* elf32-ppc.c (ppc_elf_adjust_dynamic_symbol): Ignore dynamic
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
CommitLineData
252b5132 1/* BFD back-end for HP PA-RISC ELF files.
e5094212 2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3eb128b2 3 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
252b5132 4
30667bf3 5 Original code by
252b5132
RH
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
30667bf3 9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
252b5132 10
ae9a127f 11 This file is part of BFD, the Binary File Descriptor library.
252b5132 12
ae9a127f
NC
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
252b5132 17
ae9a127f
NC
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
252b5132 22
ae9a127f
NC
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
3e110533 25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
252b5132
RH
26
27#include "bfd.h"
28#include "sysdep.h"
252b5132
RH
29#include "libbfd.h"
30#include "elf-bfd.h"
9e103c9c
JL
31#include "elf/hppa.h"
32#include "libhppa.h"
33#include "elf32-hppa.h"
34#define ARCH_SIZE 32
edd21aca 35#include "elf32-hppa.h"
189c6563 36#include "elf-hppa.h"
9e103c9c 37
74d1c347
AM
38/* In order to gain some understanding of code in this file without
39 knowing all the intricate details of the linker, note the
40 following:
41
42 Functions named elf32_hppa_* are called by external routines, other
43 functions are only called locally. elf32_hppa_* functions appear
44 in this file more or less in the order in which they are called
45 from external routines. eg. elf32_hppa_check_relocs is called
46 early in the link process, elf32_hppa_finish_dynamic_sections is
47 one of the last functions. */
48
edd21aca 49/* We use two hash tables to hold information for linking PA ELF objects.
252b5132
RH
50
51 The first is the elf32_hppa_link_hash_table which is derived
52 from the standard ELF linker hash table. We use this as a place to
53 attach other hash tables and static information.
54
55 The second is the stub hash table which is derived from the
56 base BFD hash table. The stub hash table holds the information
30667bf3
AM
57 necessary to build the linker stubs during a link.
58
59 There are a number of different stubs generated by the linker.
60
61 Long branch stub:
62 : ldil LR'X,%r1
63 : be,n RR'X(%sr4,%r1)
64
65 PIC long branch stub:
66 : b,l .+8,%r1
3ee1d854
AM
67 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
68 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
30667bf3
AM
69
70 Import stub to call shared library routine from normal object file
71 (single sub-space version)
3ee1d854
AM
72 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
73 : ldw RR'lt_ptr+ltoff(%r1),%r21
46fe4e66 74 : bv %r0(%r21)
3ee1d854 75 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
30667bf3
AM
76
77 Import stub to call shared library routine from shared library
78 (single sub-space version)
3ee1d854
AM
79 : addil LR'ltoff,%r19 ; get procedure entry point
80 : ldw RR'ltoff(%r1),%r21
46fe4e66 81 : bv %r0(%r21)
3ee1d854 82 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
30667bf3
AM
83
84 Import stub to call shared library routine from normal object file
85 (multiple sub-space support)
3ee1d854
AM
86 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
87 : ldw RR'lt_ptr+ltoff(%r1),%r21
88 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
30667bf3
AM
89 : ldsid (%r21),%r1
90 : mtsp %r1,%sr0
91 : be 0(%sr0,%r21) ; branch to target
92 : stw %rp,-24(%sp) ; save rp
93
94 Import stub to call shared library routine from shared library
95 (multiple sub-space support)
3ee1d854
AM
96 : addil LR'ltoff,%r19 ; get procedure entry point
97 : ldw RR'ltoff(%r1),%r21
98 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
30667bf3
AM
99 : ldsid (%r21),%r1
100 : mtsp %r1,%sr0
101 : be 0(%sr0,%r21) ; branch to target
102 : stw %rp,-24(%sp) ; save rp
103
104 Export stub to return from shared lib routine (multiple sub-space support)
105 One of these is created for each exported procedure in a shared
106 library (and stored in the shared lib). Shared lib routines are
107 called via the first instruction in the export stub so that we can
108 do an inter-space return. Not required for single sub-space.
109 : bl,n X,%rp ; trap the return
110 : nop
111 : ldw -24(%sp),%rp ; restore the original rp
112 : ldsid (%rp),%r1
113 : mtsp %r1,%sr0
ae9a127f 114 : be,n 0(%sr0,%rp) ; inter-space return. */
30667bf3 115
875c0872
DA
116
117/* Variable names follow a coding style.
118 Please follow this (Apps Hungarian) style:
119
120 Structure/Variable Prefix
121 elf_link_hash_table "etab"
122 elf_link_hash_entry "eh"
123
124 elf32_hppa_link_hash_table "htab"
125 elf32_hppa_link_hash_entry "hh"
126
127 bfd_hash_table "btab"
128 bfd_hash_entry "bh"
129
130 bfd_hash_table containing stubs "bstab"
131 elf32_hppa_stub_hash_entry "hsh"
132
133 elf32_hppa_dyn_reloc_entry "hdh"
134
135 Always remember to use GNU Coding Style. */
136
30667bf3
AM
137#define PLT_ENTRY_SIZE 8
138#define GOT_ENTRY_SIZE 4
139#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
140
47d89dba
AM
141static const bfd_byte plt_stub[] =
142{
143 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
144 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
145 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
146#define PLT_STUB_ENTRY (3*4)
147 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
148 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
149 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
150 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
151};
152
30667bf3
AM
153/* Section name for stubs is the associated section name plus this
154 string. */
155#define STUB_SUFFIX ".stub"
156
98ceb8ce
AM
157/* We don't need to copy certain PC- or GP-relative dynamic relocs
158 into a shared object's dynamic section. All the relocs of the
159 limited class we are interested in, are absolute. */
160#ifndef RELATIVE_DYNRELOCS
161#define RELATIVE_DYNRELOCS 0
446f2863 162#define IS_ABSOLUTE_RELOC(r_type) 1
30667bf3
AM
163#endif
164
4fc8051d
AM
165/* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
166 copying dynamic variables from a shared lib into an app's dynbss
167 section, and instead use a dynamic relocation to point into the
168 shared lib. */
169#define ELIMINATE_COPY_RELOCS 1
170
30667bf3
AM
171enum elf32_hppa_stub_type {
172 hppa_stub_long_branch,
173 hppa_stub_long_branch_shared,
174 hppa_stub_import,
175 hppa_stub_import_shared,
176 hppa_stub_export,
177 hppa_stub_none
178};
179
30667bf3 180struct elf32_hppa_stub_hash_entry {
252b5132 181
edd21aca 182 /* Base hash table entry structure. */
a63e02c7 183 struct bfd_hash_entry bh_root;
252b5132 184
edd21aca
AM
185 /* The stub section. */
186 asection *stub_sec;
187
188 /* Offset within stub_sec of the beginning of this stub. */
30667bf3 189 bfd_vma stub_offset;
252b5132
RH
190
191 /* Given the symbol's value and its section we can determine its final
192 value when building the stubs (so the stub knows where to jump. */
30667bf3 193 bfd_vma target_value;
252b5132 194 asection *target_section;
30667bf3
AM
195
196 enum elf32_hppa_stub_type stub_type;
197
198 /* The symbol table entry, if any, that this was derived from. */
a63e02c7 199 struct elf32_hppa_link_hash_entry *hh;
30667bf3 200
25f72752
AM
201 /* Where this stub is being called from, or, in the case of combined
202 stub sections, the first input section in the group. */
203 asection *id_sec;
252b5132
RH
204};
205
30667bf3
AM
206struct elf32_hppa_link_hash_entry {
207
a63e02c7 208 struct elf_link_hash_entry eh;
30667bf3
AM
209
210 /* A pointer to the most recently used stub hash entry against this
211 symbol. */
a63e02c7 212 struct elf32_hppa_stub_hash_entry *hsh_cache;
30667bf3 213
30667bf3
AM
214 /* Used to count relocations for delayed sizing of relocation
215 sections. */
216 struct elf32_hppa_dyn_reloc_entry {
217
218 /* Next relocation in the chain. */
a63e02c7 219 struct elf32_hppa_dyn_reloc_entry *hdh_next;
30667bf3 220
98ceb8ce
AM
221 /* The input section of the reloc. */
222 asection *sec;
30667bf3
AM
223
224 /* Number of relocs copied in this section. */
225 bfd_size_type count;
98ceb8ce
AM
226
227#if RELATIVE_DYNRELOCS
228 /* Number of relative relocs copied for the input section. */
229 bfd_size_type relative_count;
230#endif
231 } *dyn_relocs;
30667bf3 232
74d1c347
AM
233 /* Set if this symbol is used by a plabel reloc. */
234 unsigned int plabel:1;
30667bf3
AM
235};
236
30667bf3
AM
237struct elf32_hppa_link_hash_table {
238
252b5132 239 /* The main hash table. */
a63e02c7 240 struct elf_link_hash_table etab;
252b5132
RH
241
242 /* The stub hash table. */
a63e02c7 243 struct bfd_hash_table bstab;
252b5132 244
30667bf3
AM
245 /* Linker stub bfd. */
246 bfd *stub_bfd;
247
30667bf3 248 /* Linker call-backs. */
c39a58e6
AM
249 asection * (*add_stub_section) (const char *, asection *);
250 void (*layout_sections_again) (void);
30667bf3 251
25f72752
AM
252 /* Array to keep track of which stub sections have been created, and
253 information on stub grouping. */
254 struct map_stub {
255 /* This is the section to which stubs in the group will be
256 attached. */
257 asection *link_sec;
258 /* The stub section. */
259 asection *stub_sec;
25f72752 260 } *stub_group;
30667bf3 261
b4655ea9
AM
262 /* Assorted information used by elf32_hppa_size_stubs. */
263 unsigned int bfd_count;
264 int top_index;
265 asection **input_list;
266 Elf_Internal_Sym **all_local_syms;
267
30667bf3
AM
268 /* Short-cuts to get to dynamic linker sections. */
269 asection *sgot;
270 asection *srelgot;
271 asection *splt;
272 asection *srelplt;
273 asection *sdynbss;
274 asection *srelbss;
47d89dba 275
c46b7515
AM
276 /* Used during a final link to store the base of the text and data
277 segments so that we can perform SEGREL relocations. */
278 bfd_vma text_segment_base;
279 bfd_vma data_segment_base;
280
47d89dba
AM
281 /* Whether we support multiple sub-spaces for shared libs. */
282 unsigned int multi_subspace:1;
283
067fa4a6 284 /* Flags set when various size branches are detected. Used to
47d89dba
AM
285 select suitable defaults for the stub group size. */
286 unsigned int has_12bit_branch:1;
287 unsigned int has_17bit_branch:1;
067fa4a6 288 unsigned int has_22bit_branch:1;
47d89dba
AM
289
290 /* Set if we need a .plt stub to support lazy dynamic linking. */
291 unsigned int need_plt_stub:1;
ec338859
AM
292
293 /* Small local sym to section mapping cache. */
294 struct sym_sec_cache sym_sec;
252b5132
RH
295};
296
30667bf3
AM
297/* Various hash macros and functions. */
298#define hppa_link_hash_table(p) \
edd21aca 299 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
252b5132 300
875c0872
DA
301#define hppa_elf_hash_entry(ent) \
302 ((struct elf32_hppa_link_hash_entry *)(ent))
303
304#define hppa_stub_hash_entry(ent) \
305 ((struct elf32_hppa_stub_hash_entry *)(ent))
306
30667bf3
AM
307#define hppa_stub_hash_lookup(table, string, create, copy) \
308 ((struct elf32_hppa_stub_hash_entry *) \
309 bfd_hash_lookup ((table), (string), (create), (copy)))
310
252b5132
RH
311/* Assorted hash table functions. */
312
313/* Initialize an entry in the stub hash table. */
314
315static struct bfd_hash_entry *
c39a58e6
AM
316stub_hash_newfunc (struct bfd_hash_entry *entry,
317 struct bfd_hash_table *table,
318 const char *string)
252b5132 319{
252b5132
RH
320 /* Allocate the structure if it has not already been allocated by a
321 subclass. */
ebe50bae 322 if (entry == NULL)
30667bf3 323 {
ebe50bae
AM
324 entry = bfd_hash_allocate (table,
325 sizeof (struct elf32_hppa_stub_hash_entry));
326 if (entry == NULL)
327 return entry;
30667bf3 328 }
252b5132
RH
329
330 /* Call the allocation method of the superclass. */
ebe50bae
AM
331 entry = bfd_hash_newfunc (entry, table, string);
332 if (entry != NULL)
252b5132 333 {
875c0872 334 struct elf32_hppa_stub_hash_entry *hsh;
ebe50bae 335
252b5132 336 /* Initialize the local fields. */
875c0872
DA
337 hsh = hppa_stub_hash_entry (entry);
338 hsh->stub_sec = NULL;
339 hsh->stub_offset = 0;
340 hsh->target_value = 0;
341 hsh->target_section = NULL;
342 hsh->stub_type = hppa_stub_long_branch;
a63e02c7 343 hsh->hh = NULL;
875c0872 344 hsh->id_sec = NULL;
30667bf3
AM
345 }
346
ebe50bae 347 return entry;
30667bf3
AM
348}
349
30667bf3
AM
350/* Initialize an entry in the link hash table. */
351
352static struct bfd_hash_entry *
c39a58e6
AM
353hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
354 struct bfd_hash_table *table,
355 const char *string)
30667bf3 356{
30667bf3
AM
357 /* Allocate the structure if it has not already been allocated by a
358 subclass. */
ebe50bae 359 if (entry == NULL)
30667bf3 360 {
ebe50bae
AM
361 entry = bfd_hash_allocate (table,
362 sizeof (struct elf32_hppa_link_hash_entry));
363 if (entry == NULL)
364 return entry;
30667bf3
AM
365 }
366
367 /* Call the allocation method of the superclass. */
ebe50bae
AM
368 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
369 if (entry != NULL)
30667bf3 370 {
875c0872 371 struct elf32_hppa_link_hash_entry *hh;
ebe50bae 372
30667bf3 373 /* Initialize the local fields. */
875c0872 374 hh = hppa_elf_hash_entry (entry);
a63e02c7 375 hh->hsh_cache = NULL;
875c0872
DA
376 hh->dyn_relocs = NULL;
377 hh->plabel = 0;
252b5132
RH
378 }
379
ebe50bae 380 return entry;
252b5132
RH
381}
382
252b5132
RH
383/* Create the derived linker hash table. The PA ELF port uses the derived
384 hash table to keep information specific to the PA ELF linker (without
385 using static variables). */
386
387static struct bfd_link_hash_table *
c39a58e6 388elf32_hppa_link_hash_table_create (bfd *abfd)
252b5132 389{
875c0872
DA
390 struct elf32_hppa_link_hash_table *htab;
391 bfd_size_type amt = sizeof (*htab);
252b5132 392
875c0872
DA
393 htab = (struct elf32_hppa_link_hash_table *) bfd_malloc (amt);
394 if (htab == NULL)
252b5132 395 return NULL;
edd21aca 396
a63e02c7 397 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc))
252b5132 398 {
875c0872 399 free (htab);
252b5132
RH
400 return NULL;
401 }
edd21aca
AM
402
403 /* Init the stub hash table too. */
a63e02c7 404 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc))
edd21aca
AM
405 return NULL;
406
875c0872
DA
407 htab->stub_bfd = NULL;
408 htab->add_stub_section = NULL;
409 htab->layout_sections_again = NULL;
410 htab->stub_group = NULL;
411 htab->sgot = NULL;
412 htab->srelgot = NULL;
413 htab->splt = NULL;
414 htab->srelplt = NULL;
415 htab->sdynbss = NULL;
416 htab->srelbss = NULL;
417 htab->text_segment_base = (bfd_vma) -1;
418 htab->data_segment_base = (bfd_vma) -1;
419 htab->multi_subspace = 0;
420 htab->has_12bit_branch = 0;
421 htab->has_17bit_branch = 0;
422 htab->has_22bit_branch = 0;
423 htab->need_plt_stub = 0;
424 htab->sym_sec.abfd = NULL;
425
a63e02c7 426 return &htab->etab.root;
252b5132
RH
427}
428
e2d34d7d
DJ
429/* Free the derived linker hash table. */
430
431static void
875c0872 432elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *btab)
e2d34d7d 433{
875c0872
DA
434 struct elf32_hppa_link_hash_table *htab
435 = (struct elf32_hppa_link_hash_table *) btab;
e2d34d7d 436
a63e02c7 437 bfd_hash_table_free (&htab->bstab);
875c0872 438 _bfd_generic_link_hash_table_free (btab);
e2d34d7d
DJ
439}
440
30667bf3
AM
441/* Build a name for an entry in the stub hash table. */
442
edd21aca 443static char *
c39a58e6
AM
444hppa_stub_name (const asection *input_section,
445 const asection *sym_sec,
875c0872
DA
446 const struct elf32_hppa_link_hash_entry *hh,
447 const Elf_Internal_Rela *rela)
edd21aca
AM
448{
449 char *stub_name;
dc810e39 450 bfd_size_type len;
edd21aca 451
875c0872 452 if (hh)
30667bf3 453 {
a63e02c7 454 len = 8 + 1 + strlen (hh->eh.root.root.string) + 1 + 8 + 1;
30667bf3
AM
455 stub_name = bfd_malloc (len);
456 if (stub_name != NULL)
457 {
458 sprintf (stub_name, "%08x_%s+%x",
459 input_section->id & 0xffffffff,
a63e02c7 460 hh->eh.root.root.string,
875c0872 461 (int) rela->r_addend & 0xffffffff);
30667bf3
AM
462 }
463 }
464 else
edd21aca 465 {
30667bf3
AM
466 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
467 stub_name = bfd_malloc (len);
468 if (stub_name != NULL)
469 {
470 sprintf (stub_name, "%08x_%x:%x+%x",
471 input_section->id & 0xffffffff,
472 sym_sec->id & 0xffffffff,
875c0872
DA
473 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
474 (int) rela->r_addend & 0xffffffff);
30667bf3 475 }
edd21aca
AM
476 }
477 return stub_name;
478}
252b5132 479
30667bf3
AM
480/* Look up an entry in the stub hash. Stub entries are cached because
481 creating the stub name takes a bit of time. */
482
483static struct elf32_hppa_stub_hash_entry *
c39a58e6
AM
484hppa_get_stub_entry (const asection *input_section,
485 const asection *sym_sec,
875c0872
DA
486 struct elf32_hppa_link_hash_entry *hh,
487 const Elf_Internal_Rela *rela,
c39a58e6 488 struct elf32_hppa_link_hash_table *htab)
252b5132 489{
a63e02c7 490 struct elf32_hppa_stub_hash_entry *hsh_entry;
25f72752
AM
491 const asection *id_sec;
492
493 /* If this input section is part of a group of sections sharing one
494 stub section, then use the id of the first section in the group.
495 Stub names need to include a section id, as there may well be
496 more than one stub used to reach say, printf, and we need to
497 distinguish between them. */
83c81bfe 498 id_sec = htab->stub_group[input_section->id].link_sec;
edd21aca 499
a63e02c7
DA
500 if (hh != NULL && hh->hsh_cache != NULL
501 && hh->hsh_cache->hh == hh
502 && hh->hsh_cache->id_sec == id_sec)
edd21aca 503 {
a63e02c7 504 hsh_entry = hh->hsh_cache;
30667bf3
AM
505 }
506 else
507 {
30667bf3 508 char *stub_name;
edd21aca 509
875c0872 510 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
30667bf3
AM
511 if (stub_name == NULL)
512 return NULL;
edd21aca 513
a63e02c7 514 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
b34976b6 515 stub_name, FALSE, FALSE);
875c0872 516 if (hh != NULL)
a63e02c7 517 hh->hsh_cache = hsh_entry;
30667bf3
AM
518
519 free (stub_name);
edd21aca 520 }
30667bf3 521
a63e02c7 522 return hsh_entry;
30667bf3
AM
523}
524
30667bf3
AM
525/* Add a new stub entry to the stub hash. Not all fields of the new
526 stub entry are initialised. */
527
528static struct elf32_hppa_stub_hash_entry *
c39a58e6
AM
529hppa_add_stub (const char *stub_name,
530 asection *section,
531 struct elf32_hppa_link_hash_table *htab)
30667bf3 532{
25f72752 533 asection *link_sec;
30667bf3 534 asection *stub_sec;
875c0872 535 struct elf32_hppa_stub_hash_entry *hsh;
edd21aca 536
83c81bfe
AM
537 link_sec = htab->stub_group[section->id].link_sec;
538 stub_sec = htab->stub_group[section->id].stub_sec;
30667bf3 539 if (stub_sec == NULL)
edd21aca 540 {
83c81bfe 541 stub_sec = htab->stub_group[link_sec->id].stub_sec;
30667bf3
AM
542 if (stub_sec == NULL)
543 {
d4c88bbb 544 size_t namelen;
dc810e39 545 bfd_size_type len;
30667bf3
AM
546 char *s_name;
547
d4c88bbb
AM
548 namelen = strlen (link_sec->name);
549 len = namelen + sizeof (STUB_SUFFIX);
83c81bfe 550 s_name = bfd_alloc (htab->stub_bfd, len);
30667bf3
AM
551 if (s_name == NULL)
552 return NULL;
553
d4c88bbb
AM
554 memcpy (s_name, link_sec->name, namelen);
555 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
83c81bfe 556 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
30667bf3
AM
557 if (stub_sec == NULL)
558 return NULL;
83c81bfe 559 htab->stub_group[link_sec->id].stub_sec = stub_sec;
30667bf3 560 }
83c81bfe 561 htab->stub_group[section->id].stub_sec = stub_sec;
edd21aca 562 }
252b5132 563
30667bf3 564 /* Enter this entry into the linker stub hash table. */
a63e02c7 565 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
b34976b6 566 TRUE, FALSE);
875c0872 567 if (hsh == NULL)
30667bf3 568 {
d003868e
AM
569 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
570 section->owner,
30667bf3
AM
571 stub_name);
572 return NULL;
edd21aca
AM
573 }
574
875c0872
DA
575 hsh->stub_sec = stub_sec;
576 hsh->stub_offset = 0;
577 hsh->id_sec = link_sec;
578 return hsh;
edd21aca
AM
579}
580
30667bf3
AM
581/* Determine the type of stub needed, if any, for a call. */
582
583static enum elf32_hppa_stub_type
c39a58e6 584hppa_type_of_stub (asection *input_sec,
875c0872
DA
585 const Elf_Internal_Rela *rela,
586 struct elf32_hppa_link_hash_entry *hh,
a252afa4
DA
587 bfd_vma destination,
588 struct bfd_link_info *info)
edd21aca 589{
edd21aca 590 bfd_vma location;
30667bf3
AM
591 bfd_vma branch_offset;
592 bfd_vma max_branch_offset;
593 unsigned int r_type;
594
875c0872 595 if (hh != NULL
a63e02c7
DA
596 && hh->eh.plt.offset != (bfd_vma) -1
597 && hh->eh.dynindx != -1
875c0872 598 && !hh->plabel
a252afa4 599 && (info->shared
a63e02c7
DA
600 || !hh->eh.def_regular
601 || hh->eh.root.type == bfd_link_hash_defweak))
30667bf3 602 {
067fa4a6
AM
603 /* We need an import stub. Decide between hppa_stub_import
604 and hppa_stub_import_shared later. */
30667bf3
AM
605 return hppa_stub_import;
606 }
edd21aca 607
30667bf3
AM
608 /* Determine where the call point is. */
609 location = (input_sec->output_offset
610 + input_sec->output_section->vma
875c0872 611 + rela->r_offset);
edd21aca 612
30667bf3 613 branch_offset = destination - location - 8;
875c0872 614 r_type = ELF32_R_TYPE (rela->r_info);
edd21aca 615
30667bf3
AM
616 /* Determine if a long branch stub is needed. parisc branch offsets
617 are relative to the second instruction past the branch, ie. +8
618 bytes on from the branch instruction location. The offset is
619 signed and counts in units of 4 bytes. */
620 if (r_type == (unsigned int) R_PARISC_PCREL17F)
edd21aca 621 {
30667bf3
AM
622 max_branch_offset = (1 << (17-1)) << 2;
623 }
624 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
625 {
626 max_branch_offset = (1 << (12-1)) << 2;
627 }
25f72752 628 else /* R_PARISC_PCREL22F. */
30667bf3
AM
629 {
630 max_branch_offset = (1 << (22-1)) << 2;
edd21aca
AM
631 }
632
30667bf3 633 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
98ceb8ce
AM
634 return hppa_stub_long_branch;
635
30667bf3
AM
636 return hppa_stub_none;
637}
edd21aca 638
30667bf3
AM
639/* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
640 IN_ARG contains the link info pointer. */
edd21aca 641
30667bf3
AM
642#define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
643#define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
edd21aca 644
30667bf3 645#define BL_R1 0xe8200000 /* b,l .+8,%r1 */
3ee1d854 646#define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
30667bf3 647#define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
252b5132 648
3ee1d854
AM
649#define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
650#define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
30667bf3 651#define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
3ee1d854 652#define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
252b5132 653
3ee1d854
AM
654#define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
655#define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
edd21aca 656
30667bf3
AM
657#define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
658#define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
659#define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
660#define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
edd21aca 661
067fa4a6 662#define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
30667bf3
AM
663#define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
664#define NOP 0x08000240 /* nop */
665#define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
666#define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
667#define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
edd21aca 668
30667bf3
AM
669#ifndef R19_STUBS
670#define R19_STUBS 1
671#endif
edd21aca 672
30667bf3
AM
673#if R19_STUBS
674#define LDW_R1_DLT LDW_R1_R19
675#else
676#define LDW_R1_DLT LDW_R1_DP
677#endif
edd21aca 678
b34976b6 679static bfd_boolean
875c0872 680hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
30667bf3 681{
875c0872 682 struct elf32_hppa_stub_hash_entry *hsh;
30667bf3 683 struct bfd_link_info *info;
83c81bfe 684 struct elf32_hppa_link_hash_table *htab;
30667bf3
AM
685 asection *stub_sec;
686 bfd *stub_bfd;
687 bfd_byte *loc;
688 bfd_vma sym_value;
74d1c347 689 bfd_vma insn;
8dea1268 690 bfd_vma off;
74d1c347 691 int val;
30667bf3 692 int size;
edd21aca 693
30667bf3 694 /* Massage our args to the form they really have. */
875c0872
DA
695 hsh = hppa_stub_hash_entry (bh);
696 info = (struct bfd_link_info *)in_arg;
30667bf3 697
83c81bfe 698 htab = hppa_link_hash_table (info);
875c0872 699 stub_sec = hsh->stub_sec;
edd21aca 700
30667bf3 701 /* Make a note of the offset within the stubs for this entry. */
875c0872
DA
702 hsh->stub_offset = stub_sec->size;
703 loc = stub_sec->contents + hsh->stub_offset;
252b5132 704
30667bf3
AM
705 stub_bfd = stub_sec->owner;
706
875c0872 707 switch (hsh->stub_type)
30667bf3
AM
708 {
709 case hppa_stub_long_branch:
710 /* Create the long branch. A long branch is formed with "ldil"
711 loading the upper bits of the target address into a register,
712 then branching with "be" which adds in the lower bits.
713 The "be" has its delay slot nullified. */
875c0872
DA
714 sym_value = (hsh->target_value
715 + hsh->target_section->output_offset
716 + hsh->target_section->output_section->vma);
30667bf3 717
c39a58e6 718 val = hppa_field_adjust (sym_value, 0, e_lrsel);
74d1c347 719 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
30667bf3
AM
720 bfd_put_32 (stub_bfd, insn, loc);
721
c39a58e6 722 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
74d1c347 723 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
30667bf3
AM
724 bfd_put_32 (stub_bfd, insn, loc + 4);
725
30667bf3 726 size = 8;
edd21aca
AM
727 break;
728
30667bf3
AM
729 case hppa_stub_long_branch_shared:
730 /* Branches are relative. This is where we are going to. */
875c0872
DA
731 sym_value = (hsh->target_value
732 + hsh->target_section->output_offset
733 + hsh->target_section->output_section->vma);
30667bf3
AM
734
735 /* And this is where we are coming from, more or less. */
875c0872 736 sym_value -= (hsh->stub_offset
30667bf3
AM
737 + stub_sec->output_offset
738 + stub_sec->output_section->vma);
739
74d1c347 740 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
47d89dba 741 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
74d1c347 742 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
30667bf3
AM
743 bfd_put_32 (stub_bfd, insn, loc + 4);
744
47d89dba 745 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
74d1c347 746 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
30667bf3
AM
747 bfd_put_32 (stub_bfd, insn, loc + 8);
748 size = 12;
749 break;
edd21aca 750
30667bf3
AM
751 case hppa_stub_import:
752 case hppa_stub_import_shared:
a63e02c7 753 off = hsh->hh->eh.plt.offset;
8dea1268 754 if (off >= (bfd_vma) -2)
49e9d0d3 755 abort ();
8dea1268
AM
756
757 off &= ~ (bfd_vma) 1;
758 sym_value = (off
83c81bfe
AM
759 + htab->splt->output_offset
760 + htab->splt->output_section->vma
761 - elf_gp (htab->splt->output_section->owner));
30667bf3
AM
762
763 insn = ADDIL_DP;
764#if R19_STUBS
875c0872 765 if (hsh->stub_type == hppa_stub_import_shared)
30667bf3
AM
766 insn = ADDIL_R19;
767#endif
c39a58e6 768 val = hppa_field_adjust (sym_value, 0, e_lrsel),
74d1c347 769 insn = hppa_rebuild_insn ((int) insn, val, 21);
30667bf3 770 bfd_put_32 (stub_bfd, insn, loc);
edd21aca 771
47d89dba
AM
772 /* It is critical to use lrsel/rrsel here because we are using
773 two different offsets (+0 and +4) from sym_value. If we use
774 lsel/rsel then with unfortunate sym_values we will round
775 sym_value+4 up to the next 2k block leading to a mis-match
776 between the lsel and rsel value. */
c39a58e6 777 val = hppa_field_adjust (sym_value, 0, e_rrsel);
74d1c347 778 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
30667bf3 779 bfd_put_32 (stub_bfd, insn, loc + 4);
252b5132 780
83c81bfe 781 if (htab->multi_subspace)
30667bf3 782 {
47d89dba 783 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
74d1c347 784 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
30667bf3 785 bfd_put_32 (stub_bfd, insn, loc + 8);
252b5132 786
74d1c347
AM
787 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
788 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
789 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
790 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
252b5132 791
30667bf3
AM
792 size = 28;
793 }
794 else
795 {
74d1c347 796 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
47d89dba 797 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
74d1c347 798 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
30667bf3 799 bfd_put_32 (stub_bfd, insn, loc + 12);
252b5132 800
30667bf3
AM
801 size = 16;
802 }
252b5132 803
30667bf3 804 break;
252b5132 805
30667bf3
AM
806 case hppa_stub_export:
807 /* Branches are relative. This is where we are going to. */
875c0872
DA
808 sym_value = (hsh->target_value
809 + hsh->target_section->output_offset
810 + hsh->target_section->output_section->vma);
252b5132 811
30667bf3 812 /* And this is where we are coming from. */
875c0872 813 sym_value -= (hsh->stub_offset
30667bf3
AM
814 + stub_sec->output_offset
815 + stub_sec->output_section->vma);
edd21aca 816
067fa4a6
AM
817 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
818 && (!htab->has_22bit_branch
819 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
30667bf3 820 {
edd21aca 821 (*_bfd_error_handler)
d003868e 822 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
875c0872 823 hsh->target_section->owner,
d003868e 824 stub_sec,
875c0872 825 (long) hsh->stub_offset,
a63e02c7 826 hsh->bh_root.string);
30667bf3 827 bfd_set_error (bfd_error_bad_value);
b34976b6 828 return FALSE;
252b5132 829 }
30667bf3 830
74d1c347 831 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
067fa4a6
AM
832 if (!htab->has_22bit_branch)
833 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
834 else
835 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
30667bf3
AM
836 bfd_put_32 (stub_bfd, insn, loc);
837
74d1c347
AM
838 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
839 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
840 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
841 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
842 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
30667bf3
AM
843
844 /* Point the function symbol at the stub. */
a63e02c7
DA
845 hsh->hh->eh.root.u.def.section = stub_sec;
846 hsh->hh->eh.root.u.def.value = stub_sec->size;
30667bf3
AM
847
848 size = 24;
849 break;
850
851 default:
852 BFD_FAIL ();
b34976b6 853 return FALSE;
252b5132
RH
854 }
855
eea6121a 856 stub_sec->size += size;
b34976b6 857 return TRUE;
252b5132
RH
858}
859
30667bf3
AM
860#undef LDIL_R1
861#undef BE_SR4_R1
862#undef BL_R1
863#undef ADDIL_R1
864#undef DEPI_R1
30667bf3
AM
865#undef LDW_R1_R21
866#undef LDW_R1_DLT
867#undef LDW_R1_R19
868#undef ADDIL_R19
869#undef LDW_R1_DP
870#undef LDSID_R21_R1
871#undef MTSP_R1
872#undef BE_SR0_R21
873#undef STW_RP
874#undef BV_R0_R21
875#undef BL_RP
876#undef NOP
877#undef LDW_RP
878#undef LDSID_RP_R1
879#undef BE_SR0_RP
252b5132 880
30667bf3
AM
881/* As above, but don't actually build the stub. Just bump offset so
882 we know stub section sizes. */
883
b34976b6 884static bfd_boolean
875c0872 885hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
252b5132 886{
875c0872 887 struct elf32_hppa_stub_hash_entry *hsh;
83c81bfe 888 struct elf32_hppa_link_hash_table *htab;
30667bf3
AM
889 int size;
890
891 /* Massage our args to the form they really have. */
875c0872 892 hsh = hppa_stub_hash_entry (bh);
c39a58e6 893 htab = in_arg;
30667bf3 894
875c0872 895 if (hsh->stub_type == hppa_stub_long_branch)
98ceb8ce 896 size = 8;
875c0872 897 else if (hsh->stub_type == hppa_stub_long_branch_shared)
30667bf3 898 size = 12;
875c0872 899 else if (hsh->stub_type == hppa_stub_export)
30667bf3 900 size = 24;
74d1c347 901 else /* hppa_stub_import or hppa_stub_import_shared. */
252b5132 902 {
83c81bfe 903 if (htab->multi_subspace)
30667bf3
AM
904 size = 28;
905 else
906 size = 16;
907 }
252b5132 908
875c0872 909 hsh->stub_sec->size += size;
b34976b6 910 return TRUE;
30667bf3 911}
252b5132 912
30667bf3
AM
913/* Return nonzero if ABFD represents an HPPA ELF32 file.
914 Additionally we set the default architecture and machine. */
915
b34976b6 916static bfd_boolean
c39a58e6 917elf32_hppa_object_p (bfd *abfd)
30667bf3 918{
24a5e751
L
919 Elf_Internal_Ehdr * i_ehdrp;
920 unsigned int flags;
252b5132 921
24a5e751
L
922 i_ehdrp = elf_elfheader (abfd);
923 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
924 {
6c21aa76
NC
925 /* GCC on hppa-linux produces binaries with OSABI=Linux,
926 but the kernel produces corefiles with OSABI=SysV. */
927 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
928 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
b34976b6 929 return FALSE;
24a5e751 930 }
225247f0
JT
931 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
932 {
933 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
934 but the kernel produces corefiles with OSABI=SysV. */
935 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
936 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
937 return FALSE;
938 }
24a5e751
L
939 else
940 {
941 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
b34976b6 942 return FALSE;
24a5e751
L
943 }
944
945 flags = i_ehdrp->e_flags;
30667bf3
AM
946 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
947 {
948 case EFA_PARISC_1_0:
949 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
950 case EFA_PARISC_1_1:
951 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
952 case EFA_PARISC_2_0:
953 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
954 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
955 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
956 }
b34976b6 957 return TRUE;
252b5132
RH
958}
959
30667bf3
AM
960/* Create the .plt and .got sections, and set up our hash table
961 short-cuts to various dynamic sections. */
962
b34976b6 963static bfd_boolean
c39a58e6 964elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
252b5132 965{
83c81bfe 966 struct elf32_hppa_link_hash_table *htab;
875c0872 967 struct elf_link_hash_entry *eh;
edd21aca 968
30667bf3 969 /* Don't try to create the .plt and .got twice. */
83c81bfe
AM
970 htab = hppa_link_hash_table (info);
971 if (htab->splt != NULL)
b34976b6 972 return TRUE;
edd21aca 973
30667bf3
AM
974 /* Call the generic code to do most of the work. */
975 if (! _bfd_elf_create_dynamic_sections (abfd, info))
b34976b6 976 return FALSE;
252b5132 977
83c81bfe
AM
978 htab->splt = bfd_get_section_by_name (abfd, ".plt");
979 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
30667bf3 980
83c81bfe 981 htab->sgot = bfd_get_section_by_name (abfd, ".got");
3496cb2a
L
982 htab->srelgot = bfd_make_section_with_flags (abfd, ".rela.got",
983 (SEC_ALLOC
984 | SEC_LOAD
985 | SEC_HAS_CONTENTS
986 | SEC_IN_MEMORY
987 | SEC_LINKER_CREATED
988 | SEC_READONLY));
83c81bfe 989 if (htab->srelgot == NULL
83c81bfe 990 || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
b34976b6 991 return FALSE;
edd21aca 992
83c81bfe
AM
993 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
994 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
30667bf3 995
b18e2ae5
AM
996 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
997 application, because __canonicalize_funcptr_for_compare needs it. */
875c0872
DA
998 eh = elf_hash_table (info)->hgot;
999 eh->forced_local = 0;
1000 eh->other = STV_DEFAULT;
1001 return bfd_elf_link_record_dynamic_symbol (info, eh);
30667bf3
AM
1002}
1003
ebe50bae
AM
1004/* Copy the extra info we tack onto an elf_link_hash_entry. */
1005
51b64d56 1006static void
9c5bfbb7 1007elf32_hppa_copy_indirect_symbol (const struct elf_backend_data *bed,
875c0872
DA
1008 struct elf_link_hash_entry *eh_dir,
1009 struct elf_link_hash_entry *eh_ind)
ebe50bae 1010{
875c0872 1011 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
ebe50bae 1012
875c0872
DA
1013 hh_dir = hppa_elf_hash_entry (eh_dir);
1014 hh_ind = hppa_elf_hash_entry (eh_ind);
ebe50bae 1015
875c0872 1016 if (hh_ind->dyn_relocs != NULL)
ebe50bae 1017 {
875c0872 1018 if (hh_dir->dyn_relocs != NULL)
bbd7ec4a 1019 {
875c0872
DA
1020 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1021 struct elf32_hppa_dyn_reloc_entry *hdh_p;
bbd7ec4a 1022
875c0872 1023 if (eh_ind->root.type == bfd_link_hash_indirect)
bbd7ec4a
AM
1024 abort ();
1025
1026 /* Add reloc counts against the weak sym to the strong sym
1027 list. Merge any entries against the same section. */
875c0872 1028 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
bbd7ec4a 1029 {
875c0872 1030 struct elf32_hppa_dyn_reloc_entry *hdh_q;
bbd7ec4a 1031
a63e02c7 1032 for (hdh_q = hh_dir->dyn_relocs; hdh_q != NULL; hdh_q = hdh_q->hdh_next)
875c0872 1033 if (hdh_q->sec == hdh_p->sec)
bbd7ec4a
AM
1034 {
1035#if RELATIVE_DYNRELOCS
875c0872 1036 hdh_q->relative_count += hdh_p->relative_count;
bbd7ec4a 1037#endif
875c0872 1038 hdh_q->count += hdh_p->count;
a63e02c7 1039 *hdh_pp = hdh_p->hdh_next;
bbd7ec4a
AM
1040 break;
1041 }
875c0872 1042 if (hdh_q == NULL)
a63e02c7 1043 hdh_pp = &hdh_p->hdh_next;
bbd7ec4a 1044 }
875c0872 1045 *hdh_pp = hh_dir->dyn_relocs;
bbd7ec4a
AM
1046 }
1047
875c0872
DA
1048 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1049 hh_ind->dyn_relocs = NULL;
ebe50bae 1050 }
ebe50bae 1051
4fc8051d 1052 if (ELIMINATE_COPY_RELOCS
875c0872
DA
1053 && eh_ind->root.type != bfd_link_hash_indirect
1054 && eh_dir->dynamic_adjusted)
f5385ebf
AM
1055 {
1056 /* If called to transfer flags for a weakdef during processing
1057 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1058 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
875c0872
DA
1059 eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1060 eh_dir->ref_regular |= eh_ind->ref_regular;
1061 eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1062 eh_dir->needs_plt |= eh_ind->needs_plt;
f5385ebf 1063 }
4fc8051d 1064 else
875c0872 1065 _bfd_elf_link_hash_copy_indirect (bed, eh_dir, eh_ind);
ebe50bae
AM
1066}
1067
30667bf3 1068/* Look through the relocs for a section during the first phase, and
3ac8354b
AM
1069 calculate needed space in the global offset table, procedure linkage
1070 table, and dynamic reloc sections. At this point we haven't
1071 necessarily read all the input files. */
252b5132 1072
b34976b6 1073static bfd_boolean
c39a58e6
AM
1074elf32_hppa_check_relocs (bfd *abfd,
1075 struct bfd_link_info *info,
1076 asection *sec,
1077 const Elf_Internal_Rela *relocs)
252b5132 1078{
30667bf3 1079 Elf_Internal_Shdr *symtab_hdr;
875c0872
DA
1080 struct elf_link_hash_entry **eh_syms;
1081 const Elf_Internal_Rela *rela;
1082 const Elf_Internal_Rela *rela_end;
83c81bfe 1083 struct elf32_hppa_link_hash_table *htab;
30667bf3
AM
1084 asection *sreloc;
1085 asection *stubreloc;
1086
1049f94e 1087 if (info->relocatable)
b34976b6 1088 return TRUE;
30667bf3 1089
83c81bfe 1090 htab = hppa_link_hash_table (info);
30667bf3 1091 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
875c0872 1092 eh_syms = elf_sym_hashes (abfd);
30667bf3
AM
1093 sreloc = NULL;
1094 stubreloc = NULL;
1095
875c0872
DA
1096 rela_end = relocs + sec->reloc_count;
1097 for (rela = relocs; rela < rela_end; rela++)
30667bf3
AM
1098 {
1099 enum {
1100 NEED_GOT = 1,
1101 NEED_PLT = 2,
1102 NEED_DYNREL = 4,
98ceb8ce 1103 PLT_PLABEL = 8
30667bf3 1104 };
edd21aca 1105
30667bf3 1106 unsigned int r_symndx, r_type;
875c0872
DA
1107 struct elf32_hppa_link_hash_entry *hh;
1108 int need_entry = 0;
252b5132 1109
875c0872 1110 r_symndx = ELF32_R_SYM (rela->r_info);
252b5132 1111
30667bf3 1112 if (r_symndx < symtab_hdr->sh_info)
875c0872 1113 hh = NULL;
30667bf3 1114 else
f7c5057a 1115 {
875c0872 1116 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
a63e02c7
DA
1117 while (hh->eh.root.type == bfd_link_hash_indirect
1118 || hh->eh.root.type == bfd_link_hash_warning)
1119 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
f7c5057a 1120 }
252b5132 1121
875c0872 1122 r_type = ELF32_R_TYPE (rela->r_info);
252b5132 1123
30667bf3
AM
1124 switch (r_type)
1125 {
1126 case R_PARISC_DLTIND14F:
1127 case R_PARISC_DLTIND14R:
1128 case R_PARISC_DLTIND21L:
1129 /* This symbol requires a global offset table entry. */
1130 need_entry = NEED_GOT;
30667bf3
AM
1131 break;
1132
1133 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1134 case R_PARISC_PLABEL21L:
1135 case R_PARISC_PLABEL32:
74d1c347 1136 /* If the addend is non-zero, we break badly. */
875c0872 1137 if (rela->r_addend != 0)
49e9d0d3 1138 abort ();
74d1c347
AM
1139
1140 /* If we are creating a shared library, then we need to
1141 create a PLT entry for all PLABELs, because PLABELs with
1142 local symbols may be passed via a pointer to another
1143 object. Additionally, output a dynamic relocation
4dc86686 1144 pointing to the PLT entry.
875c0872 1145
4dc86686
AM
1146 For executables, the original 32-bit ABI allowed two
1147 different styles of PLABELs (function pointers): For
1148 global functions, the PLABEL word points into the .plt
1149 two bytes past a (function address, gp) pair, and for
1150 local functions the PLABEL points directly at the
1151 function. The magic +2 for the first type allows us to
1152 differentiate between the two. As you can imagine, this
1153 is a real pain when it comes to generating code to call
1154 functions indirectly or to compare function pointers.
1155 We avoid the mess by always pointing a PLABEL into the
1156 .plt, even for local functions. */
74d1c347 1157 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
30667bf3
AM
1158 break;
1159
1160 case R_PARISC_PCREL12F:
83c81bfe 1161 htab->has_12bit_branch = 1;
067fa4a6
AM
1162 goto branch_common;
1163
30667bf3
AM
1164 case R_PARISC_PCREL17C:
1165 case R_PARISC_PCREL17F:
83c81bfe 1166 htab->has_17bit_branch = 1;
067fa4a6
AM
1167 goto branch_common;
1168
30667bf3 1169 case R_PARISC_PCREL22F:
067fa4a6
AM
1170 htab->has_22bit_branch = 1;
1171 branch_common:
47d89dba
AM
1172 /* Function calls might need to go through the .plt, and
1173 might require long branch stubs. */
875c0872 1174 if (hh == NULL)
30667bf3
AM
1175 {
1176 /* We know local syms won't need a .plt entry, and if
1177 they need a long branch stub we can't guarantee that
1178 we can reach the stub. So just flag an error later
1179 if we're doing a shared link and find we need a long
1180 branch stub. */
1181 continue;
1182 }
1183 else
1184 {
1185 /* Global symbols will need a .plt entry if they remain
1186 global, and in most cases won't need a long branch
1187 stub. Unfortunately, we have to cater for the case
1188 where a symbol is forced local by versioning, or due
1189 to symbolic linking, and we lose the .plt entry. */
98ceb8ce 1190 need_entry = NEED_PLT;
a63e02c7 1191 if (hh->eh.type == STT_PARISC_MILLI)
98ceb8ce 1192 need_entry = 0;
30667bf3
AM
1193 }
1194 break;
1195
36751eee 1196 case R_PARISC_SEGBASE: /* Used to set segment base. */
c46b7515 1197 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
30667bf3
AM
1198 case R_PARISC_PCREL14F: /* PC relative load/store. */
1199 case R_PARISC_PCREL14R:
1200 case R_PARISC_PCREL17R: /* External branches. */
1201 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
36751eee 1202 case R_PARISC_PCREL32:
30667bf3
AM
1203 /* We don't need to propagate the relocation if linking a
1204 shared object since these are section relative. */
1205 continue;
1206
1207 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1208 case R_PARISC_DPREL14R:
1209 case R_PARISC_DPREL21L:
1210 if (info->shared)
1211 {
1212 (*_bfd_error_handler)
d003868e
AM
1213 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1214 abfd,
30667bf3
AM
1215 elf_hppa_howto_table[r_type].name);
1216 bfd_set_error (bfd_error_bad_value);
b34976b6 1217 return FALSE;
30667bf3
AM
1218 }
1219 /* Fall through. */
1220
1221 case R_PARISC_DIR17F: /* Used for external branches. */
1222 case R_PARISC_DIR17R:
47d89dba
AM
1223 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1224 case R_PARISC_DIR14R:
30667bf3 1225 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
c46b7515 1226 case R_PARISC_DIR32: /* .word relocs. */
30667bf3
AM
1227 /* We may want to output a dynamic relocation later. */
1228 need_entry = NEED_DYNREL;
1229 break;
1230
1231 /* This relocation describes the C++ object vtable hierarchy.
1232 Reconstruct it for later use during GC. */
1233 case R_PARISC_GNU_VTINHERIT:
a63e02c7 1234 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
b34976b6 1235 return FALSE;
30667bf3
AM
1236 continue;
1237
1238 /* This relocation describes which C++ vtable entries are actually
1239 used. Record for later use during GC. */
1240 case R_PARISC_GNU_VTENTRY:
a63e02c7 1241 if (!bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
b34976b6 1242 return FALSE;
30667bf3
AM
1243 continue;
1244
1245 default:
1246 continue;
1247 }
1248
1249 /* Now carry out our orders. */
1250 if (need_entry & NEED_GOT)
1251 {
1252 /* Allocate space for a GOT entry, as well as a dynamic
25f72752 1253 relocation for this entry. */
83c81bfe 1254 if (htab->sgot == NULL)
30667bf3 1255 {
a63e02c7
DA
1256 if (htab->etab.dynobj == NULL)
1257 htab->etab.dynobj = abfd;
1258 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
b34976b6 1259 return FALSE;
30667bf3
AM
1260 }
1261
875c0872 1262 if (hh != NULL)
30667bf3 1263 {
a63e02c7 1264 hh->eh.got.refcount += 1;
30667bf3
AM
1265 }
1266 else
1267 {
3ac8354b 1268 bfd_signed_vma *local_got_refcounts;
875c0872 1269 /* This is a global offset table entry for a local symbol. */
3ac8354b 1270 local_got_refcounts = elf_local_got_refcounts (abfd);
30667bf3
AM
1271 if (local_got_refcounts == NULL)
1272 {
dc810e39 1273 bfd_size_type size;
30667bf3 1274
74d1c347
AM
1275 /* Allocate space for local got offsets and local
1276 plt offsets. Done this way to save polluting
1277 elf_obj_tdata with another target specific
1278 pointer. */
dc810e39
AM
1279 size = symtab_hdr->sh_info;
1280 size *= 2 * sizeof (bfd_signed_vma);
c39a58e6 1281 local_got_refcounts = bfd_zalloc (abfd, size);
30667bf3 1282 if (local_got_refcounts == NULL)
b34976b6 1283 return FALSE;
30667bf3 1284 elf_local_got_refcounts (abfd) = local_got_refcounts;
30667bf3 1285 }
ebe50bae 1286 local_got_refcounts[r_symndx] += 1;
30667bf3
AM
1287 }
1288 }
1289
1290 if (need_entry & NEED_PLT)
1291 {
1292 /* If we are creating a shared library, and this is a reloc
1293 against a weak symbol or a global symbol in a dynamic
1294 object, then we will be creating an import stub and a
1295 .plt entry for the symbol. Similarly, on a normal link
1296 to symbols defined in a dynamic object we'll need the
1297 import stub and a .plt entry. We don't know yet whether
1298 the symbol is defined or not, so make an entry anyway and
1299 clean up later in adjust_dynamic_symbol. */
1300 if ((sec->flags & SEC_ALLOC) != 0)
1301 {
875c0872 1302 if (hh != NULL)
30667bf3 1303 {
a63e02c7
DA
1304 hh->eh.needs_plt = 1;
1305 hh->eh.plt.refcount += 1;
74d1c347 1306
36605136
AM
1307 /* If this .plt entry is for a plabel, mark it so
1308 that adjust_dynamic_symbol will keep the entry
1309 even if it appears to be local. */
74d1c347 1310 if (need_entry & PLT_PLABEL)
875c0872 1311 hh->plabel = 1;
74d1c347
AM
1312 }
1313 else if (need_entry & PLT_PLABEL)
1314 {
3ac8354b 1315 bfd_signed_vma *local_got_refcounts;
68fb2e56 1316 bfd_signed_vma *local_plt_refcounts;
74d1c347 1317
3ac8354b 1318 local_got_refcounts = elf_local_got_refcounts (abfd);
74d1c347
AM
1319 if (local_got_refcounts == NULL)
1320 {
dc810e39 1321 bfd_size_type size;
74d1c347
AM
1322
1323 /* Allocate space for local got offsets and local
1324 plt offsets. */
dc810e39
AM
1325 size = symtab_hdr->sh_info;
1326 size *= 2 * sizeof (bfd_signed_vma);
c39a58e6 1327 local_got_refcounts = bfd_zalloc (abfd, size);
74d1c347 1328 if (local_got_refcounts == NULL)
b34976b6 1329 return FALSE;
74d1c347 1330 elf_local_got_refcounts (abfd) = local_got_refcounts;
74d1c347 1331 }
68fb2e56
AM
1332 local_plt_refcounts = (local_got_refcounts
1333 + symtab_hdr->sh_info);
ebe50bae 1334 local_plt_refcounts[r_symndx] += 1;
30667bf3 1335 }
30667bf3
AM
1336 }
1337 }
1338
98ceb8ce 1339 if (need_entry & NEED_DYNREL)
30667bf3
AM
1340 {
1341 /* Flag this symbol as having a non-got, non-plt reference
1342 so that we generate copy relocs if it turns out to be
1343 dynamic. */
875c0872 1344 if (hh != NULL && !info->shared)
a63e02c7 1345 hh->eh.non_got_ref = 1;
30667bf3
AM
1346
1347 /* If we are creating a shared library then we need to copy
1348 the reloc into the shared library. However, if we are
1349 linking with -Bsymbolic, we need only copy absolute
1350 relocs or relocs against symbols that are not defined in
1351 an object we are including in the link. PC- or DP- or
1352 DLT-relative relocs against any local sym or global sym
1353 with DEF_REGULAR set, can be discarded. At this point we
1354 have not seen all the input files, so it is possible that
1355 DEF_REGULAR is not set now but will be set later (it is
1356 never cleared). We account for that possibility below by
98ceb8ce 1357 storing information in the dyn_relocs field of the
30667bf3
AM
1358 hash table entry.
1359
1360 A similar situation to the -Bsymbolic case occurs when
1361 creating shared libraries and symbol visibility changes
1362 render the symbol local.
1363
1364 As it turns out, all the relocs we will be creating here
1365 are absolute, so we cannot remove them on -Bsymbolic
1366 links or visibility changes anyway. A STUB_REL reloc
1367 is absolute too, as in that case it is the reloc in the
1368 stub we will be creating, rather than copying the PCREL
56882138
AM
1369 reloc in the branch.
1370
1371 If on the other hand, we are creating an executable, we
1372 may need to keep relocations for symbols satisfied by a
1373 dynamic library if we manage to avoid copy relocs for the
1374 symbol. */
446f2863
AM
1375 if ((info->shared
1376 && (sec->flags & SEC_ALLOC) != 0
1377 && (IS_ABSOLUTE_RELOC (r_type)
875c0872 1378 || (hh != NULL
446f2863 1379 && (!info->symbolic
a63e02c7
DA
1380 || hh->eh.root.type == bfd_link_hash_defweak
1381 || !hh->eh.def_regular))))
4fc8051d
AM
1382 || (ELIMINATE_COPY_RELOCS
1383 && !info->shared
446f2863 1384 && (sec->flags & SEC_ALLOC) != 0
875c0872 1385 && hh != NULL
a63e02c7
DA
1386 && (hh->eh.root.type == bfd_link_hash_defweak
1387 || !hh->eh.def_regular)))
30667bf3 1388 {
875c0872
DA
1389 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1390 struct elf32_hppa_dyn_reloc_entry **hdh_head;
ec338859 1391
30667bf3
AM
1392 /* Create a reloc section in dynobj and make room for
1393 this reloc. */
98ceb8ce 1394 if (sreloc == NULL)
30667bf3
AM
1395 {
1396 char *name;
3ac8354b 1397 bfd *dynobj;
30667bf3 1398
98ceb8ce
AM
1399 name = (bfd_elf_string_from_elf_section
1400 (abfd,
1401 elf_elfheader (abfd)->e_shstrndx,
1402 elf_section_data (sec)->rel_hdr.sh_name));
30667bf3
AM
1403 if (name == NULL)
1404 {
1405 (*_bfd_error_handler)
1406 (_("Could not find relocation section for %s"),
1407 sec->name);
1408 bfd_set_error (bfd_error_bad_value);
b34976b6 1409 return FALSE;
30667bf3
AM
1410 }
1411
a63e02c7
DA
1412 if (htab->etab.dynobj == NULL)
1413 htab->etab.dynobj = abfd;
3ac8354b 1414
a63e02c7 1415 dynobj = htab->etab.dynobj;
98ceb8ce
AM
1416 sreloc = bfd_get_section_by_name (dynobj, name);
1417 if (sreloc == NULL)
30667bf3
AM
1418 {
1419 flagword flags;
1420
30667bf3
AM
1421 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1422 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1423 if ((sec->flags & SEC_ALLOC) != 0)
1424 flags |= SEC_ALLOC | SEC_LOAD;
3496cb2a
L
1425 sreloc = bfd_make_section_with_flags (dynobj,
1426 name,
1427 flags);
98ceb8ce 1428 if (sreloc == NULL
98ceb8ce 1429 || !bfd_set_section_alignment (dynobj, sreloc, 2))
b34976b6 1430 return FALSE;
30667bf3 1431 }
30667bf3 1432
98ceb8ce 1433 elf_section_data (sec)->sreloc = sreloc;
30667bf3
AM
1434 }
1435
98ceb8ce
AM
1436 /* If this is a global symbol, we count the number of
1437 relocations we need for this symbol. */
875c0872 1438 if (hh != NULL)
30667bf3 1439 {
875c0872 1440 hdh_head = &hh->dyn_relocs;
ec338859
AM
1441 }
1442 else
1443 {
1444 /* Track dynamic relocs needed for local syms too.
1445 We really need local syms available to do this
1446 easily. Oh well. */
1447
875c0872
DA
1448 asection *sr;
1449 sr = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1450 sec, r_symndx);
1451 if (sr == NULL)
b34976b6 1452 return FALSE;
30667bf3 1453
875c0872
DA
1454 hdh_head = ((struct elf32_hppa_dyn_reloc_entry **)
1455 &elf_section_data (sr)->local_dynrel);
ec338859
AM
1456 }
1457
875c0872
DA
1458 hdh_p = *hdh_head;
1459 if (hdh_p == NULL || hdh_p->sec != sec)
ec338859 1460 {
a63e02c7 1461 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
875c0872 1462 if (hdh_p == NULL)
b34976b6 1463 return FALSE;
a63e02c7 1464 hdh_p->hdh_next = *hdh_head;
875c0872
DA
1465 *hdh_head = hdh_p;
1466 hdh_p->sec = sec;
1467 hdh_p->count = 0;
98ceb8ce 1468#if RELATIVE_DYNRELOCS
875c0872 1469 hdh_p->relative_count = 0;
98ceb8ce 1470#endif
ec338859 1471 }
98ceb8ce 1472
875c0872 1473 hdh_p->count += 1;
98ceb8ce 1474#if RELATIVE_DYNRELOCS
ec338859 1475 if (!IS_ABSOLUTE_RELOC (rtype))
875c0872 1476 hdh_p->relative_count += 1;
98ceb8ce 1477#endif
30667bf3
AM
1478 }
1479 }
1480 }
edd21aca 1481
b34976b6 1482 return TRUE;
edd21aca
AM
1483}
1484
30667bf3
AM
1485/* Return the section that should be marked against garbage collection
1486 for a given relocation. */
1487
1488static asection *
c39a58e6
AM
1489elf32_hppa_gc_mark_hook (asection *sec,
1490 struct bfd_link_info *info ATTRIBUTE_UNUSED,
875c0872
DA
1491 Elf_Internal_Rela *rela,
1492 struct elf_link_hash_entry *hh,
c39a58e6 1493 Elf_Internal_Sym *sym)
30667bf3 1494{
875c0872 1495 if (hh != NULL)
30667bf3 1496 {
875c0872 1497 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
30667bf3
AM
1498 {
1499 case R_PARISC_GNU_VTINHERIT:
1500 case R_PARISC_GNU_VTENTRY:
1501 break;
1502
1503 default:
875c0872 1504 switch (hh->root.type)
30667bf3
AM
1505 {
1506 case bfd_link_hash_defined:
1507 case bfd_link_hash_defweak:
875c0872 1508 return hh->root.u.def.section;
30667bf3
AM
1509
1510 case bfd_link_hash_common:
875c0872 1511 return hh->root.u.c.p->section;
30667bf3
AM
1512
1513 default:
1514 break;
1515 }
1516 }
1517 }
1518 else
1e2f5b6e 1519 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
30667bf3
AM
1520
1521 return NULL;
1522}
1523
30667bf3
AM
1524/* Update the got and plt entry reference counts for the section being
1525 removed. */
edd21aca 1526
b34976b6 1527static bfd_boolean
c39a58e6
AM
1528elf32_hppa_gc_sweep_hook (bfd *abfd,
1529 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1530 asection *sec,
1531 const Elf_Internal_Rela *relocs)
edd21aca 1532{
30667bf3 1533 Elf_Internal_Shdr *symtab_hdr;
875c0872 1534 struct elf_link_hash_entry **eh_syms;
30667bf3 1535 bfd_signed_vma *local_got_refcounts;
74d1c347 1536 bfd_signed_vma *local_plt_refcounts;
875c0872 1537 const Elf_Internal_Rela *rela, *relend;
30667bf3 1538
ec338859 1539 elf_section_data (sec)->local_dynrel = NULL;
98ceb8ce 1540
30667bf3 1541 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
875c0872 1542 eh_syms = elf_sym_hashes (abfd);
30667bf3 1543 local_got_refcounts = elf_local_got_refcounts (abfd);
74d1c347
AM
1544 local_plt_refcounts = local_got_refcounts;
1545 if (local_plt_refcounts != NULL)
1546 local_plt_refcounts += symtab_hdr->sh_info;
30667bf3 1547
30667bf3 1548 relend = relocs + sec->reloc_count;
875c0872 1549 for (rela = relocs; rela < relend; rela++)
26e41594
AM
1550 {
1551 unsigned long r_symndx;
1552 unsigned int r_type;
875c0872 1553 struct elf_link_hash_entry *eh = NULL;
26e41594 1554
875c0872 1555 r_symndx = ELF32_R_SYM (rela->r_info);
26e41594
AM
1556 if (r_symndx >= symtab_hdr->sh_info)
1557 {
875c0872
DA
1558 struct elf32_hppa_link_hash_entry *hh;
1559 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1560 struct elf32_hppa_dyn_reloc_entry *hdh_p;
26e41594 1561
875c0872
DA
1562 eh = eh_syms[r_symndx - symtab_hdr->sh_info];
1563 while (eh->root.type == bfd_link_hash_indirect
1564 || eh->root.type == bfd_link_hash_warning)
1565 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1566 hh = hppa_elf_hash_entry (eh);
26e41594 1567
a63e02c7 1568 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
875c0872 1569 if (hdh_p->sec == sec)
26e41594
AM
1570 {
1571 /* Everything must go for SEC. */
a63e02c7 1572 *hdh_pp = hdh_p->hdh_next;
26e41594
AM
1573 break;
1574 }
1575 }
1576
875c0872 1577 r_type = ELF32_R_TYPE (rela->r_info);
26e41594
AM
1578 switch (r_type)
1579 {
1580 case R_PARISC_DLTIND14F:
1581 case R_PARISC_DLTIND14R:
1582 case R_PARISC_DLTIND21L:
875c0872 1583 if (eh != NULL)
26e41594 1584 {
875c0872
DA
1585 if (eh->got.refcount > 0)
1586 eh->got.refcount -= 1;
26e41594
AM
1587 }
1588 else if (local_got_refcounts != NULL)
1589 {
1590 if (local_got_refcounts[r_symndx] > 0)
1591 local_got_refcounts[r_symndx] -= 1;
1592 }
1593 break;
98ceb8ce 1594
26e41594
AM
1595 case R_PARISC_PCREL12F:
1596 case R_PARISC_PCREL17C:
1597 case R_PARISC_PCREL17F:
1598 case R_PARISC_PCREL22F:
875c0872 1599 if (eh != NULL)
26e41594 1600 {
875c0872
DA
1601 if (eh->plt.refcount > 0)
1602 eh->plt.refcount -= 1;
26e41594
AM
1603 }
1604 break;
1605
1606 case R_PARISC_PLABEL14R:
1607 case R_PARISC_PLABEL21L:
1608 case R_PARISC_PLABEL32:
875c0872 1609 if (eh != NULL)
26e41594 1610 {
875c0872
DA
1611 if (eh->plt.refcount > 0)
1612 eh->plt.refcount -= 1;
26e41594
AM
1613 }
1614 else if (local_plt_refcounts != NULL)
1615 {
1616 if (local_plt_refcounts[r_symndx] > 0)
1617 local_plt_refcounts[r_symndx] -= 1;
1618 }
1619 break;
1620
1621 default:
1622 break;
1623 }
1624 }
252b5132 1625
b34976b6 1626 return TRUE;
252b5132
RH
1627}
1628
edfc032f
AM
1629/* Support for core dump NOTE sections. */
1630
1631static bfd_boolean
1632elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1633{
1634 int offset;
1635 size_t size;
1636
1637 switch (note->descsz)
1638 {
1639 default:
1640 return FALSE;
1641
1642 case 396: /* Linux/hppa */
1643 /* pr_cursig */
1644 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1645
1646 /* pr_pid */
1647 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1648
1649 /* pr_reg */
1650 offset = 72;
1651 size = 320;
1652
1653 break;
1654 }
1655
1656 /* Make a ".reg/999" section. */
1657 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1658 size, note->descpos + offset);
1659}
1660
1661static bfd_boolean
1662elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1663{
1664 switch (note->descsz)
1665 {
1666 default:
1667 return FALSE;
1668
1669 case 124: /* Linux/hppa elf_prpsinfo. */
1670 elf_tdata (abfd)->core_program
1671 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1672 elf_tdata (abfd)->core_command
1673 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1674 }
1675
1676 /* Note that for some reason, a spurious space is tacked
1677 onto the end of the args in some (at least one anyway)
1678 implementations, so strip it off if it exists. */
1679 {
1680 char *command = elf_tdata (abfd)->core_command;
1681 int n = strlen (command);
1682
1683 if (0 < n && command[n - 1] == ' ')
1684 command[n - 1] = '\0';
1685 }
1686
1687 return TRUE;
1688}
1689
74d1c347
AM
1690/* Our own version of hide_symbol, so that we can keep plt entries for
1691 plabels. */
1692
1693static void
c39a58e6 1694elf32_hppa_hide_symbol (struct bfd_link_info *info,
875c0872 1695 struct elf_link_hash_entry *eh,
c39a58e6 1696 bfd_boolean force_local)
74d1c347 1697{
e5094212
AM
1698 if (force_local)
1699 {
875c0872
DA
1700 eh->forced_local = 1;
1701 if (eh->dynindx != -1)
e5094212 1702 {
875c0872 1703 eh->dynindx = -1;
e5094212 1704 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
875c0872 1705 eh->dynstr_index);
e5094212
AM
1706 }
1707 }
1708
875c0872 1709 if (! hppa_elf_hash_entry(eh)->plabel)
74d1c347 1710 {
875c0872
DA
1711 eh->needs_plt = 0;
1712 eh->plt = elf_hash_table (info)->init_plt_refcount;
74d1c347
AM
1713 }
1714}
1715
30667bf3
AM
1716/* Adjust a symbol defined by a dynamic object and referenced by a
1717 regular object. The current definition is in some section of the
1718 dynamic object, but we're not including those sections. We have to
1719 change the definition to something the rest of the link can
1720 understand. */
252b5132 1721
b34976b6 1722static bfd_boolean
c39a58e6 1723elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
875c0872 1724 struct elf_link_hash_entry *eh)
252b5132 1725{
83c81bfe 1726 struct elf32_hppa_link_hash_table *htab;
875c0872 1727 asection *sec;
3ac8354b 1728 unsigned int power_of_two;
30667bf3
AM
1729
1730 /* If this is a function, put it in the procedure linkage table. We
067fa4a6 1731 will fill in the contents of the procedure linkage table later. */
875c0872
DA
1732 if (eh->type == STT_FUNC
1733 || eh->needs_plt)
30667bf3 1734 {
875c0872
DA
1735 if (eh->plt.refcount <= 0
1736 || (eh->def_regular
1737 && eh->root.type != bfd_link_hash_defweak
1738 && ! hppa_elf_hash_entry (eh)->plabel
30667bf3
AM
1739 && (!info->shared || info->symbolic)))
1740 {
1741 /* The .plt entry is not needed when:
1742 a) Garbage collection has removed all references to the
1743 symbol, or
1744 b) We know for certain the symbol is defined in this
74d1c347
AM
1745 object, and it's not a weak definition, nor is the symbol
1746 used by a plabel relocation. Either this object is the
1747 application or we are doing a shared symbolic link. */
1748
875c0872
DA
1749 eh->plt.offset = (bfd_vma) -1;
1750 eh->needs_plt = 0;
30667bf3 1751 }
4dc86686 1752
b34976b6 1753 return TRUE;
30667bf3 1754 }
bbd7ec4a 1755 else
875c0872 1756 eh->plt.offset = (bfd_vma) -1;
edd21aca 1757
30667bf3
AM
1758 /* If this is a weak symbol, and there is a real definition, the
1759 processor independent code will have arranged for us to see the
1760 real definition first, and we can just use the same value. */
875c0872 1761 if (eh->u.weakdef != NULL)
edd21aca 1762 {
875c0872
DA
1763 if (eh->u.weakdef->root.type != bfd_link_hash_defined
1764 && eh->u.weakdef->root.type != bfd_link_hash_defweak)
49e9d0d3 1765 abort ();
875c0872
DA
1766 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1767 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
4fc8051d 1768 if (ELIMINATE_COPY_RELOCS)
875c0872 1769 eh->non_got_ref = eh->u.weakdef->non_got_ref;
b34976b6 1770 return TRUE;
30667bf3 1771 }
edd21aca 1772
30667bf3
AM
1773 /* This is a reference to a symbol defined by a dynamic object which
1774 is not a function. */
1775
1776 /* If we are creating a shared library, we must presume that the
1777 only references to the symbol are via the global offset table.
1778 For such cases we need not do anything here; the relocations will
1779 be handled correctly by relocate_section. */
1780 if (info->shared)
b34976b6 1781 return TRUE;
30667bf3
AM
1782
1783 /* If there are no references to this symbol that do not use the
1784 GOT, we don't need to generate a copy reloc. */
875c0872 1785 if (!eh->non_got_ref)
b34976b6 1786 return TRUE;
30667bf3 1787
4fc8051d 1788 if (ELIMINATE_COPY_RELOCS)
ebe50bae 1789 {
875c0872
DA
1790 struct elf32_hppa_link_hash_entry *hh;
1791 struct elf32_hppa_dyn_reloc_entry *hdh_p;
ebe50bae 1792
875c0872 1793 hh = hppa_elf_hash_entry (eh);
a63e02c7 1794 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
4fc8051d 1795 {
875c0872
DA
1796 sec = hdh_p->sec->output_section;
1797 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
4fc8051d
AM
1798 break;
1799 }
1800
1801 /* If we didn't find any dynamic relocs in read-only sections, then
1802 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
875c0872 1803 if (hdh_p == NULL)
4fc8051d 1804 {
875c0872 1805 eh->non_got_ref = 0;
4fc8051d
AM
1806 return TRUE;
1807 }
ebe50bae
AM
1808 }
1809
30667bf3
AM
1810 /* We must allocate the symbol in our .dynbss section, which will
1811 become part of the .bss section of the executable. There will be
1812 an entry for this symbol in the .dynsym section. The dynamic
1813 object will contain position independent code, so all references
1814 from the dynamic object to this symbol will go through the global
1815 offset table. The dynamic linker will use the .dynsym entry to
1816 determine the address it must put in the global offset table, so
1817 both the dynamic object and the regular object will refer to the
1818 same memory location for the variable. */
1819
3ac8354b 1820 htab = hppa_link_hash_table (info);
30667bf3
AM
1821
1822 /* We must generate a COPY reloc to tell the dynamic linker to
1823 copy the initial value out of the dynamic object and into the
3ac8354b 1824 runtime process image. */
875c0872 1825 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0)
30667bf3 1826 {
eea6121a 1827 htab->srelbss->size += sizeof (Elf32_External_Rela);
875c0872 1828 eh->needs_copy = 1;
edd21aca 1829 }
252b5132 1830
3ac8354b
AM
1831 /* We need to figure out the alignment required for this symbol. I
1832 have no idea how other ELF linkers handle this. */
30667bf3 1833
875c0872 1834 power_of_two = bfd_log2 (eh->size);
3ac8354b
AM
1835 if (power_of_two > 3)
1836 power_of_two = 3;
1837
1838 /* Apply the required alignment. */
875c0872
DA
1839 sec = htab->sdynbss;
1840 sec->size = BFD_ALIGN (sec->size, (bfd_size_type) (1 << power_of_two));
a63e02c7 1841 if (power_of_two > bfd_get_section_alignment (htab->etab.dynobj, sec))
3ac8354b 1842 {
a63e02c7 1843 if (! bfd_set_section_alignment (htab->etab.dynobj, sec, power_of_two))
b34976b6 1844 return FALSE;
3ac8354b 1845 }
30667bf3 1846
30667bf3 1847 /* Define the symbol as being at this point in the section. */
875c0872
DA
1848 eh->root.u.def.section = sec;
1849 eh->root.u.def.value = sec->size;
edd21aca 1850
30667bf3 1851 /* Increment the section size to make room for the symbol. */
875c0872 1852 sec->size += eh->size;
252b5132 1853
b34976b6 1854 return TRUE;
252b5132
RH
1855}
1856
e5ee5df1 1857/* Allocate space in the .plt for entries that won't have relocations.
a252afa4 1858 ie. plabel entries. */
a8d02d66 1859
b34976b6 1860static bfd_boolean
875c0872 1861allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
a8d02d66
AM
1862{
1863 struct bfd_link_info *info;
1864 struct elf32_hppa_link_hash_table *htab;
875c0872
DA
1865 struct elf32_hppa_link_hash_entry *hh;
1866 asection *sec;
a8d02d66 1867
875c0872 1868 if (eh->root.type == bfd_link_hash_indirect)
b34976b6 1869 return TRUE;
a8d02d66 1870
875c0872
DA
1871 if (eh->root.type == bfd_link_hash_warning)
1872 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
e92d460e 1873
875c0872
DA
1874 info = (struct bfd_link_info *) inf;
1875 hh = hppa_elf_hash_entry(eh);
a8d02d66 1876 htab = hppa_link_hash_table (info);
a63e02c7 1877 if (htab->etab.dynamic_sections_created
875c0872 1878 && eh->plt.refcount > 0)
e5ee5df1
AM
1879 {
1880 /* Make sure this symbol is output as a dynamic symbol.
1881 Undefined weak syms won't yet be marked as dynamic. */
875c0872
DA
1882 if (eh->dynindx == -1
1883 && !eh->forced_local
1884 && eh->type != STT_PARISC_MILLI)
a8d02d66 1885 {
875c0872 1886 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
b34976b6 1887 return FALSE;
e5ee5df1
AM
1888 }
1889
875c0872 1890 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, eh))
e5ee5df1 1891 {
067fa4a6
AM
1892 /* Allocate these later. From this point on, h->plabel
1893 means that the plt entry is only used by a plabel.
1894 We'll be using a normal plt entry for this symbol, so
1895 clear the plabel indicator. */
875c0872
DA
1896
1897 hh->plabel = 0;
e5ee5df1 1898 }
875c0872 1899 else if (hh->plabel)
e5ee5df1
AM
1900 {
1901 /* Make an entry in the .plt section for plabel references
1902 that won't have a .plt entry for other reasons. */
875c0872
DA
1903 sec = htab->splt;
1904 eh->plt.offset = sec->size;
1905 sec->size += PLT_ENTRY_SIZE;
a8d02d66
AM
1906 }
1907 else
e5ee5df1
AM
1908 {
1909 /* No .plt entry needed. */
875c0872
DA
1910 eh->plt.offset = (bfd_vma) -1;
1911 eh->needs_plt = 0;
e5ee5df1
AM
1912 }
1913 }
1914 else
1915 {
875c0872
DA
1916 eh->plt.offset = (bfd_vma) -1;
1917 eh->needs_plt = 0;
a8d02d66
AM
1918 }
1919
b34976b6 1920 return TRUE;
a8d02d66
AM
1921}
1922
4dc86686
AM
1923/* Allocate space in .plt, .got and associated reloc sections for
1924 global syms. */
1925
b34976b6 1926static bfd_boolean
875c0872 1927allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
4dc86686
AM
1928{
1929 struct bfd_link_info *info;
83c81bfe 1930 struct elf32_hppa_link_hash_table *htab;
875c0872
DA
1931 asection *sec;
1932 struct elf32_hppa_link_hash_entry *hh;
1933 struct elf32_hppa_dyn_reloc_entry *hdh_p;
4dc86686 1934
875c0872 1935 if (eh->root.type == bfd_link_hash_indirect)
b34976b6 1936 return TRUE;
73a74a62 1937
875c0872
DA
1938 if (eh->root.type == bfd_link_hash_warning)
1939 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
e92d460e 1940
c39a58e6 1941 info = inf;
83c81bfe 1942 htab = hppa_link_hash_table (info);
875c0872
DA
1943 hh = hppa_elf_hash_entry (eh);
1944
a63e02c7 1945 if (htab->etab.dynamic_sections_created
875c0872
DA
1946 && eh->plt.offset != (bfd_vma) -1
1947 && !hh->plabel
1948 && eh->plt.refcount > 0)
4dc86686 1949 {
e5ee5df1 1950 /* Make an entry in the .plt section. */
875c0872
DA
1951 sec = htab->splt;
1952 eh->plt.offset = sec->size;
1953 sec->size += PLT_ENTRY_SIZE;
3ac8354b 1954
e5ee5df1 1955 /* We also need to make an entry in the .rela.plt section. */
eea6121a 1956 htab->srelplt->size += sizeof (Elf32_External_Rela);
e5ee5df1 1957 htab->need_plt_stub = 1;
4dc86686 1958 }
edd21aca 1959
875c0872 1960 if (eh->got.refcount > 0)
4dc86686 1961 {
446f2863
AM
1962 /* Make sure this symbol is output as a dynamic symbol.
1963 Undefined weak syms won't yet be marked as dynamic. */
875c0872
DA
1964 if (eh->dynindx == -1
1965 && !eh->forced_local
1966 && eh->type != STT_PARISC_MILLI)
446f2863 1967 {
875c0872 1968 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
b34976b6 1969 return FALSE;
446f2863
AM
1970 }
1971
875c0872
DA
1972 sec = htab->sgot;
1973 eh->got.offset = sec->size;
1974 sec->size += GOT_ENTRY_SIZE;
a63e02c7 1975 if (htab->etab.dynamic_sections_created
ce757d15 1976 && (info->shared
875c0872
DA
1977 || (eh->dynindx != -1
1978 && !eh->forced_local)))
ce757d15 1979 {
eea6121a 1980 htab->srelgot->size += sizeof (Elf32_External_Rela);
ce757d15 1981 }
4dc86686
AM
1982 }
1983 else
875c0872 1984 eh->got.offset = (bfd_vma) -1;
30667bf3 1985
875c0872 1986 if (hh->dyn_relocs == NULL)
b34976b6 1987 return TRUE;
30667bf3 1988
98ceb8ce
AM
1989 /* If this is a -Bsymbolic shared link, then we need to discard all
1990 space allocated for dynamic pc-relative relocs against symbols
1991 defined in a regular object. For the normal shared case, discard
1992 space for relocs that have become local due to symbol visibility
1993 changes. */
1994 if (info->shared)
446f2863 1995 {
98ceb8ce 1996#if RELATIVE_DYNRELOCS
875c0872 1997 if (SYMBOL_CALLS_LOCAL (info, eh))
446f2863 1998 {
875c0872 1999 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
30667bf3 2000
875c0872 2001 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
98ceb8ce 2002 {
875c0872
DA
2003 hdh_p->count -= hdh_p->relative_count;
2004 hdh_p->relative_count = 0;
2005 if (hdh_p->count == 0)
a63e02c7 2006 *hdh_pp = hdh_p->hdh_next;
98ceb8ce 2007 else
a63e02c7 2008 hdh_pp = &hdh_p->hdh_next;
98ceb8ce
AM
2009 }
2010 }
2011#endif
4fc8051d
AM
2012
2013 /* Also discard relocs on undefined weak syms with non-default
2014 visibility. */
875c0872
DA
2015 if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT
2016 && eh->root.type == bfd_link_hash_undefweak)
2017 hh->dyn_relocs = NULL;
446f2863 2018 }
98ceb8ce 2019 else
30667bf3 2020 {
98ceb8ce
AM
2021 /* For the non-shared case, discard space for relocs against
2022 symbols which turn out to need copy relocs or are not
2023 dynamic. */
875c0872
DA
2024
2025 if (!eh->non_got_ref
4fc8051d 2026 && ((ELIMINATE_COPY_RELOCS
875c0872
DA
2027 && eh->def_dynamic
2028 && !eh->def_regular)
a63e02c7 2029 || (htab->etab.dynamic_sections_created
875c0872
DA
2030 && (eh->root.type == bfd_link_hash_undefweak
2031 || eh->root.type == bfd_link_hash_undefined))))
98ceb8ce
AM
2032 {
2033 /* Make sure this symbol is output as a dynamic symbol.
2034 Undefined weak syms won't yet be marked as dynamic. */
875c0872
DA
2035 if (eh->dynindx == -1
2036 && !eh->forced_local
2037 && eh->type != STT_PARISC_MILLI)
98ceb8ce 2038 {
875c0872 2039 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
b34976b6 2040 return FALSE;
98ceb8ce
AM
2041 }
2042
2043 /* If that succeeded, we know we'll be keeping all the
2044 relocs. */
875c0872 2045 if (eh->dynindx != -1)
98ceb8ce
AM
2046 goto keep;
2047 }
446f2863 2048
875c0872 2049 hh->dyn_relocs = NULL;
b34976b6 2050 return TRUE;
98ceb8ce 2051
ec338859 2052 keep: ;
30667bf3 2053 }
30667bf3 2054
98ceb8ce 2055 /* Finally, allocate space. */
a63e02c7 2056 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
30667bf3 2057 {
875c0872
DA
2058 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2059 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
30667bf3 2060 }
30667bf3 2061
b34976b6 2062 return TRUE;
30667bf3 2063}
30667bf3 2064
d5c73c2f
AM
2065/* This function is called via elf_link_hash_traverse to force
2066 millicode symbols local so they do not end up as globals in the
2067 dynamic symbol table. We ought to be able to do this in
2068 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2069 for all dynamic symbols. Arguably, this is a bug in
2070 elf_adjust_dynamic_symbol. */
2071
b34976b6 2072static bfd_boolean
875c0872 2073clobber_millicode_symbols (struct elf_link_hash_entry *eh,
c39a58e6 2074 struct bfd_link_info *info)
d5c73c2f 2075{
875c0872
DA
2076 if (eh->root.type == bfd_link_hash_warning)
2077 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
e92d460e 2078
875c0872
DA
2079 if (eh->type == STT_PARISC_MILLI
2080 && !eh->forced_local)
e0522e89 2081 {
875c0872 2082 elf32_hppa_hide_symbol (info, eh, TRUE);
e0522e89 2083 }
b34976b6 2084 return TRUE;
d5c73c2f
AM
2085}
2086
98ceb8ce
AM
2087/* Find any dynamic relocs that apply to read-only sections. */
2088
b34976b6 2089static bfd_boolean
875c0872 2090readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
98ceb8ce 2091{
875c0872
DA
2092 struct elf32_hppa_link_hash_entry *hh;
2093 struct elf32_hppa_dyn_reloc_entry *hdh_p;
98ceb8ce 2094
875c0872
DA
2095 if (eh->root.type == bfd_link_hash_warning)
2096 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
e92d460e 2097
875c0872 2098 hh = hppa_elf_hash_entry (eh);
a63e02c7 2099 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
98ceb8ce 2100 {
875c0872 2101 asection *sec = hdh_p->sec->output_section;
98ceb8ce 2102
875c0872 2103 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
98ceb8ce 2104 {
c39a58e6 2105 struct bfd_link_info *info = inf;
98ceb8ce
AM
2106
2107 info->flags |= DF_TEXTREL;
2108
2109 /* Not an error, just cut short the traversal. */
b34976b6 2110 return FALSE;
98ceb8ce
AM
2111 }
2112 }
b34976b6 2113 return TRUE;
98ceb8ce
AM
2114}
2115
30667bf3
AM
2116/* Set the sizes of the dynamic sections. */
2117
b34976b6 2118static bfd_boolean
c39a58e6
AM
2119elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2120 struct bfd_link_info *info)
30667bf3 2121{
83c81bfe 2122 struct elf32_hppa_link_hash_table *htab;
30667bf3 2123 bfd *dynobj;
98ceb8ce 2124 bfd *ibfd;
875c0872 2125 asection *sec;
b34976b6 2126 bfd_boolean relocs;
30667bf3 2127
83c81bfe 2128 htab = hppa_link_hash_table (info);
a63e02c7 2129 dynobj = htab->etab.dynobj;
49e9d0d3
AM
2130 if (dynobj == NULL)
2131 abort ();
30667bf3 2132
a63e02c7 2133 if (htab->etab.dynamic_sections_created)
30667bf3
AM
2134 {
2135 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 2136 if (info->executable)
30667bf3 2137 {
875c0872
DA
2138 sec = bfd_get_section_by_name (dynobj, ".interp");
2139 if (sec == NULL)
49e9d0d3 2140 abort ();
875c0872
DA
2141 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2142 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
30667bf3 2143 }
74d1c347 2144
d5c73c2f 2145 /* Force millicode symbols local. */
a63e02c7 2146 elf_link_hash_traverse (&htab->etab,
d5c73c2f
AM
2147 clobber_millicode_symbols,
2148 info);
68fb2e56 2149 }
d5c73c2f 2150
98ceb8ce
AM
2151 /* Set up .got and .plt offsets for local syms, and space for local
2152 dynamic relocs. */
2153 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
68fb2e56
AM
2154 {
2155 bfd_signed_vma *local_got;
2156 bfd_signed_vma *end_local_got;
2157 bfd_signed_vma *local_plt;
2158 bfd_signed_vma *end_local_plt;
2159 bfd_size_type locsymcount;
2160 Elf_Internal_Shdr *symtab_hdr;
2161 asection *srel;
74d1c347 2162
98ceb8ce 2163 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
68fb2e56 2164 continue;
4dc86686 2165
875c0872 2166 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
98ceb8ce 2167 {
875c0872 2168 struct elf32_hppa_dyn_reloc_entry *hdh_p;
98ceb8ce 2169
875c0872
DA
2170 for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2171 elf_section_data (sec)->local_dynrel);
2172 hdh_p != NULL;
a63e02c7 2173 hdh_p = hdh_p->hdh_next)
98ceb8ce 2174 {
875c0872
DA
2175 if (!bfd_is_abs_section (hdh_p->sec)
2176 && bfd_is_abs_section (hdh_p->sec->output_section))
ec338859
AM
2177 {
2178 /* Input section has been discarded, either because
2179 it is a copy of a linkonce section or due to
2180 linker script /DISCARD/, so we'll be discarding
2181 the relocs too. */
2182 }
875c0872 2183 else if (hdh_p->count != 0)
ec338859 2184 {
875c0872
DA
2185 srel = elf_section_data (hdh_p->sec)->sreloc;
2186 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2187 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
248866a8 2188 info->flags |= DF_TEXTREL;
ec338859 2189 }
98ceb8ce
AM
2190 }
2191 }
2192
2193 local_got = elf_local_got_refcounts (ibfd);
68fb2e56
AM
2194 if (!local_got)
2195 continue;
74d1c347 2196
98ceb8ce 2197 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
68fb2e56
AM
2198 locsymcount = symtab_hdr->sh_info;
2199 end_local_got = local_got + locsymcount;
875c0872 2200 sec = htab->sgot;
83c81bfe 2201 srel = htab->srelgot;
68fb2e56
AM
2202 for (; local_got < end_local_got; ++local_got)
2203 {
2204 if (*local_got > 0)
4dc86686 2205 {
875c0872
DA
2206 *local_got = sec->size;
2207 sec->size += GOT_ENTRY_SIZE;
2208 if (info->shared)
eea6121a 2209 srel->size += sizeof (Elf32_External_Rela);
4dc86686 2210 }
68fb2e56
AM
2211 else
2212 *local_got = (bfd_vma) -1;
2213 }
74d1c347 2214
68fb2e56
AM
2215 local_plt = end_local_got;
2216 end_local_plt = local_plt + locsymcount;
a63e02c7 2217 if (! htab->etab.dynamic_sections_created)
68fb2e56
AM
2218 {
2219 /* Won't be used, but be safe. */
2220 for (; local_plt < end_local_plt; ++local_plt)
2221 *local_plt = (bfd_vma) -1;
2222 }
2223 else
2224 {
875c0872 2225 sec = htab->splt;
83c81bfe 2226 srel = htab->srelplt;
74d1c347
AM
2227 for (; local_plt < end_local_plt; ++local_plt)
2228 {
2229 if (*local_plt > 0)
2230 {
875c0872
DA
2231 *local_plt = sec->size;
2232 sec->size += PLT_ENTRY_SIZE;
74d1c347 2233 if (info->shared)
eea6121a 2234 srel->size += sizeof (Elf32_External_Rela);
74d1c347
AM
2235 }
2236 else
2237 *local_plt = (bfd_vma) -1;
2238 }
2239 }
30667bf3 2240 }
30667bf3 2241
e5ee5df1
AM
2242 /* Do all the .plt entries without relocs first. The dynamic linker
2243 uses the last .plt reloc to find the end of the .plt (and hence
2244 the start of the .got) for lazy linking. */
a63e02c7 2245 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
a8d02d66 2246
98ceb8ce
AM
2247 /* Allocate global sym .plt and .got entries, and space for global
2248 sym dynamic relocs. */
a63e02c7 2249 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
30667bf3
AM
2250
2251 /* The check_relocs and adjust_dynamic_symbol entry points have
2252 determined the sizes of the various dynamic sections. Allocate
2253 memory for them. */
b34976b6 2254 relocs = FALSE;
875c0872 2255 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
30667bf3 2256 {
875c0872 2257 if ((sec->flags & SEC_LINKER_CREATED) == 0)
30667bf3
AM
2258 continue;
2259
875c0872 2260 if (sec == htab->splt)
68fb2e56 2261 {
83c81bfe 2262 if (htab->need_plt_stub)
68fb2e56
AM
2263 {
2264 /* Make space for the plt stub at the end of the .plt
2265 section. We want this stub right at the end, up
2266 against the .got section. */
83c81bfe 2267 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
875c0872 2268 int pltalign = bfd_section_alignment (dynobj, sec);
68fb2e56 2269 bfd_size_type mask;
30667bf3 2270
68fb2e56 2271 if (gotalign > pltalign)
875c0872 2272 bfd_set_section_alignment (dynobj, sec, gotalign);
68fb2e56 2273 mask = ((bfd_size_type) 1 << gotalign) - 1;
875c0872 2274 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
68fb2e56
AM
2275 }
2276 }
875c0872 2277 else if (sec == htab->sgot)
68fb2e56 2278 ;
875c0872 2279 else if (strncmp (bfd_get_section_name (dynobj, sec), ".rela", 5) == 0)
30667bf3 2280 {
875c0872 2281 if (sec->size != 0)
30667bf3 2282 {
4e12ff7f
AM
2283 /* Remember whether there are any reloc sections other
2284 than .rela.plt. */
875c0872 2285 if (sec != htab->srelplt)
b34976b6 2286 relocs = TRUE;
47d89dba 2287
30667bf3
AM
2288 /* We use the reloc_count field as a counter if we need
2289 to copy relocs into the output file. */
875c0872 2290 sec->reloc_count = 0;
30667bf3
AM
2291 }
2292 }
30667bf3
AM
2293 else
2294 {
2295 /* It's not one of our sections, so don't allocate space. */
2296 continue;
2297 }
2298
875c0872 2299 if (sec->size == 0)
30667bf3
AM
2300 {
2301 /* If we don't need this section, strip it from the
2302 output file. This is mostly to handle .rela.bss and
2303 .rela.plt. We must create both sections in
2304 create_dynamic_sections, because they must be created
2305 before the linker maps input sections to output
2306 sections. The linker does that before
2307 adjust_dynamic_symbol is called, and it is that
2308 function which decides whether anything needs to go
2309 into these sections. */
875c0872 2310 sec->flags |= SEC_EXCLUDE;
30667bf3
AM
2311 continue;
2312 }
2313
2314 /* Allocate memory for the section contents. Zero it, because
2315 we may not fill in all the reloc sections. */
875c0872
DA
2316 sec->contents = bfd_zalloc (dynobj, sec->size);
2317 if (sec->contents == NULL && sec->size != 0)
b34976b6 2318 return FALSE;
30667bf3
AM
2319 }
2320
a63e02c7 2321 if (htab->etab.dynamic_sections_created)
30667bf3
AM
2322 {
2323 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2324 actually has nothing to do with the PLT, it is how we
2325 communicate the LTP value of a load module to the dynamic
2326 linker. */
dc810e39 2327#define add_dynamic_entry(TAG, VAL) \
5a580b3a 2328 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
dc810e39
AM
2329
2330 if (!add_dynamic_entry (DT_PLTGOT, 0))
b34976b6 2331 return FALSE;
30667bf3
AM
2332
2333 /* Add some entries to the .dynamic section. We fill in the
2334 values later, in elf32_hppa_finish_dynamic_sections, but we
2335 must add the entries now so that we get the correct size for
2336 the .dynamic section. The DT_DEBUG entry is filled in by the
2337 dynamic linker and used by the debugger. */
dc810e39 2338 if (!info->shared)
30667bf3 2339 {
dc810e39 2340 if (!add_dynamic_entry (DT_DEBUG, 0))
b34976b6 2341 return FALSE;
30667bf3
AM
2342 }
2343
eea6121a 2344 if (htab->srelplt->size != 0)
30667bf3 2345 {
dc810e39
AM
2346 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2347 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2348 || !add_dynamic_entry (DT_JMPREL, 0))
b34976b6 2349 return FALSE;
30667bf3
AM
2350 }
2351
2352 if (relocs)
2353 {
dc810e39
AM
2354 if (!add_dynamic_entry (DT_RELA, 0)
2355 || !add_dynamic_entry (DT_RELASZ, 0)
2356 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
b34976b6 2357 return FALSE;
30667bf3 2358
98ceb8ce
AM
2359 /* If any dynamic relocs apply to a read-only section,
2360 then we need a DT_TEXTREL entry. */
248866a8 2361 if ((info->flags & DF_TEXTREL) == 0)
a63e02c7 2362 elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
98ceb8ce
AM
2363
2364 if ((info->flags & DF_TEXTREL) != 0)
2365 {
2366 if (!add_dynamic_entry (DT_TEXTREL, 0))
b34976b6 2367 return FALSE;
98ceb8ce 2368 }
30667bf3
AM
2369 }
2370 }
dc810e39 2371#undef add_dynamic_entry
30667bf3 2372
b34976b6 2373 return TRUE;
30667bf3
AM
2374}
2375
30667bf3
AM
2376/* External entry points for sizing and building linker stubs. */
2377
b4655ea9
AM
2378/* Set up various things so that we can make a list of input sections
2379 for each output section included in the link. Returns -1 on error,
cedb70c5 2380 0 when no stubs will be needed, and 1 on success. */
30667bf3 2381
b4655ea9 2382int
c39a58e6 2383elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
30667bf3
AM
2384{
2385 bfd *input_bfd;
b4655ea9
AM
2386 unsigned int bfd_count;
2387 int top_id, top_index;
30667bf3 2388 asection *section;
25f72752 2389 asection **input_list, **list;
dc810e39 2390 bfd_size_type amt;
b4655ea9 2391 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
30667bf3 2392
1badb539
AM
2393 /* Count the number of input BFDs and find the top input section id. */
2394 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
30667bf3
AM
2395 input_bfd != NULL;
2396 input_bfd = input_bfd->link_next)
2397 {
2398 bfd_count += 1;
25f72752
AM
2399 for (section = input_bfd->sections;
2400 section != NULL;
2401 section = section->next)
2402 {
2403 if (top_id < section->id)
2404 top_id = section->id;
2405 }
30667bf3 2406 }
b4655ea9 2407 htab->bfd_count = bfd_count;
30667bf3 2408
dc810e39 2409 amt = sizeof (struct map_stub) * (top_id + 1);
c39a58e6 2410 htab->stub_group = bfd_zmalloc (amt);
83c81bfe 2411 if (htab->stub_group == NULL)
b4655ea9 2412 return -1;
1badb539 2413
b4655ea9 2414 /* We can't use output_bfd->section_count here to find the top output
1badb539 2415 section index as some sections may have been removed, and
8423293d 2416 strip_excluded_output_sections doesn't renumber the indices. */
1badb539
AM
2417 for (section = output_bfd->sections, top_index = 0;
2418 section != NULL;
2419 section = section->next)
2420 {
2421 if (top_index < section->index)
2422 top_index = section->index;
2423 }
2424
b4655ea9 2425 htab->top_index = top_index;
dc810e39 2426 amt = sizeof (asection *) * (top_index + 1);
c39a58e6 2427 input_list = bfd_malloc (amt);
b4655ea9 2428 htab->input_list = input_list;
25f72752 2429 if (input_list == NULL)
b4655ea9 2430 return -1;
25f72752 2431
1badb539
AM
2432 /* For sections we aren't interested in, mark their entries with a
2433 value we can check later. */
2434 list = input_list + top_index;
2435 do
2436 *list = bfd_abs_section_ptr;
2437 while (list-- != input_list);
2438
2439 for (section = output_bfd->sections;
2440 section != NULL;
2441 section = section->next)
2442 {
47d89dba 2443 if ((section->flags & SEC_CODE) != 0)
1badb539
AM
2444 input_list[section->index] = NULL;
2445 }
2446
b4655ea9
AM
2447 return 1;
2448}
2449
2450/* The linker repeatedly calls this function for each input section,
2451 in the order that input sections are linked into output sections.
2452 Build lists of input sections to determine groupings between which
2453 we may insert linker stubs. */
2454
2455void
c39a58e6 2456elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
b4655ea9
AM
2457{
2458 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2459
2460 if (isec->output_section->index <= htab->top_index)
25f72752 2461 {
b4655ea9
AM
2462 asection **list = htab->input_list + isec->output_section->index;
2463 if (*list != bfd_abs_section_ptr)
25f72752 2464 {
b4655ea9 2465 /* Steal the link_sec pointer for our list. */
83c81bfe 2466#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
b4655ea9
AM
2467 /* This happens to make the list in reverse order,
2468 which is what we want. */
2469 PREV_SEC (isec) = *list;
2470 *list = isec;
25f72752
AM
2471 }
2472 }
b4655ea9 2473}
25f72752 2474
b4655ea9
AM
2475/* See whether we can group stub sections together. Grouping stub
2476 sections may result in fewer stubs. More importantly, we need to
2477 put all .init* and .fini* stubs at the beginning of the .init or
2478 .fini output sections respectively, because glibc splits the
2479 _init and _fini functions into multiple parts. Putting a stub in
2480 the middle of a function is not a good idea. */
2481
2482static void
c39a58e6
AM
2483group_sections (struct elf32_hppa_link_hash_table *htab,
2484 bfd_size_type stub_group_size,
2485 bfd_boolean stubs_always_before_branch)
b4655ea9
AM
2486{
2487 asection **list = htab->input_list + htab->top_index;
1badb539 2488 do
25f72752
AM
2489 {
2490 asection *tail = *list;
1badb539
AM
2491 if (tail == bfd_abs_section_ptr)
2492 continue;
25f72752
AM
2493 while (tail != NULL)
2494 {
2495 asection *curr;
2496 asection *prev;
2497 bfd_size_type total;
00b28bb0 2498 bfd_boolean big_sec;
25f72752
AM
2499
2500 curr = tail;
eea6121a 2501 total = tail->size;
00b28bb0
AM
2502 big_sec = total >= stub_group_size;
2503
25f72752
AM
2504 while ((prev = PREV_SEC (curr)) != NULL
2505 && ((total += curr->output_offset - prev->output_offset)
47d89dba 2506 < stub_group_size))
25f72752
AM
2507 curr = prev;
2508
2509 /* OK, the size from the start of CURR to the end is less
a248e267 2510 than 240000 bytes and thus can be handled by one stub
25f72752 2511 section. (or the tail section is itself larger than
a248e267 2512 240000 bytes, in which case we may be toast.)
25f72752
AM
2513 We should really be keeping track of the total size of
2514 stubs added here, as stubs contribute to the final output
2515 section size. That's a little tricky, and this way will
a248e267
AM
2516 only break if stubs added total more than 22144 bytes, or
2517 2768 long branch stubs. It seems unlikely for more than
2518 2768 different functions to be called, especially from
2519 code only 240000 bytes long. This limit used to be
2520 250000, but c++ code tends to generate lots of little
2521 functions, and sometimes violated the assumption. */
25f72752
AM
2522 do
2523 {
2524 prev = PREV_SEC (tail);
2525 /* Set up this stub group. */
83c81bfe 2526 htab->stub_group[tail->id].link_sec = curr;
25f72752
AM
2527 }
2528 while (tail != curr && (tail = prev) != NULL);
2529
a248e267 2530 /* But wait, there's more! Input sections up to 240000
00b28bb0
AM
2531 bytes before the stub section can be handled by it too.
2532 Don't do this if we have a really large section after the
2533 stubs, as adding more stubs increases the chance that
2534 branches may not reach into the stub section. */
2535 if (!stubs_always_before_branch && !big_sec)
25f72752 2536 {
47d89dba
AM
2537 total = 0;
2538 while (prev != NULL
2539 && ((total += tail->output_offset - prev->output_offset)
2540 < stub_group_size))
2541 {
2542 tail = prev;
2543 prev = PREV_SEC (tail);
83c81bfe 2544 htab->stub_group[tail->id].link_sec = curr;
47d89dba 2545 }
25f72752
AM
2546 }
2547 tail = prev;
2548 }
2549 }
b4655ea9
AM
2550 while (list-- != htab->input_list);
2551 free (htab->input_list);
1badb539 2552#undef PREV_SEC
b4655ea9
AM
2553}
2554
2555/* Read in all local syms for all input bfds, and create hash entries
2556 for export stubs if we are building a multi-subspace shared lib.
2557 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2558
2559static int
c39a58e6 2560get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
b4655ea9
AM
2561{
2562 unsigned int bfd_indx;
2563 Elf_Internal_Sym *local_syms, **all_local_syms;
2564 int stub_changed = 0;
2565 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
30667bf3
AM
2566
2567 /* We want to read in symbol extension records only once. To do this
2568 we need to read in the local symbols in parallel and save them for
2569 later use; so hold pointers to the local symbols in an array. */
b4655ea9 2570 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
c39a58e6 2571 all_local_syms = bfd_zmalloc (amt);
b4655ea9 2572 htab->all_local_syms = all_local_syms;
30667bf3 2573 if (all_local_syms == NULL)
b4655ea9 2574 return -1;
30667bf3
AM
2575
2576 /* Walk over all the input BFDs, swapping in local symbols.
2577 If we are creating a shared library, create hash entries for the
2578 export stubs. */
b4655ea9 2579 for (bfd_indx = 0;
30667bf3 2580 input_bfd != NULL;
25f72752 2581 input_bfd = input_bfd->link_next, bfd_indx++)
30667bf3
AM
2582 {
2583 Elf_Internal_Shdr *symtab_hdr;
edd21aca 2584
252b5132
RH
2585 /* We'll need the symbol table in a second. */
2586 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2587 if (symtab_hdr->sh_info == 0)
2588 continue;
2589
6cdc0ccc
AM
2590 /* We need an array of the local symbols attached to the input bfd. */
2591 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
edd21aca 2592 if (local_syms == NULL)
edd21aca 2593 {
6cdc0ccc
AM
2594 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2595 symtab_hdr->sh_info, 0,
2596 NULL, NULL, NULL);
2597 /* Cache them for elf_link_input_bfd. */
2598 symtab_hdr->contents = (unsigned char *) local_syms;
edd21aca 2599 }
6cdc0ccc
AM
2600 if (local_syms == NULL)
2601 return -1;
edd21aca 2602
6cdc0ccc 2603 all_local_syms[bfd_indx] = local_syms;
edd21aca 2604
83c81bfe 2605 if (info->shared && htab->multi_subspace)
30667bf3 2606 {
875c0872
DA
2607 struct elf_link_hash_entry **eh_syms;
2608 struct elf_link_hash_entry **eh_symend;
30667bf3
AM
2609 unsigned int symcount;
2610
2611 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2612 - symtab_hdr->sh_info);
875c0872
DA
2613 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2614 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
30667bf3
AM
2615
2616 /* Look through the global syms for functions; We need to
2617 build export stubs for all globally visible functions. */
875c0872 2618 for (; eh_syms < eh_symend; eh_syms++)
30667bf3 2619 {
875c0872 2620 struct elf32_hppa_link_hash_entry *hh;
30667bf3 2621
875c0872 2622 hh = hppa_elf_hash_entry (*eh_syms);
30667bf3 2623
a63e02c7
DA
2624 while (hh->eh.root.type == bfd_link_hash_indirect
2625 || hh->eh.root.type == bfd_link_hash_warning)
2626 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
30667bf3
AM
2627
2628 /* At this point in the link, undefined syms have been
2629 resolved, so we need to check that the symbol was
2630 defined in this BFD. */
a63e02c7
DA
2631 if ((hh->eh.root.type == bfd_link_hash_defined
2632 || hh->eh.root.type == bfd_link_hash_defweak)
2633 && hh->eh.type == STT_FUNC
2634 && hh->eh.root.u.def.section->output_section != NULL
2635 && (hh->eh.root.u.def.section->output_section->owner
25f72752 2636 == output_bfd)
a63e02c7
DA
2637 && hh->eh.root.u.def.section->owner == input_bfd
2638 && hh->eh.def_regular
2639 && !hh->eh.forced_local
2640 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
30667bf3
AM
2641 {
2642 asection *sec;
2643 const char *stub_name;
875c0872 2644 struct elf32_hppa_stub_hash_entry *hsh;
30667bf3 2645
a63e02c7
DA
2646 sec = hh->eh.root.u.def.section;
2647 stub_name = hh->eh.root.root.string;
2648 hsh = hppa_stub_hash_lookup (&htab->bstab,
30667bf3 2649 stub_name,
b34976b6 2650 FALSE, FALSE);
875c0872 2651 if (hsh == NULL)
30667bf3 2652 {
875c0872
DA
2653 hsh = hppa_add_stub (stub_name, sec, htab);
2654 if (!hsh)
b4655ea9 2655 return -1;
30667bf3 2656
a63e02c7
DA
2657 hsh->target_value = hh->eh.root.u.def.value;
2658 hsh->target_section = hh->eh.root.u.def.section;
875c0872 2659 hsh->stub_type = hppa_stub_export;
a63e02c7 2660 hsh->hh = hh;
30667bf3
AM
2661 stub_changed = 1;
2662 }
2663 else
2664 {
d003868e
AM
2665 (*_bfd_error_handler) (_("%B: duplicate export stub %s"),
2666 input_bfd,
8f615d07 2667 stub_name);
30667bf3
AM
2668 }
2669 }
2670 }
30667bf3
AM
2671 }
2672 }
edd21aca 2673
b4655ea9
AM
2674 return stub_changed;
2675}
2676
2677/* Determine and set the size of the stub section for a final link.
2678
2679 The basic idea here is to examine all the relocations looking for
2680 PC-relative calls to a target that is unreachable with a "bl"
2681 instruction. */
2682
b34976b6 2683bfd_boolean
c39a58e6
AM
2684elf32_hppa_size_stubs
2685 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2686 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2687 asection * (*add_stub_section) (const char *, asection *),
2688 void (*layout_sections_again) (void))
b4655ea9
AM
2689{
2690 bfd_size_type stub_group_size;
b34976b6
AM
2691 bfd_boolean stubs_always_before_branch;
2692 bfd_boolean stub_changed;
b4655ea9
AM
2693 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2694
2695 /* Stash our params away. */
2696 htab->stub_bfd = stub_bfd;
2697 htab->multi_subspace = multi_subspace;
2698 htab->add_stub_section = add_stub_section;
2699 htab->layout_sections_again = layout_sections_again;
2700 stubs_always_before_branch = group_size < 0;
2701 if (group_size < 0)
2702 stub_group_size = -group_size;
2703 else
2704 stub_group_size = group_size;
2705 if (stub_group_size == 1)
2706 {
2707 /* Default values. */
acc990f2
AM
2708 if (stubs_always_before_branch)
2709 {
2710 stub_group_size = 7680000;
2711 if (htab->has_17bit_branch || htab->multi_subspace)
2712 stub_group_size = 240000;
2713 if (htab->has_12bit_branch)
2714 stub_group_size = 7500;
2715 }
2716 else
2717 {
2718 stub_group_size = 6971392;
2719 if (htab->has_17bit_branch || htab->multi_subspace)
2720 stub_group_size = 217856;
2721 if (htab->has_12bit_branch)
2722 stub_group_size = 6808;
2723 }
b4655ea9
AM
2724 }
2725
2726 group_sections (htab, stub_group_size, stubs_always_before_branch);
2727
2728 switch (get_local_syms (output_bfd, info->input_bfds, info))
2729 {
2730 default:
2731 if (htab->all_local_syms)
2732 goto error_ret_free_local;
b34976b6 2733 return FALSE;
b4655ea9
AM
2734
2735 case 0:
b34976b6 2736 stub_changed = FALSE;
b4655ea9
AM
2737 break;
2738
2739 case 1:
b34976b6 2740 stub_changed = TRUE;
b4655ea9
AM
2741 break;
2742 }
2743
edd21aca
AM
2744 while (1)
2745 {
b4655ea9
AM
2746 bfd *input_bfd;
2747 unsigned int bfd_indx;
30667bf3
AM
2748 asection *stub_sec;
2749
25f72752 2750 for (input_bfd = info->input_bfds, bfd_indx = 0;
30667bf3 2751 input_bfd != NULL;
25f72752 2752 input_bfd = input_bfd->link_next, bfd_indx++)
30667bf3
AM
2753 {
2754 Elf_Internal_Shdr *symtab_hdr;
b4655ea9
AM
2755 asection *section;
2756 Elf_Internal_Sym *local_syms;
30667bf3
AM
2757
2758 /* We'll need the symbol table in a second. */
2759 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2760 if (symtab_hdr->sh_info == 0)
2761 continue;
2762
b4655ea9 2763 local_syms = htab->all_local_syms[bfd_indx];
30667bf3
AM
2764
2765 /* Walk over each section attached to the input bfd. */
2766 for (section = input_bfd->sections;
2767 section != NULL;
25f72752 2768 section = section->next)
30667bf3 2769 {
30667bf3
AM
2770 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2771
2772 /* If there aren't any relocs, then there's nothing more
2773 to do. */
2774 if ((section->flags & SEC_RELOC) == 0
2775 || section->reloc_count == 0)
2776 continue;
2777
25f72752
AM
2778 /* If this section is a link-once section that will be
2779 discarded, then don't create any stubs. */
2780 if (section->output_section == NULL
2781 || section->output_section->owner != output_bfd)
2782 continue;
2783
1e2f5b6e
AM
2784 /* Get the relocs. */
2785 internal_relocs
c39a58e6 2786 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
45d6a902 2787 info->keep_memory);
30667bf3 2788 if (internal_relocs == NULL)
1e2f5b6e 2789 goto error_ret_free_local;
30667bf3
AM
2790
2791 /* Now examine each relocation. */
2792 irela = internal_relocs;
2793 irelaend = irela + section->reloc_count;
2794 for (; irela < irelaend; irela++)
2795 {
2796 unsigned int r_type, r_indx;
2797 enum elf32_hppa_stub_type stub_type;
875c0872 2798 struct elf32_hppa_stub_hash_entry *hsh;
30667bf3
AM
2799 asection *sym_sec;
2800 bfd_vma sym_value;
2801 bfd_vma destination;
875c0872 2802 struct elf32_hppa_link_hash_entry *hh;
30667bf3 2803 char *stub_name;
25f72752 2804 const asection *id_sec;
30667bf3
AM
2805
2806 r_type = ELF32_R_TYPE (irela->r_info);
2807 r_indx = ELF32_R_SYM (irela->r_info);
2808
2809 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2810 {
2811 bfd_set_error (bfd_error_bad_value);
1e2f5b6e
AM
2812 error_ret_free_internal:
2813 if (elf_section_data (section)->relocs == NULL)
2814 free (internal_relocs);
2815 goto error_ret_free_local;
30667bf3
AM
2816 }
2817
2818 /* Only look for stubs on call instructions. */
2819 if (r_type != (unsigned int) R_PARISC_PCREL12F
2820 && r_type != (unsigned int) R_PARISC_PCREL17F
2821 && r_type != (unsigned int) R_PARISC_PCREL22F)
2822 continue;
2823
2824 /* Now determine the call target, its name, value,
2825 section. */
2826 sym_sec = NULL;
2827 sym_value = 0;
2828 destination = 0;
875c0872 2829 hh = NULL;
30667bf3
AM
2830 if (r_indx < symtab_hdr->sh_info)
2831 {
2832 /* It's a local symbol. */
2833 Elf_Internal_Sym *sym;
2834 Elf_Internal_Shdr *hdr;
2835
2836 sym = local_syms + r_indx;
2837 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2838 sym_sec = hdr->bfd_section;
2839 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2840 sym_value = sym->st_value;
2841 destination = (sym_value + irela->r_addend
2842 + sym_sec->output_offset
2843 + sym_sec->output_section->vma);
2844 }
2845 else
2846 {
2847 /* It's an external symbol. */
2848 int e_indx;
2849
2850 e_indx = r_indx - symtab_hdr->sh_info;
875c0872 2851 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
30667bf3 2852
a63e02c7
DA
2853 while (hh->eh.root.type == bfd_link_hash_indirect
2854 || hh->eh.root.type == bfd_link_hash_warning)
2855 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
30667bf3 2856
a63e02c7
DA
2857 if (hh->eh.root.type == bfd_link_hash_defined
2858 || hh->eh.root.type == bfd_link_hash_defweak)
30667bf3 2859 {
a63e02c7
DA
2860 sym_sec = hh->eh.root.u.def.section;
2861 sym_value = hh->eh.root.u.def.value;
30667bf3
AM
2862 if (sym_sec->output_section != NULL)
2863 destination = (sym_value + irela->r_addend
2864 + sym_sec->output_offset
2865 + sym_sec->output_section->vma);
2866 }
a63e02c7 2867 else if (hh->eh.root.type == bfd_link_hash_undefweak)
c432ba1a
AM
2868 {
2869 if (! info->shared)
2870 continue;
2871 }
a63e02c7 2872 else if (hh->eh.root.type == bfd_link_hash_undefined)
c432ba1a 2873 {
59c2e50f 2874 if (! (info->unresolved_syms_in_objects == RM_IGNORE
a63e02c7 2875 && (ELF_ST_VISIBILITY (hh->eh.other)
c432ba1a 2876 == STV_DEFAULT)
a63e02c7 2877 && hh->eh.type != STT_PARISC_MILLI))
c432ba1a
AM
2878 continue;
2879 }
30667bf3
AM
2880 else
2881 {
2882 bfd_set_error (bfd_error_bad_value);
2883 goto error_ret_free_internal;
2884 }
2885 }
2886
2887 /* Determine what (if any) linker stub is needed. */
875c0872 2888 stub_type = hppa_type_of_stub (section, irela, hh,
a252afa4 2889 destination, info);
30667bf3
AM
2890 if (stub_type == hppa_stub_none)
2891 continue;
2892
25f72752 2893 /* Support for grouping stub sections. */
83c81bfe 2894 id_sec = htab->stub_group[section->id].link_sec;
25f72752 2895
30667bf3 2896 /* Get the name of this stub. */
875c0872 2897 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
30667bf3
AM
2898 if (!stub_name)
2899 goto error_ret_free_internal;
2900
a63e02c7 2901 hsh = hppa_stub_hash_lookup (&htab->bstab,
30667bf3 2902 stub_name,
b34976b6 2903 FALSE, FALSE);
875c0872 2904 if (hsh != NULL)
30667bf3
AM
2905 {
2906 /* The proper stub has already been created. */
2907 free (stub_name);
2908 continue;
2909 }
2910
875c0872
DA
2911 hsh = hppa_add_stub (stub_name, section, htab);
2912 if (hsh == NULL)
30667bf3
AM
2913 {
2914 free (stub_name);
1e2f5b6e 2915 goto error_ret_free_internal;
30667bf3
AM
2916 }
2917
875c0872
DA
2918 hsh->target_value = sym_value;
2919 hsh->target_section = sym_sec;
2920 hsh->stub_type = stub_type;
30667bf3
AM
2921 if (info->shared)
2922 {
2923 if (stub_type == hppa_stub_import)
875c0872 2924 hsh->stub_type = hppa_stub_import_shared;
98ceb8ce 2925 else if (stub_type == hppa_stub_long_branch)
875c0872 2926 hsh->stub_type = hppa_stub_long_branch_shared;
30667bf3 2927 }
a63e02c7 2928 hsh->hh = hh;
b34976b6 2929 stub_changed = TRUE;
30667bf3
AM
2930 }
2931
2932 /* We're done with the internal relocs, free them. */
1e2f5b6e
AM
2933 if (elf_section_data (section)->relocs == NULL)
2934 free (internal_relocs);
30667bf3
AM
2935 }
2936 }
2937
2938 if (!stub_changed)
2939 break;
2940
2941 /* OK, we've added some stubs. Find out the new size of the
2942 stub sections. */
83c81bfe 2943 for (stub_sec = htab->stub_bfd->sections;
30667bf3
AM
2944 stub_sec != NULL;
2945 stub_sec = stub_sec->next)
eea6121a 2946 stub_sec->size = 0;
74d1c347 2947
a63e02c7 2948 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
74d1c347 2949
30667bf3 2950 /* Ask the linker to do its stuff. */
83c81bfe 2951 (*htab->layout_sections_again) ();
b34976b6 2952 stub_changed = FALSE;
30667bf3
AM
2953 }
2954
6cdc0ccc 2955 free (htab->all_local_syms);
b34976b6 2956 return TRUE;
30667bf3
AM
2957
2958 error_ret_free_local:
b4655ea9 2959 free (htab->all_local_syms);
b34976b6 2960 return FALSE;
30667bf3
AM
2961}
2962
30667bf3
AM
2963/* For a final link, this function is called after we have sized the
2964 stubs to provide a value for __gp. */
2965
b34976b6 2966bfd_boolean
c39a58e6 2967elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
30667bf3 2968{
b4655ea9
AM
2969 struct bfd_link_hash_entry *h;
2970 asection *sec = NULL;
2971 bfd_vma gp_val = 0;
83c81bfe 2972 struct elf32_hppa_link_hash_table *htab;
30667bf3 2973
83c81bfe 2974 htab = hppa_link_hash_table (info);
a63e02c7 2975 h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
30667bf3 2976
df8634e3 2977 if (h != NULL
b4655ea9
AM
2978 && (h->type == bfd_link_hash_defined
2979 || h->type == bfd_link_hash_defweak))
30667bf3 2980 {
b4655ea9
AM
2981 gp_val = h->u.def.value;
2982 sec = h->u.def.section;
30667bf3
AM
2983 }
2984 else
2985 {
0eddce27
AM
2986 asection *splt = bfd_get_section_by_name (abfd, ".plt");
2987 asection *sgot = bfd_get_section_by_name (abfd, ".got");
b4655ea9 2988
74d1c347
AM
2989 /* Choose to point our LTP at, in this order, one of .plt, .got,
2990 or .data, if these sections exist. In the case of choosing
2991 .plt try to make the LTP ideal for addressing anywhere in the
2992 .plt or .got with a 14 bit signed offset. Typically, the end
2993 of the .plt is the start of the .got, so choose .plt + 0x2000
2994 if either the .plt or .got is larger than 0x2000. If both
2995 the .plt and .got are smaller than 0x2000, choose the end of
2996 the .plt section. */
225247f0
JT
2997 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
2998 ? NULL : splt;
74d1c347 2999 if (sec != NULL)
30667bf3 3000 {
eea6121a
AM
3001 gp_val = sec->size;
3002 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
74d1c347
AM
3003 {
3004 gp_val = 0x2000;
3005 }
3006 }
3007 else
3008 {
b4655ea9 3009 sec = sgot;
74d1c347
AM
3010 if (sec != NULL)
3011 {
225247f0
JT
3012 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3013 {
3014 /* We know we don't have a .plt. If .got is large,
3015 offset our LTP. */
3016 if (sec->size > 0x2000)
3017 gp_val = 0x2000;
3018 }
74d1c347
AM
3019 }
3020 else
3021 {
3022 /* No .plt or .got. Who cares what the LTP is? */
3023 sec = bfd_get_section_by_name (abfd, ".data");
3024 }
30667bf3 3025 }
df8634e3
AM
3026
3027 if (h != NULL)
3028 {
b4655ea9
AM
3029 h->type = bfd_link_hash_defined;
3030 h->u.def.value = gp_val;
df8634e3 3031 if (sec != NULL)
b4655ea9 3032 h->u.def.section = sec;
df8634e3 3033 else
b4655ea9 3034 h->u.def.section = bfd_abs_section_ptr;
df8634e3 3035 }
30667bf3
AM
3036 }
3037
b32b5d6e 3038 if (sec != NULL && sec->output_section != NULL)
74d1c347
AM
3039 gp_val += sec->output_section->vma + sec->output_offset;
3040
3041 elf_gp (abfd) = gp_val;
b34976b6 3042 return TRUE;
30667bf3
AM
3043}
3044
30667bf3
AM
3045/* Build all the stubs associated with the current output file. The
3046 stubs are kept in a hash table attached to the main linker hash
3047 table. We also set up the .plt entries for statically linked PIC
3048 functions here. This function is called via hppaelf_finish in the
3049 linker. */
3050
b34976b6 3051bfd_boolean
c39a58e6 3052elf32_hppa_build_stubs (struct bfd_link_info *info)
30667bf3
AM
3053{
3054 asection *stub_sec;
3055 struct bfd_hash_table *table;
83c81bfe 3056 struct elf32_hppa_link_hash_table *htab;
30667bf3 3057
83c81bfe 3058 htab = hppa_link_hash_table (info);
30667bf3 3059
83c81bfe 3060 for (stub_sec = htab->stub_bfd->sections;
30667bf3
AM
3061 stub_sec != NULL;
3062 stub_sec = stub_sec->next)
3063 {
dc810e39 3064 bfd_size_type size;
30667bf3
AM
3065
3066 /* Allocate memory to hold the linker stubs. */
eea6121a 3067 size = stub_sec->size;
c39a58e6 3068 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
30667bf3 3069 if (stub_sec->contents == NULL && size != 0)
b34976b6 3070 return FALSE;
eea6121a 3071 stub_sec->size = 0;
30667bf3
AM
3072 }
3073
3074 /* Build the stubs as directed by the stub hash table. */
a63e02c7 3075 table = &htab->bstab;
30667bf3
AM
3076 bfd_hash_traverse (table, hppa_build_one_stub, info);
3077
b34976b6 3078 return TRUE;
30667bf3
AM
3079}
3080
c46b7515
AM
3081/* Perform a final link. */
3082
b34976b6 3083static bfd_boolean
c39a58e6 3084elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
c46b7515 3085{
4dc86686 3086 /* Invoke the regular ELF linker to do all the work. */
c152c796 3087 if (!bfd_elf_final_link (abfd, info))
b34976b6 3088 return FALSE;
c46b7515
AM
3089
3090 /* If we're producing a final executable, sort the contents of the
985142a4 3091 unwind section. */
46fe4e66 3092 return elf_hppa_sort_unwind (abfd);
c46b7515
AM
3093}
3094
3095/* Record the lowest address for the data and text segments. */
3096
3097static void
c39a58e6
AM
3098hppa_record_segment_addr (bfd *abfd ATTRIBUTE_UNUSED,
3099 asection *section,
3100 void *data)
c46b7515 3101{
83c81bfe 3102 struct elf32_hppa_link_hash_table *htab;
c46b7515 3103
875c0872 3104 htab = (struct elf32_hppa_link_hash_table*) data;
c46b7515
AM
3105
3106 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3107 {
3108 bfd_vma value = section->vma - section->filepos;
3109
3110 if ((section->flags & SEC_READONLY) != 0)
3111 {
83c81bfe
AM
3112 if (value < htab->text_segment_base)
3113 htab->text_segment_base = value;
c46b7515
AM
3114 }
3115 else
3116 {
83c81bfe
AM
3117 if (value < htab->data_segment_base)
3118 htab->data_segment_base = value;
c46b7515
AM
3119 }
3120 }
3121}
3122
30667bf3
AM
3123/* Perform a relocation as part of a final link. */
3124
3125static bfd_reloc_status_type
c39a58e6
AM
3126final_link_relocate (asection *input_section,
3127 bfd_byte *contents,
875c0872 3128 const Elf_Internal_Rela *rela,
c39a58e6
AM
3129 bfd_vma value,
3130 struct elf32_hppa_link_hash_table *htab,
3131 asection *sym_sec,
875c0872 3132 struct elf32_hppa_link_hash_entry *hh,
a252afa4 3133 struct bfd_link_info *info)
30667bf3
AM
3134{
3135 int insn;
875c0872 3136 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
a252afa4 3137 unsigned int orig_r_type = r_type;
30667bf3
AM
3138 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3139 int r_format = howto->bitsize;
3140 enum hppa_reloc_field_selector_type_alt r_field;
3141 bfd *input_bfd = input_section->owner;
875c0872 3142 bfd_vma offset = rela->r_offset;
30667bf3
AM
3143 bfd_vma max_branch_offset = 0;
3144 bfd_byte *hit_data = contents + offset;
875c0872 3145 bfd_signed_vma addend = rela->r_addend;
30667bf3 3146 bfd_vma location;
875c0872
DA
3147 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3148 int val;
30667bf3
AM
3149
3150 if (r_type == R_PARISC_NONE)
3151 return bfd_reloc_ok;
3152
3153 insn = bfd_get_32 (input_bfd, hit_data);
3154
3155 /* Find out where we are and where we're going. */
3156 location = (offset +
3157 input_section->output_offset +
3158 input_section->output_section->vma);
3159
a252afa4
DA
3160 /* If we are not building a shared library, convert DLTIND relocs to
3161 DPREL relocs. */
3162 if (!info->shared)
3163 {
3164 switch (r_type)
4fc8051d
AM
3165 {
3166 case R_PARISC_DLTIND21L:
3167 r_type = R_PARISC_DPREL21L;
a252afa4
DA
3168 break;
3169
4fc8051d
AM
3170 case R_PARISC_DLTIND14R:
3171 r_type = R_PARISC_DPREL14R;
a252afa4
DA
3172 break;
3173
4fc8051d
AM
3174 case R_PARISC_DLTIND14F:
3175 r_type = R_PARISC_DPREL14F;
a252afa4
DA
3176 break;
3177 }
3178 }
3179
30667bf3
AM
3180 switch (r_type)
3181 {
3182 case R_PARISC_PCREL12F:
3183 case R_PARISC_PCREL17F:
3184 case R_PARISC_PCREL22F:
067fa4a6
AM
3185 /* If this call should go via the plt, find the import stub in
3186 the stub hash. */
30667bf3
AM
3187 if (sym_sec == NULL
3188 || sym_sec->output_section == NULL
875c0872 3189 || (hh != NULL
a63e02c7
DA
3190 && hh->eh.plt.offset != (bfd_vma) -1
3191 && hh->eh.dynindx != -1
875c0872 3192 && !hh->plabel
a252afa4 3193 && (info->shared
a63e02c7
DA
3194 || !hh->eh.def_regular
3195 || hh->eh.root.type == bfd_link_hash_defweak)))
30667bf3 3196 {
875c0872
DA
3197 hsh = hppa_get_stub_entry (input_section, sym_sec,
3198 hh, rela, htab);
3199 if (hsh != NULL)
30667bf3 3200 {
875c0872
DA
3201 value = (hsh->stub_offset
3202 + hsh->stub_sec->output_offset
3203 + hsh->stub_sec->output_section->vma);
30667bf3
AM
3204 addend = 0;
3205 }
875c0872 3206 else if (sym_sec == NULL && hh != NULL
a63e02c7 3207 && hh->eh.root.type == bfd_link_hash_undefweak)
30667bf3 3208 {
db20fd76
AM
3209 /* It's OK if undefined weak. Calls to undefined weak
3210 symbols behave as if the "called" function
3211 immediately returns. We can thus call to a weak
3212 function without first checking whether the function
3213 is defined. */
30667bf3 3214 value = location;
db20fd76 3215 addend = 8;
30667bf3
AM
3216 }
3217 else
f09ebc7d 3218 return bfd_reloc_undefined;
30667bf3
AM
3219 }
3220 /* Fall thru. */
3221
3222 case R_PARISC_PCREL21L:
3223 case R_PARISC_PCREL17C:
3224 case R_PARISC_PCREL17R:
3225 case R_PARISC_PCREL14R:
3226 case R_PARISC_PCREL14F:
36751eee 3227 case R_PARISC_PCREL32:
30667bf3
AM
3228 /* Make it a pc relative offset. */
3229 value -= location;
3230 addend -= 8;
3231 break;
3232
3233 case R_PARISC_DPREL21L:
3234 case R_PARISC_DPREL14R:
3235 case R_PARISC_DPREL14F:
a252afa4
DA
3236 /* Convert instructions that use the linkage table pointer (r19) to
3237 instructions that use the global data pointer (dp). This is the
3238 most efficient way of using PIC code in an incomplete executable,
3239 but the user must follow the standard runtime conventions for
3240 accessing data for this to work. */
3241 if (orig_r_type == R_PARISC_DLTIND21L)
3242 {
3243 /* Convert addil instructions if the original reloc was a
3244 DLTIND21L. GCC sometimes uses a register other than r19 for
3245 the operation, so we must convert any addil instruction
3246 that uses this relocation. */
3247 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3248 insn = ADDIL_DP;
3249 else
3250 /* We must have a ldil instruction. It's too hard to find
3251 and convert the associated add instruction, so issue an
3252 error. */
3253 (*_bfd_error_handler)
d003868e
AM
3254 (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3255 input_bfd,
3256 input_section,
875c0872 3257 offset,
a252afa4
DA
3258 howto->name,
3259 insn);
3260 }
3261 else if (orig_r_type == R_PARISC_DLTIND14F)
3262 {
3263 /* This must be a format 1 load/store. Change the base
3264 register to dp. */
3265 insn = (insn & 0xfc1ffff) | (27 << 21);
3266 }
3267
30667bf3 3268 /* For all the DP relative relocations, we need to examine the symbol's
95d0f04a
DA
3269 section. If it has no section or if it's a code section, then
3270 "data pointer relative" makes no sense. In that case we don't
3271 adjust the "value", and for 21 bit addil instructions, we change the
3272 source addend register from %dp to %r0. This situation commonly
3273 arises for undefined weak symbols and when a variable's "constness"
30667bf3
AM
3274 is declared differently from the way the variable is defined. For
3275 instance: "extern int foo" with foo defined as "const int foo". */
95d0f04a 3276 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
30667bf3
AM
3277 {
3278 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3279 == (((int) OP_ADDIL << 26) | (27 << 21)))
3280 {
3281 insn &= ~ (0x1f << 21);
30667bf3
AM
3282 }
3283 /* Now try to make things easy for the dynamic linker. */
3284
3285 break;
3286 }
74d1c347 3287 /* Fall thru. */
30667bf3
AM
3288
3289 case R_PARISC_DLTIND21L:
3290 case R_PARISC_DLTIND14R:
3291 case R_PARISC_DLTIND14F:
3292 value -= elf_gp (input_section->output_section->owner);
3293 break;
3294
c46b7515
AM
3295 case R_PARISC_SEGREL32:
3296 if ((sym_sec->flags & SEC_CODE) != 0)
83c81bfe 3297 value -= htab->text_segment_base;
c46b7515 3298 else
83c81bfe 3299 value -= htab->data_segment_base;
c46b7515
AM
3300 break;
3301
30667bf3
AM
3302 default:
3303 break;
3304 }
3305
3306 switch (r_type)
3307 {
3308 case R_PARISC_DIR32:
47d89dba 3309 case R_PARISC_DIR14F:
30667bf3
AM
3310 case R_PARISC_DIR17F:
3311 case R_PARISC_PCREL17C:
3312 case R_PARISC_PCREL14F:
36751eee 3313 case R_PARISC_PCREL32:
30667bf3
AM
3314 case R_PARISC_DPREL14F:
3315 case R_PARISC_PLABEL32:
3316 case R_PARISC_DLTIND14F:
3317 case R_PARISC_SEGBASE:
3318 case R_PARISC_SEGREL32:
3319 r_field = e_fsel;
3320 break;
3321
1bf42538 3322 case R_PARISC_DLTIND21L:
30667bf3 3323 case R_PARISC_PCREL21L:
30667bf3 3324 case R_PARISC_PLABEL21L:
1bf42538
JL
3325 r_field = e_lsel;
3326 break;
3327
3328 case R_PARISC_DIR21L:
3329 case R_PARISC_DPREL21L:
30667bf3
AM
3330 r_field = e_lrsel;
3331 break;
3332
30667bf3 3333 case R_PARISC_PCREL17R:
30667bf3 3334 case R_PARISC_PCREL14R:
30667bf3
AM
3335 case R_PARISC_PLABEL14R:
3336 case R_PARISC_DLTIND14R:
1bf42538
JL
3337 r_field = e_rsel;
3338 break;
3339
3340 case R_PARISC_DIR17R:
3341 case R_PARISC_DIR14R:
3342 case R_PARISC_DPREL14R:
30667bf3
AM
3343 r_field = e_rrsel;
3344 break;
3345
3346 case R_PARISC_PCREL12F:
3347 case R_PARISC_PCREL17F:
3348 case R_PARISC_PCREL22F:
3349 r_field = e_fsel;
3350
3351 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3352 {
3353 max_branch_offset = (1 << (17-1)) << 2;
3354 }
3355 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3356 {
3357 max_branch_offset = (1 << (12-1)) << 2;
3358 }
3359 else
3360 {
3361 max_branch_offset = (1 << (22-1)) << 2;
3362 }
3363
3364 /* sym_sec is NULL on undefined weak syms or when shared on
3365 undefined syms. We've already checked for a stub for the
3366 shared undefined case. */
3367 if (sym_sec == NULL)
3368 break;
3369
3370 /* If the branch is out of reach, then redirect the
3371 call to the local stub for this function. */
3372 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3373 {
875c0872
DA
3374 hsh = hppa_get_stub_entry (input_section, sym_sec,
3375 hh, rela, htab);
3376 if (hsh == NULL)
f09ebc7d 3377 return bfd_reloc_undefined;
30667bf3
AM
3378
3379 /* Munge up the value and addend so that we call the stub
3380 rather than the procedure directly. */
875c0872
DA
3381 value = (hsh->stub_offset
3382 + hsh->stub_sec->output_offset
3383 + hsh->stub_sec->output_section->vma
30667bf3
AM
3384 - location);
3385 addend = -8;
3386 }
3387 break;
3388
3389 /* Something we don't know how to handle. */
3390 default:
3391 return bfd_reloc_notsupported;
3392 }
3393
3394 /* Make sure we can reach the stub. */
3395 if (max_branch_offset != 0
3396 && value + addend + max_branch_offset >= 2*max_branch_offset)
3397 {
3398 (*_bfd_error_handler)
d003868e
AM
3399 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3400 input_bfd,
3401 input_section,
875c0872 3402 offset,
a63e02c7 3403 hsh->bh_root.string);
ce757d15 3404 bfd_set_error (bfd_error_bad_value);
30667bf3
AM
3405 return bfd_reloc_notsupported;
3406 }
3407
3408 val = hppa_field_adjust (value, addend, r_field);
3409
3410 switch (r_type)
3411 {
3412 case R_PARISC_PCREL12F:
3413 case R_PARISC_PCREL17C:
3414 case R_PARISC_PCREL17F:
3415 case R_PARISC_PCREL17R:
3416 case R_PARISC_PCREL22F:
3417 case R_PARISC_DIR17F:
3418 case R_PARISC_DIR17R:
3419 /* This is a branch. Divide the offset by four.
3420 Note that we need to decide whether it's a branch or
3421 otherwise by inspecting the reloc. Inspecting insn won't
3422 work as insn might be from a .word directive. */
3423 val >>= 2;
3424 break;
3425
3426 default:
3427 break;
3428 }
3429
3430 insn = hppa_rebuild_insn (insn, val, r_format);
3431
3432 /* Update the instruction word. */
74d1c347 3433 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
30667bf3
AM
3434 return bfd_reloc_ok;
3435}
3436
30667bf3
AM
3437/* Relocate an HPPA ELF section. */
3438
b34976b6 3439static bfd_boolean
c39a58e6
AM
3440elf32_hppa_relocate_section (bfd *output_bfd,
3441 struct bfd_link_info *info,
3442 bfd *input_bfd,
3443 asection *input_section,
3444 bfd_byte *contents,
3445 Elf_Internal_Rela *relocs,
3446 Elf_Internal_Sym *local_syms,
3447 asection **local_sections)
30667bf3 3448{
30667bf3 3449 bfd_vma *local_got_offsets;
83c81bfe 3450 struct elf32_hppa_link_hash_table *htab;
30667bf3 3451 Elf_Internal_Shdr *symtab_hdr;
875c0872 3452 Elf_Internal_Rela *rela;
30667bf3 3453 Elf_Internal_Rela *relend;
30667bf3 3454
1049f94e 3455 if (info->relocatable)
b34976b6 3456 return TRUE;
f0fe0e16 3457
30667bf3
AM
3458 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3459
83c81bfe 3460 htab = hppa_link_hash_table (info);
74d1c347 3461 local_got_offsets = elf_local_got_offsets (input_bfd);
30667bf3 3462
875c0872 3463 rela = relocs;
30667bf3 3464 relend = relocs + input_section->reloc_count;
875c0872 3465 for (; rela < relend; rela++)
30667bf3
AM
3466 {
3467 unsigned int r_type;
3468 reloc_howto_type *howto;
3469 unsigned int r_symndx;
875c0872 3470 struct elf32_hppa_link_hash_entry *hh;
30667bf3
AM
3471 Elf_Internal_Sym *sym;
3472 asection *sym_sec;
3473 bfd_vma relocation;
875c0872 3474 bfd_reloc_status_type rstatus;
30667bf3 3475 const char *sym_name;
b34976b6
AM
3476 bfd_boolean plabel;
3477 bfd_boolean warned_undef;
30667bf3 3478
875c0872 3479 r_type = ELF32_R_TYPE (rela->r_info);
30667bf3
AM
3480 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3481 {
3482 bfd_set_error (bfd_error_bad_value);
b34976b6 3483 return FALSE;
30667bf3
AM
3484 }
3485 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3486 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3487 continue;
3488
30667bf3 3489 /* This is a final link. */
875c0872
DA
3490 r_symndx = ELF32_R_SYM (rela->r_info);
3491 hh = NULL;
30667bf3
AM
3492 sym = NULL;
3493 sym_sec = NULL;
b34976b6 3494 warned_undef = FALSE;
30667bf3
AM
3495 if (r_symndx < symtab_hdr->sh_info)
3496 {
3497 /* This is a local symbol, h defaults to NULL. */
3498 sym = local_syms + r_symndx;
3499 sym_sec = local_sections[r_symndx];
875c0872 3500 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
30667bf3
AM
3501 }
3502 else
3503 {
875c0872 3504 struct elf_link_hash_entry *eh;
560e09e9 3505 bfd_boolean unresolved_reloc;
b2a8e766 3506 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
560e09e9 3507
875c0872 3508 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
b2a8e766 3509 r_symndx, symtab_hdr, sym_hashes,
875c0872 3510 eh, sym_sec, relocation,
b2a8e766 3511 unresolved_reloc, warned_undef);
560e09e9
NC
3512
3513 if (relocation == 0
875c0872
DA
3514 && eh->root.type != bfd_link_hash_defined
3515 && eh->root.type != bfd_link_hash_defweak
3516 && eh->root.type != bfd_link_hash_undefweak)
4fc8051d 3517 {
59c2e50f 3518 if (info->unresolved_syms_in_objects == RM_IGNORE
875c0872
DA
3519 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3520 && eh->type == STT_PARISC_MILLI)
560e09e9
NC
3521 {
3522 if (! info->callbacks->undefined_symbol
875c0872
DA
3523 (info, eh->root.root.string, input_bfd,
3524 input_section, rela->r_offset, FALSE))
560e09e9
NC
3525 return FALSE;
3526 warned_undef = TRUE;
3527 }
30667bf3 3528 }
875c0872 3529 hh = hppa_elf_hash_entry (eh);
30667bf3
AM
3530 }
3531
3532 /* Do any required modifications to the relocation value, and
25f72752
AM
3533 determine what types of dynamic info we need to output, if
3534 any. */
74d1c347 3535 plabel = 0;
30667bf3
AM
3536 switch (r_type)
3537 {
3538 case R_PARISC_DLTIND14F:
3539 case R_PARISC_DLTIND14R:
3540 case R_PARISC_DLTIND21L:
ce757d15
AM
3541 {
3542 bfd_vma off;
b34976b6 3543 bfd_boolean do_got = 0;
ce757d15
AM
3544
3545 /* Relocation is to the entry for this symbol in the
3546 global offset table. */
875c0872 3547 if (hh != NULL)
ce757d15 3548 {
b34976b6 3549 bfd_boolean dyn;
ce757d15 3550
a63e02c7
DA
3551 off = hh->eh.got.offset;
3552 dyn = htab->etab.dynamic_sections_created;
c152c796 3553 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
a63e02c7 3554 &hh->eh))
ce757d15
AM
3555 {
3556 /* If we aren't going to call finish_dynamic_symbol,
3557 then we need to handle initialisation of the .got
3558 entry and create needed relocs here. Since the
3559 offset must always be a multiple of 4, we use the
3560 least significant bit to record whether we have
3561 initialised it already. */
3562 if ((off & 1) != 0)
3563 off &= ~1;
3564 else
3565 {
a63e02c7 3566 hh->eh.got.offset |= 1;
ce757d15
AM
3567 do_got = 1;
3568 }
3569 }
3570 }
3571 else
3572 {
3573 /* Local symbol case. */
3574 if (local_got_offsets == NULL)
3575 abort ();
3576
3577 off = local_got_offsets[r_symndx];
3578
3579 /* The offset must always be a multiple of 4. We use
3580 the least significant bit to record whether we have
3581 already generated the necessary reloc. */
3582 if ((off & 1) != 0)
3583 off &= ~1;
3584 else
3585 {
3586 local_got_offsets[r_symndx] |= 1;
3587 do_got = 1;
3588 }
3589 }
68fb2e56 3590
ce757d15
AM
3591 if (do_got)
3592 {
3593 if (info->shared)
3594 {
3595 /* Output a dynamic relocation for this GOT entry.
3596 In this case it is relative to the base of the
3597 object because the symbol index is zero. */
3598 Elf_Internal_Rela outrel;
947216bf 3599 bfd_byte *loc;
875c0872 3600 asection *sec = htab->srelgot;
ce757d15
AM
3601
3602 outrel.r_offset = (off
3603 + htab->sgot->output_offset
3604 + htab->sgot->output_section->vma);
3605 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3606 outrel.r_addend = relocation;
875c0872
DA
3607 loc = sec->contents;
3608 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
ce757d15
AM
3609 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3610 }
3611 else
30667bf3 3612 bfd_put_32 (output_bfd, relocation,
83c81bfe 3613 htab->sgot->contents + off);
ce757d15 3614 }
30667bf3 3615
ce757d15
AM
3616 if (off >= (bfd_vma) -2)
3617 abort ();
30667bf3 3618
ce757d15
AM
3619 /* Add the base of the GOT to the relocation value. */
3620 relocation = (off
3621 + htab->sgot->output_offset
3622 + htab->sgot->output_section->vma);
3623 }
30667bf3 3624 break;
252b5132 3625
c46b7515
AM
3626 case R_PARISC_SEGREL32:
3627 /* If this is the first SEGREL relocation, then initialize
3628 the segment base values. */
83c81bfe
AM
3629 if (htab->text_segment_base == (bfd_vma) -1)
3630 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
c46b7515
AM
3631 break;
3632
30667bf3
AM
3633 case R_PARISC_PLABEL14R:
3634 case R_PARISC_PLABEL21L:
3635 case R_PARISC_PLABEL32:
a63e02c7 3636 if (htab->etab.dynamic_sections_created)
252b5132 3637 {
ce757d15 3638 bfd_vma off;
b34976b6 3639 bfd_boolean do_plt = 0;
74d1c347
AM
3640 /* If we have a global symbol with a PLT slot, then
3641 redirect this relocation to it. */
875c0872 3642 if (hh != NULL)
74d1c347 3643 {
a63e02c7 3644 off = hh->eh.plt.offset;
c152c796 3645 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
a63e02c7 3646 &hh->eh))
8dea1268
AM
3647 {
3648 /* In a non-shared link, adjust_dynamic_symbols
3649 isn't called for symbols forced local. We
dc810e39 3650 need to write out the plt entry here. */
8dea1268
AM
3651 if ((off & 1) != 0)
3652 off &= ~1;
3653 else
3654 {
a63e02c7 3655 hh->eh.plt.offset |= 1;
ce757d15 3656 do_plt = 1;
8dea1268
AM
3657 }
3658 }
74d1c347
AM
3659 }
3660 else
3661 {
68fb2e56
AM
3662 bfd_vma *local_plt_offsets;
3663
3664 if (local_got_offsets == NULL)
3665 abort ();
74d1c347 3666
68fb2e56
AM
3667 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3668 off = local_plt_offsets[r_symndx];
74d1c347
AM
3669
3670 /* As for the local .got entry case, we use the last
3671 bit to record whether we've already initialised
3672 this local .plt entry. */
3673 if ((off & 1) != 0)
3674 off &= ~1;
ce757d15
AM
3675 else
3676 {
3677 local_plt_offsets[r_symndx] |= 1;
3678 do_plt = 1;
3679 }
3680 }
3681
3682 if (do_plt)
3683 {
3684 if (info->shared)
3685 {
3686 /* Output a dynamic IPLT relocation for this
3687 PLT entry. */
3688 Elf_Internal_Rela outrel;
947216bf
AM
3689 bfd_byte *loc;
3690 asection *s = htab->srelplt;
ce757d15
AM
3691
3692 outrel.r_offset = (off
3693 + htab->splt->output_offset
3694 + htab->splt->output_section->vma);
3695 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3696 outrel.r_addend = relocation;
947216bf
AM
3697 loc = s->contents;
3698 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
ce757d15
AM
3699 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3700 }
74d1c347
AM
3701 else
3702 {
3703 bfd_put_32 (output_bfd,
3704 relocation,
83c81bfe 3705 htab->splt->contents + off);
74d1c347 3706 bfd_put_32 (output_bfd,
83c81bfe
AM
3707 elf_gp (htab->splt->output_section->owner),
3708 htab->splt->contents + off + 4);
74d1c347
AM
3709 }
3710 }
3711
68fb2e56 3712 if (off >= (bfd_vma) -2)
49e9d0d3 3713 abort ();
74d1c347
AM
3714
3715 /* PLABELs contain function pointers. Relocation is to
3716 the entry for the function in the .plt. The magic +2
3717 offset signals to $$dyncall that the function pointer
3718 is in the .plt and thus has a gp pointer too.
3719 Exception: Undefined PLABELs should have a value of
3720 zero. */
875c0872 3721 if (hh == NULL
a63e02c7
DA
3722 || (hh->eh.root.type != bfd_link_hash_undefweak
3723 && hh->eh.root.type != bfd_link_hash_undefined))
74d1c347
AM
3724 {
3725 relocation = (off
83c81bfe
AM
3726 + htab->splt->output_offset
3727 + htab->splt->output_section->vma
74d1c347
AM
3728 + 2);
3729 }
3730 plabel = 1;
30667bf3
AM
3731 }
3732 /* Fall through and possibly emit a dynamic relocation. */
3733
3734 case R_PARISC_DIR17F:
3735 case R_PARISC_DIR17R:
47d89dba 3736 case R_PARISC_DIR14F:
30667bf3
AM
3737 case R_PARISC_DIR14R:
3738 case R_PARISC_DIR21L:
3739 case R_PARISC_DPREL14F:
3740 case R_PARISC_DPREL14R:
3741 case R_PARISC_DPREL21L:
3742 case R_PARISC_DIR32:
ec338859
AM
3743 /* r_symndx will be zero only for relocs against symbols
3744 from removed linkonce sections, or sections discarded by
3745 a linker script. */
3746 if (r_symndx == 0
3747 || (input_section->flags & SEC_ALLOC) == 0)
3748 break;
3749
30667bf3 3750 /* The reloc types handled here and this conditional
56882138 3751 expression must match the code in ..check_relocs and
ec338859 3752 allocate_dynrelocs. ie. We need exactly the same condition
56882138
AM
3753 as in ..check_relocs, with some extra conditions (dynindx
3754 test in this case) to cater for relocs removed by
ec338859 3755 allocate_dynrelocs. If you squint, the non-shared test
56882138
AM
3756 here does indeed match the one in ..check_relocs, the
3757 difference being that here we test DEF_DYNAMIC as well as
3758 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3759 which is why we can't use just that test here.
3760 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3761 there all files have not been loaded. */
446f2863 3762 if ((info->shared
875c0872 3763 && (hh == NULL
a63e02c7
DA
3764 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
3765 || hh->eh.root.type != bfd_link_hash_undefweak)
446f2863 3766 && (IS_ABSOLUTE_RELOC (r_type)
a63e02c7 3767 || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
446f2863 3768 || (!info->shared
875c0872 3769 && hh != NULL
a63e02c7
DA
3770 && hh->eh.dynindx != -1
3771 && !hh->eh.non_got_ref
4fc8051d 3772 && ((ELIMINATE_COPY_RELOCS
a63e02c7
DA
3773 && hh->eh.def_dynamic
3774 && !hh->eh.def_regular)
3775 || hh->eh.root.type == bfd_link_hash_undefweak
3776 || hh->eh.root.type == bfd_link_hash_undefined)))
30667bf3
AM
3777 {
3778 Elf_Internal_Rela outrel;
b34976b6 3779 bfd_boolean skip;
98ceb8ce 3780 asection *sreloc;
947216bf 3781 bfd_byte *loc;
252b5132 3782
30667bf3
AM
3783 /* When generating a shared object, these relocations
3784 are copied into the output file to be resolved at run
3785 time. */
252b5132 3786
875c0872 3787 outrel.r_addend = rela->r_addend;
c629eae0
JJ
3788 outrel.r_offset =
3789 _bfd_elf_section_offset (output_bfd, info, input_section,
875c0872 3790 rela->r_offset);
0bb2d96a
JJ
3791 skip = (outrel.r_offset == (bfd_vma) -1
3792 || outrel.r_offset == (bfd_vma) -2);
30667bf3
AM
3793 outrel.r_offset += (input_section->output_offset
3794 + input_section->output_section->vma);
875c0872 3795
30667bf3 3796 if (skip)
252b5132 3797 {
30667bf3 3798 memset (&outrel, 0, sizeof (outrel));
252b5132 3799 }
875c0872 3800 else if (hh != NULL
a63e02c7 3801 && hh->eh.dynindx != -1
74d1c347 3802 && (plabel
446f2863
AM
3803 || !IS_ABSOLUTE_RELOC (r_type)
3804 || !info->shared
74d1c347 3805 || !info->symbolic
a63e02c7 3806 || !hh->eh.def_regular))
252b5132 3807 {
a63e02c7 3808 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
30667bf3
AM
3809 }
3810 else /* It's a local symbol, or one marked to become local. */
3811 {
3812 int indx = 0;
edd21aca 3813
30667bf3
AM
3814 /* Add the absolute offset of the symbol. */
3815 outrel.r_addend += relocation;
edd21aca 3816
74d1c347
AM
3817 /* Global plabels need to be processed by the
3818 dynamic linker so that functions have at most one
3819 fptr. For this reason, we need to differentiate
3820 between global and local plabels, which we do by
3821 providing the function symbol for a global plabel
3822 reloc, and no symbol for local plabels. */
3823 if (! plabel
3824 && sym_sec != NULL
30667bf3
AM
3825 && sym_sec->output_section != NULL
3826 && ! bfd_is_abs_section (sym_sec))
252b5132 3827 {
4b71bec0
DA
3828 /* Skip this relocation if the output section has
3829 been discarded. */
3830 if (bfd_is_abs_section (sym_sec->output_section))
3831 break;
3832
30667bf3
AM
3833 indx = elf_section_data (sym_sec->output_section)->dynindx;
3834 /* We are turning this relocation into one
3835 against a section symbol, so subtract out the
3836 output section's address but not the offset
3837 of the input section in the output section. */
3838 outrel.r_addend -= sym_sec->output_section->vma;
252b5132 3839 }
252b5132 3840
30667bf3
AM
3841 outrel.r_info = ELF32_R_INFO (indx, r_type);
3842 }
98ceb8ce
AM
3843 sreloc = elf_section_data (input_section)->sreloc;
3844 if (sreloc == NULL)
3845 abort ();
3846
947216bf
AM
3847 loc = sreloc->contents;
3848 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
98ceb8ce 3849 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
30667bf3
AM
3850 }
3851 break;
edd21aca 3852
30667bf3
AM
3853 default:
3854 break;
3855 }
252b5132 3856
875c0872
DA
3857 rstatus = final_link_relocate (input_section, contents, rela, relocation,
3858 htab, sym_sec, hh, info);
252b5132 3859
875c0872 3860 if (rstatus == bfd_reloc_ok)
30667bf3 3861 continue;
252b5132 3862
875c0872 3863 if (hh != NULL)
a63e02c7 3864 sym_name = hh->eh.root.root.string;
30667bf3
AM
3865 else
3866 {
3867 sym_name = bfd_elf_string_from_elf_section (input_bfd,
3868 symtab_hdr->sh_link,
3869 sym->st_name);
3870 if (sym_name == NULL)
b34976b6 3871 return FALSE;
30667bf3
AM
3872 if (*sym_name == '\0')
3873 sym_name = bfd_section_name (input_bfd, sym_sec);
3874 }
edd21aca 3875
30667bf3 3876 howto = elf_hppa_howto_table + r_type;
252b5132 3877
875c0872 3878 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
30667bf3 3879 {
875c0872 3880 if (rstatus == bfd_reloc_notsupported || !warned_undef)
f09ebc7d
AM
3881 {
3882 (*_bfd_error_handler)
d003868e
AM
3883 (_("%B(%A+0x%lx): cannot handle %s for %s"),
3884 input_bfd,
3885 input_section,
875c0872 3886 (long) rela->r_offset,
f09ebc7d
AM
3887 howto->name,
3888 sym_name);
3889 bfd_set_error (bfd_error_bad_value);
b34976b6 3890 return FALSE;
f09ebc7d 3891 }
30667bf3
AM
3892 }
3893 else
3894 {
3895 if (!((*info->callbacks->reloc_overflow)
a63e02c7 3896 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
875c0872 3897 (bfd_vma) 0, input_bfd, input_section, rela->r_offset)))
b34976b6 3898 return FALSE;
30667bf3
AM
3899 }
3900 }
edd21aca 3901
b34976b6 3902 return TRUE;
30667bf3 3903}
252b5132 3904
30667bf3
AM
3905/* Finish up dynamic symbol handling. We set the contents of various
3906 dynamic sections here. */
252b5132 3907
b34976b6 3908static bfd_boolean
c39a58e6
AM
3909elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
3910 struct bfd_link_info *info,
875c0872 3911 struct elf_link_hash_entry *eh,
c39a58e6 3912 Elf_Internal_Sym *sym)
30667bf3 3913{
83c81bfe 3914 struct elf32_hppa_link_hash_table *htab;
875c0872 3915 Elf_Internal_Rela rela;
a252afa4 3916 bfd_byte *loc;
edd21aca 3917
83c81bfe 3918 htab = hppa_link_hash_table (info);
30667bf3 3919
875c0872 3920 if (eh->plt.offset != (bfd_vma) -1)
30667bf3
AM
3921 {
3922 bfd_vma value;
30667bf3 3923
875c0872 3924 if (eh->plt.offset & 1)
8dea1268
AM
3925 abort ();
3926
30667bf3
AM
3927 /* This symbol has an entry in the procedure linkage table. Set
3928 it up.
3929
3930 The format of a plt entry is
74d1c347
AM
3931 <funcaddr>
3932 <__gp>
47d89dba 3933 */
30667bf3 3934 value = 0;
875c0872
DA
3935 if (eh->root.type == bfd_link_hash_defined
3936 || eh->root.type == bfd_link_hash_defweak)
30667bf3 3937 {
875c0872
DA
3938 value = eh->root.u.def.value;
3939 if (eh->root.u.def.section->output_section != NULL)
3940 value += (eh->root.u.def.section->output_offset
3941 + eh->root.u.def.section->output_section->vma);
252b5132 3942 }
edd21aca 3943
a252afa4 3944 /* Create a dynamic IPLT relocation for this entry. */
875c0872 3945 rela.r_offset = (eh->plt.offset
a252afa4
DA
3946 + htab->splt->output_offset
3947 + htab->splt->output_section->vma);
875c0872 3948 if (eh->dynindx != -1)
30667bf3 3949 {
875c0872
DA
3950 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
3951 rela.r_addend = 0;
30667bf3 3952 }
ce757d15 3953 else
47d89dba 3954 {
a252afa4
DA
3955 /* This symbol has been marked to become local, and is
3956 used by a plabel so must be kept in the .plt. */
875c0872
DA
3957 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3958 rela.r_addend = value;
47d89dba
AM
3959 }
3960
a252afa4
DA
3961 loc = htab->srelplt->contents;
3962 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
875c0872 3963 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc);
a252afa4 3964
875c0872 3965 if (!eh->def_regular)
30667bf3
AM
3966 {
3967 /* Mark the symbol as undefined, rather than as defined in
3968 the .plt section. Leave the value alone. */
3969 sym->st_shndx = SHN_UNDEF;
3970 }
3971 }
edd21aca 3972
875c0872 3973 if (eh->got.offset != (bfd_vma) -1)
30667bf3 3974 {
30667bf3
AM
3975 /* This symbol has an entry in the global offset table. Set it
3976 up. */
3977
875c0872 3978 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
83c81bfe
AM
3979 + htab->sgot->output_offset
3980 + htab->sgot->output_section->vma);
30667bf3 3981
4dc86686
AM
3982 /* If this is a -Bsymbolic link and the symbol is defined
3983 locally or was forced to be local because of a version file,
3984 we just want to emit a RELATIVE reloc. The entry in the
3985 global offset table will already have been initialized in the
3986 relocate_section function. */
3987 if (info->shared
875c0872
DA
3988 && (info->symbolic || eh->dynindx == -1)
3989 && eh->def_regular)
30667bf3 3990 {
875c0872
DA
3991 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3992 rela.r_addend = (eh->root.u.def.value
3993 + eh->root.u.def.section->output_offset
3994 + eh->root.u.def.section->output_section->vma);
30667bf3
AM
3995 }
3996 else
3997 {
875c0872 3998 if ((eh->got.offset & 1) != 0)
49e9d0d3 3999 abort ();
875c0872
DA
4000
4001 bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1));
4002 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4003 rela.r_addend = 0;
30667bf3 4004 }
edd21aca 4005
947216bf
AM
4006 loc = htab->srelgot->contents;
4007 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
875c0872 4008 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
30667bf3 4009 }
edd21aca 4010
875c0872 4011 if (eh->needs_copy)
30667bf3 4012 {
875c0872 4013 asection *sec;
30667bf3
AM
4014
4015 /* This symbol needs a copy reloc. Set it up. */
4016
875c0872
DA
4017 if (! (eh->dynindx != -1
4018 && (eh->root.type == bfd_link_hash_defined
4019 || eh->root.type == bfd_link_hash_defweak)))
49e9d0d3 4020 abort ();
30667bf3 4021
875c0872 4022 sec = htab->srelbss;
30667bf3 4023
875c0872
DA
4024 rela.r_offset = (eh->root.u.def.value
4025 + eh->root.u.def.section->output_offset
4026 + eh->root.u.def.section->output_section->vma);
4027 rela.r_addend = 0;
4028 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4029 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4030 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
30667bf3
AM
4031 }
4032
4033 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
875c0872
DA
4034 if (eh->root.root.string[0] == '_'
4035 && (strcmp (eh->root.root.string, "_DYNAMIC") == 0
4036 || strcmp (eh->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0))
30667bf3
AM
4037 {
4038 sym->st_shndx = SHN_ABS;
4039 }
4040
b34976b6 4041 return TRUE;
30667bf3
AM
4042}
4043
98ceb8ce
AM
4044/* Used to decide how to sort relocs in an optimal manner for the
4045 dynamic linker, before writing them out. */
4046
4047static enum elf_reloc_type_class
c39a58e6 4048elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
98ceb8ce
AM
4049{
4050 if (ELF32_R_SYM (rela->r_info) == 0)
4051 return reloc_class_relative;
4052
4053 switch ((int) ELF32_R_TYPE (rela->r_info))
4054 {
4055 case R_PARISC_IPLT:
4056 return reloc_class_plt;
4057 case R_PARISC_COPY:
4058 return reloc_class_copy;
4059 default:
4060 return reloc_class_normal;
4061 }
4062}
4063
30667bf3
AM
4064/* Finish up the dynamic sections. */
4065
b34976b6 4066static bfd_boolean
c39a58e6
AM
4067elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4068 struct bfd_link_info *info)
30667bf3
AM
4069{
4070 bfd *dynobj;
83c81bfe 4071 struct elf32_hppa_link_hash_table *htab;
30667bf3
AM
4072 asection *sdyn;
4073
83c81bfe 4074 htab = hppa_link_hash_table (info);
a63e02c7 4075 dynobj = htab->etab.dynobj;
30667bf3
AM
4076
4077 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4078
a63e02c7 4079 if (htab->etab.dynamic_sections_created)
30667bf3
AM
4080 {
4081 Elf32_External_Dyn *dyncon, *dynconend;
4082
49e9d0d3
AM
4083 if (sdyn == NULL)
4084 abort ();
30667bf3
AM
4085
4086 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 4087 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
30667bf3 4088 for (; dyncon < dynconend; dyncon++)
edd21aca 4089 {
30667bf3
AM
4090 Elf_Internal_Dyn dyn;
4091 asection *s;
4092
4093 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4094
4095 switch (dyn.d_tag)
4096 {
4097 default:
3ac8354b 4098 continue;
30667bf3
AM
4099
4100 case DT_PLTGOT:
4101 /* Use PLTGOT to set the GOT register. */
4102 dyn.d_un.d_ptr = elf_gp (output_bfd);
30667bf3
AM
4103 break;
4104
4105 case DT_JMPREL:
83c81bfe 4106 s = htab->srelplt;
30667bf3 4107 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
30667bf3
AM
4108 break;
4109
4110 case DT_PLTRELSZ:
83c81bfe 4111 s = htab->srelplt;
eea6121a 4112 dyn.d_un.d_val = s->size;
30667bf3 4113 break;
4e12ff7f
AM
4114
4115 case DT_RELASZ:
4116 /* Don't count procedure linkage table relocs in the
4117 overall reloc count. */
6348e046
AM
4118 s = htab->srelplt;
4119 if (s == NULL)
4120 continue;
eea6121a 4121 dyn.d_un.d_val -= s->size;
6348e046
AM
4122 break;
4123
4124 case DT_RELA:
4125 /* We may not be using the standard ELF linker script.
4126 If .rela.plt is the first .rela section, we adjust
4127 DT_RELA to not include it. */
4128 s = htab->srelplt;
4129 if (s == NULL)
4130 continue;
4131 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4132 continue;
eea6121a 4133 dyn.d_un.d_ptr += s->size;
4e12ff7f 4134 break;
30667bf3 4135 }
3ac8354b
AM
4136
4137 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
edd21aca 4138 }
252b5132 4139 }
edd21aca 4140
eea6121a 4141 if (htab->sgot != NULL && htab->sgot->size != 0)
30667bf3 4142 {
74d1c347
AM
4143 /* Fill in the first entry in the global offset table.
4144 We use it to point to our dynamic section, if we have one. */
30667bf3 4145 bfd_put_32 (output_bfd,
c39a58e6 4146 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
83c81bfe 4147 htab->sgot->contents);
30667bf3 4148
74d1c347 4149 /* The second entry is reserved for use by the dynamic linker. */
83c81bfe 4150 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
74d1c347 4151
30667bf3 4152 /* Set .got entry size. */
83c81bfe 4153 elf_section_data (htab->sgot->output_section)
74d1c347 4154 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
30667bf3
AM
4155 }
4156
eea6121a 4157 if (htab->splt != NULL && htab->splt->size != 0)
47d89dba
AM
4158 {
4159 /* Set plt entry size. */
83c81bfe 4160 elf_section_data (htab->splt->output_section)
47d89dba
AM
4161 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4162
83c81bfe 4163 if (htab->need_plt_stub)
47d89dba
AM
4164 {
4165 /* Set up the .plt stub. */
83c81bfe 4166 memcpy (htab->splt->contents
eea6121a 4167 + htab->splt->size - sizeof (plt_stub),
47d89dba
AM
4168 plt_stub, sizeof (plt_stub));
4169
83c81bfe
AM
4170 if ((htab->splt->output_offset
4171 + htab->splt->output_section->vma
eea6121a 4172 + htab->splt->size)
83c81bfe
AM
4173 != (htab->sgot->output_offset
4174 + htab->sgot->output_section->vma))
47d89dba
AM
4175 {
4176 (*_bfd_error_handler)
4177 (_(".got section not immediately after .plt section"));
b34976b6 4178 return FALSE;
47d89dba
AM
4179 }
4180 }
4181 }
30667bf3 4182
b34976b6 4183 return TRUE;
30667bf3 4184}
252b5132 4185
d952f17a
AM
4186/* Tweak the OSABI field of the elf header. */
4187
4188static void
c39a58e6
AM
4189elf32_hppa_post_process_headers (bfd *abfd,
4190 struct bfd_link_info *info ATTRIBUTE_UNUSED)
d952f17a
AM
4191{
4192 Elf_Internal_Ehdr * i_ehdrp;
4193
4194 i_ehdrp = elf_elfheader (abfd);
4195
4196 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
4197 {
4198 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
4199 }
225247f0
JT
4200 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
4201 {
4202 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_NETBSD;
4203 }
d952f17a
AM
4204 else
4205 {
4206 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4207 }
4208}
4209
30667bf3
AM
4210/* Called when writing out an object file to decide the type of a
4211 symbol. */
4212static int
c39a58e6 4213elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
30667bf3
AM
4214{
4215 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4216 return STT_PARISC_MILLI;
4217 else
4218 return type;
252b5132
RH
4219}
4220
4221/* Misc BFD support code. */
30667bf3
AM
4222#define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4223#define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4224#define elf_info_to_howto elf_hppa_info_to_howto
4225#define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
252b5132 4226
252b5132 4227/* Stuff for the BFD linker. */
c46b7515 4228#define bfd_elf32_bfd_final_link elf32_hppa_final_link
30667bf3 4229#define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
e2d34d7d 4230#define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
30667bf3 4231#define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
ebe50bae 4232#define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
30667bf3
AM
4233#define elf_backend_check_relocs elf32_hppa_check_relocs
4234#define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4235#define elf_backend_fake_sections elf_hppa_fake_sections
4236#define elf_backend_relocate_section elf32_hppa_relocate_section
74d1c347 4237#define elf_backend_hide_symbol elf32_hppa_hide_symbol
30667bf3
AM
4238#define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4239#define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4240#define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4241#define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4242#define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
edfc032f
AM
4243#define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4244#define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
30667bf3
AM
4245#define elf_backend_object_p elf32_hppa_object_p
4246#define elf_backend_final_write_processing elf_hppa_final_write_processing
d952f17a 4247#define elf_backend_post_process_headers elf32_hppa_post_process_headers
30667bf3 4248#define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
98ceb8ce 4249#define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
30667bf3
AM
4250
4251#define elf_backend_can_gc_sections 1
51b64d56 4252#define elf_backend_can_refcount 1
30667bf3
AM
4253#define elf_backend_plt_alignment 2
4254#define elf_backend_want_got_plt 0
4255#define elf_backend_plt_readonly 0
4256#define elf_backend_want_plt_sym 0
74d1c347 4257#define elf_backend_got_header_size 8
f0fe0e16 4258#define elf_backend_rela_normal 1
252b5132
RH
4259
4260#define TARGET_BIG_SYM bfd_elf32_hppa_vec
4261#define TARGET_BIG_NAME "elf32-hppa"
4262#define ELF_ARCH bfd_arch_hppa
4263#define ELF_MACHINE_CODE EM_PARISC
4264#define ELF_MAXPAGESIZE 0x1000
4265
4266#include "elf32-target.h"
d952f17a
AM
4267
4268#undef TARGET_BIG_SYM
4269#define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4270#undef TARGET_BIG_NAME
4271#define TARGET_BIG_NAME "elf32-hppa-linux"
4272
4273#define INCLUDED_TARGET_FILE 1
4274#include "elf32-target.h"
225247f0
JT
4275
4276#undef TARGET_BIG_SYM
4277#define TARGET_BIG_SYM bfd_elf32_hppa_nbsd_vec
4278#undef TARGET_BIG_NAME
4279#define TARGET_BIG_NAME "elf32-hppa-netbsd"
4280
4281#include "elf32-target.h"
This page took 0.628048 seconds and 4 git commands to generate.