* acconfig.h, configure.in, i386bsd.c (HAVE_STRUCT_REG_R_FS):
[deliverable/binutils-gdb.git] / bfd / elf32-mips.c
CommitLineData
252b5132
RH
1/* MIPS-specific support for 32-bit ELF
2 Copyright 1993, 94, 95, 96, 97, 98, 1999 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
103186c6
MM
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
252b5132
RH
8
9This file is part of BFD, the Binary File Descriptor library.
10
11This program is free software; you can redistribute it and/or modify
12it under the terms of the GNU General Public License as published by
13the Free Software Foundation; either version 2 of the License, or
14(at your option) any later version.
15
16This program is distributed in the hope that it will be useful,
17but WITHOUT ANY WARRANTY; without even the implied warranty of
18MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19GNU General Public License for more details.
20
21You should have received a copy of the GNU General Public License
22along with this program; if not, write to the Free Software
23Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
24
25/* This file handles MIPS ELF targets. SGI Irix 5 uses a slightly
26 different MIPS ELF from other targets. This matters when linking.
27 This file supports both, switching at runtime. */
28
29#include "bfd.h"
30#include "sysdep.h"
31#include "libbfd.h"
32#include "bfdlink.h"
33#include "genlink.h"
34#include "elf-bfd.h"
35#include "elf/mips.h"
36
37/* Get the ECOFF swapping routines. */
38#include "coff/sym.h"
39#include "coff/symconst.h"
40#include "coff/internal.h"
41#include "coff/ecoff.h"
42#include "coff/mips.h"
43#define ECOFF_32
44#include "ecoffswap.h"
45
7403cb63
MM
46/* This structure is used to hold .got information when linking. It
47 is stored in the tdata field of the bfd_elf_section_data structure. */
48
49struct mips_got_info
50{
51 /* The global symbol in the GOT with the lowest index in the dynamic
52 symbol table. */
53 struct elf_link_hash_entry *global_gotsym;
b3be9b46
RH
54 /* The number of global .got entries. */
55 unsigned int global_gotno;
7403cb63
MM
56 /* The number of local .got entries. */
57 unsigned int local_gotno;
58 /* The number of local .got entries we have used. */
59 unsigned int assigned_gotno;
60};
61
62/* The MIPS ELF linker needs additional information for each symbol in
63 the global hash table. */
64
65struct mips_elf_link_hash_entry
66{
67 struct elf_link_hash_entry root;
68
69 /* External symbol information. */
70 EXTR esym;
71
a3c7651d
MM
72 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
73 this symbol. */
74 unsigned int possibly_dynamic_relocs;
7403cb63
MM
75
76 /* The index of the first dynamic relocation (in the .rel.dyn
77 section) against this symbol. */
78 unsigned int min_dyn_reloc_index;
79
80 /* If there is a stub that 32 bit functions should use to call this
81 16 bit function, this points to the section containing the stub. */
82 asection *fn_stub;
83
84 /* Whether we need the fn_stub; this is set if this symbol appears
85 in any relocs other than a 16 bit call. */
86 boolean need_fn_stub;
87
88 /* If there is a stub that 16 bit functions should use to call this
89 32 bit function, this points to the section containing the stub. */
90 asection *call_stub;
91
92 /* This is like the call_stub field, but it is used if the function
93 being called returns a floating point value. */
94 asection *call_fp_stub;
95};
96
252b5132
RH
97static bfd_reloc_status_type mips32_64bit_reloc
98 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
99static reloc_howto_type *bfd_elf32_bfd_reloc_type_lookup
100 PARAMS ((bfd *, bfd_reloc_code_real_type));
c9b3cbf3
RH
101static reloc_howto_type *mips_rtype_to_howto
102 PARAMS ((unsigned int));
252b5132
RH
103static void mips_info_to_howto_rel
104 PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
3f830999
MM
105static void mips_info_to_howto_rela
106 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
252b5132
RH
107static void bfd_mips_elf32_swap_gptab_in
108 PARAMS ((bfd *, const Elf32_External_gptab *, Elf32_gptab *));
109static void bfd_mips_elf32_swap_gptab_out
110 PARAMS ((bfd *, const Elf32_gptab *, Elf32_External_gptab *));
86033394 111#if 0
c6142e5d
MM
112static void bfd_mips_elf_swap_msym_in
113 PARAMS ((bfd *, const Elf32_External_Msym *, Elf32_Internal_Msym *));
86033394 114#endif
c6142e5d
MM
115static void bfd_mips_elf_swap_msym_out
116 PARAMS ((bfd *, const Elf32_Internal_Msym *, Elf32_External_Msym *));
252b5132 117static boolean mips_elf_sym_is_global PARAMS ((bfd *, asymbol *));
252b5132
RH
118static boolean mips_elf_create_procedure_table
119 PARAMS ((PTR, bfd *, struct bfd_link_info *, asection *,
120 struct ecoff_debug_info *));
252b5132
RH
121static INLINE int elf_mips_isa PARAMS ((flagword));
122static INLINE int elf_mips_mach PARAMS ((flagword));
103186c6 123static INLINE char* elf_mips_abi_name PARAMS ((bfd *));
252b5132
RH
124static boolean mips_elf_is_local_label_name
125 PARAMS ((bfd *, const char *));
126static struct bfd_hash_entry *mips_elf_link_hash_newfunc
127 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
252b5132 128static int gptab_compare PARAMS ((const void *, const void *));
252b5132
RH
129static bfd_reloc_status_type mips16_jump_reloc
130 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
131static bfd_reloc_status_type mips16_gprel_reloc
132 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
252b5132
RH
133static boolean mips_elf_create_compact_rel_section
134 PARAMS ((bfd *, struct bfd_link_info *));
135static boolean mips_elf_create_got_section
136 PARAMS ((bfd *, struct bfd_link_info *));
252b5132
RH
137static bfd_reloc_status_type mips_elf_final_gp
138 PARAMS ((bfd *, asymbol *, boolean, char **, bfd_vma *));
139static bfd_byte *elf32_mips_get_relocated_section_contents
140 PARAMS ((bfd *, struct bfd_link_info *, struct bfd_link_order *,
141 bfd_byte *, boolean, asymbol **));
c6142e5d
MM
142static asection *mips_elf_create_msym_section
143 PARAMS ((bfd *));
7403cb63
MM
144static void mips_elf_irix6_finish_dynamic_symbol
145 PARAMS ((bfd *, const char *, Elf_Internal_Sym *));
146static bfd_vma mips_elf_sign_extend PARAMS ((bfd_vma, int));
147static boolean mips_elf_overflow_p PARAMS ((bfd_vma, int));
148static bfd_vma mips_elf_high PARAMS ((bfd_vma));
149static bfd_vma mips_elf_higher PARAMS ((bfd_vma));
150static bfd_vma mips_elf_highest PARAMS ((bfd_vma));
151static bfd_vma mips_elf_global_got_index
152 PARAMS ((bfd *, struct elf_link_hash_entry *));
153static bfd_vma mips_elf_local_got_index
154 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma));
155static bfd_vma mips_elf_got_offset_from_index
156 PARAMS ((bfd *, bfd *, bfd_vma));
157static boolean mips_elf_record_global_got_symbol
158 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *,
159 struct mips_got_info *));
160static bfd_vma mips_elf_got_page
161 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *));
bb2d6cd7
GK
162static const Elf_Internal_Rela *mips_elf_next_relocation
163 PARAMS ((unsigned int, const Elf_Internal_Rela *,
164 const Elf_Internal_Rela *));
7403cb63
MM
165static bfd_reloc_status_type mips_elf_calculate_relocation
166 PARAMS ((bfd *, bfd *, asection *, struct bfd_link_info *,
103186c6 167 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
197b9ca0
MM
168 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
169 boolean *));
7403cb63 170static bfd_vma mips_elf_obtain_contents
103186c6 171 PARAMS ((reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *));
197b9ca0 172static boolean mips_elf_perform_relocation
e53bd91b
MM
173 PARAMS ((struct bfd_link_info *, reloc_howto_type *,
174 const Elf_Internal_Rela *, bfd_vma,
197b9ca0 175 bfd *, asection *, bfd_byte *, boolean));
7403cb63
MM
176static boolean mips_elf_assign_gp PARAMS ((bfd *, bfd_vma *));
177static boolean mips_elf_sort_hash_table_f
178 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
179static boolean mips_elf_sort_hash_table
b3be9b46 180 PARAMS ((struct bfd_link_info *, unsigned long));
7403cb63
MM
181static asection * mips_elf_got_section PARAMS ((bfd *));
182static struct mips_got_info *mips_elf_got_info
183 PARAMS ((bfd *, asection **));
6387d602
ILT
184static boolean mips_elf_local_relocation_p
185 PARAMS ((bfd *, const Elf_Internal_Rela *, asection **));
7403cb63
MM
186static bfd_vma mips_elf_create_local_got_entry
187 PARAMS ((bfd *, struct mips_got_info *, asection *, bfd_vma));
188static bfd_vma mips_elf_got16_entry
189 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma));
7b1f1231 190static boolean mips_elf_create_dynamic_relocation
103186c6 191 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
7b1f1231
MM
192 struct mips_elf_link_hash_entry *, asection *,
193 bfd_vma, bfd_vma *, asection *));
103186c6
MM
194static void mips_elf_allocate_dynamic_relocations
195 PARAMS ((bfd *, unsigned int));
197b9ca0
MM
196static boolean mips_elf_stub_section_p
197 PARAMS ((bfd *, asection *));
252b5132 198
a94a7c1c 199/* The level of IRIX compatibility we're striving for. */
252b5132 200
a94a7c1c
MM
201typedef enum {
202 ict_none,
203 ict_irix5,
204 ict_irix6
205} irix_compat_t;
206
207/* Nonzero if ABFD is using the N32 ABI. */
208
209#define ABI_N32_P(abfd) \
210 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
211
5e38c3b8
MM
212/* Nonzero if ABFD is using the 64-bit ABI. FIXME: This is never
213 true, yet. */
214#define ABI_64_P(abfd) \
215 ((elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) != 0)
216
a94a7c1c
MM
217/* What version of Irix we are trying to be compatible with. FIXME:
218 At the moment, we never generate "normal" MIPS ELF ABI executables;
219 we always use some version of Irix. */
220
221#define IRIX_COMPAT(abfd) \
5e38c3b8 222 ((ABI_N32_P (abfd) || ABI_64_P (abfd)) ? ict_irix6 : ict_irix5)
a94a7c1c
MM
223
224/* Whether we are trying to be compatible with IRIX at all. */
225
226#define SGI_COMPAT(abfd) \
227 (IRIX_COMPAT (abfd) != ict_none)
252b5132 228
c6142e5d
MM
229/* The name of the msym section. */
230#define MIPS_ELF_MSYM_SECTION_NAME(abfd) ".msym"
231
303f629d
MM
232/* The name of the srdata section. */
233#define MIPS_ELF_SRDATA_SECTION_NAME(abfd) ".srdata"
234
235/* The name of the options section. */
236#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
237 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.options" : ".options")
238
239/* The name of the stub section. */
240#define MIPS_ELF_STUB_SECTION_NAME(abfd) \
241 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.stubs" : ".stub")
242
103186c6
MM
243/* The name of the dynamic relocation section. */
244#define MIPS_ELF_REL_DYN_SECTION_NAME(abfd) ".rel.dyn"
245
246/* The size of an external REL relocation. */
247#define MIPS_ELF_REL_SIZE(abfd) \
248 (get_elf_backend_data (abfd)->s->sizeof_rel)
249
250/* The size of an external dynamic table entry. */
251#define MIPS_ELF_DYN_SIZE(abfd) \
252 (get_elf_backend_data (abfd)->s->sizeof_dyn)
253
254/* The size of a GOT entry. */
255#define MIPS_ELF_GOT_SIZE(abfd) \
256 (get_elf_backend_data (abfd)->s->arch_size / 8)
257
258/* The size of a symbol-table entry. */
259#define MIPS_ELF_SYM_SIZE(abfd) \
260 (get_elf_backend_data (abfd)->s->sizeof_sym)
261
262/* The default alignment for sections, as a power of two. */
263#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
264 (get_elf_backend_data (abfd)->s->file_align == 8 ? 3 : 2)
265
266/* Get word-sized data. */
267#define MIPS_ELF_GET_WORD(abfd, ptr) \
268 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
269
270/* Put out word-sized data. */
271#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
272 (ABI_64_P (abfd) \
273 ? bfd_put_64 (abfd, val, ptr) \
274 : bfd_put_32 (abfd, val, ptr))
275
276/* Add a dynamic symbol table-entry. */
9ebbd33e 277#ifdef BFD64
103186c6
MM
278#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
279 (ABI_64_P (elf_hash_table (info)->dynobj) \
280 ? bfd_elf64_add_dynamic_entry (info, tag, val) \
281 : bfd_elf32_add_dynamic_entry (info, tag, val))
9ebbd33e
MM
282#else
283#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
284 (ABI_64_P (elf_hash_table (info)->dynobj) \
e049a0de
ILT
285 ? (abort (), false) \
286 : bfd_elf32_add_dynamic_entry (info, tag, val))
9ebbd33e 287#endif
103186c6 288
252b5132
RH
289/* The number of local .got entries we reserve. */
290#define MIPS_RESERVED_GOTNO (2)
291
292/* Instructions which appear in a stub. For some reason the stub is
293 slightly different on an SGI system. */
294#define ELF_MIPS_GP_OFFSET(abfd) (SGI_COMPAT (abfd) ? 0x7ff0 : 0x8000)
103186c6
MM
295#define STUB_LW(abfd) \
296 (SGI_COMPAT (abfd) \
297 ? (ABI_64_P (abfd) \
298 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
299 : 0x8f998010) /* lw t9,0x8010(gp) */ \
252b5132
RH
300 : 0x8f998000) /* lw t9,0x8000(gp) */
301#define STUB_MOVE 0x03e07825 /* move t7,ra */
302#define STUB_JALR 0x0320f809 /* jal t9 */
303#define STUB_LI16 0x34180000 /* ori t8,zero,0 */
304#define MIPS_FUNCTION_STUB_SIZE (16)
305
306#if 0
307/* We no longer try to identify particular sections for the .dynsym
308 section. When we do, we wind up crashing if there are other random
309 sections with relocations. */
310
311/* Names of sections which appear in the .dynsym section in an Irix 5
312 executable. */
313
314static const char * const mips_elf_dynsym_sec_names[] =
315{
316 ".text",
317 ".init",
318 ".fini",
319 ".data",
320 ".rodata",
321 ".sdata",
322 ".sbss",
323 ".bss",
324 NULL
325};
326
327#define SIZEOF_MIPS_DYNSYM_SECNAMES \
328 (sizeof mips_elf_dynsym_sec_names / sizeof mips_elf_dynsym_sec_names[0])
329
330/* The number of entries in mips_elf_dynsym_sec_names which go in the
331 text segment. */
332
333#define MIPS_TEXT_DYNSYM_SECNO (3)
334
335#endif /* 0 */
336
337/* The names of the runtime procedure table symbols used on Irix 5. */
338
339static const char * const mips_elf_dynsym_rtproc_names[] =
340{
341 "_procedure_table",
342 "_procedure_string_table",
343 "_procedure_table_size",
344 NULL
345};
346
347/* These structures are used to generate the .compact_rel section on
348 Irix 5. */
349
350typedef struct
351{
352 unsigned long id1; /* Always one? */
353 unsigned long num; /* Number of compact relocation entries. */
354 unsigned long id2; /* Always two? */
355 unsigned long offset; /* The file offset of the first relocation. */
356 unsigned long reserved0; /* Zero? */
357 unsigned long reserved1; /* Zero? */
358} Elf32_compact_rel;
359
360typedef struct
361{
362 bfd_byte id1[4];
363 bfd_byte num[4];
364 bfd_byte id2[4];
365 bfd_byte offset[4];
366 bfd_byte reserved0[4];
367 bfd_byte reserved1[4];
368} Elf32_External_compact_rel;
369
370typedef struct
371{
372 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
373 unsigned int rtype : 4; /* Relocation types. See below. */
374 unsigned int dist2to : 8;
375 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
376 unsigned long konst; /* KONST field. See below. */
377 unsigned long vaddr; /* VADDR to be relocated. */
378} Elf32_crinfo;
379
380typedef struct
381{
382 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
383 unsigned int rtype : 4; /* Relocation types. See below. */
384 unsigned int dist2to : 8;
385 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
386 unsigned long konst; /* KONST field. See below. */
387} Elf32_crinfo2;
388
389typedef struct
390{
391 bfd_byte info[4];
392 bfd_byte konst[4];
393 bfd_byte vaddr[4];
394} Elf32_External_crinfo;
395
396typedef struct
397{
398 bfd_byte info[4];
399 bfd_byte konst[4];
400} Elf32_External_crinfo2;
401
402/* These are the constants used to swap the bitfields in a crinfo. */
403
404#define CRINFO_CTYPE (0x1)
405#define CRINFO_CTYPE_SH (31)
406#define CRINFO_RTYPE (0xf)
407#define CRINFO_RTYPE_SH (27)
408#define CRINFO_DIST2TO (0xff)
409#define CRINFO_DIST2TO_SH (19)
410#define CRINFO_RELVADDR (0x7ffff)
411#define CRINFO_RELVADDR_SH (0)
412
413/* A compact relocation info has long (3 words) or short (2 words)
414 formats. A short format doesn't have VADDR field and relvaddr
415 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
416#define CRF_MIPS_LONG 1
417#define CRF_MIPS_SHORT 0
418
419/* There are 4 types of compact relocation at least. The value KONST
420 has different meaning for each type:
421
422 (type) (konst)
423 CT_MIPS_REL32 Address in data
424 CT_MIPS_WORD Address in word (XXX)
425 CT_MIPS_GPHI_LO GP - vaddr
426 CT_MIPS_JMPAD Address to jump
427 */
428
429#define CRT_MIPS_REL32 0xa
430#define CRT_MIPS_WORD 0xb
431#define CRT_MIPS_GPHI_LO 0xc
432#define CRT_MIPS_JMPAD 0xd
433
434#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
435#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
436#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
437#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
438
439static void bfd_elf32_swap_compact_rel_out
440 PARAMS ((bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *));
441static void bfd_elf32_swap_crinfo_out
442 PARAMS ((bfd *, const Elf32_crinfo *, Elf32_External_crinfo *));
443
444#define USE_REL 1 /* MIPS uses REL relocations instead of RELA */
445
3f830999
MM
446/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
447 from smaller values. Start with zero, widen, *then* decrement. */
448#define MINUS_ONE (((bfd_vma)0) - 1)
449
252b5132
RH
450static reloc_howto_type elf_mips_howto_table[] =
451{
452 /* No relocation. */
453 HOWTO (R_MIPS_NONE, /* type */
454 0, /* rightshift */
455 0, /* size (0 = byte, 1 = short, 2 = long) */
456 0, /* bitsize */
457 false, /* pc_relative */
458 0, /* bitpos */
459 complain_overflow_dont, /* complain_on_overflow */
460 bfd_elf_generic_reloc, /* special_function */
461 "R_MIPS_NONE", /* name */
462 false, /* partial_inplace */
463 0, /* src_mask */
464 0, /* dst_mask */
465 false), /* pcrel_offset */
466
467 /* 16 bit relocation. */
468 HOWTO (R_MIPS_16, /* type */
469 0, /* rightshift */
470 1, /* size (0 = byte, 1 = short, 2 = long) */
471 16, /* bitsize */
472 false, /* pc_relative */
473 0, /* bitpos */
474 complain_overflow_bitfield, /* complain_on_overflow */
475 bfd_elf_generic_reloc, /* special_function */
476 "R_MIPS_16", /* name */
477 true, /* partial_inplace */
478 0xffff, /* src_mask */
479 0xffff, /* dst_mask */
480 false), /* pcrel_offset */
481
482 /* 32 bit relocation. */
483 HOWTO (R_MIPS_32, /* type */
484 0, /* rightshift */
485 2, /* size (0 = byte, 1 = short, 2 = long) */
486 32, /* bitsize */
487 false, /* pc_relative */
488 0, /* bitpos */
489 complain_overflow_bitfield, /* complain_on_overflow */
490 bfd_elf_generic_reloc, /* special_function */
491 "R_MIPS_32", /* name */
492 true, /* partial_inplace */
493 0xffffffff, /* src_mask */
494 0xffffffff, /* dst_mask */
495 false), /* pcrel_offset */
496
497 /* 32 bit symbol relative relocation. */
498 HOWTO (R_MIPS_REL32, /* type */
499 0, /* rightshift */
500 2, /* size (0 = byte, 1 = short, 2 = long) */
501 32, /* bitsize */
502 false, /* pc_relative */
503 0, /* bitpos */
504 complain_overflow_bitfield, /* complain_on_overflow */
505 bfd_elf_generic_reloc, /* special_function */
506 "R_MIPS_REL32", /* name */
507 true, /* partial_inplace */
508 0xffffffff, /* src_mask */
509 0xffffffff, /* dst_mask */
510 false), /* pcrel_offset */
511
512 /* 26 bit branch address. */
513 HOWTO (R_MIPS_26, /* type */
514 2, /* rightshift */
515 2, /* size (0 = byte, 1 = short, 2 = long) */
516 26, /* bitsize */
517 false, /* pc_relative */
518 0, /* bitpos */
519 complain_overflow_dont, /* complain_on_overflow */
520 /* This needs complex overflow
521 detection, because the upper four
522 bits must match the PC. */
523 bfd_elf_generic_reloc, /* special_function */
524 "R_MIPS_26", /* name */
525 true, /* partial_inplace */
526 0x3ffffff, /* src_mask */
527 0x3ffffff, /* dst_mask */
528 false), /* pcrel_offset */
529
530 /* High 16 bits of symbol value. */
531 HOWTO (R_MIPS_HI16, /* type */
532 0, /* rightshift */
533 2, /* size (0 = byte, 1 = short, 2 = long) */
534 16, /* bitsize */
535 false, /* pc_relative */
536 0, /* bitpos */
537 complain_overflow_dont, /* complain_on_overflow */
538 _bfd_mips_elf_hi16_reloc, /* special_function */
539 "R_MIPS_HI16", /* name */
540 true, /* partial_inplace */
541 0xffff, /* src_mask */
542 0xffff, /* dst_mask */
543 false), /* pcrel_offset */
544
545 /* Low 16 bits of symbol value. */
546 HOWTO (R_MIPS_LO16, /* type */
547 0, /* rightshift */
548 2, /* size (0 = byte, 1 = short, 2 = long) */
549 16, /* bitsize */
550 false, /* pc_relative */
551 0, /* bitpos */
552 complain_overflow_dont, /* complain_on_overflow */
553 _bfd_mips_elf_lo16_reloc, /* special_function */
554 "R_MIPS_LO16", /* name */
555 true, /* partial_inplace */
556 0xffff, /* src_mask */
557 0xffff, /* dst_mask */
558 false), /* pcrel_offset */
559
560 /* GP relative reference. */
561 HOWTO (R_MIPS_GPREL16, /* type */
562 0, /* rightshift */
563 2, /* size (0 = byte, 1 = short, 2 = long) */
564 16, /* bitsize */
565 false, /* pc_relative */
566 0, /* bitpos */
567 complain_overflow_signed, /* complain_on_overflow */
568 _bfd_mips_elf_gprel16_reloc, /* special_function */
569 "R_MIPS_GPREL16", /* name */
570 true, /* partial_inplace */
571 0xffff, /* src_mask */
572 0xffff, /* dst_mask */
573 false), /* pcrel_offset */
574
575 /* Reference to literal section. */
576 HOWTO (R_MIPS_LITERAL, /* type */
577 0, /* rightshift */
578 2, /* size (0 = byte, 1 = short, 2 = long) */
579 16, /* bitsize */
580 false, /* pc_relative */
581 0, /* bitpos */
582 complain_overflow_signed, /* complain_on_overflow */
583 _bfd_mips_elf_gprel16_reloc, /* special_function */
584 "R_MIPS_LITERAL", /* name */
585 true, /* partial_inplace */
586 0xffff, /* src_mask */
587 0xffff, /* dst_mask */
588 false), /* pcrel_offset */
589
590 /* Reference to global offset table. */
591 HOWTO (R_MIPS_GOT16, /* type */
592 0, /* rightshift */
593 2, /* size (0 = byte, 1 = short, 2 = long) */
594 16, /* bitsize */
595 false, /* pc_relative */
596 0, /* bitpos */
597 complain_overflow_signed, /* complain_on_overflow */
598 _bfd_mips_elf_got16_reloc, /* special_function */
599 "R_MIPS_GOT16", /* name */
600 false, /* partial_inplace */
b944b044 601 0xffff, /* src_mask */
252b5132
RH
602 0xffff, /* dst_mask */
603 false), /* pcrel_offset */
604
605 /* 16 bit PC relative reference. */
606 HOWTO (R_MIPS_PC16, /* type */
607 0, /* rightshift */
608 2, /* size (0 = byte, 1 = short, 2 = long) */
609 16, /* bitsize */
610 true, /* pc_relative */
611 0, /* bitpos */
612 complain_overflow_signed, /* complain_on_overflow */
613 bfd_elf_generic_reloc, /* special_function */
614 "R_MIPS_PC16", /* name */
615 true, /* partial_inplace */
616 0xffff, /* src_mask */
617 0xffff, /* dst_mask */
bb2d6cd7 618 true), /* pcrel_offset */
252b5132
RH
619
620 /* 16 bit call through global offset table. */
252b5132
RH
621 HOWTO (R_MIPS_CALL16, /* type */
622 0, /* rightshift */
623 2, /* size (0 = byte, 1 = short, 2 = long) */
624 16, /* bitsize */
625 false, /* pc_relative */
626 0, /* bitpos */
627 complain_overflow_signed, /* complain_on_overflow */
628 bfd_elf_generic_reloc, /* special_function */
629 "R_MIPS_CALL16", /* name */
630 false, /* partial_inplace */
b944b044 631 0xffff, /* src_mask */
252b5132
RH
632 0xffff, /* dst_mask */
633 false), /* pcrel_offset */
634
635 /* 32 bit GP relative reference. */
636 HOWTO (R_MIPS_GPREL32, /* type */
637 0, /* rightshift */
638 2, /* size (0 = byte, 1 = short, 2 = long) */
639 32, /* bitsize */
640 false, /* pc_relative */
641 0, /* bitpos */
642 complain_overflow_bitfield, /* complain_on_overflow */
643 _bfd_mips_elf_gprel32_reloc, /* special_function */
644 "R_MIPS_GPREL32", /* name */
645 true, /* partial_inplace */
646 0xffffffff, /* src_mask */
647 0xffffffff, /* dst_mask */
648 false), /* pcrel_offset */
649
650 /* The remaining relocs are defined on Irix 5, although they are
651 not defined by the ABI. */
5f771d47
ILT
652 EMPTY_HOWTO (13),
653 EMPTY_HOWTO (14),
654 EMPTY_HOWTO (15),
252b5132
RH
655
656 /* A 5 bit shift field. */
657 HOWTO (R_MIPS_SHIFT5, /* type */
658 0, /* rightshift */
659 2, /* size (0 = byte, 1 = short, 2 = long) */
660 5, /* bitsize */
661 false, /* pc_relative */
662 6, /* bitpos */
663 complain_overflow_bitfield, /* complain_on_overflow */
664 bfd_elf_generic_reloc, /* special_function */
665 "R_MIPS_SHIFT5", /* name */
666 true, /* partial_inplace */
667 0x000007c0, /* src_mask */
668 0x000007c0, /* dst_mask */
669 false), /* pcrel_offset */
670
671 /* A 6 bit shift field. */
672 /* FIXME: This is not handled correctly; a special function is
673 needed to put the most significant bit in the right place. */
674 HOWTO (R_MIPS_SHIFT6, /* type */
675 0, /* rightshift */
676 2, /* size (0 = byte, 1 = short, 2 = long) */
677 6, /* bitsize */
678 false, /* pc_relative */
679 6, /* bitpos */
680 complain_overflow_bitfield, /* complain_on_overflow */
681 bfd_elf_generic_reloc, /* special_function */
682 "R_MIPS_SHIFT6", /* name */
683 true, /* partial_inplace */
684 0x000007c4, /* src_mask */
685 0x000007c4, /* dst_mask */
686 false), /* pcrel_offset */
687
a3c7651d 688 /* A 64 bit relocation. */
252b5132
RH
689 HOWTO (R_MIPS_64, /* type */
690 0, /* rightshift */
a3c7651d
MM
691 4, /* size (0 = byte, 1 = short, 2 = long) */
692 64, /* bitsize */
252b5132
RH
693 false, /* pc_relative */
694 0, /* bitpos */
695 complain_overflow_bitfield, /* complain_on_overflow */
696 mips32_64bit_reloc, /* special_function */
697 "R_MIPS_64", /* name */
698 true, /* partial_inplace */
a3c7651d
MM
699 MINUS_ONE, /* src_mask */
700 MINUS_ONE, /* dst_mask */
252b5132
RH
701 false), /* pcrel_offset */
702
703 /* Displacement in the global offset table. */
252b5132
RH
704 HOWTO (R_MIPS_GOT_DISP, /* type */
705 0, /* rightshift */
706 2, /* size (0 = byte, 1 = short, 2 = long) */
707 16, /* bitsize */
708 false, /* pc_relative */
709 0, /* bitpos */
710 complain_overflow_bitfield, /* complain_on_overflow */
711 bfd_elf_generic_reloc, /* special_function */
712 "R_MIPS_GOT_DISP", /* name */
713 true, /* partial_inplace */
714 0x0000ffff, /* src_mask */
715 0x0000ffff, /* dst_mask */
716 false), /* pcrel_offset */
717
718 /* Displacement to page pointer in the global offset table. */
252b5132
RH
719 HOWTO (R_MIPS_GOT_PAGE, /* type */
720 0, /* rightshift */
721 2, /* size (0 = byte, 1 = short, 2 = long) */
722 16, /* bitsize */
723 false, /* pc_relative */
724 0, /* bitpos */
725 complain_overflow_bitfield, /* complain_on_overflow */
726 bfd_elf_generic_reloc, /* special_function */
727 "R_MIPS_GOT_PAGE", /* name */
728 true, /* partial_inplace */
729 0x0000ffff, /* src_mask */
730 0x0000ffff, /* dst_mask */
731 false), /* pcrel_offset */
732
733 /* Offset from page pointer in the global offset table. */
252b5132
RH
734 HOWTO (R_MIPS_GOT_OFST, /* type */
735 0, /* rightshift */
736 2, /* size (0 = byte, 1 = short, 2 = long) */
737 16, /* bitsize */
738 false, /* pc_relative */
739 0, /* bitpos */
740 complain_overflow_bitfield, /* complain_on_overflow */
741 bfd_elf_generic_reloc, /* special_function */
742 "R_MIPS_GOT_OFST", /* name */
743 true, /* partial_inplace */
744 0x0000ffff, /* src_mask */
745 0x0000ffff, /* dst_mask */
746 false), /* pcrel_offset */
747
748 /* High 16 bits of displacement in global offset table. */
252b5132
RH
749 HOWTO (R_MIPS_GOT_HI16, /* type */
750 0, /* rightshift */
751 2, /* size (0 = byte, 1 = short, 2 = long) */
752 16, /* bitsize */
753 false, /* pc_relative */
754 0, /* bitpos */
755 complain_overflow_dont, /* complain_on_overflow */
756 bfd_elf_generic_reloc, /* special_function */
757 "R_MIPS_GOT_HI16", /* name */
758 true, /* partial_inplace */
759 0x0000ffff, /* src_mask */
760 0x0000ffff, /* dst_mask */
761 false), /* pcrel_offset */
762
763 /* Low 16 bits of displacement in global offset table. */
252b5132
RH
764 HOWTO (R_MIPS_GOT_LO16, /* type */
765 0, /* rightshift */
766 2, /* size (0 = byte, 1 = short, 2 = long) */
767 16, /* bitsize */
768 false, /* pc_relative */
769 0, /* bitpos */
770 complain_overflow_dont, /* complain_on_overflow */
771 bfd_elf_generic_reloc, /* special_function */
772 "R_MIPS_GOT_LO16", /* name */
773 true, /* partial_inplace */
774 0x0000ffff, /* src_mask */
775 0x0000ffff, /* dst_mask */
776 false), /* pcrel_offset */
777
3f830999 778 /* 64 bit subtraction. Used in the N32 ABI. */
3f830999
MM
779 HOWTO (R_MIPS_SUB, /* type */
780 0, /* rightshift */
781 4, /* size (0 = byte, 1 = short, 2 = long) */
782 64, /* bitsize */
783 false, /* pc_relative */
784 0, /* bitpos */
785 complain_overflow_bitfield, /* complain_on_overflow */
786 bfd_elf_generic_reloc, /* special_function */
787 "R_MIPS_SUB", /* name */
788 true, /* partial_inplace */
789 MINUS_ONE, /* src_mask */
790 MINUS_ONE, /* dst_mask */
791 false), /* pcrel_offset */
252b5132
RH
792
793 /* Used to cause the linker to insert and delete instructions? */
5f771d47
ILT
794 EMPTY_HOWTO (R_MIPS_INSERT_A),
795 EMPTY_HOWTO (R_MIPS_INSERT_B),
796 EMPTY_HOWTO (R_MIPS_DELETE),
252b5132 797
103186c6
MM
798 /* Get the higher value of a 64 bit addend. */
799 HOWTO (R_MIPS_HIGHER, /* type */
800 0, /* rightshift */
801 2, /* size (0 = byte, 1 = short, 2 = long) */
802 16, /* bitsize */
803 false, /* pc_relative */
804 0, /* bitpos */
805 complain_overflow_dont, /* complain_on_overflow */
806 bfd_elf_generic_reloc, /* special_function */
807 "R_MIPS_HIGHER", /* name */
808 true, /* partial_inplace */
809 0, /* src_mask */
810 0xffff, /* dst_mask */
811 false), /* pcrel_offset */
812
813 /* Get the highest value of a 64 bit addend. */
814 HOWTO (R_MIPS_HIGHEST, /* type */
815 0, /* rightshift */
816 2, /* size (0 = byte, 1 = short, 2 = long) */
817 16, /* bitsize */
818 false, /* pc_relative */
819 0, /* bitpos */
820 complain_overflow_dont, /* complain_on_overflow */
821 bfd_elf_generic_reloc, /* special_function */
822 "R_MIPS_HIGHEST", /* name */
823 true, /* partial_inplace */
824 0, /* src_mask */
825 0xffff, /* dst_mask */
826 false), /* pcrel_offset */
252b5132
RH
827
828 /* High 16 bits of displacement in global offset table. */
252b5132
RH
829 HOWTO (R_MIPS_CALL_HI16, /* type */
830 0, /* rightshift */
831 2, /* size (0 = byte, 1 = short, 2 = long) */
832 16, /* bitsize */
833 false, /* pc_relative */
834 0, /* bitpos */
835 complain_overflow_dont, /* complain_on_overflow */
836 bfd_elf_generic_reloc, /* special_function */
837 "R_MIPS_CALL_HI16", /* name */
838 true, /* partial_inplace */
839 0x0000ffff, /* src_mask */
840 0x0000ffff, /* dst_mask */
841 false), /* pcrel_offset */
842
843 /* Low 16 bits of displacement in global offset table. */
252b5132
RH
844 HOWTO (R_MIPS_CALL_LO16, /* type */
845 0, /* rightshift */
846 2, /* size (0 = byte, 1 = short, 2 = long) */
847 16, /* bitsize */
848 false, /* pc_relative */
849 0, /* bitpos */
850 complain_overflow_dont, /* complain_on_overflow */
851 bfd_elf_generic_reloc, /* special_function */
852 "R_MIPS_CALL_LO16", /* name */
853 true, /* partial_inplace */
854 0x0000ffff, /* src_mask */
855 0x0000ffff, /* dst_mask */
856 false), /* pcrel_offset */
857
7403cb63
MM
858 /* Section displacement. */
859 HOWTO (R_MIPS_SCN_DISP, /* type */
860 0, /* rightshift */
861 2, /* size (0 = byte, 1 = short, 2 = long) */
862 32, /* bitsize */
863 false, /* pc_relative */
864 0, /* bitpos */
865 complain_overflow_dont, /* complain_on_overflow */
866 bfd_elf_generic_reloc, /* special_function */
867 "R_MIPS_SCN_DISP", /* name */
868 false, /* partial_inplace */
869 0xffffffff, /* src_mask */
870 0xffffffff, /* dst_mask */
871 false), /* pcrel_offset */
872
5f771d47
ILT
873 EMPTY_HOWTO (R_MIPS_REL16),
874 EMPTY_HOWTO (R_MIPS_ADD_IMMEDIATE),
875 EMPTY_HOWTO (R_MIPS_PJUMP),
876 EMPTY_HOWTO (R_MIPS_RELGOT),
d2905643
MM
877
878 /* Protected jump conversion. This is an optimization hint. No
879 relocation is required for correctness. */
880 HOWTO (R_MIPS_JALR, /* type */
881 0, /* rightshift */
882 0, /* size (0 = byte, 1 = short, 2 = long) */
883 0, /* bitsize */
884 false, /* pc_relative */
885 0, /* bitpos */
886 complain_overflow_dont, /* complain_on_overflow */
887 bfd_elf_generic_reloc, /* special_function */
888 "R_MIPS_JALR", /* name */
889 false, /* partial_inplace */
890 0x00000000, /* src_mask */
891 0x00000000, /* dst_mask */
892 false), /* pcrel_offset */
252b5132
RH
893};
894
895/* The reloc used for BFD_RELOC_CTOR when doing a 64 bit link. This
896 is a hack to make the linker think that we need 64 bit values. */
897static reloc_howto_type elf_mips_ctor64_howto =
898 HOWTO (R_MIPS_64, /* type */
899 0, /* rightshift */
900 4, /* size (0 = byte, 1 = short, 2 = long) */
901 32, /* bitsize */
902 false, /* pc_relative */
903 0, /* bitpos */
904 complain_overflow_signed, /* complain_on_overflow */
905 mips32_64bit_reloc, /* special_function */
906 "R_MIPS_64", /* name */
907 true, /* partial_inplace */
908 0xffffffff, /* src_mask */
909 0xffffffff, /* dst_mask */
910 false); /* pcrel_offset */
911
912/* The reloc used for the mips16 jump instruction. */
913static reloc_howto_type elf_mips16_jump_howto =
914 HOWTO (R_MIPS16_26, /* type */
915 2, /* rightshift */
916 2, /* size (0 = byte, 1 = short, 2 = long) */
917 26, /* bitsize */
918 false, /* pc_relative */
919 0, /* bitpos */
920 complain_overflow_dont, /* complain_on_overflow */
921 /* This needs complex overflow
922 detection, because the upper four
923 bits must match the PC. */
924 mips16_jump_reloc, /* special_function */
925 "R_MIPS16_26", /* name */
926 true, /* partial_inplace */
927 0x3ffffff, /* src_mask */
928 0x3ffffff, /* dst_mask */
929 false); /* pcrel_offset */
930
b7233c24 931/* The reloc used for the mips16 gprel instruction. */
252b5132
RH
932static reloc_howto_type elf_mips16_gprel_howto =
933 HOWTO (R_MIPS16_GPREL, /* type */
934 0, /* rightshift */
935 2, /* size (0 = byte, 1 = short, 2 = long) */
936 16, /* bitsize */
937 false, /* pc_relative */
938 0, /* bitpos */
939 complain_overflow_signed, /* complain_on_overflow */
940 mips16_gprel_reloc, /* special_function */
941 "R_MIPS16_GPREL", /* name */
942 true, /* partial_inplace */
b7233c24
MM
943 0x07ff001f, /* src_mask */
944 0x07ff001f, /* dst_mask */
252b5132
RH
945 false); /* pcrel_offset */
946
947
bb2d6cd7
GK
948/* GNU extensions for embedded-pic. */
949/* High 16 bits of symbol value, pc-relative. */
950static reloc_howto_type elf_mips_gnu_rel_hi16 =
951 HOWTO (R_MIPS_GNU_REL_HI16, /* type */
952 0, /* rightshift */
953 2, /* size (0 = byte, 1 = short, 2 = long) */
954 16, /* bitsize */
955 true, /* pc_relative */
956 0, /* bitpos */
957 complain_overflow_dont, /* complain_on_overflow */
958 _bfd_mips_elf_hi16_reloc, /* special_function */
959 "R_MIPS_GNU_REL_HI16", /* name */
960 true, /* partial_inplace */
961 0xffff, /* src_mask */
962 0xffff, /* dst_mask */
963 true); /* pcrel_offset */
964
965/* Low 16 bits of symbol value, pc-relative. */
966static reloc_howto_type elf_mips_gnu_rel_lo16 =
967 HOWTO (R_MIPS_GNU_REL_LO16, /* type */
968 0, /* rightshift */
969 2, /* size (0 = byte, 1 = short, 2 = long) */
970 16, /* bitsize */
971 true, /* pc_relative */
972 0, /* bitpos */
973 complain_overflow_dont, /* complain_on_overflow */
974 _bfd_mips_elf_lo16_reloc, /* special_function */
975 "R_MIPS_GNU_REL_LO16", /* name */
976 true, /* partial_inplace */
977 0xffff, /* src_mask */
978 0xffff, /* dst_mask */
979 true); /* pcrel_offset */
980
981/* 16 bit offset for pc-relative branches. */
982static reloc_howto_type elf_mips_gnu_rel16_s2 =
983 HOWTO (R_MIPS_GNU_REL16_S2, /* type */
984 2, /* rightshift */
985 2, /* size (0 = byte, 1 = short, 2 = long) */
986 16, /* bitsize */
987 true, /* pc_relative */
988 0, /* bitpos */
989 complain_overflow_signed, /* complain_on_overflow */
990 bfd_elf_generic_reloc, /* special_function */
991 "R_MIPS_GNU_REL16_S2", /* name */
992 true, /* partial_inplace */
993 0xffff, /* src_mask */
994 0xffff, /* dst_mask */
995 true); /* pcrel_offset */
996
997/* 64 bit pc-relative. */
998static reloc_howto_type elf_mips_gnu_pcrel64 =
999 HOWTO (R_MIPS_PC64, /* type */
1000 0, /* rightshift */
1001 4, /* size (0 = byte, 1 = short, 2 = long) */
1002 64, /* bitsize */
1003 true, /* pc_relative */
1004 0, /* bitpos */
1005 complain_overflow_signed, /* complain_on_overflow */
1006 bfd_elf_generic_reloc, /* special_function */
1007 "R_MIPS_PC64", /* name */
1008 true, /* partial_inplace */
1009 MINUS_ONE, /* src_mask */
1010 MINUS_ONE, /* dst_mask */
1011 true); /* pcrel_offset */
1012
1013/* 32 bit pc-relative. */
1014static reloc_howto_type elf_mips_gnu_pcrel32 =
1015 HOWTO (R_MIPS_PC32, /* type */
1016 0, /* rightshift */
1017 2, /* size (0 = byte, 1 = short, 2 = long) */
1018 32, /* bitsize */
1019 true, /* pc_relative */
1020 0, /* bitpos */
1021 complain_overflow_signed, /* complain_on_overflow */
1022 bfd_elf_generic_reloc, /* special_function */
1023 "R_MIPS_PC32", /* name */
1024 true, /* partial_inplace */
1025 0xffffffff, /* src_mask */
1026 0xffffffff, /* dst_mask */
1027 true); /* pcrel_offset */
1028
252b5132
RH
1029/* GNU extension to record C++ vtable hierarchy */
1030static reloc_howto_type elf_mips_gnu_vtinherit_howto =
1031 HOWTO (R_MIPS_GNU_VTINHERIT, /* type */
1032 0, /* rightshift */
1033 2, /* size (0 = byte, 1 = short, 2 = long) */
1034 0, /* bitsize */
1035 false, /* pc_relative */
1036 0, /* bitpos */
1037 complain_overflow_dont, /* complain_on_overflow */
1038 NULL, /* special_function */
1039 "R_MIPS_GNU_VTINHERIT", /* name */
1040 false, /* partial_inplace */
1041 0, /* src_mask */
1042 0, /* dst_mask */
1043 false); /* pcrel_offset */
1044
1045/* GNU extension to record C++ vtable member usage */
1046static reloc_howto_type elf_mips_gnu_vtentry_howto =
1047 HOWTO (R_MIPS_GNU_VTENTRY, /* type */
1048 0, /* rightshift */
1049 2, /* size (0 = byte, 1 = short, 2 = long) */
1050 0, /* bitsize */
1051 false, /* pc_relative */
1052 0, /* bitpos */
1053 complain_overflow_dont, /* complain_on_overflow */
1054 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1055 "R_MIPS_GNU_VTENTRY", /* name */
1056 false, /* partial_inplace */
1057 0, /* src_mask */
1058 0, /* dst_mask */
1059 false); /* pcrel_offset */
1060
1061/* Do a R_MIPS_HI16 relocation. This has to be done in combination
1062 with a R_MIPS_LO16 reloc, because there is a carry from the LO16 to
1063 the HI16. Here we just save the information we need; we do the
1064 actual relocation when we see the LO16. MIPS ELF requires that the
1065 LO16 immediately follow the HI16. As a GNU extension, we permit an
1066 arbitrary number of HI16 relocs to be associated with a single LO16
1067 reloc. This extension permits gcc to output the HI and LO relocs
1068 itself. */
1069
1070struct mips_hi16
1071{
1072 struct mips_hi16 *next;
1073 bfd_byte *addr;
1074 bfd_vma addend;
1075};
1076
1077/* FIXME: This should not be a static variable. */
1078
1079static struct mips_hi16 *mips_hi16_list;
1080
1081bfd_reloc_status_type
1082_bfd_mips_elf_hi16_reloc (abfd,
1083 reloc_entry,
1084 symbol,
1085 data,
1086 input_section,
1087 output_bfd,
1088 error_message)
5f771d47 1089 bfd *abfd ATTRIBUTE_UNUSED;
252b5132
RH
1090 arelent *reloc_entry;
1091 asymbol *symbol;
1092 PTR data;
1093 asection *input_section;
1094 bfd *output_bfd;
1095 char **error_message;
1096{
1097 bfd_reloc_status_type ret;
1098 bfd_vma relocation;
1099 struct mips_hi16 *n;
1100
1101 /* If we're relocating, and this an external symbol, we don't want
1102 to change anything. */
1103 if (output_bfd != (bfd *) NULL
1104 && (symbol->flags & BSF_SECTION_SYM) == 0
1105 && reloc_entry->addend == 0)
1106 {
1107 reloc_entry->address += input_section->output_offset;
1108 return bfd_reloc_ok;
1109 }
1110
1111 ret = bfd_reloc_ok;
1112
1113 if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1114 {
1115 boolean relocateable;
1116 bfd_vma gp;
1117
1118 if (ret == bfd_reloc_undefined)
1119 abort ();
1120
1121 if (output_bfd != NULL)
1122 relocateable = true;
1123 else
1124 {
1125 relocateable = false;
1126 output_bfd = symbol->section->output_section->owner;
1127 }
1128
1129 ret = mips_elf_final_gp (output_bfd, symbol, relocateable,
1130 error_message, &gp);
1131 if (ret != bfd_reloc_ok)
1132 return ret;
1133
1134 relocation = gp - reloc_entry->address;
1135 }
1136 else
1137 {
1138 if (bfd_is_und_section (symbol->section)
1139 && output_bfd == (bfd *) NULL)
1140 ret = bfd_reloc_undefined;
1141
1142 if (bfd_is_com_section (symbol->section))
1143 relocation = 0;
1144 else
1145 relocation = symbol->value;
1146 }
1147
1148 relocation += symbol->section->output_section->vma;
1149 relocation += symbol->section->output_offset;
1150 relocation += reloc_entry->addend;
1151
1152 if (reloc_entry->address > input_section->_cooked_size)
1153 return bfd_reloc_outofrange;
1154
1155 /* Save the information, and let LO16 do the actual relocation. */
1156 n = (struct mips_hi16 *) bfd_malloc (sizeof *n);
1157 if (n == NULL)
1158 return bfd_reloc_outofrange;
1159 n->addr = (bfd_byte *) data + reloc_entry->address;
1160 n->addend = relocation;
1161 n->next = mips_hi16_list;
1162 mips_hi16_list = n;
1163
1164 if (output_bfd != (bfd *) NULL)
1165 reloc_entry->address += input_section->output_offset;
1166
1167 return ret;
1168}
1169
1170/* Do a R_MIPS_LO16 relocation. This is a straightforward 16 bit
1171 inplace relocation; this function exists in order to do the
1172 R_MIPS_HI16 relocation described above. */
1173
1174bfd_reloc_status_type
1175_bfd_mips_elf_lo16_reloc (abfd,
1176 reloc_entry,
1177 symbol,
1178 data,
1179 input_section,
1180 output_bfd,
1181 error_message)
1182 bfd *abfd;
1183 arelent *reloc_entry;
1184 asymbol *symbol;
1185 PTR data;
1186 asection *input_section;
1187 bfd *output_bfd;
1188 char **error_message;
1189{
1190 arelent gp_disp_relent;
1191
1192 if (mips_hi16_list != NULL)
1193 {
1194 struct mips_hi16 *l;
1195
1196 l = mips_hi16_list;
1197 while (l != NULL)
1198 {
1199 unsigned long insn;
1200 unsigned long val;
1201 unsigned long vallo;
1202 struct mips_hi16 *next;
1203
1204 /* Do the HI16 relocation. Note that we actually don't need
1205 to know anything about the LO16 itself, except where to
1206 find the low 16 bits of the addend needed by the LO16. */
1207 insn = bfd_get_32 (abfd, l->addr);
1208 vallo = (bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address)
1209 & 0xffff);
1210 val = ((insn & 0xffff) << 16) + vallo;
1211 val += l->addend;
1212
1213 /* The low order 16 bits are always treated as a signed
1214 value. Therefore, a negative value in the low order bits
1215 requires an adjustment in the high order bits. We need
1216 to make this adjustment in two ways: once for the bits we
1217 took from the data, and once for the bits we are putting
1218 back in to the data. */
1219 if ((vallo & 0x8000) != 0)
1220 val -= 0x10000;
1221 if ((val & 0x8000) != 0)
1222 val += 0x10000;
1223
1224 insn = (insn &~ 0xffff) | ((val >> 16) & 0xffff);
1225 bfd_put_32 (abfd, insn, l->addr);
1226
1227 if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1228 {
1229 gp_disp_relent = *reloc_entry;
1230 reloc_entry = &gp_disp_relent;
1231 reloc_entry->addend = l->addend;
1232 }
1233
1234 next = l->next;
1235 free (l);
1236 l = next;
1237 }
1238
1239 mips_hi16_list = NULL;
1240 }
1241 else if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1242 {
1243 bfd_reloc_status_type ret;
1244 bfd_vma gp, relocation;
1245
1246 /* FIXME: Does this case ever occur? */
1247
1248 ret = mips_elf_final_gp (output_bfd, symbol, true, error_message, &gp);
1249 if (ret != bfd_reloc_ok)
1250 return ret;
1251
1252 relocation = gp - reloc_entry->address;
1253 relocation += symbol->section->output_section->vma;
1254 relocation += symbol->section->output_offset;
1255 relocation += reloc_entry->addend;
1256
1257 if (reloc_entry->address > input_section->_cooked_size)
1258 return bfd_reloc_outofrange;
1259
1260 gp_disp_relent = *reloc_entry;
1261 reloc_entry = &gp_disp_relent;
1262 reloc_entry->addend = relocation - 4;
1263 }
1264
1265 /* Now do the LO16 reloc in the usual way. */
1266 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1267 input_section, output_bfd, error_message);
1268}
1269
1270/* Do a R_MIPS_GOT16 reloc. This is a reloc against the global offset
1271 table used for PIC code. If the symbol is an external symbol, the
1272 instruction is modified to contain the offset of the appropriate
1273 entry in the global offset table. If the symbol is a section
1274 symbol, the next reloc is a R_MIPS_LO16 reloc. The two 16 bit
1275 addends are combined to form the real addend against the section
1276 symbol; the GOT16 is modified to contain the offset of an entry in
1277 the global offset table, and the LO16 is modified to offset it
1278 appropriately. Thus an offset larger than 16 bits requires a
1279 modified value in the global offset table.
1280
1281 This implementation suffices for the assembler, but the linker does
1282 not yet know how to create global offset tables. */
1283
1284bfd_reloc_status_type
1285_bfd_mips_elf_got16_reloc (abfd,
1286 reloc_entry,
1287 symbol,
1288 data,
1289 input_section,
1290 output_bfd,
1291 error_message)
1292 bfd *abfd;
1293 arelent *reloc_entry;
1294 asymbol *symbol;
1295 PTR data;
1296 asection *input_section;
1297 bfd *output_bfd;
1298 char **error_message;
1299{
1300 /* If we're relocating, and this an external symbol, we don't want
1301 to change anything. */
1302 if (output_bfd != (bfd *) NULL
1303 && (symbol->flags & BSF_SECTION_SYM) == 0
1304 && reloc_entry->addend == 0)
1305 {
1306 reloc_entry->address += input_section->output_offset;
1307 return bfd_reloc_ok;
1308 }
1309
1310 /* If we're relocating, and this is a local symbol, we can handle it
1311 just like HI16. */
1312 if (output_bfd != (bfd *) NULL
1313 && (symbol->flags & BSF_SECTION_SYM) != 0)
1314 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1315 input_section, output_bfd, error_message);
1316
1317 abort ();
1318}
1319
7403cb63
MM
1320/* Set the GP value for OUTPUT_BFD. Returns false if this is a
1321 dangerous relocation. */
1322
1323static boolean
1324mips_elf_assign_gp (output_bfd, pgp)
1325 bfd *output_bfd;
1326 bfd_vma *pgp;
1327{
1328 unsigned int count;
1329 asymbol **sym;
1330 unsigned int i;
1331
1332 /* If we've already figured out what GP will be, just return it. */
1333 *pgp = _bfd_get_gp_value (output_bfd);
1334 if (*pgp)
1335 return true;
1336
1337 count = bfd_get_symcount (output_bfd);
1338 sym = bfd_get_outsymbols (output_bfd);
1339
1340 /* The linker script will have created a symbol named `_gp' with the
1341 appropriate value. */
1342 if (sym == (asymbol **) NULL)
1343 i = count;
1344 else
1345 {
1346 for (i = 0; i < count; i++, sym++)
1347 {
1348 register CONST char *name;
1349
1350 name = bfd_asymbol_name (*sym);
1351 if (*name == '_' && strcmp (name, "_gp") == 0)
1352 {
1353 *pgp = bfd_asymbol_value (*sym);
1354 _bfd_set_gp_value (output_bfd, *pgp);
1355 break;
1356 }
1357 }
1358 }
1359
1360 if (i >= count)
1361 {
1362 /* Only get the error once. */
1363 *pgp = 4;
1364 _bfd_set_gp_value (output_bfd, *pgp);
1365 return false;
1366 }
1367
1368 return true;
1369}
1370
252b5132
RH
1371/* We have to figure out the gp value, so that we can adjust the
1372 symbol value correctly. We look up the symbol _gp in the output
1373 BFD. If we can't find it, we're stuck. We cache it in the ELF
1374 target data. We don't need to adjust the symbol value for an
1375 external symbol if we are producing relocateable output. */
1376
1377static bfd_reloc_status_type
1378mips_elf_final_gp (output_bfd, symbol, relocateable, error_message, pgp)
1379 bfd *output_bfd;
1380 asymbol *symbol;
1381 boolean relocateable;
1382 char **error_message;
1383 bfd_vma *pgp;
1384{
1385 if (bfd_is_und_section (symbol->section)
1386 && ! relocateable)
1387 {
1388 *pgp = 0;
1389 return bfd_reloc_undefined;
1390 }
1391
1392 *pgp = _bfd_get_gp_value (output_bfd);
1393 if (*pgp == 0
1394 && (! relocateable
1395 || (symbol->flags & BSF_SECTION_SYM) != 0))
1396 {
1397 if (relocateable)
1398 {
1399 /* Make up a value. */
1400 *pgp = symbol->section->output_section->vma + 0x4000;
1401 _bfd_set_gp_value (output_bfd, *pgp);
1402 }
7403cb63 1403 else if (!mips_elf_assign_gp (output_bfd, pgp))
252b5132 1404 {
7403cb63
MM
1405 *error_message =
1406 (char *) _("GP relative relocation when _gp not defined");
1407 return bfd_reloc_dangerous;
252b5132
RH
1408 }
1409 }
1410
1411 return bfd_reloc_ok;
1412}
1413
1414/* Do a R_MIPS_GPREL16 relocation. This is a 16 bit value which must
1415 become the offset from the gp register. This function also handles
1416 R_MIPS_LITERAL relocations, although those can be handled more
1417 cleverly because the entries in the .lit8 and .lit4 sections can be
1418 merged. */
1419
1420static bfd_reloc_status_type gprel16_with_gp PARAMS ((bfd *, asymbol *,
1421 arelent *, asection *,
1422 boolean, PTR, bfd_vma));
1423
1424bfd_reloc_status_type
1425_bfd_mips_elf_gprel16_reloc (abfd, reloc_entry, symbol, data, input_section,
1426 output_bfd, error_message)
1427 bfd *abfd;
1428 arelent *reloc_entry;
1429 asymbol *symbol;
1430 PTR data;
1431 asection *input_section;
1432 bfd *output_bfd;
1433 char **error_message;
1434{
1435 boolean relocateable;
1436 bfd_reloc_status_type ret;
1437 bfd_vma gp;
1438
1439 /* If we're relocating, and this is an external symbol with no
1440 addend, we don't want to change anything. We will only have an
1441 addend if this is a newly created reloc, not read from an ELF
1442 file. */
1443 if (output_bfd != (bfd *) NULL
1444 && (symbol->flags & BSF_SECTION_SYM) == 0
1445 && reloc_entry->addend == 0)
1446 {
1447 reloc_entry->address += input_section->output_offset;
1448 return bfd_reloc_ok;
1449 }
1450
1451 if (output_bfd != (bfd *) NULL)
1452 relocateable = true;
1453 else
1454 {
1455 relocateable = false;
1456 output_bfd = symbol->section->output_section->owner;
1457 }
1458
1459 ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message,
1460 &gp);
1461 if (ret != bfd_reloc_ok)
1462 return ret;
1463
1464 return gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1465 relocateable, data, gp);
1466}
1467
1468static bfd_reloc_status_type
1469gprel16_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data,
1470 gp)
1471 bfd *abfd;
1472 asymbol *symbol;
1473 arelent *reloc_entry;
1474 asection *input_section;
1475 boolean relocateable;
1476 PTR data;
1477 bfd_vma gp;
1478{
1479 bfd_vma relocation;
1480 unsigned long insn;
1481 unsigned long val;
1482
1483 if (bfd_is_com_section (symbol->section))
1484 relocation = 0;
1485 else
1486 relocation = symbol->value;
1487
1488 relocation += symbol->section->output_section->vma;
1489 relocation += symbol->section->output_offset;
1490
1491 if (reloc_entry->address > input_section->_cooked_size)
1492 return bfd_reloc_outofrange;
1493
1494 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1495
1496 /* Set val to the offset into the section or symbol. */
1497 if (reloc_entry->howto->src_mask == 0)
1498 {
1499 /* This case occurs with the 64-bit MIPS ELF ABI. */
1500 val = reloc_entry->addend;
1501 }
1502 else
1503 {
1504 val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff;
1505 if (val & 0x8000)
1506 val -= 0x10000;
1507 }
1508
1509 /* Adjust val for the final section location and GP value. If we
1510 are producing relocateable output, we don't want to do this for
1511 an external symbol. */
1512 if (! relocateable
1513 || (symbol->flags & BSF_SECTION_SYM) != 0)
1514 val += relocation - gp;
1515
1516 insn = (insn &~ 0xffff) | (val & 0xffff);
1517 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
1518
1519 if (relocateable)
1520 reloc_entry->address += input_section->output_offset;
1521
1522 /* Make sure it fit in 16 bits. */
43cbcf28 1523 if ((long) val >= 0x8000 || (long) val < -0x8000)
252b5132
RH
1524 return bfd_reloc_overflow;
1525
1526 return bfd_reloc_ok;
1527}
1528
1529/* Do a R_MIPS_GPREL32 relocation. Is this 32 bit value the offset
1530 from the gp register? XXX */
1531
1532static bfd_reloc_status_type gprel32_with_gp PARAMS ((bfd *, asymbol *,
1533 arelent *, asection *,
1534 boolean, PTR, bfd_vma));
1535
1536bfd_reloc_status_type
1537_bfd_mips_elf_gprel32_reloc (abfd,
1538 reloc_entry,
1539 symbol,
1540 data,
1541 input_section,
1542 output_bfd,
1543 error_message)
1544 bfd *abfd;
1545 arelent *reloc_entry;
1546 asymbol *symbol;
1547 PTR data;
1548 asection *input_section;
1549 bfd *output_bfd;
1550 char **error_message;
1551{
1552 boolean relocateable;
1553 bfd_reloc_status_type ret;
1554 bfd_vma gp;
1555
1556 /* If we're relocating, and this is an external symbol with no
1557 addend, we don't want to change anything. We will only have an
1558 addend if this is a newly created reloc, not read from an ELF
1559 file. */
1560 if (output_bfd != (bfd *) NULL
1561 && (symbol->flags & BSF_SECTION_SYM) == 0
1562 && reloc_entry->addend == 0)
1563 {
1564 *error_message = (char *)
1565 _("32bits gp relative relocation occurs for an external symbol");
1566 return bfd_reloc_outofrange;
1567 }
1568
1569 if (output_bfd != (bfd *) NULL)
1570 {
1571 relocateable = true;
1572 gp = _bfd_get_gp_value (output_bfd);
1573 }
1574 else
1575 {
1576 relocateable = false;
1577 output_bfd = symbol->section->output_section->owner;
1578
1579 ret = mips_elf_final_gp (output_bfd, symbol, relocateable,
1580 error_message, &gp);
1581 if (ret != bfd_reloc_ok)
1582 return ret;
1583 }
1584
1585 return gprel32_with_gp (abfd, symbol, reloc_entry, input_section,
1586 relocateable, data, gp);
1587}
1588
1589static bfd_reloc_status_type
1590gprel32_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data,
1591 gp)
1592 bfd *abfd;
1593 asymbol *symbol;
1594 arelent *reloc_entry;
1595 asection *input_section;
1596 boolean relocateable;
1597 PTR data;
1598 bfd_vma gp;
1599{
1600 bfd_vma relocation;
1601 unsigned long val;
1602
1603 if (bfd_is_com_section (symbol->section))
1604 relocation = 0;
1605 else
1606 relocation = symbol->value;
1607
1608 relocation += symbol->section->output_section->vma;
1609 relocation += symbol->section->output_offset;
1610
1611 if (reloc_entry->address > input_section->_cooked_size)
1612 return bfd_reloc_outofrange;
1613
1614 if (reloc_entry->howto->src_mask == 0)
1615 {
1616 /* This case arises with the 64-bit MIPS ELF ABI. */
1617 val = 0;
1618 }
1619 else
1620 val = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1621
1622 /* Set val to the offset into the section or symbol. */
1623 val += reloc_entry->addend;
1624
1625 /* Adjust val for the final section location and GP value. If we
1626 are producing relocateable output, we don't want to do this for
1627 an external symbol. */
1628 if (! relocateable
1629 || (symbol->flags & BSF_SECTION_SYM) != 0)
1630 val += relocation - gp;
1631
1632 bfd_put_32 (abfd, val, (bfd_byte *) data + reloc_entry->address);
1633
1634 if (relocateable)
1635 reloc_entry->address += input_section->output_offset;
1636
1637 return bfd_reloc_ok;
1638}
1639
1640/* Handle a 64 bit reloc in a 32 bit MIPS ELF file. These are
1641 generated when addreses are 64 bits. The upper 32 bits are a simle
1642 sign extension. */
1643
1644static bfd_reloc_status_type
1645mips32_64bit_reloc (abfd, reloc_entry, symbol, data, input_section,
1646 output_bfd, error_message)
1647 bfd *abfd;
1648 arelent *reloc_entry;
1649 asymbol *symbol;
1650 PTR data;
1651 asection *input_section;
1652 bfd *output_bfd;
1653 char **error_message;
1654{
1655 bfd_reloc_status_type r;
1656 arelent reloc32;
1657 unsigned long val;
1658 bfd_size_type addr;
1659
1660 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1661 input_section, output_bfd, error_message);
1662 if (r != bfd_reloc_continue)
1663 return r;
1664
1665 /* Do a normal 32 bit relocation on the lower 32 bits. */
1666 reloc32 = *reloc_entry;
1667 if (bfd_big_endian (abfd))
1668 reloc32.address += 4;
1669 reloc32.howto = &elf_mips_howto_table[R_MIPS_32];
1670 r = bfd_perform_relocation (abfd, &reloc32, data, input_section,
1671 output_bfd, error_message);
1672
1673 /* Sign extend into the upper 32 bits. */
1674 val = bfd_get_32 (abfd, (bfd_byte *) data + reloc32.address);
1675 if ((val & 0x80000000) != 0)
1676 val = 0xffffffff;
1677 else
1678 val = 0;
1679 addr = reloc_entry->address;
1680 if (bfd_little_endian (abfd))
1681 addr += 4;
1682 bfd_put_32 (abfd, val, (bfd_byte *) data + addr);
1683
1684 return r;
1685}
1686
1687/* Handle a mips16 jump. */
1688
1689static bfd_reloc_status_type
1690mips16_jump_reloc (abfd, reloc_entry, symbol, data, input_section,
1691 output_bfd, error_message)
5f771d47 1692 bfd *abfd ATTRIBUTE_UNUSED;
252b5132
RH
1693 arelent *reloc_entry;
1694 asymbol *symbol;
5f771d47 1695 PTR data ATTRIBUTE_UNUSED;
252b5132
RH
1696 asection *input_section;
1697 bfd *output_bfd;
5f771d47 1698 char **error_message ATTRIBUTE_UNUSED;
252b5132
RH
1699{
1700 if (output_bfd != (bfd *) NULL
1701 && (symbol->flags & BSF_SECTION_SYM) == 0
1702 && reloc_entry->addend == 0)
1703 {
1704 reloc_entry->address += input_section->output_offset;
1705 return bfd_reloc_ok;
1706 }
1707
1708 /* FIXME. */
1709 {
1710 static boolean warned;
1711
1712 if (! warned)
1713 (*_bfd_error_handler)
1714 (_("Linking mips16 objects into %s format is not supported"),
1715 bfd_get_target (input_section->output_section->owner));
1716 warned = true;
1717 }
1718
1719 return bfd_reloc_undefined;
1720}
1721
1722/* Handle a mips16 GP relative reloc. */
1723
1724static bfd_reloc_status_type
1725mips16_gprel_reloc (abfd, reloc_entry, symbol, data, input_section,
1726 output_bfd, error_message)
1727 bfd *abfd;
1728 arelent *reloc_entry;
1729 asymbol *symbol;
1730 PTR data;
1731 asection *input_section;
1732 bfd *output_bfd;
1733 char **error_message;
1734{
1735 boolean relocateable;
1736 bfd_reloc_status_type ret;
1737 bfd_vma gp;
1738 unsigned short extend, insn;
1739 unsigned long final;
1740
1741 /* If we're relocating, and this is an external symbol with no
1742 addend, we don't want to change anything. We will only have an
1743 addend if this is a newly created reloc, not read from an ELF
1744 file. */
1745 if (output_bfd != NULL
1746 && (symbol->flags & BSF_SECTION_SYM) == 0
1747 && reloc_entry->addend == 0)
1748 {
1749 reloc_entry->address += input_section->output_offset;
1750 return bfd_reloc_ok;
1751 }
1752
1753 if (output_bfd != NULL)
1754 relocateable = true;
1755 else
1756 {
1757 relocateable = false;
1758 output_bfd = symbol->section->output_section->owner;
1759 }
1760
1761 ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message,
1762 &gp);
1763 if (ret != bfd_reloc_ok)
1764 return ret;
1765
1766 if (reloc_entry->address > input_section->_cooked_size)
1767 return bfd_reloc_outofrange;
1768
1769 /* Pick up the mips16 extend instruction and the real instruction. */
1770 extend = bfd_get_16 (abfd, (bfd_byte *) data + reloc_entry->address);
1771 insn = bfd_get_16 (abfd, (bfd_byte *) data + reloc_entry->address + 2);
1772
1773 /* Stuff the current addend back as a 32 bit value, do the usual
1774 relocation, and then clean up. */
1775 bfd_put_32 (abfd,
1776 (((extend & 0x1f) << 11)
1777 | (extend & 0x7e0)
1778 | (insn & 0x1f)),
1779 (bfd_byte *) data + reloc_entry->address);
1780
1781 ret = gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1782 relocateable, data, gp);
1783
1784 final = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1785 bfd_put_16 (abfd,
1786 ((extend & 0xf800)
1787 | ((final >> 11) & 0x1f)
1788 | (final & 0x7e0)),
1789 (bfd_byte *) data + reloc_entry->address);
1790 bfd_put_16 (abfd,
1791 ((insn & 0xffe0)
1792 | (final & 0x1f)),
1793 (bfd_byte *) data + reloc_entry->address + 2);
1794
1795 return ret;
1796}
1797
1798/* Return the ISA for a MIPS e_flags value. */
1799
1800static INLINE int
1801elf_mips_isa (flags)
1802 flagword flags;
1803{
1804 switch (flags & EF_MIPS_ARCH)
1805 {
1806 case E_MIPS_ARCH_1:
1807 return 1;
1808 case E_MIPS_ARCH_2:
1809 return 2;
1810 case E_MIPS_ARCH_3:
1811 return 3;
1812 case E_MIPS_ARCH_4:
1813 return 4;
1814 }
1815 return 4;
1816}
1817
1818/* Return the MACH for a MIPS e_flags value. */
1819
1820static INLINE int
1821elf_mips_mach (flags)
1822 flagword flags;
1823{
1824 switch (flags & EF_MIPS_MACH)
1825 {
1826 case E_MIPS_MACH_3900:
1827 return bfd_mach_mips3900;
1828
1829 case E_MIPS_MACH_4010:
1830 return bfd_mach_mips4010;
1831
1832 case E_MIPS_MACH_4100:
1833 return bfd_mach_mips4100;
1834
1835 case E_MIPS_MACH_4111:
1836 return bfd_mach_mips4111;
1837
1838 case E_MIPS_MACH_4650:
1839 return bfd_mach_mips4650;
1840
1841 default:
1842 switch (flags & EF_MIPS_ARCH)
1843 {
1844 default:
1845 case E_MIPS_ARCH_1:
1846 return bfd_mach_mips3000;
1847 break;
1848
1849 case E_MIPS_ARCH_2:
1850 return bfd_mach_mips6000;
1851 break;
1852
1853 case E_MIPS_ARCH_3:
1854 return bfd_mach_mips4000;
1855 break;
1856
1857 case E_MIPS_ARCH_4:
1858 return bfd_mach_mips8000;
1859 break;
1860 }
1861 }
1862
1863 return 0;
1864}
1865
103186c6 1866/* Return printable name for ABI. */
252b5132
RH
1867
1868static INLINE char*
103186c6
MM
1869elf_mips_abi_name (abfd)
1870 bfd *abfd;
252b5132 1871{
103186c6
MM
1872 flagword flags;
1873
1874 if (ABI_N32_P (abfd))
1875 return "N32";
1876 else if (ABI_64_P (abfd))
1877 return "64";
1878
1879 flags = elf_elfheader (abfd)->e_flags;
252b5132
RH
1880 switch (flags & EF_MIPS_ABI)
1881 {
1882 case 0:
1883 return "none";
1884 case E_MIPS_ABI_O32:
1885 return "O32";
1886 case E_MIPS_ABI_O64:
1887 return "O64";
1888 case E_MIPS_ABI_EABI32:
1889 return "EABI32";
1890 case E_MIPS_ABI_EABI64:
1891 return "EABI64";
1892 default:
1893 return "unknown abi";
1894 }
1895}
1896
1897/* A mapping from BFD reloc types to MIPS ELF reloc types. */
1898
1899struct elf_reloc_map {
1900 bfd_reloc_code_real_type bfd_reloc_val;
1901 enum elf_mips_reloc_type elf_reloc_val;
1902};
1903
1904static CONST struct elf_reloc_map mips_reloc_map[] =
1905{
1906 { BFD_RELOC_NONE, R_MIPS_NONE, },
1907 { BFD_RELOC_16, R_MIPS_16 },
1908 { BFD_RELOC_32, R_MIPS_32 },
1909 { BFD_RELOC_64, R_MIPS_64 },
1910 { BFD_RELOC_MIPS_JMP, R_MIPS_26 },
1911 { BFD_RELOC_HI16_S, R_MIPS_HI16 },
1912 { BFD_RELOC_LO16, R_MIPS_LO16 },
1913 { BFD_RELOC_MIPS_GPREL, R_MIPS_GPREL16 },
1914 { BFD_RELOC_MIPS_LITERAL, R_MIPS_LITERAL },
1915 { BFD_RELOC_MIPS_GOT16, R_MIPS_GOT16 },
1916 { BFD_RELOC_16_PCREL, R_MIPS_PC16 },
1917 { BFD_RELOC_MIPS_CALL16, R_MIPS_CALL16 },
1918 { BFD_RELOC_MIPS_GPREL32, R_MIPS_GPREL32 },
1919 { BFD_RELOC_MIPS_GOT_HI16, R_MIPS_GOT_HI16 },
1920 { BFD_RELOC_MIPS_GOT_LO16, R_MIPS_GOT_LO16 },
1921 { BFD_RELOC_MIPS_CALL_HI16, R_MIPS_CALL_HI16 },
3f830999
MM
1922 { BFD_RELOC_MIPS_CALL_LO16, R_MIPS_CALL_LO16 },
1923 { BFD_RELOC_MIPS_SUB, R_MIPS_SUB },
1924 { BFD_RELOC_MIPS_GOT_PAGE, R_MIPS_GOT_PAGE },
1925 { BFD_RELOC_MIPS_GOT_OFST, R_MIPS_GOT_OFST },
1926 { BFD_RELOC_MIPS_GOT_DISP, R_MIPS_GOT_DISP }
252b5132
RH
1927};
1928
1929/* Given a BFD reloc type, return a howto structure. */
1930
1931static reloc_howto_type *
1932bfd_elf32_bfd_reloc_type_lookup (abfd, code)
1933 bfd *abfd;
1934 bfd_reloc_code_real_type code;
1935{
1936 unsigned int i;
1937
1938 for (i = 0; i < sizeof (mips_reloc_map) / sizeof (struct elf_reloc_map); i++)
1939 {
1940 if (mips_reloc_map[i].bfd_reloc_val == code)
1941 return &elf_mips_howto_table[(int) mips_reloc_map[i].elf_reloc_val];
1942 }
1943
1944 switch (code)
1945 {
1946 default:
1947 bfd_set_error (bfd_error_bad_value);
1948 return NULL;
1949
1950 case BFD_RELOC_CTOR:
1951 /* We need to handle BFD_RELOC_CTOR specially.
1952 Select the right relocation (R_MIPS_32 or R_MIPS_64) based on the
1953 size of addresses on this architecture. */
1954 if (bfd_arch_bits_per_address (abfd) == 32)
1955 return &elf_mips_howto_table[(int) R_MIPS_32];
1956 else
1957 return &elf_mips_ctor64_howto;
1958
1959 case BFD_RELOC_MIPS16_JMP:
1960 return &elf_mips16_jump_howto;
1961 case BFD_RELOC_MIPS16_GPREL:
1962 return &elf_mips16_gprel_howto;
1963 case BFD_RELOC_VTABLE_INHERIT:
1964 return &elf_mips_gnu_vtinherit_howto;
1965 case BFD_RELOC_VTABLE_ENTRY:
1966 return &elf_mips_gnu_vtentry_howto;
bb2d6cd7
GK
1967 case BFD_RELOC_PCREL_HI16_S:
1968 return &elf_mips_gnu_rel_hi16;
1969 case BFD_RELOC_PCREL_LO16:
1970 return &elf_mips_gnu_rel_lo16;
1971 case BFD_RELOC_16_PCREL_S2:
1972 return &elf_mips_gnu_rel16_s2;
1973 case BFD_RELOC_64_PCREL:
1974 return &elf_mips_gnu_pcrel64;
1975 case BFD_RELOC_32_PCREL:
1976 return &elf_mips_gnu_pcrel32;
252b5132
RH
1977 }
1978}
1979
3f830999 1980/* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */
252b5132 1981
c9b3cbf3
RH
1982static reloc_howto_type *
1983mips_rtype_to_howto (r_type)
1984 unsigned int r_type;
252b5132 1985{
252b5132
RH
1986 switch (r_type)
1987 {
1988 case R_MIPS16_26:
c9b3cbf3 1989 return &elf_mips16_jump_howto;
252b5132
RH
1990 break;
1991 case R_MIPS16_GPREL:
c9b3cbf3 1992 return &elf_mips16_gprel_howto;
252b5132
RH
1993 break;
1994 case R_MIPS_GNU_VTINHERIT:
c9b3cbf3 1995 return &elf_mips_gnu_vtinherit_howto;
252b5132
RH
1996 break;
1997 case R_MIPS_GNU_VTENTRY:
c9b3cbf3 1998 return &elf_mips_gnu_vtentry_howto;
252b5132 1999 break;
bb2d6cd7
GK
2000 case R_MIPS_GNU_REL_HI16:
2001 return &elf_mips_gnu_rel_hi16;
2002 break;
2003 case R_MIPS_GNU_REL_LO16:
2004 return &elf_mips_gnu_rel_lo16;
2005 break;
2006 case R_MIPS_GNU_REL16_S2:
2007 return &elf_mips_gnu_rel16_s2;
2008 break;
2009 case R_MIPS_PC64:
2010 return &elf_mips_gnu_pcrel64;
2011 break;
2012 case R_MIPS_PC32:
2013 return &elf_mips_gnu_pcrel32;
2014 break;
252b5132
RH
2015
2016 default:
2017 BFD_ASSERT (r_type < (unsigned int) R_MIPS_max);
c9b3cbf3 2018 return &elf_mips_howto_table[r_type];
252b5132
RH
2019 break;
2020 }
c9b3cbf3
RH
2021}
2022
2023/* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */
2024
2025static void
2026mips_info_to_howto_rel (abfd, cache_ptr, dst)
2027 bfd *abfd;
2028 arelent *cache_ptr;
2029 Elf32_Internal_Rel *dst;
2030{
2031 unsigned int r_type;
2032
2033 r_type = ELF32_R_TYPE (dst->r_info);
2034 cache_ptr->howto = mips_rtype_to_howto (r_type);
252b5132
RH
2035
2036 /* The addend for a GPREL16 or LITERAL relocation comes from the GP
2037 value for the object file. We get the addend now, rather than
2038 when we do the relocation, because the symbol manipulations done
2039 by the linker may cause us to lose track of the input BFD. */
2040 if (((*cache_ptr->sym_ptr_ptr)->flags & BSF_SECTION_SYM) != 0
2041 && (r_type == (unsigned int) R_MIPS_GPREL16
2042 || r_type == (unsigned int) R_MIPS_LITERAL))
2043 cache_ptr->addend = elf_gp (abfd);
2044}
3f830999
MM
2045
2046/* Given a MIPS Elf32_Internal_Rela, fill in an arelent structure. */
2047
2048static void
2049mips_info_to_howto_rela (abfd, cache_ptr, dst)
2050 bfd *abfd;
2051 arelent *cache_ptr;
2052 Elf32_Internal_Rela *dst;
2053{
2054 /* Since an Elf32_Internal_Rel is an initial prefix of an
2055 Elf32_Internal_Rela, we can just use mips_info_to_howto_rel
2056 above. */
2057 mips_info_to_howto_rel (abfd, cache_ptr, (Elf32_Internal_Rel *) dst);
2058
2059 /* If we ever need to do any extra processing with dst->r_addend
2060 (the field omitted in an Elf32_Internal_Rel) we can do it here. */
2061}
252b5132
RH
2062\f
2063/* A .reginfo section holds a single Elf32_RegInfo structure. These
2064 routines swap this structure in and out. They are used outside of
2065 BFD, so they are globally visible. */
2066
2067void
2068bfd_mips_elf32_swap_reginfo_in (abfd, ex, in)
2069 bfd *abfd;
2070 const Elf32_External_RegInfo *ex;
2071 Elf32_RegInfo *in;
2072{
2073 in->ri_gprmask = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gprmask);
2074 in->ri_cprmask[0] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[0]);
2075 in->ri_cprmask[1] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[1]);
2076 in->ri_cprmask[2] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[2]);
2077 in->ri_cprmask[3] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[3]);
2078 in->ri_gp_value = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gp_value);
2079}
2080
2081void
2082bfd_mips_elf32_swap_reginfo_out (abfd, in, ex)
2083 bfd *abfd;
2084 const Elf32_RegInfo *in;
2085 Elf32_External_RegInfo *ex;
2086{
2087 bfd_h_put_32 (abfd, (bfd_vma) in->ri_gprmask,
2088 (bfd_byte *) ex->ri_gprmask);
2089 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[0],
2090 (bfd_byte *) ex->ri_cprmask[0]);
2091 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[1],
2092 (bfd_byte *) ex->ri_cprmask[1]);
2093 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[2],
2094 (bfd_byte *) ex->ri_cprmask[2]);
2095 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[3],
2096 (bfd_byte *) ex->ri_cprmask[3]);
2097 bfd_h_put_32 (abfd, (bfd_vma) in->ri_gp_value,
2098 (bfd_byte *) ex->ri_gp_value);
2099}
2100
2101/* In the 64 bit ABI, the .MIPS.options section holds register
2102 information in an Elf64_Reginfo structure. These routines swap
2103 them in and out. They are globally visible because they are used
2104 outside of BFD. These routines are here so that gas can call them
2105 without worrying about whether the 64 bit ABI has been included. */
2106
2107void
2108bfd_mips_elf64_swap_reginfo_in (abfd, ex, in)
2109 bfd *abfd;
2110 const Elf64_External_RegInfo *ex;
2111 Elf64_Internal_RegInfo *in;
2112{
2113 in->ri_gprmask = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gprmask);
2114 in->ri_pad = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_pad);
2115 in->ri_cprmask[0] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[0]);
2116 in->ri_cprmask[1] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[1]);
2117 in->ri_cprmask[2] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[2]);
2118 in->ri_cprmask[3] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[3]);
2119 in->ri_gp_value = bfd_h_get_64 (abfd, (bfd_byte *) ex->ri_gp_value);
2120}
2121
2122void
2123bfd_mips_elf64_swap_reginfo_out (abfd, in, ex)
2124 bfd *abfd;
2125 const Elf64_Internal_RegInfo *in;
2126 Elf64_External_RegInfo *ex;
2127{
2128 bfd_h_put_32 (abfd, (bfd_vma) in->ri_gprmask,
2129 (bfd_byte *) ex->ri_gprmask);
2130 bfd_h_put_32 (abfd, (bfd_vma) in->ri_pad,
2131 (bfd_byte *) ex->ri_pad);
2132 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[0],
2133 (bfd_byte *) ex->ri_cprmask[0]);
2134 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[1],
2135 (bfd_byte *) ex->ri_cprmask[1]);
2136 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[2],
2137 (bfd_byte *) ex->ri_cprmask[2]);
2138 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[3],
2139 (bfd_byte *) ex->ri_cprmask[3]);
2140 bfd_h_put_64 (abfd, (bfd_vma) in->ri_gp_value,
2141 (bfd_byte *) ex->ri_gp_value);
2142}
2143
2144/* Swap an entry in a .gptab section. Note that these routines rely
2145 on the equivalence of the two elements of the union. */
2146
2147static void
2148bfd_mips_elf32_swap_gptab_in (abfd, ex, in)
2149 bfd *abfd;
2150 const Elf32_External_gptab *ex;
2151 Elf32_gptab *in;
2152{
2153 in->gt_entry.gt_g_value = bfd_h_get_32 (abfd, ex->gt_entry.gt_g_value);
2154 in->gt_entry.gt_bytes = bfd_h_get_32 (abfd, ex->gt_entry.gt_bytes);
2155}
2156
2157static void
2158bfd_mips_elf32_swap_gptab_out (abfd, in, ex)
2159 bfd *abfd;
2160 const Elf32_gptab *in;
2161 Elf32_External_gptab *ex;
2162{
2163 bfd_h_put_32 (abfd, (bfd_vma) in->gt_entry.gt_g_value,
2164 ex->gt_entry.gt_g_value);
2165 bfd_h_put_32 (abfd, (bfd_vma) in->gt_entry.gt_bytes,
2166 ex->gt_entry.gt_bytes);
2167}
2168
2169static void
2170bfd_elf32_swap_compact_rel_out (abfd, in, ex)
2171 bfd *abfd;
2172 const Elf32_compact_rel *in;
2173 Elf32_External_compact_rel *ex;
2174{
2175 bfd_h_put_32 (abfd, (bfd_vma) in->id1, ex->id1);
2176 bfd_h_put_32 (abfd, (bfd_vma) in->num, ex->num);
2177 bfd_h_put_32 (abfd, (bfd_vma) in->id2, ex->id2);
2178 bfd_h_put_32 (abfd, (bfd_vma) in->offset, ex->offset);
2179 bfd_h_put_32 (abfd, (bfd_vma) in->reserved0, ex->reserved0);
2180 bfd_h_put_32 (abfd, (bfd_vma) in->reserved1, ex->reserved1);
2181}
2182
2183static void
2184bfd_elf32_swap_crinfo_out (abfd, in, ex)
2185 bfd *abfd;
2186 const Elf32_crinfo *in;
2187 Elf32_External_crinfo *ex;
2188{
2189 unsigned long l;
2190
2191 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2192 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2193 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2194 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2195 bfd_h_put_32 (abfd, (bfd_vma) l, ex->info);
2196 bfd_h_put_32 (abfd, (bfd_vma) in->konst, ex->konst);
2197 bfd_h_put_32 (abfd, (bfd_vma) in->vaddr, ex->vaddr);
2198}
2199
2200/* Swap in an options header. */
2201
2202void
2203bfd_mips_elf_swap_options_in (abfd, ex, in)
2204 bfd *abfd;
2205 const Elf_External_Options *ex;
2206 Elf_Internal_Options *in;
2207{
2208 in->kind = bfd_h_get_8 (abfd, ex->kind);
2209 in->size = bfd_h_get_8 (abfd, ex->size);
2210 in->section = bfd_h_get_16 (abfd, ex->section);
2211 in->info = bfd_h_get_32 (abfd, ex->info);
2212}
2213
2214/* Swap out an options header. */
2215
2216void
2217bfd_mips_elf_swap_options_out (abfd, in, ex)
2218 bfd *abfd;
2219 const Elf_Internal_Options *in;
2220 Elf_External_Options *ex;
2221{
2222 bfd_h_put_8 (abfd, in->kind, ex->kind);
2223 bfd_h_put_8 (abfd, in->size, ex->size);
2224 bfd_h_put_16 (abfd, in->section, ex->section);
2225 bfd_h_put_32 (abfd, in->info, ex->info);
2226}
86033394 2227#if 0
c6142e5d
MM
2228/* Swap in an MSYM entry. */
2229
2230static void
2231bfd_mips_elf_swap_msym_in (abfd, ex, in)
2232 bfd *abfd;
2233 const Elf32_External_Msym *ex;
2234 Elf32_Internal_Msym *in;
2235{
2236 in->ms_hash_value = bfd_h_get_32 (abfd, ex->ms_hash_value);
2237 in->ms_info = bfd_h_get_32 (abfd, ex->ms_info);
2238}
86033394 2239#endif
c6142e5d
MM
2240/* Swap out an MSYM entry. */
2241
2242static void
2243bfd_mips_elf_swap_msym_out (abfd, in, ex)
2244 bfd *abfd;
2245 const Elf32_Internal_Msym *in;
2246 Elf32_External_Msym *ex;
2247{
2248 bfd_h_put_32 (abfd, in->ms_hash_value, ex->ms_hash_value);
2249 bfd_h_put_32 (abfd, in->ms_info, ex->ms_info);
2250}
2251
252b5132
RH
2252\f
2253/* Determine whether a symbol is global for the purposes of splitting
2254 the symbol table into global symbols and local symbols. At least
2255 on Irix 5, this split must be between section symbols and all other
2256 symbols. On most ELF targets the split is between static symbols
2257 and externally visible symbols. */
2258
2259/*ARGSUSED*/
2260static boolean
2261mips_elf_sym_is_global (abfd, sym)
5f771d47 2262 bfd *abfd ATTRIBUTE_UNUSED;
252b5132
RH
2263 asymbol *sym;
2264{
2265 return (sym->flags & BSF_SECTION_SYM) == 0 ? true : false;
2266}
2267\f
2268/* Set the right machine number for a MIPS ELF file. This is used for
2269 both the 32-bit and the 64-bit ABI. */
2270
2271boolean
2272_bfd_mips_elf_object_p (abfd)
2273 bfd *abfd;
2274{
103186c6 2275 /* Irix 5 and 6 is broken. Object file symbol tables are not always
252b5132
RH
2276 sorted correctly such that local symbols precede global symbols,
2277 and the sh_info field in the symbol table is not always right. */
2278 elf_bad_symtab (abfd) = true;
2279
103186c6
MM
2280 bfd_default_set_arch_mach (abfd, bfd_arch_mips,
2281 elf_mips_mach (elf_elfheader (abfd)->e_flags));
2282 return true;
252b5132
RH
2283}
2284
2285/* The final processing done just before writing out a MIPS ELF object
2286 file. This gets the MIPS architecture right based on the machine
2287 number. This is used by both the 32-bit and the 64-bit ABI. */
2288
2289/*ARGSUSED*/
2290void
2291_bfd_mips_elf_final_write_processing (abfd, linker)
2292 bfd *abfd;
5f771d47 2293 boolean linker ATTRIBUTE_UNUSED;
252b5132
RH
2294{
2295 unsigned long val;
2296 unsigned int i;
2297 Elf_Internal_Shdr **hdrpp;
2298 const char *name;
2299 asection *sec;
2300
2301 switch (bfd_get_mach (abfd))
2302 {
2303 default:
2304 case bfd_mach_mips3000:
2305 val = E_MIPS_ARCH_1;
2306 break;
2307
2308 case bfd_mach_mips3900:
2309 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
2310 break;
2311
2312 case bfd_mach_mips6000:
2313 val = E_MIPS_ARCH_2;
2314 break;
2315
2316 case bfd_mach_mips4000:
2317 case bfd_mach_mips4300:
2318 val = E_MIPS_ARCH_3;
2319 break;
2320
2321 case bfd_mach_mips4010:
2322 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
2323 break;
2324
2325 case bfd_mach_mips4100:
2326 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
2327 break;
2328
2329 case bfd_mach_mips4111:
2330 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
2331 break;
2332
2333 case bfd_mach_mips4650:
2334 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
2335 break;
2336
2337 case bfd_mach_mips8000:
2338 val = E_MIPS_ARCH_4;
2339 break;
2340 }
2341
2342 elf_elfheader (abfd)->e_flags &= ~ (EF_MIPS_ARCH | EF_MIPS_MACH);
2343 elf_elfheader (abfd)->e_flags |= val;
2344
2345 /* Set the sh_info field for .gptab sections and other appropriate
2346 info for each special section. */
2347 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
2348 i < elf_elfheader (abfd)->e_shnum;
2349 i++, hdrpp++)
2350 {
2351 switch ((*hdrpp)->sh_type)
2352 {
c6142e5d 2353 case SHT_MIPS_MSYM:
252b5132
RH
2354 case SHT_MIPS_LIBLIST:
2355 sec = bfd_get_section_by_name (abfd, ".dynstr");
2356 if (sec != NULL)
2357 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2358 break;
2359
2360 case SHT_MIPS_GPTAB:
2361 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2362 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2363 BFD_ASSERT (name != NULL
2364 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
2365 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
2366 BFD_ASSERT (sec != NULL);
2367 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
2368 break;
2369
2370 case SHT_MIPS_CONTENT:
2371 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2372 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2373 BFD_ASSERT (name != NULL
2374 && strncmp (name, ".MIPS.content",
2375 sizeof ".MIPS.content" - 1) == 0);
2376 sec = bfd_get_section_by_name (abfd,
2377 name + sizeof ".MIPS.content" - 1);
2378 BFD_ASSERT (sec != NULL);
3f830999 2379 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
252b5132
RH
2380 break;
2381
2382 case SHT_MIPS_SYMBOL_LIB:
2383 sec = bfd_get_section_by_name (abfd, ".dynsym");
2384 if (sec != NULL)
2385 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2386 sec = bfd_get_section_by_name (abfd, ".liblist");
2387 if (sec != NULL)
2388 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
2389 break;
2390
2391 case SHT_MIPS_EVENTS:
2392 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2393 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2394 BFD_ASSERT (name != NULL);
2395 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
2396 sec = bfd_get_section_by_name (abfd,
2397 name + sizeof ".MIPS.events" - 1);
2398 else
2399 {
2400 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
2401 sizeof ".MIPS.post_rel" - 1) == 0);
2402 sec = bfd_get_section_by_name (abfd,
2403 (name
2404 + sizeof ".MIPS.post_rel" - 1));
2405 }
2406 BFD_ASSERT (sec != NULL);
2407 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2408 break;
2409
2410 }
2411 }
2412}
2413\f
2414/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
2415
2416boolean
2417_bfd_mips_elf_set_private_flags (abfd, flags)
2418 bfd *abfd;
2419 flagword flags;
2420{
2421 BFD_ASSERT (!elf_flags_init (abfd)
2422 || elf_elfheader (abfd)->e_flags == flags);
2423
2424 elf_elfheader (abfd)->e_flags = flags;
2425 elf_flags_init (abfd) = true;
2426 return true;
2427}
2428
2429/* Copy backend specific data from one object module to another */
2430
2431boolean
2432_bfd_mips_elf_copy_private_bfd_data (ibfd, obfd)
2433 bfd *ibfd;
2434 bfd *obfd;
2435{
2436 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2437 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2438 return true;
2439
2440 BFD_ASSERT (!elf_flags_init (obfd)
2441 || (elf_elfheader (obfd)->e_flags
2442 == elf_elfheader (ibfd)->e_flags));
2443
2444 elf_gp (obfd) = elf_gp (ibfd);
2445 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
2446 elf_flags_init (obfd) = true;
2447 return true;
2448}
2449
2450/* Merge backend specific data from an object file to the output
2451 object file when linking. */
2452
2453boolean
2454_bfd_mips_elf_merge_private_bfd_data (ibfd, obfd)
2455 bfd *ibfd;
2456 bfd *obfd;
2457{
2458 flagword old_flags;
2459 flagword new_flags;
2460 boolean ok;
2461
2462 /* Check if we have the same endianess */
1fe494a5
NC
2463 if (_bfd_generic_verify_endian_match (ibfd, obfd) == false)
2464 return false;
252b5132
RH
2465
2466 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2467 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2468 return true;
2469
2470 new_flags = elf_elfheader (ibfd)->e_flags;
2471 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
2472 old_flags = elf_elfheader (obfd)->e_flags;
2473
2474 if (! elf_flags_init (obfd))
2475 {
2476 elf_flags_init (obfd) = true;
2477 elf_elfheader (obfd)->e_flags = new_flags;
103186c6
MM
2478 elf_elfheader (obfd)->e_ident[EI_CLASS]
2479 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
252b5132
RH
2480
2481 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2482 && bfd_get_arch_info (obfd)->the_default)
2483 {
2484 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
2485 bfd_get_mach (ibfd)))
2486 return false;
2487 }
2488
2489 return true;
2490 }
2491
2492 /* Check flag compatibility. */
2493
2494 new_flags &= ~EF_MIPS_NOREORDER;
2495 old_flags &= ~EF_MIPS_NOREORDER;
2496
2497 if (new_flags == old_flags)
2498 return true;
2499
2500 ok = true;
2501
2502 if ((new_flags & EF_MIPS_PIC) != (old_flags & EF_MIPS_PIC))
2503 {
2504 new_flags &= ~EF_MIPS_PIC;
2505 old_flags &= ~EF_MIPS_PIC;
2506 (*_bfd_error_handler)
2507 (_("%s: linking PIC files with non-PIC files"),
2508 bfd_get_filename (ibfd));
2509 ok = false;
2510 }
2511
2512 if ((new_flags & EF_MIPS_CPIC) != (old_flags & EF_MIPS_CPIC))
2513 {
2514 new_flags &= ~EF_MIPS_CPIC;
2515 old_flags &= ~EF_MIPS_CPIC;
2516 (*_bfd_error_handler)
2517 (_("%s: linking abicalls files with non-abicalls files"),
2518 bfd_get_filename (ibfd));
2519 ok = false;
2520 }
2521
2522 /* Compare the ISA's. */
2523 if ((new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH))
2524 != (old_flags & (EF_MIPS_ARCH | EF_MIPS_MACH)))
2525 {
2526 int new_mach = new_flags & EF_MIPS_MACH;
2527 int old_mach = old_flags & EF_MIPS_MACH;
2528 int new_isa = elf_mips_isa (new_flags);
2529 int old_isa = elf_mips_isa (old_flags);
2530
2531 /* If either has no machine specified, just compare the general isa's.
2532 Some combinations of machines are ok, if the isa's match. */
2533 if (! new_mach
2534 || ! old_mach
2535 || new_mach == old_mach
2536 )
2537 {
2538 /* Don't warn about mixing -mips1 and -mips2 code, or mixing -mips3
2539 and -mips4 code. They will normally use the same data sizes and
2540 calling conventions. */
2541
2542 if ((new_isa == 1 || new_isa == 2)
2543 ? (old_isa != 1 && old_isa != 2)
2544 : (old_isa == 1 || old_isa == 2))
2545 {
2546 (*_bfd_error_handler)
2547 (_("%s: ISA mismatch (-mips%d) with previous modules (-mips%d)"),
2548 bfd_get_filename (ibfd), new_isa, old_isa);
2549 ok = false;
2550 }
2551 }
2552
2553 else
2554 {
2555 (*_bfd_error_handler)
2556 (_("%s: ISA mismatch (%d) with previous modules (%d)"),
2557 bfd_get_filename (ibfd),
2558 elf_mips_mach (new_flags),
2559 elf_mips_mach (old_flags));
2560 ok = false;
2561 }
2562
2563 new_flags &= ~ (EF_MIPS_ARCH | EF_MIPS_MACH);
2564 old_flags &= ~ (EF_MIPS_ARCH | EF_MIPS_MACH);
2565 }
2566
103186c6
MM
2567 /* Compare ABI's. The 64-bit ABI does not use EF_MIPS_ABI. But, it
2568 does set EI_CLASS differently from any 32-bit ABI. */
2569 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
2570 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
2571 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
252b5132
RH
2572 {
2573 /* Only error if both are set (to different values). */
103186c6
MM
2574 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
2575 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
2576 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
252b5132
RH
2577 {
2578 (*_bfd_error_handler)
2579 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
2580 bfd_get_filename (ibfd),
103186c6
MM
2581 elf_mips_abi_name (ibfd),
2582 elf_mips_abi_name (obfd));
252b5132
RH
2583 ok = false;
2584 }
2585 new_flags &= ~EF_MIPS_ABI;
2586 old_flags &= ~EF_MIPS_ABI;
2587 }
2588
2589 /* Warn about any other mismatches */
2590 if (new_flags != old_flags)
2591 {
2592 (*_bfd_error_handler)
2593 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
2594 bfd_get_filename (ibfd), (unsigned long) new_flags,
2595 (unsigned long) old_flags);
2596 ok = false;
2597 }
2598
2599 if (! ok)
2600 {
2601 bfd_set_error (bfd_error_bad_value);
2602 return false;
2603 }
2604
2605 return true;
2606}
2607\f
103186c6 2608boolean
252b5132
RH
2609_bfd_mips_elf_print_private_bfd_data (abfd, ptr)
2610 bfd *abfd;
2611 PTR ptr;
2612{
2613 FILE *file = (FILE *) ptr;
2614
2615 BFD_ASSERT (abfd != NULL && ptr != NULL);
2616
2617 /* Print normal ELF private data. */
2618 _bfd_elf_print_private_bfd_data (abfd, ptr);
2619
2620 /* xgettext:c-format */
2621 fprintf (file, _ ("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
2622
2623 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
2624 fprintf (file, _ (" [abi=O32]"));
2625 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
2626 fprintf (file, _ (" [abi=O64]"));
2627 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
2628 fprintf (file, _ (" [abi=EABI32]"));
2629 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
2630 fprintf (file, _ (" [abi=EABI64]"));
2631 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
2632 fprintf (file, _ (" [abi unknown]"));
103186c6 2633 else if (ABI_N32_P (abfd))
7f7e7b68 2634 fprintf (file, _ (" [abi=N32]"));
103186c6
MM
2635 else if (ABI_64_P (abfd))
2636 fprintf (file, _ (" [abi=64]"));
252b5132
RH
2637 else
2638 fprintf (file, _ (" [no abi set]"));
2639
2640 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
2641 fprintf (file, _ (" [mips1]"));
2642 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
2643 fprintf (file, _ (" [mips2]"));
2644 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
2645 fprintf (file, _ (" [mips3]"));
2646 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
2647 fprintf (file, _ (" [mips4]"));
2648 else
2649 fprintf (file, _ (" [unknown ISA]"));
2650
2651 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
2652 fprintf (file, _ (" [32bitmode]"));
2653 else
2654 fprintf (file, _ (" [not 32bitmode]"));
2655
2656 fputc ('\n', file);
2657
2658 return true;
2659}
2660\f
2661/* Handle a MIPS specific section when reading an object file. This
2662 is called when elfcode.h finds a section with an unknown type.
2663 This routine supports both the 32-bit and 64-bit ELF ABI.
2664
2665 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
2666 how to. */
2667
2668boolean
2669_bfd_mips_elf_section_from_shdr (abfd, hdr, name)
2670 bfd *abfd;
2671 Elf_Internal_Shdr *hdr;
103186c6 2672 char *name;
252b5132
RH
2673{
2674 flagword flags = 0;
2675
2676 /* There ought to be a place to keep ELF backend specific flags, but
2677 at the moment there isn't one. We just keep track of the
2678 sections by their name, instead. Fortunately, the ABI gives
2679 suggested names for all the MIPS specific sections, so we will
2680 probably get away with this. */
2681 switch (hdr->sh_type)
2682 {
2683 case SHT_MIPS_LIBLIST:
2684 if (strcmp (name, ".liblist") != 0)
2685 return false;
2686 break;
2687 case SHT_MIPS_MSYM:
c6142e5d 2688 if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (abfd)) != 0)
252b5132
RH
2689 return false;
2690 break;
2691 case SHT_MIPS_CONFLICT:
2692 if (strcmp (name, ".conflict") != 0)
2693 return false;
2694 break;
2695 case SHT_MIPS_GPTAB:
2696 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
2697 return false;
2698 break;
2699 case SHT_MIPS_UCODE:
2700 if (strcmp (name, ".ucode") != 0)
2701 return false;
2702 break;
2703 case SHT_MIPS_DEBUG:
2704 if (strcmp (name, ".mdebug") != 0)
2705 return false;
2706 flags = SEC_DEBUGGING;
2707 break;
2708 case SHT_MIPS_REGINFO:
2709 if (strcmp (name, ".reginfo") != 0
2710 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
2711 return false;
2712 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
2713 break;
2714 case SHT_MIPS_IFACE:
2715 if (strcmp (name, ".MIPS.interfaces") != 0)
2716 return false;
2717 break;
2718 case SHT_MIPS_CONTENT:
2719 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
2720 return false;
2721 break;
2722 case SHT_MIPS_OPTIONS:
303f629d 2723 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
252b5132
RH
2724 return false;
2725 break;
2726 case SHT_MIPS_DWARF:
2727 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
2728 return false;
2729 break;
2730 case SHT_MIPS_SYMBOL_LIB:
2731 if (strcmp (name, ".MIPS.symlib") != 0)
2732 return false;
2733 break;
2734 case SHT_MIPS_EVENTS:
2735 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
2736 && strncmp (name, ".MIPS.post_rel",
2737 sizeof ".MIPS.post_rel" - 1) != 0)
2738 return false;
2739 break;
2740 default:
2741 return false;
2742 }
2743
2744 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
2745 return false;
2746
2747 if (flags)
2748 {
2749 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
2750 (bfd_get_section_flags (abfd,
2751 hdr->bfd_section)
2752 | flags)))
2753 return false;
2754 }
2755
252b5132
RH
2756 /* FIXME: We should record sh_info for a .gptab section. */
2757
2758 /* For a .reginfo section, set the gp value in the tdata information
2759 from the contents of this section. We need the gp value while
2760 processing relocs, so we just get it now. The .reginfo section
2761 is not used in the 64-bit MIPS ELF ABI. */
2762 if (hdr->sh_type == SHT_MIPS_REGINFO)
2763 {
2764 Elf32_External_RegInfo ext;
2765 Elf32_RegInfo s;
2766
2767 if (! bfd_get_section_contents (abfd, hdr->bfd_section, (PTR) &ext,
2768 (file_ptr) 0, sizeof ext))
2769 return false;
2770 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
2771 elf_gp (abfd) = s.ri_gp_value;
2772 }
2773
2774 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
2775 set the gp value based on what we find. We may see both
2776 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
2777 they should agree. */
2778 if (hdr->sh_type == SHT_MIPS_OPTIONS)
2779 {
2780 bfd_byte *contents, *l, *lend;
2781
2782 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
2783 if (contents == NULL)
2784 return false;
2785 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
2786 (file_ptr) 0, hdr->sh_size))
2787 {
2788 free (contents);
2789 return false;
2790 }
2791 l = contents;
2792 lend = contents + hdr->sh_size;
2793 while (l + sizeof (Elf_External_Options) <= lend)
2794 {
2795 Elf_Internal_Options intopt;
2796
2797 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
2798 &intopt);
103186c6
MM
2799 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
2800 {
2801 Elf64_Internal_RegInfo intreg;
2802
2803 bfd_mips_elf64_swap_reginfo_in
2804 (abfd,
2805 ((Elf64_External_RegInfo *)
2806 (l + sizeof (Elf_External_Options))),
2807 &intreg);
2808 elf_gp (abfd) = intreg.ri_gp_value;
2809 }
2810 else if (intopt.kind == ODK_REGINFO)
252b5132
RH
2811 {
2812 Elf32_RegInfo intreg;
2813
2814 bfd_mips_elf32_swap_reginfo_in
2815 (abfd,
2816 ((Elf32_External_RegInfo *)
2817 (l + sizeof (Elf_External_Options))),
2818 &intreg);
2819 elf_gp (abfd) = intreg.ri_gp_value;
2820 }
2821 l += intopt.size;
2822 }
2823 free (contents);
2824 }
2825
2826 return true;
2827}
2828
2829/* Set the correct type for a MIPS ELF section. We do this by the
2830 section name, which is a hack, but ought to work. This routine is
2831 used by both the 32-bit and the 64-bit ABI. */
2832
2833boolean
2834_bfd_mips_elf_fake_sections (abfd, hdr, sec)
2835 bfd *abfd;
2836 Elf32_Internal_Shdr *hdr;
2837 asection *sec;
2838{
2839 register const char *name;
2840
2841 name = bfd_get_section_name (abfd, sec);
2842
2843 if (strcmp (name, ".liblist") == 0)
2844 {
2845 hdr->sh_type = SHT_MIPS_LIBLIST;
2846 hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib);
2847 /* The sh_link field is set in final_write_processing. */
2848 }
252b5132
RH
2849 else if (strcmp (name, ".conflict") == 0)
2850 hdr->sh_type = SHT_MIPS_CONFLICT;
2851 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
2852 {
2853 hdr->sh_type = SHT_MIPS_GPTAB;
2854 hdr->sh_entsize = sizeof (Elf32_External_gptab);
2855 /* The sh_info field is set in final_write_processing. */
2856 }
2857 else if (strcmp (name, ".ucode") == 0)
2858 hdr->sh_type = SHT_MIPS_UCODE;
2859 else if (strcmp (name, ".mdebug") == 0)
2860 {
2861 hdr->sh_type = SHT_MIPS_DEBUG;
2862 /* In a shared object on Irix 5.3, the .mdebug section has an
2863 entsize of 0. FIXME: Does this matter? */
2864 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
2865 hdr->sh_entsize = 0;
2866 else
2867 hdr->sh_entsize = 1;
2868 }
2869 else if (strcmp (name, ".reginfo") == 0)
2870 {
2871 hdr->sh_type = SHT_MIPS_REGINFO;
2872 /* In a shared object on Irix 5.3, the .reginfo section has an
2873 entsize of 0x18. FIXME: Does this matter? */
2874 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
2875 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
2876 else
2877 hdr->sh_entsize = 1;
2878 }
2879 else if (SGI_COMPAT (abfd)
2880 && (strcmp (name, ".hash") == 0
2881 || strcmp (name, ".dynamic") == 0
2882 || strcmp (name, ".dynstr") == 0))
2883 {
2884 hdr->sh_entsize = 0;
2885#if 0
2886 /* This isn't how the Irix 6 linker behaves. */
2887 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
2888#endif
2889 }
2890 else if (strcmp (name, ".got") == 0
303f629d 2891 || strcmp (name, MIPS_ELF_SRDATA_SECTION_NAME (abfd)) == 0
252b5132
RH
2892 || strcmp (name, ".sdata") == 0
2893 || strcmp (name, ".sbss") == 0
2894 || strcmp (name, ".lit4") == 0
2895 || strcmp (name, ".lit8") == 0)
2896 hdr->sh_flags |= SHF_MIPS_GPREL;
2897 else if (strcmp (name, ".MIPS.interfaces") == 0)
2898 {
2899 hdr->sh_type = SHT_MIPS_IFACE;
2900 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
2901 }
3f830999 2902 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
252b5132
RH
2903 {
2904 hdr->sh_type = SHT_MIPS_CONTENT;
3f830999 2905 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
252b5132
RH
2906 /* The sh_info field is set in final_write_processing. */
2907 }
303f629d 2908 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
252b5132
RH
2909 {
2910 hdr->sh_type = SHT_MIPS_OPTIONS;
2911 hdr->sh_entsize = 1;
2912 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
2913 }
2914 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
2915 hdr->sh_type = SHT_MIPS_DWARF;
2916 else if (strcmp (name, ".MIPS.symlib") == 0)
2917 {
2918 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
2919 /* The sh_link and sh_info fields are set in
2920 final_write_processing. */
2921 }
2922 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
2923 || strncmp (name, ".MIPS.post_rel",
2924 sizeof ".MIPS.post_rel" - 1) == 0)
2925 {
2926 hdr->sh_type = SHT_MIPS_EVENTS;
2927 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
2928 /* The sh_link field is set in final_write_processing. */
2929 }
c6142e5d
MM
2930 else if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (abfd)) == 0)
2931 {
2932 hdr->sh_type = SHT_MIPS_MSYM;
2933 hdr->sh_flags |= SHF_ALLOC;
2934 hdr->sh_entsize = 8;
2935 }
252b5132 2936
23bc299b
MM
2937 /* The generic elf_fake_sections will set up REL_HDR using the
2938 default kind of relocations. But, we may actually need both
2939 kinds of relocations, so we set up the second header here. */
2940 if ((sec->flags & SEC_RELOC) != 0)
2941 {
2942 struct bfd_elf_section_data *esd;
2943
2944 esd = elf_section_data (sec);
2945 BFD_ASSERT (esd->rel_hdr2 == NULL);
2946 esd->rel_hdr2
2947 = (Elf_Internal_Shdr *) bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
2948 if (!esd->rel_hdr2)
2949 return false;
2950 _bfd_elf_init_reloc_shdr (abfd, esd->rel_hdr2, sec,
2951 !elf_section_data (sec)->use_rela_p);
2952 }
2953
252b5132
RH
2954 return true;
2955}
2956
2957/* Given a BFD section, try to locate the corresponding ELF section
2958 index. This is used by both the 32-bit and the 64-bit ABI.
2959 Actually, it's not clear to me that the 64-bit ABI supports these,
2960 but for non-PIC objects we will certainly want support for at least
2961 the .scommon section. */
2962
2963boolean
2964_bfd_mips_elf_section_from_bfd_section (abfd, hdr, sec, retval)
5f771d47
ILT
2965 bfd *abfd ATTRIBUTE_UNUSED;
2966 Elf32_Internal_Shdr *hdr ATTRIBUTE_UNUSED;
252b5132
RH
2967 asection *sec;
2968 int *retval;
2969{
2970 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
2971 {
2972 *retval = SHN_MIPS_SCOMMON;
2973 return true;
2974 }
2975 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
2976 {
2977 *retval = SHN_MIPS_ACOMMON;
2978 return true;
2979 }
2980 return false;
2981}
2982
2983/* When are writing out the .options or .MIPS.options section,
2984 remember the bytes we are writing out, so that we can install the
2985 GP value in the section_processing routine. */
2986
2987boolean
2988_bfd_mips_elf_set_section_contents (abfd, section, location, offset, count)
2989 bfd *abfd;
2990 sec_ptr section;
2991 PTR location;
2992 file_ptr offset;
2993 bfd_size_type count;
2994{
303f629d 2995 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
252b5132
RH
2996 {
2997 bfd_byte *c;
2998
2999 if (elf_section_data (section) == NULL)
3000 {
3001 section->used_by_bfd =
3002 (PTR) bfd_zalloc (abfd, sizeof (struct bfd_elf_section_data));
3003 if (elf_section_data (section) == NULL)
3004 return false;
3005 }
3006 c = (bfd_byte *) elf_section_data (section)->tdata;
3007 if (c == NULL)
3008 {
3009 bfd_size_type size;
3010
3011 if (section->_cooked_size != 0)
3012 size = section->_cooked_size;
3013 else
3014 size = section->_raw_size;
3015 c = (bfd_byte *) bfd_zalloc (abfd, size);
3016 if (c == NULL)
3017 return false;
3018 elf_section_data (section)->tdata = (PTR) c;
3019 }
3020
3021 memcpy (c + offset, location, count);
3022 }
3023
3024 return _bfd_elf_set_section_contents (abfd, section, location, offset,
3025 count);
3026}
3027
3028/* Work over a section just before writing it out. This routine is
3029 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
3030 sections that need the SHF_MIPS_GPREL flag by name; there has to be
3031 a better way. */
3032
3033boolean
3034_bfd_mips_elf_section_processing (abfd, hdr)
3035 bfd *abfd;
3036 Elf_Internal_Shdr *hdr;
252b5132 3037{
cc3bfcee
ILT
3038 if (hdr->sh_type == SHT_MIPS_REGINFO
3039 && hdr->sh_size > 0)
252b5132
RH
3040 {
3041 bfd_byte buf[4];
3042
3043 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
3044 BFD_ASSERT (hdr->contents == NULL);
3045
3046 if (bfd_seek (abfd,
3047 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
3048 SEEK_SET) == -1)
3049 return false;
3050 bfd_h_put_32 (abfd, (bfd_vma) elf_gp (abfd), buf);
3051 if (bfd_write (buf, (bfd_size_type) 1, (bfd_size_type) 4, abfd) != 4)
3052 return false;
3053 }
3054
3055 if (hdr->sh_type == SHT_MIPS_OPTIONS
3056 && hdr->bfd_section != NULL
3057 && elf_section_data (hdr->bfd_section) != NULL
3058 && elf_section_data (hdr->bfd_section)->tdata != NULL)
3059 {
3060 bfd_byte *contents, *l, *lend;
3061
3062 /* We stored the section contents in the elf_section_data tdata
3063 field in the set_section_contents routine. We save the
3064 section contents so that we don't have to read them again.
3065 At this point we know that elf_gp is set, so we can look
3066 through the section contents to see if there is an
3067 ODK_REGINFO structure. */
3068
3069 contents = (bfd_byte *) elf_section_data (hdr->bfd_section)->tdata;
3070 l = contents;
3071 lend = contents + hdr->sh_size;
3072 while (l + sizeof (Elf_External_Options) <= lend)
3073 {
3074 Elf_Internal_Options intopt;
3075
3076 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
3077 &intopt);
103186c6
MM
3078 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
3079 {
3080 bfd_byte buf[8];
3081
3082 if (bfd_seek (abfd,
3083 (hdr->sh_offset
3084 + (l - contents)
3085 + sizeof (Elf_External_Options)
3086 + (sizeof (Elf64_External_RegInfo) - 8)),
3087 SEEK_SET) == -1)
3088 return false;
3089 bfd_h_put_64 (abfd, elf_gp (abfd), buf);
3090 if (bfd_write (buf, 1, 8, abfd) != 8)
3091 return false;
3092 }
3093 else if (intopt.kind == ODK_REGINFO)
252b5132
RH
3094 {
3095 bfd_byte buf[4];
3096
3097 if (bfd_seek (abfd,
3098 (hdr->sh_offset
3099 + (l - contents)
3100 + sizeof (Elf_External_Options)
3101 + (sizeof (Elf32_External_RegInfo) - 4)),
3102 SEEK_SET) == -1)
3103 return false;
3104 bfd_h_put_32 (abfd, elf_gp (abfd), buf);
3105 if (bfd_write (buf, 1, 4, abfd) != 4)
3106 return false;
3107 }
3108 l += intopt.size;
3109 }
3110 }
3111
103186c6
MM
3112 if (hdr->bfd_section != NULL)
3113 {
3114 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
3115
3116 if (strcmp (name, ".sdata") == 0
3117 || strcmp (name, ".lit8") == 0
3118 || strcmp (name, ".lit4") == 0)
3119 {
3120 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3121 hdr->sh_type = SHT_PROGBITS;
3122 }
3123 else if (strcmp (name, ".sbss") == 0)
3124 {
3125 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3126 hdr->sh_type = SHT_NOBITS;
3127 }
3128 else if (strcmp (name, MIPS_ELF_SRDATA_SECTION_NAME (abfd)) == 0)
3129 {
3130 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
3131 hdr->sh_type = SHT_PROGBITS;
3132 }
3133 else if (strcmp (name, ".compact_rel") == 0)
3134 {
3135 hdr->sh_flags = 0;
3136 hdr->sh_type = SHT_PROGBITS;
3137 }
3138 else if (strcmp (name, ".rtproc") == 0)
3139 {
3140 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
3141 {
3142 unsigned int adjust;
3143
3144 adjust = hdr->sh_size % hdr->sh_addralign;
3145 if (adjust != 0)
3146 hdr->sh_size += hdr->sh_addralign - adjust;
3147 }
3148 }
3149 }
3150
3151 return true;
252b5132 3152}
103186c6 3153
252b5132
RH
3154\f
3155/* MIPS ELF uses two common sections. One is the usual one, and the
3156 other is for small objects. All the small objects are kept
3157 together, and then referenced via the gp pointer, which yields
3158 faster assembler code. This is what we use for the small common
3159 section. This approach is copied from ecoff.c. */
3160static asection mips_elf_scom_section;
3161static asymbol mips_elf_scom_symbol;
3162static asymbol *mips_elf_scom_symbol_ptr;
3163
3164/* MIPS ELF also uses an acommon section, which represents an
3165 allocated common symbol which may be overridden by a
3166 definition in a shared library. */
3167static asection mips_elf_acom_section;
3168static asymbol mips_elf_acom_symbol;
3169static asymbol *mips_elf_acom_symbol_ptr;
3170
3171/* The Irix 5 support uses two virtual sections, which represent
3172 text/data symbols defined in dynamic objects. */
3173static asection mips_elf_text_section;
3174static asection *mips_elf_text_section_ptr;
3175static asymbol mips_elf_text_symbol;
3176static asymbol *mips_elf_text_symbol_ptr;
3177
3178static asection mips_elf_data_section;
3179static asection *mips_elf_data_section_ptr;
3180static asymbol mips_elf_data_symbol;
3181static asymbol *mips_elf_data_symbol_ptr;
3182
3183/* Handle the special MIPS section numbers that a symbol may use.
3184 This is used for both the 32-bit and the 64-bit ABI. */
3185
3186void
3187_bfd_mips_elf_symbol_processing (abfd, asym)
3188 bfd *abfd;
3189 asymbol *asym;
3190{
3191 elf_symbol_type *elfsym;
3192
3193 elfsym = (elf_symbol_type *) asym;
3194 switch (elfsym->internal_elf_sym.st_shndx)
3195 {
3196 case SHN_MIPS_ACOMMON:
3197 /* This section is used in a dynamically linked executable file.
3198 It is an allocated common section. The dynamic linker can
3199 either resolve these symbols to something in a shared
3200 library, or it can just leave them here. For our purposes,
3201 we can consider these symbols to be in a new section. */
3202 if (mips_elf_acom_section.name == NULL)
3203 {
3204 /* Initialize the acommon section. */
3205 mips_elf_acom_section.name = ".acommon";
3206 mips_elf_acom_section.flags = SEC_ALLOC;
3207 mips_elf_acom_section.output_section = &mips_elf_acom_section;
3208 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
3209 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
3210 mips_elf_acom_symbol.name = ".acommon";
3211 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
3212 mips_elf_acom_symbol.section = &mips_elf_acom_section;
3213 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
3214 }
3215 asym->section = &mips_elf_acom_section;
3216 break;
3217
3218 case SHN_COMMON:
3219 /* Common symbols less than the GP size are automatically
7403cb63
MM
3220 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
3221 if (asym->value > elf_gp_size (abfd)
3222 || IRIX_COMPAT (abfd) == ict_irix6)
252b5132
RH
3223 break;
3224 /* Fall through. */
3225 case SHN_MIPS_SCOMMON:
3226 if (mips_elf_scom_section.name == NULL)
3227 {
3228 /* Initialize the small common section. */
3229 mips_elf_scom_section.name = ".scommon";
3230 mips_elf_scom_section.flags = SEC_IS_COMMON;
3231 mips_elf_scom_section.output_section = &mips_elf_scom_section;
3232 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
3233 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
3234 mips_elf_scom_symbol.name = ".scommon";
3235 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
3236 mips_elf_scom_symbol.section = &mips_elf_scom_section;
3237 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
3238 }
3239 asym->section = &mips_elf_scom_section;
3240 asym->value = elfsym->internal_elf_sym.st_size;
3241 break;
3242
3243 case SHN_MIPS_SUNDEFINED:
3244 asym->section = bfd_und_section_ptr;
3245 break;
3246
3247#if 0 /* for SGI_COMPAT */
3248 case SHN_MIPS_TEXT:
3249 asym->section = mips_elf_text_section_ptr;
3250 break;
3251
3252 case SHN_MIPS_DATA:
3253 asym->section = mips_elf_data_section_ptr;
3254 break;
3255#endif
3256 }
3257}
3258\f
3259/* When creating an Irix 5 executable, we need REGINFO and RTPROC
3260 segments. */
3261
103186c6
MM
3262int
3263_bfd_mips_elf_additional_program_headers (abfd)
252b5132
RH
3264 bfd *abfd;
3265{
3266 asection *s;
303f629d 3267 int ret = 0;
252b5132 3268
303f629d
MM
3269 if (!SGI_COMPAT (abfd))
3270 return 0;
252b5132 3271
303f629d 3272 /* See if we need a PT_MIPS_REGINFO segment. */
252b5132 3273 s = bfd_get_section_by_name (abfd, ".reginfo");
303f629d
MM
3274 if (s && (s->flags & SEC_LOAD))
3275 ++ret;
252b5132 3276
303f629d
MM
3277 /* See if we need a PT_MIPS_OPTIONS segment. */
3278 if (IRIX_COMPAT (abfd) == ict_irix6
3279 && bfd_get_section_by_name (abfd,
3280 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
3281 ++ret;
3282
3283 /* See if we need a PT_MIPS_RTPROC segment. */
3284 if (IRIX_COMPAT (abfd) == ict_irix5
3285 && bfd_get_section_by_name (abfd, ".dynamic")
3286 && bfd_get_section_by_name (abfd, ".mdebug"))
3287 ++ret;
252b5132
RH
3288
3289 return ret;
3290}
3291
3292/* Modify the segment map for an Irix 5 executable. */
3293
103186c6
MM
3294boolean
3295_bfd_mips_elf_modify_segment_map (abfd)
252b5132
RH
3296 bfd *abfd;
3297{
3298 asection *s;
3299 struct elf_segment_map *m, **pm;
3300
3301 if (! SGI_COMPAT (abfd))
3302 return true;
3303
3304 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
3305 segment. */
3306 s = bfd_get_section_by_name (abfd, ".reginfo");
3307 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3308 {
3309 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3310 if (m->p_type == PT_MIPS_REGINFO)
3311 break;
3312 if (m == NULL)
3313 {
3314 m = (struct elf_segment_map *) bfd_zalloc (abfd, sizeof *m);
3315 if (m == NULL)
3316 return false;
3317
3318 m->p_type = PT_MIPS_REGINFO;
3319 m->count = 1;
3320 m->sections[0] = s;
3321
3322 /* We want to put it after the PHDR and INTERP segments. */
3323 pm = &elf_tdata (abfd)->segment_map;
3324 while (*pm != NULL
3325 && ((*pm)->p_type == PT_PHDR
3326 || (*pm)->p_type == PT_INTERP))
3327 pm = &(*pm)->next;
3328
3329 m->next = *pm;
3330 *pm = m;
3331 }
3332 }
3333
303f629d
MM
3334 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
3335 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
3336 PT_OPTIONS segement immediately following the program header
3337 table. */
3338 if (IRIX_COMPAT (abfd) == ict_irix6)
252b5132 3339 {
303f629d
MM
3340 asection *s;
3341
3342 for (s = abfd->sections; s; s = s->next)
3343 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
252b5132 3344 break;
303f629d
MM
3345
3346 if (s)
252b5132 3347 {
303f629d
MM
3348 struct elf_segment_map *options_segment;
3349
435394bf
MM
3350 /* Usually, there's a program header table. But, sometimes
3351 there's not (like when running the `ld' testsuite). So,
3352 if there's no program header table, we just put the
3353 options segement at the end. */
3354 for (pm = &elf_tdata (abfd)->segment_map;
3355 *pm != NULL;
3356 pm = &(*pm)->next)
3357 if ((*pm)->p_type == PT_PHDR)
303f629d
MM
3358 break;
3359
303f629d
MM
3360 options_segment = bfd_zalloc (abfd,
3361 sizeof (struct elf_segment_map));
435394bf 3362 options_segment->next = *pm;
303f629d
MM
3363 options_segment->p_type = PT_MIPS_OPTIONS;
3364 options_segment->p_flags = PF_R;
3365 options_segment->p_flags_valid = true;
3366 options_segment->count = 1;
3367 options_segment->sections[0] = s;
435394bf 3368 *pm = options_segment;
303f629d
MM
3369 }
3370 }
3371 else
3372 {
3373 /* If there are .dynamic and .mdebug sections, we make a room
3374 for the RTPROC header. FIXME: Rewrite without section names. */
3375 if (bfd_get_section_by_name (abfd, ".interp") == NULL
3376 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
3377 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
3378 {
3379 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3380 if (m->p_type == PT_MIPS_RTPROC)
3381 break;
3382 if (m == NULL)
252b5132 3383 {
303f629d
MM
3384 m = (struct elf_segment_map *) bfd_zalloc (abfd, sizeof *m);
3385 if (m == NULL)
3386 return false;
252b5132 3387
303f629d 3388 m->p_type = PT_MIPS_RTPROC;
252b5132 3389
303f629d
MM
3390 s = bfd_get_section_by_name (abfd, ".rtproc");
3391 if (s == NULL)
3392 {
3393 m->count = 0;
3394 m->p_flags = 0;
3395 m->p_flags_valid = 1;
3396 }
3397 else
3398 {
3399 m->count = 1;
3400 m->sections[0] = s;
3401 }
3402
3403 /* We want to put it after the DYNAMIC segment. */
3404 pm = &elf_tdata (abfd)->segment_map;
3405 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
3406 pm = &(*pm)->next;
3407 if (*pm != NULL)
3408 pm = &(*pm)->next;
3409
3410 m->next = *pm;
3411 *pm = m;
3412 }
252b5132 3413 }
252b5132 3414
303f629d
MM
3415 /* On Irix 5, the PT_DYNAMIC segment includes the .dynamic,
3416 .dynstr, .dynsym, and .hash sections, and everything in
3417 between. */
3418 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
3419 if ((*pm)->p_type == PT_DYNAMIC)
3420 break;
3421 m = *pm;
3422 if (m != NULL
3423 && m->count == 1
3424 && strcmp (m->sections[0]->name, ".dynamic") == 0)
252b5132 3425 {
303f629d
MM
3426 static const char *sec_names[] =
3427 { ".dynamic", ".dynstr", ".dynsym", ".hash" };
3428 bfd_vma low, high;
3429 unsigned int i, c;
3430 struct elf_segment_map *n;
3431
3432 low = 0xffffffff;
3433 high = 0;
3434 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
252b5132 3435 {
303f629d
MM
3436 s = bfd_get_section_by_name (abfd, sec_names[i]);
3437 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3438 {
3439 bfd_size_type sz;
3440
3441 if (low > s->vma)
3442 low = s->vma;
3443 sz = s->_cooked_size;
3444 if (sz == 0)
3445 sz = s->_raw_size;
3446 if (high < s->vma + sz)
3447 high = s->vma + sz;
3448 }
252b5132 3449 }
252b5132 3450
303f629d
MM
3451 c = 0;
3452 for (s = abfd->sections; s != NULL; s = s->next)
3453 if ((s->flags & SEC_LOAD) != 0
3454 && s->vma >= low
3455 && ((s->vma
3456 + (s->_cooked_size != 0 ? s->_cooked_size : s->_raw_size))
3457 <= high))
3458 ++c;
3459
3460 n = ((struct elf_segment_map *)
3461 bfd_zalloc (abfd, sizeof *n + (c - 1) * sizeof (asection *)));
3462 if (n == NULL)
3463 return false;
3464 *n = *m;
3465 n->count = c;
252b5132 3466
303f629d
MM
3467 i = 0;
3468 for (s = abfd->sections; s != NULL; s = s->next)
252b5132 3469 {
303f629d
MM
3470 if ((s->flags & SEC_LOAD) != 0
3471 && s->vma >= low
3472 && ((s->vma
3473 + (s->_cooked_size != 0 ?
3474 s->_cooked_size : s->_raw_size))
3475 <= high))
3476 {
3477 n->sections[i] = s;
3478 ++i;
3479 }
252b5132 3480 }
252b5132 3481
303f629d
MM
3482 *pm = n;
3483 }
252b5132
RH
3484 }
3485
3486 return true;
3487}
3488\f
3489/* The structure of the runtime procedure descriptor created by the
3490 loader for use by the static exception system. */
3491
3492typedef struct runtime_pdr {
3493 bfd_vma adr; /* memory address of start of procedure */
3494 long regmask; /* save register mask */
3495 long regoffset; /* save register offset */
3496 long fregmask; /* save floating point register mask */
3497 long fregoffset; /* save floating point register offset */
3498 long frameoffset; /* frame size */
3499 short framereg; /* frame pointer register */
3500 short pcreg; /* offset or reg of return pc */
3501 long irpss; /* index into the runtime string table */
3502 long reserved;
3503 struct exception_info *exception_info;/* pointer to exception array */
3504} RPDR, *pRPDR;
3505#define cbRPDR sizeof(RPDR)
3506#define rpdNil ((pRPDR) 0)
3507
3508/* Swap RPDR (runtime procedure table entry) for output. */
3509
3510static void ecoff_swap_rpdr_out
3511 PARAMS ((bfd *, const RPDR *, struct rpdr_ext *));
3512
3513static void
3514ecoff_swap_rpdr_out (abfd, in, ex)
3515 bfd *abfd;
3516 const RPDR *in;
3517 struct rpdr_ext *ex;
3518{
3519 /* ecoff_put_off was defined in ecoffswap.h. */
3520 ecoff_put_off (abfd, in->adr, (bfd_byte *) ex->p_adr);
3521 bfd_h_put_32 (abfd, in->regmask, (bfd_byte *) ex->p_regmask);
3522 bfd_h_put_32 (abfd, in->regoffset, (bfd_byte *) ex->p_regoffset);
3523 bfd_h_put_32 (abfd, in->fregmask, (bfd_byte *) ex->p_fregmask);
3524 bfd_h_put_32 (abfd, in->fregoffset, (bfd_byte *) ex->p_fregoffset);
3525 bfd_h_put_32 (abfd, in->frameoffset, (bfd_byte *) ex->p_frameoffset);
3526
3527 bfd_h_put_16 (abfd, in->framereg, (bfd_byte *) ex->p_framereg);
3528 bfd_h_put_16 (abfd, in->pcreg, (bfd_byte *) ex->p_pcreg);
3529
3530 bfd_h_put_32 (abfd, in->irpss, (bfd_byte *) ex->p_irpss);
3531#if 0 /* FIXME */
3532 ecoff_put_off (abfd, in->exception_info, (bfd_byte *) ex->p_exception_info);
3533#endif
3534}
3535\f
3536/* Read ECOFF debugging information from a .mdebug section into a
3537 ecoff_debug_info structure. */
3538
3539boolean
3540_bfd_mips_elf_read_ecoff_info (abfd, section, debug)
3541 bfd *abfd;
3542 asection *section;
3543 struct ecoff_debug_info *debug;
3544{
3545 HDRR *symhdr;
3546 const struct ecoff_debug_swap *swap;
3547 char *ext_hdr = NULL;
3548
3549 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
3550 memset (debug, 0, sizeof(*debug));
3551
3552 ext_hdr = (char *) bfd_malloc ((size_t) swap->external_hdr_size);
3553 if (ext_hdr == NULL && swap->external_hdr_size != 0)
3554 goto error_return;
3555
3556 if (bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0,
3557 swap->external_hdr_size)
3558 == false)
3559 goto error_return;
3560
3561 symhdr = &debug->symbolic_header;
3562 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
3563
3564 /* The symbolic header contains absolute file offsets and sizes to
3565 read. */
3566#define READ(ptr, offset, count, size, type) \
3567 if (symhdr->count == 0) \
3568 debug->ptr = NULL; \
3569 else \
3570 { \
3571 debug->ptr = (type) bfd_malloc ((size_t) (size * symhdr->count)); \
3572 if (debug->ptr == NULL) \
3573 goto error_return; \
3574 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
3575 || (bfd_read (debug->ptr, size, symhdr->count, \
3576 abfd) != size * symhdr->count)) \
3577 goto error_return; \
3578 }
3579
3580 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
3581 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR);
3582 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR);
3583 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR);
3584 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR);
3585 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
3586 union aux_ext *);
3587 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
3588 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
3589 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR);
3590 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR);
3591 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR);
3592#undef READ
3593
3594 debug->fdr = NULL;
3595 debug->adjust = NULL;
3596
3597 return true;
3598
3599 error_return:
3600 if (ext_hdr != NULL)
3601 free (ext_hdr);
3602 if (debug->line != NULL)
3603 free (debug->line);
3604 if (debug->external_dnr != NULL)
3605 free (debug->external_dnr);
3606 if (debug->external_pdr != NULL)
3607 free (debug->external_pdr);
3608 if (debug->external_sym != NULL)
3609 free (debug->external_sym);
3610 if (debug->external_opt != NULL)
3611 free (debug->external_opt);
3612 if (debug->external_aux != NULL)
3613 free (debug->external_aux);
3614 if (debug->ss != NULL)
3615 free (debug->ss);
3616 if (debug->ssext != NULL)
3617 free (debug->ssext);
3618 if (debug->external_fdr != NULL)
3619 free (debug->external_fdr);
3620 if (debug->external_rfd != NULL)
3621 free (debug->external_rfd);
3622 if (debug->external_ext != NULL)
3623 free (debug->external_ext);
3624 return false;
3625}
3626\f
3627/* MIPS ELF local labels start with '$', not 'L'. */
3628
3629/*ARGSUSED*/
3630static boolean
3631mips_elf_is_local_label_name (abfd, name)
3632 bfd *abfd;
3633 const char *name;
3634{
3635 if (name[0] == '$')
3636 return true;
3637
3638 /* On Irix 6, the labels go back to starting with '.', so we accept
3639 the generic ELF local label syntax as well. */
3640 return _bfd_elf_is_local_label_name (abfd, name);
3641}
3642
3643/* MIPS ELF uses a special find_nearest_line routine in order the
3644 handle the ECOFF debugging information. */
3645
3646struct mips_elf_find_line
3647{
3648 struct ecoff_debug_info d;
3649 struct ecoff_find_line i;
3650};
3651
3652boolean
3653_bfd_mips_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
3654 functionname_ptr, line_ptr)
3655 bfd *abfd;
3656 asection *section;
3657 asymbol **symbols;
3658 bfd_vma offset;
3659 const char **filename_ptr;
3660 const char **functionname_ptr;
3661 unsigned int *line_ptr;
3662{
3663 asection *msec;
3664
3665 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
3666 filename_ptr, functionname_ptr,
3667 line_ptr))
3668 return true;
3669
3670 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
3671 filename_ptr, functionname_ptr,
5e38c3b8
MM
3672 line_ptr,
3673 ABI_64_P (abfd) ? 8 : 0))
252b5132
RH
3674 return true;
3675
3676 msec = bfd_get_section_by_name (abfd, ".mdebug");
3677 if (msec != NULL)
3678 {
3679 flagword origflags;
3680 struct mips_elf_find_line *fi;
3681 const struct ecoff_debug_swap * const swap =
3682 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
3683
3684 /* If we are called during a link, mips_elf_final_link may have
3685 cleared the SEC_HAS_CONTENTS field. We force it back on here
3686 if appropriate (which it normally will be). */
3687 origflags = msec->flags;
3688 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
3689 msec->flags |= SEC_HAS_CONTENTS;
3690
3691 fi = elf_tdata (abfd)->find_line_info;
3692 if (fi == NULL)
3693 {
3694 bfd_size_type external_fdr_size;
3695 char *fraw_src;
3696 char *fraw_end;
3697 struct fdr *fdr_ptr;
3698
3699 fi = ((struct mips_elf_find_line *)
3700 bfd_zalloc (abfd, sizeof (struct mips_elf_find_line)));
3701 if (fi == NULL)
3702 {
3703 msec->flags = origflags;
3704 return false;
3705 }
3706
3707 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
3708 {
3709 msec->flags = origflags;
3710 return false;
3711 }
3712
3713 /* Swap in the FDR information. */
3714 fi->d.fdr = ((struct fdr *)
3715 bfd_alloc (abfd,
3716 (fi->d.symbolic_header.ifdMax *
3717 sizeof (struct fdr))));
3718 if (fi->d.fdr == NULL)
3719 {
3720 msec->flags = origflags;
3721 return false;
3722 }
3723 external_fdr_size = swap->external_fdr_size;
3724 fdr_ptr = fi->d.fdr;
3725 fraw_src = (char *) fi->d.external_fdr;
3726 fraw_end = (fraw_src
3727 + fi->d.symbolic_header.ifdMax * external_fdr_size);
3728 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
3729 (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr);
3730
3731 elf_tdata (abfd)->find_line_info = fi;
3732
3733 /* Note that we don't bother to ever free this information.
3734 find_nearest_line is either called all the time, as in
3735 objdump -l, so the information should be saved, or it is
3736 rarely called, as in ld error messages, so the memory
3737 wasted is unimportant. Still, it would probably be a
3738 good idea for free_cached_info to throw it away. */
3739 }
3740
3741 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
3742 &fi->i, filename_ptr, functionname_ptr,
3743 line_ptr))
3744 {
3745 msec->flags = origflags;
3746 return true;
3747 }
3748
3749 msec->flags = origflags;
3750 }
3751
3752 /* Fall back on the generic ELF find_nearest_line routine. */
3753
3754 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
3755 filename_ptr, functionname_ptr,
3756 line_ptr);
3757}
3758\f
3759 /* The mips16 compiler uses a couple of special sections to handle
3760 floating point arguments.
3761
3762 Section names that look like .mips16.fn.FNNAME contain stubs that
3763 copy floating point arguments from the fp regs to the gp regs and
3764 then jump to FNNAME. If any 32 bit function calls FNNAME, the
3765 call should be redirected to the stub instead. If no 32 bit
3766 function calls FNNAME, the stub should be discarded. We need to
3767 consider any reference to the function, not just a call, because
3768 if the address of the function is taken we will need the stub,
3769 since the address might be passed to a 32 bit function.
3770
3771 Section names that look like .mips16.call.FNNAME contain stubs
3772 that copy floating point arguments from the gp regs to the fp
3773 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
3774 then any 16 bit function that calls FNNAME should be redirected
3775 to the stub instead. If FNNAME is not a 32 bit function, the
3776 stub should be discarded.
3777
3778 .mips16.call.fp.FNNAME sections are similar, but contain stubs
3779 which call FNNAME and then copy the return value from the fp regs
3780 to the gp regs. These stubs store the return value in $18 while
3781 calling FNNAME; any function which might call one of these stubs
3782 must arrange to save $18 around the call. (This case is not
3783 needed for 32 bit functions that call 16 bit functions, because
3784 16 bit functions always return floating point values in both
3785 $f0/$f1 and $2/$3.)
3786
3787 Note that in all cases FNNAME might be defined statically.
3788 Therefore, FNNAME is not used literally. Instead, the relocation
3789 information will indicate which symbol the section is for.
3790
3791 We record any stubs that we find in the symbol table. */
3792
3793#define FN_STUB ".mips16.fn."
3794#define CALL_STUB ".mips16.call."
3795#define CALL_FP_STUB ".mips16.call.fp."
3796
252b5132
RH
3797/* MIPS ELF linker hash table. */
3798
3799struct mips_elf_link_hash_table
3800{
3801 struct elf_link_hash_table root;
3802#if 0
3803 /* We no longer use this. */
3804 /* String section indices for the dynamic section symbols. */
3805 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
3806#endif
3807 /* The number of .rtproc entries. */
3808 bfd_size_type procedure_count;
3809 /* The size of the .compact_rel section (if SGI_COMPAT). */
3810 bfd_size_type compact_rel_size;
3811 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
3812 entry is set to the address of __rld_obj_head as in Irix 5. */
3813 boolean use_rld_obj_head;
3814 /* This is the value of the __rld_map or __rld_obj_head symbol. */
3815 bfd_vma rld_value;
3816 /* This is set if we see any mips16 stub sections. */
3817 boolean mips16_stubs_seen;
3818};
3819
3820/* Look up an entry in a MIPS ELF linker hash table. */
3821
3822#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
3823 ((struct mips_elf_link_hash_entry *) \
3824 elf_link_hash_lookup (&(table)->root, (string), (create), \
3825 (copy), (follow)))
3826
3827/* Traverse a MIPS ELF linker hash table. */
3828
3829#define mips_elf_link_hash_traverse(table, func, info) \
3830 (elf_link_hash_traverse \
3831 (&(table)->root, \
3832 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
3833 (info)))
3834
3835/* Get the MIPS ELF linker hash table from a link_info structure. */
3836
3837#define mips_elf_hash_table(p) \
3838 ((struct mips_elf_link_hash_table *) ((p)->hash))
3839
3840static boolean mips_elf_output_extsym
3841 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
3842
3843/* Create an entry in a MIPS ELF linker hash table. */
3844
3845static struct bfd_hash_entry *
3846mips_elf_link_hash_newfunc (entry, table, string)
3847 struct bfd_hash_entry *entry;
3848 struct bfd_hash_table *table;
3849 const char *string;
3850{
3851 struct mips_elf_link_hash_entry *ret =
3852 (struct mips_elf_link_hash_entry *) entry;
3853
3854 /* Allocate the structure if it has not already been allocated by a
3855 subclass. */
3856 if (ret == (struct mips_elf_link_hash_entry *) NULL)
3857 ret = ((struct mips_elf_link_hash_entry *)
3858 bfd_hash_allocate (table,
3859 sizeof (struct mips_elf_link_hash_entry)));
3860 if (ret == (struct mips_elf_link_hash_entry *) NULL)
3861 return (struct bfd_hash_entry *) ret;
3862
3863 /* Call the allocation method of the superclass. */
3864 ret = ((struct mips_elf_link_hash_entry *)
3865 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3866 table, string));
3867 if (ret != (struct mips_elf_link_hash_entry *) NULL)
3868 {
3869 /* Set local fields. */
3870 memset (&ret->esym, 0, sizeof (EXTR));
3871 /* We use -2 as a marker to indicate that the information has
3872 not been set. -1 means there is no associated ifd. */
3873 ret->esym.ifd = -2;
a3c7651d 3874 ret->possibly_dynamic_relocs = 0;
c6142e5d 3875 ret->min_dyn_reloc_index = 0;
252b5132
RH
3876 ret->fn_stub = NULL;
3877 ret->need_fn_stub = false;
3878 ret->call_stub = NULL;
3879 ret->call_fp_stub = NULL;
3880 }
3881
3882 return (struct bfd_hash_entry *) ret;
3883}
3884
3885/* Create a MIPS ELF linker hash table. */
3886
103186c6
MM
3887struct bfd_link_hash_table *
3888_bfd_mips_elf_link_hash_table_create (abfd)
252b5132
RH
3889 bfd *abfd;
3890{
3891 struct mips_elf_link_hash_table *ret;
3892
3893 ret = ((struct mips_elf_link_hash_table *)
3894 bfd_alloc (abfd, sizeof (struct mips_elf_link_hash_table)));
3895 if (ret == (struct mips_elf_link_hash_table *) NULL)
3896 return NULL;
3897
3898 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
3899 mips_elf_link_hash_newfunc))
3900 {
3901 bfd_release (abfd, ret);
3902 return NULL;
3903 }
3904
3905#if 0
3906 /* We no longer use this. */
3907 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
3908 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
3909#endif
3910 ret->procedure_count = 0;
3911 ret->compact_rel_size = 0;
3912 ret->use_rld_obj_head = false;
3913 ret->rld_value = 0;
3914 ret->mips16_stubs_seen = false;
3915
3916 return &ret->root.root;
3917}
3918
3919/* Hook called by the linker routine which adds symbols from an object
3920 file. We must handle the special MIPS section numbers here. */
3921
3922/*ARGSUSED*/
103186c6
MM
3923boolean
3924_bfd_mips_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
252b5132
RH
3925 bfd *abfd;
3926 struct bfd_link_info *info;
3927 const Elf_Internal_Sym *sym;
3928 const char **namep;
5f771d47 3929 flagword *flagsp ATTRIBUTE_UNUSED;
252b5132
RH
3930 asection **secp;
3931 bfd_vma *valp;
3932{
3933 if (SGI_COMPAT (abfd)
3934 && (abfd->flags & DYNAMIC) != 0
3935 && strcmp (*namep, "_rld_new_interface") == 0)
3936 {
3937 /* Skip Irix 5 rld entry name. */
3938 *namep = NULL;
3939 return true;
3940 }
3941
3942 switch (sym->st_shndx)
3943 {
3944 case SHN_COMMON:
3945 /* Common symbols less than the GP size are automatically
3946 treated as SHN_MIPS_SCOMMON symbols. */
7403cb63
MM
3947 if (sym->st_size > elf_gp_size (abfd)
3948 || IRIX_COMPAT (abfd) == ict_irix6)
252b5132
RH
3949 break;
3950 /* Fall through. */
3951 case SHN_MIPS_SCOMMON:
3952 *secp = bfd_make_section_old_way (abfd, ".scommon");
3953 (*secp)->flags |= SEC_IS_COMMON;
3954 *valp = sym->st_size;
3955 break;
3956
3957 case SHN_MIPS_TEXT:
3958 /* This section is used in a shared object. */
3959 if (mips_elf_text_section_ptr == NULL)
3960 {
3961 /* Initialize the section. */
3962 mips_elf_text_section.name = ".text";
3963 mips_elf_text_section.flags = SEC_NO_FLAGS;
3964 mips_elf_text_section.output_section = NULL;
3965 mips_elf_text_section.symbol = &mips_elf_text_symbol;
3966 mips_elf_text_section.symbol_ptr_ptr = &mips_elf_text_symbol_ptr;
3967 mips_elf_text_symbol.name = ".text";
0035bd7b 3968 mips_elf_text_symbol.flags = BSF_SECTION_SYM | BSF_DYNAMIC;
252b5132
RH
3969 mips_elf_text_symbol.section = &mips_elf_text_section;
3970 mips_elf_text_symbol_ptr = &mips_elf_text_symbol;
3971 mips_elf_text_section_ptr = &mips_elf_text_section;
3972 }
3973 /* This code used to do *secp = bfd_und_section_ptr if
3974 info->shared. I don't know why, and that doesn't make sense,
3975 so I took it out. */
3976 *secp = mips_elf_text_section_ptr;
3977 break;
3978
3979 case SHN_MIPS_ACOMMON:
3980 /* Fall through. XXX Can we treat this as allocated data? */
3981 case SHN_MIPS_DATA:
3982 /* This section is used in a shared object. */
3983 if (mips_elf_data_section_ptr == NULL)
3984 {
3985 /* Initialize the section. */
3986 mips_elf_data_section.name = ".data";
3987 mips_elf_data_section.flags = SEC_NO_FLAGS;
3988 mips_elf_data_section.output_section = NULL;
3989 mips_elf_data_section.symbol = &mips_elf_data_symbol;
3990 mips_elf_data_section.symbol_ptr_ptr = &mips_elf_data_symbol_ptr;
3991 mips_elf_data_symbol.name = ".data";
0035bd7b 3992 mips_elf_data_symbol.flags = BSF_SECTION_SYM | BSF_DYNAMIC;
252b5132
RH
3993 mips_elf_data_symbol.section = &mips_elf_data_section;
3994 mips_elf_data_symbol_ptr = &mips_elf_data_symbol;
3995 mips_elf_data_section_ptr = &mips_elf_data_section;
3996 }
3997 /* This code used to do *secp = bfd_und_section_ptr if
3998 info->shared. I don't know why, and that doesn't make sense,
3999 so I took it out. */
4000 *secp = mips_elf_data_section_ptr;
4001 break;
4002
4003 case SHN_MIPS_SUNDEFINED:
4004 *secp = bfd_und_section_ptr;
4005 break;
4006 }
4007
4008 if (SGI_COMPAT (abfd)
4009 && ! info->shared
4010 && info->hash->creator == abfd->xvec
4011 && strcmp (*namep, "__rld_obj_head") == 0)
4012 {
4013 struct elf_link_hash_entry *h;
4014
4015 /* Mark __rld_obj_head as dynamic. */
4016 h = NULL;
4017 if (! (_bfd_generic_link_add_one_symbol
4018 (info, abfd, *namep, BSF_GLOBAL, *secp,
4019 (bfd_vma) *valp, (const char *) NULL, false,
4020 get_elf_backend_data (abfd)->collect,
4021 (struct bfd_link_hash_entry **) &h)))
4022 return false;
4023 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
4024 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4025 h->type = STT_OBJECT;
4026
4027 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4028 return false;
4029
4030 mips_elf_hash_table (info)->use_rld_obj_head = true;
4031 }
4032
4033 /* If this is a mips16 text symbol, add 1 to the value to make it
4034 odd. This will cause something like .word SYM to come up with
4035 the right value when it is loaded into the PC. */
4036 if (sym->st_other == STO_MIPS16)
4037 ++*valp;
4038
4039 return true;
4040}
4041
4042/* Structure used to pass information to mips_elf_output_extsym. */
4043
4044struct extsym_info
4045{
4046 bfd *abfd;
4047 struct bfd_link_info *info;
4048 struct ecoff_debug_info *debug;
4049 const struct ecoff_debug_swap *swap;
4050 boolean failed;
4051};
4052
4053/* This routine is used to write out ECOFF debugging external symbol
4054 information. It is called via mips_elf_link_hash_traverse. The
4055 ECOFF external symbol information must match the ELF external
4056 symbol information. Unfortunately, at this point we don't know
4057 whether a symbol is required by reloc information, so the two
4058 tables may wind up being different. We must sort out the external
4059 symbol information before we can set the final size of the .mdebug
4060 section, and we must set the size of the .mdebug section before we
4061 can relocate any sections, and we can't know which symbols are
4062 required by relocation until we relocate the sections.
4063 Fortunately, it is relatively unlikely that any symbol will be
4064 stripped but required by a reloc. In particular, it can not happen
4065 when generating a final executable. */
4066
4067static boolean
4068mips_elf_output_extsym (h, data)
4069 struct mips_elf_link_hash_entry *h;
4070 PTR data;
4071{
4072 struct extsym_info *einfo = (struct extsym_info *) data;
4073 boolean strip;
4074 asection *sec, *output_section;
4075
4076 if (h->root.indx == -2)
4077 strip = false;
4078 else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
4079 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
4080 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
4081 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4082 strip = true;
4083 else if (einfo->info->strip == strip_all
4084 || (einfo->info->strip == strip_some
4085 && bfd_hash_lookup (einfo->info->keep_hash,
4086 h->root.root.root.string,
4087 false, false) == NULL))
4088 strip = true;
4089 else
4090 strip = false;
4091
4092 if (strip)
4093 return true;
4094
4095 if (h->esym.ifd == -2)
4096 {
4097 h->esym.jmptbl = 0;
4098 h->esym.cobol_main = 0;
4099 h->esym.weakext = 0;
4100 h->esym.reserved = 0;
4101 h->esym.ifd = ifdNil;
4102 h->esym.asym.value = 0;
4103 h->esym.asym.st = stGlobal;
4104
4105 if (SGI_COMPAT (einfo->abfd)
4106 && (h->root.root.type == bfd_link_hash_undefined
4107 || h->root.root.type == bfd_link_hash_undefweak))
4108 {
4109 const char *name;
4110
4111 /* Use undefined class. Also, set class and type for some
4112 special symbols. */
4113 name = h->root.root.root.string;
4114 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
4115 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
4116 {
4117 h->esym.asym.sc = scData;
4118 h->esym.asym.st = stLabel;
4119 h->esym.asym.value = 0;
4120 }
4121 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
4122 {
4123 h->esym.asym.sc = scAbs;
4124 h->esym.asym.st = stLabel;
4125 h->esym.asym.value =
4126 mips_elf_hash_table (einfo->info)->procedure_count;
4127 }
4128 else if (strcmp (name, "_gp_disp") == 0)
4129 {
4130 h->esym.asym.sc = scAbs;
4131 h->esym.asym.st = stLabel;
4132 h->esym.asym.value = elf_gp (einfo->abfd);
4133 }
4134 else
4135 h->esym.asym.sc = scUndefined;
4136 }
4137 else if (h->root.root.type != bfd_link_hash_defined
4138 && h->root.root.type != bfd_link_hash_defweak)
4139 h->esym.asym.sc = scAbs;
4140 else
4141 {
4142 const char *name;
4143
4144 sec = h->root.root.u.def.section;
4145 output_section = sec->output_section;
4146
4147 /* When making a shared library and symbol h is the one from
4148 the another shared library, OUTPUT_SECTION may be null. */
4149 if (output_section == NULL)
4150 h->esym.asym.sc = scUndefined;
4151 else
4152 {
4153 name = bfd_section_name (output_section->owner, output_section);
4154
4155 if (strcmp (name, ".text") == 0)
4156 h->esym.asym.sc = scText;
4157 else if (strcmp (name, ".data") == 0)
4158 h->esym.asym.sc = scData;
4159 else if (strcmp (name, ".sdata") == 0)
4160 h->esym.asym.sc = scSData;
4161 else if (strcmp (name, ".rodata") == 0
4162 || strcmp (name, ".rdata") == 0)
4163 h->esym.asym.sc = scRData;
4164 else if (strcmp (name, ".bss") == 0)
4165 h->esym.asym.sc = scBss;
4166 else if (strcmp (name, ".sbss") == 0)
4167 h->esym.asym.sc = scSBss;
4168 else if (strcmp (name, ".init") == 0)
4169 h->esym.asym.sc = scInit;
4170 else if (strcmp (name, ".fini") == 0)
4171 h->esym.asym.sc = scFini;
4172 else
4173 h->esym.asym.sc = scAbs;
4174 }
4175 }
4176
4177 h->esym.asym.reserved = 0;
4178 h->esym.asym.index = indexNil;
4179 }
4180
4181 if (h->root.root.type == bfd_link_hash_common)
4182 h->esym.asym.value = h->root.root.u.c.size;
4183 else if (h->root.root.type == bfd_link_hash_defined
4184 || h->root.root.type == bfd_link_hash_defweak)
4185 {
4186 if (h->esym.asym.sc == scCommon)
4187 h->esym.asym.sc = scBss;
4188 else if (h->esym.asym.sc == scSCommon)
4189 h->esym.asym.sc = scSBss;
4190
4191 sec = h->root.root.u.def.section;
4192 output_section = sec->output_section;
4193 if (output_section != NULL)
4194 h->esym.asym.value = (h->root.root.u.def.value
4195 + sec->output_offset
4196 + output_section->vma);
4197 else
4198 h->esym.asym.value = 0;
4199 }
4200 else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
4201 {
4202 /* Set type and value for a symbol with a function stub. */
4203 h->esym.asym.st = stProc;
4204 sec = h->root.root.u.def.section;
4205 if (sec == NULL)
4206 h->esym.asym.value = 0;
4207 else
4208 {
4209 output_section = sec->output_section;
4210 if (output_section != NULL)
4211 h->esym.asym.value = (h->root.plt.offset
4212 + sec->output_offset
4213 + output_section->vma);
4214 else
4215 h->esym.asym.value = 0;
4216 }
4217#if 0 /* FIXME? */
4218 h->esym.ifd = 0;
4219#endif
4220 }
4221
4222 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
4223 h->root.root.root.string,
4224 &h->esym))
4225 {
4226 einfo->failed = true;
4227 return false;
4228 }
4229
4230 return true;
4231}
4232
4233/* Create a runtime procedure table from the .mdebug section. */
4234
4235static boolean
4236mips_elf_create_procedure_table (handle, abfd, info, s, debug)
4237 PTR handle;
4238 bfd *abfd;
4239 struct bfd_link_info *info;
4240 asection *s;
4241 struct ecoff_debug_info *debug;
4242{
4243 const struct ecoff_debug_swap *swap;
4244 HDRR *hdr = &debug->symbolic_header;
4245 RPDR *rpdr, *rp;
4246 struct rpdr_ext *erp;
4247 PTR rtproc;
4248 struct pdr_ext *epdr;
4249 struct sym_ext *esym;
4250 char *ss, **sv;
4251 char *str;
4252 unsigned long size, count;
4253 unsigned long sindex;
4254 unsigned long i;
4255 PDR pdr;
4256 SYMR sym;
4257 const char *no_name_func = _("static procedure (no name)");
4258
4259 epdr = NULL;
4260 rpdr = NULL;
4261 esym = NULL;
4262 ss = NULL;
4263 sv = NULL;
4264
4265 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
4266
4267 sindex = strlen (no_name_func) + 1;
4268 count = hdr->ipdMax;
4269 if (count > 0)
4270 {
4271 size = swap->external_pdr_size;
4272
4273 epdr = (struct pdr_ext *) bfd_malloc (size * count);
4274 if (epdr == NULL)
4275 goto error_return;
4276
4277 if (! _bfd_ecoff_get_accumulated_pdr (handle, (PTR) epdr))
4278 goto error_return;
4279
4280 size = sizeof (RPDR);
4281 rp = rpdr = (RPDR *) bfd_malloc (size * count);
4282 if (rpdr == NULL)
4283 goto error_return;
4284
4285 sv = (char **) bfd_malloc (sizeof (char *) * count);
4286 if (sv == NULL)
4287 goto error_return;
4288
4289 count = hdr->isymMax;
4290 size = swap->external_sym_size;
4291 esym = (struct sym_ext *) bfd_malloc (size * count);
4292 if (esym == NULL)
4293 goto error_return;
4294
4295 if (! _bfd_ecoff_get_accumulated_sym (handle, (PTR) esym))
4296 goto error_return;
4297
4298 count = hdr->issMax;
4299 ss = (char *) bfd_malloc (count);
4300 if (ss == NULL)
4301 goto error_return;
4302 if (! _bfd_ecoff_get_accumulated_ss (handle, (PTR) ss))
4303 goto error_return;
4304
4305 count = hdr->ipdMax;
4306 for (i = 0; i < count; i++, rp++)
4307 {
4308 (*swap->swap_pdr_in) (abfd, (PTR) (epdr + i), &pdr);
4309 (*swap->swap_sym_in) (abfd, (PTR) &esym[pdr.isym], &sym);
4310 rp->adr = sym.value;
4311 rp->regmask = pdr.regmask;
4312 rp->regoffset = pdr.regoffset;
4313 rp->fregmask = pdr.fregmask;
4314 rp->fregoffset = pdr.fregoffset;
4315 rp->frameoffset = pdr.frameoffset;
4316 rp->framereg = pdr.framereg;
4317 rp->pcreg = pdr.pcreg;
4318 rp->irpss = sindex;
4319 sv[i] = ss + sym.iss;
4320 sindex += strlen (sv[i]) + 1;
4321 }
4322 }
4323
4324 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
4325 size = BFD_ALIGN (size, 16);
4326 rtproc = (PTR) bfd_alloc (abfd, size);
4327 if (rtproc == NULL)
4328 {
4329 mips_elf_hash_table (info)->procedure_count = 0;
4330 goto error_return;
4331 }
4332
4333 mips_elf_hash_table (info)->procedure_count = count + 2;
4334
4335 erp = (struct rpdr_ext *) rtproc;
4336 memset (erp, 0, sizeof (struct rpdr_ext));
4337 erp++;
4338 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
4339 strcpy (str, no_name_func);
4340 str += strlen (no_name_func) + 1;
4341 for (i = 0; i < count; i++)
4342 {
4343 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
4344 strcpy (str, sv[i]);
4345 str += strlen (sv[i]) + 1;
4346 }
4347 ecoff_put_off (abfd, (bfd_vma) -1, (bfd_byte *) (erp + count)->p_adr);
4348
4349 /* Set the size and contents of .rtproc section. */
4350 s->_raw_size = size;
4351 s->contents = (bfd_byte *) rtproc;
4352
4353 /* Skip this section later on (I don't think this currently
4354 matters, but someday it might). */
4355 s->link_order_head = (struct bfd_link_order *) NULL;
4356
4357 if (epdr != NULL)
4358 free (epdr);
4359 if (rpdr != NULL)
4360 free (rpdr);
4361 if (esym != NULL)
4362 free (esym);
4363 if (ss != NULL)
4364 free (ss);
4365 if (sv != NULL)
4366 free (sv);
4367
4368 return true;
4369
4370 error_return:
4371 if (epdr != NULL)
4372 free (epdr);
4373 if (rpdr != NULL)
4374 free (rpdr);
4375 if (esym != NULL)
4376 free (esym);
4377 if (ss != NULL)
4378 free (ss);
4379 if (sv != NULL)
4380 free (sv);
4381 return false;
4382}
4383
4384/* A comparison routine used to sort .gptab entries. */
4385
4386static int
4387gptab_compare (p1, p2)
4388 const PTR p1;
4389 const PTR p2;
4390{
4391 const Elf32_gptab *a1 = (const Elf32_gptab *) p1;
4392 const Elf32_gptab *a2 = (const Elf32_gptab *) p2;
4393
4394 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
4395}
4396
4397/* We need to use a special link routine to handle the .reginfo and
4398 the .mdebug sections. We need to merge all instances of these
4399 sections together, not write them all out sequentially. */
4400
103186c6
MM
4401boolean
4402_bfd_mips_elf_final_link (abfd, info)
252b5132
RH
4403 bfd *abfd;
4404 struct bfd_link_info *info;
4405{
4406 asection **secpp;
4407 asection *o;
4408 struct bfd_link_order *p;
4409 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
4410 asection *rtproc_sec;
4411 Elf32_RegInfo reginfo;
4412 struct ecoff_debug_info debug;
4413 const struct ecoff_debug_swap *swap
4414 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
4415 HDRR *symhdr = &debug.symbolic_header;
4416 PTR mdebug_handle = NULL;
4417
303f629d
MM
4418 /* If all the things we linked together were PIC, but we're
4419 producing an executable (rather than a shared object), then the
4420 resulting file is CPIC (i.e., it calls PIC code.) */
0dda5f7a
ILT
4421 if (!info->shared
4422 && !info->relocateable
4423 && elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
252b5132 4424 {
303f629d
MM
4425 elf_elfheader (abfd)->e_flags &= ~EF_MIPS_PIC;
4426 elf_elfheader (abfd)->e_flags |= EF_MIPS_CPIC;
252b5132
RH
4427 }
4428
b3be9b46
RH
4429 /* We'd carefully arranged the dynamic symbol indices, and then the
4430 generic size_dynamic_sections renumbered them out from under us.
4431 Rather than trying somehow to prevent the renumbering, just do
4432 the sort again. */
441d6d79 4433 if (elf_hash_table (info)->dynamic_sections_created)
b3be9b46
RH
4434 {
4435 bfd *dynobj;
4436 asection *got;
4437 struct mips_got_info *g;
4438
435394bf
MM
4439 /* When we resort, we must tell mips_elf_sort_hash_table what
4440 the lowest index it may use is. That's the number of section
4441 symbols we're going to add. The generic ELF linker only
4442 adds these symbols when building a shared object. Note that
4443 we count the sections after (possibly) removing the .options
4444 section above. */
4445 if (!mips_elf_sort_hash_table (info, (info->shared
4446 ? bfd_count_sections (abfd) + 1
4447 : 1)))
b3be9b46
RH
4448 return false;
4449
4450 /* Make sure we didn't grow the global .got region. */
4451 dynobj = elf_hash_table (info)->dynobj;
4452 got = bfd_get_section_by_name (dynobj, ".got");
4453 g = (struct mips_got_info *) elf_section_data (got)->tdata;
4454
8b237a89
MM
4455 if (g->global_gotsym != NULL)
4456 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
4457 - g->global_gotsym->dynindx)
4458 <= g->global_gotno);
b3be9b46
RH
4459 }
4460
303f629d
MM
4461 /* On IRIX5, we omit the .options section. On IRIX6, however, we
4462 include it, even though we don't process it quite right. (Some
4463 entries are supposed to be merged.) Empirically, we seem to be
4464 better off including it then not. */
4465 if (IRIX_COMPAT (abfd) == ict_irix5)
4466 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
4467 {
4468 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4469 {
4470 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
4471 if (p->type == bfd_indirect_link_order)
4472 p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS;
4473 (*secpp)->link_order_head = NULL;
4474 *secpp = (*secpp)->next;
4475 --abfd->section_count;
4476
4477 break;
4478 }
4479 }
4480
252b5132
RH
4481 /* Get a value for the GP register. */
4482 if (elf_gp (abfd) == 0)
4483 {
4484 struct bfd_link_hash_entry *h;
4485
4486 h = bfd_link_hash_lookup (info->hash, "_gp", false, false, true);
4487 if (h != (struct bfd_link_hash_entry *) NULL
4488 && h->type == bfd_link_hash_defined)
4489 elf_gp (abfd) = (h->u.def.value
4490 + h->u.def.section->output_section->vma
4491 + h->u.def.section->output_offset);
0db63c18
MM
4492 else if (info->relocateable)
4493 {
4494 bfd_vma lo;
4495
4496 /* Find the GP-relative section with the lowest offset. */
4497 lo = (bfd_vma) -1;
4498 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4499 if (o->vma < lo
4500 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
4501 lo = o->vma;
4502
4503 /* And calculate GP relative to that. */
4504 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
4505 }
252b5132
RH
4506 else
4507 {
4508 /* If the relocate_section function needs to do a reloc
4509 involving the GP value, it should make a reloc_dangerous
4510 callback to warn that GP is not defined. */
4511 }
4512 }
4513
4514 /* Go through the sections and collect the .reginfo and .mdebug
4515 information. */
4516 reginfo_sec = NULL;
4517 mdebug_sec = NULL;
4518 gptab_data_sec = NULL;
4519 gptab_bss_sec = NULL;
4520 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4521 {
4522 if (strcmp (o->name, ".reginfo") == 0)
4523 {
4524 memset (&reginfo, 0, sizeof reginfo);
4525
4526 /* We have found the .reginfo section in the output file.
4527 Look through all the link_orders comprising it and merge
4528 the information together. */
4529 for (p = o->link_order_head;
4530 p != (struct bfd_link_order *) NULL;
4531 p = p->next)
4532 {
4533 asection *input_section;
4534 bfd *input_bfd;
4535 Elf32_External_RegInfo ext;
4536 Elf32_RegInfo sub;
4537
4538 if (p->type != bfd_indirect_link_order)
4539 {
4540 if (p->type == bfd_fill_link_order)
4541 continue;
4542 abort ();
4543 }
4544
4545 input_section = p->u.indirect.section;
4546 input_bfd = input_section->owner;
4547
4548 /* The linker emulation code has probably clobbered the
4549 size to be zero bytes. */
4550 if (input_section->_raw_size == 0)
4551 input_section->_raw_size = sizeof (Elf32_External_RegInfo);
4552
4553 if (! bfd_get_section_contents (input_bfd, input_section,
4554 (PTR) &ext,
4555 (file_ptr) 0,
4556 sizeof ext))
4557 return false;
4558
4559 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
4560
4561 reginfo.ri_gprmask |= sub.ri_gprmask;
4562 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
4563 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
4564 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
4565 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
4566
4567 /* ri_gp_value is set by the function
4568 mips_elf32_section_processing when the section is
4569 finally written out. */
4570
4571 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4572 elf_link_input_bfd ignores this section. */
4573 input_section->flags &=~ SEC_HAS_CONTENTS;
4574 }
4575
4576 /* Size has been set in mips_elf_always_size_sections */
4577 BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo));
4578
4579 /* Skip this section later on (I don't think this currently
4580 matters, but someday it might). */
4581 o->link_order_head = (struct bfd_link_order *) NULL;
4582
4583 reginfo_sec = o;
4584 }
4585
4586 if (strcmp (o->name, ".mdebug") == 0)
4587 {
4588 struct extsym_info einfo;
4589
4590 /* We have found the .mdebug section in the output file.
4591 Look through all the link_orders comprising it and merge
4592 the information together. */
4593 symhdr->magic = swap->sym_magic;
4594 /* FIXME: What should the version stamp be? */
4595 symhdr->vstamp = 0;
4596 symhdr->ilineMax = 0;
4597 symhdr->cbLine = 0;
4598 symhdr->idnMax = 0;
4599 symhdr->ipdMax = 0;
4600 symhdr->isymMax = 0;
4601 symhdr->ioptMax = 0;
4602 symhdr->iauxMax = 0;
4603 symhdr->issMax = 0;
4604 symhdr->issExtMax = 0;
4605 symhdr->ifdMax = 0;
4606 symhdr->crfd = 0;
4607 symhdr->iextMax = 0;
4608
4609 /* We accumulate the debugging information itself in the
4610 debug_info structure. */
4611 debug.line = NULL;
4612 debug.external_dnr = NULL;
4613 debug.external_pdr = NULL;
4614 debug.external_sym = NULL;
4615 debug.external_opt = NULL;
4616 debug.external_aux = NULL;
4617 debug.ss = NULL;
4618 debug.ssext = debug.ssext_end = NULL;
4619 debug.external_fdr = NULL;
4620 debug.external_rfd = NULL;
4621 debug.external_ext = debug.external_ext_end = NULL;
4622
4623 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
4624 if (mdebug_handle == (PTR) NULL)
4625 return false;
4626
4627 if (SGI_COMPAT (abfd))
4628 {
4629 asection *s;
4630 EXTR esym;
4631 bfd_vma last;
4632 unsigned int i;
4633 static const char * const name[] =
4634 { ".text", ".init", ".fini", ".data",
4635 ".rodata", ".sdata", ".sbss", ".bss" };
4636 static const int sc[] = { scText, scInit, scFini, scData,
4637 scRData, scSData, scSBss, scBss };
4638
4639 esym.jmptbl = 0;
4640 esym.cobol_main = 0;
4641 esym.weakext = 0;
4642 esym.reserved = 0;
4643 esym.ifd = ifdNil;
4644 esym.asym.iss = issNil;
4645 esym.asym.st = stLocal;
4646 esym.asym.reserved = 0;
4647 esym.asym.index = indexNil;
4648 last = 0;
4649 for (i = 0; i < 8; i++)
4650 {
4651 esym.asym.sc = sc[i];
4652 s = bfd_get_section_by_name (abfd, name[i]);
4653 if (s != NULL)
4654 {
4655 esym.asym.value = s->vma;
4656 last = s->vma + s->_raw_size;
4657 }
4658 else
4659 esym.asym.value = last;
4660
4661 if (! bfd_ecoff_debug_one_external (abfd, &debug, swap,
4662 name[i], &esym))
4663 return false;
4664 }
4665 }
4666
4667 for (p = o->link_order_head;
4668 p != (struct bfd_link_order *) NULL;
4669 p = p->next)
4670 {
4671 asection *input_section;
4672 bfd *input_bfd;
4673 const struct ecoff_debug_swap *input_swap;
4674 struct ecoff_debug_info input_debug;
4675 char *eraw_src;
4676 char *eraw_end;
4677
4678 if (p->type != bfd_indirect_link_order)
4679 {
4680 if (p->type == bfd_fill_link_order)
4681 continue;
4682 abort ();
4683 }
4684
4685 input_section = p->u.indirect.section;
4686 input_bfd = input_section->owner;
4687
4688 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
4689 || (get_elf_backend_data (input_bfd)
4690 ->elf_backend_ecoff_debug_swap) == NULL)
4691 {
4692 /* I don't know what a non MIPS ELF bfd would be
4693 doing with a .mdebug section, but I don't really
4694 want to deal with it. */
4695 continue;
4696 }
4697
4698 input_swap = (get_elf_backend_data (input_bfd)
4699 ->elf_backend_ecoff_debug_swap);
4700
4701 BFD_ASSERT (p->size == input_section->_raw_size);
4702
4703 /* The ECOFF linking code expects that we have already
4704 read in the debugging information and set up an
4705 ecoff_debug_info structure, so we do that now. */
4706 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
4707 &input_debug))
4708 return false;
4709
4710 if (! (bfd_ecoff_debug_accumulate
4711 (mdebug_handle, abfd, &debug, swap, input_bfd,
4712 &input_debug, input_swap, info)))
4713 return false;
4714
4715 /* Loop through the external symbols. For each one with
4716 interesting information, try to find the symbol in
4717 the linker global hash table and save the information
4718 for the output external symbols. */
4719 eraw_src = input_debug.external_ext;
4720 eraw_end = (eraw_src
4721 + (input_debug.symbolic_header.iextMax
4722 * input_swap->external_ext_size));
4723 for (;
4724 eraw_src < eraw_end;
4725 eraw_src += input_swap->external_ext_size)
4726 {
4727 EXTR ext;
4728 const char *name;
4729 struct mips_elf_link_hash_entry *h;
4730
4731 (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext);
4732 if (ext.asym.sc == scNil
4733 || ext.asym.sc == scUndefined
4734 || ext.asym.sc == scSUndefined)
4735 continue;
4736
4737 name = input_debug.ssext + ext.asym.iss;
4738 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
4739 name, false, false, true);
4740 if (h == NULL || h->esym.ifd != -2)
4741 continue;
4742
4743 if (ext.ifd != -1)
4744 {
4745 BFD_ASSERT (ext.ifd
4746 < input_debug.symbolic_header.ifdMax);
4747 ext.ifd = input_debug.ifdmap[ext.ifd];
4748 }
4749
4750 h->esym = ext;
4751 }
4752
4753 /* Free up the information we just read. */
4754 free (input_debug.line);
4755 free (input_debug.external_dnr);
4756 free (input_debug.external_pdr);
4757 free (input_debug.external_sym);
4758 free (input_debug.external_opt);
4759 free (input_debug.external_aux);
4760 free (input_debug.ss);
4761 free (input_debug.ssext);
4762 free (input_debug.external_fdr);
4763 free (input_debug.external_rfd);
4764 free (input_debug.external_ext);
4765
4766 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4767 elf_link_input_bfd ignores this section. */
4768 input_section->flags &=~ SEC_HAS_CONTENTS;
4769 }
4770
4771 if (SGI_COMPAT (abfd) && info->shared)
4772 {
4773 /* Create .rtproc section. */
4774 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
4775 if (rtproc_sec == NULL)
4776 {
4777 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
4778 | SEC_LINKER_CREATED | SEC_READONLY);
4779
4780 rtproc_sec = bfd_make_section (abfd, ".rtproc");
4781 if (rtproc_sec == NULL
4782 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
4783 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
4784 return false;
4785 }
4786
4787 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
4788 info, rtproc_sec, &debug))
4789 return false;
4790 }
4791
4792 /* Build the external symbol information. */
4793 einfo.abfd = abfd;
4794 einfo.info = info;
4795 einfo.debug = &debug;
4796 einfo.swap = swap;
4797 einfo.failed = false;
4798 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
4799 mips_elf_output_extsym,
4800 (PTR) &einfo);
4801 if (einfo.failed)
4802 return false;
4803
4804 /* Set the size of the .mdebug section. */
4805 o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap);
4806
4807 /* Skip this section later on (I don't think this currently
4808 matters, but someday it might). */
4809 o->link_order_head = (struct bfd_link_order *) NULL;
4810
4811 mdebug_sec = o;
4812 }
4813
4814 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
4815 {
4816 const char *subname;
4817 unsigned int c;
4818 Elf32_gptab *tab;
4819 Elf32_External_gptab *ext_tab;
4820 unsigned int i;
4821
4822 /* The .gptab.sdata and .gptab.sbss sections hold
4823 information describing how the small data area would
4824 change depending upon the -G switch. These sections
4825 not used in executables files. */
4826 if (! info->relocateable)
4827 {
4828 asection **secpp;
4829
4830 for (p = o->link_order_head;
4831 p != (struct bfd_link_order *) NULL;
4832 p = p->next)
4833 {
4834 asection *input_section;
4835
4836 if (p->type != bfd_indirect_link_order)
4837 {
4838 if (p->type == bfd_fill_link_order)
4839 continue;
4840 abort ();
4841 }
4842
4843 input_section = p->u.indirect.section;
4844
4845 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4846 elf_link_input_bfd ignores this section. */
4847 input_section->flags &=~ SEC_HAS_CONTENTS;
4848 }
4849
4850 /* Skip this section later on (I don't think this
4851 currently matters, but someday it might). */
4852 o->link_order_head = (struct bfd_link_order *) NULL;
4853
4854 /* Really remove the section. */
4855 for (secpp = &abfd->sections;
4856 *secpp != o;
4857 secpp = &(*secpp)->next)
4858 ;
4859 *secpp = (*secpp)->next;
4860 --abfd->section_count;
4861
4862 continue;
4863 }
4864
4865 /* There is one gptab for initialized data, and one for
4866 uninitialized data. */
4867 if (strcmp (o->name, ".gptab.sdata") == 0)
4868 gptab_data_sec = o;
4869 else if (strcmp (o->name, ".gptab.sbss") == 0)
4870 gptab_bss_sec = o;
4871 else
4872 {
4873 (*_bfd_error_handler)
4874 (_("%s: illegal section name `%s'"),
4875 bfd_get_filename (abfd), o->name);
4876 bfd_set_error (bfd_error_nonrepresentable_section);
4877 return false;
4878 }
4879
4880 /* The linker script always combines .gptab.data and
4881 .gptab.sdata into .gptab.sdata, and likewise for
4882 .gptab.bss and .gptab.sbss. It is possible that there is
4883 no .sdata or .sbss section in the output file, in which
4884 case we must change the name of the output section. */
4885 subname = o->name + sizeof ".gptab" - 1;
4886 if (bfd_get_section_by_name (abfd, subname) == NULL)
4887 {
4888 if (o == gptab_data_sec)
4889 o->name = ".gptab.data";
4890 else
4891 o->name = ".gptab.bss";
4892 subname = o->name + sizeof ".gptab" - 1;
4893 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
4894 }
4895
4896 /* Set up the first entry. */
4897 c = 1;
4898 tab = (Elf32_gptab *) bfd_malloc (c * sizeof (Elf32_gptab));
4899 if (tab == NULL)
4900 return false;
4901 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
4902 tab[0].gt_header.gt_unused = 0;
4903
4904 /* Combine the input sections. */
4905 for (p = o->link_order_head;
4906 p != (struct bfd_link_order *) NULL;
4907 p = p->next)
4908 {
4909 asection *input_section;
4910 bfd *input_bfd;
4911 bfd_size_type size;
4912 unsigned long last;
4913 bfd_size_type gpentry;
4914
4915 if (p->type != bfd_indirect_link_order)
4916 {
4917 if (p->type == bfd_fill_link_order)
4918 continue;
4919 abort ();
4920 }
4921
4922 input_section = p->u.indirect.section;
4923 input_bfd = input_section->owner;
4924
4925 /* Combine the gptab entries for this input section one
4926 by one. We know that the input gptab entries are
4927 sorted by ascending -G value. */
4928 size = bfd_section_size (input_bfd, input_section);
4929 last = 0;
4930 for (gpentry = sizeof (Elf32_External_gptab);
4931 gpentry < size;
4932 gpentry += sizeof (Elf32_External_gptab))
4933 {
4934 Elf32_External_gptab ext_gptab;
4935 Elf32_gptab int_gptab;
4936 unsigned long val;
4937 unsigned long add;
4938 boolean exact;
4939 unsigned int look;
4940
4941 if (! (bfd_get_section_contents
4942 (input_bfd, input_section, (PTR) &ext_gptab,
4943 gpentry, sizeof (Elf32_External_gptab))))
4944 {
4945 free (tab);
4946 return false;
4947 }
4948
4949 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
4950 &int_gptab);
4951 val = int_gptab.gt_entry.gt_g_value;
4952 add = int_gptab.gt_entry.gt_bytes - last;
4953
4954 exact = false;
4955 for (look = 1; look < c; look++)
4956 {
4957 if (tab[look].gt_entry.gt_g_value >= val)
4958 tab[look].gt_entry.gt_bytes += add;
4959
4960 if (tab[look].gt_entry.gt_g_value == val)
4961 exact = true;
4962 }
4963
4964 if (! exact)
4965 {
4966 Elf32_gptab *new_tab;
4967 unsigned int max;
4968
4969 /* We need a new table entry. */
4970 new_tab = ((Elf32_gptab *)
4971 bfd_realloc ((PTR) tab,
4972 (c + 1) * sizeof (Elf32_gptab)));
4973 if (new_tab == NULL)
4974 {
4975 free (tab);
4976 return false;
4977 }
4978 tab = new_tab;
4979 tab[c].gt_entry.gt_g_value = val;
4980 tab[c].gt_entry.gt_bytes = add;
4981
4982 /* Merge in the size for the next smallest -G
4983 value, since that will be implied by this new
4984 value. */
4985 max = 0;
4986 for (look = 1; look < c; look++)
4987 {
4988 if (tab[look].gt_entry.gt_g_value < val
4989 && (max == 0
4990 || (tab[look].gt_entry.gt_g_value
4991 > tab[max].gt_entry.gt_g_value)))
4992 max = look;
4993 }
4994 if (max != 0)
4995 tab[c].gt_entry.gt_bytes +=
4996 tab[max].gt_entry.gt_bytes;
4997
4998 ++c;
4999 }
5000
5001 last = int_gptab.gt_entry.gt_bytes;
5002 }
5003
5004 /* Hack: reset the SEC_HAS_CONTENTS flag so that
5005 elf_link_input_bfd ignores this section. */
5006 input_section->flags &=~ SEC_HAS_CONTENTS;
5007 }
5008
5009 /* The table must be sorted by -G value. */
5010 if (c > 2)
5011 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
5012
5013 /* Swap out the table. */
5014 ext_tab = ((Elf32_External_gptab *)
5015 bfd_alloc (abfd, c * sizeof (Elf32_External_gptab)));
5016 if (ext_tab == NULL)
5017 {
5018 free (tab);
5019 return false;
5020 }
5021
5022 for (i = 0; i < c; i++)
5023 bfd_mips_elf32_swap_gptab_out (abfd, tab + i, ext_tab + i);
5024 free (tab);
5025
5026 o->_raw_size = c * sizeof (Elf32_External_gptab);
5027 o->contents = (bfd_byte *) ext_tab;
5028
5029 /* Skip this section later on (I don't think this currently
5030 matters, but someday it might). */
5031 o->link_order_head = (struct bfd_link_order *) NULL;
5032 }
5033 }
5034
5035 /* Invoke the regular ELF backend linker to do all the work. */
9ebbd33e
MM
5036 if (ABI_64_P (abfd))
5037 {
5038#ifdef BFD64
5039 if (!bfd_elf64_bfd_final_link (abfd, info))
5040 return false;
5041#else
5042 abort ();
103186c6 5043 return false;
9ebbd33e
MM
5044#endif /* BFD64 */
5045 }
5046 else if (!bfd_elf32_bfd_final_link (abfd, info))
5047 return false;
252b5132
RH
5048
5049 /* Now write out the computed sections. */
5050
5051 if (reginfo_sec != (asection *) NULL)
5052 {
5053 Elf32_External_RegInfo ext;
5054
5055 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
5056 if (! bfd_set_section_contents (abfd, reginfo_sec, (PTR) &ext,
5057 (file_ptr) 0, sizeof ext))
5058 return false;
5059 }
5060
5061 if (mdebug_sec != (asection *) NULL)
5062 {
5063 BFD_ASSERT (abfd->output_has_begun);
5064 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
5065 swap, info,
5066 mdebug_sec->filepos))
5067 return false;
5068
5069 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
5070 }
5071
5072 if (gptab_data_sec != (asection *) NULL)
5073 {
5074 if (! bfd_set_section_contents (abfd, gptab_data_sec,
5075 gptab_data_sec->contents,
5076 (file_ptr) 0,
5077 gptab_data_sec->_raw_size))
5078 return false;
5079 }
5080
5081 if (gptab_bss_sec != (asection *) NULL)
5082 {
5083 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
5084 gptab_bss_sec->contents,
5085 (file_ptr) 0,
5086 gptab_bss_sec->_raw_size))
5087 return false;
5088 }
5089
5090 if (SGI_COMPAT (abfd))
5091 {
5092 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
5093 if (rtproc_sec != NULL)
5094 {
5095 if (! bfd_set_section_contents (abfd, rtproc_sec,
5096 rtproc_sec->contents,
5097 (file_ptr) 0,
5098 rtproc_sec->_raw_size))
5099 return false;
5100 }
5101 }
5102
5103 return true;
5104}
5105
7403cb63 5106/* Returns the GOT section for ABFD. */
252b5132 5107
7403cb63
MM
5108static asection *
5109mips_elf_got_section (abfd)
5110 bfd *abfd;
252b5132 5111{
7403cb63
MM
5112 return bfd_get_section_by_name (abfd, ".got");
5113}
5114
5115/* Returns the GOT information associated with the link indicated by
5116 INFO. If SGOTP is non-NULL, it is filled in with the GOT
5117 section. */
5118
5119static struct mips_got_info *
5120mips_elf_got_info (abfd, sgotp)
5121 bfd *abfd;
5122 asection **sgotp;
5123{
5124 asection *sgot;
252b5132
RH
5125 struct mips_got_info *g;
5126
7403cb63
MM
5127 sgot = mips_elf_got_section (abfd);
5128 BFD_ASSERT (sgot != NULL);
5129 BFD_ASSERT (elf_section_data (sgot) != NULL);
5130 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
5131 BFD_ASSERT (g != NULL);
252b5132 5132
7403cb63
MM
5133 if (sgotp)
5134 *sgotp = sgot;
5135 return g;
5136}
252b5132 5137
6387d602
ILT
5138/* Return whether a relocation is against a local symbol. */
5139
5140static boolean
5141mips_elf_local_relocation_p (input_bfd, relocation, local_sections)
5142 bfd *input_bfd;
5143 const Elf_Internal_Rela *relocation;
5144 asection **local_sections;
5145{
5146 unsigned long r_symndx;
5147 Elf_Internal_Shdr *symtab_hdr;
5148
5149 r_symndx = ELF32_R_SYM (relocation->r_info);
5150 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5151 if (! elf_bad_symtab (input_bfd))
5152 return r_symndx < symtab_hdr->sh_info;
5153 else
5154 {
5155 /* The symbol table does not follow the rule that local symbols
5156 must come before globals. */
5157 return local_sections[r_symndx] != NULL;
5158 }
5159}
5160
7403cb63 5161/* Sign-extend VALUE, which has the indicated number of BITS. */
252b5132 5162
7403cb63
MM
5163static bfd_vma
5164mips_elf_sign_extend (value, bits)
5165 bfd_vma value;
5166 int bits;
5167{
0af99795 5168 if (value & ((bfd_vma)1 << (bits - 1)))
7403cb63
MM
5169 /* VALUE is negative. */
5170 value |= ((bfd_vma) - 1) << bits;
5171
5172 return value;
5173}
252b5132 5174
7403cb63
MM
5175/* Return non-zero if the indicated VALUE has overflowed the maximum
5176 range expressable by a signed number with the indicated number of
5177 BITS. */
252b5132 5178
7403cb63
MM
5179static boolean
5180mips_elf_overflow_p (value, bits)
5181 bfd_vma value;
5182 int bits;
5183{
5184 bfd_signed_vma svalue = (bfd_signed_vma) value;
252b5132 5185
7403cb63
MM
5186 if (svalue > (1 << (bits - 1)) - 1)
5187 /* The value is too big. */
5188 return true;
5189 else if (svalue < -(1 << (bits - 1)))
5190 /* The value is too small. */
5191 return true;
5192
5193 /* All is well. */
5194 return false;
5195}
252b5132 5196
7403cb63 5197/* Calculate the %high function. */
252b5132 5198
7403cb63
MM
5199static bfd_vma
5200mips_elf_high (value)
5201 bfd_vma value;
5202{
5203 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5204}
252b5132 5205
7403cb63
MM
5206/* Calculate the %higher function. */
5207
5208static bfd_vma
5209mips_elf_higher (value)
5f771d47 5210 bfd_vma value ATTRIBUTE_UNUSED;
7403cb63
MM
5211{
5212#ifdef BFD64
5213 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5214#else
5215 abort ();
5216 return (bfd_vma) -1;
5217#endif
5218}
5219
5220/* Calculate the %highest function. */
5221
5222static bfd_vma
5223mips_elf_highest (value)
5f771d47 5224 bfd_vma value ATTRIBUTE_UNUSED;
7403cb63
MM
5225{
5226#ifdef BFD64
0af99795 5227 return ((value + (bfd_vma) 0x800080008000) >> 48) & 0xffff;
7403cb63
MM
5228#else
5229 abort ();
5230 return (bfd_vma) -1;
5231#endif
5232}
5233
5234/* Returns the GOT index for the global symbol indicated by H. */
5235
5236static bfd_vma
5237mips_elf_global_got_index (abfd, h)
5238 bfd *abfd;
5239 struct elf_link_hash_entry *h;
5240{
5241 bfd_vma index;
5242 asection *sgot;
5243 struct mips_got_info *g;
5244
5245 g = mips_elf_got_info (abfd, &sgot);
5246
5247 /* Once we determine the global GOT entry with the lowest dynamic
5248 symbol table index, we must put all dynamic symbols with greater
5249 indices into the GOT. That makes it easy to calculate the GOT
5250 offset. */
5251 BFD_ASSERT (h->dynindx >= g->global_gotsym->dynindx);
103186c6
MM
5252 index = ((h->dynindx - g->global_gotsym->dynindx + g->local_gotno)
5253 * MIPS_ELF_GOT_SIZE (abfd));
7403cb63
MM
5254 BFD_ASSERT (index < sgot->_raw_size);
5255
5256 return index;
5257}
5258
5259/* Returns the offset for the entry at the INDEXth position
5260 in the GOT. */
5261
5262static bfd_vma
5263mips_elf_got_offset_from_index (dynobj, output_bfd, index)
5264 bfd *dynobj;
5265 bfd *output_bfd;
5266 bfd_vma index;
5267{
5268 asection *sgot;
5269 bfd_vma gp;
7403cb63 5270
103186c6 5271 sgot = mips_elf_got_section (dynobj);
7403cb63
MM
5272 gp = _bfd_get_gp_value (output_bfd);
5273 return (sgot->output_section->vma + sgot->output_offset + index -
5274 gp);
5275}
5276
5277/* If H is a symbol that needs a global GOT entry, but has a dynamic
5278 symbol table index lower than any we've seen to date, record it for
5279 posterity. */
5280
5281static boolean
5282mips_elf_record_global_got_symbol (h, info, g)
5283 struct elf_link_hash_entry *h;
5284 struct bfd_link_info *info;
5f771d47 5285 struct mips_got_info *g ATTRIBUTE_UNUSED;
7403cb63
MM
5286{
5287 /* A global symbol in the GOT must also be in the dynamic symbol
5288 table. */
5289 if (h->dynindx == -1
5290 && !bfd_elf32_link_record_dynamic_symbol (info, h))
5291 return false;
5292
5293 /* If we've already marked this entry as need GOT space, we don't
5294 need to do it again. */
5295 if (h->got.offset != (bfd_vma) - 1)
5296 return true;
5297
5298 /* By setting this to a value other than -1, we are indicating that
5299 there needs to be a GOT entry for H. */
5300 h->got.offset = 0;
5301
5302 return true;
5303}
5304
5305/* This structure is passed to mips_elf_sort_hash_table_f when sorting
5306 the dynamic symbols. */
5307
5308struct mips_elf_hash_sort_data
5309{
5310 /* The symbol in the global GOT with the lowest dynamic symbol table
5311 index. */
5312 struct elf_link_hash_entry *low;
5313 /* The least dynamic symbol table index corresponding to a symbol
5314 with a GOT entry. */
5315 long min_got_dynindx;
5316 /* The greatest dynamic symbol table index not corresponding to a
5317 symbol without a GOT entry. */
5318 long max_non_got_dynindx;
5319};
5320
5321/* If H needs a GOT entry, assign it the highest available dynamic
5322 index. Otherwise, assign it the lowest available dynamic
5323 index. */
5324
5325static boolean
5326mips_elf_sort_hash_table_f (h, data)
5327 struct mips_elf_link_hash_entry *h;
5328 PTR data;
5329{
5330 struct mips_elf_hash_sort_data *hsd
5331 = (struct mips_elf_hash_sort_data *) data;
5332
5333 /* Symbols without dynamic symbol table entries aren't interesting
5334 at all. */
5335 if (h->root.dynindx == -1)
5336 return true;
5337
5338 if (h->root.got.offset != 0)
5339 h->root.dynindx = hsd->max_non_got_dynindx++;
5340 else
5341 {
5342 h->root.dynindx = --hsd->min_got_dynindx;
5343 hsd->low = (struct elf_link_hash_entry *) h;
5344 }
5345
5346 return true;
5347}
5348
5349/* Sort the dynamic symbol table so that symbols that need GOT entries
5350 appear towards the end. This reduces the amount of GOT space
b3be9b46
RH
5351 required. MAX_LOCAL is used to set the number of local symbols
5352 known to be in the dynamic symbol table. During
5353 mips_elf_size_dynamic_sections, this value is 1. Afterward, the
5354 section symbols are added and the count is higher. */
7403cb63
MM
5355
5356static boolean
b3be9b46 5357mips_elf_sort_hash_table (info, max_local)
7403cb63 5358 struct bfd_link_info *info;
b3be9b46 5359 unsigned long max_local;
7403cb63
MM
5360{
5361 struct mips_elf_hash_sort_data hsd;
5362 struct mips_got_info *g;
5363 bfd *dynobj;
5364
5365 dynobj = elf_hash_table (info)->dynobj;
5366
5367 hsd.low = NULL;
5368 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount;
b3be9b46 5369 hsd.max_non_got_dynindx = max_local;
7403cb63
MM
5370 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
5371 elf_hash_table (info)),
5372 mips_elf_sort_hash_table_f,
5373 &hsd);
5374
5375 /* There shoud have been enough room in the symbol table to
5376 accomodate both the GOT and non-GOT symbols. */
5377 BFD_ASSERT (hsd.min_got_dynindx == hsd.max_non_got_dynindx);
5378
5379 /* Now we know which dynamic symbol has the lowest dynamic symbol
5380 table index in the GOT. */
5381 g = mips_elf_got_info (dynobj, NULL);
5382 g->global_gotsym = hsd.low;
5383
5384 return true;
5385}
5386
5387/* Create a local GOT entry for VALUE. Return the index of the entry,
5388 or -1 if it could not be created. */
5389
5390static bfd_vma
5391mips_elf_create_local_got_entry (abfd, g, sgot, value)
5392 bfd *abfd;
5393 struct mips_got_info *g;
5394 asection *sgot;
5395 bfd_vma value;
5396{
5397 if (g->assigned_gotno >= g->local_gotno)
5398 {
5399 /* We didn't allocate enough space in the GOT. */
5400 (*_bfd_error_handler)
5401 (_("not enough GOT space for local GOT entries"));
5402 bfd_set_error (bfd_error_bad_value);
5403 return (bfd_vma) -1;
5404 }
5405
103186c6
MM
5406 MIPS_ELF_PUT_WORD (abfd, value,
5407 (sgot->contents
5408 + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno));
5409 return MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
7403cb63
MM
5410}
5411
5412/* Returns the GOT offset at which the indicated address can be found.
5413 If there is not yet a GOT entry for this value, create one. Returns
5414 -1 if no satisfactory GOT offset can be found. */
5415
5416static bfd_vma
5417mips_elf_local_got_index (abfd, info, value)
5418 bfd *abfd;
5419 struct bfd_link_info *info;
5420 bfd_vma value;
5421{
5422 asection *sgot;
5423 struct mips_got_info *g;
5424 bfd_byte *entry;
5425
5426 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5427
5428 /* Look to see if we already have an appropriate entry. */
103186c6
MM
5429 for (entry = (sgot->contents
5430 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
5431 entry != sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
5432 entry += MIPS_ELF_GOT_SIZE (abfd))
7403cb63 5433 {
103186c6 5434 bfd_vma address = MIPS_ELF_GET_WORD (abfd, entry);
7403cb63
MM
5435 if (address == value)
5436 return entry - sgot->contents;
5437 }
5438
5439 return mips_elf_create_local_got_entry (abfd, g, sgot, value);
5440}
5441
5442/* Find a GOT entry that is within 32KB of the VALUE. These entries
5443 are supposed to be placed at small offsets in the GOT, i.e.,
5444 within 32KB of GP. Return the index into the GOT for this page,
5445 and store the offset from this entry to the desired address in
5446 OFFSETP, if it is non-NULL. */
5447
5448static bfd_vma
5449mips_elf_got_page (abfd, info, value, offsetp)
5450 bfd *abfd;
5451 struct bfd_link_info *info;
5452 bfd_vma value;
5453 bfd_vma *offsetp;
5454{
5455 asection *sgot;
5456 struct mips_got_info *g;
5457 bfd_byte *entry;
5458 bfd_byte *last_entry;
86033394 5459 bfd_vma index = 0;
7403cb63
MM
5460 bfd_vma address;
5461
5462 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5463
5464 /* Look to see if we aleady have an appropriate entry. */
103186c6
MM
5465 last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
5466 for (entry = (sgot->contents
5467 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
7403cb63 5468 entry != last_entry;
103186c6 5469 entry += MIPS_ELF_GOT_SIZE (abfd))
7403cb63 5470 {
103186c6
MM
5471 address = MIPS_ELF_GET_WORD (abfd, entry);
5472
7403cb63
MM
5473 if (!mips_elf_overflow_p (value - address, 16))
5474 {
5475 /* This entry will serve as the page pointer. We can add a
5476 16-bit number to it to get the actual address. */
5477 index = entry - sgot->contents;
5478 break;
252b5132 5479 }
7403cb63
MM
5480 }
5481
5482 /* If we didn't have an appropriate entry, we create one now. */
5483 if (entry == last_entry)
5484 index = mips_elf_create_local_got_entry (abfd, g, sgot, value);
5485
5486 if (offsetp)
5487 {
103186c6 5488 address = MIPS_ELF_GET_WORD (abfd, entry);
7403cb63
MM
5489 *offsetp = value - address;
5490 }
5491
5492 return index;
5493}
5494
5495/* Find a GOT entry whose higher-order 16 bits are the same as those
5496 for value. Return the index into the GOT for this entry. */
5497
5498static bfd_vma
5499mips_elf_got16_entry (abfd, info, value)
5500 bfd *abfd;
5501 struct bfd_link_info *info;
5502 bfd_vma value;
5503{
5504 asection *sgot;
5505 struct mips_got_info *g;
5506 bfd_byte *entry;
5507 bfd_byte *last_entry;
86033394 5508 bfd_vma index = 0;
7403cb63
MM
5509 bfd_vma address;
5510
b944b044
MM
5511 /* Although the ABI says that it is "the high-order 16 bits" that we
5512 want, it is really the %high value. The complete value is
5513 calculated with a `addiu' of a LO16 relocation, just as with a
5514 HI16/LO16 pair. */
7b1f1231 5515 value = mips_elf_high (value) << 16;
7403cb63
MM
5516 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5517
5518 /* Look to see if we already have an appropriate entry. */
103186c6
MM
5519 last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
5520 for (entry = (sgot->contents
5521 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
7403cb63 5522 entry != last_entry;
103186c6 5523 entry += MIPS_ELF_GOT_SIZE (abfd))
7403cb63 5524 {
103186c6 5525 address = MIPS_ELF_GET_WORD (abfd, entry);
e049a0de 5526 if ((address & 0xffff0000) == value)
252b5132 5527 {
7403cb63 5528 /* This entry has the right high-order 16 bits. */
4f2860ca 5529 index = entry - sgot->contents;
7403cb63
MM
5530 break;
5531 }
5532 }
5533
5534 /* If we didn't have an appropriate entry, we create one now. */
5535 if (entry == last_entry)
5536 index = mips_elf_create_local_got_entry (abfd, g, sgot, value);
5537
5538 return index;
5539}
5540
bb2d6cd7 5541/* Returns the first relocation of type r_type found, beginning with
23b255aa 5542 RELOCATION. RELEND is one-past-the-end of the relocation table. */
7403cb63 5543
23b255aa 5544static const Elf_Internal_Rela *
bb2d6cd7
GK
5545mips_elf_next_relocation (r_type, relocation, relend)
5546 unsigned int r_type;
103186c6
MM
5547 const Elf_Internal_Rela *relocation;
5548 const Elf_Internal_Rela *relend;
7403cb63
MM
5549{
5550 /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
5551 immediately following. However, for the IRIX6 ABI, the next
5552 relocation may be a composed relocation consisting of several
5553 relocations for the same address. In that case, the R_MIPS_LO16
435394bf 5554 relocation may occur as one of these. We permit a similar
7403cb63
MM
5555 extension in general, as that is useful for GCC. */
5556 while (relocation < relend)
5557 {
bb2d6cd7 5558 if (ELF32_R_TYPE (relocation->r_info) == r_type)
23b255aa 5559 return relocation;
7403cb63
MM
5560
5561 ++relocation;
5562 }
5563
5564 /* We didn't find it. */
6387d602 5565 bfd_set_error (bfd_error_bad_value);
23b255aa 5566 return NULL;
7403cb63
MM
5567}
5568
7b1f1231
MM
5569/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5570 is the original relocation, which is now being transformed into a
5571 dyanmic relocation. The ADDENDP is adjusted if necessary; the
5572 caller should store the result in place of the original addend. */
7403cb63 5573
7b1f1231
MM
5574static boolean
5575mips_elf_create_dynamic_relocation (output_bfd, info, rel, h, sec,
5576 symbol, addendp, input_section)
7403cb63
MM
5577 bfd *output_bfd;
5578 struct bfd_link_info *info;
103186c6 5579 const Elf_Internal_Rela *rel;
7b1f1231
MM
5580 struct mips_elf_link_hash_entry *h;
5581 asection *sec;
5582 bfd_vma symbol;
5583 bfd_vma *addendp;
7403cb63
MM
5584 asection *input_section;
5585{
5586 Elf_Internal_Rel outrel;
5587 boolean skip;
5588 asection *sreloc;
5589 bfd *dynobj;
5590 int r_type;
5591
5592 r_type = ELF32_R_TYPE (rel->r_info);
5593 dynobj = elf_hash_table (info)->dynobj;
103186c6
MM
5594 sreloc
5595 = bfd_get_section_by_name (dynobj,
5596 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd));
7403cb63
MM
5597 BFD_ASSERT (sreloc != NULL);
5598
5599 skip = false;
5600
7b1f1231
MM
5601 /* We begin by assuming that the offset for the dynamic relocation
5602 is the same as for the original relocation. We'll adjust this
5603 later to reflect the correct output offsets. */
7403cb63
MM
5604 if (elf_section_data (input_section)->stab_info == NULL)
5605 outrel.r_offset = rel->r_offset;
5606 else
5607 {
7b1f1231
MM
5608 /* Except that in a stab section things are more complex.
5609 Because we compress stab information, the offset given in the
5610 relocation may not be the one we want; we must let the stabs
5611 machinery tell us the offset. */
5612 outrel.r_offset
5613 = (_bfd_stab_section_offset
5614 (output_bfd, &elf_hash_table (info)->stab_info,
5615 input_section,
5616 &elf_section_data (input_section)->stab_info,
5617 rel->r_offset));
5618 /* If we didn't need the relocation at all, this value will be
5619 -1. */
5620 if (outrel.r_offset == (bfd_vma) -1)
7403cb63 5621 skip = true;
7403cb63 5622 }
7403cb63
MM
5623
5624 /* If we've decided to skip this relocation, just output an emtpy
7b1f1231
MM
5625 record. Note that R_MIPS_NONE == 0, so that this call to memset
5626 is a way of setting R_TYPE to R_MIPS_NONE. */
7403cb63
MM
5627 if (skip)
5628 memset (&outrel, 0, sizeof (outrel));
7b1f1231
MM
5629 else
5630 {
5631 long indx;
5632 bfd_vma section_offset;
5633
5634 /* We must now calculate the dynamic symbol table index to use
5635 in the relocation. */
5636 if (h != NULL
5637 && (! info->symbolic || (h->root.elf_link_hash_flags
5638 & ELF_LINK_HASH_DEF_REGULAR) == 0))
5639 {
5640 indx = h->root.dynindx;
5641 BFD_ASSERT (indx != -1);
5642 }
5643 else
5644 {
5645 if (sec != NULL && bfd_is_abs_section (sec))
5646 indx = 0;
5647 else if (sec == NULL || sec->owner == NULL)
5648 {
5649 bfd_set_error (bfd_error_bad_value);
5650 return false;
5651 }
5652 else
5653 {
5654 indx = elf_section_data (sec->output_section)->dynindx;
5655 if (indx == 0)
5656 abort ();
5657 }
5658
5659 /* Figure out how far the target of the relocation is from
5660 the beginning of its section. */
5661 section_offset = symbol - sec->output_section->vma;
5662 /* The relocation we're building is section-relative.
5663 Therefore, the original addend must be adjusted by the
5664 section offset. */
5665 *addendp += symbol - sec->output_section->vma;
5666 /* Now, the relocation is just against the section. */
5667 symbol = sec->output_section->vma;
5668 }
5669
5670 /* If the relocation was previously an absolute relocation, we
5671 must adjust it by the value we give it in the dynamic symbol
5672 table. */
5673 if (r_type != R_MIPS_REL32)
5674 *addendp += symbol;
5675
5676 /* The relocation is always an REL32 relocation because we don't
5677 know where the shared library will wind up at load-time. */
5678 outrel.r_info = ELF32_R_INFO (indx, R_MIPS_REL32);
5679
5680 /* Adjust the output offset of the relocation to reference the
5681 correct location in the output file. */
5682 outrel.r_offset += (input_section->output_section->vma
5683 + input_section->output_offset);
5684 }
7403cb63 5685
7b1f1231
MM
5686 /* Put the relocation back out. We have to use the special
5687 relocation outputter in the 64-bit case since the 64-bit
5688 relocation format is non-standard. */
103186c6
MM
5689 if (ABI_64_P (output_bfd))
5690 {
5691 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
5692 (output_bfd, &outrel,
5693 (sreloc->contents
5694 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
5695 }
5696 else
5697 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
5698 (((Elf32_External_Rel *)
5699 sreloc->contents)
5700 + sreloc->reloc_count));
7b1f1231
MM
5701
5702 /* Record the index of the first relocation referencing H. This
5703 information is later emitted in the .msym section. */
5704 if (h != NULL
5705 && (h->min_dyn_reloc_index == 0
5706 || sreloc->reloc_count < h->min_dyn_reloc_index))
5707 h->min_dyn_reloc_index = sreloc->reloc_count;
5708
5709 /* We've now added another relocation. */
7403cb63
MM
5710 ++sreloc->reloc_count;
5711
5712 /* Make sure the output section is writable. The dynamic linker
5713 will be writing to it. */
5714 elf_section_data (input_section->output_section)->this_hdr.sh_flags
5715 |= SHF_WRITE;
5716
5717 /* On IRIX5, make an entry of compact relocation info. */
5718 if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
5719 {
5720 asection* scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
5721 bfd_byte *cr;
5722
5723 if (scpt)
5724 {
5725 Elf32_crinfo cptrel;
5726
5727 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
5728 cptrel.vaddr = (rel->r_offset
5729 + input_section->output_section->vma
5730 + input_section->output_offset);
5731 if (r_type == R_MIPS_REL32)
5732 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
252b5132 5733 else
7403cb63
MM
5734 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
5735 mips_elf_set_cr_dist2to (cptrel, 0);
7b1f1231 5736 cptrel.konst = *addendp;
7403cb63
MM
5737
5738 cr = (scpt->contents
5739 + sizeof (Elf32_External_compact_rel));
5740 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
5741 ((Elf32_External_crinfo *) cr
5742 + scpt->reloc_count));
5743 ++scpt->reloc_count;
5744 }
5745 }
252b5132 5746
7b1f1231 5747 return true;
7403cb63 5748}
252b5132 5749
7403cb63
MM
5750/* Calculate the value produced by the RELOCATION (which comes from
5751 the INPUT_BFD). The ADDEND is the addend to use for this
5752 RELOCATION; RELOCATION->R_ADDEND is ignored.
5753
5754 The result of the relocation calculation is stored in VALUEP.
197b9ca0
MM
5755 REQUIRE_JALXP indicates whether or not the opcode used with this
5756 relocation must be JALX.
7403cb63
MM
5757
5758 This function returns bfd_reloc_continue if the caller need take no
5759 further action regarding this relocation, bfd_reloc_notsupported if
5760 something goes dramatically wrong, bfd_reloc_overflow if an
5761 overflow occurs, and bfd_reloc_ok to indicate success. */
5762
5763static bfd_reloc_status_type
5764mips_elf_calculate_relocation (abfd,
5765 input_bfd,
5766 input_section,
5767 info,
5768 relocation,
5769 addend,
5770 howto,
7403cb63
MM
5771 local_syms,
5772 local_sections,
5773 valuep,
197b9ca0
MM
5774 namep,
5775 require_jalxp)
7403cb63
MM
5776 bfd *abfd;
5777 bfd *input_bfd;
5778 asection *input_section;
5779 struct bfd_link_info *info;
103186c6 5780 const Elf_Internal_Rela *relocation;
7403cb63
MM
5781 bfd_vma addend;
5782 reloc_howto_type *howto;
7403cb63
MM
5783 Elf_Internal_Sym *local_syms;
5784 asection **local_sections;
5785 bfd_vma *valuep;
5786 const char **namep;
197b9ca0 5787 boolean *require_jalxp;
7403cb63
MM
5788{
5789 /* The eventual value we will return. */
5790 bfd_vma value;
5791 /* The address of the symbol against which the relocation is
5792 occurring. */
5793 bfd_vma symbol = 0;
5794 /* The final GP value to be used for the relocatable, executable, or
5795 shared object file being produced. */
5796 bfd_vma gp = (bfd_vma) - 1;
5797 /* The place (section offset or address) of the storage unit being
5798 relocated. */
5799 bfd_vma p;
5800 /* The value of GP used to create the relocatable object. */
5801 bfd_vma gp0 = (bfd_vma) - 1;
5802 /* The offset into the global offset table at which the address of
5803 the relocation entry symbol, adjusted by the addend, resides
5804 during execution. */
5805 bfd_vma g = (bfd_vma) - 1;
5806 /* The section in which the symbol referenced by the relocation is
5807 located. */
5808 asection *sec = NULL;
5809 struct mips_elf_link_hash_entry* h = NULL;
103186c6
MM
5810 /* True if the symbol referred to by this relocation is a local
5811 symbol. */
7403cb63 5812 boolean local_p;
103186c6 5813 /* True if the symbol referred to by this relocation is "_gp_disp". */
7403cb63
MM
5814 boolean gp_disp_p = false;
5815 Elf_Internal_Shdr *symtab_hdr;
5816 size_t extsymoff;
103186c6 5817 unsigned long r_symndx;
7403cb63 5818 int r_type;
103186c6
MM
5819 /* True if overflow occurred during the calculation of the
5820 relocation value. */
7403cb63 5821 boolean overflowed_p;
197b9ca0
MM
5822 /* True if this relocation refers to a MIPS16 function. */
5823 boolean target_is_16_bit_code_p = false;
7403cb63
MM
5824
5825 /* Parse the relocation. */
5826 r_symndx = ELF32_R_SYM (relocation->r_info);
5827 r_type = ELF32_R_TYPE (relocation->r_info);
5828 p = (input_section->output_section->vma
5829 + input_section->output_offset
5830 + relocation->r_offset);
5831
5832 /* Assume that there will be no overflow. */
5833 overflowed_p = false;
5834
6387d602
ILT
5835 /* Figure out whether or not the symbol is local, and get the offset
5836 used in the array of hash table entries. */
7403cb63 5837 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6387d602
ILT
5838 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5839 local_sections);
5840 if (! elf_bad_symtab (input_bfd))
5841 extsymoff = symtab_hdr->sh_info;
5842 else
7403cb63
MM
5843 {
5844 /* The symbol table does not follow the rule that local symbols
5845 must come before globals. */
5846 extsymoff = 0;
7403cb63
MM
5847 }
5848
5849 /* Figure out the value of the symbol. */
5850 if (local_p)
5851 {
5852 Elf_Internal_Sym *sym;
5853
5854 sym = local_syms + r_symndx;
5855 sec = local_sections[r_symndx];
5856
5857 symbol = sec->output_section->vma + sec->output_offset;
5858 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
5859 symbol += sym->st_value;
5860
5861 /* MIPS16 text labels should be treated as odd. */
5862 if (sym->st_other == STO_MIPS16)
5863 ++symbol;
5864
5865 /* Record the name of this symbol, for our caller. */
5866 *namep = bfd_elf_string_from_elf_section (input_bfd,
5867 symtab_hdr->sh_link,
5868 sym->st_name);
e049a0de 5869 if (*namep == '\0')
7403cb63 5870 *namep = bfd_section_name (input_bfd, sec);
197b9ca0
MM
5871
5872 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
7403cb63
MM
5873 }
5874 else
5875 {
5876 /* For global symbols we look up the symbol in the hash-table. */
5877 h = ((struct mips_elf_link_hash_entry *)
5878 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5879 /* Find the real hash-table entry for this symbol. */
5880 while (h->root.type == bfd_link_hash_indirect
5881 || h->root.type == bfd_link_hash_warning)
5882 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5883
5884 /* Record the name of this symbol, for our caller. */
5885 *namep = h->root.root.root.string;
5886
5887 /* See if this is the special _gp_disp symbol. Note that such a
5888 symbol must always be a global symbol. */
5889 if (strcmp (h->root.root.root.string, "_gp_disp") == 0)
5890 {
5891 /* Relocations against _gp_disp are permitted only with
5892 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5893 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
5894 return bfd_reloc_notsupported;
5895
5896 gp_disp_p = true;
5897 }
97a4bb05
MM
5898 /* If this symbol is defined, calculate its address. Note that
5899 _gp_disp is a magic symbol, always implicitly defined by the
5900 linker, so it's inappropriate to check to see whether or not
5901 its defined. */
5902 else if ((h->root.root.type == bfd_link_hash_defined
5903 || h->root.root.type == bfd_link_hash_defweak)
5904 && h->root.root.u.def.section)
7403cb63
MM
5905 {
5906 sec = h->root.root.u.def.section;
5907 if (sec->output_section)
5908 symbol = (h->root.root.u.def.value
5909 + sec->output_section->vma
5910 + sec->output_offset);
252b5132 5911 else
7403cb63
MM
5912 symbol = h->root.root.u.def.value;
5913 }
97287574
MM
5914 else if (h->root.root.type == bfd_link_hash_undefweak)
5915 /* We allow relocations against undefined weak symbols, giving
5916 it the value zero, so that you can undefined weak functions
5917 and check to see if they exist by looking at their
5918 addresses. */
5919 symbol = 0;
3a27a730 5920 else if (info->shared && !info->symbolic && !info->no_undefined
ba09750c 5921 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
8535d39c 5922 symbol = 0;
3811169e
MM
5923 else if (strcmp (h->root.root.root.string, "_DYNAMIC_LINK") == 0)
5924 {
5925 /* If this is a dynamic link, we should have created a
5926 _DYNAMIC_LINK symbol in mips_elf_create_dynamic_sections.
5927 Otherwise, we should define the symbol with a value of 0.
5928 FIXME: It should probably get into the symbol table
5929 somehow as well. */
5930 BFD_ASSERT (! info->shared);
5931 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
8535d39c 5932 symbol = 0;
3811169e 5933 }
7403cb63
MM
5934 else
5935 {
5cc7c785
L
5936 if (! ((*info->callbacks->undefined_symbol)
5937 (info, h->root.root.root.string, input_bfd,
5938 input_section, relocation->r_offset,
3a27a730 5939 (!info->shared || info->no_undefined
ba09750c 5940 || ELF_ST_VISIBILITY (h->root.other)))))
5cc7c785
L
5941 return bfd_reloc_undefined;
5942 symbol = 0;
7403cb63 5943 }
197b9ca0
MM
5944
5945 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
5946 }
5947
5948 /* If this is a 32-bit call to a 16-bit function with a stub, we
5949 need to redirect the call to the stub, unless we're already *in*
5950 a stub. */
5951 if (r_type != R_MIPS16_26 && !info->relocateable
5952 && ((h != NULL && h->fn_stub != NULL)
5953 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
5954 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5955 && !mips_elf_stub_section_p (input_bfd, input_section))
5956 {
5957 /* This is a 32-bit call to a 16-bit function. We should
5958 have already noticed that we were going to need the
5959 stub. */
5960 if (local_p)
5961 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5962 else
5963 {
5964 BFD_ASSERT (h->need_fn_stub);
5965 sec = h->fn_stub;
5966 }
5967
5968 symbol = sec->output_section->vma + sec->output_offset;
7403cb63 5969 }
197b9ca0
MM
5970 /* If this is a 16-bit call to a 32-bit function with a stub, we
5971 need to redirect the call to the stub. */
5972 else if (r_type == R_MIPS16_26 && !info->relocateable
5973 && h != NULL
5974 && (h->call_stub != NULL || h->call_fp_stub != NULL)
5975 && !target_is_16_bit_code_p)
5976 {
5977 /* If both call_stub and call_fp_stub are defined, we can figure
5978 out which one to use by seeing which one appears in the input
5979 file. */
5980 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5981 {
5982 asection *o;
5983
5984 sec = NULL;
5985 for (o = input_bfd->sections; o != NULL; o = o->next)
5986 {
5987 if (strncmp (bfd_get_section_name (input_bfd, o),
5988 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5989 {
5990 sec = h->call_fp_stub;
5991 break;
5992 }
5993 }
5994 if (sec == NULL)
5995 sec = h->call_stub;
5996 }
5997 else if (h->call_stub != NULL)
5998 sec = h->call_stub;
5999 else
6000 sec = h->call_fp_stub;
6001
6002 BFD_ASSERT (sec->_raw_size > 0);
6003 symbol = sec->output_section->vma + sec->output_offset;
6004 }
6005
6006 /* Calls from 16-bit code to 32-bit code and vice versa require the
6007 special jalx instruction. */
6387d602
ILT
6008 *require_jalxp = (!info->relocateable
6009 && ((r_type == R_MIPS16_26) != target_is_16_bit_code_p));
252b5132 6010
7403cb63
MM
6011 /* If we haven't already determined the GOT offset, or the GP value,
6012 and we're going to need it, get it now. */
6013 switch (r_type)
6014 {
6015 case R_MIPS_CALL16:
2841ecd0 6016 case R_MIPS_GOT16:
7403cb63
MM
6017 case R_MIPS_GOT_DISP:
6018 case R_MIPS_GOT_HI16:
6019 case R_MIPS_CALL_HI16:
6020 case R_MIPS_GOT_LO16:
6021 case R_MIPS_CALL_LO16:
6022 /* Find the index into the GOT where this value is located. */
4f2860ca 6023 if (!local_p)
7403cb63
MM
6024 {
6025 BFD_ASSERT (addend == 0);
6026 g = mips_elf_global_got_index
6027 (elf_hash_table (info)->dynobj,
6028 (struct elf_link_hash_entry*) h);
6029 }
4f2860ca
MM
6030 else if (r_type == R_MIPS_GOT16)
6031 /* There's no need to create a local GOT entry here; the
6032 calculation for a local GOT16 entry does not involve G. */
6033 break;
7403cb63
MM
6034 else
6035 {
6036 g = mips_elf_local_got_index (abfd, info, symbol + addend);
6037 if (g == (bfd_vma) -1)
6038 return false;
6039 }
252b5132 6040
7403cb63
MM
6041 /* Convert GOT indices to actual offsets. */
6042 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6043 abfd, g);
6044 break;
6045
6046 case R_MIPS_HI16:
6047 case R_MIPS_LO16:
6048 case R_MIPS_GPREL16:
6049 case R_MIPS_GPREL32:
0af99795 6050 case R_MIPS_LITERAL:
7403cb63
MM
6051 gp0 = _bfd_get_gp_value (input_bfd);
6052 gp = _bfd_get_gp_value (abfd);
6053 break;
252b5132 6054
7403cb63
MM
6055 default:
6056 break;
6057 }
252b5132 6058
7403cb63
MM
6059 /* Figure out what kind of relocation is being performed. */
6060 switch (r_type)
6061 {
6062 case R_MIPS_NONE:
6063 return bfd_reloc_continue;
252b5132 6064
7403cb63
MM
6065 case R_MIPS_16:
6066 value = symbol + mips_elf_sign_extend (addend, 16);
6067 overflowed_p = mips_elf_overflow_p (value, 16);
6068 break;
252b5132 6069
7403cb63
MM
6070 case R_MIPS_32:
6071 case R_MIPS_REL32:
a3c7651d 6072 case R_MIPS_64:
7b1f1231
MM
6073 if ((info->shared
6074 || (elf_hash_table (info)->dynamic_sections_created
6075 && h != NULL
6076 && ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
6077 == 0)))
6078 && (input_section->flags & SEC_ALLOC) != 0)
7403cb63 6079 {
7b1f1231
MM
6080 /* If we're creating a shared library, or this relocation is
6081 against a symbol in a shared library, then we can't know
6082 where the symbol will end up. So, we create a relocation
6083 record in the output, and leave the job up to the dynamic
6084 linker. */
6085 value = addend;
6086 if (!mips_elf_create_dynamic_relocation (abfd,
6087 info,
6088 relocation,
6089 h,
6090 sec,
6091 symbol,
6092 &value,
6093 input_section))
6094 return false;
7403cb63
MM
6095 }
6096 else
6097 {
a3c7651d 6098 if (r_type != R_MIPS_REL32)
7403cb63
MM
6099 value = symbol + addend;
6100 else
6101 value = addend;
6102 }
6103 value &= howto->dst_mask;
6104 break;
6105
bb2d6cd7
GK
6106 case R_MIPS_PC32:
6107 case R_MIPS_PC64:
6108 case R_MIPS_GNU_REL_LO16:
6109 value = symbol + addend - p;
6110 value &= howto->dst_mask;
6111 break;
6112
6113 case R_MIPS_GNU_REL16_S2:
6114 value = symbol + mips_elf_sign_extend (addend << 2, 18) - p;
6115 overflowed_p = mips_elf_overflow_p (value, 18);
6116 value = (value >> 2) & howto->dst_mask;
6117 break;
6118
6119 case R_MIPS_GNU_REL_HI16:
6120 value = mips_elf_high (addend + symbol - p);
6121 value &= howto->dst_mask;
6122 break;
6123
e53bd91b
MM
6124 case R_MIPS16_26:
6125 /* The calculation for R_MIPS_26 is just the same as for an
6126 R_MIPS_26. It's only the storage of the relocated field into
1e52e2ee 6127 the output file that's different. That's handled in
e53bd91b
MM
6128 mips_elf_perform_relocation. So, we just fall through to the
6129 R_MIPS_26 case here. */
7403cb63
MM
6130 case R_MIPS_26:
6131 if (local_p)
6132 value = (((addend << 2) | (p & 0xf0000000)) + symbol) >> 2;
6133 else
6134 value = (mips_elf_sign_extend (addend << 2, 28) + symbol) >> 2;
6135 value &= howto->dst_mask;
6136 break;
6137
6138 case R_MIPS_HI16:
6139 if (!gp_disp_p)
6140 {
6141 value = mips_elf_high (addend + symbol);
6142 value &= howto->dst_mask;
6143 }
6144 else
6145 {
6146 value = mips_elf_high (addend + gp - p);
6147 overflowed_p = mips_elf_overflow_p (value, 16);
6148 }
6149 break;
6150
6151 case R_MIPS_LO16:
6152 if (!gp_disp_p)
6153 value = (symbol + addend) & howto->dst_mask;
6154 else
6155 {
6156 value = addend + gp - p + 4;
97a4bb05
MM
6157 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6158 for overflow. But, on, say, Irix 5, relocations against
6159 _gp_disp are normally generated from the .cpload
6160 pseudo-op. It generates code that normally looks like
6161 this:
6162
6163 lui $gp,%hi(_gp_disp)
6164 addiu $gp,$gp,%lo(_gp_disp)
6165 addu $gp,$gp,$t9
6166
6167 Here $t9 holds the address of the function being called,
6168 as required by the MIPS ELF ABI. The R_MIPS_LO16
e53bd91b 6169 relocation can easily overflow in this situation, but the
97a4bb05
MM
6170 R_MIPS_HI16 relocation will handle the overflow.
6171 Therefore, we consider this a bug in the MIPS ABI, and do
6172 not check for overflow here. */
7403cb63
MM
6173 }
6174 break;
6175
6176 case R_MIPS_LITERAL:
6177 /* Because we don't merge literal sections, we can handle this
6178 just like R_MIPS_GPREL16. In the long run, we should merge
6179 shared literals, and then we will need to additional work
6180 here. */
6181
6182 /* Fall through. */
6183
b7233c24
MM
6184 case R_MIPS16_GPREL:
6185 /* The R_MIPS16_GPREL performs the same calculation as
6186 R_MIPS_GPREL16, but stores the relocated bits in a different
6187 order. We don't need to do anything special here; the
6188 differences are handled in mips_elf_perform_relocation. */
7403cb63
MM
6189 case R_MIPS_GPREL16:
6190 if (local_p)
6191 value = mips_elf_sign_extend (addend, 16) + symbol + gp0 - gp;
6192 else
6193 value = mips_elf_sign_extend (addend, 16) + symbol - gp;
6194 overflowed_p = mips_elf_overflow_p (value, 16);
6195 break;
6196
6197 case R_MIPS_GOT16:
6198 if (local_p)
6199 {
6200 value = mips_elf_got16_entry (abfd, info, symbol + addend);
6201 if (value == (bfd_vma) -1)
6202 return false;
6203 value
6204 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6205 abfd,
6206 value);
6207 overflowed_p = mips_elf_overflow_p (value, 16);
6208 break;
6209 }
6210
6211 /* Fall through. */
6212
6213 case R_MIPS_CALL16:
6214 case R_MIPS_GOT_DISP:
6215 value = g;
6216 overflowed_p = mips_elf_overflow_p (value, 16);
6217 break;
6218
6219 case R_MIPS_GPREL32:
6220 value = (addend + symbol + gp0 - gp) & howto->dst_mask;
6221 break;
6222
6223 case R_MIPS_PC16:
6224 value = mips_elf_sign_extend (addend, 16) + symbol - p;
2a6d49ea 6225 value = (bfd_vma) ((bfd_signed_vma) value / 4);
7403cb63
MM
6226 overflowed_p = mips_elf_overflow_p (value, 16);
6227 break;
6228
6229 case R_MIPS_GOT_HI16:
6230 case R_MIPS_CALL_HI16:
6231 /* We're allowed to handle these two relocations identically.
6232 The dynamic linker is allowed to handle the CALL relocations
6233 differently by creating a lazy evaluation stub. */
6234 value = g;
6235 value = mips_elf_high (value);
6236 value &= howto->dst_mask;
6237 break;
6238
6239 case R_MIPS_GOT_LO16:
6240 case R_MIPS_CALL_LO16:
6241 value = g & howto->dst_mask;
6242 break;
6243
7403cb63
MM
6244 case R_MIPS_GOT_PAGE:
6245 value = mips_elf_got_page (abfd, info, symbol + addend, NULL);
6246 if (value == (bfd_vma) -1)
6247 return false;
6248 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6249 abfd,
6250 value);
6251 overflowed_p = mips_elf_overflow_p (value, 16);
6252 break;
6253
6254 case R_MIPS_GOT_OFST:
6255 mips_elf_got_page (abfd, info, symbol + addend, &value);
6256 overflowed_p = mips_elf_overflow_p (value, 16);
6257 break;
6258
6259 case R_MIPS_SUB:
6260 value = symbol - addend;
6261 value &= howto->dst_mask;
6262 break;
6263
6264 case R_MIPS_HIGHER:
6265 value = mips_elf_higher (addend + symbol);
6266 value &= howto->dst_mask;
6267 break;
6268
6269 case R_MIPS_HIGHEST:
6270 value = mips_elf_highest (addend + symbol);
6271 value &= howto->dst_mask;
6272 break;
6273
6274 case R_MIPS_SCN_DISP:
6275 value = symbol + addend - sec->output_offset;
6276 value &= howto->dst_mask;
6277 break;
6278
6279 case R_MIPS_PJUMP:
6280 case R_MIPS_JALR:
6281 /* Both of these may be ignored. R_MIPS_JALR is an optimization
6282 hint; we could improve performance by honoring that hint. */
6283 return bfd_reloc_continue;
6284
6285 case R_MIPS_GNU_VTINHERIT:
6286 case R_MIPS_GNU_VTENTRY:
6287 /* We don't do anything with these at present. */
6288 return bfd_reloc_continue;
6289
7403cb63
MM
6290 default:
6291 /* An unrecognized relocation type. */
6292 return bfd_reloc_notsupported;
6293 }
6294
6295 /* Store the VALUE for our caller. */
6296 *valuep = value;
6297 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6298}
6299
6300/* Obtain the field relocated by RELOCATION. */
6301
6302static bfd_vma
6303mips_elf_obtain_contents (howto, relocation, input_bfd, contents)
6304 reloc_howto_type *howto;
103186c6 6305 const Elf_Internal_Rela *relocation;
7403cb63
MM
6306 bfd *input_bfd;
6307 bfd_byte *contents;
6308{
6309 bfd_vma x;
6310 bfd_byte *location = contents + relocation->r_offset;
6311
b7233c24
MM
6312 /* Obtain the bytes. */
6313 x = bfd_get (8 * bfd_get_reloc_size (howto), input_bfd, location);
7403cb63 6314
6296902e
MM
6315 if ((ELF32_R_TYPE (relocation->r_info) == R_MIPS16_26
6316 || ELF32_R_TYPE (relocation->r_info) == R_MIPS16_GPREL)
1e52e2ee
MM
6317 && bfd_little_endian (input_bfd))
6318 /* The two 16-bit words will be reversed on a little-endian
6319 system. See mips_elf_perform_relocation for more details. */
6320 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
6321
7403cb63
MM
6322 return x;
6323}
6324
6325/* It has been determined that the result of the RELOCATION is the
6326 VALUE. Use HOWTO to place VALUE into the output file at the
6327 appropriate position. The SECTION is the section to which the
197b9ca0
MM
6328 relocation applies. If REQUIRE_JALX is true, then the opcode used
6329 for the relocation must be either JAL or JALX, and it is
6330 unconditionally converted to JALX.
7403cb63
MM
6331
6332 Returns false if anything goes wrong. */
252b5132 6333
197b9ca0 6334static boolean
e53bd91b 6335mips_elf_perform_relocation (info, howto, relocation, value,
197b9ca0
MM
6336 input_bfd, input_section,
6337 contents, require_jalx)
e53bd91b 6338 struct bfd_link_info *info;
7403cb63 6339 reloc_howto_type *howto;
103186c6 6340 const Elf_Internal_Rela *relocation;
7403cb63
MM
6341 bfd_vma value;
6342 bfd *input_bfd;
197b9ca0 6343 asection *input_section;
7403cb63 6344 bfd_byte *contents;
197b9ca0 6345 boolean require_jalx;
7403cb63
MM
6346{
6347 bfd_vma x;
e53bd91b 6348 bfd_byte *location;
197b9ca0 6349 int r_type = ELF32_R_TYPE (relocation->r_info);
e53bd91b
MM
6350
6351 /* Figure out where the relocation is occurring. */
6352 location = contents + relocation->r_offset;
252b5132 6353
7403cb63
MM
6354 /* Obtain the current value. */
6355 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
252b5132 6356
7403cb63
MM
6357 /* Clear the field we are setting. */
6358 x &= ~howto->dst_mask;
252b5132 6359
e53bd91b
MM
6360 /* If this is the R_MIPS16_26 relocation, we must store the
6361 value in a funny way. */
197b9ca0 6362 if (r_type == R_MIPS16_26)
7403cb63 6363 {
e53bd91b
MM
6364 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
6365 Most mips16 instructions are 16 bits, but these instructions
6366 are 32 bits.
6367
6368 The format of these instructions is:
6369
6370 +--------------+--------------------------------+
6371 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
6372 +--------------+--------------------------------+
6373 ! Immediate 15:0 !
6374 +-----------------------------------------------+
6375
6376 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
6377 Note that the immediate value in the first word is swapped.
6378
6379 When producing a relocateable object file, R_MIPS16_26 is
6380 handled mostly like R_MIPS_26. In particular, the addend is
6381 stored as a straight 26-bit value in a 32-bit instruction.
6382 (gas makes life simpler for itself by never adjusting a
6383 R_MIPS16_26 reloc to be against a section, so the addend is
6384 always zero). However, the 32 bit instruction is stored as 2
6385 16-bit values, rather than a single 32-bit value. In a
6386 big-endian file, the result is the same; in a little-endian
6387 file, the two 16-bit halves of the 32 bit value are swapped.
6388 This is so that a disassembler can recognize the jal
6389 instruction.
6390
6391 When doing a final link, R_MIPS16_26 is treated as a 32 bit
6392 instruction stored as two 16-bit values. The addend A is the
6393 contents of the targ26 field. The calculation is the same as
6394 R_MIPS_26. When storing the calculated value, reorder the
6395 immediate value as shown above, and don't forget to store the
6396 value as two 16-bit values.
6397
6398 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
6399 defined as
6400
6401 big-endian:
6402 +--------+----------------------+
6403 | | |
6404 | | targ26-16 |
6405 |31 26|25 0|
6406 +--------+----------------------+
6407
6408 little-endian:
6409 +----------+------+-------------+
6410 | | | |
6411 | sub1 | | sub2 |
6412 |0 9|10 15|16 31|
6413 +----------+--------------------+
6414 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
6415 ((sub1 << 16) | sub2)).
6416
6417 When producing a relocateable object file, the calculation is
6418 (((A < 2) | (P & 0xf0000000) + S) >> 2)
6419 When producing a fully linked file, the calculation is
6420 let R = (((A < 2) | (P & 0xf0000000) + S) >> 2)
6421 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
6422
6423 if (!info->relocateable)
6424 /* Shuffle the bits according to the formula above. */
6425 value = (((value & 0x1f0000) << 5)
6426 | ((value & 0x3e00000) >> 5)
6427 | (value & 0xffff));
6428
e53bd91b 6429 }
197b9ca0 6430 else if (r_type == R_MIPS16_GPREL)
b7233c24
MM
6431 {
6432 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
6433 mode. A typical instruction will have a format like this:
6434
6435 +--------------+--------------------------------+
6436 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
6437 +--------------+--------------------------------+
6438 ! Major ! rx ! ry ! Imm 4:0 !
6439 +--------------+--------------------------------+
6440
6441 EXTEND is the five bit value 11110. Major is the instruction
6442 opcode.
6443
6444 This is handled exactly like R_MIPS_GPREL16, except that the
6445 addend is retrieved and stored as shown in this diagram; that
6446 is, the Imm fields above replace the V-rel16 field.
6447
6296902e
MM
6448 All we need to do here is shuffle the bits appropriately. As
6449 above, the two 16-bit halves must be swapped on a
6450 little-endian system. */
b7233c24
MM
6451 value = (((value & 0x7e0) << 16)
6452 | ((value & 0xf800) << 5)
6453 | (value & 0x1f));
6454 }
252b5132 6455
e53bd91b
MM
6456 /* Set the field. */
6457 x |= (value & howto->dst_mask);
252b5132 6458
197b9ca0
MM
6459 /* If required, turn JAL into JALX. */
6460 if (require_jalx)
6461 {
6462 boolean ok;
6463 bfd_vma opcode = x >> 26;
6464 bfd_vma jalx_opcode;
6465
6466 /* Check to see if the opcode is already JAL or JALX. */
6467 if (r_type == R_MIPS16_26)
6468 {
6469 ok = ((opcode == 0x6) || (opcode == 0x7));
6470 jalx_opcode = 0x7;
6471 }
6472 else
6473 {
6474 ok = ((opcode == 0x3) || (opcode == 0x1d));
6475 jalx_opcode = 0x1d;
6476 }
6477
6478 /* If the opcode is not JAL or JALX, there's a problem. */
6479 if (!ok)
6480 {
6481 (*_bfd_error_handler)
6482 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
6483 bfd_get_filename (input_bfd),
6484 input_section->name,
6485 (unsigned long) relocation->r_offset);
6486 bfd_set_error (bfd_error_bad_value);
6487 return false;
6488 }
6489
6490 /* Make this the JALX opcode. */
6491 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6492 }
6493
6296902e
MM
6494 /* Swap the high- and low-order 16 bits on little-endian systems
6495 when doing a MIPS16 relocation. */
197b9ca0 6496 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
6296902e
MM
6497 && bfd_little_endian (input_bfd))
6498 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
6499
e53bd91b
MM
6500 /* Put the value into the output. */
6501 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
197b9ca0
MM
6502 return true;
6503}
6504
6505/* Returns true if SECTION is a MIPS16 stub section. */
6506
6507static boolean
6508mips_elf_stub_section_p (abfd, section)
6387d602 6509 bfd *abfd ATTRIBUTE_UNUSED;
197b9ca0
MM
6510 asection *section;
6511{
6512 const char *name = bfd_get_section_name (abfd, section);
6513
6514 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
6515 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
6516 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
7403cb63 6517}
252b5132 6518
7403cb63 6519/* Relocate a MIPS ELF section. */
252b5132 6520
103186c6
MM
6521boolean
6522_bfd_mips_elf_relocate_section (output_bfd, info, input_bfd, input_section,
6523 contents, relocs, local_syms, local_sections)
7403cb63
MM
6524 bfd *output_bfd;
6525 struct bfd_link_info *info;
6526 bfd *input_bfd;
6527 asection *input_section;
6528 bfd_byte *contents;
6529 Elf_Internal_Rela *relocs;
6530 Elf_Internal_Sym *local_syms;
6531 asection **local_sections;
6532{
31367b81 6533 Elf_Internal_Rela *rel;
103186c6 6534 const Elf_Internal_Rela *relend;
86033394 6535 bfd_vma addend = 0;
7403cb63 6536 boolean use_saved_addend_p = false;
103186c6 6537 struct elf_backend_data *bed;
252b5132 6538
103186c6
MM
6539 bed = get_elf_backend_data (output_bfd);
6540 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
7403cb63
MM
6541 for (rel = relocs; rel < relend; ++rel)
6542 {
6543 const char *name;
6544 bfd_vma value;
7403cb63 6545 reloc_howto_type *howto;
197b9ca0 6546 boolean require_jalx;
31367b81
MM
6547 /* True if the relocation is a RELA relocation, rather than a
6548 REL relocation. */
6549 boolean rela_relocation_p = true;
6550 int r_type = ELF32_R_TYPE (rel->r_info);
252b5132 6551
7403cb63 6552 /* Find the relocation howto for this relocation. */
31367b81 6553 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
0af99795
GK
6554 {
6555 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6556 64-bit code, but make sure all their addresses are in the
6557 lowermost or uppermost 32-bit section of the 64-bit address
6558 space. Thus, when they use an R_MIPS_64 they mean what is
6559 usually meant by R_MIPS_32, with the exception that the
6560 stored value is sign-extended to 64 bits. */
6561 howto = elf_mips_howto_table + R_MIPS_32;
6562
6563 /* On big-endian systems, we need to lie about the position
6564 of the reloc. */
6565 if (bfd_big_endian (input_bfd))
6566 rel->r_offset += 4;
6567 }
a3c7651d 6568 else
c9b3cbf3 6569 howto = mips_rtype_to_howto (r_type);
252b5132 6570
7403cb63
MM
6571 if (!use_saved_addend_p)
6572 {
6573 Elf_Internal_Shdr *rel_hdr;
6574
6575 /* If these relocations were originally of the REL variety,
6576 we must pull the addend out of the field that will be
6577 relocated. Otherwise, we simply use the contents of the
6578 RELA relocation. To determine which flavor or relocation
6579 this is, we depend on the fact that the INPUT_SECTION's
6580 REL_HDR is read before its REL_HDR2. */
6581 rel_hdr = &elf_section_data (input_section)->rel_hdr;
5f771d47 6582 if ((size_t) (rel - relocs)
103186c6
MM
6583 >= (rel_hdr->sh_size / rel_hdr->sh_entsize
6584 * bed->s->int_rels_per_ext_rel))
7403cb63 6585 rel_hdr = elf_section_data (input_section)->rel_hdr2;
103186c6 6586 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7403cb63 6587 {
31367b81
MM
6588 /* Note that this is a REL relocation. */
6589 rela_relocation_p = false;
7403cb63 6590
31367b81 6591 /* Get the addend, which is stored in the input file. */
7403cb63
MM
6592 addend = mips_elf_obtain_contents (howto,
6593 rel,
6594 input_bfd,
6595 contents);
6596 addend &= howto->src_mask;
6597
6598 /* For some kinds of relocations, the ADDEND is a
6599 combination of the addend stored in two different
6600 relocations. */
6387d602 6601 if (r_type == R_MIPS_HI16
bb2d6cd7 6602 || r_type == R_MIPS_GNU_REL_HI16
6387d602
ILT
6603 || (r_type == R_MIPS_GOT16
6604 && mips_elf_local_relocation_p (input_bfd, rel,
6605 local_sections)))
252b5132 6606 {
23b255aa
MM
6607 bfd_vma l;
6608 const Elf_Internal_Rela *lo16_relocation;
6609 reloc_howto_type *lo16_howto;
bb2d6cd7 6610 int lo;
23b255aa 6611
e7c44218
MM
6612 /* The combined value is the sum of the HI16 addend,
6613 left-shifted by sixteen bits, and the LO16
6614 addend, sign extended. (Usually, the code does
6615 a `lui' of the HI16 value, and then an `addiu' of
6616 the LO16 value.)
6617
bb2d6cd7
GK
6618 Scan ahead to find a matching LO16 relocation. */
6619 if (r_type == R_MIPS_GNU_REL_HI16)
6620 lo = R_MIPS_GNU_REL_LO16;
6621 else
6622 lo = R_MIPS_LO16;
23b255aa 6623 lo16_relocation
bb2d6cd7 6624 = mips_elf_next_relocation (lo, rel, relend);
23b255aa 6625 if (lo16_relocation == NULL)
7403cb63 6626 return false;
252b5132 6627
23b255aa 6628 /* Obtain the addend kept there. */
bb2d6cd7 6629 lo16_howto = mips_rtype_to_howto (lo);
23b255aa
MM
6630 l = mips_elf_obtain_contents (lo16_howto,
6631 lo16_relocation,
6632 input_bfd, contents);
6633 l &= lo16_howto->src_mask;
e7c44218 6634 l = mips_elf_sign_extend (l, 16);
23b255aa 6635
7403cb63 6636 addend <<= 16;
252b5132 6637
7403cb63 6638 /* Compute the combined addend. */
e7c44218 6639 addend += l;
252b5132 6640 }
b7233c24
MM
6641 else if (r_type == R_MIPS16_GPREL)
6642 {
6643 /* The addend is scrambled in the object file. See
6644 mips_elf_perform_relocation for details on the
6645 format. */
6646 addend = (((addend & 0x1f0000) >> 5)
6647 | ((addend & 0x7e00000) >> 16)
6648 | (addend & 0x1f));
6649 }
252b5132
RH
6650 }
6651 else
7403cb63
MM
6652 addend = rel->r_addend;
6653 }
252b5132 6654
31367b81
MM
6655 if (info->relocateable)
6656 {
6657 Elf_Internal_Sym *sym;
6658 unsigned long r_symndx;
6659
7893e6a2
GK
6660 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd)
6661 && bfd_big_endian (input_bfd))
6662 rel->r_offset -= 4;
6663
31367b81 6664 /* Since we're just relocating, all we need to do is copy
0db63c18
MM
6665 the relocations back out to the object file, unless
6666 they're against a section symbol, in which case we need
6667 to adjust by the section offset, or unless they're GP
6668 relative in which case we need to adjust by the amount
6669 that we're adjusting GP in this relocateable object. */
31367b81
MM
6670
6671 if (!mips_elf_local_relocation_p (input_bfd, rel, local_sections))
f1a5f37e 6672 /* There's nothing to do for non-local relocations. */
31367b81
MM
6673 continue;
6674
0db63c18
MM
6675 if (r_type == R_MIPS16_GPREL
6676 || r_type == R_MIPS_GPREL16
0af99795
GK
6677 || r_type == R_MIPS_GPREL32
6678 || r_type == R_MIPS_LITERAL)
0db63c18
MM
6679 addend -= (_bfd_get_gp_value (output_bfd)
6680 - _bfd_get_gp_value (input_bfd));
bb2d6cd7
GK
6681 else if (r_type == R_MIPS_26 || r_type == R_MIPS16_26
6682 || r_type == R_MIPS_GNU_REL16_S2)
e7c44218
MM
6683 /* The addend is stored without its two least
6684 significant bits (which are always zero.) In a
6685 non-relocateable link, calculate_relocation will do
6686 this shift; here, we must do it ourselves. */
6687 addend <<= 2;
31367b81 6688
4f2860ca
MM
6689 r_symndx = ELF32_R_SYM (rel->r_info);
6690 sym = local_syms + r_symndx;
6691 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6692 /* Adjust the addend appropriately. */
6693 addend += local_sections[r_symndx]->output_offset;
6694
f1a5f37e
MM
6695 /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16,
6696 then we only want to write out the high-order 16 bits.
6697 The subsequent R_MIPS_LO16 will handle the low-order bits. */
bb2d6cd7
GK
6698 if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GOT16
6699 || r_type == R_MIPS_GNU_REL_HI16)
23b255aa 6700 addend = mips_elf_high (addend);
5a44662b
MM
6701 /* If the relocation is for an R_MIPS_26 relocation, then
6702 the two low-order bits are not stored in the object file;
6703 they are implicitly zero. */
bb2d6cd7
GK
6704 else if (r_type == R_MIPS_26 || r_type == R_MIPS16_26
6705 || r_type == R_MIPS_GNU_REL16_S2)
5a44662b 6706 addend >>= 2;
f1a5f37e 6707
31367b81
MM
6708 if (rela_relocation_p)
6709 /* If this is a RELA relocation, just update the addend.
bb2d6cd7 6710 We have to cast away constness for REL. */
31367b81
MM
6711 rel->r_addend = addend;
6712 else
6713 {
6714 /* Otherwise, we have to write the value back out. Note
6715 that we use the source mask, rather than the
6716 destination mask because the place to which we are
6717 writing will be source of the addend in the final
6718 link. */
6719 addend &= howto->src_mask;
7893e6a2
GK
6720
6721 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
6722 /* See the comment above about using R_MIPS_64 in the 32-bit
6723 ABI. Here, we need to update the addend. It would be
6724 possible to get away with just using the R_MIPS_32 reloc
6725 but for endianness. */
6726 {
6727 bfd_vma sign_bits;
6728 bfd_vma low_bits;
6729 bfd_vma high_bits;
6730
fc633e5b
AM
6731 if (addend & ((bfd_vma) 1 << 31))
6732 sign_bits = ((bfd_vma) 1 << 32) - 1;
7893e6a2
GK
6733 else
6734 sign_bits = 0;
6735
6736 /* If we don't know that we have a 64-bit type,
6737 do two separate stores. */
6738 if (bfd_big_endian (input_bfd))
6739 {
6740 /* Store the sign-bits (which are most significant)
6741 first. */
6742 low_bits = sign_bits;
6743 high_bits = addend;
6744 }
6745 else
6746 {
6747 low_bits = addend;
6748 high_bits = sign_bits;
6749 }
6750 bfd_put_32 (input_bfd, low_bits,
6751 contents + rel->r_offset);
6752 bfd_put_32 (input_bfd, high_bits,
6753 contents + rel->r_offset + 4);
6754 continue;
6755 }
6756
31367b81
MM
6757 if (!mips_elf_perform_relocation (info, howto, rel, addend,
6758 input_bfd, input_section,
6759 contents, false))
6760 return false;
6761 }
6762
6763 /* Go on to the next relocation. */
6764 continue;
6765 }
6766
7403cb63
MM
6767 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6768 relocations for the same offset. In that case we are
6769 supposed to treat the output of each relocation as the addend
6770 for the next. */
103186c6
MM
6771 if (rel + 1 < relend
6772 && rel->r_offset == rel[1].r_offset
b89db8f2 6773 && ELF32_R_TYPE (rel[1].r_info) != R_MIPS_NONE)
7403cb63
MM
6774 use_saved_addend_p = true;
6775 else
6776 use_saved_addend_p = false;
6777
6778 /* Figure out what value we are supposed to relocate. */
6779 switch (mips_elf_calculate_relocation (output_bfd,
6780 input_bfd,
6781 input_section,
6782 info,
6783 rel,
6784 addend,
6785 howto,
7403cb63
MM
6786 local_syms,
6787 local_sections,
6788 &value,
197b9ca0
MM
6789 &name,
6790 &require_jalx))
7403cb63
MM
6791 {
6792 case bfd_reloc_continue:
6793 /* There's nothing to do. */
6794 continue;
252b5132 6795
7403cb63 6796 case bfd_reloc_undefined:
6387d602 6797 /* mips_elf_calculate_relocation already called the
bb2d6cd7 6798 undefined_symbol callback. There's no real point in
97287574
MM
6799 trying to perform the relocation at this point, so we
6800 just skip ahead to the next relocation. */
6801 continue;
252b5132 6802
7403cb63
MM
6803 case bfd_reloc_notsupported:
6804 abort ();
6805 break;
252b5132 6806
7403cb63
MM
6807 case bfd_reloc_overflow:
6808 if (use_saved_addend_p)
6809 /* Ignore overflow until we reach the last relocation for
6810 a given location. */
6811 ;
6387d602
ILT
6812 else
6813 {
6814 BFD_ASSERT (name != NULL);
6815 if (! ((*info->callbacks->reloc_overflow)
6816 (info, name, howto->name, (bfd_vma) 0,
6817 input_bfd, input_section, rel->r_offset)))
6818 return false;
6819 }
7403cb63 6820 break;
252b5132 6821
7403cb63
MM
6822 case bfd_reloc_ok:
6823 break;
6824
6825 default:
6826 abort ();
6827 break;
252b5132
RH
6828 }
6829
7403cb63
MM
6830 /* If we've got another relocation for the address, keep going
6831 until we reach the last one. */
6832 if (use_saved_addend_p)
252b5132 6833 {
7403cb63
MM
6834 addend = value;
6835 continue;
252b5132 6836 }
7403cb63 6837
31367b81 6838 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
a3c7651d
MM
6839 /* See the comment above about using R_MIPS_64 in the 32-bit
6840 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6841 that calculated the right value. Now, however, we
6842 sign-extend the 32-bit result to 64-bits, and store it as a
6843 64-bit value. We are especially generous here in that we
6844 go to extreme lengths to support this usage on systems with
6845 only a 32-bit VMA. */
6846 {
a3c7651d
MM
6847 bfd_vma sign_bits;
6848 bfd_vma low_bits;
6849 bfd_vma high_bits;
6850
fc633e5b
AM
6851 if (value & ((bfd_vma) 1 << 31))
6852 sign_bits = ((bfd_vma) 1 << 32) - 1;
a3c7651d
MM
6853 else
6854 sign_bits = 0;
6855
7893e6a2
GK
6856 /* If we don't know that we have a 64-bit type,
6857 do two separate stores. */
a3c7651d
MM
6858 if (bfd_big_endian (input_bfd))
6859 {
0af99795
GK
6860 /* Undo what we did above. */
6861 rel->r_offset -= 4;
a3c7651d
MM
6862 /* Store the sign-bits (which are most significant)
6863 first. */
6864 low_bits = sign_bits;
6865 high_bits = value;
6866 }
6867 else
6868 {
6869 low_bits = value;
6870 high_bits = sign_bits;
6871 }
6872 bfd_put_32 (input_bfd, low_bits,
6873 contents + rel->r_offset);
6874 bfd_put_32 (input_bfd, high_bits,
6875 contents + rel->r_offset + 4);
6876 continue;
a3c7651d
MM
6877 }
6878
7403cb63 6879 /* Actually perform the relocation. */
197b9ca0
MM
6880 if (!mips_elf_perform_relocation (info, howto, rel, value, input_bfd,
6881 input_section, contents,
6882 require_jalx))
6883 return false;
252b5132
RH
6884 }
6885
6886 return true;
6887}
6888
6889/* This hook function is called before the linker writes out a global
6890 symbol. We mark symbols as small common if appropriate. This is
6891 also where we undo the increment of the value for a mips16 symbol. */
6892
6893/*ARGSIGNORED*/
103186c6
MM
6894boolean
6895_bfd_mips_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec)
5f771d47
ILT
6896 bfd *abfd ATTRIBUTE_UNUSED;
6897 struct bfd_link_info *info ATTRIBUTE_UNUSED;
6898 const char *name ATTRIBUTE_UNUSED;
252b5132
RH
6899 Elf_Internal_Sym *sym;
6900 asection *input_sec;
6901{
6902 /* If we see a common symbol, which implies a relocatable link, then
6903 if a symbol was small common in an input file, mark it as small
6904 common in the output file. */
6905 if (sym->st_shndx == SHN_COMMON
6906 && strcmp (input_sec->name, ".scommon") == 0)
6907 sym->st_shndx = SHN_MIPS_SCOMMON;
6908
6909 if (sym->st_other == STO_MIPS16
6910 && (sym->st_value & 1) != 0)
6911 --sym->st_value;
6912
6913 return true;
6914}
6915\f
6916/* Functions for the dynamic linker. */
6917
6918/* The name of the dynamic interpreter. This is put in the .interp
6919 section. */
6920
103186c6
MM
6921#define ELF_DYNAMIC_INTERPRETER(abfd) \
6922 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
6923 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
6924 : "/usr/lib/libc.so.1")
252b5132
RH
6925
6926/* Create dynamic sections when linking against a dynamic object. */
6927
103186c6
MM
6928boolean
6929_bfd_mips_elf_create_dynamic_sections (abfd, info)
252b5132
RH
6930 bfd *abfd;
6931 struct bfd_link_info *info;
6932{
6933 struct elf_link_hash_entry *h;
6934 flagword flags;
6935 register asection *s;
6936 const char * const *namep;
6937
6938 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
6939 | SEC_LINKER_CREATED | SEC_READONLY);
6940
6941 /* Mips ABI requests the .dynamic section to be read only. */
6942 s = bfd_get_section_by_name (abfd, ".dynamic");
6943 if (s != NULL)
6944 {
6945 if (! bfd_set_section_flags (abfd, s, flags))
6946 return false;
6947 }
6948
6949 /* We need to create .got section. */
6950 if (! mips_elf_create_got_section (abfd, info))
6951 return false;
6952
c6142e5d
MM
6953 /* Create the .msym section on IRIX6. It is used by the dynamic
6954 linker to speed up dynamic relocations, and to avoid computing
6955 the ELF hash for symbols. */
6956 if (IRIX_COMPAT (abfd) == ict_irix6
6957 && !mips_elf_create_msym_section (abfd))
6958 return false;
6959
252b5132 6960 /* Create .stub section. */
7403cb63
MM
6961 if (bfd_get_section_by_name (abfd,
6962 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
252b5132 6963 {
7403cb63 6964 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
252b5132 6965 if (s == NULL
7403cb63 6966 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
103186c6
MM
6967 || ! bfd_set_section_alignment (abfd, s,
6968 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
252b5132
RH
6969 return false;
6970 }
6971
7403cb63 6972 if (IRIX_COMPAT (abfd) == ict_irix5
252b5132
RH
6973 && !info->shared
6974 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
6975 {
6976 s = bfd_make_section (abfd, ".rld_map");
6977 if (s == NULL
6978 || ! bfd_set_section_flags (abfd, s, flags & ~SEC_READONLY)
103186c6
MM
6979 || ! bfd_set_section_alignment (abfd, s,
6980 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
252b5132
RH
6981 return false;
6982 }
6983
303f629d
MM
6984 /* On IRIX5, we adjust add some additional symbols and change the
6985 alignments of several sections. There is no ABI documentation
6986 indicating that this is necessary on IRIX6, nor any evidence that
6987 the linker takes such action. */
6988 if (IRIX_COMPAT (abfd) == ict_irix5)
252b5132
RH
6989 {
6990 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
6991 {
6992 h = NULL;
6993 if (! (_bfd_generic_link_add_one_symbol
6994 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr,
6995 (bfd_vma) 0, (const char *) NULL, false,
6996 get_elf_backend_data (abfd)->collect,
6997 (struct bfd_link_hash_entry **) &h)))
6998 return false;
6999 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
7000 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7001 h->type = STT_SECTION;
7002
7003 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7004 return false;
7005 }
7006
7007 /* We need to create a .compact_rel section. */
7008 if (! mips_elf_create_compact_rel_section (abfd, info))
7009 return false;
7010
7011 /* Change aligments of some sections. */
7012 s = bfd_get_section_by_name (abfd, ".hash");
7013 if (s != NULL)
7014 bfd_set_section_alignment (abfd, s, 4);
7015 s = bfd_get_section_by_name (abfd, ".dynsym");
7016 if (s != NULL)
7017 bfd_set_section_alignment (abfd, s, 4);
7018 s = bfd_get_section_by_name (abfd, ".dynstr");
7019 if (s != NULL)
7020 bfd_set_section_alignment (abfd, s, 4);
7021 s = bfd_get_section_by_name (abfd, ".reginfo");
7022 if (s != NULL)
7023 bfd_set_section_alignment (abfd, s, 4);
7024 s = bfd_get_section_by_name (abfd, ".dynamic");
7025 if (s != NULL)
7026 bfd_set_section_alignment (abfd, s, 4);
7027 }
7028
7029 if (!info->shared)
7030 {
7031 h = NULL;
7032 if (! (_bfd_generic_link_add_one_symbol
7033 (info, abfd, "_DYNAMIC_LINK", BSF_GLOBAL, bfd_abs_section_ptr,
7034 (bfd_vma) 0, (const char *) NULL, false,
7035 get_elf_backend_data (abfd)->collect,
7036 (struct bfd_link_hash_entry **) &h)))
7037 return false;
7038 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
7039 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7040 h->type = STT_SECTION;
7041
7042 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7043 return false;
7044
7045 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7046 {
7047 /* __rld_map is a four byte word located in the .data section
7048 and is filled in by the rtld to contain a pointer to
7049 the _r_debug structure. Its symbol value will be set in
7050 mips_elf_finish_dynamic_symbol. */
7051 s = bfd_get_section_by_name (abfd, ".rld_map");
7052 BFD_ASSERT (s != NULL);
7053
7054 h = NULL;
7055 if (! (_bfd_generic_link_add_one_symbol
7056 (info, abfd, "__rld_map", BSF_GLOBAL, s,
7057 (bfd_vma) 0, (const char *) NULL, false,
7058 get_elf_backend_data (abfd)->collect,
7059 (struct bfd_link_hash_entry **) &h)))
7060 return false;
7061 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
7062 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7063 h->type = STT_OBJECT;
7064
7065 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7066 return false;
7067 }
7068 }
7069
7070 return true;
7071}
7072
7073/* Create the .compact_rel section. */
7074
7075static boolean
7076mips_elf_create_compact_rel_section (abfd, info)
7077 bfd *abfd;
5f771d47 7078 struct bfd_link_info *info ATTRIBUTE_UNUSED;
252b5132
RH
7079{
7080 flagword flags;
7081 register asection *s;
7082
7083 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
7084 {
7085 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
7086 | SEC_READONLY);
7087
7088 s = bfd_make_section (abfd, ".compact_rel");
7089 if (s == NULL
7090 || ! bfd_set_section_flags (abfd, s, flags)
103186c6
MM
7091 || ! bfd_set_section_alignment (abfd, s,
7092 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
252b5132
RH
7093 return false;
7094
7095 s->_raw_size = sizeof (Elf32_External_compact_rel);
7096 }
7097
7098 return true;
7099}
7100
7101/* Create the .got section to hold the global offset table. */
7102
7103static boolean
7104mips_elf_create_got_section (abfd, info)
7105 bfd *abfd;
7106 struct bfd_link_info *info;
7107{
7108 flagword flags;
7109 register asection *s;
7110 struct elf_link_hash_entry *h;
7111 struct mips_got_info *g;
7112
7113 /* This function may be called more than once. */
103186c6 7114 if (mips_elf_got_section (abfd))
252b5132
RH
7115 return true;
7116
7117 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7118 | SEC_LINKER_CREATED);
7119
7120 s = bfd_make_section (abfd, ".got");
7121 if (s == NULL
7122 || ! bfd_set_section_flags (abfd, s, flags)
7123 || ! bfd_set_section_alignment (abfd, s, 4))
7124 return false;
7125
7126 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
7127 linker script because we don't want to define the symbol if we
7128 are not creating a global offset table. */
7129 h = NULL;
7130 if (! (_bfd_generic_link_add_one_symbol
7131 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
7132 (bfd_vma) 0, (const char *) NULL, false,
7133 get_elf_backend_data (abfd)->collect,
7134 (struct bfd_link_hash_entry **) &h)))
7135 return false;
7136 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
7137 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7138 h->type = STT_OBJECT;
7139
7140 if (info->shared
7141 && ! bfd_elf32_link_record_dynamic_symbol (info, h))
7142 return false;
7143
7144 /* The first several global offset table entries are reserved. */
103186c6 7145 s->_raw_size = MIPS_RESERVED_GOTNO * MIPS_ELF_GOT_SIZE (abfd);
252b5132
RH
7146
7147 g = (struct mips_got_info *) bfd_alloc (abfd,
7148 sizeof (struct mips_got_info));
7149 if (g == NULL)
7150 return false;
7403cb63 7151 g->global_gotsym = NULL;
252b5132
RH
7152 g->local_gotno = MIPS_RESERVED_GOTNO;
7153 g->assigned_gotno = MIPS_RESERVED_GOTNO;
7154 if (elf_section_data (s) == NULL)
7155 {
7156 s->used_by_bfd =
7157 (PTR) bfd_zalloc (abfd, sizeof (struct bfd_elf_section_data));
7158 if (elf_section_data (s) == NULL)
7159 return false;
7160 }
7161 elf_section_data (s)->tdata = (PTR) g;
7403cb63
MM
7162 elf_section_data (s)->this_hdr.sh_flags
7163 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
252b5132
RH
7164
7165 return true;
7166}
7167
c6142e5d
MM
7168/* Returns the .msym section for ABFD, creating it if it does not
7169 already exist. Returns NULL to indicate error. */
7170
7171static asection *
7172mips_elf_create_msym_section (abfd)
7173 bfd *abfd;
7174{
7175 asection *s;
7176
7177 s = bfd_get_section_by_name (abfd, MIPS_ELF_MSYM_SECTION_NAME (abfd));
7178 if (!s)
7179 {
7180 s = bfd_make_section (abfd, MIPS_ELF_MSYM_SECTION_NAME (abfd));
7181 if (!s
7182 || !bfd_set_section_flags (abfd, s,
7183 SEC_ALLOC
7184 | SEC_LOAD
7185 | SEC_HAS_CONTENTS
7186 | SEC_LINKER_CREATED
7187 | SEC_READONLY)
103186c6
MM
7188 || !bfd_set_section_alignment (abfd, s,
7189 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
c6142e5d
MM
7190 return NULL;
7191 }
7192
7193 return s;
7194}
7195
103186c6
MM
7196/* Add room for N relocations to the .rel.dyn section in ABFD. */
7197
7198static void
7199mips_elf_allocate_dynamic_relocations (abfd, n)
7200 bfd *abfd;
7201 unsigned int n;
7202{
7203 asection *s;
7204
7205 s = bfd_get_section_by_name (abfd, MIPS_ELF_REL_DYN_SECTION_NAME (abfd));
7206 BFD_ASSERT (s != NULL);
7207
7208 if (s->_raw_size == 0)
7209 {
7210 /* Make room for a null element. */
7211 s->_raw_size += MIPS_ELF_REL_SIZE (abfd);
7212 ++s->reloc_count;
7213 }
7214 s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd);
7215}
7216
252b5132
RH
7217/* Look through the relocs for a section during the first phase, and
7218 allocate space in the global offset table. */
7219
103186c6
MM
7220boolean
7221_bfd_mips_elf_check_relocs (abfd, info, sec, relocs)
252b5132
RH
7222 bfd *abfd;
7223 struct bfd_link_info *info;
7224 asection *sec;
7225 const Elf_Internal_Rela *relocs;
7226{
7227 const char *name;
7228 bfd *dynobj;
7229 Elf_Internal_Shdr *symtab_hdr;
7230 struct elf_link_hash_entry **sym_hashes;
7231 struct mips_got_info *g;
7232 size_t extsymoff;
7233 const Elf_Internal_Rela *rel;
7234 const Elf_Internal_Rela *rel_end;
7235 asection *sgot;
7236 asection *sreloc;
103186c6 7237 struct elf_backend_data *bed;
252b5132
RH
7238
7239 if (info->relocateable)
7240 return true;
7241
7242 dynobj = elf_hash_table (info)->dynobj;
7243 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7244 sym_hashes = elf_sym_hashes (abfd);
7245 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7246
7247 /* Check for the mips16 stub sections. */
7248
7249 name = bfd_get_section_name (abfd, sec);
7250 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
7251 {
7252 unsigned long r_symndx;
7253
7254 /* Look at the relocation information to figure out which symbol
7255 this is for. */
7256
7257 r_symndx = ELF32_R_SYM (relocs->r_info);
7258
7259 if (r_symndx < extsymoff
7260 || sym_hashes[r_symndx - extsymoff] == NULL)
7261 {
7262 asection *o;
7263
7264 /* This stub is for a local symbol. This stub will only be
7265 needed if there is some relocation in this BFD, other
7266 than a 16 bit function call, which refers to this symbol. */
7267 for (o = abfd->sections; o != NULL; o = o->next)
7268 {
7269 Elf_Internal_Rela *sec_relocs;
7270 const Elf_Internal_Rela *r, *rend;
7271
7272 /* We can ignore stub sections when looking for relocs. */
7273 if ((o->flags & SEC_RELOC) == 0
7274 || o->reloc_count == 0
7275 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
7276 sizeof FN_STUB - 1) == 0
7277 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
7278 sizeof CALL_STUB - 1) == 0
7279 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
7280 sizeof CALL_FP_STUB - 1) == 0)
7281 continue;
7282
7283 sec_relocs = (_bfd_elf32_link_read_relocs
7284 (abfd, o, (PTR) NULL,
7285 (Elf_Internal_Rela *) NULL,
7286 info->keep_memory));
7287 if (sec_relocs == NULL)
7288 return false;
7289
7290 rend = sec_relocs + o->reloc_count;
7291 for (r = sec_relocs; r < rend; r++)
7292 if (ELF32_R_SYM (r->r_info) == r_symndx
7293 && ELF32_R_TYPE (r->r_info) != R_MIPS16_26)
7294 break;
7295
7296 if (! info->keep_memory)
7297 free (sec_relocs);
7298
7299 if (r < rend)
7300 break;
7301 }
7302
7303 if (o == NULL)
7304 {
7305 /* There is no non-call reloc for this stub, so we do
7306 not need it. Since this function is called before
7307 the linker maps input sections to output sections, we
7308 can easily discard it by setting the SEC_EXCLUDE
7309 flag. */
7310 sec->flags |= SEC_EXCLUDE;
7311 return true;
7312 }
7313
7314 /* Record this stub in an array of local symbol stubs for
7315 this BFD. */
7316 if (elf_tdata (abfd)->local_stubs == NULL)
7317 {
7318 unsigned long symcount;
7319 asection **n;
7320
7321 if (elf_bad_symtab (abfd))
103186c6 7322 symcount = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
252b5132
RH
7323 else
7324 symcount = symtab_hdr->sh_info;
7325 n = (asection **) bfd_zalloc (abfd,
7326 symcount * sizeof (asection *));
7327 if (n == NULL)
7328 return false;
7329 elf_tdata (abfd)->local_stubs = n;
7330 }
7331
7332 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7333
7334 /* We don't need to set mips16_stubs_seen in this case.
7335 That flag is used to see whether we need to look through
7336 the global symbol table for stubs. We don't need to set
7337 it here, because we just have a local stub. */
7338 }
7339 else
7340 {
7341 struct mips_elf_link_hash_entry *h;
7342
7343 h = ((struct mips_elf_link_hash_entry *)
7344 sym_hashes[r_symndx - extsymoff]);
7345
7346 /* H is the symbol this stub is for. */
7347
7348 h->fn_stub = sec;
7349 mips_elf_hash_table (info)->mips16_stubs_seen = true;
7350 }
7351 }
7352 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
7353 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
7354 {
7355 unsigned long r_symndx;
7356 struct mips_elf_link_hash_entry *h;
7357 asection **loc;
7358
7359 /* Look at the relocation information to figure out which symbol
7360 this is for. */
7361
7362 r_symndx = ELF32_R_SYM (relocs->r_info);
7363
7364 if (r_symndx < extsymoff
7365 || sym_hashes[r_symndx - extsymoff] == NULL)
7366 {
7367 /* This stub was actually built for a static symbol defined
7368 in the same file. We assume that all static symbols in
7369 mips16 code are themselves mips16, so we can simply
7370 discard this stub. Since this function is called before
7371 the linker maps input sections to output sections, we can
7372 easily discard it by setting the SEC_EXCLUDE flag. */
7373 sec->flags |= SEC_EXCLUDE;
7374 return true;
7375 }
7376
7377 h = ((struct mips_elf_link_hash_entry *)
7378 sym_hashes[r_symndx - extsymoff]);
7379
7380 /* H is the symbol this stub is for. */
7381
7382 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
7383 loc = &h->call_fp_stub;
7384 else
7385 loc = &h->call_stub;
7386
7387 /* If we already have an appropriate stub for this function, we
7388 don't need another one, so we can discard this one. Since
7389 this function is called before the linker maps input sections
7390 to output sections, we can easily discard it by setting the
7391 SEC_EXCLUDE flag. We can also discard this section if we
7392 happen to already know that this is a mips16 function; it is
7393 not necessary to check this here, as it is checked later, but
7394 it is slightly faster to check now. */
7395 if (*loc != NULL || h->root.other == STO_MIPS16)
7396 {
7397 sec->flags |= SEC_EXCLUDE;
7398 return true;
7399 }
7400
7401 *loc = sec;
7402 mips_elf_hash_table (info)->mips16_stubs_seen = true;
7403 }
7404
7405 if (dynobj == NULL)
7406 {
7407 sgot = NULL;
7408 g = NULL;
7409 }
7410 else
7411 {
103186c6 7412 sgot = mips_elf_got_section (dynobj);
252b5132
RH
7413 if (sgot == NULL)
7414 g = NULL;
7415 else
7416 {
7417 BFD_ASSERT (elf_section_data (sgot) != NULL);
7418 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
7419 BFD_ASSERT (g != NULL);
7420 }
7421 }
7422
7423 sreloc = NULL;
103186c6
MM
7424 bed = get_elf_backend_data (abfd);
7425 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7426 for (rel = relocs; rel < rel_end; ++rel)
252b5132
RH
7427 {
7428 unsigned long r_symndx;
7403cb63 7429 int r_type;
252b5132
RH
7430 struct elf_link_hash_entry *h;
7431
7432 r_symndx = ELF32_R_SYM (rel->r_info);
7403cb63 7433 r_type = ELF32_R_TYPE (rel->r_info);
252b5132
RH
7434
7435 if (r_symndx < extsymoff)
7436 h = NULL;
7437 else
7438 {
7439 h = sym_hashes[r_symndx - extsymoff];
7440
7441 /* This may be an indirect symbol created because of a version. */
7442 if (h != NULL)
7443 {
7444 while (h->root.type == bfd_link_hash_indirect)
7445 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7446 }
7447 }
7448
7449 /* Some relocs require a global offset table. */
7450 if (dynobj == NULL || sgot == NULL)
7451 {
7403cb63 7452 switch (r_type)
252b5132
RH
7453 {
7454 case R_MIPS_GOT16:
7455 case R_MIPS_CALL16:
7456 case R_MIPS_CALL_HI16:
7457 case R_MIPS_CALL_LO16:
7458 case R_MIPS_GOT_HI16:
7459 case R_MIPS_GOT_LO16:
435394bf
MM
7460 case R_MIPS_GOT_PAGE:
7461 case R_MIPS_GOT_OFST:
7462 case R_MIPS_GOT_DISP:
252b5132
RH
7463 if (dynobj == NULL)
7464 elf_hash_table (info)->dynobj = dynobj = abfd;
7465 if (! mips_elf_create_got_section (dynobj, info))
7466 return false;
7403cb63 7467 g = mips_elf_got_info (dynobj, &sgot);
252b5132
RH
7468 break;
7469
7470 case R_MIPS_32:
7471 case R_MIPS_REL32:
a3c7651d 7472 case R_MIPS_64:
252b5132
RH
7473 if (dynobj == NULL
7474 && (info->shared || h != NULL)
7475 && (sec->flags & SEC_ALLOC) != 0)
7476 elf_hash_table (info)->dynobj = dynobj = abfd;
7477 break;
7478
7479 default:
7480 break;
7481 }
7482 }
7483
7403cb63
MM
7484 if (!h && (r_type == R_MIPS_CALL_LO16
7485 || r_type == R_MIPS_GOT_LO16
9458945f 7486 || r_type == R_MIPS_GOT_DISP))
252b5132 7487 {
7403cb63 7488 /* We may need a local GOT entry for this relocation. We
97287574
MM
7489 don't count R_MIPS_GOT_PAGE because we can estimate the
7490 maximum number of pages needed by looking at the size of
9458945f
MM
7491 the segment. Similar comments apply to R_MIPS_GOT16. We
7492 don't count R_MIPS_GOT_HI16, or R_MIPS_CALL_HI16 because
7493 these are always followed by an R_MIPS_GOT_LO16 or
7494 R_MIPS_CALL_LO16.
7403cb63
MM
7495
7496 This estimation is very conservative since we can merge
7497 duplicate entries in the GOT. In order to be less
7498 conservative, we could actually build the GOT here,
7499 rather than in relocate_section. */
7500 g->local_gotno++;
a3c7651d 7501 sgot->_raw_size += MIPS_ELF_GOT_SIZE (dynobj);
7403cb63 7502 }
252b5132 7503
7403cb63
MM
7504 switch (r_type)
7505 {
7506 case R_MIPS_CALL16:
252b5132
RH
7507 if (h == NULL)
7508 {
7509 (*_bfd_error_handler)
7510 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
7511 bfd_get_filename (abfd), (unsigned long) rel->r_offset);
7512 bfd_set_error (bfd_error_bad_value);
7513 return false;
7514 }
7403cb63 7515 /* Fall through. */
252b5132 7516
7403cb63
MM
7517 case R_MIPS_CALL_HI16:
7518 case R_MIPS_CALL_LO16:
5a44662b
MM
7519 if (h != NULL)
7520 {
7521 /* This symbol requires a global offset table entry. */
7522 if (!mips_elf_record_global_got_symbol (h, info, g))
7523 return false;
252b5132 7524
5a44662b
MM
7525 /* We need a stub, not a plt entry for the undefined
7526 function. But we record it as if it needs plt. See
7527 elf_adjust_dynamic_symbol in elflink.h. */
7528 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
7529 h->type = STT_FUNC;
7530 }
252b5132
RH
7531 break;
7532
7533 case R_MIPS_GOT16:
7534 case R_MIPS_GOT_HI16:
7535 case R_MIPS_GOT_LO16:
7403cb63 7536 case R_MIPS_GOT_DISP:
252b5132 7537 /* This symbol requires a global offset table entry. */
7403cb63
MM
7538 if (h && !mips_elf_record_global_got_symbol (h, info, g))
7539 return false;
252b5132
RH
7540 break;
7541
7542 case R_MIPS_32:
7543 case R_MIPS_REL32:
a3c7651d 7544 case R_MIPS_64:
252b5132
RH
7545 if ((info->shared || h != NULL)
7546 && (sec->flags & SEC_ALLOC) != 0)
7547 {
7548 if (sreloc == NULL)
7549 {
103186c6 7550 const char *name = MIPS_ELF_REL_DYN_SECTION_NAME (dynobj);
252b5132
RH
7551
7552 sreloc = bfd_get_section_by_name (dynobj, name);
7553 if (sreloc == NULL)
7554 {
7555 sreloc = bfd_make_section (dynobj, name);
7556 if (sreloc == NULL
7557 || ! bfd_set_section_flags (dynobj, sreloc,
7558 (SEC_ALLOC
7559 | SEC_LOAD
7560 | SEC_HAS_CONTENTS
7561 | SEC_IN_MEMORY
7562 | SEC_LINKER_CREATED
7563 | SEC_READONLY))
7564 || ! bfd_set_section_alignment (dynobj, sreloc,
7565 4))
7566 return false;
7567 }
7568 }
7569 if (info->shared)
103186c6
MM
7570 /* When creating a shared object, we must copy these
7571 reloc types into the output file as R_MIPS_REL32
7572 relocs. We make room for this reloc in the
7573 .rel.dyn reloc section. */
7574 mips_elf_allocate_dynamic_relocations (dynobj, 1);
252b5132
RH
7575 else
7576 {
7577 struct mips_elf_link_hash_entry *hmips;
7578
7579 /* We only need to copy this reloc if the symbol is
7580 defined in a dynamic object. */
7581 hmips = (struct mips_elf_link_hash_entry *) h;
a3c7651d 7582 ++hmips->possibly_dynamic_relocs;
252b5132 7583 }
7403cb63
MM
7584
7585 /* Even though we don't directly need a GOT entry for
7586 this symbol, a symbol must have a dynamic symbol
5499724a 7587 table index greater that DT_MIPS_GOTSYM if there are
7403cb63 7588 dynamic relocations against it. */
7b1f1231
MM
7589 if (h != NULL
7590 && !mips_elf_record_global_got_symbol (h, info, g))
7403cb63 7591 return false;
252b5132
RH
7592 }
7593
103186c6 7594 if (SGI_COMPAT (dynobj))
252b5132
RH
7595 mips_elf_hash_table (info)->compact_rel_size +=
7596 sizeof (Elf32_External_crinfo);
252b5132
RH
7597 break;
7598
7599 case R_MIPS_26:
7600 case R_MIPS_GPREL16:
7601 case R_MIPS_LITERAL:
7602 case R_MIPS_GPREL32:
103186c6 7603 if (SGI_COMPAT (dynobj))
252b5132
RH
7604 mips_elf_hash_table (info)->compact_rel_size +=
7605 sizeof (Elf32_External_crinfo);
7606 break;
7607
7608 /* This relocation describes the C++ object vtable hierarchy.
7609 Reconstruct it for later use during GC. */
7610 case R_MIPS_GNU_VTINHERIT:
7611 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
7612 return false;
7613 break;
7614
7615 /* This relocation describes which C++ vtable entries are actually
7616 used. Record for later use during GC. */
7617 case R_MIPS_GNU_VTENTRY:
7618 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
7619 return false;
7620 break;
7621
7622 default:
7623 break;
7624 }
7625
7626 /* If this reloc is not a 16 bit call, and it has a global
7627 symbol, then we will need the fn_stub if there is one.
7628 References from a stub section do not count. */
7629 if (h != NULL
7403cb63 7630 && r_type != R_MIPS16_26
252b5132
RH
7631 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
7632 sizeof FN_STUB - 1) != 0
7633 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
7634 sizeof CALL_STUB - 1) != 0
7635 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
7636 sizeof CALL_FP_STUB - 1) != 0)
7637 {
7638 struct mips_elf_link_hash_entry *mh;
7639
7640 mh = (struct mips_elf_link_hash_entry *) h;
7641 mh->need_fn_stub = true;
7642 }
7643 }
7644
7645 return true;
7646}
7647
7648/* Return the section that should be marked against GC for a given
7649 relocation. */
7650
103186c6
MM
7651asection *
7652_bfd_mips_elf_gc_mark_hook (abfd, info, rel, h, sym)
252b5132 7653 bfd *abfd;
5f771d47 7654 struct bfd_link_info *info ATTRIBUTE_UNUSED;
252b5132
RH
7655 Elf_Internal_Rela *rel;
7656 struct elf_link_hash_entry *h;
7657 Elf_Internal_Sym *sym;
7658{
7659 /* ??? Do mips16 stub sections need to be handled special? */
7660
7661 if (h != NULL)
7662 {
7663 switch (ELF32_R_TYPE (rel->r_info))
7664 {
7665 case R_MIPS_GNU_VTINHERIT:
7666 case R_MIPS_GNU_VTENTRY:
7667 break;
7668
7669 default:
7670 switch (h->root.type)
7671 {
7672 case bfd_link_hash_defined:
7673 case bfd_link_hash_defweak:
7674 return h->root.u.def.section;
7675
7676 case bfd_link_hash_common:
7677 return h->root.u.c.p->section;
7678
7679 default:
7680 break;
7681 }
7682 }
7683 }
7684 else
7685 {
7686 if (!(elf_bad_symtab (abfd)
7687 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7688 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
7689 && sym->st_shndx != SHN_COMMON))
7690 {
7691 return bfd_section_from_elf_index (abfd, sym->st_shndx);
7692 }
7693 }
7694
7695 return NULL;
7696}
7697
7698/* Update the got entry reference counts for the section being removed. */
7699
103186c6
MM
7700boolean
7701_bfd_mips_elf_gc_sweep_hook (abfd, info, sec, relocs)
5f771d47
ILT
7702 bfd *abfd ATTRIBUTE_UNUSED;
7703 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7704 asection *sec ATTRIBUTE_UNUSED;
7705 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
252b5132
RH
7706{
7707#if 0
7708 Elf_Internal_Shdr *symtab_hdr;
7709 struct elf_link_hash_entry **sym_hashes;
7710 bfd_signed_vma *local_got_refcounts;
7711 const Elf_Internal_Rela *rel, *relend;
7712 unsigned long r_symndx;
7713 struct elf_link_hash_entry *h;
7714
7715 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7716 sym_hashes = elf_sym_hashes (abfd);
7717 local_got_refcounts = elf_local_got_refcounts (abfd);
7718
7719 relend = relocs + sec->reloc_count;
7720 for (rel = relocs; rel < relend; rel++)
7721 switch (ELF32_R_TYPE (rel->r_info))
7722 {
7723 case R_MIPS_GOT16:
7724 case R_MIPS_CALL16:
7725 case R_MIPS_CALL_HI16:
7726 case R_MIPS_CALL_LO16:
7727 case R_MIPS_GOT_HI16:
7728 case R_MIPS_GOT_LO16:
7729 /* ??? It would seem that the existing MIPS code does no sort
7730 of reference counting or whatnot on its GOT and PLT entries,
7731 so it is not possible to garbage collect them at this time. */
7732 break;
7733
7734 default:
7735 break;
7736 }
7737#endif
7738
7739 return true;
7740}
7741
7742
7743/* Adjust a symbol defined by a dynamic object and referenced by a
7744 regular object. The current definition is in some section of the
7745 dynamic object, but we're not including those sections. We have to
7746 change the definition to something the rest of the link can
7747 understand. */
7748
103186c6
MM
7749boolean
7750_bfd_mips_elf_adjust_dynamic_symbol (info, h)
252b5132
RH
7751 struct bfd_link_info *info;
7752 struct elf_link_hash_entry *h;
7753{
7754 bfd *dynobj;
7755 struct mips_elf_link_hash_entry *hmips;
7756 asection *s;
7757
7758 dynobj = elf_hash_table (info)->dynobj;
7759
7760 /* Make sure we know what is going on here. */
7761 BFD_ASSERT (dynobj != NULL
7762 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
7763 || h->weakdef != NULL
7764 || ((h->elf_link_hash_flags
7765 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
7766 && (h->elf_link_hash_flags
7767 & ELF_LINK_HASH_REF_REGULAR) != 0
7768 && (h->elf_link_hash_flags
7769 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
7770
7771 /* If this symbol is defined in a dynamic object, we need to copy
7772 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
7773 file. */
7774 hmips = (struct mips_elf_link_hash_entry *) h;
7775 if (! info->relocateable
a3c7651d 7776 && hmips->possibly_dynamic_relocs != 0
252b5132 7777 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
a3c7651d
MM
7778 mips_elf_allocate_dynamic_relocations (dynobj,
7779 hmips->possibly_dynamic_relocs);
252b5132
RH
7780
7781 /* For a function, create a stub, if needed. */
7782 if (h->type == STT_FUNC
7783 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
7784 {
7785 if (! elf_hash_table (info)->dynamic_sections_created)
7786 return true;
7787
7788 /* If this symbol is not defined in a regular file, then set
7789 the symbol to the stub location. This is required to make
7790 function pointers compare as equal between the normal
7791 executable and the shared library. */
7792 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
7793 {
7794 /* We need .stub section. */
303f629d
MM
7795 s = bfd_get_section_by_name (dynobj,
7796 MIPS_ELF_STUB_SECTION_NAME (dynobj));
252b5132
RH
7797 BFD_ASSERT (s != NULL);
7798
7799 h->root.u.def.section = s;
7800 h->root.u.def.value = s->_raw_size;
7801
7802 /* XXX Write this stub address somewhere. */
7803 h->plt.offset = s->_raw_size;
7804
7805 /* Make room for this stub code. */
7806 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
7807
7808 /* The last half word of the stub will be filled with the index
7809 of this symbol in .dynsym section. */
7810 return true;
7811 }
7812 }
7813
7814 /* If this is a weak symbol, and there is a real definition, the
7815 processor independent code will have arranged for us to see the
7816 real definition first, and we can just use the same value. */
7817 if (h->weakdef != NULL)
7818 {
7819 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
7820 || h->weakdef->root.type == bfd_link_hash_defweak);
7821 h->root.u.def.section = h->weakdef->root.u.def.section;
7822 h->root.u.def.value = h->weakdef->root.u.def.value;
7823 return true;
7824 }
7825
7826 /* This is a reference to a symbol defined by a dynamic object which
7827 is not a function. */
7828
7829 return true;
7830}
7831
7832/* This function is called after all the input files have been read,
7833 and the input sections have been assigned to output sections. We
7834 check for any mips16 stub sections that we can discard. */
7835
7836static boolean mips_elf_check_mips16_stubs
7837 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
7838
103186c6
MM
7839boolean
7840_bfd_mips_elf_always_size_sections (output_bfd, info)
252b5132
RH
7841 bfd *output_bfd;
7842 struct bfd_link_info *info;
7843{
7844 asection *ri;
7845
7846 /* The .reginfo section has a fixed size. */
7847 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7848 if (ri != NULL)
7849 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
7850
7851 if (info->relocateable
7852 || ! mips_elf_hash_table (info)->mips16_stubs_seen)
7853 return true;
7854
7855 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
7856 mips_elf_check_mips16_stubs,
7857 (PTR) NULL);
7858
7859 return true;
7860}
7861
7862/* Check the mips16 stubs for a particular symbol, and see if we can
7863 discard them. */
7864
7865/*ARGSUSED*/
7866static boolean
7867mips_elf_check_mips16_stubs (h, data)
7868 struct mips_elf_link_hash_entry *h;
5f771d47 7869 PTR data ATTRIBUTE_UNUSED;
252b5132
RH
7870{
7871 if (h->fn_stub != NULL
7872 && ! h->need_fn_stub)
7873 {
7874 /* We don't need the fn_stub; the only references to this symbol
7875 are 16 bit calls. Clobber the size to 0 to prevent it from
7876 being included in the link. */
7877 h->fn_stub->_raw_size = 0;
7878 h->fn_stub->_cooked_size = 0;
7879 h->fn_stub->flags &= ~ SEC_RELOC;
7880 h->fn_stub->reloc_count = 0;
7881 h->fn_stub->flags |= SEC_EXCLUDE;
7882 }
7883
7884 if (h->call_stub != NULL
7885 && h->root.other == STO_MIPS16)
7886 {
7887 /* We don't need the call_stub; this is a 16 bit function, so
7888 calls from other 16 bit functions are OK. Clobber the size
7889 to 0 to prevent it from being included in the link. */
7890 h->call_stub->_raw_size = 0;
7891 h->call_stub->_cooked_size = 0;
7892 h->call_stub->flags &= ~ SEC_RELOC;
7893 h->call_stub->reloc_count = 0;
7894 h->call_stub->flags |= SEC_EXCLUDE;
7895 }
7896
7897 if (h->call_fp_stub != NULL
7898 && h->root.other == STO_MIPS16)
7899 {
7900 /* We don't need the call_stub; this is a 16 bit function, so
7901 calls from other 16 bit functions are OK. Clobber the size
7902 to 0 to prevent it from being included in the link. */
7903 h->call_fp_stub->_raw_size = 0;
7904 h->call_fp_stub->_cooked_size = 0;
7905 h->call_fp_stub->flags &= ~ SEC_RELOC;
7906 h->call_fp_stub->reloc_count = 0;
7907 h->call_fp_stub->flags |= SEC_EXCLUDE;
7908 }
7909
7910 return true;
7911}
7912
7913/* Set the sizes of the dynamic sections. */
7914
103186c6
MM
7915boolean
7916_bfd_mips_elf_size_dynamic_sections (output_bfd, info)
252b5132
RH
7917 bfd *output_bfd;
7918 struct bfd_link_info *info;
7919{
7920 bfd *dynobj;
7921 asection *s;
7922 boolean reltext;
7a12753d 7923 struct mips_got_info *g = NULL;
252b5132
RH
7924
7925 dynobj = elf_hash_table (info)->dynobj;
7926 BFD_ASSERT (dynobj != NULL);
7927
7928 if (elf_hash_table (info)->dynamic_sections_created)
7929 {
7930 /* Set the contents of the .interp section to the interpreter. */
7931 if (! info->shared)
7932 {
7933 s = bfd_get_section_by_name (dynobj, ".interp");
7934 BFD_ASSERT (s != NULL);
303f629d
MM
7935 s->_raw_size
7936 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7937 s->contents
7403cb63 7938 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
252b5132
RH
7939 }
7940 }
7941
252b5132
RH
7942 /* The check_relocs and adjust_dynamic_symbol entry points have
7943 determined the sizes of the various dynamic sections. Allocate
7944 memory for them. */
7945 reltext = false;
7946 for (s = dynobj->sections; s != NULL; s = s->next)
7947 {
7948 const char *name;
7949 boolean strip;
7950
7951 /* It's OK to base decisions on the section name, because none
7952 of the dynobj section names depend upon the input files. */
7953 name = bfd_get_section_name (dynobj, s);
7954
7955 if ((s->flags & SEC_LINKER_CREATED) == 0)
7956 continue;
7957
7958 strip = false;
7959
7960 if (strncmp (name, ".rel", 4) == 0)
7961 {
7962 if (s->_raw_size == 0)
7963 {
7964 /* We only strip the section if the output section name
7965 has the same name. Otherwise, there might be several
7966 input sections for this output section. FIXME: This
7967 code is probably not needed these days anyhow, since
7968 the linker now does not create empty output sections. */
7969 if (s->output_section != NULL
7970 && strcmp (name,
7971 bfd_get_section_name (s->output_section->owner,
7972 s->output_section)) == 0)
7973 strip = true;
7974 }
7975 else
7976 {
7977 const char *outname;
7978 asection *target;
7979
7980 /* If this relocation section applies to a read only
7981 section, then we probably need a DT_TEXTREL entry.
7982 If the relocation section is .rel.dyn, we always
7983 assert a DT_TEXTREL entry rather than testing whether
7984 there exists a relocation to a read only section or
7985 not. */
7986 outname = bfd_get_section_name (output_bfd,
7987 s->output_section);
7988 target = bfd_get_section_by_name (output_bfd, outname + 4);
7989 if ((target != NULL
7990 && (target->flags & SEC_READONLY) != 0
7991 && (target->flags & SEC_ALLOC) != 0)
103186c6
MM
7992 || strcmp (outname,
7993 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd)) == 0)
252b5132
RH
7994 reltext = true;
7995
7996 /* We use the reloc_count field as a counter if we need
7997 to copy relocs into the output file. */
103186c6
MM
7998 if (strcmp (name,
7999 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd)) != 0)
252b5132
RH
8000 s->reloc_count = 0;
8001 }
8002 }
8003 else if (strncmp (name, ".got", 4) == 0)
8004 {
8005 int i;
7403cb63
MM
8006 bfd_size_type loadable_size = 0;
8007 bfd_size_type local_gotno;
8008 struct _bfd *sub;
252b5132 8009
7403cb63 8010 BFD_ASSERT (elf_section_data (s) != NULL);
252b5132 8011 g = (struct mips_got_info *) elf_section_data (s)->tdata;
7403cb63
MM
8012 BFD_ASSERT (g != NULL);
8013
8014 /* Calculate the total loadable size of the output. That
8015 will give us the maximum number of GOT_PAGE entries
8016 required. */
8017 for (sub = info->input_bfds; sub; sub = sub->link_next)
8018 {
8019 asection *subsection;
8020
8021 for (subsection = sub->sections;
8022 subsection;
8023 subsection = subsection->next)
8024 {
8025 if ((subsection->flags & SEC_ALLOC) == 0)
8026 continue;
8027 loadable_size += (subsection->_raw_size + 0xf) & ~0xf;
8028 }
8029 }
8030 loadable_size += MIPS_FUNCTION_STUB_SIZE;
8031
8032 /* Assume there are two loadable segments consisting of
9458945f 8033 contiguous sections. Is 5 enough? */
7403cb63 8034 local_gotno = (loadable_size >> 16) + 5;
9458945f
MM
8035 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8036 /* It's possible we will need GOT_PAGE entries as well as
8037 GOT16 entries. Often, these will be able to share GOT
8038 entries, but not always. */
8039 local_gotno *= 2;
8040
7403cb63 8041 g->local_gotno += local_gotno;
103186c6 8042 s->_raw_size += local_gotno * MIPS_ELF_GOT_SIZE (dynobj);
7403cb63
MM
8043
8044 /* There has to be a global GOT entry for every symbol with
8045 a dynamic symbol table index of DT_MIPS_GOTSYM or
8046 higher. Therefore, it make sense to put those symbols
8047 that need GOT entries at the end of the symbol table. We
8048 do that here. */
b3be9b46 8049 if (!mips_elf_sort_hash_table (info, 1))
7403cb63
MM
8050 return false;
8051
8b237a89
MM
8052 if (g->global_gotsym != NULL)
8053 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
8054 else
8055 /* If there are no global symbols, or none requiring
8056 relocations, then GLOBAL_GOTSYM will be NULL. */
8057 i = 0;
b3be9b46 8058 g->global_gotno = i;
103186c6 8059 s->_raw_size += i * MIPS_ELF_GOT_SIZE (dynobj);
252b5132 8060 }
303f629d 8061 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
252b5132
RH
8062 {
8063 /* Irix rld assumes that the function stub isn't at the end
8064 of .text section. So put a dummy. XXX */
8065 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
8066 }
8067 else if (! info->shared
8068 && ! mips_elf_hash_table (info)->use_rld_obj_head
8069 && strncmp (name, ".rld_map", 8) == 0)
8070 {
8071 /* We add a room for __rld_map. It will be filled in by the
8072 rtld to contain a pointer to the _r_debug structure. */
8073 s->_raw_size += 4;
8074 }
8075 else if (SGI_COMPAT (output_bfd)
8076 && strncmp (name, ".compact_rel", 12) == 0)
8077 s->_raw_size += mips_elf_hash_table (info)->compact_rel_size;
c6142e5d
MM
8078 else if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (output_bfd))
8079 == 0)
8080 s->_raw_size = (sizeof (Elf32_External_Msym)
8081 * (elf_hash_table (info)->dynsymcount
8082 + bfd_count_sections (output_bfd)));
252b5132
RH
8083 else if (strncmp (name, ".init", 5) != 0)
8084 {
8085 /* It's not one of our sections, so don't allocate space. */
8086 continue;
8087 }
8088
8089 if (strip)
8090 {
7f8d5fc9 8091 _bfd_strip_section_from_output (info, s);
252b5132
RH
8092 continue;
8093 }
8094
8095 /* Allocate memory for the section contents. */
303f629d 8096 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
252b5132
RH
8097 if (s->contents == NULL && s->_raw_size != 0)
8098 {
8099 bfd_set_error (bfd_error_no_memory);
8100 return false;
8101 }
252b5132
RH
8102 }
8103
8104 if (elf_hash_table (info)->dynamic_sections_created)
8105 {
8106 /* Add some entries to the .dynamic section. We fill in the
8107 values later, in elf_mips_finish_dynamic_sections, but we
8108 must add the entries now so that we get the correct size for
8109 the .dynamic section. The DT_DEBUG entry is filled in by the
8110 dynamic linker and used by the debugger. */
8111 if (! info->shared)
8112 {
8113 if (SGI_COMPAT (output_bfd))
8114 {
8115 /* SGI object has the equivalence of DT_DEBUG in the
8116 DT_MIPS_RLD_MAP entry. */
103186c6 8117 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
252b5132
RH
8118 return false;
8119 }
8120 else
103186c6 8121 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
252b5132
RH
8122 return false;
8123 }
8124
8125 if (reltext)
8126 {
103186c6 8127 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
252b5132
RH
8128 return false;
8129 }
8130
103186c6 8131 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
252b5132
RH
8132 return false;
8133
103186c6
MM
8134 if (bfd_get_section_by_name (dynobj,
8135 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj)))
252b5132 8136 {
103186c6 8137 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
252b5132
RH
8138 return false;
8139
103186c6 8140 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
252b5132
RH
8141 return false;
8142
103186c6 8143 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
252b5132
RH
8144 return false;
8145 }
8146
103186c6 8147 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICTNO, 0))
252b5132
RH
8148 return false;
8149
103186c6 8150 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLISTNO, 0))
252b5132
RH
8151 return false;
8152
8153 if (bfd_get_section_by_name (dynobj, ".conflict") != NULL)
8154 {
103186c6 8155 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICT, 0))
252b5132
RH
8156 return false;
8157
8158 s = bfd_get_section_by_name (dynobj, ".liblist");
8159 BFD_ASSERT (s != NULL);
8160
103186c6 8161 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLIST, 0))
252b5132
RH
8162 return false;
8163 }
8164
103186c6 8165 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
252b5132
RH
8166 return false;
8167
103186c6 8168 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
252b5132
RH
8169 return false;
8170
8171#if 0
8172 /* Time stamps in executable files are a bad idea. */
103186c6 8173 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
252b5132
RH
8174 return false;
8175#endif
8176
8177#if 0 /* FIXME */
103186c6 8178 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
252b5132
RH
8179 return false;
8180#endif
8181
8182#if 0 /* FIXME */
103186c6 8183 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
252b5132
RH
8184 return false;
8185#endif
8186
103186c6 8187 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
252b5132
RH
8188 return false;
8189
103186c6 8190 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
252b5132
RH
8191 return false;
8192
103186c6 8193 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
252b5132
RH
8194 return false;
8195
103186c6 8196 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
252b5132
RH
8197 return false;
8198
5499724a 8199 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
252b5132
RH
8200 return false;
8201
7403cb63 8202 if (IRIX_COMPAT (dynobj) == ict_irix5
103186c6 8203 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
252b5132
RH
8204 return false;
8205
7403cb63
MM
8206 if (IRIX_COMPAT (dynobj) == ict_irix6
8207 && (bfd_get_section_by_name
8208 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
103186c6 8209 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
7403cb63 8210 return false;
c6142e5d
MM
8211
8212 if (bfd_get_section_by_name (dynobj,
8213 MIPS_ELF_MSYM_SECTION_NAME (dynobj))
103186c6 8214 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_MSYM, 0))
c6142e5d 8215 return false;
252b5132
RH
8216 }
8217
252b5132
RH
8218 return true;
8219}
8220
7403cb63
MM
8221/* If NAME is one of the special IRIX6 symbols defined by the linker,
8222 adjust it appropriately now. */
8223
8224static void
8225mips_elf_irix6_finish_dynamic_symbol (abfd, name, sym)
5f771d47 8226 bfd *abfd ATTRIBUTE_UNUSED;
7403cb63
MM
8227 const char *name;
8228 Elf_Internal_Sym *sym;
8229{
8230 /* The linker script takes care of providing names and values for
8231 these, but we must place them into the right sections. */
8232 static const char* const text_section_symbols[] = {
8233 "_ftext",
8234 "_etext",
8235 "__dso_displacement",
8236 "__elf_header",
8237 "__program_header_table",
8238 NULL
8239 };
8240
8241 static const char* const data_section_symbols[] = {
8242 "_fdata",
8243 "_edata",
8244 "_end",
8245 "_fbss",
8246 NULL
8247 };
8248
8249 const char* const *p;
8250 int i;
8251
8252 for (i = 0; i < 2; ++i)
8253 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8254 *p;
8255 ++p)
8256 if (strcmp (*p, name) == 0)
8257 {
8258 /* All of these symbols are given type STT_SECTION by the
8259 IRIX6 linker. */
8260 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8261
8262 /* The IRIX linker puts these symbols in special sections. */
8263 if (i == 0)
8264 sym->st_shndx = SHN_MIPS_TEXT;
8265 else
8266 sym->st_shndx = SHN_MIPS_DATA;
8267
8268 break;
8269 }
8270}
8271
252b5132
RH
8272/* Finish up dynamic symbol handling. We set the contents of various
8273 dynamic sections here. */
8274
103186c6
MM
8275boolean
8276_bfd_mips_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
252b5132
RH
8277 bfd *output_bfd;
8278 struct bfd_link_info *info;
8279 struct elf_link_hash_entry *h;
8280 Elf_Internal_Sym *sym;
8281{
8282 bfd *dynobj;
8283 bfd_vma gval;
8284 asection *sgot;
c6142e5d 8285 asection *smsym;
252b5132
RH
8286 struct mips_got_info *g;
8287 const char *name;
c6142e5d 8288 struct mips_elf_link_hash_entry *mh;
252b5132
RH
8289
8290 dynobj = elf_hash_table (info)->dynobj;
8291 gval = sym->st_value;
c6142e5d 8292 mh = (struct mips_elf_link_hash_entry *) h;
252b5132
RH
8293
8294 if (h->plt.offset != (bfd_vma) -1)
8295 {
8296 asection *s;
8297 bfd_byte *p;
8298 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
8299
8300 /* This symbol has a stub. Set it up. */
8301
8302 BFD_ASSERT (h->dynindx != -1);
8303
303f629d
MM
8304 s = bfd_get_section_by_name (dynobj,
8305 MIPS_ELF_STUB_SECTION_NAME (dynobj));
252b5132
RH
8306 BFD_ASSERT (s != NULL);
8307
8308 /* Fill the stub. */
8309 p = stub;
8310 bfd_put_32 (output_bfd, STUB_LW(output_bfd), p);
8311 p += 4;
8312 bfd_put_32 (output_bfd, STUB_MOVE, p);
8313 p += 4;
8314
8315 /* FIXME: Can h->dynindex be more than 64K? */
8316 if (h->dynindx & 0xffff0000)
8317 return false;
8318
8319 bfd_put_32 (output_bfd, STUB_JALR, p);
8320 p += 4;
8321 bfd_put_32 (output_bfd, STUB_LI16 + h->dynindx, p);
8322
8323 BFD_ASSERT (h->plt.offset <= s->_raw_size);
8324 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
8325
8326 /* Mark the symbol as undefined. plt.offset != -1 occurs
8327 only for the referenced symbol. */
8328 sym->st_shndx = SHN_UNDEF;
8329
8330 /* The run-time linker uses the st_value field of the symbol
8331 to reset the global offset table entry for this external
8332 to its stub address when unlinking a shared object. */
8333 gval = s->output_section->vma + s->output_offset + h->plt.offset;
8334 sym->st_value = gval;
8335 }
8336
8337 BFD_ASSERT (h->dynindx != -1);
8338
103186c6 8339 sgot = mips_elf_got_section (dynobj);
252b5132
RH
8340 BFD_ASSERT (sgot != NULL);
8341 BFD_ASSERT (elf_section_data (sgot) != NULL);
8342 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
8343 BFD_ASSERT (g != NULL);
8344
7403cb63
MM
8345 /* Run through the global symbol table, creating GOT entries for all
8346 the symbols that need them. */
8b237a89
MM
8347 if (g->global_gotsym != NULL
8348 && h->dynindx >= g->global_gotsym->dynindx)
252b5132 8349 {
7403cb63
MM
8350 bfd_vma offset;
8351 bfd_vma value;
252b5132 8352
7403cb63
MM
8353 if (sym->st_value)
8354 value = sym->st_value;
8355 else
8356 /* For an entity defined in a shared object, this will be
8357 NULL. (For functions in shared objects for
8358 which we have created stubs, ST_VALUE will be non-NULL.
8359 That's because such the functions are now no longer defined
8360 in a shared object.) */
8361 value = h->root.u.def.value;
8362
8363 offset = mips_elf_global_got_index (dynobj, h);
103186c6 8364 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
252b5132
RH
8365 }
8366
c6142e5d
MM
8367 /* Create a .msym entry, if appropriate. */
8368 smsym = bfd_get_section_by_name (dynobj,
8369 MIPS_ELF_MSYM_SECTION_NAME (dynobj));
8370 if (smsym)
8371 {
8372 Elf32_Internal_Msym msym;
8373
8374 msym.ms_hash_value = bfd_elf_hash (h->root.root.string);
8375 /* It is undocumented what the `1' indicates, but IRIX6 uses
8376 this value. */
8377 msym.ms_info = ELF32_MS_INFO (mh->min_dyn_reloc_index, 1);
8378 bfd_mips_elf_swap_msym_out
8379 (dynobj, &msym,
8380 ((Elf32_External_Msym *) smsym->contents) + h->dynindx);
8381 }
8382
252b5132
RH
8383 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8384 name = h->root.root.string;
8385 if (strcmp (name, "_DYNAMIC") == 0
8386 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
8387 sym->st_shndx = SHN_ABS;
8388 else if (strcmp (name, "_DYNAMIC_LINK") == 0)
8389 {
8390 sym->st_shndx = SHN_ABS;
8391 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8392 sym->st_value = 1;
8393 }
8394 else if (SGI_COMPAT (output_bfd))
8395 {
8396 if (strcmp (name, "_gp_disp") == 0)
8397 {
8398 sym->st_shndx = SHN_ABS;
8399 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8400 sym->st_value = elf_gp (output_bfd);
8401 }
8402 else if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8403 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8404 {
8405 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8406 sym->st_other = STO_PROTECTED;
8407 sym->st_value = 0;
8408 sym->st_shndx = SHN_MIPS_DATA;
8409 }
8410 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8411 {
8412 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8413 sym->st_other = STO_PROTECTED;
8414 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8415 sym->st_shndx = SHN_ABS;
8416 }
8417 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8418 {
8419 if (h->type == STT_FUNC)
8420 sym->st_shndx = SHN_MIPS_TEXT;
8421 else if (h->type == STT_OBJECT)
8422 sym->st_shndx = SHN_MIPS_DATA;
8423 }
8424 }
8425
7403cb63
MM
8426 /* Handle the IRIX6-specific symbols. */
8427 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8428 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8429
252b5132
RH
8430 if (SGI_COMPAT (output_bfd)
8431 && ! info->shared)
8432 {
8433 if (! mips_elf_hash_table (info)->use_rld_obj_head
8434 && strcmp (name, "__rld_map") == 0)
8435 {
8436 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8437 BFD_ASSERT (s != NULL);
8438 sym->st_value = s->output_section->vma + s->output_offset;
8439 bfd_put_32 (output_bfd, (bfd_vma) 0, s->contents);
8440 if (mips_elf_hash_table (info)->rld_value == 0)
8441 mips_elf_hash_table (info)->rld_value = sym->st_value;
8442 }
8443 else if (mips_elf_hash_table (info)->use_rld_obj_head
8444 && strcmp (name, "__rld_obj_head") == 0)
8445 {
303f629d
MM
8446 /* IRIX6 does not use a .rld_map section. */
8447 if (IRIX_COMPAT (output_bfd) == ict_irix5)
8448 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8449 != NULL);
252b5132
RH
8450 mips_elf_hash_table (info)->rld_value = sym->st_value;
8451 }
8452 }
8453
8454 /* If this is a mips16 symbol, force the value to be even. */
8455 if (sym->st_other == STO_MIPS16
8456 && (sym->st_value & 1) != 0)
8457 --sym->st_value;
8458
8459 return true;
8460}
8461
8462/* Finish up the dynamic sections. */
8463
103186c6
MM
8464boolean
8465_bfd_mips_elf_finish_dynamic_sections (output_bfd, info)
252b5132
RH
8466 bfd *output_bfd;
8467 struct bfd_link_info *info;
8468{
8469 bfd *dynobj;
8470 asection *sdyn;
8471 asection *sgot;
8472 struct mips_got_info *g;
8473
8474 dynobj = elf_hash_table (info)->dynobj;
8475
8476 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8477
103186c6 8478 sgot = mips_elf_got_section (dynobj);
252b5132
RH
8479 if (sgot == NULL)
8480 g = NULL;
8481 else
8482 {
8483 BFD_ASSERT (elf_section_data (sgot) != NULL);
8484 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
8485 BFD_ASSERT (g != NULL);
8486 }
8487
8488 if (elf_hash_table (info)->dynamic_sections_created)
8489 {
103186c6 8490 bfd_byte *b;
252b5132
RH
8491
8492 BFD_ASSERT (sdyn != NULL);
8493 BFD_ASSERT (g != NULL);
8494
103186c6
MM
8495 for (b = sdyn->contents;
8496 b < sdyn->contents + sdyn->_raw_size;
8497 b += MIPS_ELF_DYN_SIZE (dynobj))
252b5132
RH
8498 {
8499 Elf_Internal_Dyn dyn;
8500 const char *name;
8501 size_t elemsize;
8502 asection *s;
103186c6 8503 boolean swap_out_p;
252b5132 8504
103186c6
MM
8505 /* Read in the current dynamic entry. */
8506 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8507
8508 /* Assume that we're going to modify it and write it out. */
8509 swap_out_p = true;
252b5132
RH
8510
8511 switch (dyn.d_tag)
8512 {
252b5132 8513 case DT_RELENT:
103186c6
MM
8514 s = (bfd_get_section_by_name
8515 (dynobj,
8516 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj)));
252b5132 8517 BFD_ASSERT (s != NULL);
103186c6 8518 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
252b5132
RH
8519 break;
8520
8521 case DT_STRSZ:
8522 /* Rewrite DT_STRSZ. */
8523 dyn.d_un.d_val =
8524 _bfd_stringtab_size (elf_hash_table (info)->dynstr);
252b5132
RH
8525 break;
8526
8527 case DT_PLTGOT:
8528 name = ".got";
8529 goto get_vma;
8530 case DT_MIPS_CONFLICT:
8531 name = ".conflict";
8532 goto get_vma;
8533 case DT_MIPS_LIBLIST:
8534 name = ".liblist";
8535 get_vma:
8536 s = bfd_get_section_by_name (output_bfd, name);
8537 BFD_ASSERT (s != NULL);
8538 dyn.d_un.d_ptr = s->vma;
252b5132
RH
8539 break;
8540
8541 case DT_MIPS_RLD_VERSION:
8542 dyn.d_un.d_val = 1; /* XXX */
252b5132
RH
8543 break;
8544
8545 case DT_MIPS_FLAGS:
8546 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
252b5132
RH
8547 break;
8548
8549 case DT_MIPS_CONFLICTNO:
8550 name = ".conflict";
8551 elemsize = sizeof (Elf32_Conflict);
8552 goto set_elemno;
8553
8554 case DT_MIPS_LIBLISTNO:
8555 name = ".liblist";
8556 elemsize = sizeof (Elf32_Lib);
8557 set_elemno:
8558 s = bfd_get_section_by_name (output_bfd, name);
8559 if (s != NULL)
8560 {
8561 if (s->_cooked_size != 0)
8562 dyn.d_un.d_val = s->_cooked_size / elemsize;
8563 else
8564 dyn.d_un.d_val = s->_raw_size / elemsize;
8565 }
8566 else
8567 dyn.d_un.d_val = 0;
252b5132
RH
8568 break;
8569
8570 case DT_MIPS_TIME_STAMP:
8571 time ((time_t *) &dyn.d_un.d_val);
252b5132
RH
8572 break;
8573
8574 case DT_MIPS_ICHECKSUM:
8575 /* XXX FIXME: */
103186c6 8576 swap_out_p = false;
252b5132
RH
8577 break;
8578
8579 case DT_MIPS_IVERSION:
8580 /* XXX FIXME: */
103186c6 8581 swap_out_p = false;
252b5132
RH
8582 break;
8583
8584 case DT_MIPS_BASE_ADDRESS:
8585 s = output_bfd->sections;
8586 BFD_ASSERT (s != NULL);
8587 dyn.d_un.d_ptr = s->vma & ~(0xffff);
252b5132
RH
8588 break;
8589
8590 case DT_MIPS_LOCAL_GOTNO:
8591 dyn.d_un.d_val = g->local_gotno;
252b5132
RH
8592 break;
8593
5499724a
MM
8594 case DT_MIPS_UNREFEXTNO:
8595 /* The index into the dynamic symbol table which is the
8596 entry of the first external symbol that is not
8597 referenced within the same object. */
8598 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8599 break;
8600
8601 case DT_MIPS_GOTSYM:
8602 if (g->global_gotsym)
8603 {
8604 dyn.d_un.d_val = g->global_gotsym->dynindx;
8605 break;
8606 }
8607 /* In case if we don't have global got symbols we default
8608 to setting DT_MIPS_GOTSYM to the same value as
8609 DT_MIPS_SYMTABNO, so we just fall through. */
8610
252b5132
RH
8611 case DT_MIPS_SYMTABNO:
8612 name = ".dynsym";
103186c6 8613 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
252b5132
RH
8614 s = bfd_get_section_by_name (output_bfd, name);
8615 BFD_ASSERT (s != NULL);
8616
8617 if (s->_cooked_size != 0)
8618 dyn.d_un.d_val = s->_cooked_size / elemsize;
8619 else
8620 dyn.d_un.d_val = s->_raw_size / elemsize;
252b5132
RH
8621 break;
8622
252b5132
RH
8623 case DT_MIPS_HIPAGENO:
8624 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
252b5132
RH
8625 break;
8626
8627 case DT_MIPS_RLD_MAP:
8628 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
252b5132
RH
8629 break;
8630
7403cb63
MM
8631 case DT_MIPS_OPTIONS:
8632 s = (bfd_get_section_by_name
8633 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8634 dyn.d_un.d_ptr = s->vma;
7403cb63
MM
8635 break;
8636
c6142e5d
MM
8637 case DT_MIPS_MSYM:
8638 s = (bfd_get_section_by_name
8639 (output_bfd, MIPS_ELF_MSYM_SECTION_NAME (output_bfd)));
8640 dyn.d_un.d_ptr = s->vma;
103186c6
MM
8641 break;
8642
8643 default:
8644 swap_out_p = false;
c6142e5d 8645 break;
252b5132 8646 }
103186c6
MM
8647
8648 if (swap_out_p)
8649 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8650 (dynobj, &dyn, b);
252b5132
RH
8651 }
8652 }
8653
8654 /* The first entry of the global offset table will be filled at
8655 runtime. The second entry will be used by some runtime loaders.
8656 This isn't the case of Irix rld. */
8657 if (sgot != NULL && sgot->_raw_size > 0)
8658 {
103186c6
MM
8659 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
8660 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
8661 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
252b5132
RH
8662 }
8663
8664 if (sgot != NULL)
103186c6
MM
8665 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
8666 = MIPS_ELF_GOT_SIZE (output_bfd);
252b5132
RH
8667
8668 {
c6142e5d 8669 asection *smsym;
252b5132 8670 asection *s;
252b5132
RH
8671 Elf32_compact_rel cpt;
8672
30b30c21
RH
8673 /* ??? The section symbols for the output sections were set up in
8674 _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these
8675 symbols. Should we do so? */
252b5132 8676
c6142e5d
MM
8677 smsym = bfd_get_section_by_name (dynobj,
8678 MIPS_ELF_MSYM_SECTION_NAME (dynobj));
30b30c21 8679 if (smsym != NULL)
252b5132 8680 {
103186c6 8681 Elf32_Internal_Msym msym;
c6142e5d 8682
103186c6
MM
8683 msym.ms_hash_value = 0;
8684 msym.ms_info = ELF32_MS_INFO (0, 1);
c6142e5d 8685
103186c6
MM
8686 for (s = output_bfd->sections; s != NULL; s = s->next)
8687 {
30b30c21 8688 long dynindx = elf_section_data (s)->dynindx;
252b5132 8689
30b30c21
RH
8690 bfd_mips_elf_swap_msym_out
8691 (output_bfd, &msym,
8692 (((Elf32_External_Msym *) smsym->contents)
8693 + dynindx));
8694 }
252b5132
RH
8695 }
8696
8697 if (SGI_COMPAT (output_bfd))
8698 {
8699 /* Write .compact_rel section out. */
8700 s = bfd_get_section_by_name (dynobj, ".compact_rel");
8701 if (s != NULL)
8702 {
8703 cpt.id1 = 1;
8704 cpt.num = s->reloc_count;
8705 cpt.id2 = 2;
8706 cpt.offset = (s->output_section->filepos
8707 + sizeof (Elf32_External_compact_rel));
8708 cpt.reserved0 = 0;
8709 cpt.reserved1 = 0;
8710 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
8711 ((Elf32_External_compact_rel *)
8712 s->contents));
8713
8714 /* Clean up a dummy stub function entry in .text. */
303f629d
MM
8715 s = bfd_get_section_by_name (dynobj,
8716 MIPS_ELF_STUB_SECTION_NAME (dynobj));
252b5132
RH
8717 if (s != NULL)
8718 {
8719 file_ptr dummy_offset;
8720
8721 BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE);
8722 dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE;
8723 memset (s->contents + dummy_offset, 0,
8724 MIPS_FUNCTION_STUB_SIZE);
8725 }
8726 }
8727 }
8728
8729 /* Clean up a first relocation in .rel.dyn. */
103186c6
MM
8730 s = bfd_get_section_by_name (dynobj,
8731 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj));
252b5132 8732 if (s != NULL && s->_raw_size > 0)
103186c6 8733 memset (s->contents, 0, MIPS_ELF_REL_SIZE (dynobj));
252b5132
RH
8734 }
8735
8736 return true;
8737}
8738\f
8739/* This is almost identical to bfd_generic_get_... except that some
8740 MIPS relocations need to be handled specially. Sigh. */
8741
8742static bfd_byte *
8743elf32_mips_get_relocated_section_contents (abfd, link_info, link_order, data,
8744 relocateable, symbols)
8745 bfd *abfd;
8746 struct bfd_link_info *link_info;
8747 struct bfd_link_order *link_order;
8748 bfd_byte *data;
8749 boolean relocateable;
8750 asymbol **symbols;
8751{
8752 /* Get enough memory to hold the stuff */
8753 bfd *input_bfd = link_order->u.indirect.section->owner;
8754 asection *input_section = link_order->u.indirect.section;
8755
8756 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
8757 arelent **reloc_vector = NULL;
8758 long reloc_count;
8759
8760 if (reloc_size < 0)
8761 goto error_return;
8762
8763 reloc_vector = (arelent **) bfd_malloc (reloc_size);
8764 if (reloc_vector == NULL && reloc_size != 0)
8765 goto error_return;
8766
8767 /* read in the section */
8768 if (!bfd_get_section_contents (input_bfd,
8769 input_section,
8770 (PTR) data,
8771 0,
8772 input_section->_raw_size))
8773 goto error_return;
8774
8775 /* We're not relaxing the section, so just copy the size info */
8776 input_section->_cooked_size = input_section->_raw_size;
8777 input_section->reloc_done = true;
8778
8779 reloc_count = bfd_canonicalize_reloc (input_bfd,
8780 input_section,
8781 reloc_vector,
8782 symbols);
8783 if (reloc_count < 0)
8784 goto error_return;
8785
8786 if (reloc_count > 0)
8787 {
8788 arelent **parent;
8789 /* for mips */
8790 int gp_found;
8791 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
8792
8793 {
8794 struct bfd_hash_entry *h;
8795 struct bfd_link_hash_entry *lh;
8796 /* Skip all this stuff if we aren't mixing formats. */
8797 if (abfd && input_bfd
8798 && abfd->xvec == input_bfd->xvec)
8799 lh = 0;
8800 else
8801 {
8802 h = bfd_hash_lookup (&link_info->hash->table, "_gp", false, false);
8803 lh = (struct bfd_link_hash_entry *) h;
8804 }
8805 lookup:
8806 if (lh)
8807 {
8808 switch (lh->type)
8809 {
8810 case bfd_link_hash_undefined:
8811 case bfd_link_hash_undefweak:
8812 case bfd_link_hash_common:
8813 gp_found = 0;
8814 break;
8815 case bfd_link_hash_defined:
8816 case bfd_link_hash_defweak:
8817 gp_found = 1;
8818 gp = lh->u.def.value;
8819 break;
8820 case bfd_link_hash_indirect:
8821 case bfd_link_hash_warning:
8822 lh = lh->u.i.link;
8823 /* @@FIXME ignoring warning for now */
8824 goto lookup;
8825 case bfd_link_hash_new:
8826 default:
8827 abort ();
8828 }
8829 }
8830 else
8831 gp_found = 0;
8832 }
8833 /* end mips */
8834 for (parent = reloc_vector; *parent != (arelent *) NULL;
8835 parent++)
8836 {
8837 char *error_message = (char *) NULL;
8838 bfd_reloc_status_type r;
8839
8840 /* Specific to MIPS: Deal with relocation types that require
8841 knowing the gp of the output bfd. */
8842 asymbol *sym = *(*parent)->sym_ptr_ptr;
8843 if (bfd_is_abs_section (sym->section) && abfd)
8844 {
8845 /* The special_function wouldn't get called anyways. */
8846 }
8847 else if (!gp_found)
8848 {
8849 /* The gp isn't there; let the special function code
8850 fall over on its own. */
8851 }
8852 else if ((*parent)->howto->special_function
8853 == _bfd_mips_elf_gprel16_reloc)
8854 {
8855 /* bypass special_function call */
8856 r = gprel16_with_gp (input_bfd, sym, *parent, input_section,
8857 relocateable, (PTR) data, gp);
8858 goto skip_bfd_perform_relocation;
8859 }
8860 /* end mips specific stuff */
8861
8862 r = bfd_perform_relocation (input_bfd,
8863 *parent,
8864 (PTR) data,
8865 input_section,
8866 relocateable ? abfd : (bfd *) NULL,
8867 &error_message);
8868 skip_bfd_perform_relocation:
8869
8870 if (relocateable)
8871 {
8872 asection *os = input_section->output_section;
8873
8874 /* A partial link, so keep the relocs */
8875 os->orelocation[os->reloc_count] = *parent;
8876 os->reloc_count++;
8877 }
8878
8879 if (r != bfd_reloc_ok)
8880 {
8881 switch (r)
8882 {
8883 case bfd_reloc_undefined:
8884 if (!((*link_info->callbacks->undefined_symbol)
8885 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
5cc7c785
L
8886 input_bfd, input_section, (*parent)->address,
8887 true)))
252b5132
RH
8888 goto error_return;
8889 break;
8890 case bfd_reloc_dangerous:
8891 BFD_ASSERT (error_message != (char *) NULL);
8892 if (!((*link_info->callbacks->reloc_dangerous)
8893 (link_info, error_message, input_bfd, input_section,
8894 (*parent)->address)))
8895 goto error_return;
8896 break;
8897 case bfd_reloc_overflow:
8898 if (!((*link_info->callbacks->reloc_overflow)
8899 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8900 (*parent)->howto->name, (*parent)->addend,
8901 input_bfd, input_section, (*parent)->address)))
8902 goto error_return;
8903 break;
8904 case bfd_reloc_outofrange:
8905 default:
8906 abort ();
8907 break;
8908 }
8909
8910 }
8911 }
8912 }
8913 if (reloc_vector != NULL)
8914 free (reloc_vector);
8915 return data;
8916
8917error_return:
8918 if (reloc_vector != NULL)
8919 free (reloc_vector);
8920 return NULL;
8921}
8922#define bfd_elf32_bfd_get_relocated_section_contents \
8923 elf32_mips_get_relocated_section_contents
8924\f
8925/* ECOFF swapping routines. These are used when dealing with the
8926 .mdebug section, which is in the ECOFF debugging format. */
8927static const struct ecoff_debug_swap mips_elf32_ecoff_debug_swap =
8928{
8929 /* Symbol table magic number. */
8930 magicSym,
8931 /* Alignment of debugging information. E.g., 4. */
8932 4,
8933 /* Sizes of external symbolic information. */
8934 sizeof (struct hdr_ext),
8935 sizeof (struct dnr_ext),
8936 sizeof (struct pdr_ext),
8937 sizeof (struct sym_ext),
8938 sizeof (struct opt_ext),
8939 sizeof (struct fdr_ext),
8940 sizeof (struct rfd_ext),
8941 sizeof (struct ext_ext),
8942 /* Functions to swap in external symbolic data. */
8943 ecoff_swap_hdr_in,
8944 ecoff_swap_dnr_in,
8945 ecoff_swap_pdr_in,
8946 ecoff_swap_sym_in,
8947 ecoff_swap_opt_in,
8948 ecoff_swap_fdr_in,
8949 ecoff_swap_rfd_in,
8950 ecoff_swap_ext_in,
8951 _bfd_ecoff_swap_tir_in,
8952 _bfd_ecoff_swap_rndx_in,
8953 /* Functions to swap out external symbolic data. */
8954 ecoff_swap_hdr_out,
8955 ecoff_swap_dnr_out,
8956 ecoff_swap_pdr_out,
8957 ecoff_swap_sym_out,
8958 ecoff_swap_opt_out,
8959 ecoff_swap_fdr_out,
8960 ecoff_swap_rfd_out,
8961 ecoff_swap_ext_out,
8962 _bfd_ecoff_swap_tir_out,
8963 _bfd_ecoff_swap_rndx_out,
8964 /* Function to read in symbolic data. */
8965 _bfd_mips_elf_read_ecoff_info
8966};
8967\f
8968#define TARGET_LITTLE_SYM bfd_elf32_littlemips_vec
8969#define TARGET_LITTLE_NAME "elf32-littlemips"
8970#define TARGET_BIG_SYM bfd_elf32_bigmips_vec
8971#define TARGET_BIG_NAME "elf32-bigmips"
8972#define ELF_ARCH bfd_arch_mips
8973#define ELF_MACHINE_CODE EM_MIPS
8974
8975/* The SVR4 MIPS ABI says that this should be 0x10000, but Irix 5 uses
8976 a value of 0x1000, and we are compatible. */
8977#define ELF_MAXPAGESIZE 0x1000
8978
8979#define elf_backend_collect true
8980#define elf_backend_type_change_ok true
8981#define elf_backend_can_gc_sections true
86dc0f79 8982#define elf_backend_sign_extend_vma true
3f830999 8983#define elf_info_to_howto mips_info_to_howto_rela
252b5132
RH
8984#define elf_info_to_howto_rel mips_info_to_howto_rel
8985#define elf_backend_sym_is_global mips_elf_sym_is_global
103186c6
MM
8986#define elf_backend_object_p _bfd_mips_elf_object_p
8987#define elf_backend_section_from_shdr _bfd_mips_elf_section_from_shdr
252b5132
RH
8988#define elf_backend_fake_sections _bfd_mips_elf_fake_sections
8989#define elf_backend_section_from_bfd_section \
8990 _bfd_mips_elf_section_from_bfd_section
103186c6 8991#define elf_backend_section_processing _bfd_mips_elf_section_processing
252b5132
RH
8992#define elf_backend_symbol_processing _bfd_mips_elf_symbol_processing
8993#define elf_backend_additional_program_headers \
103186c6
MM
8994 _bfd_mips_elf_additional_program_headers
8995#define elf_backend_modify_segment_map _bfd_mips_elf_modify_segment_map
252b5132
RH
8996#define elf_backend_final_write_processing \
8997 _bfd_mips_elf_final_write_processing
8998#define elf_backend_ecoff_debug_swap &mips_elf32_ecoff_debug_swap
103186c6
MM
8999#define elf_backend_add_symbol_hook _bfd_mips_elf_add_symbol_hook
9000#define elf_backend_create_dynamic_sections \
9001 _bfd_mips_elf_create_dynamic_sections
9002#define elf_backend_check_relocs _bfd_mips_elf_check_relocs
9003#define elf_backend_adjust_dynamic_symbol \
9004 _bfd_mips_elf_adjust_dynamic_symbol
9005#define elf_backend_always_size_sections \
9006 _bfd_mips_elf_always_size_sections
9007#define elf_backend_size_dynamic_sections \
9008 _bfd_mips_elf_size_dynamic_sections
9009#define elf_backend_relocate_section _bfd_mips_elf_relocate_section
9010#define elf_backend_link_output_symbol_hook \
9011 _bfd_mips_elf_link_output_symbol_hook
9012#define elf_backend_finish_dynamic_symbol \
9013 _bfd_mips_elf_finish_dynamic_symbol
9014#define elf_backend_finish_dynamic_sections \
9015 _bfd_mips_elf_finish_dynamic_sections
9016#define elf_backend_gc_mark_hook _bfd_mips_elf_gc_mark_hook
9017#define elf_backend_gc_sweep_hook _bfd_mips_elf_gc_sweep_hook
9018
9019#define elf_backend_got_header_size (4*MIPS_RESERVED_GOTNO)
9020#define elf_backend_plt_header_size 0
252b5132
RH
9021
9022#define bfd_elf32_bfd_is_local_label_name \
9023 mips_elf_is_local_label_name
9024#define bfd_elf32_find_nearest_line _bfd_mips_elf_find_nearest_line
9025#define bfd_elf32_set_section_contents _bfd_mips_elf_set_section_contents
9026#define bfd_elf32_bfd_link_hash_table_create \
103186c6
MM
9027 _bfd_mips_elf_link_hash_table_create
9028#define bfd_elf32_bfd_final_link _bfd_mips_elf_final_link
252b5132
RH
9029#define bfd_elf32_bfd_copy_private_bfd_data \
9030 _bfd_mips_elf_copy_private_bfd_data
9031#define bfd_elf32_bfd_merge_private_bfd_data \
9032 _bfd_mips_elf_merge_private_bfd_data
9033#define bfd_elf32_bfd_set_private_flags _bfd_mips_elf_set_private_flags
9034#define bfd_elf32_bfd_print_private_bfd_data \
9035 _bfd_mips_elf_print_private_bfd_data
252b5132 9036#include "elf32-target.h"
This page took 0.449983 seconds and 4 git commands to generate.