* elf32-xtensa.c (action_list_count, xlate_map_entry, xlate_map,
[deliverable/binutils-gdb.git] / bfd / elf32-xtensa.c
CommitLineData
e0001a05 1/* Xtensa-specific support for 32-bit ELF.
3eb128b2 2 Copyright 2003, 2004, 2005 Free Software Foundation, Inc.
e0001a05
NC
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 2 of the
9 License, or (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
3e110533 18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
53e09e0a 19 02110-1301, USA. */
e0001a05
NC
20
21#include "bfd.h"
22#include "sysdep.h"
23
e0001a05 24#include <stdarg.h>
e0001a05
NC
25#include <strings.h>
26
27#include "bfdlink.h"
28#include "libbfd.h"
29#include "elf-bfd.h"
30#include "elf/xtensa.h"
31#include "xtensa-isa.h"
32#include "xtensa-config.h"
33
43cd72b9
BW
34#define XTENSA_NO_NOP_REMOVAL 0
35
e0001a05
NC
36/* Local helper functions. */
37
7fa3d080 38static bfd_boolean add_extra_plt_sections (bfd *, int);
2db662be 39static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
e0001a05 40static bfd_reloc_status_type bfd_elf_xtensa_reloc
7fa3d080 41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43cd72b9 42static bfd_boolean do_fix_for_relocatable_link
7fa3d080 43 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
e0001a05 44static void do_fix_for_final_link
7fa3d080 45 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
e0001a05
NC
46
47/* Local functions to handle Xtensa configurability. */
48
7fa3d080
BW
49static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
50static bfd_boolean is_direct_call_opcode (xtensa_opcode);
51static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
52static xtensa_opcode get_const16_opcode (void);
53static xtensa_opcode get_l32r_opcode (void);
54static bfd_vma l32r_offset (bfd_vma, bfd_vma);
55static int get_relocation_opnd (xtensa_opcode, int);
56static int get_relocation_slot (int);
e0001a05 57static xtensa_opcode get_relocation_opcode
7fa3d080 58 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
e0001a05 59static bfd_boolean is_l32r_relocation
7fa3d080
BW
60 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
61static bfd_boolean is_alt_relocation (int);
62static bfd_boolean is_operand_relocation (int);
43cd72b9 63static bfd_size_type insn_decode_len
7fa3d080 64 (bfd_byte *, bfd_size_type, bfd_size_type);
43cd72b9 65static xtensa_opcode insn_decode_opcode
7fa3d080 66 (bfd_byte *, bfd_size_type, bfd_size_type, int);
43cd72b9 67static bfd_boolean check_branch_target_aligned
7fa3d080 68 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
43cd72b9 69static bfd_boolean check_loop_aligned
7fa3d080
BW
70 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
71static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
43cd72b9 72static bfd_size_type get_asm_simplify_size
7fa3d080 73 (bfd_byte *, bfd_size_type, bfd_size_type);
e0001a05
NC
74
75/* Functions for link-time code simplifications. */
76
43cd72b9 77static bfd_reloc_status_type elf_xtensa_do_asm_simplify
7fa3d080 78 (bfd_byte *, bfd_vma, bfd_vma, char **);
e0001a05 79static bfd_reloc_status_type contract_asm_expansion
7fa3d080
BW
80 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
81static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
82static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
e0001a05
NC
83
84/* Access to internal relocations, section contents and symbols. */
85
86static Elf_Internal_Rela *retrieve_internal_relocs
7fa3d080
BW
87 (bfd *, asection *, bfd_boolean);
88static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
89static void release_internal_relocs (asection *, Elf_Internal_Rela *);
90static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
91static void pin_contents (asection *, bfd_byte *);
92static void release_contents (asection *, bfd_byte *);
93static Elf_Internal_Sym *retrieve_local_syms (bfd *);
e0001a05
NC
94
95/* Miscellaneous utility functions. */
96
7fa3d080
BW
97static asection *elf_xtensa_get_plt_section (bfd *, int);
98static asection *elf_xtensa_get_gotplt_section (bfd *, int);
99static asection *get_elf_r_symndx_section (bfd *, unsigned long);
e0001a05 100static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
7fa3d080
BW
101 (bfd *, unsigned long);
102static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
103static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
104static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
105static bfd_boolean xtensa_is_property_section (asection *);
106static bfd_boolean xtensa_is_littable_section (asection *);
107static int internal_reloc_compare (const void *, const void *);
108static int internal_reloc_matches (const void *, const void *);
109extern char *xtensa_get_property_section_name (asection *, const char *);
110static flagword xtensa_get_property_predef_flags (asection *);
e0001a05
NC
111
112/* Other functions called directly by the linker. */
113
114typedef void (*deps_callback_t)
7fa3d080 115 (asection *, bfd_vma, asection *, bfd_vma, void *);
e0001a05 116extern bfd_boolean xtensa_callback_required_dependence
7fa3d080 117 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
e0001a05
NC
118
119
43cd72b9
BW
120/* Globally visible flag for choosing size optimization of NOP removal
121 instead of branch-target-aware minimization for NOP removal.
122 When nonzero, narrow all instructions and remove all NOPs possible
123 around longcall expansions. */
7fa3d080 124
43cd72b9
BW
125int elf32xtensa_size_opt;
126
127
128/* The "new_section_hook" is used to set up a per-section
129 "xtensa_relax_info" data structure with additional information used
130 during relaxation. */
e0001a05 131
7fa3d080 132typedef struct xtensa_relax_info_struct xtensa_relax_info;
e0001a05 133
43cd72b9 134
e0001a05
NC
135/* Total count of PLT relocations seen during check_relocs.
136 The actual PLT code must be split into multiple sections and all
137 the sections have to be created before size_dynamic_sections,
138 where we figure out the exact number of PLT entries that will be
b536dc1e 139 needed. It is OK if this count is an overestimate, e.g., some
e0001a05
NC
140 relocations may be removed by GC. */
141
142static int plt_reloc_count = 0;
143
144
43cd72b9
BW
145/* The GNU tools do not easily allow extending interfaces to pass around
146 the pointer to the Xtensa ISA information, so instead we add a global
147 variable here (in BFD) that can be used by any of the tools that need
148 this information. */
149
150xtensa_isa xtensa_default_isa;
151
152
e0001a05
NC
153/* When this is true, relocations may have been modified to refer to
154 symbols from other input files. The per-section list of "fix"
155 records needs to be checked when resolving relocations. */
156
157static bfd_boolean relaxing_section = FALSE;
158
43cd72b9
BW
159/* When this is true, during final links, literals that cannot be
160 coalesced and their relocations may be moved to other sections. */
161
162int elf32xtensa_no_literal_movement = 1;
163
e0001a05
NC
164\f
165static reloc_howto_type elf_howto_table[] =
166{
167 HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
168 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
169 FALSE, 0x00000000, 0x00000000, FALSE),
170 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
171 bfd_elf_xtensa_reloc, "R_XTENSA_32",
172 TRUE, 0xffffffff, 0xffffffff, FALSE),
173 /* Replace a 32-bit value with a value from the runtime linker (only
174 used by linker-generated stub functions). The r_addend value is
175 special: 1 means to substitute a pointer to the runtime linker's
176 dynamic resolver function; 2 means to substitute the link map for
177 the shared object. */
178 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
179 NULL, "R_XTENSA_RTLD",
180 FALSE, 0x00000000, 0x00000000, FALSE),
181 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
182 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
183 FALSE, 0xffffffff, 0xffffffff, FALSE),
184 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
185 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
186 FALSE, 0xffffffff, 0xffffffff, FALSE),
187 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
188 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
189 FALSE, 0xffffffff, 0xffffffff, FALSE),
190 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
191 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
192 FALSE, 0xffffffff, 0xffffffff, FALSE),
193 EMPTY_HOWTO (7),
194 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
195 bfd_elf_xtensa_reloc, "R_XTENSA_OP0",
196 FALSE, 0x00000000, 0x00000000, TRUE),
197 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
198 bfd_elf_xtensa_reloc, "R_XTENSA_OP1",
199 FALSE, 0x00000000, 0x00000000, TRUE),
200 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
201 bfd_elf_xtensa_reloc, "R_XTENSA_OP2",
202 FALSE, 0x00000000, 0x00000000, TRUE),
203 /* Assembly auto-expansion. */
204 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
205 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND",
206 FALSE, 0x00000000, 0x00000000, FALSE),
207 /* Relax assembly auto-expansion. */
208 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
209 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY",
210 FALSE, 0x00000000, 0x00000000, TRUE),
211 EMPTY_HOWTO (13),
212 EMPTY_HOWTO (14),
213 /* GNU extension to record C++ vtable hierarchy. */
214 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
215 NULL, "R_XTENSA_GNU_VTINHERIT",
216 FALSE, 0x00000000, 0x00000000, FALSE),
217 /* GNU extension to record C++ vtable member usage. */
218 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
219 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
43cd72b9
BW
220 FALSE, 0x00000000, 0x00000000, FALSE),
221
222 /* Relocations for supporting difference of symbols. */
223 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
224 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8",
225 FALSE, 0xffffffff, 0xffffffff, FALSE),
226 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
227 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16",
228 FALSE, 0xffffffff, 0xffffffff, FALSE),
229 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
230 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32",
231 FALSE, 0xffffffff, 0xffffffff, FALSE),
232
233 /* General immediate operand relocations. */
234 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
235 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP",
236 FALSE, 0x00000000, 0x00000000, TRUE),
237 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
238 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP",
239 FALSE, 0x00000000, 0x00000000, TRUE),
240 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
241 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP",
242 FALSE, 0x00000000, 0x00000000, TRUE),
243 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
244 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP",
245 FALSE, 0x00000000, 0x00000000, TRUE),
246 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
247 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP",
248 FALSE, 0x00000000, 0x00000000, TRUE),
249 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
250 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP",
251 FALSE, 0x00000000, 0x00000000, TRUE),
252 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
253 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP",
254 FALSE, 0x00000000, 0x00000000, TRUE),
255 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
256 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP",
257 FALSE, 0x00000000, 0x00000000, TRUE),
258 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
259 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP",
260 FALSE, 0x00000000, 0x00000000, TRUE),
261 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
262 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP",
263 FALSE, 0x00000000, 0x00000000, TRUE),
264 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
265 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP",
266 FALSE, 0x00000000, 0x00000000, TRUE),
267 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
268 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP",
269 FALSE, 0x00000000, 0x00000000, TRUE),
270 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
271 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP",
272 FALSE, 0x00000000, 0x00000000, TRUE),
273 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
274 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP",
275 FALSE, 0x00000000, 0x00000000, TRUE),
276 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
277 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP",
278 FALSE, 0x00000000, 0x00000000, TRUE),
279
280 /* "Alternate" relocations. The meaning of these is opcode-specific. */
281 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
282 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT",
283 FALSE, 0x00000000, 0x00000000, TRUE),
284 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
285 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT",
286 FALSE, 0x00000000, 0x00000000, TRUE),
287 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
288 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT",
289 FALSE, 0x00000000, 0x00000000, TRUE),
290 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
291 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT",
292 FALSE, 0x00000000, 0x00000000, TRUE),
293 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
294 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT",
295 FALSE, 0x00000000, 0x00000000, TRUE),
296 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
297 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT",
298 FALSE, 0x00000000, 0x00000000, TRUE),
299 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
300 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT",
301 FALSE, 0x00000000, 0x00000000, TRUE),
302 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
303 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT",
304 FALSE, 0x00000000, 0x00000000, TRUE),
305 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
306 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT",
307 FALSE, 0x00000000, 0x00000000, TRUE),
308 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
309 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT",
310 FALSE, 0x00000000, 0x00000000, TRUE),
311 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
312 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT",
313 FALSE, 0x00000000, 0x00000000, TRUE),
314 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
315 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT",
316 FALSE, 0x00000000, 0x00000000, TRUE),
317 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
318 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT",
319 FALSE, 0x00000000, 0x00000000, TRUE),
320 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
321 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT",
322 FALSE, 0x00000000, 0x00000000, TRUE),
323 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
324 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT",
325 FALSE, 0x00000000, 0x00000000, TRUE)
e0001a05
NC
326};
327
43cd72b9 328#if DEBUG_GEN_RELOC
e0001a05
NC
329#define TRACE(str) \
330 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
331#else
332#define TRACE(str)
333#endif
334
335static reloc_howto_type *
7fa3d080
BW
336elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
337 bfd_reloc_code_real_type code)
e0001a05
NC
338{
339 switch (code)
340 {
341 case BFD_RELOC_NONE:
342 TRACE ("BFD_RELOC_NONE");
343 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
344
345 case BFD_RELOC_32:
346 TRACE ("BFD_RELOC_32");
347 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
348
43cd72b9
BW
349 case BFD_RELOC_XTENSA_DIFF8:
350 TRACE ("BFD_RELOC_XTENSA_DIFF8");
351 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
352
353 case BFD_RELOC_XTENSA_DIFF16:
354 TRACE ("BFD_RELOC_XTENSA_DIFF16");
355 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
356
357 case BFD_RELOC_XTENSA_DIFF32:
358 TRACE ("BFD_RELOC_XTENSA_DIFF32");
359 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
360
e0001a05
NC
361 case BFD_RELOC_XTENSA_RTLD:
362 TRACE ("BFD_RELOC_XTENSA_RTLD");
363 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
364
365 case BFD_RELOC_XTENSA_GLOB_DAT:
366 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
367 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
368
369 case BFD_RELOC_XTENSA_JMP_SLOT:
370 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
371 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
372
373 case BFD_RELOC_XTENSA_RELATIVE:
374 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
375 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
376
377 case BFD_RELOC_XTENSA_PLT:
378 TRACE ("BFD_RELOC_XTENSA_PLT");
379 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
380
381 case BFD_RELOC_XTENSA_OP0:
382 TRACE ("BFD_RELOC_XTENSA_OP0");
383 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
384
385 case BFD_RELOC_XTENSA_OP1:
386 TRACE ("BFD_RELOC_XTENSA_OP1");
387 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
388
389 case BFD_RELOC_XTENSA_OP2:
390 TRACE ("BFD_RELOC_XTENSA_OP2");
391 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
392
393 case BFD_RELOC_XTENSA_ASM_EXPAND:
394 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
395 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
396
397 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
398 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
399 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
400
401 case BFD_RELOC_VTABLE_INHERIT:
402 TRACE ("BFD_RELOC_VTABLE_INHERIT");
403 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
404
405 case BFD_RELOC_VTABLE_ENTRY:
406 TRACE ("BFD_RELOC_VTABLE_ENTRY");
407 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
408
409 default:
43cd72b9
BW
410 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
411 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
412 {
413 unsigned n = (R_XTENSA_SLOT0_OP +
414 (code - BFD_RELOC_XTENSA_SLOT0_OP));
415 return &elf_howto_table[n];
416 }
417
418 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
419 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
420 {
421 unsigned n = (R_XTENSA_SLOT0_ALT +
422 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
423 return &elf_howto_table[n];
424 }
425
e0001a05
NC
426 break;
427 }
428
429 TRACE ("Unknown");
430 return NULL;
431}
432
433
434/* Given an ELF "rela" relocation, find the corresponding howto and record
435 it in the BFD internal arelent representation of the relocation. */
436
437static void
7fa3d080
BW
438elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
439 arelent *cache_ptr,
440 Elf_Internal_Rela *dst)
e0001a05
NC
441{
442 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
443
444 BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max);
445 cache_ptr->howto = &elf_howto_table[r_type];
446}
447
448\f
449/* Functions for the Xtensa ELF linker. */
450
451/* The name of the dynamic interpreter. This is put in the .interp
452 section. */
453
454#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
455
456/* The size in bytes of an entry in the procedure linkage table.
457 (This does _not_ include the space for the literals associated with
458 the PLT entry.) */
459
460#define PLT_ENTRY_SIZE 16
461
462/* For _really_ large PLTs, we may need to alternate between literals
463 and code to keep the literals within the 256K range of the L32R
464 instructions in the code. It's unlikely that anyone would ever need
465 such a big PLT, but an arbitrary limit on the PLT size would be bad.
466 Thus, we split the PLT into chunks. Since there's very little
467 overhead (2 extra literals) for each chunk, the chunk size is kept
468 small so that the code for handling multiple chunks get used and
469 tested regularly. With 254 entries, there are 1K of literals for
470 each chunk, and that seems like a nice round number. */
471
472#define PLT_ENTRIES_PER_CHUNK 254
473
474/* PLT entries are actually used as stub functions for lazy symbol
475 resolution. Once the symbol is resolved, the stub function is never
476 invoked. Note: the 32-byte frame size used here cannot be changed
477 without a corresponding change in the runtime linker. */
478
479static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
480{
481 0x6c, 0x10, 0x04, /* entry sp, 32 */
482 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
483 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
484 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
485 0x0a, 0x80, 0x00, /* jx a8 */
486 0 /* unused */
487};
488
489static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
490{
491 0x36, 0x41, 0x00, /* entry sp, 32 */
492 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
493 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
494 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
495 0xa0, 0x08, 0x00, /* jx a8 */
496 0 /* unused */
497};
498
571b5725
BW
499
500static inline bfd_boolean
7fa3d080
BW
501xtensa_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
502 struct bfd_link_info *info)
571b5725
BW
503{
504 /* Check if we should do dynamic things to this symbol. The
505 "ignore_protected" argument need not be set, because Xtensa code
506 does not require special handling of STV_PROTECTED to make function
507 pointer comparisons work properly. The PLT addresses are never
508 used for function pointers. */
509
510 return _bfd_elf_dynamic_symbol_p (h, info, 0);
511}
512
e0001a05
NC
513\f
514static int
7fa3d080 515property_table_compare (const void *ap, const void *bp)
e0001a05
NC
516{
517 const property_table_entry *a = (const property_table_entry *) ap;
518 const property_table_entry *b = (const property_table_entry *) bp;
519
43cd72b9
BW
520 if (a->address == b->address)
521 {
43cd72b9
BW
522 if (a->size != b->size)
523 return (a->size - b->size);
524
525 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
526 return ((b->flags & XTENSA_PROP_ALIGN)
527 - (a->flags & XTENSA_PROP_ALIGN));
528
529 if ((a->flags & XTENSA_PROP_ALIGN)
530 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
531 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
532 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
533 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
534
535 if ((a->flags & XTENSA_PROP_UNREACHABLE)
536 != (b->flags & XTENSA_PROP_UNREACHABLE))
537 return ((b->flags & XTENSA_PROP_UNREACHABLE)
538 - (a->flags & XTENSA_PROP_UNREACHABLE));
539
540 return (a->flags - b->flags);
541 }
542
543 return (a->address - b->address);
544}
545
546
547static int
7fa3d080 548property_table_matches (const void *ap, const void *bp)
43cd72b9
BW
549{
550 const property_table_entry *a = (const property_table_entry *) ap;
551 const property_table_entry *b = (const property_table_entry *) bp;
552
553 /* Check if one entry overlaps with the other. */
e0001a05
NC
554 if ((b->address >= a->address && b->address < (a->address + a->size))
555 || (a->address >= b->address && a->address < (b->address + b->size)))
556 return 0;
557
558 return (a->address - b->address);
559}
560
561
43cd72b9
BW
562/* Get the literal table or property table entries for the given
563 section. Sets TABLE_P and returns the number of entries. On
564 error, returns a negative value. */
e0001a05 565
7fa3d080
BW
566static int
567xtensa_read_table_entries (bfd *abfd,
568 asection *section,
569 property_table_entry **table_p,
570 const char *sec_name,
571 bfd_boolean output_addr)
e0001a05
NC
572{
573 asection *table_section;
574 char *table_section_name;
575 bfd_size_type table_size = 0;
576 bfd_byte *table_data;
577 property_table_entry *blocks;
e4115460 578 int blk, block_count;
e0001a05
NC
579 bfd_size_type num_records;
580 Elf_Internal_Rela *internal_relocs;
3ba3bc8c 581 bfd_vma section_addr;
43cd72b9
BW
582 flagword predef_flags;
583 bfd_size_type table_entry_size;
584
585 if (!section
586 || !(section->flags & SEC_ALLOC)
587 || (section->flags & SEC_DEBUGGING))
588 {
589 *table_p = NULL;
590 return 0;
591 }
e0001a05 592
43cd72b9 593 table_section_name = xtensa_get_property_section_name (section, sec_name);
e0001a05 594 table_section = bfd_get_section_by_name (abfd, table_section_name);
b614a702 595 free (table_section_name);
43cd72b9 596 if (table_section)
eea6121a 597 table_size = table_section->size;
43cd72b9 598
e0001a05
NC
599 if (table_size == 0)
600 {
601 *table_p = NULL;
602 return 0;
603 }
604
43cd72b9
BW
605 predef_flags = xtensa_get_property_predef_flags (table_section);
606 table_entry_size = 12;
607 if (predef_flags)
608 table_entry_size -= 4;
609
610 num_records = table_size / table_entry_size;
e0001a05
NC
611 table_data = retrieve_contents (abfd, table_section, TRUE);
612 blocks = (property_table_entry *)
613 bfd_malloc (num_records * sizeof (property_table_entry));
614 block_count = 0;
43cd72b9
BW
615
616 if (output_addr)
617 section_addr = section->output_section->vma + section->output_offset;
618 else
619 section_addr = section->vma;
3ba3bc8c 620
e0001a05
NC
621 /* If the file has not yet been relocated, process the relocations
622 and sort out the table entries that apply to the specified section. */
623 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
3ba3bc8c 624 if (internal_relocs && !table_section->reloc_done)
e0001a05
NC
625 {
626 unsigned i;
627
628 for (i = 0; i < table_section->reloc_count; i++)
629 {
630 Elf_Internal_Rela *rel = &internal_relocs[i];
631 unsigned long r_symndx;
632
633 if (ELF32_R_TYPE (rel->r_info) == R_XTENSA_NONE)
634 continue;
635
636 BFD_ASSERT (ELF32_R_TYPE (rel->r_info) == R_XTENSA_32);
637 r_symndx = ELF32_R_SYM (rel->r_info);
638
639 if (get_elf_r_symndx_section (abfd, r_symndx) == section)
640 {
641 bfd_vma sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
43cd72b9
BW
642 BFD_ASSERT (sym_off == 0);
643 BFD_ASSERT (rel->r_addend == 0);
e0001a05 644 blocks[block_count].address =
3ba3bc8c 645 (section_addr + sym_off + rel->r_addend
e0001a05
NC
646 + bfd_get_32 (abfd, table_data + rel->r_offset));
647 blocks[block_count].size =
648 bfd_get_32 (abfd, table_data + rel->r_offset + 4);
43cd72b9
BW
649 if (predef_flags)
650 blocks[block_count].flags = predef_flags;
651 else
652 blocks[block_count].flags =
653 bfd_get_32 (abfd, table_data + rel->r_offset + 8);
e0001a05
NC
654 block_count++;
655 }
656 }
657 }
658 else
659 {
3ba3bc8c
BW
660 /* The file has already been relocated and the addresses are
661 already in the table. */
e0001a05 662 bfd_vma off;
43cd72b9 663 bfd_size_type section_limit = bfd_get_section_limit (abfd, section);
e0001a05 664
43cd72b9 665 for (off = 0; off < table_size; off += table_entry_size)
e0001a05
NC
666 {
667 bfd_vma address = bfd_get_32 (abfd, table_data + off);
668
3ba3bc8c 669 if (address >= section_addr
43cd72b9 670 && address < section_addr + section_limit)
e0001a05
NC
671 {
672 blocks[block_count].address = address;
673 blocks[block_count].size =
674 bfd_get_32 (abfd, table_data + off + 4);
43cd72b9
BW
675 if (predef_flags)
676 blocks[block_count].flags = predef_flags;
677 else
678 blocks[block_count].flags =
679 bfd_get_32 (abfd, table_data + off + 8);
e0001a05
NC
680 block_count++;
681 }
682 }
683 }
684
685 release_contents (table_section, table_data);
686 release_internal_relocs (table_section, internal_relocs);
687
43cd72b9 688 if (block_count > 0)
e0001a05
NC
689 {
690 /* Now sort them into address order for easy reference. */
691 qsort (blocks, block_count, sizeof (property_table_entry),
692 property_table_compare);
e4115460
BW
693
694 /* Check that the table contents are valid. Problems may occur,
695 for example, if an unrelocated object file is stripped. */
696 for (blk = 1; blk < block_count; blk++)
697 {
698 /* The only circumstance where two entries may legitimately
699 have the same address is when one of them is a zero-size
700 placeholder to mark a place where fill can be inserted.
701 The zero-size entry should come first. */
702 if (blocks[blk - 1].address == blocks[blk].address &&
703 blocks[blk - 1].size != 0)
704 {
705 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
706 abfd, section);
707 bfd_set_error (bfd_error_bad_value);
708 free (blocks);
709 return -1;
710 }
711 }
e0001a05 712 }
43cd72b9 713
e0001a05
NC
714 *table_p = blocks;
715 return block_count;
716}
717
718
7fa3d080
BW
719static property_table_entry *
720elf_xtensa_find_property_entry (property_table_entry *property_table,
721 int property_table_size,
722 bfd_vma addr)
e0001a05
NC
723{
724 property_table_entry entry;
43cd72b9 725 property_table_entry *rv;
e0001a05 726
43cd72b9
BW
727 if (property_table_size == 0)
728 return NULL;
e0001a05
NC
729
730 entry.address = addr;
731 entry.size = 1;
43cd72b9 732 entry.flags = 0;
e0001a05 733
43cd72b9
BW
734 rv = bsearch (&entry, property_table, property_table_size,
735 sizeof (property_table_entry), property_table_matches);
736 return rv;
737}
738
739
740static bfd_boolean
7fa3d080
BW
741elf_xtensa_in_literal_pool (property_table_entry *lit_table,
742 int lit_table_size,
743 bfd_vma addr)
43cd72b9
BW
744{
745 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
e0001a05
NC
746 return TRUE;
747
748 return FALSE;
749}
750
751\f
752/* Look through the relocs for a section during the first phase, and
753 calculate needed space in the dynamic reloc sections. */
754
755static bfd_boolean
7fa3d080
BW
756elf_xtensa_check_relocs (bfd *abfd,
757 struct bfd_link_info *info,
758 asection *sec,
759 const Elf_Internal_Rela *relocs)
e0001a05
NC
760{
761 Elf_Internal_Shdr *symtab_hdr;
762 struct elf_link_hash_entry **sym_hashes;
763 const Elf_Internal_Rela *rel;
764 const Elf_Internal_Rela *rel_end;
e0001a05 765
1049f94e 766 if (info->relocatable)
e0001a05
NC
767 return TRUE;
768
769 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
770 sym_hashes = elf_sym_hashes (abfd);
771
e0001a05
NC
772 rel_end = relocs + sec->reloc_count;
773 for (rel = relocs; rel < rel_end; rel++)
774 {
775 unsigned int r_type;
776 unsigned long r_symndx;
777 struct elf_link_hash_entry *h;
778
779 r_symndx = ELF32_R_SYM (rel->r_info);
780 r_type = ELF32_R_TYPE (rel->r_info);
781
782 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
783 {
d003868e
AM
784 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
785 abfd, r_symndx);
e0001a05
NC
786 return FALSE;
787 }
788
789 if (r_symndx < symtab_hdr->sh_info)
790 h = NULL;
791 else
792 {
793 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
794 while (h->root.type == bfd_link_hash_indirect
795 || h->root.type == bfd_link_hash_warning)
796 h = (struct elf_link_hash_entry *) h->root.u.i.link;
797 }
798
799 switch (r_type)
800 {
801 case R_XTENSA_32:
802 if (h == NULL)
803 goto local_literal;
804
805 if ((sec->flags & SEC_ALLOC) != 0)
806 {
e0001a05
NC
807 if (h->got.refcount <= 0)
808 h->got.refcount = 1;
809 else
810 h->got.refcount += 1;
811 }
812 break;
813
814 case R_XTENSA_PLT:
815 /* If this relocation is against a local symbol, then it's
816 exactly the same as a normal local GOT entry. */
817 if (h == NULL)
818 goto local_literal;
819
820 if ((sec->flags & SEC_ALLOC) != 0)
821 {
e0001a05
NC
822 if (h->plt.refcount <= 0)
823 {
f5385ebf 824 h->needs_plt = 1;
e0001a05
NC
825 h->plt.refcount = 1;
826 }
827 else
828 h->plt.refcount += 1;
829
830 /* Keep track of the total PLT relocation count even if we
831 don't yet know whether the dynamic sections will be
832 created. */
833 plt_reloc_count += 1;
834
835 if (elf_hash_table (info)->dynamic_sections_created)
836 {
837 if (!add_extra_plt_sections (elf_hash_table (info)->dynobj,
838 plt_reloc_count))
839 return FALSE;
840 }
841 }
842 break;
843
844 local_literal:
845 if ((sec->flags & SEC_ALLOC) != 0)
846 {
847 bfd_signed_vma *local_got_refcounts;
848
849 /* This is a global offset table entry for a local symbol. */
850 local_got_refcounts = elf_local_got_refcounts (abfd);
851 if (local_got_refcounts == NULL)
852 {
853 bfd_size_type size;
854
855 size = symtab_hdr->sh_info;
856 size *= sizeof (bfd_signed_vma);
43cd72b9
BW
857 local_got_refcounts =
858 (bfd_signed_vma *) bfd_zalloc (abfd, size);
e0001a05
NC
859 if (local_got_refcounts == NULL)
860 return FALSE;
861 elf_local_got_refcounts (abfd) = local_got_refcounts;
862 }
863 local_got_refcounts[r_symndx] += 1;
e0001a05
NC
864 }
865 break;
866
867 case R_XTENSA_OP0:
868 case R_XTENSA_OP1:
869 case R_XTENSA_OP2:
43cd72b9
BW
870 case R_XTENSA_SLOT0_OP:
871 case R_XTENSA_SLOT1_OP:
872 case R_XTENSA_SLOT2_OP:
873 case R_XTENSA_SLOT3_OP:
874 case R_XTENSA_SLOT4_OP:
875 case R_XTENSA_SLOT5_OP:
876 case R_XTENSA_SLOT6_OP:
877 case R_XTENSA_SLOT7_OP:
878 case R_XTENSA_SLOT8_OP:
879 case R_XTENSA_SLOT9_OP:
880 case R_XTENSA_SLOT10_OP:
881 case R_XTENSA_SLOT11_OP:
882 case R_XTENSA_SLOT12_OP:
883 case R_XTENSA_SLOT13_OP:
884 case R_XTENSA_SLOT14_OP:
885 case R_XTENSA_SLOT0_ALT:
886 case R_XTENSA_SLOT1_ALT:
887 case R_XTENSA_SLOT2_ALT:
888 case R_XTENSA_SLOT3_ALT:
889 case R_XTENSA_SLOT4_ALT:
890 case R_XTENSA_SLOT5_ALT:
891 case R_XTENSA_SLOT6_ALT:
892 case R_XTENSA_SLOT7_ALT:
893 case R_XTENSA_SLOT8_ALT:
894 case R_XTENSA_SLOT9_ALT:
895 case R_XTENSA_SLOT10_ALT:
896 case R_XTENSA_SLOT11_ALT:
897 case R_XTENSA_SLOT12_ALT:
898 case R_XTENSA_SLOT13_ALT:
899 case R_XTENSA_SLOT14_ALT:
e0001a05
NC
900 case R_XTENSA_ASM_EXPAND:
901 case R_XTENSA_ASM_SIMPLIFY:
43cd72b9
BW
902 case R_XTENSA_DIFF8:
903 case R_XTENSA_DIFF16:
904 case R_XTENSA_DIFF32:
e0001a05
NC
905 /* Nothing to do for these. */
906 break;
907
908 case R_XTENSA_GNU_VTINHERIT:
909 /* This relocation describes the C++ object vtable hierarchy.
910 Reconstruct it for later use during GC. */
c152c796 911 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
e0001a05
NC
912 return FALSE;
913 break;
914
915 case R_XTENSA_GNU_VTENTRY:
916 /* This relocation describes which C++ vtable entries are actually
917 used. Record for later use during GC. */
c152c796 918 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
e0001a05
NC
919 return FALSE;
920 break;
921
922 default:
923 break;
924 }
925 }
926
e0001a05
NC
927 return TRUE;
928}
929
930
931static void
7fa3d080
BW
932elf_xtensa_make_sym_local (struct bfd_link_info *info,
933 struct elf_link_hash_entry *h)
934{
935 if (info->shared)
936 {
937 if (h->plt.refcount > 0)
938 {
939 /* Will use RELATIVE relocs instead of JMP_SLOT relocs. */
940 if (h->got.refcount < 0)
941 h->got.refcount = 0;
942 h->got.refcount += h->plt.refcount;
943 h->plt.refcount = 0;
944 }
945 }
946 else
947 {
948 /* Don't need any dynamic relocations at all. */
949 h->plt.refcount = 0;
950 h->got.refcount = 0;
951 }
952}
953
954
955static void
956elf_xtensa_hide_symbol (struct bfd_link_info *info,
957 struct elf_link_hash_entry *h,
958 bfd_boolean force_local)
e0001a05
NC
959{
960 /* For a shared link, move the plt refcount to the got refcount to leave
961 space for RELATIVE relocs. */
962 elf_xtensa_make_sym_local (info, h);
963
964 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
965}
966
967
e0001a05
NC
968/* Return the section that should be marked against GC for a given
969 relocation. */
970
971static asection *
7fa3d080
BW
972elf_xtensa_gc_mark_hook (asection *sec,
973 struct bfd_link_info *info ATTRIBUTE_UNUSED,
974 Elf_Internal_Rela *rel,
975 struct elf_link_hash_entry *h,
976 Elf_Internal_Sym *sym)
e0001a05 977{
7fa3d080 978 if (h)
e0001a05
NC
979 {
980 switch (ELF32_R_TYPE (rel->r_info))
981 {
982 case R_XTENSA_GNU_VTINHERIT:
983 case R_XTENSA_GNU_VTENTRY:
984 break;
985
986 default:
987 switch (h->root.type)
988 {
989 case bfd_link_hash_defined:
990 case bfd_link_hash_defweak:
991 return h->root.u.def.section;
992
993 case bfd_link_hash_common:
994 return h->root.u.c.p->section;
995
996 default:
997 break;
998 }
999 }
1000 }
1001 else
1002 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1003
1004 return NULL;
1005}
1006
7fa3d080 1007
e0001a05
NC
1008/* Update the GOT & PLT entry reference counts
1009 for the section being removed. */
1010
1011static bfd_boolean
7fa3d080
BW
1012elf_xtensa_gc_sweep_hook (bfd *abfd,
1013 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1014 asection *sec,
1015 const Elf_Internal_Rela *relocs)
e0001a05
NC
1016{
1017 Elf_Internal_Shdr *symtab_hdr;
1018 struct elf_link_hash_entry **sym_hashes;
1019 bfd_signed_vma *local_got_refcounts;
1020 const Elf_Internal_Rela *rel, *relend;
1021
1022 if ((sec->flags & SEC_ALLOC) == 0)
1023 return TRUE;
1024
1025 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1026 sym_hashes = elf_sym_hashes (abfd);
1027 local_got_refcounts = elf_local_got_refcounts (abfd);
1028
1029 relend = relocs + sec->reloc_count;
1030 for (rel = relocs; rel < relend; rel++)
1031 {
1032 unsigned long r_symndx;
1033 unsigned int r_type;
1034 struct elf_link_hash_entry *h = NULL;
1035
1036 r_symndx = ELF32_R_SYM (rel->r_info);
1037 if (r_symndx >= symtab_hdr->sh_info)
3eb128b2
AM
1038 {
1039 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1040 while (h->root.type == bfd_link_hash_indirect
1041 || h->root.type == bfd_link_hash_warning)
1042 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1043 }
e0001a05
NC
1044
1045 r_type = ELF32_R_TYPE (rel->r_info);
1046 switch (r_type)
1047 {
1048 case R_XTENSA_32:
1049 if (h == NULL)
1050 goto local_literal;
1051 if (h->got.refcount > 0)
1052 h->got.refcount--;
1053 break;
1054
1055 case R_XTENSA_PLT:
1056 if (h == NULL)
1057 goto local_literal;
1058 if (h->plt.refcount > 0)
1059 h->plt.refcount--;
1060 break;
1061
1062 local_literal:
1063 if (local_got_refcounts[r_symndx] > 0)
1064 local_got_refcounts[r_symndx] -= 1;
1065 break;
1066
1067 default:
1068 break;
1069 }
1070 }
1071
1072 return TRUE;
1073}
1074
1075
1076/* Create all the dynamic sections. */
1077
1078static bfd_boolean
7fa3d080 1079elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
e0001a05 1080{
e901de89 1081 flagword flags, noalloc_flags;
e0001a05
NC
1082 asection *s;
1083
1084 /* First do all the standard stuff. */
1085 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1086 return FALSE;
1087
1088 /* Create any extra PLT sections in case check_relocs has already
1089 been called on all the non-dynamic input files. */
1090 if (!add_extra_plt_sections (dynobj, plt_reloc_count))
1091 return FALSE;
1092
e901de89
BW
1093 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1094 | SEC_LINKER_CREATED | SEC_READONLY);
1095 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
e0001a05
NC
1096
1097 /* Mark the ".got.plt" section READONLY. */
1098 s = bfd_get_section_by_name (dynobj, ".got.plt");
1099 if (s == NULL
1100 || ! bfd_set_section_flags (dynobj, s, flags))
1101 return FALSE;
1102
1103 /* Create ".rela.got". */
3496cb2a 1104 s = bfd_make_section_with_flags (dynobj, ".rela.got", flags);
e0001a05 1105 if (s == NULL
e0001a05
NC
1106 || ! bfd_set_section_alignment (dynobj, s, 2))
1107 return FALSE;
1108
e901de89 1109 /* Create ".got.loc" (literal tables for use by dynamic linker). */
3496cb2a 1110 s = bfd_make_section_with_flags (dynobj, ".got.loc", flags);
e901de89 1111 if (s == NULL
e901de89
BW
1112 || ! bfd_set_section_alignment (dynobj, s, 2))
1113 return FALSE;
1114
e0001a05 1115 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
3496cb2a
L
1116 s = bfd_make_section_with_flags (dynobj, ".xt.lit.plt",
1117 noalloc_flags);
e0001a05 1118 if (s == NULL
e0001a05
NC
1119 || ! bfd_set_section_alignment (dynobj, s, 2))
1120 return FALSE;
1121
1122 return TRUE;
1123}
1124
1125
1126static bfd_boolean
7fa3d080 1127add_extra_plt_sections (bfd *dynobj, int count)
e0001a05
NC
1128{
1129 int chunk;
1130
1131 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1132 ".got.plt" sections. */
1133 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1134 {
1135 char *sname;
1136 flagword flags;
1137 asection *s;
1138
1139 /* Stop when we find a section has already been created. */
1140 if (elf_xtensa_get_plt_section (dynobj, chunk))
1141 break;
1142
1143 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1144 | SEC_LINKER_CREATED | SEC_READONLY);
1145
1146 sname = (char *) bfd_malloc (10);
1147 sprintf (sname, ".plt.%u", chunk);
3496cb2a
L
1148 s = bfd_make_section_with_flags (dynobj, sname,
1149 flags | SEC_CODE);
e0001a05 1150 if (s == NULL
e0001a05
NC
1151 || ! bfd_set_section_alignment (dynobj, s, 2))
1152 return FALSE;
1153
1154 sname = (char *) bfd_malloc (14);
1155 sprintf (sname, ".got.plt.%u", chunk);
3496cb2a 1156 s = bfd_make_section_with_flags (dynobj, sname, flags);
e0001a05 1157 if (s == NULL
e0001a05
NC
1158 || ! bfd_set_section_alignment (dynobj, s, 2))
1159 return FALSE;
1160 }
1161
1162 return TRUE;
1163}
1164
1165
1166/* Adjust a symbol defined by a dynamic object and referenced by a
1167 regular object. The current definition is in some section of the
1168 dynamic object, but we're not including those sections. We have to
1169 change the definition to something the rest of the link can
1170 understand. */
1171
1172static bfd_boolean
7fa3d080
BW
1173elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1174 struct elf_link_hash_entry *h)
e0001a05
NC
1175{
1176 /* If this is a weak symbol, and there is a real definition, the
1177 processor independent code will have arranged for us to see the
1178 real definition first, and we can just use the same value. */
7fa3d080 1179 if (h->u.weakdef)
e0001a05 1180 {
f6e332e6
AM
1181 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1182 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1183 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1184 h->root.u.def.value = h->u.weakdef->root.u.def.value;
e0001a05
NC
1185 return TRUE;
1186 }
1187
1188 /* This is a reference to a symbol defined by a dynamic object. The
1189 reference must go through the GOT, so there's no need for COPY relocs,
1190 .dynbss, etc. */
1191
1192 return TRUE;
1193}
1194
1195
e0001a05 1196static bfd_boolean
7fa3d080 1197elf_xtensa_fix_refcounts (struct elf_link_hash_entry *h, void *arg)
e0001a05
NC
1198{
1199 struct bfd_link_info *info = (struct bfd_link_info *) arg;
1200
1201 if (h->root.type == bfd_link_hash_warning)
1202 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1203
571b5725 1204 if (! xtensa_elf_dynamic_symbol_p (h, info))
e0001a05
NC
1205 elf_xtensa_make_sym_local (info, h);
1206
e0001a05
NC
1207 return TRUE;
1208}
1209
1210
1211static bfd_boolean
7fa3d080 1212elf_xtensa_allocate_plt_size (struct elf_link_hash_entry *h, void *arg)
e0001a05
NC
1213{
1214 asection *srelplt = (asection *) arg;
1215
1216 if (h->root.type == bfd_link_hash_warning)
1217 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1218
1219 if (h->plt.refcount > 0)
eea6121a 1220 srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1221
1222 return TRUE;
1223}
1224
1225
1226static bfd_boolean
7fa3d080 1227elf_xtensa_allocate_got_size (struct elf_link_hash_entry *h, void *arg)
e0001a05
NC
1228{
1229 asection *srelgot = (asection *) arg;
1230
1231 if (h->root.type == bfd_link_hash_warning)
1232 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1233
1234 if (h->got.refcount > 0)
eea6121a 1235 srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1236
1237 return TRUE;
1238}
1239
1240
1241static void
7fa3d080
BW
1242elf_xtensa_allocate_local_got_size (struct bfd_link_info *info,
1243 asection *srelgot)
e0001a05
NC
1244{
1245 bfd *i;
1246
1247 for (i = info->input_bfds; i; i = i->link_next)
1248 {
1249 bfd_signed_vma *local_got_refcounts;
1250 bfd_size_type j, cnt;
1251 Elf_Internal_Shdr *symtab_hdr;
1252
1253 local_got_refcounts = elf_local_got_refcounts (i);
1254 if (!local_got_refcounts)
1255 continue;
1256
1257 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1258 cnt = symtab_hdr->sh_info;
1259
1260 for (j = 0; j < cnt; ++j)
1261 {
1262 if (local_got_refcounts[j] > 0)
eea6121a
AM
1263 srelgot->size += (local_got_refcounts[j]
1264 * sizeof (Elf32_External_Rela));
e0001a05
NC
1265 }
1266 }
1267}
1268
1269
1270/* Set the sizes of the dynamic sections. */
1271
1272static bfd_boolean
7fa3d080
BW
1273elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1274 struct bfd_link_info *info)
e0001a05 1275{
e901de89
BW
1276 bfd *dynobj, *abfd;
1277 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
e0001a05
NC
1278 bfd_boolean relplt, relgot;
1279 int plt_entries, plt_chunks, chunk;
1280
1281 plt_entries = 0;
1282 plt_chunks = 0;
1283 srelgot = 0;
1284
1285 dynobj = elf_hash_table (info)->dynobj;
1286 if (dynobj == NULL)
1287 abort ();
1288
1289 if (elf_hash_table (info)->dynamic_sections_created)
1290 {
1291 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 1292 if (info->executable)
e0001a05
NC
1293 {
1294 s = bfd_get_section_by_name (dynobj, ".interp");
1295 if (s == NULL)
1296 abort ();
eea6121a 1297 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
e0001a05
NC
1298 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1299 }
1300
1301 /* Allocate room for one word in ".got". */
1302 s = bfd_get_section_by_name (dynobj, ".got");
1303 if (s == NULL)
1304 abort ();
eea6121a 1305 s->size = 4;
e0001a05
NC
1306
1307 /* Adjust refcounts for symbols that we now know are not "dynamic". */
1308 elf_link_hash_traverse (elf_hash_table (info),
1309 elf_xtensa_fix_refcounts,
7fa3d080 1310 (void *) info);
e0001a05
NC
1311
1312 /* Allocate space in ".rela.got" for literals that reference
1313 global symbols. */
1314 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1315 if (srelgot == NULL)
1316 abort ();
1317 elf_link_hash_traverse (elf_hash_table (info),
1318 elf_xtensa_allocate_got_size,
7fa3d080 1319 (void *) srelgot);
e0001a05
NC
1320
1321 /* If we are generating a shared object, we also need space in
1322 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1323 reference local symbols. */
1324 if (info->shared)
1325 elf_xtensa_allocate_local_got_size (info, srelgot);
1326
1327 /* Allocate space in ".rela.plt" for literals that have PLT entries. */
1328 srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
1329 if (srelplt == NULL)
1330 abort ();
1331 elf_link_hash_traverse (elf_hash_table (info),
1332 elf_xtensa_allocate_plt_size,
7fa3d080 1333 (void *) srelplt);
e0001a05
NC
1334
1335 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1336 each PLT entry, we need the PLT code plus a 4-byte literal.
1337 For each chunk of ".plt", we also need two more 4-byte
1338 literals, two corresponding entries in ".rela.got", and an
1339 8-byte entry in ".xt.lit.plt". */
1340 spltlittbl = bfd_get_section_by_name (dynobj, ".xt.lit.plt");
1341 if (spltlittbl == NULL)
1342 abort ();
1343
eea6121a 1344 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
1345 plt_chunks =
1346 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1347
1348 /* Iterate over all the PLT chunks, including any extra sections
1349 created earlier because the initial count of PLT relocations
1350 was an overestimate. */
1351 for (chunk = 0;
1352 (splt = elf_xtensa_get_plt_section (dynobj, chunk)) != NULL;
1353 chunk++)
1354 {
1355 int chunk_entries;
1356
1357 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
1358 if (sgotplt == NULL)
1359 abort ();
1360
1361 if (chunk < plt_chunks - 1)
1362 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1363 else if (chunk == plt_chunks - 1)
1364 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1365 else
1366 chunk_entries = 0;
1367
1368 if (chunk_entries != 0)
1369 {
eea6121a
AM
1370 sgotplt->size = 4 * (chunk_entries + 2);
1371 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1372 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1373 spltlittbl->size += 8;
e0001a05
NC
1374 }
1375 else
1376 {
eea6121a
AM
1377 sgotplt->size = 0;
1378 splt->size = 0;
e0001a05
NC
1379 }
1380 }
e901de89
BW
1381
1382 /* Allocate space in ".got.loc" to match the total size of all the
1383 literal tables. */
1384 sgotloc = bfd_get_section_by_name (dynobj, ".got.loc");
1385 if (sgotloc == NULL)
1386 abort ();
eea6121a 1387 sgotloc->size = spltlittbl->size;
e901de89
BW
1388 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1389 {
1390 if (abfd->flags & DYNAMIC)
1391 continue;
1392 for (s = abfd->sections; s != NULL; s = s->next)
1393 {
b536dc1e
BW
1394 if (! elf_discarded_section (s)
1395 && xtensa_is_littable_section (s)
1396 && s != spltlittbl)
eea6121a 1397 sgotloc->size += s->size;
e901de89
BW
1398 }
1399 }
e0001a05
NC
1400 }
1401
1402 /* Allocate memory for dynamic sections. */
1403 relplt = FALSE;
1404 relgot = FALSE;
1405 for (s = dynobj->sections; s != NULL; s = s->next)
1406 {
1407 const char *name;
e0001a05
NC
1408
1409 if ((s->flags & SEC_LINKER_CREATED) == 0)
1410 continue;
1411
1412 /* It's OK to base decisions on the section name, because none
1413 of the dynobj section names depend upon the input files. */
1414 name = bfd_get_section_name (dynobj, s);
1415
e0001a05
NC
1416 if (strncmp (name, ".rela", 5) == 0)
1417 {
c456f082 1418 if (s->size != 0)
e0001a05 1419 {
c456f082
AM
1420 if (strcmp (name, ".rela.plt") == 0)
1421 relplt = TRUE;
1422 else if (strcmp (name, ".rela.got") == 0)
1423 relgot = TRUE;
1424
1425 /* We use the reloc_count field as a counter if we need
1426 to copy relocs into the output file. */
1427 s->reloc_count = 0;
e0001a05
NC
1428 }
1429 }
c456f082
AM
1430 else if (strncmp (name, ".plt.", 5) != 0
1431 && strncmp (name, ".got.plt.", 9) != 0
1432 && strcmp (name, ".got") != 0
e0001a05
NC
1433 && strcmp (name, ".plt") != 0
1434 && strcmp (name, ".got.plt") != 0
e901de89
BW
1435 && strcmp (name, ".xt.lit.plt") != 0
1436 && strcmp (name, ".got.loc") != 0)
e0001a05
NC
1437 {
1438 /* It's not one of our sections, so don't allocate space. */
1439 continue;
1440 }
1441
c456f082
AM
1442 if (s->size == 0)
1443 {
1444 /* If we don't need this section, strip it from the output
1445 file. We must create the ".plt*" and ".got.plt*"
1446 sections in create_dynamic_sections and/or check_relocs
1447 based on a conservative estimate of the PLT relocation
1448 count, because the sections must be created before the
1449 linker maps input sections to output sections. The
1450 linker does that before size_dynamic_sections, where we
1451 compute the exact size of the PLT, so there may be more
1452 of these sections than are actually needed. */
1453 s->flags |= SEC_EXCLUDE;
1454 }
1455 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
e0001a05
NC
1456 {
1457 /* Allocate memory for the section contents. */
eea6121a 1458 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
c456f082 1459 if (s->contents == NULL)
e0001a05
NC
1460 return FALSE;
1461 }
1462 }
1463
1464 if (elf_hash_table (info)->dynamic_sections_created)
1465 {
1466 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1467 known until finish_dynamic_sections, but we need to get the relocs
1468 in place before they are sorted. */
1469 if (srelgot == NULL)
1470 abort ();
1471 for (chunk = 0; chunk < plt_chunks; chunk++)
1472 {
1473 Elf_Internal_Rela irela;
1474 bfd_byte *loc;
1475
1476 irela.r_offset = 0;
1477 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1478 irela.r_addend = 0;
1479
1480 loc = (srelgot->contents
1481 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1482 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1483 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1484 loc + sizeof (Elf32_External_Rela));
1485 srelgot->reloc_count += 2;
1486 }
1487
1488 /* Add some entries to the .dynamic section. We fill in the
1489 values later, in elf_xtensa_finish_dynamic_sections, but we
1490 must add the entries now so that we get the correct size for
1491 the .dynamic section. The DT_DEBUG entry is filled in by the
1492 dynamic linker and used by the debugger. */
1493#define add_dynamic_entry(TAG, VAL) \
5a580b3a 1494 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
e0001a05
NC
1495
1496 if (! info->shared)
1497 {
1498 if (!add_dynamic_entry (DT_DEBUG, 0))
1499 return FALSE;
1500 }
1501
1502 if (relplt)
1503 {
1504 if (!add_dynamic_entry (DT_PLTGOT, 0)
1505 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1506 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1507 || !add_dynamic_entry (DT_JMPREL, 0))
1508 return FALSE;
1509 }
1510
1511 if (relgot)
1512 {
1513 if (!add_dynamic_entry (DT_RELA, 0)
1514 || !add_dynamic_entry (DT_RELASZ, 0)
1515 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1516 return FALSE;
1517 }
1518
e0001a05
NC
1519 if (!add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1520 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1521 return FALSE;
1522 }
1523#undef add_dynamic_entry
1524
1525 return TRUE;
1526}
1527
1528\f
1529/* Remove any PT_LOAD segments with no allocated sections. Prior to
1530 binutils 2.13, this function used to remove the non-SEC_ALLOC
1531 sections from PT_LOAD segments, but that task has now been moved
1532 into elf.c. We still need this function to remove any empty
1533 segments that result, but there's nothing Xtensa-specific about
1534 this and it probably ought to be moved into elf.c as well. */
1535
1536static bfd_boolean
7fa3d080
BW
1537elf_xtensa_modify_segment_map (bfd *abfd,
1538 struct bfd_link_info *info ATTRIBUTE_UNUSED)
e0001a05
NC
1539{
1540 struct elf_segment_map **m_p;
1541
1542 m_p = &elf_tdata (abfd)->segment_map;
7fa3d080 1543 while (*m_p)
e0001a05
NC
1544 {
1545 if ((*m_p)->p_type == PT_LOAD && (*m_p)->count == 0)
1546 *m_p = (*m_p)->next;
1547 else
1548 m_p = &(*m_p)->next;
1549 }
1550 return TRUE;
1551}
1552
1553\f
1554/* Perform the specified relocation. The instruction at (contents + address)
1555 is modified to set one operand to represent the value in "relocation". The
1556 operand position is determined by the relocation type recorded in the
1557 howto. */
1558
1559#define CALL_SEGMENT_BITS (30)
7fa3d080 1560#define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
e0001a05
NC
1561
1562static bfd_reloc_status_type
7fa3d080
BW
1563elf_xtensa_do_reloc (reloc_howto_type *howto,
1564 bfd *abfd,
1565 asection *input_section,
1566 bfd_vma relocation,
1567 bfd_byte *contents,
1568 bfd_vma address,
1569 bfd_boolean is_weak_undef,
1570 char **error_message)
e0001a05 1571{
43cd72b9 1572 xtensa_format fmt;
e0001a05 1573 xtensa_opcode opcode;
e0001a05 1574 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
1575 static xtensa_insnbuf ibuff = NULL;
1576 static xtensa_insnbuf sbuff = NULL;
1577 bfd_vma self_address = 0;
1578 bfd_size_type input_size;
1579 int opnd, slot;
e0001a05
NC
1580 uint32 newval;
1581
43cd72b9
BW
1582 if (!ibuff)
1583 {
1584 ibuff = xtensa_insnbuf_alloc (isa);
1585 sbuff = xtensa_insnbuf_alloc (isa);
1586 }
1587
1588 input_size = bfd_get_section_limit (abfd, input_section);
1589
e0001a05
NC
1590 switch (howto->type)
1591 {
1592 case R_XTENSA_NONE:
43cd72b9
BW
1593 case R_XTENSA_DIFF8:
1594 case R_XTENSA_DIFF16:
1595 case R_XTENSA_DIFF32:
e0001a05
NC
1596 return bfd_reloc_ok;
1597
1598 case R_XTENSA_ASM_EXPAND:
1599 if (!is_weak_undef)
1600 {
1601 /* Check for windowed CALL across a 1GB boundary. */
1602 xtensa_opcode opcode =
1603 get_expanded_call_opcode (contents + address,
43cd72b9 1604 input_size - address, 0);
e0001a05
NC
1605 if (is_windowed_call_opcode (opcode))
1606 {
1607 self_address = (input_section->output_section->vma
1608 + input_section->output_offset
1609 + address);
43cd72b9
BW
1610 if ((self_address >> CALL_SEGMENT_BITS)
1611 != (relocation >> CALL_SEGMENT_BITS))
e0001a05
NC
1612 {
1613 *error_message = "windowed longcall crosses 1GB boundary; "
1614 "return may fail";
1615 return bfd_reloc_dangerous;
1616 }
1617 }
1618 }
1619 return bfd_reloc_ok;
1620
1621 case R_XTENSA_ASM_SIMPLIFY:
43cd72b9 1622 {
e0001a05 1623 /* Convert the L32R/CALLX to CALL. */
43cd72b9
BW
1624 bfd_reloc_status_type retval =
1625 elf_xtensa_do_asm_simplify (contents, address, input_size,
1626 error_message);
e0001a05 1627 if (retval != bfd_reloc_ok)
43cd72b9 1628 return bfd_reloc_dangerous;
e0001a05
NC
1629
1630 /* The CALL needs to be relocated. Continue below for that part. */
1631 address += 3;
43cd72b9 1632 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
e0001a05
NC
1633 }
1634 break;
1635
1636 case R_XTENSA_32:
1637 case R_XTENSA_PLT:
1638 {
1639 bfd_vma x;
1640 x = bfd_get_32 (abfd, contents + address);
1641 x = x + relocation;
1642 bfd_put_32 (abfd, x, contents + address);
1643 }
1644 return bfd_reloc_ok;
1645 }
1646
43cd72b9
BW
1647 /* Only instruction slot-specific relocations handled below.... */
1648 slot = get_relocation_slot (howto->type);
1649 if (slot == XTENSA_UNDEFINED)
e0001a05 1650 {
43cd72b9 1651 *error_message = "unexpected relocation";
e0001a05
NC
1652 return bfd_reloc_dangerous;
1653 }
1654
43cd72b9
BW
1655 /* Read the instruction into a buffer and decode the opcode. */
1656 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
1657 input_size - address);
1658 fmt = xtensa_format_decode (isa, ibuff);
1659 if (fmt == XTENSA_UNDEFINED)
e0001a05 1660 {
43cd72b9 1661 *error_message = "cannot decode instruction format";
e0001a05
NC
1662 return bfd_reloc_dangerous;
1663 }
1664
43cd72b9 1665 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
e0001a05 1666
43cd72b9
BW
1667 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
1668 if (opcode == XTENSA_UNDEFINED)
e0001a05 1669 {
43cd72b9 1670 *error_message = "cannot decode instruction opcode";
e0001a05
NC
1671 return bfd_reloc_dangerous;
1672 }
1673
43cd72b9
BW
1674 /* Check for opcode-specific "alternate" relocations. */
1675 if (is_alt_relocation (howto->type))
1676 {
1677 if (opcode == get_l32r_opcode ())
1678 {
1679 /* Handle the special-case of non-PC-relative L32R instructions. */
1680 bfd *output_bfd = input_section->output_section->owner;
1681 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
1682 if (!lit4_sec)
1683 {
1684 *error_message = "relocation references missing .lit4 section";
1685 return bfd_reloc_dangerous;
1686 }
1687 self_address = ((lit4_sec->vma & ~0xfff)
1688 + 0x40000 - 3); /* -3 to compensate for do_reloc */
1689 newval = relocation;
1690 opnd = 1;
1691 }
1692 else if (opcode == get_const16_opcode ())
1693 {
1694 /* ALT used for high 16 bits. */
1695 newval = relocation >> 16;
1696 opnd = 1;
1697 }
1698 else
1699 {
1700 /* No other "alternate" relocations currently defined. */
1701 *error_message = "unexpected relocation";
1702 return bfd_reloc_dangerous;
1703 }
1704 }
1705 else /* Not an "alternate" relocation.... */
1706 {
1707 if (opcode == get_const16_opcode ())
1708 {
1709 newval = relocation & 0xffff;
1710 opnd = 1;
1711 }
1712 else
1713 {
1714 /* ...normal PC-relative relocation.... */
1715
1716 /* Determine which operand is being relocated. */
1717 opnd = get_relocation_opnd (opcode, howto->type);
1718 if (opnd == XTENSA_UNDEFINED)
1719 {
1720 *error_message = "unexpected relocation";
1721 return bfd_reloc_dangerous;
1722 }
1723
1724 if (!howto->pc_relative)
1725 {
1726 *error_message = "expected PC-relative relocation";
1727 return bfd_reloc_dangerous;
1728 }
e0001a05 1729
43cd72b9
BW
1730 /* Calculate the PC address for this instruction. */
1731 self_address = (input_section->output_section->vma
1732 + input_section->output_offset
1733 + address);
e0001a05 1734
43cd72b9
BW
1735 newval = relocation;
1736 }
1737 }
e0001a05 1738
43cd72b9
BW
1739 /* Apply the relocation. */
1740 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
1741 || xtensa_operand_encode (isa, opcode, opnd, &newval)
1742 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
1743 sbuff, newval))
e0001a05 1744 {
2db662be
BW
1745 const char *opname = xtensa_opcode_name (isa, opcode);
1746 const char *msg;
1747
1748 msg = "cannot encode";
1749 if (is_direct_call_opcode (opcode))
1750 {
1751 if ((relocation & 0x3) != 0)
1752 msg = "misaligned call target";
1753 else
1754 msg = "call target out of range";
1755 }
1756 else if (opcode == get_l32r_opcode ())
1757 {
1758 if ((relocation & 0x3) != 0)
1759 msg = "misaligned literal target";
1760 else if (is_alt_relocation (howto->type))
1761 msg = "literal target out of range (too many literals)";
1762 else if (self_address > relocation)
1763 msg = "literal target out of range (try using text-section-literals)";
1764 else
1765 msg = "literal placed after use";
1766 }
1767
1768 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
e0001a05
NC
1769 return bfd_reloc_dangerous;
1770 }
1771
43cd72b9 1772 /* Check for calls across 1GB boundaries. */
e0001a05
NC
1773 if (is_direct_call_opcode (opcode)
1774 && is_windowed_call_opcode (opcode))
1775 {
43cd72b9
BW
1776 if ((self_address >> CALL_SEGMENT_BITS)
1777 != (relocation >> CALL_SEGMENT_BITS))
e0001a05 1778 {
43cd72b9
BW
1779 *error_message =
1780 "windowed call crosses 1GB boundary; return may fail";
e0001a05
NC
1781 return bfd_reloc_dangerous;
1782 }
1783 }
1784
43cd72b9
BW
1785 /* Write the modified instruction back out of the buffer. */
1786 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
1787 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
1788 input_size - address);
e0001a05
NC
1789 return bfd_reloc_ok;
1790}
1791
1792
2db662be 1793static char *
7fa3d080 1794vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
e0001a05
NC
1795{
1796 /* To reduce the size of the memory leak,
1797 we only use a single message buffer. */
1798 static bfd_size_type alloc_size = 0;
1799 static char *message = NULL;
1800 bfd_size_type orig_len, len = 0;
1801 bfd_boolean is_append;
1802
1803 VA_OPEN (ap, arglen);
1804 VA_FIXEDARG (ap, const char *, origmsg);
1805
1806 is_append = (origmsg == message);
1807
1808 orig_len = strlen (origmsg);
1809 len = orig_len + strlen (fmt) + arglen + 20;
1810 if (len > alloc_size)
1811 {
1812 message = (char *) bfd_realloc (message, len);
1813 alloc_size = len;
1814 }
1815 if (!is_append)
1816 memcpy (message, origmsg, orig_len);
1817 vsprintf (message + orig_len, fmt, ap);
1818 VA_CLOSE (ap);
1819 return message;
1820}
1821
1822
e0001a05
NC
1823/* This function is registered as the "special_function" in the
1824 Xtensa howto for handling simplify operations.
1825 bfd_perform_relocation / bfd_install_relocation use it to
1826 perform (install) the specified relocation. Since this replaces the code
1827 in bfd_perform_relocation, it is basically an Xtensa-specific,
1828 stripped-down version of bfd_perform_relocation. */
1829
1830static bfd_reloc_status_type
7fa3d080
BW
1831bfd_elf_xtensa_reloc (bfd *abfd,
1832 arelent *reloc_entry,
1833 asymbol *symbol,
1834 void *data,
1835 asection *input_section,
1836 bfd *output_bfd,
1837 char **error_message)
e0001a05
NC
1838{
1839 bfd_vma relocation;
1840 bfd_reloc_status_type flag;
1841 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
1842 bfd_vma output_base = 0;
1843 reloc_howto_type *howto = reloc_entry->howto;
1844 asection *reloc_target_output_section;
1845 bfd_boolean is_weak_undef;
1846
dd1a320b
BW
1847 if (!xtensa_default_isa)
1848 xtensa_default_isa = xtensa_isa_init (0, 0);
1849
1049f94e 1850 /* ELF relocs are against symbols. If we are producing relocatable
e0001a05
NC
1851 output, and the reloc is against an external symbol, the resulting
1852 reloc will also be against the same symbol. In such a case, we
1853 don't want to change anything about the way the reloc is handled,
1854 since it will all be done at final link time. This test is similar
1855 to what bfd_elf_generic_reloc does except that it lets relocs with
1856 howto->partial_inplace go through even if the addend is non-zero.
1857 (The real problem is that partial_inplace is set for XTENSA_32
1858 relocs to begin with, but that's a long story and there's little we
1859 can do about it now....) */
1860
7fa3d080 1861 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
e0001a05
NC
1862 {
1863 reloc_entry->address += input_section->output_offset;
1864 return bfd_reloc_ok;
1865 }
1866
1867 /* Is the address of the relocation really within the section? */
07515404 1868 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
e0001a05
NC
1869 return bfd_reloc_outofrange;
1870
4cc11e76 1871 /* Work out which section the relocation is targeted at and the
e0001a05
NC
1872 initial relocation command value. */
1873
1874 /* Get symbol value. (Common symbols are special.) */
1875 if (bfd_is_com_section (symbol->section))
1876 relocation = 0;
1877 else
1878 relocation = symbol->value;
1879
1880 reloc_target_output_section = symbol->section->output_section;
1881
1882 /* Convert input-section-relative symbol value to absolute. */
1883 if ((output_bfd && !howto->partial_inplace)
1884 || reloc_target_output_section == NULL)
1885 output_base = 0;
1886 else
1887 output_base = reloc_target_output_section->vma;
1888
1889 relocation += output_base + symbol->section->output_offset;
1890
1891 /* Add in supplied addend. */
1892 relocation += reloc_entry->addend;
1893
1894 /* Here the variable relocation holds the final address of the
1895 symbol we are relocating against, plus any addend. */
1896 if (output_bfd)
1897 {
1898 if (!howto->partial_inplace)
1899 {
1900 /* This is a partial relocation, and we want to apply the relocation
1901 to the reloc entry rather than the raw data. Everything except
1902 relocations against section symbols has already been handled
1903 above. */
43cd72b9 1904
e0001a05
NC
1905 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
1906 reloc_entry->addend = relocation;
1907 reloc_entry->address += input_section->output_offset;
1908 return bfd_reloc_ok;
1909 }
1910 else
1911 {
1912 reloc_entry->address += input_section->output_offset;
1913 reloc_entry->addend = 0;
1914 }
1915 }
1916
1917 is_weak_undef = (bfd_is_und_section (symbol->section)
1918 && (symbol->flags & BSF_WEAK) != 0);
1919 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
1920 (bfd_byte *) data, (bfd_vma) octets,
1921 is_weak_undef, error_message);
1922
1923 if (flag == bfd_reloc_dangerous)
1924 {
1925 /* Add the symbol name to the error message. */
1926 if (! *error_message)
1927 *error_message = "";
1928 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
1929 strlen (symbol->name) + 17,
70961b9d
AM
1930 symbol->name,
1931 (unsigned long) reloc_entry->addend);
e0001a05
NC
1932 }
1933
1934 return flag;
1935}
1936
1937
1938/* Set up an entry in the procedure linkage table. */
1939
1940static bfd_vma
7fa3d080
BW
1941elf_xtensa_create_plt_entry (bfd *dynobj,
1942 bfd *output_bfd,
1943 unsigned reloc_index)
e0001a05
NC
1944{
1945 asection *splt, *sgotplt;
1946 bfd_vma plt_base, got_base;
1947 bfd_vma code_offset, lit_offset;
1948 int chunk;
1949
1950 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
1951 splt = elf_xtensa_get_plt_section (dynobj, chunk);
1952 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
1953 BFD_ASSERT (splt != NULL && sgotplt != NULL);
1954
1955 plt_base = splt->output_section->vma + splt->output_offset;
1956 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
1957
1958 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
1959 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
1960
1961 /* Fill in the literal entry. This is the offset of the dynamic
1962 relocation entry. */
1963 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
1964 sgotplt->contents + lit_offset);
1965
1966 /* Fill in the entry in the procedure linkage table. */
1967 memcpy (splt->contents + code_offset,
1968 (bfd_big_endian (output_bfd)
1969 ? elf_xtensa_be_plt_entry
1970 : elf_xtensa_le_plt_entry),
1971 PLT_ENTRY_SIZE);
1972 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
1973 plt_base + code_offset + 3),
1974 splt->contents + code_offset + 4);
1975 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
1976 plt_base + code_offset + 6),
1977 splt->contents + code_offset + 7);
1978 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
1979 plt_base + code_offset + 9),
1980 splt->contents + code_offset + 10);
1981
1982 return plt_base + code_offset;
1983}
1984
1985
e0001a05 1986/* Relocate an Xtensa ELF section. This is invoked by the linker for
1049f94e 1987 both relocatable and final links. */
e0001a05
NC
1988
1989static bfd_boolean
7fa3d080
BW
1990elf_xtensa_relocate_section (bfd *output_bfd,
1991 struct bfd_link_info *info,
1992 bfd *input_bfd,
1993 asection *input_section,
1994 bfd_byte *contents,
1995 Elf_Internal_Rela *relocs,
1996 Elf_Internal_Sym *local_syms,
1997 asection **local_sections)
e0001a05
NC
1998{
1999 Elf_Internal_Shdr *symtab_hdr;
2000 Elf_Internal_Rela *rel;
2001 Elf_Internal_Rela *relend;
2002 struct elf_link_hash_entry **sym_hashes;
2003 asection *srelgot, *srelplt;
2004 bfd *dynobj;
88d65ad6
BW
2005 property_table_entry *lit_table = 0;
2006 int ltblsize = 0;
e0001a05 2007 char *error_message = NULL;
43cd72b9 2008 bfd_size_type input_size;
e0001a05 2009
43cd72b9
BW
2010 if (!xtensa_default_isa)
2011 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05
NC
2012
2013 dynobj = elf_hash_table (info)->dynobj;
2014 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2015 sym_hashes = elf_sym_hashes (input_bfd);
2016
2017 srelgot = NULL;
2018 srelplt = NULL;
7fa3d080 2019 if (dynobj)
e0001a05
NC
2020 {
2021 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");;
2022 srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
2023 }
2024
88d65ad6
BW
2025 if (elf_hash_table (info)->dynamic_sections_created)
2026 {
2027 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
43cd72b9
BW
2028 &lit_table, XTENSA_LIT_SEC_NAME,
2029 TRUE);
88d65ad6
BW
2030 if (ltblsize < 0)
2031 return FALSE;
2032 }
2033
43cd72b9
BW
2034 input_size = bfd_get_section_limit (input_bfd, input_section);
2035
e0001a05
NC
2036 rel = relocs;
2037 relend = relocs + input_section->reloc_count;
2038 for (; rel < relend; rel++)
2039 {
2040 int r_type;
2041 reloc_howto_type *howto;
2042 unsigned long r_symndx;
2043 struct elf_link_hash_entry *h;
2044 Elf_Internal_Sym *sym;
2045 asection *sec;
2046 bfd_vma relocation;
2047 bfd_reloc_status_type r;
2048 bfd_boolean is_weak_undef;
2049 bfd_boolean unresolved_reloc;
9b8c98a4 2050 bfd_boolean warned;
e0001a05
NC
2051
2052 r_type = ELF32_R_TYPE (rel->r_info);
2053 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2054 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2055 continue;
2056
2057 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2058 {
2059 bfd_set_error (bfd_error_bad_value);
2060 return FALSE;
2061 }
2062 howto = &elf_howto_table[r_type];
2063
2064 r_symndx = ELF32_R_SYM (rel->r_info);
2065
1049f94e 2066 if (info->relocatable)
e0001a05 2067 {
43cd72b9 2068 /* This is a relocatable link.
e0001a05
NC
2069 1) If the reloc is against a section symbol, adjust
2070 according to the output section.
2071 2) If there is a new target for this relocation,
2072 the new target will be in the same output section.
2073 We adjust the relocation by the output section
2074 difference. */
2075
2076 if (relaxing_section)
2077 {
2078 /* Check if this references a section in another input file. */
43cd72b9
BW
2079 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2080 contents))
2081 return FALSE;
e0001a05
NC
2082 r_type = ELF32_R_TYPE (rel->r_info);
2083 }
2084
43cd72b9 2085 if (r_type == R_XTENSA_ASM_SIMPLIFY)
e0001a05 2086 {
43cd72b9 2087 char *error_message = NULL;
e0001a05
NC
2088 /* Convert ASM_SIMPLIFY into the simpler relocation
2089 so that they never escape a relaxing link. */
43cd72b9
BW
2090 r = contract_asm_expansion (contents, input_size, rel,
2091 &error_message);
2092 if (r != bfd_reloc_ok)
2093 {
2094 if (!((*info->callbacks->reloc_dangerous)
2095 (info, error_message, input_bfd, input_section,
2096 rel->r_offset)))
2097 return FALSE;
2098 }
e0001a05
NC
2099 r_type = ELF32_R_TYPE (rel->r_info);
2100 }
2101
1049f94e 2102 /* This is a relocatable link, so we don't have to change
e0001a05
NC
2103 anything unless the reloc is against a section symbol,
2104 in which case we have to adjust according to where the
2105 section symbol winds up in the output section. */
2106 if (r_symndx < symtab_hdr->sh_info)
2107 {
2108 sym = local_syms + r_symndx;
2109 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2110 {
2111 sec = local_sections[r_symndx];
2112 rel->r_addend += sec->output_offset + sym->st_value;
2113 }
2114 }
2115
2116 /* If there is an addend with a partial_inplace howto,
2117 then move the addend to the contents. This is a hack
1049f94e 2118 to work around problems with DWARF in relocatable links
e0001a05
NC
2119 with some previous version of BFD. Now we can't easily get
2120 rid of the hack without breaking backward compatibility.... */
2121 if (rel->r_addend)
2122 {
2123 howto = &elf_howto_table[r_type];
2124 if (howto->partial_inplace)
2125 {
2126 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2127 rel->r_addend, contents,
2128 rel->r_offset, FALSE,
2129 &error_message);
2130 if (r != bfd_reloc_ok)
2131 {
2132 if (!((*info->callbacks->reloc_dangerous)
2133 (info, error_message, input_bfd, input_section,
2134 rel->r_offset)))
2135 return FALSE;
2136 }
2137 rel->r_addend = 0;
2138 }
2139 }
2140
1049f94e 2141 /* Done with work for relocatable link; continue with next reloc. */
e0001a05
NC
2142 continue;
2143 }
2144
2145 /* This is a final link. */
2146
2147 h = NULL;
2148 sym = NULL;
2149 sec = NULL;
2150 is_weak_undef = FALSE;
2151 unresolved_reloc = FALSE;
9b8c98a4 2152 warned = FALSE;
e0001a05
NC
2153
2154 if (howto->partial_inplace)
2155 {
2156 /* Because R_XTENSA_32 was made partial_inplace to fix some
2157 problems with DWARF info in partial links, there may be
2158 an addend stored in the contents. Take it out of there
2159 and move it back into the addend field of the reloc. */
2160 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2161 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2162 }
2163
2164 if (r_symndx < symtab_hdr->sh_info)
2165 {
2166 sym = local_syms + r_symndx;
2167 sec = local_sections[r_symndx];
8517fae7 2168 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
e0001a05
NC
2169 }
2170 else
2171 {
b2a8e766
AM
2172 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2173 r_symndx, symtab_hdr, sym_hashes,
2174 h, sec, relocation,
2175 unresolved_reloc, warned);
560e09e9
NC
2176
2177 if (relocation == 0
2178 && !unresolved_reloc
2179 && h->root.type == bfd_link_hash_undefweak)
e0001a05 2180 is_weak_undef = TRUE;
e0001a05
NC
2181 }
2182
2183 if (relaxing_section)
2184 {
2185 /* Check if this references a section in another input file. */
43cd72b9
BW
2186 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2187 &relocation);
e0001a05
NC
2188
2189 /* Update some already cached values. */
2190 r_type = ELF32_R_TYPE (rel->r_info);
2191 howto = &elf_howto_table[r_type];
2192 }
2193
2194 /* Sanity check the address. */
43cd72b9 2195 if (rel->r_offset >= input_size
e0001a05
NC
2196 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2197 {
43cd72b9
BW
2198 (*_bfd_error_handler)
2199 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2200 input_bfd, input_section, rel->r_offset, input_size);
e0001a05
NC
2201 bfd_set_error (bfd_error_bad_value);
2202 return FALSE;
2203 }
2204
2205 /* Generate dynamic relocations. */
2206 if (elf_hash_table (info)->dynamic_sections_created)
2207 {
571b5725 2208 bfd_boolean dynamic_symbol = xtensa_elf_dynamic_symbol_p (h, info);
e0001a05 2209
43cd72b9 2210 if (dynamic_symbol && is_operand_relocation (r_type))
e0001a05
NC
2211 {
2212 /* This is an error. The symbol's real value won't be known
2213 until runtime and it's likely to be out of range anyway. */
2214 const char *name = h->root.root.string;
2215 error_message = vsprint_msg ("invalid relocation for dynamic "
2216 "symbol", ": %s",
2217 strlen (name) + 2, name);
2218 if (!((*info->callbacks->reloc_dangerous)
2219 (info, error_message, input_bfd, input_section,
2220 rel->r_offset)))
2221 return FALSE;
2222 }
2223 else if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
2224 && (input_section->flags & SEC_ALLOC) != 0
2225 && (dynamic_symbol || info->shared))
2226 {
2227 Elf_Internal_Rela outrel;
2228 bfd_byte *loc;
2229 asection *srel;
2230
2231 if (dynamic_symbol && r_type == R_XTENSA_PLT)
2232 srel = srelplt;
2233 else
2234 srel = srelgot;
2235
2236 BFD_ASSERT (srel != NULL);
2237
2238 outrel.r_offset =
2239 _bfd_elf_section_offset (output_bfd, info,
2240 input_section, rel->r_offset);
2241
2242 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2243 memset (&outrel, 0, sizeof outrel);
2244 else
2245 {
f0578e28
BW
2246 outrel.r_offset += (input_section->output_section->vma
2247 + input_section->output_offset);
e0001a05 2248
88d65ad6
BW
2249 /* Complain if the relocation is in a read-only section
2250 and not in a literal pool. */
2251 if ((input_section->flags & SEC_READONLY) != 0
2252 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
3ba3bc8c 2253 outrel.r_offset))
88d65ad6
BW
2254 {
2255 error_message =
2256 _("dynamic relocation in read-only section");
2257 if (!((*info->callbacks->reloc_dangerous)
2258 (info, error_message, input_bfd, input_section,
2259 rel->r_offset)))
2260 return FALSE;
2261 }
2262
e0001a05
NC
2263 if (dynamic_symbol)
2264 {
2265 outrel.r_addend = rel->r_addend;
2266 rel->r_addend = 0;
2267
2268 if (r_type == R_XTENSA_32)
2269 {
2270 outrel.r_info =
2271 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2272 relocation = 0;
2273 }
2274 else /* r_type == R_XTENSA_PLT */
2275 {
2276 outrel.r_info =
2277 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2278
2279 /* Create the PLT entry and set the initial
2280 contents of the literal entry to the address of
2281 the PLT entry. */
43cd72b9 2282 relocation =
e0001a05
NC
2283 elf_xtensa_create_plt_entry (dynobj, output_bfd,
2284 srel->reloc_count);
2285 }
2286 unresolved_reloc = FALSE;
2287 }
2288 else
2289 {
2290 /* Generate a RELATIVE relocation. */
2291 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2292 outrel.r_addend = 0;
2293 }
2294 }
2295
2296 loc = (srel->contents
2297 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2298 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2299 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
eea6121a 2300 <= srel->size);
e0001a05
NC
2301 }
2302 }
2303
2304 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2305 because such sections are not SEC_ALLOC and thus ld.so will
2306 not process them. */
2307 if (unresolved_reloc
2308 && !((input_section->flags & SEC_DEBUGGING) != 0
f5385ebf 2309 && h->def_dynamic))
e0001a05 2310 (*_bfd_error_handler)
843fe662 2311 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
d003868e
AM
2312 input_bfd,
2313 input_section,
e0001a05 2314 (long) rel->r_offset,
843fe662 2315 howto->name,
e0001a05
NC
2316 h->root.root.string);
2317
2318 /* There's no point in calling bfd_perform_relocation here.
2319 Just go directly to our "special function". */
2320 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2321 relocation + rel->r_addend,
2322 contents, rel->r_offset, is_weak_undef,
2323 &error_message);
43cd72b9 2324
9b8c98a4 2325 if (r != bfd_reloc_ok && !warned)
e0001a05
NC
2326 {
2327 const char *name;
2328
43cd72b9 2329 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
7fa3d080 2330 BFD_ASSERT (error_message != NULL);
e0001a05 2331
7fa3d080 2332 if (h)
e0001a05
NC
2333 name = h->root.root.string;
2334 else
2335 {
2336 name = bfd_elf_string_from_elf_section
2337 (input_bfd, symtab_hdr->sh_link, sym->st_name);
2338 if (name && *name == '\0')
2339 name = bfd_section_name (input_bfd, sec);
2340 }
2341 if (name)
43cd72b9
BW
2342 {
2343 if (rel->r_addend == 0)
2344 error_message = vsprint_msg (error_message, ": %s",
2345 strlen (name) + 2, name);
2346 else
2347 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
2348 strlen (name) + 22,
0fd3a477 2349 name, (int)rel->r_addend);
43cd72b9
BW
2350 }
2351
e0001a05
NC
2352 if (!((*info->callbacks->reloc_dangerous)
2353 (info, error_message, input_bfd, input_section,
2354 rel->r_offset)))
2355 return FALSE;
2356 }
2357 }
2358
88d65ad6
BW
2359 if (lit_table)
2360 free (lit_table);
2361
3ba3bc8c
BW
2362 input_section->reloc_done = TRUE;
2363
e0001a05
NC
2364 return TRUE;
2365}
2366
2367
2368/* Finish up dynamic symbol handling. There's not much to do here since
2369 the PLT and GOT entries are all set up by relocate_section. */
2370
2371static bfd_boolean
7fa3d080
BW
2372elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
2373 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2374 struct elf_link_hash_entry *h,
2375 Elf_Internal_Sym *sym)
e0001a05 2376{
f5385ebf
AM
2377 if (h->needs_plt
2378 && !h->def_regular)
e0001a05
NC
2379 {
2380 /* Mark the symbol as undefined, rather than as defined in
2381 the .plt section. Leave the value alone. */
2382 sym->st_shndx = SHN_UNDEF;
2383 }
2384
2385 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2386 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2387 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2388 sym->st_shndx = SHN_ABS;
2389
2390 return TRUE;
2391}
2392
2393
2394/* Combine adjacent literal table entries in the output. Adjacent
2395 entries within each input section may have been removed during
2396 relaxation, but we repeat the process here, even though it's too late
2397 to shrink the output section, because it's important to minimize the
2398 number of literal table entries to reduce the start-up work for the
2399 runtime linker. Returns the number of remaining table entries or -1
2400 on error. */
2401
2402static int
7fa3d080
BW
2403elf_xtensa_combine_prop_entries (bfd *output_bfd,
2404 asection *sxtlit,
2405 asection *sgotloc)
e0001a05 2406{
e0001a05
NC
2407 bfd_byte *contents;
2408 property_table_entry *table;
e901de89 2409 bfd_size_type section_size, sgotloc_size;
e0001a05
NC
2410 bfd_vma offset;
2411 int n, m, num;
2412
eea6121a 2413 section_size = sxtlit->size;
e0001a05
NC
2414 BFD_ASSERT (section_size % 8 == 0);
2415 num = section_size / 8;
2416
eea6121a 2417 sgotloc_size = sgotloc->size;
e901de89 2418 if (sgotloc_size != section_size)
b536dc1e
BW
2419 {
2420 (*_bfd_error_handler)
43cd72b9 2421 (_("internal inconsistency in size of .got.loc section"));
b536dc1e
BW
2422 return -1;
2423 }
e901de89 2424
eea6121a
AM
2425 table = bfd_malloc (num * sizeof (property_table_entry));
2426 if (table == 0)
e0001a05
NC
2427 return -1;
2428
2429 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
2430 propagates to the output section, where it doesn't really apply and
eea6121a 2431 where it breaks the following call to bfd_malloc_and_get_section. */
e901de89 2432 sxtlit->flags &= ~SEC_IN_MEMORY;
e0001a05 2433
eea6121a
AM
2434 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
2435 {
2436 if (contents != 0)
2437 free (contents);
2438 free (table);
2439 return -1;
2440 }
e0001a05
NC
2441
2442 /* There should never be any relocations left at this point, so this
2443 is quite a bit easier than what is done during relaxation. */
2444
2445 /* Copy the raw contents into a property table array and sort it. */
2446 offset = 0;
2447 for (n = 0; n < num; n++)
2448 {
2449 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
2450 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
2451 offset += 8;
2452 }
2453 qsort (table, num, sizeof (property_table_entry), property_table_compare);
2454
2455 for (n = 0; n < num; n++)
2456 {
2457 bfd_boolean remove = FALSE;
2458
2459 if (table[n].size == 0)
2460 remove = TRUE;
2461 else if (n > 0 &&
2462 (table[n-1].address + table[n-1].size == table[n].address))
2463 {
2464 table[n-1].size += table[n].size;
2465 remove = TRUE;
2466 }
2467
2468 if (remove)
2469 {
2470 for (m = n; m < num - 1; m++)
2471 {
2472 table[m].address = table[m+1].address;
2473 table[m].size = table[m+1].size;
2474 }
2475
2476 n--;
2477 num--;
2478 }
2479 }
2480
2481 /* Copy the data back to the raw contents. */
2482 offset = 0;
2483 for (n = 0; n < num; n++)
2484 {
2485 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
2486 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
2487 offset += 8;
2488 }
2489
2490 /* Clear the removed bytes. */
2491 if ((bfd_size_type) (num * 8) < section_size)
b54d4b07 2492 memset (&contents[num * 8], 0, section_size - num * 8);
e0001a05 2493
e901de89
BW
2494 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
2495 section_size))
e0001a05
NC
2496 return -1;
2497
e901de89
BW
2498 /* Copy the contents to ".got.loc". */
2499 memcpy (sgotloc->contents, contents, section_size);
2500
e0001a05 2501 free (contents);
b614a702 2502 free (table);
e0001a05
NC
2503 return num;
2504}
2505
2506
2507/* Finish up the dynamic sections. */
2508
2509static bfd_boolean
7fa3d080
BW
2510elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
2511 struct bfd_link_info *info)
e0001a05
NC
2512{
2513 bfd *dynobj;
e901de89 2514 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
e0001a05
NC
2515 Elf32_External_Dyn *dyncon, *dynconend;
2516 int num_xtlit_entries;
2517
2518 if (! elf_hash_table (info)->dynamic_sections_created)
2519 return TRUE;
2520
2521 dynobj = elf_hash_table (info)->dynobj;
2522 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2523 BFD_ASSERT (sdyn != NULL);
2524
2525 /* Set the first entry in the global offset table to the address of
2526 the dynamic section. */
2527 sgot = bfd_get_section_by_name (dynobj, ".got");
2528 if (sgot)
2529 {
eea6121a 2530 BFD_ASSERT (sgot->size == 4);
e0001a05 2531 if (sdyn == NULL)
7fa3d080 2532 bfd_put_32 (output_bfd, 0, sgot->contents);
e0001a05
NC
2533 else
2534 bfd_put_32 (output_bfd,
2535 sdyn->output_section->vma + sdyn->output_offset,
2536 sgot->contents);
2537 }
2538
2539 srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
7fa3d080 2540 if (srelplt && srelplt->size != 0)
e0001a05
NC
2541 {
2542 asection *sgotplt, *srelgot, *spltlittbl;
2543 int chunk, plt_chunks, plt_entries;
2544 Elf_Internal_Rela irela;
2545 bfd_byte *loc;
2546 unsigned rtld_reloc;
2547
2548 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");;
2549 BFD_ASSERT (srelgot != NULL);
2550
2551 spltlittbl = bfd_get_section_by_name (dynobj, ".xt.lit.plt");
2552 BFD_ASSERT (spltlittbl != NULL);
2553
2554 /* Find the first XTENSA_RTLD relocation. Presumably the rest
2555 of them follow immediately after.... */
2556 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
2557 {
2558 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2559 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2560 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
2561 break;
2562 }
2563 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
2564
eea6121a 2565 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
2566 plt_chunks =
2567 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
2568
2569 for (chunk = 0; chunk < plt_chunks; chunk++)
2570 {
2571 int chunk_entries = 0;
2572
2573 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
2574 BFD_ASSERT (sgotplt != NULL);
2575
2576 /* Emit special RTLD relocations for the first two entries in
2577 each chunk of the .got.plt section. */
2578
2579 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2580 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2581 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2582 irela.r_offset = (sgotplt->output_section->vma
2583 + sgotplt->output_offset);
2584 irela.r_addend = 1; /* tell rtld to set value to resolver function */
2585 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2586 rtld_reloc += 1;
2587 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2588
2589 /* Next literal immediately follows the first. */
2590 loc += sizeof (Elf32_External_Rela);
2591 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2592 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2593 irela.r_offset = (sgotplt->output_section->vma
2594 + sgotplt->output_offset + 4);
2595 /* Tell rtld to set value to object's link map. */
2596 irela.r_addend = 2;
2597 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2598 rtld_reloc += 1;
2599 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2600
2601 /* Fill in the literal table. */
2602 if (chunk < plt_chunks - 1)
2603 chunk_entries = PLT_ENTRIES_PER_CHUNK;
2604 else
2605 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
2606
eea6121a 2607 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
e0001a05
NC
2608 bfd_put_32 (output_bfd,
2609 sgotplt->output_section->vma + sgotplt->output_offset,
2610 spltlittbl->contents + (chunk * 8) + 0);
2611 bfd_put_32 (output_bfd,
2612 8 + (chunk_entries * 4),
2613 spltlittbl->contents + (chunk * 8) + 4);
2614 }
2615
2616 /* All the dynamic relocations have been emitted at this point.
2617 Make sure the relocation sections are the correct size. */
eea6121a
AM
2618 if (srelgot->size != (sizeof (Elf32_External_Rela)
2619 * srelgot->reloc_count)
2620 || srelplt->size != (sizeof (Elf32_External_Rela)
2621 * srelplt->reloc_count))
e0001a05
NC
2622 abort ();
2623
2624 /* The .xt.lit.plt section has just been modified. This must
2625 happen before the code below which combines adjacent literal
2626 table entries, and the .xt.lit.plt contents have to be forced to
2627 the output here. */
2628 if (! bfd_set_section_contents (output_bfd,
2629 spltlittbl->output_section,
2630 spltlittbl->contents,
2631 spltlittbl->output_offset,
eea6121a 2632 spltlittbl->size))
e0001a05
NC
2633 return FALSE;
2634 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
2635 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
2636 }
2637
2638 /* Combine adjacent literal table entries. */
1049f94e 2639 BFD_ASSERT (! info->relocatable);
e901de89
BW
2640 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
2641 sgotloc = bfd_get_section_by_name (dynobj, ".got.loc");
b536dc1e 2642 BFD_ASSERT (sxtlit && sgotloc);
e901de89
BW
2643 num_xtlit_entries =
2644 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
e0001a05
NC
2645 if (num_xtlit_entries < 0)
2646 return FALSE;
2647
2648 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 2649 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
e0001a05
NC
2650 for (; dyncon < dynconend; dyncon++)
2651 {
2652 Elf_Internal_Dyn dyn;
2653 const char *name;
2654 asection *s;
2655
2656 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2657
2658 switch (dyn.d_tag)
2659 {
2660 default:
2661 break;
2662
2663 case DT_XTENSA_GOT_LOC_SZ:
e0001a05
NC
2664 dyn.d_un.d_val = num_xtlit_entries;
2665 break;
2666
2667 case DT_XTENSA_GOT_LOC_OFF:
e901de89 2668 name = ".got.loc";
e0001a05
NC
2669 goto get_vma;
2670 case DT_PLTGOT:
2671 name = ".got";
2672 goto get_vma;
2673 case DT_JMPREL:
2674 name = ".rela.plt";
2675 get_vma:
2676 s = bfd_get_section_by_name (output_bfd, name);
2677 BFD_ASSERT (s);
2678 dyn.d_un.d_ptr = s->vma;
2679 break;
2680
2681 case DT_PLTRELSZ:
2682 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
2683 BFD_ASSERT (s);
eea6121a 2684 dyn.d_un.d_val = s->size;
e0001a05
NC
2685 break;
2686
2687 case DT_RELASZ:
2688 /* Adjust RELASZ to not include JMPREL. This matches what
2689 glibc expects and what is done for several other ELF
2690 targets (e.g., i386, alpha), but the "correct" behavior
2691 seems to be unresolved. Since the linker script arranges
2692 for .rela.plt to follow all other relocation sections, we
2693 don't have to worry about changing the DT_RELA entry. */
2694 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
2695 if (s)
eea6121a 2696 dyn.d_un.d_val -= s->size;
e0001a05
NC
2697 break;
2698 }
2699
2700 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2701 }
2702
2703 return TRUE;
2704}
2705
2706\f
2707/* Functions for dealing with the e_flags field. */
2708
2709/* Merge backend specific data from an object file to the output
2710 object file when linking. */
2711
2712static bfd_boolean
7fa3d080 2713elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
e0001a05
NC
2714{
2715 unsigned out_mach, in_mach;
2716 flagword out_flag, in_flag;
2717
2718 /* Check if we have the same endianess. */
2719 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
2720 return FALSE;
2721
2722 /* Don't even pretend to support mixed-format linking. */
2723 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2724 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2725 return FALSE;
2726
2727 out_flag = elf_elfheader (obfd)->e_flags;
2728 in_flag = elf_elfheader (ibfd)->e_flags;
2729
2730 out_mach = out_flag & EF_XTENSA_MACH;
2731 in_mach = in_flag & EF_XTENSA_MACH;
43cd72b9 2732 if (out_mach != in_mach)
e0001a05
NC
2733 {
2734 (*_bfd_error_handler)
43cd72b9 2735 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
d003868e 2736 ibfd, out_mach, in_mach);
e0001a05
NC
2737 bfd_set_error (bfd_error_wrong_format);
2738 return FALSE;
2739 }
2740
2741 if (! elf_flags_init (obfd))
2742 {
2743 elf_flags_init (obfd) = TRUE;
2744 elf_elfheader (obfd)->e_flags = in_flag;
43cd72b9 2745
e0001a05
NC
2746 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2747 && bfd_get_arch_info (obfd)->the_default)
2748 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
2749 bfd_get_mach (ibfd));
43cd72b9 2750
e0001a05
NC
2751 return TRUE;
2752 }
2753
43cd72b9
BW
2754 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
2755 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
e0001a05 2756
43cd72b9
BW
2757 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
2758 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
e0001a05
NC
2759
2760 return TRUE;
2761}
2762
2763
2764static bfd_boolean
7fa3d080 2765elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
e0001a05
NC
2766{
2767 BFD_ASSERT (!elf_flags_init (abfd)
2768 || elf_elfheader (abfd)->e_flags == flags);
2769
2770 elf_elfheader (abfd)->e_flags |= flags;
2771 elf_flags_init (abfd) = TRUE;
2772
2773 return TRUE;
2774}
2775
2776
e0001a05 2777static bfd_boolean
7fa3d080 2778elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
e0001a05
NC
2779{
2780 FILE *f = (FILE *) farg;
2781 flagword e_flags = elf_elfheader (abfd)->e_flags;
2782
2783 fprintf (f, "\nXtensa header:\n");
43cd72b9 2784 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
e0001a05
NC
2785 fprintf (f, "\nMachine = Base\n");
2786 else
2787 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
2788
2789 fprintf (f, "Insn tables = %s\n",
2790 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
2791
2792 fprintf (f, "Literal tables = %s\n",
2793 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
2794
2795 return _bfd_elf_print_private_bfd_data (abfd, farg);
2796}
2797
2798
2799/* Set the right machine number for an Xtensa ELF file. */
2800
2801static bfd_boolean
7fa3d080 2802elf_xtensa_object_p (bfd *abfd)
e0001a05
NC
2803{
2804 int mach;
2805 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
2806
2807 switch (arch)
2808 {
2809 case E_XTENSA_MACH:
2810 mach = bfd_mach_xtensa;
2811 break;
2812 default:
2813 return FALSE;
2814 }
2815
2816 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
2817 return TRUE;
2818}
2819
2820
2821/* The final processing done just before writing out an Xtensa ELF object
2822 file. This gets the Xtensa architecture right based on the machine
2823 number. */
2824
2825static void
7fa3d080
BW
2826elf_xtensa_final_write_processing (bfd *abfd,
2827 bfd_boolean linker ATTRIBUTE_UNUSED)
e0001a05
NC
2828{
2829 int mach;
2830 unsigned long val;
2831
2832 switch (mach = bfd_get_mach (abfd))
2833 {
2834 case bfd_mach_xtensa:
2835 val = E_XTENSA_MACH;
2836 break;
2837 default:
2838 return;
2839 }
2840
2841 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
2842 elf_elfheader (abfd)->e_flags |= val;
2843}
2844
2845
2846static enum elf_reloc_type_class
7fa3d080 2847elf_xtensa_reloc_type_class (const Elf_Internal_Rela *rela)
e0001a05
NC
2848{
2849 switch ((int) ELF32_R_TYPE (rela->r_info))
2850 {
2851 case R_XTENSA_RELATIVE:
2852 return reloc_class_relative;
2853 case R_XTENSA_JMP_SLOT:
2854 return reloc_class_plt;
2855 default:
2856 return reloc_class_normal;
2857 }
2858}
2859
2860\f
2861static bfd_boolean
7fa3d080
BW
2862elf_xtensa_discard_info_for_section (bfd *abfd,
2863 struct elf_reloc_cookie *cookie,
2864 struct bfd_link_info *info,
2865 asection *sec)
e0001a05
NC
2866{
2867 bfd_byte *contents;
2868 bfd_vma section_size;
2869 bfd_vma offset, actual_offset;
2870 size_t removed_bytes = 0;
2871
eea6121a 2872 section_size = sec->size;
e0001a05
NC
2873 if (section_size == 0 || section_size % 8 != 0)
2874 return FALSE;
2875
2876 if (sec->output_section
2877 && bfd_is_abs_section (sec->output_section))
2878 return FALSE;
2879
2880 contents = retrieve_contents (abfd, sec, info->keep_memory);
2881 if (!contents)
2882 return FALSE;
2883
2884 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
2885 if (!cookie->rels)
2886 {
2887 release_contents (sec, contents);
2888 return FALSE;
2889 }
2890
2891 cookie->rel = cookie->rels;
2892 cookie->relend = cookie->rels + sec->reloc_count;
2893
2894 for (offset = 0; offset < section_size; offset += 8)
2895 {
2896 actual_offset = offset - removed_bytes;
2897
2898 /* The ...symbol_deleted_p function will skip over relocs but it
2899 won't adjust their offsets, so do that here. */
2900 while (cookie->rel < cookie->relend
2901 && cookie->rel->r_offset < offset)
2902 {
2903 cookie->rel->r_offset -= removed_bytes;
2904 cookie->rel++;
2905 }
2906
2907 while (cookie->rel < cookie->relend
2908 && cookie->rel->r_offset == offset)
2909 {
c152c796 2910 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
e0001a05
NC
2911 {
2912 /* Remove the table entry. (If the reloc type is NONE, then
2913 the entry has already been merged with another and deleted
2914 during relaxation.) */
2915 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
2916 {
2917 /* Shift the contents up. */
2918 if (offset + 8 < section_size)
2919 memmove (&contents[actual_offset],
2920 &contents[actual_offset+8],
2921 section_size - offset - 8);
2922 removed_bytes += 8;
2923 }
2924
2925 /* Remove this relocation. */
2926 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
2927 }
2928
2929 /* Adjust the relocation offset for previous removals. This
2930 should not be done before calling ...symbol_deleted_p
2931 because it might mess up the offset comparisons there.
2932 Make sure the offset doesn't underflow in the case where
2933 the first entry is removed. */
2934 if (cookie->rel->r_offset >= removed_bytes)
2935 cookie->rel->r_offset -= removed_bytes;
2936 else
2937 cookie->rel->r_offset = 0;
2938
2939 cookie->rel++;
2940 }
2941 }
2942
2943 if (removed_bytes != 0)
2944 {
2945 /* Adjust any remaining relocs (shouldn't be any). */
2946 for (; cookie->rel < cookie->relend; cookie->rel++)
2947 {
2948 if (cookie->rel->r_offset >= removed_bytes)
2949 cookie->rel->r_offset -= removed_bytes;
2950 else
2951 cookie->rel->r_offset = 0;
2952 }
2953
2954 /* Clear the removed bytes. */
2955 memset (&contents[section_size - removed_bytes], 0, removed_bytes);
2956
2957 pin_contents (sec, contents);
2958 pin_internal_relocs (sec, cookie->rels);
2959
eea6121a
AM
2960 /* Shrink size. */
2961 sec->size = section_size - removed_bytes;
b536dc1e
BW
2962
2963 if (xtensa_is_littable_section (sec))
2964 {
2965 bfd *dynobj = elf_hash_table (info)->dynobj;
2966 if (dynobj)
2967 {
2968 asection *sgotloc =
2969 bfd_get_section_by_name (dynobj, ".got.loc");
2970 if (sgotloc)
eea6121a 2971 sgotloc->size -= removed_bytes;
b536dc1e
BW
2972 }
2973 }
e0001a05
NC
2974 }
2975 else
2976 {
2977 release_contents (sec, contents);
2978 release_internal_relocs (sec, cookie->rels);
2979 }
2980
2981 return (removed_bytes != 0);
2982}
2983
2984
2985static bfd_boolean
7fa3d080
BW
2986elf_xtensa_discard_info (bfd *abfd,
2987 struct elf_reloc_cookie *cookie,
2988 struct bfd_link_info *info)
e0001a05
NC
2989{
2990 asection *sec;
2991 bfd_boolean changed = FALSE;
2992
2993 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2994 {
2995 if (xtensa_is_property_section (sec))
2996 {
2997 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
2998 changed = TRUE;
2999 }
3000 }
3001
3002 return changed;
3003}
3004
3005
3006static bfd_boolean
7fa3d080 3007elf_xtensa_ignore_discarded_relocs (asection *sec)
e0001a05
NC
3008{
3009 return xtensa_is_property_section (sec);
3010}
3011
3012\f
3013/* Support for core dump NOTE sections. */
3014
3015static bfd_boolean
7fa3d080 3016elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
3017{
3018 int offset;
eea6121a 3019 unsigned int size;
e0001a05
NC
3020
3021 /* The size for Xtensa is variable, so don't try to recognize the format
3022 based on the size. Just assume this is GNU/Linux. */
3023
3024 /* pr_cursig */
3025 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
3026
3027 /* pr_pid */
3028 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
3029
3030 /* pr_reg */
3031 offset = 72;
eea6121a 3032 size = note->descsz - offset - 4;
e0001a05
NC
3033
3034 /* Make a ".reg/999" section. */
3035 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
eea6121a 3036 size, note->descpos + offset);
e0001a05
NC
3037}
3038
3039
3040static bfd_boolean
7fa3d080 3041elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
3042{
3043 switch (note->descsz)
3044 {
3045 default:
3046 return FALSE;
3047
3048 case 128: /* GNU/Linux elf_prpsinfo */
3049 elf_tdata (abfd)->core_program
3050 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3051 elf_tdata (abfd)->core_command
3052 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3053 }
3054
3055 /* Note that for some reason, a spurious space is tacked
3056 onto the end of the args in some (at least one anyway)
3057 implementations, so strip it off if it exists. */
3058
3059 {
3060 char *command = elf_tdata (abfd)->core_command;
3061 int n = strlen (command);
3062
3063 if (0 < n && command[n - 1] == ' ')
3064 command[n - 1] = '\0';
3065 }
3066
3067 return TRUE;
3068}
3069
3070\f
3071/* Generic Xtensa configurability stuff. */
3072
3073static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3074static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3075static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3076static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3077static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3078static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3079static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3080static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3081
3082static void
7fa3d080 3083init_call_opcodes (void)
e0001a05
NC
3084{
3085 if (callx0_op == XTENSA_UNDEFINED)
3086 {
3087 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3088 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3089 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3090 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3091 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3092 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3093 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3094 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3095 }
3096}
3097
3098
3099static bfd_boolean
7fa3d080 3100is_indirect_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3101{
3102 init_call_opcodes ();
3103 return (opcode == callx0_op
3104 || opcode == callx4_op
3105 || opcode == callx8_op
3106 || opcode == callx12_op);
3107}
3108
3109
3110static bfd_boolean
7fa3d080 3111is_direct_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3112{
3113 init_call_opcodes ();
3114 return (opcode == call0_op
3115 || opcode == call4_op
3116 || opcode == call8_op
3117 || opcode == call12_op);
3118}
3119
3120
3121static bfd_boolean
7fa3d080 3122is_windowed_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3123{
3124 init_call_opcodes ();
3125 return (opcode == call4_op
3126 || opcode == call8_op
3127 || opcode == call12_op
3128 || opcode == callx4_op
3129 || opcode == callx8_op
3130 || opcode == callx12_op);
3131}
3132
3133
43cd72b9
BW
3134static xtensa_opcode
3135get_const16_opcode (void)
3136{
3137 static bfd_boolean done_lookup = FALSE;
3138 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3139 if (!done_lookup)
3140 {
3141 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3142 done_lookup = TRUE;
3143 }
3144 return const16_opcode;
3145}
3146
3147
e0001a05
NC
3148static xtensa_opcode
3149get_l32r_opcode (void)
3150{
3151 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
43cd72b9
BW
3152 static bfd_boolean done_lookup = FALSE;
3153
3154 if (!done_lookup)
e0001a05
NC
3155 {
3156 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
43cd72b9 3157 done_lookup = TRUE;
e0001a05
NC
3158 }
3159 return l32r_opcode;
3160}
3161
3162
3163static bfd_vma
7fa3d080 3164l32r_offset (bfd_vma addr, bfd_vma pc)
e0001a05
NC
3165{
3166 bfd_vma offset;
3167
3168 offset = addr - ((pc+3) & -4);
3169 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3170 offset = (signed int) offset >> 2;
3171 BFD_ASSERT ((signed int) offset >> 16 == -1);
3172 return offset;
3173}
3174
3175
e0001a05 3176static int
7fa3d080 3177get_relocation_opnd (xtensa_opcode opcode, int r_type)
e0001a05 3178{
43cd72b9
BW
3179 xtensa_isa isa = xtensa_default_isa;
3180 int last_immed, last_opnd, opi;
3181
3182 if (opcode == XTENSA_UNDEFINED)
3183 return XTENSA_UNDEFINED;
3184
3185 /* Find the last visible PC-relative immediate operand for the opcode.
3186 If there are no PC-relative immediates, then choose the last visible
3187 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3188 last_immed = XTENSA_UNDEFINED;
3189 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3190 for (opi = last_opnd - 1; opi >= 0; opi--)
3191 {
3192 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3193 continue;
3194 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3195 {
3196 last_immed = opi;
3197 break;
3198 }
3199 if (last_immed == XTENSA_UNDEFINED
3200 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3201 last_immed = opi;
3202 }
3203 if (last_immed < 0)
3204 return XTENSA_UNDEFINED;
3205
3206 /* If the operand number was specified in an old-style relocation,
3207 check for consistency with the operand computed above. */
3208 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3209 {
3210 int reloc_opnd = r_type - R_XTENSA_OP0;
3211 if (reloc_opnd != last_immed)
3212 return XTENSA_UNDEFINED;
3213 }
3214
3215 return last_immed;
3216}
3217
3218
3219int
7fa3d080 3220get_relocation_slot (int r_type)
43cd72b9
BW
3221{
3222 switch (r_type)
3223 {
3224 case R_XTENSA_OP0:
3225 case R_XTENSA_OP1:
3226 case R_XTENSA_OP2:
3227 return 0;
3228
3229 default:
3230 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3231 return r_type - R_XTENSA_SLOT0_OP;
3232 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3233 return r_type - R_XTENSA_SLOT0_ALT;
3234 break;
3235 }
3236
3237 return XTENSA_UNDEFINED;
e0001a05
NC
3238}
3239
3240
3241/* Get the opcode for a relocation. */
3242
3243static xtensa_opcode
7fa3d080
BW
3244get_relocation_opcode (bfd *abfd,
3245 asection *sec,
3246 bfd_byte *contents,
3247 Elf_Internal_Rela *irel)
e0001a05
NC
3248{
3249 static xtensa_insnbuf ibuff = NULL;
43cd72b9 3250 static xtensa_insnbuf sbuff = NULL;
e0001a05 3251 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
3252 xtensa_format fmt;
3253 int slot;
e0001a05
NC
3254
3255 if (contents == NULL)
3256 return XTENSA_UNDEFINED;
3257
43cd72b9 3258 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
e0001a05
NC
3259 return XTENSA_UNDEFINED;
3260
3261 if (ibuff == NULL)
43cd72b9
BW
3262 {
3263 ibuff = xtensa_insnbuf_alloc (isa);
3264 sbuff = xtensa_insnbuf_alloc (isa);
3265 }
3266
e0001a05 3267 /* Decode the instruction. */
43cd72b9
BW
3268 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
3269 sec->size - irel->r_offset);
3270 fmt = xtensa_format_decode (isa, ibuff);
3271 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
3272 if (slot == XTENSA_UNDEFINED)
3273 return XTENSA_UNDEFINED;
3274 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
3275 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
e0001a05
NC
3276}
3277
3278
3279bfd_boolean
7fa3d080
BW
3280is_l32r_relocation (bfd *abfd,
3281 asection *sec,
3282 bfd_byte *contents,
3283 Elf_Internal_Rela *irel)
e0001a05
NC
3284{
3285 xtensa_opcode opcode;
43cd72b9 3286 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
e0001a05 3287 return FALSE;
43cd72b9 3288 opcode = get_relocation_opcode (abfd, sec, contents, irel);
e0001a05
NC
3289 return (opcode == get_l32r_opcode ());
3290}
3291
e0001a05 3292
43cd72b9 3293static bfd_size_type
7fa3d080
BW
3294get_asm_simplify_size (bfd_byte *contents,
3295 bfd_size_type content_len,
3296 bfd_size_type offset)
e0001a05 3297{
43cd72b9 3298 bfd_size_type insnlen, size = 0;
e0001a05 3299
43cd72b9
BW
3300 /* Decode the size of the next two instructions. */
3301 insnlen = insn_decode_len (contents, content_len, offset);
3302 if (insnlen == 0)
3303 return 0;
e0001a05 3304
43cd72b9 3305 size += insnlen;
e0001a05 3306
43cd72b9
BW
3307 insnlen = insn_decode_len (contents, content_len, offset + size);
3308 if (insnlen == 0)
3309 return 0;
e0001a05 3310
43cd72b9
BW
3311 size += insnlen;
3312 return size;
3313}
e0001a05 3314
43cd72b9
BW
3315
3316bfd_boolean
7fa3d080 3317is_alt_relocation (int r_type)
43cd72b9
BW
3318{
3319 return (r_type >= R_XTENSA_SLOT0_ALT
3320 && r_type <= R_XTENSA_SLOT14_ALT);
e0001a05
NC
3321}
3322
3323
43cd72b9 3324bfd_boolean
7fa3d080 3325is_operand_relocation (int r_type)
e0001a05 3326{
43cd72b9
BW
3327 switch (r_type)
3328 {
3329 case R_XTENSA_OP0:
3330 case R_XTENSA_OP1:
3331 case R_XTENSA_OP2:
3332 return TRUE;
e0001a05 3333
43cd72b9
BW
3334 default:
3335 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3336 return TRUE;
3337 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3338 return TRUE;
3339 break;
3340 }
e0001a05 3341
43cd72b9 3342 return FALSE;
e0001a05
NC
3343}
3344
43cd72b9
BW
3345
3346#define MIN_INSN_LENGTH 2
e0001a05 3347
43cd72b9
BW
3348/* Return 0 if it fails to decode. */
3349
3350bfd_size_type
7fa3d080
BW
3351insn_decode_len (bfd_byte *contents,
3352 bfd_size_type content_len,
3353 bfd_size_type offset)
e0001a05 3354{
43cd72b9
BW
3355 int insn_len;
3356 xtensa_isa isa = xtensa_default_isa;
3357 xtensa_format fmt;
3358 static xtensa_insnbuf ibuff = NULL;
e0001a05 3359
43cd72b9
BW
3360 if (offset + MIN_INSN_LENGTH > content_len)
3361 return 0;
e0001a05 3362
43cd72b9
BW
3363 if (ibuff == NULL)
3364 ibuff = xtensa_insnbuf_alloc (isa);
3365 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
3366 content_len - offset);
3367 fmt = xtensa_format_decode (isa, ibuff);
3368 if (fmt == XTENSA_UNDEFINED)
3369 return 0;
3370 insn_len = xtensa_format_length (isa, fmt);
3371 if (insn_len == XTENSA_UNDEFINED)
3372 return 0;
3373 return insn_len;
e0001a05
NC
3374}
3375
3376
43cd72b9
BW
3377/* Decode the opcode for a single slot instruction.
3378 Return 0 if it fails to decode or the instruction is multi-slot. */
e0001a05 3379
43cd72b9 3380xtensa_opcode
7fa3d080
BW
3381insn_decode_opcode (bfd_byte *contents,
3382 bfd_size_type content_len,
3383 bfd_size_type offset,
3384 int slot)
e0001a05 3385{
e0001a05 3386 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
3387 xtensa_format fmt;
3388 static xtensa_insnbuf insnbuf = NULL;
3389 static xtensa_insnbuf slotbuf = NULL;
3390
3391 if (offset + MIN_INSN_LENGTH > content_len)
e0001a05
NC
3392 return XTENSA_UNDEFINED;
3393
3394 if (insnbuf == NULL)
43cd72b9
BW
3395 {
3396 insnbuf = xtensa_insnbuf_alloc (isa);
3397 slotbuf = xtensa_insnbuf_alloc (isa);
3398 }
3399
3400 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3401 content_len - offset);
3402 fmt = xtensa_format_decode (isa, insnbuf);
3403 if (fmt == XTENSA_UNDEFINED)
e0001a05 3404 return XTENSA_UNDEFINED;
43cd72b9
BW
3405
3406 if (slot >= xtensa_format_num_slots (isa, fmt))
e0001a05 3407 return XTENSA_UNDEFINED;
e0001a05 3408
43cd72b9
BW
3409 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
3410 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
3411}
e0001a05 3412
e0001a05 3413
43cd72b9
BW
3414/* The offset is the offset in the contents.
3415 The address is the address of that offset. */
e0001a05 3416
43cd72b9 3417static bfd_boolean
7fa3d080
BW
3418check_branch_target_aligned (bfd_byte *contents,
3419 bfd_size_type content_length,
3420 bfd_vma offset,
3421 bfd_vma address)
43cd72b9
BW
3422{
3423 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
3424 if (insn_len == 0)
3425 return FALSE;
3426 return check_branch_target_aligned_address (address, insn_len);
3427}
e0001a05 3428
e0001a05 3429
43cd72b9 3430static bfd_boolean
7fa3d080
BW
3431check_loop_aligned (bfd_byte *contents,
3432 bfd_size_type content_length,
3433 bfd_vma offset,
3434 bfd_vma address)
e0001a05 3435{
43cd72b9
BW
3436 bfd_size_type loop_len, insn_len;
3437 xtensa_opcode opcode =
3438 insn_decode_opcode (contents, content_length, offset, 0);
3439 BFD_ASSERT (opcode != XTENSA_UNDEFINED);
3440 if (opcode != XTENSA_UNDEFINED)
3441 return FALSE;
3442 BFD_ASSERT (xtensa_opcode_is_loop (xtensa_default_isa, opcode));
3443 if (!xtensa_opcode_is_loop (xtensa_default_isa, opcode))
3444 return FALSE;
e0001a05 3445
43cd72b9
BW
3446 loop_len = insn_decode_len (contents, content_length, offset);
3447 BFD_ASSERT (loop_len != 0);
3448 if (loop_len == 0)
3449 return FALSE;
3450
3451 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
3452 BFD_ASSERT (insn_len != 0);
3453 if (insn_len == 0)
3454 return FALSE;
e0001a05 3455
43cd72b9
BW
3456 return check_branch_target_aligned_address (address + loop_len, insn_len);
3457}
e0001a05 3458
e0001a05
NC
3459
3460static bfd_boolean
7fa3d080 3461check_branch_target_aligned_address (bfd_vma addr, int len)
e0001a05 3462{
43cd72b9
BW
3463 if (len == 8)
3464 return (addr % 8 == 0);
3465 return ((addr >> 2) == ((addr + len - 1) >> 2));
e0001a05
NC
3466}
3467
43cd72b9
BW
3468\f
3469/* Instruction widening and narrowing. */
e0001a05 3470
7fa3d080
BW
3471/* When FLIX is available we need to access certain instructions only
3472 when they are 16-bit or 24-bit instructions. This table caches
3473 information about such instructions by walking through all the
3474 opcodes and finding the smallest single-slot format into which each
3475 can be encoded. */
3476
3477static xtensa_format *op_single_fmt_table = NULL;
e0001a05
NC
3478
3479
7fa3d080
BW
3480static void
3481init_op_single_format_table (void)
e0001a05 3482{
7fa3d080
BW
3483 xtensa_isa isa = xtensa_default_isa;
3484 xtensa_insnbuf ibuf;
3485 xtensa_opcode opcode;
3486 xtensa_format fmt;
3487 int num_opcodes;
3488
3489 if (op_single_fmt_table)
3490 return;
3491
3492 ibuf = xtensa_insnbuf_alloc (isa);
3493 num_opcodes = xtensa_isa_num_opcodes (isa);
3494
3495 op_single_fmt_table = (xtensa_format *)
3496 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
3497 for (opcode = 0; opcode < num_opcodes; opcode++)
3498 {
3499 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
3500 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
3501 {
3502 if (xtensa_format_num_slots (isa, fmt) == 1
3503 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
3504 {
3505 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
3506 int fmt_length = xtensa_format_length (isa, fmt);
3507 if (old_fmt == XTENSA_UNDEFINED
3508 || fmt_length < xtensa_format_length (isa, old_fmt))
3509 op_single_fmt_table[opcode] = fmt;
3510 }
3511 }
3512 }
3513 xtensa_insnbuf_free (isa, ibuf);
3514}
3515
3516
3517static xtensa_format
3518get_single_format (xtensa_opcode opcode)
3519{
3520 init_op_single_format_table ();
3521 return op_single_fmt_table[opcode];
3522}
e0001a05 3523
e0001a05 3524
43cd72b9
BW
3525/* For the set of narrowable instructions we do NOT include the
3526 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
3527 involved during linker relaxation that may require these to
3528 re-expand in some conditions. Also, the narrowing "or" -> mov.n
3529 requires special case code to ensure it only works when op1 == op2. */
e0001a05 3530
7fa3d080
BW
3531struct string_pair
3532{
3533 const char *wide;
3534 const char *narrow;
3535};
3536
43cd72b9 3537struct string_pair narrowable[] =
e0001a05 3538{
43cd72b9
BW
3539 { "add", "add.n" },
3540 { "addi", "addi.n" },
3541 { "addmi", "addi.n" },
3542 { "l32i", "l32i.n" },
3543 { "movi", "movi.n" },
3544 { "ret", "ret.n" },
3545 { "retw", "retw.n" },
3546 { "s32i", "s32i.n" },
3547 { "or", "mov.n" } /* special case only when op1 == op2 */
3548};
e0001a05 3549
43cd72b9 3550struct string_pair widenable[] =
e0001a05 3551{
43cd72b9
BW
3552 { "add", "add.n" },
3553 { "addi", "addi.n" },
3554 { "addmi", "addi.n" },
3555 { "beqz", "beqz.n" },
3556 { "bnez", "bnez.n" },
3557 { "l32i", "l32i.n" },
3558 { "movi", "movi.n" },
3559 { "ret", "ret.n" },
3560 { "retw", "retw.n" },
3561 { "s32i", "s32i.n" },
3562 { "or", "mov.n" } /* special case only when op1 == op2 */
3563};
e0001a05
NC
3564
3565
43cd72b9
BW
3566/* Attempt to narrow an instruction. Return true if the narrowing is
3567 valid. If the do_it parameter is non-zero, then perform the action
3568 in-place directly into the contents. Otherwise, do not modify the
3569 contents. The set of valid narrowing are specified by a string table
3570 but require some special case operand checks in some cases. */
3571
e0001a05 3572static bfd_boolean
7fa3d080
BW
3573narrow_instruction (bfd_byte *contents,
3574 bfd_size_type content_length,
3575 bfd_size_type offset,
3576 bfd_boolean do_it)
e0001a05 3577{
43cd72b9
BW
3578 xtensa_opcode opcode;
3579 bfd_size_type insn_len, opi;
3580 xtensa_isa isa = xtensa_default_isa;
3581 xtensa_format fmt, o_fmt;
e0001a05 3582
43cd72b9
BW
3583 static xtensa_insnbuf insnbuf = NULL;
3584 static xtensa_insnbuf slotbuf = NULL;
3585 static xtensa_insnbuf o_insnbuf = NULL;
3586 static xtensa_insnbuf o_slotbuf = NULL;
e0001a05 3587
43cd72b9
BW
3588 if (insnbuf == NULL)
3589 {
3590 insnbuf = xtensa_insnbuf_alloc (isa);
3591 slotbuf = xtensa_insnbuf_alloc (isa);
3592 o_insnbuf = xtensa_insnbuf_alloc (isa);
3593 o_slotbuf = xtensa_insnbuf_alloc (isa);
3594 }
e0001a05 3595
43cd72b9 3596 BFD_ASSERT (offset < content_length);
e0001a05 3597
43cd72b9
BW
3598 if (content_length < 2)
3599 return FALSE;
e0001a05 3600
43cd72b9
BW
3601 /* We will hand-code a few of these for a little while.
3602 These have all been specified in the assembler aleady. */
3603 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3604 content_length - offset);
3605 fmt = xtensa_format_decode (isa, insnbuf);
3606 if (xtensa_format_num_slots (isa, fmt) != 1)
3607 return FALSE;
e0001a05 3608
43cd72b9
BW
3609 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
3610 return FALSE;
e0001a05 3611
43cd72b9
BW
3612 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3613 if (opcode == XTENSA_UNDEFINED)
3614 return FALSE;
3615 insn_len = xtensa_format_length (isa, fmt);
3616 if (insn_len > content_length)
3617 return FALSE;
e0001a05 3618
43cd72b9
BW
3619 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); ++opi)
3620 {
3621 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
e0001a05 3622
43cd72b9
BW
3623 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
3624 {
3625 uint32 value, newval;
3626 int i, operand_count, o_operand_count;
3627 xtensa_opcode o_opcode;
e0001a05 3628
43cd72b9
BW
3629 /* Address does not matter in this case. We might need to
3630 fix it to handle branches/jumps. */
3631 bfd_vma self_address = 0;
e0001a05 3632
43cd72b9
BW
3633 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
3634 if (o_opcode == XTENSA_UNDEFINED)
3635 return FALSE;
3636 o_fmt = get_single_format (o_opcode);
3637 if (o_fmt == XTENSA_UNDEFINED)
3638 return FALSE;
e0001a05 3639
43cd72b9
BW
3640 if (xtensa_format_length (isa, fmt) != 3
3641 || xtensa_format_length (isa, o_fmt) != 2)
3642 return FALSE;
e0001a05 3643
43cd72b9
BW
3644 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3645 operand_count = xtensa_opcode_num_operands (isa, opcode);
3646 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
e0001a05 3647
43cd72b9
BW
3648 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
3649 return FALSE;
e0001a05 3650
43cd72b9
BW
3651 if (!is_or)
3652 {
3653 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
3654 return FALSE;
3655 }
3656 else
3657 {
3658 uint32 rawval0, rawval1, rawval2;
e0001a05 3659
43cd72b9
BW
3660 if (o_operand_count + 1 != operand_count)
3661 return FALSE;
3662 if (xtensa_operand_get_field (isa, opcode, 0,
3663 fmt, 0, slotbuf, &rawval0) != 0)
3664 return FALSE;
3665 if (xtensa_operand_get_field (isa, opcode, 1,
3666 fmt, 0, slotbuf, &rawval1) != 0)
3667 return FALSE;
3668 if (xtensa_operand_get_field (isa, opcode, 2,
3669 fmt, 0, slotbuf, &rawval2) != 0)
3670 return FALSE;
e0001a05 3671
43cd72b9
BW
3672 if (rawval1 != rawval2)
3673 return FALSE;
3674 if (rawval0 == rawval1) /* it is a nop */
3675 return FALSE;
3676 }
e0001a05 3677
43cd72b9
BW
3678 for (i = 0; i < o_operand_count; ++i)
3679 {
3680 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
3681 slotbuf, &value)
3682 || xtensa_operand_decode (isa, opcode, i, &value))
3683 return FALSE;
e0001a05 3684
43cd72b9
BW
3685 /* PC-relative branches need adjustment, but
3686 the PC-rel operand will always have a relocation. */
3687 newval = value;
3688 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3689 self_address)
3690 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3691 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3692 o_slotbuf, newval))
3693 return FALSE;
3694 }
e0001a05 3695
43cd72b9
BW
3696 if (xtensa_format_set_slot (isa, o_fmt, 0,
3697 o_insnbuf, o_slotbuf) != 0)
3698 return FALSE;
e0001a05 3699
43cd72b9
BW
3700 if (do_it)
3701 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3702 content_length - offset);
3703 return TRUE;
3704 }
3705 }
3706 return FALSE;
3707}
e0001a05 3708
e0001a05 3709
43cd72b9
BW
3710/* Attempt to widen an instruction. Return true if the widening is
3711 valid. If the do_it parameter is non-zero, then the action should
3712 be performed inplace into the contents. Otherwise, do not modify
3713 the contents. The set of valid widenings are specified by a string
3714 table but require some special case operand checks in some
3715 cases. */
e0001a05 3716
43cd72b9 3717static bfd_boolean
7fa3d080
BW
3718widen_instruction (bfd_byte *contents,
3719 bfd_size_type content_length,
3720 bfd_size_type offset,
3721 bfd_boolean do_it)
e0001a05 3722{
43cd72b9
BW
3723 xtensa_opcode opcode;
3724 bfd_size_type insn_len, opi;
3725 xtensa_isa isa = xtensa_default_isa;
3726 xtensa_format fmt, o_fmt;
e0001a05 3727
43cd72b9
BW
3728 static xtensa_insnbuf insnbuf = NULL;
3729 static xtensa_insnbuf slotbuf = NULL;
3730 static xtensa_insnbuf o_insnbuf = NULL;
3731 static xtensa_insnbuf o_slotbuf = NULL;
e0001a05 3732
43cd72b9
BW
3733 if (insnbuf == NULL)
3734 {
3735 insnbuf = xtensa_insnbuf_alloc (isa);
3736 slotbuf = xtensa_insnbuf_alloc (isa);
3737 o_insnbuf = xtensa_insnbuf_alloc (isa);
3738 o_slotbuf = xtensa_insnbuf_alloc (isa);
3739 }
e0001a05 3740
43cd72b9 3741 BFD_ASSERT (offset < content_length);
2c8c90bc 3742
43cd72b9 3743 if (content_length < 2)
e0001a05
NC
3744 return FALSE;
3745
43cd72b9
BW
3746 /* We will hand code a few of these for a little while.
3747 These have all been specified in the assembler aleady. */
3748 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3749 content_length - offset);
3750 fmt = xtensa_format_decode (isa, insnbuf);
3751 if (xtensa_format_num_slots (isa, fmt) != 1)
e0001a05
NC
3752 return FALSE;
3753
43cd72b9 3754 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
e0001a05
NC
3755 return FALSE;
3756
43cd72b9
BW
3757 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3758 if (opcode == XTENSA_UNDEFINED)
e0001a05 3759 return FALSE;
43cd72b9
BW
3760 insn_len = xtensa_format_length (isa, fmt);
3761 if (insn_len > content_length)
3762 return FALSE;
3763
3764 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); ++opi)
e0001a05 3765 {
43cd72b9
BW
3766 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
3767 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
3768 || strcmp ("bnez", widenable[opi].wide) == 0);
e0001a05 3769
43cd72b9
BW
3770 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
3771 {
3772 uint32 value, newval;
3773 int i, operand_count, o_operand_count, check_operand_count;
3774 xtensa_opcode o_opcode;
e0001a05 3775
43cd72b9
BW
3776 /* Address does not matter in this case. We might need to fix it
3777 to handle branches/jumps. */
3778 bfd_vma self_address = 0;
e0001a05 3779
43cd72b9
BW
3780 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
3781 if (o_opcode == XTENSA_UNDEFINED)
3782 return FALSE;
3783 o_fmt = get_single_format (o_opcode);
3784 if (o_fmt == XTENSA_UNDEFINED)
3785 return FALSE;
e0001a05 3786
43cd72b9
BW
3787 if (xtensa_format_length (isa, fmt) != 2
3788 || xtensa_format_length (isa, o_fmt) != 3)
3789 return FALSE;
e0001a05 3790
43cd72b9
BW
3791 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3792 operand_count = xtensa_opcode_num_operands (isa, opcode);
3793 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
3794 check_operand_count = o_operand_count;
e0001a05 3795
43cd72b9
BW
3796 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
3797 return FALSE;
e0001a05 3798
43cd72b9
BW
3799 if (!is_or)
3800 {
3801 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
3802 return FALSE;
3803 }
3804 else
3805 {
3806 uint32 rawval0, rawval1;
3807
3808 if (o_operand_count != operand_count + 1)
3809 return FALSE;
3810 if (xtensa_operand_get_field (isa, opcode, 0,
3811 fmt, 0, slotbuf, &rawval0) != 0)
3812 return FALSE;
3813 if (xtensa_operand_get_field (isa, opcode, 1,
3814 fmt, 0, slotbuf, &rawval1) != 0)
3815 return FALSE;
3816 if (rawval0 == rawval1) /* it is a nop */
3817 return FALSE;
3818 }
3819 if (is_branch)
3820 check_operand_count--;
3821
3822 for (i = 0; i < check_operand_count; ++i)
3823 {
3824 int new_i = i;
3825 if (is_or && i == o_operand_count - 1)
3826 new_i = i - 1;
3827 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
3828 slotbuf, &value)
3829 || xtensa_operand_decode (isa, opcode, new_i, &value))
3830 return FALSE;
3831
3832 /* PC-relative branches need adjustment, but
3833 the PC-rel operand will always have a relocation. */
3834 newval = value;
3835 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3836 self_address)
3837 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3838 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3839 o_slotbuf, newval))
3840 return FALSE;
3841 }
3842
3843 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
3844 return FALSE;
3845
3846 if (do_it)
3847 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3848 content_length - offset);
3849 return TRUE;
3850 }
3851 }
3852 return FALSE;
e0001a05
NC
3853}
3854
43cd72b9
BW
3855\f
3856/* Code for transforming CALLs at link-time. */
e0001a05 3857
43cd72b9 3858static bfd_reloc_status_type
7fa3d080
BW
3859elf_xtensa_do_asm_simplify (bfd_byte *contents,
3860 bfd_vma address,
3861 bfd_vma content_length,
3862 char **error_message)
e0001a05 3863{
43cd72b9
BW
3864 static xtensa_insnbuf insnbuf = NULL;
3865 static xtensa_insnbuf slotbuf = NULL;
3866 xtensa_format core_format = XTENSA_UNDEFINED;
3867 xtensa_opcode opcode;
3868 xtensa_opcode direct_call_opcode;
3869 xtensa_isa isa = xtensa_default_isa;
3870 bfd_byte *chbuf = contents + address;
3871 int opn;
e0001a05 3872
43cd72b9 3873 if (insnbuf == NULL)
e0001a05 3874 {
43cd72b9
BW
3875 insnbuf = xtensa_insnbuf_alloc (isa);
3876 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 3877 }
e0001a05 3878
43cd72b9
BW
3879 if (content_length < address)
3880 {
3881 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3882 return bfd_reloc_other;
3883 }
e0001a05 3884
43cd72b9
BW
3885 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
3886 direct_call_opcode = swap_callx_for_call_opcode (opcode);
3887 if (direct_call_opcode == XTENSA_UNDEFINED)
3888 {
3889 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3890 return bfd_reloc_other;
3891 }
3892
3893 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
3894 core_format = xtensa_format_lookup (isa, "x24");
3895 opcode = xtensa_opcode_lookup (isa, "or");
3896 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
3897 for (opn = 0; opn < 3; opn++)
3898 {
3899 uint32 regno = 1;
3900 xtensa_operand_encode (isa, opcode, opn, &regno);
3901 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
3902 slotbuf, regno);
3903 }
3904 xtensa_format_encode (isa, core_format, insnbuf);
3905 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3906 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
e0001a05 3907
43cd72b9
BW
3908 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
3909 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
3910 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
e0001a05 3911
43cd72b9
BW
3912 xtensa_format_encode (isa, core_format, insnbuf);
3913 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3914 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
3915 content_length - address - 3);
e0001a05 3916
43cd72b9
BW
3917 return bfd_reloc_ok;
3918}
e0001a05 3919
e0001a05 3920
43cd72b9 3921static bfd_reloc_status_type
7fa3d080
BW
3922contract_asm_expansion (bfd_byte *contents,
3923 bfd_vma content_length,
3924 Elf_Internal_Rela *irel,
3925 char **error_message)
43cd72b9
BW
3926{
3927 bfd_reloc_status_type retval =
3928 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
3929 error_message);
e0001a05 3930
43cd72b9
BW
3931 if (retval != bfd_reloc_ok)
3932 return bfd_reloc_dangerous;
e0001a05 3933
43cd72b9
BW
3934 /* Update the irel->r_offset field so that the right immediate and
3935 the right instruction are modified during the relocation. */
3936 irel->r_offset += 3;
3937 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
3938 return bfd_reloc_ok;
3939}
e0001a05 3940
e0001a05 3941
43cd72b9 3942static xtensa_opcode
7fa3d080 3943swap_callx_for_call_opcode (xtensa_opcode opcode)
e0001a05 3944{
43cd72b9 3945 init_call_opcodes ();
e0001a05 3946
43cd72b9
BW
3947 if (opcode == callx0_op) return call0_op;
3948 if (opcode == callx4_op) return call4_op;
3949 if (opcode == callx8_op) return call8_op;
3950 if (opcode == callx12_op) return call12_op;
e0001a05 3951
43cd72b9
BW
3952 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
3953 return XTENSA_UNDEFINED;
3954}
e0001a05 3955
e0001a05 3956
43cd72b9
BW
3957/* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
3958 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
3959 If not, return XTENSA_UNDEFINED. */
e0001a05 3960
43cd72b9
BW
3961#define L32R_TARGET_REG_OPERAND 0
3962#define CONST16_TARGET_REG_OPERAND 0
3963#define CALLN_SOURCE_OPERAND 0
e0001a05 3964
43cd72b9 3965static xtensa_opcode
7fa3d080 3966get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
e0001a05 3967{
43cd72b9
BW
3968 static xtensa_insnbuf insnbuf = NULL;
3969 static xtensa_insnbuf slotbuf = NULL;
3970 xtensa_format fmt;
3971 xtensa_opcode opcode;
3972 xtensa_isa isa = xtensa_default_isa;
3973 uint32 regno, const16_regno, call_regno;
3974 int offset = 0;
e0001a05 3975
43cd72b9 3976 if (insnbuf == NULL)
e0001a05 3977 {
43cd72b9
BW
3978 insnbuf = xtensa_insnbuf_alloc (isa);
3979 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 3980 }
43cd72b9
BW
3981
3982 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
3983 fmt = xtensa_format_decode (isa, insnbuf);
3984 if (fmt == XTENSA_UNDEFINED
3985 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
3986 return XTENSA_UNDEFINED;
3987
3988 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3989 if (opcode == XTENSA_UNDEFINED)
3990 return XTENSA_UNDEFINED;
3991
3992 if (opcode == get_l32r_opcode ())
e0001a05 3993 {
43cd72b9
BW
3994 if (p_uses_l32r)
3995 *p_uses_l32r = TRUE;
3996 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
3997 fmt, 0, slotbuf, &regno)
3998 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
3999 &regno))
4000 return XTENSA_UNDEFINED;
e0001a05 4001 }
43cd72b9 4002 else if (opcode == get_const16_opcode ())
e0001a05 4003 {
43cd72b9
BW
4004 if (p_uses_l32r)
4005 *p_uses_l32r = FALSE;
4006 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4007 fmt, 0, slotbuf, &regno)
4008 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4009 &regno))
4010 return XTENSA_UNDEFINED;
4011
4012 /* Check that the next instruction is also CONST16. */
4013 offset += xtensa_format_length (isa, fmt);
4014 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4015 fmt = xtensa_format_decode (isa, insnbuf);
4016 if (fmt == XTENSA_UNDEFINED
4017 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4018 return XTENSA_UNDEFINED;
4019 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4020 if (opcode != get_const16_opcode ())
4021 return XTENSA_UNDEFINED;
4022
4023 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4024 fmt, 0, slotbuf, &const16_regno)
4025 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4026 &const16_regno)
4027 || const16_regno != regno)
4028 return XTENSA_UNDEFINED;
e0001a05 4029 }
43cd72b9
BW
4030 else
4031 return XTENSA_UNDEFINED;
e0001a05 4032
43cd72b9
BW
4033 /* Next instruction should be an CALLXn with operand 0 == regno. */
4034 offset += xtensa_format_length (isa, fmt);
4035 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4036 fmt = xtensa_format_decode (isa, insnbuf);
4037 if (fmt == XTENSA_UNDEFINED
4038 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4039 return XTENSA_UNDEFINED;
4040 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4041 if (opcode == XTENSA_UNDEFINED
4042 || !is_indirect_call_opcode (opcode))
4043 return XTENSA_UNDEFINED;
e0001a05 4044
43cd72b9
BW
4045 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4046 fmt, 0, slotbuf, &call_regno)
4047 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4048 &call_regno))
4049 return XTENSA_UNDEFINED;
e0001a05 4050
43cd72b9
BW
4051 if (call_regno != regno)
4052 return XTENSA_UNDEFINED;
e0001a05 4053
43cd72b9
BW
4054 return opcode;
4055}
e0001a05 4056
43cd72b9
BW
4057\f
4058/* Data structures used during relaxation. */
e0001a05 4059
43cd72b9 4060/* r_reloc: relocation values. */
e0001a05 4061
43cd72b9
BW
4062/* Through the relaxation process, we need to keep track of the values
4063 that will result from evaluating relocations. The standard ELF
4064 relocation structure is not sufficient for this purpose because we're
4065 operating on multiple input files at once, so we need to know which
4066 input file a relocation refers to. The r_reloc structure thus
4067 records both the input file (bfd) and ELF relocation.
e0001a05 4068
43cd72b9
BW
4069 For efficiency, an r_reloc also contains a "target_offset" field to
4070 cache the target-section-relative offset value that is represented by
4071 the relocation.
4072
4073 The r_reloc also contains a virtual offset that allows multiple
4074 inserted literals to be placed at the same "address" with
4075 different offsets. */
e0001a05 4076
43cd72b9 4077typedef struct r_reloc_struct r_reloc;
e0001a05 4078
43cd72b9 4079struct r_reloc_struct
e0001a05 4080{
43cd72b9
BW
4081 bfd *abfd;
4082 Elf_Internal_Rela rela;
e0001a05 4083 bfd_vma target_offset;
43cd72b9 4084 bfd_vma virtual_offset;
e0001a05
NC
4085};
4086
e0001a05 4087
43cd72b9
BW
4088/* The r_reloc structure is included by value in literal_value, but not
4089 every literal_value has an associated relocation -- some are simple
4090 constants. In such cases, we set all the fields in the r_reloc
4091 struct to zero. The r_reloc_is_const function should be used to
4092 detect this case. */
e0001a05 4093
43cd72b9 4094static bfd_boolean
7fa3d080 4095r_reloc_is_const (const r_reloc *r_rel)
e0001a05 4096{
43cd72b9 4097 return (r_rel->abfd == NULL);
e0001a05
NC
4098}
4099
4100
43cd72b9 4101static bfd_vma
7fa3d080 4102r_reloc_get_target_offset (const r_reloc *r_rel)
e0001a05 4103{
43cd72b9
BW
4104 bfd_vma target_offset;
4105 unsigned long r_symndx;
e0001a05 4106
43cd72b9
BW
4107 BFD_ASSERT (!r_reloc_is_const (r_rel));
4108 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4109 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4110 return (target_offset + r_rel->rela.r_addend);
4111}
e0001a05 4112
e0001a05 4113
43cd72b9 4114static struct elf_link_hash_entry *
7fa3d080 4115r_reloc_get_hash_entry (const r_reloc *r_rel)
e0001a05 4116{
43cd72b9
BW
4117 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4118 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4119}
e0001a05 4120
43cd72b9
BW
4121
4122static asection *
7fa3d080 4123r_reloc_get_section (const r_reloc *r_rel)
43cd72b9
BW
4124{
4125 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4126 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4127}
e0001a05
NC
4128
4129
4130static bfd_boolean
7fa3d080 4131r_reloc_is_defined (const r_reloc *r_rel)
e0001a05 4132{
43cd72b9
BW
4133 asection *sec;
4134 if (r_rel == NULL)
e0001a05 4135 return FALSE;
e0001a05 4136
43cd72b9
BW
4137 sec = r_reloc_get_section (r_rel);
4138 if (sec == bfd_abs_section_ptr
4139 || sec == bfd_com_section_ptr
4140 || sec == bfd_und_section_ptr)
4141 return FALSE;
4142 return TRUE;
e0001a05
NC
4143}
4144
4145
7fa3d080
BW
4146static void
4147r_reloc_init (r_reloc *r_rel,
4148 bfd *abfd,
4149 Elf_Internal_Rela *irel,
4150 bfd_byte *contents,
4151 bfd_size_type content_length)
4152{
4153 int r_type;
4154 reloc_howto_type *howto;
4155
4156 if (irel)
4157 {
4158 r_rel->rela = *irel;
4159 r_rel->abfd = abfd;
4160 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4161 r_rel->virtual_offset = 0;
4162 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4163 howto = &elf_howto_table[r_type];
4164 if (howto->partial_inplace)
4165 {
4166 bfd_vma inplace_val;
4167 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4168
4169 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
4170 r_rel->target_offset += inplace_val;
4171 }
4172 }
4173 else
4174 memset (r_rel, 0, sizeof (r_reloc));
4175}
4176
4177
43cd72b9
BW
4178#if DEBUG
4179
e0001a05 4180static void
7fa3d080 4181print_r_reloc (FILE *fp, const r_reloc *r_rel)
e0001a05 4182{
43cd72b9
BW
4183 if (r_reloc_is_defined (r_rel))
4184 {
4185 asection *sec = r_reloc_get_section (r_rel);
4186 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
4187 }
4188 else if (r_reloc_get_hash_entry (r_rel))
4189 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
4190 else
4191 fprintf (fp, " ?? + ");
e0001a05 4192
43cd72b9
BW
4193 fprintf_vma (fp, r_rel->target_offset);
4194 if (r_rel->virtual_offset)
4195 {
4196 fprintf (fp, " + ");
4197 fprintf_vma (fp, r_rel->virtual_offset);
4198 }
4199
4200 fprintf (fp, ")");
4201}
e0001a05 4202
43cd72b9 4203#endif /* DEBUG */
e0001a05 4204
43cd72b9
BW
4205\f
4206/* source_reloc: relocations that reference literals. */
e0001a05 4207
43cd72b9
BW
4208/* To determine whether literals can be coalesced, we need to first
4209 record all the relocations that reference the literals. The
4210 source_reloc structure below is used for this purpose. The
4211 source_reloc entries are kept in a per-literal-section array, sorted
4212 by offset within the literal section (i.e., target offset).
e0001a05 4213
43cd72b9
BW
4214 The source_sec and r_rel.rela.r_offset fields identify the source of
4215 the relocation. The r_rel field records the relocation value, i.e.,
4216 the offset of the literal being referenced. The opnd field is needed
4217 to determine the range of the immediate field to which the relocation
4218 applies, so we can determine whether another literal with the same
4219 value is within range. The is_null field is true when the relocation
4220 is being removed (e.g., when an L32R is being removed due to a CALLX
4221 that is converted to a direct CALL). */
e0001a05 4222
43cd72b9
BW
4223typedef struct source_reloc_struct source_reloc;
4224
4225struct source_reloc_struct
e0001a05 4226{
43cd72b9
BW
4227 asection *source_sec;
4228 r_reloc r_rel;
4229 xtensa_opcode opcode;
4230 int opnd;
4231 bfd_boolean is_null;
4232 bfd_boolean is_abs_literal;
4233};
e0001a05 4234
e0001a05 4235
e0001a05 4236static void
7fa3d080
BW
4237init_source_reloc (source_reloc *reloc,
4238 asection *source_sec,
4239 const r_reloc *r_rel,
4240 xtensa_opcode opcode,
4241 int opnd,
4242 bfd_boolean is_abs_literal)
e0001a05 4243{
43cd72b9
BW
4244 reloc->source_sec = source_sec;
4245 reloc->r_rel = *r_rel;
4246 reloc->opcode = opcode;
4247 reloc->opnd = opnd;
4248 reloc->is_null = FALSE;
4249 reloc->is_abs_literal = is_abs_literal;
e0001a05
NC
4250}
4251
e0001a05 4252
43cd72b9
BW
4253/* Find the source_reloc for a particular source offset and relocation
4254 type. Note that the array is sorted by _target_ offset, so this is
4255 just a linear search. */
e0001a05 4256
43cd72b9 4257static source_reloc *
7fa3d080
BW
4258find_source_reloc (source_reloc *src_relocs,
4259 int src_count,
4260 asection *sec,
4261 Elf_Internal_Rela *irel)
e0001a05 4262{
43cd72b9 4263 int i;
e0001a05 4264
43cd72b9
BW
4265 for (i = 0; i < src_count; i++)
4266 {
4267 if (src_relocs[i].source_sec == sec
4268 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
4269 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
4270 == ELF32_R_TYPE (irel->r_info)))
4271 return &src_relocs[i];
4272 }
e0001a05 4273
43cd72b9 4274 return NULL;
e0001a05
NC
4275}
4276
4277
43cd72b9 4278static int
7fa3d080 4279source_reloc_compare (const void *ap, const void *bp)
e0001a05 4280{
43cd72b9
BW
4281 const source_reloc *a = (const source_reloc *) ap;
4282 const source_reloc *b = (const source_reloc *) bp;
e0001a05 4283
43cd72b9
BW
4284 if (a->r_rel.target_offset != b->r_rel.target_offset)
4285 return (a->r_rel.target_offset - b->r_rel.target_offset);
e0001a05 4286
43cd72b9
BW
4287 /* We don't need to sort on these criteria for correctness,
4288 but enforcing a more strict ordering prevents unstable qsort
4289 from behaving differently with different implementations.
4290 Without the code below we get correct but different results
4291 on Solaris 2.7 and 2.8. We would like to always produce the
4292 same results no matter the host. */
4293
4294 if ((!a->is_null) - (!b->is_null))
4295 return ((!a->is_null) - (!b->is_null));
4296 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
e0001a05
NC
4297}
4298
43cd72b9
BW
4299\f
4300/* Literal values and value hash tables. */
e0001a05 4301
43cd72b9
BW
4302/* Literals with the same value can be coalesced. The literal_value
4303 structure records the value of a literal: the "r_rel" field holds the
4304 information from the relocation on the literal (if there is one) and
4305 the "value" field holds the contents of the literal word itself.
e0001a05 4306
43cd72b9
BW
4307 The value_map structure records a literal value along with the
4308 location of a literal holding that value. The value_map hash table
4309 is indexed by the literal value, so that we can quickly check if a
4310 particular literal value has been seen before and is thus a candidate
4311 for coalescing. */
e0001a05 4312
43cd72b9
BW
4313typedef struct literal_value_struct literal_value;
4314typedef struct value_map_struct value_map;
4315typedef struct value_map_hash_table_struct value_map_hash_table;
e0001a05 4316
43cd72b9 4317struct literal_value_struct
e0001a05 4318{
43cd72b9
BW
4319 r_reloc r_rel;
4320 unsigned long value;
4321 bfd_boolean is_abs_literal;
4322};
4323
4324struct value_map_struct
4325{
4326 literal_value val; /* The literal value. */
4327 r_reloc loc; /* Location of the literal. */
4328 value_map *next;
4329};
4330
4331struct value_map_hash_table_struct
4332{
4333 unsigned bucket_count;
4334 value_map **buckets;
4335 unsigned count;
4336 bfd_boolean has_last_loc;
4337 r_reloc last_loc;
4338};
4339
4340
e0001a05 4341static void
7fa3d080
BW
4342init_literal_value (literal_value *lit,
4343 const r_reloc *r_rel,
4344 unsigned long value,
4345 bfd_boolean is_abs_literal)
e0001a05 4346{
43cd72b9
BW
4347 lit->r_rel = *r_rel;
4348 lit->value = value;
4349 lit->is_abs_literal = is_abs_literal;
e0001a05
NC
4350}
4351
4352
43cd72b9 4353static bfd_boolean
7fa3d080
BW
4354literal_value_equal (const literal_value *src1,
4355 const literal_value *src2,
4356 bfd_boolean final_static_link)
e0001a05 4357{
43cd72b9 4358 struct elf_link_hash_entry *h1, *h2;
e0001a05 4359
43cd72b9
BW
4360 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
4361 return FALSE;
e0001a05 4362
43cd72b9
BW
4363 if (r_reloc_is_const (&src1->r_rel))
4364 return (src1->value == src2->value);
e0001a05 4365
43cd72b9
BW
4366 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
4367 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
4368 return FALSE;
e0001a05 4369
43cd72b9
BW
4370 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
4371 return FALSE;
4372
4373 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
4374 return FALSE;
4375
4376 if (src1->value != src2->value)
4377 return FALSE;
4378
4379 /* Now check for the same section (if defined) or the same elf_hash
4380 (if undefined or weak). */
4381 h1 = r_reloc_get_hash_entry (&src1->r_rel);
4382 h2 = r_reloc_get_hash_entry (&src2->r_rel);
4383 if (r_reloc_is_defined (&src1->r_rel)
4384 && (final_static_link
4385 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
4386 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
4387 {
4388 if (r_reloc_get_section (&src1->r_rel)
4389 != r_reloc_get_section (&src2->r_rel))
4390 return FALSE;
4391 }
4392 else
4393 {
4394 /* Require that the hash entries (i.e., symbols) be identical. */
4395 if (h1 != h2 || h1 == 0)
4396 return FALSE;
4397 }
4398
4399 if (src1->is_abs_literal != src2->is_abs_literal)
4400 return FALSE;
4401
4402 return TRUE;
e0001a05
NC
4403}
4404
e0001a05 4405
43cd72b9
BW
4406/* Must be power of 2. */
4407#define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
e0001a05 4408
43cd72b9 4409static value_map_hash_table *
7fa3d080 4410value_map_hash_table_init (void)
43cd72b9
BW
4411{
4412 value_map_hash_table *values;
e0001a05 4413
43cd72b9
BW
4414 values = (value_map_hash_table *)
4415 bfd_zmalloc (sizeof (value_map_hash_table));
4416 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
4417 values->count = 0;
4418 values->buckets = (value_map **)
4419 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
4420 if (values->buckets == NULL)
4421 {
4422 free (values);
4423 return NULL;
4424 }
4425 values->has_last_loc = FALSE;
4426
4427 return values;
4428}
4429
4430
4431static void
7fa3d080 4432value_map_hash_table_delete (value_map_hash_table *table)
e0001a05 4433{
43cd72b9
BW
4434 free (table->buckets);
4435 free (table);
4436}
4437
4438
4439static unsigned
7fa3d080 4440hash_bfd_vma (bfd_vma val)
43cd72b9
BW
4441{
4442 return (val >> 2) + (val >> 10);
4443}
4444
4445
4446static unsigned
7fa3d080 4447literal_value_hash (const literal_value *src)
43cd72b9
BW
4448{
4449 unsigned hash_val;
e0001a05 4450
43cd72b9
BW
4451 hash_val = hash_bfd_vma (src->value);
4452 if (!r_reloc_is_const (&src->r_rel))
e0001a05 4453 {
43cd72b9
BW
4454 void *sec_or_hash;
4455
4456 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
4457 hash_val += hash_bfd_vma (src->r_rel.target_offset);
4458 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
4459
4460 /* Now check for the same section and the same elf_hash. */
4461 if (r_reloc_is_defined (&src->r_rel))
4462 sec_or_hash = r_reloc_get_section (&src->r_rel);
4463 else
4464 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
f60ca5e3 4465 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
e0001a05 4466 }
43cd72b9
BW
4467 return hash_val;
4468}
e0001a05 4469
e0001a05 4470
43cd72b9 4471/* Check if the specified literal_value has been seen before. */
e0001a05 4472
43cd72b9 4473static value_map *
7fa3d080
BW
4474value_map_get_cached_value (value_map_hash_table *map,
4475 const literal_value *val,
4476 bfd_boolean final_static_link)
43cd72b9
BW
4477{
4478 value_map *map_e;
4479 value_map *bucket;
4480 unsigned idx;
4481
4482 idx = literal_value_hash (val);
4483 idx = idx & (map->bucket_count - 1);
4484 bucket = map->buckets[idx];
4485 for (map_e = bucket; map_e; map_e = map_e->next)
e0001a05 4486 {
43cd72b9
BW
4487 if (literal_value_equal (&map_e->val, val, final_static_link))
4488 return map_e;
4489 }
4490 return NULL;
4491}
e0001a05 4492
e0001a05 4493
43cd72b9
BW
4494/* Record a new literal value. It is illegal to call this if VALUE
4495 already has an entry here. */
4496
4497static value_map *
7fa3d080
BW
4498add_value_map (value_map_hash_table *map,
4499 const literal_value *val,
4500 const r_reloc *loc,
4501 bfd_boolean final_static_link)
43cd72b9
BW
4502{
4503 value_map **bucket_p;
4504 unsigned idx;
4505
4506 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
4507 if (val_e == NULL)
4508 {
4509 bfd_set_error (bfd_error_no_memory);
4510 return NULL;
e0001a05
NC
4511 }
4512
43cd72b9
BW
4513 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
4514 val_e->val = *val;
4515 val_e->loc = *loc;
4516
4517 idx = literal_value_hash (val);
4518 idx = idx & (map->bucket_count - 1);
4519 bucket_p = &map->buckets[idx];
4520
4521 val_e->next = *bucket_p;
4522 *bucket_p = val_e;
4523 map->count++;
4524 /* FIXME: Consider resizing the hash table if we get too many entries. */
4525
4526 return val_e;
e0001a05
NC
4527}
4528
43cd72b9
BW
4529\f
4530/* Lists of text actions (ta_) for narrowing, widening, longcall
4531 conversion, space fill, code & literal removal, etc. */
4532
4533/* The following text actions are generated:
4534
4535 "ta_remove_insn" remove an instruction or instructions
4536 "ta_remove_longcall" convert longcall to call
4537 "ta_convert_longcall" convert longcall to nop/call
4538 "ta_narrow_insn" narrow a wide instruction
4539 "ta_widen" widen a narrow instruction
4540 "ta_fill" add fill or remove fill
4541 removed < 0 is a fill; branches to the fill address will be
4542 changed to address + fill size (e.g., address - removed)
4543 removed >= 0 branches to the fill address will stay unchanged
4544 "ta_remove_literal" remove a literal; this action is
4545 indicated when a literal is removed
4546 or replaced.
4547 "ta_add_literal" insert a new literal; this action is
4548 indicated when a literal has been moved.
4549 It may use a virtual_offset because
4550 multiple literals can be placed at the
4551 same location.
4552
4553 For each of these text actions, we also record the number of bytes
4554 removed by performing the text action. In the case of a "ta_widen"
4555 or a "ta_fill" that adds space, the removed_bytes will be negative. */
4556
4557typedef struct text_action_struct text_action;
4558typedef struct text_action_list_struct text_action_list;
4559typedef enum text_action_enum_t text_action_t;
4560
4561enum text_action_enum_t
4562{
4563 ta_none,
4564 ta_remove_insn, /* removed = -size */
4565 ta_remove_longcall, /* removed = -size */
4566 ta_convert_longcall, /* removed = 0 */
4567 ta_narrow_insn, /* removed = -1 */
4568 ta_widen_insn, /* removed = +1 */
4569 ta_fill, /* removed = +size */
4570 ta_remove_literal,
4571 ta_add_literal
4572};
e0001a05 4573
e0001a05 4574
43cd72b9
BW
4575/* Structure for a text action record. */
4576struct text_action_struct
e0001a05 4577{
43cd72b9
BW
4578 text_action_t action;
4579 asection *sec; /* Optional */
4580 bfd_vma offset;
4581 bfd_vma virtual_offset; /* Zero except for adding literals. */
4582 int removed_bytes;
4583 literal_value value; /* Only valid when adding literals. */
e0001a05 4584
43cd72b9
BW
4585 text_action *next;
4586};
e0001a05 4587
e0001a05 4588
43cd72b9
BW
4589/* List of all of the actions taken on a text section. */
4590struct text_action_list_struct
4591{
4592 text_action *head;
4593};
e0001a05 4594
e0001a05 4595
7fa3d080
BW
4596static text_action *
4597find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
43cd72b9
BW
4598{
4599 text_action **m_p;
4600
4601 /* It is not necessary to fill at the end of a section. */
4602 if (sec->size == offset)
4603 return NULL;
4604
7fa3d080 4605 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
4606 {
4607 text_action *t = *m_p;
4608 /* When the action is another fill at the same address,
4609 just increase the size. */
4610 if (t->offset == offset && t->action == ta_fill)
4611 return t;
4612 }
4613 return NULL;
4614}
4615
4616
4617static int
7fa3d080
BW
4618compute_removed_action_diff (const text_action *ta,
4619 asection *sec,
4620 bfd_vma offset,
4621 int removed,
4622 int removable_space)
43cd72b9
BW
4623{
4624 int new_removed;
4625 int current_removed = 0;
4626
7fa3d080 4627 if (ta)
43cd72b9
BW
4628 current_removed = ta->removed_bytes;
4629
4630 BFD_ASSERT (ta == NULL || ta->offset == offset);
4631 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
4632
4633 /* It is not necessary to fill at the end of a section. Clean this up. */
4634 if (sec->size == offset)
4635 new_removed = removable_space - 0;
4636 else
4637 {
4638 int space;
4639 int added = -removed - current_removed;
4640 /* Ignore multiples of the section alignment. */
4641 added = ((1 << sec->alignment_power) - 1) & added;
4642 new_removed = (-added);
4643
4644 /* Modify for removable. */
4645 space = removable_space - new_removed;
4646 new_removed = (removable_space
4647 - (((1 << sec->alignment_power) - 1) & space));
4648 }
4649 return (new_removed - current_removed);
4650}
4651
4652
7fa3d080
BW
4653static void
4654adjust_fill_action (text_action *ta, int fill_diff)
43cd72b9
BW
4655{
4656 ta->removed_bytes += fill_diff;
4657}
4658
4659
4660/* Add a modification action to the text. For the case of adding or
4661 removing space, modify any current fill and assume that
4662 "unreachable_space" bytes can be freely contracted. Note that a
4663 negative removed value is a fill. */
4664
4665static void
7fa3d080
BW
4666text_action_add (text_action_list *l,
4667 text_action_t action,
4668 asection *sec,
4669 bfd_vma offset,
4670 int removed)
43cd72b9
BW
4671{
4672 text_action **m_p;
4673 text_action *ta;
4674
4675 /* It is not necessary to fill at the end of a section. */
4676 if (action == ta_fill && sec->size == offset)
4677 return;
4678
4679 /* It is not necessary to fill 0 bytes. */
4680 if (action == ta_fill && removed == 0)
4681 return;
4682
7fa3d080 4683 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
4684 {
4685 text_action *t = *m_p;
4686 /* When the action is another fill at the same address,
4687 just increase the size. */
4688 if (t->offset == offset && t->action == ta_fill && action == ta_fill)
4689 {
4690 t->removed_bytes += removed;
4691 return;
4692 }
4693 }
4694
4695 /* Create a new record and fill it up. */
4696 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4697 ta->action = action;
4698 ta->sec = sec;
4699 ta->offset = offset;
4700 ta->removed_bytes = removed;
4701 ta->next = (*m_p);
4702 *m_p = ta;
4703}
4704
4705
4706static void
7fa3d080
BW
4707text_action_add_literal (text_action_list *l,
4708 text_action_t action,
4709 const r_reloc *loc,
4710 const literal_value *value,
4711 int removed)
43cd72b9
BW
4712{
4713 text_action **m_p;
4714 text_action *ta;
4715 asection *sec = r_reloc_get_section (loc);
4716 bfd_vma offset = loc->target_offset;
4717 bfd_vma virtual_offset = loc->virtual_offset;
4718
4719 BFD_ASSERT (action == ta_add_literal);
4720
4721 for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
4722 {
4723 if ((*m_p)->offset > offset
4724 && ((*m_p)->offset != offset
4725 || (*m_p)->virtual_offset > virtual_offset))
4726 break;
4727 }
4728
4729 /* Create a new record and fill it up. */
4730 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4731 ta->action = action;
4732 ta->sec = sec;
4733 ta->offset = offset;
4734 ta->virtual_offset = virtual_offset;
4735 ta->value = *value;
4736 ta->removed_bytes = removed;
4737 ta->next = (*m_p);
4738 *m_p = ta;
4739}
4740
4741
7fa3d080
BW
4742static bfd_vma
4743offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
43cd72b9
BW
4744{
4745 text_action *r;
4746 int removed = 0;
4747
4748 for (r = action_list->head; r && r->offset <= offset; r = r->next)
4749 {
4750 if (r->offset < offset
4751 || (r->action == ta_fill && r->removed_bytes < 0))
4752 removed += r->removed_bytes;
4753 }
4754
4755 return (offset - removed);
4756}
4757
4758
03e94c08
BW
4759static unsigned
4760action_list_count (text_action_list *action_list)
4761{
4762 text_action *r = action_list->head;
4763 unsigned count = 0;
4764 for (r = action_list->head; r != NULL; r = r->next)
4765 {
4766 count++;
4767 }
4768 return count;
4769}
4770
4771
7fa3d080
BW
4772static bfd_vma
4773offset_with_removed_text_before_fill (text_action_list *action_list,
4774 bfd_vma offset)
43cd72b9
BW
4775{
4776 text_action *r;
4777 int removed = 0;
4778
4779 for (r = action_list->head; r && r->offset < offset; r = r->next)
4780 removed += r->removed_bytes;
4781
4782 return (offset - removed);
4783}
4784
4785
4786/* The find_insn_action routine will only find non-fill actions. */
4787
7fa3d080
BW
4788static text_action *
4789find_insn_action (text_action_list *action_list, bfd_vma offset)
43cd72b9
BW
4790{
4791 text_action *t;
4792 for (t = action_list->head; t; t = t->next)
4793 {
4794 if (t->offset == offset)
4795 {
4796 switch (t->action)
4797 {
4798 case ta_none:
4799 case ta_fill:
4800 break;
4801 case ta_remove_insn:
4802 case ta_remove_longcall:
4803 case ta_convert_longcall:
4804 case ta_narrow_insn:
4805 case ta_widen_insn:
4806 return t;
4807 case ta_remove_literal:
4808 case ta_add_literal:
4809 BFD_ASSERT (0);
4810 break;
4811 }
4812 }
4813 }
4814 return NULL;
4815}
4816
4817
4818#if DEBUG
4819
4820static void
7fa3d080 4821print_action_list (FILE *fp, text_action_list *action_list)
43cd72b9
BW
4822{
4823 text_action *r;
4824
4825 fprintf (fp, "Text Action\n");
4826 for (r = action_list->head; r != NULL; r = r->next)
4827 {
4828 const char *t = "unknown";
4829 switch (r->action)
4830 {
4831 case ta_remove_insn:
4832 t = "remove_insn"; break;
4833 case ta_remove_longcall:
4834 t = "remove_longcall"; break;
4835 case ta_convert_longcall:
4836 t = "remove_longcall"; break;
4837 case ta_narrow_insn:
4838 t = "narrow_insn"; break;
4839 case ta_widen_insn:
4840 t = "widen_insn"; break;
4841 case ta_fill:
4842 t = "fill"; break;
4843 case ta_none:
4844 t = "none"; break;
4845 case ta_remove_literal:
4846 t = "remove_literal"; break;
4847 case ta_add_literal:
4848 t = "add_literal"; break;
4849 }
4850
4851 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
4852 r->sec->owner->filename,
4853 r->sec->name, r->offset, t, r->removed_bytes);
4854 }
4855}
4856
4857#endif /* DEBUG */
4858
4859\f
4860/* Lists of literals being coalesced or removed. */
4861
4862/* In the usual case, the literal identified by "from" is being
4863 coalesced with another literal identified by "to". If the literal is
4864 unused and is being removed altogether, "to.abfd" will be NULL.
4865 The removed_literal entries are kept on a per-section list, sorted
4866 by the "from" offset field. */
4867
4868typedef struct removed_literal_struct removed_literal;
4869typedef struct removed_literal_list_struct removed_literal_list;
4870
4871struct removed_literal_struct
4872{
4873 r_reloc from;
4874 r_reloc to;
4875 removed_literal *next;
4876};
4877
4878struct removed_literal_list_struct
4879{
4880 removed_literal *head;
4881 removed_literal *tail;
4882};
4883
4884
43cd72b9
BW
4885/* Record that the literal at "from" is being removed. If "to" is not
4886 NULL, the "from" literal is being coalesced with the "to" literal. */
4887
4888static void
7fa3d080
BW
4889add_removed_literal (removed_literal_list *removed_list,
4890 const r_reloc *from,
4891 const r_reloc *to)
43cd72b9
BW
4892{
4893 removed_literal *r, *new_r, *next_r;
4894
4895 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
4896
4897 new_r->from = *from;
4898 if (to)
4899 new_r->to = *to;
4900 else
4901 new_r->to.abfd = NULL;
4902 new_r->next = NULL;
4903
4904 r = removed_list->head;
4905 if (r == NULL)
4906 {
4907 removed_list->head = new_r;
4908 removed_list->tail = new_r;
4909 }
4910 /* Special check for common case of append. */
4911 else if (removed_list->tail->from.target_offset < from->target_offset)
4912 {
4913 removed_list->tail->next = new_r;
4914 removed_list->tail = new_r;
4915 }
4916 else
4917 {
7fa3d080 4918 while (r->from.target_offset < from->target_offset && r->next)
43cd72b9
BW
4919 {
4920 r = r->next;
4921 }
4922 next_r = r->next;
4923 r->next = new_r;
4924 new_r->next = next_r;
4925 if (next_r == NULL)
4926 removed_list->tail = new_r;
4927 }
4928}
4929
4930
4931/* Check if the list of removed literals contains an entry for the
4932 given address. Return the entry if found. */
4933
4934static removed_literal *
7fa3d080 4935find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
43cd72b9
BW
4936{
4937 removed_literal *r = removed_list->head;
4938 while (r && r->from.target_offset < addr)
4939 r = r->next;
4940 if (r && r->from.target_offset == addr)
4941 return r;
4942 return NULL;
4943}
4944
4945
4946#if DEBUG
4947
4948static void
7fa3d080 4949print_removed_literals (FILE *fp, removed_literal_list *removed_list)
43cd72b9
BW
4950{
4951 removed_literal *r;
4952 r = removed_list->head;
4953 if (r)
4954 fprintf (fp, "Removed Literals\n");
4955 for (; r != NULL; r = r->next)
4956 {
4957 print_r_reloc (fp, &r->from);
4958 fprintf (fp, " => ");
4959 if (r->to.abfd == NULL)
4960 fprintf (fp, "REMOVED");
4961 else
4962 print_r_reloc (fp, &r->to);
4963 fprintf (fp, "\n");
4964 }
4965}
4966
4967#endif /* DEBUG */
4968
4969\f
4970/* Per-section data for relaxation. */
4971
4972typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
4973
4974struct xtensa_relax_info_struct
4975{
4976 bfd_boolean is_relaxable_literal_section;
4977 bfd_boolean is_relaxable_asm_section;
4978 int visited; /* Number of times visited. */
4979
4980 source_reloc *src_relocs; /* Array[src_count]. */
4981 int src_count;
4982 int src_next; /* Next src_relocs entry to assign. */
4983
4984 removed_literal_list removed_list;
4985 text_action_list action_list;
4986
4987 reloc_bfd_fix *fix_list;
4988 reloc_bfd_fix *fix_array;
4989 unsigned fix_array_count;
4990
4991 /* Support for expanding the reloc array that is stored
4992 in the section structure. If the relocations have been
4993 reallocated, the newly allocated relocations will be referenced
4994 here along with the actual size allocated. The relocation
4995 count will always be found in the section structure. */
4996 Elf_Internal_Rela *allocated_relocs;
4997 unsigned relocs_count;
4998 unsigned allocated_relocs_count;
4999};
5000
5001struct elf_xtensa_section_data
5002{
5003 struct bfd_elf_section_data elf;
5004 xtensa_relax_info relax_info;
5005};
5006
43cd72b9
BW
5007
5008static bfd_boolean
7fa3d080 5009elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
43cd72b9
BW
5010{
5011 struct elf_xtensa_section_data *sdata;
5012 bfd_size_type amt = sizeof (*sdata);
5013
5014 sdata = (struct elf_xtensa_section_data *) bfd_zalloc (abfd, amt);
5015 if (sdata == NULL)
5016 return FALSE;
7fa3d080 5017 sec->used_by_bfd = (void *) sdata;
43cd72b9
BW
5018
5019 return _bfd_elf_new_section_hook (abfd, sec);
5020}
5021
5022
7fa3d080
BW
5023static xtensa_relax_info *
5024get_xtensa_relax_info (asection *sec)
5025{
5026 struct elf_xtensa_section_data *section_data;
5027
5028 /* No info available if no section or if it is an output section. */
5029 if (!sec || sec == sec->output_section)
5030 return NULL;
5031
5032 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5033 return &section_data->relax_info;
5034}
5035
5036
43cd72b9 5037static void
7fa3d080 5038init_xtensa_relax_info (asection *sec)
43cd72b9
BW
5039{
5040 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5041
5042 relax_info->is_relaxable_literal_section = FALSE;
5043 relax_info->is_relaxable_asm_section = FALSE;
5044 relax_info->visited = 0;
5045
5046 relax_info->src_relocs = NULL;
5047 relax_info->src_count = 0;
5048 relax_info->src_next = 0;
5049
5050 relax_info->removed_list.head = NULL;
5051 relax_info->removed_list.tail = NULL;
5052
5053 relax_info->action_list.head = NULL;
5054
5055 relax_info->fix_list = NULL;
5056 relax_info->fix_array = NULL;
5057 relax_info->fix_array_count = 0;
5058
5059 relax_info->allocated_relocs = NULL;
5060 relax_info->relocs_count = 0;
5061 relax_info->allocated_relocs_count = 0;
5062}
5063
43cd72b9
BW
5064\f
5065/* Coalescing literals may require a relocation to refer to a section in
5066 a different input file, but the standard relocation information
5067 cannot express that. Instead, the reloc_bfd_fix structures are used
5068 to "fix" the relocations that refer to sections in other input files.
5069 These structures are kept on per-section lists. The "src_type" field
5070 records the relocation type in case there are multiple relocations on
5071 the same location. FIXME: This is ugly; an alternative might be to
5072 add new symbols with the "owner" field to some other input file. */
5073
5074struct reloc_bfd_fix_struct
5075{
5076 asection *src_sec;
5077 bfd_vma src_offset;
5078 unsigned src_type; /* Relocation type. */
5079
5080 bfd *target_abfd;
5081 asection *target_sec;
5082 bfd_vma target_offset;
5083 bfd_boolean translated;
5084
5085 reloc_bfd_fix *next;
5086};
5087
5088
43cd72b9 5089static reloc_bfd_fix *
7fa3d080
BW
5090reloc_bfd_fix_init (asection *src_sec,
5091 bfd_vma src_offset,
5092 unsigned src_type,
5093 bfd *target_abfd,
5094 asection *target_sec,
5095 bfd_vma target_offset,
5096 bfd_boolean translated)
43cd72b9
BW
5097{
5098 reloc_bfd_fix *fix;
5099
5100 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
5101 fix->src_sec = src_sec;
5102 fix->src_offset = src_offset;
5103 fix->src_type = src_type;
5104 fix->target_abfd = target_abfd;
5105 fix->target_sec = target_sec;
5106 fix->target_offset = target_offset;
5107 fix->translated = translated;
5108
5109 return fix;
5110}
5111
5112
5113static void
7fa3d080 5114add_fix (asection *src_sec, reloc_bfd_fix *fix)
43cd72b9
BW
5115{
5116 xtensa_relax_info *relax_info;
5117
5118 relax_info = get_xtensa_relax_info (src_sec);
5119 fix->next = relax_info->fix_list;
5120 relax_info->fix_list = fix;
5121}
5122
5123
5124static int
7fa3d080 5125fix_compare (const void *ap, const void *bp)
43cd72b9
BW
5126{
5127 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
5128 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
5129
5130 if (a->src_offset != b->src_offset)
5131 return (a->src_offset - b->src_offset);
5132 return (a->src_type - b->src_type);
5133}
5134
5135
5136static void
7fa3d080 5137cache_fix_array (asection *sec)
43cd72b9
BW
5138{
5139 unsigned i, count = 0;
5140 reloc_bfd_fix *r;
5141 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5142
5143 if (relax_info == NULL)
5144 return;
5145 if (relax_info->fix_list == NULL)
5146 return;
5147
5148 for (r = relax_info->fix_list; r != NULL; r = r->next)
5149 count++;
5150
5151 relax_info->fix_array =
5152 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
5153 relax_info->fix_array_count = count;
5154
5155 r = relax_info->fix_list;
5156 for (i = 0; i < count; i++, r = r->next)
5157 {
5158 relax_info->fix_array[count - 1 - i] = *r;
5159 relax_info->fix_array[count - 1 - i].next = NULL;
5160 }
5161
5162 qsort (relax_info->fix_array, relax_info->fix_array_count,
5163 sizeof (reloc_bfd_fix), fix_compare);
5164}
5165
5166
5167static reloc_bfd_fix *
7fa3d080 5168get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
43cd72b9
BW
5169{
5170 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5171 reloc_bfd_fix *rv;
5172 reloc_bfd_fix key;
5173
5174 if (relax_info == NULL)
5175 return NULL;
5176 if (relax_info->fix_list == NULL)
5177 return NULL;
5178
5179 if (relax_info->fix_array == NULL)
5180 cache_fix_array (sec);
5181
5182 key.src_offset = offset;
5183 key.src_type = type;
5184 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
5185 sizeof (reloc_bfd_fix), fix_compare);
5186 return rv;
5187}
5188
5189\f
5190/* Section caching. */
5191
5192typedef struct section_cache_struct section_cache_t;
5193
5194struct section_cache_struct
5195{
5196 asection *sec;
5197
5198 bfd_byte *contents; /* Cache of the section contents. */
5199 bfd_size_type content_length;
5200
5201 property_table_entry *ptbl; /* Cache of the section property table. */
5202 unsigned pte_count;
5203
5204 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5205 unsigned reloc_count;
5206};
5207
5208
7fa3d080
BW
5209static void
5210init_section_cache (section_cache_t *sec_cache)
5211{
5212 memset (sec_cache, 0, sizeof (*sec_cache));
5213}
43cd72b9
BW
5214
5215
5216static void
7fa3d080 5217clear_section_cache (section_cache_t *sec_cache)
43cd72b9 5218{
7fa3d080
BW
5219 if (sec_cache->sec)
5220 {
5221 release_contents (sec_cache->sec, sec_cache->contents);
5222 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
5223 if (sec_cache->ptbl)
5224 free (sec_cache->ptbl);
5225 memset (sec_cache, 0, sizeof (sec_cache));
5226 }
43cd72b9
BW
5227}
5228
5229
5230static bfd_boolean
7fa3d080
BW
5231section_cache_section (section_cache_t *sec_cache,
5232 asection *sec,
5233 struct bfd_link_info *link_info)
43cd72b9
BW
5234{
5235 bfd *abfd;
5236 property_table_entry *prop_table = NULL;
5237 int ptblsize = 0;
5238 bfd_byte *contents = NULL;
5239 Elf_Internal_Rela *internal_relocs = NULL;
5240 bfd_size_type sec_size;
5241
5242 if (sec == NULL)
5243 return FALSE;
5244 if (sec == sec_cache->sec)
5245 return TRUE;
5246
5247 abfd = sec->owner;
5248 sec_size = bfd_get_section_limit (abfd, sec);
5249
5250 /* Get the contents. */
5251 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
5252 if (contents == NULL && sec_size != 0)
5253 goto err;
5254
5255 /* Get the relocations. */
5256 internal_relocs = retrieve_internal_relocs (abfd, sec,
5257 link_info->keep_memory);
5258
5259 /* Get the entry table. */
5260 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
5261 XTENSA_PROP_SEC_NAME, FALSE);
5262 if (ptblsize < 0)
5263 goto err;
5264
5265 /* Fill in the new section cache. */
5266 clear_section_cache (sec_cache);
5267 memset (sec_cache, 0, sizeof (sec_cache));
5268
5269 sec_cache->sec = sec;
5270 sec_cache->contents = contents;
5271 sec_cache->content_length = sec_size;
5272 sec_cache->relocs = internal_relocs;
5273 sec_cache->reloc_count = sec->reloc_count;
5274 sec_cache->pte_count = ptblsize;
5275 sec_cache->ptbl = prop_table;
5276
5277 return TRUE;
5278
5279 err:
5280 release_contents (sec, contents);
5281 release_internal_relocs (sec, internal_relocs);
5282 if (prop_table)
5283 free (prop_table);
5284 return FALSE;
5285}
5286
43cd72b9
BW
5287\f
5288/* Extended basic blocks. */
5289
5290/* An ebb_struct represents an Extended Basic Block. Within this
5291 range, we guarantee that all instructions are decodable, the
5292 property table entries are contiguous, and no property table
5293 specifies a segment that cannot have instructions moved. This
5294 structure contains caches of the contents, property table and
5295 relocations for the specified section for easy use. The range is
5296 specified by ranges of indices for the byte offset, property table
5297 offsets and relocation offsets. These must be consistent. */
5298
5299typedef struct ebb_struct ebb_t;
5300
5301struct ebb_struct
5302{
5303 asection *sec;
5304
5305 bfd_byte *contents; /* Cache of the section contents. */
5306 bfd_size_type content_length;
5307
5308 property_table_entry *ptbl; /* Cache of the section property table. */
5309 unsigned pte_count;
5310
5311 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5312 unsigned reloc_count;
5313
5314 bfd_vma start_offset; /* Offset in section. */
5315 unsigned start_ptbl_idx; /* Offset in the property table. */
5316 unsigned start_reloc_idx; /* Offset in the relocations. */
5317
5318 bfd_vma end_offset;
5319 unsigned end_ptbl_idx;
5320 unsigned end_reloc_idx;
5321
5322 bfd_boolean ends_section; /* Is this the last ebb in a section? */
5323
5324 /* The unreachable property table at the end of this set of blocks;
5325 NULL if the end is not an unreachable block. */
5326 property_table_entry *ends_unreachable;
5327};
5328
5329
5330enum ebb_target_enum
5331{
5332 EBB_NO_ALIGN = 0,
5333 EBB_DESIRE_TGT_ALIGN,
5334 EBB_REQUIRE_TGT_ALIGN,
5335 EBB_REQUIRE_LOOP_ALIGN,
5336 EBB_REQUIRE_ALIGN
5337};
5338
5339
5340/* proposed_action_struct is similar to the text_action_struct except
5341 that is represents a potential transformation, not one that will
5342 occur. We build a list of these for an extended basic block
5343 and use them to compute the actual actions desired. We must be
5344 careful that the entire set of actual actions we perform do not
5345 break any relocations that would fit if the actions were not
5346 performed. */
5347
5348typedef struct proposed_action_struct proposed_action;
5349
5350struct proposed_action_struct
5351{
5352 enum ebb_target_enum align_type; /* for the target alignment */
5353 bfd_vma alignment_pow;
5354 text_action_t action;
5355 bfd_vma offset;
5356 int removed_bytes;
5357 bfd_boolean do_action; /* If false, then we will not perform the action. */
5358};
5359
5360
5361/* The ebb_constraint_struct keeps a set of proposed actions for an
5362 extended basic block. */
5363
5364typedef struct ebb_constraint_struct ebb_constraint;
5365
5366struct ebb_constraint_struct
5367{
5368 ebb_t ebb;
5369 bfd_boolean start_movable;
5370
5371 /* Bytes of extra space at the beginning if movable. */
5372 int start_extra_space;
5373
5374 enum ebb_target_enum start_align;
5375
5376 bfd_boolean end_movable;
5377
5378 /* Bytes of extra space at the end if movable. */
5379 int end_extra_space;
5380
5381 unsigned action_count;
5382 unsigned action_allocated;
5383
5384 /* Array of proposed actions. */
5385 proposed_action *actions;
5386
5387 /* Action alignments -- one for each proposed action. */
5388 enum ebb_target_enum *action_aligns;
5389};
5390
5391
43cd72b9 5392static void
7fa3d080 5393init_ebb_constraint (ebb_constraint *c)
43cd72b9
BW
5394{
5395 memset (c, 0, sizeof (ebb_constraint));
5396}
5397
5398
5399static void
7fa3d080 5400free_ebb_constraint (ebb_constraint *c)
43cd72b9 5401{
7fa3d080 5402 if (c->actions)
43cd72b9
BW
5403 free (c->actions);
5404}
5405
5406
5407static void
7fa3d080
BW
5408init_ebb (ebb_t *ebb,
5409 asection *sec,
5410 bfd_byte *contents,
5411 bfd_size_type content_length,
5412 property_table_entry *prop_table,
5413 unsigned ptblsize,
5414 Elf_Internal_Rela *internal_relocs,
5415 unsigned reloc_count)
43cd72b9
BW
5416{
5417 memset (ebb, 0, sizeof (ebb_t));
5418 ebb->sec = sec;
5419 ebb->contents = contents;
5420 ebb->content_length = content_length;
5421 ebb->ptbl = prop_table;
5422 ebb->pte_count = ptblsize;
5423 ebb->relocs = internal_relocs;
5424 ebb->reloc_count = reloc_count;
5425 ebb->start_offset = 0;
5426 ebb->end_offset = ebb->content_length - 1;
5427 ebb->start_ptbl_idx = 0;
5428 ebb->end_ptbl_idx = ptblsize;
5429 ebb->start_reloc_idx = 0;
5430 ebb->end_reloc_idx = reloc_count;
5431}
5432
5433
5434/* Extend the ebb to all decodable contiguous sections. The algorithm
5435 for building a basic block around an instruction is to push it
5436 forward until we hit the end of a section, an unreachable block or
5437 a block that cannot be transformed. Then we push it backwards
5438 searching for similar conditions. */
5439
7fa3d080
BW
5440static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
5441static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
5442static bfd_size_type insn_block_decodable_len
5443 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
5444
43cd72b9 5445static bfd_boolean
7fa3d080 5446extend_ebb_bounds (ebb_t *ebb)
43cd72b9
BW
5447{
5448 if (!extend_ebb_bounds_forward (ebb))
5449 return FALSE;
5450 if (!extend_ebb_bounds_backward (ebb))
5451 return FALSE;
5452 return TRUE;
5453}
5454
5455
5456static bfd_boolean
7fa3d080 5457extend_ebb_bounds_forward (ebb_t *ebb)
43cd72b9
BW
5458{
5459 property_table_entry *the_entry, *new_entry;
5460
5461 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
5462
5463 /* Stop when (1) we cannot decode an instruction, (2) we are at
5464 the end of the property tables, (3) we hit a non-contiguous property
5465 table entry, (4) we hit a NO_TRANSFORM region. */
5466
5467 while (1)
5468 {
5469 bfd_vma entry_end;
5470 bfd_size_type insn_block_len;
5471
5472 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
5473 insn_block_len =
5474 insn_block_decodable_len (ebb->contents, ebb->content_length,
5475 ebb->end_offset,
5476 entry_end - ebb->end_offset);
5477 if (insn_block_len != (entry_end - ebb->end_offset))
5478 {
5479 (*_bfd_error_handler)
5480 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5481 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5482 return FALSE;
5483 }
5484 ebb->end_offset += insn_block_len;
5485
5486 if (ebb->end_offset == ebb->sec->size)
5487 ebb->ends_section = TRUE;
5488
5489 /* Update the reloc counter. */
5490 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
5491 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
5492 < ebb->end_offset))
5493 {
5494 ebb->end_reloc_idx++;
5495 }
5496
5497 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5498 return TRUE;
5499
5500 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5501 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
5502 || ((new_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) != 0)
5503 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
5504 break;
5505
5506 if (the_entry->address + the_entry->size != new_entry->address)
5507 break;
5508
5509 the_entry = new_entry;
5510 ebb->end_ptbl_idx++;
5511 }
5512
5513 /* Quick check for an unreachable or end of file just at the end. */
5514 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5515 {
5516 if (ebb->end_offset == ebb->content_length)
5517 ebb->ends_section = TRUE;
5518 }
5519 else
5520 {
5521 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5522 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
5523 && the_entry->address + the_entry->size == new_entry->address)
5524 ebb->ends_unreachable = new_entry;
5525 }
5526
5527 /* Any other ending requires exact alignment. */
5528 return TRUE;
5529}
5530
5531
5532static bfd_boolean
7fa3d080 5533extend_ebb_bounds_backward (ebb_t *ebb)
43cd72b9
BW
5534{
5535 property_table_entry *the_entry, *new_entry;
5536
5537 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
5538
5539 /* Stop when (1) we cannot decode the instructions in the current entry.
5540 (2) we are at the beginning of the property tables, (3) we hit a
5541 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
5542
5543 while (1)
5544 {
5545 bfd_vma block_begin;
5546 bfd_size_type insn_block_len;
5547
5548 block_begin = the_entry->address - ebb->sec->vma;
5549 insn_block_len =
5550 insn_block_decodable_len (ebb->contents, ebb->content_length,
5551 block_begin,
5552 ebb->start_offset - block_begin);
5553 if (insn_block_len != ebb->start_offset - block_begin)
5554 {
5555 (*_bfd_error_handler)
5556 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5557 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5558 return FALSE;
5559 }
5560 ebb->start_offset -= insn_block_len;
5561
5562 /* Update the reloc counter. */
5563 while (ebb->start_reloc_idx > 0
5564 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
5565 >= ebb->start_offset))
5566 {
5567 ebb->start_reloc_idx--;
5568 }
5569
5570 if (ebb->start_ptbl_idx == 0)
5571 return TRUE;
5572
5573 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
5574 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
5575 || ((new_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) != 0)
5576 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
5577 return TRUE;
5578 if (new_entry->address + new_entry->size != the_entry->address)
5579 return TRUE;
5580
5581 the_entry = new_entry;
5582 ebb->start_ptbl_idx--;
5583 }
5584 return TRUE;
5585}
5586
5587
5588static bfd_size_type
7fa3d080
BW
5589insn_block_decodable_len (bfd_byte *contents,
5590 bfd_size_type content_len,
5591 bfd_vma block_offset,
5592 bfd_size_type block_len)
43cd72b9
BW
5593{
5594 bfd_vma offset = block_offset;
5595
5596 while (offset < block_offset + block_len)
5597 {
5598 bfd_size_type insn_len = 0;
5599
5600 insn_len = insn_decode_len (contents, content_len, offset);
5601 if (insn_len == 0)
5602 return (offset - block_offset);
5603 offset += insn_len;
5604 }
5605 return (offset - block_offset);
5606}
5607
5608
5609static void
7fa3d080 5610ebb_propose_action (ebb_constraint *c,
7fa3d080 5611 enum ebb_target_enum align_type,
288f74fa 5612 bfd_vma alignment_pow,
7fa3d080
BW
5613 text_action_t action,
5614 bfd_vma offset,
5615 int removed_bytes,
5616 bfd_boolean do_action)
43cd72b9 5617{
b08b5071 5618 proposed_action *act;
43cd72b9 5619
43cd72b9
BW
5620 if (c->action_allocated <= c->action_count)
5621 {
b08b5071 5622 unsigned new_allocated, i;
823fc61f 5623 proposed_action *new_actions;
b08b5071
BW
5624
5625 new_allocated = (c->action_count + 2) * 2;
823fc61f 5626 new_actions = (proposed_action *)
43cd72b9
BW
5627 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
5628
5629 for (i = 0; i < c->action_count; i++)
5630 new_actions[i] = c->actions[i];
7fa3d080 5631 if (c->actions)
43cd72b9
BW
5632 free (c->actions);
5633 c->actions = new_actions;
5634 c->action_allocated = new_allocated;
5635 }
b08b5071
BW
5636
5637 act = &c->actions[c->action_count];
5638 act->align_type = align_type;
5639 act->alignment_pow = alignment_pow;
5640 act->action = action;
5641 act->offset = offset;
5642 act->removed_bytes = removed_bytes;
5643 act->do_action = do_action;
5644
43cd72b9
BW
5645 c->action_count++;
5646}
5647
5648\f
5649/* Access to internal relocations, section contents and symbols. */
5650
5651/* During relaxation, we need to modify relocations, section contents,
5652 and symbol definitions, and we need to keep the original values from
5653 being reloaded from the input files, i.e., we need to "pin" the
5654 modified values in memory. We also want to continue to observe the
5655 setting of the "keep-memory" flag. The following functions wrap the
5656 standard BFD functions to take care of this for us. */
5657
5658static Elf_Internal_Rela *
7fa3d080 5659retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
5660{
5661 Elf_Internal_Rela *internal_relocs;
5662
5663 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5664 return NULL;
5665
5666 internal_relocs = elf_section_data (sec)->relocs;
5667 if (internal_relocs == NULL)
5668 internal_relocs = (_bfd_elf_link_read_relocs
7fa3d080 5669 (abfd, sec, NULL, NULL, keep_memory));
43cd72b9
BW
5670 return internal_relocs;
5671}
5672
5673
5674static void
7fa3d080 5675pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
5676{
5677 elf_section_data (sec)->relocs = internal_relocs;
5678}
5679
5680
5681static void
7fa3d080 5682release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
5683{
5684 if (internal_relocs
5685 && elf_section_data (sec)->relocs != internal_relocs)
5686 free (internal_relocs);
5687}
5688
5689
5690static bfd_byte *
7fa3d080 5691retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
5692{
5693 bfd_byte *contents;
5694 bfd_size_type sec_size;
5695
5696 sec_size = bfd_get_section_limit (abfd, sec);
5697 contents = elf_section_data (sec)->this_hdr.contents;
5698
5699 if (contents == NULL && sec_size != 0)
5700 {
5701 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
5702 {
7fa3d080 5703 if (contents)
43cd72b9
BW
5704 free (contents);
5705 return NULL;
5706 }
5707 if (keep_memory)
5708 elf_section_data (sec)->this_hdr.contents = contents;
5709 }
5710 return contents;
5711}
5712
5713
5714static void
7fa3d080 5715pin_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
5716{
5717 elf_section_data (sec)->this_hdr.contents = contents;
5718}
5719
5720
5721static void
7fa3d080 5722release_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
5723{
5724 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
5725 free (contents);
5726}
5727
5728
5729static Elf_Internal_Sym *
7fa3d080 5730retrieve_local_syms (bfd *input_bfd)
43cd72b9
BW
5731{
5732 Elf_Internal_Shdr *symtab_hdr;
5733 Elf_Internal_Sym *isymbuf;
5734 size_t locsymcount;
5735
5736 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5737 locsymcount = symtab_hdr->sh_info;
5738
5739 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5740 if (isymbuf == NULL && locsymcount != 0)
5741 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
5742 NULL, NULL, NULL);
5743
5744 /* Save the symbols for this input file so they won't be read again. */
5745 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
5746 symtab_hdr->contents = (unsigned char *) isymbuf;
5747
5748 return isymbuf;
5749}
5750
5751\f
5752/* Code for link-time relaxation. */
5753
5754/* Initialization for relaxation: */
7fa3d080 5755static bfd_boolean analyze_relocations (struct bfd_link_info *);
43cd72b9 5756static bfd_boolean find_relaxable_sections
7fa3d080 5757 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
43cd72b9 5758static bfd_boolean collect_source_relocs
7fa3d080 5759 (bfd *, asection *, struct bfd_link_info *);
43cd72b9 5760static bfd_boolean is_resolvable_asm_expansion
7fa3d080
BW
5761 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
5762 bfd_boolean *);
43cd72b9 5763static Elf_Internal_Rela *find_associated_l32r_irel
7fa3d080 5764 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
43cd72b9 5765static bfd_boolean compute_text_actions
7fa3d080
BW
5766 (bfd *, asection *, struct bfd_link_info *);
5767static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
5768static bfd_boolean compute_ebb_actions (ebb_constraint *);
43cd72b9 5769static bfd_boolean check_section_ebb_pcrels_fit
7fa3d080
BW
5770 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *);
5771static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
43cd72b9 5772static void text_action_add_proposed
7fa3d080
BW
5773 (text_action_list *, const ebb_constraint *, asection *);
5774static int compute_fill_extra_space (property_table_entry *);
43cd72b9
BW
5775
5776/* First pass: */
5777static bfd_boolean compute_removed_literals
7fa3d080 5778 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
43cd72b9 5779static Elf_Internal_Rela *get_irel_at_offset
7fa3d080 5780 (asection *, Elf_Internal_Rela *, bfd_vma);
43cd72b9 5781static bfd_boolean is_removable_literal
7fa3d080 5782 (const source_reloc *, int, const source_reloc *, int);
43cd72b9 5783static bfd_boolean remove_dead_literal
7fa3d080
BW
5784 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
5785 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
5786static bfd_boolean identify_literal_placement
5787 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
5788 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
5789 source_reloc *, property_table_entry *, int, section_cache_t *,
5790 bfd_boolean);
5791static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
43cd72b9 5792static bfd_boolean coalesce_shared_literal
7fa3d080 5793 (asection *, source_reloc *, property_table_entry *, int, value_map *);
43cd72b9 5794static bfd_boolean move_shared_literal
7fa3d080
BW
5795 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
5796 int, const r_reloc *, const literal_value *, section_cache_t *);
43cd72b9
BW
5797
5798/* Second pass: */
7fa3d080
BW
5799static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
5800static bfd_boolean translate_section_fixes (asection *);
5801static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
5802static void translate_reloc (const r_reloc *, r_reloc *);
43cd72b9 5803static void shrink_dynamic_reloc_sections
7fa3d080 5804 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
43cd72b9 5805static bfd_boolean move_literal
7fa3d080
BW
5806 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
5807 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
43cd72b9 5808static bfd_boolean relax_property_section
7fa3d080 5809 (bfd *, asection *, struct bfd_link_info *);
43cd72b9
BW
5810
5811/* Third pass: */
7fa3d080 5812static bfd_boolean relax_section_symbols (bfd *, asection *);
43cd72b9
BW
5813
5814
5815static bfd_boolean
7fa3d080
BW
5816elf_xtensa_relax_section (bfd *abfd,
5817 asection *sec,
5818 struct bfd_link_info *link_info,
5819 bfd_boolean *again)
43cd72b9
BW
5820{
5821 static value_map_hash_table *values = NULL;
5822 static bfd_boolean relocations_analyzed = FALSE;
5823 xtensa_relax_info *relax_info;
5824
5825 if (!relocations_analyzed)
5826 {
5827 /* Do some overall initialization for relaxation. */
5828 values = value_map_hash_table_init ();
5829 if (values == NULL)
5830 return FALSE;
5831 relaxing_section = TRUE;
5832 if (!analyze_relocations (link_info))
5833 return FALSE;
5834 relocations_analyzed = TRUE;
5835 }
5836 *again = FALSE;
5837
5838 /* Don't mess with linker-created sections. */
5839 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5840 return TRUE;
5841
5842 relax_info = get_xtensa_relax_info (sec);
5843 BFD_ASSERT (relax_info != NULL);
5844
5845 switch (relax_info->visited)
5846 {
5847 case 0:
5848 /* Note: It would be nice to fold this pass into
5849 analyze_relocations, but it is important for this step that the
5850 sections be examined in link order. */
5851 if (!compute_removed_literals (abfd, sec, link_info, values))
5852 return FALSE;
5853 *again = TRUE;
5854 break;
5855
5856 case 1:
5857 if (values)
5858 value_map_hash_table_delete (values);
5859 values = NULL;
5860 if (!relax_section (abfd, sec, link_info))
5861 return FALSE;
5862 *again = TRUE;
5863 break;
5864
5865 case 2:
5866 if (!relax_section_symbols (abfd, sec))
5867 return FALSE;
5868 break;
5869 }
5870
5871 relax_info->visited++;
5872 return TRUE;
5873}
5874
5875\f
5876/* Initialization for relaxation. */
5877
5878/* This function is called once at the start of relaxation. It scans
5879 all the input sections and marks the ones that are relaxable (i.e.,
5880 literal sections with L32R relocations against them), and then
5881 collects source_reloc information for all the relocations against
5882 those relaxable sections. During this process, it also detects
5883 longcalls, i.e., calls relaxed by the assembler into indirect
5884 calls, that can be optimized back into direct calls. Within each
5885 extended basic block (ebb) containing an optimized longcall, it
5886 computes a set of "text actions" that can be performed to remove
5887 the L32R associated with the longcall while optionally preserving
5888 branch target alignments. */
5889
5890static bfd_boolean
7fa3d080 5891analyze_relocations (struct bfd_link_info *link_info)
43cd72b9
BW
5892{
5893 bfd *abfd;
5894 asection *sec;
5895 bfd_boolean is_relaxable = FALSE;
5896
5897 /* Initialize the per-section relaxation info. */
5898 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5899 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5900 {
5901 init_xtensa_relax_info (sec);
5902 }
5903
5904 /* Mark relaxable sections (and count relocations against each one). */
5905 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5906 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5907 {
5908 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
5909 return FALSE;
5910 }
5911
5912 /* Bail out if there are no relaxable sections. */
5913 if (!is_relaxable)
5914 return TRUE;
5915
5916 /* Allocate space for source_relocs. */
5917 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5918 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5919 {
5920 xtensa_relax_info *relax_info;
5921
5922 relax_info = get_xtensa_relax_info (sec);
5923 if (relax_info->is_relaxable_literal_section
5924 || relax_info->is_relaxable_asm_section)
5925 {
5926 relax_info->src_relocs = (source_reloc *)
5927 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
5928 }
5929 }
5930
5931 /* Collect info on relocations against each relaxable section. */
5932 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5933 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5934 {
5935 if (!collect_source_relocs (abfd, sec, link_info))
5936 return FALSE;
5937 }
5938
5939 /* Compute the text actions. */
5940 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5941 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5942 {
5943 if (!compute_text_actions (abfd, sec, link_info))
5944 return FALSE;
5945 }
5946
5947 return TRUE;
5948}
5949
5950
5951/* Find all the sections that might be relaxed. The motivation for
5952 this pass is that collect_source_relocs() needs to record _all_ the
5953 relocations that target each relaxable section. That is expensive
5954 and unnecessary unless the target section is actually going to be
5955 relaxed. This pass identifies all such sections by checking if
5956 they have L32Rs pointing to them. In the process, the total number
5957 of relocations targeting each section is also counted so that we
5958 know how much space to allocate for source_relocs against each
5959 relaxable literal section. */
5960
5961static bfd_boolean
7fa3d080
BW
5962find_relaxable_sections (bfd *abfd,
5963 asection *sec,
5964 struct bfd_link_info *link_info,
5965 bfd_boolean *is_relaxable_p)
43cd72b9
BW
5966{
5967 Elf_Internal_Rela *internal_relocs;
5968 bfd_byte *contents;
5969 bfd_boolean ok = TRUE;
5970 unsigned i;
5971 xtensa_relax_info *source_relax_info;
5972
5973 internal_relocs = retrieve_internal_relocs (abfd, sec,
5974 link_info->keep_memory);
5975 if (internal_relocs == NULL)
5976 return ok;
5977
5978 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
5979 if (contents == NULL && sec->size != 0)
5980 {
5981 ok = FALSE;
5982 goto error_return;
5983 }
5984
5985 source_relax_info = get_xtensa_relax_info (sec);
5986 for (i = 0; i < sec->reloc_count; i++)
5987 {
5988 Elf_Internal_Rela *irel = &internal_relocs[i];
5989 r_reloc r_rel;
5990 asection *target_sec;
5991 xtensa_relax_info *target_relax_info;
5992
5993 /* If this section has not already been marked as "relaxable", and
5994 if it contains any ASM_EXPAND relocations (marking expanded
5995 longcalls) that can be optimized into direct calls, then mark
5996 the section as "relaxable". */
5997 if (source_relax_info
5998 && !source_relax_info->is_relaxable_asm_section
5999 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
6000 {
6001 bfd_boolean is_reachable = FALSE;
6002 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6003 link_info, &is_reachable)
6004 && is_reachable)
6005 {
6006 source_relax_info->is_relaxable_asm_section = TRUE;
6007 *is_relaxable_p = TRUE;
6008 }
6009 }
6010
6011 r_reloc_init (&r_rel, abfd, irel, contents,
6012 bfd_get_section_limit (abfd, sec));
6013
6014 target_sec = r_reloc_get_section (&r_rel);
6015 target_relax_info = get_xtensa_relax_info (target_sec);
6016 if (!target_relax_info)
6017 continue;
6018
6019 /* Count PC-relative operand relocations against the target section.
6020 Note: The conditions tested here must match the conditions under
6021 which init_source_reloc is called in collect_source_relocs(). */
6022 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info))
6023 && (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
6024 || is_l32r_relocation (abfd, sec, contents, irel)))
6025 target_relax_info->src_count++;
6026
6027 if (is_l32r_relocation (abfd, sec, contents, irel)
6028 && r_reloc_is_defined (&r_rel))
6029 {
6030 /* Mark the target section as relaxable. */
6031 target_relax_info->is_relaxable_literal_section = TRUE;
6032 *is_relaxable_p = TRUE;
6033 }
6034 }
6035
6036 error_return:
6037 release_contents (sec, contents);
6038 release_internal_relocs (sec, internal_relocs);
6039 return ok;
6040}
6041
6042
6043/* Record _all_ the relocations that point to relaxable sections, and
6044 get rid of ASM_EXPAND relocs by either converting them to
6045 ASM_SIMPLIFY or by removing them. */
6046
6047static bfd_boolean
7fa3d080
BW
6048collect_source_relocs (bfd *abfd,
6049 asection *sec,
6050 struct bfd_link_info *link_info)
43cd72b9
BW
6051{
6052 Elf_Internal_Rela *internal_relocs;
6053 bfd_byte *contents;
6054 bfd_boolean ok = TRUE;
6055 unsigned i;
6056 bfd_size_type sec_size;
6057
6058 internal_relocs = retrieve_internal_relocs (abfd, sec,
6059 link_info->keep_memory);
6060 if (internal_relocs == NULL)
6061 return ok;
6062
6063 sec_size = bfd_get_section_limit (abfd, sec);
6064 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6065 if (contents == NULL && sec_size != 0)
6066 {
6067 ok = FALSE;
6068 goto error_return;
6069 }
6070
6071 /* Record relocations against relaxable literal sections. */
6072 for (i = 0; i < sec->reloc_count; i++)
6073 {
6074 Elf_Internal_Rela *irel = &internal_relocs[i];
6075 r_reloc r_rel;
6076 asection *target_sec;
6077 xtensa_relax_info *target_relax_info;
6078
6079 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6080
6081 target_sec = r_reloc_get_section (&r_rel);
6082 target_relax_info = get_xtensa_relax_info (target_sec);
6083
6084 if (target_relax_info
6085 && (target_relax_info->is_relaxable_literal_section
6086 || target_relax_info->is_relaxable_asm_section))
6087 {
6088 xtensa_opcode opcode = XTENSA_UNDEFINED;
6089 int opnd = -1;
6090 bfd_boolean is_abs_literal = FALSE;
6091
6092 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6093 {
6094 /* None of the current alternate relocs are PC-relative,
6095 and only PC-relative relocs matter here. However, we
6096 still need to record the opcode for literal
6097 coalescing. */
6098 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6099 if (opcode == get_l32r_opcode ())
6100 {
6101 is_abs_literal = TRUE;
6102 opnd = 1;
6103 }
6104 else
6105 opcode = XTENSA_UNDEFINED;
6106 }
6107 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6108 {
6109 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6110 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6111 }
6112
6113 if (opcode != XTENSA_UNDEFINED)
6114 {
6115 int src_next = target_relax_info->src_next++;
6116 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
6117
6118 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
6119 is_abs_literal);
6120 }
6121 }
6122 }
6123
6124 /* Now get rid of ASM_EXPAND relocations. At this point, the
6125 src_relocs array for the target literal section may still be
6126 incomplete, but it must at least contain the entries for the L32R
6127 relocations associated with ASM_EXPANDs because they were just
6128 added in the preceding loop over the relocations. */
6129
6130 for (i = 0; i < sec->reloc_count; i++)
6131 {
6132 Elf_Internal_Rela *irel = &internal_relocs[i];
6133 bfd_boolean is_reachable;
6134
6135 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
6136 &is_reachable))
6137 continue;
6138
6139 if (is_reachable)
6140 {
6141 Elf_Internal_Rela *l32r_irel;
6142 r_reloc r_rel;
6143 asection *target_sec;
6144 xtensa_relax_info *target_relax_info;
6145
6146 /* Mark the source_reloc for the L32R so that it will be
6147 removed in compute_removed_literals(), along with the
6148 associated literal. */
6149 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
6150 irel, internal_relocs);
6151 if (l32r_irel == NULL)
6152 continue;
6153
6154 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
6155
6156 target_sec = r_reloc_get_section (&r_rel);
6157 target_relax_info = get_xtensa_relax_info (target_sec);
6158
6159 if (target_relax_info
6160 && (target_relax_info->is_relaxable_literal_section
6161 || target_relax_info->is_relaxable_asm_section))
6162 {
6163 source_reloc *s_reloc;
6164
6165 /* Search the source_relocs for the entry corresponding to
6166 the l32r_irel. Note: The src_relocs array is not yet
6167 sorted, but it wouldn't matter anyway because we're
6168 searching by source offset instead of target offset. */
6169 s_reloc = find_source_reloc (target_relax_info->src_relocs,
6170 target_relax_info->src_next,
6171 sec, l32r_irel);
6172 BFD_ASSERT (s_reloc);
6173 s_reloc->is_null = TRUE;
6174 }
6175
6176 /* Convert this reloc to ASM_SIMPLIFY. */
6177 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
6178 R_XTENSA_ASM_SIMPLIFY);
6179 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6180
6181 pin_internal_relocs (sec, internal_relocs);
6182 }
6183 else
6184 {
6185 /* It is resolvable but doesn't reach. We resolve now
6186 by eliminating the relocation -- the call will remain
6187 expanded into L32R/CALLX. */
6188 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6189 pin_internal_relocs (sec, internal_relocs);
6190 }
6191 }
6192
6193 error_return:
6194 release_contents (sec, contents);
6195 release_internal_relocs (sec, internal_relocs);
6196 return ok;
6197}
6198
6199
6200/* Return TRUE if the asm expansion can be resolved. Generally it can
6201 be resolved on a final link or when a partial link locates it in the
6202 same section as the target. Set "is_reachable" flag if the target of
6203 the call is within the range of a direct call, given the current VMA
6204 for this section and the target section. */
6205
6206bfd_boolean
7fa3d080
BW
6207is_resolvable_asm_expansion (bfd *abfd,
6208 asection *sec,
6209 bfd_byte *contents,
6210 Elf_Internal_Rela *irel,
6211 struct bfd_link_info *link_info,
6212 bfd_boolean *is_reachable_p)
43cd72b9
BW
6213{
6214 asection *target_sec;
6215 bfd_vma target_offset;
6216 r_reloc r_rel;
6217 xtensa_opcode opcode, direct_call_opcode;
6218 bfd_vma self_address;
6219 bfd_vma dest_address;
6220 bfd_boolean uses_l32r;
6221 bfd_size_type sec_size;
6222
6223 *is_reachable_p = FALSE;
6224
6225 if (contents == NULL)
6226 return FALSE;
6227
6228 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
6229 return FALSE;
6230
6231 sec_size = bfd_get_section_limit (abfd, sec);
6232 opcode = get_expanded_call_opcode (contents + irel->r_offset,
6233 sec_size - irel->r_offset, &uses_l32r);
6234 /* Optimization of longcalls that use CONST16 is not yet implemented. */
6235 if (!uses_l32r)
6236 return FALSE;
6237
6238 direct_call_opcode = swap_callx_for_call_opcode (opcode);
6239 if (direct_call_opcode == XTENSA_UNDEFINED)
6240 return FALSE;
6241
6242 /* Check and see that the target resolves. */
6243 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6244 if (!r_reloc_is_defined (&r_rel))
6245 return FALSE;
6246
6247 target_sec = r_reloc_get_section (&r_rel);
6248 target_offset = r_rel.target_offset;
6249
6250 /* If the target is in a shared library, then it doesn't reach. This
6251 isn't supposed to come up because the compiler should never generate
6252 non-PIC calls on systems that use shared libraries, but the linker
6253 shouldn't crash regardless. */
6254 if (!target_sec->output_section)
6255 return FALSE;
6256
6257 /* For relocatable sections, we can only simplify when the output
6258 section of the target is the same as the output section of the
6259 source. */
6260 if (link_info->relocatable
6261 && (target_sec->output_section != sec->output_section
6262 || is_reloc_sym_weak (abfd, irel)))
6263 return FALSE;
6264
6265 self_address = (sec->output_section->vma
6266 + sec->output_offset + irel->r_offset + 3);
6267 dest_address = (target_sec->output_section->vma
6268 + target_sec->output_offset + target_offset);
6269
6270 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
6271 self_address, dest_address);
6272
6273 if ((self_address >> CALL_SEGMENT_BITS) !=
6274 (dest_address >> CALL_SEGMENT_BITS))
6275 return FALSE;
6276
6277 return TRUE;
6278}
6279
6280
6281static Elf_Internal_Rela *
7fa3d080
BW
6282find_associated_l32r_irel (bfd *abfd,
6283 asection *sec,
6284 bfd_byte *contents,
6285 Elf_Internal_Rela *other_irel,
6286 Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
6287{
6288 unsigned i;
e0001a05 6289
43cd72b9
BW
6290 for (i = 0; i < sec->reloc_count; i++)
6291 {
6292 Elf_Internal_Rela *irel = &internal_relocs[i];
e0001a05 6293
43cd72b9
BW
6294 if (irel == other_irel)
6295 continue;
6296 if (irel->r_offset != other_irel->r_offset)
6297 continue;
6298 if (is_l32r_relocation (abfd, sec, contents, irel))
6299 return irel;
6300 }
6301
6302 return NULL;
e0001a05
NC
6303}
6304
6305
43cd72b9
BW
6306/* The compute_text_actions function will build a list of potential
6307 transformation actions for code in the extended basic block of each
6308 longcall that is optimized to a direct call. From this list we
6309 generate a set of actions to actually perform that optimizes for
6310 space and, if not using size_opt, maintains branch target
6311 alignments.
e0001a05 6312
43cd72b9
BW
6313 These actions to be performed are placed on a per-section list.
6314 The actual changes are performed by relax_section() in the second
6315 pass. */
6316
6317bfd_boolean
7fa3d080
BW
6318compute_text_actions (bfd *abfd,
6319 asection *sec,
6320 struct bfd_link_info *link_info)
e0001a05 6321{
43cd72b9 6322 xtensa_relax_info *relax_info;
e0001a05 6323 bfd_byte *contents;
43cd72b9 6324 Elf_Internal_Rela *internal_relocs;
e0001a05
NC
6325 bfd_boolean ok = TRUE;
6326 unsigned i;
43cd72b9
BW
6327 property_table_entry *prop_table = 0;
6328 int ptblsize = 0;
6329 bfd_size_type sec_size;
6330 static bfd_boolean no_insn_move = FALSE;
6331
6332 if (no_insn_move)
6333 return ok;
6334
6335 /* Do nothing if the section contains no optimized longcalls. */
6336 relax_info = get_xtensa_relax_info (sec);
6337 BFD_ASSERT (relax_info);
6338 if (!relax_info->is_relaxable_asm_section)
6339 return ok;
e0001a05
NC
6340
6341 internal_relocs = retrieve_internal_relocs (abfd, sec,
6342 link_info->keep_memory);
e0001a05 6343
43cd72b9
BW
6344 if (internal_relocs)
6345 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
6346 internal_reloc_compare);
6347
6348 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 6349 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 6350 if (contents == NULL && sec_size != 0)
e0001a05
NC
6351 {
6352 ok = FALSE;
6353 goto error_return;
6354 }
6355
43cd72b9
BW
6356 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6357 XTENSA_PROP_SEC_NAME, FALSE);
6358 if (ptblsize < 0)
6359 {
6360 ok = FALSE;
6361 goto error_return;
6362 }
6363
6364 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
6365 {
6366 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9
BW
6367 bfd_vma r_offset;
6368 property_table_entry *the_entry;
6369 int ptbl_idx;
6370 ebb_t *ebb;
6371 ebb_constraint ebb_table;
6372 bfd_size_type simplify_size;
6373
6374 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
6375 continue;
6376 r_offset = irel->r_offset;
e0001a05 6377
43cd72b9
BW
6378 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
6379 if (simplify_size == 0)
6380 {
6381 (*_bfd_error_handler)
6382 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
6383 sec->owner, sec, r_offset);
6384 continue;
6385 }
e0001a05 6386
43cd72b9
BW
6387 /* If the instruction table is not around, then don't do this
6388 relaxation. */
6389 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
6390 sec->vma + irel->r_offset);
6391 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
6392 {
6393 text_action_add (&relax_info->action_list,
6394 ta_convert_longcall, sec, r_offset,
6395 0);
6396 continue;
6397 }
6398
6399 /* If the next longcall happens to be at the same address as an
6400 unreachable section of size 0, then skip forward. */
6401 ptbl_idx = the_entry - prop_table;
6402 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
6403 && the_entry->size == 0
6404 && ptbl_idx + 1 < ptblsize
6405 && (prop_table[ptbl_idx + 1].address
6406 == prop_table[ptbl_idx].address))
6407 {
6408 ptbl_idx++;
6409 the_entry++;
6410 }
e0001a05 6411
43cd72b9
BW
6412 if (the_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM)
6413 /* NO_REORDER is OK */
6414 continue;
e0001a05 6415
43cd72b9
BW
6416 init_ebb_constraint (&ebb_table);
6417 ebb = &ebb_table.ebb;
6418 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
6419 internal_relocs, sec->reloc_count);
6420 ebb->start_offset = r_offset + simplify_size;
6421 ebb->end_offset = r_offset + simplify_size;
6422 ebb->start_ptbl_idx = ptbl_idx;
6423 ebb->end_ptbl_idx = ptbl_idx;
6424 ebb->start_reloc_idx = i;
6425 ebb->end_reloc_idx = i;
6426
6427 if (!extend_ebb_bounds (ebb)
6428 || !compute_ebb_proposed_actions (&ebb_table)
6429 || !compute_ebb_actions (&ebb_table)
6430 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
6431 internal_relocs, &ebb_table)
6432 || !check_section_ebb_reduces (&ebb_table))
e0001a05 6433 {
43cd72b9
BW
6434 /* If anything goes wrong or we get unlucky and something does
6435 not fit, with our plan because of expansion between
6436 critical branches, just convert to a NOP. */
6437
6438 text_action_add (&relax_info->action_list,
6439 ta_convert_longcall, sec, r_offset, 0);
6440 i = ebb_table.ebb.end_reloc_idx;
6441 free_ebb_constraint (&ebb_table);
6442 continue;
e0001a05 6443 }
43cd72b9
BW
6444
6445 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
6446
6447 /* Update the index so we do not go looking at the relocations
6448 we have already processed. */
6449 i = ebb_table.ebb.end_reloc_idx;
6450 free_ebb_constraint (&ebb_table);
e0001a05
NC
6451 }
6452
43cd72b9 6453#if DEBUG
7fa3d080 6454 if (relax_info->action_list.head)
43cd72b9
BW
6455 print_action_list (stderr, &relax_info->action_list);
6456#endif
6457
6458error_return:
e0001a05
NC
6459 release_contents (sec, contents);
6460 release_internal_relocs (sec, internal_relocs);
43cd72b9
BW
6461 if (prop_table)
6462 free (prop_table);
6463
e0001a05
NC
6464 return ok;
6465}
6466
6467
43cd72b9 6468/* Find all of the possible actions for an extended basic block. */
e0001a05 6469
43cd72b9 6470bfd_boolean
7fa3d080 6471compute_ebb_proposed_actions (ebb_constraint *ebb_table)
e0001a05 6472{
43cd72b9
BW
6473 const ebb_t *ebb = &ebb_table->ebb;
6474 unsigned rel_idx = ebb->start_reloc_idx;
6475 property_table_entry *entry, *start_entry, *end_entry;
e0001a05 6476
43cd72b9
BW
6477 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6478 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
e0001a05 6479
43cd72b9 6480 for (entry = start_entry; entry <= end_entry; entry++)
e0001a05 6481 {
43cd72b9
BW
6482 bfd_vma offset, start_offset, end_offset;
6483 bfd_size_type insn_len;
e0001a05 6484
43cd72b9
BW
6485 start_offset = entry->address - ebb->sec->vma;
6486 end_offset = entry->address + entry->size - ebb->sec->vma;
e0001a05 6487
43cd72b9
BW
6488 if (entry == start_entry)
6489 start_offset = ebb->start_offset;
6490 if (entry == end_entry)
6491 end_offset = ebb->end_offset;
6492 offset = start_offset;
e0001a05 6493
43cd72b9
BW
6494 if (offset == entry->address - ebb->sec->vma
6495 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
6496 {
6497 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
6498 BFD_ASSERT (offset != end_offset);
6499 if (offset == end_offset)
6500 return FALSE;
e0001a05 6501
43cd72b9
BW
6502 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
6503 offset);
6504
6505 /* Propose no actions for a section with an undecodable offset. */
6506 if (insn_len == 0)
6507 {
6508 (*_bfd_error_handler)
6509 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6510 ebb->sec->owner, ebb->sec, offset);
6511 return FALSE;
6512 }
6513 if (check_branch_target_aligned_address (offset, insn_len))
6514 align_type = EBB_REQUIRE_TGT_ALIGN;
6515
6516 ebb_propose_action (ebb_table, align_type, 0,
6517 ta_none, offset, 0, TRUE);
6518 }
6519
6520 while (offset != end_offset)
e0001a05 6521 {
43cd72b9 6522 Elf_Internal_Rela *irel;
e0001a05 6523 xtensa_opcode opcode;
e0001a05 6524
43cd72b9
BW
6525 while (rel_idx < ebb->end_reloc_idx
6526 && (ebb->relocs[rel_idx].r_offset < offset
6527 || (ebb->relocs[rel_idx].r_offset == offset
6528 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
6529 != R_XTENSA_ASM_SIMPLIFY))))
6530 rel_idx++;
6531
6532 /* Check for longcall. */
6533 irel = &ebb->relocs[rel_idx];
6534 if (irel->r_offset == offset
6535 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
6536 {
6537 bfd_size_type simplify_size;
e0001a05 6538
43cd72b9
BW
6539 simplify_size = get_asm_simplify_size (ebb->contents,
6540 ebb->content_length,
6541 irel->r_offset);
6542 if (simplify_size == 0)
6543 {
6544 (*_bfd_error_handler)
6545 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
6546 ebb->sec->owner, ebb->sec, offset);
6547 return FALSE;
6548 }
6549
6550 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6551 ta_convert_longcall, offset, 0, TRUE);
6552
6553 offset += simplify_size;
6554 continue;
6555 }
e0001a05 6556
43cd72b9
BW
6557 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
6558 offset);
6559 /* If the instruction is undecodable, then report an error. */
6560 if (insn_len == 0)
6561 {
6562 (*_bfd_error_handler)
6563 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6564 ebb->sec->owner, ebb->sec, offset);
6565 return FALSE;
6566 }
6567
6568 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
6569 && (entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) == 0
6570 && narrow_instruction (ebb->contents, ebb->content_length,
6571 offset, FALSE))
6572 {
6573 /* Add an instruction narrow action. */
6574 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6575 ta_narrow_insn, offset, 0, FALSE);
6576 offset += insn_len;
6577 continue;
6578 }
6579 if ((entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) == 0
6580 && widen_instruction (ebb->contents, ebb->content_length,
6581 offset, FALSE))
6582 {
6583 /* Add an instruction widen action. */
6584 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6585 ta_widen_insn, offset, 0, FALSE);
6586 offset += insn_len;
6587 continue;
6588 }
6589 opcode = insn_decode_opcode (ebb->contents, ebb->content_length,
6590 offset, 0);
6591 if (xtensa_opcode_is_loop (xtensa_default_isa, opcode))
6592 {
6593 /* Check for branch targets. */
6594 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
6595 ta_none, offset, 0, TRUE);
6596 offset += insn_len;
6597 continue;
6598 }
6599
6600 offset += insn_len;
e0001a05
NC
6601 }
6602 }
6603
43cd72b9
BW
6604 if (ebb->ends_unreachable)
6605 {
6606 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6607 ta_fill, ebb->end_offset, 0, TRUE);
6608 }
e0001a05 6609
43cd72b9
BW
6610 return TRUE;
6611}
6612
6613
6614/* After all of the information has collected about the
6615 transformations possible in an EBB, compute the appropriate actions
6616 here in compute_ebb_actions. We still must check later to make
6617 sure that the actions do not break any relocations. The algorithm
6618 used here is pretty greedy. Basically, it removes as many no-ops
6619 as possible so that the end of the EBB has the same alignment
6620 characteristics as the original. First, it uses narrowing, then
6621 fill space at the end of the EBB, and finally widenings. If that
6622 does not work, it tries again with one fewer no-op removed. The
6623 optimization will only be performed if all of the branch targets
6624 that were aligned before transformation are also aligned after the
6625 transformation.
6626
6627 When the size_opt flag is set, ignore the branch target alignments,
6628 narrow all wide instructions, and remove all no-ops unless the end
6629 of the EBB prevents it. */
6630
6631bfd_boolean
7fa3d080 6632compute_ebb_actions (ebb_constraint *ebb_table)
43cd72b9
BW
6633{
6634 unsigned i = 0;
6635 unsigned j;
6636 int removed_bytes = 0;
6637 ebb_t *ebb = &ebb_table->ebb;
6638 unsigned seg_idx_start = 0;
6639 unsigned seg_idx_end = 0;
6640
6641 /* We perform this like the assembler relaxation algorithm: Start by
6642 assuming all instructions are narrow and all no-ops removed; then
6643 walk through.... */
6644
6645 /* For each segment of this that has a solid constraint, check to
6646 see if there are any combinations that will keep the constraint.
6647 If so, use it. */
6648 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
e0001a05 6649 {
43cd72b9
BW
6650 bfd_boolean requires_text_end_align = FALSE;
6651 unsigned longcall_count = 0;
6652 unsigned longcall_convert_count = 0;
6653 unsigned narrowable_count = 0;
6654 unsigned narrowable_convert_count = 0;
6655 unsigned widenable_count = 0;
6656 unsigned widenable_convert_count = 0;
e0001a05 6657
43cd72b9
BW
6658 proposed_action *action = NULL;
6659 int align = (1 << ebb_table->ebb.sec->alignment_power);
e0001a05 6660
43cd72b9 6661 seg_idx_start = seg_idx_end;
e0001a05 6662
43cd72b9
BW
6663 for (i = seg_idx_start; i < ebb_table->action_count; i++)
6664 {
6665 action = &ebb_table->actions[i];
6666 if (action->action == ta_convert_longcall)
6667 longcall_count++;
6668 if (action->action == ta_narrow_insn)
6669 narrowable_count++;
6670 if (action->action == ta_widen_insn)
6671 widenable_count++;
6672 if (action->action == ta_fill)
6673 break;
6674 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6675 break;
6676 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
6677 && !elf32xtensa_size_opt)
6678 break;
6679 }
6680 seg_idx_end = i;
e0001a05 6681
43cd72b9
BW
6682 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
6683 requires_text_end_align = TRUE;
e0001a05 6684
43cd72b9
BW
6685 if (elf32xtensa_size_opt && !requires_text_end_align
6686 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
6687 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
6688 {
6689 longcall_convert_count = longcall_count;
6690 narrowable_convert_count = narrowable_count;
6691 widenable_convert_count = 0;
6692 }
6693 else
6694 {
6695 /* There is a constraint. Convert the max number of longcalls. */
6696 narrowable_convert_count = 0;
6697 longcall_convert_count = 0;
6698 widenable_convert_count = 0;
e0001a05 6699
43cd72b9 6700 for (j = 0; j < longcall_count; j++)
e0001a05 6701 {
43cd72b9
BW
6702 int removed = (longcall_count - j) * 3 & (align - 1);
6703 unsigned desire_narrow = (align - removed) & (align - 1);
6704 unsigned desire_widen = removed;
6705 if (desire_narrow <= narrowable_count)
6706 {
6707 narrowable_convert_count = desire_narrow;
6708 narrowable_convert_count +=
6709 (align * ((narrowable_count - narrowable_convert_count)
6710 / align));
6711 longcall_convert_count = (longcall_count - j);
6712 widenable_convert_count = 0;
6713 break;
6714 }
6715 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
6716 {
6717 narrowable_convert_count = 0;
6718 longcall_convert_count = longcall_count - j;
6719 widenable_convert_count = desire_widen;
6720 break;
6721 }
6722 }
6723 }
e0001a05 6724
43cd72b9
BW
6725 /* Now the number of conversions are saved. Do them. */
6726 for (i = seg_idx_start; i < seg_idx_end; i++)
6727 {
6728 action = &ebb_table->actions[i];
6729 switch (action->action)
6730 {
6731 case ta_convert_longcall:
6732 if (longcall_convert_count != 0)
6733 {
6734 action->action = ta_remove_longcall;
6735 action->do_action = TRUE;
6736 action->removed_bytes += 3;
6737 longcall_convert_count--;
6738 }
6739 break;
6740 case ta_narrow_insn:
6741 if (narrowable_convert_count != 0)
6742 {
6743 action->do_action = TRUE;
6744 action->removed_bytes += 1;
6745 narrowable_convert_count--;
6746 }
6747 break;
6748 case ta_widen_insn:
6749 if (widenable_convert_count != 0)
6750 {
6751 action->do_action = TRUE;
6752 action->removed_bytes -= 1;
6753 widenable_convert_count--;
6754 }
6755 break;
6756 default:
6757 break;
e0001a05 6758 }
43cd72b9
BW
6759 }
6760 }
e0001a05 6761
43cd72b9
BW
6762 /* Now we move on to some local opts. Try to remove each of the
6763 remaining longcalls. */
e0001a05 6764
43cd72b9
BW
6765 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
6766 {
6767 removed_bytes = 0;
6768 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 6769 {
43cd72b9
BW
6770 int old_removed_bytes = removed_bytes;
6771 proposed_action *action = &ebb_table->actions[i];
6772
6773 if (action->do_action && action->action == ta_convert_longcall)
6774 {
6775 bfd_boolean bad_alignment = FALSE;
6776 removed_bytes += 3;
6777 for (j = i + 1; j < ebb_table->action_count; j++)
6778 {
6779 proposed_action *new_action = &ebb_table->actions[j];
6780 bfd_vma offset = new_action->offset;
6781 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
6782 {
6783 if (!check_branch_target_aligned
6784 (ebb_table->ebb.contents,
6785 ebb_table->ebb.content_length,
6786 offset, offset - removed_bytes))
6787 {
6788 bad_alignment = TRUE;
6789 break;
6790 }
6791 }
6792 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6793 {
6794 if (!check_loop_aligned (ebb_table->ebb.contents,
6795 ebb_table->ebb.content_length,
6796 offset,
6797 offset - removed_bytes))
6798 {
6799 bad_alignment = TRUE;
6800 break;
6801 }
6802 }
6803 if (new_action->action == ta_narrow_insn
6804 && !new_action->do_action
6805 && ebb_table->ebb.sec->alignment_power == 2)
6806 {
6807 /* Narrow an instruction and we are done. */
6808 new_action->do_action = TRUE;
6809 new_action->removed_bytes += 1;
6810 bad_alignment = FALSE;
6811 break;
6812 }
6813 if (new_action->action == ta_widen_insn
6814 && new_action->do_action
6815 && ebb_table->ebb.sec->alignment_power == 2)
6816 {
6817 /* Narrow an instruction and we are done. */
6818 new_action->do_action = FALSE;
6819 new_action->removed_bytes += 1;
6820 bad_alignment = FALSE;
6821 break;
6822 }
6823 }
6824 if (!bad_alignment)
6825 {
6826 action->removed_bytes += 3;
6827 action->action = ta_remove_longcall;
6828 action->do_action = TRUE;
6829 }
6830 }
6831 removed_bytes = old_removed_bytes;
6832 if (action->do_action)
6833 removed_bytes += action->removed_bytes;
e0001a05
NC
6834 }
6835 }
6836
43cd72b9
BW
6837 removed_bytes = 0;
6838 for (i = 0; i < ebb_table->action_count; ++i)
6839 {
6840 proposed_action *action = &ebb_table->actions[i];
6841 if (action->do_action)
6842 removed_bytes += action->removed_bytes;
6843 }
6844
6845 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
6846 && ebb->ends_unreachable)
6847 {
6848 proposed_action *action;
6849 int br;
6850 int extra_space;
6851
6852 BFD_ASSERT (ebb_table->action_count != 0);
6853 action = &ebb_table->actions[ebb_table->action_count - 1];
6854 BFD_ASSERT (action->action == ta_fill);
6855 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
6856
6857 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
6858 br = action->removed_bytes + removed_bytes + extra_space;
6859 br = br & ((1 << ebb->sec->alignment_power ) - 1);
6860
6861 action->removed_bytes = extra_space - br;
6862 }
6863 return TRUE;
e0001a05
NC
6864}
6865
6866
03e94c08
BW
6867/* The xlate_map is a sorted array of address mappings designed to
6868 answer the offset_with_removed_text() query with a binary search instead
6869 of a linear search through the section's action_list. */
6870
6871typedef struct xlate_map_entry xlate_map_entry_t;
6872typedef struct xlate_map xlate_map_t;
6873
6874struct xlate_map_entry
6875{
6876 unsigned orig_address;
6877 unsigned new_address;
6878 unsigned size;
6879};
6880
6881struct xlate_map
6882{
6883 unsigned entry_count;
6884 xlate_map_entry_t *entry;
6885};
6886
6887
6888static int
6889xlate_compare (const void *a_v, const void *b_v)
6890{
6891 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
6892 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
6893 if (a->orig_address < b->orig_address)
6894 return -1;
6895 if (a->orig_address > (b->orig_address + b->size - 1))
6896 return 1;
6897 return 0;
6898}
6899
6900
6901static bfd_vma
6902xlate_offset_with_removed_text (const xlate_map_t *map,
6903 text_action_list *action_list,
6904 bfd_vma offset)
6905{
6906 xlate_map_entry_t tmp;
6907 void *r;
6908 xlate_map_entry_t *e;
6909
6910 if (map == NULL)
6911 return offset_with_removed_text (action_list, offset);
6912
6913 if (map->entry_count == 0)
6914 return offset;
6915
6916 tmp.orig_address = offset;
6917 tmp.new_address = offset;
6918 tmp.size = 1;
6919
6920 r = bsearch (&offset, map->entry, map->entry_count,
6921 sizeof (xlate_map_entry_t), &xlate_compare);
6922 e = (xlate_map_entry_t *) r;
6923
6924 BFD_ASSERT (e != NULL);
6925 if (e == NULL)
6926 return offset;
6927 return e->new_address - e->orig_address + offset;
6928}
6929
6930
6931/* Build a binary searchable offset translation map from a section's
6932 action list. */
6933
6934static xlate_map_t *
6935build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
6936{
6937 xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
6938 text_action_list *action_list = &relax_info->action_list;
6939 unsigned num_actions = 0;
6940 text_action *r;
6941 int removed;
6942 xlate_map_entry_t *current_entry;
6943
6944 if (map == NULL)
6945 return NULL;
6946
6947 num_actions = action_list_count (action_list);
6948 map->entry = (xlate_map_entry_t *)
6949 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
6950 if (map->entry == NULL)
6951 {
6952 free (map);
6953 return NULL;
6954 }
6955 map->entry_count = 0;
6956
6957 removed = 0;
6958 current_entry = &map->entry[0];
6959
6960 current_entry->orig_address = 0;
6961 current_entry->new_address = 0;
6962 current_entry->size = 0;
6963
6964 for (r = action_list->head; r != NULL; r = r->next)
6965 {
6966 unsigned orig_size = 0;
6967 switch (r->action)
6968 {
6969 case ta_none:
6970 case ta_remove_insn:
6971 case ta_convert_longcall:
6972 case ta_remove_literal:
6973 case ta_add_literal:
6974 break;
6975 case ta_remove_longcall:
6976 orig_size = 6;
6977 break;
6978 case ta_narrow_insn:
6979 orig_size = 3;
6980 break;
6981 case ta_widen_insn:
6982 orig_size = 2;
6983 break;
6984 case ta_fill:
6985 break;
6986 }
6987 current_entry->size =
6988 r->offset + orig_size - current_entry->orig_address;
6989 if (current_entry->size != 0)
6990 {
6991 current_entry++;
6992 map->entry_count++;
6993 }
6994 current_entry->orig_address = r->offset + orig_size;
6995 removed += r->removed_bytes;
6996 current_entry->new_address = r->offset + orig_size - removed;
6997 current_entry->size = 0;
6998 }
6999
7000 current_entry->size = (bfd_get_section_limit (sec->owner, sec)
7001 - current_entry->orig_address);
7002 if (current_entry->size != 0)
7003 map->entry_count++;
7004
7005 return map;
7006}
7007
7008
7009/* Free an offset translation map. */
7010
7011static void
7012free_xlate_map (xlate_map_t *map)
7013{
7014 if (map && map->entry)
7015 free (map->entry);
7016 if (map)
7017 free (map);
7018}
7019
7020
43cd72b9
BW
7021/* Use check_section_ebb_pcrels_fit to make sure that all of the
7022 relocations in a section will fit if a proposed set of actions
7023 are performed. */
e0001a05 7024
43cd72b9 7025static bfd_boolean
7fa3d080
BW
7026check_section_ebb_pcrels_fit (bfd *abfd,
7027 asection *sec,
7028 bfd_byte *contents,
7029 Elf_Internal_Rela *internal_relocs,
7030 const ebb_constraint *constraint)
e0001a05 7031{
43cd72b9
BW
7032 unsigned i, j;
7033 Elf_Internal_Rela *irel;
03e94c08
BW
7034 xlate_map_t *xmap = NULL;
7035 bfd_boolean ok = TRUE;
43cd72b9 7036 xtensa_relax_info *relax_info;
e0001a05 7037
43cd72b9 7038 relax_info = get_xtensa_relax_info (sec);
e0001a05 7039
03e94c08
BW
7040 if (relax_info && sec->reloc_count > 100)
7041 {
7042 xmap = build_xlate_map (sec, relax_info);
7043 /* NULL indicates out of memory, but the slow version
7044 can still be used. */
7045 }
7046
43cd72b9
BW
7047 for (i = 0; i < sec->reloc_count; i++)
7048 {
7049 r_reloc r_rel;
7050 bfd_vma orig_self_offset, orig_target_offset;
7051 bfd_vma self_offset, target_offset;
7052 int r_type;
7053 reloc_howto_type *howto;
7054 int self_removed_bytes, target_removed_bytes;
e0001a05 7055
43cd72b9
BW
7056 irel = &internal_relocs[i];
7057 r_type = ELF32_R_TYPE (irel->r_info);
e0001a05 7058
43cd72b9
BW
7059 howto = &elf_howto_table[r_type];
7060 /* We maintain the required invariant: PC-relative relocations
7061 that fit before linking must fit after linking. Thus we only
7062 need to deal with relocations to the same section that are
7063 PC-relative. */
7064 if (ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY
7065 || !howto->pc_relative)
7066 continue;
e0001a05 7067
43cd72b9
BW
7068 r_reloc_init (&r_rel, abfd, irel, contents,
7069 bfd_get_section_limit (abfd, sec));
e0001a05 7070
43cd72b9
BW
7071 if (r_reloc_get_section (&r_rel) != sec)
7072 continue;
e0001a05 7073
43cd72b9
BW
7074 orig_self_offset = irel->r_offset;
7075 orig_target_offset = r_rel.target_offset;
e0001a05 7076
43cd72b9
BW
7077 self_offset = orig_self_offset;
7078 target_offset = orig_target_offset;
7079
7080 if (relax_info)
7081 {
03e94c08
BW
7082 self_offset =
7083 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7084 orig_self_offset);
7085 target_offset =
7086 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7087 orig_target_offset);
43cd72b9
BW
7088 }
7089
7090 self_removed_bytes = 0;
7091 target_removed_bytes = 0;
7092
7093 for (j = 0; j < constraint->action_count; ++j)
7094 {
7095 proposed_action *action = &constraint->actions[j];
7096 bfd_vma offset = action->offset;
7097 int removed_bytes = action->removed_bytes;
7098 if (offset < orig_self_offset
7099 || (offset == orig_self_offset && action->action == ta_fill
7100 && action->removed_bytes < 0))
7101 self_removed_bytes += removed_bytes;
7102 if (offset < orig_target_offset
7103 || (offset == orig_target_offset && action->action == ta_fill
7104 && action->removed_bytes < 0))
7105 target_removed_bytes += removed_bytes;
7106 }
7107 self_offset -= self_removed_bytes;
7108 target_offset -= target_removed_bytes;
7109
7110 /* Try to encode it. Get the operand and check. */
7111 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7112 {
7113 /* None of the current alternate relocs are PC-relative,
7114 and only PC-relative relocs matter here. */
7115 }
7116 else
7117 {
7118 xtensa_opcode opcode;
7119 int opnum;
7120
7121 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7122 if (opcode == XTENSA_UNDEFINED)
03e94c08
BW
7123 {
7124 ok = FALSE;
7125 break;
7126 }
43cd72b9
BW
7127
7128 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7129 if (opnum == XTENSA_UNDEFINED)
03e94c08
BW
7130 {
7131 ok = FALSE;
7132 break;
7133 }
43cd72b9
BW
7134
7135 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
03e94c08
BW
7136 {
7137 ok = FALSE;
7138 break;
7139 }
43cd72b9
BW
7140 }
7141 }
7142
03e94c08
BW
7143 if (xmap)
7144 free_xlate_map (xmap);
7145
7146 return ok;
43cd72b9
BW
7147}
7148
7149
7150static bfd_boolean
7fa3d080 7151check_section_ebb_reduces (const ebb_constraint *constraint)
43cd72b9
BW
7152{
7153 int removed = 0;
7154 unsigned i;
7155
7156 for (i = 0; i < constraint->action_count; i++)
7157 {
7158 const proposed_action *action = &constraint->actions[i];
7159 if (action->do_action)
7160 removed += action->removed_bytes;
7161 }
7162 if (removed < 0)
e0001a05
NC
7163 return FALSE;
7164
7165 return TRUE;
7166}
7167
7168
43cd72b9 7169void
7fa3d080
BW
7170text_action_add_proposed (text_action_list *l,
7171 const ebb_constraint *ebb_table,
7172 asection *sec)
e0001a05
NC
7173{
7174 unsigned i;
7175
43cd72b9 7176 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 7177 {
43cd72b9 7178 proposed_action *action = &ebb_table->actions[i];
e0001a05 7179
43cd72b9 7180 if (!action->do_action)
e0001a05 7181 continue;
43cd72b9
BW
7182 switch (action->action)
7183 {
7184 case ta_remove_insn:
7185 case ta_remove_longcall:
7186 case ta_convert_longcall:
7187 case ta_narrow_insn:
7188 case ta_widen_insn:
7189 case ta_fill:
7190 case ta_remove_literal:
7191 text_action_add (l, action->action, sec, action->offset,
7192 action->removed_bytes);
7193 break;
7194 case ta_none:
7195 break;
7196 default:
7197 BFD_ASSERT (0);
7198 break;
7199 }
e0001a05 7200 }
43cd72b9 7201}
e0001a05 7202
43cd72b9
BW
7203
7204int
7fa3d080 7205compute_fill_extra_space (property_table_entry *entry)
43cd72b9
BW
7206{
7207 int fill_extra_space;
7208
7209 if (!entry)
7210 return 0;
7211
7212 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
7213 return 0;
7214
7215 fill_extra_space = entry->size;
7216 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
7217 {
7218 /* Fill bytes for alignment:
7219 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
7220 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
7221 int nsm = (1 << pow) - 1;
7222 bfd_vma addr = entry->address + entry->size;
7223 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
7224 fill_extra_space += align_fill;
7225 }
7226 return fill_extra_space;
e0001a05
NC
7227}
7228
43cd72b9 7229\f
e0001a05
NC
7230/* First relaxation pass. */
7231
43cd72b9
BW
7232/* If the section contains relaxable literals, check each literal to
7233 see if it has the same value as another literal that has already
7234 been seen, either in the current section or a previous one. If so,
7235 add an entry to the per-section list of removed literals. The
e0001a05
NC
7236 actual changes are deferred until the next pass. */
7237
7238static bfd_boolean
7fa3d080
BW
7239compute_removed_literals (bfd *abfd,
7240 asection *sec,
7241 struct bfd_link_info *link_info,
7242 value_map_hash_table *values)
e0001a05
NC
7243{
7244 xtensa_relax_info *relax_info;
7245 bfd_byte *contents;
7246 Elf_Internal_Rela *internal_relocs;
43cd72b9 7247 source_reloc *src_relocs, *rel;
e0001a05 7248 bfd_boolean ok = TRUE;
43cd72b9
BW
7249 property_table_entry *prop_table = NULL;
7250 int ptblsize;
7251 int i, prev_i;
7252 bfd_boolean last_loc_is_prev = FALSE;
7253 bfd_vma last_target_offset = 0;
7254 section_cache_t target_sec_cache;
7255 bfd_size_type sec_size;
7256
7257 init_section_cache (&target_sec_cache);
e0001a05
NC
7258
7259 /* Do nothing if it is not a relaxable literal section. */
7260 relax_info = get_xtensa_relax_info (sec);
7261 BFD_ASSERT (relax_info);
e0001a05
NC
7262 if (!relax_info->is_relaxable_literal_section)
7263 return ok;
7264
7265 internal_relocs = retrieve_internal_relocs (abfd, sec,
7266 link_info->keep_memory);
7267
43cd72b9 7268 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 7269 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 7270 if (contents == NULL && sec_size != 0)
e0001a05
NC
7271 {
7272 ok = FALSE;
7273 goto error_return;
7274 }
7275
7276 /* Sort the source_relocs by target offset. */
7277 src_relocs = relax_info->src_relocs;
7278 qsort (src_relocs, relax_info->src_count,
7279 sizeof (source_reloc), source_reloc_compare);
43cd72b9
BW
7280 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7281 internal_reloc_compare);
e0001a05 7282
43cd72b9
BW
7283 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7284 XTENSA_PROP_SEC_NAME, FALSE);
7285 if (ptblsize < 0)
7286 {
7287 ok = FALSE;
7288 goto error_return;
7289 }
7290
7291 prev_i = -1;
e0001a05
NC
7292 for (i = 0; i < relax_info->src_count; i++)
7293 {
e0001a05 7294 Elf_Internal_Rela *irel = NULL;
e0001a05
NC
7295
7296 rel = &src_relocs[i];
43cd72b9
BW
7297 if (get_l32r_opcode () != rel->opcode)
7298 continue;
e0001a05
NC
7299 irel = get_irel_at_offset (sec, internal_relocs,
7300 rel->r_rel.target_offset);
7301
43cd72b9
BW
7302 /* If the relocation on this is not a simple R_XTENSA_32 or
7303 R_XTENSA_PLT then do not consider it. This may happen when
7304 the difference of two symbols is used in a literal. */
7305 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
7306 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
7307 continue;
7308
e0001a05
NC
7309 /* If the target_offset for this relocation is the same as the
7310 previous relocation, then we've already considered whether the
7311 literal can be coalesced. Skip to the next one.... */
43cd72b9
BW
7312 if (i != 0 && prev_i != -1
7313 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
e0001a05 7314 continue;
43cd72b9
BW
7315 prev_i = i;
7316
7317 if (last_loc_is_prev &&
7318 last_target_offset + 4 != rel->r_rel.target_offset)
7319 last_loc_is_prev = FALSE;
e0001a05
NC
7320
7321 /* Check if the relocation was from an L32R that is being removed
7322 because a CALLX was converted to a direct CALL, and check if
7323 there are no other relocations to the literal. */
43cd72b9 7324 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count))
e0001a05 7325 {
43cd72b9
BW
7326 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
7327 irel, rel, prop_table, ptblsize))
e0001a05 7328 {
43cd72b9
BW
7329 ok = FALSE;
7330 goto error_return;
e0001a05 7331 }
43cd72b9 7332 last_target_offset = rel->r_rel.target_offset;
e0001a05
NC
7333 continue;
7334 }
7335
43cd72b9
BW
7336 if (!identify_literal_placement (abfd, sec, contents, link_info,
7337 values,
7338 &last_loc_is_prev, irel,
7339 relax_info->src_count - i, rel,
7340 prop_table, ptblsize,
7341 &target_sec_cache, rel->is_abs_literal))
e0001a05 7342 {
43cd72b9
BW
7343 ok = FALSE;
7344 goto error_return;
7345 }
7346 last_target_offset = rel->r_rel.target_offset;
7347 }
e0001a05 7348
43cd72b9
BW
7349#if DEBUG
7350 print_removed_literals (stderr, &relax_info->removed_list);
7351 print_action_list (stderr, &relax_info->action_list);
7352#endif /* DEBUG */
7353
7354error_return:
7355 if (prop_table) free (prop_table);
7356 clear_section_cache (&target_sec_cache);
7357
7358 release_contents (sec, contents);
7359 release_internal_relocs (sec, internal_relocs);
7360 return ok;
7361}
7362
7363
7364static Elf_Internal_Rela *
7fa3d080
BW
7365get_irel_at_offset (asection *sec,
7366 Elf_Internal_Rela *internal_relocs,
7367 bfd_vma offset)
43cd72b9
BW
7368{
7369 unsigned i;
7370 Elf_Internal_Rela *irel;
7371 unsigned r_type;
7372 Elf_Internal_Rela key;
7373
7374 if (!internal_relocs)
7375 return NULL;
7376
7377 key.r_offset = offset;
7378 irel = bsearch (&key, internal_relocs, sec->reloc_count,
7379 sizeof (Elf_Internal_Rela), internal_reloc_matches);
7380 if (!irel)
7381 return NULL;
7382
7383 /* bsearch does not guarantee which will be returned if there are
7384 multiple matches. We need the first that is not an alignment. */
7385 i = irel - internal_relocs;
7386 while (i > 0)
7387 {
7388 if (internal_relocs[i-1].r_offset != offset)
7389 break;
7390 i--;
7391 }
7392 for ( ; i < sec->reloc_count; i++)
7393 {
7394 irel = &internal_relocs[i];
7395 r_type = ELF32_R_TYPE (irel->r_info);
7396 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
7397 return irel;
7398 }
7399
7400 return NULL;
7401}
7402
7403
7404bfd_boolean
7fa3d080
BW
7405is_removable_literal (const source_reloc *rel,
7406 int i,
7407 const source_reloc *src_relocs,
7408 int src_count)
43cd72b9
BW
7409{
7410 const source_reloc *curr_rel;
7411 if (!rel->is_null)
7412 return FALSE;
7413
7414 for (++i; i < src_count; ++i)
7415 {
7416 curr_rel = &src_relocs[i];
7417 /* If all others have the same target offset.... */
7418 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
7419 return TRUE;
7420
7421 if (!curr_rel->is_null
7422 && !xtensa_is_property_section (curr_rel->source_sec)
7423 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
7424 return FALSE;
7425 }
7426 return TRUE;
7427}
7428
7429
7430bfd_boolean
7fa3d080
BW
7431remove_dead_literal (bfd *abfd,
7432 asection *sec,
7433 struct bfd_link_info *link_info,
7434 Elf_Internal_Rela *internal_relocs,
7435 Elf_Internal_Rela *irel,
7436 source_reloc *rel,
7437 property_table_entry *prop_table,
7438 int ptblsize)
43cd72b9
BW
7439{
7440 property_table_entry *entry;
7441 xtensa_relax_info *relax_info;
7442
7443 relax_info = get_xtensa_relax_info (sec);
7444 if (!relax_info)
7445 return FALSE;
7446
7447 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7448 sec->vma + rel->r_rel.target_offset);
7449
7450 /* Mark the unused literal so that it will be removed. */
7451 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
7452
7453 text_action_add (&relax_info->action_list,
7454 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7455
7456 /* If the section is 4-byte aligned, do not add fill. */
7457 if (sec->alignment_power > 2)
7458 {
7459 int fill_extra_space;
7460 bfd_vma entry_sec_offset;
7461 text_action *fa;
7462 property_table_entry *the_add_entry;
7463 int removed_diff;
7464
7465 if (entry)
7466 entry_sec_offset = entry->address - sec->vma + entry->size;
7467 else
7468 entry_sec_offset = rel->r_rel.target_offset + 4;
7469
7470 /* If the literal range is at the end of the section,
7471 do not add fill. */
7472 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7473 entry_sec_offset);
7474 fill_extra_space = compute_fill_extra_space (the_add_entry);
7475
7476 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7477 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7478 -4, fill_extra_space);
7479 if (fa)
7480 adjust_fill_action (fa, removed_diff);
7481 else
7482 text_action_add (&relax_info->action_list,
7483 ta_fill, sec, entry_sec_offset, removed_diff);
7484 }
7485
7486 /* Zero out the relocation on this literal location. */
7487 if (irel)
7488 {
7489 if (elf_hash_table (link_info)->dynamic_sections_created)
7490 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
7491
7492 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7493 pin_internal_relocs (sec, internal_relocs);
7494 }
7495
7496 /* Do not modify "last_loc_is_prev". */
7497 return TRUE;
7498}
7499
7500
7501bfd_boolean
7fa3d080
BW
7502identify_literal_placement (bfd *abfd,
7503 asection *sec,
7504 bfd_byte *contents,
7505 struct bfd_link_info *link_info,
7506 value_map_hash_table *values,
7507 bfd_boolean *last_loc_is_prev_p,
7508 Elf_Internal_Rela *irel,
7509 int remaining_src_rels,
7510 source_reloc *rel,
7511 property_table_entry *prop_table,
7512 int ptblsize,
7513 section_cache_t *target_sec_cache,
7514 bfd_boolean is_abs_literal)
43cd72b9
BW
7515{
7516 literal_value val;
7517 value_map *val_map;
7518 xtensa_relax_info *relax_info;
7519 bfd_boolean literal_placed = FALSE;
7520 r_reloc r_rel;
7521 unsigned long value;
7522 bfd_boolean final_static_link;
7523 bfd_size_type sec_size;
7524
7525 relax_info = get_xtensa_relax_info (sec);
7526 if (!relax_info)
7527 return FALSE;
7528
7529 sec_size = bfd_get_section_limit (abfd, sec);
7530
7531 final_static_link =
7532 (!link_info->relocatable
7533 && !elf_hash_table (link_info)->dynamic_sections_created);
7534
7535 /* The placement algorithm first checks to see if the literal is
7536 already in the value map. If so and the value map is reachable
7537 from all uses, then the literal is moved to that location. If
7538 not, then we identify the last location where a fresh literal was
7539 placed. If the literal can be safely moved there, then we do so.
7540 If not, then we assume that the literal is not to move and leave
7541 the literal where it is, marking it as the last literal
7542 location. */
7543
7544 /* Find the literal value. */
7545 value = 0;
7546 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7547 if (!irel)
7548 {
7549 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
7550 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
7551 }
7552 init_literal_value (&val, &r_rel, value, is_abs_literal);
7553
7554 /* Check if we've seen another literal with the same value that
7555 is in the same output section. */
7556 val_map = value_map_get_cached_value (values, &val, final_static_link);
7557
7558 if (val_map
7559 && (r_reloc_get_section (&val_map->loc)->output_section
7560 == sec->output_section)
7561 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
7562 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
7563 {
7564 /* No change to last_loc_is_prev. */
7565 literal_placed = TRUE;
7566 }
7567
7568 /* For relocatable links, do not try to move literals. To do it
7569 correctly might increase the number of relocations in an input
7570 section making the default relocatable linking fail. */
7571 if (!link_info->relocatable && !literal_placed
7572 && values->has_last_loc && !(*last_loc_is_prev_p))
7573 {
7574 asection *target_sec = r_reloc_get_section (&values->last_loc);
7575 if (target_sec && target_sec->output_section == sec->output_section)
7576 {
7577 /* Increment the virtual offset. */
7578 r_reloc try_loc = values->last_loc;
7579 try_loc.virtual_offset += 4;
7580
7581 /* There is a last loc that was in the same output section. */
7582 if (relocations_reach (rel, remaining_src_rels, &try_loc)
7583 && move_shared_literal (sec, link_info, rel,
7584 prop_table, ptblsize,
7585 &try_loc, &val, target_sec_cache))
e0001a05 7586 {
43cd72b9
BW
7587 values->last_loc.virtual_offset += 4;
7588 literal_placed = TRUE;
7589 if (!val_map)
7590 val_map = add_value_map (values, &val, &try_loc,
7591 final_static_link);
7592 else
7593 val_map->loc = try_loc;
e0001a05
NC
7594 }
7595 }
43cd72b9
BW
7596 }
7597
7598 if (!literal_placed)
7599 {
7600 /* Nothing worked, leave the literal alone but update the last loc. */
7601 values->has_last_loc = TRUE;
7602 values->last_loc = rel->r_rel;
7603 if (!val_map)
7604 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
e0001a05 7605 else
43cd72b9
BW
7606 val_map->loc = rel->r_rel;
7607 *last_loc_is_prev_p = TRUE;
e0001a05
NC
7608 }
7609
43cd72b9 7610 return TRUE;
e0001a05
NC
7611}
7612
7613
7614/* Check if the original relocations (presumably on L32R instructions)
7615 identified by reloc[0..N] can be changed to reference the literal
7616 identified by r_rel. If r_rel is out of range for any of the
7617 original relocations, then we don't want to coalesce the original
7618 literal with the one at r_rel. We only check reloc[0..N], where the
7619 offsets are all the same as for reloc[0] (i.e., they're all
7620 referencing the same literal) and where N is also bounded by the
7621 number of remaining entries in the "reloc" array. The "reloc" array
7622 is sorted by target offset so we know all the entries for the same
7623 literal will be contiguous. */
7624
7625static bfd_boolean
7fa3d080
BW
7626relocations_reach (source_reloc *reloc,
7627 int remaining_relocs,
7628 const r_reloc *r_rel)
e0001a05
NC
7629{
7630 bfd_vma from_offset, source_address, dest_address;
7631 asection *sec;
7632 int i;
7633
7634 if (!r_reloc_is_defined (r_rel))
7635 return FALSE;
7636
7637 sec = r_reloc_get_section (r_rel);
7638 from_offset = reloc[0].r_rel.target_offset;
7639
7640 for (i = 0; i < remaining_relocs; i++)
7641 {
7642 if (reloc[i].r_rel.target_offset != from_offset)
7643 break;
7644
7645 /* Ignore relocations that have been removed. */
7646 if (reloc[i].is_null)
7647 continue;
7648
7649 /* The original and new output section for these must be the same
7650 in order to coalesce. */
7651 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
7652 != sec->output_section)
7653 return FALSE;
7654
d638e0ac
BW
7655 /* Absolute literals in the same output section can always be
7656 combined. */
7657 if (reloc[i].is_abs_literal)
7658 continue;
7659
43cd72b9
BW
7660 /* A literal with no PC-relative relocations can be moved anywhere. */
7661 if (reloc[i].opnd != -1)
e0001a05
NC
7662 {
7663 /* Otherwise, check to see that it fits. */
7664 source_address = (reloc[i].source_sec->output_section->vma
7665 + reloc[i].source_sec->output_offset
7666 + reloc[i].r_rel.rela.r_offset);
7667 dest_address = (sec->output_section->vma
7668 + sec->output_offset
7669 + r_rel->target_offset);
7670
43cd72b9
BW
7671 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
7672 source_address, dest_address))
e0001a05
NC
7673 return FALSE;
7674 }
7675 }
7676
7677 return TRUE;
7678}
7679
7680
43cd72b9
BW
7681/* Move a literal to another literal location because it is
7682 the same as the other literal value. */
e0001a05 7683
43cd72b9 7684static bfd_boolean
7fa3d080
BW
7685coalesce_shared_literal (asection *sec,
7686 source_reloc *rel,
7687 property_table_entry *prop_table,
7688 int ptblsize,
7689 value_map *val_map)
e0001a05 7690{
43cd72b9
BW
7691 property_table_entry *entry;
7692 text_action *fa;
7693 property_table_entry *the_add_entry;
7694 int removed_diff;
7695 xtensa_relax_info *relax_info;
7696
7697 relax_info = get_xtensa_relax_info (sec);
7698 if (!relax_info)
7699 return FALSE;
7700
7701 entry = elf_xtensa_find_property_entry
7702 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7703 if (entry && (entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM))
7704 return TRUE;
7705
7706 /* Mark that the literal will be coalesced. */
7707 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
7708
7709 text_action_add (&relax_info->action_list,
7710 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7711
7712 /* If the section is 4-byte aligned, do not add fill. */
7713 if (sec->alignment_power > 2)
e0001a05 7714 {
43cd72b9
BW
7715 int fill_extra_space;
7716 bfd_vma entry_sec_offset;
7717
7718 if (entry)
7719 entry_sec_offset = entry->address - sec->vma + entry->size;
7720 else
7721 entry_sec_offset = rel->r_rel.target_offset + 4;
7722
7723 /* If the literal range is at the end of the section,
7724 do not add fill. */
7725 fill_extra_space = 0;
7726 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7727 entry_sec_offset);
7728 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7729 fill_extra_space = the_add_entry->size;
7730
7731 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7732 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7733 -4, fill_extra_space);
7734 if (fa)
7735 adjust_fill_action (fa, removed_diff);
7736 else
7737 text_action_add (&relax_info->action_list,
7738 ta_fill, sec, entry_sec_offset, removed_diff);
e0001a05 7739 }
43cd72b9
BW
7740
7741 return TRUE;
7742}
7743
7744
7745/* Move a literal to another location. This may actually increase the
7746 total amount of space used because of alignments so we need to do
7747 this carefully. Also, it may make a branch go out of range. */
7748
7749static bfd_boolean
7fa3d080
BW
7750move_shared_literal (asection *sec,
7751 struct bfd_link_info *link_info,
7752 source_reloc *rel,
7753 property_table_entry *prop_table,
7754 int ptblsize,
7755 const r_reloc *target_loc,
7756 const literal_value *lit_value,
7757 section_cache_t *target_sec_cache)
43cd72b9
BW
7758{
7759 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
7760 text_action *fa, *target_fa;
7761 int removed_diff;
7762 xtensa_relax_info *relax_info, *target_relax_info;
7763 asection *target_sec;
7764 ebb_t *ebb;
7765 ebb_constraint ebb_table;
7766 bfd_boolean relocs_fit;
7767
7768 /* If this routine always returns FALSE, the literals that cannot be
7769 coalesced will not be moved. */
7770 if (elf32xtensa_no_literal_movement)
7771 return FALSE;
7772
7773 relax_info = get_xtensa_relax_info (sec);
7774 if (!relax_info)
7775 return FALSE;
7776
7777 target_sec = r_reloc_get_section (target_loc);
7778 target_relax_info = get_xtensa_relax_info (target_sec);
7779
7780 /* Literals to undefined sections may not be moved because they
7781 must report an error. */
7782 if (bfd_is_und_section (target_sec))
7783 return FALSE;
7784
7785 src_entry = elf_xtensa_find_property_entry
7786 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7787
7788 if (!section_cache_section (target_sec_cache, target_sec, link_info))
7789 return FALSE;
7790
7791 target_entry = elf_xtensa_find_property_entry
7792 (target_sec_cache->ptbl, target_sec_cache->pte_count,
7793 target_sec->vma + target_loc->target_offset);
7794
7795 if (!target_entry)
7796 return FALSE;
7797
7798 /* Make sure that we have not broken any branches. */
7799 relocs_fit = FALSE;
7800
7801 init_ebb_constraint (&ebb_table);
7802 ebb = &ebb_table.ebb;
7803 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
7804 target_sec_cache->content_length,
7805 target_sec_cache->ptbl, target_sec_cache->pte_count,
7806 target_sec_cache->relocs, target_sec_cache->reloc_count);
7807
7808 /* Propose to add 4 bytes + worst-case alignment size increase to
7809 destination. */
7810 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
7811 ta_fill, target_loc->target_offset,
7812 -4 - (1 << target_sec->alignment_power), TRUE);
7813
7814 /* Check all of the PC-relative relocations to make sure they still fit. */
7815 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
7816 target_sec_cache->contents,
7817 target_sec_cache->relocs,
7818 &ebb_table);
7819
7820 if (!relocs_fit)
7821 return FALSE;
7822
7823 text_action_add_literal (&target_relax_info->action_list,
7824 ta_add_literal, target_loc, lit_value, -4);
7825
7826 if (target_sec->alignment_power > 2 && target_entry != src_entry)
7827 {
7828 /* May need to add or remove some fill to maintain alignment. */
7829 int fill_extra_space;
7830 bfd_vma entry_sec_offset;
7831
7832 entry_sec_offset =
7833 target_entry->address - target_sec->vma + target_entry->size;
7834
7835 /* If the literal range is at the end of the section,
7836 do not add fill. */
7837 fill_extra_space = 0;
7838 the_add_entry =
7839 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
7840 target_sec_cache->pte_count,
7841 entry_sec_offset);
7842 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7843 fill_extra_space = the_add_entry->size;
7844
7845 target_fa = find_fill_action (&target_relax_info->action_list,
7846 target_sec, entry_sec_offset);
7847 removed_diff = compute_removed_action_diff (target_fa, target_sec,
7848 entry_sec_offset, 4,
7849 fill_extra_space);
7850 if (target_fa)
7851 adjust_fill_action (target_fa, removed_diff);
7852 else
7853 text_action_add (&target_relax_info->action_list,
7854 ta_fill, target_sec, entry_sec_offset, removed_diff);
7855 }
7856
7857 /* Mark that the literal will be moved to the new location. */
7858 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
7859
7860 /* Remove the literal. */
7861 text_action_add (&relax_info->action_list,
7862 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7863
7864 /* If the section is 4-byte aligned, do not add fill. */
7865 if (sec->alignment_power > 2 && target_entry != src_entry)
7866 {
7867 int fill_extra_space;
7868 bfd_vma entry_sec_offset;
7869
7870 if (src_entry)
7871 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
7872 else
7873 entry_sec_offset = rel->r_rel.target_offset+4;
7874
7875 /* If the literal range is at the end of the section,
7876 do not add fill. */
7877 fill_extra_space = 0;
7878 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7879 entry_sec_offset);
7880 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7881 fill_extra_space = the_add_entry->size;
7882
7883 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7884 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7885 -4, fill_extra_space);
7886 if (fa)
7887 adjust_fill_action (fa, removed_diff);
7888 else
7889 text_action_add (&relax_info->action_list,
7890 ta_fill, sec, entry_sec_offset, removed_diff);
7891 }
7892
7893 return TRUE;
e0001a05
NC
7894}
7895
7896\f
7897/* Second relaxation pass. */
7898
7899/* Modify all of the relocations to point to the right spot, and if this
7900 is a relaxable section, delete the unwanted literals and fix the
43cd72b9 7901 section size. */
e0001a05 7902
43cd72b9 7903bfd_boolean
7fa3d080 7904relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
e0001a05
NC
7905{
7906 Elf_Internal_Rela *internal_relocs;
7907 xtensa_relax_info *relax_info;
7908 bfd_byte *contents;
7909 bfd_boolean ok = TRUE;
7910 unsigned i;
43cd72b9
BW
7911 bfd_boolean rv = FALSE;
7912 bfd_boolean virtual_action;
7913 bfd_size_type sec_size;
e0001a05 7914
43cd72b9 7915 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
7916 relax_info = get_xtensa_relax_info (sec);
7917 BFD_ASSERT (relax_info);
7918
43cd72b9
BW
7919 /* First translate any of the fixes that have been added already. */
7920 translate_section_fixes (sec);
7921
e0001a05
NC
7922 /* Handle property sections (e.g., literal tables) specially. */
7923 if (xtensa_is_property_section (sec))
7924 {
7925 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
7926 return relax_property_section (abfd, sec, link_info);
7927 }
7928
43cd72b9
BW
7929 internal_relocs = retrieve_internal_relocs (abfd, sec,
7930 link_info->keep_memory);
7931 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7932 if (contents == NULL && sec_size != 0)
7933 {
7934 ok = FALSE;
7935 goto error_return;
7936 }
7937
7938 if (internal_relocs)
7939 {
7940 for (i = 0; i < sec->reloc_count; i++)
7941 {
7942 Elf_Internal_Rela *irel;
7943 xtensa_relax_info *target_relax_info;
7944 bfd_vma source_offset, old_source_offset;
7945 r_reloc r_rel;
7946 unsigned r_type;
7947 asection *target_sec;
7948
7949 /* Locally change the source address.
7950 Translate the target to the new target address.
7951 If it points to this section and has been removed,
7952 NULLify it.
7953 Write it back. */
7954
7955 irel = &internal_relocs[i];
7956 source_offset = irel->r_offset;
7957 old_source_offset = source_offset;
7958
7959 r_type = ELF32_R_TYPE (irel->r_info);
7960 r_reloc_init (&r_rel, abfd, irel, contents,
7961 bfd_get_section_limit (abfd, sec));
7962
7963 /* If this section could have changed then we may need to
7964 change the relocation's offset. */
7965
7966 if (relax_info->is_relaxable_literal_section
7967 || relax_info->is_relaxable_asm_section)
7968 {
7969 if (r_type != R_XTENSA_NONE
7970 && find_removed_literal (&relax_info->removed_list,
7971 irel->r_offset))
7972 {
7973 /* Remove this relocation. */
7974 if (elf_hash_table (link_info)->dynamic_sections_created)
7975 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
7976 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7977 irel->r_offset = offset_with_removed_text
7978 (&relax_info->action_list, irel->r_offset);
7979 pin_internal_relocs (sec, internal_relocs);
7980 continue;
7981 }
7982
7983 if (r_type == R_XTENSA_ASM_SIMPLIFY)
7984 {
7985 text_action *action =
7986 find_insn_action (&relax_info->action_list,
7987 irel->r_offset);
7988 if (action && (action->action == ta_convert_longcall
7989 || action->action == ta_remove_longcall))
7990 {
7991 bfd_reloc_status_type retval;
7992 char *error_message = NULL;
7993
7994 retval = contract_asm_expansion (contents, sec_size,
7995 irel, &error_message);
7996 if (retval != bfd_reloc_ok)
7997 {
7998 (*link_info->callbacks->reloc_dangerous)
7999 (link_info, error_message, abfd, sec,
8000 irel->r_offset);
8001 goto error_return;
8002 }
8003 /* Update the action so that the code that moves
8004 the contents will do the right thing. */
8005 if (action->action == ta_remove_longcall)
8006 action->action = ta_remove_insn;
8007 else
8008 action->action = ta_none;
8009 /* Refresh the info in the r_rel. */
8010 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8011 r_type = ELF32_R_TYPE (irel->r_info);
8012 }
8013 }
8014
8015 source_offset = offset_with_removed_text
8016 (&relax_info->action_list, irel->r_offset);
8017 irel->r_offset = source_offset;
8018 }
8019
8020 /* If the target section could have changed then
8021 we may need to change the relocation's target offset. */
8022
8023 target_sec = r_reloc_get_section (&r_rel);
8024 target_relax_info = get_xtensa_relax_info (target_sec);
8025
8026 if (target_relax_info
8027 && (target_relax_info->is_relaxable_literal_section
8028 || target_relax_info->is_relaxable_asm_section))
8029 {
8030 r_reloc new_reloc;
8031 reloc_bfd_fix *fix;
8032 bfd_vma addend_displacement;
8033
8034 translate_reloc (&r_rel, &new_reloc);
8035
8036 if (r_type == R_XTENSA_DIFF8
8037 || r_type == R_XTENSA_DIFF16
8038 || r_type == R_XTENSA_DIFF32)
8039 {
8040 bfd_vma diff_value = 0, new_end_offset, diff_mask = 0;
8041
8042 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
8043 {
8044 (*link_info->callbacks->reloc_dangerous)
8045 (link_info, _("invalid relocation address"),
8046 abfd, sec, old_source_offset);
8047 goto error_return;
8048 }
8049
8050 switch (r_type)
8051 {
8052 case R_XTENSA_DIFF8:
8053 diff_value =
8054 bfd_get_8 (abfd, &contents[old_source_offset]);
8055 break;
8056 case R_XTENSA_DIFF16:
8057 diff_value =
8058 bfd_get_16 (abfd, &contents[old_source_offset]);
8059 break;
8060 case R_XTENSA_DIFF32:
8061 diff_value =
8062 bfd_get_32 (abfd, &contents[old_source_offset]);
8063 break;
8064 }
8065
8066 new_end_offset = offset_with_removed_text
8067 (&target_relax_info->action_list,
8068 r_rel.target_offset + diff_value);
8069 diff_value = new_end_offset - new_reloc.target_offset;
8070
8071 switch (r_type)
8072 {
8073 case R_XTENSA_DIFF8:
8074 diff_mask = 0xff;
8075 bfd_put_8 (abfd, diff_value,
8076 &contents[old_source_offset]);
8077 break;
8078 case R_XTENSA_DIFF16:
8079 diff_mask = 0xffff;
8080 bfd_put_16 (abfd, diff_value,
8081 &contents[old_source_offset]);
8082 break;
8083 case R_XTENSA_DIFF32:
8084 diff_mask = 0xffffffff;
8085 bfd_put_32 (abfd, diff_value,
8086 &contents[old_source_offset]);
8087 break;
8088 }
8089
8090 /* Check for overflow. */
8091 if ((diff_value & ~diff_mask) != 0)
8092 {
8093 (*link_info->callbacks->reloc_dangerous)
8094 (link_info, _("overflow after relaxation"),
8095 abfd, sec, old_source_offset);
8096 goto error_return;
8097 }
8098
8099 pin_contents (sec, contents);
8100 }
8101
8102 /* FIXME: If the relocation still references a section in
8103 the same input file, the relocation should be modified
8104 directly instead of adding a "fix" record. */
8105
8106 addend_displacement =
8107 new_reloc.target_offset + new_reloc.virtual_offset;
8108
8109 fix = reloc_bfd_fix_init (sec, source_offset, r_type, 0,
8110 r_reloc_get_section (&new_reloc),
8111 addend_displacement, TRUE);
8112 add_fix (sec, fix);
8113 }
8114
8115 pin_internal_relocs (sec, internal_relocs);
8116 }
8117 }
8118
8119 if ((relax_info->is_relaxable_literal_section
8120 || relax_info->is_relaxable_asm_section)
8121 && relax_info->action_list.head)
8122 {
8123 /* Walk through the planned actions and build up a table
8124 of move, copy and fill records. Use the move, copy and
8125 fill records to perform the actions once. */
8126
8127 bfd_size_type size = sec->size;
8128 int removed = 0;
8129 bfd_size_type final_size, copy_size, orig_insn_size;
8130 bfd_byte *scratch = NULL;
8131 bfd_byte *dup_contents = NULL;
8132 bfd_size_type orig_size = size;
8133 bfd_vma orig_dot = 0;
8134 bfd_vma orig_dot_copied = 0; /* Byte copied already from
8135 orig dot in physical memory. */
8136 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
8137 bfd_vma dup_dot = 0;
8138
8139 text_action *action = relax_info->action_list.head;
8140
8141 final_size = sec->size;
8142 for (action = relax_info->action_list.head; action;
8143 action = action->next)
8144 {
8145 final_size -= action->removed_bytes;
8146 }
8147
8148 scratch = (bfd_byte *) bfd_zmalloc (final_size);
8149 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
8150
8151 /* The dot is the current fill location. */
8152#if DEBUG
8153 print_action_list (stderr, &relax_info->action_list);
8154#endif
8155
8156 for (action = relax_info->action_list.head; action;
8157 action = action->next)
8158 {
8159 virtual_action = FALSE;
8160 if (action->offset > orig_dot)
8161 {
8162 orig_dot += orig_dot_copied;
8163 orig_dot_copied = 0;
8164 orig_dot_vo = 0;
8165 /* Out of the virtual world. */
8166 }
8167
8168 if (action->offset > orig_dot)
8169 {
8170 copy_size = action->offset - orig_dot;
8171 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8172 orig_dot += copy_size;
8173 dup_dot += copy_size;
8174 BFD_ASSERT (action->offset == orig_dot);
8175 }
8176 else if (action->offset < orig_dot)
8177 {
8178 if (action->action == ta_fill
8179 && action->offset - action->removed_bytes == orig_dot)
8180 {
8181 /* This is OK because the fill only effects the dup_dot. */
8182 }
8183 else if (action->action == ta_add_literal)
8184 {
8185 /* TBD. Might need to handle this. */
8186 }
8187 }
8188 if (action->offset == orig_dot)
8189 {
8190 if (action->virtual_offset > orig_dot_vo)
8191 {
8192 if (orig_dot_vo == 0)
8193 {
8194 /* Need to copy virtual_offset bytes. Probably four. */
8195 copy_size = action->virtual_offset - orig_dot_vo;
8196 memmove (&dup_contents[dup_dot],
8197 &contents[orig_dot], copy_size);
8198 orig_dot_copied = copy_size;
8199 dup_dot += copy_size;
8200 }
8201 virtual_action = TRUE;
8202 }
8203 else
8204 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
8205 }
8206 switch (action->action)
8207 {
8208 case ta_remove_literal:
8209 case ta_remove_insn:
8210 BFD_ASSERT (action->removed_bytes >= 0);
8211 orig_dot += action->removed_bytes;
8212 break;
8213
8214 case ta_narrow_insn:
8215 orig_insn_size = 3;
8216 copy_size = 2;
8217 memmove (scratch, &contents[orig_dot], orig_insn_size);
8218 BFD_ASSERT (action->removed_bytes == 1);
8219 rv = narrow_instruction (scratch, final_size, 0, TRUE);
8220 BFD_ASSERT (rv);
8221 memmove (&dup_contents[dup_dot], scratch, copy_size);
8222 orig_dot += orig_insn_size;
8223 dup_dot += copy_size;
8224 break;
8225
8226 case ta_fill:
8227 if (action->removed_bytes >= 0)
8228 orig_dot += action->removed_bytes;
8229 else
8230 {
8231 /* Already zeroed in dup_contents. Just bump the
8232 counters. */
8233 dup_dot += (-action->removed_bytes);
8234 }
8235 break;
8236
8237 case ta_none:
8238 BFD_ASSERT (action->removed_bytes == 0);
8239 break;
8240
8241 case ta_convert_longcall:
8242 case ta_remove_longcall:
8243 /* These will be removed or converted before we get here. */
8244 BFD_ASSERT (0);
8245 break;
8246
8247 case ta_widen_insn:
8248 orig_insn_size = 2;
8249 copy_size = 3;
8250 memmove (scratch, &contents[orig_dot], orig_insn_size);
8251 BFD_ASSERT (action->removed_bytes == -1);
8252 rv = widen_instruction (scratch, final_size, 0, TRUE);
8253 BFD_ASSERT (rv);
8254 memmove (&dup_contents[dup_dot], scratch, copy_size);
8255 orig_dot += orig_insn_size;
8256 dup_dot += copy_size;
8257 break;
8258
8259 case ta_add_literal:
8260 orig_insn_size = 0;
8261 copy_size = 4;
8262 BFD_ASSERT (action->removed_bytes == -4);
8263 /* TBD -- place the literal value here and insert
8264 into the table. */
8265 memset (&dup_contents[dup_dot], 0, 4);
8266 pin_internal_relocs (sec, internal_relocs);
8267 pin_contents (sec, contents);
8268
8269 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
8270 relax_info, &internal_relocs, &action->value))
8271 goto error_return;
8272
8273 if (virtual_action)
8274 orig_dot_vo += copy_size;
8275
8276 orig_dot += orig_insn_size;
8277 dup_dot += copy_size;
8278 break;
8279
8280 default:
8281 /* Not implemented yet. */
8282 BFD_ASSERT (0);
8283 break;
8284 }
8285
8286 size -= action->removed_bytes;
8287 removed += action->removed_bytes;
8288 BFD_ASSERT (dup_dot <= final_size);
8289 BFD_ASSERT (orig_dot <= orig_size);
8290 }
8291
8292 orig_dot += orig_dot_copied;
8293 orig_dot_copied = 0;
8294
8295 if (orig_dot != orig_size)
8296 {
8297 copy_size = orig_size - orig_dot;
8298 BFD_ASSERT (orig_size > orig_dot);
8299 BFD_ASSERT (dup_dot + copy_size == final_size);
8300 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8301 orig_dot += copy_size;
8302 dup_dot += copy_size;
8303 }
8304 BFD_ASSERT (orig_size == orig_dot);
8305 BFD_ASSERT (final_size == dup_dot);
8306
8307 /* Move the dup_contents back. */
8308 if (final_size > orig_size)
8309 {
8310 /* Contents need to be reallocated. Swap the dup_contents into
8311 contents. */
8312 sec->contents = dup_contents;
8313 free (contents);
8314 contents = dup_contents;
8315 pin_contents (sec, contents);
8316 }
8317 else
8318 {
8319 BFD_ASSERT (final_size <= orig_size);
8320 memset (contents, 0, orig_size);
8321 memcpy (contents, dup_contents, final_size);
8322 free (dup_contents);
8323 }
8324 free (scratch);
8325 pin_contents (sec, contents);
8326
8327 sec->size = final_size;
8328 }
8329
8330 error_return:
8331 release_internal_relocs (sec, internal_relocs);
8332 release_contents (sec, contents);
8333 return ok;
8334}
8335
8336
8337static bfd_boolean
7fa3d080 8338translate_section_fixes (asection *sec)
43cd72b9
BW
8339{
8340 xtensa_relax_info *relax_info;
8341 reloc_bfd_fix *r;
8342
8343 relax_info = get_xtensa_relax_info (sec);
8344 if (!relax_info)
8345 return TRUE;
8346
8347 for (r = relax_info->fix_list; r != NULL; r = r->next)
8348 if (!translate_reloc_bfd_fix (r))
8349 return FALSE;
e0001a05 8350
43cd72b9
BW
8351 return TRUE;
8352}
e0001a05 8353
e0001a05 8354
43cd72b9
BW
8355/* Translate a fix given the mapping in the relax info for the target
8356 section. If it has already been translated, no work is required. */
e0001a05 8357
43cd72b9 8358static bfd_boolean
7fa3d080 8359translate_reloc_bfd_fix (reloc_bfd_fix *fix)
43cd72b9
BW
8360{
8361 reloc_bfd_fix new_fix;
8362 asection *sec;
8363 xtensa_relax_info *relax_info;
8364 removed_literal *removed;
8365 bfd_vma new_offset, target_offset;
e0001a05 8366
43cd72b9
BW
8367 if (fix->translated)
8368 return TRUE;
e0001a05 8369
43cd72b9
BW
8370 sec = fix->target_sec;
8371 target_offset = fix->target_offset;
e0001a05 8372
43cd72b9
BW
8373 relax_info = get_xtensa_relax_info (sec);
8374 if (!relax_info)
8375 {
8376 fix->translated = TRUE;
8377 return TRUE;
8378 }
e0001a05 8379
43cd72b9 8380 new_fix = *fix;
e0001a05 8381
43cd72b9
BW
8382 /* The fix does not need to be translated if the section cannot change. */
8383 if (!relax_info->is_relaxable_literal_section
8384 && !relax_info->is_relaxable_asm_section)
8385 {
8386 fix->translated = TRUE;
8387 return TRUE;
8388 }
e0001a05 8389
43cd72b9
BW
8390 /* If the literal has been moved and this relocation was on an
8391 opcode, then the relocation should move to the new literal
8392 location. Otherwise, the relocation should move within the
8393 section. */
8394
8395 removed = FALSE;
8396 if (is_operand_relocation (fix->src_type))
8397 {
8398 /* Check if the original relocation is against a literal being
8399 removed. */
8400 removed = find_removed_literal (&relax_info->removed_list,
8401 target_offset);
e0001a05
NC
8402 }
8403
43cd72b9 8404 if (removed)
e0001a05 8405 {
43cd72b9 8406 asection *new_sec;
e0001a05 8407
43cd72b9
BW
8408 /* The fact that there is still a relocation to this literal indicates
8409 that the literal is being coalesced, not simply removed. */
8410 BFD_ASSERT (removed->to.abfd != NULL);
e0001a05 8411
43cd72b9
BW
8412 /* This was moved to some other address (possibly another section). */
8413 new_sec = r_reloc_get_section (&removed->to);
8414 if (new_sec != sec)
e0001a05 8415 {
43cd72b9
BW
8416 sec = new_sec;
8417 relax_info = get_xtensa_relax_info (sec);
8418 if (!relax_info ||
8419 (!relax_info->is_relaxable_literal_section
8420 && !relax_info->is_relaxable_asm_section))
e0001a05 8421 {
43cd72b9
BW
8422 target_offset = removed->to.target_offset;
8423 new_fix.target_sec = new_sec;
8424 new_fix.target_offset = target_offset;
8425 new_fix.translated = TRUE;
8426 *fix = new_fix;
8427 return TRUE;
e0001a05 8428 }
e0001a05 8429 }
43cd72b9
BW
8430 target_offset = removed->to.target_offset;
8431 new_fix.target_sec = new_sec;
e0001a05 8432 }
43cd72b9
BW
8433
8434 /* The target address may have been moved within its section. */
8435 new_offset = offset_with_removed_text (&relax_info->action_list,
8436 target_offset);
8437
8438 new_fix.target_offset = new_offset;
8439 new_fix.target_offset = new_offset;
8440 new_fix.translated = TRUE;
8441 *fix = new_fix;
8442 return TRUE;
e0001a05
NC
8443}
8444
8445
8446/* Fix up a relocation to take account of removed literals. */
8447
8448static void
7fa3d080 8449translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel)
e0001a05
NC
8450{
8451 asection *sec;
8452 xtensa_relax_info *relax_info;
8453 removed_literal *removed;
43cd72b9 8454 bfd_vma new_offset, target_offset, removed_bytes;
e0001a05
NC
8455
8456 *new_rel = *orig_rel;
8457
8458 if (!r_reloc_is_defined (orig_rel))
8459 return;
8460 sec = r_reloc_get_section (orig_rel);
8461
8462 relax_info = get_xtensa_relax_info (sec);
8463 BFD_ASSERT (relax_info);
8464
43cd72b9
BW
8465 if (!relax_info->is_relaxable_literal_section
8466 && !relax_info->is_relaxable_asm_section)
e0001a05
NC
8467 return;
8468
43cd72b9
BW
8469 target_offset = orig_rel->target_offset;
8470
8471 removed = FALSE;
8472 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
8473 {
8474 /* Check if the original relocation is against a literal being
8475 removed. */
8476 removed = find_removed_literal (&relax_info->removed_list,
8477 target_offset);
8478 }
8479 if (removed && removed->to.abfd)
e0001a05
NC
8480 {
8481 asection *new_sec;
8482
8483 /* The fact that there is still a relocation to this literal indicates
8484 that the literal is being coalesced, not simply removed. */
8485 BFD_ASSERT (removed->to.abfd != NULL);
8486
43cd72b9
BW
8487 /* This was moved to some other address
8488 (possibly in another section). */
e0001a05
NC
8489 *new_rel = removed->to;
8490 new_sec = r_reloc_get_section (new_rel);
43cd72b9 8491 if (new_sec != sec)
e0001a05
NC
8492 {
8493 sec = new_sec;
8494 relax_info = get_xtensa_relax_info (sec);
43cd72b9
BW
8495 if (!relax_info
8496 || (!relax_info->is_relaxable_literal_section
8497 && !relax_info->is_relaxable_asm_section))
e0001a05
NC
8498 return;
8499 }
43cd72b9 8500 target_offset = new_rel->target_offset;
e0001a05
NC
8501 }
8502
8503 /* ...and the target address may have been moved within its section. */
43cd72b9
BW
8504 new_offset = offset_with_removed_text (&relax_info->action_list,
8505 target_offset);
e0001a05
NC
8506
8507 /* Modify the offset and addend. */
43cd72b9 8508 removed_bytes = target_offset - new_offset;
e0001a05 8509 new_rel->target_offset = new_offset;
43cd72b9 8510 new_rel->rela.r_addend -= removed_bytes;
e0001a05
NC
8511}
8512
8513
8514/* For dynamic links, there may be a dynamic relocation for each
8515 literal. The number of dynamic relocations must be computed in
8516 size_dynamic_sections, which occurs before relaxation. When a
8517 literal is removed, this function checks if there is a corresponding
8518 dynamic relocation and shrinks the size of the appropriate dynamic
8519 relocation section accordingly. At this point, the contents of the
8520 dynamic relocation sections have not yet been filled in, so there's
8521 nothing else that needs to be done. */
8522
8523static void
7fa3d080
BW
8524shrink_dynamic_reloc_sections (struct bfd_link_info *info,
8525 bfd *abfd,
8526 asection *input_section,
8527 Elf_Internal_Rela *rel)
e0001a05
NC
8528{
8529 Elf_Internal_Shdr *symtab_hdr;
8530 struct elf_link_hash_entry **sym_hashes;
8531 unsigned long r_symndx;
8532 int r_type;
8533 struct elf_link_hash_entry *h;
8534 bfd_boolean dynamic_symbol;
8535
8536 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8537 sym_hashes = elf_sym_hashes (abfd);
8538
8539 r_type = ELF32_R_TYPE (rel->r_info);
8540 r_symndx = ELF32_R_SYM (rel->r_info);
8541
8542 if (r_symndx < symtab_hdr->sh_info)
8543 h = NULL;
8544 else
8545 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8546
571b5725 8547 dynamic_symbol = xtensa_elf_dynamic_symbol_p (h, info);
e0001a05
NC
8548
8549 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
8550 && (input_section->flags & SEC_ALLOC) != 0
8551 && (dynamic_symbol || info->shared))
8552 {
8553 bfd *dynobj;
8554 const char *srel_name;
8555 asection *srel;
8556 bfd_boolean is_plt = FALSE;
8557
8558 dynobj = elf_hash_table (info)->dynobj;
8559 BFD_ASSERT (dynobj != NULL);
8560
8561 if (dynamic_symbol && r_type == R_XTENSA_PLT)
8562 {
8563 srel_name = ".rela.plt";
8564 is_plt = TRUE;
8565 }
8566 else
8567 srel_name = ".rela.got";
8568
8569 /* Reduce size of the .rela.* section by one reloc. */
8570 srel = bfd_get_section_by_name (dynobj, srel_name);
8571 BFD_ASSERT (srel != NULL);
eea6121a
AM
8572 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
8573 srel->size -= sizeof (Elf32_External_Rela);
e0001a05
NC
8574
8575 if (is_plt)
8576 {
8577 asection *splt, *sgotplt, *srelgot;
8578 int reloc_index, chunk;
8579
8580 /* Find the PLT reloc index of the entry being removed. This
8581 is computed from the size of ".rela.plt". It is needed to
8582 figure out which PLT chunk to resize. Usually "last index
8583 = size - 1" since the index starts at zero, but in this
8584 context, the size has just been decremented so there's no
8585 need to subtract one. */
eea6121a 8586 reloc_index = srel->size / sizeof (Elf32_External_Rela);
e0001a05
NC
8587
8588 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
8589 splt = elf_xtensa_get_plt_section (dynobj, chunk);
8590 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
8591 BFD_ASSERT (splt != NULL && sgotplt != NULL);
8592
8593 /* Check if an entire PLT chunk has just been eliminated. */
8594 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
8595 {
8596 /* The two magic GOT entries for that chunk can go away. */
8597 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
8598 BFD_ASSERT (srelgot != NULL);
8599 srelgot->reloc_count -= 2;
eea6121a
AM
8600 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
8601 sgotplt->size -= 8;
e0001a05
NC
8602
8603 /* There should be only one entry left (and it will be
8604 removed below). */
eea6121a
AM
8605 BFD_ASSERT (sgotplt->size == 4);
8606 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
e0001a05
NC
8607 }
8608
eea6121a
AM
8609 BFD_ASSERT (sgotplt->size >= 4);
8610 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
e0001a05 8611
eea6121a
AM
8612 sgotplt->size -= 4;
8613 splt->size -= PLT_ENTRY_SIZE;
e0001a05
NC
8614 }
8615 }
8616}
8617
8618
43cd72b9
BW
8619/* Take an r_rel and move it to another section. This usually
8620 requires extending the interal_relocation array and pinning it. If
8621 the original r_rel is from the same BFD, we can complete this here.
8622 Otherwise, we add a fix record to let the final link fix the
8623 appropriate address. Contents and internal relocations for the
8624 section must be pinned after calling this routine. */
8625
8626static bfd_boolean
7fa3d080
BW
8627move_literal (bfd *abfd,
8628 struct bfd_link_info *link_info,
8629 asection *sec,
8630 bfd_vma offset,
8631 bfd_byte *contents,
8632 xtensa_relax_info *relax_info,
8633 Elf_Internal_Rela **internal_relocs_p,
8634 const literal_value *lit)
43cd72b9
BW
8635{
8636 Elf_Internal_Rela *new_relocs = NULL;
8637 size_t new_relocs_count = 0;
8638 Elf_Internal_Rela this_rela;
8639 const r_reloc *r_rel;
8640
8641 r_rel = &lit->r_rel;
8642 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
8643
8644 if (r_reloc_is_const (r_rel))
8645 bfd_put_32 (abfd, lit->value, contents + offset);
8646 else
8647 {
8648 int r_type;
8649 unsigned i;
8650 asection *target_sec;
8651 reloc_bfd_fix *fix;
8652 unsigned insert_at;
8653
8654 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
8655 target_sec = r_reloc_get_section (r_rel);
8656
8657 /* This is the difficult case. We have to create a fix up. */
8658 this_rela.r_offset = offset;
8659 this_rela.r_info = ELF32_R_INFO (0, r_type);
8660 this_rela.r_addend =
8661 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
8662 bfd_put_32 (abfd, lit->value, contents + offset);
8663
8664 /* Currently, we cannot move relocations during a relocatable link. */
8665 BFD_ASSERT (!link_info->relocatable);
8666 fix = reloc_bfd_fix_init (sec, offset, r_type, r_rel->abfd,
8667 r_reloc_get_section (r_rel),
8668 r_rel->target_offset + r_rel->virtual_offset,
8669 FALSE);
8670 /* We also need to mark that relocations are needed here. */
8671 sec->flags |= SEC_RELOC;
8672
8673 translate_reloc_bfd_fix (fix);
8674 /* This fix has not yet been translated. */
8675 add_fix (sec, fix);
8676
8677 /* Add the relocation. If we have already allocated our own
8678 space for the relocations and we have room for more, then use
8679 it. Otherwise, allocate new space and move the literals. */
8680 insert_at = sec->reloc_count;
8681 for (i = 0; i < sec->reloc_count; ++i)
8682 {
8683 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
8684 {
8685 insert_at = i;
8686 break;
8687 }
8688 }
8689
8690 if (*internal_relocs_p != relax_info->allocated_relocs
8691 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
8692 {
8693 BFD_ASSERT (relax_info->allocated_relocs == NULL
8694 || sec->reloc_count == relax_info->relocs_count);
8695
8696 if (relax_info->allocated_relocs_count == 0)
8697 new_relocs_count = (sec->reloc_count + 2) * 2;
8698 else
8699 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
8700
8701 new_relocs = (Elf_Internal_Rela *)
8702 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
8703 if (!new_relocs)
8704 return FALSE;
8705
8706 /* We could handle this more quickly by finding the split point. */
8707 if (insert_at != 0)
8708 memcpy (new_relocs, *internal_relocs_p,
8709 insert_at * sizeof (Elf_Internal_Rela));
8710
8711 new_relocs[insert_at] = this_rela;
8712
8713 if (insert_at != sec->reloc_count)
8714 memcpy (new_relocs + insert_at + 1,
8715 (*internal_relocs_p) + insert_at,
8716 (sec->reloc_count - insert_at)
8717 * sizeof (Elf_Internal_Rela));
8718
8719 if (*internal_relocs_p != relax_info->allocated_relocs)
8720 {
8721 /* The first time we re-allocate, we can only free the
8722 old relocs if they were allocated with bfd_malloc.
8723 This is not true when keep_memory is in effect. */
8724 if (!link_info->keep_memory)
8725 free (*internal_relocs_p);
8726 }
8727 else
8728 free (*internal_relocs_p);
8729 relax_info->allocated_relocs = new_relocs;
8730 relax_info->allocated_relocs_count = new_relocs_count;
8731 elf_section_data (sec)->relocs = new_relocs;
8732 sec->reloc_count++;
8733 relax_info->relocs_count = sec->reloc_count;
8734 *internal_relocs_p = new_relocs;
8735 }
8736 else
8737 {
8738 if (insert_at != sec->reloc_count)
8739 {
8740 unsigned idx;
8741 for (idx = sec->reloc_count; idx > insert_at; idx--)
8742 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
8743 }
8744 (*internal_relocs_p)[insert_at] = this_rela;
8745 sec->reloc_count++;
8746 if (relax_info->allocated_relocs)
8747 relax_info->relocs_count = sec->reloc_count;
8748 }
8749 }
8750 return TRUE;
8751}
8752
8753
e0001a05
NC
8754/* This is similar to relax_section except that when a target is moved,
8755 we shift addresses up. We also need to modify the size. This
8756 algorithm does NOT allow for relocations into the middle of the
8757 property sections. */
8758
43cd72b9 8759static bfd_boolean
7fa3d080
BW
8760relax_property_section (bfd *abfd,
8761 asection *sec,
8762 struct bfd_link_info *link_info)
e0001a05
NC
8763{
8764 Elf_Internal_Rela *internal_relocs;
8765 bfd_byte *contents;
8766 unsigned i, nexti;
8767 bfd_boolean ok = TRUE;
43cd72b9
BW
8768 bfd_boolean is_full_prop_section;
8769 size_t last_zfill_target_offset = 0;
8770 asection *last_zfill_target_sec = NULL;
8771 bfd_size_type sec_size;
e0001a05 8772
43cd72b9 8773 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
8774 internal_relocs = retrieve_internal_relocs (abfd, sec,
8775 link_info->keep_memory);
8776 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 8777 if (contents == NULL && sec_size != 0)
e0001a05
NC
8778 {
8779 ok = FALSE;
8780 goto error_return;
8781 }
8782
43cd72b9
BW
8783 is_full_prop_section =
8784 ((strcmp (sec->name, XTENSA_PROP_SEC_NAME) == 0)
8785 || (strncmp (sec->name, ".gnu.linkonce.prop.",
8786 sizeof ".gnu.linkonce.prop." - 1) == 0));
8787
8788 if (internal_relocs)
e0001a05 8789 {
43cd72b9 8790 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
8791 {
8792 Elf_Internal_Rela *irel;
8793 xtensa_relax_info *target_relax_info;
e0001a05
NC
8794 unsigned r_type;
8795 asection *target_sec;
43cd72b9
BW
8796 literal_value val;
8797 bfd_byte *size_p, *flags_p;
e0001a05
NC
8798
8799 /* Locally change the source address.
8800 Translate the target to the new target address.
8801 If it points to this section and has been removed, MOVE IT.
8802 Also, don't forget to modify the associated SIZE at
8803 (offset + 4). */
8804
8805 irel = &internal_relocs[i];
8806 r_type = ELF32_R_TYPE (irel->r_info);
8807 if (r_type == R_XTENSA_NONE)
8808 continue;
8809
43cd72b9
BW
8810 /* Find the literal value. */
8811 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
8812 size_p = &contents[irel->r_offset + 4];
8813 flags_p = NULL;
8814 if (is_full_prop_section)
8815 {
8816 flags_p = &contents[irel->r_offset + 8];
8817 BFD_ASSERT (irel->r_offset + 12 <= sec_size);
8818 }
8819 else
8820 BFD_ASSERT (irel->r_offset + 8 <= sec_size);
e0001a05 8821
43cd72b9 8822 target_sec = r_reloc_get_section (&val.r_rel);
e0001a05
NC
8823 target_relax_info = get_xtensa_relax_info (target_sec);
8824
8825 if (target_relax_info
43cd72b9
BW
8826 && (target_relax_info->is_relaxable_literal_section
8827 || target_relax_info->is_relaxable_asm_section ))
e0001a05
NC
8828 {
8829 /* Translate the relocation's destination. */
43cd72b9 8830 bfd_vma new_offset, new_end_offset;
e0001a05
NC
8831 long old_size, new_size;
8832
43cd72b9
BW
8833 new_offset = offset_with_removed_text
8834 (&target_relax_info->action_list, val.r_rel.target_offset);
e0001a05
NC
8835
8836 /* Assert that we are not out of bounds. */
43cd72b9
BW
8837 old_size = bfd_get_32 (abfd, size_p);
8838
8839 if (old_size == 0)
8840 {
8841 /* Only the first zero-sized unreachable entry is
8842 allowed to expand. In this case the new offset
8843 should be the offset before the fill and the new
8844 size is the expansion size. For other zero-sized
8845 entries the resulting size should be zero with an
8846 offset before or after the fill address depending
8847 on whether the expanding unreachable entry
8848 preceeds it. */
8849 if (last_zfill_target_sec
8850 && last_zfill_target_sec == target_sec
8851 && last_zfill_target_offset == val.r_rel.target_offset)
8852 new_end_offset = new_offset;
8853 else
8854 {
8855 new_end_offset = new_offset;
8856 new_offset = offset_with_removed_text_before_fill
8857 (&target_relax_info->action_list,
8858 val.r_rel.target_offset);
8859
8860 /* If it is not unreachable and we have not yet
8861 seen an unreachable at this address, place it
8862 before the fill address. */
8863 if (!flags_p
8864 || (bfd_get_32 (abfd, flags_p)
8865 & XTENSA_PROP_UNREACHABLE) == 0)
8866 new_end_offset = new_offset;
8867 else
8868 {
8869 last_zfill_target_sec = target_sec;
8870 last_zfill_target_offset = val.r_rel.target_offset;
8871 }
8872 }
8873 }
8874 else
8875 {
8876 new_end_offset = offset_with_removed_text_before_fill
8877 (&target_relax_info->action_list,
8878 val.r_rel.target_offset + old_size);
8879 }
e0001a05 8880
e0001a05 8881 new_size = new_end_offset - new_offset;
43cd72b9 8882
e0001a05
NC
8883 if (new_size != old_size)
8884 {
8885 bfd_put_32 (abfd, new_size, size_p);
8886 pin_contents (sec, contents);
8887 }
43cd72b9
BW
8888
8889 if (new_offset != val.r_rel.target_offset)
e0001a05 8890 {
43cd72b9 8891 bfd_vma diff = new_offset - val.r_rel.target_offset;
e0001a05
NC
8892 irel->r_addend += diff;
8893 pin_internal_relocs (sec, internal_relocs);
8894 }
8895 }
8896 }
8897 }
8898
8899 /* Combine adjacent property table entries. This is also done in
8900 finish_dynamic_sections() but at that point it's too late to
8901 reclaim the space in the output section, so we do this twice. */
8902
43cd72b9
BW
8903 if (internal_relocs && (!link_info->relocatable
8904 || strcmp (sec->name, XTENSA_LIT_SEC_NAME) == 0))
e0001a05
NC
8905 {
8906 Elf_Internal_Rela *last_irel = NULL;
8907 int removed_bytes = 0;
8908 bfd_vma offset, last_irel_offset;
8909 bfd_vma section_size;
43cd72b9
BW
8910 bfd_size_type entry_size;
8911 flagword predef_flags;
8912
8913 if (is_full_prop_section)
8914 entry_size = 12;
8915 else
8916 entry_size = 8;
8917
8918 predef_flags = xtensa_get_property_predef_flags (sec);
e0001a05
NC
8919
8920 /* Walk over memory and irels at the same time.
8921 This REQUIRES that the internal_relocs be sorted by offset. */
8922 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8923 internal_reloc_compare);
8924 nexti = 0; /* Index into internal_relocs. */
8925
8926 pin_internal_relocs (sec, internal_relocs);
8927 pin_contents (sec, contents);
8928
8929 last_irel_offset = (bfd_vma) -1;
eea6121a 8930 section_size = sec->size;
43cd72b9 8931 BFD_ASSERT (section_size % entry_size == 0);
e0001a05 8932
43cd72b9 8933 for (offset = 0; offset < section_size; offset += entry_size)
e0001a05
NC
8934 {
8935 Elf_Internal_Rela *irel, *next_irel;
8936 bfd_vma bytes_to_remove, size, actual_offset;
8937 bfd_boolean remove_this_irel;
43cd72b9 8938 flagword flags;
e0001a05
NC
8939
8940 irel = NULL;
8941 next_irel = NULL;
8942
8943 /* Find the next two relocations (if there are that many left),
8944 skipping over any R_XTENSA_NONE relocs. On entry, "nexti" is
8945 the starting reloc index. After these two loops, "i"
8946 is the index of the first non-NONE reloc past that starting
8947 index, and "nexti" is the index for the next non-NONE reloc
8948 after "i". */
8949
8950 for (i = nexti; i < sec->reloc_count; i++)
8951 {
8952 if (ELF32_R_TYPE (internal_relocs[i].r_info) != R_XTENSA_NONE)
8953 {
8954 irel = &internal_relocs[i];
8955 break;
8956 }
8957 internal_relocs[i].r_offset -= removed_bytes;
8958 }
8959
8960 for (nexti = i + 1; nexti < sec->reloc_count; nexti++)
8961 {
8962 if (ELF32_R_TYPE (internal_relocs[nexti].r_info)
8963 != R_XTENSA_NONE)
8964 {
8965 next_irel = &internal_relocs[nexti];
8966 break;
8967 }
8968 internal_relocs[nexti].r_offset -= removed_bytes;
8969 }
8970
8971 remove_this_irel = FALSE;
8972 bytes_to_remove = 0;
8973 actual_offset = offset - removed_bytes;
8974 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
8975
43cd72b9
BW
8976 if (is_full_prop_section)
8977 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
8978 else
8979 flags = predef_flags;
8980
e0001a05
NC
8981 /* Check that the irels are sorted by offset,
8982 with only one per address. */
8983 BFD_ASSERT (!irel || (int) irel->r_offset > (int) last_irel_offset);
8984 BFD_ASSERT (!next_irel || next_irel->r_offset > irel->r_offset);
8985
43cd72b9
BW
8986 /* Make sure there aren't relocs on the size or flag fields. */
8987 if ((irel && irel->r_offset == offset + 4)
8988 || (is_full_prop_section
8989 && irel && irel->r_offset == offset + 8))
e0001a05
NC
8990 {
8991 irel->r_offset -= removed_bytes;
8992 last_irel_offset = irel->r_offset;
8993 }
43cd72b9
BW
8994 else if (next_irel && (next_irel->r_offset == offset + 4
8995 || (is_full_prop_section
8996 && next_irel->r_offset == offset + 8)))
e0001a05
NC
8997 {
8998 nexti += 1;
8999 irel->r_offset -= removed_bytes;
9000 next_irel->r_offset -= removed_bytes;
9001 last_irel_offset = next_irel->r_offset;
9002 }
43cd72b9
BW
9003 else if (size == 0 && (flags & XTENSA_PROP_ALIGN) == 0
9004 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
e0001a05 9005 {
43cd72b9
BW
9006 /* Always remove entries with zero size and no alignment. */
9007 bytes_to_remove = entry_size;
e0001a05
NC
9008 if (irel && irel->r_offset == offset)
9009 {
9010 remove_this_irel = TRUE;
9011
9012 irel->r_offset -= removed_bytes;
9013 last_irel_offset = irel->r_offset;
9014 }
9015 }
9016 else if (irel && irel->r_offset == offset)
9017 {
9018 if (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32)
9019 {
9020 if (last_irel)
9021 {
43cd72b9
BW
9022 flagword old_flags;
9023 bfd_vma old_size =
e0001a05 9024 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
43cd72b9
BW
9025 bfd_vma old_address =
9026 (last_irel->r_addend
e0001a05 9027 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
43cd72b9
BW
9028 bfd_vma new_address =
9029 (irel->r_addend
e0001a05 9030 + bfd_get_32 (abfd, &contents[actual_offset]));
43cd72b9
BW
9031 if (is_full_prop_section)
9032 old_flags = bfd_get_32
9033 (abfd, &contents[last_irel->r_offset + 8]);
9034 else
9035 old_flags = predef_flags;
9036
9037 if ((ELF32_R_SYM (irel->r_info)
9038 == ELF32_R_SYM (last_irel->r_info))
9039 && old_address + old_size == new_address
9040 && old_flags == flags
9041 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
9042 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
e0001a05 9043 {
43cd72b9 9044 /* Fix the old size. */
e0001a05
NC
9045 bfd_put_32 (abfd, old_size + size,
9046 &contents[last_irel->r_offset + 4]);
43cd72b9 9047 bytes_to_remove = entry_size;
e0001a05
NC
9048 remove_this_irel = TRUE;
9049 }
9050 else
9051 last_irel = irel;
9052 }
9053 else
9054 last_irel = irel;
9055 }
9056
9057 irel->r_offset -= removed_bytes;
9058 last_irel_offset = irel->r_offset;
9059 }
9060
9061 if (remove_this_irel)
9062 {
9063 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9064 irel->r_offset -= bytes_to_remove;
9065 }
9066
9067 if (bytes_to_remove != 0)
9068 {
9069 removed_bytes += bytes_to_remove;
43cd72b9 9070 if (offset + bytes_to_remove < section_size)
e0001a05 9071 memmove (&contents[actual_offset],
43cd72b9
BW
9072 &contents[actual_offset + bytes_to_remove],
9073 section_size - offset - bytes_to_remove);
e0001a05
NC
9074 }
9075 }
9076
43cd72b9 9077 if (removed_bytes)
e0001a05
NC
9078 {
9079 /* Clear the removed bytes. */
9080 memset (&contents[section_size - removed_bytes], 0, removed_bytes);
9081
eea6121a 9082 sec->size = section_size - removed_bytes;
e901de89
BW
9083
9084 if (xtensa_is_littable_section (sec))
9085 {
9086 bfd *dynobj = elf_hash_table (link_info)->dynobj;
9087 if (dynobj)
9088 {
9089 asection *sgotloc =
9090 bfd_get_section_by_name (dynobj, ".got.loc");
9091 if (sgotloc)
eea6121a 9092 sgotloc->size -= removed_bytes;
e901de89
BW
9093 }
9094 }
e0001a05
NC
9095 }
9096 }
e901de89 9097
e0001a05
NC
9098 error_return:
9099 release_internal_relocs (sec, internal_relocs);
9100 release_contents (sec, contents);
9101 return ok;
9102}
9103
9104\f
9105/* Third relaxation pass. */
9106
9107/* Change symbol values to account for removed literals. */
9108
43cd72b9 9109bfd_boolean
7fa3d080 9110relax_section_symbols (bfd *abfd, asection *sec)
e0001a05
NC
9111{
9112 xtensa_relax_info *relax_info;
9113 unsigned int sec_shndx;
9114 Elf_Internal_Shdr *symtab_hdr;
9115 Elf_Internal_Sym *isymbuf;
9116 unsigned i, num_syms, num_locals;
9117
9118 relax_info = get_xtensa_relax_info (sec);
9119 BFD_ASSERT (relax_info);
9120
43cd72b9
BW
9121 if (!relax_info->is_relaxable_literal_section
9122 && !relax_info->is_relaxable_asm_section)
e0001a05
NC
9123 return TRUE;
9124
9125 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
9126
9127 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9128 isymbuf = retrieve_local_syms (abfd);
9129
9130 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
9131 num_locals = symtab_hdr->sh_info;
9132
9133 /* Adjust the local symbols defined in this section. */
9134 for (i = 0; i < num_locals; i++)
9135 {
9136 Elf_Internal_Sym *isym = &isymbuf[i];
9137
9138 if (isym->st_shndx == sec_shndx)
9139 {
43cd72b9
BW
9140 bfd_vma new_address = offset_with_removed_text
9141 (&relax_info->action_list, isym->st_value);
9142 bfd_vma new_size = isym->st_size;
9143
9144 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
9145 {
9146 bfd_vma new_end = offset_with_removed_text
9147 (&relax_info->action_list, isym->st_value + isym->st_size);
9148 new_size = new_end - new_address;
9149 }
9150
9151 isym->st_value = new_address;
9152 isym->st_size = new_size;
e0001a05
NC
9153 }
9154 }
9155
9156 /* Now adjust the global symbols defined in this section. */
9157 for (i = 0; i < (num_syms - num_locals); i++)
9158 {
9159 struct elf_link_hash_entry *sym_hash;
9160
9161 sym_hash = elf_sym_hashes (abfd)[i];
9162
9163 if (sym_hash->root.type == bfd_link_hash_warning)
9164 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
9165
9166 if ((sym_hash->root.type == bfd_link_hash_defined
9167 || sym_hash->root.type == bfd_link_hash_defweak)
9168 && sym_hash->root.u.def.section == sec)
9169 {
43cd72b9
BW
9170 bfd_vma new_address = offset_with_removed_text
9171 (&relax_info->action_list, sym_hash->root.u.def.value);
9172 bfd_vma new_size = sym_hash->size;
9173
9174 if (sym_hash->type == STT_FUNC)
9175 {
9176 bfd_vma new_end = offset_with_removed_text
9177 (&relax_info->action_list,
9178 sym_hash->root.u.def.value + sym_hash->size);
9179 new_size = new_end - new_address;
9180 }
9181
9182 sym_hash->root.u.def.value = new_address;
9183 sym_hash->size = new_size;
e0001a05
NC
9184 }
9185 }
9186
9187 return TRUE;
9188}
9189
9190\f
9191/* "Fix" handling functions, called while performing relocations. */
9192
43cd72b9 9193static bfd_boolean
7fa3d080
BW
9194do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
9195 bfd *input_bfd,
9196 asection *input_section,
9197 bfd_byte *contents)
e0001a05
NC
9198{
9199 r_reloc r_rel;
9200 asection *sec, *old_sec;
9201 bfd_vma old_offset;
9202 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05
NC
9203 reloc_bfd_fix *fix;
9204
9205 if (r_type == R_XTENSA_NONE)
43cd72b9 9206 return TRUE;
e0001a05 9207
43cd72b9
BW
9208 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9209 if (!fix)
9210 return TRUE;
e0001a05 9211
43cd72b9
BW
9212 r_reloc_init (&r_rel, input_bfd, rel, contents,
9213 bfd_get_section_limit (input_bfd, input_section));
e0001a05 9214 old_sec = r_reloc_get_section (&r_rel);
43cd72b9
BW
9215 old_offset = r_rel.target_offset;
9216
9217 if (!old_sec || !r_reloc_is_defined (&r_rel))
e0001a05 9218 {
43cd72b9
BW
9219 if (r_type != R_XTENSA_ASM_EXPAND)
9220 {
9221 (*_bfd_error_handler)
9222 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
9223 input_bfd, input_section, rel->r_offset,
9224 elf_howto_table[r_type].name);
9225 return FALSE;
9226 }
e0001a05
NC
9227 /* Leave it be. Resolution will happen in a later stage. */
9228 }
9229 else
9230 {
9231 sec = fix->target_sec;
9232 rel->r_addend += ((sec->output_offset + fix->target_offset)
9233 - (old_sec->output_offset + old_offset));
9234 }
43cd72b9 9235 return TRUE;
e0001a05
NC
9236}
9237
9238
9239static void
7fa3d080
BW
9240do_fix_for_final_link (Elf_Internal_Rela *rel,
9241 bfd *input_bfd,
9242 asection *input_section,
9243 bfd_byte *contents,
9244 bfd_vma *relocationp)
e0001a05
NC
9245{
9246 asection *sec;
9247 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05 9248 reloc_bfd_fix *fix;
43cd72b9 9249 bfd_vma fixup_diff;
e0001a05
NC
9250
9251 if (r_type == R_XTENSA_NONE)
9252 return;
9253
43cd72b9
BW
9254 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9255 if (!fix)
e0001a05
NC
9256 return;
9257
9258 sec = fix->target_sec;
43cd72b9
BW
9259
9260 fixup_diff = rel->r_addend;
9261 if (elf_howto_table[fix->src_type].partial_inplace)
9262 {
9263 bfd_vma inplace_val;
9264 BFD_ASSERT (fix->src_offset
9265 < bfd_get_section_limit (input_bfd, input_section));
9266 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
9267 fixup_diff += inplace_val;
9268 }
9269
e0001a05
NC
9270 *relocationp = (sec->output_section->vma
9271 + sec->output_offset
43cd72b9 9272 + fix->target_offset - fixup_diff);
e0001a05
NC
9273}
9274
9275\f
9276/* Miscellaneous utility functions.... */
9277
9278static asection *
7fa3d080 9279elf_xtensa_get_plt_section (bfd *dynobj, int chunk)
e0001a05
NC
9280{
9281 char plt_name[10];
9282
9283 if (chunk == 0)
9284 return bfd_get_section_by_name (dynobj, ".plt");
9285
9286 sprintf (plt_name, ".plt.%u", chunk);
9287 return bfd_get_section_by_name (dynobj, plt_name);
9288}
9289
9290
9291static asection *
7fa3d080 9292elf_xtensa_get_gotplt_section (bfd *dynobj, int chunk)
e0001a05
NC
9293{
9294 char got_name[14];
9295
9296 if (chunk == 0)
9297 return bfd_get_section_by_name (dynobj, ".got.plt");
9298
9299 sprintf (got_name, ".got.plt.%u", chunk);
9300 return bfd_get_section_by_name (dynobj, got_name);
9301}
9302
9303
9304/* Get the input section for a given symbol index.
9305 If the symbol is:
9306 . a section symbol, return the section;
9307 . a common symbol, return the common section;
9308 . an undefined symbol, return the undefined section;
9309 . an indirect symbol, follow the links;
9310 . an absolute value, return the absolute section. */
9311
9312static asection *
7fa3d080 9313get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
9314{
9315 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9316 asection *target_sec = NULL;
43cd72b9 9317 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
9318 {
9319 Elf_Internal_Sym *isymbuf;
9320 unsigned int section_index;
9321
9322 isymbuf = retrieve_local_syms (abfd);
9323 section_index = isymbuf[r_symndx].st_shndx;
9324
9325 if (section_index == SHN_UNDEF)
9326 target_sec = bfd_und_section_ptr;
9327 else if (section_index > 0 && section_index < SHN_LORESERVE)
9328 target_sec = bfd_section_from_elf_index (abfd, section_index);
9329 else if (section_index == SHN_ABS)
9330 target_sec = bfd_abs_section_ptr;
9331 else if (section_index == SHN_COMMON)
9332 target_sec = bfd_com_section_ptr;
43cd72b9 9333 else
e0001a05
NC
9334 /* Who knows? */
9335 target_sec = NULL;
9336 }
9337 else
9338 {
9339 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9340 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
9341
9342 while (h->root.type == bfd_link_hash_indirect
9343 || h->root.type == bfd_link_hash_warning)
9344 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9345
9346 switch (h->root.type)
9347 {
9348 case bfd_link_hash_defined:
9349 case bfd_link_hash_defweak:
9350 target_sec = h->root.u.def.section;
9351 break;
9352 case bfd_link_hash_common:
9353 target_sec = bfd_com_section_ptr;
9354 break;
9355 case bfd_link_hash_undefined:
9356 case bfd_link_hash_undefweak:
9357 target_sec = bfd_und_section_ptr;
9358 break;
9359 default: /* New indirect warning. */
9360 target_sec = bfd_und_section_ptr;
9361 break;
9362 }
9363 }
9364 return target_sec;
9365}
9366
9367
9368static struct elf_link_hash_entry *
7fa3d080 9369get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
9370{
9371 unsigned long indx;
9372 struct elf_link_hash_entry *h;
9373 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9374
9375 if (r_symndx < symtab_hdr->sh_info)
9376 return NULL;
43cd72b9 9377
e0001a05
NC
9378 indx = r_symndx - symtab_hdr->sh_info;
9379 h = elf_sym_hashes (abfd)[indx];
9380 while (h->root.type == bfd_link_hash_indirect
9381 || h->root.type == bfd_link_hash_warning)
9382 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9383 return h;
9384}
9385
9386
9387/* Get the section-relative offset for a symbol number. */
9388
9389static bfd_vma
7fa3d080 9390get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
9391{
9392 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9393 bfd_vma offset = 0;
9394
43cd72b9 9395 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
9396 {
9397 Elf_Internal_Sym *isymbuf;
9398 isymbuf = retrieve_local_syms (abfd);
9399 offset = isymbuf[r_symndx].st_value;
9400 }
9401 else
9402 {
9403 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9404 struct elf_link_hash_entry *h =
9405 elf_sym_hashes (abfd)[indx];
9406
9407 while (h->root.type == bfd_link_hash_indirect
9408 || h->root.type == bfd_link_hash_warning)
9409 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9410 if (h->root.type == bfd_link_hash_defined
9411 || h->root.type == bfd_link_hash_defweak)
9412 offset = h->root.u.def.value;
9413 }
9414 return offset;
9415}
9416
9417
9418static bfd_boolean
7fa3d080 9419is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
43cd72b9
BW
9420{
9421 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
9422 struct elf_link_hash_entry *h;
9423
9424 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
9425 if (h && h->root.type == bfd_link_hash_defweak)
9426 return TRUE;
9427 return FALSE;
9428}
9429
9430
9431static bfd_boolean
7fa3d080
BW
9432pcrel_reloc_fits (xtensa_opcode opc,
9433 int opnd,
9434 bfd_vma self_address,
9435 bfd_vma dest_address)
e0001a05 9436{
43cd72b9
BW
9437 xtensa_isa isa = xtensa_default_isa;
9438 uint32 valp = dest_address;
9439 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
9440 || xtensa_operand_encode (isa, opc, opnd, &valp))
9441 return FALSE;
9442 return TRUE;
e0001a05
NC
9443}
9444
9445
b614a702
BW
9446static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
9447static int insn_sec_len = sizeof (XTENSA_INSN_SEC_NAME) - 1;
9448static int lit_sec_len = sizeof (XTENSA_LIT_SEC_NAME) - 1;
43cd72b9 9449static int prop_sec_len = sizeof (XTENSA_PROP_SEC_NAME) - 1;
b614a702
BW
9450
9451
e0001a05 9452static bfd_boolean
7fa3d080 9453xtensa_is_property_section (asection *sec)
e0001a05 9454{
b614a702 9455 if (strncmp (XTENSA_INSN_SEC_NAME, sec->name, insn_sec_len) == 0
43cd72b9
BW
9456 || strncmp (XTENSA_LIT_SEC_NAME, sec->name, lit_sec_len) == 0
9457 || strncmp (XTENSA_PROP_SEC_NAME, sec->name, prop_sec_len) == 0)
b614a702 9458 return TRUE;
e901de89 9459
b614a702 9460 if (strncmp (".gnu.linkonce.", sec->name, linkonce_len) == 0
43cd72b9
BW
9461 && (strncmp (&sec->name[linkonce_len], "x.", 2) == 0
9462 || strncmp (&sec->name[linkonce_len], "p.", 2) == 0
9463 || strncmp (&sec->name[linkonce_len], "prop.", 5) == 0))
e901de89
BW
9464 return TRUE;
9465
e901de89
BW
9466 return FALSE;
9467}
9468
9469
9470static bfd_boolean
7fa3d080 9471xtensa_is_littable_section (asection *sec)
e901de89 9472{
b614a702
BW
9473 if (strncmp (XTENSA_LIT_SEC_NAME, sec->name, lit_sec_len) == 0)
9474 return TRUE;
e901de89 9475
b614a702
BW
9476 if (strncmp (".gnu.linkonce.", sec->name, linkonce_len) == 0
9477 && sec->name[linkonce_len] == 'p'
9478 && sec->name[linkonce_len + 1] == '.')
e901de89 9479 return TRUE;
e0001a05 9480
e901de89 9481 return FALSE;
e0001a05
NC
9482}
9483
9484
43cd72b9 9485static int
7fa3d080 9486internal_reloc_compare (const void *ap, const void *bp)
e0001a05 9487{
43cd72b9
BW
9488 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9489 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9490
9491 if (a->r_offset != b->r_offset)
9492 return (a->r_offset - b->r_offset);
9493
9494 /* We don't need to sort on these criteria for correctness,
9495 but enforcing a more strict ordering prevents unstable qsort
9496 from behaving differently with different implementations.
9497 Without the code below we get correct but different results
9498 on Solaris 2.7 and 2.8. We would like to always produce the
9499 same results no matter the host. */
9500
9501 if (a->r_info != b->r_info)
9502 return (a->r_info - b->r_info);
9503
9504 return (a->r_addend - b->r_addend);
e0001a05
NC
9505}
9506
9507
9508static int
7fa3d080 9509internal_reloc_matches (const void *ap, const void *bp)
e0001a05
NC
9510{
9511 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9512 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9513
43cd72b9
BW
9514 /* Check if one entry overlaps with the other; this shouldn't happen
9515 except when searching for a match. */
e0001a05
NC
9516 return (a->r_offset - b->r_offset);
9517}
9518
9519
e0001a05 9520char *
7fa3d080 9521xtensa_get_property_section_name (asection *sec, const char *base_name)
e0001a05 9522{
b614a702 9523 if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
e0001a05 9524 {
b614a702
BW
9525 char *prop_sec_name;
9526 const char *suffix;
43cd72b9 9527 char *linkonce_kind = 0;
b614a702
BW
9528
9529 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
7db48a12 9530 linkonce_kind = "x.";
b614a702 9531 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
7db48a12 9532 linkonce_kind = "p.";
43cd72b9
BW
9533 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
9534 linkonce_kind = "prop.";
e0001a05 9535 else
b614a702
BW
9536 abort ();
9537
43cd72b9
BW
9538 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
9539 + strlen (linkonce_kind) + 1);
b614a702 9540 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
43cd72b9 9541 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
b614a702
BW
9542
9543 suffix = sec->name + linkonce_len;
096c35a7 9544 /* For backward compatibility, replace "t." instead of inserting
43cd72b9
BW
9545 the new linkonce_kind (but not for "prop" sections). */
9546 if (strncmp (suffix, "t.", 2) == 0 && linkonce_kind[1] == '.')
9547 suffix += 2;
9548 strcat (prop_sec_name + linkonce_len, suffix);
b614a702
BW
9549
9550 return prop_sec_name;
e0001a05
NC
9551 }
9552
b614a702 9553 return strdup (base_name);
e0001a05
NC
9554}
9555
43cd72b9
BW
9556
9557flagword
7fa3d080 9558xtensa_get_property_predef_flags (asection *sec)
43cd72b9
BW
9559{
9560 if (strcmp (sec->name, XTENSA_INSN_SEC_NAME) == 0
9561 || strncmp (sec->name, ".gnu.linkonce.x.",
9562 sizeof ".gnu.linkonce.x." - 1) == 0)
9563 return (XTENSA_PROP_INSN
9564 | XTENSA_PROP_INSN_NO_TRANSFORM
9565 | XTENSA_PROP_INSN_NO_REORDER);
9566
9567 if (xtensa_is_littable_section (sec))
9568 return (XTENSA_PROP_LITERAL
9569 | XTENSA_PROP_INSN_NO_TRANSFORM
9570 | XTENSA_PROP_INSN_NO_REORDER);
9571
9572 return 0;
9573}
9574
e0001a05
NC
9575\f
9576/* Other functions called directly by the linker. */
9577
9578bfd_boolean
7fa3d080
BW
9579xtensa_callback_required_dependence (bfd *abfd,
9580 asection *sec,
9581 struct bfd_link_info *link_info,
9582 deps_callback_t callback,
9583 void *closure)
e0001a05
NC
9584{
9585 Elf_Internal_Rela *internal_relocs;
9586 bfd_byte *contents;
9587 unsigned i;
9588 bfd_boolean ok = TRUE;
43cd72b9
BW
9589 bfd_size_type sec_size;
9590
9591 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
9592
9593 /* ".plt*" sections have no explicit relocations but they contain L32R
9594 instructions that reference the corresponding ".got.plt*" sections. */
9595 if ((sec->flags & SEC_LINKER_CREATED) != 0
9596 && strncmp (sec->name, ".plt", 4) == 0)
9597 {
9598 asection *sgotplt;
9599
9600 /* Find the corresponding ".got.plt*" section. */
9601 if (sec->name[4] == '\0')
9602 sgotplt = bfd_get_section_by_name (sec->owner, ".got.plt");
9603 else
9604 {
9605 char got_name[14];
9606 int chunk = 0;
9607
9608 BFD_ASSERT (sec->name[4] == '.');
9609 chunk = strtol (&sec->name[5], NULL, 10);
9610
9611 sprintf (got_name, ".got.plt.%u", chunk);
9612 sgotplt = bfd_get_section_by_name (sec->owner, got_name);
9613 }
9614 BFD_ASSERT (sgotplt);
9615
9616 /* Assume worst-case offsets: L32R at the very end of the ".plt"
9617 section referencing a literal at the very beginning of
9618 ".got.plt". This is very close to the real dependence, anyway. */
43cd72b9 9619 (*callback) (sec, sec_size, sgotplt, 0, closure);
e0001a05
NC
9620 }
9621
9622 internal_relocs = retrieve_internal_relocs (abfd, sec,
9623 link_info->keep_memory);
9624 if (internal_relocs == NULL
43cd72b9 9625 || sec->reloc_count == 0)
e0001a05
NC
9626 return ok;
9627
9628 /* Cache the contents for the duration of this scan. */
9629 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 9630 if (contents == NULL && sec_size != 0)
e0001a05
NC
9631 {
9632 ok = FALSE;
9633 goto error_return;
9634 }
9635
43cd72b9
BW
9636 if (!xtensa_default_isa)
9637 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 9638
43cd72b9 9639 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
9640 {
9641 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9 9642 if (is_l32r_relocation (abfd, sec, contents, irel))
e0001a05
NC
9643 {
9644 r_reloc l32r_rel;
9645 asection *target_sec;
9646 bfd_vma target_offset;
43cd72b9
BW
9647
9648 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
e0001a05
NC
9649 target_sec = NULL;
9650 target_offset = 0;
9651 /* L32Rs must be local to the input file. */
9652 if (r_reloc_is_defined (&l32r_rel))
9653 {
9654 target_sec = r_reloc_get_section (&l32r_rel);
43cd72b9 9655 target_offset = l32r_rel.target_offset;
e0001a05
NC
9656 }
9657 (*callback) (sec, irel->r_offset, target_sec, target_offset,
9658 closure);
9659 }
9660 }
9661
9662 error_return:
9663 release_internal_relocs (sec, internal_relocs);
9664 release_contents (sec, contents);
9665 return ok;
9666}
9667
2f89ff8d
L
9668/* The default literal sections should always be marked as "code" (i.e.,
9669 SHF_EXECINSTR). This is particularly important for the Linux kernel
9670 module loader so that the literals are not placed after the text. */
b35d266b 9671static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
2f89ff8d 9672{
7dcb9820 9673 { ".fini.literal", 13, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
7f4d3958 9674 { ".init.literal", 13, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
7f4d3958
L
9675 { ".literal", 8, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9676 { NULL, 0, 0, 0, 0 }
9677};
e0001a05
NC
9678\f
9679#ifndef ELF_ARCH
9680#define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
9681#define TARGET_LITTLE_NAME "elf32-xtensa-le"
9682#define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
9683#define TARGET_BIG_NAME "elf32-xtensa-be"
9684#define ELF_ARCH bfd_arch_xtensa
9685
4af0a1d8
BW
9686#define ELF_MACHINE_CODE EM_XTENSA
9687#define ELF_MACHINE_ALT1 EM_XTENSA_OLD
e0001a05
NC
9688
9689#if XCHAL_HAVE_MMU
9690#define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
9691#else /* !XCHAL_HAVE_MMU */
9692#define ELF_MAXPAGESIZE 1
9693#endif /* !XCHAL_HAVE_MMU */
9694#endif /* ELF_ARCH */
9695
9696#define elf_backend_can_gc_sections 1
9697#define elf_backend_can_refcount 1
9698#define elf_backend_plt_readonly 1
9699#define elf_backend_got_header_size 4
9700#define elf_backend_want_dynbss 0
9701#define elf_backend_want_got_plt 1
9702
9703#define elf_info_to_howto elf_xtensa_info_to_howto_rela
9704
e0001a05
NC
9705#define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
9706#define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
9707#define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
9708#define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
9709#define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
9710#define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
9711
9712#define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
9713#define elf_backend_check_relocs elf_xtensa_check_relocs
e0001a05
NC
9714#define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
9715#define elf_backend_discard_info elf_xtensa_discard_info
9716#define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
9717#define elf_backend_final_write_processing elf_xtensa_final_write_processing
9718#define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
9719#define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
9720#define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
9721#define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
9722#define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
9723#define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
9724#define elf_backend_hide_symbol elf_xtensa_hide_symbol
9725#define elf_backend_modify_segment_map elf_xtensa_modify_segment_map
9726#define elf_backend_object_p elf_xtensa_object_p
9727#define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
9728#define elf_backend_relocate_section elf_xtensa_relocate_section
9729#define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
29ef7005 9730#define elf_backend_special_sections elf_xtensa_special_sections
e0001a05
NC
9731
9732#include "elf32-target.h"
This page took 0.701982 seconds and 4 git commands to generate.