gas: avoid spurious failures in non-ELF targets in the SPARC testsuite.
[deliverable/binutils-gdb.git] / bfd / elf32-avr.c
CommitLineData
adde6300 1/* AVR-specific support for 32-bit ELF
6f2750fe 2 Copyright (C) 1999-2016 Free Software Foundation, Inc.
adde6300
AM
3 Contributed by Denis Chertykov <denisc@overta.ru>
4
750bce0e 5 This file is part of BFD, the Binary File Descriptor library.
adde6300 6
750bce0e
NC
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
cd123cb7 9 the Free Software Foundation; either version 3 of the License, or
750bce0e 10 (at your option) any later version.
adde6300 11
750bce0e
NC
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
adde6300 16
750bce0e
NC
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
4cdc7696 19 Foundation, Inc., 51 Franklin Street - Fifth Floor,
df406460 20 Boston, MA 02110-1301, USA. */
adde6300 21
adde6300 22#include "sysdep.h"
3db64b00 23#include "bfd.h"
adde6300
AM
24#include "libbfd.h"
25#include "elf-bfd.h"
26#include "elf/avr.h"
28c9d252 27#include "elf32-avr.h"
137c83d6 28#include "bfd_stdint.h"
28c9d252
NC
29
30/* Enable debugging printout at stdout with this variable. */
31static bfd_boolean debug_relax = FALSE;
32
33/* Enable debugging printout at stdout with this variable. */
34static bfd_boolean debug_stubs = FALSE;
35
e4ef1b6c 36static bfd_reloc_status_type
f36e8886
BS
37bfd_elf_avr_diff_reloc (bfd *, arelent *, asymbol *, void *,
38 asection *, bfd *, char **);
e4ef1b6c 39
28c9d252
NC
40/* Hash table initialization and handling. Code is taken from the hppa port
41 and adapted to the needs of AVR. */
42
43/* We use two hash tables to hold information for linking avr objects.
44
4dfe6ac6 45 The first is the elf32_avr_link_hash_table which is derived from the
28c9d252
NC
46 stanard ELF linker hash table. We use this as a place to attach the other
47 hash table and some static information.
48
49 The second is the stub hash table which is derived from the base BFD
50 hash table. The stub hash table holds the information on the linker
51 stubs. */
52
53struct elf32_avr_stub_hash_entry
54{
55 /* Base hash table entry structure. */
56 struct bfd_hash_entry bh_root;
57
58 /* Offset within stub_sec of the beginning of this stub. */
59 bfd_vma stub_offset;
60
61 /* Given the symbol's value and its section we can determine its final
62 value when building the stubs (so the stub knows where to jump). */
63 bfd_vma target_value;
64
65 /* This way we could mark stubs to be no longer necessary. */
66 bfd_boolean is_actually_needed;
67};
68
69struct elf32_avr_link_hash_table
70{
71 /* The main hash table. */
72 struct elf_link_hash_table etab;
73
74 /* The stub hash table. */
75 struct bfd_hash_table bstab;
76
77 bfd_boolean no_stubs;
78
79 /* Linker stub bfd. */
80 bfd *stub_bfd;
81
82 /* The stub section. */
83 asection *stub_sec;
84
85 /* Usually 0, unless we are generating code for a bootloader. Will
86 be initialized by elf32_avr_size_stubs to the vma offset of the
87 output section associated with the stub section. */
88 bfd_vma vector_base;
89
90 /* Assorted information used by elf32_avr_size_stubs. */
91 unsigned int bfd_count;
7292b3ac 92 unsigned int top_index;
28c9d252
NC
93 asection ** input_list;
94 Elf_Internal_Sym ** all_local_syms;
95
96 /* Tables for mapping vma beyond the 128k boundary to the address of the
97 corresponding stub. (AMT)
98 "amt_max_entry_cnt" reflects the number of entries that memory is allocated
99 for in the "amt_stub_offsets" and "amt_destination_addr" arrays.
100 "amt_entry_cnt" informs how many of these entries actually contain
101 useful data. */
102 unsigned int amt_entry_cnt;
103 unsigned int amt_max_entry_cnt;
104 bfd_vma * amt_stub_offsets;
105 bfd_vma * amt_destination_addr;
106};
107
108/* Various hash macros and functions. */
109#define avr_link_hash_table(p) \
64ee10b6 110 /* PR 3874: Check that we have an AVR style hash table before using it. */\
4dfe6ac6
NC
111 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
112 == AVR_ELF_DATA ? ((struct elf32_avr_link_hash_table *) ((p)->hash)) : NULL)
28c9d252
NC
113
114#define avr_stub_hash_entry(ent) \
115 ((struct elf32_avr_stub_hash_entry *)(ent))
116
117#define avr_stub_hash_lookup(table, string, create, copy) \
118 ((struct elf32_avr_stub_hash_entry *) \
119 bfd_hash_lookup ((table), (string), (create), (copy)))
adde6300 120
adde6300
AM
121static reloc_howto_type elf_avr_howto_table[] =
122{
123 HOWTO (R_AVR_NONE, /* type */
124 0, /* rightshift */
6346d5ca
AM
125 3, /* size (0 = byte, 1 = short, 2 = long) */
126 0, /* bitsize */
b34976b6 127 FALSE, /* pc_relative */
adde6300 128 0, /* bitpos */
6346d5ca 129 complain_overflow_dont, /* complain_on_overflow */
adde6300
AM
130 bfd_elf_generic_reloc, /* special_function */
131 "R_AVR_NONE", /* name */
b34976b6 132 FALSE, /* partial_inplace */
adde6300
AM
133 0, /* src_mask */
134 0, /* dst_mask */
b34976b6 135 FALSE), /* pcrel_offset */
adde6300
AM
136
137 HOWTO (R_AVR_32, /* type */
138 0, /* rightshift */
139 2, /* size (0 = byte, 1 = short, 2 = long) */
140 32, /* bitsize */
b34976b6 141 FALSE, /* pc_relative */
adde6300
AM
142 0, /* bitpos */
143 complain_overflow_bitfield, /* complain_on_overflow */
144 bfd_elf_generic_reloc, /* special_function */
145 "R_AVR_32", /* name */
b34976b6 146 FALSE, /* partial_inplace */
adde6300
AM
147 0xffffffff, /* src_mask */
148 0xffffffff, /* dst_mask */
b34976b6 149 FALSE), /* pcrel_offset */
adde6300
AM
150
151 /* A 7 bit PC relative relocation. */
152 HOWTO (R_AVR_7_PCREL, /* type */
153 1, /* rightshift */
154 1, /* size (0 = byte, 1 = short, 2 = long) */
155 7, /* bitsize */
b34976b6 156 TRUE, /* pc_relative */
adde6300
AM
157 3, /* bitpos */
158 complain_overflow_bitfield, /* complain_on_overflow */
159 bfd_elf_generic_reloc, /* special_function */
160 "R_AVR_7_PCREL", /* name */
b34976b6 161 FALSE, /* partial_inplace */
adde6300
AM
162 0xffff, /* src_mask */
163 0xffff, /* dst_mask */
b34976b6 164 TRUE), /* pcrel_offset */
adde6300
AM
165
166 /* A 13 bit PC relative relocation. */
167 HOWTO (R_AVR_13_PCREL, /* type */
168 1, /* rightshift */
169 1, /* size (0 = byte, 1 = short, 2 = long) */
170 13, /* bitsize */
b34976b6 171 TRUE, /* pc_relative */
adde6300
AM
172 0, /* bitpos */
173 complain_overflow_bitfield, /* complain_on_overflow */
174 bfd_elf_generic_reloc, /* special_function */
175 "R_AVR_13_PCREL", /* name */
b34976b6 176 FALSE, /* partial_inplace */
adde6300
AM
177 0xfff, /* src_mask */
178 0xfff, /* dst_mask */
b34976b6 179 TRUE), /* pcrel_offset */
adde6300
AM
180
181 /* A 16 bit absolute relocation. */
182 HOWTO (R_AVR_16, /* type */
183 0, /* rightshift */
184 1, /* size (0 = byte, 1 = short, 2 = long) */
185 16, /* bitsize */
b34976b6 186 FALSE, /* pc_relative */
adde6300
AM
187 0, /* bitpos */
188 complain_overflow_dont, /* complain_on_overflow */
189 bfd_elf_generic_reloc, /* special_function */
190 "R_AVR_16", /* name */
b34976b6 191 FALSE, /* partial_inplace */
adde6300
AM
192 0xffff, /* src_mask */
193 0xffff, /* dst_mask */
b34976b6 194 FALSE), /* pcrel_offset */
adde6300 195
28c9d252
NC
196 /* A 16 bit absolute relocation for command address
197 Will be changed when linker stubs are needed. */
adde6300
AM
198 HOWTO (R_AVR_16_PM, /* type */
199 1, /* rightshift */
200 1, /* size (0 = byte, 1 = short, 2 = long) */
201 16, /* bitsize */
b34976b6 202 FALSE, /* pc_relative */
adde6300
AM
203 0, /* bitpos */
204 complain_overflow_bitfield, /* complain_on_overflow */
205 bfd_elf_generic_reloc, /* special_function */
206 "R_AVR_16_PM", /* name */
b34976b6 207 FALSE, /* partial_inplace */
adde6300
AM
208 0xffff, /* src_mask */
209 0xffff, /* dst_mask */
b34976b6 210 FALSE), /* pcrel_offset */
adde6300
AM
211 /* A low 8 bit absolute relocation of 16 bit address.
212 For LDI command. */
213 HOWTO (R_AVR_LO8_LDI, /* type */
214 0, /* rightshift */
215 1, /* size (0 = byte, 1 = short, 2 = long) */
216 8, /* bitsize */
b34976b6 217 FALSE, /* pc_relative */
adde6300
AM
218 0, /* bitpos */
219 complain_overflow_dont, /* complain_on_overflow */
220 bfd_elf_generic_reloc, /* special_function */
221 "R_AVR_LO8_LDI", /* name */
b34976b6 222 FALSE, /* partial_inplace */
adde6300
AM
223 0xffff, /* src_mask */
224 0xffff, /* dst_mask */
b34976b6 225 FALSE), /* pcrel_offset */
adde6300
AM
226 /* A high 8 bit absolute relocation of 16 bit address.
227 For LDI command. */
228 HOWTO (R_AVR_HI8_LDI, /* type */
229 8, /* rightshift */
230 1, /* size (0 = byte, 1 = short, 2 = long) */
231 8, /* bitsize */
b34976b6 232 FALSE, /* pc_relative */
adde6300
AM
233 0, /* bitpos */
234 complain_overflow_dont, /* complain_on_overflow */
235 bfd_elf_generic_reloc, /* special_function */
236 "R_AVR_HI8_LDI", /* name */
b34976b6 237 FALSE, /* partial_inplace */
adde6300
AM
238 0xffff, /* src_mask */
239 0xffff, /* dst_mask */
b34976b6 240 FALSE), /* pcrel_offset */
adde6300 241 /* A high 6 bit absolute relocation of 22 bit address.
4cdc7696 242 For LDI command. As well second most significant 8 bit value of
df406460 243 a 32 bit link-time constant. */
adde6300
AM
244 HOWTO (R_AVR_HH8_LDI, /* type */
245 16, /* rightshift */
246 1, /* size (0 = byte, 1 = short, 2 = long) */
247 8, /* bitsize */
b34976b6 248 FALSE, /* pc_relative */
adde6300
AM
249 0, /* bitpos */
250 complain_overflow_dont, /* complain_on_overflow */
251 bfd_elf_generic_reloc, /* special_function */
252 "R_AVR_HH8_LDI", /* name */
b34976b6 253 FALSE, /* partial_inplace */
adde6300
AM
254 0xffff, /* src_mask */
255 0xffff, /* dst_mask */
b34976b6 256 FALSE), /* pcrel_offset */
adde6300
AM
257 /* A negative low 8 bit absolute relocation of 16 bit address.
258 For LDI command. */
259 HOWTO (R_AVR_LO8_LDI_NEG, /* type */
260 0, /* rightshift */
261 1, /* size (0 = byte, 1 = short, 2 = long) */
262 8, /* bitsize */
b34976b6 263 FALSE, /* pc_relative */
adde6300
AM
264 0, /* bitpos */
265 complain_overflow_dont, /* complain_on_overflow */
266 bfd_elf_generic_reloc, /* special_function */
267 "R_AVR_LO8_LDI_NEG", /* name */
b34976b6 268 FALSE, /* partial_inplace */
adde6300
AM
269 0xffff, /* src_mask */
270 0xffff, /* dst_mask */
b34976b6 271 FALSE), /* pcrel_offset */
df406460 272 /* A negative high 8 bit absolute relocation of 16 bit address.
adde6300
AM
273 For LDI command. */
274 HOWTO (R_AVR_HI8_LDI_NEG, /* type */
275 8, /* rightshift */
276 1, /* size (0 = byte, 1 = short, 2 = long) */
277 8, /* bitsize */
b34976b6 278 FALSE, /* pc_relative */
adde6300
AM
279 0, /* bitpos */
280 complain_overflow_dont, /* complain_on_overflow */
281 bfd_elf_generic_reloc, /* special_function */
282 "R_AVR_HI8_LDI_NEG", /* name */
b34976b6 283 FALSE, /* partial_inplace */
adde6300
AM
284 0xffff, /* src_mask */
285 0xffff, /* dst_mask */
b34976b6 286 FALSE), /* pcrel_offset */
df406460 287 /* A negative high 6 bit absolute relocation of 22 bit address.
adde6300
AM
288 For LDI command. */
289 HOWTO (R_AVR_HH8_LDI_NEG, /* type */
290 16, /* rightshift */
291 1, /* size (0 = byte, 1 = short, 2 = long) */
292 8, /* bitsize */
b34976b6 293 FALSE, /* pc_relative */
adde6300
AM
294 0, /* bitpos */
295 complain_overflow_dont, /* complain_on_overflow */
296 bfd_elf_generic_reloc, /* special_function */
297 "R_AVR_HH8_LDI_NEG", /* name */
b34976b6 298 FALSE, /* partial_inplace */
adde6300
AM
299 0xffff, /* src_mask */
300 0xffff, /* dst_mask */
b34976b6 301 FALSE), /* pcrel_offset */
adde6300 302 /* A low 8 bit absolute relocation of 24 bit program memory address.
28c9d252 303 For LDI command. Will not be changed when linker stubs are needed. */
adde6300
AM
304 HOWTO (R_AVR_LO8_LDI_PM, /* type */
305 1, /* rightshift */
306 1, /* size (0 = byte, 1 = short, 2 = long) */
307 8, /* bitsize */
b34976b6 308 FALSE, /* pc_relative */
adde6300
AM
309 0, /* bitpos */
310 complain_overflow_dont, /* complain_on_overflow */
311 bfd_elf_generic_reloc, /* special_function */
312 "R_AVR_LO8_LDI_PM", /* name */
b34976b6 313 FALSE, /* partial_inplace */
adde6300
AM
314 0xffff, /* src_mask */
315 0xffff, /* dst_mask */
b34976b6 316 FALSE), /* pcrel_offset */
28c9d252
NC
317 /* A low 8 bit absolute relocation of 24 bit program memory address.
318 For LDI command. Will not be changed when linker stubs are needed. */
adde6300
AM
319 HOWTO (R_AVR_HI8_LDI_PM, /* type */
320 9, /* rightshift */
321 1, /* size (0 = byte, 1 = short, 2 = long) */
322 8, /* bitsize */
b34976b6 323 FALSE, /* pc_relative */
adde6300
AM
324 0, /* bitpos */
325 complain_overflow_dont, /* complain_on_overflow */
326 bfd_elf_generic_reloc, /* special_function */
327 "R_AVR_HI8_LDI_PM", /* name */
b34976b6 328 FALSE, /* partial_inplace */
adde6300
AM
329 0xffff, /* src_mask */
330 0xffff, /* dst_mask */
b34976b6 331 FALSE), /* pcrel_offset */
28c9d252
NC
332 /* A low 8 bit absolute relocation of 24 bit program memory address.
333 For LDI command. Will not be changed when linker stubs are needed. */
adde6300
AM
334 HOWTO (R_AVR_HH8_LDI_PM, /* type */
335 17, /* rightshift */
336 1, /* size (0 = byte, 1 = short, 2 = long) */
337 8, /* bitsize */
b34976b6 338 FALSE, /* pc_relative */
adde6300
AM
339 0, /* bitpos */
340 complain_overflow_dont, /* complain_on_overflow */
341 bfd_elf_generic_reloc, /* special_function */
342 "R_AVR_HH8_LDI_PM", /* name */
b34976b6 343 FALSE, /* partial_inplace */
adde6300
AM
344 0xffff, /* src_mask */
345 0xffff, /* dst_mask */
b34976b6 346 FALSE), /* pcrel_offset */
28c9d252
NC
347 /* A low 8 bit absolute relocation of 24 bit program memory address.
348 For LDI command. Will not be changed when linker stubs are needed. */
adde6300
AM
349 HOWTO (R_AVR_LO8_LDI_PM_NEG, /* type */
350 1, /* rightshift */
351 1, /* size (0 = byte, 1 = short, 2 = long) */
352 8, /* bitsize */
b34976b6 353 FALSE, /* pc_relative */
adde6300
AM
354 0, /* bitpos */
355 complain_overflow_dont, /* complain_on_overflow */
356 bfd_elf_generic_reloc, /* special_function */
357 "R_AVR_LO8_LDI_PM_NEG", /* name */
b34976b6 358 FALSE, /* partial_inplace */
adde6300
AM
359 0xffff, /* src_mask */
360 0xffff, /* dst_mask */
b34976b6 361 FALSE), /* pcrel_offset */
28c9d252
NC
362 /* A low 8 bit absolute relocation of 24 bit program memory address.
363 For LDI command. Will not be changed when linker stubs are needed. */
adde6300
AM
364 HOWTO (R_AVR_HI8_LDI_PM_NEG, /* type */
365 9, /* rightshift */
366 1, /* size (0 = byte, 1 = short, 2 = long) */
367 8, /* bitsize */
b34976b6 368 FALSE, /* pc_relative */
adde6300
AM
369 0, /* bitpos */
370 complain_overflow_dont, /* complain_on_overflow */
371 bfd_elf_generic_reloc, /* special_function */
372 "R_AVR_HI8_LDI_PM_NEG", /* name */
b34976b6 373 FALSE, /* partial_inplace */
adde6300
AM
374 0xffff, /* src_mask */
375 0xffff, /* dst_mask */
b34976b6 376 FALSE), /* pcrel_offset */
28c9d252
NC
377 /* A low 8 bit absolute relocation of 24 bit program memory address.
378 For LDI command. Will not be changed when linker stubs are needed. */
adde6300
AM
379 HOWTO (R_AVR_HH8_LDI_PM_NEG, /* type */
380 17, /* rightshift */
381 1, /* size (0 = byte, 1 = short, 2 = long) */
382 8, /* bitsize */
b34976b6 383 FALSE, /* pc_relative */
adde6300
AM
384 0, /* bitpos */
385 complain_overflow_dont, /* complain_on_overflow */
386 bfd_elf_generic_reloc, /* special_function */
387 "R_AVR_HH8_LDI_PM_NEG", /* name */
b34976b6 388 FALSE, /* partial_inplace */
adde6300
AM
389 0xffff, /* src_mask */
390 0xffff, /* dst_mask */
b34976b6 391 FALSE), /* pcrel_offset */
adde6300
AM
392 /* Relocation for CALL command in ATmega. */
393 HOWTO (R_AVR_CALL, /* type */
394 1, /* rightshift */
395 2, /* size (0 = byte, 1 = short, 2 = long) */
396 23, /* bitsize */
b34976b6 397 FALSE, /* pc_relative */
adde6300 398 0, /* bitpos */
750bce0e 399 complain_overflow_dont,/* complain_on_overflow */
adde6300
AM
400 bfd_elf_generic_reloc, /* special_function */
401 "R_AVR_CALL", /* name */
b34976b6 402 FALSE, /* partial_inplace */
adde6300
AM
403 0xffffffff, /* src_mask */
404 0xffffffff, /* dst_mask */
750bce0e
NC
405 FALSE), /* pcrel_offset */
406 /* A 16 bit absolute relocation of 16 bit address.
407 For LDI command. */
408 HOWTO (R_AVR_LDI, /* type */
409 0, /* rightshift */
410 1, /* size (0 = byte, 1 = short, 2 = long) */
411 16, /* bitsize */
412 FALSE, /* pc_relative */
413 0, /* bitpos */
414 complain_overflow_dont,/* complain_on_overflow */
415 bfd_elf_generic_reloc, /* special_function */
416 "R_AVR_LDI", /* name */
417 FALSE, /* partial_inplace */
418 0xffff, /* src_mask */
419 0xffff, /* dst_mask */
420 FALSE), /* pcrel_offset */
421 /* A 6 bit absolute relocation of 6 bit offset.
422 For ldd/sdd command. */
423 HOWTO (R_AVR_6, /* type */
424 0, /* rightshift */
425 0, /* size (0 = byte, 1 = short, 2 = long) */
426 6, /* bitsize */
427 FALSE, /* pc_relative */
428 0, /* bitpos */
429 complain_overflow_dont,/* complain_on_overflow */
430 bfd_elf_generic_reloc, /* special_function */
431 "R_AVR_6", /* name */
432 FALSE, /* partial_inplace */
433 0xffff, /* src_mask */
434 0xffff, /* dst_mask */
435 FALSE), /* pcrel_offset */
436 /* A 6 bit absolute relocation of 6 bit offset.
437 For sbiw/adiw command. */
438 HOWTO (R_AVR_6_ADIW, /* type */
439 0, /* rightshift */
440 0, /* size (0 = byte, 1 = short, 2 = long) */
441 6, /* bitsize */
442 FALSE, /* pc_relative */
443 0, /* bitpos */
444 complain_overflow_dont,/* complain_on_overflow */
445 bfd_elf_generic_reloc, /* special_function */
446 "R_AVR_6_ADIW", /* name */
447 FALSE, /* partial_inplace */
448 0xffff, /* src_mask */
449 0xffff, /* dst_mask */
df406460
NC
450 FALSE), /* pcrel_offset */
451 /* Most significant 8 bit value of a 32 bit link-time constant. */
452 HOWTO (R_AVR_MS8_LDI, /* type */
453 24, /* rightshift */
454 1, /* size (0 = byte, 1 = short, 2 = long) */
455 8, /* bitsize */
456 FALSE, /* pc_relative */
457 0, /* bitpos */
458 complain_overflow_dont, /* complain_on_overflow */
459 bfd_elf_generic_reloc, /* special_function */
460 "R_AVR_MS8_LDI", /* name */
461 FALSE, /* partial_inplace */
462 0xffff, /* src_mask */
463 0xffff, /* dst_mask */
464 FALSE), /* pcrel_offset */
465 /* Negative most significant 8 bit value of a 32 bit link-time constant. */
466 HOWTO (R_AVR_MS8_LDI_NEG, /* type */
467 24, /* rightshift */
468 1, /* size (0 = byte, 1 = short, 2 = long) */
469 8, /* bitsize */
470 FALSE, /* pc_relative */
471 0, /* bitpos */
472 complain_overflow_dont, /* complain_on_overflow */
473 bfd_elf_generic_reloc, /* special_function */
474 "R_AVR_MS8_LDI_NEG", /* name */
475 FALSE, /* partial_inplace */
476 0xffff, /* src_mask */
477 0xffff, /* dst_mask */
28c9d252
NC
478 FALSE), /* pcrel_offset */
479 /* A low 8 bit absolute relocation of 24 bit program memory address.
17e57237 480 For LDI command. Will be changed when linker stubs are needed. */
28c9d252
NC
481 HOWTO (R_AVR_LO8_LDI_GS, /* type */
482 1, /* rightshift */
483 1, /* size (0 = byte, 1 = short, 2 = long) */
484 8, /* bitsize */
485 FALSE, /* pc_relative */
486 0, /* bitpos */
487 complain_overflow_dont, /* complain_on_overflow */
488 bfd_elf_generic_reloc, /* special_function */
489 "R_AVR_LO8_LDI_GS", /* name */
490 FALSE, /* partial_inplace */
491 0xffff, /* src_mask */
492 0xffff, /* dst_mask */
493 FALSE), /* pcrel_offset */
494 /* A low 8 bit absolute relocation of 24 bit program memory address.
17e57237 495 For LDI command. Will be changed when linker stubs are needed. */
28c9d252
NC
496 HOWTO (R_AVR_HI8_LDI_GS, /* type */
497 9, /* rightshift */
498 1, /* size (0 = byte, 1 = short, 2 = long) */
499 8, /* bitsize */
500 FALSE, /* pc_relative */
501 0, /* bitpos */
502 complain_overflow_dont, /* complain_on_overflow */
503 bfd_elf_generic_reloc, /* special_function */
504 "R_AVR_HI8_LDI_GS", /* name */
505 FALSE, /* partial_inplace */
506 0xffff, /* src_mask */
507 0xffff, /* dst_mask */
17e57237
NC
508 FALSE), /* pcrel_offset */
509 /* 8 bit offset. */
510 HOWTO (R_AVR_8, /* type */
511 0, /* rightshift */
512 0, /* size (0 = byte, 1 = short, 2 = long) */
513 8, /* bitsize */
514 FALSE, /* pc_relative */
515 0, /* bitpos */
516 complain_overflow_bitfield,/* complain_on_overflow */
517 bfd_elf_generic_reloc, /* special_function */
518 "R_AVR_8", /* name */
519 FALSE, /* partial_inplace */
520 0x000000ff, /* src_mask */
521 0x000000ff, /* dst_mask */
522 FALSE), /* pcrel_offset */
99700d6f
NC
523 /* lo8-part to use in .byte lo8(sym). */
524 HOWTO (R_AVR_8_LO8, /* type */
525 0, /* rightshift */
526 0, /* size (0 = byte, 1 = short, 2 = long) */
527 8, /* bitsize */
528 FALSE, /* pc_relative */
529 0, /* bitpos */
530 complain_overflow_dont,/* complain_on_overflow */
531 bfd_elf_generic_reloc, /* special_function */
532 "R_AVR_8_LO8", /* name */
533 FALSE, /* partial_inplace */
534 0xffffff, /* src_mask */
535 0xffffff, /* dst_mask */
536 FALSE), /* pcrel_offset */
537 /* hi8-part to use in .byte hi8(sym). */
538 HOWTO (R_AVR_8_HI8, /* type */
539 8, /* rightshift */
540 0, /* size (0 = byte, 1 = short, 2 = long) */
541 8, /* bitsize */
542 FALSE, /* pc_relative */
543 0, /* bitpos */
544 complain_overflow_dont,/* complain_on_overflow */
545 bfd_elf_generic_reloc, /* special_function */
546 "R_AVR_8_HI8", /* name */
547 FALSE, /* partial_inplace */
548 0xffffff, /* src_mask */
549 0xffffff, /* dst_mask */
550 FALSE), /* pcrel_offset */
40551fb8
NC
551 /* hlo8-part to use in .byte hlo8(sym). */
552 HOWTO (R_AVR_8_HLO8, /* type */
99700d6f
NC
553 16, /* rightshift */
554 0, /* size (0 = byte, 1 = short, 2 = long) */
555 8, /* bitsize */
556 FALSE, /* pc_relative */
557 0, /* bitpos */
558 complain_overflow_dont,/* complain_on_overflow */
559 bfd_elf_generic_reloc, /* special_function */
40551fb8 560 "R_AVR_8_HLO8", /* name */
99700d6f
NC
561 FALSE, /* partial_inplace */
562 0xffffff, /* src_mask */
563 0xffffff, /* dst_mask */
564 FALSE), /* pcrel_offset */
f36e8886
BS
565 HOWTO (R_AVR_DIFF8, /* type */
566 0, /* rightshift */
567 0, /* size (0 = byte, 1 = short, 2 = long) */
568 8, /* bitsize */
569 FALSE, /* pc_relative */
570 0, /* bitpos */
571 complain_overflow_bitfield, /* complain_on_overflow */
572 bfd_elf_avr_diff_reloc, /* special_function */
573 "R_AVR_DIFF8", /* name */
574 FALSE, /* partial_inplace */
575 0, /* src_mask */
576 0xff, /* dst_mask */
577 FALSE), /* pcrel_offset */
578 HOWTO (R_AVR_DIFF16, /* type */
579 0, /* rightshift */
580 1, /* size (0 = byte, 1 = short, 2 = long) */
581 16, /* bitsize */
582 FALSE, /* pc_relative */
583 0, /* bitpos */
584 complain_overflow_bitfield, /* complain_on_overflow */
585 bfd_elf_avr_diff_reloc,/* special_function */
586 "R_AVR_DIFF16", /* name */
587 FALSE, /* partial_inplace */
588 0, /* src_mask */
589 0xffff, /* dst_mask */
590 FALSE), /* pcrel_offset */
591 HOWTO (R_AVR_DIFF32, /* type */
592 0, /* rightshift */
593 2, /* size (0 = byte, 1 = short, 2 = long) */
594 32, /* bitsize */
595 FALSE, /* pc_relative */
596 0, /* bitpos */
597 complain_overflow_bitfield, /* complain_on_overflow */
598 bfd_elf_avr_diff_reloc,/* special_function */
599 "R_AVR_DIFF32", /* name */
600 FALSE, /* partial_inplace */
601 0, /* src_mask */
602 0xffffffff, /* dst_mask */
603 FALSE), /* pcrel_offset */
604 /* 7 bit immediate for LDS/STS in Tiny core. */
605 HOWTO (R_AVR_LDS_STS_16, /* type */
606 0, /* rightshift */
607 1, /* size (0 = byte, 1 = short, 2 = long) */
608 7, /* bitsize */
609 FALSE, /* pc_relative */
610 0, /* bitpos */
611 complain_overflow_dont,/* complain_on_overflow */
612 bfd_elf_generic_reloc, /* special_function */
613 "R_AVR_LDS_STS_16", /* name */
614 FALSE, /* partial_inplace */
615 0xffff, /* src_mask */
616 0xffff, /* dst_mask */
75f58085
BS
617 FALSE), /* pcrel_offset */
618
619 HOWTO (R_AVR_PORT6, /* type */
620 0, /* rightshift */
621 0, /* size (0 = byte, 1 = short, 2 = long) */
622 6, /* bitsize */
623 FALSE, /* pc_relative */
624 0, /* bitpos */
625 complain_overflow_dont,/* complain_on_overflow */
626 bfd_elf_generic_reloc, /* special_function */
627 "R_AVR_PORT6", /* name */
628 FALSE, /* partial_inplace */
629 0xffffff, /* src_mask */
630 0xffffff, /* dst_mask */
631 FALSE), /* pcrel_offset */
632 HOWTO (R_AVR_PORT5, /* type */
633 0, /* rightshift */
634 0, /* size (0 = byte, 1 = short, 2 = long) */
635 5, /* bitsize */
636 FALSE, /* pc_relative */
637 0, /* bitpos */
638 complain_overflow_dont,/* complain_on_overflow */
639 bfd_elf_generic_reloc, /* special_function */
640 "R_AVR_PORT5", /* name */
641 FALSE, /* partial_inplace */
642 0xffffff, /* src_mask */
643 0xffffff, /* dst_mask */
328e7bfd
DC
644 FALSE), /* pcrel_offset */
645
646 /* A 32 bit PC relative relocation. */
647 HOWTO (R_AVR_32_PCREL, /* type */
648 0, /* rightshift */
649 2, /* size (0 = byte, 1 = short, 2 = long) */
650 32, /* bitsize */
651 TRUE, /* pc_relative */
652 0, /* bitpos */
653 complain_overflow_bitfield, /* complain_on_overflow */
654 bfd_elf_generic_reloc, /* special_function */
655 "R_AVR_32_PCREL", /* name */
656 FALSE, /* partial_inplace */
657 0xffffffff, /* src_mask */
658 0xffffffff, /* dst_mask */
659 TRUE), /* pcrel_offset */
adde6300
AM
660};
661
662/* Map BFD reloc types to AVR ELF reloc types. */
663
664struct avr_reloc_map
665{
666 bfd_reloc_code_real_type bfd_reloc_val;
667 unsigned int elf_reloc_val;
668};
669
28c9d252 670static const struct avr_reloc_map avr_reloc_map[] =
adde6300
AM
671{
672 { BFD_RELOC_NONE, R_AVR_NONE },
673 { BFD_RELOC_32, R_AVR_32 },
674 { BFD_RELOC_AVR_7_PCREL, R_AVR_7_PCREL },
675 { BFD_RELOC_AVR_13_PCREL, R_AVR_13_PCREL },
676 { BFD_RELOC_16, R_AVR_16 },
677 { BFD_RELOC_AVR_16_PM, R_AVR_16_PM },
678 { BFD_RELOC_AVR_LO8_LDI, R_AVR_LO8_LDI},
679 { BFD_RELOC_AVR_HI8_LDI, R_AVR_HI8_LDI },
680 { BFD_RELOC_AVR_HH8_LDI, R_AVR_HH8_LDI },
df406460 681 { BFD_RELOC_AVR_MS8_LDI, R_AVR_MS8_LDI },
adde6300
AM
682 { BFD_RELOC_AVR_LO8_LDI_NEG, R_AVR_LO8_LDI_NEG },
683 { BFD_RELOC_AVR_HI8_LDI_NEG, R_AVR_HI8_LDI_NEG },
684 { BFD_RELOC_AVR_HH8_LDI_NEG, R_AVR_HH8_LDI_NEG },
df406460 685 { BFD_RELOC_AVR_MS8_LDI_NEG, R_AVR_MS8_LDI_NEG },
adde6300 686 { BFD_RELOC_AVR_LO8_LDI_PM, R_AVR_LO8_LDI_PM },
28c9d252 687 { BFD_RELOC_AVR_LO8_LDI_GS, R_AVR_LO8_LDI_GS },
adde6300 688 { BFD_RELOC_AVR_HI8_LDI_PM, R_AVR_HI8_LDI_PM },
28c9d252 689 { BFD_RELOC_AVR_HI8_LDI_GS, R_AVR_HI8_LDI_GS },
adde6300
AM
690 { BFD_RELOC_AVR_HH8_LDI_PM, R_AVR_HH8_LDI_PM },
691 { BFD_RELOC_AVR_LO8_LDI_PM_NEG, R_AVR_LO8_LDI_PM_NEG },
692 { BFD_RELOC_AVR_HI8_LDI_PM_NEG, R_AVR_HI8_LDI_PM_NEG },
693 { BFD_RELOC_AVR_HH8_LDI_PM_NEG, R_AVR_HH8_LDI_PM_NEG },
750bce0e
NC
694 { BFD_RELOC_AVR_CALL, R_AVR_CALL },
695 { BFD_RELOC_AVR_LDI, R_AVR_LDI },
696 { BFD_RELOC_AVR_6, R_AVR_6 },
17e57237 697 { BFD_RELOC_AVR_6_ADIW, R_AVR_6_ADIW },
99700d6f
NC
698 { BFD_RELOC_8, R_AVR_8 },
699 { BFD_RELOC_AVR_8_LO, R_AVR_8_LO8 },
700 { BFD_RELOC_AVR_8_HI, R_AVR_8_HI8 },
e4ef1b6c
DC
701 { BFD_RELOC_AVR_8_HLO, R_AVR_8_HLO8 },
702 { BFD_RELOC_AVR_DIFF8, R_AVR_DIFF8 },
703 { BFD_RELOC_AVR_DIFF16, R_AVR_DIFF16 },
f36e8886 704 { BFD_RELOC_AVR_DIFF32, R_AVR_DIFF32 },
75f58085
BS
705 { BFD_RELOC_AVR_LDS_STS_16, R_AVR_LDS_STS_16},
706 { BFD_RELOC_AVR_PORT6, R_AVR_PORT6},
328e7bfd
DC
707 { BFD_RELOC_AVR_PORT5, R_AVR_PORT5},
708 { BFD_RELOC_32_PCREL, R_AVR_32_PCREL}
adde6300
AM
709};
710
df406460 711/* Meant to be filled one day with the wrap around address for the
4cdc7696 712 specific device. I.e. should get the value 0x4000 for 16k devices,
df406460 713 0x8000 for 32k devices and so on.
4cdc7696 714
df406460 715 We initialize it here with a value of 0x1000000 resulting in
4cdc7696
NC
716 that we will never suggest a wrap-around jump during relaxation.
717 The logic of the source code later on assumes that in
df406460 718 avr_pc_wrap_around one single bit is set. */
28c9d252
NC
719static bfd_vma avr_pc_wrap_around = 0x10000000;
720
721/* If this variable holds a value different from zero, the linker relaxation
722 machine will try to optimize call/ret sequences by a single jump
723 instruction. This option could be switched off by a linker switch. */
724static int avr_replace_call_ret_sequences = 1;
725\f
bac13f5a
AB
726
727/* Per-section relaxation related information for avr. */
728
729struct avr_relax_info
730{
731 /* Track the avr property records that apply to this section. */
732
733 struct
734 {
735 /* Number of records in the list. */
736 unsigned count;
737
738 /* How many records worth of space have we allocated. */
739 unsigned allocated;
740
741 /* The records, only COUNT records are initialised. */
742 struct avr_property_record *items;
743 } records;
744};
745
746/* Per section data, specialised for avr. */
747
748struct elf_avr_section_data
749{
750 /* The standard data must appear first. */
751 struct bfd_elf_section_data elf;
752
753 /* Relaxation related information. */
754 struct avr_relax_info relax_info;
755};
756
757/* Possibly initialise avr specific data for new section SEC from ABFD. */
758
759static bfd_boolean
760elf_avr_new_section_hook (bfd *abfd, asection *sec)
761{
762 if (!sec->used_by_bfd)
763 {
764 struct elf_avr_section_data *sdata;
765 bfd_size_type amt = sizeof (*sdata);
766
767 sdata = bfd_zalloc (abfd, amt);
768 if (sdata == NULL)
769 return FALSE;
770 sec->used_by_bfd = sdata;
771 }
772
773 return _bfd_elf_new_section_hook (abfd, sec);
774}
775
776/* Return a pointer to the relaxation information for SEC. */
777
778static struct avr_relax_info *
779get_avr_relax_info (asection *sec)
780{
781 struct elf_avr_section_data *section_data;
782
783 /* No info available if no section or if it is an output section. */
784 if (!sec || sec == sec->output_section)
785 return NULL;
786
787 section_data = (struct elf_avr_section_data *) elf_section_data (sec);
788 return &section_data->relax_info;
789}
790
791/* Initialise the per section relaxation information for SEC. */
792
793static void
794init_avr_relax_info (asection *sec)
795{
796 struct avr_relax_info *relax_info = get_avr_relax_info (sec);
797
798 relax_info->records.count = 0;
799 relax_info->records.allocated = 0;
800 relax_info->records.items = NULL;
801}
802
28c9d252
NC
803/* Initialize an entry in the stub hash table. */
804
805static struct bfd_hash_entry *
806stub_hash_newfunc (struct bfd_hash_entry *entry,
807 struct bfd_hash_table *table,
808 const char *string)
809{
810 /* Allocate the structure if it has not already been allocated by a
811 subclass. */
812 if (entry == NULL)
813 {
814 entry = bfd_hash_allocate (table,
815 sizeof (struct elf32_avr_stub_hash_entry));
816 if (entry == NULL)
817 return entry;
818 }
819
820 /* Call the allocation method of the superclass. */
821 entry = bfd_hash_newfunc (entry, table, string);
822 if (entry != NULL)
823 {
824 struct elf32_avr_stub_hash_entry *hsh;
825
826 /* Initialize the local fields. */
827 hsh = avr_stub_hash_entry (entry);
828 hsh->stub_offset = 0;
829 hsh->target_value = 0;
830 }
831
832 return entry;
833}
834
64ee10b6
NC
835/* This function is just a straight passthrough to the real
836 function in linker.c. Its prupose is so that its address
837 can be compared inside the avr_link_hash_table macro. */
838
839static struct bfd_hash_entry *
840elf32_avr_link_hash_newfunc (struct bfd_hash_entry * entry,
841 struct bfd_hash_table * table,
842 const char * string)
843{
844 return _bfd_elf_link_hash_newfunc (entry, table, string);
845}
846
68faa637
AM
847/* Free the derived linker hash table. */
848
849static void
d495ab0d 850elf32_avr_link_hash_table_free (bfd *obfd)
68faa637
AM
851{
852 struct elf32_avr_link_hash_table *htab
d495ab0d 853 = (struct elf32_avr_link_hash_table *) obfd->link.hash;
68faa637
AM
854
855 /* Free the address mapping table. */
856 if (htab->amt_stub_offsets != NULL)
857 free (htab->amt_stub_offsets);
858 if (htab->amt_destination_addr != NULL)
859 free (htab->amt_destination_addr);
860
861 bfd_hash_table_free (&htab->bstab);
d495ab0d 862 _bfd_elf_link_hash_table_free (obfd);
68faa637
AM
863}
864
28c9d252
NC
865/* Create the derived linker hash table. The AVR ELF port uses the derived
866 hash table to keep information specific to the AVR ELF linker (without
867 using static variables). */
868
869static struct bfd_link_hash_table *
870elf32_avr_link_hash_table_create (bfd *abfd)
871{
872 struct elf32_avr_link_hash_table *htab;
873 bfd_size_type amt = sizeof (*htab);
874
7bf52ea2 875 htab = bfd_zmalloc (amt);
28c9d252
NC
876 if (htab == NULL)
877 return NULL;
878
879 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd,
64ee10b6 880 elf32_avr_link_hash_newfunc,
4dfe6ac6
NC
881 sizeof (struct elf_link_hash_entry),
882 AVR_ELF_DATA))
28c9d252
NC
883 {
884 free (htab);
885 return NULL;
886 }
887
888 /* Init the stub hash table too. */
889 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
890 sizeof (struct elf32_avr_stub_hash_entry)))
d495ab0d
AM
891 {
892 _bfd_elf_link_hash_table_free (abfd);
893 return NULL;
894 }
895 htab->etab.root.hash_table_free = elf32_avr_link_hash_table_free;
4cdc7696 896
28c9d252
NC
897 return &htab->etab.root;
898}
899
df406460 900/* Calculates the effective distance of a pc relative jump/call. */
73160847 901
df406460
NC
902static int
903avr_relative_distance_considering_wrap_around (unsigned int distance)
4cdc7696 904{
df406460 905 unsigned int wrap_around_mask = avr_pc_wrap_around - 1;
df406460
NC
906 int dist_with_wrap_around = distance & wrap_around_mask;
907
4cdc7696 908 if (dist_with_wrap_around > ((int) (avr_pc_wrap_around >> 1)))
df406460
NC
909 dist_with_wrap_around -= avr_pc_wrap_around;
910
911 return dist_with_wrap_around;
912}
913
914
adde6300 915static reloc_howto_type *
4cdc7696
NC
916bfd_elf32_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
917 bfd_reloc_code_real_type code)
adde6300
AM
918{
919 unsigned int i;
920
921 for (i = 0;
922 i < sizeof (avr_reloc_map) / sizeof (struct avr_reloc_map);
923 i++)
73160847
NC
924 if (avr_reloc_map[i].bfd_reloc_val == code)
925 return &elf_avr_howto_table[avr_reloc_map[i].elf_reloc_val];
adde6300
AM
926
927 return NULL;
928}
929
157090f7
AM
930static reloc_howto_type *
931bfd_elf32_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
932 const char *r_name)
933{
934 unsigned int i;
935
936 for (i = 0;
937 i < sizeof (elf_avr_howto_table) / sizeof (elf_avr_howto_table[0]);
938 i++)
939 if (elf_avr_howto_table[i].name != NULL
940 && strcasecmp (elf_avr_howto_table[i].name, r_name) == 0)
941 return &elf_avr_howto_table[i];
942
943 return NULL;
944}
945
adde6300
AM
946/* Set the howto pointer for an AVR ELF reloc. */
947
948static void
4cdc7696
NC
949avr_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
950 arelent *cache_ptr,
951 Elf_Internal_Rela *dst)
adde6300
AM
952{
953 unsigned int r_type;
954
955 r_type = ELF32_R_TYPE (dst->r_info);
5860e3f8
NC
956 if (r_type >= (unsigned int) R_AVR_max)
957 {
64d29018 958 _bfd_error_handler (_("%B: invalid AVR reloc number: %d"), abfd, r_type);
5860e3f8
NC
959 r_type = 0;
960 }
adde6300
AM
961 cache_ptr->howto = &elf_avr_howto_table[r_type];
962}
963
28c9d252
NC
964static bfd_boolean
965avr_stub_is_required_for_16_bit_reloc (bfd_vma relocation)
966{
967 return (relocation >= 0x020000);
968}
969
970/* Returns the address of the corresponding stub if there is one.
971 Returns otherwise an address above 0x020000. This function
972 could also be used, if there is no knowledge on the section where
973 the destination is found. */
974
975static bfd_vma
976avr_get_stub_addr (bfd_vma srel,
977 struct elf32_avr_link_hash_table *htab)
978{
91d6fa6a 979 unsigned int sindex;
28c9d252
NC
980 bfd_vma stub_sec_addr =
981 (htab->stub_sec->output_section->vma +
982 htab->stub_sec->output_offset);
983
91d6fa6a
NC
984 for (sindex = 0; sindex < htab->amt_max_entry_cnt; sindex ++)
985 if (htab->amt_destination_addr[sindex] == srel)
986 return htab->amt_stub_offsets[sindex] + stub_sec_addr;
28c9d252
NC
987
988 /* Return an address that could not be reached by 16 bit relocs. */
989 return 0x020000;
990}
991
e4ef1b6c
DC
992/* Perform a diff relocation. Nothing to do, as the difference value is already
993 written into the section's contents. */
994
995static bfd_reloc_status_type
996bfd_elf_avr_diff_reloc (bfd *abfd ATTRIBUTE_UNUSED,
997 arelent *reloc_entry ATTRIBUTE_UNUSED,
998 asymbol *symbol ATTRIBUTE_UNUSED,
999 void *data ATTRIBUTE_UNUSED,
1000 asection *input_section ATTRIBUTE_UNUSED,
1001 bfd *output_bfd ATTRIBUTE_UNUSED,
1002 char **error_message ATTRIBUTE_UNUSED)
1003{
1004 return bfd_reloc_ok;
1005}
1006
1007
adde6300
AM
1008/* Perform a single relocation. By default we use the standard BFD
1009 routines, but a few relocs, we have to do them ourselves. */
1010
1011static bfd_reloc_status_type
28c9d252
NC
1012avr_final_link_relocate (reloc_howto_type * howto,
1013 bfd * input_bfd,
1014 asection * input_section,
1015 bfd_byte * contents,
1016 Elf_Internal_Rela * rel,
1017 bfd_vma relocation,
1018 struct elf32_avr_link_hash_table * htab)
adde6300
AM
1019{
1020 bfd_reloc_status_type r = bfd_reloc_ok;
1021 bfd_vma x;
1022 bfd_signed_vma srel;
28c9d252
NC
1023 bfd_signed_vma reloc_addr;
1024 bfd_boolean use_stubs = FALSE;
1025 /* Usually is 0, unless we are generating code for a bootloader. */
1026 bfd_signed_vma base_addr = htab->vector_base;
1027
1028 /* Absolute addr of the reloc in the final excecutable. */
1029 reloc_addr = rel->r_offset + input_section->output_section->vma
1030 + input_section->output_offset;
adde6300
AM
1031
1032 switch (howto->type)
1033 {
1034 case R_AVR_7_PCREL:
1035 contents += rel->r_offset;
1036 srel = (bfd_signed_vma) relocation;
1037 srel += rel->r_addend;
1038 srel -= rel->r_offset;
a7c10850 1039 srel -= 2; /* Branch instructions add 2 to the PC... */
adde6300
AM
1040 srel -= (input_section->output_section->vma +
1041 input_section->output_offset);
1042
1043 if (srel & 1)
1044 return bfd_reloc_outofrange;
1045 if (srel > ((1 << 7) - 1) || (srel < - (1 << 7)))
1046 return bfd_reloc_overflow;
1047 x = bfd_get_16 (input_bfd, contents);
1048 x = (x & 0xfc07) | (((srel >> 1) << 3) & 0x3f8);
1049 bfd_put_16 (input_bfd, x, contents);
1050 break;
1051
1052 case R_AVR_13_PCREL:
1053 contents += rel->r_offset;
1054 srel = (bfd_signed_vma) relocation;
1055 srel += rel->r_addend;
1056 srel -= rel->r_offset;
a7c10850 1057 srel -= 2; /* Branch instructions add 2 to the PC... */
adde6300
AM
1058 srel -= (input_section->output_section->vma +
1059 input_section->output_offset);
1060
1061 if (srel & 1)
1062 return bfd_reloc_outofrange;
1063
df406460
NC
1064 srel = avr_relative_distance_considering_wrap_around (srel);
1065
adde6300
AM
1066 /* AVR addresses commands as words. */
1067 srel >>= 1;
1068
1069 /* Check for overflow. */
1070 if (srel < -2048 || srel > 2047)
1071 {
df406460
NC
1072 /* Relative distance is too large. */
1073
654c3c9f 1074 /* Always apply WRAPAROUND for avr2, avr25, and avr4. */
65aa24b6 1075 switch (bfd_get_mach (input_bfd))
adde6300 1076 {
65aa24b6 1077 case bfd_mach_avr2:
654c3c9f 1078 case bfd_mach_avr25:
65aa24b6
NC
1079 case bfd_mach_avr4:
1080 break;
1081
1082 default:
1083 return bfd_reloc_overflow;
adde6300 1084 }
adde6300
AM
1085 }
1086
1087 x = bfd_get_16 (input_bfd, contents);
1088 x = (x & 0xf000) | (srel & 0xfff);
1089 bfd_put_16 (input_bfd, x, contents);
1090 break;
1091
1092 case R_AVR_LO8_LDI:
1093 contents += rel->r_offset;
1094 srel = (bfd_signed_vma) relocation + rel->r_addend;
1095 x = bfd_get_16 (input_bfd, contents);
1096 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1097 bfd_put_16 (input_bfd, x, contents);
1098 break;
1099
750bce0e
NC
1100 case R_AVR_LDI:
1101 contents += rel->r_offset;
1102 srel = (bfd_signed_vma) relocation + rel->r_addend;
4cdc7696
NC
1103 if (((srel > 0) && (srel & 0xffff) > 255)
1104 || ((srel < 0) && ((-srel) & 0xffff) > 128))
df406460
NC
1105 /* Remove offset for data/eeprom section. */
1106 return bfd_reloc_overflow;
1107
750bce0e
NC
1108 x = bfd_get_16 (input_bfd, contents);
1109 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1110 bfd_put_16 (input_bfd, x, contents);
1111 break;
1112
1113 case R_AVR_6:
1114 contents += rel->r_offset;
1115 srel = (bfd_signed_vma) relocation + rel->r_addend;
1116 if (((srel & 0xffff) > 63) || (srel < 0))
1117 /* Remove offset for data/eeprom section. */
1118 return bfd_reloc_overflow;
1119 x = bfd_get_16 (input_bfd, contents);
4cdc7696 1120 x = (x & 0xd3f8) | ((srel & 7) | ((srel & (3 << 3)) << 7)
df406460 1121 | ((srel & (1 << 5)) << 8));
750bce0e
NC
1122 bfd_put_16 (input_bfd, x, contents);
1123 break;
1124
1125 case R_AVR_6_ADIW:
1126 contents += rel->r_offset;
1127 srel = (bfd_signed_vma) relocation + rel->r_addend;
1128 if (((srel & 0xffff) > 63) || (srel < 0))
1129 /* Remove offset for data/eeprom section. */
1130 return bfd_reloc_overflow;
1131 x = bfd_get_16 (input_bfd, contents);
4cdc7696 1132 x = (x & 0xff30) | (srel & 0xf) | ((srel & 0x30) << 2);
750bce0e
NC
1133 bfd_put_16 (input_bfd, x, contents);
1134 break;
1135
adde6300
AM
1136 case R_AVR_HI8_LDI:
1137 contents += rel->r_offset;
1138 srel = (bfd_signed_vma) relocation + rel->r_addend;
1139 srel = (srel >> 8) & 0xff;
1140 x = bfd_get_16 (input_bfd, contents);
1141 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1142 bfd_put_16 (input_bfd, x, contents);
1143 break;
1144
1145 case R_AVR_HH8_LDI:
1146 contents += rel->r_offset;
1147 srel = (bfd_signed_vma) relocation + rel->r_addend;
1148 srel = (srel >> 16) & 0xff;
1149 x = bfd_get_16 (input_bfd, contents);
1150 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1151 bfd_put_16 (input_bfd, x, contents);
1152 break;
1153
df406460
NC
1154 case R_AVR_MS8_LDI:
1155 contents += rel->r_offset;
1156 srel = (bfd_signed_vma) relocation + rel->r_addend;
1157 srel = (srel >> 24) & 0xff;
1158 x = bfd_get_16 (input_bfd, contents);
1159 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1160 bfd_put_16 (input_bfd, x, contents);
1161 break;
1162
adde6300
AM
1163 case R_AVR_LO8_LDI_NEG:
1164 contents += rel->r_offset;
1165 srel = (bfd_signed_vma) relocation + rel->r_addend;
1166 srel = -srel;
1167 x = bfd_get_16 (input_bfd, contents);
1168 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1169 bfd_put_16 (input_bfd, x, contents);
1170 break;
1171
1172 case R_AVR_HI8_LDI_NEG:
1173 contents += rel->r_offset;
1174 srel = (bfd_signed_vma) relocation + rel->r_addend;
1175 srel = -srel;
1176 srel = (srel >> 8) & 0xff;
1177 x = bfd_get_16 (input_bfd, contents);
1178 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1179 bfd_put_16 (input_bfd, x, contents);
1180 break;
1181
1182 case R_AVR_HH8_LDI_NEG:
1183 contents += rel->r_offset;
1184 srel = (bfd_signed_vma) relocation + rel->r_addend;
1185 srel = -srel;
1186 srel = (srel >> 16) & 0xff;
1187 x = bfd_get_16 (input_bfd, contents);
1188 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1189 bfd_put_16 (input_bfd, x, contents);
1190 break;
1191
df406460
NC
1192 case R_AVR_MS8_LDI_NEG:
1193 contents += rel->r_offset;
1194 srel = (bfd_signed_vma) relocation + rel->r_addend;
1195 srel = -srel;
1196 srel = (srel >> 24) & 0xff;
1197 x = bfd_get_16 (input_bfd, contents);
1198 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1199 bfd_put_16 (input_bfd, x, contents);
1200 break;
1201
28c9d252
NC
1202 case R_AVR_LO8_LDI_GS:
1203 use_stubs = (!htab->no_stubs);
1204 /* Fall through. */
adde6300
AM
1205 case R_AVR_LO8_LDI_PM:
1206 contents += rel->r_offset;
1207 srel = (bfd_signed_vma) relocation + rel->r_addend;
28c9d252
NC
1208
1209 if (use_stubs
1210 && avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1211 {
1212 bfd_vma old_srel = srel;
1213
1214 /* We need to use the address of the stub instead. */
1215 srel = avr_get_stub_addr (srel, htab);
1216 if (debug_stubs)
1217 printf ("LD: Using jump stub (at 0x%x) with destination 0x%x for "
1218 "reloc at address 0x%x.\n",
1219 (unsigned int) srel,
1220 (unsigned int) old_srel,
1221 (unsigned int) reloc_addr);
1222
1223 if (avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1224 return bfd_reloc_outofrange;
1225 }
1226
adde6300
AM
1227 if (srel & 1)
1228 return bfd_reloc_outofrange;
1229 srel = srel >> 1;
1230 x = bfd_get_16 (input_bfd, contents);
1231 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1232 bfd_put_16 (input_bfd, x, contents);
1233 break;
1234
28c9d252
NC
1235 case R_AVR_HI8_LDI_GS:
1236 use_stubs = (!htab->no_stubs);
1237 /* Fall through. */
adde6300
AM
1238 case R_AVR_HI8_LDI_PM:
1239 contents += rel->r_offset;
1240 srel = (bfd_signed_vma) relocation + rel->r_addend;
28c9d252
NC
1241
1242 if (use_stubs
1243 && avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1244 {
1245 bfd_vma old_srel = srel;
1246
1247 /* We need to use the address of the stub instead. */
1248 srel = avr_get_stub_addr (srel, htab);
1249 if (debug_stubs)
1250 printf ("LD: Using jump stub (at 0x%x) with destination 0x%x for "
1251 "reloc at address 0x%x.\n",
1252 (unsigned int) srel,
1253 (unsigned int) old_srel,
1254 (unsigned int) reloc_addr);
1255
1256 if (avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1257 return bfd_reloc_outofrange;
1258 }
1259
adde6300
AM
1260 if (srel & 1)
1261 return bfd_reloc_outofrange;
1262 srel = srel >> 1;
1263 srel = (srel >> 8) & 0xff;
1264 x = bfd_get_16 (input_bfd, contents);
1265 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1266 bfd_put_16 (input_bfd, x, contents);
1267 break;
1268
1269 case R_AVR_HH8_LDI_PM:
1270 contents += rel->r_offset;
1271 srel = (bfd_signed_vma) relocation + rel->r_addend;
1272 if (srel & 1)
1273 return bfd_reloc_outofrange;
1274 srel = srel >> 1;
1275 srel = (srel >> 16) & 0xff;
1276 x = bfd_get_16 (input_bfd, contents);
1277 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1278 bfd_put_16 (input_bfd, x, contents);
1279 break;
1280
1281 case R_AVR_LO8_LDI_PM_NEG:
1282 contents += rel->r_offset;
1283 srel = (bfd_signed_vma) relocation + rel->r_addend;
1284 srel = -srel;
1285 if (srel & 1)
1286 return bfd_reloc_outofrange;
1287 srel = srel >> 1;
1288 x = bfd_get_16 (input_bfd, contents);
1289 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1290 bfd_put_16 (input_bfd, x, contents);
1291 break;
1292
1293 case R_AVR_HI8_LDI_PM_NEG:
1294 contents += rel->r_offset;
1295 srel = (bfd_signed_vma) relocation + rel->r_addend;
1296 srel = -srel;
1297 if (srel & 1)
1298 return bfd_reloc_outofrange;
1299 srel = srel >> 1;
1300 srel = (srel >> 8) & 0xff;
1301 x = bfd_get_16 (input_bfd, contents);
1302 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1303 bfd_put_16 (input_bfd, x, contents);
1304 break;
1305
1306 case R_AVR_HH8_LDI_PM_NEG:
1307 contents += rel->r_offset;
1308 srel = (bfd_signed_vma) relocation + rel->r_addend;
1309 srel = -srel;
1310 if (srel & 1)
1311 return bfd_reloc_outofrange;
1312 srel = srel >> 1;
1313 srel = (srel >> 16) & 0xff;
1314 x = bfd_get_16 (input_bfd, contents);
1315 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1316 bfd_put_16 (input_bfd, x, contents);
1317 break;
1318
1319 case R_AVR_CALL:
1320 contents += rel->r_offset;
1321 srel = (bfd_signed_vma) relocation + rel->r_addend;
1322 if (srel & 1)
1323 return bfd_reloc_outofrange;
1324 srel = srel >> 1;
1325 x = bfd_get_16 (input_bfd, contents);
1326 x |= ((srel & 0x10000) | ((srel << 3) & 0x1f00000)) >> 16;
1327 bfd_put_16 (input_bfd, x, contents);
dc810e39 1328 bfd_put_16 (input_bfd, (bfd_vma) srel & 0xffff, contents+2);
adde6300
AM
1329 break;
1330
28c9d252
NC
1331 case R_AVR_16_PM:
1332 use_stubs = (!htab->no_stubs);
1333 contents += rel->r_offset;
1334 srel = (bfd_signed_vma) relocation + rel->r_addend;
1335
1336 if (use_stubs
1337 && avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1338 {
1339 bfd_vma old_srel = srel;
1340
1341 /* We need to use the address of the stub instead. */
1342 srel = avr_get_stub_addr (srel,htab);
1343 if (debug_stubs)
1344 printf ("LD: Using jump stub (at 0x%x) with destination 0x%x for "
1345 "reloc at address 0x%x.\n",
1346 (unsigned int) srel,
1347 (unsigned int) old_srel,
1348 (unsigned int) reloc_addr);
1349
1350 if (avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1351 return bfd_reloc_outofrange;
1352 }
1353
1354 if (srel & 1)
1355 return bfd_reloc_outofrange;
1356 srel = srel >> 1;
1357 bfd_put_16 (input_bfd, (bfd_vma) srel &0x00ffff, contents);
1358 break;
1359
e4ef1b6c
DC
1360 case R_AVR_DIFF8:
1361 case R_AVR_DIFF16:
1362 case R_AVR_DIFF32:
1363 /* Nothing to do here, as contents already contains the diff value. */
1364 r = bfd_reloc_ok;
1365 break;
1366
f36e8886
BS
1367 case R_AVR_LDS_STS_16:
1368 contents += rel->r_offset;
1369 srel = (bfd_signed_vma) relocation + rel->r_addend;
1370 if ((srel & 0xFFFF) < 0x40 || (srel & 0xFFFF) > 0xbf)
1371 return bfd_reloc_outofrange;
1372 srel = srel & 0x7f;
1373 x = bfd_get_16 (input_bfd, contents);
1374 x |= (srel & 0x0f) | ((srel & 0x30) << 5) | ((srel & 0x40) << 2);
1375 bfd_put_16 (input_bfd, x, contents);
1376 break;
1377
75f58085
BS
1378 case R_AVR_PORT6:
1379 contents += rel->r_offset;
1380 srel = (bfd_signed_vma) relocation + rel->r_addend;
1381 if ((srel & 0xffff) > 0x3f)
1382 return bfd_reloc_outofrange;
1383 x = bfd_get_16 (input_bfd, contents);
1384 x = (x & 0xf9f0) | ((srel & 0x30) << 5) | (srel & 0x0f);
1385 bfd_put_16 (input_bfd, x, contents);
1386 break;
1387
1388 case R_AVR_PORT5:
1389 contents += rel->r_offset;
1390 srel = (bfd_signed_vma) relocation + rel->r_addend;
1391 if ((srel & 0xffff) > 0x1f)
1392 return bfd_reloc_outofrange;
1393 x = bfd_get_16 (input_bfd, contents);
1394 x = (x & 0xff07) | ((srel & 0x1f) << 3);
1395 bfd_put_16 (input_bfd, x, contents);
1396 break;
1397
adde6300
AM
1398 default:
1399 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1400 contents, rel->r_offset,
1401 relocation, rel->r_addend);
1402 }
1403
1404 return r;
1405}
1406
1407/* Relocate an AVR ELF section. */
4cdc7696 1408
b34976b6 1409static bfd_boolean
4cdc7696
NC
1410elf32_avr_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
1411 struct bfd_link_info *info,
1412 bfd *input_bfd,
1413 asection *input_section,
1414 bfd_byte *contents,
1415 Elf_Internal_Rela *relocs,
1416 Elf_Internal_Sym *local_syms,
1417 asection **local_sections)
adde6300
AM
1418{
1419 Elf_Internal_Shdr * symtab_hdr;
1420 struct elf_link_hash_entry ** sym_hashes;
1421 Elf_Internal_Rela * rel;
1422 Elf_Internal_Rela * relend;
28c9d252 1423 struct elf32_avr_link_hash_table * htab = avr_link_hash_table (info);
adde6300 1424
4dfe6ac6
NC
1425 if (htab == NULL)
1426 return FALSE;
1427
adde6300
AM
1428 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1429 sym_hashes = elf_sym_hashes (input_bfd);
1430 relend = relocs + input_section->reloc_count;
1431
1432 for (rel = relocs; rel < relend; rel ++)
1433 {
1434 reloc_howto_type * howto;
1435 unsigned long r_symndx;
1436 Elf_Internal_Sym * sym;
1437 asection * sec;
1438 struct elf_link_hash_entry * h;
1439 bfd_vma relocation;
1440 bfd_reloc_status_type r;
dfeffb9f 1441 const char * name;
adde6300
AM
1442 int r_type;
1443
1444 r_type = ELF32_R_TYPE (rel->r_info);
1445 r_symndx = ELF32_R_SYM (rel->r_info);
c7e2358a 1446 howto = elf_avr_howto_table + r_type;
adde6300
AM
1447 h = NULL;
1448 sym = NULL;
1449 sec = NULL;
1450
1451 if (r_symndx < symtab_hdr->sh_info)
1452 {
1453 sym = local_syms + r_symndx;
1454 sec = local_sections [r_symndx];
8517fae7 1455 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
adde6300
AM
1456
1457 name = bfd_elf_string_from_elf_section
1458 (input_bfd, symtab_hdr->sh_link, sym->st_name);
1459 name = (name == NULL) ? bfd_section_name (input_bfd, sec) : name;
1460 }
1461 else
1462 {
62d887d4 1463 bfd_boolean unresolved_reloc, warned, ignored;
adde6300 1464
b2a8e766
AM
1465 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1466 r_symndx, symtab_hdr, sym_hashes,
1467 h, sec, relocation,
62d887d4 1468 unresolved_reloc, warned, ignored);
dfeffb9f
L
1469
1470 name = h->root.root.string;
adde6300
AM
1471 }
1472
dbaa2011 1473 if (sec != NULL && discarded_section (sec))
e4067dbb 1474 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
545fd46b 1475 rel, 1, relend, howto, 0, contents);
ab96bf03 1476
0e1862bb 1477 if (bfd_link_relocatable (info))
ab96bf03
AM
1478 continue;
1479
adde6300 1480 r = avr_final_link_relocate (howto, input_bfd, input_section,
28c9d252 1481 contents, rel, relocation, htab);
adde6300
AM
1482
1483 if (r != bfd_reloc_ok)
1484 {
1485 const char * msg = (const char *) NULL;
1486
1487 switch (r)
1488 {
1489 case bfd_reloc_overflow:
1a72702b
AM
1490 (*info->callbacks->reloc_overflow)
1491 (info, (h ? &h->root : NULL), name, howto->name,
1492 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
adde6300
AM
1493 break;
1494
1495 case bfd_reloc_undefined:
1a72702b 1496 (*info->callbacks->undefined_symbol)
b34976b6 1497 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
adde6300
AM
1498 break;
1499
1500 case bfd_reloc_outofrange:
1501 msg = _("internal error: out of range error");
1502 break;
1503
1504 case bfd_reloc_notsupported:
1505 msg = _("internal error: unsupported relocation error");
1506 break;
1507
1508 case bfd_reloc_dangerous:
1509 msg = _("internal error: dangerous relocation");
1510 break;
1511
1512 default:
1513 msg = _("internal error: unknown error");
1514 break;
1515 }
1516
1517 if (msg)
1a72702b
AM
1518 (*info->callbacks->warning) (info, msg, name, input_bfd,
1519 input_section, rel->r_offset);
adde6300
AM
1520 }
1521 }
1522
b34976b6 1523 return TRUE;
adde6300
AM
1524}
1525
1526/* The final processing done just before writing out a AVR ELF object
1527 file. This gets the AVR architecture right based on the machine
1528 number. */
1529
1530static void
4cdc7696
NC
1531bfd_elf_avr_final_write_processing (bfd *abfd,
1532 bfd_boolean linker ATTRIBUTE_UNUSED)
adde6300
AM
1533{
1534 unsigned long val;
1535
1536 switch (bfd_get_mach (abfd))
1537 {
1538 default:
1539 case bfd_mach_avr2:
1540 val = E_AVR_MACH_AVR2;
1541 break;
1542
1543 case bfd_mach_avr1:
1544 val = E_AVR_MACH_AVR1;
1545 break;
1546
7b21ac3f
EW
1547 case bfd_mach_avr25:
1548 val = E_AVR_MACH_AVR25;
28b02751 1549 break;
7b21ac3f 1550
adde6300
AM
1551 case bfd_mach_avr3:
1552 val = E_AVR_MACH_AVR3;
1553 break;
1554
7b21ac3f
EW
1555 case bfd_mach_avr31:
1556 val = E_AVR_MACH_AVR31;
28b02751 1557 break;
7b21ac3f
EW
1558
1559 case bfd_mach_avr35:
1560 val = E_AVR_MACH_AVR35;
28b02751 1561 break;
7b21ac3f 1562
adde6300
AM
1563 case bfd_mach_avr4:
1564 val = E_AVR_MACH_AVR4;
1565 break;
1566
65aa24b6
NC
1567 case bfd_mach_avr5:
1568 val = E_AVR_MACH_AVR5;
1569 break;
28c9d252 1570
7b21ac3f
EW
1571 case bfd_mach_avr51:
1572 val = E_AVR_MACH_AVR51;
1573 break;
1574
28c9d252
NC
1575 case bfd_mach_avr6:
1576 val = E_AVR_MACH_AVR6;
1577 break;
8cc66334
EW
1578
1579 case bfd_mach_avrxmega1:
1580 val = E_AVR_MACH_XMEGA1;
1581 break;
1582
1583 case bfd_mach_avrxmega2:
1584 val = E_AVR_MACH_XMEGA2;
1585 break;
1586
1587 case bfd_mach_avrxmega3:
1588 val = E_AVR_MACH_XMEGA3;
1589 break;
1590
1591 case bfd_mach_avrxmega4:
1592 val = E_AVR_MACH_XMEGA4;
1593 break;
1594
1595 case bfd_mach_avrxmega5:
1596 val = E_AVR_MACH_XMEGA5;
1597 break;
1598
1599 case bfd_mach_avrxmega6:
1600 val = E_AVR_MACH_XMEGA6;
1601 break;
1602
1603 case bfd_mach_avrxmega7:
1604 val = E_AVR_MACH_XMEGA7;
1605 break;
f36e8886
BS
1606
1607 case bfd_mach_avrtiny:
1608 val = E_AVR_MACH_AVRTINY;
1609 break;
adde6300
AM
1610 }
1611
1612 elf_elfheader (abfd)->e_machine = EM_AVR;
1613 elf_elfheader (abfd)->e_flags &= ~ EF_AVR_MACH;
1614 elf_elfheader (abfd)->e_flags |= val;
1615}
1616
1617/* Set the right machine number. */
1618
b34976b6 1619static bfd_boolean
4cdc7696 1620elf32_avr_object_p (bfd *abfd)
adde6300 1621{
dc810e39 1622 unsigned int e_set = bfd_mach_avr2;
4cdc7696 1623
aa4f99bb
AO
1624 if (elf_elfheader (abfd)->e_machine == EM_AVR
1625 || elf_elfheader (abfd)->e_machine == EM_AVR_OLD)
adde6300
AM
1626 {
1627 int e_mach = elf_elfheader (abfd)->e_flags & EF_AVR_MACH;
4cdc7696 1628
adde6300
AM
1629 switch (e_mach)
1630 {
1631 default:
1632 case E_AVR_MACH_AVR2:
1633 e_set = bfd_mach_avr2;
1634 break;
1635
1636 case E_AVR_MACH_AVR1:
1637 e_set = bfd_mach_avr1;
1638 break;
1639
7b21ac3f
EW
1640 case E_AVR_MACH_AVR25:
1641 e_set = bfd_mach_avr25;
1642 break;
1643
adde6300
AM
1644 case E_AVR_MACH_AVR3:
1645 e_set = bfd_mach_avr3;
1646 break;
1647
7b21ac3f
EW
1648 case E_AVR_MACH_AVR31:
1649 e_set = bfd_mach_avr31;
1650 break;
1651
1652 case E_AVR_MACH_AVR35:
1653 e_set = bfd_mach_avr35;
1654 break;
1655
adde6300
AM
1656 case E_AVR_MACH_AVR4:
1657 e_set = bfd_mach_avr4;
1658 break;
65aa24b6
NC
1659
1660 case E_AVR_MACH_AVR5:
1661 e_set = bfd_mach_avr5;
1662 break;
28c9d252 1663
7b21ac3f
EW
1664 case E_AVR_MACH_AVR51:
1665 e_set = bfd_mach_avr51;
1666 break;
1667
28c9d252
NC
1668 case E_AVR_MACH_AVR6:
1669 e_set = bfd_mach_avr6;
1670 break;
8cc66334
EW
1671
1672 case E_AVR_MACH_XMEGA1:
1673 e_set = bfd_mach_avrxmega1;
1674 break;
1675
1676 case E_AVR_MACH_XMEGA2:
1677 e_set = bfd_mach_avrxmega2;
1678 break;
1679
1680 case E_AVR_MACH_XMEGA3:
1681 e_set = bfd_mach_avrxmega3;
1682 break;
1683
1684 case E_AVR_MACH_XMEGA4:
1685 e_set = bfd_mach_avrxmega4;
1686 break;
1687
1688 case E_AVR_MACH_XMEGA5:
1689 e_set = bfd_mach_avrxmega5;
1690 break;
1691
1692 case E_AVR_MACH_XMEGA6:
1693 e_set = bfd_mach_avrxmega6;
1694 break;
1695
1696 case E_AVR_MACH_XMEGA7:
1697 e_set = bfd_mach_avrxmega7;
1698 break;
f36e8886
BS
1699
1700 case E_AVR_MACH_AVRTINY:
1701 e_set = bfd_mach_avrtiny;
1702 break;
adde6300
AM
1703 }
1704 }
1705 return bfd_default_set_arch_mach (abfd, bfd_arch_avr,
1706 e_set);
1707}
1708
e4ef1b6c
DC
1709/* Returns whether the relocation type passed is a diff reloc. */
1710
1711static bfd_boolean
1712elf32_avr_is_diff_reloc (Elf_Internal_Rela *irel)
1713{
1714 return (ELF32_R_TYPE (irel->r_info) == R_AVR_DIFF8
1715 ||ELF32_R_TYPE (irel->r_info) == R_AVR_DIFF16
1716 || ELF32_R_TYPE (irel->r_info) == R_AVR_DIFF32);
1717}
1718
f36e8886
BS
1719/* Reduce the diff value written in the section by count if the shrinked
1720 insn address happens to fall between the two symbols for which this
1721 diff reloc was emitted. */
e4ef1b6c
DC
1722
1723static void
1724elf32_avr_adjust_diff_reloc_value (bfd *abfd,
1725 struct bfd_section *isec,
1726 Elf_Internal_Rela *irel,
1727 bfd_vma symval,
1728 bfd_vma shrinked_insn_address,
1729 int count)
1730{
1731 unsigned char *reloc_contents = NULL;
1732 unsigned char *isec_contents = elf_section_data (isec)->this_hdr.contents;
1733 if (isec_contents == NULL)
1734 {
1735 if (! bfd_malloc_and_get_section (abfd, isec, &isec_contents))
1736 return;
1737
1738 elf_section_data (isec)->this_hdr.contents = isec_contents;
1739 }
1740
1741 reloc_contents = isec_contents + irel->r_offset;
1742
1743 /* Read value written in object file. */
1744 bfd_vma x = 0;
1745 switch (ELF32_R_TYPE (irel->r_info))
1746 {
1747 case R_AVR_DIFF8:
1748 {
1749 x = *reloc_contents;
1750 break;
1751 }
1752 case R_AVR_DIFF16:
1753 {
1754 x = bfd_get_16 (abfd, reloc_contents);
1755 break;
1756 }
1757 case R_AVR_DIFF32:
1758 {
1759 x = bfd_get_32 (abfd, reloc_contents);
1760 break;
1761 }
1762 default:
1763 {
1764 BFD_FAIL();
1765 }
1766 }
1767
1768 /* For a diff reloc sym1 - sym2 the diff at assembly time (x) is written
1769 into the object file at the reloc offset. sym2's logical value is
1770 symval (<start_of_section>) + reloc addend. Compute the start and end
1771 addresses and check if the shrinked insn falls between sym1 and sym2. */
1772
1773 bfd_vma end_address = symval + irel->r_addend;
1774 bfd_vma start_address = end_address - x;
1775
f36e8886 1776 /* Reduce the diff value by count bytes and write it back into section
e4ef1b6c
DC
1777 contents. */
1778
f36e8886
BS
1779 if (shrinked_insn_address >= start_address
1780 && shrinked_insn_address <= end_address)
e4ef1b6c
DC
1781 {
1782 switch (ELF32_R_TYPE (irel->r_info))
1783 {
1784 case R_AVR_DIFF8:
1785 {
1786 *reloc_contents = (x - count);
1787 break;
1788 }
1789 case R_AVR_DIFF16:
1790 {
1791 bfd_put_16 (abfd, (x - count) & 0xFFFF, reloc_contents);
1792 break;
1793 }
1794 case R_AVR_DIFF32:
1795 {
1796 bfd_put_32 (abfd, (x - count) & 0xFFFFFFFF, reloc_contents);
1797 break;
1798 }
1799 default:
1800 {
1801 BFD_FAIL();
1802 }
1803 }
1804
1805 }
1806}
df406460 1807
4cdc7696
NC
1808/* Delete some bytes from a section while changing the size of an instruction.
1809 The parameter "addr" denotes the section-relative offset pointing just
1810 behind the shrinked instruction. "addr+count" point at the first
1811 byte just behind the original unshrinked instruction. */
1812
1813static bfd_boolean
1814elf32_avr_relax_delete_bytes (bfd *abfd,
73160847 1815 asection *sec,
4cdc7696 1816 bfd_vma addr,
73160847 1817 int count)
4cdc7696
NC
1818{
1819 Elf_Internal_Shdr *symtab_hdr;
1820 unsigned int sec_shndx;
1821 bfd_byte *contents;
1822 Elf_Internal_Rela *irel, *irelend;
4cdc7696
NC
1823 Elf_Internal_Sym *isym;
1824 Elf_Internal_Sym *isymbuf = NULL;
31eef93e 1825 bfd_vma toaddr, reloc_toaddr;
4cdc7696
NC
1826 struct elf_link_hash_entry **sym_hashes;
1827 struct elf_link_hash_entry **end_hashes;
1828 unsigned int symcount;
bac13f5a
AB
1829 struct avr_relax_info *relax_info;
1830 struct avr_property_record *prop_record = NULL;
5c41dbc3 1831 bfd_boolean did_shrink = FALSE;
4cdc7696
NC
1832
1833 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1834 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
1835 contents = elf_section_data (sec)->this_hdr.contents;
bac13f5a 1836 relax_info = get_avr_relax_info (sec);
4cdc7696 1837
4cdc7696
NC
1838 toaddr = sec->size;
1839
bac13f5a
AB
1840 if (relax_info->records.count > 0)
1841 {
1842 /* There should be no property record within the range of deleted
1843 bytes, however, there might be a property record for ADDR, this is
1844 how we handle alignment directives.
1845 Find the next (if any) property record after the deleted bytes. */
1846 unsigned int i;
1847
1848 for (i = 0; i < relax_info->records.count; ++i)
1849 {
1850 bfd_vma offset = relax_info->records.items [i].offset;
1851
1852 BFD_ASSERT (offset <= addr || offset >= (addr + count));
1853 if (offset >= (addr + count))
1854 {
1855 prop_record = &relax_info->records.items [i];
1856 toaddr = offset;
1857 break;
1858 }
1859 }
1860 }
1861
31eef93e
SKS
1862 /* We need to look at all relocs with offsets less than toaddr. prop
1863 records handling adjusts toaddr downwards to avoid moving syms at the
1864 address of the property record, but all relocs with offsets between addr
1865 and the current value of toaddr need to have their offsets adjusted.
1866 Assume addr = 0, toaddr = 4 and count = 2. After prop records handling,
1867 toaddr becomes 2, but relocs with offsets 2 and 3 still need to be
1868 adjusted (to 0 and 1 respectively), as the first 2 bytes are now gone.
1869 So record the current value of toaddr here, and use it when adjusting
1870 reloc offsets. */
1871 reloc_toaddr = toaddr;
1872
4cdc7696
NC
1873 irel = elf_section_data (sec)->relocs;
1874 irelend = irel + sec->reloc_count;
1875
1876 /* Actually delete the bytes. */
1877 if (toaddr - addr - count > 0)
5c41dbc3
DC
1878 {
1879 memmove (contents + addr, contents + addr + count,
1880 (size_t) (toaddr - addr - count));
1881 did_shrink = TRUE;
1882 }
bac13f5a 1883 if (prop_record == NULL)
5c41dbc3
DC
1884 {
1885 sec->size -= count;
1886 did_shrink = TRUE;
1887 }
bac13f5a
AB
1888 else
1889 {
1890 /* Use the property record to fill in the bytes we've opened up. */
1891 int fill = 0;
1892 switch (prop_record->type)
1893 {
1894 case RECORD_ORG_AND_FILL:
1895 fill = prop_record->data.org.fill;
1896 /* Fall through. */
1897 case RECORD_ORG:
1898 break;
1899 case RECORD_ALIGN_AND_FILL:
1900 fill = prop_record->data.align.fill;
1901 /* Fall through. */
1902 case RECORD_ALIGN:
1903 prop_record->data.align.preceding_deleted += count;
1904 break;
1905 };
5c41dbc3
DC
1906 /* If toaddr == (addr + count), then we didn't delete anything, yet
1907 we fill count bytes backwards from toaddr. This is still ok - we
1908 end up overwriting the bytes we would have deleted. We just need
1909 to remember we didn't delete anything i.e. don't set did_shrink,
1910 so that we don't corrupt reloc offsets or symbol values.*/
bac13f5a
AB
1911 memset (contents + toaddr - count, fill, count);
1912
1913 /* Adjust the TOADDR to avoid moving symbols located at the address
1914 of the property record, which has not moved. */
1915 toaddr -= count;
1916 }
4cdc7696 1917
5c41dbc3
DC
1918 if (!did_shrink)
1919 return TRUE;
1920
73160847 1921 /* Adjust all the reloc addresses. */
4cdc7696
NC
1922 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
1923 {
4cdc7696 1924 bfd_vma old_reloc_address;
4cdc7696
NC
1925
1926 old_reloc_address = (sec->output_section->vma
1927 + sec->output_offset + irel->r_offset);
4cdc7696
NC
1928
1929 /* Get the new reloc address. */
1930 if ((irel->r_offset > addr
31eef93e 1931 && irel->r_offset < reloc_toaddr))
4cdc7696 1932 {
28c9d252 1933 if (debug_relax)
4cdc7696
NC
1934 printf ("Relocation at address 0x%x needs to be moved.\n"
1935 "Old section offset: 0x%x, New section offset: 0x%x \n",
1936 (unsigned int) old_reloc_address,
1937 (unsigned int) irel->r_offset,
1938 (unsigned int) ((irel->r_offset) - count));
1939
1940 irel->r_offset -= count;
1941 }
1942
73160847 1943 }
4cdc7696 1944
73160847
NC
1945 /* The reloc's own addresses are now ok. However, we need to readjust
1946 the reloc's addend, i.e. the reloc's value if two conditions are met:
1947 1.) the reloc is relative to a symbol in this section that
1948 is located in front of the shrinked instruction
28c9d252
NC
1949 2.) symbol plus addend end up behind the shrinked instruction.
1950
73160847
NC
1951 The most common case where this happens are relocs relative to
1952 the section-start symbol.
28c9d252 1953
73160847
NC
1954 This step needs to be done for all of the sections of the bfd. */
1955
1956 {
1957 struct bfd_section *isec;
1958
1959 for (isec = abfd->sections; isec; isec = isec->next)
1960 {
1961 bfd_vma symval;
1962 bfd_vma shrinked_insn_address;
1963
a1c7aafb
NC
1964 if (isec->reloc_count == 0)
1965 continue;
1966
73160847
NC
1967 shrinked_insn_address = (sec->output_section->vma
1968 + sec->output_offset + addr - count);
1969
a1c7aafb
NC
1970 irel = elf_section_data (isec)->relocs;
1971 /* PR 12161: Read in the relocs for this section if necessary. */
1972 if (irel == NULL)
6aa82b64 1973 irel = _bfd_elf_link_read_relocs (abfd, isec, NULL, NULL, TRUE);
a1c7aafb
NC
1974
1975 for (irelend = irel + isec->reloc_count;
73160847
NC
1976 irel < irelend;
1977 irel++)
1978 {
28c9d252 1979 /* Read this BFD's local symbols if we haven't done
73160847
NC
1980 so already. */
1981 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
1982 {
1983 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
1984 if (isymbuf == NULL)
1985 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
1986 symtab_hdr->sh_info, 0,
1987 NULL, NULL, NULL);
1988 if (isymbuf == NULL)
1989 return FALSE;
1990 }
1991
1992 /* Get the value of the symbol referred to by the reloc. */
1993 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
1994 {
1995 /* A local symbol. */
73160847
NC
1996 asection *sym_sec;
1997
1998 isym = isymbuf + ELF32_R_SYM (irel->r_info);
1999 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
2000 symval = isym->st_value;
2001 /* If the reloc is absolute, it will not have
2002 a symbol or section associated with it. */
2003 if (sym_sec == sec)
28c9d252 2004 {
73160847
NC
2005 symval += sym_sec->output_section->vma
2006 + sym_sec->output_offset;
4cdc7696 2007
28c9d252 2008 if (debug_relax)
73160847
NC
2009 printf ("Checking if the relocation's "
2010 "addend needs corrections.\n"
2011 "Address of anchor symbol: 0x%x \n"
2012 "Address of relocation target: 0x%x \n"
2013 "Address of relaxed insn: 0x%x \n",
2014 (unsigned int) symval,
2015 (unsigned int) (symval + irel->r_addend),
2016 (unsigned int) shrinked_insn_address);
2017
2018 if (symval <= shrinked_insn_address
2019 && (symval + irel->r_addend) > shrinked_insn_address)
2020 {
e4ef1b6c
DC
2021 if (elf32_avr_is_diff_reloc (irel))
2022 {
2023 elf32_avr_adjust_diff_reloc_value (abfd, isec, irel,
2024 symval,
2025 shrinked_insn_address,
2026 count);
2027 }
2028
73160847
NC
2029 irel->r_addend -= count;
2030
28c9d252 2031 if (debug_relax)
73160847
NC
2032 printf ("Relocation's addend needed to be fixed \n");
2033 }
4cdc7696 2034 }
73160847 2035 /* else...Reference symbol is absolute. No adjustment needed. */
28c9d252
NC
2036 }
2037 /* else...Reference symbol is extern. No need for adjusting
73160847 2038 the addend. */
28c9d252 2039 }
73160847
NC
2040 }
2041 }
4cdc7696
NC
2042
2043 /* Adjust the local symbols defined in this section. */
2044 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
12123067
NC
2045 /* Fix PR 9841, there may be no local symbols. */
2046 if (isym != NULL)
4cdc7696 2047 {
12123067
NC
2048 Elf_Internal_Sym *isymend;
2049
2050 isymend = isym + symtab_hdr->sh_info;
2051 for (; isym < isymend; isym++)
2052 {
931b79cc
AB
2053 if (isym->st_shndx == sec_shndx)
2054 {
2055 if (isym->st_value > addr
2056 && isym->st_value <= toaddr)
2057 isym->st_value -= count;
2058
2059 if (isym->st_value <= addr
2060 && isym->st_value + isym->st_size > addr)
2061 {
2062 /* If this assert fires then we have a symbol that ends
2063 part way through an instruction. Does that make
2064 sense? */
2065 BFD_ASSERT (isym->st_value + isym->st_size >= addr + count);
2066 isym->st_size -= count;
2067 }
2068 }
12123067 2069 }
4cdc7696
NC
2070 }
2071
2072 /* Now adjust the global symbols defined in this section. */
2073 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2074 - symtab_hdr->sh_info);
2075 sym_hashes = elf_sym_hashes (abfd);
2076 end_hashes = sym_hashes + symcount;
2077 for (; sym_hashes < end_hashes; sym_hashes++)
2078 {
2079 struct elf_link_hash_entry *sym_hash = *sym_hashes;
2080 if ((sym_hash->root.type == bfd_link_hash_defined
2081 || sym_hash->root.type == bfd_link_hash_defweak)
931b79cc 2082 && sym_hash->root.u.def.section == sec)
4cdc7696 2083 {
931b79cc
AB
2084 if (sym_hash->root.u.def.value > addr
2085 && sym_hash->root.u.def.value <= toaddr)
2086 sym_hash->root.u.def.value -= count;
2087
2088 if (sym_hash->root.u.def.value <= addr
2089 && (sym_hash->root.u.def.value + sym_hash->size > addr))
2090 {
2091 /* If this assert fires then we have a symbol that ends
2092 part way through an instruction. Does that make
2093 sense? */
2094 BFD_ASSERT (sym_hash->root.u.def.value + sym_hash->size
2095 >= addr + count);
2096 sym_hash->size -= count;
2097 }
4cdc7696
NC
2098 }
2099 }
2100
2101 return TRUE;
2102}
2103
137c83d6
AB
2104static Elf_Internal_Sym *
2105retrieve_local_syms (bfd *input_bfd)
2106{
2107 Elf_Internal_Shdr *symtab_hdr;
2108 Elf_Internal_Sym *isymbuf;
2109 size_t locsymcount;
2110
2111 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2112 locsymcount = symtab_hdr->sh_info;
2113
2114 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2115 if (isymbuf == NULL && locsymcount != 0)
2116 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
2117 NULL, NULL, NULL);
2118
2119 /* Save the symbols for this input file so they won't be read again. */
2120 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
2121 symtab_hdr->contents = (unsigned char *) isymbuf;
2122
2123 return isymbuf;
2124}
2125
2126/* Get the input section for a given symbol index.
2127 If the symbol is:
2128 . a section symbol, return the section;
2129 . a common symbol, return the common section;
2130 . an undefined symbol, return the undefined section;
2131 . an indirect symbol, follow the links;
2132 . an absolute value, return the absolute section. */
2133
2134static asection *
2135get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
2136{
2137 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2138 asection *target_sec = NULL;
2139 if (r_symndx < symtab_hdr->sh_info)
2140 {
2141 Elf_Internal_Sym *isymbuf;
2142 unsigned int section_index;
2143
2144 isymbuf = retrieve_local_syms (abfd);
2145 section_index = isymbuf[r_symndx].st_shndx;
2146
2147 if (section_index == SHN_UNDEF)
2148 target_sec = bfd_und_section_ptr;
2149 else if (section_index == SHN_ABS)
2150 target_sec = bfd_abs_section_ptr;
2151 else if (section_index == SHN_COMMON)
2152 target_sec = bfd_com_section_ptr;
2153 else
2154 target_sec = bfd_section_from_elf_index (abfd, section_index);
2155 }
2156 else
2157 {
2158 unsigned long indx = r_symndx - symtab_hdr->sh_info;
2159 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
2160
2161 while (h->root.type == bfd_link_hash_indirect
2162 || h->root.type == bfd_link_hash_warning)
2163 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2164
2165 switch (h->root.type)
2166 {
2167 case bfd_link_hash_defined:
2168 case bfd_link_hash_defweak:
2169 target_sec = h->root.u.def.section;
2170 break;
2171 case bfd_link_hash_common:
2172 target_sec = bfd_com_section_ptr;
2173 break;
2174 case bfd_link_hash_undefined:
2175 case bfd_link_hash_undefweak:
2176 target_sec = bfd_und_section_ptr;
2177 break;
2178 default: /* New indirect warning. */
2179 target_sec = bfd_und_section_ptr;
2180 break;
2181 }
2182 }
2183 return target_sec;
2184}
2185
2186/* Get the section-relative offset for a symbol number. */
2187
2188static bfd_vma
2189get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
2190{
2191 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2192 bfd_vma offset = 0;
2193
2194 if (r_symndx < symtab_hdr->sh_info)
2195 {
2196 Elf_Internal_Sym *isymbuf;
2197 isymbuf = retrieve_local_syms (abfd);
2198 offset = isymbuf[r_symndx].st_value;
2199 }
2200 else
2201 {
2202 unsigned long indx = r_symndx - symtab_hdr->sh_info;
2203 struct elf_link_hash_entry *h =
2204 elf_sym_hashes (abfd)[indx];
2205
2206 while (h->root.type == bfd_link_hash_indirect
2207 || h->root.type == bfd_link_hash_warning)
2208 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2209 if (h->root.type == bfd_link_hash_defined
2210 || h->root.type == bfd_link_hash_defweak)
2211 offset = h->root.u.def.value;
2212 }
2213 return offset;
2214}
2215
bac13f5a
AB
2216/* Iterate over the property records in R_LIST, and copy each record into
2217 the list of records within the relaxation information for the section to
2218 which the record applies. */
2219
2220static void
2221avr_elf32_assign_records_to_sections (struct avr_property_record_list *r_list)
2222{
2223 unsigned int i;
2224
2225 for (i = 0; i < r_list->record_count; ++i)
2226 {
2227 struct avr_relax_info *relax_info;
2228
2229 relax_info = get_avr_relax_info (r_list->records [i].section);
2230 BFD_ASSERT (relax_info != NULL);
2231
2232 if (relax_info->records.count
2233 == relax_info->records.allocated)
2234 {
2235 /* Allocate more space. */
2236 bfd_size_type size;
2237
2238 relax_info->records.allocated += 10;
2239 size = (sizeof (struct avr_property_record)
2240 * relax_info->records.allocated);
2241 relax_info->records.items
2242 = bfd_realloc (relax_info->records.items, size);
2243 }
2244
2245 memcpy (&relax_info->records.items [relax_info->records.count],
2246 &r_list->records [i],
2247 sizeof (struct avr_property_record));
2248 relax_info->records.count++;
2249 }
2250}
2251
2252/* Compare two STRUCT AVR_PROPERTY_RECORD in AP and BP, used as the
2253 ordering callback from QSORT. */
2254
2255static int
2256avr_property_record_compare (const void *ap, const void *bp)
2257{
2258 const struct avr_property_record *a
2259 = (struct avr_property_record *) ap;
2260 const struct avr_property_record *b
2261 = (struct avr_property_record *) bp;
2262
2263 if (a->offset != b->offset)
2264 return (a->offset - b->offset);
2265
2266 if (a->section != b->section)
2267 return (bfd_get_section_vma (a->section->owner, a->section)
2268 - bfd_get_section_vma (b->section->owner, b->section));
2269
2270 return (a->type - b->type);
2271}
2272
2273/* Load all of the avr property sections from all of the bfd objects
2274 referenced from LINK_INFO. All of the records within each property
2275 section are assigned to the STRUCT AVR_RELAX_INFO within the section
2276 specific data of the appropriate section. */
2277
2278static void
2279avr_load_all_property_sections (struct bfd_link_info *link_info)
2280{
2281 bfd *abfd;
2282 asection *sec;
2283
2284 /* Initialize the per-section relaxation info. */
2285 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
2286 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2287 {
2288 init_avr_relax_info (sec);
2289 }
2290
2291 /* Load the descriptor tables from .avr.prop sections. */
2292 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
2293 {
2294 struct avr_property_record_list *r_list;
2295
2296 r_list = avr_elf32_load_property_records (abfd);
2297 if (r_list != NULL)
2298 avr_elf32_assign_records_to_sections (r_list);
2299
2300 free (r_list);
2301 }
2302
2303 /* Now, for every section, ensure that the descriptor list in the
2304 relaxation data is sorted by ascending offset within the section. */
2305 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
2306 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2307 {
2308 struct avr_relax_info *relax_info = get_avr_relax_info (sec);
2309 if (relax_info && relax_info->records.count > 0)
2310 {
2311 unsigned int i;
2312
2313 qsort (relax_info->records.items,
2314 relax_info->records.count,
2315 sizeof (struct avr_property_record),
2316 avr_property_record_compare);
2317
2318 /* For debug purposes, list all the descriptors. */
2319 for (i = 0; i < relax_info->records.count; ++i)
2320 {
2321 switch (relax_info->records.items [i].type)
2322 {
2323 case RECORD_ORG:
2324 break;
2325 case RECORD_ORG_AND_FILL:
2326 break;
2327 case RECORD_ALIGN:
2328 break;
2329 case RECORD_ALIGN_AND_FILL:
2330 break;
2331 };
2332 }
2333 }
2334 }
2335}
2336
df406460
NC
2337/* This function handles relaxing for the avr.
2338 Many important relaxing opportunities within functions are already
2339 realized by the compiler itself.
2340 Here we try to replace call (4 bytes) -> rcall (2 bytes)
4cdc7696
NC
2341 and jump -> rjmp (safes also 2 bytes).
2342 As well we now optimize seqences of
df406460
NC
2343 - call/rcall function
2344 - ret
2345 to yield
2346 - jmp/rjmp function
2347 - ret
2348 . In case that within a sequence
2349 - jmp/rjmp label
2350 - ret
2351 the ret could no longer be reached it is optimized away. In order
2352 to check if the ret is no longer needed, it is checked that the ret's address
2353 is not the target of a branch or jump within the same section, it is checked
2354 that there is no skip instruction before the jmp/rjmp and that there
2355 is no local or global label place at the address of the ret.
4cdc7696 2356
df406460 2357 We refrain from relaxing within sections ".vectors" and
4cdc7696 2358 ".jumptables" in order to maintain the position of the instructions.
df406460 2359 There, however, we substitute jmp/call by a sequence rjmp,nop/rcall,nop
4cdc7696 2360 if possible. (In future one could possibly use the space of the nop
df406460
NC
2361 for the first instruction of the irq service function.
2362
2363 The .jumptables sections is meant to be used for a future tablejump variant
2364 for the devices with 3-byte program counter where the table itself
4cdc7696 2365 contains 4-byte jump instructions whose relative offset must not
df406460 2366 be changed. */
4cdc7696 2367
28c9d252 2368static bfd_boolean
4cdc7696
NC
2369elf32_avr_relax_section (bfd *abfd,
2370 asection *sec,
df406460
NC
2371 struct bfd_link_info *link_info,
2372 bfd_boolean *again)
2373{
2374 Elf_Internal_Shdr *symtab_hdr;
2375 Elf_Internal_Rela *internal_relocs;
2376 Elf_Internal_Rela *irel, *irelend;
2377 bfd_byte *contents = NULL;
2378 Elf_Internal_Sym *isymbuf = NULL;
28c9d252 2379 struct elf32_avr_link_hash_table *htab;
bac13f5a
AB
2380 static bfd_boolean relaxation_initialised = FALSE;
2381
2382 if (!relaxation_initialised)
2383 {
2384 relaxation_initialised = TRUE;
2385
2386 /* Load entries from the .avr.prop sections. */
2387 avr_load_all_property_sections (link_info);
2388 }
28c9d252 2389
526f25b2 2390 /* If 'shrinkable' is FALSE, do not shrink by deleting bytes while
68ffbac6
L
2391 relaxing. Such shrinking can cause issues for the sections such
2392 as .vectors and .jumptables. Instead the unused bytes should be
526f25b2
EW
2393 filled with nop instructions. */
2394 bfd_boolean shrinkable = TRUE;
2395
2396 if (!strcmp (sec->name,".vectors")
2397 || !strcmp (sec->name,".jumptables"))
2398 shrinkable = FALSE;
2399
0e1862bb 2400 if (bfd_link_relocatable (link_info))
c8a1f254
NS
2401 (*link_info->callbacks->einfo)
2402 (_("%P%F: --relax and -r may not be used together\n"));
2403
28c9d252 2404 htab = avr_link_hash_table (link_info);
64ee10b6
NC
2405 if (htab == NULL)
2406 return FALSE;
df406460
NC
2407
2408 /* Assume nothing changes. */
2409 *again = FALSE;
2410
28c9d252
NC
2411 if ((!htab->no_stubs) && (sec == htab->stub_sec))
2412 {
2413 /* We are just relaxing the stub section.
2414 Let's calculate the size needed again. */
2415 bfd_size_type last_estimated_stub_section_size = htab->stub_sec->size;
2416
2417 if (debug_relax)
2418 printf ("Relaxing the stub section. Size prior to this pass: %i\n",
2419 (int) last_estimated_stub_section_size);
2420
2421 elf32_avr_size_stubs (htab->stub_sec->output_section->owner,
2422 link_info, FALSE);
2423
2424 /* Check if the number of trampolines changed. */
2425 if (last_estimated_stub_section_size != htab->stub_sec->size)
2426 *again = TRUE;
2427
2428 if (debug_relax)
2429 printf ("Size of stub section after this pass: %i\n",
2430 (int) htab->stub_sec->size);
2431
2432 return TRUE;
2433 }
2434
df406460
NC
2435 /* We don't have to do anything for a relocatable link, if
2436 this section does not have relocs, or if this is not a
2437 code section. */
0e1862bb 2438 if (bfd_link_relocatable (link_info)
df406460
NC
2439 || (sec->flags & SEC_RELOC) == 0
2440 || sec->reloc_count == 0
2441 || (sec->flags & SEC_CODE) == 0)
2442 return TRUE;
4cdc7696 2443
df406460
NC
2444 /* Check if the object file to relax uses internal symbols so that we
2445 could fix up the relocations. */
df406460
NC
2446 if (!(elf_elfheader (abfd)->e_flags & EF_AVR_LINKRELAX_PREPARED))
2447 return TRUE;
df406460
NC
2448
2449 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2450
2451 /* Get a copy of the native relocations. */
2452 internal_relocs = (_bfd_elf_link_read_relocs
4cdc7696 2453 (abfd, sec, NULL, NULL, link_info->keep_memory));
df406460
NC
2454 if (internal_relocs == NULL)
2455 goto error_return;
2456
df406460
NC
2457 /* Walk through the relocs looking for relaxing opportunities. */
2458 irelend = internal_relocs + sec->reloc_count;
2459 for (irel = internal_relocs; irel < irelend; irel++)
2460 {
2461 bfd_vma symval;
2462
4cdc7696 2463 if ( ELF32_R_TYPE (irel->r_info) != R_AVR_13_PCREL
f36e8886
BS
2464 && ELF32_R_TYPE (irel->r_info) != R_AVR_7_PCREL
2465 && ELF32_R_TYPE (irel->r_info) != R_AVR_CALL)
df406460 2466 continue;
4cdc7696 2467
df406460
NC
2468 /* Get the section contents if we haven't done so already. */
2469 if (contents == NULL)
2470 {
2471 /* Get cached copy if it exists. */
2472 if (elf_section_data (sec)->this_hdr.contents != NULL)
2473 contents = elf_section_data (sec)->this_hdr.contents;
2474 else
2475 {
2476 /* Go get them off disk. */
4cdc7696 2477 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
df406460
NC
2478 goto error_return;
2479 }
2480 }
2481
91d6fa6a 2482 /* Read this BFD's local symbols if we haven't done so already. */
df406460
NC
2483 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
2484 {
2485 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2486 if (isymbuf == NULL)
2487 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
2488 symtab_hdr->sh_info, 0,
2489 NULL, NULL, NULL);
2490 if (isymbuf == NULL)
2491 goto error_return;
2492 }
2493
2494
2495 /* Get the value of the symbol referred to by the reloc. */
2496 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
2497 {
2498 /* A local symbol. */
2499 Elf_Internal_Sym *isym;
2500 asection *sym_sec;
2501
2502 isym = isymbuf + ELF32_R_SYM (irel->r_info);
2503 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
2504 symval = isym->st_value;
2505 /* If the reloc is absolute, it will not have
2506 a symbol or section associated with it. */
2507 if (sym_sec)
2508 symval += sym_sec->output_section->vma
2509 + sym_sec->output_offset;
2510 }
2511 else
2512 {
2513 unsigned long indx;
2514 struct elf_link_hash_entry *h;
2515
2516 /* An external symbol. */
2517 indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
2518 h = elf_sym_hashes (abfd)[indx];
2519 BFD_ASSERT (h != NULL);
2520 if (h->root.type != bfd_link_hash_defined
2521 && h->root.type != bfd_link_hash_defweak)
4cdc7696
NC
2522 /* This appears to be a reference to an undefined
2523 symbol. Just ignore it--it will be caught by the
2524 regular reloc processing. */
2525 continue;
2526
df406460
NC
2527 symval = (h->root.u.def.value
2528 + h->root.u.def.section->output_section->vma
2529 + h->root.u.def.section->output_offset);
2530 }
2531
2532 /* For simplicity of coding, we are going to modify the section
2533 contents, the section relocs, and the BFD symbol table. We
2534 must tell the rest of the code not to free up this
2535 information. It would be possible to instead create a table
2536 of changes which have to be made, as is done in coff-mips.c;
2537 that would be more work, but would require less memory when
2538 the linker is run. */
2539 switch (ELF32_R_TYPE (irel->r_info))
2540 {
91d6fa6a
NC
2541 /* Try to turn a 22-bit absolute call/jump into an 13-bit
2542 pc-relative rcall/rjmp. */
2543 case R_AVR_CALL:
df406460
NC
2544 {
2545 bfd_vma value = symval + irel->r_addend;
2546 bfd_vma dot, gap;
2547 int distance_short_enough = 0;
2548
2549 /* Get the address of this instruction. */
2550 dot = (sec->output_section->vma
2551 + sec->output_offset + irel->r_offset);
2552
2553 /* Compute the distance from this insn to the branch target. */
2554 gap = value - dot;
2555
526f25b2
EW
2556 /* Check if the gap falls in the range that can be accommodated
2557 in 13bits signed (It is 12bits when encoded, as we deal with
2558 word addressing). */
2559 if (!shrinkable && ((int) gap >= -4096 && (int) gap <= 4095))
2560 distance_short_enough = 1;
2561 /* If shrinkable, then we can check for a range of distance which
2562 is two bytes farther on both the directions because the call
68ffbac6 2563 or jump target will be closer by two bytes after the
526f25b2
EW
2564 relaxation. */
2565 else if (shrinkable && ((int) gap >= -4094 && (int) gap <= 4097))
df406460
NC
2566 distance_short_enough = 1;
2567
2568 /* Here we handle the wrap-around case. E.g. for a 16k device
4cdc7696 2569 we could use a rjmp to jump from address 0x100 to 0x3d00!
df406460
NC
2570 In order to make this work properly, we need to fill the
2571 vaiable avr_pc_wrap_around with the appropriate value.
2572 I.e. 0x4000 for a 16k device. */
2573 {
91d6fa6a
NC
2574 /* Shrinking the code size makes the gaps larger in the
2575 case of wrap-arounds. So we use a heuristical safety
2576 margin to avoid that during relax the distance gets
2577 again too large for the short jumps. Let's assume
2578 a typical code-size reduction due to relax for a
2579 16k device of 600 bytes. So let's use twice the
2580 typical value as safety margin. */
2581 int rgap;
2582 int safety_margin;
2583
2584 int assumed_shrink = 600;
2585 if (avr_pc_wrap_around > 0x4000)
2586 assumed_shrink = 900;
2587
2588 safety_margin = 2 * assumed_shrink;
2589
2590 rgap = avr_relative_distance_considering_wrap_around (gap);
2591
2592 if (rgap >= (-4092 + safety_margin)
2593 && rgap <= (4094 - safety_margin))
2594 distance_short_enough = 1;
4cdc7696 2595 }
df406460
NC
2596
2597 if (distance_short_enough)
2598 {
2599 unsigned char code_msb;
2600 unsigned char code_lsb;
2601
28c9d252 2602 if (debug_relax)
df406460
NC
2603 printf ("shrinking jump/call instruction at address 0x%x"
2604 " in section %s\n\n",
2605 (int) dot, sec->name);
2606
2607 /* Note that we've changed the relocs, section contents,
2608 etc. */
2609 elf_section_data (sec)->relocs = internal_relocs;
2610 elf_section_data (sec)->this_hdr.contents = contents;
2611 symtab_hdr->contents = (unsigned char *) isymbuf;
2612
2613 /* Get the instruction code for relaxing. */
2614 code_lsb = bfd_get_8 (abfd, contents + irel->r_offset);
2615 code_msb = bfd_get_8 (abfd, contents + irel->r_offset + 1);
2616
2617 /* Mask out the relocation bits. */
2618 code_msb &= 0x94;
2619 code_lsb &= 0x0E;
2620 if (code_msb == 0x94 && code_lsb == 0x0E)
2621 {
2622 /* we are changing call -> rcall . */
2623 bfd_put_8 (abfd, 0x00, contents + irel->r_offset);
2624 bfd_put_8 (abfd, 0xD0, contents + irel->r_offset + 1);
2625 }
2626 else if (code_msb == 0x94 && code_lsb == 0x0C)
2627 {
2628 /* we are changeing jump -> rjmp. */
2629 bfd_put_8 (abfd, 0x00, contents + irel->r_offset);
2630 bfd_put_8 (abfd, 0xC0, contents + irel->r_offset + 1);
2631 }
4cdc7696 2632 else
df406460
NC
2633 abort ();
2634
2635 /* Fix the relocation's type. */
2636 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
2637 R_AVR_13_PCREL);
2638
526f25b2 2639 /* We should not modify the ordering if 'shrinkable' is
68ffbac6 2640 FALSE. */
526f25b2 2641 if (!shrinkable)
df406460
NC
2642 {
2643 /* Let's insert a nop. */
2644 bfd_put_8 (abfd, 0x00, contents + irel->r_offset + 2);
2645 bfd_put_8 (abfd, 0x00, contents + irel->r_offset + 3);
2646 }
2647 else
2648 {
2649 /* Delete two bytes of data. */
2650 if (!elf32_avr_relax_delete_bytes (abfd, sec,
2651 irel->r_offset + 2, 2))
2652 goto error_return;
2653
2654 /* That will change things, so, we should relax again.
2655 Note that this is not required, and it may be slow. */
2656 *again = TRUE;
2657 }
2658 }
2659 }
4cdc7696 2660
df406460
NC
2661 default:
2662 {
2663 unsigned char code_msb;
2664 unsigned char code_lsb;
2665 bfd_vma dot;
2666
2667 code_msb = bfd_get_8 (abfd, contents + irel->r_offset + 1);
2668 code_lsb = bfd_get_8 (abfd, contents + irel->r_offset + 0);
2669
2670 /* Get the address of this instruction. */
2671 dot = (sec->output_section->vma
2672 + sec->output_offset + irel->r_offset);
4cdc7696
NC
2673
2674 /* Here we look for rcall/ret or call/ret sequences that could be
28c9d252
NC
2675 safely replaced by rjmp/ret or jmp/ret. */
2676 if (((code_msb & 0xf0) == 0xd0)
2677 && avr_replace_call_ret_sequences)
df406460
NC
2678 {
2679 /* This insn is a rcall. */
2680 unsigned char next_insn_msb = 0;
2681 unsigned char next_insn_lsb = 0;
2682
2683 if (irel->r_offset + 3 < sec->size)
2684 {
4cdc7696 2685 next_insn_msb =
91d6fa6a 2686 bfd_get_8 (abfd, contents + irel->r_offset + 3);
4cdc7696 2687 next_insn_lsb =
91d6fa6a 2688 bfd_get_8 (abfd, contents + irel->r_offset + 2);
df406460 2689 }
4cdc7696
NC
2690
2691 if ((0x95 == next_insn_msb) && (0x08 == next_insn_lsb))
df406460
NC
2692 {
2693 /* The next insn is a ret. We now convert the rcall insn
2694 into a rjmp instruction. */
df406460
NC
2695 code_msb &= 0xef;
2696 bfd_put_8 (abfd, code_msb, contents + irel->r_offset + 1);
28c9d252 2697 if (debug_relax)
df406460
NC
2698 printf ("converted rcall/ret sequence at address 0x%x"
2699 " into rjmp/ret sequence. Section is %s\n\n",
2700 (int) dot, sec->name);
2701 *again = TRUE;
2702 break;
2703 }
2704 }
2705 else if ((0x94 == (code_msb & 0xfe))
28c9d252
NC
2706 && (0x0e == (code_lsb & 0x0e))
2707 && avr_replace_call_ret_sequences)
df406460
NC
2708 {
2709 /* This insn is a call. */
2710 unsigned char next_insn_msb = 0;
2711 unsigned char next_insn_lsb = 0;
2712
2713 if (irel->r_offset + 5 < sec->size)
2714 {
2715 next_insn_msb =
91d6fa6a 2716 bfd_get_8 (abfd, contents + irel->r_offset + 5);
df406460 2717 next_insn_lsb =
91d6fa6a 2718 bfd_get_8 (abfd, contents + irel->r_offset + 4);
df406460 2719 }
4cdc7696 2720
df406460
NC
2721 if ((0x95 == next_insn_msb) && (0x08 == next_insn_lsb))
2722 {
2723 /* The next insn is a ret. We now convert the call insn
2724 into a jmp instruction. */
2725
2726 code_lsb &= 0xfd;
2727 bfd_put_8 (abfd, code_lsb, contents + irel->r_offset);
28c9d252 2728 if (debug_relax)
df406460
NC
2729 printf ("converted call/ret sequence at address 0x%x"
2730 " into jmp/ret sequence. Section is %s\n\n",
2731 (int) dot, sec->name);
2732 *again = TRUE;
2733 break;
2734 }
2735 }
4cdc7696
NC
2736 else if ((0xc0 == (code_msb & 0xf0))
2737 || ((0x94 == (code_msb & 0xfe))
df406460
NC
2738 && (0x0c == (code_lsb & 0x0e))))
2739 {
4cdc7696 2740 /* This insn is a rjmp or a jmp. */
df406460
NC
2741 unsigned char next_insn_msb = 0;
2742 unsigned char next_insn_lsb = 0;
2743 int insn_size;
2744
2745 if (0xc0 == (code_msb & 0xf0))
2746 insn_size = 2; /* rjmp insn */
2747 else
2748 insn_size = 4; /* jmp insn */
2749
2750 if (irel->r_offset + insn_size + 1 < sec->size)
2751 {
4cdc7696 2752 next_insn_msb =
91d6fa6a
NC
2753 bfd_get_8 (abfd, contents + irel->r_offset
2754 + insn_size + 1);
4cdc7696 2755 next_insn_lsb =
91d6fa6a
NC
2756 bfd_get_8 (abfd, contents + irel->r_offset
2757 + insn_size);
df406460
NC
2758 }
2759
2760 if ((0x95 == next_insn_msb) && (0x08 == next_insn_lsb))
2761 {
2762 /* The next insn is a ret. We possibly could delete
cc643b88 2763 this ret. First we need to check for preceding
df406460
NC
2764 sbis/sbic/sbrs or cpse "skip" instructions. */
2765
cc643b88 2766 int there_is_preceding_non_skip_insn = 1;
df406460
NC
2767 bfd_vma address_of_ret;
2768
2769 address_of_ret = dot + insn_size;
2770
28c9d252 2771 if (debug_relax && (insn_size == 2))
4cdc7696 2772 printf ("found rjmp / ret sequence at address 0x%x\n",
df406460 2773 (int) dot);
28c9d252 2774 if (debug_relax && (insn_size == 4))
4cdc7696 2775 printf ("found jmp / ret sequence at address 0x%x\n",
df406460
NC
2776 (int) dot);
2777
cc643b88 2778 /* We have to make sure that there is a preceding insn. */
df406460
NC
2779 if (irel->r_offset >= 2)
2780 {
cc643b88
NC
2781 unsigned char preceding_msb;
2782 unsigned char preceding_lsb;
2783
2784 preceding_msb =
91d6fa6a 2785 bfd_get_8 (abfd, contents + irel->r_offset - 1);
cc643b88 2786 preceding_lsb =
91d6fa6a 2787 bfd_get_8 (abfd, contents + irel->r_offset - 2);
df406460
NC
2788
2789 /* sbic. */
cc643b88
NC
2790 if (0x99 == preceding_msb)
2791 there_is_preceding_non_skip_insn = 0;
df406460
NC
2792
2793 /* sbis. */
cc643b88
NC
2794 if (0x9b == preceding_msb)
2795 there_is_preceding_non_skip_insn = 0;
df406460
NC
2796
2797 /* sbrc */
cc643b88
NC
2798 if ((0xfc == (preceding_msb & 0xfe)
2799 && (0x00 == (preceding_lsb & 0x08))))
2800 there_is_preceding_non_skip_insn = 0;
df406460 2801
4cdc7696 2802 /* sbrs */
cc643b88
NC
2803 if ((0xfe == (preceding_msb & 0xfe)
2804 && (0x00 == (preceding_lsb & 0x08))))
2805 there_is_preceding_non_skip_insn = 0;
4cdc7696 2806
df406460 2807 /* cpse */
cc643b88
NC
2808 if (0x10 == (preceding_msb & 0xfc))
2809 there_is_preceding_non_skip_insn = 0;
4cdc7696 2810
cc643b88 2811 if (there_is_preceding_non_skip_insn == 0)
28c9d252 2812 if (debug_relax)
cc643b88
NC
2813 printf ("preceding skip insn prevents deletion of"
2814 " ret insn at Addy 0x%x in section %s\n",
df406460
NC
2815 (int) dot + 2, sec->name);
2816 }
2817 else
2818 {
2819 /* There is no previous instruction. */
cc643b88 2820 there_is_preceding_non_skip_insn = 0;
4cdc7696 2821 }
df406460 2822
cc643b88 2823 if (there_is_preceding_non_skip_insn)
df406460
NC
2824 {
2825 /* We now only have to make sure that there is no
2826 local label defined at the address of the ret
2827 instruction and that there is no local relocation
2828 in this section pointing to the ret. */
2829
2830 int deleting_ret_is_safe = 1;
4cdc7696 2831 unsigned int section_offset_of_ret_insn =
91d6fa6a 2832 irel->r_offset + insn_size;
df406460
NC
2833 Elf_Internal_Sym *isym, *isymend;
2834 unsigned int sec_shndx;
8d6a12ee 2835 struct bfd_section *isec;
4cdc7696
NC
2836
2837 sec_shndx =
2838 _bfd_elf_section_from_bfd_section (abfd, sec);
df406460
NC
2839
2840 /* Check for local symbols. */
2841 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
2842 isymend = isym + symtab_hdr->sh_info;
696b7ad2
NC
2843 /* PR 6019: There may not be any local symbols. */
2844 for (; isym != NULL && isym < isymend; isym++)
91d6fa6a
NC
2845 {
2846 if (isym->st_value == section_offset_of_ret_insn
2847 && isym->st_shndx == sec_shndx)
2848 {
2849 deleting_ret_is_safe = 0;
2850 if (debug_relax)
2851 printf ("local label prevents deletion of ret "
2852 "insn at address 0x%x\n",
2853 (int) dot + insn_size);
2854 }
2855 }
2856
2857 /* Now check for global symbols. */
2858 {
2859 int symcount;
2860 struct elf_link_hash_entry **sym_hashes;
2861 struct elf_link_hash_entry **end_hashes;
2862
2863 symcount = (symtab_hdr->sh_size
2864 / sizeof (Elf32_External_Sym)
2865 - symtab_hdr->sh_info);
2866 sym_hashes = elf_sym_hashes (abfd);
2867 end_hashes = sym_hashes + symcount;
2868 for (; sym_hashes < end_hashes; sym_hashes++)
2869 {
2870 struct elf_link_hash_entry *sym_hash =
2871 *sym_hashes;
2872 if ((sym_hash->root.type == bfd_link_hash_defined
2873 || sym_hash->root.type ==
4cdc7696 2874 bfd_link_hash_defweak)
91d6fa6a
NC
2875 && sym_hash->root.u.def.section == sec
2876 && sym_hash->root.u.def.value == section_offset_of_ret_insn)
2877 {
2878 deleting_ret_is_safe = 0;
2879 if (debug_relax)
2880 printf ("global label prevents deletion of "
2881 "ret insn at address 0x%x\n",
2882 (int) dot + insn_size);
2883 }
2884 }
2885 }
91d6fa6a 2886
8d6a12ee
NC
2887 /* Now we check for relocations pointing to ret. */
2888 for (isec = abfd->sections; isec && deleting_ret_is_safe; isec = isec->next)
2889 {
2890 Elf_Internal_Rela *rel;
2891 Elf_Internal_Rela *relend;
f36e8886 2892
8d6a12ee
NC
2893 rel = elf_section_data (isec)->relocs;
2894 if (rel == NULL)
2895 rel = _bfd_elf_link_read_relocs (abfd, isec, NULL, NULL, TRUE);
91d6fa6a 2896
8d6a12ee 2897 relend = rel + isec->reloc_count;
91d6fa6a 2898
8d6a12ee
NC
2899 for (; rel && rel < relend; rel++)
2900 {
2901 bfd_vma reloc_target = 0;
2902
2903 /* Read this BFD's local symbols if we haven't
2904 done so already. */
2905 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
2906 {
2907 isymbuf = (Elf_Internal_Sym *)
2908 symtab_hdr->contents;
2909 if (isymbuf == NULL)
2910 isymbuf = bfd_elf_get_elf_syms
2911 (abfd,
2912 symtab_hdr,
2913 symtab_hdr->sh_info, 0,
2914 NULL, NULL, NULL);
2915 if (isymbuf == NULL)
2916 break;
2917 }
2918
2919 /* Get the value of the symbol referred to
2920 by the reloc. */
2921 if (ELF32_R_SYM (rel->r_info)
2922 < symtab_hdr->sh_info)
2923 {
2924 /* A local symbol. */
2925 asection *sym_sec;
2926
2927 isym = isymbuf
2928 + ELF32_R_SYM (rel->r_info);
2929 sym_sec = bfd_section_from_elf_index
2930 (abfd, isym->st_shndx);
2931 symval = isym->st_value;
2932
2933 /* If the reloc is absolute, it will not
2934 have a symbol or section associated
2935 with it. */
2936
2937 if (sym_sec)
2938 {
2939 symval +=
2940 sym_sec->output_section->vma
2941 + sym_sec->output_offset;
2942 reloc_target = symval + rel->r_addend;
2943 }
2944 else
2945 {
2946 reloc_target = symval + rel->r_addend;
2947 /* Reference symbol is absolute. */
2948 }
2949 }
2950 /* else ... reference symbol is extern. */
2951
2952 if (address_of_ret == reloc_target)
2953 {
2954 deleting_ret_is_safe = 0;
2955 if (debug_relax)
2956 printf ("ret from "
2957 "rjmp/jmp ret sequence at address"
2958 " 0x%x could not be deleted. ret"
2959 " is target of a relocation.\n",
2960 (int) address_of_ret);
91d6fa6a 2961 break;
8d6a12ee
NC
2962 }
2963 }
2964 }
91d6fa6a
NC
2965
2966 if (deleting_ret_is_safe)
2967 {
2968 if (debug_relax)
2969 printf ("unreachable ret instruction "
2970 "at address 0x%x deleted.\n",
2971 (int) dot + insn_size);
2972
2973 /* Delete two bytes of data. */
2974 if (!elf32_avr_relax_delete_bytes (abfd, sec,
2975 irel->r_offset + insn_size, 2))
2976 goto error_return;
2977
2978 /* That will change things, so, we should relax
2979 again. Note that this is not required, and it
2980 may be slow. */
2981 *again = TRUE;
2982 break;
2983 }
df406460 2984 }
4cdc7696
NC
2985 }
2986 }
df406460
NC
2987 break;
2988 }
2989 }
2990 }
2991
bac13f5a
AB
2992 if (!*again)
2993 {
2994 /* Look through all the property records in this section to see if
2995 there's any alignment records that can be moved. */
2996 struct avr_relax_info *relax_info;
2997
2998 relax_info = get_avr_relax_info (sec);
2999 if (relax_info->records.count > 0)
3000 {
3001 unsigned int i;
3002
3003 for (i = 0; i < relax_info->records.count; ++i)
3004 {
3005 switch (relax_info->records.items [i].type)
3006 {
3007 case RECORD_ORG:
3008 case RECORD_ORG_AND_FILL:
3009 break;
3010 case RECORD_ALIGN:
3011 case RECORD_ALIGN_AND_FILL:
3012 {
3013 struct avr_property_record *record;
3014 unsigned long bytes_to_align;
3015 int count = 0;
3016
3017 /* Look for alignment directives that have had enough
3018 bytes deleted before them, such that the directive
3019 can be moved backwards and still maintain the
3020 required alignment. */
3021 record = &relax_info->records.items [i];
3022 bytes_to_align
3023 = (unsigned long) (1 << record->data.align.bytes);
3024 while (record->data.align.preceding_deleted >=
3025 bytes_to_align)
3026 {
3027 record->data.align.preceding_deleted
3028 -= bytes_to_align;
3029 count += bytes_to_align;
3030 }
3031
3032 if (count > 0)
3033 {
3034 bfd_vma addr = record->offset;
3035
3036 /* We can delete COUNT bytes and this alignment
3037 directive will still be correctly aligned.
3038 First move the alignment directive, then delete
3039 the bytes. */
3040 record->offset -= count;
3041 elf32_avr_relax_delete_bytes (abfd, sec,
3042 addr - count,
3043 count);
3044 *again = TRUE;
3045 }
3046 }
3047 break;
3048 }
3049 }
3050 }
3051 }
3052
df406460
NC
3053 if (contents != NULL
3054 && elf_section_data (sec)->this_hdr.contents != contents)
3055 {
3056 if (! link_info->keep_memory)
3057 free (contents);
3058 else
3059 {
3060 /* Cache the section contents for elf_link_input_bfd. */
3061 elf_section_data (sec)->this_hdr.contents = contents;
3062 }
3063 }
3064
3065 if (internal_relocs != NULL
3066 && elf_section_data (sec)->relocs != internal_relocs)
3067 free (internal_relocs);
3068
3069 return TRUE;
3070
3071 error_return:
3072 if (isymbuf != NULL
3073 && symtab_hdr->contents != (unsigned char *) isymbuf)
3074 free (isymbuf);
3075 if (contents != NULL
3076 && elf_section_data (sec)->this_hdr.contents != contents)
3077 free (contents);
3078 if (internal_relocs != NULL
3079 && elf_section_data (sec)->relocs != internal_relocs)
3080 free (internal_relocs);
3081
4cdc7696 3082 return FALSE;
df406460
NC
3083}
3084
3085/* This is a version of bfd_generic_get_relocated_section_contents
4cdc7696 3086 which uses elf32_avr_relocate_section.
df406460 3087
4cdc7696 3088 For avr it's essentially a cut and paste taken from the H8300 port.
df406460 3089 The author of the relaxation support patch for avr had absolutely no
4cdc7696 3090 clue what is happening here but found out that this part of the code
df406460
NC
3091 seems to be important. */
3092
3093static bfd_byte *
3094elf32_avr_get_relocated_section_contents (bfd *output_bfd,
3095 struct bfd_link_info *link_info,
3096 struct bfd_link_order *link_order,
3097 bfd_byte *data,
3098 bfd_boolean relocatable,
3099 asymbol **symbols)
3100{
3101 Elf_Internal_Shdr *symtab_hdr;
3102 asection *input_section = link_order->u.indirect.section;
3103 bfd *input_bfd = input_section->owner;
3104 asection **sections = NULL;
3105 Elf_Internal_Rela *internal_relocs = NULL;
3106 Elf_Internal_Sym *isymbuf = NULL;
3107
3108 /* We only need to handle the case of relaxing, or of having a
3109 particular set of section contents, specially. */
3110 if (relocatable
3111 || elf_section_data (input_section)->this_hdr.contents == NULL)
3112 return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
3113 link_order, data,
3114 relocatable,
3115 symbols);
3116 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3117
3118 memcpy (data, elf_section_data (input_section)->this_hdr.contents,
3119 (size_t) input_section->size);
3120
3121 if ((input_section->flags & SEC_RELOC) != 0
3122 && input_section->reloc_count > 0)
3123 {
3124 asection **secpp;
3125 Elf_Internal_Sym *isym, *isymend;
3126 bfd_size_type amt;
3127
3128 internal_relocs = (_bfd_elf_link_read_relocs
4cdc7696 3129 (input_bfd, input_section, NULL, NULL, FALSE));
df406460
NC
3130 if (internal_relocs == NULL)
3131 goto error_return;
3132
3133 if (symtab_hdr->sh_info != 0)
3134 {
3135 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
3136 if (isymbuf == NULL)
3137 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
3138 symtab_hdr->sh_info, 0,
3139 NULL, NULL, NULL);
3140 if (isymbuf == NULL)
3141 goto error_return;
3142 }
3143
3144 amt = symtab_hdr->sh_info;
3145 amt *= sizeof (asection *);
4cdc7696 3146 sections = bfd_malloc (amt);
df406460
NC
3147 if (sections == NULL && amt != 0)
3148 goto error_return;
3149
3150 isymend = isymbuf + symtab_hdr->sh_info;
3151 for (isym = isymbuf, secpp = sections; isym < isymend; ++isym, ++secpp)
3152 {
3153 asection *isec;
3154
3155 if (isym->st_shndx == SHN_UNDEF)
3156 isec = bfd_und_section_ptr;
3157 else if (isym->st_shndx == SHN_ABS)
3158 isec = bfd_abs_section_ptr;
3159 else if (isym->st_shndx == SHN_COMMON)
3160 isec = bfd_com_section_ptr;
3161 else
3162 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
3163
3164 *secpp = isec;
3165 }
3166
3167 if (! elf32_avr_relocate_section (output_bfd, link_info, input_bfd,
3168 input_section, data, internal_relocs,
3169 isymbuf, sections))
3170 goto error_return;
3171
3172 if (sections != NULL)
3173 free (sections);
3174 if (isymbuf != NULL
3175 && symtab_hdr->contents != (unsigned char *) isymbuf)
3176 free (isymbuf);
3177 if (elf_section_data (input_section)->relocs != internal_relocs)
3178 free (internal_relocs);
3179 }
3180
3181 return data;
3182
3183 error_return:
3184 if (sections != NULL)
3185 free (sections);
3186 if (isymbuf != NULL
3187 && symtab_hdr->contents != (unsigned char *) isymbuf)
3188 free (isymbuf);
3189 if (internal_relocs != NULL
3190 && elf_section_data (input_section)->relocs != internal_relocs)
3191 free (internal_relocs);
3192 return NULL;
3193}
3194
3195
28c9d252
NC
3196/* Determines the hash entry name for a particular reloc. It consists of
3197 the identifier of the symbol section and the added reloc addend and
3198 symbol offset relative to the section the symbol is attached to. */
3199
3200static char *
3201avr_stub_name (const asection *symbol_section,
3202 const bfd_vma symbol_offset,
3203 const Elf_Internal_Rela *rela)
3204{
3205 char *stub_name;
3206 bfd_size_type len;
3207
3208 len = 8 + 1 + 8 + 1 + 1;
3209 stub_name = bfd_malloc (len);
3210
3211 sprintf (stub_name, "%08x+%08x",
3212 symbol_section->id & 0xffffffff,
3213 (unsigned int) ((rela->r_addend & 0xffffffff) + symbol_offset));
3214
3215 return stub_name;
3216}
3217
3218
3219/* Add a new stub entry to the stub hash. Not all fields of the new
3220 stub entry are initialised. */
3221
3222static struct elf32_avr_stub_hash_entry *
3223avr_add_stub (const char *stub_name,
3224 struct elf32_avr_link_hash_table *htab)
3225{
3226 struct elf32_avr_stub_hash_entry *hsh;
3227
3228 /* Enter this entry into the linker stub hash table. */
3229 hsh = avr_stub_hash_lookup (&htab->bstab, stub_name, TRUE, FALSE);
3230
3231 if (hsh == NULL)
3232 {
3233 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
3234 NULL, stub_name);
3235 return NULL;
3236 }
3237
3238 hsh->stub_offset = 0;
3239 return hsh;
3240}
3241
3242/* We assume that there is already space allocated for the stub section
3243 contents and that before building the stubs the section size is
3244 initialized to 0. We assume that within the stub hash table entry,
3245 the absolute position of the jmp target has been written in the
3246 target_value field. We write here the offset of the generated jmp insn
3247 relative to the trampoline section start to the stub_offset entry in
3248 the stub hash table entry. */
3249
3250static bfd_boolean
3251avr_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
3252{
3253 struct elf32_avr_stub_hash_entry *hsh;
3254 struct bfd_link_info *info;
3255 struct elf32_avr_link_hash_table *htab;
3256 bfd *stub_bfd;
3257 bfd_byte *loc;
3258 bfd_vma target;
3259 bfd_vma starget;
3260
3261 /* Basic opcode */
3262 bfd_vma jmp_insn = 0x0000940c;
3263
3264 /* Massage our args to the form they really have. */
3265 hsh = avr_stub_hash_entry (bh);
3266
3267 if (!hsh->is_actually_needed)
3268 return TRUE;
3269
3270 info = (struct bfd_link_info *) in_arg;
3271
3272 htab = avr_link_hash_table (info);
64ee10b6
NC
3273 if (htab == NULL)
3274 return FALSE;
28c9d252
NC
3275
3276 target = hsh->target_value;
3277
3278 /* Make a note of the offset within the stubs for this entry. */
3279 hsh->stub_offset = htab->stub_sec->size;
3280 loc = htab->stub_sec->contents + hsh->stub_offset;
3281
3282 stub_bfd = htab->stub_sec->owner;
3283
3284 if (debug_stubs)
3285 printf ("Building one Stub. Address: 0x%x, Offset: 0x%x\n",
3286 (unsigned int) target,
3287 (unsigned int) hsh->stub_offset);
3288
3289 /* We now have to add the information on the jump target to the bare
3290 opcode bits already set in jmp_insn. */
3291
3292 /* Check for the alignment of the address. */
3293 if (target & 1)
3294 return FALSE;
3295
3296 starget = target >> 1;
3297 jmp_insn |= ((starget & 0x10000) | ((starget << 3) & 0x1f00000)) >> 16;
3298 bfd_put_16 (stub_bfd, jmp_insn, loc);
3299 bfd_put_16 (stub_bfd, (bfd_vma) starget & 0xffff, loc + 2);
3300
3301 htab->stub_sec->size += 4;
3302
3303 /* Now add the entries in the address mapping table if there is still
3304 space left. */
3305 {
3306 unsigned int nr;
3307
3308 nr = htab->amt_entry_cnt + 1;
3309 if (nr <= htab->amt_max_entry_cnt)
3310 {
3311 htab->amt_entry_cnt = nr;
3312
3313 htab->amt_stub_offsets[nr - 1] = hsh->stub_offset;
3314 htab->amt_destination_addr[nr - 1] = target;
3315 }
3316 }
3317
3318 return TRUE;
3319}
3320
3321static bfd_boolean
3322avr_mark_stub_not_to_be_necessary (struct bfd_hash_entry *bh,
c7e2358a 3323 void *in_arg ATTRIBUTE_UNUSED)
28c9d252
NC
3324{
3325 struct elf32_avr_stub_hash_entry *hsh;
28c9d252 3326
28c9d252
NC
3327 hsh = avr_stub_hash_entry (bh);
3328 hsh->is_actually_needed = FALSE;
3329
3330 return TRUE;
3331}
3332
3333static bfd_boolean
3334avr_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
3335{
3336 struct elf32_avr_stub_hash_entry *hsh;
3337 struct elf32_avr_link_hash_table *htab;
3338 int size;
3339
3340 /* Massage our args to the form they really have. */
3341 hsh = avr_stub_hash_entry (bh);
3342 htab = in_arg;
3343
3344 if (hsh->is_actually_needed)
3345 size = 4;
3346 else
3347 size = 0;
3348
3349 htab->stub_sec->size += size;
3350 return TRUE;
3351}
3352
3353void
3354elf32_avr_setup_params (struct bfd_link_info *info,
3355 bfd *avr_stub_bfd,
3356 asection *avr_stub_section,
3357 bfd_boolean no_stubs,
3358 bfd_boolean deb_stubs,
3359 bfd_boolean deb_relax,
3360 bfd_vma pc_wrap_around,
3361 bfd_boolean call_ret_replacement)
3362{
64ee10b6 3363 struct elf32_avr_link_hash_table *htab = avr_link_hash_table (info);
28c9d252 3364
64ee10b6
NC
3365 if (htab == NULL)
3366 return;
28c9d252
NC
3367 htab->stub_sec = avr_stub_section;
3368 htab->stub_bfd = avr_stub_bfd;
3369 htab->no_stubs = no_stubs;
3370
3371 debug_relax = deb_relax;
3372 debug_stubs = deb_stubs;
3373 avr_pc_wrap_around = pc_wrap_around;
3374 avr_replace_call_ret_sequences = call_ret_replacement;
3375}
3376
3377
3378/* Set up various things so that we can make a list of input sections
3379 for each output section included in the link. Returns -1 on error,
3380 0 when no stubs will be needed, and 1 on success. It also sets
3381 information on the stubs bfd and the stub section in the info
3382 struct. */
3383
3384int
3385elf32_avr_setup_section_lists (bfd *output_bfd,
3386 struct bfd_link_info *info)
3387{
3388 bfd *input_bfd;
3389 unsigned int bfd_count;
7292b3ac 3390 unsigned int top_id, top_index;
28c9d252
NC
3391 asection *section;
3392 asection **input_list, **list;
3393 bfd_size_type amt;
4dfe6ac6 3394 struct elf32_avr_link_hash_table *htab = avr_link_hash_table (info);
28c9d252 3395
64ee10b6 3396 if (htab == NULL || htab->no_stubs)
28c9d252
NC
3397 return 0;
3398
3399 /* Count the number of input BFDs and find the top input section id. */
3400 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3401 input_bfd != NULL;
c72f2fb2 3402 input_bfd = input_bfd->link.next)
28c9d252
NC
3403 {
3404 bfd_count += 1;
3405 for (section = input_bfd->sections;
3406 section != NULL;
3407 section = section->next)
3408 if (top_id < section->id)
3409 top_id = section->id;
3410 }
3411
3412 htab->bfd_count = bfd_count;
3413
3414 /* We can't use output_bfd->section_count here to find the top output
3415 section index as some sections may have been removed, and
3416 strip_excluded_output_sections doesn't renumber the indices. */
3417 for (section = output_bfd->sections, top_index = 0;
3418 section != NULL;
3419 section = section->next)
3420 if (top_index < section->index)
3421 top_index = section->index;
3422
3423 htab->top_index = top_index;
3424 amt = sizeof (asection *) * (top_index + 1);
3425 input_list = bfd_malloc (amt);
3426 htab->input_list = input_list;
3427 if (input_list == NULL)
3428 return -1;
3429
3430 /* For sections we aren't interested in, mark their entries with a
3431 value we can check later. */
3432 list = input_list + top_index;
3433 do
3434 *list = bfd_abs_section_ptr;
3435 while (list-- != input_list);
3436
3437 for (section = output_bfd->sections;
3438 section != NULL;
3439 section = section->next)
3440 if ((section->flags & SEC_CODE) != 0)
3441 input_list[section->index] = NULL;
3442
3443 return 1;
3444}
3445
3446
3447/* Read in all local syms for all input bfds, and create hash entries
3448 for export stubs if we are building a multi-subspace shared lib.
3449 Returns -1 on error, 0 otherwise. */
3450
3451static int
3452get_local_syms (bfd *input_bfd, struct bfd_link_info *info)
3453{
3454 unsigned int bfd_indx;
3455 Elf_Internal_Sym *local_syms, **all_local_syms;
3456 struct elf32_avr_link_hash_table *htab = avr_link_hash_table (info);
9a008db3 3457 bfd_size_type amt;
28c9d252 3458
64ee10b6
NC
3459 if (htab == NULL)
3460 return -1;
3461
28c9d252
NC
3462 /* We want to read in symbol extension records only once. To do this
3463 we need to read in the local symbols in parallel and save them for
3464 later use; so hold pointers to the local symbols in an array. */
9a008db3 3465 amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
28c9d252
NC
3466 all_local_syms = bfd_zmalloc (amt);
3467 htab->all_local_syms = all_local_syms;
3468 if (all_local_syms == NULL)
3469 return -1;
3470
3471 /* Walk over all the input BFDs, swapping in local symbols.
3472 If we are creating a shared library, create hash entries for the
3473 export stubs. */
3474 for (bfd_indx = 0;
3475 input_bfd != NULL;
c72f2fb2 3476 input_bfd = input_bfd->link.next, bfd_indx++)
28c9d252
NC
3477 {
3478 Elf_Internal_Shdr *symtab_hdr;
3479
3480 /* We'll need the symbol table in a second. */
3481 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3482 if (symtab_hdr->sh_info == 0)
3483 continue;
3484
3485 /* We need an array of the local symbols attached to the input bfd. */
3486 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
3487 if (local_syms == NULL)
3488 {
3489 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
3490 symtab_hdr->sh_info, 0,
3491 NULL, NULL, NULL);
3492 /* Cache them for elf_link_input_bfd. */
3493 symtab_hdr->contents = (unsigned char *) local_syms;
3494 }
3495 if (local_syms == NULL)
3496 return -1;
3497
3498 all_local_syms[bfd_indx] = local_syms;
3499 }
3500
3501 return 0;
3502}
3503
3504#define ADD_DUMMY_STUBS_FOR_DEBUGGING 0
3505
3506bfd_boolean
3507elf32_avr_size_stubs (bfd *output_bfd,
3508 struct bfd_link_info *info,
3509 bfd_boolean is_prealloc_run)
3510{
64ee10b6
NC
3511 struct elf32_avr_link_hash_table *htab;
3512 int stub_changed = 0;
28c9d252 3513
64ee10b6
NC
3514 htab = avr_link_hash_table (info);
3515 if (htab == NULL)
3516 return FALSE;
28c9d252 3517
64ee10b6
NC
3518 /* At this point we initialize htab->vector_base
3519 To the start of the text output section. */
3520 htab->vector_base = htab->stub_sec->output_section->vma;
28c9d252 3521
64ee10b6
NC
3522 if (get_local_syms (info->input_bfds, info))
3523 {
3524 if (htab->all_local_syms)
3525 goto error_ret_free_local;
3526 return FALSE;
3527 }
28c9d252
NC
3528
3529 if (ADD_DUMMY_STUBS_FOR_DEBUGGING)
3530 {
3531 struct elf32_avr_stub_hash_entry *test;
3532
3533 test = avr_add_stub ("Hugo",htab);
3534 test->target_value = 0x123456;
3535 test->stub_offset = 13;
3536
3537 test = avr_add_stub ("Hugo2",htab);
3538 test->target_value = 0x84210;
3539 test->stub_offset = 14;
3540 }
3541
3542 while (1)
3543 {
3544 bfd *input_bfd;
3545 unsigned int bfd_indx;
3546
3547 /* We will have to re-generate the stub hash table each time anything
3548 in memory has changed. */
3549
3550 bfd_hash_traverse (&htab->bstab, avr_mark_stub_not_to_be_necessary, htab);
3551 for (input_bfd = info->input_bfds, bfd_indx = 0;
3552 input_bfd != NULL;
c72f2fb2 3553 input_bfd = input_bfd->link.next, bfd_indx++)
28c9d252
NC
3554 {
3555 Elf_Internal_Shdr *symtab_hdr;
3556 asection *section;
3557 Elf_Internal_Sym *local_syms;
3558
3559 /* We'll need the symbol table in a second. */
3560 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3561 if (symtab_hdr->sh_info == 0)
3562 continue;
3563
3564 local_syms = htab->all_local_syms[bfd_indx];
3565
3566 /* Walk over each section attached to the input bfd. */
3567 for (section = input_bfd->sections;
3568 section != NULL;
3569 section = section->next)
3570 {
3571 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
3572
3573 /* If there aren't any relocs, then there's nothing more
3574 to do. */
3575 if ((section->flags & SEC_RELOC) == 0
3576 || section->reloc_count == 0)
3577 continue;
3578
3579 /* If this section is a link-once section that will be
3580 discarded, then don't create any stubs. */
3581 if (section->output_section == NULL
3582 || section->output_section->owner != output_bfd)
3583 continue;
3584
3585 /* Get the relocs. */
3586 internal_relocs
3587 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
3588 info->keep_memory);
3589 if (internal_relocs == NULL)
3590 goto error_ret_free_local;
3591
3592 /* Now examine each relocation. */
3593 irela = internal_relocs;
3594 irelaend = irela + section->reloc_count;
3595 for (; irela < irelaend; irela++)
3596 {
3597 unsigned int r_type, r_indx;
3598 struct elf32_avr_stub_hash_entry *hsh;
3599 asection *sym_sec;
3600 bfd_vma sym_value;
3601 bfd_vma destination;
3602 struct elf_link_hash_entry *hh;
3603 char *stub_name;
3604
3605 r_type = ELF32_R_TYPE (irela->r_info);
3606 r_indx = ELF32_R_SYM (irela->r_info);
3607
3608 /* Only look for 16 bit GS relocs. No other reloc will need a
3609 stub. */
3610 if (!((r_type == R_AVR_16_PM)
3611 || (r_type == R_AVR_LO8_LDI_GS)
3612 || (r_type == R_AVR_HI8_LDI_GS)))
3613 continue;
3614
3615 /* Now determine the call target, its name, value,
3616 section. */
3617 sym_sec = NULL;
3618 sym_value = 0;
3619 destination = 0;
3620 hh = NULL;
3621 if (r_indx < symtab_hdr->sh_info)
3622 {
3623 /* It's a local symbol. */
3624 Elf_Internal_Sym *sym;
3625 Elf_Internal_Shdr *hdr;
4fbb74a6 3626 unsigned int shndx;
28c9d252
NC
3627
3628 sym = local_syms + r_indx;
28c9d252
NC
3629 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
3630 sym_value = sym->st_value;
4fbb74a6
AM
3631 shndx = sym->st_shndx;
3632 if (shndx < elf_numsections (input_bfd))
3633 {
3634 hdr = elf_elfsections (input_bfd)[shndx];
3635 sym_sec = hdr->bfd_section;
3636 destination = (sym_value + irela->r_addend
3637 + sym_sec->output_offset
3638 + sym_sec->output_section->vma);
3639 }
28c9d252
NC
3640 }
3641 else
3642 {
3643 /* It's an external symbol. */
3644 int e_indx;
3645
3646 e_indx = r_indx - symtab_hdr->sh_info;
3647 hh = elf_sym_hashes (input_bfd)[e_indx];
3648
3649 while (hh->root.type == bfd_link_hash_indirect
3650 || hh->root.type == bfd_link_hash_warning)
3651 hh = (struct elf_link_hash_entry *)
3652 (hh->root.u.i.link);
3653
3654 if (hh->root.type == bfd_link_hash_defined
3655 || hh->root.type == bfd_link_hash_defweak)
3656 {
3657 sym_sec = hh->root.u.def.section;
3658 sym_value = hh->root.u.def.value;
3659 if (sym_sec->output_section != NULL)
3660 destination = (sym_value + irela->r_addend
3661 + sym_sec->output_offset
3662 + sym_sec->output_section->vma);
3663 }
3664 else if (hh->root.type == bfd_link_hash_undefweak)
3665 {
0e1862bb 3666 if (! bfd_link_pic (info))
28c9d252
NC
3667 continue;
3668 }
3669 else if (hh->root.type == bfd_link_hash_undefined)
3670 {
3671 if (! (info->unresolved_syms_in_objects == RM_IGNORE
3672 && (ELF_ST_VISIBILITY (hh->other)
3673 == STV_DEFAULT)))
3674 continue;
3675 }
3676 else
3677 {
3678 bfd_set_error (bfd_error_bad_value);
3679
3680 error_ret_free_internal:
3681 if (elf_section_data (section)->relocs == NULL)
3682 free (internal_relocs);
3683 goto error_ret_free_local;
3684 }
3685 }
3686
3687 if (! avr_stub_is_required_for_16_bit_reloc
3688 (destination - htab->vector_base))
3689 {
3690 if (!is_prealloc_run)
3691 /* We are having a reloc that does't need a stub. */
3692 continue;
3693
3694 /* We don't right now know if a stub will be needed.
3695 Let's rather be on the safe side. */
3696 }
3697
3698 /* Get the name of this stub. */
3699 stub_name = avr_stub_name (sym_sec, sym_value, irela);
3700
3701 if (!stub_name)
3702 goto error_ret_free_internal;
3703
3704
3705 hsh = avr_stub_hash_lookup (&htab->bstab,
3706 stub_name,
3707 FALSE, FALSE);
3708 if (hsh != NULL)
3709 {
3710 /* The proper stub has already been created. Mark it
3711 to be used and write the possibly changed destination
3712 value. */
3713 hsh->is_actually_needed = TRUE;
3714 hsh->target_value = destination;
3715 free (stub_name);
3716 continue;
3717 }
3718
3719 hsh = avr_add_stub (stub_name, htab);
3720 if (hsh == NULL)
3721 {
3722 free (stub_name);
3723 goto error_ret_free_internal;
3724 }
3725
3726 hsh->is_actually_needed = TRUE;
3727 hsh->target_value = destination;
3728
3729 if (debug_stubs)
3730 printf ("Adding stub with destination 0x%x to the"
3731 " hash table.\n", (unsigned int) destination);
3732 if (debug_stubs)
3733 printf ("(Pre-Alloc run: %i)\n", is_prealloc_run);
3734
3735 stub_changed = TRUE;
3736 }
3737
3738 /* We're done with the internal relocs, free them. */
3739 if (elf_section_data (section)->relocs == NULL)
3740 free (internal_relocs);
3741 }
3742 }
3743
3744 /* Re-Calculate the number of needed stubs. */
3745 htab->stub_sec->size = 0;
3746 bfd_hash_traverse (&htab->bstab, avr_size_one_stub, htab);
3747
3748 if (!stub_changed)
3749 break;
3750
3751 stub_changed = FALSE;
3752 }
3753
3754 free (htab->all_local_syms);
3755 return TRUE;
3756
3757 error_ret_free_local:
3758 free (htab->all_local_syms);
3759 return FALSE;
3760}
3761
3762
3763/* Build all the stubs associated with the current output file. The
3764 stubs are kept in a hash table attached to the main linker hash
3765 table. We also set up the .plt entries for statically linked PIC
3766 functions here. This function is called via hppaelf_finish in the
3767 linker. */
3768
3769bfd_boolean
3770elf32_avr_build_stubs (struct bfd_link_info *info)
3771{
3772 asection *stub_sec;
3773 struct bfd_hash_table *table;
3774 struct elf32_avr_link_hash_table *htab;
3775 bfd_size_type total_size = 0;
3776
3777 htab = avr_link_hash_table (info);
64ee10b6
NC
3778 if (htab == NULL)
3779 return FALSE;
28c9d252
NC
3780
3781 /* In case that there were several stub sections: */
3782 for (stub_sec = htab->stub_bfd->sections;
3783 stub_sec != NULL;
3784 stub_sec = stub_sec->next)
3785 {
3786 bfd_size_type size;
3787
3788 /* Allocate memory to hold the linker stubs. */
3789 size = stub_sec->size;
3790 total_size += size;
3791
3792 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3793 if (stub_sec->contents == NULL && size != 0)
3794 return FALSE;
3795 stub_sec->size = 0;
3796 }
3797
3798 /* Allocate memory for the adress mapping table. */
3799 htab->amt_entry_cnt = 0;
3800 htab->amt_max_entry_cnt = total_size / 4;
3801 htab->amt_stub_offsets = bfd_malloc (sizeof (bfd_vma)
3802 * htab->amt_max_entry_cnt);
3803 htab->amt_destination_addr = bfd_malloc (sizeof (bfd_vma)
3804 * htab->amt_max_entry_cnt );
3805
3806 if (debug_stubs)
3807 printf ("Allocating %i entries in the AMT\n", htab->amt_max_entry_cnt);
3808
3809 /* Build the stubs as directed by the stub hash table. */
3810 table = &htab->bstab;
3811 bfd_hash_traverse (table, avr_build_one_stub, info);
3812
3813 if (debug_stubs)
3814 printf ("Final Stub section Size: %i\n", (int) htab->stub_sec->size);
3815
3816 return TRUE;
3817}
3818
137c83d6
AB
3819/* Callback used by QSORT to order relocations AP and BP. */
3820
3821static int
3822internal_reloc_compare (const void *ap, const void *bp)
3823{
3824 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
3825 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
3826
3827 if (a->r_offset != b->r_offset)
3828 return (a->r_offset - b->r_offset);
3829
3830 /* We don't need to sort on these criteria for correctness,
3831 but enforcing a more strict ordering prevents unstable qsort
3832 from behaving differently with different implementations.
3833 Without the code below we get correct but different results
3834 on Solaris 2.7 and 2.8. We would like to always produce the
3835 same results no matter the host. */
3836
3837 if (a->r_info != b->r_info)
3838 return (a->r_info - b->r_info);
3839
3840 return (a->r_addend - b->r_addend);
3841}
3842
3843/* Return true if ADDRESS is within the vma range of SECTION from ABFD. */
3844
3845static bfd_boolean
3846avr_is_section_for_address (bfd *abfd, asection *section, bfd_vma address)
3847{
3848 bfd_vma vma;
3849 bfd_size_type size;
3850
3851 vma = bfd_get_section_vma (abfd, section);
3852 if (address < vma)
3853 return FALSE;
3854
3855 size = section->size;
3856 if (address >= vma + size)
3857 return FALSE;
3858
3859 return TRUE;
3860}
3861
3862/* Data structure used by AVR_FIND_SECTION_FOR_ADDRESS. */
3863
3864struct avr_find_section_data
3865{
3866 /* The address we're looking for. */
3867 bfd_vma address;
3868
3869 /* The section we've found. */
3870 asection *section;
3871};
3872
3873/* Helper function to locate the section holding a certain virtual memory
3874 address. This is called via bfd_map_over_sections. The DATA is an
3875 instance of STRUCT AVR_FIND_SECTION_DATA, the address field of which
3876 has been set to the address to search for, and the section field has
3877 been set to NULL. If SECTION from ABFD contains ADDRESS then the
3878 section field in DATA will be set to SECTION. As an optimisation, if
3879 the section field is already non-null then this function does not
3880 perform any checks, and just returns. */
3881
3882static void
3883avr_find_section_for_address (bfd *abfd,
3884 asection *section, void *data)
3885{
3886 struct avr_find_section_data *fs_data
3887 = (struct avr_find_section_data *) data;
3888
3889 /* Return if already found. */
3890 if (fs_data->section != NULL)
3891 return;
3892
3893 /* If this section isn't part of the addressable code content, skip it. */
3894 if ((bfd_get_section_flags (abfd, section) & SEC_ALLOC) == 0
3895 && (bfd_get_section_flags (abfd, section) & SEC_CODE) == 0)
3896 return;
3897
3898 if (avr_is_section_for_address (abfd, section, fs_data->address))
3899 fs_data->section = section;
3900}
3901
3902/* Load all of the property records from SEC, a section from ABFD. Return
3903 a STRUCT AVR_PROPERTY_RECORD_LIST containing all the records. The
3904 memory for the returned structure, and all of the records pointed too by
3905 the structure are allocated with a single call to malloc, so, only the
3906 pointer returned needs to be free'd. */
3907
3908static struct avr_property_record_list *
3909avr_elf32_load_records_from_section (bfd *abfd, asection *sec)
3910{
3911 char *contents = NULL, *ptr;
3912 bfd_size_type size, mem_size;
3913 bfd_byte version, flags;
3914 uint16_t record_count, i;
3915 struct avr_property_record_list *r_list = NULL;
3916 Elf_Internal_Rela *internal_relocs = NULL, *rel, *rel_end;
3917 struct avr_find_section_data fs_data;
3918
3919 fs_data.section = NULL;
3920
3921 size = bfd_get_section_size (sec);
3922 contents = bfd_malloc (size);
3923 bfd_get_section_contents (abfd, sec, contents, 0, size);
3924 ptr = contents;
3925
3926 /* Load the relocations for the '.avr.prop' section if there are any, and
3927 sort them. */
3928 internal_relocs = (_bfd_elf_link_read_relocs
3929 (abfd, sec, NULL, NULL, FALSE));
3930 if (internal_relocs)
3931 qsort (internal_relocs, sec->reloc_count,
3932 sizeof (Elf_Internal_Rela), internal_reloc_compare);
3933
3934 /* There is a header at the start of the property record section SEC, the
3935 format of this header is:
3936 uint8_t : version number
3937 uint8_t : flags
3938 uint16_t : record counter
3939 */
3940
3941 /* Check we have at least got a headers worth of bytes. */
3942 if (size < AVR_PROPERTY_SECTION_HEADER_SIZE)
3943 goto load_failed;
3944
3945 version = *((bfd_byte *) ptr);
3946 ptr++;
3947 flags = *((bfd_byte *) ptr);
3948 ptr++;
3949 record_count = *((uint16_t *) ptr);
3950 ptr+=2;
3951 BFD_ASSERT (ptr - contents == AVR_PROPERTY_SECTION_HEADER_SIZE);
3952
3953 /* Now allocate space for the list structure, and all of the list
3954 elements in a single block. */
3955 mem_size = sizeof (struct avr_property_record_list)
3956 + sizeof (struct avr_property_record) * record_count;
3957 r_list = bfd_malloc (mem_size);
3958 if (r_list == NULL)
3959 goto load_failed;
3960
3961 r_list->version = version;
3962 r_list->flags = flags;
3963 r_list->section = sec;
3964 r_list->record_count = record_count;
3965 r_list->records = (struct avr_property_record *) (&r_list [1]);
3966 size -= AVR_PROPERTY_SECTION_HEADER_SIZE;
3967
3968 /* Check that we understand the version number. There is only one
3969 version number right now, anything else is an error. */
3970 if (r_list->version != AVR_PROPERTY_RECORDS_VERSION)
3971 goto load_failed;
3972
3973 rel = internal_relocs;
3974 rel_end = rel + sec->reloc_count;
3975 for (i = 0; i < record_count; ++i)
3976 {
3977 bfd_vma address;
3978
3979 /* Each entry is a 32-bit address, followed by a single byte type.
3980 After that is the type specific data. We must take care to
3981 ensure that we don't read beyond the end of the section data. */
3982 if (size < 5)
3983 goto load_failed;
3984
3985 r_list->records [i].section = NULL;
3986 r_list->records [i].offset = 0;
3987
3988 if (rel)
3989 {
3990 /* The offset of the address within the .avr.prop section. */
3991 size_t offset = ptr - contents;
3992
3993 while (rel < rel_end && rel->r_offset < offset)
3994 ++rel;
3995
3996 if (rel == rel_end)
3997 rel = NULL;
3998 else if (rel->r_offset == offset)
3999 {
4000 /* Find section and section offset. */
4001 unsigned long r_symndx;
4002
4003 asection * rel_sec;
4004 bfd_vma sec_offset;
4005
4006 r_symndx = ELF32_R_SYM (rel->r_info);
4007 rel_sec = get_elf_r_symndx_section (abfd, r_symndx);
4008 sec_offset = get_elf_r_symndx_offset (abfd, r_symndx)
4009 + rel->r_addend;
4010
4011 r_list->records [i].section = rel_sec;
4012 r_list->records [i].offset = sec_offset;
4013 }
4014 }
4015
4016 address = *((uint32_t *) ptr);
4017 ptr += 4;
4018 size -= 4;
4019
4020 if (r_list->records [i].section == NULL)
4021 {
4022 /* Try to find section and offset from address. */
4023 if (fs_data.section != NULL
4024 && !avr_is_section_for_address (abfd, fs_data.section,
4025 address))
4026 fs_data.section = NULL;
4027
4028 if (fs_data.section == NULL)
4029 {
4030 fs_data.address = address;
4031 bfd_map_over_sections (abfd, avr_find_section_for_address,
4032 &fs_data);
4033 }
4034
4035 if (fs_data.section == NULL)
4036 {
4037 fprintf (stderr, "Failed to find matching section.\n");
4038 goto load_failed;
4039 }
4040
4041 r_list->records [i].section = fs_data.section;
4042 r_list->records [i].offset
4043 = address - bfd_get_section_vma (abfd, fs_data.section);
4044 }
4045
4046 r_list->records [i].type = *((bfd_byte *) ptr);
4047 ptr += 1;
4048 size -= 1;
4049
4050 switch (r_list->records [i].type)
4051 {
4052 case RECORD_ORG:
4053 /* Nothing else to load. */
4054 break;
4055 case RECORD_ORG_AND_FILL:
4056 /* Just a 4-byte fill to load. */
4057 if (size < 4)
4058 goto load_failed;
4059 r_list->records [i].data.org.fill = *((uint32_t *) ptr);
4060 ptr += 4;
4061 size -= 4;
4062 break;
4063 case RECORD_ALIGN:
4064 /* Just a 4-byte alignment to load. */
4065 if (size < 4)
4066 goto load_failed;
4067 r_list->records [i].data.align.bytes = *((uint32_t *) ptr);
4068 ptr += 4;
4069 size -= 4;
4070 /* Just initialise PRECEDING_DELETED field, this field is
4071 used during linker relaxation. */
4072 r_list->records [i].data.align.preceding_deleted = 0;
4073 break;
4074 case RECORD_ALIGN_AND_FILL:
4075 /* A 4-byte alignment, and a 4-byte fill to load. */
4076 if (size < 8)
4077 goto load_failed;
4078 r_list->records [i].data.align.bytes = *((uint32_t *) ptr);
4079 ptr += 4;
4080 r_list->records [i].data.align.fill = *((uint32_t *) ptr);
4081 ptr += 4;
4082 size -= 8;
4083 /* Just initialise PRECEDING_DELETED field, this field is
4084 used during linker relaxation. */
4085 r_list->records [i].data.align.preceding_deleted = 0;
4086 break;
4087 default:
4088 goto load_failed;
4089 }
4090 }
4091
4092 free (contents);
024ea11b
SKS
4093 if (elf_section_data (sec)->relocs != internal_relocs)
4094 free (internal_relocs);
137c83d6
AB
4095 return r_list;
4096
4097 load_failed:
024ea11b
SKS
4098 if (elf_section_data (sec)->relocs != internal_relocs)
4099 free (internal_relocs);
137c83d6
AB
4100 free (contents);
4101 free (r_list);
4102 return NULL;
4103}
4104
4105/* Load all of the property records from ABFD. See
4106 AVR_ELF32_LOAD_RECORDS_FROM_SECTION for details of the return value. */
4107
4108struct avr_property_record_list *
4109avr_elf32_load_property_records (bfd *abfd)
4110{
4111 asection *sec;
4112
4113 /* Find the '.avr.prop' section and load the contents into memory. */
4114 sec = bfd_get_section_by_name (abfd, AVR_PROPERTY_RECORD_SECTION_NAME);
4115 if (sec == NULL)
4116 return NULL;
4117 return avr_elf32_load_records_from_section (abfd, sec);
4118}
4119
4120const char *
4121avr_elf32_property_record_name (struct avr_property_record *rec)
4122{
4123 const char *str;
4124
4125 switch (rec->type)
4126 {
4127 case RECORD_ORG:
4128 str = "ORG";
4129 break;
4130 case RECORD_ORG_AND_FILL:
4131 str = "ORG+FILL";
4132 break;
4133 case RECORD_ALIGN:
4134 str = "ALIGN";
4135 break;
4136 case RECORD_ALIGN_AND_FILL:
4137 str = "ALIGN+FILL";
4138 break;
4139 default:
4140 str = "unknown";
4141 }
4142
4143 return str;
4144}
4145
4146
adde6300 4147#define ELF_ARCH bfd_arch_avr
ae95ffa6 4148#define ELF_TARGET_ID AVR_ELF_DATA
adde6300 4149#define ELF_MACHINE_CODE EM_AVR
aa4f99bb 4150#define ELF_MACHINE_ALT1 EM_AVR_OLD
adde6300
AM
4151#define ELF_MAXPAGESIZE 1
4152
6d00b590 4153#define TARGET_LITTLE_SYM avr_elf32_vec
adde6300
AM
4154#define TARGET_LITTLE_NAME "elf32-avr"
4155
28c9d252 4156#define bfd_elf32_bfd_link_hash_table_create elf32_avr_link_hash_table_create
28c9d252 4157
adde6300
AM
4158#define elf_info_to_howto avr_info_to_howto_rela
4159#define elf_info_to_howto_rel NULL
4160#define elf_backend_relocate_section elf32_avr_relocate_section
adde6300 4161#define elf_backend_can_gc_sections 1
f0fe0e16 4162#define elf_backend_rela_normal 1
adde6300
AM
4163#define elf_backend_final_write_processing \
4164 bfd_elf_avr_final_write_processing
4165#define elf_backend_object_p elf32_avr_object_p
4166
df406460
NC
4167#define bfd_elf32_bfd_relax_section elf32_avr_relax_section
4168#define bfd_elf32_bfd_get_relocated_section_contents \
4169 elf32_avr_get_relocated_section_contents
bac13f5a 4170#define bfd_elf32_new_section_hook elf_avr_new_section_hook
df406460 4171
adde6300 4172#include "elf32-target.h"
This page took 1.0452 seconds and 4 git commands to generate.