Fix a typo in the description of the strings program.
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
CommitLineData
252b5132 1/* 32-bit ELF support for ARM
b3adc24a 2 Copyright (C) 1998-2020 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
cd123cb7 8 the Free Software Foundation; either version 3 of the License, or
252b5132
RH
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
cd123cb7
NC
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
252b5132 20
6e6718a3 21#include "sysdep.h"
2468f9c9
PB
22#include <limits.h>
23
3db64b00 24#include "bfd.h"
00a97672 25#include "libiberty.h"
7f266840
DJ
26#include "libbfd.h"
27#include "elf-bfd.h"
b38cadfb 28#include "elf-nacl.h"
00a97672 29#include "elf-vxworks.h"
ee065d83 30#include "elf/arm.h"
f37164d7
AM
31#include "elf32-arm.h"
32#include "cpu-arm.h"
7f266840 33
00a97672
RS
34/* Return the relocation section associated with NAME. HTAB is the
35 bfd's elf32_arm_link_hash_entry. */
36#define RELOC_SECTION(HTAB, NAME) \
37 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
38
39/* Return size of a relocation entry. HTAB is the bfd's
40 elf32_arm_link_hash_entry. */
41#define RELOC_SIZE(HTAB) \
42 ((HTAB)->use_rel \
43 ? sizeof (Elf32_External_Rel) \
44 : sizeof (Elf32_External_Rela))
45
46/* Return function to swap relocations in. HTAB is the bfd's
47 elf32_arm_link_hash_entry. */
48#define SWAP_RELOC_IN(HTAB) \
49 ((HTAB)->use_rel \
50 ? bfd_elf32_swap_reloc_in \
51 : bfd_elf32_swap_reloca_in)
52
53/* Return function to swap relocations out. HTAB is the bfd's
54 elf32_arm_link_hash_entry. */
55#define SWAP_RELOC_OUT(HTAB) \
56 ((HTAB)->use_rel \
57 ? bfd_elf32_swap_reloc_out \
58 : bfd_elf32_swap_reloca_out)
59
f3185997 60#define elf_info_to_howto NULL
07d6d2b8 61#define elf_info_to_howto_rel elf32_arm_info_to_howto
7f266840
DJ
62
63#define ARM_ELF_ABI_VERSION 0
64#define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
65
79f08007
YZ
66/* The Adjusted Place, as defined by AAELF. */
67#define Pa(X) ((X) & 0xfffffffc)
68
3e6b1042
DJ
69static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
70 struct bfd_link_info *link_info,
71 asection *sec,
72 bfd_byte *contents);
73
7f266840
DJ
74/* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
75 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
76 in that slot. */
77
c19d1205 78static reloc_howto_type elf32_arm_howto_table_1[] =
7f266840 79{
8029a119 80 /* No relocation. */
7f266840
DJ
81 HOWTO (R_ARM_NONE, /* type */
82 0, /* rightshift */
6346d5ca 83 3, /* size (0 = byte, 1 = short, 2 = long) */
7f266840
DJ
84 0, /* bitsize */
85 FALSE, /* pc_relative */
86 0, /* bitpos */
87 complain_overflow_dont,/* complain_on_overflow */
88 bfd_elf_generic_reloc, /* special_function */
89 "R_ARM_NONE", /* name */
90 FALSE, /* partial_inplace */
91 0, /* src_mask */
92 0, /* dst_mask */
93 FALSE), /* pcrel_offset */
94
95 HOWTO (R_ARM_PC24, /* type */
96 2, /* rightshift */
97 2, /* size (0 = byte, 1 = short, 2 = long) */
98 24, /* bitsize */
99 TRUE, /* pc_relative */
100 0, /* bitpos */
101 complain_overflow_signed,/* complain_on_overflow */
102 bfd_elf_generic_reloc, /* special_function */
103 "R_ARM_PC24", /* name */
104 FALSE, /* partial_inplace */
105 0x00ffffff, /* src_mask */
106 0x00ffffff, /* dst_mask */
107 TRUE), /* pcrel_offset */
108
109 /* 32 bit absolute */
110 HOWTO (R_ARM_ABS32, /* type */
111 0, /* rightshift */
112 2, /* size (0 = byte, 1 = short, 2 = long) */
113 32, /* bitsize */
114 FALSE, /* pc_relative */
115 0, /* bitpos */
116 complain_overflow_bitfield,/* complain_on_overflow */
117 bfd_elf_generic_reloc, /* special_function */
118 "R_ARM_ABS32", /* name */
119 FALSE, /* partial_inplace */
120 0xffffffff, /* src_mask */
121 0xffffffff, /* dst_mask */
122 FALSE), /* pcrel_offset */
123
124 /* standard 32bit pc-relative reloc */
125 HOWTO (R_ARM_REL32, /* type */
126 0, /* rightshift */
127 2, /* size (0 = byte, 1 = short, 2 = long) */
128 32, /* bitsize */
129 TRUE, /* pc_relative */
130 0, /* bitpos */
131 complain_overflow_bitfield,/* complain_on_overflow */
132 bfd_elf_generic_reloc, /* special_function */
133 "R_ARM_REL32", /* name */
134 FALSE, /* partial_inplace */
135 0xffffffff, /* src_mask */
136 0xffffffff, /* dst_mask */
137 TRUE), /* pcrel_offset */
138
c19d1205 139 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
4962c51a 140 HOWTO (R_ARM_LDR_PC_G0, /* type */
7f266840
DJ
141 0, /* rightshift */
142 0, /* size (0 = byte, 1 = short, 2 = long) */
4962c51a
MS
143 32, /* bitsize */
144 TRUE, /* pc_relative */
7f266840 145 0, /* bitpos */
4962c51a 146 complain_overflow_dont,/* complain_on_overflow */
7f266840 147 bfd_elf_generic_reloc, /* special_function */
4962c51a 148 "R_ARM_LDR_PC_G0", /* name */
7f266840 149 FALSE, /* partial_inplace */
4962c51a
MS
150 0xffffffff, /* src_mask */
151 0xffffffff, /* dst_mask */
152 TRUE), /* pcrel_offset */
7f266840
DJ
153
154 /* 16 bit absolute */
155 HOWTO (R_ARM_ABS16, /* type */
156 0, /* rightshift */
157 1, /* size (0 = byte, 1 = short, 2 = long) */
158 16, /* bitsize */
159 FALSE, /* pc_relative */
160 0, /* bitpos */
161 complain_overflow_bitfield,/* complain_on_overflow */
162 bfd_elf_generic_reloc, /* special_function */
163 "R_ARM_ABS16", /* name */
164 FALSE, /* partial_inplace */
165 0x0000ffff, /* src_mask */
166 0x0000ffff, /* dst_mask */
167 FALSE), /* pcrel_offset */
168
169 /* 12 bit absolute */
170 HOWTO (R_ARM_ABS12, /* type */
171 0, /* rightshift */
172 2, /* size (0 = byte, 1 = short, 2 = long) */
173 12, /* bitsize */
174 FALSE, /* pc_relative */
175 0, /* bitpos */
176 complain_overflow_bitfield,/* complain_on_overflow */
177 bfd_elf_generic_reloc, /* special_function */
178 "R_ARM_ABS12", /* name */
179 FALSE, /* partial_inplace */
00a97672
RS
180 0x00000fff, /* src_mask */
181 0x00000fff, /* dst_mask */
7f266840
DJ
182 FALSE), /* pcrel_offset */
183
184 HOWTO (R_ARM_THM_ABS5, /* type */
185 6, /* rightshift */
186 1, /* size (0 = byte, 1 = short, 2 = long) */
187 5, /* bitsize */
188 FALSE, /* pc_relative */
189 0, /* bitpos */
190 complain_overflow_bitfield,/* complain_on_overflow */
191 bfd_elf_generic_reloc, /* special_function */
192 "R_ARM_THM_ABS5", /* name */
193 FALSE, /* partial_inplace */
194 0x000007e0, /* src_mask */
195 0x000007e0, /* dst_mask */
196 FALSE), /* pcrel_offset */
197
198 /* 8 bit absolute */
199 HOWTO (R_ARM_ABS8, /* type */
200 0, /* rightshift */
201 0, /* size (0 = byte, 1 = short, 2 = long) */
202 8, /* bitsize */
203 FALSE, /* pc_relative */
204 0, /* bitpos */
205 complain_overflow_bitfield,/* complain_on_overflow */
206 bfd_elf_generic_reloc, /* special_function */
207 "R_ARM_ABS8", /* name */
208 FALSE, /* partial_inplace */
209 0x000000ff, /* src_mask */
210 0x000000ff, /* dst_mask */
211 FALSE), /* pcrel_offset */
212
213 HOWTO (R_ARM_SBREL32, /* type */
214 0, /* rightshift */
215 2, /* size (0 = byte, 1 = short, 2 = long) */
216 32, /* bitsize */
217 FALSE, /* pc_relative */
218 0, /* bitpos */
219 complain_overflow_dont,/* complain_on_overflow */
220 bfd_elf_generic_reloc, /* special_function */
221 "R_ARM_SBREL32", /* name */
222 FALSE, /* partial_inplace */
223 0xffffffff, /* src_mask */
224 0xffffffff, /* dst_mask */
225 FALSE), /* pcrel_offset */
226
c19d1205 227 HOWTO (R_ARM_THM_CALL, /* type */
7f266840
DJ
228 1, /* rightshift */
229 2, /* size (0 = byte, 1 = short, 2 = long) */
f6ebfac0 230 24, /* bitsize */
7f266840
DJ
231 TRUE, /* pc_relative */
232 0, /* bitpos */
233 complain_overflow_signed,/* complain_on_overflow */
234 bfd_elf_generic_reloc, /* special_function */
c19d1205 235 "R_ARM_THM_CALL", /* name */
7f266840 236 FALSE, /* partial_inplace */
7f6ab9f8
AM
237 0x07ff2fff, /* src_mask */
238 0x07ff2fff, /* dst_mask */
7f266840
DJ
239 TRUE), /* pcrel_offset */
240
07d6d2b8 241 HOWTO (R_ARM_THM_PC8, /* type */
7f266840
DJ
242 1, /* rightshift */
243 1, /* size (0 = byte, 1 = short, 2 = long) */
244 8, /* bitsize */
245 TRUE, /* pc_relative */
246 0, /* bitpos */
247 complain_overflow_signed,/* complain_on_overflow */
248 bfd_elf_generic_reloc, /* special_function */
249 "R_ARM_THM_PC8", /* name */
250 FALSE, /* partial_inplace */
251 0x000000ff, /* src_mask */
252 0x000000ff, /* dst_mask */
253 TRUE), /* pcrel_offset */
254
c19d1205 255 HOWTO (R_ARM_BREL_ADJ, /* type */
7f266840
DJ
256 1, /* rightshift */
257 1, /* size (0 = byte, 1 = short, 2 = long) */
c19d1205
ZW
258 32, /* bitsize */
259 FALSE, /* pc_relative */
7f266840
DJ
260 0, /* bitpos */
261 complain_overflow_signed,/* complain_on_overflow */
262 bfd_elf_generic_reloc, /* special_function */
c19d1205 263 "R_ARM_BREL_ADJ", /* name */
7f266840 264 FALSE, /* partial_inplace */
c19d1205
ZW
265 0xffffffff, /* src_mask */
266 0xffffffff, /* dst_mask */
267 FALSE), /* pcrel_offset */
7f266840 268
0855e32b 269 HOWTO (R_ARM_TLS_DESC, /* type */
7f266840 270 0, /* rightshift */
0855e32b
NS
271 2, /* size (0 = byte, 1 = short, 2 = long) */
272 32, /* bitsize */
7f266840
DJ
273 FALSE, /* pc_relative */
274 0, /* bitpos */
0855e32b 275 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 276 bfd_elf_generic_reloc, /* special_function */
0855e32b 277 "R_ARM_TLS_DESC", /* name */
7f266840 278 FALSE, /* partial_inplace */
0855e32b
NS
279 0xffffffff, /* src_mask */
280 0xffffffff, /* dst_mask */
7f266840
DJ
281 FALSE), /* pcrel_offset */
282
283 HOWTO (R_ARM_THM_SWI8, /* type */
284 0, /* rightshift */
285 0, /* size (0 = byte, 1 = short, 2 = long) */
286 0, /* bitsize */
287 FALSE, /* pc_relative */
288 0, /* bitpos */
289 complain_overflow_signed,/* complain_on_overflow */
290 bfd_elf_generic_reloc, /* special_function */
291 "R_ARM_SWI8", /* name */
292 FALSE, /* partial_inplace */
293 0x00000000, /* src_mask */
294 0x00000000, /* dst_mask */
295 FALSE), /* pcrel_offset */
296
297 /* BLX instruction for the ARM. */
298 HOWTO (R_ARM_XPC25, /* type */
299 2, /* rightshift */
300 2, /* size (0 = byte, 1 = short, 2 = long) */
7f6ab9f8 301 24, /* bitsize */
7f266840
DJ
302 TRUE, /* pc_relative */
303 0, /* bitpos */
304 complain_overflow_signed,/* complain_on_overflow */
305 bfd_elf_generic_reloc, /* special_function */
306 "R_ARM_XPC25", /* name */
307 FALSE, /* partial_inplace */
308 0x00ffffff, /* src_mask */
309 0x00ffffff, /* dst_mask */
310 TRUE), /* pcrel_offset */
311
312 /* BLX instruction for the Thumb. */
313 HOWTO (R_ARM_THM_XPC22, /* type */
314 2, /* rightshift */
315 2, /* size (0 = byte, 1 = short, 2 = long) */
7f6ab9f8 316 24, /* bitsize */
7f266840
DJ
317 TRUE, /* pc_relative */
318 0, /* bitpos */
319 complain_overflow_signed,/* complain_on_overflow */
320 bfd_elf_generic_reloc, /* special_function */
321 "R_ARM_THM_XPC22", /* name */
322 FALSE, /* partial_inplace */
7f6ab9f8
AM
323 0x07ff2fff, /* src_mask */
324 0x07ff2fff, /* dst_mask */
7f266840
DJ
325 TRUE), /* pcrel_offset */
326
ba93b8ac 327 /* Dynamic TLS relocations. */
7f266840 328
ba93b8ac 329 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
07d6d2b8
AM
330 0, /* rightshift */
331 2, /* size (0 = byte, 1 = short, 2 = long) */
332 32, /* bitsize */
333 FALSE, /* pc_relative */
334 0, /* bitpos */
99059e56
RM
335 complain_overflow_bitfield,/* complain_on_overflow */
336 bfd_elf_generic_reloc, /* special_function */
337 "R_ARM_TLS_DTPMOD32", /* name */
338 TRUE, /* partial_inplace */
339 0xffffffff, /* src_mask */
340 0xffffffff, /* dst_mask */
07d6d2b8 341 FALSE), /* pcrel_offset */
7f266840 342
ba93b8ac 343 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
07d6d2b8
AM
344 0, /* rightshift */
345 2, /* size (0 = byte, 1 = short, 2 = long) */
346 32, /* bitsize */
347 FALSE, /* pc_relative */
348 0, /* bitpos */
99059e56
RM
349 complain_overflow_bitfield,/* complain_on_overflow */
350 bfd_elf_generic_reloc, /* special_function */
351 "R_ARM_TLS_DTPOFF32", /* name */
352 TRUE, /* partial_inplace */
353 0xffffffff, /* src_mask */
354 0xffffffff, /* dst_mask */
07d6d2b8 355 FALSE), /* pcrel_offset */
7f266840 356
ba93b8ac 357 HOWTO (R_ARM_TLS_TPOFF32, /* type */
07d6d2b8
AM
358 0, /* rightshift */
359 2, /* size (0 = byte, 1 = short, 2 = long) */
360 32, /* bitsize */
361 FALSE, /* pc_relative */
362 0, /* bitpos */
99059e56
RM
363 complain_overflow_bitfield,/* complain_on_overflow */
364 bfd_elf_generic_reloc, /* special_function */
365 "R_ARM_TLS_TPOFF32", /* name */
366 TRUE, /* partial_inplace */
367 0xffffffff, /* src_mask */
368 0xffffffff, /* dst_mask */
07d6d2b8 369 FALSE), /* pcrel_offset */
7f266840
DJ
370
371 /* Relocs used in ARM Linux */
372
373 HOWTO (R_ARM_COPY, /* type */
07d6d2b8
AM
374 0, /* rightshift */
375 2, /* size (0 = byte, 1 = short, 2 = long) */
376 32, /* bitsize */
377 FALSE, /* pc_relative */
378 0, /* bitpos */
99059e56
RM
379 complain_overflow_bitfield,/* complain_on_overflow */
380 bfd_elf_generic_reloc, /* special_function */
381 "R_ARM_COPY", /* name */
382 TRUE, /* partial_inplace */
383 0xffffffff, /* src_mask */
384 0xffffffff, /* dst_mask */
07d6d2b8 385 FALSE), /* pcrel_offset */
7f266840
DJ
386
387 HOWTO (R_ARM_GLOB_DAT, /* type */
07d6d2b8
AM
388 0, /* rightshift */
389 2, /* size (0 = byte, 1 = short, 2 = long) */
390 32, /* bitsize */
391 FALSE, /* pc_relative */
392 0, /* bitpos */
99059e56
RM
393 complain_overflow_bitfield,/* complain_on_overflow */
394 bfd_elf_generic_reloc, /* special_function */
395 "R_ARM_GLOB_DAT", /* name */
396 TRUE, /* partial_inplace */
397 0xffffffff, /* src_mask */
398 0xffffffff, /* dst_mask */
07d6d2b8 399 FALSE), /* pcrel_offset */
7f266840
DJ
400
401 HOWTO (R_ARM_JUMP_SLOT, /* type */
07d6d2b8
AM
402 0, /* rightshift */
403 2, /* size (0 = byte, 1 = short, 2 = long) */
404 32, /* bitsize */
405 FALSE, /* pc_relative */
406 0, /* bitpos */
99059e56
RM
407 complain_overflow_bitfield,/* complain_on_overflow */
408 bfd_elf_generic_reloc, /* special_function */
409 "R_ARM_JUMP_SLOT", /* name */
410 TRUE, /* partial_inplace */
411 0xffffffff, /* src_mask */
412 0xffffffff, /* dst_mask */
07d6d2b8 413 FALSE), /* pcrel_offset */
7f266840
DJ
414
415 HOWTO (R_ARM_RELATIVE, /* type */
07d6d2b8
AM
416 0, /* rightshift */
417 2, /* size (0 = byte, 1 = short, 2 = long) */
418 32, /* bitsize */
419 FALSE, /* pc_relative */
420 0, /* bitpos */
99059e56
RM
421 complain_overflow_bitfield,/* complain_on_overflow */
422 bfd_elf_generic_reloc, /* special_function */
423 "R_ARM_RELATIVE", /* name */
424 TRUE, /* partial_inplace */
425 0xffffffff, /* src_mask */
426 0xffffffff, /* dst_mask */
07d6d2b8 427 FALSE), /* pcrel_offset */
7f266840 428
c19d1205 429 HOWTO (R_ARM_GOTOFF32, /* type */
07d6d2b8
AM
430 0, /* rightshift */
431 2, /* size (0 = byte, 1 = short, 2 = long) */
432 32, /* bitsize */
433 FALSE, /* pc_relative */
434 0, /* bitpos */
99059e56
RM
435 complain_overflow_bitfield,/* complain_on_overflow */
436 bfd_elf_generic_reloc, /* special_function */
437 "R_ARM_GOTOFF32", /* name */
438 TRUE, /* partial_inplace */
439 0xffffffff, /* src_mask */
440 0xffffffff, /* dst_mask */
07d6d2b8 441 FALSE), /* pcrel_offset */
7f266840
DJ
442
443 HOWTO (R_ARM_GOTPC, /* type */
07d6d2b8
AM
444 0, /* rightshift */
445 2, /* size (0 = byte, 1 = short, 2 = long) */
446 32, /* bitsize */
99059e56 447 TRUE, /* pc_relative */
07d6d2b8 448 0, /* bitpos */
99059e56
RM
449 complain_overflow_bitfield,/* complain_on_overflow */
450 bfd_elf_generic_reloc, /* special_function */
451 "R_ARM_GOTPC", /* name */
452 TRUE, /* partial_inplace */
453 0xffffffff, /* src_mask */
454 0xffffffff, /* dst_mask */
455 TRUE), /* pcrel_offset */
7f266840
DJ
456
457 HOWTO (R_ARM_GOT32, /* type */
07d6d2b8
AM
458 0, /* rightshift */
459 2, /* size (0 = byte, 1 = short, 2 = long) */
460 32, /* bitsize */
99059e56 461 FALSE, /* pc_relative */
07d6d2b8 462 0, /* bitpos */
99059e56
RM
463 complain_overflow_bitfield,/* complain_on_overflow */
464 bfd_elf_generic_reloc, /* special_function */
465 "R_ARM_GOT32", /* name */
466 TRUE, /* partial_inplace */
467 0xffffffff, /* src_mask */
468 0xffffffff, /* dst_mask */
469 FALSE), /* pcrel_offset */
7f266840
DJ
470
471 HOWTO (R_ARM_PLT32, /* type */
07d6d2b8
AM
472 2, /* rightshift */
473 2, /* size (0 = byte, 1 = short, 2 = long) */
474 24, /* bitsize */
99059e56 475 TRUE, /* pc_relative */
07d6d2b8 476 0, /* bitpos */
99059e56
RM
477 complain_overflow_bitfield,/* complain_on_overflow */
478 bfd_elf_generic_reloc, /* special_function */
479 "R_ARM_PLT32", /* name */
480 FALSE, /* partial_inplace */
481 0x00ffffff, /* src_mask */
482 0x00ffffff, /* dst_mask */
483 TRUE), /* pcrel_offset */
7f266840
DJ
484
485 HOWTO (R_ARM_CALL, /* type */
486 2, /* rightshift */
487 2, /* size (0 = byte, 1 = short, 2 = long) */
488 24, /* bitsize */
489 TRUE, /* pc_relative */
490 0, /* bitpos */
491 complain_overflow_signed,/* complain_on_overflow */
492 bfd_elf_generic_reloc, /* special_function */
493 "R_ARM_CALL", /* name */
494 FALSE, /* partial_inplace */
495 0x00ffffff, /* src_mask */
496 0x00ffffff, /* dst_mask */
497 TRUE), /* pcrel_offset */
498
499 HOWTO (R_ARM_JUMP24, /* type */
500 2, /* rightshift */
501 2, /* size (0 = byte, 1 = short, 2 = long) */
502 24, /* bitsize */
503 TRUE, /* pc_relative */
504 0, /* bitpos */
505 complain_overflow_signed,/* complain_on_overflow */
506 bfd_elf_generic_reloc, /* special_function */
507 "R_ARM_JUMP24", /* name */
508 FALSE, /* partial_inplace */
509 0x00ffffff, /* src_mask */
510 0x00ffffff, /* dst_mask */
511 TRUE), /* pcrel_offset */
512
c19d1205
ZW
513 HOWTO (R_ARM_THM_JUMP24, /* type */
514 1, /* rightshift */
515 2, /* size (0 = byte, 1 = short, 2 = long) */
516 24, /* bitsize */
517 TRUE, /* pc_relative */
7f266840 518 0, /* bitpos */
c19d1205 519 complain_overflow_signed,/* complain_on_overflow */
7f266840 520 bfd_elf_generic_reloc, /* special_function */
c19d1205 521 "R_ARM_THM_JUMP24", /* name */
7f266840 522 FALSE, /* partial_inplace */
c19d1205
ZW
523 0x07ff2fff, /* src_mask */
524 0x07ff2fff, /* dst_mask */
525 TRUE), /* pcrel_offset */
7f266840 526
c19d1205 527 HOWTO (R_ARM_BASE_ABS, /* type */
7f266840 528 0, /* rightshift */
c19d1205
ZW
529 2, /* size (0 = byte, 1 = short, 2 = long) */
530 32, /* bitsize */
7f266840
DJ
531 FALSE, /* pc_relative */
532 0, /* bitpos */
533 complain_overflow_dont,/* complain_on_overflow */
534 bfd_elf_generic_reloc, /* special_function */
c19d1205 535 "R_ARM_BASE_ABS", /* name */
7f266840 536 FALSE, /* partial_inplace */
c19d1205
ZW
537 0xffffffff, /* src_mask */
538 0xffffffff, /* dst_mask */
7f266840
DJ
539 FALSE), /* pcrel_offset */
540
541 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
542 0, /* rightshift */
543 2, /* size (0 = byte, 1 = short, 2 = long) */
544 12, /* bitsize */
545 TRUE, /* pc_relative */
546 0, /* bitpos */
547 complain_overflow_dont,/* complain_on_overflow */
548 bfd_elf_generic_reloc, /* special_function */
549 "R_ARM_ALU_PCREL_7_0", /* name */
550 FALSE, /* partial_inplace */
551 0x00000fff, /* src_mask */
552 0x00000fff, /* dst_mask */
553 TRUE), /* pcrel_offset */
554
555 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
556 0, /* rightshift */
557 2, /* size (0 = byte, 1 = short, 2 = long) */
558 12, /* bitsize */
559 TRUE, /* pc_relative */
560 8, /* bitpos */
561 complain_overflow_dont,/* complain_on_overflow */
562 bfd_elf_generic_reloc, /* special_function */
563 "R_ARM_ALU_PCREL_15_8",/* name */
564 FALSE, /* partial_inplace */
565 0x00000fff, /* src_mask */
566 0x00000fff, /* dst_mask */
567 TRUE), /* pcrel_offset */
568
569 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
570 0, /* rightshift */
571 2, /* size (0 = byte, 1 = short, 2 = long) */
572 12, /* bitsize */
573 TRUE, /* pc_relative */
574 16, /* bitpos */
575 complain_overflow_dont,/* complain_on_overflow */
576 bfd_elf_generic_reloc, /* special_function */
577 "R_ARM_ALU_PCREL_23_15",/* name */
578 FALSE, /* partial_inplace */
579 0x00000fff, /* src_mask */
580 0x00000fff, /* dst_mask */
581 TRUE), /* pcrel_offset */
582
583 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
584 0, /* rightshift */
585 2, /* size (0 = byte, 1 = short, 2 = long) */
586 12, /* bitsize */
587 FALSE, /* pc_relative */
588 0, /* bitpos */
589 complain_overflow_dont,/* complain_on_overflow */
590 bfd_elf_generic_reloc, /* special_function */
591 "R_ARM_LDR_SBREL_11_0",/* name */
592 FALSE, /* partial_inplace */
593 0x00000fff, /* src_mask */
594 0x00000fff, /* dst_mask */
595 FALSE), /* pcrel_offset */
596
597 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
598 0, /* rightshift */
599 2, /* size (0 = byte, 1 = short, 2 = long) */
600 8, /* bitsize */
601 FALSE, /* pc_relative */
602 12, /* bitpos */
603 complain_overflow_dont,/* complain_on_overflow */
604 bfd_elf_generic_reloc, /* special_function */
605 "R_ARM_ALU_SBREL_19_12",/* name */
606 FALSE, /* partial_inplace */
607 0x000ff000, /* src_mask */
608 0x000ff000, /* dst_mask */
609 FALSE), /* pcrel_offset */
610
611 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
612 0, /* rightshift */
613 2, /* size (0 = byte, 1 = short, 2 = long) */
614 8, /* bitsize */
615 FALSE, /* pc_relative */
616 20, /* bitpos */
617 complain_overflow_dont,/* complain_on_overflow */
618 bfd_elf_generic_reloc, /* special_function */
619 "R_ARM_ALU_SBREL_27_20",/* name */
620 FALSE, /* partial_inplace */
621 0x0ff00000, /* src_mask */
622 0x0ff00000, /* dst_mask */
623 FALSE), /* pcrel_offset */
624
625 HOWTO (R_ARM_TARGET1, /* type */
626 0, /* rightshift */
627 2, /* size (0 = byte, 1 = short, 2 = long) */
628 32, /* bitsize */
629 FALSE, /* pc_relative */
630 0, /* bitpos */
631 complain_overflow_dont,/* complain_on_overflow */
632 bfd_elf_generic_reloc, /* special_function */
633 "R_ARM_TARGET1", /* name */
634 FALSE, /* partial_inplace */
635 0xffffffff, /* src_mask */
636 0xffffffff, /* dst_mask */
637 FALSE), /* pcrel_offset */
638
639 HOWTO (R_ARM_ROSEGREL32, /* type */
640 0, /* rightshift */
641 2, /* size (0 = byte, 1 = short, 2 = long) */
642 32, /* bitsize */
643 FALSE, /* pc_relative */
644 0, /* bitpos */
645 complain_overflow_dont,/* complain_on_overflow */
646 bfd_elf_generic_reloc, /* special_function */
647 "R_ARM_ROSEGREL32", /* name */
648 FALSE, /* partial_inplace */
649 0xffffffff, /* src_mask */
650 0xffffffff, /* dst_mask */
651 FALSE), /* pcrel_offset */
652
653 HOWTO (R_ARM_V4BX, /* type */
654 0, /* rightshift */
655 2, /* size (0 = byte, 1 = short, 2 = long) */
656 32, /* bitsize */
657 FALSE, /* pc_relative */
658 0, /* bitpos */
659 complain_overflow_dont,/* complain_on_overflow */
660 bfd_elf_generic_reloc, /* special_function */
661 "R_ARM_V4BX", /* name */
662 FALSE, /* partial_inplace */
663 0xffffffff, /* src_mask */
664 0xffffffff, /* dst_mask */
665 FALSE), /* pcrel_offset */
666
667 HOWTO (R_ARM_TARGET2, /* type */
668 0, /* rightshift */
669 2, /* size (0 = byte, 1 = short, 2 = long) */
670 32, /* bitsize */
671 FALSE, /* pc_relative */
672 0, /* bitpos */
673 complain_overflow_signed,/* complain_on_overflow */
674 bfd_elf_generic_reloc, /* special_function */
675 "R_ARM_TARGET2", /* name */
676 FALSE, /* partial_inplace */
677 0xffffffff, /* src_mask */
678 0xffffffff, /* dst_mask */
679 TRUE), /* pcrel_offset */
680
681 HOWTO (R_ARM_PREL31, /* type */
682 0, /* rightshift */
683 2, /* size (0 = byte, 1 = short, 2 = long) */
684 31, /* bitsize */
685 TRUE, /* pc_relative */
686 0, /* bitpos */
687 complain_overflow_signed,/* complain_on_overflow */
688 bfd_elf_generic_reloc, /* special_function */
689 "R_ARM_PREL31", /* name */
690 FALSE, /* partial_inplace */
691 0x7fffffff, /* src_mask */
692 0x7fffffff, /* dst_mask */
693 TRUE), /* pcrel_offset */
c19d1205
ZW
694
695 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
696 0, /* rightshift */
697 2, /* size (0 = byte, 1 = short, 2 = long) */
698 16, /* bitsize */
699 FALSE, /* pc_relative */
700 0, /* bitpos */
701 complain_overflow_dont,/* complain_on_overflow */
702 bfd_elf_generic_reloc, /* special_function */
703 "R_ARM_MOVW_ABS_NC", /* name */
704 FALSE, /* partial_inplace */
39623e12
PB
705 0x000f0fff, /* src_mask */
706 0x000f0fff, /* dst_mask */
c19d1205
ZW
707 FALSE), /* pcrel_offset */
708
709 HOWTO (R_ARM_MOVT_ABS, /* type */
710 0, /* rightshift */
711 2, /* size (0 = byte, 1 = short, 2 = long) */
712 16, /* bitsize */
713 FALSE, /* pc_relative */
714 0, /* bitpos */
715 complain_overflow_bitfield,/* complain_on_overflow */
716 bfd_elf_generic_reloc, /* special_function */
717 "R_ARM_MOVT_ABS", /* name */
718 FALSE, /* partial_inplace */
39623e12
PB
719 0x000f0fff, /* src_mask */
720 0x000f0fff, /* dst_mask */
c19d1205
ZW
721 FALSE), /* pcrel_offset */
722
723 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
724 0, /* rightshift */
725 2, /* size (0 = byte, 1 = short, 2 = long) */
726 16, /* bitsize */
727 TRUE, /* pc_relative */
728 0, /* bitpos */
729 complain_overflow_dont,/* complain_on_overflow */
730 bfd_elf_generic_reloc, /* special_function */
731 "R_ARM_MOVW_PREL_NC", /* name */
732 FALSE, /* partial_inplace */
39623e12
PB
733 0x000f0fff, /* src_mask */
734 0x000f0fff, /* dst_mask */
c19d1205
ZW
735 TRUE), /* pcrel_offset */
736
737 HOWTO (R_ARM_MOVT_PREL, /* type */
738 0, /* rightshift */
739 2, /* size (0 = byte, 1 = short, 2 = long) */
740 16, /* bitsize */
741 TRUE, /* pc_relative */
742 0, /* bitpos */
743 complain_overflow_bitfield,/* complain_on_overflow */
744 bfd_elf_generic_reloc, /* special_function */
745 "R_ARM_MOVT_PREL", /* name */
746 FALSE, /* partial_inplace */
39623e12
PB
747 0x000f0fff, /* src_mask */
748 0x000f0fff, /* dst_mask */
c19d1205
ZW
749 TRUE), /* pcrel_offset */
750
751 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
752 0, /* rightshift */
753 2, /* size (0 = byte, 1 = short, 2 = long) */
754 16, /* bitsize */
755 FALSE, /* pc_relative */
756 0, /* bitpos */
757 complain_overflow_dont,/* complain_on_overflow */
758 bfd_elf_generic_reloc, /* special_function */
759 "R_ARM_THM_MOVW_ABS_NC",/* name */
760 FALSE, /* partial_inplace */
761 0x040f70ff, /* src_mask */
762 0x040f70ff, /* dst_mask */
763 FALSE), /* pcrel_offset */
764
765 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
766 0, /* rightshift */
767 2, /* size (0 = byte, 1 = short, 2 = long) */
768 16, /* bitsize */
769 FALSE, /* pc_relative */
770 0, /* bitpos */
771 complain_overflow_bitfield,/* complain_on_overflow */
772 bfd_elf_generic_reloc, /* special_function */
773 "R_ARM_THM_MOVT_ABS", /* name */
774 FALSE, /* partial_inplace */
775 0x040f70ff, /* src_mask */
776 0x040f70ff, /* dst_mask */
777 FALSE), /* pcrel_offset */
778
779 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
780 0, /* rightshift */
781 2, /* size (0 = byte, 1 = short, 2 = long) */
782 16, /* bitsize */
783 TRUE, /* pc_relative */
784 0, /* bitpos */
785 complain_overflow_dont,/* complain_on_overflow */
786 bfd_elf_generic_reloc, /* special_function */
787 "R_ARM_THM_MOVW_PREL_NC",/* name */
788 FALSE, /* partial_inplace */
789 0x040f70ff, /* src_mask */
790 0x040f70ff, /* dst_mask */
791 TRUE), /* pcrel_offset */
792
793 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
794 0, /* rightshift */
795 2, /* size (0 = byte, 1 = short, 2 = long) */
796 16, /* bitsize */
797 TRUE, /* pc_relative */
798 0, /* bitpos */
799 complain_overflow_bitfield,/* complain_on_overflow */
800 bfd_elf_generic_reloc, /* special_function */
801 "R_ARM_THM_MOVT_PREL", /* name */
802 FALSE, /* partial_inplace */
803 0x040f70ff, /* src_mask */
804 0x040f70ff, /* dst_mask */
805 TRUE), /* pcrel_offset */
806
807 HOWTO (R_ARM_THM_JUMP19, /* type */
808 1, /* rightshift */
809 2, /* size (0 = byte, 1 = short, 2 = long) */
810 19, /* bitsize */
811 TRUE, /* pc_relative */
812 0, /* bitpos */
813 complain_overflow_signed,/* complain_on_overflow */
814 bfd_elf_generic_reloc, /* special_function */
815 "R_ARM_THM_JUMP19", /* name */
816 FALSE, /* partial_inplace */
817 0x043f2fff, /* src_mask */
818 0x043f2fff, /* dst_mask */
819 TRUE), /* pcrel_offset */
820
821 HOWTO (R_ARM_THM_JUMP6, /* type */
822 1, /* rightshift */
823 1, /* size (0 = byte, 1 = short, 2 = long) */
824 6, /* bitsize */
825 TRUE, /* pc_relative */
826 0, /* bitpos */
827 complain_overflow_unsigned,/* complain_on_overflow */
828 bfd_elf_generic_reloc, /* special_function */
829 "R_ARM_THM_JUMP6", /* name */
830 FALSE, /* partial_inplace */
831 0x02f8, /* src_mask */
832 0x02f8, /* dst_mask */
833 TRUE), /* pcrel_offset */
834
835 /* These are declared as 13-bit signed relocations because we can
836 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
837 versa. */
838 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
839 0, /* rightshift */
840 2, /* size (0 = byte, 1 = short, 2 = long) */
841 13, /* bitsize */
842 TRUE, /* pc_relative */
843 0, /* bitpos */
2cab6cc3 844 complain_overflow_dont,/* complain_on_overflow */
c19d1205
ZW
845 bfd_elf_generic_reloc, /* special_function */
846 "R_ARM_THM_ALU_PREL_11_0",/* name */
847 FALSE, /* partial_inplace */
2cab6cc3
MS
848 0xffffffff, /* src_mask */
849 0xffffffff, /* dst_mask */
c19d1205
ZW
850 TRUE), /* pcrel_offset */
851
852 HOWTO (R_ARM_THM_PC12, /* type */
853 0, /* rightshift */
854 2, /* size (0 = byte, 1 = short, 2 = long) */
855 13, /* bitsize */
856 TRUE, /* pc_relative */
857 0, /* bitpos */
2cab6cc3 858 complain_overflow_dont,/* complain_on_overflow */
c19d1205
ZW
859 bfd_elf_generic_reloc, /* special_function */
860 "R_ARM_THM_PC12", /* name */
861 FALSE, /* partial_inplace */
2cab6cc3
MS
862 0xffffffff, /* src_mask */
863 0xffffffff, /* dst_mask */
c19d1205
ZW
864 TRUE), /* pcrel_offset */
865
866 HOWTO (R_ARM_ABS32_NOI, /* type */
867 0, /* rightshift */
868 2, /* size (0 = byte, 1 = short, 2 = long) */
869 32, /* bitsize */
870 FALSE, /* pc_relative */
871 0, /* bitpos */
872 complain_overflow_dont,/* complain_on_overflow */
873 bfd_elf_generic_reloc, /* special_function */
874 "R_ARM_ABS32_NOI", /* name */
875 FALSE, /* partial_inplace */
876 0xffffffff, /* src_mask */
877 0xffffffff, /* dst_mask */
878 FALSE), /* pcrel_offset */
879
880 HOWTO (R_ARM_REL32_NOI, /* type */
881 0, /* rightshift */
882 2, /* size (0 = byte, 1 = short, 2 = long) */
883 32, /* bitsize */
884 TRUE, /* pc_relative */
885 0, /* bitpos */
886 complain_overflow_dont,/* complain_on_overflow */
887 bfd_elf_generic_reloc, /* special_function */
888 "R_ARM_REL32_NOI", /* name */
889 FALSE, /* partial_inplace */
890 0xffffffff, /* src_mask */
891 0xffffffff, /* dst_mask */
892 FALSE), /* pcrel_offset */
7f266840 893
4962c51a
MS
894 /* Group relocations. */
895
896 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
897 0, /* rightshift */
898 2, /* size (0 = byte, 1 = short, 2 = long) */
899 32, /* bitsize */
900 TRUE, /* pc_relative */
901 0, /* bitpos */
902 complain_overflow_dont,/* complain_on_overflow */
903 bfd_elf_generic_reloc, /* special_function */
904 "R_ARM_ALU_PC_G0_NC", /* name */
905 FALSE, /* partial_inplace */
906 0xffffffff, /* src_mask */
907 0xffffffff, /* dst_mask */
908 TRUE), /* pcrel_offset */
909
07d6d2b8 910 HOWTO (R_ARM_ALU_PC_G0, /* type */
4962c51a
MS
911 0, /* rightshift */
912 2, /* size (0 = byte, 1 = short, 2 = long) */
913 32, /* bitsize */
914 TRUE, /* pc_relative */
915 0, /* bitpos */
916 complain_overflow_dont,/* complain_on_overflow */
917 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 918 "R_ARM_ALU_PC_G0", /* name */
4962c51a
MS
919 FALSE, /* partial_inplace */
920 0xffffffff, /* src_mask */
921 0xffffffff, /* dst_mask */
922 TRUE), /* pcrel_offset */
923
924 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
925 0, /* rightshift */
926 2, /* size (0 = byte, 1 = short, 2 = long) */
927 32, /* bitsize */
928 TRUE, /* pc_relative */
929 0, /* bitpos */
930 complain_overflow_dont,/* complain_on_overflow */
931 bfd_elf_generic_reloc, /* special_function */
932 "R_ARM_ALU_PC_G1_NC", /* name */
933 FALSE, /* partial_inplace */
934 0xffffffff, /* src_mask */
935 0xffffffff, /* dst_mask */
936 TRUE), /* pcrel_offset */
937
07d6d2b8 938 HOWTO (R_ARM_ALU_PC_G1, /* type */
4962c51a
MS
939 0, /* rightshift */
940 2, /* size (0 = byte, 1 = short, 2 = long) */
941 32, /* bitsize */
942 TRUE, /* pc_relative */
943 0, /* bitpos */
944 complain_overflow_dont,/* complain_on_overflow */
945 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 946 "R_ARM_ALU_PC_G1", /* name */
4962c51a
MS
947 FALSE, /* partial_inplace */
948 0xffffffff, /* src_mask */
949 0xffffffff, /* dst_mask */
950 TRUE), /* pcrel_offset */
951
07d6d2b8 952 HOWTO (R_ARM_ALU_PC_G2, /* type */
4962c51a
MS
953 0, /* rightshift */
954 2, /* size (0 = byte, 1 = short, 2 = long) */
955 32, /* bitsize */
956 TRUE, /* pc_relative */
957 0, /* bitpos */
958 complain_overflow_dont,/* complain_on_overflow */
959 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 960 "R_ARM_ALU_PC_G2", /* name */
4962c51a
MS
961 FALSE, /* partial_inplace */
962 0xffffffff, /* src_mask */
963 0xffffffff, /* dst_mask */
964 TRUE), /* pcrel_offset */
965
07d6d2b8 966 HOWTO (R_ARM_LDR_PC_G1, /* type */
4962c51a
MS
967 0, /* rightshift */
968 2, /* size (0 = byte, 1 = short, 2 = long) */
969 32, /* bitsize */
970 TRUE, /* pc_relative */
971 0, /* bitpos */
972 complain_overflow_dont,/* complain_on_overflow */
973 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 974 "R_ARM_LDR_PC_G1", /* name */
4962c51a
MS
975 FALSE, /* partial_inplace */
976 0xffffffff, /* src_mask */
977 0xffffffff, /* dst_mask */
978 TRUE), /* pcrel_offset */
979
07d6d2b8 980 HOWTO (R_ARM_LDR_PC_G2, /* type */
4962c51a
MS
981 0, /* rightshift */
982 2, /* size (0 = byte, 1 = short, 2 = long) */
983 32, /* bitsize */
984 TRUE, /* pc_relative */
985 0, /* bitpos */
986 complain_overflow_dont,/* complain_on_overflow */
987 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 988 "R_ARM_LDR_PC_G2", /* name */
4962c51a
MS
989 FALSE, /* partial_inplace */
990 0xffffffff, /* src_mask */
991 0xffffffff, /* dst_mask */
992 TRUE), /* pcrel_offset */
993
07d6d2b8 994 HOWTO (R_ARM_LDRS_PC_G0, /* type */
4962c51a
MS
995 0, /* rightshift */
996 2, /* size (0 = byte, 1 = short, 2 = long) */
997 32, /* bitsize */
998 TRUE, /* pc_relative */
999 0, /* bitpos */
1000 complain_overflow_dont,/* complain_on_overflow */
1001 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1002 "R_ARM_LDRS_PC_G0", /* name */
4962c51a
MS
1003 FALSE, /* partial_inplace */
1004 0xffffffff, /* src_mask */
1005 0xffffffff, /* dst_mask */
1006 TRUE), /* pcrel_offset */
1007
07d6d2b8 1008 HOWTO (R_ARM_LDRS_PC_G1, /* type */
4962c51a
MS
1009 0, /* rightshift */
1010 2, /* size (0 = byte, 1 = short, 2 = long) */
1011 32, /* bitsize */
1012 TRUE, /* pc_relative */
1013 0, /* bitpos */
1014 complain_overflow_dont,/* complain_on_overflow */
1015 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1016 "R_ARM_LDRS_PC_G1", /* name */
4962c51a
MS
1017 FALSE, /* partial_inplace */
1018 0xffffffff, /* src_mask */
1019 0xffffffff, /* dst_mask */
1020 TRUE), /* pcrel_offset */
1021
07d6d2b8 1022 HOWTO (R_ARM_LDRS_PC_G2, /* type */
4962c51a
MS
1023 0, /* rightshift */
1024 2, /* size (0 = byte, 1 = short, 2 = long) */
1025 32, /* bitsize */
1026 TRUE, /* pc_relative */
1027 0, /* bitpos */
1028 complain_overflow_dont,/* complain_on_overflow */
1029 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1030 "R_ARM_LDRS_PC_G2", /* name */
4962c51a
MS
1031 FALSE, /* partial_inplace */
1032 0xffffffff, /* src_mask */
1033 0xffffffff, /* dst_mask */
1034 TRUE), /* pcrel_offset */
1035
07d6d2b8 1036 HOWTO (R_ARM_LDC_PC_G0, /* type */
4962c51a
MS
1037 0, /* rightshift */
1038 2, /* size (0 = byte, 1 = short, 2 = long) */
1039 32, /* bitsize */
1040 TRUE, /* pc_relative */
1041 0, /* bitpos */
1042 complain_overflow_dont,/* complain_on_overflow */
1043 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1044 "R_ARM_LDC_PC_G0", /* name */
4962c51a
MS
1045 FALSE, /* partial_inplace */
1046 0xffffffff, /* src_mask */
1047 0xffffffff, /* dst_mask */
1048 TRUE), /* pcrel_offset */
1049
07d6d2b8 1050 HOWTO (R_ARM_LDC_PC_G1, /* type */
4962c51a
MS
1051 0, /* rightshift */
1052 2, /* size (0 = byte, 1 = short, 2 = long) */
1053 32, /* bitsize */
1054 TRUE, /* pc_relative */
1055 0, /* bitpos */
1056 complain_overflow_dont,/* complain_on_overflow */
1057 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1058 "R_ARM_LDC_PC_G1", /* name */
4962c51a
MS
1059 FALSE, /* partial_inplace */
1060 0xffffffff, /* src_mask */
1061 0xffffffff, /* dst_mask */
1062 TRUE), /* pcrel_offset */
1063
07d6d2b8 1064 HOWTO (R_ARM_LDC_PC_G2, /* type */
4962c51a
MS
1065 0, /* rightshift */
1066 2, /* size (0 = byte, 1 = short, 2 = long) */
1067 32, /* bitsize */
1068 TRUE, /* pc_relative */
1069 0, /* bitpos */
1070 complain_overflow_dont,/* complain_on_overflow */
1071 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1072 "R_ARM_LDC_PC_G2", /* name */
4962c51a
MS
1073 FALSE, /* partial_inplace */
1074 0xffffffff, /* src_mask */
1075 0xffffffff, /* dst_mask */
1076 TRUE), /* pcrel_offset */
1077
07d6d2b8 1078 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
4962c51a
MS
1079 0, /* rightshift */
1080 2, /* size (0 = byte, 1 = short, 2 = long) */
1081 32, /* bitsize */
1082 TRUE, /* pc_relative */
1083 0, /* bitpos */
1084 complain_overflow_dont,/* complain_on_overflow */
1085 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1086 "R_ARM_ALU_SB_G0_NC", /* name */
4962c51a
MS
1087 FALSE, /* partial_inplace */
1088 0xffffffff, /* src_mask */
1089 0xffffffff, /* dst_mask */
1090 TRUE), /* pcrel_offset */
1091
07d6d2b8 1092 HOWTO (R_ARM_ALU_SB_G0, /* type */
4962c51a
MS
1093 0, /* rightshift */
1094 2, /* size (0 = byte, 1 = short, 2 = long) */
1095 32, /* bitsize */
1096 TRUE, /* pc_relative */
1097 0, /* bitpos */
1098 complain_overflow_dont,/* complain_on_overflow */
1099 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1100 "R_ARM_ALU_SB_G0", /* name */
4962c51a
MS
1101 FALSE, /* partial_inplace */
1102 0xffffffff, /* src_mask */
1103 0xffffffff, /* dst_mask */
1104 TRUE), /* pcrel_offset */
1105
07d6d2b8 1106 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
4962c51a
MS
1107 0, /* rightshift */
1108 2, /* size (0 = byte, 1 = short, 2 = long) */
1109 32, /* bitsize */
1110 TRUE, /* pc_relative */
1111 0, /* bitpos */
1112 complain_overflow_dont,/* complain_on_overflow */
1113 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1114 "R_ARM_ALU_SB_G1_NC", /* name */
4962c51a
MS
1115 FALSE, /* partial_inplace */
1116 0xffffffff, /* src_mask */
1117 0xffffffff, /* dst_mask */
1118 TRUE), /* pcrel_offset */
1119
07d6d2b8 1120 HOWTO (R_ARM_ALU_SB_G1, /* type */
4962c51a
MS
1121 0, /* rightshift */
1122 2, /* size (0 = byte, 1 = short, 2 = long) */
1123 32, /* bitsize */
1124 TRUE, /* pc_relative */
1125 0, /* bitpos */
1126 complain_overflow_dont,/* complain_on_overflow */
1127 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1128 "R_ARM_ALU_SB_G1", /* name */
4962c51a
MS
1129 FALSE, /* partial_inplace */
1130 0xffffffff, /* src_mask */
1131 0xffffffff, /* dst_mask */
1132 TRUE), /* pcrel_offset */
1133
07d6d2b8 1134 HOWTO (R_ARM_ALU_SB_G2, /* type */
4962c51a
MS
1135 0, /* rightshift */
1136 2, /* size (0 = byte, 1 = short, 2 = long) */
1137 32, /* bitsize */
1138 TRUE, /* pc_relative */
1139 0, /* bitpos */
1140 complain_overflow_dont,/* complain_on_overflow */
1141 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1142 "R_ARM_ALU_SB_G2", /* name */
4962c51a
MS
1143 FALSE, /* partial_inplace */
1144 0xffffffff, /* src_mask */
1145 0xffffffff, /* dst_mask */
1146 TRUE), /* pcrel_offset */
1147
07d6d2b8 1148 HOWTO (R_ARM_LDR_SB_G0, /* type */
4962c51a
MS
1149 0, /* rightshift */
1150 2, /* size (0 = byte, 1 = short, 2 = long) */
1151 32, /* bitsize */
1152 TRUE, /* pc_relative */
1153 0, /* bitpos */
1154 complain_overflow_dont,/* complain_on_overflow */
1155 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1156 "R_ARM_LDR_SB_G0", /* name */
4962c51a
MS
1157 FALSE, /* partial_inplace */
1158 0xffffffff, /* src_mask */
1159 0xffffffff, /* dst_mask */
1160 TRUE), /* pcrel_offset */
1161
07d6d2b8 1162 HOWTO (R_ARM_LDR_SB_G1, /* type */
4962c51a
MS
1163 0, /* rightshift */
1164 2, /* size (0 = byte, 1 = short, 2 = long) */
1165 32, /* bitsize */
1166 TRUE, /* pc_relative */
1167 0, /* bitpos */
1168 complain_overflow_dont,/* complain_on_overflow */
1169 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1170 "R_ARM_LDR_SB_G1", /* name */
4962c51a
MS
1171 FALSE, /* partial_inplace */
1172 0xffffffff, /* src_mask */
1173 0xffffffff, /* dst_mask */
1174 TRUE), /* pcrel_offset */
1175
07d6d2b8 1176 HOWTO (R_ARM_LDR_SB_G2, /* type */
4962c51a
MS
1177 0, /* rightshift */
1178 2, /* size (0 = byte, 1 = short, 2 = long) */
1179 32, /* bitsize */
1180 TRUE, /* pc_relative */
1181 0, /* bitpos */
1182 complain_overflow_dont,/* complain_on_overflow */
1183 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1184 "R_ARM_LDR_SB_G2", /* name */
4962c51a
MS
1185 FALSE, /* partial_inplace */
1186 0xffffffff, /* src_mask */
1187 0xffffffff, /* dst_mask */
1188 TRUE), /* pcrel_offset */
1189
07d6d2b8 1190 HOWTO (R_ARM_LDRS_SB_G0, /* type */
4962c51a
MS
1191 0, /* rightshift */
1192 2, /* size (0 = byte, 1 = short, 2 = long) */
1193 32, /* bitsize */
1194 TRUE, /* pc_relative */
1195 0, /* bitpos */
1196 complain_overflow_dont,/* complain_on_overflow */
1197 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1198 "R_ARM_LDRS_SB_G0", /* name */
4962c51a
MS
1199 FALSE, /* partial_inplace */
1200 0xffffffff, /* src_mask */
1201 0xffffffff, /* dst_mask */
1202 TRUE), /* pcrel_offset */
1203
07d6d2b8 1204 HOWTO (R_ARM_LDRS_SB_G1, /* type */
4962c51a
MS
1205 0, /* rightshift */
1206 2, /* size (0 = byte, 1 = short, 2 = long) */
1207 32, /* bitsize */
1208 TRUE, /* pc_relative */
1209 0, /* bitpos */
1210 complain_overflow_dont,/* complain_on_overflow */
1211 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1212 "R_ARM_LDRS_SB_G1", /* name */
4962c51a
MS
1213 FALSE, /* partial_inplace */
1214 0xffffffff, /* src_mask */
1215 0xffffffff, /* dst_mask */
1216 TRUE), /* pcrel_offset */
1217
07d6d2b8 1218 HOWTO (R_ARM_LDRS_SB_G2, /* type */
4962c51a
MS
1219 0, /* rightshift */
1220 2, /* size (0 = byte, 1 = short, 2 = long) */
1221 32, /* bitsize */
1222 TRUE, /* pc_relative */
1223 0, /* bitpos */
1224 complain_overflow_dont,/* complain_on_overflow */
1225 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1226 "R_ARM_LDRS_SB_G2", /* name */
4962c51a
MS
1227 FALSE, /* partial_inplace */
1228 0xffffffff, /* src_mask */
1229 0xffffffff, /* dst_mask */
1230 TRUE), /* pcrel_offset */
1231
07d6d2b8 1232 HOWTO (R_ARM_LDC_SB_G0, /* type */
4962c51a
MS
1233 0, /* rightshift */
1234 2, /* size (0 = byte, 1 = short, 2 = long) */
1235 32, /* bitsize */
1236 TRUE, /* pc_relative */
1237 0, /* bitpos */
1238 complain_overflow_dont,/* complain_on_overflow */
1239 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1240 "R_ARM_LDC_SB_G0", /* name */
4962c51a
MS
1241 FALSE, /* partial_inplace */
1242 0xffffffff, /* src_mask */
1243 0xffffffff, /* dst_mask */
1244 TRUE), /* pcrel_offset */
1245
07d6d2b8 1246 HOWTO (R_ARM_LDC_SB_G1, /* type */
4962c51a
MS
1247 0, /* rightshift */
1248 2, /* size (0 = byte, 1 = short, 2 = long) */
1249 32, /* bitsize */
1250 TRUE, /* pc_relative */
1251 0, /* bitpos */
1252 complain_overflow_dont,/* complain_on_overflow */
1253 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1254 "R_ARM_LDC_SB_G1", /* name */
4962c51a
MS
1255 FALSE, /* partial_inplace */
1256 0xffffffff, /* src_mask */
1257 0xffffffff, /* dst_mask */
1258 TRUE), /* pcrel_offset */
1259
07d6d2b8 1260 HOWTO (R_ARM_LDC_SB_G2, /* type */
4962c51a
MS
1261 0, /* rightshift */
1262 2, /* size (0 = byte, 1 = short, 2 = long) */
1263 32, /* bitsize */
1264 TRUE, /* pc_relative */
1265 0, /* bitpos */
1266 complain_overflow_dont,/* complain_on_overflow */
1267 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1268 "R_ARM_LDC_SB_G2", /* name */
4962c51a
MS
1269 FALSE, /* partial_inplace */
1270 0xffffffff, /* src_mask */
1271 0xffffffff, /* dst_mask */
1272 TRUE), /* pcrel_offset */
1273
1274 /* End of group relocations. */
c19d1205 1275
c19d1205
ZW
1276 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1277 0, /* rightshift */
1278 2, /* size (0 = byte, 1 = short, 2 = long) */
1279 16, /* bitsize */
1280 FALSE, /* pc_relative */
1281 0, /* bitpos */
1282 complain_overflow_dont,/* complain_on_overflow */
1283 bfd_elf_generic_reloc, /* special_function */
1284 "R_ARM_MOVW_BREL_NC", /* name */
1285 FALSE, /* partial_inplace */
1286 0x0000ffff, /* src_mask */
1287 0x0000ffff, /* dst_mask */
1288 FALSE), /* pcrel_offset */
1289
1290 HOWTO (R_ARM_MOVT_BREL, /* type */
1291 0, /* rightshift */
1292 2, /* size (0 = byte, 1 = short, 2 = long) */
1293 16, /* bitsize */
1294 FALSE, /* pc_relative */
1295 0, /* bitpos */
1296 complain_overflow_bitfield,/* complain_on_overflow */
1297 bfd_elf_generic_reloc, /* special_function */
1298 "R_ARM_MOVT_BREL", /* name */
1299 FALSE, /* partial_inplace */
1300 0x0000ffff, /* src_mask */
1301 0x0000ffff, /* dst_mask */
1302 FALSE), /* pcrel_offset */
1303
1304 HOWTO (R_ARM_MOVW_BREL, /* type */
1305 0, /* rightshift */
1306 2, /* size (0 = byte, 1 = short, 2 = long) */
1307 16, /* bitsize */
1308 FALSE, /* pc_relative */
1309 0, /* bitpos */
1310 complain_overflow_dont,/* complain_on_overflow */
1311 bfd_elf_generic_reloc, /* special_function */
1312 "R_ARM_MOVW_BREL", /* name */
1313 FALSE, /* partial_inplace */
1314 0x0000ffff, /* src_mask */
1315 0x0000ffff, /* dst_mask */
1316 FALSE), /* pcrel_offset */
1317
1318 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1319 0, /* rightshift */
1320 2, /* size (0 = byte, 1 = short, 2 = long) */
1321 16, /* bitsize */
1322 FALSE, /* pc_relative */
1323 0, /* bitpos */
1324 complain_overflow_dont,/* complain_on_overflow */
1325 bfd_elf_generic_reloc, /* special_function */
1326 "R_ARM_THM_MOVW_BREL_NC",/* name */
1327 FALSE, /* partial_inplace */
1328 0x040f70ff, /* src_mask */
1329 0x040f70ff, /* dst_mask */
1330 FALSE), /* pcrel_offset */
1331
1332 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1333 0, /* rightshift */
1334 2, /* size (0 = byte, 1 = short, 2 = long) */
1335 16, /* bitsize */
1336 FALSE, /* pc_relative */
1337 0, /* bitpos */
1338 complain_overflow_bitfield,/* complain_on_overflow */
1339 bfd_elf_generic_reloc, /* special_function */
1340 "R_ARM_THM_MOVT_BREL", /* name */
1341 FALSE, /* partial_inplace */
1342 0x040f70ff, /* src_mask */
1343 0x040f70ff, /* dst_mask */
1344 FALSE), /* pcrel_offset */
1345
1346 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1347 0, /* rightshift */
1348 2, /* size (0 = byte, 1 = short, 2 = long) */
1349 16, /* bitsize */
1350 FALSE, /* pc_relative */
1351 0, /* bitpos */
1352 complain_overflow_dont,/* complain_on_overflow */
1353 bfd_elf_generic_reloc, /* special_function */
1354 "R_ARM_THM_MOVW_BREL", /* name */
1355 FALSE, /* partial_inplace */
1356 0x040f70ff, /* src_mask */
1357 0x040f70ff, /* dst_mask */
1358 FALSE), /* pcrel_offset */
1359
0855e32b
NS
1360 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1361 0, /* rightshift */
1362 2, /* size (0 = byte, 1 = short, 2 = long) */
1363 32, /* bitsize */
1364 FALSE, /* pc_relative */
1365 0, /* bitpos */
1366 complain_overflow_bitfield,/* complain_on_overflow */
1367 NULL, /* special_function */
1368 "R_ARM_TLS_GOTDESC", /* name */
1369 TRUE, /* partial_inplace */
1370 0xffffffff, /* src_mask */
1371 0xffffffff, /* dst_mask */
1372 FALSE), /* pcrel_offset */
1373
1374 HOWTO (R_ARM_TLS_CALL, /* type */
1375 0, /* rightshift */
1376 2, /* size (0 = byte, 1 = short, 2 = long) */
1377 24, /* bitsize */
1378 FALSE, /* pc_relative */
1379 0, /* bitpos */
1380 complain_overflow_dont,/* complain_on_overflow */
1381 bfd_elf_generic_reloc, /* special_function */
1382 "R_ARM_TLS_CALL", /* name */
1383 FALSE, /* partial_inplace */
1384 0x00ffffff, /* src_mask */
1385 0x00ffffff, /* dst_mask */
1386 FALSE), /* pcrel_offset */
1387
1388 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1389 0, /* rightshift */
1390 2, /* size (0 = byte, 1 = short, 2 = long) */
1391 0, /* bitsize */
1392 FALSE, /* pc_relative */
1393 0, /* bitpos */
1394 complain_overflow_bitfield,/* complain_on_overflow */
1395 bfd_elf_generic_reloc, /* special_function */
1396 "R_ARM_TLS_DESCSEQ", /* name */
1397 FALSE, /* partial_inplace */
1398 0x00000000, /* src_mask */
1399 0x00000000, /* dst_mask */
1400 FALSE), /* pcrel_offset */
1401
1402 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1403 0, /* rightshift */
1404 2, /* size (0 = byte, 1 = short, 2 = long) */
1405 24, /* bitsize */
1406 FALSE, /* pc_relative */
1407 0, /* bitpos */
1408 complain_overflow_dont,/* complain_on_overflow */
1409 bfd_elf_generic_reloc, /* special_function */
1410 "R_ARM_THM_TLS_CALL", /* name */
1411 FALSE, /* partial_inplace */
1412 0x07ff07ff, /* src_mask */
1413 0x07ff07ff, /* dst_mask */
1414 FALSE), /* pcrel_offset */
c19d1205
ZW
1415
1416 HOWTO (R_ARM_PLT32_ABS, /* type */
1417 0, /* rightshift */
1418 2, /* size (0 = byte, 1 = short, 2 = long) */
1419 32, /* bitsize */
1420 FALSE, /* pc_relative */
1421 0, /* bitpos */
1422 complain_overflow_dont,/* complain_on_overflow */
1423 bfd_elf_generic_reloc, /* special_function */
1424 "R_ARM_PLT32_ABS", /* name */
1425 FALSE, /* partial_inplace */
1426 0xffffffff, /* src_mask */
1427 0xffffffff, /* dst_mask */
1428 FALSE), /* pcrel_offset */
1429
1430 HOWTO (R_ARM_GOT_ABS, /* type */
1431 0, /* rightshift */
1432 2, /* size (0 = byte, 1 = short, 2 = long) */
1433 32, /* bitsize */
1434 FALSE, /* pc_relative */
1435 0, /* bitpos */
1436 complain_overflow_dont,/* complain_on_overflow */
1437 bfd_elf_generic_reloc, /* special_function */
1438 "R_ARM_GOT_ABS", /* name */
1439 FALSE, /* partial_inplace */
1440 0xffffffff, /* src_mask */
1441 0xffffffff, /* dst_mask */
1442 FALSE), /* pcrel_offset */
1443
1444 HOWTO (R_ARM_GOT_PREL, /* type */
1445 0, /* rightshift */
1446 2, /* size (0 = byte, 1 = short, 2 = long) */
1447 32, /* bitsize */
1448 TRUE, /* pc_relative */
1449 0, /* bitpos */
1450 complain_overflow_dont, /* complain_on_overflow */
1451 bfd_elf_generic_reloc, /* special_function */
1452 "R_ARM_GOT_PREL", /* name */
1453 FALSE, /* partial_inplace */
1454 0xffffffff, /* src_mask */
1455 0xffffffff, /* dst_mask */
1456 TRUE), /* pcrel_offset */
1457
1458 HOWTO (R_ARM_GOT_BREL12, /* type */
1459 0, /* rightshift */
1460 2, /* size (0 = byte, 1 = short, 2 = long) */
1461 12, /* bitsize */
1462 FALSE, /* pc_relative */
1463 0, /* bitpos */
1464 complain_overflow_bitfield,/* complain_on_overflow */
1465 bfd_elf_generic_reloc, /* special_function */
1466 "R_ARM_GOT_BREL12", /* name */
1467 FALSE, /* partial_inplace */
1468 0x00000fff, /* src_mask */
1469 0x00000fff, /* dst_mask */
1470 FALSE), /* pcrel_offset */
1471
1472 HOWTO (R_ARM_GOTOFF12, /* type */
1473 0, /* rightshift */
1474 2, /* size (0 = byte, 1 = short, 2 = long) */
1475 12, /* bitsize */
1476 FALSE, /* pc_relative */
1477 0, /* bitpos */
1478 complain_overflow_bitfield,/* complain_on_overflow */
1479 bfd_elf_generic_reloc, /* special_function */
1480 "R_ARM_GOTOFF12", /* name */
1481 FALSE, /* partial_inplace */
1482 0x00000fff, /* src_mask */
1483 0x00000fff, /* dst_mask */
1484 FALSE), /* pcrel_offset */
1485
07d6d2b8 1486 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
c19d1205
ZW
1487
1488 /* GNU extension to record C++ vtable member usage */
07d6d2b8
AM
1489 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1490 0, /* rightshift */
1491 2, /* size (0 = byte, 1 = short, 2 = long) */
1492 0, /* bitsize */
1493 FALSE, /* pc_relative */
1494 0, /* bitpos */
99059e56 1495 complain_overflow_dont, /* complain_on_overflow */
07d6d2b8
AM
1496 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1497 "R_ARM_GNU_VTENTRY", /* name */
1498 FALSE, /* partial_inplace */
1499 0, /* src_mask */
1500 0, /* dst_mask */
1501 FALSE), /* pcrel_offset */
c19d1205
ZW
1502
1503 /* GNU extension to record C++ vtable hierarchy */
1504 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
07d6d2b8
AM
1505 0, /* rightshift */
1506 2, /* size (0 = byte, 1 = short, 2 = long) */
1507 0, /* bitsize */
1508 FALSE, /* pc_relative */
1509 0, /* bitpos */
99059e56 1510 complain_overflow_dont, /* complain_on_overflow */
07d6d2b8 1511 NULL, /* special_function */
99059e56 1512 "R_ARM_GNU_VTINHERIT", /* name */
07d6d2b8
AM
1513 FALSE, /* partial_inplace */
1514 0, /* src_mask */
1515 0, /* dst_mask */
1516 FALSE), /* pcrel_offset */
c19d1205
ZW
1517
1518 HOWTO (R_ARM_THM_JUMP11, /* type */
1519 1, /* rightshift */
1520 1, /* size (0 = byte, 1 = short, 2 = long) */
1521 11, /* bitsize */
1522 TRUE, /* pc_relative */
1523 0, /* bitpos */
1524 complain_overflow_signed, /* complain_on_overflow */
1525 bfd_elf_generic_reloc, /* special_function */
1526 "R_ARM_THM_JUMP11", /* name */
1527 FALSE, /* partial_inplace */
1528 0x000007ff, /* src_mask */
1529 0x000007ff, /* dst_mask */
1530 TRUE), /* pcrel_offset */
1531
1532 HOWTO (R_ARM_THM_JUMP8, /* type */
1533 1, /* rightshift */
1534 1, /* size (0 = byte, 1 = short, 2 = long) */
1535 8, /* bitsize */
1536 TRUE, /* pc_relative */
1537 0, /* bitpos */
1538 complain_overflow_signed, /* complain_on_overflow */
1539 bfd_elf_generic_reloc, /* special_function */
1540 "R_ARM_THM_JUMP8", /* name */
1541 FALSE, /* partial_inplace */
1542 0x000000ff, /* src_mask */
1543 0x000000ff, /* dst_mask */
1544 TRUE), /* pcrel_offset */
ba93b8ac 1545
c19d1205
ZW
1546 /* TLS relocations */
1547 HOWTO (R_ARM_TLS_GD32, /* type */
07d6d2b8
AM
1548 0, /* rightshift */
1549 2, /* size (0 = byte, 1 = short, 2 = long) */
1550 32, /* bitsize */
1551 FALSE, /* pc_relative */
1552 0, /* bitpos */
99059e56
RM
1553 complain_overflow_bitfield,/* complain_on_overflow */
1554 NULL, /* special_function */
1555 "R_ARM_TLS_GD32", /* name */
1556 TRUE, /* partial_inplace */
1557 0xffffffff, /* src_mask */
1558 0xffffffff, /* dst_mask */
07d6d2b8 1559 FALSE), /* pcrel_offset */
ba93b8ac 1560
ba93b8ac 1561 HOWTO (R_ARM_TLS_LDM32, /* type */
07d6d2b8
AM
1562 0, /* rightshift */
1563 2, /* size (0 = byte, 1 = short, 2 = long) */
1564 32, /* bitsize */
1565 FALSE, /* pc_relative */
1566 0, /* bitpos */
99059e56
RM
1567 complain_overflow_bitfield,/* complain_on_overflow */
1568 bfd_elf_generic_reloc, /* special_function */
1569 "R_ARM_TLS_LDM32", /* name */
1570 TRUE, /* partial_inplace */
1571 0xffffffff, /* src_mask */
1572 0xffffffff, /* dst_mask */
07d6d2b8 1573 FALSE), /* pcrel_offset */
ba93b8ac 1574
c19d1205 1575 HOWTO (R_ARM_TLS_LDO32, /* type */
07d6d2b8
AM
1576 0, /* rightshift */
1577 2, /* size (0 = byte, 1 = short, 2 = long) */
1578 32, /* bitsize */
1579 FALSE, /* pc_relative */
1580 0, /* bitpos */
99059e56
RM
1581 complain_overflow_bitfield,/* complain_on_overflow */
1582 bfd_elf_generic_reloc, /* special_function */
1583 "R_ARM_TLS_LDO32", /* name */
1584 TRUE, /* partial_inplace */
1585 0xffffffff, /* src_mask */
1586 0xffffffff, /* dst_mask */
07d6d2b8 1587 FALSE), /* pcrel_offset */
ba93b8ac 1588
ba93b8ac 1589 HOWTO (R_ARM_TLS_IE32, /* type */
07d6d2b8
AM
1590 0, /* rightshift */
1591 2, /* size (0 = byte, 1 = short, 2 = long) */
1592 32, /* bitsize */
1593 FALSE, /* pc_relative */
1594 0, /* bitpos */
99059e56
RM
1595 complain_overflow_bitfield,/* complain_on_overflow */
1596 NULL, /* special_function */
1597 "R_ARM_TLS_IE32", /* name */
1598 TRUE, /* partial_inplace */
1599 0xffffffff, /* src_mask */
1600 0xffffffff, /* dst_mask */
07d6d2b8 1601 FALSE), /* pcrel_offset */
7f266840 1602
c19d1205 1603 HOWTO (R_ARM_TLS_LE32, /* type */
07d6d2b8
AM
1604 0, /* rightshift */
1605 2, /* size (0 = byte, 1 = short, 2 = long) */
1606 32, /* bitsize */
1607 FALSE, /* pc_relative */
1608 0, /* bitpos */
99059e56 1609 complain_overflow_bitfield,/* complain_on_overflow */
07d6d2b8 1610 NULL, /* special_function */
99059e56
RM
1611 "R_ARM_TLS_LE32", /* name */
1612 TRUE, /* partial_inplace */
1613 0xffffffff, /* src_mask */
1614 0xffffffff, /* dst_mask */
07d6d2b8 1615 FALSE), /* pcrel_offset */
7f266840 1616
c19d1205
ZW
1617 HOWTO (R_ARM_TLS_LDO12, /* type */
1618 0, /* rightshift */
1619 2, /* size (0 = byte, 1 = short, 2 = long) */
1620 12, /* bitsize */
1621 FALSE, /* pc_relative */
7f266840 1622 0, /* bitpos */
c19d1205 1623 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1624 bfd_elf_generic_reloc, /* special_function */
c19d1205 1625 "R_ARM_TLS_LDO12", /* name */
7f266840 1626 FALSE, /* partial_inplace */
c19d1205
ZW
1627 0x00000fff, /* src_mask */
1628 0x00000fff, /* dst_mask */
1629 FALSE), /* pcrel_offset */
7f266840 1630
c19d1205
ZW
1631 HOWTO (R_ARM_TLS_LE12, /* type */
1632 0, /* rightshift */
1633 2, /* size (0 = byte, 1 = short, 2 = long) */
1634 12, /* bitsize */
1635 FALSE, /* pc_relative */
7f266840 1636 0, /* bitpos */
c19d1205 1637 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1638 bfd_elf_generic_reloc, /* special_function */
c19d1205 1639 "R_ARM_TLS_LE12", /* name */
7f266840 1640 FALSE, /* partial_inplace */
c19d1205
ZW
1641 0x00000fff, /* src_mask */
1642 0x00000fff, /* dst_mask */
1643 FALSE), /* pcrel_offset */
7f266840 1644
c19d1205 1645 HOWTO (R_ARM_TLS_IE12GP, /* type */
7f266840
DJ
1646 0, /* rightshift */
1647 2, /* size (0 = byte, 1 = short, 2 = long) */
c19d1205
ZW
1648 12, /* bitsize */
1649 FALSE, /* pc_relative */
7f266840 1650 0, /* bitpos */
c19d1205 1651 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1652 bfd_elf_generic_reloc, /* special_function */
c19d1205 1653 "R_ARM_TLS_IE12GP", /* name */
7f266840 1654 FALSE, /* partial_inplace */
c19d1205
ZW
1655 0x00000fff, /* src_mask */
1656 0x00000fff, /* dst_mask */
1657 FALSE), /* pcrel_offset */
0855e32b 1658
34e77a92 1659 /* 112-127 private relocations. */
0855e32b
NS
1660 EMPTY_HOWTO (112),
1661 EMPTY_HOWTO (113),
1662 EMPTY_HOWTO (114),
1663 EMPTY_HOWTO (115),
1664 EMPTY_HOWTO (116),
1665 EMPTY_HOWTO (117),
1666 EMPTY_HOWTO (118),
1667 EMPTY_HOWTO (119),
1668 EMPTY_HOWTO (120),
1669 EMPTY_HOWTO (121),
1670 EMPTY_HOWTO (122),
1671 EMPTY_HOWTO (123),
1672 EMPTY_HOWTO (124),
1673 EMPTY_HOWTO (125),
1674 EMPTY_HOWTO (126),
1675 EMPTY_HOWTO (127),
34e77a92
RS
1676
1677 /* R_ARM_ME_TOO, obsolete. */
0855e32b
NS
1678 EMPTY_HOWTO (128),
1679
1680 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1681 0, /* rightshift */
1682 1, /* size (0 = byte, 1 = short, 2 = long) */
1683 0, /* bitsize */
1684 FALSE, /* pc_relative */
1685 0, /* bitpos */
1686 complain_overflow_bitfield,/* complain_on_overflow */
1687 bfd_elf_generic_reloc, /* special_function */
1688 "R_ARM_THM_TLS_DESCSEQ",/* name */
1689 FALSE, /* partial_inplace */
1690 0x00000000, /* src_mask */
1691 0x00000000, /* dst_mask */
1692 FALSE), /* pcrel_offset */
72d98d16
MG
1693 EMPTY_HOWTO (130),
1694 EMPTY_HOWTO (131),
1695 HOWTO (R_ARM_THM_ALU_ABS_G0_NC,/* type. */
1696 0, /* rightshift. */
1697 1, /* size (0 = byte, 1 = short, 2 = long). */
1698 16, /* bitsize. */
1699 FALSE, /* pc_relative. */
1700 0, /* bitpos. */
1701 complain_overflow_bitfield,/* complain_on_overflow. */
1702 bfd_elf_generic_reloc, /* special_function. */
1703 "R_ARM_THM_ALU_ABS_G0_NC",/* name. */
1704 FALSE, /* partial_inplace. */
1705 0x00000000, /* src_mask. */
1706 0x00000000, /* dst_mask. */
1707 FALSE), /* pcrel_offset. */
1708 HOWTO (R_ARM_THM_ALU_ABS_G1_NC,/* type. */
1709 0, /* rightshift. */
1710 1, /* size (0 = byte, 1 = short, 2 = long). */
1711 16, /* bitsize. */
1712 FALSE, /* pc_relative. */
1713 0, /* bitpos. */
1714 complain_overflow_bitfield,/* complain_on_overflow. */
1715 bfd_elf_generic_reloc, /* special_function. */
1716 "R_ARM_THM_ALU_ABS_G1_NC",/* name. */
1717 FALSE, /* partial_inplace. */
1718 0x00000000, /* src_mask. */
1719 0x00000000, /* dst_mask. */
1720 FALSE), /* pcrel_offset. */
1721 HOWTO (R_ARM_THM_ALU_ABS_G2_NC,/* type. */
1722 0, /* rightshift. */
1723 1, /* size (0 = byte, 1 = short, 2 = long). */
1724 16, /* bitsize. */
1725 FALSE, /* pc_relative. */
1726 0, /* bitpos. */
1727 complain_overflow_bitfield,/* complain_on_overflow. */
1728 bfd_elf_generic_reloc, /* special_function. */
1729 "R_ARM_THM_ALU_ABS_G2_NC",/* name. */
1730 FALSE, /* partial_inplace. */
1731 0x00000000, /* src_mask. */
1732 0x00000000, /* dst_mask. */
1733 FALSE), /* pcrel_offset. */
1734 HOWTO (R_ARM_THM_ALU_ABS_G3_NC,/* type. */
1735 0, /* rightshift. */
1736 1, /* size (0 = byte, 1 = short, 2 = long). */
1737 16, /* bitsize. */
1738 FALSE, /* pc_relative. */
1739 0, /* bitpos. */
1740 complain_overflow_bitfield,/* complain_on_overflow. */
1741 bfd_elf_generic_reloc, /* special_function. */
1742 "R_ARM_THM_ALU_ABS_G3_NC",/* name. */
1743 FALSE, /* partial_inplace. */
1744 0x00000000, /* src_mask. */
1745 0x00000000, /* dst_mask. */
1746 FALSE), /* pcrel_offset. */
e5d6e09e
AV
1747 /* Relocations for Armv8.1-M Mainline. */
1748 HOWTO (R_ARM_THM_BF16, /* type. */
1749 0, /* rightshift. */
1750 1, /* size (0 = byte, 1 = short, 2 = long). */
1751 16, /* bitsize. */
1752 TRUE, /* pc_relative. */
1753 0, /* bitpos. */
1754 complain_overflow_dont,/* do not complain_on_overflow. */
1755 bfd_elf_generic_reloc, /* special_function. */
1756 "R_ARM_THM_BF16", /* name. */
1757 FALSE, /* partial_inplace. */
1758 0x001f0ffe, /* src_mask. */
1759 0x001f0ffe, /* dst_mask. */
1760 TRUE), /* pcrel_offset. */
1889da70
AV
1761 HOWTO (R_ARM_THM_BF12, /* type. */
1762 0, /* rightshift. */
1763 1, /* size (0 = byte, 1 = short, 2 = long). */
1764 12, /* bitsize. */
1765 TRUE, /* pc_relative. */
1766 0, /* bitpos. */
1767 complain_overflow_dont,/* do not complain_on_overflow. */
1768 bfd_elf_generic_reloc, /* special_function. */
1769 "R_ARM_THM_BF12", /* name. */
1770 FALSE, /* partial_inplace. */
1771 0x00010ffe, /* src_mask. */
1772 0x00010ffe, /* dst_mask. */
1773 TRUE), /* pcrel_offset. */
1caf72a5
AV
1774 HOWTO (R_ARM_THM_BF18, /* type. */
1775 0, /* rightshift. */
1776 1, /* size (0 = byte, 1 = short, 2 = long). */
1777 18, /* bitsize. */
1778 TRUE, /* pc_relative. */
1779 0, /* bitpos. */
1780 complain_overflow_dont,/* do not complain_on_overflow. */
1781 bfd_elf_generic_reloc, /* special_function. */
1782 "R_ARM_THM_BF18", /* name. */
1783 FALSE, /* partial_inplace. */
1784 0x007f0ffe, /* src_mask. */
1785 0x007f0ffe, /* dst_mask. */
1786 TRUE), /* pcrel_offset. */
c19d1205
ZW
1787};
1788
34e77a92 1789/* 160 onwards: */
5c5a4843 1790static reloc_howto_type elf32_arm_howto_table_2[8] =
34e77a92
RS
1791{
1792 HOWTO (R_ARM_IRELATIVE, /* type */
07d6d2b8
AM
1793 0, /* rightshift */
1794 2, /* size (0 = byte, 1 = short, 2 = long) */
1795 32, /* bitsize */
1796 FALSE, /* pc_relative */
1797 0, /* bitpos */
99059e56
RM
1798 complain_overflow_bitfield,/* complain_on_overflow */
1799 bfd_elf_generic_reloc, /* special_function */
1800 "R_ARM_IRELATIVE", /* name */
1801 TRUE, /* partial_inplace */
1802 0xffffffff, /* src_mask */
1803 0xffffffff, /* dst_mask */
188fd7ae
CL
1804 FALSE), /* pcrel_offset */
1805 HOWTO (R_ARM_GOTFUNCDESC, /* type */
1806 0, /* rightshift */
1807 2, /* size (0 = byte, 1 = short, 2 = long) */
1808 32, /* bitsize */
1809 FALSE, /* pc_relative */
1810 0, /* bitpos */
1811 complain_overflow_bitfield,/* complain_on_overflow */
1812 bfd_elf_generic_reloc, /* special_function */
1813 "R_ARM_GOTFUNCDESC", /* name */
1814 FALSE, /* partial_inplace */
1815 0, /* src_mask */
1816 0xffffffff, /* dst_mask */
1817 FALSE), /* pcrel_offset */
1818 HOWTO (R_ARM_GOTOFFFUNCDESC, /* type */
1819 0, /* rightshift */
1820 2, /* size (0 = byte, 1 = short, 2 = long) */
1821 32, /* bitsize */
1822 FALSE, /* pc_relative */
1823 0, /* bitpos */
1824 complain_overflow_bitfield,/* complain_on_overflow */
1825 bfd_elf_generic_reloc, /* special_function */
1826 "R_ARM_GOTOFFFUNCDESC",/* name */
1827 FALSE, /* partial_inplace */
1828 0, /* src_mask */
1829 0xffffffff, /* dst_mask */
1830 FALSE), /* pcrel_offset */
1831 HOWTO (R_ARM_FUNCDESC, /* type */
1832 0, /* rightshift */
1833 2, /* size (0 = byte, 1 = short, 2 = long) */
1834 32, /* bitsize */
1835 FALSE, /* pc_relative */
1836 0, /* bitpos */
1837 complain_overflow_bitfield,/* complain_on_overflow */
1838 bfd_elf_generic_reloc, /* special_function */
1839 "R_ARM_FUNCDESC", /* name */
1840 FALSE, /* partial_inplace */
1841 0, /* src_mask */
1842 0xffffffff, /* dst_mask */
1843 FALSE), /* pcrel_offset */
1844 HOWTO (R_ARM_FUNCDESC_VALUE, /* type */
1845 0, /* rightshift */
1846 2, /* size (0 = byte, 1 = short, 2 = long) */
1847 64, /* bitsize */
1848 FALSE, /* pc_relative */
1849 0, /* bitpos */
1850 complain_overflow_bitfield,/* complain_on_overflow */
1851 bfd_elf_generic_reloc, /* special_function */
1852 "R_ARM_FUNCDESC_VALUE",/* name */
1853 FALSE, /* partial_inplace */
1854 0, /* src_mask */
1855 0xffffffff, /* dst_mask */
1856 FALSE), /* pcrel_offset */
5c5a4843
CL
1857 HOWTO (R_ARM_TLS_GD32_FDPIC, /* type */
1858 0, /* rightshift */
1859 2, /* size (0 = byte, 1 = short, 2 = long) */
1860 32, /* bitsize */
1861 FALSE, /* pc_relative */
1862 0, /* bitpos */
1863 complain_overflow_bitfield,/* complain_on_overflow */
1864 bfd_elf_generic_reloc, /* special_function */
1865 "R_ARM_TLS_GD32_FDPIC",/* name */
1866 FALSE, /* partial_inplace */
1867 0, /* src_mask */
1868 0xffffffff, /* dst_mask */
1869 FALSE), /* pcrel_offset */
1870 HOWTO (R_ARM_TLS_LDM32_FDPIC, /* type */
1871 0, /* rightshift */
1872 2, /* size (0 = byte, 1 = short, 2 = long) */
1873 32, /* bitsize */
1874 FALSE, /* pc_relative */
1875 0, /* bitpos */
1876 complain_overflow_bitfield,/* complain_on_overflow */
1877 bfd_elf_generic_reloc, /* special_function */
1878 "R_ARM_TLS_LDM32_FDPIC",/* name */
1879 FALSE, /* partial_inplace */
1880 0, /* src_mask */
1881 0xffffffff, /* dst_mask */
1882 FALSE), /* pcrel_offset */
1883 HOWTO (R_ARM_TLS_IE32_FDPIC, /* type */
1884 0, /* rightshift */
1885 2, /* size (0 = byte, 1 = short, 2 = long) */
1886 32, /* bitsize */
1887 FALSE, /* pc_relative */
1888 0, /* bitpos */
1889 complain_overflow_bitfield,/* complain_on_overflow */
1890 bfd_elf_generic_reloc, /* special_function */
1891 "R_ARM_TLS_IE32_FDPIC",/* name */
1892 FALSE, /* partial_inplace */
1893 0, /* src_mask */
1894 0xffffffff, /* dst_mask */
1895 FALSE), /* pcrel_offset */
34e77a92 1896};
c19d1205 1897
34e77a92
RS
1898/* 249-255 extended, currently unused, relocations: */
1899static reloc_howto_type elf32_arm_howto_table_3[4] =
7f266840
DJ
1900{
1901 HOWTO (R_ARM_RREL32, /* type */
1902 0, /* rightshift */
1903 0, /* size (0 = byte, 1 = short, 2 = long) */
1904 0, /* bitsize */
1905 FALSE, /* pc_relative */
1906 0, /* bitpos */
1907 complain_overflow_dont,/* complain_on_overflow */
1908 bfd_elf_generic_reloc, /* special_function */
1909 "R_ARM_RREL32", /* name */
1910 FALSE, /* partial_inplace */
1911 0, /* src_mask */
1912 0, /* dst_mask */
1913 FALSE), /* pcrel_offset */
1914
1915 HOWTO (R_ARM_RABS32, /* type */
1916 0, /* rightshift */
1917 0, /* size (0 = byte, 1 = short, 2 = long) */
1918 0, /* bitsize */
1919 FALSE, /* pc_relative */
1920 0, /* bitpos */
1921 complain_overflow_dont,/* complain_on_overflow */
1922 bfd_elf_generic_reloc, /* special_function */
1923 "R_ARM_RABS32", /* name */
1924 FALSE, /* partial_inplace */
1925 0, /* src_mask */
1926 0, /* dst_mask */
1927 FALSE), /* pcrel_offset */
1928
1929 HOWTO (R_ARM_RPC24, /* type */
1930 0, /* rightshift */
1931 0, /* size (0 = byte, 1 = short, 2 = long) */
1932 0, /* bitsize */
1933 FALSE, /* pc_relative */
1934 0, /* bitpos */
1935 complain_overflow_dont,/* complain_on_overflow */
1936 bfd_elf_generic_reloc, /* special_function */
1937 "R_ARM_RPC24", /* name */
1938 FALSE, /* partial_inplace */
1939 0, /* src_mask */
1940 0, /* dst_mask */
1941 FALSE), /* pcrel_offset */
1942
1943 HOWTO (R_ARM_RBASE, /* type */
1944 0, /* rightshift */
1945 0, /* size (0 = byte, 1 = short, 2 = long) */
1946 0, /* bitsize */
1947 FALSE, /* pc_relative */
1948 0, /* bitpos */
1949 complain_overflow_dont,/* complain_on_overflow */
1950 bfd_elf_generic_reloc, /* special_function */
1951 "R_ARM_RBASE", /* name */
1952 FALSE, /* partial_inplace */
1953 0, /* src_mask */
1954 0, /* dst_mask */
1955 FALSE) /* pcrel_offset */
1956};
1957
1958static reloc_howto_type *
1959elf32_arm_howto_from_type (unsigned int r_type)
1960{
906e58ca 1961 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
c19d1205 1962 return &elf32_arm_howto_table_1[r_type];
ba93b8ac 1963
188fd7ae
CL
1964 if (r_type >= R_ARM_IRELATIVE
1965 && r_type < R_ARM_IRELATIVE + ARRAY_SIZE (elf32_arm_howto_table_2))
34e77a92
RS
1966 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1967
c19d1205 1968 if (r_type >= R_ARM_RREL32
34e77a92
RS
1969 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1970 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
7f266840 1971
c19d1205 1972 return NULL;
7f266840
DJ
1973}
1974
f3185997
NC
1975static bfd_boolean
1976elf32_arm_info_to_howto (bfd * abfd, arelent * bfd_reloc,
7f266840
DJ
1977 Elf_Internal_Rela * elf_reloc)
1978{
1979 unsigned int r_type;
1980
1981 r_type = ELF32_R_TYPE (elf_reloc->r_info);
f3185997
NC
1982 if ((bfd_reloc->howto = elf32_arm_howto_from_type (r_type)) == NULL)
1983 {
1984 /* xgettext:c-format */
1985 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1986 abfd, r_type);
1987 bfd_set_error (bfd_error_bad_value);
1988 return FALSE;
1989 }
1990 return TRUE;
7f266840
DJ
1991}
1992
1993struct elf32_arm_reloc_map
1994 {
1995 bfd_reloc_code_real_type bfd_reloc_val;
07d6d2b8 1996 unsigned char elf_reloc_val;
7f266840
DJ
1997 };
1998
1999/* All entries in this list must also be present in elf32_arm_howto_table. */
2000static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
2001 {
07d6d2b8 2002 {BFD_RELOC_NONE, R_ARM_NONE},
7f266840 2003 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
39b41c9c
PB
2004 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
2005 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
07d6d2b8
AM
2006 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
2007 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
2008 {BFD_RELOC_32, R_ARM_ABS32},
2009 {BFD_RELOC_32_PCREL, R_ARM_REL32},
2010 {BFD_RELOC_8, R_ARM_ABS8},
2011 {BFD_RELOC_16, R_ARM_ABS16},
2012 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
7f266840 2013 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
c19d1205
ZW
2014 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
2015 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
2016 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
2017 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
2018 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
2019 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
07d6d2b8
AM
2020 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
2021 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
2022 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
2023 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
2024 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
2025 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
2026 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
2027 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
7f266840
DJ
2028 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
2029 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
2030 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
2031 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
ba93b8ac 2032 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
07d6d2b8
AM
2033 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
2034 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
2035 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
0855e32b 2036 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
07d6d2b8 2037 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
0855e32b 2038 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
07d6d2b8 2039 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
ba93b8ac
DJ
2040 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
2041 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
2042 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
2043 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
2044 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
07d6d2b8
AM
2045 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
2046 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
2047 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
2048 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
188fd7ae
CL
2049 {BFD_RELOC_ARM_GOTFUNCDESC, R_ARM_GOTFUNCDESC},
2050 {BFD_RELOC_ARM_GOTOFFFUNCDESC, R_ARM_GOTOFFFUNCDESC},
2051 {BFD_RELOC_ARM_FUNCDESC, R_ARM_FUNCDESC},
2052 {BFD_RELOC_ARM_FUNCDESC_VALUE, R_ARM_FUNCDESC_VALUE},
5c5a4843
CL
2053 {BFD_RELOC_ARM_TLS_GD32_FDPIC, R_ARM_TLS_GD32_FDPIC},
2054 {BFD_RELOC_ARM_TLS_LDM32_FDPIC, R_ARM_TLS_LDM32_FDPIC},
2055 {BFD_RELOC_ARM_TLS_IE32_FDPIC, R_ARM_TLS_IE32_FDPIC},
c19d1205
ZW
2056 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
2057 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
b6895b4f
PB
2058 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
2059 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
2060 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
2061 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
2062 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
2063 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
2064 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
2065 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
4962c51a
MS
2066 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
2067 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
2068 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
2069 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
2070 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
2071 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
2072 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
2073 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
2074 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
2075 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
2076 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
2077 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
2078 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
2079 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
2080 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
2081 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
2082 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
2083 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
2084 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
2085 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
2086 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
2087 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
2088 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
2089 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
2090 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
2091 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
2092 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
845b51d6 2093 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
72d98d16
MG
2094 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX},
2095 {BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC, R_ARM_THM_ALU_ABS_G3_NC},
2096 {BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC, R_ARM_THM_ALU_ABS_G2_NC},
2097 {BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC, R_ARM_THM_ALU_ABS_G1_NC},
e5d6e09e 2098 {BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC, R_ARM_THM_ALU_ABS_G0_NC},
1caf72a5 2099 {BFD_RELOC_ARM_THUMB_BF17, R_ARM_THM_BF16},
1889da70 2100 {BFD_RELOC_ARM_THUMB_BF13, R_ARM_THM_BF12},
1caf72a5 2101 {BFD_RELOC_ARM_THUMB_BF19, R_ARM_THM_BF18}
7f266840
DJ
2102 };
2103
2104static reloc_howto_type *
f1c71a59
ZW
2105elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2106 bfd_reloc_code_real_type code)
7f266840
DJ
2107{
2108 unsigned int i;
8029a119 2109
906e58ca 2110 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
c19d1205
ZW
2111 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
2112 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
7f266840 2113
c19d1205 2114 return NULL;
7f266840
DJ
2115}
2116
157090f7
AM
2117static reloc_howto_type *
2118elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2119 const char *r_name)
2120{
2121 unsigned int i;
2122
906e58ca 2123 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
157090f7
AM
2124 if (elf32_arm_howto_table_1[i].name != NULL
2125 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
2126 return &elf32_arm_howto_table_1[i];
2127
906e58ca 2128 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
157090f7
AM
2129 if (elf32_arm_howto_table_2[i].name != NULL
2130 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
2131 return &elf32_arm_howto_table_2[i];
2132
34e77a92
RS
2133 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
2134 if (elf32_arm_howto_table_3[i].name != NULL
2135 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
2136 return &elf32_arm_howto_table_3[i];
2137
157090f7
AM
2138 return NULL;
2139}
2140
906e58ca
NC
2141/* Support for core dump NOTE sections. */
2142
7f266840 2143static bfd_boolean
f1c71a59 2144elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7f266840
DJ
2145{
2146 int offset;
2147 size_t size;
2148
2149 switch (note->descsz)
2150 {
2151 default:
2152 return FALSE;
2153
8029a119 2154 case 148: /* Linux/ARM 32-bit. */
7f266840 2155 /* pr_cursig */
228e534f 2156 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
7f266840
DJ
2157
2158 /* pr_pid */
228e534f 2159 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
7f266840
DJ
2160
2161 /* pr_reg */
2162 offset = 72;
2163 size = 72;
2164
2165 break;
2166 }
2167
2168 /* Make a ".reg/999" section. */
2169 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2170 size, note->descpos + offset);
2171}
2172
2173static bfd_boolean
f1c71a59 2174elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7f266840
DJ
2175{
2176 switch (note->descsz)
2177 {
2178 default:
2179 return FALSE;
2180
8029a119 2181 case 124: /* Linux/ARM elf_prpsinfo. */
228e534f 2182 elf_tdata (abfd)->core->pid
4395ee08 2183 = bfd_get_32 (abfd, note->descdata + 12);
228e534f 2184 elf_tdata (abfd)->core->program
7f266840 2185 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
228e534f 2186 elf_tdata (abfd)->core->command
7f266840
DJ
2187 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
2188 }
2189
2190 /* Note that for some reason, a spurious space is tacked
2191 onto the end of the args in some (at least one anyway)
2192 implementations, so strip it off if it exists. */
7f266840 2193 {
228e534f 2194 char *command = elf_tdata (abfd)->core->command;
7f266840
DJ
2195 int n = strlen (command);
2196
2197 if (0 < n && command[n - 1] == ' ')
2198 command[n - 1] = '\0';
2199 }
2200
2201 return TRUE;
2202}
2203
1f20dca5
UW
2204static char *
2205elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz,
2206 int note_type, ...)
2207{
2208 switch (note_type)
2209 {
2210 default:
2211 return NULL;
2212
2213 case NT_PRPSINFO:
2214 {
602f1657 2215 char data[124] ATTRIBUTE_NONSTRING;
1f20dca5
UW
2216 va_list ap;
2217
2218 va_start (ap, note_type);
2219 memset (data, 0, sizeof (data));
2220 strncpy (data + 28, va_arg (ap, const char *), 16);
be3e27bb 2221#if GCC_VERSION == 8000 || GCC_VERSION == 8001
95da9854 2222 DIAGNOSTIC_PUSH;
be3e27bb 2223 /* GCC 8.0 and 8.1 warn about 80 equals destination size with
95da9854
L
2224 -Wstringop-truncation:
2225 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85643
2226 */
95da9854
L
2227 DIAGNOSTIC_IGNORE_STRINGOP_TRUNCATION;
2228#endif
1f20dca5 2229 strncpy (data + 44, va_arg (ap, const char *), 80);
be3e27bb 2230#if GCC_VERSION == 8000 || GCC_VERSION == 8001
95da9854 2231 DIAGNOSTIC_POP;
fe75810f 2232#endif
1f20dca5
UW
2233 va_end (ap);
2234
2235 return elfcore_write_note (abfd, buf, bufsiz,
2236 "CORE", note_type, data, sizeof (data));
2237 }
2238
2239 case NT_PRSTATUS:
2240 {
2241 char data[148];
2242 va_list ap;
2243 long pid;
2244 int cursig;
2245 const void *greg;
2246
2247 va_start (ap, note_type);
2248 memset (data, 0, sizeof (data));
2249 pid = va_arg (ap, long);
2250 bfd_put_32 (abfd, pid, data + 24);
2251 cursig = va_arg (ap, int);
2252 bfd_put_16 (abfd, cursig, data + 12);
2253 greg = va_arg (ap, const void *);
2254 memcpy (data + 72, greg, 72);
2255 va_end (ap);
2256
2257 return elfcore_write_note (abfd, buf, bufsiz,
2258 "CORE", note_type, data, sizeof (data));
2259 }
2260 }
2261}
2262
07d6d2b8
AM
2263#define TARGET_LITTLE_SYM arm_elf32_le_vec
2264#define TARGET_LITTLE_NAME "elf32-littlearm"
2265#define TARGET_BIG_SYM arm_elf32_be_vec
2266#define TARGET_BIG_NAME "elf32-bigarm"
7f266840
DJ
2267
2268#define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2269#define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1f20dca5 2270#define elf_backend_write_core_note elf32_arm_nabi_write_core_note
7f266840 2271
252b5132
RH
2272typedef unsigned long int insn32;
2273typedef unsigned short int insn16;
2274
3a4a14e9
PB
2275/* In lieu of proper flags, assume all EABIv4 or later objects are
2276 interworkable. */
57e8b36a 2277#define INTERWORK_FLAG(abfd) \
3a4a14e9 2278 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
3e6b1042
DJ
2279 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2280 || ((abfd)->flags & BFD_LINKER_CREATED))
9b485d32 2281
252b5132
RH
2282/* The linker script knows the section names for placement.
2283 The entry_names are used to do simple name mangling on the stubs.
2284 Given a function name, and its type, the stub can be found. The
9b485d32 2285 name can be changed. The only requirement is the %s be present. */
252b5132
RH
2286#define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2287#define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2288
2289#define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2290#define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2291
c7b8f16e
JB
2292#define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2293#define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2294
a504d23a
LA
2295#define STM32L4XX_ERRATUM_VENEER_SECTION_NAME ".text.stm32l4xx_veneer"
2296#define STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "__stm32l4xx_veneer_%x"
2297
845b51d6
PB
2298#define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2299#define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2300
7413f23f
DJ
2301#define STUB_ENTRY_NAME "__%s_veneer"
2302
4ba2ef8f
TP
2303#define CMSE_PREFIX "__acle_se_"
2304
4d83e8d9
CL
2305#define CMSE_STUB_NAME ".gnu.sgstubs"
2306
252b5132
RH
2307/* The name of the dynamic interpreter. This is put in the .interp
2308 section. */
2309#define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2310
cb10292c
CL
2311/* FDPIC default stack size. */
2312#define DEFAULT_STACK_SIZE 0x8000
2313
0855e32b 2314static const unsigned long tls_trampoline [] =
b38cadfb
NC
2315{
2316 0xe08e0000, /* add r0, lr, r0 */
2317 0xe5901004, /* ldr r1, [r0,#4] */
2318 0xe12fff11, /* bx r1 */
2319};
0855e32b
NS
2320
2321static const unsigned long dl_tlsdesc_lazy_trampoline [] =
b38cadfb
NC
2322{
2323 0xe52d2004, /* push {r2} */
2324 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2325 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2326 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2327 0xe081100f, /* 2: add r1, pc */
2328 0xe12fff12, /* bx r2 */
2329 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
99059e56 2330 + dl_tlsdesc_lazy_resolver(GOT) */
b38cadfb
NC
2331 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2332};
0855e32b 2333
b4e87f2c
TC
2334/* NOTE: [Thumb nop sequence]
2335 When adding code that transitions from Thumb to Arm the instruction that
2336 should be used for the alignment padding should be 0xe7fd (b .-2) instead of
2337 a nop for performance reasons. */
2338
7801f98f
CL
2339/* ARM FDPIC PLT entry. */
2340/* The last 5 words contain PLT lazy fragment code and data. */
2341static const bfd_vma elf32_arm_fdpic_plt_entry [] =
2342 {
2343 0xe59fc008, /* ldr r12, .L1 */
2344 0xe08cc009, /* add r12, r12, r9 */
2345 0xe59c9004, /* ldr r9, [r12, #4] */
2346 0xe59cf000, /* ldr pc, [r12] */
2347 0x00000000, /* L1. .word foo(GOTOFFFUNCDESC) */
2348 0x00000000, /* L1. .word foo(funcdesc_value_reloc_offset) */
2349 0xe51fc00c, /* ldr r12, [pc, #-12] */
2350 0xe92d1000, /* push {r12} */
2351 0xe599c004, /* ldr r12, [r9, #4] */
2352 0xe599f000, /* ldr pc, [r9] */
2353 };
2354
59029f57
CL
2355/* Thumb FDPIC PLT entry. */
2356/* The last 5 words contain PLT lazy fragment code and data. */
2357static const bfd_vma elf32_arm_fdpic_thumb_plt_entry [] =
2358 {
2359 0xc00cf8df, /* ldr.w r12, .L1 */
2360 0x0c09eb0c, /* add.w r12, r12, r9 */
2361 0x9004f8dc, /* ldr.w r9, [r12, #4] */
2362 0xf000f8dc, /* ldr.w pc, [r12] */
2363 0x00000000, /* .L1 .word foo(GOTOFFFUNCDESC) */
2364 0x00000000, /* .L2 .word foo(funcdesc_value_reloc_offset) */
2365 0xc008f85f, /* ldr.w r12, .L2 */
2366 0xcd04f84d, /* push {r12} */
2367 0xc004f8d9, /* ldr.w r12, [r9, #4] */
2368 0xf000f8d9, /* ldr.w pc, [r9] */
2369 };
2370
5e681ec4
PB
2371#ifdef FOUR_WORD_PLT
2372
252b5132
RH
2373/* The first entry in a procedure linkage table looks like
2374 this. It is set up so that any shared library function that is
59f2c4e7 2375 called before the relocation has been set up calls the dynamic
9b485d32 2376 linker first. */
e5a52504 2377static const bfd_vma elf32_arm_plt0_entry [] =
b38cadfb
NC
2378{
2379 0xe52de004, /* str lr, [sp, #-4]! */
2380 0xe59fe010, /* ldr lr, [pc, #16] */
2381 0xe08fe00e, /* add lr, pc, lr */
2382 0xe5bef008, /* ldr pc, [lr, #8]! */
2383};
5e681ec4
PB
2384
2385/* Subsequent entries in a procedure linkage table look like
2386 this. */
e5a52504 2387static const bfd_vma elf32_arm_plt_entry [] =
b38cadfb
NC
2388{
2389 0xe28fc600, /* add ip, pc, #NN */
2390 0xe28cca00, /* add ip, ip, #NN */
2391 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2392 0x00000000, /* unused */
2393};
5e681ec4 2394
eed94f8f 2395#else /* not FOUR_WORD_PLT */
5e681ec4 2396
5e681ec4
PB
2397/* The first entry in a procedure linkage table looks like
2398 this. It is set up so that any shared library function that is
2399 called before the relocation has been set up calls the dynamic
2400 linker first. */
e5a52504 2401static const bfd_vma elf32_arm_plt0_entry [] =
b38cadfb 2402{
07d6d2b8
AM
2403 0xe52de004, /* str lr, [sp, #-4]! */
2404 0xe59fe004, /* ldr lr, [pc, #4] */
2405 0xe08fe00e, /* add lr, pc, lr */
2406 0xe5bef008, /* ldr pc, [lr, #8]! */
2407 0x00000000, /* &GOT[0] - . */
b38cadfb 2408};
252b5132 2409
1db37fe6
YG
2410/* By default subsequent entries in a procedure linkage table look like
2411 this. Offsets that don't fit into 28 bits will cause link error. */
2412static const bfd_vma elf32_arm_plt_entry_short [] =
b38cadfb
NC
2413{
2414 0xe28fc600, /* add ip, pc, #0xNN00000 */
2415 0xe28cca00, /* add ip, ip, #0xNN000 */
2416 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2417};
5e681ec4 2418
1db37fe6
YG
2419/* When explicitly asked, we'll use this "long" entry format
2420 which can cope with arbitrary displacements. */
2421static const bfd_vma elf32_arm_plt_entry_long [] =
2422{
07d6d2b8
AM
2423 0xe28fc200, /* add ip, pc, #0xN0000000 */
2424 0xe28cc600, /* add ip, ip, #0xNN00000 */
1db37fe6
YG
2425 0xe28cca00, /* add ip, ip, #0xNN000 */
2426 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2427};
2428
2429static bfd_boolean elf32_arm_use_long_plt_entry = FALSE;
2430
eed94f8f
NC
2431#endif /* not FOUR_WORD_PLT */
2432
2433/* The first entry in a procedure linkage table looks like this.
2434 It is set up so that any shared library function that is called before the
2435 relocation has been set up calls the dynamic linker first. */
2436static const bfd_vma elf32_thumb2_plt0_entry [] =
2437{
2438 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2439 an instruction maybe encoded to one or two array elements. */
07d6d2b8
AM
2440 0xf8dfb500, /* push {lr} */
2441 0x44fee008, /* ldr.w lr, [pc, #8] */
2442 /* add lr, pc */
eed94f8f 2443 0xff08f85e, /* ldr.w pc, [lr, #8]! */
07d6d2b8 2444 0x00000000, /* &GOT[0] - . */
eed94f8f
NC
2445};
2446
2447/* Subsequent entries in a procedure linkage table for thumb only target
2448 look like this. */
2449static const bfd_vma elf32_thumb2_plt_entry [] =
2450{
2451 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2452 an instruction maybe encoded to one or two array elements. */
07d6d2b8
AM
2453 0x0c00f240, /* movw ip, #0xNNNN */
2454 0x0c00f2c0, /* movt ip, #0xNNNN */
2455 0xf8dc44fc, /* add ip, pc */
15ccbdd7
TC
2456 0xe7fcf000 /* ldr.w pc, [ip] */
2457 /* b .-4 */
eed94f8f 2458};
252b5132 2459
00a97672
RS
2460/* The format of the first entry in the procedure linkage table
2461 for a VxWorks executable. */
2462static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
b38cadfb 2463{
07d6d2b8
AM
2464 0xe52dc008, /* str ip,[sp,#-8]! */
2465 0xe59fc000, /* ldr ip,[pc] */
2466 0xe59cf008, /* ldr pc,[ip,#8] */
2467 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
b38cadfb 2468};
00a97672
RS
2469
2470/* The format of subsequent entries in a VxWorks executable. */
2471static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
b38cadfb 2472{
07d6d2b8
AM
2473 0xe59fc000, /* ldr ip,[pc] */
2474 0xe59cf000, /* ldr pc,[ip] */
2475 0x00000000, /* .long @got */
2476 0xe59fc000, /* ldr ip,[pc] */
2477 0xea000000, /* b _PLT */
2478 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
b38cadfb 2479};
00a97672
RS
2480
2481/* The format of entries in a VxWorks shared library. */
2482static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
b38cadfb 2483{
07d6d2b8
AM
2484 0xe59fc000, /* ldr ip,[pc] */
2485 0xe79cf009, /* ldr pc,[ip,r9] */
2486 0x00000000, /* .long @got */
2487 0xe59fc000, /* ldr ip,[pc] */
2488 0xe599f008, /* ldr pc,[r9,#8] */
2489 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
b38cadfb 2490};
00a97672 2491
b7693d02
DJ
2492/* An initial stub used if the PLT entry is referenced from Thumb code. */
2493#define PLT_THUMB_STUB_SIZE 4
2494static const bfd_vma elf32_arm_plt_thumb_stub [] =
b38cadfb
NC
2495{
2496 0x4778, /* bx pc */
b4e87f2c 2497 0xe7fd /* b .-2 */
b38cadfb 2498};
b7693d02 2499
e5a52504
MM
2500/* The entries in a PLT when using a DLL-based target with multiple
2501 address spaces. */
906e58ca 2502static const bfd_vma elf32_arm_symbian_plt_entry [] =
b38cadfb 2503{
07d6d2b8
AM
2504 0xe51ff004, /* ldr pc, [pc, #-4] */
2505 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
b38cadfb
NC
2506};
2507
2508/* The first entry in a procedure linkage table looks like
2509 this. It is set up so that any shared library function that is
2510 called before the relocation has been set up calls the dynamic
2511 linker first. */
2512static const bfd_vma elf32_arm_nacl_plt0_entry [] =
2513{
2514 /* First bundle: */
2515 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
2516 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
2517 0xe08cc00f, /* add ip, ip, pc */
2518 0xe52dc008, /* str ip, [sp, #-8]! */
2519 /* Second bundle: */
edccdf7c
RM
2520 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2521 0xe59cc000, /* ldr ip, [ip] */
b38cadfb 2522 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
edccdf7c 2523 0xe12fff1c, /* bx ip */
b38cadfb 2524 /* Third bundle: */
edccdf7c
RM
2525 0xe320f000, /* nop */
2526 0xe320f000, /* nop */
2527 0xe320f000, /* nop */
b38cadfb
NC
2528 /* .Lplt_tail: */
2529 0xe50dc004, /* str ip, [sp, #-4] */
2530 /* Fourth bundle: */
edccdf7c
RM
2531 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2532 0xe59cc000, /* ldr ip, [ip] */
b38cadfb 2533 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
edccdf7c 2534 0xe12fff1c, /* bx ip */
b38cadfb
NC
2535};
2536#define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
2537
2538/* Subsequent entries in a procedure linkage table look like this. */
2539static const bfd_vma elf32_arm_nacl_plt_entry [] =
2540{
2541 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
2542 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
2543 0xe08cc00f, /* add ip, ip, pc */
2544 0xea000000, /* b .Lplt_tail */
2545};
e5a52504 2546
906e58ca
NC
2547#define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2548#define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2549#define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2550#define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2551#define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2552#define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
c5423981
TG
2553#define THM2_MAX_FWD_COND_BRANCH_OFFSET (((1 << 20) -2) + 4)
2554#define THM2_MAX_BWD_COND_BRANCH_OFFSET (-(1 << 20) + 4)
906e58ca 2555
461a49ca 2556enum stub_insn_type
b38cadfb
NC
2557{
2558 THUMB16_TYPE = 1,
2559 THUMB32_TYPE,
2560 ARM_TYPE,
2561 DATA_TYPE
2562};
461a49ca 2563
48229727
JB
2564#define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2565/* A bit of a hack. A Thumb conditional branch, in which the proper condition
2566 is inserted in arm_build_one_stub(). */
2567#define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2568#define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
d5a67c02
AV
2569#define THUMB32_MOVT(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVT_ABS, 0}
2570#define THUMB32_MOVW(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVW_ABS_NC, 0}
48229727
JB
2571#define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2572#define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2573#define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2574#define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
461a49ca
DJ
2575
2576typedef struct
2577{
07d6d2b8 2578 bfd_vma data;
b38cadfb 2579 enum stub_insn_type type;
07d6d2b8
AM
2580 unsigned int r_type;
2581 int reloc_addend;
461a49ca
DJ
2582} insn_sequence;
2583
b4e87f2c
TC
2584/* See note [Thumb nop sequence] when adding a veneer. */
2585
fea2b4d6
CL
2586/* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2587 to reach the stub if necessary. */
461a49ca 2588static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
b38cadfb 2589{
07d6d2b8 2590 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
b38cadfb
NC
2591 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2592};
906e58ca 2593
fea2b4d6
CL
2594/* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2595 available. */
461a49ca 2596static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
b38cadfb 2597{
07d6d2b8
AM
2598 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2599 ARM_INSN (0xe12fff1c), /* bx ip */
b38cadfb
NC
2600 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2601};
906e58ca 2602
d3626fb0 2603/* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
461a49ca 2604static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
b38cadfb 2605{
07d6d2b8
AM
2606 THUMB16_INSN (0xb401), /* push {r0} */
2607 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2608 THUMB16_INSN (0x4684), /* mov ip, r0 */
2609 THUMB16_INSN (0xbc01), /* pop {r0} */
2610 THUMB16_INSN (0x4760), /* bx ip */
2611 THUMB16_INSN (0xbf00), /* nop */
b38cadfb
NC
2612 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2613};
906e58ca 2614
80c135e5
TP
2615/* Thumb -> Thumb long branch stub in thumb2 encoding. Used on armv7. */
2616static const insn_sequence elf32_arm_stub_long_branch_thumb2_only[] =
2617{
07d6d2b8 2618 THUMB32_INSN (0xf85ff000), /* ldr.w pc, [pc, #-0] */
80c135e5
TP
2619 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(x) */
2620};
2621
d5a67c02
AV
2622/* Thumb -> Thumb long branch stub. Used for PureCode sections on Thumb2
2623 M-profile architectures. */
2624static const insn_sequence elf32_arm_stub_long_branch_thumb2_only_pure[] =
2625{
2626 THUMB32_MOVW (0xf2400c00), /* mov.w ip, R_ARM_MOVW_ABS_NC */
2627 THUMB32_MOVT (0xf2c00c00), /* movt ip, R_ARM_MOVT_ABS << 16 */
07d6d2b8 2628 THUMB16_INSN (0x4760), /* bx ip */
d5a67c02
AV
2629};
2630
d3626fb0
CL
2631/* V4T Thumb -> Thumb long branch stub. Using the stack is not
2632 allowed. */
2633static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
b38cadfb 2634{
07d6d2b8 2635 THUMB16_INSN (0x4778), /* bx pc */
b4e87f2c 2636 THUMB16_INSN (0xe7fd), /* b .-2 */
07d6d2b8
AM
2637 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2638 ARM_INSN (0xe12fff1c), /* bx ip */
b38cadfb
NC
2639 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2640};
d3626fb0 2641
fea2b4d6
CL
2642/* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2643 available. */
461a49ca 2644static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
b38cadfb 2645{
07d6d2b8 2646 THUMB16_INSN (0x4778), /* bx pc */
b4e87f2c 2647 THUMB16_INSN (0xe7fd), /* b .-2 */
07d6d2b8 2648 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
b38cadfb
NC
2649 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2650};
906e58ca 2651
fea2b4d6
CL
2652/* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2653 one, when the destination is close enough. */
461a49ca 2654static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
b38cadfb 2655{
07d6d2b8 2656 THUMB16_INSN (0x4778), /* bx pc */
b4e87f2c 2657 THUMB16_INSN (0xe7fd), /* b .-2 */
b38cadfb
NC
2658 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
2659};
c820be07 2660
cf3eccff 2661/* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
fea2b4d6 2662 blx to reach the stub if necessary. */
cf3eccff 2663static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
b38cadfb 2664{
07d6d2b8
AM
2665 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
2666 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
b38cadfb
NC
2667 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2668};
906e58ca 2669
cf3eccff
DJ
2670/* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2671 blx to reach the stub if necessary. We can not add into pc;
2672 it is not guaranteed to mode switch (different in ARMv6 and
2673 ARMv7). */
2674static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
b38cadfb 2675{
07d6d2b8
AM
2676 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2677 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2678 ARM_INSN (0xe12fff1c), /* bx ip */
b38cadfb
NC
2679 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2680};
cf3eccff 2681
ebe24dd4
CL
2682/* V4T ARM -> ARM long branch stub, PIC. */
2683static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
b38cadfb 2684{
07d6d2b8
AM
2685 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2686 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2687 ARM_INSN (0xe12fff1c), /* bx ip */
b38cadfb
NC
2688 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2689};
ebe24dd4
CL
2690
2691/* V4T Thumb -> ARM long branch stub, PIC. */
2692static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
b38cadfb 2693{
07d6d2b8 2694 THUMB16_INSN (0x4778), /* bx pc */
b4e87f2c 2695 THUMB16_INSN (0xe7fd), /* b .-2 */
07d6d2b8
AM
2696 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2697 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
b38cadfb
NC
2698 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2699};
ebe24dd4 2700
d3626fb0
CL
2701/* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2702 architectures. */
ebe24dd4 2703static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
b38cadfb 2704{
07d6d2b8
AM
2705 THUMB16_INSN (0xb401), /* push {r0} */
2706 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2707 THUMB16_INSN (0x46fc), /* mov ip, pc */
2708 THUMB16_INSN (0x4484), /* add ip, r0 */
2709 THUMB16_INSN (0xbc01), /* pop {r0} */
2710 THUMB16_INSN (0x4760), /* bx ip */
b38cadfb
NC
2711 DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2712};
ebe24dd4 2713
d3626fb0
CL
2714/* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2715 allowed. */
2716static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
b38cadfb 2717{
07d6d2b8 2718 THUMB16_INSN (0x4778), /* bx pc */
b4e87f2c 2719 THUMB16_INSN (0xe7fd), /* b .-2 */
07d6d2b8
AM
2720 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2721 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2722 ARM_INSN (0xe12fff1c), /* bx ip */
b38cadfb
NC
2723 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2724};
d3626fb0 2725
0855e32b
NS
2726/* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2727 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2728static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2729{
07d6d2b8
AM
2730 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
2731 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
b38cadfb 2732 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
0855e32b
NS
2733};
2734
2735/* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2736 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2737static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2738{
07d6d2b8 2739 THUMB16_INSN (0x4778), /* bx pc */
b4e87f2c 2740 THUMB16_INSN (0xe7fd), /* b .-2 */
07d6d2b8
AM
2741 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
2742 ARM_INSN (0xe081f00f), /* add pc, r1, pc */
b38cadfb 2743 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
0855e32b
NS
2744};
2745
7a89b94e
NC
2746/* NaCl ARM -> ARM long branch stub. */
2747static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] =
2748{
2749 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2750 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
07d6d2b8
AM
2751 ARM_INSN (0xe12fff1c), /* bx ip */
2752 ARM_INSN (0xe320f000), /* nop */
2753 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2754 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2755 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2756 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
7a89b94e
NC
2757};
2758
2759/* NaCl ARM -> ARM long branch stub, PIC. */
2760static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] =
2761{
2762 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
07d6d2b8 2763 ARM_INSN (0xe08cc00f), /* add ip, ip, pc */
7a89b94e 2764 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
07d6d2b8
AM
2765 ARM_INSN (0xe12fff1c), /* bx ip */
2766 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2767 DATA_WORD (0, R_ARM_REL32, 8), /* dcd R_ARM_REL32(X+8) */
2768 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2769 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
7a89b94e
NC
2770};
2771
4ba2ef8f
TP
2772/* Stub used for transition to secure state (aka SG veneer). */
2773static const insn_sequence elf32_arm_stub_cmse_branch_thumb_only[] =
2774{
2775 THUMB32_INSN (0xe97fe97f), /* sg. */
2776 THUMB32_B_INSN (0xf000b800, -4), /* b.w original_branch_dest. */
2777};
2778
7a89b94e 2779
48229727
JB
2780/* Cortex-A8 erratum-workaround stubs. */
2781
2782/* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2783 can't use a conditional branch to reach this stub). */
2784
2785static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
b38cadfb 2786{
07d6d2b8 2787 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
b38cadfb
NC
2788 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
2789 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
2790};
48229727
JB
2791
2792/* Stub used for b.w and bl.w instructions. */
2793
2794static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
b38cadfb
NC
2795{
2796 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2797};
48229727
JB
2798
2799static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
b38cadfb
NC
2800{
2801 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2802};
48229727
JB
2803
2804/* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2805 instruction (which switches to ARM mode) to point to this stub. Jump to the
2806 real destination using an ARM-mode branch. */
2807
2808static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
b38cadfb
NC
2809{
2810 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
2811};
48229727 2812
9553db3c
NC
2813/* For each section group there can be a specially created linker section
2814 to hold the stubs for that group. The name of the stub section is based
2815 upon the name of another section within that group with the suffix below
2816 applied.
2817
2818 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2819 create what appeared to be a linker stub section when it actually
2820 contained user code/data. For example, consider this fragment:
b38cadfb 2821
9553db3c
NC
2822 const char * stubborn_problems[] = { "np" };
2823
2824 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2825 section called:
2826
2827 .data.rel.local.stubborn_problems
2828
2829 This then causes problems in arm32_arm_build_stubs() as it triggers:
2830
2831 // Ignore non-stub sections.
2832 if (!strstr (stub_sec->name, STUB_SUFFIX))
2833 continue;
2834
2835 And so the section would be ignored instead of being processed. Hence
2836 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2837 C identifier. */
2838#define STUB_SUFFIX ".__stub"
906e58ca 2839
738a79f6
CL
2840/* One entry per long/short branch stub defined above. */
2841#define DEF_STUBS \
2842 DEF_STUB(long_branch_any_any) \
2843 DEF_STUB(long_branch_v4t_arm_thumb) \
2844 DEF_STUB(long_branch_thumb_only) \
2845 DEF_STUB(long_branch_v4t_thumb_thumb) \
2846 DEF_STUB(long_branch_v4t_thumb_arm) \
2847 DEF_STUB(short_branch_v4t_thumb_arm) \
2848 DEF_STUB(long_branch_any_arm_pic) \
2849 DEF_STUB(long_branch_any_thumb_pic) \
2850 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2851 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2852 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
48229727 2853 DEF_STUB(long_branch_thumb_only_pic) \
0855e32b
NS
2854 DEF_STUB(long_branch_any_tls_pic) \
2855 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
7a89b94e
NC
2856 DEF_STUB(long_branch_arm_nacl) \
2857 DEF_STUB(long_branch_arm_nacl_pic) \
4ba2ef8f 2858 DEF_STUB(cmse_branch_thumb_only) \
48229727
JB
2859 DEF_STUB(a8_veneer_b_cond) \
2860 DEF_STUB(a8_veneer_b) \
2861 DEF_STUB(a8_veneer_bl) \
80c135e5
TP
2862 DEF_STUB(a8_veneer_blx) \
2863 DEF_STUB(long_branch_thumb2_only) \
d5a67c02 2864 DEF_STUB(long_branch_thumb2_only_pure)
738a79f6
CL
2865
2866#define DEF_STUB(x) arm_stub_##x,
b38cadfb
NC
2867enum elf32_arm_stub_type
2868{
906e58ca 2869 arm_stub_none,
738a79f6 2870 DEF_STUBS
4f4faa4d 2871 max_stub_type
738a79f6
CL
2872};
2873#undef DEF_STUB
2874
8d9d9490
TP
2875/* Note the first a8_veneer type. */
2876const unsigned arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond;
2877
738a79f6
CL
2878typedef struct
2879{
d3ce72d0 2880 const insn_sequence* template_sequence;
738a79f6
CL
2881 int template_size;
2882} stub_def;
2883
2884#define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
b38cadfb
NC
2885static const stub_def stub_definitions[] =
2886{
738a79f6
CL
2887 {NULL, 0},
2888 DEF_STUBS
906e58ca
NC
2889};
2890
2891struct elf32_arm_stub_hash_entry
2892{
2893 /* Base hash table entry structure. */
2894 struct bfd_hash_entry root;
2895
2896 /* The stub section. */
2897 asection *stub_sec;
2898
2899 /* Offset within stub_sec of the beginning of this stub. */
2900 bfd_vma stub_offset;
2901
2902 /* Given the symbol's value and its section we can determine its final
2903 value when building the stubs (so the stub knows where to jump). */
2904 bfd_vma target_value;
2905 asection *target_section;
2906
8d9d9490
TP
2907 /* Same as above but for the source of the branch to the stub. Used for
2908 Cortex-A8 erratum workaround to patch it to branch to the stub. As
2909 such, source section does not need to be recorded since Cortex-A8 erratum
2910 workaround stubs are only generated when both source and target are in the
2911 same section. */
2912 bfd_vma source_value;
48229727
JB
2913
2914 /* The instruction which caused this stub to be generated (only valid for
2915 Cortex-A8 erratum workaround stubs at present). */
2916 unsigned long orig_insn;
2917
461a49ca 2918 /* The stub type. */
906e58ca 2919 enum elf32_arm_stub_type stub_type;
461a49ca
DJ
2920 /* Its encoding size in bytes. */
2921 int stub_size;
2922 /* Its template. */
2923 const insn_sequence *stub_template;
2924 /* The size of the template (number of entries). */
2925 int stub_template_size;
906e58ca
NC
2926
2927 /* The symbol table entry, if any, that this was derived from. */
2928 struct elf32_arm_link_hash_entry *h;
2929
35fc36a8
RS
2930 /* Type of branch. */
2931 enum arm_st_branch_type branch_type;
906e58ca
NC
2932
2933 /* Where this stub is being called from, or, in the case of combined
2934 stub sections, the first input section in the group. */
2935 asection *id_sec;
7413f23f
DJ
2936
2937 /* The name for the local symbol at the start of this stub. The
2938 stub name in the hash table has to be unique; this does not, so
2939 it can be friendlier. */
2940 char *output_name;
906e58ca
NC
2941};
2942
e489d0ae
PB
2943/* Used to build a map of a section. This is required for mixed-endian
2944 code/data. */
2945
2946typedef struct elf32_elf_section_map
2947{
2948 bfd_vma vma;
2949 char type;
2950}
2951elf32_arm_section_map;
2952
c7b8f16e
JB
2953/* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2954
2955typedef enum
2956{
2957 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2958 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2959 VFP11_ERRATUM_ARM_VENEER,
2960 VFP11_ERRATUM_THUMB_VENEER
2961}
2962elf32_vfp11_erratum_type;
2963
2964typedef struct elf32_vfp11_erratum_list
2965{
2966 struct elf32_vfp11_erratum_list *next;
2967 bfd_vma vma;
2968 union
2969 {
2970 struct
2971 {
2972 struct elf32_vfp11_erratum_list *veneer;
2973 unsigned int vfp_insn;
2974 } b;
2975 struct
2976 {
2977 struct elf32_vfp11_erratum_list *branch;
2978 unsigned int id;
2979 } v;
2980 } u;
2981 elf32_vfp11_erratum_type type;
2982}
2983elf32_vfp11_erratum_list;
2984
a504d23a
LA
2985/* Information about a STM32L4XX erratum veneer, or a branch to such a
2986 veneer. */
2987typedef enum
2988{
2989 STM32L4XX_ERRATUM_BRANCH_TO_VENEER,
2990 STM32L4XX_ERRATUM_VENEER
2991}
2992elf32_stm32l4xx_erratum_type;
2993
2994typedef struct elf32_stm32l4xx_erratum_list
2995{
2996 struct elf32_stm32l4xx_erratum_list *next;
2997 bfd_vma vma;
2998 union
2999 {
3000 struct
3001 {
3002 struct elf32_stm32l4xx_erratum_list *veneer;
3003 unsigned int insn;
3004 } b;
3005 struct
3006 {
3007 struct elf32_stm32l4xx_erratum_list *branch;
3008 unsigned int id;
3009 } v;
3010 } u;
3011 elf32_stm32l4xx_erratum_type type;
3012}
3013elf32_stm32l4xx_erratum_list;
3014
2468f9c9
PB
3015typedef enum
3016{
3017 DELETE_EXIDX_ENTRY,
3018 INSERT_EXIDX_CANTUNWIND_AT_END
3019}
3020arm_unwind_edit_type;
3021
3022/* A (sorted) list of edits to apply to an unwind table. */
3023typedef struct arm_unwind_table_edit
3024{
3025 arm_unwind_edit_type type;
3026 /* Note: we sometimes want to insert an unwind entry corresponding to a
3027 section different from the one we're currently writing out, so record the
3028 (text) section this edit relates to here. */
3029 asection *linked_section;
3030 unsigned int index;
3031 struct arm_unwind_table_edit *next;
3032}
3033arm_unwind_table_edit;
3034
8e3de13a 3035typedef struct _arm_elf_section_data
e489d0ae 3036{
2468f9c9 3037 /* Information about mapping symbols. */
e489d0ae 3038 struct bfd_elf_section_data elf;
8e3de13a 3039 unsigned int mapcount;
c7b8f16e 3040 unsigned int mapsize;
e489d0ae 3041 elf32_arm_section_map *map;
2468f9c9 3042 /* Information about CPU errata. */
c7b8f16e
JB
3043 unsigned int erratumcount;
3044 elf32_vfp11_erratum_list *erratumlist;
a504d23a
LA
3045 unsigned int stm32l4xx_erratumcount;
3046 elf32_stm32l4xx_erratum_list *stm32l4xx_erratumlist;
491d01d3 3047 unsigned int additional_reloc_count;
2468f9c9
PB
3048 /* Information about unwind tables. */
3049 union
3050 {
3051 /* Unwind info attached to a text section. */
3052 struct
3053 {
3054 asection *arm_exidx_sec;
3055 } text;
3056
3057 /* Unwind info attached to an .ARM.exidx section. */
3058 struct
3059 {
3060 arm_unwind_table_edit *unwind_edit_list;
3061 arm_unwind_table_edit *unwind_edit_tail;
3062 } exidx;
3063 } u;
8e3de13a
NC
3064}
3065_arm_elf_section_data;
e489d0ae
PB
3066
3067#define elf32_arm_section_data(sec) \
8e3de13a 3068 ((_arm_elf_section_data *) elf_section_data (sec))
e489d0ae 3069
48229727
JB
3070/* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
3071 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
3072 so may be created multiple times: we use an array of these entries whilst
3073 relaxing which we can refresh easily, then create stubs for each potentially
3074 erratum-triggering instruction once we've settled on a solution. */
3075
b38cadfb
NC
3076struct a8_erratum_fix
3077{
48229727
JB
3078 bfd *input_bfd;
3079 asection *section;
3080 bfd_vma offset;
8d9d9490 3081 bfd_vma target_offset;
48229727
JB
3082 unsigned long orig_insn;
3083 char *stub_name;
3084 enum elf32_arm_stub_type stub_type;
35fc36a8 3085 enum arm_st_branch_type branch_type;
48229727
JB
3086};
3087
3088/* A table of relocs applied to branches which might trigger Cortex-A8
3089 erratum. */
3090
b38cadfb
NC
3091struct a8_erratum_reloc
3092{
48229727
JB
3093 bfd_vma from;
3094 bfd_vma destination;
92750f34
DJ
3095 struct elf32_arm_link_hash_entry *hash;
3096 const char *sym_name;
48229727 3097 unsigned int r_type;
35fc36a8 3098 enum arm_st_branch_type branch_type;
48229727
JB
3099 bfd_boolean non_a8_stub;
3100};
3101
ba93b8ac
DJ
3102/* The size of the thread control block. */
3103#define TCB_SIZE 8
3104
34e77a92
RS
3105/* ARM-specific information about a PLT entry, over and above the usual
3106 gotplt_union. */
b38cadfb
NC
3107struct arm_plt_info
3108{
34e77a92
RS
3109 /* We reference count Thumb references to a PLT entry separately,
3110 so that we can emit the Thumb trampoline only if needed. */
3111 bfd_signed_vma thumb_refcount;
3112
3113 /* Some references from Thumb code may be eliminated by BL->BLX
3114 conversion, so record them separately. */
3115 bfd_signed_vma maybe_thumb_refcount;
3116
3117 /* How many of the recorded PLT accesses were from non-call relocations.
3118 This information is useful when deciding whether anything takes the
3119 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
3120 non-call references to the function should resolve directly to the
3121 real runtime target. */
3122 unsigned int noncall_refcount;
3123
3124 /* Since PLT entries have variable size if the Thumb prologue is
3125 used, we need to record the index into .got.plt instead of
3126 recomputing it from the PLT offset. */
3127 bfd_signed_vma got_offset;
3128};
3129
3130/* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
b38cadfb
NC
3131struct arm_local_iplt_info
3132{
34e77a92
RS
3133 /* The information that is usually found in the generic ELF part of
3134 the hash table entry. */
3135 union gotplt_union root;
3136
3137 /* The information that is usually found in the ARM-specific part of
3138 the hash table entry. */
3139 struct arm_plt_info arm;
3140
3141 /* A list of all potential dynamic relocations against this symbol. */
3142 struct elf_dyn_relocs *dyn_relocs;
3143};
3144
e8b09b87
CL
3145/* Structure to handle FDPIC support for local functions. */
3146struct fdpic_local {
3147 unsigned int funcdesc_cnt;
3148 unsigned int gotofffuncdesc_cnt;
3149 int funcdesc_offset;
3150};
3151
0ffa91dd 3152struct elf_arm_obj_tdata
ba93b8ac
DJ
3153{
3154 struct elf_obj_tdata root;
3155
3156 /* tls_type for each local got entry. */
3157 char *local_got_tls_type;
ee065d83 3158
0855e32b
NS
3159 /* GOTPLT entries for TLS descriptors. */
3160 bfd_vma *local_tlsdesc_gotent;
3161
34e77a92
RS
3162 /* Information for local symbols that need entries in .iplt. */
3163 struct arm_local_iplt_info **local_iplt;
3164
bf21ed78
MS
3165 /* Zero to warn when linking objects with incompatible enum sizes. */
3166 int no_enum_size_warning;
a9dc9481
JM
3167
3168 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
3169 int no_wchar_size_warning;
e8b09b87
CL
3170
3171 /* Maintains FDPIC counters and funcdesc info. */
3172 struct fdpic_local *local_fdpic_cnts;
ba93b8ac
DJ
3173};
3174
0ffa91dd
NC
3175#define elf_arm_tdata(bfd) \
3176 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
ba93b8ac 3177
0ffa91dd
NC
3178#define elf32_arm_local_got_tls_type(bfd) \
3179 (elf_arm_tdata (bfd)->local_got_tls_type)
3180
0855e32b
NS
3181#define elf32_arm_local_tlsdesc_gotent(bfd) \
3182 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
3183
34e77a92
RS
3184#define elf32_arm_local_iplt(bfd) \
3185 (elf_arm_tdata (bfd)->local_iplt)
3186
e8b09b87
CL
3187#define elf32_arm_local_fdpic_cnts(bfd) \
3188 (elf_arm_tdata (bfd)->local_fdpic_cnts)
3189
0ffa91dd
NC
3190#define is_arm_elf(bfd) \
3191 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
3192 && elf_tdata (bfd) != NULL \
4dfe6ac6 3193 && elf_object_id (bfd) == ARM_ELF_DATA)
ba93b8ac
DJ
3194
3195static bfd_boolean
3196elf32_arm_mkobject (bfd *abfd)
3197{
0ffa91dd 3198 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
4dfe6ac6 3199 ARM_ELF_DATA);
ba93b8ac
DJ
3200}
3201
ba93b8ac
DJ
3202#define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
3203
e8b09b87
CL
3204/* Structure to handle FDPIC support for extern functions. */
3205struct fdpic_global {
3206 unsigned int gotofffuncdesc_cnt;
3207 unsigned int gotfuncdesc_cnt;
3208 unsigned int funcdesc_cnt;
3209 int funcdesc_offset;
3210 int gotfuncdesc_offset;
3211};
3212
ba96a88f 3213/* Arm ELF linker hash entry. */
252b5132 3214struct elf32_arm_link_hash_entry
b38cadfb
NC
3215{
3216 struct elf_link_hash_entry root;
252b5132 3217
b38cadfb
NC
3218 /* ARM-specific PLT information. */
3219 struct arm_plt_info plt;
ba93b8ac
DJ
3220
3221#define GOT_UNKNOWN 0
3222#define GOT_NORMAL 1
3223#define GOT_TLS_GD 2
3224#define GOT_TLS_IE 4
0855e32b
NS
3225#define GOT_TLS_GDESC 8
3226#define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
b38cadfb 3227 unsigned int tls_type : 8;
34e77a92 3228
b38cadfb
NC
3229 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
3230 unsigned int is_iplt : 1;
34e77a92 3231
b38cadfb 3232 unsigned int unused : 23;
a4fd1a8e 3233
b38cadfb
NC
3234 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
3235 starting at the end of the jump table. */
3236 bfd_vma tlsdesc_got;
0855e32b 3237
b38cadfb
NC
3238 /* The symbol marking the real symbol location for exported thumb
3239 symbols with Arm stubs. */
3240 struct elf_link_hash_entry *export_glue;
906e58ca 3241
b38cadfb 3242 /* A pointer to the most recently used stub hash entry against this
8029a119 3243 symbol. */
b38cadfb 3244 struct elf32_arm_stub_hash_entry *stub_cache;
e8b09b87
CL
3245
3246 /* Counter for FDPIC relocations against this symbol. */
3247 struct fdpic_global fdpic_cnts;
b38cadfb 3248};
252b5132 3249
252b5132 3250/* Traverse an arm ELF linker hash table. */
252b5132
RH
3251#define elf32_arm_link_hash_traverse(table, func, info) \
3252 (elf_link_hash_traverse \
3253 (&(table)->root, \
b7693d02 3254 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
252b5132
RH
3255 (info)))
3256
3257/* Get the ARM elf linker hash table from a link_info structure. */
3258#define elf32_arm_hash_table(info) \
4dfe6ac6
NC
3259 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
3260 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
252b5132 3261
906e58ca
NC
3262#define arm_stub_hash_lookup(table, string, create, copy) \
3263 ((struct elf32_arm_stub_hash_entry *) \
3264 bfd_hash_lookup ((table), (string), (create), (copy)))
3265
21d799b5
NC
3266/* Array to keep track of which stub sections have been created, and
3267 information on stub grouping. */
3268struct map_stub
3269{
3270 /* This is the section to which stubs in the group will be
3271 attached. */
3272 asection *link_sec;
3273 /* The stub section. */
3274 asection *stub_sec;
3275};
3276
0855e32b
NS
3277#define elf32_arm_compute_jump_table_size(htab) \
3278 ((htab)->next_tls_desc_index * 4)
3279
9b485d32 3280/* ARM ELF linker hash table. */
252b5132 3281struct elf32_arm_link_hash_table
906e58ca
NC
3282{
3283 /* The main hash table. */
3284 struct elf_link_hash_table root;
252b5132 3285
906e58ca
NC
3286 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
3287 bfd_size_type thumb_glue_size;
252b5132 3288
906e58ca
NC
3289 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
3290 bfd_size_type arm_glue_size;
252b5132 3291
906e58ca
NC
3292 /* The size in bytes of section containing the ARMv4 BX veneers. */
3293 bfd_size_type bx_glue_size;
845b51d6 3294
906e58ca
NC
3295 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
3296 veneer has been populated. */
3297 bfd_vma bx_glue_offset[15];
845b51d6 3298
906e58ca
NC
3299 /* The size in bytes of the section containing glue for VFP11 erratum
3300 veneers. */
3301 bfd_size_type vfp11_erratum_glue_size;
c7b8f16e 3302
a504d23a
LA
3303 /* The size in bytes of the section containing glue for STM32L4XX erratum
3304 veneers. */
3305 bfd_size_type stm32l4xx_erratum_glue_size;
3306
48229727
JB
3307 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
3308 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
3309 elf32_arm_write_section(). */
3310 struct a8_erratum_fix *a8_erratum_fixes;
3311 unsigned int num_a8_erratum_fixes;
3312
906e58ca
NC
3313 /* An arbitrary input BFD chosen to hold the glue sections. */
3314 bfd * bfd_of_glue_owner;
ba96a88f 3315
906e58ca
NC
3316 /* Nonzero to output a BE8 image. */
3317 int byteswap_code;
e489d0ae 3318
906e58ca
NC
3319 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
3320 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
3321 int target1_is_rel;
9c504268 3322
906e58ca
NC
3323 /* The relocation to use for R_ARM_TARGET2 relocations. */
3324 int target2_reloc;
eb043451 3325
906e58ca
NC
3326 /* 0 = Ignore R_ARM_V4BX.
3327 1 = Convert BX to MOV PC.
3328 2 = Generate v4 interworing stubs. */
3329 int fix_v4bx;
319850b4 3330
48229727
JB
3331 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
3332 int fix_cortex_a8;
3333
2de70689
MGD
3334 /* Whether we should fix the ARM1176 BLX immediate issue. */
3335 int fix_arm1176;
3336
906e58ca
NC
3337 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
3338 int use_blx;
33bfe774 3339
906e58ca
NC
3340 /* What sort of code sequences we should look for which may trigger the
3341 VFP11 denorm erratum. */
3342 bfd_arm_vfp11_fix vfp11_fix;
c7b8f16e 3343
906e58ca
NC
3344 /* Global counter for the number of fixes we have emitted. */
3345 int num_vfp11_fixes;
c7b8f16e 3346
a504d23a
LA
3347 /* What sort of code sequences we should look for which may trigger the
3348 STM32L4XX erratum. */
3349 bfd_arm_stm32l4xx_fix stm32l4xx_fix;
3350
3351 /* Global counter for the number of fixes we have emitted. */
3352 int num_stm32l4xx_fixes;
3353
906e58ca
NC
3354 /* Nonzero to force PIC branch veneers. */
3355 int pic_veneer;
27e55c4d 3356
906e58ca
NC
3357 /* The number of bytes in the initial entry in the PLT. */
3358 bfd_size_type plt_header_size;
e5a52504 3359
906e58ca
NC
3360 /* The number of bytes in the subsequent PLT etries. */
3361 bfd_size_type plt_entry_size;
e5a52504 3362
906e58ca 3363 /* True if the target uses REL relocations. */
f3185997 3364 bfd_boolean use_rel;
4e7fd91e 3365
54ddd295
TP
3366 /* Nonzero if import library must be a secure gateway import library
3367 as per ARMv8-M Security Extensions. */
3368 int cmse_implib;
3369
0955507f
TP
3370 /* The import library whose symbols' address must remain stable in
3371 the import library generated. */
3372 bfd *in_implib_bfd;
3373
0855e32b
NS
3374 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
3375 bfd_vma next_tls_desc_index;
3376
3377 /* How many R_ARM_TLS_DESC relocations were generated so far. */
3378 bfd_vma num_tls_desc;
3379
906e58ca
NC
3380 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
3381 asection *srelplt2;
00a97672 3382
0855e32b
NS
3383 /* The offset into splt of the PLT entry for the TLS descriptor
3384 resolver. Special values are 0, if not necessary (or not found
3385 to be necessary yet), and -1 if needed but not determined
3386 yet. */
3387 bfd_vma dt_tlsdesc_plt;
3388
3389 /* The offset into sgot of the GOT entry used by the PLT entry
3390 above. */
b38cadfb 3391 bfd_vma dt_tlsdesc_got;
0855e32b
NS
3392
3393 /* Offset in .plt section of tls_arm_trampoline. */
3394 bfd_vma tls_trampoline;
3395
5c5a4843 3396 /* Data for R_ARM_TLS_LDM32/R_ARM_TLS_LDM32_FDPIC relocations. */
906e58ca
NC
3397 union
3398 {
3399 bfd_signed_vma refcount;
3400 bfd_vma offset;
3401 } tls_ldm_got;
b7693d02 3402
87d72d41
AM
3403 /* Small local sym cache. */
3404 struct sym_cache sym_cache;
906e58ca
NC
3405
3406 /* For convenience in allocate_dynrelocs. */
3407 bfd * obfd;
3408
0855e32b
NS
3409 /* The amount of space used by the reserved portion of the sgotplt
3410 section, plus whatever space is used by the jump slots. */
3411 bfd_vma sgotplt_jump_table_size;
3412
906e58ca
NC
3413 /* The stub hash table. */
3414 struct bfd_hash_table stub_hash_table;
3415
3416 /* Linker stub bfd. */
3417 bfd *stub_bfd;
3418
3419 /* Linker call-backs. */
6bde4c52
TP
3420 asection * (*add_stub_section) (const char *, asection *, asection *,
3421 unsigned int);
906e58ca
NC
3422 void (*layout_sections_again) (void);
3423
3424 /* Array to keep track of which stub sections have been created, and
3425 information on stub grouping. */
21d799b5 3426 struct map_stub *stub_group;
906e58ca 3427
4ba2ef8f
TP
3428 /* Input stub section holding secure gateway veneers. */
3429 asection *cmse_stub_sec;
3430
0955507f
TP
3431 /* Offset in cmse_stub_sec where new SG veneers (not in input import library)
3432 start to be allocated. */
3433 bfd_vma new_cmse_stub_offset;
3434
fe33d2fa 3435 /* Number of elements in stub_group. */
7292b3ac 3436 unsigned int top_id;
fe33d2fa 3437
906e58ca
NC
3438 /* Assorted information used by elf32_arm_size_stubs. */
3439 unsigned int bfd_count;
7292b3ac 3440 unsigned int top_index;
906e58ca 3441 asection **input_list;
617a5ada
CL
3442
3443 /* True if the target system uses FDPIC. */
3444 int fdpic_p;
e8b09b87
CL
3445
3446 /* Fixup section. Used for FDPIC. */
3447 asection *srofixup;
906e58ca 3448};
252b5132 3449
e8b09b87
CL
3450/* Add an FDPIC read-only fixup. */
3451static void
3452arm_elf_add_rofixup (bfd *output_bfd, asection *srofixup, bfd_vma offset)
3453{
3454 bfd_vma fixup_offset;
3455
3456 fixup_offset = srofixup->reloc_count++ * 4;
3457 BFD_ASSERT (fixup_offset < srofixup->size);
3458 bfd_put_32 (output_bfd, offset, srofixup->contents + fixup_offset);
3459}
3460
a504d23a
LA
3461static inline int
3462ctz (unsigned int mask)
3463{
3464#if GCC_VERSION >= 3004
3465 return __builtin_ctz (mask);
3466#else
3467 unsigned int i;
3468
3469 for (i = 0; i < 8 * sizeof (mask); i++)
3470 {
3471 if (mask & 0x1)
3472 break;
3473 mask = (mask >> 1);
3474 }
3475 return i;
3476#endif
3477}
3478
3479static inline int
b25e998d 3480elf32_arm_popcount (unsigned int mask)
a504d23a
LA
3481{
3482#if GCC_VERSION >= 3004
3483 return __builtin_popcount (mask);
3484#else
b25e998d
CG
3485 unsigned int i;
3486 int sum = 0;
a504d23a
LA
3487
3488 for (i = 0; i < 8 * sizeof (mask); i++)
3489 {
3490 if (mask & 0x1)
3491 sum++;
3492 mask = (mask >> 1);
3493 }
3494 return sum;
3495#endif
3496}
3497
e8b09b87
CL
3498static void elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
3499 asection *sreloc, Elf_Internal_Rela *rel);
3500
3501static void
3502arm_elf_fill_funcdesc(bfd *output_bfd,
3503 struct bfd_link_info *info,
3504 int *funcdesc_offset,
3505 int dynindx,
3506 int offset,
3507 bfd_vma addr,
3508 bfd_vma dynreloc_value,
3509 bfd_vma seg)
3510{
3511 if ((*funcdesc_offset & 1) == 0)
3512 {
3513 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
3514 asection *sgot = globals->root.sgot;
3515
3516 if (bfd_link_pic(info))
3517 {
3518 asection *srelgot = globals->root.srelgot;
3519 Elf_Internal_Rela outrel;
3520
3521 outrel.r_info = ELF32_R_INFO (dynindx, R_ARM_FUNCDESC_VALUE);
3522 outrel.r_offset = sgot->output_section->vma + sgot->output_offset + offset;
3523 outrel.r_addend = 0;
3524
3525 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
3526 bfd_put_32 (output_bfd, addr, sgot->contents + offset);
3527 bfd_put_32 (output_bfd, seg, sgot->contents + offset + 4);
3528 }
3529 else
3530 {
3531 struct elf_link_hash_entry *hgot = globals->root.hgot;
3532 bfd_vma got_value = hgot->root.u.def.value
3533 + hgot->root.u.def.section->output_section->vma
3534 + hgot->root.u.def.section->output_offset;
3535
3536 arm_elf_add_rofixup(output_bfd, globals->srofixup,
3537 sgot->output_section->vma + sgot->output_offset
3538 + offset);
3539 arm_elf_add_rofixup(output_bfd, globals->srofixup,
3540 sgot->output_section->vma + sgot->output_offset
3541 + offset + 4);
3542 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + offset);
3543 bfd_put_32 (output_bfd, got_value, sgot->contents + offset + 4);
3544 }
3545 *funcdesc_offset |= 1;
3546 }
3547}
3548
780a67af
NC
3549/* Create an entry in an ARM ELF linker hash table. */
3550
3551static struct bfd_hash_entry *
57e8b36a 3552elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
99059e56
RM
3553 struct bfd_hash_table * table,
3554 const char * string)
780a67af
NC
3555{
3556 struct elf32_arm_link_hash_entry * ret =
3557 (struct elf32_arm_link_hash_entry *) entry;
3558
3559 /* Allocate the structure if it has not already been allocated by a
3560 subclass. */
906e58ca 3561 if (ret == NULL)
21d799b5 3562 ret = (struct elf32_arm_link_hash_entry *)
99059e56 3563 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
57e8b36a 3564 if (ret == NULL)
780a67af
NC
3565 return (struct bfd_hash_entry *) ret;
3566
3567 /* Call the allocation method of the superclass. */
3568 ret = ((struct elf32_arm_link_hash_entry *)
3569 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3570 table, string));
57e8b36a 3571 if (ret != NULL)
b7693d02 3572 {
ba93b8ac 3573 ret->tls_type = GOT_UNKNOWN;
0855e32b 3574 ret->tlsdesc_got = (bfd_vma) -1;
34e77a92
RS
3575 ret->plt.thumb_refcount = 0;
3576 ret->plt.maybe_thumb_refcount = 0;
3577 ret->plt.noncall_refcount = 0;
3578 ret->plt.got_offset = -1;
3579 ret->is_iplt = FALSE;
a4fd1a8e 3580 ret->export_glue = NULL;
906e58ca
NC
3581
3582 ret->stub_cache = NULL;
e8b09b87
CL
3583
3584 ret->fdpic_cnts.gotofffuncdesc_cnt = 0;
3585 ret->fdpic_cnts.gotfuncdesc_cnt = 0;
3586 ret->fdpic_cnts.funcdesc_cnt = 0;
3587 ret->fdpic_cnts.funcdesc_offset = -1;
3588 ret->fdpic_cnts.gotfuncdesc_offset = -1;
b7693d02 3589 }
780a67af
NC
3590
3591 return (struct bfd_hash_entry *) ret;
3592}
3593
34e77a92
RS
3594/* Ensure that we have allocated bookkeeping structures for ABFD's local
3595 symbols. */
3596
3597static bfd_boolean
3598elf32_arm_allocate_local_sym_info (bfd *abfd)
3599{
3600 if (elf_local_got_refcounts (abfd) == NULL)
3601 {
3602 bfd_size_type num_syms;
3603 bfd_size_type size;
3604 char *data;
3605
3606 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
3607 size = num_syms * (sizeof (bfd_signed_vma)
3608 + sizeof (struct arm_local_iplt_info *)
3609 + sizeof (bfd_vma)
e8b09b87
CL
3610 + sizeof (char)
3611 + sizeof (struct fdpic_local));
34e77a92
RS
3612 data = bfd_zalloc (abfd, size);
3613 if (data == NULL)
3614 return FALSE;
3615
e8b09b87
CL
3616 elf32_arm_local_fdpic_cnts (abfd) = (struct fdpic_local *) data;
3617 data += num_syms * sizeof (struct fdpic_local);
3618
34e77a92
RS
3619 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
3620 data += num_syms * sizeof (bfd_signed_vma);
3621
3622 elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
3623 data += num_syms * sizeof (struct arm_local_iplt_info *);
3624
3625 elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
3626 data += num_syms * sizeof (bfd_vma);
3627
3628 elf32_arm_local_got_tls_type (abfd) = data;
3629 }
3630 return TRUE;
3631}
3632
3633/* Return the .iplt information for local symbol R_SYMNDX, which belongs
3634 to input bfd ABFD. Create the information if it doesn't already exist.
3635 Return null if an allocation fails. */
3636
3637static struct arm_local_iplt_info *
3638elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
3639{
3640 struct arm_local_iplt_info **ptr;
3641
3642 if (!elf32_arm_allocate_local_sym_info (abfd))
3643 return NULL;
3644
3645 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
3646 ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
3647 if (*ptr == NULL)
3648 *ptr = bfd_zalloc (abfd, sizeof (**ptr));
3649 return *ptr;
3650}
3651
3652/* Try to obtain PLT information for the symbol with index R_SYMNDX
3653 in ABFD's symbol table. If the symbol is global, H points to its
3654 hash table entry, otherwise H is null.
3655
3656 Return true if the symbol does have PLT information. When returning
3657 true, point *ROOT_PLT at the target-independent reference count/offset
3658 union and *ARM_PLT at the ARM-specific information. */
3659
3660static bfd_boolean
4ba2ef8f
TP
3661elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_table *globals,
3662 struct elf32_arm_link_hash_entry *h,
34e77a92
RS
3663 unsigned long r_symndx, union gotplt_union **root_plt,
3664 struct arm_plt_info **arm_plt)
3665{
3666 struct arm_local_iplt_info *local_iplt;
3667
4ba2ef8f
TP
3668 if (globals->root.splt == NULL && globals->root.iplt == NULL)
3669 return FALSE;
3670
34e77a92
RS
3671 if (h != NULL)
3672 {
3673 *root_plt = &h->root.plt;
3674 *arm_plt = &h->plt;
3675 return TRUE;
3676 }
3677
3678 if (elf32_arm_local_iplt (abfd) == NULL)
3679 return FALSE;
3680
3681 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
3682 if (local_iplt == NULL)
3683 return FALSE;
3684
3685 *root_plt = &local_iplt->root;
3686 *arm_plt = &local_iplt->arm;
3687 return TRUE;
3688}
3689
59029f57
CL
3690static bfd_boolean using_thumb_only (struct elf32_arm_link_hash_table *globals);
3691
34e77a92
RS
3692/* Return true if the PLT described by ARM_PLT requires a Thumb stub
3693 before it. */
3694
3695static bfd_boolean
3696elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3697 struct arm_plt_info *arm_plt)
3698{
3699 struct elf32_arm_link_hash_table *htab;
3700
3701 htab = elf32_arm_hash_table (info);
59029f57
CL
3702
3703 return (!using_thumb_only(htab) && (arm_plt->thumb_refcount != 0
3704 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0)));
34e77a92
RS
3705}
3706
3707/* Return a pointer to the head of the dynamic reloc list that should
3708 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3709 ABFD's symbol table. Return null if an error occurs. */
3710
3711static struct elf_dyn_relocs **
3712elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3713 Elf_Internal_Sym *isym)
3714{
3715 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3716 {
3717 struct arm_local_iplt_info *local_iplt;
3718
3719 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3720 if (local_iplt == NULL)
3721 return NULL;
3722 return &local_iplt->dyn_relocs;
3723 }
3724 else
3725 {
3726 /* Track dynamic relocs needed for local syms too.
3727 We really need local syms available to do this
3728 easily. Oh well. */
3729 asection *s;
3730 void *vpp;
3731
3732 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3733 if (s == NULL)
3734 abort ();
3735
3736 vpp = &elf_section_data (s)->local_dynrel;
3737 return (struct elf_dyn_relocs **) vpp;
3738 }
3739}
3740
906e58ca
NC
3741/* Initialize an entry in the stub hash table. */
3742
3743static struct bfd_hash_entry *
3744stub_hash_newfunc (struct bfd_hash_entry *entry,
3745 struct bfd_hash_table *table,
3746 const char *string)
3747{
3748 /* Allocate the structure if it has not already been allocated by a
3749 subclass. */
3750 if (entry == NULL)
3751 {
21d799b5 3752 entry = (struct bfd_hash_entry *)
99059e56 3753 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
906e58ca
NC
3754 if (entry == NULL)
3755 return entry;
3756 }
3757
3758 /* Call the allocation method of the superclass. */
3759 entry = bfd_hash_newfunc (entry, table, string);
3760 if (entry != NULL)
3761 {
3762 struct elf32_arm_stub_hash_entry *eh;
3763
3764 /* Initialize the local fields. */
3765 eh = (struct elf32_arm_stub_hash_entry *) entry;
3766 eh->stub_sec = NULL;
0955507f 3767 eh->stub_offset = (bfd_vma) -1;
8d9d9490 3768 eh->source_value = 0;
906e58ca
NC
3769 eh->target_value = 0;
3770 eh->target_section = NULL;
cedfb179 3771 eh->orig_insn = 0;
906e58ca 3772 eh->stub_type = arm_stub_none;
461a49ca
DJ
3773 eh->stub_size = 0;
3774 eh->stub_template = NULL;
0955507f 3775 eh->stub_template_size = -1;
906e58ca
NC
3776 eh->h = NULL;
3777 eh->id_sec = NULL;
d8d2f433 3778 eh->output_name = NULL;
906e58ca
NC
3779 }
3780
3781 return entry;
3782}
3783
00a97672 3784/* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
5e681ec4
PB
3785 shortcuts to them in our hash table. */
3786
3787static bfd_boolean
57e8b36a 3788create_got_section (bfd *dynobj, struct bfd_link_info *info)
5e681ec4
PB
3789{
3790 struct elf32_arm_link_hash_table *htab;
3791
e5a52504 3792 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
3793 if (htab == NULL)
3794 return FALSE;
3795
e5a52504 3796 /* BPABI objects never have a GOT, or associated sections. */
90c14f0c 3797 if (htab->root.target_os == is_symbian)
e5a52504
MM
3798 return TRUE;
3799
5e681ec4
PB
3800 if (! _bfd_elf_create_got_section (dynobj, info))
3801 return FALSE;
3802
e8b09b87
CL
3803 /* Also create .rofixup. */
3804 if (htab->fdpic_p)
3805 {
3806 htab->srofixup = bfd_make_section_with_flags (dynobj, ".rofixup",
3807 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3808 | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY));
fd361982
AM
3809 if (htab->srofixup == NULL
3810 || !bfd_set_section_alignment (htab->srofixup, 2))
e8b09b87
CL
3811 return FALSE;
3812 }
3813
5e681ec4
PB
3814 return TRUE;
3815}
3816
34e77a92
RS
3817/* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3818
3819static bfd_boolean
3820create_ifunc_sections (struct bfd_link_info *info)
3821{
3822 struct elf32_arm_link_hash_table *htab;
3823 const struct elf_backend_data *bed;
3824 bfd *dynobj;
3825 asection *s;
3826 flagword flags;
b38cadfb 3827
34e77a92
RS
3828 htab = elf32_arm_hash_table (info);
3829 dynobj = htab->root.dynobj;
3830 bed = get_elf_backend_data (dynobj);
3831 flags = bed->dynamic_sec_flags;
3832
3833 if (htab->root.iplt == NULL)
3834 {
3d4d4302
AM
3835 s = bfd_make_section_anyway_with_flags (dynobj, ".iplt",
3836 flags | SEC_READONLY | SEC_CODE);
34e77a92 3837 if (s == NULL
fd361982 3838 || !bfd_set_section_alignment (s, bed->plt_alignment))
34e77a92
RS
3839 return FALSE;
3840 htab->root.iplt = s;
3841 }
3842
3843 if (htab->root.irelplt == NULL)
3844 {
3d4d4302
AM
3845 s = bfd_make_section_anyway_with_flags (dynobj,
3846 RELOC_SECTION (htab, ".iplt"),
3847 flags | SEC_READONLY);
34e77a92 3848 if (s == NULL
fd361982 3849 || !bfd_set_section_alignment (s, bed->s->log_file_align))
34e77a92
RS
3850 return FALSE;
3851 htab->root.irelplt = s;
3852 }
3853
3854 if (htab->root.igotplt == NULL)
3855 {
3d4d4302 3856 s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags);
34e77a92 3857 if (s == NULL
fd361982 3858 || !bfd_set_section_alignment (s, bed->s->log_file_align))
34e77a92
RS
3859 return FALSE;
3860 htab->root.igotplt = s;
3861 }
3862 return TRUE;
3863}
3864
eed94f8f
NC
3865/* Determine if we're dealing with a Thumb only architecture. */
3866
3867static bfd_boolean
3868using_thumb_only (struct elf32_arm_link_hash_table *globals)
3869{
2fd158eb
TP
3870 int arch;
3871 int profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3872 Tag_CPU_arch_profile);
eed94f8f 3873
2fd158eb
TP
3874 if (profile)
3875 return profile == 'M';
eed94f8f 3876
2fd158eb 3877 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
eed94f8f 3878
60a019a0 3879 /* Force return logic to be reviewed for each new architecture. */
031254f2 3880 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
60a019a0 3881
2fd158eb
TP
3882 if (arch == TAG_CPU_ARCH_V6_M
3883 || arch == TAG_CPU_ARCH_V6S_M
3884 || arch == TAG_CPU_ARCH_V7E_M
3885 || arch == TAG_CPU_ARCH_V8M_BASE
031254f2
AV
3886 || arch == TAG_CPU_ARCH_V8M_MAIN
3887 || arch == TAG_CPU_ARCH_V8_1M_MAIN)
2fd158eb 3888 return TRUE;
eed94f8f 3889
2fd158eb 3890 return FALSE;
eed94f8f
NC
3891}
3892
3893/* Determine if we're dealing with a Thumb-2 object. */
3894
3895static bfd_boolean
3896using_thumb2 (struct elf32_arm_link_hash_table *globals)
3897{
60a019a0
TP
3898 int arch;
3899 int thumb_isa = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3900 Tag_THUMB_ISA_use);
3901
3902 if (thumb_isa)
3903 return thumb_isa == 2;
3904
3905 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3906
3907 /* Force return logic to be reviewed for each new architecture. */
031254f2 3908 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
60a019a0
TP
3909
3910 return (arch == TAG_CPU_ARCH_V6T2
3911 || arch == TAG_CPU_ARCH_V7
3912 || arch == TAG_CPU_ARCH_V7E_M
3913 || arch == TAG_CPU_ARCH_V8
bff0500d 3914 || arch == TAG_CPU_ARCH_V8R
031254f2
AV
3915 || arch == TAG_CPU_ARCH_V8M_MAIN
3916 || arch == TAG_CPU_ARCH_V8_1M_MAIN);
eed94f8f
NC
3917}
3918
5e866f5a
TP
3919/* Determine whether Thumb-2 BL instruction is available. */
3920
3921static bfd_boolean
3922using_thumb2_bl (struct elf32_arm_link_hash_table *globals)
3923{
3924 int arch =
3925 bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3926
3927 /* Force return logic to be reviewed for each new architecture. */
031254f2 3928 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
5e866f5a
TP
3929
3930 /* Architecture was introduced after ARMv6T2 (eg. ARMv6-M). */
3931 return (arch == TAG_CPU_ARCH_V6T2
3932 || arch >= TAG_CPU_ARCH_V7);
3933}
3934
00a97672
RS
3935/* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3936 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
5e681ec4
PB
3937 hash table. */
3938
3939static bfd_boolean
57e8b36a 3940elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
5e681ec4
PB
3941{
3942 struct elf32_arm_link_hash_table *htab;
3943
3944 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
3945 if (htab == NULL)
3946 return FALSE;
3947
362d30a1 3948 if (!htab->root.sgot && !create_got_section (dynobj, info))
5e681ec4
PB
3949 return FALSE;
3950
3951 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3952 return FALSE;
3953
90c14f0c 3954 if (htab->root.target_os == is_vxworks)
00a97672
RS
3955 {
3956 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3957 return FALSE;
3958
0e1862bb 3959 if (bfd_link_pic (info))
00a97672
RS
3960 {
3961 htab->plt_header_size = 0;
3962 htab->plt_entry_size
3963 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3964 }
3965 else
3966 {
3967 htab->plt_header_size
3968 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3969 htab->plt_entry_size
3970 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3971 }
aebf9be7
NC
3972
3973 if (elf_elfheader (dynobj))
3974 elf_elfheader (dynobj)->e_ident[EI_CLASS] = ELFCLASS32;
00a97672 3975 }
eed94f8f
NC
3976 else
3977 {
3978 /* PR ld/16017
3979 Test for thumb only architectures. Note - we cannot just call
3980 using_thumb_only() as the attributes in the output bfd have not been
3981 initialised at this point, so instead we use the input bfd. */
3982 bfd * saved_obfd = htab->obfd;
3983
3984 htab->obfd = dynobj;
3985 if (using_thumb_only (htab))
3986 {
3987 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
3988 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
3989 }
3990 htab->obfd = saved_obfd;
3991 }
5e681ec4 3992
7801f98f
CL
3993 if (htab->fdpic_p) {
3994 htab->plt_header_size = 0;
3995 if (info->flags & DF_BIND_NOW)
3996 htab->plt_entry_size = 4 * (ARRAY_SIZE(elf32_arm_fdpic_plt_entry) - 5);
3997 else
3998 htab->plt_entry_size = 4 * ARRAY_SIZE(elf32_arm_fdpic_plt_entry);
3999 }
4000
362d30a1
RS
4001 if (!htab->root.splt
4002 || !htab->root.srelplt
9d19e4fd
AM
4003 || !htab->root.sdynbss
4004 || (!bfd_link_pic (info) && !htab->root.srelbss))
5e681ec4
PB
4005 abort ();
4006
4007 return TRUE;
4008}
4009
906e58ca
NC
4010/* Copy the extra info we tack onto an elf_link_hash_entry. */
4011
4012static void
4013elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
4014 struct elf_link_hash_entry *dir,
4015 struct elf_link_hash_entry *ind)
4016{
4017 struct elf32_arm_link_hash_entry *edir, *eind;
4018
4019 edir = (struct elf32_arm_link_hash_entry *) dir;
4020 eind = (struct elf32_arm_link_hash_entry *) ind;
4021
906e58ca
NC
4022 if (ind->root.type == bfd_link_hash_indirect)
4023 {
4024 /* Copy over PLT info. */
34e77a92
RS
4025 edir->plt.thumb_refcount += eind->plt.thumb_refcount;
4026 eind->plt.thumb_refcount = 0;
4027 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
4028 eind->plt.maybe_thumb_refcount = 0;
4029 edir->plt.noncall_refcount += eind->plt.noncall_refcount;
4030 eind->plt.noncall_refcount = 0;
4031
e8b09b87
CL
4032 /* Copy FDPIC counters. */
4033 edir->fdpic_cnts.gotofffuncdesc_cnt += eind->fdpic_cnts.gotofffuncdesc_cnt;
4034 edir->fdpic_cnts.gotfuncdesc_cnt += eind->fdpic_cnts.gotfuncdesc_cnt;
4035 edir->fdpic_cnts.funcdesc_cnt += eind->fdpic_cnts.funcdesc_cnt;
4036
34e77a92
RS
4037 /* We should only allocate a function to .iplt once the final
4038 symbol information is known. */
4039 BFD_ASSERT (!eind->is_iplt);
906e58ca
NC
4040
4041 if (dir->got.refcount <= 0)
4042 {
4043 edir->tls_type = eind->tls_type;
4044 eind->tls_type = GOT_UNKNOWN;
4045 }
4046 }
4047
4048 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
4049}
4050
68faa637
AM
4051/* Destroy an ARM elf linker hash table. */
4052
4053static void
d495ab0d 4054elf32_arm_link_hash_table_free (bfd *obfd)
68faa637
AM
4055{
4056 struct elf32_arm_link_hash_table *ret
d495ab0d 4057 = (struct elf32_arm_link_hash_table *) obfd->link.hash;
68faa637
AM
4058
4059 bfd_hash_table_free (&ret->stub_hash_table);
d495ab0d 4060 _bfd_elf_link_hash_table_free (obfd);
68faa637
AM
4061}
4062
906e58ca
NC
4063/* Create an ARM elf linker hash table. */
4064
4065static struct bfd_link_hash_table *
4066elf32_arm_link_hash_table_create (bfd *abfd)
4067{
4068 struct elf32_arm_link_hash_table *ret;
986f0783 4069 size_t amt = sizeof (struct elf32_arm_link_hash_table);
906e58ca 4070
7bf52ea2 4071 ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt);
906e58ca
NC
4072 if (ret == NULL)
4073 return NULL;
4074
4075 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
4076 elf32_arm_link_hash_newfunc,
4dfe6ac6
NC
4077 sizeof (struct elf32_arm_link_hash_entry),
4078 ARM_ELF_DATA))
906e58ca
NC
4079 {
4080 free (ret);
4081 return NULL;
4082 }
4083
906e58ca 4084 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
a504d23a 4085 ret->stm32l4xx_fix = BFD_ARM_STM32L4XX_FIX_NONE;
906e58ca
NC
4086#ifdef FOUR_WORD_PLT
4087 ret->plt_header_size = 16;
4088 ret->plt_entry_size = 16;
4089#else
4090 ret->plt_header_size = 20;
1db37fe6 4091 ret->plt_entry_size = elf32_arm_use_long_plt_entry ? 16 : 12;
906e58ca 4092#endif
f3185997 4093 ret->use_rel = TRUE;
906e58ca 4094 ret->obfd = abfd;
617a5ada 4095 ret->fdpic_p = 0;
906e58ca
NC
4096
4097 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
4098 sizeof (struct elf32_arm_stub_hash_entry)))
4099 {
d495ab0d 4100 _bfd_elf_link_hash_table_free (abfd);
906e58ca
NC
4101 return NULL;
4102 }
d495ab0d 4103 ret->root.root.hash_table_free = elf32_arm_link_hash_table_free;
906e58ca
NC
4104
4105 return &ret->root.root;
4106}
4107
cd1dac3d
DG
4108/* Determine what kind of NOPs are available. */
4109
4110static bfd_boolean
4111arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
4112{
4113 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
4114 Tag_CPU_arch);
cd1dac3d 4115
60a019a0 4116 /* Force return logic to be reviewed for each new architecture. */
031254f2 4117 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
60a019a0
TP
4118
4119 return (arch == TAG_CPU_ARCH_V6T2
4120 || arch == TAG_CPU_ARCH_V6K
4121 || arch == TAG_CPU_ARCH_V7
bff0500d
TP
4122 || arch == TAG_CPU_ARCH_V8
4123 || arch == TAG_CPU_ARCH_V8R);
cd1dac3d
DG
4124}
4125
f4ac8484
DJ
4126static bfd_boolean
4127arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
4128{
4129 switch (stub_type)
4130 {
fea2b4d6 4131 case arm_stub_long_branch_thumb_only:
80c135e5 4132 case arm_stub_long_branch_thumb2_only:
d5a67c02 4133 case arm_stub_long_branch_thumb2_only_pure:
fea2b4d6
CL
4134 case arm_stub_long_branch_v4t_thumb_arm:
4135 case arm_stub_short_branch_v4t_thumb_arm:
ebe24dd4 4136 case arm_stub_long_branch_v4t_thumb_arm_pic:
12352d3f 4137 case arm_stub_long_branch_v4t_thumb_tls_pic:
ebe24dd4 4138 case arm_stub_long_branch_thumb_only_pic:
4ba2ef8f 4139 case arm_stub_cmse_branch_thumb_only:
f4ac8484
DJ
4140 return TRUE;
4141 case arm_stub_none:
4142 BFD_FAIL ();
4143 return FALSE;
4144 break;
4145 default:
4146 return FALSE;
4147 }
4148}
4149
906e58ca
NC
4150/* Determine the type of stub needed, if any, for a call. */
4151
4152static enum elf32_arm_stub_type
4153arm_type_of_stub (struct bfd_link_info *info,
4154 asection *input_sec,
4155 const Elf_Internal_Rela *rel,
34e77a92 4156 unsigned char st_type,
35fc36a8 4157 enum arm_st_branch_type *actual_branch_type,
906e58ca 4158 struct elf32_arm_link_hash_entry *hash,
c820be07
NC
4159 bfd_vma destination,
4160 asection *sym_sec,
4161 bfd *input_bfd,
4162 const char *name)
906e58ca
NC
4163{
4164 bfd_vma location;
4165 bfd_signed_vma branch_offset;
4166 unsigned int r_type;
4167 struct elf32_arm_link_hash_table * globals;
5e866f5a 4168 bfd_boolean thumb2, thumb2_bl, thumb_only;
906e58ca 4169 enum elf32_arm_stub_type stub_type = arm_stub_none;
5fa9e92f 4170 int use_plt = 0;
35fc36a8 4171 enum arm_st_branch_type branch_type = *actual_branch_type;
34e77a92
RS
4172 union gotplt_union *root_plt;
4173 struct arm_plt_info *arm_plt;
d5a67c02
AV
4174 int arch;
4175 int thumb2_movw;
906e58ca 4176
35fc36a8 4177 if (branch_type == ST_BRANCH_LONG)
da5938a2
NC
4178 return stub_type;
4179
906e58ca 4180 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
4181 if (globals == NULL)
4182 return stub_type;
906e58ca
NC
4183
4184 thumb_only = using_thumb_only (globals);
906e58ca 4185 thumb2 = using_thumb2 (globals);
5e866f5a 4186 thumb2_bl = using_thumb2_bl (globals);
906e58ca 4187
d5a67c02
AV
4188 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
4189
4190 /* True for architectures that implement the thumb2 movw instruction. */
4191 thumb2_movw = thumb2 || (arch == TAG_CPU_ARCH_V8M_BASE);
4192
906e58ca
NC
4193 /* Determine where the call point is. */
4194 location = (input_sec->output_offset
4195 + input_sec->output_section->vma
4196 + rel->r_offset);
4197
906e58ca
NC
4198 r_type = ELF32_R_TYPE (rel->r_info);
4199
39f21624
NC
4200 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
4201 are considering a function call relocation. */
c5423981 4202 if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
07d6d2b8 4203 || r_type == R_ARM_THM_JUMP19)
39f21624
NC
4204 && branch_type == ST_BRANCH_TO_ARM)
4205 branch_type = ST_BRANCH_TO_THUMB;
4206
34e77a92
RS
4207 /* For TLS call relocs, it is the caller's responsibility to provide
4208 the address of the appropriate trampoline. */
4209 if (r_type != R_ARM_TLS_CALL
4210 && r_type != R_ARM_THM_TLS_CALL
4ba2ef8f
TP
4211 && elf32_arm_get_plt_info (input_bfd, globals, hash,
4212 ELF32_R_SYM (rel->r_info), &root_plt,
4213 &arm_plt)
34e77a92 4214 && root_plt->offset != (bfd_vma) -1)
5fa9e92f 4215 {
34e77a92 4216 asection *splt;
fe33d2fa 4217
34e77a92
RS
4218 if (hash == NULL || hash->is_iplt)
4219 splt = globals->root.iplt;
4220 else
4221 splt = globals->root.splt;
4222 if (splt != NULL)
b38cadfb 4223 {
34e77a92
RS
4224 use_plt = 1;
4225
4226 /* Note when dealing with PLT entries: the main PLT stub is in
4227 ARM mode, so if the branch is in Thumb mode, another
4228 Thumb->ARM stub will be inserted later just before the ARM
2df2751d
CL
4229 PLT stub. If a long branch stub is needed, we'll add a
4230 Thumb->Arm one and branch directly to the ARM PLT entry.
4231 Here, we have to check if a pre-PLT Thumb->ARM stub
4232 is needed and if it will be close enough. */
34e77a92
RS
4233
4234 destination = (splt->output_section->vma
4235 + splt->output_offset
4236 + root_plt->offset);
4237 st_type = STT_FUNC;
2df2751d
CL
4238
4239 /* Thumb branch/call to PLT: it can become a branch to ARM
4240 or to Thumb. We must perform the same checks and
4241 corrections as in elf32_arm_final_link_relocate. */
4242 if ((r_type == R_ARM_THM_CALL)
4243 || (r_type == R_ARM_THM_JUMP24))
4244 {
4245 if (globals->use_blx
4246 && r_type == R_ARM_THM_CALL
4247 && !thumb_only)
4248 {
4249 /* If the Thumb BLX instruction is available, convert
4250 the BL to a BLX instruction to call the ARM-mode
4251 PLT entry. */
4252 branch_type = ST_BRANCH_TO_ARM;
4253 }
4254 else
4255 {
4256 if (!thumb_only)
4257 /* Target the Thumb stub before the ARM PLT entry. */
4258 destination -= PLT_THUMB_STUB_SIZE;
4259 branch_type = ST_BRANCH_TO_THUMB;
4260 }
4261 }
4262 else
4263 {
4264 branch_type = ST_BRANCH_TO_ARM;
4265 }
34e77a92 4266 }
5fa9e92f 4267 }
34e77a92
RS
4268 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
4269 BFD_ASSERT (st_type != STT_GNU_IFUNC);
906e58ca 4270
fe33d2fa
CL
4271 branch_offset = (bfd_signed_vma)(destination - location);
4272
0855e32b 4273 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
c5423981 4274 || r_type == R_ARM_THM_TLS_CALL || r_type == R_ARM_THM_JUMP19)
906e58ca 4275 {
5fa9e92f
CL
4276 /* Handle cases where:
4277 - this call goes too far (different Thumb/Thumb2 max
99059e56 4278 distance)
155d87d7 4279 - it's a Thumb->Arm call and blx is not available, or it's a
99059e56
RM
4280 Thumb->Arm branch (not bl). A stub is needed in this case,
4281 but only if this call is not through a PLT entry. Indeed,
695344c0 4282 PLT stubs handle mode switching already. */
5e866f5a 4283 if ((!thumb2_bl
906e58ca
NC
4284 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4285 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
5e866f5a 4286 || (thumb2_bl
906e58ca
NC
4287 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4288 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
c5423981
TG
4289 || (thumb2
4290 && (branch_offset > THM2_MAX_FWD_COND_BRANCH_OFFSET
4291 || (branch_offset < THM2_MAX_BWD_COND_BRANCH_OFFSET))
4292 && (r_type == R_ARM_THM_JUMP19))
35fc36a8 4293 || (branch_type == ST_BRANCH_TO_ARM
0855e32b
NS
4294 && (((r_type == R_ARM_THM_CALL
4295 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
c5423981 4296 || (r_type == R_ARM_THM_JUMP24)
07d6d2b8 4297 || (r_type == R_ARM_THM_JUMP19))
5fa9e92f 4298 && !use_plt))
906e58ca 4299 {
2df2751d
CL
4300 /* If we need to insert a Thumb-Thumb long branch stub to a
4301 PLT, use one that branches directly to the ARM PLT
4302 stub. If we pretended we'd use the pre-PLT Thumb->ARM
4303 stub, undo this now. */
695344c0
NC
4304 if ((branch_type == ST_BRANCH_TO_THUMB) && use_plt && !thumb_only)
4305 {
4306 branch_type = ST_BRANCH_TO_ARM;
4307 branch_offset += PLT_THUMB_STUB_SIZE;
4308 }
2df2751d 4309
35fc36a8 4310 if (branch_type == ST_BRANCH_TO_THUMB)
906e58ca
NC
4311 {
4312 /* Thumb to thumb. */
4313 if (!thumb_only)
4314 {
d5a67c02 4315 if (input_sec->flags & SEC_ELF_PURECODE)
10463f39 4316 _bfd_error_handler
871b3ab2 4317 (_("%pB(%pA): warning: long branch veneers used in"
10463f39
AM
4318 " section with SHF_ARM_PURECODE section"
4319 " attribute is only supported for M-profile"
90b6238f 4320 " targets that implement the movw instruction"),
10463f39 4321 input_bfd, input_sec);
d5a67c02 4322
0e1862bb 4323 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
c2b4a39d 4324 /* PIC stubs. */
155d87d7 4325 ? ((globals->use_blx
9553db3c 4326 && (r_type == R_ARM_THM_CALL))
155d87d7
CL
4327 /* V5T and above. Stub starts with ARM code, so
4328 we must be able to switch mode before
4329 reaching it, which is only possible for 'bl'
4330 (ie R_ARM_THM_CALL relocation). */
cf3eccff 4331 ? arm_stub_long_branch_any_thumb_pic
ebe24dd4 4332 /* On V4T, use Thumb code only. */
d3626fb0 4333 : arm_stub_long_branch_v4t_thumb_thumb_pic)
c2b4a39d
CL
4334
4335 /* non-PIC stubs. */
155d87d7 4336 : ((globals->use_blx
9553db3c 4337 && (r_type == R_ARM_THM_CALL))
c2b4a39d
CL
4338 /* V5T and above. */
4339 ? arm_stub_long_branch_any_any
4340 /* V4T. */
d3626fb0 4341 : arm_stub_long_branch_v4t_thumb_thumb);
906e58ca
NC
4342 }
4343 else
4344 {
d5a67c02
AV
4345 if (thumb2_movw && (input_sec->flags & SEC_ELF_PURECODE))
4346 stub_type = arm_stub_long_branch_thumb2_only_pure;
4347 else
4348 {
4349 if (input_sec->flags & SEC_ELF_PURECODE)
10463f39 4350 _bfd_error_handler
871b3ab2 4351 (_("%pB(%pA): warning: long branch veneers used in"
10463f39
AM
4352 " section with SHF_ARM_PURECODE section"
4353 " attribute is only supported for M-profile"
90b6238f 4354 " targets that implement the movw instruction"),
10463f39 4355 input_bfd, input_sec);
d5a67c02
AV
4356
4357 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4358 /* PIC stub. */
4359 ? arm_stub_long_branch_thumb_only_pic
4360 /* non-PIC stub. */
4361 : (thumb2 ? arm_stub_long_branch_thumb2_only
4362 : arm_stub_long_branch_thumb_only);
4363 }
906e58ca
NC
4364 }
4365 }
4366 else
4367 {
d5a67c02 4368 if (input_sec->flags & SEC_ELF_PURECODE)
10463f39 4369 _bfd_error_handler
871b3ab2 4370 (_("%pB(%pA): warning: long branch veneers used in"
10463f39
AM
4371 " section with SHF_ARM_PURECODE section"
4372 " attribute is only supported" " for M-profile"
90b6238f 4373 " targets that implement the movw instruction"),
10463f39 4374 input_bfd, input_sec);
d5a67c02 4375
906e58ca 4376 /* Thumb to arm. */
c820be07
NC
4377 if (sym_sec != NULL
4378 && sym_sec->owner != NULL
4379 && !INTERWORK_FLAG (sym_sec->owner))
4380 {
4eca0228 4381 _bfd_error_handler
90b6238f
AM
4382 (_("%pB(%s): warning: interworking not enabled;"
4383 " first occurrence: %pB: %s call to %s"),
4384 sym_sec->owner, name, input_bfd, "Thumb", "ARM");
c820be07
NC
4385 }
4386
0855e32b 4387 stub_type =
0e1862bb 4388 (bfd_link_pic (info) | globals->pic_veneer)
c2b4a39d 4389 /* PIC stubs. */
0855e32b 4390 ? (r_type == R_ARM_THM_TLS_CALL
6a631e86 4391 /* TLS PIC stubs. */
0855e32b
NS
4392 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
4393 : arm_stub_long_branch_v4t_thumb_tls_pic)
4394 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4395 /* V5T PIC and above. */
4396 ? arm_stub_long_branch_any_arm_pic
4397 /* V4T PIC stub. */
4398 : arm_stub_long_branch_v4t_thumb_arm_pic))
c2b4a39d
CL
4399
4400 /* non-PIC stubs. */
0855e32b 4401 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
c2b4a39d
CL
4402 /* V5T and above. */
4403 ? arm_stub_long_branch_any_any
4404 /* V4T. */
4405 : arm_stub_long_branch_v4t_thumb_arm);
c820be07
NC
4406
4407 /* Handle v4t short branches. */
fea2b4d6 4408 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
c820be07
NC
4409 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4410 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
fea2b4d6 4411 stub_type = arm_stub_short_branch_v4t_thumb_arm;
906e58ca
NC
4412 }
4413 }
4414 }
fe33d2fa
CL
4415 else if (r_type == R_ARM_CALL
4416 || r_type == R_ARM_JUMP24
0855e32b
NS
4417 || r_type == R_ARM_PLT32
4418 || r_type == R_ARM_TLS_CALL)
906e58ca 4419 {
d5a67c02 4420 if (input_sec->flags & SEC_ELF_PURECODE)
10463f39 4421 _bfd_error_handler
871b3ab2 4422 (_("%pB(%pA): warning: long branch veneers used in"
10463f39
AM
4423 " section with SHF_ARM_PURECODE section"
4424 " attribute is only supported for M-profile"
90b6238f 4425 " targets that implement the movw instruction"),
10463f39 4426 input_bfd, input_sec);
35fc36a8 4427 if (branch_type == ST_BRANCH_TO_THUMB)
906e58ca
NC
4428 {
4429 /* Arm to thumb. */
c820be07
NC
4430
4431 if (sym_sec != NULL
4432 && sym_sec->owner != NULL
4433 && !INTERWORK_FLAG (sym_sec->owner))
4434 {
4eca0228 4435 _bfd_error_handler
90b6238f
AM
4436 (_("%pB(%s): warning: interworking not enabled;"
4437 " first occurrence: %pB: %s call to %s"),
4438 sym_sec->owner, name, input_bfd, "ARM", "Thumb");
c820be07
NC
4439 }
4440
4441 /* We have an extra 2-bytes reach because of
4442 the mode change (bit 24 (H) of BLX encoding). */
4116d8d7
PB
4443 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4444 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
0855e32b 4445 || (r_type == R_ARM_CALL && !globals->use_blx)
4116d8d7
PB
4446 || (r_type == R_ARM_JUMP24)
4447 || (r_type == R_ARM_PLT32))
906e58ca 4448 {
0e1862bb 4449 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
c2b4a39d 4450 /* PIC stubs. */
ebe24dd4
CL
4451 ? ((globals->use_blx)
4452 /* V5T and above. */
4453 ? arm_stub_long_branch_any_thumb_pic
4454 /* V4T stub. */
4455 : arm_stub_long_branch_v4t_arm_thumb_pic)
4456
c2b4a39d
CL
4457 /* non-PIC stubs. */
4458 : ((globals->use_blx)
4459 /* V5T and above. */
4460 ? arm_stub_long_branch_any_any
4461 /* V4T. */
4462 : arm_stub_long_branch_v4t_arm_thumb);
906e58ca
NC
4463 }
4464 }
4465 else
4466 {
4467 /* Arm to arm. */
4468 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4469 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4470 {
0855e32b 4471 stub_type =
0e1862bb 4472 (bfd_link_pic (info) | globals->pic_veneer)
c2b4a39d 4473 /* PIC stubs. */
0855e32b 4474 ? (r_type == R_ARM_TLS_CALL
6a631e86 4475 /* TLS PIC Stub. */
0855e32b 4476 ? arm_stub_long_branch_any_tls_pic
90c14f0c 4477 : (globals->root.target_os == is_nacl
7a89b94e
NC
4478 ? arm_stub_long_branch_arm_nacl_pic
4479 : arm_stub_long_branch_any_arm_pic))
c2b4a39d 4480 /* non-PIC stubs. */
90c14f0c 4481 : (globals->root.target_os == is_nacl
7a89b94e
NC
4482 ? arm_stub_long_branch_arm_nacl
4483 : arm_stub_long_branch_any_any);
906e58ca
NC
4484 }
4485 }
4486 }
4487
fe33d2fa
CL
4488 /* If a stub is needed, record the actual destination type. */
4489 if (stub_type != arm_stub_none)
35fc36a8 4490 *actual_branch_type = branch_type;
fe33d2fa 4491
906e58ca
NC
4492 return stub_type;
4493}
4494
4495/* Build a name for an entry in the stub hash table. */
4496
4497static char *
4498elf32_arm_stub_name (const asection *input_section,
4499 const asection *sym_sec,
4500 const struct elf32_arm_link_hash_entry *hash,
fe33d2fa
CL
4501 const Elf_Internal_Rela *rel,
4502 enum elf32_arm_stub_type stub_type)
906e58ca
NC
4503{
4504 char *stub_name;
4505 bfd_size_type len;
4506
4507 if (hash)
4508 {
fe33d2fa 4509 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
21d799b5 4510 stub_name = (char *) bfd_malloc (len);
906e58ca 4511 if (stub_name != NULL)
fe33d2fa 4512 sprintf (stub_name, "%08x_%s+%x_%d",
906e58ca
NC
4513 input_section->id & 0xffffffff,
4514 hash->root.root.root.string,
fe33d2fa
CL
4515 (int) rel->r_addend & 0xffffffff,
4516 (int) stub_type);
906e58ca
NC
4517 }
4518 else
4519 {
fe33d2fa 4520 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
21d799b5 4521 stub_name = (char *) bfd_malloc (len);
906e58ca 4522 if (stub_name != NULL)
fe33d2fa 4523 sprintf (stub_name, "%08x_%x:%x+%x_%d",
906e58ca
NC
4524 input_section->id & 0xffffffff,
4525 sym_sec->id & 0xffffffff,
0855e32b
NS
4526 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
4527 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
4528 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
fe33d2fa
CL
4529 (int) rel->r_addend & 0xffffffff,
4530 (int) stub_type);
906e58ca
NC
4531 }
4532
4533 return stub_name;
4534}
4535
4536/* Look up an entry in the stub hash. Stub entries are cached because
4537 creating the stub name takes a bit of time. */
4538
4539static struct elf32_arm_stub_hash_entry *
4540elf32_arm_get_stub_entry (const asection *input_section,
4541 const asection *sym_sec,
4542 struct elf_link_hash_entry *hash,
4543 const Elf_Internal_Rela *rel,
fe33d2fa
CL
4544 struct elf32_arm_link_hash_table *htab,
4545 enum elf32_arm_stub_type stub_type)
906e58ca
NC
4546{
4547 struct elf32_arm_stub_hash_entry *stub_entry;
4548 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
4549 const asection *id_sec;
4550
4551 if ((input_section->flags & SEC_CODE) == 0)
4552 return NULL;
4553
4d83e8d9
CL
4554 /* If the input section is the CMSE stubs one and it needs a long
4555 branch stub to reach it's final destination, give up with an
4556 error message: this is not supported. See PR ld/24709. */
4557 if (!strncmp (input_section->name, CMSE_STUB_NAME, strlen(CMSE_STUB_NAME)))
4558 {
4559 bfd *output_bfd = htab->obfd;
4560 asection *out_sec = bfd_get_section_by_name (output_bfd, CMSE_STUB_NAME);
4561
4562 _bfd_error_handler (_("ERROR: CMSE stub (%s section) too far "
4563 "(%#" PRIx64 ") from destination (%#" PRIx64 ")"),
4564 CMSE_STUB_NAME,
4565 (uint64_t)out_sec->output_section->vma
4566 + out_sec->output_offset,
4567 (uint64_t)sym_sec->output_section->vma
4568 + sym_sec->output_offset
4569 + h->root.root.u.def.value);
4570 /* Exit, rather than leave incompletely processed
4571 relocations. */
4572 xexit(1);
4573 }
4574
906e58ca
NC
4575 /* If this input section is part of a group of sections sharing one
4576 stub section, then use the id of the first section in the group.
4577 Stub names need to include a section id, as there may well be
4578 more than one stub used to reach say, printf, and we need to
4579 distinguish between them. */
c2abbbeb 4580 BFD_ASSERT (input_section->id <= htab->top_id);
906e58ca
NC
4581 id_sec = htab->stub_group[input_section->id].link_sec;
4582
4583 if (h != NULL && h->stub_cache != NULL
4584 && h->stub_cache->h == h
fe33d2fa
CL
4585 && h->stub_cache->id_sec == id_sec
4586 && h->stub_cache->stub_type == stub_type)
906e58ca
NC
4587 {
4588 stub_entry = h->stub_cache;
4589 }
4590 else
4591 {
4592 char *stub_name;
4593
fe33d2fa 4594 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
906e58ca
NC
4595 if (stub_name == NULL)
4596 return NULL;
4597
4598 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
4599 stub_name, FALSE, FALSE);
4600 if (h != NULL)
4601 h->stub_cache = stub_entry;
4602
4603 free (stub_name);
4604 }
4605
4606 return stub_entry;
4607}
4608
daa4adae
TP
4609/* Whether veneers of type STUB_TYPE require to be in a dedicated output
4610 section. */
4611
4612static bfd_boolean
4613arm_dedicated_stub_output_section_required (enum elf32_arm_stub_type stub_type)
4614{
4615 if (stub_type >= max_stub_type)
4616 abort (); /* Should be unreachable. */
4617
4ba2ef8f
TP
4618 switch (stub_type)
4619 {
4620 case arm_stub_cmse_branch_thumb_only:
4621 return TRUE;
4622
4623 default:
4624 return FALSE;
4625 }
4626
4627 abort (); /* Should be unreachable. */
daa4adae
TP
4628}
4629
4630/* Required alignment (as a power of 2) for the dedicated section holding
4631 veneers of type STUB_TYPE, or 0 if veneers of this type are interspersed
4632 with input sections. */
4633
4634static int
4635arm_dedicated_stub_output_section_required_alignment
4636 (enum elf32_arm_stub_type stub_type)
4637{
4638 if (stub_type >= max_stub_type)
4639 abort (); /* Should be unreachable. */
4640
4ba2ef8f
TP
4641 switch (stub_type)
4642 {
4643 /* Vectors of Secure Gateway veneers must be aligned on 32byte
4644 boundary. */
4645 case arm_stub_cmse_branch_thumb_only:
4646 return 5;
4647
4648 default:
4649 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4650 return 0;
4651 }
4652
4653 abort (); /* Should be unreachable. */
daa4adae
TP
4654}
4655
4656/* Name of the dedicated output section to put veneers of type STUB_TYPE, or
4657 NULL if veneers of this type are interspersed with input sections. */
4658
4659static const char *
4660arm_dedicated_stub_output_section_name (enum elf32_arm_stub_type stub_type)
4661{
4662 if (stub_type >= max_stub_type)
4663 abort (); /* Should be unreachable. */
4664
4ba2ef8f
TP
4665 switch (stub_type)
4666 {
4667 case arm_stub_cmse_branch_thumb_only:
4d83e8d9 4668 return CMSE_STUB_NAME;
4ba2ef8f
TP
4669
4670 default:
4671 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4672 return NULL;
4673 }
4674
4675 abort (); /* Should be unreachable. */
daa4adae
TP
4676}
4677
4678/* If veneers of type STUB_TYPE should go in a dedicated output section,
4679 returns the address of the hash table field in HTAB holding a pointer to the
4680 corresponding input section. Otherwise, returns NULL. */
4681
4682static asection **
4ba2ef8f
TP
4683arm_dedicated_stub_input_section_ptr (struct elf32_arm_link_hash_table *htab,
4684 enum elf32_arm_stub_type stub_type)
daa4adae
TP
4685{
4686 if (stub_type >= max_stub_type)
4687 abort (); /* Should be unreachable. */
4688
4ba2ef8f
TP
4689 switch (stub_type)
4690 {
4691 case arm_stub_cmse_branch_thumb_only:
4692 return &htab->cmse_stub_sec;
4693
4694 default:
4695 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4696 return NULL;
4697 }
4698
4699 abort (); /* Should be unreachable. */
daa4adae
TP
4700}
4701
4702/* Find or create a stub section to contain a stub of type STUB_TYPE. SECTION
4703 is the section that branch into veneer and can be NULL if stub should go in
4704 a dedicated output section. Returns a pointer to the stub section, and the
4705 section to which the stub section will be attached (in *LINK_SEC_P).
48229727 4706 LINK_SEC_P may be NULL. */
906e58ca 4707
48229727
JB
4708static asection *
4709elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
daa4adae
TP
4710 struct elf32_arm_link_hash_table *htab,
4711 enum elf32_arm_stub_type stub_type)
906e58ca 4712{
daa4adae
TP
4713 asection *link_sec, *out_sec, **stub_sec_p;
4714 const char *stub_sec_prefix;
4715 bfd_boolean dedicated_output_section =
4716 arm_dedicated_stub_output_section_required (stub_type);
4717 int align;
906e58ca 4718
daa4adae 4719 if (dedicated_output_section)
906e58ca 4720 {
daa4adae
TP
4721 bfd *output_bfd = htab->obfd;
4722 const char *out_sec_name =
4723 arm_dedicated_stub_output_section_name (stub_type);
4724 link_sec = NULL;
4725 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
4726 stub_sec_prefix = out_sec_name;
4727 align = arm_dedicated_stub_output_section_required_alignment (stub_type);
4728 out_sec = bfd_get_section_by_name (output_bfd, out_sec_name);
4729 if (out_sec == NULL)
906e58ca 4730 {
90b6238f 4731 _bfd_error_handler (_("no address assigned to the veneers output "
4eca0228 4732 "section %s"), out_sec_name);
daa4adae 4733 return NULL;
906e58ca 4734 }
daa4adae
TP
4735 }
4736 else
4737 {
c2abbbeb 4738 BFD_ASSERT (section->id <= htab->top_id);
daa4adae
TP
4739 link_sec = htab->stub_group[section->id].link_sec;
4740 BFD_ASSERT (link_sec != NULL);
4741 stub_sec_p = &htab->stub_group[section->id].stub_sec;
4742 if (*stub_sec_p == NULL)
4743 stub_sec_p = &htab->stub_group[link_sec->id].stub_sec;
4744 stub_sec_prefix = link_sec->name;
4745 out_sec = link_sec->output_section;
90c14f0c 4746 align = htab->root.target_os == is_nacl ? 4 : 3;
906e58ca 4747 }
b38cadfb 4748
daa4adae
TP
4749 if (*stub_sec_p == NULL)
4750 {
4751 size_t namelen;
4752 bfd_size_type len;
4753 char *s_name;
4754
4755 namelen = strlen (stub_sec_prefix);
4756 len = namelen + sizeof (STUB_SUFFIX);
4757 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
4758 if (s_name == NULL)
4759 return NULL;
4760
4761 memcpy (s_name, stub_sec_prefix, namelen);
4762 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4763 *stub_sec_p = (*htab->add_stub_section) (s_name, out_sec, link_sec,
4764 align);
4765 if (*stub_sec_p == NULL)
4766 return NULL;
4767
4768 out_sec->flags |= SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_CODE
4769 | SEC_HAS_CONTENTS | SEC_RELOC | SEC_IN_MEMORY
4770 | SEC_KEEP;
4771 }
4772
4773 if (!dedicated_output_section)
4774 htab->stub_group[section->id].stub_sec = *stub_sec_p;
4775
48229727
JB
4776 if (link_sec_p)
4777 *link_sec_p = link_sec;
b38cadfb 4778
daa4adae 4779 return *stub_sec_p;
48229727
JB
4780}
4781
4782/* Add a new stub entry to the stub hash. Not all fields of the new
4783 stub entry are initialised. */
4784
4785static struct elf32_arm_stub_hash_entry *
daa4adae
TP
4786elf32_arm_add_stub (const char *stub_name, asection *section,
4787 struct elf32_arm_link_hash_table *htab,
4788 enum elf32_arm_stub_type stub_type)
48229727
JB
4789{
4790 asection *link_sec;
4791 asection *stub_sec;
4792 struct elf32_arm_stub_hash_entry *stub_entry;
4793
daa4adae
TP
4794 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab,
4795 stub_type);
48229727
JB
4796 if (stub_sec == NULL)
4797 return NULL;
906e58ca
NC
4798
4799 /* Enter this entry into the linker stub hash table. */
4800 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4801 TRUE, FALSE);
4802 if (stub_entry == NULL)
4803 {
6bde4c52
TP
4804 if (section == NULL)
4805 section = stub_sec;
871b3ab2 4806 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
4eca0228 4807 section->owner, stub_name);
906e58ca
NC
4808 return NULL;
4809 }
4810
4811 stub_entry->stub_sec = stub_sec;
0955507f 4812 stub_entry->stub_offset = (bfd_vma) -1;
906e58ca
NC
4813 stub_entry->id_sec = link_sec;
4814
906e58ca
NC
4815 return stub_entry;
4816}
4817
4818/* Store an Arm insn into an output section not processed by
4819 elf32_arm_write_section. */
4820
4821static void
8029a119
NC
4822put_arm_insn (struct elf32_arm_link_hash_table * htab,
4823 bfd * output_bfd, bfd_vma val, void * ptr)
906e58ca
NC
4824{
4825 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4826 bfd_putl32 (val, ptr);
4827 else
4828 bfd_putb32 (val, ptr);
4829}
4830
4831/* Store a 16-bit Thumb insn into an output section not processed by
4832 elf32_arm_write_section. */
4833
4834static void
8029a119
NC
4835put_thumb_insn (struct elf32_arm_link_hash_table * htab,
4836 bfd * output_bfd, bfd_vma val, void * ptr)
906e58ca
NC
4837{
4838 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4839 bfd_putl16 (val, ptr);
4840 else
4841 bfd_putb16 (val, ptr);
4842}
4843
a504d23a
LA
4844/* Store a Thumb2 insn into an output section not processed by
4845 elf32_arm_write_section. */
4846
4847static void
4848put_thumb2_insn (struct elf32_arm_link_hash_table * htab,
b98e6871 4849 bfd * output_bfd, bfd_vma val, bfd_byte * ptr)
a504d23a
LA
4850{
4851 /* T2 instructions are 16-bit streamed. */
4852 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4853 {
4854 bfd_putl16 ((val >> 16) & 0xffff, ptr);
4855 bfd_putl16 ((val & 0xffff), ptr + 2);
4856 }
4857 else
4858 {
4859 bfd_putb16 ((val >> 16) & 0xffff, ptr);
4860 bfd_putb16 ((val & 0xffff), ptr + 2);
4861 }
4862}
4863
0855e32b
NS
4864/* If it's possible to change R_TYPE to a more efficient access
4865 model, return the new reloc type. */
4866
4867static unsigned
b38cadfb 4868elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
0855e32b
NS
4869 struct elf_link_hash_entry *h)
4870{
4871 int is_local = (h == NULL);
4872
9cb09e33 4873 if (bfd_link_dll (info)
0e1862bb 4874 || (h && h->root.type == bfd_link_hash_undefweak))
0855e32b
NS
4875 return r_type;
4876
b38cadfb 4877 /* We do not support relaxations for Old TLS models. */
0855e32b
NS
4878 switch (r_type)
4879 {
4880 case R_ARM_TLS_GOTDESC:
4881 case R_ARM_TLS_CALL:
4882 case R_ARM_THM_TLS_CALL:
4883 case R_ARM_TLS_DESCSEQ:
4884 case R_ARM_THM_TLS_DESCSEQ:
4885 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
4886 }
4887
4888 return r_type;
4889}
4890
48229727
JB
4891static bfd_reloc_status_type elf32_arm_final_link_relocate
4892 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
4893 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
34e77a92
RS
4894 const char *, unsigned char, enum arm_st_branch_type,
4895 struct elf_link_hash_entry *, bfd_boolean *, char **);
48229727 4896
4563a860
JB
4897static unsigned int
4898arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
4899{
4900 switch (stub_type)
4901 {
4902 case arm_stub_a8_veneer_b_cond:
4903 case arm_stub_a8_veneer_b:
4904 case arm_stub_a8_veneer_bl:
4905 return 2;
4906
4907 case arm_stub_long_branch_any_any:
4908 case arm_stub_long_branch_v4t_arm_thumb:
4909 case arm_stub_long_branch_thumb_only:
80c135e5 4910 case arm_stub_long_branch_thumb2_only:
d5a67c02 4911 case arm_stub_long_branch_thumb2_only_pure:
4563a860
JB
4912 case arm_stub_long_branch_v4t_thumb_thumb:
4913 case arm_stub_long_branch_v4t_thumb_arm:
4914 case arm_stub_short_branch_v4t_thumb_arm:
4915 case arm_stub_long_branch_any_arm_pic:
4916 case arm_stub_long_branch_any_thumb_pic:
4917 case arm_stub_long_branch_v4t_thumb_thumb_pic:
4918 case arm_stub_long_branch_v4t_arm_thumb_pic:
4919 case arm_stub_long_branch_v4t_thumb_arm_pic:
4920 case arm_stub_long_branch_thumb_only_pic:
0855e32b
NS
4921 case arm_stub_long_branch_any_tls_pic:
4922 case arm_stub_long_branch_v4t_thumb_tls_pic:
4ba2ef8f 4923 case arm_stub_cmse_branch_thumb_only:
4563a860
JB
4924 case arm_stub_a8_veneer_blx:
4925 return 4;
b38cadfb 4926
7a89b94e
NC
4927 case arm_stub_long_branch_arm_nacl:
4928 case arm_stub_long_branch_arm_nacl_pic:
4929 return 16;
4930
4563a860
JB
4931 default:
4932 abort (); /* Should be unreachable. */
4933 }
4934}
4935
4f4faa4d
TP
4936/* Returns whether stubs of type STUB_TYPE take over the symbol they are
4937 veneering (TRUE) or have their own symbol (FALSE). */
4938
4939static bfd_boolean
4940arm_stub_sym_claimed (enum elf32_arm_stub_type stub_type)
4941{
4942 if (stub_type >= max_stub_type)
4943 abort (); /* Should be unreachable. */
4944
4ba2ef8f
TP
4945 switch (stub_type)
4946 {
4947 case arm_stub_cmse_branch_thumb_only:
4948 return TRUE;
4949
4950 default:
4951 return FALSE;
4952 }
4953
4954 abort (); /* Should be unreachable. */
4f4faa4d
TP
4955}
4956
d7c5bd02
TP
4957/* Returns the padding needed for the dedicated section used stubs of type
4958 STUB_TYPE. */
4959
4960static int
4961arm_dedicated_stub_section_padding (enum elf32_arm_stub_type stub_type)
4962{
4963 if (stub_type >= max_stub_type)
4964 abort (); /* Should be unreachable. */
4965
4ba2ef8f
TP
4966 switch (stub_type)
4967 {
4968 case arm_stub_cmse_branch_thumb_only:
4969 return 32;
4970
4971 default:
4972 return 0;
4973 }
4974
4975 abort (); /* Should be unreachable. */
d7c5bd02
TP
4976}
4977
0955507f
TP
4978/* If veneers of type STUB_TYPE should go in a dedicated output section,
4979 returns the address of the hash table field in HTAB holding the offset at
4980 which new veneers should be layed out in the stub section. */
4981
4982static bfd_vma*
4983arm_new_stubs_start_offset_ptr (struct elf32_arm_link_hash_table *htab,
4984 enum elf32_arm_stub_type stub_type)
4985{
4986 switch (stub_type)
4987 {
4988 case arm_stub_cmse_branch_thumb_only:
4989 return &htab->new_cmse_stub_offset;
4990
4991 default:
4992 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4993 return NULL;
4994 }
4995}
4996
906e58ca
NC
4997static bfd_boolean
4998arm_build_one_stub (struct bfd_hash_entry *gen_entry,
4999 void * in_arg)
5000{
7a89b94e 5001#define MAXRELOCS 3
0955507f 5002 bfd_boolean removed_sg_veneer;
906e58ca 5003 struct elf32_arm_stub_hash_entry *stub_entry;
4dfe6ac6 5004 struct elf32_arm_link_hash_table *globals;
906e58ca 5005 struct bfd_link_info *info;
906e58ca
NC
5006 asection *stub_sec;
5007 bfd *stub_bfd;
906e58ca
NC
5008 bfd_byte *loc;
5009 bfd_vma sym_value;
5010 int template_size;
5011 int size;
d3ce72d0 5012 const insn_sequence *template_sequence;
906e58ca 5013 int i;
48229727
JB
5014 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
5015 int stub_reloc_offset[MAXRELOCS] = {0, 0};
5016 int nrelocs = 0;
0955507f 5017 int just_allocated = 0;
906e58ca
NC
5018
5019 /* Massage our args to the form they really have. */
5020 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
5021 info = (struct bfd_link_info *) in_arg;
5022
abf874aa
CL
5023 /* Fail if the target section could not be assigned to an output
5024 section. The user should fix his linker script. */
5025 if (stub_entry->target_section->output_section == NULL
5026 && info->non_contiguous_regions)
53215f21
CL
5027 info->callbacks->einfo (_("%F%P: Could not assign '%pA' to an output section. "
5028 "Retry without --enable-non-contiguous-regions.\n"),
5029 stub_entry->target_section);
abf874aa 5030
906e58ca 5031 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
5032 if (globals == NULL)
5033 return FALSE;
906e58ca 5034
906e58ca
NC
5035 stub_sec = stub_entry->stub_sec;
5036
4dfe6ac6 5037 if ((globals->fix_cortex_a8 < 0)
4563a860
JB
5038 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
5039 /* We have to do less-strictly-aligned fixes last. */
eb7c4339 5040 return TRUE;
fe33d2fa 5041
0955507f
TP
5042 /* Assign a slot at the end of section if none assigned yet. */
5043 if (stub_entry->stub_offset == (bfd_vma) -1)
5044 {
5045 stub_entry->stub_offset = stub_sec->size;
5046 just_allocated = 1;
5047 }
906e58ca
NC
5048 loc = stub_sec->contents + stub_entry->stub_offset;
5049
5050 stub_bfd = stub_sec->owner;
5051
906e58ca
NC
5052 /* This is the address of the stub destination. */
5053 sym_value = (stub_entry->target_value
5054 + stub_entry->target_section->output_offset
5055 + stub_entry->target_section->output_section->vma);
5056
d3ce72d0 5057 template_sequence = stub_entry->stub_template;
461a49ca 5058 template_size = stub_entry->stub_template_size;
906e58ca
NC
5059
5060 size = 0;
461a49ca 5061 for (i = 0; i < template_size; i++)
906e58ca 5062 {
d3ce72d0 5063 switch (template_sequence[i].type)
461a49ca
DJ
5064 {
5065 case THUMB16_TYPE:
48229727 5066 {
d3ce72d0
NC
5067 bfd_vma data = (bfd_vma) template_sequence[i].data;
5068 if (template_sequence[i].reloc_addend != 0)
48229727 5069 {
99059e56
RM
5070 /* We've borrowed the reloc_addend field to mean we should
5071 insert a condition code into this (Thumb-1 branch)
5072 instruction. See THUMB16_BCOND_INSN. */
5073 BFD_ASSERT ((data & 0xff00) == 0xd000);
5074 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
48229727 5075 }
fe33d2fa 5076 bfd_put_16 (stub_bfd, data, loc + size);
48229727
JB
5077 size += 2;
5078 }
461a49ca 5079 break;
906e58ca 5080
48229727 5081 case THUMB32_TYPE:
fe33d2fa
CL
5082 bfd_put_16 (stub_bfd,
5083 (template_sequence[i].data >> 16) & 0xffff,
5084 loc + size);
5085 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
5086 loc + size + 2);
99059e56
RM
5087 if (template_sequence[i].r_type != R_ARM_NONE)
5088 {
5089 stub_reloc_idx[nrelocs] = i;
5090 stub_reloc_offset[nrelocs++] = size;
5091 }
5092 size += 4;
5093 break;
48229727 5094
461a49ca 5095 case ARM_TYPE:
fe33d2fa
CL
5096 bfd_put_32 (stub_bfd, template_sequence[i].data,
5097 loc + size);
461a49ca
DJ
5098 /* Handle cases where the target is encoded within the
5099 instruction. */
d3ce72d0 5100 if (template_sequence[i].r_type == R_ARM_JUMP24)
461a49ca 5101 {
48229727
JB
5102 stub_reloc_idx[nrelocs] = i;
5103 stub_reloc_offset[nrelocs++] = size;
461a49ca
DJ
5104 }
5105 size += 4;
5106 break;
5107
5108 case DATA_TYPE:
d3ce72d0 5109 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
48229727
JB
5110 stub_reloc_idx[nrelocs] = i;
5111 stub_reloc_offset[nrelocs++] = size;
461a49ca
DJ
5112 size += 4;
5113 break;
5114
5115 default:
5116 BFD_FAIL ();
5117 return FALSE;
5118 }
906e58ca 5119 }
461a49ca 5120
0955507f
TP
5121 if (just_allocated)
5122 stub_sec->size += size;
906e58ca 5123
461a49ca
DJ
5124 /* Stub size has already been computed in arm_size_one_stub. Check
5125 consistency. */
5126 BFD_ASSERT (size == stub_entry->stub_size);
5127
906e58ca 5128 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
35fc36a8 5129 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
906e58ca
NC
5130 sym_value |= 1;
5131
0955507f
TP
5132 /* Assume non empty slots have at least one and at most MAXRELOCS entries
5133 to relocate in each stub. */
5134 removed_sg_veneer =
5135 (size == 0 && stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
5136 BFD_ASSERT (removed_sg_veneer || (nrelocs != 0 && nrelocs <= MAXRELOCS));
c820be07 5137
48229727 5138 for (i = 0; i < nrelocs; i++)
8d9d9490
TP
5139 {
5140 Elf_Internal_Rela rel;
5141 bfd_boolean unresolved_reloc;
5142 char *error_message;
5143 bfd_vma points_to =
5144 sym_value + template_sequence[stub_reloc_idx[i]].reloc_addend;
5145
5146 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
5147 rel.r_info = ELF32_R_INFO (0,
5148 template_sequence[stub_reloc_idx[i]].r_type);
5149 rel.r_addend = 0;
5150
5151 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
5152 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
5153 template should refer back to the instruction after the original
5154 branch. We use target_section as Cortex-A8 erratum workaround stubs
5155 are only generated when both source and target are in the same
5156 section. */
5157 points_to = stub_entry->target_section->output_section->vma
5158 + stub_entry->target_section->output_offset
5159 + stub_entry->source_value;
5160
5161 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
5162 (template_sequence[stub_reloc_idx[i]].r_type),
5163 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
5164 points_to, info, stub_entry->target_section, "", STT_FUNC,
5165 stub_entry->branch_type,
5166 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
5167 &error_message);
5168 }
906e58ca
NC
5169
5170 return TRUE;
48229727 5171#undef MAXRELOCS
906e58ca
NC
5172}
5173
48229727
JB
5174/* Calculate the template, template size and instruction size for a stub.
5175 Return value is the instruction size. */
906e58ca 5176
48229727
JB
5177static unsigned int
5178find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
5179 const insn_sequence **stub_template,
5180 int *stub_template_size)
906e58ca 5181{
d3ce72d0 5182 const insn_sequence *template_sequence = NULL;
48229727
JB
5183 int template_size = 0, i;
5184 unsigned int size;
906e58ca 5185
d3ce72d0 5186 template_sequence = stub_definitions[stub_type].template_sequence;
2a229407
AM
5187 if (stub_template)
5188 *stub_template = template_sequence;
5189
48229727 5190 template_size = stub_definitions[stub_type].template_size;
2a229407
AM
5191 if (stub_template_size)
5192 *stub_template_size = template_size;
906e58ca
NC
5193
5194 size = 0;
461a49ca
DJ
5195 for (i = 0; i < template_size; i++)
5196 {
d3ce72d0 5197 switch (template_sequence[i].type)
461a49ca
DJ
5198 {
5199 case THUMB16_TYPE:
5200 size += 2;
5201 break;
5202
5203 case ARM_TYPE:
48229727 5204 case THUMB32_TYPE:
461a49ca
DJ
5205 case DATA_TYPE:
5206 size += 4;
5207 break;
5208
5209 default:
5210 BFD_FAIL ();
2a229407 5211 return 0;
461a49ca
DJ
5212 }
5213 }
5214
48229727
JB
5215 return size;
5216}
5217
5218/* As above, but don't actually build the stub. Just bump offset so
5219 we know stub section sizes. */
5220
5221static bfd_boolean
5222arm_size_one_stub (struct bfd_hash_entry *gen_entry,
c7e2358a 5223 void *in_arg ATTRIBUTE_UNUSED)
48229727
JB
5224{
5225 struct elf32_arm_stub_hash_entry *stub_entry;
d3ce72d0 5226 const insn_sequence *template_sequence;
48229727
JB
5227 int template_size, size;
5228
5229 /* Massage our args to the form they really have. */
5230 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
48229727
JB
5231
5232 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
5233 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
5234
d3ce72d0 5235 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
48229727
JB
5236 &template_size);
5237
0955507f
TP
5238 /* Initialized to -1. Null size indicates an empty slot full of zeros. */
5239 if (stub_entry->stub_template_size)
5240 {
5241 stub_entry->stub_size = size;
5242 stub_entry->stub_template = template_sequence;
5243 stub_entry->stub_template_size = template_size;
5244 }
5245
5246 /* Already accounted for. */
5247 if (stub_entry->stub_offset != (bfd_vma) -1)
5248 return TRUE;
461a49ca 5249
906e58ca
NC
5250 size = (size + 7) & ~7;
5251 stub_entry->stub_sec->size += size;
461a49ca 5252
906e58ca
NC
5253 return TRUE;
5254}
5255
5256/* External entry points for sizing and building linker stubs. */
5257
5258/* Set up various things so that we can make a list of input sections
5259 for each output section included in the link. Returns -1 on error,
5260 0 when no stubs will be needed, and 1 on success. */
5261
5262int
5263elf32_arm_setup_section_lists (bfd *output_bfd,
5264 struct bfd_link_info *info)
5265{
5266 bfd *input_bfd;
5267 unsigned int bfd_count;
7292b3ac 5268 unsigned int top_id, top_index;
906e58ca
NC
5269 asection *section;
5270 asection **input_list, **list;
986f0783 5271 size_t amt;
906e58ca
NC
5272 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5273
4dfe6ac6
NC
5274 if (htab == NULL)
5275 return 0;
906e58ca
NC
5276 if (! is_elf_hash_table (htab))
5277 return 0;
5278
5279 /* Count the number of input BFDs and find the top input section id. */
5280 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
5281 input_bfd != NULL;
c72f2fb2 5282 input_bfd = input_bfd->link.next)
906e58ca
NC
5283 {
5284 bfd_count += 1;
5285 for (section = input_bfd->sections;
5286 section != NULL;
5287 section = section->next)
5288 {
5289 if (top_id < section->id)
5290 top_id = section->id;
5291 }
5292 }
5293 htab->bfd_count = bfd_count;
5294
5295 amt = sizeof (struct map_stub) * (top_id + 1);
21d799b5 5296 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
906e58ca
NC
5297 if (htab->stub_group == NULL)
5298 return -1;
fe33d2fa 5299 htab->top_id = top_id;
906e58ca
NC
5300
5301 /* We can't use output_bfd->section_count here to find the top output
5302 section index as some sections may have been removed, and
5303 _bfd_strip_section_from_output doesn't renumber the indices. */
5304 for (section = output_bfd->sections, top_index = 0;
5305 section != NULL;
5306 section = section->next)
5307 {
5308 if (top_index < section->index)
5309 top_index = section->index;
5310 }
5311
5312 htab->top_index = top_index;
5313 amt = sizeof (asection *) * (top_index + 1);
21d799b5 5314 input_list = (asection **) bfd_malloc (amt);
906e58ca
NC
5315 htab->input_list = input_list;
5316 if (input_list == NULL)
5317 return -1;
5318
5319 /* For sections we aren't interested in, mark their entries with a
5320 value we can check later. */
5321 list = input_list + top_index;
5322 do
5323 *list = bfd_abs_section_ptr;
5324 while (list-- != input_list);
5325
5326 for (section = output_bfd->sections;
5327 section != NULL;
5328 section = section->next)
5329 {
5330 if ((section->flags & SEC_CODE) != 0)
5331 input_list[section->index] = NULL;
5332 }
5333
5334 return 1;
5335}
5336
5337/* The linker repeatedly calls this function for each input section,
5338 in the order that input sections are linked into output sections.
5339 Build lists of input sections to determine groupings between which
5340 we may insert linker stubs. */
5341
5342void
5343elf32_arm_next_input_section (struct bfd_link_info *info,
5344 asection *isec)
5345{
5346 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5347
4dfe6ac6
NC
5348 if (htab == NULL)
5349 return;
5350
906e58ca
NC
5351 if (isec->output_section->index <= htab->top_index)
5352 {
5353 asection **list = htab->input_list + isec->output_section->index;
5354
a7470592 5355 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
906e58ca
NC
5356 {
5357 /* Steal the link_sec pointer for our list. */
5358#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
5359 /* This happens to make the list in reverse order,
07d72278 5360 which we reverse later. */
906e58ca
NC
5361 PREV_SEC (isec) = *list;
5362 *list = isec;
5363 }
5364 }
5365}
5366
5367/* See whether we can group stub sections together. Grouping stub
5368 sections may result in fewer stubs. More importantly, we need to
07d72278 5369 put all .init* and .fini* stubs at the end of the .init or
906e58ca
NC
5370 .fini output sections respectively, because glibc splits the
5371 _init and _fini functions into multiple parts. Putting a stub in
5372 the middle of a function is not a good idea. */
5373
5374static void
5375group_sections (struct elf32_arm_link_hash_table *htab,
5376 bfd_size_type stub_group_size,
07d72278 5377 bfd_boolean stubs_always_after_branch)
906e58ca 5378{
07d72278 5379 asection **list = htab->input_list;
906e58ca
NC
5380
5381 do
5382 {
5383 asection *tail = *list;
07d72278 5384 asection *head;
906e58ca
NC
5385
5386 if (tail == bfd_abs_section_ptr)
5387 continue;
5388
07d72278
DJ
5389 /* Reverse the list: we must avoid placing stubs at the
5390 beginning of the section because the beginning of the text
5391 section may be required for an interrupt vector in bare metal
5392 code. */
5393#define NEXT_SEC PREV_SEC
e780aef2
CL
5394 head = NULL;
5395 while (tail != NULL)
99059e56
RM
5396 {
5397 /* Pop from tail. */
5398 asection *item = tail;
5399 tail = PREV_SEC (item);
e780aef2 5400
99059e56
RM
5401 /* Push on head. */
5402 NEXT_SEC (item) = head;
5403 head = item;
5404 }
07d72278
DJ
5405
5406 while (head != NULL)
906e58ca
NC
5407 {
5408 asection *curr;
07d72278 5409 asection *next;
e780aef2
CL
5410 bfd_vma stub_group_start = head->output_offset;
5411 bfd_vma end_of_next;
906e58ca 5412
07d72278 5413 curr = head;
e780aef2 5414 while (NEXT_SEC (curr) != NULL)
8cd931b7 5415 {
e780aef2
CL
5416 next = NEXT_SEC (curr);
5417 end_of_next = next->output_offset + next->size;
5418 if (end_of_next - stub_group_start >= stub_group_size)
5419 /* End of NEXT is too far from start, so stop. */
8cd931b7 5420 break;
e780aef2
CL
5421 /* Add NEXT to the group. */
5422 curr = next;
8cd931b7 5423 }
906e58ca 5424
07d72278 5425 /* OK, the size from the start to the start of CURR is less
906e58ca 5426 than stub_group_size and thus can be handled by one stub
07d72278 5427 section. (Or the head section is itself larger than
906e58ca
NC
5428 stub_group_size, in which case we may be toast.)
5429 We should really be keeping track of the total size of
5430 stubs added here, as stubs contribute to the final output
7fb9f789 5431 section size. */
906e58ca
NC
5432 do
5433 {
07d72278 5434 next = NEXT_SEC (head);
906e58ca 5435 /* Set up this stub group. */
07d72278 5436 htab->stub_group[head->id].link_sec = curr;
906e58ca 5437 }
07d72278 5438 while (head != curr && (head = next) != NULL);
906e58ca
NC
5439
5440 /* But wait, there's more! Input sections up to stub_group_size
07d72278
DJ
5441 bytes after the stub section can be handled by it too. */
5442 if (!stubs_always_after_branch)
906e58ca 5443 {
e780aef2
CL
5444 stub_group_start = curr->output_offset + curr->size;
5445
8cd931b7 5446 while (next != NULL)
906e58ca 5447 {
e780aef2
CL
5448 end_of_next = next->output_offset + next->size;
5449 if (end_of_next - stub_group_start >= stub_group_size)
5450 /* End of NEXT is too far from stubs, so stop. */
8cd931b7 5451 break;
e780aef2 5452 /* Add NEXT to the stub group. */
07d72278
DJ
5453 head = next;
5454 next = NEXT_SEC (head);
5455 htab->stub_group[head->id].link_sec = curr;
906e58ca
NC
5456 }
5457 }
07d72278 5458 head = next;
906e58ca
NC
5459 }
5460 }
07d72278 5461 while (list++ != htab->input_list + htab->top_index);
906e58ca
NC
5462
5463 free (htab->input_list);
5464#undef PREV_SEC
07d72278 5465#undef NEXT_SEC
906e58ca
NC
5466}
5467
48229727
JB
5468/* Comparison function for sorting/searching relocations relating to Cortex-A8
5469 erratum fix. */
5470
5471static int
5472a8_reloc_compare (const void *a, const void *b)
5473{
21d799b5
NC
5474 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
5475 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
48229727
JB
5476
5477 if (ra->from < rb->from)
5478 return -1;
5479 else if (ra->from > rb->from)
5480 return 1;
5481 else
5482 return 0;
5483}
5484
5485static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
5486 const char *, char **);
5487
5488/* Helper function to scan code for sequences which might trigger the Cortex-A8
5489 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
81694485 5490 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
48229727
JB
5491 otherwise. */
5492
81694485
NC
5493static bfd_boolean
5494cortex_a8_erratum_scan (bfd *input_bfd,
5495 struct bfd_link_info *info,
48229727
JB
5496 struct a8_erratum_fix **a8_fixes_p,
5497 unsigned int *num_a8_fixes_p,
5498 unsigned int *a8_fix_table_size_p,
5499 struct a8_erratum_reloc *a8_relocs,
eb7c4339
NS
5500 unsigned int num_a8_relocs,
5501 unsigned prev_num_a8_fixes,
5502 bfd_boolean *stub_changed_p)
48229727
JB
5503{
5504 asection *section;
5505 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5506 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
5507 unsigned int num_a8_fixes = *num_a8_fixes_p;
5508 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
5509
4dfe6ac6
NC
5510 if (htab == NULL)
5511 return FALSE;
5512
48229727
JB
5513 for (section = input_bfd->sections;
5514 section != NULL;
5515 section = section->next)
5516 {
5517 bfd_byte *contents = NULL;
5518 struct _arm_elf_section_data *sec_data;
5519 unsigned int span;
5520 bfd_vma base_vma;
5521
5522 if (elf_section_type (section) != SHT_PROGBITS
99059e56
RM
5523 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
5524 || (section->flags & SEC_EXCLUDE) != 0
5525 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
5526 || (section->output_section == bfd_abs_section_ptr))
5527 continue;
48229727
JB
5528
5529 base_vma = section->output_section->vma + section->output_offset;
5530
5531 if (elf_section_data (section)->this_hdr.contents != NULL)
99059e56 5532 contents = elf_section_data (section)->this_hdr.contents;
48229727 5533 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
99059e56 5534 return TRUE;
48229727
JB
5535
5536 sec_data = elf32_arm_section_data (section);
5537
5538 for (span = 0; span < sec_data->mapcount; span++)
99059e56
RM
5539 {
5540 unsigned int span_start = sec_data->map[span].vma;
5541 unsigned int span_end = (span == sec_data->mapcount - 1)
5542 ? section->size : sec_data->map[span + 1].vma;
5543 unsigned int i;
5544 char span_type = sec_data->map[span].type;
5545 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
5546
5547 if (span_type != 't')
5548 continue;
5549
5550 /* Span is entirely within a single 4KB region: skip scanning. */
5551 if (((base_vma + span_start) & ~0xfff)
48229727 5552 == ((base_vma + span_end) & ~0xfff))
99059e56
RM
5553 continue;
5554
5555 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
5556
5557 * The opcode is BLX.W, BL.W, B.W, Bcc.W
5558 * The branch target is in the same 4KB region as the
5559 first half of the branch.
5560 * The instruction before the branch is a 32-bit
5561 length non-branch instruction. */
5562 for (i = span_start; i < span_end;)
5563 {
5564 unsigned int insn = bfd_getl16 (&contents[i]);
5565 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
48229727
JB
5566 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
5567
99059e56
RM
5568 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
5569 insn_32bit = TRUE;
48229727
JB
5570
5571 if (insn_32bit)
99059e56
RM
5572 {
5573 /* Load the rest of the insn (in manual-friendly order). */
5574 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
5575
5576 /* Encoding T4: B<c>.W. */
5577 is_b = (insn & 0xf800d000) == 0xf0009000;
5578 /* Encoding T1: BL<c>.W. */
5579 is_bl = (insn & 0xf800d000) == 0xf000d000;
5580 /* Encoding T2: BLX<c>.W. */
5581 is_blx = (insn & 0xf800d000) == 0xf000c000;
48229727
JB
5582 /* Encoding T3: B<c>.W (not permitted in IT block). */
5583 is_bcc = (insn & 0xf800d000) == 0xf0008000
5584 && (insn & 0x07f00000) != 0x03800000;
5585 }
5586
5587 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
fe33d2fa 5588
99059e56 5589 if (((base_vma + i) & 0xfff) == 0xffe
81694485
NC
5590 && insn_32bit
5591 && is_32bit_branch
5592 && last_was_32bit
5593 && ! last_was_branch)
99059e56
RM
5594 {
5595 bfd_signed_vma offset = 0;
5596 bfd_boolean force_target_arm = FALSE;
48229727 5597 bfd_boolean force_target_thumb = FALSE;
99059e56
RM
5598 bfd_vma target;
5599 enum elf32_arm_stub_type stub_type = arm_stub_none;
5600 struct a8_erratum_reloc key, *found;
5601 bfd_boolean use_plt = FALSE;
48229727 5602
99059e56
RM
5603 key.from = base_vma + i;
5604 found = (struct a8_erratum_reloc *)
5605 bsearch (&key, a8_relocs, num_a8_relocs,
5606 sizeof (struct a8_erratum_reloc),
5607 &a8_reloc_compare);
48229727
JB
5608
5609 if (found)
5610 {
5611 char *error_message = NULL;
5612 struct elf_link_hash_entry *entry;
5613
5614 /* We don't care about the error returned from this
99059e56 5615 function, only if there is glue or not. */
48229727
JB
5616 entry = find_thumb_glue (info, found->sym_name,
5617 &error_message);
5618
5619 if (entry)
5620 found->non_a8_stub = TRUE;
5621
92750f34 5622 /* Keep a simpler condition, for the sake of clarity. */
362d30a1 5623 if (htab->root.splt != NULL && found->hash != NULL
92750f34
DJ
5624 && found->hash->root.plt.offset != (bfd_vma) -1)
5625 use_plt = TRUE;
5626
5627 if (found->r_type == R_ARM_THM_CALL)
5628 {
35fc36a8
RS
5629 if (found->branch_type == ST_BRANCH_TO_ARM
5630 || use_plt)
92750f34
DJ
5631 force_target_arm = TRUE;
5632 else
5633 force_target_thumb = TRUE;
5634 }
48229727
JB
5635 }
5636
99059e56 5637 /* Check if we have an offending branch instruction. */
48229727
JB
5638
5639 if (found && found->non_a8_stub)
5640 /* We've already made a stub for this instruction, e.g.
5641 it's a long branch or a Thumb->ARM stub. Assume that
5642 stub will suffice to work around the A8 erratum (see
5643 setting of always_after_branch above). */
5644 ;
99059e56
RM
5645 else if (is_bcc)
5646 {
5647 offset = (insn & 0x7ff) << 1;
5648 offset |= (insn & 0x3f0000) >> 4;
5649 offset |= (insn & 0x2000) ? 0x40000 : 0;
5650 offset |= (insn & 0x800) ? 0x80000 : 0;
5651 offset |= (insn & 0x4000000) ? 0x100000 : 0;
5652 if (offset & 0x100000)
5653 offset |= ~ ((bfd_signed_vma) 0xfffff);
5654 stub_type = arm_stub_a8_veneer_b_cond;
5655 }
5656 else if (is_b || is_bl || is_blx)
5657 {
5658 int s = (insn & 0x4000000) != 0;
5659 int j1 = (insn & 0x2000) != 0;
5660 int j2 = (insn & 0x800) != 0;
5661 int i1 = !(j1 ^ s);
5662 int i2 = !(j2 ^ s);
5663
5664 offset = (insn & 0x7ff) << 1;
5665 offset |= (insn & 0x3ff0000) >> 4;
5666 offset |= i2 << 22;
5667 offset |= i1 << 23;
5668 offset |= s << 24;
5669 if (offset & 0x1000000)
5670 offset |= ~ ((bfd_signed_vma) 0xffffff);
5671
5672 if (is_blx)
5673 offset &= ~ ((bfd_signed_vma) 3);
5674
5675 stub_type = is_blx ? arm_stub_a8_veneer_blx :
5676 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
5677 }
5678
5679 if (stub_type != arm_stub_none)
5680 {
5681 bfd_vma pc_for_insn = base_vma + i + 4;
48229727
JB
5682
5683 /* The original instruction is a BL, but the target is
99059e56 5684 an ARM instruction. If we were not making a stub,
48229727
JB
5685 the BL would have been converted to a BLX. Use the
5686 BLX stub instead in that case. */
5687 if (htab->use_blx && force_target_arm
5688 && stub_type == arm_stub_a8_veneer_bl)
5689 {
5690 stub_type = arm_stub_a8_veneer_blx;
5691 is_blx = TRUE;
5692 is_bl = FALSE;
5693 }
5694 /* Conversely, if the original instruction was
5695 BLX but the target is Thumb mode, use the BL
5696 stub. */
5697 else if (force_target_thumb
5698 && stub_type == arm_stub_a8_veneer_blx)
5699 {
5700 stub_type = arm_stub_a8_veneer_bl;
5701 is_blx = FALSE;
5702 is_bl = TRUE;
5703 }
5704
99059e56
RM
5705 if (is_blx)
5706 pc_for_insn &= ~ ((bfd_vma) 3);
48229727 5707
99059e56
RM
5708 /* If we found a relocation, use the proper destination,
5709 not the offset in the (unrelocated) instruction.
48229727
JB
5710 Note this is always done if we switched the stub type
5711 above. */
99059e56
RM
5712 if (found)
5713 offset =
81694485 5714 (bfd_signed_vma) (found->destination - pc_for_insn);
48229727 5715
99059e56
RM
5716 /* If the stub will use a Thumb-mode branch to a
5717 PLT target, redirect it to the preceding Thumb
5718 entry point. */
5719 if (stub_type != arm_stub_a8_veneer_blx && use_plt)
5720 offset -= PLT_THUMB_STUB_SIZE;
7d24e6a6 5721
99059e56 5722 target = pc_for_insn + offset;
48229727 5723
99059e56
RM
5724 /* The BLX stub is ARM-mode code. Adjust the offset to
5725 take the different PC value (+8 instead of +4) into
48229727 5726 account. */
99059e56
RM
5727 if (stub_type == arm_stub_a8_veneer_blx)
5728 offset += 4;
5729
5730 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
5731 {
5732 char *stub_name = NULL;
5733
5734 if (num_a8_fixes == a8_fix_table_size)
5735 {
5736 a8_fix_table_size *= 2;
5737 a8_fixes = (struct a8_erratum_fix *)
5738 bfd_realloc (a8_fixes,
5739 sizeof (struct a8_erratum_fix)
5740 * a8_fix_table_size);
5741 }
48229727 5742
eb7c4339
NS
5743 if (num_a8_fixes < prev_num_a8_fixes)
5744 {
5745 /* If we're doing a subsequent scan,
5746 check if we've found the same fix as
5747 before, and try and reuse the stub
5748 name. */
5749 stub_name = a8_fixes[num_a8_fixes].stub_name;
5750 if ((a8_fixes[num_a8_fixes].section != section)
5751 || (a8_fixes[num_a8_fixes].offset != i))
5752 {
5753 free (stub_name);
5754 stub_name = NULL;
5755 *stub_changed_p = TRUE;
5756 }
5757 }
5758
5759 if (!stub_name)
5760 {
21d799b5 5761 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
eb7c4339
NS
5762 if (stub_name != NULL)
5763 sprintf (stub_name, "%x:%x", section->id, i);
5764 }
48229727 5765
99059e56
RM
5766 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
5767 a8_fixes[num_a8_fixes].section = section;
5768 a8_fixes[num_a8_fixes].offset = i;
8d9d9490
TP
5769 a8_fixes[num_a8_fixes].target_offset =
5770 target - base_vma;
99059e56
RM
5771 a8_fixes[num_a8_fixes].orig_insn = insn;
5772 a8_fixes[num_a8_fixes].stub_name = stub_name;
5773 a8_fixes[num_a8_fixes].stub_type = stub_type;
5774 a8_fixes[num_a8_fixes].branch_type =
35fc36a8 5775 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
48229727 5776
99059e56
RM
5777 num_a8_fixes++;
5778 }
5779 }
5780 }
48229727 5781
99059e56
RM
5782 i += insn_32bit ? 4 : 2;
5783 last_was_32bit = insn_32bit;
48229727 5784 last_was_branch = is_32bit_branch;
99059e56
RM
5785 }
5786 }
48229727
JB
5787
5788 if (elf_section_data (section)->this_hdr.contents == NULL)
99059e56 5789 free (contents);
48229727 5790 }
fe33d2fa 5791
48229727
JB
5792 *a8_fixes_p = a8_fixes;
5793 *num_a8_fixes_p = num_a8_fixes;
5794 *a8_fix_table_size_p = a8_fix_table_size;
fe33d2fa 5795
81694485 5796 return FALSE;
48229727
JB
5797}
5798
b715f643
TP
5799/* Create or update a stub entry depending on whether the stub can already be
5800 found in HTAB. The stub is identified by:
5801 - its type STUB_TYPE
5802 - its source branch (note that several can share the same stub) whose
5803 section and relocation (if any) are given by SECTION and IRELA
5804 respectively
5805 - its target symbol whose input section, hash, name, value and branch type
5806 are given in SYM_SEC, HASH, SYM_NAME, SYM_VALUE and BRANCH_TYPE
5807 respectively
5808
5809 If found, the value of the stub's target symbol is updated from SYM_VALUE
5810 and *NEW_STUB is set to FALSE. Otherwise, *NEW_STUB is set to
5811 TRUE and the stub entry is initialized.
5812
0955507f
TP
5813 Returns the stub that was created or updated, or NULL if an error
5814 occurred. */
b715f643 5815
0955507f 5816static struct elf32_arm_stub_hash_entry *
b715f643
TP
5817elf32_arm_create_stub (struct elf32_arm_link_hash_table *htab,
5818 enum elf32_arm_stub_type stub_type, asection *section,
5819 Elf_Internal_Rela *irela, asection *sym_sec,
5820 struct elf32_arm_link_hash_entry *hash, char *sym_name,
5821 bfd_vma sym_value, enum arm_st_branch_type branch_type,
5822 bfd_boolean *new_stub)
5823{
5824 const asection *id_sec;
5825 char *stub_name;
5826 struct elf32_arm_stub_hash_entry *stub_entry;
5827 unsigned int r_type;
4f4faa4d 5828 bfd_boolean sym_claimed = arm_stub_sym_claimed (stub_type);
b715f643
TP
5829
5830 BFD_ASSERT (stub_type != arm_stub_none);
5831 *new_stub = FALSE;
5832
4f4faa4d
TP
5833 if (sym_claimed)
5834 stub_name = sym_name;
5835 else
5836 {
5837 BFD_ASSERT (irela);
5838 BFD_ASSERT (section);
c2abbbeb 5839 BFD_ASSERT (section->id <= htab->top_id);
b715f643 5840
4f4faa4d
TP
5841 /* Support for grouping stub sections. */
5842 id_sec = htab->stub_group[section->id].link_sec;
b715f643 5843
4f4faa4d
TP
5844 /* Get the name of this stub. */
5845 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela,
5846 stub_type);
5847 if (!stub_name)
0955507f 5848 return NULL;
4f4faa4d 5849 }
b715f643
TP
5850
5851 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name, FALSE,
5852 FALSE);
5853 /* The proper stub has already been created, just update its value. */
5854 if (stub_entry != NULL)
5855 {
4f4faa4d
TP
5856 if (!sym_claimed)
5857 free (stub_name);
b715f643 5858 stub_entry->target_value = sym_value;
0955507f 5859 return stub_entry;
b715f643
TP
5860 }
5861
daa4adae 5862 stub_entry = elf32_arm_add_stub (stub_name, section, htab, stub_type);
b715f643
TP
5863 if (stub_entry == NULL)
5864 {
4f4faa4d
TP
5865 if (!sym_claimed)
5866 free (stub_name);
0955507f 5867 return NULL;
b715f643
TP
5868 }
5869
5870 stub_entry->target_value = sym_value;
5871 stub_entry->target_section = sym_sec;
5872 stub_entry->stub_type = stub_type;
5873 stub_entry->h = hash;
5874 stub_entry->branch_type = branch_type;
5875
4f4faa4d
TP
5876 if (sym_claimed)
5877 stub_entry->output_name = sym_name;
5878 else
b715f643 5879 {
4f4faa4d
TP
5880 if (sym_name == NULL)
5881 sym_name = "unnamed";
5882 stub_entry->output_name = (char *)
5883 bfd_alloc (htab->stub_bfd, sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5884 + strlen (sym_name));
5885 if (stub_entry->output_name == NULL)
5886 {
5887 free (stub_name);
0955507f 5888 return NULL;
4f4faa4d 5889 }
b715f643 5890
4f4faa4d
TP
5891 /* For historical reasons, use the existing names for ARM-to-Thumb and
5892 Thumb-to-ARM stubs. */
5893 r_type = ELF32_R_TYPE (irela->r_info);
5894 if ((r_type == (unsigned int) R_ARM_THM_CALL
5895 || r_type == (unsigned int) R_ARM_THM_JUMP24
5896 || r_type == (unsigned int) R_ARM_THM_JUMP19)
5897 && branch_type == ST_BRANCH_TO_ARM)
5898 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5899 else if ((r_type == (unsigned int) R_ARM_CALL
5900 || r_type == (unsigned int) R_ARM_JUMP24)
5901 && branch_type == ST_BRANCH_TO_THUMB)
5902 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5903 else
5904 sprintf (stub_entry->output_name, STUB_ENTRY_NAME, sym_name);
5905 }
b715f643
TP
5906
5907 *new_stub = TRUE;
0955507f 5908 return stub_entry;
b715f643
TP
5909}
5910
4ba2ef8f
TP
5911/* Scan symbols in INPUT_BFD to identify secure entry functions needing a
5912 gateway veneer to transition from non secure to secure state and create them
5913 accordingly.
5914
5915 "ARMv8-M Security Extensions: Requirements on Development Tools" document
5916 defines the conditions that govern Secure Gateway veneer creation for a
5917 given symbol <SYM> as follows:
5918 - it has function type
5919 - it has non local binding
5920 - a symbol named __acle_se_<SYM> (called special symbol) exists with the
5921 same type, binding and value as <SYM> (called normal symbol).
5922 An entry function can handle secure state transition itself in which case
5923 its special symbol would have a different value from the normal symbol.
5924
5925 OUT_ATTR gives the output attributes, SYM_HASHES the symbol index to hash
5926 entry mapping while HTAB gives the name to hash entry mapping.
0955507f
TP
5927 *CMSE_STUB_CREATED is increased by the number of secure gateway veneer
5928 created.
4ba2ef8f 5929
0955507f 5930 The return value gives whether a stub failed to be allocated. */
4ba2ef8f
TP
5931
5932static bfd_boolean
5933cmse_scan (bfd *input_bfd, struct elf32_arm_link_hash_table *htab,
5934 obj_attribute *out_attr, struct elf_link_hash_entry **sym_hashes,
0955507f 5935 int *cmse_stub_created)
4ba2ef8f
TP
5936{
5937 const struct elf_backend_data *bed;
5938 Elf_Internal_Shdr *symtab_hdr;
5939 unsigned i, j, sym_count, ext_start;
5940 Elf_Internal_Sym *cmse_sym, *local_syms;
5941 struct elf32_arm_link_hash_entry *hash, *cmse_hash = NULL;
5942 enum arm_st_branch_type branch_type;
5943 char *sym_name, *lsym_name;
5944 bfd_vma sym_value;
5945 asection *section;
0955507f
TP
5946 struct elf32_arm_stub_hash_entry *stub_entry;
5947 bfd_boolean is_v8m, new_stub, cmse_invalid, ret = TRUE;
4ba2ef8f
TP
5948
5949 bed = get_elf_backend_data (input_bfd);
5950 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5951 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
5952 ext_start = symtab_hdr->sh_info;
5953 is_v8m = (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
5954 && out_attr[Tag_CPU_arch_profile].i == 'M');
5955
5956 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
5957 if (local_syms == NULL)
5958 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
5959 symtab_hdr->sh_info, 0, NULL, NULL,
5960 NULL);
5961 if (symtab_hdr->sh_info && local_syms == NULL)
5962 return FALSE;
5963
5964 /* Scan symbols. */
5965 for (i = 0; i < sym_count; i++)
5966 {
5967 cmse_invalid = FALSE;
5968
5969 if (i < ext_start)
5970 {
5971 cmse_sym = &local_syms[i];
4ba2ef8f
TP
5972 sym_name = bfd_elf_string_from_elf_section (input_bfd,
5973 symtab_hdr->sh_link,
5974 cmse_sym->st_name);
baf46cd7
AM
5975 if (!sym_name || !CONST_STRNEQ (sym_name, CMSE_PREFIX))
5976 continue;
5977
4ba2ef8f
TP
5978 /* Special symbol with local binding. */
5979 cmse_invalid = TRUE;
5980 }
5981 else
5982 {
5983 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
5984 sym_name = (char *) cmse_hash->root.root.root.string;
baf46cd7 5985 if (!CONST_STRNEQ (sym_name, CMSE_PREFIX))
4ba2ef8f
TP
5986 continue;
5987
5988 /* Special symbol has incorrect binding or type. */
5989 if ((cmse_hash->root.root.type != bfd_link_hash_defined
5990 && cmse_hash->root.root.type != bfd_link_hash_defweak)
5991 || cmse_hash->root.type != STT_FUNC)
5992 cmse_invalid = TRUE;
5993 }
5994
5995 if (!is_v8m)
5996 {
90b6238f
AM
5997 _bfd_error_handler (_("%pB: special symbol `%s' only allowed for "
5998 "ARMv8-M architecture or later"),
4eca0228 5999 input_bfd, sym_name);
4ba2ef8f
TP
6000 is_v8m = TRUE; /* Avoid multiple warning. */
6001 ret = FALSE;
6002 }
6003
6004 if (cmse_invalid)
6005 {
90b6238f
AM
6006 _bfd_error_handler (_("%pB: invalid special symbol `%s'; it must be"
6007 " a global or weak function symbol"),
4eca0228 6008 input_bfd, sym_name);
4ba2ef8f
TP
6009 ret = FALSE;
6010 if (i < ext_start)
6011 continue;
6012 }
6013
6014 sym_name += strlen (CMSE_PREFIX);
6015 hash = (struct elf32_arm_link_hash_entry *)
6016 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
6017
6018 /* No associated normal symbol or it is neither global nor weak. */
6019 if (!hash
6020 || (hash->root.root.type != bfd_link_hash_defined
6021 && hash->root.root.type != bfd_link_hash_defweak)
6022 || hash->root.type != STT_FUNC)
6023 {
6024 /* Initialize here to avoid warning about use of possibly
6025 uninitialized variable. */
6026 j = 0;
6027
6028 if (!hash)
6029 {
6030 /* Searching for a normal symbol with local binding. */
6031 for (; j < ext_start; j++)
6032 {
6033 lsym_name =
6034 bfd_elf_string_from_elf_section (input_bfd,
6035 symtab_hdr->sh_link,
6036 local_syms[j].st_name);
6037 if (!strcmp (sym_name, lsym_name))
6038 break;
6039 }
6040 }
6041
6042 if (hash || j < ext_start)
6043 {
4eca0228 6044 _bfd_error_handler
90b6238f
AM
6045 (_("%pB: invalid standard symbol `%s'; it must be "
6046 "a global or weak function symbol"),
6047 input_bfd, sym_name);
4ba2ef8f
TP
6048 }
6049 else
4eca0228 6050 _bfd_error_handler
90b6238f 6051 (_("%pB: absent standard symbol `%s'"), input_bfd, sym_name);
4ba2ef8f
TP
6052 ret = FALSE;
6053 if (!hash)
6054 continue;
6055 }
6056
6057 sym_value = hash->root.root.u.def.value;
6058 section = hash->root.root.u.def.section;
6059
6060 if (cmse_hash->root.root.u.def.section != section)
6061 {
4eca0228 6062 _bfd_error_handler
90b6238f 6063 (_("%pB: `%s' and its special symbol are in different sections"),
4ba2ef8f
TP
6064 input_bfd, sym_name);
6065 ret = FALSE;
6066 }
6067 if (cmse_hash->root.root.u.def.value != sym_value)
6068 continue; /* Ignore: could be an entry function starting with SG. */
6069
6070 /* If this section is a link-once section that will be discarded, then
6071 don't create any stubs. */
6072 if (section->output_section == NULL)
6073 {
4eca0228 6074 _bfd_error_handler
90b6238f 6075 (_("%pB: entry function `%s' not output"), input_bfd, sym_name);
4ba2ef8f
TP
6076 continue;
6077 }
6078
6079 if (hash->root.size == 0)
6080 {
4eca0228 6081 _bfd_error_handler
90b6238f 6082 (_("%pB: entry function `%s' is empty"), input_bfd, sym_name);
4ba2ef8f
TP
6083 ret = FALSE;
6084 }
6085
6086 if (!ret)
6087 continue;
6088 branch_type = ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
0955507f 6089 stub_entry
4ba2ef8f
TP
6090 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
6091 NULL, NULL, section, hash, sym_name,
6092 sym_value, branch_type, &new_stub);
6093
0955507f 6094 if (stub_entry == NULL)
4ba2ef8f
TP
6095 ret = FALSE;
6096 else
6097 {
6098 BFD_ASSERT (new_stub);
0955507f 6099 (*cmse_stub_created)++;
4ba2ef8f
TP
6100 }
6101 }
6102
6103 if (!symtab_hdr->contents)
6104 free (local_syms);
6105 return ret;
6106}
6107
0955507f
TP
6108/* Return TRUE iff a symbol identified by its linker HASH entry is a secure
6109 code entry function, ie can be called from non secure code without using a
6110 veneer. */
6111
6112static bfd_boolean
6113cmse_entry_fct_p (struct elf32_arm_link_hash_entry *hash)
6114{
42484486 6115 bfd_byte contents[4];
0955507f
TP
6116 uint32_t first_insn;
6117 asection *section;
6118 file_ptr offset;
6119 bfd *abfd;
6120
6121 /* Defined symbol of function type. */
6122 if (hash->root.root.type != bfd_link_hash_defined
6123 && hash->root.root.type != bfd_link_hash_defweak)
6124 return FALSE;
6125 if (hash->root.type != STT_FUNC)
6126 return FALSE;
6127
6128 /* Read first instruction. */
6129 section = hash->root.root.u.def.section;
6130 abfd = section->owner;
6131 offset = hash->root.root.u.def.value - section->vma;
42484486
TP
6132 if (!bfd_get_section_contents (abfd, section, contents, offset,
6133 sizeof (contents)))
0955507f
TP
6134 return FALSE;
6135
42484486
TP
6136 first_insn = bfd_get_32 (abfd, contents);
6137
6138 /* Starts by SG instruction. */
0955507f
TP
6139 return first_insn == 0xe97fe97f;
6140}
6141
6142/* Output the name (in symbol table) of the veneer GEN_ENTRY if it is a new
6143 secure gateway veneers (ie. the veneers was not in the input import library)
6144 and there is no output import library (GEN_INFO->out_implib_bfd is NULL. */
6145
6146static bfd_boolean
6147arm_list_new_cmse_stub (struct bfd_hash_entry *gen_entry, void *gen_info)
6148{
6149 struct elf32_arm_stub_hash_entry *stub_entry;
6150 struct bfd_link_info *info;
6151
6152 /* Massage our args to the form they really have. */
6153 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
6154 info = (struct bfd_link_info *) gen_info;
6155
6156 if (info->out_implib_bfd)
6157 return TRUE;
6158
6159 if (stub_entry->stub_type != arm_stub_cmse_branch_thumb_only)
6160 return TRUE;
6161
6162 if (stub_entry->stub_offset == (bfd_vma) -1)
4eca0228 6163 _bfd_error_handler (" %s", stub_entry->output_name);
0955507f
TP
6164
6165 return TRUE;
6166}
6167
6168/* Set offset of each secure gateway veneers so that its address remain
6169 identical to the one in the input import library referred by
6170 HTAB->in_implib_bfd. A warning is issued for veneers that disappeared
6171 (present in input import library but absent from the executable being
6172 linked) or if new veneers appeared and there is no output import library
6173 (INFO->out_implib_bfd is NULL and *CMSE_STUB_CREATED is bigger than the
6174 number of secure gateway veneers found in the input import library.
6175
6176 The function returns whether an error occurred. If no error occurred,
6177 *CMSE_STUB_CREATED gives the number of SG veneers created by both cmse_scan
6178 and this function and HTAB->new_cmse_stub_offset is set to the biggest
6179 veneer observed set for new veneers to be layed out after. */
6180
6181static bfd_boolean
6182set_cmse_veneer_addr_from_implib (struct bfd_link_info *info,
6183 struct elf32_arm_link_hash_table *htab,
6184 int *cmse_stub_created)
6185{
6186 long symsize;
6187 char *sym_name;
6188 flagword flags;
6189 long i, symcount;
6190 bfd *in_implib_bfd;
6191 asection *stub_out_sec;
6192 bfd_boolean ret = TRUE;
6193 Elf_Internal_Sym *intsym;
6194 const char *out_sec_name;
6195 bfd_size_type cmse_stub_size;
6196 asymbol **sympp = NULL, *sym;
6197 struct elf32_arm_link_hash_entry *hash;
6198 const insn_sequence *cmse_stub_template;
6199 struct elf32_arm_stub_hash_entry *stub_entry;
6200 int cmse_stub_template_size, new_cmse_stubs_created = *cmse_stub_created;
6201 bfd_vma veneer_value, stub_offset, next_cmse_stub_offset;
6202 bfd_vma cmse_stub_array_start = (bfd_vma) -1, cmse_stub_sec_vma = 0;
6203
6204 /* No input secure gateway import library. */
6205 if (!htab->in_implib_bfd)
6206 return TRUE;
6207
6208 in_implib_bfd = htab->in_implib_bfd;
6209 if (!htab->cmse_implib)
6210 {
871b3ab2 6211 _bfd_error_handler (_("%pB: --in-implib only supported for Secure "
90b6238f 6212 "Gateway import libraries"), in_implib_bfd);
0955507f
TP
6213 return FALSE;
6214 }
6215
6216 /* Get symbol table size. */
6217 symsize = bfd_get_symtab_upper_bound (in_implib_bfd);
6218 if (symsize < 0)
6219 return FALSE;
6220
6221 /* Read in the input secure gateway import library's symbol table. */
9a733151
AM
6222 sympp = (asymbol **) bfd_malloc (symsize);
6223 if (sympp == NULL)
6224 return FALSE;
6225
0955507f
TP
6226 symcount = bfd_canonicalize_symtab (in_implib_bfd, sympp);
6227 if (symcount < 0)
6228 {
6229 ret = FALSE;
6230 goto free_sym_buf;
6231 }
6232
6233 htab->new_cmse_stub_offset = 0;
6234 cmse_stub_size =
6235 find_stub_size_and_template (arm_stub_cmse_branch_thumb_only,
6236 &cmse_stub_template,
6237 &cmse_stub_template_size);
6238 out_sec_name =
6239 arm_dedicated_stub_output_section_name (arm_stub_cmse_branch_thumb_only);
6240 stub_out_sec =
6241 bfd_get_section_by_name (htab->obfd, out_sec_name);
6242 if (stub_out_sec != NULL)
6243 cmse_stub_sec_vma = stub_out_sec->vma;
6244
6245 /* Set addresses of veneers mentionned in input secure gateway import
6246 library's symbol table. */
6247 for (i = 0; i < symcount; i++)
6248 {
6249 sym = sympp[i];
6250 flags = sym->flags;
6251 sym_name = (char *) bfd_asymbol_name (sym);
6252 intsym = &((elf_symbol_type *) sym)->internal_elf_sym;
6253
6254 if (sym->section != bfd_abs_section_ptr
6255 || !(flags & (BSF_GLOBAL | BSF_WEAK))
6256 || (flags & BSF_FUNCTION) != BSF_FUNCTION
6257 || (ARM_GET_SYM_BRANCH_TYPE (intsym->st_target_internal)
6258 != ST_BRANCH_TO_THUMB))
6259 {
90b6238f
AM
6260 _bfd_error_handler (_("%pB: invalid import library entry: `%s'; "
6261 "symbol should be absolute, global and "
6262 "refer to Thumb functions"),
4eca0228 6263 in_implib_bfd, sym_name);
0955507f
TP
6264 ret = FALSE;
6265 continue;
6266 }
6267
6268 veneer_value = bfd_asymbol_value (sym);
6269 stub_offset = veneer_value - cmse_stub_sec_vma;
6270 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, sym_name,
6271 FALSE, FALSE);
6272 hash = (struct elf32_arm_link_hash_entry *)
6273 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
6274
6275 /* Stub entry should have been created by cmse_scan or the symbol be of
6276 a secure function callable from non secure code. */
6277 if (!stub_entry && !hash)
6278 {
6279 bfd_boolean new_stub;
6280
4eca0228 6281 _bfd_error_handler
90b6238f 6282 (_("entry function `%s' disappeared from secure code"), sym_name);
0955507f
TP
6283 hash = (struct elf32_arm_link_hash_entry *)
6284 elf_link_hash_lookup (&(htab)->root, sym_name, TRUE, TRUE, TRUE);
6285 stub_entry
6286 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
6287 NULL, NULL, bfd_abs_section_ptr, hash,
6288 sym_name, veneer_value,
6289 ST_BRANCH_TO_THUMB, &new_stub);
6290 if (stub_entry == NULL)
6291 ret = FALSE;
6292 else
6293 {
6294 BFD_ASSERT (new_stub);
6295 new_cmse_stubs_created++;
6296 (*cmse_stub_created)++;
6297 }
6298 stub_entry->stub_template_size = stub_entry->stub_size = 0;
6299 stub_entry->stub_offset = stub_offset;
6300 }
6301 /* Symbol found is not callable from non secure code. */
6302 else if (!stub_entry)
6303 {
6304 if (!cmse_entry_fct_p (hash))
6305 {
90b6238f 6306 _bfd_error_handler (_("`%s' refers to a non entry function"),
4eca0228 6307 sym_name);
0955507f
TP
6308 ret = FALSE;
6309 }
6310 continue;
6311 }
6312 else
6313 {
6314 /* Only stubs for SG veneers should have been created. */
6315 BFD_ASSERT (stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
6316
6317 /* Check visibility hasn't changed. */
6318 if (!!(flags & BSF_GLOBAL)
6319 != (hash->root.root.type == bfd_link_hash_defined))
4eca0228 6320 _bfd_error_handler
90b6238f 6321 (_("%pB: visibility of symbol `%s' has changed"), in_implib_bfd,
0955507f
TP
6322 sym_name);
6323
6324 stub_entry->stub_offset = stub_offset;
6325 }
6326
6327 /* Size should match that of a SG veneer. */
6328 if (intsym->st_size != cmse_stub_size)
6329 {
90b6238f 6330 _bfd_error_handler (_("%pB: incorrect size for symbol `%s'"),
4eca0228 6331 in_implib_bfd, sym_name);
0955507f
TP
6332 ret = FALSE;
6333 }
6334
6335 /* Previous veneer address is before current SG veneer section. */
6336 if (veneer_value < cmse_stub_sec_vma)
6337 {
6338 /* Avoid offset underflow. */
6339 if (stub_entry)
6340 stub_entry->stub_offset = 0;
6341 stub_offset = 0;
6342 ret = FALSE;
6343 }
6344
6345 /* Complain if stub offset not a multiple of stub size. */
6346 if (stub_offset % cmse_stub_size)
6347 {
4eca0228 6348 _bfd_error_handler
90b6238f
AM
6349 (_("offset of veneer for entry function `%s' not a multiple of "
6350 "its size"), sym_name);
0955507f
TP
6351 ret = FALSE;
6352 }
6353
6354 if (!ret)
6355 continue;
6356
6357 new_cmse_stubs_created--;
6358 if (veneer_value < cmse_stub_array_start)
6359 cmse_stub_array_start = veneer_value;
6360 next_cmse_stub_offset = stub_offset + ((cmse_stub_size + 7) & ~7);
6361 if (next_cmse_stub_offset > htab->new_cmse_stub_offset)
6362 htab->new_cmse_stub_offset = next_cmse_stub_offset;
6363 }
6364
6365 if (!info->out_implib_bfd && new_cmse_stubs_created != 0)
6366 {
6367 BFD_ASSERT (new_cmse_stubs_created > 0);
4eca0228 6368 _bfd_error_handler
0955507f
TP
6369 (_("new entry function(s) introduced but no output import library "
6370 "specified:"));
6371 bfd_hash_traverse (&htab->stub_hash_table, arm_list_new_cmse_stub, info);
6372 }
6373
6374 if (cmse_stub_array_start != cmse_stub_sec_vma)
6375 {
4eca0228 6376 _bfd_error_handler
90b6238f 6377 (_("start address of `%s' is different from previous link"),
0955507f
TP
6378 out_sec_name);
6379 ret = FALSE;
6380 }
6381
dc1e8a47 6382 free_sym_buf:
0955507f
TP
6383 free (sympp);
6384 return ret;
6385}
6386
906e58ca
NC
6387/* Determine and set the size of the stub section for a final link.
6388
6389 The basic idea here is to examine all the relocations looking for
6390 PC-relative calls to a target that is unreachable with a "bl"
6391 instruction. */
6392
6393bfd_boolean
6394elf32_arm_size_stubs (bfd *output_bfd,
6395 bfd *stub_bfd,
6396 struct bfd_link_info *info,
6397 bfd_signed_vma group_size,
7a89b94e 6398 asection * (*add_stub_section) (const char *, asection *,
6bde4c52 6399 asection *,
7a89b94e 6400 unsigned int),
906e58ca
NC
6401 void (*layout_sections_again) (void))
6402{
0955507f 6403 bfd_boolean ret = TRUE;
4ba2ef8f 6404 obj_attribute *out_attr;
0955507f 6405 int cmse_stub_created = 0;
906e58ca 6406 bfd_size_type stub_group_size;
4ba2ef8f 6407 bfd_boolean m_profile, stubs_always_after_branch, first_veneer_scan = TRUE;
906e58ca 6408 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
48229727 6409 struct a8_erratum_fix *a8_fixes = NULL;
eb7c4339 6410 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
48229727
JB
6411 struct a8_erratum_reloc *a8_relocs = NULL;
6412 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
6413
4dfe6ac6
NC
6414 if (htab == NULL)
6415 return FALSE;
6416
48229727
JB
6417 if (htab->fix_cortex_a8)
6418 {
21d799b5 6419 a8_fixes = (struct a8_erratum_fix *)
99059e56 6420 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
21d799b5 6421 a8_relocs = (struct a8_erratum_reloc *)
99059e56 6422 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
48229727 6423 }
906e58ca
NC
6424
6425 /* Propagate mach to stub bfd, because it may not have been
6426 finalized when we created stub_bfd. */
6427 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
6428 bfd_get_mach (output_bfd));
6429
6430 /* Stash our params away. */
6431 htab->stub_bfd = stub_bfd;
6432 htab->add_stub_section = add_stub_section;
6433 htab->layout_sections_again = layout_sections_again;
07d72278 6434 stubs_always_after_branch = group_size < 0;
48229727 6435
4ba2ef8f
TP
6436 out_attr = elf_known_obj_attributes_proc (output_bfd);
6437 m_profile = out_attr[Tag_CPU_arch_profile].i == 'M';
0955507f 6438
48229727
JB
6439 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
6440 as the first half of a 32-bit branch straddling two 4K pages. This is a
6441 crude way of enforcing that. */
6442 if (htab->fix_cortex_a8)
6443 stubs_always_after_branch = 1;
6444
906e58ca
NC
6445 if (group_size < 0)
6446 stub_group_size = -group_size;
6447 else
6448 stub_group_size = group_size;
6449
6450 if (stub_group_size == 1)
6451 {
6452 /* Default values. */
6453 /* Thumb branch range is +-4MB has to be used as the default
6454 maximum size (a given section can contain both ARM and Thumb
6455 code, so the worst case has to be taken into account).
6456
6457 This value is 24K less than that, which allows for 2025
6458 12-byte stubs. If we exceed that, then we will fail to link.
6459 The user will have to relink with an explicit group size
6460 option. */
6461 stub_group_size = 4170000;
6462 }
6463
07d72278 6464 group_sections (htab, stub_group_size, stubs_always_after_branch);
906e58ca 6465
3ae046cc
NS
6466 /* If we're applying the cortex A8 fix, we need to determine the
6467 program header size now, because we cannot change it later --
6468 that could alter section placements. Notice the A8 erratum fix
6469 ends up requiring the section addresses to remain unchanged
6470 modulo the page size. That's something we cannot represent
6471 inside BFD, and we don't want to force the section alignment to
6472 be the page size. */
6473 if (htab->fix_cortex_a8)
6474 (*htab->layout_sections_again) ();
6475
906e58ca
NC
6476 while (1)
6477 {
6478 bfd *input_bfd;
6479 unsigned int bfd_indx;
6480 asection *stub_sec;
d7c5bd02 6481 enum elf32_arm_stub_type stub_type;
eb7c4339
NS
6482 bfd_boolean stub_changed = FALSE;
6483 unsigned prev_num_a8_fixes = num_a8_fixes;
906e58ca 6484
48229727 6485 num_a8_fixes = 0;
906e58ca
NC
6486 for (input_bfd = info->input_bfds, bfd_indx = 0;
6487 input_bfd != NULL;
c72f2fb2 6488 input_bfd = input_bfd->link.next, bfd_indx++)
906e58ca
NC
6489 {
6490 Elf_Internal_Shdr *symtab_hdr;
6491 asection *section;
6492 Elf_Internal_Sym *local_syms = NULL;
6493
73d5efd7
AM
6494 if (!is_arm_elf (input_bfd))
6495 continue;
6496 if ((input_bfd->flags & DYNAMIC) != 0
6497 && (elf_sym_hashes (input_bfd) == NULL
6498 || (elf_dyn_lib_class (input_bfd) & DYN_AS_NEEDED) != 0))
99059e56 6499 continue;
adbcc655 6500
48229727
JB
6501 num_a8_relocs = 0;
6502
906e58ca
NC
6503 /* We'll need the symbol table in a second. */
6504 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6505 if (symtab_hdr->sh_info == 0)
6506 continue;
6507
4ba2ef8f
TP
6508 /* Limit scan of symbols to object file whose profile is
6509 Microcontroller to not hinder performance in the general case. */
6510 if (m_profile && first_veneer_scan)
6511 {
6512 struct elf_link_hash_entry **sym_hashes;
6513
6514 sym_hashes = elf_sym_hashes (input_bfd);
6515 if (!cmse_scan (input_bfd, htab, out_attr, sym_hashes,
0955507f 6516 &cmse_stub_created))
4ba2ef8f 6517 goto error_ret_free_local;
0955507f
TP
6518
6519 if (cmse_stub_created != 0)
6520 stub_changed = TRUE;
4ba2ef8f
TP
6521 }
6522
906e58ca
NC
6523 /* Walk over each section attached to the input bfd. */
6524 for (section = input_bfd->sections;
6525 section != NULL;
6526 section = section->next)
6527 {
6528 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
6529
6530 /* If there aren't any relocs, then there's nothing more
6531 to do. */
6532 if ((section->flags & SEC_RELOC) == 0
6533 || section->reloc_count == 0
6534 || (section->flags & SEC_CODE) == 0)
6535 continue;
6536
6537 /* If this section is a link-once section that will be
6538 discarded, then don't create any stubs. */
6539 if (section->output_section == NULL
6540 || section->output_section->owner != output_bfd)
6541 continue;
6542
6543 /* Get the relocs. */
6544 internal_relocs
6545 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
6546 NULL, info->keep_memory);
6547 if (internal_relocs == NULL)
6548 goto error_ret_free_local;
6549
6550 /* Now examine each relocation. */
6551 irela = internal_relocs;
6552 irelaend = irela + section->reloc_count;
6553 for (; irela < irelaend; irela++)
6554 {
6555 unsigned int r_type, r_indx;
906e58ca
NC
6556 asection *sym_sec;
6557 bfd_vma sym_value;
6558 bfd_vma destination;
6559 struct elf32_arm_link_hash_entry *hash;
7413f23f 6560 const char *sym_name;
34e77a92 6561 unsigned char st_type;
35fc36a8 6562 enum arm_st_branch_type branch_type;
48229727 6563 bfd_boolean created_stub = FALSE;
906e58ca
NC
6564
6565 r_type = ELF32_R_TYPE (irela->r_info);
6566 r_indx = ELF32_R_SYM (irela->r_info);
6567
6568 if (r_type >= (unsigned int) R_ARM_max)
6569 {
6570 bfd_set_error (bfd_error_bad_value);
6571 error_ret_free_internal:
6572 if (elf_section_data (section)->relocs == NULL)
6573 free (internal_relocs);
15dd01b1
TP
6574 /* Fall through. */
6575 error_ret_free_local:
c9594989 6576 if (symtab_hdr->contents != (unsigned char *) local_syms)
15dd01b1
TP
6577 free (local_syms);
6578 return FALSE;
906e58ca 6579 }
b38cadfb 6580
0855e32b
NS
6581 hash = NULL;
6582 if (r_indx >= symtab_hdr->sh_info)
6583 hash = elf32_arm_hash_entry
6584 (elf_sym_hashes (input_bfd)
6585 [r_indx - symtab_hdr->sh_info]);
b38cadfb 6586
0855e32b
NS
6587 /* Only look for stubs on branch instructions, or
6588 non-relaxed TLSCALL */
906e58ca 6589 if ((r_type != (unsigned int) R_ARM_CALL)
155d87d7
CL
6590 && (r_type != (unsigned int) R_ARM_THM_CALL)
6591 && (r_type != (unsigned int) R_ARM_JUMP24)
48229727
JB
6592 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
6593 && (r_type != (unsigned int) R_ARM_THM_XPC22)
155d87d7 6594 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
0855e32b
NS
6595 && (r_type != (unsigned int) R_ARM_PLT32)
6596 && !((r_type == (unsigned int) R_ARM_TLS_CALL
6597 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6598 && r_type == elf32_arm_tls_transition
6599 (info, r_type, &hash->root)
6600 && ((hash ? hash->tls_type
6601 : (elf32_arm_local_got_tls_type
6602 (input_bfd)[r_indx]))
6603 & GOT_TLS_GDESC) != 0))
906e58ca
NC
6604 continue;
6605
6606 /* Now determine the call target, its name, value,
6607 section. */
6608 sym_sec = NULL;
6609 sym_value = 0;
6610 destination = 0;
7413f23f 6611 sym_name = NULL;
b38cadfb 6612
0855e32b
NS
6613 if (r_type == (unsigned int) R_ARM_TLS_CALL
6614 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6615 {
6616 /* A non-relaxed TLS call. The target is the
6617 plt-resident trampoline and nothing to do
6618 with the symbol. */
6619 BFD_ASSERT (htab->tls_trampoline > 0);
6620 sym_sec = htab->root.splt;
6621 sym_value = htab->tls_trampoline;
6622 hash = 0;
34e77a92 6623 st_type = STT_FUNC;
35fc36a8 6624 branch_type = ST_BRANCH_TO_ARM;
0855e32b
NS
6625 }
6626 else if (!hash)
906e58ca
NC
6627 {
6628 /* It's a local symbol. */
6629 Elf_Internal_Sym *sym;
906e58ca
NC
6630
6631 if (local_syms == NULL)
6632 {
6633 local_syms
6634 = (Elf_Internal_Sym *) symtab_hdr->contents;
6635 if (local_syms == NULL)
6636 local_syms
6637 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
6638 symtab_hdr->sh_info, 0,
6639 NULL, NULL, NULL);
6640 if (local_syms == NULL)
6641 goto error_ret_free_internal;
6642 }
6643
6644 sym = local_syms + r_indx;
f6d250ce
TS
6645 if (sym->st_shndx == SHN_UNDEF)
6646 sym_sec = bfd_und_section_ptr;
6647 else if (sym->st_shndx == SHN_ABS)
6648 sym_sec = bfd_abs_section_ptr;
6649 else if (sym->st_shndx == SHN_COMMON)
6650 sym_sec = bfd_com_section_ptr;
6651 else
6652 sym_sec =
6653 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
6654
ffcb4889
NS
6655 if (!sym_sec)
6656 /* This is an undefined symbol. It can never
6a631e86 6657 be resolved. */
ffcb4889 6658 continue;
fe33d2fa 6659
906e58ca
NC
6660 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
6661 sym_value = sym->st_value;
6662 destination = (sym_value + irela->r_addend
6663 + sym_sec->output_offset
6664 + sym_sec->output_section->vma);
34e77a92 6665 st_type = ELF_ST_TYPE (sym->st_info);
39d911fc
TP
6666 branch_type =
6667 ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
7413f23f
DJ
6668 sym_name
6669 = bfd_elf_string_from_elf_section (input_bfd,
6670 symtab_hdr->sh_link,
6671 sym->st_name);
906e58ca
NC
6672 }
6673 else
6674 {
6675 /* It's an external symbol. */
906e58ca
NC
6676 while (hash->root.root.type == bfd_link_hash_indirect
6677 || hash->root.root.type == bfd_link_hash_warning)
6678 hash = ((struct elf32_arm_link_hash_entry *)
6679 hash->root.root.u.i.link);
6680
6681 if (hash->root.root.type == bfd_link_hash_defined
6682 || hash->root.root.type == bfd_link_hash_defweak)
6683 {
6684 sym_sec = hash->root.root.u.def.section;
6685 sym_value = hash->root.root.u.def.value;
022f8312
CL
6686
6687 struct elf32_arm_link_hash_table *globals =
6688 elf32_arm_hash_table (info);
6689
6690 /* For a destination in a shared library,
6691 use the PLT stub as target address to
6692 decide whether a branch stub is
6693 needed. */
4dfe6ac6 6694 if (globals != NULL
362d30a1 6695 && globals->root.splt != NULL
4dfe6ac6 6696 && hash != NULL
022f8312
CL
6697 && hash->root.plt.offset != (bfd_vma) -1)
6698 {
362d30a1 6699 sym_sec = globals->root.splt;
022f8312
CL
6700 sym_value = hash->root.plt.offset;
6701 if (sym_sec->output_section != NULL)
6702 destination = (sym_value
6703 + sym_sec->output_offset
6704 + sym_sec->output_section->vma);
6705 }
6706 else if (sym_sec->output_section != NULL)
906e58ca
NC
6707 destination = (sym_value + irela->r_addend
6708 + sym_sec->output_offset
6709 + sym_sec->output_section->vma);
6710 }
69c5861e
CL
6711 else if ((hash->root.root.type == bfd_link_hash_undefined)
6712 || (hash->root.root.type == bfd_link_hash_undefweak))
6713 {
6714 /* For a shared library, use the PLT stub as
6715 target address to decide whether a long
6716 branch stub is needed.
6717 For absolute code, they cannot be handled. */
6718 struct elf32_arm_link_hash_table *globals =
6719 elf32_arm_hash_table (info);
6720
4dfe6ac6 6721 if (globals != NULL
362d30a1 6722 && globals->root.splt != NULL
4dfe6ac6 6723 && hash != NULL
69c5861e
CL
6724 && hash->root.plt.offset != (bfd_vma) -1)
6725 {
362d30a1 6726 sym_sec = globals->root.splt;
69c5861e
CL
6727 sym_value = hash->root.plt.offset;
6728 if (sym_sec->output_section != NULL)
6729 destination = (sym_value
6730 + sym_sec->output_offset
6731 + sym_sec->output_section->vma);
6732 }
6733 else
6734 continue;
6735 }
906e58ca
NC
6736 else
6737 {
6738 bfd_set_error (bfd_error_bad_value);
6739 goto error_ret_free_internal;
6740 }
34e77a92 6741 st_type = hash->root.type;
39d911fc
TP
6742 branch_type =
6743 ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
7413f23f 6744 sym_name = hash->root.root.root.string;
906e58ca
NC
6745 }
6746
48229727 6747 do
7413f23f 6748 {
b715f643 6749 bfd_boolean new_stub;
0955507f 6750 struct elf32_arm_stub_hash_entry *stub_entry;
b715f643 6751
48229727
JB
6752 /* Determine what (if any) linker stub is needed. */
6753 stub_type = arm_type_of_stub (info, section, irela,
34e77a92
RS
6754 st_type, &branch_type,
6755 hash, destination, sym_sec,
48229727
JB
6756 input_bfd, sym_name);
6757 if (stub_type == arm_stub_none)
6758 break;
6759
48229727
JB
6760 /* We've either created a stub for this reloc already,
6761 or we are about to. */
0955507f 6762 stub_entry =
b715f643
TP
6763 elf32_arm_create_stub (htab, stub_type, section, irela,
6764 sym_sec, hash,
6765 (char *) sym_name, sym_value,
6766 branch_type, &new_stub);
7413f23f 6767
0955507f 6768 created_stub = stub_entry != NULL;
b715f643
TP
6769 if (!created_stub)
6770 goto error_ret_free_internal;
6771 else if (!new_stub)
6772 break;
99059e56 6773 else
b715f643 6774 stub_changed = TRUE;
99059e56
RM
6775 }
6776 while (0);
6777
6778 /* Look for relocations which might trigger Cortex-A8
6779 erratum. */
6780 if (htab->fix_cortex_a8
6781 && (r_type == (unsigned int) R_ARM_THM_JUMP24
6782 || r_type == (unsigned int) R_ARM_THM_JUMP19
6783 || r_type == (unsigned int) R_ARM_THM_CALL
6784 || r_type == (unsigned int) R_ARM_THM_XPC22))
6785 {
6786 bfd_vma from = section->output_section->vma
6787 + section->output_offset
6788 + irela->r_offset;
6789
6790 if ((from & 0xfff) == 0xffe)
6791 {
6792 /* Found a candidate. Note we haven't checked the
6793 destination is within 4K here: if we do so (and
6794 don't create an entry in a8_relocs) we can't tell
6795 that a branch should have been relocated when
6796 scanning later. */
6797 if (num_a8_relocs == a8_reloc_table_size)
6798 {
6799 a8_reloc_table_size *= 2;
6800 a8_relocs = (struct a8_erratum_reloc *)
6801 bfd_realloc (a8_relocs,
6802 sizeof (struct a8_erratum_reloc)
6803 * a8_reloc_table_size);
6804 }
6805
6806 a8_relocs[num_a8_relocs].from = from;
6807 a8_relocs[num_a8_relocs].destination = destination;
6808 a8_relocs[num_a8_relocs].r_type = r_type;
6809 a8_relocs[num_a8_relocs].branch_type = branch_type;
6810 a8_relocs[num_a8_relocs].sym_name = sym_name;
6811 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
6812 a8_relocs[num_a8_relocs].hash = hash;
6813
6814 num_a8_relocs++;
6815 }
6816 }
906e58ca
NC
6817 }
6818
99059e56
RM
6819 /* We're done with the internal relocs, free them. */
6820 if (elf_section_data (section)->relocs == NULL)
6821 free (internal_relocs);
6822 }
48229727 6823
99059e56 6824 if (htab->fix_cortex_a8)
48229727 6825 {
99059e56
RM
6826 /* Sort relocs which might apply to Cortex-A8 erratum. */
6827 qsort (a8_relocs, num_a8_relocs,
eb7c4339 6828 sizeof (struct a8_erratum_reloc),
99059e56 6829 &a8_reloc_compare);
48229727 6830
99059e56
RM
6831 /* Scan for branches which might trigger Cortex-A8 erratum. */
6832 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
48229727 6833 &num_a8_fixes, &a8_fix_table_size,
eb7c4339
NS
6834 a8_relocs, num_a8_relocs,
6835 prev_num_a8_fixes, &stub_changed)
6836 != 0)
48229727 6837 goto error_ret_free_local;
5e681ec4 6838 }
7f991970
AM
6839
6840 if (local_syms != NULL
6841 && symtab_hdr->contents != (unsigned char *) local_syms)
6842 {
6843 if (!info->keep_memory)
6844 free (local_syms);
6845 else
6846 symtab_hdr->contents = (unsigned char *) local_syms;
6847 }
5e681ec4
PB
6848 }
6849
0955507f
TP
6850 if (first_veneer_scan
6851 && !set_cmse_veneer_addr_from_implib (info, htab,
6852 &cmse_stub_created))
6853 ret = FALSE;
6854
eb7c4339 6855 if (prev_num_a8_fixes != num_a8_fixes)
99059e56 6856 stub_changed = TRUE;
48229727 6857
906e58ca
NC
6858 if (!stub_changed)
6859 break;
5e681ec4 6860
906e58ca
NC
6861 /* OK, we've added some stubs. Find out the new size of the
6862 stub sections. */
6863 for (stub_sec = htab->stub_bfd->sections;
6864 stub_sec != NULL;
6865 stub_sec = stub_sec->next)
3e6b1042
DJ
6866 {
6867 /* Ignore non-stub sections. */
6868 if (!strstr (stub_sec->name, STUB_SUFFIX))
6869 continue;
6870
6871 stub_sec->size = 0;
6872 }
b34b2d70 6873
0955507f
TP
6874 /* Add new SG veneers after those already in the input import
6875 library. */
6876 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6877 stub_type++)
6878 {
6879 bfd_vma *start_offset_p;
6880 asection **stub_sec_p;
6881
6882 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
6883 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6884 if (start_offset_p == NULL)
6885 continue;
6886
6887 BFD_ASSERT (stub_sec_p != NULL);
6888 if (*stub_sec_p != NULL)
6889 (*stub_sec_p)->size = *start_offset_p;
6890 }
6891
d7c5bd02 6892 /* Compute stub section size, considering padding. */
906e58ca 6893 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
d7c5bd02
TP
6894 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6895 stub_type++)
6896 {
6897 int size, padding;
6898 asection **stub_sec_p;
6899
6900 padding = arm_dedicated_stub_section_padding (stub_type);
6901 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6902 /* Skip if no stub input section or no stub section padding
6903 required. */
6904 if ((stub_sec_p != NULL && *stub_sec_p == NULL) || padding == 0)
6905 continue;
6906 /* Stub section padding required but no dedicated section. */
6907 BFD_ASSERT (stub_sec_p);
6908
6909 size = (*stub_sec_p)->size;
6910 size = (size + padding - 1) & ~(padding - 1);
6911 (*stub_sec_p)->size = size;
6912 }
906e58ca 6913
48229727
JB
6914 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
6915 if (htab->fix_cortex_a8)
99059e56
RM
6916 for (i = 0; i < num_a8_fixes; i++)
6917 {
48229727 6918 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
daa4adae 6919 a8_fixes[i].section, htab, a8_fixes[i].stub_type);
48229727
JB
6920
6921 if (stub_sec == NULL)
7f991970 6922 return FALSE;
48229727 6923
99059e56
RM
6924 stub_sec->size
6925 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
6926 NULL);
6927 }
48229727
JB
6928
6929
906e58ca
NC
6930 /* Ask the linker to do its stuff. */
6931 (*htab->layout_sections_again) ();
4ba2ef8f 6932 first_veneer_scan = FALSE;
ba93b8ac
DJ
6933 }
6934
48229727
JB
6935 /* Add stubs for Cortex-A8 erratum fixes now. */
6936 if (htab->fix_cortex_a8)
6937 {
6938 for (i = 0; i < num_a8_fixes; i++)
99059e56
RM
6939 {
6940 struct elf32_arm_stub_hash_entry *stub_entry;
6941 char *stub_name = a8_fixes[i].stub_name;
6942 asection *section = a8_fixes[i].section;
6943 unsigned int section_id = a8_fixes[i].section->id;
6944 asection *link_sec = htab->stub_group[section_id].link_sec;
6945 asection *stub_sec = htab->stub_group[section_id].stub_sec;
6946 const insn_sequence *template_sequence;
6947 int template_size, size = 0;
6948
6949 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
6950 TRUE, FALSE);
6951 if (stub_entry == NULL)
6952 {
871b3ab2 6953 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
4eca0228 6954 section->owner, stub_name);
99059e56
RM
6955 return FALSE;
6956 }
6957
6958 stub_entry->stub_sec = stub_sec;
0955507f 6959 stub_entry->stub_offset = (bfd_vma) -1;
99059e56
RM
6960 stub_entry->id_sec = link_sec;
6961 stub_entry->stub_type = a8_fixes[i].stub_type;
8d9d9490 6962 stub_entry->source_value = a8_fixes[i].offset;
99059e56 6963 stub_entry->target_section = a8_fixes[i].section;
8d9d9490 6964 stub_entry->target_value = a8_fixes[i].target_offset;
99059e56 6965 stub_entry->orig_insn = a8_fixes[i].orig_insn;
35fc36a8 6966 stub_entry->branch_type = a8_fixes[i].branch_type;
48229727 6967
99059e56
RM
6968 size = find_stub_size_and_template (a8_fixes[i].stub_type,
6969 &template_sequence,
6970 &template_size);
48229727 6971
99059e56
RM
6972 stub_entry->stub_size = size;
6973 stub_entry->stub_template = template_sequence;
6974 stub_entry->stub_template_size = template_size;
6975 }
48229727
JB
6976
6977 /* Stash the Cortex-A8 erratum fix array for use later in
99059e56 6978 elf32_arm_write_section(). */
48229727
JB
6979 htab->a8_erratum_fixes = a8_fixes;
6980 htab->num_a8_erratum_fixes = num_a8_fixes;
6981 }
6982 else
6983 {
6984 htab->a8_erratum_fixes = NULL;
6985 htab->num_a8_erratum_fixes = 0;
6986 }
0955507f 6987 return ret;
5e681ec4
PB
6988}
6989
906e58ca
NC
6990/* Build all the stubs associated with the current output file. The
6991 stubs are kept in a hash table attached to the main linker hash
6992 table. We also set up the .plt entries for statically linked PIC
6993 functions here. This function is called via arm_elf_finish in the
6994 linker. */
252b5132 6995
906e58ca
NC
6996bfd_boolean
6997elf32_arm_build_stubs (struct bfd_link_info *info)
252b5132 6998{
906e58ca
NC
6999 asection *stub_sec;
7000 struct bfd_hash_table *table;
0955507f 7001 enum elf32_arm_stub_type stub_type;
906e58ca 7002 struct elf32_arm_link_hash_table *htab;
252b5132 7003
906e58ca 7004 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
7005 if (htab == NULL)
7006 return FALSE;
252b5132 7007
906e58ca
NC
7008 for (stub_sec = htab->stub_bfd->sections;
7009 stub_sec != NULL;
7010 stub_sec = stub_sec->next)
252b5132 7011 {
906e58ca
NC
7012 bfd_size_type size;
7013
8029a119 7014 /* Ignore non-stub sections. */
906e58ca
NC
7015 if (!strstr (stub_sec->name, STUB_SUFFIX))
7016 continue;
7017
d7c5bd02 7018 /* Allocate memory to hold the linker stubs. Zeroing the stub sections
0955507f
TP
7019 must at least be done for stub section requiring padding and for SG
7020 veneers to ensure that a non secure code branching to a removed SG
7021 veneer causes an error. */
906e58ca 7022 size = stub_sec->size;
21d799b5 7023 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
906e58ca
NC
7024 if (stub_sec->contents == NULL && size != 0)
7025 return FALSE;
0955507f 7026
906e58ca 7027 stub_sec->size = 0;
252b5132
RH
7028 }
7029
0955507f
TP
7030 /* Add new SG veneers after those already in the input import library. */
7031 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
7032 {
7033 bfd_vma *start_offset_p;
7034 asection **stub_sec_p;
7035
7036 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
7037 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
7038 if (start_offset_p == NULL)
7039 continue;
7040
7041 BFD_ASSERT (stub_sec_p != NULL);
7042 if (*stub_sec_p != NULL)
7043 (*stub_sec_p)->size = *start_offset_p;
7044 }
7045
906e58ca
NC
7046 /* Build the stubs as directed by the stub hash table. */
7047 table = &htab->stub_hash_table;
7048 bfd_hash_traverse (table, arm_build_one_stub, info);
eb7c4339
NS
7049 if (htab->fix_cortex_a8)
7050 {
7051 /* Place the cortex a8 stubs last. */
7052 htab->fix_cortex_a8 = -1;
7053 bfd_hash_traverse (table, arm_build_one_stub, info);
7054 }
252b5132 7055
906e58ca 7056 return TRUE;
252b5132
RH
7057}
7058
9b485d32
NC
7059/* Locate the Thumb encoded calling stub for NAME. */
7060
252b5132 7061static struct elf_link_hash_entry *
57e8b36a
NC
7062find_thumb_glue (struct bfd_link_info *link_info,
7063 const char *name,
f2a9dd69 7064 char **error_message)
252b5132
RH
7065{
7066 char *tmp_name;
7067 struct elf_link_hash_entry *hash;
7068 struct elf32_arm_link_hash_table *hash_table;
7069
7070 /* We need a pointer to the armelf specific hash table. */
7071 hash_table = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
7072 if (hash_table == NULL)
7073 return NULL;
252b5132 7074
21d799b5 7075 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
99059e56 7076 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
252b5132
RH
7077
7078 BFD_ASSERT (tmp_name);
7079
7080 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
7081
7082 hash = elf_link_hash_lookup
b34976b6 7083 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
252b5132 7084
b1657152 7085 if (hash == NULL
90b6238f
AM
7086 && asprintf (error_message, _("unable to find %s glue '%s' for '%s'"),
7087 "Thumb", tmp_name, name) == -1)
b1657152 7088 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
252b5132
RH
7089
7090 free (tmp_name);
7091
7092 return hash;
7093}
7094
9b485d32
NC
7095/* Locate the ARM encoded calling stub for NAME. */
7096
252b5132 7097static struct elf_link_hash_entry *
57e8b36a
NC
7098find_arm_glue (struct bfd_link_info *link_info,
7099 const char *name,
f2a9dd69 7100 char **error_message)
252b5132
RH
7101{
7102 char *tmp_name;
7103 struct elf_link_hash_entry *myh;
7104 struct elf32_arm_link_hash_table *hash_table;
7105
7106 /* We need a pointer to the elfarm specific hash table. */
7107 hash_table = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
7108 if (hash_table == NULL)
7109 return NULL;
252b5132 7110
21d799b5 7111 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
99059e56 7112 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
252b5132
RH
7113 BFD_ASSERT (tmp_name);
7114
7115 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
7116
7117 myh = elf_link_hash_lookup
b34976b6 7118 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
252b5132 7119
b1657152 7120 if (myh == NULL
90b6238f
AM
7121 && asprintf (error_message, _("unable to find %s glue '%s' for '%s'"),
7122 "ARM", tmp_name, name) == -1)
b1657152 7123 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
252b5132
RH
7124
7125 free (tmp_name);
7126
7127 return myh;
7128}
7129
8f6277f5 7130/* ARM->Thumb glue (static images):
252b5132
RH
7131
7132 .arm
7133 __func_from_arm:
7134 ldr r12, __func_addr
7135 bx r12
7136 __func_addr:
906e58ca 7137 .word func @ behave as if you saw a ARM_32 reloc.
252b5132 7138
26079076
PB
7139 (v5t static images)
7140 .arm
7141 __func_from_arm:
7142 ldr pc, __func_addr
7143 __func_addr:
906e58ca 7144 .word func @ behave as if you saw a ARM_32 reloc.
26079076 7145
8f6277f5
PB
7146 (relocatable images)
7147 .arm
7148 __func_from_arm:
7149 ldr r12, __func_offset
7150 add r12, r12, pc
7151 bx r12
7152 __func_offset:
8029a119 7153 .word func - . */
8f6277f5
PB
7154
7155#define ARM2THUMB_STATIC_GLUE_SIZE 12
252b5132
RH
7156static const insn32 a2t1_ldr_insn = 0xe59fc000;
7157static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
7158static const insn32 a2t3_func_addr_insn = 0x00000001;
7159
26079076
PB
7160#define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
7161static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
7162static const insn32 a2t2v5_func_addr_insn = 0x00000001;
7163
8f6277f5
PB
7164#define ARM2THUMB_PIC_GLUE_SIZE 16
7165static const insn32 a2t1p_ldr_insn = 0xe59fc004;
7166static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
7167static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
7168
07d6d2b8 7169/* Thumb->ARM: Thumb->(non-interworking aware) ARM
252b5132 7170
07d6d2b8
AM
7171 .thumb .thumb
7172 .align 2 .align 2
7173 __func_from_thumb: __func_from_thumb:
7174 bx pc push {r6, lr}
7175 nop ldr r6, __func_addr
7176 .arm mov lr, pc
7177 b func bx r6
99059e56
RM
7178 .arm
7179 ;; back_to_thumb
7180 ldmia r13! {r6, lr}
7181 bx lr
7182 __func_addr:
07d6d2b8 7183 .word func */
252b5132
RH
7184
7185#define THUMB2ARM_GLUE_SIZE 8
7186static const insn16 t2a1_bx_pc_insn = 0x4778;
7187static const insn16 t2a2_noop_insn = 0x46c0;
7188static const insn32 t2a3_b_insn = 0xea000000;
7189
c7b8f16e 7190#define VFP11_ERRATUM_VENEER_SIZE 8
a504d23a
LA
7191#define STM32L4XX_ERRATUM_LDM_VENEER_SIZE 16
7192#define STM32L4XX_ERRATUM_VLDM_VENEER_SIZE 24
c7b8f16e 7193
845b51d6
PB
7194#define ARM_BX_VENEER_SIZE 12
7195static const insn32 armbx1_tst_insn = 0xe3100001;
7196static const insn32 armbx2_moveq_insn = 0x01a0f000;
7197static const insn32 armbx3_bx_insn = 0xe12fff10;
7198
7e392df6 7199#ifndef ELFARM_NABI_C_INCLUDED
8029a119
NC
7200static void
7201arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
252b5132
RH
7202{
7203 asection * s;
8029a119 7204 bfd_byte * contents;
252b5132 7205
8029a119 7206 if (size == 0)
3e6b1042
DJ
7207 {
7208 /* Do not include empty glue sections in the output. */
7209 if (abfd != NULL)
7210 {
3d4d4302 7211 s = bfd_get_linker_section (abfd, name);
3e6b1042
DJ
7212 if (s != NULL)
7213 s->flags |= SEC_EXCLUDE;
7214 }
7215 return;
7216 }
252b5132 7217
8029a119 7218 BFD_ASSERT (abfd != NULL);
252b5132 7219
3d4d4302 7220 s = bfd_get_linker_section (abfd, name);
8029a119 7221 BFD_ASSERT (s != NULL);
252b5132 7222
b0f4fbf8 7223 contents = (bfd_byte *) bfd_zalloc (abfd, size);
252b5132 7224
8029a119
NC
7225 BFD_ASSERT (s->size == size);
7226 s->contents = contents;
7227}
906e58ca 7228
8029a119
NC
7229bfd_boolean
7230bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
7231{
7232 struct elf32_arm_link_hash_table * globals;
906e58ca 7233
8029a119
NC
7234 globals = elf32_arm_hash_table (info);
7235 BFD_ASSERT (globals != NULL);
906e58ca 7236
8029a119
NC
7237 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7238 globals->arm_glue_size,
7239 ARM2THUMB_GLUE_SECTION_NAME);
906e58ca 7240
8029a119
NC
7241 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7242 globals->thumb_glue_size,
7243 THUMB2ARM_GLUE_SECTION_NAME);
252b5132 7244
8029a119
NC
7245 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7246 globals->vfp11_erratum_glue_size,
7247 VFP11_ERRATUM_VENEER_SECTION_NAME);
845b51d6 7248
a504d23a
LA
7249 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7250 globals->stm32l4xx_erratum_glue_size,
7251 STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7252
8029a119
NC
7253 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7254 globals->bx_glue_size,
845b51d6
PB
7255 ARM_BX_GLUE_SECTION_NAME);
7256
b34976b6 7257 return TRUE;
252b5132
RH
7258}
7259
a4fd1a8e 7260/* Allocate space and symbols for calling a Thumb function from Arm mode.
906e58ca
NC
7261 returns the symbol identifying the stub. */
7262
a4fd1a8e 7263static struct elf_link_hash_entry *
57e8b36a
NC
7264record_arm_to_thumb_glue (struct bfd_link_info * link_info,
7265 struct elf_link_hash_entry * h)
252b5132
RH
7266{
7267 const char * name = h->root.root.string;
63b0f745 7268 asection * s;
252b5132
RH
7269 char * tmp_name;
7270 struct elf_link_hash_entry * myh;
14a793b2 7271 struct bfd_link_hash_entry * bh;
252b5132 7272 struct elf32_arm_link_hash_table * globals;
dc810e39 7273 bfd_vma val;
2f475487 7274 bfd_size_type size;
252b5132
RH
7275
7276 globals = elf32_arm_hash_table (link_info);
252b5132
RH
7277 BFD_ASSERT (globals != NULL);
7278 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7279
3d4d4302 7280 s = bfd_get_linker_section
252b5132
RH
7281 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
7282
252b5132
RH
7283 BFD_ASSERT (s != NULL);
7284
21d799b5 7285 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
99059e56 7286 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
252b5132
RH
7287 BFD_ASSERT (tmp_name);
7288
7289 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
7290
7291 myh = elf_link_hash_lookup
b34976b6 7292 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
252b5132
RH
7293
7294 if (myh != NULL)
7295 {
9b485d32 7296 /* We've already seen this guy. */
252b5132 7297 free (tmp_name);
a4fd1a8e 7298 return myh;
252b5132
RH
7299 }
7300
57e8b36a
NC
7301 /* The only trick here is using hash_table->arm_glue_size as the value.
7302 Even though the section isn't allocated yet, this is where we will be
3dccd7b7
DJ
7303 putting it. The +1 on the value marks that the stub has not been
7304 output yet - not that it is a Thumb function. */
14a793b2 7305 bh = NULL;
dc810e39
AM
7306 val = globals->arm_glue_size + 1;
7307 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
7308 tmp_name, BSF_GLOBAL, s, val,
b34976b6 7309 NULL, TRUE, FALSE, &bh);
252b5132 7310
b7693d02
DJ
7311 myh = (struct elf_link_hash_entry *) bh;
7312 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7313 myh->forced_local = 1;
7314
252b5132
RH
7315 free (tmp_name);
7316
0e1862bb
L
7317 if (bfd_link_pic (link_info)
7318 || globals->root.is_relocatable_executable
27e55c4d 7319 || globals->pic_veneer)
2f475487 7320 size = ARM2THUMB_PIC_GLUE_SIZE;
26079076
PB
7321 else if (globals->use_blx)
7322 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
8f6277f5 7323 else
2f475487
AM
7324 size = ARM2THUMB_STATIC_GLUE_SIZE;
7325
7326 s->size += size;
7327 globals->arm_glue_size += size;
252b5132 7328
a4fd1a8e 7329 return myh;
252b5132
RH
7330}
7331
845b51d6
PB
7332/* Allocate space for ARMv4 BX veneers. */
7333
7334static void
7335record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
7336{
7337 asection * s;
7338 struct elf32_arm_link_hash_table *globals;
7339 char *tmp_name;
7340 struct elf_link_hash_entry *myh;
7341 struct bfd_link_hash_entry *bh;
7342 bfd_vma val;
7343
7344 /* BX PC does not need a veneer. */
7345 if (reg == 15)
7346 return;
7347
7348 globals = elf32_arm_hash_table (link_info);
845b51d6
PB
7349 BFD_ASSERT (globals != NULL);
7350 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7351
7352 /* Check if this veneer has already been allocated. */
7353 if (globals->bx_glue_offset[reg])
7354 return;
7355
3d4d4302 7356 s = bfd_get_linker_section
845b51d6
PB
7357 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
7358
7359 BFD_ASSERT (s != NULL);
7360
7361 /* Add symbol for veneer. */
21d799b5
NC
7362 tmp_name = (char *)
7363 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
845b51d6 7364 BFD_ASSERT (tmp_name);
906e58ca 7365
845b51d6 7366 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
906e58ca 7367
845b51d6
PB
7368 myh = elf_link_hash_lookup
7369 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
906e58ca 7370
845b51d6 7371 BFD_ASSERT (myh == NULL);
906e58ca 7372
845b51d6
PB
7373 bh = NULL;
7374 val = globals->bx_glue_size;
7375 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
99059e56
RM
7376 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7377 NULL, TRUE, FALSE, &bh);
845b51d6
PB
7378
7379 myh = (struct elf_link_hash_entry *) bh;
7380 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7381 myh->forced_local = 1;
7382
7383 s->size += ARM_BX_VENEER_SIZE;
7384 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
7385 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
7386}
7387
7388
c7b8f16e
JB
7389/* Add an entry to the code/data map for section SEC. */
7390
7391static void
7392elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
7393{
7394 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
7395 unsigned int newidx;
906e58ca 7396
c7b8f16e
JB
7397 if (sec_data->map == NULL)
7398 {
21d799b5 7399 sec_data->map = (elf32_arm_section_map *)
99059e56 7400 bfd_malloc (sizeof (elf32_arm_section_map));
c7b8f16e
JB
7401 sec_data->mapcount = 0;
7402 sec_data->mapsize = 1;
7403 }
906e58ca 7404
c7b8f16e 7405 newidx = sec_data->mapcount++;
906e58ca 7406
c7b8f16e
JB
7407 if (sec_data->mapcount > sec_data->mapsize)
7408 {
7409 sec_data->mapsize *= 2;
21d799b5 7410 sec_data->map = (elf32_arm_section_map *)
99059e56
RM
7411 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
7412 * sizeof (elf32_arm_section_map));
515ef31d
NC
7413 }
7414
7415 if (sec_data->map)
7416 {
7417 sec_data->map[newidx].vma = vma;
7418 sec_data->map[newidx].type = type;
c7b8f16e 7419 }
c7b8f16e
JB
7420}
7421
7422
7423/* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
7424 veneers are handled for now. */
7425
7426static bfd_vma
7427record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
99059e56
RM
7428 elf32_vfp11_erratum_list *branch,
7429 bfd *branch_bfd,
7430 asection *branch_sec,
7431 unsigned int offset)
c7b8f16e
JB
7432{
7433 asection *s;
7434 struct elf32_arm_link_hash_table *hash_table;
7435 char *tmp_name;
7436 struct elf_link_hash_entry *myh;
7437 struct bfd_link_hash_entry *bh;
7438 bfd_vma val;
7439 struct _arm_elf_section_data *sec_data;
c7b8f16e 7440 elf32_vfp11_erratum_list *newerr;
906e58ca 7441
c7b8f16e 7442 hash_table = elf32_arm_hash_table (link_info);
c7b8f16e
JB
7443 BFD_ASSERT (hash_table != NULL);
7444 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
906e58ca 7445
3d4d4302 7446 s = bfd_get_linker_section
c7b8f16e 7447 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
906e58ca 7448
c7b8f16e 7449 sec_data = elf32_arm_section_data (s);
906e58ca 7450
c7b8f16e 7451 BFD_ASSERT (s != NULL);
906e58ca 7452
21d799b5 7453 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
99059e56 7454 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
c7b8f16e 7455 BFD_ASSERT (tmp_name);
906e58ca 7456
c7b8f16e
JB
7457 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
7458 hash_table->num_vfp11_fixes);
906e58ca 7459
c7b8f16e
JB
7460 myh = elf_link_hash_lookup
7461 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
906e58ca 7462
c7b8f16e 7463 BFD_ASSERT (myh == NULL);
906e58ca 7464
c7b8f16e
JB
7465 bh = NULL;
7466 val = hash_table->vfp11_erratum_glue_size;
7467 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
99059e56
RM
7468 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7469 NULL, TRUE, FALSE, &bh);
c7b8f16e
JB
7470
7471 myh = (struct elf_link_hash_entry *) bh;
7472 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7473 myh->forced_local = 1;
7474
7475 /* Link veneer back to calling location. */
c7e2358a 7476 sec_data->erratumcount += 1;
21d799b5
NC
7477 newerr = (elf32_vfp11_erratum_list *)
7478 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
906e58ca 7479
c7b8f16e
JB
7480 newerr->type = VFP11_ERRATUM_ARM_VENEER;
7481 newerr->vma = -1;
7482 newerr->u.v.branch = branch;
7483 newerr->u.v.id = hash_table->num_vfp11_fixes;
7484 branch->u.b.veneer = newerr;
7485
7486 newerr->next = sec_data->erratumlist;
7487 sec_data->erratumlist = newerr;
7488
7489 /* A symbol for the return from the veneer. */
7490 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
7491 hash_table->num_vfp11_fixes);
7492
7493 myh = elf_link_hash_lookup
7494 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
906e58ca 7495
c7b8f16e
JB
7496 if (myh != NULL)
7497 abort ();
7498
7499 bh = NULL;
7500 val = offset + 4;
7501 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7502 branch_sec, val, NULL, TRUE, FALSE, &bh);
906e58ca 7503
c7b8f16e
JB
7504 myh = (struct elf_link_hash_entry *) bh;
7505 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7506 myh->forced_local = 1;
7507
7508 free (tmp_name);
906e58ca 7509
c7b8f16e
JB
7510 /* Generate a mapping symbol for the veneer section, and explicitly add an
7511 entry for that symbol to the code/data map for the section. */
7512 if (hash_table->vfp11_erratum_glue_size == 0)
7513 {
7514 bh = NULL;
7515 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
99059e56 7516 ever requires this erratum fix. */
c7b8f16e
JB
7517 _bfd_generic_link_add_one_symbol (link_info,
7518 hash_table->bfd_of_glue_owner, "$a",
7519 BSF_LOCAL, s, 0, NULL,
99059e56 7520 TRUE, FALSE, &bh);
c7b8f16e
JB
7521
7522 myh = (struct elf_link_hash_entry *) bh;
7523 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7524 myh->forced_local = 1;
906e58ca 7525
c7b8f16e 7526 /* The elf32_arm_init_maps function only cares about symbols from input
99059e56
RM
7527 BFDs. We must make a note of this generated mapping symbol
7528 ourselves so that code byteswapping works properly in
7529 elf32_arm_write_section. */
c7b8f16e
JB
7530 elf32_arm_section_map_add (s, 'a', 0);
7531 }
906e58ca 7532
c7b8f16e
JB
7533 s->size += VFP11_ERRATUM_VENEER_SIZE;
7534 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
7535 hash_table->num_vfp11_fixes++;
906e58ca 7536
c7b8f16e
JB
7537 /* The offset of the veneer. */
7538 return val;
7539}
7540
a504d23a
LA
7541/* Record information about a STM32L4XX STM erratum veneer. Only THUMB-mode
7542 veneers need to be handled because used only in Cortex-M. */
7543
7544static bfd_vma
7545record_stm32l4xx_erratum_veneer (struct bfd_link_info *link_info,
7546 elf32_stm32l4xx_erratum_list *branch,
7547 bfd *branch_bfd,
7548 asection *branch_sec,
7549 unsigned int offset,
7550 bfd_size_type veneer_size)
7551{
7552 asection *s;
7553 struct elf32_arm_link_hash_table *hash_table;
7554 char *tmp_name;
7555 struct elf_link_hash_entry *myh;
7556 struct bfd_link_hash_entry *bh;
7557 bfd_vma val;
7558 struct _arm_elf_section_data *sec_data;
7559 elf32_stm32l4xx_erratum_list *newerr;
7560
7561 hash_table = elf32_arm_hash_table (link_info);
7562 BFD_ASSERT (hash_table != NULL);
7563 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7564
7565 s = bfd_get_linker_section
7566 (hash_table->bfd_of_glue_owner, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7567
7568 BFD_ASSERT (s != NULL);
7569
7570 sec_data = elf32_arm_section_data (s);
7571
7572 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7573 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
a504d23a
LA
7574 BFD_ASSERT (tmp_name);
7575
7576 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
7577 hash_table->num_stm32l4xx_fixes);
7578
7579 myh = elf_link_hash_lookup
7580 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7581
7582 BFD_ASSERT (myh == NULL);
7583
7584 bh = NULL;
7585 val = hash_table->stm32l4xx_erratum_glue_size;
7586 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7587 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7588 NULL, TRUE, FALSE, &bh);
7589
7590 myh = (struct elf_link_hash_entry *) bh;
7591 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7592 myh->forced_local = 1;
7593
7594 /* Link veneer back to calling location. */
7595 sec_data->stm32l4xx_erratumcount += 1;
7596 newerr = (elf32_stm32l4xx_erratum_list *)
7597 bfd_zmalloc (sizeof (elf32_stm32l4xx_erratum_list));
7598
7599 newerr->type = STM32L4XX_ERRATUM_VENEER;
7600 newerr->vma = -1;
7601 newerr->u.v.branch = branch;
7602 newerr->u.v.id = hash_table->num_stm32l4xx_fixes;
7603 branch->u.b.veneer = newerr;
7604
7605 newerr->next = sec_data->stm32l4xx_erratumlist;
7606 sec_data->stm32l4xx_erratumlist = newerr;
7607
7608 /* A symbol for the return from the veneer. */
7609 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
7610 hash_table->num_stm32l4xx_fixes);
7611
7612 myh = elf_link_hash_lookup
7613 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7614
7615 if (myh != NULL)
7616 abort ();
7617
7618 bh = NULL;
7619 val = offset + 4;
7620 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7621 branch_sec, val, NULL, TRUE, FALSE, &bh);
7622
7623 myh = (struct elf_link_hash_entry *) bh;
7624 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7625 myh->forced_local = 1;
7626
7627 free (tmp_name);
7628
7629 /* Generate a mapping symbol for the veneer section, and explicitly add an
7630 entry for that symbol to the code/data map for the section. */
7631 if (hash_table->stm32l4xx_erratum_glue_size == 0)
7632 {
7633 bh = NULL;
7634 /* Creates a THUMB symbol since there is no other choice. */
7635 _bfd_generic_link_add_one_symbol (link_info,
7636 hash_table->bfd_of_glue_owner, "$t",
7637 BSF_LOCAL, s, 0, NULL,
7638 TRUE, FALSE, &bh);
7639
7640 myh = (struct elf_link_hash_entry *) bh;
7641 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7642 myh->forced_local = 1;
7643
7644 /* The elf32_arm_init_maps function only cares about symbols from input
7645 BFDs. We must make a note of this generated mapping symbol
7646 ourselves so that code byteswapping works properly in
7647 elf32_arm_write_section. */
7648 elf32_arm_section_map_add (s, 't', 0);
7649 }
7650
7651 s->size += veneer_size;
7652 hash_table->stm32l4xx_erratum_glue_size += veneer_size;
7653 hash_table->num_stm32l4xx_fixes++;
7654
7655 /* The offset of the veneer. */
7656 return val;
7657}
7658
8029a119 7659#define ARM_GLUE_SECTION_FLAGS \
3e6b1042
DJ
7660 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
7661 | SEC_READONLY | SEC_LINKER_CREATED)
8029a119
NC
7662
7663/* Create a fake section for use by the ARM backend of the linker. */
7664
7665static bfd_boolean
7666arm_make_glue_section (bfd * abfd, const char * name)
7667{
7668 asection * sec;
7669
3d4d4302 7670 sec = bfd_get_linker_section (abfd, name);
8029a119
NC
7671 if (sec != NULL)
7672 /* Already made. */
7673 return TRUE;
7674
3d4d4302 7675 sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
8029a119
NC
7676
7677 if (sec == NULL
fd361982 7678 || !bfd_set_section_alignment (sec, 2))
8029a119
NC
7679 return FALSE;
7680
7681 /* Set the gc mark to prevent the section from being removed by garbage
7682 collection, despite the fact that no relocs refer to this section. */
7683 sec->gc_mark = 1;
7684
7685 return TRUE;
7686}
7687
1db37fe6
YG
7688/* Set size of .plt entries. This function is called from the
7689 linker scripts in ld/emultempl/{armelf}.em. */
7690
7691void
7692bfd_elf32_arm_use_long_plt (void)
7693{
7694 elf32_arm_use_long_plt_entry = TRUE;
7695}
7696
8afb0e02
NC
7697/* Add the glue sections to ABFD. This function is called from the
7698 linker scripts in ld/emultempl/{armelf}.em. */
9b485d32 7699
b34976b6 7700bfd_boolean
57e8b36a
NC
7701bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
7702 struct bfd_link_info *info)
252b5132 7703{
a504d23a
LA
7704 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
7705 bfd_boolean dostm32l4xx = globals
7706 && globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE;
7707 bfd_boolean addglue;
7708
8afb0e02
NC
7709 /* If we are only performing a partial
7710 link do not bother adding the glue. */
0e1862bb 7711 if (bfd_link_relocatable (info))
b34976b6 7712 return TRUE;
252b5132 7713
a504d23a 7714 addglue = arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
8029a119
NC
7715 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
7716 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
7717 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
a504d23a
LA
7718
7719 if (!dostm32l4xx)
7720 return addglue;
7721
7722 return addglue
7723 && arm_make_glue_section (abfd, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
8afb0e02
NC
7724}
7725
daa4adae
TP
7726/* Mark output sections of veneers needing a dedicated one with SEC_KEEP. This
7727 ensures they are not marked for deletion by
7728 strip_excluded_output_sections () when veneers are going to be created
7729 later. Not doing so would trigger assert on empty section size in
7730 lang_size_sections_1 (). */
7731
7732void
7733bfd_elf32_arm_keep_private_stub_output_sections (struct bfd_link_info *info)
7734{
7735 enum elf32_arm_stub_type stub_type;
7736
7737 /* If we are only performing a partial
7738 link do not bother adding the glue. */
7739 if (bfd_link_relocatable (info))
7740 return;
7741
7742 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
7743 {
7744 asection *out_sec;
7745 const char *out_sec_name;
7746
7747 if (!arm_dedicated_stub_output_section_required (stub_type))
7748 continue;
7749
7750 out_sec_name = arm_dedicated_stub_output_section_name (stub_type);
7751 out_sec = bfd_get_section_by_name (info->output_bfd, out_sec_name);
7752 if (out_sec != NULL)
7753 out_sec->flags |= SEC_KEEP;
7754 }
7755}
7756
8afb0e02
NC
7757/* Select a BFD to be used to hold the sections used by the glue code.
7758 This function is called from the linker scripts in ld/emultempl/
8029a119 7759 {armelf/pe}.em. */
8afb0e02 7760
b34976b6 7761bfd_boolean
57e8b36a 7762bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
8afb0e02
NC
7763{
7764 struct elf32_arm_link_hash_table *globals;
7765
7766 /* If we are only performing a partial link
7767 do not bother getting a bfd to hold the glue. */
0e1862bb 7768 if (bfd_link_relocatable (info))
b34976b6 7769 return TRUE;
8afb0e02 7770
b7693d02
DJ
7771 /* Make sure we don't attach the glue sections to a dynamic object. */
7772 BFD_ASSERT (!(abfd->flags & DYNAMIC));
7773
8afb0e02 7774 globals = elf32_arm_hash_table (info);
8afb0e02
NC
7775 BFD_ASSERT (globals != NULL);
7776
7777 if (globals->bfd_of_glue_owner != NULL)
b34976b6 7778 return TRUE;
8afb0e02 7779
252b5132
RH
7780 /* Save the bfd for later use. */
7781 globals->bfd_of_glue_owner = abfd;
cedb70c5 7782
b34976b6 7783 return TRUE;
252b5132
RH
7784}
7785
906e58ca
NC
7786static void
7787check_use_blx (struct elf32_arm_link_hash_table *globals)
39b41c9c 7788{
2de70689
MGD
7789 int cpu_arch;
7790
b38cadfb 7791 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2de70689
MGD
7792 Tag_CPU_arch);
7793
7794 if (globals->fix_arm1176)
7795 {
7796 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
7797 globals->use_blx = 1;
7798 }
7799 else
7800 {
7801 if (cpu_arch > TAG_CPU_ARCH_V4T)
7802 globals->use_blx = 1;
7803 }
39b41c9c
PB
7804}
7805
b34976b6 7806bfd_boolean
57e8b36a 7807bfd_elf32_arm_process_before_allocation (bfd *abfd,
d504ffc8 7808 struct bfd_link_info *link_info)
252b5132
RH
7809{
7810 Elf_Internal_Shdr *symtab_hdr;
6cdc0ccc 7811 Elf_Internal_Rela *internal_relocs = NULL;
252b5132
RH
7812 Elf_Internal_Rela *irel, *irelend;
7813 bfd_byte *contents = NULL;
252b5132
RH
7814
7815 asection *sec;
7816 struct elf32_arm_link_hash_table *globals;
7817
7818 /* If we are only performing a partial link do not bother
7819 to construct any glue. */
0e1862bb 7820 if (bfd_link_relocatable (link_info))
b34976b6 7821 return TRUE;
252b5132 7822
39ce1a6a
NC
7823 /* Here we have a bfd that is to be included on the link. We have a
7824 hook to do reloc rummaging, before section sizes are nailed down. */
252b5132 7825 globals = elf32_arm_hash_table (link_info);
252b5132 7826 BFD_ASSERT (globals != NULL);
39ce1a6a
NC
7827
7828 check_use_blx (globals);
252b5132 7829
d504ffc8 7830 if (globals->byteswap_code && !bfd_big_endian (abfd))
e489d0ae 7831 {
90b6238f 7832 _bfd_error_handler (_("%pB: BE8 images only valid in big-endian mode"),
d003868e 7833 abfd);
e489d0ae
PB
7834 return FALSE;
7835 }
f21f3fe0 7836
39ce1a6a
NC
7837 /* PR 5398: If we have not decided to include any loadable sections in
7838 the output then we will not have a glue owner bfd. This is OK, it
7839 just means that there is nothing else for us to do here. */
7840 if (globals->bfd_of_glue_owner == NULL)
7841 return TRUE;
7842
252b5132
RH
7843 /* Rummage around all the relocs and map the glue vectors. */
7844 sec = abfd->sections;
7845
7846 if (sec == NULL)
b34976b6 7847 return TRUE;
252b5132
RH
7848
7849 for (; sec != NULL; sec = sec->next)
7850 {
7851 if (sec->reloc_count == 0)
7852 continue;
7853
2f475487
AM
7854 if ((sec->flags & SEC_EXCLUDE) != 0)
7855 continue;
7856
0ffa91dd 7857 symtab_hdr = & elf_symtab_hdr (abfd);
252b5132 7858
9b485d32 7859 /* Load the relocs. */
6cdc0ccc 7860 internal_relocs
906e58ca 7861 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
252b5132 7862
6cdc0ccc
AM
7863 if (internal_relocs == NULL)
7864 goto error_return;
252b5132 7865
6cdc0ccc
AM
7866 irelend = internal_relocs + sec->reloc_count;
7867 for (irel = internal_relocs; irel < irelend; irel++)
252b5132
RH
7868 {
7869 long r_type;
7870 unsigned long r_index;
252b5132
RH
7871
7872 struct elf_link_hash_entry *h;
7873
7874 r_type = ELF32_R_TYPE (irel->r_info);
7875 r_index = ELF32_R_SYM (irel->r_info);
7876
9b485d32 7877 /* These are the only relocation types we care about. */
ba96a88f 7878 if ( r_type != R_ARM_PC24
845b51d6 7879 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
252b5132
RH
7880 continue;
7881
7882 /* Get the section contents if we haven't done so already. */
7883 if (contents == NULL)
7884 {
7885 /* Get cached copy if it exists. */
7886 if (elf_section_data (sec)->this_hdr.contents != NULL)
7887 contents = elf_section_data (sec)->this_hdr.contents;
7888 else
7889 {
7890 /* Go get them off disk. */
57e8b36a 7891 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
252b5132
RH
7892 goto error_return;
7893 }
7894 }
7895
845b51d6
PB
7896 if (r_type == R_ARM_V4BX)
7897 {
7898 int reg;
7899
7900 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
7901 record_arm_bx_glue (link_info, reg);
7902 continue;
7903 }
7904
a7c10850 7905 /* If the relocation is not against a symbol it cannot concern us. */
252b5132
RH
7906 h = NULL;
7907
9b485d32 7908 /* We don't care about local symbols. */
252b5132
RH
7909 if (r_index < symtab_hdr->sh_info)
7910 continue;
7911
9b485d32 7912 /* This is an external symbol. */
252b5132
RH
7913 r_index -= symtab_hdr->sh_info;
7914 h = (struct elf_link_hash_entry *)
7915 elf_sym_hashes (abfd)[r_index];
7916
7917 /* If the relocation is against a static symbol it must be within
7918 the current section and so cannot be a cross ARM/Thumb relocation. */
7919 if (h == NULL)
7920 continue;
7921
d504ffc8
DJ
7922 /* If the call will go through a PLT entry then we do not need
7923 glue. */
362d30a1 7924 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
b7693d02
DJ
7925 continue;
7926
252b5132
RH
7927 switch (r_type)
7928 {
7929 case R_ARM_PC24:
7930 /* This one is a call from arm code. We need to look up
99059e56
RM
7931 the target of the call. If it is a thumb target, we
7932 insert glue. */
39d911fc
TP
7933 if (ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
7934 == ST_BRANCH_TO_THUMB)
252b5132
RH
7935 record_arm_to_thumb_glue (link_info, h);
7936 break;
7937
252b5132 7938 default:
c6596c5e 7939 abort ();
252b5132
RH
7940 }
7941 }
6cdc0ccc 7942
c9594989 7943 if (elf_section_data (sec)->this_hdr.contents != contents)
6cdc0ccc
AM
7944 free (contents);
7945 contents = NULL;
7946
c9594989 7947 if (elf_section_data (sec)->relocs != internal_relocs)
6cdc0ccc
AM
7948 free (internal_relocs);
7949 internal_relocs = NULL;
252b5132
RH
7950 }
7951
b34976b6 7952 return TRUE;
9a5aca8c 7953
dc1e8a47 7954 error_return:
c9594989 7955 if (elf_section_data (sec)->this_hdr.contents != contents)
6cdc0ccc 7956 free (contents);
c9594989 7957 if (elf_section_data (sec)->relocs != internal_relocs)
6cdc0ccc 7958 free (internal_relocs);
9a5aca8c 7959
b34976b6 7960 return FALSE;
252b5132 7961}
7e392df6 7962#endif
252b5132 7963
eb043451 7964
c7b8f16e
JB
7965/* Initialise maps of ARM/Thumb/data for input BFDs. */
7966
7967void
7968bfd_elf32_arm_init_maps (bfd *abfd)
7969{
7970 Elf_Internal_Sym *isymbuf;
7971 Elf_Internal_Shdr *hdr;
7972 unsigned int i, localsyms;
7973
af1f4419
NC
7974 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
7975 if (! is_arm_elf (abfd))
7976 return;
7977
c7b8f16e
JB
7978 if ((abfd->flags & DYNAMIC) != 0)
7979 return;
7980
0ffa91dd 7981 hdr = & elf_symtab_hdr (abfd);
c7b8f16e
JB
7982 localsyms = hdr->sh_info;
7983
7984 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
7985 should contain the number of local symbols, which should come before any
7986 global symbols. Mapping symbols are always local. */
7987 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
7988 NULL);
7989
7990 /* No internal symbols read? Skip this BFD. */
7991 if (isymbuf == NULL)
7992 return;
7993
7994 for (i = 0; i < localsyms; i++)
7995 {
7996 Elf_Internal_Sym *isym = &isymbuf[i];
7997 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
7998 const char *name;
906e58ca 7999
c7b8f16e 8000 if (sec != NULL
99059e56
RM
8001 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
8002 {
8003 name = bfd_elf_string_from_elf_section (abfd,
8004 hdr->sh_link, isym->st_name);
906e58ca 8005
99059e56 8006 if (bfd_is_arm_special_symbol_name (name,
c7b8f16e 8007 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
99059e56
RM
8008 elf32_arm_section_map_add (sec, name[1], isym->st_value);
8009 }
c7b8f16e
JB
8010 }
8011}
8012
8013
48229727
JB
8014/* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
8015 say what they wanted. */
8016
8017void
8018bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
8019{
8020 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8021 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
8022
4dfe6ac6
NC
8023 if (globals == NULL)
8024 return;
8025
48229727
JB
8026 if (globals->fix_cortex_a8 == -1)
8027 {
8028 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
8029 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
8030 && (out_attr[Tag_CPU_arch_profile].i == 'A'
8031 || out_attr[Tag_CPU_arch_profile].i == 0))
8032 globals->fix_cortex_a8 = 1;
8033 else
8034 globals->fix_cortex_a8 = 0;
8035 }
8036}
8037
8038
c7b8f16e
JB
8039void
8040bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
8041{
8042 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
104d59d1 8043 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
906e58ca 8044
4dfe6ac6
NC
8045 if (globals == NULL)
8046 return;
c7b8f16e
JB
8047 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
8048 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
8049 {
8050 switch (globals->vfp11_fix)
99059e56
RM
8051 {
8052 case BFD_ARM_VFP11_FIX_DEFAULT:
8053 case BFD_ARM_VFP11_FIX_NONE:
8054 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
8055 break;
8056
8057 default:
8058 /* Give a warning, but do as the user requests anyway. */
871b3ab2 8059 _bfd_error_handler (_("%pB: warning: selected VFP11 erratum "
99059e56
RM
8060 "workaround is not necessary for target architecture"), obfd);
8061 }
c7b8f16e
JB
8062 }
8063 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
8064 /* For earlier architectures, we might need the workaround, but do not
8065 enable it by default. If users is running with broken hardware, they
8066 must enable the erratum fix explicitly. */
8067 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
8068}
8069
a504d23a
LA
8070void
8071bfd_elf32_arm_set_stm32l4xx_fix (bfd *obfd, struct bfd_link_info *link_info)
8072{
8073 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8074 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
8075
8076 if (globals == NULL)
8077 return;
8078
8079 /* We assume only Cortex-M4 may require the fix. */
8080 if (out_attr[Tag_CPU_arch].i != TAG_CPU_ARCH_V7E_M
8081 || out_attr[Tag_CPU_arch_profile].i != 'M')
8082 {
8083 if (globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE)
8084 /* Give a warning, but do as the user requests anyway. */
4eca0228 8085 _bfd_error_handler
871b3ab2 8086 (_("%pB: warning: selected STM32L4XX erratum "
a504d23a
LA
8087 "workaround is not necessary for target architecture"), obfd);
8088 }
8089}
c7b8f16e 8090
906e58ca
NC
8091enum bfd_arm_vfp11_pipe
8092{
c7b8f16e
JB
8093 VFP11_FMAC,
8094 VFP11_LS,
8095 VFP11_DS,
8096 VFP11_BAD
8097};
8098
8099/* Return a VFP register number. This is encoded as RX:X for single-precision
8100 registers, or X:RX for double-precision registers, where RX is the group of
8101 four bits in the instruction encoding and X is the single extension bit.
8102 RX and X fields are specified using their lowest (starting) bit. The return
8103 value is:
8104
8105 0...31: single-precision registers s0...s31
8106 32...63: double-precision registers d0...d31.
906e58ca 8107
c7b8f16e
JB
8108 Although X should be zero for VFP11 (encoding d0...d15 only), we might
8109 encounter VFP3 instructions, so we allow the full range for DP registers. */
906e58ca 8110
c7b8f16e
JB
8111static unsigned int
8112bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
99059e56 8113 unsigned int x)
c7b8f16e
JB
8114{
8115 if (is_double)
8116 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
8117 else
8118 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
8119}
8120
8121/* Set bits in *WMASK according to a register number REG as encoded by
8122 bfd_arm_vfp11_regno(). Ignore d16-d31. */
8123
8124static void
8125bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
8126{
8127 if (reg < 32)
8128 *wmask |= 1 << reg;
8129 else if (reg < 48)
8130 *wmask |= 3 << ((reg - 32) * 2);
8131}
8132
8133/* Return TRUE if WMASK overwrites anything in REGS. */
8134
8135static bfd_boolean
8136bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
8137{
8138 int i;
906e58ca 8139
c7b8f16e
JB
8140 for (i = 0; i < numregs; i++)
8141 {
8142 unsigned int reg = regs[i];
8143
8144 if (reg < 32 && (wmask & (1 << reg)) != 0)
99059e56 8145 return TRUE;
906e58ca 8146
c7b8f16e
JB
8147 reg -= 32;
8148
8149 if (reg >= 16)
99059e56 8150 continue;
906e58ca 8151
c7b8f16e 8152 if ((wmask & (3 << (reg * 2))) != 0)
99059e56 8153 return TRUE;
c7b8f16e 8154 }
906e58ca 8155
c7b8f16e
JB
8156 return FALSE;
8157}
8158
8159/* In this function, we're interested in two things: finding input registers
8160 for VFP data-processing instructions, and finding the set of registers which
8161 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
8162 hold the written set, so FLDM etc. are easy to deal with (we're only
8163 interested in 32 SP registers or 16 dp registers, due to the VFP version
8164 implemented by the chip in question). DP registers are marked by setting
8165 both SP registers in the write mask). */
8166
8167static enum bfd_arm_vfp11_pipe
8168bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
99059e56 8169 int *numregs)
c7b8f16e 8170{
91d6fa6a 8171 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
c7b8f16e
JB
8172 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
8173
8174 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
8175 {
8176 unsigned int pqrs;
8177 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
8178 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
8179
8180 pqrs = ((insn & 0x00800000) >> 20)
99059e56
RM
8181 | ((insn & 0x00300000) >> 19)
8182 | ((insn & 0x00000040) >> 6);
c7b8f16e
JB
8183
8184 switch (pqrs)
99059e56
RM
8185 {
8186 case 0: /* fmac[sd]. */
8187 case 1: /* fnmac[sd]. */
8188 case 2: /* fmsc[sd]. */
8189 case 3: /* fnmsc[sd]. */
8190 vpipe = VFP11_FMAC;
8191 bfd_arm_vfp11_write_mask (destmask, fd);
8192 regs[0] = fd;
8193 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
8194 regs[2] = fm;
8195 *numregs = 3;
8196 break;
8197
8198 case 4: /* fmul[sd]. */
8199 case 5: /* fnmul[sd]. */
8200 case 6: /* fadd[sd]. */
8201 case 7: /* fsub[sd]. */
8202 vpipe = VFP11_FMAC;
8203 goto vfp_binop;
8204
8205 case 8: /* fdiv[sd]. */
8206 vpipe = VFP11_DS;
8207 vfp_binop:
8208 bfd_arm_vfp11_write_mask (destmask, fd);
8209 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
8210 regs[1] = fm;
8211 *numregs = 2;
8212 break;
8213
8214 case 15: /* extended opcode. */
8215 {
8216 unsigned int extn = ((insn >> 15) & 0x1e)
8217 | ((insn >> 7) & 1);
8218
8219 switch (extn)
8220 {
8221 case 0: /* fcpy[sd]. */
8222 case 1: /* fabs[sd]. */
8223 case 2: /* fneg[sd]. */
8224 case 8: /* fcmp[sd]. */
8225 case 9: /* fcmpe[sd]. */
8226 case 10: /* fcmpz[sd]. */
8227 case 11: /* fcmpez[sd]. */
8228 case 16: /* fuito[sd]. */
8229 case 17: /* fsito[sd]. */
8230 case 24: /* ftoui[sd]. */
8231 case 25: /* ftouiz[sd]. */
8232 case 26: /* ftosi[sd]. */
8233 case 27: /* ftosiz[sd]. */
8234 /* These instructions will not bounce due to underflow. */
8235 *numregs = 0;
8236 vpipe = VFP11_FMAC;
8237 break;
8238
8239 case 3: /* fsqrt[sd]. */
8240 /* fsqrt cannot underflow, but it can (perhaps) overwrite
8241 registers to cause the erratum in previous instructions. */
8242 bfd_arm_vfp11_write_mask (destmask, fd);
8243 vpipe = VFP11_DS;
8244 break;
8245
8246 case 15: /* fcvt{ds,sd}. */
8247 {
8248 int rnum = 0;
8249
8250 bfd_arm_vfp11_write_mask (destmask, fd);
c7b8f16e
JB
8251
8252 /* Only FCVTSD can underflow. */
99059e56
RM
8253 if ((insn & 0x100) != 0)
8254 regs[rnum++] = fm;
c7b8f16e 8255
99059e56 8256 *numregs = rnum;
c7b8f16e 8257
99059e56
RM
8258 vpipe = VFP11_FMAC;
8259 }
8260 break;
c7b8f16e 8261
99059e56
RM
8262 default:
8263 return VFP11_BAD;
8264 }
8265 }
8266 break;
c7b8f16e 8267
99059e56
RM
8268 default:
8269 return VFP11_BAD;
8270 }
c7b8f16e
JB
8271 }
8272 /* Two-register transfer. */
8273 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
8274 {
8275 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
906e58ca 8276
c7b8f16e
JB
8277 if ((insn & 0x100000) == 0)
8278 {
99059e56
RM
8279 if (is_double)
8280 bfd_arm_vfp11_write_mask (destmask, fm);
8281 else
8282 {
8283 bfd_arm_vfp11_write_mask (destmask, fm);
8284 bfd_arm_vfp11_write_mask (destmask, fm + 1);
8285 }
c7b8f16e
JB
8286 }
8287
91d6fa6a 8288 vpipe = VFP11_LS;
c7b8f16e
JB
8289 }
8290 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
8291 {
8292 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
8293 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
906e58ca 8294
c7b8f16e 8295 switch (puw)
99059e56
RM
8296 {
8297 case 0: /* Two-reg transfer. We should catch these above. */
8298 abort ();
906e58ca 8299
99059e56
RM
8300 case 2: /* fldm[sdx]. */
8301 case 3:
8302 case 5:
8303 {
8304 unsigned int i, offset = insn & 0xff;
c7b8f16e 8305
99059e56
RM
8306 if (is_double)
8307 offset >>= 1;
c7b8f16e 8308
99059e56
RM
8309 for (i = fd; i < fd + offset; i++)
8310 bfd_arm_vfp11_write_mask (destmask, i);
8311 }
8312 break;
906e58ca 8313
99059e56
RM
8314 case 4: /* fld[sd]. */
8315 case 6:
8316 bfd_arm_vfp11_write_mask (destmask, fd);
8317 break;
906e58ca 8318
99059e56
RM
8319 default:
8320 return VFP11_BAD;
8321 }
c7b8f16e 8322
91d6fa6a 8323 vpipe = VFP11_LS;
c7b8f16e
JB
8324 }
8325 /* Single-register transfer. Note L==0. */
8326 else if ((insn & 0x0f100e10) == 0x0e000a10)
8327 {
8328 unsigned int opcode = (insn >> 21) & 7;
8329 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
8330
8331 switch (opcode)
99059e56
RM
8332 {
8333 case 0: /* fmsr/fmdlr. */
8334 case 1: /* fmdhr. */
8335 /* Mark fmdhr and fmdlr as writing to the whole of the DP
8336 destination register. I don't know if this is exactly right,
8337 but it is the conservative choice. */
8338 bfd_arm_vfp11_write_mask (destmask, fn);
8339 break;
8340
8341 case 7: /* fmxr. */
8342 break;
8343 }
c7b8f16e 8344
91d6fa6a 8345 vpipe = VFP11_LS;
c7b8f16e
JB
8346 }
8347
91d6fa6a 8348 return vpipe;
c7b8f16e
JB
8349}
8350
8351
8352static int elf32_arm_compare_mapping (const void * a, const void * b);
8353
8354
8355/* Look for potentially-troublesome code sequences which might trigger the
8356 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
8357 (available from ARM) for details of the erratum. A short version is
8358 described in ld.texinfo. */
8359
8360bfd_boolean
8361bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
8362{
8363 asection *sec;
8364 bfd_byte *contents = NULL;
8365 int state = 0;
8366 int regs[3], numregs = 0;
8367 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8368 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
906e58ca 8369
4dfe6ac6
NC
8370 if (globals == NULL)
8371 return FALSE;
8372
c7b8f16e
JB
8373 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
8374 The states transition as follows:
906e58ca 8375
c7b8f16e 8376 0 -> 1 (vector) or 0 -> 2 (scalar)
99059e56
RM
8377 A VFP FMAC-pipeline instruction has been seen. Fill
8378 regs[0]..regs[numregs-1] with its input operands. Remember this
8379 instruction in 'first_fmac'.
c7b8f16e
JB
8380
8381 1 -> 2
99059e56
RM
8382 Any instruction, except for a VFP instruction which overwrites
8383 regs[*].
906e58ca 8384
c7b8f16e
JB
8385 1 -> 3 [ -> 0 ] or
8386 2 -> 3 [ -> 0 ]
99059e56
RM
8387 A VFP instruction has been seen which overwrites any of regs[*].
8388 We must make a veneer! Reset state to 0 before examining next
8389 instruction.
906e58ca 8390
c7b8f16e 8391 2 -> 0
99059e56
RM
8392 If we fail to match anything in state 2, reset to state 0 and reset
8393 the instruction pointer to the instruction after 'first_fmac'.
c7b8f16e
JB
8394
8395 If the VFP11 vector mode is in use, there must be at least two unrelated
8396 instructions between anti-dependent VFP11 instructions to properly avoid
906e58ca 8397 triggering the erratum, hence the use of the extra state 1. */
c7b8f16e
JB
8398
8399 /* If we are only performing a partial link do not bother
8400 to construct any glue. */
0e1862bb 8401 if (bfd_link_relocatable (link_info))
c7b8f16e
JB
8402 return TRUE;
8403
0ffa91dd
NC
8404 /* Skip if this bfd does not correspond to an ELF image. */
8405 if (! is_arm_elf (abfd))
8406 return TRUE;
906e58ca 8407
c7b8f16e
JB
8408 /* We should have chosen a fix type by the time we get here. */
8409 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
8410
8411 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
8412 return TRUE;
2e6030b9 8413
33a7ffc2
JM
8414 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8415 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8416 return TRUE;
8417
c7b8f16e
JB
8418 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8419 {
8420 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
8421 struct _arm_elf_section_data *sec_data;
8422
8423 /* If we don't have executable progbits, we're not interested in this
99059e56 8424 section. Also skip if section is to be excluded. */
c7b8f16e 8425 if (elf_section_type (sec) != SHT_PROGBITS
99059e56
RM
8426 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8427 || (sec->flags & SEC_EXCLUDE) != 0
dbaa2011 8428 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
33a7ffc2 8429 || sec->output_section == bfd_abs_section_ptr
99059e56
RM
8430 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
8431 continue;
c7b8f16e
JB
8432
8433 sec_data = elf32_arm_section_data (sec);
906e58ca 8434
c7b8f16e 8435 if (sec_data->mapcount == 0)
99059e56 8436 continue;
906e58ca 8437
c7b8f16e
JB
8438 if (elf_section_data (sec)->this_hdr.contents != NULL)
8439 contents = elf_section_data (sec)->this_hdr.contents;
8440 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8441 goto error_return;
8442
8443 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8444 elf32_arm_compare_mapping);
8445
8446 for (span = 0; span < sec_data->mapcount; span++)
99059e56
RM
8447 {
8448 unsigned int span_start = sec_data->map[span].vma;
8449 unsigned int span_end = (span == sec_data->mapcount - 1)
c7b8f16e 8450 ? sec->size : sec_data->map[span + 1].vma;
99059e56
RM
8451 char span_type = sec_data->map[span].type;
8452
8453 /* FIXME: Only ARM mode is supported at present. We may need to
8454 support Thumb-2 mode also at some point. */
8455 if (span_type != 'a')
8456 continue;
8457
8458 for (i = span_start; i < span_end;)
8459 {
8460 unsigned int next_i = i + 4;
8461 unsigned int insn = bfd_big_endian (abfd)
13c9c485
AM
8462 ? (((unsigned) contents[i] << 24)
8463 | (contents[i + 1] << 16)
8464 | (contents[i + 2] << 8)
8465 | contents[i + 3])
8466 : (((unsigned) contents[i + 3] << 24)
8467 | (contents[i + 2] << 16)
8468 | (contents[i + 1] << 8)
8469 | contents[i]);
99059e56
RM
8470 unsigned int writemask = 0;
8471 enum bfd_arm_vfp11_pipe vpipe;
8472
8473 switch (state)
8474 {
8475 case 0:
8476 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
8477 &numregs);
8478 /* I'm assuming the VFP11 erratum can trigger with denorm
8479 operands on either the FMAC or the DS pipeline. This might
8480 lead to slightly overenthusiastic veneer insertion. */
8481 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
8482 {
8483 state = use_vector ? 1 : 2;
8484 first_fmac = i;
8485 veneer_of_insn = insn;
8486 }
8487 break;
8488
8489 case 1:
8490 {
8491 int other_regs[3], other_numregs;
8492 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
c7b8f16e 8493 other_regs,
99059e56
RM
8494 &other_numregs);
8495 if (vpipe != VFP11_BAD
8496 && bfd_arm_vfp11_antidependency (writemask, regs,
c7b8f16e 8497 numregs))
99059e56
RM
8498 state = 3;
8499 else
8500 state = 2;
8501 }
8502 break;
8503
8504 case 2:
8505 {
8506 int other_regs[3], other_numregs;
8507 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
c7b8f16e 8508 other_regs,
99059e56
RM
8509 &other_numregs);
8510 if (vpipe != VFP11_BAD
8511 && bfd_arm_vfp11_antidependency (writemask, regs,
c7b8f16e 8512 numregs))
99059e56
RM
8513 state = 3;
8514 else
8515 {
8516 state = 0;
8517 next_i = first_fmac + 4;
8518 }
8519 }
8520 break;
8521
8522 case 3:
8523 abort (); /* Should be unreachable. */
8524 }
8525
8526 if (state == 3)
8527 {
8528 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
8529 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
8530
8531 elf32_arm_section_data (sec)->erratumcount += 1;
8532
8533 newerr->u.b.vfp_insn = veneer_of_insn;
8534
8535 switch (span_type)
8536 {
8537 case 'a':
8538 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
8539 break;
8540
8541 default:
8542 abort ();
8543 }
8544
8545 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
c7b8f16e
JB
8546 first_fmac);
8547
99059e56 8548 newerr->vma = -1;
c7b8f16e 8549
99059e56
RM
8550 newerr->next = sec_data->erratumlist;
8551 sec_data->erratumlist = newerr;
c7b8f16e 8552
99059e56
RM
8553 state = 0;
8554 }
c7b8f16e 8555
99059e56
RM
8556 i = next_i;
8557 }
8558 }
906e58ca 8559
c9594989 8560 if (elf_section_data (sec)->this_hdr.contents != contents)
99059e56 8561 free (contents);
c7b8f16e
JB
8562 contents = NULL;
8563 }
8564
8565 return TRUE;
8566
dc1e8a47 8567 error_return:
c9594989 8568 if (elf_section_data (sec)->this_hdr.contents != contents)
c7b8f16e 8569 free (contents);
906e58ca 8570
c7b8f16e
JB
8571 return FALSE;
8572}
8573
8574/* Find virtual-memory addresses for VFP11 erratum veneers and return locations
8575 after sections have been laid out, using specially-named symbols. */
8576
8577void
8578bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
8579 struct bfd_link_info *link_info)
8580{
8581 asection *sec;
8582 struct elf32_arm_link_hash_table *globals;
8583 char *tmp_name;
906e58ca 8584
0e1862bb 8585 if (bfd_link_relocatable (link_info))
c7b8f16e 8586 return;
2e6030b9
MS
8587
8588 /* Skip if this bfd does not correspond to an ELF image. */
0ffa91dd 8589 if (! is_arm_elf (abfd))
2e6030b9
MS
8590 return;
8591
c7b8f16e 8592 globals = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
8593 if (globals == NULL)
8594 return;
906e58ca 8595
21d799b5 8596 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
99059e56 8597 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
7a0fb7be 8598 BFD_ASSERT (tmp_name);
c7b8f16e
JB
8599
8600 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8601 {
8602 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8603 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
906e58ca 8604
c7b8f16e 8605 for (; errnode != NULL; errnode = errnode->next)
99059e56
RM
8606 {
8607 struct elf_link_hash_entry *myh;
8608 bfd_vma vma;
8609
8610 switch (errnode->type)
8611 {
8612 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
8613 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
8614 /* Find veneer symbol. */
8615 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
c7b8f16e
JB
8616 errnode->u.b.veneer->u.v.id);
8617
99059e56
RM
8618 myh = elf_link_hash_lookup
8619 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
c7b8f16e 8620
a504d23a 8621 if (myh == NULL)
90b6238f
AM
8622 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8623 abfd, "VFP11", tmp_name);
a504d23a
LA
8624
8625 vma = myh->root.u.def.section->output_section->vma
8626 + myh->root.u.def.section->output_offset
8627 + myh->root.u.def.value;
8628
8629 errnode->u.b.veneer->vma = vma;
8630 break;
8631
8632 case VFP11_ERRATUM_ARM_VENEER:
8633 case VFP11_ERRATUM_THUMB_VENEER:
8634 /* Find return location. */
8635 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
8636 errnode->u.v.id);
8637
8638 myh = elf_link_hash_lookup
8639 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8640
8641 if (myh == NULL)
90b6238f
AM
8642 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8643 abfd, "VFP11", tmp_name);
a504d23a
LA
8644
8645 vma = myh->root.u.def.section->output_section->vma
8646 + myh->root.u.def.section->output_offset
8647 + myh->root.u.def.value;
8648
8649 errnode->u.v.branch->vma = vma;
8650 break;
8651
8652 default:
8653 abort ();
8654 }
8655 }
8656 }
8657
8658 free (tmp_name);
8659}
8660
8661/* Find virtual-memory addresses for STM32L4XX erratum veneers and
8662 return locations after sections have been laid out, using
8663 specially-named symbols. */
8664
8665void
8666bfd_elf32_arm_stm32l4xx_fix_veneer_locations (bfd *abfd,
8667 struct bfd_link_info *link_info)
8668{
8669 asection *sec;
8670 struct elf32_arm_link_hash_table *globals;
8671 char *tmp_name;
8672
8673 if (bfd_link_relocatable (link_info))
8674 return;
8675
8676 /* Skip if this bfd does not correspond to an ELF image. */
8677 if (! is_arm_elf (abfd))
8678 return;
8679
8680 globals = elf32_arm_hash_table (link_info);
8681 if (globals == NULL)
8682 return;
8683
8684 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8685 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
7a0fb7be 8686 BFD_ASSERT (tmp_name);
a504d23a
LA
8687
8688 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8689 {
8690 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8691 elf32_stm32l4xx_erratum_list *errnode = sec_data->stm32l4xx_erratumlist;
8692
8693 for (; errnode != NULL; errnode = errnode->next)
8694 {
8695 struct elf_link_hash_entry *myh;
8696 bfd_vma vma;
8697
8698 switch (errnode->type)
8699 {
8700 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
8701 /* Find veneer symbol. */
8702 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
8703 errnode->u.b.veneer->u.v.id);
8704
8705 myh = elf_link_hash_lookup
8706 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8707
8708 if (myh == NULL)
90b6238f
AM
8709 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8710 abfd, "STM32L4XX", tmp_name);
a504d23a
LA
8711
8712 vma = myh->root.u.def.section->output_section->vma
8713 + myh->root.u.def.section->output_offset
8714 + myh->root.u.def.value;
8715
8716 errnode->u.b.veneer->vma = vma;
8717 break;
8718
8719 case STM32L4XX_ERRATUM_VENEER:
8720 /* Find return location. */
8721 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
8722 errnode->u.v.id);
8723
8724 myh = elf_link_hash_lookup
8725 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8726
8727 if (myh == NULL)
90b6238f
AM
8728 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8729 abfd, "STM32L4XX", tmp_name);
a504d23a
LA
8730
8731 vma = myh->root.u.def.section->output_section->vma
8732 + myh->root.u.def.section->output_offset
8733 + myh->root.u.def.value;
8734
8735 errnode->u.v.branch->vma = vma;
8736 break;
8737
8738 default:
8739 abort ();
8740 }
8741 }
8742 }
8743
8744 free (tmp_name);
8745}
8746
8747static inline bfd_boolean
8748is_thumb2_ldmia (const insn32 insn)
8749{
8750 /* Encoding T2: LDM<c>.W <Rn>{!},<registers>
8751 1110 - 1000 - 10W1 - rrrr - PM (0) l - llll - llll - llll. */
8752 return (insn & 0xffd02000) == 0xe8900000;
8753}
8754
8755static inline bfd_boolean
8756is_thumb2_ldmdb (const insn32 insn)
8757{
8758 /* Encoding T1: LDMDB<c> <Rn>{!},<registers>
8759 1110 - 1001 - 00W1 - rrrr - PM (0) l - llll - llll - llll. */
8760 return (insn & 0xffd02000) == 0xe9100000;
8761}
8762
8763static inline bfd_boolean
8764is_thumb2_vldm (const insn32 insn)
8765{
8766 /* A6.5 Extension register load or store instruction
8767 A7.7.229
9239bbd3
CM
8768 We look for SP 32-bit and DP 64-bit registers.
8769 Encoding T1 VLDM{mode}<c> <Rn>{!}, <list>
8770 <list> is consecutive 64-bit registers
8771 1110 - 110P - UDW1 - rrrr - vvvv - 1011 - iiii - iiii
a504d23a
LA
8772 Encoding T2 VLDM{mode}<c> <Rn>{!}, <list>
8773 <list> is consecutive 32-bit registers
8774 1110 - 110P - UDW1 - rrrr - vvvv - 1010 - iiii - iiii
8775 if P==0 && U==1 && W==1 && Rn=1101 VPOP
8776 if PUW=010 || PUW=011 || PUW=101 VLDM. */
8777 return
9239bbd3
CM
8778 (((insn & 0xfe100f00) == 0xec100b00) ||
8779 ((insn & 0xfe100f00) == 0xec100a00))
a504d23a
LA
8780 && /* (IA without !). */
8781 (((((insn << 7) >> 28) & 0xd) == 0x4)
9239bbd3 8782 /* (IA with !), includes VPOP (when reg number is SP). */
a504d23a
LA
8783 || ((((insn << 7) >> 28) & 0xd) == 0x5)
8784 /* (DB with !). */
8785 || ((((insn << 7) >> 28) & 0xd) == 0x9));
8786}
8787
8788/* STM STM32L4XX erratum : This function assumes that it receives an LDM or
8789 VLDM opcode and:
8790 - computes the number and the mode of memory accesses
8791 - decides if the replacement should be done:
8792 . replaces only if > 8-word accesses
8793 . or (testing purposes only) replaces all accesses. */
8794
8795static bfd_boolean
8796stm32l4xx_need_create_replacing_stub (const insn32 insn,
8797 bfd_arm_stm32l4xx_fix stm32l4xx_fix)
8798{
9239bbd3 8799 int nb_words = 0;
a504d23a
LA
8800
8801 /* The field encoding the register list is the same for both LDMIA
8802 and LDMDB encodings. */
8803 if (is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn))
b25e998d 8804 nb_words = elf32_arm_popcount (insn & 0x0000ffff);
a504d23a 8805 else if (is_thumb2_vldm (insn))
9239bbd3 8806 nb_words = (insn & 0xff);
a504d23a
LA
8807
8808 /* DEFAULT mode accounts for the real bug condition situation,
8809 ALL mode inserts stubs for each LDM/VLDM instruction (testing). */
8810 return
9239bbd3 8811 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_DEFAULT) ? nb_words > 8 :
a504d23a
LA
8812 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_ALL) ? TRUE : FALSE;
8813}
8814
8815/* Look for potentially-troublesome code sequences which might trigger
8816 the STM STM32L4XX erratum. */
8817
8818bfd_boolean
8819bfd_elf32_arm_stm32l4xx_erratum_scan (bfd *abfd,
8820 struct bfd_link_info *link_info)
8821{
8822 asection *sec;
8823 bfd_byte *contents = NULL;
8824 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8825
8826 if (globals == NULL)
8827 return FALSE;
8828
8829 /* If we are only performing a partial link do not bother
8830 to construct any glue. */
8831 if (bfd_link_relocatable (link_info))
8832 return TRUE;
8833
8834 /* Skip if this bfd does not correspond to an ELF image. */
8835 if (! is_arm_elf (abfd))
8836 return TRUE;
8837
8838 if (globals->stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_NONE)
8839 return TRUE;
8840
8841 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8842 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8843 return TRUE;
8844
8845 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8846 {
8847 unsigned int i, span;
8848 struct _arm_elf_section_data *sec_data;
8849
8850 /* If we don't have executable progbits, we're not interested in this
8851 section. Also skip if section is to be excluded. */
8852 if (elf_section_type (sec) != SHT_PROGBITS
8853 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8854 || (sec->flags & SEC_EXCLUDE) != 0
8855 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8856 || sec->output_section == bfd_abs_section_ptr
8857 || strcmp (sec->name, STM32L4XX_ERRATUM_VENEER_SECTION_NAME) == 0)
8858 continue;
8859
8860 sec_data = elf32_arm_section_data (sec);
c7b8f16e 8861
a504d23a
LA
8862 if (sec_data->mapcount == 0)
8863 continue;
c7b8f16e 8864
a504d23a
LA
8865 if (elf_section_data (sec)->this_hdr.contents != NULL)
8866 contents = elf_section_data (sec)->this_hdr.contents;
8867 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8868 goto error_return;
c7b8f16e 8869
a504d23a
LA
8870 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8871 elf32_arm_compare_mapping);
c7b8f16e 8872
a504d23a
LA
8873 for (span = 0; span < sec_data->mapcount; span++)
8874 {
8875 unsigned int span_start = sec_data->map[span].vma;
8876 unsigned int span_end = (span == sec_data->mapcount - 1)
8877 ? sec->size : sec_data->map[span + 1].vma;
8878 char span_type = sec_data->map[span].type;
8879 int itblock_current_pos = 0;
c7b8f16e 8880
a504d23a
LA
8881 /* Only Thumb2 mode need be supported with this CM4 specific
8882 code, we should not encounter any arm mode eg span_type
8883 != 'a'. */
8884 if (span_type != 't')
8885 continue;
c7b8f16e 8886
a504d23a
LA
8887 for (i = span_start; i < span_end;)
8888 {
8889 unsigned int insn = bfd_get_16 (abfd, &contents[i]);
8890 bfd_boolean insn_32bit = FALSE;
8891 bfd_boolean is_ldm = FALSE;
8892 bfd_boolean is_vldm = FALSE;
8893 bfd_boolean is_not_last_in_it_block = FALSE;
8894
8895 /* The first 16-bits of all 32-bit thumb2 instructions start
8896 with opcode[15..13]=0b111 and the encoded op1 can be anything
8897 except opcode[12..11]!=0b00.
8898 See 32-bit Thumb instruction encoding. */
8899 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
8900 insn_32bit = TRUE;
c7b8f16e 8901
a504d23a
LA
8902 /* Compute the predicate that tells if the instruction
8903 is concerned by the IT block
8904 - Creates an error if there is a ldm that is not
8905 last in the IT block thus cannot be replaced
8906 - Otherwise we can create a branch at the end of the
8907 IT block, it will be controlled naturally by IT
8908 with the proper pseudo-predicate
8909 - So the only interesting predicate is the one that
8910 tells that we are not on the last item of an IT
8911 block. */
8912 if (itblock_current_pos != 0)
8913 is_not_last_in_it_block = !!--itblock_current_pos;
906e58ca 8914
a504d23a
LA
8915 if (insn_32bit)
8916 {
8917 /* Load the rest of the insn (in manual-friendly order). */
8918 insn = (insn << 16) | bfd_get_16 (abfd, &contents[i + 2]);
8919 is_ldm = is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn);
8920 is_vldm = is_thumb2_vldm (insn);
8921
8922 /* Veneers are created for (v)ldm depending on
8923 option flags and memory accesses conditions; but
8924 if the instruction is not the last instruction of
8925 an IT block, we cannot create a jump there, so we
8926 bail out. */
5025eb7c
AO
8927 if ((is_ldm || is_vldm)
8928 && stm32l4xx_need_create_replacing_stub
a504d23a
LA
8929 (insn, globals->stm32l4xx_fix))
8930 {
8931 if (is_not_last_in_it_block)
8932 {
4eca0228 8933 _bfd_error_handler
695344c0 8934 /* xgettext:c-format */
871b3ab2 8935 (_("%pB(%pA+%#x): error: multiple load detected"
90b6238f
AM
8936 " in non-last IT block instruction:"
8937 " STM32L4XX veneer cannot be generated; "
8938 "use gcc option -mrestrict-it to generate"
8939 " only one instruction per IT block"),
d42c267e 8940 abfd, sec, i);
a504d23a
LA
8941 }
8942 else
8943 {
8944 elf32_stm32l4xx_erratum_list *newerr =
8945 (elf32_stm32l4xx_erratum_list *)
8946 bfd_zmalloc
8947 (sizeof (elf32_stm32l4xx_erratum_list));
8948
8949 elf32_arm_section_data (sec)
8950 ->stm32l4xx_erratumcount += 1;
8951 newerr->u.b.insn = insn;
8952 /* We create only thumb branches. */
8953 newerr->type =
8954 STM32L4XX_ERRATUM_BRANCH_TO_VENEER;
8955 record_stm32l4xx_erratum_veneer
8956 (link_info, newerr, abfd, sec,
8957 i,
8958 is_ldm ?
8959 STM32L4XX_ERRATUM_LDM_VENEER_SIZE:
8960 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
8961 newerr->vma = -1;
8962 newerr->next = sec_data->stm32l4xx_erratumlist;
8963 sec_data->stm32l4xx_erratumlist = newerr;
8964 }
8965 }
8966 }
8967 else
8968 {
8969 /* A7.7.37 IT p208
8970 IT blocks are only encoded in T1
8971 Encoding T1: IT{x{y{z}}} <firstcond>
8972 1 0 1 1 - 1 1 1 1 - firstcond - mask
8973 if mask = '0000' then see 'related encodings'
8974 We don't deal with UNPREDICTABLE, just ignore these.
8975 There can be no nested IT blocks so an IT block
8976 is naturally a new one for which it is worth
8977 computing its size. */
5025eb7c
AO
8978 bfd_boolean is_newitblock = ((insn & 0xff00) == 0xbf00)
8979 && ((insn & 0x000f) != 0x0000);
a504d23a
LA
8980 /* If we have a new IT block we compute its size. */
8981 if (is_newitblock)
8982 {
8983 /* Compute the number of instructions controlled
8984 by the IT block, it will be used to decide
8985 whether we are inside an IT block or not. */
8986 unsigned int mask = insn & 0x000f;
8987 itblock_current_pos = 4 - ctz (mask);
8988 }
8989 }
8990
8991 i += insn_32bit ? 4 : 2;
99059e56
RM
8992 }
8993 }
a504d23a 8994
c9594989 8995 if (elf_section_data (sec)->this_hdr.contents != contents)
a504d23a
LA
8996 free (contents);
8997 contents = NULL;
c7b8f16e 8998 }
906e58ca 8999
a504d23a
LA
9000 return TRUE;
9001
dc1e8a47 9002 error_return:
c9594989 9003 if (elf_section_data (sec)->this_hdr.contents != contents)
a504d23a 9004 free (contents);
c7b8f16e 9005
a504d23a
LA
9006 return FALSE;
9007}
c7b8f16e 9008
eb043451
PB
9009/* Set target relocation values needed during linking. */
9010
9011void
68c39892 9012bfd_elf32_arm_set_target_params (struct bfd *output_bfd,
bf21ed78 9013 struct bfd_link_info *link_info,
68c39892 9014 struct elf32_arm_params *params)
eb043451
PB
9015{
9016 struct elf32_arm_link_hash_table *globals;
9017
9018 globals = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
9019 if (globals == NULL)
9020 return;
eb043451 9021
68c39892 9022 globals->target1_is_rel = params->target1_is_rel;
29e9b073
CL
9023 if (globals->fdpic_p)
9024 globals->target2_reloc = R_ARM_GOT32;
9025 else if (strcmp (params->target2_type, "rel") == 0)
eb043451 9026 globals->target2_reloc = R_ARM_REL32;
68c39892 9027 else if (strcmp (params->target2_type, "abs") == 0)
eeac373a 9028 globals->target2_reloc = R_ARM_ABS32;
68c39892 9029 else if (strcmp (params->target2_type, "got-rel") == 0)
eb043451
PB
9030 globals->target2_reloc = R_ARM_GOT_PREL;
9031 else
9032 {
90b6238f 9033 _bfd_error_handler (_("invalid TARGET2 relocation type '%s'"),
68c39892 9034 params->target2_type);
eb043451 9035 }
68c39892
TP
9036 globals->fix_v4bx = params->fix_v4bx;
9037 globals->use_blx |= params->use_blx;
9038 globals->vfp11_fix = params->vfp11_denorm_fix;
9039 globals->stm32l4xx_fix = params->stm32l4xx_fix;
e8b09b87
CL
9040 if (globals->fdpic_p)
9041 globals->pic_veneer = 1;
9042 else
9043 globals->pic_veneer = params->pic_veneer;
68c39892
TP
9044 globals->fix_cortex_a8 = params->fix_cortex_a8;
9045 globals->fix_arm1176 = params->fix_arm1176;
9046 globals->cmse_implib = params->cmse_implib;
9047 globals->in_implib_bfd = params->in_implib_bfd;
bf21ed78 9048
0ffa91dd 9049 BFD_ASSERT (is_arm_elf (output_bfd));
68c39892
TP
9050 elf_arm_tdata (output_bfd)->no_enum_size_warning
9051 = params->no_enum_size_warning;
9052 elf_arm_tdata (output_bfd)->no_wchar_size_warning
9053 = params->no_wchar_size_warning;
eb043451 9054}
eb043451 9055
12a0a0fd 9056/* Replace the target offset of a Thumb bl or b.w instruction. */
252b5132 9057
12a0a0fd
PB
9058static void
9059insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
9060{
9061 bfd_vma upper;
9062 bfd_vma lower;
9063 int reloc_sign;
9064
9065 BFD_ASSERT ((offset & 1) == 0);
9066
9067 upper = bfd_get_16 (abfd, insn);
9068 lower = bfd_get_16 (abfd, insn + 2);
9069 reloc_sign = (offset < 0) ? 1 : 0;
9070 upper = (upper & ~(bfd_vma) 0x7ff)
9071 | ((offset >> 12) & 0x3ff)
9072 | (reloc_sign << 10);
906e58ca 9073 lower = (lower & ~(bfd_vma) 0x2fff)
12a0a0fd
PB
9074 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
9075 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
9076 | ((offset >> 1) & 0x7ff);
9077 bfd_put_16 (abfd, upper, insn);
9078 bfd_put_16 (abfd, lower, insn + 2);
252b5132
RH
9079}
9080
9b485d32
NC
9081/* Thumb code calling an ARM function. */
9082
252b5132 9083static int
57e8b36a 9084elf32_thumb_to_arm_stub (struct bfd_link_info * info,
07d6d2b8
AM
9085 const char * name,
9086 bfd * input_bfd,
9087 bfd * output_bfd,
9088 asection * input_section,
9089 bfd_byte * hit_data,
9090 asection * sym_sec,
9091 bfd_vma offset,
9092 bfd_signed_vma addend,
9093 bfd_vma val,
f2a9dd69 9094 char **error_message)
252b5132 9095{
bcbdc74c 9096 asection * s = 0;
dc810e39 9097 bfd_vma my_offset;
252b5132 9098 long int ret_offset;
bcbdc74c
NC
9099 struct elf_link_hash_entry * myh;
9100 struct elf32_arm_link_hash_table * globals;
252b5132 9101
f2a9dd69 9102 myh = find_thumb_glue (info, name, error_message);
252b5132 9103 if (myh == NULL)
b34976b6 9104 return FALSE;
252b5132
RH
9105
9106 globals = elf32_arm_hash_table (info);
252b5132
RH
9107 BFD_ASSERT (globals != NULL);
9108 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9109
9110 my_offset = myh->root.u.def.value;
9111
3d4d4302
AM
9112 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9113 THUMB2ARM_GLUE_SECTION_NAME);
252b5132
RH
9114
9115 BFD_ASSERT (s != NULL);
9116 BFD_ASSERT (s->contents != NULL);
9117 BFD_ASSERT (s->output_section != NULL);
9118
9119 if ((my_offset & 0x01) == 0x01)
9120 {
9121 if (sym_sec != NULL
9122 && sym_sec->owner != NULL
9123 && !INTERWORK_FLAG (sym_sec->owner))
9124 {
4eca0228 9125 _bfd_error_handler
90b6238f
AM
9126 (_("%pB(%s): warning: interworking not enabled;"
9127 " first occurrence: %pB: %s call to %s"),
9128 sym_sec->owner, name, input_bfd, "Thumb", "ARM");
252b5132 9129
b34976b6 9130 return FALSE;
252b5132
RH
9131 }
9132
9133 --my_offset;
9134 myh->root.u.def.value = my_offset;
9135
52ab56c2
PB
9136 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
9137 s->contents + my_offset);
252b5132 9138
52ab56c2
PB
9139 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
9140 s->contents + my_offset + 2);
252b5132
RH
9141
9142 ret_offset =
9b485d32
NC
9143 /* Address of destination of the stub. */
9144 ((bfd_signed_vma) val)
252b5132 9145 - ((bfd_signed_vma)
57e8b36a
NC
9146 /* Offset from the start of the current section
9147 to the start of the stubs. */
9b485d32
NC
9148 (s->output_offset
9149 /* Offset of the start of this stub from the start of the stubs. */
9150 + my_offset
9151 /* Address of the start of the current section. */
9152 + s->output_section->vma)
9153 /* The branch instruction is 4 bytes into the stub. */
9154 + 4
9155 /* ARM branches work from the pc of the instruction + 8. */
9156 + 8);
252b5132 9157
52ab56c2
PB
9158 put_arm_insn (globals, output_bfd,
9159 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
9160 s->contents + my_offset + 4);
252b5132
RH
9161 }
9162
9163 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
9164
427bfd90
NC
9165 /* Now go back and fix up the original BL insn to point to here. */
9166 ret_offset =
9167 /* Address of where the stub is located. */
9168 (s->output_section->vma + s->output_offset + my_offset)
9169 /* Address of where the BL is located. */
57e8b36a
NC
9170 - (input_section->output_section->vma + input_section->output_offset
9171 + offset)
427bfd90
NC
9172 /* Addend in the relocation. */
9173 - addend
9174 /* Biassing for PC-relative addressing. */
9175 - 8;
252b5132 9176
12a0a0fd 9177 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
252b5132 9178
b34976b6 9179 return TRUE;
252b5132
RH
9180}
9181
a4fd1a8e 9182/* Populate an Arm to Thumb stub. Returns the stub symbol. */
9b485d32 9183
a4fd1a8e
PB
9184static struct elf_link_hash_entry *
9185elf32_arm_create_thumb_stub (struct bfd_link_info * info,
07d6d2b8
AM
9186 const char * name,
9187 bfd * input_bfd,
9188 bfd * output_bfd,
9189 asection * sym_sec,
9190 bfd_vma val,
9191 asection * s,
9192 char ** error_message)
252b5132 9193{
dc810e39 9194 bfd_vma my_offset;
252b5132 9195 long int ret_offset;
bcbdc74c
NC
9196 struct elf_link_hash_entry * myh;
9197 struct elf32_arm_link_hash_table * globals;
252b5132 9198
f2a9dd69 9199 myh = find_arm_glue (info, name, error_message);
252b5132 9200 if (myh == NULL)
a4fd1a8e 9201 return NULL;
252b5132
RH
9202
9203 globals = elf32_arm_hash_table (info);
252b5132
RH
9204 BFD_ASSERT (globals != NULL);
9205 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9206
9207 my_offset = myh->root.u.def.value;
252b5132
RH
9208
9209 if ((my_offset & 0x01) == 0x01)
9210 {
9211 if (sym_sec != NULL
9212 && sym_sec->owner != NULL
9213 && !INTERWORK_FLAG (sym_sec->owner))
9214 {
4eca0228 9215 _bfd_error_handler
90b6238f
AM
9216 (_("%pB(%s): warning: interworking not enabled;"
9217 " first occurrence: %pB: %s call to %s"),
9218 sym_sec->owner, name, input_bfd, "ARM", "Thumb");
252b5132 9219 }
9b485d32 9220
252b5132
RH
9221 --my_offset;
9222 myh->root.u.def.value = my_offset;
9223
0e1862bb
L
9224 if (bfd_link_pic (info)
9225 || globals->root.is_relocatable_executable
27e55c4d 9226 || globals->pic_veneer)
8f6277f5
PB
9227 {
9228 /* For relocatable objects we can't use absolute addresses,
9229 so construct the address from a relative offset. */
9230 /* TODO: If the offset is small it's probably worth
9231 constructing the address with adds. */
52ab56c2
PB
9232 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
9233 s->contents + my_offset);
9234 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
9235 s->contents + my_offset + 4);
9236 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
9237 s->contents + my_offset + 8);
8f6277f5
PB
9238 /* Adjust the offset by 4 for the position of the add,
9239 and 8 for the pipeline offset. */
9240 ret_offset = (val - (s->output_offset
9241 + s->output_section->vma
9242 + my_offset + 12))
9243 | 1;
9244 bfd_put_32 (output_bfd, ret_offset,
9245 s->contents + my_offset + 12);
9246 }
26079076
PB
9247 else if (globals->use_blx)
9248 {
9249 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
9250 s->contents + my_offset);
9251
9252 /* It's a thumb address. Add the low order bit. */
9253 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
9254 s->contents + my_offset + 4);
9255 }
8f6277f5
PB
9256 else
9257 {
52ab56c2
PB
9258 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
9259 s->contents + my_offset);
252b5132 9260
52ab56c2
PB
9261 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
9262 s->contents + my_offset + 4);
252b5132 9263
8f6277f5
PB
9264 /* It's a thumb address. Add the low order bit. */
9265 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
9266 s->contents + my_offset + 8);
8029a119
NC
9267
9268 my_offset += 12;
8f6277f5 9269 }
252b5132
RH
9270 }
9271
9272 BFD_ASSERT (my_offset <= globals->arm_glue_size);
9273
a4fd1a8e
PB
9274 return myh;
9275}
9276
9277/* Arm code calling a Thumb function. */
9278
9279static int
9280elf32_arm_to_thumb_stub (struct bfd_link_info * info,
07d6d2b8
AM
9281 const char * name,
9282 bfd * input_bfd,
9283 bfd * output_bfd,
9284 asection * input_section,
9285 bfd_byte * hit_data,
9286 asection * sym_sec,
9287 bfd_vma offset,
9288 bfd_signed_vma addend,
9289 bfd_vma val,
f2a9dd69 9290 char **error_message)
a4fd1a8e
PB
9291{
9292 unsigned long int tmp;
9293 bfd_vma my_offset;
9294 asection * s;
9295 long int ret_offset;
9296 struct elf_link_hash_entry * myh;
9297 struct elf32_arm_link_hash_table * globals;
9298
9299 globals = elf32_arm_hash_table (info);
a4fd1a8e
PB
9300 BFD_ASSERT (globals != NULL);
9301 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9302
3d4d4302
AM
9303 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9304 ARM2THUMB_GLUE_SECTION_NAME);
a4fd1a8e
PB
9305 BFD_ASSERT (s != NULL);
9306 BFD_ASSERT (s->contents != NULL);
9307 BFD_ASSERT (s->output_section != NULL);
9308
9309 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
f2a9dd69 9310 sym_sec, val, s, error_message);
a4fd1a8e
PB
9311 if (!myh)
9312 return FALSE;
9313
9314 my_offset = myh->root.u.def.value;
252b5132
RH
9315 tmp = bfd_get_32 (input_bfd, hit_data);
9316 tmp = tmp & 0xFF000000;
9317
9b485d32 9318 /* Somehow these are both 4 too far, so subtract 8. */
dc810e39
AM
9319 ret_offset = (s->output_offset
9320 + my_offset
9321 + s->output_section->vma
9322 - (input_section->output_offset
9323 + input_section->output_section->vma
9324 + offset + addend)
9325 - 8);
9a5aca8c 9326
252b5132
RH
9327 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
9328
dc810e39 9329 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
252b5132 9330
b34976b6 9331 return TRUE;
252b5132
RH
9332}
9333
a4fd1a8e
PB
9334/* Populate Arm stub for an exported Thumb function. */
9335
9336static bfd_boolean
9337elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
9338{
9339 struct bfd_link_info * info = (struct bfd_link_info *) inf;
9340 asection * s;
9341 struct elf_link_hash_entry * myh;
9342 struct elf32_arm_link_hash_entry *eh;
9343 struct elf32_arm_link_hash_table * globals;
9344 asection *sec;
9345 bfd_vma val;
f2a9dd69 9346 char *error_message;
a4fd1a8e 9347
906e58ca 9348 eh = elf32_arm_hash_entry (h);
a4fd1a8e
PB
9349 /* Allocate stubs for exported Thumb functions on v4t. */
9350 if (eh->export_glue == NULL)
9351 return TRUE;
9352
9353 globals = elf32_arm_hash_table (info);
a4fd1a8e
PB
9354 BFD_ASSERT (globals != NULL);
9355 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9356
3d4d4302
AM
9357 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9358 ARM2THUMB_GLUE_SECTION_NAME);
a4fd1a8e
PB
9359 BFD_ASSERT (s != NULL);
9360 BFD_ASSERT (s->contents != NULL);
9361 BFD_ASSERT (s->output_section != NULL);
9362
9363 sec = eh->export_glue->root.u.def.section;
0eaedd0e
PB
9364
9365 BFD_ASSERT (sec->output_section != NULL);
9366
a4fd1a8e
PB
9367 val = eh->export_glue->root.u.def.value + sec->output_offset
9368 + sec->output_section->vma;
8029a119 9369
a4fd1a8e
PB
9370 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
9371 h->root.u.def.section->owner,
f2a9dd69
DJ
9372 globals->obfd, sec, val, s,
9373 &error_message);
a4fd1a8e
PB
9374 BFD_ASSERT (myh);
9375 return TRUE;
9376}
9377
845b51d6
PB
9378/* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
9379
9380static bfd_vma
9381elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
9382{
9383 bfd_byte *p;
9384 bfd_vma glue_addr;
9385 asection *s;
9386 struct elf32_arm_link_hash_table *globals;
9387
9388 globals = elf32_arm_hash_table (info);
845b51d6
PB
9389 BFD_ASSERT (globals != NULL);
9390 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9391
3d4d4302
AM
9392 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9393 ARM_BX_GLUE_SECTION_NAME);
845b51d6
PB
9394 BFD_ASSERT (s != NULL);
9395 BFD_ASSERT (s->contents != NULL);
9396 BFD_ASSERT (s->output_section != NULL);
9397
9398 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
9399
9400 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
9401
9402 if ((globals->bx_glue_offset[reg] & 1) == 0)
9403 {
9404 p = s->contents + glue_addr;
9405 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
9406 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
9407 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
9408 globals->bx_glue_offset[reg] |= 1;
9409 }
9410
9411 return glue_addr + s->output_section->vma + s->output_offset;
9412}
9413
a4fd1a8e
PB
9414/* Generate Arm stubs for exported Thumb symbols. */
9415static void
906e58ca 9416elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
a4fd1a8e
PB
9417 struct bfd_link_info *link_info)
9418{
9419 struct elf32_arm_link_hash_table * globals;
9420
8029a119
NC
9421 if (link_info == NULL)
9422 /* Ignore this if we are not called by the ELF backend linker. */
a4fd1a8e
PB
9423 return;
9424
9425 globals = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
9426 if (globals == NULL)
9427 return;
9428
84c08195
PB
9429 /* If blx is available then exported Thumb symbols are OK and there is
9430 nothing to do. */
a4fd1a8e
PB
9431 if (globals->use_blx)
9432 return;
9433
9434 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
9435 link_info);
9436}
9437
47beaa6a
RS
9438/* Reserve space for COUNT dynamic relocations in relocation selection
9439 SRELOC. */
9440
9441static void
9442elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
9443 bfd_size_type count)
9444{
9445 struct elf32_arm_link_hash_table *htab;
9446
9447 htab = elf32_arm_hash_table (info);
9448 BFD_ASSERT (htab->root.dynamic_sections_created);
9449 if (sreloc == NULL)
9450 abort ();
9451 sreloc->size += RELOC_SIZE (htab) * count;
9452}
9453
34e77a92
RS
9454/* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
9455 dynamic, the relocations should go in SRELOC, otherwise they should
9456 go in the special .rel.iplt section. */
9457
9458static void
9459elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
9460 bfd_size_type count)
9461{
9462 struct elf32_arm_link_hash_table *htab;
9463
9464 htab = elf32_arm_hash_table (info);
9465 if (!htab->root.dynamic_sections_created)
9466 htab->root.irelplt->size += RELOC_SIZE (htab) * count;
9467 else
9468 {
9469 BFD_ASSERT (sreloc != NULL);
9470 sreloc->size += RELOC_SIZE (htab) * count;
9471 }
9472}
9473
47beaa6a
RS
9474/* Add relocation REL to the end of relocation section SRELOC. */
9475
9476static void
9477elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
9478 asection *sreloc, Elf_Internal_Rela *rel)
9479{
9480 bfd_byte *loc;
9481 struct elf32_arm_link_hash_table *htab;
9482
9483 htab = elf32_arm_hash_table (info);
34e77a92
RS
9484 if (!htab->root.dynamic_sections_created
9485 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
9486 sreloc = htab->root.irelplt;
47beaa6a
RS
9487 if (sreloc == NULL)
9488 abort ();
9489 loc = sreloc->contents;
9490 loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
9491 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
9492 abort ();
9493 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
9494}
9495
34e77a92
RS
9496/* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
9497 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
9498 to .plt. */
9499
9500static void
9501elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
9502 bfd_boolean is_iplt_entry,
9503 union gotplt_union *root_plt,
9504 struct arm_plt_info *arm_plt)
9505{
9506 struct elf32_arm_link_hash_table *htab;
9507 asection *splt;
9508 asection *sgotplt;
9509
9510 htab = elf32_arm_hash_table (info);
9511
9512 if (is_iplt_entry)
9513 {
9514 splt = htab->root.iplt;
9515 sgotplt = htab->root.igotplt;
9516
99059e56 9517 /* NaCl uses a special first entry in .iplt too. */
90c14f0c 9518 if (htab->root.target_os == is_nacl && splt->size == 0)
99059e56
RM
9519 splt->size += htab->plt_header_size;
9520
34e77a92
RS
9521 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
9522 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
9523 }
9524 else
9525 {
9526 splt = htab->root.splt;
9527 sgotplt = htab->root.sgotplt;
9528
7801f98f
CL
9529 if (htab->fdpic_p)
9530 {
9531 /* Allocate room for R_ARM_FUNCDESC_VALUE. */
9532 /* For lazy binding, relocations will be put into .rel.plt, in
9533 .rel.got otherwise. */
9534 /* FIXME: today we don't support lazy binding so put it in .rel.got */
9535 if (info->flags & DF_BIND_NOW)
9536 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
9537 else
9538 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
9539 }
9540 else
9541 {
9542 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
9543 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
9544 }
34e77a92
RS
9545
9546 /* If this is the first .plt entry, make room for the special
9547 first entry. */
9548 if (splt->size == 0)
9549 splt->size += htab->plt_header_size;
9f19ab6d
WN
9550
9551 htab->next_tls_desc_index++;
34e77a92
RS
9552 }
9553
9554 /* Allocate the PLT entry itself, including any leading Thumb stub. */
9555 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9556 splt->size += PLT_THUMB_STUB_SIZE;
9557 root_plt->offset = splt->size;
9558 splt->size += htab->plt_entry_size;
9559
90c14f0c 9560 if (htab->root.target_os != is_symbian)
34e77a92
RS
9561 {
9562 /* We also need to make an entry in the .got.plt section, which
9563 will be placed in the .got section by the linker script. */
9f19ab6d
WN
9564 if (is_iplt_entry)
9565 arm_plt->got_offset = sgotplt->size;
9566 else
9567 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
7801f98f
CL
9568 if (htab->fdpic_p)
9569 /* Function descriptor takes 64 bits in GOT. */
4b24dd1a 9570 sgotplt->size += 8;
7801f98f
CL
9571 else
9572 sgotplt->size += 4;
34e77a92
RS
9573 }
9574}
9575
b38cadfb
NC
9576static bfd_vma
9577arm_movw_immediate (bfd_vma value)
9578{
9579 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
9580}
9581
9582static bfd_vma
9583arm_movt_immediate (bfd_vma value)
9584{
9585 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
9586}
9587
34e77a92
RS
9588/* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
9589 the entry lives in .iplt and resolves to (*SYM_VALUE)().
9590 Otherwise, DYNINDX is the index of the symbol in the dynamic
9591 symbol table and SYM_VALUE is undefined.
9592
9593 ROOT_PLT points to the offset of the PLT entry from the start of its
9594 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
57460bcf 9595 bookkeeping information.
34e77a92 9596
57460bcf
NC
9597 Returns FALSE if there was a problem. */
9598
9599static bfd_boolean
34e77a92
RS
9600elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
9601 union gotplt_union *root_plt,
9602 struct arm_plt_info *arm_plt,
9603 int dynindx, bfd_vma sym_value)
9604{
9605 struct elf32_arm_link_hash_table *htab;
9606 asection *sgot;
9607 asection *splt;
9608 asection *srel;
9609 bfd_byte *loc;
9610 bfd_vma plt_index;
9611 Elf_Internal_Rela rel;
9612 bfd_vma plt_header_size;
9613 bfd_vma got_header_size;
9614
9615 htab = elf32_arm_hash_table (info);
9616
9617 /* Pick the appropriate sections and sizes. */
9618 if (dynindx == -1)
9619 {
9620 splt = htab->root.iplt;
9621 sgot = htab->root.igotplt;
9622 srel = htab->root.irelplt;
9623
9624 /* There are no reserved entries in .igot.plt, and no special
9625 first entry in .iplt. */
9626 got_header_size = 0;
9627 plt_header_size = 0;
9628 }
9629 else
9630 {
9631 splt = htab->root.splt;
9632 sgot = htab->root.sgotplt;
9633 srel = htab->root.srelplt;
9634
9635 got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
9636 plt_header_size = htab->plt_header_size;
9637 }
9638 BFD_ASSERT (splt != NULL && srel != NULL);
9639
9640 /* Fill in the entry in the procedure linkage table. */
90c14f0c 9641 if (htab->root.target_os == is_symbian)
34e77a92
RS
9642 {
9643 BFD_ASSERT (dynindx >= 0);
9644 put_arm_insn (htab, output_bfd,
9645 elf32_arm_symbian_plt_entry[0],
9646 splt->contents + root_plt->offset);
9647 bfd_put_32 (output_bfd,
9648 elf32_arm_symbian_plt_entry[1],
9649 splt->contents + root_plt->offset + 4);
9650
9651 /* Fill in the entry in the .rel.plt section. */
9652 rel.r_offset = (splt->output_section->vma
9653 + splt->output_offset
9654 + root_plt->offset + 4);
9655 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
9656
9657 /* Get the index in the procedure linkage table which
9658 corresponds to this symbol. This is the index of this symbol
9659 in all the symbols for which we are making plt entries. The
9660 first entry in the procedure linkage table is reserved. */
9661 plt_index = ((root_plt->offset - plt_header_size)
9662 / htab->plt_entry_size);
9663 }
9664 else
9665 {
9666 bfd_vma got_offset, got_address, plt_address;
9667 bfd_vma got_displacement, initial_got_entry;
9668 bfd_byte * ptr;
9669
9670 BFD_ASSERT (sgot != NULL);
9671
9672 /* Get the offset into the .(i)got.plt table of the entry that
9673 corresponds to this function. */
9674 got_offset = (arm_plt->got_offset & -2);
9675
9676 /* Get the index in the procedure linkage table which
9677 corresponds to this symbol. This is the index of this symbol
9678 in all the symbols for which we are making plt entries.
9679 After the reserved .got.plt entries, all symbols appear in
9680 the same order as in .plt. */
7801f98f 9681 if (htab->fdpic_p)
4b24dd1a
AM
9682 /* Function descriptor takes 8 bytes. */
9683 plt_index = (got_offset - got_header_size) / 8;
7801f98f 9684 else
4b24dd1a 9685 plt_index = (got_offset - got_header_size) / 4;
34e77a92
RS
9686
9687 /* Calculate the address of the GOT entry. */
9688 got_address = (sgot->output_section->vma
9689 + sgot->output_offset
9690 + got_offset);
9691
9692 /* ...and the address of the PLT entry. */
9693 plt_address = (splt->output_section->vma
9694 + splt->output_offset
9695 + root_plt->offset);
9696
9697 ptr = splt->contents + root_plt->offset;
90c14f0c 9698 if (htab->root.target_os == is_vxworks && bfd_link_pic (info))
34e77a92
RS
9699 {
9700 unsigned int i;
9701 bfd_vma val;
9702
9703 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9704 {
9705 val = elf32_arm_vxworks_shared_plt_entry[i];
9706 if (i == 2)
9707 val |= got_address - sgot->output_section->vma;
9708 if (i == 5)
9709 val |= plt_index * RELOC_SIZE (htab);
9710 if (i == 2 || i == 5)
9711 bfd_put_32 (output_bfd, val, ptr);
9712 else
9713 put_arm_insn (htab, output_bfd, val, ptr);
9714 }
9715 }
90c14f0c 9716 else if (htab->root.target_os == is_vxworks)
34e77a92
RS
9717 {
9718 unsigned int i;
9719 bfd_vma val;
9720
9721 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9722 {
9723 val = elf32_arm_vxworks_exec_plt_entry[i];
9724 if (i == 2)
9725 val |= got_address;
9726 if (i == 4)
9727 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
9728 if (i == 5)
9729 val |= plt_index * RELOC_SIZE (htab);
9730 if (i == 2 || i == 5)
9731 bfd_put_32 (output_bfd, val, ptr);
9732 else
9733 put_arm_insn (htab, output_bfd, val, ptr);
9734 }
9735
9736 loc = (htab->srelplt2->contents
9737 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
9738
9739 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
9740 referencing the GOT for this PLT entry. */
9741 rel.r_offset = plt_address + 8;
9742 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
9743 rel.r_addend = got_offset;
9744 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9745 loc += RELOC_SIZE (htab);
9746
9747 /* Create the R_ARM_ABS32 relocation referencing the
9748 beginning of the PLT for this GOT entry. */
9749 rel.r_offset = got_address;
9750 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
9751 rel.r_addend = 0;
9752 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9753 }
90c14f0c 9754 else if (htab->root.target_os == is_nacl)
b38cadfb
NC
9755 {
9756 /* Calculate the displacement between the PLT slot and the
9757 common tail that's part of the special initial PLT slot. */
6034aab8 9758 int32_t tail_displacement
b38cadfb
NC
9759 = ((splt->output_section->vma + splt->output_offset
9760 + ARM_NACL_PLT_TAIL_OFFSET)
9761 - (plt_address + htab->plt_entry_size + 4));
9762 BFD_ASSERT ((tail_displacement & 3) == 0);
9763 tail_displacement >>= 2;
9764
9765 BFD_ASSERT ((tail_displacement & 0xff000000) == 0
9766 || (-tail_displacement & 0xff000000) == 0);
9767
9768 /* Calculate the displacement between the PLT slot and the entry
9769 in the GOT. The offset accounts for the value produced by
9770 adding to pc in the penultimate instruction of the PLT stub. */
6034aab8 9771 got_displacement = (got_address
99059e56 9772 - (plt_address + htab->plt_entry_size));
b38cadfb
NC
9773
9774 /* NaCl does not support interworking at all. */
9775 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt));
9776
9777 put_arm_insn (htab, output_bfd,
9778 elf32_arm_nacl_plt_entry[0]
9779 | arm_movw_immediate (got_displacement),
9780 ptr + 0);
9781 put_arm_insn (htab, output_bfd,
9782 elf32_arm_nacl_plt_entry[1]
9783 | arm_movt_immediate (got_displacement),
9784 ptr + 4);
9785 put_arm_insn (htab, output_bfd,
9786 elf32_arm_nacl_plt_entry[2],
9787 ptr + 8);
9788 put_arm_insn (htab, output_bfd,
9789 elf32_arm_nacl_plt_entry[3]
9790 | (tail_displacement & 0x00ffffff),
9791 ptr + 12);
9792 }
7801f98f
CL
9793 else if (htab->fdpic_p)
9794 {
59029f57
CL
9795 const bfd_vma *plt_entry = using_thumb_only(htab)
9796 ? elf32_arm_fdpic_thumb_plt_entry
9797 : elf32_arm_fdpic_plt_entry;
9798
7801f98f
CL
9799 /* Fill-up Thumb stub if needed. */
9800 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9801 {
9802 put_thumb_insn (htab, output_bfd,
9803 elf32_arm_plt_thumb_stub[0], ptr - 4);
9804 put_thumb_insn (htab, output_bfd,
9805 elf32_arm_plt_thumb_stub[1], ptr - 2);
9806 }
59029f57
CL
9807 /* As we are using 32 bit instructions even for the Thumb
9808 version, we have to use 'put_arm_insn' instead of
9809 'put_thumb_insn'. */
9810 put_arm_insn(htab, output_bfd, plt_entry[0], ptr + 0);
9811 put_arm_insn(htab, output_bfd, plt_entry[1], ptr + 4);
9812 put_arm_insn(htab, output_bfd, plt_entry[2], ptr + 8);
9813 put_arm_insn(htab, output_bfd, plt_entry[3], ptr + 12);
7801f98f
CL
9814 bfd_put_32 (output_bfd, got_offset, ptr + 16);
9815
9816 if (!(info->flags & DF_BIND_NOW))
9817 {
9818 /* funcdesc_value_reloc_offset. */
9819 bfd_put_32 (output_bfd,
9820 htab->root.srelplt->reloc_count * RELOC_SIZE (htab),
9821 ptr + 20);
59029f57
CL
9822 put_arm_insn(htab, output_bfd, plt_entry[6], ptr + 24);
9823 put_arm_insn(htab, output_bfd, plt_entry[7], ptr + 28);
9824 put_arm_insn(htab, output_bfd, plt_entry[8], ptr + 32);
9825 put_arm_insn(htab, output_bfd, plt_entry[9], ptr + 36);
7801f98f
CL
9826 }
9827 }
57460bcf
NC
9828 else if (using_thumb_only (htab))
9829 {
eed94f8f 9830 /* PR ld/16017: Generate thumb only PLT entries. */
469a3493 9831 if (!using_thumb2 (htab))
eed94f8f
NC
9832 {
9833 /* FIXME: We ought to be able to generate thumb-1 PLT
9834 instructions... */
90b6238f 9835 _bfd_error_handler (_("%pB: warning: thumb-1 mode PLT generation not currently supported"),
eed94f8f
NC
9836 output_bfd);
9837 return FALSE;
9838 }
57460bcf 9839
eed94f8f
NC
9840 /* Calculate the displacement between the PLT slot and the entry in
9841 the GOT. The 12-byte offset accounts for the value produced by
9842 adding to pc in the 3rd instruction of the PLT stub. */
9843 got_displacement = got_address - (plt_address + 12);
9844
9845 /* As we are using 32 bit instructions we have to use 'put_arm_insn'
9846 instead of 'put_thumb_insn'. */
9847 put_arm_insn (htab, output_bfd,
9848 elf32_thumb2_plt_entry[0]
9849 | ((got_displacement & 0x000000ff) << 16)
9850 | ((got_displacement & 0x00000700) << 20)
9851 | ((got_displacement & 0x00000800) >> 1)
9852 | ((got_displacement & 0x0000f000) >> 12),
9853 ptr + 0);
9854 put_arm_insn (htab, output_bfd,
9855 elf32_thumb2_plt_entry[1]
9856 | ((got_displacement & 0x00ff0000) )
9857 | ((got_displacement & 0x07000000) << 4)
9858 | ((got_displacement & 0x08000000) >> 17)
9859 | ((got_displacement & 0xf0000000) >> 28),
9860 ptr + 4);
9861 put_arm_insn (htab, output_bfd,
9862 elf32_thumb2_plt_entry[2],
9863 ptr + 8);
9864 put_arm_insn (htab, output_bfd,
9865 elf32_thumb2_plt_entry[3],
9866 ptr + 12);
57460bcf 9867 }
34e77a92
RS
9868 else
9869 {
9870 /* Calculate the displacement between the PLT slot and the
9871 entry in the GOT. The eight-byte offset accounts for the
9872 value produced by adding to pc in the first instruction
9873 of the PLT stub. */
9874 got_displacement = got_address - (plt_address + 8);
9875
34e77a92
RS
9876 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9877 {
9878 put_thumb_insn (htab, output_bfd,
9879 elf32_arm_plt_thumb_stub[0], ptr - 4);
9880 put_thumb_insn (htab, output_bfd,
9881 elf32_arm_plt_thumb_stub[1], ptr - 2);
9882 }
9883
1db37fe6
YG
9884 if (!elf32_arm_use_long_plt_entry)
9885 {
9886 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
9887
9888 put_arm_insn (htab, output_bfd,
9889 elf32_arm_plt_entry_short[0]
9890 | ((got_displacement & 0x0ff00000) >> 20),
9891 ptr + 0);
9892 put_arm_insn (htab, output_bfd,
9893 elf32_arm_plt_entry_short[1]
9894 | ((got_displacement & 0x000ff000) >> 12),
9895 ptr+ 4);
9896 put_arm_insn (htab, output_bfd,
9897 elf32_arm_plt_entry_short[2]
9898 | (got_displacement & 0x00000fff),
9899 ptr + 8);
34e77a92 9900#ifdef FOUR_WORD_PLT
1db37fe6 9901 bfd_put_32 (output_bfd, elf32_arm_plt_entry_short[3], ptr + 12);
34e77a92 9902#endif
1db37fe6
YG
9903 }
9904 else
9905 {
9906 put_arm_insn (htab, output_bfd,
9907 elf32_arm_plt_entry_long[0]
9908 | ((got_displacement & 0xf0000000) >> 28),
9909 ptr + 0);
9910 put_arm_insn (htab, output_bfd,
9911 elf32_arm_plt_entry_long[1]
9912 | ((got_displacement & 0x0ff00000) >> 20),
9913 ptr + 4);
9914 put_arm_insn (htab, output_bfd,
9915 elf32_arm_plt_entry_long[2]
9916 | ((got_displacement & 0x000ff000) >> 12),
9917 ptr+ 8);
9918 put_arm_insn (htab, output_bfd,
9919 elf32_arm_plt_entry_long[3]
9920 | (got_displacement & 0x00000fff),
9921 ptr + 12);
9922 }
34e77a92
RS
9923 }
9924
9925 /* Fill in the entry in the .rel(a).(i)plt section. */
9926 rel.r_offset = got_address;
9927 rel.r_addend = 0;
9928 if (dynindx == -1)
9929 {
9930 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
9931 The dynamic linker or static executable then calls SYM_VALUE
9932 to determine the correct run-time value of the .igot.plt entry. */
9933 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9934 initial_got_entry = sym_value;
9935 }
9936 else
9937 {
7801f98f
CL
9938 /* For FDPIC we will have to resolve a R_ARM_FUNCDESC_VALUE
9939 used by PLT entry. */
9940 if (htab->fdpic_p)
9941 {
9942 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_FUNCDESC_VALUE);
9943 initial_got_entry = 0;
9944 }
9945 else
9946 {
9947 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
9948 initial_got_entry = (splt->output_section->vma
9949 + splt->output_offset);
a7618269
TC
9950
9951 /* PR ld/16017
9952 When thumb only we need to set the LSB for any address that
9953 will be used with an interworking branch instruction. */
9954 if (using_thumb_only (htab))
9955 initial_got_entry |= 1;
7801f98f 9956 }
34e77a92
RS
9957 }
9958
9959 /* Fill in the entry in the global offset table. */
9960 bfd_put_32 (output_bfd, initial_got_entry,
9961 sgot->contents + got_offset);
7801f98f
CL
9962
9963 if (htab->fdpic_p && !(info->flags & DF_BIND_NOW))
9964 {
9965 /* Setup initial funcdesc value. */
9966 /* FIXME: we don't support lazy binding because there is a
9967 race condition between both words getting written and
9968 some other thread attempting to read them. The ARM
9969 architecture does not have an atomic 64 bit load/store
9970 instruction that could be used to prevent it; it is
9971 recommended that threaded FDPIC applications run with the
9972 LD_BIND_NOW environment variable set. */
9973 bfd_put_32(output_bfd, plt_address + 0x18,
9974 sgot->contents + got_offset);
9975 bfd_put_32(output_bfd, -1 /*TODO*/,
9976 sgot->contents + got_offset + 4);
9977 }
34e77a92
RS
9978 }
9979
aba8c3de
WN
9980 if (dynindx == -1)
9981 elf32_arm_add_dynreloc (output_bfd, info, srel, &rel);
9982 else
9983 {
7801f98f
CL
9984 if (htab->fdpic_p)
9985 {
9986 /* For FDPIC we put PLT relocationss into .rel.got when not
9987 lazy binding otherwise we put them in .rel.plt. For now,
9988 we don't support lazy binding so put it in .rel.got. */
9989 if (info->flags & DF_BIND_NOW)
9990 elf32_arm_add_dynreloc(output_bfd, info, htab->root.srelgot, &rel);
9991 else
9992 elf32_arm_add_dynreloc(output_bfd, info, htab->root.srelplt, &rel);
9993 }
9994 else
9995 {
9996 loc = srel->contents + plt_index * RELOC_SIZE (htab);
9997 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9998 }
aba8c3de 9999 }
57460bcf
NC
10000
10001 return TRUE;
34e77a92
RS
10002}
10003
eb043451
PB
10004/* Some relocations map to different relocations depending on the
10005 target. Return the real relocation. */
8029a119 10006
eb043451
PB
10007static int
10008arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
10009 int r_type)
10010{
10011 switch (r_type)
10012 {
10013 case R_ARM_TARGET1:
10014 if (globals->target1_is_rel)
10015 return R_ARM_REL32;
10016 else
10017 return R_ARM_ABS32;
10018
10019 case R_ARM_TARGET2:
10020 return globals->target2_reloc;
10021
10022 default:
10023 return r_type;
10024 }
10025}
eb043451 10026
ba93b8ac
DJ
10027/* Return the base VMA address which should be subtracted from real addresses
10028 when resolving @dtpoff relocation.
10029 This is PT_TLS segment p_vaddr. */
10030
10031static bfd_vma
10032dtpoff_base (struct bfd_link_info *info)
10033{
10034 /* If tls_sec is NULL, we should have signalled an error already. */
10035 if (elf_hash_table (info)->tls_sec == NULL)
10036 return 0;
10037 return elf_hash_table (info)->tls_sec->vma;
10038}
10039
10040/* Return the relocation value for @tpoff relocation
10041 if STT_TLS virtual address is ADDRESS. */
10042
10043static bfd_vma
10044tpoff (struct bfd_link_info *info, bfd_vma address)
10045{
10046 struct elf_link_hash_table *htab = elf_hash_table (info);
10047 bfd_vma base;
10048
10049 /* If tls_sec is NULL, we should have signalled an error already. */
10050 if (htab->tls_sec == NULL)
10051 return 0;
10052 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
10053 return address - htab->tls_sec->vma + base;
10054}
10055
00a97672
RS
10056/* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
10057 VALUE is the relocation value. */
10058
10059static bfd_reloc_status_type
10060elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
10061{
10062 if (value > 0xfff)
10063 return bfd_reloc_overflow;
10064
10065 value |= bfd_get_32 (abfd, data) & 0xfffff000;
10066 bfd_put_32 (abfd, value, data);
10067 return bfd_reloc_ok;
10068}
10069
0855e32b
NS
10070/* Handle TLS relaxations. Relaxing is possible for symbols that use
10071 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
10072 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
10073
10074 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
10075 is to then call final_link_relocate. Return other values in the
62672b10
NS
10076 case of error.
10077
10078 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
10079 the pre-relaxed code. It would be nice if the relocs were updated
10080 to match the optimization. */
0855e32b 10081
b38cadfb 10082static bfd_reloc_status_type
0855e32b 10083elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
b38cadfb 10084 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
0855e32b
NS
10085 Elf_Internal_Rela *rel, unsigned long is_local)
10086{
10087 unsigned long insn;
b38cadfb 10088
0855e32b
NS
10089 switch (ELF32_R_TYPE (rel->r_info))
10090 {
10091 default:
10092 return bfd_reloc_notsupported;
b38cadfb 10093
0855e32b
NS
10094 case R_ARM_TLS_GOTDESC:
10095 if (is_local)
10096 insn = 0;
10097 else
10098 {
10099 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
10100 if (insn & 1)
10101 insn -= 5; /* THUMB */
10102 else
10103 insn -= 8; /* ARM */
10104 }
10105 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
10106 return bfd_reloc_continue;
10107
10108 case R_ARM_THM_TLS_DESCSEQ:
10109 /* Thumb insn. */
10110 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
10111 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
10112 {
10113 if (is_local)
10114 /* nop */
10115 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10116 }
10117 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
10118 {
10119 if (is_local)
10120 /* nop */
10121 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10122 else
10123 /* ldr rx,[ry] */
10124 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
10125 }
10126 else if ((insn & 0xff87) == 0x4780) /* blx rx */
10127 {
10128 if (is_local)
10129 /* nop */
10130 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10131 else
10132 /* mov r0, rx */
10133 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
10134 contents + rel->r_offset);
10135 }
10136 else
10137 {
10138 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
10139 /* It's a 32 bit instruction, fetch the rest of it for
10140 error generation. */
10141 insn = (insn << 16)
10142 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
4eca0228 10143 _bfd_error_handler
695344c0 10144 /* xgettext:c-format */
2dcf00ce 10145 (_("%pB(%pA+%#" PRIx64 "): "
90b6238f
AM
10146 "unexpected %s instruction '%#lx' in TLS trampoline"),
10147 input_bfd, input_sec, (uint64_t) rel->r_offset,
10148 "Thumb", insn);
0855e32b
NS
10149 return bfd_reloc_notsupported;
10150 }
10151 break;
b38cadfb 10152
0855e32b
NS
10153 case R_ARM_TLS_DESCSEQ:
10154 /* arm insn. */
10155 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
10156 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
10157 {
10158 if (is_local)
10159 /* mov rx, ry */
10160 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
10161 contents + rel->r_offset);
10162 }
10163 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
10164 {
10165 if (is_local)
10166 /* nop */
10167 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
10168 else
10169 /* ldr rx,[ry] */
10170 bfd_put_32 (input_bfd, insn & 0xfffff000,
10171 contents + rel->r_offset);
10172 }
10173 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
10174 {
10175 if (is_local)
10176 /* nop */
10177 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
10178 else
10179 /* mov r0, rx */
10180 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
10181 contents + rel->r_offset);
10182 }
10183 else
10184 {
4eca0228 10185 _bfd_error_handler
695344c0 10186 /* xgettext:c-format */
2dcf00ce 10187 (_("%pB(%pA+%#" PRIx64 "): "
90b6238f
AM
10188 "unexpected %s instruction '%#lx' in TLS trampoline"),
10189 input_bfd, input_sec, (uint64_t) rel->r_offset,
10190 "ARM", insn);
0855e32b
NS
10191 return bfd_reloc_notsupported;
10192 }
10193 break;
10194
10195 case R_ARM_TLS_CALL:
10196 /* GD->IE relaxation, turn the instruction into 'nop' or
10197 'ldr r0, [pc,r0]' */
10198 insn = is_local ? 0xe1a00000 : 0xe79f0000;
10199 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
10200 break;
b38cadfb 10201
0855e32b 10202 case R_ARM_THM_TLS_CALL:
6a631e86 10203 /* GD->IE relaxation. */
0855e32b
NS
10204 if (!is_local)
10205 /* add r0,pc; ldr r0, [r0] */
10206 insn = 0x44786800;
60a019a0 10207 else if (using_thumb2 (globals))
0855e32b
NS
10208 /* nop.w */
10209 insn = 0xf3af8000;
10210 else
10211 /* nop; nop */
10212 insn = 0xbf00bf00;
b38cadfb 10213
0855e32b
NS
10214 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
10215 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
10216 break;
10217 }
10218 return bfd_reloc_ok;
10219}
10220
4962c51a
MS
10221/* For a given value of n, calculate the value of G_n as required to
10222 deal with group relocations. We return it in the form of an
10223 encoded constant-and-rotation, together with the final residual. If n is
10224 specified as less than zero, then final_residual is filled with the
10225 input value and no further action is performed. */
10226
10227static bfd_vma
10228calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
10229{
10230 int current_n;
10231 bfd_vma g_n;
10232 bfd_vma encoded_g_n = 0;
10233 bfd_vma residual = value; /* Also known as Y_n. */
10234
10235 for (current_n = 0; current_n <= n; current_n++)
10236 {
10237 int shift;
10238
10239 /* Calculate which part of the value to mask. */
10240 if (residual == 0)
99059e56 10241 shift = 0;
4962c51a 10242 else
99059e56
RM
10243 {
10244 int msb;
10245
10246 /* Determine the most significant bit in the residual and
10247 align the resulting value to a 2-bit boundary. */
10248 for (msb = 30; msb >= 0; msb -= 2)
10249 if (residual & (3 << msb))
10250 break;
10251
10252 /* The desired shift is now (msb - 6), or zero, whichever
10253 is the greater. */
10254 shift = msb - 6;
10255 if (shift < 0)
10256 shift = 0;
10257 }
4962c51a
MS
10258
10259 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
10260 g_n = residual & (0xff << shift);
10261 encoded_g_n = (g_n >> shift)
99059e56 10262 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
4962c51a
MS
10263
10264 /* Calculate the residual for the next time around. */
10265 residual &= ~g_n;
10266 }
10267
10268 *final_residual = residual;
10269
10270 return encoded_g_n;
10271}
10272
10273/* Given an ARM instruction, determine whether it is an ADD or a SUB.
10274 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
906e58ca 10275
4962c51a 10276static int
906e58ca 10277identify_add_or_sub (bfd_vma insn)
4962c51a
MS
10278{
10279 int opcode = insn & 0x1e00000;
10280
10281 if (opcode == 1 << 23) /* ADD */
10282 return 1;
10283
10284 if (opcode == 1 << 22) /* SUB */
10285 return -1;
10286
10287 return 0;
10288}
10289
252b5132 10290/* Perform a relocation as part of a final link. */
9b485d32 10291
252b5132 10292static bfd_reloc_status_type
07d6d2b8
AM
10293elf32_arm_final_link_relocate (reloc_howto_type * howto,
10294 bfd * input_bfd,
10295 bfd * output_bfd,
10296 asection * input_section,
10297 bfd_byte * contents,
10298 Elf_Internal_Rela * rel,
10299 bfd_vma value,
10300 struct bfd_link_info * info,
10301 asection * sym_sec,
10302 const char * sym_name,
10303 unsigned char st_type,
10304 enum arm_st_branch_type branch_type,
0945cdfd 10305 struct elf_link_hash_entry * h,
07d6d2b8
AM
10306 bfd_boolean * unresolved_reloc_p,
10307 char ** error_message)
10308{
10309 unsigned long r_type = howto->type;
10310 unsigned long r_symndx;
10311 bfd_byte * hit_data = contents + rel->r_offset;
10312 bfd_vma * local_got_offsets;
10313 bfd_vma * local_tlsdesc_gotents;
10314 asection * sgot;
10315 asection * splt;
10316 asection * sreloc = NULL;
10317 asection * srelgot;
10318 bfd_vma addend;
10319 bfd_signed_vma signed_addend;
10320 unsigned char dynreloc_st_type;
10321 bfd_vma dynreloc_value;
ba96a88f 10322 struct elf32_arm_link_hash_table * globals;
34e77a92 10323 struct elf32_arm_link_hash_entry *eh;
07d6d2b8
AM
10324 union gotplt_union *root_plt;
10325 struct arm_plt_info *arm_plt;
10326 bfd_vma plt_offset;
10327 bfd_vma gotplt_offset;
10328 bfd_boolean has_iplt_entry;
10329 bfd_boolean resolved_to_zero;
f21f3fe0 10330
9c504268 10331 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
10332 if (globals == NULL)
10333 return bfd_reloc_notsupported;
9c504268 10334
0ffa91dd 10335 BFD_ASSERT (is_arm_elf (input_bfd));
47aeb64c 10336 BFD_ASSERT (howto != NULL);
0ffa91dd
NC
10337
10338 /* Some relocation types map to different relocations depending on the
9c504268 10339 target. We pick the right one here. */
eb043451 10340 r_type = arm_real_reloc_type (globals, r_type);
0855e32b
NS
10341
10342 /* It is possible to have linker relaxations on some TLS access
10343 models. Update our information here. */
10344 r_type = elf32_arm_tls_transition (info, r_type, h);
10345
eb043451
PB
10346 if (r_type != howto->type)
10347 howto = elf32_arm_howto_from_type (r_type);
9c504268 10348
34e77a92 10349 eh = (struct elf32_arm_link_hash_entry *) h;
362d30a1 10350 sgot = globals->root.sgot;
252b5132 10351 local_got_offsets = elf_local_got_offsets (input_bfd);
0855e32b
NS
10352 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
10353
34e77a92
RS
10354 if (globals->root.dynamic_sections_created)
10355 srelgot = globals->root.srelgot;
10356 else
10357 srelgot = NULL;
10358
252b5132
RH
10359 r_symndx = ELF32_R_SYM (rel->r_info);
10360
4e7fd91e 10361 if (globals->use_rel)
ba96a88f 10362 {
4e7fd91e
PB
10363 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
10364
10365 if (addend & ((howto->src_mask + 1) >> 1))
10366 {
10367 signed_addend = -1;
10368 signed_addend &= ~ howto->src_mask;
10369 signed_addend |= addend;
10370 }
10371 else
10372 signed_addend = addend;
ba96a88f
NC
10373 }
10374 else
4e7fd91e 10375 addend = signed_addend = rel->r_addend;
f21f3fe0 10376
39f21624
NC
10377 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
10378 are resolving a function call relocation. */
10379 if (using_thumb_only (globals)
10380 && (r_type == R_ARM_THM_CALL
10381 || r_type == R_ARM_THM_JUMP24)
10382 && branch_type == ST_BRANCH_TO_ARM)
10383 branch_type = ST_BRANCH_TO_THUMB;
10384
34e77a92
RS
10385 /* Record the symbol information that should be used in dynamic
10386 relocations. */
10387 dynreloc_st_type = st_type;
10388 dynreloc_value = value;
10389 if (branch_type == ST_BRANCH_TO_THUMB)
10390 dynreloc_value |= 1;
10391
10392 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
10393 VALUE appropriately for relocations that we resolve at link time. */
10394 has_iplt_entry = FALSE;
4ba2ef8f
TP
10395 if (elf32_arm_get_plt_info (input_bfd, globals, eh, r_symndx, &root_plt,
10396 &arm_plt)
34e77a92
RS
10397 && root_plt->offset != (bfd_vma) -1)
10398 {
10399 plt_offset = root_plt->offset;
10400 gotplt_offset = arm_plt->got_offset;
10401
10402 if (h == NULL || eh->is_iplt)
10403 {
10404 has_iplt_entry = TRUE;
10405 splt = globals->root.iplt;
10406
10407 /* Populate .iplt entries here, because not all of them will
10408 be seen by finish_dynamic_symbol. The lower bit is set if
10409 we have already populated the entry. */
10410 if (plt_offset & 1)
10411 plt_offset--;
10412 else
10413 {
57460bcf
NC
10414 if (elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
10415 -1, dynreloc_value))
10416 root_plt->offset |= 1;
10417 else
10418 return bfd_reloc_notsupported;
34e77a92
RS
10419 }
10420
10421 /* Static relocations always resolve to the .iplt entry. */
10422 st_type = STT_FUNC;
10423 value = (splt->output_section->vma
10424 + splt->output_offset
10425 + plt_offset);
10426 branch_type = ST_BRANCH_TO_ARM;
10427
10428 /* If there are non-call relocations that resolve to the .iplt
10429 entry, then all dynamic ones must too. */
10430 if (arm_plt->noncall_refcount != 0)
10431 {
10432 dynreloc_st_type = st_type;
10433 dynreloc_value = value;
10434 }
10435 }
10436 else
10437 /* We populate the .plt entry in finish_dynamic_symbol. */
10438 splt = globals->root.splt;
10439 }
10440 else
10441 {
10442 splt = NULL;
10443 plt_offset = (bfd_vma) -1;
10444 gotplt_offset = (bfd_vma) -1;
10445 }
10446
95b03e4a
L
10447 resolved_to_zero = (h != NULL
10448 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
10449
252b5132
RH
10450 switch (r_type)
10451 {
10452 case R_ARM_NONE:
28a094c2
DJ
10453 /* We don't need to find a value for this symbol. It's just a
10454 marker. */
10455 *unresolved_reloc_p = FALSE;
252b5132
RH
10456 return bfd_reloc_ok;
10457
00a97672 10458 case R_ARM_ABS12:
90c14f0c 10459 if (globals->root.target_os != is_vxworks)
00a97672 10460 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
1a0670f3 10461 /* Fall through. */
00a97672 10462
252b5132
RH
10463 case R_ARM_PC24:
10464 case R_ARM_ABS32:
bb224fc3 10465 case R_ARM_ABS32_NOI:
252b5132 10466 case R_ARM_REL32:
bb224fc3 10467 case R_ARM_REL32_NOI:
5b5bb741
PB
10468 case R_ARM_CALL:
10469 case R_ARM_JUMP24:
dfc5f959 10470 case R_ARM_XPC25:
eb043451 10471 case R_ARM_PREL31:
7359ea65 10472 case R_ARM_PLT32:
7359ea65
DJ
10473 /* Handle relocations which should use the PLT entry. ABS32/REL32
10474 will use the symbol's value, which may point to a PLT entry, but we
10475 don't need to handle that here. If we created a PLT entry, all
5fa9e92f
CL
10476 branches in this object should go to it, except if the PLT is too
10477 far away, in which case a long branch stub should be inserted. */
bb224fc3 10478 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
99059e56 10479 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
155d87d7
CL
10480 && r_type != R_ARM_CALL
10481 && r_type != R_ARM_JUMP24
10482 && r_type != R_ARM_PLT32)
34e77a92 10483 && plt_offset != (bfd_vma) -1)
7359ea65 10484 {
34e77a92
RS
10485 /* If we've created a .plt section, and assigned a PLT entry
10486 to this function, it must either be a STT_GNU_IFUNC reference
10487 or not be known to bind locally. In other cases, we should
10488 have cleared the PLT entry by now. */
10489 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
7359ea65
DJ
10490
10491 value = (splt->output_section->vma
10492 + splt->output_offset
34e77a92 10493 + plt_offset);
0945cdfd 10494 *unresolved_reloc_p = FALSE;
7359ea65
DJ
10495 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10496 contents, rel->r_offset, value,
00a97672 10497 rel->r_addend);
7359ea65
DJ
10498 }
10499
67687978
PB
10500 /* When generating a shared object or relocatable executable, these
10501 relocations are copied into the output file to be resolved at
10502 run time. */
0e1862bb 10503 if ((bfd_link_pic (info)
e8b09b87
CL
10504 || globals->root.is_relocatable_executable
10505 || globals->fdpic_p)
7359ea65 10506 && (input_section->flags & SEC_ALLOC)
90c14f0c 10507 && !(globals->root.target_os == is_vxworks
3348747a
NS
10508 && strcmp (input_section->output_section->name,
10509 ".tls_vars") == 0)
bb224fc3 10510 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
ee06dc07 10511 || !SYMBOL_CALLS_LOCAL (info, h))
ca6b5f82
AM
10512 && !(input_bfd == globals->stub_bfd
10513 && strstr (input_section->name, STUB_SUFFIX))
7359ea65 10514 && (h == NULL
95b03e4a
L
10515 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10516 && !resolved_to_zero)
7359ea65
DJ
10517 || h->root.type != bfd_link_hash_undefweak)
10518 && r_type != R_ARM_PC24
5b5bb741
PB
10519 && r_type != R_ARM_CALL
10520 && r_type != R_ARM_JUMP24
ee06dc07 10521 && r_type != R_ARM_PREL31
7359ea65 10522 && r_type != R_ARM_PLT32)
252b5132 10523 {
947216bf 10524 Elf_Internal_Rela outrel;
b34976b6 10525 bfd_boolean skip, relocate;
e8b09b87 10526 int isrofixup = 0;
f21f3fe0 10527
52db4ec2
JW
10528 if ((r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
10529 && !h->def_regular)
10530 {
10531 char *v = _("shared object");
10532
0e1862bb 10533 if (bfd_link_executable (info))
52db4ec2
JW
10534 v = _("PIE executable");
10535
4eca0228 10536 _bfd_error_handler
871b3ab2 10537 (_("%pB: relocation %s against external or undefined symbol `%s'"
52db4ec2
JW
10538 " can not be used when making a %s; recompile with -fPIC"), input_bfd,
10539 elf32_arm_howto_table_1[r_type].name, h->root.root.string, v);
10540 return bfd_reloc_notsupported;
10541 }
10542
0945cdfd
DJ
10543 *unresolved_reloc_p = FALSE;
10544
34e77a92 10545 if (sreloc == NULL && globals->root.dynamic_sections_created)
252b5132 10546 {
83bac4b0
NC
10547 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
10548 ! globals->use_rel);
f21f3fe0 10549
83bac4b0 10550 if (sreloc == NULL)
252b5132 10551 return bfd_reloc_notsupported;
252b5132 10552 }
f21f3fe0 10553
b34976b6
AM
10554 skip = FALSE;
10555 relocate = FALSE;
f21f3fe0 10556
00a97672 10557 outrel.r_addend = addend;
c629eae0
JJ
10558 outrel.r_offset =
10559 _bfd_elf_section_offset (output_bfd, info, input_section,
10560 rel->r_offset);
10561 if (outrel.r_offset == (bfd_vma) -1)
b34976b6 10562 skip = TRUE;
0bb2d96a 10563 else if (outrel.r_offset == (bfd_vma) -2)
b34976b6 10564 skip = TRUE, relocate = TRUE;
252b5132
RH
10565 outrel.r_offset += (input_section->output_section->vma
10566 + input_section->output_offset);
f21f3fe0 10567
252b5132 10568 if (skip)
0bb2d96a 10569 memset (&outrel, 0, sizeof outrel);
5e681ec4
PB
10570 else if (h != NULL
10571 && h->dynindx != -1
0e1862bb 10572 && (!bfd_link_pic (info)
1dcb9720
JW
10573 || !(bfd_link_pie (info)
10574 || SYMBOLIC_BIND (info, h))
f5385ebf 10575 || !h->def_regular))
5e681ec4 10576 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
252b5132
RH
10577 else
10578 {
a16385dc
MM
10579 int symbol;
10580
5e681ec4 10581 /* This symbol is local, or marked to become local. */
e8b09b87
CL
10582 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI
10583 || (globals->fdpic_p && !bfd_link_pic(info)));
90c14f0c 10584 if (globals->root.target_os == is_symbian)
6366ff1e 10585 {
74541ad4
AM
10586 asection *osec;
10587
6366ff1e
MM
10588 /* On Symbian OS, the data segment and text segement
10589 can be relocated independently. Therefore, we
10590 must indicate the segment to which this
10591 relocation is relative. The BPABI allows us to
10592 use any symbol in the right segment; we just use
10593 the section symbol as it is convenient. (We
10594 cannot use the symbol given by "h" directly as it
74541ad4
AM
10595 will not appear in the dynamic symbol table.)
10596
10597 Note that the dynamic linker ignores the section
10598 symbol value, so we don't subtract osec->vma
10599 from the emitted reloc addend. */
10dbd1f3 10600 if (sym_sec)
74541ad4 10601 osec = sym_sec->output_section;
10dbd1f3 10602 else
74541ad4
AM
10603 osec = input_section->output_section;
10604 symbol = elf_section_data (osec)->dynindx;
10605 if (symbol == 0)
10606 {
10607 struct elf_link_hash_table *htab = elf_hash_table (info);
10608
10609 if ((osec->flags & SEC_READONLY) == 0
10610 && htab->data_index_section != NULL)
10611 osec = htab->data_index_section;
10612 else
10613 osec = htab->text_index_section;
10614 symbol = elf_section_data (osec)->dynindx;
10615 }
6366ff1e
MM
10616 BFD_ASSERT (symbol != 0);
10617 }
a16385dc
MM
10618 else
10619 /* On SVR4-ish systems, the dynamic loader cannot
10620 relocate the text and data segments independently,
10621 so the symbol does not matter. */
10622 symbol = 0;
34e77a92
RS
10623 if (dynreloc_st_type == STT_GNU_IFUNC)
10624 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
10625 to the .iplt entry. Instead, every non-call reference
10626 must use an R_ARM_IRELATIVE relocation to obtain the
10627 correct run-time address. */
10628 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
e8b09b87
CL
10629 else if (globals->fdpic_p && !bfd_link_pic(info))
10630 isrofixup = 1;
34e77a92
RS
10631 else
10632 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
00a97672
RS
10633 if (globals->use_rel)
10634 relocate = TRUE;
10635 else
34e77a92 10636 outrel.r_addend += dynreloc_value;
252b5132 10637 }
f21f3fe0 10638
e8b09b87
CL
10639 if (isrofixup)
10640 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset);
10641 else
10642 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
9a5aca8c 10643
f21f3fe0 10644 /* If this reloc is against an external symbol, we do not want to
252b5132 10645 fiddle with the addend. Otherwise, we need to include the symbol
9b485d32 10646 value so that it becomes an addend for the dynamic reloc. */
252b5132
RH
10647 if (! relocate)
10648 return bfd_reloc_ok;
9a5aca8c 10649
f21f3fe0 10650 return _bfd_final_link_relocate (howto, input_bfd, input_section,
34e77a92
RS
10651 contents, rel->r_offset,
10652 dynreloc_value, (bfd_vma) 0);
252b5132
RH
10653 }
10654 else switch (r_type)
10655 {
00a97672
RS
10656 case R_ARM_ABS12:
10657 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10658
dfc5f959 10659 case R_ARM_XPC25: /* Arm BLX instruction. */
5b5bb741
PB
10660 case R_ARM_CALL:
10661 case R_ARM_JUMP24:
8029a119 10662 case R_ARM_PC24: /* Arm B/BL instruction. */
7359ea65 10663 case R_ARM_PLT32:
906e58ca 10664 {
906e58ca
NC
10665 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
10666
dfc5f959 10667 if (r_type == R_ARM_XPC25)
252b5132 10668 {
dfc5f959
NC
10669 /* Check for Arm calling Arm function. */
10670 /* FIXME: Should we translate the instruction into a BL
10671 instruction instead ? */
35fc36a8 10672 if (branch_type != ST_BRANCH_TO_THUMB)
4eca0228 10673 _bfd_error_handler
90b6238f
AM
10674 (_("\%pB: warning: %s BLX instruction targets"
10675 " %s function '%s'"),
10676 input_bfd, "ARM",
10677 "ARM", h ? h->root.root.string : "(local)");
dfc5f959 10678 }
155d87d7 10679 else if (r_type == R_ARM_PC24)
dfc5f959
NC
10680 {
10681 /* Check for Arm calling Thumb function. */
35fc36a8 10682 if (branch_type == ST_BRANCH_TO_THUMB)
dfc5f959 10683 {
f2a9dd69
DJ
10684 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
10685 output_bfd, input_section,
10686 hit_data, sym_sec, rel->r_offset,
10687 signed_addend, value,
10688 error_message))
10689 return bfd_reloc_ok;
10690 else
10691 return bfd_reloc_dangerous;
dfc5f959 10692 }
252b5132 10693 }
ba96a88f 10694
906e58ca 10695 /* Check if a stub has to be inserted because the
8029a119 10696 destination is too far or we are changing mode. */
155d87d7
CL
10697 if ( r_type == R_ARM_CALL
10698 || r_type == R_ARM_JUMP24
10699 || r_type == R_ARM_PLT32)
906e58ca 10700 {
fe33d2fa
CL
10701 enum elf32_arm_stub_type stub_type = arm_stub_none;
10702 struct elf32_arm_link_hash_entry *hash;
10703
10704 hash = (struct elf32_arm_link_hash_entry *) h;
10705 stub_type = arm_type_of_stub (info, input_section, rel,
34e77a92
RS
10706 st_type, &branch_type,
10707 hash, value, sym_sec,
fe33d2fa 10708 input_bfd, sym_name);
5fa9e92f 10709
fe33d2fa 10710 if (stub_type != arm_stub_none)
906e58ca
NC
10711 {
10712 /* The target is out of reach, so redirect the
10713 branch to the local stub for this function. */
906e58ca
NC
10714 stub_entry = elf32_arm_get_stub_entry (input_section,
10715 sym_sec, h,
fe33d2fa
CL
10716 rel, globals,
10717 stub_type);
9cd3e4e5
NC
10718 {
10719 if (stub_entry != NULL)
10720 value = (stub_entry->stub_offset
10721 + stub_entry->stub_sec->output_offset
10722 + stub_entry->stub_sec->output_section->vma);
10723
10724 if (plt_offset != (bfd_vma) -1)
10725 *unresolved_reloc_p = FALSE;
10726 }
906e58ca 10727 }
fe33d2fa
CL
10728 else
10729 {
10730 /* If the call goes through a PLT entry, make sure to
10731 check distance to the right destination address. */
34e77a92 10732 if (plt_offset != (bfd_vma) -1)
fe33d2fa
CL
10733 {
10734 value = (splt->output_section->vma
10735 + splt->output_offset
34e77a92 10736 + plt_offset);
fe33d2fa
CL
10737 *unresolved_reloc_p = FALSE;
10738 /* The PLT entry is in ARM mode, regardless of the
10739 target function. */
35fc36a8 10740 branch_type = ST_BRANCH_TO_ARM;
fe33d2fa
CL
10741 }
10742 }
906e58ca
NC
10743 }
10744
dea514f5
PB
10745 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
10746 where:
10747 S is the address of the symbol in the relocation.
10748 P is address of the instruction being relocated.
10749 A is the addend (extracted from the instruction) in bytes.
10750
10751 S is held in 'value'.
10752 P is the base address of the section containing the
10753 instruction plus the offset of the reloc into that
10754 section, ie:
10755 (input_section->output_section->vma +
10756 input_section->output_offset +
10757 rel->r_offset).
10758 A is the addend, converted into bytes, ie:
10759 (signed_addend * 4)
10760
10761 Note: None of these operations have knowledge of the pipeline
10762 size of the processor, thus it is up to the assembler to
10763 encode this information into the addend. */
10764 value -= (input_section->output_section->vma
10765 + input_section->output_offset);
10766 value -= rel->r_offset;
4e7fd91e
PB
10767 if (globals->use_rel)
10768 value += (signed_addend << howto->size);
10769 else
10770 /* RELA addends do not have to be adjusted by howto->size. */
10771 value += signed_addend;
23080146 10772
dcb5e6e6
NC
10773 signed_addend = value;
10774 signed_addend >>= howto->rightshift;
9a5aca8c 10775
5ab79981 10776 /* A branch to an undefined weak symbol is turned into a jump to
ffcb4889 10777 the next instruction unless a PLT entry will be created.
77b4f08f 10778 Do the same for local undefined symbols (but not for STN_UNDEF).
cd1dac3d
DG
10779 The jump to the next instruction is optimized as a NOP depending
10780 on the architecture. */
ffcb4889 10781 if (h ? (h->root.type == bfd_link_hash_undefweak
34e77a92 10782 && plt_offset == (bfd_vma) -1)
77b4f08f 10783 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
5ab79981 10784 {
cd1dac3d
DG
10785 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
10786
10787 if (arch_has_arm_nop (globals))
10788 value |= 0x0320f000;
10789 else
10790 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
5ab79981
PB
10791 }
10792 else
59f2c4e7 10793 {
9b485d32 10794 /* Perform a signed range check. */
dcb5e6e6 10795 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
59f2c4e7
NC
10796 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
10797 return bfd_reloc_overflow;
9a5aca8c 10798
5ab79981 10799 addend = (value & 2);
39b41c9c 10800
5ab79981
PB
10801 value = (signed_addend & howto->dst_mask)
10802 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
39b41c9c 10803
5ab79981
PB
10804 if (r_type == R_ARM_CALL)
10805 {
155d87d7 10806 /* Set the H bit in the BLX instruction. */
35fc36a8 10807 if (branch_type == ST_BRANCH_TO_THUMB)
155d87d7
CL
10808 {
10809 if (addend)
10810 value |= (1 << 24);
10811 else
10812 value &= ~(bfd_vma)(1 << 24);
10813 }
10814
5ab79981 10815 /* Select the correct instruction (BL or BLX). */
906e58ca 10816 /* Only if we are not handling a BL to a stub. In this
8029a119 10817 case, mode switching is performed by the stub. */
35fc36a8 10818 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
5ab79981 10819 value |= (1 << 28);
63e1a0fc 10820 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
5ab79981
PB
10821 {
10822 value &= ~(bfd_vma)(1 << 28);
10823 value |= (1 << 24);
10824 }
39b41c9c
PB
10825 }
10826 }
906e58ca 10827 }
252b5132 10828 break;
f21f3fe0 10829
252b5132
RH
10830 case R_ARM_ABS32:
10831 value += addend;
35fc36a8 10832 if (branch_type == ST_BRANCH_TO_THUMB)
252b5132
RH
10833 value |= 1;
10834 break;
f21f3fe0 10835
bb224fc3
MS
10836 case R_ARM_ABS32_NOI:
10837 value += addend;
10838 break;
10839
252b5132 10840 case R_ARM_REL32:
a8bc6c78 10841 value += addend;
35fc36a8 10842 if (branch_type == ST_BRANCH_TO_THUMB)
a8bc6c78 10843 value |= 1;
252b5132 10844 value -= (input_section->output_section->vma
62efb346 10845 + input_section->output_offset + rel->r_offset);
252b5132 10846 break;
eb043451 10847
bb224fc3
MS
10848 case R_ARM_REL32_NOI:
10849 value += addend;
10850 value -= (input_section->output_section->vma
10851 + input_section->output_offset + rel->r_offset);
10852 break;
10853
eb043451
PB
10854 case R_ARM_PREL31:
10855 value -= (input_section->output_section->vma
10856 + input_section->output_offset + rel->r_offset);
10857 value += signed_addend;
10858 if (! h || h->root.type != bfd_link_hash_undefweak)
10859 {
8029a119 10860 /* Check for overflow. */
eb043451
PB
10861 if ((value ^ (value >> 1)) & (1 << 30))
10862 return bfd_reloc_overflow;
10863 }
10864 value &= 0x7fffffff;
10865 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
35fc36a8 10866 if (branch_type == ST_BRANCH_TO_THUMB)
eb043451
PB
10867 value |= 1;
10868 break;
252b5132 10869 }
f21f3fe0 10870
252b5132
RH
10871 bfd_put_32 (input_bfd, value, hit_data);
10872 return bfd_reloc_ok;
10873
10874 case R_ARM_ABS8:
fd0fd00c
MJ
10875 /* PR 16202: Refectch the addend using the correct size. */
10876 if (globals->use_rel)
10877 addend = bfd_get_8 (input_bfd, hit_data);
252b5132 10878 value += addend;
4e67d4ca
DG
10879
10880 /* There is no way to tell whether the user intended to use a signed or
10881 unsigned addend. When checking for overflow we accept either,
10882 as specified by the AAELF. */
10883 if ((long) value > 0xff || (long) value < -0x80)
252b5132
RH
10884 return bfd_reloc_overflow;
10885
10886 bfd_put_8 (input_bfd, value, hit_data);
10887 return bfd_reloc_ok;
10888
10889 case R_ARM_ABS16:
fd0fd00c
MJ
10890 /* PR 16202: Refectch the addend using the correct size. */
10891 if (globals->use_rel)
10892 addend = bfd_get_16 (input_bfd, hit_data);
252b5132
RH
10893 value += addend;
10894
4e67d4ca
DG
10895 /* See comment for R_ARM_ABS8. */
10896 if ((long) value > 0xffff || (long) value < -0x8000)
252b5132
RH
10897 return bfd_reloc_overflow;
10898
10899 bfd_put_16 (input_bfd, value, hit_data);
10900 return bfd_reloc_ok;
10901
252b5132 10902 case R_ARM_THM_ABS5:
9b485d32 10903 /* Support ldr and str instructions for the thumb. */
4e7fd91e
PB
10904 if (globals->use_rel)
10905 {
10906 /* Need to refetch addend. */
10907 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
10908 /* ??? Need to determine shift amount from operand size. */
10909 addend >>= howto->rightshift;
10910 }
252b5132
RH
10911 value += addend;
10912
10913 /* ??? Isn't value unsigned? */
10914 if ((long) value > 0x1f || (long) value < -0x10)
10915 return bfd_reloc_overflow;
10916
10917 /* ??? Value needs to be properly shifted into place first. */
10918 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
10919 bfd_put_16 (input_bfd, value, hit_data);
10920 return bfd_reloc_ok;
10921
2cab6cc3
MS
10922 case R_ARM_THM_ALU_PREL_11_0:
10923 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
10924 {
10925 bfd_vma insn;
10926 bfd_signed_vma relocation;
10927
10928 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
99059e56 10929 | bfd_get_16 (input_bfd, hit_data + 2);
2cab6cc3 10930
99059e56
RM
10931 if (globals->use_rel)
10932 {
10933 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
10934 | ((insn & (1 << 26)) >> 15);
10935 if (insn & 0xf00000)
10936 signed_addend = -signed_addend;
10937 }
2cab6cc3
MS
10938
10939 relocation = value + signed_addend;
79f08007 10940 relocation -= Pa (input_section->output_section->vma
99059e56
RM
10941 + input_section->output_offset
10942 + rel->r_offset);
2cab6cc3 10943
8c65b54f
CS
10944 /* PR 21523: Use an absolute value. The user of this reloc will
10945 have already selected an ADD or SUB insn appropriately. */
453f8e1e 10946 value = llabs (relocation);
2cab6cc3 10947
99059e56
RM
10948 if (value >= 0x1000)
10949 return bfd_reloc_overflow;
2cab6cc3 10950
e645cf40
AG
10951 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
10952 if (branch_type == ST_BRANCH_TO_THUMB)
10953 value |= 1;
10954
2cab6cc3 10955 insn = (insn & 0xfb0f8f00) | (value & 0xff)
99059e56
RM
10956 | ((value & 0x700) << 4)
10957 | ((value & 0x800) << 15);
10958 if (relocation < 0)
10959 insn |= 0xa00000;
2cab6cc3
MS
10960
10961 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10962 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10963
99059e56 10964 return bfd_reloc_ok;
2cab6cc3
MS
10965 }
10966
e1ec24c6
NC
10967 case R_ARM_THM_PC8:
10968 /* PR 10073: This reloc is not generated by the GNU toolchain,
10969 but it is supported for compatibility with third party libraries
10970 generated by other compilers, specifically the ARM/IAR. */
10971 {
10972 bfd_vma insn;
10973 bfd_signed_vma relocation;
10974
10975 insn = bfd_get_16 (input_bfd, hit_data);
10976
99059e56 10977 if (globals->use_rel)
79f08007 10978 addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4;
e1ec24c6
NC
10979
10980 relocation = value + addend;
79f08007 10981 relocation -= Pa (input_section->output_section->vma
99059e56
RM
10982 + input_section->output_offset
10983 + rel->r_offset);
e1ec24c6 10984
b6518b38 10985 value = relocation;
e1ec24c6
NC
10986
10987 /* We do not check for overflow of this reloc. Although strictly
10988 speaking this is incorrect, it appears to be necessary in order
10989 to work with IAR generated relocs. Since GCC and GAS do not
10990 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
10991 a problem for them. */
10992 value &= 0x3fc;
10993
10994 insn = (insn & 0xff00) | (value >> 2);
10995
10996 bfd_put_16 (input_bfd, insn, hit_data);
10997
99059e56 10998 return bfd_reloc_ok;
e1ec24c6
NC
10999 }
11000
2cab6cc3
MS
11001 case R_ARM_THM_PC12:
11002 /* Corresponds to: ldr.w reg, [pc, #offset]. */
11003 {
11004 bfd_vma insn;
11005 bfd_signed_vma relocation;
11006
11007 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
99059e56 11008 | bfd_get_16 (input_bfd, hit_data + 2);
2cab6cc3 11009
99059e56
RM
11010 if (globals->use_rel)
11011 {
11012 signed_addend = insn & 0xfff;
11013 if (!(insn & (1 << 23)))
11014 signed_addend = -signed_addend;
11015 }
2cab6cc3
MS
11016
11017 relocation = value + signed_addend;
79f08007 11018 relocation -= Pa (input_section->output_section->vma
99059e56
RM
11019 + input_section->output_offset
11020 + rel->r_offset);
2cab6cc3 11021
b6518b38 11022 value = relocation;
2cab6cc3 11023
99059e56
RM
11024 if (value >= 0x1000)
11025 return bfd_reloc_overflow;
2cab6cc3
MS
11026
11027 insn = (insn & 0xff7ff000) | value;
99059e56
RM
11028 if (relocation >= 0)
11029 insn |= (1 << 23);
2cab6cc3
MS
11030
11031 bfd_put_16 (input_bfd, insn >> 16, hit_data);
11032 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
11033
99059e56 11034 return bfd_reloc_ok;
2cab6cc3
MS
11035 }
11036
dfc5f959 11037 case R_ARM_THM_XPC22:
c19d1205 11038 case R_ARM_THM_CALL:
bd97cb95 11039 case R_ARM_THM_JUMP24:
dfc5f959 11040 /* Thumb BL (branch long instruction). */
252b5132 11041 {
b34976b6 11042 bfd_vma relocation;
99059e56 11043 bfd_vma reloc_sign;
b34976b6
AM
11044 bfd_boolean overflow = FALSE;
11045 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
11046 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
e95de063
MS
11047 bfd_signed_vma reloc_signed_max;
11048 bfd_signed_vma reloc_signed_min;
b34976b6 11049 bfd_vma check;
252b5132 11050 bfd_signed_vma signed_check;
e95de063 11051 int bitsize;
cd1dac3d 11052 const int thumb2 = using_thumb2 (globals);
5e866f5a 11053 const int thumb2_bl = using_thumb2_bl (globals);
252b5132 11054
5ab79981 11055 /* A branch to an undefined weak symbol is turned into a jump to
cd1dac3d
DG
11056 the next instruction unless a PLT entry will be created.
11057 The jump to the next instruction is optimized as a NOP.W for
11058 Thumb-2 enabled architectures. */
19540007 11059 if (h && h->root.type == bfd_link_hash_undefweak
34e77a92 11060 && plt_offset == (bfd_vma) -1)
5ab79981 11061 {
60a019a0 11062 if (thumb2)
cd1dac3d
DG
11063 {
11064 bfd_put_16 (input_bfd, 0xf3af, hit_data);
11065 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
11066 }
11067 else
11068 {
11069 bfd_put_16 (input_bfd, 0xe000, hit_data);
11070 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
11071 }
5ab79981
PB
11072 return bfd_reloc_ok;
11073 }
11074
e95de063 11075 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
99059e56 11076 with Thumb-1) involving the J1 and J2 bits. */
4e7fd91e
PB
11077 if (globals->use_rel)
11078 {
99059e56
RM
11079 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
11080 bfd_vma upper = upper_insn & 0x3ff;
11081 bfd_vma lower = lower_insn & 0x7ff;
e95de063
MS
11082 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
11083 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
99059e56
RM
11084 bfd_vma i1 = j1 ^ s ? 0 : 1;
11085 bfd_vma i2 = j2 ^ s ? 0 : 1;
e95de063 11086
99059e56
RM
11087 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
11088 /* Sign extend. */
11089 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
e95de063 11090
4e7fd91e
PB
11091 signed_addend = addend;
11092 }
cb1afa5c 11093
dfc5f959
NC
11094 if (r_type == R_ARM_THM_XPC22)
11095 {
11096 /* Check for Thumb to Thumb call. */
11097 /* FIXME: Should we translate the instruction into a BL
11098 instruction instead ? */
35fc36a8 11099 if (branch_type == ST_BRANCH_TO_THUMB)
4eca0228 11100 _bfd_error_handler
90b6238f
AM
11101 (_("%pB: warning: %s BLX instruction targets"
11102 " %s function '%s'"),
11103 input_bfd, "Thumb",
11104 "Thumb", h ? h->root.root.string : "(local)");
dfc5f959
NC
11105 }
11106 else
252b5132 11107 {
dfc5f959
NC
11108 /* If it is not a call to Thumb, assume call to Arm.
11109 If it is a call relative to a section name, then it is not a
b7693d02
DJ
11110 function call at all, but rather a long jump. Calls through
11111 the PLT do not require stubs. */
34e77a92 11112 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
dfc5f959 11113 {
bd97cb95 11114 if (globals->use_blx && r_type == R_ARM_THM_CALL)
39b41c9c
PB
11115 {
11116 /* Convert BL to BLX. */
11117 lower_insn = (lower_insn & ~0x1000) | 0x0800;
11118 }
155d87d7
CL
11119 else if (( r_type != R_ARM_THM_CALL)
11120 && (r_type != R_ARM_THM_JUMP24))
8029a119
NC
11121 {
11122 if (elf32_thumb_to_arm_stub
11123 (info, sym_name, input_bfd, output_bfd, input_section,
11124 hit_data, sym_sec, rel->r_offset, signed_addend, value,
11125 error_message))
11126 return bfd_reloc_ok;
11127 else
11128 return bfd_reloc_dangerous;
11129 }
da5938a2 11130 }
35fc36a8
RS
11131 else if (branch_type == ST_BRANCH_TO_THUMB
11132 && globals->use_blx
bd97cb95 11133 && r_type == R_ARM_THM_CALL)
39b41c9c
PB
11134 {
11135 /* Make sure this is a BL. */
11136 lower_insn |= 0x1800;
11137 }
252b5132 11138 }
f21f3fe0 11139
fe33d2fa 11140 enum elf32_arm_stub_type stub_type = arm_stub_none;
155d87d7 11141 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
906e58ca
NC
11142 {
11143 /* Check if a stub has to be inserted because the destination
8029a119 11144 is too far. */
fe33d2fa
CL
11145 struct elf32_arm_stub_hash_entry *stub_entry;
11146 struct elf32_arm_link_hash_entry *hash;
11147
11148 hash = (struct elf32_arm_link_hash_entry *) h;
11149
11150 stub_type = arm_type_of_stub (info, input_section, rel,
34e77a92
RS
11151 st_type, &branch_type,
11152 hash, value, sym_sec,
fe33d2fa
CL
11153 input_bfd, sym_name);
11154
11155 if (stub_type != arm_stub_none)
906e58ca
NC
11156 {
11157 /* The target is out of reach or we are changing modes, so
11158 redirect the branch to the local stub for this
11159 function. */
11160 stub_entry = elf32_arm_get_stub_entry (input_section,
11161 sym_sec, h,
fe33d2fa
CL
11162 rel, globals,
11163 stub_type);
906e58ca 11164 if (stub_entry != NULL)
9cd3e4e5
NC
11165 {
11166 value = (stub_entry->stub_offset
11167 + stub_entry->stub_sec->output_offset
11168 + stub_entry->stub_sec->output_section->vma);
11169
11170 if (plt_offset != (bfd_vma) -1)
11171 *unresolved_reloc_p = FALSE;
11172 }
906e58ca 11173
f4ac8484 11174 /* If this call becomes a call to Arm, force BLX. */
155d87d7 11175 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
f4ac8484
DJ
11176 {
11177 if ((stub_entry
11178 && !arm_stub_is_thumb (stub_entry->stub_type))
35fc36a8 11179 || branch_type != ST_BRANCH_TO_THUMB)
f4ac8484
DJ
11180 lower_insn = (lower_insn & ~0x1000) | 0x0800;
11181 }
906e58ca
NC
11182 }
11183 }
11184
fe33d2fa 11185 /* Handle calls via the PLT. */
34e77a92 11186 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
fe33d2fa
CL
11187 {
11188 value = (splt->output_section->vma
11189 + splt->output_offset
34e77a92 11190 + plt_offset);
fe33d2fa 11191
eed94f8f
NC
11192 if (globals->use_blx
11193 && r_type == R_ARM_THM_CALL
11194 && ! using_thumb_only (globals))
fe33d2fa
CL
11195 {
11196 /* If the Thumb BLX instruction is available, convert
11197 the BL to a BLX instruction to call the ARM-mode
11198 PLT entry. */
11199 lower_insn = (lower_insn & ~0x1000) | 0x0800;
35fc36a8 11200 branch_type = ST_BRANCH_TO_ARM;
fe33d2fa
CL
11201 }
11202 else
11203 {
eed94f8f
NC
11204 if (! using_thumb_only (globals))
11205 /* Target the Thumb stub before the ARM PLT entry. */
11206 value -= PLT_THUMB_STUB_SIZE;
35fc36a8 11207 branch_type = ST_BRANCH_TO_THUMB;
fe33d2fa
CL
11208 }
11209 *unresolved_reloc_p = FALSE;
11210 }
11211
ba96a88f 11212 relocation = value + signed_addend;
f21f3fe0 11213
252b5132 11214 relocation -= (input_section->output_section->vma
ba96a88f
NC
11215 + input_section->output_offset
11216 + rel->r_offset);
9a5aca8c 11217
252b5132
RH
11218 check = relocation >> howto->rightshift;
11219
11220 /* If this is a signed value, the rightshift just dropped
11221 leading 1 bits (assuming twos complement). */
11222 if ((bfd_signed_vma) relocation >= 0)
11223 signed_check = check;
11224 else
11225 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
11226
e95de063
MS
11227 /* Calculate the permissable maximum and minimum values for
11228 this relocation according to whether we're relocating for
11229 Thumb-2 or not. */
11230 bitsize = howto->bitsize;
5e866f5a 11231 if (!thumb2_bl)
e95de063 11232 bitsize -= 2;
f6ebfac0 11233 reloc_signed_max = (1 << (bitsize - 1)) - 1;
e95de063
MS
11234 reloc_signed_min = ~reloc_signed_max;
11235
252b5132 11236 /* Assumes two's complement. */
ba96a88f 11237 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
b34976b6 11238 overflow = TRUE;
252b5132 11239
bd97cb95 11240 if ((lower_insn & 0x5000) == 0x4000)
c62e1cc3
NC
11241 /* For a BLX instruction, make sure that the relocation is rounded up
11242 to a word boundary. This follows the semantics of the instruction
11243 which specifies that bit 1 of the target address will come from bit
11244 1 of the base address. */
11245 relocation = (relocation + 2) & ~ 3;
cb1afa5c 11246
e95de063
MS
11247 /* Put RELOCATION back into the insn. Assumes two's complement.
11248 We use the Thumb-2 encoding, which is safe even if dealing with
11249 a Thumb-1 instruction by virtue of our overflow check above. */
99059e56 11250 reloc_sign = (signed_check < 0) ? 1 : 0;
e95de063 11251 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
99059e56
RM
11252 | ((relocation >> 12) & 0x3ff)
11253 | (reloc_sign << 10);
906e58ca 11254 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
99059e56
RM
11255 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
11256 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
11257 | ((relocation >> 1) & 0x7ff);
c62e1cc3 11258
252b5132
RH
11259 /* Put the relocated value back in the object file: */
11260 bfd_put_16 (input_bfd, upper_insn, hit_data);
11261 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11262
11263 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
11264 }
11265 break;
11266
c19d1205
ZW
11267 case R_ARM_THM_JUMP19:
11268 /* Thumb32 conditional branch instruction. */
11269 {
11270 bfd_vma relocation;
11271 bfd_boolean overflow = FALSE;
11272 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
11273 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
a00a1f35
MS
11274 bfd_signed_vma reloc_signed_max = 0xffffe;
11275 bfd_signed_vma reloc_signed_min = -0x100000;
c19d1205 11276 bfd_signed_vma signed_check;
07d6d2b8 11277 enum elf32_arm_stub_type stub_type = arm_stub_none;
c5423981
TG
11278 struct elf32_arm_stub_hash_entry *stub_entry;
11279 struct elf32_arm_link_hash_entry *hash;
c19d1205
ZW
11280
11281 /* Need to refetch the addend, reconstruct the top three bits,
11282 and squish the two 11 bit pieces together. */
11283 if (globals->use_rel)
11284 {
11285 bfd_vma S = (upper_insn & 0x0400) >> 10;
a00a1f35 11286 bfd_vma upper = (upper_insn & 0x003f);
c19d1205
ZW
11287 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
11288 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
11289 bfd_vma lower = (lower_insn & 0x07ff);
11290
a00a1f35
MS
11291 upper |= J1 << 6;
11292 upper |= J2 << 7;
11293 upper |= (!S) << 8;
c19d1205
ZW
11294 upper -= 0x0100; /* Sign extend. */
11295
11296 addend = (upper << 12) | (lower << 1);
11297 signed_addend = addend;
11298 }
11299
bd97cb95 11300 /* Handle calls via the PLT. */
34e77a92 11301 if (plt_offset != (bfd_vma) -1)
bd97cb95
DJ
11302 {
11303 value = (splt->output_section->vma
11304 + splt->output_offset
34e77a92 11305 + plt_offset);
bd97cb95
DJ
11306 /* Target the Thumb stub before the ARM PLT entry. */
11307 value -= PLT_THUMB_STUB_SIZE;
11308 *unresolved_reloc_p = FALSE;
11309 }
11310
c5423981
TG
11311 hash = (struct elf32_arm_link_hash_entry *)h;
11312
11313 stub_type = arm_type_of_stub (info, input_section, rel,
07d6d2b8
AM
11314 st_type, &branch_type,
11315 hash, value, sym_sec,
11316 input_bfd, sym_name);
c5423981
TG
11317 if (stub_type != arm_stub_none)
11318 {
11319 stub_entry = elf32_arm_get_stub_entry (input_section,
07d6d2b8
AM
11320 sym_sec, h,
11321 rel, globals,
11322 stub_type);
c5423981
TG
11323 if (stub_entry != NULL)
11324 {
07d6d2b8
AM
11325 value = (stub_entry->stub_offset
11326 + stub_entry->stub_sec->output_offset
11327 + stub_entry->stub_sec->output_section->vma);
c5423981
TG
11328 }
11329 }
c19d1205 11330
99059e56 11331 relocation = value + signed_addend;
c19d1205
ZW
11332 relocation -= (input_section->output_section->vma
11333 + input_section->output_offset
11334 + rel->r_offset);
a00a1f35 11335 signed_check = (bfd_signed_vma) relocation;
c19d1205 11336
c19d1205
ZW
11337 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
11338 overflow = TRUE;
11339
11340 /* Put RELOCATION back into the insn. */
11341 {
11342 bfd_vma S = (relocation & 0x00100000) >> 20;
11343 bfd_vma J2 = (relocation & 0x00080000) >> 19;
11344 bfd_vma J1 = (relocation & 0x00040000) >> 18;
11345 bfd_vma hi = (relocation & 0x0003f000) >> 12;
11346 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
11347
a00a1f35 11348 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
c19d1205
ZW
11349 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
11350 }
11351
11352 /* Put the relocated value back in the object file: */
11353 bfd_put_16 (input_bfd, upper_insn, hit_data);
11354 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11355
11356 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
11357 }
11358
11359 case R_ARM_THM_JUMP11:
11360 case R_ARM_THM_JUMP8:
11361 case R_ARM_THM_JUMP6:
51c5503b
NC
11362 /* Thumb B (branch) instruction). */
11363 {
6cf9e9fe 11364 bfd_signed_vma relocation;
51c5503b
NC
11365 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
11366 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
51c5503b
NC
11367 bfd_signed_vma signed_check;
11368
c19d1205
ZW
11369 /* CZB cannot jump backward. */
11370 if (r_type == R_ARM_THM_JUMP6)
11371 reloc_signed_min = 0;
11372
4e7fd91e 11373 if (globals->use_rel)
6cf9e9fe 11374 {
4e7fd91e
PB
11375 /* Need to refetch addend. */
11376 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
11377 if (addend & ((howto->src_mask + 1) >> 1))
11378 {
11379 signed_addend = -1;
11380 signed_addend &= ~ howto->src_mask;
11381 signed_addend |= addend;
11382 }
11383 else
11384 signed_addend = addend;
11385 /* The value in the insn has been right shifted. We need to
11386 undo this, so that we can perform the address calculation
11387 in terms of bytes. */
11388 signed_addend <<= howto->rightshift;
6cf9e9fe 11389 }
6cf9e9fe 11390 relocation = value + signed_addend;
51c5503b
NC
11391
11392 relocation -= (input_section->output_section->vma
11393 + input_section->output_offset
11394 + rel->r_offset);
11395
6cf9e9fe
NC
11396 relocation >>= howto->rightshift;
11397 signed_check = relocation;
c19d1205
ZW
11398
11399 if (r_type == R_ARM_THM_JUMP6)
11400 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
11401 else
11402 relocation &= howto->dst_mask;
51c5503b 11403 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
cedb70c5 11404
51c5503b
NC
11405 bfd_put_16 (input_bfd, relocation, hit_data);
11406
11407 /* Assumes two's complement. */
11408 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
11409 return bfd_reloc_overflow;
11410
11411 return bfd_reloc_ok;
11412 }
cedb70c5 11413
8375c36b
PB
11414 case R_ARM_ALU_PCREL7_0:
11415 case R_ARM_ALU_PCREL15_8:
11416 case R_ARM_ALU_PCREL23_15:
11417 {
11418 bfd_vma insn;
11419 bfd_vma relocation;
11420
11421 insn = bfd_get_32 (input_bfd, hit_data);
4e7fd91e
PB
11422 if (globals->use_rel)
11423 {
11424 /* Extract the addend. */
11425 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
11426 signed_addend = addend;
11427 }
8375c36b
PB
11428 relocation = value + signed_addend;
11429
11430 relocation -= (input_section->output_section->vma
11431 + input_section->output_offset
11432 + rel->r_offset);
11433 insn = (insn & ~0xfff)
11434 | ((howto->bitpos << 7) & 0xf00)
11435 | ((relocation >> howto->bitpos) & 0xff);
11436 bfd_put_32 (input_bfd, value, hit_data);
11437 }
11438 return bfd_reloc_ok;
11439
252b5132
RH
11440 case R_ARM_GNU_VTINHERIT:
11441 case R_ARM_GNU_VTENTRY:
11442 return bfd_reloc_ok;
11443
c19d1205 11444 case R_ARM_GOTOFF32:
252b5132 11445 /* Relocation is relative to the start of the
99059e56 11446 global offset table. */
252b5132
RH
11447
11448 BFD_ASSERT (sgot != NULL);
11449 if (sgot == NULL)
99059e56 11450 return bfd_reloc_notsupported;
9a5aca8c 11451
cedb70c5 11452 /* If we are addressing a Thumb function, we need to adjust the
ee29b9fb
RE
11453 address by one, so that attempts to call the function pointer will
11454 correctly interpret it as Thumb code. */
35fc36a8 11455 if (branch_type == ST_BRANCH_TO_THUMB)
ee29b9fb
RE
11456 value += 1;
11457
252b5132 11458 /* Note that sgot->output_offset is not involved in this
99059e56
RM
11459 calculation. We always want the start of .got. If we
11460 define _GLOBAL_OFFSET_TABLE in a different way, as is
11461 permitted by the ABI, we might have to change this
11462 calculation. */
252b5132 11463 value -= sgot->output_section->vma;
f21f3fe0 11464 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 11465 contents, rel->r_offset, value,
00a97672 11466 rel->r_addend);
252b5132
RH
11467
11468 case R_ARM_GOTPC:
a7c10850 11469 /* Use global offset table as symbol value. */
252b5132 11470 BFD_ASSERT (sgot != NULL);
f21f3fe0 11471
252b5132 11472 if (sgot == NULL)
99059e56 11473 return bfd_reloc_notsupported;
252b5132 11474
0945cdfd 11475 *unresolved_reloc_p = FALSE;
252b5132 11476 value = sgot->output_section->vma;
f21f3fe0 11477 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 11478 contents, rel->r_offset, value,
00a97672 11479 rel->r_addend);
f21f3fe0 11480
252b5132 11481 case R_ARM_GOT32:
eb043451 11482 case R_ARM_GOT_PREL:
252b5132 11483 /* Relocation is to the entry for this symbol in the
99059e56 11484 global offset table. */
252b5132
RH
11485 if (sgot == NULL)
11486 return bfd_reloc_notsupported;
f21f3fe0 11487
34e77a92
RS
11488 if (dynreloc_st_type == STT_GNU_IFUNC
11489 && plt_offset != (bfd_vma) -1
11490 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
11491 {
11492 /* We have a relocation against a locally-binding STT_GNU_IFUNC
11493 symbol, and the relocation resolves directly to the runtime
11494 target rather than to the .iplt entry. This means that any
11495 .got entry would be the same value as the .igot.plt entry,
11496 so there's no point creating both. */
11497 sgot = globals->root.igotplt;
11498 value = sgot->output_offset + gotplt_offset;
11499 }
11500 else if (h != NULL)
252b5132
RH
11501 {
11502 bfd_vma off;
f21f3fe0 11503
252b5132
RH
11504 off = h->got.offset;
11505 BFD_ASSERT (off != (bfd_vma) -1);
b436d854 11506 if ((off & 1) != 0)
252b5132 11507 {
b436d854
RS
11508 /* We have already processsed one GOT relocation against
11509 this symbol. */
11510 off &= ~1;
11511 if (globals->root.dynamic_sections_created
11512 && !SYMBOL_REFERENCES_LOCAL (info, h))
11513 *unresolved_reloc_p = FALSE;
11514 }
11515 else
11516 {
11517 Elf_Internal_Rela outrel;
e8b09b87 11518 int isrofixup = 0;
b436d854 11519
e8b09b87
CL
11520 if (((h->dynindx != -1) || globals->fdpic_p)
11521 && !SYMBOL_REFERENCES_LOCAL (info, h))
b436d854
RS
11522 {
11523 /* If the symbol doesn't resolve locally in a static
11524 object, we have an undefined reference. If the
11525 symbol doesn't resolve locally in a dynamic object,
11526 it should be resolved by the dynamic linker. */
11527 if (globals->root.dynamic_sections_created)
11528 {
11529 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
11530 *unresolved_reloc_p = FALSE;
11531 }
11532 else
11533 outrel.r_info = 0;
11534 outrel.r_addend = 0;
11535 }
252b5132
RH
11536 else
11537 {
34e77a92 11538 if (dynreloc_st_type == STT_GNU_IFUNC)
99059e56 11539 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
5025eb7c 11540 else if (bfd_link_pic (info)
7f026732 11541 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
99059e56
RM
11542 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11543 else
2376f038
EB
11544 {
11545 outrel.r_info = 0;
11546 if (globals->fdpic_p)
11547 isrofixup = 1;
11548 }
34e77a92 11549 outrel.r_addend = dynreloc_value;
b436d854 11550 }
ee29b9fb 11551
b436d854
RS
11552 /* The GOT entry is initialized to zero by default.
11553 See if we should install a different value. */
11554 if (outrel.r_addend != 0
2376f038 11555 && (globals->use_rel || outrel.r_info == 0))
b436d854
RS
11556 {
11557 bfd_put_32 (output_bfd, outrel.r_addend,
11558 sgot->contents + off);
11559 outrel.r_addend = 0;
252b5132 11560 }
f21f3fe0 11561
2376f038
EB
11562 if (isrofixup)
11563 arm_elf_add_rofixup (output_bfd,
11564 elf32_arm_hash_table(info)->srofixup,
11565 sgot->output_section->vma
11566 + sgot->output_offset + off);
11567
11568 else if (outrel.r_info != 0)
b436d854
RS
11569 {
11570 outrel.r_offset = (sgot->output_section->vma
11571 + sgot->output_offset
11572 + off);
11573 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11574 }
2376f038 11575
b436d854
RS
11576 h->got.offset |= 1;
11577 }
252b5132
RH
11578 value = sgot->output_offset + off;
11579 }
11580 else
11581 {
11582 bfd_vma off;
f21f3fe0 11583
5025eb7c
AO
11584 BFD_ASSERT (local_got_offsets != NULL
11585 && local_got_offsets[r_symndx] != (bfd_vma) -1);
f21f3fe0 11586
252b5132 11587 off = local_got_offsets[r_symndx];
f21f3fe0 11588
252b5132
RH
11589 /* The offset must always be a multiple of 4. We use the
11590 least significant bit to record whether we have already
9b485d32 11591 generated the necessary reloc. */
252b5132
RH
11592 if ((off & 1) != 0)
11593 off &= ~1;
11594 else
11595 {
2376f038
EB
11596 Elf_Internal_Rela outrel;
11597 int isrofixup = 0;
f21f3fe0 11598
2376f038
EB
11599 if (dynreloc_st_type == STT_GNU_IFUNC)
11600 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
11601 else if (bfd_link_pic (info))
11602 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11603 else
252b5132 11604 {
2376f038
EB
11605 outrel.r_info = 0;
11606 if (globals->fdpic_p)
11607 isrofixup = 1;
11608 }
11609
11610 /* The GOT entry is initialized to zero by default.
11611 See if we should install a different value. */
11612 if (globals->use_rel || outrel.r_info == 0)
11613 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
11614
11615 if (isrofixup)
11616 arm_elf_add_rofixup (output_bfd,
11617 globals->srofixup,
11618 sgot->output_section->vma
11619 + sgot->output_offset + off);
f21f3fe0 11620
2376f038
EB
11621 else if (outrel.r_info != 0)
11622 {
34e77a92 11623 outrel.r_addend = addend + dynreloc_value;
252b5132 11624 outrel.r_offset = (sgot->output_section->vma
f21f3fe0 11625 + sgot->output_offset
252b5132 11626 + off);
47beaa6a 11627 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
252b5132 11628 }
f21f3fe0 11629
252b5132
RH
11630 local_got_offsets[r_symndx] |= 1;
11631 }
f21f3fe0 11632
252b5132
RH
11633 value = sgot->output_offset + off;
11634 }
eb043451
PB
11635 if (r_type != R_ARM_GOT32)
11636 value += sgot->output_section->vma;
9a5aca8c 11637
f21f3fe0 11638 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 11639 contents, rel->r_offset, value,
00a97672 11640 rel->r_addend);
f21f3fe0 11641
ba93b8ac
DJ
11642 case R_ARM_TLS_LDO32:
11643 value = value - dtpoff_base (info);
11644
11645 return _bfd_final_link_relocate (howto, input_bfd, input_section,
00a97672
RS
11646 contents, rel->r_offset, value,
11647 rel->r_addend);
ba93b8ac
DJ
11648
11649 case R_ARM_TLS_LDM32:
5c5a4843 11650 case R_ARM_TLS_LDM32_FDPIC:
ba93b8ac
DJ
11651 {
11652 bfd_vma off;
11653
362d30a1 11654 if (sgot == NULL)
ba93b8ac
DJ
11655 abort ();
11656
11657 off = globals->tls_ldm_got.offset;
11658
11659 if ((off & 1) != 0)
11660 off &= ~1;
11661 else
11662 {
11663 /* If we don't know the module number, create a relocation
11664 for it. */
9cb09e33 11665 if (bfd_link_dll (info))
ba93b8ac
DJ
11666 {
11667 Elf_Internal_Rela outrel;
ba93b8ac 11668
362d30a1 11669 if (srelgot == NULL)
ba93b8ac
DJ
11670 abort ();
11671
00a97672 11672 outrel.r_addend = 0;
362d30a1
RS
11673 outrel.r_offset = (sgot->output_section->vma
11674 + sgot->output_offset + off);
ba93b8ac
DJ
11675 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
11676
00a97672
RS
11677 if (globals->use_rel)
11678 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 11679 sgot->contents + off);
ba93b8ac 11680
47beaa6a 11681 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
ba93b8ac
DJ
11682 }
11683 else
362d30a1 11684 bfd_put_32 (output_bfd, 1, sgot->contents + off);
ba93b8ac
DJ
11685
11686 globals->tls_ldm_got.offset |= 1;
11687 }
11688
5c5a4843 11689 if (r_type == R_ARM_TLS_LDM32_FDPIC)
e8b09b87
CL
11690 {
11691 bfd_put_32(output_bfd,
11692 globals->root.sgot->output_offset + off,
11693 contents + rel->r_offset);
11694
11695 return bfd_reloc_ok;
11696 }
11697 else
11698 {
11699 value = sgot->output_section->vma + sgot->output_offset + off
11700 - (input_section->output_section->vma
11701 + input_section->output_offset + rel->r_offset);
ba93b8ac 11702
e8b09b87
CL
11703 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11704 contents, rel->r_offset, value,
11705 rel->r_addend);
11706 }
ba93b8ac
DJ
11707 }
11708
0855e32b
NS
11709 case R_ARM_TLS_CALL:
11710 case R_ARM_THM_TLS_CALL:
ba93b8ac 11711 case R_ARM_TLS_GD32:
5c5a4843 11712 case R_ARM_TLS_GD32_FDPIC:
ba93b8ac 11713 case R_ARM_TLS_IE32:
5c5a4843 11714 case R_ARM_TLS_IE32_FDPIC:
0855e32b
NS
11715 case R_ARM_TLS_GOTDESC:
11716 case R_ARM_TLS_DESCSEQ:
11717 case R_ARM_THM_TLS_DESCSEQ:
ba93b8ac 11718 {
0855e32b
NS
11719 bfd_vma off, offplt;
11720 int indx = 0;
ba93b8ac
DJ
11721 char tls_type;
11722
0855e32b 11723 BFD_ASSERT (sgot != NULL);
ba93b8ac 11724
ba93b8ac
DJ
11725 if (h != NULL)
11726 {
11727 bfd_boolean dyn;
11728 dyn = globals->root.dynamic_sections_created;
0e1862bb
L
11729 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
11730 bfd_link_pic (info),
11731 h)
11732 && (!bfd_link_pic (info)
ba93b8ac
DJ
11733 || !SYMBOL_REFERENCES_LOCAL (info, h)))
11734 {
11735 *unresolved_reloc_p = FALSE;
11736 indx = h->dynindx;
11737 }
11738 off = h->got.offset;
0855e32b 11739 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
ba93b8ac
DJ
11740 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
11741 }
11742 else
11743 {
0855e32b 11744 BFD_ASSERT (local_got_offsets != NULL);
ba93b8ac 11745 off = local_got_offsets[r_symndx];
0855e32b 11746 offplt = local_tlsdesc_gotents[r_symndx];
ba93b8ac
DJ
11747 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
11748 }
11749
0855e32b 11750 /* Linker relaxations happens from one of the
b38cadfb 11751 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
0855e32b 11752 if (ELF32_R_TYPE(rel->r_info) != r_type)
b38cadfb 11753 tls_type = GOT_TLS_IE;
0855e32b
NS
11754
11755 BFD_ASSERT (tls_type != GOT_UNKNOWN);
ba93b8ac
DJ
11756
11757 if ((off & 1) != 0)
11758 off &= ~1;
11759 else
11760 {
11761 bfd_boolean need_relocs = FALSE;
11762 Elf_Internal_Rela outrel;
ba93b8ac
DJ
11763 int cur_off = off;
11764
11765 /* The GOT entries have not been initialized yet. Do it
11766 now, and emit any relocations. If both an IE GOT and a
11767 GD GOT are necessary, we emit the GD first. */
11768
9cb09e33 11769 if ((bfd_link_dll (info) || indx != 0)
ba93b8ac 11770 && (h == NULL
95b03e4a
L
11771 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11772 && !resolved_to_zero)
ba93b8ac
DJ
11773 || h->root.type != bfd_link_hash_undefweak))
11774 {
11775 need_relocs = TRUE;
0855e32b 11776 BFD_ASSERT (srelgot != NULL);
ba93b8ac
DJ
11777 }
11778
0855e32b
NS
11779 if (tls_type & GOT_TLS_GDESC)
11780 {
47beaa6a
RS
11781 bfd_byte *loc;
11782
0855e32b
NS
11783 /* We should have relaxed, unless this is an undefined
11784 weak symbol. */
11785 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
9cb09e33 11786 || bfd_link_dll (info));
0855e32b 11787 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
99059e56 11788 <= globals->root.sgotplt->size);
0855e32b
NS
11789
11790 outrel.r_addend = 0;
11791 outrel.r_offset = (globals->root.sgotplt->output_section->vma
11792 + globals->root.sgotplt->output_offset
11793 + offplt
11794 + globals->sgotplt_jump_table_size);
b38cadfb 11795
0855e32b
NS
11796 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
11797 sreloc = globals->root.srelplt;
11798 loc = sreloc->contents;
11799 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
11800 BFD_ASSERT (loc + RELOC_SIZE (globals)
99059e56 11801 <= sreloc->contents + sreloc->size);
0855e32b
NS
11802
11803 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
11804
11805 /* For globals, the first word in the relocation gets
11806 the relocation index and the top bit set, or zero,
11807 if we're binding now. For locals, it gets the
11808 symbol's offset in the tls section. */
99059e56 11809 bfd_put_32 (output_bfd,
0855e32b
NS
11810 !h ? value - elf_hash_table (info)->tls_sec->vma
11811 : info->flags & DF_BIND_NOW ? 0
11812 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
b38cadfb
NC
11813 globals->root.sgotplt->contents + offplt
11814 + globals->sgotplt_jump_table_size);
11815
0855e32b 11816 /* Second word in the relocation is always zero. */
99059e56 11817 bfd_put_32 (output_bfd, 0,
b38cadfb
NC
11818 globals->root.sgotplt->contents + offplt
11819 + globals->sgotplt_jump_table_size + 4);
0855e32b 11820 }
ba93b8ac
DJ
11821 if (tls_type & GOT_TLS_GD)
11822 {
11823 if (need_relocs)
11824 {
00a97672 11825 outrel.r_addend = 0;
362d30a1
RS
11826 outrel.r_offset = (sgot->output_section->vma
11827 + sgot->output_offset
00a97672 11828 + cur_off);
ba93b8ac 11829 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
ba93b8ac 11830
00a97672
RS
11831 if (globals->use_rel)
11832 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 11833 sgot->contents + cur_off);
00a97672 11834
47beaa6a 11835 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
ba93b8ac
DJ
11836
11837 if (indx == 0)
11838 bfd_put_32 (output_bfd, value - dtpoff_base (info),
362d30a1 11839 sgot->contents + cur_off + 4);
ba93b8ac
DJ
11840 else
11841 {
00a97672 11842 outrel.r_addend = 0;
ba93b8ac
DJ
11843 outrel.r_info = ELF32_R_INFO (indx,
11844 R_ARM_TLS_DTPOFF32);
11845 outrel.r_offset += 4;
00a97672
RS
11846
11847 if (globals->use_rel)
11848 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 11849 sgot->contents + cur_off + 4);
00a97672 11850
47beaa6a
RS
11851 elf32_arm_add_dynreloc (output_bfd, info,
11852 srelgot, &outrel);
ba93b8ac
DJ
11853 }
11854 }
11855 else
11856 {
11857 /* If we are not emitting relocations for a
11858 general dynamic reference, then we must be in a
11859 static link or an executable link with the
11860 symbol binding locally. Mark it as belonging
11861 to module 1, the executable. */
11862 bfd_put_32 (output_bfd, 1,
362d30a1 11863 sgot->contents + cur_off);
ba93b8ac 11864 bfd_put_32 (output_bfd, value - dtpoff_base (info),
362d30a1 11865 sgot->contents + cur_off + 4);
ba93b8ac
DJ
11866 }
11867
11868 cur_off += 8;
11869 }
11870
11871 if (tls_type & GOT_TLS_IE)
11872 {
11873 if (need_relocs)
11874 {
00a97672
RS
11875 if (indx == 0)
11876 outrel.r_addend = value - dtpoff_base (info);
11877 else
11878 outrel.r_addend = 0;
362d30a1
RS
11879 outrel.r_offset = (sgot->output_section->vma
11880 + sgot->output_offset
ba93b8ac
DJ
11881 + cur_off);
11882 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
11883
00a97672
RS
11884 if (globals->use_rel)
11885 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 11886 sgot->contents + cur_off);
ba93b8ac 11887
47beaa6a 11888 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
ba93b8ac
DJ
11889 }
11890 else
11891 bfd_put_32 (output_bfd, tpoff (info, value),
362d30a1 11892 sgot->contents + cur_off);
ba93b8ac
DJ
11893 cur_off += 4;
11894 }
11895
11896 if (h != NULL)
11897 h->got.offset |= 1;
11898 else
11899 local_got_offsets[r_symndx] |= 1;
11900 }
11901
5c5a4843 11902 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32 && r_type != R_ARM_TLS_GD32_FDPIC)
ba93b8ac 11903 off += 8;
0855e32b
NS
11904 else if (tls_type & GOT_TLS_GDESC)
11905 off = offplt;
11906
11907 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
11908 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
11909 {
11910 bfd_signed_vma offset;
12352d3f
PB
11911 /* TLS stubs are arm mode. The original symbol is a
11912 data object, so branch_type is bogus. */
11913 branch_type = ST_BRANCH_TO_ARM;
0855e32b 11914 enum elf32_arm_stub_type stub_type
34e77a92
RS
11915 = arm_type_of_stub (info, input_section, rel,
11916 st_type, &branch_type,
0855e32b
NS
11917 (struct elf32_arm_link_hash_entry *)h,
11918 globals->tls_trampoline, globals->root.splt,
11919 input_bfd, sym_name);
11920
11921 if (stub_type != arm_stub_none)
11922 {
11923 struct elf32_arm_stub_hash_entry *stub_entry
11924 = elf32_arm_get_stub_entry
11925 (input_section, globals->root.splt, 0, rel,
11926 globals, stub_type);
11927 offset = (stub_entry->stub_offset
11928 + stub_entry->stub_sec->output_offset
11929 + stub_entry->stub_sec->output_section->vma);
11930 }
11931 else
11932 offset = (globals->root.splt->output_section->vma
11933 + globals->root.splt->output_offset
11934 + globals->tls_trampoline);
11935
11936 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
11937 {
11938 unsigned long inst;
b38cadfb
NC
11939
11940 offset -= (input_section->output_section->vma
11941 + input_section->output_offset
11942 + rel->r_offset + 8);
0855e32b
NS
11943
11944 inst = offset >> 2;
11945 inst &= 0x00ffffff;
11946 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
11947 }
11948 else
11949 {
11950 /* Thumb blx encodes the offset in a complicated
11951 fashion. */
11952 unsigned upper_insn, lower_insn;
11953 unsigned neg;
11954
b38cadfb
NC
11955 offset -= (input_section->output_section->vma
11956 + input_section->output_offset
0855e32b 11957 + rel->r_offset + 4);
b38cadfb 11958
12352d3f
PB
11959 if (stub_type != arm_stub_none
11960 && arm_stub_is_thumb (stub_type))
11961 {
11962 lower_insn = 0xd000;
11963 }
11964 else
11965 {
11966 lower_insn = 0xc000;
6a631e86 11967 /* Round up the offset to a word boundary. */
12352d3f
PB
11968 offset = (offset + 2) & ~2;
11969 }
11970
0855e32b
NS
11971 neg = offset < 0;
11972 upper_insn = (0xf000
11973 | ((offset >> 12) & 0x3ff)
11974 | (neg << 10));
12352d3f 11975 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
0855e32b 11976 | (((!((offset >> 22) & 1)) ^ neg) << 11)
12352d3f 11977 | ((offset >> 1) & 0x7ff);
0855e32b
NS
11978 bfd_put_16 (input_bfd, upper_insn, hit_data);
11979 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11980 return bfd_reloc_ok;
11981 }
11982 }
11983 /* These relocations needs special care, as besides the fact
11984 they point somewhere in .gotplt, the addend must be
11985 adjusted accordingly depending on the type of instruction
6a631e86 11986 we refer to. */
0855e32b
NS
11987 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
11988 {
11989 unsigned long data, insn;
11990 unsigned thumb;
b38cadfb 11991
b627f562 11992 data = bfd_get_signed_32 (input_bfd, hit_data);
0855e32b 11993 thumb = data & 1;
b627f562 11994 data &= ~1ul;
b38cadfb 11995
0855e32b
NS
11996 if (thumb)
11997 {
11998 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
11999 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
12000 insn = (insn << 16)
12001 | bfd_get_16 (input_bfd,
12002 contents + rel->r_offset - data + 2);
12003 if ((insn & 0xf800c000) == 0xf000c000)
12004 /* bl/blx */
12005 value = -6;
12006 else if ((insn & 0xffffff00) == 0x4400)
12007 /* add */
12008 value = -5;
12009 else
12010 {
4eca0228 12011 _bfd_error_handler
695344c0 12012 /* xgettext:c-format */
2dcf00ce 12013 (_("%pB(%pA+%#" PRIx64 "): "
90b6238f 12014 "unexpected %s instruction '%#lx' "
2dcf00ce
AM
12015 "referenced by TLS_GOTDESC"),
12016 input_bfd, input_section, (uint64_t) rel->r_offset,
90b6238f 12017 "Thumb", insn);
0855e32b
NS
12018 return bfd_reloc_notsupported;
12019 }
12020 }
12021 else
12022 {
12023 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
12024
12025 switch (insn >> 24)
12026 {
12027 case 0xeb: /* bl */
12028 case 0xfa: /* blx */
12029 value = -4;
12030 break;
12031
12032 case 0xe0: /* add */
12033 value = -8;
12034 break;
b38cadfb 12035
0855e32b 12036 default:
4eca0228 12037 _bfd_error_handler
695344c0 12038 /* xgettext:c-format */
2dcf00ce 12039 (_("%pB(%pA+%#" PRIx64 "): "
90b6238f 12040 "unexpected %s instruction '%#lx' "
2dcf00ce
AM
12041 "referenced by TLS_GOTDESC"),
12042 input_bfd, input_section, (uint64_t) rel->r_offset,
90b6238f 12043 "ARM", insn);
0855e32b
NS
12044 return bfd_reloc_notsupported;
12045 }
12046 }
b38cadfb 12047
0855e32b
NS
12048 value += ((globals->root.sgotplt->output_section->vma
12049 + globals->root.sgotplt->output_offset + off)
12050 - (input_section->output_section->vma
12051 + input_section->output_offset
12052 + rel->r_offset)
12053 + globals->sgotplt_jump_table_size);
12054 }
12055 else
12056 value = ((globals->root.sgot->output_section->vma
12057 + globals->root.sgot->output_offset + off)
12058 - (input_section->output_section->vma
12059 + input_section->output_offset + rel->r_offset));
ba93b8ac 12060
5c5a4843
CL
12061 if (globals->fdpic_p && (r_type == R_ARM_TLS_GD32_FDPIC ||
12062 r_type == R_ARM_TLS_IE32_FDPIC))
e8b09b87
CL
12063 {
12064 /* For FDPIC relocations, resolve to the offset of the GOT
12065 entry from the start of GOT. */
12066 bfd_put_32(output_bfd,
12067 globals->root.sgot->output_offset + off,
12068 contents + rel->r_offset);
12069
12070 return bfd_reloc_ok;
12071 }
12072 else
12073 {
12074 return _bfd_final_link_relocate (howto, input_bfd, input_section,
12075 contents, rel->r_offset, value,
12076 rel->r_addend);
12077 }
ba93b8ac
DJ
12078 }
12079
12080 case R_ARM_TLS_LE32:
3cbc1e5e 12081 if (bfd_link_dll (info))
ba93b8ac 12082 {
4eca0228 12083 _bfd_error_handler
695344c0 12084 /* xgettext:c-format */
2dcf00ce
AM
12085 (_("%pB(%pA+%#" PRIx64 "): %s relocation not permitted "
12086 "in shared object"),
12087 input_bfd, input_section, (uint64_t) rel->r_offset, howto->name);
46691134 12088 return bfd_reloc_notsupported;
ba93b8ac
DJ
12089 }
12090 else
12091 value = tpoff (info, value);
906e58ca 12092
ba93b8ac 12093 return _bfd_final_link_relocate (howto, input_bfd, input_section,
00a97672
RS
12094 contents, rel->r_offset, value,
12095 rel->r_addend);
ba93b8ac 12096
319850b4
JB
12097 case R_ARM_V4BX:
12098 if (globals->fix_v4bx)
845b51d6
PB
12099 {
12100 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
319850b4 12101
845b51d6
PB
12102 /* Ensure that we have a BX instruction. */
12103 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
319850b4 12104
845b51d6
PB
12105 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
12106 {
12107 /* Branch to veneer. */
12108 bfd_vma glue_addr;
12109 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
12110 glue_addr -= input_section->output_section->vma
12111 + input_section->output_offset
12112 + rel->r_offset + 8;
12113 insn = (insn & 0xf0000000) | 0x0a000000
12114 | ((glue_addr >> 2) & 0x00ffffff);
12115 }
12116 else
12117 {
12118 /* Preserve Rm (lowest four bits) and the condition code
12119 (highest four bits). Other bits encode MOV PC,Rm. */
12120 insn = (insn & 0xf000000f) | 0x01a0f000;
12121 }
319850b4 12122
845b51d6
PB
12123 bfd_put_32 (input_bfd, insn, hit_data);
12124 }
319850b4
JB
12125 return bfd_reloc_ok;
12126
b6895b4f
PB
12127 case R_ARM_MOVW_ABS_NC:
12128 case R_ARM_MOVT_ABS:
12129 case R_ARM_MOVW_PREL_NC:
12130 case R_ARM_MOVT_PREL:
92f5d02b
MS
12131 /* Until we properly support segment-base-relative addressing then
12132 we assume the segment base to be zero, as for the group relocations.
12133 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
12134 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
12135 case R_ARM_MOVW_BREL_NC:
12136 case R_ARM_MOVW_BREL:
12137 case R_ARM_MOVT_BREL:
b6895b4f
PB
12138 {
12139 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12140
12141 if (globals->use_rel)
12142 {
12143 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
39623e12 12144 signed_addend = (addend ^ 0x8000) - 0x8000;
b6895b4f 12145 }
92f5d02b 12146
b6895b4f 12147 value += signed_addend;
b6895b4f
PB
12148
12149 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
12150 value -= (input_section->output_section->vma
12151 + input_section->output_offset + rel->r_offset);
12152
92f5d02b 12153 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
99059e56 12154 return bfd_reloc_overflow;
92f5d02b 12155
35fc36a8 12156 if (branch_type == ST_BRANCH_TO_THUMB)
92f5d02b
MS
12157 value |= 1;
12158
12159 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
99059e56 12160 || r_type == R_ARM_MOVT_BREL)
b6895b4f
PB
12161 value >>= 16;
12162
12163 insn &= 0xfff0f000;
12164 insn |= value & 0xfff;
12165 insn |= (value & 0xf000) << 4;
12166 bfd_put_32 (input_bfd, insn, hit_data);
12167 }
12168 return bfd_reloc_ok;
12169
12170 case R_ARM_THM_MOVW_ABS_NC:
12171 case R_ARM_THM_MOVT_ABS:
12172 case R_ARM_THM_MOVW_PREL_NC:
12173 case R_ARM_THM_MOVT_PREL:
92f5d02b
MS
12174 /* Until we properly support segment-base-relative addressing then
12175 we assume the segment base to be zero, as for the above relocations.
12176 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
12177 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
12178 as R_ARM_THM_MOVT_ABS. */
12179 case R_ARM_THM_MOVW_BREL_NC:
12180 case R_ARM_THM_MOVW_BREL:
12181 case R_ARM_THM_MOVT_BREL:
b6895b4f
PB
12182 {
12183 bfd_vma insn;
906e58ca 12184
b6895b4f
PB
12185 insn = bfd_get_16 (input_bfd, hit_data) << 16;
12186 insn |= bfd_get_16 (input_bfd, hit_data + 2);
12187
12188 if (globals->use_rel)
12189 {
12190 addend = ((insn >> 4) & 0xf000)
12191 | ((insn >> 15) & 0x0800)
12192 | ((insn >> 4) & 0x0700)
07d6d2b8 12193 | (insn & 0x00ff);
39623e12 12194 signed_addend = (addend ^ 0x8000) - 0x8000;
b6895b4f 12195 }
92f5d02b 12196
b6895b4f 12197 value += signed_addend;
b6895b4f
PB
12198
12199 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
12200 value -= (input_section->output_section->vma
12201 + input_section->output_offset + rel->r_offset);
12202
92f5d02b 12203 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
99059e56 12204 return bfd_reloc_overflow;
92f5d02b 12205
35fc36a8 12206 if (branch_type == ST_BRANCH_TO_THUMB)
92f5d02b
MS
12207 value |= 1;
12208
12209 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
99059e56 12210 || r_type == R_ARM_THM_MOVT_BREL)
b6895b4f
PB
12211 value >>= 16;
12212
12213 insn &= 0xfbf08f00;
12214 insn |= (value & 0xf000) << 4;
12215 insn |= (value & 0x0800) << 15;
12216 insn |= (value & 0x0700) << 4;
12217 insn |= (value & 0x00ff);
12218
12219 bfd_put_16 (input_bfd, insn >> 16, hit_data);
12220 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
12221 }
12222 return bfd_reloc_ok;
12223
4962c51a
MS
12224 case R_ARM_ALU_PC_G0_NC:
12225 case R_ARM_ALU_PC_G1_NC:
12226 case R_ARM_ALU_PC_G0:
12227 case R_ARM_ALU_PC_G1:
12228 case R_ARM_ALU_PC_G2:
12229 case R_ARM_ALU_SB_G0_NC:
12230 case R_ARM_ALU_SB_G1_NC:
12231 case R_ARM_ALU_SB_G0:
12232 case R_ARM_ALU_SB_G1:
12233 case R_ARM_ALU_SB_G2:
12234 {
12235 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 12236 bfd_vma pc = input_section->output_section->vma
4962c51a 12237 + input_section->output_offset + rel->r_offset;
31a91d61 12238 /* sb is the origin of the *segment* containing the symbol. */
62c34db3 12239 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
99059e56
RM
12240 bfd_vma residual;
12241 bfd_vma g_n;
4962c51a 12242 bfd_signed_vma signed_value;
99059e56
RM
12243 int group = 0;
12244
12245 /* Determine which group of bits to select. */
12246 switch (r_type)
12247 {
12248 case R_ARM_ALU_PC_G0_NC:
12249 case R_ARM_ALU_PC_G0:
12250 case R_ARM_ALU_SB_G0_NC:
12251 case R_ARM_ALU_SB_G0:
12252 group = 0;
12253 break;
12254
12255 case R_ARM_ALU_PC_G1_NC:
12256 case R_ARM_ALU_PC_G1:
12257 case R_ARM_ALU_SB_G1_NC:
12258 case R_ARM_ALU_SB_G1:
12259 group = 1;
12260 break;
12261
12262 case R_ARM_ALU_PC_G2:
12263 case R_ARM_ALU_SB_G2:
12264 group = 2;
12265 break;
12266
12267 default:
12268 abort ();
12269 }
12270
12271 /* If REL, extract the addend from the insn. If RELA, it will
12272 have already been fetched for us. */
4962c51a 12273 if (globals->use_rel)
99059e56
RM
12274 {
12275 int negative;
12276 bfd_vma constant = insn & 0xff;
12277 bfd_vma rotation = (insn & 0xf00) >> 8;
12278
12279 if (rotation == 0)
12280 signed_addend = constant;
12281 else
12282 {
12283 /* Compensate for the fact that in the instruction, the
12284 rotation is stored in multiples of 2 bits. */
12285 rotation *= 2;
12286
12287 /* Rotate "constant" right by "rotation" bits. */
12288 signed_addend = (constant >> rotation) |
12289 (constant << (8 * sizeof (bfd_vma) - rotation));
12290 }
12291
12292 /* Determine if the instruction is an ADD or a SUB.
12293 (For REL, this determines the sign of the addend.) */
12294 negative = identify_add_or_sub (insn);
12295 if (negative == 0)
12296 {
4eca0228 12297 _bfd_error_handler
695344c0 12298 /* xgettext:c-format */
90b6238f 12299 (_("%pB(%pA+%#" PRIx64 "): only ADD or SUB instructions "
2dcf00ce
AM
12300 "are allowed for ALU group relocations"),
12301 input_bfd, input_section, (uint64_t) rel->r_offset);
99059e56
RM
12302 return bfd_reloc_overflow;
12303 }
12304
12305 signed_addend *= negative;
12306 }
4962c51a
MS
12307
12308 /* Compute the value (X) to go in the place. */
99059e56
RM
12309 if (r_type == R_ARM_ALU_PC_G0_NC
12310 || r_type == R_ARM_ALU_PC_G1_NC
12311 || r_type == R_ARM_ALU_PC_G0
12312 || r_type == R_ARM_ALU_PC_G1
12313 || r_type == R_ARM_ALU_PC_G2)
12314 /* PC relative. */
12315 signed_value = value - pc + signed_addend;
12316 else
12317 /* Section base relative. */
12318 signed_value = value - sb + signed_addend;
12319
12320 /* If the target symbol is a Thumb function, then set the
12321 Thumb bit in the address. */
35fc36a8 12322 if (branch_type == ST_BRANCH_TO_THUMB)
4962c51a
MS
12323 signed_value |= 1;
12324
99059e56
RM
12325 /* Calculate the value of the relevant G_n, in encoded
12326 constant-with-rotation format. */
b6518b38
NC
12327 g_n = calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12328 group, &residual);
99059e56
RM
12329
12330 /* Check for overflow if required. */
12331 if ((r_type == R_ARM_ALU_PC_G0
12332 || r_type == R_ARM_ALU_PC_G1
12333 || r_type == R_ARM_ALU_PC_G2
12334 || r_type == R_ARM_ALU_SB_G0
12335 || r_type == R_ARM_ALU_SB_G1
12336 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
12337 {
4eca0228 12338 _bfd_error_handler
695344c0 12339 /* xgettext:c-format */
90b6238f 12340 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
2dcf00ce
AM
12341 "splitting %#" PRIx64 " for group relocation %s"),
12342 input_bfd, input_section, (uint64_t) rel->r_offset,
12343 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12344 howto->name);
99059e56
RM
12345 return bfd_reloc_overflow;
12346 }
12347
12348 /* Mask out the value and the ADD/SUB part of the opcode; take care
12349 not to destroy the S bit. */
12350 insn &= 0xff1ff000;
12351
12352 /* Set the opcode according to whether the value to go in the
12353 place is negative. */
12354 if (signed_value < 0)
12355 insn |= 1 << 22;
12356 else
12357 insn |= 1 << 23;
12358
12359 /* Encode the offset. */
12360 insn |= g_n;
4962c51a
MS
12361
12362 bfd_put_32 (input_bfd, insn, hit_data);
12363 }
12364 return bfd_reloc_ok;
12365
12366 case R_ARM_LDR_PC_G0:
12367 case R_ARM_LDR_PC_G1:
12368 case R_ARM_LDR_PC_G2:
12369 case R_ARM_LDR_SB_G0:
12370 case R_ARM_LDR_SB_G1:
12371 case R_ARM_LDR_SB_G2:
12372 {
12373 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 12374 bfd_vma pc = input_section->output_section->vma
4962c51a 12375 + input_section->output_offset + rel->r_offset;
31a91d61 12376 /* sb is the origin of the *segment* containing the symbol. */
62c34db3 12377 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
99059e56 12378 bfd_vma residual;
4962c51a 12379 bfd_signed_vma signed_value;
99059e56
RM
12380 int group = 0;
12381
12382 /* Determine which groups of bits to calculate. */
12383 switch (r_type)
12384 {
12385 case R_ARM_LDR_PC_G0:
12386 case R_ARM_LDR_SB_G0:
12387 group = 0;
12388 break;
12389
12390 case R_ARM_LDR_PC_G1:
12391 case R_ARM_LDR_SB_G1:
12392 group = 1;
12393 break;
12394
12395 case R_ARM_LDR_PC_G2:
12396 case R_ARM_LDR_SB_G2:
12397 group = 2;
12398 break;
12399
12400 default:
12401 abort ();
12402 }
12403
12404 /* If REL, extract the addend from the insn. If RELA, it will
12405 have already been fetched for us. */
4962c51a 12406 if (globals->use_rel)
99059e56
RM
12407 {
12408 int negative = (insn & (1 << 23)) ? 1 : -1;
12409 signed_addend = negative * (insn & 0xfff);
12410 }
4962c51a
MS
12411
12412 /* Compute the value (X) to go in the place. */
99059e56
RM
12413 if (r_type == R_ARM_LDR_PC_G0
12414 || r_type == R_ARM_LDR_PC_G1
12415 || r_type == R_ARM_LDR_PC_G2)
12416 /* PC relative. */
12417 signed_value = value - pc + signed_addend;
12418 else
12419 /* Section base relative. */
12420 signed_value = value - sb + signed_addend;
12421
12422 /* Calculate the value of the relevant G_{n-1} to obtain
12423 the residual at that stage. */
b6518b38
NC
12424 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12425 group - 1, &residual);
99059e56
RM
12426
12427 /* Check for overflow. */
12428 if (residual >= 0x1000)
12429 {
4eca0228 12430 _bfd_error_handler
695344c0 12431 /* xgettext:c-format */
90b6238f 12432 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
2dcf00ce
AM
12433 "splitting %#" PRIx64 " for group relocation %s"),
12434 input_bfd, input_section, (uint64_t) rel->r_offset,
12435 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12436 howto->name);
99059e56
RM
12437 return bfd_reloc_overflow;
12438 }
12439
12440 /* Mask out the value and U bit. */
12441 insn &= 0xff7ff000;
12442
12443 /* Set the U bit if the value to go in the place is non-negative. */
12444 if (signed_value >= 0)
12445 insn |= 1 << 23;
12446
12447 /* Encode the offset. */
12448 insn |= residual;
4962c51a
MS
12449
12450 bfd_put_32 (input_bfd, insn, hit_data);
12451 }
12452 return bfd_reloc_ok;
12453
12454 case R_ARM_LDRS_PC_G0:
12455 case R_ARM_LDRS_PC_G1:
12456 case R_ARM_LDRS_PC_G2:
12457 case R_ARM_LDRS_SB_G0:
12458 case R_ARM_LDRS_SB_G1:
12459 case R_ARM_LDRS_SB_G2:
12460 {
12461 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 12462 bfd_vma pc = input_section->output_section->vma
4962c51a 12463 + input_section->output_offset + rel->r_offset;
31a91d61 12464 /* sb is the origin of the *segment* containing the symbol. */
62c34db3 12465 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
99059e56 12466 bfd_vma residual;
4962c51a 12467 bfd_signed_vma signed_value;
99059e56
RM
12468 int group = 0;
12469
12470 /* Determine which groups of bits to calculate. */
12471 switch (r_type)
12472 {
12473 case R_ARM_LDRS_PC_G0:
12474 case R_ARM_LDRS_SB_G0:
12475 group = 0;
12476 break;
12477
12478 case R_ARM_LDRS_PC_G1:
12479 case R_ARM_LDRS_SB_G1:
12480 group = 1;
12481 break;
12482
12483 case R_ARM_LDRS_PC_G2:
12484 case R_ARM_LDRS_SB_G2:
12485 group = 2;
12486 break;
12487
12488 default:
12489 abort ();
12490 }
12491
12492 /* If REL, extract the addend from the insn. If RELA, it will
12493 have already been fetched for us. */
4962c51a 12494 if (globals->use_rel)
99059e56
RM
12495 {
12496 int negative = (insn & (1 << 23)) ? 1 : -1;
12497 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
12498 }
4962c51a
MS
12499
12500 /* Compute the value (X) to go in the place. */
99059e56
RM
12501 if (r_type == R_ARM_LDRS_PC_G0
12502 || r_type == R_ARM_LDRS_PC_G1
12503 || r_type == R_ARM_LDRS_PC_G2)
12504 /* PC relative. */
12505 signed_value = value - pc + signed_addend;
12506 else
12507 /* Section base relative. */
12508 signed_value = value - sb + signed_addend;
12509
12510 /* Calculate the value of the relevant G_{n-1} to obtain
12511 the residual at that stage. */
b6518b38
NC
12512 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12513 group - 1, &residual);
99059e56
RM
12514
12515 /* Check for overflow. */
12516 if (residual >= 0x100)
12517 {
4eca0228 12518 _bfd_error_handler
695344c0 12519 /* xgettext:c-format */
90b6238f 12520 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
2dcf00ce
AM
12521 "splitting %#" PRIx64 " for group relocation %s"),
12522 input_bfd, input_section, (uint64_t) rel->r_offset,
12523 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12524 howto->name);
99059e56
RM
12525 return bfd_reloc_overflow;
12526 }
12527
12528 /* Mask out the value and U bit. */
12529 insn &= 0xff7ff0f0;
12530
12531 /* Set the U bit if the value to go in the place is non-negative. */
12532 if (signed_value >= 0)
12533 insn |= 1 << 23;
12534
12535 /* Encode the offset. */
12536 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
4962c51a
MS
12537
12538 bfd_put_32 (input_bfd, insn, hit_data);
12539 }
12540 return bfd_reloc_ok;
12541
12542 case R_ARM_LDC_PC_G0:
12543 case R_ARM_LDC_PC_G1:
12544 case R_ARM_LDC_PC_G2:
12545 case R_ARM_LDC_SB_G0:
12546 case R_ARM_LDC_SB_G1:
12547 case R_ARM_LDC_SB_G2:
12548 {
12549 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 12550 bfd_vma pc = input_section->output_section->vma
4962c51a 12551 + input_section->output_offset + rel->r_offset;
31a91d61 12552 /* sb is the origin of the *segment* containing the symbol. */
62c34db3 12553 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
99059e56 12554 bfd_vma residual;
4962c51a 12555 bfd_signed_vma signed_value;
99059e56
RM
12556 int group = 0;
12557
12558 /* Determine which groups of bits to calculate. */
12559 switch (r_type)
12560 {
12561 case R_ARM_LDC_PC_G0:
12562 case R_ARM_LDC_SB_G0:
12563 group = 0;
12564 break;
12565
12566 case R_ARM_LDC_PC_G1:
12567 case R_ARM_LDC_SB_G1:
12568 group = 1;
12569 break;
12570
12571 case R_ARM_LDC_PC_G2:
12572 case R_ARM_LDC_SB_G2:
12573 group = 2;
12574 break;
12575
12576 default:
12577 abort ();
12578 }
12579
12580 /* If REL, extract the addend from the insn. If RELA, it will
12581 have already been fetched for us. */
4962c51a 12582 if (globals->use_rel)
99059e56
RM
12583 {
12584 int negative = (insn & (1 << 23)) ? 1 : -1;
12585 signed_addend = negative * ((insn & 0xff) << 2);
12586 }
4962c51a
MS
12587
12588 /* Compute the value (X) to go in the place. */
99059e56
RM
12589 if (r_type == R_ARM_LDC_PC_G0
12590 || r_type == R_ARM_LDC_PC_G1
12591 || r_type == R_ARM_LDC_PC_G2)
12592 /* PC relative. */
12593 signed_value = value - pc + signed_addend;
12594 else
12595 /* Section base relative. */
12596 signed_value = value - sb + signed_addend;
12597
12598 /* Calculate the value of the relevant G_{n-1} to obtain
12599 the residual at that stage. */
b6518b38
NC
12600 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12601 group - 1, &residual);
99059e56
RM
12602
12603 /* Check for overflow. (The absolute value to go in the place must be
12604 divisible by four and, after having been divided by four, must
12605 fit in eight bits.) */
12606 if ((residual & 0x3) != 0 || residual >= 0x400)
12607 {
4eca0228 12608 _bfd_error_handler
695344c0 12609 /* xgettext:c-format */
90b6238f 12610 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
2dcf00ce
AM
12611 "splitting %#" PRIx64 " for group relocation %s"),
12612 input_bfd, input_section, (uint64_t) rel->r_offset,
12613 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12614 howto->name);
99059e56
RM
12615 return bfd_reloc_overflow;
12616 }
12617
12618 /* Mask out the value and U bit. */
12619 insn &= 0xff7fff00;
12620
12621 /* Set the U bit if the value to go in the place is non-negative. */
12622 if (signed_value >= 0)
12623 insn |= 1 << 23;
12624
12625 /* Encode the offset. */
12626 insn |= residual >> 2;
4962c51a
MS
12627
12628 bfd_put_32 (input_bfd, insn, hit_data);
12629 }
12630 return bfd_reloc_ok;
12631
72d98d16
MG
12632 case R_ARM_THM_ALU_ABS_G0_NC:
12633 case R_ARM_THM_ALU_ABS_G1_NC:
12634 case R_ARM_THM_ALU_ABS_G2_NC:
12635 case R_ARM_THM_ALU_ABS_G3_NC:
12636 {
12637 const int shift_array[4] = {0, 8, 16, 24};
12638 bfd_vma insn = bfd_get_16 (input_bfd, hit_data);
12639 bfd_vma addr = value;
12640 int shift = shift_array[r_type - R_ARM_THM_ALU_ABS_G0_NC];
12641
12642 /* Compute address. */
12643 if (globals->use_rel)
12644 signed_addend = insn & 0xff;
12645 addr += signed_addend;
12646 if (branch_type == ST_BRANCH_TO_THUMB)
12647 addr |= 1;
12648 /* Clean imm8 insn. */
12649 insn &= 0xff00;
12650 /* And update with correct part of address. */
12651 insn |= (addr >> shift) & 0xff;
12652 /* Update insn. */
12653 bfd_put_16 (input_bfd, insn, hit_data);
12654 }
12655
12656 *unresolved_reloc_p = FALSE;
12657 return bfd_reloc_ok;
12658
e8b09b87
CL
12659 case R_ARM_GOTOFFFUNCDESC:
12660 {
4b24dd1a 12661 if (h == NULL)
e8b09b87
CL
12662 {
12663 struct fdpic_local *local_fdpic_cnts = elf32_arm_local_fdpic_cnts(input_bfd);
12664 int dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12665 int offset = local_fdpic_cnts[r_symndx].funcdesc_offset & ~1;
12666 bfd_vma addr = dynreloc_value - sym_sec->output_section->vma;
12667 bfd_vma seg = -1;
12668
12669 if (bfd_link_pic(info) && dynindx == 0)
12670 abort();
12671
12672 /* Resolve relocation. */
12673 bfd_put_32(output_bfd, (offset + sgot->output_offset)
12674 , contents + rel->r_offset);
12675 /* Emit R_ARM_FUNCDESC_VALUE or two fixups on funcdesc if
12676 not done yet. */
12677 arm_elf_fill_funcdesc(output_bfd, info,
12678 &local_fdpic_cnts[r_symndx].funcdesc_offset,
12679 dynindx, offset, addr, dynreloc_value, seg);
12680 }
12681 else
12682 {
12683 int dynindx;
12684 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12685 bfd_vma addr;
12686 bfd_vma seg = -1;
12687
12688 /* For static binaries, sym_sec can be null. */
12689 if (sym_sec)
12690 {
12691 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12692 addr = dynreloc_value - sym_sec->output_section->vma;
12693 }
12694 else
12695 {
12696 dynindx = 0;
12697 addr = 0;
12698 }
12699
12700 if (bfd_link_pic(info) && dynindx == 0)
12701 abort();
12702
12703 /* This case cannot occur since funcdesc is allocated by
12704 the dynamic loader so we cannot resolve the relocation. */
12705 if (h->dynindx != -1)
12706 abort();
12707
12708 /* Resolve relocation. */
12709 bfd_put_32(output_bfd, (offset + sgot->output_offset),
12710 contents + rel->r_offset);
12711 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12712 arm_elf_fill_funcdesc(output_bfd, info,
12713 &eh->fdpic_cnts.funcdesc_offset,
12714 dynindx, offset, addr, dynreloc_value, seg);
12715 }
12716 }
12717 *unresolved_reloc_p = FALSE;
12718 return bfd_reloc_ok;
12719
12720 case R_ARM_GOTFUNCDESC:
12721 {
4b24dd1a 12722 if (h != NULL)
e8b09b87
CL
12723 {
12724 Elf_Internal_Rela outrel;
12725
12726 /* Resolve relocation. */
12727 bfd_put_32(output_bfd, ((eh->fdpic_cnts.gotfuncdesc_offset & ~1)
12728 + sgot->output_offset),
12729 contents + rel->r_offset);
12730 /* Add funcdesc and associated R_ARM_FUNCDESC_VALUE. */
12731 if(h->dynindx == -1)
12732 {
12733 int dynindx;
12734 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12735 bfd_vma addr;
12736 bfd_vma seg = -1;
12737
12738 /* For static binaries sym_sec can be null. */
12739 if (sym_sec)
12740 {
12741 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12742 addr = dynreloc_value - sym_sec->output_section->vma;
12743 }
12744 else
12745 {
12746 dynindx = 0;
12747 addr = 0;
12748 }
12749
12750 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12751 arm_elf_fill_funcdesc(output_bfd, info,
12752 &eh->fdpic_cnts.funcdesc_offset,
12753 dynindx, offset, addr, dynreloc_value, seg);
12754 }
12755
12756 /* Add a dynamic relocation on GOT entry if not already done. */
12757 if ((eh->fdpic_cnts.gotfuncdesc_offset & 1) == 0)
12758 {
12759 if (h->dynindx == -1)
12760 {
12761 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12762 if (h->root.type == bfd_link_hash_undefweak)
12763 bfd_put_32(output_bfd, 0, sgot->contents
12764 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1));
12765 else
12766 bfd_put_32(output_bfd, sgot->output_section->vma
12767 + sgot->output_offset
12768 + (eh->fdpic_cnts.funcdesc_offset & ~1),
12769 sgot->contents
12770 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1));
12771 }
12772 else
12773 {
12774 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_FUNCDESC);
12775 }
12776 outrel.r_offset = sgot->output_section->vma
12777 + sgot->output_offset
12778 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1);
12779 outrel.r_addend = 0;
12780 if (h->dynindx == -1 && !bfd_link_pic(info))
12781 if (h->root.type == bfd_link_hash_undefweak)
4b24dd1a 12782 arm_elf_add_rofixup(output_bfd, globals->srofixup, -1);
e8b09b87 12783 else
4b24dd1a
AM
12784 arm_elf_add_rofixup(output_bfd, globals->srofixup,
12785 outrel.r_offset);
e8b09b87
CL
12786 else
12787 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12788 eh->fdpic_cnts.gotfuncdesc_offset |= 1;
12789 }
12790 }
12791 else
12792 {
12793 /* Such relocation on static function should not have been
12794 emitted by the compiler. */
12795 abort();
12796 }
12797 }
12798 *unresolved_reloc_p = FALSE;
12799 return bfd_reloc_ok;
12800
12801 case R_ARM_FUNCDESC:
12802 {
4b24dd1a 12803 if (h == NULL)
e8b09b87
CL
12804 {
12805 struct fdpic_local *local_fdpic_cnts = elf32_arm_local_fdpic_cnts(input_bfd);
12806 Elf_Internal_Rela outrel;
12807 int dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12808 int offset = local_fdpic_cnts[r_symndx].funcdesc_offset & ~1;
12809 bfd_vma addr = dynreloc_value - sym_sec->output_section->vma;
12810 bfd_vma seg = -1;
12811
12812 if (bfd_link_pic(info) && dynindx == 0)
12813 abort();
12814
12815 /* Replace static FUNCDESC relocation with a
12816 R_ARM_RELATIVE dynamic relocation or with a rofixup for
12817 executable. */
12818 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12819 outrel.r_offset = input_section->output_section->vma
12820 + input_section->output_offset + rel->r_offset;
12821 outrel.r_addend = 0;
12822 if (bfd_link_pic(info))
12823 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12824 else
12825 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset);
12826
12827 bfd_put_32 (input_bfd, sgot->output_section->vma
12828 + sgot->output_offset + offset, hit_data);
12829
12830 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12831 arm_elf_fill_funcdesc(output_bfd, info,
12832 &local_fdpic_cnts[r_symndx].funcdesc_offset,
12833 dynindx, offset, addr, dynreloc_value, seg);
12834 }
12835 else
12836 {
12837 if (h->dynindx == -1)
12838 {
12839 int dynindx;
12840 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12841 bfd_vma addr;
12842 bfd_vma seg = -1;
12843 Elf_Internal_Rela outrel;
12844
12845 /* For static binaries sym_sec can be null. */
12846 if (sym_sec)
12847 {
12848 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12849 addr = dynreloc_value - sym_sec->output_section->vma;
12850 }
12851 else
12852 {
12853 dynindx = 0;
12854 addr = 0;
12855 }
12856
12857 if (bfd_link_pic(info) && dynindx == 0)
12858 abort();
12859
12860 /* Replace static FUNCDESC relocation with a
12861 R_ARM_RELATIVE dynamic relocation. */
12862 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12863 outrel.r_offset = input_section->output_section->vma
12864 + input_section->output_offset + rel->r_offset;
12865 outrel.r_addend = 0;
12866 if (bfd_link_pic(info))
12867 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12868 else
12869 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset);
12870
12871 bfd_put_32 (input_bfd, sgot->output_section->vma
12872 + sgot->output_offset + offset, hit_data);
12873
12874 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12875 arm_elf_fill_funcdesc(output_bfd, info,
12876 &eh->fdpic_cnts.funcdesc_offset,
12877 dynindx, offset, addr, dynreloc_value, seg);
12878 }
12879 else
12880 {
12881 Elf_Internal_Rela outrel;
12882
12883 /* Add a dynamic relocation. */
12884 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_FUNCDESC);
12885 outrel.r_offset = input_section->output_section->vma
12886 + input_section->output_offset + rel->r_offset;
12887 outrel.r_addend = 0;
12888 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12889 }
12890 }
12891 }
12892 *unresolved_reloc_p = FALSE;
12893 return bfd_reloc_ok;
12894
e5d6e09e
AV
12895 case R_ARM_THM_BF16:
12896 {
12897 bfd_vma relocation;
12898 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
12899 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
12900
12901 if (globals->use_rel)
12902 {
12903 bfd_vma immA = (upper_insn & 0x001f);
12904 bfd_vma immB = (lower_insn & 0x07fe) >> 1;
12905 bfd_vma immC = (lower_insn & 0x0800) >> 11;
12906 addend = (immA << 12);
12907 addend |= (immB << 2);
12908 addend |= (immC << 1);
12909 addend |= 1;
12910 /* Sign extend. */
e6f65e75 12911 signed_addend = (addend & 0x10000) ? addend - (1 << 17) : addend;
e5d6e09e
AV
12912 }
12913
e6f65e75 12914 relocation = value + signed_addend;
e5d6e09e
AV
12915 relocation -= (input_section->output_section->vma
12916 + input_section->output_offset
12917 + rel->r_offset);
12918
12919 /* Put RELOCATION back into the insn. */
12920 {
12921 bfd_vma immA = (relocation & 0x0001f000) >> 12;
12922 bfd_vma immB = (relocation & 0x00000ffc) >> 2;
12923 bfd_vma immC = (relocation & 0x00000002) >> 1;
12924
12925 upper_insn = (upper_insn & 0xffe0) | immA;
12926 lower_insn = (lower_insn & 0xf001) | (immC << 11) | (immB << 1);
12927 }
12928
12929 /* Put the relocated value back in the object file: */
12930 bfd_put_16 (input_bfd, upper_insn, hit_data);
12931 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
12932
12933 return bfd_reloc_ok;
12934 }
12935
1889da70
AV
12936 case R_ARM_THM_BF12:
12937 {
12938 bfd_vma relocation;
12939 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
12940 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
12941
12942 if (globals->use_rel)
12943 {
12944 bfd_vma immA = (upper_insn & 0x0001);
12945 bfd_vma immB = (lower_insn & 0x07fe) >> 1;
12946 bfd_vma immC = (lower_insn & 0x0800) >> 11;
12947 addend = (immA << 12);
12948 addend |= (immB << 2);
12949 addend |= (immC << 1);
12950 addend |= 1;
12951 /* Sign extend. */
12952 addend = (addend & 0x1000) ? addend - (1 << 13) : addend;
e6f65e75 12953 signed_addend = addend;
1889da70
AV
12954 }
12955
e6f65e75 12956 relocation = value + signed_addend;
1889da70
AV
12957 relocation -= (input_section->output_section->vma
12958 + input_section->output_offset
12959 + rel->r_offset);
12960
12961 /* Put RELOCATION back into the insn. */
12962 {
12963 bfd_vma immA = (relocation & 0x00001000) >> 12;
12964 bfd_vma immB = (relocation & 0x00000ffc) >> 2;
12965 bfd_vma immC = (relocation & 0x00000002) >> 1;
12966
12967 upper_insn = (upper_insn & 0xfffe) | immA;
12968 lower_insn = (lower_insn & 0xf001) | (immC << 11) | (immB << 1);
12969 }
12970
12971 /* Put the relocated value back in the object file: */
12972 bfd_put_16 (input_bfd, upper_insn, hit_data);
12973 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
12974
12975 return bfd_reloc_ok;
12976 }
12977
1caf72a5
AV
12978 case R_ARM_THM_BF18:
12979 {
12980 bfd_vma relocation;
12981 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
12982 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
12983
12984 if (globals->use_rel)
12985 {
12986 bfd_vma immA = (upper_insn & 0x007f);
12987 bfd_vma immB = (lower_insn & 0x07fe) >> 1;
12988 bfd_vma immC = (lower_insn & 0x0800) >> 11;
12989 addend = (immA << 12);
12990 addend |= (immB << 2);
12991 addend |= (immC << 1);
12992 addend |= 1;
12993 /* Sign extend. */
12994 addend = (addend & 0x40000) ? addend - (1 << 19) : addend;
e6f65e75 12995 signed_addend = addend;
1caf72a5
AV
12996 }
12997
e6f65e75 12998 relocation = value + signed_addend;
1caf72a5
AV
12999 relocation -= (input_section->output_section->vma
13000 + input_section->output_offset
13001 + rel->r_offset);
13002
13003 /* Put RELOCATION back into the insn. */
13004 {
13005 bfd_vma immA = (relocation & 0x0007f000) >> 12;
13006 bfd_vma immB = (relocation & 0x00000ffc) >> 2;
13007 bfd_vma immC = (relocation & 0x00000002) >> 1;
13008
13009 upper_insn = (upper_insn & 0xff80) | immA;
13010 lower_insn = (lower_insn & 0xf001) | (immC << 11) | (immB << 1);
13011 }
13012
13013 /* Put the relocated value back in the object file: */
13014 bfd_put_16 (input_bfd, upper_insn, hit_data);
13015 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
13016
13017 return bfd_reloc_ok;
13018 }
13019
252b5132
RH
13020 default:
13021 return bfd_reloc_notsupported;
13022 }
13023}
13024
98c1d4aa
NC
13025/* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
13026static void
07d6d2b8
AM
13027arm_add_to_rel (bfd * abfd,
13028 bfd_byte * address,
57e8b36a 13029 reloc_howto_type * howto,
07d6d2b8 13030 bfd_signed_vma increment)
98c1d4aa 13031{
98c1d4aa
NC
13032 bfd_signed_vma addend;
13033
bd97cb95
DJ
13034 if (howto->type == R_ARM_THM_CALL
13035 || howto->type == R_ARM_THM_JUMP24)
98c1d4aa 13036 {
9a5aca8c
AM
13037 int upper_insn, lower_insn;
13038 int upper, lower;
98c1d4aa 13039
9a5aca8c
AM
13040 upper_insn = bfd_get_16 (abfd, address);
13041 lower_insn = bfd_get_16 (abfd, address + 2);
13042 upper = upper_insn & 0x7ff;
13043 lower = lower_insn & 0x7ff;
13044
13045 addend = (upper << 12) | (lower << 1);
ddda4409 13046 addend += increment;
9a5aca8c 13047 addend >>= 1;
98c1d4aa 13048
9a5aca8c
AM
13049 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
13050 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
13051
dc810e39
AM
13052 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
13053 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
9a5aca8c
AM
13054 }
13055 else
13056 {
07d6d2b8 13057 bfd_vma contents;
9a5aca8c
AM
13058
13059 contents = bfd_get_32 (abfd, address);
13060
13061 /* Get the (signed) value from the instruction. */
13062 addend = contents & howto->src_mask;
13063 if (addend & ((howto->src_mask + 1) >> 1))
13064 {
13065 bfd_signed_vma mask;
13066
13067 mask = -1;
13068 mask &= ~ howto->src_mask;
13069 addend |= mask;
13070 }
13071
13072 /* Add in the increment, (which is a byte value). */
13073 switch (howto->type)
13074 {
13075 default:
13076 addend += increment;
13077 break;
13078
13079 case R_ARM_PC24:
c6596c5e 13080 case R_ARM_PLT32:
5b5bb741
PB
13081 case R_ARM_CALL:
13082 case R_ARM_JUMP24:
9a5aca8c 13083 addend <<= howto->size;
dc810e39 13084 addend += increment;
9a5aca8c
AM
13085
13086 /* Should we check for overflow here ? */
13087
13088 /* Drop any undesired bits. */
13089 addend >>= howto->rightshift;
13090 break;
13091 }
13092
13093 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
13094
13095 bfd_put_32 (abfd, contents, address);
ddda4409 13096 }
98c1d4aa 13097}
252b5132 13098
ba93b8ac
DJ
13099#define IS_ARM_TLS_RELOC(R_TYPE) \
13100 ((R_TYPE) == R_ARM_TLS_GD32 \
5c5a4843 13101 || (R_TYPE) == R_ARM_TLS_GD32_FDPIC \
ba93b8ac
DJ
13102 || (R_TYPE) == R_ARM_TLS_LDO32 \
13103 || (R_TYPE) == R_ARM_TLS_LDM32 \
5c5a4843 13104 || (R_TYPE) == R_ARM_TLS_LDM32_FDPIC \
ba93b8ac
DJ
13105 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
13106 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
13107 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
13108 || (R_TYPE) == R_ARM_TLS_LE32 \
0855e32b 13109 || (R_TYPE) == R_ARM_TLS_IE32 \
5c5a4843 13110 || (R_TYPE) == R_ARM_TLS_IE32_FDPIC \
0855e32b
NS
13111 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
13112
13113/* Specific set of relocations for the gnu tls dialect. */
13114#define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
13115 ((R_TYPE) == R_ARM_TLS_GOTDESC \
13116 || (R_TYPE) == R_ARM_TLS_CALL \
13117 || (R_TYPE) == R_ARM_THM_TLS_CALL \
13118 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
13119 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
ba93b8ac 13120
252b5132 13121/* Relocate an ARM ELF section. */
906e58ca 13122
b34976b6 13123static bfd_boolean
07d6d2b8 13124elf32_arm_relocate_section (bfd * output_bfd,
57e8b36a 13125 struct bfd_link_info * info,
07d6d2b8
AM
13126 bfd * input_bfd,
13127 asection * input_section,
13128 bfd_byte * contents,
13129 Elf_Internal_Rela * relocs,
13130 Elf_Internal_Sym * local_syms,
13131 asection ** local_sections)
252b5132 13132{
b34976b6
AM
13133 Elf_Internal_Shdr *symtab_hdr;
13134 struct elf_link_hash_entry **sym_hashes;
13135 Elf_Internal_Rela *rel;
13136 Elf_Internal_Rela *relend;
13137 const char *name;
b32d3aa2 13138 struct elf32_arm_link_hash_table * globals;
252b5132 13139
4e7fd91e 13140 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
13141 if (globals == NULL)
13142 return FALSE;
b491616a 13143
0ffa91dd 13144 symtab_hdr = & elf_symtab_hdr (input_bfd);
252b5132
RH
13145 sym_hashes = elf_sym_hashes (input_bfd);
13146
13147 rel = relocs;
13148 relend = relocs + input_section->reloc_count;
13149 for (; rel < relend; rel++)
13150 {
07d6d2b8
AM
13151 int r_type;
13152 reloc_howto_type * howto;
13153 unsigned long r_symndx;
13154 Elf_Internal_Sym * sym;
13155 asection * sec;
252b5132 13156 struct elf_link_hash_entry * h;
07d6d2b8
AM
13157 bfd_vma relocation;
13158 bfd_reloc_status_type r;
13159 arelent bfd_reloc;
13160 char sym_type;
13161 bfd_boolean unresolved_reloc = FALSE;
f2a9dd69 13162 char *error_message = NULL;
f21f3fe0 13163
252b5132 13164 r_symndx = ELF32_R_SYM (rel->r_info);
ba96a88f 13165 r_type = ELF32_R_TYPE (rel->r_info);
b32d3aa2 13166 r_type = arm_real_reloc_type (globals, r_type);
252b5132 13167
ba96a88f 13168 if ( r_type == R_ARM_GNU_VTENTRY
99059e56
RM
13169 || r_type == R_ARM_GNU_VTINHERIT)
13170 continue;
252b5132 13171
47aeb64c
NC
13172 howto = bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
13173
13174 if (howto == NULL)
13175 return _bfd_unrecognized_reloc (input_bfd, input_section, r_type);
252b5132 13176
252b5132
RH
13177 h = NULL;
13178 sym = NULL;
13179 sec = NULL;
9b485d32 13180
252b5132
RH
13181 if (r_symndx < symtab_hdr->sh_info)
13182 {
13183 sym = local_syms + r_symndx;
ba93b8ac 13184 sym_type = ELF32_ST_TYPE (sym->st_info);
252b5132 13185 sec = local_sections[r_symndx];
ffcb4889
NS
13186
13187 /* An object file might have a reference to a local
13188 undefined symbol. This is a daft object file, but we
13189 should at least do something about it. V4BX & NONE
13190 relocations do not use the symbol and are explicitly
77b4f08f
TS
13191 allowed to use the undefined symbol, so allow those.
13192 Likewise for relocations against STN_UNDEF. */
ffcb4889
NS
13193 if (r_type != R_ARM_V4BX
13194 && r_type != R_ARM_NONE
77b4f08f 13195 && r_symndx != STN_UNDEF
ffcb4889
NS
13196 && bfd_is_und_section (sec)
13197 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
1a72702b
AM
13198 (*info->callbacks->undefined_symbol)
13199 (info, bfd_elf_string_from_elf_section
13200 (input_bfd, symtab_hdr->sh_link, sym->st_name),
13201 input_bfd, input_section,
13202 rel->r_offset, TRUE);
b38cadfb 13203
4e7fd91e 13204 if (globals->use_rel)
f8df10f4 13205 {
4e7fd91e
PB
13206 relocation = (sec->output_section->vma
13207 + sec->output_offset
13208 + sym->st_value);
0e1862bb 13209 if (!bfd_link_relocatable (info)
ab96bf03
AM
13210 && (sec->flags & SEC_MERGE)
13211 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
f8df10f4 13212 {
4e7fd91e
PB
13213 asection *msec;
13214 bfd_vma addend, value;
13215
39623e12 13216 switch (r_type)
4e7fd91e 13217 {
39623e12
PB
13218 case R_ARM_MOVW_ABS_NC:
13219 case R_ARM_MOVT_ABS:
13220 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
13221 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
13222 addend = (addend ^ 0x8000) - 0x8000;
13223 break;
f8df10f4 13224
39623e12
PB
13225 case R_ARM_THM_MOVW_ABS_NC:
13226 case R_ARM_THM_MOVT_ABS:
13227 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
13228 << 16;
13229 value |= bfd_get_16 (input_bfd,
13230 contents + rel->r_offset + 2);
13231 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
13232 | ((value & 0x04000000) >> 15);
13233 addend = (addend ^ 0x8000) - 0x8000;
13234 break;
f8df10f4 13235
39623e12
PB
13236 default:
13237 if (howto->rightshift
13238 || (howto->src_mask & (howto->src_mask + 1)))
13239 {
4eca0228 13240 _bfd_error_handler
695344c0 13241 /* xgettext:c-format */
2dcf00ce
AM
13242 (_("%pB(%pA+%#" PRIx64 "): "
13243 "%s relocation against SEC_MERGE section"),
39623e12 13244 input_bfd, input_section,
2dcf00ce 13245 (uint64_t) rel->r_offset, howto->name);
39623e12
PB
13246 return FALSE;
13247 }
13248
13249 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
13250
13251 /* Get the (signed) value from the instruction. */
13252 addend = value & howto->src_mask;
13253 if (addend & ((howto->src_mask + 1) >> 1))
13254 {
13255 bfd_signed_vma mask;
13256
13257 mask = -1;
13258 mask &= ~ howto->src_mask;
13259 addend |= mask;
13260 }
13261 break;
4e7fd91e 13262 }
39623e12 13263
4e7fd91e
PB
13264 msec = sec;
13265 addend =
13266 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
13267 - relocation;
13268 addend += msec->output_section->vma + msec->output_offset;
39623e12 13269
cc643b88 13270 /* Cases here must match those in the preceding
39623e12
PB
13271 switch statement. */
13272 switch (r_type)
13273 {
13274 case R_ARM_MOVW_ABS_NC:
13275 case R_ARM_MOVT_ABS:
13276 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
13277 | (addend & 0xfff);
13278 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
13279 break;
13280
13281 case R_ARM_THM_MOVW_ABS_NC:
13282 case R_ARM_THM_MOVT_ABS:
13283 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
13284 | (addend & 0xff) | ((addend & 0x0800) << 15);
13285 bfd_put_16 (input_bfd, value >> 16,
13286 contents + rel->r_offset);
13287 bfd_put_16 (input_bfd, value,
13288 contents + rel->r_offset + 2);
13289 break;
13290
13291 default:
13292 value = (value & ~ howto->dst_mask)
13293 | (addend & howto->dst_mask);
13294 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
13295 break;
13296 }
f8df10f4 13297 }
f8df10f4 13298 }
4e7fd91e
PB
13299 else
13300 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
252b5132
RH
13301 }
13302 else
13303 {
62d887d4 13304 bfd_boolean warned, ignored;
560e09e9 13305
b2a8e766
AM
13306 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
13307 r_symndx, symtab_hdr, sym_hashes,
13308 h, sec, relocation,
62d887d4 13309 unresolved_reloc, warned, ignored);
ba93b8ac
DJ
13310
13311 sym_type = h->type;
252b5132
RH
13312 }
13313
dbaa2011 13314 if (sec != NULL && discarded_section (sec))
e4067dbb 13315 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
545fd46b 13316 rel, 1, relend, howto, 0, contents);
ab96bf03 13317
0e1862bb 13318 if (bfd_link_relocatable (info))
ab96bf03
AM
13319 {
13320 /* This is a relocatable link. We don't have to change
13321 anything, unless the reloc is against a section symbol,
13322 in which case we have to adjust according to where the
13323 section symbol winds up in the output section. */
13324 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
13325 {
13326 if (globals->use_rel)
13327 arm_add_to_rel (input_bfd, contents + rel->r_offset,
13328 howto, (bfd_signed_vma) sec->output_offset);
13329 else
13330 rel->r_addend += sec->output_offset;
13331 }
13332 continue;
13333 }
13334
252b5132
RH
13335 if (h != NULL)
13336 name = h->root.root.string;
13337 else
13338 {
13339 name = (bfd_elf_string_from_elf_section
13340 (input_bfd, symtab_hdr->sh_link, sym->st_name));
13341 if (name == NULL || *name == '\0')
fd361982 13342 name = bfd_section_name (sec);
252b5132 13343 }
f21f3fe0 13344
cf35638d 13345 if (r_symndx != STN_UNDEF
ba93b8ac
DJ
13346 && r_type != R_ARM_NONE
13347 && (h == NULL
13348 || h->root.type == bfd_link_hash_defined
13349 || h->root.type == bfd_link_hash_defweak)
13350 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
13351 {
4eca0228 13352 _bfd_error_handler
ba93b8ac 13353 ((sym_type == STT_TLS
695344c0 13354 /* xgettext:c-format */
2dcf00ce 13355 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
695344c0 13356 /* xgettext:c-format */
2dcf00ce 13357 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
ba93b8ac
DJ
13358 input_bfd,
13359 input_section,
2dcf00ce 13360 (uint64_t) rel->r_offset,
ba93b8ac
DJ
13361 howto->name,
13362 name);
13363 }
13364
0855e32b 13365 /* We call elf32_arm_final_link_relocate unless we're completely
99059e56
RM
13366 done, i.e., the relaxation produced the final output we want,
13367 and we won't let anybody mess with it. Also, we have to do
13368 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
6a631e86 13369 both in relaxed and non-relaxed cases. */
39d911fc
TP
13370 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
13371 || (IS_ARM_TLS_GNU_RELOC (r_type)
13372 && !((h ? elf32_arm_hash_entry (h)->tls_type :
13373 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
13374 & GOT_TLS_GDESC)))
13375 {
13376 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
13377 contents, rel, h == NULL);
13378 /* This may have been marked unresolved because it came from
13379 a shared library. But we've just dealt with that. */
13380 unresolved_reloc = 0;
13381 }
13382 else
13383 r = bfd_reloc_continue;
b38cadfb 13384
39d911fc
TP
13385 if (r == bfd_reloc_continue)
13386 {
13387 unsigned char branch_type =
13388 h ? ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
13389 : ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
13390
13391 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
13392 input_section, contents, rel,
13393 relocation, info, sec, name,
13394 sym_type, branch_type, h,
13395 &unresolved_reloc,
13396 &error_message);
13397 }
0945cdfd
DJ
13398
13399 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
13400 because such sections are not SEC_ALLOC and thus ld.so will
13401 not process them. */
13402 if (unresolved_reloc
99059e56
RM
13403 && !((input_section->flags & SEC_DEBUGGING) != 0
13404 && h->def_dynamic)
1d5316ab
AM
13405 && _bfd_elf_section_offset (output_bfd, info, input_section,
13406 rel->r_offset) != (bfd_vma) -1)
0945cdfd 13407 {
4eca0228 13408 _bfd_error_handler
695344c0 13409 /* xgettext:c-format */
2dcf00ce
AM
13410 (_("%pB(%pA+%#" PRIx64 "): "
13411 "unresolvable %s relocation against symbol `%s'"),
843fe662
L
13412 input_bfd,
13413 input_section,
2dcf00ce 13414 (uint64_t) rel->r_offset,
843fe662
L
13415 howto->name,
13416 h->root.root.string);
0945cdfd
DJ
13417 return FALSE;
13418 }
252b5132
RH
13419
13420 if (r != bfd_reloc_ok)
13421 {
252b5132
RH
13422 switch (r)
13423 {
13424 case bfd_reloc_overflow:
cf919dfd
PB
13425 /* If the overflowing reloc was to an undefined symbol,
13426 we have already printed one error message and there
13427 is no point complaining again. */
1a72702b
AM
13428 if (!h || h->root.type != bfd_link_hash_undefined)
13429 (*info->callbacks->reloc_overflow)
13430 (info, (h ? &h->root : NULL), name, howto->name,
13431 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
252b5132
RH
13432 break;
13433
13434 case bfd_reloc_undefined:
1a72702b
AM
13435 (*info->callbacks->undefined_symbol)
13436 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
252b5132
RH
13437 break;
13438
13439 case bfd_reloc_outofrange:
f2a9dd69 13440 error_message = _("out of range");
252b5132
RH
13441 goto common_error;
13442
13443 case bfd_reloc_notsupported:
f2a9dd69 13444 error_message = _("unsupported relocation");
252b5132
RH
13445 goto common_error;
13446
13447 case bfd_reloc_dangerous:
f2a9dd69 13448 /* error_message should already be set. */
252b5132
RH
13449 goto common_error;
13450
13451 default:
f2a9dd69 13452 error_message = _("unknown error");
8029a119 13453 /* Fall through. */
252b5132
RH
13454
13455 common_error:
f2a9dd69 13456 BFD_ASSERT (error_message != NULL);
1a72702b
AM
13457 (*info->callbacks->reloc_dangerous)
13458 (info, error_message, input_bfd, input_section, rel->r_offset);
252b5132
RH
13459 break;
13460 }
13461 }
13462 }
13463
b34976b6 13464 return TRUE;
252b5132
RH
13465}
13466
91d6fa6a 13467/* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
2468f9c9 13468 adds the edit to the start of the list. (The list must be built in order of
91d6fa6a 13469 ascending TINDEX: the function's callers are primarily responsible for
2468f9c9
PB
13470 maintaining that condition). */
13471
13472static void
13473add_unwind_table_edit (arm_unwind_table_edit **head,
13474 arm_unwind_table_edit **tail,
13475 arm_unwind_edit_type type,
13476 asection *linked_section,
91d6fa6a 13477 unsigned int tindex)
2468f9c9 13478{
21d799b5
NC
13479 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
13480 xmalloc (sizeof (arm_unwind_table_edit));
b38cadfb 13481
2468f9c9
PB
13482 new_edit->type = type;
13483 new_edit->linked_section = linked_section;
91d6fa6a 13484 new_edit->index = tindex;
b38cadfb 13485
91d6fa6a 13486 if (tindex > 0)
2468f9c9
PB
13487 {
13488 new_edit->next = NULL;
13489
13490 if (*tail)
13491 (*tail)->next = new_edit;
13492
13493 (*tail) = new_edit;
13494
13495 if (!*head)
13496 (*head) = new_edit;
13497 }
13498 else
13499 {
13500 new_edit->next = *head;
13501
13502 if (!*tail)
13503 *tail = new_edit;
13504
13505 *head = new_edit;
13506 }
13507}
13508
13509static _arm_elf_section_data *get_arm_elf_section_data (asection *);
13510
13511/* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
13512static void
13513adjust_exidx_size(asection *exidx_sec, int adjust)
13514{
13515 asection *out_sec;
13516
13517 if (!exidx_sec->rawsize)
13518 exidx_sec->rawsize = exidx_sec->size;
13519
fd361982 13520 bfd_set_section_size (exidx_sec, exidx_sec->size + adjust);
2468f9c9
PB
13521 out_sec = exidx_sec->output_section;
13522 /* Adjust size of output section. */
fd361982 13523 bfd_set_section_size (out_sec, out_sec->size +adjust);
2468f9c9
PB
13524}
13525
13526/* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
13527static void
13528insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
13529{
13530 struct _arm_elf_section_data *exidx_arm_data;
13531
13532 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
13533 add_unwind_table_edit (
13534 &exidx_arm_data->u.exidx.unwind_edit_list,
13535 &exidx_arm_data->u.exidx.unwind_edit_tail,
13536 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
13537
491d01d3
YU
13538 exidx_arm_data->additional_reloc_count++;
13539
2468f9c9
PB
13540 adjust_exidx_size(exidx_sec, 8);
13541}
13542
13543/* Scan .ARM.exidx tables, and create a list describing edits which should be
13544 made to those tables, such that:
b38cadfb 13545
2468f9c9
PB
13546 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
13547 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
99059e56 13548 codes which have been inlined into the index).
2468f9c9 13549
85fdf906
AH
13550 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
13551
2468f9c9 13552 The edits are applied when the tables are written
b38cadfb 13553 (in elf32_arm_write_section). */
2468f9c9
PB
13554
13555bfd_boolean
13556elf32_arm_fix_exidx_coverage (asection **text_section_order,
13557 unsigned int num_text_sections,
85fdf906
AH
13558 struct bfd_link_info *info,
13559 bfd_boolean merge_exidx_entries)
2468f9c9
PB
13560{
13561 bfd *inp;
13562 unsigned int last_second_word = 0, i;
13563 asection *last_exidx_sec = NULL;
13564 asection *last_text_sec = NULL;
13565 int last_unwind_type = -1;
13566
13567 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
13568 text sections. */
c72f2fb2 13569 for (inp = info->input_bfds; inp != NULL; inp = inp->link.next)
2468f9c9
PB
13570 {
13571 asection *sec;
b38cadfb 13572
2468f9c9 13573 for (sec = inp->sections; sec != NULL; sec = sec->next)
99059e56 13574 {
2468f9c9
PB
13575 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
13576 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
b38cadfb 13577
dec9d5df 13578 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
2468f9c9 13579 continue;
b38cadfb 13580
2468f9c9
PB
13581 if (elf_sec->linked_to)
13582 {
13583 Elf_Internal_Shdr *linked_hdr
99059e56 13584 = &elf_section_data (elf_sec->linked_to)->this_hdr;
2468f9c9 13585 struct _arm_elf_section_data *linked_sec_arm_data
99059e56 13586 = get_arm_elf_section_data (linked_hdr->bfd_section);
2468f9c9
PB
13587
13588 if (linked_sec_arm_data == NULL)
99059e56 13589 continue;
2468f9c9
PB
13590
13591 /* Link this .ARM.exidx section back from the text section it
99059e56 13592 describes. */
2468f9c9
PB
13593 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
13594 }
13595 }
13596 }
13597
13598 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
13599 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
91d6fa6a 13600 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
2468f9c9
PB
13601
13602 for (i = 0; i < num_text_sections; i++)
13603 {
13604 asection *sec = text_section_order[i];
13605 asection *exidx_sec;
13606 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
13607 struct _arm_elf_section_data *exidx_arm_data;
13608 bfd_byte *contents = NULL;
13609 int deleted_exidx_bytes = 0;
13610 bfd_vma j;
13611 arm_unwind_table_edit *unwind_edit_head = NULL;
13612 arm_unwind_table_edit *unwind_edit_tail = NULL;
13613 Elf_Internal_Shdr *hdr;
13614 bfd *ibfd;
13615
13616 if (arm_data == NULL)
99059e56 13617 continue;
2468f9c9
PB
13618
13619 exidx_sec = arm_data->u.text.arm_exidx_sec;
13620 if (exidx_sec == NULL)
13621 {
13622 /* Section has no unwind data. */
13623 if (last_unwind_type == 0 || !last_exidx_sec)
13624 continue;
13625
13626 /* Ignore zero sized sections. */
13627 if (sec->size == 0)
13628 continue;
13629
13630 insert_cantunwind_after(last_text_sec, last_exidx_sec);
13631 last_unwind_type = 0;
13632 continue;
13633 }
13634
22a8f80e
PB
13635 /* Skip /DISCARD/ sections. */
13636 if (bfd_is_abs_section (exidx_sec->output_section))
13637 continue;
13638
2468f9c9
PB
13639 hdr = &elf_section_data (exidx_sec)->this_hdr;
13640 if (hdr->sh_type != SHT_ARM_EXIDX)
99059e56 13641 continue;
b38cadfb 13642
2468f9c9
PB
13643 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
13644 if (exidx_arm_data == NULL)
99059e56 13645 continue;
b38cadfb 13646
2468f9c9 13647 ibfd = exidx_sec->owner;
b38cadfb 13648
2468f9c9
PB
13649 if (hdr->contents != NULL)
13650 contents = hdr->contents;
13651 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
13652 /* An error? */
13653 continue;
13654
ac06903d
YU
13655 if (last_unwind_type > 0)
13656 {
13657 unsigned int first_word = bfd_get_32 (ibfd, contents);
13658 /* Add cantunwind if first unwind item does not match section
13659 start. */
13660 if (first_word != sec->vma)
13661 {
13662 insert_cantunwind_after (last_text_sec, last_exidx_sec);
13663 last_unwind_type = 0;
13664 }
13665 }
13666
2468f9c9
PB
13667 for (j = 0; j < hdr->sh_size; j += 8)
13668 {
13669 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
13670 int unwind_type;
13671 int elide = 0;
13672
13673 /* An EXIDX_CANTUNWIND entry. */
13674 if (second_word == 1)
13675 {
13676 if (last_unwind_type == 0)
13677 elide = 1;
13678 unwind_type = 0;
13679 }
13680 /* Inlined unwinding data. Merge if equal to previous. */
13681 else if ((second_word & 0x80000000) != 0)
13682 {
85fdf906
AH
13683 if (merge_exidx_entries
13684 && last_second_word == second_word && last_unwind_type == 1)
2468f9c9
PB
13685 elide = 1;
13686 unwind_type = 1;
13687 last_second_word = second_word;
13688 }
13689 /* Normal table entry. In theory we could merge these too,
13690 but duplicate entries are likely to be much less common. */
13691 else
13692 unwind_type = 2;
13693
491d01d3 13694 if (elide && !bfd_link_relocatable (info))
2468f9c9
PB
13695 {
13696 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
13697 DELETE_EXIDX_ENTRY, NULL, j / 8);
13698
13699 deleted_exidx_bytes += 8;
13700 }
13701
13702 last_unwind_type = unwind_type;
13703 }
13704
13705 /* Free contents if we allocated it ourselves. */
13706 if (contents != hdr->contents)
99059e56 13707 free (contents);
2468f9c9
PB
13708
13709 /* Record edits to be applied later (in elf32_arm_write_section). */
13710 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
13711 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
b38cadfb 13712
2468f9c9
PB
13713 if (deleted_exidx_bytes > 0)
13714 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
13715
13716 last_exidx_sec = exidx_sec;
13717 last_text_sec = sec;
13718 }
13719
13720 /* Add terminating CANTUNWIND entry. */
491d01d3
YU
13721 if (!bfd_link_relocatable (info) && last_exidx_sec
13722 && last_unwind_type != 0)
2468f9c9
PB
13723 insert_cantunwind_after(last_text_sec, last_exidx_sec);
13724
13725 return TRUE;
13726}
13727
3e6b1042
DJ
13728static bfd_boolean
13729elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
13730 bfd *ibfd, const char *name)
13731{
13732 asection *sec, *osec;
13733
3d4d4302 13734 sec = bfd_get_linker_section (ibfd, name);
3e6b1042
DJ
13735 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
13736 return TRUE;
13737
13738 osec = sec->output_section;
13739 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
13740 return TRUE;
13741
13742 if (! bfd_set_section_contents (obfd, osec, sec->contents,
13743 sec->output_offset, sec->size))
13744 return FALSE;
13745
13746 return TRUE;
13747}
13748
13749static bfd_boolean
13750elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
13751{
13752 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
fe33d2fa 13753 asection *sec, *osec;
3e6b1042 13754
4dfe6ac6
NC
13755 if (globals == NULL)
13756 return FALSE;
13757
3e6b1042
DJ
13758 /* Invoke the regular ELF backend linker to do all the work. */
13759 if (!bfd_elf_final_link (abfd, info))
13760 return FALSE;
13761
fe33d2fa
CL
13762 /* Process stub sections (eg BE8 encoding, ...). */
13763 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
7292b3ac 13764 unsigned int i;
cdb21a0a
NS
13765 for (i=0; i<htab->top_id; i++)
13766 {
13767 sec = htab->stub_group[i].stub_sec;
13768 /* Only process it once, in its link_sec slot. */
13769 if (sec && i == htab->stub_group[i].link_sec->id)
13770 {
13771 osec = sec->output_section;
13772 elf32_arm_write_section (abfd, info, sec, sec->contents);
13773 if (! bfd_set_section_contents (abfd, osec, sec->contents,
13774 sec->output_offset, sec->size))
13775 return FALSE;
13776 }
fe33d2fa 13777 }
fe33d2fa 13778
3e6b1042
DJ
13779 /* Write out any glue sections now that we have created all the
13780 stubs. */
13781 if (globals->bfd_of_glue_owner != NULL)
13782 {
13783 if (! elf32_arm_output_glue_section (info, abfd,
13784 globals->bfd_of_glue_owner,
13785 ARM2THUMB_GLUE_SECTION_NAME))
13786 return FALSE;
13787
13788 if (! elf32_arm_output_glue_section (info, abfd,
13789 globals->bfd_of_glue_owner,
13790 THUMB2ARM_GLUE_SECTION_NAME))
13791 return FALSE;
13792
13793 if (! elf32_arm_output_glue_section (info, abfd,
13794 globals->bfd_of_glue_owner,
13795 VFP11_ERRATUM_VENEER_SECTION_NAME))
13796 return FALSE;
13797
a504d23a
LA
13798 if (! elf32_arm_output_glue_section (info, abfd,
13799 globals->bfd_of_glue_owner,
13800 STM32L4XX_ERRATUM_VENEER_SECTION_NAME))
13801 return FALSE;
13802
3e6b1042
DJ
13803 if (! elf32_arm_output_glue_section (info, abfd,
13804 globals->bfd_of_glue_owner,
13805 ARM_BX_GLUE_SECTION_NAME))
13806 return FALSE;
13807 }
13808
13809 return TRUE;
13810}
13811
5968a7b8
NC
13812/* Return a best guess for the machine number based on the attributes. */
13813
13814static unsigned int
13815bfd_arm_get_mach_from_attributes (bfd * abfd)
13816{
13817 int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch);
13818
13819 switch (arch)
13820 {
c0c468d5 13821 case TAG_CPU_ARCH_PRE_V4: return bfd_mach_arm_3M;
5968a7b8
NC
13822 case TAG_CPU_ARCH_V4: return bfd_mach_arm_4;
13823 case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T;
13824 case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T;
13825
13826 case TAG_CPU_ARCH_V5TE:
13827 {
13828 char * name;
13829
13830 BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES);
13831 name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s;
13832
13833 if (name)
13834 {
13835 if (strcmp (name, "IWMMXT2") == 0)
13836 return bfd_mach_arm_iWMMXt2;
13837
13838 if (strcmp (name, "IWMMXT") == 0)
6034aab8 13839 return bfd_mach_arm_iWMMXt;
088ca6c1
NC
13840
13841 if (strcmp (name, "XSCALE") == 0)
13842 {
13843 int wmmx;
13844
13845 BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES);
13846 wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i;
13847 switch (wmmx)
13848 {
13849 case 1: return bfd_mach_arm_iWMMXt;
13850 case 2: return bfd_mach_arm_iWMMXt2;
13851 default: return bfd_mach_arm_XScale;
13852 }
13853 }
5968a7b8
NC
13854 }
13855
13856 return bfd_mach_arm_5TE;
13857 }
13858
c0c468d5
TP
13859 case TAG_CPU_ARCH_V5TEJ:
13860 return bfd_mach_arm_5TEJ;
13861 case TAG_CPU_ARCH_V6:
13862 return bfd_mach_arm_6;
13863 case TAG_CPU_ARCH_V6KZ:
13864 return bfd_mach_arm_6KZ;
13865 case TAG_CPU_ARCH_V6T2:
13866 return bfd_mach_arm_6T2;
13867 case TAG_CPU_ARCH_V6K:
13868 return bfd_mach_arm_6K;
13869 case TAG_CPU_ARCH_V7:
13870 return bfd_mach_arm_7;
13871 case TAG_CPU_ARCH_V6_M:
13872 return bfd_mach_arm_6M;
13873 case TAG_CPU_ARCH_V6S_M:
13874 return bfd_mach_arm_6SM;
13875 case TAG_CPU_ARCH_V7E_M:
13876 return bfd_mach_arm_7EM;
13877 case TAG_CPU_ARCH_V8:
13878 return bfd_mach_arm_8;
13879 case TAG_CPU_ARCH_V8R:
13880 return bfd_mach_arm_8R;
13881 case TAG_CPU_ARCH_V8M_BASE:
13882 return bfd_mach_arm_8M_BASE;
13883 case TAG_CPU_ARCH_V8M_MAIN:
13884 return bfd_mach_arm_8M_MAIN;
031254f2
AV
13885 case TAG_CPU_ARCH_V8_1M_MAIN:
13886 return bfd_mach_arm_8_1M_MAIN;
c0c468d5 13887
5968a7b8 13888 default:
c0c468d5
TP
13889 /* Force entry to be added for any new known Tag_CPU_arch value. */
13890 BFD_ASSERT (arch > MAX_TAG_CPU_ARCH);
13891
13892 /* Unknown Tag_CPU_arch value. */
5968a7b8
NC
13893 return bfd_mach_arm_unknown;
13894 }
13895}
13896
c178919b
NC
13897/* Set the right machine number. */
13898
13899static bfd_boolean
57e8b36a 13900elf32_arm_object_p (bfd *abfd)
c178919b 13901{
5a6c6817 13902 unsigned int mach;
57e8b36a 13903
5a6c6817 13904 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
c178919b 13905
5968a7b8
NC
13906 if (mach == bfd_mach_arm_unknown)
13907 {
13908 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
13909 mach = bfd_mach_arm_ep9312;
13910 else
13911 mach = bfd_arm_get_mach_from_attributes (abfd);
13912 }
c178919b 13913
5968a7b8 13914 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
c178919b
NC
13915 return TRUE;
13916}
13917
fc830a83 13918/* Function to keep ARM specific flags in the ELF header. */
3c9458e9 13919
b34976b6 13920static bfd_boolean
57e8b36a 13921elf32_arm_set_private_flags (bfd *abfd, flagword flags)
252b5132
RH
13922{
13923 if (elf_flags_init (abfd)
13924 && elf_elfheader (abfd)->e_flags != flags)
13925 {
fc830a83
NC
13926 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
13927 {
fd2ec330 13928 if (flags & EF_ARM_INTERWORK)
4eca0228 13929 _bfd_error_handler
90b6238f 13930 (_("warning: not setting interworking flag of %pB since it has already been specified as non-interworking"),
d003868e 13931 abfd);
fc830a83 13932 else
d003868e 13933 _bfd_error_handler
90b6238f 13934 (_("warning: clearing the interworking flag of %pB due to outside request"),
d003868e 13935 abfd);
fc830a83 13936 }
252b5132
RH
13937 }
13938 else
13939 {
13940 elf_elfheader (abfd)->e_flags = flags;
b34976b6 13941 elf_flags_init (abfd) = TRUE;
252b5132
RH
13942 }
13943
b34976b6 13944 return TRUE;
252b5132
RH
13945}
13946
fc830a83 13947/* Copy backend specific data from one object module to another. */
9b485d32 13948
b34976b6 13949static bfd_boolean
57e8b36a 13950elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
252b5132
RH
13951{
13952 flagword in_flags;
13953 flagword out_flags;
13954
0ffa91dd 13955 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
b34976b6 13956 return TRUE;
252b5132 13957
fc830a83 13958 in_flags = elf_elfheader (ibfd)->e_flags;
252b5132
RH
13959 out_flags = elf_elfheader (obfd)->e_flags;
13960
fc830a83
NC
13961 if (elf_flags_init (obfd)
13962 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
13963 && in_flags != out_flags)
252b5132 13964 {
252b5132 13965 /* Cannot mix APCS26 and APCS32 code. */
fd2ec330 13966 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
b34976b6 13967 return FALSE;
252b5132
RH
13968
13969 /* Cannot mix float APCS and non-float APCS code. */
fd2ec330 13970 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
b34976b6 13971 return FALSE;
252b5132
RH
13972
13973 /* If the src and dest have different interworking flags
99059e56 13974 then turn off the interworking bit. */
fd2ec330 13975 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
252b5132 13976 {
fd2ec330 13977 if (out_flags & EF_ARM_INTERWORK)
d003868e 13978 _bfd_error_handler
90b6238f 13979 (_("warning: clearing the interworking flag of %pB because non-interworking code in %pB has been linked with it"),
d003868e 13980 obfd, ibfd);
252b5132 13981
fd2ec330 13982 in_flags &= ~EF_ARM_INTERWORK;
252b5132 13983 }
1006ba19
PB
13984
13985 /* Likewise for PIC, though don't warn for this case. */
fd2ec330
PB
13986 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
13987 in_flags &= ~EF_ARM_PIC;
252b5132
RH
13988 }
13989
13990 elf_elfheader (obfd)->e_flags = in_flags;
b34976b6 13991 elf_flags_init (obfd) = TRUE;
252b5132 13992
e2349352 13993 return _bfd_elf_copy_private_bfd_data (ibfd, obfd);
ee065d83
PB
13994}
13995
13996/* Values for Tag_ABI_PCS_R9_use. */
13997enum
13998{
13999 AEABI_R9_V6,
14000 AEABI_R9_SB,
14001 AEABI_R9_TLS,
14002 AEABI_R9_unused
14003};
14004
14005/* Values for Tag_ABI_PCS_RW_data. */
14006enum
14007{
14008 AEABI_PCS_RW_data_absolute,
14009 AEABI_PCS_RW_data_PCrel,
14010 AEABI_PCS_RW_data_SBrel,
14011 AEABI_PCS_RW_data_unused
14012};
14013
14014/* Values for Tag_ABI_enum_size. */
14015enum
14016{
14017 AEABI_enum_unused,
14018 AEABI_enum_short,
14019 AEABI_enum_wide,
14020 AEABI_enum_forced_wide
14021};
14022
104d59d1
JM
14023/* Determine whether an object attribute tag takes an integer, a
14024 string or both. */
906e58ca 14025
104d59d1
JM
14026static int
14027elf32_arm_obj_attrs_arg_type (int tag)
14028{
14029 if (tag == Tag_compatibility)
3483fe2e 14030 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
2d0bb761 14031 else if (tag == Tag_nodefaults)
3483fe2e
AS
14032 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
14033 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
14034 return ATTR_TYPE_FLAG_STR_VAL;
104d59d1 14035 else if (tag < 32)
3483fe2e 14036 return ATTR_TYPE_FLAG_INT_VAL;
104d59d1 14037 else
3483fe2e 14038 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
104d59d1
JM
14039}
14040
5aa6ff7c
AS
14041/* The ABI defines that Tag_conformance should be emitted first, and that
14042 Tag_nodefaults should be second (if either is defined). This sets those
14043 two positions, and bumps up the position of all the remaining tags to
14044 compensate. */
14045static int
14046elf32_arm_obj_attrs_order (int num)
14047{
3de4a297 14048 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
5aa6ff7c 14049 return Tag_conformance;
3de4a297 14050 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
5aa6ff7c
AS
14051 return Tag_nodefaults;
14052 if ((num - 2) < Tag_nodefaults)
14053 return num - 2;
14054 if ((num - 1) < Tag_conformance)
14055 return num - 1;
14056 return num;
14057}
14058
e8b36cd1
JM
14059/* Attribute numbers >=64 (mod 128) can be safely ignored. */
14060static bfd_boolean
14061elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
14062{
14063 if ((tag & 127) < 64)
14064 {
14065 _bfd_error_handler
90b6238f 14066 (_("%pB: unknown mandatory EABI object attribute %d"),
e8b36cd1
JM
14067 abfd, tag);
14068 bfd_set_error (bfd_error_bad_value);
14069 return FALSE;
14070 }
14071 else
14072 {
14073 _bfd_error_handler
90b6238f 14074 (_("warning: %pB: unknown EABI object attribute %d"),
e8b36cd1
JM
14075 abfd, tag);
14076 return TRUE;
14077 }
14078}
14079
91e22acd
AS
14080/* Read the architecture from the Tag_also_compatible_with attribute, if any.
14081 Returns -1 if no architecture could be read. */
14082
14083static int
14084get_secondary_compatible_arch (bfd *abfd)
14085{
14086 obj_attribute *attr =
14087 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
14088
14089 /* Note: the tag and its argument below are uleb128 values, though
14090 currently-defined values fit in one byte for each. */
14091 if (attr->s
14092 && attr->s[0] == Tag_CPU_arch
14093 && (attr->s[1] & 128) != 128
14094 && attr->s[2] == 0)
14095 return attr->s[1];
14096
14097 /* This tag is "safely ignorable", so don't complain if it looks funny. */
14098 return -1;
14099}
14100
14101/* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
14102 The tag is removed if ARCH is -1. */
14103
8e79c3df 14104static void
91e22acd 14105set_secondary_compatible_arch (bfd *abfd, int arch)
8e79c3df 14106{
91e22acd
AS
14107 obj_attribute *attr =
14108 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
8e79c3df 14109
91e22acd
AS
14110 if (arch == -1)
14111 {
14112 attr->s = NULL;
14113 return;
8e79c3df 14114 }
91e22acd
AS
14115
14116 /* Note: the tag and its argument below are uleb128 values, though
14117 currently-defined values fit in one byte for each. */
14118 if (!attr->s)
21d799b5 14119 attr->s = (char *) bfd_alloc (abfd, 3);
91e22acd
AS
14120 attr->s[0] = Tag_CPU_arch;
14121 attr->s[1] = arch;
14122 attr->s[2] = '\0';
8e79c3df
CM
14123}
14124
91e22acd
AS
14125/* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
14126 into account. */
14127
14128static int
14129tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
14130 int newtag, int secondary_compat)
8e79c3df 14131{
91e22acd
AS
14132#define T(X) TAG_CPU_ARCH_##X
14133 int tagl, tagh, result;
14134 const int v6t2[] =
14135 {
14136 T(V6T2), /* PRE_V4. */
14137 T(V6T2), /* V4. */
14138 T(V6T2), /* V4T. */
14139 T(V6T2), /* V5T. */
14140 T(V6T2), /* V5TE. */
14141 T(V6T2), /* V5TEJ. */
14142 T(V6T2), /* V6. */
14143 T(V7), /* V6KZ. */
14144 T(V6T2) /* V6T2. */
14145 };
14146 const int v6k[] =
14147 {
14148 T(V6K), /* PRE_V4. */
14149 T(V6K), /* V4. */
14150 T(V6K), /* V4T. */
14151 T(V6K), /* V5T. */
14152 T(V6K), /* V5TE. */
14153 T(V6K), /* V5TEJ. */
14154 T(V6K), /* V6. */
14155 T(V6KZ), /* V6KZ. */
14156 T(V7), /* V6T2. */
14157 T(V6K) /* V6K. */
14158 };
14159 const int v7[] =
14160 {
14161 T(V7), /* PRE_V4. */
14162 T(V7), /* V4. */
14163 T(V7), /* V4T. */
14164 T(V7), /* V5T. */
14165 T(V7), /* V5TE. */
14166 T(V7), /* V5TEJ. */
14167 T(V7), /* V6. */
14168 T(V7), /* V6KZ. */
14169 T(V7), /* V6T2. */
14170 T(V7), /* V6K. */
14171 T(V7) /* V7. */
14172 };
14173 const int v6_m[] =
14174 {
07d6d2b8
AM
14175 -1, /* PRE_V4. */
14176 -1, /* V4. */
91e22acd
AS
14177 T(V6K), /* V4T. */
14178 T(V6K), /* V5T. */
14179 T(V6K), /* V5TE. */
14180 T(V6K), /* V5TEJ. */
14181 T(V6K), /* V6. */
14182 T(V6KZ), /* V6KZ. */
14183 T(V7), /* V6T2. */
14184 T(V6K), /* V6K. */
14185 T(V7), /* V7. */
14186 T(V6_M) /* V6_M. */
14187 };
14188 const int v6s_m[] =
14189 {
07d6d2b8
AM
14190 -1, /* PRE_V4. */
14191 -1, /* V4. */
91e22acd
AS
14192 T(V6K), /* V4T. */
14193 T(V6K), /* V5T. */
14194 T(V6K), /* V5TE. */
14195 T(V6K), /* V5TEJ. */
14196 T(V6K), /* V6. */
14197 T(V6KZ), /* V6KZ. */
14198 T(V7), /* V6T2. */
14199 T(V6K), /* V6K. */
14200 T(V7), /* V7. */
14201 T(V6S_M), /* V6_M. */
14202 T(V6S_M) /* V6S_M. */
14203 };
9e3c6df6
PB
14204 const int v7e_m[] =
14205 {
07d6d2b8
AM
14206 -1, /* PRE_V4. */
14207 -1, /* V4. */
9e3c6df6
PB
14208 T(V7E_M), /* V4T. */
14209 T(V7E_M), /* V5T. */
14210 T(V7E_M), /* V5TE. */
14211 T(V7E_M), /* V5TEJ. */
14212 T(V7E_M), /* V6. */
14213 T(V7E_M), /* V6KZ. */
14214 T(V7E_M), /* V6T2. */
14215 T(V7E_M), /* V6K. */
14216 T(V7E_M), /* V7. */
14217 T(V7E_M), /* V6_M. */
14218 T(V7E_M), /* V6S_M. */
14219 T(V7E_M) /* V7E_M. */
14220 };
bca38921
MGD
14221 const int v8[] =
14222 {
14223 T(V8), /* PRE_V4. */
14224 T(V8), /* V4. */
14225 T(V8), /* V4T. */
14226 T(V8), /* V5T. */
14227 T(V8), /* V5TE. */
14228 T(V8), /* V5TEJ. */
14229 T(V8), /* V6. */
14230 T(V8), /* V6KZ. */
14231 T(V8), /* V6T2. */
14232 T(V8), /* V6K. */
14233 T(V8), /* V7. */
14234 T(V8), /* V6_M. */
14235 T(V8), /* V6S_M. */
14236 T(V8), /* V7E_M. */
14237 T(V8) /* V8. */
14238 };
bff0500d
TP
14239 const int v8r[] =
14240 {
14241 T(V8R), /* PRE_V4. */
14242 T(V8R), /* V4. */
14243 T(V8R), /* V4T. */
14244 T(V8R), /* V5T. */
14245 T(V8R), /* V5TE. */
14246 T(V8R), /* V5TEJ. */
14247 T(V8R), /* V6. */
14248 T(V8R), /* V6KZ. */
14249 T(V8R), /* V6T2. */
14250 T(V8R), /* V6K. */
14251 T(V8R), /* V7. */
14252 T(V8R), /* V6_M. */
14253 T(V8R), /* V6S_M. */
14254 T(V8R), /* V7E_M. */
14255 T(V8), /* V8. */
14256 T(V8R), /* V8R. */
14257 };
2fd158eb
TP
14258 const int v8m_baseline[] =
14259 {
14260 -1, /* PRE_V4. */
14261 -1, /* V4. */
14262 -1, /* V4T. */
14263 -1, /* V5T. */
14264 -1, /* V5TE. */
14265 -1, /* V5TEJ. */
14266 -1, /* V6. */
14267 -1, /* V6KZ. */
14268 -1, /* V6T2. */
14269 -1, /* V6K. */
14270 -1, /* V7. */
14271 T(V8M_BASE), /* V6_M. */
14272 T(V8M_BASE), /* V6S_M. */
14273 -1, /* V7E_M. */
14274 -1, /* V8. */
bff0500d 14275 -1, /* V8R. */
2fd158eb
TP
14276 T(V8M_BASE) /* V8-M BASELINE. */
14277 };
14278 const int v8m_mainline[] =
14279 {
14280 -1, /* PRE_V4. */
14281 -1, /* V4. */
14282 -1, /* V4T. */
14283 -1, /* V5T. */
14284 -1, /* V5TE. */
14285 -1, /* V5TEJ. */
14286 -1, /* V6. */
14287 -1, /* V6KZ. */
14288 -1, /* V6T2. */
14289 -1, /* V6K. */
14290 T(V8M_MAIN), /* V7. */
14291 T(V8M_MAIN), /* V6_M. */
14292 T(V8M_MAIN), /* V6S_M. */
14293 T(V8M_MAIN), /* V7E_M. */
14294 -1, /* V8. */
bff0500d 14295 -1, /* V8R. */
2fd158eb
TP
14296 T(V8M_MAIN), /* V8-M BASELINE. */
14297 T(V8M_MAIN) /* V8-M MAINLINE. */
14298 };
031254f2
AV
14299 const int v8_1m_mainline[] =
14300 {
14301 -1, /* PRE_V4. */
14302 -1, /* V4. */
14303 -1, /* V4T. */
14304 -1, /* V5T. */
14305 -1, /* V5TE. */
14306 -1, /* V5TEJ. */
14307 -1, /* V6. */
14308 -1, /* V6KZ. */
14309 -1, /* V6T2. */
14310 -1, /* V6K. */
14311 T(V8_1M_MAIN), /* V7. */
14312 T(V8_1M_MAIN), /* V6_M. */
14313 T(V8_1M_MAIN), /* V6S_M. */
14314 T(V8_1M_MAIN), /* V7E_M. */
14315 -1, /* V8. */
14316 -1, /* V8R. */
14317 T(V8_1M_MAIN), /* V8-M BASELINE. */
14318 T(V8_1M_MAIN), /* V8-M MAINLINE. */
14319 -1, /* Unused (18). */
14320 -1, /* Unused (19). */
14321 -1, /* Unused (20). */
14322 T(V8_1M_MAIN) /* V8.1-M MAINLINE. */
14323 };
91e22acd
AS
14324 const int v4t_plus_v6_m[] =
14325 {
14326 -1, /* PRE_V4. */
14327 -1, /* V4. */
14328 T(V4T), /* V4T. */
14329 T(V5T), /* V5T. */
14330 T(V5TE), /* V5TE. */
14331 T(V5TEJ), /* V5TEJ. */
14332 T(V6), /* V6. */
14333 T(V6KZ), /* V6KZ. */
14334 T(V6T2), /* V6T2. */
14335 T(V6K), /* V6K. */
14336 T(V7), /* V7. */
14337 T(V6_M), /* V6_M. */
14338 T(V6S_M), /* V6S_M. */
9e3c6df6 14339 T(V7E_M), /* V7E_M. */
bca38921 14340 T(V8), /* V8. */
bff0500d 14341 -1, /* V8R. */
2fd158eb
TP
14342 T(V8M_BASE), /* V8-M BASELINE. */
14343 T(V8M_MAIN), /* V8-M MAINLINE. */
031254f2
AV
14344 -1, /* Unused (18). */
14345 -1, /* Unused (19). */
14346 -1, /* Unused (20). */
14347 T(V8_1M_MAIN), /* V8.1-M MAINLINE. */
91e22acd
AS
14348 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
14349 };
14350 const int *comb[] =
14351 {
14352 v6t2,
14353 v6k,
14354 v7,
14355 v6_m,
14356 v6s_m,
9e3c6df6 14357 v7e_m,
bca38921 14358 v8,
bff0500d 14359 v8r,
2fd158eb
TP
14360 v8m_baseline,
14361 v8m_mainline,
031254f2
AV
14362 NULL,
14363 NULL,
14364 NULL,
14365 v8_1m_mainline,
91e22acd
AS
14366 /* Pseudo-architecture. */
14367 v4t_plus_v6_m
14368 };
14369
14370 /* Check we've not got a higher architecture than we know about. */
14371
9e3c6df6 14372 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
91e22acd 14373 {
90b6238f 14374 _bfd_error_handler (_("error: %pB: unknown CPU architecture"), ibfd);
91e22acd
AS
14375 return -1;
14376 }
14377
14378 /* Override old tag if we have a Tag_also_compatible_with on the output. */
14379
14380 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
14381 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
14382 oldtag = T(V4T_PLUS_V6_M);
14383
14384 /* And override the new tag if we have a Tag_also_compatible_with on the
14385 input. */
14386
14387 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
14388 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
14389 newtag = T(V4T_PLUS_V6_M);
14390
14391 tagl = (oldtag < newtag) ? oldtag : newtag;
14392 result = tagh = (oldtag > newtag) ? oldtag : newtag;
14393
14394 /* Architectures before V6KZ add features monotonically. */
14395 if (tagh <= TAG_CPU_ARCH_V6KZ)
14396 return result;
14397
4ed7ed8d 14398 result = comb[tagh - T(V6T2)] ? comb[tagh - T(V6T2)][tagl] : -1;
91e22acd
AS
14399
14400 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
14401 as the canonical version. */
14402 if (result == T(V4T_PLUS_V6_M))
14403 {
14404 result = T(V4T);
14405 *secondary_compat_out = T(V6_M);
14406 }
14407 else
14408 *secondary_compat_out = -1;
14409
14410 if (result == -1)
14411 {
90b6238f 14412 _bfd_error_handler (_("error: %pB: conflicting CPU architectures %d/%d"),
91e22acd
AS
14413 ibfd, oldtag, newtag);
14414 return -1;
14415 }
14416
14417 return result;
14418#undef T
8e79c3df
CM
14419}
14420
ac56ee8f
MGD
14421/* Query attributes object to see if integer divide instructions may be
14422 present in an object. */
14423static bfd_boolean
14424elf32_arm_attributes_accept_div (const obj_attribute *attr)
14425{
14426 int arch = attr[Tag_CPU_arch].i;
14427 int profile = attr[Tag_CPU_arch_profile].i;
14428
14429 switch (attr[Tag_DIV_use].i)
14430 {
14431 case 0:
14432 /* Integer divide allowed if instruction contained in archetecture. */
14433 if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
14434 return TRUE;
14435 else if (arch >= TAG_CPU_ARCH_V7E_M)
14436 return TRUE;
14437 else
14438 return FALSE;
14439
14440 case 1:
14441 /* Integer divide explicitly prohibited. */
14442 return FALSE;
14443
14444 default:
14445 /* Unrecognised case - treat as allowing divide everywhere. */
14446 case 2:
14447 /* Integer divide allowed in ARM state. */
14448 return TRUE;
14449 }
14450}
14451
14452/* Query attributes object to see if integer divide instructions are
14453 forbidden to be in the object. This is not the inverse of
14454 elf32_arm_attributes_accept_div. */
14455static bfd_boolean
14456elf32_arm_attributes_forbid_div (const obj_attribute *attr)
14457{
14458 return attr[Tag_DIV_use].i == 1;
14459}
14460
ee065d83
PB
14461/* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
14462 are conflicting attributes. */
906e58ca 14463
ee065d83 14464static bfd_boolean
50e03d47 14465elf32_arm_merge_eabi_attributes (bfd *ibfd, struct bfd_link_info *info)
ee065d83 14466{
50e03d47 14467 bfd *obfd = info->output_bfd;
104d59d1
JM
14468 obj_attribute *in_attr;
14469 obj_attribute *out_attr;
ee065d83
PB
14470 /* Some tags have 0 = don't care, 1 = strong requirement,
14471 2 = weak requirement. */
91e22acd 14472 static const int order_021[3] = {0, 2, 1};
ee065d83 14473 int i;
91e22acd 14474 bfd_boolean result = TRUE;
9274e9de 14475 const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section;
ee065d83 14476
3e6b1042
DJ
14477 /* Skip the linker stubs file. This preserves previous behavior
14478 of accepting unknown attributes in the first input file - but
14479 is that a bug? */
14480 if (ibfd->flags & BFD_LINKER_CREATED)
14481 return TRUE;
14482
9274e9de
TG
14483 /* Skip any input that hasn't attribute section.
14484 This enables to link object files without attribute section with
14485 any others. */
14486 if (bfd_get_section_by_name (ibfd, sec_name) == NULL)
14487 return TRUE;
14488
104d59d1 14489 if (!elf_known_obj_attributes_proc (obfd)[0].i)
ee065d83
PB
14490 {
14491 /* This is the first object. Copy the attributes. */
104d59d1 14492 _bfd_elf_copy_obj_attributes (ibfd, obfd);
004ae526 14493
cd21e546
MGD
14494 out_attr = elf_known_obj_attributes_proc (obfd);
14495
004ae526
PB
14496 /* Use the Tag_null value to indicate the attributes have been
14497 initialized. */
cd21e546 14498 out_attr[0].i = 1;
004ae526 14499
cd21e546
MGD
14500 /* We do not output objects with Tag_MPextension_use_legacy - we move
14501 the attribute's value to Tag_MPextension_use. */
14502 if (out_attr[Tag_MPextension_use_legacy].i != 0)
14503 {
14504 if (out_attr[Tag_MPextension_use].i != 0
14505 && out_attr[Tag_MPextension_use_legacy].i
99059e56 14506 != out_attr[Tag_MPextension_use].i)
cd21e546
MGD
14507 {
14508 _bfd_error_handler
871b3ab2 14509 (_("Error: %pB has both the current and legacy "
cd21e546
MGD
14510 "Tag_MPextension_use attributes"), ibfd);
14511 result = FALSE;
14512 }
14513
14514 out_attr[Tag_MPextension_use] =
14515 out_attr[Tag_MPextension_use_legacy];
14516 out_attr[Tag_MPextension_use_legacy].type = 0;
14517 out_attr[Tag_MPextension_use_legacy].i = 0;
14518 }
14519
14520 return result;
ee065d83
PB
14521 }
14522
104d59d1
JM
14523 in_attr = elf_known_obj_attributes_proc (ibfd);
14524 out_attr = elf_known_obj_attributes_proc (obfd);
ee065d83
PB
14525 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
14526 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
14527 {
5c294fee
TG
14528 /* Ignore mismatches if the object doesn't use floating point or is
14529 floating point ABI independent. */
14530 if (out_attr[Tag_ABI_FP_number_model].i == AEABI_FP_number_model_none
14531 || (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
14532 && out_attr[Tag_ABI_VFP_args].i == AEABI_VFP_args_compatible))
ee065d83 14533 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
5c294fee
TG
14534 else if (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
14535 && in_attr[Tag_ABI_VFP_args].i != AEABI_VFP_args_compatible)
ee065d83
PB
14536 {
14537 _bfd_error_handler
871b3ab2 14538 (_("error: %pB uses VFP register arguments, %pB does not"),
deddc40b
NS
14539 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
14540 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
91e22acd 14541 result = FALSE;
ee065d83
PB
14542 }
14543 }
14544
3de4a297 14545 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
ee065d83
PB
14546 {
14547 /* Merge this attribute with existing attributes. */
14548 switch (i)
14549 {
14550 case Tag_CPU_raw_name:
14551 case Tag_CPU_name:
6a631e86 14552 /* These are merged after Tag_CPU_arch. */
ee065d83
PB
14553 break;
14554
14555 case Tag_ABI_optimization_goals:
14556 case Tag_ABI_FP_optimization_goals:
14557 /* Use the first value seen. */
14558 break;
14559
14560 case Tag_CPU_arch:
91e22acd
AS
14561 {
14562 int secondary_compat = -1, secondary_compat_out = -1;
14563 unsigned int saved_out_attr = out_attr[i].i;
70e99720
TG
14564 int arch_attr;
14565 static const char *name_table[] =
14566 {
91e22acd
AS
14567 /* These aren't real CPU names, but we can't guess
14568 that from the architecture version alone. */
14569 "Pre v4",
14570 "ARM v4",
14571 "ARM v4T",
14572 "ARM v5T",
14573 "ARM v5TE",
14574 "ARM v5TEJ",
14575 "ARM v6",
14576 "ARM v6KZ",
14577 "ARM v6T2",
14578 "ARM v6K",
14579 "ARM v7",
14580 "ARM v6-M",
bca38921 14581 "ARM v6S-M",
2fd158eb
TP
14582 "ARM v8",
14583 "",
14584 "ARM v8-M.baseline",
14585 "ARM v8-M.mainline",
91e22acd
AS
14586 };
14587
14588 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
14589 secondary_compat = get_secondary_compatible_arch (ibfd);
14590 secondary_compat_out = get_secondary_compatible_arch (obfd);
70e99720
TG
14591 arch_attr = tag_cpu_arch_combine (ibfd, out_attr[i].i,
14592 &secondary_compat_out,
14593 in_attr[i].i,
14594 secondary_compat);
14595
14596 /* Return with error if failed to merge. */
14597 if (arch_attr == -1)
14598 return FALSE;
14599
14600 out_attr[i].i = arch_attr;
14601
91e22acd
AS
14602 set_secondary_compatible_arch (obfd, secondary_compat_out);
14603
14604 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
14605 if (out_attr[i].i == saved_out_attr)
14606 ; /* Leave the names alone. */
14607 else if (out_attr[i].i == in_attr[i].i)
14608 {
14609 /* The output architecture has been changed to match the
14610 input architecture. Use the input names. */
14611 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
14612 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
14613 : NULL;
14614 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
14615 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
14616 : NULL;
14617 }
14618 else
14619 {
14620 out_attr[Tag_CPU_name].s = NULL;
14621 out_attr[Tag_CPU_raw_name].s = NULL;
14622 }
14623
14624 /* If we still don't have a value for Tag_CPU_name,
14625 make one up now. Tag_CPU_raw_name remains blank. */
14626 if (out_attr[Tag_CPU_name].s == NULL
14627 && out_attr[i].i < ARRAY_SIZE (name_table))
14628 out_attr[Tag_CPU_name].s =
14629 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
14630 }
14631 break;
14632
ee065d83
PB
14633 case Tag_ARM_ISA_use:
14634 case Tag_THUMB_ISA_use:
ee065d83 14635 case Tag_WMMX_arch:
91e22acd
AS
14636 case Tag_Advanced_SIMD_arch:
14637 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
ee065d83 14638 case Tag_ABI_FP_rounding:
ee065d83
PB
14639 case Tag_ABI_FP_exceptions:
14640 case Tag_ABI_FP_user_exceptions:
14641 case Tag_ABI_FP_number_model:
75375b3e 14642 case Tag_FP_HP_extension:
91e22acd
AS
14643 case Tag_CPU_unaligned_access:
14644 case Tag_T2EE_use:
91e22acd 14645 case Tag_MPextension_use:
a7ad558c 14646 case Tag_MVE_arch:
ee065d83
PB
14647 /* Use the largest value specified. */
14648 if (in_attr[i].i > out_attr[i].i)
14649 out_attr[i].i = in_attr[i].i;
14650 break;
14651
75375b3e 14652 case Tag_ABI_align_preserved:
91e22acd
AS
14653 case Tag_ABI_PCS_RO_data:
14654 /* Use the smallest value specified. */
14655 if (in_attr[i].i < out_attr[i].i)
14656 out_attr[i].i = in_attr[i].i;
14657 break;
14658
75375b3e 14659 case Tag_ABI_align_needed:
91e22acd 14660 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
75375b3e
MGD
14661 && (in_attr[Tag_ABI_align_preserved].i == 0
14662 || out_attr[Tag_ABI_align_preserved].i == 0))
ee065d83 14663 {
91e22acd
AS
14664 /* This error message should be enabled once all non-conformant
14665 binaries in the toolchain have had the attributes set
14666 properly.
ee065d83 14667 _bfd_error_handler
871b3ab2 14668 (_("error: %pB: 8-byte data alignment conflicts with %pB"),
91e22acd
AS
14669 obfd, ibfd);
14670 result = FALSE; */
ee065d83 14671 }
91e22acd
AS
14672 /* Fall through. */
14673 case Tag_ABI_FP_denormal:
14674 case Tag_ABI_PCS_GOT_use:
14675 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
14676 value if greater than 2 (for future-proofing). */
14677 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
14678 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
14679 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
ee065d83
PB
14680 out_attr[i].i = in_attr[i].i;
14681 break;
91e22acd 14682
75375b3e
MGD
14683 case Tag_Virtualization_use:
14684 /* The virtualization tag effectively stores two bits of
14685 information: the intended use of TrustZone (in bit 0), and the
14686 intended use of Virtualization (in bit 1). */
14687 if (out_attr[i].i == 0)
14688 out_attr[i].i = in_attr[i].i;
14689 else if (in_attr[i].i != 0
14690 && in_attr[i].i != out_attr[i].i)
14691 {
14692 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
14693 out_attr[i].i = 3;
14694 else
14695 {
14696 _bfd_error_handler
871b3ab2
AM
14697 (_("error: %pB: unable to merge virtualization attributes "
14698 "with %pB"),
75375b3e
MGD
14699 obfd, ibfd);
14700 result = FALSE;
14701 }
14702 }
14703 break;
91e22acd
AS
14704
14705 case Tag_CPU_arch_profile:
14706 if (out_attr[i].i != in_attr[i].i)
14707 {
14708 /* 0 will merge with anything.
14709 'A' and 'S' merge to 'A'.
14710 'R' and 'S' merge to 'R'.
99059e56 14711 'M' and 'A|R|S' is an error. */
91e22acd
AS
14712 if (out_attr[i].i == 0
14713 || (out_attr[i].i == 'S'
14714 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
14715 out_attr[i].i = in_attr[i].i;
14716 else if (in_attr[i].i == 0
14717 || (in_attr[i].i == 'S'
14718 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
6a631e86 14719 ; /* Do nothing. */
91e22acd
AS
14720 else
14721 {
14722 _bfd_error_handler
90b6238f 14723 (_("error: %pB: conflicting architecture profiles %c/%c"),
91e22acd
AS
14724 ibfd,
14725 in_attr[i].i ? in_attr[i].i : '0',
14726 out_attr[i].i ? out_attr[i].i : '0');
14727 result = FALSE;
14728 }
14729 }
14730 break;
15afaa63
TP
14731
14732 case Tag_DSP_extension:
14733 /* No need to change output value if any of:
14734 - pre (<=) ARMv5T input architecture (do not have DSP)
14735 - M input profile not ARMv7E-M and do not have DSP. */
14736 if (in_attr[Tag_CPU_arch].i <= 3
14737 || (in_attr[Tag_CPU_arch_profile].i == 'M'
14738 && in_attr[Tag_CPU_arch].i != 13
14739 && in_attr[i].i == 0))
14740 ; /* Do nothing. */
14741 /* Output value should be 0 if DSP part of architecture, ie.
14742 - post (>=) ARMv5te architecture output
14743 - A, R or S profile output or ARMv7E-M output architecture. */
14744 else if (out_attr[Tag_CPU_arch].i >= 4
14745 && (out_attr[Tag_CPU_arch_profile].i == 'A'
14746 || out_attr[Tag_CPU_arch_profile].i == 'R'
14747 || out_attr[Tag_CPU_arch_profile].i == 'S'
14748 || out_attr[Tag_CPU_arch].i == 13))
14749 out_attr[i].i = 0;
14750 /* Otherwise, DSP instructions are added and not part of output
14751 architecture. */
14752 else
14753 out_attr[i].i = 1;
14754 break;
14755
75375b3e 14756 case Tag_FP_arch:
62f3b8c8 14757 {
4547cb56
NC
14758 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
14759 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
14760 when it's 0. It might mean absence of FP hardware if
99654aaf 14761 Tag_FP_arch is zero. */
4547cb56 14762
a715796b 14763#define VFP_VERSION_COUNT 9
62f3b8c8
PB
14764 static const struct
14765 {
14766 int ver;
14767 int regs;
bca38921 14768 } vfp_versions[VFP_VERSION_COUNT] =
62f3b8c8
PB
14769 {
14770 {0, 0},
14771 {1, 16},
14772 {2, 16},
14773 {3, 32},
14774 {3, 16},
14775 {4, 32},
bca38921 14776 {4, 16},
a715796b
TG
14777 {8, 32},
14778 {8, 16}
62f3b8c8
PB
14779 };
14780 int ver;
14781 int regs;
14782 int newval;
14783
4547cb56
NC
14784 /* If the output has no requirement about FP hardware,
14785 follow the requirement of the input. */
14786 if (out_attr[i].i == 0)
14787 {
4ec192e6
RE
14788 /* This assert is still reasonable, we shouldn't
14789 produce the suspicious build attribute
14790 combination (See below for in_attr). */
4547cb56
NC
14791 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
14792 out_attr[i].i = in_attr[i].i;
14793 out_attr[Tag_ABI_HardFP_use].i
14794 = in_attr[Tag_ABI_HardFP_use].i;
14795 break;
14796 }
14797 /* If the input has no requirement about FP hardware, do
14798 nothing. */
14799 else if (in_attr[i].i == 0)
14800 {
4ec192e6
RE
14801 /* We used to assert that Tag_ABI_HardFP_use was
14802 zero here, but we should never assert when
14803 consuming an object file that has suspicious
14804 build attributes. The single precision variant
14805 of 'no FP architecture' is still 'no FP
14806 architecture', so we just ignore the tag in this
14807 case. */
4547cb56
NC
14808 break;
14809 }
14810
14811 /* Both the input and the output have nonzero Tag_FP_arch.
99654aaf 14812 So Tag_ABI_HardFP_use is implied by Tag_FP_arch when it's zero. */
4547cb56
NC
14813
14814 /* If both the input and the output have zero Tag_ABI_HardFP_use,
14815 do nothing. */
14816 if (in_attr[Tag_ABI_HardFP_use].i == 0
14817 && out_attr[Tag_ABI_HardFP_use].i == 0)
14818 ;
14819 /* If the input and the output have different Tag_ABI_HardFP_use,
99654aaf 14820 the combination of them is 0 (implied by Tag_FP_arch). */
4547cb56
NC
14821 else if (in_attr[Tag_ABI_HardFP_use].i
14822 != out_attr[Tag_ABI_HardFP_use].i)
99654aaf 14823 out_attr[Tag_ABI_HardFP_use].i = 0;
4547cb56
NC
14824
14825 /* Now we can handle Tag_FP_arch. */
14826
bca38921
MGD
14827 /* Values of VFP_VERSION_COUNT or more aren't defined, so just
14828 pick the biggest. */
14829 if (in_attr[i].i >= VFP_VERSION_COUNT
14830 && in_attr[i].i > out_attr[i].i)
62f3b8c8
PB
14831 {
14832 out_attr[i] = in_attr[i];
14833 break;
14834 }
14835 /* The output uses the superset of input features
14836 (ISA version) and registers. */
14837 ver = vfp_versions[in_attr[i].i].ver;
14838 if (ver < vfp_versions[out_attr[i].i].ver)
14839 ver = vfp_versions[out_attr[i].i].ver;
14840 regs = vfp_versions[in_attr[i].i].regs;
14841 if (regs < vfp_versions[out_attr[i].i].regs)
14842 regs = vfp_versions[out_attr[i].i].regs;
14843 /* This assumes all possible supersets are also a valid
99059e56 14844 options. */
bca38921 14845 for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--)
62f3b8c8
PB
14846 {
14847 if (regs == vfp_versions[newval].regs
14848 && ver == vfp_versions[newval].ver)
14849 break;
14850 }
14851 out_attr[i].i = newval;
14852 }
b1cc4aeb 14853 break;
ee065d83
PB
14854 case Tag_PCS_config:
14855 if (out_attr[i].i == 0)
14856 out_attr[i].i = in_attr[i].i;
b6009aca 14857 else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
ee065d83
PB
14858 {
14859 /* It's sometimes ok to mix different configs, so this is only
99059e56 14860 a warning. */
ee065d83 14861 _bfd_error_handler
90b6238f 14862 (_("warning: %pB: conflicting platform configuration"), ibfd);
ee065d83
PB
14863 }
14864 break;
14865 case Tag_ABI_PCS_R9_use:
004ae526
PB
14866 if (in_attr[i].i != out_attr[i].i
14867 && out_attr[i].i != AEABI_R9_unused
ee065d83
PB
14868 && in_attr[i].i != AEABI_R9_unused)
14869 {
14870 _bfd_error_handler
90b6238f 14871 (_("error: %pB: conflicting use of R9"), ibfd);
91e22acd 14872 result = FALSE;
ee065d83
PB
14873 }
14874 if (out_attr[i].i == AEABI_R9_unused)
14875 out_attr[i].i = in_attr[i].i;
14876 break;
14877 case Tag_ABI_PCS_RW_data:
14878 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
14879 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
14880 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
14881 {
14882 _bfd_error_handler
871b3ab2 14883 (_("error: %pB: SB relative addressing conflicts with use of R9"),
ee065d83 14884 ibfd);
91e22acd 14885 result = FALSE;
ee065d83
PB
14886 }
14887 /* Use the smallest value specified. */
14888 if (in_attr[i].i < out_attr[i].i)
14889 out_attr[i].i = in_attr[i].i;
14890 break;
ee065d83 14891 case Tag_ABI_PCS_wchar_t:
a9dc9481
JM
14892 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
14893 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
ee065d83
PB
14894 {
14895 _bfd_error_handler
871b3ab2 14896 (_("warning: %pB uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
a9dc9481 14897 ibfd, in_attr[i].i, out_attr[i].i);
ee065d83 14898 }
a9dc9481 14899 else if (in_attr[i].i && !out_attr[i].i)
ee065d83
PB
14900 out_attr[i].i = in_attr[i].i;
14901 break;
ee065d83
PB
14902 case Tag_ABI_enum_size:
14903 if (in_attr[i].i != AEABI_enum_unused)
14904 {
14905 if (out_attr[i].i == AEABI_enum_unused
14906 || out_attr[i].i == AEABI_enum_forced_wide)
14907 {
14908 /* The existing object is compatible with anything.
14909 Use whatever requirements the new object has. */
14910 out_attr[i].i = in_attr[i].i;
14911 }
14912 else if (in_attr[i].i != AEABI_enum_forced_wide
bf21ed78 14913 && out_attr[i].i != in_attr[i].i
0ffa91dd 14914 && !elf_arm_tdata (obfd)->no_enum_size_warning)
ee065d83 14915 {
91e22acd 14916 static const char *aeabi_enum_names[] =
bf21ed78 14917 { "", "variable-size", "32-bit", "" };
91e22acd
AS
14918 const char *in_name =
14919 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
14920 ? aeabi_enum_names[in_attr[i].i]
14921 : "<unknown>";
14922 const char *out_name =
14923 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
14924 ? aeabi_enum_names[out_attr[i].i]
14925 : "<unknown>";
ee065d83 14926 _bfd_error_handler
871b3ab2 14927 (_("warning: %pB uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
91e22acd 14928 ibfd, in_name, out_name);
ee065d83
PB
14929 }
14930 }
14931 break;
14932 case Tag_ABI_VFP_args:
14933 /* Aready done. */
14934 break;
14935 case Tag_ABI_WMMX_args:
14936 if (in_attr[i].i != out_attr[i].i)
14937 {
14938 _bfd_error_handler
871b3ab2 14939 (_("error: %pB uses iWMMXt register arguments, %pB does not"),
ee065d83 14940 ibfd, obfd);
91e22acd 14941 result = FALSE;
ee065d83
PB
14942 }
14943 break;
7b86a9fa
AS
14944 case Tag_compatibility:
14945 /* Merged in target-independent code. */
14946 break;
91e22acd 14947 case Tag_ABI_HardFP_use:
4547cb56 14948 /* This is handled along with Tag_FP_arch. */
91e22acd
AS
14949 break;
14950 case Tag_ABI_FP_16bit_format:
14951 if (in_attr[i].i != 0 && out_attr[i].i != 0)
14952 {
14953 if (in_attr[i].i != out_attr[i].i)
14954 {
14955 _bfd_error_handler
871b3ab2 14956 (_("error: fp16 format mismatch between %pB and %pB"),
91e22acd
AS
14957 ibfd, obfd);
14958 result = FALSE;
14959 }
14960 }
14961 if (in_attr[i].i != 0)
14962 out_attr[i].i = in_attr[i].i;
14963 break;
7b86a9fa 14964
cd21e546 14965 case Tag_DIV_use:
ac56ee8f
MGD
14966 /* A value of zero on input means that the divide instruction may
14967 be used if available in the base architecture as specified via
14968 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
14969 the user did not want divide instructions. A value of 2
14970 explicitly means that divide instructions were allowed in ARM
14971 and Thumb state. */
14972 if (in_attr[i].i == out_attr[i].i)
14973 /* Do nothing. */ ;
14974 else if (elf32_arm_attributes_forbid_div (in_attr)
14975 && !elf32_arm_attributes_accept_div (out_attr))
14976 out_attr[i].i = 1;
14977 else if (elf32_arm_attributes_forbid_div (out_attr)
14978 && elf32_arm_attributes_accept_div (in_attr))
14979 out_attr[i].i = in_attr[i].i;
14980 else if (in_attr[i].i == 2)
14981 out_attr[i].i = in_attr[i].i;
cd21e546
MGD
14982 break;
14983
14984 case Tag_MPextension_use_legacy:
14985 /* We don't output objects with Tag_MPextension_use_legacy - we
14986 move the value to Tag_MPextension_use. */
14987 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
14988 {
14989 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
14990 {
14991 _bfd_error_handler
871b3ab2 14992 (_("%pB has both the current and legacy "
b38cadfb 14993 "Tag_MPextension_use attributes"),
cd21e546
MGD
14994 ibfd);
14995 result = FALSE;
14996 }
14997 }
14998
14999 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
15000 out_attr[Tag_MPextension_use] = in_attr[i];
15001
15002 break;
15003
91e22acd 15004 case Tag_nodefaults:
2d0bb761
AS
15005 /* This tag is set if it exists, but the value is unused (and is
15006 typically zero). We don't actually need to do anything here -
15007 the merge happens automatically when the type flags are merged
15008 below. */
91e22acd
AS
15009 break;
15010 case Tag_also_compatible_with:
15011 /* Already done in Tag_CPU_arch. */
15012 break;
15013 case Tag_conformance:
15014 /* Keep the attribute if it matches. Throw it away otherwise.
15015 No attribute means no claim to conform. */
15016 if (!in_attr[i].s || !out_attr[i].s
15017 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
15018 out_attr[i].s = NULL;
15019 break;
3cfad14c 15020
91e22acd 15021 default:
e8b36cd1
JM
15022 result
15023 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
91e22acd
AS
15024 }
15025
15026 /* If out_attr was copied from in_attr then it won't have a type yet. */
15027 if (in_attr[i].type && !out_attr[i].type)
15028 out_attr[i].type = in_attr[i].type;
ee065d83
PB
15029 }
15030
104d59d1 15031 /* Merge Tag_compatibility attributes and any common GNU ones. */
50e03d47 15032 if (!_bfd_elf_merge_object_attributes (ibfd, info))
5488d830 15033 return FALSE;
ee065d83 15034
104d59d1 15035 /* Check for any attributes not known on ARM. */
e8b36cd1 15036 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
91e22acd 15037
91e22acd 15038 return result;
252b5132
RH
15039}
15040
3a4a14e9
PB
15041
15042/* Return TRUE if the two EABI versions are incompatible. */
15043
15044static bfd_boolean
15045elf32_arm_versions_compatible (unsigned iver, unsigned over)
15046{
15047 /* v4 and v5 are the same spec before and after it was released,
15048 so allow mixing them. */
15049 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
15050 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
15051 return TRUE;
15052
15053 return (iver == over);
15054}
15055
252b5132
RH
15056/* Merge backend specific data from an object file to the output
15057 object file when linking. */
9b485d32 15058
b34976b6 15059static bfd_boolean
50e03d47 15060elf32_arm_merge_private_bfd_data (bfd *, struct bfd_link_info *);
252b5132 15061
9b485d32
NC
15062/* Display the flags field. */
15063
b34976b6 15064static bfd_boolean
57e8b36a 15065elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
252b5132 15066{
fc830a83
NC
15067 FILE * file = (FILE *) ptr;
15068 unsigned long flags;
252b5132
RH
15069
15070 BFD_ASSERT (abfd != NULL && ptr != NULL);
15071
15072 /* Print normal ELF private data. */
15073 _bfd_elf_print_private_bfd_data (abfd, ptr);
15074
fc830a83 15075 flags = elf_elfheader (abfd)->e_flags;
9b485d32
NC
15076 /* Ignore init flag - it may not be set, despite the flags field
15077 containing valid data. */
252b5132 15078
9b485d32 15079 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
252b5132 15080
fc830a83
NC
15081 switch (EF_ARM_EABI_VERSION (flags))
15082 {
15083 case EF_ARM_EABI_UNKNOWN:
4cc11e76 15084 /* The following flag bits are GNU extensions and not part of the
fc830a83
NC
15085 official ARM ELF extended ABI. Hence they are only decoded if
15086 the EABI version is not set. */
fd2ec330 15087 if (flags & EF_ARM_INTERWORK)
9b485d32 15088 fprintf (file, _(" [interworking enabled]"));
9a5aca8c 15089
fd2ec330 15090 if (flags & EF_ARM_APCS_26)
6c571f00 15091 fprintf (file, " [APCS-26]");
fc830a83 15092 else
6c571f00 15093 fprintf (file, " [APCS-32]");
9a5aca8c 15094
96a846ea
RE
15095 if (flags & EF_ARM_VFP_FLOAT)
15096 fprintf (file, _(" [VFP float format]"));
fde78edd
NC
15097 else if (flags & EF_ARM_MAVERICK_FLOAT)
15098 fprintf (file, _(" [Maverick float format]"));
96a846ea
RE
15099 else
15100 fprintf (file, _(" [FPA float format]"));
15101
fd2ec330 15102 if (flags & EF_ARM_APCS_FLOAT)
9b485d32 15103 fprintf (file, _(" [floats passed in float registers]"));
9a5aca8c 15104
fd2ec330 15105 if (flags & EF_ARM_PIC)
9b485d32 15106 fprintf (file, _(" [position independent]"));
fc830a83 15107
fd2ec330 15108 if (flags & EF_ARM_NEW_ABI)
9b485d32 15109 fprintf (file, _(" [new ABI]"));
9a5aca8c 15110
fd2ec330 15111 if (flags & EF_ARM_OLD_ABI)
9b485d32 15112 fprintf (file, _(" [old ABI]"));
9a5aca8c 15113
fd2ec330 15114 if (flags & EF_ARM_SOFT_FLOAT)
9b485d32 15115 fprintf (file, _(" [software FP]"));
9a5aca8c 15116
96a846ea
RE
15117 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
15118 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
fde78edd
NC
15119 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
15120 | EF_ARM_MAVERICK_FLOAT);
fc830a83 15121 break;
9a5aca8c 15122
fc830a83 15123 case EF_ARM_EABI_VER1:
9b485d32 15124 fprintf (file, _(" [Version1 EABI]"));
9a5aca8c 15125
fc830a83 15126 if (flags & EF_ARM_SYMSARESORTED)
9b485d32 15127 fprintf (file, _(" [sorted symbol table]"));
fc830a83 15128 else
9b485d32 15129 fprintf (file, _(" [unsorted symbol table]"));
9a5aca8c 15130
fc830a83
NC
15131 flags &= ~ EF_ARM_SYMSARESORTED;
15132 break;
9a5aca8c 15133
fd2ec330
PB
15134 case EF_ARM_EABI_VER2:
15135 fprintf (file, _(" [Version2 EABI]"));
15136
15137 if (flags & EF_ARM_SYMSARESORTED)
15138 fprintf (file, _(" [sorted symbol table]"));
15139 else
15140 fprintf (file, _(" [unsorted symbol table]"));
15141
15142 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
15143 fprintf (file, _(" [dynamic symbols use segment index]"));
15144
15145 if (flags & EF_ARM_MAPSYMSFIRST)
15146 fprintf (file, _(" [mapping symbols precede others]"));
15147
99e4ae17 15148 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
fd2ec330
PB
15149 | EF_ARM_MAPSYMSFIRST);
15150 break;
15151
d507cf36
PB
15152 case EF_ARM_EABI_VER3:
15153 fprintf (file, _(" [Version3 EABI]"));
8cb51566
PB
15154 break;
15155
15156 case EF_ARM_EABI_VER4:
15157 fprintf (file, _(" [Version4 EABI]"));
3a4a14e9 15158 goto eabi;
d507cf36 15159
3a4a14e9
PB
15160 case EF_ARM_EABI_VER5:
15161 fprintf (file, _(" [Version5 EABI]"));
3bfcb652
NC
15162
15163 if (flags & EF_ARM_ABI_FLOAT_SOFT)
15164 fprintf (file, _(" [soft-float ABI]"));
15165
15166 if (flags & EF_ARM_ABI_FLOAT_HARD)
15167 fprintf (file, _(" [hard-float ABI]"));
15168
15169 flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD);
15170
3a4a14e9 15171 eabi:
d507cf36
PB
15172 if (flags & EF_ARM_BE8)
15173 fprintf (file, _(" [BE8]"));
15174
15175 if (flags & EF_ARM_LE8)
15176 fprintf (file, _(" [LE8]"));
15177
15178 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
15179 break;
15180
fc830a83 15181 default:
9b485d32 15182 fprintf (file, _(" <EABI version unrecognised>"));
fc830a83
NC
15183 break;
15184 }
252b5132 15185
fc830a83 15186 flags &= ~ EF_ARM_EABIMASK;
252b5132 15187
fc830a83 15188 if (flags & EF_ARM_RELEXEC)
9b485d32 15189 fprintf (file, _(" [relocatable executable]"));
252b5132 15190
18a20338
CL
15191 if (flags & EF_ARM_PIC)
15192 fprintf (file, _(" [position independent]"));
15193
15194 if (elf_elfheader (abfd)->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC)
15195 fprintf (file, _(" [FDPIC ABI supplement]"));
15196
15197 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_PIC);
fc830a83
NC
15198
15199 if (flags)
9b485d32 15200 fprintf (file, _("<Unrecognised flag bits set>"));
9a5aca8c 15201
252b5132
RH
15202 fputc ('\n', file);
15203
b34976b6 15204 return TRUE;
252b5132
RH
15205}
15206
15207static int
57e8b36a 15208elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
252b5132 15209{
2f0ca46a
NC
15210 switch (ELF_ST_TYPE (elf_sym->st_info))
15211 {
15212 case STT_ARM_TFUNC:
15213 return ELF_ST_TYPE (elf_sym->st_info);
ce855c42 15214
2f0ca46a
NC
15215 case STT_ARM_16BIT:
15216 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
15217 This allows us to distinguish between data used by Thumb instructions
15218 and non-data (which is probably code) inside Thumb regions of an
15219 executable. */
1a0eb693 15220 if (type != STT_OBJECT && type != STT_TLS)
2f0ca46a
NC
15221 return ELF_ST_TYPE (elf_sym->st_info);
15222 break;
9a5aca8c 15223
ce855c42
NC
15224 default:
15225 break;
2f0ca46a
NC
15226 }
15227
15228 return type;
252b5132 15229}
f21f3fe0 15230
252b5132 15231static asection *
07adf181
AM
15232elf32_arm_gc_mark_hook (asection *sec,
15233 struct bfd_link_info *info,
15234 Elf_Internal_Rela *rel,
15235 struct elf_link_hash_entry *h,
15236 Elf_Internal_Sym *sym)
252b5132
RH
15237{
15238 if (h != NULL)
07adf181 15239 switch (ELF32_R_TYPE (rel->r_info))
252b5132
RH
15240 {
15241 case R_ARM_GNU_VTINHERIT:
15242 case R_ARM_GNU_VTENTRY:
07adf181
AM
15243 return NULL;
15244 }
9ad5cbcf 15245
07adf181 15246 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
252b5132
RH
15247}
15248
780a67af
NC
15249/* Look through the relocs for a section during the first phase. */
15250
b34976b6 15251static bfd_boolean
57e8b36a
NC
15252elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
15253 asection *sec, const Elf_Internal_Rela *relocs)
252b5132 15254{
b34976b6
AM
15255 Elf_Internal_Shdr *symtab_hdr;
15256 struct elf_link_hash_entry **sym_hashes;
b34976b6
AM
15257 const Elf_Internal_Rela *rel;
15258 const Elf_Internal_Rela *rel_end;
15259 bfd *dynobj;
5e681ec4 15260 asection *sreloc;
5e681ec4 15261 struct elf32_arm_link_hash_table *htab;
f6e32f6d
RS
15262 bfd_boolean call_reloc_p;
15263 bfd_boolean may_become_dynamic_p;
15264 bfd_boolean may_need_local_target_p;
ce98a316 15265 unsigned long nsyms;
9a5aca8c 15266
0e1862bb 15267 if (bfd_link_relocatable (info))
b34976b6 15268 return TRUE;
9a5aca8c 15269
0ffa91dd
NC
15270 BFD_ASSERT (is_arm_elf (abfd));
15271
5e681ec4 15272 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
15273 if (htab == NULL)
15274 return FALSE;
15275
5e681ec4 15276 sreloc = NULL;
9a5aca8c 15277
67687978
PB
15278 /* Create dynamic sections for relocatable executables so that we can
15279 copy relocations. */
15280 if (htab->root.is_relocatable_executable
15281 && ! htab->root.dynamic_sections_created)
15282 {
15283 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
15284 return FALSE;
15285 }
15286
cbc704f3
RS
15287 if (htab->root.dynobj == NULL)
15288 htab->root.dynobj = abfd;
34e77a92
RS
15289 if (!create_ifunc_sections (info))
15290 return FALSE;
cbc704f3
RS
15291
15292 dynobj = htab->root.dynobj;
15293
0ffa91dd 15294 symtab_hdr = & elf_symtab_hdr (abfd);
252b5132 15295 sym_hashes = elf_sym_hashes (abfd);
ce98a316 15296 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
b38cadfb 15297
252b5132
RH
15298 rel_end = relocs + sec->reloc_count;
15299 for (rel = relocs; rel < rel_end; rel++)
15300 {
34e77a92 15301 Elf_Internal_Sym *isym;
252b5132 15302 struct elf_link_hash_entry *h;
b7693d02 15303 struct elf32_arm_link_hash_entry *eh;
d42c267e 15304 unsigned int r_symndx;
eb043451 15305 int r_type;
9a5aca8c 15306
252b5132 15307 r_symndx = ELF32_R_SYM (rel->r_info);
eb043451 15308 r_type = ELF32_R_TYPE (rel->r_info);
eb043451 15309 r_type = arm_real_reloc_type (htab, r_type);
ba93b8ac 15310
ce98a316
NC
15311 if (r_symndx >= nsyms
15312 /* PR 9934: It is possible to have relocations that do not
15313 refer to symbols, thus it is also possible to have an
15314 object file containing relocations but no symbol table. */
cf35638d 15315 && (r_symndx > STN_UNDEF || nsyms > 0))
ba93b8ac 15316 {
871b3ab2 15317 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd,
4eca0228 15318 r_symndx);
ba93b8ac
DJ
15319 return FALSE;
15320 }
15321
34e77a92
RS
15322 h = NULL;
15323 isym = NULL;
15324 if (nsyms > 0)
973a3492 15325 {
34e77a92
RS
15326 if (r_symndx < symtab_hdr->sh_info)
15327 {
15328 /* A local symbol. */
15329 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
15330 abfd, r_symndx);
15331 if (isym == NULL)
15332 return FALSE;
15333 }
15334 else
15335 {
15336 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
15337 while (h->root.type == bfd_link_hash_indirect
15338 || h->root.type == bfd_link_hash_warning)
15339 h = (struct elf_link_hash_entry *) h->root.u.i.link;
15340 }
973a3492 15341 }
9a5aca8c 15342
b7693d02
DJ
15343 eh = (struct elf32_arm_link_hash_entry *) h;
15344
f6e32f6d
RS
15345 call_reloc_p = FALSE;
15346 may_become_dynamic_p = FALSE;
15347 may_need_local_target_p = FALSE;
15348
0855e32b
NS
15349 /* Could be done earlier, if h were already available. */
15350 r_type = elf32_arm_tls_transition (info, r_type, h);
eb043451 15351 switch (r_type)
99059e56 15352 {
e8b09b87
CL
15353 case R_ARM_GOTOFFFUNCDESC:
15354 {
15355 if (h == NULL)
15356 {
15357 if (!elf32_arm_allocate_local_sym_info (abfd))
15358 return FALSE;
15359 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].gotofffuncdesc_cnt += 1;
15360 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].funcdesc_offset = -1;
15361 }
15362 else
15363 {
15364 eh->fdpic_cnts.gotofffuncdesc_cnt++;
15365 }
15366 }
15367 break;
15368
15369 case R_ARM_GOTFUNCDESC:
15370 {
15371 if (h == NULL)
15372 {
15373 /* Such a relocation is not supposed to be generated
15374 by gcc on a static function. */
15375 /* Anyway if needed it could be handled. */
15376 abort();
15377 }
15378 else
15379 {
15380 eh->fdpic_cnts.gotfuncdesc_cnt++;
15381 }
15382 }
15383 break;
15384
15385 case R_ARM_FUNCDESC:
15386 {
15387 if (h == NULL)
15388 {
15389 if (!elf32_arm_allocate_local_sym_info (abfd))
15390 return FALSE;
15391 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].funcdesc_cnt += 1;
15392 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].funcdesc_offset = -1;
15393 }
15394 else
15395 {
15396 eh->fdpic_cnts.funcdesc_cnt++;
15397 }
15398 }
15399 break;
15400
5e681ec4 15401 case R_ARM_GOT32:
eb043451 15402 case R_ARM_GOT_PREL:
ba93b8ac 15403 case R_ARM_TLS_GD32:
5c5a4843 15404 case R_ARM_TLS_GD32_FDPIC:
ba93b8ac 15405 case R_ARM_TLS_IE32:
5c5a4843 15406 case R_ARM_TLS_IE32_FDPIC:
0855e32b
NS
15407 case R_ARM_TLS_GOTDESC:
15408 case R_ARM_TLS_DESCSEQ:
15409 case R_ARM_THM_TLS_DESCSEQ:
15410 case R_ARM_TLS_CALL:
15411 case R_ARM_THM_TLS_CALL:
5e681ec4 15412 /* This symbol requires a global offset table entry. */
ba93b8ac
DJ
15413 {
15414 int tls_type, old_tls_type;
5e681ec4 15415
ba93b8ac
DJ
15416 switch (r_type)
15417 {
15418 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
5c5a4843 15419 case R_ARM_TLS_GD32_FDPIC: tls_type = GOT_TLS_GD; break;
b38cadfb 15420
ba93b8ac 15421 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
5c5a4843 15422 case R_ARM_TLS_IE32_FDPIC: tls_type = GOT_TLS_IE; break;
b38cadfb 15423
0855e32b
NS
15424 case R_ARM_TLS_GOTDESC:
15425 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
15426 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
15427 tls_type = GOT_TLS_GDESC; break;
b38cadfb 15428
ba93b8ac
DJ
15429 default: tls_type = GOT_NORMAL; break;
15430 }
252b5132 15431
0e1862bb 15432 if (!bfd_link_executable (info) && (tls_type & GOT_TLS_IE))
eea6dad2
KM
15433 info->flags |= DF_STATIC_TLS;
15434
ba93b8ac
DJ
15435 if (h != NULL)
15436 {
15437 h->got.refcount++;
15438 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
15439 }
15440 else
15441 {
ba93b8ac 15442 /* This is a global offset table entry for a local symbol. */
34e77a92
RS
15443 if (!elf32_arm_allocate_local_sym_info (abfd))
15444 return FALSE;
15445 elf_local_got_refcounts (abfd)[r_symndx] += 1;
ba93b8ac
DJ
15446 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
15447 }
15448
0855e32b 15449 /* If a variable is accessed with both tls methods, two
99059e56 15450 slots may be created. */
0855e32b
NS
15451 if (GOT_TLS_GD_ANY_P (old_tls_type)
15452 && GOT_TLS_GD_ANY_P (tls_type))
15453 tls_type |= old_tls_type;
15454
15455 /* We will already have issued an error message if there
15456 is a TLS/non-TLS mismatch, based on the symbol
15457 type. So just combine any TLS types needed. */
ba93b8ac
DJ
15458 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
15459 && tls_type != GOT_NORMAL)
15460 tls_type |= old_tls_type;
15461
0855e32b 15462 /* If the symbol is accessed in both IE and GDESC
99059e56
RM
15463 method, we're able to relax. Turn off the GDESC flag,
15464 without messing up with any other kind of tls types
6a631e86 15465 that may be involved. */
0855e32b
NS
15466 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
15467 tls_type &= ~GOT_TLS_GDESC;
15468
ba93b8ac
DJ
15469 if (old_tls_type != tls_type)
15470 {
15471 if (h != NULL)
15472 elf32_arm_hash_entry (h)->tls_type = tls_type;
15473 else
15474 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
15475 }
15476 }
8029a119 15477 /* Fall through. */
ba93b8ac
DJ
15478
15479 case R_ARM_TLS_LDM32:
5c5a4843
CL
15480 case R_ARM_TLS_LDM32_FDPIC:
15481 if (r_type == R_ARM_TLS_LDM32 || r_type == R_ARM_TLS_LDM32_FDPIC)
ba93b8ac 15482 htab->tls_ldm_got.refcount++;
8029a119 15483 /* Fall through. */
252b5132 15484
c19d1205 15485 case R_ARM_GOTOFF32:
5e681ec4 15486 case R_ARM_GOTPC:
cbc704f3
RS
15487 if (htab->root.sgot == NULL
15488 && !create_got_section (htab->root.dynobj, info))
15489 return FALSE;
252b5132
RH
15490 break;
15491
252b5132 15492 case R_ARM_PC24:
7359ea65 15493 case R_ARM_PLT32:
5b5bb741
PB
15494 case R_ARM_CALL:
15495 case R_ARM_JUMP24:
eb043451 15496 case R_ARM_PREL31:
c19d1205 15497 case R_ARM_THM_CALL:
bd97cb95
DJ
15498 case R_ARM_THM_JUMP24:
15499 case R_ARM_THM_JUMP19:
f6e32f6d
RS
15500 call_reloc_p = TRUE;
15501 may_need_local_target_p = TRUE;
15502 break;
15503
15504 case R_ARM_ABS12:
15505 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
15506 ldr __GOTT_INDEX__ offsets. */
90c14f0c 15507 if (htab->root.target_os != is_vxworks)
f6e32f6d
RS
15508 {
15509 may_need_local_target_p = TRUE;
15510 break;
15511 }
aebf9be7 15512 else goto jump_over;
9eaff861 15513
f6e32f6d 15514 /* Fall through. */
39623e12 15515
96c23d59
JM
15516 case R_ARM_MOVW_ABS_NC:
15517 case R_ARM_MOVT_ABS:
15518 case R_ARM_THM_MOVW_ABS_NC:
15519 case R_ARM_THM_MOVT_ABS:
0e1862bb 15520 if (bfd_link_pic (info))
96c23d59 15521 {
4eca0228 15522 _bfd_error_handler
871b3ab2 15523 (_("%pB: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
96c23d59
JM
15524 abfd, elf32_arm_howto_table_1[r_type].name,
15525 (h) ? h->root.root.string : "a local symbol");
15526 bfd_set_error (bfd_error_bad_value);
15527 return FALSE;
15528 }
15529
15530 /* Fall through. */
39623e12
PB
15531 case R_ARM_ABS32:
15532 case R_ARM_ABS32_NOI:
aebf9be7 15533 jump_over:
0e1862bb 15534 if (h != NULL && bfd_link_executable (info))
97323ad1
WN
15535 {
15536 h->pointer_equality_needed = 1;
15537 }
15538 /* Fall through. */
39623e12
PB
15539 case R_ARM_REL32:
15540 case R_ARM_REL32_NOI:
b6895b4f
PB
15541 case R_ARM_MOVW_PREL_NC:
15542 case R_ARM_MOVT_PREL:
b6895b4f
PB
15543 case R_ARM_THM_MOVW_PREL_NC:
15544 case R_ARM_THM_MOVT_PREL:
39623e12 15545
b7693d02 15546 /* Should the interworking branches be listed here? */
e8b09b87
CL
15547 if ((bfd_link_pic (info) || htab->root.is_relocatable_executable
15548 || htab->fdpic_p)
34e77a92
RS
15549 && (sec->flags & SEC_ALLOC) != 0)
15550 {
15551 if (h == NULL
469a3493 15552 && elf32_arm_howto_from_type (r_type)->pc_relative)
34e77a92
RS
15553 {
15554 /* In shared libraries and relocatable executables,
15555 we treat local relative references as calls;
15556 see the related SYMBOL_CALLS_LOCAL code in
15557 allocate_dynrelocs. */
15558 call_reloc_p = TRUE;
15559 may_need_local_target_p = TRUE;
15560 }
15561 else
15562 /* We are creating a shared library or relocatable
15563 executable, and this is a reloc against a global symbol,
15564 or a non-PC-relative reloc against a local symbol.
15565 We may need to copy the reloc into the output. */
15566 may_become_dynamic_p = TRUE;
15567 }
f6e32f6d
RS
15568 else
15569 may_need_local_target_p = TRUE;
252b5132
RH
15570 break;
15571
99059e56
RM
15572 /* This relocation describes the C++ object vtable hierarchy.
15573 Reconstruct it for later use during GC. */
15574 case R_ARM_GNU_VTINHERIT:
15575 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
15576 return FALSE;
15577 break;
15578
15579 /* This relocation describes which C++ vtable entries are actually
15580 used. Record for later use during GC. */
15581 case R_ARM_GNU_VTENTRY:
a0ea3a14 15582 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
99059e56
RM
15583 return FALSE;
15584 break;
15585 }
f6e32f6d
RS
15586
15587 if (h != NULL)
15588 {
15589 if (call_reloc_p)
15590 /* We may need a .plt entry if the function this reloc
15591 refers to is in a different object, regardless of the
15592 symbol's type. We can't tell for sure yet, because
15593 something later might force the symbol local. */
15594 h->needs_plt = 1;
15595 else if (may_need_local_target_p)
15596 /* If this reloc is in a read-only section, we might
15597 need a copy reloc. We can't check reliably at this
15598 stage whether the section is read-only, as input
15599 sections have not yet been mapped to output sections.
15600 Tentatively set the flag for now, and correct in
15601 adjust_dynamic_symbol. */
15602 h->non_got_ref = 1;
15603 }
15604
34e77a92
RS
15605 if (may_need_local_target_p
15606 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
f6e32f6d 15607 {
34e77a92
RS
15608 union gotplt_union *root_plt;
15609 struct arm_plt_info *arm_plt;
15610 struct arm_local_iplt_info *local_iplt;
15611
15612 if (h != NULL)
15613 {
15614 root_plt = &h->plt;
15615 arm_plt = &eh->plt;
15616 }
15617 else
15618 {
15619 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
15620 if (local_iplt == NULL)
15621 return FALSE;
15622 root_plt = &local_iplt->root;
15623 arm_plt = &local_iplt->arm;
15624 }
15625
f6e32f6d
RS
15626 /* If the symbol is a function that doesn't bind locally,
15627 this relocation will need a PLT entry. */
a8c887dd
NC
15628 if (root_plt->refcount != -1)
15629 root_plt->refcount += 1;
34e77a92
RS
15630
15631 if (!call_reloc_p)
15632 arm_plt->noncall_refcount++;
f6e32f6d
RS
15633
15634 /* It's too early to use htab->use_blx here, so we have to
15635 record possible blx references separately from
15636 relocs that definitely need a thumb stub. */
15637
15638 if (r_type == R_ARM_THM_CALL)
34e77a92 15639 arm_plt->maybe_thumb_refcount += 1;
f6e32f6d
RS
15640
15641 if (r_type == R_ARM_THM_JUMP24
15642 || r_type == R_ARM_THM_JUMP19)
34e77a92 15643 arm_plt->thumb_refcount += 1;
f6e32f6d
RS
15644 }
15645
15646 if (may_become_dynamic_p)
15647 {
15648 struct elf_dyn_relocs *p, **head;
15649
15650 /* Create a reloc section in dynobj. */
15651 if (sreloc == NULL)
15652 {
15653 sreloc = _bfd_elf_make_dynamic_reloc_section
15654 (sec, dynobj, 2, abfd, ! htab->use_rel);
15655
15656 if (sreloc == NULL)
15657 return FALSE;
15658
15659 /* BPABI objects never have dynamic relocations mapped. */
90c14f0c 15660 if (htab->root.target_os == is_symbian)
f6e32f6d
RS
15661 {
15662 flagword flags;
15663
fd361982 15664 flags = bfd_section_flags (sreloc);
f6e32f6d 15665 flags &= ~(SEC_LOAD | SEC_ALLOC);
fd361982 15666 bfd_set_section_flags (sreloc, flags);
f6e32f6d
RS
15667 }
15668 }
15669
15670 /* If this is a global symbol, count the number of
15671 relocations we need for this symbol. */
15672 if (h != NULL)
190eb1dd 15673 head = &h->dyn_relocs;
f6e32f6d
RS
15674 else
15675 {
34e77a92
RS
15676 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
15677 if (head == NULL)
f6e32f6d 15678 return FALSE;
f6e32f6d
RS
15679 }
15680
15681 p = *head;
15682 if (p == NULL || p->sec != sec)
15683 {
986f0783 15684 size_t amt = sizeof *p;
f6e32f6d
RS
15685
15686 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
15687 if (p == NULL)
15688 return FALSE;
15689 p->next = *head;
15690 *head = p;
15691 p->sec = sec;
15692 p->count = 0;
15693 p->pc_count = 0;
15694 }
15695
469a3493 15696 if (elf32_arm_howto_from_type (r_type)->pc_relative)
f6e32f6d
RS
15697 p->pc_count += 1;
15698 p->count += 1;
e8b09b87
CL
15699 if (h == NULL && htab->fdpic_p && !bfd_link_pic(info)
15700 && r_type != R_ARM_ABS32 && r_type != R_ARM_ABS32_NOI) {
15701 /* Here we only support R_ARM_ABS32 and R_ARM_ABS32_NOI
15702 that will become rofixup. */
15703 /* This is due to the fact that we suppose all will become rofixup. */
15704 fprintf(stderr, "FDPIC does not yet support %d relocation to become dynamic for executable\n", r_type);
15705 _bfd_error_handler
15706 (_("FDPIC does not yet support %s relocation"
15707 " to become dynamic for executable"),
15708 elf32_arm_howto_table_1[r_type].name);
15709 abort();
15710 }
f6e32f6d 15711 }
252b5132 15712 }
f21f3fe0 15713
b34976b6 15714 return TRUE;
252b5132
RH
15715}
15716
9eaff861
AO
15717static void
15718elf32_arm_update_relocs (asection *o,
15719 struct bfd_elf_section_reloc_data *reldata)
15720{
15721 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
15722 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
15723 const struct elf_backend_data *bed;
15724 _arm_elf_section_data *eado;
15725 struct bfd_link_order *p;
15726 bfd_byte *erela_head, *erela;
15727 Elf_Internal_Rela *irela_head, *irela;
15728 Elf_Internal_Shdr *rel_hdr;
15729 bfd *abfd;
15730 unsigned int count;
15731
15732 eado = get_arm_elf_section_data (o);
15733
15734 if (!eado || eado->elf.this_hdr.sh_type != SHT_ARM_EXIDX)
15735 return;
15736
15737 abfd = o->owner;
15738 bed = get_elf_backend_data (abfd);
15739 rel_hdr = reldata->hdr;
15740
15741 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
15742 {
15743 swap_in = bed->s->swap_reloc_in;
15744 swap_out = bed->s->swap_reloc_out;
15745 }
15746 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
15747 {
15748 swap_in = bed->s->swap_reloca_in;
15749 swap_out = bed->s->swap_reloca_out;
15750 }
15751 else
15752 abort ();
15753
15754 erela_head = rel_hdr->contents;
15755 irela_head = (Elf_Internal_Rela *) bfd_zmalloc
15756 ((NUM_SHDR_ENTRIES (rel_hdr) + 1) * sizeof (*irela_head));
15757
15758 erela = erela_head;
15759 irela = irela_head;
15760 count = 0;
15761
15762 for (p = o->map_head.link_order; p; p = p->next)
15763 {
15764 if (p->type == bfd_section_reloc_link_order
15765 || p->type == bfd_symbol_reloc_link_order)
15766 {
15767 (*swap_in) (abfd, erela, irela);
15768 erela += rel_hdr->sh_entsize;
15769 irela++;
15770 count++;
15771 }
15772 else if (p->type == bfd_indirect_link_order)
15773 {
15774 struct bfd_elf_section_reloc_data *input_reldata;
15775 arm_unwind_table_edit *edit_list, *edit_tail;
15776 _arm_elf_section_data *eadi;
15777 bfd_size_type j;
15778 bfd_vma offset;
15779 asection *i;
15780
15781 i = p->u.indirect.section;
15782
15783 eadi = get_arm_elf_section_data (i);
15784 edit_list = eadi->u.exidx.unwind_edit_list;
15785 edit_tail = eadi->u.exidx.unwind_edit_tail;
539300fb 15786 offset = i->output_offset;
9eaff861
AO
15787
15788 if (eadi->elf.rel.hdr &&
15789 eadi->elf.rel.hdr->sh_entsize == rel_hdr->sh_entsize)
15790 input_reldata = &eadi->elf.rel;
15791 else if (eadi->elf.rela.hdr &&
15792 eadi->elf.rela.hdr->sh_entsize == rel_hdr->sh_entsize)
15793 input_reldata = &eadi->elf.rela;
15794 else
15795 abort ();
15796
15797 if (edit_list)
15798 {
15799 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
15800 {
15801 arm_unwind_table_edit *edit_node, *edit_next;
15802 bfd_vma bias;
c48182bf 15803 bfd_vma reloc_index;
9eaff861
AO
15804
15805 (*swap_in) (abfd, erela, irela);
c48182bf 15806 reloc_index = (irela->r_offset - offset) / 8;
9eaff861
AO
15807
15808 bias = 0;
15809 edit_node = edit_list;
15810 for (edit_next = edit_list;
c48182bf 15811 edit_next && edit_next->index <= reloc_index;
9eaff861
AO
15812 edit_next = edit_node->next)
15813 {
15814 bias++;
15815 edit_node = edit_next;
15816 }
15817
15818 if (edit_node->type != DELETE_EXIDX_ENTRY
c48182bf 15819 || edit_node->index != reloc_index)
9eaff861
AO
15820 {
15821 irela->r_offset -= bias * 8;
15822 irela++;
15823 count++;
15824 }
15825
15826 erela += rel_hdr->sh_entsize;
15827 }
15828
15829 if (edit_tail->type == INSERT_EXIDX_CANTUNWIND_AT_END)
15830 {
15831 /* New relocation entity. */
15832 asection *text_sec = edit_tail->linked_section;
15833 asection *text_out = text_sec->output_section;
15834 bfd_vma exidx_offset = offset + i->size - 8;
15835
15836 irela->r_addend = 0;
15837 irela->r_offset = exidx_offset;
15838 irela->r_info = ELF32_R_INFO
15839 (text_out->target_index, R_ARM_PREL31);
15840 irela++;
15841 count++;
15842 }
15843 }
15844 else
15845 {
15846 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
15847 {
15848 (*swap_in) (abfd, erela, irela);
15849 erela += rel_hdr->sh_entsize;
15850 irela++;
15851 }
15852
15853 count += NUM_SHDR_ENTRIES (input_reldata->hdr);
15854 }
15855 }
15856 }
15857
15858 reldata->count = count;
15859 rel_hdr->sh_size = count * rel_hdr->sh_entsize;
15860
15861 erela = erela_head;
15862 irela = irela_head;
15863 while (count > 0)
15864 {
15865 (*swap_out) (abfd, irela, erela);
15866 erela += rel_hdr->sh_entsize;
15867 irela++;
15868 count--;
15869 }
15870
15871 free (irela_head);
15872
15873 /* Hashes are no longer valid. */
15874 free (reldata->hashes);
15875 reldata->hashes = NULL;
15876}
15877
6a5bb875 15878/* Unwinding tables are not referenced directly. This pass marks them as
4ba2ef8f
TP
15879 required if the corresponding code section is marked. Similarly, ARMv8-M
15880 secure entry functions can only be referenced by SG veneers which are
15881 created after the GC process. They need to be marked in case they reside in
15882 their own section (as would be the case if code was compiled with
15883 -ffunction-sections). */
6a5bb875
PB
15884
15885static bfd_boolean
906e58ca
NC
15886elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
15887 elf_gc_mark_hook_fn gc_mark_hook)
6a5bb875
PB
15888{
15889 bfd *sub;
15890 Elf_Internal_Shdr **elf_shdrp;
4ba2ef8f
TP
15891 asection *cmse_sec;
15892 obj_attribute *out_attr;
15893 Elf_Internal_Shdr *symtab_hdr;
15894 unsigned i, sym_count, ext_start;
15895 const struct elf_backend_data *bed;
15896 struct elf_link_hash_entry **sym_hashes;
15897 struct elf32_arm_link_hash_entry *cmse_hash;
15898 bfd_boolean again, is_v8m, first_bfd_browse = TRUE;
bb32413f
SP
15899 bfd_boolean debug_sec_need_to_be_marked = FALSE;
15900 asection *isec;
6a5bb875 15901
7f6ab9f8
AM
15902 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
15903
4ba2ef8f
TP
15904 out_attr = elf_known_obj_attributes_proc (info->output_bfd);
15905 is_v8m = out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
15906 && out_attr[Tag_CPU_arch_profile].i == 'M';
15907
6a5bb875
PB
15908 /* Marking EH data may cause additional code sections to be marked,
15909 requiring multiple passes. */
15910 again = TRUE;
15911 while (again)
15912 {
15913 again = FALSE;
c72f2fb2 15914 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
6a5bb875
PB
15915 {
15916 asection *o;
15917
0ffa91dd 15918 if (! is_arm_elf (sub))
6a5bb875
PB
15919 continue;
15920
15921 elf_shdrp = elf_elfsections (sub);
15922 for (o = sub->sections; o != NULL; o = o->next)
15923 {
15924 Elf_Internal_Shdr *hdr;
0ffa91dd 15925
6a5bb875 15926 hdr = &elf_section_data (o)->this_hdr;
4fbb74a6
AM
15927 if (hdr->sh_type == SHT_ARM_EXIDX
15928 && hdr->sh_link
15929 && hdr->sh_link < elf_numsections (sub)
6a5bb875
PB
15930 && !o->gc_mark
15931 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
15932 {
15933 again = TRUE;
15934 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
15935 return FALSE;
15936 }
15937 }
4ba2ef8f
TP
15938
15939 /* Mark section holding ARMv8-M secure entry functions. We mark all
15940 of them so no need for a second browsing. */
15941 if (is_v8m && first_bfd_browse)
15942 {
15943 sym_hashes = elf_sym_hashes (sub);
15944 bed = get_elf_backend_data (sub);
15945 symtab_hdr = &elf_tdata (sub)->symtab_hdr;
15946 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
15947 ext_start = symtab_hdr->sh_info;
15948
15949 /* Scan symbols. */
15950 for (i = ext_start; i < sym_count; i++)
15951 {
15952 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
15953
15954 /* Assume it is a special symbol. If not, cmse_scan will
15955 warn about it and user can do something about it. */
baf46cd7
AM
15956 if (CONST_STRNEQ (cmse_hash->root.root.root.string,
15957 CMSE_PREFIX))
4ba2ef8f
TP
15958 {
15959 cmse_sec = cmse_hash->root.root.u.def.section;
5025eb7c
AO
15960 if (!cmse_sec->gc_mark
15961 && !_bfd_elf_gc_mark (info, cmse_sec, gc_mark_hook))
4ba2ef8f 15962 return FALSE;
bb32413f
SP
15963 /* The debug sections related to these secure entry
15964 functions are marked on enabling below flag. */
15965 debug_sec_need_to_be_marked = TRUE;
4ba2ef8f
TP
15966 }
15967 }
bb32413f
SP
15968
15969 if (debug_sec_need_to_be_marked)
15970 {
15971 /* Looping over all the sections of the object file containing
15972 Armv8-M secure entry functions and marking all the debug
15973 sections. */
15974 for (isec = sub->sections; isec != NULL; isec = isec->next)
15975 {
15976 /* If not a debug sections, skip it. */
15977 if (!isec->gc_mark && (isec->flags & SEC_DEBUGGING))
15978 isec->gc_mark = 1 ;
15979 }
15980 debug_sec_need_to_be_marked = FALSE;
15981 }
4ba2ef8f 15982 }
6a5bb875 15983 }
4ba2ef8f 15984 first_bfd_browse = FALSE;
6a5bb875
PB
15985 }
15986
15987 return TRUE;
15988}
15989
3c9458e9
NC
15990/* Treat mapping symbols as special target symbols. */
15991
15992static bfd_boolean
15993elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
15994{
b0796911
PB
15995 return bfd_is_arm_special_symbol_name (sym->name,
15996 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
3c9458e9
NC
15997}
15998
e7679060
AM
15999/* If the ELF symbol SYM might be a function in SEC, return the
16000 function size and set *CODE_OFF to the function's entry point,
16001 otherwise return zero. */
252b5132 16002
e7679060
AM
16003static bfd_size_type
16004elf32_arm_maybe_function_sym (const asymbol *sym, asection *sec,
16005 bfd_vma *code_off)
16006{
16007 bfd_size_type size;
252b5132 16008
e7679060
AM
16009 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
16010 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
16011 || sym->section != sec)
16012 return 0;
252b5132 16013
e7679060
AM
16014 if (!(sym->flags & BSF_SYNTHETIC))
16015 switch (ELF_ST_TYPE (((elf_symbol_type *) sym)->internal_elf_sym.st_info))
16016 {
252b5132
RH
16017 case STT_FUNC:
16018 case STT_ARM_TFUNC:
9d2da7ca 16019 case STT_NOTYPE:
252b5132 16020 break;
e7679060
AM
16021 default:
16022 return 0;
16023 }
0367ecfb 16024
e7679060
AM
16025 if ((sym->flags & BSF_LOCAL)
16026 && bfd_is_arm_special_symbol_name (sym->name,
16027 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
16028 return 0;
0367ecfb 16029
e7679060
AM
16030 *code_off = sym->value;
16031 size = 0;
16032 if (!(sym->flags & BSF_SYNTHETIC))
16033 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
16034 if (size == 0)
16035 size = 1;
16036 return size;
252b5132
RH
16037}
16038
4ab527b0 16039static bfd_boolean
07d6d2b8 16040elf32_arm_find_inliner_info (bfd * abfd,
4ab527b0
FF
16041 const char ** filename_ptr,
16042 const char ** functionname_ptr,
16043 unsigned int * line_ptr)
16044{
16045 bfd_boolean found;
16046 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
16047 functionname_ptr, line_ptr,
16048 & elf_tdata (abfd)->dwarf2_find_line_info);
16049 return found;
16050}
16051
252b5132
RH
16052/* Adjust a symbol defined by a dynamic object and referenced by a
16053 regular object. The current definition is in some section of the
16054 dynamic object, but we're not including those sections. We have to
16055 change the definition to something the rest of the link can
16056 understand. */
16057
b34976b6 16058static bfd_boolean
57e8b36a
NC
16059elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
16060 struct elf_link_hash_entry * h)
252b5132
RH
16061{
16062 bfd * dynobj;
5474d94f 16063 asection *s, *srel;
b7693d02 16064 struct elf32_arm_link_hash_entry * eh;
67687978 16065 struct elf32_arm_link_hash_table *globals;
252b5132 16066
67687978 16067 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
16068 if (globals == NULL)
16069 return FALSE;
16070
252b5132
RH
16071 dynobj = elf_hash_table (info)->dynobj;
16072
16073 /* Make sure we know what is going on here. */
16074 BFD_ASSERT (dynobj != NULL
f5385ebf 16075 && (h->needs_plt
34e77a92 16076 || h->type == STT_GNU_IFUNC
60d67dc8 16077 || h->is_weakalias
f5385ebf
AM
16078 || (h->def_dynamic
16079 && h->ref_regular
16080 && !h->def_regular)));
252b5132 16081
b7693d02
DJ
16082 eh = (struct elf32_arm_link_hash_entry *) h;
16083
252b5132
RH
16084 /* If this is a function, put it in the procedure linkage table. We
16085 will fill in the contents of the procedure linkage table later,
16086 when we know the address of the .got section. */
34e77a92 16087 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
252b5132 16088 {
34e77a92
RS
16089 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
16090 symbol binds locally. */
5e681ec4 16091 if (h->plt.refcount <= 0
34e77a92
RS
16092 || (h->type != STT_GNU_IFUNC
16093 && (SYMBOL_CALLS_LOCAL (info, h)
16094 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
16095 && h->root.type == bfd_link_hash_undefweak))))
252b5132
RH
16096 {
16097 /* This case can occur if we saw a PLT32 reloc in an input
5e681ec4
PB
16098 file, but the symbol was never referred to by a dynamic
16099 object, or if all references were garbage collected. In
16100 such a case, we don't actually need to build a procedure
16101 linkage table, and we can just do a PC24 reloc instead. */
16102 h->plt.offset = (bfd_vma) -1;
34e77a92
RS
16103 eh->plt.thumb_refcount = 0;
16104 eh->plt.maybe_thumb_refcount = 0;
16105 eh->plt.noncall_refcount = 0;
f5385ebf 16106 h->needs_plt = 0;
252b5132
RH
16107 }
16108
b34976b6 16109 return TRUE;
252b5132 16110 }
5e681ec4 16111 else
b7693d02
DJ
16112 {
16113 /* It's possible that we incorrectly decided a .plt reloc was
16114 needed for an R_ARM_PC24 or similar reloc to a non-function sym
16115 in check_relocs. We can't decide accurately between function
16116 and non-function syms in check-relocs; Objects loaded later in
16117 the link may change h->type. So fix it now. */
16118 h->plt.offset = (bfd_vma) -1;
34e77a92
RS
16119 eh->plt.thumb_refcount = 0;
16120 eh->plt.maybe_thumb_refcount = 0;
16121 eh->plt.noncall_refcount = 0;
b7693d02 16122 }
252b5132
RH
16123
16124 /* If this is a weak symbol, and there is a real definition, the
16125 processor independent code will have arranged for us to see the
16126 real definition first, and we can just use the same value. */
60d67dc8 16127 if (h->is_weakalias)
252b5132 16128 {
60d67dc8
AM
16129 struct elf_link_hash_entry *def = weakdef (h);
16130 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
16131 h->root.u.def.section = def->root.u.def.section;
16132 h->root.u.def.value = def->root.u.def.value;
b34976b6 16133 return TRUE;
252b5132
RH
16134 }
16135
ba93b8ac
DJ
16136 /* If there are no non-GOT references, we do not need a copy
16137 relocation. */
16138 if (!h->non_got_ref)
16139 return TRUE;
16140
252b5132
RH
16141 /* This is a reference to a symbol defined by a dynamic object which
16142 is not a function. */
16143
16144 /* If we are creating a shared library, we must presume that the
16145 only references to the symbol are via the global offset table.
16146 For such cases we need not do anything here; the relocations will
67687978
PB
16147 be handled correctly by relocate_section. Relocatable executables
16148 can reference data in shared objects directly, so we don't need to
16149 do anything here. */
0e1862bb 16150 if (bfd_link_pic (info) || globals->root.is_relocatable_executable)
b34976b6 16151 return TRUE;
252b5132
RH
16152
16153 /* We must allocate the symbol in our .dynbss section, which will
16154 become part of the .bss section of the executable. There will be
16155 an entry for this symbol in the .dynsym section. The dynamic
16156 object will contain position independent code, so all references
16157 from the dynamic object to this symbol will go through the global
16158 offset table. The dynamic linker will use the .dynsym entry to
16159 determine the address it must put in the global offset table, so
16160 both the dynamic object and the regular object will refer to the
16161 same memory location for the variable. */
5522f910
NC
16162 /* If allowed, we must generate a R_ARM_COPY reloc to tell the dynamic
16163 linker to copy the initial value out of the dynamic object and into
16164 the runtime process image. We need to remember the offset into the
00a97672 16165 .rel(a).bss section we are going to use. */
5474d94f
AM
16166 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
16167 {
16168 s = globals->root.sdynrelro;
16169 srel = globals->root.sreldynrelro;
16170 }
16171 else
16172 {
16173 s = globals->root.sdynbss;
16174 srel = globals->root.srelbss;
16175 }
5522f910
NC
16176 if (info->nocopyreloc == 0
16177 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
5522f910 16178 && h->size != 0)
252b5132 16179 {
47beaa6a 16180 elf32_arm_allocate_dynrelocs (info, srel, 1);
f5385ebf 16181 h->needs_copy = 1;
252b5132
RH
16182 }
16183
6cabe1ea 16184 return _bfd_elf_adjust_dynamic_copy (info, h, s);
252b5132
RH
16185}
16186
5e681ec4
PB
16187/* Allocate space in .plt, .got and associated reloc sections for
16188 dynamic relocs. */
16189
16190static bfd_boolean
47beaa6a 16191allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
5e681ec4
PB
16192{
16193 struct bfd_link_info *info;
16194 struct elf32_arm_link_hash_table *htab;
16195 struct elf32_arm_link_hash_entry *eh;
0bdcacaf 16196 struct elf_dyn_relocs *p;
5e681ec4
PB
16197
16198 if (h->root.type == bfd_link_hash_indirect)
16199 return TRUE;
16200
e6a6bb22
AM
16201 eh = (struct elf32_arm_link_hash_entry *) h;
16202
5e681ec4
PB
16203 info = (struct bfd_link_info *) inf;
16204 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
16205 if (htab == NULL)
16206 return FALSE;
5e681ec4 16207
34e77a92 16208 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
5e681ec4
PB
16209 && h->plt.refcount > 0)
16210 {
16211 /* Make sure this symbol is output as a dynamic symbol.
16212 Undefined weak syms won't yet be marked as dynamic. */
6c699715
RL
16213 if (h->dynindx == -1 && !h->forced_local
16214 && h->root.type == bfd_link_hash_undefweak)
5e681ec4 16215 {
c152c796 16216 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5e681ec4
PB
16217 return FALSE;
16218 }
16219
34e77a92
RS
16220 /* If the call in the PLT entry binds locally, the associated
16221 GOT entry should use an R_ARM_IRELATIVE relocation instead of
16222 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
16223 than the .plt section. */
16224 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
16225 {
16226 eh->is_iplt = 1;
16227 if (eh->plt.noncall_refcount == 0
16228 && SYMBOL_REFERENCES_LOCAL (info, h))
16229 /* All non-call references can be resolved directly.
16230 This means that they can (and in some cases, must)
16231 resolve directly to the run-time target, rather than
16232 to the PLT. That in turns means that any .got entry
16233 would be equal to the .igot.plt entry, so there's
16234 no point having both. */
16235 h->got.refcount = 0;
16236 }
16237
0e1862bb 16238 if (bfd_link_pic (info)
34e77a92 16239 || eh->is_iplt
7359ea65 16240 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
5e681ec4 16241 {
34e77a92 16242 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
b7693d02 16243
5e681ec4
PB
16244 /* If this symbol is not defined in a regular file, and we are
16245 not generating a shared library, then set the symbol to this
16246 location in the .plt. This is required to make function
16247 pointers compare as equal between the normal executable and
16248 the shared library. */
0e1862bb 16249 if (! bfd_link_pic (info)
f5385ebf 16250 && !h->def_regular)
5e681ec4 16251 {
34e77a92 16252 h->root.u.def.section = htab->root.splt;
5e681ec4 16253 h->root.u.def.value = h->plt.offset;
5e681ec4 16254
67d74e43
DJ
16255 /* Make sure the function is not marked as Thumb, in case
16256 it is the target of an ABS32 relocation, which will
16257 point to the PLT entry. */
39d911fc 16258 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
67d74e43 16259 }
022f8312 16260
00a97672
RS
16261 /* VxWorks executables have a second set of relocations for
16262 each PLT entry. They go in a separate relocation section,
16263 which is processed by the kernel loader. */
90c14f0c 16264 if (htab->root.target_os == is_vxworks && !bfd_link_pic (info))
00a97672
RS
16265 {
16266 /* There is a relocation for the initial PLT entry:
16267 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
16268 if (h->plt.offset == htab->plt_header_size)
47beaa6a 16269 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
00a97672
RS
16270
16271 /* There are two extra relocations for each subsequent
16272 PLT entry: an R_ARM_32 relocation for the GOT entry,
16273 and an R_ARM_32 relocation for the PLT entry. */
47beaa6a 16274 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
00a97672 16275 }
5e681ec4
PB
16276 }
16277 else
16278 {
16279 h->plt.offset = (bfd_vma) -1;
f5385ebf 16280 h->needs_plt = 0;
5e681ec4
PB
16281 }
16282 }
16283 else
16284 {
16285 h->plt.offset = (bfd_vma) -1;
f5385ebf 16286 h->needs_plt = 0;
5e681ec4
PB
16287 }
16288
0855e32b
NS
16289 eh = (struct elf32_arm_link_hash_entry *) h;
16290 eh->tlsdesc_got = (bfd_vma) -1;
16291
5e681ec4
PB
16292 if (h->got.refcount > 0)
16293 {
16294 asection *s;
16295 bfd_boolean dyn;
ba93b8ac
DJ
16296 int tls_type = elf32_arm_hash_entry (h)->tls_type;
16297 int indx;
5e681ec4
PB
16298
16299 /* Make sure this symbol is output as a dynamic symbol.
16300 Undefined weak syms won't yet be marked as dynamic. */
e8b09b87 16301 if (htab->root.dynamic_sections_created && h->dynindx == -1 && !h->forced_local
6c699715 16302 && h->root.type == bfd_link_hash_undefweak)
5e681ec4 16303 {
c152c796 16304 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5e681ec4
PB
16305 return FALSE;
16306 }
16307
90c14f0c 16308 if (htab->root.target_os != is_symbian)
e5a52504 16309 {
362d30a1 16310 s = htab->root.sgot;
e5a52504 16311 h->got.offset = s->size;
ba93b8ac
DJ
16312
16313 if (tls_type == GOT_UNKNOWN)
16314 abort ();
16315
16316 if (tls_type == GOT_NORMAL)
16317 /* Non-TLS symbols need one GOT slot. */
16318 s->size += 4;
16319 else
16320 {
99059e56
RM
16321 if (tls_type & GOT_TLS_GDESC)
16322 {
0855e32b 16323 /* R_ARM_TLS_DESC needs 2 GOT slots. */
99059e56 16324 eh->tlsdesc_got
0855e32b
NS
16325 = (htab->root.sgotplt->size
16326 - elf32_arm_compute_jump_table_size (htab));
99059e56
RM
16327 htab->root.sgotplt->size += 8;
16328 h->got.offset = (bfd_vma) -2;
34e77a92 16329 /* plt.got_offset needs to know there's a TLS_DESC
0855e32b 16330 reloc in the middle of .got.plt. */
99059e56
RM
16331 htab->num_tls_desc++;
16332 }
0855e32b 16333
ba93b8ac 16334 if (tls_type & GOT_TLS_GD)
0855e32b 16335 {
5c5a4843
CL
16336 /* R_ARM_TLS_GD32 and R_ARM_TLS_GD32_FDPIC need two
16337 consecutive GOT slots. If the symbol is both GD
16338 and GDESC, got.offset may have been
16339 overwritten. */
0855e32b
NS
16340 h->got.offset = s->size;
16341 s->size += 8;
16342 }
16343
ba93b8ac 16344 if (tls_type & GOT_TLS_IE)
5c5a4843
CL
16345 /* R_ARM_TLS_IE32/R_ARM_TLS_IE32_FDPIC need one GOT
16346 slot. */
ba93b8ac
DJ
16347 s->size += 4;
16348 }
16349
e5a52504 16350 dyn = htab->root.dynamic_sections_created;
ba93b8ac
DJ
16351
16352 indx = 0;
0e1862bb
L
16353 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
16354 bfd_link_pic (info),
16355 h)
16356 && (!bfd_link_pic (info)
ba93b8ac
DJ
16357 || !SYMBOL_REFERENCES_LOCAL (info, h)))
16358 indx = h->dynindx;
16359
16360 if (tls_type != GOT_NORMAL
9cb09e33 16361 && (bfd_link_dll (info) || indx != 0)
ba93b8ac
DJ
16362 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
16363 || h->root.type != bfd_link_hash_undefweak))
16364 {
16365 if (tls_type & GOT_TLS_IE)
47beaa6a 16366 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
ba93b8ac
DJ
16367
16368 if (tls_type & GOT_TLS_GD)
47beaa6a 16369 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
ba93b8ac 16370
b38cadfb 16371 if (tls_type & GOT_TLS_GDESC)
0855e32b 16372 {
47beaa6a 16373 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
0855e32b
NS
16374 /* GDESC needs a trampoline to jump to. */
16375 htab->tls_trampoline = -1;
16376 }
16377
16378 /* Only GD needs it. GDESC just emits one relocation per
16379 2 entries. */
b38cadfb 16380 if ((tls_type & GOT_TLS_GD) && indx != 0)
47beaa6a 16381 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
ba93b8ac 16382 }
e8b09b87
CL
16383 else if (((indx != -1) || htab->fdpic_p)
16384 && !SYMBOL_REFERENCES_LOCAL (info, h))
b436d854
RS
16385 {
16386 if (htab->root.dynamic_sections_created)
16387 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
16388 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16389 }
34e77a92
RS
16390 else if (h->type == STT_GNU_IFUNC
16391 && eh->plt.noncall_refcount == 0)
16392 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
16393 they all resolve dynamically instead. Reserve room for the
16394 GOT entry's R_ARM_IRELATIVE relocation. */
16395 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
0e1862bb 16396 else if (bfd_link_pic (info)
7f026732 16397 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
b436d854 16398 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
47beaa6a 16399 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
e8b09b87
CL
16400 else if (htab->fdpic_p && tls_type == GOT_NORMAL)
16401 /* Reserve room for rofixup for FDPIC executable. */
16402 /* TLS relocs do not need space since they are completely
16403 resolved. */
16404 htab->srofixup->size += 4;
e5a52504 16405 }
5e681ec4
PB
16406 }
16407 else
16408 h->got.offset = (bfd_vma) -1;
16409
e8b09b87
CL
16410 /* FDPIC support. */
16411 if (eh->fdpic_cnts.gotofffuncdesc_cnt > 0)
16412 {
16413 /* Symbol musn't be exported. */
16414 if (h->dynindx != -1)
16415 abort();
16416
16417 /* We only allocate one function descriptor with its associated relocation. */
16418 if (eh->fdpic_cnts.funcdesc_offset == -1)
16419 {
16420 asection *s = htab->root.sgot;
16421
16422 eh->fdpic_cnts.funcdesc_offset = s->size;
16423 s->size += 8;
16424 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16425 if (bfd_link_pic(info))
16426 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16427 else
16428 htab->srofixup->size += 8;
16429 }
16430 }
16431
16432 if (eh->fdpic_cnts.gotfuncdesc_cnt > 0)
16433 {
16434 asection *s = htab->root.sgot;
16435
16436 if (htab->root.dynamic_sections_created && h->dynindx == -1
16437 && !h->forced_local)
16438 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16439 return FALSE;
16440
16441 if (h->dynindx == -1)
16442 {
16443 /* We only allocate one function descriptor with its associated relocation. q */
16444 if (eh->fdpic_cnts.funcdesc_offset == -1)
16445 {
16446
16447 eh->fdpic_cnts.funcdesc_offset = s->size;
16448 s->size += 8;
16449 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16450 if (bfd_link_pic(info))
16451 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16452 else
16453 htab->srofixup->size += 8;
16454 }
16455 }
16456
16457 /* Add one entry into the GOT and a R_ARM_FUNCDESC or
16458 R_ARM_RELATIVE/rofixup relocation on it. */
16459 eh->fdpic_cnts.gotfuncdesc_offset = s->size;
16460 s->size += 4;
16461 if (h->dynindx == -1 && !bfd_link_pic(info))
4b24dd1a 16462 htab->srofixup->size += 4;
e8b09b87 16463 else
4b24dd1a 16464 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
e8b09b87
CL
16465 }
16466
16467 if (eh->fdpic_cnts.funcdesc_cnt > 0)
16468 {
16469 if (htab->root.dynamic_sections_created && h->dynindx == -1
16470 && !h->forced_local)
16471 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16472 return FALSE;
16473
16474 if (h->dynindx == -1)
16475 {
16476 /* We only allocate one function descriptor with its associated relocation. */
16477 if (eh->fdpic_cnts.funcdesc_offset == -1)
16478 {
16479 asection *s = htab->root.sgot;
16480
16481 eh->fdpic_cnts.funcdesc_offset = s->size;
16482 s->size += 8;
16483 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16484 if (bfd_link_pic(info))
16485 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16486 else
16487 htab->srofixup->size += 8;
16488 }
16489 }
16490 if (h->dynindx == -1 && !bfd_link_pic(info))
16491 {
16492 /* For FDPIC executable we replace R_ARM_RELATIVE with a rofixup. */
16493 htab->srofixup->size += 4 * eh->fdpic_cnts.funcdesc_cnt;
16494 }
16495 else
16496 {
16497 /* Will need one dynamic reloc per reference. will be either
16498 R_ARM_FUNCDESC or R_ARM_RELATIVE for hidden symbols. */
16499 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot,
16500 eh->fdpic_cnts.funcdesc_cnt);
16501 }
16502 }
16503
a4fd1a8e
PB
16504 /* Allocate stubs for exported Thumb functions on v4t. */
16505 if (!htab->use_blx && h->dynindx != -1
0eaedd0e 16506 && h->def_regular
39d911fc 16507 && ARM_GET_SYM_BRANCH_TYPE (h->target_internal) == ST_BRANCH_TO_THUMB
a4fd1a8e
PB
16508 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
16509 {
16510 struct elf_link_hash_entry * th;
16511 struct bfd_link_hash_entry * bh;
16512 struct elf_link_hash_entry * myh;
16513 char name[1024];
16514 asection *s;
16515 bh = NULL;
16516 /* Create a new symbol to regist the real location of the function. */
16517 s = h->root.u.def.section;
906e58ca 16518 sprintf (name, "__real_%s", h->root.root.string);
a4fd1a8e
PB
16519 _bfd_generic_link_add_one_symbol (info, s->owner,
16520 name, BSF_GLOBAL, s,
16521 h->root.u.def.value,
16522 NULL, TRUE, FALSE, &bh);
16523
16524 myh = (struct elf_link_hash_entry *) bh;
35fc36a8 16525 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
a4fd1a8e 16526 myh->forced_local = 1;
39d911fc 16527 ARM_SET_SYM_BRANCH_TYPE (myh->target_internal, ST_BRANCH_TO_THUMB);
a4fd1a8e
PB
16528 eh->export_glue = myh;
16529 th = record_arm_to_thumb_glue (info, h);
16530 /* Point the symbol at the stub. */
16531 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
39d911fc 16532 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
a4fd1a8e
PB
16533 h->root.u.def.section = th->root.u.def.section;
16534 h->root.u.def.value = th->root.u.def.value & ~1;
16535 }
16536
190eb1dd 16537 if (h->dyn_relocs == NULL)
5e681ec4
PB
16538 return TRUE;
16539
16540 /* In the shared -Bsymbolic case, discard space allocated for
16541 dynamic pc-relative relocs against symbols which turn out to be
16542 defined in regular objects. For the normal shared case, discard
16543 space for pc-relative relocs that have become local due to symbol
16544 visibility changes. */
16545
e8b09b87 16546 if (bfd_link_pic (info) || htab->root.is_relocatable_executable || htab->fdpic_p)
5e681ec4 16547 {
469a3493
RM
16548 /* Relocs that use pc_count are PC-relative forms, which will appear
16549 on something like ".long foo - ." or "movw REG, foo - .". We want
16550 calls to protected symbols to resolve directly to the function
16551 rather than going via the plt. If people want function pointer
16552 comparisons to work as expected then they should avoid writing
16553 assembly like ".long foo - .". */
ba93b8ac
DJ
16554 if (SYMBOL_CALLS_LOCAL (info, h))
16555 {
0bdcacaf 16556 struct elf_dyn_relocs **pp;
ba93b8ac 16557
190eb1dd 16558 for (pp = &h->dyn_relocs; (p = *pp) != NULL; )
ba93b8ac
DJ
16559 {
16560 p->count -= p->pc_count;
16561 p->pc_count = 0;
16562 if (p->count == 0)
16563 *pp = p->next;
16564 else
16565 pp = &p->next;
16566 }
16567 }
16568
90c14f0c 16569 if (htab->root.target_os == is_vxworks)
3348747a 16570 {
0bdcacaf 16571 struct elf_dyn_relocs **pp;
3348747a 16572
190eb1dd 16573 for (pp = &h->dyn_relocs; (p = *pp) != NULL; )
3348747a 16574 {
0bdcacaf 16575 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
3348747a
NS
16576 *pp = p->next;
16577 else
16578 pp = &p->next;
16579 }
16580 }
16581
ba93b8ac 16582 /* Also discard relocs on undefined weak syms with non-default
99059e56 16583 visibility. */
190eb1dd 16584 if (h->dyn_relocs != NULL
5e681ec4 16585 && h->root.type == bfd_link_hash_undefweak)
22d606e9 16586 {
95b03e4a
L
16587 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
16588 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
190eb1dd 16589 h->dyn_relocs = NULL;
22d606e9
AM
16590
16591 /* Make sure undefined weak symbols are output as a dynamic
16592 symbol in PIEs. */
e8b09b87 16593 else if (htab->root.dynamic_sections_created && h->dynindx == -1
22d606e9
AM
16594 && !h->forced_local)
16595 {
16596 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16597 return FALSE;
16598 }
16599 }
16600
67687978
PB
16601 else if (htab->root.is_relocatable_executable && h->dynindx == -1
16602 && h->root.type == bfd_link_hash_new)
16603 {
16604 /* Output absolute symbols so that we can create relocations
16605 against them. For normal symbols we output a relocation
16606 against the section that contains them. */
16607 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16608 return FALSE;
16609 }
16610
5e681ec4
PB
16611 }
16612 else
16613 {
16614 /* For the non-shared case, discard space for relocs against
16615 symbols which turn out to need copy relocs or are not
16616 dynamic. */
16617
f5385ebf
AM
16618 if (!h->non_got_ref
16619 && ((h->def_dynamic
16620 && !h->def_regular)
5e681ec4
PB
16621 || (htab->root.dynamic_sections_created
16622 && (h->root.type == bfd_link_hash_undefweak
16623 || h->root.type == bfd_link_hash_undefined))))
16624 {
16625 /* Make sure this symbol is output as a dynamic symbol.
16626 Undefined weak syms won't yet be marked as dynamic. */
6c699715
RL
16627 if (h->dynindx == -1 && !h->forced_local
16628 && h->root.type == bfd_link_hash_undefweak)
5e681ec4 16629 {
c152c796 16630 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5e681ec4
PB
16631 return FALSE;
16632 }
16633
16634 /* If that succeeded, we know we'll be keeping all the
16635 relocs. */
16636 if (h->dynindx != -1)
16637 goto keep;
16638 }
16639
190eb1dd 16640 h->dyn_relocs = NULL;
5e681ec4
PB
16641
16642 keep: ;
16643 }
16644
16645 /* Finally, allocate space. */
190eb1dd 16646 for (p = h->dyn_relocs; p != NULL; p = p->next)
5e681ec4 16647 {
0bdcacaf 16648 asection *sreloc = elf_section_data (p->sec)->sreloc;
e8b09b87 16649
34e77a92
RS
16650 if (h->type == STT_GNU_IFUNC
16651 && eh->plt.noncall_refcount == 0
16652 && SYMBOL_REFERENCES_LOCAL (info, h))
16653 elf32_arm_allocate_irelocs (info, sreloc, p->count);
e8b09b87
CL
16654 else if (h->dynindx != -1 && (!bfd_link_pic(info) || !info->symbolic || !h->def_regular))
16655 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
16656 else if (htab->fdpic_p && !bfd_link_pic(info))
16657 htab->srofixup->size += 4 * p->count;
34e77a92
RS
16658 else
16659 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
5e681ec4
PB
16660 }
16661
16662 return TRUE;
16663}
16664
d504ffc8
DJ
16665void
16666bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
16667 int byteswap_code)
16668{
16669 struct elf32_arm_link_hash_table *globals;
16670
16671 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
16672 if (globals == NULL)
16673 return;
16674
d504ffc8
DJ
16675 globals->byteswap_code = byteswap_code;
16676}
16677
252b5132
RH
16678/* Set the sizes of the dynamic sections. */
16679
b34976b6 16680static bfd_boolean
57e8b36a
NC
16681elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
16682 struct bfd_link_info * info)
252b5132
RH
16683{
16684 bfd * dynobj;
16685 asection * s;
b34976b6
AM
16686 bfd_boolean plt;
16687 bfd_boolean relocs;
5e681ec4
PB
16688 bfd *ibfd;
16689 struct elf32_arm_link_hash_table *htab;
252b5132 16690
5e681ec4 16691 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
16692 if (htab == NULL)
16693 return FALSE;
16694
252b5132
RH
16695 dynobj = elf_hash_table (info)->dynobj;
16696 BFD_ASSERT (dynobj != NULL);
39b41c9c 16697 check_use_blx (htab);
252b5132
RH
16698
16699 if (elf_hash_table (info)->dynamic_sections_created)
16700 {
16701 /* Set the contents of the .interp section to the interpreter. */
9b8b325a 16702 if (bfd_link_executable (info) && !info->nointerp)
252b5132 16703 {
3d4d4302 16704 s = bfd_get_linker_section (dynobj, ".interp");
252b5132 16705 BFD_ASSERT (s != NULL);
eea6121a 16706 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
252b5132
RH
16707 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
16708 }
16709 }
5e681ec4
PB
16710
16711 /* Set up .got offsets for local syms, and space for local dynamic
16712 relocs. */
c72f2fb2 16713 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
252b5132 16714 {
5e681ec4
PB
16715 bfd_signed_vma *local_got;
16716 bfd_signed_vma *end_local_got;
34e77a92 16717 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
5e681ec4 16718 char *local_tls_type;
0855e32b 16719 bfd_vma *local_tlsdesc_gotent;
5e681ec4
PB
16720 bfd_size_type locsymcount;
16721 Elf_Internal_Shdr *symtab_hdr;
16722 asection *srel;
34e77a92 16723 unsigned int symndx;
e8b09b87 16724 struct fdpic_local *local_fdpic_cnts;
5e681ec4 16725
0ffa91dd 16726 if (! is_arm_elf (ibfd))
5e681ec4
PB
16727 continue;
16728
16729 for (s = ibfd->sections; s != NULL; s = s->next)
16730 {
0bdcacaf 16731 struct elf_dyn_relocs *p;
5e681ec4 16732
0bdcacaf 16733 for (p = (struct elf_dyn_relocs *)
99059e56 16734 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
5e681ec4 16735 {
0bdcacaf
RS
16736 if (!bfd_is_abs_section (p->sec)
16737 && bfd_is_abs_section (p->sec->output_section))
5e681ec4
PB
16738 {
16739 /* Input section has been discarded, either because
16740 it is a copy of a linkonce section or due to
16741 linker script /DISCARD/, so we'll be discarding
16742 the relocs too. */
16743 }
90c14f0c 16744 else if (htab->root.target_os == is_vxworks
0bdcacaf 16745 && strcmp (p->sec->output_section->name,
3348747a
NS
16746 ".tls_vars") == 0)
16747 {
16748 /* Relocations in vxworks .tls_vars sections are
16749 handled specially by the loader. */
16750 }
5e681ec4
PB
16751 else if (p->count != 0)
16752 {
0bdcacaf 16753 srel = elf_section_data (p->sec)->sreloc;
e8b09b87
CL
16754 if (htab->fdpic_p && !bfd_link_pic(info))
16755 htab->srofixup->size += 4 * p->count;
16756 else
16757 elf32_arm_allocate_dynrelocs (info, srel, p->count);
0bdcacaf 16758 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
5e681ec4
PB
16759 info->flags |= DF_TEXTREL;
16760 }
16761 }
16762 }
16763
16764 local_got = elf_local_got_refcounts (ibfd);
16765 if (!local_got)
16766 continue;
16767
0ffa91dd 16768 symtab_hdr = & elf_symtab_hdr (ibfd);
5e681ec4
PB
16769 locsymcount = symtab_hdr->sh_info;
16770 end_local_got = local_got + locsymcount;
34e77a92 16771 local_iplt_ptr = elf32_arm_local_iplt (ibfd);
ba93b8ac 16772 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
0855e32b 16773 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
e8b09b87 16774 local_fdpic_cnts = elf32_arm_local_fdpic_cnts (ibfd);
34e77a92 16775 symndx = 0;
362d30a1
RS
16776 s = htab->root.sgot;
16777 srel = htab->root.srelgot;
0855e32b 16778 for (; local_got < end_local_got;
34e77a92 16779 ++local_got, ++local_iplt_ptr, ++local_tls_type,
e8b09b87 16780 ++local_tlsdesc_gotent, ++symndx, ++local_fdpic_cnts)
5e681ec4 16781 {
0855e32b 16782 *local_tlsdesc_gotent = (bfd_vma) -1;
34e77a92 16783 local_iplt = *local_iplt_ptr;
e8b09b87
CL
16784
16785 /* FDPIC support. */
16786 if (local_fdpic_cnts->gotofffuncdesc_cnt > 0)
16787 {
16788 if (local_fdpic_cnts->funcdesc_offset == -1)
16789 {
16790 local_fdpic_cnts->funcdesc_offset = s->size;
16791 s->size += 8;
16792
16793 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16794 if (bfd_link_pic(info))
16795 elf32_arm_allocate_dynrelocs (info, srel, 1);
16796 else
16797 htab->srofixup->size += 8;
16798 }
16799 }
16800
16801 if (local_fdpic_cnts->funcdesc_cnt > 0)
16802 {
16803 if (local_fdpic_cnts->funcdesc_offset == -1)
16804 {
16805 local_fdpic_cnts->funcdesc_offset = s->size;
16806 s->size += 8;
16807
16808 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16809 if (bfd_link_pic(info))
16810 elf32_arm_allocate_dynrelocs (info, srel, 1);
16811 else
16812 htab->srofixup->size += 8;
16813 }
16814
16815 /* We will add n R_ARM_RELATIVE relocations or n rofixups. */
16816 if (bfd_link_pic(info))
16817 elf32_arm_allocate_dynrelocs (info, srel, local_fdpic_cnts->funcdesc_cnt);
16818 else
16819 htab->srofixup->size += 4 * local_fdpic_cnts->funcdesc_cnt;
16820 }
16821
34e77a92
RS
16822 if (local_iplt != NULL)
16823 {
16824 struct elf_dyn_relocs *p;
16825
16826 if (local_iplt->root.refcount > 0)
16827 {
16828 elf32_arm_allocate_plt_entry (info, TRUE,
16829 &local_iplt->root,
16830 &local_iplt->arm);
16831 if (local_iplt->arm.noncall_refcount == 0)
16832 /* All references to the PLT are calls, so all
16833 non-call references can resolve directly to the
16834 run-time target. This means that the .got entry
16835 would be the same as the .igot.plt entry, so there's
16836 no point creating both. */
16837 *local_got = 0;
16838 }
16839 else
16840 {
16841 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
16842 local_iplt->root.offset = (bfd_vma) -1;
16843 }
16844
16845 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
16846 {
16847 asection *psrel;
16848
16849 psrel = elf_section_data (p->sec)->sreloc;
16850 if (local_iplt->arm.noncall_refcount == 0)
16851 elf32_arm_allocate_irelocs (info, psrel, p->count);
16852 else
16853 elf32_arm_allocate_dynrelocs (info, psrel, p->count);
16854 }
16855 }
5e681ec4
PB
16856 if (*local_got > 0)
16857 {
34e77a92
RS
16858 Elf_Internal_Sym *isym;
16859
eea6121a 16860 *local_got = s->size;
ba93b8ac
DJ
16861 if (*local_tls_type & GOT_TLS_GD)
16862 /* TLS_GD relocs need an 8-byte structure in the GOT. */
16863 s->size += 8;
0855e32b
NS
16864 if (*local_tls_type & GOT_TLS_GDESC)
16865 {
16866 *local_tlsdesc_gotent = htab->root.sgotplt->size
16867 - elf32_arm_compute_jump_table_size (htab);
16868 htab->root.sgotplt->size += 8;
16869 *local_got = (bfd_vma) -2;
34e77a92 16870 /* plt.got_offset needs to know there's a TLS_DESC
0855e32b 16871 reloc in the middle of .got.plt. */
99059e56 16872 htab->num_tls_desc++;
0855e32b 16873 }
ba93b8ac
DJ
16874 if (*local_tls_type & GOT_TLS_IE)
16875 s->size += 4;
ba93b8ac 16876
0855e32b
NS
16877 if (*local_tls_type & GOT_NORMAL)
16878 {
16879 /* If the symbol is both GD and GDESC, *local_got
16880 may have been overwritten. */
16881 *local_got = s->size;
16882 s->size += 4;
16883 }
16884
34e77a92
RS
16885 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
16886 if (isym == NULL)
16887 return FALSE;
16888
16889 /* If all references to an STT_GNU_IFUNC PLT are calls,
16890 then all non-call references, including this GOT entry,
16891 resolve directly to the run-time target. */
16892 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
16893 && (local_iplt == NULL
16894 || local_iplt->arm.noncall_refcount == 0))
16895 elf32_arm_allocate_irelocs (info, srel, 1);
e8b09b87 16896 else if (bfd_link_pic (info) || output_bfd->flags & DYNAMIC || htab->fdpic_p)
0855e32b 16897 {
e8b09b87 16898 if ((bfd_link_pic (info) && !(*local_tls_type & GOT_TLS_GDESC)))
3064e1ff 16899 elf32_arm_allocate_dynrelocs (info, srel, 1);
e8b09b87
CL
16900 else if (htab->fdpic_p && *local_tls_type & GOT_NORMAL)
16901 htab->srofixup->size += 4;
99059e56 16902
e8b09b87
CL
16903 if ((bfd_link_pic (info) || htab->fdpic_p)
16904 && *local_tls_type & GOT_TLS_GDESC)
3064e1ff
JB
16905 {
16906 elf32_arm_allocate_dynrelocs (info,
16907 htab->root.srelplt, 1);
16908 htab->tls_trampoline = -1;
16909 }
0855e32b 16910 }
5e681ec4
PB
16911 }
16912 else
16913 *local_got = (bfd_vma) -1;
16914 }
252b5132
RH
16915 }
16916
ba93b8ac
DJ
16917 if (htab->tls_ldm_got.refcount > 0)
16918 {
16919 /* Allocate two GOT entries and one dynamic relocation (if necessary)
5c5a4843 16920 for R_ARM_TLS_LDM32/R_ARM_TLS_LDM32_FDPIC relocations. */
362d30a1
RS
16921 htab->tls_ldm_got.offset = htab->root.sgot->size;
16922 htab->root.sgot->size += 8;
0e1862bb 16923 if (bfd_link_pic (info))
47beaa6a 16924 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
ba93b8ac
DJ
16925 }
16926 else
16927 htab->tls_ldm_got.offset = -1;
16928
e8b09b87
CL
16929 /* At the very end of the .rofixup section is a pointer to the GOT,
16930 reserve space for it. */
16931 if (htab->fdpic_p && htab->srofixup != NULL)
16932 htab->srofixup->size += 4;
16933
5e681ec4
PB
16934 /* Allocate global sym .plt and .got entries, and space for global
16935 sym dynamic relocs. */
47beaa6a 16936 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
252b5132 16937
d504ffc8 16938 /* Here we rummage through the found bfds to collect glue information. */
c72f2fb2 16939 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
c7b8f16e 16940 {
0ffa91dd 16941 if (! is_arm_elf (ibfd))
e44a2c9c
AM
16942 continue;
16943
c7b8f16e
JB
16944 /* Initialise mapping tables for code/data. */
16945 bfd_elf32_arm_init_maps (ibfd);
906e58ca 16946
c7b8f16e 16947 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
a504d23a
LA
16948 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info)
16949 || !bfd_elf32_arm_stm32l4xx_erratum_scan (ibfd, info))
90b6238f 16950 _bfd_error_handler (_("errors encountered processing file %pB"), ibfd);
c7b8f16e 16951 }
d504ffc8 16952
3e6b1042
DJ
16953 /* Allocate space for the glue sections now that we've sized them. */
16954 bfd_elf32_arm_allocate_interworking_sections (info);
16955
0855e32b
NS
16956 /* For every jump slot reserved in the sgotplt, reloc_count is
16957 incremented. However, when we reserve space for TLS descriptors,
16958 it's not incremented, so in order to compute the space reserved
16959 for them, it suffices to multiply the reloc count by the jump
16960 slot size. */
16961 if (htab->root.srelplt)
16962 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
16963
16964 if (htab->tls_trampoline)
16965 {
16966 if (htab->root.splt->size == 0)
16967 htab->root.splt->size += htab->plt_header_size;
b38cadfb 16968
0855e32b
NS
16969 htab->tls_trampoline = htab->root.splt->size;
16970 htab->root.splt->size += htab->plt_entry_size;
b38cadfb 16971
0855e32b 16972 /* If we're not using lazy TLS relocations, don't generate the
99059e56 16973 PLT and GOT entries they require. */
0855e32b
NS
16974 if (!(info->flags & DF_BIND_NOW))
16975 {
16976 htab->dt_tlsdesc_got = htab->root.sgot->size;
16977 htab->root.sgot->size += 4;
16978
16979 htab->dt_tlsdesc_plt = htab->root.splt->size;
16980 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
16981 }
16982 }
16983
252b5132
RH
16984 /* The check_relocs and adjust_dynamic_symbol entry points have
16985 determined the sizes of the various dynamic sections. Allocate
16986 memory for them. */
b34976b6
AM
16987 plt = FALSE;
16988 relocs = FALSE;
252b5132
RH
16989 for (s = dynobj->sections; s != NULL; s = s->next)
16990 {
16991 const char * name;
252b5132
RH
16992
16993 if ((s->flags & SEC_LINKER_CREATED) == 0)
16994 continue;
16995
16996 /* It's OK to base decisions on the section name, because none
16997 of the dynobj section names depend upon the input files. */
fd361982 16998 name = bfd_section_name (s);
252b5132 16999
34e77a92 17000 if (s == htab->root.splt)
252b5132 17001 {
c456f082
AM
17002 /* Remember whether there is a PLT. */
17003 plt = s->size != 0;
252b5132 17004 }
0112cd26 17005 else if (CONST_STRNEQ (name, ".rel"))
252b5132 17006 {
c456f082 17007 if (s->size != 0)
252b5132 17008 {
252b5132 17009 /* Remember whether there are any reloc sections other
00a97672 17010 than .rel(a).plt and .rela.plt.unloaded. */
362d30a1 17011 if (s != htab->root.srelplt && s != htab->srelplt2)
b34976b6 17012 relocs = TRUE;
252b5132
RH
17013
17014 /* We use the reloc_count field as a counter if we need
17015 to copy relocs into the output file. */
17016 s->reloc_count = 0;
17017 }
17018 }
34e77a92
RS
17019 else if (s != htab->root.sgot
17020 && s != htab->root.sgotplt
17021 && s != htab->root.iplt
17022 && s != htab->root.igotplt
5474d94f 17023 && s != htab->root.sdynbss
e8b09b87
CL
17024 && s != htab->root.sdynrelro
17025 && s != htab->srofixup)
252b5132
RH
17026 {
17027 /* It's not one of our sections, so don't allocate space. */
17028 continue;
17029 }
17030
c456f082 17031 if (s->size == 0)
252b5132 17032 {
c456f082 17033 /* If we don't need this section, strip it from the
00a97672
RS
17034 output file. This is mostly to handle .rel(a).bss and
17035 .rel(a).plt. We must create both sections in
c456f082
AM
17036 create_dynamic_sections, because they must be created
17037 before the linker maps input sections to output
17038 sections. The linker does that before
17039 adjust_dynamic_symbol is called, and it is that
17040 function which decides whether anything needs to go
17041 into these sections. */
8423293d 17042 s->flags |= SEC_EXCLUDE;
252b5132
RH
17043 continue;
17044 }
17045
c456f082
AM
17046 if ((s->flags & SEC_HAS_CONTENTS) == 0)
17047 continue;
17048
252b5132 17049 /* Allocate memory for the section contents. */
21d799b5 17050 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
c456f082 17051 if (s->contents == NULL)
b34976b6 17052 return FALSE;
252b5132
RH
17053 }
17054
17055 if (elf_hash_table (info)->dynamic_sections_created)
17056 {
17057 /* Add some entries to the .dynamic section. We fill in the
17058 values later, in elf32_arm_finish_dynamic_sections, but we
17059 must add the entries now so that we get the correct size for
17060 the .dynamic section. The DT_DEBUG entry is filled in by the
17061 dynamic linker and used by the debugger. */
dc810e39 17062#define add_dynamic_entry(TAG, VAL) \
5a580b3a 17063 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
dc810e39 17064
0e1862bb 17065 if (bfd_link_executable (info))
252b5132 17066 {
dc810e39 17067 if (!add_dynamic_entry (DT_DEBUG, 0))
b34976b6 17068 return FALSE;
252b5132
RH
17069 }
17070
17071 if (plt)
17072 {
dc810e39
AM
17073 if ( !add_dynamic_entry (DT_PLTGOT, 0)
17074 || !add_dynamic_entry (DT_PLTRELSZ, 0)
00a97672
RS
17075 || !add_dynamic_entry (DT_PLTREL,
17076 htab->use_rel ? DT_REL : DT_RELA)
dc810e39 17077 || !add_dynamic_entry (DT_JMPREL, 0))
b34976b6 17078 return FALSE;
0855e32b 17079
5025eb7c
AO
17080 if (htab->dt_tlsdesc_plt
17081 && (!add_dynamic_entry (DT_TLSDESC_PLT,0)
17082 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
b38cadfb 17083 return FALSE;
252b5132
RH
17084 }
17085
17086 if (relocs)
17087 {
00a97672
RS
17088 if (htab->use_rel)
17089 {
17090 if (!add_dynamic_entry (DT_REL, 0)
17091 || !add_dynamic_entry (DT_RELSZ, 0)
17092 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
17093 return FALSE;
17094 }
17095 else
17096 {
17097 if (!add_dynamic_entry (DT_RELA, 0)
17098 || !add_dynamic_entry (DT_RELASZ, 0)
17099 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
17100 return FALSE;
17101 }
252b5132
RH
17102 }
17103
08d1f311
DJ
17104 /* If any dynamic relocs apply to a read-only section,
17105 then we need a DT_TEXTREL entry. */
17106 if ((info->flags & DF_TEXTREL) == 0)
d49e5065
L
17107 elf_link_hash_traverse (&htab->root,
17108 _bfd_elf_maybe_set_textrel, info);
08d1f311 17109
99e4ae17 17110 if ((info->flags & DF_TEXTREL) != 0)
252b5132 17111 {
dc810e39 17112 if (!add_dynamic_entry (DT_TEXTREL, 0))
b34976b6 17113 return FALSE;
252b5132 17114 }
90c14f0c 17115 if (htab->root.target_os == is_vxworks
7a2b07ff
NS
17116 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
17117 return FALSE;
252b5132 17118 }
8532796c 17119#undef add_dynamic_entry
252b5132 17120
b34976b6 17121 return TRUE;
252b5132
RH
17122}
17123
0855e32b
NS
17124/* Size sections even though they're not dynamic. We use it to setup
17125 _TLS_MODULE_BASE_, if needed. */
17126
17127static bfd_boolean
17128elf32_arm_always_size_sections (bfd *output_bfd,
99059e56 17129 struct bfd_link_info *info)
0855e32b
NS
17130{
17131 asection *tls_sec;
cb10292c
CL
17132 struct elf32_arm_link_hash_table *htab;
17133
17134 htab = elf32_arm_hash_table (info);
0855e32b 17135
0e1862bb 17136 if (bfd_link_relocatable (info))
0855e32b
NS
17137 return TRUE;
17138
17139 tls_sec = elf_hash_table (info)->tls_sec;
17140
17141 if (tls_sec)
17142 {
17143 struct elf_link_hash_entry *tlsbase;
17144
17145 tlsbase = elf_link_hash_lookup
17146 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
17147
17148 if (tlsbase)
99059e56
RM
17149 {
17150 struct bfd_link_hash_entry *bh = NULL;
0855e32b 17151 const struct elf_backend_data *bed
99059e56 17152 = get_elf_backend_data (output_bfd);
0855e32b 17153
99059e56 17154 if (!(_bfd_generic_link_add_one_symbol
0855e32b
NS
17155 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
17156 tls_sec, 0, NULL, FALSE,
17157 bed->collect, &bh)))
17158 return FALSE;
b38cadfb 17159
99059e56
RM
17160 tlsbase->type = STT_TLS;
17161 tlsbase = (struct elf_link_hash_entry *)bh;
17162 tlsbase->def_regular = 1;
17163 tlsbase->other = STV_HIDDEN;
17164 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
0855e32b
NS
17165 }
17166 }
cb10292c
CL
17167
17168 if (htab->fdpic_p && !bfd_link_relocatable (info)
17169 && !bfd_elf_stack_segment_size (output_bfd, info,
17170 "__stacksize", DEFAULT_STACK_SIZE))
17171 return FALSE;
17172
0855e32b
NS
17173 return TRUE;
17174}
17175
252b5132
RH
17176/* Finish up dynamic symbol handling. We set the contents of various
17177 dynamic sections here. */
17178
b34976b6 17179static bfd_boolean
906e58ca
NC
17180elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
17181 struct bfd_link_info * info,
17182 struct elf_link_hash_entry * h,
17183 Elf_Internal_Sym * sym)
252b5132 17184{
e5a52504 17185 struct elf32_arm_link_hash_table *htab;
b7693d02 17186 struct elf32_arm_link_hash_entry *eh;
252b5132 17187
e5a52504 17188 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
17189 if (htab == NULL)
17190 return FALSE;
17191
b7693d02 17192 eh = (struct elf32_arm_link_hash_entry *) h;
252b5132
RH
17193
17194 if (h->plt.offset != (bfd_vma) -1)
17195 {
34e77a92 17196 if (!eh->is_iplt)
e5a52504 17197 {
34e77a92 17198 BFD_ASSERT (h->dynindx != -1);
57460bcf
NC
17199 if (! elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
17200 h->dynindx, 0))
17201 return FALSE;
e5a52504 17202 }
57e8b36a 17203
f5385ebf 17204 if (!h->def_regular)
252b5132
RH
17205 {
17206 /* Mark the symbol as undefined, rather than as defined in
3a635617 17207 the .plt section. */
252b5132 17208 sym->st_shndx = SHN_UNDEF;
3a635617 17209 /* If the symbol is weak we need to clear the value.
d982ba73
PB
17210 Otherwise, the PLT entry would provide a definition for
17211 the symbol even if the symbol wasn't defined anywhere,
3a635617
WN
17212 and so the symbol would never be NULL. Leave the value if
17213 there were any relocations where pointer equality matters
17214 (this is a clue for the dynamic linker, to make function
17215 pointer comparisons work between an application and shared
17216 library). */
97323ad1 17217 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
d982ba73 17218 sym->st_value = 0;
252b5132 17219 }
34e77a92
RS
17220 else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
17221 {
17222 /* At least one non-call relocation references this .iplt entry,
17223 so the .iplt entry is the function's canonical address. */
17224 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
39d911fc 17225 ARM_SET_SYM_BRANCH_TYPE (sym->st_target_internal, ST_BRANCH_TO_ARM);
34e77a92
RS
17226 sym->st_shndx = (_bfd_elf_section_from_bfd_section
17227 (output_bfd, htab->root.iplt->output_section));
17228 sym->st_value = (h->plt.offset
17229 + htab->root.iplt->output_section->vma
17230 + htab->root.iplt->output_offset);
17231 }
252b5132
RH
17232 }
17233
f5385ebf 17234 if (h->needs_copy)
252b5132
RH
17235 {
17236 asection * s;
947216bf 17237 Elf_Internal_Rela rel;
252b5132
RH
17238
17239 /* This symbol needs a copy reloc. Set it up. */
252b5132
RH
17240 BFD_ASSERT (h->dynindx != -1
17241 && (h->root.type == bfd_link_hash_defined
17242 || h->root.type == bfd_link_hash_defweak));
17243
00a97672 17244 rel.r_addend = 0;
252b5132
RH
17245 rel.r_offset = (h->root.u.def.value
17246 + h->root.u.def.section->output_section->vma
17247 + h->root.u.def.section->output_offset);
17248 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
afbf7e8e 17249 if (h->root.u.def.section == htab->root.sdynrelro)
5474d94f
AM
17250 s = htab->root.sreldynrelro;
17251 else
17252 s = htab->root.srelbss;
47beaa6a 17253 elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
252b5132
RH
17254 }
17255
00a97672 17256 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
fac7bd64
CL
17257 and for FDPIC, the _GLOBAL_OFFSET_TABLE_ symbol is not absolute:
17258 it is relative to the ".got" section. */
9637f6ef 17259 if (h == htab->root.hdynamic
90c14f0c
L
17260 || (!htab->fdpic_p
17261 && htab->root.target_os != is_vxworks
17262 && h == htab->root.hgot))
252b5132
RH
17263 sym->st_shndx = SHN_ABS;
17264
b34976b6 17265 return TRUE;
252b5132
RH
17266}
17267
0855e32b
NS
17268static void
17269arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
17270 void *contents,
17271 const unsigned long *template, unsigned count)
17272{
17273 unsigned ix;
b38cadfb 17274
0855e32b
NS
17275 for (ix = 0; ix != count; ix++)
17276 {
17277 unsigned long insn = template[ix];
17278
17279 /* Emit mov pc,rx if bx is not permitted. */
17280 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
17281 insn = (insn & 0xf000000f) | 0x01a0f000;
17282 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
17283 }
17284}
17285
99059e56
RM
17286/* Install the special first PLT entry for elf32-arm-nacl. Unlike
17287 other variants, NaCl needs this entry in a static executable's
17288 .iplt too. When we're handling that case, GOT_DISPLACEMENT is
17289 zero. For .iplt really only the last bundle is useful, and .iplt
17290 could have a shorter first entry, with each individual PLT entry's
17291 relative branch calculated differently so it targets the last
17292 bundle instead of the instruction before it (labelled .Lplt_tail
17293 above). But it's simpler to keep the size and layout of PLT0
17294 consistent with the dynamic case, at the cost of some dead code at
17295 the start of .iplt and the one dead store to the stack at the start
17296 of .Lplt_tail. */
17297static void
17298arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
17299 asection *plt, bfd_vma got_displacement)
17300{
17301 unsigned int i;
17302
17303 put_arm_insn (htab, output_bfd,
17304 elf32_arm_nacl_plt0_entry[0]
17305 | arm_movw_immediate (got_displacement),
17306 plt->contents + 0);
17307 put_arm_insn (htab, output_bfd,
17308 elf32_arm_nacl_plt0_entry[1]
17309 | arm_movt_immediate (got_displacement),
17310 plt->contents + 4);
17311
17312 for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i)
17313 put_arm_insn (htab, output_bfd,
17314 elf32_arm_nacl_plt0_entry[i],
17315 plt->contents + (i * 4));
17316}
17317
252b5132
RH
17318/* Finish up the dynamic sections. */
17319
b34976b6 17320static bfd_boolean
57e8b36a 17321elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
252b5132
RH
17322{
17323 bfd * dynobj;
17324 asection * sgot;
17325 asection * sdyn;
4dfe6ac6
NC
17326 struct elf32_arm_link_hash_table *htab;
17327
17328 htab = elf32_arm_hash_table (info);
17329 if (htab == NULL)
17330 return FALSE;
252b5132
RH
17331
17332 dynobj = elf_hash_table (info)->dynobj;
17333
362d30a1 17334 sgot = htab->root.sgotplt;
894891db
NC
17335 /* A broken linker script might have discarded the dynamic sections.
17336 Catch this here so that we do not seg-fault later on. */
17337 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
17338 return FALSE;
3d4d4302 17339 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
252b5132
RH
17340
17341 if (elf_hash_table (info)->dynamic_sections_created)
17342 {
17343 asection *splt;
17344 Elf32_External_Dyn *dyncon, *dynconend;
17345
362d30a1 17346 splt = htab->root.splt;
24a1ba0f 17347 BFD_ASSERT (splt != NULL && sdyn != NULL);
90c14f0c 17348 BFD_ASSERT (htab->root.target_os == is_symbian || sgot != NULL);
252b5132
RH
17349
17350 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 17351 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
9b485d32 17352
252b5132
RH
17353 for (; dyncon < dynconend; dyncon++)
17354 {
17355 Elf_Internal_Dyn dyn;
17356 const char * name;
17357 asection * s;
17358
17359 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
17360
17361 switch (dyn.d_tag)
17362 {
229fcec5
MM
17363 unsigned int type;
17364
252b5132 17365 default:
90c14f0c 17366 if (htab->root.target_os == is_vxworks
7a2b07ff
NS
17367 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
17368 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
252b5132
RH
17369 break;
17370
229fcec5
MM
17371 case DT_HASH:
17372 name = ".hash";
17373 goto get_vma_if_bpabi;
17374 case DT_STRTAB:
17375 name = ".dynstr";
17376 goto get_vma_if_bpabi;
17377 case DT_SYMTAB:
17378 name = ".dynsym";
17379 goto get_vma_if_bpabi;
c0042f5d
MM
17380 case DT_VERSYM:
17381 name = ".gnu.version";
17382 goto get_vma_if_bpabi;
17383 case DT_VERDEF:
17384 name = ".gnu.version_d";
17385 goto get_vma_if_bpabi;
17386 case DT_VERNEED:
17387 name = ".gnu.version_r";
17388 goto get_vma_if_bpabi;
17389
252b5132 17390 case DT_PLTGOT:
90c14f0c
L
17391 name = (htab->root.target_os == is_symbian
17392 ? ".got" : ".got.plt");
252b5132
RH
17393 goto get_vma;
17394 case DT_JMPREL:
00a97672 17395 name = RELOC_SECTION (htab, ".plt");
252b5132 17396 get_vma:
4ade44b7 17397 s = bfd_get_linker_section (dynobj, name);
05456594
NC
17398 if (s == NULL)
17399 {
4eca0228 17400 _bfd_error_handler
4ade44b7 17401 (_("could not find section %s"), name);
05456594
NC
17402 bfd_set_error (bfd_error_invalid_operation);
17403 return FALSE;
17404 }
90c14f0c 17405 if (htab->root.target_os != is_symbian)
4ade44b7 17406 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
229fcec5
MM
17407 else
17408 /* In the BPABI, tags in the PT_DYNAMIC section point
17409 at the file offset, not the memory address, for the
17410 convenience of the post linker. */
4ade44b7 17411 dyn.d_un.d_ptr = s->output_section->filepos + s->output_offset;
252b5132
RH
17412 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17413 break;
17414
229fcec5 17415 get_vma_if_bpabi:
90c14f0c 17416 if (htab->root.target_os == is_symbian)
229fcec5
MM
17417 goto get_vma;
17418 break;
17419
252b5132 17420 case DT_PLTRELSZ:
362d30a1 17421 s = htab->root.srelplt;
252b5132 17422 BFD_ASSERT (s != NULL);
eea6121a 17423 dyn.d_un.d_val = s->size;
252b5132
RH
17424 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17425 break;
906e58ca 17426
252b5132 17427 case DT_RELSZ:
00a97672 17428 case DT_RELASZ:
229fcec5
MM
17429 case DT_REL:
17430 case DT_RELA:
229fcec5
MM
17431 /* In the BPABI, the DT_REL tag must point at the file
17432 offset, not the VMA, of the first relocation
17433 section. So, we use code similar to that in
17434 elflink.c, but do not check for SHF_ALLOC on the
64f52338
AM
17435 relocation section, since relocation sections are
17436 never allocated under the BPABI. PLT relocs are also
17437 included. */
90c14f0c 17438 if (htab->root.target_os == is_symbian)
229fcec5
MM
17439 {
17440 unsigned int i;
17441 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
17442 ? SHT_REL : SHT_RELA);
17443 dyn.d_un.d_val = 0;
17444 for (i = 1; i < elf_numsections (output_bfd); i++)
17445 {
906e58ca 17446 Elf_Internal_Shdr *hdr
229fcec5
MM
17447 = elf_elfsections (output_bfd)[i];
17448 if (hdr->sh_type == type)
17449 {
906e58ca 17450 if (dyn.d_tag == DT_RELSZ
229fcec5
MM
17451 || dyn.d_tag == DT_RELASZ)
17452 dyn.d_un.d_val += hdr->sh_size;
de52dba4
AM
17453 else if ((ufile_ptr) hdr->sh_offset
17454 <= dyn.d_un.d_val - 1)
229fcec5
MM
17455 dyn.d_un.d_val = hdr->sh_offset;
17456 }
17457 }
17458 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17459 }
252b5132 17460 break;
88f7bcd5 17461
0855e32b 17462 case DT_TLSDESC_PLT:
99059e56 17463 s = htab->root.splt;
0855e32b
NS
17464 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
17465 + htab->dt_tlsdesc_plt);
17466 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17467 break;
17468
17469 case DT_TLSDESC_GOT:
99059e56 17470 s = htab->root.sgot;
0855e32b 17471 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
99059e56 17472 + htab->dt_tlsdesc_got);
0855e32b
NS
17473 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17474 break;
17475
88f7bcd5
NC
17476 /* Set the bottom bit of DT_INIT/FINI if the
17477 corresponding function is Thumb. */
17478 case DT_INIT:
17479 name = info->init_function;
17480 goto get_sym;
17481 case DT_FINI:
17482 name = info->fini_function;
17483 get_sym:
17484 /* If it wasn't set by elf_bfd_final_link
4cc11e76 17485 then there is nothing to adjust. */
88f7bcd5
NC
17486 if (dyn.d_un.d_val != 0)
17487 {
17488 struct elf_link_hash_entry * eh;
17489
17490 eh = elf_link_hash_lookup (elf_hash_table (info), name,
b34976b6 17491 FALSE, FALSE, TRUE);
39d911fc
TP
17492 if (eh != NULL
17493 && ARM_GET_SYM_BRANCH_TYPE (eh->target_internal)
17494 == ST_BRANCH_TO_THUMB)
88f7bcd5
NC
17495 {
17496 dyn.d_un.d_val |= 1;
b34976b6 17497 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
88f7bcd5
NC
17498 }
17499 }
17500 break;
252b5132
RH
17501 }
17502 }
17503
24a1ba0f 17504 /* Fill in the first entry in the procedure linkage table. */
4dfe6ac6 17505 if (splt->size > 0 && htab->plt_header_size)
f7a74f8c 17506 {
00a97672
RS
17507 const bfd_vma *plt0_entry;
17508 bfd_vma got_address, plt_address, got_displacement;
17509
17510 /* Calculate the addresses of the GOT and PLT. */
17511 got_address = sgot->output_section->vma + sgot->output_offset;
17512 plt_address = splt->output_section->vma + splt->output_offset;
17513
90c14f0c 17514 if (htab->root.target_os == is_vxworks)
00a97672
RS
17515 {
17516 /* The VxWorks GOT is relocated by the dynamic linker.
17517 Therefore, we must emit relocations rather than simply
17518 computing the values now. */
17519 Elf_Internal_Rela rel;
17520
17521 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
52ab56c2
PB
17522 put_arm_insn (htab, output_bfd, plt0_entry[0],
17523 splt->contents + 0);
17524 put_arm_insn (htab, output_bfd, plt0_entry[1],
17525 splt->contents + 4);
17526 put_arm_insn (htab, output_bfd, plt0_entry[2],
17527 splt->contents + 8);
00a97672
RS
17528 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
17529
8029a119 17530 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
00a97672
RS
17531 rel.r_offset = plt_address + 12;
17532 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
17533 rel.r_addend = 0;
17534 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
17535 htab->srelplt2->contents);
17536 }
90c14f0c 17537 else if (htab->root.target_os == is_nacl)
99059e56
RM
17538 arm_nacl_put_plt0 (htab, output_bfd, splt,
17539 got_address + 8 - (plt_address + 16));
eed94f8f
NC
17540 else if (using_thumb_only (htab))
17541 {
17542 got_displacement = got_address - (plt_address + 12);
17543
17544 plt0_entry = elf32_thumb2_plt0_entry;
17545 put_arm_insn (htab, output_bfd, plt0_entry[0],
17546 splt->contents + 0);
17547 put_arm_insn (htab, output_bfd, plt0_entry[1],
17548 splt->contents + 4);
17549 put_arm_insn (htab, output_bfd, plt0_entry[2],
17550 splt->contents + 8);
17551
17552 bfd_put_32 (output_bfd, got_displacement, splt->contents + 12);
17553 }
00a97672
RS
17554 else
17555 {
17556 got_displacement = got_address - (plt_address + 16);
17557
17558 plt0_entry = elf32_arm_plt0_entry;
52ab56c2
PB
17559 put_arm_insn (htab, output_bfd, plt0_entry[0],
17560 splt->contents + 0);
17561 put_arm_insn (htab, output_bfd, plt0_entry[1],
17562 splt->contents + 4);
17563 put_arm_insn (htab, output_bfd, plt0_entry[2],
17564 splt->contents + 8);
17565 put_arm_insn (htab, output_bfd, plt0_entry[3],
17566 splt->contents + 12);
5e681ec4 17567
5e681ec4 17568#ifdef FOUR_WORD_PLT
00a97672
RS
17569 /* The displacement value goes in the otherwise-unused
17570 last word of the second entry. */
17571 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
5e681ec4 17572#else
00a97672 17573 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
5e681ec4 17574#endif
00a97672 17575 }
f7a74f8c 17576 }
252b5132
RH
17577
17578 /* UnixWare sets the entsize of .plt to 4, although that doesn't
17579 really seem like the right value. */
74541ad4
AM
17580 if (splt->output_section->owner == output_bfd)
17581 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
00a97672 17582
0855e32b
NS
17583 if (htab->dt_tlsdesc_plt)
17584 {
17585 bfd_vma got_address
17586 = sgot->output_section->vma + sgot->output_offset;
17587 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
17588 + htab->root.sgot->output_offset);
17589 bfd_vma plt_address
17590 = splt->output_section->vma + splt->output_offset;
17591
b38cadfb 17592 arm_put_trampoline (htab, output_bfd,
0855e32b
NS
17593 splt->contents + htab->dt_tlsdesc_plt,
17594 dl_tlsdesc_lazy_trampoline, 6);
17595
17596 bfd_put_32 (output_bfd,
17597 gotplt_address + htab->dt_tlsdesc_got
17598 - (plt_address + htab->dt_tlsdesc_plt)
17599 - dl_tlsdesc_lazy_trampoline[6],
17600 splt->contents + htab->dt_tlsdesc_plt + 24);
17601 bfd_put_32 (output_bfd,
17602 got_address - (plt_address + htab->dt_tlsdesc_plt)
17603 - dl_tlsdesc_lazy_trampoline[7],
17604 splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
17605 }
17606
17607 if (htab->tls_trampoline)
17608 {
b38cadfb 17609 arm_put_trampoline (htab, output_bfd,
0855e32b
NS
17610 splt->contents + htab->tls_trampoline,
17611 tls_trampoline, 3);
17612#ifdef FOUR_WORD_PLT
17613 bfd_put_32 (output_bfd, 0x00000000,
17614 splt->contents + htab->tls_trampoline + 12);
b38cadfb 17615#endif
0855e32b
NS
17616 }
17617
90c14f0c 17618 if (htab->root.target_os == is_vxworks
0e1862bb
L
17619 && !bfd_link_pic (info)
17620 && htab->root.splt->size > 0)
00a97672
RS
17621 {
17622 /* Correct the .rel(a).plt.unloaded relocations. They will have
17623 incorrect symbol indexes. */
17624 int num_plts;
eed62c48 17625 unsigned char *p;
00a97672 17626
362d30a1 17627 num_plts = ((htab->root.splt->size - htab->plt_header_size)
00a97672
RS
17628 / htab->plt_entry_size);
17629 p = htab->srelplt2->contents + RELOC_SIZE (htab);
17630
17631 for (; num_plts; num_plts--)
17632 {
17633 Elf_Internal_Rela rel;
17634
17635 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
17636 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
17637 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
17638 p += RELOC_SIZE (htab);
17639
17640 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
17641 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
17642 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
17643 p += RELOC_SIZE (htab);
17644 }
17645 }
252b5132
RH
17646 }
17647
90c14f0c
L
17648 if (htab->root.target_os == is_nacl
17649 && htab->root.iplt != NULL
17650 && htab->root.iplt->size > 0)
99059e56
RM
17651 /* NaCl uses a special first entry in .iplt too. */
17652 arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0);
17653
252b5132 17654 /* Fill in the first three entries in the global offset table. */
229fcec5 17655 if (sgot)
252b5132 17656 {
229fcec5
MM
17657 if (sgot->size > 0)
17658 {
17659 if (sdyn == NULL)
17660 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
17661 else
17662 bfd_put_32 (output_bfd,
17663 sdyn->output_section->vma + sdyn->output_offset,
17664 sgot->contents);
17665 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
17666 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
17667 }
252b5132 17668
229fcec5
MM
17669 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
17670 }
252b5132 17671
e8b09b87
CL
17672 /* At the very end of the .rofixup section is a pointer to the GOT. */
17673 if (htab->fdpic_p && htab->srofixup != NULL)
17674 {
17675 struct elf_link_hash_entry *hgot = htab->root.hgot;
17676
17677 bfd_vma got_value = hgot->root.u.def.value
17678 + hgot->root.u.def.section->output_section->vma
17679 + hgot->root.u.def.section->output_offset;
17680
17681 arm_elf_add_rofixup(output_bfd, htab->srofixup, got_value);
17682
17683 /* Make sure we allocated and generated the same number of fixups. */
17684 BFD_ASSERT (htab->srofixup->reloc_count * 4 == htab->srofixup->size);
17685 }
17686
b34976b6 17687 return TRUE;
252b5132
RH
17688}
17689
ed7e9d0b
AM
17690static bfd_boolean
17691elf32_arm_init_file_header (bfd *abfd, struct bfd_link_info *link_info)
ba96a88f 17692{
9b485d32 17693 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
e489d0ae 17694 struct elf32_arm_link_hash_table *globals;
ac4c9b04 17695 struct elf_segment_map *m;
ba96a88f 17696
ed7e9d0b
AM
17697 if (!_bfd_elf_init_file_header (abfd, link_info))
17698 return FALSE;
17699
ba96a88f
NC
17700 i_ehdrp = elf_elfheader (abfd);
17701
94a3258f
PB
17702 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
17703 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
ba96a88f 17704 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
e489d0ae 17705
93204d3a
PB
17706 if (link_info)
17707 {
17708 globals = elf32_arm_hash_table (link_info);
4dfe6ac6 17709 if (globals != NULL && globals->byteswap_code)
93204d3a 17710 i_ehdrp->e_flags |= EF_ARM_BE8;
18a20338
CL
17711
17712 if (globals->fdpic_p)
17713 i_ehdrp->e_ident[EI_OSABI] |= ELFOSABI_ARM_FDPIC;
93204d3a 17714 }
3bfcb652
NC
17715
17716 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5
17717 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC)))
17718 {
17719 int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args);
5c294fee 17720 if (abi == AEABI_VFP_args_vfp)
3bfcb652
NC
17721 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD;
17722 else
17723 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT;
17724 }
ac4c9b04
MG
17725
17726 /* Scan segment to set p_flags attribute if it contains only sections with
f0728ee3 17727 SHF_ARM_PURECODE flag. */
ac4c9b04
MG
17728 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
17729 {
17730 unsigned int j;
17731
17732 if (m->count == 0)
17733 continue;
17734 for (j = 0; j < m->count; j++)
17735 {
f0728ee3 17736 if (!(elf_section_flags (m->sections[j]) & SHF_ARM_PURECODE))
ac4c9b04
MG
17737 break;
17738 }
17739 if (j == m->count)
17740 {
17741 m->p_flags = PF_X;
17742 m->p_flags_valid = 1;
17743 }
17744 }
ed7e9d0b 17745 return TRUE;
ba96a88f
NC
17746}
17747
99e4ae17 17748static enum elf_reloc_type_class
7e612e98
AM
17749elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
17750 const asection *rel_sec ATTRIBUTE_UNUSED,
17751 const Elf_Internal_Rela *rela)
99e4ae17 17752{
f51e552e 17753 switch ((int) ELF32_R_TYPE (rela->r_info))
99e4ae17
AJ
17754 {
17755 case R_ARM_RELATIVE:
17756 return reloc_class_relative;
17757 case R_ARM_JUMP_SLOT:
17758 return reloc_class_plt;
17759 case R_ARM_COPY:
17760 return reloc_class_copy;
109575d7
JW
17761 case R_ARM_IRELATIVE:
17762 return reloc_class_ifunc;
99e4ae17
AJ
17763 default:
17764 return reloc_class_normal;
17765 }
17766}
17767
e489d0ae 17768static void
cc364be6 17769arm_final_write_processing (bfd *abfd)
e16bb312 17770{
5a6c6817 17771 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
e16bb312
NC
17772}
17773
cc364be6
AM
17774static bfd_boolean
17775elf32_arm_final_write_processing (bfd *abfd)
06f44071 17776{
cc364be6
AM
17777 arm_final_write_processing (abfd);
17778 return _bfd_elf_final_write_processing (abfd);
06f44071
AM
17779}
17780
40a18ebd
NC
17781/* Return TRUE if this is an unwinding table entry. */
17782
17783static bfd_boolean
17784is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
17785{
0112cd26
NC
17786 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
17787 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
40a18ebd
NC
17788}
17789
17790
17791/* Set the type and flags for an ARM section. We do this by
17792 the section name, which is a hack, but ought to work. */
17793
17794static bfd_boolean
17795elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
17796{
17797 const char * name;
17798
fd361982 17799 name = bfd_section_name (sec);
40a18ebd
NC
17800
17801 if (is_arm_elf_unwind_section_name (abfd, name))
17802 {
17803 hdr->sh_type = SHT_ARM_EXIDX;
17804 hdr->sh_flags |= SHF_LINK_ORDER;
17805 }
ac4c9b04 17806
f0728ee3
AV
17807 if (sec->flags & SEC_ELF_PURECODE)
17808 hdr->sh_flags |= SHF_ARM_PURECODE;
ac4c9b04 17809
40a18ebd
NC
17810 return TRUE;
17811}
17812
6dc132d9
L
17813/* Handle an ARM specific section when reading an object file. This is
17814 called when bfd_section_from_shdr finds a section with an unknown
17815 type. */
40a18ebd
NC
17816
17817static bfd_boolean
17818elf32_arm_section_from_shdr (bfd *abfd,
17819 Elf_Internal_Shdr * hdr,
6dc132d9
L
17820 const char *name,
17821 int shindex)
40a18ebd
NC
17822{
17823 /* There ought to be a place to keep ELF backend specific flags, but
17824 at the moment there isn't one. We just keep track of the
17825 sections by their name, instead. Fortunately, the ABI gives
17826 names for all the ARM specific sections, so we will probably get
17827 away with this. */
17828 switch (hdr->sh_type)
17829 {
17830 case SHT_ARM_EXIDX:
0951f019
RE
17831 case SHT_ARM_PREEMPTMAP:
17832 case SHT_ARM_ATTRIBUTES:
40a18ebd
NC
17833 break;
17834
17835 default:
17836 return FALSE;
17837 }
17838
6dc132d9 17839 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
40a18ebd
NC
17840 return FALSE;
17841
17842 return TRUE;
17843}
e489d0ae 17844
44444f50
NC
17845static _arm_elf_section_data *
17846get_arm_elf_section_data (asection * sec)
17847{
47b2e99c
JZ
17848 if (sec && sec->owner && is_arm_elf (sec->owner))
17849 return elf32_arm_section_data (sec);
44444f50
NC
17850 else
17851 return NULL;
8e3de13a
NC
17852}
17853
4e617b1e
PB
17854typedef struct
17855{
57402f1e 17856 void *flaginfo;
4e617b1e 17857 struct bfd_link_info *info;
91a5743d
PB
17858 asection *sec;
17859 int sec_shndx;
6e0b88f1
AM
17860 int (*func) (void *, const char *, Elf_Internal_Sym *,
17861 asection *, struct elf_link_hash_entry *);
4e617b1e
PB
17862} output_arch_syminfo;
17863
17864enum map_symbol_type
17865{
17866 ARM_MAP_ARM,
17867 ARM_MAP_THUMB,
17868 ARM_MAP_DATA
17869};
17870
17871
7413f23f 17872/* Output a single mapping symbol. */
4e617b1e
PB
17873
17874static bfd_boolean
7413f23f
DJ
17875elf32_arm_output_map_sym (output_arch_syminfo *osi,
17876 enum map_symbol_type type,
17877 bfd_vma offset)
4e617b1e
PB
17878{
17879 static const char *names[3] = {"$a", "$t", "$d"};
4e617b1e
PB
17880 Elf_Internal_Sym sym;
17881
91a5743d
PB
17882 sym.st_value = osi->sec->output_section->vma
17883 + osi->sec->output_offset
17884 + offset;
4e617b1e
PB
17885 sym.st_size = 0;
17886 sym.st_other = 0;
17887 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
91a5743d 17888 sym.st_shndx = osi->sec_shndx;
35fc36a8 17889 sym.st_target_internal = 0;
fe33d2fa 17890 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
57402f1e 17891 return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1;
4e617b1e
PB
17892}
17893
34e77a92
RS
17894/* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
17895 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
4e617b1e
PB
17896
17897static bfd_boolean
34e77a92
RS
17898elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
17899 bfd_boolean is_iplt_entry_p,
17900 union gotplt_union *root_plt,
17901 struct arm_plt_info *arm_plt)
4e617b1e 17902{
4e617b1e 17903 struct elf32_arm_link_hash_table *htab;
34e77a92 17904 bfd_vma addr, plt_header_size;
4e617b1e 17905
34e77a92 17906 if (root_plt->offset == (bfd_vma) -1)
4e617b1e
PB
17907 return TRUE;
17908
4dfe6ac6
NC
17909 htab = elf32_arm_hash_table (osi->info);
17910 if (htab == NULL)
17911 return FALSE;
17912
34e77a92
RS
17913 if (is_iplt_entry_p)
17914 {
17915 osi->sec = htab->root.iplt;
17916 plt_header_size = 0;
17917 }
17918 else
17919 {
17920 osi->sec = htab->root.splt;
17921 plt_header_size = htab->plt_header_size;
17922 }
17923 osi->sec_shndx = (_bfd_elf_section_from_bfd_section
17924 (osi->info->output_bfd, osi->sec->output_section));
17925
17926 addr = root_plt->offset & -2;
90c14f0c 17927 if (htab->root.target_os == is_symbian)
4e617b1e 17928 {
7413f23f 17929 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e 17930 return FALSE;
7413f23f 17931 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
4e617b1e
PB
17932 return FALSE;
17933 }
90c14f0c 17934 else if (htab->root.target_os == is_vxworks)
4e617b1e 17935 {
7413f23f 17936 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e 17937 return FALSE;
7413f23f 17938 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
4e617b1e 17939 return FALSE;
7413f23f 17940 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
4e617b1e 17941 return FALSE;
7413f23f 17942 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
4e617b1e
PB
17943 return FALSE;
17944 }
90c14f0c 17945 else if (htab->root.target_os == is_nacl)
b38cadfb
NC
17946 {
17947 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
17948 return FALSE;
17949 }
7801f98f
CL
17950 else if (htab->fdpic_p)
17951 {
59029f57
CL
17952 enum map_symbol_type type = using_thumb_only(htab)
17953 ? ARM_MAP_THUMB
17954 : ARM_MAP_ARM;
17955
7801f98f 17956 if (elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt))
4b24dd1a
AM
17957 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
17958 return FALSE;
59029f57 17959 if (!elf32_arm_output_map_sym (osi, type, addr))
4b24dd1a 17960 return FALSE;
7801f98f 17961 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 16))
4b24dd1a 17962 return FALSE;
7801f98f 17963 if (htab->plt_entry_size == 4 * ARRAY_SIZE(elf32_arm_fdpic_plt_entry))
4b24dd1a
AM
17964 if (!elf32_arm_output_map_sym (osi, type, addr + 24))
17965 return FALSE;
7801f98f 17966 }
eed94f8f
NC
17967 else if (using_thumb_only (htab))
17968 {
17969 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
17970 return FALSE;
6a631e86 17971 }
4e617b1e
PB
17972 else
17973 {
34e77a92 17974 bfd_boolean thumb_stub_p;
bd97cb95 17975
34e77a92
RS
17976 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
17977 if (thumb_stub_p)
4e617b1e 17978 {
7413f23f 17979 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
4e617b1e
PB
17980 return FALSE;
17981 }
17982#ifdef FOUR_WORD_PLT
7413f23f 17983 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e 17984 return FALSE;
7413f23f 17985 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
4e617b1e
PB
17986 return FALSE;
17987#else
906e58ca 17988 /* A three-word PLT with no Thumb thunk contains only Arm code,
4e617b1e
PB
17989 so only need to output a mapping symbol for the first PLT entry and
17990 entries with thumb thunks. */
34e77a92 17991 if (thumb_stub_p || addr == plt_header_size)
4e617b1e 17992 {
7413f23f 17993 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e
PB
17994 return FALSE;
17995 }
17996#endif
17997 }
17998
17999 return TRUE;
18000}
18001
34e77a92
RS
18002/* Output mapping symbols for PLT entries associated with H. */
18003
18004static bfd_boolean
18005elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
18006{
18007 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
18008 struct elf32_arm_link_hash_entry *eh;
18009
18010 if (h->root.type == bfd_link_hash_indirect)
18011 return TRUE;
18012
18013 if (h->root.type == bfd_link_hash_warning)
18014 /* When warning symbols are created, they **replace** the "real"
18015 entry in the hash table, thus we never get to see the real
18016 symbol in a hash traversal. So look at it now. */
18017 h = (struct elf_link_hash_entry *) h->root.u.i.link;
18018
18019 eh = (struct elf32_arm_link_hash_entry *) h;
18020 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
18021 &h->plt, &eh->plt);
18022}
18023
4f4faa4d
TP
18024/* Bind a veneered symbol to its veneer identified by its hash entry
18025 STUB_ENTRY. The veneered location thus loose its symbol. */
18026
18027static void
18028arm_stub_claim_sym (struct elf32_arm_stub_hash_entry *stub_entry)
18029{
18030 struct elf32_arm_link_hash_entry *hash = stub_entry->h;
18031
18032 BFD_ASSERT (hash);
18033 hash->root.root.u.def.section = stub_entry->stub_sec;
18034 hash->root.root.u.def.value = stub_entry->stub_offset;
18035 hash->root.size = stub_entry->stub_size;
18036}
18037
7413f23f
DJ
18038/* Output a single local symbol for a generated stub. */
18039
18040static bfd_boolean
18041elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
18042 bfd_vma offset, bfd_vma size)
18043{
7413f23f
DJ
18044 Elf_Internal_Sym sym;
18045
7413f23f
DJ
18046 sym.st_value = osi->sec->output_section->vma
18047 + osi->sec->output_offset
18048 + offset;
18049 sym.st_size = size;
18050 sym.st_other = 0;
18051 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
18052 sym.st_shndx = osi->sec_shndx;
35fc36a8 18053 sym.st_target_internal = 0;
57402f1e 18054 return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1;
7413f23f 18055}
4e617b1e 18056
da5938a2 18057static bfd_boolean
8029a119
NC
18058arm_map_one_stub (struct bfd_hash_entry * gen_entry,
18059 void * in_arg)
da5938a2
NC
18060{
18061 struct elf32_arm_stub_hash_entry *stub_entry;
da5938a2
NC
18062 asection *stub_sec;
18063 bfd_vma addr;
7413f23f 18064 char *stub_name;
9a008db3 18065 output_arch_syminfo *osi;
d3ce72d0 18066 const insn_sequence *template_sequence;
461a49ca
DJ
18067 enum stub_insn_type prev_type;
18068 int size;
18069 int i;
18070 enum map_symbol_type sym_type;
da5938a2
NC
18071
18072 /* Massage our args to the form they really have. */
18073 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
9a008db3 18074 osi = (output_arch_syminfo *) in_arg;
da5938a2 18075
da5938a2
NC
18076 stub_sec = stub_entry->stub_sec;
18077
18078 /* Ensure this stub is attached to the current section being
7413f23f 18079 processed. */
da5938a2
NC
18080 if (stub_sec != osi->sec)
18081 return TRUE;
18082
7413f23f 18083 addr = (bfd_vma) stub_entry->stub_offset;
d3ce72d0 18084 template_sequence = stub_entry->stub_template;
4f4faa4d
TP
18085
18086 if (arm_stub_sym_claimed (stub_entry->stub_type))
18087 arm_stub_claim_sym (stub_entry);
18088 else
7413f23f 18089 {
4f4faa4d
TP
18090 stub_name = stub_entry->output_name;
18091 switch (template_sequence[0].type)
18092 {
18093 case ARM_TYPE:
18094 if (!elf32_arm_output_stub_sym (osi, stub_name, addr,
18095 stub_entry->stub_size))
18096 return FALSE;
18097 break;
18098 case THUMB16_TYPE:
18099 case THUMB32_TYPE:
18100 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
18101 stub_entry->stub_size))
18102 return FALSE;
18103 break;
18104 default:
18105 BFD_FAIL ();
18106 return 0;
18107 }
7413f23f 18108 }
da5938a2 18109
461a49ca
DJ
18110 prev_type = DATA_TYPE;
18111 size = 0;
18112 for (i = 0; i < stub_entry->stub_template_size; i++)
18113 {
d3ce72d0 18114 switch (template_sequence[i].type)
461a49ca
DJ
18115 {
18116 case ARM_TYPE:
18117 sym_type = ARM_MAP_ARM;
18118 break;
18119
18120 case THUMB16_TYPE:
48229727 18121 case THUMB32_TYPE:
461a49ca
DJ
18122 sym_type = ARM_MAP_THUMB;
18123 break;
18124
18125 case DATA_TYPE:
18126 sym_type = ARM_MAP_DATA;
18127 break;
18128
18129 default:
18130 BFD_FAIL ();
4e31c731 18131 return FALSE;
461a49ca
DJ
18132 }
18133
d3ce72d0 18134 if (template_sequence[i].type != prev_type)
461a49ca 18135 {
d3ce72d0 18136 prev_type = template_sequence[i].type;
461a49ca
DJ
18137 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
18138 return FALSE;
18139 }
18140
d3ce72d0 18141 switch (template_sequence[i].type)
461a49ca
DJ
18142 {
18143 case ARM_TYPE:
48229727 18144 case THUMB32_TYPE:
461a49ca
DJ
18145 size += 4;
18146 break;
18147
18148 case THUMB16_TYPE:
18149 size += 2;
18150 break;
18151
18152 case DATA_TYPE:
18153 size += 4;
18154 break;
18155
18156 default:
18157 BFD_FAIL ();
4e31c731 18158 return FALSE;
461a49ca
DJ
18159 }
18160 }
18161
da5938a2
NC
18162 return TRUE;
18163}
18164
33811162
DG
18165/* Output mapping symbols for linker generated sections,
18166 and for those data-only sections that do not have a
18167 $d. */
4e617b1e
PB
18168
18169static bfd_boolean
18170elf32_arm_output_arch_local_syms (bfd *output_bfd,
906e58ca 18171 struct bfd_link_info *info,
57402f1e 18172 void *flaginfo,
6e0b88f1
AM
18173 int (*func) (void *, const char *,
18174 Elf_Internal_Sym *,
18175 asection *,
18176 struct elf_link_hash_entry *))
4e617b1e
PB
18177{
18178 output_arch_syminfo osi;
18179 struct elf32_arm_link_hash_table *htab;
91a5743d
PB
18180 bfd_vma offset;
18181 bfd_size_type size;
33811162 18182 bfd *input_bfd;
4e617b1e
PB
18183
18184 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
18185 if (htab == NULL)
18186 return FALSE;
18187
906e58ca 18188 check_use_blx (htab);
91a5743d 18189
57402f1e 18190 osi.flaginfo = flaginfo;
4e617b1e
PB
18191 osi.info = info;
18192 osi.func = func;
906e58ca 18193
33811162
DG
18194 /* Add a $d mapping symbol to data-only sections that
18195 don't have any mapping symbol. This may result in (harmless) redundant
18196 mapping symbols. */
18197 for (input_bfd = info->input_bfds;
18198 input_bfd != NULL;
c72f2fb2 18199 input_bfd = input_bfd->link.next)
33811162
DG
18200 {
18201 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
18202 for (osi.sec = input_bfd->sections;
18203 osi.sec != NULL;
18204 osi.sec = osi.sec->next)
18205 {
18206 if (osi.sec->output_section != NULL
f7dd8c79
DJ
18207 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
18208 != 0)
33811162
DG
18209 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
18210 == SEC_HAS_CONTENTS
18211 && get_arm_elf_section_data (osi.sec) != NULL
501abfe0 18212 && get_arm_elf_section_data (osi.sec)->mapcount == 0
7d500b83
CL
18213 && osi.sec->size > 0
18214 && (osi.sec->flags & SEC_EXCLUDE) == 0)
33811162
DG
18215 {
18216 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18217 (output_bfd, osi.sec->output_section);
18218 if (osi.sec_shndx != (int)SHN_BAD)
18219 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
18220 }
18221 }
18222 }
18223
91a5743d
PB
18224 /* ARM->Thumb glue. */
18225 if (htab->arm_glue_size > 0)
18226 {
3d4d4302
AM
18227 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18228 ARM2THUMB_GLUE_SECTION_NAME);
91a5743d
PB
18229
18230 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18231 (output_bfd, osi.sec->output_section);
0e1862bb 18232 if (bfd_link_pic (info) || htab->root.is_relocatable_executable
91a5743d
PB
18233 || htab->pic_veneer)
18234 size = ARM2THUMB_PIC_GLUE_SIZE;
18235 else if (htab->use_blx)
18236 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
18237 else
18238 size = ARM2THUMB_STATIC_GLUE_SIZE;
4e617b1e 18239
91a5743d
PB
18240 for (offset = 0; offset < htab->arm_glue_size; offset += size)
18241 {
7413f23f
DJ
18242 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
18243 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
91a5743d
PB
18244 }
18245 }
18246
18247 /* Thumb->ARM glue. */
18248 if (htab->thumb_glue_size > 0)
18249 {
3d4d4302
AM
18250 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18251 THUMB2ARM_GLUE_SECTION_NAME);
91a5743d
PB
18252
18253 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18254 (output_bfd, osi.sec->output_section);
18255 size = THUMB2ARM_GLUE_SIZE;
18256
18257 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
18258 {
7413f23f
DJ
18259 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
18260 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
91a5743d
PB
18261 }
18262 }
18263
845b51d6
PB
18264 /* ARMv4 BX veneers. */
18265 if (htab->bx_glue_size > 0)
18266 {
3d4d4302
AM
18267 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18268 ARM_BX_GLUE_SECTION_NAME);
845b51d6
PB
18269
18270 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18271 (output_bfd, osi.sec->output_section);
18272
7413f23f 18273 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
845b51d6
PB
18274 }
18275
8029a119
NC
18276 /* Long calls stubs. */
18277 if (htab->stub_bfd && htab->stub_bfd->sections)
18278 {
da5938a2 18279 asection* stub_sec;
8029a119 18280
da5938a2
NC
18281 for (stub_sec = htab->stub_bfd->sections;
18282 stub_sec != NULL;
8029a119
NC
18283 stub_sec = stub_sec->next)
18284 {
18285 /* Ignore non-stub sections. */
18286 if (!strstr (stub_sec->name, STUB_SUFFIX))
18287 continue;
da5938a2 18288
8029a119 18289 osi.sec = stub_sec;
da5938a2 18290
8029a119
NC
18291 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18292 (output_bfd, osi.sec->output_section);
da5938a2 18293
8029a119
NC
18294 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
18295 }
18296 }
da5938a2 18297
91a5743d 18298 /* Finally, output mapping symbols for the PLT. */
34e77a92 18299 if (htab->root.splt && htab->root.splt->size > 0)
4e617b1e 18300 {
34e77a92
RS
18301 osi.sec = htab->root.splt;
18302 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
18303 (output_bfd, osi.sec->output_section));
18304
18305 /* Output mapping symbols for the plt header. SymbianOS does not have a
18306 plt header. */
90c14f0c 18307 if (htab->root.target_os == is_vxworks)
34e77a92
RS
18308 {
18309 /* VxWorks shared libraries have no PLT header. */
0e1862bb 18310 if (!bfd_link_pic (info))
34e77a92
RS
18311 {
18312 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18313 return FALSE;
18314 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
18315 return FALSE;
18316 }
18317 }
90c14f0c 18318 else if (htab->root.target_os == is_nacl)
b38cadfb
NC
18319 {
18320 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18321 return FALSE;
18322 }
59029f57 18323 else if (using_thumb_only (htab) && !htab->fdpic_p)
eed94f8f
NC
18324 {
18325 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 0))
18326 return FALSE;
18327 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
18328 return FALSE;
18329 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 16))
18330 return FALSE;
18331 }
90c14f0c 18332 else if (htab->root.target_os != is_symbian && !htab->fdpic_p)
4e617b1e 18333 {
7413f23f 18334 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
4e617b1e 18335 return FALSE;
34e77a92
RS
18336#ifndef FOUR_WORD_PLT
18337 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
4e617b1e 18338 return FALSE;
34e77a92 18339#endif
4e617b1e
PB
18340 }
18341 }
90c14f0c
L
18342 if (htab->root.target_os == is_nacl
18343 && htab->root.iplt
18344 && htab->root.iplt->size > 0)
99059e56
RM
18345 {
18346 /* NaCl uses a special first entry in .iplt too. */
18347 osi.sec = htab->root.iplt;
18348 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
18349 (output_bfd, osi.sec->output_section));
18350 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18351 return FALSE;
18352 }
34e77a92
RS
18353 if ((htab->root.splt && htab->root.splt->size > 0)
18354 || (htab->root.iplt && htab->root.iplt->size > 0))
4e617b1e 18355 {
34e77a92
RS
18356 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
18357 for (input_bfd = info->input_bfds;
18358 input_bfd != NULL;
c72f2fb2 18359 input_bfd = input_bfd->link.next)
34e77a92
RS
18360 {
18361 struct arm_local_iplt_info **local_iplt;
18362 unsigned int i, num_syms;
4e617b1e 18363
34e77a92
RS
18364 local_iplt = elf32_arm_local_iplt (input_bfd);
18365 if (local_iplt != NULL)
18366 {
18367 num_syms = elf_symtab_hdr (input_bfd).sh_info;
18368 for (i = 0; i < num_syms; i++)
18369 if (local_iplt[i] != NULL
18370 && !elf32_arm_output_plt_map_1 (&osi, TRUE,
18371 &local_iplt[i]->root,
18372 &local_iplt[i]->arm))
18373 return FALSE;
18374 }
18375 }
18376 }
0855e32b
NS
18377 if (htab->dt_tlsdesc_plt != 0)
18378 {
18379 /* Mapping symbols for the lazy tls trampoline. */
18380 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
18381 return FALSE;
b38cadfb 18382
0855e32b
NS
18383 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
18384 htab->dt_tlsdesc_plt + 24))
18385 return FALSE;
18386 }
18387 if (htab->tls_trampoline != 0)
18388 {
18389 /* Mapping symbols for the tls trampoline. */
18390 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
18391 return FALSE;
18392#ifdef FOUR_WORD_PLT
18393 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
18394 htab->tls_trampoline + 12))
18395 return FALSE;
b38cadfb 18396#endif
0855e32b 18397 }
b38cadfb 18398
4e617b1e
PB
18399 return TRUE;
18400}
18401
54ddd295
TP
18402/* Filter normal symbols of CMSE entry functions of ABFD to include in
18403 the import library. All SYMCOUNT symbols of ABFD can be examined
18404 from their pointers in SYMS. Pointers of symbols to keep should be
18405 stored continuously at the beginning of that array.
18406
18407 Returns the number of symbols to keep. */
18408
18409static unsigned int
18410elf32_arm_filter_cmse_symbols (bfd *abfd ATTRIBUTE_UNUSED,
18411 struct bfd_link_info *info,
18412 asymbol **syms, long symcount)
18413{
18414 size_t maxnamelen;
18415 char *cmse_name;
18416 long src_count, dst_count = 0;
18417 struct elf32_arm_link_hash_table *htab;
18418
18419 htab = elf32_arm_hash_table (info);
18420 if (!htab->stub_bfd || !htab->stub_bfd->sections)
18421 symcount = 0;
18422
18423 maxnamelen = 128;
18424 cmse_name = (char *) bfd_malloc (maxnamelen);
7a0fb7be
NC
18425 BFD_ASSERT (cmse_name);
18426
54ddd295
TP
18427 for (src_count = 0; src_count < symcount; src_count++)
18428 {
18429 struct elf32_arm_link_hash_entry *cmse_hash;
18430 asymbol *sym;
18431 flagword flags;
18432 char *name;
18433 size_t namelen;
18434
18435 sym = syms[src_count];
18436 flags = sym->flags;
18437 name = (char *) bfd_asymbol_name (sym);
18438
18439 if ((flags & BSF_FUNCTION) != BSF_FUNCTION)
18440 continue;
18441 if (!(flags & (BSF_GLOBAL | BSF_WEAK)))
18442 continue;
18443
18444 namelen = strlen (name) + sizeof (CMSE_PREFIX) + 1;
18445 if (namelen > maxnamelen)
18446 {
18447 cmse_name = (char *)
18448 bfd_realloc (cmse_name, namelen);
18449 maxnamelen = namelen;
18450 }
18451 snprintf (cmse_name, maxnamelen, "%s%s", CMSE_PREFIX, name);
18452 cmse_hash = (struct elf32_arm_link_hash_entry *)
18453 elf_link_hash_lookup (&(htab)->root, cmse_name, FALSE, FALSE, TRUE);
18454
18455 if (!cmse_hash
18456 || (cmse_hash->root.root.type != bfd_link_hash_defined
18457 && cmse_hash->root.root.type != bfd_link_hash_defweak)
18458 || cmse_hash->root.type != STT_FUNC)
18459 continue;
18460
54ddd295
TP
18461 syms[dst_count++] = sym;
18462 }
18463 free (cmse_name);
18464
18465 syms[dst_count] = NULL;
18466
18467 return dst_count;
18468}
18469
18470/* Filter symbols of ABFD to include in the import library. All
18471 SYMCOUNT symbols of ABFD can be examined from their pointers in
18472 SYMS. Pointers of symbols to keep should be stored continuously at
18473 the beginning of that array.
18474
18475 Returns the number of symbols to keep. */
18476
18477static unsigned int
18478elf32_arm_filter_implib_symbols (bfd *abfd ATTRIBUTE_UNUSED,
18479 struct bfd_link_info *info,
18480 asymbol **syms, long symcount)
18481{
18482 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
18483
046734ff
TP
18484 /* Requirement 8 of "ARM v8-M Security Extensions: Requirements on
18485 Development Tools" (ARM-ECM-0359818) mandates Secure Gateway import
18486 library to be a relocatable object file. */
18487 BFD_ASSERT (!(bfd_get_file_flags (info->out_implib_bfd) & EXEC_P));
54ddd295
TP
18488 if (globals->cmse_implib)
18489 return elf32_arm_filter_cmse_symbols (abfd, info, syms, symcount);
18490 else
18491 return _bfd_elf_filter_global_symbols (abfd, info, syms, symcount);
18492}
18493
e489d0ae
PB
18494/* Allocate target specific section data. */
18495
18496static bfd_boolean
18497elf32_arm_new_section_hook (bfd *abfd, asection *sec)
18498{
f592407e
AM
18499 if (!sec->used_by_bfd)
18500 {
18501 _arm_elf_section_data *sdata;
986f0783 18502 size_t amt = sizeof (*sdata);
e489d0ae 18503
21d799b5 18504 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
f592407e
AM
18505 if (sdata == NULL)
18506 return FALSE;
18507 sec->used_by_bfd = sdata;
18508 }
e489d0ae
PB
18509
18510 return _bfd_elf_new_section_hook (abfd, sec);
18511}
18512
18513
18514/* Used to order a list of mapping symbols by address. */
18515
18516static int
18517elf32_arm_compare_mapping (const void * a, const void * b)
18518{
7f6a71ff
JM
18519 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
18520 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
18521
18522 if (amap->vma > bmap->vma)
18523 return 1;
18524 else if (amap->vma < bmap->vma)
18525 return -1;
18526 else if (amap->type > bmap->type)
18527 /* Ensure results do not depend on the host qsort for objects with
18528 multiple mapping symbols at the same address by sorting on type
18529 after vma. */
18530 return 1;
18531 else if (amap->type < bmap->type)
18532 return -1;
18533 else
18534 return 0;
e489d0ae
PB
18535}
18536
2468f9c9
PB
18537/* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
18538
18539static unsigned long
18540offset_prel31 (unsigned long addr, bfd_vma offset)
18541{
18542 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
18543}
18544
18545/* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
18546 relocations. */
18547
18548static void
18549copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
18550{
18551 unsigned long first_word = bfd_get_32 (output_bfd, from);
18552 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
b38cadfb 18553
2468f9c9
PB
18554 /* High bit of first word is supposed to be zero. */
18555 if ((first_word & 0x80000000ul) == 0)
18556 first_word = offset_prel31 (first_word, offset);
b38cadfb 18557
2468f9c9
PB
18558 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
18559 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
18560 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
18561 second_word = offset_prel31 (second_word, offset);
b38cadfb 18562
2468f9c9
PB
18563 bfd_put_32 (output_bfd, first_word, to);
18564 bfd_put_32 (output_bfd, second_word, to + 4);
18565}
e489d0ae 18566
48229727
JB
18567/* Data for make_branch_to_a8_stub(). */
18568
b38cadfb
NC
18569struct a8_branch_to_stub_data
18570{
48229727
JB
18571 asection *writing_section;
18572 bfd_byte *contents;
18573};
18574
18575
18576/* Helper to insert branches to Cortex-A8 erratum stubs in the right
18577 places for a particular section. */
18578
18579static bfd_boolean
18580make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
99059e56 18581 void *in_arg)
48229727
JB
18582{
18583 struct elf32_arm_stub_hash_entry *stub_entry;
18584 struct a8_branch_to_stub_data *data;
18585 bfd_byte *contents;
18586 unsigned long branch_insn;
18587 bfd_vma veneered_insn_loc, veneer_entry_loc;
18588 bfd_signed_vma branch_offset;
18589 bfd *abfd;
8d9d9490 18590 unsigned int loc;
48229727
JB
18591
18592 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
18593 data = (struct a8_branch_to_stub_data *) in_arg;
18594
18595 if (stub_entry->target_section != data->writing_section
4563a860 18596 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
48229727
JB
18597 return TRUE;
18598
18599 contents = data->contents;
18600
8d9d9490
TP
18601 /* We use target_section as Cortex-A8 erratum workaround stubs are only
18602 generated when both source and target are in the same section. */
48229727
JB
18603 veneered_insn_loc = stub_entry->target_section->output_section->vma
18604 + stub_entry->target_section->output_offset
8d9d9490 18605 + stub_entry->source_value;
48229727
JB
18606
18607 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
18608 + stub_entry->stub_sec->output_offset
18609 + stub_entry->stub_offset;
18610
18611 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
18612 veneered_insn_loc &= ~3u;
18613
18614 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
18615
18616 abfd = stub_entry->target_section->owner;
8d9d9490 18617 loc = stub_entry->source_value;
48229727
JB
18618
18619 /* We attempt to avoid this condition by setting stubs_always_after_branch
18620 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
18621 This check is just to be on the safe side... */
18622 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
18623 {
871b3ab2 18624 _bfd_error_handler (_("%pB: error: Cortex-A8 erratum stub is "
4eca0228 18625 "allocated in unsafe location"), abfd);
48229727
JB
18626 return FALSE;
18627 }
18628
18629 switch (stub_entry->stub_type)
18630 {
18631 case arm_stub_a8_veneer_b:
18632 case arm_stub_a8_veneer_b_cond:
18633 branch_insn = 0xf0009000;
18634 goto jump24;
18635
18636 case arm_stub_a8_veneer_blx:
18637 branch_insn = 0xf000e800;
18638 goto jump24;
18639
18640 case arm_stub_a8_veneer_bl:
18641 {
18642 unsigned int i1, j1, i2, j2, s;
18643
18644 branch_insn = 0xf000d000;
18645
18646 jump24:
18647 if (branch_offset < -16777216 || branch_offset > 16777214)
18648 {
18649 /* There's not much we can do apart from complain if this
18650 happens. */
871b3ab2 18651 _bfd_error_handler (_("%pB: error: Cortex-A8 erratum stub out "
4eca0228 18652 "of range (input file too large)"), abfd);
48229727
JB
18653 return FALSE;
18654 }
18655
18656 /* i1 = not(j1 eor s), so:
18657 not i1 = j1 eor s
18658 j1 = (not i1) eor s. */
18659
18660 branch_insn |= (branch_offset >> 1) & 0x7ff;
18661 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
18662 i2 = (branch_offset >> 22) & 1;
18663 i1 = (branch_offset >> 23) & 1;
18664 s = (branch_offset >> 24) & 1;
18665 j1 = (!i1) ^ s;
18666 j2 = (!i2) ^ s;
18667 branch_insn |= j2 << 11;
18668 branch_insn |= j1 << 13;
18669 branch_insn |= s << 26;
18670 }
18671 break;
18672
18673 default:
18674 BFD_FAIL ();
18675 return FALSE;
18676 }
18677
8d9d9490
TP
18678 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[loc]);
18679 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[loc + 2]);
48229727
JB
18680
18681 return TRUE;
18682}
18683
a504d23a
LA
18684/* Beginning of stm32l4xx work-around. */
18685
18686/* Functions encoding instructions necessary for the emission of the
18687 fix-stm32l4xx-629360.
18688 Encoding is extracted from the
18689 ARM (C) Architecture Reference Manual
18690 ARMv7-A and ARMv7-R edition
18691 ARM DDI 0406C.b (ID072512). */
18692
18693static inline bfd_vma
82188b29 18694create_instruction_branch_absolute (int branch_offset)
a504d23a
LA
18695{
18696 /* A8.8.18 B (A8-334)
18697 B target_address (Encoding T4). */
18698 /* 1111 - 0Sii - iiii - iiii - 10J1 - Jiii - iiii - iiii. */
18699 /* jump offset is: S:I1:I2:imm10:imm11:0. */
18700 /* with : I1 = NOT (J1 EOR S) I2 = NOT (J2 EOR S). */
18701
a504d23a
LA
18702 int s = ((branch_offset & 0x1000000) >> 24);
18703 int j1 = s ^ !((branch_offset & 0x800000) >> 23);
18704 int j2 = s ^ !((branch_offset & 0x400000) >> 22);
18705
18706 if (branch_offset < -(1 << 24) || branch_offset >= (1 << 24))
18707 BFD_ASSERT (0 && "Error: branch out of range. Cannot create branch.");
18708
18709 bfd_vma patched_inst = 0xf0009000
18710 | s << 26 /* S. */
18711 | (((unsigned long) (branch_offset) >> 12) & 0x3ff) << 16 /* imm10. */
18712 | j1 << 13 /* J1. */
18713 | j2 << 11 /* J2. */
18714 | (((unsigned long) (branch_offset) >> 1) & 0x7ff); /* imm11. */
18715
18716 return patched_inst;
18717}
18718
18719static inline bfd_vma
18720create_instruction_ldmia (int base_reg, int wback, int reg_mask)
18721{
18722 /* A8.8.57 LDM/LDMIA/LDMFD (A8-396)
18723 LDMIA Rn!, {Ra, Rb, Rc, ...} (Encoding T2). */
18724 bfd_vma patched_inst = 0xe8900000
18725 | (/*W=*/wback << 21)
18726 | (base_reg << 16)
18727 | (reg_mask & 0x0000ffff);
18728
18729 return patched_inst;
18730}
18731
18732static inline bfd_vma
18733create_instruction_ldmdb (int base_reg, int wback, int reg_mask)
18734{
18735 /* A8.8.60 LDMDB/LDMEA (A8-402)
18736 LDMDB Rn!, {Ra, Rb, Rc, ...} (Encoding T1). */
18737 bfd_vma patched_inst = 0xe9100000
18738 | (/*W=*/wback << 21)
18739 | (base_reg << 16)
18740 | (reg_mask & 0x0000ffff);
18741
18742 return patched_inst;
18743}
18744
18745static inline bfd_vma
18746create_instruction_mov (int target_reg, int source_reg)
18747{
18748 /* A8.8.103 MOV (register) (A8-486)
18749 MOV Rd, Rm (Encoding T1). */
18750 bfd_vma patched_inst = 0x4600
18751 | (target_reg & 0x7)
18752 | ((target_reg & 0x8) >> 3) << 7
18753 | (source_reg << 3);
18754
18755 return patched_inst;
18756}
18757
18758static inline bfd_vma
18759create_instruction_sub (int target_reg, int source_reg, int value)
18760{
18761 /* A8.8.221 SUB (immediate) (A8-708)
18762 SUB Rd, Rn, #value (Encoding T3). */
18763 bfd_vma patched_inst = 0xf1a00000
18764 | (target_reg << 8)
18765 | (source_reg << 16)
18766 | (/*S=*/0 << 20)
18767 | ((value & 0x800) >> 11) << 26
18768 | ((value & 0x700) >> 8) << 12
18769 | (value & 0x0ff);
18770
18771 return patched_inst;
18772}
18773
18774static inline bfd_vma
9239bbd3 18775create_instruction_vldmia (int base_reg, int is_dp, int wback, int num_words,
a504d23a
LA
18776 int first_reg)
18777{
18778 /* A8.8.332 VLDM (A8-922)
9239bbd3
CM
18779 VLMD{MODE} Rn{!}, {list} (Encoding T1 or T2). */
18780 bfd_vma patched_inst = (is_dp ? 0xec900b00 : 0xec900a00)
a504d23a
LA
18781 | (/*W=*/wback << 21)
18782 | (base_reg << 16)
9239bbd3
CM
18783 | (num_words & 0x000000ff)
18784 | (((unsigned)first_reg >> 1) & 0x0000000f) << 12
a504d23a
LA
18785 | (first_reg & 0x00000001) << 22;
18786
18787 return patched_inst;
18788}
18789
18790static inline bfd_vma
9239bbd3
CM
18791create_instruction_vldmdb (int base_reg, int is_dp, int num_words,
18792 int first_reg)
a504d23a
LA
18793{
18794 /* A8.8.332 VLDM (A8-922)
9239bbd3
CM
18795 VLMD{MODE} Rn!, {} (Encoding T1 or T2). */
18796 bfd_vma patched_inst = (is_dp ? 0xed300b00 : 0xed300a00)
a504d23a 18797 | (base_reg << 16)
9239bbd3
CM
18798 | (num_words & 0x000000ff)
18799 | (((unsigned)first_reg >>1 ) & 0x0000000f) << 12
a504d23a
LA
18800 | (first_reg & 0x00000001) << 22;
18801
18802 return patched_inst;
18803}
18804
18805static inline bfd_vma
18806create_instruction_udf_w (int value)
18807{
18808 /* A8.8.247 UDF (A8-758)
18809 Undefined (Encoding T2). */
18810 bfd_vma patched_inst = 0xf7f0a000
18811 | (value & 0x00000fff)
18812 | (value & 0x000f0000) << 16;
18813
18814 return patched_inst;
18815}
18816
18817static inline bfd_vma
18818create_instruction_udf (int value)
18819{
18820 /* A8.8.247 UDF (A8-758)
18821 Undefined (Encoding T1). */
18822 bfd_vma patched_inst = 0xde00
18823 | (value & 0xff);
18824
18825 return patched_inst;
18826}
18827
18828/* Functions writing an instruction in memory, returning the next
18829 memory position to write to. */
18830
18831static inline bfd_byte *
18832push_thumb2_insn32 (struct elf32_arm_link_hash_table * htab,
18833 bfd * output_bfd, bfd_byte *pt, insn32 insn)
18834{
18835 put_thumb2_insn (htab, output_bfd, insn, pt);
18836 return pt + 4;
18837}
18838
18839static inline bfd_byte *
18840push_thumb2_insn16 (struct elf32_arm_link_hash_table * htab,
18841 bfd * output_bfd, bfd_byte *pt, insn32 insn)
18842{
18843 put_thumb_insn (htab, output_bfd, insn, pt);
18844 return pt + 2;
18845}
18846
18847/* Function filling up a region in memory with T1 and T2 UDFs taking
18848 care of alignment. */
18849
18850static bfd_byte *
18851stm32l4xx_fill_stub_udf (struct elf32_arm_link_hash_table * htab,
07d6d2b8
AM
18852 bfd * output_bfd,
18853 const bfd_byte * const base_stub_contents,
18854 bfd_byte * const from_stub_contents,
18855 const bfd_byte * const end_stub_contents)
a504d23a
LA
18856{
18857 bfd_byte *current_stub_contents = from_stub_contents;
18858
18859 /* Fill the remaining of the stub with deterministic contents : UDF
18860 instructions.
18861 Check if realignment is needed on modulo 4 frontier using T1, to
18862 further use T2. */
18863 if ((current_stub_contents < end_stub_contents)
18864 && !((current_stub_contents - base_stub_contents) % 2)
18865 && ((current_stub_contents - base_stub_contents) % 4))
18866 current_stub_contents =
18867 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18868 create_instruction_udf (0));
18869
18870 for (; current_stub_contents < end_stub_contents;)
18871 current_stub_contents =
18872 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18873 create_instruction_udf_w (0));
18874
18875 return current_stub_contents;
18876}
18877
18878/* Functions writing the stream of instructions equivalent to the
18879 derived sequence for ldmia, ldmdb, vldm respectively. */
18880
18881static void
18882stm32l4xx_create_replacing_stub_ldmia (struct elf32_arm_link_hash_table * htab,
18883 bfd * output_bfd,
18884 const insn32 initial_insn,
18885 const bfd_byte *const initial_insn_addr,
18886 bfd_byte *const base_stub_contents)
18887{
18888 int wback = (initial_insn & 0x00200000) >> 21;
18889 int ri, rn = (initial_insn & 0x000F0000) >> 16;
18890 int insn_all_registers = initial_insn & 0x0000ffff;
18891 int insn_low_registers, insn_high_registers;
18892 int usable_register_mask;
b25e998d 18893 int nb_registers = elf32_arm_popcount (insn_all_registers);
a504d23a
LA
18894 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
18895 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
18896 bfd_byte *current_stub_contents = base_stub_contents;
18897
18898 BFD_ASSERT (is_thumb2_ldmia (initial_insn));
18899
18900 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
18901 smaller than 8 registers load sequences that do not cause the
18902 hardware issue. */
18903 if (nb_registers <= 8)
18904 {
18905 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
18906 current_stub_contents =
18907 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18908 initial_insn);
18909
18910 /* B initial_insn_addr+4. */
18911 if (!restore_pc)
18912 current_stub_contents =
18913 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18914 create_instruction_branch_absolute
82188b29 18915 (initial_insn_addr - current_stub_contents));
a504d23a
LA
18916
18917 /* Fill the remaining of the stub with deterministic contents. */
18918 current_stub_contents =
18919 stm32l4xx_fill_stub_udf (htab, output_bfd,
18920 base_stub_contents, current_stub_contents,
18921 base_stub_contents +
18922 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18923
18924 return;
18925 }
18926
18927 /* - reg_list[13] == 0. */
18928 BFD_ASSERT ((insn_all_registers & (1 << 13))==0);
18929
18930 /* - reg_list[14] & reg_list[15] != 1. */
18931 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
18932
18933 /* - if (wback==1) reg_list[rn] == 0. */
18934 BFD_ASSERT (!wback || !restore_rn);
18935
18936 /* - nb_registers > 8. */
b25e998d 18937 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8);
a504d23a
LA
18938
18939 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
18940
18941 /* In the following algorithm, we split this wide LDM using 2 LDM insns:
18942 - One with the 7 lowest registers (register mask 0x007F)
18943 This LDM will finally contain between 2 and 7 registers
18944 - One with the 7 highest registers (register mask 0xDF80)
18945 This ldm will finally contain between 2 and 7 registers. */
18946 insn_low_registers = insn_all_registers & 0x007F;
18947 insn_high_registers = insn_all_registers & 0xDF80;
18948
18949 /* A spare register may be needed during this veneer to temporarily
18950 handle the base register. This register will be restored with the
18951 last LDM operation.
18952 The usable register may be any general purpose register (that
18953 excludes PC, SP, LR : register mask is 0x1FFF). */
18954 usable_register_mask = 0x1FFF;
18955
18956 /* Generate the stub function. */
18957 if (wback)
18958 {
18959 /* LDMIA Rn!, {R-low-register-list} : (Encoding T2). */
18960 current_stub_contents =
18961 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18962 create_instruction_ldmia
18963 (rn, /*wback=*/1, insn_low_registers));
18964
18965 /* LDMIA Rn!, {R-high-register-list} : (Encoding T2). */
18966 current_stub_contents =
18967 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18968 create_instruction_ldmia
18969 (rn, /*wback=*/1, insn_high_registers));
18970 if (!restore_pc)
18971 {
18972 /* B initial_insn_addr+4. */
18973 current_stub_contents =
18974 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18975 create_instruction_branch_absolute
82188b29 18976 (initial_insn_addr - current_stub_contents));
a504d23a
LA
18977 }
18978 }
18979 else /* if (!wback). */
18980 {
18981 ri = rn;
18982
18983 /* If Rn is not part of the high-register-list, move it there. */
18984 if (!(insn_high_registers & (1 << rn)))
18985 {
18986 /* Choose a Ri in the high-register-list that will be restored. */
18987 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18988
18989 /* MOV Ri, Rn. */
18990 current_stub_contents =
18991 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18992 create_instruction_mov (ri, rn));
18993 }
18994
18995 /* LDMIA Ri!, {R-low-register-list} : (Encoding T2). */
18996 current_stub_contents =
18997 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18998 create_instruction_ldmia
18999 (ri, /*wback=*/1, insn_low_registers));
19000
19001 /* LDMIA Ri, {R-high-register-list} : (Encoding T2). */
19002 current_stub_contents =
19003 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19004 create_instruction_ldmia
19005 (ri, /*wback=*/0, insn_high_registers));
19006
19007 if (!restore_pc)
19008 {
19009 /* B initial_insn_addr+4. */
19010 current_stub_contents =
19011 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19012 create_instruction_branch_absolute
82188b29 19013 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19014 }
19015 }
19016
19017 /* Fill the remaining of the stub with deterministic contents. */
19018 current_stub_contents =
19019 stm32l4xx_fill_stub_udf (htab, output_bfd,
19020 base_stub_contents, current_stub_contents,
19021 base_stub_contents +
19022 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19023}
19024
19025static void
19026stm32l4xx_create_replacing_stub_ldmdb (struct elf32_arm_link_hash_table * htab,
19027 bfd * output_bfd,
19028 const insn32 initial_insn,
19029 const bfd_byte *const initial_insn_addr,
19030 bfd_byte *const base_stub_contents)
19031{
19032 int wback = (initial_insn & 0x00200000) >> 21;
19033 int ri, rn = (initial_insn & 0x000f0000) >> 16;
19034 int insn_all_registers = initial_insn & 0x0000ffff;
19035 int insn_low_registers, insn_high_registers;
19036 int usable_register_mask;
19037 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
19038 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
b25e998d 19039 int nb_registers = elf32_arm_popcount (insn_all_registers);
a504d23a
LA
19040 bfd_byte *current_stub_contents = base_stub_contents;
19041
19042 BFD_ASSERT (is_thumb2_ldmdb (initial_insn));
19043
19044 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
19045 smaller than 8 registers load sequences that do not cause the
19046 hardware issue. */
19047 if (nb_registers <= 8)
19048 {
19049 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
19050 current_stub_contents =
19051 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19052 initial_insn);
19053
19054 /* B initial_insn_addr+4. */
19055 current_stub_contents =
19056 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19057 create_instruction_branch_absolute
82188b29 19058 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19059
19060 /* Fill the remaining of the stub with deterministic contents. */
19061 current_stub_contents =
19062 stm32l4xx_fill_stub_udf (htab, output_bfd,
19063 base_stub_contents, current_stub_contents,
19064 base_stub_contents +
19065 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19066
19067 return;
19068 }
19069
19070 /* - reg_list[13] == 0. */
19071 BFD_ASSERT ((insn_all_registers & (1 << 13)) == 0);
19072
19073 /* - reg_list[14] & reg_list[15] != 1. */
19074 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
19075
19076 /* - if (wback==1) reg_list[rn] == 0. */
19077 BFD_ASSERT (!wback || !restore_rn);
19078
19079 /* - nb_registers > 8. */
b25e998d 19080 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8);
a504d23a
LA
19081
19082 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
19083
19084 /* In the following algorithm, we split this wide LDM using 2 LDM insn:
19085 - One with the 7 lowest registers (register mask 0x007F)
19086 This LDM will finally contain between 2 and 7 registers
19087 - One with the 7 highest registers (register mask 0xDF80)
19088 This ldm will finally contain between 2 and 7 registers. */
19089 insn_low_registers = insn_all_registers & 0x007F;
19090 insn_high_registers = insn_all_registers & 0xDF80;
19091
19092 /* A spare register may be needed during this veneer to temporarily
19093 handle the base register. This register will be restored with
19094 the last LDM operation.
19095 The usable register may be any general purpose register (that excludes
19096 PC, SP, LR : register mask is 0x1FFF). */
19097 usable_register_mask = 0x1FFF;
19098
19099 /* Generate the stub function. */
19100 if (!wback && !restore_pc && !restore_rn)
19101 {
19102 /* Choose a Ri in the low-register-list that will be restored. */
19103 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
19104
19105 /* MOV Ri, Rn. */
19106 current_stub_contents =
19107 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19108 create_instruction_mov (ri, rn));
19109
19110 /* LDMDB Ri!, {R-high-register-list}. */
19111 current_stub_contents =
19112 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19113 create_instruction_ldmdb
19114 (ri, /*wback=*/1, insn_high_registers));
19115
19116 /* LDMDB Ri, {R-low-register-list}. */
19117 current_stub_contents =
19118 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19119 create_instruction_ldmdb
19120 (ri, /*wback=*/0, insn_low_registers));
19121
19122 /* B initial_insn_addr+4. */
19123 current_stub_contents =
19124 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19125 create_instruction_branch_absolute
82188b29 19126 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19127 }
19128 else if (wback && !restore_pc && !restore_rn)
19129 {
19130 /* LDMDB Rn!, {R-high-register-list}. */
19131 current_stub_contents =
19132 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19133 create_instruction_ldmdb
19134 (rn, /*wback=*/1, insn_high_registers));
19135
19136 /* LDMDB Rn!, {R-low-register-list}. */
19137 current_stub_contents =
19138 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19139 create_instruction_ldmdb
19140 (rn, /*wback=*/1, insn_low_registers));
19141
19142 /* B initial_insn_addr+4. */
19143 current_stub_contents =
19144 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19145 create_instruction_branch_absolute
82188b29 19146 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19147 }
19148 else if (!wback && restore_pc && !restore_rn)
19149 {
19150 /* Choose a Ri in the high-register-list that will be restored. */
19151 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19152
19153 /* SUB Ri, Rn, #(4*nb_registers). */
19154 current_stub_contents =
19155 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19156 create_instruction_sub (ri, rn, (4 * nb_registers)));
19157
19158 /* LDMIA Ri!, {R-low-register-list}. */
19159 current_stub_contents =
19160 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19161 create_instruction_ldmia
19162 (ri, /*wback=*/1, insn_low_registers));
19163
19164 /* LDMIA Ri, {R-high-register-list}. */
19165 current_stub_contents =
19166 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19167 create_instruction_ldmia
19168 (ri, /*wback=*/0, insn_high_registers));
19169 }
19170 else if (wback && restore_pc && !restore_rn)
19171 {
19172 /* Choose a Ri in the high-register-list that will be restored. */
19173 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19174
19175 /* SUB Rn, Rn, #(4*nb_registers) */
19176 current_stub_contents =
19177 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19178 create_instruction_sub (rn, rn, (4 * nb_registers)));
19179
19180 /* MOV Ri, Rn. */
19181 current_stub_contents =
19182 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19183 create_instruction_mov (ri, rn));
19184
19185 /* LDMIA Ri!, {R-low-register-list}. */
19186 current_stub_contents =
19187 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19188 create_instruction_ldmia
19189 (ri, /*wback=*/1, insn_low_registers));
19190
19191 /* LDMIA Ri, {R-high-register-list}. */
19192 current_stub_contents =
19193 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19194 create_instruction_ldmia
19195 (ri, /*wback=*/0, insn_high_registers));
19196 }
19197 else if (!wback && !restore_pc && restore_rn)
19198 {
19199 ri = rn;
19200 if (!(insn_low_registers & (1 << rn)))
19201 {
19202 /* Choose a Ri in the low-register-list that will be restored. */
19203 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
19204
19205 /* MOV Ri, Rn. */
19206 current_stub_contents =
19207 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19208 create_instruction_mov (ri, rn));
19209 }
19210
19211 /* LDMDB Ri!, {R-high-register-list}. */
19212 current_stub_contents =
19213 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19214 create_instruction_ldmdb
19215 (ri, /*wback=*/1, insn_high_registers));
19216
19217 /* LDMDB Ri, {R-low-register-list}. */
19218 current_stub_contents =
19219 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19220 create_instruction_ldmdb
19221 (ri, /*wback=*/0, insn_low_registers));
19222
19223 /* B initial_insn_addr+4. */
19224 current_stub_contents =
19225 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19226 create_instruction_branch_absolute
82188b29 19227 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19228 }
19229 else if (!wback && restore_pc && restore_rn)
19230 {
19231 ri = rn;
19232 if (!(insn_high_registers & (1 << rn)))
19233 {
19234 /* Choose a Ri in the high-register-list that will be restored. */
19235 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19236 }
19237
19238 /* SUB Ri, Rn, #(4*nb_registers). */
19239 current_stub_contents =
19240 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19241 create_instruction_sub (ri, rn, (4 * nb_registers)));
19242
19243 /* LDMIA Ri!, {R-low-register-list}. */
19244 current_stub_contents =
19245 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19246 create_instruction_ldmia
19247 (ri, /*wback=*/1, insn_low_registers));
19248
19249 /* LDMIA Ri, {R-high-register-list}. */
19250 current_stub_contents =
19251 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19252 create_instruction_ldmia
19253 (ri, /*wback=*/0, insn_high_registers));
19254 }
19255 else if (wback && restore_rn)
19256 {
19257 /* The assembler should not have accepted to encode this. */
19258 BFD_ASSERT (0 && "Cannot patch an instruction that has an "
19259 "undefined behavior.\n");
19260 }
19261
19262 /* Fill the remaining of the stub with deterministic contents. */
19263 current_stub_contents =
19264 stm32l4xx_fill_stub_udf (htab, output_bfd,
19265 base_stub_contents, current_stub_contents,
19266 base_stub_contents +
19267 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19268
19269}
19270
19271static void
19272stm32l4xx_create_replacing_stub_vldm (struct elf32_arm_link_hash_table * htab,
19273 bfd * output_bfd,
19274 const insn32 initial_insn,
19275 const bfd_byte *const initial_insn_addr,
19276 bfd_byte *const base_stub_contents)
19277{
13c9c485 19278 int num_words = initial_insn & 0xff;
a504d23a
LA
19279 bfd_byte *current_stub_contents = base_stub_contents;
19280
19281 BFD_ASSERT (is_thumb2_vldm (initial_insn));
19282
19283 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
9239bbd3 19284 smaller than 8 words load sequences that do not cause the
a504d23a 19285 hardware issue. */
9239bbd3 19286 if (num_words <= 8)
a504d23a
LA
19287 {
19288 /* Untouched instruction. */
19289 current_stub_contents =
19290 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19291 initial_insn);
19292
19293 /* B initial_insn_addr+4. */
19294 current_stub_contents =
19295 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19296 create_instruction_branch_absolute
82188b29 19297 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19298 }
19299 else
19300 {
9eaff861 19301 bfd_boolean is_dp = /* DP encoding. */
9239bbd3 19302 (initial_insn & 0xfe100f00) == 0xec100b00;
a504d23a
LA
19303 bfd_boolean is_ia_nobang = /* (IA without !). */
19304 (((initial_insn << 7) >> 28) & 0xd) == 0x4;
19305 bfd_boolean is_ia_bang = /* (IA with !) - includes VPOP. */
19306 (((initial_insn << 7) >> 28) & 0xd) == 0x5;
19307 bfd_boolean is_db_bang = /* (DB with !). */
19308 (((initial_insn << 7) >> 28) & 0xd) == 0x9;
9239bbd3 19309 int base_reg = ((unsigned int) initial_insn << 12) >> 28;
a504d23a 19310 /* d = UInt (Vd:D);. */
9239bbd3 19311 int first_reg = ((((unsigned int) initial_insn << 16) >> 28) << 1)
a504d23a
LA
19312 | (((unsigned int)initial_insn << 9) >> 31);
19313
9239bbd3
CM
19314 /* Compute the number of 8-words chunks needed to split. */
19315 int chunks = (num_words % 8) ? (num_words / 8 + 1) : (num_words / 8);
a504d23a
LA
19316 int chunk;
19317
19318 /* The test coverage has been done assuming the following
19319 hypothesis that exactly one of the previous is_ predicates is
19320 true. */
9239bbd3
CM
19321 BFD_ASSERT ( (is_ia_nobang ^ is_ia_bang ^ is_db_bang)
19322 && !(is_ia_nobang & is_ia_bang & is_db_bang));
a504d23a 19323
9239bbd3 19324 /* We treat the cutting of the words in one pass for all
a504d23a
LA
19325 cases, then we emit the adjustments:
19326
19327 vldm rx, {...}
19328 -> vldm rx!, {8_words_or_less} for each needed 8_word
19329 -> sub rx, rx, #size (list)
19330
19331 vldm rx!, {...}
19332 -> vldm rx!, {8_words_or_less} for each needed 8_word
19333 This also handles vpop instruction (when rx is sp)
19334
19335 vldmd rx!, {...}
19336 -> vldmb rx!, {8_words_or_less} for each needed 8_word. */
9239bbd3 19337 for (chunk = 0; chunk < chunks; ++chunk)
a504d23a 19338 {
9239bbd3
CM
19339 bfd_vma new_insn = 0;
19340
a504d23a
LA
19341 if (is_ia_nobang || is_ia_bang)
19342 {
9239bbd3
CM
19343 new_insn = create_instruction_vldmia
19344 (base_reg,
19345 is_dp,
19346 /*wback= . */1,
19347 chunks - (chunk + 1) ?
19348 8 : num_words - chunk * 8,
19349 first_reg + chunk * 8);
a504d23a
LA
19350 }
19351 else if (is_db_bang)
19352 {
9239bbd3
CM
19353 new_insn = create_instruction_vldmdb
19354 (base_reg,
19355 is_dp,
19356 chunks - (chunk + 1) ?
19357 8 : num_words - chunk * 8,
19358 first_reg + chunk * 8);
a504d23a 19359 }
9239bbd3
CM
19360
19361 if (new_insn)
19362 current_stub_contents =
19363 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19364 new_insn);
a504d23a
LA
19365 }
19366
19367 /* Only this case requires the base register compensation
19368 subtract. */
19369 if (is_ia_nobang)
19370 {
19371 current_stub_contents =
19372 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19373 create_instruction_sub
9239bbd3 19374 (base_reg, base_reg, 4*num_words));
a504d23a
LA
19375 }
19376
19377 /* B initial_insn_addr+4. */
19378 current_stub_contents =
19379 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19380 create_instruction_branch_absolute
82188b29 19381 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19382 }
19383
19384 /* Fill the remaining of the stub with deterministic contents. */
19385 current_stub_contents =
19386 stm32l4xx_fill_stub_udf (htab, output_bfd,
19387 base_stub_contents, current_stub_contents,
19388 base_stub_contents +
19389 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
19390}
19391
19392static void
19393stm32l4xx_create_replacing_stub (struct elf32_arm_link_hash_table * htab,
19394 bfd * output_bfd,
19395 const insn32 wrong_insn,
19396 const bfd_byte *const wrong_insn_addr,
19397 bfd_byte *const stub_contents)
19398{
19399 if (is_thumb2_ldmia (wrong_insn))
19400 stm32l4xx_create_replacing_stub_ldmia (htab, output_bfd,
19401 wrong_insn, wrong_insn_addr,
19402 stub_contents);
19403 else if (is_thumb2_ldmdb (wrong_insn))
19404 stm32l4xx_create_replacing_stub_ldmdb (htab, output_bfd,
19405 wrong_insn, wrong_insn_addr,
19406 stub_contents);
19407 else if (is_thumb2_vldm (wrong_insn))
19408 stm32l4xx_create_replacing_stub_vldm (htab, output_bfd,
19409 wrong_insn, wrong_insn_addr,
19410 stub_contents);
19411}
19412
19413/* End of stm32l4xx work-around. */
19414
19415
e489d0ae
PB
19416/* Do code byteswapping. Return FALSE afterwards so that the section is
19417 written out as normal. */
19418
19419static bfd_boolean
c7b8f16e 19420elf32_arm_write_section (bfd *output_bfd,
8029a119
NC
19421 struct bfd_link_info *link_info,
19422 asection *sec,
e489d0ae
PB
19423 bfd_byte *contents)
19424{
48229727 19425 unsigned int mapcount, errcount;
8e3de13a 19426 _arm_elf_section_data *arm_data;
c7b8f16e 19427 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
e489d0ae 19428 elf32_arm_section_map *map;
c7b8f16e 19429 elf32_vfp11_erratum_list *errnode;
a504d23a 19430 elf32_stm32l4xx_erratum_list *stm32l4xx_errnode;
e489d0ae
PB
19431 bfd_vma ptr;
19432 bfd_vma end;
c7b8f16e 19433 bfd_vma offset = sec->output_section->vma + sec->output_offset;
e489d0ae 19434 bfd_byte tmp;
48229727 19435 unsigned int i;
57e8b36a 19436
4dfe6ac6
NC
19437 if (globals == NULL)
19438 return FALSE;
19439
8e3de13a
NC
19440 /* If this section has not been allocated an _arm_elf_section_data
19441 structure then we cannot record anything. */
19442 arm_data = get_arm_elf_section_data (sec);
19443 if (arm_data == NULL)
19444 return FALSE;
19445
19446 mapcount = arm_data->mapcount;
19447 map = arm_data->map;
c7b8f16e
JB
19448 errcount = arm_data->erratumcount;
19449
19450 if (errcount != 0)
19451 {
19452 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
19453
19454 for (errnode = arm_data->erratumlist; errnode != 0;
99059e56
RM
19455 errnode = errnode->next)
19456 {
19457 bfd_vma target = errnode->vma - offset;
19458
19459 switch (errnode->type)
19460 {
19461 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
19462 {
19463 bfd_vma branch_to_veneer;
19464 /* Original condition code of instruction, plus bit mask for
19465 ARM B instruction. */
19466 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
19467 | 0x0a000000;
c7b8f16e
JB
19468
19469 /* The instruction is before the label. */
91d6fa6a 19470 target -= 4;
c7b8f16e
JB
19471
19472 /* Above offset included in -4 below. */
19473 branch_to_veneer = errnode->u.b.veneer->vma
99059e56 19474 - errnode->vma - 4;
c7b8f16e
JB
19475
19476 if ((signed) branch_to_veneer < -(1 << 25)
19477 || (signed) branch_to_veneer >= (1 << 25))
871b3ab2 19478 _bfd_error_handler (_("%pB: error: VFP11 veneer out of "
4eca0228 19479 "range"), output_bfd);
c7b8f16e 19480
99059e56
RM
19481 insn |= (branch_to_veneer >> 2) & 0xffffff;
19482 contents[endianflip ^ target] = insn & 0xff;
19483 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
19484 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
19485 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
19486 }
19487 break;
c7b8f16e
JB
19488
19489 case VFP11_ERRATUM_ARM_VENEER:
99059e56
RM
19490 {
19491 bfd_vma branch_from_veneer;
19492 unsigned int insn;
c7b8f16e 19493
99059e56
RM
19494 /* Take size of veneer into account. */
19495 branch_from_veneer = errnode->u.v.branch->vma
19496 - errnode->vma - 12;
c7b8f16e
JB
19497
19498 if ((signed) branch_from_veneer < -(1 << 25)
19499 || (signed) branch_from_veneer >= (1 << 25))
871b3ab2 19500 _bfd_error_handler (_("%pB: error: VFP11 veneer out of "
4eca0228 19501 "range"), output_bfd);
c7b8f16e 19502
99059e56
RM
19503 /* Original instruction. */
19504 insn = errnode->u.v.branch->u.b.vfp_insn;
19505 contents[endianflip ^ target] = insn & 0xff;
19506 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
19507 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
19508 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
19509
19510 /* Branch back to insn after original insn. */
19511 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
19512 contents[endianflip ^ (target + 4)] = insn & 0xff;
19513 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
19514 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
19515 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
19516 }
19517 break;
c7b8f16e 19518
99059e56
RM
19519 default:
19520 abort ();
19521 }
19522 }
c7b8f16e 19523 }
e489d0ae 19524
a504d23a
LA
19525 if (arm_data->stm32l4xx_erratumcount != 0)
19526 {
19527 for (stm32l4xx_errnode = arm_data->stm32l4xx_erratumlist;
19528 stm32l4xx_errnode != 0;
19529 stm32l4xx_errnode = stm32l4xx_errnode->next)
19530 {
19531 bfd_vma target = stm32l4xx_errnode->vma - offset;
19532
19533 switch (stm32l4xx_errnode->type)
19534 {
19535 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
19536 {
19537 unsigned int insn;
19538 bfd_vma branch_to_veneer =
19539 stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma;
19540
19541 if ((signed) branch_to_veneer < -(1 << 24)
19542 || (signed) branch_to_veneer >= (1 << 24))
19543 {
19544 bfd_vma out_of_range =
19545 ((signed) branch_to_veneer < -(1 << 24)) ?
19546 - branch_to_veneer - (1 << 24) :
19547 ((signed) branch_to_veneer >= (1 << 24)) ?
19548 branch_to_veneer - (1 << 24) : 0;
19549
4eca0228 19550 _bfd_error_handler
2dcf00ce 19551 (_("%pB(%#" PRIx64 "): error: "
90b6238f
AM
19552 "cannot create STM32L4XX veneer; "
19553 "jump out of range by %" PRId64 " bytes; "
19554 "cannot encode branch instruction"),
a504d23a 19555 output_bfd,
2dcf00ce
AM
19556 (uint64_t) (stm32l4xx_errnode->vma - 4),
19557 (int64_t) out_of_range);
a504d23a
LA
19558 continue;
19559 }
19560
19561 insn = create_instruction_branch_absolute
82188b29 19562 (stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma);
a504d23a 19563
a2699ef2
AM
19564 /* The instruction is before the label. */
19565 target -= 4;
19566
a504d23a
LA
19567 put_thumb2_insn (globals, output_bfd,
19568 (bfd_vma) insn, contents + target);
19569 }
19570 break;
19571
19572 case STM32L4XX_ERRATUM_VENEER:
19573 {
82188b29
NC
19574 bfd_byte * veneer;
19575 bfd_byte * veneer_r;
a504d23a
LA
19576 unsigned int insn;
19577
82188b29
NC
19578 veneer = contents + target;
19579 veneer_r = veneer
19580 + stm32l4xx_errnode->u.b.veneer->vma
19581 - stm32l4xx_errnode->vma - 4;
a504d23a
LA
19582
19583 if ((signed) (veneer_r - veneer -
19584 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE >
19585 STM32L4XX_ERRATUM_LDM_VENEER_SIZE ?
19586 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE :
19587 STM32L4XX_ERRATUM_LDM_VENEER_SIZE) < -(1 << 24)
19588 || (signed) (veneer_r - veneer) >= (1 << 24))
19589 {
90b6238f
AM
19590 _bfd_error_handler (_("%pB: error: cannot create STM32L4XX "
19591 "veneer"), output_bfd);
a504d23a
LA
19592 continue;
19593 }
19594
19595 /* Original instruction. */
19596 insn = stm32l4xx_errnode->u.v.branch->u.b.insn;
19597
19598 stm32l4xx_create_replacing_stub
19599 (globals, output_bfd, insn, (void*)veneer_r, (void*)veneer);
19600 }
19601 break;
19602
19603 default:
19604 abort ();
19605 }
19606 }
19607 }
19608
2468f9c9
PB
19609 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
19610 {
19611 arm_unwind_table_edit *edit_node
99059e56 19612 = arm_data->u.exidx.unwind_edit_list;
2468f9c9 19613 /* Now, sec->size is the size of the section we will write. The original
99059e56 19614 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
2468f9c9
PB
19615 markers) was sec->rawsize. (This isn't the case if we perform no
19616 edits, then rawsize will be zero and we should use size). */
21d799b5 19617 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
2468f9c9
PB
19618 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
19619 unsigned int in_index, out_index;
19620 bfd_vma add_to_offsets = 0;
19621
7a0fb7be
NC
19622 if (edited_contents == NULL)
19623 return FALSE;
2468f9c9 19624 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
99059e56 19625 {
2468f9c9
PB
19626 if (edit_node)
19627 {
19628 unsigned int edit_index = edit_node->index;
b38cadfb 19629
2468f9c9 19630 if (in_index < edit_index && in_index * 8 < input_size)
99059e56 19631 {
2468f9c9
PB
19632 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
19633 contents + in_index * 8, add_to_offsets);
19634 out_index++;
19635 in_index++;
19636 }
19637 else if (in_index == edit_index
19638 || (in_index * 8 >= input_size
19639 && edit_index == UINT_MAX))
99059e56 19640 {
2468f9c9
PB
19641 switch (edit_node->type)
19642 {
19643 case DELETE_EXIDX_ENTRY:
19644 in_index++;
19645 add_to_offsets += 8;
19646 break;
b38cadfb 19647
2468f9c9
PB
19648 case INSERT_EXIDX_CANTUNWIND_AT_END:
19649 {
99059e56 19650 asection *text_sec = edit_node->linked_section;
2468f9c9
PB
19651 bfd_vma text_offset = text_sec->output_section->vma
19652 + text_sec->output_offset
19653 + text_sec->size;
19654 bfd_vma exidx_offset = offset + out_index * 8;
99059e56 19655 unsigned long prel31_offset;
2468f9c9
PB
19656
19657 /* Note: this is meant to be equivalent to an
19658 R_ARM_PREL31 relocation. These synthetic
19659 EXIDX_CANTUNWIND markers are not relocated by the
19660 usual BFD method. */
19661 prel31_offset = (text_offset - exidx_offset)
19662 & 0x7ffffffful;
491d01d3
YU
19663 if (bfd_link_relocatable (link_info))
19664 {
19665 /* Here relocation for new EXIDX_CANTUNWIND is
19666 created, so there is no need to
19667 adjust offset by hand. */
19668 prel31_offset = text_sec->output_offset
19669 + text_sec->size;
491d01d3 19670 }
2468f9c9
PB
19671
19672 /* First address we can't unwind. */
19673 bfd_put_32 (output_bfd, prel31_offset,
19674 &edited_contents[out_index * 8]);
19675
19676 /* Code for EXIDX_CANTUNWIND. */
19677 bfd_put_32 (output_bfd, 0x1,
19678 &edited_contents[out_index * 8 + 4]);
19679
19680 out_index++;
19681 add_to_offsets -= 8;
19682 }
19683 break;
19684 }
b38cadfb 19685
2468f9c9
PB
19686 edit_node = edit_node->next;
19687 }
19688 }
19689 else
19690 {
19691 /* No more edits, copy remaining entries verbatim. */
19692 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
19693 contents + in_index * 8, add_to_offsets);
19694 out_index++;
19695 in_index++;
19696 }
19697 }
19698
19699 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
19700 bfd_set_section_contents (output_bfd, sec->output_section,
19701 edited_contents,
19702 (file_ptr) sec->output_offset, sec->size);
19703
19704 return TRUE;
19705 }
19706
48229727
JB
19707 /* Fix code to point to Cortex-A8 erratum stubs. */
19708 if (globals->fix_cortex_a8)
19709 {
19710 struct a8_branch_to_stub_data data;
19711
19712 data.writing_section = sec;
19713 data.contents = contents;
19714
a504d23a
LA
19715 bfd_hash_traverse (& globals->stub_hash_table, make_branch_to_a8_stub,
19716 & data);
48229727
JB
19717 }
19718
e489d0ae
PB
19719 if (mapcount == 0)
19720 return FALSE;
19721
c7b8f16e 19722 if (globals->byteswap_code)
e489d0ae 19723 {
c7b8f16e 19724 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
57e8b36a 19725
c7b8f16e
JB
19726 ptr = map[0].vma;
19727 for (i = 0; i < mapcount; i++)
99059e56
RM
19728 {
19729 if (i == mapcount - 1)
c7b8f16e 19730 end = sec->size;
99059e56
RM
19731 else
19732 end = map[i + 1].vma;
e489d0ae 19733
99059e56 19734 switch (map[i].type)
e489d0ae 19735 {
c7b8f16e
JB
19736 case 'a':
19737 /* Byte swap code words. */
19738 while (ptr + 3 < end)
99059e56
RM
19739 {
19740 tmp = contents[ptr];
19741 contents[ptr] = contents[ptr + 3];
19742 contents[ptr + 3] = tmp;
19743 tmp = contents[ptr + 1];
19744 contents[ptr + 1] = contents[ptr + 2];
19745 contents[ptr + 2] = tmp;
19746 ptr += 4;
19747 }
c7b8f16e 19748 break;
e489d0ae 19749
c7b8f16e
JB
19750 case 't':
19751 /* Byte swap code halfwords. */
19752 while (ptr + 1 < end)
99059e56
RM
19753 {
19754 tmp = contents[ptr];
19755 contents[ptr] = contents[ptr + 1];
19756 contents[ptr + 1] = tmp;
19757 ptr += 2;
19758 }
c7b8f16e
JB
19759 break;
19760
19761 case 'd':
19762 /* Leave data alone. */
19763 break;
19764 }
99059e56
RM
19765 ptr = end;
19766 }
e489d0ae 19767 }
8e3de13a 19768
93204d3a 19769 free (map);
47b2e99c 19770 arm_data->mapcount = -1;
c7b8f16e 19771 arm_data->mapsize = 0;
8e3de13a 19772 arm_data->map = NULL;
8e3de13a 19773
e489d0ae
PB
19774 return FALSE;
19775}
19776
0beaef2b
PB
19777/* Mangle thumb function symbols as we read them in. */
19778
8384fb8f 19779static bfd_boolean
0beaef2b
PB
19780elf32_arm_swap_symbol_in (bfd * abfd,
19781 const void *psrc,
19782 const void *pshn,
19783 Elf_Internal_Sym *dst)
19784{
8384fb8f
AM
19785 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
19786 return FALSE;
39d911fc 19787 dst->st_target_internal = 0;
0beaef2b
PB
19788
19789 /* New EABI objects mark thumb function symbols by setting the low bit of
35fc36a8 19790 the address. */
63e1a0fc
PB
19791 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
19792 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
0beaef2b 19793 {
63e1a0fc
PB
19794 if (dst->st_value & 1)
19795 {
19796 dst->st_value &= ~(bfd_vma) 1;
39d911fc
TP
19797 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal,
19798 ST_BRANCH_TO_THUMB);
63e1a0fc
PB
19799 }
19800 else
39d911fc 19801 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_ARM);
35fc36a8
RS
19802 }
19803 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
19804 {
19805 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
39d911fc 19806 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_THUMB);
0beaef2b 19807 }
35fc36a8 19808 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
39d911fc 19809 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_LONG);
35fc36a8 19810 else
39d911fc 19811 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_UNKNOWN);
35fc36a8 19812
8384fb8f 19813 return TRUE;
0beaef2b
PB
19814}
19815
19816
19817/* Mangle thumb function symbols as we write them out. */
19818
19819static void
19820elf32_arm_swap_symbol_out (bfd *abfd,
19821 const Elf_Internal_Sym *src,
19822 void *cdst,
19823 void *shndx)
19824{
19825 Elf_Internal_Sym newsym;
19826
19827 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
19828 of the address set, as per the new EABI. We do this unconditionally
19829 because objcopy does not set the elf header flags until after
19830 it writes out the symbol table. */
39d911fc 19831 if (ARM_GET_SYM_BRANCH_TYPE (src->st_target_internal) == ST_BRANCH_TO_THUMB)
0beaef2b
PB
19832 {
19833 newsym = *src;
34e77a92
RS
19834 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
19835 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
0fa3dcad 19836 if (newsym.st_shndx != SHN_UNDEF)
99059e56
RM
19837 {
19838 /* Do this only for defined symbols. At link type, the static
19839 linker will simulate the work of dynamic linker of resolving
19840 symbols and will carry over the thumbness of found symbols to
19841 the output symbol table. It's not clear how it happens, but
19842 the thumbness of undefined symbols can well be different at
19843 runtime, and writing '1' for them will be confusing for users
19844 and possibly for dynamic linker itself.
19845 */
19846 newsym.st_value |= 1;
19847 }
906e58ca 19848
0beaef2b
PB
19849 src = &newsym;
19850 }
19851 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
19852}
19853
b294bdf8
MM
19854/* Add the PT_ARM_EXIDX program header. */
19855
19856static bfd_boolean
906e58ca 19857elf32_arm_modify_segment_map (bfd *abfd,
b294bdf8
MM
19858 struct bfd_link_info *info ATTRIBUTE_UNUSED)
19859{
19860 struct elf_segment_map *m;
19861 asection *sec;
19862
19863 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
19864 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
19865 {
19866 /* If there is already a PT_ARM_EXIDX header, then we do not
19867 want to add another one. This situation arises when running
19868 "strip"; the input binary already has the header. */
12bd6957 19869 m = elf_seg_map (abfd);
b294bdf8
MM
19870 while (m && m->p_type != PT_ARM_EXIDX)
19871 m = m->next;
19872 if (!m)
19873 {
21d799b5 19874 m = (struct elf_segment_map *)
99059e56 19875 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
b294bdf8
MM
19876 if (m == NULL)
19877 return FALSE;
19878 m->p_type = PT_ARM_EXIDX;
19879 m->count = 1;
19880 m->sections[0] = sec;
19881
12bd6957
AM
19882 m->next = elf_seg_map (abfd);
19883 elf_seg_map (abfd) = m;
b294bdf8
MM
19884 }
19885 }
19886
19887 return TRUE;
19888}
19889
19890/* We may add a PT_ARM_EXIDX program header. */
19891
19892static int
a6b96beb
AM
19893elf32_arm_additional_program_headers (bfd *abfd,
19894 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b294bdf8
MM
19895{
19896 asection *sec;
19897
19898 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
19899 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
19900 return 1;
19901 else
19902 return 0;
19903}
19904
34e77a92
RS
19905/* Hook called by the linker routine which adds symbols from an object
19906 file. */
19907
19908static bfd_boolean
19909elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
19910 Elf_Internal_Sym *sym, const char **namep,
19911 flagword *flagsp, asection **secp, bfd_vma *valp)
19912{
c792917c
NC
19913 if (elf32_arm_hash_table (info) == NULL)
19914 return FALSE;
19915
90c14f0c 19916 if (elf32_arm_hash_table (info)->root.target_os == is_vxworks
34e77a92
RS
19917 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
19918 flagsp, secp, valp))
19919 return FALSE;
19920
19921 return TRUE;
19922}
19923
0beaef2b 19924/* We use this to override swap_symbol_in and swap_symbol_out. */
906e58ca
NC
19925const struct elf_size_info elf32_arm_size_info =
19926{
0beaef2b
PB
19927 sizeof (Elf32_External_Ehdr),
19928 sizeof (Elf32_External_Phdr),
19929 sizeof (Elf32_External_Shdr),
19930 sizeof (Elf32_External_Rel),
19931 sizeof (Elf32_External_Rela),
19932 sizeof (Elf32_External_Sym),
19933 sizeof (Elf32_External_Dyn),
19934 sizeof (Elf_External_Note),
19935 4,
19936 1,
19937 32, 2,
19938 ELFCLASS32, EV_CURRENT,
19939 bfd_elf32_write_out_phdrs,
19940 bfd_elf32_write_shdrs_and_ehdr,
1489a3a0 19941 bfd_elf32_checksum_contents,
0beaef2b
PB
19942 bfd_elf32_write_relocs,
19943 elf32_arm_swap_symbol_in,
19944 elf32_arm_swap_symbol_out,
19945 bfd_elf32_slurp_reloc_table,
19946 bfd_elf32_slurp_symbol_table,
19947 bfd_elf32_swap_dyn_in,
19948 bfd_elf32_swap_dyn_out,
19949 bfd_elf32_swap_reloc_in,
19950 bfd_elf32_swap_reloc_out,
19951 bfd_elf32_swap_reloca_in,
19952 bfd_elf32_swap_reloca_out
19953};
19954
685e70ae
VK
19955static bfd_vma
19956read_code32 (const bfd *abfd, const bfd_byte *addr)
19957{
19958 /* V7 BE8 code is always little endian. */
19959 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
19960 return bfd_getl32 (addr);
19961
19962 return bfd_get_32 (abfd, addr);
19963}
19964
19965static bfd_vma
19966read_code16 (const bfd *abfd, const bfd_byte *addr)
19967{
19968 /* V7 BE8 code is always little endian. */
19969 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
19970 return bfd_getl16 (addr);
19971
19972 return bfd_get_16 (abfd, addr);
19973}
19974
6a631e86
YG
19975/* Return size of plt0 entry starting at ADDR
19976 or (bfd_vma) -1 if size can not be determined. */
19977
19978static bfd_vma
19979elf32_arm_plt0_size (const bfd *abfd, const bfd_byte *addr)
19980{
19981 bfd_vma first_word;
19982 bfd_vma plt0_size;
19983
685e70ae 19984 first_word = read_code32 (abfd, addr);
6a631e86
YG
19985
19986 if (first_word == elf32_arm_plt0_entry[0])
19987 plt0_size = 4 * ARRAY_SIZE (elf32_arm_plt0_entry);
19988 else if (first_word == elf32_thumb2_plt0_entry[0])
19989 plt0_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
19990 else
19991 /* We don't yet handle this PLT format. */
19992 return (bfd_vma) -1;
19993
19994 return plt0_size;
19995}
19996
19997/* Return size of plt entry starting at offset OFFSET
19998 of plt section located at address START
19999 or (bfd_vma) -1 if size can not be determined. */
20000
20001static bfd_vma
20002elf32_arm_plt_size (const bfd *abfd, const bfd_byte *start, bfd_vma offset)
20003{
20004 bfd_vma first_insn;
20005 bfd_vma plt_size = 0;
20006 const bfd_byte *addr = start + offset;
20007
20008 /* PLT entry size if fixed on Thumb-only platforms. */
685e70ae 20009 if (read_code32 (abfd, start) == elf32_thumb2_plt0_entry[0])
6a631e86
YG
20010 return 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
20011
20012 /* Respect Thumb stub if necessary. */
685e70ae 20013 if (read_code16 (abfd, addr) == elf32_arm_plt_thumb_stub[0])
6a631e86
YG
20014 {
20015 plt_size += 2 * ARRAY_SIZE(elf32_arm_plt_thumb_stub);
20016 }
20017
20018 /* Strip immediate from first add. */
685e70ae 20019 first_insn = read_code32 (abfd, addr + plt_size) & 0xffffff00;
6a631e86
YG
20020
20021#ifdef FOUR_WORD_PLT
20022 if (first_insn == elf32_arm_plt_entry[0])
20023 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry);
20024#else
20025 if (first_insn == elf32_arm_plt_entry_long[0])
20026 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_long);
20027 else if (first_insn == elf32_arm_plt_entry_short[0])
20028 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_short);
20029#endif
20030 else
20031 /* We don't yet handle this PLT format. */
20032 return (bfd_vma) -1;
20033
20034 return plt_size;
20035}
20036
20037/* Implementation is shamelessly borrowed from _bfd_elf_get_synthetic_symtab. */
20038
20039static long
20040elf32_arm_get_synthetic_symtab (bfd *abfd,
20041 long symcount ATTRIBUTE_UNUSED,
20042 asymbol **syms ATTRIBUTE_UNUSED,
20043 long dynsymcount,
20044 asymbol **dynsyms,
20045 asymbol **ret)
20046{
20047 asection *relplt;
20048 asymbol *s;
20049 arelent *p;
20050 long count, i, n;
20051 size_t size;
20052 Elf_Internal_Shdr *hdr;
20053 char *names;
20054 asection *plt;
20055 bfd_vma offset;
20056 bfd_byte *data;
20057
20058 *ret = NULL;
20059
20060 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
20061 return 0;
20062
20063 if (dynsymcount <= 0)
20064 return 0;
20065
20066 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
20067 if (relplt == NULL)
20068 return 0;
20069
20070 hdr = &elf_section_data (relplt)->this_hdr;
20071 if (hdr->sh_link != elf_dynsymtab (abfd)
20072 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
20073 return 0;
20074
20075 plt = bfd_get_section_by_name (abfd, ".plt");
20076 if (plt == NULL)
20077 return 0;
20078
20079 if (!elf32_arm_size_info.slurp_reloc_table (abfd, relplt, dynsyms, TRUE))
20080 return -1;
20081
20082 data = plt->contents;
20083 if (data == NULL)
20084 {
20085 if (!bfd_get_full_section_contents(abfd, (asection *) plt, &data) || data == NULL)
20086 return -1;
20087 bfd_cache_section_contents((asection *) plt, data);
20088 }
20089
20090 count = relplt->size / hdr->sh_entsize;
20091 size = count * sizeof (asymbol);
20092 p = relplt->relocation;
20093 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
20094 {
20095 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
20096 if (p->addend != 0)
20097 size += sizeof ("+0x") - 1 + 8;
20098 }
20099
20100 s = *ret = (asymbol *) bfd_malloc (size);
20101 if (s == NULL)
20102 return -1;
20103
20104 offset = elf32_arm_plt0_size (abfd, data);
20105 if (offset == (bfd_vma) -1)
20106 return -1;
20107
20108 names = (char *) (s + count);
20109 p = relplt->relocation;
20110 n = 0;
20111 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
20112 {
20113 size_t len;
20114
20115 bfd_vma plt_size = elf32_arm_plt_size (abfd, data, offset);
20116 if (plt_size == (bfd_vma) -1)
20117 break;
20118
20119 *s = **p->sym_ptr_ptr;
20120 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
20121 we are defining a symbol, ensure one of them is set. */
20122 if ((s->flags & BSF_LOCAL) == 0)
20123 s->flags |= BSF_GLOBAL;
20124 s->flags |= BSF_SYNTHETIC;
20125 s->section = plt;
20126 s->value = offset;
20127 s->name = names;
20128 s->udata.p = NULL;
20129 len = strlen ((*p->sym_ptr_ptr)->name);
20130 memcpy (names, (*p->sym_ptr_ptr)->name, len);
20131 names += len;
20132 if (p->addend != 0)
20133 {
20134 char buf[30], *a;
20135
20136 memcpy (names, "+0x", sizeof ("+0x") - 1);
20137 names += sizeof ("+0x") - 1;
20138 bfd_sprintf_vma (abfd, buf, p->addend);
20139 for (a = buf; *a == '0'; ++a)
20140 ;
20141 len = strlen (a);
20142 memcpy (names, a, len);
20143 names += len;
20144 }
20145 memcpy (names, "@plt", sizeof ("@plt"));
20146 names += sizeof ("@plt");
20147 ++s, ++n;
20148 offset += plt_size;
20149 }
20150
20151 return n;
20152}
20153
ac4c9b04 20154static bfd_boolean
8c803a2d 20155elf32_arm_section_flags (const Elf_Internal_Shdr *hdr)
ac4c9b04 20156{
f0728ee3 20157 if (hdr->sh_flags & SHF_ARM_PURECODE)
8c803a2d 20158 hdr->bfd_section->flags |= SEC_ELF_PURECODE;
ac4c9b04
MG
20159 return TRUE;
20160}
20161
20162static flagword
20163elf32_arm_lookup_section_flags (char *flag_name)
20164{
f0728ee3
AV
20165 if (!strcmp (flag_name, "SHF_ARM_PURECODE"))
20166 return SHF_ARM_PURECODE;
ac4c9b04
MG
20167
20168 return SEC_NO_FLAGS;
20169}
20170
491d01d3
YU
20171static unsigned int
20172elf32_arm_count_additional_relocs (asection *sec)
20173{
20174 struct _arm_elf_section_data *arm_data;
20175 arm_data = get_arm_elf_section_data (sec);
5025eb7c 20176
6342be70 20177 return arm_data == NULL ? 0 : arm_data->additional_reloc_count;
491d01d3
YU
20178}
20179
5522f910 20180/* Called to set the sh_flags, sh_link and sh_info fields of OSECTION which
9eaff861 20181 has a type >= SHT_LOOS. Returns TRUE if these fields were initialised
5522f910
NC
20182 FALSE otherwise. ISECTION is the best guess matching section from the
20183 input bfd IBFD, but it might be NULL. */
20184
20185static bfd_boolean
20186elf32_arm_copy_special_section_fields (const bfd *ibfd ATTRIBUTE_UNUSED,
20187 bfd *obfd ATTRIBUTE_UNUSED,
20188 const Elf_Internal_Shdr *isection ATTRIBUTE_UNUSED,
20189 Elf_Internal_Shdr *osection)
20190{
20191 switch (osection->sh_type)
20192 {
20193 case SHT_ARM_EXIDX:
20194 {
20195 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
20196 Elf_Internal_Shdr **iheaders = elf_elfsections (ibfd);
20197 unsigned i = 0;
20198
20199 osection->sh_flags = SHF_ALLOC | SHF_LINK_ORDER;
20200 osection->sh_info = 0;
20201
20202 /* The sh_link field must be set to the text section associated with
20203 this index section. Unfortunately the ARM EHABI does not specify
20204 exactly how to determine this association. Our caller does try
20205 to match up OSECTION with its corresponding input section however
20206 so that is a good first guess. */
20207 if (isection != NULL
20208 && osection->bfd_section != NULL
20209 && isection->bfd_section != NULL
20210 && isection->bfd_section->output_section != NULL
20211 && isection->bfd_section->output_section == osection->bfd_section
20212 && iheaders != NULL
20213 && isection->sh_link > 0
20214 && isection->sh_link < elf_numsections (ibfd)
20215 && iheaders[isection->sh_link]->bfd_section != NULL
20216 && iheaders[isection->sh_link]->bfd_section->output_section != NULL
20217 )
20218 {
20219 for (i = elf_numsections (obfd); i-- > 0;)
20220 if (oheaders[i]->bfd_section
20221 == iheaders[isection->sh_link]->bfd_section->output_section)
20222 break;
20223 }
9eaff861 20224
5522f910
NC
20225 if (i == 0)
20226 {
20227 /* Failing that we have to find a matching section ourselves. If
20228 we had the output section name available we could compare that
20229 with input section names. Unfortunately we don't. So instead
20230 we use a simple heuristic and look for the nearest executable
20231 section before this one. */
20232 for (i = elf_numsections (obfd); i-- > 0;)
20233 if (oheaders[i] == osection)
20234 break;
20235 if (i == 0)
20236 break;
20237
20238 while (i-- > 0)
20239 if (oheaders[i]->sh_type == SHT_PROGBITS
20240 && (oheaders[i]->sh_flags & (SHF_ALLOC | SHF_EXECINSTR))
20241 == (SHF_ALLOC | SHF_EXECINSTR))
20242 break;
20243 }
20244
20245 if (i)
20246 {
20247 osection->sh_link = i;
20248 /* If the text section was part of a group
20249 then the index section should be too. */
20250 if (oheaders[i]->sh_flags & SHF_GROUP)
20251 osection->sh_flags |= SHF_GROUP;
20252 return TRUE;
20253 }
20254 }
20255 break;
20256
20257 case SHT_ARM_PREEMPTMAP:
20258 osection->sh_flags = SHF_ALLOC;
20259 break;
20260
20261 case SHT_ARM_ATTRIBUTES:
20262 case SHT_ARM_DEBUGOVERLAY:
20263 case SHT_ARM_OVERLAYSECTION:
20264 default:
20265 break;
20266 }
20267
20268 return FALSE;
20269}
20270
d691934d
NC
20271/* Returns TRUE if NAME is an ARM mapping symbol.
20272 Traditionally the symbols $a, $d and $t have been used.
20273 The ARM ELF standard also defines $x (for A64 code). It also allows a
20274 period initiated suffix to be added to the symbol: "$[adtx]\.[:sym_char]+".
20275 Other tools might also produce $b (Thumb BL), $f, $p, $m and $v, but we do
20276 not support them here. $t.x indicates the start of ThumbEE instructions. */
20277
20278static bfd_boolean
20279is_arm_mapping_symbol (const char * name)
20280{
20281 return name != NULL /* Paranoia. */
20282 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
20283 the mapping symbols could have acquired a prefix.
20284 We do not support this here, since such symbols no
20285 longer conform to the ARM ELF ABI. */
20286 && (name[1] == 'a' || name[1] == 'd' || name[1] == 't' || name[1] == 'x')
20287 && (name[2] == 0 || name[2] == '.');
20288 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
20289 any characters that follow the period are legal characters for the body
20290 of a symbol's name. For now we just assume that this is the case. */
20291}
20292
fca2a38f
NC
20293/* Make sure that mapping symbols in object files are not removed via the
20294 "strip --strip-unneeded" tool. These symbols are needed in order to
20295 correctly generate interworking veneers, and for byte swapping code
20296 regions. Once an object file has been linked, it is safe to remove the
20297 symbols as they will no longer be needed. */
20298
20299static void
20300elf32_arm_backend_symbol_processing (bfd *abfd, asymbol *sym)
20301{
20302 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
fca2a38f 20303 && sym->section != bfd_abs_section_ptr
d691934d 20304 && is_arm_mapping_symbol (sym->name))
fca2a38f
NC
20305 sym->flags |= BSF_KEEP;
20306}
20307
5522f910
NC
20308#undef elf_backend_copy_special_section_fields
20309#define elf_backend_copy_special_section_fields elf32_arm_copy_special_section_fields
20310
252b5132 20311#define ELF_ARCH bfd_arch_arm
ae95ffa6 20312#define ELF_TARGET_ID ARM_ELF_DATA
252b5132 20313#define ELF_MACHINE_CODE EM_ARM
d0facd1b
NC
20314#ifdef __QNXTARGET__
20315#define ELF_MAXPAGESIZE 0x1000
20316#else
7572ca89 20317#define ELF_MAXPAGESIZE 0x10000
d0facd1b 20318#endif
b1342370 20319#define ELF_MINPAGESIZE 0x1000
24718e3b 20320#define ELF_COMMONPAGESIZE 0x1000
252b5132 20321
07d6d2b8 20322#define bfd_elf32_mkobject elf32_arm_mkobject
ba93b8ac 20323
99e4ae17
AJ
20324#define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
20325#define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
252b5132
RH
20326#define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
20327#define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
07d6d2b8 20328#define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
dc810e39 20329#define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
b38cadfb 20330#define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
07d6d2b8 20331#define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
e489d0ae 20332#define bfd_elf32_new_section_hook elf32_arm_new_section_hook
3c9458e9 20333#define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
3e6b1042 20334#define bfd_elf32_bfd_final_link elf32_arm_final_link
07d6d2b8 20335#define bfd_elf32_get_synthetic_symtab elf32_arm_get_synthetic_symtab
252b5132 20336
07d6d2b8 20337#define elf_backend_get_symbol_type elf32_arm_get_symbol_type
e7679060 20338#define elf_backend_maybe_function_sym elf32_arm_maybe_function_sym
07d6d2b8 20339#define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
6a5bb875 20340#define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
07d6d2b8 20341#define elf_backend_check_relocs elf32_arm_check_relocs
9eaff861 20342#define elf_backend_update_relocs elf32_arm_update_relocs
dc810e39 20343#define elf_backend_relocate_section elf32_arm_relocate_section
e489d0ae 20344#define elf_backend_write_section elf32_arm_write_section
252b5132 20345#define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
07d6d2b8 20346#define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
252b5132
RH
20347#define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
20348#define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
20349#define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
0855e32b 20350#define elf_backend_always_size_sections elf32_arm_always_size_sections
74541ad4 20351#define elf_backend_init_index_section _bfd_elf_init_2_index_sections
ed7e9d0b 20352#define elf_backend_init_file_header elf32_arm_init_file_header
99e4ae17 20353#define elf_backend_reloc_type_class elf32_arm_reloc_type_class
c178919b 20354#define elf_backend_object_p elf32_arm_object_p
07d6d2b8
AM
20355#define elf_backend_fake_sections elf32_arm_fake_sections
20356#define elf_backend_section_from_shdr elf32_arm_section_from_shdr
20357#define elf_backend_final_write_processing elf32_arm_final_write_processing
20358#define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
0beaef2b 20359#define elf_backend_size_info elf32_arm_size_info
b294bdf8 20360#define elf_backend_modify_segment_map elf32_arm_modify_segment_map
07d6d2b8
AM
20361#define elf_backend_additional_program_headers elf32_arm_additional_program_headers
20362#define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
54ddd295 20363#define elf_backend_filter_implib_symbols elf32_arm_filter_implib_symbols
07d6d2b8 20364#define elf_backend_begin_write_processing elf32_arm_begin_write_processing
34e77a92 20365#define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
491d01d3 20366#define elf_backend_count_additional_relocs elf32_arm_count_additional_relocs
fca2a38f 20367#define elf_backend_symbol_processing elf32_arm_backend_symbol_processing
906e58ca
NC
20368
20369#define elf_backend_can_refcount 1
20370#define elf_backend_can_gc_sections 1
20371#define elf_backend_plt_readonly 1
20372#define elf_backend_want_got_plt 1
20373#define elf_backend_want_plt_sym 0
5474d94f 20374#define elf_backend_want_dynrelro 1
906e58ca
NC
20375#define elf_backend_may_use_rel_p 1
20376#define elf_backend_may_use_rela_p 0
4e7fd91e 20377#define elf_backend_default_use_rela_p 0
64f52338 20378#define elf_backend_dtrel_excludes_plt 1
252b5132 20379
04f7c78d 20380#define elf_backend_got_header_size 12
b68a20d6 20381#define elf_backend_extern_protected_data 1
04f7c78d 20382
07d6d2b8 20383#undef elf_backend_obj_attrs_vendor
906e58ca 20384#define elf_backend_obj_attrs_vendor "aeabi"
07d6d2b8 20385#undef elf_backend_obj_attrs_section
906e58ca 20386#define elf_backend_obj_attrs_section ".ARM.attributes"
07d6d2b8 20387#undef elf_backend_obj_attrs_arg_type
906e58ca 20388#define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
07d6d2b8 20389#undef elf_backend_obj_attrs_section_type
104d59d1 20390#define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
b38cadfb 20391#define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
07d6d2b8 20392#define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
104d59d1 20393
07d6d2b8 20394#undef elf_backend_section_flags
ac4c9b04 20395#define elf_backend_section_flags elf32_arm_section_flags
07d6d2b8
AM
20396#undef elf_backend_lookup_section_flags_hook
20397#define elf_backend_lookup_section_flags_hook elf32_arm_lookup_section_flags
ac4c9b04 20398
a2f63b2e
MR
20399#define elf_backend_linux_prpsinfo32_ugid16 TRUE
20400
252b5132 20401#include "elf32-target.h"
7f266840 20402
b38cadfb
NC
20403/* Native Client targets. */
20404
20405#undef TARGET_LITTLE_SYM
6d00b590 20406#define TARGET_LITTLE_SYM arm_elf32_nacl_le_vec
b38cadfb
NC
20407#undef TARGET_LITTLE_NAME
20408#define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
20409#undef TARGET_BIG_SYM
6d00b590 20410#define TARGET_BIG_SYM arm_elf32_nacl_be_vec
b38cadfb
NC
20411#undef TARGET_BIG_NAME
20412#define TARGET_BIG_NAME "elf32-bigarm-nacl"
20413
20414/* Like elf32_arm_link_hash_table_create -- but overrides
20415 appropriately for NaCl. */
20416
20417static struct bfd_link_hash_table *
20418elf32_arm_nacl_link_hash_table_create (bfd *abfd)
20419{
20420 struct bfd_link_hash_table *ret;
20421
20422 ret = elf32_arm_link_hash_table_create (abfd);
20423 if (ret)
20424 {
20425 struct elf32_arm_link_hash_table *htab
20426 = (struct elf32_arm_link_hash_table *) ret;
20427
b38cadfb
NC
20428 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry);
20429 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry);
20430 }
20431 return ret;
20432}
20433
20434/* Since NaCl doesn't use the ARM-specific unwind format, we don't
20435 really need to use elf32_arm_modify_segment_map. But we do it
20436 anyway just to reduce gratuitous differences with the stock ARM backend. */
20437
20438static bfd_boolean
20439elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
20440{
20441 return (elf32_arm_modify_segment_map (abfd, info)
20442 && nacl_modify_segment_map (abfd, info));
20443}
20444
cc364be6
AM
20445static bfd_boolean
20446elf32_arm_nacl_final_write_processing (bfd *abfd)
887badb3 20447{
cc364be6
AM
20448 arm_final_write_processing (abfd);
20449 return nacl_final_write_processing (abfd);
887badb3
RM
20450}
20451
6a631e86
YG
20452static bfd_vma
20453elf32_arm_nacl_plt_sym_val (bfd_vma i, const asection *plt,
20454 const arelent *rel ATTRIBUTE_UNUSED)
20455{
20456 return plt->vma
20457 + 4 * (ARRAY_SIZE (elf32_arm_nacl_plt0_entry) +
20458 i * ARRAY_SIZE (elf32_arm_nacl_plt_entry));
20459}
887badb3 20460
b38cadfb 20461#undef elf32_bed
6a631e86 20462#define elf32_bed elf32_arm_nacl_bed
b38cadfb
NC
20463#undef bfd_elf32_bfd_link_hash_table_create
20464#define bfd_elf32_bfd_link_hash_table_create \
20465 elf32_arm_nacl_link_hash_table_create
20466#undef elf_backend_plt_alignment
6a631e86 20467#define elf_backend_plt_alignment 4
b38cadfb
NC
20468#undef elf_backend_modify_segment_map
20469#define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
6d6c25c8
AM
20470#undef elf_backend_modify_headers
20471#define elf_backend_modify_headers nacl_modify_headers
887badb3
RM
20472#undef elf_backend_final_write_processing
20473#define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing
6a631e86
YG
20474#undef bfd_elf32_get_synthetic_symtab
20475#undef elf_backend_plt_sym_val
20476#define elf_backend_plt_sym_val elf32_arm_nacl_plt_sym_val
5522f910 20477#undef elf_backend_copy_special_section_fields
b38cadfb 20478
887badb3
RM
20479#undef ELF_MINPAGESIZE
20480#undef ELF_COMMONPAGESIZE
20481
90c14f0c
L
20482#undef ELF_TARGET_OS
20483#define ELF_TARGET_OS is_nacl
b38cadfb
NC
20484
20485#include "elf32-target.h"
20486
20487/* Reset to defaults. */
20488#undef elf_backend_plt_alignment
20489#undef elf_backend_modify_segment_map
20490#define elf_backend_modify_segment_map elf32_arm_modify_segment_map
6d6c25c8 20491#undef elf_backend_modify_headers
887badb3
RM
20492#undef elf_backend_final_write_processing
20493#define elf_backend_final_write_processing elf32_arm_final_write_processing
20494#undef ELF_MINPAGESIZE
20495#define ELF_MINPAGESIZE 0x1000
20496#undef ELF_COMMONPAGESIZE
20497#define ELF_COMMONPAGESIZE 0x1000
20498
b38cadfb 20499
617a5ada
CL
20500/* FDPIC Targets. */
20501
20502#undef TARGET_LITTLE_SYM
20503#define TARGET_LITTLE_SYM arm_elf32_fdpic_le_vec
20504#undef TARGET_LITTLE_NAME
20505#define TARGET_LITTLE_NAME "elf32-littlearm-fdpic"
20506#undef TARGET_BIG_SYM
20507#define TARGET_BIG_SYM arm_elf32_fdpic_be_vec
20508#undef TARGET_BIG_NAME
20509#define TARGET_BIG_NAME "elf32-bigarm-fdpic"
20510#undef elf_match_priority
20511#define elf_match_priority 128
18a20338
CL
20512#undef ELF_OSABI
20513#define ELF_OSABI ELFOSABI_ARM_FDPIC
617a5ada
CL
20514
20515/* Like elf32_arm_link_hash_table_create -- but overrides
20516 appropriately for FDPIC. */
20517
20518static struct bfd_link_hash_table *
20519elf32_arm_fdpic_link_hash_table_create (bfd *abfd)
20520{
20521 struct bfd_link_hash_table *ret;
20522
20523 ret = elf32_arm_link_hash_table_create (abfd);
20524 if (ret)
20525 {
20526 struct elf32_arm_link_hash_table *htab = (struct elf32_arm_link_hash_table *) ret;
20527
20528 htab->fdpic_p = 1;
20529 }
20530 return ret;
20531}
20532
e8b09b87
CL
20533/* We need dynamic symbols for every section, since segments can
20534 relocate independently. */
20535static bfd_boolean
20536elf32_arm_fdpic_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
20537 struct bfd_link_info *info
20538 ATTRIBUTE_UNUSED,
20539 asection *p ATTRIBUTE_UNUSED)
20540{
20541 switch (elf_section_data (p)->this_hdr.sh_type)
20542 {
20543 case SHT_PROGBITS:
20544 case SHT_NOBITS:
20545 /* If sh_type is yet undecided, assume it could be
20546 SHT_PROGBITS/SHT_NOBITS. */
20547 case SHT_NULL:
20548 return FALSE;
20549
20550 /* There shouldn't be section relative relocations
20551 against any other section. */
20552 default:
20553 return TRUE;
20554 }
20555}
20556
617a5ada
CL
20557#undef elf32_bed
20558#define elf32_bed elf32_arm_fdpic_bed
20559
20560#undef bfd_elf32_bfd_link_hash_table_create
4b24dd1a 20561#define bfd_elf32_bfd_link_hash_table_create elf32_arm_fdpic_link_hash_table_create
617a5ada 20562
e8b09b87
CL
20563#undef elf_backend_omit_section_dynsym
20564#define elf_backend_omit_section_dynsym elf32_arm_fdpic_omit_section_dynsym
20565
90c14f0c
L
20566#undef ELF_TARGET_OS
20567
617a5ada 20568#include "elf32-target.h"
e8b09b87 20569
617a5ada 20570#undef elf_match_priority
18a20338 20571#undef ELF_OSABI
e8b09b87 20572#undef elf_backend_omit_section_dynsym
617a5ada 20573
906e58ca 20574/* VxWorks Targets. */
4e7fd91e 20575
07d6d2b8
AM
20576#undef TARGET_LITTLE_SYM
20577#define TARGET_LITTLE_SYM arm_elf32_vxworks_le_vec
20578#undef TARGET_LITTLE_NAME
20579#define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
20580#undef TARGET_BIG_SYM
20581#define TARGET_BIG_SYM arm_elf32_vxworks_be_vec
20582#undef TARGET_BIG_NAME
20583#define TARGET_BIG_NAME "elf32-bigarm-vxworks"
4e7fd91e
PB
20584
20585/* Like elf32_arm_link_hash_table_create -- but overrides
20586 appropriately for VxWorks. */
906e58ca 20587
4e7fd91e
PB
20588static struct bfd_link_hash_table *
20589elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
20590{
20591 struct bfd_link_hash_table *ret;
20592
20593 ret = elf32_arm_link_hash_table_create (abfd);
20594 if (ret)
20595 {
20596 struct elf32_arm_link_hash_table *htab
00a97672 20597 = (struct elf32_arm_link_hash_table *) ret;
4e7fd91e
PB
20598 htab->use_rel = 0;
20599 }
20600 return ret;
906e58ca 20601}
4e7fd91e 20602
cc364be6
AM
20603static bfd_boolean
20604elf32_arm_vxworks_final_write_processing (bfd *abfd)
00a97672 20605{
cc364be6
AM
20606 arm_final_write_processing (abfd);
20607 return elf_vxworks_final_write_processing (abfd);
00a97672
RS
20608}
20609
906e58ca 20610#undef elf32_bed
4e7fd91e
PB
20611#define elf32_bed elf32_arm_vxworks_bed
20612
906e58ca
NC
20613#undef bfd_elf32_bfd_link_hash_table_create
20614#define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
906e58ca
NC
20615#undef elf_backend_final_write_processing
20616#define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
20617#undef elf_backend_emit_relocs
9eaff861 20618#define elf_backend_emit_relocs elf_vxworks_emit_relocs
4e7fd91e 20619
906e58ca 20620#undef elf_backend_may_use_rel_p
00a97672 20621#define elf_backend_may_use_rel_p 0
906e58ca 20622#undef elf_backend_may_use_rela_p
00a97672 20623#define elf_backend_may_use_rela_p 1
906e58ca 20624#undef elf_backend_default_use_rela_p
00a97672 20625#define elf_backend_default_use_rela_p 1
906e58ca 20626#undef elf_backend_want_plt_sym
00a97672 20627#define elf_backend_want_plt_sym 1
906e58ca 20628#undef ELF_MAXPAGESIZE
00a97672 20629#define ELF_MAXPAGESIZE 0x1000
90c14f0c
L
20630#undef ELF_TARGET_OS
20631#define ELF_TARGET_OS is_vxworks
4e7fd91e
PB
20632
20633#include "elf32-target.h"
20634
20635
21d799b5
NC
20636/* Merge backend specific data from an object file to the output
20637 object file when linking. */
20638
20639static bfd_boolean
50e03d47 20640elf32_arm_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
21d799b5 20641{
50e03d47 20642 bfd *obfd = info->output_bfd;
21d799b5
NC
20643 flagword out_flags;
20644 flagword in_flags;
20645 bfd_boolean flags_compatible = TRUE;
20646 asection *sec;
20647
cc643b88 20648 /* Check if we have the same endianness. */
50e03d47 20649 if (! _bfd_generic_verify_endian_match (ibfd, info))
21d799b5
NC
20650 return FALSE;
20651
20652 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
20653 return TRUE;
20654
50e03d47 20655 if (!elf32_arm_merge_eabi_attributes (ibfd, info))
21d799b5
NC
20656 return FALSE;
20657
20658 /* The input BFD must have had its flags initialised. */
20659 /* The following seems bogus to me -- The flags are initialized in
20660 the assembler but I don't think an elf_flags_init field is
20661 written into the object. */
20662 /* BFD_ASSERT (elf_flags_init (ibfd)); */
20663
20664 in_flags = elf_elfheader (ibfd)->e_flags;
20665 out_flags = elf_elfheader (obfd)->e_flags;
20666
20667 /* In theory there is no reason why we couldn't handle this. However
20668 in practice it isn't even close to working and there is no real
20669 reason to want it. */
20670 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
20671 && !(ibfd->flags & DYNAMIC)
20672 && (in_flags & EF_ARM_BE8))
20673 {
871b3ab2 20674 _bfd_error_handler (_("error: %pB is already in final BE8 format"),
21d799b5
NC
20675 ibfd);
20676 return FALSE;
20677 }
20678
20679 if (!elf_flags_init (obfd))
20680 {
20681 /* If the input is the default architecture and had the default
20682 flags then do not bother setting the flags for the output
20683 architecture, instead allow future merges to do this. If no
20684 future merges ever set these flags then they will retain their
99059e56
RM
20685 uninitialised values, which surprise surprise, correspond
20686 to the default values. */
21d799b5
NC
20687 if (bfd_get_arch_info (ibfd)->the_default
20688 && elf_elfheader (ibfd)->e_flags == 0)
20689 return TRUE;
20690
20691 elf_flags_init (obfd) = TRUE;
20692 elf_elfheader (obfd)->e_flags = in_flags;
20693
20694 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
20695 && bfd_get_arch_info (obfd)->the_default)
20696 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
20697
20698 return TRUE;
20699 }
20700
20701 /* Determine what should happen if the input ARM architecture
20702 does not match the output ARM architecture. */
20703 if (! bfd_arm_merge_machines (ibfd, obfd))
20704 return FALSE;
20705
20706 /* Identical flags must be compatible. */
20707 if (in_flags == out_flags)
20708 return TRUE;
20709
20710 /* Check to see if the input BFD actually contains any sections. If
20711 not, its flags may not have been initialised either, but it
20712 cannot actually cause any incompatiblity. Do not short-circuit
20713 dynamic objects; their section list may be emptied by
20714 elf_link_add_object_symbols.
20715
20716 Also check to see if there are no code sections in the input.
20717 In this case there is no need to check for code specific flags.
20718 XXX - do we need to worry about floating-point format compatability
20719 in data sections ? */
20720 if (!(ibfd->flags & DYNAMIC))
20721 {
20722 bfd_boolean null_input_bfd = TRUE;
20723 bfd_boolean only_data_sections = TRUE;
20724
20725 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
20726 {
20727 /* Ignore synthetic glue sections. */
20728 if (strcmp (sec->name, ".glue_7")
20729 && strcmp (sec->name, ".glue_7t"))
20730 {
fd361982 20731 if ((bfd_section_flags (sec)
21d799b5
NC
20732 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
20733 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
99059e56 20734 only_data_sections = FALSE;
21d799b5
NC
20735
20736 null_input_bfd = FALSE;
20737 break;
20738 }
20739 }
20740
20741 if (null_input_bfd || only_data_sections)
20742 return TRUE;
20743 }
20744
20745 /* Complain about various flag mismatches. */
20746 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
20747 EF_ARM_EABI_VERSION (out_flags)))
20748 {
20749 _bfd_error_handler
90b6238f 20750 (_("error: source object %pB has EABI version %d, but target %pB has EABI version %d"),
c08bb8dd
AM
20751 ibfd, (in_flags & EF_ARM_EABIMASK) >> 24,
20752 obfd, (out_flags & EF_ARM_EABIMASK) >> 24);
21d799b5
NC
20753 return FALSE;
20754 }
20755
20756 /* Not sure what needs to be checked for EABI versions >= 1. */
20757 /* VxWorks libraries do not use these flags. */
20758 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
20759 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
20760 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
20761 {
20762 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
20763 {
20764 _bfd_error_handler
871b3ab2 20765 (_("error: %pB is compiled for APCS-%d, whereas target %pB uses APCS-%d"),
c08bb8dd
AM
20766 ibfd, in_flags & EF_ARM_APCS_26 ? 26 : 32,
20767 obfd, out_flags & EF_ARM_APCS_26 ? 26 : 32);
21d799b5
NC
20768 flags_compatible = FALSE;
20769 }
20770
20771 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
20772 {
20773 if (in_flags & EF_ARM_APCS_FLOAT)
20774 _bfd_error_handler
871b3ab2 20775 (_("error: %pB passes floats in float registers, whereas %pB passes them in integer registers"),
21d799b5
NC
20776 ibfd, obfd);
20777 else
20778 _bfd_error_handler
871b3ab2 20779 (_("error: %pB passes floats in integer registers, whereas %pB passes them in float registers"),
21d799b5
NC
20780 ibfd, obfd);
20781
20782 flags_compatible = FALSE;
20783 }
20784
20785 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
20786 {
20787 if (in_flags & EF_ARM_VFP_FLOAT)
20788 _bfd_error_handler
90b6238f
AM
20789 (_("error: %pB uses %s instructions, whereas %pB does not"),
20790 ibfd, "VFP", obfd);
21d799b5
NC
20791 else
20792 _bfd_error_handler
90b6238f
AM
20793 (_("error: %pB uses %s instructions, whereas %pB does not"),
20794 ibfd, "FPA", obfd);
21d799b5
NC
20795
20796 flags_compatible = FALSE;
20797 }
20798
20799 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
20800 {
20801 if (in_flags & EF_ARM_MAVERICK_FLOAT)
20802 _bfd_error_handler
90b6238f
AM
20803 (_("error: %pB uses %s instructions, whereas %pB does not"),
20804 ibfd, "Maverick", obfd);
21d799b5
NC
20805 else
20806 _bfd_error_handler
90b6238f
AM
20807 (_("error: %pB does not use %s instructions, whereas %pB does"),
20808 ibfd, "Maverick", obfd);
21d799b5
NC
20809
20810 flags_compatible = FALSE;
20811 }
20812
20813#ifdef EF_ARM_SOFT_FLOAT
20814 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
20815 {
20816 /* We can allow interworking between code that is VFP format
20817 layout, and uses either soft float or integer regs for
20818 passing floating point arguments and results. We already
20819 know that the APCS_FLOAT flags match; similarly for VFP
20820 flags. */
20821 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
20822 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
20823 {
20824 if (in_flags & EF_ARM_SOFT_FLOAT)
20825 _bfd_error_handler
871b3ab2 20826 (_("error: %pB uses software FP, whereas %pB uses hardware FP"),
21d799b5
NC
20827 ibfd, obfd);
20828 else
20829 _bfd_error_handler
871b3ab2 20830 (_("error: %pB uses hardware FP, whereas %pB uses software FP"),
21d799b5
NC
20831 ibfd, obfd);
20832
20833 flags_compatible = FALSE;
20834 }
20835 }
20836#endif
20837
20838 /* Interworking mismatch is only a warning. */
20839 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
20840 {
20841 if (in_flags & EF_ARM_INTERWORK)
20842 {
20843 _bfd_error_handler
90b6238f 20844 (_("warning: %pB supports interworking, whereas %pB does not"),
21d799b5
NC
20845 ibfd, obfd);
20846 }
20847 else
20848 {
20849 _bfd_error_handler
90b6238f 20850 (_("warning: %pB does not support interworking, whereas %pB does"),
21d799b5
NC
20851 ibfd, obfd);
20852 }
20853 }
20854 }
20855
20856 return flags_compatible;
20857}
20858
20859
906e58ca 20860/* Symbian OS Targets. */
7f266840 20861
07d6d2b8
AM
20862#undef TARGET_LITTLE_SYM
20863#define TARGET_LITTLE_SYM arm_elf32_symbian_le_vec
20864#undef TARGET_LITTLE_NAME
20865#define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
20866#undef TARGET_BIG_SYM
20867#define TARGET_BIG_SYM arm_elf32_symbian_be_vec
20868#undef TARGET_BIG_NAME
20869#define TARGET_BIG_NAME "elf32-bigarm-symbian"
7f266840
DJ
20870
20871/* Like elf32_arm_link_hash_table_create -- but overrides
20872 appropriately for Symbian OS. */
906e58ca 20873
7f266840
DJ
20874static struct bfd_link_hash_table *
20875elf32_arm_symbian_link_hash_table_create (bfd *abfd)
20876{
20877 struct bfd_link_hash_table *ret;
20878
20879 ret = elf32_arm_link_hash_table_create (abfd);
20880 if (ret)
20881 {
20882 struct elf32_arm_link_hash_table *htab
20883 = (struct elf32_arm_link_hash_table *)ret;
20884 /* There is no PLT header for Symbian OS. */
20885 htab->plt_header_size = 0;
95720a86
DJ
20886 /* The PLT entries are each one instruction and one word. */
20887 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
33bfe774
JB
20888 /* Symbian uses armv5t or above, so use_blx is always true. */
20889 htab->use_blx = 1;
67687978 20890 htab->root.is_relocatable_executable = 1;
7f266840
DJ
20891 }
20892 return ret;
906e58ca 20893}
7f266840 20894
b35d266b 20895static const struct bfd_elf_special_section
551b43fd 20896elf32_arm_symbian_special_sections[] =
7f266840 20897{
5cd3778d
MM
20898 /* In a BPABI executable, the dynamic linking sections do not go in
20899 the loadable read-only segment. The post-linker may wish to
20900 refer to these sections, but they are not part of the final
20901 program image. */
07d6d2b8
AM
20902 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
20903 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
20904 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
20905 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
20906 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
5cd3778d
MM
20907 /* These sections do not need to be writable as the SymbianOS
20908 postlinker will arrange things so that no dynamic relocation is
20909 required. */
07d6d2b8
AM
20910 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
20911 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
0112cd26 20912 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
07d6d2b8 20913 { NULL, 0, 0, 0, 0 }
7f266840
DJ
20914};
20915
c3c76620 20916static void
906e58ca 20917elf32_arm_symbian_begin_write_processing (bfd *abfd,
a4fd1a8e 20918 struct bfd_link_info *link_info)
c3c76620
MM
20919{
20920 /* BPABI objects are never loaded directly by an OS kernel; they are
20921 processed by a postlinker first, into an OS-specific format. If
20922 the D_PAGED bit is set on the file, BFD will align segments on
20923 page boundaries, so that an OS can directly map the file. With
20924 BPABI objects, that just results in wasted space. In addition,
20925 because we clear the D_PAGED bit, map_sections_to_segments will
20926 recognize that the program headers should not be mapped into any
20927 loadable segment. */
20928 abfd->flags &= ~D_PAGED;
906e58ca 20929 elf32_arm_begin_write_processing (abfd, link_info);
c3c76620 20930}
7f266840
DJ
20931
20932static bfd_boolean
906e58ca 20933elf32_arm_symbian_modify_segment_map (bfd *abfd,
b294bdf8 20934 struct bfd_link_info *info)
7f266840
DJ
20935{
20936 struct elf_segment_map *m;
20937 asection *dynsec;
20938
7f266840
DJ
20939 /* BPABI shared libraries and executables should have a PT_DYNAMIC
20940 segment. However, because the .dynamic section is not marked
20941 with SEC_LOAD, the generic ELF code will not create such a
20942 segment. */
20943 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
20944 if (dynsec)
20945 {
12bd6957 20946 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
8ded5a0f
AM
20947 if (m->p_type == PT_DYNAMIC)
20948 break;
20949
20950 if (m == NULL)
20951 {
20952 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
12bd6957
AM
20953 m->next = elf_seg_map (abfd);
20954 elf_seg_map (abfd) = m;
8ded5a0f 20955 }
7f266840
DJ
20956 }
20957
b294bdf8
MM
20958 /* Also call the generic arm routine. */
20959 return elf32_arm_modify_segment_map (abfd, info);
7f266840
DJ
20960}
20961
95720a86
DJ
20962/* Return address for Ith PLT stub in section PLT, for relocation REL
20963 or (bfd_vma) -1 if it should not be included. */
20964
20965static bfd_vma
20966elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
20967 const arelent *rel ATTRIBUTE_UNUSED)
20968{
20969 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
20970}
20971
8029a119 20972#undef elf32_bed
7f266840
DJ
20973#define elf32_bed elf32_arm_symbian_bed
20974
20975/* The dynamic sections are not allocated on SymbianOS; the postlinker
20976 will process them and then discard them. */
906e58ca 20977#undef ELF_DYNAMIC_SEC_FLAGS
7f266840
DJ
20978#define ELF_DYNAMIC_SEC_FLAGS \
20979 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
20980
9eaff861 20981#undef elf_backend_emit_relocs
c3c76620 20982
906e58ca
NC
20983#undef bfd_elf32_bfd_link_hash_table_create
20984#define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
20985#undef elf_backend_special_sections
07d6d2b8 20986#define elf_backend_special_sections elf32_arm_symbian_special_sections
906e58ca
NC
20987#undef elf_backend_begin_write_processing
20988#define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
20989#undef elf_backend_final_write_processing
20990#define elf_backend_final_write_processing elf32_arm_final_write_processing
20991
20992#undef elf_backend_modify_segment_map
7f266840
DJ
20993#define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
20994
20995/* There is no .got section for BPABI objects, and hence no header. */
906e58ca 20996#undef elf_backend_got_header_size
7f266840
DJ
20997#define elf_backend_got_header_size 0
20998
20999/* Similarly, there is no .got.plt section. */
906e58ca 21000#undef elf_backend_want_got_plt
7f266840
DJ
21001#define elf_backend_want_got_plt 0
21002
906e58ca 21003#undef elf_backend_plt_sym_val
95720a86
DJ
21004#define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
21005
906e58ca 21006#undef elf_backend_may_use_rel_p
00a97672 21007#define elf_backend_may_use_rel_p 1
906e58ca 21008#undef elf_backend_may_use_rela_p
00a97672 21009#define elf_backend_may_use_rela_p 0
906e58ca 21010#undef elf_backend_default_use_rela_p
00a97672 21011#define elf_backend_default_use_rela_p 0
906e58ca 21012#undef elf_backend_want_plt_sym
00a97672 21013#define elf_backend_want_plt_sym 0
64f52338
AM
21014#undef elf_backend_dtrel_excludes_plt
21015#define elf_backend_dtrel_excludes_plt 0
906e58ca 21016#undef ELF_MAXPAGESIZE
00a97672 21017#define ELF_MAXPAGESIZE 0x8000
90c14f0c
L
21018#undef ELF_TARGET_OS
21019#define ELF_TARGET_OS is_symbian
4e7fd91e 21020
7f266840 21021#include "elf32-target.h"
This page took 4.318717 seconds and 4 git commands to generate.