daily update
[deliverable/binutils-gdb.git] / bfd / elf32-xtensa.c
CommitLineData
e0001a05 1/* Xtensa-specific support for 32-bit ELF.
f0e6fdb2 2 Copyright 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
e0001a05
NC
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 2 of the
9 License, or (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
3e110533 18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
53e09e0a 19 02110-1301, USA. */
e0001a05
NC
20
21#include "bfd.h"
22#include "sysdep.h"
23
e0001a05 24#include <stdarg.h>
e0001a05
NC
25#include <strings.h>
26
27#include "bfdlink.h"
28#include "libbfd.h"
29#include "elf-bfd.h"
30#include "elf/xtensa.h"
31#include "xtensa-isa.h"
32#include "xtensa-config.h"
33
43cd72b9
BW
34#define XTENSA_NO_NOP_REMOVAL 0
35
e0001a05
NC
36/* Local helper functions. */
37
f0e6fdb2 38static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
2db662be 39static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
e0001a05 40static bfd_reloc_status_type bfd_elf_xtensa_reloc
7fa3d080 41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43cd72b9 42static bfd_boolean do_fix_for_relocatable_link
7fa3d080 43 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
e0001a05 44static void do_fix_for_final_link
7fa3d080 45 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
e0001a05
NC
46
47/* Local functions to handle Xtensa configurability. */
48
7fa3d080
BW
49static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
50static bfd_boolean is_direct_call_opcode (xtensa_opcode);
51static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
52static xtensa_opcode get_const16_opcode (void);
53static xtensa_opcode get_l32r_opcode (void);
54static bfd_vma l32r_offset (bfd_vma, bfd_vma);
55static int get_relocation_opnd (xtensa_opcode, int);
56static int get_relocation_slot (int);
e0001a05 57static xtensa_opcode get_relocation_opcode
7fa3d080 58 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
e0001a05 59static bfd_boolean is_l32r_relocation
7fa3d080
BW
60 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
61static bfd_boolean is_alt_relocation (int);
62static bfd_boolean is_operand_relocation (int);
43cd72b9 63static bfd_size_type insn_decode_len
7fa3d080 64 (bfd_byte *, bfd_size_type, bfd_size_type);
43cd72b9 65static xtensa_opcode insn_decode_opcode
7fa3d080 66 (bfd_byte *, bfd_size_type, bfd_size_type, int);
43cd72b9 67static bfd_boolean check_branch_target_aligned
7fa3d080 68 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
43cd72b9 69static bfd_boolean check_loop_aligned
7fa3d080
BW
70 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
71static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
43cd72b9 72static bfd_size_type get_asm_simplify_size
7fa3d080 73 (bfd_byte *, bfd_size_type, bfd_size_type);
e0001a05
NC
74
75/* Functions for link-time code simplifications. */
76
43cd72b9 77static bfd_reloc_status_type elf_xtensa_do_asm_simplify
7fa3d080 78 (bfd_byte *, bfd_vma, bfd_vma, char **);
e0001a05 79static bfd_reloc_status_type contract_asm_expansion
7fa3d080
BW
80 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
81static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
82static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
e0001a05
NC
83
84/* Access to internal relocations, section contents and symbols. */
85
86static Elf_Internal_Rela *retrieve_internal_relocs
7fa3d080
BW
87 (bfd *, asection *, bfd_boolean);
88static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
89static void release_internal_relocs (asection *, Elf_Internal_Rela *);
90static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
91static void pin_contents (asection *, bfd_byte *);
92static void release_contents (asection *, bfd_byte *);
93static Elf_Internal_Sym *retrieve_local_syms (bfd *);
e0001a05
NC
94
95/* Miscellaneous utility functions. */
96
f0e6fdb2
BW
97static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
98static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
7fa3d080 99static asection *get_elf_r_symndx_section (bfd *, unsigned long);
e0001a05 100static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
7fa3d080
BW
101 (bfd *, unsigned long);
102static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
103static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
104static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
105static bfd_boolean xtensa_is_property_section (asection *);
106static bfd_boolean xtensa_is_littable_section (asection *);
107static int internal_reloc_compare (const void *, const void *);
108static int internal_reloc_matches (const void *, const void *);
74869ac7 109extern asection *xtensa_get_property_section (asection *, const char *);
7fa3d080 110static flagword xtensa_get_property_predef_flags (asection *);
e0001a05
NC
111
112/* Other functions called directly by the linker. */
113
114typedef void (*deps_callback_t)
7fa3d080 115 (asection *, bfd_vma, asection *, bfd_vma, void *);
e0001a05 116extern bfd_boolean xtensa_callback_required_dependence
7fa3d080 117 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
e0001a05
NC
118
119
43cd72b9
BW
120/* Globally visible flag for choosing size optimization of NOP removal
121 instead of branch-target-aware minimization for NOP removal.
122 When nonzero, narrow all instructions and remove all NOPs possible
123 around longcall expansions. */
7fa3d080 124
43cd72b9
BW
125int elf32xtensa_size_opt;
126
127
128/* The "new_section_hook" is used to set up a per-section
129 "xtensa_relax_info" data structure with additional information used
130 during relaxation. */
e0001a05 131
7fa3d080 132typedef struct xtensa_relax_info_struct xtensa_relax_info;
e0001a05 133
43cd72b9 134
43cd72b9
BW
135/* The GNU tools do not easily allow extending interfaces to pass around
136 the pointer to the Xtensa ISA information, so instead we add a global
137 variable here (in BFD) that can be used by any of the tools that need
138 this information. */
139
140xtensa_isa xtensa_default_isa;
141
142
e0001a05
NC
143/* When this is true, relocations may have been modified to refer to
144 symbols from other input files. The per-section list of "fix"
145 records needs to be checked when resolving relocations. */
146
147static bfd_boolean relaxing_section = FALSE;
148
43cd72b9
BW
149/* When this is true, during final links, literals that cannot be
150 coalesced and their relocations may be moved to other sections. */
151
152int elf32xtensa_no_literal_movement = 1;
153
e0001a05
NC
154\f
155static reloc_howto_type elf_howto_table[] =
156{
157 HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
158 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
e5f131d1 159 FALSE, 0, 0, FALSE),
e0001a05
NC
160 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
161 bfd_elf_xtensa_reloc, "R_XTENSA_32",
162 TRUE, 0xffffffff, 0xffffffff, FALSE),
e5f131d1 163
e0001a05
NC
164 /* Replace a 32-bit value with a value from the runtime linker (only
165 used by linker-generated stub functions). The r_addend value is
166 special: 1 means to substitute a pointer to the runtime linker's
167 dynamic resolver function; 2 means to substitute the link map for
168 the shared object. */
169 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
e5f131d1
BW
170 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
171
e0001a05
NC
172 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
173 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
e5f131d1 174 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
175 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
176 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
e5f131d1 177 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
178 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
179 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
e5f131d1 180 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
181 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
182 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
e5f131d1
BW
183 FALSE, 0, 0xffffffff, FALSE),
184
e0001a05 185 EMPTY_HOWTO (7),
e5f131d1
BW
186
187 /* Old relocations for backward compatibility. */
e0001a05 188 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 189 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
e0001a05 190 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 191 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
e0001a05 192 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1
BW
193 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
194
e0001a05
NC
195 /* Assembly auto-expansion. */
196 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 197 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
e0001a05
NC
198 /* Relax assembly auto-expansion. */
199 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1
BW
200 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
201
e0001a05
NC
202 EMPTY_HOWTO (13),
203 EMPTY_HOWTO (14),
e5f131d1 204
e0001a05
NC
205 /* GNU extension to record C++ vtable hierarchy. */
206 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
207 NULL, "R_XTENSA_GNU_VTINHERIT",
e5f131d1 208 FALSE, 0, 0, FALSE),
e0001a05
NC
209 /* GNU extension to record C++ vtable member usage. */
210 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
211 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
e5f131d1 212 FALSE, 0, 0, FALSE),
43cd72b9
BW
213
214 /* Relocations for supporting difference of symbols. */
215 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
e5f131d1 216 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
43cd72b9 217 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
e5f131d1 218 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
43cd72b9 219 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
e5f131d1 220 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
43cd72b9
BW
221
222 /* General immediate operand relocations. */
223 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 224 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
43cd72b9 225 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 226 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
43cd72b9 227 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 228 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
43cd72b9 229 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 230 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
43cd72b9 231 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 232 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
43cd72b9 233 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 234 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
43cd72b9 235 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 236 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
43cd72b9 237 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 238 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
43cd72b9 239 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 240 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
43cd72b9 241 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 242 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
43cd72b9 243 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 244 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
43cd72b9 245 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 246 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
43cd72b9 247 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 248 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
43cd72b9 249 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 250 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
43cd72b9 251 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 252 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
43cd72b9
BW
253
254 /* "Alternate" relocations. The meaning of these is opcode-specific. */
255 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 256 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
43cd72b9 257 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 258 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
43cd72b9 259 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 260 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
43cd72b9 261 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 262 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
43cd72b9 263 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 264 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
43cd72b9 265 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 266 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
43cd72b9 267 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 268 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
43cd72b9 269 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 270 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
43cd72b9 271 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 272 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
43cd72b9 273 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 274 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
43cd72b9 275 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 276 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
43cd72b9 277 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 278 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
43cd72b9 279 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 280 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
43cd72b9 281 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 282 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
43cd72b9 283 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 284 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
e0001a05
NC
285};
286
43cd72b9 287#if DEBUG_GEN_RELOC
e0001a05
NC
288#define TRACE(str) \
289 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
290#else
291#define TRACE(str)
292#endif
293
294static reloc_howto_type *
7fa3d080
BW
295elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
296 bfd_reloc_code_real_type code)
e0001a05
NC
297{
298 switch (code)
299 {
300 case BFD_RELOC_NONE:
301 TRACE ("BFD_RELOC_NONE");
302 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
303
304 case BFD_RELOC_32:
305 TRACE ("BFD_RELOC_32");
306 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
307
43cd72b9
BW
308 case BFD_RELOC_XTENSA_DIFF8:
309 TRACE ("BFD_RELOC_XTENSA_DIFF8");
310 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
311
312 case BFD_RELOC_XTENSA_DIFF16:
313 TRACE ("BFD_RELOC_XTENSA_DIFF16");
314 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
315
316 case BFD_RELOC_XTENSA_DIFF32:
317 TRACE ("BFD_RELOC_XTENSA_DIFF32");
318 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
319
e0001a05
NC
320 case BFD_RELOC_XTENSA_RTLD:
321 TRACE ("BFD_RELOC_XTENSA_RTLD");
322 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
323
324 case BFD_RELOC_XTENSA_GLOB_DAT:
325 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
326 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
327
328 case BFD_RELOC_XTENSA_JMP_SLOT:
329 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
330 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
331
332 case BFD_RELOC_XTENSA_RELATIVE:
333 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
334 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
335
336 case BFD_RELOC_XTENSA_PLT:
337 TRACE ("BFD_RELOC_XTENSA_PLT");
338 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
339
340 case BFD_RELOC_XTENSA_OP0:
341 TRACE ("BFD_RELOC_XTENSA_OP0");
342 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
343
344 case BFD_RELOC_XTENSA_OP1:
345 TRACE ("BFD_RELOC_XTENSA_OP1");
346 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
347
348 case BFD_RELOC_XTENSA_OP2:
349 TRACE ("BFD_RELOC_XTENSA_OP2");
350 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
351
352 case BFD_RELOC_XTENSA_ASM_EXPAND:
353 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
354 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
355
356 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
357 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
358 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
359
360 case BFD_RELOC_VTABLE_INHERIT:
361 TRACE ("BFD_RELOC_VTABLE_INHERIT");
362 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
363
364 case BFD_RELOC_VTABLE_ENTRY:
365 TRACE ("BFD_RELOC_VTABLE_ENTRY");
366 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
367
368 default:
43cd72b9
BW
369 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
370 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
371 {
372 unsigned n = (R_XTENSA_SLOT0_OP +
373 (code - BFD_RELOC_XTENSA_SLOT0_OP));
374 return &elf_howto_table[n];
375 }
376
377 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
378 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
379 {
380 unsigned n = (R_XTENSA_SLOT0_ALT +
381 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
382 return &elf_howto_table[n];
383 }
384
e0001a05
NC
385 break;
386 }
387
388 TRACE ("Unknown");
389 return NULL;
390}
391
392
393/* Given an ELF "rela" relocation, find the corresponding howto and record
394 it in the BFD internal arelent representation of the relocation. */
395
396static void
7fa3d080
BW
397elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
398 arelent *cache_ptr,
399 Elf_Internal_Rela *dst)
e0001a05
NC
400{
401 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
402
403 BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max);
404 cache_ptr->howto = &elf_howto_table[r_type];
405}
406
407\f
408/* Functions for the Xtensa ELF linker. */
409
410/* The name of the dynamic interpreter. This is put in the .interp
411 section. */
412
413#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
414
415/* The size in bytes of an entry in the procedure linkage table.
416 (This does _not_ include the space for the literals associated with
417 the PLT entry.) */
418
419#define PLT_ENTRY_SIZE 16
420
421/* For _really_ large PLTs, we may need to alternate between literals
422 and code to keep the literals within the 256K range of the L32R
423 instructions in the code. It's unlikely that anyone would ever need
424 such a big PLT, but an arbitrary limit on the PLT size would be bad.
425 Thus, we split the PLT into chunks. Since there's very little
426 overhead (2 extra literals) for each chunk, the chunk size is kept
427 small so that the code for handling multiple chunks get used and
428 tested regularly. With 254 entries, there are 1K of literals for
429 each chunk, and that seems like a nice round number. */
430
431#define PLT_ENTRIES_PER_CHUNK 254
432
433/* PLT entries are actually used as stub functions for lazy symbol
434 resolution. Once the symbol is resolved, the stub function is never
435 invoked. Note: the 32-byte frame size used here cannot be changed
436 without a corresponding change in the runtime linker. */
437
438static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
439{
440 0x6c, 0x10, 0x04, /* entry sp, 32 */
441 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
442 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
443 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
444 0x0a, 0x80, 0x00, /* jx a8 */
445 0 /* unused */
446};
447
448static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
449{
450 0x36, 0x41, 0x00, /* entry sp, 32 */
451 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
452 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
453 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
454 0xa0, 0x08, 0x00, /* jx a8 */
455 0 /* unused */
456};
457
f0e6fdb2
BW
458/* Xtensa ELF linker hash table. */
459
460struct elf_xtensa_link_hash_table
461{
462 struct elf_link_hash_table elf;
463
464 /* Short-cuts to get to dynamic linker sections. */
465 asection *sgot;
466 asection *sgotplt;
467 asection *srelgot;
468 asection *splt;
469 asection *srelplt;
470 asection *sgotloc;
471 asection *spltlittbl;
472
473 /* Total count of PLT relocations seen during check_relocs.
474 The actual PLT code must be split into multiple sections and all
475 the sections have to be created before size_dynamic_sections,
476 where we figure out the exact number of PLT entries that will be
477 needed. It is OK if this count is an overestimate, e.g., some
478 relocations may be removed by GC. */
479 int plt_reloc_count;
480};
481
482/* Get the Xtensa ELF linker hash table from a link_info structure. */
483
484#define elf_xtensa_hash_table(p) \
485 ((struct elf_xtensa_link_hash_table *) ((p)->hash))
486
487/* Create an Xtensa ELF linker hash table. */
488
489static struct bfd_link_hash_table *
490elf_xtensa_link_hash_table_create (bfd *abfd)
491{
492 struct elf_xtensa_link_hash_table *ret;
493 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
494
495 ret = bfd_malloc (amt);
496 if (ret == NULL)
497 return NULL;
498
499 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
500 _bfd_elf_link_hash_newfunc,
501 sizeof (struct elf_link_hash_entry)))
502 {
503 free (ret);
504 return NULL;
505 }
506
507 ret->sgot = NULL;
508 ret->sgotplt = NULL;
509 ret->srelgot = NULL;
510 ret->splt = NULL;
511 ret->srelplt = NULL;
512 ret->sgotloc = NULL;
513 ret->spltlittbl = NULL;
514
515 ret->plt_reloc_count = 0;
516
517 return &ret->elf.root;
518}
571b5725
BW
519
520static inline bfd_boolean
4608f3d9 521elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
7fa3d080 522 struct bfd_link_info *info)
571b5725
BW
523{
524 /* Check if we should do dynamic things to this symbol. The
525 "ignore_protected" argument need not be set, because Xtensa code
526 does not require special handling of STV_PROTECTED to make function
527 pointer comparisons work properly. The PLT addresses are never
528 used for function pointers. */
529
530 return _bfd_elf_dynamic_symbol_p (h, info, 0);
531}
532
e0001a05
NC
533\f
534static int
7fa3d080 535property_table_compare (const void *ap, const void *bp)
e0001a05
NC
536{
537 const property_table_entry *a = (const property_table_entry *) ap;
538 const property_table_entry *b = (const property_table_entry *) bp;
539
43cd72b9
BW
540 if (a->address == b->address)
541 {
43cd72b9
BW
542 if (a->size != b->size)
543 return (a->size - b->size);
544
545 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
546 return ((b->flags & XTENSA_PROP_ALIGN)
547 - (a->flags & XTENSA_PROP_ALIGN));
548
549 if ((a->flags & XTENSA_PROP_ALIGN)
550 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
551 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
552 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
553 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
554
555 if ((a->flags & XTENSA_PROP_UNREACHABLE)
556 != (b->flags & XTENSA_PROP_UNREACHABLE))
557 return ((b->flags & XTENSA_PROP_UNREACHABLE)
558 - (a->flags & XTENSA_PROP_UNREACHABLE));
559
560 return (a->flags - b->flags);
561 }
562
563 return (a->address - b->address);
564}
565
566
567static int
7fa3d080 568property_table_matches (const void *ap, const void *bp)
43cd72b9
BW
569{
570 const property_table_entry *a = (const property_table_entry *) ap;
571 const property_table_entry *b = (const property_table_entry *) bp;
572
573 /* Check if one entry overlaps with the other. */
e0001a05
NC
574 if ((b->address >= a->address && b->address < (a->address + a->size))
575 || (a->address >= b->address && a->address < (b->address + b->size)))
576 return 0;
577
578 return (a->address - b->address);
579}
580
581
43cd72b9
BW
582/* Get the literal table or property table entries for the given
583 section. Sets TABLE_P and returns the number of entries. On
584 error, returns a negative value. */
e0001a05 585
7fa3d080
BW
586static int
587xtensa_read_table_entries (bfd *abfd,
588 asection *section,
589 property_table_entry **table_p,
590 const char *sec_name,
591 bfd_boolean output_addr)
e0001a05
NC
592{
593 asection *table_section;
e0001a05
NC
594 bfd_size_type table_size = 0;
595 bfd_byte *table_data;
596 property_table_entry *blocks;
e4115460 597 int blk, block_count;
e0001a05
NC
598 bfd_size_type num_records;
599 Elf_Internal_Rela *internal_relocs;
3ba3bc8c 600 bfd_vma section_addr;
43cd72b9
BW
601 flagword predef_flags;
602 bfd_size_type table_entry_size;
603
604 if (!section
605 || !(section->flags & SEC_ALLOC)
606 || (section->flags & SEC_DEBUGGING))
607 {
608 *table_p = NULL;
609 return 0;
610 }
e0001a05 611
74869ac7 612 table_section = xtensa_get_property_section (section, sec_name);
43cd72b9 613 if (table_section)
eea6121a 614 table_size = table_section->size;
43cd72b9 615
e0001a05
NC
616 if (table_size == 0)
617 {
618 *table_p = NULL;
619 return 0;
620 }
621
43cd72b9
BW
622 predef_flags = xtensa_get_property_predef_flags (table_section);
623 table_entry_size = 12;
624 if (predef_flags)
625 table_entry_size -= 4;
626
627 num_records = table_size / table_entry_size;
e0001a05
NC
628 table_data = retrieve_contents (abfd, table_section, TRUE);
629 blocks = (property_table_entry *)
630 bfd_malloc (num_records * sizeof (property_table_entry));
631 block_count = 0;
43cd72b9
BW
632
633 if (output_addr)
634 section_addr = section->output_section->vma + section->output_offset;
635 else
636 section_addr = section->vma;
3ba3bc8c 637
e0001a05
NC
638 /* If the file has not yet been relocated, process the relocations
639 and sort out the table entries that apply to the specified section. */
640 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
3ba3bc8c 641 if (internal_relocs && !table_section->reloc_done)
e0001a05
NC
642 {
643 unsigned i;
644
645 for (i = 0; i < table_section->reloc_count; i++)
646 {
647 Elf_Internal_Rela *rel = &internal_relocs[i];
648 unsigned long r_symndx;
649
650 if (ELF32_R_TYPE (rel->r_info) == R_XTENSA_NONE)
651 continue;
652
653 BFD_ASSERT (ELF32_R_TYPE (rel->r_info) == R_XTENSA_32);
654 r_symndx = ELF32_R_SYM (rel->r_info);
655
656 if (get_elf_r_symndx_section (abfd, r_symndx) == section)
657 {
658 bfd_vma sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
43cd72b9 659 BFD_ASSERT (sym_off == 0);
e0001a05 660 blocks[block_count].address =
3ba3bc8c 661 (section_addr + sym_off + rel->r_addend
e0001a05
NC
662 + bfd_get_32 (abfd, table_data + rel->r_offset));
663 blocks[block_count].size =
664 bfd_get_32 (abfd, table_data + rel->r_offset + 4);
43cd72b9
BW
665 if (predef_flags)
666 blocks[block_count].flags = predef_flags;
667 else
668 blocks[block_count].flags =
669 bfd_get_32 (abfd, table_data + rel->r_offset + 8);
e0001a05
NC
670 block_count++;
671 }
672 }
673 }
674 else
675 {
3ba3bc8c
BW
676 /* The file has already been relocated and the addresses are
677 already in the table. */
e0001a05 678 bfd_vma off;
43cd72b9 679 bfd_size_type section_limit = bfd_get_section_limit (abfd, section);
e0001a05 680
43cd72b9 681 for (off = 0; off < table_size; off += table_entry_size)
e0001a05
NC
682 {
683 bfd_vma address = bfd_get_32 (abfd, table_data + off);
684
3ba3bc8c 685 if (address >= section_addr
43cd72b9 686 && address < section_addr + section_limit)
e0001a05
NC
687 {
688 blocks[block_count].address = address;
689 blocks[block_count].size =
690 bfd_get_32 (abfd, table_data + off + 4);
43cd72b9
BW
691 if (predef_flags)
692 blocks[block_count].flags = predef_flags;
693 else
694 blocks[block_count].flags =
695 bfd_get_32 (abfd, table_data + off + 8);
e0001a05
NC
696 block_count++;
697 }
698 }
699 }
700
701 release_contents (table_section, table_data);
702 release_internal_relocs (table_section, internal_relocs);
703
43cd72b9 704 if (block_count > 0)
e0001a05
NC
705 {
706 /* Now sort them into address order for easy reference. */
707 qsort (blocks, block_count, sizeof (property_table_entry),
708 property_table_compare);
e4115460
BW
709
710 /* Check that the table contents are valid. Problems may occur,
711 for example, if an unrelocated object file is stripped. */
712 for (blk = 1; blk < block_count; blk++)
713 {
714 /* The only circumstance where two entries may legitimately
715 have the same address is when one of them is a zero-size
716 placeholder to mark a place where fill can be inserted.
717 The zero-size entry should come first. */
718 if (blocks[blk - 1].address == blocks[blk].address &&
719 blocks[blk - 1].size != 0)
720 {
721 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
722 abfd, section);
723 bfd_set_error (bfd_error_bad_value);
724 free (blocks);
725 return -1;
726 }
727 }
e0001a05 728 }
43cd72b9 729
e0001a05
NC
730 *table_p = blocks;
731 return block_count;
732}
733
734
7fa3d080
BW
735static property_table_entry *
736elf_xtensa_find_property_entry (property_table_entry *property_table,
737 int property_table_size,
738 bfd_vma addr)
e0001a05
NC
739{
740 property_table_entry entry;
43cd72b9 741 property_table_entry *rv;
e0001a05 742
43cd72b9
BW
743 if (property_table_size == 0)
744 return NULL;
e0001a05
NC
745
746 entry.address = addr;
747 entry.size = 1;
43cd72b9 748 entry.flags = 0;
e0001a05 749
43cd72b9
BW
750 rv = bsearch (&entry, property_table, property_table_size,
751 sizeof (property_table_entry), property_table_matches);
752 return rv;
753}
754
755
756static bfd_boolean
7fa3d080
BW
757elf_xtensa_in_literal_pool (property_table_entry *lit_table,
758 int lit_table_size,
759 bfd_vma addr)
43cd72b9
BW
760{
761 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
e0001a05
NC
762 return TRUE;
763
764 return FALSE;
765}
766
767\f
768/* Look through the relocs for a section during the first phase, and
769 calculate needed space in the dynamic reloc sections. */
770
771static bfd_boolean
7fa3d080
BW
772elf_xtensa_check_relocs (bfd *abfd,
773 struct bfd_link_info *info,
774 asection *sec,
775 const Elf_Internal_Rela *relocs)
e0001a05 776{
f0e6fdb2 777 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
778 Elf_Internal_Shdr *symtab_hdr;
779 struct elf_link_hash_entry **sym_hashes;
780 const Elf_Internal_Rela *rel;
781 const Elf_Internal_Rela *rel_end;
e0001a05 782
1049f94e 783 if (info->relocatable)
e0001a05
NC
784 return TRUE;
785
f0e6fdb2 786 htab = elf_xtensa_hash_table (info);
e0001a05
NC
787 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
788 sym_hashes = elf_sym_hashes (abfd);
789
e0001a05
NC
790 rel_end = relocs + sec->reloc_count;
791 for (rel = relocs; rel < rel_end; rel++)
792 {
793 unsigned int r_type;
794 unsigned long r_symndx;
795 struct elf_link_hash_entry *h;
796
797 r_symndx = ELF32_R_SYM (rel->r_info);
798 r_type = ELF32_R_TYPE (rel->r_info);
799
800 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
801 {
d003868e
AM
802 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
803 abfd, r_symndx);
e0001a05
NC
804 return FALSE;
805 }
806
807 if (r_symndx < symtab_hdr->sh_info)
808 h = NULL;
809 else
810 {
811 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
812 while (h->root.type == bfd_link_hash_indirect
813 || h->root.type == bfd_link_hash_warning)
814 h = (struct elf_link_hash_entry *) h->root.u.i.link;
815 }
816
817 switch (r_type)
818 {
819 case R_XTENSA_32:
820 if (h == NULL)
821 goto local_literal;
822
823 if ((sec->flags & SEC_ALLOC) != 0)
824 {
e0001a05
NC
825 if (h->got.refcount <= 0)
826 h->got.refcount = 1;
827 else
828 h->got.refcount += 1;
829 }
830 break;
831
832 case R_XTENSA_PLT:
833 /* If this relocation is against a local symbol, then it's
834 exactly the same as a normal local GOT entry. */
835 if (h == NULL)
836 goto local_literal;
837
838 if ((sec->flags & SEC_ALLOC) != 0)
839 {
e0001a05
NC
840 if (h->plt.refcount <= 0)
841 {
f5385ebf 842 h->needs_plt = 1;
e0001a05
NC
843 h->plt.refcount = 1;
844 }
845 else
846 h->plt.refcount += 1;
847
848 /* Keep track of the total PLT relocation count even if we
849 don't yet know whether the dynamic sections will be
850 created. */
f0e6fdb2 851 htab->plt_reloc_count += 1;
e0001a05
NC
852
853 if (elf_hash_table (info)->dynamic_sections_created)
854 {
f0e6fdb2 855 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
e0001a05
NC
856 return FALSE;
857 }
858 }
859 break;
860
861 local_literal:
862 if ((sec->flags & SEC_ALLOC) != 0)
863 {
864 bfd_signed_vma *local_got_refcounts;
865
866 /* This is a global offset table entry for a local symbol. */
867 local_got_refcounts = elf_local_got_refcounts (abfd);
868 if (local_got_refcounts == NULL)
869 {
870 bfd_size_type size;
871
872 size = symtab_hdr->sh_info;
873 size *= sizeof (bfd_signed_vma);
43cd72b9
BW
874 local_got_refcounts =
875 (bfd_signed_vma *) bfd_zalloc (abfd, size);
e0001a05
NC
876 if (local_got_refcounts == NULL)
877 return FALSE;
878 elf_local_got_refcounts (abfd) = local_got_refcounts;
879 }
880 local_got_refcounts[r_symndx] += 1;
e0001a05
NC
881 }
882 break;
883
884 case R_XTENSA_OP0:
885 case R_XTENSA_OP1:
886 case R_XTENSA_OP2:
43cd72b9
BW
887 case R_XTENSA_SLOT0_OP:
888 case R_XTENSA_SLOT1_OP:
889 case R_XTENSA_SLOT2_OP:
890 case R_XTENSA_SLOT3_OP:
891 case R_XTENSA_SLOT4_OP:
892 case R_XTENSA_SLOT5_OP:
893 case R_XTENSA_SLOT6_OP:
894 case R_XTENSA_SLOT7_OP:
895 case R_XTENSA_SLOT8_OP:
896 case R_XTENSA_SLOT9_OP:
897 case R_XTENSA_SLOT10_OP:
898 case R_XTENSA_SLOT11_OP:
899 case R_XTENSA_SLOT12_OP:
900 case R_XTENSA_SLOT13_OP:
901 case R_XTENSA_SLOT14_OP:
902 case R_XTENSA_SLOT0_ALT:
903 case R_XTENSA_SLOT1_ALT:
904 case R_XTENSA_SLOT2_ALT:
905 case R_XTENSA_SLOT3_ALT:
906 case R_XTENSA_SLOT4_ALT:
907 case R_XTENSA_SLOT5_ALT:
908 case R_XTENSA_SLOT6_ALT:
909 case R_XTENSA_SLOT7_ALT:
910 case R_XTENSA_SLOT8_ALT:
911 case R_XTENSA_SLOT9_ALT:
912 case R_XTENSA_SLOT10_ALT:
913 case R_XTENSA_SLOT11_ALT:
914 case R_XTENSA_SLOT12_ALT:
915 case R_XTENSA_SLOT13_ALT:
916 case R_XTENSA_SLOT14_ALT:
e0001a05
NC
917 case R_XTENSA_ASM_EXPAND:
918 case R_XTENSA_ASM_SIMPLIFY:
43cd72b9
BW
919 case R_XTENSA_DIFF8:
920 case R_XTENSA_DIFF16:
921 case R_XTENSA_DIFF32:
e0001a05
NC
922 /* Nothing to do for these. */
923 break;
924
925 case R_XTENSA_GNU_VTINHERIT:
926 /* This relocation describes the C++ object vtable hierarchy.
927 Reconstruct it for later use during GC. */
c152c796 928 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
e0001a05
NC
929 return FALSE;
930 break;
931
932 case R_XTENSA_GNU_VTENTRY:
933 /* This relocation describes which C++ vtable entries are actually
934 used. Record for later use during GC. */
c152c796 935 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
e0001a05
NC
936 return FALSE;
937 break;
938
939 default:
940 break;
941 }
942 }
943
e0001a05
NC
944 return TRUE;
945}
946
947
e0001a05
NC
948/* Return the section that should be marked against GC for a given
949 relocation. */
950
951static asection *
7fa3d080 952elf_xtensa_gc_mark_hook (asection *sec,
07adf181 953 struct bfd_link_info *info,
7fa3d080
BW
954 Elf_Internal_Rela *rel,
955 struct elf_link_hash_entry *h,
956 Elf_Internal_Sym *sym)
e0001a05 957{
07adf181
AM
958 if (h != NULL)
959 switch (ELF32_R_TYPE (rel->r_info))
960 {
961 case R_XTENSA_GNU_VTINHERIT:
962 case R_XTENSA_GNU_VTENTRY:
963 return NULL;
964 }
965
966 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
e0001a05
NC
967}
968
7fa3d080 969
e0001a05
NC
970/* Update the GOT & PLT entry reference counts
971 for the section being removed. */
972
973static bfd_boolean
7fa3d080
BW
974elf_xtensa_gc_sweep_hook (bfd *abfd,
975 struct bfd_link_info *info ATTRIBUTE_UNUSED,
976 asection *sec,
977 const Elf_Internal_Rela *relocs)
e0001a05
NC
978{
979 Elf_Internal_Shdr *symtab_hdr;
980 struct elf_link_hash_entry **sym_hashes;
981 bfd_signed_vma *local_got_refcounts;
982 const Elf_Internal_Rela *rel, *relend;
983
984 if ((sec->flags & SEC_ALLOC) == 0)
985 return TRUE;
986
987 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
988 sym_hashes = elf_sym_hashes (abfd);
989 local_got_refcounts = elf_local_got_refcounts (abfd);
990
991 relend = relocs + sec->reloc_count;
992 for (rel = relocs; rel < relend; rel++)
993 {
994 unsigned long r_symndx;
995 unsigned int r_type;
996 struct elf_link_hash_entry *h = NULL;
997
998 r_symndx = ELF32_R_SYM (rel->r_info);
999 if (r_symndx >= symtab_hdr->sh_info)
3eb128b2
AM
1000 {
1001 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1002 while (h->root.type == bfd_link_hash_indirect
1003 || h->root.type == bfd_link_hash_warning)
1004 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1005 }
e0001a05
NC
1006
1007 r_type = ELF32_R_TYPE (rel->r_info);
1008 switch (r_type)
1009 {
1010 case R_XTENSA_32:
1011 if (h == NULL)
1012 goto local_literal;
1013 if (h->got.refcount > 0)
1014 h->got.refcount--;
1015 break;
1016
1017 case R_XTENSA_PLT:
1018 if (h == NULL)
1019 goto local_literal;
1020 if (h->plt.refcount > 0)
1021 h->plt.refcount--;
1022 break;
1023
1024 local_literal:
1025 if (local_got_refcounts[r_symndx] > 0)
1026 local_got_refcounts[r_symndx] -= 1;
1027 break;
1028
1029 default:
1030 break;
1031 }
1032 }
1033
1034 return TRUE;
1035}
1036
1037
1038/* Create all the dynamic sections. */
1039
1040static bfd_boolean
7fa3d080 1041elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
e0001a05 1042{
f0e6fdb2 1043 struct elf_xtensa_link_hash_table *htab;
e901de89 1044 flagword flags, noalloc_flags;
f0e6fdb2
BW
1045
1046 htab = elf_xtensa_hash_table (info);
e0001a05
NC
1047
1048 /* First do all the standard stuff. */
1049 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1050 return FALSE;
f0e6fdb2
BW
1051 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
1052 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
1053 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
1054 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
e0001a05
NC
1055
1056 /* Create any extra PLT sections in case check_relocs has already
1057 been called on all the non-dynamic input files. */
f0e6fdb2 1058 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
e0001a05
NC
1059 return FALSE;
1060
e901de89
BW
1061 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1062 | SEC_LINKER_CREATED | SEC_READONLY);
1063 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
e0001a05
NC
1064
1065 /* Mark the ".got.plt" section READONLY. */
f0e6fdb2
BW
1066 if (htab->sgotplt == NULL
1067 || ! bfd_set_section_flags (dynobj, htab->sgotplt, flags))
e0001a05
NC
1068 return FALSE;
1069
1070 /* Create ".rela.got". */
f0e6fdb2
BW
1071 htab->srelgot = bfd_make_section_with_flags (dynobj, ".rela.got", flags);
1072 if (htab->srelgot == NULL
1073 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
e0001a05
NC
1074 return FALSE;
1075
e901de89 1076 /* Create ".got.loc" (literal tables for use by dynamic linker). */
f0e6fdb2
BW
1077 htab->sgotloc = bfd_make_section_with_flags (dynobj, ".got.loc", flags);
1078 if (htab->sgotloc == NULL
1079 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
e901de89
BW
1080 return FALSE;
1081
e0001a05 1082 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
f0e6fdb2
BW
1083 htab->spltlittbl = bfd_make_section_with_flags (dynobj, ".xt.lit.plt",
1084 noalloc_flags);
1085 if (htab->spltlittbl == NULL
1086 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
e0001a05
NC
1087 return FALSE;
1088
1089 return TRUE;
1090}
1091
1092
1093static bfd_boolean
f0e6fdb2 1094add_extra_plt_sections (struct bfd_link_info *info, int count)
e0001a05 1095{
f0e6fdb2 1096 bfd *dynobj = elf_hash_table (info)->dynobj;
e0001a05
NC
1097 int chunk;
1098
1099 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1100 ".got.plt" sections. */
1101 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1102 {
1103 char *sname;
1104 flagword flags;
1105 asection *s;
1106
1107 /* Stop when we find a section has already been created. */
f0e6fdb2 1108 if (elf_xtensa_get_plt_section (info, chunk))
e0001a05
NC
1109 break;
1110
1111 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1112 | SEC_LINKER_CREATED | SEC_READONLY);
1113
1114 sname = (char *) bfd_malloc (10);
1115 sprintf (sname, ".plt.%u", chunk);
ba05963f 1116 s = bfd_make_section_with_flags (dynobj, sname, flags | SEC_CODE);
e0001a05 1117 if (s == NULL
e0001a05
NC
1118 || ! bfd_set_section_alignment (dynobj, s, 2))
1119 return FALSE;
1120
1121 sname = (char *) bfd_malloc (14);
1122 sprintf (sname, ".got.plt.%u", chunk);
3496cb2a 1123 s = bfd_make_section_with_flags (dynobj, sname, flags);
e0001a05 1124 if (s == NULL
e0001a05
NC
1125 || ! bfd_set_section_alignment (dynobj, s, 2))
1126 return FALSE;
1127 }
1128
1129 return TRUE;
1130}
1131
1132
1133/* Adjust a symbol defined by a dynamic object and referenced by a
1134 regular object. The current definition is in some section of the
1135 dynamic object, but we're not including those sections. We have to
1136 change the definition to something the rest of the link can
1137 understand. */
1138
1139static bfd_boolean
7fa3d080
BW
1140elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1141 struct elf_link_hash_entry *h)
e0001a05
NC
1142{
1143 /* If this is a weak symbol, and there is a real definition, the
1144 processor independent code will have arranged for us to see the
1145 real definition first, and we can just use the same value. */
7fa3d080 1146 if (h->u.weakdef)
e0001a05 1147 {
f6e332e6
AM
1148 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1149 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1150 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1151 h->root.u.def.value = h->u.weakdef->root.u.def.value;
e0001a05
NC
1152 return TRUE;
1153 }
1154
1155 /* This is a reference to a symbol defined by a dynamic object. The
1156 reference must go through the GOT, so there's no need for COPY relocs,
1157 .dynbss, etc. */
1158
1159 return TRUE;
1160}
1161
1162
e0001a05 1163static bfd_boolean
f1ab2340 1164elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
e0001a05 1165{
f1ab2340
BW
1166 struct bfd_link_info *info;
1167 struct elf_xtensa_link_hash_table *htab;
1168 bfd_boolean is_dynamic;
e0001a05 1169
f1ab2340
BW
1170 if (h->root.type == bfd_link_hash_indirect)
1171 return TRUE;
e0001a05
NC
1172
1173 if (h->root.type == bfd_link_hash_warning)
1174 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1175
f1ab2340
BW
1176 info = (struct bfd_link_info *) arg;
1177 htab = elf_xtensa_hash_table (info);
e0001a05 1178
f1ab2340 1179 is_dynamic = elf_xtensa_dynamic_symbol_p (h, info);
e0001a05 1180
f1ab2340
BW
1181 if (! is_dynamic)
1182 {
1183 if (info->shared)
1184 {
1185 /* For shared objects, there's no need for PLT entries for local
1186 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
1187 if (h->plt.refcount > 0)
1188 {
1189 if (h->got.refcount < 0)
1190 h->got.refcount = 0;
1191 h->got.refcount += h->plt.refcount;
1192 h->plt.refcount = 0;
1193 }
1194 }
1195 else
1196 {
1197 /* Don't need any dynamic relocations at all. */
1198 h->plt.refcount = 0;
1199 h->got.refcount = 0;
1200 }
1201 }
e0001a05 1202
f1ab2340
BW
1203 if (h->plt.refcount > 0)
1204 htab->srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1205
1206 if (h->got.refcount > 0)
f1ab2340 1207 htab->srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1208
1209 return TRUE;
1210}
1211
1212
1213static void
f0e6fdb2 1214elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
e0001a05 1215{
f0e6fdb2 1216 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
1217 bfd *i;
1218
f0e6fdb2
BW
1219 htab = elf_xtensa_hash_table (info);
1220
e0001a05
NC
1221 for (i = info->input_bfds; i; i = i->link_next)
1222 {
1223 bfd_signed_vma *local_got_refcounts;
1224 bfd_size_type j, cnt;
1225 Elf_Internal_Shdr *symtab_hdr;
1226
1227 local_got_refcounts = elf_local_got_refcounts (i);
1228 if (!local_got_refcounts)
1229 continue;
1230
1231 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1232 cnt = symtab_hdr->sh_info;
1233
1234 for (j = 0; j < cnt; ++j)
1235 {
1236 if (local_got_refcounts[j] > 0)
f0e6fdb2
BW
1237 htab->srelgot->size += (local_got_refcounts[j]
1238 * sizeof (Elf32_External_Rela));
e0001a05
NC
1239 }
1240 }
1241}
1242
1243
1244/* Set the sizes of the dynamic sections. */
1245
1246static bfd_boolean
7fa3d080
BW
1247elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1248 struct bfd_link_info *info)
e0001a05 1249{
f0e6fdb2 1250 struct elf_xtensa_link_hash_table *htab;
e901de89
BW
1251 bfd *dynobj, *abfd;
1252 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
e0001a05
NC
1253 bfd_boolean relplt, relgot;
1254 int plt_entries, plt_chunks, chunk;
1255
1256 plt_entries = 0;
1257 plt_chunks = 0;
e0001a05 1258
f0e6fdb2 1259 htab = elf_xtensa_hash_table (info);
e0001a05
NC
1260 dynobj = elf_hash_table (info)->dynobj;
1261 if (dynobj == NULL)
1262 abort ();
f0e6fdb2
BW
1263 srelgot = htab->srelgot;
1264 srelplt = htab->srelplt;
e0001a05
NC
1265
1266 if (elf_hash_table (info)->dynamic_sections_created)
1267 {
f0e6fdb2
BW
1268 BFD_ASSERT (htab->srelgot != NULL
1269 && htab->srelplt != NULL
1270 && htab->sgot != NULL
1271 && htab->spltlittbl != NULL
1272 && htab->sgotloc != NULL);
1273
e0001a05 1274 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 1275 if (info->executable)
e0001a05
NC
1276 {
1277 s = bfd_get_section_by_name (dynobj, ".interp");
1278 if (s == NULL)
1279 abort ();
eea6121a 1280 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
e0001a05
NC
1281 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1282 }
1283
1284 /* Allocate room for one word in ".got". */
f0e6fdb2 1285 htab->sgot->size = 4;
e0001a05 1286
f1ab2340
BW
1287 /* Allocate space in ".rela.got" for literals that reference global
1288 symbols and space in ".rela.plt" for literals that have PLT
1289 entries. */
e0001a05 1290 elf_link_hash_traverse (elf_hash_table (info),
f1ab2340 1291 elf_xtensa_allocate_dynrelocs,
7fa3d080 1292 (void *) info);
e0001a05 1293
e0001a05
NC
1294 /* If we are generating a shared object, we also need space in
1295 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1296 reference local symbols. */
1297 if (info->shared)
f0e6fdb2 1298 elf_xtensa_allocate_local_got_size (info);
e0001a05 1299
e0001a05
NC
1300 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1301 each PLT entry, we need the PLT code plus a 4-byte literal.
1302 For each chunk of ".plt", we also need two more 4-byte
1303 literals, two corresponding entries in ".rela.got", and an
1304 8-byte entry in ".xt.lit.plt". */
f0e6fdb2 1305 spltlittbl = htab->spltlittbl;
eea6121a 1306 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
1307 plt_chunks =
1308 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1309
1310 /* Iterate over all the PLT chunks, including any extra sections
1311 created earlier because the initial count of PLT relocations
1312 was an overestimate. */
1313 for (chunk = 0;
f0e6fdb2 1314 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
e0001a05
NC
1315 chunk++)
1316 {
1317 int chunk_entries;
1318
f0e6fdb2
BW
1319 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1320 BFD_ASSERT (sgotplt != NULL);
e0001a05
NC
1321
1322 if (chunk < plt_chunks - 1)
1323 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1324 else if (chunk == plt_chunks - 1)
1325 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1326 else
1327 chunk_entries = 0;
1328
1329 if (chunk_entries != 0)
1330 {
eea6121a
AM
1331 sgotplt->size = 4 * (chunk_entries + 2);
1332 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1333 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1334 spltlittbl->size += 8;
e0001a05
NC
1335 }
1336 else
1337 {
eea6121a
AM
1338 sgotplt->size = 0;
1339 splt->size = 0;
e0001a05
NC
1340 }
1341 }
e901de89
BW
1342
1343 /* Allocate space in ".got.loc" to match the total size of all the
1344 literal tables. */
f0e6fdb2 1345 sgotloc = htab->sgotloc;
eea6121a 1346 sgotloc->size = spltlittbl->size;
e901de89
BW
1347 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1348 {
1349 if (abfd->flags & DYNAMIC)
1350 continue;
1351 for (s = abfd->sections; s != NULL; s = s->next)
1352 {
b536dc1e
BW
1353 if (! elf_discarded_section (s)
1354 && xtensa_is_littable_section (s)
1355 && s != spltlittbl)
eea6121a 1356 sgotloc->size += s->size;
e901de89
BW
1357 }
1358 }
e0001a05
NC
1359 }
1360
1361 /* Allocate memory for dynamic sections. */
1362 relplt = FALSE;
1363 relgot = FALSE;
1364 for (s = dynobj->sections; s != NULL; s = s->next)
1365 {
1366 const char *name;
e0001a05
NC
1367
1368 if ((s->flags & SEC_LINKER_CREATED) == 0)
1369 continue;
1370
1371 /* It's OK to base decisions on the section name, because none
1372 of the dynobj section names depend upon the input files. */
1373 name = bfd_get_section_name (dynobj, s);
1374
0112cd26 1375 if (CONST_STRNEQ (name, ".rela"))
e0001a05 1376 {
c456f082 1377 if (s->size != 0)
e0001a05 1378 {
c456f082
AM
1379 if (strcmp (name, ".rela.plt") == 0)
1380 relplt = TRUE;
1381 else if (strcmp (name, ".rela.got") == 0)
1382 relgot = TRUE;
1383
1384 /* We use the reloc_count field as a counter if we need
1385 to copy relocs into the output file. */
1386 s->reloc_count = 0;
e0001a05
NC
1387 }
1388 }
0112cd26
NC
1389 else if (! CONST_STRNEQ (name, ".plt.")
1390 && ! CONST_STRNEQ (name, ".got.plt.")
c456f082 1391 && strcmp (name, ".got") != 0
e0001a05
NC
1392 && strcmp (name, ".plt") != 0
1393 && strcmp (name, ".got.plt") != 0
e901de89
BW
1394 && strcmp (name, ".xt.lit.plt") != 0
1395 && strcmp (name, ".got.loc") != 0)
e0001a05
NC
1396 {
1397 /* It's not one of our sections, so don't allocate space. */
1398 continue;
1399 }
1400
c456f082
AM
1401 if (s->size == 0)
1402 {
1403 /* If we don't need this section, strip it from the output
1404 file. We must create the ".plt*" and ".got.plt*"
1405 sections in create_dynamic_sections and/or check_relocs
1406 based on a conservative estimate of the PLT relocation
1407 count, because the sections must be created before the
1408 linker maps input sections to output sections. The
1409 linker does that before size_dynamic_sections, where we
1410 compute the exact size of the PLT, so there may be more
1411 of these sections than are actually needed. */
1412 s->flags |= SEC_EXCLUDE;
1413 }
1414 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
e0001a05
NC
1415 {
1416 /* Allocate memory for the section contents. */
eea6121a 1417 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
c456f082 1418 if (s->contents == NULL)
e0001a05
NC
1419 return FALSE;
1420 }
1421 }
1422
1423 if (elf_hash_table (info)->dynamic_sections_created)
1424 {
1425 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1426 known until finish_dynamic_sections, but we need to get the relocs
1427 in place before they are sorted. */
e0001a05
NC
1428 for (chunk = 0; chunk < plt_chunks; chunk++)
1429 {
1430 Elf_Internal_Rela irela;
1431 bfd_byte *loc;
1432
1433 irela.r_offset = 0;
1434 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1435 irela.r_addend = 0;
1436
1437 loc = (srelgot->contents
1438 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1439 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1440 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1441 loc + sizeof (Elf32_External_Rela));
1442 srelgot->reloc_count += 2;
1443 }
1444
1445 /* Add some entries to the .dynamic section. We fill in the
1446 values later, in elf_xtensa_finish_dynamic_sections, but we
1447 must add the entries now so that we get the correct size for
1448 the .dynamic section. The DT_DEBUG entry is filled in by the
1449 dynamic linker and used by the debugger. */
1450#define add_dynamic_entry(TAG, VAL) \
5a580b3a 1451 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
e0001a05 1452
ba05963f 1453 if (info->executable)
e0001a05
NC
1454 {
1455 if (!add_dynamic_entry (DT_DEBUG, 0))
1456 return FALSE;
1457 }
1458
1459 if (relplt)
1460 {
1461 if (!add_dynamic_entry (DT_PLTGOT, 0)
1462 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1463 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1464 || !add_dynamic_entry (DT_JMPREL, 0))
1465 return FALSE;
1466 }
1467
1468 if (relgot)
1469 {
1470 if (!add_dynamic_entry (DT_RELA, 0)
1471 || !add_dynamic_entry (DT_RELASZ, 0)
1472 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1473 return FALSE;
1474 }
1475
e0001a05
NC
1476 if (!add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1477 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1478 return FALSE;
1479 }
1480#undef add_dynamic_entry
1481
1482 return TRUE;
1483}
1484
e0001a05
NC
1485\f
1486/* Perform the specified relocation. The instruction at (contents + address)
1487 is modified to set one operand to represent the value in "relocation". The
1488 operand position is determined by the relocation type recorded in the
1489 howto. */
1490
1491#define CALL_SEGMENT_BITS (30)
7fa3d080 1492#define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
e0001a05
NC
1493
1494static bfd_reloc_status_type
7fa3d080
BW
1495elf_xtensa_do_reloc (reloc_howto_type *howto,
1496 bfd *abfd,
1497 asection *input_section,
1498 bfd_vma relocation,
1499 bfd_byte *contents,
1500 bfd_vma address,
1501 bfd_boolean is_weak_undef,
1502 char **error_message)
e0001a05 1503{
43cd72b9 1504 xtensa_format fmt;
e0001a05 1505 xtensa_opcode opcode;
e0001a05 1506 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
1507 static xtensa_insnbuf ibuff = NULL;
1508 static xtensa_insnbuf sbuff = NULL;
1509 bfd_vma self_address = 0;
1510 bfd_size_type input_size;
1511 int opnd, slot;
e0001a05
NC
1512 uint32 newval;
1513
43cd72b9
BW
1514 if (!ibuff)
1515 {
1516 ibuff = xtensa_insnbuf_alloc (isa);
1517 sbuff = xtensa_insnbuf_alloc (isa);
1518 }
1519
1520 input_size = bfd_get_section_limit (abfd, input_section);
1521
e0001a05
NC
1522 switch (howto->type)
1523 {
1524 case R_XTENSA_NONE:
43cd72b9
BW
1525 case R_XTENSA_DIFF8:
1526 case R_XTENSA_DIFF16:
1527 case R_XTENSA_DIFF32:
e0001a05
NC
1528 return bfd_reloc_ok;
1529
1530 case R_XTENSA_ASM_EXPAND:
1531 if (!is_weak_undef)
1532 {
1533 /* Check for windowed CALL across a 1GB boundary. */
1534 xtensa_opcode opcode =
1535 get_expanded_call_opcode (contents + address,
43cd72b9 1536 input_size - address, 0);
e0001a05
NC
1537 if (is_windowed_call_opcode (opcode))
1538 {
1539 self_address = (input_section->output_section->vma
1540 + input_section->output_offset
1541 + address);
43cd72b9
BW
1542 if ((self_address >> CALL_SEGMENT_BITS)
1543 != (relocation >> CALL_SEGMENT_BITS))
e0001a05
NC
1544 {
1545 *error_message = "windowed longcall crosses 1GB boundary; "
1546 "return may fail";
1547 return bfd_reloc_dangerous;
1548 }
1549 }
1550 }
1551 return bfd_reloc_ok;
1552
1553 case R_XTENSA_ASM_SIMPLIFY:
43cd72b9 1554 {
e0001a05 1555 /* Convert the L32R/CALLX to CALL. */
43cd72b9
BW
1556 bfd_reloc_status_type retval =
1557 elf_xtensa_do_asm_simplify (contents, address, input_size,
1558 error_message);
e0001a05 1559 if (retval != bfd_reloc_ok)
43cd72b9 1560 return bfd_reloc_dangerous;
e0001a05
NC
1561
1562 /* The CALL needs to be relocated. Continue below for that part. */
1563 address += 3;
43cd72b9 1564 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
e0001a05
NC
1565 }
1566 break;
1567
1568 case R_XTENSA_32:
1569 case R_XTENSA_PLT:
1570 {
1571 bfd_vma x;
1572 x = bfd_get_32 (abfd, contents + address);
1573 x = x + relocation;
1574 bfd_put_32 (abfd, x, contents + address);
1575 }
1576 return bfd_reloc_ok;
1577 }
1578
43cd72b9
BW
1579 /* Only instruction slot-specific relocations handled below.... */
1580 slot = get_relocation_slot (howto->type);
1581 if (slot == XTENSA_UNDEFINED)
e0001a05 1582 {
43cd72b9 1583 *error_message = "unexpected relocation";
e0001a05
NC
1584 return bfd_reloc_dangerous;
1585 }
1586
43cd72b9
BW
1587 /* Read the instruction into a buffer and decode the opcode. */
1588 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
1589 input_size - address);
1590 fmt = xtensa_format_decode (isa, ibuff);
1591 if (fmt == XTENSA_UNDEFINED)
e0001a05 1592 {
43cd72b9 1593 *error_message = "cannot decode instruction format";
e0001a05
NC
1594 return bfd_reloc_dangerous;
1595 }
1596
43cd72b9 1597 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
e0001a05 1598
43cd72b9
BW
1599 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
1600 if (opcode == XTENSA_UNDEFINED)
e0001a05 1601 {
43cd72b9 1602 *error_message = "cannot decode instruction opcode";
e0001a05
NC
1603 return bfd_reloc_dangerous;
1604 }
1605
43cd72b9
BW
1606 /* Check for opcode-specific "alternate" relocations. */
1607 if (is_alt_relocation (howto->type))
1608 {
1609 if (opcode == get_l32r_opcode ())
1610 {
1611 /* Handle the special-case of non-PC-relative L32R instructions. */
1612 bfd *output_bfd = input_section->output_section->owner;
1613 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
1614 if (!lit4_sec)
1615 {
1616 *error_message = "relocation references missing .lit4 section";
1617 return bfd_reloc_dangerous;
1618 }
1619 self_address = ((lit4_sec->vma & ~0xfff)
1620 + 0x40000 - 3); /* -3 to compensate for do_reloc */
1621 newval = relocation;
1622 opnd = 1;
1623 }
1624 else if (opcode == get_const16_opcode ())
1625 {
1626 /* ALT used for high 16 bits. */
1627 newval = relocation >> 16;
1628 opnd = 1;
1629 }
1630 else
1631 {
1632 /* No other "alternate" relocations currently defined. */
1633 *error_message = "unexpected relocation";
1634 return bfd_reloc_dangerous;
1635 }
1636 }
1637 else /* Not an "alternate" relocation.... */
1638 {
1639 if (opcode == get_const16_opcode ())
1640 {
1641 newval = relocation & 0xffff;
1642 opnd = 1;
1643 }
1644 else
1645 {
1646 /* ...normal PC-relative relocation.... */
1647
1648 /* Determine which operand is being relocated. */
1649 opnd = get_relocation_opnd (opcode, howto->type);
1650 if (opnd == XTENSA_UNDEFINED)
1651 {
1652 *error_message = "unexpected relocation";
1653 return bfd_reloc_dangerous;
1654 }
1655
1656 if (!howto->pc_relative)
1657 {
1658 *error_message = "expected PC-relative relocation";
1659 return bfd_reloc_dangerous;
1660 }
e0001a05 1661
43cd72b9
BW
1662 /* Calculate the PC address for this instruction. */
1663 self_address = (input_section->output_section->vma
1664 + input_section->output_offset
1665 + address);
e0001a05 1666
43cd72b9
BW
1667 newval = relocation;
1668 }
1669 }
e0001a05 1670
43cd72b9
BW
1671 /* Apply the relocation. */
1672 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
1673 || xtensa_operand_encode (isa, opcode, opnd, &newval)
1674 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
1675 sbuff, newval))
e0001a05 1676 {
2db662be
BW
1677 const char *opname = xtensa_opcode_name (isa, opcode);
1678 const char *msg;
1679
1680 msg = "cannot encode";
1681 if (is_direct_call_opcode (opcode))
1682 {
1683 if ((relocation & 0x3) != 0)
1684 msg = "misaligned call target";
1685 else
1686 msg = "call target out of range";
1687 }
1688 else if (opcode == get_l32r_opcode ())
1689 {
1690 if ((relocation & 0x3) != 0)
1691 msg = "misaligned literal target";
1692 else if (is_alt_relocation (howto->type))
1693 msg = "literal target out of range (too many literals)";
1694 else if (self_address > relocation)
1695 msg = "literal target out of range (try using text-section-literals)";
1696 else
1697 msg = "literal placed after use";
1698 }
1699
1700 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
e0001a05
NC
1701 return bfd_reloc_dangerous;
1702 }
1703
43cd72b9 1704 /* Check for calls across 1GB boundaries. */
e0001a05
NC
1705 if (is_direct_call_opcode (opcode)
1706 && is_windowed_call_opcode (opcode))
1707 {
43cd72b9
BW
1708 if ((self_address >> CALL_SEGMENT_BITS)
1709 != (relocation >> CALL_SEGMENT_BITS))
e0001a05 1710 {
43cd72b9
BW
1711 *error_message =
1712 "windowed call crosses 1GB boundary; return may fail";
e0001a05
NC
1713 return bfd_reloc_dangerous;
1714 }
1715 }
1716
43cd72b9
BW
1717 /* Write the modified instruction back out of the buffer. */
1718 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
1719 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
1720 input_size - address);
e0001a05
NC
1721 return bfd_reloc_ok;
1722}
1723
1724
2db662be 1725static char *
7fa3d080 1726vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
e0001a05
NC
1727{
1728 /* To reduce the size of the memory leak,
1729 we only use a single message buffer. */
1730 static bfd_size_type alloc_size = 0;
1731 static char *message = NULL;
1732 bfd_size_type orig_len, len = 0;
1733 bfd_boolean is_append;
1734
1735 VA_OPEN (ap, arglen);
1736 VA_FIXEDARG (ap, const char *, origmsg);
1737
1738 is_append = (origmsg == message);
1739
1740 orig_len = strlen (origmsg);
1741 len = orig_len + strlen (fmt) + arglen + 20;
1742 if (len > alloc_size)
1743 {
1744 message = (char *) bfd_realloc (message, len);
1745 alloc_size = len;
1746 }
1747 if (!is_append)
1748 memcpy (message, origmsg, orig_len);
1749 vsprintf (message + orig_len, fmt, ap);
1750 VA_CLOSE (ap);
1751 return message;
1752}
1753
1754
e0001a05
NC
1755/* This function is registered as the "special_function" in the
1756 Xtensa howto for handling simplify operations.
1757 bfd_perform_relocation / bfd_install_relocation use it to
1758 perform (install) the specified relocation. Since this replaces the code
1759 in bfd_perform_relocation, it is basically an Xtensa-specific,
1760 stripped-down version of bfd_perform_relocation. */
1761
1762static bfd_reloc_status_type
7fa3d080
BW
1763bfd_elf_xtensa_reloc (bfd *abfd,
1764 arelent *reloc_entry,
1765 asymbol *symbol,
1766 void *data,
1767 asection *input_section,
1768 bfd *output_bfd,
1769 char **error_message)
e0001a05
NC
1770{
1771 bfd_vma relocation;
1772 bfd_reloc_status_type flag;
1773 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
1774 bfd_vma output_base = 0;
1775 reloc_howto_type *howto = reloc_entry->howto;
1776 asection *reloc_target_output_section;
1777 bfd_boolean is_weak_undef;
1778
dd1a320b
BW
1779 if (!xtensa_default_isa)
1780 xtensa_default_isa = xtensa_isa_init (0, 0);
1781
1049f94e 1782 /* ELF relocs are against symbols. If we are producing relocatable
e0001a05
NC
1783 output, and the reloc is against an external symbol, the resulting
1784 reloc will also be against the same symbol. In such a case, we
1785 don't want to change anything about the way the reloc is handled,
1786 since it will all be done at final link time. This test is similar
1787 to what bfd_elf_generic_reloc does except that it lets relocs with
1788 howto->partial_inplace go through even if the addend is non-zero.
1789 (The real problem is that partial_inplace is set for XTENSA_32
1790 relocs to begin with, but that's a long story and there's little we
1791 can do about it now....) */
1792
7fa3d080 1793 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
e0001a05
NC
1794 {
1795 reloc_entry->address += input_section->output_offset;
1796 return bfd_reloc_ok;
1797 }
1798
1799 /* Is the address of the relocation really within the section? */
07515404 1800 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
e0001a05
NC
1801 return bfd_reloc_outofrange;
1802
4cc11e76 1803 /* Work out which section the relocation is targeted at and the
e0001a05
NC
1804 initial relocation command value. */
1805
1806 /* Get symbol value. (Common symbols are special.) */
1807 if (bfd_is_com_section (symbol->section))
1808 relocation = 0;
1809 else
1810 relocation = symbol->value;
1811
1812 reloc_target_output_section = symbol->section->output_section;
1813
1814 /* Convert input-section-relative symbol value to absolute. */
1815 if ((output_bfd && !howto->partial_inplace)
1816 || reloc_target_output_section == NULL)
1817 output_base = 0;
1818 else
1819 output_base = reloc_target_output_section->vma;
1820
1821 relocation += output_base + symbol->section->output_offset;
1822
1823 /* Add in supplied addend. */
1824 relocation += reloc_entry->addend;
1825
1826 /* Here the variable relocation holds the final address of the
1827 symbol we are relocating against, plus any addend. */
1828 if (output_bfd)
1829 {
1830 if (!howto->partial_inplace)
1831 {
1832 /* This is a partial relocation, and we want to apply the relocation
1833 to the reloc entry rather than the raw data. Everything except
1834 relocations against section symbols has already been handled
1835 above. */
43cd72b9 1836
e0001a05
NC
1837 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
1838 reloc_entry->addend = relocation;
1839 reloc_entry->address += input_section->output_offset;
1840 return bfd_reloc_ok;
1841 }
1842 else
1843 {
1844 reloc_entry->address += input_section->output_offset;
1845 reloc_entry->addend = 0;
1846 }
1847 }
1848
1849 is_weak_undef = (bfd_is_und_section (symbol->section)
1850 && (symbol->flags & BSF_WEAK) != 0);
1851 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
1852 (bfd_byte *) data, (bfd_vma) octets,
1853 is_weak_undef, error_message);
1854
1855 if (flag == bfd_reloc_dangerous)
1856 {
1857 /* Add the symbol name to the error message. */
1858 if (! *error_message)
1859 *error_message = "";
1860 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
1861 strlen (symbol->name) + 17,
70961b9d
AM
1862 symbol->name,
1863 (unsigned long) reloc_entry->addend);
e0001a05
NC
1864 }
1865
1866 return flag;
1867}
1868
1869
1870/* Set up an entry in the procedure linkage table. */
1871
1872static bfd_vma
f0e6fdb2 1873elf_xtensa_create_plt_entry (struct bfd_link_info *info,
7fa3d080
BW
1874 bfd *output_bfd,
1875 unsigned reloc_index)
e0001a05
NC
1876{
1877 asection *splt, *sgotplt;
1878 bfd_vma plt_base, got_base;
1879 bfd_vma code_offset, lit_offset;
1880 int chunk;
1881
1882 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
f0e6fdb2
BW
1883 splt = elf_xtensa_get_plt_section (info, chunk);
1884 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
1885 BFD_ASSERT (splt != NULL && sgotplt != NULL);
1886
1887 plt_base = splt->output_section->vma + splt->output_offset;
1888 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
1889
1890 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
1891 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
1892
1893 /* Fill in the literal entry. This is the offset of the dynamic
1894 relocation entry. */
1895 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
1896 sgotplt->contents + lit_offset);
1897
1898 /* Fill in the entry in the procedure linkage table. */
1899 memcpy (splt->contents + code_offset,
1900 (bfd_big_endian (output_bfd)
1901 ? elf_xtensa_be_plt_entry
1902 : elf_xtensa_le_plt_entry),
1903 PLT_ENTRY_SIZE);
1904 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
1905 plt_base + code_offset + 3),
1906 splt->contents + code_offset + 4);
1907 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
1908 plt_base + code_offset + 6),
1909 splt->contents + code_offset + 7);
1910 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
1911 plt_base + code_offset + 9),
1912 splt->contents + code_offset + 10);
1913
1914 return plt_base + code_offset;
1915}
1916
1917
e0001a05 1918/* Relocate an Xtensa ELF section. This is invoked by the linker for
1049f94e 1919 both relocatable and final links. */
e0001a05
NC
1920
1921static bfd_boolean
7fa3d080
BW
1922elf_xtensa_relocate_section (bfd *output_bfd,
1923 struct bfd_link_info *info,
1924 bfd *input_bfd,
1925 asection *input_section,
1926 bfd_byte *contents,
1927 Elf_Internal_Rela *relocs,
1928 Elf_Internal_Sym *local_syms,
1929 asection **local_sections)
e0001a05 1930{
f0e6fdb2 1931 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
1932 Elf_Internal_Shdr *symtab_hdr;
1933 Elf_Internal_Rela *rel;
1934 Elf_Internal_Rela *relend;
1935 struct elf_link_hash_entry **sym_hashes;
88d65ad6
BW
1936 property_table_entry *lit_table = 0;
1937 int ltblsize = 0;
e0001a05 1938 char *error_message = NULL;
43cd72b9 1939 bfd_size_type input_size;
e0001a05 1940
43cd72b9
BW
1941 if (!xtensa_default_isa)
1942 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 1943
f0e6fdb2 1944 htab = elf_xtensa_hash_table (info);
e0001a05
NC
1945 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1946 sym_hashes = elf_sym_hashes (input_bfd);
1947
88d65ad6
BW
1948 if (elf_hash_table (info)->dynamic_sections_created)
1949 {
1950 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
43cd72b9
BW
1951 &lit_table, XTENSA_LIT_SEC_NAME,
1952 TRUE);
88d65ad6
BW
1953 if (ltblsize < 0)
1954 return FALSE;
1955 }
1956
43cd72b9
BW
1957 input_size = bfd_get_section_limit (input_bfd, input_section);
1958
e0001a05
NC
1959 rel = relocs;
1960 relend = relocs + input_section->reloc_count;
1961 for (; rel < relend; rel++)
1962 {
1963 int r_type;
1964 reloc_howto_type *howto;
1965 unsigned long r_symndx;
1966 struct elf_link_hash_entry *h;
1967 Elf_Internal_Sym *sym;
1968 asection *sec;
1969 bfd_vma relocation;
1970 bfd_reloc_status_type r;
1971 bfd_boolean is_weak_undef;
1972 bfd_boolean unresolved_reloc;
9b8c98a4 1973 bfd_boolean warned;
e0001a05
NC
1974
1975 r_type = ELF32_R_TYPE (rel->r_info);
1976 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
1977 || r_type == (int) R_XTENSA_GNU_VTENTRY)
1978 continue;
1979
1980 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
1981 {
1982 bfd_set_error (bfd_error_bad_value);
1983 return FALSE;
1984 }
1985 howto = &elf_howto_table[r_type];
1986
1987 r_symndx = ELF32_R_SYM (rel->r_info);
1988
ab96bf03
AM
1989 h = NULL;
1990 sym = NULL;
1991 sec = NULL;
1992 is_weak_undef = FALSE;
1993 unresolved_reloc = FALSE;
1994 warned = FALSE;
1995
1996 if (howto->partial_inplace && !info->relocatable)
1997 {
1998 /* Because R_XTENSA_32 was made partial_inplace to fix some
1999 problems with DWARF info in partial links, there may be
2000 an addend stored in the contents. Take it out of there
2001 and move it back into the addend field of the reloc. */
2002 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2003 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2004 }
2005
2006 if (r_symndx < symtab_hdr->sh_info)
2007 {
2008 sym = local_syms + r_symndx;
2009 sec = local_sections[r_symndx];
2010 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2011 }
2012 else
2013 {
2014 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2015 r_symndx, symtab_hdr, sym_hashes,
2016 h, sec, relocation,
2017 unresolved_reloc, warned);
2018
2019 if (relocation == 0
2020 && !unresolved_reloc
2021 && h->root.type == bfd_link_hash_undefweak)
2022 is_weak_undef = TRUE;
2023 }
2024
2025 if (sec != NULL && elf_discarded_section (sec))
2026 {
2027 /* For relocs against symbols from removed linkonce sections,
2028 or sections discarded by a linker script, we just want the
2029 section contents zeroed. Avoid any special processing. */
2030 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
2031 rel->r_info = 0;
2032 rel->r_addend = 0;
2033 continue;
2034 }
2035
1049f94e 2036 if (info->relocatable)
e0001a05 2037 {
43cd72b9 2038 /* This is a relocatable link.
e0001a05
NC
2039 1) If the reloc is against a section symbol, adjust
2040 according to the output section.
2041 2) If there is a new target for this relocation,
2042 the new target will be in the same output section.
2043 We adjust the relocation by the output section
2044 difference. */
2045
2046 if (relaxing_section)
2047 {
2048 /* Check if this references a section in another input file. */
43cd72b9
BW
2049 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2050 contents))
2051 return FALSE;
e0001a05
NC
2052 r_type = ELF32_R_TYPE (rel->r_info);
2053 }
2054
43cd72b9 2055 if (r_type == R_XTENSA_ASM_SIMPLIFY)
e0001a05 2056 {
43cd72b9 2057 char *error_message = NULL;
e0001a05
NC
2058 /* Convert ASM_SIMPLIFY into the simpler relocation
2059 so that they never escape a relaxing link. */
43cd72b9
BW
2060 r = contract_asm_expansion (contents, input_size, rel,
2061 &error_message);
2062 if (r != bfd_reloc_ok)
2063 {
2064 if (!((*info->callbacks->reloc_dangerous)
2065 (info, error_message, input_bfd, input_section,
2066 rel->r_offset)))
2067 return FALSE;
2068 }
e0001a05
NC
2069 r_type = ELF32_R_TYPE (rel->r_info);
2070 }
2071
1049f94e 2072 /* This is a relocatable link, so we don't have to change
e0001a05
NC
2073 anything unless the reloc is against a section symbol,
2074 in which case we have to adjust according to where the
2075 section symbol winds up in the output section. */
2076 if (r_symndx < symtab_hdr->sh_info)
2077 {
2078 sym = local_syms + r_symndx;
2079 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2080 {
2081 sec = local_sections[r_symndx];
2082 rel->r_addend += sec->output_offset + sym->st_value;
2083 }
2084 }
2085
2086 /* If there is an addend with a partial_inplace howto,
2087 then move the addend to the contents. This is a hack
1049f94e 2088 to work around problems with DWARF in relocatable links
e0001a05
NC
2089 with some previous version of BFD. Now we can't easily get
2090 rid of the hack without breaking backward compatibility.... */
2091 if (rel->r_addend)
2092 {
2093 howto = &elf_howto_table[r_type];
2094 if (howto->partial_inplace)
2095 {
2096 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2097 rel->r_addend, contents,
2098 rel->r_offset, FALSE,
2099 &error_message);
2100 if (r != bfd_reloc_ok)
2101 {
2102 if (!((*info->callbacks->reloc_dangerous)
2103 (info, error_message, input_bfd, input_section,
2104 rel->r_offset)))
2105 return FALSE;
2106 }
2107 rel->r_addend = 0;
2108 }
2109 }
2110
1049f94e 2111 /* Done with work for relocatable link; continue with next reloc. */
e0001a05
NC
2112 continue;
2113 }
2114
2115 /* This is a final link. */
2116
e0001a05
NC
2117 if (relaxing_section)
2118 {
2119 /* Check if this references a section in another input file. */
43cd72b9
BW
2120 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2121 &relocation);
e0001a05
NC
2122
2123 /* Update some already cached values. */
2124 r_type = ELF32_R_TYPE (rel->r_info);
2125 howto = &elf_howto_table[r_type];
2126 }
2127
2128 /* Sanity check the address. */
43cd72b9 2129 if (rel->r_offset >= input_size
e0001a05
NC
2130 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2131 {
43cd72b9
BW
2132 (*_bfd_error_handler)
2133 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2134 input_bfd, input_section, rel->r_offset, input_size);
e0001a05
NC
2135 bfd_set_error (bfd_error_bad_value);
2136 return FALSE;
2137 }
2138
2139 /* Generate dynamic relocations. */
2140 if (elf_hash_table (info)->dynamic_sections_created)
2141 {
4608f3d9 2142 bfd_boolean dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
e0001a05 2143
43cd72b9 2144 if (dynamic_symbol && is_operand_relocation (r_type))
e0001a05
NC
2145 {
2146 /* This is an error. The symbol's real value won't be known
2147 until runtime and it's likely to be out of range anyway. */
2148 const char *name = h->root.root.string;
2149 error_message = vsprint_msg ("invalid relocation for dynamic "
2150 "symbol", ": %s",
2151 strlen (name) + 2, name);
2152 if (!((*info->callbacks->reloc_dangerous)
2153 (info, error_message, input_bfd, input_section,
2154 rel->r_offset)))
2155 return FALSE;
2156 }
2157 else if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
2158 && (input_section->flags & SEC_ALLOC) != 0
2159 && (dynamic_symbol || info->shared))
2160 {
2161 Elf_Internal_Rela outrel;
2162 bfd_byte *loc;
2163 asection *srel;
2164
2165 if (dynamic_symbol && r_type == R_XTENSA_PLT)
f0e6fdb2 2166 srel = htab->srelplt;
e0001a05 2167 else
f0e6fdb2 2168 srel = htab->srelgot;
e0001a05
NC
2169
2170 BFD_ASSERT (srel != NULL);
2171
2172 outrel.r_offset =
2173 _bfd_elf_section_offset (output_bfd, info,
2174 input_section, rel->r_offset);
2175
2176 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2177 memset (&outrel, 0, sizeof outrel);
2178 else
2179 {
f0578e28
BW
2180 outrel.r_offset += (input_section->output_section->vma
2181 + input_section->output_offset);
e0001a05 2182
88d65ad6
BW
2183 /* Complain if the relocation is in a read-only section
2184 and not in a literal pool. */
2185 if ((input_section->flags & SEC_READONLY) != 0
2186 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
3ba3bc8c 2187 outrel.r_offset))
88d65ad6
BW
2188 {
2189 error_message =
2190 _("dynamic relocation in read-only section");
2191 if (!((*info->callbacks->reloc_dangerous)
2192 (info, error_message, input_bfd, input_section,
2193 rel->r_offset)))
2194 return FALSE;
2195 }
2196
e0001a05
NC
2197 if (dynamic_symbol)
2198 {
2199 outrel.r_addend = rel->r_addend;
2200 rel->r_addend = 0;
2201
2202 if (r_type == R_XTENSA_32)
2203 {
2204 outrel.r_info =
2205 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2206 relocation = 0;
2207 }
2208 else /* r_type == R_XTENSA_PLT */
2209 {
2210 outrel.r_info =
2211 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2212
2213 /* Create the PLT entry and set the initial
2214 contents of the literal entry to the address of
2215 the PLT entry. */
43cd72b9 2216 relocation =
f0e6fdb2 2217 elf_xtensa_create_plt_entry (info, output_bfd,
e0001a05
NC
2218 srel->reloc_count);
2219 }
2220 unresolved_reloc = FALSE;
2221 }
2222 else
2223 {
2224 /* Generate a RELATIVE relocation. */
2225 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2226 outrel.r_addend = 0;
2227 }
2228 }
2229
2230 loc = (srel->contents
2231 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2232 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2233 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
eea6121a 2234 <= srel->size);
e0001a05
NC
2235 }
2236 }
2237
2238 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2239 because such sections are not SEC_ALLOC and thus ld.so will
2240 not process them. */
2241 if (unresolved_reloc
2242 && !((input_section->flags & SEC_DEBUGGING) != 0
f5385ebf 2243 && h->def_dynamic))
bf1747de
BW
2244 {
2245 (*_bfd_error_handler)
2246 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
2247 input_bfd,
2248 input_section,
2249 (long) rel->r_offset,
2250 howto->name,
2251 h->root.root.string);
2252 return FALSE;
2253 }
e0001a05
NC
2254
2255 /* There's no point in calling bfd_perform_relocation here.
2256 Just go directly to our "special function". */
2257 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2258 relocation + rel->r_addend,
2259 contents, rel->r_offset, is_weak_undef,
2260 &error_message);
43cd72b9 2261
9b8c98a4 2262 if (r != bfd_reloc_ok && !warned)
e0001a05
NC
2263 {
2264 const char *name;
2265
43cd72b9 2266 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
7fa3d080 2267 BFD_ASSERT (error_message != NULL);
e0001a05 2268
7fa3d080 2269 if (h)
e0001a05
NC
2270 name = h->root.root.string;
2271 else
2272 {
2273 name = bfd_elf_string_from_elf_section
2274 (input_bfd, symtab_hdr->sh_link, sym->st_name);
2275 if (name && *name == '\0')
2276 name = bfd_section_name (input_bfd, sec);
2277 }
2278 if (name)
43cd72b9
BW
2279 {
2280 if (rel->r_addend == 0)
2281 error_message = vsprint_msg (error_message, ": %s",
2282 strlen (name) + 2, name);
2283 else
2284 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
2285 strlen (name) + 22,
0fd3a477 2286 name, (int)rel->r_addend);
43cd72b9
BW
2287 }
2288
e0001a05
NC
2289 if (!((*info->callbacks->reloc_dangerous)
2290 (info, error_message, input_bfd, input_section,
2291 rel->r_offset)))
2292 return FALSE;
2293 }
2294 }
2295
88d65ad6
BW
2296 if (lit_table)
2297 free (lit_table);
2298
3ba3bc8c
BW
2299 input_section->reloc_done = TRUE;
2300
e0001a05
NC
2301 return TRUE;
2302}
2303
2304
2305/* Finish up dynamic symbol handling. There's not much to do here since
2306 the PLT and GOT entries are all set up by relocate_section. */
2307
2308static bfd_boolean
7fa3d080
BW
2309elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
2310 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2311 struct elf_link_hash_entry *h,
2312 Elf_Internal_Sym *sym)
e0001a05 2313{
bf1747de 2314 if (h->needs_plt && !h->def_regular)
e0001a05
NC
2315 {
2316 /* Mark the symbol as undefined, rather than as defined in
2317 the .plt section. Leave the value alone. */
2318 sym->st_shndx = SHN_UNDEF;
bf1747de
BW
2319 /* If the symbol is weak, we do need to clear the value.
2320 Otherwise, the PLT entry would provide a definition for
2321 the symbol even if the symbol wasn't defined anywhere,
2322 and so the symbol would never be NULL. */
2323 if (!h->ref_regular_nonweak)
2324 sym->st_value = 0;
e0001a05
NC
2325 }
2326
2327 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2328 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
22edb2f1 2329 || h == elf_hash_table (info)->hgot)
e0001a05
NC
2330 sym->st_shndx = SHN_ABS;
2331
2332 return TRUE;
2333}
2334
2335
2336/* Combine adjacent literal table entries in the output. Adjacent
2337 entries within each input section may have been removed during
2338 relaxation, but we repeat the process here, even though it's too late
2339 to shrink the output section, because it's important to minimize the
2340 number of literal table entries to reduce the start-up work for the
2341 runtime linker. Returns the number of remaining table entries or -1
2342 on error. */
2343
2344static int
7fa3d080
BW
2345elf_xtensa_combine_prop_entries (bfd *output_bfd,
2346 asection *sxtlit,
2347 asection *sgotloc)
e0001a05 2348{
e0001a05
NC
2349 bfd_byte *contents;
2350 property_table_entry *table;
e901de89 2351 bfd_size_type section_size, sgotloc_size;
e0001a05
NC
2352 bfd_vma offset;
2353 int n, m, num;
2354
eea6121a 2355 section_size = sxtlit->size;
e0001a05
NC
2356 BFD_ASSERT (section_size % 8 == 0);
2357 num = section_size / 8;
2358
eea6121a 2359 sgotloc_size = sgotloc->size;
e901de89 2360 if (sgotloc_size != section_size)
b536dc1e
BW
2361 {
2362 (*_bfd_error_handler)
43cd72b9 2363 (_("internal inconsistency in size of .got.loc section"));
b536dc1e
BW
2364 return -1;
2365 }
e901de89 2366
eea6121a
AM
2367 table = bfd_malloc (num * sizeof (property_table_entry));
2368 if (table == 0)
e0001a05
NC
2369 return -1;
2370
2371 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
2372 propagates to the output section, where it doesn't really apply and
eea6121a 2373 where it breaks the following call to bfd_malloc_and_get_section. */
e901de89 2374 sxtlit->flags &= ~SEC_IN_MEMORY;
e0001a05 2375
eea6121a
AM
2376 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
2377 {
2378 if (contents != 0)
2379 free (contents);
2380 free (table);
2381 return -1;
2382 }
e0001a05
NC
2383
2384 /* There should never be any relocations left at this point, so this
2385 is quite a bit easier than what is done during relaxation. */
2386
2387 /* Copy the raw contents into a property table array and sort it. */
2388 offset = 0;
2389 for (n = 0; n < num; n++)
2390 {
2391 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
2392 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
2393 offset += 8;
2394 }
2395 qsort (table, num, sizeof (property_table_entry), property_table_compare);
2396
2397 for (n = 0; n < num; n++)
2398 {
2399 bfd_boolean remove = FALSE;
2400
2401 if (table[n].size == 0)
2402 remove = TRUE;
2403 else if (n > 0 &&
2404 (table[n-1].address + table[n-1].size == table[n].address))
2405 {
2406 table[n-1].size += table[n].size;
2407 remove = TRUE;
2408 }
2409
2410 if (remove)
2411 {
2412 for (m = n; m < num - 1; m++)
2413 {
2414 table[m].address = table[m+1].address;
2415 table[m].size = table[m+1].size;
2416 }
2417
2418 n--;
2419 num--;
2420 }
2421 }
2422
2423 /* Copy the data back to the raw contents. */
2424 offset = 0;
2425 for (n = 0; n < num; n++)
2426 {
2427 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
2428 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
2429 offset += 8;
2430 }
2431
2432 /* Clear the removed bytes. */
2433 if ((bfd_size_type) (num * 8) < section_size)
b54d4b07 2434 memset (&contents[num * 8], 0, section_size - num * 8);
e0001a05 2435
e901de89
BW
2436 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
2437 section_size))
e0001a05
NC
2438 return -1;
2439
e901de89
BW
2440 /* Copy the contents to ".got.loc". */
2441 memcpy (sgotloc->contents, contents, section_size);
2442
e0001a05 2443 free (contents);
b614a702 2444 free (table);
e0001a05
NC
2445 return num;
2446}
2447
2448
2449/* Finish up the dynamic sections. */
2450
2451static bfd_boolean
7fa3d080
BW
2452elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
2453 struct bfd_link_info *info)
e0001a05 2454{
f0e6fdb2 2455 struct elf_xtensa_link_hash_table *htab;
e0001a05 2456 bfd *dynobj;
e901de89 2457 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
e0001a05
NC
2458 Elf32_External_Dyn *dyncon, *dynconend;
2459 int num_xtlit_entries;
2460
2461 if (! elf_hash_table (info)->dynamic_sections_created)
2462 return TRUE;
2463
f0e6fdb2 2464 htab = elf_xtensa_hash_table (info);
e0001a05
NC
2465 dynobj = elf_hash_table (info)->dynobj;
2466 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2467 BFD_ASSERT (sdyn != NULL);
2468
2469 /* Set the first entry in the global offset table to the address of
2470 the dynamic section. */
f0e6fdb2 2471 sgot = htab->sgot;
e0001a05
NC
2472 if (sgot)
2473 {
eea6121a 2474 BFD_ASSERT (sgot->size == 4);
e0001a05 2475 if (sdyn == NULL)
7fa3d080 2476 bfd_put_32 (output_bfd, 0, sgot->contents);
e0001a05
NC
2477 else
2478 bfd_put_32 (output_bfd,
2479 sdyn->output_section->vma + sdyn->output_offset,
2480 sgot->contents);
2481 }
2482
f0e6fdb2 2483 srelplt = htab->srelplt;
7fa3d080 2484 if (srelplt && srelplt->size != 0)
e0001a05
NC
2485 {
2486 asection *sgotplt, *srelgot, *spltlittbl;
2487 int chunk, plt_chunks, plt_entries;
2488 Elf_Internal_Rela irela;
2489 bfd_byte *loc;
2490 unsigned rtld_reloc;
2491
f0e6fdb2
BW
2492 srelgot = htab->srelgot;
2493 spltlittbl = htab->spltlittbl;
2494 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
e0001a05
NC
2495
2496 /* Find the first XTENSA_RTLD relocation. Presumably the rest
2497 of them follow immediately after.... */
2498 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
2499 {
2500 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2501 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2502 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
2503 break;
2504 }
2505 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
2506
eea6121a 2507 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
2508 plt_chunks =
2509 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
2510
2511 for (chunk = 0; chunk < plt_chunks; chunk++)
2512 {
2513 int chunk_entries = 0;
2514
f0e6fdb2 2515 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
2516 BFD_ASSERT (sgotplt != NULL);
2517
2518 /* Emit special RTLD relocations for the first two entries in
2519 each chunk of the .got.plt section. */
2520
2521 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2522 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2523 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2524 irela.r_offset = (sgotplt->output_section->vma
2525 + sgotplt->output_offset);
2526 irela.r_addend = 1; /* tell rtld to set value to resolver function */
2527 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2528 rtld_reloc += 1;
2529 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2530
2531 /* Next literal immediately follows the first. */
2532 loc += sizeof (Elf32_External_Rela);
2533 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2534 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2535 irela.r_offset = (sgotplt->output_section->vma
2536 + sgotplt->output_offset + 4);
2537 /* Tell rtld to set value to object's link map. */
2538 irela.r_addend = 2;
2539 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2540 rtld_reloc += 1;
2541 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2542
2543 /* Fill in the literal table. */
2544 if (chunk < plt_chunks - 1)
2545 chunk_entries = PLT_ENTRIES_PER_CHUNK;
2546 else
2547 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
2548
eea6121a 2549 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
e0001a05
NC
2550 bfd_put_32 (output_bfd,
2551 sgotplt->output_section->vma + sgotplt->output_offset,
2552 spltlittbl->contents + (chunk * 8) + 0);
2553 bfd_put_32 (output_bfd,
2554 8 + (chunk_entries * 4),
2555 spltlittbl->contents + (chunk * 8) + 4);
2556 }
2557
2558 /* All the dynamic relocations have been emitted at this point.
2559 Make sure the relocation sections are the correct size. */
eea6121a
AM
2560 if (srelgot->size != (sizeof (Elf32_External_Rela)
2561 * srelgot->reloc_count)
2562 || srelplt->size != (sizeof (Elf32_External_Rela)
2563 * srelplt->reloc_count))
e0001a05
NC
2564 abort ();
2565
2566 /* The .xt.lit.plt section has just been modified. This must
2567 happen before the code below which combines adjacent literal
2568 table entries, and the .xt.lit.plt contents have to be forced to
2569 the output here. */
2570 if (! bfd_set_section_contents (output_bfd,
2571 spltlittbl->output_section,
2572 spltlittbl->contents,
2573 spltlittbl->output_offset,
eea6121a 2574 spltlittbl->size))
e0001a05
NC
2575 return FALSE;
2576 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
2577 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
2578 }
2579
2580 /* Combine adjacent literal table entries. */
1049f94e 2581 BFD_ASSERT (! info->relocatable);
e901de89 2582 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
f0e6fdb2 2583 sgotloc = htab->sgotloc;
b536dc1e 2584 BFD_ASSERT (sxtlit && sgotloc);
e901de89
BW
2585 num_xtlit_entries =
2586 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
e0001a05
NC
2587 if (num_xtlit_entries < 0)
2588 return FALSE;
2589
2590 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 2591 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
e0001a05
NC
2592 for (; dyncon < dynconend; dyncon++)
2593 {
2594 Elf_Internal_Dyn dyn;
e0001a05
NC
2595
2596 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2597
2598 switch (dyn.d_tag)
2599 {
2600 default:
2601 break;
2602
2603 case DT_XTENSA_GOT_LOC_SZ:
e0001a05
NC
2604 dyn.d_un.d_val = num_xtlit_entries;
2605 break;
2606
2607 case DT_XTENSA_GOT_LOC_OFF:
f0e6fdb2
BW
2608 dyn.d_un.d_ptr = htab->sgotloc->vma;
2609 break;
2610
e0001a05 2611 case DT_PLTGOT:
f0e6fdb2
BW
2612 dyn.d_un.d_ptr = htab->sgot->vma;
2613 break;
2614
e0001a05 2615 case DT_JMPREL:
f0e6fdb2 2616 dyn.d_un.d_ptr = htab->srelplt->vma;
e0001a05
NC
2617 break;
2618
2619 case DT_PLTRELSZ:
f0e6fdb2 2620 dyn.d_un.d_val = htab->srelplt->size;
e0001a05
NC
2621 break;
2622
2623 case DT_RELASZ:
2624 /* Adjust RELASZ to not include JMPREL. This matches what
2625 glibc expects and what is done for several other ELF
2626 targets (e.g., i386, alpha), but the "correct" behavior
2627 seems to be unresolved. Since the linker script arranges
2628 for .rela.plt to follow all other relocation sections, we
2629 don't have to worry about changing the DT_RELA entry. */
f0e6fdb2
BW
2630 if (htab->srelplt)
2631 dyn.d_un.d_val -= htab->srelplt->size;
e0001a05
NC
2632 break;
2633 }
2634
2635 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2636 }
2637
2638 return TRUE;
2639}
2640
2641\f
2642/* Functions for dealing with the e_flags field. */
2643
2644/* Merge backend specific data from an object file to the output
2645 object file when linking. */
2646
2647static bfd_boolean
7fa3d080 2648elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
e0001a05
NC
2649{
2650 unsigned out_mach, in_mach;
2651 flagword out_flag, in_flag;
2652
2653 /* Check if we have the same endianess. */
2654 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
2655 return FALSE;
2656
2657 /* Don't even pretend to support mixed-format linking. */
2658 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2659 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2660 return FALSE;
2661
2662 out_flag = elf_elfheader (obfd)->e_flags;
2663 in_flag = elf_elfheader (ibfd)->e_flags;
2664
2665 out_mach = out_flag & EF_XTENSA_MACH;
2666 in_mach = in_flag & EF_XTENSA_MACH;
43cd72b9 2667 if (out_mach != in_mach)
e0001a05
NC
2668 {
2669 (*_bfd_error_handler)
43cd72b9 2670 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
d003868e 2671 ibfd, out_mach, in_mach);
e0001a05
NC
2672 bfd_set_error (bfd_error_wrong_format);
2673 return FALSE;
2674 }
2675
2676 if (! elf_flags_init (obfd))
2677 {
2678 elf_flags_init (obfd) = TRUE;
2679 elf_elfheader (obfd)->e_flags = in_flag;
43cd72b9 2680
e0001a05
NC
2681 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2682 && bfd_get_arch_info (obfd)->the_default)
2683 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
2684 bfd_get_mach (ibfd));
43cd72b9 2685
e0001a05
NC
2686 return TRUE;
2687 }
2688
43cd72b9
BW
2689 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
2690 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
e0001a05 2691
43cd72b9
BW
2692 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
2693 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
e0001a05
NC
2694
2695 return TRUE;
2696}
2697
2698
2699static bfd_boolean
7fa3d080 2700elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
e0001a05
NC
2701{
2702 BFD_ASSERT (!elf_flags_init (abfd)
2703 || elf_elfheader (abfd)->e_flags == flags);
2704
2705 elf_elfheader (abfd)->e_flags |= flags;
2706 elf_flags_init (abfd) = TRUE;
2707
2708 return TRUE;
2709}
2710
2711
e0001a05 2712static bfd_boolean
7fa3d080 2713elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
e0001a05
NC
2714{
2715 FILE *f = (FILE *) farg;
2716 flagword e_flags = elf_elfheader (abfd)->e_flags;
2717
2718 fprintf (f, "\nXtensa header:\n");
43cd72b9 2719 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
e0001a05
NC
2720 fprintf (f, "\nMachine = Base\n");
2721 else
2722 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
2723
2724 fprintf (f, "Insn tables = %s\n",
2725 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
2726
2727 fprintf (f, "Literal tables = %s\n",
2728 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
2729
2730 return _bfd_elf_print_private_bfd_data (abfd, farg);
2731}
2732
2733
2734/* Set the right machine number for an Xtensa ELF file. */
2735
2736static bfd_boolean
7fa3d080 2737elf_xtensa_object_p (bfd *abfd)
e0001a05
NC
2738{
2739 int mach;
2740 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
2741
2742 switch (arch)
2743 {
2744 case E_XTENSA_MACH:
2745 mach = bfd_mach_xtensa;
2746 break;
2747 default:
2748 return FALSE;
2749 }
2750
2751 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
2752 return TRUE;
2753}
2754
2755
2756/* The final processing done just before writing out an Xtensa ELF object
2757 file. This gets the Xtensa architecture right based on the machine
2758 number. */
2759
2760static void
7fa3d080
BW
2761elf_xtensa_final_write_processing (bfd *abfd,
2762 bfd_boolean linker ATTRIBUTE_UNUSED)
e0001a05
NC
2763{
2764 int mach;
2765 unsigned long val;
2766
2767 switch (mach = bfd_get_mach (abfd))
2768 {
2769 case bfd_mach_xtensa:
2770 val = E_XTENSA_MACH;
2771 break;
2772 default:
2773 return;
2774 }
2775
2776 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
2777 elf_elfheader (abfd)->e_flags |= val;
2778}
2779
2780
2781static enum elf_reloc_type_class
7fa3d080 2782elf_xtensa_reloc_type_class (const Elf_Internal_Rela *rela)
e0001a05
NC
2783{
2784 switch ((int) ELF32_R_TYPE (rela->r_info))
2785 {
2786 case R_XTENSA_RELATIVE:
2787 return reloc_class_relative;
2788 case R_XTENSA_JMP_SLOT:
2789 return reloc_class_plt;
2790 default:
2791 return reloc_class_normal;
2792 }
2793}
2794
2795\f
2796static bfd_boolean
7fa3d080
BW
2797elf_xtensa_discard_info_for_section (bfd *abfd,
2798 struct elf_reloc_cookie *cookie,
2799 struct bfd_link_info *info,
2800 asection *sec)
e0001a05
NC
2801{
2802 bfd_byte *contents;
2803 bfd_vma section_size;
2804 bfd_vma offset, actual_offset;
2805 size_t removed_bytes = 0;
2806
eea6121a 2807 section_size = sec->size;
e0001a05
NC
2808 if (section_size == 0 || section_size % 8 != 0)
2809 return FALSE;
2810
2811 if (sec->output_section
2812 && bfd_is_abs_section (sec->output_section))
2813 return FALSE;
2814
2815 contents = retrieve_contents (abfd, sec, info->keep_memory);
2816 if (!contents)
2817 return FALSE;
2818
2819 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
2820 if (!cookie->rels)
2821 {
2822 release_contents (sec, contents);
2823 return FALSE;
2824 }
2825
2826 cookie->rel = cookie->rels;
2827 cookie->relend = cookie->rels + sec->reloc_count;
2828
2829 for (offset = 0; offset < section_size; offset += 8)
2830 {
2831 actual_offset = offset - removed_bytes;
2832
2833 /* The ...symbol_deleted_p function will skip over relocs but it
2834 won't adjust their offsets, so do that here. */
2835 while (cookie->rel < cookie->relend
2836 && cookie->rel->r_offset < offset)
2837 {
2838 cookie->rel->r_offset -= removed_bytes;
2839 cookie->rel++;
2840 }
2841
2842 while (cookie->rel < cookie->relend
2843 && cookie->rel->r_offset == offset)
2844 {
c152c796 2845 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
e0001a05
NC
2846 {
2847 /* Remove the table entry. (If the reloc type is NONE, then
2848 the entry has already been merged with another and deleted
2849 during relaxation.) */
2850 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
2851 {
2852 /* Shift the contents up. */
2853 if (offset + 8 < section_size)
2854 memmove (&contents[actual_offset],
2855 &contents[actual_offset+8],
2856 section_size - offset - 8);
2857 removed_bytes += 8;
2858 }
2859
2860 /* Remove this relocation. */
2861 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
2862 }
2863
2864 /* Adjust the relocation offset for previous removals. This
2865 should not be done before calling ...symbol_deleted_p
2866 because it might mess up the offset comparisons there.
2867 Make sure the offset doesn't underflow in the case where
2868 the first entry is removed. */
2869 if (cookie->rel->r_offset >= removed_bytes)
2870 cookie->rel->r_offset -= removed_bytes;
2871 else
2872 cookie->rel->r_offset = 0;
2873
2874 cookie->rel++;
2875 }
2876 }
2877
2878 if (removed_bytes != 0)
2879 {
2880 /* Adjust any remaining relocs (shouldn't be any). */
2881 for (; cookie->rel < cookie->relend; cookie->rel++)
2882 {
2883 if (cookie->rel->r_offset >= removed_bytes)
2884 cookie->rel->r_offset -= removed_bytes;
2885 else
2886 cookie->rel->r_offset = 0;
2887 }
2888
2889 /* Clear the removed bytes. */
2890 memset (&contents[section_size - removed_bytes], 0, removed_bytes);
2891
2892 pin_contents (sec, contents);
2893 pin_internal_relocs (sec, cookie->rels);
2894
eea6121a
AM
2895 /* Shrink size. */
2896 sec->size = section_size - removed_bytes;
b536dc1e
BW
2897
2898 if (xtensa_is_littable_section (sec))
2899 {
f0e6fdb2
BW
2900 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
2901 if (sgotloc)
2902 sgotloc->size -= removed_bytes;
b536dc1e 2903 }
e0001a05
NC
2904 }
2905 else
2906 {
2907 release_contents (sec, contents);
2908 release_internal_relocs (sec, cookie->rels);
2909 }
2910
2911 return (removed_bytes != 0);
2912}
2913
2914
2915static bfd_boolean
7fa3d080
BW
2916elf_xtensa_discard_info (bfd *abfd,
2917 struct elf_reloc_cookie *cookie,
2918 struct bfd_link_info *info)
e0001a05
NC
2919{
2920 asection *sec;
2921 bfd_boolean changed = FALSE;
2922
2923 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2924 {
2925 if (xtensa_is_property_section (sec))
2926 {
2927 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
2928 changed = TRUE;
2929 }
2930 }
2931
2932 return changed;
2933}
2934
2935
2936static bfd_boolean
7fa3d080 2937elf_xtensa_ignore_discarded_relocs (asection *sec)
e0001a05
NC
2938{
2939 return xtensa_is_property_section (sec);
2940}
2941
a77dc2cc
BW
2942
2943static unsigned int
2944elf_xtensa_action_discarded (asection *sec)
2945{
2946 if (strcmp (".xt_except_table", sec->name) == 0)
2947 return 0;
2948
2949 if (strcmp (".xt_except_desc", sec->name) == 0)
2950 return 0;
2951
2952 return _bfd_elf_default_action_discarded (sec);
2953}
2954
e0001a05
NC
2955\f
2956/* Support for core dump NOTE sections. */
2957
2958static bfd_boolean
7fa3d080 2959elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
2960{
2961 int offset;
eea6121a 2962 unsigned int size;
e0001a05
NC
2963
2964 /* The size for Xtensa is variable, so don't try to recognize the format
2965 based on the size. Just assume this is GNU/Linux. */
2966
2967 /* pr_cursig */
2968 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2969
2970 /* pr_pid */
2971 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
2972
2973 /* pr_reg */
2974 offset = 72;
eea6121a 2975 size = note->descsz - offset - 4;
e0001a05
NC
2976
2977 /* Make a ".reg/999" section. */
2978 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
eea6121a 2979 size, note->descpos + offset);
e0001a05
NC
2980}
2981
2982
2983static bfd_boolean
7fa3d080 2984elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
2985{
2986 switch (note->descsz)
2987 {
2988 default:
2989 return FALSE;
2990
2991 case 128: /* GNU/Linux elf_prpsinfo */
2992 elf_tdata (abfd)->core_program
2993 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
2994 elf_tdata (abfd)->core_command
2995 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
2996 }
2997
2998 /* Note that for some reason, a spurious space is tacked
2999 onto the end of the args in some (at least one anyway)
3000 implementations, so strip it off if it exists. */
3001
3002 {
3003 char *command = elf_tdata (abfd)->core_command;
3004 int n = strlen (command);
3005
3006 if (0 < n && command[n - 1] == ' ')
3007 command[n - 1] = '\0';
3008 }
3009
3010 return TRUE;
3011}
3012
3013\f
3014/* Generic Xtensa configurability stuff. */
3015
3016static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3017static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3018static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3019static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3020static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3021static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3022static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3023static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3024
3025static void
7fa3d080 3026init_call_opcodes (void)
e0001a05
NC
3027{
3028 if (callx0_op == XTENSA_UNDEFINED)
3029 {
3030 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3031 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3032 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3033 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3034 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3035 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3036 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3037 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3038 }
3039}
3040
3041
3042static bfd_boolean
7fa3d080 3043is_indirect_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3044{
3045 init_call_opcodes ();
3046 return (opcode == callx0_op
3047 || opcode == callx4_op
3048 || opcode == callx8_op
3049 || opcode == callx12_op);
3050}
3051
3052
3053static bfd_boolean
7fa3d080 3054is_direct_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3055{
3056 init_call_opcodes ();
3057 return (opcode == call0_op
3058 || opcode == call4_op
3059 || opcode == call8_op
3060 || opcode == call12_op);
3061}
3062
3063
3064static bfd_boolean
7fa3d080 3065is_windowed_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3066{
3067 init_call_opcodes ();
3068 return (opcode == call4_op
3069 || opcode == call8_op
3070 || opcode == call12_op
3071 || opcode == callx4_op
3072 || opcode == callx8_op
3073 || opcode == callx12_op);
3074}
3075
3076
43cd72b9
BW
3077static xtensa_opcode
3078get_const16_opcode (void)
3079{
3080 static bfd_boolean done_lookup = FALSE;
3081 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3082 if (!done_lookup)
3083 {
3084 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3085 done_lookup = TRUE;
3086 }
3087 return const16_opcode;
3088}
3089
3090
e0001a05
NC
3091static xtensa_opcode
3092get_l32r_opcode (void)
3093{
3094 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
43cd72b9
BW
3095 static bfd_boolean done_lookup = FALSE;
3096
3097 if (!done_lookup)
e0001a05
NC
3098 {
3099 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
43cd72b9 3100 done_lookup = TRUE;
e0001a05
NC
3101 }
3102 return l32r_opcode;
3103}
3104
3105
3106static bfd_vma
7fa3d080 3107l32r_offset (bfd_vma addr, bfd_vma pc)
e0001a05
NC
3108{
3109 bfd_vma offset;
3110
3111 offset = addr - ((pc+3) & -4);
3112 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3113 offset = (signed int) offset >> 2;
3114 BFD_ASSERT ((signed int) offset >> 16 == -1);
3115 return offset;
3116}
3117
3118
e0001a05 3119static int
7fa3d080 3120get_relocation_opnd (xtensa_opcode opcode, int r_type)
e0001a05 3121{
43cd72b9
BW
3122 xtensa_isa isa = xtensa_default_isa;
3123 int last_immed, last_opnd, opi;
3124
3125 if (opcode == XTENSA_UNDEFINED)
3126 return XTENSA_UNDEFINED;
3127
3128 /* Find the last visible PC-relative immediate operand for the opcode.
3129 If there are no PC-relative immediates, then choose the last visible
3130 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3131 last_immed = XTENSA_UNDEFINED;
3132 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3133 for (opi = last_opnd - 1; opi >= 0; opi--)
3134 {
3135 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3136 continue;
3137 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3138 {
3139 last_immed = opi;
3140 break;
3141 }
3142 if (last_immed == XTENSA_UNDEFINED
3143 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3144 last_immed = opi;
3145 }
3146 if (last_immed < 0)
3147 return XTENSA_UNDEFINED;
3148
3149 /* If the operand number was specified in an old-style relocation,
3150 check for consistency with the operand computed above. */
3151 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3152 {
3153 int reloc_opnd = r_type - R_XTENSA_OP0;
3154 if (reloc_opnd != last_immed)
3155 return XTENSA_UNDEFINED;
3156 }
3157
3158 return last_immed;
3159}
3160
3161
3162int
7fa3d080 3163get_relocation_slot (int r_type)
43cd72b9
BW
3164{
3165 switch (r_type)
3166 {
3167 case R_XTENSA_OP0:
3168 case R_XTENSA_OP1:
3169 case R_XTENSA_OP2:
3170 return 0;
3171
3172 default:
3173 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3174 return r_type - R_XTENSA_SLOT0_OP;
3175 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3176 return r_type - R_XTENSA_SLOT0_ALT;
3177 break;
3178 }
3179
3180 return XTENSA_UNDEFINED;
e0001a05
NC
3181}
3182
3183
3184/* Get the opcode for a relocation. */
3185
3186static xtensa_opcode
7fa3d080
BW
3187get_relocation_opcode (bfd *abfd,
3188 asection *sec,
3189 bfd_byte *contents,
3190 Elf_Internal_Rela *irel)
e0001a05
NC
3191{
3192 static xtensa_insnbuf ibuff = NULL;
43cd72b9 3193 static xtensa_insnbuf sbuff = NULL;
e0001a05 3194 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
3195 xtensa_format fmt;
3196 int slot;
e0001a05
NC
3197
3198 if (contents == NULL)
3199 return XTENSA_UNDEFINED;
3200
43cd72b9 3201 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
e0001a05
NC
3202 return XTENSA_UNDEFINED;
3203
3204 if (ibuff == NULL)
43cd72b9
BW
3205 {
3206 ibuff = xtensa_insnbuf_alloc (isa);
3207 sbuff = xtensa_insnbuf_alloc (isa);
3208 }
3209
e0001a05 3210 /* Decode the instruction. */
43cd72b9
BW
3211 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
3212 sec->size - irel->r_offset);
3213 fmt = xtensa_format_decode (isa, ibuff);
3214 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
3215 if (slot == XTENSA_UNDEFINED)
3216 return XTENSA_UNDEFINED;
3217 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
3218 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
e0001a05
NC
3219}
3220
3221
3222bfd_boolean
7fa3d080
BW
3223is_l32r_relocation (bfd *abfd,
3224 asection *sec,
3225 bfd_byte *contents,
3226 Elf_Internal_Rela *irel)
e0001a05
NC
3227{
3228 xtensa_opcode opcode;
43cd72b9 3229 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
e0001a05 3230 return FALSE;
43cd72b9 3231 opcode = get_relocation_opcode (abfd, sec, contents, irel);
e0001a05
NC
3232 return (opcode == get_l32r_opcode ());
3233}
3234
e0001a05 3235
43cd72b9 3236static bfd_size_type
7fa3d080
BW
3237get_asm_simplify_size (bfd_byte *contents,
3238 bfd_size_type content_len,
3239 bfd_size_type offset)
e0001a05 3240{
43cd72b9 3241 bfd_size_type insnlen, size = 0;
e0001a05 3242
43cd72b9
BW
3243 /* Decode the size of the next two instructions. */
3244 insnlen = insn_decode_len (contents, content_len, offset);
3245 if (insnlen == 0)
3246 return 0;
e0001a05 3247
43cd72b9 3248 size += insnlen;
e0001a05 3249
43cd72b9
BW
3250 insnlen = insn_decode_len (contents, content_len, offset + size);
3251 if (insnlen == 0)
3252 return 0;
e0001a05 3253
43cd72b9
BW
3254 size += insnlen;
3255 return size;
3256}
e0001a05 3257
43cd72b9
BW
3258
3259bfd_boolean
7fa3d080 3260is_alt_relocation (int r_type)
43cd72b9
BW
3261{
3262 return (r_type >= R_XTENSA_SLOT0_ALT
3263 && r_type <= R_XTENSA_SLOT14_ALT);
e0001a05
NC
3264}
3265
3266
43cd72b9 3267bfd_boolean
7fa3d080 3268is_operand_relocation (int r_type)
e0001a05 3269{
43cd72b9
BW
3270 switch (r_type)
3271 {
3272 case R_XTENSA_OP0:
3273 case R_XTENSA_OP1:
3274 case R_XTENSA_OP2:
3275 return TRUE;
e0001a05 3276
43cd72b9
BW
3277 default:
3278 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3279 return TRUE;
3280 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3281 return TRUE;
3282 break;
3283 }
e0001a05 3284
43cd72b9 3285 return FALSE;
e0001a05
NC
3286}
3287
43cd72b9
BW
3288
3289#define MIN_INSN_LENGTH 2
e0001a05 3290
43cd72b9
BW
3291/* Return 0 if it fails to decode. */
3292
3293bfd_size_type
7fa3d080
BW
3294insn_decode_len (bfd_byte *contents,
3295 bfd_size_type content_len,
3296 bfd_size_type offset)
e0001a05 3297{
43cd72b9
BW
3298 int insn_len;
3299 xtensa_isa isa = xtensa_default_isa;
3300 xtensa_format fmt;
3301 static xtensa_insnbuf ibuff = NULL;
e0001a05 3302
43cd72b9
BW
3303 if (offset + MIN_INSN_LENGTH > content_len)
3304 return 0;
e0001a05 3305
43cd72b9
BW
3306 if (ibuff == NULL)
3307 ibuff = xtensa_insnbuf_alloc (isa);
3308 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
3309 content_len - offset);
3310 fmt = xtensa_format_decode (isa, ibuff);
3311 if (fmt == XTENSA_UNDEFINED)
3312 return 0;
3313 insn_len = xtensa_format_length (isa, fmt);
3314 if (insn_len == XTENSA_UNDEFINED)
3315 return 0;
3316 return insn_len;
e0001a05
NC
3317}
3318
3319
43cd72b9
BW
3320/* Decode the opcode for a single slot instruction.
3321 Return 0 if it fails to decode or the instruction is multi-slot. */
e0001a05 3322
43cd72b9 3323xtensa_opcode
7fa3d080
BW
3324insn_decode_opcode (bfd_byte *contents,
3325 bfd_size_type content_len,
3326 bfd_size_type offset,
3327 int slot)
e0001a05 3328{
e0001a05 3329 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
3330 xtensa_format fmt;
3331 static xtensa_insnbuf insnbuf = NULL;
3332 static xtensa_insnbuf slotbuf = NULL;
3333
3334 if (offset + MIN_INSN_LENGTH > content_len)
e0001a05
NC
3335 return XTENSA_UNDEFINED;
3336
3337 if (insnbuf == NULL)
43cd72b9
BW
3338 {
3339 insnbuf = xtensa_insnbuf_alloc (isa);
3340 slotbuf = xtensa_insnbuf_alloc (isa);
3341 }
3342
3343 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3344 content_len - offset);
3345 fmt = xtensa_format_decode (isa, insnbuf);
3346 if (fmt == XTENSA_UNDEFINED)
e0001a05 3347 return XTENSA_UNDEFINED;
43cd72b9
BW
3348
3349 if (slot >= xtensa_format_num_slots (isa, fmt))
e0001a05 3350 return XTENSA_UNDEFINED;
e0001a05 3351
43cd72b9
BW
3352 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
3353 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
3354}
e0001a05 3355
e0001a05 3356
43cd72b9
BW
3357/* The offset is the offset in the contents.
3358 The address is the address of that offset. */
e0001a05 3359
43cd72b9 3360static bfd_boolean
7fa3d080
BW
3361check_branch_target_aligned (bfd_byte *contents,
3362 bfd_size_type content_length,
3363 bfd_vma offset,
3364 bfd_vma address)
43cd72b9
BW
3365{
3366 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
3367 if (insn_len == 0)
3368 return FALSE;
3369 return check_branch_target_aligned_address (address, insn_len);
3370}
e0001a05 3371
e0001a05 3372
43cd72b9 3373static bfd_boolean
7fa3d080
BW
3374check_loop_aligned (bfd_byte *contents,
3375 bfd_size_type content_length,
3376 bfd_vma offset,
3377 bfd_vma address)
e0001a05 3378{
43cd72b9 3379 bfd_size_type loop_len, insn_len;
64b607e6 3380 xtensa_opcode opcode;
e0001a05 3381
64b607e6
BW
3382 opcode = insn_decode_opcode (contents, content_length, offset, 0);
3383 if (opcode == XTENSA_UNDEFINED
3384 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
3385 {
3386 BFD_ASSERT (FALSE);
3387 return FALSE;
3388 }
3389
43cd72b9 3390 loop_len = insn_decode_len (contents, content_length, offset);
43cd72b9 3391 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
64b607e6
BW
3392 if (loop_len == 0 || insn_len == 0)
3393 {
3394 BFD_ASSERT (FALSE);
3395 return FALSE;
3396 }
e0001a05 3397
43cd72b9
BW
3398 return check_branch_target_aligned_address (address + loop_len, insn_len);
3399}
e0001a05 3400
e0001a05
NC
3401
3402static bfd_boolean
7fa3d080 3403check_branch_target_aligned_address (bfd_vma addr, int len)
e0001a05 3404{
43cd72b9
BW
3405 if (len == 8)
3406 return (addr % 8 == 0);
3407 return ((addr >> 2) == ((addr + len - 1) >> 2));
e0001a05
NC
3408}
3409
43cd72b9
BW
3410\f
3411/* Instruction widening and narrowing. */
e0001a05 3412
7fa3d080
BW
3413/* When FLIX is available we need to access certain instructions only
3414 when they are 16-bit or 24-bit instructions. This table caches
3415 information about such instructions by walking through all the
3416 opcodes and finding the smallest single-slot format into which each
3417 can be encoded. */
3418
3419static xtensa_format *op_single_fmt_table = NULL;
e0001a05
NC
3420
3421
7fa3d080
BW
3422static void
3423init_op_single_format_table (void)
e0001a05 3424{
7fa3d080
BW
3425 xtensa_isa isa = xtensa_default_isa;
3426 xtensa_insnbuf ibuf;
3427 xtensa_opcode opcode;
3428 xtensa_format fmt;
3429 int num_opcodes;
3430
3431 if (op_single_fmt_table)
3432 return;
3433
3434 ibuf = xtensa_insnbuf_alloc (isa);
3435 num_opcodes = xtensa_isa_num_opcodes (isa);
3436
3437 op_single_fmt_table = (xtensa_format *)
3438 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
3439 for (opcode = 0; opcode < num_opcodes; opcode++)
3440 {
3441 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
3442 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
3443 {
3444 if (xtensa_format_num_slots (isa, fmt) == 1
3445 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
3446 {
3447 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
3448 int fmt_length = xtensa_format_length (isa, fmt);
3449 if (old_fmt == XTENSA_UNDEFINED
3450 || fmt_length < xtensa_format_length (isa, old_fmt))
3451 op_single_fmt_table[opcode] = fmt;
3452 }
3453 }
3454 }
3455 xtensa_insnbuf_free (isa, ibuf);
3456}
3457
3458
3459static xtensa_format
3460get_single_format (xtensa_opcode opcode)
3461{
3462 init_op_single_format_table ();
3463 return op_single_fmt_table[opcode];
3464}
e0001a05 3465
e0001a05 3466
43cd72b9
BW
3467/* For the set of narrowable instructions we do NOT include the
3468 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
3469 involved during linker relaxation that may require these to
3470 re-expand in some conditions. Also, the narrowing "or" -> mov.n
3471 requires special case code to ensure it only works when op1 == op2. */
e0001a05 3472
7fa3d080
BW
3473struct string_pair
3474{
3475 const char *wide;
3476 const char *narrow;
3477};
3478
43cd72b9 3479struct string_pair narrowable[] =
e0001a05 3480{
43cd72b9
BW
3481 { "add", "add.n" },
3482 { "addi", "addi.n" },
3483 { "addmi", "addi.n" },
3484 { "l32i", "l32i.n" },
3485 { "movi", "movi.n" },
3486 { "ret", "ret.n" },
3487 { "retw", "retw.n" },
3488 { "s32i", "s32i.n" },
3489 { "or", "mov.n" } /* special case only when op1 == op2 */
3490};
e0001a05 3491
43cd72b9 3492struct string_pair widenable[] =
e0001a05 3493{
43cd72b9
BW
3494 { "add", "add.n" },
3495 { "addi", "addi.n" },
3496 { "addmi", "addi.n" },
3497 { "beqz", "beqz.n" },
3498 { "bnez", "bnez.n" },
3499 { "l32i", "l32i.n" },
3500 { "movi", "movi.n" },
3501 { "ret", "ret.n" },
3502 { "retw", "retw.n" },
3503 { "s32i", "s32i.n" },
3504 { "or", "mov.n" } /* special case only when op1 == op2 */
3505};
e0001a05
NC
3506
3507
64b607e6
BW
3508/* Check if an instruction can be "narrowed", i.e., changed from a standard
3509 3-byte instruction to a 2-byte "density" instruction. If it is valid,
3510 return the instruction buffer holding the narrow instruction. Otherwise,
3511 return 0. The set of valid narrowing are specified by a string table
43cd72b9
BW
3512 but require some special case operand checks in some cases. */
3513
64b607e6
BW
3514static xtensa_insnbuf
3515can_narrow_instruction (xtensa_insnbuf slotbuf,
3516 xtensa_format fmt,
3517 xtensa_opcode opcode)
e0001a05 3518{
43cd72b9 3519 xtensa_isa isa = xtensa_default_isa;
64b607e6
BW
3520 xtensa_format o_fmt;
3521 unsigned opi;
e0001a05 3522
43cd72b9
BW
3523 static xtensa_insnbuf o_insnbuf = NULL;
3524 static xtensa_insnbuf o_slotbuf = NULL;
e0001a05 3525
64b607e6 3526 if (o_insnbuf == NULL)
43cd72b9 3527 {
43cd72b9
BW
3528 o_insnbuf = xtensa_insnbuf_alloc (isa);
3529 o_slotbuf = xtensa_insnbuf_alloc (isa);
3530 }
e0001a05 3531
64b607e6 3532 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
43cd72b9
BW
3533 {
3534 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
e0001a05 3535
43cd72b9
BW
3536 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
3537 {
3538 uint32 value, newval;
3539 int i, operand_count, o_operand_count;
3540 xtensa_opcode o_opcode;
e0001a05 3541
43cd72b9
BW
3542 /* Address does not matter in this case. We might need to
3543 fix it to handle branches/jumps. */
3544 bfd_vma self_address = 0;
e0001a05 3545
43cd72b9
BW
3546 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
3547 if (o_opcode == XTENSA_UNDEFINED)
64b607e6 3548 return 0;
43cd72b9
BW
3549 o_fmt = get_single_format (o_opcode);
3550 if (o_fmt == XTENSA_UNDEFINED)
64b607e6 3551 return 0;
e0001a05 3552
43cd72b9
BW
3553 if (xtensa_format_length (isa, fmt) != 3
3554 || xtensa_format_length (isa, o_fmt) != 2)
64b607e6 3555 return 0;
e0001a05 3556
43cd72b9
BW
3557 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3558 operand_count = xtensa_opcode_num_operands (isa, opcode);
3559 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
e0001a05 3560
43cd72b9 3561 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
64b607e6 3562 return 0;
e0001a05 3563
43cd72b9
BW
3564 if (!is_or)
3565 {
3566 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
64b607e6 3567 return 0;
43cd72b9
BW
3568 }
3569 else
3570 {
3571 uint32 rawval0, rawval1, rawval2;
e0001a05 3572
64b607e6
BW
3573 if (o_operand_count + 1 != operand_count
3574 || xtensa_operand_get_field (isa, opcode, 0,
3575 fmt, 0, slotbuf, &rawval0) != 0
3576 || xtensa_operand_get_field (isa, opcode, 1,
3577 fmt, 0, slotbuf, &rawval1) != 0
3578 || xtensa_operand_get_field (isa, opcode, 2,
3579 fmt, 0, slotbuf, &rawval2) != 0
3580 || rawval1 != rawval2
3581 || rawval0 == rawval1 /* it is a nop */)
3582 return 0;
43cd72b9 3583 }
e0001a05 3584
43cd72b9
BW
3585 for (i = 0; i < o_operand_count; ++i)
3586 {
3587 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
3588 slotbuf, &value)
3589 || xtensa_operand_decode (isa, opcode, i, &value))
64b607e6 3590 return 0;
e0001a05 3591
43cd72b9
BW
3592 /* PC-relative branches need adjustment, but
3593 the PC-rel operand will always have a relocation. */
3594 newval = value;
3595 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3596 self_address)
3597 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3598 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3599 o_slotbuf, newval))
64b607e6 3600 return 0;
43cd72b9 3601 }
e0001a05 3602
64b607e6
BW
3603 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
3604 return 0;
e0001a05 3605
64b607e6 3606 return o_insnbuf;
43cd72b9
BW
3607 }
3608 }
64b607e6 3609 return 0;
43cd72b9 3610}
e0001a05 3611
e0001a05 3612
64b607e6
BW
3613/* Attempt to narrow an instruction. If the narrowing is valid, perform
3614 the action in-place directly into the contents and return TRUE. Otherwise,
3615 the return value is FALSE and the contents are not modified. */
e0001a05 3616
43cd72b9 3617static bfd_boolean
64b607e6
BW
3618narrow_instruction (bfd_byte *contents,
3619 bfd_size_type content_length,
3620 bfd_size_type offset)
e0001a05 3621{
43cd72b9 3622 xtensa_opcode opcode;
64b607e6 3623 bfd_size_type insn_len;
43cd72b9 3624 xtensa_isa isa = xtensa_default_isa;
64b607e6
BW
3625 xtensa_format fmt;
3626 xtensa_insnbuf o_insnbuf;
e0001a05 3627
43cd72b9
BW
3628 static xtensa_insnbuf insnbuf = NULL;
3629 static xtensa_insnbuf slotbuf = NULL;
e0001a05 3630
43cd72b9
BW
3631 if (insnbuf == NULL)
3632 {
3633 insnbuf = xtensa_insnbuf_alloc (isa);
3634 slotbuf = xtensa_insnbuf_alloc (isa);
43cd72b9 3635 }
e0001a05 3636
43cd72b9 3637 BFD_ASSERT (offset < content_length);
2c8c90bc 3638
43cd72b9 3639 if (content_length < 2)
e0001a05
NC
3640 return FALSE;
3641
64b607e6 3642 /* We will hand-code a few of these for a little while.
43cd72b9
BW
3643 These have all been specified in the assembler aleady. */
3644 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3645 content_length - offset);
3646 fmt = xtensa_format_decode (isa, insnbuf);
3647 if (xtensa_format_num_slots (isa, fmt) != 1)
e0001a05
NC
3648 return FALSE;
3649
43cd72b9 3650 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
e0001a05
NC
3651 return FALSE;
3652
43cd72b9
BW
3653 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3654 if (opcode == XTENSA_UNDEFINED)
e0001a05 3655 return FALSE;
43cd72b9
BW
3656 insn_len = xtensa_format_length (isa, fmt);
3657 if (insn_len > content_length)
3658 return FALSE;
3659
64b607e6
BW
3660 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
3661 if (o_insnbuf)
3662 {
3663 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3664 content_length - offset);
3665 return TRUE;
3666 }
3667
3668 return FALSE;
3669}
3670
3671
3672/* Check if an instruction can be "widened", i.e., changed from a 2-byte
3673 "density" instruction to a standard 3-byte instruction. If it is valid,
3674 return the instruction buffer holding the wide instruction. Otherwise,
3675 return 0. The set of valid widenings are specified by a string table
3676 but require some special case operand checks in some cases. */
3677
3678static xtensa_insnbuf
3679can_widen_instruction (xtensa_insnbuf slotbuf,
3680 xtensa_format fmt,
3681 xtensa_opcode opcode)
3682{
3683 xtensa_isa isa = xtensa_default_isa;
3684 xtensa_format o_fmt;
3685 unsigned opi;
3686
3687 static xtensa_insnbuf o_insnbuf = NULL;
3688 static xtensa_insnbuf o_slotbuf = NULL;
3689
3690 if (o_insnbuf == NULL)
3691 {
3692 o_insnbuf = xtensa_insnbuf_alloc (isa);
3693 o_slotbuf = xtensa_insnbuf_alloc (isa);
3694 }
3695
3696 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
e0001a05 3697 {
43cd72b9
BW
3698 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
3699 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
3700 || strcmp ("bnez", widenable[opi].wide) == 0);
e0001a05 3701
43cd72b9
BW
3702 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
3703 {
3704 uint32 value, newval;
3705 int i, operand_count, o_operand_count, check_operand_count;
3706 xtensa_opcode o_opcode;
e0001a05 3707
43cd72b9
BW
3708 /* Address does not matter in this case. We might need to fix it
3709 to handle branches/jumps. */
3710 bfd_vma self_address = 0;
e0001a05 3711
43cd72b9
BW
3712 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
3713 if (o_opcode == XTENSA_UNDEFINED)
64b607e6 3714 return 0;
43cd72b9
BW
3715 o_fmt = get_single_format (o_opcode);
3716 if (o_fmt == XTENSA_UNDEFINED)
64b607e6 3717 return 0;
e0001a05 3718
43cd72b9
BW
3719 if (xtensa_format_length (isa, fmt) != 2
3720 || xtensa_format_length (isa, o_fmt) != 3)
64b607e6 3721 return 0;
e0001a05 3722
43cd72b9
BW
3723 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3724 operand_count = xtensa_opcode_num_operands (isa, opcode);
3725 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
3726 check_operand_count = o_operand_count;
e0001a05 3727
43cd72b9 3728 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
64b607e6 3729 return 0;
e0001a05 3730
43cd72b9
BW
3731 if (!is_or)
3732 {
3733 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
64b607e6 3734 return 0;
43cd72b9
BW
3735 }
3736 else
3737 {
3738 uint32 rawval0, rawval1;
3739
64b607e6
BW
3740 if (o_operand_count != operand_count + 1
3741 || xtensa_operand_get_field (isa, opcode, 0,
3742 fmt, 0, slotbuf, &rawval0) != 0
3743 || xtensa_operand_get_field (isa, opcode, 1,
3744 fmt, 0, slotbuf, &rawval1) != 0
3745 || rawval0 == rawval1 /* it is a nop */)
3746 return 0;
43cd72b9
BW
3747 }
3748 if (is_branch)
3749 check_operand_count--;
3750
64b607e6 3751 for (i = 0; i < check_operand_count; i++)
43cd72b9
BW
3752 {
3753 int new_i = i;
3754 if (is_or && i == o_operand_count - 1)
3755 new_i = i - 1;
3756 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
3757 slotbuf, &value)
3758 || xtensa_operand_decode (isa, opcode, new_i, &value))
64b607e6 3759 return 0;
43cd72b9
BW
3760
3761 /* PC-relative branches need adjustment, but
3762 the PC-rel operand will always have a relocation. */
3763 newval = value;
3764 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3765 self_address)
3766 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3767 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3768 o_slotbuf, newval))
64b607e6 3769 return 0;
43cd72b9
BW
3770 }
3771
3772 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
64b607e6 3773 return 0;
43cd72b9 3774
64b607e6 3775 return o_insnbuf;
43cd72b9
BW
3776 }
3777 }
64b607e6
BW
3778 return 0;
3779}
3780
3781
3782/* Attempt to widen an instruction. If the widening is valid, perform
3783 the action in-place directly into the contents and return TRUE. Otherwise,
3784 the return value is FALSE and the contents are not modified. */
3785
3786static bfd_boolean
3787widen_instruction (bfd_byte *contents,
3788 bfd_size_type content_length,
3789 bfd_size_type offset)
3790{
3791 xtensa_opcode opcode;
3792 bfd_size_type insn_len;
3793 xtensa_isa isa = xtensa_default_isa;
3794 xtensa_format fmt;
3795 xtensa_insnbuf o_insnbuf;
3796
3797 static xtensa_insnbuf insnbuf = NULL;
3798 static xtensa_insnbuf slotbuf = NULL;
3799
3800 if (insnbuf == NULL)
3801 {
3802 insnbuf = xtensa_insnbuf_alloc (isa);
3803 slotbuf = xtensa_insnbuf_alloc (isa);
3804 }
3805
3806 BFD_ASSERT (offset < content_length);
3807
3808 if (content_length < 2)
3809 return FALSE;
3810
3811 /* We will hand-code a few of these for a little while.
3812 These have all been specified in the assembler aleady. */
3813 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3814 content_length - offset);
3815 fmt = xtensa_format_decode (isa, insnbuf);
3816 if (xtensa_format_num_slots (isa, fmt) != 1)
3817 return FALSE;
3818
3819 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
3820 return FALSE;
3821
3822 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3823 if (opcode == XTENSA_UNDEFINED)
3824 return FALSE;
3825 insn_len = xtensa_format_length (isa, fmt);
3826 if (insn_len > content_length)
3827 return FALSE;
3828
3829 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
3830 if (o_insnbuf)
3831 {
3832 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3833 content_length - offset);
3834 return TRUE;
3835 }
43cd72b9 3836 return FALSE;
e0001a05
NC
3837}
3838
43cd72b9
BW
3839\f
3840/* Code for transforming CALLs at link-time. */
e0001a05 3841
43cd72b9 3842static bfd_reloc_status_type
7fa3d080
BW
3843elf_xtensa_do_asm_simplify (bfd_byte *contents,
3844 bfd_vma address,
3845 bfd_vma content_length,
3846 char **error_message)
e0001a05 3847{
43cd72b9
BW
3848 static xtensa_insnbuf insnbuf = NULL;
3849 static xtensa_insnbuf slotbuf = NULL;
3850 xtensa_format core_format = XTENSA_UNDEFINED;
3851 xtensa_opcode opcode;
3852 xtensa_opcode direct_call_opcode;
3853 xtensa_isa isa = xtensa_default_isa;
3854 bfd_byte *chbuf = contents + address;
3855 int opn;
e0001a05 3856
43cd72b9 3857 if (insnbuf == NULL)
e0001a05 3858 {
43cd72b9
BW
3859 insnbuf = xtensa_insnbuf_alloc (isa);
3860 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 3861 }
e0001a05 3862
43cd72b9
BW
3863 if (content_length < address)
3864 {
3865 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3866 return bfd_reloc_other;
3867 }
e0001a05 3868
43cd72b9
BW
3869 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
3870 direct_call_opcode = swap_callx_for_call_opcode (opcode);
3871 if (direct_call_opcode == XTENSA_UNDEFINED)
3872 {
3873 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3874 return bfd_reloc_other;
3875 }
3876
3877 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
3878 core_format = xtensa_format_lookup (isa, "x24");
3879 opcode = xtensa_opcode_lookup (isa, "or");
3880 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
3881 for (opn = 0; opn < 3; opn++)
3882 {
3883 uint32 regno = 1;
3884 xtensa_operand_encode (isa, opcode, opn, &regno);
3885 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
3886 slotbuf, regno);
3887 }
3888 xtensa_format_encode (isa, core_format, insnbuf);
3889 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3890 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
e0001a05 3891
43cd72b9
BW
3892 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
3893 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
3894 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
e0001a05 3895
43cd72b9
BW
3896 xtensa_format_encode (isa, core_format, insnbuf);
3897 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3898 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
3899 content_length - address - 3);
e0001a05 3900
43cd72b9
BW
3901 return bfd_reloc_ok;
3902}
e0001a05 3903
e0001a05 3904
43cd72b9 3905static bfd_reloc_status_type
7fa3d080
BW
3906contract_asm_expansion (bfd_byte *contents,
3907 bfd_vma content_length,
3908 Elf_Internal_Rela *irel,
3909 char **error_message)
43cd72b9
BW
3910{
3911 bfd_reloc_status_type retval =
3912 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
3913 error_message);
e0001a05 3914
43cd72b9
BW
3915 if (retval != bfd_reloc_ok)
3916 return bfd_reloc_dangerous;
e0001a05 3917
43cd72b9
BW
3918 /* Update the irel->r_offset field so that the right immediate and
3919 the right instruction are modified during the relocation. */
3920 irel->r_offset += 3;
3921 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
3922 return bfd_reloc_ok;
3923}
e0001a05 3924
e0001a05 3925
43cd72b9 3926static xtensa_opcode
7fa3d080 3927swap_callx_for_call_opcode (xtensa_opcode opcode)
e0001a05 3928{
43cd72b9 3929 init_call_opcodes ();
e0001a05 3930
43cd72b9
BW
3931 if (opcode == callx0_op) return call0_op;
3932 if (opcode == callx4_op) return call4_op;
3933 if (opcode == callx8_op) return call8_op;
3934 if (opcode == callx12_op) return call12_op;
e0001a05 3935
43cd72b9
BW
3936 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
3937 return XTENSA_UNDEFINED;
3938}
e0001a05 3939
e0001a05 3940
43cd72b9
BW
3941/* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
3942 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
3943 If not, return XTENSA_UNDEFINED. */
e0001a05 3944
43cd72b9
BW
3945#define L32R_TARGET_REG_OPERAND 0
3946#define CONST16_TARGET_REG_OPERAND 0
3947#define CALLN_SOURCE_OPERAND 0
e0001a05 3948
43cd72b9 3949static xtensa_opcode
7fa3d080 3950get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
e0001a05 3951{
43cd72b9
BW
3952 static xtensa_insnbuf insnbuf = NULL;
3953 static xtensa_insnbuf slotbuf = NULL;
3954 xtensa_format fmt;
3955 xtensa_opcode opcode;
3956 xtensa_isa isa = xtensa_default_isa;
3957 uint32 regno, const16_regno, call_regno;
3958 int offset = 0;
e0001a05 3959
43cd72b9 3960 if (insnbuf == NULL)
e0001a05 3961 {
43cd72b9
BW
3962 insnbuf = xtensa_insnbuf_alloc (isa);
3963 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 3964 }
43cd72b9
BW
3965
3966 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
3967 fmt = xtensa_format_decode (isa, insnbuf);
3968 if (fmt == XTENSA_UNDEFINED
3969 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
3970 return XTENSA_UNDEFINED;
3971
3972 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3973 if (opcode == XTENSA_UNDEFINED)
3974 return XTENSA_UNDEFINED;
3975
3976 if (opcode == get_l32r_opcode ())
e0001a05 3977 {
43cd72b9
BW
3978 if (p_uses_l32r)
3979 *p_uses_l32r = TRUE;
3980 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
3981 fmt, 0, slotbuf, &regno)
3982 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
3983 &regno))
3984 return XTENSA_UNDEFINED;
e0001a05 3985 }
43cd72b9 3986 else if (opcode == get_const16_opcode ())
e0001a05 3987 {
43cd72b9
BW
3988 if (p_uses_l32r)
3989 *p_uses_l32r = FALSE;
3990 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
3991 fmt, 0, slotbuf, &regno)
3992 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
3993 &regno))
3994 return XTENSA_UNDEFINED;
3995
3996 /* Check that the next instruction is also CONST16. */
3997 offset += xtensa_format_length (isa, fmt);
3998 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
3999 fmt = xtensa_format_decode (isa, insnbuf);
4000 if (fmt == XTENSA_UNDEFINED
4001 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4002 return XTENSA_UNDEFINED;
4003 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4004 if (opcode != get_const16_opcode ())
4005 return XTENSA_UNDEFINED;
4006
4007 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4008 fmt, 0, slotbuf, &const16_regno)
4009 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4010 &const16_regno)
4011 || const16_regno != regno)
4012 return XTENSA_UNDEFINED;
e0001a05 4013 }
43cd72b9
BW
4014 else
4015 return XTENSA_UNDEFINED;
e0001a05 4016
43cd72b9
BW
4017 /* Next instruction should be an CALLXn with operand 0 == regno. */
4018 offset += xtensa_format_length (isa, fmt);
4019 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4020 fmt = xtensa_format_decode (isa, insnbuf);
4021 if (fmt == XTENSA_UNDEFINED
4022 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4023 return XTENSA_UNDEFINED;
4024 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4025 if (opcode == XTENSA_UNDEFINED
4026 || !is_indirect_call_opcode (opcode))
4027 return XTENSA_UNDEFINED;
e0001a05 4028
43cd72b9
BW
4029 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4030 fmt, 0, slotbuf, &call_regno)
4031 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4032 &call_regno))
4033 return XTENSA_UNDEFINED;
e0001a05 4034
43cd72b9
BW
4035 if (call_regno != regno)
4036 return XTENSA_UNDEFINED;
e0001a05 4037
43cd72b9
BW
4038 return opcode;
4039}
e0001a05 4040
43cd72b9
BW
4041\f
4042/* Data structures used during relaxation. */
e0001a05 4043
43cd72b9 4044/* r_reloc: relocation values. */
e0001a05 4045
43cd72b9
BW
4046/* Through the relaxation process, we need to keep track of the values
4047 that will result from evaluating relocations. The standard ELF
4048 relocation structure is not sufficient for this purpose because we're
4049 operating on multiple input files at once, so we need to know which
4050 input file a relocation refers to. The r_reloc structure thus
4051 records both the input file (bfd) and ELF relocation.
e0001a05 4052
43cd72b9
BW
4053 For efficiency, an r_reloc also contains a "target_offset" field to
4054 cache the target-section-relative offset value that is represented by
4055 the relocation.
4056
4057 The r_reloc also contains a virtual offset that allows multiple
4058 inserted literals to be placed at the same "address" with
4059 different offsets. */
e0001a05 4060
43cd72b9 4061typedef struct r_reloc_struct r_reloc;
e0001a05 4062
43cd72b9 4063struct r_reloc_struct
e0001a05 4064{
43cd72b9
BW
4065 bfd *abfd;
4066 Elf_Internal_Rela rela;
e0001a05 4067 bfd_vma target_offset;
43cd72b9 4068 bfd_vma virtual_offset;
e0001a05
NC
4069};
4070
e0001a05 4071
43cd72b9
BW
4072/* The r_reloc structure is included by value in literal_value, but not
4073 every literal_value has an associated relocation -- some are simple
4074 constants. In such cases, we set all the fields in the r_reloc
4075 struct to zero. The r_reloc_is_const function should be used to
4076 detect this case. */
e0001a05 4077
43cd72b9 4078static bfd_boolean
7fa3d080 4079r_reloc_is_const (const r_reloc *r_rel)
e0001a05 4080{
43cd72b9 4081 return (r_rel->abfd == NULL);
e0001a05
NC
4082}
4083
4084
43cd72b9 4085static bfd_vma
7fa3d080 4086r_reloc_get_target_offset (const r_reloc *r_rel)
e0001a05 4087{
43cd72b9
BW
4088 bfd_vma target_offset;
4089 unsigned long r_symndx;
e0001a05 4090
43cd72b9
BW
4091 BFD_ASSERT (!r_reloc_is_const (r_rel));
4092 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4093 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4094 return (target_offset + r_rel->rela.r_addend);
4095}
e0001a05 4096
e0001a05 4097
43cd72b9 4098static struct elf_link_hash_entry *
7fa3d080 4099r_reloc_get_hash_entry (const r_reloc *r_rel)
e0001a05 4100{
43cd72b9
BW
4101 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4102 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4103}
e0001a05 4104
43cd72b9
BW
4105
4106static asection *
7fa3d080 4107r_reloc_get_section (const r_reloc *r_rel)
43cd72b9
BW
4108{
4109 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4110 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4111}
e0001a05
NC
4112
4113
4114static bfd_boolean
7fa3d080 4115r_reloc_is_defined (const r_reloc *r_rel)
e0001a05 4116{
43cd72b9
BW
4117 asection *sec;
4118 if (r_rel == NULL)
e0001a05 4119 return FALSE;
e0001a05 4120
43cd72b9
BW
4121 sec = r_reloc_get_section (r_rel);
4122 if (sec == bfd_abs_section_ptr
4123 || sec == bfd_com_section_ptr
4124 || sec == bfd_und_section_ptr)
4125 return FALSE;
4126 return TRUE;
e0001a05
NC
4127}
4128
4129
7fa3d080
BW
4130static void
4131r_reloc_init (r_reloc *r_rel,
4132 bfd *abfd,
4133 Elf_Internal_Rela *irel,
4134 bfd_byte *contents,
4135 bfd_size_type content_length)
4136{
4137 int r_type;
4138 reloc_howto_type *howto;
4139
4140 if (irel)
4141 {
4142 r_rel->rela = *irel;
4143 r_rel->abfd = abfd;
4144 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4145 r_rel->virtual_offset = 0;
4146 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4147 howto = &elf_howto_table[r_type];
4148 if (howto->partial_inplace)
4149 {
4150 bfd_vma inplace_val;
4151 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4152
4153 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
4154 r_rel->target_offset += inplace_val;
4155 }
4156 }
4157 else
4158 memset (r_rel, 0, sizeof (r_reloc));
4159}
4160
4161
43cd72b9
BW
4162#if DEBUG
4163
e0001a05 4164static void
7fa3d080 4165print_r_reloc (FILE *fp, const r_reloc *r_rel)
e0001a05 4166{
43cd72b9
BW
4167 if (r_reloc_is_defined (r_rel))
4168 {
4169 asection *sec = r_reloc_get_section (r_rel);
4170 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
4171 }
4172 else if (r_reloc_get_hash_entry (r_rel))
4173 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
4174 else
4175 fprintf (fp, " ?? + ");
e0001a05 4176
43cd72b9
BW
4177 fprintf_vma (fp, r_rel->target_offset);
4178 if (r_rel->virtual_offset)
4179 {
4180 fprintf (fp, " + ");
4181 fprintf_vma (fp, r_rel->virtual_offset);
4182 }
4183
4184 fprintf (fp, ")");
4185}
e0001a05 4186
43cd72b9 4187#endif /* DEBUG */
e0001a05 4188
43cd72b9
BW
4189\f
4190/* source_reloc: relocations that reference literals. */
e0001a05 4191
43cd72b9
BW
4192/* To determine whether literals can be coalesced, we need to first
4193 record all the relocations that reference the literals. The
4194 source_reloc structure below is used for this purpose. The
4195 source_reloc entries are kept in a per-literal-section array, sorted
4196 by offset within the literal section (i.e., target offset).
e0001a05 4197
43cd72b9
BW
4198 The source_sec and r_rel.rela.r_offset fields identify the source of
4199 the relocation. The r_rel field records the relocation value, i.e.,
4200 the offset of the literal being referenced. The opnd field is needed
4201 to determine the range of the immediate field to which the relocation
4202 applies, so we can determine whether another literal with the same
4203 value is within range. The is_null field is true when the relocation
4204 is being removed (e.g., when an L32R is being removed due to a CALLX
4205 that is converted to a direct CALL). */
e0001a05 4206
43cd72b9
BW
4207typedef struct source_reloc_struct source_reloc;
4208
4209struct source_reloc_struct
e0001a05 4210{
43cd72b9
BW
4211 asection *source_sec;
4212 r_reloc r_rel;
4213 xtensa_opcode opcode;
4214 int opnd;
4215 bfd_boolean is_null;
4216 bfd_boolean is_abs_literal;
4217};
e0001a05 4218
e0001a05 4219
e0001a05 4220static void
7fa3d080
BW
4221init_source_reloc (source_reloc *reloc,
4222 asection *source_sec,
4223 const r_reloc *r_rel,
4224 xtensa_opcode opcode,
4225 int opnd,
4226 bfd_boolean is_abs_literal)
e0001a05 4227{
43cd72b9
BW
4228 reloc->source_sec = source_sec;
4229 reloc->r_rel = *r_rel;
4230 reloc->opcode = opcode;
4231 reloc->opnd = opnd;
4232 reloc->is_null = FALSE;
4233 reloc->is_abs_literal = is_abs_literal;
e0001a05
NC
4234}
4235
e0001a05 4236
43cd72b9
BW
4237/* Find the source_reloc for a particular source offset and relocation
4238 type. Note that the array is sorted by _target_ offset, so this is
4239 just a linear search. */
e0001a05 4240
43cd72b9 4241static source_reloc *
7fa3d080
BW
4242find_source_reloc (source_reloc *src_relocs,
4243 int src_count,
4244 asection *sec,
4245 Elf_Internal_Rela *irel)
e0001a05 4246{
43cd72b9 4247 int i;
e0001a05 4248
43cd72b9
BW
4249 for (i = 0; i < src_count; i++)
4250 {
4251 if (src_relocs[i].source_sec == sec
4252 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
4253 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
4254 == ELF32_R_TYPE (irel->r_info)))
4255 return &src_relocs[i];
4256 }
e0001a05 4257
43cd72b9 4258 return NULL;
e0001a05
NC
4259}
4260
4261
43cd72b9 4262static int
7fa3d080 4263source_reloc_compare (const void *ap, const void *bp)
e0001a05 4264{
43cd72b9
BW
4265 const source_reloc *a = (const source_reloc *) ap;
4266 const source_reloc *b = (const source_reloc *) bp;
e0001a05 4267
43cd72b9
BW
4268 if (a->r_rel.target_offset != b->r_rel.target_offset)
4269 return (a->r_rel.target_offset - b->r_rel.target_offset);
e0001a05 4270
43cd72b9
BW
4271 /* We don't need to sort on these criteria for correctness,
4272 but enforcing a more strict ordering prevents unstable qsort
4273 from behaving differently with different implementations.
4274 Without the code below we get correct but different results
4275 on Solaris 2.7 and 2.8. We would like to always produce the
4276 same results no matter the host. */
4277
4278 if ((!a->is_null) - (!b->is_null))
4279 return ((!a->is_null) - (!b->is_null));
4280 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
e0001a05
NC
4281}
4282
43cd72b9
BW
4283\f
4284/* Literal values and value hash tables. */
e0001a05 4285
43cd72b9
BW
4286/* Literals with the same value can be coalesced. The literal_value
4287 structure records the value of a literal: the "r_rel" field holds the
4288 information from the relocation on the literal (if there is one) and
4289 the "value" field holds the contents of the literal word itself.
e0001a05 4290
43cd72b9
BW
4291 The value_map structure records a literal value along with the
4292 location of a literal holding that value. The value_map hash table
4293 is indexed by the literal value, so that we can quickly check if a
4294 particular literal value has been seen before and is thus a candidate
4295 for coalescing. */
e0001a05 4296
43cd72b9
BW
4297typedef struct literal_value_struct literal_value;
4298typedef struct value_map_struct value_map;
4299typedef struct value_map_hash_table_struct value_map_hash_table;
e0001a05 4300
43cd72b9 4301struct literal_value_struct
e0001a05 4302{
43cd72b9
BW
4303 r_reloc r_rel;
4304 unsigned long value;
4305 bfd_boolean is_abs_literal;
4306};
4307
4308struct value_map_struct
4309{
4310 literal_value val; /* The literal value. */
4311 r_reloc loc; /* Location of the literal. */
4312 value_map *next;
4313};
4314
4315struct value_map_hash_table_struct
4316{
4317 unsigned bucket_count;
4318 value_map **buckets;
4319 unsigned count;
4320 bfd_boolean has_last_loc;
4321 r_reloc last_loc;
4322};
4323
4324
e0001a05 4325static void
7fa3d080
BW
4326init_literal_value (literal_value *lit,
4327 const r_reloc *r_rel,
4328 unsigned long value,
4329 bfd_boolean is_abs_literal)
e0001a05 4330{
43cd72b9
BW
4331 lit->r_rel = *r_rel;
4332 lit->value = value;
4333 lit->is_abs_literal = is_abs_literal;
e0001a05
NC
4334}
4335
4336
43cd72b9 4337static bfd_boolean
7fa3d080
BW
4338literal_value_equal (const literal_value *src1,
4339 const literal_value *src2,
4340 bfd_boolean final_static_link)
e0001a05 4341{
43cd72b9 4342 struct elf_link_hash_entry *h1, *h2;
e0001a05 4343
43cd72b9
BW
4344 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
4345 return FALSE;
e0001a05 4346
43cd72b9
BW
4347 if (r_reloc_is_const (&src1->r_rel))
4348 return (src1->value == src2->value);
e0001a05 4349
43cd72b9
BW
4350 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
4351 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
4352 return FALSE;
e0001a05 4353
43cd72b9
BW
4354 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
4355 return FALSE;
4356
4357 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
4358 return FALSE;
4359
4360 if (src1->value != src2->value)
4361 return FALSE;
4362
4363 /* Now check for the same section (if defined) or the same elf_hash
4364 (if undefined or weak). */
4365 h1 = r_reloc_get_hash_entry (&src1->r_rel);
4366 h2 = r_reloc_get_hash_entry (&src2->r_rel);
4367 if (r_reloc_is_defined (&src1->r_rel)
4368 && (final_static_link
4369 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
4370 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
4371 {
4372 if (r_reloc_get_section (&src1->r_rel)
4373 != r_reloc_get_section (&src2->r_rel))
4374 return FALSE;
4375 }
4376 else
4377 {
4378 /* Require that the hash entries (i.e., symbols) be identical. */
4379 if (h1 != h2 || h1 == 0)
4380 return FALSE;
4381 }
4382
4383 if (src1->is_abs_literal != src2->is_abs_literal)
4384 return FALSE;
4385
4386 return TRUE;
e0001a05
NC
4387}
4388
e0001a05 4389
43cd72b9
BW
4390/* Must be power of 2. */
4391#define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
e0001a05 4392
43cd72b9 4393static value_map_hash_table *
7fa3d080 4394value_map_hash_table_init (void)
43cd72b9
BW
4395{
4396 value_map_hash_table *values;
e0001a05 4397
43cd72b9
BW
4398 values = (value_map_hash_table *)
4399 bfd_zmalloc (sizeof (value_map_hash_table));
4400 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
4401 values->count = 0;
4402 values->buckets = (value_map **)
4403 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
4404 if (values->buckets == NULL)
4405 {
4406 free (values);
4407 return NULL;
4408 }
4409 values->has_last_loc = FALSE;
4410
4411 return values;
4412}
4413
4414
4415static void
7fa3d080 4416value_map_hash_table_delete (value_map_hash_table *table)
e0001a05 4417{
43cd72b9
BW
4418 free (table->buckets);
4419 free (table);
4420}
4421
4422
4423static unsigned
7fa3d080 4424hash_bfd_vma (bfd_vma val)
43cd72b9
BW
4425{
4426 return (val >> 2) + (val >> 10);
4427}
4428
4429
4430static unsigned
7fa3d080 4431literal_value_hash (const literal_value *src)
43cd72b9
BW
4432{
4433 unsigned hash_val;
e0001a05 4434
43cd72b9
BW
4435 hash_val = hash_bfd_vma (src->value);
4436 if (!r_reloc_is_const (&src->r_rel))
e0001a05 4437 {
43cd72b9
BW
4438 void *sec_or_hash;
4439
4440 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
4441 hash_val += hash_bfd_vma (src->r_rel.target_offset);
4442 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
4443
4444 /* Now check for the same section and the same elf_hash. */
4445 if (r_reloc_is_defined (&src->r_rel))
4446 sec_or_hash = r_reloc_get_section (&src->r_rel);
4447 else
4448 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
f60ca5e3 4449 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
e0001a05 4450 }
43cd72b9
BW
4451 return hash_val;
4452}
e0001a05 4453
e0001a05 4454
43cd72b9 4455/* Check if the specified literal_value has been seen before. */
e0001a05 4456
43cd72b9 4457static value_map *
7fa3d080
BW
4458value_map_get_cached_value (value_map_hash_table *map,
4459 const literal_value *val,
4460 bfd_boolean final_static_link)
43cd72b9
BW
4461{
4462 value_map *map_e;
4463 value_map *bucket;
4464 unsigned idx;
4465
4466 idx = literal_value_hash (val);
4467 idx = idx & (map->bucket_count - 1);
4468 bucket = map->buckets[idx];
4469 for (map_e = bucket; map_e; map_e = map_e->next)
e0001a05 4470 {
43cd72b9
BW
4471 if (literal_value_equal (&map_e->val, val, final_static_link))
4472 return map_e;
4473 }
4474 return NULL;
4475}
e0001a05 4476
e0001a05 4477
43cd72b9
BW
4478/* Record a new literal value. It is illegal to call this if VALUE
4479 already has an entry here. */
4480
4481static value_map *
7fa3d080
BW
4482add_value_map (value_map_hash_table *map,
4483 const literal_value *val,
4484 const r_reloc *loc,
4485 bfd_boolean final_static_link)
43cd72b9
BW
4486{
4487 value_map **bucket_p;
4488 unsigned idx;
4489
4490 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
4491 if (val_e == NULL)
4492 {
4493 bfd_set_error (bfd_error_no_memory);
4494 return NULL;
e0001a05
NC
4495 }
4496
43cd72b9
BW
4497 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
4498 val_e->val = *val;
4499 val_e->loc = *loc;
4500
4501 idx = literal_value_hash (val);
4502 idx = idx & (map->bucket_count - 1);
4503 bucket_p = &map->buckets[idx];
4504
4505 val_e->next = *bucket_p;
4506 *bucket_p = val_e;
4507 map->count++;
4508 /* FIXME: Consider resizing the hash table if we get too many entries. */
4509
4510 return val_e;
e0001a05
NC
4511}
4512
43cd72b9
BW
4513\f
4514/* Lists of text actions (ta_) for narrowing, widening, longcall
4515 conversion, space fill, code & literal removal, etc. */
4516
4517/* The following text actions are generated:
4518
4519 "ta_remove_insn" remove an instruction or instructions
4520 "ta_remove_longcall" convert longcall to call
4521 "ta_convert_longcall" convert longcall to nop/call
4522 "ta_narrow_insn" narrow a wide instruction
4523 "ta_widen" widen a narrow instruction
4524 "ta_fill" add fill or remove fill
4525 removed < 0 is a fill; branches to the fill address will be
4526 changed to address + fill size (e.g., address - removed)
4527 removed >= 0 branches to the fill address will stay unchanged
4528 "ta_remove_literal" remove a literal; this action is
4529 indicated when a literal is removed
4530 or replaced.
4531 "ta_add_literal" insert a new literal; this action is
4532 indicated when a literal has been moved.
4533 It may use a virtual_offset because
4534 multiple literals can be placed at the
4535 same location.
4536
4537 For each of these text actions, we also record the number of bytes
4538 removed by performing the text action. In the case of a "ta_widen"
4539 or a "ta_fill" that adds space, the removed_bytes will be negative. */
4540
4541typedef struct text_action_struct text_action;
4542typedef struct text_action_list_struct text_action_list;
4543typedef enum text_action_enum_t text_action_t;
4544
4545enum text_action_enum_t
4546{
4547 ta_none,
4548 ta_remove_insn, /* removed = -size */
4549 ta_remove_longcall, /* removed = -size */
4550 ta_convert_longcall, /* removed = 0 */
4551 ta_narrow_insn, /* removed = -1 */
4552 ta_widen_insn, /* removed = +1 */
4553 ta_fill, /* removed = +size */
4554 ta_remove_literal,
4555 ta_add_literal
4556};
e0001a05 4557
e0001a05 4558
43cd72b9
BW
4559/* Structure for a text action record. */
4560struct text_action_struct
e0001a05 4561{
43cd72b9
BW
4562 text_action_t action;
4563 asection *sec; /* Optional */
4564 bfd_vma offset;
4565 bfd_vma virtual_offset; /* Zero except for adding literals. */
4566 int removed_bytes;
4567 literal_value value; /* Only valid when adding literals. */
e0001a05 4568
43cd72b9
BW
4569 text_action *next;
4570};
e0001a05 4571
e0001a05 4572
43cd72b9
BW
4573/* List of all of the actions taken on a text section. */
4574struct text_action_list_struct
4575{
4576 text_action *head;
4577};
e0001a05 4578
e0001a05 4579
7fa3d080
BW
4580static text_action *
4581find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
43cd72b9
BW
4582{
4583 text_action **m_p;
4584
4585 /* It is not necessary to fill at the end of a section. */
4586 if (sec->size == offset)
4587 return NULL;
4588
7fa3d080 4589 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
4590 {
4591 text_action *t = *m_p;
4592 /* When the action is another fill at the same address,
4593 just increase the size. */
4594 if (t->offset == offset && t->action == ta_fill)
4595 return t;
4596 }
4597 return NULL;
4598}
4599
4600
4601static int
7fa3d080
BW
4602compute_removed_action_diff (const text_action *ta,
4603 asection *sec,
4604 bfd_vma offset,
4605 int removed,
4606 int removable_space)
43cd72b9
BW
4607{
4608 int new_removed;
4609 int current_removed = 0;
4610
7fa3d080 4611 if (ta)
43cd72b9
BW
4612 current_removed = ta->removed_bytes;
4613
4614 BFD_ASSERT (ta == NULL || ta->offset == offset);
4615 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
4616
4617 /* It is not necessary to fill at the end of a section. Clean this up. */
4618 if (sec->size == offset)
4619 new_removed = removable_space - 0;
4620 else
4621 {
4622 int space;
4623 int added = -removed - current_removed;
4624 /* Ignore multiples of the section alignment. */
4625 added = ((1 << sec->alignment_power) - 1) & added;
4626 new_removed = (-added);
4627
4628 /* Modify for removable. */
4629 space = removable_space - new_removed;
4630 new_removed = (removable_space
4631 - (((1 << sec->alignment_power) - 1) & space));
4632 }
4633 return (new_removed - current_removed);
4634}
4635
4636
7fa3d080
BW
4637static void
4638adjust_fill_action (text_action *ta, int fill_diff)
43cd72b9
BW
4639{
4640 ta->removed_bytes += fill_diff;
4641}
4642
4643
4644/* Add a modification action to the text. For the case of adding or
4645 removing space, modify any current fill and assume that
4646 "unreachable_space" bytes can be freely contracted. Note that a
4647 negative removed value is a fill. */
4648
4649static void
7fa3d080
BW
4650text_action_add (text_action_list *l,
4651 text_action_t action,
4652 asection *sec,
4653 bfd_vma offset,
4654 int removed)
43cd72b9
BW
4655{
4656 text_action **m_p;
4657 text_action *ta;
4658
4659 /* It is not necessary to fill at the end of a section. */
4660 if (action == ta_fill && sec->size == offset)
4661 return;
4662
4663 /* It is not necessary to fill 0 bytes. */
4664 if (action == ta_fill && removed == 0)
4665 return;
4666
7fa3d080 4667 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
4668 {
4669 text_action *t = *m_p;
4670 /* When the action is another fill at the same address,
4671 just increase the size. */
4672 if (t->offset == offset && t->action == ta_fill && action == ta_fill)
4673 {
4674 t->removed_bytes += removed;
4675 return;
4676 }
4677 }
4678
4679 /* Create a new record and fill it up. */
4680 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4681 ta->action = action;
4682 ta->sec = sec;
4683 ta->offset = offset;
4684 ta->removed_bytes = removed;
4685 ta->next = (*m_p);
4686 *m_p = ta;
4687}
4688
4689
4690static void
7fa3d080
BW
4691text_action_add_literal (text_action_list *l,
4692 text_action_t action,
4693 const r_reloc *loc,
4694 const literal_value *value,
4695 int removed)
43cd72b9
BW
4696{
4697 text_action **m_p;
4698 text_action *ta;
4699 asection *sec = r_reloc_get_section (loc);
4700 bfd_vma offset = loc->target_offset;
4701 bfd_vma virtual_offset = loc->virtual_offset;
4702
4703 BFD_ASSERT (action == ta_add_literal);
4704
4705 for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
4706 {
4707 if ((*m_p)->offset > offset
4708 && ((*m_p)->offset != offset
4709 || (*m_p)->virtual_offset > virtual_offset))
4710 break;
4711 }
4712
4713 /* Create a new record and fill it up. */
4714 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4715 ta->action = action;
4716 ta->sec = sec;
4717 ta->offset = offset;
4718 ta->virtual_offset = virtual_offset;
4719 ta->value = *value;
4720 ta->removed_bytes = removed;
4721 ta->next = (*m_p);
4722 *m_p = ta;
4723}
4724
4725
7fa3d080
BW
4726static bfd_vma
4727offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
43cd72b9
BW
4728{
4729 text_action *r;
4730 int removed = 0;
4731
4732 for (r = action_list->head; r && r->offset <= offset; r = r->next)
4733 {
4734 if (r->offset < offset
4735 || (r->action == ta_fill && r->removed_bytes < 0))
4736 removed += r->removed_bytes;
4737 }
4738
4739 return (offset - removed);
4740}
4741
4742
03e94c08
BW
4743static unsigned
4744action_list_count (text_action_list *action_list)
4745{
4746 text_action *r = action_list->head;
4747 unsigned count = 0;
4748 for (r = action_list->head; r != NULL; r = r->next)
4749 {
4750 count++;
4751 }
4752 return count;
4753}
4754
4755
7fa3d080
BW
4756static bfd_vma
4757offset_with_removed_text_before_fill (text_action_list *action_list,
4758 bfd_vma offset)
43cd72b9
BW
4759{
4760 text_action *r;
4761 int removed = 0;
4762
4763 for (r = action_list->head; r && r->offset < offset; r = r->next)
4764 removed += r->removed_bytes;
4765
4766 return (offset - removed);
4767}
4768
4769
4770/* The find_insn_action routine will only find non-fill actions. */
4771
7fa3d080
BW
4772static text_action *
4773find_insn_action (text_action_list *action_list, bfd_vma offset)
43cd72b9
BW
4774{
4775 text_action *t;
4776 for (t = action_list->head; t; t = t->next)
4777 {
4778 if (t->offset == offset)
4779 {
4780 switch (t->action)
4781 {
4782 case ta_none:
4783 case ta_fill:
4784 break;
4785 case ta_remove_insn:
4786 case ta_remove_longcall:
4787 case ta_convert_longcall:
4788 case ta_narrow_insn:
4789 case ta_widen_insn:
4790 return t;
4791 case ta_remove_literal:
4792 case ta_add_literal:
4793 BFD_ASSERT (0);
4794 break;
4795 }
4796 }
4797 }
4798 return NULL;
4799}
4800
4801
4802#if DEBUG
4803
4804static void
7fa3d080 4805print_action_list (FILE *fp, text_action_list *action_list)
43cd72b9
BW
4806{
4807 text_action *r;
4808
4809 fprintf (fp, "Text Action\n");
4810 for (r = action_list->head; r != NULL; r = r->next)
4811 {
4812 const char *t = "unknown";
4813 switch (r->action)
4814 {
4815 case ta_remove_insn:
4816 t = "remove_insn"; break;
4817 case ta_remove_longcall:
4818 t = "remove_longcall"; break;
4819 case ta_convert_longcall:
4820 t = "remove_longcall"; break;
4821 case ta_narrow_insn:
4822 t = "narrow_insn"; break;
4823 case ta_widen_insn:
4824 t = "widen_insn"; break;
4825 case ta_fill:
4826 t = "fill"; break;
4827 case ta_none:
4828 t = "none"; break;
4829 case ta_remove_literal:
4830 t = "remove_literal"; break;
4831 case ta_add_literal:
4832 t = "add_literal"; break;
4833 }
4834
4835 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
4836 r->sec->owner->filename,
4837 r->sec->name, r->offset, t, r->removed_bytes);
4838 }
4839}
4840
4841#endif /* DEBUG */
4842
4843\f
4844/* Lists of literals being coalesced or removed. */
4845
4846/* In the usual case, the literal identified by "from" is being
4847 coalesced with another literal identified by "to". If the literal is
4848 unused and is being removed altogether, "to.abfd" will be NULL.
4849 The removed_literal entries are kept on a per-section list, sorted
4850 by the "from" offset field. */
4851
4852typedef struct removed_literal_struct removed_literal;
4853typedef struct removed_literal_list_struct removed_literal_list;
4854
4855struct removed_literal_struct
4856{
4857 r_reloc from;
4858 r_reloc to;
4859 removed_literal *next;
4860};
4861
4862struct removed_literal_list_struct
4863{
4864 removed_literal *head;
4865 removed_literal *tail;
4866};
4867
4868
43cd72b9
BW
4869/* Record that the literal at "from" is being removed. If "to" is not
4870 NULL, the "from" literal is being coalesced with the "to" literal. */
4871
4872static void
7fa3d080
BW
4873add_removed_literal (removed_literal_list *removed_list,
4874 const r_reloc *from,
4875 const r_reloc *to)
43cd72b9
BW
4876{
4877 removed_literal *r, *new_r, *next_r;
4878
4879 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
4880
4881 new_r->from = *from;
4882 if (to)
4883 new_r->to = *to;
4884 else
4885 new_r->to.abfd = NULL;
4886 new_r->next = NULL;
4887
4888 r = removed_list->head;
4889 if (r == NULL)
4890 {
4891 removed_list->head = new_r;
4892 removed_list->tail = new_r;
4893 }
4894 /* Special check for common case of append. */
4895 else if (removed_list->tail->from.target_offset < from->target_offset)
4896 {
4897 removed_list->tail->next = new_r;
4898 removed_list->tail = new_r;
4899 }
4900 else
4901 {
7fa3d080 4902 while (r->from.target_offset < from->target_offset && r->next)
43cd72b9
BW
4903 {
4904 r = r->next;
4905 }
4906 next_r = r->next;
4907 r->next = new_r;
4908 new_r->next = next_r;
4909 if (next_r == NULL)
4910 removed_list->tail = new_r;
4911 }
4912}
4913
4914
4915/* Check if the list of removed literals contains an entry for the
4916 given address. Return the entry if found. */
4917
4918static removed_literal *
7fa3d080 4919find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
43cd72b9
BW
4920{
4921 removed_literal *r = removed_list->head;
4922 while (r && r->from.target_offset < addr)
4923 r = r->next;
4924 if (r && r->from.target_offset == addr)
4925 return r;
4926 return NULL;
4927}
4928
4929
4930#if DEBUG
4931
4932static void
7fa3d080 4933print_removed_literals (FILE *fp, removed_literal_list *removed_list)
43cd72b9
BW
4934{
4935 removed_literal *r;
4936 r = removed_list->head;
4937 if (r)
4938 fprintf (fp, "Removed Literals\n");
4939 for (; r != NULL; r = r->next)
4940 {
4941 print_r_reloc (fp, &r->from);
4942 fprintf (fp, " => ");
4943 if (r->to.abfd == NULL)
4944 fprintf (fp, "REMOVED");
4945 else
4946 print_r_reloc (fp, &r->to);
4947 fprintf (fp, "\n");
4948 }
4949}
4950
4951#endif /* DEBUG */
4952
4953\f
4954/* Per-section data for relaxation. */
4955
4956typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
4957
4958struct xtensa_relax_info_struct
4959{
4960 bfd_boolean is_relaxable_literal_section;
4961 bfd_boolean is_relaxable_asm_section;
4962 int visited; /* Number of times visited. */
4963
4964 source_reloc *src_relocs; /* Array[src_count]. */
4965 int src_count;
4966 int src_next; /* Next src_relocs entry to assign. */
4967
4968 removed_literal_list removed_list;
4969 text_action_list action_list;
4970
4971 reloc_bfd_fix *fix_list;
4972 reloc_bfd_fix *fix_array;
4973 unsigned fix_array_count;
4974
4975 /* Support for expanding the reloc array that is stored
4976 in the section structure. If the relocations have been
4977 reallocated, the newly allocated relocations will be referenced
4978 here along with the actual size allocated. The relocation
4979 count will always be found in the section structure. */
4980 Elf_Internal_Rela *allocated_relocs;
4981 unsigned relocs_count;
4982 unsigned allocated_relocs_count;
4983};
4984
4985struct elf_xtensa_section_data
4986{
4987 struct bfd_elf_section_data elf;
4988 xtensa_relax_info relax_info;
4989};
4990
43cd72b9
BW
4991
4992static bfd_boolean
7fa3d080 4993elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
43cd72b9 4994{
f592407e
AM
4995 if (!sec->used_by_bfd)
4996 {
4997 struct elf_xtensa_section_data *sdata;
4998 bfd_size_type amt = sizeof (*sdata);
43cd72b9 4999
f592407e
AM
5000 sdata = bfd_zalloc (abfd, amt);
5001 if (sdata == NULL)
5002 return FALSE;
5003 sec->used_by_bfd = sdata;
5004 }
43cd72b9
BW
5005
5006 return _bfd_elf_new_section_hook (abfd, sec);
5007}
5008
5009
7fa3d080
BW
5010static xtensa_relax_info *
5011get_xtensa_relax_info (asection *sec)
5012{
5013 struct elf_xtensa_section_data *section_data;
5014
5015 /* No info available if no section or if it is an output section. */
5016 if (!sec || sec == sec->output_section)
5017 return NULL;
5018
5019 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5020 return &section_data->relax_info;
5021}
5022
5023
43cd72b9 5024static void
7fa3d080 5025init_xtensa_relax_info (asection *sec)
43cd72b9
BW
5026{
5027 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5028
5029 relax_info->is_relaxable_literal_section = FALSE;
5030 relax_info->is_relaxable_asm_section = FALSE;
5031 relax_info->visited = 0;
5032
5033 relax_info->src_relocs = NULL;
5034 relax_info->src_count = 0;
5035 relax_info->src_next = 0;
5036
5037 relax_info->removed_list.head = NULL;
5038 relax_info->removed_list.tail = NULL;
5039
5040 relax_info->action_list.head = NULL;
5041
5042 relax_info->fix_list = NULL;
5043 relax_info->fix_array = NULL;
5044 relax_info->fix_array_count = 0;
5045
5046 relax_info->allocated_relocs = NULL;
5047 relax_info->relocs_count = 0;
5048 relax_info->allocated_relocs_count = 0;
5049}
5050
43cd72b9
BW
5051\f
5052/* Coalescing literals may require a relocation to refer to a section in
5053 a different input file, but the standard relocation information
5054 cannot express that. Instead, the reloc_bfd_fix structures are used
5055 to "fix" the relocations that refer to sections in other input files.
5056 These structures are kept on per-section lists. The "src_type" field
5057 records the relocation type in case there are multiple relocations on
5058 the same location. FIXME: This is ugly; an alternative might be to
5059 add new symbols with the "owner" field to some other input file. */
5060
5061struct reloc_bfd_fix_struct
5062{
5063 asection *src_sec;
5064 bfd_vma src_offset;
5065 unsigned src_type; /* Relocation type. */
5066
5067 bfd *target_abfd;
5068 asection *target_sec;
5069 bfd_vma target_offset;
5070 bfd_boolean translated;
5071
5072 reloc_bfd_fix *next;
5073};
5074
5075
43cd72b9 5076static reloc_bfd_fix *
7fa3d080
BW
5077reloc_bfd_fix_init (asection *src_sec,
5078 bfd_vma src_offset,
5079 unsigned src_type,
5080 bfd *target_abfd,
5081 asection *target_sec,
5082 bfd_vma target_offset,
5083 bfd_boolean translated)
43cd72b9
BW
5084{
5085 reloc_bfd_fix *fix;
5086
5087 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
5088 fix->src_sec = src_sec;
5089 fix->src_offset = src_offset;
5090 fix->src_type = src_type;
5091 fix->target_abfd = target_abfd;
5092 fix->target_sec = target_sec;
5093 fix->target_offset = target_offset;
5094 fix->translated = translated;
5095
5096 return fix;
5097}
5098
5099
5100static void
7fa3d080 5101add_fix (asection *src_sec, reloc_bfd_fix *fix)
43cd72b9
BW
5102{
5103 xtensa_relax_info *relax_info;
5104
5105 relax_info = get_xtensa_relax_info (src_sec);
5106 fix->next = relax_info->fix_list;
5107 relax_info->fix_list = fix;
5108}
5109
5110
5111static int
7fa3d080 5112fix_compare (const void *ap, const void *bp)
43cd72b9
BW
5113{
5114 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
5115 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
5116
5117 if (a->src_offset != b->src_offset)
5118 return (a->src_offset - b->src_offset);
5119 return (a->src_type - b->src_type);
5120}
5121
5122
5123static void
7fa3d080 5124cache_fix_array (asection *sec)
43cd72b9
BW
5125{
5126 unsigned i, count = 0;
5127 reloc_bfd_fix *r;
5128 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5129
5130 if (relax_info == NULL)
5131 return;
5132 if (relax_info->fix_list == NULL)
5133 return;
5134
5135 for (r = relax_info->fix_list; r != NULL; r = r->next)
5136 count++;
5137
5138 relax_info->fix_array =
5139 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
5140 relax_info->fix_array_count = count;
5141
5142 r = relax_info->fix_list;
5143 for (i = 0; i < count; i++, r = r->next)
5144 {
5145 relax_info->fix_array[count - 1 - i] = *r;
5146 relax_info->fix_array[count - 1 - i].next = NULL;
5147 }
5148
5149 qsort (relax_info->fix_array, relax_info->fix_array_count,
5150 sizeof (reloc_bfd_fix), fix_compare);
5151}
5152
5153
5154static reloc_bfd_fix *
7fa3d080 5155get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
43cd72b9
BW
5156{
5157 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5158 reloc_bfd_fix *rv;
5159 reloc_bfd_fix key;
5160
5161 if (relax_info == NULL)
5162 return NULL;
5163 if (relax_info->fix_list == NULL)
5164 return NULL;
5165
5166 if (relax_info->fix_array == NULL)
5167 cache_fix_array (sec);
5168
5169 key.src_offset = offset;
5170 key.src_type = type;
5171 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
5172 sizeof (reloc_bfd_fix), fix_compare);
5173 return rv;
5174}
5175
5176\f
5177/* Section caching. */
5178
5179typedef struct section_cache_struct section_cache_t;
5180
5181struct section_cache_struct
5182{
5183 asection *sec;
5184
5185 bfd_byte *contents; /* Cache of the section contents. */
5186 bfd_size_type content_length;
5187
5188 property_table_entry *ptbl; /* Cache of the section property table. */
5189 unsigned pte_count;
5190
5191 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5192 unsigned reloc_count;
5193};
5194
5195
7fa3d080
BW
5196static void
5197init_section_cache (section_cache_t *sec_cache)
5198{
5199 memset (sec_cache, 0, sizeof (*sec_cache));
5200}
43cd72b9
BW
5201
5202
5203static void
7fa3d080 5204clear_section_cache (section_cache_t *sec_cache)
43cd72b9 5205{
7fa3d080
BW
5206 if (sec_cache->sec)
5207 {
5208 release_contents (sec_cache->sec, sec_cache->contents);
5209 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
5210 if (sec_cache->ptbl)
5211 free (sec_cache->ptbl);
5212 memset (sec_cache, 0, sizeof (sec_cache));
5213 }
43cd72b9
BW
5214}
5215
5216
5217static bfd_boolean
7fa3d080
BW
5218section_cache_section (section_cache_t *sec_cache,
5219 asection *sec,
5220 struct bfd_link_info *link_info)
43cd72b9
BW
5221{
5222 bfd *abfd;
5223 property_table_entry *prop_table = NULL;
5224 int ptblsize = 0;
5225 bfd_byte *contents = NULL;
5226 Elf_Internal_Rela *internal_relocs = NULL;
5227 bfd_size_type sec_size;
5228
5229 if (sec == NULL)
5230 return FALSE;
5231 if (sec == sec_cache->sec)
5232 return TRUE;
5233
5234 abfd = sec->owner;
5235 sec_size = bfd_get_section_limit (abfd, sec);
5236
5237 /* Get the contents. */
5238 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
5239 if (contents == NULL && sec_size != 0)
5240 goto err;
5241
5242 /* Get the relocations. */
5243 internal_relocs = retrieve_internal_relocs (abfd, sec,
5244 link_info->keep_memory);
5245
5246 /* Get the entry table. */
5247 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
5248 XTENSA_PROP_SEC_NAME, FALSE);
5249 if (ptblsize < 0)
5250 goto err;
5251
5252 /* Fill in the new section cache. */
5253 clear_section_cache (sec_cache);
5254 memset (sec_cache, 0, sizeof (sec_cache));
5255
5256 sec_cache->sec = sec;
5257 sec_cache->contents = contents;
5258 sec_cache->content_length = sec_size;
5259 sec_cache->relocs = internal_relocs;
5260 sec_cache->reloc_count = sec->reloc_count;
5261 sec_cache->pte_count = ptblsize;
5262 sec_cache->ptbl = prop_table;
5263
5264 return TRUE;
5265
5266 err:
5267 release_contents (sec, contents);
5268 release_internal_relocs (sec, internal_relocs);
5269 if (prop_table)
5270 free (prop_table);
5271 return FALSE;
5272}
5273
43cd72b9
BW
5274\f
5275/* Extended basic blocks. */
5276
5277/* An ebb_struct represents an Extended Basic Block. Within this
5278 range, we guarantee that all instructions are decodable, the
5279 property table entries are contiguous, and no property table
5280 specifies a segment that cannot have instructions moved. This
5281 structure contains caches of the contents, property table and
5282 relocations for the specified section for easy use. The range is
5283 specified by ranges of indices for the byte offset, property table
5284 offsets and relocation offsets. These must be consistent. */
5285
5286typedef struct ebb_struct ebb_t;
5287
5288struct ebb_struct
5289{
5290 asection *sec;
5291
5292 bfd_byte *contents; /* Cache of the section contents. */
5293 bfd_size_type content_length;
5294
5295 property_table_entry *ptbl; /* Cache of the section property table. */
5296 unsigned pte_count;
5297
5298 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5299 unsigned reloc_count;
5300
5301 bfd_vma start_offset; /* Offset in section. */
5302 unsigned start_ptbl_idx; /* Offset in the property table. */
5303 unsigned start_reloc_idx; /* Offset in the relocations. */
5304
5305 bfd_vma end_offset;
5306 unsigned end_ptbl_idx;
5307 unsigned end_reloc_idx;
5308
5309 bfd_boolean ends_section; /* Is this the last ebb in a section? */
5310
5311 /* The unreachable property table at the end of this set of blocks;
5312 NULL if the end is not an unreachable block. */
5313 property_table_entry *ends_unreachable;
5314};
5315
5316
5317enum ebb_target_enum
5318{
5319 EBB_NO_ALIGN = 0,
5320 EBB_DESIRE_TGT_ALIGN,
5321 EBB_REQUIRE_TGT_ALIGN,
5322 EBB_REQUIRE_LOOP_ALIGN,
5323 EBB_REQUIRE_ALIGN
5324};
5325
5326
5327/* proposed_action_struct is similar to the text_action_struct except
5328 that is represents a potential transformation, not one that will
5329 occur. We build a list of these for an extended basic block
5330 and use them to compute the actual actions desired. We must be
5331 careful that the entire set of actual actions we perform do not
5332 break any relocations that would fit if the actions were not
5333 performed. */
5334
5335typedef struct proposed_action_struct proposed_action;
5336
5337struct proposed_action_struct
5338{
5339 enum ebb_target_enum align_type; /* for the target alignment */
5340 bfd_vma alignment_pow;
5341 text_action_t action;
5342 bfd_vma offset;
5343 int removed_bytes;
5344 bfd_boolean do_action; /* If false, then we will not perform the action. */
5345};
5346
5347
5348/* The ebb_constraint_struct keeps a set of proposed actions for an
5349 extended basic block. */
5350
5351typedef struct ebb_constraint_struct ebb_constraint;
5352
5353struct ebb_constraint_struct
5354{
5355 ebb_t ebb;
5356 bfd_boolean start_movable;
5357
5358 /* Bytes of extra space at the beginning if movable. */
5359 int start_extra_space;
5360
5361 enum ebb_target_enum start_align;
5362
5363 bfd_boolean end_movable;
5364
5365 /* Bytes of extra space at the end if movable. */
5366 int end_extra_space;
5367
5368 unsigned action_count;
5369 unsigned action_allocated;
5370
5371 /* Array of proposed actions. */
5372 proposed_action *actions;
5373
5374 /* Action alignments -- one for each proposed action. */
5375 enum ebb_target_enum *action_aligns;
5376};
5377
5378
43cd72b9 5379static void
7fa3d080 5380init_ebb_constraint (ebb_constraint *c)
43cd72b9
BW
5381{
5382 memset (c, 0, sizeof (ebb_constraint));
5383}
5384
5385
5386static void
7fa3d080 5387free_ebb_constraint (ebb_constraint *c)
43cd72b9 5388{
7fa3d080 5389 if (c->actions)
43cd72b9
BW
5390 free (c->actions);
5391}
5392
5393
5394static void
7fa3d080
BW
5395init_ebb (ebb_t *ebb,
5396 asection *sec,
5397 bfd_byte *contents,
5398 bfd_size_type content_length,
5399 property_table_entry *prop_table,
5400 unsigned ptblsize,
5401 Elf_Internal_Rela *internal_relocs,
5402 unsigned reloc_count)
43cd72b9
BW
5403{
5404 memset (ebb, 0, sizeof (ebb_t));
5405 ebb->sec = sec;
5406 ebb->contents = contents;
5407 ebb->content_length = content_length;
5408 ebb->ptbl = prop_table;
5409 ebb->pte_count = ptblsize;
5410 ebb->relocs = internal_relocs;
5411 ebb->reloc_count = reloc_count;
5412 ebb->start_offset = 0;
5413 ebb->end_offset = ebb->content_length - 1;
5414 ebb->start_ptbl_idx = 0;
5415 ebb->end_ptbl_idx = ptblsize;
5416 ebb->start_reloc_idx = 0;
5417 ebb->end_reloc_idx = reloc_count;
5418}
5419
5420
5421/* Extend the ebb to all decodable contiguous sections. The algorithm
5422 for building a basic block around an instruction is to push it
5423 forward until we hit the end of a section, an unreachable block or
5424 a block that cannot be transformed. Then we push it backwards
5425 searching for similar conditions. */
5426
7fa3d080
BW
5427static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
5428static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
5429static bfd_size_type insn_block_decodable_len
5430 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
5431
43cd72b9 5432static bfd_boolean
7fa3d080 5433extend_ebb_bounds (ebb_t *ebb)
43cd72b9
BW
5434{
5435 if (!extend_ebb_bounds_forward (ebb))
5436 return FALSE;
5437 if (!extend_ebb_bounds_backward (ebb))
5438 return FALSE;
5439 return TRUE;
5440}
5441
5442
5443static bfd_boolean
7fa3d080 5444extend_ebb_bounds_forward (ebb_t *ebb)
43cd72b9
BW
5445{
5446 property_table_entry *the_entry, *new_entry;
5447
5448 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
5449
5450 /* Stop when (1) we cannot decode an instruction, (2) we are at
5451 the end of the property tables, (3) we hit a non-contiguous property
5452 table entry, (4) we hit a NO_TRANSFORM region. */
5453
5454 while (1)
5455 {
5456 bfd_vma entry_end;
5457 bfd_size_type insn_block_len;
5458
5459 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
5460 insn_block_len =
5461 insn_block_decodable_len (ebb->contents, ebb->content_length,
5462 ebb->end_offset,
5463 entry_end - ebb->end_offset);
5464 if (insn_block_len != (entry_end - ebb->end_offset))
5465 {
5466 (*_bfd_error_handler)
5467 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5468 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5469 return FALSE;
5470 }
5471 ebb->end_offset += insn_block_len;
5472
5473 if (ebb->end_offset == ebb->sec->size)
5474 ebb->ends_section = TRUE;
5475
5476 /* Update the reloc counter. */
5477 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
5478 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
5479 < ebb->end_offset))
5480 {
5481 ebb->end_reloc_idx++;
5482 }
5483
5484 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5485 return TRUE;
5486
5487 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5488 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
5489 || ((new_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) != 0)
5490 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
5491 break;
5492
5493 if (the_entry->address + the_entry->size != new_entry->address)
5494 break;
5495
5496 the_entry = new_entry;
5497 ebb->end_ptbl_idx++;
5498 }
5499
5500 /* Quick check for an unreachable or end of file just at the end. */
5501 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5502 {
5503 if (ebb->end_offset == ebb->content_length)
5504 ebb->ends_section = TRUE;
5505 }
5506 else
5507 {
5508 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5509 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
5510 && the_entry->address + the_entry->size == new_entry->address)
5511 ebb->ends_unreachable = new_entry;
5512 }
5513
5514 /* Any other ending requires exact alignment. */
5515 return TRUE;
5516}
5517
5518
5519static bfd_boolean
7fa3d080 5520extend_ebb_bounds_backward (ebb_t *ebb)
43cd72b9
BW
5521{
5522 property_table_entry *the_entry, *new_entry;
5523
5524 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
5525
5526 /* Stop when (1) we cannot decode the instructions in the current entry.
5527 (2) we are at the beginning of the property tables, (3) we hit a
5528 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
5529
5530 while (1)
5531 {
5532 bfd_vma block_begin;
5533 bfd_size_type insn_block_len;
5534
5535 block_begin = the_entry->address - ebb->sec->vma;
5536 insn_block_len =
5537 insn_block_decodable_len (ebb->contents, ebb->content_length,
5538 block_begin,
5539 ebb->start_offset - block_begin);
5540 if (insn_block_len != ebb->start_offset - block_begin)
5541 {
5542 (*_bfd_error_handler)
5543 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5544 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5545 return FALSE;
5546 }
5547 ebb->start_offset -= insn_block_len;
5548
5549 /* Update the reloc counter. */
5550 while (ebb->start_reloc_idx > 0
5551 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
5552 >= ebb->start_offset))
5553 {
5554 ebb->start_reloc_idx--;
5555 }
5556
5557 if (ebb->start_ptbl_idx == 0)
5558 return TRUE;
5559
5560 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
5561 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
5562 || ((new_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) != 0)
5563 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
5564 return TRUE;
5565 if (new_entry->address + new_entry->size != the_entry->address)
5566 return TRUE;
5567
5568 the_entry = new_entry;
5569 ebb->start_ptbl_idx--;
5570 }
5571 return TRUE;
5572}
5573
5574
5575static bfd_size_type
7fa3d080
BW
5576insn_block_decodable_len (bfd_byte *contents,
5577 bfd_size_type content_len,
5578 bfd_vma block_offset,
5579 bfd_size_type block_len)
43cd72b9
BW
5580{
5581 bfd_vma offset = block_offset;
5582
5583 while (offset < block_offset + block_len)
5584 {
5585 bfd_size_type insn_len = 0;
5586
5587 insn_len = insn_decode_len (contents, content_len, offset);
5588 if (insn_len == 0)
5589 return (offset - block_offset);
5590 offset += insn_len;
5591 }
5592 return (offset - block_offset);
5593}
5594
5595
5596static void
7fa3d080 5597ebb_propose_action (ebb_constraint *c,
7fa3d080 5598 enum ebb_target_enum align_type,
288f74fa 5599 bfd_vma alignment_pow,
7fa3d080
BW
5600 text_action_t action,
5601 bfd_vma offset,
5602 int removed_bytes,
5603 bfd_boolean do_action)
43cd72b9 5604{
b08b5071 5605 proposed_action *act;
43cd72b9 5606
43cd72b9
BW
5607 if (c->action_allocated <= c->action_count)
5608 {
b08b5071 5609 unsigned new_allocated, i;
823fc61f 5610 proposed_action *new_actions;
b08b5071
BW
5611
5612 new_allocated = (c->action_count + 2) * 2;
823fc61f 5613 new_actions = (proposed_action *)
43cd72b9
BW
5614 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
5615
5616 for (i = 0; i < c->action_count; i++)
5617 new_actions[i] = c->actions[i];
7fa3d080 5618 if (c->actions)
43cd72b9
BW
5619 free (c->actions);
5620 c->actions = new_actions;
5621 c->action_allocated = new_allocated;
5622 }
b08b5071
BW
5623
5624 act = &c->actions[c->action_count];
5625 act->align_type = align_type;
5626 act->alignment_pow = alignment_pow;
5627 act->action = action;
5628 act->offset = offset;
5629 act->removed_bytes = removed_bytes;
5630 act->do_action = do_action;
5631
43cd72b9
BW
5632 c->action_count++;
5633}
5634
5635\f
5636/* Access to internal relocations, section contents and symbols. */
5637
5638/* During relaxation, we need to modify relocations, section contents,
5639 and symbol definitions, and we need to keep the original values from
5640 being reloaded from the input files, i.e., we need to "pin" the
5641 modified values in memory. We also want to continue to observe the
5642 setting of the "keep-memory" flag. The following functions wrap the
5643 standard BFD functions to take care of this for us. */
5644
5645static Elf_Internal_Rela *
7fa3d080 5646retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
5647{
5648 Elf_Internal_Rela *internal_relocs;
5649
5650 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5651 return NULL;
5652
5653 internal_relocs = elf_section_data (sec)->relocs;
5654 if (internal_relocs == NULL)
5655 internal_relocs = (_bfd_elf_link_read_relocs
7fa3d080 5656 (abfd, sec, NULL, NULL, keep_memory));
43cd72b9
BW
5657 return internal_relocs;
5658}
5659
5660
5661static void
7fa3d080 5662pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
5663{
5664 elf_section_data (sec)->relocs = internal_relocs;
5665}
5666
5667
5668static void
7fa3d080 5669release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
5670{
5671 if (internal_relocs
5672 && elf_section_data (sec)->relocs != internal_relocs)
5673 free (internal_relocs);
5674}
5675
5676
5677static bfd_byte *
7fa3d080 5678retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
5679{
5680 bfd_byte *contents;
5681 bfd_size_type sec_size;
5682
5683 sec_size = bfd_get_section_limit (abfd, sec);
5684 contents = elf_section_data (sec)->this_hdr.contents;
5685
5686 if (contents == NULL && sec_size != 0)
5687 {
5688 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
5689 {
7fa3d080 5690 if (contents)
43cd72b9
BW
5691 free (contents);
5692 return NULL;
5693 }
5694 if (keep_memory)
5695 elf_section_data (sec)->this_hdr.contents = contents;
5696 }
5697 return contents;
5698}
5699
5700
5701static void
7fa3d080 5702pin_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
5703{
5704 elf_section_data (sec)->this_hdr.contents = contents;
5705}
5706
5707
5708static void
7fa3d080 5709release_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
5710{
5711 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
5712 free (contents);
5713}
5714
5715
5716static Elf_Internal_Sym *
7fa3d080 5717retrieve_local_syms (bfd *input_bfd)
43cd72b9
BW
5718{
5719 Elf_Internal_Shdr *symtab_hdr;
5720 Elf_Internal_Sym *isymbuf;
5721 size_t locsymcount;
5722
5723 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5724 locsymcount = symtab_hdr->sh_info;
5725
5726 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5727 if (isymbuf == NULL && locsymcount != 0)
5728 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
5729 NULL, NULL, NULL);
5730
5731 /* Save the symbols for this input file so they won't be read again. */
5732 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
5733 symtab_hdr->contents = (unsigned char *) isymbuf;
5734
5735 return isymbuf;
5736}
5737
5738\f
5739/* Code for link-time relaxation. */
5740
5741/* Initialization for relaxation: */
7fa3d080 5742static bfd_boolean analyze_relocations (struct bfd_link_info *);
43cd72b9 5743static bfd_boolean find_relaxable_sections
7fa3d080 5744 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
43cd72b9 5745static bfd_boolean collect_source_relocs
7fa3d080 5746 (bfd *, asection *, struct bfd_link_info *);
43cd72b9 5747static bfd_boolean is_resolvable_asm_expansion
7fa3d080
BW
5748 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
5749 bfd_boolean *);
43cd72b9 5750static Elf_Internal_Rela *find_associated_l32r_irel
7fa3d080 5751 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
43cd72b9 5752static bfd_boolean compute_text_actions
7fa3d080
BW
5753 (bfd *, asection *, struct bfd_link_info *);
5754static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
5755static bfd_boolean compute_ebb_actions (ebb_constraint *);
43cd72b9 5756static bfd_boolean check_section_ebb_pcrels_fit
cb337148
BW
5757 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *,
5758 const xtensa_opcode *);
7fa3d080 5759static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
43cd72b9 5760static void text_action_add_proposed
7fa3d080
BW
5761 (text_action_list *, const ebb_constraint *, asection *);
5762static int compute_fill_extra_space (property_table_entry *);
43cd72b9
BW
5763
5764/* First pass: */
5765static bfd_boolean compute_removed_literals
7fa3d080 5766 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
43cd72b9 5767static Elf_Internal_Rela *get_irel_at_offset
7fa3d080 5768 (asection *, Elf_Internal_Rela *, bfd_vma);
43cd72b9 5769static bfd_boolean is_removable_literal
7fa3d080 5770 (const source_reloc *, int, const source_reloc *, int);
43cd72b9 5771static bfd_boolean remove_dead_literal
7fa3d080
BW
5772 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
5773 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
5774static bfd_boolean identify_literal_placement
5775 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
5776 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
5777 source_reloc *, property_table_entry *, int, section_cache_t *,
5778 bfd_boolean);
5779static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
43cd72b9 5780static bfd_boolean coalesce_shared_literal
7fa3d080 5781 (asection *, source_reloc *, property_table_entry *, int, value_map *);
43cd72b9 5782static bfd_boolean move_shared_literal
7fa3d080
BW
5783 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
5784 int, const r_reloc *, const literal_value *, section_cache_t *);
43cd72b9
BW
5785
5786/* Second pass: */
7fa3d080
BW
5787static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
5788static bfd_boolean translate_section_fixes (asection *);
5789static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
5790static void translate_reloc (const r_reloc *, r_reloc *);
43cd72b9 5791static void shrink_dynamic_reloc_sections
7fa3d080 5792 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
43cd72b9 5793static bfd_boolean move_literal
7fa3d080
BW
5794 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
5795 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
43cd72b9 5796static bfd_boolean relax_property_section
7fa3d080 5797 (bfd *, asection *, struct bfd_link_info *);
43cd72b9
BW
5798
5799/* Third pass: */
7fa3d080 5800static bfd_boolean relax_section_symbols (bfd *, asection *);
43cd72b9
BW
5801
5802
5803static bfd_boolean
7fa3d080
BW
5804elf_xtensa_relax_section (bfd *abfd,
5805 asection *sec,
5806 struct bfd_link_info *link_info,
5807 bfd_boolean *again)
43cd72b9
BW
5808{
5809 static value_map_hash_table *values = NULL;
5810 static bfd_boolean relocations_analyzed = FALSE;
5811 xtensa_relax_info *relax_info;
5812
5813 if (!relocations_analyzed)
5814 {
5815 /* Do some overall initialization for relaxation. */
5816 values = value_map_hash_table_init ();
5817 if (values == NULL)
5818 return FALSE;
5819 relaxing_section = TRUE;
5820 if (!analyze_relocations (link_info))
5821 return FALSE;
5822 relocations_analyzed = TRUE;
5823 }
5824 *again = FALSE;
5825
5826 /* Don't mess with linker-created sections. */
5827 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5828 return TRUE;
5829
5830 relax_info = get_xtensa_relax_info (sec);
5831 BFD_ASSERT (relax_info != NULL);
5832
5833 switch (relax_info->visited)
5834 {
5835 case 0:
5836 /* Note: It would be nice to fold this pass into
5837 analyze_relocations, but it is important for this step that the
5838 sections be examined in link order. */
5839 if (!compute_removed_literals (abfd, sec, link_info, values))
5840 return FALSE;
5841 *again = TRUE;
5842 break;
5843
5844 case 1:
5845 if (values)
5846 value_map_hash_table_delete (values);
5847 values = NULL;
5848 if (!relax_section (abfd, sec, link_info))
5849 return FALSE;
5850 *again = TRUE;
5851 break;
5852
5853 case 2:
5854 if (!relax_section_symbols (abfd, sec))
5855 return FALSE;
5856 break;
5857 }
5858
5859 relax_info->visited++;
5860 return TRUE;
5861}
5862
5863\f
5864/* Initialization for relaxation. */
5865
5866/* This function is called once at the start of relaxation. It scans
5867 all the input sections and marks the ones that are relaxable (i.e.,
5868 literal sections with L32R relocations against them), and then
5869 collects source_reloc information for all the relocations against
5870 those relaxable sections. During this process, it also detects
5871 longcalls, i.e., calls relaxed by the assembler into indirect
5872 calls, that can be optimized back into direct calls. Within each
5873 extended basic block (ebb) containing an optimized longcall, it
5874 computes a set of "text actions" that can be performed to remove
5875 the L32R associated with the longcall while optionally preserving
5876 branch target alignments. */
5877
5878static bfd_boolean
7fa3d080 5879analyze_relocations (struct bfd_link_info *link_info)
43cd72b9
BW
5880{
5881 bfd *abfd;
5882 asection *sec;
5883 bfd_boolean is_relaxable = FALSE;
5884
5885 /* Initialize the per-section relaxation info. */
5886 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5887 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5888 {
5889 init_xtensa_relax_info (sec);
5890 }
5891
5892 /* Mark relaxable sections (and count relocations against each one). */
5893 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5894 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5895 {
5896 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
5897 return FALSE;
5898 }
5899
5900 /* Bail out if there are no relaxable sections. */
5901 if (!is_relaxable)
5902 return TRUE;
5903
5904 /* Allocate space for source_relocs. */
5905 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5906 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5907 {
5908 xtensa_relax_info *relax_info;
5909
5910 relax_info = get_xtensa_relax_info (sec);
5911 if (relax_info->is_relaxable_literal_section
5912 || relax_info->is_relaxable_asm_section)
5913 {
5914 relax_info->src_relocs = (source_reloc *)
5915 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
5916 }
25c6282a
BW
5917 else
5918 relax_info->src_count = 0;
43cd72b9
BW
5919 }
5920
5921 /* Collect info on relocations against each relaxable section. */
5922 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5923 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5924 {
5925 if (!collect_source_relocs (abfd, sec, link_info))
5926 return FALSE;
5927 }
5928
5929 /* Compute the text actions. */
5930 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5931 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5932 {
5933 if (!compute_text_actions (abfd, sec, link_info))
5934 return FALSE;
5935 }
5936
5937 return TRUE;
5938}
5939
5940
5941/* Find all the sections that might be relaxed. The motivation for
5942 this pass is that collect_source_relocs() needs to record _all_ the
5943 relocations that target each relaxable section. That is expensive
5944 and unnecessary unless the target section is actually going to be
5945 relaxed. This pass identifies all such sections by checking if
5946 they have L32Rs pointing to them. In the process, the total number
5947 of relocations targeting each section is also counted so that we
5948 know how much space to allocate for source_relocs against each
5949 relaxable literal section. */
5950
5951static bfd_boolean
7fa3d080
BW
5952find_relaxable_sections (bfd *abfd,
5953 asection *sec,
5954 struct bfd_link_info *link_info,
5955 bfd_boolean *is_relaxable_p)
43cd72b9
BW
5956{
5957 Elf_Internal_Rela *internal_relocs;
5958 bfd_byte *contents;
5959 bfd_boolean ok = TRUE;
5960 unsigned i;
5961 xtensa_relax_info *source_relax_info;
25c6282a 5962 bfd_boolean is_l32r_reloc;
43cd72b9
BW
5963
5964 internal_relocs = retrieve_internal_relocs (abfd, sec,
5965 link_info->keep_memory);
5966 if (internal_relocs == NULL)
5967 return ok;
5968
5969 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
5970 if (contents == NULL && sec->size != 0)
5971 {
5972 ok = FALSE;
5973 goto error_return;
5974 }
5975
5976 source_relax_info = get_xtensa_relax_info (sec);
5977 for (i = 0; i < sec->reloc_count; i++)
5978 {
5979 Elf_Internal_Rela *irel = &internal_relocs[i];
5980 r_reloc r_rel;
5981 asection *target_sec;
5982 xtensa_relax_info *target_relax_info;
5983
5984 /* If this section has not already been marked as "relaxable", and
5985 if it contains any ASM_EXPAND relocations (marking expanded
5986 longcalls) that can be optimized into direct calls, then mark
5987 the section as "relaxable". */
5988 if (source_relax_info
5989 && !source_relax_info->is_relaxable_asm_section
5990 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
5991 {
5992 bfd_boolean is_reachable = FALSE;
5993 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
5994 link_info, &is_reachable)
5995 && is_reachable)
5996 {
5997 source_relax_info->is_relaxable_asm_section = TRUE;
5998 *is_relaxable_p = TRUE;
5999 }
6000 }
6001
6002 r_reloc_init (&r_rel, abfd, irel, contents,
6003 bfd_get_section_limit (abfd, sec));
6004
6005 target_sec = r_reloc_get_section (&r_rel);
6006 target_relax_info = get_xtensa_relax_info (target_sec);
6007 if (!target_relax_info)
6008 continue;
6009
6010 /* Count PC-relative operand relocations against the target section.
6011 Note: The conditions tested here must match the conditions under
6012 which init_source_reloc is called in collect_source_relocs(). */
25c6282a
BW
6013 is_l32r_reloc = FALSE;
6014 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6015 {
6016 xtensa_opcode opcode =
6017 get_relocation_opcode (abfd, sec, contents, irel);
6018 if (opcode != XTENSA_UNDEFINED)
6019 {
6020 is_l32r_reloc = (opcode == get_l32r_opcode ());
6021 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
6022 || is_l32r_reloc)
6023 target_relax_info->src_count++;
6024 }
6025 }
43cd72b9 6026
25c6282a 6027 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
43cd72b9
BW
6028 {
6029 /* Mark the target section as relaxable. */
6030 target_relax_info->is_relaxable_literal_section = TRUE;
6031 *is_relaxable_p = TRUE;
6032 }
6033 }
6034
6035 error_return:
6036 release_contents (sec, contents);
6037 release_internal_relocs (sec, internal_relocs);
6038 return ok;
6039}
6040
6041
6042/* Record _all_ the relocations that point to relaxable sections, and
6043 get rid of ASM_EXPAND relocs by either converting them to
6044 ASM_SIMPLIFY or by removing them. */
6045
6046static bfd_boolean
7fa3d080
BW
6047collect_source_relocs (bfd *abfd,
6048 asection *sec,
6049 struct bfd_link_info *link_info)
43cd72b9
BW
6050{
6051 Elf_Internal_Rela *internal_relocs;
6052 bfd_byte *contents;
6053 bfd_boolean ok = TRUE;
6054 unsigned i;
6055 bfd_size_type sec_size;
6056
6057 internal_relocs = retrieve_internal_relocs (abfd, sec,
6058 link_info->keep_memory);
6059 if (internal_relocs == NULL)
6060 return ok;
6061
6062 sec_size = bfd_get_section_limit (abfd, sec);
6063 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6064 if (contents == NULL && sec_size != 0)
6065 {
6066 ok = FALSE;
6067 goto error_return;
6068 }
6069
6070 /* Record relocations against relaxable literal sections. */
6071 for (i = 0; i < sec->reloc_count; i++)
6072 {
6073 Elf_Internal_Rela *irel = &internal_relocs[i];
6074 r_reloc r_rel;
6075 asection *target_sec;
6076 xtensa_relax_info *target_relax_info;
6077
6078 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6079
6080 target_sec = r_reloc_get_section (&r_rel);
6081 target_relax_info = get_xtensa_relax_info (target_sec);
6082
6083 if (target_relax_info
6084 && (target_relax_info->is_relaxable_literal_section
6085 || target_relax_info->is_relaxable_asm_section))
6086 {
6087 xtensa_opcode opcode = XTENSA_UNDEFINED;
6088 int opnd = -1;
6089 bfd_boolean is_abs_literal = FALSE;
6090
6091 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6092 {
6093 /* None of the current alternate relocs are PC-relative,
6094 and only PC-relative relocs matter here. However, we
6095 still need to record the opcode for literal
6096 coalescing. */
6097 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6098 if (opcode == get_l32r_opcode ())
6099 {
6100 is_abs_literal = TRUE;
6101 opnd = 1;
6102 }
6103 else
6104 opcode = XTENSA_UNDEFINED;
6105 }
6106 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6107 {
6108 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6109 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6110 }
6111
6112 if (opcode != XTENSA_UNDEFINED)
6113 {
6114 int src_next = target_relax_info->src_next++;
6115 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
6116
6117 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
6118 is_abs_literal);
6119 }
6120 }
6121 }
6122
6123 /* Now get rid of ASM_EXPAND relocations. At this point, the
6124 src_relocs array for the target literal section may still be
6125 incomplete, but it must at least contain the entries for the L32R
6126 relocations associated with ASM_EXPANDs because they were just
6127 added in the preceding loop over the relocations. */
6128
6129 for (i = 0; i < sec->reloc_count; i++)
6130 {
6131 Elf_Internal_Rela *irel = &internal_relocs[i];
6132 bfd_boolean is_reachable;
6133
6134 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
6135 &is_reachable))
6136 continue;
6137
6138 if (is_reachable)
6139 {
6140 Elf_Internal_Rela *l32r_irel;
6141 r_reloc r_rel;
6142 asection *target_sec;
6143 xtensa_relax_info *target_relax_info;
6144
6145 /* Mark the source_reloc for the L32R so that it will be
6146 removed in compute_removed_literals(), along with the
6147 associated literal. */
6148 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
6149 irel, internal_relocs);
6150 if (l32r_irel == NULL)
6151 continue;
6152
6153 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
6154
6155 target_sec = r_reloc_get_section (&r_rel);
6156 target_relax_info = get_xtensa_relax_info (target_sec);
6157
6158 if (target_relax_info
6159 && (target_relax_info->is_relaxable_literal_section
6160 || target_relax_info->is_relaxable_asm_section))
6161 {
6162 source_reloc *s_reloc;
6163
6164 /* Search the source_relocs for the entry corresponding to
6165 the l32r_irel. Note: The src_relocs array is not yet
6166 sorted, but it wouldn't matter anyway because we're
6167 searching by source offset instead of target offset. */
6168 s_reloc = find_source_reloc (target_relax_info->src_relocs,
6169 target_relax_info->src_next,
6170 sec, l32r_irel);
6171 BFD_ASSERT (s_reloc);
6172 s_reloc->is_null = TRUE;
6173 }
6174
6175 /* Convert this reloc to ASM_SIMPLIFY. */
6176 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
6177 R_XTENSA_ASM_SIMPLIFY);
6178 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6179
6180 pin_internal_relocs (sec, internal_relocs);
6181 }
6182 else
6183 {
6184 /* It is resolvable but doesn't reach. We resolve now
6185 by eliminating the relocation -- the call will remain
6186 expanded into L32R/CALLX. */
6187 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6188 pin_internal_relocs (sec, internal_relocs);
6189 }
6190 }
6191
6192 error_return:
6193 release_contents (sec, contents);
6194 release_internal_relocs (sec, internal_relocs);
6195 return ok;
6196}
6197
6198
6199/* Return TRUE if the asm expansion can be resolved. Generally it can
6200 be resolved on a final link or when a partial link locates it in the
6201 same section as the target. Set "is_reachable" flag if the target of
6202 the call is within the range of a direct call, given the current VMA
6203 for this section and the target section. */
6204
6205bfd_boolean
7fa3d080
BW
6206is_resolvable_asm_expansion (bfd *abfd,
6207 asection *sec,
6208 bfd_byte *contents,
6209 Elf_Internal_Rela *irel,
6210 struct bfd_link_info *link_info,
6211 bfd_boolean *is_reachable_p)
43cd72b9
BW
6212{
6213 asection *target_sec;
6214 bfd_vma target_offset;
6215 r_reloc r_rel;
6216 xtensa_opcode opcode, direct_call_opcode;
6217 bfd_vma self_address;
6218 bfd_vma dest_address;
6219 bfd_boolean uses_l32r;
6220 bfd_size_type sec_size;
6221
6222 *is_reachable_p = FALSE;
6223
6224 if (contents == NULL)
6225 return FALSE;
6226
6227 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
6228 return FALSE;
6229
6230 sec_size = bfd_get_section_limit (abfd, sec);
6231 opcode = get_expanded_call_opcode (contents + irel->r_offset,
6232 sec_size - irel->r_offset, &uses_l32r);
6233 /* Optimization of longcalls that use CONST16 is not yet implemented. */
6234 if (!uses_l32r)
6235 return FALSE;
6236
6237 direct_call_opcode = swap_callx_for_call_opcode (opcode);
6238 if (direct_call_opcode == XTENSA_UNDEFINED)
6239 return FALSE;
6240
6241 /* Check and see that the target resolves. */
6242 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6243 if (!r_reloc_is_defined (&r_rel))
6244 return FALSE;
6245
6246 target_sec = r_reloc_get_section (&r_rel);
6247 target_offset = r_rel.target_offset;
6248
6249 /* If the target is in a shared library, then it doesn't reach. This
6250 isn't supposed to come up because the compiler should never generate
6251 non-PIC calls on systems that use shared libraries, but the linker
6252 shouldn't crash regardless. */
6253 if (!target_sec->output_section)
6254 return FALSE;
6255
6256 /* For relocatable sections, we can only simplify when the output
6257 section of the target is the same as the output section of the
6258 source. */
6259 if (link_info->relocatable
6260 && (target_sec->output_section != sec->output_section
6261 || is_reloc_sym_weak (abfd, irel)))
6262 return FALSE;
6263
6264 self_address = (sec->output_section->vma
6265 + sec->output_offset + irel->r_offset + 3);
6266 dest_address = (target_sec->output_section->vma
6267 + target_sec->output_offset + target_offset);
6268
6269 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
6270 self_address, dest_address);
6271
6272 if ((self_address >> CALL_SEGMENT_BITS) !=
6273 (dest_address >> CALL_SEGMENT_BITS))
6274 return FALSE;
6275
6276 return TRUE;
6277}
6278
6279
6280static Elf_Internal_Rela *
7fa3d080
BW
6281find_associated_l32r_irel (bfd *abfd,
6282 asection *sec,
6283 bfd_byte *contents,
6284 Elf_Internal_Rela *other_irel,
6285 Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
6286{
6287 unsigned i;
e0001a05 6288
43cd72b9
BW
6289 for (i = 0; i < sec->reloc_count; i++)
6290 {
6291 Elf_Internal_Rela *irel = &internal_relocs[i];
e0001a05 6292
43cd72b9
BW
6293 if (irel == other_irel)
6294 continue;
6295 if (irel->r_offset != other_irel->r_offset)
6296 continue;
6297 if (is_l32r_relocation (abfd, sec, contents, irel))
6298 return irel;
6299 }
6300
6301 return NULL;
e0001a05
NC
6302}
6303
6304
cb337148
BW
6305static xtensa_opcode *
6306build_reloc_opcodes (bfd *abfd,
6307 asection *sec,
6308 bfd_byte *contents,
6309 Elf_Internal_Rela *internal_relocs)
6310{
6311 unsigned i;
6312 xtensa_opcode *reloc_opcodes =
6313 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
6314 for (i = 0; i < sec->reloc_count; i++)
6315 {
6316 Elf_Internal_Rela *irel = &internal_relocs[i];
6317 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
6318 }
6319 return reloc_opcodes;
6320}
6321
6322
43cd72b9
BW
6323/* The compute_text_actions function will build a list of potential
6324 transformation actions for code in the extended basic block of each
6325 longcall that is optimized to a direct call. From this list we
6326 generate a set of actions to actually perform that optimizes for
6327 space and, if not using size_opt, maintains branch target
6328 alignments.
e0001a05 6329
43cd72b9
BW
6330 These actions to be performed are placed on a per-section list.
6331 The actual changes are performed by relax_section() in the second
6332 pass. */
6333
6334bfd_boolean
7fa3d080
BW
6335compute_text_actions (bfd *abfd,
6336 asection *sec,
6337 struct bfd_link_info *link_info)
e0001a05 6338{
cb337148 6339 xtensa_opcode *reloc_opcodes = NULL;
43cd72b9 6340 xtensa_relax_info *relax_info;
e0001a05 6341 bfd_byte *contents;
43cd72b9 6342 Elf_Internal_Rela *internal_relocs;
e0001a05
NC
6343 bfd_boolean ok = TRUE;
6344 unsigned i;
43cd72b9
BW
6345 property_table_entry *prop_table = 0;
6346 int ptblsize = 0;
6347 bfd_size_type sec_size;
43cd72b9 6348
43cd72b9
BW
6349 relax_info = get_xtensa_relax_info (sec);
6350 BFD_ASSERT (relax_info);
25c6282a
BW
6351 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
6352
6353 /* Do nothing if the section contains no optimized longcalls. */
43cd72b9
BW
6354 if (!relax_info->is_relaxable_asm_section)
6355 return ok;
e0001a05
NC
6356
6357 internal_relocs = retrieve_internal_relocs (abfd, sec,
6358 link_info->keep_memory);
e0001a05 6359
43cd72b9
BW
6360 if (internal_relocs)
6361 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
6362 internal_reloc_compare);
6363
6364 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 6365 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 6366 if (contents == NULL && sec_size != 0)
e0001a05
NC
6367 {
6368 ok = FALSE;
6369 goto error_return;
6370 }
6371
43cd72b9
BW
6372 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6373 XTENSA_PROP_SEC_NAME, FALSE);
6374 if (ptblsize < 0)
6375 {
6376 ok = FALSE;
6377 goto error_return;
6378 }
6379
6380 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
6381 {
6382 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9
BW
6383 bfd_vma r_offset;
6384 property_table_entry *the_entry;
6385 int ptbl_idx;
6386 ebb_t *ebb;
6387 ebb_constraint ebb_table;
6388 bfd_size_type simplify_size;
6389
6390 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
6391 continue;
6392 r_offset = irel->r_offset;
e0001a05 6393
43cd72b9
BW
6394 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
6395 if (simplify_size == 0)
6396 {
6397 (*_bfd_error_handler)
6398 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
6399 sec->owner, sec, r_offset);
6400 continue;
6401 }
e0001a05 6402
43cd72b9
BW
6403 /* If the instruction table is not around, then don't do this
6404 relaxation. */
6405 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
6406 sec->vma + irel->r_offset);
6407 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
6408 {
6409 text_action_add (&relax_info->action_list,
6410 ta_convert_longcall, sec, r_offset,
6411 0);
6412 continue;
6413 }
6414
6415 /* If the next longcall happens to be at the same address as an
6416 unreachable section of size 0, then skip forward. */
6417 ptbl_idx = the_entry - prop_table;
6418 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
6419 && the_entry->size == 0
6420 && ptbl_idx + 1 < ptblsize
6421 && (prop_table[ptbl_idx + 1].address
6422 == prop_table[ptbl_idx].address))
6423 {
6424 ptbl_idx++;
6425 the_entry++;
6426 }
e0001a05 6427
43cd72b9
BW
6428 if (the_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM)
6429 /* NO_REORDER is OK */
6430 continue;
e0001a05 6431
43cd72b9
BW
6432 init_ebb_constraint (&ebb_table);
6433 ebb = &ebb_table.ebb;
6434 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
6435 internal_relocs, sec->reloc_count);
6436 ebb->start_offset = r_offset + simplify_size;
6437 ebb->end_offset = r_offset + simplify_size;
6438 ebb->start_ptbl_idx = ptbl_idx;
6439 ebb->end_ptbl_idx = ptbl_idx;
6440 ebb->start_reloc_idx = i;
6441 ebb->end_reloc_idx = i;
6442
cb337148
BW
6443 /* Precompute the opcode for each relocation. */
6444 if (reloc_opcodes == NULL)
6445 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents,
6446 internal_relocs);
6447
43cd72b9
BW
6448 if (!extend_ebb_bounds (ebb)
6449 || !compute_ebb_proposed_actions (&ebb_table)
6450 || !compute_ebb_actions (&ebb_table)
6451 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
cb337148
BW
6452 internal_relocs, &ebb_table,
6453 reloc_opcodes)
43cd72b9 6454 || !check_section_ebb_reduces (&ebb_table))
e0001a05 6455 {
43cd72b9
BW
6456 /* If anything goes wrong or we get unlucky and something does
6457 not fit, with our plan because of expansion between
6458 critical branches, just convert to a NOP. */
6459
6460 text_action_add (&relax_info->action_list,
6461 ta_convert_longcall, sec, r_offset, 0);
6462 i = ebb_table.ebb.end_reloc_idx;
6463 free_ebb_constraint (&ebb_table);
6464 continue;
e0001a05 6465 }
43cd72b9
BW
6466
6467 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
6468
6469 /* Update the index so we do not go looking at the relocations
6470 we have already processed. */
6471 i = ebb_table.ebb.end_reloc_idx;
6472 free_ebb_constraint (&ebb_table);
e0001a05
NC
6473 }
6474
43cd72b9 6475#if DEBUG
7fa3d080 6476 if (relax_info->action_list.head)
43cd72b9
BW
6477 print_action_list (stderr, &relax_info->action_list);
6478#endif
6479
6480error_return:
e0001a05
NC
6481 release_contents (sec, contents);
6482 release_internal_relocs (sec, internal_relocs);
43cd72b9
BW
6483 if (prop_table)
6484 free (prop_table);
cb337148
BW
6485 if (reloc_opcodes)
6486 free (reloc_opcodes);
43cd72b9 6487
e0001a05
NC
6488 return ok;
6489}
6490
6491
64b607e6
BW
6492/* Do not widen an instruction if it is preceeded by a
6493 loop opcode. It might cause misalignment. */
6494
6495static bfd_boolean
6496prev_instr_is_a_loop (bfd_byte *contents,
6497 bfd_size_type content_length,
6498 bfd_size_type offset)
6499{
6500 xtensa_opcode prev_opcode;
6501
6502 if (offset < 3)
6503 return FALSE;
6504 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
6505 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
6506}
6507
6508
43cd72b9 6509/* Find all of the possible actions for an extended basic block. */
e0001a05 6510
43cd72b9 6511bfd_boolean
7fa3d080 6512compute_ebb_proposed_actions (ebb_constraint *ebb_table)
e0001a05 6513{
43cd72b9
BW
6514 const ebb_t *ebb = &ebb_table->ebb;
6515 unsigned rel_idx = ebb->start_reloc_idx;
6516 property_table_entry *entry, *start_entry, *end_entry;
64b607e6
BW
6517 bfd_vma offset = 0;
6518 xtensa_isa isa = xtensa_default_isa;
6519 xtensa_format fmt;
6520 static xtensa_insnbuf insnbuf = NULL;
6521 static xtensa_insnbuf slotbuf = NULL;
6522
6523 if (insnbuf == NULL)
6524 {
6525 insnbuf = xtensa_insnbuf_alloc (isa);
6526 slotbuf = xtensa_insnbuf_alloc (isa);
6527 }
e0001a05 6528
43cd72b9
BW
6529 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6530 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
e0001a05 6531
43cd72b9 6532 for (entry = start_entry; entry <= end_entry; entry++)
e0001a05 6533 {
64b607e6 6534 bfd_vma start_offset, end_offset;
43cd72b9 6535 bfd_size_type insn_len;
e0001a05 6536
43cd72b9
BW
6537 start_offset = entry->address - ebb->sec->vma;
6538 end_offset = entry->address + entry->size - ebb->sec->vma;
e0001a05 6539
43cd72b9
BW
6540 if (entry == start_entry)
6541 start_offset = ebb->start_offset;
6542 if (entry == end_entry)
6543 end_offset = ebb->end_offset;
6544 offset = start_offset;
e0001a05 6545
43cd72b9
BW
6546 if (offset == entry->address - ebb->sec->vma
6547 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
6548 {
6549 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
6550 BFD_ASSERT (offset != end_offset);
6551 if (offset == end_offset)
6552 return FALSE;
e0001a05 6553
43cd72b9
BW
6554 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
6555 offset);
43cd72b9 6556 if (insn_len == 0)
64b607e6
BW
6557 goto decode_error;
6558
43cd72b9
BW
6559 if (check_branch_target_aligned_address (offset, insn_len))
6560 align_type = EBB_REQUIRE_TGT_ALIGN;
6561
6562 ebb_propose_action (ebb_table, align_type, 0,
6563 ta_none, offset, 0, TRUE);
6564 }
6565
6566 while (offset != end_offset)
e0001a05 6567 {
43cd72b9 6568 Elf_Internal_Rela *irel;
e0001a05 6569 xtensa_opcode opcode;
e0001a05 6570
43cd72b9
BW
6571 while (rel_idx < ebb->end_reloc_idx
6572 && (ebb->relocs[rel_idx].r_offset < offset
6573 || (ebb->relocs[rel_idx].r_offset == offset
6574 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
6575 != R_XTENSA_ASM_SIMPLIFY))))
6576 rel_idx++;
6577
6578 /* Check for longcall. */
6579 irel = &ebb->relocs[rel_idx];
6580 if (irel->r_offset == offset
6581 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
6582 {
6583 bfd_size_type simplify_size;
e0001a05 6584
43cd72b9
BW
6585 simplify_size = get_asm_simplify_size (ebb->contents,
6586 ebb->content_length,
6587 irel->r_offset);
6588 if (simplify_size == 0)
64b607e6 6589 goto decode_error;
43cd72b9
BW
6590
6591 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6592 ta_convert_longcall, offset, 0, TRUE);
6593
6594 offset += simplify_size;
6595 continue;
6596 }
e0001a05 6597
64b607e6
BW
6598 if (offset + MIN_INSN_LENGTH > ebb->content_length)
6599 goto decode_error;
6600 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
6601 ebb->content_length - offset);
6602 fmt = xtensa_format_decode (isa, insnbuf);
6603 if (fmt == XTENSA_UNDEFINED)
6604 goto decode_error;
6605 insn_len = xtensa_format_length (isa, fmt);
6606 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
6607 goto decode_error;
6608
6609 if (xtensa_format_num_slots (isa, fmt) != 1)
43cd72b9 6610 {
64b607e6
BW
6611 offset += insn_len;
6612 continue;
43cd72b9 6613 }
64b607e6
BW
6614
6615 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
6616 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
6617 if (opcode == XTENSA_UNDEFINED)
6618 goto decode_error;
6619
43cd72b9
BW
6620 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
6621 && (entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) == 0
64b607e6 6622 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
43cd72b9
BW
6623 {
6624 /* Add an instruction narrow action. */
6625 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6626 ta_narrow_insn, offset, 0, FALSE);
43cd72b9 6627 }
64b607e6
BW
6628 else if ((entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) == 0
6629 && can_widen_instruction (slotbuf, fmt, opcode) != 0
6630 && ! prev_instr_is_a_loop (ebb->contents,
6631 ebb->content_length, offset))
43cd72b9
BW
6632 {
6633 /* Add an instruction widen action. */
6634 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6635 ta_widen_insn, offset, 0, FALSE);
43cd72b9 6636 }
64b607e6 6637 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
43cd72b9
BW
6638 {
6639 /* Check for branch targets. */
6640 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
6641 ta_none, offset, 0, TRUE);
43cd72b9
BW
6642 }
6643
6644 offset += insn_len;
e0001a05
NC
6645 }
6646 }
6647
43cd72b9
BW
6648 if (ebb->ends_unreachable)
6649 {
6650 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6651 ta_fill, ebb->end_offset, 0, TRUE);
6652 }
e0001a05 6653
43cd72b9 6654 return TRUE;
64b607e6
BW
6655
6656 decode_error:
6657 (*_bfd_error_handler)
6658 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6659 ebb->sec->owner, ebb->sec, offset);
6660 return FALSE;
43cd72b9
BW
6661}
6662
6663
6664/* After all of the information has collected about the
6665 transformations possible in an EBB, compute the appropriate actions
6666 here in compute_ebb_actions. We still must check later to make
6667 sure that the actions do not break any relocations. The algorithm
6668 used here is pretty greedy. Basically, it removes as many no-ops
6669 as possible so that the end of the EBB has the same alignment
6670 characteristics as the original. First, it uses narrowing, then
6671 fill space at the end of the EBB, and finally widenings. If that
6672 does not work, it tries again with one fewer no-op removed. The
6673 optimization will only be performed if all of the branch targets
6674 that were aligned before transformation are also aligned after the
6675 transformation.
6676
6677 When the size_opt flag is set, ignore the branch target alignments,
6678 narrow all wide instructions, and remove all no-ops unless the end
6679 of the EBB prevents it. */
6680
6681bfd_boolean
7fa3d080 6682compute_ebb_actions (ebb_constraint *ebb_table)
43cd72b9
BW
6683{
6684 unsigned i = 0;
6685 unsigned j;
6686 int removed_bytes = 0;
6687 ebb_t *ebb = &ebb_table->ebb;
6688 unsigned seg_idx_start = 0;
6689 unsigned seg_idx_end = 0;
6690
6691 /* We perform this like the assembler relaxation algorithm: Start by
6692 assuming all instructions are narrow and all no-ops removed; then
6693 walk through.... */
6694
6695 /* For each segment of this that has a solid constraint, check to
6696 see if there are any combinations that will keep the constraint.
6697 If so, use it. */
6698 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
e0001a05 6699 {
43cd72b9
BW
6700 bfd_boolean requires_text_end_align = FALSE;
6701 unsigned longcall_count = 0;
6702 unsigned longcall_convert_count = 0;
6703 unsigned narrowable_count = 0;
6704 unsigned narrowable_convert_count = 0;
6705 unsigned widenable_count = 0;
6706 unsigned widenable_convert_count = 0;
e0001a05 6707
43cd72b9
BW
6708 proposed_action *action = NULL;
6709 int align = (1 << ebb_table->ebb.sec->alignment_power);
e0001a05 6710
43cd72b9 6711 seg_idx_start = seg_idx_end;
e0001a05 6712
43cd72b9
BW
6713 for (i = seg_idx_start; i < ebb_table->action_count; i++)
6714 {
6715 action = &ebb_table->actions[i];
6716 if (action->action == ta_convert_longcall)
6717 longcall_count++;
6718 if (action->action == ta_narrow_insn)
6719 narrowable_count++;
6720 if (action->action == ta_widen_insn)
6721 widenable_count++;
6722 if (action->action == ta_fill)
6723 break;
6724 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6725 break;
6726 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
6727 && !elf32xtensa_size_opt)
6728 break;
6729 }
6730 seg_idx_end = i;
e0001a05 6731
43cd72b9
BW
6732 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
6733 requires_text_end_align = TRUE;
e0001a05 6734
43cd72b9
BW
6735 if (elf32xtensa_size_opt && !requires_text_end_align
6736 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
6737 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
6738 {
6739 longcall_convert_count = longcall_count;
6740 narrowable_convert_count = narrowable_count;
6741 widenable_convert_count = 0;
6742 }
6743 else
6744 {
6745 /* There is a constraint. Convert the max number of longcalls. */
6746 narrowable_convert_count = 0;
6747 longcall_convert_count = 0;
6748 widenable_convert_count = 0;
e0001a05 6749
43cd72b9 6750 for (j = 0; j < longcall_count; j++)
e0001a05 6751 {
43cd72b9
BW
6752 int removed = (longcall_count - j) * 3 & (align - 1);
6753 unsigned desire_narrow = (align - removed) & (align - 1);
6754 unsigned desire_widen = removed;
6755 if (desire_narrow <= narrowable_count)
6756 {
6757 narrowable_convert_count = desire_narrow;
6758 narrowable_convert_count +=
6759 (align * ((narrowable_count - narrowable_convert_count)
6760 / align));
6761 longcall_convert_count = (longcall_count - j);
6762 widenable_convert_count = 0;
6763 break;
6764 }
6765 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
6766 {
6767 narrowable_convert_count = 0;
6768 longcall_convert_count = longcall_count - j;
6769 widenable_convert_count = desire_widen;
6770 break;
6771 }
6772 }
6773 }
e0001a05 6774
43cd72b9
BW
6775 /* Now the number of conversions are saved. Do them. */
6776 for (i = seg_idx_start; i < seg_idx_end; i++)
6777 {
6778 action = &ebb_table->actions[i];
6779 switch (action->action)
6780 {
6781 case ta_convert_longcall:
6782 if (longcall_convert_count != 0)
6783 {
6784 action->action = ta_remove_longcall;
6785 action->do_action = TRUE;
6786 action->removed_bytes += 3;
6787 longcall_convert_count--;
6788 }
6789 break;
6790 case ta_narrow_insn:
6791 if (narrowable_convert_count != 0)
6792 {
6793 action->do_action = TRUE;
6794 action->removed_bytes += 1;
6795 narrowable_convert_count--;
6796 }
6797 break;
6798 case ta_widen_insn:
6799 if (widenable_convert_count != 0)
6800 {
6801 action->do_action = TRUE;
6802 action->removed_bytes -= 1;
6803 widenable_convert_count--;
6804 }
6805 break;
6806 default:
6807 break;
e0001a05 6808 }
43cd72b9
BW
6809 }
6810 }
e0001a05 6811
43cd72b9
BW
6812 /* Now we move on to some local opts. Try to remove each of the
6813 remaining longcalls. */
e0001a05 6814
43cd72b9
BW
6815 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
6816 {
6817 removed_bytes = 0;
6818 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 6819 {
43cd72b9
BW
6820 int old_removed_bytes = removed_bytes;
6821 proposed_action *action = &ebb_table->actions[i];
6822
6823 if (action->do_action && action->action == ta_convert_longcall)
6824 {
6825 bfd_boolean bad_alignment = FALSE;
6826 removed_bytes += 3;
6827 for (j = i + 1; j < ebb_table->action_count; j++)
6828 {
6829 proposed_action *new_action = &ebb_table->actions[j];
6830 bfd_vma offset = new_action->offset;
6831 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
6832 {
6833 if (!check_branch_target_aligned
6834 (ebb_table->ebb.contents,
6835 ebb_table->ebb.content_length,
6836 offset, offset - removed_bytes))
6837 {
6838 bad_alignment = TRUE;
6839 break;
6840 }
6841 }
6842 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6843 {
6844 if (!check_loop_aligned (ebb_table->ebb.contents,
6845 ebb_table->ebb.content_length,
6846 offset,
6847 offset - removed_bytes))
6848 {
6849 bad_alignment = TRUE;
6850 break;
6851 }
6852 }
6853 if (new_action->action == ta_narrow_insn
6854 && !new_action->do_action
6855 && ebb_table->ebb.sec->alignment_power == 2)
6856 {
6857 /* Narrow an instruction and we are done. */
6858 new_action->do_action = TRUE;
6859 new_action->removed_bytes += 1;
6860 bad_alignment = FALSE;
6861 break;
6862 }
6863 if (new_action->action == ta_widen_insn
6864 && new_action->do_action
6865 && ebb_table->ebb.sec->alignment_power == 2)
6866 {
6867 /* Narrow an instruction and we are done. */
6868 new_action->do_action = FALSE;
6869 new_action->removed_bytes += 1;
6870 bad_alignment = FALSE;
6871 break;
6872 }
6873 }
6874 if (!bad_alignment)
6875 {
6876 action->removed_bytes += 3;
6877 action->action = ta_remove_longcall;
6878 action->do_action = TRUE;
6879 }
6880 }
6881 removed_bytes = old_removed_bytes;
6882 if (action->do_action)
6883 removed_bytes += action->removed_bytes;
e0001a05
NC
6884 }
6885 }
6886
43cd72b9
BW
6887 removed_bytes = 0;
6888 for (i = 0; i < ebb_table->action_count; ++i)
6889 {
6890 proposed_action *action = &ebb_table->actions[i];
6891 if (action->do_action)
6892 removed_bytes += action->removed_bytes;
6893 }
6894
6895 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
6896 && ebb->ends_unreachable)
6897 {
6898 proposed_action *action;
6899 int br;
6900 int extra_space;
6901
6902 BFD_ASSERT (ebb_table->action_count != 0);
6903 action = &ebb_table->actions[ebb_table->action_count - 1];
6904 BFD_ASSERT (action->action == ta_fill);
6905 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
6906
6907 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
6908 br = action->removed_bytes + removed_bytes + extra_space;
6909 br = br & ((1 << ebb->sec->alignment_power ) - 1);
6910
6911 action->removed_bytes = extra_space - br;
6912 }
6913 return TRUE;
e0001a05
NC
6914}
6915
6916
03e94c08
BW
6917/* The xlate_map is a sorted array of address mappings designed to
6918 answer the offset_with_removed_text() query with a binary search instead
6919 of a linear search through the section's action_list. */
6920
6921typedef struct xlate_map_entry xlate_map_entry_t;
6922typedef struct xlate_map xlate_map_t;
6923
6924struct xlate_map_entry
6925{
6926 unsigned orig_address;
6927 unsigned new_address;
6928 unsigned size;
6929};
6930
6931struct xlate_map
6932{
6933 unsigned entry_count;
6934 xlate_map_entry_t *entry;
6935};
6936
6937
6938static int
6939xlate_compare (const void *a_v, const void *b_v)
6940{
6941 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
6942 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
6943 if (a->orig_address < b->orig_address)
6944 return -1;
6945 if (a->orig_address > (b->orig_address + b->size - 1))
6946 return 1;
6947 return 0;
6948}
6949
6950
6951static bfd_vma
6952xlate_offset_with_removed_text (const xlate_map_t *map,
6953 text_action_list *action_list,
6954 bfd_vma offset)
6955{
6956 xlate_map_entry_t tmp;
6957 void *r;
6958 xlate_map_entry_t *e;
6959
6960 if (map == NULL)
6961 return offset_with_removed_text (action_list, offset);
6962
6963 if (map->entry_count == 0)
6964 return offset;
6965
6966 tmp.orig_address = offset;
6967 tmp.new_address = offset;
6968 tmp.size = 1;
6969
6970 r = bsearch (&offset, map->entry, map->entry_count,
6971 sizeof (xlate_map_entry_t), &xlate_compare);
6972 e = (xlate_map_entry_t *) r;
6973
6974 BFD_ASSERT (e != NULL);
6975 if (e == NULL)
6976 return offset;
6977 return e->new_address - e->orig_address + offset;
6978}
6979
6980
6981/* Build a binary searchable offset translation map from a section's
6982 action list. */
6983
6984static xlate_map_t *
6985build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
6986{
6987 xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
6988 text_action_list *action_list = &relax_info->action_list;
6989 unsigned num_actions = 0;
6990 text_action *r;
6991 int removed;
6992 xlate_map_entry_t *current_entry;
6993
6994 if (map == NULL)
6995 return NULL;
6996
6997 num_actions = action_list_count (action_list);
6998 map->entry = (xlate_map_entry_t *)
6999 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
7000 if (map->entry == NULL)
7001 {
7002 free (map);
7003 return NULL;
7004 }
7005 map->entry_count = 0;
7006
7007 removed = 0;
7008 current_entry = &map->entry[0];
7009
7010 current_entry->orig_address = 0;
7011 current_entry->new_address = 0;
7012 current_entry->size = 0;
7013
7014 for (r = action_list->head; r != NULL; r = r->next)
7015 {
7016 unsigned orig_size = 0;
7017 switch (r->action)
7018 {
7019 case ta_none:
7020 case ta_remove_insn:
7021 case ta_convert_longcall:
7022 case ta_remove_literal:
7023 case ta_add_literal:
7024 break;
7025 case ta_remove_longcall:
7026 orig_size = 6;
7027 break;
7028 case ta_narrow_insn:
7029 orig_size = 3;
7030 break;
7031 case ta_widen_insn:
7032 orig_size = 2;
7033 break;
7034 case ta_fill:
7035 break;
7036 }
7037 current_entry->size =
7038 r->offset + orig_size - current_entry->orig_address;
7039 if (current_entry->size != 0)
7040 {
7041 current_entry++;
7042 map->entry_count++;
7043 }
7044 current_entry->orig_address = r->offset + orig_size;
7045 removed += r->removed_bytes;
7046 current_entry->new_address = r->offset + orig_size - removed;
7047 current_entry->size = 0;
7048 }
7049
7050 current_entry->size = (bfd_get_section_limit (sec->owner, sec)
7051 - current_entry->orig_address);
7052 if (current_entry->size != 0)
7053 map->entry_count++;
7054
7055 return map;
7056}
7057
7058
7059/* Free an offset translation map. */
7060
7061static void
7062free_xlate_map (xlate_map_t *map)
7063{
7064 if (map && map->entry)
7065 free (map->entry);
7066 if (map)
7067 free (map);
7068}
7069
7070
43cd72b9
BW
7071/* Use check_section_ebb_pcrels_fit to make sure that all of the
7072 relocations in a section will fit if a proposed set of actions
7073 are performed. */
e0001a05 7074
43cd72b9 7075static bfd_boolean
7fa3d080
BW
7076check_section_ebb_pcrels_fit (bfd *abfd,
7077 asection *sec,
7078 bfd_byte *contents,
7079 Elf_Internal_Rela *internal_relocs,
cb337148
BW
7080 const ebb_constraint *constraint,
7081 const xtensa_opcode *reloc_opcodes)
e0001a05 7082{
43cd72b9
BW
7083 unsigned i, j;
7084 Elf_Internal_Rela *irel;
03e94c08
BW
7085 xlate_map_t *xmap = NULL;
7086 bfd_boolean ok = TRUE;
43cd72b9 7087 xtensa_relax_info *relax_info;
e0001a05 7088
43cd72b9 7089 relax_info = get_xtensa_relax_info (sec);
e0001a05 7090
03e94c08
BW
7091 if (relax_info && sec->reloc_count > 100)
7092 {
7093 xmap = build_xlate_map (sec, relax_info);
7094 /* NULL indicates out of memory, but the slow version
7095 can still be used. */
7096 }
7097
43cd72b9
BW
7098 for (i = 0; i < sec->reloc_count; i++)
7099 {
7100 r_reloc r_rel;
7101 bfd_vma orig_self_offset, orig_target_offset;
7102 bfd_vma self_offset, target_offset;
7103 int r_type;
7104 reloc_howto_type *howto;
7105 int self_removed_bytes, target_removed_bytes;
e0001a05 7106
43cd72b9
BW
7107 irel = &internal_relocs[i];
7108 r_type = ELF32_R_TYPE (irel->r_info);
e0001a05 7109
43cd72b9
BW
7110 howto = &elf_howto_table[r_type];
7111 /* We maintain the required invariant: PC-relative relocations
7112 that fit before linking must fit after linking. Thus we only
7113 need to deal with relocations to the same section that are
7114 PC-relative. */
7115 if (ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY
7116 || !howto->pc_relative)
7117 continue;
e0001a05 7118
43cd72b9
BW
7119 r_reloc_init (&r_rel, abfd, irel, contents,
7120 bfd_get_section_limit (abfd, sec));
e0001a05 7121
43cd72b9
BW
7122 if (r_reloc_get_section (&r_rel) != sec)
7123 continue;
e0001a05 7124
43cd72b9
BW
7125 orig_self_offset = irel->r_offset;
7126 orig_target_offset = r_rel.target_offset;
e0001a05 7127
43cd72b9
BW
7128 self_offset = orig_self_offset;
7129 target_offset = orig_target_offset;
7130
7131 if (relax_info)
7132 {
03e94c08
BW
7133 self_offset =
7134 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7135 orig_self_offset);
7136 target_offset =
7137 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7138 orig_target_offset);
43cd72b9
BW
7139 }
7140
7141 self_removed_bytes = 0;
7142 target_removed_bytes = 0;
7143
7144 for (j = 0; j < constraint->action_count; ++j)
7145 {
7146 proposed_action *action = &constraint->actions[j];
7147 bfd_vma offset = action->offset;
7148 int removed_bytes = action->removed_bytes;
7149 if (offset < orig_self_offset
7150 || (offset == orig_self_offset && action->action == ta_fill
7151 && action->removed_bytes < 0))
7152 self_removed_bytes += removed_bytes;
7153 if (offset < orig_target_offset
7154 || (offset == orig_target_offset && action->action == ta_fill
7155 && action->removed_bytes < 0))
7156 target_removed_bytes += removed_bytes;
7157 }
7158 self_offset -= self_removed_bytes;
7159 target_offset -= target_removed_bytes;
7160
7161 /* Try to encode it. Get the operand and check. */
7162 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7163 {
7164 /* None of the current alternate relocs are PC-relative,
7165 and only PC-relative relocs matter here. */
7166 }
7167 else
7168 {
7169 xtensa_opcode opcode;
7170 int opnum;
7171
cb337148
BW
7172 if (reloc_opcodes)
7173 opcode = reloc_opcodes[i];
7174 else
7175 opcode = get_relocation_opcode (abfd, sec, contents, irel);
43cd72b9 7176 if (opcode == XTENSA_UNDEFINED)
03e94c08
BW
7177 {
7178 ok = FALSE;
7179 break;
7180 }
43cd72b9
BW
7181
7182 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7183 if (opnum == XTENSA_UNDEFINED)
03e94c08
BW
7184 {
7185 ok = FALSE;
7186 break;
7187 }
43cd72b9
BW
7188
7189 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
03e94c08
BW
7190 {
7191 ok = FALSE;
7192 break;
7193 }
43cd72b9
BW
7194 }
7195 }
7196
03e94c08
BW
7197 if (xmap)
7198 free_xlate_map (xmap);
7199
7200 return ok;
43cd72b9
BW
7201}
7202
7203
7204static bfd_boolean
7fa3d080 7205check_section_ebb_reduces (const ebb_constraint *constraint)
43cd72b9
BW
7206{
7207 int removed = 0;
7208 unsigned i;
7209
7210 for (i = 0; i < constraint->action_count; i++)
7211 {
7212 const proposed_action *action = &constraint->actions[i];
7213 if (action->do_action)
7214 removed += action->removed_bytes;
7215 }
7216 if (removed < 0)
e0001a05
NC
7217 return FALSE;
7218
7219 return TRUE;
7220}
7221
7222
43cd72b9 7223void
7fa3d080
BW
7224text_action_add_proposed (text_action_list *l,
7225 const ebb_constraint *ebb_table,
7226 asection *sec)
e0001a05
NC
7227{
7228 unsigned i;
7229
43cd72b9 7230 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 7231 {
43cd72b9 7232 proposed_action *action = &ebb_table->actions[i];
e0001a05 7233
43cd72b9 7234 if (!action->do_action)
e0001a05 7235 continue;
43cd72b9
BW
7236 switch (action->action)
7237 {
7238 case ta_remove_insn:
7239 case ta_remove_longcall:
7240 case ta_convert_longcall:
7241 case ta_narrow_insn:
7242 case ta_widen_insn:
7243 case ta_fill:
7244 case ta_remove_literal:
7245 text_action_add (l, action->action, sec, action->offset,
7246 action->removed_bytes);
7247 break;
7248 case ta_none:
7249 break;
7250 default:
7251 BFD_ASSERT (0);
7252 break;
7253 }
e0001a05 7254 }
43cd72b9 7255}
e0001a05 7256
43cd72b9
BW
7257
7258int
7fa3d080 7259compute_fill_extra_space (property_table_entry *entry)
43cd72b9
BW
7260{
7261 int fill_extra_space;
7262
7263 if (!entry)
7264 return 0;
7265
7266 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
7267 return 0;
7268
7269 fill_extra_space = entry->size;
7270 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
7271 {
7272 /* Fill bytes for alignment:
7273 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
7274 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
7275 int nsm = (1 << pow) - 1;
7276 bfd_vma addr = entry->address + entry->size;
7277 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
7278 fill_extra_space += align_fill;
7279 }
7280 return fill_extra_space;
e0001a05
NC
7281}
7282
43cd72b9 7283\f
e0001a05
NC
7284/* First relaxation pass. */
7285
43cd72b9
BW
7286/* If the section contains relaxable literals, check each literal to
7287 see if it has the same value as another literal that has already
7288 been seen, either in the current section or a previous one. If so,
7289 add an entry to the per-section list of removed literals. The
e0001a05
NC
7290 actual changes are deferred until the next pass. */
7291
7292static bfd_boolean
7fa3d080
BW
7293compute_removed_literals (bfd *abfd,
7294 asection *sec,
7295 struct bfd_link_info *link_info,
7296 value_map_hash_table *values)
e0001a05
NC
7297{
7298 xtensa_relax_info *relax_info;
7299 bfd_byte *contents;
7300 Elf_Internal_Rela *internal_relocs;
43cd72b9 7301 source_reloc *src_relocs, *rel;
e0001a05 7302 bfd_boolean ok = TRUE;
43cd72b9
BW
7303 property_table_entry *prop_table = NULL;
7304 int ptblsize;
7305 int i, prev_i;
7306 bfd_boolean last_loc_is_prev = FALSE;
7307 bfd_vma last_target_offset = 0;
7308 section_cache_t target_sec_cache;
7309 bfd_size_type sec_size;
7310
7311 init_section_cache (&target_sec_cache);
e0001a05
NC
7312
7313 /* Do nothing if it is not a relaxable literal section. */
7314 relax_info = get_xtensa_relax_info (sec);
7315 BFD_ASSERT (relax_info);
e0001a05
NC
7316 if (!relax_info->is_relaxable_literal_section)
7317 return ok;
7318
7319 internal_relocs = retrieve_internal_relocs (abfd, sec,
7320 link_info->keep_memory);
7321
43cd72b9 7322 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 7323 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 7324 if (contents == NULL && sec_size != 0)
e0001a05
NC
7325 {
7326 ok = FALSE;
7327 goto error_return;
7328 }
7329
7330 /* Sort the source_relocs by target offset. */
7331 src_relocs = relax_info->src_relocs;
7332 qsort (src_relocs, relax_info->src_count,
7333 sizeof (source_reloc), source_reloc_compare);
43cd72b9
BW
7334 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7335 internal_reloc_compare);
e0001a05 7336
43cd72b9
BW
7337 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7338 XTENSA_PROP_SEC_NAME, FALSE);
7339 if (ptblsize < 0)
7340 {
7341 ok = FALSE;
7342 goto error_return;
7343 }
7344
7345 prev_i = -1;
e0001a05
NC
7346 for (i = 0; i < relax_info->src_count; i++)
7347 {
e0001a05 7348 Elf_Internal_Rela *irel = NULL;
e0001a05
NC
7349
7350 rel = &src_relocs[i];
43cd72b9
BW
7351 if (get_l32r_opcode () != rel->opcode)
7352 continue;
e0001a05
NC
7353 irel = get_irel_at_offset (sec, internal_relocs,
7354 rel->r_rel.target_offset);
7355
43cd72b9
BW
7356 /* If the relocation on this is not a simple R_XTENSA_32 or
7357 R_XTENSA_PLT then do not consider it. This may happen when
7358 the difference of two symbols is used in a literal. */
7359 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
7360 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
7361 continue;
7362
e0001a05
NC
7363 /* If the target_offset for this relocation is the same as the
7364 previous relocation, then we've already considered whether the
7365 literal can be coalesced. Skip to the next one.... */
43cd72b9
BW
7366 if (i != 0 && prev_i != -1
7367 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
e0001a05 7368 continue;
43cd72b9
BW
7369 prev_i = i;
7370
7371 if (last_loc_is_prev &&
7372 last_target_offset + 4 != rel->r_rel.target_offset)
7373 last_loc_is_prev = FALSE;
e0001a05
NC
7374
7375 /* Check if the relocation was from an L32R that is being removed
7376 because a CALLX was converted to a direct CALL, and check if
7377 there are no other relocations to the literal. */
43cd72b9 7378 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count))
e0001a05 7379 {
43cd72b9
BW
7380 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
7381 irel, rel, prop_table, ptblsize))
e0001a05 7382 {
43cd72b9
BW
7383 ok = FALSE;
7384 goto error_return;
e0001a05 7385 }
43cd72b9 7386 last_target_offset = rel->r_rel.target_offset;
e0001a05
NC
7387 continue;
7388 }
7389
43cd72b9
BW
7390 if (!identify_literal_placement (abfd, sec, contents, link_info,
7391 values,
7392 &last_loc_is_prev, irel,
7393 relax_info->src_count - i, rel,
7394 prop_table, ptblsize,
7395 &target_sec_cache, rel->is_abs_literal))
e0001a05 7396 {
43cd72b9
BW
7397 ok = FALSE;
7398 goto error_return;
7399 }
7400 last_target_offset = rel->r_rel.target_offset;
7401 }
e0001a05 7402
43cd72b9
BW
7403#if DEBUG
7404 print_removed_literals (stderr, &relax_info->removed_list);
7405 print_action_list (stderr, &relax_info->action_list);
7406#endif /* DEBUG */
7407
7408error_return:
7409 if (prop_table) free (prop_table);
7410 clear_section_cache (&target_sec_cache);
7411
7412 release_contents (sec, contents);
7413 release_internal_relocs (sec, internal_relocs);
7414 return ok;
7415}
7416
7417
7418static Elf_Internal_Rela *
7fa3d080
BW
7419get_irel_at_offset (asection *sec,
7420 Elf_Internal_Rela *internal_relocs,
7421 bfd_vma offset)
43cd72b9
BW
7422{
7423 unsigned i;
7424 Elf_Internal_Rela *irel;
7425 unsigned r_type;
7426 Elf_Internal_Rela key;
7427
7428 if (!internal_relocs)
7429 return NULL;
7430
7431 key.r_offset = offset;
7432 irel = bsearch (&key, internal_relocs, sec->reloc_count,
7433 sizeof (Elf_Internal_Rela), internal_reloc_matches);
7434 if (!irel)
7435 return NULL;
7436
7437 /* bsearch does not guarantee which will be returned if there are
7438 multiple matches. We need the first that is not an alignment. */
7439 i = irel - internal_relocs;
7440 while (i > 0)
7441 {
7442 if (internal_relocs[i-1].r_offset != offset)
7443 break;
7444 i--;
7445 }
7446 for ( ; i < sec->reloc_count; i++)
7447 {
7448 irel = &internal_relocs[i];
7449 r_type = ELF32_R_TYPE (irel->r_info);
7450 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
7451 return irel;
7452 }
7453
7454 return NULL;
7455}
7456
7457
7458bfd_boolean
7fa3d080
BW
7459is_removable_literal (const source_reloc *rel,
7460 int i,
7461 const source_reloc *src_relocs,
7462 int src_count)
43cd72b9
BW
7463{
7464 const source_reloc *curr_rel;
7465 if (!rel->is_null)
7466 return FALSE;
7467
7468 for (++i; i < src_count; ++i)
7469 {
7470 curr_rel = &src_relocs[i];
7471 /* If all others have the same target offset.... */
7472 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
7473 return TRUE;
7474
7475 if (!curr_rel->is_null
7476 && !xtensa_is_property_section (curr_rel->source_sec)
7477 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
7478 return FALSE;
7479 }
7480 return TRUE;
7481}
7482
7483
7484bfd_boolean
7fa3d080
BW
7485remove_dead_literal (bfd *abfd,
7486 asection *sec,
7487 struct bfd_link_info *link_info,
7488 Elf_Internal_Rela *internal_relocs,
7489 Elf_Internal_Rela *irel,
7490 source_reloc *rel,
7491 property_table_entry *prop_table,
7492 int ptblsize)
43cd72b9
BW
7493{
7494 property_table_entry *entry;
7495 xtensa_relax_info *relax_info;
7496
7497 relax_info = get_xtensa_relax_info (sec);
7498 if (!relax_info)
7499 return FALSE;
7500
7501 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7502 sec->vma + rel->r_rel.target_offset);
7503
7504 /* Mark the unused literal so that it will be removed. */
7505 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
7506
7507 text_action_add (&relax_info->action_list,
7508 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7509
7510 /* If the section is 4-byte aligned, do not add fill. */
7511 if (sec->alignment_power > 2)
7512 {
7513 int fill_extra_space;
7514 bfd_vma entry_sec_offset;
7515 text_action *fa;
7516 property_table_entry *the_add_entry;
7517 int removed_diff;
7518
7519 if (entry)
7520 entry_sec_offset = entry->address - sec->vma + entry->size;
7521 else
7522 entry_sec_offset = rel->r_rel.target_offset + 4;
7523
7524 /* If the literal range is at the end of the section,
7525 do not add fill. */
7526 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7527 entry_sec_offset);
7528 fill_extra_space = compute_fill_extra_space (the_add_entry);
7529
7530 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7531 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7532 -4, fill_extra_space);
7533 if (fa)
7534 adjust_fill_action (fa, removed_diff);
7535 else
7536 text_action_add (&relax_info->action_list,
7537 ta_fill, sec, entry_sec_offset, removed_diff);
7538 }
7539
7540 /* Zero out the relocation on this literal location. */
7541 if (irel)
7542 {
7543 if (elf_hash_table (link_info)->dynamic_sections_created)
7544 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
7545
7546 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7547 pin_internal_relocs (sec, internal_relocs);
7548 }
7549
7550 /* Do not modify "last_loc_is_prev". */
7551 return TRUE;
7552}
7553
7554
7555bfd_boolean
7fa3d080
BW
7556identify_literal_placement (bfd *abfd,
7557 asection *sec,
7558 bfd_byte *contents,
7559 struct bfd_link_info *link_info,
7560 value_map_hash_table *values,
7561 bfd_boolean *last_loc_is_prev_p,
7562 Elf_Internal_Rela *irel,
7563 int remaining_src_rels,
7564 source_reloc *rel,
7565 property_table_entry *prop_table,
7566 int ptblsize,
7567 section_cache_t *target_sec_cache,
7568 bfd_boolean is_abs_literal)
43cd72b9
BW
7569{
7570 literal_value val;
7571 value_map *val_map;
7572 xtensa_relax_info *relax_info;
7573 bfd_boolean literal_placed = FALSE;
7574 r_reloc r_rel;
7575 unsigned long value;
7576 bfd_boolean final_static_link;
7577 bfd_size_type sec_size;
7578
7579 relax_info = get_xtensa_relax_info (sec);
7580 if (!relax_info)
7581 return FALSE;
7582
7583 sec_size = bfd_get_section_limit (abfd, sec);
7584
7585 final_static_link =
7586 (!link_info->relocatable
7587 && !elf_hash_table (link_info)->dynamic_sections_created);
7588
7589 /* The placement algorithm first checks to see if the literal is
7590 already in the value map. If so and the value map is reachable
7591 from all uses, then the literal is moved to that location. If
7592 not, then we identify the last location where a fresh literal was
7593 placed. If the literal can be safely moved there, then we do so.
7594 If not, then we assume that the literal is not to move and leave
7595 the literal where it is, marking it as the last literal
7596 location. */
7597
7598 /* Find the literal value. */
7599 value = 0;
7600 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7601 if (!irel)
7602 {
7603 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
7604 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
7605 }
7606 init_literal_value (&val, &r_rel, value, is_abs_literal);
7607
7608 /* Check if we've seen another literal with the same value that
7609 is in the same output section. */
7610 val_map = value_map_get_cached_value (values, &val, final_static_link);
7611
7612 if (val_map
7613 && (r_reloc_get_section (&val_map->loc)->output_section
7614 == sec->output_section)
7615 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
7616 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
7617 {
7618 /* No change to last_loc_is_prev. */
7619 literal_placed = TRUE;
7620 }
7621
7622 /* For relocatable links, do not try to move literals. To do it
7623 correctly might increase the number of relocations in an input
7624 section making the default relocatable linking fail. */
7625 if (!link_info->relocatable && !literal_placed
7626 && values->has_last_loc && !(*last_loc_is_prev_p))
7627 {
7628 asection *target_sec = r_reloc_get_section (&values->last_loc);
7629 if (target_sec && target_sec->output_section == sec->output_section)
7630 {
7631 /* Increment the virtual offset. */
7632 r_reloc try_loc = values->last_loc;
7633 try_loc.virtual_offset += 4;
7634
7635 /* There is a last loc that was in the same output section. */
7636 if (relocations_reach (rel, remaining_src_rels, &try_loc)
7637 && move_shared_literal (sec, link_info, rel,
7638 prop_table, ptblsize,
7639 &try_loc, &val, target_sec_cache))
e0001a05 7640 {
43cd72b9
BW
7641 values->last_loc.virtual_offset += 4;
7642 literal_placed = TRUE;
7643 if (!val_map)
7644 val_map = add_value_map (values, &val, &try_loc,
7645 final_static_link);
7646 else
7647 val_map->loc = try_loc;
e0001a05
NC
7648 }
7649 }
43cd72b9
BW
7650 }
7651
7652 if (!literal_placed)
7653 {
7654 /* Nothing worked, leave the literal alone but update the last loc. */
7655 values->has_last_loc = TRUE;
7656 values->last_loc = rel->r_rel;
7657 if (!val_map)
7658 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
e0001a05 7659 else
43cd72b9
BW
7660 val_map->loc = rel->r_rel;
7661 *last_loc_is_prev_p = TRUE;
e0001a05
NC
7662 }
7663
43cd72b9 7664 return TRUE;
e0001a05
NC
7665}
7666
7667
7668/* Check if the original relocations (presumably on L32R instructions)
7669 identified by reloc[0..N] can be changed to reference the literal
7670 identified by r_rel. If r_rel is out of range for any of the
7671 original relocations, then we don't want to coalesce the original
7672 literal with the one at r_rel. We only check reloc[0..N], where the
7673 offsets are all the same as for reloc[0] (i.e., they're all
7674 referencing the same literal) and where N is also bounded by the
7675 number of remaining entries in the "reloc" array. The "reloc" array
7676 is sorted by target offset so we know all the entries for the same
7677 literal will be contiguous. */
7678
7679static bfd_boolean
7fa3d080
BW
7680relocations_reach (source_reloc *reloc,
7681 int remaining_relocs,
7682 const r_reloc *r_rel)
e0001a05
NC
7683{
7684 bfd_vma from_offset, source_address, dest_address;
7685 asection *sec;
7686 int i;
7687
7688 if (!r_reloc_is_defined (r_rel))
7689 return FALSE;
7690
7691 sec = r_reloc_get_section (r_rel);
7692 from_offset = reloc[0].r_rel.target_offset;
7693
7694 for (i = 0; i < remaining_relocs; i++)
7695 {
7696 if (reloc[i].r_rel.target_offset != from_offset)
7697 break;
7698
7699 /* Ignore relocations that have been removed. */
7700 if (reloc[i].is_null)
7701 continue;
7702
7703 /* The original and new output section for these must be the same
7704 in order to coalesce. */
7705 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
7706 != sec->output_section)
7707 return FALSE;
7708
d638e0ac
BW
7709 /* Absolute literals in the same output section can always be
7710 combined. */
7711 if (reloc[i].is_abs_literal)
7712 continue;
7713
43cd72b9
BW
7714 /* A literal with no PC-relative relocations can be moved anywhere. */
7715 if (reloc[i].opnd != -1)
e0001a05
NC
7716 {
7717 /* Otherwise, check to see that it fits. */
7718 source_address = (reloc[i].source_sec->output_section->vma
7719 + reloc[i].source_sec->output_offset
7720 + reloc[i].r_rel.rela.r_offset);
7721 dest_address = (sec->output_section->vma
7722 + sec->output_offset
7723 + r_rel->target_offset);
7724
43cd72b9
BW
7725 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
7726 source_address, dest_address))
e0001a05
NC
7727 return FALSE;
7728 }
7729 }
7730
7731 return TRUE;
7732}
7733
7734
43cd72b9
BW
7735/* Move a literal to another literal location because it is
7736 the same as the other literal value. */
e0001a05 7737
43cd72b9 7738static bfd_boolean
7fa3d080
BW
7739coalesce_shared_literal (asection *sec,
7740 source_reloc *rel,
7741 property_table_entry *prop_table,
7742 int ptblsize,
7743 value_map *val_map)
e0001a05 7744{
43cd72b9
BW
7745 property_table_entry *entry;
7746 text_action *fa;
7747 property_table_entry *the_add_entry;
7748 int removed_diff;
7749 xtensa_relax_info *relax_info;
7750
7751 relax_info = get_xtensa_relax_info (sec);
7752 if (!relax_info)
7753 return FALSE;
7754
7755 entry = elf_xtensa_find_property_entry
7756 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7757 if (entry && (entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM))
7758 return TRUE;
7759
7760 /* Mark that the literal will be coalesced. */
7761 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
7762
7763 text_action_add (&relax_info->action_list,
7764 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7765
7766 /* If the section is 4-byte aligned, do not add fill. */
7767 if (sec->alignment_power > 2)
e0001a05 7768 {
43cd72b9
BW
7769 int fill_extra_space;
7770 bfd_vma entry_sec_offset;
7771
7772 if (entry)
7773 entry_sec_offset = entry->address - sec->vma + entry->size;
7774 else
7775 entry_sec_offset = rel->r_rel.target_offset + 4;
7776
7777 /* If the literal range is at the end of the section,
7778 do not add fill. */
7779 fill_extra_space = 0;
7780 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7781 entry_sec_offset);
7782 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7783 fill_extra_space = the_add_entry->size;
7784
7785 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7786 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7787 -4, fill_extra_space);
7788 if (fa)
7789 adjust_fill_action (fa, removed_diff);
7790 else
7791 text_action_add (&relax_info->action_list,
7792 ta_fill, sec, entry_sec_offset, removed_diff);
e0001a05 7793 }
43cd72b9
BW
7794
7795 return TRUE;
7796}
7797
7798
7799/* Move a literal to another location. This may actually increase the
7800 total amount of space used because of alignments so we need to do
7801 this carefully. Also, it may make a branch go out of range. */
7802
7803static bfd_boolean
7fa3d080
BW
7804move_shared_literal (asection *sec,
7805 struct bfd_link_info *link_info,
7806 source_reloc *rel,
7807 property_table_entry *prop_table,
7808 int ptblsize,
7809 const r_reloc *target_loc,
7810 const literal_value *lit_value,
7811 section_cache_t *target_sec_cache)
43cd72b9
BW
7812{
7813 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
7814 text_action *fa, *target_fa;
7815 int removed_diff;
7816 xtensa_relax_info *relax_info, *target_relax_info;
7817 asection *target_sec;
7818 ebb_t *ebb;
7819 ebb_constraint ebb_table;
7820 bfd_boolean relocs_fit;
7821
7822 /* If this routine always returns FALSE, the literals that cannot be
7823 coalesced will not be moved. */
7824 if (elf32xtensa_no_literal_movement)
7825 return FALSE;
7826
7827 relax_info = get_xtensa_relax_info (sec);
7828 if (!relax_info)
7829 return FALSE;
7830
7831 target_sec = r_reloc_get_section (target_loc);
7832 target_relax_info = get_xtensa_relax_info (target_sec);
7833
7834 /* Literals to undefined sections may not be moved because they
7835 must report an error. */
7836 if (bfd_is_und_section (target_sec))
7837 return FALSE;
7838
7839 src_entry = elf_xtensa_find_property_entry
7840 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7841
7842 if (!section_cache_section (target_sec_cache, target_sec, link_info))
7843 return FALSE;
7844
7845 target_entry = elf_xtensa_find_property_entry
7846 (target_sec_cache->ptbl, target_sec_cache->pte_count,
7847 target_sec->vma + target_loc->target_offset);
7848
7849 if (!target_entry)
7850 return FALSE;
7851
7852 /* Make sure that we have not broken any branches. */
7853 relocs_fit = FALSE;
7854
7855 init_ebb_constraint (&ebb_table);
7856 ebb = &ebb_table.ebb;
7857 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
7858 target_sec_cache->content_length,
7859 target_sec_cache->ptbl, target_sec_cache->pte_count,
7860 target_sec_cache->relocs, target_sec_cache->reloc_count);
7861
7862 /* Propose to add 4 bytes + worst-case alignment size increase to
7863 destination. */
7864 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
7865 ta_fill, target_loc->target_offset,
7866 -4 - (1 << target_sec->alignment_power), TRUE);
7867
7868 /* Check all of the PC-relative relocations to make sure they still fit. */
7869 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
7870 target_sec_cache->contents,
7871 target_sec_cache->relocs,
cb337148 7872 &ebb_table, NULL);
43cd72b9
BW
7873
7874 if (!relocs_fit)
7875 return FALSE;
7876
7877 text_action_add_literal (&target_relax_info->action_list,
7878 ta_add_literal, target_loc, lit_value, -4);
7879
7880 if (target_sec->alignment_power > 2 && target_entry != src_entry)
7881 {
7882 /* May need to add or remove some fill to maintain alignment. */
7883 int fill_extra_space;
7884 bfd_vma entry_sec_offset;
7885
7886 entry_sec_offset =
7887 target_entry->address - target_sec->vma + target_entry->size;
7888
7889 /* If the literal range is at the end of the section,
7890 do not add fill. */
7891 fill_extra_space = 0;
7892 the_add_entry =
7893 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
7894 target_sec_cache->pte_count,
7895 entry_sec_offset);
7896 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7897 fill_extra_space = the_add_entry->size;
7898
7899 target_fa = find_fill_action (&target_relax_info->action_list,
7900 target_sec, entry_sec_offset);
7901 removed_diff = compute_removed_action_diff (target_fa, target_sec,
7902 entry_sec_offset, 4,
7903 fill_extra_space);
7904 if (target_fa)
7905 adjust_fill_action (target_fa, removed_diff);
7906 else
7907 text_action_add (&target_relax_info->action_list,
7908 ta_fill, target_sec, entry_sec_offset, removed_diff);
7909 }
7910
7911 /* Mark that the literal will be moved to the new location. */
7912 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
7913
7914 /* Remove the literal. */
7915 text_action_add (&relax_info->action_list,
7916 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7917
7918 /* If the section is 4-byte aligned, do not add fill. */
7919 if (sec->alignment_power > 2 && target_entry != src_entry)
7920 {
7921 int fill_extra_space;
7922 bfd_vma entry_sec_offset;
7923
7924 if (src_entry)
7925 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
7926 else
7927 entry_sec_offset = rel->r_rel.target_offset+4;
7928
7929 /* If the literal range is at the end of the section,
7930 do not add fill. */
7931 fill_extra_space = 0;
7932 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7933 entry_sec_offset);
7934 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7935 fill_extra_space = the_add_entry->size;
7936
7937 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7938 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7939 -4, fill_extra_space);
7940 if (fa)
7941 adjust_fill_action (fa, removed_diff);
7942 else
7943 text_action_add (&relax_info->action_list,
7944 ta_fill, sec, entry_sec_offset, removed_diff);
7945 }
7946
7947 return TRUE;
e0001a05
NC
7948}
7949
7950\f
7951/* Second relaxation pass. */
7952
7953/* Modify all of the relocations to point to the right spot, and if this
7954 is a relaxable section, delete the unwanted literals and fix the
43cd72b9 7955 section size. */
e0001a05 7956
43cd72b9 7957bfd_boolean
7fa3d080 7958relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
e0001a05
NC
7959{
7960 Elf_Internal_Rela *internal_relocs;
7961 xtensa_relax_info *relax_info;
7962 bfd_byte *contents;
7963 bfd_boolean ok = TRUE;
7964 unsigned i;
43cd72b9
BW
7965 bfd_boolean rv = FALSE;
7966 bfd_boolean virtual_action;
7967 bfd_size_type sec_size;
e0001a05 7968
43cd72b9 7969 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
7970 relax_info = get_xtensa_relax_info (sec);
7971 BFD_ASSERT (relax_info);
7972
43cd72b9
BW
7973 /* First translate any of the fixes that have been added already. */
7974 translate_section_fixes (sec);
7975
e0001a05
NC
7976 /* Handle property sections (e.g., literal tables) specially. */
7977 if (xtensa_is_property_section (sec))
7978 {
7979 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
7980 return relax_property_section (abfd, sec, link_info);
7981 }
7982
43cd72b9
BW
7983 internal_relocs = retrieve_internal_relocs (abfd, sec,
7984 link_info->keep_memory);
7985 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7986 if (contents == NULL && sec_size != 0)
7987 {
7988 ok = FALSE;
7989 goto error_return;
7990 }
7991
7992 if (internal_relocs)
7993 {
7994 for (i = 0; i < sec->reloc_count; i++)
7995 {
7996 Elf_Internal_Rela *irel;
7997 xtensa_relax_info *target_relax_info;
7998 bfd_vma source_offset, old_source_offset;
7999 r_reloc r_rel;
8000 unsigned r_type;
8001 asection *target_sec;
8002
8003 /* Locally change the source address.
8004 Translate the target to the new target address.
8005 If it points to this section and has been removed,
8006 NULLify it.
8007 Write it back. */
8008
8009 irel = &internal_relocs[i];
8010 source_offset = irel->r_offset;
8011 old_source_offset = source_offset;
8012
8013 r_type = ELF32_R_TYPE (irel->r_info);
8014 r_reloc_init (&r_rel, abfd, irel, contents,
8015 bfd_get_section_limit (abfd, sec));
8016
8017 /* If this section could have changed then we may need to
8018 change the relocation's offset. */
8019
8020 if (relax_info->is_relaxable_literal_section
8021 || relax_info->is_relaxable_asm_section)
8022 {
8023 if (r_type != R_XTENSA_NONE
8024 && find_removed_literal (&relax_info->removed_list,
8025 irel->r_offset))
8026 {
8027 /* Remove this relocation. */
8028 if (elf_hash_table (link_info)->dynamic_sections_created)
8029 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8030 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8031 irel->r_offset = offset_with_removed_text
8032 (&relax_info->action_list, irel->r_offset);
8033 pin_internal_relocs (sec, internal_relocs);
8034 continue;
8035 }
8036
8037 if (r_type == R_XTENSA_ASM_SIMPLIFY)
8038 {
8039 text_action *action =
8040 find_insn_action (&relax_info->action_list,
8041 irel->r_offset);
8042 if (action && (action->action == ta_convert_longcall
8043 || action->action == ta_remove_longcall))
8044 {
8045 bfd_reloc_status_type retval;
8046 char *error_message = NULL;
8047
8048 retval = contract_asm_expansion (contents, sec_size,
8049 irel, &error_message);
8050 if (retval != bfd_reloc_ok)
8051 {
8052 (*link_info->callbacks->reloc_dangerous)
8053 (link_info, error_message, abfd, sec,
8054 irel->r_offset);
8055 goto error_return;
8056 }
8057 /* Update the action so that the code that moves
8058 the contents will do the right thing. */
8059 if (action->action == ta_remove_longcall)
8060 action->action = ta_remove_insn;
8061 else
8062 action->action = ta_none;
8063 /* Refresh the info in the r_rel. */
8064 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8065 r_type = ELF32_R_TYPE (irel->r_info);
8066 }
8067 }
8068
8069 source_offset = offset_with_removed_text
8070 (&relax_info->action_list, irel->r_offset);
8071 irel->r_offset = source_offset;
8072 }
8073
8074 /* If the target section could have changed then
8075 we may need to change the relocation's target offset. */
8076
8077 target_sec = r_reloc_get_section (&r_rel);
8078 target_relax_info = get_xtensa_relax_info (target_sec);
8079
8080 if (target_relax_info
8081 && (target_relax_info->is_relaxable_literal_section
8082 || target_relax_info->is_relaxable_asm_section))
8083 {
8084 r_reloc new_reloc;
8085 reloc_bfd_fix *fix;
8086 bfd_vma addend_displacement;
8087
8088 translate_reloc (&r_rel, &new_reloc);
8089
8090 if (r_type == R_XTENSA_DIFF8
8091 || r_type == R_XTENSA_DIFF16
8092 || r_type == R_XTENSA_DIFF32)
8093 {
8094 bfd_vma diff_value = 0, new_end_offset, diff_mask = 0;
8095
8096 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
8097 {
8098 (*link_info->callbacks->reloc_dangerous)
8099 (link_info, _("invalid relocation address"),
8100 abfd, sec, old_source_offset);
8101 goto error_return;
8102 }
8103
8104 switch (r_type)
8105 {
8106 case R_XTENSA_DIFF8:
8107 diff_value =
8108 bfd_get_8 (abfd, &contents[old_source_offset]);
8109 break;
8110 case R_XTENSA_DIFF16:
8111 diff_value =
8112 bfd_get_16 (abfd, &contents[old_source_offset]);
8113 break;
8114 case R_XTENSA_DIFF32:
8115 diff_value =
8116 bfd_get_32 (abfd, &contents[old_source_offset]);
8117 break;
8118 }
8119
8120 new_end_offset = offset_with_removed_text
8121 (&target_relax_info->action_list,
8122 r_rel.target_offset + diff_value);
8123 diff_value = new_end_offset - new_reloc.target_offset;
8124
8125 switch (r_type)
8126 {
8127 case R_XTENSA_DIFF8:
8128 diff_mask = 0xff;
8129 bfd_put_8 (abfd, diff_value,
8130 &contents[old_source_offset]);
8131 break;
8132 case R_XTENSA_DIFF16:
8133 diff_mask = 0xffff;
8134 bfd_put_16 (abfd, diff_value,
8135 &contents[old_source_offset]);
8136 break;
8137 case R_XTENSA_DIFF32:
8138 diff_mask = 0xffffffff;
8139 bfd_put_32 (abfd, diff_value,
8140 &contents[old_source_offset]);
8141 break;
8142 }
8143
8144 /* Check for overflow. */
8145 if ((diff_value & ~diff_mask) != 0)
8146 {
8147 (*link_info->callbacks->reloc_dangerous)
8148 (link_info, _("overflow after relaxation"),
8149 abfd, sec, old_source_offset);
8150 goto error_return;
8151 }
8152
8153 pin_contents (sec, contents);
8154 }
8155
8156 /* FIXME: If the relocation still references a section in
8157 the same input file, the relocation should be modified
8158 directly instead of adding a "fix" record. */
8159
8160 addend_displacement =
8161 new_reloc.target_offset + new_reloc.virtual_offset;
8162
8163 fix = reloc_bfd_fix_init (sec, source_offset, r_type, 0,
8164 r_reloc_get_section (&new_reloc),
8165 addend_displacement, TRUE);
8166 add_fix (sec, fix);
8167 }
8168
8169 pin_internal_relocs (sec, internal_relocs);
8170 }
8171 }
8172
8173 if ((relax_info->is_relaxable_literal_section
8174 || relax_info->is_relaxable_asm_section)
8175 && relax_info->action_list.head)
8176 {
8177 /* Walk through the planned actions and build up a table
8178 of move, copy and fill records. Use the move, copy and
8179 fill records to perform the actions once. */
8180
8181 bfd_size_type size = sec->size;
8182 int removed = 0;
8183 bfd_size_type final_size, copy_size, orig_insn_size;
8184 bfd_byte *scratch = NULL;
8185 bfd_byte *dup_contents = NULL;
8186 bfd_size_type orig_size = size;
8187 bfd_vma orig_dot = 0;
8188 bfd_vma orig_dot_copied = 0; /* Byte copied already from
8189 orig dot in physical memory. */
8190 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
8191 bfd_vma dup_dot = 0;
8192
8193 text_action *action = relax_info->action_list.head;
8194
8195 final_size = sec->size;
8196 for (action = relax_info->action_list.head; action;
8197 action = action->next)
8198 {
8199 final_size -= action->removed_bytes;
8200 }
8201
8202 scratch = (bfd_byte *) bfd_zmalloc (final_size);
8203 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
8204
8205 /* The dot is the current fill location. */
8206#if DEBUG
8207 print_action_list (stderr, &relax_info->action_list);
8208#endif
8209
8210 for (action = relax_info->action_list.head; action;
8211 action = action->next)
8212 {
8213 virtual_action = FALSE;
8214 if (action->offset > orig_dot)
8215 {
8216 orig_dot += orig_dot_copied;
8217 orig_dot_copied = 0;
8218 orig_dot_vo = 0;
8219 /* Out of the virtual world. */
8220 }
8221
8222 if (action->offset > orig_dot)
8223 {
8224 copy_size = action->offset - orig_dot;
8225 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8226 orig_dot += copy_size;
8227 dup_dot += copy_size;
8228 BFD_ASSERT (action->offset == orig_dot);
8229 }
8230 else if (action->offset < orig_dot)
8231 {
8232 if (action->action == ta_fill
8233 && action->offset - action->removed_bytes == orig_dot)
8234 {
8235 /* This is OK because the fill only effects the dup_dot. */
8236 }
8237 else if (action->action == ta_add_literal)
8238 {
8239 /* TBD. Might need to handle this. */
8240 }
8241 }
8242 if (action->offset == orig_dot)
8243 {
8244 if (action->virtual_offset > orig_dot_vo)
8245 {
8246 if (orig_dot_vo == 0)
8247 {
8248 /* Need to copy virtual_offset bytes. Probably four. */
8249 copy_size = action->virtual_offset - orig_dot_vo;
8250 memmove (&dup_contents[dup_dot],
8251 &contents[orig_dot], copy_size);
8252 orig_dot_copied = copy_size;
8253 dup_dot += copy_size;
8254 }
8255 virtual_action = TRUE;
8256 }
8257 else
8258 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
8259 }
8260 switch (action->action)
8261 {
8262 case ta_remove_literal:
8263 case ta_remove_insn:
8264 BFD_ASSERT (action->removed_bytes >= 0);
8265 orig_dot += action->removed_bytes;
8266 break;
8267
8268 case ta_narrow_insn:
8269 orig_insn_size = 3;
8270 copy_size = 2;
8271 memmove (scratch, &contents[orig_dot], orig_insn_size);
8272 BFD_ASSERT (action->removed_bytes == 1);
64b607e6 8273 rv = narrow_instruction (scratch, final_size, 0);
43cd72b9
BW
8274 BFD_ASSERT (rv);
8275 memmove (&dup_contents[dup_dot], scratch, copy_size);
8276 orig_dot += orig_insn_size;
8277 dup_dot += copy_size;
8278 break;
8279
8280 case ta_fill:
8281 if (action->removed_bytes >= 0)
8282 orig_dot += action->removed_bytes;
8283 else
8284 {
8285 /* Already zeroed in dup_contents. Just bump the
8286 counters. */
8287 dup_dot += (-action->removed_bytes);
8288 }
8289 break;
8290
8291 case ta_none:
8292 BFD_ASSERT (action->removed_bytes == 0);
8293 break;
8294
8295 case ta_convert_longcall:
8296 case ta_remove_longcall:
8297 /* These will be removed or converted before we get here. */
8298 BFD_ASSERT (0);
8299 break;
8300
8301 case ta_widen_insn:
8302 orig_insn_size = 2;
8303 copy_size = 3;
8304 memmove (scratch, &contents[orig_dot], orig_insn_size);
8305 BFD_ASSERT (action->removed_bytes == -1);
64b607e6 8306 rv = widen_instruction (scratch, final_size, 0);
43cd72b9
BW
8307 BFD_ASSERT (rv);
8308 memmove (&dup_contents[dup_dot], scratch, copy_size);
8309 orig_dot += orig_insn_size;
8310 dup_dot += copy_size;
8311 break;
8312
8313 case ta_add_literal:
8314 orig_insn_size = 0;
8315 copy_size = 4;
8316 BFD_ASSERT (action->removed_bytes == -4);
8317 /* TBD -- place the literal value here and insert
8318 into the table. */
8319 memset (&dup_contents[dup_dot], 0, 4);
8320 pin_internal_relocs (sec, internal_relocs);
8321 pin_contents (sec, contents);
8322
8323 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
8324 relax_info, &internal_relocs, &action->value))
8325 goto error_return;
8326
8327 if (virtual_action)
8328 orig_dot_vo += copy_size;
8329
8330 orig_dot += orig_insn_size;
8331 dup_dot += copy_size;
8332 break;
8333
8334 default:
8335 /* Not implemented yet. */
8336 BFD_ASSERT (0);
8337 break;
8338 }
8339
8340 size -= action->removed_bytes;
8341 removed += action->removed_bytes;
8342 BFD_ASSERT (dup_dot <= final_size);
8343 BFD_ASSERT (orig_dot <= orig_size);
8344 }
8345
8346 orig_dot += orig_dot_copied;
8347 orig_dot_copied = 0;
8348
8349 if (orig_dot != orig_size)
8350 {
8351 copy_size = orig_size - orig_dot;
8352 BFD_ASSERT (orig_size > orig_dot);
8353 BFD_ASSERT (dup_dot + copy_size == final_size);
8354 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8355 orig_dot += copy_size;
8356 dup_dot += copy_size;
8357 }
8358 BFD_ASSERT (orig_size == orig_dot);
8359 BFD_ASSERT (final_size == dup_dot);
8360
8361 /* Move the dup_contents back. */
8362 if (final_size > orig_size)
8363 {
8364 /* Contents need to be reallocated. Swap the dup_contents into
8365 contents. */
8366 sec->contents = dup_contents;
8367 free (contents);
8368 contents = dup_contents;
8369 pin_contents (sec, contents);
8370 }
8371 else
8372 {
8373 BFD_ASSERT (final_size <= orig_size);
8374 memset (contents, 0, orig_size);
8375 memcpy (contents, dup_contents, final_size);
8376 free (dup_contents);
8377 }
8378 free (scratch);
8379 pin_contents (sec, contents);
8380
8381 sec->size = final_size;
8382 }
8383
8384 error_return:
8385 release_internal_relocs (sec, internal_relocs);
8386 release_contents (sec, contents);
8387 return ok;
8388}
8389
8390
8391static bfd_boolean
7fa3d080 8392translate_section_fixes (asection *sec)
43cd72b9
BW
8393{
8394 xtensa_relax_info *relax_info;
8395 reloc_bfd_fix *r;
8396
8397 relax_info = get_xtensa_relax_info (sec);
8398 if (!relax_info)
8399 return TRUE;
8400
8401 for (r = relax_info->fix_list; r != NULL; r = r->next)
8402 if (!translate_reloc_bfd_fix (r))
8403 return FALSE;
e0001a05 8404
43cd72b9
BW
8405 return TRUE;
8406}
e0001a05 8407
e0001a05 8408
43cd72b9
BW
8409/* Translate a fix given the mapping in the relax info for the target
8410 section. If it has already been translated, no work is required. */
e0001a05 8411
43cd72b9 8412static bfd_boolean
7fa3d080 8413translate_reloc_bfd_fix (reloc_bfd_fix *fix)
43cd72b9
BW
8414{
8415 reloc_bfd_fix new_fix;
8416 asection *sec;
8417 xtensa_relax_info *relax_info;
8418 removed_literal *removed;
8419 bfd_vma new_offset, target_offset;
e0001a05 8420
43cd72b9
BW
8421 if (fix->translated)
8422 return TRUE;
e0001a05 8423
43cd72b9
BW
8424 sec = fix->target_sec;
8425 target_offset = fix->target_offset;
e0001a05 8426
43cd72b9
BW
8427 relax_info = get_xtensa_relax_info (sec);
8428 if (!relax_info)
8429 {
8430 fix->translated = TRUE;
8431 return TRUE;
8432 }
e0001a05 8433
43cd72b9 8434 new_fix = *fix;
e0001a05 8435
43cd72b9
BW
8436 /* The fix does not need to be translated if the section cannot change. */
8437 if (!relax_info->is_relaxable_literal_section
8438 && !relax_info->is_relaxable_asm_section)
8439 {
8440 fix->translated = TRUE;
8441 return TRUE;
8442 }
e0001a05 8443
43cd72b9
BW
8444 /* If the literal has been moved and this relocation was on an
8445 opcode, then the relocation should move to the new literal
8446 location. Otherwise, the relocation should move within the
8447 section. */
8448
8449 removed = FALSE;
8450 if (is_operand_relocation (fix->src_type))
8451 {
8452 /* Check if the original relocation is against a literal being
8453 removed. */
8454 removed = find_removed_literal (&relax_info->removed_list,
8455 target_offset);
e0001a05
NC
8456 }
8457
43cd72b9 8458 if (removed)
e0001a05 8459 {
43cd72b9 8460 asection *new_sec;
e0001a05 8461
43cd72b9
BW
8462 /* The fact that there is still a relocation to this literal indicates
8463 that the literal is being coalesced, not simply removed. */
8464 BFD_ASSERT (removed->to.abfd != NULL);
e0001a05 8465
43cd72b9
BW
8466 /* This was moved to some other address (possibly another section). */
8467 new_sec = r_reloc_get_section (&removed->to);
8468 if (new_sec != sec)
e0001a05 8469 {
43cd72b9
BW
8470 sec = new_sec;
8471 relax_info = get_xtensa_relax_info (sec);
8472 if (!relax_info ||
8473 (!relax_info->is_relaxable_literal_section
8474 && !relax_info->is_relaxable_asm_section))
e0001a05 8475 {
43cd72b9
BW
8476 target_offset = removed->to.target_offset;
8477 new_fix.target_sec = new_sec;
8478 new_fix.target_offset = target_offset;
8479 new_fix.translated = TRUE;
8480 *fix = new_fix;
8481 return TRUE;
e0001a05 8482 }
e0001a05 8483 }
43cd72b9
BW
8484 target_offset = removed->to.target_offset;
8485 new_fix.target_sec = new_sec;
e0001a05 8486 }
43cd72b9
BW
8487
8488 /* The target address may have been moved within its section. */
8489 new_offset = offset_with_removed_text (&relax_info->action_list,
8490 target_offset);
8491
8492 new_fix.target_offset = new_offset;
8493 new_fix.target_offset = new_offset;
8494 new_fix.translated = TRUE;
8495 *fix = new_fix;
8496 return TRUE;
e0001a05
NC
8497}
8498
8499
8500/* Fix up a relocation to take account of removed literals. */
8501
8502static void
7fa3d080 8503translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel)
e0001a05
NC
8504{
8505 asection *sec;
8506 xtensa_relax_info *relax_info;
8507 removed_literal *removed;
43cd72b9 8508 bfd_vma new_offset, target_offset, removed_bytes;
e0001a05
NC
8509
8510 *new_rel = *orig_rel;
8511
8512 if (!r_reloc_is_defined (orig_rel))
8513 return;
8514 sec = r_reloc_get_section (orig_rel);
8515
8516 relax_info = get_xtensa_relax_info (sec);
8517 BFD_ASSERT (relax_info);
8518
43cd72b9
BW
8519 if (!relax_info->is_relaxable_literal_section
8520 && !relax_info->is_relaxable_asm_section)
e0001a05
NC
8521 return;
8522
43cd72b9
BW
8523 target_offset = orig_rel->target_offset;
8524
8525 removed = FALSE;
8526 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
8527 {
8528 /* Check if the original relocation is against a literal being
8529 removed. */
8530 removed = find_removed_literal (&relax_info->removed_list,
8531 target_offset);
8532 }
8533 if (removed && removed->to.abfd)
e0001a05
NC
8534 {
8535 asection *new_sec;
8536
8537 /* The fact that there is still a relocation to this literal indicates
8538 that the literal is being coalesced, not simply removed. */
8539 BFD_ASSERT (removed->to.abfd != NULL);
8540
43cd72b9
BW
8541 /* This was moved to some other address
8542 (possibly in another section). */
e0001a05
NC
8543 *new_rel = removed->to;
8544 new_sec = r_reloc_get_section (new_rel);
43cd72b9 8545 if (new_sec != sec)
e0001a05
NC
8546 {
8547 sec = new_sec;
8548 relax_info = get_xtensa_relax_info (sec);
43cd72b9
BW
8549 if (!relax_info
8550 || (!relax_info->is_relaxable_literal_section
8551 && !relax_info->is_relaxable_asm_section))
e0001a05
NC
8552 return;
8553 }
43cd72b9 8554 target_offset = new_rel->target_offset;
e0001a05
NC
8555 }
8556
8557 /* ...and the target address may have been moved within its section. */
43cd72b9
BW
8558 new_offset = offset_with_removed_text (&relax_info->action_list,
8559 target_offset);
e0001a05
NC
8560
8561 /* Modify the offset and addend. */
43cd72b9 8562 removed_bytes = target_offset - new_offset;
e0001a05 8563 new_rel->target_offset = new_offset;
43cd72b9 8564 new_rel->rela.r_addend -= removed_bytes;
e0001a05
NC
8565}
8566
8567
8568/* For dynamic links, there may be a dynamic relocation for each
8569 literal. The number of dynamic relocations must be computed in
8570 size_dynamic_sections, which occurs before relaxation. When a
8571 literal is removed, this function checks if there is a corresponding
8572 dynamic relocation and shrinks the size of the appropriate dynamic
8573 relocation section accordingly. At this point, the contents of the
8574 dynamic relocation sections have not yet been filled in, so there's
8575 nothing else that needs to be done. */
8576
8577static void
7fa3d080
BW
8578shrink_dynamic_reloc_sections (struct bfd_link_info *info,
8579 bfd *abfd,
8580 asection *input_section,
8581 Elf_Internal_Rela *rel)
e0001a05 8582{
f0e6fdb2 8583 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
8584 Elf_Internal_Shdr *symtab_hdr;
8585 struct elf_link_hash_entry **sym_hashes;
8586 unsigned long r_symndx;
8587 int r_type;
8588 struct elf_link_hash_entry *h;
8589 bfd_boolean dynamic_symbol;
8590
f0e6fdb2 8591 htab = elf_xtensa_hash_table (info);
e0001a05
NC
8592 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8593 sym_hashes = elf_sym_hashes (abfd);
8594
8595 r_type = ELF32_R_TYPE (rel->r_info);
8596 r_symndx = ELF32_R_SYM (rel->r_info);
8597
8598 if (r_symndx < symtab_hdr->sh_info)
8599 h = NULL;
8600 else
8601 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8602
4608f3d9 8603 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
e0001a05
NC
8604
8605 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
8606 && (input_section->flags & SEC_ALLOC) != 0
8607 && (dynamic_symbol || info->shared))
8608 {
e0001a05
NC
8609 asection *srel;
8610 bfd_boolean is_plt = FALSE;
8611
e0001a05
NC
8612 if (dynamic_symbol && r_type == R_XTENSA_PLT)
8613 {
f0e6fdb2 8614 srel = htab->srelplt;
e0001a05
NC
8615 is_plt = TRUE;
8616 }
8617 else
f0e6fdb2 8618 srel = htab->srelgot;
e0001a05
NC
8619
8620 /* Reduce size of the .rela.* section by one reloc. */
e0001a05 8621 BFD_ASSERT (srel != NULL);
eea6121a
AM
8622 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
8623 srel->size -= sizeof (Elf32_External_Rela);
e0001a05
NC
8624
8625 if (is_plt)
8626 {
8627 asection *splt, *sgotplt, *srelgot;
8628 int reloc_index, chunk;
8629
8630 /* Find the PLT reloc index of the entry being removed. This
8631 is computed from the size of ".rela.plt". It is needed to
8632 figure out which PLT chunk to resize. Usually "last index
8633 = size - 1" since the index starts at zero, but in this
8634 context, the size has just been decremented so there's no
8635 need to subtract one. */
eea6121a 8636 reloc_index = srel->size / sizeof (Elf32_External_Rela);
e0001a05
NC
8637
8638 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
f0e6fdb2
BW
8639 splt = elf_xtensa_get_plt_section (info, chunk);
8640 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
8641 BFD_ASSERT (splt != NULL && sgotplt != NULL);
8642
8643 /* Check if an entire PLT chunk has just been eliminated. */
8644 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
8645 {
8646 /* The two magic GOT entries for that chunk can go away. */
f0e6fdb2 8647 srelgot = htab->srelgot;
e0001a05
NC
8648 BFD_ASSERT (srelgot != NULL);
8649 srelgot->reloc_count -= 2;
eea6121a
AM
8650 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
8651 sgotplt->size -= 8;
e0001a05
NC
8652
8653 /* There should be only one entry left (and it will be
8654 removed below). */
eea6121a
AM
8655 BFD_ASSERT (sgotplt->size == 4);
8656 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
e0001a05
NC
8657 }
8658
eea6121a
AM
8659 BFD_ASSERT (sgotplt->size >= 4);
8660 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
e0001a05 8661
eea6121a
AM
8662 sgotplt->size -= 4;
8663 splt->size -= PLT_ENTRY_SIZE;
e0001a05
NC
8664 }
8665 }
8666}
8667
8668
43cd72b9
BW
8669/* Take an r_rel and move it to another section. This usually
8670 requires extending the interal_relocation array and pinning it. If
8671 the original r_rel is from the same BFD, we can complete this here.
8672 Otherwise, we add a fix record to let the final link fix the
8673 appropriate address. Contents and internal relocations for the
8674 section must be pinned after calling this routine. */
8675
8676static bfd_boolean
7fa3d080
BW
8677move_literal (bfd *abfd,
8678 struct bfd_link_info *link_info,
8679 asection *sec,
8680 bfd_vma offset,
8681 bfd_byte *contents,
8682 xtensa_relax_info *relax_info,
8683 Elf_Internal_Rela **internal_relocs_p,
8684 const literal_value *lit)
43cd72b9
BW
8685{
8686 Elf_Internal_Rela *new_relocs = NULL;
8687 size_t new_relocs_count = 0;
8688 Elf_Internal_Rela this_rela;
8689 const r_reloc *r_rel;
8690
8691 r_rel = &lit->r_rel;
8692 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
8693
8694 if (r_reloc_is_const (r_rel))
8695 bfd_put_32 (abfd, lit->value, contents + offset);
8696 else
8697 {
8698 int r_type;
8699 unsigned i;
8700 asection *target_sec;
8701 reloc_bfd_fix *fix;
8702 unsigned insert_at;
8703
8704 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
8705 target_sec = r_reloc_get_section (r_rel);
8706
8707 /* This is the difficult case. We have to create a fix up. */
8708 this_rela.r_offset = offset;
8709 this_rela.r_info = ELF32_R_INFO (0, r_type);
8710 this_rela.r_addend =
8711 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
8712 bfd_put_32 (abfd, lit->value, contents + offset);
8713
8714 /* Currently, we cannot move relocations during a relocatable link. */
8715 BFD_ASSERT (!link_info->relocatable);
8716 fix = reloc_bfd_fix_init (sec, offset, r_type, r_rel->abfd,
8717 r_reloc_get_section (r_rel),
8718 r_rel->target_offset + r_rel->virtual_offset,
8719 FALSE);
8720 /* We also need to mark that relocations are needed here. */
8721 sec->flags |= SEC_RELOC;
8722
8723 translate_reloc_bfd_fix (fix);
8724 /* This fix has not yet been translated. */
8725 add_fix (sec, fix);
8726
8727 /* Add the relocation. If we have already allocated our own
8728 space for the relocations and we have room for more, then use
8729 it. Otherwise, allocate new space and move the literals. */
8730 insert_at = sec->reloc_count;
8731 for (i = 0; i < sec->reloc_count; ++i)
8732 {
8733 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
8734 {
8735 insert_at = i;
8736 break;
8737 }
8738 }
8739
8740 if (*internal_relocs_p != relax_info->allocated_relocs
8741 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
8742 {
8743 BFD_ASSERT (relax_info->allocated_relocs == NULL
8744 || sec->reloc_count == relax_info->relocs_count);
8745
8746 if (relax_info->allocated_relocs_count == 0)
8747 new_relocs_count = (sec->reloc_count + 2) * 2;
8748 else
8749 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
8750
8751 new_relocs = (Elf_Internal_Rela *)
8752 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
8753 if (!new_relocs)
8754 return FALSE;
8755
8756 /* We could handle this more quickly by finding the split point. */
8757 if (insert_at != 0)
8758 memcpy (new_relocs, *internal_relocs_p,
8759 insert_at * sizeof (Elf_Internal_Rela));
8760
8761 new_relocs[insert_at] = this_rela;
8762
8763 if (insert_at != sec->reloc_count)
8764 memcpy (new_relocs + insert_at + 1,
8765 (*internal_relocs_p) + insert_at,
8766 (sec->reloc_count - insert_at)
8767 * sizeof (Elf_Internal_Rela));
8768
8769 if (*internal_relocs_p != relax_info->allocated_relocs)
8770 {
8771 /* The first time we re-allocate, we can only free the
8772 old relocs if they were allocated with bfd_malloc.
8773 This is not true when keep_memory is in effect. */
8774 if (!link_info->keep_memory)
8775 free (*internal_relocs_p);
8776 }
8777 else
8778 free (*internal_relocs_p);
8779 relax_info->allocated_relocs = new_relocs;
8780 relax_info->allocated_relocs_count = new_relocs_count;
8781 elf_section_data (sec)->relocs = new_relocs;
8782 sec->reloc_count++;
8783 relax_info->relocs_count = sec->reloc_count;
8784 *internal_relocs_p = new_relocs;
8785 }
8786 else
8787 {
8788 if (insert_at != sec->reloc_count)
8789 {
8790 unsigned idx;
8791 for (idx = sec->reloc_count; idx > insert_at; idx--)
8792 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
8793 }
8794 (*internal_relocs_p)[insert_at] = this_rela;
8795 sec->reloc_count++;
8796 if (relax_info->allocated_relocs)
8797 relax_info->relocs_count = sec->reloc_count;
8798 }
8799 }
8800 return TRUE;
8801}
8802
8803
e0001a05
NC
8804/* This is similar to relax_section except that when a target is moved,
8805 we shift addresses up. We also need to modify the size. This
8806 algorithm does NOT allow for relocations into the middle of the
8807 property sections. */
8808
43cd72b9 8809static bfd_boolean
7fa3d080
BW
8810relax_property_section (bfd *abfd,
8811 asection *sec,
8812 struct bfd_link_info *link_info)
e0001a05
NC
8813{
8814 Elf_Internal_Rela *internal_relocs;
8815 bfd_byte *contents;
8816 unsigned i, nexti;
8817 bfd_boolean ok = TRUE;
43cd72b9
BW
8818 bfd_boolean is_full_prop_section;
8819 size_t last_zfill_target_offset = 0;
8820 asection *last_zfill_target_sec = NULL;
8821 bfd_size_type sec_size;
e0001a05 8822
43cd72b9 8823 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
8824 internal_relocs = retrieve_internal_relocs (abfd, sec,
8825 link_info->keep_memory);
8826 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 8827 if (contents == NULL && sec_size != 0)
e0001a05
NC
8828 {
8829 ok = FALSE;
8830 goto error_return;
8831 }
8832
43cd72b9 8833 is_full_prop_section =
0112cd26
NC
8834 ( CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
8835 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."));
43cd72b9
BW
8836
8837 if (internal_relocs)
e0001a05 8838 {
43cd72b9 8839 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
8840 {
8841 Elf_Internal_Rela *irel;
8842 xtensa_relax_info *target_relax_info;
e0001a05
NC
8843 unsigned r_type;
8844 asection *target_sec;
43cd72b9
BW
8845 literal_value val;
8846 bfd_byte *size_p, *flags_p;
e0001a05
NC
8847
8848 /* Locally change the source address.
8849 Translate the target to the new target address.
8850 If it points to this section and has been removed, MOVE IT.
8851 Also, don't forget to modify the associated SIZE at
8852 (offset + 4). */
8853
8854 irel = &internal_relocs[i];
8855 r_type = ELF32_R_TYPE (irel->r_info);
8856 if (r_type == R_XTENSA_NONE)
8857 continue;
8858
43cd72b9
BW
8859 /* Find the literal value. */
8860 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
8861 size_p = &contents[irel->r_offset + 4];
8862 flags_p = NULL;
8863 if (is_full_prop_section)
8864 {
8865 flags_p = &contents[irel->r_offset + 8];
8866 BFD_ASSERT (irel->r_offset + 12 <= sec_size);
8867 }
8868 else
8869 BFD_ASSERT (irel->r_offset + 8 <= sec_size);
e0001a05 8870
43cd72b9 8871 target_sec = r_reloc_get_section (&val.r_rel);
e0001a05
NC
8872 target_relax_info = get_xtensa_relax_info (target_sec);
8873
8874 if (target_relax_info
43cd72b9
BW
8875 && (target_relax_info->is_relaxable_literal_section
8876 || target_relax_info->is_relaxable_asm_section ))
e0001a05
NC
8877 {
8878 /* Translate the relocation's destination. */
43cd72b9 8879 bfd_vma new_offset, new_end_offset;
e0001a05
NC
8880 long old_size, new_size;
8881
43cd72b9
BW
8882 new_offset = offset_with_removed_text
8883 (&target_relax_info->action_list, val.r_rel.target_offset);
e0001a05
NC
8884
8885 /* Assert that we are not out of bounds. */
43cd72b9
BW
8886 old_size = bfd_get_32 (abfd, size_p);
8887
8888 if (old_size == 0)
8889 {
8890 /* Only the first zero-sized unreachable entry is
8891 allowed to expand. In this case the new offset
8892 should be the offset before the fill and the new
8893 size is the expansion size. For other zero-sized
8894 entries the resulting size should be zero with an
8895 offset before or after the fill address depending
8896 on whether the expanding unreachable entry
8897 preceeds it. */
8898 if (last_zfill_target_sec
8899 && last_zfill_target_sec == target_sec
8900 && last_zfill_target_offset == val.r_rel.target_offset)
8901 new_end_offset = new_offset;
8902 else
8903 {
8904 new_end_offset = new_offset;
8905 new_offset = offset_with_removed_text_before_fill
8906 (&target_relax_info->action_list,
8907 val.r_rel.target_offset);
8908
8909 /* If it is not unreachable and we have not yet
8910 seen an unreachable at this address, place it
8911 before the fill address. */
8912 if (!flags_p
8913 || (bfd_get_32 (abfd, flags_p)
8914 & XTENSA_PROP_UNREACHABLE) == 0)
8915 new_end_offset = new_offset;
8916 else
8917 {
8918 last_zfill_target_sec = target_sec;
8919 last_zfill_target_offset = val.r_rel.target_offset;
8920 }
8921 }
8922 }
8923 else
8924 {
8925 new_end_offset = offset_with_removed_text_before_fill
8926 (&target_relax_info->action_list,
8927 val.r_rel.target_offset + old_size);
8928 }
e0001a05 8929
e0001a05 8930 new_size = new_end_offset - new_offset;
43cd72b9 8931
e0001a05
NC
8932 if (new_size != old_size)
8933 {
8934 bfd_put_32 (abfd, new_size, size_p);
8935 pin_contents (sec, contents);
8936 }
43cd72b9
BW
8937
8938 if (new_offset != val.r_rel.target_offset)
e0001a05 8939 {
43cd72b9 8940 bfd_vma diff = new_offset - val.r_rel.target_offset;
e0001a05
NC
8941 irel->r_addend += diff;
8942 pin_internal_relocs (sec, internal_relocs);
8943 }
8944 }
8945 }
8946 }
8947
8948 /* Combine adjacent property table entries. This is also done in
8949 finish_dynamic_sections() but at that point it's too late to
8950 reclaim the space in the output section, so we do this twice. */
8951
43cd72b9
BW
8952 if (internal_relocs && (!link_info->relocatable
8953 || strcmp (sec->name, XTENSA_LIT_SEC_NAME) == 0))
e0001a05
NC
8954 {
8955 Elf_Internal_Rela *last_irel = NULL;
8956 int removed_bytes = 0;
8957 bfd_vma offset, last_irel_offset;
8958 bfd_vma section_size;
43cd72b9
BW
8959 bfd_size_type entry_size;
8960 flagword predef_flags;
8961
8962 if (is_full_prop_section)
8963 entry_size = 12;
8964 else
8965 entry_size = 8;
8966
8967 predef_flags = xtensa_get_property_predef_flags (sec);
e0001a05
NC
8968
8969 /* Walk over memory and irels at the same time.
8970 This REQUIRES that the internal_relocs be sorted by offset. */
8971 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8972 internal_reloc_compare);
8973 nexti = 0; /* Index into internal_relocs. */
8974
8975 pin_internal_relocs (sec, internal_relocs);
8976 pin_contents (sec, contents);
8977
8978 last_irel_offset = (bfd_vma) -1;
eea6121a 8979 section_size = sec->size;
43cd72b9 8980 BFD_ASSERT (section_size % entry_size == 0);
e0001a05 8981
43cd72b9 8982 for (offset = 0; offset < section_size; offset += entry_size)
e0001a05
NC
8983 {
8984 Elf_Internal_Rela *irel, *next_irel;
8985 bfd_vma bytes_to_remove, size, actual_offset;
8986 bfd_boolean remove_this_irel;
43cd72b9 8987 flagword flags;
e0001a05
NC
8988
8989 irel = NULL;
8990 next_irel = NULL;
8991
8992 /* Find the next two relocations (if there are that many left),
8993 skipping over any R_XTENSA_NONE relocs. On entry, "nexti" is
8994 the starting reloc index. After these two loops, "i"
8995 is the index of the first non-NONE reloc past that starting
8996 index, and "nexti" is the index for the next non-NONE reloc
8997 after "i". */
8998
8999 for (i = nexti; i < sec->reloc_count; i++)
9000 {
9001 if (ELF32_R_TYPE (internal_relocs[i].r_info) != R_XTENSA_NONE)
9002 {
9003 irel = &internal_relocs[i];
9004 break;
9005 }
9006 internal_relocs[i].r_offset -= removed_bytes;
9007 }
9008
9009 for (nexti = i + 1; nexti < sec->reloc_count; nexti++)
9010 {
9011 if (ELF32_R_TYPE (internal_relocs[nexti].r_info)
9012 != R_XTENSA_NONE)
9013 {
9014 next_irel = &internal_relocs[nexti];
9015 break;
9016 }
9017 internal_relocs[nexti].r_offset -= removed_bytes;
9018 }
9019
9020 remove_this_irel = FALSE;
9021 bytes_to_remove = 0;
9022 actual_offset = offset - removed_bytes;
9023 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
9024
43cd72b9
BW
9025 if (is_full_prop_section)
9026 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
9027 else
9028 flags = predef_flags;
9029
e0001a05
NC
9030 /* Check that the irels are sorted by offset,
9031 with only one per address. */
9032 BFD_ASSERT (!irel || (int) irel->r_offset > (int) last_irel_offset);
9033 BFD_ASSERT (!next_irel || next_irel->r_offset > irel->r_offset);
9034
43cd72b9
BW
9035 /* Make sure there aren't relocs on the size or flag fields. */
9036 if ((irel && irel->r_offset == offset + 4)
9037 || (is_full_prop_section
9038 && irel && irel->r_offset == offset + 8))
e0001a05
NC
9039 {
9040 irel->r_offset -= removed_bytes;
9041 last_irel_offset = irel->r_offset;
9042 }
43cd72b9
BW
9043 else if (next_irel && (next_irel->r_offset == offset + 4
9044 || (is_full_prop_section
9045 && next_irel->r_offset == offset + 8)))
e0001a05
NC
9046 {
9047 nexti += 1;
9048 irel->r_offset -= removed_bytes;
9049 next_irel->r_offset -= removed_bytes;
9050 last_irel_offset = next_irel->r_offset;
9051 }
43cd72b9
BW
9052 else if (size == 0 && (flags & XTENSA_PROP_ALIGN) == 0
9053 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
e0001a05 9054 {
43cd72b9
BW
9055 /* Always remove entries with zero size and no alignment. */
9056 bytes_to_remove = entry_size;
e0001a05
NC
9057 if (irel && irel->r_offset == offset)
9058 {
9059 remove_this_irel = TRUE;
9060
9061 irel->r_offset -= removed_bytes;
9062 last_irel_offset = irel->r_offset;
9063 }
9064 }
9065 else if (irel && irel->r_offset == offset)
9066 {
9067 if (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32)
9068 {
9069 if (last_irel)
9070 {
43cd72b9
BW
9071 flagword old_flags;
9072 bfd_vma old_size =
e0001a05 9073 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
43cd72b9
BW
9074 bfd_vma old_address =
9075 (last_irel->r_addend
e0001a05 9076 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
43cd72b9
BW
9077 bfd_vma new_address =
9078 (irel->r_addend
e0001a05 9079 + bfd_get_32 (abfd, &contents[actual_offset]));
43cd72b9
BW
9080 if (is_full_prop_section)
9081 old_flags = bfd_get_32
9082 (abfd, &contents[last_irel->r_offset + 8]);
9083 else
9084 old_flags = predef_flags;
9085
9086 if ((ELF32_R_SYM (irel->r_info)
9087 == ELF32_R_SYM (last_irel->r_info))
9088 && old_address + old_size == new_address
9089 && old_flags == flags
9090 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
9091 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
e0001a05 9092 {
43cd72b9 9093 /* Fix the old size. */
e0001a05
NC
9094 bfd_put_32 (abfd, old_size + size,
9095 &contents[last_irel->r_offset + 4]);
43cd72b9 9096 bytes_to_remove = entry_size;
e0001a05
NC
9097 remove_this_irel = TRUE;
9098 }
9099 else
9100 last_irel = irel;
9101 }
9102 else
9103 last_irel = irel;
9104 }
9105
9106 irel->r_offset -= removed_bytes;
9107 last_irel_offset = irel->r_offset;
9108 }
9109
9110 if (remove_this_irel)
9111 {
9112 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9113 irel->r_offset -= bytes_to_remove;
9114 }
9115
9116 if (bytes_to_remove != 0)
9117 {
9118 removed_bytes += bytes_to_remove;
43cd72b9 9119 if (offset + bytes_to_remove < section_size)
e0001a05 9120 memmove (&contents[actual_offset],
43cd72b9
BW
9121 &contents[actual_offset + bytes_to_remove],
9122 section_size - offset - bytes_to_remove);
e0001a05
NC
9123 }
9124 }
9125
43cd72b9 9126 if (removed_bytes)
e0001a05
NC
9127 {
9128 /* Clear the removed bytes. */
9129 memset (&contents[section_size - removed_bytes], 0, removed_bytes);
9130
eea6121a 9131 sec->size = section_size - removed_bytes;
e901de89
BW
9132
9133 if (xtensa_is_littable_section (sec))
9134 {
f0e6fdb2
BW
9135 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
9136 if (sgotloc)
9137 sgotloc->size -= removed_bytes;
e901de89 9138 }
e0001a05
NC
9139 }
9140 }
e901de89 9141
e0001a05
NC
9142 error_return:
9143 release_internal_relocs (sec, internal_relocs);
9144 release_contents (sec, contents);
9145 return ok;
9146}
9147
9148\f
9149/* Third relaxation pass. */
9150
9151/* Change symbol values to account for removed literals. */
9152
43cd72b9 9153bfd_boolean
7fa3d080 9154relax_section_symbols (bfd *abfd, asection *sec)
e0001a05
NC
9155{
9156 xtensa_relax_info *relax_info;
9157 unsigned int sec_shndx;
9158 Elf_Internal_Shdr *symtab_hdr;
9159 Elf_Internal_Sym *isymbuf;
9160 unsigned i, num_syms, num_locals;
9161
9162 relax_info = get_xtensa_relax_info (sec);
9163 BFD_ASSERT (relax_info);
9164
43cd72b9
BW
9165 if (!relax_info->is_relaxable_literal_section
9166 && !relax_info->is_relaxable_asm_section)
e0001a05
NC
9167 return TRUE;
9168
9169 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
9170
9171 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9172 isymbuf = retrieve_local_syms (abfd);
9173
9174 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
9175 num_locals = symtab_hdr->sh_info;
9176
9177 /* Adjust the local symbols defined in this section. */
9178 for (i = 0; i < num_locals; i++)
9179 {
9180 Elf_Internal_Sym *isym = &isymbuf[i];
9181
9182 if (isym->st_shndx == sec_shndx)
9183 {
43cd72b9
BW
9184 bfd_vma new_address = offset_with_removed_text
9185 (&relax_info->action_list, isym->st_value);
9186 bfd_vma new_size = isym->st_size;
9187
9188 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
9189 {
9190 bfd_vma new_end = offset_with_removed_text
9191 (&relax_info->action_list, isym->st_value + isym->st_size);
9192 new_size = new_end - new_address;
9193 }
9194
9195 isym->st_value = new_address;
9196 isym->st_size = new_size;
e0001a05
NC
9197 }
9198 }
9199
9200 /* Now adjust the global symbols defined in this section. */
9201 for (i = 0; i < (num_syms - num_locals); i++)
9202 {
9203 struct elf_link_hash_entry *sym_hash;
9204
9205 sym_hash = elf_sym_hashes (abfd)[i];
9206
9207 if (sym_hash->root.type == bfd_link_hash_warning)
9208 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
9209
9210 if ((sym_hash->root.type == bfd_link_hash_defined
9211 || sym_hash->root.type == bfd_link_hash_defweak)
9212 && sym_hash->root.u.def.section == sec)
9213 {
43cd72b9
BW
9214 bfd_vma new_address = offset_with_removed_text
9215 (&relax_info->action_list, sym_hash->root.u.def.value);
9216 bfd_vma new_size = sym_hash->size;
9217
9218 if (sym_hash->type == STT_FUNC)
9219 {
9220 bfd_vma new_end = offset_with_removed_text
9221 (&relax_info->action_list,
9222 sym_hash->root.u.def.value + sym_hash->size);
9223 new_size = new_end - new_address;
9224 }
9225
9226 sym_hash->root.u.def.value = new_address;
9227 sym_hash->size = new_size;
e0001a05
NC
9228 }
9229 }
9230
9231 return TRUE;
9232}
9233
9234\f
9235/* "Fix" handling functions, called while performing relocations. */
9236
43cd72b9 9237static bfd_boolean
7fa3d080
BW
9238do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
9239 bfd *input_bfd,
9240 asection *input_section,
9241 bfd_byte *contents)
e0001a05
NC
9242{
9243 r_reloc r_rel;
9244 asection *sec, *old_sec;
9245 bfd_vma old_offset;
9246 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05
NC
9247 reloc_bfd_fix *fix;
9248
9249 if (r_type == R_XTENSA_NONE)
43cd72b9 9250 return TRUE;
e0001a05 9251
43cd72b9
BW
9252 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9253 if (!fix)
9254 return TRUE;
e0001a05 9255
43cd72b9
BW
9256 r_reloc_init (&r_rel, input_bfd, rel, contents,
9257 bfd_get_section_limit (input_bfd, input_section));
e0001a05 9258 old_sec = r_reloc_get_section (&r_rel);
43cd72b9
BW
9259 old_offset = r_rel.target_offset;
9260
9261 if (!old_sec || !r_reloc_is_defined (&r_rel))
e0001a05 9262 {
43cd72b9
BW
9263 if (r_type != R_XTENSA_ASM_EXPAND)
9264 {
9265 (*_bfd_error_handler)
9266 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
9267 input_bfd, input_section, rel->r_offset,
9268 elf_howto_table[r_type].name);
9269 return FALSE;
9270 }
e0001a05
NC
9271 /* Leave it be. Resolution will happen in a later stage. */
9272 }
9273 else
9274 {
9275 sec = fix->target_sec;
9276 rel->r_addend += ((sec->output_offset + fix->target_offset)
9277 - (old_sec->output_offset + old_offset));
9278 }
43cd72b9 9279 return TRUE;
e0001a05
NC
9280}
9281
9282
9283static void
7fa3d080
BW
9284do_fix_for_final_link (Elf_Internal_Rela *rel,
9285 bfd *input_bfd,
9286 asection *input_section,
9287 bfd_byte *contents,
9288 bfd_vma *relocationp)
e0001a05
NC
9289{
9290 asection *sec;
9291 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05 9292 reloc_bfd_fix *fix;
43cd72b9 9293 bfd_vma fixup_diff;
e0001a05
NC
9294
9295 if (r_type == R_XTENSA_NONE)
9296 return;
9297
43cd72b9
BW
9298 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9299 if (!fix)
e0001a05
NC
9300 return;
9301
9302 sec = fix->target_sec;
43cd72b9
BW
9303
9304 fixup_diff = rel->r_addend;
9305 if (elf_howto_table[fix->src_type].partial_inplace)
9306 {
9307 bfd_vma inplace_val;
9308 BFD_ASSERT (fix->src_offset
9309 < bfd_get_section_limit (input_bfd, input_section));
9310 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
9311 fixup_diff += inplace_val;
9312 }
9313
e0001a05
NC
9314 *relocationp = (sec->output_section->vma
9315 + sec->output_offset
43cd72b9 9316 + fix->target_offset - fixup_diff);
e0001a05
NC
9317}
9318
9319\f
9320/* Miscellaneous utility functions.... */
9321
9322static asection *
f0e6fdb2 9323elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
e0001a05 9324{
f0e6fdb2
BW
9325 struct elf_xtensa_link_hash_table *htab;
9326 bfd *dynobj;
e0001a05
NC
9327 char plt_name[10];
9328
9329 if (chunk == 0)
f0e6fdb2
BW
9330 {
9331 htab = elf_xtensa_hash_table (info);
9332 return htab->splt;
9333 }
e0001a05 9334
f0e6fdb2 9335 dynobj = elf_hash_table (info)->dynobj;
e0001a05
NC
9336 sprintf (plt_name, ".plt.%u", chunk);
9337 return bfd_get_section_by_name (dynobj, plt_name);
9338}
9339
9340
9341static asection *
f0e6fdb2 9342elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
e0001a05 9343{
f0e6fdb2
BW
9344 struct elf_xtensa_link_hash_table *htab;
9345 bfd *dynobj;
e0001a05
NC
9346 char got_name[14];
9347
9348 if (chunk == 0)
f0e6fdb2
BW
9349 {
9350 htab = elf_xtensa_hash_table (info);
9351 return htab->sgotplt;
9352 }
e0001a05 9353
f0e6fdb2 9354 dynobj = elf_hash_table (info)->dynobj;
e0001a05
NC
9355 sprintf (got_name, ".got.plt.%u", chunk);
9356 return bfd_get_section_by_name (dynobj, got_name);
9357}
9358
9359
9360/* Get the input section for a given symbol index.
9361 If the symbol is:
9362 . a section symbol, return the section;
9363 . a common symbol, return the common section;
9364 . an undefined symbol, return the undefined section;
9365 . an indirect symbol, follow the links;
9366 . an absolute value, return the absolute section. */
9367
9368static asection *
7fa3d080 9369get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
9370{
9371 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9372 asection *target_sec = NULL;
43cd72b9 9373 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
9374 {
9375 Elf_Internal_Sym *isymbuf;
9376 unsigned int section_index;
9377
9378 isymbuf = retrieve_local_syms (abfd);
9379 section_index = isymbuf[r_symndx].st_shndx;
9380
9381 if (section_index == SHN_UNDEF)
9382 target_sec = bfd_und_section_ptr;
9383 else if (section_index > 0 && section_index < SHN_LORESERVE)
9384 target_sec = bfd_section_from_elf_index (abfd, section_index);
9385 else if (section_index == SHN_ABS)
9386 target_sec = bfd_abs_section_ptr;
9387 else if (section_index == SHN_COMMON)
9388 target_sec = bfd_com_section_ptr;
43cd72b9 9389 else
e0001a05
NC
9390 /* Who knows? */
9391 target_sec = NULL;
9392 }
9393 else
9394 {
9395 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9396 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
9397
9398 while (h->root.type == bfd_link_hash_indirect
9399 || h->root.type == bfd_link_hash_warning)
9400 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9401
9402 switch (h->root.type)
9403 {
9404 case bfd_link_hash_defined:
9405 case bfd_link_hash_defweak:
9406 target_sec = h->root.u.def.section;
9407 break;
9408 case bfd_link_hash_common:
9409 target_sec = bfd_com_section_ptr;
9410 break;
9411 case bfd_link_hash_undefined:
9412 case bfd_link_hash_undefweak:
9413 target_sec = bfd_und_section_ptr;
9414 break;
9415 default: /* New indirect warning. */
9416 target_sec = bfd_und_section_ptr;
9417 break;
9418 }
9419 }
9420 return target_sec;
9421}
9422
9423
9424static struct elf_link_hash_entry *
7fa3d080 9425get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
9426{
9427 unsigned long indx;
9428 struct elf_link_hash_entry *h;
9429 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9430
9431 if (r_symndx < symtab_hdr->sh_info)
9432 return NULL;
43cd72b9 9433
e0001a05
NC
9434 indx = r_symndx - symtab_hdr->sh_info;
9435 h = elf_sym_hashes (abfd)[indx];
9436 while (h->root.type == bfd_link_hash_indirect
9437 || h->root.type == bfd_link_hash_warning)
9438 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9439 return h;
9440}
9441
9442
9443/* Get the section-relative offset for a symbol number. */
9444
9445static bfd_vma
7fa3d080 9446get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
9447{
9448 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9449 bfd_vma offset = 0;
9450
43cd72b9 9451 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
9452 {
9453 Elf_Internal_Sym *isymbuf;
9454 isymbuf = retrieve_local_syms (abfd);
9455 offset = isymbuf[r_symndx].st_value;
9456 }
9457 else
9458 {
9459 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9460 struct elf_link_hash_entry *h =
9461 elf_sym_hashes (abfd)[indx];
9462
9463 while (h->root.type == bfd_link_hash_indirect
9464 || h->root.type == bfd_link_hash_warning)
9465 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9466 if (h->root.type == bfd_link_hash_defined
9467 || h->root.type == bfd_link_hash_defweak)
9468 offset = h->root.u.def.value;
9469 }
9470 return offset;
9471}
9472
9473
9474static bfd_boolean
7fa3d080 9475is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
43cd72b9
BW
9476{
9477 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
9478 struct elf_link_hash_entry *h;
9479
9480 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
9481 if (h && h->root.type == bfd_link_hash_defweak)
9482 return TRUE;
9483 return FALSE;
9484}
9485
9486
9487static bfd_boolean
7fa3d080
BW
9488pcrel_reloc_fits (xtensa_opcode opc,
9489 int opnd,
9490 bfd_vma self_address,
9491 bfd_vma dest_address)
e0001a05 9492{
43cd72b9
BW
9493 xtensa_isa isa = xtensa_default_isa;
9494 uint32 valp = dest_address;
9495 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
9496 || xtensa_operand_encode (isa, opc, opnd, &valp))
9497 return FALSE;
9498 return TRUE;
e0001a05
NC
9499}
9500
9501
b614a702 9502static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
b614a702 9503
e0001a05 9504static bfd_boolean
7fa3d080 9505xtensa_is_property_section (asection *sec)
e0001a05 9506{
0112cd26
NC
9507 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
9508 || CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
9509 || CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME))
b614a702 9510 return TRUE;
e901de89 9511
b614a702 9512 if (strncmp (".gnu.linkonce.", sec->name, linkonce_len) == 0
0112cd26
NC
9513 && (CONST_STRNEQ (&sec->name[linkonce_len], "x.")
9514 || CONST_STRNEQ (&sec->name[linkonce_len], "p.")
9515 || CONST_STRNEQ (&sec->name[linkonce_len], "prop.")))
e901de89
BW
9516 return TRUE;
9517
e901de89
BW
9518 return FALSE;
9519}
9520
9521
9522static bfd_boolean
7fa3d080 9523xtensa_is_littable_section (asection *sec)
e901de89 9524{
0112cd26 9525 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME))
b614a702 9526 return TRUE;
e901de89 9527
b614a702
BW
9528 if (strncmp (".gnu.linkonce.", sec->name, linkonce_len) == 0
9529 && sec->name[linkonce_len] == 'p'
9530 && sec->name[linkonce_len + 1] == '.')
e901de89 9531 return TRUE;
e0001a05 9532
e901de89 9533 return FALSE;
e0001a05
NC
9534}
9535
9536
43cd72b9 9537static int
7fa3d080 9538internal_reloc_compare (const void *ap, const void *bp)
e0001a05 9539{
43cd72b9
BW
9540 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9541 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9542
9543 if (a->r_offset != b->r_offset)
9544 return (a->r_offset - b->r_offset);
9545
9546 /* We don't need to sort on these criteria for correctness,
9547 but enforcing a more strict ordering prevents unstable qsort
9548 from behaving differently with different implementations.
9549 Without the code below we get correct but different results
9550 on Solaris 2.7 and 2.8. We would like to always produce the
9551 same results no matter the host. */
9552
9553 if (a->r_info != b->r_info)
9554 return (a->r_info - b->r_info);
9555
9556 return (a->r_addend - b->r_addend);
e0001a05
NC
9557}
9558
9559
9560static int
7fa3d080 9561internal_reloc_matches (const void *ap, const void *bp)
e0001a05
NC
9562{
9563 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9564 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9565
43cd72b9
BW
9566 /* Check if one entry overlaps with the other; this shouldn't happen
9567 except when searching for a match. */
e0001a05
NC
9568 return (a->r_offset - b->r_offset);
9569}
9570
9571
74869ac7
BW
9572/* Predicate function used to look up a section in a particular group. */
9573
9574static bfd_boolean
9575match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
9576{
9577 const char *gname = inf;
9578 const char *group_name = elf_group_name (sec);
9579
9580 return (group_name == gname
9581 || (group_name != NULL
9582 && gname != NULL
9583 && strcmp (group_name, gname) == 0));
9584}
9585
9586
9587asection *
9588xtensa_get_property_section (asection *sec, const char *base_name)
e0001a05 9589{
74869ac7
BW
9590 const char *suffix, *group_name;
9591 char *prop_sec_name;
9592 asection *prop_sec;
9593
9594 group_name = elf_group_name (sec);
9595 if (group_name)
9596 {
9597 suffix = strrchr (sec->name, '.');
9598 if (suffix == sec->name)
9599 suffix = 0;
9600 prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
9601 + (suffix ? strlen (suffix) : 0));
9602 strcpy (prop_sec_name, base_name);
9603 if (suffix)
9604 strcat (prop_sec_name, suffix);
9605 }
9606 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
e0001a05 9607 {
43cd72b9 9608 char *linkonce_kind = 0;
b614a702
BW
9609
9610 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
7db48a12 9611 linkonce_kind = "x.";
b614a702 9612 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
7db48a12 9613 linkonce_kind = "p.";
43cd72b9
BW
9614 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
9615 linkonce_kind = "prop.";
e0001a05 9616 else
b614a702
BW
9617 abort ();
9618
43cd72b9
BW
9619 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
9620 + strlen (linkonce_kind) + 1);
b614a702 9621 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
43cd72b9 9622 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
b614a702
BW
9623
9624 suffix = sec->name + linkonce_len;
096c35a7 9625 /* For backward compatibility, replace "t." instead of inserting
43cd72b9 9626 the new linkonce_kind (but not for "prop" sections). */
0112cd26 9627 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
43cd72b9
BW
9628 suffix += 2;
9629 strcat (prop_sec_name + linkonce_len, suffix);
74869ac7
BW
9630 }
9631 else
9632 prop_sec_name = strdup (base_name);
9633
9634 /* Check if the section already exists. */
9635 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
9636 match_section_group,
9637 (void *) group_name);
9638 /* If not, create it. */
9639 if (! prop_sec)
9640 {
9641 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
9642 flags |= (bfd_get_section_flags (sec->owner, sec)
9643 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
9644
9645 prop_sec = bfd_make_section_anyway_with_flags
9646 (sec->owner, strdup (prop_sec_name), flags);
9647 if (! prop_sec)
9648 return 0;
b614a702 9649
74869ac7 9650 elf_group_name (prop_sec) = group_name;
e0001a05
NC
9651 }
9652
74869ac7
BW
9653 free (prop_sec_name);
9654 return prop_sec;
e0001a05
NC
9655}
9656
43cd72b9
BW
9657
9658flagword
7fa3d080 9659xtensa_get_property_predef_flags (asection *sec)
43cd72b9 9660{
0112cd26
NC
9661 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
9662 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
43cd72b9
BW
9663 return (XTENSA_PROP_INSN
9664 | XTENSA_PROP_INSN_NO_TRANSFORM
9665 | XTENSA_PROP_INSN_NO_REORDER);
9666
9667 if (xtensa_is_littable_section (sec))
9668 return (XTENSA_PROP_LITERAL
9669 | XTENSA_PROP_INSN_NO_TRANSFORM
9670 | XTENSA_PROP_INSN_NO_REORDER);
9671
9672 return 0;
9673}
9674
e0001a05
NC
9675\f
9676/* Other functions called directly by the linker. */
9677
9678bfd_boolean
7fa3d080
BW
9679xtensa_callback_required_dependence (bfd *abfd,
9680 asection *sec,
9681 struct bfd_link_info *link_info,
9682 deps_callback_t callback,
9683 void *closure)
e0001a05
NC
9684{
9685 Elf_Internal_Rela *internal_relocs;
9686 bfd_byte *contents;
9687 unsigned i;
9688 bfd_boolean ok = TRUE;
43cd72b9
BW
9689 bfd_size_type sec_size;
9690
9691 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
9692
9693 /* ".plt*" sections have no explicit relocations but they contain L32R
9694 instructions that reference the corresponding ".got.plt*" sections. */
9695 if ((sec->flags & SEC_LINKER_CREATED) != 0
0112cd26 9696 && CONST_STRNEQ (sec->name, ".plt"))
e0001a05
NC
9697 {
9698 asection *sgotplt;
9699
9700 /* Find the corresponding ".got.plt*" section. */
9701 if (sec->name[4] == '\0')
9702 sgotplt = bfd_get_section_by_name (sec->owner, ".got.plt");
9703 else
9704 {
9705 char got_name[14];
9706 int chunk = 0;
9707
9708 BFD_ASSERT (sec->name[4] == '.');
9709 chunk = strtol (&sec->name[5], NULL, 10);
9710
9711 sprintf (got_name, ".got.plt.%u", chunk);
9712 sgotplt = bfd_get_section_by_name (sec->owner, got_name);
9713 }
9714 BFD_ASSERT (sgotplt);
9715
9716 /* Assume worst-case offsets: L32R at the very end of the ".plt"
9717 section referencing a literal at the very beginning of
9718 ".got.plt". This is very close to the real dependence, anyway. */
43cd72b9 9719 (*callback) (sec, sec_size, sgotplt, 0, closure);
e0001a05
NC
9720 }
9721
9722 internal_relocs = retrieve_internal_relocs (abfd, sec,
9723 link_info->keep_memory);
9724 if (internal_relocs == NULL
43cd72b9 9725 || sec->reloc_count == 0)
e0001a05
NC
9726 return ok;
9727
9728 /* Cache the contents for the duration of this scan. */
9729 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 9730 if (contents == NULL && sec_size != 0)
e0001a05
NC
9731 {
9732 ok = FALSE;
9733 goto error_return;
9734 }
9735
43cd72b9
BW
9736 if (!xtensa_default_isa)
9737 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 9738
43cd72b9 9739 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
9740 {
9741 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9 9742 if (is_l32r_relocation (abfd, sec, contents, irel))
e0001a05
NC
9743 {
9744 r_reloc l32r_rel;
9745 asection *target_sec;
9746 bfd_vma target_offset;
43cd72b9
BW
9747
9748 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
e0001a05
NC
9749 target_sec = NULL;
9750 target_offset = 0;
9751 /* L32Rs must be local to the input file. */
9752 if (r_reloc_is_defined (&l32r_rel))
9753 {
9754 target_sec = r_reloc_get_section (&l32r_rel);
43cd72b9 9755 target_offset = l32r_rel.target_offset;
e0001a05
NC
9756 }
9757 (*callback) (sec, irel->r_offset, target_sec, target_offset,
9758 closure);
9759 }
9760 }
9761
9762 error_return:
9763 release_internal_relocs (sec, internal_relocs);
9764 release_contents (sec, contents);
9765 return ok;
9766}
9767
2f89ff8d
L
9768/* The default literal sections should always be marked as "code" (i.e.,
9769 SHF_EXECINSTR). This is particularly important for the Linux kernel
9770 module loader so that the literals are not placed after the text. */
b35d266b 9771static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
2f89ff8d 9772{
0112cd26
NC
9773 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9774 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9775 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2caa7ca0 9776 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
0112cd26 9777 { NULL, 0, 0, 0, 0 }
7f4d3958 9778};
e0001a05
NC
9779\f
9780#ifndef ELF_ARCH
9781#define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
9782#define TARGET_LITTLE_NAME "elf32-xtensa-le"
9783#define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
9784#define TARGET_BIG_NAME "elf32-xtensa-be"
9785#define ELF_ARCH bfd_arch_xtensa
9786
4af0a1d8
BW
9787#define ELF_MACHINE_CODE EM_XTENSA
9788#define ELF_MACHINE_ALT1 EM_XTENSA_OLD
e0001a05
NC
9789
9790#if XCHAL_HAVE_MMU
9791#define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
9792#else /* !XCHAL_HAVE_MMU */
9793#define ELF_MAXPAGESIZE 1
9794#endif /* !XCHAL_HAVE_MMU */
9795#endif /* ELF_ARCH */
9796
9797#define elf_backend_can_gc_sections 1
9798#define elf_backend_can_refcount 1
9799#define elf_backend_plt_readonly 1
9800#define elf_backend_got_header_size 4
9801#define elf_backend_want_dynbss 0
9802#define elf_backend_want_got_plt 1
9803
9804#define elf_info_to_howto elf_xtensa_info_to_howto_rela
9805
e0001a05
NC
9806#define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
9807#define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
9808#define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
9809#define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
9810#define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
9811#define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
f0e6fdb2 9812#define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
e0001a05
NC
9813
9814#define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
9815#define elf_backend_check_relocs elf_xtensa_check_relocs
e0001a05
NC
9816#define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
9817#define elf_backend_discard_info elf_xtensa_discard_info
9818#define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
9819#define elf_backend_final_write_processing elf_xtensa_final_write_processing
9820#define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
9821#define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
9822#define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
9823#define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
9824#define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
9825#define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
e0001a05
NC
9826#define elf_backend_object_p elf_xtensa_object_p
9827#define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
9828#define elf_backend_relocate_section elf_xtensa_relocate_section
9829#define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
74541ad4
AM
9830#define elf_backend_omit_section_dynsym \
9831 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
29ef7005 9832#define elf_backend_special_sections elf_xtensa_special_sections
a77dc2cc 9833#define elf_backend_action_discarded elf_xtensa_action_discarded
e0001a05
NC
9834
9835#include "elf32-target.h"
This page took 0.707995 seconds and 4 git commands to generate.