
a504d23a
LA
8677
8678 vma = myh->root.u.def.section->output_section->vma
8679 + myh->root.u.def.section->output_offset
8680 + myh->root.u.def.value;
8681
8682 errnode->u.b.veneer->vma = vma;
8683 break;
8684
8685 case STM32L4XX_ERRATUM_VENEER:
8686 /* Find return location. */
8687 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
8688 errnode->u.v.id);
8689
8690 myh = elf_link_hash_lookup
8691 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8692
8693 if (myh == NULL)
90b6238f
AM
8694 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8695 abfd, "STM32L4XX", tmp_name);
a504d23a
LA
8696
8697 vma = myh->root.u.def.section->output_section->vma
8698 + myh->root.u.def.section->output_offset
8699 + myh->root.u.def.value;
8700
8701 errnode->u.v.branch->vma = vma;
8702 break;
8703
8704 default:
8705 abort ();
8706 }
8707 }
8708 }
8709
8710 free (tmp_name);
8711}
8712
8713static inline bfd_boolean
8714is_thumb2_ldmia (const insn32 insn)
8715{
8716 /* Encoding T2: LDM<c>.W <Rn>{!},<registers>
8717 1110 - 1000 - 10W1 - rrrr - PM (0) l - llll - llll - llll. */
8718 return (insn & 0xffd02000) == 0xe8900000;
8719}
8720
8721static inline bfd_boolean
8722is_thumb2_ldmdb (const insn32 insn)
8723{
8724 /* Encoding T1: LDMDB<c> <Rn>{!},<registers>
8725 1110 - 1001 - 00W1 - rrrr - PM (0) l - llll - llll - llll. */
8726 return (insn & 0xffd02000) == 0xe9100000;
8727}
8728
8729static inline bfd_boolean
8730is_thumb2_vldm (const insn32 insn)
8731{
8732 /* A6.5 Extension register load or store instruction
8733 A7.7.229
9239bbd3
CM
8734 We look for SP 32-bit and DP 64-bit registers.
8735 Encoding T1 VLDM{mode}<c> <Rn>{!}, <list>
8736 <list> is consecutive 64-bit registers
8737 1110 - 110P - UDW1 - rrrr - vvvv - 1011 - iiii - iiii
a504d23a
LA
8738 Encoding T2 VLDM{mode}<c> <Rn>{!}, <list>
8739 <list> is consecutive 32-bit registers
8740 1110 - 110P - UDW1 - rrrr - vvvv - 1010 - iiii - iiii
8741 if P==0 && U==1 && W==1 && Rn=1101 VPOP
8742 if PUW=010 || PUW=011 || PUW=101 VLDM. */
8743 return
9239bbd3
CM
8744 (((insn & 0xfe100f00) == 0xec100b00) ||
8745 ((insn & 0xfe100f00) == 0xec100a00))
a504d23a
LA
8746 && /* (IA without !). */
8747 (((((insn << 7) >> 28) & 0xd) == 0x4)
9239bbd3 8748 /* (IA with !), includes VPOP (when reg number is SP). */
a504d23a
LA
8749 || ((((insn << 7) >> 28) & 0xd) == 0x5)
8750 /* (DB with !). */
8751 || ((((insn << 7) >> 28) & 0xd) == 0x9));
8752}
8753
8754/* STM STM32L4XX erratum : This function assumes that it receives an LDM or
8755 VLDM opcode and:
8756 - computes the number and the mode of memory accesses
8757 - decides if the replacement should be done:
8758 . replaces only if > 8-word accesses
8759 . or (testing purposes only) replaces all accesses. */
8760
8761static bfd_boolean
8762stm32l4xx_need_create_replacing_stub (const insn32 insn,
8763 bfd_arm_stm32l4xx_fix stm32l4xx_fix)
8764{
9239bbd3 8765 int nb_words = 0;
a504d23a
LA
8766
8767 /* The field encoding the register list is the same for both LDMIA
8768 and LDMDB encodings. */
8769 if (is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn))
b25e998d 8770 nb_words = elf32_arm_popcount (insn & 0x0000ffff);
a504d23a 8771 else if (is_thumb2_vldm (insn))
9239bbd3 8772 nb_words = (insn & 0xff);
a504d23a
LA
8773
8774 /* DEFAULT mode accounts for the real bug condition situation,
8775 ALL mode inserts stubs for each LDM/VLDM instruction (testing). */
8776 return
9239bbd3 8777 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_DEFAULT) ? nb_words > 8 :
a504d23a
LA
8778 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_ALL) ? TRUE : FALSE;
8779}
8780
8781/* Look for potentially-troublesome code sequences which might trigger
8782 the STM STM32L4XX erratum. */
8783
8784bfd_boolean
8785bfd_elf32_arm_stm32l4xx_erratum_scan (bfd *abfd,
8786 struct bfd_link_info *link_info)
8787{
8788 asection *sec;
8789 bfd_byte *contents = NULL;
8790 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8791
8792 if (globals == NULL)
8793 return FALSE;
8794
8795 /* If we are only performing a partial link do not bother
8796 to construct any glue. */
8797 if (bfd_link_relocatable (link_info))
8798 return TRUE;
8799
8800 /* Skip if this bfd does not correspond to an ELF image. */
8801 if (! is_arm_elf (abfd))
8802 return TRUE;
8803
8804 if (globals->stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_NONE)
8805 return TRUE;
8806
8807 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8808 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8809 return TRUE;
8810
8811 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8812 {
8813 unsigned int i, span;
8814 struct _arm_elf_section_data *sec_data;
8815
8816 /* If we don't have executable progbits, we're not interested in this
8817 section. Also skip if section is to be excluded. */
8818 if (elf_section_type (sec) != SHT_PROGBITS
8819 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8820 || (sec->flags & SEC_EXCLUDE) != 0
8821 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8822 || sec->output_section == bfd_abs_section_ptr
8823 || strcmp (sec->name, STM32L4XX_ERRATUM_VENEER_SECTION_NAME) == 0)
8824 continue;
8825
8826 sec_data = elf32_arm_section_data (sec);
c7b8f16e 8827
a504d23a
LA
8828 if (sec_data->mapcount == 0)
8829 continue;
c7b8f16e 8830
a504d23a
LA
8831 if (elf_section_data (sec)->this_hdr.contents != NULL)
8832 contents = elf_section_data (sec)->this_hdr.contents;
8833 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8834 goto error_return;
c7b8f16e 8835
a504d23a
LA
8836 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8837 elf32_arm_compare_mapping);
c7b8f16e 8838
a504d23a
LA
8839 for (span = 0; span < sec_data->mapcount; span++)
8840 {
8841 unsigned int span_start = sec_data->map[span].vma;
8842 unsigned int span_end = (span == sec_data->mapcount - 1)
8843 ? sec->size : sec_data->map[span + 1].vma;
8844 char span_type = sec_data->map[span].type;
8845 int itblock_current_pos = 0;
c7b8f16e 8846
a504d23a
LA
8847 /* Only Thumb2 mode need be supported with this CM4 specific
8848 code, we should not encounter any arm mode eg span_type
8849 != 'a'. */
8850 if (span_type != 't')
8851 continue;
c7b8f16e 8852
a504d23a
LA
8853 for (i = span_start; i < span_end;)
8854 {
8855 unsigned int insn = bfd_get_16 (abfd, &contents[i]);
8856 bfd_boolean insn_32bit = FALSE;
8857 bfd_boolean is_ldm = FALSE;
8858 bfd_boolean is_vldm = FALSE;
8859 bfd_boolean is_not_last_in_it_block = FALSE;
8860
8861 /* The first 16-bits of all 32-bit thumb2 instructions start
8862 with opcode[15..13]=0b111 and the encoded op1 can be anything
8863 except opcode[12..11]!=0b00.
8864 See 32-bit Thumb instruction encoding. */
8865 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
8866 insn_32bit = TRUE;
c7b8f16e 8867
a504d23a
LA
8868 /* Compute the predicate that tells if the instruction
8869 is concerned by the IT block
8870 - Creates an error if there is a ldm that is not
8871 last in the IT block thus cannot be replaced
8872 - Otherwise we can create a branch at the end of the
8873 IT block, it will be controlled naturally by IT
8874 with the proper pseudo-predicate
8875 - So the only interesting predicate is the one that
8876 tells that we are not on the last item of an IT
8877 block. */
8878 if (itblock_current_pos != 0)
8879 is_not_last_in_it_block = !!--itblock_current_pos;
906e58ca 8880
a504d23a
LA
8881 if (insn_32bit)
8882 {
8883 /* Load the rest of the insn (in manual-friendly order). */
8884 insn = (insn << 16) | bfd_get_16 (abfd, &contents[i + 2]);
8885 is_ldm = is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn);
8886 is_vldm = is_thumb2_vldm (insn);
8887
8888 /* Veneers are created for (v)ldm depending on
8889 option flags and memory accesses conditions; but
8890 if the instruction is not the last instruction of
8891 an IT block, we cannot create a jump there, so we
8892 bail out. */
5025eb7c
AO
8893 if ((is_ldm || is_vldm)
8894 && stm32l4xx_need_create_replacing_stub
a504d23a
LA
8895 (insn, globals->stm32l4xx_fix))
8896 {
8897 if (is_not_last_in_it_block)
8898 {
4eca0228 8899 _bfd_error_handler
695344c0 8900 /* xgettext:c-format */
871b3ab2 8901 (_("%pB(%pA+%#x): error: multiple load detected"
90b6238f
AM
8902 " in non-last IT block instruction:"
8903 " STM32L4XX veneer cannot be generated; "
8904 "use gcc option -mrestrict-it to generate"
8905 " only one instruction per IT block"),
d42c267e 8906 abfd, sec, i);
a504d23a
LA
8907 }
8908 else
8909 {
8910 elf32_stm32l4xx_erratum_list *newerr =
8911 (elf32_stm32l4xx_erratum_list *)
8912 bfd_zmalloc
8913 (sizeof (elf32_stm32l4xx_erratum_list));
8914
8915 elf32_arm_section_data (sec)
8916 ->stm32l4xx_erratumcount += 1;
8917 newerr->u.b.insn = insn;
8918 /* We create only thumb branches. */
8919 newerr->type =
8920 STM32L4XX_ERRATUM_BRANCH_TO_VENEER;
8921 record_stm32l4xx_erratum_veneer
8922 (link_info, newerr, abfd, sec,
8923 i,
8924 is_ldm ?
8925 STM32L4XX_ERRATUM_LDM_VENEER_SIZE:
8926 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
8927 newerr->vma = -1;
8928 newerr->next = sec_data->stm32l4xx_erratumlist;
8929 sec_data->stm32l4xx_erratumlist = newerr;
8930 }
8931 }
8932 }
8933 else
8934 {
8935 /* A7.7.37 IT p208
8936 IT blocks are only encoded in T1
8937 Encoding T1: IT{x{y{z}}} <firstcond>
8938 1 0 1 1 - 1 1 1 1 - firstcond - mask
8939 if mask = '0000' then see 'related encodings'
8940 We don't deal with UNPREDICTABLE, just ignore these.
8941 There can be no nested IT blocks so an IT block
8942 is naturally a new one for which it is worth
8943 computing its size. */
5025eb7c
AO
8944 bfd_boolean is_newitblock = ((insn & 0xff00) == 0xbf00)
8945 && ((insn & 0x000f) != 0x0000);
a504d23a
LA
8946 /* If we have a new IT block we compute its size. */
8947 if (is_newitblock)
8948 {
8949 /* Compute the number of instructions controlled
8950 by the IT block, it will be used to decide
8951 whether we are inside an IT block or not. */
8952 unsigned int mask = insn & 0x000f;
8953 itblock_current_pos = 4 - ctz (mask);
8954 }
8955 }
8956
8957 i += insn_32bit ? 4 : 2;
99059e56
RM
8958 }
8959 }
a504d23a
LA
8960
8961 if (contents != NULL
8962 && elf_section_data (sec)->this_hdr.contents != contents)
8963 free (contents);
8964 contents = NULL;
c7b8f16e 8965 }
906e58ca 8966
a504d23a
LA
8967 return TRUE;
8968
8969error_return:
8970 if (contents != NULL
8971 && elf_section_data (sec)->this_hdr.contents != contents)
8972 free (contents);
c7b8f16e 8973
a504d23a
LA
8974 return FALSE;
8975}
c7b8f16e 8976
eb043451
PB
8977/* Set target relocation values needed during linking. */
8978
8979void
68c39892 8980bfd_elf32_arm_set_target_params (struct bfd *output_bfd,
bf21ed78 8981 struct bfd_link_info *link_info,
68c39892 8982 struct elf32_arm_params *params)
eb043451
PB
8983{
8984 struct elf32_arm_link_hash_table *globals;
8985
8986 globals = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
8987 if (globals == NULL)
8988 return;
eb043451 8989
68c39892 8990 globals->target1_is_rel = params->target1_is_rel;
29e9b073
CL
8991 if (globals->fdpic_p)
8992 globals->target2_reloc = R_ARM_GOT32;
8993 else if (strcmp (params->target2_type, "rel") == 0)
eb043451 8994 globals->target2_reloc = R_ARM_REL32;
68c39892 8995 else if (strcmp (params->target2_type, "abs") == 0)
eeac373a 8996 globals->target2_reloc = R_ARM_ABS32;
68c39892 8997 else if (strcmp (params->target2_type, "got-rel") == 0)
eb043451
PB
8998 globals->target2_reloc = R_ARM_GOT_PREL;
8999 else
9000 {
90b6238f 9001 _bfd_error_handler (_("invalid TARGET2 relocation type '%s'"),
68c39892 9002 params->target2_type);
eb043451 9003 }
68c39892
TP
9004 globals->fix_v4bx = params->fix_v4bx;
9005 globals->use_blx |= params->use_blx;
9006 globals->vfp11_fix = params->vfp11_denorm_fix;
9007 globals->stm32l4xx_fix = params->stm32l4xx_fix;
e8b09b87
CL
9008 if (globals->fdpic_p)
9009 globals->pic_veneer = 1;
9010 else
9011 globals->pic_veneer = params->pic_veneer;
68c39892
TP
9012 globals->fix_cortex_a8 = params->fix_cortex_a8;
9013 globals->fix_arm1176 = params->fix_arm1176;
9014 globals->cmse_implib = params->cmse_implib;
9015 globals->in_implib_bfd = params->in_implib_bfd;
bf21ed78 9016
0ffa91dd 9017 BFD_ASSERT (is_arm_elf (output_bfd));
68c39892
TP
9018 elf_arm_tdata (output_bfd)->no_enum_size_warning
9019 = params->no_enum_size_warning;
9020 elf_arm_tdata (output_bfd)->no_wchar_size_warning
9021 = params->no_wchar_size_warning;
eb043451 9022}
eb043451 9023
12a0a0fd 9024/* Replace the target offset of a Thumb bl or b.w instruction. */
252b5132 9025
12a0a0fd
PB
9026static void
9027insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
9028{
9029 bfd_vma upper;
9030 bfd_vma lower;
9031 int reloc_sign;
9032
9033 BFD_ASSERT ((offset & 1) == 0);
9034
9035 upper = bfd_get_16 (abfd, insn);
9036 lower = bfd_get_16 (abfd, insn + 2);
9037 reloc_sign = (offset < 0) ? 1 : 0;
9038 upper = (upper & ~(bfd_vma) 0x7ff)
9039 | ((offset >> 12) & 0x3ff)
9040 | (reloc_sign << 10);
906e58ca 9041 lower = (lower & ~(bfd_vma) 0x2fff)
12a0a0fd
PB
9042 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
9043 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
9044 | ((offset >> 1) & 0x7ff);
9045 bfd_put_16 (abfd, upper, insn);
9046 bfd_put_16 (abfd, lower, insn + 2);
252b5132
RH
9047}
9048
9b485d32
NC
9049/* Thumb code calling an ARM function. */
9050
252b5132 9051static int
57e8b36a 9052elf32_thumb_to_arm_stub (struct bfd_link_info * info,
07d6d2b8
AM
9053 const char * name,
9054 bfd * input_bfd,
9055 bfd * output_bfd,
9056 asection * input_section,
9057 bfd_byte * hit_data,
9058 asection * sym_sec,
9059 bfd_vma offset,
9060 bfd_signed_vma addend,
9061 bfd_vma val,
f2a9dd69 9062 char **error_message)
252b5132 9063{
bcbdc74c 9064 asection * s = 0;
dc810e39 9065 bfd_vma my_offset;
252b5132 9066 long int ret_offset;
bcbdc74c
NC
9067 struct elf_link_hash_entry * myh;
9068 struct elf32_arm_link_hash_table * globals;
252b5132 9069
f2a9dd69 9070 myh = find_thumb_glue (info, name, error_message);
252b5132 9071 if (myh == NULL)
b34976b6 9072 return FALSE;
252b5132
RH
9073
9074 globals = elf32_arm_hash_table (info);
252b5132
RH
9075 BFD_ASSERT (globals != NULL);
9076 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9077
9078 my_offset = myh->root.u.def.value;
9079
3d4d4302
AM
9080 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9081 THUMB2ARM_GLUE_SECTION_NAME);
252b5132
RH
9082
9083 BFD_ASSERT (s != NULL);
9084 BFD_ASSERT (s->contents != NULL);
9085 BFD_ASSERT (s->output_section != NULL);
9086
9087 if ((my_offset & 0x01) == 0x01)
9088 {
9089 if (sym_sec != NULL
9090 && sym_sec->owner != NULL
9091 && !INTERWORK_FLAG (sym_sec->owner))
9092 {
4eca0228 9093 _bfd_error_handler
90b6238f
AM
9094 (_("%pB(%s): warning: interworking not enabled;"
9095 " first occurrence: %pB: %s call to %s"),
9096 sym_sec->owner, name, input_bfd, "Thumb", "ARM");
252b5132 9097
b34976b6 9098 return FALSE;
252b5132
RH
9099 }
9100
9101 --my_offset;
9102 myh->root.u.def.value = my_offset;
9103
52ab56c2
PB
9104 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
9105 s->contents + my_offset);
252b5132 9106
52ab56c2
PB
9107 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
9108 s->contents + my_offset + 2);
252b5132
RH
9109
9110 ret_offset =
9b485d32
NC
9111 /* Address of destination of the stub. */
9112 ((bfd_signed_vma) val)
252b5132 9113 - ((bfd_signed_vma)
57e8b36a
NC
9114 /* Offset from the start of the current section
9115 to the start of the stubs. */
9b485d32
NC
9116 (s->output_offset
9117 /* Offset of the start of this stub from the start of the stubs. */
9118 + my_offset
9119 /* Address of the start of the current section. */
9120 + s->output_section->vma)
9121 /* The branch instruction is 4 bytes into the stub. */
9122 + 4
9123 /* ARM branches work from the pc of the instruction + 8. */
9124 + 8);
252b5132 9125
52ab56c2
PB
9126 put_arm_insn (globals, output_bfd,
9127 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
9128 s->contents + my_offset + 4);
252b5132
RH
9129 }
9130
9131 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
9132
427bfd90
NC
9133 /* Now go back and fix up the original BL insn to point to here. */
9134 ret_offset =
9135 /* Address of where the stub is located. */
9136 (s->output_section->vma + s->output_offset + my_offset)
9137 /* Address of where the BL is located. */
57e8b36a
NC
9138 - (input_section->output_section->vma + input_section->output_offset
9139 + offset)
427bfd90
NC
9140 /* Addend in the relocation. */
9141 - addend
9142 /* Biassing for PC-relative addressing. */
9143 - 8;
252b5132 9144
12a0a0fd 9145 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
252b5132 9146
b34976b6 9147 return TRUE;
252b5132
RH
9148}
9149
a4fd1a8e 9150/* Populate an Arm to Thumb stub. Returns the stub symbol. */
9b485d32 9151
a4fd1a8e
PB
9152static struct elf_link_hash_entry *
9153elf32_arm_create_thumb_stub (struct bfd_link_info * info,
07d6d2b8
AM
9154 const char * name,
9155 bfd * input_bfd,
9156 bfd * output_bfd,
9157 asection * sym_sec,
9158 bfd_vma val,
9159 asection * s,
9160 char ** error_message)
252b5132 9161{
dc810e39 9162 bfd_vma my_offset;
252b5132 9163 long int ret_offset;
bcbdc74c
NC
9164 struct elf_link_hash_entry * myh;
9165 struct elf32_arm_link_hash_table * globals;
252b5132 9166
f2a9dd69 9167 myh = find_arm_glue (info, name, error_message);
252b5132 9168 if (myh == NULL)
a4fd1a8e 9169 return NULL;
252b5132
RH
9170
9171 globals = elf32_arm_hash_table (info);
252b5132
RH
9172 BFD_ASSERT (globals != NULL);
9173 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9174
9175 my_offset = myh->root.u.def.value;
252b5132
RH
9176
9177 if ((my_offset & 0x01) == 0x01)
9178 {
9179 if (sym_sec != NULL
9180 && sym_sec->owner != NULL
9181 && !INTERWORK_FLAG (sym_sec->owner))
9182 {
4eca0228 9183 _bfd_error_handler
90b6238f
AM
9184 (_("%pB(%s): warning: interworking not enabled;"
9185 " first occurrence: %pB: %s call to %s"),
9186 sym_sec->owner, name, input_bfd, "ARM", "Thumb");
252b5132 9187 }
9b485d32 9188
252b5132
RH
9189 --my_offset;
9190 myh->root.u.def.value = my_offset;
9191
0e1862bb
L
9192 if (bfd_link_pic (info)
9193 || globals->root.is_relocatable_executable
27e55c4d 9194 || globals->pic_veneer)
8f6277f5
PB
9195 {
9196 /* For relocatable objects we can't use absolute addresses,
9197 so construct the address from a relative offset. */
9198 /* TODO: If the offset is small it's probably worth
9199 constructing the address with adds. */
52ab56c2
PB
9200 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
9201 s->contents + my_offset);
9202 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
9203 s->contents + my_offset + 4);
9204 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
9205 s->contents + my_offset + 8);
8f6277f5
PB
9206 /* Adjust the offset by 4 for the position of the add,
9207 and 8 for the pipeline offset. */
9208 ret_offset = (val - (s->output_offset
9209 + s->output_section->vma
9210 + my_offset + 12))
9211 | 1;
9212 bfd_put_32 (output_bfd, ret_offset,
9213 s->contents + my_offset + 12);
9214 }
26079076
PB
9215 else if (globals->use_blx)
9216 {
9217 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
9218 s->contents + my_offset);
9219
9220 /* It's a thumb address. Add the low order bit. */
9221 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
9222 s->contents + my_offset + 4);
9223 }
8f6277f5
PB
9224 else
9225 {
52ab56c2
PB
9226 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
9227 s->contents + my_offset);
252b5132 9228
52ab56c2
PB
9229 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
9230 s->contents + my_offset + 4);
252b5132 9231
8f6277f5
PB
9232 /* It's a thumb address. Add the low order bit. */
9233 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
9234 s->contents + my_offset + 8);
8029a119
NC
9235
9236 my_offset += 12;
8f6277f5 9237 }
252b5132
RH
9238 }
9239
9240 BFD_ASSERT (my_offset <= globals->arm_glue_size);
9241
a4fd1a8e
PB
9242 return myh;
9243}
9244
9245/* Arm code calling a Thumb function. */
9246
9247static int
9248elf32_arm_to_thumb_stub (struct bfd_link_info * info,
07d6d2b8
AM
9249 const char * name,
9250 bfd * input_bfd,
9251 bfd * output_bfd,
9252 asection * input_section,
9253 bfd_byte * hit_data,
9254 asection * sym_sec,
9255 bfd_vma offset,
9256 bfd_signed_vma addend,
9257 bfd_vma val,
f2a9dd69 9258 char **error_message)
a4fd1a8e
PB
9259{
9260 unsigned long int tmp;
9261 bfd_vma my_offset;
9262 asection * s;
9263 long int ret_offset;
9264 struct elf_link_hash_entry * myh;
9265 struct elf32_arm_link_hash_table * globals;
9266
9267 globals = elf32_arm_hash_table (info);
a4fd1a8e
PB
9268 BFD_ASSERT (globals != NULL);
9269 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9270
3d4d4302
AM
9271 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9272 ARM2THUMB_GLUE_SECTION_NAME);
a4fd1a8e
PB
9273 BFD_ASSERT (s != NULL);
9274 BFD_ASSERT (s->contents != NULL);
9275 BFD_ASSERT (s->output_section != NULL);
9276
9277 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
f2a9dd69 9278 sym_sec, val, s, error_message);
a4fd1a8e
PB
9279 if (!myh)
9280 return FALSE;
9281
9282 my_offset = myh->root.u.def.value;
252b5132
RH
9283 tmp = bfd_get_32 (input_bfd, hit_data);
9284 tmp = tmp & 0xFF000000;
9285
9b485d32 9286 /* Somehow these are both 4 too far, so subtract 8. */
dc810e39
AM
9287 ret_offset = (s->output_offset
9288 + my_offset
9289 + s->output_section->vma
9290 - (input_section->output_offset
9291 + input_section->output_section->vma
9292 + offset + addend)
9293 - 8);
9a5aca8c 9294
252b5132
RH
9295 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
9296
dc810e39 9297 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
252b5132 9298
b34976b6 9299 return TRUE;
252b5132
RH
9300}
9301
a4fd1a8e
PB
9302/* Populate Arm stub for an exported Thumb function. */
9303
9304static bfd_boolean
9305elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
9306{
9307 struct bfd_link_info * info = (struct bfd_link_info *) inf;
9308 asection * s;
9309 struct elf_link_hash_entry * myh;
9310 struct elf32_arm_link_hash_entry *eh;
9311 struct elf32_arm_link_hash_table * globals;
9312 asection *sec;
9313 bfd_vma val;
f2a9dd69 9314 char *error_message;
a4fd1a8e 9315
906e58ca 9316 eh = elf32_arm_hash_entry (h);
a4fd1a8e
PB
9317 /* Allocate stubs for exported Thumb functions on v4t. */
9318 if (eh->export_glue == NULL)
9319 return TRUE;
9320
9321 globals = elf32_arm_hash_table (info);
a4fd1a8e
PB
9322 BFD_ASSERT (globals != NULL);
9323 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9324
3d4d4302
AM
9325 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9326 ARM2THUMB_GLUE_SECTION_NAME);
a4fd1a8e
PB
9327 BFD_ASSERT (s != NULL);
9328 BFD_ASSERT (s->contents != NULL);
9329 BFD_ASSERT (s->output_section != NULL);
9330
9331 sec = eh->export_glue->root.u.def.section;
0eaedd0e
PB
9332
9333 BFD_ASSERT (sec->output_section != NULL);
9334
a4fd1a8e
PB
9335 val = eh->export_glue->root.u.def.value + sec->output_offset
9336 + sec->output_section->vma;
8029a119 9337
a4fd1a8e
PB
9338 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
9339 h->root.u.def.section->owner,
f2a9dd69
DJ
9340 globals->obfd, sec, val, s,
9341 &error_message);
a4fd1a8e
PB
9342 BFD_ASSERT (myh);
9343 return TRUE;
9344}
9345
845b51d6
PB
9346/* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
9347
9348static bfd_vma
9349elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
9350{
9351 bfd_byte *p;
9352 bfd_vma glue_addr;
9353 asection *s;
9354 struct elf32_arm_link_hash_table *globals;
9355
9356 globals = elf32_arm_hash_table (info);
845b51d6
PB
9357 BFD_ASSERT (globals != NULL);
9358 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9359
3d4d4302
AM
9360 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9361 ARM_BX_GLUE_SECTION_NAME);
845b51d6
PB
9362 BFD_ASSERT (s != NULL);
9363 BFD_ASSERT (s->contents != NULL);
9364 BFD_ASSERT (s->output_section != NULL);
9365
9366 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
9367
9368 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
9369
9370 if ((globals->bx_glue_offset[reg] & 1) == 0)
9371 {
9372 p = s->contents + glue_addr;
9373 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
9374 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
9375 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
9376 globals->bx_glue_offset[reg] |= 1;
9377 }
9378
9379 return glue_addr + s->output_section->vma + s->output_offset;
9380}
9381
a4fd1a8e
PB
9382/* Generate Arm stubs for exported Thumb symbols. */
9383static void
906e58ca 9384elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
a4fd1a8e
PB
9385 struct bfd_link_info *link_info)
9386{
9387 struct elf32_arm_link_hash_table * globals;
9388
8029a119
NC
9389 if (link_info == NULL)
9390 /* Ignore this if we are not called by the ELF backend linker. */
a4fd1a8e
PB
9391 return;
9392
9393 globals = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
9394 if (globals == NULL)
9395 return;
9396
84c08195
PB
9397 /* If blx is available then exported Thumb symbols are OK and there is
9398 nothing to do. */
a4fd1a8e
PB
9399 if (globals->use_blx)
9400 return;
9401
9402 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
9403 link_info);
9404}
9405
47beaa6a
RS
9406/* Reserve space for COUNT dynamic relocations in relocation selection
9407 SRELOC. */
9408
9409static void
9410elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
9411 bfd_size_type count)
9412{
9413 struct elf32_arm_link_hash_table *htab;
9414
9415 htab = elf32_arm_hash_table (info);
9416 BFD_ASSERT (htab->root.dynamic_sections_created);
9417 if (sreloc == NULL)
9418 abort ();
9419 sreloc->size += RELOC_SIZE (htab) * count;
9420}
9421
34e77a92
RS
9422/* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
9423 dynamic, the relocations should go in SRELOC, otherwise they should
9424 go in the special .rel.iplt section. */
9425
9426static void
9427elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
9428 bfd_size_type count)
9429{
9430 struct elf32_arm_link_hash_table *htab;
9431
9432 htab = elf32_arm_hash_table (info);
9433 if (!htab->root.dynamic_sections_created)
9434 htab->root.irelplt->size += RELOC_SIZE (htab) * count;
9435 else
9436 {
9437 BFD_ASSERT (sreloc != NULL);
9438 sreloc->size += RELOC_SIZE (htab) * count;
9439 }
9440}
9441
47beaa6a
RS
9442/* Add relocation REL to the end of relocation section SRELOC. */
9443
9444static void
9445elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
9446 asection *sreloc, Elf_Internal_Rela *rel)
9447{
9448 bfd_byte *loc;
9449 struct elf32_arm_link_hash_table *htab;
9450
9451 htab = elf32_arm_hash_table (info);
34e77a92
RS
9452 if (!htab->root.dynamic_sections_created
9453 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
9454 sreloc = htab->root.irelplt;
47beaa6a
RS
9455 if (sreloc == NULL)
9456 abort ();
9457 loc = sreloc->contents;
9458 loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
9459 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
9460 abort ();
9461 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
9462}
9463
34e77a92
RS
9464/* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
9465 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
9466 to .plt. */
9467
9468static void
9469elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
9470 bfd_boolean is_iplt_entry,
9471 union gotplt_union *root_plt,
9472 struct arm_plt_info *arm_plt)
9473{
9474 struct elf32_arm_link_hash_table *htab;
9475 asection *splt;
9476 asection *sgotplt;
9477
9478 htab = elf32_arm_hash_table (info);
9479
9480 if (is_iplt_entry)
9481 {
9482 splt = htab->root.iplt;
9483 sgotplt = htab->root.igotplt;
9484
99059e56
RM
9485 /* NaCl uses a special first entry in .iplt too. */
9486 if (htab->nacl_p && splt->size == 0)
9487 splt->size += htab->plt_header_size;
9488
34e77a92
RS
9489 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
9490 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
9491 }
9492 else
9493 {
9494 splt = htab->root.splt;
9495 sgotplt = htab->root.sgotplt;
9496
7801f98f
CL
9497 if (htab->fdpic_p)
9498 {
9499 /* Allocate room for R_ARM_FUNCDESC_VALUE. */
9500 /* For lazy binding, relocations will be put into .rel.plt, in
9501 .rel.got otherwise. */
9502 /* FIXME: today we don't support lazy binding so put it in .rel.got */
9503 if (info->flags & DF_BIND_NOW)
9504 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
9505 else
9506 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
9507 }
9508 else
9509 {
9510 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
9511 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
9512 }
34e77a92
RS
9513
9514 /* If this is the first .plt entry, make room for the special
9515 first entry. */
9516 if (splt->size == 0)
9517 splt->size += htab->plt_header_size;
9f19ab6d
WN
9518
9519 htab->next_tls_desc_index++;
34e77a92
RS
9520 }
9521
9522 /* Allocate the PLT entry itself, including any leading Thumb stub. */
9523 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9524 splt->size += PLT_THUMB_STUB_SIZE;
9525 root_plt->offset = splt->size;
9526 splt->size += htab->plt_entry_size;
9527
9528 if (!htab->symbian_p)
9529 {
9530 /* We also need to make an entry in the .got.plt section, which
9531 will be placed in the .got section by the linker script. */
9f19ab6d
WN
9532 if (is_iplt_entry)
9533 arm_plt->got_offset = sgotplt->size;
9534 else
9535 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
7801f98f
CL
9536 if (htab->fdpic_p)
9537 /* Function descriptor takes 64 bits in GOT. */
9538 sgotplt->size += 8;
9539 else
9540 sgotplt->size += 4;
34e77a92
RS
9541 }
9542}
9543
b38cadfb
NC
9544static bfd_vma
9545arm_movw_immediate (bfd_vma value)
9546{
9547 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
9548}
9549
9550static bfd_vma
9551arm_movt_immediate (bfd_vma value)
9552{
9553 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
9554}
9555
34e77a92
RS
9556/* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
9557 the entry lives in .iplt and resolves to (*SYM_VALUE)().
9558 Otherwise, DYNINDX is the index of the symbol in the dynamic
9559 symbol table and SYM_VALUE is undefined.
9560
9561 ROOT_PLT points to the offset of the PLT entry from the start of its
9562 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
57460bcf 9563 bookkeeping information.
34e77a92 9564
57460bcf
NC
9565 Returns FALSE if there was a problem. */
9566
9567static bfd_boolean
34e77a92
RS
9568elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
9569 union gotplt_union *root_plt,
9570 struct arm_plt_info *arm_plt,
9571 int dynindx, bfd_vma sym_value)
9572{
9573 struct elf32_arm_link_hash_table *htab;
9574 asection *sgot;
9575 asection *splt;
9576 asection *srel;
9577 bfd_byte *loc;
9578 bfd_vma plt_index;
9579 Elf_Internal_Rela rel;
9580 bfd_vma plt_header_size;
9581 bfd_vma got_header_size;
9582
9583 htab = elf32_arm_hash_table (info);
9584
9585 /* Pick the appropriate sections and sizes. */
9586 if (dynindx == -1)
9587 {
9588 splt = htab->root.iplt;
9589 sgot = htab->root.igotplt;
9590 srel = htab->root.irelplt;
9591
9592 /* There are no reserved entries in .igot.plt, and no special
9593 first entry in .iplt. */
9594 got_header_size = 0;
9595 plt_header_size = 0;
9596 }
9597 else
9598 {
9599 splt = htab->root.splt;
9600 sgot = htab->root.sgotplt;
9601 srel = htab->root.srelplt;
9602
9603 got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
9604 plt_header_size = htab->plt_header_size;
9605 }
9606 BFD_ASSERT (splt != NULL && srel != NULL);
9607
9608 /* Fill in the entry in the procedure linkage table. */
9609 if (htab->symbian_p)
9610 {
9611 BFD_ASSERT (dynindx >= 0);
9612 put_arm_insn (htab, output_bfd,
9613 elf32_arm_symbian_plt_entry[0],
9614 splt->contents + root_plt->offset);
9615 bfd_put_32 (output_bfd,
9616 elf32_arm_symbian_plt_entry[1],
9617 splt->contents + root_plt->offset + 4);
9618
9619 /* Fill in the entry in the .rel.plt section. */
9620 rel.r_offset = (splt->output_section->vma
9621 + splt->output_offset
9622 + root_plt->offset + 4);
9623 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
9624
9625 /* Get the index in the procedure linkage table which
9626 corresponds to this symbol. This is the index of this symbol
9627 in all the symbols for which we are making plt entries. The
9628 first entry in the procedure linkage table is reserved. */
9629 plt_index = ((root_plt->offset - plt_header_size)
9630 / htab->plt_entry_size);
9631 }
9632 else
9633 {
9634 bfd_vma got_offset, got_address, plt_address;
9635 bfd_vma got_displacement, initial_got_entry;
9636 bfd_byte * ptr;
9637
9638 BFD_ASSERT (sgot != NULL);
9639
9640 /* Get the offset into the .(i)got.plt table of the entry that
9641 corresponds to this function. */
9642 got_offset = (arm_plt->got_offset & -2);
9643
9644 /* Get the index in the procedure linkage table which
9645 corresponds to this symbol. This is the index of this symbol
9646 in all the symbols for which we are making plt entries.
9647 After the reserved .got.plt entries, all symbols appear in
9648 the same order as in .plt. */
7801f98f
CL
9649 if (htab->fdpic_p)
9650 /* Function descriptor takes 8 bytes. */
9651 plt_index = (got_offset - got_header_size) / 8;
9652 else
9653 plt_index = (got_offset - got_header_size) / 4;
34e77a92
RS
9654
9655 /* Calculate the address of the GOT entry. */
9656 got_address = (sgot->output_section->vma
9657 + sgot->output_offset
9658 + got_offset);
9659
9660 /* ...and the address of the PLT entry. */
9661 plt_address = (splt->output_section->vma
9662 + splt->output_offset
9663 + root_plt->offset);
9664
9665 ptr = splt->contents + root_plt->offset;
0e1862bb 9666 if (htab->vxworks_p && bfd_link_pic (info))
34e77a92
RS
9667 {
9668 unsigned int i;
9669 bfd_vma val;
9670
9671 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9672 {
9673 val = elf32_arm_vxworks_shared_plt_entry[i];
9674 if (i == 2)
9675 val |= got_address - sgot->output_section->vma;
9676 if (i == 5)
9677 val |= plt_index * RELOC_SIZE (htab);
9678 if (i == 2 || i == 5)
9679 bfd_put_32 (output_bfd, val, ptr);
9680 else
9681 put_arm_insn (htab, output_bfd, val, ptr);
9682 }
9683 }
9684 else if (htab->vxworks_p)
9685 {
9686 unsigned int i;
9687 bfd_vma val;
9688
9689 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9690 {
9691 val = elf32_arm_vxworks_exec_plt_entry[i];
9692 if (i == 2)
9693 val |= got_address;
9694 if (i == 4)
9695 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
9696 if (i == 5)
9697 val |= plt_index * RELOC_SIZE (htab);
9698 if (i == 2 || i == 5)
9699 bfd_put_32 (output_bfd, val, ptr);
9700 else
9701 put_arm_insn (htab, output_bfd, val, ptr);
9702 }
9703
9704 loc = (htab->srelplt2->contents
9705 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
9706
9707 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
9708 referencing the GOT for this PLT entry. */
9709 rel.r_offset = plt_address + 8;
9710 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
9711 rel.r_addend = got_offset;
9712 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9713 loc += RELOC_SIZE (htab);
9714
9715 /* Create the R_ARM_ABS32 relocation referencing the
9716 beginning of the PLT for this GOT entry. */
9717 rel.r_offset = got_address;
9718 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
9719 rel.r_addend = 0;
9720 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9721 }
b38cadfb
NC
9722 else if (htab->nacl_p)
9723 {
9724 /* Calculate the displacement between the PLT slot and the
9725 common tail that's part of the special initial PLT slot. */
6034aab8 9726 int32_t tail_displacement
b38cadfb
NC
9727 = ((splt->output_section->vma + splt->output_offset
9728 + ARM_NACL_PLT_TAIL_OFFSET)
9729 - (plt_address + htab->plt_entry_size + 4));
9730 BFD_ASSERT ((tail_displacement & 3) == 0);
9731 tail_displacement >>= 2;
9732
9733 BFD_ASSERT ((tail_displacement & 0xff000000) == 0
9734 || (-tail_displacement & 0xff000000) == 0);
9735
9736 /* Calculate the displacement between the PLT slot and the entry
9737 in the GOT. The offset accounts for the value produced by
9738 adding to pc in the penultimate instruction of the PLT stub. */
6034aab8 9739 got_displacement = (got_address
99059e56 9740 - (plt_address + htab->plt_entry_size));
b38cadfb
NC
9741
9742 /* NaCl does not support interworking at all. */
9743 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt));
9744
9745 put_arm_insn (htab, output_bfd,
9746 elf32_arm_nacl_plt_entry[0]
9747 | arm_movw_immediate (got_displacement),
9748 ptr + 0);
9749 put_arm_insn (htab, output_bfd,
9750 elf32_arm_nacl_plt_entry[1]
9751 | arm_movt_immediate (got_displacement),
9752 ptr + 4);
9753 put_arm_insn (htab, output_bfd,
9754 elf32_arm_nacl_plt_entry[2],
9755 ptr + 8);
9756 put_arm_insn (htab, output_bfd,
9757 elf32_arm_nacl_plt_entry[3]
9758 | (tail_displacement & 0x00ffffff),
9759 ptr + 12);
9760 }
7801f98f
CL
9761 else if (htab->fdpic_p)
9762 {
59029f57
CL
9763 const bfd_vma *plt_entry = using_thumb_only(htab)
9764 ? elf32_arm_fdpic_thumb_plt_entry
9765 : elf32_arm_fdpic_plt_entry;
9766
7801f98f
CL
9767 /* Fill-up Thumb stub if needed. */
9768 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9769 {
9770 put_thumb_insn (htab, output_bfd,
9771 elf32_arm_plt_thumb_stub[0], ptr - 4);
9772 put_thumb_insn (htab, output_bfd,
9773 elf32_arm_plt_thumb_stub[1], ptr - 2);
9774 }
59029f57
CL
9775 /* As we are using 32 bit instructions even for the Thumb
9776 version, we have to use 'put_arm_insn' instead of
9777 'put_thumb_insn'. */
9778 put_arm_insn(htab, output_bfd, plt_entry[0], ptr + 0);
9779 put_arm_insn(htab, output_bfd, plt_entry[1], ptr + 4);
9780 put_arm_insn(htab, output_bfd, plt_entry[2], ptr + 8);
9781 put_arm_insn(htab, output_bfd, plt_entry[3], ptr + 12);
7801f98f
CL
9782 bfd_put_32 (output_bfd, got_offset, ptr + 16);
9783
9784 if (!(info->flags & DF_BIND_NOW))
9785 {
9786 /* funcdesc_value_reloc_offset. */
9787 bfd_put_32 (output_bfd,
9788 htab->root.srelplt->reloc_count * RELOC_SIZE (htab),
9789 ptr + 20);
59029f57
CL
9790 put_arm_insn(htab, output_bfd, plt_entry[6], ptr + 24);
9791 put_arm_insn(htab, output_bfd, plt_entry[7], ptr + 28);
9792 put_arm_insn(htab, output_bfd, plt_entry[8], ptr + 32);
9793 put_arm_insn(htab, output_bfd, plt_entry[9], ptr + 36);
7801f98f
CL
9794 }
9795 }
57460bcf
NC
9796 else if (using_thumb_only (htab))
9797 {
eed94f8f 9798 /* PR ld/16017: Generate thumb only PLT entries. */
469a3493 9799 if (!using_thumb2 (htab))
eed94f8f
NC
9800 {
9801 /* FIXME: We ought to be able to generate thumb-1 PLT
9802 instructions... */
90b6238f 9803 _bfd_error_handler (_("%pB: warning: thumb-1 mode PLT generation not currently supported"),
eed94f8f
NC
9804 output_bfd);
9805 return FALSE;
9806 }
57460bcf 9807
eed94f8f
NC
9808 /* Calculate the displacement between the PLT slot and the entry in
9809 the GOT. The 12-byte offset accounts for the value produced by
9810 adding to pc in the 3rd instruction of the PLT stub. */
9811 got_displacement = got_address - (plt_address + 12);
9812
9813 /* As we are using 32 bit instructions we have to use 'put_arm_insn'
9814 instead of 'put_thumb_insn'. */
9815 put_arm_insn (htab, output_bfd,
9816 elf32_thumb2_plt_entry[0]
9817 | ((got_displacement & 0x000000ff) << 16)
9818 | ((got_displacement & 0x00000700) << 20)
9819 | ((got_displacement & 0x00000800) >> 1)
9820 | ((got_displacement & 0x0000f000) >> 12),
9821 ptr + 0);
9822 put_arm_insn (htab, output_bfd,
9823 elf32_thumb2_plt_entry[1]
9824 | ((got_displacement & 0x00ff0000) )
9825 | ((got_displacement & 0x07000000) << 4)
9826 | ((got_displacement & 0x08000000) >> 17)
9827 | ((got_displacement & 0xf0000000) >> 28),
9828 ptr + 4);
9829 put_arm_insn (htab, output_bfd,
9830 elf32_thumb2_plt_entry[2],
9831 ptr + 8);
9832 put_arm_insn (htab, output_bfd,
9833 elf32_thumb2_plt_entry[3],
9834 ptr + 12);
57460bcf 9835 }
34e77a92
RS
9836 else
9837 {
9838 /* Calculate the displacement between the PLT slot and the
9839 entry in the GOT. The eight-byte offset accounts for the
9840 value produced by adding to pc in the first instruction
9841 of the PLT stub. */
9842 got_displacement = got_address - (plt_address + 8);
9843
34e77a92
RS
9844 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9845 {
9846 put_thumb_insn (htab, output_bfd,
9847 elf32_arm_plt_thumb_stub[0], ptr - 4);
9848 put_thumb_insn (htab, output_bfd,
9849 elf32_arm_plt_thumb_stub[1], ptr - 2);
9850 }
9851
1db37fe6
YG
9852 if (!elf32_arm_use_long_plt_entry)
9853 {
9854 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
9855
9856 put_arm_insn (htab, output_bfd,
9857 elf32_arm_plt_entry_short[0]
9858 | ((got_displacement & 0x0ff00000) >> 20),
9859 ptr + 0);
9860 put_arm_insn (htab, output_bfd,
9861 elf32_arm_plt_entry_short[1]
9862 | ((got_displacement & 0x000ff000) >> 12),
9863 ptr+ 4);
9864 put_arm_insn (htab, output_bfd,
9865 elf32_arm_plt_entry_short[2]
9866 | (got_displacement & 0x00000fff),
9867 ptr + 8);
34e77a92 9868#ifdef FOUR_WORD_PLT
1db37fe6 9869 bfd_put_32 (output_bfd, elf32_arm_plt_entry_short[3], ptr + 12);
34e77a92 9870#endif
1db37fe6
YG
9871 }
9872 else
9873 {
9874 put_arm_insn (htab, output_bfd,
9875 elf32_arm_plt_entry_long[0]
9876 | ((got_displacement & 0xf0000000) >> 28),
9877 ptr + 0);
9878 put_arm_insn (htab, output_bfd,
9879 elf32_arm_plt_entry_long[1]
9880 | ((got_displacement & 0x0ff00000) >> 20),
9881 ptr + 4);
9882 put_arm_insn (htab, output_bfd,
9883 elf32_arm_plt_entry_long[2]
9884 | ((got_displacement & 0x000ff000) >> 12),
9885 ptr+ 8);
9886 put_arm_insn (htab, output_bfd,
9887 elf32_arm_plt_entry_long[3]
9888 | (got_displacement & 0x00000fff),
9889 ptr + 12);
9890 }
34e77a92
RS
9891 }
9892
9893 /* Fill in the entry in the .rel(a).(i)plt section. */
9894 rel.r_offset = got_address;
9895 rel.r_addend = 0;
9896 if (dynindx == -1)
9897 {
9898 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
9899 The dynamic linker or static executable then calls SYM_VALUE
9900 to determine the correct run-time value of the .igot.plt entry. */
9901 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9902 initial_got_entry = sym_value;
9903 }
9904 else
9905 {
7801f98f
CL
9906 /* For FDPIC we will have to resolve a R_ARM_FUNCDESC_VALUE
9907 used by PLT entry. */
9908 if (htab->fdpic_p)
9909 {
9910 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_FUNCDESC_VALUE);
9911 initial_got_entry = 0;
9912 }
9913 else
9914 {
9915 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
9916 initial_got_entry = (splt->output_section->vma
9917 + splt->output_offset);
9918 }
34e77a92
RS
9919 }
9920
9921 /* Fill in the entry in the global offset table. */
9922 bfd_put_32 (output_bfd, initial_got_entry,
9923 sgot->contents + got_offset);
7801f98f
CL
9924
9925 if (htab->fdpic_p && !(info->flags & DF_BIND_NOW))
9926 {
9927 /* Setup initial funcdesc value. */
9928 /* FIXME: we don't support lazy binding because there is a
9929 race condition between both words getting written and
9930 some other thread attempting to read them. The ARM
9931 architecture does not have an atomic 64 bit load/store
9932 instruction that could be used to prevent it; it is
9933 recommended that threaded FDPIC applications run with the
9934 LD_BIND_NOW environment variable set. */
9935 bfd_put_32(output_bfd, plt_address + 0x18,
9936 sgot->contents + got_offset);
9937 bfd_put_32(output_bfd, -1 /*TODO*/,
9938 sgot->contents + got_offset + 4);
9939 }
34e77a92
RS
9940 }
9941
aba8c3de
WN
9942 if (dynindx == -1)
9943 elf32_arm_add_dynreloc (output_bfd, info, srel, &rel);
9944 else
9945 {
7801f98f
CL
9946 if (htab->fdpic_p)
9947 {
9948 /* For FDPIC we put PLT relocationss into .rel.got when not
9949 lazy binding otherwise we put them in .rel.plt. For now,
9950 we don't support lazy binding so put it in .rel.got. */
9951 if (info->flags & DF_BIND_NOW)
9952 elf32_arm_add_dynreloc(output_bfd, info, htab->root.srelgot, &rel);
9953 else
9954 elf32_arm_add_dynreloc(output_bfd, info, htab->root.srelplt, &rel);
9955 }
9956 else
9957 {
9958 loc = srel->contents + plt_index * RELOC_SIZE (htab);
9959 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9960 }
aba8c3de 9961 }
57460bcf
NC
9962
9963 return TRUE;
34e77a92
RS
9964}
9965
eb043451
PB
9966/* Some relocations map to different relocations depending on the
9967 target. Return the real relocation. */
8029a119 9968
eb043451
PB
9969static int
9970arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
9971 int r_type)
9972{
9973 switch (r_type)
9974 {
9975 case R_ARM_TARGET1:
9976 if (globals->target1_is_rel)
9977 return R_ARM_REL32;
9978 else
9979 return R_ARM_ABS32;
9980
9981 case R_ARM_TARGET2:
9982 return globals->target2_reloc;
9983
9984 default:
9985 return r_type;
9986 }
9987}
eb043451 9988
ba93b8ac
DJ
9989/* Return the base VMA address which should be subtracted from real addresses
9990 when resolving @dtpoff relocation.
9991 This is PT_TLS segment p_vaddr. */
9992
9993static bfd_vma
9994dtpoff_base (struct bfd_link_info *info)
9995{
9996 /* If tls_sec is NULL, we should have signalled an error already. */
9997 if (elf_hash_table (info)->tls_sec == NULL)
9998 return 0;
9999 return elf_hash_table (info)->tls_sec->vma;
10000}
10001
10002/* Return the relocation value for @tpoff relocation
10003 if STT_TLS virtual address is ADDRESS. */
10004
10005static bfd_vma
10006tpoff (struct bfd_link_info *info, bfd_vma address)
10007{
10008 struct elf_link_hash_table *htab = elf_hash_table (info);
10009 bfd_vma base;
10010
10011 /* If tls_sec is NULL, we should have signalled an error already. */
10012 if (htab->tls_sec == NULL)
10013 return 0;
10014 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
10015 return address - htab->tls_sec->vma + base;
10016}
10017
00a97672
RS
10018/* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
10019 VALUE is the relocation value. */
10020
10021static bfd_reloc_status_type
10022elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
10023{
10024 if (value > 0xfff)
10025 return bfd_reloc_overflow;
10026
10027 value |= bfd_get_32 (abfd, data) & 0xfffff000;
10028 bfd_put_32 (abfd, value, data);
10029 return bfd_reloc_ok;
10030}
10031
0855e32b
NS
10032/* Handle TLS relaxations. Relaxing is possible for symbols that use
10033 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
10034 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
10035
10036 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
10037 is to then call final_link_relocate. Return other values in the
62672b10
NS
10038 case of error.
10039
10040 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
10041 the pre-relaxed code. It would be nice if the relocs were updated
10042 to match the optimization. */
0855e32b 10043
b38cadfb 10044static bfd_reloc_status_type
0855e32b 10045elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
b38cadfb 10046 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
0855e32b
NS
10047 Elf_Internal_Rela *rel, unsigned long is_local)
10048{
10049 unsigned long insn;
b38cadfb 10050
0855e32b
NS
10051 switch (ELF32_R_TYPE (rel->r_info))
10052 {
10053 default:
10054 return bfd_reloc_notsupported;
b38cadfb 10055
0855e32b
NS
10056 case R_ARM_TLS_GOTDESC:
10057 if (is_local)
10058 insn = 0;
10059 else
10060 {
10061 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
10062 if (insn & 1)
10063 insn -= 5; /* THUMB */
10064 else
10065 insn -= 8; /* ARM */
10066 }
10067 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
10068 return bfd_reloc_continue;
10069
10070 case R_ARM_THM_TLS_DESCSEQ:
10071 /* Thumb insn. */
10072 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
10073 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
10074 {
10075 if (is_local)
10076 /* nop */
10077 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10078 }
10079 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
10080 {
10081 if (is_local)
10082 /* nop */
10083 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10084 else
10085 /* ldr rx,[ry] */
10086 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
10087 }
10088 else if ((insn & 0xff87) == 0x4780) /* blx rx */
10089 {
10090 if (is_local)
10091 /* nop */
10092 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10093 else
10094 /* mov r0, rx */
10095 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
10096 contents + rel->r_offset);
10097 }
10098 else
10099 {
10100 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
10101 /* It's a 32 bit instruction, fetch the rest of it for
10102 error generation. */
10103 insn = (insn << 16)
10104 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
4eca0228 10105 _bfd_error_handler
695344c0 10106 /* xgettext:c-format */
2dcf00ce 10107 (_("%pB(%pA+%#" PRIx64 "): "
90b6238f
AM
10108 "unexpected %s instruction '%#lx' in TLS trampoline"),
10109 input_bfd, input_sec, (uint64_t) rel->r_offset,
10110 "Thumb", insn);
0855e32b
NS
10111 return bfd_reloc_notsupported;
10112 }
10113 break;
b38cadfb 10114
0855e32b
NS
10115 case R_ARM_TLS_DESCSEQ:
10116 /* arm insn. */
10117 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
10118 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
10119 {
10120 if (is_local)
10121 /* mov rx, ry */
10122 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
10123 contents + rel->r_offset);
10124 }
10125 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
10126 {
10127 if (is_local)
10128 /* nop */
10129 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
10130 else
10131 /* ldr rx,[ry] */
10132 bfd_put_32 (input_bfd, insn & 0xfffff000,
10133 contents + rel->r_offset);
10134 }
10135 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
10136 {
10137 if (is_local)
10138 /* nop */
10139 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
10140 else
10141 /* mov r0, rx */
10142 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
10143 contents + rel->r_offset);
10144 }
10145 else
10146 {
4eca0228 10147 _bfd_error_handler
695344c0 10148 /* xgettext:c-format */
2dcf00ce 10149 (_("%pB(%pA+%#" PRIx64 "): "
90b6238f
AM
10150 "unexpected %s instruction '%#lx' in TLS trampoline"),
10151 input_bfd, input_sec, (uint64_t) rel->r_offset,
10152 "ARM", insn);
0855e32b
NS
10153 return bfd_reloc_notsupported;
10154 }
10155 break;
10156
10157 case R_ARM_TLS_CALL:
10158 /* GD->IE relaxation, turn the instruction into 'nop' or
10159 'ldr r0, [pc,r0]' */
10160 insn = is_local ? 0xe1a00000 : 0xe79f0000;
10161 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
10162 break;
b38cadfb 10163
0855e32b 10164 case R_ARM_THM_TLS_CALL:
6a631e86 10165 /* GD->IE relaxation. */
0855e32b
NS
10166 if (!is_local)
10167 /* add r0,pc; ldr r0, [r0] */
10168 insn = 0x44786800;
60a019a0 10169 else if (using_thumb2 (globals))
0855e32b
NS
10170 /* nop.w */
10171 insn = 0xf3af8000;
10172 else
10173 /* nop; nop */
10174 insn = 0xbf00bf00;
b38cadfb 10175
0855e32b
NS
10176 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
10177 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
10178 break;
10179 }
10180 return bfd_reloc_ok;
10181}
10182
4962c51a
MS
10183/* For a given value of n, calculate the value of G_n as required to
10184 deal with group relocations. We return it in the form of an
10185 encoded constant-and-rotation, together with the final residual. If n is
10186 specified as less than zero, then final_residual is filled with the
10187 input value and no further action is performed. */
10188
10189static bfd_vma
10190calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
10191{
10192 int current_n;
10193 bfd_vma g_n;
10194 bfd_vma encoded_g_n = 0;
10195 bfd_vma residual = value; /* Also known as Y_n. */
10196
10197 for (current_n = 0; current_n <= n; current_n++)
10198 {
10199 int shift;
10200
10201 /* Calculate which part of the value to mask. */
10202 if (residual == 0)
99059e56 10203 shift = 0;
4962c51a 10204 else
99059e56
RM
10205 {
10206 int msb;
10207
10208 /* Determine the most significant bit in the residual and
10209 align the resulting value to a 2-bit boundary. */
10210 for (msb = 30; msb >= 0; msb -= 2)
10211 if (residual & (3 << msb))
10212 break;
10213
10214 /* The desired shift is now (msb - 6), or zero, whichever
10215 is the greater. */
10216 shift = msb - 6;
10217 if (shift < 0)
10218 shift = 0;
10219 }
4962c51a
MS
10220
10221 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
10222 g_n = residual & (0xff << shift);
10223 encoded_g_n = (g_n >> shift)
99059e56 10224 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
4962c51a
MS
10225
10226 /* Calculate the residual for the next time around. */
10227 residual &= ~g_n;
10228 }
10229
10230 *final_residual = residual;
10231
10232 return encoded_g_n;
10233}
10234
10235/* Given an ARM instruction, determine whether it is an ADD or a SUB.
10236 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
906e58ca 10237
4962c51a 10238static int
906e58ca 10239identify_add_or_sub (bfd_vma insn)
4962c51a
MS
10240{
10241 int opcode = insn & 0x1e00000;
10242
10243 if (opcode == 1 << 23) /* ADD */
10244 return 1;
10245
10246 if (opcode == 1 << 22) /* SUB */
10247 return -1;
10248
10249 return 0;
10250}
10251
252b5132 10252/* Perform a relocation as part of a final link. */
9b485d32 10253
252b5132 10254static bfd_reloc_status_type
07d6d2b8
AM
10255elf32_arm_final_link_relocate (reloc_howto_type * howto,
10256 bfd * input_bfd,
10257 bfd * output_bfd,
10258 asection * input_section,
10259 bfd_byte * contents,
10260 Elf_Internal_Rela * rel,
10261 bfd_vma value,
10262 struct bfd_link_info * info,
10263 asection * sym_sec,
10264 const char * sym_name,
10265 unsigned char st_type,
10266 enum arm_st_branch_type branch_type,
0945cdfd 10267 struct elf_link_hash_entry * h,
07d6d2b8
AM
10268 bfd_boolean * unresolved_reloc_p,
10269 char ** error_message)
10270{
10271 unsigned long r_type = howto->type;
10272 unsigned long r_symndx;
10273 bfd_byte * hit_data = contents + rel->r_offset;
10274 bfd_vma * local_got_offsets;
10275 bfd_vma * local_tlsdesc_gotents;
10276 asection * sgot;
10277 asection * splt;
10278 asection * sreloc = NULL;
10279 asection * srelgot;
10280 bfd_vma addend;
10281 bfd_signed_vma signed_addend;
10282 unsigned char dynreloc_st_type;
10283 bfd_vma dynreloc_value;
ba96a88f 10284 struct elf32_arm_link_hash_table * globals;
34e77a92 10285 struct elf32_arm_link_hash_entry *eh;
07d6d2b8
AM
10286 union gotplt_union *root_plt;
10287 struct arm_plt_info *arm_plt;
10288 bfd_vma plt_offset;
10289 bfd_vma gotplt_offset;
10290 bfd_boolean has_iplt_entry;
10291 bfd_boolean resolved_to_zero;
f21f3fe0 10292
9c504268 10293 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
10294 if (globals == NULL)
10295 return bfd_reloc_notsupported;
9c504268 10296
0ffa91dd 10297 BFD_ASSERT (is_arm_elf (input_bfd));
47aeb64c 10298 BFD_ASSERT (howto != NULL);
0ffa91dd
NC
10299
10300 /* Some relocation types map to different relocations depending on the
9c504268 10301 target. We pick the right one here. */
eb043451 10302 r_type = arm_real_reloc_type (globals, r_type);
0855e32b
NS
10303
10304 /* It is possible to have linker relaxations on some TLS access
10305 models. Update our information here. */
10306 r_type = elf32_arm_tls_transition (info, r_type, h);
10307
eb043451
PB
10308 if (r_type != howto->type)
10309 howto = elf32_arm_howto_from_type (r_type);
9c504268 10310
34e77a92 10311 eh = (struct elf32_arm_link_hash_entry *) h;
362d30a1 10312 sgot = globals->root.sgot;
252b5132 10313 local_got_offsets = elf_local_got_offsets (input_bfd);
0855e32b
NS
10314 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
10315
34e77a92
RS
10316 if (globals->root.dynamic_sections_created)
10317 srelgot = globals->root.srelgot;
10318 else
10319 srelgot = NULL;
10320
252b5132
RH
10321 r_symndx = ELF32_R_SYM (rel->r_info);
10322
4e7fd91e 10323 if (globals->use_rel)
ba96a88f 10324 {
4e7fd91e
PB
10325 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
10326
10327 if (addend & ((howto->src_mask + 1) >> 1))
10328 {
10329 signed_addend = -1;
10330 signed_addend &= ~ howto->src_mask;
10331 signed_addend |= addend;
10332 }
10333 else
10334 signed_addend = addend;
ba96a88f
NC
10335 }
10336 else
4e7fd91e 10337 addend = signed_addend = rel->r_addend;
f21f3fe0 10338
39f21624
NC
10339 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
10340 are resolving a function call relocation. */
10341 if (using_thumb_only (globals)
10342 && (r_type == R_ARM_THM_CALL
10343 || r_type == R_ARM_THM_JUMP24)
10344 && branch_type == ST_BRANCH_TO_ARM)
10345 branch_type = ST_BRANCH_TO_THUMB;
10346
34e77a92
RS
10347 /* Record the symbol information that should be used in dynamic
10348 relocations. */
10349 dynreloc_st_type = st_type;
10350 dynreloc_value = value;
10351 if (branch_type == ST_BRANCH_TO_THUMB)
10352 dynreloc_value |= 1;
10353
10354 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
10355 VALUE appropriately for relocations that we resolve at link time. */
10356 has_iplt_entry = FALSE;
4ba2ef8f
TP
10357 if (elf32_arm_get_plt_info (input_bfd, globals, eh, r_symndx, &root_plt,
10358 &arm_plt)
34e77a92
RS
10359 && root_plt->offset != (bfd_vma) -1)
10360 {
10361 plt_offset = root_plt->offset;
10362 gotplt_offset = arm_plt->got_offset;
10363
10364 if (h == NULL || eh->is_iplt)
10365 {
10366 has_iplt_entry = TRUE;
10367 splt = globals->root.iplt;
10368
10369 /* Populate .iplt entries here, because not all of them will
10370 be seen by finish_dynamic_symbol. The lower bit is set if
10371 we have already populated the entry. */
10372 if (plt_offset & 1)
10373 plt_offset--;
10374 else
10375 {
57460bcf
NC
10376 if (elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
10377 -1, dynreloc_value))
10378 root_plt->offset |= 1;
10379 else
10380 return bfd_reloc_notsupported;
34e77a92
RS
10381 }
10382
10383 /* Static relocations always resolve to the .iplt entry. */
10384 st_type = STT_FUNC;
10385 value = (splt->output_section->vma
10386 + splt->output_offset
10387 + plt_offset);
10388 branch_type = ST_BRANCH_TO_ARM;
10389
10390 /* If there are non-call relocations that resolve to the .iplt
10391 entry, then all dynamic ones must too. */
10392 if (arm_plt->noncall_refcount != 0)
10393 {
10394 dynreloc_st_type = st_type;
10395 dynreloc_value = value;
10396 }
10397 }
10398 else
10399 /* We populate the .plt entry in finish_dynamic_symbol. */
10400 splt = globals->root.splt;
10401 }
10402 else
10403 {
10404 splt = NULL;
10405 plt_offset = (bfd_vma) -1;
10406 gotplt_offset = (bfd_vma) -1;
10407 }
10408
95b03e4a
L
10409 resolved_to_zero = (h != NULL
10410 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
10411
252b5132
RH
10412 switch (r_type)
10413 {
10414 case R_ARM_NONE:
28a094c2
DJ
10415 /* We don't need to find a value for this symbol. It's just a
10416 marker. */
10417 *unresolved_reloc_p = FALSE;
252b5132
RH
10418 return bfd_reloc_ok;
10419
00a97672
RS
10420 case R_ARM_ABS12:
10421 if (!globals->vxworks_p)
10422 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
1a0670f3 10423 /* Fall through. */
00a97672 10424
252b5132
RH
10425 case R_ARM_PC24:
10426 case R_ARM_ABS32:
bb224fc3 10427 case R_ARM_ABS32_NOI:
252b5132 10428 case R_ARM_REL32:
bb224fc3 10429 case R_ARM_REL32_NOI:
5b5bb741
PB
10430 case R_ARM_CALL:
10431 case R_ARM_JUMP24:
dfc5f959 10432 case R_ARM_XPC25:
eb043451 10433 case R_ARM_PREL31:
7359ea65 10434 case R_ARM_PLT32:
7359ea65
DJ
10435 /* Handle relocations which should use the PLT entry. ABS32/REL32
10436 will use the symbol's value, which may point to a PLT entry, but we
10437 don't need to handle that here. If we created a PLT entry, all
5fa9e92f
CL
10438 branches in this object should go to it, except if the PLT is too
10439 far away, in which case a long branch stub should be inserted. */
bb224fc3 10440 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
99059e56 10441 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
155d87d7
CL
10442 && r_type != R_ARM_CALL
10443 && r_type != R_ARM_JUMP24
10444 && r_type != R_ARM_PLT32)
34e77a92 10445 && plt_offset != (bfd_vma) -1)
7359ea65 10446 {
34e77a92
RS
10447 /* If we've created a .plt section, and assigned a PLT entry
10448 to this function, it must either be a STT_GNU_IFUNC reference
10449 or not be known to bind locally. In other cases, we should
10450 have cleared the PLT entry by now. */
10451 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
7359ea65
DJ
10452
10453 value = (splt->output_section->vma
10454 + splt->output_offset
34e77a92 10455 + plt_offset);
0945cdfd 10456 *unresolved_reloc_p = FALSE;
7359ea65
DJ
10457 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10458 contents, rel->r_offset, value,
00a97672 10459 rel->r_addend);
7359ea65
DJ
10460 }
10461
67687978
PB
10462 /* When generating a shared object or relocatable executable, these
10463 relocations are copied into the output file to be resolved at
10464 run time. */
0e1862bb 10465 if ((bfd_link_pic (info)
e8b09b87
CL
10466 || globals->root.is_relocatable_executable
10467 || globals->fdpic_p)
7359ea65 10468 && (input_section->flags & SEC_ALLOC)
4dfe6ac6 10469 && !(globals->vxworks_p
3348747a
NS
10470 && strcmp (input_section->output_section->name,
10471 ".tls_vars") == 0)
bb224fc3 10472 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
ee06dc07 10473 || !SYMBOL_CALLS_LOCAL (info, h))
ca6b5f82
AM
10474 && !(input_bfd == globals->stub_bfd
10475 && strstr (input_section->name, STUB_SUFFIX))
7359ea65 10476 && (h == NULL
95b03e4a
L
10477 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10478 && !resolved_to_zero)
7359ea65
DJ
10479 || h->root.type != bfd_link_hash_undefweak)
10480 && r_type != R_ARM_PC24
5b5bb741
PB
10481 && r_type != R_ARM_CALL
10482 && r_type != R_ARM_JUMP24
ee06dc07 10483 && r_type != R_ARM_PREL31
7359ea65 10484 && r_type != R_ARM_PLT32)
252b5132 10485 {
947216bf 10486 Elf_Internal_Rela outrel;
b34976b6 10487 bfd_boolean skip, relocate;
e8b09b87 10488 int isrofixup = 0;
f21f3fe0 10489
52db4ec2
JW
10490 if ((r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
10491 && !h->def_regular)
10492 {
10493 char *v = _("shared object");
10494
0e1862bb 10495 if (bfd_link_executable (info))
52db4ec2
JW
10496 v = _("PIE executable");
10497
4eca0228 10498 _bfd_error_handler
871b3ab2 10499 (_("%pB: relocation %s against external or undefined symbol `%s'"
52db4ec2
JW
10500 " can not be used when making a %s; recompile with -fPIC"), input_bfd,
10501 elf32_arm_howto_table_1[r_type].name, h->root.root.string, v);
10502 return bfd_reloc_notsupported;
10503 }
10504
0945cdfd
DJ
10505 *unresolved_reloc_p = FALSE;
10506
34e77a92 10507 if (sreloc == NULL && globals->root.dynamic_sections_created)
252b5132 10508 {
83bac4b0
NC
10509 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
10510 ! globals->use_rel);
f21f3fe0 10511
83bac4b0 10512 if (sreloc == NULL)
252b5132 10513 return bfd_reloc_notsupported;
252b5132 10514 }
f21f3fe0 10515
b34976b6
AM
10516 skip = FALSE;
10517 relocate = FALSE;
f21f3fe0 10518
00a97672 10519 outrel.r_addend = addend;
c629eae0
JJ
10520 outrel.r_offset =
10521 _bfd_elf_section_offset (output_bfd, info, input_section,
10522 rel->r_offset);
10523 if (outrel.r_offset == (bfd_vma) -1)
b34976b6 10524 skip = TRUE;
0bb2d96a 10525 else if (outrel.r_offset == (bfd_vma) -2)
b34976b6 10526 skip = TRUE, relocate = TRUE;
252b5132
RH
10527 outrel.r_offset += (input_section->output_section->vma
10528 + input_section->output_offset);
f21f3fe0 10529
252b5132 10530 if (skip)
0bb2d96a 10531 memset (&outrel, 0, sizeof outrel);
5e681ec4
PB
10532 else if (h != NULL
10533 && h->dynindx != -1
0e1862bb 10534 && (!bfd_link_pic (info)
1dcb9720
JW
10535 || !(bfd_link_pie (info)
10536 || SYMBOLIC_BIND (info, h))
f5385ebf 10537 || !h->def_regular))
5e681ec4 10538 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
252b5132
RH
10539 else
10540 {
a16385dc
MM
10541 int symbol;
10542
5e681ec4 10543 /* This symbol is local, or marked to become local. */
e8b09b87
CL
10544 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI
10545 || (globals->fdpic_p && !bfd_link_pic(info)));
a16385dc 10546 if (globals->symbian_p)
6366ff1e 10547 {
74541ad4
AM
10548 asection *osec;
10549
6366ff1e
MM
10550 /* On Symbian OS, the data segment and text segement
10551 can be relocated independently. Therefore, we
10552 must indicate the segment to which this
10553 relocation is relative. The BPABI allows us to
10554 use any symbol in the right segment; we just use
10555 the section symbol as it is convenient. (We
10556 cannot use the symbol given by "h" directly as it
74541ad4
AM
10557 will not appear in the dynamic symbol table.)
10558
10559 Note that the dynamic linker ignores the section
10560 symbol value, so we don't subtract osec->vma
10561 from the emitted reloc addend. */
10dbd1f3 10562 if (sym_sec)
74541ad4 10563 osec = sym_sec->output_section;
10dbd1f3 10564 else
74541ad4
AM
10565 osec = input_section->output_section;
10566 symbol = elf_section_data (osec)->dynindx;
10567 if (symbol == 0)
10568 {
10569 struct elf_link_hash_table *htab = elf_hash_table (info);
10570
10571 if ((osec->flags & SEC_READONLY) == 0
10572 && htab->data_index_section != NULL)
10573 osec = htab->data_index_section;
10574 else
10575 osec = htab->text_index_section;
10576 symbol = elf_section_data (osec)->dynindx;
10577 }
6366ff1e
MM
10578 BFD_ASSERT (symbol != 0);
10579 }
a16385dc
MM
10580 else
10581 /* On SVR4-ish systems, the dynamic loader cannot
10582 relocate the text and data segments independently,
10583 so the symbol does not matter. */
10584 symbol = 0;
34e77a92
RS
10585 if (dynreloc_st_type == STT_GNU_IFUNC)
10586 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
10587 to the .iplt entry. Instead, every non-call reference
10588 must use an R_ARM_IRELATIVE relocation to obtain the
10589 correct run-time address. */
10590 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
e8b09b87
CL
10591 else if (globals->fdpic_p && !bfd_link_pic(info))
10592 isrofixup = 1;
34e77a92
RS
10593 else
10594 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
00a97672
RS
10595 if (globals->use_rel)
10596 relocate = TRUE;
10597 else
34e77a92 10598 outrel.r_addend += dynreloc_value;
252b5132 10599 }
f21f3fe0 10600
e8b09b87
CL
10601 if (isrofixup)
10602 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset);
10603 else
10604 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
9a5aca8c 10605
f21f3fe0 10606 /* If this reloc is against an external symbol, we do not want to
252b5132 10607 fiddle with the addend. Otherwise, we need to include the symbol
9b485d32 10608 value so that it becomes an addend for the dynamic reloc. */
252b5132
RH
10609 if (! relocate)
10610 return bfd_reloc_ok;
9a5aca8c 10611
f21f3fe0 10612 return _bfd_final_link_relocate (howto, input_bfd, input_section,
34e77a92
RS
10613 contents, rel->r_offset,
10614 dynreloc_value, (bfd_vma) 0);
252b5132
RH
10615 }
10616 else switch (r_type)
10617 {
00a97672
RS
10618 case R_ARM_ABS12:
10619 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10620
dfc5f959 10621 case R_ARM_XPC25: /* Arm BLX instruction. */
5b5bb741
PB
10622 case R_ARM_CALL:
10623 case R_ARM_JUMP24:
8029a119 10624 case R_ARM_PC24: /* Arm B/BL instruction. */
7359ea65 10625 case R_ARM_PLT32:
906e58ca 10626 {
906e58ca
NC
10627 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
10628
dfc5f959 10629 if (r_type == R_ARM_XPC25)
252b5132 10630 {
dfc5f959
NC
10631 /* Check for Arm calling Arm function. */
10632 /* FIXME: Should we translate the instruction into a BL
10633 instruction instead ? */
35fc36a8 10634 if (branch_type != ST_BRANCH_TO_THUMB)
4eca0228 10635 _bfd_error_handler
90b6238f
AM
10636 (_("\%pB: warning: %s BLX instruction targets"
10637 " %s function '%s'"),
10638 input_bfd, "ARM",
10639 "ARM", h ? h->root.root.string : "(local)");
dfc5f959 10640 }
155d87d7 10641 else if (r_type == R_ARM_PC24)
dfc5f959
NC
10642 {
10643 /* Check for Arm calling Thumb function. */
35fc36a8 10644 if (branch_type == ST_BRANCH_TO_THUMB)
dfc5f959 10645 {
f2a9dd69
DJ
10646 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
10647 output_bfd, input_section,
10648 hit_data, sym_sec, rel->r_offset,
10649 signed_addend, value,
10650 error_message))
10651 return bfd_reloc_ok;
10652 else
10653 return bfd_reloc_dangerous;
dfc5f959 10654 }
252b5132 10655 }
ba96a88f 10656
906e58ca 10657 /* Check if a stub has to be inserted because the
8029a119 10658 destination is too far or we are changing mode. */
155d87d7
CL
10659 if ( r_type == R_ARM_CALL
10660 || r_type == R_ARM_JUMP24
10661 || r_type == R_ARM_PLT32)
906e58ca 10662 {
fe33d2fa
CL
10663 enum elf32_arm_stub_type stub_type = arm_stub_none;
10664 struct elf32_arm_link_hash_entry *hash;
10665
10666 hash = (struct elf32_arm_link_hash_entry *) h;
10667 stub_type = arm_type_of_stub (info, input_section, rel,
34e77a92
RS
10668 st_type, &branch_type,
10669 hash, value, sym_sec,
fe33d2fa 10670 input_bfd, sym_name);
5fa9e92f 10671
fe33d2fa 10672 if (stub_type != arm_stub_none)
906e58ca
NC
10673 {
10674 /* The target is out of reach, so redirect the
10675 branch to the local stub for this function. */
906e58ca
NC
10676 stub_entry = elf32_arm_get_stub_entry (input_section,
10677 sym_sec, h,
fe33d2fa
CL
10678 rel, globals,
10679 stub_type);
9cd3e4e5
NC
10680 {
10681 if (stub_entry != NULL)
10682 value = (stub_entry->stub_offset
10683 + stub_entry->stub_sec->output_offset
10684 + stub_entry->stub_sec->output_section->vma);
10685
10686 if (plt_offset != (bfd_vma) -1)
10687 *unresolved_reloc_p = FALSE;
10688 }
906e58ca 10689 }
fe33d2fa
CL
10690 else
10691 {
10692 /* If the call goes through a PLT entry, make sure to
10693 check distance to the right destination address. */
34e77a92 10694 if (plt_offset != (bfd_vma) -1)
fe33d2fa
CL
10695 {
10696 value = (splt->output_section->vma
10697 + splt->output_offset
34e77a92 10698 + plt_offset);
fe33d2fa
CL
10699 *unresolved_reloc_p = FALSE;
10700 /* The PLT entry is in ARM mode, regardless of the
10701 target function. */
35fc36a8 10702 branch_type = ST_BRANCH_TO_ARM;
fe33d2fa
CL
10703 }
10704 }
906e58ca
NC
10705 }
10706
dea514f5
PB
10707 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
10708 where:
10709 S is the address of the symbol in the relocation.
10710 P is address of the instruction being relocated.
10711 A is the addend (extracted from the instruction) in bytes.
10712
10713 S is held in 'value'.
10714 P is the base address of the section containing the
10715 instruction plus the offset of the reloc into that
10716 section, ie:
10717 (input_section->output_section->vma +
10718 input_section->output_offset +
10719 rel->r_offset).
10720 A is the addend, converted into bytes, ie:
10721 (signed_addend * 4)
10722
10723 Note: None of these operations have knowledge of the pipeline
10724 size of the processor, thus it is up to the assembler to
10725 encode this information into the addend. */
10726 value -= (input_section->output_section->vma
10727 + input_section->output_offset);
10728 value -= rel->r_offset;
4e7fd91e
PB
10729 if (globals->use_rel)
10730 value += (signed_addend << howto->size);
10731 else
10732 /* RELA addends do not have to be adjusted by howto->size. */
10733 value += signed_addend;
23080146 10734
dcb5e6e6
NC
10735 signed_addend = value;
10736 signed_addend >>= howto->rightshift;
9a5aca8c 10737
5ab79981 10738 /* A branch to an undefined weak symbol is turned into a jump to
ffcb4889 10739 the next instruction unless a PLT entry will be created.
77b4f08f 10740 Do the same for local undefined symbols (but not for STN_UNDEF).
cd1dac3d
DG
10741 The jump to the next instruction is optimized as a NOP depending
10742 on the architecture. */
ffcb4889 10743 if (h ? (h->root.type == bfd_link_hash_undefweak
34e77a92 10744 && plt_offset == (bfd_vma) -1)
77b4f08f 10745 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
5ab79981 10746 {
cd1dac3d
DG
10747 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
10748
10749 if (arch_has_arm_nop (globals))
10750 value |= 0x0320f000;
10751 else
10752 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
5ab79981
PB
10753 }
10754 else
59f2c4e7 10755 {
9b485d32 10756 /* Perform a signed range check. */
dcb5e6e6 10757 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
59f2c4e7
NC
10758 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
10759 return bfd_reloc_overflow;
9a5aca8c 10760
5ab79981 10761 addend = (value & 2);
39b41c9c 10762
5ab79981
PB
10763 value = (signed_addend & howto->dst_mask)
10764 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
39b41c9c 10765
5ab79981
PB
10766 if (r_type == R_ARM_CALL)
10767 {
155d87d7 10768 /* Set the H bit in the BLX instruction. */
35fc36a8 10769 if (branch_type == ST_BRANCH_TO_THUMB)
155d87d7
CL
10770 {
10771 if (addend)
10772 value |= (1 << 24);
10773 else
10774 value &= ~(bfd_vma)(1 << 24);
10775 }
10776
5ab79981 10777 /* Select the correct instruction (BL or BLX). */
906e58ca 10778 /* Only if we are not handling a BL to a stub. In this
8029a119 10779 case, mode switching is performed by the stub. */
35fc36a8 10780 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
5ab79981 10781 value |= (1 << 28);
63e1a0fc 10782 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
5ab79981
PB
10783 {
10784 value &= ~(bfd_vma)(1 << 28);
10785 value |= (1 << 24);
10786 }
39b41c9c
PB
10787 }
10788 }
906e58ca 10789 }
252b5132 10790 break;
f21f3fe0 10791
252b5132
RH
10792 case R_ARM_ABS32:
10793 value += addend;
35fc36a8 10794 if (branch_type == ST_BRANCH_TO_THUMB)
252b5132
RH
10795 value |= 1;
10796 break;
f21f3fe0 10797
bb224fc3
MS
10798 case R_ARM_ABS32_NOI:
10799 value += addend;
10800 break;
10801
252b5132 10802 case R_ARM_REL32:
a8bc6c78 10803 value += addend;
35fc36a8 10804 if (branch_type == ST_BRANCH_TO_THUMB)
a8bc6c78 10805 value |= 1;
252b5132 10806 value -= (input_section->output_section->vma
62efb346 10807 + input_section->output_offset + rel->r_offset);
252b5132 10808 break;
eb043451 10809
bb224fc3
MS
10810 case R_ARM_REL32_NOI:
10811 value += addend;
10812 value -= (input_section->output_section->vma
10813 + input_section->output_offset + rel->r_offset);
10814 break;
10815
eb043451
PB
10816 case R_ARM_PREL31:
10817 value -= (input_section->output_section->vma
10818 + input_section->output_offset + rel->r_offset);
10819 value += signed_addend;
10820 if (! h || h->root.type != bfd_link_hash_undefweak)
10821 {
8029a119 10822 /* Check for overflow. */
eb043451
PB
10823 if ((value ^ (value >> 1)) & (1 << 30))
10824 return bfd_reloc_overflow;
10825 }
10826 value &= 0x7fffffff;
10827 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
35fc36a8 10828 if (branch_type == ST_BRANCH_TO_THUMB)
eb043451
PB
10829 value |= 1;
10830 break;
252b5132 10831 }
f21f3fe0 10832
252b5132
RH
10833 bfd_put_32 (input_bfd, value, hit_data);
10834 return bfd_reloc_ok;
10835
10836 case R_ARM_ABS8:
fd0fd00c
MJ
10837 /* PR 16202: Refectch the addend using the correct size. */
10838 if (globals->use_rel)
10839 addend = bfd_get_8 (input_bfd, hit_data);
252b5132 10840 value += addend;
4e67d4ca
DG
10841
10842 /* There is no way to tell whether the user intended to use a signed or
10843 unsigned addend. When checking for overflow we accept either,
10844 as specified by the AAELF. */
10845 if ((long) value > 0xff || (long) value < -0x80)
252b5132
RH
10846 return bfd_reloc_overflow;
10847
10848 bfd_put_8 (input_bfd, value, hit_data);
10849 return bfd_reloc_ok;
10850
10851 case R_ARM_ABS16:
fd0fd00c
MJ
10852 /* PR 16202: Refectch the addend using the correct size. */
10853 if (globals->use_rel)
10854 addend = bfd_get_16 (input_bfd, hit_data);
252b5132
RH
10855 value += addend;
10856
4e67d4ca
DG
10857 /* See comment for R_ARM_ABS8. */
10858 if ((long) value > 0xffff || (long) value < -0x8000)
252b5132
RH
10859 return bfd_reloc_overflow;
10860
10861 bfd_put_16 (input_bfd, value, hit_data);
10862 return bfd_reloc_ok;
10863
252b5132 10864 case R_ARM_THM_ABS5:
9b485d32 10865 /* Support ldr and str instructions for the thumb. */
4e7fd91e
PB
10866 if (globals->use_rel)
10867 {
10868 /* Need to refetch addend. */
10869 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
10870 /* ??? Need to determine shift amount from operand size. */
10871 addend >>= howto->rightshift;
10872 }
252b5132
RH
10873 value += addend;
10874
10875 /* ??? Isn't value unsigned? */
10876 if ((long) value > 0x1f || (long) value < -0x10)
10877 return bfd_reloc_overflow;
10878
10879 /* ??? Value needs to be properly shifted into place first. */
10880 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
10881 bfd_put_16 (input_bfd, value, hit_data);
10882 return bfd_reloc_ok;
10883
2cab6cc3
MS
10884 case R_ARM_THM_ALU_PREL_11_0:
10885 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
10886 {
10887 bfd_vma insn;
10888 bfd_signed_vma relocation;
10889
10890 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
99059e56 10891 | bfd_get_16 (input_bfd, hit_data + 2);
2cab6cc3 10892
99059e56
RM
10893 if (globals->use_rel)
10894 {
10895 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
10896 | ((insn & (1 << 26)) >> 15);
10897 if (insn & 0xf00000)
10898 signed_addend = -signed_addend;
10899 }
2cab6cc3
MS
10900
10901 relocation = value + signed_addend;
79f08007 10902 relocation -= Pa (input_section->output_section->vma
99059e56
RM
10903 + input_section->output_offset
10904 + rel->r_offset);
2cab6cc3 10905
8c65b54f
CS
10906 /* PR 21523: Use an absolute value. The user of this reloc will
10907 have already selected an ADD or SUB insn appropriately. */
e652757b 10908 value = labs (relocation);
2cab6cc3 10909
99059e56
RM
10910 if (value >= 0x1000)
10911 return bfd_reloc_overflow;
2cab6cc3 10912
e645cf40
AG
10913 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
10914 if (branch_type == ST_BRANCH_TO_THUMB)
10915 value |= 1;
10916
2cab6cc3 10917 insn = (insn & 0xfb0f8f00) | (value & 0xff)
99059e56
RM
10918 | ((value & 0x700) << 4)
10919 | ((value & 0x800) << 15);
10920 if (relocation < 0)
10921 insn |= 0xa00000;
2cab6cc3
MS
10922
10923 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10924 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10925
99059e56 10926 return bfd_reloc_ok;
2cab6cc3
MS
10927 }
10928
e1ec24c6
NC
10929 case R_ARM_THM_PC8:
10930 /* PR 10073: This reloc is not generated by the GNU toolchain,
10931 but it is supported for compatibility with third party libraries
10932 generated by other compilers, specifically the ARM/IAR. */
10933 {
10934 bfd_vma insn;
10935 bfd_signed_vma relocation;
10936
10937 insn = bfd_get_16 (input_bfd, hit_data);
10938
99059e56 10939 if (globals->use_rel)
79f08007 10940 addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4;
e1ec24c6
NC
10941
10942 relocation = value + addend;
79f08007 10943 relocation -= Pa (input_section->output_section->vma
99059e56
RM
10944 + input_section->output_offset
10945 + rel->r_offset);
e1ec24c6 10946
b6518b38 10947 value = relocation;
e1ec24c6
NC
10948
10949 /* We do not check for overflow of this reloc. Although strictly
10950 speaking this is incorrect, it appears to be necessary in order
10951 to work with IAR generated relocs. Since GCC and GAS do not
10952 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
10953 a problem for them. */
10954 value &= 0x3fc;
10955
10956 insn = (insn & 0xff00) | (value >> 2);
10957
10958 bfd_put_16 (input_bfd, insn, hit_data);
10959
99059e56 10960 return bfd_reloc_ok;
e1ec24c6
NC
10961 }
10962
2cab6cc3
MS
10963 case R_ARM_THM_PC12:
10964 /* Corresponds to: ldr.w reg, [pc, #offset]. */
10965 {
10966 bfd_vma insn;
10967 bfd_signed_vma relocation;
10968
10969 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
99059e56 10970 | bfd_get_16 (input_bfd, hit_data + 2);
2cab6cc3 10971
99059e56
RM
10972 if (globals->use_rel)
10973 {
10974 signed_addend = insn & 0xfff;
10975 if (!(insn & (1 << 23)))
10976 signed_addend = -signed_addend;
10977 }
2cab6cc3
MS
10978
10979 relocation = value + signed_addend;
79f08007 10980 relocation -= Pa (input_section->output_section->vma
99059e56
RM
10981 + input_section->output_offset
10982 + rel->r_offset);
2cab6cc3 10983
b6518b38 10984 value = relocation;
2cab6cc3 10985
99059e56
RM
10986 if (value >= 0x1000)
10987 return bfd_reloc_overflow;
2cab6cc3
MS
10988
10989 insn = (insn & 0xff7ff000) | value;
99059e56
RM
10990 if (relocation >= 0)
10991 insn |= (1 << 23);
2cab6cc3
MS
10992
10993 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10994 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10995
99059e56 10996 return bfd_reloc_ok;
2cab6cc3
MS
10997 }
10998
dfc5f959 10999 case R_ARM_THM_XPC22:
c19d1205 11000 case R_ARM_THM_CALL:
bd97cb95 11001 case R_ARM_THM_JUMP24:
dfc5f959 11002 /* Thumb BL (branch long instruction). */
252b5132 11003 {
b34976b6 11004 bfd_vma relocation;
99059e56 11005 bfd_vma reloc_sign;
b34976b6
AM
11006 bfd_boolean overflow = FALSE;
11007 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
11008 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
e95de063
MS
11009 bfd_signed_vma reloc_signed_max;
11010 bfd_signed_vma reloc_signed_min;
b34976b6 11011 bfd_vma check;
252b5132 11012 bfd_signed_vma signed_check;
e95de063 11013 int bitsize;
cd1dac3d 11014 const int thumb2 = using_thumb2 (globals);
5e866f5a 11015 const int thumb2_bl = using_thumb2_bl (globals);
252b5132 11016
5ab79981 11017 /* A branch to an undefined weak symbol is turned into a jump to
cd1dac3d
DG
11018 the next instruction unless a PLT entry will be created.
11019 The jump to the next instruction is optimized as a NOP.W for
11020 Thumb-2 enabled architectures. */
19540007 11021 if (h && h->root.type == bfd_link_hash_undefweak
34e77a92 11022 && plt_offset == (bfd_vma) -1)
5ab79981 11023 {
60a019a0 11024 if (thumb2)
cd1dac3d
DG
11025 {
11026 bfd_put_16 (input_bfd, 0xf3af, hit_data);
11027 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
11028 }
11029 else
11030 {
11031 bfd_put_16 (input_bfd, 0xe000, hit_data);
11032 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
11033 }
5ab79981
PB
11034 return bfd_reloc_ok;
11035 }
11036
e95de063 11037 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
99059e56 11038 with Thumb-1) involving the J1 and J2 bits. */
4e7fd91e
PB
11039 if (globals->use_rel)
11040 {
99059e56
RM
11041 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
11042 bfd_vma upper = upper_insn & 0x3ff;
11043 bfd_vma lower = lower_insn & 0x7ff;
e95de063
MS
11044 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
11045 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
99059e56
RM
11046 bfd_vma i1 = j1 ^ s ? 0 : 1;
11047 bfd_vma i2 = j2 ^ s ? 0 : 1;
e95de063 11048
99059e56
RM
11049 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
11050 /* Sign extend. */
11051 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
e95de063 11052
4e7fd91e
PB
11053 signed_addend = addend;
11054 }
cb1afa5c 11055
dfc5f959
NC
11056 if (r_type == R_ARM_THM_XPC22)
11057 {
11058 /* Check for Thumb to Thumb call. */
11059 /* FIXME: Should we translate the instruction into a BL
11060 instruction instead ? */
35fc36a8 11061 if (branch_type == ST_BRANCH_TO_THUMB)
4eca0228 11062 _bfd_error_handler
90b6238f
AM
11063 (_("%pB: warning: %s BLX instruction targets"
11064 " %s function '%s'"),
11065 input_bfd, "Thumb",
11066 "Thumb", h ? h->root.root.string : "(local)");
dfc5f959
NC
11067 }
11068 else
252b5132 11069 {
dfc5f959
NC
11070 /* If it is not a call to Thumb, assume call to Arm.
11071 If it is a call relative to a section name, then it is not a
b7693d02
DJ
11072 function call at all, but rather a long jump. Calls through
11073 the PLT do not require stubs. */
34e77a92 11074 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
dfc5f959 11075 {
bd97cb95 11076 if (globals->use_blx && r_type == R_ARM_THM_CALL)
39b41c9c
PB
11077 {
11078 /* Convert BL to BLX. */
11079 lower_insn = (lower_insn & ~0x1000) | 0x0800;
11080 }
155d87d7
CL
11081 else if (( r_type != R_ARM_THM_CALL)
11082 && (r_type != R_ARM_THM_JUMP24))
8029a119
NC
11083 {
11084 if (elf32_thumb_to_arm_stub
11085 (info, sym_name, input_bfd, output_bfd, input_section,
11086 hit_data, sym_sec, rel->r_offset, signed_addend, value,
11087 error_message))
11088 return bfd_reloc_ok;
11089 else
11090 return bfd_reloc_dangerous;
11091 }
da5938a2 11092 }
35fc36a8
RS
11093 else if (branch_type == ST_BRANCH_TO_THUMB
11094 && globals->use_blx
bd97cb95 11095 && r_type == R_ARM_THM_CALL)
39b41c9c
PB
11096 {
11097 /* Make sure this is a BL. */
11098 lower_insn |= 0x1800;
11099 }
252b5132 11100 }
f21f3fe0 11101
fe33d2fa 11102 enum elf32_arm_stub_type stub_type = arm_stub_none;
155d87d7 11103 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
906e58ca
NC
11104 {
11105 /* Check if a stub has to be inserted because the destination
8029a119 11106 is too far. */
fe33d2fa
CL
11107 struct elf32_arm_stub_hash_entry *stub_entry;
11108 struct elf32_arm_link_hash_entry *hash;
11109
11110 hash = (struct elf32_arm_link_hash_entry *) h;
11111
11112 stub_type = arm_type_of_stub (info, input_section, rel,
34e77a92
RS
11113 st_type, &branch_type,
11114 hash, value, sym_sec,
fe33d2fa
CL
11115 input_bfd, sym_name);
11116
11117 if (stub_type != arm_stub_none)
906e58ca
NC
11118 {
11119 /* The target is out of reach or we are changing modes, so
11120 redirect the branch to the local stub for this
11121 function. */
11122 stub_entry = elf32_arm_get_stub_entry (input_section,
11123 sym_sec, h,
fe33d2fa
CL
11124 rel, globals,
11125 stub_type);
906e58ca 11126 if (stub_entry != NULL)
9cd3e4e5
NC
11127 {
11128 value = (stub_entry->stub_offset
11129 + stub_entry->stub_sec->output_offset
11130 + stub_entry->stub_sec->output_section->vma);
11131
11132 if (plt_offset != (bfd_vma) -1)
11133 *unresolved_reloc_p = FALSE;
11134 }
906e58ca 11135
f4ac8484 11136 /* If this call becomes a call to Arm, force BLX. */
155d87d7 11137 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
f4ac8484
DJ
11138 {
11139 if ((stub_entry
11140 && !arm_stub_is_thumb (stub_entry->stub_type))
35fc36a8 11141 || branch_type != ST_BRANCH_TO_THUMB)
f4ac8484
DJ
11142 lower_insn = (lower_insn & ~0x1000) | 0x0800;
11143 }
906e58ca
NC
11144 }
11145 }
11146
fe33d2fa 11147 /* Handle calls via the PLT. */
34e77a92 11148 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
fe33d2fa
CL
11149 {
11150 value = (splt->output_section->vma
11151 + splt->output_offset
34e77a92 11152 + plt_offset);
fe33d2fa 11153
eed94f8f
NC
11154 if (globals->use_blx
11155 && r_type == R_ARM_THM_CALL
11156 && ! using_thumb_only (globals))
fe33d2fa
CL
11157 {
11158 /* If the Thumb BLX instruction is available, convert
11159 the BL to a BLX instruction to call the ARM-mode
11160 PLT entry. */
11161 lower_insn = (lower_insn & ~0x1000) | 0x0800;
35fc36a8 11162 branch_type = ST_BRANCH_TO_ARM;
fe33d2fa
CL
11163 }
11164 else
11165 {
eed94f8f
NC
11166 if (! using_thumb_only (globals))
11167 /* Target the Thumb stub before the ARM PLT entry. */
11168 value -= PLT_THUMB_STUB_SIZE;
35fc36a8 11169 branch_type = ST_BRANCH_TO_THUMB;
fe33d2fa
CL
11170 }
11171 *unresolved_reloc_p = FALSE;
11172 }
11173
ba96a88f 11174 relocation = value + signed_addend;
f21f3fe0 11175
252b5132 11176 relocation -= (input_section->output_section->vma
ba96a88f
NC
11177 + input_section->output_offset
11178 + rel->r_offset);
9a5aca8c 11179
252b5132
RH
11180 check = relocation >> howto->rightshift;
11181
11182 /* If this is a signed value, the rightshift just dropped
11183 leading 1 bits (assuming twos complement). */
11184 if ((bfd_signed_vma) relocation >= 0)
11185 signed_check = check;
11186 else
11187 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
11188
e95de063
MS
11189 /* Calculate the permissable maximum and minimum values for
11190 this relocation according to whether we're relocating for
11191 Thumb-2 or not. */
11192 bitsize = howto->bitsize;
5e866f5a 11193 if (!thumb2_bl)
e95de063 11194 bitsize -= 2;
f6ebfac0 11195 reloc_signed_max = (1 << (bitsize - 1)) - 1;
e95de063
MS
11196 reloc_signed_min = ~reloc_signed_max;
11197
252b5132 11198 /* Assumes two's complement. */
ba96a88f 11199 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
b34976b6 11200 overflow = TRUE;
252b5132 11201
bd97cb95 11202 if ((lower_insn & 0x5000) == 0x4000)
c62e1cc3
NC
11203 /* For a BLX instruction, make sure that the relocation is rounded up
11204 to a word boundary. This follows the semantics of the instruction
11205 which specifies that bit 1 of the target address will come from bit
11206 1 of the base address. */
11207 relocation = (relocation + 2) & ~ 3;
cb1afa5c 11208
e95de063
MS
11209 /* Put RELOCATION back into the insn. Assumes two's complement.
11210 We use the Thumb-2 encoding, which is safe even if dealing with
11211 a Thumb-1 instruction by virtue of our overflow check above. */
99059e56 11212 reloc_sign = (signed_check < 0) ? 1 : 0;
e95de063 11213 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
99059e56
RM
11214 | ((relocation >> 12) & 0x3ff)
11215 | (reloc_sign << 10);
906e58ca 11216 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
99059e56
RM
11217 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
11218 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
11219 | ((relocation >> 1) & 0x7ff);
c62e1cc3 11220
252b5132
RH
11221 /* Put the relocated value back in the object file: */
11222 bfd_put_16 (input_bfd, upper_insn, hit_data);
11223 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11224
11225 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
11226 }
11227 break;
11228
c19d1205
ZW
11229 case R_ARM_THM_JUMP19:
11230 /* Thumb32 conditional branch instruction. */
11231 {
11232 bfd_vma relocation;
11233 bfd_boolean overflow = FALSE;
11234 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
11235 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
a00a1f35
MS
11236 bfd_signed_vma reloc_signed_max = 0xffffe;
11237 bfd_signed_vma reloc_signed_min = -0x100000;
c19d1205 11238 bfd_signed_vma signed_check;
07d6d2b8 11239 enum elf32_arm_stub_type stub_type = arm_stub_none;
c5423981
TG
11240 struct elf32_arm_stub_hash_entry *stub_entry;
11241 struct elf32_arm_link_hash_entry *hash;
c19d1205
ZW
11242
11243 /* Need to refetch the addend, reconstruct the top three bits,
11244 and squish the two 11 bit pieces together. */
11245 if (globals->use_rel)
11246 {
11247 bfd_vma S = (upper_insn & 0x0400) >> 10;
a00a1f35 11248 bfd_vma upper = (upper_insn & 0x003f);
c19d1205
ZW
11249 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
11250 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
11251 bfd_vma lower = (lower_insn & 0x07ff);
11252
a00a1f35
MS
11253 upper |= J1 << 6;
11254 upper |= J2 << 7;
11255 upper |= (!S) << 8;
c19d1205
ZW
11256 upper -= 0x0100; /* Sign extend. */
11257
11258 addend = (upper << 12) | (lower << 1);
11259 signed_addend = addend;
11260 }
11261
bd97cb95 11262 /* Handle calls via the PLT. */
34e77a92 11263 if (plt_offset != (bfd_vma) -1)
bd97cb95
DJ
11264 {
11265 value = (splt->output_section->vma
11266 + splt->output_offset
34e77a92 11267 + plt_offset);
bd97cb95
DJ
11268 /* Target the Thumb stub before the ARM PLT entry. */
11269 value -= PLT_THUMB_STUB_SIZE;
11270 *unresolved_reloc_p = FALSE;
11271 }
11272
c5423981
TG
11273 hash = (struct elf32_arm_link_hash_entry *)h;
11274
11275 stub_type = arm_type_of_stub (info, input_section, rel,
07d6d2b8
AM
11276 st_type, &branch_type,
11277 hash, value, sym_sec,
11278 input_bfd, sym_name);
c5423981
TG
11279 if (stub_type != arm_stub_none)
11280 {
11281 stub_entry = elf32_arm_get_stub_entry (input_section,
07d6d2b8
AM
11282 sym_sec, h,
11283 rel, globals,
11284 stub_type);
c5423981
TG
11285 if (stub_entry != NULL)
11286 {
07d6d2b8
AM
11287 value = (stub_entry->stub_offset
11288 + stub_entry->stub_sec->output_offset
11289 + stub_entry->stub_sec->output_section->vma);
c5423981
TG
11290 }
11291 }
c19d1205 11292
99059e56 11293 relocation = value + signed_addend;
c19d1205
ZW
11294 relocation -= (input_section->output_section->vma
11295 + input_section->output_offset
11296 + rel->r_offset);
a00a1f35 11297 signed_check = (bfd_signed_vma) relocation;
c19d1205 11298
c19d1205
ZW
11299 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
11300 overflow = TRUE;
11301
11302 /* Put RELOCATION back into the insn. */
11303 {
11304 bfd_vma S = (relocation & 0x00100000) >> 20;
11305 bfd_vma J2 = (relocation & 0x00080000) >> 19;
11306 bfd_vma J1 = (relocation & 0x00040000) >> 18;
11307 bfd_vma hi = (relocation & 0x0003f000) >> 12;
11308 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
11309
a00a1f35 11310 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
c19d1205
ZW
11311 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
11312 }
11313
11314 /* Put the relocated value back in the object file: */
11315 bfd_put_16 (input_bfd, upper_insn, hit_data);
11316 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11317
11318 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
11319 }
11320
11321 case R_ARM_THM_JUMP11:
11322 case R_ARM_THM_JUMP8:
11323 case R_ARM_THM_JUMP6:
51c5503b
NC
11324 /* Thumb B (branch) instruction). */
11325 {
6cf9e9fe 11326 bfd_signed_vma relocation;
51c5503b
NC
11327 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
11328 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
51c5503b
NC
11329 bfd_signed_vma signed_check;
11330
c19d1205
ZW
11331 /* CZB cannot jump backward. */
11332 if (r_type == R_ARM_THM_JUMP6)
11333 reloc_signed_min = 0;
11334
4e7fd91e 11335 if (globals->use_rel)
6cf9e9fe 11336 {
4e7fd91e
PB
11337 /* Need to refetch addend. */
11338 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
11339 if (addend & ((howto->src_mask + 1) >> 1))
11340 {
11341 signed_addend = -1;
11342 signed_addend &= ~ howto->src_mask;
11343 signed_addend |= addend;
11344 }
11345 else
11346 signed_addend = addend;
11347 /* The value in the insn has been right shifted. We need to
11348 undo this, so that we can perform the address calculation
11349 in terms of bytes. */
11350 signed_addend <<= howto->rightshift;
6cf9e9fe 11351 }
6cf9e9fe 11352 relocation = value + signed_addend;
51c5503b
NC
11353
11354 relocation -= (input_section->output_section->vma
11355 + input_section->output_offset
11356 + rel->r_offset);
11357
6cf9e9fe
NC
11358 relocation >>= howto->rightshift;
11359 signed_check = relocation;
c19d1205
ZW
11360
11361 if (r_type == R_ARM_THM_JUMP6)
11362 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
11363 else
11364 relocation &= howto->dst_mask;
51c5503b 11365 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
cedb70c5 11366
51c5503b
NC
11367 bfd_put_16 (input_bfd, relocation, hit_data);
11368
11369 /* Assumes two's complement. */
11370 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
11371 return bfd_reloc_overflow;
11372
11373 return bfd_reloc_ok;
11374 }
cedb70c5 11375
8375c36b
PB
11376 case R_ARM_ALU_PCREL7_0:
11377 case R_ARM_ALU_PCREL15_8:
11378 case R_ARM_ALU_PCREL23_15:
11379 {
11380 bfd_vma insn;
11381 bfd_vma relocation;
11382
11383 insn = bfd_get_32 (input_bfd, hit_data);
4e7fd91e
PB
11384 if (globals->use_rel)
11385 {
11386 /* Extract the addend. */
11387 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
11388 signed_addend = addend;
11389 }
8375c36b
PB
11390 relocation = value + signed_addend;
11391
11392 relocation -= (input_section->output_section->vma
11393 + input_section->output_offset
11394 + rel->r_offset);
11395 insn = (insn & ~0xfff)
11396 | ((howto->bitpos << 7) & 0xf00)
11397 | ((relocation >> howto->bitpos) & 0xff);
11398 bfd_put_32 (input_bfd, value, hit_data);
11399 }
11400 return bfd_reloc_ok;
11401
252b5132
RH
11402 case R_ARM_GNU_VTINHERIT:
11403 case R_ARM_GNU_VTENTRY:
11404 return bfd_reloc_ok;
11405
c19d1205 11406 case R_ARM_GOTOFF32:
252b5132 11407 /* Relocation is relative to the start of the
99059e56 11408 global offset table. */
252b5132
RH
11409
11410 BFD_ASSERT (sgot != NULL);
11411 if (sgot == NULL)
99059e56 11412 return bfd_reloc_notsupported;
9a5aca8c 11413
cedb70c5 11414 /* If we are addressing a Thumb function, we need to adjust the
ee29b9fb
RE
11415 address by one, so that attempts to call the function pointer will
11416 correctly interpret it as Thumb code. */
35fc36a8 11417 if (branch_type == ST_BRANCH_TO_THUMB)
ee29b9fb
RE
11418 value += 1;
11419
252b5132 11420 /* Note that sgot->output_offset is not involved in this
99059e56
RM
11421 calculation. We always want the start of .got. If we
11422 define _GLOBAL_OFFSET_TABLE in a different way, as is
11423 permitted by the ABI, we might have to change this
11424 calculation. */
252b5132 11425 value -= sgot->output_section->vma;
f21f3fe0 11426 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 11427 contents, rel->r_offset, value,
00a97672 11428 rel->r_addend);
252b5132
RH
11429
11430 case R_ARM_GOTPC:
a7c10850 11431 /* Use global offset table as symbol value. */
252b5132 11432 BFD_ASSERT (sgot != NULL);
f21f3fe0 11433
252b5132 11434 if (sgot == NULL)
99059e56 11435 return bfd_reloc_notsupported;
252b5132 11436
0945cdfd 11437 *unresolved_reloc_p = FALSE;
252b5132 11438 value = sgot->output_section->vma;
f21f3fe0 11439 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 11440 contents, rel->r_offset, value,
00a97672 11441 rel->r_addend);
f21f3fe0 11442
252b5132 11443 case R_ARM_GOT32:
eb043451 11444 case R_ARM_GOT_PREL:
252b5132 11445 /* Relocation is to the entry for this symbol in the
99059e56 11446 global offset table. */
252b5132
RH
11447 if (sgot == NULL)
11448 return bfd_reloc_notsupported;
f21f3fe0 11449
34e77a92
RS
11450 if (dynreloc_st_type == STT_GNU_IFUNC
11451 && plt_offset != (bfd_vma) -1
11452 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
11453 {
11454 /* We have a relocation against a locally-binding STT_GNU_IFUNC
11455 symbol, and the relocation resolves directly to the runtime
11456 target rather than to the .iplt entry. This means that any
11457 .got entry would be the same value as the .igot.plt entry,
11458 so there's no point creating both. */
11459 sgot = globals->root.igotplt;
11460 value = sgot->output_offset + gotplt_offset;
11461 }
11462 else if (h != NULL)
252b5132
RH
11463 {
11464 bfd_vma off;
f21f3fe0 11465
252b5132
RH
11466 off = h->got.offset;
11467 BFD_ASSERT (off != (bfd_vma) -1);
b436d854 11468 if ((off & 1) != 0)
252b5132 11469 {
b436d854
RS
11470 /* We have already processsed one GOT relocation against
11471 this symbol. */
11472 off &= ~1;
11473 if (globals->root.dynamic_sections_created
11474 && !SYMBOL_REFERENCES_LOCAL (info, h))
11475 *unresolved_reloc_p = FALSE;
11476 }
11477 else
11478 {
11479 Elf_Internal_Rela outrel;
e8b09b87 11480 int isrofixup = 0;
b436d854 11481
e8b09b87
CL
11482 if (((h->dynindx != -1) || globals->fdpic_p)
11483 && !SYMBOL_REFERENCES_LOCAL (info, h))
b436d854
RS
11484 {
11485 /* If the symbol doesn't resolve locally in a static
11486 object, we have an undefined reference. If the
11487 symbol doesn't resolve locally in a dynamic object,
11488 it should be resolved by the dynamic linker. */
11489 if (globals->root.dynamic_sections_created)
11490 {
11491 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
11492 *unresolved_reloc_p = FALSE;
11493 }
11494 else
11495 outrel.r_info = 0;
11496 outrel.r_addend = 0;
11497 }
252b5132
RH
11498 else
11499 {
34e77a92 11500 if (dynreloc_st_type == STT_GNU_IFUNC)
99059e56 11501 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
5025eb7c
AO
11502 else if (bfd_link_pic (info)
11503 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11504 || h->root.type != bfd_link_hash_undefweak))
99059e56
RM
11505 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11506 else
2376f038
EB
11507 {
11508 outrel.r_info = 0;
11509 if (globals->fdpic_p)
11510 isrofixup = 1;
11511 }
34e77a92 11512 outrel.r_addend = dynreloc_value;
b436d854 11513 }
ee29b9fb 11514
b436d854
RS
11515 /* The GOT entry is initialized to zero by default.
11516 See if we should install a different value. */
11517 if (outrel.r_addend != 0
2376f038 11518 && (globals->use_rel || outrel.r_info == 0))
b436d854
RS
11519 {
11520 bfd_put_32 (output_bfd, outrel.r_addend,
11521 sgot->contents + off);
11522 outrel.r_addend = 0;
252b5132 11523 }
f21f3fe0 11524
2376f038
EB
11525 if (isrofixup)
11526 arm_elf_add_rofixup (output_bfd,
11527 elf32_arm_hash_table(info)->srofixup,
11528 sgot->output_section->vma
11529 + sgot->output_offset + off);
11530
11531 else if (outrel.r_info != 0)
b436d854
RS
11532 {
11533 outrel.r_offset = (sgot->output_section->vma
11534 + sgot->output_offset
11535 + off);
11536 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11537 }
2376f038 11538
b436d854
RS
11539 h->got.offset |= 1;
11540 }
252b5132
RH
11541 value = sgot->output_offset + off;
11542 }
11543 else
11544 {
11545 bfd_vma off;
f21f3fe0 11546
5025eb7c
AO
11547 BFD_ASSERT (local_got_offsets != NULL
11548 && local_got_offsets[r_symndx] != (bfd_vma) -1);
f21f3fe0 11549
252b5132 11550 off = local_got_offsets[r_symndx];
f21f3fe0 11551
252b5132
RH
11552 /* The offset must always be a multiple of 4. We use the
11553 least significant bit to record whether we have already
9b485d32 11554 generated the necessary reloc. */
252b5132
RH
11555 if ((off & 1) != 0)
11556 off &= ~1;
11557 else
11558 {
2376f038
EB
11559 Elf_Internal_Rela outrel;
11560 int isrofixup = 0;
f21f3fe0 11561
2376f038
EB
11562 if (dynreloc_st_type == STT_GNU_IFUNC)
11563 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
11564 else if (bfd_link_pic (info))
11565 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11566 else
252b5132 11567 {
2376f038
EB
11568 outrel.r_info = 0;
11569 if (globals->fdpic_p)
11570 isrofixup = 1;
11571 }
11572
11573 /* The GOT entry is initialized to zero by default.
11574 See if we should install a different value. */
11575 if (globals->use_rel || outrel.r_info == 0)
11576 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
11577
11578 if (isrofixup)
11579 arm_elf_add_rofixup (output_bfd,
11580 globals->srofixup,
11581 sgot->output_section->vma
11582 + sgot->output_offset + off);
f21f3fe0 11583
2376f038
EB
11584 else if (outrel.r_info != 0)
11585 {
34e77a92 11586 outrel.r_addend = addend + dynreloc_value;
252b5132 11587 outrel.r_offset = (sgot->output_section->vma
f21f3fe0 11588 + sgot->output_offset
252b5132 11589 + off);
47beaa6a 11590 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
252b5132 11591 }
f21f3fe0 11592
252b5132
RH
11593 local_got_offsets[r_symndx] |= 1;
11594 }
f21f3fe0 11595
252b5132
RH
11596 value = sgot->output_offset + off;
11597 }
eb043451
PB
11598 if (r_type != R_ARM_GOT32)
11599 value += sgot->output_section->vma;
9a5aca8c 11600
f21f3fe0 11601 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 11602 contents, rel->r_offset, value,
00a97672 11603 rel->r_addend);
f21f3fe0 11604
ba93b8ac
DJ
11605 case R_ARM_TLS_LDO32:
11606 value = value - dtpoff_base (info);
11607
11608 return _bfd_final_link_relocate (howto, input_bfd, input_section,
00a97672
RS
11609 contents, rel->r_offset, value,
11610 rel->r_addend);
ba93b8ac
DJ
11611
11612 case R_ARM_TLS_LDM32:
5c5a4843 11613 case R_ARM_TLS_LDM32_FDPIC:
ba93b8ac
DJ
11614 {
11615 bfd_vma off;
11616
362d30a1 11617 if (sgot == NULL)
ba93b8ac
DJ
11618 abort ();
11619
11620 off = globals->tls_ldm_got.offset;
11621
11622 if ((off & 1) != 0)
11623 off &= ~1;
11624 else
11625 {
11626 /* If we don't know the module number, create a relocation
11627 for it. */
0e1862bb 11628 if (bfd_link_pic (info))
ba93b8ac
DJ
11629 {
11630 Elf_Internal_Rela outrel;
ba93b8ac 11631
362d30a1 11632 if (srelgot == NULL)
ba93b8ac
DJ
11633 abort ();
11634
00a97672 11635 outrel.r_addend = 0;
362d30a1
RS
11636 outrel.r_offset = (sgot->output_section->vma
11637 + sgot->output_offset + off);
ba93b8ac
DJ
11638 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
11639
00a97672
RS
11640 if (globals->use_rel)
11641 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 11642 sgot->contents + off);
ba93b8ac 11643
47beaa6a 11644 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
ba93b8ac
DJ
11645 }
11646 else
362d30a1 11647 bfd_put_32 (output_bfd, 1, sgot->contents + off);
ba93b8ac
DJ
11648
11649 globals->tls_ldm_got.offset |= 1;
11650 }
11651
5c5a4843 11652 if (r_type == R_ARM_TLS_LDM32_FDPIC)
e8b09b87
CL
11653 {
11654 bfd_put_32(output_bfd,
11655 globals->root.sgot->output_offset + off,
11656 contents + rel->r_offset);
11657
11658 return bfd_reloc_ok;
11659 }
11660 else
11661 {
11662 value = sgot->output_section->vma + sgot->output_offset + off
11663 - (input_section->output_section->vma
11664 + input_section->output_offset + rel->r_offset);
ba93b8ac 11665
e8b09b87
CL
11666 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11667 contents, rel->r_offset, value,
11668 rel->r_addend);
11669 }
ba93b8ac
DJ
11670 }
11671
0855e32b
NS
11672 case R_ARM_TLS_CALL:
11673 case R_ARM_THM_TLS_CALL:
ba93b8ac 11674 case R_ARM_TLS_GD32:
5c5a4843 11675 case R_ARM_TLS_GD32_FDPIC:
ba93b8ac 11676 case R_ARM_TLS_IE32:
5c5a4843 11677 case R_ARM_TLS_IE32_FDPIC:
0855e32b
NS
11678 case R_ARM_TLS_GOTDESC:
11679 case R_ARM_TLS_DESCSEQ:
11680 case R_ARM_THM_TLS_DESCSEQ:
ba93b8ac 11681 {
0855e32b
NS
11682 bfd_vma off, offplt;
11683 int indx = 0;
ba93b8ac
DJ
11684 char tls_type;
11685
0855e32b 11686 BFD_ASSERT (sgot != NULL);
ba93b8ac 11687
ba93b8ac
DJ
11688 if (h != NULL)
11689 {
11690 bfd_boolean dyn;
11691 dyn = globals->root.dynamic_sections_created;
0e1862bb
L
11692 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
11693 bfd_link_pic (info),
11694 h)
11695 && (!bfd_link_pic (info)
ba93b8ac
DJ
11696 || !SYMBOL_REFERENCES_LOCAL (info, h)))
11697 {
11698 *unresolved_reloc_p = FALSE;
11699 indx = h->dynindx;
11700 }
11701 off = h->got.offset;
0855e32b 11702 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
ba93b8ac
DJ
11703 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
11704 }
11705 else
11706 {
0855e32b 11707 BFD_ASSERT (local_got_offsets != NULL);
ba93b8ac 11708 off = local_got_offsets[r_symndx];
0855e32b 11709 offplt = local_tlsdesc_gotents[r_symndx];
ba93b8ac
DJ
11710 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
11711 }
11712
0855e32b 11713 /* Linker relaxations happens from one of the
b38cadfb 11714 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
0855e32b 11715 if (ELF32_R_TYPE(rel->r_info) != r_type)
b38cadfb 11716 tls_type = GOT_TLS_IE;
0855e32b
NS
11717
11718 BFD_ASSERT (tls_type != GOT_UNKNOWN);
ba93b8ac
DJ
11719
11720 if ((off & 1) != 0)
11721 off &= ~1;
11722 else
11723 {
11724 bfd_boolean need_relocs = FALSE;
11725 Elf_Internal_Rela outrel;
ba93b8ac
DJ
11726 int cur_off = off;
11727
11728 /* The GOT entries have not been initialized yet. Do it
11729 now, and emit any relocations. If both an IE GOT and a
11730 GD GOT are necessary, we emit the GD first. */
11731
0e1862bb 11732 if ((bfd_link_pic (info) || indx != 0)
ba93b8ac 11733 && (h == NULL
95b03e4a
L
11734 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11735 && !resolved_to_zero)
ba93b8ac
DJ
11736 || h->root.type != bfd_link_hash_undefweak))
11737 {
11738 need_relocs = TRUE;
0855e32b 11739 BFD_ASSERT (srelgot != NULL);
ba93b8ac
DJ
11740 }
11741
0855e32b
NS
11742 if (tls_type & GOT_TLS_GDESC)
11743 {
47beaa6a
RS
11744 bfd_byte *loc;
11745
0855e32b
NS
11746 /* We should have relaxed, unless this is an undefined
11747 weak symbol. */
11748 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
0e1862bb 11749 || bfd_link_pic (info));
0855e32b 11750 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
99059e56 11751 <= globals->root.sgotplt->size);
0855e32b
NS
11752
11753 outrel.r_addend = 0;
11754 outrel.r_offset = (globals->root.sgotplt->output_section->vma
11755 + globals->root.sgotplt->output_offset
11756 + offplt
11757 + globals->sgotplt_jump_table_size);
b38cadfb 11758
0855e32b
NS
11759 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
11760 sreloc = globals->root.srelplt;
11761 loc = sreloc->contents;
11762 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
11763 BFD_ASSERT (loc + RELOC_SIZE (globals)
99059e56 11764 <= sreloc->contents + sreloc->size);
0855e32b
NS
11765
11766 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
11767
11768 /* For globals, the first word in the relocation gets
11769 the relocation index and the top bit set, or zero,
11770 if we're binding now. For locals, it gets the
11771 symbol's offset in the tls section. */
99059e56 11772 bfd_put_32 (output_bfd,
0855e32b
NS
11773 !h ? value - elf_hash_table (info)->tls_sec->vma
11774 : info->flags & DF_BIND_NOW ? 0
11775 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
b38cadfb
NC
11776 globals->root.sgotplt->contents + offplt
11777 + globals->sgotplt_jump_table_size);
11778
0855e32b 11779 /* Second word in the relocation is always zero. */
99059e56 11780 bfd_put_32 (output_bfd, 0,
b38cadfb
NC
11781 globals->root.sgotplt->contents + offplt
11782 + globals->sgotplt_jump_table_size + 4);
0855e32b 11783 }
ba93b8ac
DJ
11784 if (tls_type & GOT_TLS_GD)
11785 {
11786 if (need_relocs)
11787 {
00a97672 11788 outrel.r_addend = 0;
362d30a1
RS
11789 outrel.r_offset = (sgot->output_section->vma
11790 + sgot->output_offset
00a97672 11791 + cur_off);
ba93b8ac 11792 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
ba93b8ac 11793
00a97672
RS
11794 if (globals->use_rel)
11795 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 11796 sgot->contents + cur_off);
00a97672 11797
47beaa6a 11798 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
ba93b8ac
DJ
11799
11800 if (indx == 0)
11801 bfd_put_32 (output_bfd, value - dtpoff_base (info),
362d30a1 11802 sgot->contents + cur_off + 4);
ba93b8ac
DJ
11803 else
11804 {
00a97672 11805 outrel.r_addend = 0;
ba93b8ac
DJ
11806 outrel.r_info = ELF32_R_INFO (indx,
11807 R_ARM_TLS_DTPOFF32);
11808 outrel.r_offset += 4;
00a97672
RS
11809
11810 if (globals->use_rel)
11811 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 11812 sgot->contents + cur_off + 4);
00a97672 11813
47beaa6a
RS
11814 elf32_arm_add_dynreloc (output_bfd, info,
11815 srelgot, &outrel);
ba93b8ac
DJ
11816 }
11817 }
11818 else
11819 {
11820 /* If we are not emitting relocations for a
11821 general dynamic reference, then we must be in a
11822 static link or an executable link with the
11823 symbol binding locally. Mark it as belonging
11824 to module 1, the executable. */
11825 bfd_put_32 (output_bfd, 1,
362d30a1 11826 sgot->contents + cur_off);
ba93b8ac 11827 bfd_put_32 (output_bfd, value - dtpoff_base (info),
362d30a1 11828 sgot->contents + cur_off + 4);
ba93b8ac
DJ
11829 }
11830
11831 cur_off += 8;
11832 }
11833
11834 if (tls_type & GOT_TLS_IE)
11835 {
11836 if (need_relocs)
11837 {
00a97672
RS
11838 if (indx == 0)
11839 outrel.r_addend = value - dtpoff_base (info);
11840 else
11841 outrel.r_addend = 0;
362d30a1
RS
11842 outrel.r_offset = (sgot->output_section->vma
11843 + sgot->output_offset
ba93b8ac
DJ
11844 + cur_off);
11845 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
11846
00a97672
RS
11847 if (globals->use_rel)
11848 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 11849 sgot->contents + cur_off);
ba93b8ac 11850
47beaa6a 11851 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
ba93b8ac
DJ
11852 }
11853 else
11854 bfd_put_32 (output_bfd, tpoff (info, value),
362d30a1 11855 sgot->contents + cur_off);
ba93b8ac
DJ
11856 cur_off += 4;
11857 }
11858
11859 if (h != NULL)
11860 h->got.offset |= 1;
11861 else
11862 local_got_offsets[r_symndx] |= 1;
11863 }
11864
5c5a4843 11865 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32 && r_type != R_ARM_TLS_GD32_FDPIC)
ba93b8ac 11866 off += 8;
0855e32b
NS
11867 else if (tls_type & GOT_TLS_GDESC)
11868 off = offplt;
11869
11870 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
11871 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
11872 {
11873 bfd_signed_vma offset;
12352d3f
PB
11874 /* TLS stubs are arm mode. The original symbol is a
11875 data object, so branch_type is bogus. */
11876 branch_type = ST_BRANCH_TO_ARM;
0855e32b 11877 enum elf32_arm_stub_type stub_type
34e77a92
RS
11878 = arm_type_of_stub (info, input_section, rel,
11879 st_type, &branch_type,
0855e32b
NS
11880 (struct elf32_arm_link_hash_entry *)h,
11881 globals->tls_trampoline, globals->root.splt,
11882 input_bfd, sym_name);
11883
11884 if (stub_type != arm_stub_none)
11885 {
11886 struct elf32_arm_stub_hash_entry *stub_entry
11887 = elf32_arm_get_stub_entry
11888 (input_section, globals->root.splt, 0, rel,
11889 globals, stub_type);
11890 offset = (stub_entry->stub_offset
11891 + stub_entry->stub_sec->output_offset
11892 + stub_entry->stub_sec->output_section->vma);
11893 }
11894 else
11895 offset = (globals->root.splt->output_section->vma
11896 + globals->root.splt->output_offset
11897 + globals->tls_trampoline);
11898
11899 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
11900 {
11901 unsigned long inst;
b38cadfb
NC
11902
11903 offset -= (input_section->output_section->vma
11904 + input_section->output_offset
11905 + rel->r_offset + 8);
0855e32b
NS
11906
11907 inst = offset >> 2;
11908 inst &= 0x00ffffff;
11909 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
11910 }
11911 else
11912 {
11913 /* Thumb blx encodes the offset in a complicated
11914 fashion. */
11915 unsigned upper_insn, lower_insn;
11916 unsigned neg;
11917
b38cadfb
NC
11918 offset -= (input_section->output_section->vma
11919 + input_section->output_offset
0855e32b 11920 + rel->r_offset + 4);
b38cadfb 11921
12352d3f
PB
11922 if (stub_type != arm_stub_none
11923 && arm_stub_is_thumb (stub_type))
11924 {
11925 lower_insn = 0xd000;
11926 }
11927 else
11928 {
11929 lower_insn = 0xc000;
6a631e86 11930 /* Round up the offset to a word boundary. */
12352d3f
PB
11931 offset = (offset + 2) & ~2;
11932 }
11933
0855e32b
NS
11934 neg = offset < 0;
11935 upper_insn = (0xf000
11936 | ((offset >> 12) & 0x3ff)
11937 | (neg << 10));
12352d3f 11938 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
0855e32b 11939 | (((!((offset >> 22) & 1)) ^ neg) << 11)
12352d3f 11940 | ((offset >> 1) & 0x7ff);
0855e32b
NS
11941 bfd_put_16 (input_bfd, upper_insn, hit_data);
11942 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11943 return bfd_reloc_ok;
11944 }
11945 }
11946 /* These relocations needs special care, as besides the fact
11947 they point somewhere in .gotplt, the addend must be
11948 adjusted accordingly depending on the type of instruction
6a631e86 11949 we refer to. */
0855e32b
NS
11950 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
11951 {
11952 unsigned long data, insn;
11953 unsigned thumb;
b38cadfb 11954
0855e32b
NS
11955 data = bfd_get_32 (input_bfd, hit_data);
11956 thumb = data & 1;
11957 data &= ~1u;
b38cadfb 11958
0855e32b
NS
11959 if (thumb)
11960 {
11961 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
11962 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
11963 insn = (insn << 16)
11964 | bfd_get_16 (input_bfd,
11965 contents + rel->r_offset - data + 2);
11966 if ((insn & 0xf800c000) == 0xf000c000)
11967 /* bl/blx */
11968 value = -6;
11969 else if ((insn & 0xffffff00) == 0x4400)
11970 /* add */
11971 value = -5;
11972 else
11973 {
4eca0228 11974 _bfd_error_handler
695344c0 11975 /* xgettext:c-format */
2dcf00ce 11976 (_("%pB(%pA+%#" PRIx64 "): "
90b6238f 11977 "unexpected %s instruction '%#lx' "
2dcf00ce
AM
11978 "referenced by TLS_GOTDESC"),
11979 input_bfd, input_section, (uint64_t) rel->r_offset,
90b6238f 11980 "Thumb", insn);
0855e32b
NS
11981 return bfd_reloc_notsupported;
11982 }
11983 }
11984 else
11985 {
11986 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
11987
11988 switch (insn >> 24)
11989 {
11990 case 0xeb: /* bl */
11991 case 0xfa: /* blx */
11992 value = -4;
11993 break;
11994
11995 case 0xe0: /* add */
11996 value = -8;
11997 break;
b38cadfb 11998
0855e32b 11999 default:
4eca0228 12000 _bfd_error_handler
695344c0 12001 /* xgettext:c-format */
2dcf00ce 12002 (_("%pB(%pA+%#" PRIx64 "): "
90b6238f 12003 "unexpected %s instruction '%#lx' "
2dcf00ce
AM
12004 "referenced by TLS_GOTDESC"),
12005 input_bfd, input_section, (uint64_t) rel->r_offset,
90b6238f 12006 "ARM", insn);
0855e32b
NS
12007 return bfd_reloc_notsupported;
12008 }
12009 }
b38cadfb 12010
0855e32b
NS
12011 value += ((globals->root.sgotplt->output_section->vma
12012 + globals->root.sgotplt->output_offset + off)
12013 - (input_section->output_section->vma
12014 + input_section->output_offset
12015 + rel->r_offset)
12016 + globals->sgotplt_jump_table_size);
12017 }
12018 else
12019 value = ((globals->root.sgot->output_section->vma
12020 + globals->root.sgot->output_offset + off)
12021 - (input_section->output_section->vma
12022 + input_section->output_offset + rel->r_offset));
ba93b8ac 12023
5c5a4843
CL
12024 if (globals->fdpic_p && (r_type == R_ARM_TLS_GD32_FDPIC ||
12025 r_type == R_ARM_TLS_IE32_FDPIC))
e8b09b87
CL
12026 {
12027 /* For FDPIC relocations, resolve to the offset of the GOT
12028 entry from the start of GOT. */
12029 bfd_put_32(output_bfd,
12030 globals->root.sgot->output_offset + off,
12031 contents + rel->r_offset);
12032
12033 return bfd_reloc_ok;
12034 }
12035 else
12036 {
12037 return _bfd_final_link_relocate (howto, input_bfd, input_section,
12038 contents, rel->r_offset, value,
12039 rel->r_addend);
12040 }
ba93b8ac
DJ
12041 }
12042
12043 case R_ARM_TLS_LE32:
3cbc1e5e 12044 if (bfd_link_dll (info))
ba93b8ac 12045 {
4eca0228 12046 _bfd_error_handler
695344c0 12047 /* xgettext:c-format */
2dcf00ce
AM
12048 (_("%pB(%pA+%#" PRIx64 "): %s relocation not permitted "
12049 "in shared object"),
12050 input_bfd, input_section, (uint64_t) rel->r_offset, howto->name);
46691134 12051 return bfd_reloc_notsupported;
ba93b8ac
DJ
12052 }
12053 else
12054 value = tpoff (info, value);
906e58ca 12055
ba93b8ac 12056 return _bfd_final_link_relocate (howto, input_bfd, input_section,
00a97672
RS
12057 contents, rel->r_offset, value,
12058 rel->r_addend);
ba93b8ac 12059
319850b4
JB
12060 case R_ARM_V4BX:
12061 if (globals->fix_v4bx)
845b51d6
PB
12062 {
12063 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
319850b4 12064
845b51d6
PB
12065 /* Ensure that we have a BX instruction. */
12066 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
319850b4 12067
845b51d6
PB
12068 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
12069 {
12070 /* Branch to veneer. */
12071 bfd_vma glue_addr;
12072 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
12073 glue_addr -= input_section->output_section->vma
12074 + input_section->output_offset
12075 + rel->r_offset + 8;
12076 insn = (insn & 0xf0000000) | 0x0a000000
12077 | ((glue_addr >> 2) & 0x00ffffff);
12078 }
12079 else
12080 {
12081 /* Preserve Rm (lowest four bits) and the condition code
12082 (highest four bits). Other bits encode MOV PC,Rm. */
12083 insn = (insn & 0xf000000f) | 0x01a0f000;
12084 }
319850b4 12085
845b51d6
PB
12086 bfd_put_32 (input_bfd, insn, hit_data);
12087 }
319850b4
JB
12088 return bfd_reloc_ok;
12089
b6895b4f
PB
12090 case R_ARM_MOVW_ABS_NC:
12091 case R_ARM_MOVT_ABS:
12092 case R_ARM_MOVW_PREL_NC:
12093 case R_ARM_MOVT_PREL:
92f5d02b
MS
12094 /* Until we properly support segment-base-relative addressing then
12095 we assume the segment base to be zero, as for the group relocations.
12096 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
12097 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
12098 case R_ARM_MOVW_BREL_NC:
12099 case R_ARM_MOVW_BREL:
12100 case R_ARM_MOVT_BREL:
b6895b4f
PB
12101 {
12102 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12103
12104 if (globals->use_rel)
12105 {
12106 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
39623e12 12107 signed_addend = (addend ^ 0x8000) - 0x8000;
b6895b4f 12108 }
92f5d02b 12109
b6895b4f 12110 value += signed_addend;
b6895b4f
PB
12111
12112 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
12113 value -= (input_section->output_section->vma
12114 + input_section->output_offset + rel->r_offset);
12115
92f5d02b 12116 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
99059e56 12117 return bfd_reloc_overflow;
92f5d02b 12118
35fc36a8 12119 if (branch_type == ST_BRANCH_TO_THUMB)
92f5d02b
MS
12120 value |= 1;
12121
12122 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
99059e56 12123 || r_type == R_ARM_MOVT_BREL)
b6895b4f
PB
12124 value >>= 16;
12125
12126 insn &= 0xfff0f000;
12127 insn |= value & 0xfff;
12128 insn |= (value & 0xf000) << 4;
12129 bfd_put_32 (input_bfd, insn, hit_data);
12130 }
12131 return bfd_reloc_ok;
12132
12133 case R_ARM_THM_MOVW_ABS_NC:
12134 case R_ARM_THM_MOVT_ABS:
12135 case R_ARM_THM_MOVW_PREL_NC:
12136 case R_ARM_THM_MOVT_PREL:
92f5d02b
MS
12137 /* Until we properly support segment-base-relative addressing then
12138 we assume the segment base to be zero, as for the above relocations.
12139 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
12140 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
12141 as R_ARM_THM_MOVT_ABS. */
12142 case R_ARM_THM_MOVW_BREL_NC:
12143 case R_ARM_THM_MOVW_BREL:
12144 case R_ARM_THM_MOVT_BREL:
b6895b4f
PB
12145 {
12146 bfd_vma insn;
906e58ca 12147
b6895b4f
PB
12148 insn = bfd_get_16 (input_bfd, hit_data) << 16;
12149 insn |= bfd_get_16 (input_bfd, hit_data + 2);
12150
12151 if (globals->use_rel)
12152 {
12153 addend = ((insn >> 4) & 0xf000)
12154 | ((insn >> 15) & 0x0800)
12155 | ((insn >> 4) & 0x0700)
07d6d2b8 12156 | (insn & 0x00ff);
39623e12 12157 signed_addend = (addend ^ 0x8000) - 0x8000;
b6895b4f 12158 }
92f5d02b 12159
b6895b4f 12160 value += signed_addend;
b6895b4f
PB
12161
12162 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
12163 value -= (input_section->output_section->vma
12164 + input_section->output_offset + rel->r_offset);
12165
92f5d02b 12166 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
99059e56 12167 return bfd_reloc_overflow;
92f5d02b 12168
35fc36a8 12169 if (branch_type == ST_BRANCH_TO_THUMB)
92f5d02b
MS
12170 value |= 1;
12171
12172 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
99059e56 12173 || r_type == R_ARM_THM_MOVT_BREL)
b6895b4f
PB
12174 value >>= 16;
12175
12176 insn &= 0xfbf08f00;
12177 insn |= (value & 0xf000) << 4;
12178 insn |= (value & 0x0800) << 15;
12179 insn |= (value & 0x0700) << 4;
12180 insn |= (value & 0x00ff);
12181
12182 bfd_put_16 (input_bfd, insn >> 16, hit_data);
12183 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
12184 }
12185 return bfd_reloc_ok;
12186
4962c51a
MS
12187 case R_ARM_ALU_PC_G0_NC:
12188 case R_ARM_ALU_PC_G1_NC:
12189 case R_ARM_ALU_PC_G0:
12190 case R_ARM_ALU_PC_G1:
12191 case R_ARM_ALU_PC_G2:
12192 case R_ARM_ALU_SB_G0_NC:
12193 case R_ARM_ALU_SB_G1_NC:
12194 case R_ARM_ALU_SB_G0:
12195 case R_ARM_ALU_SB_G1:
12196 case R_ARM_ALU_SB_G2:
12197 {
12198 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 12199 bfd_vma pc = input_section->output_section->vma
4962c51a 12200 + input_section->output_offset + rel->r_offset;
31a91d61 12201 /* sb is the origin of the *segment* containing the symbol. */
62c34db3 12202 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
99059e56
RM
12203 bfd_vma residual;
12204 bfd_vma g_n;
4962c51a 12205 bfd_signed_vma signed_value;
99059e56
RM
12206 int group = 0;
12207
12208 /* Determine which group of bits to select. */
12209 switch (r_type)
12210 {
12211 case R_ARM_ALU_PC_G0_NC:
12212 case R_ARM_ALU_PC_G0:
12213 case R_ARM_ALU_SB_G0_NC:
12214 case R_ARM_ALU_SB_G0:
12215 group = 0;
12216 break;
12217
12218 case R_ARM_ALU_PC_G1_NC:
12219 case R_ARM_ALU_PC_G1:
12220 case R_ARM_ALU_SB_G1_NC:
12221 case R_ARM_ALU_SB_G1:
12222 group = 1;
12223 break;
12224
12225 case R_ARM_ALU_PC_G2:
12226 case R_ARM_ALU_SB_G2:
12227 group = 2;
12228 break;
12229
12230 default:
12231 abort ();
12232 }
12233
12234 /* If REL, extract the addend from the insn. If RELA, it will
12235 have already been fetched for us. */
4962c51a 12236 if (globals->use_rel)
99059e56
RM
12237 {
12238 int negative;
12239 bfd_vma constant = insn & 0xff;
12240 bfd_vma rotation = (insn & 0xf00) >> 8;
12241
12242 if (rotation == 0)
12243 signed_addend = constant;
12244 else
12245 {
12246 /* Compensate for the fact that in the instruction, the
12247 rotation is stored in multiples of 2 bits. */
12248 rotation *= 2;
12249
12250 /* Rotate "constant" right by "rotation" bits. */
12251 signed_addend = (constant >> rotation) |
12252 (constant << (8 * sizeof (bfd_vma) - rotation));
12253 }
12254
12255 /* Determine if the instruction is an ADD or a SUB.
12256 (For REL, this determines the sign of the addend.) */
12257 negative = identify_add_or_sub (insn);
12258 if (negative == 0)
12259 {
4eca0228 12260 _bfd_error_handler
695344c0 12261 /* xgettext:c-format */
90b6238f 12262 (_("%pB(%pA+%#" PRIx64 "): only ADD or SUB instructions "
2dcf00ce
AM
12263 "are allowed for ALU group relocations"),
12264 input_bfd, input_section, (uint64_t) rel->r_offset);
99059e56
RM
12265 return bfd_reloc_overflow;
12266 }
12267
12268 signed_addend *= negative;
12269 }
4962c51a
MS
12270
12271 /* Compute the value (X) to go in the place. */
99059e56
RM
12272 if (r_type == R_ARM_ALU_PC_G0_NC
12273 || r_type == R_ARM_ALU_PC_G1_NC
12274 || r_type == R_ARM_ALU_PC_G0
12275 || r_type == R_ARM_ALU_PC_G1
12276 || r_type == R_ARM_ALU_PC_G2)
12277 /* PC relative. */
12278 signed_value = value - pc + signed_addend;
12279 else
12280 /* Section base relative. */
12281 signed_value = value - sb + signed_addend;
12282
12283 /* If the target symbol is a Thumb function, then set the
12284 Thumb bit in the address. */
35fc36a8 12285 if (branch_type == ST_BRANCH_TO_THUMB)
4962c51a
MS
12286 signed_value |= 1;
12287
99059e56
RM
12288 /* Calculate the value of the relevant G_n, in encoded
12289 constant-with-rotation format. */
b6518b38
NC
12290 g_n = calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12291 group, &residual);
99059e56
RM
12292
12293 /* Check for overflow if required. */
12294 if ((r_type == R_ARM_ALU_PC_G0
12295 || r_type == R_ARM_ALU_PC_G1
12296 || r_type == R_ARM_ALU_PC_G2
12297 || r_type == R_ARM_ALU_SB_G0
12298 || r_type == R_ARM_ALU_SB_G1
12299 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
12300 {
4eca0228 12301 _bfd_error_handler
695344c0 12302 /* xgettext:c-format */
90b6238f 12303 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
2dcf00ce
AM
12304 "splitting %#" PRIx64 " for group relocation %s"),
12305 input_bfd, input_section, (uint64_t) rel->r_offset,
12306 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12307 howto->name);
99059e56
RM
12308 return bfd_reloc_overflow;
12309 }
12310
12311 /* Mask out the value and the ADD/SUB part of the opcode; take care
12312 not to destroy the S bit. */
12313 insn &= 0xff1ff000;
12314
12315 /* Set the opcode according to whether the value to go in the
12316 place is negative. */
12317 if (signed_value < 0)
12318 insn |= 1 << 22;
12319 else
12320 insn |= 1 << 23;
12321
12322 /* Encode the offset. */
12323 insn |= g_n;
4962c51a
MS
12324
12325 bfd_put_32 (input_bfd, insn, hit_data);
12326 }
12327 return bfd_reloc_ok;
12328
12329 case R_ARM_LDR_PC_G0:
12330 case R_ARM_LDR_PC_G1:
12331 case R_ARM_LDR_PC_G2:
12332 case R_ARM_LDR_SB_G0:
12333 case R_ARM_LDR_SB_G1:
12334 case R_ARM_LDR_SB_G2:
12335 {
12336 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 12337 bfd_vma pc = input_section->output_section->vma
4962c51a 12338 + input_section->output_offset + rel->r_offset;
31a91d61 12339 /* sb is the origin of the *segment* containing the symbol. */
62c34db3 12340 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
99059e56 12341 bfd_vma residual;
4962c51a 12342 bfd_signed_vma signed_value;
99059e56
RM
12343 int group = 0;
12344
12345 /* Determine which groups of bits to calculate. */
12346 switch (r_type)
12347 {
12348 case R_ARM_LDR_PC_G0:
12349 case R_ARM_LDR_SB_G0:
12350 group = 0;
12351 break;
12352
12353 case R_ARM_LDR_PC_G1:
12354 case R_ARM_LDR_SB_G1:
12355 group = 1;
12356 break;
12357
12358 case R_ARM_LDR_PC_G2:
12359 case R_ARM_LDR_SB_G2:
12360 group = 2;
12361 break;
12362
12363 default:
12364 abort ();
12365 }
12366
12367 /* If REL, extract the addend from the insn. If RELA, it will
12368 have already been fetched for us. */
4962c51a 12369 if (globals->use_rel)
99059e56
RM
12370 {
12371 int negative = (insn & (1 << 23)) ? 1 : -1;
12372 signed_addend = negative * (insn & 0xfff);
12373 }
4962c51a
MS
12374
12375 /* Compute the value (X) to go in the place. */
99059e56
RM
12376 if (r_type == R_ARM_LDR_PC_G0
12377 || r_type == R_ARM_LDR_PC_G1
12378 || r_type == R_ARM_LDR_PC_G2)
12379 /* PC relative. */
12380 signed_value = value - pc + signed_addend;
12381 else
12382 /* Section base relative. */
12383 signed_value = value - sb + signed_addend;
12384
12385 /* Calculate the value of the relevant G_{n-1} to obtain
12386 the residual at that stage. */
b6518b38
NC
12387 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12388 group - 1, &residual);
99059e56
RM
12389
12390 /* Check for overflow. */
12391 if (residual >= 0x1000)
12392 {
4eca0228 12393 _bfd_error_handler
695344c0 12394 /* xgettext:c-format */
90b6238f 12395 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
2dcf00ce
AM
12396 "splitting %#" PRIx64 " for group relocation %s"),
12397 input_bfd, input_section, (uint64_t) rel->r_offset,
12398 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12399 howto->name);
99059e56
RM
12400 return bfd_reloc_overflow;
12401 }
12402
12403 /* Mask out the value and U bit. */
12404 insn &= 0xff7ff000;
12405
12406 /* Set the U bit if the value to go in the place is non-negative. */
12407 if (signed_value >= 0)
12408 insn |= 1 << 23;
12409
12410 /* Encode the offset. */
12411 insn |= residual;
4962c51a
MS
12412
12413 bfd_put_32 (input_bfd, insn, hit_data);
12414 }
12415 return bfd_reloc_ok;
12416
12417 case R_ARM_LDRS_PC_G0:
12418 case R_ARM_LDRS_PC_G1:
12419 case R_ARM_LDRS_PC_G2:
12420 case R_ARM_LDRS_SB_G0:
12421 case R_ARM_LDRS_SB_G1:
12422 case R_ARM_LDRS_SB_G2:
12423 {
12424 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 12425 bfd_vma pc = input_section->output_section->vma
4962c51a 12426 + input_section->output_offset + rel->r_offset;
31a91d61 12427 /* sb is the origin of the *segment* containing the symbol. */
62c34db3 12428 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
99059e56 12429 bfd_vma residual;
4962c51a 12430 bfd_signed_vma signed_value;
99059e56
RM
12431 int group = 0;
12432
12433 /* Determine which groups of bits to calculate. */
12434 switch (r_type)
12435 {
12436 case R_ARM_LDRS_PC_G0:
12437 case R_ARM_LDRS_SB_G0:
12438 group = 0;
12439 break;
12440
12441 case R_ARM_LDRS_PC_G1:
12442 case R_ARM_LDRS_SB_G1:
12443 group = 1;
12444 break;
12445
12446 case R_ARM_LDRS_PC_G2:
12447 case R_ARM_LDRS_SB_G2:
12448 group = 2;
12449 break;
12450
12451 default:
12452 abort ();
12453 }
12454
12455 /* If REL, extract the addend from the insn. If RELA, it will
12456 have already been fetched for us. */
4962c51a 12457 if (globals->use_rel)
99059e56
RM
12458 {
12459 int negative = (insn & (1 << 23)) ? 1 : -1;
12460 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
12461 }
4962c51a
MS
12462
12463 /* Compute the value (X) to go in the place. */
99059e56
RM
12464 if (r_type == R_ARM_LDRS_PC_G0
12465 || r_type == R_ARM_LDRS_PC_G1
12466 || r_type == R_ARM_LDRS_PC_G2)
12467 /* PC relative. */
12468 signed_value = value - pc + signed_addend;
12469 else
12470 /* Section base relative. */
12471 signed_value = value - sb + signed_addend;
12472
12473 /* Calculate the value of the relevant G_{n-1} to obtain
12474 the residual at that stage. */
b6518b38
NC
12475 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12476 group - 1, &residual);
99059e56
RM
12477
12478 /* Check for overflow. */
12479 if (residual >= 0x100)
12480 {
4eca0228 12481 _bfd_error_handler
695344c0 12482 /* xgettext:c-format */
90b6238f 12483 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
2dcf00ce
AM
12484 "splitting %#" PRIx64 " for group relocation %s"),
12485 input_bfd, input_section, (uint64_t) rel->r_offset,
12486 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12487 howto->name);
99059e56
RM
12488 return bfd_reloc_overflow;
12489 }
12490
12491 /* Mask out the value and U bit. */
12492 insn &= 0xff7ff0f0;
12493
12494 /* Set the U bit if the value to go in the place is non-negative. */
12495 if (signed_value >= 0)
12496 insn |= 1 << 23;
12497
12498 /* Encode the offset. */
12499 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
4962c51a
MS
12500
12501 bfd_put_32 (input_bfd, insn, hit_data);
12502 }
12503 return bfd_reloc_ok;
12504
12505 case R_ARM_LDC_PC_G0:
12506 case R_ARM_LDC_PC_G1:
12507 case R_ARM_LDC_PC_G2:
12508 case R_ARM_LDC_SB_G0:
12509 case R_ARM_LDC_SB_G1:
12510 case R_ARM_LDC_SB_G2:
12511 {
12512 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 12513 bfd_vma pc = input_section->output_section->vma
4962c51a 12514 + input_section->output_offset + rel->r_offset;
31a91d61 12515 /* sb is the origin of the *segment* containing the symbol. */
62c34db3 12516 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
99059e56 12517 bfd_vma residual;
4962c51a 12518 bfd_signed_vma signed_value;
99059e56
RM
12519 int group = 0;
12520
12521 /* Determine which groups of bits to calculate. */
12522 switch (r_type)
12523 {
12524 case R_ARM_LDC_PC_G0:
12525 case R_ARM_LDC_SB_G0:
12526 group = 0;
12527 break;
12528
12529 case R_ARM_LDC_PC_G1:
12530 case R_ARM_LDC_SB_G1:
12531 group = 1;
12532 break;
12533
12534 case R_ARM_LDC_PC_G2:
12535 case R_ARM_LDC_SB_G2:
12536 group = 2;
12537 break;
12538
12539 default:
12540 abort ();
12541 }
12542
12543 /* If REL, extract the addend from the insn. If RELA, it will
12544 have already been fetched for us. */
4962c51a 12545 if (globals->use_rel)
99059e56
RM
12546 {
12547 int negative = (insn & (1 << 23)) ? 1 : -1;
12548 signed_addend = negative * ((insn & 0xff) << 2);
12549 }
4962c51a
MS
12550
12551 /* Compute the value (X) to go in the place. */
99059e56
RM
12552 if (r_type == R_ARM_LDC_PC_G0
12553 || r_type == R_ARM_LDC_PC_G1
12554 || r_type == R_ARM_LDC_PC_G2)
12555 /* PC relative. */
12556 signed_value = value - pc + signed_addend;
12557 else
12558 /* Section base relative. */
12559 signed_value = value - sb + signed_addend;
12560
12561 /* Calculate the value of the relevant G_{n-1} to obtain
12562 the residual at that stage. */
b6518b38
NC
12563 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12564 group - 1, &residual);
99059e56
RM
12565
12566 /* Check for overflow. (The absolute value to go in the place must be
12567 divisible by four and, after having been divided by four, must
12568 fit in eight bits.) */
12569 if ((residual & 0x3) != 0 || residual >= 0x400)
12570 {
4eca0228 12571 _bfd_error_handler
695344c0 12572 /* xgettext:c-format */
90b6238f 12573 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
2dcf00ce
AM
12574 "splitting %#" PRIx64 " for group relocation %s"),
12575 input_bfd, input_section, (uint64_t) rel->r_offset,
12576 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12577 howto->name);
99059e56
RM
12578 return bfd_reloc_overflow;
12579 }
12580
12581 /* Mask out the value and U bit. */
12582 insn &= 0xff7fff00;
12583
12584 /* Set the U bit if the value to go in the place is non-negative. */
12585 if (signed_value >= 0)
12586 insn |= 1 << 23;
12587
12588 /* Encode the offset. */
12589 insn |= residual >> 2;
4962c51a
MS
12590
12591 bfd_put_32 (input_bfd, insn, hit_data);
12592 }
12593 return bfd_reloc_ok;
12594
72d98d16
MG
12595 case R_ARM_THM_ALU_ABS_G0_NC:
12596 case R_ARM_THM_ALU_ABS_G1_NC:
12597 case R_ARM_THM_ALU_ABS_G2_NC:
12598 case R_ARM_THM_ALU_ABS_G3_NC:
12599 {
12600 const int shift_array[4] = {0, 8, 16, 24};
12601 bfd_vma insn = bfd_get_16 (input_bfd, hit_data);
12602 bfd_vma addr = value;
12603 int shift = shift_array[r_type - R_ARM_THM_ALU_ABS_G0_NC];
12604
12605 /* Compute address. */
12606 if (globals->use_rel)
12607 signed_addend = insn & 0xff;
12608 addr += signed_addend;
12609 if (branch_type == ST_BRANCH_TO_THUMB)
12610 addr |= 1;
12611 /* Clean imm8 insn. */
12612 insn &= 0xff00;
12613 /* And update with correct part of address. */
12614 insn |= (addr >> shift) & 0xff;
12615 /* Update insn. */
12616 bfd_put_16 (input_bfd, insn, hit_data);
12617 }
12618
12619 *unresolved_reloc_p = FALSE;
12620 return bfd_reloc_ok;
12621
e8b09b87
CL
12622 case R_ARM_GOTOFFFUNCDESC:
12623 {
12624 if (h == NULL)
12625 {
12626 struct fdpic_local *local_fdpic_cnts = elf32_arm_local_fdpic_cnts(input_bfd);
12627 int dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12628 int offset = local_fdpic_cnts[r_symndx].funcdesc_offset & ~1;
12629 bfd_vma addr = dynreloc_value - sym_sec->output_section->vma;
12630 bfd_vma seg = -1;
12631
12632 if (bfd_link_pic(info) && dynindx == 0)
12633 abort();
12634
12635 /* Resolve relocation. */
12636 bfd_put_32(output_bfd, (offset + sgot->output_offset)
12637 , contents + rel->r_offset);
12638 /* Emit R_ARM_FUNCDESC_VALUE or two fixups on funcdesc if
12639 not done yet. */
12640 arm_elf_fill_funcdesc(output_bfd, info,
12641 &local_fdpic_cnts[r_symndx].funcdesc_offset,
12642 dynindx, offset, addr, dynreloc_value, seg);
12643 }
12644 else
12645 {
12646 int dynindx;
12647 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12648 bfd_vma addr;
12649 bfd_vma seg = -1;
12650
12651 /* For static binaries, sym_sec can be null. */
12652 if (sym_sec)
12653 {
12654 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12655 addr = dynreloc_value - sym_sec->output_section->vma;
12656 }
12657 else
12658 {
12659 dynindx = 0;
12660 addr = 0;
12661 }
12662
12663 if (bfd_link_pic(info) && dynindx == 0)
12664 abort();
12665
12666 /* This case cannot occur since funcdesc is allocated by
12667 the dynamic loader so we cannot resolve the relocation. */
12668 if (h->dynindx != -1)
12669 abort();
12670
12671 /* Resolve relocation. */
12672 bfd_put_32(output_bfd, (offset + sgot->output_offset),
12673 contents + rel->r_offset);
12674 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12675 arm_elf_fill_funcdesc(output_bfd, info,
12676 &eh->fdpic_cnts.funcdesc_offset,
12677 dynindx, offset, addr, dynreloc_value, seg);
12678 }
12679 }
12680 *unresolved_reloc_p = FALSE;
12681 return bfd_reloc_ok;
12682
12683 case R_ARM_GOTFUNCDESC:
12684 {
12685 if (h != NULL)
12686 {
12687 Elf_Internal_Rela outrel;
12688
12689 /* Resolve relocation. */
12690 bfd_put_32(output_bfd, ((eh->fdpic_cnts.gotfuncdesc_offset & ~1)
12691 + sgot->output_offset),
12692 contents + rel->r_offset);
12693 /* Add funcdesc and associated R_ARM_FUNCDESC_VALUE. */
12694 if(h->dynindx == -1)
12695 {
12696 int dynindx;
12697 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12698 bfd_vma addr;
12699 bfd_vma seg = -1;
12700
12701 /* For static binaries sym_sec can be null. */
12702 if (sym_sec)
12703 {
12704 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12705 addr = dynreloc_value - sym_sec->output_section->vma;
12706 }
12707 else
12708 {
12709 dynindx = 0;
12710 addr = 0;
12711 }
12712
12713 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12714 arm_elf_fill_funcdesc(output_bfd, info,
12715 &eh->fdpic_cnts.funcdesc_offset,
12716 dynindx, offset, addr, dynreloc_value, seg);
12717 }
12718
12719 /* Add a dynamic relocation on GOT entry if not already done. */
12720 if ((eh->fdpic_cnts.gotfuncdesc_offset & 1) == 0)
12721 {
12722 if (h->dynindx == -1)
12723 {
12724 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12725 if (h->root.type == bfd_link_hash_undefweak)
12726 bfd_put_32(output_bfd, 0, sgot->contents
12727 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1));
12728 else
12729 bfd_put_32(output_bfd, sgot->output_section->vma
12730 + sgot->output_offset
12731 + (eh->fdpic_cnts.funcdesc_offset & ~1),
12732 sgot->contents
12733 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1));
12734 }
12735 else
12736 {
12737 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_FUNCDESC);
12738 }
12739 outrel.r_offset = sgot->output_section->vma
12740 + sgot->output_offset
12741 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1);
12742 outrel.r_addend = 0;
12743 if (h->dynindx == -1 && !bfd_link_pic(info))
12744 if (h->root.type == bfd_link_hash_undefweak)
12745 arm_elf_add_rofixup(output_bfd, globals->srofixup, -1);
12746 else
12747 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset);
12748 else
12749 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12750 eh->fdpic_cnts.gotfuncdesc_offset |= 1;
12751 }
12752 }
12753 else
12754 {
12755 /* Such relocation on static function should not have been
12756 emitted by the compiler. */
12757 abort();
12758 }
12759 }
12760 *unresolved_reloc_p = FALSE;
12761 return bfd_reloc_ok;
12762
12763 case R_ARM_FUNCDESC:
12764 {
12765 if (h == NULL)
12766 {
12767 struct fdpic_local *local_fdpic_cnts = elf32_arm_local_fdpic_cnts(input_bfd);
12768 Elf_Internal_Rela outrel;
12769 int dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12770 int offset = local_fdpic_cnts[r_symndx].funcdesc_offset & ~1;
12771 bfd_vma addr = dynreloc_value - sym_sec->output_section->vma;
12772 bfd_vma seg = -1;
12773
12774 if (bfd_link_pic(info) && dynindx == 0)
12775 abort();
12776
12777 /* Replace static FUNCDESC relocation with a
12778 R_ARM_RELATIVE dynamic relocation or with a rofixup for
12779 executable. */
12780 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12781 outrel.r_offset = input_section->output_section->vma
12782 + input_section->output_offset + rel->r_offset;
12783 outrel.r_addend = 0;
12784 if (bfd_link_pic(info))
12785 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12786 else
12787 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset);
12788
12789 bfd_put_32 (input_bfd, sgot->output_section->vma
12790 + sgot->output_offset + offset, hit_data);
12791
12792 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12793 arm_elf_fill_funcdesc(output_bfd, info,
12794 &local_fdpic_cnts[r_symndx].funcdesc_offset,
12795 dynindx, offset, addr, dynreloc_value, seg);
12796 }
12797 else
12798 {
12799 if (h->dynindx == -1)
12800 {
12801 int dynindx;
12802 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12803 bfd_vma addr;
12804 bfd_vma seg = -1;
12805 Elf_Internal_Rela outrel;
12806
12807 /* For static binaries sym_sec can be null. */
12808 if (sym_sec)
12809 {
12810 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12811 addr = dynreloc_value - sym_sec->output_section->vma;
12812 }
12813 else
12814 {
12815 dynindx = 0;
12816 addr = 0;
12817 }
12818
12819 if (bfd_link_pic(info) && dynindx == 0)
12820 abort();
12821
12822 /* Replace static FUNCDESC relocation with a
12823 R_ARM_RELATIVE dynamic relocation. */
12824 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12825 outrel.r_offset = input_section->output_section->vma
12826 + input_section->output_offset + rel->r_offset;
12827 outrel.r_addend = 0;
12828 if (bfd_link_pic(info))
12829 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12830 else
12831 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset);
12832
12833 bfd_put_32 (input_bfd, sgot->output_section->vma
12834 + sgot->output_offset + offset, hit_data);
12835
12836 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12837 arm_elf_fill_funcdesc(output_bfd, info,
12838 &eh->fdpic_cnts.funcdesc_offset,
12839 dynindx, offset, addr, dynreloc_value, seg);
12840 }
12841 else
12842 {
12843 Elf_Internal_Rela outrel;
12844
12845 /* Add a dynamic relocation. */
12846 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_FUNCDESC);
12847 outrel.r_offset = input_section->output_section->vma
12848 + input_section->output_offset + rel->r_offset;
12849 outrel.r_addend = 0;
12850 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12851 }
12852 }
12853 }
12854 *unresolved_reloc_p = FALSE;
12855 return bfd_reloc_ok;
12856
252b5132
RH
12857 default:
12858 return bfd_reloc_notsupported;
12859 }
12860}
12861
98c1d4aa
NC
12862/* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
12863static void
07d6d2b8
AM
12864arm_add_to_rel (bfd * abfd,
12865 bfd_byte * address,
57e8b36a 12866 reloc_howto_type * howto,
07d6d2b8 12867 bfd_signed_vma increment)
98c1d4aa 12868{
98c1d4aa
NC
12869 bfd_signed_vma addend;
12870
bd97cb95
DJ
12871 if (howto->type == R_ARM_THM_CALL
12872 || howto->type == R_ARM_THM_JUMP24)
98c1d4aa 12873 {
9a5aca8c
AM
12874 int upper_insn, lower_insn;
12875 int upper, lower;
98c1d4aa 12876
9a5aca8c
AM
12877 upper_insn = bfd_get_16 (abfd, address);
12878 lower_insn = bfd_get_16 (abfd, address + 2);
12879 upper = upper_insn & 0x7ff;
12880 lower = lower_insn & 0x7ff;
12881
12882 addend = (upper << 12) | (lower << 1);
ddda4409 12883 addend += increment;
9a5aca8c 12884 addend >>= 1;
98c1d4aa 12885
9a5aca8c
AM
12886 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
12887 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
12888
dc810e39
AM
12889 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
12890 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
9a5aca8c
AM
12891 }
12892 else
12893 {
07d6d2b8 12894 bfd_vma contents;
9a5aca8c
AM
12895
12896 contents = bfd_get_32 (abfd, address);
12897
12898 /* Get the (signed) value from the instruction. */
12899 addend = contents & howto->src_mask;
12900 if (addend & ((howto->src_mask + 1) >> 1))
12901 {
12902 bfd_signed_vma mask;
12903
12904 mask = -1;
12905 mask &= ~ howto->src_mask;
12906 addend |= mask;
12907 }
12908
12909 /* Add in the increment, (which is a byte value). */
12910 switch (howto->type)
12911 {
12912 default:
12913 addend += increment;
12914 break;
12915
12916 case R_ARM_PC24:
c6596c5e 12917 case R_ARM_PLT32:
5b5bb741
PB
12918 case R_ARM_CALL:
12919 case R_ARM_JUMP24:
9a5aca8c 12920 addend <<= howto->size;
dc810e39 12921 addend += increment;
9a5aca8c
AM
12922
12923 /* Should we check for overflow here ? */
12924
12925 /* Drop any undesired bits. */
12926 addend >>= howto->rightshift;
12927 break;
12928 }
12929
12930 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
12931
12932 bfd_put_32 (abfd, contents, address);
ddda4409 12933 }
98c1d4aa 12934}
252b5132 12935
ba93b8ac
DJ
12936#define IS_ARM_TLS_RELOC(R_TYPE) \
12937 ((R_TYPE) == R_ARM_TLS_GD32 \
5c5a4843 12938 || (R_TYPE) == R_ARM_TLS_GD32_FDPIC \
ba93b8ac
DJ
12939 || (R_TYPE) == R_ARM_TLS_LDO32 \
12940 || (R_TYPE) == R_ARM_TLS_LDM32 \
5c5a4843 12941 || (R_TYPE) == R_ARM_TLS_LDM32_FDPIC \
ba93b8ac
DJ
12942 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
12943 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
12944 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
12945 || (R_TYPE) == R_ARM_TLS_LE32 \
0855e32b 12946 || (R_TYPE) == R_ARM_TLS_IE32 \
5c5a4843 12947 || (R_TYPE) == R_ARM_TLS_IE32_FDPIC \
0855e32b
NS
12948 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
12949
12950/* Specific set of relocations for the gnu tls dialect. */
12951#define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
12952 ((R_TYPE) == R_ARM_TLS_GOTDESC \
12953 || (R_TYPE) == R_ARM_TLS_CALL \
12954 || (R_TYPE) == R_ARM_THM_TLS_CALL \
12955 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
12956 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
ba93b8ac 12957
252b5132 12958/* Relocate an ARM ELF section. */
906e58ca 12959
b34976b6 12960static bfd_boolean
07d6d2b8 12961elf32_arm_relocate_section (bfd * output_bfd,
57e8b36a 12962 struct bfd_link_info * info,
07d6d2b8
AM
12963 bfd * input_bfd,
12964 asection * input_section,
12965 bfd_byte * contents,
12966 Elf_Internal_Rela * relocs,
12967 Elf_Internal_Sym * local_syms,
12968 asection ** local_sections)
252b5132 12969{
b34976b6
AM
12970 Elf_Internal_Shdr *symtab_hdr;
12971 struct elf_link_hash_entry **sym_hashes;
12972 Elf_Internal_Rela *rel;
12973 Elf_Internal_Rela *relend;
12974 const char *name;
b32d3aa2 12975 struct elf32_arm_link_hash_table * globals;
252b5132 12976
4e7fd91e 12977 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
12978 if (globals == NULL)
12979 return FALSE;
b491616a 12980
0ffa91dd 12981 symtab_hdr = & elf_symtab_hdr (input_bfd);
252b5132
RH
12982 sym_hashes = elf_sym_hashes (input_bfd);
12983
12984 rel = relocs;
12985 relend = relocs + input_section->reloc_count;
12986 for (; rel < relend; rel++)
12987 {
07d6d2b8
AM
12988 int r_type;
12989 reloc_howto_type * howto;
12990 unsigned long r_symndx;
12991 Elf_Internal_Sym * sym;
12992 asection * sec;
252b5132 12993 struct elf_link_hash_entry * h;
07d6d2b8
AM
12994 bfd_vma relocation;
12995 bfd_reloc_status_type r;
12996 arelent bfd_reloc;
12997 char sym_type;
12998 bfd_boolean unresolved_reloc = FALSE;
f2a9dd69 12999 char *error_message = NULL;
f21f3fe0 13000
252b5132 13001 r_symndx = ELF32_R_SYM (rel->r_info);
ba96a88f 13002 r_type = ELF32_R_TYPE (rel->r_info);
b32d3aa2 13003 r_type = arm_real_reloc_type (globals, r_type);
252b5132 13004
ba96a88f 13005 if ( r_type == R_ARM_GNU_VTENTRY
99059e56
RM
13006 || r_type == R_ARM_GNU_VTINHERIT)
13007 continue;
252b5132 13008
47aeb64c
NC
13009 howto = bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
13010
13011 if (howto == NULL)
13012 return _bfd_unrecognized_reloc (input_bfd, input_section, r_type);
252b5132 13013
252b5132
RH
13014 h = NULL;
13015 sym = NULL;
13016 sec = NULL;
9b485d32 13017
252b5132
RH
13018 if (r_symndx < symtab_hdr->sh_info)
13019 {
13020 sym = local_syms + r_symndx;
ba93b8ac 13021 sym_type = ELF32_ST_TYPE (sym->st_info);
252b5132 13022 sec = local_sections[r_symndx];
ffcb4889
NS
13023
13024 /* An object file might have a reference to a local
13025 undefined symbol. This is a daft object file, but we
13026 should at least do something about it. V4BX & NONE
13027 relocations do not use the symbol and are explicitly
77b4f08f
TS
13028 allowed to use the undefined symbol, so allow those.
13029 Likewise for relocations against STN_UNDEF. */
ffcb4889
NS
13030 if (r_type != R_ARM_V4BX
13031 && r_type != R_ARM_NONE
77b4f08f 13032 && r_symndx != STN_UNDEF
ffcb4889
NS
13033 && bfd_is_und_section (sec)
13034 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
1a72702b
AM
13035 (*info->callbacks->undefined_symbol)
13036 (info, bfd_elf_string_from_elf_section
13037 (input_bfd, symtab_hdr->sh_link, sym->st_name),
13038 input_bfd, input_section,
13039 rel->r_offset, TRUE);
b38cadfb 13040
4e7fd91e 13041 if (globals->use_rel)
f8df10f4 13042 {
4e7fd91e
PB
13043 relocation = (sec->output_section->vma
13044 + sec->output_offset
13045 + sym->st_value);
0e1862bb 13046 if (!bfd_link_relocatable (info)
ab96bf03
AM
13047 && (sec->flags & SEC_MERGE)
13048 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
f8df10f4 13049 {
4e7fd91e
PB
13050 asection *msec;
13051 bfd_vma addend, value;
13052
39623e12 13053 switch (r_type)
4e7fd91e 13054 {
39623e12
PB
13055 case R_ARM_MOVW_ABS_NC:
13056 case R_ARM_MOVT_ABS:
13057 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
13058 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
13059 addend = (addend ^ 0x8000) - 0x8000;
13060 break;
f8df10f4 13061
39623e12
PB
13062 case R_ARM_THM_MOVW_ABS_NC:
13063 case R_ARM_THM_MOVT_ABS:
13064 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
13065 << 16;
13066 value |= bfd_get_16 (input_bfd,
13067 contents + rel->r_offset + 2);
13068 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
13069 | ((value & 0x04000000) >> 15);
13070 addend = (addend ^ 0x8000) - 0x8000;
13071 break;
f8df10f4 13072
39623e12
PB
13073 default:
13074 if (howto->rightshift
13075 || (howto->src_mask & (howto->src_mask + 1)))
13076 {
4eca0228 13077 _bfd_error_handler
695344c0 13078 /* xgettext:c-format */
2dcf00ce
AM
13079 (_("%pB(%pA+%#" PRIx64 "): "
13080 "%s relocation against SEC_MERGE section"),
39623e12 13081 input_bfd, input_section,
2dcf00ce 13082 (uint64_t) rel->r_offset, howto->name);
39623e12
PB
13083 return FALSE;
13084 }
13085
13086 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
13087
13088 /* Get the (signed) value from the instruction. */
13089 addend = value & howto->src_mask;
13090 if (addend & ((howto->src_mask + 1) >> 1))
13091 {
13092 bfd_signed_vma mask;
13093
13094 mask = -1;
13095 mask &= ~ howto->src_mask;
13096 addend |= mask;
13097 }
13098 break;
4e7fd91e 13099 }
39623e12 13100
4e7fd91e
PB
13101 msec = sec;
13102 addend =
13103 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
13104 - relocation;
13105 addend += msec->output_section->vma + msec->output_offset;
39623e12 13106
cc643b88 13107 /* Cases here must match those in the preceding
39623e12
PB
13108 switch statement. */
13109 switch (r_type)
13110 {
13111 case R_ARM_MOVW_ABS_NC:
13112 case R_ARM_MOVT_ABS:
13113 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
13114 | (addend & 0xfff);
13115 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
13116 break;
13117
13118 case R_ARM_THM_MOVW_ABS_NC:
13119 case R_ARM_THM_MOVT_ABS:
13120 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
13121 | (addend & 0xff) | ((addend & 0x0800) << 15);
13122 bfd_put_16 (input_bfd, value >> 16,
13123 contents + rel->r_offset);
13124 bfd_put_16 (input_bfd, value,
13125 contents + rel->r_offset + 2);
13126 break;
13127
13128 default:
13129 value = (value & ~ howto->dst_mask)
13130 | (addend & howto->dst_mask);
13131 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
13132 break;
13133 }
f8df10f4 13134 }
f8df10f4 13135 }
4e7fd91e
PB
13136 else
13137 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
252b5132
RH
13138 }
13139 else
13140 {
62d887d4 13141 bfd_boolean warned, ignored;
560e09e9 13142
b2a8e766
AM
13143 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
13144 r_symndx, symtab_hdr, sym_hashes,
13145 h, sec, relocation,
62d887d4 13146 unresolved_reloc, warned, ignored);
ba93b8ac
DJ
13147
13148 sym_type = h->type;
252b5132
RH
13149 }
13150
dbaa2011 13151 if (sec != NULL && discarded_section (sec))
e4067dbb 13152 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
545fd46b 13153 rel, 1, relend, howto, 0, contents);
ab96bf03 13154
0e1862bb 13155 if (bfd_link_relocatable (info))
ab96bf03
AM
13156 {
13157 /* This is a relocatable link. We don't have to change
13158 anything, unless the reloc is against a section symbol,
13159 in which case we have to adjust according to where the
13160 section symbol winds up in the output section. */
13161 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
13162 {
13163 if (globals->use_rel)
13164 arm_add_to_rel (input_bfd, contents + rel->r_offset,
13165 howto, (bfd_signed_vma) sec->output_offset);
13166 else
13167 rel->r_addend += sec->output_offset;
13168 }
13169 continue;
13170 }
13171
252b5132
RH
13172 if (h != NULL)
13173 name = h->root.root.string;
13174 else
13175 {
13176 name = (bfd_elf_string_from_elf_section
13177 (input_bfd, symtab_hdr->sh_link, sym->st_name));
13178 if (name == NULL || *name == '\0')
13179 name = bfd_section_name (input_bfd, sec);
13180 }
f21f3fe0 13181
cf35638d 13182 if (r_symndx != STN_UNDEF
ba93b8ac
DJ
13183 && r_type != R_ARM_NONE
13184 && (h == NULL
13185 || h->root.type == bfd_link_hash_defined
13186 || h->root.type == bfd_link_hash_defweak)
13187 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
13188 {
4eca0228 13189 _bfd_error_handler
ba93b8ac 13190 ((sym_type == STT_TLS
695344c0 13191 /* xgettext:c-format */
2dcf00ce 13192 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
695344c0 13193 /* xgettext:c-format */
2dcf00ce 13194 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
ba93b8ac
DJ
13195 input_bfd,
13196 input_section,
2dcf00ce 13197 (uint64_t) rel->r_offset,
ba93b8ac
DJ
13198 howto->name,
13199 name);
13200 }
13201
0855e32b 13202 /* We call elf32_arm_final_link_relocate unless we're completely
99059e56
RM
13203 done, i.e., the relaxation produced the final output we want,
13204 and we won't let anybody mess with it. Also, we have to do
13205 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
6a631e86 13206 both in relaxed and non-relaxed cases. */
39d911fc
TP
13207 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
13208 || (IS_ARM_TLS_GNU_RELOC (r_type)
13209 && !((h ? elf32_arm_hash_entry (h)->tls_type :
13210 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
13211 & GOT_TLS_GDESC)))
13212 {
13213 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
13214 contents, rel, h == NULL);
13215 /* This may have been marked unresolved because it came from
13216 a shared library. But we've just dealt with that. */
13217 unresolved_reloc = 0;
13218 }
13219 else
13220 r = bfd_reloc_continue;
b38cadfb 13221
39d911fc
TP
13222 if (r == bfd_reloc_continue)
13223 {
13224 unsigned char branch_type =
13225 h ? ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
13226 : ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
13227
13228 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
13229 input_section, contents, rel,
13230 relocation, info, sec, name,
13231 sym_type, branch_type, h,
13232 &unresolved_reloc,
13233 &error_message);
13234 }
0945cdfd
DJ
13235
13236 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
13237 because such sections are not SEC_ALLOC and thus ld.so will
13238 not process them. */
13239 if (unresolved_reloc
99059e56
RM
13240 && !((input_section->flags & SEC_DEBUGGING) != 0
13241 && h->def_dynamic)
1d5316ab
AM
13242 && _bfd_elf_section_offset (output_bfd, info, input_section,
13243 rel->r_offset) != (bfd_vma) -1)
0945cdfd 13244 {
4eca0228 13245 _bfd_error_handler
695344c0 13246 /* xgettext:c-format */
2dcf00ce
AM
13247 (_("%pB(%pA+%#" PRIx64 "): "
13248 "unresolvable %s relocation against symbol `%s'"),
843fe662
L
13249 input_bfd,
13250 input_section,
2dcf00ce 13251 (uint64_t) rel->r_offset,
843fe662
L
13252 howto->name,
13253 h->root.root.string);
0945cdfd
DJ
13254 return FALSE;
13255 }
252b5132
RH
13256
13257 if (r != bfd_reloc_ok)
13258 {
252b5132
RH
13259 switch (r)
13260 {
13261 case bfd_reloc_overflow:
cf919dfd
PB
13262 /* If the overflowing reloc was to an undefined symbol,
13263 we have already printed one error message and there
13264 is no point complaining again. */
1a72702b
AM
13265 if (!h || h->root.type != bfd_link_hash_undefined)
13266 (*info->callbacks->reloc_overflow)
13267 (info, (h ? &h->root : NULL), name, howto->name,
13268 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
252b5132
RH
13269 break;
13270
13271 case bfd_reloc_undefined:
1a72702b
AM
13272 (*info->callbacks->undefined_symbol)
13273 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
252b5132
RH
13274 break;
13275
13276 case bfd_reloc_outofrange:
f2a9dd69 13277 error_message = _("out of range");
252b5132
RH
13278 goto common_error;
13279
13280 case bfd_reloc_notsupported:
f2a9dd69 13281 error_message = _("unsupported relocation");
252b5132
RH
13282 goto common_error;
13283
13284 case bfd_reloc_dangerous:
f2a9dd69 13285 /* error_message should already be set. */
252b5132
RH
13286 goto common_error;
13287
13288 default:
f2a9dd69 13289 error_message = _("unknown error");
8029a119 13290 /* Fall through. */
252b5132
RH
13291
13292 common_error:
f2a9dd69 13293 BFD_ASSERT (error_message != NULL);
1a72702b
AM
13294 (*info->callbacks->reloc_dangerous)
13295 (info, error_message, input_bfd, input_section, rel->r_offset);
252b5132
RH
13296 break;
13297 }
13298 }
13299 }
13300
b34976b6 13301 return TRUE;
252b5132
RH
13302}
13303
91d6fa6a 13304/* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
2468f9c9 13305 adds the edit to the start of the list. (The list must be built in order of
91d6fa6a 13306 ascending TINDEX: the function's callers are primarily responsible for
2468f9c9
PB
13307 maintaining that condition). */
13308
13309static void
13310add_unwind_table_edit (arm_unwind_table_edit **head,
13311 arm_unwind_table_edit **tail,
13312 arm_unwind_edit_type type,
13313 asection *linked_section,
91d6fa6a 13314 unsigned int tindex)
2468f9c9 13315{
21d799b5
NC
13316 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
13317 xmalloc (sizeof (arm_unwind_table_edit));
b38cadfb 13318
2468f9c9
PB
13319 new_edit->type = type;
13320 new_edit->linked_section = linked_section;
91d6fa6a 13321 new_edit->index = tindex;
b38cadfb 13322
91d6fa6a 13323 if (tindex > 0)
2468f9c9
PB
13324 {
13325 new_edit->next = NULL;
13326
13327 if (*tail)
13328 (*tail)->next = new_edit;
13329
13330 (*tail) = new_edit;
13331
13332 if (!*head)
13333 (*head) = new_edit;
13334 }
13335 else
13336 {
13337 new_edit->next = *head;
13338
13339 if (!*tail)
13340 *tail = new_edit;
13341
13342 *head = new_edit;
13343 }
13344}
13345
13346static _arm_elf_section_data *get_arm_elf_section_data (asection *);
13347
13348/* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
13349static void
13350adjust_exidx_size(asection *exidx_sec, int adjust)
13351{
13352 asection *out_sec;
13353
13354 if (!exidx_sec->rawsize)
13355 exidx_sec->rawsize = exidx_sec->size;
13356
13357 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
13358 out_sec = exidx_sec->output_section;
13359 /* Adjust size of output section. */
13360 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
13361}
13362
13363/* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
13364static void
13365insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
13366{
13367 struct _arm_elf_section_data *exidx_arm_data;
13368
13369 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
13370 add_unwind_table_edit (
13371 &exidx_arm_data->u.exidx.unwind_edit_list,
13372 &exidx_arm_data->u.exidx.unwind_edit_tail,
13373 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
13374
491d01d3
YU
13375 exidx_arm_data->additional_reloc_count++;
13376
2468f9c9
PB
13377 adjust_exidx_size(exidx_sec, 8);
13378}
13379
13380/* Scan .ARM.exidx tables, and create a list describing edits which should be
13381 made to those tables, such that:
b38cadfb 13382
2468f9c9
PB
13383 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
13384 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
99059e56 13385 codes which have been inlined into the index).
2468f9c9 13386
85fdf906
AH
13387 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
13388
2468f9c9 13389 The edits are applied when the tables are written
b38cadfb 13390 (in elf32_arm_write_section). */
2468f9c9
PB
13391
13392bfd_boolean
13393elf32_arm_fix_exidx_coverage (asection **text_section_order,
13394 unsigned int num_text_sections,
85fdf906
AH
13395 struct bfd_link_info *info,
13396 bfd_boolean merge_exidx_entries)
2468f9c9
PB
13397{
13398 bfd *inp;
13399 unsigned int last_second_word = 0, i;
13400 asection *last_exidx_sec = NULL;
13401 asection *last_text_sec = NULL;
13402 int last_unwind_type = -1;
13403
13404 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
13405 text sections. */
c72f2fb2 13406 for (inp = info->input_bfds; inp != NULL; inp = inp->link.next)
2468f9c9
PB
13407 {
13408 asection *sec;
b38cadfb 13409
2468f9c9 13410 for (sec = inp->sections; sec != NULL; sec = sec->next)
99059e56 13411 {
2468f9c9
PB
13412 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
13413 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
b38cadfb 13414
dec9d5df 13415 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
2468f9c9 13416 continue;
b38cadfb 13417
2468f9c9
PB
13418 if (elf_sec->linked_to)
13419 {
13420 Elf_Internal_Shdr *linked_hdr
99059e56 13421 = &elf_section_data (elf_sec->linked_to)->this_hdr;
2468f9c9 13422 struct _arm_elf_section_data *linked_sec_arm_data
99059e56 13423 = get_arm_elf_section_data (linked_hdr->bfd_section);
2468f9c9
PB
13424
13425 if (linked_sec_arm_data == NULL)
99059e56 13426 continue;
2468f9c9
PB
13427
13428 /* Link this .ARM.exidx section back from the text section it
99059e56 13429 describes. */
2468f9c9
PB
13430 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
13431 }
13432 }
13433 }
13434
13435 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
13436 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
91d6fa6a 13437 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
2468f9c9
PB
13438
13439 for (i = 0; i < num_text_sections; i++)
13440 {
13441 asection *sec = text_section_order[i];
13442 asection *exidx_sec;
13443 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
13444 struct _arm_elf_section_data *exidx_arm_data;
13445 bfd_byte *contents = NULL;
13446 int deleted_exidx_bytes = 0;
13447 bfd_vma j;
13448 arm_unwind_table_edit *unwind_edit_head = NULL;
13449 arm_unwind_table_edit *unwind_edit_tail = NULL;
13450 Elf_Internal_Shdr *hdr;
13451 bfd *ibfd;
13452
13453 if (arm_data == NULL)
99059e56 13454 continue;
2468f9c9
PB
13455
13456 exidx_sec = arm_data->u.text.arm_exidx_sec;
13457 if (exidx_sec == NULL)
13458 {
13459 /* Section has no unwind data. */
13460 if (last_unwind_type == 0 || !last_exidx_sec)
13461 continue;
13462
13463 /* Ignore zero sized sections. */
13464 if (sec->size == 0)
13465 continue;
13466
13467 insert_cantunwind_after(last_text_sec, last_exidx_sec);
13468 last_unwind_type = 0;
13469 continue;
13470 }
13471
22a8f80e
PB
13472 /* Skip /DISCARD/ sections. */
13473 if (bfd_is_abs_section (exidx_sec->output_section))
13474 continue;
13475
2468f9c9
PB
13476 hdr = &elf_section_data (exidx_sec)->this_hdr;
13477 if (hdr->sh_type != SHT_ARM_EXIDX)
99059e56 13478 continue;
b38cadfb 13479
2468f9c9
PB
13480 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
13481 if (exidx_arm_data == NULL)
99059e56 13482 continue;
b38cadfb 13483
2468f9c9 13484 ibfd = exidx_sec->owner;
b38cadfb 13485
2468f9c9
PB
13486 if (hdr->contents != NULL)
13487 contents = hdr->contents;
13488 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
13489 /* An error? */
13490 continue;
13491
ac06903d
YU
13492 if (last_unwind_type > 0)
13493 {
13494 unsigned int first_word = bfd_get_32 (ibfd, contents);
13495 /* Add cantunwind if first unwind item does not match section
13496 start. */
13497 if (first_word != sec->vma)
13498 {
13499 insert_cantunwind_after (last_text_sec, last_exidx_sec);
13500 last_unwind_type = 0;
13501 }
13502 }
13503
2468f9c9
PB
13504 for (j = 0; j < hdr->sh_size; j += 8)
13505 {
13506 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
13507 int unwind_type;
13508 int elide = 0;
13509
13510 /* An EXIDX_CANTUNWIND entry. */
13511 if (second_word == 1)
13512 {
13513 if (last_unwind_type == 0)
13514 elide = 1;
13515 unwind_type = 0;
13516 }
13517 /* Inlined unwinding data. Merge if equal to previous. */
13518 else if ((second_word & 0x80000000) != 0)
13519 {
85fdf906
AH
13520 if (merge_exidx_entries
13521 && last_second_word == second_word && last_unwind_type == 1)
2468f9c9
PB
13522 elide = 1;
13523 unwind_type = 1;
13524 last_second_word = second_word;
13525 }
13526 /* Normal table entry. In theory we could merge these too,
13527 but duplicate entries are likely to be much less common. */
13528 else
13529 unwind_type = 2;
13530
491d01d3 13531 if (elide && !bfd_link_relocatable (info))
2468f9c9
PB
13532 {
13533 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
13534 DELETE_EXIDX_ENTRY, NULL, j / 8);
13535
13536 deleted_exidx_bytes += 8;
13537 }
13538
13539 last_unwind_type = unwind_type;
13540 }
13541
13542 /* Free contents if we allocated it ourselves. */
13543 if (contents != hdr->contents)
99059e56 13544 free (contents);
2468f9c9
PB
13545
13546 /* Record edits to be applied later (in elf32_arm_write_section). */
13547 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
13548 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
b38cadfb 13549
2468f9c9
PB
13550 if (deleted_exidx_bytes > 0)
13551 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
13552
13553 last_exidx_sec = exidx_sec;
13554 last_text_sec = sec;
13555 }
13556
13557 /* Add terminating CANTUNWIND entry. */
491d01d3
YU
13558 if (!bfd_link_relocatable (info) && last_exidx_sec
13559 && last_unwind_type != 0)
2468f9c9
PB
13560 insert_cantunwind_after(last_text_sec, last_exidx_sec);
13561
13562 return TRUE;
13563}
13564
3e6b1042
DJ
13565static bfd_boolean
13566elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
13567 bfd *ibfd, const char *name)
13568{
13569 asection *sec, *osec;
13570
3d4d4302 13571 sec = bfd_get_linker_section (ibfd, name);
3e6b1042
DJ
13572 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
13573 return TRUE;
13574
13575 osec = sec->output_section;
13576 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
13577 return TRUE;
13578
13579 if (! bfd_set_section_contents (obfd, osec, sec->contents,
13580 sec->output_offset, sec->size))
13581 return FALSE;
13582
13583 return TRUE;
13584}
13585
13586static bfd_boolean
13587elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
13588{
13589 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
fe33d2fa 13590 asection *sec, *osec;
3e6b1042 13591
4dfe6ac6
NC
13592 if (globals == NULL)
13593 return FALSE;
13594
3e6b1042
DJ
13595 /* Invoke the regular ELF backend linker to do all the work. */
13596 if (!bfd_elf_final_link (abfd, info))
13597 return FALSE;
13598
fe33d2fa
CL
13599 /* Process stub sections (eg BE8 encoding, ...). */
13600 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
7292b3ac 13601 unsigned int i;
cdb21a0a
NS
13602 for (i=0; i<htab->top_id; i++)
13603 {
13604 sec = htab->stub_group[i].stub_sec;
13605 /* Only process it once, in its link_sec slot. */
13606 if (sec && i == htab->stub_group[i].link_sec->id)
13607 {
13608 osec = sec->output_section;
13609 elf32_arm_write_section (abfd, info, sec, sec->contents);
13610 if (! bfd_set_section_contents (abfd, osec, sec->contents,
13611 sec->output_offset, sec->size))
13612 return FALSE;
13613 }
fe33d2fa 13614 }
fe33d2fa 13615
3e6b1042
DJ
13616 /* Write out any glue sections now that we have created all the
13617 stubs. */
13618 if (globals->bfd_of_glue_owner != NULL)
13619 {
13620 if (! elf32_arm_output_glue_section (info, abfd,
13621 globals->bfd_of_glue_owner,
13622 ARM2THUMB_GLUE_SECTION_NAME))
13623 return FALSE;
13624
13625 if (! elf32_arm_output_glue_section (info, abfd,
13626 globals->bfd_of_glue_owner,
13627 THUMB2ARM_GLUE_SECTION_NAME))
13628 return FALSE;
13629
13630 if (! elf32_arm_output_glue_section (info, abfd,
13631 globals->bfd_of_glue_owner,
13632 VFP11_ERRATUM_VENEER_SECTION_NAME))
13633 return FALSE;
13634
a504d23a
LA
13635 if (! elf32_arm_output_glue_section (info, abfd,
13636 globals->bfd_of_glue_owner,
13637 STM32L4XX_ERRATUM_VENEER_SECTION_NAME))
13638 return FALSE;
13639
3e6b1042
DJ
13640 if (! elf32_arm_output_glue_section (info, abfd,
13641 globals->bfd_of_glue_owner,
13642 ARM_BX_GLUE_SECTION_NAME))
13643 return FALSE;
13644 }
13645
13646 return TRUE;
13647}
13648
5968a7b8
NC
13649/* Return a best guess for the machine number based on the attributes. */
13650
13651static unsigned int
13652bfd_arm_get_mach_from_attributes (bfd * abfd)
13653{
13654 int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch);
13655
13656 switch (arch)
13657 {
c0c468d5 13658 case TAG_CPU_ARCH_PRE_V4: return bfd_mach_arm_3M;
5968a7b8
NC
13659 case TAG_CPU_ARCH_V4: return bfd_mach_arm_4;
13660 case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T;
13661 case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T;
13662
13663 case TAG_CPU_ARCH_V5TE:
13664 {
13665 char * name;
13666
13667 BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES);
13668 name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s;
13669
13670 if (name)
13671 {
13672 if (strcmp (name, "IWMMXT2") == 0)
13673 return bfd_mach_arm_iWMMXt2;
13674
13675 if (strcmp (name, "IWMMXT") == 0)
6034aab8 13676 return bfd_mach_arm_iWMMXt;
088ca6c1
NC
13677
13678 if (strcmp (name, "XSCALE") == 0)
13679 {
13680 int wmmx;
13681
13682 BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES);
13683 wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i;
13684 switch (wmmx)
13685 {
13686 case 1: return bfd_mach_arm_iWMMXt;
13687 case 2: return bfd_mach_arm_iWMMXt2;
13688 default: return bfd_mach_arm_XScale;
13689 }
13690 }
5968a7b8
NC
13691 }
13692
13693 return bfd_mach_arm_5TE;
13694 }
13695
c0c468d5
TP
13696 case TAG_CPU_ARCH_V5TEJ:
13697 return bfd_mach_arm_5TEJ;
13698 case TAG_CPU_ARCH_V6:
13699 return bfd_mach_arm_6;
13700 case TAG_CPU_ARCH_V6KZ:
13701 return bfd_mach_arm_6KZ;
13702 case TAG_CPU_ARCH_V6T2:
13703 return bfd_mach_arm_6T2;
13704 case TAG_CPU_ARCH_V6K:
13705 return bfd_mach_arm_6K;
13706 case TAG_CPU_ARCH_V7:
13707 return bfd_mach_arm_7;
13708 case TAG_CPU_ARCH_V6_M:
13709 return bfd_mach_arm_6M;
13710 case TAG_CPU_ARCH_V6S_M:
13711 return bfd_mach_arm_6SM;
13712 case TAG_CPU_ARCH_V7E_M:
13713 return bfd_mach_arm_7EM;
13714 case TAG_CPU_ARCH_V8:
13715 return bfd_mach_arm_8;
13716 case TAG_CPU_ARCH_V8R:
13717 return bfd_mach_arm_8R;
13718 case TAG_CPU_ARCH_V8M_BASE:
13719 return bfd_mach_arm_8M_BASE;
13720 case TAG_CPU_ARCH_V8M_MAIN:
13721 return bfd_mach_arm_8M_MAIN;
13722
5968a7b8 13723 default:
c0c468d5
TP
13724 /* Force entry to be added for any new known Tag_CPU_arch value. */
13725 BFD_ASSERT (arch > MAX_TAG_CPU_ARCH);
13726
13727 /* Unknown Tag_CPU_arch value. */
5968a7b8
NC
13728 return bfd_mach_arm_unknown;
13729 }
13730}
13731
c178919b
NC
13732/* Set the right machine number. */
13733
13734static bfd_boolean
57e8b36a 13735elf32_arm_object_p (bfd *abfd)
c178919b 13736{
5a6c6817 13737 unsigned int mach;
57e8b36a 13738
5a6c6817 13739 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
c178919b 13740
5968a7b8
NC
13741 if (mach == bfd_mach_arm_unknown)
13742 {
13743 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
13744 mach = bfd_mach_arm_ep9312;
13745 else
13746 mach = bfd_arm_get_mach_from_attributes (abfd);
13747 }
c178919b 13748
5968a7b8 13749 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
c178919b
NC
13750 return TRUE;
13751}
13752
fc830a83 13753/* Function to keep ARM specific flags in the ELF header. */
3c9458e9 13754
b34976b6 13755static bfd_boolean
57e8b36a 13756elf32_arm_set_private_flags (bfd *abfd, flagword flags)
252b5132
RH
13757{
13758 if (elf_flags_init (abfd)
13759 && elf_elfheader (abfd)->e_flags != flags)
13760 {
fc830a83
NC
13761 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
13762 {
fd2ec330 13763 if (flags & EF_ARM_INTERWORK)
4eca0228 13764 _bfd_error_handler
90b6238f 13765 (_("warning: not setting interworking flag of %pB since it has already been specified as non-interworking"),
d003868e 13766 abfd);
fc830a83 13767 else
d003868e 13768 _bfd_error_handler
90b6238f 13769 (_("warning: clearing the interworking flag of %pB due to outside request"),
d003868e 13770 abfd);
fc830a83 13771 }
252b5132
RH
13772 }
13773 else
13774 {
13775 elf_elfheader (abfd)->e_flags = flags;
b34976b6 13776 elf_flags_init (abfd) = TRUE;
252b5132
RH
13777 }
13778
b34976b6 13779 return TRUE;
252b5132
RH
13780}
13781
fc830a83 13782/* Copy backend specific data from one object module to another. */
9b485d32 13783
b34976b6 13784static bfd_boolean
57e8b36a 13785elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
252b5132
RH
13786{
13787 flagword in_flags;
13788 flagword out_flags;
13789
0ffa91dd 13790 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
b34976b6 13791 return TRUE;
252b5132 13792
fc830a83 13793 in_flags = elf_elfheader (ibfd)->e_flags;
252b5132
RH
13794 out_flags = elf_elfheader (obfd)->e_flags;
13795
fc830a83
NC
13796 if (elf_flags_init (obfd)
13797 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
13798 && in_flags != out_flags)
252b5132 13799 {
252b5132 13800 /* Cannot mix APCS26 and APCS32 code. */
fd2ec330 13801 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
b34976b6 13802 return FALSE;
252b5132
RH
13803
13804 /* Cannot mix float APCS and non-float APCS code. */
fd2ec330 13805 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
b34976b6 13806 return FALSE;
252b5132
RH
13807
13808 /* If the src and dest have different interworking flags
99059e56 13809 then turn off the interworking bit. */
fd2ec330 13810 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
252b5132 13811 {
fd2ec330 13812 if (out_flags & EF_ARM_INTERWORK)
d003868e 13813 _bfd_error_handler
90b6238f 13814 (_("warning: clearing the interworking flag of %pB because non-interworking code in %pB has been linked with it"),
d003868e 13815 obfd, ibfd);
252b5132 13816
fd2ec330 13817 in_flags &= ~EF_ARM_INTERWORK;
252b5132 13818 }
1006ba19
PB
13819
13820 /* Likewise for PIC, though don't warn for this case. */
fd2ec330
PB
13821 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
13822 in_flags &= ~EF_ARM_PIC;
252b5132
RH
13823 }
13824
13825 elf_elfheader (obfd)->e_flags = in_flags;
b34976b6 13826 elf_flags_init (obfd) = TRUE;
252b5132 13827
e2349352 13828 return _bfd_elf_copy_private_bfd_data (ibfd, obfd);
ee065d83
PB
13829}
13830
13831/* Values for Tag_ABI_PCS_R9_use. */
13832enum
13833{
13834 AEABI_R9_V6,
13835 AEABI_R9_SB,
13836 AEABI_R9_TLS,
13837 AEABI_R9_unused
13838};
13839
13840/* Values for Tag_ABI_PCS_RW_data. */
13841enum
13842{
13843 AEABI_PCS_RW_data_absolute,
13844 AEABI_PCS_RW_data_PCrel,
13845 AEABI_PCS_RW_data_SBrel,
13846 AEABI_PCS_RW_data_unused
13847};
13848
13849/* Values for Tag_ABI_enum_size. */
13850enum
13851{
13852 AEABI_enum_unused,
13853 AEABI_enum_short,
13854 AEABI_enum_wide,
13855 AEABI_enum_forced_wide
13856};
13857
104d59d1
JM
13858/* Determine whether an object attribute tag takes an integer, a
13859 string or both. */
906e58ca 13860
104d59d1
JM
13861static int
13862elf32_arm_obj_attrs_arg_type (int tag)
13863{
13864 if (tag == Tag_compatibility)
3483fe2e 13865 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
2d0bb761 13866 else if (tag == Tag_nodefaults)
3483fe2e
AS
13867 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
13868 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
13869 return ATTR_TYPE_FLAG_STR_VAL;
104d59d1 13870 else if (tag < 32)
3483fe2e 13871 return ATTR_TYPE_FLAG_INT_VAL;
104d59d1 13872 else
3483fe2e 13873 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
104d59d1
JM
13874}
13875
5aa6ff7c
AS
13876/* The ABI defines that Tag_conformance should be emitted first, and that
13877 Tag_nodefaults should be second (if either is defined). This sets those
13878 two positions, and bumps up the position of all the remaining tags to
13879 compensate. */
13880static int
13881elf32_arm_obj_attrs_order (int num)
13882{
3de4a297 13883 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
5aa6ff7c 13884 return Tag_conformance;
3de4a297 13885 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
5aa6ff7c
AS
13886 return Tag_nodefaults;
13887 if ((num - 2) < Tag_nodefaults)
13888 return num - 2;
13889 if ((num - 1) < Tag_conformance)
13890 return num - 1;
13891 return num;
13892}
13893
e8b36cd1
JM
13894/* Attribute numbers >=64 (mod 128) can be safely ignored. */
13895static bfd_boolean
13896elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
13897{
13898 if ((tag & 127) < 64)
13899 {
13900 _bfd_error_handler
90b6238f 13901 (_("%pB: unknown mandatory EABI object attribute %d"),
e8b36cd1
JM
13902 abfd, tag);
13903 bfd_set_error (bfd_error_bad_value);
13904 return FALSE;
13905 }
13906 else
13907 {
13908 _bfd_error_handler
90b6238f 13909 (_("warning: %pB: unknown EABI object attribute %d"),
e8b36cd1
JM
13910 abfd, tag);
13911 return TRUE;
13912 }
13913}
13914
91e22acd
AS
13915/* Read the architecture from the Tag_also_compatible_with attribute, if any.
13916 Returns -1 if no architecture could be read. */
13917
13918static int
13919get_secondary_compatible_arch (bfd *abfd)
13920{
13921 obj_attribute *attr =
13922 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
13923
13924 /* Note: the tag and its argument below are uleb128 values, though
13925 currently-defined values fit in one byte for each. */
13926 if (attr->s
13927 && attr->s[0] == Tag_CPU_arch
13928 && (attr->s[1] & 128) != 128
13929 && attr->s[2] == 0)
13930 return attr->s[1];
13931
13932 /* This tag is "safely ignorable", so don't complain if it looks funny. */
13933 return -1;
13934}
13935
13936/* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
13937 The tag is removed if ARCH is -1. */
13938
8e79c3df 13939static void
91e22acd 13940set_secondary_compatible_arch (bfd *abfd, int arch)
8e79c3df 13941{
91e22acd
AS
13942 obj_attribute *attr =
13943 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
8e79c3df 13944
91e22acd
AS
13945 if (arch == -1)
13946 {
13947 attr->s = NULL;
13948 return;
8e79c3df 13949 }
91e22acd
AS
13950
13951 /* Note: the tag and its argument below are uleb128 values, though
13952 currently-defined values fit in one byte for each. */
13953 if (!attr->s)
21d799b5 13954 attr->s = (char *) bfd_alloc (abfd, 3);
91e22acd
AS
13955 attr->s[0] = Tag_CPU_arch;
13956 attr->s[1] = arch;
13957 attr->s[2] = '\0';
8e79c3df
CM
13958}
13959
91e22acd
AS
13960/* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
13961 into account. */
13962
13963static int
13964tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
13965 int newtag, int secondary_compat)
8e79c3df 13966{
91e22acd
AS
13967#define T(X) TAG_CPU_ARCH_##X
13968 int tagl, tagh, result;
13969 const int v6t2[] =
13970 {
13971 T(V6T2), /* PRE_V4. */
13972 T(V6T2), /* V4. */
13973 T(V6T2), /* V4T. */
13974 T(V6T2), /* V5T. */
13975 T(V6T2), /* V5TE. */
13976 T(V6T2), /* V5TEJ. */
13977 T(V6T2), /* V6. */
13978 T(V7), /* V6KZ. */
13979 T(V6T2) /* V6T2. */
13980 };
13981 const int v6k[] =
13982 {
13983 T(V6K), /* PRE_V4. */
13984 T(V6K), /* V4. */
13985 T(V6K), /* V4T. */
13986 T(V6K), /* V5T. */
13987 T(V6K), /* V5TE. */
13988 T(V6K), /* V5TEJ. */
13989 T(V6K), /* V6. */
13990 T(V6KZ), /* V6KZ. */
13991 T(V7), /* V6T2. */
13992 T(V6K) /* V6K. */
13993 };
13994 const int v7[] =
13995 {
13996 T(V7), /* PRE_V4. */
13997 T(V7), /* V4. */
13998 T(V7), /* V4T. */
13999 T(V7), /* V5T. */
14000 T(V7), /* V5TE. */
14001 T(V7), /* V5TEJ. */
14002 T(V7), /* V6. */
14003 T(V7), /* V6KZ. */
14004 T(V7), /* V6T2. */
14005 T(V7), /* V6K. */
14006 T(V7) /* V7. */
14007 };
14008 const int v6_m[] =
14009 {
07d6d2b8
AM
14010 -1, /* PRE_V4. */
14011 -1, /* V4. */
91e22acd
AS
14012 T(V6K), /* V4T. */
14013 T(V6K), /* V5T. */
14014 T(V6K), /* V5TE. */
14015 T(V6K), /* V5TEJ. */
14016 T(V6K), /* V6. */
14017 T(V6KZ), /* V6KZ. */
14018 T(V7), /* V6T2. */
14019 T(V6K), /* V6K. */
14020 T(V7), /* V7. */
14021 T(V6_M) /* V6_M. */
14022 };
14023 const int v6s_m[] =
14024 {
07d6d2b8
AM
14025 -1, /* PRE_V4. */
14026 -1, /* V4. */
91e22acd
AS
14027 T(V6K), /* V4T. */
14028 T(V6K), /* V5T. */
14029 T(V6K), /* V5TE. */
14030 T(V6K), /* V5TEJ. */
14031 T(V6K), /* V6. */
14032 T(V6KZ), /* V6KZ. */
14033 T(V7), /* V6T2. */
14034 T(V6K), /* V6K. */
14035 T(V7), /* V7. */
14036 T(V6S_M), /* V6_M. */
14037 T(V6S_M) /* V6S_M. */
14038 };
9e3c6df6
PB
14039 const int v7e_m[] =
14040 {
07d6d2b8
AM
14041 -1, /* PRE_V4. */
14042 -1, /* V4. */
9e3c6df6
PB
14043 T(V7E_M), /* V4T. */
14044 T(V7E_M), /* V5T. */
14045 T(V7E_M), /* V5TE. */
14046 T(V7E_M), /* V5TEJ. */
14047 T(V7E_M), /* V6. */
14048 T(V7E_M), /* V6KZ. */
14049 T(V7E_M), /* V6T2. */
14050 T(V7E_M), /* V6K. */
14051 T(V7E_M), /* V7. */
14052 T(V7E_M), /* V6_M. */
14053 T(V7E_M), /* V6S_M. */
14054 T(V7E_M) /* V7E_M. */
14055 };
bca38921
MGD
14056 const int v8[] =
14057 {
14058 T(V8), /* PRE_V4. */
14059 T(V8), /* V4. */
14060 T(V8), /* V4T. */
14061 T(V8), /* V5T. */
14062 T(V8), /* V5TE. */
14063 T(V8), /* V5TEJ. */
14064 T(V8), /* V6. */
14065 T(V8), /* V6KZ. */
14066 T(V8), /* V6T2. */
14067 T(V8), /* V6K. */
14068 T(V8), /* V7. */
14069 T(V8), /* V6_M. */
14070 T(V8), /* V6S_M. */
14071 T(V8), /* V7E_M. */
14072 T(V8) /* V8. */
14073 };
bff0500d
TP
14074 const int v8r[] =
14075 {
14076 T(V8R), /* PRE_V4. */
14077 T(V8R), /* V4. */
14078 T(V8R), /* V4T. */
14079 T(V8R), /* V5T. */
14080 T(V8R), /* V5TE. */
14081 T(V8R), /* V5TEJ. */
14082 T(V8R), /* V6. */
14083 T(V8R), /* V6KZ. */
14084 T(V8R), /* V6T2. */
14085 T(V8R), /* V6K. */
14086 T(V8R), /* V7. */
14087 T(V8R), /* V6_M. */
14088 T(V8R), /* V6S_M. */
14089 T(V8R), /* V7E_M. */
14090 T(V8), /* V8. */
14091 T(V8R), /* V8R. */
14092 };
2fd158eb
TP
14093 const int v8m_baseline[] =
14094 {
14095 -1, /* PRE_V4. */
14096 -1, /* V4. */
14097 -1, /* V4T. */
14098 -1, /* V5T. */
14099 -1, /* V5TE. */
14100 -1, /* V5TEJ. */
14101 -1, /* V6. */
14102 -1, /* V6KZ. */
14103 -1, /* V6T2. */
14104 -1, /* V6K. */
14105 -1, /* V7. */
14106 T(V8M_BASE), /* V6_M. */
14107 T(V8M_BASE), /* V6S_M. */
14108 -1, /* V7E_M. */
14109 -1, /* V8. */
bff0500d 14110 -1, /* V8R. */
2fd158eb
TP
14111 T(V8M_BASE) /* V8-M BASELINE. */
14112 };
14113 const int v8m_mainline[] =
14114 {
14115 -1, /* PRE_V4. */
14116 -1, /* V4. */
14117 -1, /* V4T. */
14118 -1, /* V5T. */
14119 -1, /* V5TE. */
14120 -1, /* V5TEJ. */
14121 -1, /* V6. */
14122 -1, /* V6KZ. */
14123 -1, /* V6T2. */
14124 -1, /* V6K. */
14125 T(V8M_MAIN), /* V7. */
14126 T(V8M_MAIN), /* V6_M. */
14127 T(V8M_MAIN), /* V6S_M. */
14128 T(V8M_MAIN), /* V7E_M. */
14129 -1, /* V8. */
bff0500d 14130 -1, /* V8R. */
2fd158eb
TP
14131 T(V8M_MAIN), /* V8-M BASELINE. */
14132 T(V8M_MAIN) /* V8-M MAINLINE. */
14133 };
91e22acd
AS
14134 const int v4t_plus_v6_m[] =
14135 {
14136 -1, /* PRE_V4. */
14137 -1, /* V4. */
14138 T(V4T), /* V4T. */
14139 T(V5T), /* V5T. */
14140 T(V5TE), /* V5TE. */
14141 T(V5TEJ), /* V5TEJ. */
14142 T(V6), /* V6. */
14143 T(V6KZ), /* V6KZ. */
14144 T(V6T2), /* V6T2. */
14145 T(V6K), /* V6K. */
14146 T(V7), /* V7. */
14147 T(V6_M), /* V6_M. */
14148 T(V6S_M), /* V6S_M. */
9e3c6df6 14149 T(V7E_M), /* V7E_M. */
bca38921 14150 T(V8), /* V8. */
bff0500d 14151 -1, /* V8R. */
2fd158eb
TP
14152 T(V8M_BASE), /* V8-M BASELINE. */
14153 T(V8M_MAIN), /* V8-M MAINLINE. */
91e22acd
AS
14154 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
14155 };
14156 const int *comb[] =
14157 {
14158 v6t2,
14159 v6k,
14160 v7,
14161 v6_m,
14162 v6s_m,
9e3c6df6 14163 v7e_m,
bca38921 14164 v8,
bff0500d 14165 v8r,
2fd158eb
TP
14166 v8m_baseline,
14167 v8m_mainline,
91e22acd
AS
14168 /* Pseudo-architecture. */
14169 v4t_plus_v6_m
14170 };
14171
14172 /* Check we've not got a higher architecture than we know about. */
14173
9e3c6df6 14174 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
91e22acd 14175 {
90b6238f 14176 _bfd_error_handler (_("error: %pB: unknown CPU architecture"), ibfd);
91e22acd
AS
14177 return -1;
14178 }
14179
14180 /* Override old tag if we have a Tag_also_compatible_with on the output. */
14181
14182 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
14183 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
14184 oldtag = T(V4T_PLUS_V6_M);
14185
14186 /* And override the new tag if we have a Tag_also_compatible_with on the
14187 input. */
14188
14189 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
14190 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
14191 newtag = T(V4T_PLUS_V6_M);
14192
14193 tagl = (oldtag < newtag) ? oldtag : newtag;
14194 result = tagh = (oldtag > newtag) ? oldtag : newtag;
14195
14196 /* Architectures before V6KZ add features monotonically. */
14197 if (tagh <= TAG_CPU_ARCH_V6KZ)
14198 return result;
14199
4ed7ed8d 14200 result = comb[tagh - T(V6T2)] ? comb[tagh - T(V6T2)][tagl] : -1;
91e22acd
AS
14201
14202 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
14203 as the canonical version. */
14204 if (result == T(V4T_PLUS_V6_M))
14205 {
14206 result = T(V4T);
14207 *secondary_compat_out = T(V6_M);
14208 }
14209 else
14210 *secondary_compat_out = -1;
14211
14212 if (result == -1)
14213 {
90b6238f 14214 _bfd_error_handler (_("error: %pB: conflicting CPU architectures %d/%d"),
91e22acd
AS
14215 ibfd, oldtag, newtag);
14216 return -1;
14217 }
14218
14219 return result;
14220#undef T
8e79c3df
CM
14221}
14222
ac56ee8f
MGD
14223/* Query attributes object to see if integer divide instructions may be
14224 present in an object. */
14225static bfd_boolean
14226elf32_arm_attributes_accept_div (const obj_attribute *attr)
14227{
14228 int arch = attr[Tag_CPU_arch].i;
14229 int profile = attr[Tag_CPU_arch_profile].i;
14230
14231 switch (attr[Tag_DIV_use].i)
14232 {
14233 case 0:
14234 /* Integer divide allowed if instruction contained in archetecture. */
14235 if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
14236 return TRUE;
14237 else if (arch >= TAG_CPU_ARCH_V7E_M)
14238 return TRUE;
14239 else
14240 return FALSE;
14241
14242 case 1:
14243 /* Integer divide explicitly prohibited. */
14244 return FALSE;
14245
14246 default:
14247 /* Unrecognised case - treat as allowing divide everywhere. */
14248 case 2:
14249 /* Integer divide allowed in ARM state. */
14250 return TRUE;
14251 }
14252}
14253
14254/* Query attributes object to see if integer divide instructions are
14255 forbidden to be in the object. This is not the inverse of
14256 elf32_arm_attributes_accept_div. */
14257static bfd_boolean
14258elf32_arm_attributes_forbid_div (const obj_attribute *attr)
14259{
14260 return attr[Tag_DIV_use].i == 1;
14261}
14262
ee065d83
PB
14263/* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
14264 are conflicting attributes. */
906e58ca 14265
ee065d83 14266static bfd_boolean
50e03d47 14267elf32_arm_merge_eabi_attributes (bfd *ibfd, struct bfd_link_info *info)
ee065d83 14268{
50e03d47 14269 bfd *obfd = info->output_bfd;
104d59d1
JM
14270 obj_attribute *in_attr;
14271 obj_attribute *out_attr;
ee065d83
PB
14272 /* Some tags have 0 = don't care, 1 = strong requirement,
14273 2 = weak requirement. */
91e22acd 14274 static const int order_021[3] = {0, 2, 1};
ee065d83 14275 int i;
91e22acd 14276 bfd_boolean result = TRUE;
9274e9de 14277 const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section;
ee065d83 14278
3e6b1042
DJ
14279 /* Skip the linker stubs file. This preserves previous behavior
14280 of accepting unknown attributes in the first input file - but
14281 is that a bug? */
14282 if (ibfd->flags & BFD_LINKER_CREATED)
14283 return TRUE;
14284
9274e9de
TG
14285 /* Skip any input that hasn't attribute section.
14286 This enables to link object files without attribute section with
14287 any others. */
14288 if (bfd_get_section_by_name (ibfd, sec_name) == NULL)
14289 return TRUE;
14290
104d59d1 14291 if (!elf_known_obj_attributes_proc (obfd)[0].i)
ee065d83
PB
14292 {
14293 /* This is the first object. Copy the attributes. */
104d59d1 14294 _bfd_elf_copy_obj_attributes (ibfd, obfd);
004ae526 14295
cd21e546
MGD
14296 out_attr = elf_known_obj_attributes_proc (obfd);
14297
004ae526
PB
14298 /* Use the Tag_null value to indicate the attributes have been
14299 initialized. */
cd21e546 14300 out_attr[0].i = 1;
004ae526 14301
cd21e546
MGD
14302 /* We do not output objects with Tag_MPextension_use_legacy - we move
14303 the attribute's value to Tag_MPextension_use. */
14304 if (out_attr[Tag_MPextension_use_legacy].i != 0)
14305 {
14306 if (out_attr[Tag_MPextension_use].i != 0
14307 && out_attr[Tag_MPextension_use_legacy].i
99059e56 14308 != out_attr[Tag_MPextension_use].i)
cd21e546
MGD
14309 {
14310 _bfd_error_handler
871b3ab2 14311 (_("Error: %pB has both the current and legacy "
cd21e546
MGD
14312 "Tag_MPextension_use attributes"), ibfd);
14313 result = FALSE;
14314 }
14315
14316 out_attr[Tag_MPextension_use] =
14317 out_attr[Tag_MPextension_use_legacy];
14318 out_attr[Tag_MPextension_use_legacy].type = 0;
14319 out_attr[Tag_MPextension_use_legacy].i = 0;
14320 }
14321
14322 return result;
ee065d83
PB
14323 }
14324
104d59d1
JM
14325 in_attr = elf_known_obj_attributes_proc (ibfd);
14326 out_attr = elf_known_obj_attributes_proc (obfd);
ee065d83
PB
14327 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
14328 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
14329 {
5c294fee
TG
14330 /* Ignore mismatches if the object doesn't use floating point or is
14331 floating point ABI independent. */
14332 if (out_attr[Tag_ABI_FP_number_model].i == AEABI_FP_number_model_none
14333 || (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
14334 && out_attr[Tag_ABI_VFP_args].i == AEABI_VFP_args_compatible))
ee065d83 14335 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
5c294fee
TG
14336 else if (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
14337 && in_attr[Tag_ABI_VFP_args].i != AEABI_VFP_args_compatible)
ee065d83
PB
14338 {
14339 _bfd_error_handler
871b3ab2 14340 (_("error: %pB uses VFP register arguments, %pB does not"),
deddc40b
NS
14341 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
14342 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
91e22acd 14343 result = FALSE;
ee065d83
PB
14344 }
14345 }
14346
3de4a297 14347 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
ee065d83
PB
14348 {
14349 /* Merge this attribute with existing attributes. */
14350 switch (i)
14351 {
14352 case Tag_CPU_raw_name:
14353 case Tag_CPU_name:
6a631e86 14354 /* These are merged after Tag_CPU_arch. */
ee065d83
PB
14355 break;
14356
14357 case Tag_ABI_optimization_goals:
14358 case Tag_ABI_FP_optimization_goals:
14359 /* Use the first value seen. */
14360 break;
14361
14362 case Tag_CPU_arch:
91e22acd
AS
14363 {
14364 int secondary_compat = -1, secondary_compat_out = -1;
14365 unsigned int saved_out_attr = out_attr[i].i;
70e99720
TG
14366 int arch_attr;
14367 static const char *name_table[] =
14368 {
91e22acd
AS
14369 /* These aren't real CPU names, but we can't guess
14370 that from the architecture version alone. */
14371 "Pre v4",
14372 "ARM v4",
14373 "ARM v4T",
14374 "ARM v5T",
14375 "ARM v5TE",
14376 "ARM v5TEJ",
14377 "ARM v6",
14378 "ARM v6KZ",
14379 "ARM v6T2",
14380 "ARM v6K",
14381 "ARM v7",
14382 "ARM v6-M",
bca38921 14383 "ARM v6S-M",
2fd158eb
TP
14384 "ARM v8",
14385 "",
14386 "ARM v8-M.baseline",
14387 "ARM v8-M.mainline",
91e22acd
AS
14388 };
14389
14390 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
14391 secondary_compat = get_secondary_compatible_arch (ibfd);
14392 secondary_compat_out = get_secondary_compatible_arch (obfd);
70e99720
TG
14393 arch_attr = tag_cpu_arch_combine (ibfd, out_attr[i].i,
14394 &secondary_compat_out,
14395 in_attr[i].i,
14396 secondary_compat);
14397
14398 /* Return with error if failed to merge. */
14399 if (arch_attr == -1)
14400 return FALSE;
14401
14402 out_attr[i].i = arch_attr;
14403
91e22acd
AS
14404 set_secondary_compatible_arch (obfd, secondary_compat_out);
14405
14406 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
14407 if (out_attr[i].i == saved_out_attr)
14408 ; /* Leave the names alone. */
14409 else if (out_attr[i].i == in_attr[i].i)
14410 {
14411 /* The output architecture has been changed to match the
14412 input architecture. Use the input names. */
14413 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
14414 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
14415 : NULL;
14416 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
14417 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
14418 : NULL;
14419 }
14420 else
14421 {
14422 out_attr[Tag_CPU_name].s = NULL;
14423 out_attr[Tag_CPU_raw_name].s = NULL;
14424 }
14425
14426 /* If we still don't have a value for Tag_CPU_name,
14427 make one up now. Tag_CPU_raw_name remains blank. */
14428 if (out_attr[Tag_CPU_name].s == NULL
14429 && out_attr[i].i < ARRAY_SIZE (name_table))
14430 out_attr[Tag_CPU_name].s =
14431 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
14432 }
14433 break;
14434
ee065d83
PB
14435 case Tag_ARM_ISA_use:
14436 case Tag_THUMB_ISA_use:
ee065d83 14437 case Tag_WMMX_arch:
91e22acd
AS
14438 case Tag_Advanced_SIMD_arch:
14439 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
ee065d83 14440 case Tag_ABI_FP_rounding:
ee065d83
PB
14441 case Tag_ABI_FP_exceptions:
14442 case Tag_ABI_FP_user_exceptions:
14443 case Tag_ABI_FP_number_model:
75375b3e 14444 case Tag_FP_HP_extension:
91e22acd
AS
14445 case Tag_CPU_unaligned_access:
14446 case Tag_T2EE_use:
91e22acd 14447 case Tag_MPextension_use:
ee065d83
PB
14448 /* Use the largest value specified. */
14449 if (in_attr[i].i > out_attr[i].i)
14450 out_attr[i].i = in_attr[i].i;
14451 break;
14452
75375b3e 14453 case Tag_ABI_align_preserved:
91e22acd
AS
14454 case Tag_ABI_PCS_RO_data:
14455 /* Use the smallest value specified. */
14456 if (in_attr[i].i < out_attr[i].i)
14457 out_attr[i].i = in_attr[i].i;
14458 break;
14459
75375b3e 14460 case Tag_ABI_align_needed:
91e22acd 14461 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
75375b3e
MGD
14462 && (in_attr[Tag_ABI_align_preserved].i == 0
14463 || out_attr[Tag_ABI_align_preserved].i == 0))
ee065d83 14464 {
91e22acd
AS
14465 /* This error message should be enabled once all non-conformant
14466 binaries in the toolchain have had the attributes set
14467 properly.
ee065d83 14468 _bfd_error_handler
871b3ab2 14469 (_("error: %pB: 8-byte data alignment conflicts with %pB"),
91e22acd
AS
14470 obfd, ibfd);
14471 result = FALSE; */
ee065d83 14472 }
91e22acd
AS
14473 /* Fall through. */
14474 case Tag_ABI_FP_denormal:
14475 case Tag_ABI_PCS_GOT_use:
14476 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
14477 value if greater than 2 (for future-proofing). */
14478 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
14479 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
14480 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
ee065d83
PB
14481 out_attr[i].i = in_attr[i].i;
14482 break;
91e22acd 14483
75375b3e
MGD
14484 case Tag_Virtualization_use:
14485 /* The virtualization tag effectively stores two bits of
14486 information: the intended use of TrustZone (in bit 0), and the
14487 intended use of Virtualization (in bit 1). */
14488 if (out_attr[i].i == 0)
14489 out_attr[i].i = in_attr[i].i;
14490 else if (in_attr[i].i != 0
14491 && in_attr[i].i != out_attr[i].i)
14492 {
14493 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
14494 out_attr[i].i = 3;
14495 else
14496 {
14497 _bfd_error_handler
871b3ab2
AM
14498 (_("error: %pB: unable to merge virtualization attributes "
14499 "with %pB"),
75375b3e
MGD
14500 obfd, ibfd);
14501 result = FALSE;
14502 }
14503 }
14504 break;
91e22acd
AS
14505
14506 case Tag_CPU_arch_profile:
14507 if (out_attr[i].i != in_attr[i].i)
14508 {
14509 /* 0 will merge with anything.
14510 'A' and 'S' merge to 'A'.
14511 'R' and 'S' merge to 'R'.
99059e56 14512 'M' and 'A|R|S' is an error. */
91e22acd
AS
14513 if (out_attr[i].i == 0
14514 || (out_attr[i].i == 'S'
14515 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
14516 out_attr[i].i = in_attr[i].i;
14517 else if (in_attr[i].i == 0
14518 || (in_attr[i].i == 'S'
14519 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
6a631e86 14520 ; /* Do nothing. */
91e22acd
AS
14521 else
14522 {
14523 _bfd_error_handler
90b6238f 14524 (_("error: %pB: conflicting architecture profiles %c/%c"),
91e22acd
AS
14525 ibfd,
14526 in_attr[i].i ? in_attr[i].i : '0',
14527 out_attr[i].i ? out_attr[i].i : '0');
14528 result = FALSE;
14529 }
14530 }
14531 break;
15afaa63
TP
14532
14533 case Tag_DSP_extension:
14534 /* No need to change output value if any of:
14535 - pre (<=) ARMv5T input architecture (do not have DSP)
14536 - M input profile not ARMv7E-M and do not have DSP. */
14537 if (in_attr[Tag_CPU_arch].i <= 3
14538 || (in_attr[Tag_CPU_arch_profile].i == 'M'
14539 && in_attr[Tag_CPU_arch].i != 13
14540 && in_attr[i].i == 0))
14541 ; /* Do nothing. */
14542 /* Output value should be 0 if DSP part of architecture, ie.
14543 - post (>=) ARMv5te architecture output
14544 - A, R or S profile output or ARMv7E-M output architecture. */
14545 else if (out_attr[Tag_CPU_arch].i >= 4
14546 && (out_attr[Tag_CPU_arch_profile].i == 'A'
14547 || out_attr[Tag_CPU_arch_profile].i == 'R'
14548 || out_attr[Tag_CPU_arch_profile].i == 'S'
14549 || out_attr[Tag_CPU_arch].i == 13))
14550 out_attr[i].i = 0;
14551 /* Otherwise, DSP instructions are added and not part of output
14552 architecture. */
14553 else
14554 out_attr[i].i = 1;
14555 break;
14556
75375b3e 14557 case Tag_FP_arch:
62f3b8c8 14558 {
4547cb56
NC
14559 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
14560 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
14561 when it's 0. It might mean absence of FP hardware if
99654aaf 14562 Tag_FP_arch is zero. */
4547cb56 14563
a715796b 14564#define VFP_VERSION_COUNT 9
62f3b8c8
PB
14565 static const struct
14566 {
14567 int ver;
14568 int regs;
bca38921 14569 } vfp_versions[VFP_VERSION_COUNT] =
62f3b8c8
PB
14570 {
14571 {0, 0},
14572 {1, 16},
14573 {2, 16},
14574 {3, 32},
14575 {3, 16},
14576 {4, 32},
bca38921 14577 {4, 16},
a715796b
TG
14578 {8, 32},
14579 {8, 16}
62f3b8c8
PB
14580 };
14581 int ver;
14582 int regs;
14583 int newval;
14584
4547cb56
NC
14585 /* If the output has no requirement about FP hardware,
14586 follow the requirement of the input. */
14587 if (out_attr[i].i == 0)
14588 {
4ec192e6
RE
14589 /* This assert is still reasonable, we shouldn't
14590 produce the suspicious build attribute
14591 combination (See below for in_attr). */
4547cb56
NC
14592 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
14593 out_attr[i].i = in_attr[i].i;
14594 out_attr[Tag_ABI_HardFP_use].i
14595 = in_attr[Tag_ABI_HardFP_use].i;
14596 break;
14597 }
14598 /* If the input has no requirement about FP hardware, do
14599 nothing. */
14600 else if (in_attr[i].i == 0)
14601 {
4ec192e6
RE
14602 /* We used to assert that Tag_ABI_HardFP_use was
14603 zero here, but we should never assert when
14604 consuming an object file that has suspicious
14605 build attributes. The single precision variant
14606 of 'no FP architecture' is still 'no FP
14607 architecture', so we just ignore the tag in this
14608 case. */
4547cb56
NC
14609 break;
14610 }
14611
14612 /* Both the input and the output have nonzero Tag_FP_arch.
99654aaf 14613 So Tag_ABI_HardFP_use is implied by Tag_FP_arch when it's zero. */
4547cb56
NC
14614
14615 /* If both the input and the output have zero Tag_ABI_HardFP_use,
14616 do nothing. */
14617 if (in_attr[Tag_ABI_HardFP_use].i == 0
14618 && out_attr[Tag_ABI_HardFP_use].i == 0)
14619 ;
14620 /* If the input and the output have different Tag_ABI_HardFP_use,
99654aaf 14621 the combination of them is 0 (implied by Tag_FP_arch). */
4547cb56
NC
14622 else if (in_attr[Tag_ABI_HardFP_use].i
14623 != out_attr[Tag_ABI_HardFP_use].i)
99654aaf 14624 out_attr[Tag_ABI_HardFP_use].i = 0;
4547cb56
NC
14625
14626 /* Now we can handle Tag_FP_arch. */
14627
bca38921
MGD
14628 /* Values of VFP_VERSION_COUNT or more aren't defined, so just
14629 pick the biggest. */
14630 if (in_attr[i].i >= VFP_VERSION_COUNT
14631 && in_attr[i].i > out_attr[i].i)
62f3b8c8
PB
14632 {
14633 out_attr[i] = in_attr[i];
14634 break;
14635 }
14636 /* The output uses the superset of input features
14637 (ISA version) and registers. */
14638 ver = vfp_versions[in_attr[i].i].ver;
14639 if (ver < vfp_versions[out_attr[i].i].ver)
14640 ver = vfp_versions[out_attr[i].i].ver;
14641 regs = vfp_versions[in_attr[i].i].regs;
14642 if (regs < vfp_versions[out_attr[i].i].regs)
14643 regs = vfp_versions[out_attr[i].i].regs;
14644 /* This assumes all possible supersets are also a valid
99059e56 14645 options. */
bca38921 14646 for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--)
62f3b8c8
PB
14647 {
14648 if (regs == vfp_versions[newval].regs
14649 && ver == vfp_versions[newval].ver)
14650 break;
14651 }
14652 out_attr[i].i = newval;
14653 }
b1cc4aeb 14654 break;
ee065d83
PB
14655 case Tag_PCS_config:
14656 if (out_attr[i].i == 0)
14657 out_attr[i].i = in_attr[i].i;
b6009aca 14658 else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
ee065d83
PB
14659 {
14660 /* It's sometimes ok to mix different configs, so this is only
99059e56 14661 a warning. */
ee065d83 14662 _bfd_error_handler
90b6238f 14663 (_("warning: %pB: conflicting platform configuration"), ibfd);
ee065d83
PB
14664 }
14665 break;
14666 case Tag_ABI_PCS_R9_use:
004ae526
PB
14667 if (in_attr[i].i != out_attr[i].i
14668 && out_attr[i].i != AEABI_R9_unused
ee065d83
PB
14669 && in_attr[i].i != AEABI_R9_unused)
14670 {
14671 _bfd_error_handler
90b6238f 14672 (_("error: %pB: conflicting use of R9"), ibfd);
91e22acd 14673 result = FALSE;
ee065d83
PB
14674 }
14675 if (out_attr[i].i == AEABI_R9_unused)
14676 out_attr[i].i = in_attr[i].i;
14677 break;
14678 case Tag_ABI_PCS_RW_data:
14679 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
14680 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
14681 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
14682 {
14683 _bfd_error_handler
871b3ab2 14684 (_("error: %pB: SB relative addressing conflicts with use of R9"),
ee065d83 14685 ibfd);
91e22acd 14686 result = FALSE;
ee065d83
PB
14687 }
14688 /* Use the smallest value specified. */
14689 if (in_attr[i].i < out_attr[i].i)
14690 out_attr[i].i = in_attr[i].i;
14691 break;
ee065d83 14692 case Tag_ABI_PCS_wchar_t:
a9dc9481
JM
14693 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
14694 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
ee065d83
PB
14695 {
14696 _bfd_error_handler
871b3ab2 14697 (_("warning: %pB uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
a9dc9481 14698 ibfd, in_attr[i].i, out_attr[i].i);
ee065d83 14699 }
a9dc9481 14700 else if (in_attr[i].i && !out_attr[i].i)
ee065d83
PB
14701 out_attr[i].i = in_attr[i].i;
14702 break;
ee065d83
PB
14703 case Tag_ABI_enum_size:
14704 if (in_attr[i].i != AEABI_enum_unused)
14705 {
14706 if (out_attr[i].i == AEABI_enum_unused
14707 || out_attr[i].i == AEABI_enum_forced_wide)
14708 {
14709 /* The existing object is compatible with anything.
14710 Use whatever requirements the new object has. */
14711 out_attr[i].i = in_attr[i].i;
14712 }
14713 else if (in_attr[i].i != AEABI_enum_forced_wide
bf21ed78 14714 && out_attr[i].i != in_attr[i].i
0ffa91dd 14715 && !elf_arm_tdata (obfd)->no_enum_size_warning)
ee065d83 14716 {
91e22acd 14717 static const char *aeabi_enum_names[] =
bf21ed78 14718 { "", "variable-size", "32-bit", "" };
91e22acd
AS
14719 const char *in_name =
14720 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
14721 ? aeabi_enum_names[in_attr[i].i]
14722 : "<unknown>";
14723 const char *out_name =
14724 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
14725 ? aeabi_enum_names[out_attr[i].i]
14726 : "<unknown>";
ee065d83 14727 _bfd_error_handler
871b3ab2 14728 (_("warning: %pB uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
91e22acd 14729 ibfd, in_name, out_name);
ee065d83
PB
14730 }
14731 }
14732 break;
14733 case Tag_ABI_VFP_args:
14734 /* Aready done. */
14735 break;
14736 case Tag_ABI_WMMX_args:
14737 if (in_attr[i].i != out_attr[i].i)
14738 {
14739 _bfd_error_handler
871b3ab2 14740 (_("error: %pB uses iWMMXt register arguments, %pB does not"),
ee065d83 14741 ibfd, obfd);
91e22acd 14742 result = FALSE;
ee065d83
PB
14743 }
14744 break;
7b86a9fa
AS
14745 case Tag_compatibility:
14746 /* Merged in target-independent code. */
14747 break;
91e22acd 14748 case Tag_ABI_HardFP_use:
4547cb56 14749 /* This is handled along with Tag_FP_arch. */
91e22acd
AS
14750 break;
14751 case Tag_ABI_FP_16bit_format:
14752 if (in_attr[i].i != 0 && out_attr[i].i != 0)
14753 {
14754 if (in_attr[i].i != out_attr[i].i)
14755 {
14756 _bfd_error_handler
871b3ab2 14757 (_("error: fp16 format mismatch between %pB and %pB"),
91e22acd
AS
14758 ibfd, obfd);
14759 result = FALSE;
14760 }
14761 }
14762 if (in_attr[i].i != 0)
14763 out_attr[i].i = in_attr[i].i;
14764 break;
7b86a9fa 14765
cd21e546 14766 case Tag_DIV_use:
ac56ee8f
MGD
14767 /* A value of zero on input means that the divide instruction may
14768 be used if available in the base architecture as specified via
14769 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
14770 the user did not want divide instructions. A value of 2
14771 explicitly means that divide instructions were allowed in ARM
14772 and Thumb state. */
14773 if (in_attr[i].i == out_attr[i].i)
14774 /* Do nothing. */ ;
14775 else if (elf32_arm_attributes_forbid_div (in_attr)
14776 && !elf32_arm_attributes_accept_div (out_attr))
14777 out_attr[i].i = 1;
14778 else if (elf32_arm_attributes_forbid_div (out_attr)
14779 && elf32_arm_attributes_accept_div (in_attr))
14780 out_attr[i].i = in_attr[i].i;
14781 else if (in_attr[i].i == 2)
14782 out_attr[i].i = in_attr[i].i;
cd21e546
MGD
14783 break;
14784
14785 case Tag_MPextension_use_legacy:
14786 /* We don't output objects with Tag_MPextension_use_legacy - we
14787 move the value to Tag_MPextension_use. */
14788 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
14789 {
14790 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
14791 {
14792 _bfd_error_handler
871b3ab2 14793 (_("%pB has both the current and legacy "
b38cadfb 14794 "Tag_MPextension_use attributes"),
cd21e546
MGD
14795 ibfd);
14796 result = FALSE;
14797 }
14798 }
14799
14800 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
14801 out_attr[Tag_MPextension_use] = in_attr[i];
14802
14803 break;
14804
91e22acd 14805 case Tag_nodefaults:
2d0bb761
AS
14806 /* This tag is set if it exists, but the value is unused (and is
14807 typically zero). We don't actually need to do anything here -
14808 the merge happens automatically when the type flags are merged
14809 below. */
91e22acd
AS
14810 break;
14811 case Tag_also_compatible_with:
14812 /* Already done in Tag_CPU_arch. */
14813 break;
14814 case Tag_conformance:
14815 /* Keep the attribute if it matches. Throw it away otherwise.
14816 No attribute means no claim to conform. */
14817 if (!in_attr[i].s || !out_attr[i].s
14818 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
14819 out_attr[i].s = NULL;
14820 break;
3cfad14c 14821
91e22acd 14822 default:
e8b36cd1
JM
14823 result
14824 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
91e22acd
AS
14825 }
14826
14827 /* If out_attr was copied from in_attr then it won't have a type yet. */
14828 if (in_attr[i].type && !out_attr[i].type)
14829 out_attr[i].type = in_attr[i].type;
ee065d83
PB
14830 }
14831
104d59d1 14832 /* Merge Tag_compatibility attributes and any common GNU ones. */
50e03d47 14833 if (!_bfd_elf_merge_object_attributes (ibfd, info))
5488d830 14834 return FALSE;
ee065d83 14835
104d59d1 14836 /* Check for any attributes not known on ARM. */
e8b36cd1 14837 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
91e22acd 14838
91e22acd 14839 return result;
252b5132
RH
14840}
14841
3a4a14e9
PB
14842
14843/* Return TRUE if the two EABI versions are incompatible. */
14844
14845static bfd_boolean
14846elf32_arm_versions_compatible (unsigned iver, unsigned over)
14847{
14848 /* v4 and v5 are the same spec before and after it was released,
14849 so allow mixing them. */
14850 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
14851 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
14852 return TRUE;
14853
14854 return (iver == over);
14855}
14856
252b5132
RH
14857/* Merge backend specific data from an object file to the output
14858 object file when linking. */
9b485d32 14859
b34976b6 14860static bfd_boolean
50e03d47 14861elf32_arm_merge_private_bfd_data (bfd *, struct bfd_link_info *);
252b5132 14862
9b485d32
NC
14863/* Display the flags field. */
14864
b34976b6 14865static bfd_boolean
57e8b36a 14866elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
252b5132 14867{
fc830a83
NC
14868 FILE * file = (FILE *) ptr;
14869 unsigned long flags;
252b5132
RH
14870
14871 BFD_ASSERT (abfd != NULL && ptr != NULL);
14872
14873 /* Print normal ELF private data. */
14874 _bfd_elf_print_private_bfd_data (abfd, ptr);
14875
fc830a83 14876 flags = elf_elfheader (abfd)->e_flags;
9b485d32
NC
14877 /* Ignore init flag - it may not be set, despite the flags field
14878 containing valid data. */
252b5132 14879
9b485d32 14880 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
252b5132 14881
fc830a83
NC
14882 switch (EF_ARM_EABI_VERSION (flags))
14883 {
14884 case EF_ARM_EABI_UNKNOWN:
4cc11e76 14885 /* The following flag bits are GNU extensions and not part of the
fc830a83
NC
14886 official ARM ELF extended ABI. Hence they are only decoded if
14887 the EABI version is not set. */
fd2ec330 14888 if (flags & EF_ARM_INTERWORK)
9b485d32 14889 fprintf (file, _(" [interworking enabled]"));
9a5aca8c 14890
fd2ec330 14891 if (flags & EF_ARM_APCS_26)
6c571f00 14892 fprintf (file, " [APCS-26]");
fc830a83 14893 else
6c571f00 14894 fprintf (file, " [APCS-32]");
9a5aca8c 14895
96a846ea
RE
14896 if (flags & EF_ARM_VFP_FLOAT)
14897 fprintf (file, _(" [VFP float format]"));
fde78edd
NC
14898 else if (flags & EF_ARM_MAVERICK_FLOAT)
14899 fprintf (file, _(" [Maverick float format]"));
96a846ea
RE
14900 else
14901 fprintf (file, _(" [FPA float format]"));
14902
fd2ec330 14903 if (flags & EF_ARM_APCS_FLOAT)
9b485d32 14904 fprintf (file, _(" [floats passed in float registers]"));
9a5aca8c 14905
fd2ec330 14906 if (flags & EF_ARM_PIC)
9b485d32 14907 fprintf (file, _(" [position independent]"));
fc830a83 14908
fd2ec330 14909 if (flags & EF_ARM_NEW_ABI)
9b485d32 14910 fprintf (file, _(" [new ABI]"));
9a5aca8c 14911
fd2ec330 14912 if (flags & EF_ARM_OLD_ABI)
9b485d32 14913 fprintf (file, _(" [old ABI]"));
9a5aca8c 14914
fd2ec330 14915 if (flags & EF_ARM_SOFT_FLOAT)
9b485d32 14916 fprintf (file, _(" [software FP]"));
9a5aca8c 14917
96a846ea
RE
14918 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
14919 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
fde78edd
NC
14920 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
14921 | EF_ARM_MAVERICK_FLOAT);
fc830a83 14922 break;
9a5aca8c 14923
fc830a83 14924 case EF_ARM_EABI_VER1:
9b485d32 14925 fprintf (file, _(" [Version1 EABI]"));
9a5aca8c 14926
fc830a83 14927 if (flags & EF_ARM_SYMSARESORTED)
9b485d32 14928 fprintf (file, _(" [sorted symbol table]"));
fc830a83 14929 else
9b485d32 14930 fprintf (file, _(" [unsorted symbol table]"));
9a5aca8c 14931
fc830a83
NC
14932 flags &= ~ EF_ARM_SYMSARESORTED;
14933 break;
9a5aca8c 14934
fd2ec330
PB
14935 case EF_ARM_EABI_VER2:
14936 fprintf (file, _(" [Version2 EABI]"));
14937
14938 if (flags & EF_ARM_SYMSARESORTED)
14939 fprintf (file, _(" [sorted symbol table]"));
14940 else
14941 fprintf (file, _(" [unsorted symbol table]"));
14942
14943 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
14944 fprintf (file, _(" [dynamic symbols use segment index]"));
14945
14946 if (flags & EF_ARM_MAPSYMSFIRST)
14947 fprintf (file, _(" [mapping symbols precede others]"));
14948
99e4ae17 14949 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
fd2ec330
PB
14950 | EF_ARM_MAPSYMSFIRST);
14951 break;
14952
d507cf36
PB
14953 case EF_ARM_EABI_VER3:
14954 fprintf (file, _(" [Version3 EABI]"));
8cb51566
PB
14955 break;
14956
14957 case EF_ARM_EABI_VER4:
14958 fprintf (file, _(" [Version4 EABI]"));
3a4a14e9 14959 goto eabi;
d507cf36 14960
3a4a14e9
PB
14961 case EF_ARM_EABI_VER5:
14962 fprintf (file, _(" [Version5 EABI]"));
3bfcb652
NC
14963
14964 if (flags & EF_ARM_ABI_FLOAT_SOFT)
14965 fprintf (file, _(" [soft-float ABI]"));
14966
14967 if (flags & EF_ARM_ABI_FLOAT_HARD)
14968 fprintf (file, _(" [hard-float ABI]"));
14969
14970 flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD);
14971
3a4a14e9 14972 eabi:
d507cf36
PB
14973 if (flags & EF_ARM_BE8)
14974 fprintf (file, _(" [BE8]"));
14975
14976 if (flags & EF_ARM_LE8)
14977 fprintf (file, _(" [LE8]"));
14978
14979 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
14980 break;
14981
fc830a83 14982 default:
9b485d32 14983 fprintf (file, _(" <EABI version unrecognised>"));
fc830a83
NC
14984 break;
14985 }
252b5132 14986
fc830a83 14987 flags &= ~ EF_ARM_EABIMASK;
252b5132 14988
fc830a83 14989 if (flags & EF_ARM_RELEXEC)
9b485d32 14990 fprintf (file, _(" [relocatable executable]"));
252b5132 14991
18a20338
CL
14992 if (flags & EF_ARM_PIC)
14993 fprintf (file, _(" [position independent]"));
14994
14995 if (elf_elfheader (abfd)->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC)
14996 fprintf (file, _(" [FDPIC ABI supplement]"));
14997
14998 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_PIC);
fc830a83
NC
14999
15000 if (flags)
9b485d32 15001 fprintf (file, _("<Unrecognised flag bits set>"));
9a5aca8c 15002
252b5132
RH
15003 fputc ('\n', file);
15004
b34976b6 15005 return TRUE;
252b5132
RH
15006}
15007
15008static int
57e8b36a 15009elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
252b5132 15010{
2f0ca46a
NC
15011 switch (ELF_ST_TYPE (elf_sym->st_info))
15012 {
15013 case STT_ARM_TFUNC:
15014 return ELF_ST_TYPE (elf_sym->st_info);
ce855c42 15015
2f0ca46a
NC
15016 case STT_ARM_16BIT:
15017 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
15018 This allows us to distinguish between data used by Thumb instructions
15019 and non-data (which is probably code) inside Thumb regions of an
15020 executable. */
1a0eb693 15021 if (type != STT_OBJECT && type != STT_TLS)
2f0ca46a
NC
15022 return ELF_ST_TYPE (elf_sym->st_info);
15023 break;
9a5aca8c 15024
ce855c42
NC
15025 default:
15026 break;
2f0ca46a
NC
15027 }
15028
15029 return type;
252b5132 15030}
f21f3fe0 15031
252b5132 15032static asection *
07adf181
AM
15033elf32_arm_gc_mark_hook (asection *sec,
15034 struct bfd_link_info *info,
15035 Elf_Internal_Rela *rel,
15036 struct elf_link_hash_entry *h,
15037 Elf_Internal_Sym *sym)
252b5132
RH
15038{
15039 if (h != NULL)
07adf181 15040 switch (ELF32_R_TYPE (rel->r_info))
252b5132
RH
15041 {
15042 case R_ARM_GNU_VTINHERIT:
15043 case R_ARM_GNU_VTENTRY:
07adf181
AM
15044 return NULL;
15045 }
9ad5cbcf 15046
07adf181 15047 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
252b5132
RH
15048}
15049
780a67af
NC
15050/* Look through the relocs for a section during the first phase. */
15051
b34976b6 15052static bfd_boolean
57e8b36a
NC
15053elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
15054 asection *sec, const Elf_Internal_Rela *relocs)
252b5132 15055{
b34976b6
AM
15056 Elf_Internal_Shdr *symtab_hdr;
15057 struct elf_link_hash_entry **sym_hashes;
b34976b6
AM
15058 const Elf_Internal_Rela *rel;
15059 const Elf_Internal_Rela *rel_end;
15060 bfd *dynobj;
5e681ec4 15061 asection *sreloc;
5e681ec4 15062 struct elf32_arm_link_hash_table *htab;
f6e32f6d
RS
15063 bfd_boolean call_reloc_p;
15064 bfd_boolean may_become_dynamic_p;
15065 bfd_boolean may_need_local_target_p;
ce98a316 15066 unsigned long nsyms;
9a5aca8c 15067
0e1862bb 15068 if (bfd_link_relocatable (info))
b34976b6 15069 return TRUE;
9a5aca8c 15070
0ffa91dd
NC
15071 BFD_ASSERT (is_arm_elf (abfd));
15072
5e681ec4 15073 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
15074 if (htab == NULL)
15075 return FALSE;
15076
5e681ec4 15077 sreloc = NULL;
9a5aca8c 15078
67687978
PB
15079 /* Create dynamic sections for relocatable executables so that we can
15080 copy relocations. */
15081 if (htab->root.is_relocatable_executable
15082 && ! htab->root.dynamic_sections_created)
15083 {
15084 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
15085 return FALSE;
15086 }
15087
cbc704f3
RS
15088 if (htab->root.dynobj == NULL)
15089 htab->root.dynobj = abfd;
34e77a92
RS
15090 if (!create_ifunc_sections (info))
15091 return FALSE;
cbc704f3
RS
15092
15093 dynobj = htab->root.dynobj;
15094
0ffa91dd 15095 symtab_hdr = & elf_symtab_hdr (abfd);
252b5132 15096 sym_hashes = elf_sym_hashes (abfd);
ce98a316 15097 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
b38cadfb 15098
252b5132
RH
15099 rel_end = relocs + sec->reloc_count;
15100 for (rel = relocs; rel < rel_end; rel++)
15101 {
34e77a92 15102 Elf_Internal_Sym *isym;
252b5132 15103 struct elf_link_hash_entry *h;
b7693d02 15104 struct elf32_arm_link_hash_entry *eh;
d42c267e 15105 unsigned int r_symndx;
eb043451 15106 int r_type;
9a5aca8c 15107
252b5132 15108 r_symndx = ELF32_R_SYM (rel->r_info);
eb043451 15109 r_type = ELF32_R_TYPE (rel->r_info);
eb043451 15110 r_type = arm_real_reloc_type (htab, r_type);
ba93b8ac 15111
ce98a316
NC
15112 if (r_symndx >= nsyms
15113 /* PR 9934: It is possible to have relocations that do not
15114 refer to symbols, thus it is also possible to have an
15115 object file containing relocations but no symbol table. */
cf35638d 15116 && (r_symndx > STN_UNDEF || nsyms > 0))
ba93b8ac 15117 {
871b3ab2 15118 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd,
4eca0228 15119 r_symndx);
ba93b8ac
DJ
15120 return FALSE;
15121 }
15122
34e77a92
RS
15123 h = NULL;
15124 isym = NULL;
15125 if (nsyms > 0)
973a3492 15126 {
34e77a92
RS
15127 if (r_symndx < symtab_hdr->sh_info)
15128 {
15129 /* A local symbol. */
15130 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
15131 abfd, r_symndx);
15132 if (isym == NULL)
15133 return FALSE;
15134 }
15135 else
15136 {
15137 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
15138 while (h->root.type == bfd_link_hash_indirect
15139 || h->root.type == bfd_link_hash_warning)
15140 h = (struct elf_link_hash_entry *) h->root.u.i.link;
15141 }
973a3492 15142 }
9a5aca8c 15143
b7693d02
DJ
15144 eh = (struct elf32_arm_link_hash_entry *) h;
15145
f6e32f6d
RS
15146 call_reloc_p = FALSE;
15147 may_become_dynamic_p = FALSE;
15148 may_need_local_target_p = FALSE;
15149
0855e32b
NS
15150 /* Could be done earlier, if h were already available. */
15151 r_type = elf32_arm_tls_transition (info, r_type, h);
eb043451 15152 switch (r_type)
99059e56 15153 {
e8b09b87
CL
15154 case R_ARM_GOTOFFFUNCDESC:
15155 {
15156 if (h == NULL)
15157 {
15158 if (!elf32_arm_allocate_local_sym_info (abfd))
15159 return FALSE;
15160 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].gotofffuncdesc_cnt += 1;
15161 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].funcdesc_offset = -1;
15162 }
15163 else
15164 {
15165 eh->fdpic_cnts.gotofffuncdesc_cnt++;
15166 }
15167 }
15168 break;
15169
15170 case R_ARM_GOTFUNCDESC:
15171 {
15172 if (h == NULL)
15173 {
15174 /* Such a relocation is not supposed to be generated
15175 by gcc on a static function. */
15176 /* Anyway if needed it could be handled. */
15177 abort();
15178 }
15179 else
15180 {
15181 eh->fdpic_cnts.gotfuncdesc_cnt++;
15182 }
15183 }
15184 break;
15185
15186 case R_ARM_FUNCDESC:
15187 {
15188 if (h == NULL)
15189 {
15190 if (!elf32_arm_allocate_local_sym_info (abfd))
15191 return FALSE;
15192 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].funcdesc_cnt += 1;
15193 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].funcdesc_offset = -1;
15194 }
15195 else
15196 {
15197 eh->fdpic_cnts.funcdesc_cnt++;
15198 }
15199 }
15200 break;
15201
5e681ec4 15202 case R_ARM_GOT32:
eb043451 15203 case R_ARM_GOT_PREL:
ba93b8ac 15204 case R_ARM_TLS_GD32:
5c5a4843 15205 case R_ARM_TLS_GD32_FDPIC:
ba93b8ac 15206 case R_ARM_TLS_IE32:
5c5a4843 15207 case R_ARM_TLS_IE32_FDPIC:
0855e32b
NS
15208 case R_ARM_TLS_GOTDESC:
15209 case R_ARM_TLS_DESCSEQ:
15210 case R_ARM_THM_TLS_DESCSEQ:
15211 case R_ARM_TLS_CALL:
15212 case R_ARM_THM_TLS_CALL:
5e681ec4 15213 /* This symbol requires a global offset table entry. */
ba93b8ac
DJ
15214 {
15215 int tls_type, old_tls_type;
5e681ec4 15216
ba93b8ac
DJ
15217 switch (r_type)
15218 {
15219 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
5c5a4843 15220 case R_ARM_TLS_GD32_FDPIC: tls_type = GOT_TLS_GD; break;
b38cadfb 15221
ba93b8ac 15222 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
5c5a4843 15223 case R_ARM_TLS_IE32_FDPIC: tls_type = GOT_TLS_IE; break;
b38cadfb 15224
0855e32b
NS
15225 case R_ARM_TLS_GOTDESC:
15226 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
15227 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
15228 tls_type = GOT_TLS_GDESC; break;
b38cadfb 15229
ba93b8ac
DJ
15230 default: tls_type = GOT_NORMAL; break;
15231 }
252b5132 15232
0e1862bb 15233 if (!bfd_link_executable (info) && (tls_type & GOT_TLS_IE))
eea6dad2
KM
15234 info->flags |= DF_STATIC_TLS;
15235
ba93b8ac
DJ
15236 if (h != NULL)
15237 {
15238 h->got.refcount++;
15239 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
15240 }
15241 else
15242 {
ba93b8ac 15243 /* This is a global offset table entry for a local symbol. */
34e77a92
RS
15244 if (!elf32_arm_allocate_local_sym_info (abfd))
15245 return FALSE;
15246 elf_local_got_refcounts (abfd)[r_symndx] += 1;
ba93b8ac
DJ
15247 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
15248 }
15249
0855e32b 15250 /* If a variable is accessed with both tls methods, two
99059e56 15251 slots may be created. */
0855e32b
NS
15252 if (GOT_TLS_GD_ANY_P (old_tls_type)
15253 && GOT_TLS_GD_ANY_P (tls_type))
15254 tls_type |= old_tls_type;
15255
15256 /* We will already have issued an error message if there
15257 is a TLS/non-TLS mismatch, based on the symbol
15258 type. So just combine any TLS types needed. */
ba93b8ac
DJ
15259 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
15260 && tls_type != GOT_NORMAL)
15261 tls_type |= old_tls_type;
15262
0855e32b 15263 /* If the symbol is accessed in both IE and GDESC
99059e56
RM
15264 method, we're able to relax. Turn off the GDESC flag,
15265 without messing up with any other kind of tls types
6a631e86 15266 that may be involved. */
0855e32b
NS
15267 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
15268 tls_type &= ~GOT_TLS_GDESC;
15269
ba93b8ac
DJ
15270 if (old_tls_type != tls_type)
15271 {
15272 if (h != NULL)
15273 elf32_arm_hash_entry (h)->tls_type = tls_type;
15274 else
15275 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
15276 }
15277 }
8029a119 15278 /* Fall through. */
ba93b8ac
DJ
15279
15280 case R_ARM_TLS_LDM32:
5c5a4843
CL
15281 case R_ARM_TLS_LDM32_FDPIC:
15282 if (r_type == R_ARM_TLS_LDM32 || r_type == R_ARM_TLS_LDM32_FDPIC)
ba93b8ac 15283 htab->tls_ldm_got.refcount++;
8029a119 15284 /* Fall through. */
252b5132 15285
c19d1205 15286 case R_ARM_GOTOFF32:
5e681ec4 15287 case R_ARM_GOTPC:
cbc704f3
RS
15288 if (htab->root.sgot == NULL
15289 && !create_got_section (htab->root.dynobj, info))
15290 return FALSE;
252b5132
RH
15291 break;
15292
252b5132 15293 case R_ARM_PC24:
7359ea65 15294 case R_ARM_PLT32:
5b5bb741
PB
15295 case R_ARM_CALL:
15296 case R_ARM_JUMP24:
eb043451 15297 case R_ARM_PREL31:
c19d1205 15298 case R_ARM_THM_CALL:
bd97cb95
DJ
15299 case R_ARM_THM_JUMP24:
15300 case R_ARM_THM_JUMP19:
f6e32f6d
RS
15301 call_reloc_p = TRUE;
15302 may_need_local_target_p = TRUE;
15303 break;
15304
15305 case R_ARM_ABS12:
15306 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
15307 ldr __GOTT_INDEX__ offsets. */
15308 if (!htab->vxworks_p)
15309 {
15310 may_need_local_target_p = TRUE;
15311 break;
15312 }
aebf9be7 15313 else goto jump_over;
9eaff861 15314
f6e32f6d 15315 /* Fall through. */
39623e12 15316
96c23d59
JM
15317 case R_ARM_MOVW_ABS_NC:
15318 case R_ARM_MOVT_ABS:
15319 case R_ARM_THM_MOVW_ABS_NC:
15320 case R_ARM_THM_MOVT_ABS:
0e1862bb 15321 if (bfd_link_pic (info))
96c23d59 15322 {
4eca0228 15323 _bfd_error_handler
871b3ab2 15324 (_("%pB: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
96c23d59
JM
15325 abfd, elf32_arm_howto_table_1[r_type].name,
15326 (h) ? h->root.root.string : "a local symbol");
15327 bfd_set_error (bfd_error_bad_value);
15328 return FALSE;
15329 }
15330
15331 /* Fall through. */
39623e12
PB
15332 case R_ARM_ABS32:
15333 case R_ARM_ABS32_NOI:
aebf9be7 15334 jump_over:
0e1862bb 15335 if (h != NULL && bfd_link_executable (info))
97323ad1
WN
15336 {
15337 h->pointer_equality_needed = 1;
15338 }
15339 /* Fall through. */
39623e12
PB
15340 case R_ARM_REL32:
15341 case R_ARM_REL32_NOI:
b6895b4f
PB
15342 case R_ARM_MOVW_PREL_NC:
15343 case R_ARM_MOVT_PREL:
b6895b4f
PB
15344 case R_ARM_THM_MOVW_PREL_NC:
15345 case R_ARM_THM_MOVT_PREL:
39623e12 15346
b7693d02 15347 /* Should the interworking branches be listed here? */
e8b09b87
CL
15348 if ((bfd_link_pic (info) || htab->root.is_relocatable_executable
15349 || htab->fdpic_p)
34e77a92
RS
15350 && (sec->flags & SEC_ALLOC) != 0)
15351 {
15352 if (h == NULL
469a3493 15353 && elf32_arm_howto_from_type (r_type)->pc_relative)
34e77a92
RS
15354 {
15355 /* In shared libraries and relocatable executables,
15356 we treat local relative references as calls;
15357 see the related SYMBOL_CALLS_LOCAL code in
15358 allocate_dynrelocs. */
15359 call_reloc_p = TRUE;
15360 may_need_local_target_p = TRUE;
15361 }
15362 else
15363 /* We are creating a shared library or relocatable
15364 executable, and this is a reloc against a global symbol,
15365 or a non-PC-relative reloc against a local symbol.
15366 We may need to copy the reloc into the output. */
15367 may_become_dynamic_p = TRUE;
15368 }
f6e32f6d
RS
15369 else
15370 may_need_local_target_p = TRUE;
252b5132
RH
15371 break;
15372
99059e56
RM
15373 /* This relocation describes the C++ object vtable hierarchy.
15374 Reconstruct it for later use during GC. */
15375 case R_ARM_GNU_VTINHERIT:
15376 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
15377 return FALSE;
15378 break;
15379
15380 /* This relocation describes which C++ vtable entries are actually
15381 used. Record for later use during GC. */
15382 case R_ARM_GNU_VTENTRY:
15383 BFD_ASSERT (h != NULL);
15384 if (h != NULL
15385 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
15386 return FALSE;
15387 break;
15388 }
f6e32f6d
RS
15389
15390 if (h != NULL)
15391 {
15392 if (call_reloc_p)
15393 /* We may need a .plt entry if the function this reloc
15394 refers to is in a different object, regardless of the
15395 symbol's type. We can't tell for sure yet, because
15396 something later might force the symbol local. */
15397 h->needs_plt = 1;
15398 else if (may_need_local_target_p)
15399 /* If this reloc is in a read-only section, we might
15400 need a copy reloc. We can't check reliably at this
15401 stage whether the section is read-only, as input
15402 sections have not yet been mapped to output sections.
15403 Tentatively set the flag for now, and correct in
15404 adjust_dynamic_symbol. */
15405 h->non_got_ref = 1;
15406 }
15407
34e77a92
RS
15408 if (may_need_local_target_p
15409 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
f6e32f6d 15410 {
34e77a92
RS
15411 union gotplt_union *root_plt;
15412 struct arm_plt_info *arm_plt;
15413 struct arm_local_iplt_info *local_iplt;
15414
15415 if (h != NULL)
15416 {
15417 root_plt = &h->plt;
15418 arm_plt = &eh->plt;
15419 }
15420 else
15421 {
15422 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
15423 if (local_iplt == NULL)
15424 return FALSE;
15425 root_plt = &local_iplt->root;
15426 arm_plt = &local_iplt->arm;
15427 }
15428
f6e32f6d
RS
15429 /* If the symbol is a function that doesn't bind locally,
15430 this relocation will need a PLT entry. */
a8c887dd
NC
15431 if (root_plt->refcount != -1)
15432 root_plt->refcount += 1;
34e77a92
RS
15433
15434 if (!call_reloc_p)
15435 arm_plt->noncall_refcount++;
f6e32f6d
RS
15436
15437 /* It's too early to use htab->use_blx here, so we have to
15438 record possible blx references separately from
15439 relocs that definitely need a thumb stub. */
15440
15441 if (r_type == R_ARM_THM_CALL)
34e77a92 15442 arm_plt->maybe_thumb_refcount += 1;
f6e32f6d
RS
15443
15444 if (r_type == R_ARM_THM_JUMP24
15445 || r_type == R_ARM_THM_JUMP19)
34e77a92 15446 arm_plt->thumb_refcount += 1;
f6e32f6d
RS
15447 }
15448
15449 if (may_become_dynamic_p)
15450 {
15451 struct elf_dyn_relocs *p, **head;
15452
15453 /* Create a reloc section in dynobj. */
15454 if (sreloc == NULL)
15455 {
15456 sreloc = _bfd_elf_make_dynamic_reloc_section
15457 (sec, dynobj, 2, abfd, ! htab->use_rel);
15458
15459 if (sreloc == NULL)
15460 return FALSE;
15461
15462 /* BPABI objects never have dynamic relocations mapped. */
15463 if (htab->symbian_p)
15464 {
15465 flagword flags;
15466
15467 flags = bfd_get_section_flags (dynobj, sreloc);
15468 flags &= ~(SEC_LOAD | SEC_ALLOC);
15469 bfd_set_section_flags (dynobj, sreloc, flags);
15470 }
15471 }
15472
15473 /* If this is a global symbol, count the number of
15474 relocations we need for this symbol. */
15475 if (h != NULL)
15476 head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
15477 else
15478 {
34e77a92
RS
15479 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
15480 if (head == NULL)
f6e32f6d 15481 return FALSE;
f6e32f6d
RS
15482 }
15483
15484 p = *head;
15485 if (p == NULL || p->sec != sec)
15486 {
15487 bfd_size_type amt = sizeof *p;
15488
15489 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
15490 if (p == NULL)
15491 return FALSE;
15492 p->next = *head;
15493 *head = p;
15494 p->sec = sec;
15495 p->count = 0;
15496 p->pc_count = 0;
15497 }
15498
469a3493 15499 if (elf32_arm_howto_from_type (r_type)->pc_relative)
f6e32f6d
RS
15500 p->pc_count += 1;
15501 p->count += 1;
e8b09b87
CL
15502 if (h == NULL && htab->fdpic_p && !bfd_link_pic(info)
15503 && r_type != R_ARM_ABS32 && r_type != R_ARM_ABS32_NOI) {
15504 /* Here we only support R_ARM_ABS32 and R_ARM_ABS32_NOI
15505 that will become rofixup. */
15506 /* This is due to the fact that we suppose all will become rofixup. */
15507 fprintf(stderr, "FDPIC does not yet support %d relocation to become dynamic for executable\n", r_type);
15508 _bfd_error_handler
15509 (_("FDPIC does not yet support %s relocation"
15510 " to become dynamic for executable"),
15511 elf32_arm_howto_table_1[r_type].name);
15512 abort();
15513 }
f6e32f6d 15514 }
252b5132 15515 }
f21f3fe0 15516
b34976b6 15517 return TRUE;
252b5132
RH
15518}
15519
9eaff861
AO
15520static void
15521elf32_arm_update_relocs (asection *o,
15522 struct bfd_elf_section_reloc_data *reldata)
15523{
15524 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
15525 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
15526 const struct elf_backend_data *bed;
15527 _arm_elf_section_data *eado;
15528 struct bfd_link_order *p;
15529 bfd_byte *erela_head, *erela;
15530 Elf_Internal_Rela *irela_head, *irela;
15531 Elf_Internal_Shdr *rel_hdr;
15532 bfd *abfd;
15533 unsigned int count;
15534
15535 eado = get_arm_elf_section_data (o);
15536
15537 if (!eado || eado->elf.this_hdr.sh_type != SHT_ARM_EXIDX)
15538 return;
15539
15540 abfd = o->owner;
15541 bed = get_elf_backend_data (abfd);
15542 rel_hdr = reldata->hdr;
15543
15544 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
15545 {
15546 swap_in = bed->s->swap_reloc_in;
15547 swap_out = bed->s->swap_reloc_out;
15548 }
15549 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
15550 {
15551 swap_in = bed->s->swap_reloca_in;
15552 swap_out = bed->s->swap_reloca_out;
15553 }
15554 else
15555 abort ();
15556
15557 erela_head = rel_hdr->contents;
15558 irela_head = (Elf_Internal_Rela *) bfd_zmalloc
15559 ((NUM_SHDR_ENTRIES (rel_hdr) + 1) * sizeof (*irela_head));
15560
15561 erela = erela_head;
15562 irela = irela_head;
15563 count = 0;
15564
15565 for (p = o->map_head.link_order; p; p = p->next)
15566 {
15567 if (p->type == bfd_section_reloc_link_order
15568 || p->type == bfd_symbol_reloc_link_order)
15569 {
15570 (*swap_in) (abfd, erela, irela);
15571 erela += rel_hdr->sh_entsize;
15572 irela++;
15573 count++;
15574 }
15575 else if (p->type == bfd_indirect_link_order)
15576 {
15577 struct bfd_elf_section_reloc_data *input_reldata;
15578 arm_unwind_table_edit *edit_list, *edit_tail;
15579 _arm_elf_section_data *eadi;
15580 bfd_size_type j;
15581 bfd_vma offset;
15582 asection *i;
15583
15584 i = p->u.indirect.section;
15585
15586 eadi = get_arm_elf_section_data (i);
15587 edit_list = eadi->u.exidx.unwind_edit_list;
15588 edit_tail = eadi->u.exidx.unwind_edit_tail;
15589 offset = o->vma + i->output_offset;
15590
15591 if (eadi->elf.rel.hdr &&
15592 eadi->elf.rel.hdr->sh_entsize == rel_hdr->sh_entsize)
15593 input_reldata = &eadi->elf.rel;
15594 else if (eadi->elf.rela.hdr &&
15595 eadi->elf.rela.hdr->sh_entsize == rel_hdr->sh_entsize)
15596 input_reldata = &eadi->elf.rela;
15597 else
15598 abort ();
15599
15600 if (edit_list)
15601 {
15602 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
15603 {
15604 arm_unwind_table_edit *edit_node, *edit_next;
15605 bfd_vma bias;
c48182bf 15606 bfd_vma reloc_index;
9eaff861
AO
15607
15608 (*swap_in) (abfd, erela, irela);
c48182bf 15609 reloc_index = (irela->r_offset - offset) / 8;
9eaff861
AO
15610
15611 bias = 0;
15612 edit_node = edit_list;
15613 for (edit_next = edit_list;
c48182bf 15614 edit_next && edit_next->index <= reloc_index;
9eaff861
AO
15615 edit_next = edit_node->next)
15616 {
15617 bias++;
15618 edit_node = edit_next;
15619 }
15620
15621 if (edit_node->type != DELETE_EXIDX_ENTRY
c48182bf 15622 || edit_node->index != reloc_index)
9eaff861
AO
15623 {
15624 irela->r_offset -= bias * 8;
15625 irela++;
15626 count++;
15627 }
15628
15629 erela += rel_hdr->sh_entsize;
15630 }
15631
15632 if (edit_tail->type == INSERT_EXIDX_CANTUNWIND_AT_END)
15633 {
15634 /* New relocation entity. */
15635 asection *text_sec = edit_tail->linked_section;
15636 asection *text_out = text_sec->output_section;
15637 bfd_vma exidx_offset = offset + i->size - 8;
15638
15639 irela->r_addend = 0;
15640 irela->r_offset = exidx_offset;
15641 irela->r_info = ELF32_R_INFO
15642 (text_out->target_index, R_ARM_PREL31);
15643 irela++;
15644 count++;
15645 }
15646 }
15647 else
15648 {
15649 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
15650 {
15651 (*swap_in) (abfd, erela, irela);
15652 erela += rel_hdr->sh_entsize;
15653 irela++;
15654 }
15655
15656 count += NUM_SHDR_ENTRIES (input_reldata->hdr);
15657 }
15658 }
15659 }
15660
15661 reldata->count = count;
15662 rel_hdr->sh_size = count * rel_hdr->sh_entsize;
15663
15664 erela = erela_head;
15665 irela = irela_head;
15666 while (count > 0)
15667 {
15668 (*swap_out) (abfd, irela, erela);
15669 erela += rel_hdr->sh_entsize;
15670 irela++;
15671 count--;
15672 }
15673
15674 free (irela_head);
15675
15676 /* Hashes are no longer valid. */
15677 free (reldata->hashes);
15678 reldata->hashes = NULL;
15679}
15680
6a5bb875 15681/* Unwinding tables are not referenced directly. This pass marks them as
4ba2ef8f
TP
15682 required if the corresponding code section is marked. Similarly, ARMv8-M
15683 secure entry functions can only be referenced by SG veneers which are
15684 created after the GC process. They need to be marked in case they reside in
15685 their own section (as would be the case if code was compiled with
15686 -ffunction-sections). */
6a5bb875
PB
15687
15688static bfd_boolean
906e58ca
NC
15689elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
15690 elf_gc_mark_hook_fn gc_mark_hook)
6a5bb875
PB
15691{
15692 bfd *sub;
15693 Elf_Internal_Shdr **elf_shdrp;
4ba2ef8f
TP
15694 asection *cmse_sec;
15695 obj_attribute *out_attr;
15696 Elf_Internal_Shdr *symtab_hdr;
15697 unsigned i, sym_count, ext_start;
15698 const struct elf_backend_data *bed;
15699 struct elf_link_hash_entry **sym_hashes;
15700 struct elf32_arm_link_hash_entry *cmse_hash;
15701 bfd_boolean again, is_v8m, first_bfd_browse = TRUE;
6a5bb875 15702
7f6ab9f8
AM
15703 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
15704
4ba2ef8f
TP
15705 out_attr = elf_known_obj_attributes_proc (info->output_bfd);
15706 is_v8m = out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
15707 && out_attr[Tag_CPU_arch_profile].i == 'M';
15708
6a5bb875
PB
15709 /* Marking EH data may cause additional code sections to be marked,
15710 requiring multiple passes. */
15711 again = TRUE;
15712 while (again)
15713 {
15714 again = FALSE;
c72f2fb2 15715 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
6a5bb875
PB
15716 {
15717 asection *o;
15718
0ffa91dd 15719 if (! is_arm_elf (sub))
6a5bb875
PB
15720 continue;
15721
15722 elf_shdrp = elf_elfsections (sub);
15723 for (o = sub->sections; o != NULL; o = o->next)
15724 {
15725 Elf_Internal_Shdr *hdr;
0ffa91dd 15726
6a5bb875 15727 hdr = &elf_section_data (o)->this_hdr;
4fbb74a6
AM
15728 if (hdr->sh_type == SHT_ARM_EXIDX
15729 && hdr->sh_link
15730 && hdr->sh_link < elf_numsections (sub)
6a5bb875
PB
15731 && !o->gc_mark
15732 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
15733 {
15734 again = TRUE;
15735 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
15736 return FALSE;
15737 }
15738 }
4ba2ef8f
TP
15739
15740 /* Mark section holding ARMv8-M secure entry functions. We mark all
15741 of them so no need for a second browsing. */
15742 if (is_v8m && first_bfd_browse)
15743 {
15744 sym_hashes = elf_sym_hashes (sub);
15745 bed = get_elf_backend_data (sub);
15746 symtab_hdr = &elf_tdata (sub)->symtab_hdr;
15747 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
15748 ext_start = symtab_hdr->sh_info;
15749
15750 /* Scan symbols. */
15751 for (i = ext_start; i < sym_count; i++)
15752 {
15753 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
15754
15755 /* Assume it is a special symbol. If not, cmse_scan will
15756 warn about it and user can do something about it. */
15757 if (ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
15758 {
15759 cmse_sec = cmse_hash->root.root.u.def.section;
5025eb7c
AO
15760 if (!cmse_sec->gc_mark
15761 && !_bfd_elf_gc_mark (info, cmse_sec, gc_mark_hook))
4ba2ef8f
TP
15762 return FALSE;
15763 }
15764 }
15765 }
6a5bb875 15766 }
4ba2ef8f 15767 first_bfd_browse = FALSE;
6a5bb875
PB
15768 }
15769
15770 return TRUE;
15771}
15772
3c9458e9
NC
15773/* Treat mapping symbols as special target symbols. */
15774
15775static bfd_boolean
15776elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
15777{
b0796911
PB
15778 return bfd_is_arm_special_symbol_name (sym->name,
15779 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
3c9458e9
NC
15780}
15781
0367ecfb
NC
15782/* This is a copy of elf_find_function() from elf.c except that
15783 ARM mapping symbols are ignored when looking for function names
15784 and STT_ARM_TFUNC is considered to a function type. */
252b5132 15785
0367ecfb 15786static bfd_boolean
07d6d2b8 15787arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
0367ecfb 15788 asymbol ** symbols,
fb167eb2 15789 asection * section,
07d6d2b8 15790 bfd_vma offset,
0367ecfb
NC
15791 const char ** filename_ptr,
15792 const char ** functionname_ptr)
15793{
15794 const char * filename = NULL;
15795 asymbol * func = NULL;
15796 bfd_vma low_func = 0;
15797 asymbol ** p;
252b5132
RH
15798
15799 for (p = symbols; *p != NULL; p++)
15800 {
15801 elf_symbol_type *q;
15802
15803 q = (elf_symbol_type *) *p;
15804
252b5132
RH
15805 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
15806 {
15807 default:
15808 break;
15809 case STT_FILE:
15810 filename = bfd_asymbol_name (&q->symbol);
15811 break;
252b5132
RH
15812 case STT_FUNC:
15813 case STT_ARM_TFUNC:
9d2da7ca 15814 case STT_NOTYPE:
b0796911 15815 /* Skip mapping symbols. */
0367ecfb 15816 if ((q->symbol.flags & BSF_LOCAL)
b0796911
PB
15817 && bfd_is_arm_special_symbol_name (q->symbol.name,
15818 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
0367ecfb
NC
15819 continue;
15820 /* Fall through. */
6b40fcba 15821 if (bfd_get_section (&q->symbol) == section
252b5132
RH
15822 && q->symbol.value >= low_func
15823 && q->symbol.value <= offset)
15824 {
15825 func = (asymbol *) q;
15826 low_func = q->symbol.value;
15827 }
15828 break;
15829 }
15830 }
15831
15832 if (func == NULL)
b34976b6 15833 return FALSE;
252b5132 15834
0367ecfb
NC
15835 if (filename_ptr)
15836 *filename_ptr = filename;
15837 if (functionname_ptr)
15838 *functionname_ptr = bfd_asymbol_name (func);
15839
15840 return TRUE;
906e58ca 15841}
0367ecfb
NC
15842
15843
15844/* Find the nearest line to a particular section and offset, for error
15845 reporting. This code is a duplicate of the code in elf.c, except
15846 that it uses arm_elf_find_function. */
15847
15848static bfd_boolean
07d6d2b8
AM
15849elf32_arm_find_nearest_line (bfd * abfd,
15850 asymbol ** symbols,
15851 asection * section,
15852 bfd_vma offset,
0367ecfb
NC
15853 const char ** filename_ptr,
15854 const char ** functionname_ptr,
fb167eb2
AM
15855 unsigned int * line_ptr,
15856 unsigned int * discriminator_ptr)
0367ecfb
NC
15857{
15858 bfd_boolean found = FALSE;
15859
fb167eb2 15860 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
0367ecfb 15861 filename_ptr, functionname_ptr,
fb167eb2
AM
15862 line_ptr, discriminator_ptr,
15863 dwarf_debug_sections, 0,
0367ecfb
NC
15864 & elf_tdata (abfd)->dwarf2_find_line_info))
15865 {
15866 if (!*functionname_ptr)
fb167eb2 15867 arm_elf_find_function (abfd, symbols, section, offset,
0367ecfb
NC
15868 *filename_ptr ? NULL : filename_ptr,
15869 functionname_ptr);
f21f3fe0 15870
0367ecfb
NC
15871 return TRUE;
15872 }
15873
fb167eb2
AM
15874 /* Skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain
15875 uses DWARF1. */
15876
0367ecfb
NC
15877 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
15878 & found, filename_ptr,
15879 functionname_ptr, line_ptr,
15880 & elf_tdata (abfd)->line_info))
15881 return FALSE;
15882
15883 if (found && (*functionname_ptr || *line_ptr))
15884 return TRUE;
15885
15886 if (symbols == NULL)
15887 return FALSE;
15888
fb167eb2 15889 if (! arm_elf_find_function (abfd, symbols, section, offset,
0367ecfb
NC
15890 filename_ptr, functionname_ptr))
15891 return FALSE;
15892
15893 *line_ptr = 0;
b34976b6 15894 return TRUE;
252b5132
RH
15895}
15896
4ab527b0 15897static bfd_boolean
07d6d2b8 15898elf32_arm_find_inliner_info (bfd * abfd,
4ab527b0
FF
15899 const char ** filename_ptr,
15900 const char ** functionname_ptr,
15901 unsigned int * line_ptr)
15902{
15903 bfd_boolean found;
15904 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
15905 functionname_ptr, line_ptr,
15906 & elf_tdata (abfd)->dwarf2_find_line_info);
15907 return found;
15908}
15909
63c1f59d
AM
15910/* Find dynamic relocs for H that apply to read-only sections. */
15911
15912static asection *
15913readonly_dynrelocs (struct elf_link_hash_entry *h)
15914{
15915 struct elf_dyn_relocs *p;
15916
15917 for (p = elf32_arm_hash_entry (h)->dyn_relocs; p != NULL; p = p->next)
15918 {
15919 asection *s = p->sec->output_section;
15920
15921 if (s != NULL && (s->flags & SEC_READONLY) != 0)
15922 return p->sec;
15923 }
15924 return NULL;
15925}
15926
252b5132
RH
15927/* Adjust a symbol defined by a dynamic object and referenced by a
15928 regular object. The current definition is in some section of the
15929 dynamic object, but we're not including those sections. We have to
15930 change the definition to something the rest of the link can
15931 understand. */
15932
b34976b6 15933static bfd_boolean
57e8b36a
NC
15934elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
15935 struct elf_link_hash_entry * h)
252b5132
RH
15936{
15937 bfd * dynobj;
5474d94f 15938 asection *s, *srel;
b7693d02 15939 struct elf32_arm_link_hash_entry * eh;
67687978 15940 struct elf32_arm_link_hash_table *globals;
252b5132 15941
67687978 15942 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
15943 if (globals == NULL)
15944 return FALSE;
15945
252b5132
RH
15946 dynobj = elf_hash_table (info)->dynobj;
15947
15948 /* Make sure we know what is going on here. */
15949 BFD_ASSERT (dynobj != NULL
f5385ebf 15950 && (h->needs_plt
34e77a92 15951 || h->type == STT_GNU_IFUNC
60d67dc8 15952 || h->is_weakalias
f5385ebf
AM
15953 || (h->def_dynamic
15954 && h->ref_regular
15955 && !h->def_regular)));
252b5132 15956
b7693d02
DJ
15957 eh = (struct elf32_arm_link_hash_entry *) h;
15958
252b5132
RH
15959 /* If this is a function, put it in the procedure linkage table. We
15960 will fill in the contents of the procedure linkage table later,
15961 when we know the address of the .got section. */
34e77a92 15962 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
252b5132 15963 {
34e77a92
RS
15964 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
15965 symbol binds locally. */
5e681ec4 15966 if (h->plt.refcount <= 0
34e77a92
RS
15967 || (h->type != STT_GNU_IFUNC
15968 && (SYMBOL_CALLS_LOCAL (info, h)
15969 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
15970 && h->root.type == bfd_link_hash_undefweak))))
252b5132
RH
15971 {
15972 /* This case can occur if we saw a PLT32 reloc in an input
5e681ec4
PB
15973 file, but the symbol was never referred to by a dynamic
15974 object, or if all references were garbage collected. In
15975 such a case, we don't actually need to build a procedure
15976 linkage table, and we can just do a PC24 reloc instead. */
15977 h->plt.offset = (bfd_vma) -1;
34e77a92
RS
15978 eh->plt.thumb_refcount = 0;
15979 eh->plt.maybe_thumb_refcount = 0;
15980 eh->plt.noncall_refcount = 0;
f5385ebf 15981 h->needs_plt = 0;
252b5132
RH
15982 }
15983
b34976b6 15984 return TRUE;
252b5132 15985 }
5e681ec4 15986 else
b7693d02
DJ
15987 {
15988 /* It's possible that we incorrectly decided a .plt reloc was
15989 needed for an R_ARM_PC24 or similar reloc to a non-function sym
15990 in check_relocs. We can't decide accurately between function
15991 and non-function syms in check-relocs; Objects loaded later in
15992 the link may change h->type. So fix it now. */
15993 h->plt.offset = (bfd_vma) -1;
34e77a92
RS
15994 eh->plt.thumb_refcount = 0;
15995 eh->plt.maybe_thumb_refcount = 0;
15996 eh->plt.noncall_refcount = 0;
b7693d02 15997 }
252b5132
RH
15998
15999 /* If this is a weak symbol, and there is a real definition, the
16000 processor independent code will have arranged for us to see the
16001 real definition first, and we can just use the same value. */
60d67dc8 16002 if (h->is_weakalias)
252b5132 16003 {
60d67dc8
AM
16004 struct elf_link_hash_entry *def = weakdef (h);
16005 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
16006 h->root.u.def.section = def->root.u.def.section;
16007 h->root.u.def.value = def->root.u.def.value;
b34976b6 16008 return TRUE;
252b5132
RH
16009 }
16010
ba93b8ac
DJ
16011 /* If there are no non-GOT references, we do not need a copy
16012 relocation. */
16013 if (!h->non_got_ref)
16014 return TRUE;
16015
252b5132
RH
16016 /* This is a reference to a symbol defined by a dynamic object which
16017 is not a function. */
16018
16019 /* If we are creating a shared library, we must presume that the
16020 only references to the symbol are via the global offset table.
16021 For such cases we need not do anything here; the relocations will
67687978
PB
16022 be handled correctly by relocate_section. Relocatable executables
16023 can reference data in shared objects directly, so we don't need to
16024 do anything here. */
0e1862bb 16025 if (bfd_link_pic (info) || globals->root.is_relocatable_executable)
b34976b6 16026 return TRUE;
252b5132
RH
16027
16028 /* We must allocate the symbol in our .dynbss section, which will
16029 become part of the .bss section of the executable. There will be
16030 an entry for this symbol in the .dynsym section. The dynamic
16031 object will contain position independent code, so all references
16032 from the dynamic object to this symbol will go through the global
16033 offset table. The dynamic linker will use the .dynsym entry to
16034 determine the address it must put in the global offset table, so
16035 both the dynamic object and the regular object will refer to the
16036 same memory location for the variable. */
5522f910
NC
16037 /* If allowed, we must generate a R_ARM_COPY reloc to tell the dynamic
16038 linker to copy the initial value out of the dynamic object and into
16039 the runtime process image. We need to remember the offset into the
00a97672 16040 .rel(a).bss section we are going to use. */
5474d94f
AM
16041 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
16042 {
16043 s = globals->root.sdynrelro;
16044 srel = globals->root.sreldynrelro;
16045 }
16046 else
16047 {
16048 s = globals->root.sdynbss;
16049 srel = globals->root.srelbss;
16050 }
5522f910
NC
16051 if (info->nocopyreloc == 0
16052 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
5522f910 16053 && h->size != 0)
252b5132 16054 {
47beaa6a 16055 elf32_arm_allocate_dynrelocs (info, srel, 1);
f5385ebf 16056 h->needs_copy = 1;
252b5132
RH
16057 }
16058
6cabe1ea 16059 return _bfd_elf_adjust_dynamic_copy (info, h, s);
252b5132
RH
16060}
16061
5e681ec4
PB
16062/* Allocate space in .plt, .got and associated reloc sections for
16063 dynamic relocs. */
16064
16065static bfd_boolean
47beaa6a 16066allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
5e681ec4
PB
16067{
16068 struct bfd_link_info *info;
16069 struct elf32_arm_link_hash_table *htab;
16070 struct elf32_arm_link_hash_entry *eh;
0bdcacaf 16071 struct elf_dyn_relocs *p;
5e681ec4
PB
16072
16073 if (h->root.type == bfd_link_hash_indirect)
16074 return TRUE;
16075
e6a6bb22
AM
16076 eh = (struct elf32_arm_link_hash_entry *) h;
16077
5e681ec4
PB
16078 info = (struct bfd_link_info *) inf;
16079 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
16080 if (htab == NULL)
16081 return FALSE;
5e681ec4 16082
34e77a92 16083 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
5e681ec4
PB
16084 && h->plt.refcount > 0)
16085 {
16086 /* Make sure this symbol is output as a dynamic symbol.
16087 Undefined weak syms won't yet be marked as dynamic. */
6c699715
RL
16088 if (h->dynindx == -1 && !h->forced_local
16089 && h->root.type == bfd_link_hash_undefweak)
5e681ec4 16090 {
c152c796 16091 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5e681ec4
PB
16092 return FALSE;
16093 }
16094
34e77a92
RS
16095 /* If the call in the PLT entry binds locally, the associated
16096 GOT entry should use an R_ARM_IRELATIVE relocation instead of
16097 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
16098 than the .plt section. */
16099 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
16100 {
16101 eh->is_iplt = 1;
16102 if (eh->plt.noncall_refcount == 0
16103 && SYMBOL_REFERENCES_LOCAL (info, h))
16104 /* All non-call references can be resolved directly.
16105 This means that they can (and in some cases, must)
16106 resolve directly to the run-time target, rather than
16107 to the PLT. That in turns means that any .got entry
16108 would be equal to the .igot.plt entry, so there's
16109 no point having both. */
16110 h->got.refcount = 0;
16111 }
16112
0e1862bb 16113 if (bfd_link_pic (info)
34e77a92 16114 || eh->is_iplt
7359ea65 16115 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
5e681ec4 16116 {
34e77a92 16117 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
b7693d02 16118
5e681ec4
PB
16119 /* If this symbol is not defined in a regular file, and we are
16120 not generating a shared library, then set the symbol to this
16121 location in the .plt. This is required to make function
16122 pointers compare as equal between the normal executable and
16123 the shared library. */
0e1862bb 16124 if (! bfd_link_pic (info)
f5385ebf 16125 && !h->def_regular)
5e681ec4 16126 {
34e77a92 16127 h->root.u.def.section = htab->root.splt;
5e681ec4 16128 h->root.u.def.value = h->plt.offset;
5e681ec4 16129
67d74e43
DJ
16130 /* Make sure the function is not marked as Thumb, in case
16131 it is the target of an ABS32 relocation, which will
16132 point to the PLT entry. */
39d911fc 16133 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
67d74e43 16134 }
022f8312 16135
00a97672
RS
16136 /* VxWorks executables have a second set of relocations for
16137 each PLT entry. They go in a separate relocation section,
16138 which is processed by the kernel loader. */
0e1862bb 16139 if (htab->vxworks_p && !bfd_link_pic (info))
00a97672
RS
16140 {
16141 /* There is a relocation for the initial PLT entry:
16142 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
16143 if (h->plt.offset == htab->plt_header_size)
47beaa6a 16144 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
00a97672
RS
16145
16146 /* There are two extra relocations for each subsequent
16147 PLT entry: an R_ARM_32 relocation for the GOT entry,
16148 and an R_ARM_32 relocation for the PLT entry. */
47beaa6a 16149 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
00a97672 16150 }
5e681ec4
PB
16151 }
16152 else
16153 {
16154 h->plt.offset = (bfd_vma) -1;
f5385ebf 16155 h->needs_plt = 0;
5e681ec4
PB
16156 }
16157 }
16158 else
16159 {
16160 h->plt.offset = (bfd_vma) -1;
f5385ebf 16161 h->needs_plt = 0;
5e681ec4
PB
16162 }
16163
0855e32b
NS
16164 eh = (struct elf32_arm_link_hash_entry *) h;
16165 eh->tlsdesc_got = (bfd_vma) -1;
16166
5e681ec4
PB
16167 if (h->got.refcount > 0)
16168 {
16169 asection *s;
16170 bfd_boolean dyn;
ba93b8ac
DJ
16171 int tls_type = elf32_arm_hash_entry (h)->tls_type;
16172 int indx;
5e681ec4
PB
16173
16174 /* Make sure this symbol is output as a dynamic symbol.
16175 Undefined weak syms won't yet be marked as dynamic. */
e8b09b87 16176 if (htab->root.dynamic_sections_created && h->dynindx == -1 && !h->forced_local
6c699715 16177 && h->root.type == bfd_link_hash_undefweak)
5e681ec4 16178 {
c152c796 16179 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5e681ec4
PB
16180 return FALSE;
16181 }
16182
e5a52504
MM
16183 if (!htab->symbian_p)
16184 {
362d30a1 16185 s = htab->root.sgot;
e5a52504 16186 h->got.offset = s->size;
ba93b8ac
DJ
16187
16188 if (tls_type == GOT_UNKNOWN)
16189 abort ();
16190
16191 if (tls_type == GOT_NORMAL)
16192 /* Non-TLS symbols need one GOT slot. */
16193 s->size += 4;
16194 else
16195 {
99059e56
RM
16196 if (tls_type & GOT_TLS_GDESC)
16197 {
0855e32b 16198 /* R_ARM_TLS_DESC needs 2 GOT slots. */
99059e56 16199 eh->tlsdesc_got
0855e32b
NS
16200 = (htab->root.sgotplt->size
16201 - elf32_arm_compute_jump_table_size (htab));
99059e56
RM
16202 htab->root.sgotplt->size += 8;
16203 h->got.offset = (bfd_vma) -2;
34e77a92 16204 /* plt.got_offset needs to know there's a TLS_DESC
0855e32b 16205 reloc in the middle of .got.plt. */
99059e56
RM
16206 htab->num_tls_desc++;
16207 }
0855e32b 16208
ba93b8ac 16209 if (tls_type & GOT_TLS_GD)
0855e32b 16210 {
5c5a4843
CL
16211 /* R_ARM_TLS_GD32 and R_ARM_TLS_GD32_FDPIC need two
16212 consecutive GOT slots. If the symbol is both GD
16213 and GDESC, got.offset may have been
16214 overwritten. */
0855e32b
NS
16215 h->got.offset = s->size;
16216 s->size += 8;
16217 }
16218
ba93b8ac 16219 if (tls_type & GOT_TLS_IE)
5c5a4843
CL
16220 /* R_ARM_TLS_IE32/R_ARM_TLS_IE32_FDPIC need one GOT
16221 slot. */
ba93b8ac
DJ
16222 s->size += 4;
16223 }
16224
e5a52504 16225 dyn = htab->root.dynamic_sections_created;
ba93b8ac
DJ
16226
16227 indx = 0;
0e1862bb
L
16228 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
16229 bfd_link_pic (info),
16230 h)
16231 && (!bfd_link_pic (info)
ba93b8ac
DJ
16232 || !SYMBOL_REFERENCES_LOCAL (info, h)))
16233 indx = h->dynindx;
16234
16235 if (tls_type != GOT_NORMAL
0e1862bb 16236 && (bfd_link_pic (info) || indx != 0)
ba93b8ac
DJ
16237 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
16238 || h->root.type != bfd_link_hash_undefweak))
16239 {
16240 if (tls_type & GOT_TLS_IE)
47beaa6a 16241 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
ba93b8ac
DJ
16242
16243 if (tls_type & GOT_TLS_GD)
47beaa6a 16244 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
ba93b8ac 16245
b38cadfb 16246 if (tls_type & GOT_TLS_GDESC)
0855e32b 16247 {
47beaa6a 16248 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
0855e32b
NS
16249 /* GDESC needs a trampoline to jump to. */
16250 htab->tls_trampoline = -1;
16251 }
16252
16253 /* Only GD needs it. GDESC just emits one relocation per
16254 2 entries. */
b38cadfb 16255 if ((tls_type & GOT_TLS_GD) && indx != 0)
47beaa6a 16256 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
ba93b8ac 16257 }
e8b09b87
CL
16258 else if (((indx != -1) || htab->fdpic_p)
16259 && !SYMBOL_REFERENCES_LOCAL (info, h))
b436d854
RS
16260 {
16261 if (htab->root.dynamic_sections_created)
16262 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
16263 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16264 }
34e77a92
RS
16265 else if (h->type == STT_GNU_IFUNC
16266 && eh->plt.noncall_refcount == 0)
16267 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
16268 they all resolve dynamically instead. Reserve room for the
16269 GOT entry's R_ARM_IRELATIVE relocation. */
16270 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
0e1862bb
L
16271 else if (bfd_link_pic (info)
16272 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
16273 || h->root.type != bfd_link_hash_undefweak))
b436d854 16274 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
47beaa6a 16275 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
e8b09b87
CL
16276 else if (htab->fdpic_p && tls_type == GOT_NORMAL)
16277 /* Reserve room for rofixup for FDPIC executable. */
16278 /* TLS relocs do not need space since they are completely
16279 resolved. */
16280 htab->srofixup->size += 4;
e5a52504 16281 }
5e681ec4
PB
16282 }
16283 else
16284 h->got.offset = (bfd_vma) -1;
16285
e8b09b87
CL
16286 /* FDPIC support. */
16287 if (eh->fdpic_cnts.gotofffuncdesc_cnt > 0)
16288 {
16289 /* Symbol musn't be exported. */
16290 if (h->dynindx != -1)
16291 abort();
16292
16293 /* We only allocate one function descriptor with its associated relocation. */
16294 if (eh->fdpic_cnts.funcdesc_offset == -1)
16295 {
16296 asection *s = htab->root.sgot;
16297
16298 eh->fdpic_cnts.funcdesc_offset = s->size;
16299 s->size += 8;
16300 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16301 if (bfd_link_pic(info))
16302 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16303 else
16304 htab->srofixup->size += 8;
16305 }
16306 }
16307
16308 if (eh->fdpic_cnts.gotfuncdesc_cnt > 0)
16309 {
16310 asection *s = htab->root.sgot;
16311
16312 if (htab->root.dynamic_sections_created && h->dynindx == -1
16313 && !h->forced_local)
16314 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16315 return FALSE;
16316
16317 if (h->dynindx == -1)
16318 {
16319 /* We only allocate one function descriptor with its associated relocation. q */
16320 if (eh->fdpic_cnts.funcdesc_offset == -1)
16321 {
16322
16323 eh->fdpic_cnts.funcdesc_offset = s->size;
16324 s->size += 8;
16325 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16326 if (bfd_link_pic(info))
16327 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16328 else
16329 htab->srofixup->size += 8;
16330 }
16331 }
16332
16333 /* Add one entry into the GOT and a R_ARM_FUNCDESC or
16334 R_ARM_RELATIVE/rofixup relocation on it. */
16335 eh->fdpic_cnts.gotfuncdesc_offset = s->size;
16336 s->size += 4;
16337 if (h->dynindx == -1 && !bfd_link_pic(info))
16338 htab->srofixup->size += 4;
16339 else
16340 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16341 }
16342
16343 if (eh->fdpic_cnts.funcdesc_cnt > 0)
16344 {
16345 if (htab->root.dynamic_sections_created && h->dynindx == -1
16346 && !h->forced_local)
16347 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16348 return FALSE;
16349
16350 if (h->dynindx == -1)
16351 {
16352 /* We only allocate one function descriptor with its associated relocation. */
16353 if (eh->fdpic_cnts.funcdesc_offset == -1)
16354 {
16355 asection *s = htab->root.sgot;
16356
16357 eh->fdpic_cnts.funcdesc_offset = s->size;
16358 s->size += 8;
16359 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16360 if (bfd_link_pic(info))
16361 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16362 else
16363 htab->srofixup->size += 8;
16364 }
16365 }
16366 if (h->dynindx == -1 && !bfd_link_pic(info))
16367 {
16368 /* For FDPIC executable we replace R_ARM_RELATIVE with a rofixup. */
16369 htab->srofixup->size += 4 * eh->fdpic_cnts.funcdesc_cnt;
16370 }
16371 else
16372 {
16373 /* Will need one dynamic reloc per reference. will be either
16374 R_ARM_FUNCDESC or R_ARM_RELATIVE for hidden symbols. */
16375 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot,
16376 eh->fdpic_cnts.funcdesc_cnt);
16377 }
16378 }
16379
a4fd1a8e
PB
16380 /* Allocate stubs for exported Thumb functions on v4t. */
16381 if (!htab->use_blx && h->dynindx != -1
0eaedd0e 16382 && h->def_regular
39d911fc 16383 && ARM_GET_SYM_BRANCH_TYPE (h->target_internal) == ST_BRANCH_TO_THUMB
a4fd1a8e
PB
16384 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
16385 {
16386 struct elf_link_hash_entry * th;
16387 struct bfd_link_hash_entry * bh;
16388 struct elf_link_hash_entry * myh;
16389 char name[1024];
16390 asection *s;
16391 bh = NULL;
16392 /* Create a new symbol to regist the real location of the function. */
16393 s = h->root.u.def.section;
906e58ca 16394 sprintf (name, "__real_%s", h->root.root.string);
a4fd1a8e
PB
16395 _bfd_generic_link_add_one_symbol (info, s->owner,
16396 name, BSF_GLOBAL, s,
16397 h->root.u.def.value,
16398 NULL, TRUE, FALSE, &bh);
16399
16400 myh = (struct elf_link_hash_entry *) bh;
35fc36a8 16401 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
a4fd1a8e 16402 myh->forced_local = 1;
39d911fc 16403 ARM_SET_SYM_BRANCH_TYPE (myh->target_internal, ST_BRANCH_TO_THUMB);
a4fd1a8e
PB
16404 eh->export_glue = myh;
16405 th = record_arm_to_thumb_glue (info, h);
16406 /* Point the symbol at the stub. */
16407 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
39d911fc 16408 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
a4fd1a8e
PB
16409 h->root.u.def.section = th->root.u.def.section;
16410 h->root.u.def.value = th->root.u.def.value & ~1;
16411 }
16412
0bdcacaf 16413 if (eh->dyn_relocs == NULL)
5e681ec4
PB
16414 return TRUE;
16415
16416 /* In the shared -Bsymbolic case, discard space allocated for
16417 dynamic pc-relative relocs against symbols which turn out to be
16418 defined in regular objects. For the normal shared case, discard
16419 space for pc-relative relocs that have become local due to symbol
16420 visibility changes. */
16421
e8b09b87 16422 if (bfd_link_pic (info) || htab->root.is_relocatable_executable || htab->fdpic_p)
5e681ec4 16423 {
469a3493
RM
16424 /* Relocs that use pc_count are PC-relative forms, which will appear
16425 on something like ".long foo - ." or "movw REG, foo - .". We want
16426 calls to protected symbols to resolve directly to the function
16427 rather than going via the plt. If people want function pointer
16428 comparisons to work as expected then they should avoid writing
16429 assembly like ".long foo - .". */
ba93b8ac
DJ
16430 if (SYMBOL_CALLS_LOCAL (info, h))
16431 {
0bdcacaf 16432 struct elf_dyn_relocs **pp;
ba93b8ac 16433
0bdcacaf 16434 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
ba93b8ac
DJ
16435 {
16436 p->count -= p->pc_count;
16437 p->pc_count = 0;
16438 if (p->count == 0)
16439 *pp = p->next;
16440 else
16441 pp = &p->next;
16442 }
16443 }
16444
4dfe6ac6 16445 if (htab->vxworks_p)
3348747a 16446 {
0bdcacaf 16447 struct elf_dyn_relocs **pp;
3348747a 16448
0bdcacaf 16449 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
3348747a 16450 {
0bdcacaf 16451 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
3348747a
NS
16452 *pp = p->next;
16453 else
16454 pp = &p->next;
16455 }
16456 }
16457
ba93b8ac 16458 /* Also discard relocs on undefined weak syms with non-default
99059e56 16459 visibility. */
0bdcacaf 16460 if (eh->dyn_relocs != NULL
5e681ec4 16461 && h->root.type == bfd_link_hash_undefweak)
22d606e9 16462 {
95b03e4a
L
16463 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
16464 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
0bdcacaf 16465 eh->dyn_relocs = NULL;
22d606e9
AM
16466
16467 /* Make sure undefined weak symbols are output as a dynamic
16468 symbol in PIEs. */
e8b09b87 16469 else if (htab->root.dynamic_sections_created && h->dynindx == -1
22d606e9
AM
16470 && !h->forced_local)
16471 {
16472 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16473 return FALSE;
16474 }
16475 }
16476
67687978
PB
16477 else if (htab->root.is_relocatable_executable && h->dynindx == -1
16478 && h->root.type == bfd_link_hash_new)
16479 {
16480 /* Output absolute symbols so that we can create relocations
16481 against them. For normal symbols we output a relocation
16482 against the section that contains them. */
16483 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16484 return FALSE;
16485 }
16486
5e681ec4
PB
16487 }
16488 else
16489 {
16490 /* For the non-shared case, discard space for relocs against
16491 symbols which turn out to need copy relocs or are not
16492 dynamic. */
16493
f5385ebf
AM
16494 if (!h->non_got_ref
16495 && ((h->def_dynamic
16496 && !h->def_regular)
5e681ec4
PB
16497 || (htab->root.dynamic_sections_created
16498 && (h->root.type == bfd_link_hash_undefweak
16499 || h->root.type == bfd_link_hash_undefined))))
16500 {
16501 /* Make sure this symbol is output as a dynamic symbol.
16502 Undefined weak syms won't yet be marked as dynamic. */
6c699715
RL
16503 if (h->dynindx == -1 && !h->forced_local
16504 && h->root.type == bfd_link_hash_undefweak)
5e681ec4 16505 {
c152c796 16506 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5e681ec4
PB
16507 return FALSE;
16508 }
16509
16510 /* If that succeeded, we know we'll be keeping all the
16511 relocs. */
16512 if (h->dynindx != -1)
16513 goto keep;
16514 }
16515
0bdcacaf 16516 eh->dyn_relocs = NULL;
5e681ec4
PB
16517
16518 keep: ;
16519 }
16520
16521 /* Finally, allocate space. */
0bdcacaf 16522 for (p = eh->dyn_relocs; p != NULL; p = p->next)
5e681ec4 16523 {
0bdcacaf 16524 asection *sreloc = elf_section_data (p->sec)->sreloc;
e8b09b87 16525
34e77a92
RS
16526 if (h->type == STT_GNU_IFUNC
16527 && eh->plt.noncall_refcount == 0
16528 && SYMBOL_REFERENCES_LOCAL (info, h))
16529 elf32_arm_allocate_irelocs (info, sreloc, p->count);
e8b09b87
CL
16530 else if (h->dynindx != -1 && (!bfd_link_pic(info) || !info->symbolic || !h->def_regular))
16531 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
16532 else if (htab->fdpic_p && !bfd_link_pic(info))
16533 htab->srofixup->size += 4 * p->count;
34e77a92
RS
16534 else
16535 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
5e681ec4
PB
16536 }
16537
16538 return TRUE;
16539}
16540
63c1f59d
AM
16541/* Set DF_TEXTREL if we find any dynamic relocs that apply to
16542 read-only sections. */
08d1f311
DJ
16543
16544static bfd_boolean
63c1f59d 16545maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p)
08d1f311 16546{
63c1f59d 16547 asection *sec;
08d1f311 16548
63c1f59d
AM
16549 if (h->root.type == bfd_link_hash_indirect)
16550 return TRUE;
08d1f311 16551
63c1f59d
AM
16552 sec = readonly_dynrelocs (h);
16553 if (sec != NULL)
16554 {
16555 struct bfd_link_info *info = (struct bfd_link_info *) info_p;
08d1f311 16556
63c1f59d
AM
16557 info->flags |= DF_TEXTREL;
16558 info->callbacks->minfo
c1c8c1ef 16559 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
63c1f59d 16560 sec->owner, h->root.root.string, sec);
08d1f311 16561
63c1f59d
AM
16562 /* Not an error, just cut short the traversal. */
16563 return FALSE;
08d1f311 16564 }
cb10292c 16565
08d1f311
DJ
16566 return TRUE;
16567}
16568
d504ffc8
DJ
16569void
16570bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
16571 int byteswap_code)
16572{
16573 struct elf32_arm_link_hash_table *globals;
16574
16575 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
16576 if (globals == NULL)
16577 return;
16578
d504ffc8
DJ
16579 globals->byteswap_code = byteswap_code;
16580}
16581
252b5132
RH
16582/* Set the sizes of the dynamic sections. */
16583
b34976b6 16584static bfd_boolean
57e8b36a
NC
16585elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
16586 struct bfd_link_info * info)
252b5132
RH
16587{
16588 bfd * dynobj;
16589 asection * s;
b34976b6
AM
16590 bfd_boolean plt;
16591 bfd_boolean relocs;
5e681ec4
PB
16592 bfd *ibfd;
16593 struct elf32_arm_link_hash_table *htab;
252b5132 16594
5e681ec4 16595 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
16596 if (htab == NULL)
16597 return FALSE;
16598
252b5132
RH
16599 dynobj = elf_hash_table (info)->dynobj;
16600 BFD_ASSERT (dynobj != NULL);
39b41c9c 16601 check_use_blx (htab);
252b5132
RH
16602
16603 if (elf_hash_table (info)->dynamic_sections_created)
16604 {
16605 /* Set the contents of the .interp section to the interpreter. */
9b8b325a 16606 if (bfd_link_executable (info) && !info->nointerp)
252b5132 16607 {
3d4d4302 16608 s = bfd_get_linker_section (dynobj, ".interp");
252b5132 16609 BFD_ASSERT (s != NULL);
eea6121a 16610 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
252b5132
RH
16611 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
16612 }
16613 }
5e681ec4
PB
16614
16615 /* Set up .got offsets for local syms, and space for local dynamic
16616 relocs. */
c72f2fb2 16617 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
252b5132 16618 {
5e681ec4
PB
16619 bfd_signed_vma *local_got;
16620 bfd_signed_vma *end_local_got;
34e77a92 16621 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
5e681ec4 16622 char *local_tls_type;
0855e32b 16623 bfd_vma *local_tlsdesc_gotent;
5e681ec4
PB
16624 bfd_size_type locsymcount;
16625 Elf_Internal_Shdr *symtab_hdr;
16626 asection *srel;
4dfe6ac6 16627 bfd_boolean is_vxworks = htab->vxworks_p;
34e77a92 16628 unsigned int symndx;
e8b09b87 16629 struct fdpic_local *local_fdpic_cnts;
5e681ec4 16630
0ffa91dd 16631 if (! is_arm_elf (ibfd))
5e681ec4
PB
16632 continue;
16633
16634 for (s = ibfd->sections; s != NULL; s = s->next)
16635 {
0bdcacaf 16636 struct elf_dyn_relocs *p;
5e681ec4 16637
0bdcacaf 16638 for (p = (struct elf_dyn_relocs *)
99059e56 16639 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
5e681ec4 16640 {
0bdcacaf
RS
16641 if (!bfd_is_abs_section (p->sec)
16642 && bfd_is_abs_section (p->sec->output_section))
5e681ec4
PB
16643 {
16644 /* Input section has been discarded, either because
16645 it is a copy of a linkonce section or due to
16646 linker script /DISCARD/, so we'll be discarding
16647 the relocs too. */
16648 }
3348747a 16649 else if (is_vxworks
0bdcacaf 16650 && strcmp (p->sec->output_section->name,
3348747a
NS
16651 ".tls_vars") == 0)
16652 {
16653 /* Relocations in vxworks .tls_vars sections are
16654 handled specially by the loader. */
16655 }
5e681ec4
PB
16656 else if (p->count != 0)
16657 {
0bdcacaf 16658 srel = elf_section_data (p->sec)->sreloc;
e8b09b87
CL
16659 if (htab->fdpic_p && !bfd_link_pic(info))
16660 htab->srofixup->size += 4 * p->count;
16661 else
16662 elf32_arm_allocate_dynrelocs (info, srel, p->count);
0bdcacaf 16663 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
5e681ec4
PB
16664 info->flags |= DF_TEXTREL;
16665 }
16666 }
16667 }
16668
16669 local_got = elf_local_got_refcounts (ibfd);
16670 if (!local_got)
16671 continue;
16672
0ffa91dd 16673 symtab_hdr = & elf_symtab_hdr (ibfd);
5e681ec4
PB
16674 locsymcount = symtab_hdr->sh_info;
16675 end_local_got = local_got + locsymcount;
34e77a92 16676 local_iplt_ptr = elf32_arm_local_iplt (ibfd);
ba93b8ac 16677 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
0855e32b 16678 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
e8b09b87 16679 local_fdpic_cnts = elf32_arm_local_fdpic_cnts (ibfd);
34e77a92 16680 symndx = 0;
362d30a1
RS
16681 s = htab->root.sgot;
16682 srel = htab->root.srelgot;
0855e32b 16683 for (; local_got < end_local_got;
34e77a92 16684 ++local_got, ++local_iplt_ptr, ++local_tls_type,
e8b09b87 16685 ++local_tlsdesc_gotent, ++symndx, ++local_fdpic_cnts)
5e681ec4 16686 {
0855e32b 16687 *local_tlsdesc_gotent = (bfd_vma) -1;
34e77a92 16688 local_iplt = *local_iplt_ptr;
e8b09b87
CL
16689
16690 /* FDPIC support. */
16691 if (local_fdpic_cnts->gotofffuncdesc_cnt > 0)
16692 {
16693 if (local_fdpic_cnts->funcdesc_offset == -1)
16694 {
16695 local_fdpic_cnts->funcdesc_offset = s->size;
16696 s->size += 8;
16697
16698 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16699 if (bfd_link_pic(info))
16700 elf32_arm_allocate_dynrelocs (info, srel, 1);
16701 else
16702 htab->srofixup->size += 8;
16703 }
16704 }
16705
16706 if (local_fdpic_cnts->funcdesc_cnt > 0)
16707 {
16708 if (local_fdpic_cnts->funcdesc_offset == -1)
16709 {
16710 local_fdpic_cnts->funcdesc_offset = s->size;
16711 s->size += 8;
16712
16713 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16714 if (bfd_link_pic(info))
16715 elf32_arm_allocate_dynrelocs (info, srel, 1);
16716 else
16717 htab->srofixup->size += 8;
16718 }
16719
16720 /* We will add n R_ARM_RELATIVE relocations or n rofixups. */
16721 if (bfd_link_pic(info))
16722 elf32_arm_allocate_dynrelocs (info, srel, local_fdpic_cnts->funcdesc_cnt);
16723 else
16724 htab->srofixup->size += 4 * local_fdpic_cnts->funcdesc_cnt;
16725 }
16726
34e77a92
RS
16727 if (local_iplt != NULL)
16728 {
16729 struct elf_dyn_relocs *p;
16730
16731 if (local_iplt->root.refcount > 0)
16732 {
16733 elf32_arm_allocate_plt_entry (info, TRUE,
16734 &local_iplt->root,
16735 &local_iplt->arm);
16736 if (local_iplt->arm.noncall_refcount == 0)
16737 /* All references to the PLT are calls, so all
16738 non-call references can resolve directly to the
16739 run-time target. This means that the .got entry
16740 would be the same as the .igot.plt entry, so there's
16741 no point creating both. */
16742 *local_got = 0;
16743 }
16744 else
16745 {
16746 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
16747 local_iplt->root.offset = (bfd_vma) -1;
16748 }
16749
16750 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
16751 {
16752 asection *psrel;
16753
16754 psrel = elf_section_data (p->sec)->sreloc;
16755 if (local_iplt->arm.noncall_refcount == 0)
16756 elf32_arm_allocate_irelocs (info, psrel, p->count);
16757 else
16758 elf32_arm_allocate_dynrelocs (info, psrel, p->count);
16759 }
16760 }
5e681ec4
PB
16761 if (*local_got > 0)
16762 {
34e77a92
RS
16763 Elf_Internal_Sym *isym;
16764
eea6121a 16765 *local_got = s->size;
ba93b8ac
DJ
16766 if (*local_tls_type & GOT_TLS_GD)
16767 /* TLS_GD relocs need an 8-byte structure in the GOT. */
16768 s->size += 8;
0855e32b
NS
16769 if (*local_tls_type & GOT_TLS_GDESC)
16770 {
16771 *local_tlsdesc_gotent = htab->root.sgotplt->size
16772 - elf32_arm_compute_jump_table_size (htab);
16773 htab->root.sgotplt->size += 8;
16774 *local_got = (bfd_vma) -2;
34e77a92 16775 /* plt.got_offset needs to know there's a TLS_DESC
0855e32b 16776 reloc in the middle of .got.plt. */
99059e56 16777 htab->num_tls_desc++;
0855e32b 16778 }
ba93b8ac
DJ
16779 if (*local_tls_type & GOT_TLS_IE)
16780 s->size += 4;
ba93b8ac 16781
0855e32b
NS
16782 if (*local_tls_type & GOT_NORMAL)
16783 {
16784 /* If the symbol is both GD and GDESC, *local_got
16785 may have been overwritten. */
16786 *local_got = s->size;
16787 s->size += 4;
16788 }
16789
34e77a92
RS
16790 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
16791 if (isym == NULL)
16792 return FALSE;
16793
16794 /* If all references to an STT_GNU_IFUNC PLT are calls,
16795 then all non-call references, including this GOT entry,
16796 resolve directly to the run-time target. */
16797 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
16798 && (local_iplt == NULL
16799 || local_iplt->arm.noncall_refcount == 0))
16800 elf32_arm_allocate_irelocs (info, srel, 1);
e8b09b87 16801 else if (bfd_link_pic (info) || output_bfd->flags & DYNAMIC || htab->fdpic_p)
0855e32b 16802 {
e8b09b87 16803 if ((bfd_link_pic (info) && !(*local_tls_type & GOT_TLS_GDESC)))
3064e1ff 16804 elf32_arm_allocate_dynrelocs (info, srel, 1);
e8b09b87
CL
16805 else if (htab->fdpic_p && *local_tls_type & GOT_NORMAL)
16806 htab->srofixup->size += 4;
99059e56 16807
e8b09b87
CL
16808 if ((bfd_link_pic (info) || htab->fdpic_p)
16809 && *local_tls_type & GOT_TLS_GDESC)
3064e1ff
JB
16810 {
16811 elf32_arm_allocate_dynrelocs (info,
16812 htab->root.srelplt, 1);
16813 htab->tls_trampoline = -1;
16814 }
0855e32b 16815 }
5e681ec4
PB
16816 }
16817 else
16818 *local_got = (bfd_vma) -1;
16819 }
252b5132
RH
16820 }
16821
ba93b8ac
DJ
16822 if (htab->tls_ldm_got.refcount > 0)
16823 {
16824 /* Allocate two GOT entries and one dynamic relocation (if necessary)
5c5a4843 16825 for R_ARM_TLS_LDM32/R_ARM_TLS_LDM32_FDPIC relocations. */
362d30a1
RS
16826 htab->tls_ldm_got.offset = htab->root.sgot->size;
16827 htab->root.sgot->size += 8;
0e1862bb 16828 if (bfd_link_pic (info))
47beaa6a 16829 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
ba93b8ac
DJ
16830 }
16831 else
16832 htab->tls_ldm_got.offset = -1;
16833
e8b09b87
CL
16834 /* At the very end of the .rofixup section is a pointer to the GOT,
16835 reserve space for it. */
16836 if (htab->fdpic_p && htab->srofixup != NULL)
16837 htab->srofixup->size += 4;
16838
5e681ec4
PB
16839 /* Allocate global sym .plt and .got entries, and space for global
16840 sym dynamic relocs. */
47beaa6a 16841 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
252b5132 16842
d504ffc8 16843 /* Here we rummage through the found bfds to collect glue information. */
c72f2fb2 16844 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
c7b8f16e 16845 {
0ffa91dd 16846 if (! is_arm_elf (ibfd))
e44a2c9c
AM
16847 continue;
16848
c7b8f16e
JB
16849 /* Initialise mapping tables for code/data. */
16850 bfd_elf32_arm_init_maps (ibfd);
906e58ca 16851
c7b8f16e 16852 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
a504d23a
LA
16853 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info)
16854 || !bfd_elf32_arm_stm32l4xx_erratum_scan (ibfd, info))
90b6238f 16855 _bfd_error_handler (_("errors encountered processing file %pB"), ibfd);
c7b8f16e 16856 }
d504ffc8 16857
3e6b1042
DJ
16858 /* Allocate space for the glue sections now that we've sized them. */
16859 bfd_elf32_arm_allocate_interworking_sections (info);
16860
0855e32b
NS
16861 /* For every jump slot reserved in the sgotplt, reloc_count is
16862 incremented. However, when we reserve space for TLS descriptors,
16863 it's not incremented, so in order to compute the space reserved
16864 for them, it suffices to multiply the reloc count by the jump
16865 slot size. */
16866 if (htab->root.srelplt)
16867 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
16868
16869 if (htab->tls_trampoline)
16870 {
16871 if (htab->root.splt->size == 0)
16872 htab->root.splt->size += htab->plt_header_size;
b38cadfb 16873
0855e32b
NS
16874 htab->tls_trampoline = htab->root.splt->size;
16875 htab->root.splt->size += htab->plt_entry_size;
b38cadfb 16876
0855e32b 16877 /* If we're not using lazy TLS relocations, don't generate the
99059e56 16878 PLT and GOT entries they require. */
0855e32b
NS
16879 if (!(info->flags & DF_BIND_NOW))
16880 {
16881 htab->dt_tlsdesc_got = htab->root.sgot->size;
16882 htab->root.sgot->size += 4;
16883
16884 htab->dt_tlsdesc_plt = htab->root.splt->size;
16885 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
16886 }
16887 }
16888
252b5132
RH
16889 /* The check_relocs and adjust_dynamic_symbol entry points have
16890 determined the sizes of the various dynamic sections. Allocate
16891 memory for them. */
b34976b6
AM
16892 plt = FALSE;
16893 relocs = FALSE;
252b5132
RH
16894 for (s = dynobj->sections; s != NULL; s = s->next)
16895 {
16896 const char * name;
252b5132
RH
16897
16898 if ((s->flags & SEC_LINKER_CREATED) == 0)
16899 continue;
16900
16901 /* It's OK to base decisions on the section name, because none
16902 of the dynobj section names depend upon the input files. */
16903 name = bfd_get_section_name (dynobj, s);
16904
34e77a92 16905 if (s == htab->root.splt)
252b5132 16906 {
c456f082
AM
16907 /* Remember whether there is a PLT. */
16908 plt = s->size != 0;
252b5132 16909 }
0112cd26 16910 else if (CONST_STRNEQ (name, ".rel"))
252b5132 16911 {
c456f082 16912 if (s->size != 0)
252b5132 16913 {
252b5132 16914 /* Remember whether there are any reloc sections other
00a97672 16915 than .rel(a).plt and .rela.plt.unloaded. */
362d30a1 16916 if (s != htab->root.srelplt && s != htab->srelplt2)
b34976b6 16917 relocs = TRUE;
252b5132
RH
16918
16919 /* We use the reloc_count field as a counter if we need
16920 to copy relocs into the output file. */
16921 s->reloc_count = 0;
16922 }
16923 }
34e77a92
RS
16924 else if (s != htab->root.sgot
16925 && s != htab->root.sgotplt
16926 && s != htab->root.iplt
16927 && s != htab->root.igotplt
5474d94f 16928 && s != htab->root.sdynbss
e8b09b87
CL
16929 && s != htab->root.sdynrelro
16930 && s != htab->srofixup)
252b5132
RH
16931 {
16932 /* It's not one of our sections, so don't allocate space. */
16933 continue;
16934 }
16935
c456f082 16936 if (s->size == 0)
252b5132 16937 {
c456f082 16938 /* If we don't need this section, strip it from the
00a97672
RS
16939 output file. This is mostly to handle .rel(a).bss and
16940 .rel(a).plt. We must create both sections in
c456f082
AM
16941 create_dynamic_sections, because they must be created
16942 before the linker maps input sections to output
16943 sections. The linker does that before
16944 adjust_dynamic_symbol is called, and it is that
16945 function which decides whether anything needs to go
16946 into these sections. */
8423293d 16947 s->flags |= SEC_EXCLUDE;
252b5132
RH
16948 continue;
16949 }
16950
c456f082
AM
16951 if ((s->flags & SEC_HAS_CONTENTS) == 0)
16952 continue;
16953
252b5132 16954 /* Allocate memory for the section contents. */
21d799b5 16955 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
c456f082 16956 if (s->contents == NULL)
b34976b6 16957 return FALSE;
252b5132
RH
16958 }
16959
16960 if (elf_hash_table (info)->dynamic_sections_created)
16961 {
16962 /* Add some entries to the .dynamic section. We fill in the
16963 values later, in elf32_arm_finish_dynamic_sections, but we
16964 must add the entries now so that we get the correct size for
16965 the .dynamic section. The DT_DEBUG entry is filled in by the
16966 dynamic linker and used by the debugger. */
dc810e39 16967#define add_dynamic_entry(TAG, VAL) \
5a580b3a 16968 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
dc810e39 16969
0e1862bb 16970 if (bfd_link_executable (info))
252b5132 16971 {
dc810e39 16972 if (!add_dynamic_entry (DT_DEBUG, 0))
b34976b6 16973 return FALSE;
252b5132
RH
16974 }
16975
16976 if (plt)
16977 {
dc810e39
AM
16978 if ( !add_dynamic_entry (DT_PLTGOT, 0)
16979 || !add_dynamic_entry (DT_PLTRELSZ, 0)
00a97672
RS
16980 || !add_dynamic_entry (DT_PLTREL,
16981 htab->use_rel ? DT_REL : DT_RELA)
dc810e39 16982 || !add_dynamic_entry (DT_JMPREL, 0))
b34976b6 16983 return FALSE;
0855e32b 16984
5025eb7c
AO
16985 if (htab->dt_tlsdesc_plt
16986 && (!add_dynamic_entry (DT_TLSDESC_PLT,0)
16987 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
b38cadfb 16988 return FALSE;
252b5132
RH
16989 }
16990
16991 if (relocs)
16992 {
00a97672
RS
16993 if (htab->use_rel)
16994 {
16995 if (!add_dynamic_entry (DT_REL, 0)
16996 || !add_dynamic_entry (DT_RELSZ, 0)
16997 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
16998 return FALSE;
16999 }
17000 else
17001 {
17002 if (!add_dynamic_entry (DT_RELA, 0)
17003 || !add_dynamic_entry (DT_RELASZ, 0)
17004 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
17005 return FALSE;
17006 }
252b5132
RH
17007 }
17008
08d1f311
DJ
17009 /* If any dynamic relocs apply to a read-only section,
17010 then we need a DT_TEXTREL entry. */
17011 if ((info->flags & DF_TEXTREL) == 0)
63c1f59d 17012 elf_link_hash_traverse (&htab->root, maybe_set_textrel, info);
08d1f311 17013
99e4ae17 17014 if ((info->flags & DF_TEXTREL) != 0)
252b5132 17015 {
dc810e39 17016 if (!add_dynamic_entry (DT_TEXTREL, 0))
b34976b6 17017 return FALSE;
252b5132 17018 }
7a2b07ff
NS
17019 if (htab->vxworks_p
17020 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
17021 return FALSE;
252b5132 17022 }
8532796c 17023#undef add_dynamic_entry
252b5132 17024
b34976b6 17025 return TRUE;
252b5132
RH
17026}
17027
0855e32b
NS
17028/* Size sections even though they're not dynamic. We use it to setup
17029 _TLS_MODULE_BASE_, if needed. */
17030
17031static bfd_boolean
17032elf32_arm_always_size_sections (bfd *output_bfd,
99059e56 17033 struct bfd_link_info *info)
0855e32b
NS
17034{
17035 asection *tls_sec;
cb10292c
CL
17036 struct elf32_arm_link_hash_table *htab;
17037
17038 htab = elf32_arm_hash_table (info);
0855e32b 17039
0e1862bb 17040 if (bfd_link_relocatable (info))
0855e32b
NS
17041 return TRUE;
17042
17043 tls_sec = elf_hash_table (info)->tls_sec;
17044
17045 if (tls_sec)
17046 {
17047 struct elf_link_hash_entry *tlsbase;
17048
17049 tlsbase = elf_link_hash_lookup
17050 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
17051
17052 if (tlsbase)
99059e56
RM
17053 {
17054 struct bfd_link_hash_entry *bh = NULL;
0855e32b 17055 const struct elf_backend_data *bed
99059e56 17056 = get_elf_backend_data (output_bfd);
0855e32b 17057
99059e56 17058 if (!(_bfd_generic_link_add_one_symbol
0855e32b
NS
17059 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
17060 tls_sec, 0, NULL, FALSE,
17061 bed->collect, &bh)))
17062 return FALSE;
b38cadfb 17063
99059e56
RM
17064 tlsbase->type = STT_TLS;
17065 tlsbase = (struct elf_link_hash_entry *)bh;
17066 tlsbase->def_regular = 1;
17067 tlsbase->other = STV_HIDDEN;
17068 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
0855e32b
NS
17069 }
17070 }
cb10292c
CL
17071
17072 if (htab->fdpic_p && !bfd_link_relocatable (info)
17073 && !bfd_elf_stack_segment_size (output_bfd, info,
17074 "__stacksize", DEFAULT_STACK_SIZE))
17075 return FALSE;
17076
0855e32b
NS
17077 return TRUE;
17078}
17079
252b5132
RH
17080/* Finish up dynamic symbol handling. We set the contents of various
17081 dynamic sections here. */
17082
b34976b6 17083static bfd_boolean
906e58ca
NC
17084elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
17085 struct bfd_link_info * info,
17086 struct elf_link_hash_entry * h,
17087 Elf_Internal_Sym * sym)
252b5132 17088{
e5a52504 17089 struct elf32_arm_link_hash_table *htab;
b7693d02 17090 struct elf32_arm_link_hash_entry *eh;
252b5132 17091
e5a52504 17092 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
17093 if (htab == NULL)
17094 return FALSE;
17095
b7693d02 17096 eh = (struct elf32_arm_link_hash_entry *) h;
252b5132
RH
17097
17098 if (h->plt.offset != (bfd_vma) -1)
17099 {
34e77a92 17100 if (!eh->is_iplt)
e5a52504 17101 {
34e77a92 17102 BFD_ASSERT (h->dynindx != -1);
57460bcf
NC
17103 if (! elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
17104 h->dynindx, 0))
17105 return FALSE;
e5a52504 17106 }
57e8b36a 17107
f5385ebf 17108 if (!h->def_regular)
252b5132
RH
17109 {
17110 /* Mark the symbol as undefined, rather than as defined in
3a635617 17111 the .plt section. */
252b5132 17112 sym->st_shndx = SHN_UNDEF;
3a635617 17113 /* If the symbol is weak we need to clear the value.
d982ba73
PB
17114 Otherwise, the PLT entry would provide a definition for
17115 the symbol even if the symbol wasn't defined anywhere,
3a635617
WN
17116 and so the symbol would never be NULL. Leave the value if
17117 there were any relocations where pointer equality matters
17118 (this is a clue for the dynamic linker, to make function
17119 pointer comparisons work between an application and shared
17120 library). */
97323ad1 17121 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
d982ba73 17122 sym->st_value = 0;
252b5132 17123 }
34e77a92
RS
17124 else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
17125 {
17126 /* At least one non-call relocation references this .iplt entry,
17127 so the .iplt entry is the function's canonical address. */
17128 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
39d911fc 17129 ARM_SET_SYM_BRANCH_TYPE (sym->st_target_internal, ST_BRANCH_TO_ARM);
34e77a92
RS
17130 sym->st_shndx = (_bfd_elf_section_from_bfd_section
17131 (output_bfd, htab->root.iplt->output_section));
17132 sym->st_value = (h->plt.offset
17133 + htab->root.iplt->output_section->vma
17134 + htab->root.iplt->output_offset);
17135 }
252b5132
RH
17136 }
17137
f5385ebf 17138 if (h->needs_copy)
252b5132
RH
17139 {
17140 asection * s;
947216bf 17141 Elf_Internal_Rela rel;
252b5132
RH
17142
17143 /* This symbol needs a copy reloc. Set it up. */
252b5132
RH
17144 BFD_ASSERT (h->dynindx != -1
17145 && (h->root.type == bfd_link_hash_defined
17146 || h->root.type == bfd_link_hash_defweak));
17147
00a97672 17148 rel.r_addend = 0;
252b5132
RH
17149 rel.r_offset = (h->root.u.def.value
17150 + h->root.u.def.section->output_section->vma
17151 + h->root.u.def.section->output_offset);
17152 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
afbf7e8e 17153 if (h->root.u.def.section == htab->root.sdynrelro)
5474d94f
AM
17154 s = htab->root.sreldynrelro;
17155 else
17156 s = htab->root.srelbss;
47beaa6a 17157 elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
252b5132
RH
17158 }
17159
00a97672 17160 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
fac7bd64
CL
17161 and for FDPIC, the _GLOBAL_OFFSET_TABLE_ symbol is not absolute:
17162 it is relative to the ".got" section. */
9637f6ef 17163 if (h == htab->root.hdynamic
fac7bd64 17164 || (!htab->fdpic_p && !htab->vxworks_p && h == htab->root.hgot))
252b5132
RH
17165 sym->st_shndx = SHN_ABS;
17166
b34976b6 17167 return TRUE;
252b5132
RH
17168}
17169
0855e32b
NS
17170static void
17171arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
17172 void *contents,
17173 const unsigned long *template, unsigned count)
17174{
17175 unsigned ix;
b38cadfb 17176
0855e32b
NS
17177 for (ix = 0; ix != count; ix++)
17178 {
17179 unsigned long insn = template[ix];
17180
17181 /* Emit mov pc,rx if bx is not permitted. */
17182 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
17183 insn = (insn & 0xf000000f) | 0x01a0f000;
17184 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
17185 }
17186}
17187
99059e56
RM
17188/* Install the special first PLT entry for elf32-arm-nacl. Unlike
17189 other variants, NaCl needs this entry in a static executable's
17190 .iplt too. When we're handling that case, GOT_DISPLACEMENT is
17191 zero. For .iplt really only the last bundle is useful, and .iplt
17192 could have a shorter first entry, with each individual PLT entry's
17193 relative branch calculated differently so it targets the last
17194 bundle instead of the instruction before it (labelled .Lplt_tail
17195 above). But it's simpler to keep the size and layout of PLT0
17196 consistent with the dynamic case, at the cost of some dead code at
17197 the start of .iplt and the one dead store to the stack at the start
17198 of .Lplt_tail. */
17199static void
17200arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
17201 asection *plt, bfd_vma got_displacement)
17202{
17203 unsigned int i;
17204
17205 put_arm_insn (htab, output_bfd,
17206 elf32_arm_nacl_plt0_entry[0]
17207 | arm_movw_immediate (got_displacement),
17208 plt->contents + 0);
17209 put_arm_insn (htab, output_bfd,
17210 elf32_arm_nacl_plt0_entry[1]
17211 | arm_movt_immediate (got_displacement),
17212 plt->contents + 4);
17213
17214 for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i)
17215 put_arm_insn (htab, output_bfd,
17216 elf32_arm_nacl_plt0_entry[i],
17217 plt->contents + (i * 4));
17218}
17219
252b5132
RH
17220/* Finish up the dynamic sections. */
17221
b34976b6 17222static bfd_boolean
57e8b36a 17223elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
252b5132
RH
17224{
17225 bfd * dynobj;
17226 asection * sgot;
17227 asection * sdyn;
4dfe6ac6
NC
17228 struct elf32_arm_link_hash_table *htab;
17229
17230 htab = elf32_arm_hash_table (info);
17231 if (htab == NULL)
17232 return FALSE;
252b5132
RH
17233
17234 dynobj = elf_hash_table (info)->dynobj;
17235
362d30a1 17236 sgot = htab->root.sgotplt;
894891db
NC
17237 /* A broken linker script might have discarded the dynamic sections.
17238 Catch this here so that we do not seg-fault later on. */
17239 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
17240 return FALSE;
3d4d4302 17241 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
252b5132
RH
17242
17243 if (elf_hash_table (info)->dynamic_sections_created)
17244 {
17245 asection *splt;
17246 Elf32_External_Dyn *dyncon, *dynconend;
17247
362d30a1 17248 splt = htab->root.splt;
24a1ba0f 17249 BFD_ASSERT (splt != NULL && sdyn != NULL);
cbc704f3 17250 BFD_ASSERT (htab->symbian_p || sgot != NULL);
252b5132
RH
17251
17252 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 17253 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
9b485d32 17254
252b5132
RH
17255 for (; dyncon < dynconend; dyncon++)
17256 {
17257 Elf_Internal_Dyn dyn;
17258 const char * name;
17259 asection * s;
17260
17261 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
17262
17263 switch (dyn.d_tag)
17264 {
229fcec5
MM
17265 unsigned int type;
17266
252b5132 17267 default:
7a2b07ff
NS
17268 if (htab->vxworks_p
17269 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
17270 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
252b5132
RH
17271 break;
17272
229fcec5
MM
17273 case DT_HASH:
17274 name = ".hash";
17275 goto get_vma_if_bpabi;
17276 case DT_STRTAB:
17277 name = ".dynstr";
17278 goto get_vma_if_bpabi;
17279 case DT_SYMTAB:
17280 name = ".dynsym";
17281 goto get_vma_if_bpabi;
c0042f5d
MM
17282 case DT_VERSYM:
17283 name = ".gnu.version";
17284 goto get_vma_if_bpabi;
17285 case DT_VERDEF:
17286 name = ".gnu.version_d";
17287 goto get_vma_if_bpabi;
17288 case DT_VERNEED:
17289 name = ".gnu.version_r";
17290 goto get_vma_if_bpabi;
17291
252b5132 17292 case DT_PLTGOT:
4ade44b7 17293 name = htab->symbian_p ? ".got" : ".got.plt";
252b5132
RH
17294 goto get_vma;
17295 case DT_JMPREL:
00a97672 17296 name = RELOC_SECTION (htab, ".plt");
252b5132 17297 get_vma:
4ade44b7 17298 s = bfd_get_linker_section (dynobj, name);
05456594
NC
17299 if (s == NULL)
17300 {
4eca0228 17301 _bfd_error_handler
4ade44b7 17302 (_("could not find section %s"), name);
05456594
NC
17303 bfd_set_error (bfd_error_invalid_operation);
17304 return FALSE;
17305 }
229fcec5 17306 if (!htab->symbian_p)
4ade44b7 17307 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
229fcec5
MM
17308 else
17309 /* In the BPABI, tags in the PT_DYNAMIC section point
17310 at the file offset, not the memory address, for the
17311 convenience of the post linker. */
4ade44b7 17312 dyn.d_un.d_ptr = s->output_section->filepos + s->output_offset;
252b5132
RH
17313 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17314 break;
17315
229fcec5
MM
17316 get_vma_if_bpabi:
17317 if (htab->symbian_p)
17318 goto get_vma;
17319 break;
17320
252b5132 17321 case DT_PLTRELSZ:
362d30a1 17322 s = htab->root.srelplt;
252b5132 17323 BFD_ASSERT (s != NULL);
eea6121a 17324 dyn.d_un.d_val = s->size;
252b5132
RH
17325 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17326 break;
906e58ca 17327
252b5132 17328 case DT_RELSZ:
00a97672 17329 case DT_RELASZ:
229fcec5
MM
17330 case DT_REL:
17331 case DT_RELA:
229fcec5
MM
17332 /* In the BPABI, the DT_REL tag must point at the file
17333 offset, not the VMA, of the first relocation
17334 section. So, we use code similar to that in
17335 elflink.c, but do not check for SHF_ALLOC on the
64f52338
AM
17336 relocation section, since relocation sections are
17337 never allocated under the BPABI. PLT relocs are also
17338 included. */
229fcec5
MM
17339 if (htab->symbian_p)
17340 {
17341 unsigned int i;
17342 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
17343 ? SHT_REL : SHT_RELA);
17344 dyn.d_un.d_val = 0;
17345 for (i = 1; i < elf_numsections (output_bfd); i++)
17346 {
906e58ca 17347 Elf_Internal_Shdr *hdr
229fcec5
MM
17348 = elf_elfsections (output_bfd)[i];
17349 if (hdr->sh_type == type)
17350 {
906e58ca 17351 if (dyn.d_tag == DT_RELSZ
229fcec5
MM
17352 || dyn.d_tag == DT_RELASZ)
17353 dyn.d_un.d_val += hdr->sh_size;
de52dba4
AM
17354 else if ((ufile_ptr) hdr->sh_offset
17355 <= dyn.d_un.d_val - 1)
229fcec5
MM
17356 dyn.d_un.d_val = hdr->sh_offset;
17357 }
17358 }
17359 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17360 }
252b5132 17361 break;
88f7bcd5 17362
0855e32b 17363 case DT_TLSDESC_PLT:
99059e56 17364 s = htab->root.splt;
0855e32b
NS
17365 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
17366 + htab->dt_tlsdesc_plt);
17367 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17368 break;
17369
17370 case DT_TLSDESC_GOT:
99059e56 17371 s = htab->root.sgot;
0855e32b 17372 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
99059e56 17373 + htab->dt_tlsdesc_got);
0855e32b
NS
17374 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17375 break;
17376
88f7bcd5
NC
17377 /* Set the bottom bit of DT_INIT/FINI if the
17378 corresponding function is Thumb. */
17379 case DT_INIT:
17380 name = info->init_function;
17381 goto get_sym;
17382 case DT_FINI:
17383 name = info->fini_function;
17384 get_sym:
17385 /* If it wasn't set by elf_bfd_final_link
4cc11e76 17386 then there is nothing to adjust. */
88f7bcd5
NC
17387 if (dyn.d_un.d_val != 0)
17388 {
17389 struct elf_link_hash_entry * eh;
17390
17391 eh = elf_link_hash_lookup (elf_hash_table (info), name,
b34976b6 17392 FALSE, FALSE, TRUE);
39d911fc
TP
17393 if (eh != NULL
17394 && ARM_GET_SYM_BRANCH_TYPE (eh->target_internal)
17395 == ST_BRANCH_TO_THUMB)
88f7bcd5
NC
17396 {
17397 dyn.d_un.d_val |= 1;
b34976b6 17398 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
88f7bcd5
NC
17399 }
17400 }
17401 break;
252b5132
RH
17402 }
17403 }
17404
24a1ba0f 17405 /* Fill in the first entry in the procedure linkage table. */
4dfe6ac6 17406 if (splt->size > 0 && htab->plt_header_size)
f7a74f8c 17407 {
00a97672
RS
17408 const bfd_vma *plt0_entry;
17409 bfd_vma got_address, plt_address, got_displacement;
17410
17411 /* Calculate the addresses of the GOT and PLT. */
17412 got_address = sgot->output_section->vma + sgot->output_offset;
17413 plt_address = splt->output_section->vma + splt->output_offset;
17414
17415 if (htab->vxworks_p)
17416 {
17417 /* The VxWorks GOT is relocated by the dynamic linker.
17418 Therefore, we must emit relocations rather than simply
17419 computing the values now. */
17420 Elf_Internal_Rela rel;
17421
17422 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
52ab56c2
PB
17423 put_arm_insn (htab, output_bfd, plt0_entry[0],
17424 splt->contents + 0);
17425 put_arm_insn (htab, output_bfd, plt0_entry[1],
17426 splt->contents + 4);
17427 put_arm_insn (htab, output_bfd, plt0_entry[2],
17428 splt->contents + 8);
00a97672
RS
17429 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
17430
8029a119 17431 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
00a97672
RS
17432 rel.r_offset = plt_address + 12;
17433 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
17434 rel.r_addend = 0;
17435 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
17436 htab->srelplt2->contents);
17437 }
b38cadfb 17438 else if (htab->nacl_p)
99059e56
RM
17439 arm_nacl_put_plt0 (htab, output_bfd, splt,
17440 got_address + 8 - (plt_address + 16));
eed94f8f
NC
17441 else if (using_thumb_only (htab))
17442 {
17443 got_displacement = got_address - (plt_address + 12);
17444
17445 plt0_entry = elf32_thumb2_plt0_entry;
17446 put_arm_insn (htab, output_bfd, plt0_entry[0],
17447 splt->contents + 0);
17448 put_arm_insn (htab, output_bfd, plt0_entry[1],
17449 splt->contents + 4);
17450 put_arm_insn (htab, output_bfd, plt0_entry[2],
17451 splt->contents + 8);
17452
17453 bfd_put_32 (output_bfd, got_displacement, splt->contents + 12);
17454 }
00a97672
RS
17455 else
17456 {
17457 got_displacement = got_address - (plt_address + 16);
17458
17459 plt0_entry = elf32_arm_plt0_entry;
52ab56c2
PB
17460 put_arm_insn (htab, output_bfd, plt0_entry[0],
17461 splt->contents + 0);
17462 put_arm_insn (htab, output_bfd, plt0_entry[1],
17463 splt->contents + 4);
17464 put_arm_insn (htab, output_bfd, plt0_entry[2],
17465 splt->contents + 8);
17466 put_arm_insn (htab, output_bfd, plt0_entry[3],
17467 splt->contents + 12);
5e681ec4 17468
5e681ec4 17469#ifdef FOUR_WORD_PLT
00a97672
RS
17470 /* The displacement value goes in the otherwise-unused
17471 last word of the second entry. */
17472 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
5e681ec4 17473#else
00a97672 17474 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
5e681ec4 17475#endif
00a97672 17476 }
f7a74f8c 17477 }
252b5132
RH
17478
17479 /* UnixWare sets the entsize of .plt to 4, although that doesn't
17480 really seem like the right value. */
74541ad4
AM
17481 if (splt->output_section->owner == output_bfd)
17482 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
00a97672 17483
0855e32b
NS
17484 if (htab->dt_tlsdesc_plt)
17485 {
17486 bfd_vma got_address
17487 = sgot->output_section->vma + sgot->output_offset;
17488 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
17489 + htab->root.sgot->output_offset);
17490 bfd_vma plt_address
17491 = splt->output_section->vma + splt->output_offset;
17492
b38cadfb 17493 arm_put_trampoline (htab, output_bfd,
0855e32b
NS
17494 splt->contents + htab->dt_tlsdesc_plt,
17495 dl_tlsdesc_lazy_trampoline, 6);
17496
17497 bfd_put_32 (output_bfd,
17498 gotplt_address + htab->dt_tlsdesc_got
17499 - (plt_address + htab->dt_tlsdesc_plt)
17500 - dl_tlsdesc_lazy_trampoline[6],
17501 splt->contents + htab->dt_tlsdesc_plt + 24);
17502 bfd_put_32 (output_bfd,
17503 got_address - (plt_address + htab->dt_tlsdesc_plt)
17504 - dl_tlsdesc_lazy_trampoline[7],
17505 splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
17506 }
17507
17508 if (htab->tls_trampoline)
17509 {
b38cadfb 17510 arm_put_trampoline (htab, output_bfd,
0855e32b
NS
17511 splt->contents + htab->tls_trampoline,
17512 tls_trampoline, 3);
17513#ifdef FOUR_WORD_PLT
17514 bfd_put_32 (output_bfd, 0x00000000,
17515 splt->contents + htab->tls_trampoline + 12);
b38cadfb 17516#endif
0855e32b
NS
17517 }
17518
0e1862bb
L
17519 if (htab->vxworks_p
17520 && !bfd_link_pic (info)
17521 && htab->root.splt->size > 0)
00a97672
RS
17522 {
17523 /* Correct the .rel(a).plt.unloaded relocations. They will have
17524 incorrect symbol indexes. */
17525 int num_plts;
eed62c48 17526 unsigned char *p;
00a97672 17527
362d30a1 17528 num_plts = ((htab->root.splt->size - htab->plt_header_size)
00a97672
RS
17529 / htab->plt_entry_size);
17530 p = htab->srelplt2->contents + RELOC_SIZE (htab);
17531
17532 for (; num_plts; num_plts--)
17533 {
17534 Elf_Internal_Rela rel;
17535
17536 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
17537 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
17538 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
17539 p += RELOC_SIZE (htab);
17540
17541 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
17542 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
17543 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
17544 p += RELOC_SIZE (htab);
17545 }
17546 }
252b5132
RH
17547 }
17548
99059e56
RM
17549 if (htab->nacl_p && htab->root.iplt != NULL && htab->root.iplt->size > 0)
17550 /* NaCl uses a special first entry in .iplt too. */
17551 arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0);
17552
252b5132 17553 /* Fill in the first three entries in the global offset table. */
229fcec5 17554 if (sgot)
252b5132 17555 {
229fcec5
MM
17556 if (sgot->size > 0)
17557 {
17558 if (sdyn == NULL)
17559 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
17560 else
17561 bfd_put_32 (output_bfd,
17562 sdyn->output_section->vma + sdyn->output_offset,
17563 sgot->contents);
17564 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
17565 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
17566 }
252b5132 17567
229fcec5
MM
17568 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
17569 }
252b5132 17570
e8b09b87
CL
17571 /* At the very end of the .rofixup section is a pointer to the GOT. */
17572 if (htab->fdpic_p && htab->srofixup != NULL)
17573 {
17574 struct elf_link_hash_entry *hgot = htab->root.hgot;
17575
17576 bfd_vma got_value = hgot->root.u.def.value
17577 + hgot->root.u.def.section->output_section->vma
17578 + hgot->root.u.def.section->output_offset;
17579
17580 arm_elf_add_rofixup(output_bfd, htab->srofixup, got_value);
17581
17582 /* Make sure we allocated and generated the same number of fixups. */
17583 BFD_ASSERT (htab->srofixup->reloc_count * 4 == htab->srofixup->size);
17584 }
17585
b34976b6 17586 return TRUE;
252b5132
RH
17587}
17588
ba96a88f 17589static void
57e8b36a 17590elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
ba96a88f 17591{
9b485d32 17592 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
e489d0ae 17593 struct elf32_arm_link_hash_table *globals;
ac4c9b04 17594 struct elf_segment_map *m;
ba96a88f
NC
17595
17596 i_ehdrp = elf_elfheader (abfd);
17597
94a3258f
PB
17598 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
17599 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
17600 else
7394f108 17601 _bfd_elf_post_process_headers (abfd, link_info);
ba96a88f 17602 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
e489d0ae 17603
93204d3a
PB
17604 if (link_info)
17605 {
17606 globals = elf32_arm_hash_table (link_info);
4dfe6ac6 17607 if (globals != NULL && globals->byteswap_code)
93204d3a 17608 i_ehdrp->e_flags |= EF_ARM_BE8;
18a20338
CL
17609
17610 if (globals->fdpic_p)
17611 i_ehdrp->e_ident[EI_OSABI] |= ELFOSABI_ARM_FDPIC;
93204d3a 17612 }
3bfcb652
NC
17613
17614 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5
17615 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC)))
17616 {
17617 int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args);
5c294fee 17618 if (abi == AEABI_VFP_args_vfp)
3bfcb652
NC
17619 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD;
17620 else
17621 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT;
17622 }
ac4c9b04
MG
17623
17624 /* Scan segment to set p_flags attribute if it contains only sections with
f0728ee3 17625 SHF_ARM_PURECODE flag. */
ac4c9b04
MG
17626 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
17627 {
17628 unsigned int j;
17629
17630 if (m->count == 0)
17631 continue;
17632 for (j = 0; j < m->count; j++)
17633 {
f0728ee3 17634 if (!(elf_section_flags (m->sections[j]) & SHF_ARM_PURECODE))
ac4c9b04
MG
17635 break;
17636 }
17637 if (j == m->count)
17638 {
17639 m->p_flags = PF_X;
17640 m->p_flags_valid = 1;
17641 }
17642 }
ba96a88f
NC
17643}
17644
99e4ae17 17645static enum elf_reloc_type_class
7e612e98
AM
17646elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
17647 const asection *rel_sec ATTRIBUTE_UNUSED,
17648 const Elf_Internal_Rela *rela)
99e4ae17 17649{
f51e552e 17650 switch ((int) ELF32_R_TYPE (rela->r_info))
99e4ae17
AJ
17651 {
17652 case R_ARM_RELATIVE:
17653 return reloc_class_relative;
17654 case R_ARM_JUMP_SLOT:
17655 return reloc_class_plt;
17656 case R_ARM_COPY:
17657 return reloc_class_copy;
109575d7
JW
17658 case R_ARM_IRELATIVE:
17659 return reloc_class_ifunc;
99e4ae17
AJ
17660 default:
17661 return reloc_class_normal;
17662 }
17663}
17664
e489d0ae 17665static void
57e8b36a 17666elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
e16bb312 17667{
5a6c6817 17668 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
e16bb312
NC
17669}
17670
40a18ebd
NC
17671/* Return TRUE if this is an unwinding table entry. */
17672
17673static bfd_boolean
17674is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
17675{
0112cd26
NC
17676 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
17677 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
40a18ebd
NC
17678}
17679
17680
17681/* Set the type and flags for an ARM section. We do this by
17682 the section name, which is a hack, but ought to work. */
17683
17684static bfd_boolean
17685elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
17686{
17687 const char * name;
17688
17689 name = bfd_get_section_name (abfd, sec);
17690
17691 if (is_arm_elf_unwind_section_name (abfd, name))
17692 {
17693 hdr->sh_type = SHT_ARM_EXIDX;
17694 hdr->sh_flags |= SHF_LINK_ORDER;
17695 }
ac4c9b04 17696
f0728ee3
AV
17697 if (sec->flags & SEC_ELF_PURECODE)
17698 hdr->sh_flags |= SHF_ARM_PURECODE;
ac4c9b04 17699
40a18ebd
NC
17700 return TRUE;
17701}
17702
6dc132d9
L
17703/* Handle an ARM specific section when reading an object file. This is
17704 called when bfd_section_from_shdr finds a section with an unknown
17705 type. */
40a18ebd
NC
17706
17707static bfd_boolean
17708elf32_arm_section_from_shdr (bfd *abfd,
17709 Elf_Internal_Shdr * hdr,
6dc132d9
L
17710 const char *name,
17711 int shindex)
40a18ebd
NC
17712{
17713 /* There ought to be a place to keep ELF backend specific flags, but
17714 at the moment there isn't one. We just keep track of the
17715 sections by their name, instead. Fortunately, the ABI gives
17716 names for all the ARM specific sections, so we will probably get
17717 away with this. */
17718 switch (hdr->sh_type)
17719 {
17720 case SHT_ARM_EXIDX:
0951f019
RE
17721 case SHT_ARM_PREEMPTMAP:
17722 case SHT_ARM_ATTRIBUTES:
40a18ebd
NC
17723 break;
17724
17725 default:
17726 return FALSE;
17727 }
17728
6dc132d9 17729 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
40a18ebd
NC
17730 return FALSE;
17731
17732 return TRUE;
17733}
e489d0ae 17734
44444f50
NC
17735static _arm_elf_section_data *
17736get_arm_elf_section_data (asection * sec)
17737{
47b2e99c
JZ
17738 if (sec && sec->owner && is_arm_elf (sec->owner))
17739 return elf32_arm_section_data (sec);
44444f50
NC
17740 else
17741 return NULL;
8e3de13a
NC
17742}
17743
4e617b1e
PB
17744typedef struct
17745{
57402f1e 17746 void *flaginfo;
4e617b1e 17747 struct bfd_link_info *info;
91a5743d
PB
17748 asection *sec;
17749 int sec_shndx;
6e0b88f1
AM
17750 int (*func) (void *, const char *, Elf_Internal_Sym *,
17751 asection *, struct elf_link_hash_entry *);
4e617b1e
PB
17752} output_arch_syminfo;
17753
17754enum map_symbol_type
17755{
17756 ARM_MAP_ARM,
17757 ARM_MAP_THUMB,
17758 ARM_MAP_DATA
17759};
17760
17761
7413f23f 17762/* Output a single mapping symbol. */
4e617b1e
PB
17763
17764static bfd_boolean
7413f23f
DJ
17765elf32_arm_output_map_sym (output_arch_syminfo *osi,
17766 enum map_symbol_type type,
17767 bfd_vma offset)
4e617b1e
PB
17768{
17769 static const char *names[3] = {"$a", "$t", "$d"};
4e617b1e
PB
17770 Elf_Internal_Sym sym;
17771
91a5743d
PB
17772 sym.st_value = osi->sec->output_section->vma
17773 + osi->sec->output_offset
17774 + offset;
4e617b1e
PB
17775 sym.st_size = 0;
17776 sym.st_other = 0;
17777 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
91a5743d 17778 sym.st_shndx = osi->sec_shndx;
35fc36a8 17779 sym.st_target_internal = 0;
fe33d2fa 17780 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
57402f1e 17781 return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1;
4e617b1e
PB
17782}
17783
34e77a92
RS
17784/* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
17785 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
4e617b1e
PB
17786
17787static bfd_boolean
34e77a92
RS
17788elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
17789 bfd_boolean is_iplt_entry_p,
17790 union gotplt_union *root_plt,
17791 struct arm_plt_info *arm_plt)
4e617b1e 17792{
4e617b1e 17793 struct elf32_arm_link_hash_table *htab;
34e77a92 17794 bfd_vma addr, plt_header_size;
4e617b1e 17795
34e77a92 17796 if (root_plt->offset == (bfd_vma) -1)
4e617b1e
PB
17797 return TRUE;
17798
4dfe6ac6
NC
17799 htab = elf32_arm_hash_table (osi->info);
17800 if (htab == NULL)
17801 return FALSE;
17802
34e77a92
RS
17803 if (is_iplt_entry_p)
17804 {
17805 osi->sec = htab->root.iplt;
17806 plt_header_size = 0;
17807 }
17808 else
17809 {
17810 osi->sec = htab->root.splt;
17811 plt_header_size = htab->plt_header_size;
17812 }
17813 osi->sec_shndx = (_bfd_elf_section_from_bfd_section
17814 (osi->info->output_bfd, osi->sec->output_section));
17815
17816 addr = root_plt->offset & -2;
4e617b1e
PB
17817 if (htab->symbian_p)
17818 {
7413f23f 17819 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e 17820 return FALSE;
7413f23f 17821 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
4e617b1e
PB
17822 return FALSE;
17823 }
17824 else if (htab->vxworks_p)
17825 {
7413f23f 17826 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e 17827 return FALSE;
7413f23f 17828 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
4e617b1e 17829 return FALSE;
7413f23f 17830 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
4e617b1e 17831 return FALSE;
7413f23f 17832 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
4e617b1e
PB
17833 return FALSE;
17834 }
b38cadfb
NC
17835 else if (htab->nacl_p)
17836 {
17837 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
17838 return FALSE;
17839 }
7801f98f
CL
17840 else if (htab->fdpic_p)
17841 {
59029f57
CL
17842 enum map_symbol_type type = using_thumb_only(htab)
17843 ? ARM_MAP_THUMB
17844 : ARM_MAP_ARM;
17845
7801f98f
CL
17846 if (elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt))
17847 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
17848 return FALSE;
59029f57 17849 if (!elf32_arm_output_map_sym (osi, type, addr))
7801f98f
CL
17850 return FALSE;
17851 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 16))
17852 return FALSE;
17853 if (htab->plt_entry_size == 4 * ARRAY_SIZE(elf32_arm_fdpic_plt_entry))
59029f57 17854 if (!elf32_arm_output_map_sym (osi, type, addr + 24))
7801f98f
CL
17855 return FALSE;
17856 }
eed94f8f
NC
17857 else if (using_thumb_only (htab))
17858 {
17859 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
17860 return FALSE;
6a631e86 17861 }
4e617b1e
PB
17862 else
17863 {
34e77a92 17864 bfd_boolean thumb_stub_p;
bd97cb95 17865
34e77a92
RS
17866 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
17867 if (thumb_stub_p)
4e617b1e 17868 {
7413f23f 17869 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
4e617b1e
PB
17870 return FALSE;
17871 }
17872#ifdef FOUR_WORD_PLT
7413f23f 17873 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e 17874 return FALSE;
7413f23f 17875 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
4e617b1e
PB
17876 return FALSE;
17877#else
906e58ca 17878 /* A three-word PLT with no Thumb thunk contains only Arm code,
4e617b1e
PB
17879 so only need to output a mapping symbol for the first PLT entry and
17880 entries with thumb thunks. */
34e77a92 17881 if (thumb_stub_p || addr == plt_header_size)
4e617b1e 17882 {
7413f23f 17883 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e
PB
17884 return FALSE;
17885 }
17886#endif
17887 }
17888
17889 return TRUE;
17890}
17891
34e77a92
RS
17892/* Output mapping symbols for PLT entries associated with H. */
17893
17894static bfd_boolean
17895elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
17896{
17897 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
17898 struct elf32_arm_link_hash_entry *eh;
17899
17900 if (h->root.type == bfd_link_hash_indirect)
17901 return TRUE;
17902
17903 if (h->root.type == bfd_link_hash_warning)
17904 /* When warning symbols are created, they **replace** the "real"
17905 entry in the hash table, thus we never get to see the real
17906 symbol in a hash traversal. So look at it now. */
17907 h = (struct elf_link_hash_entry *) h->root.u.i.link;
17908
17909 eh = (struct elf32_arm_link_hash_entry *) h;
17910 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
17911 &h->plt, &eh->plt);
17912}
17913
4f4faa4d
TP
17914/* Bind a veneered symbol to its veneer identified by its hash entry
17915 STUB_ENTRY. The veneered location thus loose its symbol. */
17916
17917static void
17918arm_stub_claim_sym (struct elf32_arm_stub_hash_entry *stub_entry)
17919{
17920 struct elf32_arm_link_hash_entry *hash = stub_entry->h;
17921
17922 BFD_ASSERT (hash);
17923 hash->root.root.u.def.section = stub_entry->stub_sec;
17924 hash->root.root.u.def.value = stub_entry->stub_offset;
17925 hash->root.size = stub_entry->stub_size;
17926}
17927
7413f23f
DJ
17928/* Output a single local symbol for a generated stub. */
17929
17930static bfd_boolean
17931elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
17932 bfd_vma offset, bfd_vma size)
17933{
7413f23f
DJ
17934 Elf_Internal_Sym sym;
17935
7413f23f
DJ
17936 sym.st_value = osi->sec->output_section->vma
17937 + osi->sec->output_offset
17938 + offset;
17939 sym.st_size = size;
17940 sym.st_other = 0;
17941 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
17942 sym.st_shndx = osi->sec_shndx;
35fc36a8 17943 sym.st_target_internal = 0;
57402f1e 17944 return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1;
7413f23f 17945}
4e617b1e 17946
da5938a2 17947static bfd_boolean
8029a119
NC
17948arm_map_one_stub (struct bfd_hash_entry * gen_entry,
17949 void * in_arg)
da5938a2
NC
17950{
17951 struct elf32_arm_stub_hash_entry *stub_entry;
da5938a2
NC
17952 asection *stub_sec;
17953 bfd_vma addr;
7413f23f 17954 char *stub_name;
9a008db3 17955 output_arch_syminfo *osi;
d3ce72d0 17956 const insn_sequence *template_sequence;
461a49ca
DJ
17957 enum stub_insn_type prev_type;
17958 int size;
17959 int i;
17960 enum map_symbol_type sym_type;
da5938a2
NC
17961
17962 /* Massage our args to the form they really have. */
17963 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
9a008db3 17964 osi = (output_arch_syminfo *) in_arg;
da5938a2 17965
da5938a2
NC
17966 stub_sec = stub_entry->stub_sec;
17967
17968 /* Ensure this stub is attached to the current section being
7413f23f 17969 processed. */
da5938a2
NC
17970 if (stub_sec != osi->sec)
17971 return TRUE;
17972
7413f23f 17973 addr = (bfd_vma) stub_entry->stub_offset;
d3ce72d0 17974 template_sequence = stub_entry->stub_template;
4f4faa4d
TP
17975
17976 if (arm_stub_sym_claimed (stub_entry->stub_type))
17977 arm_stub_claim_sym (stub_entry);
17978 else
7413f23f 17979 {
4f4faa4d
TP
17980 stub_name = stub_entry->output_name;
17981 switch (template_sequence[0].type)
17982 {
17983 case ARM_TYPE:
17984 if (!elf32_arm_output_stub_sym (osi, stub_name, addr,
17985 stub_entry->stub_size))
17986 return FALSE;
17987 break;
17988 case THUMB16_TYPE:
17989 case THUMB32_TYPE:
17990 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
17991 stub_entry->stub_size))
17992 return FALSE;
17993 break;
17994 default:
17995 BFD_FAIL ();
17996 return 0;
17997 }
7413f23f 17998 }
da5938a2 17999
461a49ca
DJ
18000 prev_type = DATA_TYPE;
18001 size = 0;
18002 for (i = 0; i < stub_entry->stub_template_size; i++)
18003 {
d3ce72d0 18004 switch (template_sequence[i].type)
461a49ca
DJ
18005 {
18006 case ARM_TYPE:
18007 sym_type = ARM_MAP_ARM;
18008 break;
18009
18010 case THUMB16_TYPE:
48229727 18011 case THUMB32_TYPE:
461a49ca
DJ
18012 sym_type = ARM_MAP_THUMB;
18013 break;
18014
18015 case DATA_TYPE:
18016 sym_type = ARM_MAP_DATA;
18017 break;
18018
18019 default:
18020 BFD_FAIL ();
4e31c731 18021 return FALSE;
461a49ca
DJ
18022 }
18023
d3ce72d0 18024 if (template_sequence[i].type != prev_type)
461a49ca 18025 {
d3ce72d0 18026 prev_type = template_sequence[i].type;
461a49ca
DJ
18027 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
18028 return FALSE;
18029 }
18030
d3ce72d0 18031 switch (template_sequence[i].type)
461a49ca
DJ
18032 {
18033 case ARM_TYPE:
48229727 18034 case THUMB32_TYPE:
461a49ca
DJ
18035 size += 4;
18036 break;
18037
18038 case THUMB16_TYPE:
18039 size += 2;
18040 break;
18041
18042 case DATA_TYPE:
18043 size += 4;
18044 break;
18045
18046 default:
18047 BFD_FAIL ();
4e31c731 18048 return FALSE;
461a49ca
DJ
18049 }
18050 }
18051
da5938a2
NC
18052 return TRUE;
18053}
18054
33811162
DG
18055/* Output mapping symbols for linker generated sections,
18056 and for those data-only sections that do not have a
18057 $d. */
4e617b1e
PB
18058
18059static bfd_boolean
18060elf32_arm_output_arch_local_syms (bfd *output_bfd,
906e58ca 18061 struct bfd_link_info *info,
57402f1e 18062 void *flaginfo,
6e0b88f1
AM
18063 int (*func) (void *, const char *,
18064 Elf_Internal_Sym *,
18065 asection *,
18066 struct elf_link_hash_entry *))
4e617b1e
PB
18067{
18068 output_arch_syminfo osi;
18069 struct elf32_arm_link_hash_table *htab;
91a5743d
PB
18070 bfd_vma offset;
18071 bfd_size_type size;
33811162 18072 bfd *input_bfd;
4e617b1e
PB
18073
18074 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
18075 if (htab == NULL)
18076 return FALSE;
18077
906e58ca 18078 check_use_blx (htab);
91a5743d 18079
57402f1e 18080 osi.flaginfo = flaginfo;
4e617b1e
PB
18081 osi.info = info;
18082 osi.func = func;
906e58ca 18083
33811162
DG
18084 /* Add a $d mapping symbol to data-only sections that
18085 don't have any mapping symbol. This may result in (harmless) redundant
18086 mapping symbols. */
18087 for (input_bfd = info->input_bfds;
18088 input_bfd != NULL;
c72f2fb2 18089 input_bfd = input_bfd->link.next)
33811162
DG
18090 {
18091 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
18092 for (osi.sec = input_bfd->sections;
18093 osi.sec != NULL;
18094 osi.sec = osi.sec->next)
18095 {
18096 if (osi.sec->output_section != NULL
f7dd8c79
DJ
18097 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
18098 != 0)
33811162
DG
18099 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
18100 == SEC_HAS_CONTENTS
18101 && get_arm_elf_section_data (osi.sec) != NULL
501abfe0 18102 && get_arm_elf_section_data (osi.sec)->mapcount == 0
7d500b83
CL
18103 && osi.sec->size > 0
18104 && (osi.sec->flags & SEC_EXCLUDE) == 0)
33811162
DG
18105 {
18106 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18107 (output_bfd, osi.sec->output_section);
18108 if (osi.sec_shndx != (int)SHN_BAD)
18109 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
18110 }
18111 }
18112 }
18113
91a5743d
PB
18114 /* ARM->Thumb glue. */
18115 if (htab->arm_glue_size > 0)
18116 {
3d4d4302
AM
18117 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18118 ARM2THUMB_GLUE_SECTION_NAME);
91a5743d
PB
18119
18120 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18121 (output_bfd, osi.sec->output_section);
0e1862bb 18122 if (bfd_link_pic (info) || htab->root.is_relocatable_executable
91a5743d
PB
18123 || htab->pic_veneer)
18124 size = ARM2THUMB_PIC_GLUE_SIZE;
18125 else if (htab->use_blx)
18126 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
18127 else
18128 size = ARM2THUMB_STATIC_GLUE_SIZE;
4e617b1e 18129
91a5743d
PB
18130 for (offset = 0; offset < htab->arm_glue_size; offset += size)
18131 {
7413f23f
DJ
18132 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
18133 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
91a5743d
PB
18134 }
18135 }
18136
18137 /* Thumb->ARM glue. */
18138 if (htab->thumb_glue_size > 0)
18139 {
3d4d4302
AM
18140 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18141 THUMB2ARM_GLUE_SECTION_NAME);
91a5743d
PB
18142
18143 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18144 (output_bfd, osi.sec->output_section);
18145 size = THUMB2ARM_GLUE_SIZE;
18146
18147 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
18148 {
7413f23f
DJ
18149 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
18150 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
91a5743d
PB
18151 }
18152 }
18153
845b51d6
PB
18154 /* ARMv4 BX veneers. */
18155 if (htab->bx_glue_size > 0)
18156 {
3d4d4302
AM
18157 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18158 ARM_BX_GLUE_SECTION_NAME);
845b51d6
PB
18159
18160 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18161 (output_bfd, osi.sec->output_section);
18162
7413f23f 18163 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
845b51d6
PB
18164 }
18165
8029a119
NC
18166 /* Long calls stubs. */
18167 if (htab->stub_bfd && htab->stub_bfd->sections)
18168 {
da5938a2 18169 asection* stub_sec;
8029a119 18170
da5938a2
NC
18171 for (stub_sec = htab->stub_bfd->sections;
18172 stub_sec != NULL;
8029a119
NC
18173 stub_sec = stub_sec->next)
18174 {
18175 /* Ignore non-stub sections. */
18176 if (!strstr (stub_sec->name, STUB_SUFFIX))
18177 continue;
da5938a2 18178
8029a119 18179 osi.sec = stub_sec;
da5938a2 18180
8029a119
NC
18181 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18182 (output_bfd, osi.sec->output_section);
da5938a2 18183
8029a119
NC
18184 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
18185 }
18186 }
da5938a2 18187
91a5743d 18188 /* Finally, output mapping symbols for the PLT. */
34e77a92 18189 if (htab->root.splt && htab->root.splt->size > 0)
4e617b1e 18190 {
34e77a92
RS
18191 osi.sec = htab->root.splt;
18192 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
18193 (output_bfd, osi.sec->output_section));
18194
18195 /* Output mapping symbols for the plt header. SymbianOS does not have a
18196 plt header. */
18197 if (htab->vxworks_p)
18198 {
18199 /* VxWorks shared libraries have no PLT header. */
0e1862bb 18200 if (!bfd_link_pic (info))
34e77a92
RS
18201 {
18202 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18203 return FALSE;
18204 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
18205 return FALSE;
18206 }
18207 }
b38cadfb
NC
18208 else if (htab->nacl_p)
18209 {
18210 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18211 return FALSE;
18212 }
59029f57 18213 else if (using_thumb_only (htab) && !htab->fdpic_p)
eed94f8f
NC
18214 {
18215 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 0))
18216 return FALSE;
18217 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
18218 return FALSE;
18219 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 16))
18220 return FALSE;
18221 }
e8b09b87 18222 else if (!htab->symbian_p && !htab->fdpic_p)
4e617b1e 18223 {
7413f23f 18224 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
4e617b1e 18225 return FALSE;
34e77a92
RS
18226#ifndef FOUR_WORD_PLT
18227 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
4e617b1e 18228 return FALSE;
34e77a92 18229#endif
4e617b1e
PB
18230 }
18231 }
99059e56
RM
18232 if (htab->nacl_p && htab->root.iplt && htab->root.iplt->size > 0)
18233 {
18234 /* NaCl uses a special first entry in .iplt too. */
18235 osi.sec = htab->root.iplt;
18236 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
18237 (output_bfd, osi.sec->output_section));
18238 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18239 return FALSE;
18240 }
34e77a92
RS
18241 if ((htab->root.splt && htab->root.splt->size > 0)
18242 || (htab->root.iplt && htab->root.iplt->size > 0))
4e617b1e 18243 {
34e77a92
RS
18244 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
18245 for (input_bfd = info->input_bfds;
18246 input_bfd != NULL;
c72f2fb2 18247 input_bfd = input_bfd->link.next)
34e77a92
RS
18248 {
18249 struct arm_local_iplt_info **local_iplt;
18250 unsigned int i, num_syms;
4e617b1e 18251
34e77a92
RS
18252 local_iplt = elf32_arm_local_iplt (input_bfd);
18253 if (local_iplt != NULL)
18254 {
18255 num_syms = elf_symtab_hdr (input_bfd).sh_info;
18256 for (i = 0; i < num_syms; i++)
18257 if (local_iplt[i] != NULL
18258 && !elf32_arm_output_plt_map_1 (&osi, TRUE,
18259 &local_iplt[i]->root,
18260 &local_iplt[i]->arm))
18261 return FALSE;
18262 }
18263 }
18264 }
0855e32b
NS
18265 if (htab->dt_tlsdesc_plt != 0)
18266 {
18267 /* Mapping symbols for the lazy tls trampoline. */
18268 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
18269 return FALSE;
b38cadfb 18270
0855e32b
NS
18271 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
18272 htab->dt_tlsdesc_plt + 24))
18273 return FALSE;
18274 }
18275 if (htab->tls_trampoline != 0)
18276 {
18277 /* Mapping symbols for the tls trampoline. */
18278 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
18279 return FALSE;
18280#ifdef FOUR_WORD_PLT
18281 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
18282 htab->tls_trampoline + 12))
18283 return FALSE;
b38cadfb 18284#endif
0855e32b 18285 }
b38cadfb 18286
4e617b1e
PB
18287 return TRUE;
18288}
18289
54ddd295
TP
18290/* Filter normal symbols of CMSE entry functions of ABFD to include in
18291 the import library. All SYMCOUNT symbols of ABFD can be examined
18292 from their pointers in SYMS. Pointers of symbols to keep should be
18293 stored continuously at the beginning of that array.
18294
18295 Returns the number of symbols to keep. */
18296
18297static unsigned int
18298elf32_arm_filter_cmse_symbols (bfd *abfd ATTRIBUTE_UNUSED,
18299 struct bfd_link_info *info,
18300 asymbol **syms, long symcount)
18301{
18302 size_t maxnamelen;
18303 char *cmse_name;
18304 long src_count, dst_count = 0;
18305 struct elf32_arm_link_hash_table *htab;
18306
18307 htab = elf32_arm_hash_table (info);
18308 if (!htab->stub_bfd || !htab->stub_bfd->sections)
18309 symcount = 0;
18310
18311 maxnamelen = 128;
18312 cmse_name = (char *) bfd_malloc (maxnamelen);
18313 for (src_count = 0; src_count < symcount; src_count++)
18314 {
18315 struct elf32_arm_link_hash_entry *cmse_hash;
18316 asymbol *sym;
18317 flagword flags;
18318 char *name;
18319 size_t namelen;
18320
18321 sym = syms[src_count];
18322 flags = sym->flags;
18323 name = (char *) bfd_asymbol_name (sym);
18324
18325 if ((flags & BSF_FUNCTION) != BSF_FUNCTION)
18326 continue;
18327 if (!(flags & (BSF_GLOBAL | BSF_WEAK)))
18328 continue;
18329
18330 namelen = strlen (name) + sizeof (CMSE_PREFIX) + 1;
18331 if (namelen > maxnamelen)
18332 {
18333 cmse_name = (char *)
18334 bfd_realloc (cmse_name, namelen);
18335 maxnamelen = namelen;
18336 }
18337 snprintf (cmse_name, maxnamelen, "%s%s", CMSE_PREFIX, name);
18338 cmse_hash = (struct elf32_arm_link_hash_entry *)
18339 elf_link_hash_lookup (&(htab)->root, cmse_name, FALSE, FALSE, TRUE);
18340
18341 if (!cmse_hash
18342 || (cmse_hash->root.root.type != bfd_link_hash_defined
18343 && cmse_hash->root.root.type != bfd_link_hash_defweak)
18344 || cmse_hash->root.type != STT_FUNC)
18345 continue;
18346
18347 if (!ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
18348 continue;
18349
18350 syms[dst_count++] = sym;
18351 }
18352 free (cmse_name);
18353
18354 syms[dst_count] = NULL;
18355
18356 return dst_count;
18357}
18358
18359/* Filter symbols of ABFD to include in the import library. All
18360 SYMCOUNT symbols of ABFD can be examined from their pointers in
18361 SYMS. Pointers of symbols to keep should be stored continuously at
18362 the beginning of that array.
18363
18364 Returns the number of symbols to keep. */
18365
18366static unsigned int
18367elf32_arm_filter_implib_symbols (bfd *abfd ATTRIBUTE_UNUSED,
18368 struct bfd_link_info *info,
18369 asymbol **syms, long symcount)
18370{
18371 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
18372
046734ff
TP
18373 /* Requirement 8 of "ARM v8-M Security Extensions: Requirements on
18374 Development Tools" (ARM-ECM-0359818) mandates Secure Gateway import
18375 library to be a relocatable object file. */
18376 BFD_ASSERT (!(bfd_get_file_flags (info->out_implib_bfd) & EXEC_P));
54ddd295
TP
18377 if (globals->cmse_implib)
18378 return elf32_arm_filter_cmse_symbols (abfd, info, syms, symcount);
18379 else
18380 return _bfd_elf_filter_global_symbols (abfd, info, syms, symcount);
18381}
18382
e489d0ae
PB
18383/* Allocate target specific section data. */
18384
18385static bfd_boolean
18386elf32_arm_new_section_hook (bfd *abfd, asection *sec)
18387{
f592407e
AM
18388 if (!sec->used_by_bfd)
18389 {
18390 _arm_elf_section_data *sdata;
18391 bfd_size_type amt = sizeof (*sdata);
e489d0ae 18392
21d799b5 18393 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
f592407e
AM
18394 if (sdata == NULL)
18395 return FALSE;
18396 sec->used_by_bfd = sdata;
18397 }
e489d0ae
PB
18398
18399 return _bfd_elf_new_section_hook (abfd, sec);
18400}
18401
18402
18403/* Used to order a list of mapping symbols by address. */
18404
18405static int
18406elf32_arm_compare_mapping (const void * a, const void * b)
18407{
7f6a71ff
JM
18408 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
18409 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
18410
18411 if (amap->vma > bmap->vma)
18412 return 1;
18413 else if (amap->vma < bmap->vma)
18414 return -1;
18415 else if (amap->type > bmap->type)
18416 /* Ensure results do not depend on the host qsort for objects with
18417 multiple mapping symbols at the same address by sorting on type
18418 after vma. */
18419 return 1;
18420 else if (amap->type < bmap->type)
18421 return -1;
18422 else
18423 return 0;
e489d0ae
PB
18424}
18425
2468f9c9
PB
18426/* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
18427
18428static unsigned long
18429offset_prel31 (unsigned long addr, bfd_vma offset)
18430{
18431 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
18432}
18433
18434/* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
18435 relocations. */
18436
18437static void
18438copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
18439{
18440 unsigned long first_word = bfd_get_32 (output_bfd, from);
18441 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
b38cadfb 18442
2468f9c9
PB
18443 /* High bit of first word is supposed to be zero. */
18444 if ((first_word & 0x80000000ul) == 0)
18445 first_word = offset_prel31 (first_word, offset);
b38cadfb 18446
2468f9c9
PB
18447 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
18448 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
18449 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
18450 second_word = offset_prel31 (second_word, offset);
b38cadfb 18451
2468f9c9
PB
18452 bfd_put_32 (output_bfd, first_word, to);
18453 bfd_put_32 (output_bfd, second_word, to + 4);
18454}
e489d0ae 18455
48229727
JB
18456/* Data for make_branch_to_a8_stub(). */
18457
b38cadfb
NC
18458struct a8_branch_to_stub_data
18459{
48229727
JB
18460 asection *writing_section;
18461 bfd_byte *contents;
18462};
18463
18464
18465/* Helper to insert branches to Cortex-A8 erratum stubs in the right
18466 places for a particular section. */
18467
18468static bfd_boolean
18469make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
99059e56 18470 void *in_arg)
48229727
JB
18471{
18472 struct elf32_arm_stub_hash_entry *stub_entry;
18473 struct a8_branch_to_stub_data *data;
18474 bfd_byte *contents;
18475 unsigned long branch_insn;
18476 bfd_vma veneered_insn_loc, veneer_entry_loc;
18477 bfd_signed_vma branch_offset;
18478 bfd *abfd;
8d9d9490 18479 unsigned int loc;
48229727
JB
18480
18481 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
18482 data = (struct a8_branch_to_stub_data *) in_arg;
18483
18484 if (stub_entry->target_section != data->writing_section
4563a860 18485 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
48229727
JB
18486 return TRUE;
18487
18488 contents = data->contents;
18489
8d9d9490
TP
18490 /* We use target_section as Cortex-A8 erratum workaround stubs are only
18491 generated when both source and target are in the same section. */
48229727
JB
18492 veneered_insn_loc = stub_entry->target_section->output_section->vma
18493 + stub_entry->target_section->output_offset
8d9d9490 18494 + stub_entry->source_value;
48229727
JB
18495
18496 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
18497 + stub_entry->stub_sec->output_offset
18498 + stub_entry->stub_offset;
18499
18500 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
18501 veneered_insn_loc &= ~3u;
18502
18503 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
18504
18505 abfd = stub_entry->target_section->owner;
8d9d9490 18506 loc = stub_entry->source_value;
48229727
JB
18507
18508 /* We attempt to avoid this condition by setting stubs_always_after_branch
18509 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
18510 This check is just to be on the safe side... */
18511 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
18512 {
871b3ab2 18513 _bfd_error_handler (_("%pB: error: Cortex-A8 erratum stub is "
4eca0228 18514 "allocated in unsafe location"), abfd);
48229727
JB
18515 return FALSE;
18516 }
18517
18518 switch (stub_entry->stub_type)
18519 {
18520 case arm_stub_a8_veneer_b:
18521 case arm_stub_a8_veneer_b_cond:
18522 branch_insn = 0xf0009000;
18523 goto jump24;
18524
18525 case arm_stub_a8_veneer_blx:
18526 branch_insn = 0xf000e800;
18527 goto jump24;
18528
18529 case arm_stub_a8_veneer_bl:
18530 {
18531 unsigned int i1, j1, i2, j2, s;
18532
18533 branch_insn = 0xf000d000;
18534
18535 jump24:
18536 if (branch_offset < -16777216 || branch_offset > 16777214)
18537 {
18538 /* There's not much we can do apart from complain if this
18539 happens. */
871b3ab2 18540 _bfd_error_handler (_("%pB: error: Cortex-A8 erratum stub out "
4eca0228 18541 "of range (input file too large)"), abfd);
48229727
JB
18542 return FALSE;
18543 }
18544
18545 /* i1 = not(j1 eor s), so:
18546 not i1 = j1 eor s
18547 j1 = (not i1) eor s. */
18548
18549 branch_insn |= (branch_offset >> 1) & 0x7ff;
18550 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
18551 i2 = (branch_offset >> 22) & 1;
18552 i1 = (branch_offset >> 23) & 1;
18553 s = (branch_offset >> 24) & 1;
18554 j1 = (!i1) ^ s;
18555 j2 = (!i2) ^ s;
18556 branch_insn |= j2 << 11;
18557 branch_insn |= j1 << 13;
18558 branch_insn |= s << 26;
18559 }
18560 break;
18561
18562 default:
18563 BFD_FAIL ();
18564 return FALSE;
18565 }
18566
8d9d9490
TP
18567 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[loc]);
18568 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[loc + 2]);
48229727
JB
18569
18570 return TRUE;
18571}
18572
a504d23a
LA
18573/* Beginning of stm32l4xx work-around. */
18574
18575/* Functions encoding instructions necessary for the emission of the
18576 fix-stm32l4xx-629360.
18577 Encoding is extracted from the
18578 ARM (C) Architecture Reference Manual
18579 ARMv7-A and ARMv7-R edition
18580 ARM DDI 0406C.b (ID072512). */
18581
18582static inline bfd_vma
82188b29 18583create_instruction_branch_absolute (int branch_offset)
a504d23a
LA
18584{
18585 /* A8.8.18 B (A8-334)
18586 B target_address (Encoding T4). */
18587 /* 1111 - 0Sii - iiii - iiii - 10J1 - Jiii - iiii - iiii. */
18588 /* jump offset is: S:I1:I2:imm10:imm11:0. */
18589 /* with : I1 = NOT (J1 EOR S) I2 = NOT (J2 EOR S). */
18590
a504d23a
LA
18591 int s = ((branch_offset & 0x1000000) >> 24);
18592 int j1 = s ^ !((branch_offset & 0x800000) >> 23);
18593 int j2 = s ^ !((branch_offset & 0x400000) >> 22);
18594
18595 if (branch_offset < -(1 << 24) || branch_offset >= (1 << 24))
18596 BFD_ASSERT (0 && "Error: branch out of range. Cannot create branch.");
18597
18598 bfd_vma patched_inst = 0xf0009000
18599 | s << 26 /* S. */
18600 | (((unsigned long) (branch_offset) >> 12) & 0x3ff) << 16 /* imm10. */
18601 | j1 << 13 /* J1. */
18602 | j2 << 11 /* J2. */
18603 | (((unsigned long) (branch_offset) >> 1) & 0x7ff); /* imm11. */
18604
18605 return patched_inst;
18606}
18607
18608static inline bfd_vma
18609create_instruction_ldmia (int base_reg, int wback, int reg_mask)
18610{
18611 /* A8.8.57 LDM/LDMIA/LDMFD (A8-396)
18612 LDMIA Rn!, {Ra, Rb, Rc, ...} (Encoding T2). */
18613 bfd_vma patched_inst = 0xe8900000
18614 | (/*W=*/wback << 21)
18615 | (base_reg << 16)
18616 | (reg_mask & 0x0000ffff);
18617
18618 return patched_inst;
18619}
18620
18621static inline bfd_vma
18622create_instruction_ldmdb (int base_reg, int wback, int reg_mask)
18623{
18624 /* A8.8.60 LDMDB/LDMEA (A8-402)
18625 LDMDB Rn!, {Ra, Rb, Rc, ...} (Encoding T1). */
18626 bfd_vma patched_inst = 0xe9100000
18627 | (/*W=*/wback << 21)
18628 | (base_reg << 16)
18629 | (reg_mask & 0x0000ffff);
18630
18631 return patched_inst;
18632}
18633
18634static inline bfd_vma
18635create_instruction_mov (int target_reg, int source_reg)
18636{
18637 /* A8.8.103 MOV (register) (A8-486)
18638 MOV Rd, Rm (Encoding T1). */
18639 bfd_vma patched_inst = 0x4600
18640 | (target_reg & 0x7)
18641 | ((target_reg & 0x8) >> 3) << 7
18642 | (source_reg << 3);
18643
18644 return patched_inst;
18645}
18646
18647static inline bfd_vma
18648create_instruction_sub (int target_reg, int source_reg, int value)
18649{
18650 /* A8.8.221 SUB (immediate) (A8-708)
18651 SUB Rd, Rn, #value (Encoding T3). */
18652 bfd_vma patched_inst = 0xf1a00000
18653 | (target_reg << 8)
18654 | (source_reg << 16)
18655 | (/*S=*/0 << 20)
18656 | ((value & 0x800) >> 11) << 26
18657 | ((value & 0x700) >> 8) << 12
18658 | (value & 0x0ff);
18659
18660 return patched_inst;
18661}
18662
18663static inline bfd_vma
9239bbd3 18664create_instruction_vldmia (int base_reg, int is_dp, int wback, int num_words,
a504d23a
LA
18665 int first_reg)
18666{
18667 /* A8.8.332 VLDM (A8-922)
9239bbd3
CM
18668 VLMD{MODE} Rn{!}, {list} (Encoding T1 or T2). */
18669 bfd_vma patched_inst = (is_dp ? 0xec900b00 : 0xec900a00)
a504d23a
LA
18670 | (/*W=*/wback << 21)
18671 | (base_reg << 16)
9239bbd3
CM
18672 | (num_words & 0x000000ff)
18673 | (((unsigned)first_reg >> 1) & 0x0000000f) << 12
a504d23a
LA
18674 | (first_reg & 0x00000001) << 22;
18675
18676 return patched_inst;
18677}
18678
18679static inline bfd_vma
9239bbd3
CM
18680create_instruction_vldmdb (int base_reg, int is_dp, int num_words,
18681 int first_reg)
a504d23a
LA
18682{
18683 /* A8.8.332 VLDM (A8-922)
9239bbd3
CM
18684 VLMD{MODE} Rn!, {} (Encoding T1 or T2). */
18685 bfd_vma patched_inst = (is_dp ? 0xed300b00 : 0xed300a00)
a504d23a 18686 | (base_reg << 16)
9239bbd3
CM
18687 | (num_words & 0x000000ff)
18688 | (((unsigned)first_reg >>1 ) & 0x0000000f) << 12
a504d23a
LA
18689 | (first_reg & 0x00000001) << 22;
18690
18691 return patched_inst;
18692}
18693
18694static inline bfd_vma
18695create_instruction_udf_w (int value)
18696{
18697 /* A8.8.247 UDF (A8-758)
18698 Undefined (Encoding T2). */
18699 bfd_vma patched_inst = 0xf7f0a000
18700 | (value & 0x00000fff)
18701 | (value & 0x000f0000) << 16;
18702
18703 return patched_inst;
18704}
18705
18706static inline bfd_vma
18707create_instruction_udf (int value)
18708{
18709 /* A8.8.247 UDF (A8-758)
18710 Undefined (Encoding T1). */
18711 bfd_vma patched_inst = 0xde00
18712 | (value & 0xff);
18713
18714 return patched_inst;
18715}
18716
18717/* Functions writing an instruction in memory, returning the next
18718 memory position to write to. */
18719
18720static inline bfd_byte *
18721push_thumb2_insn32 (struct elf32_arm_link_hash_table * htab,
18722 bfd * output_bfd, bfd_byte *pt, insn32 insn)
18723{
18724 put_thumb2_insn (htab, output_bfd, insn, pt);
18725 return pt + 4;
18726}
18727
18728static inline bfd_byte *
18729push_thumb2_insn16 (struct elf32_arm_link_hash_table * htab,
18730 bfd * output_bfd, bfd_byte *pt, insn32 insn)
18731{
18732 put_thumb_insn (htab, output_bfd, insn, pt);
18733 return pt + 2;
18734}
18735
18736/* Function filling up a region in memory with T1 and T2 UDFs taking
18737 care of alignment. */
18738
18739static bfd_byte *
18740stm32l4xx_fill_stub_udf (struct elf32_arm_link_hash_table * htab,
07d6d2b8
AM
18741 bfd * output_bfd,
18742 const bfd_byte * const base_stub_contents,
18743 bfd_byte * const from_stub_contents,
18744 const bfd_byte * const end_stub_contents)
a504d23a
LA
18745{
18746 bfd_byte *current_stub_contents = from_stub_contents;
18747
18748 /* Fill the remaining of the stub with deterministic contents : UDF
18749 instructions.
18750 Check if realignment is needed on modulo 4 frontier using T1, to
18751 further use T2. */
18752 if ((current_stub_contents < end_stub_contents)
18753 && !((current_stub_contents - base_stub_contents) % 2)
18754 && ((current_stub_contents - base_stub_contents) % 4))
18755 current_stub_contents =
18756 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18757 create_instruction_udf (0));
18758
18759 for (; current_stub_contents < end_stub_contents;)
18760 current_stub_contents =
18761 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18762 create_instruction_udf_w (0));
18763
18764 return current_stub_contents;
18765}
18766
18767/* Functions writing the stream of instructions equivalent to the
18768 derived sequence for ldmia, ldmdb, vldm respectively. */
18769
18770static void
18771stm32l4xx_create_replacing_stub_ldmia (struct elf32_arm_link_hash_table * htab,
18772 bfd * output_bfd,
18773 const insn32 initial_insn,
18774 const bfd_byte *const initial_insn_addr,
18775 bfd_byte *const base_stub_contents)
18776{
18777 int wback = (initial_insn & 0x00200000) >> 21;
18778 int ri, rn = (initial_insn & 0x000F0000) >> 16;
18779 int insn_all_registers = initial_insn & 0x0000ffff;
18780 int insn_low_registers, insn_high_registers;
18781 int usable_register_mask;
b25e998d 18782 int nb_registers = elf32_arm_popcount (insn_all_registers);
a504d23a
LA
18783 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
18784 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
18785 bfd_byte *current_stub_contents = base_stub_contents;
18786
18787 BFD_ASSERT (is_thumb2_ldmia (initial_insn));
18788
18789 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
18790 smaller than 8 registers load sequences that do not cause the
18791 hardware issue. */
18792 if (nb_registers <= 8)
18793 {
18794 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
18795 current_stub_contents =
18796 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18797 initial_insn);
18798
18799 /* B initial_insn_addr+4. */
18800 if (!restore_pc)
18801 current_stub_contents =
18802 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18803 create_instruction_branch_absolute
82188b29 18804 (initial_insn_addr - current_stub_contents));
a504d23a
LA
18805
18806 /* Fill the remaining of the stub with deterministic contents. */
18807 current_stub_contents =
18808 stm32l4xx_fill_stub_udf (htab, output_bfd,
18809 base_stub_contents, current_stub_contents,
18810 base_stub_contents +
18811 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18812
18813 return;
18814 }
18815
18816 /* - reg_list[13] == 0. */
18817 BFD_ASSERT ((insn_all_registers & (1 << 13))==0);
18818
18819 /* - reg_list[14] & reg_list[15] != 1. */
18820 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
18821
18822 /* - if (wback==1) reg_list[rn] == 0. */
18823 BFD_ASSERT (!wback || !restore_rn);
18824
18825 /* - nb_registers > 8. */
b25e998d 18826 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8);
a504d23a
LA
18827
18828 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
18829
18830 /* In the following algorithm, we split this wide LDM using 2 LDM insns:
18831 - One with the 7 lowest registers (register mask 0x007F)
18832 This LDM will finally contain between 2 and 7 registers
18833 - One with the 7 highest registers (register mask 0xDF80)
18834 This ldm will finally contain between 2 and 7 registers. */
18835 insn_low_registers = insn_all_registers & 0x007F;
18836 insn_high_registers = insn_all_registers & 0xDF80;
18837
18838 /* A spare register may be needed during this veneer to temporarily
18839 handle the base register. This register will be restored with the
18840 last LDM operation.
18841 The usable register may be any general purpose register (that
18842 excludes PC, SP, LR : register mask is 0x1FFF). */
18843 usable_register_mask = 0x1FFF;
18844
18845 /* Generate the stub function. */
18846 if (wback)
18847 {
18848 /* LDMIA Rn!, {R-low-register-list} : (Encoding T2). */
18849 current_stub_contents =
18850 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18851 create_instruction_ldmia
18852 (rn, /*wback=*/1, insn_low_registers));
18853
18854 /* LDMIA Rn!, {R-high-register-list} : (Encoding T2). */
18855 current_stub_contents =
18856 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18857 create_instruction_ldmia
18858 (rn, /*wback=*/1, insn_high_registers));
18859 if (!restore_pc)
18860 {
18861 /* B initial_insn_addr+4. */
18862 current_stub_contents =
18863 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18864 create_instruction_branch_absolute
82188b29 18865 (initial_insn_addr - current_stub_contents));
a504d23a
LA
18866 }
18867 }
18868 else /* if (!wback). */
18869 {
18870 ri = rn;
18871
18872 /* If Rn is not part of the high-register-list, move it there. */
18873 if (!(insn_high_registers & (1 << rn)))
18874 {
18875 /* Choose a Ri in the high-register-list that will be restored. */
18876 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18877
18878 /* MOV Ri, Rn. */
18879 current_stub_contents =
18880 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18881 create_instruction_mov (ri, rn));
18882 }
18883
18884 /* LDMIA Ri!, {R-low-register-list} : (Encoding T2). */
18885 current_stub_contents =
18886 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18887 create_instruction_ldmia
18888 (ri, /*wback=*/1, insn_low_registers));
18889
18890 /* LDMIA Ri, {R-high-register-list} : (Encoding T2). */
18891 current_stub_contents =
18892 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18893 create_instruction_ldmia
18894 (ri, /*wback=*/0, insn_high_registers));
18895
18896 if (!restore_pc)
18897 {
18898 /* B initial_insn_addr+4. */
18899 current_stub_contents =
18900 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18901 create_instruction_branch_absolute
82188b29 18902 (initial_insn_addr - current_stub_contents));
a504d23a
LA
18903 }
18904 }
18905
18906 /* Fill the remaining of the stub with deterministic contents. */
18907 current_stub_contents =
18908 stm32l4xx_fill_stub_udf (htab, output_bfd,
18909 base_stub_contents, current_stub_contents,
18910 base_stub_contents +
18911 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18912}
18913
18914static void
18915stm32l4xx_create_replacing_stub_ldmdb (struct elf32_arm_link_hash_table * htab,
18916 bfd * output_bfd,
18917 const insn32 initial_insn,
18918 const bfd_byte *const initial_insn_addr,
18919 bfd_byte *const base_stub_contents)
18920{
18921 int wback = (initial_insn & 0x00200000) >> 21;
18922 int ri, rn = (initial_insn & 0x000f0000) >> 16;
18923 int insn_all_registers = initial_insn & 0x0000ffff;
18924 int insn_low_registers, insn_high_registers;
18925 int usable_register_mask;
18926 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
18927 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
b25e998d 18928 int nb_registers = elf32_arm_popcount (insn_all_registers);
a504d23a
LA
18929 bfd_byte *current_stub_contents = base_stub_contents;
18930
18931 BFD_ASSERT (is_thumb2_ldmdb (initial_insn));
18932
18933 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
18934 smaller than 8 registers load sequences that do not cause the
18935 hardware issue. */
18936 if (nb_registers <= 8)
18937 {
18938 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
18939 current_stub_contents =
18940 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18941 initial_insn);
18942
18943 /* B initial_insn_addr+4. */
18944 current_stub_contents =
18945 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18946 create_instruction_branch_absolute
82188b29 18947 (initial_insn_addr - current_stub_contents));
a504d23a
LA
18948
18949 /* Fill the remaining of the stub with deterministic contents. */
18950 current_stub_contents =
18951 stm32l4xx_fill_stub_udf (htab, output_bfd,
18952 base_stub_contents, current_stub_contents,
18953 base_stub_contents +
18954 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18955
18956 return;
18957 }
18958
18959 /* - reg_list[13] == 0. */
18960 BFD_ASSERT ((insn_all_registers & (1 << 13)) == 0);
18961
18962 /* - reg_list[14] & reg_list[15] != 1. */
18963 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
18964
18965 /* - if (wback==1) reg_list[rn] == 0. */
18966 BFD_ASSERT (!wback || !restore_rn);
18967
18968 /* - nb_registers > 8. */
b25e998d 18969 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8);
a504d23a
LA
18970
18971 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
18972
18973 /* In the following algorithm, we split this wide LDM using 2 LDM insn:
18974 - One with the 7 lowest registers (register mask 0x007F)
18975 This LDM will finally contain between 2 and 7 registers
18976 - One with the 7 highest registers (register mask 0xDF80)
18977 This ldm will finally contain between 2 and 7 registers. */
18978 insn_low_registers = insn_all_registers & 0x007F;
18979 insn_high_registers = insn_all_registers & 0xDF80;
18980
18981 /* A spare register may be needed during this veneer to temporarily
18982 handle the base register. This register will be restored with
18983 the last LDM operation.
18984 The usable register may be any general purpose register (that excludes
18985 PC, SP, LR : register mask is 0x1FFF). */
18986 usable_register_mask = 0x1FFF;
18987
18988 /* Generate the stub function. */
18989 if (!wback && !restore_pc && !restore_rn)
18990 {
18991 /* Choose a Ri in the low-register-list that will be restored. */
18992 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
18993
18994 /* MOV Ri, Rn. */
18995 current_stub_contents =
18996 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18997 create_instruction_mov (ri, rn));
18998
18999 /* LDMDB Ri!, {R-high-register-list}. */
19000 current_stub_contents =
19001 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19002 create_instruction_ldmdb
19003 (ri, /*wback=*/1, insn_high_registers));
19004
19005 /* LDMDB Ri, {R-low-register-list}. */
19006 current_stub_contents =
19007 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19008 create_instruction_ldmdb
19009 (ri, /*wback=*/0, insn_low_registers));
19010
19011 /* B initial_insn_addr+4. */
19012 current_stub_contents =
19013 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19014 create_instruction_branch_absolute
82188b29 19015 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19016 }
19017 else if (wback && !restore_pc && !restore_rn)
19018 {
19019 /* LDMDB Rn!, {R-high-register-list}. */
19020 current_stub_contents =
19021 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19022 create_instruction_ldmdb
19023 (rn, /*wback=*/1, insn_high_registers));
19024
19025 /* LDMDB Rn!, {R-low-register-list}. */
19026 current_stub_contents =
19027 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19028 create_instruction_ldmdb
19029 (rn, /*wback=*/1, insn_low_registers));
19030
19031 /* B initial_insn_addr+4. */
19032 current_stub_contents =
19033 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19034 create_instruction_branch_absolute
82188b29 19035 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19036 }
19037 else if (!wback && restore_pc && !restore_rn)
19038 {
19039 /* Choose a Ri in the high-register-list that will be restored. */
19040 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19041
19042 /* SUB Ri, Rn, #(4*nb_registers). */
19043 current_stub_contents =
19044 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19045 create_instruction_sub (ri, rn, (4 * nb_registers)));
19046
19047 /* LDMIA Ri!, {R-low-register-list}. */
19048 current_stub_contents =
19049 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19050 create_instruction_ldmia
19051 (ri, /*wback=*/1, insn_low_registers));
19052
19053 /* LDMIA Ri, {R-high-register-list}. */
19054 current_stub_contents =
19055 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19056 create_instruction_ldmia
19057 (ri, /*wback=*/0, insn_high_registers));
19058 }
19059 else if (wback && restore_pc && !restore_rn)
19060 {
19061 /* Choose a Ri in the high-register-list that will be restored. */
19062 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19063
19064 /* SUB Rn, Rn, #(4*nb_registers) */
19065 current_stub_contents =
19066 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19067 create_instruction_sub (rn, rn, (4 * nb_registers)));
19068
19069 /* MOV Ri, Rn. */
19070 current_stub_contents =
19071 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19072 create_instruction_mov (ri, rn));
19073
19074 /* LDMIA Ri!, {R-low-register-list}. */
19075 current_stub_contents =
19076 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19077 create_instruction_ldmia
19078 (ri, /*wback=*/1, insn_low_registers));
19079
19080 /* LDMIA Ri, {R-high-register-list}. */
19081 current_stub_contents =
19082 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19083 create_instruction_ldmia
19084 (ri, /*wback=*/0, insn_high_registers));
19085 }
19086 else if (!wback && !restore_pc && restore_rn)
19087 {
19088 ri = rn;
19089 if (!(insn_low_registers & (1 << rn)))
19090 {
19091 /* Choose a Ri in the low-register-list that will be restored. */
19092 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
19093
19094 /* MOV Ri, Rn. */
19095 current_stub_contents =
19096 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19097 create_instruction_mov (ri, rn));
19098 }
19099
19100 /* LDMDB Ri!, {R-high-register-list}. */
19101 current_stub_contents =
19102 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19103 create_instruction_ldmdb
19104 (ri, /*wback=*/1, insn_high_registers));
19105
19106 /* LDMDB Ri, {R-low-register-list}. */
19107 current_stub_contents =
19108 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19109 create_instruction_ldmdb
19110 (ri, /*wback=*/0, insn_low_registers));
19111
19112 /* B initial_insn_addr+4. */
19113 current_stub_contents =
19114 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19115 create_instruction_branch_absolute
82188b29 19116 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19117 }
19118 else if (!wback && restore_pc && restore_rn)
19119 {
19120 ri = rn;
19121 if (!(insn_high_registers & (1 << rn)))
19122 {
19123 /* Choose a Ri in the high-register-list that will be restored. */
19124 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19125 }
19126
19127 /* SUB Ri, Rn, #(4*nb_registers). */
19128 current_stub_contents =
19129 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19130 create_instruction_sub (ri, rn, (4 * nb_registers)));
19131
19132 /* LDMIA Ri!, {R-low-register-list}. */
19133 current_stub_contents =
19134 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19135 create_instruction_ldmia
19136 (ri, /*wback=*/1, insn_low_registers));
19137
19138 /* LDMIA Ri, {R-high-register-list}. */
19139 current_stub_contents =
19140 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19141 create_instruction_ldmia
19142 (ri, /*wback=*/0, insn_high_registers));
19143 }
19144 else if (wback && restore_rn)
19145 {
19146 /* The assembler should not have accepted to encode this. */
19147 BFD_ASSERT (0 && "Cannot patch an instruction that has an "
19148 "undefined behavior.\n");
19149 }
19150
19151 /* Fill the remaining of the stub with deterministic contents. */
19152 current_stub_contents =
19153 stm32l4xx_fill_stub_udf (htab, output_bfd,
19154 base_stub_contents, current_stub_contents,
19155 base_stub_contents +
19156 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19157
19158}
19159
19160static void
19161stm32l4xx_create_replacing_stub_vldm (struct elf32_arm_link_hash_table * htab,
19162 bfd * output_bfd,
19163 const insn32 initial_insn,
19164 const bfd_byte *const initial_insn_addr,
19165 bfd_byte *const base_stub_contents)
19166{
9239bbd3 19167 int num_words = ((unsigned int) initial_insn << 24) >> 24;
a504d23a
LA
19168 bfd_byte *current_stub_contents = base_stub_contents;
19169
19170 BFD_ASSERT (is_thumb2_vldm (initial_insn));
19171
19172 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
9239bbd3 19173 smaller than 8 words load sequences that do not cause the
a504d23a 19174 hardware issue. */
9239bbd3 19175 if (num_words <= 8)
a504d23a
LA
19176 {
19177 /* Untouched instruction. */
19178 current_stub_contents =
19179 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19180 initial_insn);
19181
19182 /* B initial_insn_addr+4. */
19183 current_stub_contents =
19184 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19185 create_instruction_branch_absolute
82188b29 19186 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19187 }
19188 else
19189 {
9eaff861 19190 bfd_boolean is_dp = /* DP encoding. */
9239bbd3 19191 (initial_insn & 0xfe100f00) == 0xec100b00;
a504d23a
LA
19192 bfd_boolean is_ia_nobang = /* (IA without !). */
19193 (((initial_insn << 7) >> 28) & 0xd) == 0x4;
19194 bfd_boolean is_ia_bang = /* (IA with !) - includes VPOP. */
19195 (((initial_insn << 7) >> 28) & 0xd) == 0x5;
19196 bfd_boolean is_db_bang = /* (DB with !). */
19197 (((initial_insn << 7) >> 28) & 0xd) == 0x9;
9239bbd3 19198 int base_reg = ((unsigned int) initial_insn << 12) >> 28;
a504d23a 19199 /* d = UInt (Vd:D);. */
9239bbd3 19200 int first_reg = ((((unsigned int) initial_insn << 16) >> 28) << 1)
a504d23a
LA
19201 | (((unsigned int)initial_insn << 9) >> 31);
19202
9239bbd3
CM
19203 /* Compute the number of 8-words chunks needed to split. */
19204 int chunks = (num_words % 8) ? (num_words / 8 + 1) : (num_words / 8);
a504d23a
LA
19205 int chunk;
19206
19207 /* The test coverage has been done assuming the following
19208 hypothesis that exactly one of the previous is_ predicates is
19209 true. */
9239bbd3
CM
19210 BFD_ASSERT ( (is_ia_nobang ^ is_ia_bang ^ is_db_bang)
19211 && !(is_ia_nobang & is_ia_bang & is_db_bang));
a504d23a 19212
9239bbd3 19213 /* We treat the cutting of the words in one pass for all
a504d23a
LA
19214 cases, then we emit the adjustments:
19215
19216 vldm rx, {...}
19217 -> vldm rx!, {8_words_or_less} for each needed 8_word
19218 -> sub rx, rx, #size (list)
19219
19220 vldm rx!, {...}
19221 -> vldm rx!, {8_words_or_less} for each needed 8_word
19222 This also handles vpop instruction (when rx is sp)
19223
19224 vldmd rx!, {...}
19225 -> vldmb rx!, {8_words_or_less} for each needed 8_word. */
9239bbd3 19226 for (chunk = 0; chunk < chunks; ++chunk)
a504d23a 19227 {
9239bbd3
CM
19228 bfd_vma new_insn = 0;
19229
a504d23a
LA
19230 if (is_ia_nobang || is_ia_bang)
19231 {
9239bbd3
CM
19232 new_insn = create_instruction_vldmia
19233 (base_reg,
19234 is_dp,
19235 /*wback= . */1,
19236 chunks - (chunk + 1) ?
19237 8 : num_words - chunk * 8,
19238 first_reg + chunk * 8);
a504d23a
LA
19239 }
19240 else if (is_db_bang)
19241 {
9239bbd3
CM
19242 new_insn = create_instruction_vldmdb
19243 (base_reg,
19244 is_dp,
19245 chunks - (chunk + 1) ?
19246 8 : num_words - chunk * 8,
19247 first_reg + chunk * 8);
a504d23a 19248 }
9239bbd3
CM
19249
19250 if (new_insn)
19251 current_stub_contents =
19252 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19253 new_insn);
a504d23a
LA
19254 }
19255
19256 /* Only this case requires the base register compensation
19257 subtract. */
19258 if (is_ia_nobang)
19259 {
19260 current_stub_contents =
19261 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19262 create_instruction_sub
9239bbd3 19263 (base_reg, base_reg, 4*num_words));
a504d23a
LA
19264 }
19265
19266 /* B initial_insn_addr+4. */
19267 current_stub_contents =
19268 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19269 create_instruction_branch_absolute
82188b29 19270 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19271 }
19272
19273 /* Fill the remaining of the stub with deterministic contents. */
19274 current_stub_contents =
19275 stm32l4xx_fill_stub_udf (htab, output_bfd,
19276 base_stub_contents, current_stub_contents,
19277 base_stub_contents +
19278 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
19279}
19280
19281static void
19282stm32l4xx_create_replacing_stub (struct elf32_arm_link_hash_table * htab,
19283 bfd * output_bfd,
19284 const insn32 wrong_insn,
19285 const bfd_byte *const wrong_insn_addr,
19286 bfd_byte *const stub_contents)
19287{
19288 if (is_thumb2_ldmia (wrong_insn))
19289 stm32l4xx_create_replacing_stub_ldmia (htab, output_bfd,
19290 wrong_insn, wrong_insn_addr,
19291 stub_contents);
19292 else if (is_thumb2_ldmdb (wrong_insn))
19293 stm32l4xx_create_replacing_stub_ldmdb (htab, output_bfd,
19294 wrong_insn, wrong_insn_addr,
19295 stub_contents);
19296 else if (is_thumb2_vldm (wrong_insn))
19297 stm32l4xx_create_replacing_stub_vldm (htab, output_bfd,
19298 wrong_insn, wrong_insn_addr,
19299 stub_contents);
19300}
19301
19302/* End of stm32l4xx work-around. */
19303
19304
e489d0ae
PB
19305/* Do code byteswapping. Return FALSE afterwards so that the section is
19306 written out as normal. */
19307
19308static bfd_boolean
c7b8f16e 19309elf32_arm_write_section (bfd *output_bfd,
8029a119
NC
19310 struct bfd_link_info *link_info,
19311 asection *sec,
e489d0ae
PB
19312 bfd_byte *contents)
19313{
48229727 19314 unsigned int mapcount, errcount;
8e3de13a 19315 _arm_elf_section_data *arm_data;
c7b8f16e 19316 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
e489d0ae 19317 elf32_arm_section_map *map;
c7b8f16e 19318 elf32_vfp11_erratum_list *errnode;
a504d23a 19319 elf32_stm32l4xx_erratum_list *stm32l4xx_errnode;
e489d0ae
PB
19320 bfd_vma ptr;
19321 bfd_vma end;
c7b8f16e 19322 bfd_vma offset = sec->output_section->vma + sec->output_offset;
e489d0ae 19323 bfd_byte tmp;
48229727 19324 unsigned int i;
57e8b36a 19325
4dfe6ac6
NC
19326 if (globals == NULL)
19327 return FALSE;
19328
8e3de13a
NC
19329 /* If this section has not been allocated an _arm_elf_section_data
19330 structure then we cannot record anything. */
19331 arm_data = get_arm_elf_section_data (sec);
19332 if (arm_data == NULL)
19333 return FALSE;
19334
19335 mapcount = arm_data->mapcount;
19336 map = arm_data->map;
c7b8f16e
JB
19337 errcount = arm_data->erratumcount;
19338
19339 if (errcount != 0)
19340 {
19341 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
19342
19343 for (errnode = arm_data->erratumlist; errnode != 0;
99059e56
RM
19344 errnode = errnode->next)
19345 {
19346 bfd_vma target = errnode->vma - offset;
19347
19348 switch (errnode->type)
19349 {
19350 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
19351 {
19352 bfd_vma branch_to_veneer;
19353 /* Original condition code of instruction, plus bit mask for
19354 ARM B instruction. */
19355 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
19356 | 0x0a000000;
c7b8f16e
JB
19357
19358 /* The instruction is before the label. */
91d6fa6a 19359 target -= 4;
c7b8f16e
JB
19360
19361 /* Above offset included in -4 below. */
19362 branch_to_veneer = errnode->u.b.veneer->vma
99059e56 19363 - errnode->vma - 4;
c7b8f16e
JB
19364
19365 if ((signed) branch_to_veneer < -(1 << 25)
19366 || (signed) branch_to_veneer >= (1 << 25))
871b3ab2 19367 _bfd_error_handler (_("%pB: error: VFP11 veneer out of "
4eca0228 19368 "range"), output_bfd);
c7b8f16e 19369
99059e56
RM
19370 insn |= (branch_to_veneer >> 2) & 0xffffff;
19371 contents[endianflip ^ target] = insn & 0xff;
19372 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
19373 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
19374 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
19375 }
19376 break;
c7b8f16e
JB
19377
19378 case VFP11_ERRATUM_ARM_VENEER:
99059e56
RM
19379 {
19380 bfd_vma branch_from_veneer;
19381 unsigned int insn;
c7b8f16e 19382
99059e56
RM
19383 /* Take size of veneer into account. */
19384 branch_from_veneer = errnode->u.v.branch->vma
19385 - errnode->vma - 12;
c7b8f16e
JB
19386
19387 if ((signed) branch_from_veneer < -(1 << 25)
19388 || (signed) branch_from_veneer >= (1 << 25))
871b3ab2 19389 _bfd_error_handler (_("%pB: error: VFP11 veneer out of "
4eca0228 19390 "range"), output_bfd);
c7b8f16e 19391
99059e56
RM
19392 /* Original instruction. */
19393 insn = errnode->u.v.branch->u.b.vfp_insn;
19394 contents[endianflip ^ target] = insn & 0xff;
19395 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
19396 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
19397 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
19398
19399 /* Branch back to insn after original insn. */
19400 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
19401 contents[endianflip ^ (target + 4)] = insn & 0xff;
19402 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
19403 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
19404 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
19405 }
19406 break;
c7b8f16e 19407
99059e56
RM
19408 default:
19409 abort ();
19410 }
19411 }
c7b8f16e 19412 }
e489d0ae 19413
a504d23a
LA
19414 if (arm_data->stm32l4xx_erratumcount != 0)
19415 {
19416 for (stm32l4xx_errnode = arm_data->stm32l4xx_erratumlist;
19417 stm32l4xx_errnode != 0;
19418 stm32l4xx_errnode = stm32l4xx_errnode->next)
19419 {
19420 bfd_vma target = stm32l4xx_errnode->vma - offset;
19421
19422 switch (stm32l4xx_errnode->type)
19423 {
19424 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
19425 {
19426 unsigned int insn;
19427 bfd_vma branch_to_veneer =
19428 stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma;
19429
19430 if ((signed) branch_to_veneer < -(1 << 24)
19431 || (signed) branch_to_veneer >= (1 << 24))
19432 {
19433 bfd_vma out_of_range =
19434 ((signed) branch_to_veneer < -(1 << 24)) ?
19435 - branch_to_veneer - (1 << 24) :
19436 ((signed) branch_to_veneer >= (1 << 24)) ?
19437 branch_to_veneer - (1 << 24) : 0;
19438
4eca0228 19439 _bfd_error_handler
2dcf00ce 19440 (_("%pB(%#" PRIx64 "): error: "
90b6238f
AM
19441 "cannot create STM32L4XX veneer; "
19442 "jump out of range by %" PRId64 " bytes; "
19443 "cannot encode branch instruction"),
a504d23a 19444 output_bfd,
2dcf00ce
AM
19445 (uint64_t) (stm32l4xx_errnode->vma - 4),
19446 (int64_t) out_of_range);
a504d23a
LA
19447 continue;
19448 }
19449
19450 insn = create_instruction_branch_absolute
82188b29 19451 (stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma);
a504d23a
LA
19452
19453 /* The instruction is before the label. */
19454 target -= 4;
19455
19456 put_thumb2_insn (globals, output_bfd,
19457 (bfd_vma) insn, contents + target);
19458 }
19459 break;
19460
19461 case STM32L4XX_ERRATUM_VENEER:
19462 {
82188b29
NC
19463 bfd_byte * veneer;
19464 bfd_byte * veneer_r;
a504d23a
LA
19465 unsigned int insn;
19466
82188b29
NC
19467 veneer = contents + target;
19468 veneer_r = veneer
19469 + stm32l4xx_errnode->u.b.veneer->vma
19470 - stm32l4xx_errnode->vma - 4;
a504d23a
LA
19471
19472 if ((signed) (veneer_r - veneer -
19473 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE >
19474 STM32L4XX_ERRATUM_LDM_VENEER_SIZE ?
19475 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE :
19476 STM32L4XX_ERRATUM_LDM_VENEER_SIZE) < -(1 << 24)
19477 || (signed) (veneer_r - veneer) >= (1 << 24))
19478 {
90b6238f
AM
19479 _bfd_error_handler (_("%pB: error: cannot create STM32L4XX "
19480 "veneer"), output_bfd);
a504d23a
LA
19481 continue;
19482 }
19483
19484 /* Original instruction. */
19485 insn = stm32l4xx_errnode->u.v.branch->u.b.insn;
19486
19487 stm32l4xx_create_replacing_stub
19488 (globals, output_bfd, insn, (void*)veneer_r, (void*)veneer);
19489 }
19490 break;
19491
19492 default:
19493 abort ();
19494 }
19495 }
19496 }
19497
2468f9c9
PB
19498 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
19499 {
19500 arm_unwind_table_edit *edit_node
99059e56 19501 = arm_data->u.exidx.unwind_edit_list;
2468f9c9 19502 /* Now, sec->size is the size of the section we will write. The original
99059e56 19503 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
2468f9c9
PB
19504 markers) was sec->rawsize. (This isn't the case if we perform no
19505 edits, then rawsize will be zero and we should use size). */
21d799b5 19506 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
2468f9c9
PB
19507 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
19508 unsigned int in_index, out_index;
19509 bfd_vma add_to_offsets = 0;
19510
19511 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
99059e56 19512 {
2468f9c9
PB
19513 if (edit_node)
19514 {
19515 unsigned int edit_index = edit_node->index;
b38cadfb 19516
2468f9c9 19517 if (in_index < edit_index && in_index * 8 < input_size)
99059e56 19518 {
2468f9c9
PB
19519 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
19520 contents + in_index * 8, add_to_offsets);
19521 out_index++;
19522 in_index++;
19523 }
19524 else if (in_index == edit_index
19525 || (in_index * 8 >= input_size
19526 && edit_index == UINT_MAX))
99059e56 19527 {
2468f9c9
PB
19528 switch (edit_node->type)
19529 {
19530 case DELETE_EXIDX_ENTRY:
19531 in_index++;
19532 add_to_offsets += 8;
19533 break;
b38cadfb 19534
2468f9c9
PB
19535 case INSERT_EXIDX_CANTUNWIND_AT_END:
19536 {
99059e56 19537 asection *text_sec = edit_node->linked_section;
2468f9c9
PB
19538 bfd_vma text_offset = text_sec->output_section->vma
19539 + text_sec->output_offset
19540 + text_sec->size;
19541 bfd_vma exidx_offset = offset + out_index * 8;
99059e56 19542 unsigned long prel31_offset;
2468f9c9
PB
19543
19544 /* Note: this is meant to be equivalent to an
19545 R_ARM_PREL31 relocation. These synthetic
19546 EXIDX_CANTUNWIND markers are not relocated by the
19547 usual BFD method. */
19548 prel31_offset = (text_offset - exidx_offset)
19549 & 0x7ffffffful;
491d01d3
YU
19550 if (bfd_link_relocatable (link_info))
19551 {
19552 /* Here relocation for new EXIDX_CANTUNWIND is
19553 created, so there is no need to
19554 adjust offset by hand. */
19555 prel31_offset = text_sec->output_offset
19556 + text_sec->size;
491d01d3 19557 }
2468f9c9
PB
19558
19559 /* First address we can't unwind. */
19560 bfd_put_32 (output_bfd, prel31_offset,
19561 &edited_contents[out_index * 8]);
19562
19563 /* Code for EXIDX_CANTUNWIND. */
19564 bfd_put_32 (output_bfd, 0x1,
19565 &edited_contents[out_index * 8 + 4]);
19566
19567 out_index++;
19568 add_to_offsets -= 8;
19569 }
19570 break;
19571 }
b38cadfb 19572
2468f9c9
PB
19573 edit_node = edit_node->next;
19574 }
19575 }
19576 else
19577 {
19578 /* No more edits, copy remaining entries verbatim. */
19579 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
19580 contents + in_index * 8, add_to_offsets);
19581 out_index++;
19582 in_index++;
19583 }
19584 }
19585
19586 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
19587 bfd_set_section_contents (output_bfd, sec->output_section,
19588 edited_contents,
19589 (file_ptr) sec->output_offset, sec->size);
19590
19591 return TRUE;
19592 }
19593
48229727
JB
19594 /* Fix code to point to Cortex-A8 erratum stubs. */
19595 if (globals->fix_cortex_a8)
19596 {
19597 struct a8_branch_to_stub_data data;
19598
19599 data.writing_section = sec;
19600 data.contents = contents;
19601
a504d23a
LA
19602 bfd_hash_traverse (& globals->stub_hash_table, make_branch_to_a8_stub,
19603 & data);
48229727
JB
19604 }
19605
e489d0ae
PB
19606 if (mapcount == 0)
19607 return FALSE;
19608
c7b8f16e 19609 if (globals->byteswap_code)
e489d0ae 19610 {
c7b8f16e 19611 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
57e8b36a 19612
c7b8f16e
JB
19613 ptr = map[0].vma;
19614 for (i = 0; i < mapcount; i++)
99059e56
RM
19615 {
19616 if (i == mapcount - 1)
c7b8f16e 19617 end = sec->size;
99059e56
RM
19618 else
19619 end = map[i + 1].vma;
e489d0ae 19620
99059e56 19621 switch (map[i].type)
e489d0ae 19622 {
c7b8f16e
JB
19623 case 'a':
19624 /* Byte swap code words. */
19625 while (ptr + 3 < end)
99059e56
RM
19626 {
19627 tmp = contents[ptr];
19628 contents[ptr] = contents[ptr + 3];
19629 contents[ptr + 3] = tmp;
19630 tmp = contents[ptr + 1];
19631 contents[ptr + 1] = contents[ptr + 2];
19632 contents[ptr + 2] = tmp;
19633 ptr += 4;
19634 }
c7b8f16e 19635 break;
e489d0ae 19636
c7b8f16e
JB
19637 case 't':
19638 /* Byte swap code halfwords. */
19639 while (ptr + 1 < end)
99059e56
RM
19640 {
19641 tmp = contents[ptr];
19642 contents[ptr] = contents[ptr + 1];
19643 contents[ptr + 1] = tmp;
19644 ptr += 2;
19645 }
c7b8f16e
JB
19646 break;
19647
19648 case 'd':
19649 /* Leave data alone. */
19650 break;
19651 }
99059e56
RM
19652 ptr = end;
19653 }
e489d0ae 19654 }
8e3de13a 19655
93204d3a 19656 free (map);
47b2e99c 19657 arm_data->mapcount = -1;
c7b8f16e 19658 arm_data->mapsize = 0;
8e3de13a 19659 arm_data->map = NULL;
8e3de13a 19660
e489d0ae
PB
19661 return FALSE;
19662}
19663
0beaef2b
PB
19664/* Mangle thumb function symbols as we read them in. */
19665
8384fb8f 19666static bfd_boolean
0beaef2b
PB
19667elf32_arm_swap_symbol_in (bfd * abfd,
19668 const void *psrc,
19669 const void *pshn,
19670 Elf_Internal_Sym *dst)
19671{
4ba2ef8f
TP
19672 Elf_Internal_Shdr *symtab_hdr;
19673 const char *name = NULL;
19674
8384fb8f
AM
19675 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
19676 return FALSE;
39d911fc 19677 dst->st_target_internal = 0;
0beaef2b
PB
19678
19679 /* New EABI objects mark thumb function symbols by setting the low bit of
35fc36a8 19680 the address. */
63e1a0fc
PB
19681 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
19682 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
0beaef2b 19683 {
63e1a0fc
PB
19684 if (dst->st_value & 1)
19685 {
19686 dst->st_value &= ~(bfd_vma) 1;
39d911fc
TP
19687 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal,
19688 ST_BRANCH_TO_THUMB);
63e1a0fc
PB
19689 }
19690 else
39d911fc 19691 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_ARM);
35fc36a8
RS
19692 }
19693 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
19694 {
19695 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
39d911fc 19696 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_THUMB);
0beaef2b 19697 }
35fc36a8 19698 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
39d911fc 19699 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_LONG);
35fc36a8 19700 else
39d911fc 19701 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_UNKNOWN);
35fc36a8 19702
4ba2ef8f
TP
19703 /* Mark CMSE special symbols. */
19704 symtab_hdr = & elf_symtab_hdr (abfd);
19705 if (symtab_hdr->sh_size)
19706 name = bfd_elf_sym_name (abfd, symtab_hdr, dst, NULL);
19707 if (name && CONST_STRNEQ (name, CMSE_PREFIX))
19708 ARM_SET_SYM_CMSE_SPCL (dst->st_target_internal);
19709
8384fb8f 19710 return TRUE;
0beaef2b
PB
19711}
19712
19713
19714/* Mangle thumb function symbols as we write them out. */
19715
19716static void
19717elf32_arm_swap_symbol_out (bfd *abfd,
19718 const Elf_Internal_Sym *src,
19719 void *cdst,
19720 void *shndx)
19721{
19722 Elf_Internal_Sym newsym;
19723
19724 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
19725 of the address set, as per the new EABI. We do this unconditionally
19726 because objcopy does not set the elf header flags until after
19727 it writes out the symbol table. */
39d911fc 19728 if (ARM_GET_SYM_BRANCH_TYPE (src->st_target_internal) == ST_BRANCH_TO_THUMB)
0beaef2b
PB
19729 {
19730 newsym = *src;
34e77a92
RS
19731 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
19732 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
0fa3dcad 19733 if (newsym.st_shndx != SHN_UNDEF)
99059e56
RM
19734 {
19735 /* Do this only for defined symbols. At link type, the static
19736 linker will simulate the work of dynamic linker of resolving
19737 symbols and will carry over the thumbness of found symbols to
19738 the output symbol table. It's not clear how it happens, but
19739 the thumbness of undefined symbols can well be different at
19740 runtime, and writing '1' for them will be confusing for users
19741 and possibly for dynamic linker itself.
19742 */
19743 newsym.st_value |= 1;
19744 }
906e58ca 19745
0beaef2b
PB
19746 src = &newsym;
19747 }
19748 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
19749}
19750
b294bdf8
MM
19751/* Add the PT_ARM_EXIDX program header. */
19752
19753static bfd_boolean
906e58ca 19754elf32_arm_modify_segment_map (bfd *abfd,
b294bdf8
MM
19755 struct bfd_link_info *info ATTRIBUTE_UNUSED)
19756{
19757 struct elf_segment_map *m;
19758 asection *sec;
19759
19760 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
19761 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
19762 {
19763 /* If there is already a PT_ARM_EXIDX header, then we do not
19764 want to add another one. This situation arises when running
19765 "strip"; the input binary already has the header. */
12bd6957 19766 m = elf_seg_map (abfd);
b294bdf8
MM
19767 while (m && m->p_type != PT_ARM_EXIDX)
19768 m = m->next;
19769 if (!m)
19770 {
21d799b5 19771 m = (struct elf_segment_map *)
99059e56 19772 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
b294bdf8
MM
19773 if (m == NULL)
19774 return FALSE;
19775 m->p_type = PT_ARM_EXIDX;
19776 m->count = 1;
19777 m->sections[0] = sec;
19778
12bd6957
AM
19779 m->next = elf_seg_map (abfd);
19780 elf_seg_map (abfd) = m;
b294bdf8
MM
19781 }
19782 }
19783
19784 return TRUE;
19785}
19786
19787/* We may add a PT_ARM_EXIDX program header. */
19788
19789static int
a6b96beb
AM
19790elf32_arm_additional_program_headers (bfd *abfd,
19791 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b294bdf8
MM
19792{
19793 asection *sec;
19794
19795 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
19796 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
19797 return 1;
19798 else
19799 return 0;
19800}
19801
34e77a92
RS
19802/* Hook called by the linker routine which adds symbols from an object
19803 file. */
19804
19805static bfd_boolean
19806elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
19807 Elf_Internal_Sym *sym, const char **namep,
19808 flagword *flagsp, asection **secp, bfd_vma *valp)
19809{
c792917c
NC
19810 if (elf32_arm_hash_table (info) == NULL)
19811 return FALSE;
19812
34e77a92
RS
19813 if (elf32_arm_hash_table (info)->vxworks_p
19814 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
19815 flagsp, secp, valp))
19816 return FALSE;
19817
19818 return TRUE;
19819}
19820
0beaef2b 19821/* We use this to override swap_symbol_in and swap_symbol_out. */
906e58ca
NC
19822const struct elf_size_info elf32_arm_size_info =
19823{
0beaef2b
PB
19824 sizeof (Elf32_External_Ehdr),
19825 sizeof (Elf32_External_Phdr),
19826 sizeof (Elf32_External_Shdr),
19827 sizeof (Elf32_External_Rel),
19828 sizeof (Elf32_External_Rela),
19829 sizeof (Elf32_External_Sym),
19830 sizeof (Elf32_External_Dyn),
19831 sizeof (Elf_External_Note),
19832 4,
19833 1,
19834 32, 2,
19835 ELFCLASS32, EV_CURRENT,
19836 bfd_elf32_write_out_phdrs,
19837 bfd_elf32_write_shdrs_and_ehdr,
1489a3a0 19838 bfd_elf32_checksum_contents,
0beaef2b
PB
19839 bfd_elf32_write_relocs,
19840 elf32_arm_swap_symbol_in,
19841 elf32_arm_swap_symbol_out,
19842 bfd_elf32_slurp_reloc_table,
19843 bfd_elf32_slurp_symbol_table,
19844 bfd_elf32_swap_dyn_in,
19845 bfd_elf32_swap_dyn_out,
19846 bfd_elf32_swap_reloc_in,
19847 bfd_elf32_swap_reloc_out,
19848 bfd_elf32_swap_reloca_in,
19849 bfd_elf32_swap_reloca_out
19850};
19851
685e70ae
VK
19852static bfd_vma
19853read_code32 (const bfd *abfd, const bfd_byte *addr)
19854{
19855 /* V7 BE8 code is always little endian. */
19856 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
19857 return bfd_getl32 (addr);
19858
19859 return bfd_get_32 (abfd, addr);
19860}
19861
19862static bfd_vma
19863read_code16 (const bfd *abfd, const bfd_byte *addr)
19864{
19865 /* V7 BE8 code is always little endian. */
19866 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
19867 return bfd_getl16 (addr);
19868
19869 return bfd_get_16 (abfd, addr);
19870}
19871
6a631e86
YG
19872/* Return size of plt0 entry starting at ADDR
19873 or (bfd_vma) -1 if size can not be determined. */
19874
19875static bfd_vma
19876elf32_arm_plt0_size (const bfd *abfd, const bfd_byte *addr)
19877{
19878 bfd_vma first_word;
19879 bfd_vma plt0_size;
19880
685e70ae 19881 first_word = read_code32 (abfd, addr);
6a631e86
YG
19882
19883 if (first_word == elf32_arm_plt0_entry[0])
19884 plt0_size = 4 * ARRAY_SIZE (elf32_arm_plt0_entry);
19885 else if (first_word == elf32_thumb2_plt0_entry[0])
19886 plt0_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
19887 else
19888 /* We don't yet handle this PLT format. */
19889 return (bfd_vma) -1;
19890
19891 return plt0_size;
19892}
19893
19894/* Return size of plt entry starting at offset OFFSET
19895 of plt section located at address START
19896 or (bfd_vma) -1 if size can not be determined. */
19897
19898static bfd_vma
19899elf32_arm_plt_size (const bfd *abfd, const bfd_byte *start, bfd_vma offset)
19900{
19901 bfd_vma first_insn;
19902 bfd_vma plt_size = 0;
19903 const bfd_byte *addr = start + offset;
19904
19905 /* PLT entry size if fixed on Thumb-only platforms. */
685e70ae 19906 if (read_code32 (abfd, start) == elf32_thumb2_plt0_entry[0])
6a631e86
YG
19907 return 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
19908
19909 /* Respect Thumb stub if necessary. */
685e70ae 19910 if (read_code16 (abfd, addr) == elf32_arm_plt_thumb_stub[0])
6a631e86
YG
19911 {
19912 plt_size += 2 * ARRAY_SIZE(elf32_arm_plt_thumb_stub);
19913 }
19914
19915 /* Strip immediate from first add. */
685e70ae 19916 first_insn = read_code32 (abfd, addr + plt_size) & 0xffffff00;
6a631e86
YG
19917
19918#ifdef FOUR_WORD_PLT
19919 if (first_insn == elf32_arm_plt_entry[0])
19920 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry);
19921#else
19922 if (first_insn == elf32_arm_plt_entry_long[0])
19923 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_long);
19924 else if (first_insn == elf32_arm_plt_entry_short[0])
19925 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_short);
19926#endif
19927 else
19928 /* We don't yet handle this PLT format. */
19929 return (bfd_vma) -1;
19930
19931 return plt_size;
19932}
19933
19934/* Implementation is shamelessly borrowed from _bfd_elf_get_synthetic_symtab. */
19935
19936static long
19937elf32_arm_get_synthetic_symtab (bfd *abfd,
19938 long symcount ATTRIBUTE_UNUSED,
19939 asymbol **syms ATTRIBUTE_UNUSED,
19940 long dynsymcount,
19941 asymbol **dynsyms,
19942 asymbol **ret)
19943{
19944 asection *relplt;
19945 asymbol *s;
19946 arelent *p;
19947 long count, i, n;
19948 size_t size;
19949 Elf_Internal_Shdr *hdr;
19950 char *names;
19951 asection *plt;
19952 bfd_vma offset;
19953 bfd_byte *data;
19954
19955 *ret = NULL;
19956
19957 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
19958 return 0;
19959
19960 if (dynsymcount <= 0)
19961 return 0;
19962
19963 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
19964 if (relplt == NULL)
19965 return 0;
19966
19967 hdr = &elf_section_data (relplt)->this_hdr;
19968 if (hdr->sh_link != elf_dynsymtab (abfd)
19969 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
19970 return 0;
19971
19972 plt = bfd_get_section_by_name (abfd, ".plt");
19973 if (plt == NULL)
19974 return 0;
19975
19976 if (!elf32_arm_size_info.slurp_reloc_table (abfd, relplt, dynsyms, TRUE))
19977 return -1;
19978
19979 data = plt->contents;
19980 if (data == NULL)
19981 {
19982 if (!bfd_get_full_section_contents(abfd, (asection *) plt, &data) || data == NULL)
19983 return -1;
19984 bfd_cache_section_contents((asection *) plt, data);
19985 }
19986
19987 count = relplt->size / hdr->sh_entsize;
19988 size = count * sizeof (asymbol);
19989 p = relplt->relocation;
19990 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
19991 {
19992 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
19993 if (p->addend != 0)
19994 size += sizeof ("+0x") - 1 + 8;
19995 }
19996
19997 s = *ret = (asymbol *) bfd_malloc (size);
19998 if (s == NULL)
19999 return -1;
20000
20001 offset = elf32_arm_plt0_size (abfd, data);
20002 if (offset == (bfd_vma) -1)
20003 return -1;
20004
20005 names = (char *) (s + count);
20006 p = relplt->relocation;
20007 n = 0;
20008 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
20009 {
20010 size_t len;
20011
20012 bfd_vma plt_size = elf32_arm_plt_size (abfd, data, offset);
20013 if (plt_size == (bfd_vma) -1)
20014 break;
20015
20016 *s = **p->sym_ptr_ptr;
20017 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
20018 we are defining a symbol, ensure one of them is set. */
20019 if ((s->flags & BSF_LOCAL) == 0)
20020 s->flags |= BSF_GLOBAL;
20021 s->flags |= BSF_SYNTHETIC;
20022 s->section = plt;
20023 s->value = offset;
20024 s->name = names;
20025 s->udata.p = NULL;
20026 len = strlen ((*p->sym_ptr_ptr)->name);
20027 memcpy (names, (*p->sym_ptr_ptr)->name, len);
20028 names += len;
20029 if (p->addend != 0)
20030 {
20031 char buf[30], *a;
20032
20033 memcpy (names, "+0x", sizeof ("+0x") - 1);
20034 names += sizeof ("+0x") - 1;
20035 bfd_sprintf_vma (abfd, buf, p->addend);
20036 for (a = buf; *a == '0'; ++a)
20037 ;
20038 len = strlen (a);
20039 memcpy (names, a, len);
20040 names += len;
20041 }
20042 memcpy (names, "@plt", sizeof ("@plt"));
20043 names += sizeof ("@plt");
20044 ++s, ++n;
20045 offset += plt_size;
20046 }
20047
20048 return n;
20049}
20050
ac4c9b04
MG
20051static bfd_boolean
20052elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr * hdr)
20053{
f0728ee3
AV
20054 if (hdr->sh_flags & SHF_ARM_PURECODE)
20055 *flags |= SEC_ELF_PURECODE;
ac4c9b04
MG
20056 return TRUE;
20057}
20058
20059static flagword
20060elf32_arm_lookup_section_flags (char *flag_name)
20061{
f0728ee3
AV
20062 if (!strcmp (flag_name, "SHF_ARM_PURECODE"))
20063 return SHF_ARM_PURECODE;
ac4c9b04
MG
20064
20065 return SEC_NO_FLAGS;
20066}
20067
491d01d3
YU
20068static unsigned int
20069elf32_arm_count_additional_relocs (asection *sec)
20070{
20071 struct _arm_elf_section_data *arm_data;
20072 arm_data = get_arm_elf_section_data (sec);
5025eb7c 20073
6342be70 20074 return arm_data == NULL ? 0 : arm_data->additional_reloc_count;
491d01d3
YU
20075}
20076
5522f910 20077/* Called to set the sh_flags, sh_link and sh_info fields of OSECTION which
9eaff861 20078 has a type >= SHT_LOOS. Returns TRUE if these fields were initialised
5522f910
NC
20079 FALSE otherwise. ISECTION is the best guess matching section from the
20080 input bfd IBFD, but it might be NULL. */
20081
20082static bfd_boolean
20083elf32_arm_copy_special_section_fields (const bfd *ibfd ATTRIBUTE_UNUSED,
20084 bfd *obfd ATTRIBUTE_UNUSED,
20085 const Elf_Internal_Shdr *isection ATTRIBUTE_UNUSED,
20086 Elf_Internal_Shdr *osection)
20087{
20088 switch (osection->sh_type)
20089 {
20090 case SHT_ARM_EXIDX:
20091 {
20092 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
20093 Elf_Internal_Shdr **iheaders = elf_elfsections (ibfd);
20094 unsigned i = 0;
20095
20096 osection->sh_flags = SHF_ALLOC | SHF_LINK_ORDER;
20097 osection->sh_info = 0;
20098
20099 /* The sh_link field must be set to the text section associated with
20100 this index section. Unfortunately the ARM EHABI does not specify
20101 exactly how to determine this association. Our caller does try
20102 to match up OSECTION with its corresponding input section however
20103 so that is a good first guess. */
20104 if (isection != NULL
20105 && osection->bfd_section != NULL
20106 && isection->bfd_section != NULL
20107 && isection->bfd_section->output_section != NULL
20108 && isection->bfd_section->output_section == osection->bfd_section
20109 && iheaders != NULL
20110 && isection->sh_link > 0
20111 && isection->sh_link < elf_numsections (ibfd)
20112 && iheaders[isection->sh_link]->bfd_section != NULL
20113 && iheaders[isection->sh_link]->bfd_section->output_section != NULL
20114 )
20115 {
20116 for (i = elf_numsections (obfd); i-- > 0;)
20117 if (oheaders[i]->bfd_section
20118 == iheaders[isection->sh_link]->bfd_section->output_section)
20119 break;
20120 }
9eaff861 20121
5522f910
NC
20122 if (i == 0)
20123 {
20124 /* Failing that we have to find a matching section ourselves. If
20125 we had the output section name available we could compare that
20126 with input section names. Unfortunately we don't. So instead
20127 we use a simple heuristic and look for the nearest executable
20128 section before this one. */
20129 for (i = elf_numsections (obfd); i-- > 0;)
20130 if (oheaders[i] == osection)
20131 break;
20132 if (i == 0)
20133 break;
20134
20135 while (i-- > 0)
20136 if (oheaders[i]->sh_type == SHT_PROGBITS
20137 && (oheaders[i]->sh_flags & (SHF_ALLOC | SHF_EXECINSTR))
20138 == (SHF_ALLOC | SHF_EXECINSTR))
20139 break;
20140 }
20141
20142 if (i)
20143 {
20144 osection->sh_link = i;
20145 /* If the text section was part of a group
20146 then the index section should be too. */
20147 if (oheaders[i]->sh_flags & SHF_GROUP)
20148 osection->sh_flags |= SHF_GROUP;
20149 return TRUE;
20150 }
20151 }
20152 break;
20153
20154 case SHT_ARM_PREEMPTMAP:
20155 osection->sh_flags = SHF_ALLOC;
20156 break;
20157
20158 case SHT_ARM_ATTRIBUTES:
20159 case SHT_ARM_DEBUGOVERLAY:
20160 case SHT_ARM_OVERLAYSECTION:
20161 default:
20162 break;
20163 }
20164
20165 return FALSE;
20166}
20167
d691934d
NC
20168/* Returns TRUE if NAME is an ARM mapping symbol.
20169 Traditionally the symbols $a, $d and $t have been used.
20170 The ARM ELF standard also defines $x (for A64 code). It also allows a
20171 period initiated suffix to be added to the symbol: "$[adtx]\.[:sym_char]+".
20172 Other tools might also produce $b (Thumb BL), $f, $p, $m and $v, but we do
20173 not support them here. $t.x indicates the start of ThumbEE instructions. */
20174
20175static bfd_boolean
20176is_arm_mapping_symbol (const char * name)
20177{
20178 return name != NULL /* Paranoia. */
20179 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
20180 the mapping symbols could have acquired a prefix.
20181 We do not support this here, since such symbols no
20182 longer conform to the ARM ELF ABI. */
20183 && (name[1] == 'a' || name[1] == 'd' || name[1] == 't' || name[1] == 'x')
20184 && (name[2] == 0 || name[2] == '.');
20185 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
20186 any characters that follow the period are legal characters for the body
20187 of a symbol's name. For now we just assume that this is the case. */
20188}
20189
fca2a38f
NC
20190/* Make sure that mapping symbols in object files are not removed via the
20191 "strip --strip-unneeded" tool. These symbols are needed in order to
20192 correctly generate interworking veneers, and for byte swapping code
20193 regions. Once an object file has been linked, it is safe to remove the
20194 symbols as they will no longer be needed. */
20195
20196static void
20197elf32_arm_backend_symbol_processing (bfd *abfd, asymbol *sym)
20198{
20199 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
fca2a38f 20200 && sym->section != bfd_abs_section_ptr
d691934d 20201 && is_arm_mapping_symbol (sym->name))
fca2a38f
NC
20202 sym->flags |= BSF_KEEP;
20203}
20204
5522f910
NC
20205#undef elf_backend_copy_special_section_fields
20206#define elf_backend_copy_special_section_fields elf32_arm_copy_special_section_fields
20207
252b5132 20208#define ELF_ARCH bfd_arch_arm
ae95ffa6 20209#define ELF_TARGET_ID ARM_ELF_DATA
252b5132 20210#define ELF_MACHINE_CODE EM_ARM
d0facd1b
NC
20211#ifdef __QNXTARGET__
20212#define ELF_MAXPAGESIZE 0x1000
20213#else
7572ca89 20214#define ELF_MAXPAGESIZE 0x10000
d0facd1b 20215#endif
b1342370 20216#define ELF_MINPAGESIZE 0x1000
24718e3b 20217#define ELF_COMMONPAGESIZE 0x1000
252b5132 20218
07d6d2b8 20219#define bfd_elf32_mkobject elf32_arm_mkobject
ba93b8ac 20220
99e4ae17
AJ
20221#define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
20222#define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
252b5132
RH
20223#define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
20224#define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
07d6d2b8 20225#define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
dc810e39 20226#define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
b38cadfb 20227#define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
07d6d2b8
AM
20228#define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
20229#define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
e489d0ae 20230#define bfd_elf32_new_section_hook elf32_arm_new_section_hook
3c9458e9 20231#define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
3e6b1042 20232#define bfd_elf32_bfd_final_link elf32_arm_final_link
07d6d2b8 20233#define bfd_elf32_get_synthetic_symtab elf32_arm_get_synthetic_symtab
252b5132 20234
07d6d2b8
AM
20235#define elf_backend_get_symbol_type elf32_arm_get_symbol_type
20236#define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
6a5bb875 20237#define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
07d6d2b8 20238#define elf_backend_check_relocs elf32_arm_check_relocs
9eaff861 20239#define elf_backend_update_relocs elf32_arm_update_relocs
dc810e39 20240#define elf_backend_relocate_section elf32_arm_relocate_section
e489d0ae 20241#define elf_backend_write_section elf32_arm_write_section
252b5132 20242#define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
07d6d2b8 20243#define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
252b5132
RH
20244#define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
20245#define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
20246#define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
0855e32b 20247#define elf_backend_always_size_sections elf32_arm_always_size_sections
74541ad4 20248#define elf_backend_init_index_section _bfd_elf_init_2_index_sections
ba96a88f 20249#define elf_backend_post_process_headers elf32_arm_post_process_headers
99e4ae17 20250#define elf_backend_reloc_type_class elf32_arm_reloc_type_class
c178919b 20251#define elf_backend_object_p elf32_arm_object_p
07d6d2b8
AM
20252#define elf_backend_fake_sections elf32_arm_fake_sections
20253#define elf_backend_section_from_shdr elf32_arm_section_from_shdr
20254#define elf_backend_final_write_processing elf32_arm_final_write_processing
20255#define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
0beaef2b 20256#define elf_backend_size_info elf32_arm_size_info
b294bdf8 20257#define elf_backend_modify_segment_map elf32_arm_modify_segment_map
07d6d2b8
AM
20258#define elf_backend_additional_program_headers elf32_arm_additional_program_headers
20259#define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
54ddd295 20260#define elf_backend_filter_implib_symbols elf32_arm_filter_implib_symbols
07d6d2b8 20261#define elf_backend_begin_write_processing elf32_arm_begin_write_processing
34e77a92 20262#define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
491d01d3 20263#define elf_backend_count_additional_relocs elf32_arm_count_additional_relocs
fca2a38f 20264#define elf_backend_symbol_processing elf32_arm_backend_symbol_processing
906e58ca
NC
20265
20266#define elf_backend_can_refcount 1
20267#define elf_backend_can_gc_sections 1
20268#define elf_backend_plt_readonly 1
20269#define elf_backend_want_got_plt 1
20270#define elf_backend_want_plt_sym 0
5474d94f 20271#define elf_backend_want_dynrelro 1
906e58ca
NC
20272#define elf_backend_may_use_rel_p 1
20273#define elf_backend_may_use_rela_p 0
4e7fd91e 20274#define elf_backend_default_use_rela_p 0
64f52338 20275#define elf_backend_dtrel_excludes_plt 1
252b5132 20276
04f7c78d 20277#define elf_backend_got_header_size 12
b68a20d6 20278#define elf_backend_extern_protected_data 1
04f7c78d 20279
07d6d2b8 20280#undef elf_backend_obj_attrs_vendor
906e58ca 20281#define elf_backend_obj_attrs_vendor "aeabi"
07d6d2b8 20282#undef elf_backend_obj_attrs_section
906e58ca 20283#define elf_backend_obj_attrs_section ".ARM.attributes"
07d6d2b8 20284#undef elf_backend_obj_attrs_arg_type
906e58ca 20285#define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
07d6d2b8 20286#undef elf_backend_obj_attrs_section_type
104d59d1 20287#define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
b38cadfb 20288#define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
07d6d2b8 20289#define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
104d59d1 20290
07d6d2b8 20291#undef elf_backend_section_flags
ac4c9b04 20292#define elf_backend_section_flags elf32_arm_section_flags
07d6d2b8
AM
20293#undef elf_backend_lookup_section_flags_hook
20294#define elf_backend_lookup_section_flags_hook elf32_arm_lookup_section_flags
ac4c9b04 20295
a2f63b2e
MR
20296#define elf_backend_linux_prpsinfo32_ugid16 TRUE
20297
252b5132 20298#include "elf32-target.h"
7f266840 20299
b38cadfb
NC
20300/* Native Client targets. */
20301
20302#undef TARGET_LITTLE_SYM
6d00b590 20303#define TARGET_LITTLE_SYM arm_elf32_nacl_le_vec
b38cadfb
NC
20304#undef TARGET_LITTLE_NAME
20305#define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
20306#undef TARGET_BIG_SYM
6d00b590 20307#define TARGET_BIG_SYM arm_elf32_nacl_be_vec
b38cadfb
NC
20308#undef TARGET_BIG_NAME
20309#define TARGET_BIG_NAME "elf32-bigarm-nacl"
20310
20311/* Like elf32_arm_link_hash_table_create -- but overrides
20312 appropriately for NaCl. */
20313
20314static struct bfd_link_hash_table *
20315elf32_arm_nacl_link_hash_table_create (bfd *abfd)
20316{
20317 struct bfd_link_hash_table *ret;
20318
20319 ret = elf32_arm_link_hash_table_create (abfd);
20320 if (ret)
20321 {
20322 struct elf32_arm_link_hash_table *htab
20323 = (struct elf32_arm_link_hash_table *) ret;
20324
20325 htab->nacl_p = 1;
20326
20327 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry);
20328 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry);
20329 }
20330 return ret;
20331}
20332
20333/* Since NaCl doesn't use the ARM-specific unwind format, we don't
20334 really need to use elf32_arm_modify_segment_map. But we do it
20335 anyway just to reduce gratuitous differences with the stock ARM backend. */
20336
20337static bfd_boolean
20338elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
20339{
20340 return (elf32_arm_modify_segment_map (abfd, info)
20341 && nacl_modify_segment_map (abfd, info));
20342}
20343
887badb3
RM
20344static void
20345elf32_arm_nacl_final_write_processing (bfd *abfd, bfd_boolean linker)
20346{
20347 elf32_arm_final_write_processing (abfd, linker);
20348 nacl_final_write_processing (abfd, linker);
20349}
20350
6a631e86
YG
20351static bfd_vma
20352elf32_arm_nacl_plt_sym_val (bfd_vma i, const asection *plt,
20353 const arelent *rel ATTRIBUTE_UNUSED)
20354{
20355 return plt->vma
20356 + 4 * (ARRAY_SIZE (elf32_arm_nacl_plt0_entry) +
20357 i * ARRAY_SIZE (elf32_arm_nacl_plt_entry));
20358}
887badb3 20359
b38cadfb 20360#undef elf32_bed
6a631e86 20361#define elf32_bed elf32_arm_nacl_bed
b38cadfb
NC
20362#undef bfd_elf32_bfd_link_hash_table_create
20363#define bfd_elf32_bfd_link_hash_table_create \
20364 elf32_arm_nacl_link_hash_table_create
20365#undef elf_backend_plt_alignment
6a631e86 20366#define elf_backend_plt_alignment 4
b38cadfb
NC
20367#undef elf_backend_modify_segment_map
20368#define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
20369#undef elf_backend_modify_program_headers
20370#define elf_backend_modify_program_headers nacl_modify_program_headers
887badb3
RM
20371#undef elf_backend_final_write_processing
20372#define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing
6a631e86
YG
20373#undef bfd_elf32_get_synthetic_symtab
20374#undef elf_backend_plt_sym_val
20375#define elf_backend_plt_sym_val elf32_arm_nacl_plt_sym_val
5522f910 20376#undef elf_backend_copy_special_section_fields
b38cadfb 20377
887badb3
RM
20378#undef ELF_MINPAGESIZE
20379#undef ELF_COMMONPAGESIZE
20380
b38cadfb
NC
20381
20382#include "elf32-target.h"
20383
20384/* Reset to defaults. */
20385#undef elf_backend_plt_alignment
20386#undef elf_backend_modify_segment_map
20387#define elf_backend_modify_segment_map elf32_arm_modify_segment_map
20388#undef elf_backend_modify_program_headers
887badb3
RM
20389#undef elf_backend_final_write_processing
20390#define elf_backend_final_write_processing elf32_arm_final_write_processing
20391#undef ELF_MINPAGESIZE
20392#define ELF_MINPAGESIZE 0x1000
20393#undef ELF_COMMONPAGESIZE
20394#define ELF_COMMONPAGESIZE 0x1000
20395
b38cadfb 20396
617a5ada
CL
20397/* FDPIC Targets. */
20398
20399#undef TARGET_LITTLE_SYM
20400#define TARGET_LITTLE_SYM arm_elf32_fdpic_le_vec
20401#undef TARGET_LITTLE_NAME
20402#define TARGET_LITTLE_NAME "elf32-littlearm-fdpic"
20403#undef TARGET_BIG_SYM
20404#define TARGET_BIG_SYM arm_elf32_fdpic_be_vec
20405#undef TARGET_BIG_NAME
20406#define TARGET_BIG_NAME "elf32-bigarm-fdpic"
20407#undef elf_match_priority
20408#define elf_match_priority 128
18a20338
CL
20409#undef ELF_OSABI
20410#define ELF_OSABI ELFOSABI_ARM_FDPIC
617a5ada
CL
20411
20412/* Like elf32_arm_link_hash_table_create -- but overrides
20413 appropriately for FDPIC. */
20414
20415static struct bfd_link_hash_table *
20416elf32_arm_fdpic_link_hash_table_create (bfd *abfd)
20417{
20418 struct bfd_link_hash_table *ret;
20419
20420 ret = elf32_arm_link_hash_table_create (abfd);
20421 if (ret)
20422 {
20423 struct elf32_arm_link_hash_table *htab = (struct elf32_arm_link_hash_table *) ret;
20424
20425 htab->fdpic_p = 1;
20426 }
20427 return ret;
20428}
20429
e8b09b87
CL
20430/* We need dynamic symbols for every section, since segments can
20431 relocate independently. */
20432static bfd_boolean
20433elf32_arm_fdpic_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
20434 struct bfd_link_info *info
20435 ATTRIBUTE_UNUSED,
20436 asection *p ATTRIBUTE_UNUSED)
20437{
20438 switch (elf_section_data (p)->this_hdr.sh_type)
20439 {
20440 case SHT_PROGBITS:
20441 case SHT_NOBITS:
20442 /* If sh_type is yet undecided, assume it could be
20443 SHT_PROGBITS/SHT_NOBITS. */
20444 case SHT_NULL:
20445 return FALSE;
20446
20447 /* There shouldn't be section relative relocations
20448 against any other section. */
20449 default:
20450 return TRUE;
20451 }
20452}
20453
617a5ada
CL
20454#undef elf32_bed
20455#define elf32_bed elf32_arm_fdpic_bed
20456
20457#undef bfd_elf32_bfd_link_hash_table_create
20458#define bfd_elf32_bfd_link_hash_table_create elf32_arm_fdpic_link_hash_table_create
20459
e8b09b87
CL
20460#undef elf_backend_omit_section_dynsym
20461#define elf_backend_omit_section_dynsym elf32_arm_fdpic_omit_section_dynsym
20462
617a5ada 20463#include "elf32-target.h"
e8b09b87 20464
617a5ada 20465#undef elf_match_priority
18a20338 20466#undef ELF_OSABI
e8b09b87 20467#undef elf_backend_omit_section_dynsym
617a5ada 20468
906e58ca 20469/* VxWorks Targets. */
4e7fd91e 20470
07d6d2b8
AM
20471#undef TARGET_LITTLE_SYM
20472#define TARGET_LITTLE_SYM arm_elf32_vxworks_le_vec
20473#undef TARGET_LITTLE_NAME
20474#define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
20475#undef TARGET_BIG_SYM
20476#define TARGET_BIG_SYM arm_elf32_vxworks_be_vec
20477#undef TARGET_BIG_NAME
20478#define TARGET_BIG_NAME "elf32-bigarm-vxworks"
4e7fd91e
PB
20479
20480/* Like elf32_arm_link_hash_table_create -- but overrides
20481 appropriately for VxWorks. */
906e58ca 20482
4e7fd91e
PB
20483static struct bfd_link_hash_table *
20484elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
20485{
20486 struct bfd_link_hash_table *ret;
20487
20488 ret = elf32_arm_link_hash_table_create (abfd);
20489 if (ret)
20490 {
20491 struct elf32_arm_link_hash_table *htab
00a97672 20492 = (struct elf32_arm_link_hash_table *) ret;
4e7fd91e 20493 htab->use_rel = 0;
00a97672 20494 htab->vxworks_p = 1;
4e7fd91e
PB
20495 }
20496 return ret;
906e58ca 20497}
4e7fd91e 20498
00a97672
RS
20499static void
20500elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
20501{
20502 elf32_arm_final_write_processing (abfd, linker);
20503 elf_vxworks_final_write_processing (abfd, linker);
20504}
20505
906e58ca 20506#undef elf32_bed
4e7fd91e
PB
20507#define elf32_bed elf32_arm_vxworks_bed
20508
906e58ca
NC
20509#undef bfd_elf32_bfd_link_hash_table_create
20510#define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
906e58ca
NC
20511#undef elf_backend_final_write_processing
20512#define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
20513#undef elf_backend_emit_relocs
9eaff861 20514#define elf_backend_emit_relocs elf_vxworks_emit_relocs
4e7fd91e 20515
906e58ca 20516#undef elf_backend_may_use_rel_p
00a97672 20517#define elf_backend_may_use_rel_p 0
906e58ca 20518#undef elf_backend_may_use_rela_p
00a97672 20519#define elf_backend_may_use_rela_p 1
906e58ca 20520#undef elf_backend_default_use_rela_p
00a97672 20521#define elf_backend_default_use_rela_p 1
906e58ca 20522#undef elf_backend_want_plt_sym
00a97672 20523#define elf_backend_want_plt_sym 1
906e58ca 20524#undef ELF_MAXPAGESIZE
00a97672 20525#define ELF_MAXPAGESIZE 0x1000
4e7fd91e
PB
20526
20527#include "elf32-target.h"
20528
20529
21d799b5
NC
20530/* Merge backend specific data from an object file to the output
20531 object file when linking. */
20532
20533static bfd_boolean
50e03d47 20534elf32_arm_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
21d799b5 20535{
50e03d47 20536 bfd *obfd = info->output_bfd;
21d799b5
NC
20537 flagword out_flags;
20538 flagword in_flags;
20539 bfd_boolean flags_compatible = TRUE;
20540 asection *sec;
20541
cc643b88 20542 /* Check if we have the same endianness. */
50e03d47 20543 if (! _bfd_generic_verify_endian_match (ibfd, info))
21d799b5
NC
20544 return FALSE;
20545
20546 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
20547 return TRUE;
20548
50e03d47 20549 if (!elf32_arm_merge_eabi_attributes (ibfd, info))
21d799b5
NC
20550 return FALSE;
20551
20552 /* The input BFD must have had its flags initialised. */
20553 /* The following seems bogus to me -- The flags are initialized in
20554 the assembler but I don't think an elf_flags_init field is
20555 written into the object. */
20556 /* BFD_ASSERT (elf_flags_init (ibfd)); */
20557
20558 in_flags = elf_elfheader (ibfd)->e_flags;
20559 out_flags = elf_elfheader (obfd)->e_flags;
20560
20561 /* In theory there is no reason why we couldn't handle this. However
20562 in practice it isn't even close to working and there is no real
20563 reason to want it. */
20564 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
20565 && !(ibfd->flags & DYNAMIC)
20566 && (in_flags & EF_ARM_BE8))
20567 {
871b3ab2 20568 _bfd_error_handler (_("error: %pB is already in final BE8 format"),
21d799b5
NC
20569 ibfd);
20570 return FALSE;
20571 }
20572
20573 if (!elf_flags_init (obfd))
20574 {
20575 /* If the input is the default architecture and had the default
20576 flags then do not bother setting the flags for the output
20577 architecture, instead allow future merges to do this. If no
20578 future merges ever set these flags then they will retain their
99059e56
RM
20579 uninitialised values, which surprise surprise, correspond
20580 to the default values. */
21d799b5
NC
20581 if (bfd_get_arch_info (ibfd)->the_default
20582 && elf_elfheader (ibfd)->e_flags == 0)
20583 return TRUE;
20584
20585 elf_flags_init (obfd) = TRUE;
20586 elf_elfheader (obfd)->e_flags = in_flags;
20587
20588 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
20589 && bfd_get_arch_info (obfd)->the_default)
20590 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
20591
20592 return TRUE;
20593 }
20594
20595 /* Determine what should happen if the input ARM architecture
20596 does not match the output ARM architecture. */
20597 if (! bfd_arm_merge_machines (ibfd, obfd))
20598 return FALSE;
20599
20600 /* Identical flags must be compatible. */
20601 if (in_flags == out_flags)
20602 return TRUE;
20603
20604 /* Check to see if the input BFD actually contains any sections. If
20605 not, its flags may not have been initialised either, but it
20606 cannot actually cause any incompatiblity. Do not short-circuit
20607 dynamic objects; their section list may be emptied by
20608 elf_link_add_object_symbols.
20609
20610 Also check to see if there are no code sections in the input.
20611 In this case there is no need to check for code specific flags.
20612 XXX - do we need to worry about floating-point format compatability
20613 in data sections ? */
20614 if (!(ibfd->flags & DYNAMIC))
20615 {
20616 bfd_boolean null_input_bfd = TRUE;
20617 bfd_boolean only_data_sections = TRUE;
20618
20619 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
20620 {
20621 /* Ignore synthetic glue sections. */
20622 if (strcmp (sec->name, ".glue_7")
20623 && strcmp (sec->name, ".glue_7t"))
20624 {
20625 if ((bfd_get_section_flags (ibfd, sec)
20626 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
20627 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
99059e56 20628 only_data_sections = FALSE;
21d799b5
NC
20629
20630 null_input_bfd = FALSE;
20631 break;
20632 }
20633 }
20634
20635 if (null_input_bfd || only_data_sections)
20636 return TRUE;
20637 }
20638
20639 /* Complain about various flag mismatches. */
20640 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
20641 EF_ARM_EABI_VERSION (out_flags)))
20642 {
20643 _bfd_error_handler
90b6238f 20644 (_("error: source object %pB has EABI version %d, but target %pB has EABI version %d"),
c08bb8dd
AM
20645 ibfd, (in_flags & EF_ARM_EABIMASK) >> 24,
20646 obfd, (out_flags & EF_ARM_EABIMASK) >> 24);
21d799b5
NC
20647 return FALSE;
20648 }
20649
20650 /* Not sure what needs to be checked for EABI versions >= 1. */
20651 /* VxWorks libraries do not use these flags. */
20652 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
20653 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
20654 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
20655 {
20656 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
20657 {
20658 _bfd_error_handler
871b3ab2 20659 (_("error: %pB is compiled for APCS-%d, whereas target %pB uses APCS-%d"),
c08bb8dd
AM
20660 ibfd, in_flags & EF_ARM_APCS_26 ? 26 : 32,
20661 obfd, out_flags & EF_ARM_APCS_26 ? 26 : 32);
21d799b5
NC
20662 flags_compatible = FALSE;
20663 }
20664
20665 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
20666 {
20667 if (in_flags & EF_ARM_APCS_FLOAT)
20668 _bfd_error_handler
871b3ab2 20669 (_("error: %pB passes floats in float registers, whereas %pB passes them in integer registers"),
21d799b5
NC
20670 ibfd, obfd);
20671 else
20672 _bfd_error_handler
871b3ab2 20673 (_("error: %pB passes floats in integer registers, whereas %pB passes them in float registers"),
21d799b5
NC
20674 ibfd, obfd);
20675
20676 flags_compatible = FALSE;
20677 }
20678
20679 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
20680 {
20681 if (in_flags & EF_ARM_VFP_FLOAT)
20682 _bfd_error_handler
90b6238f
AM
20683 (_("error: %pB uses %s instructions, whereas %pB does not"),
20684 ibfd, "VFP", obfd);
21d799b5
NC
20685 else
20686 _bfd_error_handler
90b6238f
AM
20687 (_("error: %pB uses %s instructions, whereas %pB does not"),
20688 ibfd, "FPA", obfd);
21d799b5
NC
20689
20690 flags_compatible = FALSE;
20691 }
20692
20693 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
20694 {
20695 if (in_flags & EF_ARM_MAVERICK_FLOAT)
20696 _bfd_error_handler
90b6238f
AM
20697 (_("error: %pB uses %s instructions, whereas %pB does not"),
20698 ibfd, "Maverick", obfd);
21d799b5
NC
20699 else
20700 _bfd_error_handler
90b6238f
AM
20701 (_("error: %pB does not use %s instructions, whereas %pB does"),
20702 ibfd, "Maverick", obfd);
21d799b5
NC
20703
20704 flags_compatible = FALSE;
20705 }
20706
20707#ifdef EF_ARM_SOFT_FLOAT
20708 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
20709 {
20710 /* We can allow interworking between code that is VFP format
20711 layout, and uses either soft float or integer regs for
20712 passing floating point arguments and results. We already
20713 know that the APCS_FLOAT flags match; similarly for VFP
20714 flags. */
20715 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
20716 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
20717 {
20718 if (in_flags & EF_ARM_SOFT_FLOAT)
20719 _bfd_error_handler
871b3ab2 20720 (_("error: %pB uses software FP, whereas %pB uses hardware FP"),
21d799b5
NC
20721 ibfd, obfd);
20722 else
20723 _bfd_error_handler
871b3ab2 20724 (_("error: %pB uses hardware FP, whereas %pB uses software FP"),
21d799b5
NC
20725 ibfd, obfd);
20726
20727 flags_compatible = FALSE;
20728 }
20729 }
20730#endif
20731
20732 /* Interworking mismatch is only a warning. */
20733 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
20734 {
20735 if (in_flags & EF_ARM_INTERWORK)
20736 {
20737 _bfd_error_handler
90b6238f 20738 (_("warning: %pB supports interworking, whereas %pB does not"),
21d799b5
NC
20739 ibfd, obfd);
20740 }
20741 else
20742 {
20743 _bfd_error_handler
90b6238f 20744 (_("warning: %pB does not support interworking, whereas %pB does"),
21d799b5
NC
20745 ibfd, obfd);
20746 }
20747 }
20748 }
20749
20750 return flags_compatible;
20751}
20752
20753
906e58ca 20754/* Symbian OS Targets. */
7f266840 20755
07d6d2b8
AM
20756#undef TARGET_LITTLE_SYM
20757#define TARGET_LITTLE_SYM arm_elf32_symbian_le_vec
20758#undef TARGET_LITTLE_NAME
20759#define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
20760#undef TARGET_BIG_SYM
20761#define TARGET_BIG_SYM arm_elf32_symbian_be_vec
20762#undef TARGET_BIG_NAME
20763#define TARGET_BIG_NAME "elf32-bigarm-symbian"
7f266840
DJ
20764
20765/* Like elf32_arm_link_hash_table_create -- but overrides
20766 appropriately for Symbian OS. */
906e58ca 20767
7f266840
DJ
20768static struct bfd_link_hash_table *
20769elf32_arm_symbian_link_hash_table_create (bfd *abfd)
20770{
20771 struct bfd_link_hash_table *ret;
20772
20773 ret = elf32_arm_link_hash_table_create (abfd);
20774 if (ret)
20775 {
20776 struct elf32_arm_link_hash_table *htab
20777 = (struct elf32_arm_link_hash_table *)ret;
20778 /* There is no PLT header for Symbian OS. */
20779 htab->plt_header_size = 0;
95720a86
DJ
20780 /* The PLT entries are each one instruction and one word. */
20781 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
7f266840 20782 htab->symbian_p = 1;
33bfe774
JB
20783 /* Symbian uses armv5t or above, so use_blx is always true. */
20784 htab->use_blx = 1;
67687978 20785 htab->root.is_relocatable_executable = 1;
7f266840
DJ
20786 }
20787 return ret;
906e58ca 20788}
7f266840 20789
b35d266b 20790static const struct bfd_elf_special_section
551b43fd 20791elf32_arm_symbian_special_sections[] =
7f266840 20792{
5cd3778d
MM
20793 /* In a BPABI executable, the dynamic linking sections do not go in
20794 the loadable read-only segment. The post-linker may wish to
20795 refer to these sections, but they are not part of the final
20796 program image. */
07d6d2b8
AM
20797 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
20798 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
20799 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
20800 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
20801 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
5cd3778d
MM
20802 /* These sections do not need to be writable as the SymbianOS
20803 postlinker will arrange things so that no dynamic relocation is
20804 required. */
07d6d2b8
AM
20805 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
20806 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
0112cd26 20807 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
07d6d2b8 20808 { NULL, 0, 0, 0, 0 }
7f266840
DJ
20809};
20810
c3c76620 20811static void
906e58ca 20812elf32_arm_symbian_begin_write_processing (bfd *abfd,
a4fd1a8e 20813 struct bfd_link_info *link_info)
c3c76620
MM
20814{
20815 /* BPABI objects are never loaded directly by an OS kernel; they are
20816 processed by a postlinker first, into an OS-specific format. If
20817 the D_PAGED bit is set on the file, BFD will align segments on
20818 page boundaries, so that an OS can directly map the file. With
20819 BPABI objects, that just results in wasted space. In addition,
20820 because we clear the D_PAGED bit, map_sections_to_segments will
20821 recognize that the program headers should not be mapped into any
20822 loadable segment. */
20823 abfd->flags &= ~D_PAGED;
906e58ca 20824 elf32_arm_begin_write_processing (abfd, link_info);
c3c76620 20825}
7f266840
DJ
20826
20827static bfd_boolean
906e58ca 20828elf32_arm_symbian_modify_segment_map (bfd *abfd,
b294bdf8 20829 struct bfd_link_info *info)
7f266840
DJ
20830{
20831 struct elf_segment_map *m;
20832 asection *dynsec;
20833
7f266840
DJ
20834 /* BPABI shared libraries and executables should have a PT_DYNAMIC
20835 segment. However, because the .dynamic section is not marked
20836 with SEC_LOAD, the generic ELF code will not create such a
20837 segment. */
20838 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
20839 if (dynsec)
20840 {
12bd6957 20841 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
8ded5a0f
AM
20842 if (m->p_type == PT_DYNAMIC)
20843 break;
20844
20845 if (m == NULL)
20846 {
20847 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
12bd6957
AM
20848 m->next = elf_seg_map (abfd);
20849 elf_seg_map (abfd) = m;
8ded5a0f 20850 }
7f266840
DJ
20851 }
20852
b294bdf8
MM
20853 /* Also call the generic arm routine. */
20854 return elf32_arm_modify_segment_map (abfd, info);
7f266840
DJ
20855}
20856
95720a86
DJ
20857/* Return address for Ith PLT stub in section PLT, for relocation REL
20858 or (bfd_vma) -1 if it should not be included. */
20859
20860static bfd_vma
20861elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
20862 const arelent *rel ATTRIBUTE_UNUSED)
20863{
20864 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
20865}
20866
8029a119 20867#undef elf32_bed
7f266840
DJ
20868#define elf32_bed elf32_arm_symbian_bed
20869
20870/* The dynamic sections are not allocated on SymbianOS; the postlinker
20871 will process them and then discard them. */
906e58ca 20872#undef ELF_DYNAMIC_SEC_FLAGS
7f266840
DJ
20873#define ELF_DYNAMIC_SEC_FLAGS \
20874 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
20875
9eaff861 20876#undef elf_backend_emit_relocs
c3c76620 20877
906e58ca
NC
20878#undef bfd_elf32_bfd_link_hash_table_create
20879#define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
20880#undef elf_backend_special_sections
07d6d2b8 20881#define elf_backend_special_sections elf32_arm_symbian_special_sections
906e58ca
NC
20882#undef elf_backend_begin_write_processing
20883#define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
20884#undef elf_backend_final_write_processing
20885#define elf_backend_final_write_processing elf32_arm_final_write_processing
20886
20887#undef elf_backend_modify_segment_map
7f266840
DJ
20888#define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
20889
20890/* There is no .got section for BPABI objects, and hence no header. */
906e58ca 20891#undef elf_backend_got_header_size
7f266840
DJ
20892#define elf_backend_got_header_size 0
20893
20894/* Similarly, there is no .got.plt section. */
906e58ca 20895#undef elf_backend_want_got_plt
7f266840
DJ
20896#define elf_backend_want_got_plt 0
20897
906e58ca 20898#undef elf_backend_plt_sym_val
95720a86
DJ
20899#define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
20900
906e58ca 20901#undef elf_backend_may_use_rel_p
00a97672 20902#define elf_backend_may_use_rel_p 1
906e58ca 20903#undef elf_backend_may_use_rela_p
00a97672 20904#define elf_backend_may_use_rela_p 0
906e58ca 20905#undef elf_backend_default_use_rela_p
00a97672 20906#define elf_backend_default_use_rela_p 0
906e58ca 20907#undef elf_backend_want_plt_sym
00a97672 20908#define elf_backend_want_plt_sym 0
64f52338
AM
20909#undef elf_backend_dtrel_excludes_plt
20910#define elf_backend_dtrel_excludes_plt 0
906e58ca 20911#undef ELF_MAXPAGESIZE
00a97672 20912#define ELF_MAXPAGESIZE 0x8000
4e7fd91e 20913
7f266840 20914#include "elf32-target.h"
This page took 2.658337 seconds and 4 git commands to generate.