Print PHDRS clause for debugging.
[deliverable/binutils-gdb.git] / bfd / elf32-xtensa.c
CommitLineData
e0001a05 1/* Xtensa-specific support for 32-bit ELF.
f0e6fdb2 2 Copyright 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
e0001a05
NC
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
cd123cb7 8 published by the Free Software Foundation; either version 3 of the
e0001a05
NC
9 License, or (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
3e110533 18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
53e09e0a 19 02110-1301, USA. */
e0001a05 20
e0001a05 21#include "sysdep.h"
3db64b00 22#include "bfd.h"
e0001a05 23
e0001a05 24#include <stdarg.h>
e0001a05
NC
25#include <strings.h>
26
27#include "bfdlink.h"
28#include "libbfd.h"
29#include "elf-bfd.h"
30#include "elf/xtensa.h"
31#include "xtensa-isa.h"
32#include "xtensa-config.h"
33
43cd72b9
BW
34#define XTENSA_NO_NOP_REMOVAL 0
35
e0001a05
NC
36/* Local helper functions. */
37
f0e6fdb2 38static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
2db662be 39static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
e0001a05 40static bfd_reloc_status_type bfd_elf_xtensa_reloc
7fa3d080 41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43cd72b9 42static bfd_boolean do_fix_for_relocatable_link
7fa3d080 43 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
e0001a05 44static void do_fix_for_final_link
7fa3d080 45 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
e0001a05
NC
46
47/* Local functions to handle Xtensa configurability. */
48
7fa3d080
BW
49static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
50static bfd_boolean is_direct_call_opcode (xtensa_opcode);
51static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
52static xtensa_opcode get_const16_opcode (void);
53static xtensa_opcode get_l32r_opcode (void);
54static bfd_vma l32r_offset (bfd_vma, bfd_vma);
55static int get_relocation_opnd (xtensa_opcode, int);
56static int get_relocation_slot (int);
e0001a05 57static xtensa_opcode get_relocation_opcode
7fa3d080 58 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
e0001a05 59static bfd_boolean is_l32r_relocation
7fa3d080
BW
60 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
61static bfd_boolean is_alt_relocation (int);
62static bfd_boolean is_operand_relocation (int);
43cd72b9 63static bfd_size_type insn_decode_len
7fa3d080 64 (bfd_byte *, bfd_size_type, bfd_size_type);
43cd72b9 65static xtensa_opcode insn_decode_opcode
7fa3d080 66 (bfd_byte *, bfd_size_type, bfd_size_type, int);
43cd72b9 67static bfd_boolean check_branch_target_aligned
7fa3d080 68 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
43cd72b9 69static bfd_boolean check_loop_aligned
7fa3d080
BW
70 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
71static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
43cd72b9 72static bfd_size_type get_asm_simplify_size
7fa3d080 73 (bfd_byte *, bfd_size_type, bfd_size_type);
e0001a05
NC
74
75/* Functions for link-time code simplifications. */
76
43cd72b9 77static bfd_reloc_status_type elf_xtensa_do_asm_simplify
7fa3d080 78 (bfd_byte *, bfd_vma, bfd_vma, char **);
e0001a05 79static bfd_reloc_status_type contract_asm_expansion
7fa3d080
BW
80 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
81static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
82static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
e0001a05
NC
83
84/* Access to internal relocations, section contents and symbols. */
85
86static Elf_Internal_Rela *retrieve_internal_relocs
7fa3d080
BW
87 (bfd *, asection *, bfd_boolean);
88static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
89static void release_internal_relocs (asection *, Elf_Internal_Rela *);
90static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
91static void pin_contents (asection *, bfd_byte *);
92static void release_contents (asection *, bfd_byte *);
93static Elf_Internal_Sym *retrieve_local_syms (bfd *);
e0001a05
NC
94
95/* Miscellaneous utility functions. */
96
f0e6fdb2
BW
97static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
98static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
7fa3d080 99static asection *get_elf_r_symndx_section (bfd *, unsigned long);
e0001a05 100static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
7fa3d080
BW
101 (bfd *, unsigned long);
102static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
103static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
104static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
105static bfd_boolean xtensa_is_property_section (asection *);
1d25768e 106static bfd_boolean xtensa_is_insntable_section (asection *);
7fa3d080 107static bfd_boolean xtensa_is_littable_section (asection *);
1d25768e 108static bfd_boolean xtensa_is_proptable_section (asection *);
7fa3d080
BW
109static int internal_reloc_compare (const void *, const void *);
110static int internal_reloc_matches (const void *, const void *);
74869ac7 111extern asection *xtensa_get_property_section (asection *, const char *);
7fa3d080 112static flagword xtensa_get_property_predef_flags (asection *);
e0001a05
NC
113
114/* Other functions called directly by the linker. */
115
116typedef void (*deps_callback_t)
7fa3d080 117 (asection *, bfd_vma, asection *, bfd_vma, void *);
e0001a05 118extern bfd_boolean xtensa_callback_required_dependence
7fa3d080 119 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
e0001a05
NC
120
121
43cd72b9
BW
122/* Globally visible flag for choosing size optimization of NOP removal
123 instead of branch-target-aware minimization for NOP removal.
124 When nonzero, narrow all instructions and remove all NOPs possible
125 around longcall expansions. */
7fa3d080 126
43cd72b9
BW
127int elf32xtensa_size_opt;
128
129
130/* The "new_section_hook" is used to set up a per-section
131 "xtensa_relax_info" data structure with additional information used
132 during relaxation. */
e0001a05 133
7fa3d080 134typedef struct xtensa_relax_info_struct xtensa_relax_info;
e0001a05 135
43cd72b9 136
43cd72b9
BW
137/* The GNU tools do not easily allow extending interfaces to pass around
138 the pointer to the Xtensa ISA information, so instead we add a global
139 variable here (in BFD) that can be used by any of the tools that need
140 this information. */
141
142xtensa_isa xtensa_default_isa;
143
144
e0001a05
NC
145/* When this is true, relocations may have been modified to refer to
146 symbols from other input files. The per-section list of "fix"
147 records needs to be checked when resolving relocations. */
148
149static bfd_boolean relaxing_section = FALSE;
150
43cd72b9
BW
151/* When this is true, during final links, literals that cannot be
152 coalesced and their relocations may be moved to other sections. */
153
154int elf32xtensa_no_literal_movement = 1;
155
e0001a05
NC
156\f
157static reloc_howto_type elf_howto_table[] =
158{
159 HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
160 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
e5f131d1 161 FALSE, 0, 0, FALSE),
e0001a05
NC
162 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
163 bfd_elf_xtensa_reloc, "R_XTENSA_32",
164 TRUE, 0xffffffff, 0xffffffff, FALSE),
e5f131d1 165
e0001a05
NC
166 /* Replace a 32-bit value with a value from the runtime linker (only
167 used by linker-generated stub functions). The r_addend value is
168 special: 1 means to substitute a pointer to the runtime linker's
169 dynamic resolver function; 2 means to substitute the link map for
170 the shared object. */
171 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
e5f131d1
BW
172 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
173
e0001a05
NC
174 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
175 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
e5f131d1 176 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
177 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
178 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
e5f131d1 179 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
180 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
181 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
e5f131d1 182 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
183 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
184 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
e5f131d1
BW
185 FALSE, 0, 0xffffffff, FALSE),
186
e0001a05 187 EMPTY_HOWTO (7),
e5f131d1
BW
188
189 /* Old relocations for backward compatibility. */
e0001a05 190 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 191 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
e0001a05 192 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 193 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
e0001a05 194 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1
BW
195 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
196
e0001a05
NC
197 /* Assembly auto-expansion. */
198 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 199 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
e0001a05
NC
200 /* Relax assembly auto-expansion. */
201 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1
BW
202 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
203
e0001a05 204 EMPTY_HOWTO (13),
1bbb5f21
BW
205
206 HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
207 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
208 FALSE, 0, 0xffffffff, TRUE),
e5f131d1 209
e0001a05
NC
210 /* GNU extension to record C++ vtable hierarchy. */
211 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
212 NULL, "R_XTENSA_GNU_VTINHERIT",
e5f131d1 213 FALSE, 0, 0, FALSE),
e0001a05
NC
214 /* GNU extension to record C++ vtable member usage. */
215 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
216 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
e5f131d1 217 FALSE, 0, 0, FALSE),
43cd72b9
BW
218
219 /* Relocations for supporting difference of symbols. */
220 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
e5f131d1 221 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
43cd72b9 222 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
e5f131d1 223 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
43cd72b9 224 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
e5f131d1 225 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
43cd72b9
BW
226
227 /* General immediate operand relocations. */
228 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 229 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
43cd72b9 230 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 231 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
43cd72b9 232 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 233 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
43cd72b9 234 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 235 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
43cd72b9 236 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 237 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
43cd72b9 238 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 239 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
43cd72b9 240 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 241 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
43cd72b9 242 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 243 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
43cd72b9 244 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 245 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
43cd72b9 246 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 247 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
43cd72b9 248 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 249 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
43cd72b9 250 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 251 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
43cd72b9 252 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 253 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
43cd72b9 254 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 255 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
43cd72b9 256 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 257 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
43cd72b9
BW
258
259 /* "Alternate" relocations. The meaning of these is opcode-specific. */
260 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 261 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
43cd72b9 262 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 263 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
43cd72b9 264 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 265 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
43cd72b9 266 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 267 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
43cd72b9 268 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 269 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
43cd72b9 270 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 271 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
43cd72b9 272 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 273 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
43cd72b9 274 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 275 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
43cd72b9 276 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 277 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
43cd72b9 278 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 279 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
43cd72b9 280 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 281 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
43cd72b9 282 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 283 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
43cd72b9 284 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 285 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
43cd72b9 286 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 287 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
43cd72b9 288 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 289 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
e0001a05
NC
290};
291
43cd72b9 292#if DEBUG_GEN_RELOC
e0001a05
NC
293#define TRACE(str) \
294 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
295#else
296#define TRACE(str)
297#endif
298
299static reloc_howto_type *
7fa3d080
BW
300elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
301 bfd_reloc_code_real_type code)
e0001a05
NC
302{
303 switch (code)
304 {
305 case BFD_RELOC_NONE:
306 TRACE ("BFD_RELOC_NONE");
307 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
308
309 case BFD_RELOC_32:
310 TRACE ("BFD_RELOC_32");
311 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
312
1bbb5f21
BW
313 case BFD_RELOC_32_PCREL:
314 TRACE ("BFD_RELOC_32_PCREL");
315 return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
316
43cd72b9
BW
317 case BFD_RELOC_XTENSA_DIFF8:
318 TRACE ("BFD_RELOC_XTENSA_DIFF8");
319 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
320
321 case BFD_RELOC_XTENSA_DIFF16:
322 TRACE ("BFD_RELOC_XTENSA_DIFF16");
323 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
324
325 case BFD_RELOC_XTENSA_DIFF32:
326 TRACE ("BFD_RELOC_XTENSA_DIFF32");
327 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
328
e0001a05
NC
329 case BFD_RELOC_XTENSA_RTLD:
330 TRACE ("BFD_RELOC_XTENSA_RTLD");
331 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
332
333 case BFD_RELOC_XTENSA_GLOB_DAT:
334 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
335 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
336
337 case BFD_RELOC_XTENSA_JMP_SLOT:
338 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
339 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
340
341 case BFD_RELOC_XTENSA_RELATIVE:
342 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
343 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
344
345 case BFD_RELOC_XTENSA_PLT:
346 TRACE ("BFD_RELOC_XTENSA_PLT");
347 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
348
349 case BFD_RELOC_XTENSA_OP0:
350 TRACE ("BFD_RELOC_XTENSA_OP0");
351 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
352
353 case BFD_RELOC_XTENSA_OP1:
354 TRACE ("BFD_RELOC_XTENSA_OP1");
355 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
356
357 case BFD_RELOC_XTENSA_OP2:
358 TRACE ("BFD_RELOC_XTENSA_OP2");
359 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
360
361 case BFD_RELOC_XTENSA_ASM_EXPAND:
362 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
363 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
364
365 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
366 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
367 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
368
369 case BFD_RELOC_VTABLE_INHERIT:
370 TRACE ("BFD_RELOC_VTABLE_INHERIT");
371 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
372
373 case BFD_RELOC_VTABLE_ENTRY:
374 TRACE ("BFD_RELOC_VTABLE_ENTRY");
375 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
376
377 default:
43cd72b9
BW
378 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
379 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
380 {
381 unsigned n = (R_XTENSA_SLOT0_OP +
382 (code - BFD_RELOC_XTENSA_SLOT0_OP));
383 return &elf_howto_table[n];
384 }
385
386 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
387 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
388 {
389 unsigned n = (R_XTENSA_SLOT0_ALT +
390 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
391 return &elf_howto_table[n];
392 }
393
e0001a05
NC
394 break;
395 }
396
397 TRACE ("Unknown");
398 return NULL;
399}
400
157090f7
AM
401static reloc_howto_type *
402elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
403 const char *r_name)
404{
405 unsigned int i;
406
407 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
408 if (elf_howto_table[i].name != NULL
409 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
410 return &elf_howto_table[i];
411
412 return NULL;
413}
414
e0001a05
NC
415
416/* Given an ELF "rela" relocation, find the corresponding howto and record
417 it in the BFD internal arelent representation of the relocation. */
418
419static void
7fa3d080
BW
420elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
421 arelent *cache_ptr,
422 Elf_Internal_Rela *dst)
e0001a05
NC
423{
424 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
425
426 BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max);
427 cache_ptr->howto = &elf_howto_table[r_type];
428}
429
430\f
431/* Functions for the Xtensa ELF linker. */
432
433/* The name of the dynamic interpreter. This is put in the .interp
434 section. */
435
436#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
437
438/* The size in bytes of an entry in the procedure linkage table.
439 (This does _not_ include the space for the literals associated with
440 the PLT entry.) */
441
442#define PLT_ENTRY_SIZE 16
443
444/* For _really_ large PLTs, we may need to alternate between literals
445 and code to keep the literals within the 256K range of the L32R
446 instructions in the code. It's unlikely that anyone would ever need
447 such a big PLT, but an arbitrary limit on the PLT size would be bad.
448 Thus, we split the PLT into chunks. Since there's very little
449 overhead (2 extra literals) for each chunk, the chunk size is kept
450 small so that the code for handling multiple chunks get used and
451 tested regularly. With 254 entries, there are 1K of literals for
452 each chunk, and that seems like a nice round number. */
453
454#define PLT_ENTRIES_PER_CHUNK 254
455
456/* PLT entries are actually used as stub functions for lazy symbol
457 resolution. Once the symbol is resolved, the stub function is never
458 invoked. Note: the 32-byte frame size used here cannot be changed
459 without a corresponding change in the runtime linker. */
460
461static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
462{
463 0x6c, 0x10, 0x04, /* entry sp, 32 */
464 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
465 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
466 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
467 0x0a, 0x80, 0x00, /* jx a8 */
468 0 /* unused */
469};
470
471static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
472{
473 0x36, 0x41, 0x00, /* entry sp, 32 */
474 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
475 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
476 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
477 0xa0, 0x08, 0x00, /* jx a8 */
478 0 /* unused */
479};
480
f0e6fdb2
BW
481/* Xtensa ELF linker hash table. */
482
483struct elf_xtensa_link_hash_table
484{
485 struct elf_link_hash_table elf;
486
487 /* Short-cuts to get to dynamic linker sections. */
488 asection *sgot;
489 asection *sgotplt;
490 asection *srelgot;
491 asection *splt;
492 asection *srelplt;
493 asection *sgotloc;
494 asection *spltlittbl;
495
496 /* Total count of PLT relocations seen during check_relocs.
497 The actual PLT code must be split into multiple sections and all
498 the sections have to be created before size_dynamic_sections,
499 where we figure out the exact number of PLT entries that will be
500 needed. It is OK if this count is an overestimate, e.g., some
501 relocations may be removed by GC. */
502 int plt_reloc_count;
503};
504
505/* Get the Xtensa ELF linker hash table from a link_info structure. */
506
507#define elf_xtensa_hash_table(p) \
508 ((struct elf_xtensa_link_hash_table *) ((p)->hash))
509
510/* Create an Xtensa ELF linker hash table. */
511
512static struct bfd_link_hash_table *
513elf_xtensa_link_hash_table_create (bfd *abfd)
514{
515 struct elf_xtensa_link_hash_table *ret;
516 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
517
518 ret = bfd_malloc (amt);
519 if (ret == NULL)
520 return NULL;
521
522 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
523 _bfd_elf_link_hash_newfunc,
524 sizeof (struct elf_link_hash_entry)))
525 {
526 free (ret);
527 return NULL;
528 }
529
530 ret->sgot = NULL;
531 ret->sgotplt = NULL;
532 ret->srelgot = NULL;
533 ret->splt = NULL;
534 ret->srelplt = NULL;
535 ret->sgotloc = NULL;
536 ret->spltlittbl = NULL;
537
538 ret->plt_reloc_count = 0;
539
540 return &ret->elf.root;
541}
571b5725
BW
542
543static inline bfd_boolean
4608f3d9 544elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
7fa3d080 545 struct bfd_link_info *info)
571b5725
BW
546{
547 /* Check if we should do dynamic things to this symbol. The
548 "ignore_protected" argument need not be set, because Xtensa code
549 does not require special handling of STV_PROTECTED to make function
550 pointer comparisons work properly. The PLT addresses are never
551 used for function pointers. */
552
553 return _bfd_elf_dynamic_symbol_p (h, info, 0);
554}
555
e0001a05
NC
556\f
557static int
7fa3d080 558property_table_compare (const void *ap, const void *bp)
e0001a05
NC
559{
560 const property_table_entry *a = (const property_table_entry *) ap;
561 const property_table_entry *b = (const property_table_entry *) bp;
562
43cd72b9
BW
563 if (a->address == b->address)
564 {
43cd72b9
BW
565 if (a->size != b->size)
566 return (a->size - b->size);
567
568 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
569 return ((b->flags & XTENSA_PROP_ALIGN)
570 - (a->flags & XTENSA_PROP_ALIGN));
571
572 if ((a->flags & XTENSA_PROP_ALIGN)
573 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
574 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
575 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
576 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
577
578 if ((a->flags & XTENSA_PROP_UNREACHABLE)
579 != (b->flags & XTENSA_PROP_UNREACHABLE))
580 return ((b->flags & XTENSA_PROP_UNREACHABLE)
581 - (a->flags & XTENSA_PROP_UNREACHABLE));
582
583 return (a->flags - b->flags);
584 }
585
586 return (a->address - b->address);
587}
588
589
590static int
7fa3d080 591property_table_matches (const void *ap, const void *bp)
43cd72b9
BW
592{
593 const property_table_entry *a = (const property_table_entry *) ap;
594 const property_table_entry *b = (const property_table_entry *) bp;
595
596 /* Check if one entry overlaps with the other. */
e0001a05
NC
597 if ((b->address >= a->address && b->address < (a->address + a->size))
598 || (a->address >= b->address && a->address < (b->address + b->size)))
599 return 0;
600
601 return (a->address - b->address);
602}
603
604
43cd72b9
BW
605/* Get the literal table or property table entries for the given
606 section. Sets TABLE_P and returns the number of entries. On
607 error, returns a negative value. */
e0001a05 608
7fa3d080
BW
609static int
610xtensa_read_table_entries (bfd *abfd,
611 asection *section,
612 property_table_entry **table_p,
613 const char *sec_name,
614 bfd_boolean output_addr)
e0001a05
NC
615{
616 asection *table_section;
e0001a05
NC
617 bfd_size_type table_size = 0;
618 bfd_byte *table_data;
619 property_table_entry *blocks;
e4115460 620 int blk, block_count;
e0001a05 621 bfd_size_type num_records;
bcc2cc8e
BW
622 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
623 bfd_vma section_addr, off;
43cd72b9 624 flagword predef_flags;
bcc2cc8e 625 bfd_size_type table_entry_size, section_limit;
43cd72b9
BW
626
627 if (!section
628 || !(section->flags & SEC_ALLOC)
629 || (section->flags & SEC_DEBUGGING))
630 {
631 *table_p = NULL;
632 return 0;
633 }
e0001a05 634
74869ac7 635 table_section = xtensa_get_property_section (section, sec_name);
43cd72b9 636 if (table_section)
eea6121a 637 table_size = table_section->size;
43cd72b9 638
e0001a05
NC
639 if (table_size == 0)
640 {
641 *table_p = NULL;
642 return 0;
643 }
644
43cd72b9
BW
645 predef_flags = xtensa_get_property_predef_flags (table_section);
646 table_entry_size = 12;
647 if (predef_flags)
648 table_entry_size -= 4;
649
650 num_records = table_size / table_entry_size;
e0001a05
NC
651 table_data = retrieve_contents (abfd, table_section, TRUE);
652 blocks = (property_table_entry *)
653 bfd_malloc (num_records * sizeof (property_table_entry));
654 block_count = 0;
43cd72b9
BW
655
656 if (output_addr)
657 section_addr = section->output_section->vma + section->output_offset;
658 else
659 section_addr = section->vma;
3ba3bc8c 660
e0001a05 661 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
3ba3bc8c 662 if (internal_relocs && !table_section->reloc_done)
e0001a05 663 {
bcc2cc8e
BW
664 qsort (internal_relocs, table_section->reloc_count,
665 sizeof (Elf_Internal_Rela), internal_reloc_compare);
666 irel = internal_relocs;
667 }
668 else
669 irel = NULL;
670
671 section_limit = bfd_get_section_limit (abfd, section);
672 rel_end = internal_relocs + table_section->reloc_count;
673
674 for (off = 0; off < table_size; off += table_entry_size)
675 {
676 bfd_vma address = bfd_get_32 (abfd, table_data + off);
677
678 /* Skip any relocations before the current offset. This should help
679 avoid confusion caused by unexpected relocations for the preceding
680 table entry. */
681 while (irel &&
682 (irel->r_offset < off
683 || (irel->r_offset == off
684 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
685 {
686 irel += 1;
687 if (irel >= rel_end)
688 irel = 0;
689 }
e0001a05 690
bcc2cc8e 691 if (irel && irel->r_offset == off)
e0001a05 692 {
bcc2cc8e
BW
693 bfd_vma sym_off;
694 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
695 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
e0001a05 696
bcc2cc8e 697 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
e0001a05
NC
698 continue;
699
bcc2cc8e
BW
700 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
701 BFD_ASSERT (sym_off == 0);
702 address += (section_addr + sym_off + irel->r_addend);
e0001a05 703 }
bcc2cc8e 704 else
e0001a05 705 {
bcc2cc8e
BW
706 if (address < section_addr
707 || address >= section_addr + section_limit)
708 continue;
e0001a05 709 }
bcc2cc8e
BW
710
711 blocks[block_count].address = address;
712 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
713 if (predef_flags)
714 blocks[block_count].flags = predef_flags;
715 else
716 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
717 block_count++;
e0001a05
NC
718 }
719
720 release_contents (table_section, table_data);
721 release_internal_relocs (table_section, internal_relocs);
722
43cd72b9 723 if (block_count > 0)
e0001a05
NC
724 {
725 /* Now sort them into address order for easy reference. */
726 qsort (blocks, block_count, sizeof (property_table_entry),
727 property_table_compare);
e4115460
BW
728
729 /* Check that the table contents are valid. Problems may occur,
730 for example, if an unrelocated object file is stripped. */
731 for (blk = 1; blk < block_count; blk++)
732 {
733 /* The only circumstance where two entries may legitimately
734 have the same address is when one of them is a zero-size
735 placeholder to mark a place where fill can be inserted.
736 The zero-size entry should come first. */
737 if (blocks[blk - 1].address == blocks[blk].address &&
738 blocks[blk - 1].size != 0)
739 {
740 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
741 abfd, section);
742 bfd_set_error (bfd_error_bad_value);
743 free (blocks);
744 return -1;
745 }
746 }
e0001a05 747 }
43cd72b9 748
e0001a05
NC
749 *table_p = blocks;
750 return block_count;
751}
752
753
7fa3d080
BW
754static property_table_entry *
755elf_xtensa_find_property_entry (property_table_entry *property_table,
756 int property_table_size,
757 bfd_vma addr)
e0001a05
NC
758{
759 property_table_entry entry;
43cd72b9 760 property_table_entry *rv;
e0001a05 761
43cd72b9
BW
762 if (property_table_size == 0)
763 return NULL;
e0001a05
NC
764
765 entry.address = addr;
766 entry.size = 1;
43cd72b9 767 entry.flags = 0;
e0001a05 768
43cd72b9
BW
769 rv = bsearch (&entry, property_table, property_table_size,
770 sizeof (property_table_entry), property_table_matches);
771 return rv;
772}
773
774
775static bfd_boolean
7fa3d080
BW
776elf_xtensa_in_literal_pool (property_table_entry *lit_table,
777 int lit_table_size,
778 bfd_vma addr)
43cd72b9
BW
779{
780 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
e0001a05
NC
781 return TRUE;
782
783 return FALSE;
784}
785
786\f
787/* Look through the relocs for a section during the first phase, and
788 calculate needed space in the dynamic reloc sections. */
789
790static bfd_boolean
7fa3d080
BW
791elf_xtensa_check_relocs (bfd *abfd,
792 struct bfd_link_info *info,
793 asection *sec,
794 const Elf_Internal_Rela *relocs)
e0001a05 795{
f0e6fdb2 796 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
797 Elf_Internal_Shdr *symtab_hdr;
798 struct elf_link_hash_entry **sym_hashes;
799 const Elf_Internal_Rela *rel;
800 const Elf_Internal_Rela *rel_end;
e0001a05 801
1049f94e 802 if (info->relocatable)
e0001a05
NC
803 return TRUE;
804
f0e6fdb2 805 htab = elf_xtensa_hash_table (info);
e0001a05
NC
806 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
807 sym_hashes = elf_sym_hashes (abfd);
808
e0001a05
NC
809 rel_end = relocs + sec->reloc_count;
810 for (rel = relocs; rel < rel_end; rel++)
811 {
812 unsigned int r_type;
813 unsigned long r_symndx;
814 struct elf_link_hash_entry *h;
815
816 r_symndx = ELF32_R_SYM (rel->r_info);
817 r_type = ELF32_R_TYPE (rel->r_info);
818
819 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
820 {
d003868e
AM
821 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
822 abfd, r_symndx);
e0001a05
NC
823 return FALSE;
824 }
825
826 if (r_symndx < symtab_hdr->sh_info)
827 h = NULL;
828 else
829 {
830 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
831 while (h->root.type == bfd_link_hash_indirect
832 || h->root.type == bfd_link_hash_warning)
833 h = (struct elf_link_hash_entry *) h->root.u.i.link;
834 }
835
836 switch (r_type)
837 {
838 case R_XTENSA_32:
839 if (h == NULL)
840 goto local_literal;
841
842 if ((sec->flags & SEC_ALLOC) != 0)
843 {
e0001a05
NC
844 if (h->got.refcount <= 0)
845 h->got.refcount = 1;
846 else
847 h->got.refcount += 1;
848 }
849 break;
850
851 case R_XTENSA_PLT:
852 /* If this relocation is against a local symbol, then it's
853 exactly the same as a normal local GOT entry. */
854 if (h == NULL)
855 goto local_literal;
856
857 if ((sec->flags & SEC_ALLOC) != 0)
858 {
e0001a05
NC
859 if (h->plt.refcount <= 0)
860 {
f5385ebf 861 h->needs_plt = 1;
e0001a05
NC
862 h->plt.refcount = 1;
863 }
864 else
865 h->plt.refcount += 1;
866
867 /* Keep track of the total PLT relocation count even if we
868 don't yet know whether the dynamic sections will be
869 created. */
f0e6fdb2 870 htab->plt_reloc_count += 1;
e0001a05
NC
871
872 if (elf_hash_table (info)->dynamic_sections_created)
873 {
f0e6fdb2 874 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
e0001a05
NC
875 return FALSE;
876 }
877 }
878 break;
879
880 local_literal:
881 if ((sec->flags & SEC_ALLOC) != 0)
882 {
883 bfd_signed_vma *local_got_refcounts;
884
885 /* This is a global offset table entry for a local symbol. */
886 local_got_refcounts = elf_local_got_refcounts (abfd);
887 if (local_got_refcounts == NULL)
888 {
889 bfd_size_type size;
890
891 size = symtab_hdr->sh_info;
892 size *= sizeof (bfd_signed_vma);
43cd72b9
BW
893 local_got_refcounts =
894 (bfd_signed_vma *) bfd_zalloc (abfd, size);
e0001a05
NC
895 if (local_got_refcounts == NULL)
896 return FALSE;
897 elf_local_got_refcounts (abfd) = local_got_refcounts;
898 }
899 local_got_refcounts[r_symndx] += 1;
e0001a05
NC
900 }
901 break;
902
e0001a05
NC
903 case R_XTENSA_GNU_VTINHERIT:
904 /* This relocation describes the C++ object vtable hierarchy.
905 Reconstruct it for later use during GC. */
c152c796 906 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
e0001a05
NC
907 return FALSE;
908 break;
909
910 case R_XTENSA_GNU_VTENTRY:
911 /* This relocation describes which C++ vtable entries are actually
912 used. Record for later use during GC. */
d17e0c6e
JB
913 BFD_ASSERT (h != NULL);
914 if (h != NULL
915 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
e0001a05
NC
916 return FALSE;
917 break;
918
919 default:
920 break;
921 }
922 }
923
e0001a05
NC
924 return TRUE;
925}
926
927
95147441
BW
928static void
929elf_xtensa_make_sym_local (struct bfd_link_info *info,
930 struct elf_link_hash_entry *h)
931{
932 if (info->shared)
933 {
934 if (h->plt.refcount > 0)
935 {
936 /* For shared objects, there's no need for PLT entries for local
937 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
938 if (h->got.refcount < 0)
939 h->got.refcount = 0;
940 h->got.refcount += h->plt.refcount;
941 h->plt.refcount = 0;
942 }
943 }
944 else
945 {
946 /* Don't need any dynamic relocations at all. */
947 h->plt.refcount = 0;
948 h->got.refcount = 0;
949 }
950}
951
952
953static void
954elf_xtensa_hide_symbol (struct bfd_link_info *info,
955 struct elf_link_hash_entry *h,
956 bfd_boolean force_local)
957{
958 /* For a shared link, move the plt refcount to the got refcount to leave
959 space for RELATIVE relocs. */
960 elf_xtensa_make_sym_local (info, h);
961
962 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
963}
964
965
e0001a05
NC
966/* Return the section that should be marked against GC for a given
967 relocation. */
968
969static asection *
7fa3d080 970elf_xtensa_gc_mark_hook (asection *sec,
07adf181 971 struct bfd_link_info *info,
7fa3d080
BW
972 Elf_Internal_Rela *rel,
973 struct elf_link_hash_entry *h,
974 Elf_Internal_Sym *sym)
e0001a05 975{
e1e5c0b5
BW
976 /* Property sections are marked "KEEP" in the linker scripts, but they
977 should not cause other sections to be marked. (This approach relies
978 on elf_xtensa_discard_info to remove property table entries that
979 describe discarded sections. Alternatively, it might be more
980 efficient to avoid using "KEEP" in the linker scripts and instead use
981 the gc_mark_extra_sections hook to mark only the property sections
982 that describe marked sections. That alternative does not work well
983 with the current property table sections, which do not correspond
984 one-to-one with the sections they describe, but that should be fixed
985 someday.) */
986 if (xtensa_is_property_section (sec))
987 return NULL;
988
07adf181
AM
989 if (h != NULL)
990 switch (ELF32_R_TYPE (rel->r_info))
991 {
992 case R_XTENSA_GNU_VTINHERIT:
993 case R_XTENSA_GNU_VTENTRY:
994 return NULL;
995 }
996
997 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
e0001a05
NC
998}
999
7fa3d080 1000
e0001a05
NC
1001/* Update the GOT & PLT entry reference counts
1002 for the section being removed. */
1003
1004static bfd_boolean
7fa3d080
BW
1005elf_xtensa_gc_sweep_hook (bfd *abfd,
1006 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1007 asection *sec,
1008 const Elf_Internal_Rela *relocs)
e0001a05
NC
1009{
1010 Elf_Internal_Shdr *symtab_hdr;
1011 struct elf_link_hash_entry **sym_hashes;
1012 bfd_signed_vma *local_got_refcounts;
1013 const Elf_Internal_Rela *rel, *relend;
1014
7dda2462
TG
1015 if (info->relocatable)
1016 return TRUE;
1017
e0001a05
NC
1018 if ((sec->flags & SEC_ALLOC) == 0)
1019 return TRUE;
1020
1021 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1022 sym_hashes = elf_sym_hashes (abfd);
1023 local_got_refcounts = elf_local_got_refcounts (abfd);
1024
1025 relend = relocs + sec->reloc_count;
1026 for (rel = relocs; rel < relend; rel++)
1027 {
1028 unsigned long r_symndx;
1029 unsigned int r_type;
1030 struct elf_link_hash_entry *h = NULL;
1031
1032 r_symndx = ELF32_R_SYM (rel->r_info);
1033 if (r_symndx >= symtab_hdr->sh_info)
3eb128b2
AM
1034 {
1035 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1036 while (h->root.type == bfd_link_hash_indirect
1037 || h->root.type == bfd_link_hash_warning)
1038 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1039 }
e0001a05
NC
1040
1041 r_type = ELF32_R_TYPE (rel->r_info);
1042 switch (r_type)
1043 {
1044 case R_XTENSA_32:
1045 if (h == NULL)
1046 goto local_literal;
1047 if (h->got.refcount > 0)
1048 h->got.refcount--;
1049 break;
1050
1051 case R_XTENSA_PLT:
1052 if (h == NULL)
1053 goto local_literal;
1054 if (h->plt.refcount > 0)
1055 h->plt.refcount--;
1056 break;
1057
1058 local_literal:
1059 if (local_got_refcounts[r_symndx] > 0)
1060 local_got_refcounts[r_symndx] -= 1;
1061 break;
1062
1063 default:
1064 break;
1065 }
1066 }
1067
1068 return TRUE;
1069}
1070
1071
1072/* Create all the dynamic sections. */
1073
1074static bfd_boolean
7fa3d080 1075elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
e0001a05 1076{
f0e6fdb2 1077 struct elf_xtensa_link_hash_table *htab;
e901de89 1078 flagword flags, noalloc_flags;
f0e6fdb2
BW
1079
1080 htab = elf_xtensa_hash_table (info);
e0001a05
NC
1081
1082 /* First do all the standard stuff. */
1083 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1084 return FALSE;
f0e6fdb2
BW
1085 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
1086 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
1087 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
1088 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
e0001a05
NC
1089
1090 /* Create any extra PLT sections in case check_relocs has already
1091 been called on all the non-dynamic input files. */
f0e6fdb2 1092 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
e0001a05
NC
1093 return FALSE;
1094
e901de89
BW
1095 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1096 | SEC_LINKER_CREATED | SEC_READONLY);
1097 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
e0001a05
NC
1098
1099 /* Mark the ".got.plt" section READONLY. */
f0e6fdb2
BW
1100 if (htab->sgotplt == NULL
1101 || ! bfd_set_section_flags (dynobj, htab->sgotplt, flags))
e0001a05
NC
1102 return FALSE;
1103
1104 /* Create ".rela.got". */
f0e6fdb2
BW
1105 htab->srelgot = bfd_make_section_with_flags (dynobj, ".rela.got", flags);
1106 if (htab->srelgot == NULL
1107 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
e0001a05
NC
1108 return FALSE;
1109
e901de89 1110 /* Create ".got.loc" (literal tables for use by dynamic linker). */
f0e6fdb2
BW
1111 htab->sgotloc = bfd_make_section_with_flags (dynobj, ".got.loc", flags);
1112 if (htab->sgotloc == NULL
1113 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
e901de89
BW
1114 return FALSE;
1115
e0001a05 1116 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
f0e6fdb2
BW
1117 htab->spltlittbl = bfd_make_section_with_flags (dynobj, ".xt.lit.plt",
1118 noalloc_flags);
1119 if (htab->spltlittbl == NULL
1120 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
e0001a05
NC
1121 return FALSE;
1122
1123 return TRUE;
1124}
1125
1126
1127static bfd_boolean
f0e6fdb2 1128add_extra_plt_sections (struct bfd_link_info *info, int count)
e0001a05 1129{
f0e6fdb2 1130 bfd *dynobj = elf_hash_table (info)->dynobj;
e0001a05
NC
1131 int chunk;
1132
1133 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1134 ".got.plt" sections. */
1135 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1136 {
1137 char *sname;
1138 flagword flags;
1139 asection *s;
1140
1141 /* Stop when we find a section has already been created. */
f0e6fdb2 1142 if (elf_xtensa_get_plt_section (info, chunk))
e0001a05
NC
1143 break;
1144
1145 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1146 | SEC_LINKER_CREATED | SEC_READONLY);
1147
1148 sname = (char *) bfd_malloc (10);
1149 sprintf (sname, ".plt.%u", chunk);
ba05963f 1150 s = bfd_make_section_with_flags (dynobj, sname, flags | SEC_CODE);
e0001a05 1151 if (s == NULL
e0001a05
NC
1152 || ! bfd_set_section_alignment (dynobj, s, 2))
1153 return FALSE;
1154
1155 sname = (char *) bfd_malloc (14);
1156 sprintf (sname, ".got.plt.%u", chunk);
3496cb2a 1157 s = bfd_make_section_with_flags (dynobj, sname, flags);
e0001a05 1158 if (s == NULL
e0001a05
NC
1159 || ! bfd_set_section_alignment (dynobj, s, 2))
1160 return FALSE;
1161 }
1162
1163 return TRUE;
1164}
1165
1166
1167/* Adjust a symbol defined by a dynamic object and referenced by a
1168 regular object. The current definition is in some section of the
1169 dynamic object, but we're not including those sections. We have to
1170 change the definition to something the rest of the link can
1171 understand. */
1172
1173static bfd_boolean
7fa3d080
BW
1174elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1175 struct elf_link_hash_entry *h)
e0001a05
NC
1176{
1177 /* If this is a weak symbol, and there is a real definition, the
1178 processor independent code will have arranged for us to see the
1179 real definition first, and we can just use the same value. */
7fa3d080 1180 if (h->u.weakdef)
e0001a05 1181 {
f6e332e6
AM
1182 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1183 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1184 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1185 h->root.u.def.value = h->u.weakdef->root.u.def.value;
e0001a05
NC
1186 return TRUE;
1187 }
1188
1189 /* This is a reference to a symbol defined by a dynamic object. The
1190 reference must go through the GOT, so there's no need for COPY relocs,
1191 .dynbss, etc. */
1192
1193 return TRUE;
1194}
1195
1196
e0001a05 1197static bfd_boolean
f1ab2340 1198elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
e0001a05 1199{
f1ab2340
BW
1200 struct bfd_link_info *info;
1201 struct elf_xtensa_link_hash_table *htab;
1202 bfd_boolean is_dynamic;
e0001a05 1203
f1ab2340
BW
1204 if (h->root.type == bfd_link_hash_indirect)
1205 return TRUE;
e0001a05
NC
1206
1207 if (h->root.type == bfd_link_hash_warning)
1208 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1209
f1ab2340
BW
1210 info = (struct bfd_link_info *) arg;
1211 htab = elf_xtensa_hash_table (info);
e0001a05 1212
f1ab2340 1213 is_dynamic = elf_xtensa_dynamic_symbol_p (h, info);
e0001a05 1214
f1ab2340 1215 if (! is_dynamic)
95147441 1216 elf_xtensa_make_sym_local (info, h);
e0001a05 1217
f1ab2340
BW
1218 if (h->plt.refcount > 0)
1219 htab->srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1220
1221 if (h->got.refcount > 0)
f1ab2340 1222 htab->srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1223
1224 return TRUE;
1225}
1226
1227
1228static void
f0e6fdb2 1229elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
e0001a05 1230{
f0e6fdb2 1231 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
1232 bfd *i;
1233
f0e6fdb2
BW
1234 htab = elf_xtensa_hash_table (info);
1235
e0001a05
NC
1236 for (i = info->input_bfds; i; i = i->link_next)
1237 {
1238 bfd_signed_vma *local_got_refcounts;
1239 bfd_size_type j, cnt;
1240 Elf_Internal_Shdr *symtab_hdr;
1241
1242 local_got_refcounts = elf_local_got_refcounts (i);
1243 if (!local_got_refcounts)
1244 continue;
1245
1246 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1247 cnt = symtab_hdr->sh_info;
1248
1249 for (j = 0; j < cnt; ++j)
1250 {
1251 if (local_got_refcounts[j] > 0)
f0e6fdb2
BW
1252 htab->srelgot->size += (local_got_refcounts[j]
1253 * sizeof (Elf32_External_Rela));
e0001a05
NC
1254 }
1255 }
1256}
1257
1258
1259/* Set the sizes of the dynamic sections. */
1260
1261static bfd_boolean
7fa3d080
BW
1262elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1263 struct bfd_link_info *info)
e0001a05 1264{
f0e6fdb2 1265 struct elf_xtensa_link_hash_table *htab;
e901de89
BW
1266 bfd *dynobj, *abfd;
1267 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
e0001a05
NC
1268 bfd_boolean relplt, relgot;
1269 int plt_entries, plt_chunks, chunk;
1270
1271 plt_entries = 0;
1272 plt_chunks = 0;
e0001a05 1273
f0e6fdb2 1274 htab = elf_xtensa_hash_table (info);
e0001a05
NC
1275 dynobj = elf_hash_table (info)->dynobj;
1276 if (dynobj == NULL)
1277 abort ();
f0e6fdb2
BW
1278 srelgot = htab->srelgot;
1279 srelplt = htab->srelplt;
e0001a05
NC
1280
1281 if (elf_hash_table (info)->dynamic_sections_created)
1282 {
f0e6fdb2
BW
1283 BFD_ASSERT (htab->srelgot != NULL
1284 && htab->srelplt != NULL
1285 && htab->sgot != NULL
1286 && htab->spltlittbl != NULL
1287 && htab->sgotloc != NULL);
1288
e0001a05 1289 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 1290 if (info->executable)
e0001a05
NC
1291 {
1292 s = bfd_get_section_by_name (dynobj, ".interp");
1293 if (s == NULL)
1294 abort ();
eea6121a 1295 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
e0001a05
NC
1296 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1297 }
1298
1299 /* Allocate room for one word in ".got". */
f0e6fdb2 1300 htab->sgot->size = 4;
e0001a05 1301
f1ab2340
BW
1302 /* Allocate space in ".rela.got" for literals that reference global
1303 symbols and space in ".rela.plt" for literals that have PLT
1304 entries. */
e0001a05 1305 elf_link_hash_traverse (elf_hash_table (info),
f1ab2340 1306 elf_xtensa_allocate_dynrelocs,
7fa3d080 1307 (void *) info);
e0001a05 1308
e0001a05
NC
1309 /* If we are generating a shared object, we also need space in
1310 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1311 reference local symbols. */
1312 if (info->shared)
f0e6fdb2 1313 elf_xtensa_allocate_local_got_size (info);
e0001a05 1314
e0001a05
NC
1315 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1316 each PLT entry, we need the PLT code plus a 4-byte literal.
1317 For each chunk of ".plt", we also need two more 4-byte
1318 literals, two corresponding entries in ".rela.got", and an
1319 8-byte entry in ".xt.lit.plt". */
f0e6fdb2 1320 spltlittbl = htab->spltlittbl;
eea6121a 1321 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
1322 plt_chunks =
1323 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1324
1325 /* Iterate over all the PLT chunks, including any extra sections
1326 created earlier because the initial count of PLT relocations
1327 was an overestimate. */
1328 for (chunk = 0;
f0e6fdb2 1329 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
e0001a05
NC
1330 chunk++)
1331 {
1332 int chunk_entries;
1333
f0e6fdb2
BW
1334 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1335 BFD_ASSERT (sgotplt != NULL);
e0001a05
NC
1336
1337 if (chunk < plt_chunks - 1)
1338 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1339 else if (chunk == plt_chunks - 1)
1340 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1341 else
1342 chunk_entries = 0;
1343
1344 if (chunk_entries != 0)
1345 {
eea6121a
AM
1346 sgotplt->size = 4 * (chunk_entries + 2);
1347 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1348 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1349 spltlittbl->size += 8;
e0001a05
NC
1350 }
1351 else
1352 {
eea6121a
AM
1353 sgotplt->size = 0;
1354 splt->size = 0;
e0001a05
NC
1355 }
1356 }
e901de89
BW
1357
1358 /* Allocate space in ".got.loc" to match the total size of all the
1359 literal tables. */
f0e6fdb2 1360 sgotloc = htab->sgotloc;
eea6121a 1361 sgotloc->size = spltlittbl->size;
e901de89
BW
1362 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1363 {
1364 if (abfd->flags & DYNAMIC)
1365 continue;
1366 for (s = abfd->sections; s != NULL; s = s->next)
1367 {
b536dc1e
BW
1368 if (! elf_discarded_section (s)
1369 && xtensa_is_littable_section (s)
1370 && s != spltlittbl)
eea6121a 1371 sgotloc->size += s->size;
e901de89
BW
1372 }
1373 }
e0001a05
NC
1374 }
1375
1376 /* Allocate memory for dynamic sections. */
1377 relplt = FALSE;
1378 relgot = FALSE;
1379 for (s = dynobj->sections; s != NULL; s = s->next)
1380 {
1381 const char *name;
e0001a05
NC
1382
1383 if ((s->flags & SEC_LINKER_CREATED) == 0)
1384 continue;
1385
1386 /* It's OK to base decisions on the section name, because none
1387 of the dynobj section names depend upon the input files. */
1388 name = bfd_get_section_name (dynobj, s);
1389
0112cd26 1390 if (CONST_STRNEQ (name, ".rela"))
e0001a05 1391 {
c456f082 1392 if (s->size != 0)
e0001a05 1393 {
c456f082
AM
1394 if (strcmp (name, ".rela.plt") == 0)
1395 relplt = TRUE;
1396 else if (strcmp (name, ".rela.got") == 0)
1397 relgot = TRUE;
1398
1399 /* We use the reloc_count field as a counter if we need
1400 to copy relocs into the output file. */
1401 s->reloc_count = 0;
e0001a05
NC
1402 }
1403 }
0112cd26
NC
1404 else if (! CONST_STRNEQ (name, ".plt.")
1405 && ! CONST_STRNEQ (name, ".got.plt.")
c456f082 1406 && strcmp (name, ".got") != 0
e0001a05
NC
1407 && strcmp (name, ".plt") != 0
1408 && strcmp (name, ".got.plt") != 0
e901de89
BW
1409 && strcmp (name, ".xt.lit.plt") != 0
1410 && strcmp (name, ".got.loc") != 0)
e0001a05
NC
1411 {
1412 /* It's not one of our sections, so don't allocate space. */
1413 continue;
1414 }
1415
c456f082
AM
1416 if (s->size == 0)
1417 {
1418 /* If we don't need this section, strip it from the output
1419 file. We must create the ".plt*" and ".got.plt*"
1420 sections in create_dynamic_sections and/or check_relocs
1421 based on a conservative estimate of the PLT relocation
1422 count, because the sections must be created before the
1423 linker maps input sections to output sections. The
1424 linker does that before size_dynamic_sections, where we
1425 compute the exact size of the PLT, so there may be more
1426 of these sections than are actually needed. */
1427 s->flags |= SEC_EXCLUDE;
1428 }
1429 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
e0001a05
NC
1430 {
1431 /* Allocate memory for the section contents. */
eea6121a 1432 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
c456f082 1433 if (s->contents == NULL)
e0001a05
NC
1434 return FALSE;
1435 }
1436 }
1437
1438 if (elf_hash_table (info)->dynamic_sections_created)
1439 {
1440 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1441 known until finish_dynamic_sections, but we need to get the relocs
1442 in place before they are sorted. */
e0001a05
NC
1443 for (chunk = 0; chunk < plt_chunks; chunk++)
1444 {
1445 Elf_Internal_Rela irela;
1446 bfd_byte *loc;
1447
1448 irela.r_offset = 0;
1449 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1450 irela.r_addend = 0;
1451
1452 loc = (srelgot->contents
1453 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1454 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1455 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1456 loc + sizeof (Elf32_External_Rela));
1457 srelgot->reloc_count += 2;
1458 }
1459
1460 /* Add some entries to the .dynamic section. We fill in the
1461 values later, in elf_xtensa_finish_dynamic_sections, but we
1462 must add the entries now so that we get the correct size for
1463 the .dynamic section. The DT_DEBUG entry is filled in by the
1464 dynamic linker and used by the debugger. */
1465#define add_dynamic_entry(TAG, VAL) \
5a580b3a 1466 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
e0001a05 1467
ba05963f 1468 if (info->executable)
e0001a05
NC
1469 {
1470 if (!add_dynamic_entry (DT_DEBUG, 0))
1471 return FALSE;
1472 }
1473
1474 if (relplt)
1475 {
c243ad3b 1476 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
e0001a05
NC
1477 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1478 || !add_dynamic_entry (DT_JMPREL, 0))
1479 return FALSE;
1480 }
1481
1482 if (relgot)
1483 {
1484 if (!add_dynamic_entry (DT_RELA, 0)
1485 || !add_dynamic_entry (DT_RELASZ, 0)
1486 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1487 return FALSE;
1488 }
1489
c243ad3b
BW
1490 if (!add_dynamic_entry (DT_PLTGOT, 0)
1491 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
e0001a05
NC
1492 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1493 return FALSE;
1494 }
1495#undef add_dynamic_entry
1496
1497 return TRUE;
1498}
1499
e0001a05
NC
1500\f
1501/* Perform the specified relocation. The instruction at (contents + address)
1502 is modified to set one operand to represent the value in "relocation". The
1503 operand position is determined by the relocation type recorded in the
1504 howto. */
1505
1506#define CALL_SEGMENT_BITS (30)
7fa3d080 1507#define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
e0001a05
NC
1508
1509static bfd_reloc_status_type
7fa3d080
BW
1510elf_xtensa_do_reloc (reloc_howto_type *howto,
1511 bfd *abfd,
1512 asection *input_section,
1513 bfd_vma relocation,
1514 bfd_byte *contents,
1515 bfd_vma address,
1516 bfd_boolean is_weak_undef,
1517 char **error_message)
e0001a05 1518{
43cd72b9 1519 xtensa_format fmt;
e0001a05 1520 xtensa_opcode opcode;
e0001a05 1521 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
1522 static xtensa_insnbuf ibuff = NULL;
1523 static xtensa_insnbuf sbuff = NULL;
1bbb5f21 1524 bfd_vma self_address;
43cd72b9
BW
1525 bfd_size_type input_size;
1526 int opnd, slot;
e0001a05
NC
1527 uint32 newval;
1528
43cd72b9
BW
1529 if (!ibuff)
1530 {
1531 ibuff = xtensa_insnbuf_alloc (isa);
1532 sbuff = xtensa_insnbuf_alloc (isa);
1533 }
1534
1535 input_size = bfd_get_section_limit (abfd, input_section);
1536
1bbb5f21
BW
1537 /* Calculate the PC address for this instruction. */
1538 self_address = (input_section->output_section->vma
1539 + input_section->output_offset
1540 + address);
1541
e0001a05
NC
1542 switch (howto->type)
1543 {
1544 case R_XTENSA_NONE:
43cd72b9
BW
1545 case R_XTENSA_DIFF8:
1546 case R_XTENSA_DIFF16:
1547 case R_XTENSA_DIFF32:
e0001a05
NC
1548 return bfd_reloc_ok;
1549
1550 case R_XTENSA_ASM_EXPAND:
1551 if (!is_weak_undef)
1552 {
1553 /* Check for windowed CALL across a 1GB boundary. */
1554 xtensa_opcode opcode =
1555 get_expanded_call_opcode (contents + address,
43cd72b9 1556 input_size - address, 0);
e0001a05
NC
1557 if (is_windowed_call_opcode (opcode))
1558 {
43cd72b9
BW
1559 if ((self_address >> CALL_SEGMENT_BITS)
1560 != (relocation >> CALL_SEGMENT_BITS))
e0001a05
NC
1561 {
1562 *error_message = "windowed longcall crosses 1GB boundary; "
1563 "return may fail";
1564 return bfd_reloc_dangerous;
1565 }
1566 }
1567 }
1568 return bfd_reloc_ok;
1569
1570 case R_XTENSA_ASM_SIMPLIFY:
43cd72b9 1571 {
e0001a05 1572 /* Convert the L32R/CALLX to CALL. */
43cd72b9
BW
1573 bfd_reloc_status_type retval =
1574 elf_xtensa_do_asm_simplify (contents, address, input_size,
1575 error_message);
e0001a05 1576 if (retval != bfd_reloc_ok)
43cd72b9 1577 return bfd_reloc_dangerous;
e0001a05
NC
1578
1579 /* The CALL needs to be relocated. Continue below for that part. */
1580 address += 3;
c46082c8 1581 self_address += 3;
43cd72b9 1582 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
e0001a05
NC
1583 }
1584 break;
1585
1586 case R_XTENSA_32:
1587 case R_XTENSA_PLT:
1588 {
1589 bfd_vma x;
1590 x = bfd_get_32 (abfd, contents + address);
1591 x = x + relocation;
1592 bfd_put_32 (abfd, x, contents + address);
1593 }
1594 return bfd_reloc_ok;
1bbb5f21
BW
1595
1596 case R_XTENSA_32_PCREL:
1597 bfd_put_32 (abfd, relocation - self_address, contents + address);
1598 return bfd_reloc_ok;
e0001a05
NC
1599 }
1600
43cd72b9
BW
1601 /* Only instruction slot-specific relocations handled below.... */
1602 slot = get_relocation_slot (howto->type);
1603 if (slot == XTENSA_UNDEFINED)
e0001a05 1604 {
43cd72b9 1605 *error_message = "unexpected relocation";
e0001a05
NC
1606 return bfd_reloc_dangerous;
1607 }
1608
43cd72b9
BW
1609 /* Read the instruction into a buffer and decode the opcode. */
1610 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
1611 input_size - address);
1612 fmt = xtensa_format_decode (isa, ibuff);
1613 if (fmt == XTENSA_UNDEFINED)
e0001a05 1614 {
43cd72b9 1615 *error_message = "cannot decode instruction format";
e0001a05
NC
1616 return bfd_reloc_dangerous;
1617 }
1618
43cd72b9 1619 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
e0001a05 1620
43cd72b9
BW
1621 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
1622 if (opcode == XTENSA_UNDEFINED)
e0001a05 1623 {
43cd72b9 1624 *error_message = "cannot decode instruction opcode";
e0001a05
NC
1625 return bfd_reloc_dangerous;
1626 }
1627
43cd72b9
BW
1628 /* Check for opcode-specific "alternate" relocations. */
1629 if (is_alt_relocation (howto->type))
1630 {
1631 if (opcode == get_l32r_opcode ())
1632 {
1633 /* Handle the special-case of non-PC-relative L32R instructions. */
1634 bfd *output_bfd = input_section->output_section->owner;
1635 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
1636 if (!lit4_sec)
1637 {
1638 *error_message = "relocation references missing .lit4 section";
1639 return bfd_reloc_dangerous;
1640 }
1641 self_address = ((lit4_sec->vma & ~0xfff)
1642 + 0x40000 - 3); /* -3 to compensate for do_reloc */
1643 newval = relocation;
1644 opnd = 1;
1645 }
1646 else if (opcode == get_const16_opcode ())
1647 {
1648 /* ALT used for high 16 bits. */
1649 newval = relocation >> 16;
1650 opnd = 1;
1651 }
1652 else
1653 {
1654 /* No other "alternate" relocations currently defined. */
1655 *error_message = "unexpected relocation";
1656 return bfd_reloc_dangerous;
1657 }
1658 }
1659 else /* Not an "alternate" relocation.... */
1660 {
1661 if (opcode == get_const16_opcode ())
1662 {
1663 newval = relocation & 0xffff;
1664 opnd = 1;
1665 }
1666 else
1667 {
1668 /* ...normal PC-relative relocation.... */
1669
1670 /* Determine which operand is being relocated. */
1671 opnd = get_relocation_opnd (opcode, howto->type);
1672 if (opnd == XTENSA_UNDEFINED)
1673 {
1674 *error_message = "unexpected relocation";
1675 return bfd_reloc_dangerous;
1676 }
1677
1678 if (!howto->pc_relative)
1679 {
1680 *error_message = "expected PC-relative relocation";
1681 return bfd_reloc_dangerous;
1682 }
e0001a05 1683
43cd72b9
BW
1684 newval = relocation;
1685 }
1686 }
e0001a05 1687
43cd72b9
BW
1688 /* Apply the relocation. */
1689 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
1690 || xtensa_operand_encode (isa, opcode, opnd, &newval)
1691 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
1692 sbuff, newval))
e0001a05 1693 {
2db662be
BW
1694 const char *opname = xtensa_opcode_name (isa, opcode);
1695 const char *msg;
1696
1697 msg = "cannot encode";
1698 if (is_direct_call_opcode (opcode))
1699 {
1700 if ((relocation & 0x3) != 0)
1701 msg = "misaligned call target";
1702 else
1703 msg = "call target out of range";
1704 }
1705 else if (opcode == get_l32r_opcode ())
1706 {
1707 if ((relocation & 0x3) != 0)
1708 msg = "misaligned literal target";
1709 else if (is_alt_relocation (howto->type))
1710 msg = "literal target out of range (too many literals)";
1711 else if (self_address > relocation)
1712 msg = "literal target out of range (try using text-section-literals)";
1713 else
1714 msg = "literal placed after use";
1715 }
1716
1717 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
e0001a05
NC
1718 return bfd_reloc_dangerous;
1719 }
1720
43cd72b9 1721 /* Check for calls across 1GB boundaries. */
e0001a05
NC
1722 if (is_direct_call_opcode (opcode)
1723 && is_windowed_call_opcode (opcode))
1724 {
43cd72b9
BW
1725 if ((self_address >> CALL_SEGMENT_BITS)
1726 != (relocation >> CALL_SEGMENT_BITS))
e0001a05 1727 {
43cd72b9
BW
1728 *error_message =
1729 "windowed call crosses 1GB boundary; return may fail";
e0001a05
NC
1730 return bfd_reloc_dangerous;
1731 }
1732 }
1733
43cd72b9
BW
1734 /* Write the modified instruction back out of the buffer. */
1735 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
1736 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
1737 input_size - address);
e0001a05
NC
1738 return bfd_reloc_ok;
1739}
1740
1741
2db662be 1742static char *
7fa3d080 1743vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
e0001a05
NC
1744{
1745 /* To reduce the size of the memory leak,
1746 we only use a single message buffer. */
1747 static bfd_size_type alloc_size = 0;
1748 static char *message = NULL;
1749 bfd_size_type orig_len, len = 0;
1750 bfd_boolean is_append;
1751
1752 VA_OPEN (ap, arglen);
1753 VA_FIXEDARG (ap, const char *, origmsg);
1754
1755 is_append = (origmsg == message);
1756
1757 orig_len = strlen (origmsg);
1758 len = orig_len + strlen (fmt) + arglen + 20;
1759 if (len > alloc_size)
1760 {
1761 message = (char *) bfd_realloc (message, len);
1762 alloc_size = len;
1763 }
1764 if (!is_append)
1765 memcpy (message, origmsg, orig_len);
1766 vsprintf (message + orig_len, fmt, ap);
1767 VA_CLOSE (ap);
1768 return message;
1769}
1770
1771
e0001a05
NC
1772/* This function is registered as the "special_function" in the
1773 Xtensa howto for handling simplify operations.
1774 bfd_perform_relocation / bfd_install_relocation use it to
1775 perform (install) the specified relocation. Since this replaces the code
1776 in bfd_perform_relocation, it is basically an Xtensa-specific,
1777 stripped-down version of bfd_perform_relocation. */
1778
1779static bfd_reloc_status_type
7fa3d080
BW
1780bfd_elf_xtensa_reloc (bfd *abfd,
1781 arelent *reloc_entry,
1782 asymbol *symbol,
1783 void *data,
1784 asection *input_section,
1785 bfd *output_bfd,
1786 char **error_message)
e0001a05
NC
1787{
1788 bfd_vma relocation;
1789 bfd_reloc_status_type flag;
1790 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
1791 bfd_vma output_base = 0;
1792 reloc_howto_type *howto = reloc_entry->howto;
1793 asection *reloc_target_output_section;
1794 bfd_boolean is_weak_undef;
1795
dd1a320b
BW
1796 if (!xtensa_default_isa)
1797 xtensa_default_isa = xtensa_isa_init (0, 0);
1798
1049f94e 1799 /* ELF relocs are against symbols. If we are producing relocatable
e0001a05
NC
1800 output, and the reloc is against an external symbol, the resulting
1801 reloc will also be against the same symbol. In such a case, we
1802 don't want to change anything about the way the reloc is handled,
1803 since it will all be done at final link time. This test is similar
1804 to what bfd_elf_generic_reloc does except that it lets relocs with
1805 howto->partial_inplace go through even if the addend is non-zero.
1806 (The real problem is that partial_inplace is set for XTENSA_32
1807 relocs to begin with, but that's a long story and there's little we
1808 can do about it now....) */
1809
7fa3d080 1810 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
e0001a05
NC
1811 {
1812 reloc_entry->address += input_section->output_offset;
1813 return bfd_reloc_ok;
1814 }
1815
1816 /* Is the address of the relocation really within the section? */
07515404 1817 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
e0001a05
NC
1818 return bfd_reloc_outofrange;
1819
4cc11e76 1820 /* Work out which section the relocation is targeted at and the
e0001a05
NC
1821 initial relocation command value. */
1822
1823 /* Get symbol value. (Common symbols are special.) */
1824 if (bfd_is_com_section (symbol->section))
1825 relocation = 0;
1826 else
1827 relocation = symbol->value;
1828
1829 reloc_target_output_section = symbol->section->output_section;
1830
1831 /* Convert input-section-relative symbol value to absolute. */
1832 if ((output_bfd && !howto->partial_inplace)
1833 || reloc_target_output_section == NULL)
1834 output_base = 0;
1835 else
1836 output_base = reloc_target_output_section->vma;
1837
1838 relocation += output_base + symbol->section->output_offset;
1839
1840 /* Add in supplied addend. */
1841 relocation += reloc_entry->addend;
1842
1843 /* Here the variable relocation holds the final address of the
1844 symbol we are relocating against, plus any addend. */
1845 if (output_bfd)
1846 {
1847 if (!howto->partial_inplace)
1848 {
1849 /* This is a partial relocation, and we want to apply the relocation
1850 to the reloc entry rather than the raw data. Everything except
1851 relocations against section symbols has already been handled
1852 above. */
43cd72b9 1853
e0001a05
NC
1854 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
1855 reloc_entry->addend = relocation;
1856 reloc_entry->address += input_section->output_offset;
1857 return bfd_reloc_ok;
1858 }
1859 else
1860 {
1861 reloc_entry->address += input_section->output_offset;
1862 reloc_entry->addend = 0;
1863 }
1864 }
1865
1866 is_weak_undef = (bfd_is_und_section (symbol->section)
1867 && (symbol->flags & BSF_WEAK) != 0);
1868 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
1869 (bfd_byte *) data, (bfd_vma) octets,
1870 is_weak_undef, error_message);
1871
1872 if (flag == bfd_reloc_dangerous)
1873 {
1874 /* Add the symbol name to the error message. */
1875 if (! *error_message)
1876 *error_message = "";
1877 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
1878 strlen (symbol->name) + 17,
70961b9d
AM
1879 symbol->name,
1880 (unsigned long) reloc_entry->addend);
e0001a05
NC
1881 }
1882
1883 return flag;
1884}
1885
1886
1887/* Set up an entry in the procedure linkage table. */
1888
1889static bfd_vma
f0e6fdb2 1890elf_xtensa_create_plt_entry (struct bfd_link_info *info,
7fa3d080
BW
1891 bfd *output_bfd,
1892 unsigned reloc_index)
e0001a05
NC
1893{
1894 asection *splt, *sgotplt;
1895 bfd_vma plt_base, got_base;
1896 bfd_vma code_offset, lit_offset;
1897 int chunk;
1898
1899 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
f0e6fdb2
BW
1900 splt = elf_xtensa_get_plt_section (info, chunk);
1901 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
1902 BFD_ASSERT (splt != NULL && sgotplt != NULL);
1903
1904 plt_base = splt->output_section->vma + splt->output_offset;
1905 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
1906
1907 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
1908 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
1909
1910 /* Fill in the literal entry. This is the offset of the dynamic
1911 relocation entry. */
1912 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
1913 sgotplt->contents + lit_offset);
1914
1915 /* Fill in the entry in the procedure linkage table. */
1916 memcpy (splt->contents + code_offset,
1917 (bfd_big_endian (output_bfd)
1918 ? elf_xtensa_be_plt_entry
1919 : elf_xtensa_le_plt_entry),
1920 PLT_ENTRY_SIZE);
1921 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
1922 plt_base + code_offset + 3),
1923 splt->contents + code_offset + 4);
1924 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
1925 plt_base + code_offset + 6),
1926 splt->contents + code_offset + 7);
1927 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
1928 plt_base + code_offset + 9),
1929 splt->contents + code_offset + 10);
1930
1931 return plt_base + code_offset;
1932}
1933
1934
e0001a05 1935/* Relocate an Xtensa ELF section. This is invoked by the linker for
1049f94e 1936 both relocatable and final links. */
e0001a05
NC
1937
1938static bfd_boolean
7fa3d080
BW
1939elf_xtensa_relocate_section (bfd *output_bfd,
1940 struct bfd_link_info *info,
1941 bfd *input_bfd,
1942 asection *input_section,
1943 bfd_byte *contents,
1944 Elf_Internal_Rela *relocs,
1945 Elf_Internal_Sym *local_syms,
1946 asection **local_sections)
e0001a05 1947{
f0e6fdb2 1948 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
1949 Elf_Internal_Shdr *symtab_hdr;
1950 Elf_Internal_Rela *rel;
1951 Elf_Internal_Rela *relend;
1952 struct elf_link_hash_entry **sym_hashes;
88d65ad6
BW
1953 property_table_entry *lit_table = 0;
1954 int ltblsize = 0;
e0001a05 1955 char *error_message = NULL;
43cd72b9 1956 bfd_size_type input_size;
e0001a05 1957
43cd72b9
BW
1958 if (!xtensa_default_isa)
1959 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 1960
f0e6fdb2 1961 htab = elf_xtensa_hash_table (info);
e0001a05
NC
1962 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1963 sym_hashes = elf_sym_hashes (input_bfd);
1964
88d65ad6
BW
1965 if (elf_hash_table (info)->dynamic_sections_created)
1966 {
1967 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
43cd72b9
BW
1968 &lit_table, XTENSA_LIT_SEC_NAME,
1969 TRUE);
88d65ad6
BW
1970 if (ltblsize < 0)
1971 return FALSE;
1972 }
1973
43cd72b9
BW
1974 input_size = bfd_get_section_limit (input_bfd, input_section);
1975
e0001a05
NC
1976 rel = relocs;
1977 relend = relocs + input_section->reloc_count;
1978 for (; rel < relend; rel++)
1979 {
1980 int r_type;
1981 reloc_howto_type *howto;
1982 unsigned long r_symndx;
1983 struct elf_link_hash_entry *h;
1984 Elf_Internal_Sym *sym;
1985 asection *sec;
1986 bfd_vma relocation;
1987 bfd_reloc_status_type r;
1988 bfd_boolean is_weak_undef;
1989 bfd_boolean unresolved_reloc;
9b8c98a4 1990 bfd_boolean warned;
e0001a05
NC
1991
1992 r_type = ELF32_R_TYPE (rel->r_info);
1993 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
1994 || r_type == (int) R_XTENSA_GNU_VTENTRY)
1995 continue;
1996
1997 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
1998 {
1999 bfd_set_error (bfd_error_bad_value);
2000 return FALSE;
2001 }
2002 howto = &elf_howto_table[r_type];
2003
2004 r_symndx = ELF32_R_SYM (rel->r_info);
2005
ab96bf03
AM
2006 h = NULL;
2007 sym = NULL;
2008 sec = NULL;
2009 is_weak_undef = FALSE;
2010 unresolved_reloc = FALSE;
2011 warned = FALSE;
2012
2013 if (howto->partial_inplace && !info->relocatable)
2014 {
2015 /* Because R_XTENSA_32 was made partial_inplace to fix some
2016 problems with DWARF info in partial links, there may be
2017 an addend stored in the contents. Take it out of there
2018 and move it back into the addend field of the reloc. */
2019 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2020 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2021 }
2022
2023 if (r_symndx < symtab_hdr->sh_info)
2024 {
2025 sym = local_syms + r_symndx;
2026 sec = local_sections[r_symndx];
2027 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2028 }
2029 else
2030 {
2031 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2032 r_symndx, symtab_hdr, sym_hashes,
2033 h, sec, relocation,
2034 unresolved_reloc, warned);
2035
2036 if (relocation == 0
2037 && !unresolved_reloc
2038 && h->root.type == bfd_link_hash_undefweak)
2039 is_weak_undef = TRUE;
2040 }
2041
2042 if (sec != NULL && elf_discarded_section (sec))
2043 {
2044 /* For relocs against symbols from removed linkonce sections,
2045 or sections discarded by a linker script, we just want the
2046 section contents zeroed. Avoid any special processing. */
2047 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
2048 rel->r_info = 0;
2049 rel->r_addend = 0;
2050 continue;
2051 }
2052
1049f94e 2053 if (info->relocatable)
e0001a05 2054 {
43cd72b9 2055 /* This is a relocatable link.
e0001a05
NC
2056 1) If the reloc is against a section symbol, adjust
2057 according to the output section.
2058 2) If there is a new target for this relocation,
2059 the new target will be in the same output section.
2060 We adjust the relocation by the output section
2061 difference. */
2062
2063 if (relaxing_section)
2064 {
2065 /* Check if this references a section in another input file. */
43cd72b9
BW
2066 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2067 contents))
2068 return FALSE;
e0001a05
NC
2069 }
2070
43cd72b9 2071 if (r_type == R_XTENSA_ASM_SIMPLIFY)
e0001a05 2072 {
43cd72b9 2073 char *error_message = NULL;
e0001a05
NC
2074 /* Convert ASM_SIMPLIFY into the simpler relocation
2075 so that they never escape a relaxing link. */
43cd72b9
BW
2076 r = contract_asm_expansion (contents, input_size, rel,
2077 &error_message);
2078 if (r != bfd_reloc_ok)
2079 {
2080 if (!((*info->callbacks->reloc_dangerous)
2081 (info, error_message, input_bfd, input_section,
2082 rel->r_offset)))
2083 return FALSE;
2084 }
e0001a05
NC
2085 r_type = ELF32_R_TYPE (rel->r_info);
2086 }
2087
1049f94e 2088 /* This is a relocatable link, so we don't have to change
e0001a05
NC
2089 anything unless the reloc is against a section symbol,
2090 in which case we have to adjust according to where the
2091 section symbol winds up in the output section. */
2092 if (r_symndx < symtab_hdr->sh_info)
2093 {
2094 sym = local_syms + r_symndx;
2095 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2096 {
2097 sec = local_sections[r_symndx];
2098 rel->r_addend += sec->output_offset + sym->st_value;
2099 }
2100 }
2101
2102 /* If there is an addend with a partial_inplace howto,
2103 then move the addend to the contents. This is a hack
1049f94e 2104 to work around problems with DWARF in relocatable links
e0001a05
NC
2105 with some previous version of BFD. Now we can't easily get
2106 rid of the hack without breaking backward compatibility.... */
2107 if (rel->r_addend)
2108 {
2109 howto = &elf_howto_table[r_type];
2110 if (howto->partial_inplace)
2111 {
2112 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2113 rel->r_addend, contents,
2114 rel->r_offset, FALSE,
2115 &error_message);
2116 if (r != bfd_reloc_ok)
2117 {
2118 if (!((*info->callbacks->reloc_dangerous)
2119 (info, error_message, input_bfd, input_section,
2120 rel->r_offset)))
2121 return FALSE;
2122 }
2123 rel->r_addend = 0;
2124 }
2125 }
2126
1049f94e 2127 /* Done with work for relocatable link; continue with next reloc. */
e0001a05
NC
2128 continue;
2129 }
2130
2131 /* This is a final link. */
2132
e0001a05
NC
2133 if (relaxing_section)
2134 {
2135 /* Check if this references a section in another input file. */
43cd72b9
BW
2136 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2137 &relocation);
e0001a05
NC
2138 }
2139
2140 /* Sanity check the address. */
43cd72b9 2141 if (rel->r_offset >= input_size
e0001a05
NC
2142 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2143 {
43cd72b9
BW
2144 (*_bfd_error_handler)
2145 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2146 input_bfd, input_section, rel->r_offset, input_size);
e0001a05
NC
2147 bfd_set_error (bfd_error_bad_value);
2148 return FALSE;
2149 }
2150
2151 /* Generate dynamic relocations. */
2152 if (elf_hash_table (info)->dynamic_sections_created)
2153 {
4608f3d9 2154 bfd_boolean dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
e0001a05 2155
1bbb5f21
BW
2156 if (dynamic_symbol && (is_operand_relocation (r_type)
2157 || r_type == R_XTENSA_32_PCREL))
e0001a05 2158 {
e0001a05 2159 const char *name = h->root.root.string;
1bbb5f21
BW
2160 error_message =
2161 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
2162 strlen (name) + 2, name);
e0001a05
NC
2163 if (!((*info->callbacks->reloc_dangerous)
2164 (info, error_message, input_bfd, input_section,
2165 rel->r_offset)))
2166 return FALSE;
d9ab3f29 2167 continue;
e0001a05
NC
2168 }
2169 else if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
2170 && (input_section->flags & SEC_ALLOC) != 0
2171 && (dynamic_symbol || info->shared))
2172 {
2173 Elf_Internal_Rela outrel;
2174 bfd_byte *loc;
2175 asection *srel;
2176
2177 if (dynamic_symbol && r_type == R_XTENSA_PLT)
f0e6fdb2 2178 srel = htab->srelplt;
e0001a05 2179 else
f0e6fdb2 2180 srel = htab->srelgot;
e0001a05
NC
2181
2182 BFD_ASSERT (srel != NULL);
2183
2184 outrel.r_offset =
2185 _bfd_elf_section_offset (output_bfd, info,
2186 input_section, rel->r_offset);
2187
2188 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2189 memset (&outrel, 0, sizeof outrel);
2190 else
2191 {
f0578e28
BW
2192 outrel.r_offset += (input_section->output_section->vma
2193 + input_section->output_offset);
e0001a05 2194
88d65ad6
BW
2195 /* Complain if the relocation is in a read-only section
2196 and not in a literal pool. */
2197 if ((input_section->flags & SEC_READONLY) != 0
2198 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
3ba3bc8c 2199 outrel.r_offset))
88d65ad6
BW
2200 {
2201 error_message =
2202 _("dynamic relocation in read-only section");
2203 if (!((*info->callbacks->reloc_dangerous)
2204 (info, error_message, input_bfd, input_section,
2205 rel->r_offset)))
2206 return FALSE;
2207 }
2208
e0001a05
NC
2209 if (dynamic_symbol)
2210 {
2211 outrel.r_addend = rel->r_addend;
2212 rel->r_addend = 0;
2213
2214 if (r_type == R_XTENSA_32)
2215 {
2216 outrel.r_info =
2217 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2218 relocation = 0;
2219 }
2220 else /* r_type == R_XTENSA_PLT */
2221 {
2222 outrel.r_info =
2223 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2224
2225 /* Create the PLT entry and set the initial
2226 contents of the literal entry to the address of
2227 the PLT entry. */
43cd72b9 2228 relocation =
f0e6fdb2 2229 elf_xtensa_create_plt_entry (info, output_bfd,
e0001a05
NC
2230 srel->reloc_count);
2231 }
2232 unresolved_reloc = FALSE;
2233 }
2234 else
2235 {
2236 /* Generate a RELATIVE relocation. */
2237 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2238 outrel.r_addend = 0;
2239 }
2240 }
2241
2242 loc = (srel->contents
2243 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2244 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2245 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
eea6121a 2246 <= srel->size);
e0001a05 2247 }
d9ab3f29
BW
2248 else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
2249 {
2250 /* This should only happen for non-PIC code, which is not
2251 supposed to be used on systems with dynamic linking.
2252 Just ignore these relocations. */
2253 continue;
2254 }
e0001a05
NC
2255 }
2256
2257 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2258 because such sections are not SEC_ALLOC and thus ld.so will
2259 not process them. */
2260 if (unresolved_reloc
2261 && !((input_section->flags & SEC_DEBUGGING) != 0
f5385ebf 2262 && h->def_dynamic))
bf1747de
BW
2263 {
2264 (*_bfd_error_handler)
2265 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
2266 input_bfd,
2267 input_section,
2268 (long) rel->r_offset,
2269 howto->name,
2270 h->root.root.string);
2271 return FALSE;
2272 }
e0001a05
NC
2273
2274 /* There's no point in calling bfd_perform_relocation here.
2275 Just go directly to our "special function". */
2276 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2277 relocation + rel->r_addend,
2278 contents, rel->r_offset, is_weak_undef,
2279 &error_message);
43cd72b9 2280
9b8c98a4 2281 if (r != bfd_reloc_ok && !warned)
e0001a05
NC
2282 {
2283 const char *name;
2284
43cd72b9 2285 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
7fa3d080 2286 BFD_ASSERT (error_message != NULL);
e0001a05 2287
7fa3d080 2288 if (h)
e0001a05
NC
2289 name = h->root.root.string;
2290 else
2291 {
2292 name = bfd_elf_string_from_elf_section
2293 (input_bfd, symtab_hdr->sh_link, sym->st_name);
2294 if (name && *name == '\0')
2295 name = bfd_section_name (input_bfd, sec);
2296 }
2297 if (name)
43cd72b9
BW
2298 {
2299 if (rel->r_addend == 0)
2300 error_message = vsprint_msg (error_message, ": %s",
2301 strlen (name) + 2, name);
2302 else
2303 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
2304 strlen (name) + 22,
0fd3a477 2305 name, (int)rel->r_addend);
43cd72b9
BW
2306 }
2307
e0001a05
NC
2308 if (!((*info->callbacks->reloc_dangerous)
2309 (info, error_message, input_bfd, input_section,
2310 rel->r_offset)))
2311 return FALSE;
2312 }
2313 }
2314
88d65ad6
BW
2315 if (lit_table)
2316 free (lit_table);
2317
3ba3bc8c
BW
2318 input_section->reloc_done = TRUE;
2319
e0001a05
NC
2320 return TRUE;
2321}
2322
2323
2324/* Finish up dynamic symbol handling. There's not much to do here since
2325 the PLT and GOT entries are all set up by relocate_section. */
2326
2327static bfd_boolean
7fa3d080
BW
2328elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
2329 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2330 struct elf_link_hash_entry *h,
2331 Elf_Internal_Sym *sym)
e0001a05 2332{
bf1747de 2333 if (h->needs_plt && !h->def_regular)
e0001a05
NC
2334 {
2335 /* Mark the symbol as undefined, rather than as defined in
2336 the .plt section. Leave the value alone. */
2337 sym->st_shndx = SHN_UNDEF;
bf1747de
BW
2338 /* If the symbol is weak, we do need to clear the value.
2339 Otherwise, the PLT entry would provide a definition for
2340 the symbol even if the symbol wasn't defined anywhere,
2341 and so the symbol would never be NULL. */
2342 if (!h->ref_regular_nonweak)
2343 sym->st_value = 0;
e0001a05
NC
2344 }
2345
2346 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2347 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
22edb2f1 2348 || h == elf_hash_table (info)->hgot)
e0001a05
NC
2349 sym->st_shndx = SHN_ABS;
2350
2351 return TRUE;
2352}
2353
2354
2355/* Combine adjacent literal table entries in the output. Adjacent
2356 entries within each input section may have been removed during
2357 relaxation, but we repeat the process here, even though it's too late
2358 to shrink the output section, because it's important to minimize the
2359 number of literal table entries to reduce the start-up work for the
2360 runtime linker. Returns the number of remaining table entries or -1
2361 on error. */
2362
2363static int
7fa3d080
BW
2364elf_xtensa_combine_prop_entries (bfd *output_bfd,
2365 asection *sxtlit,
2366 asection *sgotloc)
e0001a05 2367{
e0001a05
NC
2368 bfd_byte *contents;
2369 property_table_entry *table;
e901de89 2370 bfd_size_type section_size, sgotloc_size;
e0001a05
NC
2371 bfd_vma offset;
2372 int n, m, num;
2373
eea6121a 2374 section_size = sxtlit->size;
e0001a05
NC
2375 BFD_ASSERT (section_size % 8 == 0);
2376 num = section_size / 8;
2377
eea6121a 2378 sgotloc_size = sgotloc->size;
e901de89 2379 if (sgotloc_size != section_size)
b536dc1e
BW
2380 {
2381 (*_bfd_error_handler)
43cd72b9 2382 (_("internal inconsistency in size of .got.loc section"));
b536dc1e
BW
2383 return -1;
2384 }
e901de89 2385
eea6121a
AM
2386 table = bfd_malloc (num * sizeof (property_table_entry));
2387 if (table == 0)
e0001a05
NC
2388 return -1;
2389
2390 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
2391 propagates to the output section, where it doesn't really apply and
eea6121a 2392 where it breaks the following call to bfd_malloc_and_get_section. */
e901de89 2393 sxtlit->flags &= ~SEC_IN_MEMORY;
e0001a05 2394
eea6121a
AM
2395 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
2396 {
2397 if (contents != 0)
2398 free (contents);
2399 free (table);
2400 return -1;
2401 }
e0001a05
NC
2402
2403 /* There should never be any relocations left at this point, so this
2404 is quite a bit easier than what is done during relaxation. */
2405
2406 /* Copy the raw contents into a property table array and sort it. */
2407 offset = 0;
2408 for (n = 0; n < num; n++)
2409 {
2410 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
2411 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
2412 offset += 8;
2413 }
2414 qsort (table, num, sizeof (property_table_entry), property_table_compare);
2415
2416 for (n = 0; n < num; n++)
2417 {
2418 bfd_boolean remove = FALSE;
2419
2420 if (table[n].size == 0)
2421 remove = TRUE;
2422 else if (n > 0 &&
2423 (table[n-1].address + table[n-1].size == table[n].address))
2424 {
2425 table[n-1].size += table[n].size;
2426 remove = TRUE;
2427 }
2428
2429 if (remove)
2430 {
2431 for (m = n; m < num - 1; m++)
2432 {
2433 table[m].address = table[m+1].address;
2434 table[m].size = table[m+1].size;
2435 }
2436
2437 n--;
2438 num--;
2439 }
2440 }
2441
2442 /* Copy the data back to the raw contents. */
2443 offset = 0;
2444 for (n = 0; n < num; n++)
2445 {
2446 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
2447 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
2448 offset += 8;
2449 }
2450
2451 /* Clear the removed bytes. */
2452 if ((bfd_size_type) (num * 8) < section_size)
b54d4b07 2453 memset (&contents[num * 8], 0, section_size - num * 8);
e0001a05 2454
e901de89
BW
2455 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
2456 section_size))
e0001a05
NC
2457 return -1;
2458
e901de89
BW
2459 /* Copy the contents to ".got.loc". */
2460 memcpy (sgotloc->contents, contents, section_size);
2461
e0001a05 2462 free (contents);
b614a702 2463 free (table);
e0001a05
NC
2464 return num;
2465}
2466
2467
2468/* Finish up the dynamic sections. */
2469
2470static bfd_boolean
7fa3d080
BW
2471elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
2472 struct bfd_link_info *info)
e0001a05 2473{
f0e6fdb2 2474 struct elf_xtensa_link_hash_table *htab;
e0001a05 2475 bfd *dynobj;
e901de89 2476 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
e0001a05 2477 Elf32_External_Dyn *dyncon, *dynconend;
d9ab3f29 2478 int num_xtlit_entries = 0;
e0001a05
NC
2479
2480 if (! elf_hash_table (info)->dynamic_sections_created)
2481 return TRUE;
2482
f0e6fdb2 2483 htab = elf_xtensa_hash_table (info);
e0001a05
NC
2484 dynobj = elf_hash_table (info)->dynobj;
2485 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2486 BFD_ASSERT (sdyn != NULL);
2487
2488 /* Set the first entry in the global offset table to the address of
2489 the dynamic section. */
f0e6fdb2 2490 sgot = htab->sgot;
e0001a05
NC
2491 if (sgot)
2492 {
eea6121a 2493 BFD_ASSERT (sgot->size == 4);
e0001a05 2494 if (sdyn == NULL)
7fa3d080 2495 bfd_put_32 (output_bfd, 0, sgot->contents);
e0001a05
NC
2496 else
2497 bfd_put_32 (output_bfd,
2498 sdyn->output_section->vma + sdyn->output_offset,
2499 sgot->contents);
2500 }
2501
f0e6fdb2 2502 srelplt = htab->srelplt;
7fa3d080 2503 if (srelplt && srelplt->size != 0)
e0001a05
NC
2504 {
2505 asection *sgotplt, *srelgot, *spltlittbl;
2506 int chunk, plt_chunks, plt_entries;
2507 Elf_Internal_Rela irela;
2508 bfd_byte *loc;
2509 unsigned rtld_reloc;
2510
f0e6fdb2
BW
2511 srelgot = htab->srelgot;
2512 spltlittbl = htab->spltlittbl;
2513 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
e0001a05
NC
2514
2515 /* Find the first XTENSA_RTLD relocation. Presumably the rest
2516 of them follow immediately after.... */
2517 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
2518 {
2519 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2520 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2521 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
2522 break;
2523 }
2524 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
2525
eea6121a 2526 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
2527 plt_chunks =
2528 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
2529
2530 for (chunk = 0; chunk < plt_chunks; chunk++)
2531 {
2532 int chunk_entries = 0;
2533
f0e6fdb2 2534 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
2535 BFD_ASSERT (sgotplt != NULL);
2536
2537 /* Emit special RTLD relocations for the first two entries in
2538 each chunk of the .got.plt section. */
2539
2540 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2541 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2542 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2543 irela.r_offset = (sgotplt->output_section->vma
2544 + sgotplt->output_offset);
2545 irela.r_addend = 1; /* tell rtld to set value to resolver function */
2546 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2547 rtld_reloc += 1;
2548 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2549
2550 /* Next literal immediately follows the first. */
2551 loc += sizeof (Elf32_External_Rela);
2552 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2553 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2554 irela.r_offset = (sgotplt->output_section->vma
2555 + sgotplt->output_offset + 4);
2556 /* Tell rtld to set value to object's link map. */
2557 irela.r_addend = 2;
2558 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2559 rtld_reloc += 1;
2560 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2561
2562 /* Fill in the literal table. */
2563 if (chunk < plt_chunks - 1)
2564 chunk_entries = PLT_ENTRIES_PER_CHUNK;
2565 else
2566 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
2567
eea6121a 2568 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
e0001a05
NC
2569 bfd_put_32 (output_bfd,
2570 sgotplt->output_section->vma + sgotplt->output_offset,
2571 spltlittbl->contents + (chunk * 8) + 0);
2572 bfd_put_32 (output_bfd,
2573 8 + (chunk_entries * 4),
2574 spltlittbl->contents + (chunk * 8) + 4);
2575 }
2576
2577 /* All the dynamic relocations have been emitted at this point.
2578 Make sure the relocation sections are the correct size. */
eea6121a
AM
2579 if (srelgot->size != (sizeof (Elf32_External_Rela)
2580 * srelgot->reloc_count)
2581 || srelplt->size != (sizeof (Elf32_External_Rela)
2582 * srelplt->reloc_count))
e0001a05
NC
2583 abort ();
2584
2585 /* The .xt.lit.plt section has just been modified. This must
2586 happen before the code below which combines adjacent literal
2587 table entries, and the .xt.lit.plt contents have to be forced to
2588 the output here. */
2589 if (! bfd_set_section_contents (output_bfd,
2590 spltlittbl->output_section,
2591 spltlittbl->contents,
2592 spltlittbl->output_offset,
eea6121a 2593 spltlittbl->size))
e0001a05
NC
2594 return FALSE;
2595 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
2596 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
2597 }
2598
2599 /* Combine adjacent literal table entries. */
1049f94e 2600 BFD_ASSERT (! info->relocatable);
e901de89 2601 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
f0e6fdb2 2602 sgotloc = htab->sgotloc;
d9ab3f29
BW
2603 BFD_ASSERT (sgotloc);
2604 if (sxtlit)
2605 {
2606 num_xtlit_entries =
2607 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
2608 if (num_xtlit_entries < 0)
2609 return FALSE;
2610 }
e0001a05
NC
2611
2612 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 2613 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
e0001a05
NC
2614 for (; dyncon < dynconend; dyncon++)
2615 {
2616 Elf_Internal_Dyn dyn;
e0001a05
NC
2617
2618 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2619
2620 switch (dyn.d_tag)
2621 {
2622 default:
2623 break;
2624
2625 case DT_XTENSA_GOT_LOC_SZ:
e0001a05
NC
2626 dyn.d_un.d_val = num_xtlit_entries;
2627 break;
2628
2629 case DT_XTENSA_GOT_LOC_OFF:
e29297b7 2630 dyn.d_un.d_ptr = htab->sgotloc->output_section->vma;
f0e6fdb2
BW
2631 break;
2632
e0001a05 2633 case DT_PLTGOT:
e29297b7 2634 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
f0e6fdb2
BW
2635 break;
2636
e0001a05 2637 case DT_JMPREL:
e29297b7 2638 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
e0001a05
NC
2639 break;
2640
2641 case DT_PLTRELSZ:
e29297b7 2642 dyn.d_un.d_val = htab->srelplt->output_section->size;
e0001a05
NC
2643 break;
2644
2645 case DT_RELASZ:
2646 /* Adjust RELASZ to not include JMPREL. This matches what
2647 glibc expects and what is done for several other ELF
2648 targets (e.g., i386, alpha), but the "correct" behavior
2649 seems to be unresolved. Since the linker script arranges
2650 for .rela.plt to follow all other relocation sections, we
2651 don't have to worry about changing the DT_RELA entry. */
f0e6fdb2 2652 if (htab->srelplt)
e29297b7 2653 dyn.d_un.d_val -= htab->srelplt->output_section->size;
e0001a05
NC
2654 break;
2655 }
2656
2657 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2658 }
2659
2660 return TRUE;
2661}
2662
2663\f
2664/* Functions for dealing with the e_flags field. */
2665
2666/* Merge backend specific data from an object file to the output
2667 object file when linking. */
2668
2669static bfd_boolean
7fa3d080 2670elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
e0001a05
NC
2671{
2672 unsigned out_mach, in_mach;
2673 flagword out_flag, in_flag;
2674
2675 /* Check if we have the same endianess. */
2676 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
2677 return FALSE;
2678
2679 /* Don't even pretend to support mixed-format linking. */
2680 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2681 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2682 return FALSE;
2683
2684 out_flag = elf_elfheader (obfd)->e_flags;
2685 in_flag = elf_elfheader (ibfd)->e_flags;
2686
2687 out_mach = out_flag & EF_XTENSA_MACH;
2688 in_mach = in_flag & EF_XTENSA_MACH;
43cd72b9 2689 if (out_mach != in_mach)
e0001a05
NC
2690 {
2691 (*_bfd_error_handler)
43cd72b9 2692 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
d003868e 2693 ibfd, out_mach, in_mach);
e0001a05
NC
2694 bfd_set_error (bfd_error_wrong_format);
2695 return FALSE;
2696 }
2697
2698 if (! elf_flags_init (obfd))
2699 {
2700 elf_flags_init (obfd) = TRUE;
2701 elf_elfheader (obfd)->e_flags = in_flag;
43cd72b9 2702
e0001a05
NC
2703 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2704 && bfd_get_arch_info (obfd)->the_default)
2705 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
2706 bfd_get_mach (ibfd));
43cd72b9 2707
e0001a05
NC
2708 return TRUE;
2709 }
2710
43cd72b9
BW
2711 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
2712 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
e0001a05 2713
43cd72b9
BW
2714 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
2715 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
e0001a05
NC
2716
2717 return TRUE;
2718}
2719
2720
2721static bfd_boolean
7fa3d080 2722elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
e0001a05
NC
2723{
2724 BFD_ASSERT (!elf_flags_init (abfd)
2725 || elf_elfheader (abfd)->e_flags == flags);
2726
2727 elf_elfheader (abfd)->e_flags |= flags;
2728 elf_flags_init (abfd) = TRUE;
2729
2730 return TRUE;
2731}
2732
2733
e0001a05 2734static bfd_boolean
7fa3d080 2735elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
e0001a05
NC
2736{
2737 FILE *f = (FILE *) farg;
2738 flagword e_flags = elf_elfheader (abfd)->e_flags;
2739
2740 fprintf (f, "\nXtensa header:\n");
43cd72b9 2741 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
e0001a05
NC
2742 fprintf (f, "\nMachine = Base\n");
2743 else
2744 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
2745
2746 fprintf (f, "Insn tables = %s\n",
2747 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
2748
2749 fprintf (f, "Literal tables = %s\n",
2750 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
2751
2752 return _bfd_elf_print_private_bfd_data (abfd, farg);
2753}
2754
2755
2756/* Set the right machine number for an Xtensa ELF file. */
2757
2758static bfd_boolean
7fa3d080 2759elf_xtensa_object_p (bfd *abfd)
e0001a05
NC
2760{
2761 int mach;
2762 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
2763
2764 switch (arch)
2765 {
2766 case E_XTENSA_MACH:
2767 mach = bfd_mach_xtensa;
2768 break;
2769 default:
2770 return FALSE;
2771 }
2772
2773 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
2774 return TRUE;
2775}
2776
2777
2778/* The final processing done just before writing out an Xtensa ELF object
2779 file. This gets the Xtensa architecture right based on the machine
2780 number. */
2781
2782static void
7fa3d080
BW
2783elf_xtensa_final_write_processing (bfd *abfd,
2784 bfd_boolean linker ATTRIBUTE_UNUSED)
e0001a05
NC
2785{
2786 int mach;
2787 unsigned long val;
2788
2789 switch (mach = bfd_get_mach (abfd))
2790 {
2791 case bfd_mach_xtensa:
2792 val = E_XTENSA_MACH;
2793 break;
2794 default:
2795 return;
2796 }
2797
2798 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
2799 elf_elfheader (abfd)->e_flags |= val;
2800}
2801
2802
2803static enum elf_reloc_type_class
7fa3d080 2804elf_xtensa_reloc_type_class (const Elf_Internal_Rela *rela)
e0001a05
NC
2805{
2806 switch ((int) ELF32_R_TYPE (rela->r_info))
2807 {
2808 case R_XTENSA_RELATIVE:
2809 return reloc_class_relative;
2810 case R_XTENSA_JMP_SLOT:
2811 return reloc_class_plt;
2812 default:
2813 return reloc_class_normal;
2814 }
2815}
2816
2817\f
2818static bfd_boolean
7fa3d080
BW
2819elf_xtensa_discard_info_for_section (bfd *abfd,
2820 struct elf_reloc_cookie *cookie,
2821 struct bfd_link_info *info,
2822 asection *sec)
e0001a05
NC
2823{
2824 bfd_byte *contents;
e0001a05 2825 bfd_vma offset, actual_offset;
1d25768e
BW
2826 bfd_size_type removed_bytes = 0;
2827 bfd_size_type entry_size;
e0001a05
NC
2828
2829 if (sec->output_section
2830 && bfd_is_abs_section (sec->output_section))
2831 return FALSE;
2832
1d25768e
BW
2833 if (xtensa_is_proptable_section (sec))
2834 entry_size = 12;
2835 else
2836 entry_size = 8;
2837
a3ef2d63 2838 if (sec->size == 0 || sec->size % entry_size != 0)
1d25768e
BW
2839 return FALSE;
2840
e0001a05
NC
2841 contents = retrieve_contents (abfd, sec, info->keep_memory);
2842 if (!contents)
2843 return FALSE;
2844
2845 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
2846 if (!cookie->rels)
2847 {
2848 release_contents (sec, contents);
2849 return FALSE;
2850 }
2851
1d25768e
BW
2852 /* Sort the relocations. They should already be in order when
2853 relaxation is enabled, but it might not be. */
2854 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
2855 internal_reloc_compare);
2856
e0001a05
NC
2857 cookie->rel = cookie->rels;
2858 cookie->relend = cookie->rels + sec->reloc_count;
2859
a3ef2d63 2860 for (offset = 0; offset < sec->size; offset += entry_size)
e0001a05
NC
2861 {
2862 actual_offset = offset - removed_bytes;
2863
2864 /* The ...symbol_deleted_p function will skip over relocs but it
2865 won't adjust their offsets, so do that here. */
2866 while (cookie->rel < cookie->relend
2867 && cookie->rel->r_offset < offset)
2868 {
2869 cookie->rel->r_offset -= removed_bytes;
2870 cookie->rel++;
2871 }
2872
2873 while (cookie->rel < cookie->relend
2874 && cookie->rel->r_offset == offset)
2875 {
c152c796 2876 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
e0001a05
NC
2877 {
2878 /* Remove the table entry. (If the reloc type is NONE, then
2879 the entry has already been merged with another and deleted
2880 during relaxation.) */
2881 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
2882 {
2883 /* Shift the contents up. */
a3ef2d63 2884 if (offset + entry_size < sec->size)
e0001a05 2885 memmove (&contents[actual_offset],
1d25768e 2886 &contents[actual_offset + entry_size],
a3ef2d63 2887 sec->size - offset - entry_size);
1d25768e 2888 removed_bytes += entry_size;
e0001a05
NC
2889 }
2890
2891 /* Remove this relocation. */
2892 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
2893 }
2894
2895 /* Adjust the relocation offset for previous removals. This
2896 should not be done before calling ...symbol_deleted_p
2897 because it might mess up the offset comparisons there.
2898 Make sure the offset doesn't underflow in the case where
2899 the first entry is removed. */
2900 if (cookie->rel->r_offset >= removed_bytes)
2901 cookie->rel->r_offset -= removed_bytes;
2902 else
2903 cookie->rel->r_offset = 0;
2904
2905 cookie->rel++;
2906 }
2907 }
2908
2909 if (removed_bytes != 0)
2910 {
2911 /* Adjust any remaining relocs (shouldn't be any). */
2912 for (; cookie->rel < cookie->relend; cookie->rel++)
2913 {
2914 if (cookie->rel->r_offset >= removed_bytes)
2915 cookie->rel->r_offset -= removed_bytes;
2916 else
2917 cookie->rel->r_offset = 0;
2918 }
2919
2920 /* Clear the removed bytes. */
a3ef2d63 2921 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
e0001a05
NC
2922
2923 pin_contents (sec, contents);
2924 pin_internal_relocs (sec, cookie->rels);
2925
eea6121a 2926 /* Shrink size. */
a3ef2d63
BW
2927 if (sec->rawsize == 0)
2928 sec->rawsize = sec->size;
2929 sec->size -= removed_bytes;
b536dc1e
BW
2930
2931 if (xtensa_is_littable_section (sec))
2932 {
f0e6fdb2
BW
2933 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
2934 if (sgotloc)
2935 sgotloc->size -= removed_bytes;
b536dc1e 2936 }
e0001a05
NC
2937 }
2938 else
2939 {
2940 release_contents (sec, contents);
2941 release_internal_relocs (sec, cookie->rels);
2942 }
2943
2944 return (removed_bytes != 0);
2945}
2946
2947
2948static bfd_boolean
7fa3d080
BW
2949elf_xtensa_discard_info (bfd *abfd,
2950 struct elf_reloc_cookie *cookie,
2951 struct bfd_link_info *info)
e0001a05
NC
2952{
2953 asection *sec;
2954 bfd_boolean changed = FALSE;
2955
2956 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2957 {
2958 if (xtensa_is_property_section (sec))
2959 {
2960 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
2961 changed = TRUE;
2962 }
2963 }
2964
2965 return changed;
2966}
2967
2968
2969static bfd_boolean
7fa3d080 2970elf_xtensa_ignore_discarded_relocs (asection *sec)
e0001a05
NC
2971{
2972 return xtensa_is_property_section (sec);
2973}
2974
a77dc2cc
BW
2975
2976static unsigned int
2977elf_xtensa_action_discarded (asection *sec)
2978{
2979 if (strcmp (".xt_except_table", sec->name) == 0)
2980 return 0;
2981
2982 if (strcmp (".xt_except_desc", sec->name) == 0)
2983 return 0;
2984
2985 return _bfd_elf_default_action_discarded (sec);
2986}
2987
e0001a05
NC
2988\f
2989/* Support for core dump NOTE sections. */
2990
2991static bfd_boolean
7fa3d080 2992elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
2993{
2994 int offset;
eea6121a 2995 unsigned int size;
e0001a05
NC
2996
2997 /* The size for Xtensa is variable, so don't try to recognize the format
2998 based on the size. Just assume this is GNU/Linux. */
2999
3000 /* pr_cursig */
3001 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
3002
3003 /* pr_pid */
3004 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
3005
3006 /* pr_reg */
3007 offset = 72;
eea6121a 3008 size = note->descsz - offset - 4;
e0001a05
NC
3009
3010 /* Make a ".reg/999" section. */
3011 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
eea6121a 3012 size, note->descpos + offset);
e0001a05
NC
3013}
3014
3015
3016static bfd_boolean
7fa3d080 3017elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
3018{
3019 switch (note->descsz)
3020 {
3021 default:
3022 return FALSE;
3023
3024 case 128: /* GNU/Linux elf_prpsinfo */
3025 elf_tdata (abfd)->core_program
3026 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3027 elf_tdata (abfd)->core_command
3028 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3029 }
3030
3031 /* Note that for some reason, a spurious space is tacked
3032 onto the end of the args in some (at least one anyway)
3033 implementations, so strip it off if it exists. */
3034
3035 {
3036 char *command = elf_tdata (abfd)->core_command;
3037 int n = strlen (command);
3038
3039 if (0 < n && command[n - 1] == ' ')
3040 command[n - 1] = '\0';
3041 }
3042
3043 return TRUE;
3044}
3045
3046\f
3047/* Generic Xtensa configurability stuff. */
3048
3049static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3050static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3051static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3052static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3053static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3054static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3055static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3056static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3057
3058static void
7fa3d080 3059init_call_opcodes (void)
e0001a05
NC
3060{
3061 if (callx0_op == XTENSA_UNDEFINED)
3062 {
3063 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3064 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3065 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3066 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3067 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3068 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3069 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3070 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3071 }
3072}
3073
3074
3075static bfd_boolean
7fa3d080 3076is_indirect_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3077{
3078 init_call_opcodes ();
3079 return (opcode == callx0_op
3080 || opcode == callx4_op
3081 || opcode == callx8_op
3082 || opcode == callx12_op);
3083}
3084
3085
3086static bfd_boolean
7fa3d080 3087is_direct_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3088{
3089 init_call_opcodes ();
3090 return (opcode == call0_op
3091 || opcode == call4_op
3092 || opcode == call8_op
3093 || opcode == call12_op);
3094}
3095
3096
3097static bfd_boolean
7fa3d080 3098is_windowed_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3099{
3100 init_call_opcodes ();
3101 return (opcode == call4_op
3102 || opcode == call8_op
3103 || opcode == call12_op
3104 || opcode == callx4_op
3105 || opcode == callx8_op
3106 || opcode == callx12_op);
3107}
3108
3109
43cd72b9
BW
3110static xtensa_opcode
3111get_const16_opcode (void)
3112{
3113 static bfd_boolean done_lookup = FALSE;
3114 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3115 if (!done_lookup)
3116 {
3117 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3118 done_lookup = TRUE;
3119 }
3120 return const16_opcode;
3121}
3122
3123
e0001a05
NC
3124static xtensa_opcode
3125get_l32r_opcode (void)
3126{
3127 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
43cd72b9
BW
3128 static bfd_boolean done_lookup = FALSE;
3129
3130 if (!done_lookup)
e0001a05
NC
3131 {
3132 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
43cd72b9 3133 done_lookup = TRUE;
e0001a05
NC
3134 }
3135 return l32r_opcode;
3136}
3137
3138
3139static bfd_vma
7fa3d080 3140l32r_offset (bfd_vma addr, bfd_vma pc)
e0001a05
NC
3141{
3142 bfd_vma offset;
3143
3144 offset = addr - ((pc+3) & -4);
3145 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3146 offset = (signed int) offset >> 2;
3147 BFD_ASSERT ((signed int) offset >> 16 == -1);
3148 return offset;
3149}
3150
3151
e0001a05 3152static int
7fa3d080 3153get_relocation_opnd (xtensa_opcode opcode, int r_type)
e0001a05 3154{
43cd72b9
BW
3155 xtensa_isa isa = xtensa_default_isa;
3156 int last_immed, last_opnd, opi;
3157
3158 if (opcode == XTENSA_UNDEFINED)
3159 return XTENSA_UNDEFINED;
3160
3161 /* Find the last visible PC-relative immediate operand for the opcode.
3162 If there are no PC-relative immediates, then choose the last visible
3163 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3164 last_immed = XTENSA_UNDEFINED;
3165 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3166 for (opi = last_opnd - 1; opi >= 0; opi--)
3167 {
3168 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3169 continue;
3170 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3171 {
3172 last_immed = opi;
3173 break;
3174 }
3175 if (last_immed == XTENSA_UNDEFINED
3176 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3177 last_immed = opi;
3178 }
3179 if (last_immed < 0)
3180 return XTENSA_UNDEFINED;
3181
3182 /* If the operand number was specified in an old-style relocation,
3183 check for consistency with the operand computed above. */
3184 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3185 {
3186 int reloc_opnd = r_type - R_XTENSA_OP0;
3187 if (reloc_opnd != last_immed)
3188 return XTENSA_UNDEFINED;
3189 }
3190
3191 return last_immed;
3192}
3193
3194
3195int
7fa3d080 3196get_relocation_slot (int r_type)
43cd72b9
BW
3197{
3198 switch (r_type)
3199 {
3200 case R_XTENSA_OP0:
3201 case R_XTENSA_OP1:
3202 case R_XTENSA_OP2:
3203 return 0;
3204
3205 default:
3206 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3207 return r_type - R_XTENSA_SLOT0_OP;
3208 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3209 return r_type - R_XTENSA_SLOT0_ALT;
3210 break;
3211 }
3212
3213 return XTENSA_UNDEFINED;
e0001a05
NC
3214}
3215
3216
3217/* Get the opcode for a relocation. */
3218
3219static xtensa_opcode
7fa3d080
BW
3220get_relocation_opcode (bfd *abfd,
3221 asection *sec,
3222 bfd_byte *contents,
3223 Elf_Internal_Rela *irel)
e0001a05
NC
3224{
3225 static xtensa_insnbuf ibuff = NULL;
43cd72b9 3226 static xtensa_insnbuf sbuff = NULL;
e0001a05 3227 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
3228 xtensa_format fmt;
3229 int slot;
e0001a05
NC
3230
3231 if (contents == NULL)
3232 return XTENSA_UNDEFINED;
3233
43cd72b9 3234 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
e0001a05
NC
3235 return XTENSA_UNDEFINED;
3236
3237 if (ibuff == NULL)
43cd72b9
BW
3238 {
3239 ibuff = xtensa_insnbuf_alloc (isa);
3240 sbuff = xtensa_insnbuf_alloc (isa);
3241 }
3242
e0001a05 3243 /* Decode the instruction. */
43cd72b9
BW
3244 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
3245 sec->size - irel->r_offset);
3246 fmt = xtensa_format_decode (isa, ibuff);
3247 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
3248 if (slot == XTENSA_UNDEFINED)
3249 return XTENSA_UNDEFINED;
3250 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
3251 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
e0001a05
NC
3252}
3253
3254
3255bfd_boolean
7fa3d080
BW
3256is_l32r_relocation (bfd *abfd,
3257 asection *sec,
3258 bfd_byte *contents,
3259 Elf_Internal_Rela *irel)
e0001a05
NC
3260{
3261 xtensa_opcode opcode;
43cd72b9 3262 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
e0001a05 3263 return FALSE;
43cd72b9 3264 opcode = get_relocation_opcode (abfd, sec, contents, irel);
e0001a05
NC
3265 return (opcode == get_l32r_opcode ());
3266}
3267
e0001a05 3268
43cd72b9 3269static bfd_size_type
7fa3d080
BW
3270get_asm_simplify_size (bfd_byte *contents,
3271 bfd_size_type content_len,
3272 bfd_size_type offset)
e0001a05 3273{
43cd72b9 3274 bfd_size_type insnlen, size = 0;
e0001a05 3275
43cd72b9
BW
3276 /* Decode the size of the next two instructions. */
3277 insnlen = insn_decode_len (contents, content_len, offset);
3278 if (insnlen == 0)
3279 return 0;
e0001a05 3280
43cd72b9 3281 size += insnlen;
e0001a05 3282
43cd72b9
BW
3283 insnlen = insn_decode_len (contents, content_len, offset + size);
3284 if (insnlen == 0)
3285 return 0;
e0001a05 3286
43cd72b9
BW
3287 size += insnlen;
3288 return size;
3289}
e0001a05 3290
43cd72b9
BW
3291
3292bfd_boolean
7fa3d080 3293is_alt_relocation (int r_type)
43cd72b9
BW
3294{
3295 return (r_type >= R_XTENSA_SLOT0_ALT
3296 && r_type <= R_XTENSA_SLOT14_ALT);
e0001a05
NC
3297}
3298
3299
43cd72b9 3300bfd_boolean
7fa3d080 3301is_operand_relocation (int r_type)
e0001a05 3302{
43cd72b9
BW
3303 switch (r_type)
3304 {
3305 case R_XTENSA_OP0:
3306 case R_XTENSA_OP1:
3307 case R_XTENSA_OP2:
3308 return TRUE;
e0001a05 3309
43cd72b9
BW
3310 default:
3311 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3312 return TRUE;
3313 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3314 return TRUE;
3315 break;
3316 }
e0001a05 3317
43cd72b9 3318 return FALSE;
e0001a05
NC
3319}
3320
43cd72b9
BW
3321
3322#define MIN_INSN_LENGTH 2
e0001a05 3323
43cd72b9
BW
3324/* Return 0 if it fails to decode. */
3325
3326bfd_size_type
7fa3d080
BW
3327insn_decode_len (bfd_byte *contents,
3328 bfd_size_type content_len,
3329 bfd_size_type offset)
e0001a05 3330{
43cd72b9
BW
3331 int insn_len;
3332 xtensa_isa isa = xtensa_default_isa;
3333 xtensa_format fmt;
3334 static xtensa_insnbuf ibuff = NULL;
e0001a05 3335
43cd72b9
BW
3336 if (offset + MIN_INSN_LENGTH > content_len)
3337 return 0;
e0001a05 3338
43cd72b9
BW
3339 if (ibuff == NULL)
3340 ibuff = xtensa_insnbuf_alloc (isa);
3341 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
3342 content_len - offset);
3343 fmt = xtensa_format_decode (isa, ibuff);
3344 if (fmt == XTENSA_UNDEFINED)
3345 return 0;
3346 insn_len = xtensa_format_length (isa, fmt);
3347 if (insn_len == XTENSA_UNDEFINED)
3348 return 0;
3349 return insn_len;
e0001a05
NC
3350}
3351
3352
43cd72b9
BW
3353/* Decode the opcode for a single slot instruction.
3354 Return 0 if it fails to decode or the instruction is multi-slot. */
e0001a05 3355
43cd72b9 3356xtensa_opcode
7fa3d080
BW
3357insn_decode_opcode (bfd_byte *contents,
3358 bfd_size_type content_len,
3359 bfd_size_type offset,
3360 int slot)
e0001a05 3361{
e0001a05 3362 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
3363 xtensa_format fmt;
3364 static xtensa_insnbuf insnbuf = NULL;
3365 static xtensa_insnbuf slotbuf = NULL;
3366
3367 if (offset + MIN_INSN_LENGTH > content_len)
e0001a05
NC
3368 return XTENSA_UNDEFINED;
3369
3370 if (insnbuf == NULL)
43cd72b9
BW
3371 {
3372 insnbuf = xtensa_insnbuf_alloc (isa);
3373 slotbuf = xtensa_insnbuf_alloc (isa);
3374 }
3375
3376 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3377 content_len - offset);
3378 fmt = xtensa_format_decode (isa, insnbuf);
3379 if (fmt == XTENSA_UNDEFINED)
e0001a05 3380 return XTENSA_UNDEFINED;
43cd72b9
BW
3381
3382 if (slot >= xtensa_format_num_slots (isa, fmt))
e0001a05 3383 return XTENSA_UNDEFINED;
e0001a05 3384
43cd72b9
BW
3385 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
3386 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
3387}
e0001a05 3388
e0001a05 3389
43cd72b9
BW
3390/* The offset is the offset in the contents.
3391 The address is the address of that offset. */
e0001a05 3392
43cd72b9 3393static bfd_boolean
7fa3d080
BW
3394check_branch_target_aligned (bfd_byte *contents,
3395 bfd_size_type content_length,
3396 bfd_vma offset,
3397 bfd_vma address)
43cd72b9
BW
3398{
3399 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
3400 if (insn_len == 0)
3401 return FALSE;
3402 return check_branch_target_aligned_address (address, insn_len);
3403}
e0001a05 3404
e0001a05 3405
43cd72b9 3406static bfd_boolean
7fa3d080
BW
3407check_loop_aligned (bfd_byte *contents,
3408 bfd_size_type content_length,
3409 bfd_vma offset,
3410 bfd_vma address)
e0001a05 3411{
43cd72b9 3412 bfd_size_type loop_len, insn_len;
64b607e6 3413 xtensa_opcode opcode;
e0001a05 3414
64b607e6
BW
3415 opcode = insn_decode_opcode (contents, content_length, offset, 0);
3416 if (opcode == XTENSA_UNDEFINED
3417 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
3418 {
3419 BFD_ASSERT (FALSE);
3420 return FALSE;
3421 }
3422
43cd72b9 3423 loop_len = insn_decode_len (contents, content_length, offset);
43cd72b9 3424 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
64b607e6
BW
3425 if (loop_len == 0 || insn_len == 0)
3426 {
3427 BFD_ASSERT (FALSE);
3428 return FALSE;
3429 }
e0001a05 3430
43cd72b9
BW
3431 return check_branch_target_aligned_address (address + loop_len, insn_len);
3432}
e0001a05 3433
e0001a05
NC
3434
3435static bfd_boolean
7fa3d080 3436check_branch_target_aligned_address (bfd_vma addr, int len)
e0001a05 3437{
43cd72b9
BW
3438 if (len == 8)
3439 return (addr % 8 == 0);
3440 return ((addr >> 2) == ((addr + len - 1) >> 2));
e0001a05
NC
3441}
3442
43cd72b9
BW
3443\f
3444/* Instruction widening and narrowing. */
e0001a05 3445
7fa3d080
BW
3446/* When FLIX is available we need to access certain instructions only
3447 when they are 16-bit or 24-bit instructions. This table caches
3448 information about such instructions by walking through all the
3449 opcodes and finding the smallest single-slot format into which each
3450 can be encoded. */
3451
3452static xtensa_format *op_single_fmt_table = NULL;
e0001a05
NC
3453
3454
7fa3d080
BW
3455static void
3456init_op_single_format_table (void)
e0001a05 3457{
7fa3d080
BW
3458 xtensa_isa isa = xtensa_default_isa;
3459 xtensa_insnbuf ibuf;
3460 xtensa_opcode opcode;
3461 xtensa_format fmt;
3462 int num_opcodes;
3463
3464 if (op_single_fmt_table)
3465 return;
3466
3467 ibuf = xtensa_insnbuf_alloc (isa);
3468 num_opcodes = xtensa_isa_num_opcodes (isa);
3469
3470 op_single_fmt_table = (xtensa_format *)
3471 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
3472 for (opcode = 0; opcode < num_opcodes; opcode++)
3473 {
3474 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
3475 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
3476 {
3477 if (xtensa_format_num_slots (isa, fmt) == 1
3478 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
3479 {
3480 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
3481 int fmt_length = xtensa_format_length (isa, fmt);
3482 if (old_fmt == XTENSA_UNDEFINED
3483 || fmt_length < xtensa_format_length (isa, old_fmt))
3484 op_single_fmt_table[opcode] = fmt;
3485 }
3486 }
3487 }
3488 xtensa_insnbuf_free (isa, ibuf);
3489}
3490
3491
3492static xtensa_format
3493get_single_format (xtensa_opcode opcode)
3494{
3495 init_op_single_format_table ();
3496 return op_single_fmt_table[opcode];
3497}
e0001a05 3498
e0001a05 3499
43cd72b9
BW
3500/* For the set of narrowable instructions we do NOT include the
3501 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
3502 involved during linker relaxation that may require these to
3503 re-expand in some conditions. Also, the narrowing "or" -> mov.n
3504 requires special case code to ensure it only works when op1 == op2. */
e0001a05 3505
7fa3d080
BW
3506struct string_pair
3507{
3508 const char *wide;
3509 const char *narrow;
3510};
3511
43cd72b9 3512struct string_pair narrowable[] =
e0001a05 3513{
43cd72b9
BW
3514 { "add", "add.n" },
3515 { "addi", "addi.n" },
3516 { "addmi", "addi.n" },
3517 { "l32i", "l32i.n" },
3518 { "movi", "movi.n" },
3519 { "ret", "ret.n" },
3520 { "retw", "retw.n" },
3521 { "s32i", "s32i.n" },
3522 { "or", "mov.n" } /* special case only when op1 == op2 */
3523};
e0001a05 3524
43cd72b9 3525struct string_pair widenable[] =
e0001a05 3526{
43cd72b9
BW
3527 { "add", "add.n" },
3528 { "addi", "addi.n" },
3529 { "addmi", "addi.n" },
3530 { "beqz", "beqz.n" },
3531 { "bnez", "bnez.n" },
3532 { "l32i", "l32i.n" },
3533 { "movi", "movi.n" },
3534 { "ret", "ret.n" },
3535 { "retw", "retw.n" },
3536 { "s32i", "s32i.n" },
3537 { "or", "mov.n" } /* special case only when op1 == op2 */
3538};
e0001a05
NC
3539
3540
64b607e6
BW
3541/* Check if an instruction can be "narrowed", i.e., changed from a standard
3542 3-byte instruction to a 2-byte "density" instruction. If it is valid,
3543 return the instruction buffer holding the narrow instruction. Otherwise,
3544 return 0. The set of valid narrowing are specified by a string table
43cd72b9
BW
3545 but require some special case operand checks in some cases. */
3546
64b607e6
BW
3547static xtensa_insnbuf
3548can_narrow_instruction (xtensa_insnbuf slotbuf,
3549 xtensa_format fmt,
3550 xtensa_opcode opcode)
e0001a05 3551{
43cd72b9 3552 xtensa_isa isa = xtensa_default_isa;
64b607e6
BW
3553 xtensa_format o_fmt;
3554 unsigned opi;
e0001a05 3555
43cd72b9
BW
3556 static xtensa_insnbuf o_insnbuf = NULL;
3557 static xtensa_insnbuf o_slotbuf = NULL;
e0001a05 3558
64b607e6 3559 if (o_insnbuf == NULL)
43cd72b9 3560 {
43cd72b9
BW
3561 o_insnbuf = xtensa_insnbuf_alloc (isa);
3562 o_slotbuf = xtensa_insnbuf_alloc (isa);
3563 }
e0001a05 3564
64b607e6 3565 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
43cd72b9
BW
3566 {
3567 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
e0001a05 3568
43cd72b9
BW
3569 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
3570 {
3571 uint32 value, newval;
3572 int i, operand_count, o_operand_count;
3573 xtensa_opcode o_opcode;
e0001a05 3574
43cd72b9
BW
3575 /* Address does not matter in this case. We might need to
3576 fix it to handle branches/jumps. */
3577 bfd_vma self_address = 0;
e0001a05 3578
43cd72b9
BW
3579 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
3580 if (o_opcode == XTENSA_UNDEFINED)
64b607e6 3581 return 0;
43cd72b9
BW
3582 o_fmt = get_single_format (o_opcode);
3583 if (o_fmt == XTENSA_UNDEFINED)
64b607e6 3584 return 0;
e0001a05 3585
43cd72b9
BW
3586 if (xtensa_format_length (isa, fmt) != 3
3587 || xtensa_format_length (isa, o_fmt) != 2)
64b607e6 3588 return 0;
e0001a05 3589
43cd72b9
BW
3590 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3591 operand_count = xtensa_opcode_num_operands (isa, opcode);
3592 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
e0001a05 3593
43cd72b9 3594 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
64b607e6 3595 return 0;
e0001a05 3596
43cd72b9
BW
3597 if (!is_or)
3598 {
3599 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
64b607e6 3600 return 0;
43cd72b9
BW
3601 }
3602 else
3603 {
3604 uint32 rawval0, rawval1, rawval2;
e0001a05 3605
64b607e6
BW
3606 if (o_operand_count + 1 != operand_count
3607 || xtensa_operand_get_field (isa, opcode, 0,
3608 fmt, 0, slotbuf, &rawval0) != 0
3609 || xtensa_operand_get_field (isa, opcode, 1,
3610 fmt, 0, slotbuf, &rawval1) != 0
3611 || xtensa_operand_get_field (isa, opcode, 2,
3612 fmt, 0, slotbuf, &rawval2) != 0
3613 || rawval1 != rawval2
3614 || rawval0 == rawval1 /* it is a nop */)
3615 return 0;
43cd72b9 3616 }
e0001a05 3617
43cd72b9
BW
3618 for (i = 0; i < o_operand_count; ++i)
3619 {
3620 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
3621 slotbuf, &value)
3622 || xtensa_operand_decode (isa, opcode, i, &value))
64b607e6 3623 return 0;
e0001a05 3624
43cd72b9
BW
3625 /* PC-relative branches need adjustment, but
3626 the PC-rel operand will always have a relocation. */
3627 newval = value;
3628 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3629 self_address)
3630 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3631 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3632 o_slotbuf, newval))
64b607e6 3633 return 0;
43cd72b9 3634 }
e0001a05 3635
64b607e6
BW
3636 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
3637 return 0;
e0001a05 3638
64b607e6 3639 return o_insnbuf;
43cd72b9
BW
3640 }
3641 }
64b607e6 3642 return 0;
43cd72b9 3643}
e0001a05 3644
e0001a05 3645
64b607e6
BW
3646/* Attempt to narrow an instruction. If the narrowing is valid, perform
3647 the action in-place directly into the contents and return TRUE. Otherwise,
3648 the return value is FALSE and the contents are not modified. */
e0001a05 3649
43cd72b9 3650static bfd_boolean
64b607e6
BW
3651narrow_instruction (bfd_byte *contents,
3652 bfd_size_type content_length,
3653 bfd_size_type offset)
e0001a05 3654{
43cd72b9 3655 xtensa_opcode opcode;
64b607e6 3656 bfd_size_type insn_len;
43cd72b9 3657 xtensa_isa isa = xtensa_default_isa;
64b607e6
BW
3658 xtensa_format fmt;
3659 xtensa_insnbuf o_insnbuf;
e0001a05 3660
43cd72b9
BW
3661 static xtensa_insnbuf insnbuf = NULL;
3662 static xtensa_insnbuf slotbuf = NULL;
e0001a05 3663
43cd72b9
BW
3664 if (insnbuf == NULL)
3665 {
3666 insnbuf = xtensa_insnbuf_alloc (isa);
3667 slotbuf = xtensa_insnbuf_alloc (isa);
43cd72b9 3668 }
e0001a05 3669
43cd72b9 3670 BFD_ASSERT (offset < content_length);
2c8c90bc 3671
43cd72b9 3672 if (content_length < 2)
e0001a05
NC
3673 return FALSE;
3674
64b607e6 3675 /* We will hand-code a few of these for a little while.
43cd72b9
BW
3676 These have all been specified in the assembler aleady. */
3677 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3678 content_length - offset);
3679 fmt = xtensa_format_decode (isa, insnbuf);
3680 if (xtensa_format_num_slots (isa, fmt) != 1)
e0001a05
NC
3681 return FALSE;
3682
43cd72b9 3683 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
e0001a05
NC
3684 return FALSE;
3685
43cd72b9
BW
3686 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3687 if (opcode == XTENSA_UNDEFINED)
e0001a05 3688 return FALSE;
43cd72b9
BW
3689 insn_len = xtensa_format_length (isa, fmt);
3690 if (insn_len > content_length)
3691 return FALSE;
3692
64b607e6
BW
3693 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
3694 if (o_insnbuf)
3695 {
3696 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3697 content_length - offset);
3698 return TRUE;
3699 }
3700
3701 return FALSE;
3702}
3703
3704
3705/* Check if an instruction can be "widened", i.e., changed from a 2-byte
3706 "density" instruction to a standard 3-byte instruction. If it is valid,
3707 return the instruction buffer holding the wide instruction. Otherwise,
3708 return 0. The set of valid widenings are specified by a string table
3709 but require some special case operand checks in some cases. */
3710
3711static xtensa_insnbuf
3712can_widen_instruction (xtensa_insnbuf slotbuf,
3713 xtensa_format fmt,
3714 xtensa_opcode opcode)
3715{
3716 xtensa_isa isa = xtensa_default_isa;
3717 xtensa_format o_fmt;
3718 unsigned opi;
3719
3720 static xtensa_insnbuf o_insnbuf = NULL;
3721 static xtensa_insnbuf o_slotbuf = NULL;
3722
3723 if (o_insnbuf == NULL)
3724 {
3725 o_insnbuf = xtensa_insnbuf_alloc (isa);
3726 o_slotbuf = xtensa_insnbuf_alloc (isa);
3727 }
3728
3729 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
e0001a05 3730 {
43cd72b9
BW
3731 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
3732 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
3733 || strcmp ("bnez", widenable[opi].wide) == 0);
e0001a05 3734
43cd72b9
BW
3735 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
3736 {
3737 uint32 value, newval;
3738 int i, operand_count, o_operand_count, check_operand_count;
3739 xtensa_opcode o_opcode;
e0001a05 3740
43cd72b9
BW
3741 /* Address does not matter in this case. We might need to fix it
3742 to handle branches/jumps. */
3743 bfd_vma self_address = 0;
e0001a05 3744
43cd72b9
BW
3745 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
3746 if (o_opcode == XTENSA_UNDEFINED)
64b607e6 3747 return 0;
43cd72b9
BW
3748 o_fmt = get_single_format (o_opcode);
3749 if (o_fmt == XTENSA_UNDEFINED)
64b607e6 3750 return 0;
e0001a05 3751
43cd72b9
BW
3752 if (xtensa_format_length (isa, fmt) != 2
3753 || xtensa_format_length (isa, o_fmt) != 3)
64b607e6 3754 return 0;
e0001a05 3755
43cd72b9
BW
3756 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3757 operand_count = xtensa_opcode_num_operands (isa, opcode);
3758 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
3759 check_operand_count = o_operand_count;
e0001a05 3760
43cd72b9 3761 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
64b607e6 3762 return 0;
e0001a05 3763
43cd72b9
BW
3764 if (!is_or)
3765 {
3766 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
64b607e6 3767 return 0;
43cd72b9
BW
3768 }
3769 else
3770 {
3771 uint32 rawval0, rawval1;
3772
64b607e6
BW
3773 if (o_operand_count != operand_count + 1
3774 || xtensa_operand_get_field (isa, opcode, 0,
3775 fmt, 0, slotbuf, &rawval0) != 0
3776 || xtensa_operand_get_field (isa, opcode, 1,
3777 fmt, 0, slotbuf, &rawval1) != 0
3778 || rawval0 == rawval1 /* it is a nop */)
3779 return 0;
43cd72b9
BW
3780 }
3781 if (is_branch)
3782 check_operand_count--;
3783
64b607e6 3784 for (i = 0; i < check_operand_count; i++)
43cd72b9
BW
3785 {
3786 int new_i = i;
3787 if (is_or && i == o_operand_count - 1)
3788 new_i = i - 1;
3789 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
3790 slotbuf, &value)
3791 || xtensa_operand_decode (isa, opcode, new_i, &value))
64b607e6 3792 return 0;
43cd72b9
BW
3793
3794 /* PC-relative branches need adjustment, but
3795 the PC-rel operand will always have a relocation. */
3796 newval = value;
3797 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3798 self_address)
3799 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3800 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3801 o_slotbuf, newval))
64b607e6 3802 return 0;
43cd72b9
BW
3803 }
3804
3805 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
64b607e6 3806 return 0;
43cd72b9 3807
64b607e6 3808 return o_insnbuf;
43cd72b9
BW
3809 }
3810 }
64b607e6
BW
3811 return 0;
3812}
3813
3814
3815/* Attempt to widen an instruction. If the widening is valid, perform
3816 the action in-place directly into the contents and return TRUE. Otherwise,
3817 the return value is FALSE and the contents are not modified. */
3818
3819static bfd_boolean
3820widen_instruction (bfd_byte *contents,
3821 bfd_size_type content_length,
3822 bfd_size_type offset)
3823{
3824 xtensa_opcode opcode;
3825 bfd_size_type insn_len;
3826 xtensa_isa isa = xtensa_default_isa;
3827 xtensa_format fmt;
3828 xtensa_insnbuf o_insnbuf;
3829
3830 static xtensa_insnbuf insnbuf = NULL;
3831 static xtensa_insnbuf slotbuf = NULL;
3832
3833 if (insnbuf == NULL)
3834 {
3835 insnbuf = xtensa_insnbuf_alloc (isa);
3836 slotbuf = xtensa_insnbuf_alloc (isa);
3837 }
3838
3839 BFD_ASSERT (offset < content_length);
3840
3841 if (content_length < 2)
3842 return FALSE;
3843
3844 /* We will hand-code a few of these for a little while.
3845 These have all been specified in the assembler aleady. */
3846 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3847 content_length - offset);
3848 fmt = xtensa_format_decode (isa, insnbuf);
3849 if (xtensa_format_num_slots (isa, fmt) != 1)
3850 return FALSE;
3851
3852 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
3853 return FALSE;
3854
3855 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3856 if (opcode == XTENSA_UNDEFINED)
3857 return FALSE;
3858 insn_len = xtensa_format_length (isa, fmt);
3859 if (insn_len > content_length)
3860 return FALSE;
3861
3862 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
3863 if (o_insnbuf)
3864 {
3865 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3866 content_length - offset);
3867 return TRUE;
3868 }
43cd72b9 3869 return FALSE;
e0001a05
NC
3870}
3871
43cd72b9
BW
3872\f
3873/* Code for transforming CALLs at link-time. */
e0001a05 3874
43cd72b9 3875static bfd_reloc_status_type
7fa3d080
BW
3876elf_xtensa_do_asm_simplify (bfd_byte *contents,
3877 bfd_vma address,
3878 bfd_vma content_length,
3879 char **error_message)
e0001a05 3880{
43cd72b9
BW
3881 static xtensa_insnbuf insnbuf = NULL;
3882 static xtensa_insnbuf slotbuf = NULL;
3883 xtensa_format core_format = XTENSA_UNDEFINED;
3884 xtensa_opcode opcode;
3885 xtensa_opcode direct_call_opcode;
3886 xtensa_isa isa = xtensa_default_isa;
3887 bfd_byte *chbuf = contents + address;
3888 int opn;
e0001a05 3889
43cd72b9 3890 if (insnbuf == NULL)
e0001a05 3891 {
43cd72b9
BW
3892 insnbuf = xtensa_insnbuf_alloc (isa);
3893 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 3894 }
e0001a05 3895
43cd72b9
BW
3896 if (content_length < address)
3897 {
3898 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3899 return bfd_reloc_other;
3900 }
e0001a05 3901
43cd72b9
BW
3902 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
3903 direct_call_opcode = swap_callx_for_call_opcode (opcode);
3904 if (direct_call_opcode == XTENSA_UNDEFINED)
3905 {
3906 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3907 return bfd_reloc_other;
3908 }
3909
3910 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
3911 core_format = xtensa_format_lookup (isa, "x24");
3912 opcode = xtensa_opcode_lookup (isa, "or");
3913 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
3914 for (opn = 0; opn < 3; opn++)
3915 {
3916 uint32 regno = 1;
3917 xtensa_operand_encode (isa, opcode, opn, &regno);
3918 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
3919 slotbuf, regno);
3920 }
3921 xtensa_format_encode (isa, core_format, insnbuf);
3922 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3923 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
e0001a05 3924
43cd72b9
BW
3925 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
3926 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
3927 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
e0001a05 3928
43cd72b9
BW
3929 xtensa_format_encode (isa, core_format, insnbuf);
3930 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3931 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
3932 content_length - address - 3);
e0001a05 3933
43cd72b9
BW
3934 return bfd_reloc_ok;
3935}
e0001a05 3936
e0001a05 3937
43cd72b9 3938static bfd_reloc_status_type
7fa3d080
BW
3939contract_asm_expansion (bfd_byte *contents,
3940 bfd_vma content_length,
3941 Elf_Internal_Rela *irel,
3942 char **error_message)
43cd72b9
BW
3943{
3944 bfd_reloc_status_type retval =
3945 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
3946 error_message);
e0001a05 3947
43cd72b9
BW
3948 if (retval != bfd_reloc_ok)
3949 return bfd_reloc_dangerous;
e0001a05 3950
43cd72b9
BW
3951 /* Update the irel->r_offset field so that the right immediate and
3952 the right instruction are modified during the relocation. */
3953 irel->r_offset += 3;
3954 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
3955 return bfd_reloc_ok;
3956}
e0001a05 3957
e0001a05 3958
43cd72b9 3959static xtensa_opcode
7fa3d080 3960swap_callx_for_call_opcode (xtensa_opcode opcode)
e0001a05 3961{
43cd72b9 3962 init_call_opcodes ();
e0001a05 3963
43cd72b9
BW
3964 if (opcode == callx0_op) return call0_op;
3965 if (opcode == callx4_op) return call4_op;
3966 if (opcode == callx8_op) return call8_op;
3967 if (opcode == callx12_op) return call12_op;
e0001a05 3968
43cd72b9
BW
3969 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
3970 return XTENSA_UNDEFINED;
3971}
e0001a05 3972
e0001a05 3973
43cd72b9
BW
3974/* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
3975 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
3976 If not, return XTENSA_UNDEFINED. */
e0001a05 3977
43cd72b9
BW
3978#define L32R_TARGET_REG_OPERAND 0
3979#define CONST16_TARGET_REG_OPERAND 0
3980#define CALLN_SOURCE_OPERAND 0
e0001a05 3981
43cd72b9 3982static xtensa_opcode
7fa3d080 3983get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
e0001a05 3984{
43cd72b9
BW
3985 static xtensa_insnbuf insnbuf = NULL;
3986 static xtensa_insnbuf slotbuf = NULL;
3987 xtensa_format fmt;
3988 xtensa_opcode opcode;
3989 xtensa_isa isa = xtensa_default_isa;
3990 uint32 regno, const16_regno, call_regno;
3991 int offset = 0;
e0001a05 3992
43cd72b9 3993 if (insnbuf == NULL)
e0001a05 3994 {
43cd72b9
BW
3995 insnbuf = xtensa_insnbuf_alloc (isa);
3996 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 3997 }
43cd72b9
BW
3998
3999 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4000 fmt = xtensa_format_decode (isa, insnbuf);
4001 if (fmt == XTENSA_UNDEFINED
4002 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4003 return XTENSA_UNDEFINED;
4004
4005 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4006 if (opcode == XTENSA_UNDEFINED)
4007 return XTENSA_UNDEFINED;
4008
4009 if (opcode == get_l32r_opcode ())
e0001a05 4010 {
43cd72b9
BW
4011 if (p_uses_l32r)
4012 *p_uses_l32r = TRUE;
4013 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4014 fmt, 0, slotbuf, &regno)
4015 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4016 &regno))
4017 return XTENSA_UNDEFINED;
e0001a05 4018 }
43cd72b9 4019 else if (opcode == get_const16_opcode ())
e0001a05 4020 {
43cd72b9
BW
4021 if (p_uses_l32r)
4022 *p_uses_l32r = FALSE;
4023 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4024 fmt, 0, slotbuf, &regno)
4025 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4026 &regno))
4027 return XTENSA_UNDEFINED;
4028
4029 /* Check that the next instruction is also CONST16. */
4030 offset += xtensa_format_length (isa, fmt);
4031 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4032 fmt = xtensa_format_decode (isa, insnbuf);
4033 if (fmt == XTENSA_UNDEFINED
4034 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4035 return XTENSA_UNDEFINED;
4036 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4037 if (opcode != get_const16_opcode ())
4038 return XTENSA_UNDEFINED;
4039
4040 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4041 fmt, 0, slotbuf, &const16_regno)
4042 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4043 &const16_regno)
4044 || const16_regno != regno)
4045 return XTENSA_UNDEFINED;
e0001a05 4046 }
43cd72b9
BW
4047 else
4048 return XTENSA_UNDEFINED;
e0001a05 4049
43cd72b9
BW
4050 /* Next instruction should be an CALLXn with operand 0 == regno. */
4051 offset += xtensa_format_length (isa, fmt);
4052 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4053 fmt = xtensa_format_decode (isa, insnbuf);
4054 if (fmt == XTENSA_UNDEFINED
4055 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4056 return XTENSA_UNDEFINED;
4057 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4058 if (opcode == XTENSA_UNDEFINED
4059 || !is_indirect_call_opcode (opcode))
4060 return XTENSA_UNDEFINED;
e0001a05 4061
43cd72b9
BW
4062 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4063 fmt, 0, slotbuf, &call_regno)
4064 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4065 &call_regno))
4066 return XTENSA_UNDEFINED;
e0001a05 4067
43cd72b9
BW
4068 if (call_regno != regno)
4069 return XTENSA_UNDEFINED;
e0001a05 4070
43cd72b9
BW
4071 return opcode;
4072}
e0001a05 4073
43cd72b9
BW
4074\f
4075/* Data structures used during relaxation. */
e0001a05 4076
43cd72b9 4077/* r_reloc: relocation values. */
e0001a05 4078
43cd72b9
BW
4079/* Through the relaxation process, we need to keep track of the values
4080 that will result from evaluating relocations. The standard ELF
4081 relocation structure is not sufficient for this purpose because we're
4082 operating on multiple input files at once, so we need to know which
4083 input file a relocation refers to. The r_reloc structure thus
4084 records both the input file (bfd) and ELF relocation.
e0001a05 4085
43cd72b9
BW
4086 For efficiency, an r_reloc also contains a "target_offset" field to
4087 cache the target-section-relative offset value that is represented by
4088 the relocation.
4089
4090 The r_reloc also contains a virtual offset that allows multiple
4091 inserted literals to be placed at the same "address" with
4092 different offsets. */
e0001a05 4093
43cd72b9 4094typedef struct r_reloc_struct r_reloc;
e0001a05 4095
43cd72b9 4096struct r_reloc_struct
e0001a05 4097{
43cd72b9
BW
4098 bfd *abfd;
4099 Elf_Internal_Rela rela;
e0001a05 4100 bfd_vma target_offset;
43cd72b9 4101 bfd_vma virtual_offset;
e0001a05
NC
4102};
4103
e0001a05 4104
43cd72b9
BW
4105/* The r_reloc structure is included by value in literal_value, but not
4106 every literal_value has an associated relocation -- some are simple
4107 constants. In such cases, we set all the fields in the r_reloc
4108 struct to zero. The r_reloc_is_const function should be used to
4109 detect this case. */
e0001a05 4110
43cd72b9 4111static bfd_boolean
7fa3d080 4112r_reloc_is_const (const r_reloc *r_rel)
e0001a05 4113{
43cd72b9 4114 return (r_rel->abfd == NULL);
e0001a05
NC
4115}
4116
4117
43cd72b9 4118static bfd_vma
7fa3d080 4119r_reloc_get_target_offset (const r_reloc *r_rel)
e0001a05 4120{
43cd72b9
BW
4121 bfd_vma target_offset;
4122 unsigned long r_symndx;
e0001a05 4123
43cd72b9
BW
4124 BFD_ASSERT (!r_reloc_is_const (r_rel));
4125 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4126 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4127 return (target_offset + r_rel->rela.r_addend);
4128}
e0001a05 4129
e0001a05 4130
43cd72b9 4131static struct elf_link_hash_entry *
7fa3d080 4132r_reloc_get_hash_entry (const r_reloc *r_rel)
e0001a05 4133{
43cd72b9
BW
4134 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4135 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4136}
e0001a05 4137
43cd72b9
BW
4138
4139static asection *
7fa3d080 4140r_reloc_get_section (const r_reloc *r_rel)
43cd72b9
BW
4141{
4142 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4143 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4144}
e0001a05
NC
4145
4146
4147static bfd_boolean
7fa3d080 4148r_reloc_is_defined (const r_reloc *r_rel)
e0001a05 4149{
43cd72b9
BW
4150 asection *sec;
4151 if (r_rel == NULL)
e0001a05 4152 return FALSE;
e0001a05 4153
43cd72b9
BW
4154 sec = r_reloc_get_section (r_rel);
4155 if (sec == bfd_abs_section_ptr
4156 || sec == bfd_com_section_ptr
4157 || sec == bfd_und_section_ptr)
4158 return FALSE;
4159 return TRUE;
e0001a05
NC
4160}
4161
4162
7fa3d080
BW
4163static void
4164r_reloc_init (r_reloc *r_rel,
4165 bfd *abfd,
4166 Elf_Internal_Rela *irel,
4167 bfd_byte *contents,
4168 bfd_size_type content_length)
4169{
4170 int r_type;
4171 reloc_howto_type *howto;
4172
4173 if (irel)
4174 {
4175 r_rel->rela = *irel;
4176 r_rel->abfd = abfd;
4177 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4178 r_rel->virtual_offset = 0;
4179 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4180 howto = &elf_howto_table[r_type];
4181 if (howto->partial_inplace)
4182 {
4183 bfd_vma inplace_val;
4184 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4185
4186 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
4187 r_rel->target_offset += inplace_val;
4188 }
4189 }
4190 else
4191 memset (r_rel, 0, sizeof (r_reloc));
4192}
4193
4194
43cd72b9
BW
4195#if DEBUG
4196
e0001a05 4197static void
7fa3d080 4198print_r_reloc (FILE *fp, const r_reloc *r_rel)
e0001a05 4199{
43cd72b9
BW
4200 if (r_reloc_is_defined (r_rel))
4201 {
4202 asection *sec = r_reloc_get_section (r_rel);
4203 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
4204 }
4205 else if (r_reloc_get_hash_entry (r_rel))
4206 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
4207 else
4208 fprintf (fp, " ?? + ");
e0001a05 4209
43cd72b9
BW
4210 fprintf_vma (fp, r_rel->target_offset);
4211 if (r_rel->virtual_offset)
4212 {
4213 fprintf (fp, " + ");
4214 fprintf_vma (fp, r_rel->virtual_offset);
4215 }
4216
4217 fprintf (fp, ")");
4218}
e0001a05 4219
43cd72b9 4220#endif /* DEBUG */
e0001a05 4221
43cd72b9
BW
4222\f
4223/* source_reloc: relocations that reference literals. */
e0001a05 4224
43cd72b9
BW
4225/* To determine whether literals can be coalesced, we need to first
4226 record all the relocations that reference the literals. The
4227 source_reloc structure below is used for this purpose. The
4228 source_reloc entries are kept in a per-literal-section array, sorted
4229 by offset within the literal section (i.e., target offset).
e0001a05 4230
43cd72b9
BW
4231 The source_sec and r_rel.rela.r_offset fields identify the source of
4232 the relocation. The r_rel field records the relocation value, i.e.,
4233 the offset of the literal being referenced. The opnd field is needed
4234 to determine the range of the immediate field to which the relocation
4235 applies, so we can determine whether another literal with the same
4236 value is within range. The is_null field is true when the relocation
4237 is being removed (e.g., when an L32R is being removed due to a CALLX
4238 that is converted to a direct CALL). */
e0001a05 4239
43cd72b9
BW
4240typedef struct source_reloc_struct source_reloc;
4241
4242struct source_reloc_struct
e0001a05 4243{
43cd72b9
BW
4244 asection *source_sec;
4245 r_reloc r_rel;
4246 xtensa_opcode opcode;
4247 int opnd;
4248 bfd_boolean is_null;
4249 bfd_boolean is_abs_literal;
4250};
e0001a05 4251
e0001a05 4252
e0001a05 4253static void
7fa3d080
BW
4254init_source_reloc (source_reloc *reloc,
4255 asection *source_sec,
4256 const r_reloc *r_rel,
4257 xtensa_opcode opcode,
4258 int opnd,
4259 bfd_boolean is_abs_literal)
e0001a05 4260{
43cd72b9
BW
4261 reloc->source_sec = source_sec;
4262 reloc->r_rel = *r_rel;
4263 reloc->opcode = opcode;
4264 reloc->opnd = opnd;
4265 reloc->is_null = FALSE;
4266 reloc->is_abs_literal = is_abs_literal;
e0001a05
NC
4267}
4268
e0001a05 4269
43cd72b9
BW
4270/* Find the source_reloc for a particular source offset and relocation
4271 type. Note that the array is sorted by _target_ offset, so this is
4272 just a linear search. */
e0001a05 4273
43cd72b9 4274static source_reloc *
7fa3d080
BW
4275find_source_reloc (source_reloc *src_relocs,
4276 int src_count,
4277 asection *sec,
4278 Elf_Internal_Rela *irel)
e0001a05 4279{
43cd72b9 4280 int i;
e0001a05 4281
43cd72b9
BW
4282 for (i = 0; i < src_count; i++)
4283 {
4284 if (src_relocs[i].source_sec == sec
4285 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
4286 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
4287 == ELF32_R_TYPE (irel->r_info)))
4288 return &src_relocs[i];
4289 }
e0001a05 4290
43cd72b9 4291 return NULL;
e0001a05
NC
4292}
4293
4294
43cd72b9 4295static int
7fa3d080 4296source_reloc_compare (const void *ap, const void *bp)
e0001a05 4297{
43cd72b9
BW
4298 const source_reloc *a = (const source_reloc *) ap;
4299 const source_reloc *b = (const source_reloc *) bp;
e0001a05 4300
43cd72b9
BW
4301 if (a->r_rel.target_offset != b->r_rel.target_offset)
4302 return (a->r_rel.target_offset - b->r_rel.target_offset);
e0001a05 4303
43cd72b9
BW
4304 /* We don't need to sort on these criteria for correctness,
4305 but enforcing a more strict ordering prevents unstable qsort
4306 from behaving differently with different implementations.
4307 Without the code below we get correct but different results
4308 on Solaris 2.7 and 2.8. We would like to always produce the
4309 same results no matter the host. */
4310
4311 if ((!a->is_null) - (!b->is_null))
4312 return ((!a->is_null) - (!b->is_null));
4313 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
e0001a05
NC
4314}
4315
43cd72b9
BW
4316\f
4317/* Literal values and value hash tables. */
e0001a05 4318
43cd72b9
BW
4319/* Literals with the same value can be coalesced. The literal_value
4320 structure records the value of a literal: the "r_rel" field holds the
4321 information from the relocation on the literal (if there is one) and
4322 the "value" field holds the contents of the literal word itself.
e0001a05 4323
43cd72b9
BW
4324 The value_map structure records a literal value along with the
4325 location of a literal holding that value. The value_map hash table
4326 is indexed by the literal value, so that we can quickly check if a
4327 particular literal value has been seen before and is thus a candidate
4328 for coalescing. */
e0001a05 4329
43cd72b9
BW
4330typedef struct literal_value_struct literal_value;
4331typedef struct value_map_struct value_map;
4332typedef struct value_map_hash_table_struct value_map_hash_table;
e0001a05 4333
43cd72b9 4334struct literal_value_struct
e0001a05 4335{
43cd72b9
BW
4336 r_reloc r_rel;
4337 unsigned long value;
4338 bfd_boolean is_abs_literal;
4339};
4340
4341struct value_map_struct
4342{
4343 literal_value val; /* The literal value. */
4344 r_reloc loc; /* Location of the literal. */
4345 value_map *next;
4346};
4347
4348struct value_map_hash_table_struct
4349{
4350 unsigned bucket_count;
4351 value_map **buckets;
4352 unsigned count;
4353 bfd_boolean has_last_loc;
4354 r_reloc last_loc;
4355};
4356
4357
e0001a05 4358static void
7fa3d080
BW
4359init_literal_value (literal_value *lit,
4360 const r_reloc *r_rel,
4361 unsigned long value,
4362 bfd_boolean is_abs_literal)
e0001a05 4363{
43cd72b9
BW
4364 lit->r_rel = *r_rel;
4365 lit->value = value;
4366 lit->is_abs_literal = is_abs_literal;
e0001a05
NC
4367}
4368
4369
43cd72b9 4370static bfd_boolean
7fa3d080
BW
4371literal_value_equal (const literal_value *src1,
4372 const literal_value *src2,
4373 bfd_boolean final_static_link)
e0001a05 4374{
43cd72b9 4375 struct elf_link_hash_entry *h1, *h2;
e0001a05 4376
43cd72b9
BW
4377 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
4378 return FALSE;
e0001a05 4379
43cd72b9
BW
4380 if (r_reloc_is_const (&src1->r_rel))
4381 return (src1->value == src2->value);
e0001a05 4382
43cd72b9
BW
4383 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
4384 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
4385 return FALSE;
e0001a05 4386
43cd72b9
BW
4387 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
4388 return FALSE;
4389
4390 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
4391 return FALSE;
4392
4393 if (src1->value != src2->value)
4394 return FALSE;
4395
4396 /* Now check for the same section (if defined) or the same elf_hash
4397 (if undefined or weak). */
4398 h1 = r_reloc_get_hash_entry (&src1->r_rel);
4399 h2 = r_reloc_get_hash_entry (&src2->r_rel);
4400 if (r_reloc_is_defined (&src1->r_rel)
4401 && (final_static_link
4402 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
4403 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
4404 {
4405 if (r_reloc_get_section (&src1->r_rel)
4406 != r_reloc_get_section (&src2->r_rel))
4407 return FALSE;
4408 }
4409 else
4410 {
4411 /* Require that the hash entries (i.e., symbols) be identical. */
4412 if (h1 != h2 || h1 == 0)
4413 return FALSE;
4414 }
4415
4416 if (src1->is_abs_literal != src2->is_abs_literal)
4417 return FALSE;
4418
4419 return TRUE;
e0001a05
NC
4420}
4421
e0001a05 4422
43cd72b9
BW
4423/* Must be power of 2. */
4424#define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
e0001a05 4425
43cd72b9 4426static value_map_hash_table *
7fa3d080 4427value_map_hash_table_init (void)
43cd72b9
BW
4428{
4429 value_map_hash_table *values;
e0001a05 4430
43cd72b9
BW
4431 values = (value_map_hash_table *)
4432 bfd_zmalloc (sizeof (value_map_hash_table));
4433 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
4434 values->count = 0;
4435 values->buckets = (value_map **)
4436 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
4437 if (values->buckets == NULL)
4438 {
4439 free (values);
4440 return NULL;
4441 }
4442 values->has_last_loc = FALSE;
4443
4444 return values;
4445}
4446
4447
4448static void
7fa3d080 4449value_map_hash_table_delete (value_map_hash_table *table)
e0001a05 4450{
43cd72b9
BW
4451 free (table->buckets);
4452 free (table);
4453}
4454
4455
4456static unsigned
7fa3d080 4457hash_bfd_vma (bfd_vma val)
43cd72b9
BW
4458{
4459 return (val >> 2) + (val >> 10);
4460}
4461
4462
4463static unsigned
7fa3d080 4464literal_value_hash (const literal_value *src)
43cd72b9
BW
4465{
4466 unsigned hash_val;
e0001a05 4467
43cd72b9
BW
4468 hash_val = hash_bfd_vma (src->value);
4469 if (!r_reloc_is_const (&src->r_rel))
e0001a05 4470 {
43cd72b9
BW
4471 void *sec_or_hash;
4472
4473 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
4474 hash_val += hash_bfd_vma (src->r_rel.target_offset);
4475 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
4476
4477 /* Now check for the same section and the same elf_hash. */
4478 if (r_reloc_is_defined (&src->r_rel))
4479 sec_or_hash = r_reloc_get_section (&src->r_rel);
4480 else
4481 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
f60ca5e3 4482 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
e0001a05 4483 }
43cd72b9
BW
4484 return hash_val;
4485}
e0001a05 4486
e0001a05 4487
43cd72b9 4488/* Check if the specified literal_value has been seen before. */
e0001a05 4489
43cd72b9 4490static value_map *
7fa3d080
BW
4491value_map_get_cached_value (value_map_hash_table *map,
4492 const literal_value *val,
4493 bfd_boolean final_static_link)
43cd72b9
BW
4494{
4495 value_map *map_e;
4496 value_map *bucket;
4497 unsigned idx;
4498
4499 idx = literal_value_hash (val);
4500 idx = idx & (map->bucket_count - 1);
4501 bucket = map->buckets[idx];
4502 for (map_e = bucket; map_e; map_e = map_e->next)
e0001a05 4503 {
43cd72b9
BW
4504 if (literal_value_equal (&map_e->val, val, final_static_link))
4505 return map_e;
4506 }
4507 return NULL;
4508}
e0001a05 4509
e0001a05 4510
43cd72b9
BW
4511/* Record a new literal value. It is illegal to call this if VALUE
4512 already has an entry here. */
4513
4514static value_map *
7fa3d080
BW
4515add_value_map (value_map_hash_table *map,
4516 const literal_value *val,
4517 const r_reloc *loc,
4518 bfd_boolean final_static_link)
43cd72b9
BW
4519{
4520 value_map **bucket_p;
4521 unsigned idx;
4522
4523 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
4524 if (val_e == NULL)
4525 {
4526 bfd_set_error (bfd_error_no_memory);
4527 return NULL;
e0001a05
NC
4528 }
4529
43cd72b9
BW
4530 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
4531 val_e->val = *val;
4532 val_e->loc = *loc;
4533
4534 idx = literal_value_hash (val);
4535 idx = idx & (map->bucket_count - 1);
4536 bucket_p = &map->buckets[idx];
4537
4538 val_e->next = *bucket_p;
4539 *bucket_p = val_e;
4540 map->count++;
4541 /* FIXME: Consider resizing the hash table if we get too many entries. */
4542
4543 return val_e;
e0001a05
NC
4544}
4545
43cd72b9
BW
4546\f
4547/* Lists of text actions (ta_) for narrowing, widening, longcall
4548 conversion, space fill, code & literal removal, etc. */
4549
4550/* The following text actions are generated:
4551
4552 "ta_remove_insn" remove an instruction or instructions
4553 "ta_remove_longcall" convert longcall to call
4554 "ta_convert_longcall" convert longcall to nop/call
4555 "ta_narrow_insn" narrow a wide instruction
4556 "ta_widen" widen a narrow instruction
4557 "ta_fill" add fill or remove fill
4558 removed < 0 is a fill; branches to the fill address will be
4559 changed to address + fill size (e.g., address - removed)
4560 removed >= 0 branches to the fill address will stay unchanged
4561 "ta_remove_literal" remove a literal; this action is
4562 indicated when a literal is removed
4563 or replaced.
4564 "ta_add_literal" insert a new literal; this action is
4565 indicated when a literal has been moved.
4566 It may use a virtual_offset because
4567 multiple literals can be placed at the
4568 same location.
4569
4570 For each of these text actions, we also record the number of bytes
4571 removed by performing the text action. In the case of a "ta_widen"
4572 or a "ta_fill" that adds space, the removed_bytes will be negative. */
4573
4574typedef struct text_action_struct text_action;
4575typedef struct text_action_list_struct text_action_list;
4576typedef enum text_action_enum_t text_action_t;
4577
4578enum text_action_enum_t
4579{
4580 ta_none,
4581 ta_remove_insn, /* removed = -size */
4582 ta_remove_longcall, /* removed = -size */
4583 ta_convert_longcall, /* removed = 0 */
4584 ta_narrow_insn, /* removed = -1 */
4585 ta_widen_insn, /* removed = +1 */
4586 ta_fill, /* removed = +size */
4587 ta_remove_literal,
4588 ta_add_literal
4589};
e0001a05 4590
e0001a05 4591
43cd72b9
BW
4592/* Structure for a text action record. */
4593struct text_action_struct
e0001a05 4594{
43cd72b9
BW
4595 text_action_t action;
4596 asection *sec; /* Optional */
4597 bfd_vma offset;
4598 bfd_vma virtual_offset; /* Zero except for adding literals. */
4599 int removed_bytes;
4600 literal_value value; /* Only valid when adding literals. */
e0001a05 4601
43cd72b9
BW
4602 text_action *next;
4603};
e0001a05 4604
e0001a05 4605
43cd72b9
BW
4606/* List of all of the actions taken on a text section. */
4607struct text_action_list_struct
4608{
4609 text_action *head;
4610};
e0001a05 4611
e0001a05 4612
7fa3d080
BW
4613static text_action *
4614find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
43cd72b9
BW
4615{
4616 text_action **m_p;
4617
4618 /* It is not necessary to fill at the end of a section. */
4619 if (sec->size == offset)
4620 return NULL;
4621
7fa3d080 4622 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
4623 {
4624 text_action *t = *m_p;
4625 /* When the action is another fill at the same address,
4626 just increase the size. */
4627 if (t->offset == offset && t->action == ta_fill)
4628 return t;
4629 }
4630 return NULL;
4631}
4632
4633
4634static int
7fa3d080
BW
4635compute_removed_action_diff (const text_action *ta,
4636 asection *sec,
4637 bfd_vma offset,
4638 int removed,
4639 int removable_space)
43cd72b9
BW
4640{
4641 int new_removed;
4642 int current_removed = 0;
4643
7fa3d080 4644 if (ta)
43cd72b9
BW
4645 current_removed = ta->removed_bytes;
4646
4647 BFD_ASSERT (ta == NULL || ta->offset == offset);
4648 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
4649
4650 /* It is not necessary to fill at the end of a section. Clean this up. */
4651 if (sec->size == offset)
4652 new_removed = removable_space - 0;
4653 else
4654 {
4655 int space;
4656 int added = -removed - current_removed;
4657 /* Ignore multiples of the section alignment. */
4658 added = ((1 << sec->alignment_power) - 1) & added;
4659 new_removed = (-added);
4660
4661 /* Modify for removable. */
4662 space = removable_space - new_removed;
4663 new_removed = (removable_space
4664 - (((1 << sec->alignment_power) - 1) & space));
4665 }
4666 return (new_removed - current_removed);
4667}
4668
4669
7fa3d080
BW
4670static void
4671adjust_fill_action (text_action *ta, int fill_diff)
43cd72b9
BW
4672{
4673 ta->removed_bytes += fill_diff;
4674}
4675
4676
4677/* Add a modification action to the text. For the case of adding or
4678 removing space, modify any current fill and assume that
4679 "unreachable_space" bytes can be freely contracted. Note that a
4680 negative removed value is a fill. */
4681
4682static void
7fa3d080
BW
4683text_action_add (text_action_list *l,
4684 text_action_t action,
4685 asection *sec,
4686 bfd_vma offset,
4687 int removed)
43cd72b9
BW
4688{
4689 text_action **m_p;
4690 text_action *ta;
4691
4692 /* It is not necessary to fill at the end of a section. */
4693 if (action == ta_fill && sec->size == offset)
4694 return;
4695
4696 /* It is not necessary to fill 0 bytes. */
4697 if (action == ta_fill && removed == 0)
4698 return;
4699
7fa3d080 4700 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
4701 {
4702 text_action *t = *m_p;
4703 /* When the action is another fill at the same address,
4704 just increase the size. */
4705 if (t->offset == offset && t->action == ta_fill && action == ta_fill)
4706 {
4707 t->removed_bytes += removed;
4708 return;
4709 }
4710 }
4711
4712 /* Create a new record and fill it up. */
4713 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4714 ta->action = action;
4715 ta->sec = sec;
4716 ta->offset = offset;
4717 ta->removed_bytes = removed;
4718 ta->next = (*m_p);
4719 *m_p = ta;
4720}
4721
4722
4723static void
7fa3d080
BW
4724text_action_add_literal (text_action_list *l,
4725 text_action_t action,
4726 const r_reloc *loc,
4727 const literal_value *value,
4728 int removed)
43cd72b9
BW
4729{
4730 text_action **m_p;
4731 text_action *ta;
4732 asection *sec = r_reloc_get_section (loc);
4733 bfd_vma offset = loc->target_offset;
4734 bfd_vma virtual_offset = loc->virtual_offset;
4735
4736 BFD_ASSERT (action == ta_add_literal);
4737
4738 for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
4739 {
4740 if ((*m_p)->offset > offset
4741 && ((*m_p)->offset != offset
4742 || (*m_p)->virtual_offset > virtual_offset))
4743 break;
4744 }
4745
4746 /* Create a new record and fill it up. */
4747 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4748 ta->action = action;
4749 ta->sec = sec;
4750 ta->offset = offset;
4751 ta->virtual_offset = virtual_offset;
4752 ta->value = *value;
4753 ta->removed_bytes = removed;
4754 ta->next = (*m_p);
4755 *m_p = ta;
4756}
4757
4758
03669f1c
BW
4759/* Find the total offset adjustment for the relaxations specified by
4760 text_actions, beginning from a particular starting action. This is
4761 typically used from offset_with_removed_text to search an entire list of
4762 actions, but it may also be called directly when adjusting adjacent offsets
4763 so that each search may begin where the previous one left off. */
4764
4765static int
4766removed_by_actions (text_action **p_start_action,
4767 bfd_vma offset,
4768 bfd_boolean before_fill)
43cd72b9
BW
4769{
4770 text_action *r;
4771 int removed = 0;
4772
03669f1c
BW
4773 r = *p_start_action;
4774 while (r)
43cd72b9 4775 {
03669f1c
BW
4776 if (r->offset > offset)
4777 break;
4778
4779 if (r->offset == offset
4780 && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
4781 break;
4782
4783 removed += r->removed_bytes;
4784
4785 r = r->next;
43cd72b9
BW
4786 }
4787
03669f1c
BW
4788 *p_start_action = r;
4789 return removed;
4790}
4791
4792
4793static bfd_vma
4794offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
4795{
4796 text_action *r = action_list->head;
4797 return offset - removed_by_actions (&r, offset, FALSE);
43cd72b9
BW
4798}
4799
4800
03e94c08
BW
4801static unsigned
4802action_list_count (text_action_list *action_list)
4803{
4804 text_action *r = action_list->head;
4805 unsigned count = 0;
4806 for (r = action_list->head; r != NULL; r = r->next)
4807 {
4808 count++;
4809 }
4810 return count;
4811}
4812
4813
43cd72b9
BW
4814/* The find_insn_action routine will only find non-fill actions. */
4815
7fa3d080
BW
4816static text_action *
4817find_insn_action (text_action_list *action_list, bfd_vma offset)
43cd72b9
BW
4818{
4819 text_action *t;
4820 for (t = action_list->head; t; t = t->next)
4821 {
4822 if (t->offset == offset)
4823 {
4824 switch (t->action)
4825 {
4826 case ta_none:
4827 case ta_fill:
4828 break;
4829 case ta_remove_insn:
4830 case ta_remove_longcall:
4831 case ta_convert_longcall:
4832 case ta_narrow_insn:
4833 case ta_widen_insn:
4834 return t;
4835 case ta_remove_literal:
4836 case ta_add_literal:
4837 BFD_ASSERT (0);
4838 break;
4839 }
4840 }
4841 }
4842 return NULL;
4843}
4844
4845
4846#if DEBUG
4847
4848static void
7fa3d080 4849print_action_list (FILE *fp, text_action_list *action_list)
43cd72b9
BW
4850{
4851 text_action *r;
4852
4853 fprintf (fp, "Text Action\n");
4854 for (r = action_list->head; r != NULL; r = r->next)
4855 {
4856 const char *t = "unknown";
4857 switch (r->action)
4858 {
4859 case ta_remove_insn:
4860 t = "remove_insn"; break;
4861 case ta_remove_longcall:
4862 t = "remove_longcall"; break;
4863 case ta_convert_longcall:
c46082c8 4864 t = "convert_longcall"; break;
43cd72b9
BW
4865 case ta_narrow_insn:
4866 t = "narrow_insn"; break;
4867 case ta_widen_insn:
4868 t = "widen_insn"; break;
4869 case ta_fill:
4870 t = "fill"; break;
4871 case ta_none:
4872 t = "none"; break;
4873 case ta_remove_literal:
4874 t = "remove_literal"; break;
4875 case ta_add_literal:
4876 t = "add_literal"; break;
4877 }
4878
4879 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
4880 r->sec->owner->filename,
4881 r->sec->name, r->offset, t, r->removed_bytes);
4882 }
4883}
4884
4885#endif /* DEBUG */
4886
4887\f
4888/* Lists of literals being coalesced or removed. */
4889
4890/* In the usual case, the literal identified by "from" is being
4891 coalesced with another literal identified by "to". If the literal is
4892 unused and is being removed altogether, "to.abfd" will be NULL.
4893 The removed_literal entries are kept on a per-section list, sorted
4894 by the "from" offset field. */
4895
4896typedef struct removed_literal_struct removed_literal;
4897typedef struct removed_literal_list_struct removed_literal_list;
4898
4899struct removed_literal_struct
4900{
4901 r_reloc from;
4902 r_reloc to;
4903 removed_literal *next;
4904};
4905
4906struct removed_literal_list_struct
4907{
4908 removed_literal *head;
4909 removed_literal *tail;
4910};
4911
4912
43cd72b9
BW
4913/* Record that the literal at "from" is being removed. If "to" is not
4914 NULL, the "from" literal is being coalesced with the "to" literal. */
4915
4916static void
7fa3d080
BW
4917add_removed_literal (removed_literal_list *removed_list,
4918 const r_reloc *from,
4919 const r_reloc *to)
43cd72b9
BW
4920{
4921 removed_literal *r, *new_r, *next_r;
4922
4923 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
4924
4925 new_r->from = *from;
4926 if (to)
4927 new_r->to = *to;
4928 else
4929 new_r->to.abfd = NULL;
4930 new_r->next = NULL;
4931
4932 r = removed_list->head;
4933 if (r == NULL)
4934 {
4935 removed_list->head = new_r;
4936 removed_list->tail = new_r;
4937 }
4938 /* Special check for common case of append. */
4939 else if (removed_list->tail->from.target_offset < from->target_offset)
4940 {
4941 removed_list->tail->next = new_r;
4942 removed_list->tail = new_r;
4943 }
4944 else
4945 {
7fa3d080 4946 while (r->from.target_offset < from->target_offset && r->next)
43cd72b9
BW
4947 {
4948 r = r->next;
4949 }
4950 next_r = r->next;
4951 r->next = new_r;
4952 new_r->next = next_r;
4953 if (next_r == NULL)
4954 removed_list->tail = new_r;
4955 }
4956}
4957
4958
4959/* Check if the list of removed literals contains an entry for the
4960 given address. Return the entry if found. */
4961
4962static removed_literal *
7fa3d080 4963find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
43cd72b9
BW
4964{
4965 removed_literal *r = removed_list->head;
4966 while (r && r->from.target_offset < addr)
4967 r = r->next;
4968 if (r && r->from.target_offset == addr)
4969 return r;
4970 return NULL;
4971}
4972
4973
4974#if DEBUG
4975
4976static void
7fa3d080 4977print_removed_literals (FILE *fp, removed_literal_list *removed_list)
43cd72b9
BW
4978{
4979 removed_literal *r;
4980 r = removed_list->head;
4981 if (r)
4982 fprintf (fp, "Removed Literals\n");
4983 for (; r != NULL; r = r->next)
4984 {
4985 print_r_reloc (fp, &r->from);
4986 fprintf (fp, " => ");
4987 if (r->to.abfd == NULL)
4988 fprintf (fp, "REMOVED");
4989 else
4990 print_r_reloc (fp, &r->to);
4991 fprintf (fp, "\n");
4992 }
4993}
4994
4995#endif /* DEBUG */
4996
4997\f
4998/* Per-section data for relaxation. */
4999
5000typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
5001
5002struct xtensa_relax_info_struct
5003{
5004 bfd_boolean is_relaxable_literal_section;
5005 bfd_boolean is_relaxable_asm_section;
5006 int visited; /* Number of times visited. */
5007
5008 source_reloc *src_relocs; /* Array[src_count]. */
5009 int src_count;
5010 int src_next; /* Next src_relocs entry to assign. */
5011
5012 removed_literal_list removed_list;
5013 text_action_list action_list;
5014
5015 reloc_bfd_fix *fix_list;
5016 reloc_bfd_fix *fix_array;
5017 unsigned fix_array_count;
5018
5019 /* Support for expanding the reloc array that is stored
5020 in the section structure. If the relocations have been
5021 reallocated, the newly allocated relocations will be referenced
5022 here along with the actual size allocated. The relocation
5023 count will always be found in the section structure. */
5024 Elf_Internal_Rela *allocated_relocs;
5025 unsigned relocs_count;
5026 unsigned allocated_relocs_count;
5027};
5028
5029struct elf_xtensa_section_data
5030{
5031 struct bfd_elf_section_data elf;
5032 xtensa_relax_info relax_info;
5033};
5034
43cd72b9
BW
5035
5036static bfd_boolean
7fa3d080 5037elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
43cd72b9 5038{
f592407e
AM
5039 if (!sec->used_by_bfd)
5040 {
5041 struct elf_xtensa_section_data *sdata;
5042 bfd_size_type amt = sizeof (*sdata);
43cd72b9 5043
f592407e
AM
5044 sdata = bfd_zalloc (abfd, amt);
5045 if (sdata == NULL)
5046 return FALSE;
5047 sec->used_by_bfd = sdata;
5048 }
43cd72b9
BW
5049
5050 return _bfd_elf_new_section_hook (abfd, sec);
5051}
5052
5053
7fa3d080
BW
5054static xtensa_relax_info *
5055get_xtensa_relax_info (asection *sec)
5056{
5057 struct elf_xtensa_section_data *section_data;
5058
5059 /* No info available if no section or if it is an output section. */
5060 if (!sec || sec == sec->output_section)
5061 return NULL;
5062
5063 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5064 return &section_data->relax_info;
5065}
5066
5067
43cd72b9 5068static void
7fa3d080 5069init_xtensa_relax_info (asection *sec)
43cd72b9
BW
5070{
5071 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5072
5073 relax_info->is_relaxable_literal_section = FALSE;
5074 relax_info->is_relaxable_asm_section = FALSE;
5075 relax_info->visited = 0;
5076
5077 relax_info->src_relocs = NULL;
5078 relax_info->src_count = 0;
5079 relax_info->src_next = 0;
5080
5081 relax_info->removed_list.head = NULL;
5082 relax_info->removed_list.tail = NULL;
5083
5084 relax_info->action_list.head = NULL;
5085
5086 relax_info->fix_list = NULL;
5087 relax_info->fix_array = NULL;
5088 relax_info->fix_array_count = 0;
5089
5090 relax_info->allocated_relocs = NULL;
5091 relax_info->relocs_count = 0;
5092 relax_info->allocated_relocs_count = 0;
5093}
5094
43cd72b9
BW
5095\f
5096/* Coalescing literals may require a relocation to refer to a section in
5097 a different input file, but the standard relocation information
5098 cannot express that. Instead, the reloc_bfd_fix structures are used
5099 to "fix" the relocations that refer to sections in other input files.
5100 These structures are kept on per-section lists. The "src_type" field
5101 records the relocation type in case there are multiple relocations on
5102 the same location. FIXME: This is ugly; an alternative might be to
5103 add new symbols with the "owner" field to some other input file. */
5104
5105struct reloc_bfd_fix_struct
5106{
5107 asection *src_sec;
5108 bfd_vma src_offset;
5109 unsigned src_type; /* Relocation type. */
5110
43cd72b9
BW
5111 asection *target_sec;
5112 bfd_vma target_offset;
5113 bfd_boolean translated;
5114
5115 reloc_bfd_fix *next;
5116};
5117
5118
43cd72b9 5119static reloc_bfd_fix *
7fa3d080
BW
5120reloc_bfd_fix_init (asection *src_sec,
5121 bfd_vma src_offset,
5122 unsigned src_type,
7fa3d080
BW
5123 asection *target_sec,
5124 bfd_vma target_offset,
5125 bfd_boolean translated)
43cd72b9
BW
5126{
5127 reloc_bfd_fix *fix;
5128
5129 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
5130 fix->src_sec = src_sec;
5131 fix->src_offset = src_offset;
5132 fix->src_type = src_type;
43cd72b9
BW
5133 fix->target_sec = target_sec;
5134 fix->target_offset = target_offset;
5135 fix->translated = translated;
5136
5137 return fix;
5138}
5139
5140
5141static void
7fa3d080 5142add_fix (asection *src_sec, reloc_bfd_fix *fix)
43cd72b9
BW
5143{
5144 xtensa_relax_info *relax_info;
5145
5146 relax_info = get_xtensa_relax_info (src_sec);
5147 fix->next = relax_info->fix_list;
5148 relax_info->fix_list = fix;
5149}
5150
5151
5152static int
7fa3d080 5153fix_compare (const void *ap, const void *bp)
43cd72b9
BW
5154{
5155 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
5156 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
5157
5158 if (a->src_offset != b->src_offset)
5159 return (a->src_offset - b->src_offset);
5160 return (a->src_type - b->src_type);
5161}
5162
5163
5164static void
7fa3d080 5165cache_fix_array (asection *sec)
43cd72b9
BW
5166{
5167 unsigned i, count = 0;
5168 reloc_bfd_fix *r;
5169 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5170
5171 if (relax_info == NULL)
5172 return;
5173 if (relax_info->fix_list == NULL)
5174 return;
5175
5176 for (r = relax_info->fix_list; r != NULL; r = r->next)
5177 count++;
5178
5179 relax_info->fix_array =
5180 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
5181 relax_info->fix_array_count = count;
5182
5183 r = relax_info->fix_list;
5184 for (i = 0; i < count; i++, r = r->next)
5185 {
5186 relax_info->fix_array[count - 1 - i] = *r;
5187 relax_info->fix_array[count - 1 - i].next = NULL;
5188 }
5189
5190 qsort (relax_info->fix_array, relax_info->fix_array_count,
5191 sizeof (reloc_bfd_fix), fix_compare);
5192}
5193
5194
5195static reloc_bfd_fix *
7fa3d080 5196get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
43cd72b9
BW
5197{
5198 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5199 reloc_bfd_fix *rv;
5200 reloc_bfd_fix key;
5201
5202 if (relax_info == NULL)
5203 return NULL;
5204 if (relax_info->fix_list == NULL)
5205 return NULL;
5206
5207 if (relax_info->fix_array == NULL)
5208 cache_fix_array (sec);
5209
5210 key.src_offset = offset;
5211 key.src_type = type;
5212 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
5213 sizeof (reloc_bfd_fix), fix_compare);
5214 return rv;
5215}
5216
5217\f
5218/* Section caching. */
5219
5220typedef struct section_cache_struct section_cache_t;
5221
5222struct section_cache_struct
5223{
5224 asection *sec;
5225
5226 bfd_byte *contents; /* Cache of the section contents. */
5227 bfd_size_type content_length;
5228
5229 property_table_entry *ptbl; /* Cache of the section property table. */
5230 unsigned pte_count;
5231
5232 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5233 unsigned reloc_count;
5234};
5235
5236
7fa3d080
BW
5237static void
5238init_section_cache (section_cache_t *sec_cache)
5239{
5240 memset (sec_cache, 0, sizeof (*sec_cache));
5241}
43cd72b9
BW
5242
5243
5244static void
7fa3d080 5245clear_section_cache (section_cache_t *sec_cache)
43cd72b9 5246{
7fa3d080
BW
5247 if (sec_cache->sec)
5248 {
5249 release_contents (sec_cache->sec, sec_cache->contents);
5250 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
5251 if (sec_cache->ptbl)
5252 free (sec_cache->ptbl);
5253 memset (sec_cache, 0, sizeof (sec_cache));
5254 }
43cd72b9
BW
5255}
5256
5257
5258static bfd_boolean
7fa3d080
BW
5259section_cache_section (section_cache_t *sec_cache,
5260 asection *sec,
5261 struct bfd_link_info *link_info)
43cd72b9
BW
5262{
5263 bfd *abfd;
5264 property_table_entry *prop_table = NULL;
5265 int ptblsize = 0;
5266 bfd_byte *contents = NULL;
5267 Elf_Internal_Rela *internal_relocs = NULL;
5268 bfd_size_type sec_size;
5269
5270 if (sec == NULL)
5271 return FALSE;
5272 if (sec == sec_cache->sec)
5273 return TRUE;
5274
5275 abfd = sec->owner;
5276 sec_size = bfd_get_section_limit (abfd, sec);
5277
5278 /* Get the contents. */
5279 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
5280 if (contents == NULL && sec_size != 0)
5281 goto err;
5282
5283 /* Get the relocations. */
5284 internal_relocs = retrieve_internal_relocs (abfd, sec,
5285 link_info->keep_memory);
5286
5287 /* Get the entry table. */
5288 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
5289 XTENSA_PROP_SEC_NAME, FALSE);
5290 if (ptblsize < 0)
5291 goto err;
5292
5293 /* Fill in the new section cache. */
5294 clear_section_cache (sec_cache);
5295 memset (sec_cache, 0, sizeof (sec_cache));
5296
5297 sec_cache->sec = sec;
5298 sec_cache->contents = contents;
5299 sec_cache->content_length = sec_size;
5300 sec_cache->relocs = internal_relocs;
5301 sec_cache->reloc_count = sec->reloc_count;
5302 sec_cache->pte_count = ptblsize;
5303 sec_cache->ptbl = prop_table;
5304
5305 return TRUE;
5306
5307 err:
5308 release_contents (sec, contents);
5309 release_internal_relocs (sec, internal_relocs);
5310 if (prop_table)
5311 free (prop_table);
5312 return FALSE;
5313}
5314
43cd72b9
BW
5315\f
5316/* Extended basic blocks. */
5317
5318/* An ebb_struct represents an Extended Basic Block. Within this
5319 range, we guarantee that all instructions are decodable, the
5320 property table entries are contiguous, and no property table
5321 specifies a segment that cannot have instructions moved. This
5322 structure contains caches of the contents, property table and
5323 relocations for the specified section for easy use. The range is
5324 specified by ranges of indices for the byte offset, property table
5325 offsets and relocation offsets. These must be consistent. */
5326
5327typedef struct ebb_struct ebb_t;
5328
5329struct ebb_struct
5330{
5331 asection *sec;
5332
5333 bfd_byte *contents; /* Cache of the section contents. */
5334 bfd_size_type content_length;
5335
5336 property_table_entry *ptbl; /* Cache of the section property table. */
5337 unsigned pte_count;
5338
5339 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5340 unsigned reloc_count;
5341
5342 bfd_vma start_offset; /* Offset in section. */
5343 unsigned start_ptbl_idx; /* Offset in the property table. */
5344 unsigned start_reloc_idx; /* Offset in the relocations. */
5345
5346 bfd_vma end_offset;
5347 unsigned end_ptbl_idx;
5348 unsigned end_reloc_idx;
5349
5350 bfd_boolean ends_section; /* Is this the last ebb in a section? */
5351
5352 /* The unreachable property table at the end of this set of blocks;
5353 NULL if the end is not an unreachable block. */
5354 property_table_entry *ends_unreachable;
5355};
5356
5357
5358enum ebb_target_enum
5359{
5360 EBB_NO_ALIGN = 0,
5361 EBB_DESIRE_TGT_ALIGN,
5362 EBB_REQUIRE_TGT_ALIGN,
5363 EBB_REQUIRE_LOOP_ALIGN,
5364 EBB_REQUIRE_ALIGN
5365};
5366
5367
5368/* proposed_action_struct is similar to the text_action_struct except
5369 that is represents a potential transformation, not one that will
5370 occur. We build a list of these for an extended basic block
5371 and use them to compute the actual actions desired. We must be
5372 careful that the entire set of actual actions we perform do not
5373 break any relocations that would fit if the actions were not
5374 performed. */
5375
5376typedef struct proposed_action_struct proposed_action;
5377
5378struct proposed_action_struct
5379{
5380 enum ebb_target_enum align_type; /* for the target alignment */
5381 bfd_vma alignment_pow;
5382 text_action_t action;
5383 bfd_vma offset;
5384 int removed_bytes;
5385 bfd_boolean do_action; /* If false, then we will not perform the action. */
5386};
5387
5388
5389/* The ebb_constraint_struct keeps a set of proposed actions for an
5390 extended basic block. */
5391
5392typedef struct ebb_constraint_struct ebb_constraint;
5393
5394struct ebb_constraint_struct
5395{
5396 ebb_t ebb;
5397 bfd_boolean start_movable;
5398
5399 /* Bytes of extra space at the beginning if movable. */
5400 int start_extra_space;
5401
5402 enum ebb_target_enum start_align;
5403
5404 bfd_boolean end_movable;
5405
5406 /* Bytes of extra space at the end if movable. */
5407 int end_extra_space;
5408
5409 unsigned action_count;
5410 unsigned action_allocated;
5411
5412 /* Array of proposed actions. */
5413 proposed_action *actions;
5414
5415 /* Action alignments -- one for each proposed action. */
5416 enum ebb_target_enum *action_aligns;
5417};
5418
5419
43cd72b9 5420static void
7fa3d080 5421init_ebb_constraint (ebb_constraint *c)
43cd72b9
BW
5422{
5423 memset (c, 0, sizeof (ebb_constraint));
5424}
5425
5426
5427static void
7fa3d080 5428free_ebb_constraint (ebb_constraint *c)
43cd72b9 5429{
7fa3d080 5430 if (c->actions)
43cd72b9
BW
5431 free (c->actions);
5432}
5433
5434
5435static void
7fa3d080
BW
5436init_ebb (ebb_t *ebb,
5437 asection *sec,
5438 bfd_byte *contents,
5439 bfd_size_type content_length,
5440 property_table_entry *prop_table,
5441 unsigned ptblsize,
5442 Elf_Internal_Rela *internal_relocs,
5443 unsigned reloc_count)
43cd72b9
BW
5444{
5445 memset (ebb, 0, sizeof (ebb_t));
5446 ebb->sec = sec;
5447 ebb->contents = contents;
5448 ebb->content_length = content_length;
5449 ebb->ptbl = prop_table;
5450 ebb->pte_count = ptblsize;
5451 ebb->relocs = internal_relocs;
5452 ebb->reloc_count = reloc_count;
5453 ebb->start_offset = 0;
5454 ebb->end_offset = ebb->content_length - 1;
5455 ebb->start_ptbl_idx = 0;
5456 ebb->end_ptbl_idx = ptblsize;
5457 ebb->start_reloc_idx = 0;
5458 ebb->end_reloc_idx = reloc_count;
5459}
5460
5461
5462/* Extend the ebb to all decodable contiguous sections. The algorithm
5463 for building a basic block around an instruction is to push it
5464 forward until we hit the end of a section, an unreachable block or
5465 a block that cannot be transformed. Then we push it backwards
5466 searching for similar conditions. */
5467
7fa3d080
BW
5468static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
5469static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
5470static bfd_size_type insn_block_decodable_len
5471 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
5472
43cd72b9 5473static bfd_boolean
7fa3d080 5474extend_ebb_bounds (ebb_t *ebb)
43cd72b9
BW
5475{
5476 if (!extend_ebb_bounds_forward (ebb))
5477 return FALSE;
5478 if (!extend_ebb_bounds_backward (ebb))
5479 return FALSE;
5480 return TRUE;
5481}
5482
5483
5484static bfd_boolean
7fa3d080 5485extend_ebb_bounds_forward (ebb_t *ebb)
43cd72b9
BW
5486{
5487 property_table_entry *the_entry, *new_entry;
5488
5489 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
5490
5491 /* Stop when (1) we cannot decode an instruction, (2) we are at
5492 the end of the property tables, (3) we hit a non-contiguous property
5493 table entry, (4) we hit a NO_TRANSFORM region. */
5494
5495 while (1)
5496 {
5497 bfd_vma entry_end;
5498 bfd_size_type insn_block_len;
5499
5500 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
5501 insn_block_len =
5502 insn_block_decodable_len (ebb->contents, ebb->content_length,
5503 ebb->end_offset,
5504 entry_end - ebb->end_offset);
5505 if (insn_block_len != (entry_end - ebb->end_offset))
5506 {
5507 (*_bfd_error_handler)
5508 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5509 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5510 return FALSE;
5511 }
5512 ebb->end_offset += insn_block_len;
5513
5514 if (ebb->end_offset == ebb->sec->size)
5515 ebb->ends_section = TRUE;
5516
5517 /* Update the reloc counter. */
5518 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
5519 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
5520 < ebb->end_offset))
5521 {
5522 ebb->end_reloc_idx++;
5523 }
5524
5525 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5526 return TRUE;
5527
5528 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5529 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
99ded152 5530 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
43cd72b9
BW
5531 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
5532 break;
5533
5534 if (the_entry->address + the_entry->size != new_entry->address)
5535 break;
5536
5537 the_entry = new_entry;
5538 ebb->end_ptbl_idx++;
5539 }
5540
5541 /* Quick check for an unreachable or end of file just at the end. */
5542 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5543 {
5544 if (ebb->end_offset == ebb->content_length)
5545 ebb->ends_section = TRUE;
5546 }
5547 else
5548 {
5549 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5550 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
5551 && the_entry->address + the_entry->size == new_entry->address)
5552 ebb->ends_unreachable = new_entry;
5553 }
5554
5555 /* Any other ending requires exact alignment. */
5556 return TRUE;
5557}
5558
5559
5560static bfd_boolean
7fa3d080 5561extend_ebb_bounds_backward (ebb_t *ebb)
43cd72b9
BW
5562{
5563 property_table_entry *the_entry, *new_entry;
5564
5565 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
5566
5567 /* Stop when (1) we cannot decode the instructions in the current entry.
5568 (2) we are at the beginning of the property tables, (3) we hit a
5569 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
5570
5571 while (1)
5572 {
5573 bfd_vma block_begin;
5574 bfd_size_type insn_block_len;
5575
5576 block_begin = the_entry->address - ebb->sec->vma;
5577 insn_block_len =
5578 insn_block_decodable_len (ebb->contents, ebb->content_length,
5579 block_begin,
5580 ebb->start_offset - block_begin);
5581 if (insn_block_len != ebb->start_offset - block_begin)
5582 {
5583 (*_bfd_error_handler)
5584 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5585 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5586 return FALSE;
5587 }
5588 ebb->start_offset -= insn_block_len;
5589
5590 /* Update the reloc counter. */
5591 while (ebb->start_reloc_idx > 0
5592 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
5593 >= ebb->start_offset))
5594 {
5595 ebb->start_reloc_idx--;
5596 }
5597
5598 if (ebb->start_ptbl_idx == 0)
5599 return TRUE;
5600
5601 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
5602 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
99ded152 5603 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
43cd72b9
BW
5604 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
5605 return TRUE;
5606 if (new_entry->address + new_entry->size != the_entry->address)
5607 return TRUE;
5608
5609 the_entry = new_entry;
5610 ebb->start_ptbl_idx--;
5611 }
5612 return TRUE;
5613}
5614
5615
5616static bfd_size_type
7fa3d080
BW
5617insn_block_decodable_len (bfd_byte *contents,
5618 bfd_size_type content_len,
5619 bfd_vma block_offset,
5620 bfd_size_type block_len)
43cd72b9
BW
5621{
5622 bfd_vma offset = block_offset;
5623
5624 while (offset < block_offset + block_len)
5625 {
5626 bfd_size_type insn_len = 0;
5627
5628 insn_len = insn_decode_len (contents, content_len, offset);
5629 if (insn_len == 0)
5630 return (offset - block_offset);
5631 offset += insn_len;
5632 }
5633 return (offset - block_offset);
5634}
5635
5636
5637static void
7fa3d080 5638ebb_propose_action (ebb_constraint *c,
7fa3d080 5639 enum ebb_target_enum align_type,
288f74fa 5640 bfd_vma alignment_pow,
7fa3d080
BW
5641 text_action_t action,
5642 bfd_vma offset,
5643 int removed_bytes,
5644 bfd_boolean do_action)
43cd72b9 5645{
b08b5071 5646 proposed_action *act;
43cd72b9 5647
43cd72b9
BW
5648 if (c->action_allocated <= c->action_count)
5649 {
b08b5071 5650 unsigned new_allocated, i;
823fc61f 5651 proposed_action *new_actions;
b08b5071
BW
5652
5653 new_allocated = (c->action_count + 2) * 2;
823fc61f 5654 new_actions = (proposed_action *)
43cd72b9
BW
5655 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
5656
5657 for (i = 0; i < c->action_count; i++)
5658 new_actions[i] = c->actions[i];
7fa3d080 5659 if (c->actions)
43cd72b9
BW
5660 free (c->actions);
5661 c->actions = new_actions;
5662 c->action_allocated = new_allocated;
5663 }
b08b5071
BW
5664
5665 act = &c->actions[c->action_count];
5666 act->align_type = align_type;
5667 act->alignment_pow = alignment_pow;
5668 act->action = action;
5669 act->offset = offset;
5670 act->removed_bytes = removed_bytes;
5671 act->do_action = do_action;
5672
43cd72b9
BW
5673 c->action_count++;
5674}
5675
5676\f
5677/* Access to internal relocations, section contents and symbols. */
5678
5679/* During relaxation, we need to modify relocations, section contents,
5680 and symbol definitions, and we need to keep the original values from
5681 being reloaded from the input files, i.e., we need to "pin" the
5682 modified values in memory. We also want to continue to observe the
5683 setting of the "keep-memory" flag. The following functions wrap the
5684 standard BFD functions to take care of this for us. */
5685
5686static Elf_Internal_Rela *
7fa3d080 5687retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
5688{
5689 Elf_Internal_Rela *internal_relocs;
5690
5691 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5692 return NULL;
5693
5694 internal_relocs = elf_section_data (sec)->relocs;
5695 if (internal_relocs == NULL)
5696 internal_relocs = (_bfd_elf_link_read_relocs
7fa3d080 5697 (abfd, sec, NULL, NULL, keep_memory));
43cd72b9
BW
5698 return internal_relocs;
5699}
5700
5701
5702static void
7fa3d080 5703pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
5704{
5705 elf_section_data (sec)->relocs = internal_relocs;
5706}
5707
5708
5709static void
7fa3d080 5710release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
5711{
5712 if (internal_relocs
5713 && elf_section_data (sec)->relocs != internal_relocs)
5714 free (internal_relocs);
5715}
5716
5717
5718static bfd_byte *
7fa3d080 5719retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
5720{
5721 bfd_byte *contents;
5722 bfd_size_type sec_size;
5723
5724 sec_size = bfd_get_section_limit (abfd, sec);
5725 contents = elf_section_data (sec)->this_hdr.contents;
5726
5727 if (contents == NULL && sec_size != 0)
5728 {
5729 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
5730 {
7fa3d080 5731 if (contents)
43cd72b9
BW
5732 free (contents);
5733 return NULL;
5734 }
5735 if (keep_memory)
5736 elf_section_data (sec)->this_hdr.contents = contents;
5737 }
5738 return contents;
5739}
5740
5741
5742static void
7fa3d080 5743pin_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
5744{
5745 elf_section_data (sec)->this_hdr.contents = contents;
5746}
5747
5748
5749static void
7fa3d080 5750release_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
5751{
5752 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
5753 free (contents);
5754}
5755
5756
5757static Elf_Internal_Sym *
7fa3d080 5758retrieve_local_syms (bfd *input_bfd)
43cd72b9
BW
5759{
5760 Elf_Internal_Shdr *symtab_hdr;
5761 Elf_Internal_Sym *isymbuf;
5762 size_t locsymcount;
5763
5764 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5765 locsymcount = symtab_hdr->sh_info;
5766
5767 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5768 if (isymbuf == NULL && locsymcount != 0)
5769 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
5770 NULL, NULL, NULL);
5771
5772 /* Save the symbols for this input file so they won't be read again. */
5773 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
5774 symtab_hdr->contents = (unsigned char *) isymbuf;
5775
5776 return isymbuf;
5777}
5778
5779\f
5780/* Code for link-time relaxation. */
5781
5782/* Initialization for relaxation: */
7fa3d080 5783static bfd_boolean analyze_relocations (struct bfd_link_info *);
43cd72b9 5784static bfd_boolean find_relaxable_sections
7fa3d080 5785 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
43cd72b9 5786static bfd_boolean collect_source_relocs
7fa3d080 5787 (bfd *, asection *, struct bfd_link_info *);
43cd72b9 5788static bfd_boolean is_resolvable_asm_expansion
7fa3d080
BW
5789 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
5790 bfd_boolean *);
43cd72b9 5791static Elf_Internal_Rela *find_associated_l32r_irel
7fa3d080 5792 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
43cd72b9 5793static bfd_boolean compute_text_actions
7fa3d080
BW
5794 (bfd *, asection *, struct bfd_link_info *);
5795static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
5796static bfd_boolean compute_ebb_actions (ebb_constraint *);
43cd72b9 5797static bfd_boolean check_section_ebb_pcrels_fit
cb337148
BW
5798 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *,
5799 const xtensa_opcode *);
7fa3d080 5800static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
43cd72b9 5801static void text_action_add_proposed
7fa3d080
BW
5802 (text_action_list *, const ebb_constraint *, asection *);
5803static int compute_fill_extra_space (property_table_entry *);
43cd72b9
BW
5804
5805/* First pass: */
5806static bfd_boolean compute_removed_literals
7fa3d080 5807 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
43cd72b9 5808static Elf_Internal_Rela *get_irel_at_offset
7fa3d080 5809 (asection *, Elf_Internal_Rela *, bfd_vma);
43cd72b9 5810static bfd_boolean is_removable_literal
99ded152
BW
5811 (const source_reloc *, int, const source_reloc *, int, asection *,
5812 property_table_entry *, int);
43cd72b9 5813static bfd_boolean remove_dead_literal
7fa3d080
BW
5814 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
5815 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
5816static bfd_boolean identify_literal_placement
5817 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
5818 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
5819 source_reloc *, property_table_entry *, int, section_cache_t *,
5820 bfd_boolean);
5821static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
43cd72b9 5822static bfd_boolean coalesce_shared_literal
7fa3d080 5823 (asection *, source_reloc *, property_table_entry *, int, value_map *);
43cd72b9 5824static bfd_boolean move_shared_literal
7fa3d080
BW
5825 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
5826 int, const r_reloc *, const literal_value *, section_cache_t *);
43cd72b9
BW
5827
5828/* Second pass: */
7fa3d080
BW
5829static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
5830static bfd_boolean translate_section_fixes (asection *);
5831static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
9b7f5d20 5832static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
43cd72b9 5833static void shrink_dynamic_reloc_sections
7fa3d080 5834 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
43cd72b9 5835static bfd_boolean move_literal
7fa3d080
BW
5836 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
5837 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
43cd72b9 5838static bfd_boolean relax_property_section
7fa3d080 5839 (bfd *, asection *, struct bfd_link_info *);
43cd72b9
BW
5840
5841/* Third pass: */
7fa3d080 5842static bfd_boolean relax_section_symbols (bfd *, asection *);
43cd72b9
BW
5843
5844
5845static bfd_boolean
7fa3d080
BW
5846elf_xtensa_relax_section (bfd *abfd,
5847 asection *sec,
5848 struct bfd_link_info *link_info,
5849 bfd_boolean *again)
43cd72b9
BW
5850{
5851 static value_map_hash_table *values = NULL;
5852 static bfd_boolean relocations_analyzed = FALSE;
5853 xtensa_relax_info *relax_info;
5854
5855 if (!relocations_analyzed)
5856 {
5857 /* Do some overall initialization for relaxation. */
5858 values = value_map_hash_table_init ();
5859 if (values == NULL)
5860 return FALSE;
5861 relaxing_section = TRUE;
5862 if (!analyze_relocations (link_info))
5863 return FALSE;
5864 relocations_analyzed = TRUE;
5865 }
5866 *again = FALSE;
5867
5868 /* Don't mess with linker-created sections. */
5869 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5870 return TRUE;
5871
5872 relax_info = get_xtensa_relax_info (sec);
5873 BFD_ASSERT (relax_info != NULL);
5874
5875 switch (relax_info->visited)
5876 {
5877 case 0:
5878 /* Note: It would be nice to fold this pass into
5879 analyze_relocations, but it is important for this step that the
5880 sections be examined in link order. */
5881 if (!compute_removed_literals (abfd, sec, link_info, values))
5882 return FALSE;
5883 *again = TRUE;
5884 break;
5885
5886 case 1:
5887 if (values)
5888 value_map_hash_table_delete (values);
5889 values = NULL;
5890 if (!relax_section (abfd, sec, link_info))
5891 return FALSE;
5892 *again = TRUE;
5893 break;
5894
5895 case 2:
5896 if (!relax_section_symbols (abfd, sec))
5897 return FALSE;
5898 break;
5899 }
5900
5901 relax_info->visited++;
5902 return TRUE;
5903}
5904
5905\f
5906/* Initialization for relaxation. */
5907
5908/* This function is called once at the start of relaxation. It scans
5909 all the input sections and marks the ones that are relaxable (i.e.,
5910 literal sections with L32R relocations against them), and then
5911 collects source_reloc information for all the relocations against
5912 those relaxable sections. During this process, it also detects
5913 longcalls, i.e., calls relaxed by the assembler into indirect
5914 calls, that can be optimized back into direct calls. Within each
5915 extended basic block (ebb) containing an optimized longcall, it
5916 computes a set of "text actions" that can be performed to remove
5917 the L32R associated with the longcall while optionally preserving
5918 branch target alignments. */
5919
5920static bfd_boolean
7fa3d080 5921analyze_relocations (struct bfd_link_info *link_info)
43cd72b9
BW
5922{
5923 bfd *abfd;
5924 asection *sec;
5925 bfd_boolean is_relaxable = FALSE;
5926
5927 /* Initialize the per-section relaxation info. */
5928 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5929 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5930 {
5931 init_xtensa_relax_info (sec);
5932 }
5933
5934 /* Mark relaxable sections (and count relocations against each one). */
5935 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5936 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5937 {
5938 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
5939 return FALSE;
5940 }
5941
5942 /* Bail out if there are no relaxable sections. */
5943 if (!is_relaxable)
5944 return TRUE;
5945
5946 /* Allocate space for source_relocs. */
5947 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5948 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5949 {
5950 xtensa_relax_info *relax_info;
5951
5952 relax_info = get_xtensa_relax_info (sec);
5953 if (relax_info->is_relaxable_literal_section
5954 || relax_info->is_relaxable_asm_section)
5955 {
5956 relax_info->src_relocs = (source_reloc *)
5957 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
5958 }
25c6282a
BW
5959 else
5960 relax_info->src_count = 0;
43cd72b9
BW
5961 }
5962
5963 /* Collect info on relocations against each relaxable section. */
5964 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5965 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5966 {
5967 if (!collect_source_relocs (abfd, sec, link_info))
5968 return FALSE;
5969 }
5970
5971 /* Compute the text actions. */
5972 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5973 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5974 {
5975 if (!compute_text_actions (abfd, sec, link_info))
5976 return FALSE;
5977 }
5978
5979 return TRUE;
5980}
5981
5982
5983/* Find all the sections that might be relaxed. The motivation for
5984 this pass is that collect_source_relocs() needs to record _all_ the
5985 relocations that target each relaxable section. That is expensive
5986 and unnecessary unless the target section is actually going to be
5987 relaxed. This pass identifies all such sections by checking if
5988 they have L32Rs pointing to them. In the process, the total number
5989 of relocations targeting each section is also counted so that we
5990 know how much space to allocate for source_relocs against each
5991 relaxable literal section. */
5992
5993static bfd_boolean
7fa3d080
BW
5994find_relaxable_sections (bfd *abfd,
5995 asection *sec,
5996 struct bfd_link_info *link_info,
5997 bfd_boolean *is_relaxable_p)
43cd72b9
BW
5998{
5999 Elf_Internal_Rela *internal_relocs;
6000 bfd_byte *contents;
6001 bfd_boolean ok = TRUE;
6002 unsigned i;
6003 xtensa_relax_info *source_relax_info;
25c6282a 6004 bfd_boolean is_l32r_reloc;
43cd72b9
BW
6005
6006 internal_relocs = retrieve_internal_relocs (abfd, sec,
6007 link_info->keep_memory);
6008 if (internal_relocs == NULL)
6009 return ok;
6010
6011 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6012 if (contents == NULL && sec->size != 0)
6013 {
6014 ok = FALSE;
6015 goto error_return;
6016 }
6017
6018 source_relax_info = get_xtensa_relax_info (sec);
6019 for (i = 0; i < sec->reloc_count; i++)
6020 {
6021 Elf_Internal_Rela *irel = &internal_relocs[i];
6022 r_reloc r_rel;
6023 asection *target_sec;
6024 xtensa_relax_info *target_relax_info;
6025
6026 /* If this section has not already been marked as "relaxable", and
6027 if it contains any ASM_EXPAND relocations (marking expanded
6028 longcalls) that can be optimized into direct calls, then mark
6029 the section as "relaxable". */
6030 if (source_relax_info
6031 && !source_relax_info->is_relaxable_asm_section
6032 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
6033 {
6034 bfd_boolean is_reachable = FALSE;
6035 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6036 link_info, &is_reachable)
6037 && is_reachable)
6038 {
6039 source_relax_info->is_relaxable_asm_section = TRUE;
6040 *is_relaxable_p = TRUE;
6041 }
6042 }
6043
6044 r_reloc_init (&r_rel, abfd, irel, contents,
6045 bfd_get_section_limit (abfd, sec));
6046
6047 target_sec = r_reloc_get_section (&r_rel);
6048 target_relax_info = get_xtensa_relax_info (target_sec);
6049 if (!target_relax_info)
6050 continue;
6051
6052 /* Count PC-relative operand relocations against the target section.
6053 Note: The conditions tested here must match the conditions under
6054 which init_source_reloc is called in collect_source_relocs(). */
25c6282a
BW
6055 is_l32r_reloc = FALSE;
6056 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6057 {
6058 xtensa_opcode opcode =
6059 get_relocation_opcode (abfd, sec, contents, irel);
6060 if (opcode != XTENSA_UNDEFINED)
6061 {
6062 is_l32r_reloc = (opcode == get_l32r_opcode ());
6063 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
6064 || is_l32r_reloc)
6065 target_relax_info->src_count++;
6066 }
6067 }
43cd72b9 6068
25c6282a 6069 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
43cd72b9
BW
6070 {
6071 /* Mark the target section as relaxable. */
6072 target_relax_info->is_relaxable_literal_section = TRUE;
6073 *is_relaxable_p = TRUE;
6074 }
6075 }
6076
6077 error_return:
6078 release_contents (sec, contents);
6079 release_internal_relocs (sec, internal_relocs);
6080 return ok;
6081}
6082
6083
6084/* Record _all_ the relocations that point to relaxable sections, and
6085 get rid of ASM_EXPAND relocs by either converting them to
6086 ASM_SIMPLIFY or by removing them. */
6087
6088static bfd_boolean
7fa3d080
BW
6089collect_source_relocs (bfd *abfd,
6090 asection *sec,
6091 struct bfd_link_info *link_info)
43cd72b9
BW
6092{
6093 Elf_Internal_Rela *internal_relocs;
6094 bfd_byte *contents;
6095 bfd_boolean ok = TRUE;
6096 unsigned i;
6097 bfd_size_type sec_size;
6098
6099 internal_relocs = retrieve_internal_relocs (abfd, sec,
6100 link_info->keep_memory);
6101 if (internal_relocs == NULL)
6102 return ok;
6103
6104 sec_size = bfd_get_section_limit (abfd, sec);
6105 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6106 if (contents == NULL && sec_size != 0)
6107 {
6108 ok = FALSE;
6109 goto error_return;
6110 }
6111
6112 /* Record relocations against relaxable literal sections. */
6113 for (i = 0; i < sec->reloc_count; i++)
6114 {
6115 Elf_Internal_Rela *irel = &internal_relocs[i];
6116 r_reloc r_rel;
6117 asection *target_sec;
6118 xtensa_relax_info *target_relax_info;
6119
6120 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6121
6122 target_sec = r_reloc_get_section (&r_rel);
6123 target_relax_info = get_xtensa_relax_info (target_sec);
6124
6125 if (target_relax_info
6126 && (target_relax_info->is_relaxable_literal_section
6127 || target_relax_info->is_relaxable_asm_section))
6128 {
6129 xtensa_opcode opcode = XTENSA_UNDEFINED;
6130 int opnd = -1;
6131 bfd_boolean is_abs_literal = FALSE;
6132
6133 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6134 {
6135 /* None of the current alternate relocs are PC-relative,
6136 and only PC-relative relocs matter here. However, we
6137 still need to record the opcode for literal
6138 coalescing. */
6139 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6140 if (opcode == get_l32r_opcode ())
6141 {
6142 is_abs_literal = TRUE;
6143 opnd = 1;
6144 }
6145 else
6146 opcode = XTENSA_UNDEFINED;
6147 }
6148 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6149 {
6150 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6151 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6152 }
6153
6154 if (opcode != XTENSA_UNDEFINED)
6155 {
6156 int src_next = target_relax_info->src_next++;
6157 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
6158
6159 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
6160 is_abs_literal);
6161 }
6162 }
6163 }
6164
6165 /* Now get rid of ASM_EXPAND relocations. At this point, the
6166 src_relocs array for the target literal section may still be
6167 incomplete, but it must at least contain the entries for the L32R
6168 relocations associated with ASM_EXPANDs because they were just
6169 added in the preceding loop over the relocations. */
6170
6171 for (i = 0; i < sec->reloc_count; i++)
6172 {
6173 Elf_Internal_Rela *irel = &internal_relocs[i];
6174 bfd_boolean is_reachable;
6175
6176 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
6177 &is_reachable))
6178 continue;
6179
6180 if (is_reachable)
6181 {
6182 Elf_Internal_Rela *l32r_irel;
6183 r_reloc r_rel;
6184 asection *target_sec;
6185 xtensa_relax_info *target_relax_info;
6186
6187 /* Mark the source_reloc for the L32R so that it will be
6188 removed in compute_removed_literals(), along with the
6189 associated literal. */
6190 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
6191 irel, internal_relocs);
6192 if (l32r_irel == NULL)
6193 continue;
6194
6195 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
6196
6197 target_sec = r_reloc_get_section (&r_rel);
6198 target_relax_info = get_xtensa_relax_info (target_sec);
6199
6200 if (target_relax_info
6201 && (target_relax_info->is_relaxable_literal_section
6202 || target_relax_info->is_relaxable_asm_section))
6203 {
6204 source_reloc *s_reloc;
6205
6206 /* Search the source_relocs for the entry corresponding to
6207 the l32r_irel. Note: The src_relocs array is not yet
6208 sorted, but it wouldn't matter anyway because we're
6209 searching by source offset instead of target offset. */
6210 s_reloc = find_source_reloc (target_relax_info->src_relocs,
6211 target_relax_info->src_next,
6212 sec, l32r_irel);
6213 BFD_ASSERT (s_reloc);
6214 s_reloc->is_null = TRUE;
6215 }
6216
6217 /* Convert this reloc to ASM_SIMPLIFY. */
6218 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
6219 R_XTENSA_ASM_SIMPLIFY);
6220 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6221
6222 pin_internal_relocs (sec, internal_relocs);
6223 }
6224 else
6225 {
6226 /* It is resolvable but doesn't reach. We resolve now
6227 by eliminating the relocation -- the call will remain
6228 expanded into L32R/CALLX. */
6229 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6230 pin_internal_relocs (sec, internal_relocs);
6231 }
6232 }
6233
6234 error_return:
6235 release_contents (sec, contents);
6236 release_internal_relocs (sec, internal_relocs);
6237 return ok;
6238}
6239
6240
6241/* Return TRUE if the asm expansion can be resolved. Generally it can
6242 be resolved on a final link or when a partial link locates it in the
6243 same section as the target. Set "is_reachable" flag if the target of
6244 the call is within the range of a direct call, given the current VMA
6245 for this section and the target section. */
6246
6247bfd_boolean
7fa3d080
BW
6248is_resolvable_asm_expansion (bfd *abfd,
6249 asection *sec,
6250 bfd_byte *contents,
6251 Elf_Internal_Rela *irel,
6252 struct bfd_link_info *link_info,
6253 bfd_boolean *is_reachable_p)
43cd72b9
BW
6254{
6255 asection *target_sec;
6256 bfd_vma target_offset;
6257 r_reloc r_rel;
6258 xtensa_opcode opcode, direct_call_opcode;
6259 bfd_vma self_address;
6260 bfd_vma dest_address;
6261 bfd_boolean uses_l32r;
6262 bfd_size_type sec_size;
6263
6264 *is_reachable_p = FALSE;
6265
6266 if (contents == NULL)
6267 return FALSE;
6268
6269 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
6270 return FALSE;
6271
6272 sec_size = bfd_get_section_limit (abfd, sec);
6273 opcode = get_expanded_call_opcode (contents + irel->r_offset,
6274 sec_size - irel->r_offset, &uses_l32r);
6275 /* Optimization of longcalls that use CONST16 is not yet implemented. */
6276 if (!uses_l32r)
6277 return FALSE;
6278
6279 direct_call_opcode = swap_callx_for_call_opcode (opcode);
6280 if (direct_call_opcode == XTENSA_UNDEFINED)
6281 return FALSE;
6282
6283 /* Check and see that the target resolves. */
6284 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6285 if (!r_reloc_is_defined (&r_rel))
6286 return FALSE;
6287
6288 target_sec = r_reloc_get_section (&r_rel);
6289 target_offset = r_rel.target_offset;
6290
6291 /* If the target is in a shared library, then it doesn't reach. This
6292 isn't supposed to come up because the compiler should never generate
6293 non-PIC calls on systems that use shared libraries, but the linker
6294 shouldn't crash regardless. */
6295 if (!target_sec->output_section)
6296 return FALSE;
6297
6298 /* For relocatable sections, we can only simplify when the output
6299 section of the target is the same as the output section of the
6300 source. */
6301 if (link_info->relocatable
6302 && (target_sec->output_section != sec->output_section
6303 || is_reloc_sym_weak (abfd, irel)))
6304 return FALSE;
6305
6306 self_address = (sec->output_section->vma
6307 + sec->output_offset + irel->r_offset + 3);
6308 dest_address = (target_sec->output_section->vma
6309 + target_sec->output_offset + target_offset);
6310
6311 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
6312 self_address, dest_address);
6313
6314 if ((self_address >> CALL_SEGMENT_BITS) !=
6315 (dest_address >> CALL_SEGMENT_BITS))
6316 return FALSE;
6317
6318 return TRUE;
6319}
6320
6321
6322static Elf_Internal_Rela *
7fa3d080
BW
6323find_associated_l32r_irel (bfd *abfd,
6324 asection *sec,
6325 bfd_byte *contents,
6326 Elf_Internal_Rela *other_irel,
6327 Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
6328{
6329 unsigned i;
e0001a05 6330
43cd72b9
BW
6331 for (i = 0; i < sec->reloc_count; i++)
6332 {
6333 Elf_Internal_Rela *irel = &internal_relocs[i];
e0001a05 6334
43cd72b9
BW
6335 if (irel == other_irel)
6336 continue;
6337 if (irel->r_offset != other_irel->r_offset)
6338 continue;
6339 if (is_l32r_relocation (abfd, sec, contents, irel))
6340 return irel;
6341 }
6342
6343 return NULL;
e0001a05
NC
6344}
6345
6346
cb337148
BW
6347static xtensa_opcode *
6348build_reloc_opcodes (bfd *abfd,
6349 asection *sec,
6350 bfd_byte *contents,
6351 Elf_Internal_Rela *internal_relocs)
6352{
6353 unsigned i;
6354 xtensa_opcode *reloc_opcodes =
6355 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
6356 for (i = 0; i < sec->reloc_count; i++)
6357 {
6358 Elf_Internal_Rela *irel = &internal_relocs[i];
6359 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
6360 }
6361 return reloc_opcodes;
6362}
6363
6364
43cd72b9
BW
6365/* The compute_text_actions function will build a list of potential
6366 transformation actions for code in the extended basic block of each
6367 longcall that is optimized to a direct call. From this list we
6368 generate a set of actions to actually perform that optimizes for
6369 space and, if not using size_opt, maintains branch target
6370 alignments.
e0001a05 6371
43cd72b9
BW
6372 These actions to be performed are placed on a per-section list.
6373 The actual changes are performed by relax_section() in the second
6374 pass. */
6375
6376bfd_boolean
7fa3d080
BW
6377compute_text_actions (bfd *abfd,
6378 asection *sec,
6379 struct bfd_link_info *link_info)
e0001a05 6380{
cb337148 6381 xtensa_opcode *reloc_opcodes = NULL;
43cd72b9 6382 xtensa_relax_info *relax_info;
e0001a05 6383 bfd_byte *contents;
43cd72b9 6384 Elf_Internal_Rela *internal_relocs;
e0001a05
NC
6385 bfd_boolean ok = TRUE;
6386 unsigned i;
43cd72b9
BW
6387 property_table_entry *prop_table = 0;
6388 int ptblsize = 0;
6389 bfd_size_type sec_size;
43cd72b9 6390
43cd72b9
BW
6391 relax_info = get_xtensa_relax_info (sec);
6392 BFD_ASSERT (relax_info);
25c6282a
BW
6393 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
6394
6395 /* Do nothing if the section contains no optimized longcalls. */
43cd72b9
BW
6396 if (!relax_info->is_relaxable_asm_section)
6397 return ok;
e0001a05
NC
6398
6399 internal_relocs = retrieve_internal_relocs (abfd, sec,
6400 link_info->keep_memory);
e0001a05 6401
43cd72b9
BW
6402 if (internal_relocs)
6403 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
6404 internal_reloc_compare);
6405
6406 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 6407 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 6408 if (contents == NULL && sec_size != 0)
e0001a05
NC
6409 {
6410 ok = FALSE;
6411 goto error_return;
6412 }
6413
43cd72b9
BW
6414 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6415 XTENSA_PROP_SEC_NAME, FALSE);
6416 if (ptblsize < 0)
6417 {
6418 ok = FALSE;
6419 goto error_return;
6420 }
6421
6422 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
6423 {
6424 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9
BW
6425 bfd_vma r_offset;
6426 property_table_entry *the_entry;
6427 int ptbl_idx;
6428 ebb_t *ebb;
6429 ebb_constraint ebb_table;
6430 bfd_size_type simplify_size;
6431
6432 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
6433 continue;
6434 r_offset = irel->r_offset;
e0001a05 6435
43cd72b9
BW
6436 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
6437 if (simplify_size == 0)
6438 {
6439 (*_bfd_error_handler)
6440 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
6441 sec->owner, sec, r_offset);
6442 continue;
6443 }
e0001a05 6444
43cd72b9
BW
6445 /* If the instruction table is not around, then don't do this
6446 relaxation. */
6447 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
6448 sec->vma + irel->r_offset);
6449 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
6450 {
6451 text_action_add (&relax_info->action_list,
6452 ta_convert_longcall, sec, r_offset,
6453 0);
6454 continue;
6455 }
6456
6457 /* If the next longcall happens to be at the same address as an
6458 unreachable section of size 0, then skip forward. */
6459 ptbl_idx = the_entry - prop_table;
6460 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
6461 && the_entry->size == 0
6462 && ptbl_idx + 1 < ptblsize
6463 && (prop_table[ptbl_idx + 1].address
6464 == prop_table[ptbl_idx].address))
6465 {
6466 ptbl_idx++;
6467 the_entry++;
6468 }
e0001a05 6469
99ded152 6470 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
43cd72b9
BW
6471 /* NO_REORDER is OK */
6472 continue;
e0001a05 6473
43cd72b9
BW
6474 init_ebb_constraint (&ebb_table);
6475 ebb = &ebb_table.ebb;
6476 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
6477 internal_relocs, sec->reloc_count);
6478 ebb->start_offset = r_offset + simplify_size;
6479 ebb->end_offset = r_offset + simplify_size;
6480 ebb->start_ptbl_idx = ptbl_idx;
6481 ebb->end_ptbl_idx = ptbl_idx;
6482 ebb->start_reloc_idx = i;
6483 ebb->end_reloc_idx = i;
6484
cb337148
BW
6485 /* Precompute the opcode for each relocation. */
6486 if (reloc_opcodes == NULL)
6487 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents,
6488 internal_relocs);
6489
43cd72b9
BW
6490 if (!extend_ebb_bounds (ebb)
6491 || !compute_ebb_proposed_actions (&ebb_table)
6492 || !compute_ebb_actions (&ebb_table)
6493 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
cb337148
BW
6494 internal_relocs, &ebb_table,
6495 reloc_opcodes)
43cd72b9 6496 || !check_section_ebb_reduces (&ebb_table))
e0001a05 6497 {
43cd72b9
BW
6498 /* If anything goes wrong or we get unlucky and something does
6499 not fit, with our plan because of expansion between
6500 critical branches, just convert to a NOP. */
6501
6502 text_action_add (&relax_info->action_list,
6503 ta_convert_longcall, sec, r_offset, 0);
6504 i = ebb_table.ebb.end_reloc_idx;
6505 free_ebb_constraint (&ebb_table);
6506 continue;
e0001a05 6507 }
43cd72b9
BW
6508
6509 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
6510
6511 /* Update the index so we do not go looking at the relocations
6512 we have already processed. */
6513 i = ebb_table.ebb.end_reloc_idx;
6514 free_ebb_constraint (&ebb_table);
e0001a05
NC
6515 }
6516
43cd72b9 6517#if DEBUG
7fa3d080 6518 if (relax_info->action_list.head)
43cd72b9
BW
6519 print_action_list (stderr, &relax_info->action_list);
6520#endif
6521
6522error_return:
e0001a05
NC
6523 release_contents (sec, contents);
6524 release_internal_relocs (sec, internal_relocs);
43cd72b9
BW
6525 if (prop_table)
6526 free (prop_table);
cb337148
BW
6527 if (reloc_opcodes)
6528 free (reloc_opcodes);
43cd72b9 6529
e0001a05
NC
6530 return ok;
6531}
6532
6533
64b607e6
BW
6534/* Do not widen an instruction if it is preceeded by a
6535 loop opcode. It might cause misalignment. */
6536
6537static bfd_boolean
6538prev_instr_is_a_loop (bfd_byte *contents,
6539 bfd_size_type content_length,
6540 bfd_size_type offset)
6541{
6542 xtensa_opcode prev_opcode;
6543
6544 if (offset < 3)
6545 return FALSE;
6546 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
6547 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
6548}
6549
6550
43cd72b9 6551/* Find all of the possible actions for an extended basic block. */
e0001a05 6552
43cd72b9 6553bfd_boolean
7fa3d080 6554compute_ebb_proposed_actions (ebb_constraint *ebb_table)
e0001a05 6555{
43cd72b9
BW
6556 const ebb_t *ebb = &ebb_table->ebb;
6557 unsigned rel_idx = ebb->start_reloc_idx;
6558 property_table_entry *entry, *start_entry, *end_entry;
64b607e6
BW
6559 bfd_vma offset = 0;
6560 xtensa_isa isa = xtensa_default_isa;
6561 xtensa_format fmt;
6562 static xtensa_insnbuf insnbuf = NULL;
6563 static xtensa_insnbuf slotbuf = NULL;
6564
6565 if (insnbuf == NULL)
6566 {
6567 insnbuf = xtensa_insnbuf_alloc (isa);
6568 slotbuf = xtensa_insnbuf_alloc (isa);
6569 }
e0001a05 6570
43cd72b9
BW
6571 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6572 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
e0001a05 6573
43cd72b9 6574 for (entry = start_entry; entry <= end_entry; entry++)
e0001a05 6575 {
64b607e6 6576 bfd_vma start_offset, end_offset;
43cd72b9 6577 bfd_size_type insn_len;
e0001a05 6578
43cd72b9
BW
6579 start_offset = entry->address - ebb->sec->vma;
6580 end_offset = entry->address + entry->size - ebb->sec->vma;
e0001a05 6581
43cd72b9
BW
6582 if (entry == start_entry)
6583 start_offset = ebb->start_offset;
6584 if (entry == end_entry)
6585 end_offset = ebb->end_offset;
6586 offset = start_offset;
e0001a05 6587
43cd72b9
BW
6588 if (offset == entry->address - ebb->sec->vma
6589 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
6590 {
6591 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
6592 BFD_ASSERT (offset != end_offset);
6593 if (offset == end_offset)
6594 return FALSE;
e0001a05 6595
43cd72b9
BW
6596 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
6597 offset);
43cd72b9 6598 if (insn_len == 0)
64b607e6
BW
6599 goto decode_error;
6600
43cd72b9
BW
6601 if (check_branch_target_aligned_address (offset, insn_len))
6602 align_type = EBB_REQUIRE_TGT_ALIGN;
6603
6604 ebb_propose_action (ebb_table, align_type, 0,
6605 ta_none, offset, 0, TRUE);
6606 }
6607
6608 while (offset != end_offset)
e0001a05 6609 {
43cd72b9 6610 Elf_Internal_Rela *irel;
e0001a05 6611 xtensa_opcode opcode;
e0001a05 6612
43cd72b9
BW
6613 while (rel_idx < ebb->end_reloc_idx
6614 && (ebb->relocs[rel_idx].r_offset < offset
6615 || (ebb->relocs[rel_idx].r_offset == offset
6616 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
6617 != R_XTENSA_ASM_SIMPLIFY))))
6618 rel_idx++;
6619
6620 /* Check for longcall. */
6621 irel = &ebb->relocs[rel_idx];
6622 if (irel->r_offset == offset
6623 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
6624 {
6625 bfd_size_type simplify_size;
e0001a05 6626
43cd72b9
BW
6627 simplify_size = get_asm_simplify_size (ebb->contents,
6628 ebb->content_length,
6629 irel->r_offset);
6630 if (simplify_size == 0)
64b607e6 6631 goto decode_error;
43cd72b9
BW
6632
6633 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6634 ta_convert_longcall, offset, 0, TRUE);
6635
6636 offset += simplify_size;
6637 continue;
6638 }
e0001a05 6639
64b607e6
BW
6640 if (offset + MIN_INSN_LENGTH > ebb->content_length)
6641 goto decode_error;
6642 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
6643 ebb->content_length - offset);
6644 fmt = xtensa_format_decode (isa, insnbuf);
6645 if (fmt == XTENSA_UNDEFINED)
6646 goto decode_error;
6647 insn_len = xtensa_format_length (isa, fmt);
6648 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
6649 goto decode_error;
6650
6651 if (xtensa_format_num_slots (isa, fmt) != 1)
43cd72b9 6652 {
64b607e6
BW
6653 offset += insn_len;
6654 continue;
43cd72b9 6655 }
64b607e6
BW
6656
6657 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
6658 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
6659 if (opcode == XTENSA_UNDEFINED)
6660 goto decode_error;
6661
43cd72b9 6662 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
99ded152 6663 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
64b607e6 6664 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
43cd72b9
BW
6665 {
6666 /* Add an instruction narrow action. */
6667 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6668 ta_narrow_insn, offset, 0, FALSE);
43cd72b9 6669 }
99ded152 6670 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
64b607e6
BW
6671 && can_widen_instruction (slotbuf, fmt, opcode) != 0
6672 && ! prev_instr_is_a_loop (ebb->contents,
6673 ebb->content_length, offset))
43cd72b9
BW
6674 {
6675 /* Add an instruction widen action. */
6676 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6677 ta_widen_insn, offset, 0, FALSE);
43cd72b9 6678 }
64b607e6 6679 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
43cd72b9
BW
6680 {
6681 /* Check for branch targets. */
6682 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
6683 ta_none, offset, 0, TRUE);
43cd72b9
BW
6684 }
6685
6686 offset += insn_len;
e0001a05
NC
6687 }
6688 }
6689
43cd72b9
BW
6690 if (ebb->ends_unreachable)
6691 {
6692 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6693 ta_fill, ebb->end_offset, 0, TRUE);
6694 }
e0001a05 6695
43cd72b9 6696 return TRUE;
64b607e6
BW
6697
6698 decode_error:
6699 (*_bfd_error_handler)
6700 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6701 ebb->sec->owner, ebb->sec, offset);
6702 return FALSE;
43cd72b9
BW
6703}
6704
6705
6706/* After all of the information has collected about the
6707 transformations possible in an EBB, compute the appropriate actions
6708 here in compute_ebb_actions. We still must check later to make
6709 sure that the actions do not break any relocations. The algorithm
6710 used here is pretty greedy. Basically, it removes as many no-ops
6711 as possible so that the end of the EBB has the same alignment
6712 characteristics as the original. First, it uses narrowing, then
6713 fill space at the end of the EBB, and finally widenings. If that
6714 does not work, it tries again with one fewer no-op removed. The
6715 optimization will only be performed if all of the branch targets
6716 that were aligned before transformation are also aligned after the
6717 transformation.
6718
6719 When the size_opt flag is set, ignore the branch target alignments,
6720 narrow all wide instructions, and remove all no-ops unless the end
6721 of the EBB prevents it. */
6722
6723bfd_boolean
7fa3d080 6724compute_ebb_actions (ebb_constraint *ebb_table)
43cd72b9
BW
6725{
6726 unsigned i = 0;
6727 unsigned j;
6728 int removed_bytes = 0;
6729 ebb_t *ebb = &ebb_table->ebb;
6730 unsigned seg_idx_start = 0;
6731 unsigned seg_idx_end = 0;
6732
6733 /* We perform this like the assembler relaxation algorithm: Start by
6734 assuming all instructions are narrow and all no-ops removed; then
6735 walk through.... */
6736
6737 /* For each segment of this that has a solid constraint, check to
6738 see if there are any combinations that will keep the constraint.
6739 If so, use it. */
6740 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
e0001a05 6741 {
43cd72b9
BW
6742 bfd_boolean requires_text_end_align = FALSE;
6743 unsigned longcall_count = 0;
6744 unsigned longcall_convert_count = 0;
6745 unsigned narrowable_count = 0;
6746 unsigned narrowable_convert_count = 0;
6747 unsigned widenable_count = 0;
6748 unsigned widenable_convert_count = 0;
e0001a05 6749
43cd72b9
BW
6750 proposed_action *action = NULL;
6751 int align = (1 << ebb_table->ebb.sec->alignment_power);
e0001a05 6752
43cd72b9 6753 seg_idx_start = seg_idx_end;
e0001a05 6754
43cd72b9
BW
6755 for (i = seg_idx_start; i < ebb_table->action_count; i++)
6756 {
6757 action = &ebb_table->actions[i];
6758 if (action->action == ta_convert_longcall)
6759 longcall_count++;
6760 if (action->action == ta_narrow_insn)
6761 narrowable_count++;
6762 if (action->action == ta_widen_insn)
6763 widenable_count++;
6764 if (action->action == ta_fill)
6765 break;
6766 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6767 break;
6768 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
6769 && !elf32xtensa_size_opt)
6770 break;
6771 }
6772 seg_idx_end = i;
e0001a05 6773
43cd72b9
BW
6774 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
6775 requires_text_end_align = TRUE;
e0001a05 6776
43cd72b9
BW
6777 if (elf32xtensa_size_opt && !requires_text_end_align
6778 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
6779 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
6780 {
6781 longcall_convert_count = longcall_count;
6782 narrowable_convert_count = narrowable_count;
6783 widenable_convert_count = 0;
6784 }
6785 else
6786 {
6787 /* There is a constraint. Convert the max number of longcalls. */
6788 narrowable_convert_count = 0;
6789 longcall_convert_count = 0;
6790 widenable_convert_count = 0;
e0001a05 6791
43cd72b9 6792 for (j = 0; j < longcall_count; j++)
e0001a05 6793 {
43cd72b9
BW
6794 int removed = (longcall_count - j) * 3 & (align - 1);
6795 unsigned desire_narrow = (align - removed) & (align - 1);
6796 unsigned desire_widen = removed;
6797 if (desire_narrow <= narrowable_count)
6798 {
6799 narrowable_convert_count = desire_narrow;
6800 narrowable_convert_count +=
6801 (align * ((narrowable_count - narrowable_convert_count)
6802 / align));
6803 longcall_convert_count = (longcall_count - j);
6804 widenable_convert_count = 0;
6805 break;
6806 }
6807 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
6808 {
6809 narrowable_convert_count = 0;
6810 longcall_convert_count = longcall_count - j;
6811 widenable_convert_count = desire_widen;
6812 break;
6813 }
6814 }
6815 }
e0001a05 6816
43cd72b9
BW
6817 /* Now the number of conversions are saved. Do them. */
6818 for (i = seg_idx_start; i < seg_idx_end; i++)
6819 {
6820 action = &ebb_table->actions[i];
6821 switch (action->action)
6822 {
6823 case ta_convert_longcall:
6824 if (longcall_convert_count != 0)
6825 {
6826 action->action = ta_remove_longcall;
6827 action->do_action = TRUE;
6828 action->removed_bytes += 3;
6829 longcall_convert_count--;
6830 }
6831 break;
6832 case ta_narrow_insn:
6833 if (narrowable_convert_count != 0)
6834 {
6835 action->do_action = TRUE;
6836 action->removed_bytes += 1;
6837 narrowable_convert_count--;
6838 }
6839 break;
6840 case ta_widen_insn:
6841 if (widenable_convert_count != 0)
6842 {
6843 action->do_action = TRUE;
6844 action->removed_bytes -= 1;
6845 widenable_convert_count--;
6846 }
6847 break;
6848 default:
6849 break;
e0001a05 6850 }
43cd72b9
BW
6851 }
6852 }
e0001a05 6853
43cd72b9
BW
6854 /* Now we move on to some local opts. Try to remove each of the
6855 remaining longcalls. */
e0001a05 6856
43cd72b9
BW
6857 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
6858 {
6859 removed_bytes = 0;
6860 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 6861 {
43cd72b9
BW
6862 int old_removed_bytes = removed_bytes;
6863 proposed_action *action = &ebb_table->actions[i];
6864
6865 if (action->do_action && action->action == ta_convert_longcall)
6866 {
6867 bfd_boolean bad_alignment = FALSE;
6868 removed_bytes += 3;
6869 for (j = i + 1; j < ebb_table->action_count; j++)
6870 {
6871 proposed_action *new_action = &ebb_table->actions[j];
6872 bfd_vma offset = new_action->offset;
6873 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
6874 {
6875 if (!check_branch_target_aligned
6876 (ebb_table->ebb.contents,
6877 ebb_table->ebb.content_length,
6878 offset, offset - removed_bytes))
6879 {
6880 bad_alignment = TRUE;
6881 break;
6882 }
6883 }
6884 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6885 {
6886 if (!check_loop_aligned (ebb_table->ebb.contents,
6887 ebb_table->ebb.content_length,
6888 offset,
6889 offset - removed_bytes))
6890 {
6891 bad_alignment = TRUE;
6892 break;
6893 }
6894 }
6895 if (new_action->action == ta_narrow_insn
6896 && !new_action->do_action
6897 && ebb_table->ebb.sec->alignment_power == 2)
6898 {
6899 /* Narrow an instruction and we are done. */
6900 new_action->do_action = TRUE;
6901 new_action->removed_bytes += 1;
6902 bad_alignment = FALSE;
6903 break;
6904 }
6905 if (new_action->action == ta_widen_insn
6906 && new_action->do_action
6907 && ebb_table->ebb.sec->alignment_power == 2)
6908 {
6909 /* Narrow an instruction and we are done. */
6910 new_action->do_action = FALSE;
6911 new_action->removed_bytes += 1;
6912 bad_alignment = FALSE;
6913 break;
6914 }
5c5d6806
BW
6915 if (new_action->do_action)
6916 removed_bytes += new_action->removed_bytes;
43cd72b9
BW
6917 }
6918 if (!bad_alignment)
6919 {
6920 action->removed_bytes += 3;
6921 action->action = ta_remove_longcall;
6922 action->do_action = TRUE;
6923 }
6924 }
6925 removed_bytes = old_removed_bytes;
6926 if (action->do_action)
6927 removed_bytes += action->removed_bytes;
e0001a05
NC
6928 }
6929 }
6930
43cd72b9
BW
6931 removed_bytes = 0;
6932 for (i = 0; i < ebb_table->action_count; ++i)
6933 {
6934 proposed_action *action = &ebb_table->actions[i];
6935 if (action->do_action)
6936 removed_bytes += action->removed_bytes;
6937 }
6938
6939 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
6940 && ebb->ends_unreachable)
6941 {
6942 proposed_action *action;
6943 int br;
6944 int extra_space;
6945
6946 BFD_ASSERT (ebb_table->action_count != 0);
6947 action = &ebb_table->actions[ebb_table->action_count - 1];
6948 BFD_ASSERT (action->action == ta_fill);
6949 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
6950
6951 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
6952 br = action->removed_bytes + removed_bytes + extra_space;
6953 br = br & ((1 << ebb->sec->alignment_power ) - 1);
6954
6955 action->removed_bytes = extra_space - br;
6956 }
6957 return TRUE;
e0001a05
NC
6958}
6959
6960
03e94c08
BW
6961/* The xlate_map is a sorted array of address mappings designed to
6962 answer the offset_with_removed_text() query with a binary search instead
6963 of a linear search through the section's action_list. */
6964
6965typedef struct xlate_map_entry xlate_map_entry_t;
6966typedef struct xlate_map xlate_map_t;
6967
6968struct xlate_map_entry
6969{
6970 unsigned orig_address;
6971 unsigned new_address;
6972 unsigned size;
6973};
6974
6975struct xlate_map
6976{
6977 unsigned entry_count;
6978 xlate_map_entry_t *entry;
6979};
6980
6981
6982static int
6983xlate_compare (const void *a_v, const void *b_v)
6984{
6985 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
6986 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
6987 if (a->orig_address < b->orig_address)
6988 return -1;
6989 if (a->orig_address > (b->orig_address + b->size - 1))
6990 return 1;
6991 return 0;
6992}
6993
6994
6995static bfd_vma
6996xlate_offset_with_removed_text (const xlate_map_t *map,
6997 text_action_list *action_list,
6998 bfd_vma offset)
6999{
7000 xlate_map_entry_t tmp;
7001 void *r;
7002 xlate_map_entry_t *e;
7003
7004 if (map == NULL)
7005 return offset_with_removed_text (action_list, offset);
7006
7007 if (map->entry_count == 0)
7008 return offset;
7009
7010 tmp.orig_address = offset;
7011 tmp.new_address = offset;
7012 tmp.size = 1;
7013
7014 r = bsearch (&offset, map->entry, map->entry_count,
7015 sizeof (xlate_map_entry_t), &xlate_compare);
7016 e = (xlate_map_entry_t *) r;
7017
7018 BFD_ASSERT (e != NULL);
7019 if (e == NULL)
7020 return offset;
7021 return e->new_address - e->orig_address + offset;
7022}
7023
7024
7025/* Build a binary searchable offset translation map from a section's
7026 action list. */
7027
7028static xlate_map_t *
7029build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
7030{
7031 xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
7032 text_action_list *action_list = &relax_info->action_list;
7033 unsigned num_actions = 0;
7034 text_action *r;
7035 int removed;
7036 xlate_map_entry_t *current_entry;
7037
7038 if (map == NULL)
7039 return NULL;
7040
7041 num_actions = action_list_count (action_list);
7042 map->entry = (xlate_map_entry_t *)
7043 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
7044 if (map->entry == NULL)
7045 {
7046 free (map);
7047 return NULL;
7048 }
7049 map->entry_count = 0;
7050
7051 removed = 0;
7052 current_entry = &map->entry[0];
7053
7054 current_entry->orig_address = 0;
7055 current_entry->new_address = 0;
7056 current_entry->size = 0;
7057
7058 for (r = action_list->head; r != NULL; r = r->next)
7059 {
7060 unsigned orig_size = 0;
7061 switch (r->action)
7062 {
7063 case ta_none:
7064 case ta_remove_insn:
7065 case ta_convert_longcall:
7066 case ta_remove_literal:
7067 case ta_add_literal:
7068 break;
7069 case ta_remove_longcall:
7070 orig_size = 6;
7071 break;
7072 case ta_narrow_insn:
7073 orig_size = 3;
7074 break;
7075 case ta_widen_insn:
7076 orig_size = 2;
7077 break;
7078 case ta_fill:
7079 break;
7080 }
7081 current_entry->size =
7082 r->offset + orig_size - current_entry->orig_address;
7083 if (current_entry->size != 0)
7084 {
7085 current_entry++;
7086 map->entry_count++;
7087 }
7088 current_entry->orig_address = r->offset + orig_size;
7089 removed += r->removed_bytes;
7090 current_entry->new_address = r->offset + orig_size - removed;
7091 current_entry->size = 0;
7092 }
7093
7094 current_entry->size = (bfd_get_section_limit (sec->owner, sec)
7095 - current_entry->orig_address);
7096 if (current_entry->size != 0)
7097 map->entry_count++;
7098
7099 return map;
7100}
7101
7102
7103/* Free an offset translation map. */
7104
7105static void
7106free_xlate_map (xlate_map_t *map)
7107{
7108 if (map && map->entry)
7109 free (map->entry);
7110 if (map)
7111 free (map);
7112}
7113
7114
43cd72b9
BW
7115/* Use check_section_ebb_pcrels_fit to make sure that all of the
7116 relocations in a section will fit if a proposed set of actions
7117 are performed. */
e0001a05 7118
43cd72b9 7119static bfd_boolean
7fa3d080
BW
7120check_section_ebb_pcrels_fit (bfd *abfd,
7121 asection *sec,
7122 bfd_byte *contents,
7123 Elf_Internal_Rela *internal_relocs,
cb337148
BW
7124 const ebb_constraint *constraint,
7125 const xtensa_opcode *reloc_opcodes)
e0001a05 7126{
43cd72b9
BW
7127 unsigned i, j;
7128 Elf_Internal_Rela *irel;
03e94c08
BW
7129 xlate_map_t *xmap = NULL;
7130 bfd_boolean ok = TRUE;
43cd72b9 7131 xtensa_relax_info *relax_info;
e0001a05 7132
43cd72b9 7133 relax_info = get_xtensa_relax_info (sec);
e0001a05 7134
03e94c08
BW
7135 if (relax_info && sec->reloc_count > 100)
7136 {
7137 xmap = build_xlate_map (sec, relax_info);
7138 /* NULL indicates out of memory, but the slow version
7139 can still be used. */
7140 }
7141
43cd72b9
BW
7142 for (i = 0; i < sec->reloc_count; i++)
7143 {
7144 r_reloc r_rel;
7145 bfd_vma orig_self_offset, orig_target_offset;
7146 bfd_vma self_offset, target_offset;
7147 int r_type;
7148 reloc_howto_type *howto;
7149 int self_removed_bytes, target_removed_bytes;
e0001a05 7150
43cd72b9
BW
7151 irel = &internal_relocs[i];
7152 r_type = ELF32_R_TYPE (irel->r_info);
e0001a05 7153
43cd72b9
BW
7154 howto = &elf_howto_table[r_type];
7155 /* We maintain the required invariant: PC-relative relocations
7156 that fit before linking must fit after linking. Thus we only
7157 need to deal with relocations to the same section that are
7158 PC-relative. */
1bbb5f21
BW
7159 if (r_type == R_XTENSA_ASM_SIMPLIFY
7160 || r_type == R_XTENSA_32_PCREL
43cd72b9
BW
7161 || !howto->pc_relative)
7162 continue;
e0001a05 7163
43cd72b9
BW
7164 r_reloc_init (&r_rel, abfd, irel, contents,
7165 bfd_get_section_limit (abfd, sec));
e0001a05 7166
43cd72b9
BW
7167 if (r_reloc_get_section (&r_rel) != sec)
7168 continue;
e0001a05 7169
43cd72b9
BW
7170 orig_self_offset = irel->r_offset;
7171 orig_target_offset = r_rel.target_offset;
e0001a05 7172
43cd72b9
BW
7173 self_offset = orig_self_offset;
7174 target_offset = orig_target_offset;
7175
7176 if (relax_info)
7177 {
03e94c08
BW
7178 self_offset =
7179 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7180 orig_self_offset);
7181 target_offset =
7182 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7183 orig_target_offset);
43cd72b9
BW
7184 }
7185
7186 self_removed_bytes = 0;
7187 target_removed_bytes = 0;
7188
7189 for (j = 0; j < constraint->action_count; ++j)
7190 {
7191 proposed_action *action = &constraint->actions[j];
7192 bfd_vma offset = action->offset;
7193 int removed_bytes = action->removed_bytes;
7194 if (offset < orig_self_offset
7195 || (offset == orig_self_offset && action->action == ta_fill
7196 && action->removed_bytes < 0))
7197 self_removed_bytes += removed_bytes;
7198 if (offset < orig_target_offset
7199 || (offset == orig_target_offset && action->action == ta_fill
7200 && action->removed_bytes < 0))
7201 target_removed_bytes += removed_bytes;
7202 }
7203 self_offset -= self_removed_bytes;
7204 target_offset -= target_removed_bytes;
7205
7206 /* Try to encode it. Get the operand and check. */
7207 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7208 {
7209 /* None of the current alternate relocs are PC-relative,
7210 and only PC-relative relocs matter here. */
7211 }
7212 else
7213 {
7214 xtensa_opcode opcode;
7215 int opnum;
7216
cb337148
BW
7217 if (reloc_opcodes)
7218 opcode = reloc_opcodes[i];
7219 else
7220 opcode = get_relocation_opcode (abfd, sec, contents, irel);
43cd72b9 7221 if (opcode == XTENSA_UNDEFINED)
03e94c08
BW
7222 {
7223 ok = FALSE;
7224 break;
7225 }
43cd72b9
BW
7226
7227 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7228 if (opnum == XTENSA_UNDEFINED)
03e94c08
BW
7229 {
7230 ok = FALSE;
7231 break;
7232 }
43cd72b9
BW
7233
7234 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
03e94c08
BW
7235 {
7236 ok = FALSE;
7237 break;
7238 }
43cd72b9
BW
7239 }
7240 }
7241
03e94c08
BW
7242 if (xmap)
7243 free_xlate_map (xmap);
7244
7245 return ok;
43cd72b9
BW
7246}
7247
7248
7249static bfd_boolean
7fa3d080 7250check_section_ebb_reduces (const ebb_constraint *constraint)
43cd72b9
BW
7251{
7252 int removed = 0;
7253 unsigned i;
7254
7255 for (i = 0; i < constraint->action_count; i++)
7256 {
7257 const proposed_action *action = &constraint->actions[i];
7258 if (action->do_action)
7259 removed += action->removed_bytes;
7260 }
7261 if (removed < 0)
e0001a05
NC
7262 return FALSE;
7263
7264 return TRUE;
7265}
7266
7267
43cd72b9 7268void
7fa3d080
BW
7269text_action_add_proposed (text_action_list *l,
7270 const ebb_constraint *ebb_table,
7271 asection *sec)
e0001a05
NC
7272{
7273 unsigned i;
7274
43cd72b9 7275 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 7276 {
43cd72b9 7277 proposed_action *action = &ebb_table->actions[i];
e0001a05 7278
43cd72b9 7279 if (!action->do_action)
e0001a05 7280 continue;
43cd72b9
BW
7281 switch (action->action)
7282 {
7283 case ta_remove_insn:
7284 case ta_remove_longcall:
7285 case ta_convert_longcall:
7286 case ta_narrow_insn:
7287 case ta_widen_insn:
7288 case ta_fill:
7289 case ta_remove_literal:
7290 text_action_add (l, action->action, sec, action->offset,
7291 action->removed_bytes);
7292 break;
7293 case ta_none:
7294 break;
7295 default:
7296 BFD_ASSERT (0);
7297 break;
7298 }
e0001a05 7299 }
43cd72b9 7300}
e0001a05 7301
43cd72b9
BW
7302
7303int
7fa3d080 7304compute_fill_extra_space (property_table_entry *entry)
43cd72b9
BW
7305{
7306 int fill_extra_space;
7307
7308 if (!entry)
7309 return 0;
7310
7311 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
7312 return 0;
7313
7314 fill_extra_space = entry->size;
7315 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
7316 {
7317 /* Fill bytes for alignment:
7318 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
7319 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
7320 int nsm = (1 << pow) - 1;
7321 bfd_vma addr = entry->address + entry->size;
7322 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
7323 fill_extra_space += align_fill;
7324 }
7325 return fill_extra_space;
e0001a05
NC
7326}
7327
43cd72b9 7328\f
e0001a05
NC
7329/* First relaxation pass. */
7330
43cd72b9
BW
7331/* If the section contains relaxable literals, check each literal to
7332 see if it has the same value as another literal that has already
7333 been seen, either in the current section or a previous one. If so,
7334 add an entry to the per-section list of removed literals. The
e0001a05
NC
7335 actual changes are deferred until the next pass. */
7336
7337static bfd_boolean
7fa3d080
BW
7338compute_removed_literals (bfd *abfd,
7339 asection *sec,
7340 struct bfd_link_info *link_info,
7341 value_map_hash_table *values)
e0001a05
NC
7342{
7343 xtensa_relax_info *relax_info;
7344 bfd_byte *contents;
7345 Elf_Internal_Rela *internal_relocs;
43cd72b9 7346 source_reloc *src_relocs, *rel;
e0001a05 7347 bfd_boolean ok = TRUE;
43cd72b9
BW
7348 property_table_entry *prop_table = NULL;
7349 int ptblsize;
7350 int i, prev_i;
7351 bfd_boolean last_loc_is_prev = FALSE;
7352 bfd_vma last_target_offset = 0;
7353 section_cache_t target_sec_cache;
7354 bfd_size_type sec_size;
7355
7356 init_section_cache (&target_sec_cache);
e0001a05
NC
7357
7358 /* Do nothing if it is not a relaxable literal section. */
7359 relax_info = get_xtensa_relax_info (sec);
7360 BFD_ASSERT (relax_info);
e0001a05
NC
7361 if (!relax_info->is_relaxable_literal_section)
7362 return ok;
7363
7364 internal_relocs = retrieve_internal_relocs (abfd, sec,
7365 link_info->keep_memory);
7366
43cd72b9 7367 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 7368 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 7369 if (contents == NULL && sec_size != 0)
e0001a05
NC
7370 {
7371 ok = FALSE;
7372 goto error_return;
7373 }
7374
7375 /* Sort the source_relocs by target offset. */
7376 src_relocs = relax_info->src_relocs;
7377 qsort (src_relocs, relax_info->src_count,
7378 sizeof (source_reloc), source_reloc_compare);
43cd72b9
BW
7379 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7380 internal_reloc_compare);
e0001a05 7381
43cd72b9
BW
7382 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7383 XTENSA_PROP_SEC_NAME, FALSE);
7384 if (ptblsize < 0)
7385 {
7386 ok = FALSE;
7387 goto error_return;
7388 }
7389
7390 prev_i = -1;
e0001a05
NC
7391 for (i = 0; i < relax_info->src_count; i++)
7392 {
e0001a05 7393 Elf_Internal_Rela *irel = NULL;
e0001a05
NC
7394
7395 rel = &src_relocs[i];
43cd72b9
BW
7396 if (get_l32r_opcode () != rel->opcode)
7397 continue;
e0001a05
NC
7398 irel = get_irel_at_offset (sec, internal_relocs,
7399 rel->r_rel.target_offset);
7400
43cd72b9
BW
7401 /* If the relocation on this is not a simple R_XTENSA_32 or
7402 R_XTENSA_PLT then do not consider it. This may happen when
7403 the difference of two symbols is used in a literal. */
7404 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
7405 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
7406 continue;
7407
e0001a05
NC
7408 /* If the target_offset for this relocation is the same as the
7409 previous relocation, then we've already considered whether the
7410 literal can be coalesced. Skip to the next one.... */
43cd72b9
BW
7411 if (i != 0 && prev_i != -1
7412 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
e0001a05 7413 continue;
43cd72b9
BW
7414 prev_i = i;
7415
7416 if (last_loc_is_prev &&
7417 last_target_offset + 4 != rel->r_rel.target_offset)
7418 last_loc_is_prev = FALSE;
e0001a05
NC
7419
7420 /* Check if the relocation was from an L32R that is being removed
7421 because a CALLX was converted to a direct CALL, and check if
7422 there are no other relocations to the literal. */
99ded152
BW
7423 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
7424 sec, prop_table, ptblsize))
e0001a05 7425 {
43cd72b9
BW
7426 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
7427 irel, rel, prop_table, ptblsize))
e0001a05 7428 {
43cd72b9
BW
7429 ok = FALSE;
7430 goto error_return;
e0001a05 7431 }
43cd72b9 7432 last_target_offset = rel->r_rel.target_offset;
e0001a05
NC
7433 continue;
7434 }
7435
43cd72b9
BW
7436 if (!identify_literal_placement (abfd, sec, contents, link_info,
7437 values,
7438 &last_loc_is_prev, irel,
7439 relax_info->src_count - i, rel,
7440 prop_table, ptblsize,
7441 &target_sec_cache, rel->is_abs_literal))
e0001a05 7442 {
43cd72b9
BW
7443 ok = FALSE;
7444 goto error_return;
7445 }
7446 last_target_offset = rel->r_rel.target_offset;
7447 }
e0001a05 7448
43cd72b9
BW
7449#if DEBUG
7450 print_removed_literals (stderr, &relax_info->removed_list);
7451 print_action_list (stderr, &relax_info->action_list);
7452#endif /* DEBUG */
7453
7454error_return:
7455 if (prop_table) free (prop_table);
7456 clear_section_cache (&target_sec_cache);
7457
7458 release_contents (sec, contents);
7459 release_internal_relocs (sec, internal_relocs);
7460 return ok;
7461}
7462
7463
7464static Elf_Internal_Rela *
7fa3d080
BW
7465get_irel_at_offset (asection *sec,
7466 Elf_Internal_Rela *internal_relocs,
7467 bfd_vma offset)
43cd72b9
BW
7468{
7469 unsigned i;
7470 Elf_Internal_Rela *irel;
7471 unsigned r_type;
7472 Elf_Internal_Rela key;
7473
7474 if (!internal_relocs)
7475 return NULL;
7476
7477 key.r_offset = offset;
7478 irel = bsearch (&key, internal_relocs, sec->reloc_count,
7479 sizeof (Elf_Internal_Rela), internal_reloc_matches);
7480 if (!irel)
7481 return NULL;
7482
7483 /* bsearch does not guarantee which will be returned if there are
7484 multiple matches. We need the first that is not an alignment. */
7485 i = irel - internal_relocs;
7486 while (i > 0)
7487 {
7488 if (internal_relocs[i-1].r_offset != offset)
7489 break;
7490 i--;
7491 }
7492 for ( ; i < sec->reloc_count; i++)
7493 {
7494 irel = &internal_relocs[i];
7495 r_type = ELF32_R_TYPE (irel->r_info);
7496 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
7497 return irel;
7498 }
7499
7500 return NULL;
7501}
7502
7503
7504bfd_boolean
7fa3d080
BW
7505is_removable_literal (const source_reloc *rel,
7506 int i,
7507 const source_reloc *src_relocs,
99ded152
BW
7508 int src_count,
7509 asection *sec,
7510 property_table_entry *prop_table,
7511 int ptblsize)
43cd72b9
BW
7512{
7513 const source_reloc *curr_rel;
99ded152
BW
7514 property_table_entry *entry;
7515
43cd72b9
BW
7516 if (!rel->is_null)
7517 return FALSE;
7518
99ded152
BW
7519 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7520 sec->vma + rel->r_rel.target_offset);
7521 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
7522 return FALSE;
7523
43cd72b9
BW
7524 for (++i; i < src_count; ++i)
7525 {
7526 curr_rel = &src_relocs[i];
7527 /* If all others have the same target offset.... */
7528 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
7529 return TRUE;
7530
7531 if (!curr_rel->is_null
7532 && !xtensa_is_property_section (curr_rel->source_sec)
7533 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
7534 return FALSE;
7535 }
7536 return TRUE;
7537}
7538
7539
7540bfd_boolean
7fa3d080
BW
7541remove_dead_literal (bfd *abfd,
7542 asection *sec,
7543 struct bfd_link_info *link_info,
7544 Elf_Internal_Rela *internal_relocs,
7545 Elf_Internal_Rela *irel,
7546 source_reloc *rel,
7547 property_table_entry *prop_table,
7548 int ptblsize)
43cd72b9
BW
7549{
7550 property_table_entry *entry;
7551 xtensa_relax_info *relax_info;
7552
7553 relax_info = get_xtensa_relax_info (sec);
7554 if (!relax_info)
7555 return FALSE;
7556
7557 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7558 sec->vma + rel->r_rel.target_offset);
7559
7560 /* Mark the unused literal so that it will be removed. */
7561 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
7562
7563 text_action_add (&relax_info->action_list,
7564 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7565
7566 /* If the section is 4-byte aligned, do not add fill. */
7567 if (sec->alignment_power > 2)
7568 {
7569 int fill_extra_space;
7570 bfd_vma entry_sec_offset;
7571 text_action *fa;
7572 property_table_entry *the_add_entry;
7573 int removed_diff;
7574
7575 if (entry)
7576 entry_sec_offset = entry->address - sec->vma + entry->size;
7577 else
7578 entry_sec_offset = rel->r_rel.target_offset + 4;
7579
7580 /* If the literal range is at the end of the section,
7581 do not add fill. */
7582 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7583 entry_sec_offset);
7584 fill_extra_space = compute_fill_extra_space (the_add_entry);
7585
7586 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7587 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7588 -4, fill_extra_space);
7589 if (fa)
7590 adjust_fill_action (fa, removed_diff);
7591 else
7592 text_action_add (&relax_info->action_list,
7593 ta_fill, sec, entry_sec_offset, removed_diff);
7594 }
7595
7596 /* Zero out the relocation on this literal location. */
7597 if (irel)
7598 {
7599 if (elf_hash_table (link_info)->dynamic_sections_created)
7600 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
7601
7602 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7603 pin_internal_relocs (sec, internal_relocs);
7604 }
7605
7606 /* Do not modify "last_loc_is_prev". */
7607 return TRUE;
7608}
7609
7610
7611bfd_boolean
7fa3d080
BW
7612identify_literal_placement (bfd *abfd,
7613 asection *sec,
7614 bfd_byte *contents,
7615 struct bfd_link_info *link_info,
7616 value_map_hash_table *values,
7617 bfd_boolean *last_loc_is_prev_p,
7618 Elf_Internal_Rela *irel,
7619 int remaining_src_rels,
7620 source_reloc *rel,
7621 property_table_entry *prop_table,
7622 int ptblsize,
7623 section_cache_t *target_sec_cache,
7624 bfd_boolean is_abs_literal)
43cd72b9
BW
7625{
7626 literal_value val;
7627 value_map *val_map;
7628 xtensa_relax_info *relax_info;
7629 bfd_boolean literal_placed = FALSE;
7630 r_reloc r_rel;
7631 unsigned long value;
7632 bfd_boolean final_static_link;
7633 bfd_size_type sec_size;
7634
7635 relax_info = get_xtensa_relax_info (sec);
7636 if (!relax_info)
7637 return FALSE;
7638
7639 sec_size = bfd_get_section_limit (abfd, sec);
7640
7641 final_static_link =
7642 (!link_info->relocatable
7643 && !elf_hash_table (link_info)->dynamic_sections_created);
7644
7645 /* The placement algorithm first checks to see if the literal is
7646 already in the value map. If so and the value map is reachable
7647 from all uses, then the literal is moved to that location. If
7648 not, then we identify the last location where a fresh literal was
7649 placed. If the literal can be safely moved there, then we do so.
7650 If not, then we assume that the literal is not to move and leave
7651 the literal where it is, marking it as the last literal
7652 location. */
7653
7654 /* Find the literal value. */
7655 value = 0;
7656 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7657 if (!irel)
7658 {
7659 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
7660 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
7661 }
7662 init_literal_value (&val, &r_rel, value, is_abs_literal);
7663
7664 /* Check if we've seen another literal with the same value that
7665 is in the same output section. */
7666 val_map = value_map_get_cached_value (values, &val, final_static_link);
7667
7668 if (val_map
7669 && (r_reloc_get_section (&val_map->loc)->output_section
7670 == sec->output_section)
7671 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
7672 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
7673 {
7674 /* No change to last_loc_is_prev. */
7675 literal_placed = TRUE;
7676 }
7677
7678 /* For relocatable links, do not try to move literals. To do it
7679 correctly might increase the number of relocations in an input
7680 section making the default relocatable linking fail. */
7681 if (!link_info->relocatable && !literal_placed
7682 && values->has_last_loc && !(*last_loc_is_prev_p))
7683 {
7684 asection *target_sec = r_reloc_get_section (&values->last_loc);
7685 if (target_sec && target_sec->output_section == sec->output_section)
7686 {
7687 /* Increment the virtual offset. */
7688 r_reloc try_loc = values->last_loc;
7689 try_loc.virtual_offset += 4;
7690
7691 /* There is a last loc that was in the same output section. */
7692 if (relocations_reach (rel, remaining_src_rels, &try_loc)
7693 && move_shared_literal (sec, link_info, rel,
7694 prop_table, ptblsize,
7695 &try_loc, &val, target_sec_cache))
e0001a05 7696 {
43cd72b9
BW
7697 values->last_loc.virtual_offset += 4;
7698 literal_placed = TRUE;
7699 if (!val_map)
7700 val_map = add_value_map (values, &val, &try_loc,
7701 final_static_link);
7702 else
7703 val_map->loc = try_loc;
e0001a05
NC
7704 }
7705 }
43cd72b9
BW
7706 }
7707
7708 if (!literal_placed)
7709 {
7710 /* Nothing worked, leave the literal alone but update the last loc. */
7711 values->has_last_loc = TRUE;
7712 values->last_loc = rel->r_rel;
7713 if (!val_map)
7714 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
e0001a05 7715 else
43cd72b9
BW
7716 val_map->loc = rel->r_rel;
7717 *last_loc_is_prev_p = TRUE;
e0001a05
NC
7718 }
7719
43cd72b9 7720 return TRUE;
e0001a05
NC
7721}
7722
7723
7724/* Check if the original relocations (presumably on L32R instructions)
7725 identified by reloc[0..N] can be changed to reference the literal
7726 identified by r_rel. If r_rel is out of range for any of the
7727 original relocations, then we don't want to coalesce the original
7728 literal with the one at r_rel. We only check reloc[0..N], where the
7729 offsets are all the same as for reloc[0] (i.e., they're all
7730 referencing the same literal) and where N is also bounded by the
7731 number of remaining entries in the "reloc" array. The "reloc" array
7732 is sorted by target offset so we know all the entries for the same
7733 literal will be contiguous. */
7734
7735static bfd_boolean
7fa3d080
BW
7736relocations_reach (source_reloc *reloc,
7737 int remaining_relocs,
7738 const r_reloc *r_rel)
e0001a05
NC
7739{
7740 bfd_vma from_offset, source_address, dest_address;
7741 asection *sec;
7742 int i;
7743
7744 if (!r_reloc_is_defined (r_rel))
7745 return FALSE;
7746
7747 sec = r_reloc_get_section (r_rel);
7748 from_offset = reloc[0].r_rel.target_offset;
7749
7750 for (i = 0; i < remaining_relocs; i++)
7751 {
7752 if (reloc[i].r_rel.target_offset != from_offset)
7753 break;
7754
7755 /* Ignore relocations that have been removed. */
7756 if (reloc[i].is_null)
7757 continue;
7758
7759 /* The original and new output section for these must be the same
7760 in order to coalesce. */
7761 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
7762 != sec->output_section)
7763 return FALSE;
7764
d638e0ac
BW
7765 /* Absolute literals in the same output section can always be
7766 combined. */
7767 if (reloc[i].is_abs_literal)
7768 continue;
7769
43cd72b9
BW
7770 /* A literal with no PC-relative relocations can be moved anywhere. */
7771 if (reloc[i].opnd != -1)
e0001a05
NC
7772 {
7773 /* Otherwise, check to see that it fits. */
7774 source_address = (reloc[i].source_sec->output_section->vma
7775 + reloc[i].source_sec->output_offset
7776 + reloc[i].r_rel.rela.r_offset);
7777 dest_address = (sec->output_section->vma
7778 + sec->output_offset
7779 + r_rel->target_offset);
7780
43cd72b9
BW
7781 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
7782 source_address, dest_address))
e0001a05
NC
7783 return FALSE;
7784 }
7785 }
7786
7787 return TRUE;
7788}
7789
7790
43cd72b9
BW
7791/* Move a literal to another literal location because it is
7792 the same as the other literal value. */
e0001a05 7793
43cd72b9 7794static bfd_boolean
7fa3d080
BW
7795coalesce_shared_literal (asection *sec,
7796 source_reloc *rel,
7797 property_table_entry *prop_table,
7798 int ptblsize,
7799 value_map *val_map)
e0001a05 7800{
43cd72b9
BW
7801 property_table_entry *entry;
7802 text_action *fa;
7803 property_table_entry *the_add_entry;
7804 int removed_diff;
7805 xtensa_relax_info *relax_info;
7806
7807 relax_info = get_xtensa_relax_info (sec);
7808 if (!relax_info)
7809 return FALSE;
7810
7811 entry = elf_xtensa_find_property_entry
7812 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
99ded152 7813 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
43cd72b9
BW
7814 return TRUE;
7815
7816 /* Mark that the literal will be coalesced. */
7817 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
7818
7819 text_action_add (&relax_info->action_list,
7820 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7821
7822 /* If the section is 4-byte aligned, do not add fill. */
7823 if (sec->alignment_power > 2)
e0001a05 7824 {
43cd72b9
BW
7825 int fill_extra_space;
7826 bfd_vma entry_sec_offset;
7827
7828 if (entry)
7829 entry_sec_offset = entry->address - sec->vma + entry->size;
7830 else
7831 entry_sec_offset = rel->r_rel.target_offset + 4;
7832
7833 /* If the literal range is at the end of the section,
7834 do not add fill. */
7835 fill_extra_space = 0;
7836 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7837 entry_sec_offset);
7838 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7839 fill_extra_space = the_add_entry->size;
7840
7841 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7842 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7843 -4, fill_extra_space);
7844 if (fa)
7845 adjust_fill_action (fa, removed_diff);
7846 else
7847 text_action_add (&relax_info->action_list,
7848 ta_fill, sec, entry_sec_offset, removed_diff);
e0001a05 7849 }
43cd72b9
BW
7850
7851 return TRUE;
7852}
7853
7854
7855/* Move a literal to another location. This may actually increase the
7856 total amount of space used because of alignments so we need to do
7857 this carefully. Also, it may make a branch go out of range. */
7858
7859static bfd_boolean
7fa3d080
BW
7860move_shared_literal (asection *sec,
7861 struct bfd_link_info *link_info,
7862 source_reloc *rel,
7863 property_table_entry *prop_table,
7864 int ptblsize,
7865 const r_reloc *target_loc,
7866 const literal_value *lit_value,
7867 section_cache_t *target_sec_cache)
43cd72b9
BW
7868{
7869 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
7870 text_action *fa, *target_fa;
7871 int removed_diff;
7872 xtensa_relax_info *relax_info, *target_relax_info;
7873 asection *target_sec;
7874 ebb_t *ebb;
7875 ebb_constraint ebb_table;
7876 bfd_boolean relocs_fit;
7877
7878 /* If this routine always returns FALSE, the literals that cannot be
7879 coalesced will not be moved. */
7880 if (elf32xtensa_no_literal_movement)
7881 return FALSE;
7882
7883 relax_info = get_xtensa_relax_info (sec);
7884 if (!relax_info)
7885 return FALSE;
7886
7887 target_sec = r_reloc_get_section (target_loc);
7888 target_relax_info = get_xtensa_relax_info (target_sec);
7889
7890 /* Literals to undefined sections may not be moved because they
7891 must report an error. */
7892 if (bfd_is_und_section (target_sec))
7893 return FALSE;
7894
7895 src_entry = elf_xtensa_find_property_entry
7896 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7897
7898 if (!section_cache_section (target_sec_cache, target_sec, link_info))
7899 return FALSE;
7900
7901 target_entry = elf_xtensa_find_property_entry
7902 (target_sec_cache->ptbl, target_sec_cache->pte_count,
7903 target_sec->vma + target_loc->target_offset);
7904
7905 if (!target_entry)
7906 return FALSE;
7907
7908 /* Make sure that we have not broken any branches. */
7909 relocs_fit = FALSE;
7910
7911 init_ebb_constraint (&ebb_table);
7912 ebb = &ebb_table.ebb;
7913 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
7914 target_sec_cache->content_length,
7915 target_sec_cache->ptbl, target_sec_cache->pte_count,
7916 target_sec_cache->relocs, target_sec_cache->reloc_count);
7917
7918 /* Propose to add 4 bytes + worst-case alignment size increase to
7919 destination. */
7920 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
7921 ta_fill, target_loc->target_offset,
7922 -4 - (1 << target_sec->alignment_power), TRUE);
7923
7924 /* Check all of the PC-relative relocations to make sure they still fit. */
7925 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
7926 target_sec_cache->contents,
7927 target_sec_cache->relocs,
cb337148 7928 &ebb_table, NULL);
43cd72b9
BW
7929
7930 if (!relocs_fit)
7931 return FALSE;
7932
7933 text_action_add_literal (&target_relax_info->action_list,
7934 ta_add_literal, target_loc, lit_value, -4);
7935
7936 if (target_sec->alignment_power > 2 && target_entry != src_entry)
7937 {
7938 /* May need to add or remove some fill to maintain alignment. */
7939 int fill_extra_space;
7940 bfd_vma entry_sec_offset;
7941
7942 entry_sec_offset =
7943 target_entry->address - target_sec->vma + target_entry->size;
7944
7945 /* If the literal range is at the end of the section,
7946 do not add fill. */
7947 fill_extra_space = 0;
7948 the_add_entry =
7949 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
7950 target_sec_cache->pte_count,
7951 entry_sec_offset);
7952 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7953 fill_extra_space = the_add_entry->size;
7954
7955 target_fa = find_fill_action (&target_relax_info->action_list,
7956 target_sec, entry_sec_offset);
7957 removed_diff = compute_removed_action_diff (target_fa, target_sec,
7958 entry_sec_offset, 4,
7959 fill_extra_space);
7960 if (target_fa)
7961 adjust_fill_action (target_fa, removed_diff);
7962 else
7963 text_action_add (&target_relax_info->action_list,
7964 ta_fill, target_sec, entry_sec_offset, removed_diff);
7965 }
7966
7967 /* Mark that the literal will be moved to the new location. */
7968 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
7969
7970 /* Remove the literal. */
7971 text_action_add (&relax_info->action_list,
7972 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7973
7974 /* If the section is 4-byte aligned, do not add fill. */
7975 if (sec->alignment_power > 2 && target_entry != src_entry)
7976 {
7977 int fill_extra_space;
7978 bfd_vma entry_sec_offset;
7979
7980 if (src_entry)
7981 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
7982 else
7983 entry_sec_offset = rel->r_rel.target_offset+4;
7984
7985 /* If the literal range is at the end of the section,
7986 do not add fill. */
7987 fill_extra_space = 0;
7988 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7989 entry_sec_offset);
7990 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7991 fill_extra_space = the_add_entry->size;
7992
7993 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7994 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7995 -4, fill_extra_space);
7996 if (fa)
7997 adjust_fill_action (fa, removed_diff);
7998 else
7999 text_action_add (&relax_info->action_list,
8000 ta_fill, sec, entry_sec_offset, removed_diff);
8001 }
8002
8003 return TRUE;
e0001a05
NC
8004}
8005
8006\f
8007/* Second relaxation pass. */
8008
8009/* Modify all of the relocations to point to the right spot, and if this
8010 is a relaxable section, delete the unwanted literals and fix the
43cd72b9 8011 section size. */
e0001a05 8012
43cd72b9 8013bfd_boolean
7fa3d080 8014relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
e0001a05
NC
8015{
8016 Elf_Internal_Rela *internal_relocs;
8017 xtensa_relax_info *relax_info;
8018 bfd_byte *contents;
8019 bfd_boolean ok = TRUE;
8020 unsigned i;
43cd72b9
BW
8021 bfd_boolean rv = FALSE;
8022 bfd_boolean virtual_action;
8023 bfd_size_type sec_size;
e0001a05 8024
43cd72b9 8025 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
8026 relax_info = get_xtensa_relax_info (sec);
8027 BFD_ASSERT (relax_info);
8028
43cd72b9
BW
8029 /* First translate any of the fixes that have been added already. */
8030 translate_section_fixes (sec);
8031
e0001a05
NC
8032 /* Handle property sections (e.g., literal tables) specially. */
8033 if (xtensa_is_property_section (sec))
8034 {
8035 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
8036 return relax_property_section (abfd, sec, link_info);
8037 }
8038
43cd72b9
BW
8039 internal_relocs = retrieve_internal_relocs (abfd, sec,
8040 link_info->keep_memory);
8041 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8042 if (contents == NULL && sec_size != 0)
8043 {
8044 ok = FALSE;
8045 goto error_return;
8046 }
8047
8048 if (internal_relocs)
8049 {
8050 for (i = 0; i < sec->reloc_count; i++)
8051 {
8052 Elf_Internal_Rela *irel;
8053 xtensa_relax_info *target_relax_info;
8054 bfd_vma source_offset, old_source_offset;
8055 r_reloc r_rel;
8056 unsigned r_type;
8057 asection *target_sec;
8058
8059 /* Locally change the source address.
8060 Translate the target to the new target address.
8061 If it points to this section and has been removed,
8062 NULLify it.
8063 Write it back. */
8064
8065 irel = &internal_relocs[i];
8066 source_offset = irel->r_offset;
8067 old_source_offset = source_offset;
8068
8069 r_type = ELF32_R_TYPE (irel->r_info);
8070 r_reloc_init (&r_rel, abfd, irel, contents,
8071 bfd_get_section_limit (abfd, sec));
8072
8073 /* If this section could have changed then we may need to
8074 change the relocation's offset. */
8075
8076 if (relax_info->is_relaxable_literal_section
8077 || relax_info->is_relaxable_asm_section)
8078 {
9b7f5d20
BW
8079 pin_internal_relocs (sec, internal_relocs);
8080
43cd72b9
BW
8081 if (r_type != R_XTENSA_NONE
8082 && find_removed_literal (&relax_info->removed_list,
8083 irel->r_offset))
8084 {
8085 /* Remove this relocation. */
8086 if (elf_hash_table (link_info)->dynamic_sections_created)
8087 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8088 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8089 irel->r_offset = offset_with_removed_text
8090 (&relax_info->action_list, irel->r_offset);
43cd72b9
BW
8091 continue;
8092 }
8093
8094 if (r_type == R_XTENSA_ASM_SIMPLIFY)
8095 {
8096 text_action *action =
8097 find_insn_action (&relax_info->action_list,
8098 irel->r_offset);
8099 if (action && (action->action == ta_convert_longcall
8100 || action->action == ta_remove_longcall))
8101 {
8102 bfd_reloc_status_type retval;
8103 char *error_message = NULL;
8104
8105 retval = contract_asm_expansion (contents, sec_size,
8106 irel, &error_message);
8107 if (retval != bfd_reloc_ok)
8108 {
8109 (*link_info->callbacks->reloc_dangerous)
8110 (link_info, error_message, abfd, sec,
8111 irel->r_offset);
8112 goto error_return;
8113 }
8114 /* Update the action so that the code that moves
8115 the contents will do the right thing. */
8116 if (action->action == ta_remove_longcall)
8117 action->action = ta_remove_insn;
8118 else
8119 action->action = ta_none;
8120 /* Refresh the info in the r_rel. */
8121 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8122 r_type = ELF32_R_TYPE (irel->r_info);
8123 }
8124 }
8125
8126 source_offset = offset_with_removed_text
8127 (&relax_info->action_list, irel->r_offset);
8128 irel->r_offset = source_offset;
8129 }
8130
8131 /* If the target section could have changed then
8132 we may need to change the relocation's target offset. */
8133
8134 target_sec = r_reloc_get_section (&r_rel);
43cd72b9 8135
ae326da8
BW
8136 /* For a reference to a discarded section from a DWARF section,
8137 i.e., where action_discarded is PRETEND, the symbol will
8138 eventually be modified to refer to the kept section (at least if
8139 the kept and discarded sections are the same size). Anticipate
8140 that here and adjust things accordingly. */
8141 if (! elf_xtensa_ignore_discarded_relocs (sec)
8142 && elf_xtensa_action_discarded (sec) == PRETEND
8143 && sec->sec_info_type != ELF_INFO_TYPE_STABS
8144 && target_sec != NULL
8145 && elf_discarded_section (target_sec))
8146 {
8147 /* It would be natural to call _bfd_elf_check_kept_section
8148 here, but it's not exported from elflink.c. It's also a
8149 fairly expensive check. Adjusting the relocations to the
8150 discarded section is fairly harmless; it will only adjust
8151 some addends and difference values. If it turns out that
8152 _bfd_elf_check_kept_section fails later, it won't matter,
8153 so just compare the section names to find the right group
8154 member. */
8155 asection *kept = target_sec->kept_section;
8156 if (kept != NULL)
8157 {
8158 if ((kept->flags & SEC_GROUP) != 0)
8159 {
8160 asection *first = elf_next_in_group (kept);
8161 asection *s = first;
8162
8163 kept = NULL;
8164 while (s != NULL)
8165 {
8166 if (strcmp (s->name, target_sec->name) == 0)
8167 {
8168 kept = s;
8169 break;
8170 }
8171 s = elf_next_in_group (s);
8172 if (s == first)
8173 break;
8174 }
8175 }
8176 }
8177 if (kept != NULL
8178 && ((target_sec->rawsize != 0
8179 ? target_sec->rawsize : target_sec->size)
8180 == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
8181 target_sec = kept;
8182 }
8183
8184 target_relax_info = get_xtensa_relax_info (target_sec);
43cd72b9
BW
8185 if (target_relax_info
8186 && (target_relax_info->is_relaxable_literal_section
8187 || target_relax_info->is_relaxable_asm_section))
8188 {
8189 r_reloc new_reloc;
9b7f5d20 8190 target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
43cd72b9
BW
8191
8192 if (r_type == R_XTENSA_DIFF8
8193 || r_type == R_XTENSA_DIFF16
8194 || r_type == R_XTENSA_DIFF32)
8195 {
8196 bfd_vma diff_value = 0, new_end_offset, diff_mask = 0;
8197
8198 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
8199 {
8200 (*link_info->callbacks->reloc_dangerous)
8201 (link_info, _("invalid relocation address"),
8202 abfd, sec, old_source_offset);
8203 goto error_return;
8204 }
8205
8206 switch (r_type)
8207 {
8208 case R_XTENSA_DIFF8:
8209 diff_value =
8210 bfd_get_8 (abfd, &contents[old_source_offset]);
8211 break;
8212 case R_XTENSA_DIFF16:
8213 diff_value =
8214 bfd_get_16 (abfd, &contents[old_source_offset]);
8215 break;
8216 case R_XTENSA_DIFF32:
8217 diff_value =
8218 bfd_get_32 (abfd, &contents[old_source_offset]);
8219 break;
8220 }
8221
8222 new_end_offset = offset_with_removed_text
8223 (&target_relax_info->action_list,
8224 r_rel.target_offset + diff_value);
8225 diff_value = new_end_offset - new_reloc.target_offset;
8226
8227 switch (r_type)
8228 {
8229 case R_XTENSA_DIFF8:
8230 diff_mask = 0xff;
8231 bfd_put_8 (abfd, diff_value,
8232 &contents[old_source_offset]);
8233 break;
8234 case R_XTENSA_DIFF16:
8235 diff_mask = 0xffff;
8236 bfd_put_16 (abfd, diff_value,
8237 &contents[old_source_offset]);
8238 break;
8239 case R_XTENSA_DIFF32:
8240 diff_mask = 0xffffffff;
8241 bfd_put_32 (abfd, diff_value,
8242 &contents[old_source_offset]);
8243 break;
8244 }
8245
8246 /* Check for overflow. */
8247 if ((diff_value & ~diff_mask) != 0)
8248 {
8249 (*link_info->callbacks->reloc_dangerous)
8250 (link_info, _("overflow after relaxation"),
8251 abfd, sec, old_source_offset);
8252 goto error_return;
8253 }
8254
8255 pin_contents (sec, contents);
8256 }
dc96b90a
BW
8257
8258 /* If the relocation still references a section in the same
8259 input file, modify the relocation directly instead of
8260 adding a "fix" record. */
8261 if (target_sec->owner == abfd)
8262 {
8263 unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
8264 irel->r_info = ELF32_R_INFO (r_symndx, r_type);
8265 irel->r_addend = new_reloc.rela.r_addend;
8266 pin_internal_relocs (sec, internal_relocs);
8267 }
9b7f5d20
BW
8268 else
8269 {
dc96b90a
BW
8270 bfd_vma addend_displacement;
8271 reloc_bfd_fix *fix;
8272
8273 addend_displacement =
8274 new_reloc.target_offset + new_reloc.virtual_offset;
8275 fix = reloc_bfd_fix_init (sec, source_offset, r_type,
8276 target_sec,
8277 addend_displacement, TRUE);
8278 add_fix (sec, fix);
9b7f5d20 8279 }
43cd72b9 8280 }
43cd72b9
BW
8281 }
8282 }
8283
8284 if ((relax_info->is_relaxable_literal_section
8285 || relax_info->is_relaxable_asm_section)
8286 && relax_info->action_list.head)
8287 {
8288 /* Walk through the planned actions and build up a table
8289 of move, copy and fill records. Use the move, copy and
8290 fill records to perform the actions once. */
8291
43cd72b9
BW
8292 int removed = 0;
8293 bfd_size_type final_size, copy_size, orig_insn_size;
8294 bfd_byte *scratch = NULL;
8295 bfd_byte *dup_contents = NULL;
a3ef2d63 8296 bfd_size_type orig_size = sec->size;
43cd72b9
BW
8297 bfd_vma orig_dot = 0;
8298 bfd_vma orig_dot_copied = 0; /* Byte copied already from
8299 orig dot in physical memory. */
8300 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
8301 bfd_vma dup_dot = 0;
8302
8303 text_action *action = relax_info->action_list.head;
8304
8305 final_size = sec->size;
8306 for (action = relax_info->action_list.head; action;
8307 action = action->next)
8308 {
8309 final_size -= action->removed_bytes;
8310 }
8311
8312 scratch = (bfd_byte *) bfd_zmalloc (final_size);
8313 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
8314
8315 /* The dot is the current fill location. */
8316#if DEBUG
8317 print_action_list (stderr, &relax_info->action_list);
8318#endif
8319
8320 for (action = relax_info->action_list.head; action;
8321 action = action->next)
8322 {
8323 virtual_action = FALSE;
8324 if (action->offset > orig_dot)
8325 {
8326 orig_dot += orig_dot_copied;
8327 orig_dot_copied = 0;
8328 orig_dot_vo = 0;
8329 /* Out of the virtual world. */
8330 }
8331
8332 if (action->offset > orig_dot)
8333 {
8334 copy_size = action->offset - orig_dot;
8335 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8336 orig_dot += copy_size;
8337 dup_dot += copy_size;
8338 BFD_ASSERT (action->offset == orig_dot);
8339 }
8340 else if (action->offset < orig_dot)
8341 {
8342 if (action->action == ta_fill
8343 && action->offset - action->removed_bytes == orig_dot)
8344 {
8345 /* This is OK because the fill only effects the dup_dot. */
8346 }
8347 else if (action->action == ta_add_literal)
8348 {
8349 /* TBD. Might need to handle this. */
8350 }
8351 }
8352 if (action->offset == orig_dot)
8353 {
8354 if (action->virtual_offset > orig_dot_vo)
8355 {
8356 if (orig_dot_vo == 0)
8357 {
8358 /* Need to copy virtual_offset bytes. Probably four. */
8359 copy_size = action->virtual_offset - orig_dot_vo;
8360 memmove (&dup_contents[dup_dot],
8361 &contents[orig_dot], copy_size);
8362 orig_dot_copied = copy_size;
8363 dup_dot += copy_size;
8364 }
8365 virtual_action = TRUE;
8366 }
8367 else
8368 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
8369 }
8370 switch (action->action)
8371 {
8372 case ta_remove_literal:
8373 case ta_remove_insn:
8374 BFD_ASSERT (action->removed_bytes >= 0);
8375 orig_dot += action->removed_bytes;
8376 break;
8377
8378 case ta_narrow_insn:
8379 orig_insn_size = 3;
8380 copy_size = 2;
8381 memmove (scratch, &contents[orig_dot], orig_insn_size);
8382 BFD_ASSERT (action->removed_bytes == 1);
64b607e6 8383 rv = narrow_instruction (scratch, final_size, 0);
43cd72b9
BW
8384 BFD_ASSERT (rv);
8385 memmove (&dup_contents[dup_dot], scratch, copy_size);
8386 orig_dot += orig_insn_size;
8387 dup_dot += copy_size;
8388 break;
8389
8390 case ta_fill:
8391 if (action->removed_bytes >= 0)
8392 orig_dot += action->removed_bytes;
8393 else
8394 {
8395 /* Already zeroed in dup_contents. Just bump the
8396 counters. */
8397 dup_dot += (-action->removed_bytes);
8398 }
8399 break;
8400
8401 case ta_none:
8402 BFD_ASSERT (action->removed_bytes == 0);
8403 break;
8404
8405 case ta_convert_longcall:
8406 case ta_remove_longcall:
8407 /* These will be removed or converted before we get here. */
8408 BFD_ASSERT (0);
8409 break;
8410
8411 case ta_widen_insn:
8412 orig_insn_size = 2;
8413 copy_size = 3;
8414 memmove (scratch, &contents[orig_dot], orig_insn_size);
8415 BFD_ASSERT (action->removed_bytes == -1);
64b607e6 8416 rv = widen_instruction (scratch, final_size, 0);
43cd72b9
BW
8417 BFD_ASSERT (rv);
8418 memmove (&dup_contents[dup_dot], scratch, copy_size);
8419 orig_dot += orig_insn_size;
8420 dup_dot += copy_size;
8421 break;
8422
8423 case ta_add_literal:
8424 orig_insn_size = 0;
8425 copy_size = 4;
8426 BFD_ASSERT (action->removed_bytes == -4);
8427 /* TBD -- place the literal value here and insert
8428 into the table. */
8429 memset (&dup_contents[dup_dot], 0, 4);
8430 pin_internal_relocs (sec, internal_relocs);
8431 pin_contents (sec, contents);
8432
8433 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
8434 relax_info, &internal_relocs, &action->value))
8435 goto error_return;
8436
8437 if (virtual_action)
8438 orig_dot_vo += copy_size;
8439
8440 orig_dot += orig_insn_size;
8441 dup_dot += copy_size;
8442 break;
8443
8444 default:
8445 /* Not implemented yet. */
8446 BFD_ASSERT (0);
8447 break;
8448 }
8449
43cd72b9
BW
8450 removed += action->removed_bytes;
8451 BFD_ASSERT (dup_dot <= final_size);
8452 BFD_ASSERT (orig_dot <= orig_size);
8453 }
8454
8455 orig_dot += orig_dot_copied;
8456 orig_dot_copied = 0;
8457
8458 if (orig_dot != orig_size)
8459 {
8460 copy_size = orig_size - orig_dot;
8461 BFD_ASSERT (orig_size > orig_dot);
8462 BFD_ASSERT (dup_dot + copy_size == final_size);
8463 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8464 orig_dot += copy_size;
8465 dup_dot += copy_size;
8466 }
8467 BFD_ASSERT (orig_size == orig_dot);
8468 BFD_ASSERT (final_size == dup_dot);
8469
8470 /* Move the dup_contents back. */
8471 if (final_size > orig_size)
8472 {
8473 /* Contents need to be reallocated. Swap the dup_contents into
8474 contents. */
8475 sec->contents = dup_contents;
8476 free (contents);
8477 contents = dup_contents;
8478 pin_contents (sec, contents);
8479 }
8480 else
8481 {
8482 BFD_ASSERT (final_size <= orig_size);
8483 memset (contents, 0, orig_size);
8484 memcpy (contents, dup_contents, final_size);
8485 free (dup_contents);
8486 }
8487 free (scratch);
8488 pin_contents (sec, contents);
8489
a3ef2d63
BW
8490 if (sec->rawsize == 0)
8491 sec->rawsize = sec->size;
43cd72b9
BW
8492 sec->size = final_size;
8493 }
8494
8495 error_return:
8496 release_internal_relocs (sec, internal_relocs);
8497 release_contents (sec, contents);
8498 return ok;
8499}
8500
8501
8502static bfd_boolean
7fa3d080 8503translate_section_fixes (asection *sec)
43cd72b9
BW
8504{
8505 xtensa_relax_info *relax_info;
8506 reloc_bfd_fix *r;
8507
8508 relax_info = get_xtensa_relax_info (sec);
8509 if (!relax_info)
8510 return TRUE;
8511
8512 for (r = relax_info->fix_list; r != NULL; r = r->next)
8513 if (!translate_reloc_bfd_fix (r))
8514 return FALSE;
e0001a05 8515
43cd72b9
BW
8516 return TRUE;
8517}
e0001a05 8518
e0001a05 8519
43cd72b9
BW
8520/* Translate a fix given the mapping in the relax info for the target
8521 section. If it has already been translated, no work is required. */
e0001a05 8522
43cd72b9 8523static bfd_boolean
7fa3d080 8524translate_reloc_bfd_fix (reloc_bfd_fix *fix)
43cd72b9
BW
8525{
8526 reloc_bfd_fix new_fix;
8527 asection *sec;
8528 xtensa_relax_info *relax_info;
8529 removed_literal *removed;
8530 bfd_vma new_offset, target_offset;
e0001a05 8531
43cd72b9
BW
8532 if (fix->translated)
8533 return TRUE;
e0001a05 8534
43cd72b9
BW
8535 sec = fix->target_sec;
8536 target_offset = fix->target_offset;
e0001a05 8537
43cd72b9
BW
8538 relax_info = get_xtensa_relax_info (sec);
8539 if (!relax_info)
8540 {
8541 fix->translated = TRUE;
8542 return TRUE;
8543 }
e0001a05 8544
43cd72b9 8545 new_fix = *fix;
e0001a05 8546
43cd72b9
BW
8547 /* The fix does not need to be translated if the section cannot change. */
8548 if (!relax_info->is_relaxable_literal_section
8549 && !relax_info->is_relaxable_asm_section)
8550 {
8551 fix->translated = TRUE;
8552 return TRUE;
8553 }
e0001a05 8554
43cd72b9
BW
8555 /* If the literal has been moved and this relocation was on an
8556 opcode, then the relocation should move to the new literal
8557 location. Otherwise, the relocation should move within the
8558 section. */
8559
8560 removed = FALSE;
8561 if (is_operand_relocation (fix->src_type))
8562 {
8563 /* Check if the original relocation is against a literal being
8564 removed. */
8565 removed = find_removed_literal (&relax_info->removed_list,
8566 target_offset);
e0001a05
NC
8567 }
8568
43cd72b9 8569 if (removed)
e0001a05 8570 {
43cd72b9 8571 asection *new_sec;
e0001a05 8572
43cd72b9
BW
8573 /* The fact that there is still a relocation to this literal indicates
8574 that the literal is being coalesced, not simply removed. */
8575 BFD_ASSERT (removed->to.abfd != NULL);
e0001a05 8576
43cd72b9
BW
8577 /* This was moved to some other address (possibly another section). */
8578 new_sec = r_reloc_get_section (&removed->to);
8579 if (new_sec != sec)
e0001a05 8580 {
43cd72b9
BW
8581 sec = new_sec;
8582 relax_info = get_xtensa_relax_info (sec);
8583 if (!relax_info ||
8584 (!relax_info->is_relaxable_literal_section
8585 && !relax_info->is_relaxable_asm_section))
e0001a05 8586 {
43cd72b9
BW
8587 target_offset = removed->to.target_offset;
8588 new_fix.target_sec = new_sec;
8589 new_fix.target_offset = target_offset;
8590 new_fix.translated = TRUE;
8591 *fix = new_fix;
8592 return TRUE;
e0001a05 8593 }
e0001a05 8594 }
43cd72b9
BW
8595 target_offset = removed->to.target_offset;
8596 new_fix.target_sec = new_sec;
e0001a05 8597 }
43cd72b9
BW
8598
8599 /* The target address may have been moved within its section. */
8600 new_offset = offset_with_removed_text (&relax_info->action_list,
8601 target_offset);
8602
8603 new_fix.target_offset = new_offset;
8604 new_fix.target_offset = new_offset;
8605 new_fix.translated = TRUE;
8606 *fix = new_fix;
8607 return TRUE;
e0001a05
NC
8608}
8609
8610
8611/* Fix up a relocation to take account of removed literals. */
8612
9b7f5d20
BW
8613static asection *
8614translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
e0001a05 8615{
e0001a05
NC
8616 xtensa_relax_info *relax_info;
8617 removed_literal *removed;
9b7f5d20
BW
8618 bfd_vma target_offset, base_offset;
8619 text_action *act;
e0001a05
NC
8620
8621 *new_rel = *orig_rel;
8622
8623 if (!r_reloc_is_defined (orig_rel))
9b7f5d20 8624 return sec ;
e0001a05
NC
8625
8626 relax_info = get_xtensa_relax_info (sec);
9b7f5d20
BW
8627 BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
8628 || relax_info->is_relaxable_asm_section));
e0001a05 8629
43cd72b9
BW
8630 target_offset = orig_rel->target_offset;
8631
8632 removed = FALSE;
8633 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
8634 {
8635 /* Check if the original relocation is against a literal being
8636 removed. */
8637 removed = find_removed_literal (&relax_info->removed_list,
8638 target_offset);
8639 }
8640 if (removed && removed->to.abfd)
e0001a05
NC
8641 {
8642 asection *new_sec;
8643
8644 /* The fact that there is still a relocation to this literal indicates
8645 that the literal is being coalesced, not simply removed. */
8646 BFD_ASSERT (removed->to.abfd != NULL);
8647
43cd72b9
BW
8648 /* This was moved to some other address
8649 (possibly in another section). */
e0001a05
NC
8650 *new_rel = removed->to;
8651 new_sec = r_reloc_get_section (new_rel);
43cd72b9 8652 if (new_sec != sec)
e0001a05
NC
8653 {
8654 sec = new_sec;
8655 relax_info = get_xtensa_relax_info (sec);
43cd72b9
BW
8656 if (!relax_info
8657 || (!relax_info->is_relaxable_literal_section
8658 && !relax_info->is_relaxable_asm_section))
9b7f5d20 8659 return sec;
e0001a05 8660 }
43cd72b9 8661 target_offset = new_rel->target_offset;
e0001a05
NC
8662 }
8663
9b7f5d20
BW
8664 /* Find the base offset of the reloc symbol, excluding any addend from the
8665 reloc or from the section contents (for a partial_inplace reloc). Then
8666 find the adjusted values of the offsets due to relaxation. The base
8667 offset is needed to determine the change to the reloc's addend; the reloc
8668 addend should not be adjusted due to relaxations located before the base
8669 offset. */
8670
8671 base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
8672 act = relax_info->action_list.head;
8673 if (base_offset <= target_offset)
8674 {
8675 int base_removed = removed_by_actions (&act, base_offset, FALSE);
8676 int addend_removed = removed_by_actions (&act, target_offset, FALSE);
8677 new_rel->target_offset = target_offset - base_removed - addend_removed;
8678 new_rel->rela.r_addend -= addend_removed;
8679 }
8680 else
8681 {
8682 /* Handle a negative addend. The base offset comes first. */
8683 int tgt_removed = removed_by_actions (&act, target_offset, FALSE);
8684 int addend_removed = removed_by_actions (&act, base_offset, FALSE);
8685 new_rel->target_offset = target_offset - tgt_removed;
8686 new_rel->rela.r_addend += addend_removed;
8687 }
e0001a05 8688
9b7f5d20 8689 return sec;
e0001a05
NC
8690}
8691
8692
8693/* For dynamic links, there may be a dynamic relocation for each
8694 literal. The number of dynamic relocations must be computed in
8695 size_dynamic_sections, which occurs before relaxation. When a
8696 literal is removed, this function checks if there is a corresponding
8697 dynamic relocation and shrinks the size of the appropriate dynamic
8698 relocation section accordingly. At this point, the contents of the
8699 dynamic relocation sections have not yet been filled in, so there's
8700 nothing else that needs to be done. */
8701
8702static void
7fa3d080
BW
8703shrink_dynamic_reloc_sections (struct bfd_link_info *info,
8704 bfd *abfd,
8705 asection *input_section,
8706 Elf_Internal_Rela *rel)
e0001a05 8707{
f0e6fdb2 8708 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
8709 Elf_Internal_Shdr *symtab_hdr;
8710 struct elf_link_hash_entry **sym_hashes;
8711 unsigned long r_symndx;
8712 int r_type;
8713 struct elf_link_hash_entry *h;
8714 bfd_boolean dynamic_symbol;
8715
f0e6fdb2 8716 htab = elf_xtensa_hash_table (info);
e0001a05
NC
8717 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8718 sym_hashes = elf_sym_hashes (abfd);
8719
8720 r_type = ELF32_R_TYPE (rel->r_info);
8721 r_symndx = ELF32_R_SYM (rel->r_info);
8722
8723 if (r_symndx < symtab_hdr->sh_info)
8724 h = NULL;
8725 else
8726 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8727
4608f3d9 8728 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
e0001a05
NC
8729
8730 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
8731 && (input_section->flags & SEC_ALLOC) != 0
8732 && (dynamic_symbol || info->shared))
8733 {
e0001a05
NC
8734 asection *srel;
8735 bfd_boolean is_plt = FALSE;
8736
e0001a05
NC
8737 if (dynamic_symbol && r_type == R_XTENSA_PLT)
8738 {
f0e6fdb2 8739 srel = htab->srelplt;
e0001a05
NC
8740 is_plt = TRUE;
8741 }
8742 else
f0e6fdb2 8743 srel = htab->srelgot;
e0001a05
NC
8744
8745 /* Reduce size of the .rela.* section by one reloc. */
e0001a05 8746 BFD_ASSERT (srel != NULL);
eea6121a
AM
8747 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
8748 srel->size -= sizeof (Elf32_External_Rela);
e0001a05
NC
8749
8750 if (is_plt)
8751 {
8752 asection *splt, *sgotplt, *srelgot;
8753 int reloc_index, chunk;
8754
8755 /* Find the PLT reloc index of the entry being removed. This
8756 is computed from the size of ".rela.plt". It is needed to
8757 figure out which PLT chunk to resize. Usually "last index
8758 = size - 1" since the index starts at zero, but in this
8759 context, the size has just been decremented so there's no
8760 need to subtract one. */
eea6121a 8761 reloc_index = srel->size / sizeof (Elf32_External_Rela);
e0001a05
NC
8762
8763 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
f0e6fdb2
BW
8764 splt = elf_xtensa_get_plt_section (info, chunk);
8765 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
8766 BFD_ASSERT (splt != NULL && sgotplt != NULL);
8767
8768 /* Check if an entire PLT chunk has just been eliminated. */
8769 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
8770 {
8771 /* The two magic GOT entries for that chunk can go away. */
f0e6fdb2 8772 srelgot = htab->srelgot;
e0001a05
NC
8773 BFD_ASSERT (srelgot != NULL);
8774 srelgot->reloc_count -= 2;
eea6121a
AM
8775 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
8776 sgotplt->size -= 8;
e0001a05
NC
8777
8778 /* There should be only one entry left (and it will be
8779 removed below). */
eea6121a
AM
8780 BFD_ASSERT (sgotplt->size == 4);
8781 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
e0001a05
NC
8782 }
8783
eea6121a
AM
8784 BFD_ASSERT (sgotplt->size >= 4);
8785 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
e0001a05 8786
eea6121a
AM
8787 sgotplt->size -= 4;
8788 splt->size -= PLT_ENTRY_SIZE;
e0001a05
NC
8789 }
8790 }
8791}
8792
8793
43cd72b9
BW
8794/* Take an r_rel and move it to another section. This usually
8795 requires extending the interal_relocation array and pinning it. If
8796 the original r_rel is from the same BFD, we can complete this here.
8797 Otherwise, we add a fix record to let the final link fix the
8798 appropriate address. Contents and internal relocations for the
8799 section must be pinned after calling this routine. */
8800
8801static bfd_boolean
7fa3d080
BW
8802move_literal (bfd *abfd,
8803 struct bfd_link_info *link_info,
8804 asection *sec,
8805 bfd_vma offset,
8806 bfd_byte *contents,
8807 xtensa_relax_info *relax_info,
8808 Elf_Internal_Rela **internal_relocs_p,
8809 const literal_value *lit)
43cd72b9
BW
8810{
8811 Elf_Internal_Rela *new_relocs = NULL;
8812 size_t new_relocs_count = 0;
8813 Elf_Internal_Rela this_rela;
8814 const r_reloc *r_rel;
8815
8816 r_rel = &lit->r_rel;
8817 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
8818
8819 if (r_reloc_is_const (r_rel))
8820 bfd_put_32 (abfd, lit->value, contents + offset);
8821 else
8822 {
8823 int r_type;
8824 unsigned i;
8825 asection *target_sec;
8826 reloc_bfd_fix *fix;
8827 unsigned insert_at;
8828
8829 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
8830 target_sec = r_reloc_get_section (r_rel);
8831
8832 /* This is the difficult case. We have to create a fix up. */
8833 this_rela.r_offset = offset;
8834 this_rela.r_info = ELF32_R_INFO (0, r_type);
8835 this_rela.r_addend =
8836 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
8837 bfd_put_32 (abfd, lit->value, contents + offset);
8838
8839 /* Currently, we cannot move relocations during a relocatable link. */
8840 BFD_ASSERT (!link_info->relocatable);
0f5f1638 8841 fix = reloc_bfd_fix_init (sec, offset, r_type,
43cd72b9
BW
8842 r_reloc_get_section (r_rel),
8843 r_rel->target_offset + r_rel->virtual_offset,
8844 FALSE);
8845 /* We also need to mark that relocations are needed here. */
8846 sec->flags |= SEC_RELOC;
8847
8848 translate_reloc_bfd_fix (fix);
8849 /* This fix has not yet been translated. */
8850 add_fix (sec, fix);
8851
8852 /* Add the relocation. If we have already allocated our own
8853 space for the relocations and we have room for more, then use
8854 it. Otherwise, allocate new space and move the literals. */
8855 insert_at = sec->reloc_count;
8856 for (i = 0; i < sec->reloc_count; ++i)
8857 {
8858 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
8859 {
8860 insert_at = i;
8861 break;
8862 }
8863 }
8864
8865 if (*internal_relocs_p != relax_info->allocated_relocs
8866 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
8867 {
8868 BFD_ASSERT (relax_info->allocated_relocs == NULL
8869 || sec->reloc_count == relax_info->relocs_count);
8870
8871 if (relax_info->allocated_relocs_count == 0)
8872 new_relocs_count = (sec->reloc_count + 2) * 2;
8873 else
8874 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
8875
8876 new_relocs = (Elf_Internal_Rela *)
8877 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
8878 if (!new_relocs)
8879 return FALSE;
8880
8881 /* We could handle this more quickly by finding the split point. */
8882 if (insert_at != 0)
8883 memcpy (new_relocs, *internal_relocs_p,
8884 insert_at * sizeof (Elf_Internal_Rela));
8885
8886 new_relocs[insert_at] = this_rela;
8887
8888 if (insert_at != sec->reloc_count)
8889 memcpy (new_relocs + insert_at + 1,
8890 (*internal_relocs_p) + insert_at,
8891 (sec->reloc_count - insert_at)
8892 * sizeof (Elf_Internal_Rela));
8893
8894 if (*internal_relocs_p != relax_info->allocated_relocs)
8895 {
8896 /* The first time we re-allocate, we can only free the
8897 old relocs if they were allocated with bfd_malloc.
8898 This is not true when keep_memory is in effect. */
8899 if (!link_info->keep_memory)
8900 free (*internal_relocs_p);
8901 }
8902 else
8903 free (*internal_relocs_p);
8904 relax_info->allocated_relocs = new_relocs;
8905 relax_info->allocated_relocs_count = new_relocs_count;
8906 elf_section_data (sec)->relocs = new_relocs;
8907 sec->reloc_count++;
8908 relax_info->relocs_count = sec->reloc_count;
8909 *internal_relocs_p = new_relocs;
8910 }
8911 else
8912 {
8913 if (insert_at != sec->reloc_count)
8914 {
8915 unsigned idx;
8916 for (idx = sec->reloc_count; idx > insert_at; idx--)
8917 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
8918 }
8919 (*internal_relocs_p)[insert_at] = this_rela;
8920 sec->reloc_count++;
8921 if (relax_info->allocated_relocs)
8922 relax_info->relocs_count = sec->reloc_count;
8923 }
8924 }
8925 return TRUE;
8926}
8927
8928
e0001a05
NC
8929/* This is similar to relax_section except that when a target is moved,
8930 we shift addresses up. We also need to modify the size. This
8931 algorithm does NOT allow for relocations into the middle of the
8932 property sections. */
8933
43cd72b9 8934static bfd_boolean
7fa3d080
BW
8935relax_property_section (bfd *abfd,
8936 asection *sec,
8937 struct bfd_link_info *link_info)
e0001a05
NC
8938{
8939 Elf_Internal_Rela *internal_relocs;
8940 bfd_byte *contents;
1d25768e 8941 unsigned i;
e0001a05 8942 bfd_boolean ok = TRUE;
43cd72b9
BW
8943 bfd_boolean is_full_prop_section;
8944 size_t last_zfill_target_offset = 0;
8945 asection *last_zfill_target_sec = NULL;
8946 bfd_size_type sec_size;
1d25768e 8947 bfd_size_type entry_size;
e0001a05 8948
43cd72b9 8949 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
8950 internal_relocs = retrieve_internal_relocs (abfd, sec,
8951 link_info->keep_memory);
8952 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 8953 if (contents == NULL && sec_size != 0)
e0001a05
NC
8954 {
8955 ok = FALSE;
8956 goto error_return;
8957 }
8958
1d25768e
BW
8959 is_full_prop_section = xtensa_is_proptable_section (sec);
8960 if (is_full_prop_section)
8961 entry_size = 12;
8962 else
8963 entry_size = 8;
43cd72b9
BW
8964
8965 if (internal_relocs)
e0001a05 8966 {
43cd72b9 8967 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
8968 {
8969 Elf_Internal_Rela *irel;
8970 xtensa_relax_info *target_relax_info;
e0001a05
NC
8971 unsigned r_type;
8972 asection *target_sec;
43cd72b9
BW
8973 literal_value val;
8974 bfd_byte *size_p, *flags_p;
e0001a05
NC
8975
8976 /* Locally change the source address.
8977 Translate the target to the new target address.
8978 If it points to this section and has been removed, MOVE IT.
8979 Also, don't forget to modify the associated SIZE at
8980 (offset + 4). */
8981
8982 irel = &internal_relocs[i];
8983 r_type = ELF32_R_TYPE (irel->r_info);
8984 if (r_type == R_XTENSA_NONE)
8985 continue;
8986
43cd72b9
BW
8987 /* Find the literal value. */
8988 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
8989 size_p = &contents[irel->r_offset + 4];
8990 flags_p = NULL;
8991 if (is_full_prop_section)
1d25768e
BW
8992 flags_p = &contents[irel->r_offset + 8];
8993 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
e0001a05 8994
43cd72b9 8995 target_sec = r_reloc_get_section (&val.r_rel);
e0001a05
NC
8996 target_relax_info = get_xtensa_relax_info (target_sec);
8997
8998 if (target_relax_info
43cd72b9
BW
8999 && (target_relax_info->is_relaxable_literal_section
9000 || target_relax_info->is_relaxable_asm_section ))
e0001a05
NC
9001 {
9002 /* Translate the relocation's destination. */
03669f1c
BW
9003 bfd_vma old_offset = val.r_rel.target_offset;
9004 bfd_vma new_offset;
e0001a05 9005 long old_size, new_size;
03669f1c
BW
9006 text_action *act = target_relax_info->action_list.head;
9007 new_offset = old_offset -
9008 removed_by_actions (&act, old_offset, FALSE);
e0001a05
NC
9009
9010 /* Assert that we are not out of bounds. */
43cd72b9 9011 old_size = bfd_get_32 (abfd, size_p);
03669f1c 9012 new_size = old_size;
43cd72b9
BW
9013
9014 if (old_size == 0)
9015 {
9016 /* Only the first zero-sized unreachable entry is
9017 allowed to expand. In this case the new offset
9018 should be the offset before the fill and the new
9019 size is the expansion size. For other zero-sized
9020 entries the resulting size should be zero with an
9021 offset before or after the fill address depending
9022 on whether the expanding unreachable entry
9023 preceeds it. */
03669f1c
BW
9024 if (last_zfill_target_sec == 0
9025 || last_zfill_target_sec != target_sec
9026 || last_zfill_target_offset != old_offset)
43cd72b9 9027 {
03669f1c
BW
9028 bfd_vma new_end_offset = new_offset;
9029
9030 /* Recompute the new_offset, but this time don't
9031 include any fill inserted by relaxation. */
9032 act = target_relax_info->action_list.head;
9033 new_offset = old_offset -
9034 removed_by_actions (&act, old_offset, TRUE);
43cd72b9
BW
9035
9036 /* If it is not unreachable and we have not yet
9037 seen an unreachable at this address, place it
9038 before the fill address. */
03669f1c
BW
9039 if (flags_p && (bfd_get_32 (abfd, flags_p)
9040 & XTENSA_PROP_UNREACHABLE) != 0)
43cd72b9 9041 {
03669f1c
BW
9042 new_size = new_end_offset - new_offset;
9043
43cd72b9 9044 last_zfill_target_sec = target_sec;
03669f1c 9045 last_zfill_target_offset = old_offset;
43cd72b9
BW
9046 }
9047 }
9048 }
9049 else
03669f1c
BW
9050 new_size -=
9051 removed_by_actions (&act, old_offset + old_size, TRUE);
43cd72b9 9052
e0001a05
NC
9053 if (new_size != old_size)
9054 {
9055 bfd_put_32 (abfd, new_size, size_p);
9056 pin_contents (sec, contents);
9057 }
43cd72b9 9058
03669f1c 9059 if (new_offset != old_offset)
e0001a05 9060 {
03669f1c 9061 bfd_vma diff = new_offset - old_offset;
e0001a05
NC
9062 irel->r_addend += diff;
9063 pin_internal_relocs (sec, internal_relocs);
9064 }
9065 }
9066 }
9067 }
9068
9069 /* Combine adjacent property table entries. This is also done in
9070 finish_dynamic_sections() but at that point it's too late to
9071 reclaim the space in the output section, so we do this twice. */
9072
43cd72b9 9073 if (internal_relocs && (!link_info->relocatable
1d25768e 9074 || xtensa_is_littable_section (sec)))
e0001a05
NC
9075 {
9076 Elf_Internal_Rela *last_irel = NULL;
1d25768e 9077 Elf_Internal_Rela *irel, *next_rel, *rel_end;
e0001a05 9078 int removed_bytes = 0;
1d25768e 9079 bfd_vma offset;
43cd72b9
BW
9080 flagword predef_flags;
9081
43cd72b9 9082 predef_flags = xtensa_get_property_predef_flags (sec);
e0001a05 9083
1d25768e 9084 /* Walk over memory and relocations at the same time.
e0001a05
NC
9085 This REQUIRES that the internal_relocs be sorted by offset. */
9086 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
9087 internal_reloc_compare);
e0001a05
NC
9088
9089 pin_internal_relocs (sec, internal_relocs);
9090 pin_contents (sec, contents);
9091
1d25768e
BW
9092 next_rel = internal_relocs;
9093 rel_end = internal_relocs + sec->reloc_count;
9094
a3ef2d63 9095 BFD_ASSERT (sec->size % entry_size == 0);
e0001a05 9096
a3ef2d63 9097 for (offset = 0; offset < sec->size; offset += entry_size)
e0001a05 9098 {
1d25768e 9099 Elf_Internal_Rela *offset_rel, *extra_rel;
e0001a05 9100 bfd_vma bytes_to_remove, size, actual_offset;
1d25768e 9101 bfd_boolean remove_this_rel;
43cd72b9 9102 flagword flags;
e0001a05 9103
1d25768e
BW
9104 /* Find the first relocation for the entry at the current offset.
9105 Adjust the offsets of any extra relocations for the previous
9106 entry. */
9107 offset_rel = NULL;
9108 if (next_rel)
9109 {
9110 for (irel = next_rel; irel < rel_end; irel++)
9111 {
9112 if ((irel->r_offset == offset
9113 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9114 || irel->r_offset > offset)
9115 {
9116 offset_rel = irel;
9117 break;
9118 }
9119 irel->r_offset -= removed_bytes;
1d25768e
BW
9120 }
9121 }
e0001a05 9122
1d25768e
BW
9123 /* Find the next relocation (if there are any left). */
9124 extra_rel = NULL;
9125 if (offset_rel)
e0001a05 9126 {
1d25768e 9127 for (irel = offset_rel + 1; irel < rel_end; irel++)
e0001a05 9128 {
1d25768e
BW
9129 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9130 {
9131 extra_rel = irel;
9132 break;
9133 }
e0001a05 9134 }
e0001a05
NC
9135 }
9136
1d25768e
BW
9137 /* Check if there are relocations on the current entry. There
9138 should usually be a relocation on the offset field. If there
9139 are relocations on the size or flags, then we can't optimize
9140 this entry. Also, find the next relocation to examine on the
9141 next iteration. */
9142 if (offset_rel)
e0001a05 9143 {
1d25768e 9144 if (offset_rel->r_offset >= offset + entry_size)
e0001a05 9145 {
1d25768e
BW
9146 next_rel = offset_rel;
9147 /* There are no relocations on the current entry, but we
9148 might still be able to remove it if the size is zero. */
9149 offset_rel = NULL;
9150 }
9151 else if (offset_rel->r_offset > offset
9152 || (extra_rel
9153 && extra_rel->r_offset < offset + entry_size))
9154 {
9155 /* There is a relocation on the size or flags, so we can't
9156 do anything with this entry. Continue with the next. */
9157 next_rel = offset_rel;
9158 continue;
9159 }
9160 else
9161 {
9162 BFD_ASSERT (offset_rel->r_offset == offset);
9163 offset_rel->r_offset -= removed_bytes;
9164 next_rel = offset_rel + 1;
e0001a05 9165 }
e0001a05 9166 }
1d25768e
BW
9167 else
9168 next_rel = NULL;
e0001a05 9169
1d25768e 9170 remove_this_rel = FALSE;
e0001a05
NC
9171 bytes_to_remove = 0;
9172 actual_offset = offset - removed_bytes;
9173 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
9174
43cd72b9
BW
9175 if (is_full_prop_section)
9176 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
9177 else
9178 flags = predef_flags;
9179
1d25768e
BW
9180 if (size == 0
9181 && (flags & XTENSA_PROP_ALIGN) == 0
9182 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
e0001a05 9183 {
43cd72b9
BW
9184 /* Always remove entries with zero size and no alignment. */
9185 bytes_to_remove = entry_size;
1d25768e
BW
9186 if (offset_rel)
9187 remove_this_rel = TRUE;
e0001a05 9188 }
1d25768e
BW
9189 else if (offset_rel
9190 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
e0001a05 9191 {
1d25768e 9192 if (last_irel)
e0001a05 9193 {
1d25768e
BW
9194 flagword old_flags;
9195 bfd_vma old_size =
9196 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
9197 bfd_vma old_address =
9198 (last_irel->r_addend
9199 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
9200 bfd_vma new_address =
9201 (offset_rel->r_addend
9202 + bfd_get_32 (abfd, &contents[actual_offset]));
9203 if (is_full_prop_section)
9204 old_flags = bfd_get_32
9205 (abfd, &contents[last_irel->r_offset + 8]);
9206 else
9207 old_flags = predef_flags;
9208
9209 if ((ELF32_R_SYM (offset_rel->r_info)
9210 == ELF32_R_SYM (last_irel->r_info))
9211 && old_address + old_size == new_address
9212 && old_flags == flags
9213 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
9214 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
e0001a05 9215 {
1d25768e
BW
9216 /* Fix the old size. */
9217 bfd_put_32 (abfd, old_size + size,
9218 &contents[last_irel->r_offset + 4]);
9219 bytes_to_remove = entry_size;
9220 remove_this_rel = TRUE;
e0001a05
NC
9221 }
9222 else
1d25768e 9223 last_irel = offset_rel;
e0001a05 9224 }
1d25768e
BW
9225 else
9226 last_irel = offset_rel;
e0001a05
NC
9227 }
9228
1d25768e 9229 if (remove_this_rel)
e0001a05 9230 {
1d25768e
BW
9231 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9232 /* In case this is the last entry, move the relocation offset
9233 to the previous entry, if there is one. */
9234 if (offset_rel->r_offset >= bytes_to_remove)
9235 offset_rel->r_offset -= bytes_to_remove;
9236 else
9237 offset_rel->r_offset = 0;
e0001a05
NC
9238 }
9239
9240 if (bytes_to_remove != 0)
9241 {
9242 removed_bytes += bytes_to_remove;
a3ef2d63 9243 if (offset + bytes_to_remove < sec->size)
e0001a05 9244 memmove (&contents[actual_offset],
43cd72b9 9245 &contents[actual_offset + bytes_to_remove],
a3ef2d63 9246 sec->size - offset - bytes_to_remove);
e0001a05
NC
9247 }
9248 }
9249
43cd72b9 9250 if (removed_bytes)
e0001a05 9251 {
1d25768e
BW
9252 /* Fix up any extra relocations on the last entry. */
9253 for (irel = next_rel; irel < rel_end; irel++)
9254 irel->r_offset -= removed_bytes;
9255
e0001a05 9256 /* Clear the removed bytes. */
a3ef2d63 9257 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
e0001a05 9258
a3ef2d63
BW
9259 if (sec->rawsize == 0)
9260 sec->rawsize = sec->size;
9261 sec->size -= removed_bytes;
e901de89
BW
9262
9263 if (xtensa_is_littable_section (sec))
9264 {
f0e6fdb2
BW
9265 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
9266 if (sgotloc)
9267 sgotloc->size -= removed_bytes;
e901de89 9268 }
e0001a05
NC
9269 }
9270 }
e901de89 9271
e0001a05
NC
9272 error_return:
9273 release_internal_relocs (sec, internal_relocs);
9274 release_contents (sec, contents);
9275 return ok;
9276}
9277
9278\f
9279/* Third relaxation pass. */
9280
9281/* Change symbol values to account for removed literals. */
9282
43cd72b9 9283bfd_boolean
7fa3d080 9284relax_section_symbols (bfd *abfd, asection *sec)
e0001a05
NC
9285{
9286 xtensa_relax_info *relax_info;
9287 unsigned int sec_shndx;
9288 Elf_Internal_Shdr *symtab_hdr;
9289 Elf_Internal_Sym *isymbuf;
9290 unsigned i, num_syms, num_locals;
9291
9292 relax_info = get_xtensa_relax_info (sec);
9293 BFD_ASSERT (relax_info);
9294
43cd72b9
BW
9295 if (!relax_info->is_relaxable_literal_section
9296 && !relax_info->is_relaxable_asm_section)
e0001a05
NC
9297 return TRUE;
9298
9299 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
9300
9301 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9302 isymbuf = retrieve_local_syms (abfd);
9303
9304 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
9305 num_locals = symtab_hdr->sh_info;
9306
9307 /* Adjust the local symbols defined in this section. */
9308 for (i = 0; i < num_locals; i++)
9309 {
9310 Elf_Internal_Sym *isym = &isymbuf[i];
9311
9312 if (isym->st_shndx == sec_shndx)
9313 {
03669f1c
BW
9314 text_action *act = relax_info->action_list.head;
9315 bfd_vma orig_addr = isym->st_value;
43cd72b9 9316
03669f1c 9317 isym->st_value -= removed_by_actions (&act, orig_addr, FALSE);
43cd72b9 9318
03669f1c
BW
9319 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
9320 isym->st_size -=
9321 removed_by_actions (&act, orig_addr + isym->st_size, FALSE);
e0001a05
NC
9322 }
9323 }
9324
9325 /* Now adjust the global symbols defined in this section. */
9326 for (i = 0; i < (num_syms - num_locals); i++)
9327 {
9328 struct elf_link_hash_entry *sym_hash;
9329
9330 sym_hash = elf_sym_hashes (abfd)[i];
9331
9332 if (sym_hash->root.type == bfd_link_hash_warning)
9333 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
9334
9335 if ((sym_hash->root.type == bfd_link_hash_defined
9336 || sym_hash->root.type == bfd_link_hash_defweak)
9337 && sym_hash->root.u.def.section == sec)
9338 {
03669f1c
BW
9339 text_action *act = relax_info->action_list.head;
9340 bfd_vma orig_addr = sym_hash->root.u.def.value;
43cd72b9 9341
03669f1c
BW
9342 sym_hash->root.u.def.value -=
9343 removed_by_actions (&act, orig_addr, FALSE);
43cd72b9 9344
03669f1c
BW
9345 if (sym_hash->type == STT_FUNC)
9346 sym_hash->size -=
9347 removed_by_actions (&act, orig_addr + sym_hash->size, FALSE);
e0001a05
NC
9348 }
9349 }
9350
9351 return TRUE;
9352}
9353
9354\f
9355/* "Fix" handling functions, called while performing relocations. */
9356
43cd72b9 9357static bfd_boolean
7fa3d080
BW
9358do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
9359 bfd *input_bfd,
9360 asection *input_section,
9361 bfd_byte *contents)
e0001a05
NC
9362{
9363 r_reloc r_rel;
9364 asection *sec, *old_sec;
9365 bfd_vma old_offset;
9366 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05
NC
9367 reloc_bfd_fix *fix;
9368
9369 if (r_type == R_XTENSA_NONE)
43cd72b9 9370 return TRUE;
e0001a05 9371
43cd72b9
BW
9372 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9373 if (!fix)
9374 return TRUE;
e0001a05 9375
43cd72b9
BW
9376 r_reloc_init (&r_rel, input_bfd, rel, contents,
9377 bfd_get_section_limit (input_bfd, input_section));
e0001a05 9378 old_sec = r_reloc_get_section (&r_rel);
43cd72b9
BW
9379 old_offset = r_rel.target_offset;
9380
9381 if (!old_sec || !r_reloc_is_defined (&r_rel))
e0001a05 9382 {
43cd72b9
BW
9383 if (r_type != R_XTENSA_ASM_EXPAND)
9384 {
9385 (*_bfd_error_handler)
9386 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
9387 input_bfd, input_section, rel->r_offset,
9388 elf_howto_table[r_type].name);
9389 return FALSE;
9390 }
e0001a05
NC
9391 /* Leave it be. Resolution will happen in a later stage. */
9392 }
9393 else
9394 {
9395 sec = fix->target_sec;
9396 rel->r_addend += ((sec->output_offset + fix->target_offset)
9397 - (old_sec->output_offset + old_offset));
9398 }
43cd72b9 9399 return TRUE;
e0001a05
NC
9400}
9401
9402
9403static void
7fa3d080
BW
9404do_fix_for_final_link (Elf_Internal_Rela *rel,
9405 bfd *input_bfd,
9406 asection *input_section,
9407 bfd_byte *contents,
9408 bfd_vma *relocationp)
e0001a05
NC
9409{
9410 asection *sec;
9411 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05 9412 reloc_bfd_fix *fix;
43cd72b9 9413 bfd_vma fixup_diff;
e0001a05
NC
9414
9415 if (r_type == R_XTENSA_NONE)
9416 return;
9417
43cd72b9
BW
9418 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9419 if (!fix)
e0001a05
NC
9420 return;
9421
9422 sec = fix->target_sec;
43cd72b9
BW
9423
9424 fixup_diff = rel->r_addend;
9425 if (elf_howto_table[fix->src_type].partial_inplace)
9426 {
9427 bfd_vma inplace_val;
9428 BFD_ASSERT (fix->src_offset
9429 < bfd_get_section_limit (input_bfd, input_section));
9430 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
9431 fixup_diff += inplace_val;
9432 }
9433
e0001a05
NC
9434 *relocationp = (sec->output_section->vma
9435 + sec->output_offset
43cd72b9 9436 + fix->target_offset - fixup_diff);
e0001a05
NC
9437}
9438
9439\f
9440/* Miscellaneous utility functions.... */
9441
9442static asection *
f0e6fdb2 9443elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
e0001a05 9444{
f0e6fdb2
BW
9445 struct elf_xtensa_link_hash_table *htab;
9446 bfd *dynobj;
e0001a05
NC
9447 char plt_name[10];
9448
9449 if (chunk == 0)
f0e6fdb2
BW
9450 {
9451 htab = elf_xtensa_hash_table (info);
9452 return htab->splt;
9453 }
e0001a05 9454
f0e6fdb2 9455 dynobj = elf_hash_table (info)->dynobj;
e0001a05
NC
9456 sprintf (plt_name, ".plt.%u", chunk);
9457 return bfd_get_section_by_name (dynobj, plt_name);
9458}
9459
9460
9461static asection *
f0e6fdb2 9462elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
e0001a05 9463{
f0e6fdb2
BW
9464 struct elf_xtensa_link_hash_table *htab;
9465 bfd *dynobj;
e0001a05
NC
9466 char got_name[14];
9467
9468 if (chunk == 0)
f0e6fdb2
BW
9469 {
9470 htab = elf_xtensa_hash_table (info);
9471 return htab->sgotplt;
9472 }
e0001a05 9473
f0e6fdb2 9474 dynobj = elf_hash_table (info)->dynobj;
e0001a05
NC
9475 sprintf (got_name, ".got.plt.%u", chunk);
9476 return bfd_get_section_by_name (dynobj, got_name);
9477}
9478
9479
9480/* Get the input section for a given symbol index.
9481 If the symbol is:
9482 . a section symbol, return the section;
9483 . a common symbol, return the common section;
9484 . an undefined symbol, return the undefined section;
9485 . an indirect symbol, follow the links;
9486 . an absolute value, return the absolute section. */
9487
9488static asection *
7fa3d080 9489get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
9490{
9491 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9492 asection *target_sec = NULL;
43cd72b9 9493 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
9494 {
9495 Elf_Internal_Sym *isymbuf;
9496 unsigned int section_index;
9497
9498 isymbuf = retrieve_local_syms (abfd);
9499 section_index = isymbuf[r_symndx].st_shndx;
9500
9501 if (section_index == SHN_UNDEF)
9502 target_sec = bfd_und_section_ptr;
9503 else if (section_index > 0 && section_index < SHN_LORESERVE)
9504 target_sec = bfd_section_from_elf_index (abfd, section_index);
9505 else if (section_index == SHN_ABS)
9506 target_sec = bfd_abs_section_ptr;
9507 else if (section_index == SHN_COMMON)
9508 target_sec = bfd_com_section_ptr;
43cd72b9 9509 else
e0001a05
NC
9510 /* Who knows? */
9511 target_sec = NULL;
9512 }
9513 else
9514 {
9515 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9516 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
9517
9518 while (h->root.type == bfd_link_hash_indirect
9519 || h->root.type == bfd_link_hash_warning)
9520 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9521
9522 switch (h->root.type)
9523 {
9524 case bfd_link_hash_defined:
9525 case bfd_link_hash_defweak:
9526 target_sec = h->root.u.def.section;
9527 break;
9528 case bfd_link_hash_common:
9529 target_sec = bfd_com_section_ptr;
9530 break;
9531 case bfd_link_hash_undefined:
9532 case bfd_link_hash_undefweak:
9533 target_sec = bfd_und_section_ptr;
9534 break;
9535 default: /* New indirect warning. */
9536 target_sec = bfd_und_section_ptr;
9537 break;
9538 }
9539 }
9540 return target_sec;
9541}
9542
9543
9544static struct elf_link_hash_entry *
7fa3d080 9545get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
9546{
9547 unsigned long indx;
9548 struct elf_link_hash_entry *h;
9549 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9550
9551 if (r_symndx < symtab_hdr->sh_info)
9552 return NULL;
43cd72b9 9553
e0001a05
NC
9554 indx = r_symndx - symtab_hdr->sh_info;
9555 h = elf_sym_hashes (abfd)[indx];
9556 while (h->root.type == bfd_link_hash_indirect
9557 || h->root.type == bfd_link_hash_warning)
9558 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9559 return h;
9560}
9561
9562
9563/* Get the section-relative offset for a symbol number. */
9564
9565static bfd_vma
7fa3d080 9566get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
9567{
9568 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9569 bfd_vma offset = 0;
9570
43cd72b9 9571 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
9572 {
9573 Elf_Internal_Sym *isymbuf;
9574 isymbuf = retrieve_local_syms (abfd);
9575 offset = isymbuf[r_symndx].st_value;
9576 }
9577 else
9578 {
9579 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9580 struct elf_link_hash_entry *h =
9581 elf_sym_hashes (abfd)[indx];
9582
9583 while (h->root.type == bfd_link_hash_indirect
9584 || h->root.type == bfd_link_hash_warning)
9585 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9586 if (h->root.type == bfd_link_hash_defined
9587 || h->root.type == bfd_link_hash_defweak)
9588 offset = h->root.u.def.value;
9589 }
9590 return offset;
9591}
9592
9593
9594static bfd_boolean
7fa3d080 9595is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
43cd72b9
BW
9596{
9597 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
9598 struct elf_link_hash_entry *h;
9599
9600 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
9601 if (h && h->root.type == bfd_link_hash_defweak)
9602 return TRUE;
9603 return FALSE;
9604}
9605
9606
9607static bfd_boolean
7fa3d080
BW
9608pcrel_reloc_fits (xtensa_opcode opc,
9609 int opnd,
9610 bfd_vma self_address,
9611 bfd_vma dest_address)
e0001a05 9612{
43cd72b9
BW
9613 xtensa_isa isa = xtensa_default_isa;
9614 uint32 valp = dest_address;
9615 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
9616 || xtensa_operand_encode (isa, opc, opnd, &valp))
9617 return FALSE;
9618 return TRUE;
e0001a05
NC
9619}
9620
9621
9622static bfd_boolean
7fa3d080 9623xtensa_is_property_section (asection *sec)
e0001a05 9624{
1d25768e
BW
9625 if (xtensa_is_insntable_section (sec)
9626 || xtensa_is_littable_section (sec)
9627 || xtensa_is_proptable_section (sec))
b614a702 9628 return TRUE;
e901de89 9629
1d25768e
BW
9630 return FALSE;
9631}
9632
9633
9634static bfd_boolean
9635xtensa_is_insntable_section (asection *sec)
9636{
9637 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
9638 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
e901de89
BW
9639 return TRUE;
9640
e901de89
BW
9641 return FALSE;
9642}
9643
9644
9645static bfd_boolean
7fa3d080 9646xtensa_is_littable_section (asection *sec)
e901de89 9647{
1d25768e
BW
9648 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
9649 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
b614a702 9650 return TRUE;
e901de89 9651
1d25768e
BW
9652 return FALSE;
9653}
9654
9655
9656static bfd_boolean
9657xtensa_is_proptable_section (asection *sec)
9658{
9659 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
9660 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
e901de89 9661 return TRUE;
e0001a05 9662
e901de89 9663 return FALSE;
e0001a05
NC
9664}
9665
9666
43cd72b9 9667static int
7fa3d080 9668internal_reloc_compare (const void *ap, const void *bp)
e0001a05 9669{
43cd72b9
BW
9670 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9671 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9672
9673 if (a->r_offset != b->r_offset)
9674 return (a->r_offset - b->r_offset);
9675
9676 /* We don't need to sort on these criteria for correctness,
9677 but enforcing a more strict ordering prevents unstable qsort
9678 from behaving differently with different implementations.
9679 Without the code below we get correct but different results
9680 on Solaris 2.7 and 2.8. We would like to always produce the
9681 same results no matter the host. */
9682
9683 if (a->r_info != b->r_info)
9684 return (a->r_info - b->r_info);
9685
9686 return (a->r_addend - b->r_addend);
e0001a05
NC
9687}
9688
9689
9690static int
7fa3d080 9691internal_reloc_matches (const void *ap, const void *bp)
e0001a05
NC
9692{
9693 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9694 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9695
43cd72b9
BW
9696 /* Check if one entry overlaps with the other; this shouldn't happen
9697 except when searching for a match. */
e0001a05
NC
9698 return (a->r_offset - b->r_offset);
9699}
9700
9701
74869ac7
BW
9702/* Predicate function used to look up a section in a particular group. */
9703
9704static bfd_boolean
9705match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
9706{
9707 const char *gname = inf;
9708 const char *group_name = elf_group_name (sec);
9709
9710 return (group_name == gname
9711 || (group_name != NULL
9712 && gname != NULL
9713 && strcmp (group_name, gname) == 0));
9714}
9715
9716
1d25768e
BW
9717static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
9718
74869ac7
BW
9719asection *
9720xtensa_get_property_section (asection *sec, const char *base_name)
e0001a05 9721{
74869ac7
BW
9722 const char *suffix, *group_name;
9723 char *prop_sec_name;
9724 asection *prop_sec;
9725
9726 group_name = elf_group_name (sec);
9727 if (group_name)
9728 {
9729 suffix = strrchr (sec->name, '.');
9730 if (suffix == sec->name)
9731 suffix = 0;
9732 prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
9733 + (suffix ? strlen (suffix) : 0));
9734 strcpy (prop_sec_name, base_name);
9735 if (suffix)
9736 strcat (prop_sec_name, suffix);
9737 }
9738 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
e0001a05 9739 {
43cd72b9 9740 char *linkonce_kind = 0;
b614a702
BW
9741
9742 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
7db48a12 9743 linkonce_kind = "x.";
b614a702 9744 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
7db48a12 9745 linkonce_kind = "p.";
43cd72b9
BW
9746 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
9747 linkonce_kind = "prop.";
e0001a05 9748 else
b614a702
BW
9749 abort ();
9750
43cd72b9
BW
9751 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
9752 + strlen (linkonce_kind) + 1);
b614a702 9753 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
43cd72b9 9754 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
b614a702
BW
9755
9756 suffix = sec->name + linkonce_len;
096c35a7 9757 /* For backward compatibility, replace "t." instead of inserting
43cd72b9 9758 the new linkonce_kind (but not for "prop" sections). */
0112cd26 9759 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
43cd72b9
BW
9760 suffix += 2;
9761 strcat (prop_sec_name + linkonce_len, suffix);
74869ac7
BW
9762 }
9763 else
9764 prop_sec_name = strdup (base_name);
9765
9766 /* Check if the section already exists. */
9767 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
9768 match_section_group,
9769 (void *) group_name);
9770 /* If not, create it. */
9771 if (! prop_sec)
9772 {
9773 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
9774 flags |= (bfd_get_section_flags (sec->owner, sec)
9775 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
9776
9777 prop_sec = bfd_make_section_anyway_with_flags
9778 (sec->owner, strdup (prop_sec_name), flags);
9779 if (! prop_sec)
9780 return 0;
b614a702 9781
74869ac7 9782 elf_group_name (prop_sec) = group_name;
e0001a05
NC
9783 }
9784
74869ac7
BW
9785 free (prop_sec_name);
9786 return prop_sec;
e0001a05
NC
9787}
9788
43cd72b9
BW
9789
9790flagword
7fa3d080 9791xtensa_get_property_predef_flags (asection *sec)
43cd72b9 9792{
1d25768e 9793 if (xtensa_is_insntable_section (sec))
43cd72b9 9794 return (XTENSA_PROP_INSN
99ded152 9795 | XTENSA_PROP_NO_TRANSFORM
43cd72b9
BW
9796 | XTENSA_PROP_INSN_NO_REORDER);
9797
9798 if (xtensa_is_littable_section (sec))
9799 return (XTENSA_PROP_LITERAL
99ded152 9800 | XTENSA_PROP_NO_TRANSFORM
43cd72b9
BW
9801 | XTENSA_PROP_INSN_NO_REORDER);
9802
9803 return 0;
9804}
9805
e0001a05
NC
9806\f
9807/* Other functions called directly by the linker. */
9808
9809bfd_boolean
7fa3d080
BW
9810xtensa_callback_required_dependence (bfd *abfd,
9811 asection *sec,
9812 struct bfd_link_info *link_info,
9813 deps_callback_t callback,
9814 void *closure)
e0001a05
NC
9815{
9816 Elf_Internal_Rela *internal_relocs;
9817 bfd_byte *contents;
9818 unsigned i;
9819 bfd_boolean ok = TRUE;
43cd72b9
BW
9820 bfd_size_type sec_size;
9821
9822 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
9823
9824 /* ".plt*" sections have no explicit relocations but they contain L32R
9825 instructions that reference the corresponding ".got.plt*" sections. */
9826 if ((sec->flags & SEC_LINKER_CREATED) != 0
0112cd26 9827 && CONST_STRNEQ (sec->name, ".plt"))
e0001a05
NC
9828 {
9829 asection *sgotplt;
9830
9831 /* Find the corresponding ".got.plt*" section. */
9832 if (sec->name[4] == '\0')
9833 sgotplt = bfd_get_section_by_name (sec->owner, ".got.plt");
9834 else
9835 {
9836 char got_name[14];
9837 int chunk = 0;
9838
9839 BFD_ASSERT (sec->name[4] == '.');
9840 chunk = strtol (&sec->name[5], NULL, 10);
9841
9842 sprintf (got_name, ".got.plt.%u", chunk);
9843 sgotplt = bfd_get_section_by_name (sec->owner, got_name);
9844 }
9845 BFD_ASSERT (sgotplt);
9846
9847 /* Assume worst-case offsets: L32R at the very end of the ".plt"
9848 section referencing a literal at the very beginning of
9849 ".got.plt". This is very close to the real dependence, anyway. */
43cd72b9 9850 (*callback) (sec, sec_size, sgotplt, 0, closure);
e0001a05
NC
9851 }
9852
13161072
BW
9853 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
9854 when building uclibc, which runs "ld -b binary /dev/null". */
9855 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
9856 return ok;
9857
e0001a05
NC
9858 internal_relocs = retrieve_internal_relocs (abfd, sec,
9859 link_info->keep_memory);
9860 if (internal_relocs == NULL
43cd72b9 9861 || sec->reloc_count == 0)
e0001a05
NC
9862 return ok;
9863
9864 /* Cache the contents for the duration of this scan. */
9865 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 9866 if (contents == NULL && sec_size != 0)
e0001a05
NC
9867 {
9868 ok = FALSE;
9869 goto error_return;
9870 }
9871
43cd72b9
BW
9872 if (!xtensa_default_isa)
9873 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 9874
43cd72b9 9875 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
9876 {
9877 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9 9878 if (is_l32r_relocation (abfd, sec, contents, irel))
e0001a05
NC
9879 {
9880 r_reloc l32r_rel;
9881 asection *target_sec;
9882 bfd_vma target_offset;
43cd72b9
BW
9883
9884 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
e0001a05
NC
9885 target_sec = NULL;
9886 target_offset = 0;
9887 /* L32Rs must be local to the input file. */
9888 if (r_reloc_is_defined (&l32r_rel))
9889 {
9890 target_sec = r_reloc_get_section (&l32r_rel);
43cd72b9 9891 target_offset = l32r_rel.target_offset;
e0001a05
NC
9892 }
9893 (*callback) (sec, irel->r_offset, target_sec, target_offset,
9894 closure);
9895 }
9896 }
9897
9898 error_return:
9899 release_internal_relocs (sec, internal_relocs);
9900 release_contents (sec, contents);
9901 return ok;
9902}
9903
2f89ff8d
L
9904/* The default literal sections should always be marked as "code" (i.e.,
9905 SHF_EXECINSTR). This is particularly important for the Linux kernel
9906 module loader so that the literals are not placed after the text. */
b35d266b 9907static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
2f89ff8d 9908{
0112cd26
NC
9909 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9910 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9911 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2caa7ca0 9912 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
0112cd26 9913 { NULL, 0, 0, 0, 0 }
7f4d3958 9914};
e0001a05
NC
9915\f
9916#ifndef ELF_ARCH
9917#define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
9918#define TARGET_LITTLE_NAME "elf32-xtensa-le"
9919#define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
9920#define TARGET_BIG_NAME "elf32-xtensa-be"
9921#define ELF_ARCH bfd_arch_xtensa
9922
4af0a1d8
BW
9923#define ELF_MACHINE_CODE EM_XTENSA
9924#define ELF_MACHINE_ALT1 EM_XTENSA_OLD
e0001a05
NC
9925
9926#if XCHAL_HAVE_MMU
9927#define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
9928#else /* !XCHAL_HAVE_MMU */
9929#define ELF_MAXPAGESIZE 1
9930#endif /* !XCHAL_HAVE_MMU */
9931#endif /* ELF_ARCH */
9932
9933#define elf_backend_can_gc_sections 1
9934#define elf_backend_can_refcount 1
9935#define elf_backend_plt_readonly 1
9936#define elf_backend_got_header_size 4
9937#define elf_backend_want_dynbss 0
9938#define elf_backend_want_got_plt 1
9939
9940#define elf_info_to_howto elf_xtensa_info_to_howto_rela
9941
e0001a05
NC
9942#define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
9943#define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
9944#define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
9945#define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
9946#define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
157090f7
AM
9947#define bfd_elf32_bfd_reloc_name_lookup \
9948 elf_xtensa_reloc_name_lookup
e0001a05 9949#define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
f0e6fdb2 9950#define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
e0001a05
NC
9951
9952#define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
9953#define elf_backend_check_relocs elf_xtensa_check_relocs
e0001a05
NC
9954#define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
9955#define elf_backend_discard_info elf_xtensa_discard_info
9956#define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
9957#define elf_backend_final_write_processing elf_xtensa_final_write_processing
9958#define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
9959#define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
9960#define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
9961#define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
9962#define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
9963#define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
95147441 9964#define elf_backend_hide_symbol elf_xtensa_hide_symbol
e0001a05
NC
9965#define elf_backend_object_p elf_xtensa_object_p
9966#define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
9967#define elf_backend_relocate_section elf_xtensa_relocate_section
9968#define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
74541ad4
AM
9969#define elf_backend_omit_section_dynsym \
9970 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
29ef7005 9971#define elf_backend_special_sections elf_xtensa_special_sections
a77dc2cc 9972#define elf_backend_action_discarded elf_xtensa_action_discarded
e0001a05
NC
9973
9974#include "elf32-target.h"
This page took 0.792062 seconds and 4 git commands to generate.