*** empty log message ***
[deliverable/binutils-gdb.git] / bfd / elf32-avr.c
CommitLineData
adde6300 1/* AVR-specific support for 32-bit ELF
4dfe6ac6 2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
cc643b88 3 2010, 2011 Free Software Foundation, Inc.
adde6300
AM
4 Contributed by Denis Chertykov <denisc@overta.ru>
5
750bce0e 6 This file is part of BFD, the Binary File Descriptor library.
adde6300 7
750bce0e
NC
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
cd123cb7 10 the Free Software Foundation; either version 3 of the License, or
750bce0e 11 (at your option) any later version.
adde6300 12
750bce0e
NC
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
adde6300 17
750bce0e
NC
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
4cdc7696 20 Foundation, Inc., 51 Franklin Street - Fifth Floor,
df406460 21 Boston, MA 02110-1301, USA. */
adde6300 22
adde6300 23#include "sysdep.h"
3db64b00 24#include "bfd.h"
adde6300
AM
25#include "libbfd.h"
26#include "elf-bfd.h"
27#include "elf/avr.h"
28c9d252
NC
28#include "elf32-avr.h"
29
30/* Enable debugging printout at stdout with this variable. */
31static bfd_boolean debug_relax = FALSE;
32
33/* Enable debugging printout at stdout with this variable. */
34static bfd_boolean debug_stubs = FALSE;
35
36/* Hash table initialization and handling. Code is taken from the hppa port
37 and adapted to the needs of AVR. */
38
39/* We use two hash tables to hold information for linking avr objects.
40
4dfe6ac6 41 The first is the elf32_avr_link_hash_table which is derived from the
28c9d252
NC
42 stanard ELF linker hash table. We use this as a place to attach the other
43 hash table and some static information.
44
45 The second is the stub hash table which is derived from the base BFD
46 hash table. The stub hash table holds the information on the linker
47 stubs. */
48
49struct elf32_avr_stub_hash_entry
50{
51 /* Base hash table entry structure. */
52 struct bfd_hash_entry bh_root;
53
54 /* Offset within stub_sec of the beginning of this stub. */
55 bfd_vma stub_offset;
56
57 /* Given the symbol's value and its section we can determine its final
58 value when building the stubs (so the stub knows where to jump). */
59 bfd_vma target_value;
60
61 /* This way we could mark stubs to be no longer necessary. */
62 bfd_boolean is_actually_needed;
63};
64
65struct elf32_avr_link_hash_table
66{
67 /* The main hash table. */
68 struct elf_link_hash_table etab;
69
70 /* The stub hash table. */
71 struct bfd_hash_table bstab;
72
73 bfd_boolean no_stubs;
74
75 /* Linker stub bfd. */
76 bfd *stub_bfd;
77
78 /* The stub section. */
79 asection *stub_sec;
80
81 /* Usually 0, unless we are generating code for a bootloader. Will
82 be initialized by elf32_avr_size_stubs to the vma offset of the
83 output section associated with the stub section. */
84 bfd_vma vector_base;
85
86 /* Assorted information used by elf32_avr_size_stubs. */
87 unsigned int bfd_count;
88 int top_index;
89 asection ** input_list;
90 Elf_Internal_Sym ** all_local_syms;
91
92 /* Tables for mapping vma beyond the 128k boundary to the address of the
93 corresponding stub. (AMT)
94 "amt_max_entry_cnt" reflects the number of entries that memory is allocated
95 for in the "amt_stub_offsets" and "amt_destination_addr" arrays.
96 "amt_entry_cnt" informs how many of these entries actually contain
97 useful data. */
98 unsigned int amt_entry_cnt;
99 unsigned int amt_max_entry_cnt;
100 bfd_vma * amt_stub_offsets;
101 bfd_vma * amt_destination_addr;
102};
103
104/* Various hash macros and functions. */
105#define avr_link_hash_table(p) \
64ee10b6 106 /* PR 3874: Check that we have an AVR style hash table before using it. */\
4dfe6ac6
NC
107 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
108 == AVR_ELF_DATA ? ((struct elf32_avr_link_hash_table *) ((p)->hash)) : NULL)
28c9d252
NC
109
110#define avr_stub_hash_entry(ent) \
111 ((struct elf32_avr_stub_hash_entry *)(ent))
112
113#define avr_stub_hash_lookup(table, string, create, copy) \
114 ((struct elf32_avr_stub_hash_entry *) \
115 bfd_hash_lookup ((table), (string), (create), (copy)))
adde6300 116
adde6300
AM
117static reloc_howto_type elf_avr_howto_table[] =
118{
119 HOWTO (R_AVR_NONE, /* type */
120 0, /* rightshift */
121 2, /* size (0 = byte, 1 = short, 2 = long) */
122 32, /* bitsize */
b34976b6 123 FALSE, /* pc_relative */
adde6300
AM
124 0, /* bitpos */
125 complain_overflow_bitfield, /* complain_on_overflow */
126 bfd_elf_generic_reloc, /* special_function */
127 "R_AVR_NONE", /* name */
b34976b6 128 FALSE, /* partial_inplace */
adde6300
AM
129 0, /* src_mask */
130 0, /* dst_mask */
b34976b6 131 FALSE), /* pcrel_offset */
adde6300
AM
132
133 HOWTO (R_AVR_32, /* type */
134 0, /* rightshift */
135 2, /* size (0 = byte, 1 = short, 2 = long) */
136 32, /* bitsize */
b34976b6 137 FALSE, /* pc_relative */
adde6300
AM
138 0, /* bitpos */
139 complain_overflow_bitfield, /* complain_on_overflow */
140 bfd_elf_generic_reloc, /* special_function */
141 "R_AVR_32", /* name */
b34976b6 142 FALSE, /* partial_inplace */
adde6300
AM
143 0xffffffff, /* src_mask */
144 0xffffffff, /* dst_mask */
b34976b6 145 FALSE), /* pcrel_offset */
adde6300
AM
146
147 /* A 7 bit PC relative relocation. */
148 HOWTO (R_AVR_7_PCREL, /* type */
149 1, /* rightshift */
150 1, /* size (0 = byte, 1 = short, 2 = long) */
151 7, /* bitsize */
b34976b6 152 TRUE, /* pc_relative */
adde6300
AM
153 3, /* bitpos */
154 complain_overflow_bitfield, /* complain_on_overflow */
155 bfd_elf_generic_reloc, /* special_function */
156 "R_AVR_7_PCREL", /* name */
b34976b6 157 FALSE, /* partial_inplace */
adde6300
AM
158 0xffff, /* src_mask */
159 0xffff, /* dst_mask */
b34976b6 160 TRUE), /* pcrel_offset */
adde6300
AM
161
162 /* A 13 bit PC relative relocation. */
163 HOWTO (R_AVR_13_PCREL, /* type */
164 1, /* rightshift */
165 1, /* size (0 = byte, 1 = short, 2 = long) */
166 13, /* bitsize */
b34976b6 167 TRUE, /* pc_relative */
adde6300
AM
168 0, /* bitpos */
169 complain_overflow_bitfield, /* complain_on_overflow */
170 bfd_elf_generic_reloc, /* special_function */
171 "R_AVR_13_PCREL", /* name */
b34976b6 172 FALSE, /* partial_inplace */
adde6300
AM
173 0xfff, /* src_mask */
174 0xfff, /* dst_mask */
b34976b6 175 TRUE), /* pcrel_offset */
adde6300
AM
176
177 /* A 16 bit absolute relocation. */
178 HOWTO (R_AVR_16, /* type */
179 0, /* rightshift */
180 1, /* size (0 = byte, 1 = short, 2 = long) */
181 16, /* bitsize */
b34976b6 182 FALSE, /* pc_relative */
adde6300
AM
183 0, /* bitpos */
184 complain_overflow_dont, /* complain_on_overflow */
185 bfd_elf_generic_reloc, /* special_function */
186 "R_AVR_16", /* name */
b34976b6 187 FALSE, /* partial_inplace */
adde6300
AM
188 0xffff, /* src_mask */
189 0xffff, /* dst_mask */
b34976b6 190 FALSE), /* pcrel_offset */
adde6300 191
28c9d252
NC
192 /* A 16 bit absolute relocation for command address
193 Will be changed when linker stubs are needed. */
adde6300
AM
194 HOWTO (R_AVR_16_PM, /* type */
195 1, /* rightshift */
196 1, /* size (0 = byte, 1 = short, 2 = long) */
197 16, /* bitsize */
b34976b6 198 FALSE, /* pc_relative */
adde6300
AM
199 0, /* bitpos */
200 complain_overflow_bitfield, /* complain_on_overflow */
201 bfd_elf_generic_reloc, /* special_function */
202 "R_AVR_16_PM", /* name */
b34976b6 203 FALSE, /* partial_inplace */
adde6300
AM
204 0xffff, /* src_mask */
205 0xffff, /* dst_mask */
b34976b6 206 FALSE), /* pcrel_offset */
adde6300
AM
207 /* A low 8 bit absolute relocation of 16 bit address.
208 For LDI command. */
209 HOWTO (R_AVR_LO8_LDI, /* type */
210 0, /* rightshift */
211 1, /* size (0 = byte, 1 = short, 2 = long) */
212 8, /* bitsize */
b34976b6 213 FALSE, /* pc_relative */
adde6300
AM
214 0, /* bitpos */
215 complain_overflow_dont, /* complain_on_overflow */
216 bfd_elf_generic_reloc, /* special_function */
217 "R_AVR_LO8_LDI", /* name */
b34976b6 218 FALSE, /* partial_inplace */
adde6300
AM
219 0xffff, /* src_mask */
220 0xffff, /* dst_mask */
b34976b6 221 FALSE), /* pcrel_offset */
adde6300
AM
222 /* A high 8 bit absolute relocation of 16 bit address.
223 For LDI command. */
224 HOWTO (R_AVR_HI8_LDI, /* type */
225 8, /* rightshift */
226 1, /* size (0 = byte, 1 = short, 2 = long) */
227 8, /* bitsize */
b34976b6 228 FALSE, /* pc_relative */
adde6300
AM
229 0, /* bitpos */
230 complain_overflow_dont, /* complain_on_overflow */
231 bfd_elf_generic_reloc, /* special_function */
232 "R_AVR_HI8_LDI", /* name */
b34976b6 233 FALSE, /* partial_inplace */
adde6300
AM
234 0xffff, /* src_mask */
235 0xffff, /* dst_mask */
b34976b6 236 FALSE), /* pcrel_offset */
adde6300 237 /* A high 6 bit absolute relocation of 22 bit address.
4cdc7696 238 For LDI command. As well second most significant 8 bit value of
df406460 239 a 32 bit link-time constant. */
adde6300
AM
240 HOWTO (R_AVR_HH8_LDI, /* type */
241 16, /* rightshift */
242 1, /* size (0 = byte, 1 = short, 2 = long) */
243 8, /* bitsize */
b34976b6 244 FALSE, /* pc_relative */
adde6300
AM
245 0, /* bitpos */
246 complain_overflow_dont, /* complain_on_overflow */
247 bfd_elf_generic_reloc, /* special_function */
248 "R_AVR_HH8_LDI", /* name */
b34976b6 249 FALSE, /* partial_inplace */
adde6300
AM
250 0xffff, /* src_mask */
251 0xffff, /* dst_mask */
b34976b6 252 FALSE), /* pcrel_offset */
adde6300
AM
253 /* A negative low 8 bit absolute relocation of 16 bit address.
254 For LDI command. */
255 HOWTO (R_AVR_LO8_LDI_NEG, /* type */
256 0, /* rightshift */
257 1, /* size (0 = byte, 1 = short, 2 = long) */
258 8, /* bitsize */
b34976b6 259 FALSE, /* pc_relative */
adde6300
AM
260 0, /* bitpos */
261 complain_overflow_dont, /* complain_on_overflow */
262 bfd_elf_generic_reloc, /* special_function */
263 "R_AVR_LO8_LDI_NEG", /* name */
b34976b6 264 FALSE, /* partial_inplace */
adde6300
AM
265 0xffff, /* src_mask */
266 0xffff, /* dst_mask */
b34976b6 267 FALSE), /* pcrel_offset */
df406460 268 /* A negative high 8 bit absolute relocation of 16 bit address.
adde6300
AM
269 For LDI command. */
270 HOWTO (R_AVR_HI8_LDI_NEG, /* type */
271 8, /* rightshift */
272 1, /* size (0 = byte, 1 = short, 2 = long) */
273 8, /* bitsize */
b34976b6 274 FALSE, /* pc_relative */
adde6300
AM
275 0, /* bitpos */
276 complain_overflow_dont, /* complain_on_overflow */
277 bfd_elf_generic_reloc, /* special_function */
278 "R_AVR_HI8_LDI_NEG", /* name */
b34976b6 279 FALSE, /* partial_inplace */
adde6300
AM
280 0xffff, /* src_mask */
281 0xffff, /* dst_mask */
b34976b6 282 FALSE), /* pcrel_offset */
df406460 283 /* A negative high 6 bit absolute relocation of 22 bit address.
adde6300
AM
284 For LDI command. */
285 HOWTO (R_AVR_HH8_LDI_NEG, /* type */
286 16, /* rightshift */
287 1, /* size (0 = byte, 1 = short, 2 = long) */
288 8, /* bitsize */
b34976b6 289 FALSE, /* pc_relative */
adde6300
AM
290 0, /* bitpos */
291 complain_overflow_dont, /* complain_on_overflow */
292 bfd_elf_generic_reloc, /* special_function */
293 "R_AVR_HH8_LDI_NEG", /* name */
b34976b6 294 FALSE, /* partial_inplace */
adde6300
AM
295 0xffff, /* src_mask */
296 0xffff, /* dst_mask */
b34976b6 297 FALSE), /* pcrel_offset */
adde6300 298 /* A low 8 bit absolute relocation of 24 bit program memory address.
28c9d252 299 For LDI command. Will not be changed when linker stubs are needed. */
adde6300
AM
300 HOWTO (R_AVR_LO8_LDI_PM, /* type */
301 1, /* rightshift */
302 1, /* size (0 = byte, 1 = short, 2 = long) */
303 8, /* bitsize */
b34976b6 304 FALSE, /* pc_relative */
adde6300
AM
305 0, /* bitpos */
306 complain_overflow_dont, /* complain_on_overflow */
307 bfd_elf_generic_reloc, /* special_function */
308 "R_AVR_LO8_LDI_PM", /* name */
b34976b6 309 FALSE, /* partial_inplace */
adde6300
AM
310 0xffff, /* src_mask */
311 0xffff, /* dst_mask */
b34976b6 312 FALSE), /* pcrel_offset */
28c9d252
NC
313 /* A low 8 bit absolute relocation of 24 bit program memory address.
314 For LDI command. Will not be changed when linker stubs are needed. */
adde6300
AM
315 HOWTO (R_AVR_HI8_LDI_PM, /* type */
316 9, /* rightshift */
317 1, /* size (0 = byte, 1 = short, 2 = long) */
318 8, /* bitsize */
b34976b6 319 FALSE, /* pc_relative */
adde6300
AM
320 0, /* bitpos */
321 complain_overflow_dont, /* complain_on_overflow */
322 bfd_elf_generic_reloc, /* special_function */
323 "R_AVR_HI8_LDI_PM", /* name */
b34976b6 324 FALSE, /* partial_inplace */
adde6300
AM
325 0xffff, /* src_mask */
326 0xffff, /* dst_mask */
b34976b6 327 FALSE), /* pcrel_offset */
28c9d252
NC
328 /* A low 8 bit absolute relocation of 24 bit program memory address.
329 For LDI command. Will not be changed when linker stubs are needed. */
adde6300
AM
330 HOWTO (R_AVR_HH8_LDI_PM, /* type */
331 17, /* rightshift */
332 1, /* size (0 = byte, 1 = short, 2 = long) */
333 8, /* bitsize */
b34976b6 334 FALSE, /* pc_relative */
adde6300
AM
335 0, /* bitpos */
336 complain_overflow_dont, /* complain_on_overflow */
337 bfd_elf_generic_reloc, /* special_function */
338 "R_AVR_HH8_LDI_PM", /* name */
b34976b6 339 FALSE, /* partial_inplace */
adde6300
AM
340 0xffff, /* src_mask */
341 0xffff, /* dst_mask */
b34976b6 342 FALSE), /* pcrel_offset */
28c9d252
NC
343 /* A low 8 bit absolute relocation of 24 bit program memory address.
344 For LDI command. Will not be changed when linker stubs are needed. */
adde6300
AM
345 HOWTO (R_AVR_LO8_LDI_PM_NEG, /* type */
346 1, /* rightshift */
347 1, /* size (0 = byte, 1 = short, 2 = long) */
348 8, /* bitsize */
b34976b6 349 FALSE, /* pc_relative */
adde6300
AM
350 0, /* bitpos */
351 complain_overflow_dont, /* complain_on_overflow */
352 bfd_elf_generic_reloc, /* special_function */
353 "R_AVR_LO8_LDI_PM_NEG", /* name */
b34976b6 354 FALSE, /* partial_inplace */
adde6300
AM
355 0xffff, /* src_mask */
356 0xffff, /* dst_mask */
b34976b6 357 FALSE), /* pcrel_offset */
28c9d252
NC
358 /* A low 8 bit absolute relocation of 24 bit program memory address.
359 For LDI command. Will not be changed when linker stubs are needed. */
adde6300
AM
360 HOWTO (R_AVR_HI8_LDI_PM_NEG, /* type */
361 9, /* rightshift */
362 1, /* size (0 = byte, 1 = short, 2 = long) */
363 8, /* bitsize */
b34976b6 364 FALSE, /* pc_relative */
adde6300
AM
365 0, /* bitpos */
366 complain_overflow_dont, /* complain_on_overflow */
367 bfd_elf_generic_reloc, /* special_function */
368 "R_AVR_HI8_LDI_PM_NEG", /* name */
b34976b6 369 FALSE, /* partial_inplace */
adde6300
AM
370 0xffff, /* src_mask */
371 0xffff, /* dst_mask */
b34976b6 372 FALSE), /* pcrel_offset */
28c9d252
NC
373 /* A low 8 bit absolute relocation of 24 bit program memory address.
374 For LDI command. Will not be changed when linker stubs are needed. */
adde6300
AM
375 HOWTO (R_AVR_HH8_LDI_PM_NEG, /* type */
376 17, /* rightshift */
377 1, /* size (0 = byte, 1 = short, 2 = long) */
378 8, /* bitsize */
b34976b6 379 FALSE, /* pc_relative */
adde6300
AM
380 0, /* bitpos */
381 complain_overflow_dont, /* complain_on_overflow */
382 bfd_elf_generic_reloc, /* special_function */
383 "R_AVR_HH8_LDI_PM_NEG", /* name */
b34976b6 384 FALSE, /* partial_inplace */
adde6300
AM
385 0xffff, /* src_mask */
386 0xffff, /* dst_mask */
b34976b6 387 FALSE), /* pcrel_offset */
adde6300
AM
388 /* Relocation for CALL command in ATmega. */
389 HOWTO (R_AVR_CALL, /* type */
390 1, /* rightshift */
391 2, /* size (0 = byte, 1 = short, 2 = long) */
392 23, /* bitsize */
b34976b6 393 FALSE, /* pc_relative */
adde6300 394 0, /* bitpos */
750bce0e 395 complain_overflow_dont,/* complain_on_overflow */
adde6300
AM
396 bfd_elf_generic_reloc, /* special_function */
397 "R_AVR_CALL", /* name */
b34976b6 398 FALSE, /* partial_inplace */
adde6300
AM
399 0xffffffff, /* src_mask */
400 0xffffffff, /* dst_mask */
750bce0e
NC
401 FALSE), /* pcrel_offset */
402 /* A 16 bit absolute relocation of 16 bit address.
403 For LDI command. */
404 HOWTO (R_AVR_LDI, /* type */
405 0, /* rightshift */
406 1, /* size (0 = byte, 1 = short, 2 = long) */
407 16, /* bitsize */
408 FALSE, /* pc_relative */
409 0, /* bitpos */
410 complain_overflow_dont,/* complain_on_overflow */
411 bfd_elf_generic_reloc, /* special_function */
412 "R_AVR_LDI", /* name */
413 FALSE, /* partial_inplace */
414 0xffff, /* src_mask */
415 0xffff, /* dst_mask */
416 FALSE), /* pcrel_offset */
417 /* A 6 bit absolute relocation of 6 bit offset.
418 For ldd/sdd command. */
419 HOWTO (R_AVR_6, /* type */
420 0, /* rightshift */
421 0, /* size (0 = byte, 1 = short, 2 = long) */
422 6, /* bitsize */
423 FALSE, /* pc_relative */
424 0, /* bitpos */
425 complain_overflow_dont,/* complain_on_overflow */
426 bfd_elf_generic_reloc, /* special_function */
427 "R_AVR_6", /* name */
428 FALSE, /* partial_inplace */
429 0xffff, /* src_mask */
430 0xffff, /* dst_mask */
431 FALSE), /* pcrel_offset */
432 /* A 6 bit absolute relocation of 6 bit offset.
433 For sbiw/adiw command. */
434 HOWTO (R_AVR_6_ADIW, /* type */
435 0, /* rightshift */
436 0, /* size (0 = byte, 1 = short, 2 = long) */
437 6, /* bitsize */
438 FALSE, /* pc_relative */
439 0, /* bitpos */
440 complain_overflow_dont,/* complain_on_overflow */
441 bfd_elf_generic_reloc, /* special_function */
442 "R_AVR_6_ADIW", /* name */
443 FALSE, /* partial_inplace */
444 0xffff, /* src_mask */
445 0xffff, /* dst_mask */
df406460
NC
446 FALSE), /* pcrel_offset */
447 /* Most significant 8 bit value of a 32 bit link-time constant. */
448 HOWTO (R_AVR_MS8_LDI, /* type */
449 24, /* rightshift */
450 1, /* size (0 = byte, 1 = short, 2 = long) */
451 8, /* bitsize */
452 FALSE, /* pc_relative */
453 0, /* bitpos */
454 complain_overflow_dont, /* complain_on_overflow */
455 bfd_elf_generic_reloc, /* special_function */
456 "R_AVR_MS8_LDI", /* name */
457 FALSE, /* partial_inplace */
458 0xffff, /* src_mask */
459 0xffff, /* dst_mask */
460 FALSE), /* pcrel_offset */
461 /* Negative most significant 8 bit value of a 32 bit link-time constant. */
462 HOWTO (R_AVR_MS8_LDI_NEG, /* type */
463 24, /* rightshift */
464 1, /* size (0 = byte, 1 = short, 2 = long) */
465 8, /* bitsize */
466 FALSE, /* pc_relative */
467 0, /* bitpos */
468 complain_overflow_dont, /* complain_on_overflow */
469 bfd_elf_generic_reloc, /* special_function */
470 "R_AVR_MS8_LDI_NEG", /* name */
471 FALSE, /* partial_inplace */
472 0xffff, /* src_mask */
473 0xffff, /* dst_mask */
28c9d252
NC
474 FALSE), /* pcrel_offset */
475 /* A low 8 bit absolute relocation of 24 bit program memory address.
17e57237 476 For LDI command. Will be changed when linker stubs are needed. */
28c9d252
NC
477 HOWTO (R_AVR_LO8_LDI_GS, /* type */
478 1, /* rightshift */
479 1, /* size (0 = byte, 1 = short, 2 = long) */
480 8, /* bitsize */
481 FALSE, /* pc_relative */
482 0, /* bitpos */
483 complain_overflow_dont, /* complain_on_overflow */
484 bfd_elf_generic_reloc, /* special_function */
485 "R_AVR_LO8_LDI_GS", /* name */
486 FALSE, /* partial_inplace */
487 0xffff, /* src_mask */
488 0xffff, /* dst_mask */
489 FALSE), /* pcrel_offset */
490 /* A low 8 bit absolute relocation of 24 bit program memory address.
17e57237 491 For LDI command. Will be changed when linker stubs are needed. */
28c9d252
NC
492 HOWTO (R_AVR_HI8_LDI_GS, /* type */
493 9, /* rightshift */
494 1, /* size (0 = byte, 1 = short, 2 = long) */
495 8, /* bitsize */
496 FALSE, /* pc_relative */
497 0, /* bitpos */
498 complain_overflow_dont, /* complain_on_overflow */
499 bfd_elf_generic_reloc, /* special_function */
500 "R_AVR_HI8_LDI_GS", /* name */
501 FALSE, /* partial_inplace */
502 0xffff, /* src_mask */
503 0xffff, /* dst_mask */
17e57237
NC
504 FALSE), /* pcrel_offset */
505 /* 8 bit offset. */
506 HOWTO (R_AVR_8, /* type */
507 0, /* rightshift */
508 0, /* size (0 = byte, 1 = short, 2 = long) */
509 8, /* bitsize */
510 FALSE, /* pc_relative */
511 0, /* bitpos */
512 complain_overflow_bitfield,/* complain_on_overflow */
513 bfd_elf_generic_reloc, /* special_function */
514 "R_AVR_8", /* name */
515 FALSE, /* partial_inplace */
516 0x000000ff, /* src_mask */
517 0x000000ff, /* dst_mask */
518 FALSE), /* pcrel_offset */
adde6300
AM
519};
520
521/* Map BFD reloc types to AVR ELF reloc types. */
522
523struct avr_reloc_map
524{
525 bfd_reloc_code_real_type bfd_reloc_val;
526 unsigned int elf_reloc_val;
527};
528
28c9d252 529static const struct avr_reloc_map avr_reloc_map[] =
adde6300
AM
530{
531 { BFD_RELOC_NONE, R_AVR_NONE },
532 { BFD_RELOC_32, R_AVR_32 },
533 { BFD_RELOC_AVR_7_PCREL, R_AVR_7_PCREL },
534 { BFD_RELOC_AVR_13_PCREL, R_AVR_13_PCREL },
535 { BFD_RELOC_16, R_AVR_16 },
536 { BFD_RELOC_AVR_16_PM, R_AVR_16_PM },
537 { BFD_RELOC_AVR_LO8_LDI, R_AVR_LO8_LDI},
538 { BFD_RELOC_AVR_HI8_LDI, R_AVR_HI8_LDI },
539 { BFD_RELOC_AVR_HH8_LDI, R_AVR_HH8_LDI },
df406460 540 { BFD_RELOC_AVR_MS8_LDI, R_AVR_MS8_LDI },
adde6300
AM
541 { BFD_RELOC_AVR_LO8_LDI_NEG, R_AVR_LO8_LDI_NEG },
542 { BFD_RELOC_AVR_HI8_LDI_NEG, R_AVR_HI8_LDI_NEG },
543 { BFD_RELOC_AVR_HH8_LDI_NEG, R_AVR_HH8_LDI_NEG },
df406460 544 { BFD_RELOC_AVR_MS8_LDI_NEG, R_AVR_MS8_LDI_NEG },
adde6300 545 { BFD_RELOC_AVR_LO8_LDI_PM, R_AVR_LO8_LDI_PM },
28c9d252 546 { BFD_RELOC_AVR_LO8_LDI_GS, R_AVR_LO8_LDI_GS },
adde6300 547 { BFD_RELOC_AVR_HI8_LDI_PM, R_AVR_HI8_LDI_PM },
28c9d252 548 { BFD_RELOC_AVR_HI8_LDI_GS, R_AVR_HI8_LDI_GS },
adde6300
AM
549 { BFD_RELOC_AVR_HH8_LDI_PM, R_AVR_HH8_LDI_PM },
550 { BFD_RELOC_AVR_LO8_LDI_PM_NEG, R_AVR_LO8_LDI_PM_NEG },
551 { BFD_RELOC_AVR_HI8_LDI_PM_NEG, R_AVR_HI8_LDI_PM_NEG },
552 { BFD_RELOC_AVR_HH8_LDI_PM_NEG, R_AVR_HH8_LDI_PM_NEG },
750bce0e
NC
553 { BFD_RELOC_AVR_CALL, R_AVR_CALL },
554 { BFD_RELOC_AVR_LDI, R_AVR_LDI },
555 { BFD_RELOC_AVR_6, R_AVR_6 },
17e57237
NC
556 { BFD_RELOC_AVR_6_ADIW, R_AVR_6_ADIW },
557 { BFD_RELOC_8, R_AVR_8 }
adde6300
AM
558};
559
df406460 560/* Meant to be filled one day with the wrap around address for the
4cdc7696 561 specific device. I.e. should get the value 0x4000 for 16k devices,
df406460 562 0x8000 for 32k devices and so on.
4cdc7696 563
df406460 564 We initialize it here with a value of 0x1000000 resulting in
4cdc7696
NC
565 that we will never suggest a wrap-around jump during relaxation.
566 The logic of the source code later on assumes that in
df406460 567 avr_pc_wrap_around one single bit is set. */
28c9d252
NC
568static bfd_vma avr_pc_wrap_around = 0x10000000;
569
570/* If this variable holds a value different from zero, the linker relaxation
571 machine will try to optimize call/ret sequences by a single jump
572 instruction. This option could be switched off by a linker switch. */
573static int avr_replace_call_ret_sequences = 1;
574\f
575/* Initialize an entry in the stub hash table. */
576
577static struct bfd_hash_entry *
578stub_hash_newfunc (struct bfd_hash_entry *entry,
579 struct bfd_hash_table *table,
580 const char *string)
581{
582 /* Allocate the structure if it has not already been allocated by a
583 subclass. */
584 if (entry == NULL)
585 {
586 entry = bfd_hash_allocate (table,
587 sizeof (struct elf32_avr_stub_hash_entry));
588 if (entry == NULL)
589 return entry;
590 }
591
592 /* Call the allocation method of the superclass. */
593 entry = bfd_hash_newfunc (entry, table, string);
594 if (entry != NULL)
595 {
596 struct elf32_avr_stub_hash_entry *hsh;
597
598 /* Initialize the local fields. */
599 hsh = avr_stub_hash_entry (entry);
600 hsh->stub_offset = 0;
601 hsh->target_value = 0;
602 }
603
604 return entry;
605}
606
64ee10b6
NC
607/* This function is just a straight passthrough to the real
608 function in linker.c. Its prupose is so that its address
609 can be compared inside the avr_link_hash_table macro. */
610
611static struct bfd_hash_entry *
612elf32_avr_link_hash_newfunc (struct bfd_hash_entry * entry,
613 struct bfd_hash_table * table,
614 const char * string)
615{
616 return _bfd_elf_link_hash_newfunc (entry, table, string);
617}
618
28c9d252
NC
619/* Create the derived linker hash table. The AVR ELF port uses the derived
620 hash table to keep information specific to the AVR ELF linker (without
621 using static variables). */
622
623static struct bfd_link_hash_table *
624elf32_avr_link_hash_table_create (bfd *abfd)
625{
626 struct elf32_avr_link_hash_table *htab;
627 bfd_size_type amt = sizeof (*htab);
628
629 htab = bfd_malloc (amt);
630 if (htab == NULL)
631 return NULL;
632
633 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd,
64ee10b6 634 elf32_avr_link_hash_newfunc,
4dfe6ac6
NC
635 sizeof (struct elf_link_hash_entry),
636 AVR_ELF_DATA))
28c9d252
NC
637 {
638 free (htab);
639 return NULL;
640 }
641
642 /* Init the stub hash table too. */
643 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
644 sizeof (struct elf32_avr_stub_hash_entry)))
645 return NULL;
4cdc7696 646
28c9d252
NC
647 htab->stub_bfd = NULL;
648 htab->stub_sec = NULL;
649
650 /* Initialize the address mapping table. */
651 htab->amt_stub_offsets = NULL;
652 htab->amt_destination_addr = NULL;
653 htab->amt_entry_cnt = 0;
654 htab->amt_max_entry_cnt = 0;
655
656 return &htab->etab.root;
657}
658
659/* Free the derived linker hash table. */
660
661static void
662elf32_avr_link_hash_table_free (struct bfd_link_hash_table *btab)
663{
664 struct elf32_avr_link_hash_table *htab
665 = (struct elf32_avr_link_hash_table *) btab;
666
667 /* Free the address mapping table. */
668 if (htab->amt_stub_offsets != NULL)
669 free (htab->amt_stub_offsets);
670 if (htab->amt_destination_addr != NULL)
671 free (htab->amt_destination_addr);
672
673 bfd_hash_table_free (&htab->bstab);
674 _bfd_generic_link_hash_table_free (btab);
675}
df406460
NC
676
677/* Calculates the effective distance of a pc relative jump/call. */
73160847 678
df406460
NC
679static int
680avr_relative_distance_considering_wrap_around (unsigned int distance)
4cdc7696 681{
df406460 682 unsigned int wrap_around_mask = avr_pc_wrap_around - 1;
df406460
NC
683 int dist_with_wrap_around = distance & wrap_around_mask;
684
4cdc7696 685 if (dist_with_wrap_around > ((int) (avr_pc_wrap_around >> 1)))
df406460
NC
686 dist_with_wrap_around -= avr_pc_wrap_around;
687
688 return dist_with_wrap_around;
689}
690
691
adde6300 692static reloc_howto_type *
4cdc7696
NC
693bfd_elf32_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
694 bfd_reloc_code_real_type code)
adde6300
AM
695{
696 unsigned int i;
697
698 for (i = 0;
699 i < sizeof (avr_reloc_map) / sizeof (struct avr_reloc_map);
700 i++)
73160847
NC
701 if (avr_reloc_map[i].bfd_reloc_val == code)
702 return &elf_avr_howto_table[avr_reloc_map[i].elf_reloc_val];
adde6300
AM
703
704 return NULL;
705}
706
157090f7
AM
707static reloc_howto_type *
708bfd_elf32_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
709 const char *r_name)
710{
711 unsigned int i;
712
713 for (i = 0;
714 i < sizeof (elf_avr_howto_table) / sizeof (elf_avr_howto_table[0]);
715 i++)
716 if (elf_avr_howto_table[i].name != NULL
717 && strcasecmp (elf_avr_howto_table[i].name, r_name) == 0)
718 return &elf_avr_howto_table[i];
719
720 return NULL;
721}
722
adde6300
AM
723/* Set the howto pointer for an AVR ELF reloc. */
724
725static void
4cdc7696
NC
726avr_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
727 arelent *cache_ptr,
728 Elf_Internal_Rela *dst)
adde6300
AM
729{
730 unsigned int r_type;
731
732 r_type = ELF32_R_TYPE (dst->r_info);
733 BFD_ASSERT (r_type < (unsigned int) R_AVR_max);
734 cache_ptr->howto = &elf_avr_howto_table[r_type];
735}
736
28c9d252
NC
737static bfd_boolean
738avr_stub_is_required_for_16_bit_reloc (bfd_vma relocation)
739{
740 return (relocation >= 0x020000);
741}
742
743/* Returns the address of the corresponding stub if there is one.
744 Returns otherwise an address above 0x020000. This function
745 could also be used, if there is no knowledge on the section where
746 the destination is found. */
747
748static bfd_vma
749avr_get_stub_addr (bfd_vma srel,
750 struct elf32_avr_link_hash_table *htab)
751{
91d6fa6a 752 unsigned int sindex;
28c9d252
NC
753 bfd_vma stub_sec_addr =
754 (htab->stub_sec->output_section->vma +
755 htab->stub_sec->output_offset);
756
91d6fa6a
NC
757 for (sindex = 0; sindex < htab->amt_max_entry_cnt; sindex ++)
758 if (htab->amt_destination_addr[sindex] == srel)
759 return htab->amt_stub_offsets[sindex] + stub_sec_addr;
28c9d252
NC
760
761 /* Return an address that could not be reached by 16 bit relocs. */
762 return 0x020000;
763}
764
adde6300
AM
765/* Perform a single relocation. By default we use the standard BFD
766 routines, but a few relocs, we have to do them ourselves. */
767
768static bfd_reloc_status_type
28c9d252
NC
769avr_final_link_relocate (reloc_howto_type * howto,
770 bfd * input_bfd,
771 asection * input_section,
772 bfd_byte * contents,
773 Elf_Internal_Rela * rel,
774 bfd_vma relocation,
775 struct elf32_avr_link_hash_table * htab)
adde6300
AM
776{
777 bfd_reloc_status_type r = bfd_reloc_ok;
778 bfd_vma x;
779 bfd_signed_vma srel;
28c9d252
NC
780 bfd_signed_vma reloc_addr;
781 bfd_boolean use_stubs = FALSE;
782 /* Usually is 0, unless we are generating code for a bootloader. */
783 bfd_signed_vma base_addr = htab->vector_base;
784
785 /* Absolute addr of the reloc in the final excecutable. */
786 reloc_addr = rel->r_offset + input_section->output_section->vma
787 + input_section->output_offset;
adde6300
AM
788
789 switch (howto->type)
790 {
791 case R_AVR_7_PCREL:
792 contents += rel->r_offset;
793 srel = (bfd_signed_vma) relocation;
794 srel += rel->r_addend;
795 srel -= rel->r_offset;
a7c10850 796 srel -= 2; /* Branch instructions add 2 to the PC... */
adde6300
AM
797 srel -= (input_section->output_section->vma +
798 input_section->output_offset);
799
800 if (srel & 1)
801 return bfd_reloc_outofrange;
802 if (srel > ((1 << 7) - 1) || (srel < - (1 << 7)))
803 return bfd_reloc_overflow;
804 x = bfd_get_16 (input_bfd, contents);
805 x = (x & 0xfc07) | (((srel >> 1) << 3) & 0x3f8);
806 bfd_put_16 (input_bfd, x, contents);
807 break;
808
809 case R_AVR_13_PCREL:
810 contents += rel->r_offset;
811 srel = (bfd_signed_vma) relocation;
812 srel += rel->r_addend;
813 srel -= rel->r_offset;
a7c10850 814 srel -= 2; /* Branch instructions add 2 to the PC... */
adde6300
AM
815 srel -= (input_section->output_section->vma +
816 input_section->output_offset);
817
818 if (srel & 1)
819 return bfd_reloc_outofrange;
820
df406460
NC
821 srel = avr_relative_distance_considering_wrap_around (srel);
822
adde6300
AM
823 /* AVR addresses commands as words. */
824 srel >>= 1;
825
826 /* Check for overflow. */
827 if (srel < -2048 || srel > 2047)
828 {
df406460
NC
829 /* Relative distance is too large. */
830
654c3c9f 831 /* Always apply WRAPAROUND for avr2, avr25, and avr4. */
65aa24b6 832 switch (bfd_get_mach (input_bfd))
adde6300 833 {
65aa24b6 834 case bfd_mach_avr2:
654c3c9f 835 case bfd_mach_avr25:
65aa24b6
NC
836 case bfd_mach_avr4:
837 break;
838
839 default:
840 return bfd_reloc_overflow;
adde6300 841 }
adde6300
AM
842 }
843
844 x = bfd_get_16 (input_bfd, contents);
845 x = (x & 0xf000) | (srel & 0xfff);
846 bfd_put_16 (input_bfd, x, contents);
847 break;
848
849 case R_AVR_LO8_LDI:
850 contents += rel->r_offset;
851 srel = (bfd_signed_vma) relocation + rel->r_addend;
852 x = bfd_get_16 (input_bfd, contents);
853 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
854 bfd_put_16 (input_bfd, x, contents);
855 break;
856
750bce0e
NC
857 case R_AVR_LDI:
858 contents += rel->r_offset;
859 srel = (bfd_signed_vma) relocation + rel->r_addend;
4cdc7696
NC
860 if (((srel > 0) && (srel & 0xffff) > 255)
861 || ((srel < 0) && ((-srel) & 0xffff) > 128))
df406460
NC
862 /* Remove offset for data/eeprom section. */
863 return bfd_reloc_overflow;
864
750bce0e
NC
865 x = bfd_get_16 (input_bfd, contents);
866 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
867 bfd_put_16 (input_bfd, x, contents);
868 break;
869
870 case R_AVR_6:
871 contents += rel->r_offset;
872 srel = (bfd_signed_vma) relocation + rel->r_addend;
873 if (((srel & 0xffff) > 63) || (srel < 0))
874 /* Remove offset for data/eeprom section. */
875 return bfd_reloc_overflow;
876 x = bfd_get_16 (input_bfd, contents);
4cdc7696 877 x = (x & 0xd3f8) | ((srel & 7) | ((srel & (3 << 3)) << 7)
df406460 878 | ((srel & (1 << 5)) << 8));
750bce0e
NC
879 bfd_put_16 (input_bfd, x, contents);
880 break;
881
882 case R_AVR_6_ADIW:
883 contents += rel->r_offset;
884 srel = (bfd_signed_vma) relocation + rel->r_addend;
885 if (((srel & 0xffff) > 63) || (srel < 0))
886 /* Remove offset for data/eeprom section. */
887 return bfd_reloc_overflow;
888 x = bfd_get_16 (input_bfd, contents);
4cdc7696 889 x = (x & 0xff30) | (srel & 0xf) | ((srel & 0x30) << 2);
750bce0e
NC
890 bfd_put_16 (input_bfd, x, contents);
891 break;
892
adde6300
AM
893 case R_AVR_HI8_LDI:
894 contents += rel->r_offset;
895 srel = (bfd_signed_vma) relocation + rel->r_addend;
896 srel = (srel >> 8) & 0xff;
897 x = bfd_get_16 (input_bfd, contents);
898 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
899 bfd_put_16 (input_bfd, x, contents);
900 break;
901
902 case R_AVR_HH8_LDI:
903 contents += rel->r_offset;
904 srel = (bfd_signed_vma) relocation + rel->r_addend;
905 srel = (srel >> 16) & 0xff;
906 x = bfd_get_16 (input_bfd, contents);
907 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
908 bfd_put_16 (input_bfd, x, contents);
909 break;
910
df406460
NC
911 case R_AVR_MS8_LDI:
912 contents += rel->r_offset;
913 srel = (bfd_signed_vma) relocation + rel->r_addend;
914 srel = (srel >> 24) & 0xff;
915 x = bfd_get_16 (input_bfd, contents);
916 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
917 bfd_put_16 (input_bfd, x, contents);
918 break;
919
adde6300
AM
920 case R_AVR_LO8_LDI_NEG:
921 contents += rel->r_offset;
922 srel = (bfd_signed_vma) relocation + rel->r_addend;
923 srel = -srel;
924 x = bfd_get_16 (input_bfd, contents);
925 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
926 bfd_put_16 (input_bfd, x, contents);
927 break;
928
929 case R_AVR_HI8_LDI_NEG:
930 contents += rel->r_offset;
931 srel = (bfd_signed_vma) relocation + rel->r_addend;
932 srel = -srel;
933 srel = (srel >> 8) & 0xff;
934 x = bfd_get_16 (input_bfd, contents);
935 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
936 bfd_put_16 (input_bfd, x, contents);
937 break;
938
939 case R_AVR_HH8_LDI_NEG:
940 contents += rel->r_offset;
941 srel = (bfd_signed_vma) relocation + rel->r_addend;
942 srel = -srel;
943 srel = (srel >> 16) & 0xff;
944 x = bfd_get_16 (input_bfd, contents);
945 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
946 bfd_put_16 (input_bfd, x, contents);
947 break;
948
df406460
NC
949 case R_AVR_MS8_LDI_NEG:
950 contents += rel->r_offset;
951 srel = (bfd_signed_vma) relocation + rel->r_addend;
952 srel = -srel;
953 srel = (srel >> 24) & 0xff;
954 x = bfd_get_16 (input_bfd, contents);
955 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
956 bfd_put_16 (input_bfd, x, contents);
957 break;
958
28c9d252
NC
959 case R_AVR_LO8_LDI_GS:
960 use_stubs = (!htab->no_stubs);
961 /* Fall through. */
adde6300
AM
962 case R_AVR_LO8_LDI_PM:
963 contents += rel->r_offset;
964 srel = (bfd_signed_vma) relocation + rel->r_addend;
28c9d252
NC
965
966 if (use_stubs
967 && avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
968 {
969 bfd_vma old_srel = srel;
970
971 /* We need to use the address of the stub instead. */
972 srel = avr_get_stub_addr (srel, htab);
973 if (debug_stubs)
974 printf ("LD: Using jump stub (at 0x%x) with destination 0x%x for "
975 "reloc at address 0x%x.\n",
976 (unsigned int) srel,
977 (unsigned int) old_srel,
978 (unsigned int) reloc_addr);
979
980 if (avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
981 return bfd_reloc_outofrange;
982 }
983
adde6300
AM
984 if (srel & 1)
985 return bfd_reloc_outofrange;
986 srel = srel >> 1;
987 x = bfd_get_16 (input_bfd, contents);
988 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
989 bfd_put_16 (input_bfd, x, contents);
990 break;
991
28c9d252
NC
992 case R_AVR_HI8_LDI_GS:
993 use_stubs = (!htab->no_stubs);
994 /* Fall through. */
adde6300
AM
995 case R_AVR_HI8_LDI_PM:
996 contents += rel->r_offset;
997 srel = (bfd_signed_vma) relocation + rel->r_addend;
28c9d252
NC
998
999 if (use_stubs
1000 && avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1001 {
1002 bfd_vma old_srel = srel;
1003
1004 /* We need to use the address of the stub instead. */
1005 srel = avr_get_stub_addr (srel, htab);
1006 if (debug_stubs)
1007 printf ("LD: Using jump stub (at 0x%x) with destination 0x%x for "
1008 "reloc at address 0x%x.\n",
1009 (unsigned int) srel,
1010 (unsigned int) old_srel,
1011 (unsigned int) reloc_addr);
1012
1013 if (avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1014 return bfd_reloc_outofrange;
1015 }
1016
adde6300
AM
1017 if (srel & 1)
1018 return bfd_reloc_outofrange;
1019 srel = srel >> 1;
1020 srel = (srel >> 8) & 0xff;
1021 x = bfd_get_16 (input_bfd, contents);
1022 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1023 bfd_put_16 (input_bfd, x, contents);
1024 break;
1025
1026 case R_AVR_HH8_LDI_PM:
1027 contents += rel->r_offset;
1028 srel = (bfd_signed_vma) relocation + rel->r_addend;
1029 if (srel & 1)
1030 return bfd_reloc_outofrange;
1031 srel = srel >> 1;
1032 srel = (srel >> 16) & 0xff;
1033 x = bfd_get_16 (input_bfd, contents);
1034 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1035 bfd_put_16 (input_bfd, x, contents);
1036 break;
1037
1038 case R_AVR_LO8_LDI_PM_NEG:
1039 contents += rel->r_offset;
1040 srel = (bfd_signed_vma) relocation + rel->r_addend;
1041 srel = -srel;
1042 if (srel & 1)
1043 return bfd_reloc_outofrange;
1044 srel = srel >> 1;
1045 x = bfd_get_16 (input_bfd, contents);
1046 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1047 bfd_put_16 (input_bfd, x, contents);
1048 break;
1049
1050 case R_AVR_HI8_LDI_PM_NEG:
1051 contents += rel->r_offset;
1052 srel = (bfd_signed_vma) relocation + rel->r_addend;
1053 srel = -srel;
1054 if (srel & 1)
1055 return bfd_reloc_outofrange;
1056 srel = srel >> 1;
1057 srel = (srel >> 8) & 0xff;
1058 x = bfd_get_16 (input_bfd, contents);
1059 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1060 bfd_put_16 (input_bfd, x, contents);
1061 break;
1062
1063 case R_AVR_HH8_LDI_PM_NEG:
1064 contents += rel->r_offset;
1065 srel = (bfd_signed_vma) relocation + rel->r_addend;
1066 srel = -srel;
1067 if (srel & 1)
1068 return bfd_reloc_outofrange;
1069 srel = srel >> 1;
1070 srel = (srel >> 16) & 0xff;
1071 x = bfd_get_16 (input_bfd, contents);
1072 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1073 bfd_put_16 (input_bfd, x, contents);
1074 break;
1075
1076 case R_AVR_CALL:
1077 contents += rel->r_offset;
1078 srel = (bfd_signed_vma) relocation + rel->r_addend;
1079 if (srel & 1)
1080 return bfd_reloc_outofrange;
1081 srel = srel >> 1;
1082 x = bfd_get_16 (input_bfd, contents);
1083 x |= ((srel & 0x10000) | ((srel << 3) & 0x1f00000)) >> 16;
1084 bfd_put_16 (input_bfd, x, contents);
dc810e39 1085 bfd_put_16 (input_bfd, (bfd_vma) srel & 0xffff, contents+2);
adde6300
AM
1086 break;
1087
28c9d252
NC
1088 case R_AVR_16_PM:
1089 use_stubs = (!htab->no_stubs);
1090 contents += rel->r_offset;
1091 srel = (bfd_signed_vma) relocation + rel->r_addend;
1092
1093 if (use_stubs
1094 && avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1095 {
1096 bfd_vma old_srel = srel;
1097
1098 /* We need to use the address of the stub instead. */
1099 srel = avr_get_stub_addr (srel,htab);
1100 if (debug_stubs)
1101 printf ("LD: Using jump stub (at 0x%x) with destination 0x%x for "
1102 "reloc at address 0x%x.\n",
1103 (unsigned int) srel,
1104 (unsigned int) old_srel,
1105 (unsigned int) reloc_addr);
1106
1107 if (avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1108 return bfd_reloc_outofrange;
1109 }
1110
1111 if (srel & 1)
1112 return bfd_reloc_outofrange;
1113 srel = srel >> 1;
1114 bfd_put_16 (input_bfd, (bfd_vma) srel &0x00ffff, contents);
1115 break;
1116
adde6300
AM
1117 default:
1118 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1119 contents, rel->r_offset,
1120 relocation, rel->r_addend);
1121 }
1122
1123 return r;
1124}
1125
1126/* Relocate an AVR ELF section. */
4cdc7696 1127
b34976b6 1128static bfd_boolean
4cdc7696
NC
1129elf32_avr_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
1130 struct bfd_link_info *info,
1131 bfd *input_bfd,
1132 asection *input_section,
1133 bfd_byte *contents,
1134 Elf_Internal_Rela *relocs,
1135 Elf_Internal_Sym *local_syms,
1136 asection **local_sections)
adde6300
AM
1137{
1138 Elf_Internal_Shdr * symtab_hdr;
1139 struct elf_link_hash_entry ** sym_hashes;
1140 Elf_Internal_Rela * rel;
1141 Elf_Internal_Rela * relend;
28c9d252 1142 struct elf32_avr_link_hash_table * htab = avr_link_hash_table (info);
adde6300 1143
4dfe6ac6
NC
1144 if (htab == NULL)
1145 return FALSE;
1146
adde6300
AM
1147 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1148 sym_hashes = elf_sym_hashes (input_bfd);
1149 relend = relocs + input_section->reloc_count;
1150
1151 for (rel = relocs; rel < relend; rel ++)
1152 {
1153 reloc_howto_type * howto;
1154 unsigned long r_symndx;
1155 Elf_Internal_Sym * sym;
1156 asection * sec;
1157 struct elf_link_hash_entry * h;
1158 bfd_vma relocation;
1159 bfd_reloc_status_type r;
dfeffb9f 1160 const char * name;
adde6300
AM
1161 int r_type;
1162
1163 r_type = ELF32_R_TYPE (rel->r_info);
1164 r_symndx = ELF32_R_SYM (rel->r_info);
c7e2358a 1165 howto = elf_avr_howto_table + r_type;
adde6300
AM
1166 h = NULL;
1167 sym = NULL;
1168 sec = NULL;
1169
1170 if (r_symndx < symtab_hdr->sh_info)
1171 {
1172 sym = local_syms + r_symndx;
1173 sec = local_sections [r_symndx];
8517fae7 1174 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
adde6300
AM
1175
1176 name = bfd_elf_string_from_elf_section
1177 (input_bfd, symtab_hdr->sh_link, sym->st_name);
1178 name = (name == NULL) ? bfd_section_name (input_bfd, sec) : name;
1179 }
1180 else
1181 {
59c2e50f 1182 bfd_boolean unresolved_reloc, warned;
adde6300 1183
b2a8e766
AM
1184 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1185 r_symndx, symtab_hdr, sym_hashes,
1186 h, sec, relocation,
1187 unresolved_reloc, warned);
dfeffb9f
L
1188
1189 name = h->root.root.string;
adde6300
AM
1190 }
1191
ab96bf03 1192 if (sec != NULL && elf_discarded_section (sec))
e4067dbb
DJ
1193 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
1194 rel, relend, howto, contents);
ab96bf03
AM
1195
1196 if (info->relocatable)
1197 continue;
1198
adde6300 1199 r = avr_final_link_relocate (howto, input_bfd, input_section,
28c9d252 1200 contents, rel, relocation, htab);
adde6300
AM
1201
1202 if (r != bfd_reloc_ok)
1203 {
1204 const char * msg = (const char *) NULL;
1205
1206 switch (r)
1207 {
1208 case bfd_reloc_overflow:
1209 r = info->callbacks->reloc_overflow
dfeffb9f
L
1210 (info, (h ? &h->root : NULL),
1211 name, howto->name, (bfd_vma) 0,
adde6300
AM
1212 input_bfd, input_section, rel->r_offset);
1213 break;
1214
1215 case bfd_reloc_undefined:
1216 r = info->callbacks->undefined_symbol
b34976b6 1217 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
adde6300
AM
1218 break;
1219
1220 case bfd_reloc_outofrange:
1221 msg = _("internal error: out of range error");
1222 break;
1223
1224 case bfd_reloc_notsupported:
1225 msg = _("internal error: unsupported relocation error");
1226 break;
1227
1228 case bfd_reloc_dangerous:
1229 msg = _("internal error: dangerous relocation");
1230 break;
1231
1232 default:
1233 msg = _("internal error: unknown error");
1234 break;
1235 }
1236
1237 if (msg)
1238 r = info->callbacks->warning
1239 (info, msg, name, input_bfd, input_section, rel->r_offset);
1240
1241 if (! r)
b34976b6 1242 return FALSE;
adde6300
AM
1243 }
1244 }
1245
b34976b6 1246 return TRUE;
adde6300
AM
1247}
1248
1249/* The final processing done just before writing out a AVR ELF object
1250 file. This gets the AVR architecture right based on the machine
1251 number. */
1252
1253static void
4cdc7696
NC
1254bfd_elf_avr_final_write_processing (bfd *abfd,
1255 bfd_boolean linker ATTRIBUTE_UNUSED)
adde6300
AM
1256{
1257 unsigned long val;
1258
1259 switch (bfd_get_mach (abfd))
1260 {
1261 default:
1262 case bfd_mach_avr2:
1263 val = E_AVR_MACH_AVR2;
1264 break;
1265
1266 case bfd_mach_avr1:
1267 val = E_AVR_MACH_AVR1;
1268 break;
1269
7b21ac3f
EW
1270 case bfd_mach_avr25:
1271 val = E_AVR_MACH_AVR25;
28b02751 1272 break;
7b21ac3f 1273
adde6300
AM
1274 case bfd_mach_avr3:
1275 val = E_AVR_MACH_AVR3;
1276 break;
1277
7b21ac3f
EW
1278 case bfd_mach_avr31:
1279 val = E_AVR_MACH_AVR31;
28b02751 1280 break;
7b21ac3f
EW
1281
1282 case bfd_mach_avr35:
1283 val = E_AVR_MACH_AVR35;
28b02751 1284 break;
7b21ac3f 1285
adde6300
AM
1286 case bfd_mach_avr4:
1287 val = E_AVR_MACH_AVR4;
1288 break;
1289
65aa24b6
NC
1290 case bfd_mach_avr5:
1291 val = E_AVR_MACH_AVR5;
1292 break;
28c9d252 1293
7b21ac3f
EW
1294 case bfd_mach_avr51:
1295 val = E_AVR_MACH_AVR51;
1296 break;
1297
28c9d252
NC
1298 case bfd_mach_avr6:
1299 val = E_AVR_MACH_AVR6;
1300 break;
8cc66334
EW
1301
1302 case bfd_mach_avrxmega1:
1303 val = E_AVR_MACH_XMEGA1;
1304 break;
1305
1306 case bfd_mach_avrxmega2:
1307 val = E_AVR_MACH_XMEGA2;
1308 break;
1309
1310 case bfd_mach_avrxmega3:
1311 val = E_AVR_MACH_XMEGA3;
1312 break;
1313
1314 case bfd_mach_avrxmega4:
1315 val = E_AVR_MACH_XMEGA4;
1316 break;
1317
1318 case bfd_mach_avrxmega5:
1319 val = E_AVR_MACH_XMEGA5;
1320 break;
1321
1322 case bfd_mach_avrxmega6:
1323 val = E_AVR_MACH_XMEGA6;
1324 break;
1325
1326 case bfd_mach_avrxmega7:
1327 val = E_AVR_MACH_XMEGA7;
1328 break;
adde6300
AM
1329 }
1330
1331 elf_elfheader (abfd)->e_machine = EM_AVR;
1332 elf_elfheader (abfd)->e_flags &= ~ EF_AVR_MACH;
1333 elf_elfheader (abfd)->e_flags |= val;
df406460 1334 elf_elfheader (abfd)->e_flags |= EF_AVR_LINKRELAX_PREPARED;
adde6300
AM
1335}
1336
1337/* Set the right machine number. */
1338
b34976b6 1339static bfd_boolean
4cdc7696 1340elf32_avr_object_p (bfd *abfd)
adde6300 1341{
dc810e39 1342 unsigned int e_set = bfd_mach_avr2;
4cdc7696 1343
aa4f99bb
AO
1344 if (elf_elfheader (abfd)->e_machine == EM_AVR
1345 || elf_elfheader (abfd)->e_machine == EM_AVR_OLD)
adde6300
AM
1346 {
1347 int e_mach = elf_elfheader (abfd)->e_flags & EF_AVR_MACH;
4cdc7696 1348
adde6300
AM
1349 switch (e_mach)
1350 {
1351 default:
1352 case E_AVR_MACH_AVR2:
1353 e_set = bfd_mach_avr2;
1354 break;
1355
1356 case E_AVR_MACH_AVR1:
1357 e_set = bfd_mach_avr1;
1358 break;
1359
7b21ac3f
EW
1360 case E_AVR_MACH_AVR25:
1361 e_set = bfd_mach_avr25;
1362 break;
1363
adde6300
AM
1364 case E_AVR_MACH_AVR3:
1365 e_set = bfd_mach_avr3;
1366 break;
1367
7b21ac3f
EW
1368 case E_AVR_MACH_AVR31:
1369 e_set = bfd_mach_avr31;
1370 break;
1371
1372 case E_AVR_MACH_AVR35:
1373 e_set = bfd_mach_avr35;
1374 break;
1375
adde6300
AM
1376 case E_AVR_MACH_AVR4:
1377 e_set = bfd_mach_avr4;
1378 break;
65aa24b6
NC
1379
1380 case E_AVR_MACH_AVR5:
1381 e_set = bfd_mach_avr5;
1382 break;
28c9d252 1383
7b21ac3f
EW
1384 case E_AVR_MACH_AVR51:
1385 e_set = bfd_mach_avr51;
1386 break;
1387
28c9d252
NC
1388 case E_AVR_MACH_AVR6:
1389 e_set = bfd_mach_avr6;
1390 break;
8cc66334
EW
1391
1392 case E_AVR_MACH_XMEGA1:
1393 e_set = bfd_mach_avrxmega1;
1394 break;
1395
1396 case E_AVR_MACH_XMEGA2:
1397 e_set = bfd_mach_avrxmega2;
1398 break;
1399
1400 case E_AVR_MACH_XMEGA3:
1401 e_set = bfd_mach_avrxmega3;
1402 break;
1403
1404 case E_AVR_MACH_XMEGA4:
1405 e_set = bfd_mach_avrxmega4;
1406 break;
1407
1408 case E_AVR_MACH_XMEGA5:
1409 e_set = bfd_mach_avrxmega5;
1410 break;
1411
1412 case E_AVR_MACH_XMEGA6:
1413 e_set = bfd_mach_avrxmega6;
1414 break;
1415
1416 case E_AVR_MACH_XMEGA7:
1417 e_set = bfd_mach_avrxmega7;
1418 break;
adde6300
AM
1419 }
1420 }
1421 return bfd_default_set_arch_mach (abfd, bfd_arch_avr,
1422 e_set);
1423}
1424
df406460 1425
4cdc7696
NC
1426/* Delete some bytes from a section while changing the size of an instruction.
1427 The parameter "addr" denotes the section-relative offset pointing just
1428 behind the shrinked instruction. "addr+count" point at the first
1429 byte just behind the original unshrinked instruction. */
1430
1431static bfd_boolean
1432elf32_avr_relax_delete_bytes (bfd *abfd,
73160847 1433 asection *sec,
4cdc7696 1434 bfd_vma addr,
73160847 1435 int count)
4cdc7696
NC
1436{
1437 Elf_Internal_Shdr *symtab_hdr;
1438 unsigned int sec_shndx;
1439 bfd_byte *contents;
1440 Elf_Internal_Rela *irel, *irelend;
4cdc7696
NC
1441 Elf_Internal_Sym *isym;
1442 Elf_Internal_Sym *isymbuf = NULL;
4cdc7696
NC
1443 bfd_vma toaddr;
1444 struct elf_link_hash_entry **sym_hashes;
1445 struct elf_link_hash_entry **end_hashes;
1446 unsigned int symcount;
1447
1448 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1449 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
1450 contents = elf_section_data (sec)->this_hdr.contents;
1451
4cdc7696
NC
1452 toaddr = sec->size;
1453
1454 irel = elf_section_data (sec)->relocs;
1455 irelend = irel + sec->reloc_count;
1456
1457 /* Actually delete the bytes. */
1458 if (toaddr - addr - count > 0)
1459 memmove (contents + addr, contents + addr + count,
1460 (size_t) (toaddr - addr - count));
1461 sec->size -= count;
1462
73160847 1463 /* Adjust all the reloc addresses. */
4cdc7696
NC
1464 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
1465 {
4cdc7696 1466 bfd_vma old_reloc_address;
4cdc7696
NC
1467
1468 old_reloc_address = (sec->output_section->vma
1469 + sec->output_offset + irel->r_offset);
4cdc7696
NC
1470
1471 /* Get the new reloc address. */
1472 if ((irel->r_offset > addr
1473 && irel->r_offset < toaddr))
1474 {
28c9d252 1475 if (debug_relax)
4cdc7696
NC
1476 printf ("Relocation at address 0x%x needs to be moved.\n"
1477 "Old section offset: 0x%x, New section offset: 0x%x \n",
1478 (unsigned int) old_reloc_address,
1479 (unsigned int) irel->r_offset,
1480 (unsigned int) ((irel->r_offset) - count));
1481
1482 irel->r_offset -= count;
1483 }
1484
73160847 1485 }
4cdc7696 1486
73160847
NC
1487 /* The reloc's own addresses are now ok. However, we need to readjust
1488 the reloc's addend, i.e. the reloc's value if two conditions are met:
1489 1.) the reloc is relative to a symbol in this section that
1490 is located in front of the shrinked instruction
28c9d252
NC
1491 2.) symbol plus addend end up behind the shrinked instruction.
1492
73160847
NC
1493 The most common case where this happens are relocs relative to
1494 the section-start symbol.
28c9d252 1495
73160847
NC
1496 This step needs to be done for all of the sections of the bfd. */
1497
1498 {
1499 struct bfd_section *isec;
1500
1501 for (isec = abfd->sections; isec; isec = isec->next)
1502 {
1503 bfd_vma symval;
1504 bfd_vma shrinked_insn_address;
1505
1506 shrinked_insn_address = (sec->output_section->vma
1507 + sec->output_offset + addr - count);
1508
1509 irelend = elf_section_data (isec)->relocs + isec->reloc_count;
28c9d252 1510 for (irel = elf_section_data (isec)->relocs;
73160847
NC
1511 irel < irelend;
1512 irel++)
1513 {
28c9d252 1514 /* Read this BFD's local symbols if we haven't done
73160847
NC
1515 so already. */
1516 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
1517 {
1518 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
1519 if (isymbuf == NULL)
1520 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
1521 symtab_hdr->sh_info, 0,
1522 NULL, NULL, NULL);
1523 if (isymbuf == NULL)
1524 return FALSE;
1525 }
1526
1527 /* Get the value of the symbol referred to by the reloc. */
1528 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
1529 {
1530 /* A local symbol. */
73160847
NC
1531 asection *sym_sec;
1532
1533 isym = isymbuf + ELF32_R_SYM (irel->r_info);
1534 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
1535 symval = isym->st_value;
1536 /* If the reloc is absolute, it will not have
1537 a symbol or section associated with it. */
1538 if (sym_sec == sec)
28c9d252 1539 {
73160847
NC
1540 symval += sym_sec->output_section->vma
1541 + sym_sec->output_offset;
4cdc7696 1542
28c9d252 1543 if (debug_relax)
73160847
NC
1544 printf ("Checking if the relocation's "
1545 "addend needs corrections.\n"
1546 "Address of anchor symbol: 0x%x \n"
1547 "Address of relocation target: 0x%x \n"
1548 "Address of relaxed insn: 0x%x \n",
1549 (unsigned int) symval,
1550 (unsigned int) (symval + irel->r_addend),
1551 (unsigned int) shrinked_insn_address);
1552
1553 if (symval <= shrinked_insn_address
1554 && (symval + irel->r_addend) > shrinked_insn_address)
1555 {
1556 irel->r_addend -= count;
1557
28c9d252 1558 if (debug_relax)
73160847
NC
1559 printf ("Relocation's addend needed to be fixed \n");
1560 }
4cdc7696 1561 }
73160847 1562 /* else...Reference symbol is absolute. No adjustment needed. */
28c9d252
NC
1563 }
1564 /* else...Reference symbol is extern. No need for adjusting
73160847 1565 the addend. */
28c9d252 1566 }
73160847
NC
1567 }
1568 }
4cdc7696
NC
1569
1570 /* Adjust the local symbols defined in this section. */
1571 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
12123067
NC
1572 /* Fix PR 9841, there may be no local symbols. */
1573 if (isym != NULL)
4cdc7696 1574 {
12123067
NC
1575 Elf_Internal_Sym *isymend;
1576
1577 isymend = isym + symtab_hdr->sh_info;
1578 for (; isym < isymend; isym++)
1579 {
1580 if (isym->st_shndx == sec_shndx
1581 && isym->st_value > addr
1582 && isym->st_value < toaddr)
1583 isym->st_value -= count;
1584 }
4cdc7696
NC
1585 }
1586
1587 /* Now adjust the global symbols defined in this section. */
1588 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
1589 - symtab_hdr->sh_info);
1590 sym_hashes = elf_sym_hashes (abfd);
1591 end_hashes = sym_hashes + symcount;
1592 for (; sym_hashes < end_hashes; sym_hashes++)
1593 {
1594 struct elf_link_hash_entry *sym_hash = *sym_hashes;
1595 if ((sym_hash->root.type == bfd_link_hash_defined
1596 || sym_hash->root.type == bfd_link_hash_defweak)
1597 && sym_hash->root.u.def.section == sec
1598 && sym_hash->root.u.def.value > addr
1599 && sym_hash->root.u.def.value < toaddr)
1600 {
1601 sym_hash->root.u.def.value -= count;
1602 }
1603 }
1604
1605 return TRUE;
1606}
1607
df406460
NC
1608/* This function handles relaxing for the avr.
1609 Many important relaxing opportunities within functions are already
1610 realized by the compiler itself.
1611 Here we try to replace call (4 bytes) -> rcall (2 bytes)
4cdc7696
NC
1612 and jump -> rjmp (safes also 2 bytes).
1613 As well we now optimize seqences of
df406460
NC
1614 - call/rcall function
1615 - ret
1616 to yield
1617 - jmp/rjmp function
1618 - ret
1619 . In case that within a sequence
1620 - jmp/rjmp label
1621 - ret
1622 the ret could no longer be reached it is optimized away. In order
1623 to check if the ret is no longer needed, it is checked that the ret's address
1624 is not the target of a branch or jump within the same section, it is checked
1625 that there is no skip instruction before the jmp/rjmp and that there
1626 is no local or global label place at the address of the ret.
4cdc7696 1627
df406460 1628 We refrain from relaxing within sections ".vectors" and
4cdc7696 1629 ".jumptables" in order to maintain the position of the instructions.
df406460 1630 There, however, we substitute jmp/call by a sequence rjmp,nop/rcall,nop
4cdc7696 1631 if possible. (In future one could possibly use the space of the nop
df406460
NC
1632 for the first instruction of the irq service function.
1633
1634 The .jumptables sections is meant to be used for a future tablejump variant
1635 for the devices with 3-byte program counter where the table itself
4cdc7696 1636 contains 4-byte jump instructions whose relative offset must not
df406460 1637 be changed. */
4cdc7696 1638
28c9d252 1639static bfd_boolean
4cdc7696
NC
1640elf32_avr_relax_section (bfd *abfd,
1641 asection *sec,
df406460
NC
1642 struct bfd_link_info *link_info,
1643 bfd_boolean *again)
1644{
1645 Elf_Internal_Shdr *symtab_hdr;
1646 Elf_Internal_Rela *internal_relocs;
1647 Elf_Internal_Rela *irel, *irelend;
1648 bfd_byte *contents = NULL;
1649 Elf_Internal_Sym *isymbuf = NULL;
28c9d252
NC
1650 struct elf32_avr_link_hash_table *htab;
1651
c8a1f254
NS
1652 if (link_info->relocatable)
1653 (*link_info->callbacks->einfo)
1654 (_("%P%F: --relax and -r may not be used together\n"));
1655
28c9d252 1656 htab = avr_link_hash_table (link_info);
64ee10b6
NC
1657 if (htab == NULL)
1658 return FALSE;
df406460
NC
1659
1660 /* Assume nothing changes. */
1661 *again = FALSE;
1662
28c9d252
NC
1663 if ((!htab->no_stubs) && (sec == htab->stub_sec))
1664 {
1665 /* We are just relaxing the stub section.
1666 Let's calculate the size needed again. */
1667 bfd_size_type last_estimated_stub_section_size = htab->stub_sec->size;
1668
1669 if (debug_relax)
1670 printf ("Relaxing the stub section. Size prior to this pass: %i\n",
1671 (int) last_estimated_stub_section_size);
1672
1673 elf32_avr_size_stubs (htab->stub_sec->output_section->owner,
1674 link_info, FALSE);
1675
1676 /* Check if the number of trampolines changed. */
1677 if (last_estimated_stub_section_size != htab->stub_sec->size)
1678 *again = TRUE;
1679
1680 if (debug_relax)
1681 printf ("Size of stub section after this pass: %i\n",
1682 (int) htab->stub_sec->size);
1683
1684 return TRUE;
1685 }
1686
df406460
NC
1687 /* We don't have to do anything for a relocatable link, if
1688 this section does not have relocs, or if this is not a
1689 code section. */
1690 if (link_info->relocatable
1691 || (sec->flags & SEC_RELOC) == 0
1692 || sec->reloc_count == 0
1693 || (sec->flags & SEC_CODE) == 0)
1694 return TRUE;
4cdc7696 1695
df406460
NC
1696 /* Check if the object file to relax uses internal symbols so that we
1697 could fix up the relocations. */
df406460
NC
1698 if (!(elf_elfheader (abfd)->e_flags & EF_AVR_LINKRELAX_PREPARED))
1699 return TRUE;
df406460
NC
1700
1701 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1702
1703 /* Get a copy of the native relocations. */
1704 internal_relocs = (_bfd_elf_link_read_relocs
4cdc7696 1705 (abfd, sec, NULL, NULL, link_info->keep_memory));
df406460
NC
1706 if (internal_relocs == NULL)
1707 goto error_return;
1708
df406460
NC
1709 /* Walk through the relocs looking for relaxing opportunities. */
1710 irelend = internal_relocs + sec->reloc_count;
1711 for (irel = internal_relocs; irel < irelend; irel++)
1712 {
1713 bfd_vma symval;
1714
4cdc7696 1715 if ( ELF32_R_TYPE (irel->r_info) != R_AVR_13_PCREL
91d6fa6a
NC
1716 && ELF32_R_TYPE (irel->r_info) != R_AVR_7_PCREL
1717 && ELF32_R_TYPE (irel->r_info) != R_AVR_CALL)
df406460 1718 continue;
4cdc7696 1719
df406460
NC
1720 /* Get the section contents if we haven't done so already. */
1721 if (contents == NULL)
1722 {
1723 /* Get cached copy if it exists. */
1724 if (elf_section_data (sec)->this_hdr.contents != NULL)
1725 contents = elf_section_data (sec)->this_hdr.contents;
1726 else
1727 {
1728 /* Go get them off disk. */
4cdc7696 1729 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
df406460
NC
1730 goto error_return;
1731 }
1732 }
1733
91d6fa6a 1734 /* Read this BFD's local symbols if we haven't done so already. */
df406460
NC
1735 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
1736 {
1737 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
1738 if (isymbuf == NULL)
1739 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
1740 symtab_hdr->sh_info, 0,
1741 NULL, NULL, NULL);
1742 if (isymbuf == NULL)
1743 goto error_return;
1744 }
1745
1746
1747 /* Get the value of the symbol referred to by the reloc. */
1748 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
1749 {
1750 /* A local symbol. */
1751 Elf_Internal_Sym *isym;
1752 asection *sym_sec;
1753
1754 isym = isymbuf + ELF32_R_SYM (irel->r_info);
1755 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
1756 symval = isym->st_value;
1757 /* If the reloc is absolute, it will not have
1758 a symbol or section associated with it. */
1759 if (sym_sec)
1760 symval += sym_sec->output_section->vma
1761 + sym_sec->output_offset;
1762 }
1763 else
1764 {
1765 unsigned long indx;
1766 struct elf_link_hash_entry *h;
1767
1768 /* An external symbol. */
1769 indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
1770 h = elf_sym_hashes (abfd)[indx];
1771 BFD_ASSERT (h != NULL);
1772 if (h->root.type != bfd_link_hash_defined
1773 && h->root.type != bfd_link_hash_defweak)
4cdc7696
NC
1774 /* This appears to be a reference to an undefined
1775 symbol. Just ignore it--it will be caught by the
1776 regular reloc processing. */
1777 continue;
1778
df406460
NC
1779 symval = (h->root.u.def.value
1780 + h->root.u.def.section->output_section->vma
1781 + h->root.u.def.section->output_offset);
1782 }
1783
1784 /* For simplicity of coding, we are going to modify the section
1785 contents, the section relocs, and the BFD symbol table. We
1786 must tell the rest of the code not to free up this
1787 information. It would be possible to instead create a table
1788 of changes which have to be made, as is done in coff-mips.c;
1789 that would be more work, but would require less memory when
1790 the linker is run. */
1791 switch (ELF32_R_TYPE (irel->r_info))
1792 {
91d6fa6a
NC
1793 /* Try to turn a 22-bit absolute call/jump into an 13-bit
1794 pc-relative rcall/rjmp. */
1795 case R_AVR_CALL:
df406460
NC
1796 {
1797 bfd_vma value = symval + irel->r_addend;
1798 bfd_vma dot, gap;
1799 int distance_short_enough = 0;
1800
1801 /* Get the address of this instruction. */
1802 dot = (sec->output_section->vma
1803 + sec->output_offset + irel->r_offset);
1804
1805 /* Compute the distance from this insn to the branch target. */
1806 gap = value - dot;
1807
1808 /* If the distance is within -4094..+4098 inclusive, then we can
1809 relax this jump/call. +4098 because the call/jump target
4cdc7696 1810 will be closer after the relaxation. */
df406460
NC
1811 if ((int) gap >= -4094 && (int) gap <= 4098)
1812 distance_short_enough = 1;
1813
1814 /* Here we handle the wrap-around case. E.g. for a 16k device
4cdc7696 1815 we could use a rjmp to jump from address 0x100 to 0x3d00!
df406460
NC
1816 In order to make this work properly, we need to fill the
1817 vaiable avr_pc_wrap_around with the appropriate value.
1818 I.e. 0x4000 for a 16k device. */
1819 {
91d6fa6a
NC
1820 /* Shrinking the code size makes the gaps larger in the
1821 case of wrap-arounds. So we use a heuristical safety
1822 margin to avoid that during relax the distance gets
1823 again too large for the short jumps. Let's assume
1824 a typical code-size reduction due to relax for a
1825 16k device of 600 bytes. So let's use twice the
1826 typical value as safety margin. */
1827 int rgap;
1828 int safety_margin;
1829
1830 int assumed_shrink = 600;
1831 if (avr_pc_wrap_around > 0x4000)
1832 assumed_shrink = 900;
1833
1834 safety_margin = 2 * assumed_shrink;
1835
1836 rgap = avr_relative_distance_considering_wrap_around (gap);
1837
1838 if (rgap >= (-4092 + safety_margin)
1839 && rgap <= (4094 - safety_margin))
1840 distance_short_enough = 1;
4cdc7696 1841 }
df406460
NC
1842
1843 if (distance_short_enough)
1844 {
1845 unsigned char code_msb;
1846 unsigned char code_lsb;
1847
28c9d252 1848 if (debug_relax)
df406460
NC
1849 printf ("shrinking jump/call instruction at address 0x%x"
1850 " in section %s\n\n",
1851 (int) dot, sec->name);
1852
1853 /* Note that we've changed the relocs, section contents,
1854 etc. */
1855 elf_section_data (sec)->relocs = internal_relocs;
1856 elf_section_data (sec)->this_hdr.contents = contents;
1857 symtab_hdr->contents = (unsigned char *) isymbuf;
1858
1859 /* Get the instruction code for relaxing. */
1860 code_lsb = bfd_get_8 (abfd, contents + irel->r_offset);
1861 code_msb = bfd_get_8 (abfd, contents + irel->r_offset + 1);
1862
1863 /* Mask out the relocation bits. */
1864 code_msb &= 0x94;
1865 code_lsb &= 0x0E;
1866 if (code_msb == 0x94 && code_lsb == 0x0E)
1867 {
1868 /* we are changing call -> rcall . */
1869 bfd_put_8 (abfd, 0x00, contents + irel->r_offset);
1870 bfd_put_8 (abfd, 0xD0, contents + irel->r_offset + 1);
1871 }
1872 else if (code_msb == 0x94 && code_lsb == 0x0C)
1873 {
1874 /* we are changeing jump -> rjmp. */
1875 bfd_put_8 (abfd, 0x00, contents + irel->r_offset);
1876 bfd_put_8 (abfd, 0xC0, contents + irel->r_offset + 1);
1877 }
4cdc7696 1878 else
df406460
NC
1879 abort ();
1880
1881 /* Fix the relocation's type. */
1882 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
1883 R_AVR_13_PCREL);
1884
1885 /* Check for the vector section. There we don't want to
1886 modify the ordering! */
1887
1888 if (!strcmp (sec->name,".vectors")
1889 || !strcmp (sec->name,".jumptables"))
1890 {
1891 /* Let's insert a nop. */
1892 bfd_put_8 (abfd, 0x00, contents + irel->r_offset + 2);
1893 bfd_put_8 (abfd, 0x00, contents + irel->r_offset + 3);
1894 }
1895 else
1896 {
1897 /* Delete two bytes of data. */
1898 if (!elf32_avr_relax_delete_bytes (abfd, sec,
1899 irel->r_offset + 2, 2))
1900 goto error_return;
1901
1902 /* That will change things, so, we should relax again.
1903 Note that this is not required, and it may be slow. */
1904 *again = TRUE;
1905 }
1906 }
1907 }
4cdc7696 1908
df406460
NC
1909 default:
1910 {
1911 unsigned char code_msb;
1912 unsigned char code_lsb;
1913 bfd_vma dot;
1914
1915 code_msb = bfd_get_8 (abfd, contents + irel->r_offset + 1);
1916 code_lsb = bfd_get_8 (abfd, contents + irel->r_offset + 0);
1917
1918 /* Get the address of this instruction. */
1919 dot = (sec->output_section->vma
1920 + sec->output_offset + irel->r_offset);
4cdc7696
NC
1921
1922 /* Here we look for rcall/ret or call/ret sequences that could be
28c9d252
NC
1923 safely replaced by rjmp/ret or jmp/ret. */
1924 if (((code_msb & 0xf0) == 0xd0)
1925 && avr_replace_call_ret_sequences)
df406460
NC
1926 {
1927 /* This insn is a rcall. */
1928 unsigned char next_insn_msb = 0;
1929 unsigned char next_insn_lsb = 0;
1930
1931 if (irel->r_offset + 3 < sec->size)
1932 {
4cdc7696 1933 next_insn_msb =
91d6fa6a 1934 bfd_get_8 (abfd, contents + irel->r_offset + 3);
4cdc7696 1935 next_insn_lsb =
91d6fa6a 1936 bfd_get_8 (abfd, contents + irel->r_offset + 2);
df406460 1937 }
4cdc7696
NC
1938
1939 if ((0x95 == next_insn_msb) && (0x08 == next_insn_lsb))
df406460
NC
1940 {
1941 /* The next insn is a ret. We now convert the rcall insn
1942 into a rjmp instruction. */
df406460
NC
1943 code_msb &= 0xef;
1944 bfd_put_8 (abfd, code_msb, contents + irel->r_offset + 1);
28c9d252 1945 if (debug_relax)
df406460
NC
1946 printf ("converted rcall/ret sequence at address 0x%x"
1947 " into rjmp/ret sequence. Section is %s\n\n",
1948 (int) dot, sec->name);
1949 *again = TRUE;
1950 break;
1951 }
1952 }
1953 else if ((0x94 == (code_msb & 0xfe))
28c9d252
NC
1954 && (0x0e == (code_lsb & 0x0e))
1955 && avr_replace_call_ret_sequences)
df406460
NC
1956 {
1957 /* This insn is a call. */
1958 unsigned char next_insn_msb = 0;
1959 unsigned char next_insn_lsb = 0;
1960
1961 if (irel->r_offset + 5 < sec->size)
1962 {
1963 next_insn_msb =
91d6fa6a 1964 bfd_get_8 (abfd, contents + irel->r_offset + 5);
df406460 1965 next_insn_lsb =
91d6fa6a 1966 bfd_get_8 (abfd, contents + irel->r_offset + 4);
df406460 1967 }
4cdc7696 1968
df406460
NC
1969 if ((0x95 == next_insn_msb) && (0x08 == next_insn_lsb))
1970 {
1971 /* The next insn is a ret. We now convert the call insn
1972 into a jmp instruction. */
1973
1974 code_lsb &= 0xfd;
1975 bfd_put_8 (abfd, code_lsb, contents + irel->r_offset);
28c9d252 1976 if (debug_relax)
df406460
NC
1977 printf ("converted call/ret sequence at address 0x%x"
1978 " into jmp/ret sequence. Section is %s\n\n",
1979 (int) dot, sec->name);
1980 *again = TRUE;
1981 break;
1982 }
1983 }
4cdc7696
NC
1984 else if ((0xc0 == (code_msb & 0xf0))
1985 || ((0x94 == (code_msb & 0xfe))
df406460
NC
1986 && (0x0c == (code_lsb & 0x0e))))
1987 {
4cdc7696 1988 /* This insn is a rjmp or a jmp. */
df406460
NC
1989 unsigned char next_insn_msb = 0;
1990 unsigned char next_insn_lsb = 0;
1991 int insn_size;
1992
1993 if (0xc0 == (code_msb & 0xf0))
1994 insn_size = 2; /* rjmp insn */
1995 else
1996 insn_size = 4; /* jmp insn */
1997
1998 if (irel->r_offset + insn_size + 1 < sec->size)
1999 {
4cdc7696 2000 next_insn_msb =
91d6fa6a
NC
2001 bfd_get_8 (abfd, contents + irel->r_offset
2002 + insn_size + 1);
4cdc7696 2003 next_insn_lsb =
91d6fa6a
NC
2004 bfd_get_8 (abfd, contents + irel->r_offset
2005 + insn_size);
df406460
NC
2006 }
2007
2008 if ((0x95 == next_insn_msb) && (0x08 == next_insn_lsb))
2009 {
2010 /* The next insn is a ret. We possibly could delete
cc643b88 2011 this ret. First we need to check for preceding
df406460
NC
2012 sbis/sbic/sbrs or cpse "skip" instructions. */
2013
cc643b88 2014 int there_is_preceding_non_skip_insn = 1;
df406460
NC
2015 bfd_vma address_of_ret;
2016
2017 address_of_ret = dot + insn_size;
2018
28c9d252 2019 if (debug_relax && (insn_size == 2))
4cdc7696 2020 printf ("found rjmp / ret sequence at address 0x%x\n",
df406460 2021 (int) dot);
28c9d252 2022 if (debug_relax && (insn_size == 4))
4cdc7696 2023 printf ("found jmp / ret sequence at address 0x%x\n",
df406460
NC
2024 (int) dot);
2025
cc643b88 2026 /* We have to make sure that there is a preceding insn. */
df406460
NC
2027 if (irel->r_offset >= 2)
2028 {
cc643b88
NC
2029 unsigned char preceding_msb;
2030 unsigned char preceding_lsb;
2031
2032 preceding_msb =
91d6fa6a 2033 bfd_get_8 (abfd, contents + irel->r_offset - 1);
cc643b88 2034 preceding_lsb =
91d6fa6a 2035 bfd_get_8 (abfd, contents + irel->r_offset - 2);
df406460
NC
2036
2037 /* sbic. */
cc643b88
NC
2038 if (0x99 == preceding_msb)
2039 there_is_preceding_non_skip_insn = 0;
df406460
NC
2040
2041 /* sbis. */
cc643b88
NC
2042 if (0x9b == preceding_msb)
2043 there_is_preceding_non_skip_insn = 0;
df406460
NC
2044
2045 /* sbrc */
cc643b88
NC
2046 if ((0xfc == (preceding_msb & 0xfe)
2047 && (0x00 == (preceding_lsb & 0x08))))
2048 there_is_preceding_non_skip_insn = 0;
df406460 2049
4cdc7696 2050 /* sbrs */
cc643b88
NC
2051 if ((0xfe == (preceding_msb & 0xfe)
2052 && (0x00 == (preceding_lsb & 0x08))))
2053 there_is_preceding_non_skip_insn = 0;
4cdc7696 2054
df406460 2055 /* cpse */
cc643b88
NC
2056 if (0x10 == (preceding_msb & 0xfc))
2057 there_is_preceding_non_skip_insn = 0;
4cdc7696 2058
cc643b88 2059 if (there_is_preceding_non_skip_insn == 0)
28c9d252 2060 if (debug_relax)
cc643b88
NC
2061 printf ("preceding skip insn prevents deletion of"
2062 " ret insn at Addy 0x%x in section %s\n",
df406460
NC
2063 (int) dot + 2, sec->name);
2064 }
2065 else
2066 {
2067 /* There is no previous instruction. */
cc643b88 2068 there_is_preceding_non_skip_insn = 0;
4cdc7696 2069 }
df406460 2070
cc643b88 2071 if (there_is_preceding_non_skip_insn)
df406460
NC
2072 {
2073 /* We now only have to make sure that there is no
2074 local label defined at the address of the ret
2075 instruction and that there is no local relocation
2076 in this section pointing to the ret. */
2077
2078 int deleting_ret_is_safe = 1;
4cdc7696 2079 unsigned int section_offset_of_ret_insn =
91d6fa6a 2080 irel->r_offset + insn_size;
df406460
NC
2081 Elf_Internal_Sym *isym, *isymend;
2082 unsigned int sec_shndx;
4cdc7696
NC
2083
2084 sec_shndx =
2085 _bfd_elf_section_from_bfd_section (abfd, sec);
df406460
NC
2086
2087 /* Check for local symbols. */
2088 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
2089 isymend = isym + symtab_hdr->sh_info;
696b7ad2
NC
2090 /* PR 6019: There may not be any local symbols. */
2091 for (; isym != NULL && isym < isymend; isym++)
91d6fa6a
NC
2092 {
2093 if (isym->st_value == section_offset_of_ret_insn
2094 && isym->st_shndx == sec_shndx)
2095 {
2096 deleting_ret_is_safe = 0;
2097 if (debug_relax)
2098 printf ("local label prevents deletion of ret "
2099 "insn at address 0x%x\n",
2100 (int) dot + insn_size);
2101 }
2102 }
2103
2104 /* Now check for global symbols. */
2105 {
2106 int symcount;
2107 struct elf_link_hash_entry **sym_hashes;
2108 struct elf_link_hash_entry **end_hashes;
2109
2110 symcount = (symtab_hdr->sh_size
2111 / sizeof (Elf32_External_Sym)
2112 - symtab_hdr->sh_info);
2113 sym_hashes = elf_sym_hashes (abfd);
2114 end_hashes = sym_hashes + symcount;
2115 for (; sym_hashes < end_hashes; sym_hashes++)
2116 {
2117 struct elf_link_hash_entry *sym_hash =
2118 *sym_hashes;
2119 if ((sym_hash->root.type == bfd_link_hash_defined
2120 || sym_hash->root.type ==
4cdc7696 2121 bfd_link_hash_defweak)
91d6fa6a
NC
2122 && sym_hash->root.u.def.section == sec
2123 && sym_hash->root.u.def.value == section_offset_of_ret_insn)
2124 {
2125 deleting_ret_is_safe = 0;
2126 if (debug_relax)
2127 printf ("global label prevents deletion of "
2128 "ret insn at address 0x%x\n",
2129 (int) dot + insn_size);
2130 }
2131 }
2132 }
2133 /* Now we check for relocations pointing to ret. */
2134 {
2135 Elf_Internal_Rela *rel;
2136 Elf_Internal_Rela *relend;
2137
2138 relend = elf_section_data (sec)->relocs
2139 + sec->reloc_count;
2140
2141 for (rel = elf_section_data (sec)->relocs;
2142 rel < relend; rel++)
2143 {
2144 bfd_vma reloc_target = 0;
2145
2146 /* Read this BFD's local symbols if we haven't
2147 done so already. */
2148 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
2149 {
2150 isymbuf = (Elf_Internal_Sym *)
2151 symtab_hdr->contents;
2152 if (isymbuf == NULL)
2153 isymbuf = bfd_elf_get_elf_syms
2154 (abfd,
2155 symtab_hdr,
2156 symtab_hdr->sh_info, 0,
2157 NULL, NULL, NULL);
2158 if (isymbuf == NULL)
2159 break;
2160 }
2161
2162 /* Get the value of the symbol referred to
2163 by the reloc. */
2164 if (ELF32_R_SYM (rel->r_info)
2165 < symtab_hdr->sh_info)
2166 {
2167 /* A local symbol. */
2168 asection *sym_sec;
2169
2170 isym = isymbuf
2171 + ELF32_R_SYM (rel->r_info);
2172 sym_sec = bfd_section_from_elf_index
2173 (abfd, isym->st_shndx);
2174 symval = isym->st_value;
2175
2176 /* If the reloc is absolute, it will not
2177 have a symbol or section associated
2178 with it. */
2179
2180 if (sym_sec)
2181 {
2182 symval +=
2183 sym_sec->output_section->vma
2184 + sym_sec->output_offset;
2185 reloc_target = symval + rel->r_addend;
2186 }
2187 else
2188 {
2189 reloc_target = symval + rel->r_addend;
2190 /* Reference symbol is absolute. */
2191 }
2192 }
2193 /* else ... reference symbol is extern. */
2194
2195 if (address_of_ret == reloc_target)
2196 {
2197 deleting_ret_is_safe = 0;
2198 if (debug_relax)
2199 printf ("ret from "
2200 "rjmp/jmp ret sequence at address"
2201 " 0x%x could not be deleted. ret"
2202 " is target of a relocation.\n",
2203 (int) address_of_ret);
2204 }
2205 }
2206 }
2207
2208 if (deleting_ret_is_safe)
2209 {
2210 if (debug_relax)
2211 printf ("unreachable ret instruction "
2212 "at address 0x%x deleted.\n",
2213 (int) dot + insn_size);
2214
2215 /* Delete two bytes of data. */
2216 if (!elf32_avr_relax_delete_bytes (abfd, sec,
2217 irel->r_offset + insn_size, 2))
2218 goto error_return;
2219
2220 /* That will change things, so, we should relax
2221 again. Note that this is not required, and it
2222 may be slow. */
2223 *again = TRUE;
2224 break;
2225 }
df406460 2226 }
4cdc7696
NC
2227
2228 }
2229 }
df406460
NC
2230 break;
2231 }
2232 }
2233 }
2234
2235 if (contents != NULL
2236 && elf_section_data (sec)->this_hdr.contents != contents)
2237 {
2238 if (! link_info->keep_memory)
2239 free (contents);
2240 else
2241 {
2242 /* Cache the section contents for elf_link_input_bfd. */
2243 elf_section_data (sec)->this_hdr.contents = contents;
2244 }
2245 }
2246
2247 if (internal_relocs != NULL
2248 && elf_section_data (sec)->relocs != internal_relocs)
2249 free (internal_relocs);
2250
2251 return TRUE;
2252
2253 error_return:
2254 if (isymbuf != NULL
2255 && symtab_hdr->contents != (unsigned char *) isymbuf)
2256 free (isymbuf);
2257 if (contents != NULL
2258 && elf_section_data (sec)->this_hdr.contents != contents)
2259 free (contents);
2260 if (internal_relocs != NULL
2261 && elf_section_data (sec)->relocs != internal_relocs)
2262 free (internal_relocs);
2263
4cdc7696 2264 return FALSE;
df406460
NC
2265}
2266
2267/* This is a version of bfd_generic_get_relocated_section_contents
4cdc7696 2268 which uses elf32_avr_relocate_section.
df406460 2269
4cdc7696 2270 For avr it's essentially a cut and paste taken from the H8300 port.
df406460 2271 The author of the relaxation support patch for avr had absolutely no
4cdc7696 2272 clue what is happening here but found out that this part of the code
df406460
NC
2273 seems to be important. */
2274
2275static bfd_byte *
2276elf32_avr_get_relocated_section_contents (bfd *output_bfd,
2277 struct bfd_link_info *link_info,
2278 struct bfd_link_order *link_order,
2279 bfd_byte *data,
2280 bfd_boolean relocatable,
2281 asymbol **symbols)
2282{
2283 Elf_Internal_Shdr *symtab_hdr;
2284 asection *input_section = link_order->u.indirect.section;
2285 bfd *input_bfd = input_section->owner;
2286 asection **sections = NULL;
2287 Elf_Internal_Rela *internal_relocs = NULL;
2288 Elf_Internal_Sym *isymbuf = NULL;
2289
2290 /* We only need to handle the case of relaxing, or of having a
2291 particular set of section contents, specially. */
2292 if (relocatable
2293 || elf_section_data (input_section)->this_hdr.contents == NULL)
2294 return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
2295 link_order, data,
2296 relocatable,
2297 symbols);
2298 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2299
2300 memcpy (data, elf_section_data (input_section)->this_hdr.contents,
2301 (size_t) input_section->size);
2302
2303 if ((input_section->flags & SEC_RELOC) != 0
2304 && input_section->reloc_count > 0)
2305 {
2306 asection **secpp;
2307 Elf_Internal_Sym *isym, *isymend;
2308 bfd_size_type amt;
2309
2310 internal_relocs = (_bfd_elf_link_read_relocs
4cdc7696 2311 (input_bfd, input_section, NULL, NULL, FALSE));
df406460
NC
2312 if (internal_relocs == NULL)
2313 goto error_return;
2314
2315 if (symtab_hdr->sh_info != 0)
2316 {
2317 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2318 if (isymbuf == NULL)
2319 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2320 symtab_hdr->sh_info, 0,
2321 NULL, NULL, NULL);
2322 if (isymbuf == NULL)
2323 goto error_return;
2324 }
2325
2326 amt = symtab_hdr->sh_info;
2327 amt *= sizeof (asection *);
4cdc7696 2328 sections = bfd_malloc (amt);
df406460
NC
2329 if (sections == NULL && amt != 0)
2330 goto error_return;
2331
2332 isymend = isymbuf + symtab_hdr->sh_info;
2333 for (isym = isymbuf, secpp = sections; isym < isymend; ++isym, ++secpp)
2334 {
2335 asection *isec;
2336
2337 if (isym->st_shndx == SHN_UNDEF)
2338 isec = bfd_und_section_ptr;
2339 else if (isym->st_shndx == SHN_ABS)
2340 isec = bfd_abs_section_ptr;
2341 else if (isym->st_shndx == SHN_COMMON)
2342 isec = bfd_com_section_ptr;
2343 else
2344 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
2345
2346 *secpp = isec;
2347 }
2348
2349 if (! elf32_avr_relocate_section (output_bfd, link_info, input_bfd,
2350 input_section, data, internal_relocs,
2351 isymbuf, sections))
2352 goto error_return;
2353
2354 if (sections != NULL)
2355 free (sections);
2356 if (isymbuf != NULL
2357 && symtab_hdr->contents != (unsigned char *) isymbuf)
2358 free (isymbuf);
2359 if (elf_section_data (input_section)->relocs != internal_relocs)
2360 free (internal_relocs);
2361 }
2362
2363 return data;
2364
2365 error_return:
2366 if (sections != NULL)
2367 free (sections);
2368 if (isymbuf != NULL
2369 && symtab_hdr->contents != (unsigned char *) isymbuf)
2370 free (isymbuf);
2371 if (internal_relocs != NULL
2372 && elf_section_data (input_section)->relocs != internal_relocs)
2373 free (internal_relocs);
2374 return NULL;
2375}
2376
2377
28c9d252
NC
2378/* Determines the hash entry name for a particular reloc. It consists of
2379 the identifier of the symbol section and the added reloc addend and
2380 symbol offset relative to the section the symbol is attached to. */
2381
2382static char *
2383avr_stub_name (const asection *symbol_section,
2384 const bfd_vma symbol_offset,
2385 const Elf_Internal_Rela *rela)
2386{
2387 char *stub_name;
2388 bfd_size_type len;
2389
2390 len = 8 + 1 + 8 + 1 + 1;
2391 stub_name = bfd_malloc (len);
2392
2393 sprintf (stub_name, "%08x+%08x",
2394 symbol_section->id & 0xffffffff,
2395 (unsigned int) ((rela->r_addend & 0xffffffff) + symbol_offset));
2396
2397 return stub_name;
2398}
2399
2400
2401/* Add a new stub entry to the stub hash. Not all fields of the new
2402 stub entry are initialised. */
2403
2404static struct elf32_avr_stub_hash_entry *
2405avr_add_stub (const char *stub_name,
2406 struct elf32_avr_link_hash_table *htab)
2407{
2408 struct elf32_avr_stub_hash_entry *hsh;
2409
2410 /* Enter this entry into the linker stub hash table. */
2411 hsh = avr_stub_hash_lookup (&htab->bstab, stub_name, TRUE, FALSE);
2412
2413 if (hsh == NULL)
2414 {
2415 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
2416 NULL, stub_name);
2417 return NULL;
2418 }
2419
2420 hsh->stub_offset = 0;
2421 return hsh;
2422}
2423
2424/* We assume that there is already space allocated for the stub section
2425 contents and that before building the stubs the section size is
2426 initialized to 0. We assume that within the stub hash table entry,
2427 the absolute position of the jmp target has been written in the
2428 target_value field. We write here the offset of the generated jmp insn
2429 relative to the trampoline section start to the stub_offset entry in
2430 the stub hash table entry. */
2431
2432static bfd_boolean
2433avr_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
2434{
2435 struct elf32_avr_stub_hash_entry *hsh;
2436 struct bfd_link_info *info;
2437 struct elf32_avr_link_hash_table *htab;
2438 bfd *stub_bfd;
2439 bfd_byte *loc;
2440 bfd_vma target;
2441 bfd_vma starget;
2442
2443 /* Basic opcode */
2444 bfd_vma jmp_insn = 0x0000940c;
2445
2446 /* Massage our args to the form they really have. */
2447 hsh = avr_stub_hash_entry (bh);
2448
2449 if (!hsh->is_actually_needed)
2450 return TRUE;
2451
2452 info = (struct bfd_link_info *) in_arg;
2453
2454 htab = avr_link_hash_table (info);
64ee10b6
NC
2455 if (htab == NULL)
2456 return FALSE;
28c9d252
NC
2457
2458 target = hsh->target_value;
2459
2460 /* Make a note of the offset within the stubs for this entry. */
2461 hsh->stub_offset = htab->stub_sec->size;
2462 loc = htab->stub_sec->contents + hsh->stub_offset;
2463
2464 stub_bfd = htab->stub_sec->owner;
2465
2466 if (debug_stubs)
2467 printf ("Building one Stub. Address: 0x%x, Offset: 0x%x\n",
2468 (unsigned int) target,
2469 (unsigned int) hsh->stub_offset);
2470
2471 /* We now have to add the information on the jump target to the bare
2472 opcode bits already set in jmp_insn. */
2473
2474 /* Check for the alignment of the address. */
2475 if (target & 1)
2476 return FALSE;
2477
2478 starget = target >> 1;
2479 jmp_insn |= ((starget & 0x10000) | ((starget << 3) & 0x1f00000)) >> 16;
2480 bfd_put_16 (stub_bfd, jmp_insn, loc);
2481 bfd_put_16 (stub_bfd, (bfd_vma) starget & 0xffff, loc + 2);
2482
2483 htab->stub_sec->size += 4;
2484
2485 /* Now add the entries in the address mapping table if there is still
2486 space left. */
2487 {
2488 unsigned int nr;
2489
2490 nr = htab->amt_entry_cnt + 1;
2491 if (nr <= htab->amt_max_entry_cnt)
2492 {
2493 htab->amt_entry_cnt = nr;
2494
2495 htab->amt_stub_offsets[nr - 1] = hsh->stub_offset;
2496 htab->amt_destination_addr[nr - 1] = target;
2497 }
2498 }
2499
2500 return TRUE;
2501}
2502
2503static bfd_boolean
2504avr_mark_stub_not_to_be_necessary (struct bfd_hash_entry *bh,
c7e2358a 2505 void *in_arg ATTRIBUTE_UNUSED)
28c9d252
NC
2506{
2507 struct elf32_avr_stub_hash_entry *hsh;
28c9d252 2508
28c9d252
NC
2509 hsh = avr_stub_hash_entry (bh);
2510 hsh->is_actually_needed = FALSE;
2511
2512 return TRUE;
2513}
2514
2515static bfd_boolean
2516avr_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
2517{
2518 struct elf32_avr_stub_hash_entry *hsh;
2519 struct elf32_avr_link_hash_table *htab;
2520 int size;
2521
2522 /* Massage our args to the form they really have. */
2523 hsh = avr_stub_hash_entry (bh);
2524 htab = in_arg;
2525
2526 if (hsh->is_actually_needed)
2527 size = 4;
2528 else
2529 size = 0;
2530
2531 htab->stub_sec->size += size;
2532 return TRUE;
2533}
2534
2535void
2536elf32_avr_setup_params (struct bfd_link_info *info,
2537 bfd *avr_stub_bfd,
2538 asection *avr_stub_section,
2539 bfd_boolean no_stubs,
2540 bfd_boolean deb_stubs,
2541 bfd_boolean deb_relax,
2542 bfd_vma pc_wrap_around,
2543 bfd_boolean call_ret_replacement)
2544{
64ee10b6 2545 struct elf32_avr_link_hash_table *htab = avr_link_hash_table (info);
28c9d252 2546
64ee10b6
NC
2547 if (htab == NULL)
2548 return;
28c9d252
NC
2549 htab->stub_sec = avr_stub_section;
2550 htab->stub_bfd = avr_stub_bfd;
2551 htab->no_stubs = no_stubs;
2552
2553 debug_relax = deb_relax;
2554 debug_stubs = deb_stubs;
2555 avr_pc_wrap_around = pc_wrap_around;
2556 avr_replace_call_ret_sequences = call_ret_replacement;
2557}
2558
2559
2560/* Set up various things so that we can make a list of input sections
2561 for each output section included in the link. Returns -1 on error,
2562 0 when no stubs will be needed, and 1 on success. It also sets
2563 information on the stubs bfd and the stub section in the info
2564 struct. */
2565
2566int
2567elf32_avr_setup_section_lists (bfd *output_bfd,
2568 struct bfd_link_info *info)
2569{
2570 bfd *input_bfd;
2571 unsigned int bfd_count;
2572 int top_id, top_index;
2573 asection *section;
2574 asection **input_list, **list;
2575 bfd_size_type amt;
4dfe6ac6 2576 struct elf32_avr_link_hash_table *htab = avr_link_hash_table (info);
28c9d252 2577
64ee10b6 2578 if (htab == NULL || htab->no_stubs)
28c9d252
NC
2579 return 0;
2580
2581 /* Count the number of input BFDs and find the top input section id. */
2582 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2583 input_bfd != NULL;
2584 input_bfd = input_bfd->link_next)
2585 {
2586 bfd_count += 1;
2587 for (section = input_bfd->sections;
2588 section != NULL;
2589 section = section->next)
2590 if (top_id < section->id)
2591 top_id = section->id;
2592 }
2593
2594 htab->bfd_count = bfd_count;
2595
2596 /* We can't use output_bfd->section_count here to find the top output
2597 section index as some sections may have been removed, and
2598 strip_excluded_output_sections doesn't renumber the indices. */
2599 for (section = output_bfd->sections, top_index = 0;
2600 section != NULL;
2601 section = section->next)
2602 if (top_index < section->index)
2603 top_index = section->index;
2604
2605 htab->top_index = top_index;
2606 amt = sizeof (asection *) * (top_index + 1);
2607 input_list = bfd_malloc (amt);
2608 htab->input_list = input_list;
2609 if (input_list == NULL)
2610 return -1;
2611
2612 /* For sections we aren't interested in, mark their entries with a
2613 value we can check later. */
2614 list = input_list + top_index;
2615 do
2616 *list = bfd_abs_section_ptr;
2617 while (list-- != input_list);
2618
2619 for (section = output_bfd->sections;
2620 section != NULL;
2621 section = section->next)
2622 if ((section->flags & SEC_CODE) != 0)
2623 input_list[section->index] = NULL;
2624
2625 return 1;
2626}
2627
2628
2629/* Read in all local syms for all input bfds, and create hash entries
2630 for export stubs if we are building a multi-subspace shared lib.
2631 Returns -1 on error, 0 otherwise. */
2632
2633static int
2634get_local_syms (bfd *input_bfd, struct bfd_link_info *info)
2635{
2636 unsigned int bfd_indx;
2637 Elf_Internal_Sym *local_syms, **all_local_syms;
2638 struct elf32_avr_link_hash_table *htab = avr_link_hash_table (info);
9a008db3 2639 bfd_size_type amt;
28c9d252 2640
64ee10b6
NC
2641 if (htab == NULL)
2642 return -1;
2643
28c9d252
NC
2644 /* We want to read in symbol extension records only once. To do this
2645 we need to read in the local symbols in parallel and save them for
2646 later use; so hold pointers to the local symbols in an array. */
9a008db3 2647 amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
28c9d252
NC
2648 all_local_syms = bfd_zmalloc (amt);
2649 htab->all_local_syms = all_local_syms;
2650 if (all_local_syms == NULL)
2651 return -1;
2652
2653 /* Walk over all the input BFDs, swapping in local symbols.
2654 If we are creating a shared library, create hash entries for the
2655 export stubs. */
2656 for (bfd_indx = 0;
2657 input_bfd != NULL;
2658 input_bfd = input_bfd->link_next, bfd_indx++)
2659 {
2660 Elf_Internal_Shdr *symtab_hdr;
2661
2662 /* We'll need the symbol table in a second. */
2663 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2664 if (symtab_hdr->sh_info == 0)
2665 continue;
2666
2667 /* We need an array of the local symbols attached to the input bfd. */
2668 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2669 if (local_syms == NULL)
2670 {
2671 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2672 symtab_hdr->sh_info, 0,
2673 NULL, NULL, NULL);
2674 /* Cache them for elf_link_input_bfd. */
2675 symtab_hdr->contents = (unsigned char *) local_syms;
2676 }
2677 if (local_syms == NULL)
2678 return -1;
2679
2680 all_local_syms[bfd_indx] = local_syms;
2681 }
2682
2683 return 0;
2684}
2685
2686#define ADD_DUMMY_STUBS_FOR_DEBUGGING 0
2687
2688bfd_boolean
2689elf32_avr_size_stubs (bfd *output_bfd,
2690 struct bfd_link_info *info,
2691 bfd_boolean is_prealloc_run)
2692{
64ee10b6
NC
2693 struct elf32_avr_link_hash_table *htab;
2694 int stub_changed = 0;
28c9d252 2695
64ee10b6
NC
2696 htab = avr_link_hash_table (info);
2697 if (htab == NULL)
2698 return FALSE;
28c9d252 2699
64ee10b6
NC
2700 /* At this point we initialize htab->vector_base
2701 To the start of the text output section. */
2702 htab->vector_base = htab->stub_sec->output_section->vma;
28c9d252 2703
64ee10b6
NC
2704 if (get_local_syms (info->input_bfds, info))
2705 {
2706 if (htab->all_local_syms)
2707 goto error_ret_free_local;
2708 return FALSE;
2709 }
28c9d252
NC
2710
2711 if (ADD_DUMMY_STUBS_FOR_DEBUGGING)
2712 {
2713 struct elf32_avr_stub_hash_entry *test;
2714
2715 test = avr_add_stub ("Hugo",htab);
2716 test->target_value = 0x123456;
2717 test->stub_offset = 13;
2718
2719 test = avr_add_stub ("Hugo2",htab);
2720 test->target_value = 0x84210;
2721 test->stub_offset = 14;
2722 }
2723
2724 while (1)
2725 {
2726 bfd *input_bfd;
2727 unsigned int bfd_indx;
2728
2729 /* We will have to re-generate the stub hash table each time anything
2730 in memory has changed. */
2731
2732 bfd_hash_traverse (&htab->bstab, avr_mark_stub_not_to_be_necessary, htab);
2733 for (input_bfd = info->input_bfds, bfd_indx = 0;
2734 input_bfd != NULL;
2735 input_bfd = input_bfd->link_next, bfd_indx++)
2736 {
2737 Elf_Internal_Shdr *symtab_hdr;
2738 asection *section;
2739 Elf_Internal_Sym *local_syms;
2740
2741 /* We'll need the symbol table in a second. */
2742 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2743 if (symtab_hdr->sh_info == 0)
2744 continue;
2745
2746 local_syms = htab->all_local_syms[bfd_indx];
2747
2748 /* Walk over each section attached to the input bfd. */
2749 for (section = input_bfd->sections;
2750 section != NULL;
2751 section = section->next)
2752 {
2753 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2754
2755 /* If there aren't any relocs, then there's nothing more
2756 to do. */
2757 if ((section->flags & SEC_RELOC) == 0
2758 || section->reloc_count == 0)
2759 continue;
2760
2761 /* If this section is a link-once section that will be
2762 discarded, then don't create any stubs. */
2763 if (section->output_section == NULL
2764 || section->output_section->owner != output_bfd)
2765 continue;
2766
2767 /* Get the relocs. */
2768 internal_relocs
2769 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2770 info->keep_memory);
2771 if (internal_relocs == NULL)
2772 goto error_ret_free_local;
2773
2774 /* Now examine each relocation. */
2775 irela = internal_relocs;
2776 irelaend = irela + section->reloc_count;
2777 for (; irela < irelaend; irela++)
2778 {
2779 unsigned int r_type, r_indx;
2780 struct elf32_avr_stub_hash_entry *hsh;
2781 asection *sym_sec;
2782 bfd_vma sym_value;
2783 bfd_vma destination;
2784 struct elf_link_hash_entry *hh;
2785 char *stub_name;
2786
2787 r_type = ELF32_R_TYPE (irela->r_info);
2788 r_indx = ELF32_R_SYM (irela->r_info);
2789
2790 /* Only look for 16 bit GS relocs. No other reloc will need a
2791 stub. */
2792 if (!((r_type == R_AVR_16_PM)
2793 || (r_type == R_AVR_LO8_LDI_GS)
2794 || (r_type == R_AVR_HI8_LDI_GS)))
2795 continue;
2796
2797 /* Now determine the call target, its name, value,
2798 section. */
2799 sym_sec = NULL;
2800 sym_value = 0;
2801 destination = 0;
2802 hh = NULL;
2803 if (r_indx < symtab_hdr->sh_info)
2804 {
2805 /* It's a local symbol. */
2806 Elf_Internal_Sym *sym;
2807 Elf_Internal_Shdr *hdr;
4fbb74a6 2808 unsigned int shndx;
28c9d252
NC
2809
2810 sym = local_syms + r_indx;
28c9d252
NC
2811 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2812 sym_value = sym->st_value;
4fbb74a6
AM
2813 shndx = sym->st_shndx;
2814 if (shndx < elf_numsections (input_bfd))
2815 {
2816 hdr = elf_elfsections (input_bfd)[shndx];
2817 sym_sec = hdr->bfd_section;
2818 destination = (sym_value + irela->r_addend
2819 + sym_sec->output_offset
2820 + sym_sec->output_section->vma);
2821 }
28c9d252
NC
2822 }
2823 else
2824 {
2825 /* It's an external symbol. */
2826 int e_indx;
2827
2828 e_indx = r_indx - symtab_hdr->sh_info;
2829 hh = elf_sym_hashes (input_bfd)[e_indx];
2830
2831 while (hh->root.type == bfd_link_hash_indirect
2832 || hh->root.type == bfd_link_hash_warning)
2833 hh = (struct elf_link_hash_entry *)
2834 (hh->root.u.i.link);
2835
2836 if (hh->root.type == bfd_link_hash_defined
2837 || hh->root.type == bfd_link_hash_defweak)
2838 {
2839 sym_sec = hh->root.u.def.section;
2840 sym_value = hh->root.u.def.value;
2841 if (sym_sec->output_section != NULL)
2842 destination = (sym_value + irela->r_addend
2843 + sym_sec->output_offset
2844 + sym_sec->output_section->vma);
2845 }
2846 else if (hh->root.type == bfd_link_hash_undefweak)
2847 {
2848 if (! info->shared)
2849 continue;
2850 }
2851 else if (hh->root.type == bfd_link_hash_undefined)
2852 {
2853 if (! (info->unresolved_syms_in_objects == RM_IGNORE
2854 && (ELF_ST_VISIBILITY (hh->other)
2855 == STV_DEFAULT)))
2856 continue;
2857 }
2858 else
2859 {
2860 bfd_set_error (bfd_error_bad_value);
2861
2862 error_ret_free_internal:
2863 if (elf_section_data (section)->relocs == NULL)
2864 free (internal_relocs);
2865 goto error_ret_free_local;
2866 }
2867 }
2868
2869 if (! avr_stub_is_required_for_16_bit_reloc
2870 (destination - htab->vector_base))
2871 {
2872 if (!is_prealloc_run)
2873 /* We are having a reloc that does't need a stub. */
2874 continue;
2875
2876 /* We don't right now know if a stub will be needed.
2877 Let's rather be on the safe side. */
2878 }
2879
2880 /* Get the name of this stub. */
2881 stub_name = avr_stub_name (sym_sec, sym_value, irela);
2882
2883 if (!stub_name)
2884 goto error_ret_free_internal;
2885
2886
2887 hsh = avr_stub_hash_lookup (&htab->bstab,
2888 stub_name,
2889 FALSE, FALSE);
2890 if (hsh != NULL)
2891 {
2892 /* The proper stub has already been created. Mark it
2893 to be used and write the possibly changed destination
2894 value. */
2895 hsh->is_actually_needed = TRUE;
2896 hsh->target_value = destination;
2897 free (stub_name);
2898 continue;
2899 }
2900
2901 hsh = avr_add_stub (stub_name, htab);
2902 if (hsh == NULL)
2903 {
2904 free (stub_name);
2905 goto error_ret_free_internal;
2906 }
2907
2908 hsh->is_actually_needed = TRUE;
2909 hsh->target_value = destination;
2910
2911 if (debug_stubs)
2912 printf ("Adding stub with destination 0x%x to the"
2913 " hash table.\n", (unsigned int) destination);
2914 if (debug_stubs)
2915 printf ("(Pre-Alloc run: %i)\n", is_prealloc_run);
2916
2917 stub_changed = TRUE;
2918 }
2919
2920 /* We're done with the internal relocs, free them. */
2921 if (elf_section_data (section)->relocs == NULL)
2922 free (internal_relocs);
2923 }
2924 }
2925
2926 /* Re-Calculate the number of needed stubs. */
2927 htab->stub_sec->size = 0;
2928 bfd_hash_traverse (&htab->bstab, avr_size_one_stub, htab);
2929
2930 if (!stub_changed)
2931 break;
2932
2933 stub_changed = FALSE;
2934 }
2935
2936 free (htab->all_local_syms);
2937 return TRUE;
2938
2939 error_ret_free_local:
2940 free (htab->all_local_syms);
2941 return FALSE;
2942}
2943
2944
2945/* Build all the stubs associated with the current output file. The
2946 stubs are kept in a hash table attached to the main linker hash
2947 table. We also set up the .plt entries for statically linked PIC
2948 functions here. This function is called via hppaelf_finish in the
2949 linker. */
2950
2951bfd_boolean
2952elf32_avr_build_stubs (struct bfd_link_info *info)
2953{
2954 asection *stub_sec;
2955 struct bfd_hash_table *table;
2956 struct elf32_avr_link_hash_table *htab;
2957 bfd_size_type total_size = 0;
2958
2959 htab = avr_link_hash_table (info);
64ee10b6
NC
2960 if (htab == NULL)
2961 return FALSE;
28c9d252
NC
2962
2963 /* In case that there were several stub sections: */
2964 for (stub_sec = htab->stub_bfd->sections;
2965 stub_sec != NULL;
2966 stub_sec = stub_sec->next)
2967 {
2968 bfd_size_type size;
2969
2970 /* Allocate memory to hold the linker stubs. */
2971 size = stub_sec->size;
2972 total_size += size;
2973
2974 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
2975 if (stub_sec->contents == NULL && size != 0)
2976 return FALSE;
2977 stub_sec->size = 0;
2978 }
2979
2980 /* Allocate memory for the adress mapping table. */
2981 htab->amt_entry_cnt = 0;
2982 htab->amt_max_entry_cnt = total_size / 4;
2983 htab->amt_stub_offsets = bfd_malloc (sizeof (bfd_vma)
2984 * htab->amt_max_entry_cnt);
2985 htab->amt_destination_addr = bfd_malloc (sizeof (bfd_vma)
2986 * htab->amt_max_entry_cnt );
2987
2988 if (debug_stubs)
2989 printf ("Allocating %i entries in the AMT\n", htab->amt_max_entry_cnt);
2990
2991 /* Build the stubs as directed by the stub hash table. */
2992 table = &htab->bstab;
2993 bfd_hash_traverse (table, avr_build_one_stub, info);
2994
2995 if (debug_stubs)
2996 printf ("Final Stub section Size: %i\n", (int) htab->stub_sec->size);
2997
2998 return TRUE;
2999}
3000
adde6300 3001#define ELF_ARCH bfd_arch_avr
ae95ffa6 3002#define ELF_TARGET_ID AVR_ELF_DATA
adde6300 3003#define ELF_MACHINE_CODE EM_AVR
aa4f99bb 3004#define ELF_MACHINE_ALT1 EM_AVR_OLD
adde6300
AM
3005#define ELF_MAXPAGESIZE 1
3006
3007#define TARGET_LITTLE_SYM bfd_elf32_avr_vec
3008#define TARGET_LITTLE_NAME "elf32-avr"
3009
28c9d252
NC
3010#define bfd_elf32_bfd_link_hash_table_create elf32_avr_link_hash_table_create
3011#define bfd_elf32_bfd_link_hash_table_free elf32_avr_link_hash_table_free
3012
adde6300
AM
3013#define elf_info_to_howto avr_info_to_howto_rela
3014#define elf_info_to_howto_rel NULL
3015#define elf_backend_relocate_section elf32_avr_relocate_section
adde6300 3016#define elf_backend_can_gc_sections 1
f0fe0e16 3017#define elf_backend_rela_normal 1
adde6300
AM
3018#define elf_backend_final_write_processing \
3019 bfd_elf_avr_final_write_processing
3020#define elf_backend_object_p elf32_avr_object_p
3021
df406460
NC
3022#define bfd_elf32_bfd_relax_section elf32_avr_relax_section
3023#define bfd_elf32_bfd_get_relocated_section_contents \
3024 elf32_avr_get_relocated_section_contents
3025
adde6300 3026#include "elf32-target.h"
This page took 1.866193 seconds and 4 git commands to generate.