Commit | Line | Data |
---|---|---|
e0001a05 | 1 | /* Xtensa-specific support for 32-bit ELF. |
2571583a | 2 | Copyright (C) 2003-2017 Free Software Foundation, Inc. |
e0001a05 NC |
3 | |
4 | This file is part of BFD, the Binary File Descriptor library. | |
5 | ||
6 | This program is free software; you can redistribute it and/or | |
7 | modify it under the terms of the GNU General Public License as | |
cd123cb7 | 8 | published by the Free Software Foundation; either version 3 of the |
e0001a05 NC |
9 | License, or (at your option) any later version. |
10 | ||
11 | This program is distributed in the hope that it will be useful, but | |
12 | WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with this program; if not, write to the Free Software | |
3e110533 | 18 | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA |
53e09e0a | 19 | 02110-1301, USA. */ |
e0001a05 | 20 | |
e0001a05 | 21 | #include "sysdep.h" |
3db64b00 | 22 | #include "bfd.h" |
e0001a05 | 23 | |
e0001a05 | 24 | #include <stdarg.h> |
e0001a05 NC |
25 | #include <strings.h> |
26 | ||
27 | #include "bfdlink.h" | |
28 | #include "libbfd.h" | |
29 | #include "elf-bfd.h" | |
30 | #include "elf/xtensa.h" | |
4c2af04f | 31 | #include "splay-tree.h" |
e0001a05 NC |
32 | #include "xtensa-isa.h" |
33 | #include "xtensa-config.h" | |
34 | ||
43cd72b9 BW |
35 | #define XTENSA_NO_NOP_REMOVAL 0 |
36 | ||
e0001a05 NC |
37 | /* Local helper functions. */ |
38 | ||
f0e6fdb2 | 39 | static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int); |
2db662be | 40 | static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4); |
e0001a05 | 41 | static bfd_reloc_status_type bfd_elf_xtensa_reloc |
7fa3d080 | 42 | (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); |
43cd72b9 | 43 | static bfd_boolean do_fix_for_relocatable_link |
7fa3d080 | 44 | (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *); |
e0001a05 | 45 | static void do_fix_for_final_link |
7fa3d080 | 46 | (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *); |
e0001a05 NC |
47 | |
48 | /* Local functions to handle Xtensa configurability. */ | |
49 | ||
7fa3d080 BW |
50 | static bfd_boolean is_indirect_call_opcode (xtensa_opcode); |
51 | static bfd_boolean is_direct_call_opcode (xtensa_opcode); | |
52 | static bfd_boolean is_windowed_call_opcode (xtensa_opcode); | |
53 | static xtensa_opcode get_const16_opcode (void); | |
54 | static xtensa_opcode get_l32r_opcode (void); | |
55 | static bfd_vma l32r_offset (bfd_vma, bfd_vma); | |
56 | static int get_relocation_opnd (xtensa_opcode, int); | |
57 | static int get_relocation_slot (int); | |
e0001a05 | 58 | static xtensa_opcode get_relocation_opcode |
7fa3d080 | 59 | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *); |
e0001a05 | 60 | static bfd_boolean is_l32r_relocation |
7fa3d080 BW |
61 | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *); |
62 | static bfd_boolean is_alt_relocation (int); | |
63 | static bfd_boolean is_operand_relocation (int); | |
43cd72b9 | 64 | static bfd_size_type insn_decode_len |
7fa3d080 | 65 | (bfd_byte *, bfd_size_type, bfd_size_type); |
43cd72b9 | 66 | static xtensa_opcode insn_decode_opcode |
7fa3d080 | 67 | (bfd_byte *, bfd_size_type, bfd_size_type, int); |
43cd72b9 | 68 | static bfd_boolean check_branch_target_aligned |
7fa3d080 | 69 | (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma); |
43cd72b9 | 70 | static bfd_boolean check_loop_aligned |
7fa3d080 BW |
71 | (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma); |
72 | static bfd_boolean check_branch_target_aligned_address (bfd_vma, int); | |
43cd72b9 | 73 | static bfd_size_type get_asm_simplify_size |
7fa3d080 | 74 | (bfd_byte *, bfd_size_type, bfd_size_type); |
e0001a05 NC |
75 | |
76 | /* Functions for link-time code simplifications. */ | |
77 | ||
43cd72b9 | 78 | static bfd_reloc_status_type elf_xtensa_do_asm_simplify |
7fa3d080 | 79 | (bfd_byte *, bfd_vma, bfd_vma, char **); |
e0001a05 | 80 | static bfd_reloc_status_type contract_asm_expansion |
7fa3d080 BW |
81 | (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **); |
82 | static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode); | |
83 | static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *); | |
e0001a05 NC |
84 | |
85 | /* Access to internal relocations, section contents and symbols. */ | |
86 | ||
87 | static Elf_Internal_Rela *retrieve_internal_relocs | |
7fa3d080 BW |
88 | (bfd *, asection *, bfd_boolean); |
89 | static void pin_internal_relocs (asection *, Elf_Internal_Rela *); | |
90 | static void release_internal_relocs (asection *, Elf_Internal_Rela *); | |
91 | static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean); | |
92 | static void pin_contents (asection *, bfd_byte *); | |
93 | static void release_contents (asection *, bfd_byte *); | |
94 | static Elf_Internal_Sym *retrieve_local_syms (bfd *); | |
e0001a05 NC |
95 | |
96 | /* Miscellaneous utility functions. */ | |
97 | ||
f0e6fdb2 BW |
98 | static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int); |
99 | static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int); | |
7fa3d080 | 100 | static asection *get_elf_r_symndx_section (bfd *, unsigned long); |
e0001a05 | 101 | static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry |
7fa3d080 BW |
102 | (bfd *, unsigned long); |
103 | static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long); | |
104 | static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *); | |
105 | static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma); | |
106 | static bfd_boolean xtensa_is_property_section (asection *); | |
1d25768e | 107 | static bfd_boolean xtensa_is_insntable_section (asection *); |
7fa3d080 | 108 | static bfd_boolean xtensa_is_littable_section (asection *); |
1d25768e | 109 | static bfd_boolean xtensa_is_proptable_section (asection *); |
7fa3d080 BW |
110 | static int internal_reloc_compare (const void *, const void *); |
111 | static int internal_reloc_matches (const void *, const void *); | |
51c8ebc1 | 112 | static asection *xtensa_get_property_section (asection *, const char *); |
7fa3d080 | 113 | static flagword xtensa_get_property_predef_flags (asection *); |
e0001a05 NC |
114 | |
115 | /* Other functions called directly by the linker. */ | |
116 | ||
117 | typedef void (*deps_callback_t) | |
7fa3d080 | 118 | (asection *, bfd_vma, asection *, bfd_vma, void *); |
e0001a05 | 119 | extern bfd_boolean xtensa_callback_required_dependence |
7fa3d080 | 120 | (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *); |
e0001a05 NC |
121 | |
122 | ||
43cd72b9 BW |
123 | /* Globally visible flag for choosing size optimization of NOP removal |
124 | instead of branch-target-aware minimization for NOP removal. | |
125 | When nonzero, narrow all instructions and remove all NOPs possible | |
126 | around longcall expansions. */ | |
7fa3d080 | 127 | |
43cd72b9 BW |
128 | int elf32xtensa_size_opt; |
129 | ||
130 | ||
131 | /* The "new_section_hook" is used to set up a per-section | |
132 | "xtensa_relax_info" data structure with additional information used | |
133 | during relaxation. */ | |
e0001a05 | 134 | |
7fa3d080 | 135 | typedef struct xtensa_relax_info_struct xtensa_relax_info; |
e0001a05 | 136 | |
43cd72b9 | 137 | |
43cd72b9 BW |
138 | /* The GNU tools do not easily allow extending interfaces to pass around |
139 | the pointer to the Xtensa ISA information, so instead we add a global | |
140 | variable here (in BFD) that can be used by any of the tools that need | |
141 | this information. */ | |
142 | ||
143 | xtensa_isa xtensa_default_isa; | |
144 | ||
145 | ||
e0001a05 NC |
146 | /* When this is true, relocations may have been modified to refer to |
147 | symbols from other input files. The per-section list of "fix" | |
148 | records needs to be checked when resolving relocations. */ | |
149 | ||
150 | static bfd_boolean relaxing_section = FALSE; | |
151 | ||
43cd72b9 BW |
152 | /* When this is true, during final links, literals that cannot be |
153 | coalesced and their relocations may be moved to other sections. */ | |
154 | ||
155 | int elf32xtensa_no_literal_movement = 1; | |
156 | ||
b0dddeec AM |
157 | /* Rename one of the generic section flags to better document how it |
158 | is used here. */ | |
159 | /* Whether relocations have been processed. */ | |
160 | #define reloc_done sec_flg0 | |
e0001a05 NC |
161 | \f |
162 | static reloc_howto_type elf_howto_table[] = | |
163 | { | |
6346d5ca | 164 | HOWTO (R_XTENSA_NONE, 0, 3, 0, FALSE, 0, complain_overflow_dont, |
e0001a05 | 165 | bfd_elf_xtensa_reloc, "R_XTENSA_NONE", |
e5f131d1 | 166 | FALSE, 0, 0, FALSE), |
e0001a05 NC |
167 | HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
168 | bfd_elf_xtensa_reloc, "R_XTENSA_32", | |
169 | TRUE, 0xffffffff, 0xffffffff, FALSE), | |
e5f131d1 | 170 | |
e0001a05 NC |
171 | /* Replace a 32-bit value with a value from the runtime linker (only |
172 | used by linker-generated stub functions). The r_addend value is | |
173 | special: 1 means to substitute a pointer to the runtime linker's | |
174 | dynamic resolver function; 2 means to substitute the link map for | |
175 | the shared object. */ | |
176 | HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont, | |
e5f131d1 BW |
177 | NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE), |
178 | ||
e0001a05 NC |
179 | HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
180 | bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT", | |
e5f131d1 | 181 | FALSE, 0, 0xffffffff, FALSE), |
e0001a05 NC |
182 | HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
183 | bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT", | |
e5f131d1 | 184 | FALSE, 0, 0xffffffff, FALSE), |
e0001a05 NC |
185 | HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
186 | bfd_elf_generic_reloc, "R_XTENSA_RELATIVE", | |
e5f131d1 | 187 | FALSE, 0, 0xffffffff, FALSE), |
e0001a05 NC |
188 | HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
189 | bfd_elf_xtensa_reloc, "R_XTENSA_PLT", | |
e5f131d1 BW |
190 | FALSE, 0, 0xffffffff, FALSE), |
191 | ||
e0001a05 | 192 | EMPTY_HOWTO (7), |
e5f131d1 BW |
193 | |
194 | /* Old relocations for backward compatibility. */ | |
e0001a05 | 195 | HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 196 | bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE), |
e0001a05 | 197 | HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 198 | bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE), |
e0001a05 | 199 | HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 BW |
200 | bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE), |
201 | ||
e0001a05 NC |
202 | /* Assembly auto-expansion. */ |
203 | HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
e5f131d1 | 204 | bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE), |
e0001a05 NC |
205 | /* Relax assembly auto-expansion. */ |
206 | HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
e5f131d1 BW |
207 | bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE), |
208 | ||
e0001a05 | 209 | EMPTY_HOWTO (13), |
1bbb5f21 BW |
210 | |
211 | HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield, | |
212 | bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL", | |
213 | FALSE, 0, 0xffffffff, TRUE), | |
e5f131d1 | 214 | |
e0001a05 NC |
215 | /* GNU extension to record C++ vtable hierarchy. */ |
216 | HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont, | |
217 | NULL, "R_XTENSA_GNU_VTINHERIT", | |
e5f131d1 | 218 | FALSE, 0, 0, FALSE), |
e0001a05 NC |
219 | /* GNU extension to record C++ vtable member usage. */ |
220 | HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont, | |
221 | _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY", | |
e5f131d1 | 222 | FALSE, 0, 0, FALSE), |
43cd72b9 BW |
223 | |
224 | /* Relocations for supporting difference of symbols. */ | |
1058c753 | 225 | HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_signed, |
e5f131d1 | 226 | bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE), |
1058c753 | 227 | HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_signed, |
e5f131d1 | 228 | bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE), |
1058c753 | 229 | HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed, |
e5f131d1 | 230 | bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE), |
43cd72b9 BW |
231 | |
232 | /* General immediate operand relocations. */ | |
233 | HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
e5f131d1 | 234 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 235 | HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 236 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 237 | HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 238 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 239 | HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 240 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 241 | HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 242 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 243 | HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 244 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 245 | HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 246 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 247 | HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 248 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 249 | HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 250 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 251 | HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 252 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 253 | HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 254 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 255 | HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 256 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 257 | HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 258 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 259 | HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 260 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 261 | HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 262 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE), |
43cd72b9 BW |
263 | |
264 | /* "Alternate" relocations. The meaning of these is opcode-specific. */ | |
265 | HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
e5f131d1 | 266 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 267 | HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 268 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 269 | HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 270 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 271 | HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 272 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 273 | HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 274 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 275 | HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 276 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 277 | HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 278 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 279 | HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 280 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 281 | HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 282 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 283 | HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 284 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 285 | HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 286 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 287 | HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 288 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 289 | HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 290 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 291 | HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 292 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 293 | HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 294 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE), |
28dbbc02 BW |
295 | |
296 | /* TLS relocations. */ | |
297 | HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont, | |
298 | bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN", | |
299 | FALSE, 0, 0xffffffff, FALSE), | |
300 | HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont, | |
301 | bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG", | |
302 | FALSE, 0, 0xffffffff, FALSE), | |
303 | HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont, | |
304 | bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF", | |
305 | FALSE, 0, 0xffffffff, FALSE), | |
306 | HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont, | |
307 | bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF", | |
308 | FALSE, 0, 0xffffffff, FALSE), | |
309 | HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont, | |
310 | bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC", | |
311 | FALSE, 0, 0, FALSE), | |
312 | HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont, | |
313 | bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG", | |
314 | FALSE, 0, 0, FALSE), | |
315 | HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont, | |
316 | bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL", | |
317 | FALSE, 0, 0, FALSE), | |
e0001a05 NC |
318 | }; |
319 | ||
43cd72b9 | 320 | #if DEBUG_GEN_RELOC |
e0001a05 NC |
321 | #define TRACE(str) \ |
322 | fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str) | |
323 | #else | |
324 | #define TRACE(str) | |
325 | #endif | |
326 | ||
327 | static reloc_howto_type * | |
7fa3d080 BW |
328 | elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, |
329 | bfd_reloc_code_real_type code) | |
e0001a05 NC |
330 | { |
331 | switch (code) | |
332 | { | |
333 | case BFD_RELOC_NONE: | |
334 | TRACE ("BFD_RELOC_NONE"); | |
335 | return &elf_howto_table[(unsigned) R_XTENSA_NONE ]; | |
336 | ||
337 | case BFD_RELOC_32: | |
338 | TRACE ("BFD_RELOC_32"); | |
339 | return &elf_howto_table[(unsigned) R_XTENSA_32 ]; | |
340 | ||
1bbb5f21 BW |
341 | case BFD_RELOC_32_PCREL: |
342 | TRACE ("BFD_RELOC_32_PCREL"); | |
343 | return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ]; | |
344 | ||
43cd72b9 BW |
345 | case BFD_RELOC_XTENSA_DIFF8: |
346 | TRACE ("BFD_RELOC_XTENSA_DIFF8"); | |
347 | return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ]; | |
348 | ||
349 | case BFD_RELOC_XTENSA_DIFF16: | |
350 | TRACE ("BFD_RELOC_XTENSA_DIFF16"); | |
351 | return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ]; | |
352 | ||
353 | case BFD_RELOC_XTENSA_DIFF32: | |
354 | TRACE ("BFD_RELOC_XTENSA_DIFF32"); | |
355 | return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ]; | |
356 | ||
e0001a05 NC |
357 | case BFD_RELOC_XTENSA_RTLD: |
358 | TRACE ("BFD_RELOC_XTENSA_RTLD"); | |
359 | return &elf_howto_table[(unsigned) R_XTENSA_RTLD ]; | |
360 | ||
361 | case BFD_RELOC_XTENSA_GLOB_DAT: | |
362 | TRACE ("BFD_RELOC_XTENSA_GLOB_DAT"); | |
363 | return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ]; | |
364 | ||
365 | case BFD_RELOC_XTENSA_JMP_SLOT: | |
366 | TRACE ("BFD_RELOC_XTENSA_JMP_SLOT"); | |
367 | return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ]; | |
368 | ||
369 | case BFD_RELOC_XTENSA_RELATIVE: | |
370 | TRACE ("BFD_RELOC_XTENSA_RELATIVE"); | |
371 | return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ]; | |
372 | ||
373 | case BFD_RELOC_XTENSA_PLT: | |
374 | TRACE ("BFD_RELOC_XTENSA_PLT"); | |
375 | return &elf_howto_table[(unsigned) R_XTENSA_PLT ]; | |
376 | ||
377 | case BFD_RELOC_XTENSA_OP0: | |
378 | TRACE ("BFD_RELOC_XTENSA_OP0"); | |
379 | return &elf_howto_table[(unsigned) R_XTENSA_OP0 ]; | |
380 | ||
381 | case BFD_RELOC_XTENSA_OP1: | |
382 | TRACE ("BFD_RELOC_XTENSA_OP1"); | |
383 | return &elf_howto_table[(unsigned) R_XTENSA_OP1 ]; | |
384 | ||
385 | case BFD_RELOC_XTENSA_OP2: | |
386 | TRACE ("BFD_RELOC_XTENSA_OP2"); | |
387 | return &elf_howto_table[(unsigned) R_XTENSA_OP2 ]; | |
388 | ||
389 | case BFD_RELOC_XTENSA_ASM_EXPAND: | |
390 | TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND"); | |
391 | return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ]; | |
392 | ||
393 | case BFD_RELOC_XTENSA_ASM_SIMPLIFY: | |
394 | TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY"); | |
395 | return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ]; | |
396 | ||
397 | case BFD_RELOC_VTABLE_INHERIT: | |
398 | TRACE ("BFD_RELOC_VTABLE_INHERIT"); | |
399 | return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ]; | |
400 | ||
401 | case BFD_RELOC_VTABLE_ENTRY: | |
402 | TRACE ("BFD_RELOC_VTABLE_ENTRY"); | |
403 | return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ]; | |
404 | ||
28dbbc02 BW |
405 | case BFD_RELOC_XTENSA_TLSDESC_FN: |
406 | TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN"); | |
407 | return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ]; | |
408 | ||
409 | case BFD_RELOC_XTENSA_TLSDESC_ARG: | |
410 | TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG"); | |
411 | return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ]; | |
412 | ||
413 | case BFD_RELOC_XTENSA_TLS_DTPOFF: | |
414 | TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF"); | |
415 | return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ]; | |
416 | ||
417 | case BFD_RELOC_XTENSA_TLS_TPOFF: | |
418 | TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF"); | |
419 | return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ]; | |
420 | ||
421 | case BFD_RELOC_XTENSA_TLS_FUNC: | |
422 | TRACE ("BFD_RELOC_XTENSA_TLS_FUNC"); | |
423 | return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ]; | |
424 | ||
425 | case BFD_RELOC_XTENSA_TLS_ARG: | |
426 | TRACE ("BFD_RELOC_XTENSA_TLS_ARG"); | |
427 | return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ]; | |
428 | ||
429 | case BFD_RELOC_XTENSA_TLS_CALL: | |
430 | TRACE ("BFD_RELOC_XTENSA_TLS_CALL"); | |
431 | return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ]; | |
432 | ||
e0001a05 | 433 | default: |
43cd72b9 BW |
434 | if (code >= BFD_RELOC_XTENSA_SLOT0_OP |
435 | && code <= BFD_RELOC_XTENSA_SLOT14_OP) | |
436 | { | |
437 | unsigned n = (R_XTENSA_SLOT0_OP + | |
438 | (code - BFD_RELOC_XTENSA_SLOT0_OP)); | |
439 | return &elf_howto_table[n]; | |
440 | } | |
441 | ||
442 | if (code >= BFD_RELOC_XTENSA_SLOT0_ALT | |
443 | && code <= BFD_RELOC_XTENSA_SLOT14_ALT) | |
444 | { | |
445 | unsigned n = (R_XTENSA_SLOT0_ALT + | |
446 | (code - BFD_RELOC_XTENSA_SLOT0_ALT)); | |
447 | return &elf_howto_table[n]; | |
448 | } | |
449 | ||
e0001a05 NC |
450 | break; |
451 | } | |
452 | ||
453 | TRACE ("Unknown"); | |
454 | return NULL; | |
455 | } | |
456 | ||
157090f7 AM |
457 | static reloc_howto_type * |
458 | elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, | |
459 | const char *r_name) | |
460 | { | |
461 | unsigned int i; | |
462 | ||
463 | for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++) | |
464 | if (elf_howto_table[i].name != NULL | |
465 | && strcasecmp (elf_howto_table[i].name, r_name) == 0) | |
466 | return &elf_howto_table[i]; | |
467 | ||
468 | return NULL; | |
469 | } | |
470 | ||
e0001a05 NC |
471 | |
472 | /* Given an ELF "rela" relocation, find the corresponding howto and record | |
473 | it in the BFD internal arelent representation of the relocation. */ | |
474 | ||
475 | static void | |
7fa3d080 BW |
476 | elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED, |
477 | arelent *cache_ptr, | |
478 | Elf_Internal_Rela *dst) | |
e0001a05 NC |
479 | { |
480 | unsigned int r_type = ELF32_R_TYPE (dst->r_info); | |
481 | ||
5860e3f8 NC |
482 | if (r_type >= (unsigned int) R_XTENSA_max) |
483 | { | |
695344c0 | 484 | /* xgettext:c-format */ |
64d29018 | 485 | _bfd_error_handler (_("%B: invalid XTENSA reloc number: %d"), abfd, r_type); |
5860e3f8 NC |
486 | r_type = 0; |
487 | } | |
e0001a05 NC |
488 | cache_ptr->howto = &elf_howto_table[r_type]; |
489 | } | |
490 | ||
491 | \f | |
492 | /* Functions for the Xtensa ELF linker. */ | |
493 | ||
494 | /* The name of the dynamic interpreter. This is put in the .interp | |
495 | section. */ | |
496 | ||
497 | #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so" | |
498 | ||
499 | /* The size in bytes of an entry in the procedure linkage table. | |
500 | (This does _not_ include the space for the literals associated with | |
501 | the PLT entry.) */ | |
502 | ||
503 | #define PLT_ENTRY_SIZE 16 | |
504 | ||
505 | /* For _really_ large PLTs, we may need to alternate between literals | |
506 | and code to keep the literals within the 256K range of the L32R | |
507 | instructions in the code. It's unlikely that anyone would ever need | |
508 | such a big PLT, but an arbitrary limit on the PLT size would be bad. | |
509 | Thus, we split the PLT into chunks. Since there's very little | |
510 | overhead (2 extra literals) for each chunk, the chunk size is kept | |
511 | small so that the code for handling multiple chunks get used and | |
512 | tested regularly. With 254 entries, there are 1K of literals for | |
513 | each chunk, and that seems like a nice round number. */ | |
514 | ||
515 | #define PLT_ENTRIES_PER_CHUNK 254 | |
516 | ||
517 | /* PLT entries are actually used as stub functions for lazy symbol | |
518 | resolution. Once the symbol is resolved, the stub function is never | |
519 | invoked. Note: the 32-byte frame size used here cannot be changed | |
520 | without a corresponding change in the runtime linker. */ | |
521 | ||
522 | static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] = | |
523 | { | |
92b3f008 | 524 | #if XSHAL_ABI == XTHAL_ABI_WINDOWED |
e0001a05 | 525 | 0x6c, 0x10, 0x04, /* entry sp, 32 */ |
92b3f008 | 526 | #endif |
e0001a05 NC |
527 | 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */ |
528 | 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */ | |
529 | 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */ | |
530 | 0x0a, 0x80, 0x00, /* jx a8 */ | |
531 | 0 /* unused */ | |
532 | }; | |
533 | ||
534 | static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] = | |
535 | { | |
92b3f008 | 536 | #if XSHAL_ABI == XTHAL_ABI_WINDOWED |
e0001a05 | 537 | 0x36, 0x41, 0x00, /* entry sp, 32 */ |
92b3f008 | 538 | #endif |
e0001a05 NC |
539 | 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */ |
540 | 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */ | |
541 | 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */ | |
542 | 0xa0, 0x08, 0x00, /* jx a8 */ | |
543 | 0 /* unused */ | |
544 | }; | |
545 | ||
28dbbc02 BW |
546 | /* The size of the thread control block. */ |
547 | #define TCB_SIZE 8 | |
548 | ||
549 | struct elf_xtensa_link_hash_entry | |
550 | { | |
551 | struct elf_link_hash_entry elf; | |
552 | ||
553 | bfd_signed_vma tlsfunc_refcount; | |
554 | ||
555 | #define GOT_UNKNOWN 0 | |
556 | #define GOT_NORMAL 1 | |
557 | #define GOT_TLS_GD 2 /* global or local dynamic */ | |
558 | #define GOT_TLS_IE 4 /* initial or local exec */ | |
559 | #define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE) | |
560 | unsigned char tls_type; | |
561 | }; | |
562 | ||
563 | #define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent)) | |
564 | ||
565 | struct elf_xtensa_obj_tdata | |
566 | { | |
567 | struct elf_obj_tdata root; | |
568 | ||
569 | /* tls_type for each local got entry. */ | |
570 | char *local_got_tls_type; | |
571 | ||
572 | bfd_signed_vma *local_tlsfunc_refcounts; | |
573 | }; | |
574 | ||
575 | #define elf_xtensa_tdata(abfd) \ | |
576 | ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any) | |
577 | ||
578 | #define elf_xtensa_local_got_tls_type(abfd) \ | |
579 | (elf_xtensa_tdata (abfd)->local_got_tls_type) | |
580 | ||
581 | #define elf_xtensa_local_tlsfunc_refcounts(abfd) \ | |
582 | (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts) | |
583 | ||
584 | #define is_xtensa_elf(bfd) \ | |
585 | (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ | |
586 | && elf_tdata (bfd) != NULL \ | |
4dfe6ac6 | 587 | && elf_object_id (bfd) == XTENSA_ELF_DATA) |
28dbbc02 BW |
588 | |
589 | static bfd_boolean | |
590 | elf_xtensa_mkobject (bfd *abfd) | |
591 | { | |
592 | return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata), | |
4dfe6ac6 | 593 | XTENSA_ELF_DATA); |
28dbbc02 BW |
594 | } |
595 | ||
f0e6fdb2 BW |
596 | /* Xtensa ELF linker hash table. */ |
597 | ||
598 | struct elf_xtensa_link_hash_table | |
599 | { | |
600 | struct elf_link_hash_table elf; | |
601 | ||
602 | /* Short-cuts to get to dynamic linker sections. */ | |
f0e6fdb2 BW |
603 | asection *sgotloc; |
604 | asection *spltlittbl; | |
605 | ||
606 | /* Total count of PLT relocations seen during check_relocs. | |
607 | The actual PLT code must be split into multiple sections and all | |
608 | the sections have to be created before size_dynamic_sections, | |
609 | where we figure out the exact number of PLT entries that will be | |
610 | needed. It is OK if this count is an overestimate, e.g., some | |
611 | relocations may be removed by GC. */ | |
612 | int plt_reloc_count; | |
28dbbc02 BW |
613 | |
614 | struct elf_xtensa_link_hash_entry *tlsbase; | |
f0e6fdb2 BW |
615 | }; |
616 | ||
617 | /* Get the Xtensa ELF linker hash table from a link_info structure. */ | |
618 | ||
619 | #define elf_xtensa_hash_table(p) \ | |
4dfe6ac6 NC |
620 | (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \ |
621 | == XTENSA_ELF_DATA ? ((struct elf_xtensa_link_hash_table *) ((p)->hash)) : NULL) | |
f0e6fdb2 | 622 | |
28dbbc02 BW |
623 | /* Create an entry in an Xtensa ELF linker hash table. */ |
624 | ||
625 | static struct bfd_hash_entry * | |
626 | elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry, | |
627 | struct bfd_hash_table *table, | |
628 | const char *string) | |
629 | { | |
630 | /* Allocate the structure if it has not already been allocated by a | |
631 | subclass. */ | |
632 | if (entry == NULL) | |
633 | { | |
634 | entry = bfd_hash_allocate (table, | |
635 | sizeof (struct elf_xtensa_link_hash_entry)); | |
636 | if (entry == NULL) | |
637 | return entry; | |
638 | } | |
639 | ||
640 | /* Call the allocation method of the superclass. */ | |
641 | entry = _bfd_elf_link_hash_newfunc (entry, table, string); | |
642 | if (entry != NULL) | |
643 | { | |
644 | struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry); | |
645 | eh->tlsfunc_refcount = 0; | |
646 | eh->tls_type = GOT_UNKNOWN; | |
647 | } | |
648 | ||
649 | return entry; | |
650 | } | |
651 | ||
f0e6fdb2 BW |
652 | /* Create an Xtensa ELF linker hash table. */ |
653 | ||
654 | static struct bfd_link_hash_table * | |
655 | elf_xtensa_link_hash_table_create (bfd *abfd) | |
656 | { | |
28dbbc02 | 657 | struct elf_link_hash_entry *tlsbase; |
f0e6fdb2 BW |
658 | struct elf_xtensa_link_hash_table *ret; |
659 | bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table); | |
660 | ||
7bf52ea2 | 661 | ret = bfd_zmalloc (amt); |
f0e6fdb2 BW |
662 | if (ret == NULL) |
663 | return NULL; | |
664 | ||
665 | if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, | |
28dbbc02 | 666 | elf_xtensa_link_hash_newfunc, |
4dfe6ac6 NC |
667 | sizeof (struct elf_xtensa_link_hash_entry), |
668 | XTENSA_ELF_DATA)) | |
f0e6fdb2 BW |
669 | { |
670 | free (ret); | |
671 | return NULL; | |
672 | } | |
673 | ||
28dbbc02 BW |
674 | /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking |
675 | for it later. */ | |
676 | tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_", | |
677 | TRUE, FALSE, FALSE); | |
678 | tlsbase->root.type = bfd_link_hash_new; | |
679 | tlsbase->root.u.undef.abfd = NULL; | |
680 | tlsbase->non_elf = 0; | |
681 | ret->tlsbase = elf_xtensa_hash_entry (tlsbase); | |
682 | ret->tlsbase->tls_type = GOT_UNKNOWN; | |
683 | ||
f0e6fdb2 BW |
684 | return &ret->elf.root; |
685 | } | |
571b5725 | 686 | |
28dbbc02 BW |
687 | /* Copy the extra info we tack onto an elf_link_hash_entry. */ |
688 | ||
689 | static void | |
690 | elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info, | |
691 | struct elf_link_hash_entry *dir, | |
692 | struct elf_link_hash_entry *ind) | |
693 | { | |
694 | struct elf_xtensa_link_hash_entry *edir, *eind; | |
695 | ||
696 | edir = elf_xtensa_hash_entry (dir); | |
697 | eind = elf_xtensa_hash_entry (ind); | |
698 | ||
699 | if (ind->root.type == bfd_link_hash_indirect) | |
700 | { | |
701 | edir->tlsfunc_refcount += eind->tlsfunc_refcount; | |
702 | eind->tlsfunc_refcount = 0; | |
703 | ||
704 | if (dir->got.refcount <= 0) | |
705 | { | |
706 | edir->tls_type = eind->tls_type; | |
707 | eind->tls_type = GOT_UNKNOWN; | |
708 | } | |
709 | } | |
710 | ||
711 | _bfd_elf_link_hash_copy_indirect (info, dir, ind); | |
712 | } | |
713 | ||
571b5725 | 714 | static inline bfd_boolean |
4608f3d9 | 715 | elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h, |
7fa3d080 | 716 | struct bfd_link_info *info) |
571b5725 BW |
717 | { |
718 | /* Check if we should do dynamic things to this symbol. The | |
719 | "ignore_protected" argument need not be set, because Xtensa code | |
720 | does not require special handling of STV_PROTECTED to make function | |
721 | pointer comparisons work properly. The PLT addresses are never | |
722 | used for function pointers. */ | |
723 | ||
724 | return _bfd_elf_dynamic_symbol_p (h, info, 0); | |
725 | } | |
726 | ||
e0001a05 NC |
727 | \f |
728 | static int | |
7fa3d080 | 729 | property_table_compare (const void *ap, const void *bp) |
e0001a05 NC |
730 | { |
731 | const property_table_entry *a = (const property_table_entry *) ap; | |
732 | const property_table_entry *b = (const property_table_entry *) bp; | |
733 | ||
43cd72b9 BW |
734 | if (a->address == b->address) |
735 | { | |
43cd72b9 BW |
736 | if (a->size != b->size) |
737 | return (a->size - b->size); | |
738 | ||
739 | if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN)) | |
740 | return ((b->flags & XTENSA_PROP_ALIGN) | |
741 | - (a->flags & XTENSA_PROP_ALIGN)); | |
742 | ||
743 | if ((a->flags & XTENSA_PROP_ALIGN) | |
744 | && (GET_XTENSA_PROP_ALIGNMENT (a->flags) | |
745 | != GET_XTENSA_PROP_ALIGNMENT (b->flags))) | |
746 | return (GET_XTENSA_PROP_ALIGNMENT (a->flags) | |
747 | - GET_XTENSA_PROP_ALIGNMENT (b->flags)); | |
68ffbac6 | 748 | |
43cd72b9 BW |
749 | if ((a->flags & XTENSA_PROP_UNREACHABLE) |
750 | != (b->flags & XTENSA_PROP_UNREACHABLE)) | |
751 | return ((b->flags & XTENSA_PROP_UNREACHABLE) | |
752 | - (a->flags & XTENSA_PROP_UNREACHABLE)); | |
753 | ||
754 | return (a->flags - b->flags); | |
755 | } | |
756 | ||
757 | return (a->address - b->address); | |
758 | } | |
759 | ||
760 | ||
761 | static int | |
7fa3d080 | 762 | property_table_matches (const void *ap, const void *bp) |
43cd72b9 BW |
763 | { |
764 | const property_table_entry *a = (const property_table_entry *) ap; | |
765 | const property_table_entry *b = (const property_table_entry *) bp; | |
766 | ||
767 | /* Check if one entry overlaps with the other. */ | |
e0001a05 NC |
768 | if ((b->address >= a->address && b->address < (a->address + a->size)) |
769 | || (a->address >= b->address && a->address < (b->address + b->size))) | |
770 | return 0; | |
771 | ||
772 | return (a->address - b->address); | |
773 | } | |
774 | ||
775 | ||
43cd72b9 BW |
776 | /* Get the literal table or property table entries for the given |
777 | section. Sets TABLE_P and returns the number of entries. On | |
778 | error, returns a negative value. */ | |
e0001a05 | 779 | |
7fa3d080 BW |
780 | static int |
781 | xtensa_read_table_entries (bfd *abfd, | |
782 | asection *section, | |
783 | property_table_entry **table_p, | |
784 | const char *sec_name, | |
785 | bfd_boolean output_addr) | |
e0001a05 NC |
786 | { |
787 | asection *table_section; | |
e0001a05 NC |
788 | bfd_size_type table_size = 0; |
789 | bfd_byte *table_data; | |
790 | property_table_entry *blocks; | |
e4115460 | 791 | int blk, block_count; |
e0001a05 | 792 | bfd_size_type num_records; |
bcc2cc8e BW |
793 | Elf_Internal_Rela *internal_relocs, *irel, *rel_end; |
794 | bfd_vma section_addr, off; | |
43cd72b9 | 795 | flagword predef_flags; |
bcc2cc8e | 796 | bfd_size_type table_entry_size, section_limit; |
43cd72b9 BW |
797 | |
798 | if (!section | |
799 | || !(section->flags & SEC_ALLOC) | |
800 | || (section->flags & SEC_DEBUGGING)) | |
801 | { | |
802 | *table_p = NULL; | |
803 | return 0; | |
804 | } | |
e0001a05 | 805 | |
74869ac7 | 806 | table_section = xtensa_get_property_section (section, sec_name); |
43cd72b9 | 807 | if (table_section) |
eea6121a | 808 | table_size = table_section->size; |
43cd72b9 | 809 | |
68ffbac6 | 810 | if (table_size == 0) |
e0001a05 NC |
811 | { |
812 | *table_p = NULL; | |
813 | return 0; | |
814 | } | |
815 | ||
43cd72b9 BW |
816 | predef_flags = xtensa_get_property_predef_flags (table_section); |
817 | table_entry_size = 12; | |
818 | if (predef_flags) | |
819 | table_entry_size -= 4; | |
820 | ||
821 | num_records = table_size / table_entry_size; | |
e0001a05 NC |
822 | table_data = retrieve_contents (abfd, table_section, TRUE); |
823 | blocks = (property_table_entry *) | |
824 | bfd_malloc (num_records * sizeof (property_table_entry)); | |
825 | block_count = 0; | |
43cd72b9 BW |
826 | |
827 | if (output_addr) | |
828 | section_addr = section->output_section->vma + section->output_offset; | |
829 | else | |
830 | section_addr = section->vma; | |
3ba3bc8c | 831 | |
e0001a05 | 832 | internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE); |
3ba3bc8c | 833 | if (internal_relocs && !table_section->reloc_done) |
e0001a05 | 834 | { |
bcc2cc8e BW |
835 | qsort (internal_relocs, table_section->reloc_count, |
836 | sizeof (Elf_Internal_Rela), internal_reloc_compare); | |
837 | irel = internal_relocs; | |
838 | } | |
839 | else | |
840 | irel = NULL; | |
841 | ||
842 | section_limit = bfd_get_section_limit (abfd, section); | |
843 | rel_end = internal_relocs + table_section->reloc_count; | |
844 | ||
68ffbac6 | 845 | for (off = 0; off < table_size; off += table_entry_size) |
bcc2cc8e BW |
846 | { |
847 | bfd_vma address = bfd_get_32 (abfd, table_data + off); | |
848 | ||
849 | /* Skip any relocations before the current offset. This should help | |
850 | avoid confusion caused by unexpected relocations for the preceding | |
851 | table entry. */ | |
852 | while (irel && | |
853 | (irel->r_offset < off | |
854 | || (irel->r_offset == off | |
855 | && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE))) | |
856 | { | |
857 | irel += 1; | |
858 | if (irel >= rel_end) | |
859 | irel = 0; | |
860 | } | |
e0001a05 | 861 | |
bcc2cc8e | 862 | if (irel && irel->r_offset == off) |
e0001a05 | 863 | { |
bcc2cc8e BW |
864 | bfd_vma sym_off; |
865 | unsigned long r_symndx = ELF32_R_SYM (irel->r_info); | |
866 | BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32); | |
e0001a05 | 867 | |
bcc2cc8e | 868 | if (get_elf_r_symndx_section (abfd, r_symndx) != section) |
e0001a05 NC |
869 | continue; |
870 | ||
bcc2cc8e BW |
871 | sym_off = get_elf_r_symndx_offset (abfd, r_symndx); |
872 | BFD_ASSERT (sym_off == 0); | |
873 | address += (section_addr + sym_off + irel->r_addend); | |
e0001a05 | 874 | } |
bcc2cc8e | 875 | else |
e0001a05 | 876 | { |
bcc2cc8e BW |
877 | if (address < section_addr |
878 | || address >= section_addr + section_limit) | |
879 | continue; | |
e0001a05 | 880 | } |
bcc2cc8e BW |
881 | |
882 | blocks[block_count].address = address; | |
883 | blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4); | |
884 | if (predef_flags) | |
885 | blocks[block_count].flags = predef_flags; | |
886 | else | |
887 | blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8); | |
888 | block_count++; | |
e0001a05 NC |
889 | } |
890 | ||
891 | release_contents (table_section, table_data); | |
892 | release_internal_relocs (table_section, internal_relocs); | |
893 | ||
43cd72b9 | 894 | if (block_count > 0) |
e0001a05 NC |
895 | { |
896 | /* Now sort them into address order for easy reference. */ | |
897 | qsort (blocks, block_count, sizeof (property_table_entry), | |
898 | property_table_compare); | |
e4115460 BW |
899 | |
900 | /* Check that the table contents are valid. Problems may occur, | |
901 | for example, if an unrelocated object file is stripped. */ | |
902 | for (blk = 1; blk < block_count; blk++) | |
903 | { | |
904 | /* The only circumstance where two entries may legitimately | |
905 | have the same address is when one of them is a zero-size | |
906 | placeholder to mark a place where fill can be inserted. | |
907 | The zero-size entry should come first. */ | |
908 | if (blocks[blk - 1].address == blocks[blk].address && | |
909 | blocks[blk - 1].size != 0) | |
910 | { | |
695344c0 | 911 | /* xgettext:c-format */ |
4eca0228 AM |
912 | _bfd_error_handler (_("%B(%A): invalid property table"), |
913 | abfd, section); | |
e4115460 BW |
914 | bfd_set_error (bfd_error_bad_value); |
915 | free (blocks); | |
916 | return -1; | |
917 | } | |
918 | } | |
e0001a05 | 919 | } |
43cd72b9 | 920 | |
e0001a05 NC |
921 | *table_p = blocks; |
922 | return block_count; | |
923 | } | |
924 | ||
925 | ||
7fa3d080 BW |
926 | static property_table_entry * |
927 | elf_xtensa_find_property_entry (property_table_entry *property_table, | |
928 | int property_table_size, | |
929 | bfd_vma addr) | |
e0001a05 NC |
930 | { |
931 | property_table_entry entry; | |
43cd72b9 | 932 | property_table_entry *rv; |
e0001a05 | 933 | |
43cd72b9 BW |
934 | if (property_table_size == 0) |
935 | return NULL; | |
e0001a05 NC |
936 | |
937 | entry.address = addr; | |
938 | entry.size = 1; | |
43cd72b9 | 939 | entry.flags = 0; |
e0001a05 | 940 | |
43cd72b9 BW |
941 | rv = bsearch (&entry, property_table, property_table_size, |
942 | sizeof (property_table_entry), property_table_matches); | |
943 | return rv; | |
944 | } | |
945 | ||
946 | ||
947 | static bfd_boolean | |
7fa3d080 BW |
948 | elf_xtensa_in_literal_pool (property_table_entry *lit_table, |
949 | int lit_table_size, | |
950 | bfd_vma addr) | |
43cd72b9 BW |
951 | { |
952 | if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr)) | |
e0001a05 NC |
953 | return TRUE; |
954 | ||
955 | return FALSE; | |
956 | } | |
957 | ||
958 | \f | |
959 | /* Look through the relocs for a section during the first phase, and | |
960 | calculate needed space in the dynamic reloc sections. */ | |
961 | ||
962 | static bfd_boolean | |
7fa3d080 BW |
963 | elf_xtensa_check_relocs (bfd *abfd, |
964 | struct bfd_link_info *info, | |
965 | asection *sec, | |
966 | const Elf_Internal_Rela *relocs) | |
e0001a05 | 967 | { |
f0e6fdb2 | 968 | struct elf_xtensa_link_hash_table *htab; |
e0001a05 NC |
969 | Elf_Internal_Shdr *symtab_hdr; |
970 | struct elf_link_hash_entry **sym_hashes; | |
971 | const Elf_Internal_Rela *rel; | |
972 | const Elf_Internal_Rela *rel_end; | |
e0001a05 | 973 | |
0e1862bb | 974 | if (bfd_link_relocatable (info) || (sec->flags & SEC_ALLOC) == 0) |
e0001a05 NC |
975 | return TRUE; |
976 | ||
28dbbc02 BW |
977 | BFD_ASSERT (is_xtensa_elf (abfd)); |
978 | ||
f0e6fdb2 | 979 | htab = elf_xtensa_hash_table (info); |
4dfe6ac6 NC |
980 | if (htab == NULL) |
981 | return FALSE; | |
982 | ||
e0001a05 NC |
983 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
984 | sym_hashes = elf_sym_hashes (abfd); | |
985 | ||
e0001a05 NC |
986 | rel_end = relocs + sec->reloc_count; |
987 | for (rel = relocs; rel < rel_end; rel++) | |
988 | { | |
989 | unsigned int r_type; | |
990 | unsigned long r_symndx; | |
28dbbc02 BW |
991 | struct elf_link_hash_entry *h = NULL; |
992 | struct elf_xtensa_link_hash_entry *eh; | |
993 | int tls_type, old_tls_type; | |
994 | bfd_boolean is_got = FALSE; | |
995 | bfd_boolean is_plt = FALSE; | |
996 | bfd_boolean is_tlsfunc = FALSE; | |
e0001a05 NC |
997 | |
998 | r_symndx = ELF32_R_SYM (rel->r_info); | |
999 | r_type = ELF32_R_TYPE (rel->r_info); | |
1000 | ||
1001 | if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr)) | |
1002 | { | |
695344c0 | 1003 | /* xgettext:c-format */ |
4eca0228 AM |
1004 | _bfd_error_handler (_("%B: bad symbol index: %d"), |
1005 | abfd, r_symndx); | |
e0001a05 NC |
1006 | return FALSE; |
1007 | } | |
1008 | ||
28dbbc02 | 1009 | if (r_symndx >= symtab_hdr->sh_info) |
e0001a05 NC |
1010 | { |
1011 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | |
1012 | while (h->root.type == bfd_link_hash_indirect | |
1013 | || h->root.type == bfd_link_hash_warning) | |
1014 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
81fbe831 AM |
1015 | |
1016 | /* PR15323, ref flags aren't set for references in the same | |
1017 | object. */ | |
1018 | h->root.non_ir_ref = 1; | |
e0001a05 | 1019 | } |
28dbbc02 | 1020 | eh = elf_xtensa_hash_entry (h); |
e0001a05 NC |
1021 | |
1022 | switch (r_type) | |
1023 | { | |
28dbbc02 | 1024 | case R_XTENSA_TLSDESC_FN: |
0e1862bb | 1025 | if (bfd_link_pic (info)) |
28dbbc02 BW |
1026 | { |
1027 | tls_type = GOT_TLS_GD; | |
1028 | is_got = TRUE; | |
1029 | is_tlsfunc = TRUE; | |
1030 | } | |
1031 | else | |
1032 | tls_type = GOT_TLS_IE; | |
1033 | break; | |
e0001a05 | 1034 | |
28dbbc02 | 1035 | case R_XTENSA_TLSDESC_ARG: |
0e1862bb | 1036 | if (bfd_link_pic (info)) |
e0001a05 | 1037 | { |
28dbbc02 BW |
1038 | tls_type = GOT_TLS_GD; |
1039 | is_got = TRUE; | |
1040 | } | |
1041 | else | |
1042 | { | |
1043 | tls_type = GOT_TLS_IE; | |
1044 | if (h && elf_xtensa_hash_entry (h) != htab->tlsbase) | |
1045 | is_got = TRUE; | |
e0001a05 NC |
1046 | } |
1047 | break; | |
1048 | ||
28dbbc02 | 1049 | case R_XTENSA_TLS_DTPOFF: |
0e1862bb | 1050 | if (bfd_link_pic (info)) |
28dbbc02 BW |
1051 | tls_type = GOT_TLS_GD; |
1052 | else | |
1053 | tls_type = GOT_TLS_IE; | |
1054 | break; | |
1055 | ||
1056 | case R_XTENSA_TLS_TPOFF: | |
1057 | tls_type = GOT_TLS_IE; | |
0e1862bb | 1058 | if (bfd_link_pic (info)) |
28dbbc02 | 1059 | info->flags |= DF_STATIC_TLS; |
0e1862bb | 1060 | if (bfd_link_pic (info) || h) |
28dbbc02 BW |
1061 | is_got = TRUE; |
1062 | break; | |
1063 | ||
1064 | case R_XTENSA_32: | |
1065 | tls_type = GOT_NORMAL; | |
1066 | is_got = TRUE; | |
1067 | break; | |
1068 | ||
e0001a05 | 1069 | case R_XTENSA_PLT: |
28dbbc02 BW |
1070 | tls_type = GOT_NORMAL; |
1071 | is_plt = TRUE; | |
1072 | break; | |
e0001a05 | 1073 | |
28dbbc02 BW |
1074 | case R_XTENSA_GNU_VTINHERIT: |
1075 | /* This relocation describes the C++ object vtable hierarchy. | |
1076 | Reconstruct it for later use during GC. */ | |
1077 | if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) | |
1078 | return FALSE; | |
1079 | continue; | |
1080 | ||
1081 | case R_XTENSA_GNU_VTENTRY: | |
1082 | /* This relocation describes which C++ vtable entries are actually | |
1083 | used. Record for later use during GC. */ | |
1084 | BFD_ASSERT (h != NULL); | |
1085 | if (h != NULL | |
1086 | && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) | |
1087 | return FALSE; | |
1088 | continue; | |
1089 | ||
1090 | default: | |
1091 | /* Nothing to do for any other relocations. */ | |
1092 | continue; | |
1093 | } | |
1094 | ||
1095 | if (h) | |
1096 | { | |
1097 | if (is_plt) | |
e0001a05 | 1098 | { |
b45329f9 BW |
1099 | if (h->plt.refcount <= 0) |
1100 | { | |
1101 | h->needs_plt = 1; | |
1102 | h->plt.refcount = 1; | |
1103 | } | |
1104 | else | |
1105 | h->plt.refcount += 1; | |
e0001a05 NC |
1106 | |
1107 | /* Keep track of the total PLT relocation count even if we | |
1108 | don't yet know whether the dynamic sections will be | |
1109 | created. */ | |
f0e6fdb2 | 1110 | htab->plt_reloc_count += 1; |
e0001a05 NC |
1111 | |
1112 | if (elf_hash_table (info)->dynamic_sections_created) | |
1113 | { | |
f0e6fdb2 | 1114 | if (! add_extra_plt_sections (info, htab->plt_reloc_count)) |
e0001a05 NC |
1115 | return FALSE; |
1116 | } | |
1117 | } | |
28dbbc02 | 1118 | else if (is_got) |
b45329f9 BW |
1119 | { |
1120 | if (h->got.refcount <= 0) | |
1121 | h->got.refcount = 1; | |
1122 | else | |
1123 | h->got.refcount += 1; | |
1124 | } | |
28dbbc02 BW |
1125 | |
1126 | if (is_tlsfunc) | |
1127 | eh->tlsfunc_refcount += 1; | |
e0001a05 | 1128 | |
28dbbc02 BW |
1129 | old_tls_type = eh->tls_type; |
1130 | } | |
1131 | else | |
1132 | { | |
1133 | /* Allocate storage the first time. */ | |
1134 | if (elf_local_got_refcounts (abfd) == NULL) | |
e0001a05 | 1135 | { |
28dbbc02 BW |
1136 | bfd_size_type size = symtab_hdr->sh_info; |
1137 | void *mem; | |
e0001a05 | 1138 | |
28dbbc02 BW |
1139 | mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma)); |
1140 | if (mem == NULL) | |
1141 | return FALSE; | |
1142 | elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem; | |
e0001a05 | 1143 | |
28dbbc02 BW |
1144 | mem = bfd_zalloc (abfd, size); |
1145 | if (mem == NULL) | |
1146 | return FALSE; | |
1147 | elf_xtensa_local_got_tls_type (abfd) = (char *) mem; | |
1148 | ||
1149 | mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma)); | |
1150 | if (mem == NULL) | |
1151 | return FALSE; | |
1152 | elf_xtensa_local_tlsfunc_refcounts (abfd) | |
1153 | = (bfd_signed_vma *) mem; | |
e0001a05 | 1154 | } |
e0001a05 | 1155 | |
28dbbc02 BW |
1156 | /* This is a global offset table entry for a local symbol. */ |
1157 | if (is_got || is_plt) | |
1158 | elf_local_got_refcounts (abfd) [r_symndx] += 1; | |
e0001a05 | 1159 | |
28dbbc02 BW |
1160 | if (is_tlsfunc) |
1161 | elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1; | |
e0001a05 | 1162 | |
28dbbc02 BW |
1163 | old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx]; |
1164 | } | |
1165 | ||
1166 | if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE)) | |
1167 | tls_type |= old_tls_type; | |
1168 | /* If a TLS symbol is accessed using IE at least once, | |
1169 | there is no point to use a dynamic model for it. */ | |
1170 | else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN | |
1171 | && ((old_tls_type & GOT_TLS_GD) == 0 | |
1172 | || (tls_type & GOT_TLS_IE) == 0)) | |
1173 | { | |
1174 | if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD)) | |
1175 | tls_type = old_tls_type; | |
1176 | else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD)) | |
1177 | tls_type |= old_tls_type; | |
1178 | else | |
1179 | { | |
4eca0228 | 1180 | _bfd_error_handler |
695344c0 | 1181 | /* xgettext:c-format */ |
28dbbc02 BW |
1182 | (_("%B: `%s' accessed both as normal and thread local symbol"), |
1183 | abfd, | |
1184 | h ? h->root.root.string : "<local>"); | |
1185 | return FALSE; | |
1186 | } | |
1187 | } | |
1188 | ||
1189 | if (old_tls_type != tls_type) | |
1190 | { | |
1191 | if (eh) | |
1192 | eh->tls_type = tls_type; | |
1193 | else | |
1194 | elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type; | |
e0001a05 NC |
1195 | } |
1196 | } | |
1197 | ||
e0001a05 NC |
1198 | return TRUE; |
1199 | } | |
1200 | ||
1201 | ||
95147441 BW |
1202 | static void |
1203 | elf_xtensa_make_sym_local (struct bfd_link_info *info, | |
1204 | struct elf_link_hash_entry *h) | |
1205 | { | |
0e1862bb | 1206 | if (bfd_link_pic (info)) |
95147441 BW |
1207 | { |
1208 | if (h->plt.refcount > 0) | |
1209 | { | |
1210 | /* For shared objects, there's no need for PLT entries for local | |
1211 | symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */ | |
1212 | if (h->got.refcount < 0) | |
1213 | h->got.refcount = 0; | |
1214 | h->got.refcount += h->plt.refcount; | |
1215 | h->plt.refcount = 0; | |
1216 | } | |
1217 | } | |
1218 | else | |
1219 | { | |
1220 | /* Don't need any dynamic relocations at all. */ | |
1221 | h->plt.refcount = 0; | |
1222 | h->got.refcount = 0; | |
1223 | } | |
1224 | } | |
1225 | ||
1226 | ||
1227 | static void | |
1228 | elf_xtensa_hide_symbol (struct bfd_link_info *info, | |
1229 | struct elf_link_hash_entry *h, | |
1230 | bfd_boolean force_local) | |
1231 | { | |
1232 | /* For a shared link, move the plt refcount to the got refcount to leave | |
1233 | space for RELATIVE relocs. */ | |
1234 | elf_xtensa_make_sym_local (info, h); | |
1235 | ||
1236 | _bfd_elf_link_hash_hide_symbol (info, h, force_local); | |
1237 | } | |
1238 | ||
1239 | ||
e0001a05 NC |
1240 | /* Return the section that should be marked against GC for a given |
1241 | relocation. */ | |
1242 | ||
1243 | static asection * | |
7fa3d080 | 1244 | elf_xtensa_gc_mark_hook (asection *sec, |
07adf181 | 1245 | struct bfd_link_info *info, |
7fa3d080 BW |
1246 | Elf_Internal_Rela *rel, |
1247 | struct elf_link_hash_entry *h, | |
1248 | Elf_Internal_Sym *sym) | |
e0001a05 | 1249 | { |
e1e5c0b5 BW |
1250 | /* Property sections are marked "KEEP" in the linker scripts, but they |
1251 | should not cause other sections to be marked. (This approach relies | |
1252 | on elf_xtensa_discard_info to remove property table entries that | |
1253 | describe discarded sections. Alternatively, it might be more | |
1254 | efficient to avoid using "KEEP" in the linker scripts and instead use | |
1255 | the gc_mark_extra_sections hook to mark only the property sections | |
1256 | that describe marked sections. That alternative does not work well | |
1257 | with the current property table sections, which do not correspond | |
1258 | one-to-one with the sections they describe, but that should be fixed | |
1259 | someday.) */ | |
1260 | if (xtensa_is_property_section (sec)) | |
1261 | return NULL; | |
1262 | ||
07adf181 AM |
1263 | if (h != NULL) |
1264 | switch (ELF32_R_TYPE (rel->r_info)) | |
1265 | { | |
1266 | case R_XTENSA_GNU_VTINHERIT: | |
1267 | case R_XTENSA_GNU_VTENTRY: | |
1268 | return NULL; | |
1269 | } | |
1270 | ||
1271 | return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); | |
e0001a05 NC |
1272 | } |
1273 | ||
7fa3d080 | 1274 | |
e0001a05 NC |
1275 | /* Update the GOT & PLT entry reference counts |
1276 | for the section being removed. */ | |
1277 | ||
1278 | static bfd_boolean | |
7fa3d080 | 1279 | elf_xtensa_gc_sweep_hook (bfd *abfd, |
28dbbc02 | 1280 | struct bfd_link_info *info, |
7fa3d080 BW |
1281 | asection *sec, |
1282 | const Elf_Internal_Rela *relocs) | |
e0001a05 NC |
1283 | { |
1284 | Elf_Internal_Shdr *symtab_hdr; | |
1285 | struct elf_link_hash_entry **sym_hashes; | |
e0001a05 | 1286 | const Elf_Internal_Rela *rel, *relend; |
28dbbc02 BW |
1287 | struct elf_xtensa_link_hash_table *htab; |
1288 | ||
1289 | htab = elf_xtensa_hash_table (info); | |
4dfe6ac6 NC |
1290 | if (htab == NULL) |
1291 | return FALSE; | |
e0001a05 | 1292 | |
0e1862bb | 1293 | if (bfd_link_relocatable (info)) |
7dda2462 TG |
1294 | return TRUE; |
1295 | ||
e0001a05 NC |
1296 | if ((sec->flags & SEC_ALLOC) == 0) |
1297 | return TRUE; | |
1298 | ||
1299 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
1300 | sym_hashes = elf_sym_hashes (abfd); | |
e0001a05 NC |
1301 | |
1302 | relend = relocs + sec->reloc_count; | |
1303 | for (rel = relocs; rel < relend; rel++) | |
1304 | { | |
1305 | unsigned long r_symndx; | |
1306 | unsigned int r_type; | |
1307 | struct elf_link_hash_entry *h = NULL; | |
28dbbc02 BW |
1308 | struct elf_xtensa_link_hash_entry *eh; |
1309 | bfd_boolean is_got = FALSE; | |
1310 | bfd_boolean is_plt = FALSE; | |
1311 | bfd_boolean is_tlsfunc = FALSE; | |
e0001a05 NC |
1312 | |
1313 | r_symndx = ELF32_R_SYM (rel->r_info); | |
1314 | if (r_symndx >= symtab_hdr->sh_info) | |
3eb128b2 AM |
1315 | { |
1316 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | |
1317 | while (h->root.type == bfd_link_hash_indirect | |
1318 | || h->root.type == bfd_link_hash_warning) | |
1319 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1320 | } | |
28dbbc02 | 1321 | eh = elf_xtensa_hash_entry (h); |
e0001a05 NC |
1322 | |
1323 | r_type = ELF32_R_TYPE (rel->r_info); | |
1324 | switch (r_type) | |
1325 | { | |
28dbbc02 | 1326 | case R_XTENSA_TLSDESC_FN: |
0e1862bb | 1327 | if (bfd_link_pic (info)) |
28dbbc02 BW |
1328 | { |
1329 | is_got = TRUE; | |
1330 | is_tlsfunc = TRUE; | |
1331 | } | |
e0001a05 NC |
1332 | break; |
1333 | ||
28dbbc02 | 1334 | case R_XTENSA_TLSDESC_ARG: |
0e1862bb | 1335 | if (bfd_link_pic (info)) |
28dbbc02 BW |
1336 | is_got = TRUE; |
1337 | else | |
1338 | { | |
1339 | if (h && elf_xtensa_hash_entry (h) != htab->tlsbase) | |
1340 | is_got = TRUE; | |
1341 | } | |
e0001a05 NC |
1342 | break; |
1343 | ||
28dbbc02 | 1344 | case R_XTENSA_TLS_TPOFF: |
0e1862bb | 1345 | if (bfd_link_pic (info) || h) |
28dbbc02 | 1346 | is_got = TRUE; |
e0001a05 NC |
1347 | break; |
1348 | ||
28dbbc02 BW |
1349 | case R_XTENSA_32: |
1350 | is_got = TRUE; | |
e0001a05 | 1351 | break; |
28dbbc02 BW |
1352 | |
1353 | case R_XTENSA_PLT: | |
1354 | is_plt = TRUE; | |
1355 | break; | |
1356 | ||
1357 | default: | |
1358 | continue; | |
1359 | } | |
1360 | ||
1361 | if (h) | |
1362 | { | |
1363 | if (is_plt) | |
1364 | { | |
e6c9a083 MF |
1365 | /* If the symbol has been localized its plt.refcount got moved |
1366 | to got.refcount. Handle it as GOT. */ | |
28dbbc02 BW |
1367 | if (h->plt.refcount > 0) |
1368 | h->plt.refcount--; | |
e6c9a083 MF |
1369 | else |
1370 | is_got = TRUE; | |
28dbbc02 | 1371 | } |
e6c9a083 | 1372 | if (is_got) |
28dbbc02 BW |
1373 | { |
1374 | if (h->got.refcount > 0) | |
1375 | h->got.refcount--; | |
1376 | } | |
1377 | if (is_tlsfunc) | |
1378 | { | |
1379 | if (eh->tlsfunc_refcount > 0) | |
1380 | eh->tlsfunc_refcount--; | |
1381 | } | |
1382 | } | |
1383 | else | |
1384 | { | |
1385 | if (is_got || is_plt) | |
1386 | { | |
1387 | bfd_signed_vma *got_refcount | |
1388 | = &elf_local_got_refcounts (abfd) [r_symndx]; | |
1389 | if (*got_refcount > 0) | |
1390 | *got_refcount -= 1; | |
1391 | } | |
1392 | if (is_tlsfunc) | |
1393 | { | |
1394 | bfd_signed_vma *tlsfunc_refcount | |
1395 | = &elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx]; | |
1396 | if (*tlsfunc_refcount > 0) | |
1397 | *tlsfunc_refcount -= 1; | |
1398 | } | |
e0001a05 NC |
1399 | } |
1400 | } | |
1401 | ||
1402 | return TRUE; | |
1403 | } | |
1404 | ||
1405 | ||
1406 | /* Create all the dynamic sections. */ | |
1407 | ||
1408 | static bfd_boolean | |
7fa3d080 | 1409 | elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info) |
e0001a05 | 1410 | { |
f0e6fdb2 | 1411 | struct elf_xtensa_link_hash_table *htab; |
e901de89 | 1412 | flagword flags, noalloc_flags; |
f0e6fdb2 BW |
1413 | |
1414 | htab = elf_xtensa_hash_table (info); | |
4dfe6ac6 NC |
1415 | if (htab == NULL) |
1416 | return FALSE; | |
e0001a05 NC |
1417 | |
1418 | /* First do all the standard stuff. */ | |
1419 | if (! _bfd_elf_create_dynamic_sections (dynobj, info)) | |
1420 | return FALSE; | |
1421 | ||
1422 | /* Create any extra PLT sections in case check_relocs has already | |
1423 | been called on all the non-dynamic input files. */ | |
f0e6fdb2 | 1424 | if (! add_extra_plt_sections (info, htab->plt_reloc_count)) |
e0001a05 NC |
1425 | return FALSE; |
1426 | ||
e901de89 BW |
1427 | noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY |
1428 | | SEC_LINKER_CREATED | SEC_READONLY); | |
1429 | flags = noalloc_flags | SEC_ALLOC | SEC_LOAD; | |
e0001a05 NC |
1430 | |
1431 | /* Mark the ".got.plt" section READONLY. */ | |
ce558b89 AM |
1432 | if (htab->elf.sgotplt == NULL |
1433 | || ! bfd_set_section_flags (dynobj, htab->elf.sgotplt, flags)) | |
e0001a05 NC |
1434 | return FALSE; |
1435 | ||
e901de89 | 1436 | /* Create ".got.loc" (literal tables for use by dynamic linker). */ |
3d4d4302 AM |
1437 | htab->sgotloc = bfd_make_section_anyway_with_flags (dynobj, ".got.loc", |
1438 | flags); | |
f0e6fdb2 BW |
1439 | if (htab->sgotloc == NULL |
1440 | || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2)) | |
e901de89 BW |
1441 | return FALSE; |
1442 | ||
e0001a05 | 1443 | /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */ |
3d4d4302 AM |
1444 | htab->spltlittbl = bfd_make_section_anyway_with_flags (dynobj, ".xt.lit.plt", |
1445 | noalloc_flags); | |
f0e6fdb2 BW |
1446 | if (htab->spltlittbl == NULL |
1447 | || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2)) | |
e0001a05 NC |
1448 | return FALSE; |
1449 | ||
1450 | return TRUE; | |
1451 | } | |
1452 | ||
1453 | ||
1454 | static bfd_boolean | |
f0e6fdb2 | 1455 | add_extra_plt_sections (struct bfd_link_info *info, int count) |
e0001a05 | 1456 | { |
f0e6fdb2 | 1457 | bfd *dynobj = elf_hash_table (info)->dynobj; |
e0001a05 NC |
1458 | int chunk; |
1459 | ||
1460 | /* Iterate over all chunks except 0 which uses the standard ".plt" and | |
1461 | ".got.plt" sections. */ | |
1462 | for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--) | |
1463 | { | |
1464 | char *sname; | |
1465 | flagword flags; | |
1466 | asection *s; | |
1467 | ||
1468 | /* Stop when we find a section has already been created. */ | |
f0e6fdb2 | 1469 | if (elf_xtensa_get_plt_section (info, chunk)) |
e0001a05 NC |
1470 | break; |
1471 | ||
1472 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | |
1473 | | SEC_LINKER_CREATED | SEC_READONLY); | |
1474 | ||
1475 | sname = (char *) bfd_malloc (10); | |
1476 | sprintf (sname, ".plt.%u", chunk); | |
3d4d4302 | 1477 | s = bfd_make_section_anyway_with_flags (dynobj, sname, flags | SEC_CODE); |
e0001a05 | 1478 | if (s == NULL |
e0001a05 NC |
1479 | || ! bfd_set_section_alignment (dynobj, s, 2)) |
1480 | return FALSE; | |
1481 | ||
1482 | sname = (char *) bfd_malloc (14); | |
1483 | sprintf (sname, ".got.plt.%u", chunk); | |
3d4d4302 | 1484 | s = bfd_make_section_anyway_with_flags (dynobj, sname, flags); |
e0001a05 | 1485 | if (s == NULL |
e0001a05 NC |
1486 | || ! bfd_set_section_alignment (dynobj, s, 2)) |
1487 | return FALSE; | |
1488 | } | |
1489 | ||
1490 | return TRUE; | |
1491 | } | |
1492 | ||
1493 | ||
1494 | /* Adjust a symbol defined by a dynamic object and referenced by a | |
1495 | regular object. The current definition is in some section of the | |
1496 | dynamic object, but we're not including those sections. We have to | |
1497 | change the definition to something the rest of the link can | |
1498 | understand. */ | |
1499 | ||
1500 | static bfd_boolean | |
7fa3d080 BW |
1501 | elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED, |
1502 | struct elf_link_hash_entry *h) | |
e0001a05 NC |
1503 | { |
1504 | /* If this is a weak symbol, and there is a real definition, the | |
1505 | processor independent code will have arranged for us to see the | |
1506 | real definition first, and we can just use the same value. */ | |
7fa3d080 | 1507 | if (h->u.weakdef) |
e0001a05 | 1508 | { |
f6e332e6 AM |
1509 | BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined |
1510 | || h->u.weakdef->root.type == bfd_link_hash_defweak); | |
1511 | h->root.u.def.section = h->u.weakdef->root.u.def.section; | |
1512 | h->root.u.def.value = h->u.weakdef->root.u.def.value; | |
e0001a05 NC |
1513 | return TRUE; |
1514 | } | |
1515 | ||
1516 | /* This is a reference to a symbol defined by a dynamic object. The | |
1517 | reference must go through the GOT, so there's no need for COPY relocs, | |
1518 | .dynbss, etc. */ | |
1519 | ||
1520 | return TRUE; | |
1521 | } | |
1522 | ||
1523 | ||
e0001a05 | 1524 | static bfd_boolean |
f1ab2340 | 1525 | elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg) |
e0001a05 | 1526 | { |
f1ab2340 BW |
1527 | struct bfd_link_info *info; |
1528 | struct elf_xtensa_link_hash_table *htab; | |
28dbbc02 | 1529 | struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h); |
e0001a05 | 1530 | |
f1ab2340 BW |
1531 | if (h->root.type == bfd_link_hash_indirect) |
1532 | return TRUE; | |
e0001a05 | 1533 | |
f1ab2340 BW |
1534 | info = (struct bfd_link_info *) arg; |
1535 | htab = elf_xtensa_hash_table (info); | |
4dfe6ac6 NC |
1536 | if (htab == NULL) |
1537 | return FALSE; | |
e0001a05 | 1538 | |
28dbbc02 BW |
1539 | /* If we saw any use of an IE model for this symbol, we can then optimize |
1540 | away GOT entries for any TLSDESC_FN relocs. */ | |
1541 | if ((eh->tls_type & GOT_TLS_IE) != 0) | |
1542 | { | |
1543 | BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount); | |
1544 | h->got.refcount -= eh->tlsfunc_refcount; | |
1545 | } | |
e0001a05 | 1546 | |
28dbbc02 | 1547 | if (! elf_xtensa_dynamic_symbol_p (h, info)) |
95147441 | 1548 | elf_xtensa_make_sym_local (info, h); |
e0001a05 | 1549 | |
f1ab2340 | 1550 | if (h->plt.refcount > 0) |
ce558b89 | 1551 | htab->elf.srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela)); |
e0001a05 NC |
1552 | |
1553 | if (h->got.refcount > 0) | |
ce558b89 | 1554 | htab->elf.srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela)); |
e0001a05 NC |
1555 | |
1556 | return TRUE; | |
1557 | } | |
1558 | ||
1559 | ||
1560 | static void | |
f0e6fdb2 | 1561 | elf_xtensa_allocate_local_got_size (struct bfd_link_info *info) |
e0001a05 | 1562 | { |
f0e6fdb2 | 1563 | struct elf_xtensa_link_hash_table *htab; |
e0001a05 NC |
1564 | bfd *i; |
1565 | ||
f0e6fdb2 | 1566 | htab = elf_xtensa_hash_table (info); |
4dfe6ac6 NC |
1567 | if (htab == NULL) |
1568 | return; | |
f0e6fdb2 | 1569 | |
c72f2fb2 | 1570 | for (i = info->input_bfds; i; i = i->link.next) |
e0001a05 NC |
1571 | { |
1572 | bfd_signed_vma *local_got_refcounts; | |
1573 | bfd_size_type j, cnt; | |
1574 | Elf_Internal_Shdr *symtab_hdr; | |
1575 | ||
1576 | local_got_refcounts = elf_local_got_refcounts (i); | |
1577 | if (!local_got_refcounts) | |
1578 | continue; | |
1579 | ||
1580 | symtab_hdr = &elf_tdata (i)->symtab_hdr; | |
1581 | cnt = symtab_hdr->sh_info; | |
1582 | ||
1583 | for (j = 0; j < cnt; ++j) | |
1584 | { | |
28dbbc02 BW |
1585 | /* If we saw any use of an IE model for this symbol, we can |
1586 | then optimize away GOT entries for any TLSDESC_FN relocs. */ | |
1587 | if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0) | |
1588 | { | |
1589 | bfd_signed_vma *tlsfunc_refcount | |
1590 | = &elf_xtensa_local_tlsfunc_refcounts (i) [j]; | |
1591 | BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount); | |
1592 | local_got_refcounts[j] -= *tlsfunc_refcount; | |
1593 | } | |
1594 | ||
e0001a05 | 1595 | if (local_got_refcounts[j] > 0) |
ce558b89 AM |
1596 | htab->elf.srelgot->size += (local_got_refcounts[j] |
1597 | * sizeof (Elf32_External_Rela)); | |
e0001a05 NC |
1598 | } |
1599 | } | |
1600 | } | |
1601 | ||
1602 | ||
1603 | /* Set the sizes of the dynamic sections. */ | |
1604 | ||
1605 | static bfd_boolean | |
7fa3d080 BW |
1606 | elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED, |
1607 | struct bfd_link_info *info) | |
e0001a05 | 1608 | { |
f0e6fdb2 | 1609 | struct elf_xtensa_link_hash_table *htab; |
e901de89 BW |
1610 | bfd *dynobj, *abfd; |
1611 | asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc; | |
e0001a05 NC |
1612 | bfd_boolean relplt, relgot; |
1613 | int plt_entries, plt_chunks, chunk; | |
1614 | ||
1615 | plt_entries = 0; | |
1616 | plt_chunks = 0; | |
e0001a05 | 1617 | |
f0e6fdb2 | 1618 | htab = elf_xtensa_hash_table (info); |
4dfe6ac6 NC |
1619 | if (htab == NULL) |
1620 | return FALSE; | |
1621 | ||
e0001a05 NC |
1622 | dynobj = elf_hash_table (info)->dynobj; |
1623 | if (dynobj == NULL) | |
1624 | abort (); | |
ce558b89 AM |
1625 | srelgot = htab->elf.srelgot; |
1626 | srelplt = htab->elf.srelplt; | |
e0001a05 NC |
1627 | |
1628 | if (elf_hash_table (info)->dynamic_sections_created) | |
1629 | { | |
ce558b89 AM |
1630 | BFD_ASSERT (htab->elf.srelgot != NULL |
1631 | && htab->elf.srelplt != NULL | |
1632 | && htab->elf.sgot != NULL | |
f0e6fdb2 BW |
1633 | && htab->spltlittbl != NULL |
1634 | && htab->sgotloc != NULL); | |
1635 | ||
e0001a05 | 1636 | /* Set the contents of the .interp section to the interpreter. */ |
9b8b325a | 1637 | if (bfd_link_executable (info) && !info->nointerp) |
e0001a05 | 1638 | { |
3d4d4302 | 1639 | s = bfd_get_linker_section (dynobj, ".interp"); |
e0001a05 NC |
1640 | if (s == NULL) |
1641 | abort (); | |
eea6121a | 1642 | s->size = sizeof ELF_DYNAMIC_INTERPRETER; |
e0001a05 NC |
1643 | s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; |
1644 | } | |
1645 | ||
1646 | /* Allocate room for one word in ".got". */ | |
ce558b89 | 1647 | htab->elf.sgot->size = 4; |
e0001a05 | 1648 | |
f1ab2340 BW |
1649 | /* Allocate space in ".rela.got" for literals that reference global |
1650 | symbols and space in ".rela.plt" for literals that have PLT | |
1651 | entries. */ | |
e0001a05 | 1652 | elf_link_hash_traverse (elf_hash_table (info), |
f1ab2340 | 1653 | elf_xtensa_allocate_dynrelocs, |
7fa3d080 | 1654 | (void *) info); |
e0001a05 | 1655 | |
e0001a05 NC |
1656 | /* If we are generating a shared object, we also need space in |
1657 | ".rela.got" for R_XTENSA_RELATIVE relocs for literals that | |
1658 | reference local symbols. */ | |
0e1862bb | 1659 | if (bfd_link_pic (info)) |
f0e6fdb2 | 1660 | elf_xtensa_allocate_local_got_size (info); |
e0001a05 | 1661 | |
e0001a05 NC |
1662 | /* Allocate space in ".plt" to match the size of ".rela.plt". For |
1663 | each PLT entry, we need the PLT code plus a 4-byte literal. | |
1664 | For each chunk of ".plt", we also need two more 4-byte | |
1665 | literals, two corresponding entries in ".rela.got", and an | |
1666 | 8-byte entry in ".xt.lit.plt". */ | |
f0e6fdb2 | 1667 | spltlittbl = htab->spltlittbl; |
eea6121a | 1668 | plt_entries = srelplt->size / sizeof (Elf32_External_Rela); |
e0001a05 NC |
1669 | plt_chunks = |
1670 | (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK; | |
1671 | ||
1672 | /* Iterate over all the PLT chunks, including any extra sections | |
1673 | created earlier because the initial count of PLT relocations | |
1674 | was an overestimate. */ | |
1675 | for (chunk = 0; | |
f0e6fdb2 | 1676 | (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL; |
e0001a05 NC |
1677 | chunk++) |
1678 | { | |
1679 | int chunk_entries; | |
1680 | ||
f0e6fdb2 BW |
1681 | sgotplt = elf_xtensa_get_gotplt_section (info, chunk); |
1682 | BFD_ASSERT (sgotplt != NULL); | |
e0001a05 NC |
1683 | |
1684 | if (chunk < plt_chunks - 1) | |
1685 | chunk_entries = PLT_ENTRIES_PER_CHUNK; | |
1686 | else if (chunk == plt_chunks - 1) | |
1687 | chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK); | |
1688 | else | |
1689 | chunk_entries = 0; | |
1690 | ||
1691 | if (chunk_entries != 0) | |
1692 | { | |
eea6121a AM |
1693 | sgotplt->size = 4 * (chunk_entries + 2); |
1694 | splt->size = PLT_ENTRY_SIZE * chunk_entries; | |
1695 | srelgot->size += 2 * sizeof (Elf32_External_Rela); | |
1696 | spltlittbl->size += 8; | |
e0001a05 NC |
1697 | } |
1698 | else | |
1699 | { | |
eea6121a AM |
1700 | sgotplt->size = 0; |
1701 | splt->size = 0; | |
e0001a05 NC |
1702 | } |
1703 | } | |
e901de89 BW |
1704 | |
1705 | /* Allocate space in ".got.loc" to match the total size of all the | |
1706 | literal tables. */ | |
f0e6fdb2 | 1707 | sgotloc = htab->sgotloc; |
eea6121a | 1708 | sgotloc->size = spltlittbl->size; |
c72f2fb2 | 1709 | for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next) |
e901de89 BW |
1710 | { |
1711 | if (abfd->flags & DYNAMIC) | |
1712 | continue; | |
1713 | for (s = abfd->sections; s != NULL; s = s->next) | |
1714 | { | |
dbaa2011 | 1715 | if (! discarded_section (s) |
b536dc1e BW |
1716 | && xtensa_is_littable_section (s) |
1717 | && s != spltlittbl) | |
eea6121a | 1718 | sgotloc->size += s->size; |
e901de89 BW |
1719 | } |
1720 | } | |
e0001a05 NC |
1721 | } |
1722 | ||
1723 | /* Allocate memory for dynamic sections. */ | |
1724 | relplt = FALSE; | |
1725 | relgot = FALSE; | |
1726 | for (s = dynobj->sections; s != NULL; s = s->next) | |
1727 | { | |
1728 | const char *name; | |
e0001a05 NC |
1729 | |
1730 | if ((s->flags & SEC_LINKER_CREATED) == 0) | |
1731 | continue; | |
1732 | ||
1733 | /* It's OK to base decisions on the section name, because none | |
1734 | of the dynobj section names depend upon the input files. */ | |
1735 | name = bfd_get_section_name (dynobj, s); | |
1736 | ||
0112cd26 | 1737 | if (CONST_STRNEQ (name, ".rela")) |
e0001a05 | 1738 | { |
c456f082 | 1739 | if (s->size != 0) |
e0001a05 | 1740 | { |
c456f082 AM |
1741 | if (strcmp (name, ".rela.plt") == 0) |
1742 | relplt = TRUE; | |
1743 | else if (strcmp (name, ".rela.got") == 0) | |
1744 | relgot = TRUE; | |
1745 | ||
1746 | /* We use the reloc_count field as a counter if we need | |
1747 | to copy relocs into the output file. */ | |
1748 | s->reloc_count = 0; | |
e0001a05 NC |
1749 | } |
1750 | } | |
0112cd26 NC |
1751 | else if (! CONST_STRNEQ (name, ".plt.") |
1752 | && ! CONST_STRNEQ (name, ".got.plt.") | |
c456f082 | 1753 | && strcmp (name, ".got") != 0 |
e0001a05 NC |
1754 | && strcmp (name, ".plt") != 0 |
1755 | && strcmp (name, ".got.plt") != 0 | |
e901de89 BW |
1756 | && strcmp (name, ".xt.lit.plt") != 0 |
1757 | && strcmp (name, ".got.loc") != 0) | |
e0001a05 NC |
1758 | { |
1759 | /* It's not one of our sections, so don't allocate space. */ | |
1760 | continue; | |
1761 | } | |
1762 | ||
c456f082 AM |
1763 | if (s->size == 0) |
1764 | { | |
1765 | /* If we don't need this section, strip it from the output | |
1766 | file. We must create the ".plt*" and ".got.plt*" | |
1767 | sections in create_dynamic_sections and/or check_relocs | |
1768 | based on a conservative estimate of the PLT relocation | |
1769 | count, because the sections must be created before the | |
1770 | linker maps input sections to output sections. The | |
1771 | linker does that before size_dynamic_sections, where we | |
1772 | compute the exact size of the PLT, so there may be more | |
1773 | of these sections than are actually needed. */ | |
1774 | s->flags |= SEC_EXCLUDE; | |
1775 | } | |
1776 | else if ((s->flags & SEC_HAS_CONTENTS) != 0) | |
e0001a05 NC |
1777 | { |
1778 | /* Allocate memory for the section contents. */ | |
eea6121a | 1779 | s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size); |
c456f082 | 1780 | if (s->contents == NULL) |
e0001a05 NC |
1781 | return FALSE; |
1782 | } | |
1783 | } | |
1784 | ||
1785 | if (elf_hash_table (info)->dynamic_sections_created) | |
1786 | { | |
1787 | /* Add the special XTENSA_RTLD relocations now. The offsets won't be | |
1788 | known until finish_dynamic_sections, but we need to get the relocs | |
1789 | in place before they are sorted. */ | |
e0001a05 NC |
1790 | for (chunk = 0; chunk < plt_chunks; chunk++) |
1791 | { | |
1792 | Elf_Internal_Rela irela; | |
1793 | bfd_byte *loc; | |
1794 | ||
1795 | irela.r_offset = 0; | |
1796 | irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD); | |
1797 | irela.r_addend = 0; | |
1798 | ||
1799 | loc = (srelgot->contents | |
1800 | + srelgot->reloc_count * sizeof (Elf32_External_Rela)); | |
1801 | bfd_elf32_swap_reloca_out (output_bfd, &irela, loc); | |
1802 | bfd_elf32_swap_reloca_out (output_bfd, &irela, | |
1803 | loc + sizeof (Elf32_External_Rela)); | |
1804 | srelgot->reloc_count += 2; | |
1805 | } | |
1806 | ||
1807 | /* Add some entries to the .dynamic section. We fill in the | |
1808 | values later, in elf_xtensa_finish_dynamic_sections, but we | |
1809 | must add the entries now so that we get the correct size for | |
1810 | the .dynamic section. The DT_DEBUG entry is filled in by the | |
1811 | dynamic linker and used by the debugger. */ | |
1812 | #define add_dynamic_entry(TAG, VAL) \ | |
5a580b3a | 1813 | _bfd_elf_add_dynamic_entry (info, TAG, VAL) |
e0001a05 | 1814 | |
0e1862bb | 1815 | if (bfd_link_executable (info)) |
e0001a05 NC |
1816 | { |
1817 | if (!add_dynamic_entry (DT_DEBUG, 0)) | |
1818 | return FALSE; | |
1819 | } | |
1820 | ||
1821 | if (relplt) | |
1822 | { | |
c243ad3b | 1823 | if (!add_dynamic_entry (DT_PLTRELSZ, 0) |
e0001a05 NC |
1824 | || !add_dynamic_entry (DT_PLTREL, DT_RELA) |
1825 | || !add_dynamic_entry (DT_JMPREL, 0)) | |
1826 | return FALSE; | |
1827 | } | |
1828 | ||
1829 | if (relgot) | |
1830 | { | |
1831 | if (!add_dynamic_entry (DT_RELA, 0) | |
1832 | || !add_dynamic_entry (DT_RELASZ, 0) | |
1833 | || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela))) | |
1834 | return FALSE; | |
1835 | } | |
1836 | ||
c243ad3b BW |
1837 | if (!add_dynamic_entry (DT_PLTGOT, 0) |
1838 | || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0) | |
e0001a05 NC |
1839 | || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0)) |
1840 | return FALSE; | |
1841 | } | |
1842 | #undef add_dynamic_entry | |
1843 | ||
1844 | return TRUE; | |
1845 | } | |
1846 | ||
28dbbc02 BW |
1847 | static bfd_boolean |
1848 | elf_xtensa_always_size_sections (bfd *output_bfd, | |
1849 | struct bfd_link_info *info) | |
1850 | { | |
1851 | struct elf_xtensa_link_hash_table *htab; | |
1852 | asection *tls_sec; | |
1853 | ||
1854 | htab = elf_xtensa_hash_table (info); | |
4dfe6ac6 NC |
1855 | if (htab == NULL) |
1856 | return FALSE; | |
1857 | ||
28dbbc02 BW |
1858 | tls_sec = htab->elf.tls_sec; |
1859 | ||
1860 | if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0) | |
1861 | { | |
1862 | struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf; | |
1863 | struct bfd_link_hash_entry *bh = &tlsbase->root; | |
1864 | const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); | |
1865 | ||
1866 | tlsbase->type = STT_TLS; | |
1867 | if (!(_bfd_generic_link_add_one_symbol | |
1868 | (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL, | |
1869 | tls_sec, 0, NULL, FALSE, | |
1870 | bed->collect, &bh))) | |
1871 | return FALSE; | |
1872 | tlsbase->def_regular = 1; | |
1873 | tlsbase->other = STV_HIDDEN; | |
1874 | (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE); | |
1875 | } | |
1876 | ||
1877 | return TRUE; | |
1878 | } | |
1879 | ||
e0001a05 | 1880 | \f |
28dbbc02 BW |
1881 | /* Return the base VMA address which should be subtracted from real addresses |
1882 | when resolving @dtpoff relocation. | |
1883 | This is PT_TLS segment p_vaddr. */ | |
1884 | ||
1885 | static bfd_vma | |
1886 | dtpoff_base (struct bfd_link_info *info) | |
1887 | { | |
1888 | /* If tls_sec is NULL, we should have signalled an error already. */ | |
1889 | if (elf_hash_table (info)->tls_sec == NULL) | |
1890 | return 0; | |
1891 | return elf_hash_table (info)->tls_sec->vma; | |
1892 | } | |
1893 | ||
1894 | /* Return the relocation value for @tpoff relocation | |
1895 | if STT_TLS virtual address is ADDRESS. */ | |
1896 | ||
1897 | static bfd_vma | |
1898 | tpoff (struct bfd_link_info *info, bfd_vma address) | |
1899 | { | |
1900 | struct elf_link_hash_table *htab = elf_hash_table (info); | |
1901 | bfd_vma base; | |
1902 | ||
1903 | /* If tls_sec is NULL, we should have signalled an error already. */ | |
1904 | if (htab->tls_sec == NULL) | |
1905 | return 0; | |
1906 | base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power); | |
1907 | return address - htab->tls_sec->vma + base; | |
1908 | } | |
1909 | ||
e0001a05 NC |
1910 | /* Perform the specified relocation. The instruction at (contents + address) |
1911 | is modified to set one operand to represent the value in "relocation". The | |
1912 | operand position is determined by the relocation type recorded in the | |
1913 | howto. */ | |
1914 | ||
1915 | #define CALL_SEGMENT_BITS (30) | |
7fa3d080 | 1916 | #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS) |
e0001a05 NC |
1917 | |
1918 | static bfd_reloc_status_type | |
7fa3d080 BW |
1919 | elf_xtensa_do_reloc (reloc_howto_type *howto, |
1920 | bfd *abfd, | |
1921 | asection *input_section, | |
1922 | bfd_vma relocation, | |
1923 | bfd_byte *contents, | |
1924 | bfd_vma address, | |
1925 | bfd_boolean is_weak_undef, | |
1926 | char **error_message) | |
e0001a05 | 1927 | { |
43cd72b9 | 1928 | xtensa_format fmt; |
e0001a05 | 1929 | xtensa_opcode opcode; |
e0001a05 | 1930 | xtensa_isa isa = xtensa_default_isa; |
43cd72b9 BW |
1931 | static xtensa_insnbuf ibuff = NULL; |
1932 | static xtensa_insnbuf sbuff = NULL; | |
1bbb5f21 | 1933 | bfd_vma self_address; |
43cd72b9 BW |
1934 | bfd_size_type input_size; |
1935 | int opnd, slot; | |
e0001a05 NC |
1936 | uint32 newval; |
1937 | ||
43cd72b9 BW |
1938 | if (!ibuff) |
1939 | { | |
1940 | ibuff = xtensa_insnbuf_alloc (isa); | |
1941 | sbuff = xtensa_insnbuf_alloc (isa); | |
1942 | } | |
1943 | ||
1944 | input_size = bfd_get_section_limit (abfd, input_section); | |
1945 | ||
1bbb5f21 BW |
1946 | /* Calculate the PC address for this instruction. */ |
1947 | self_address = (input_section->output_section->vma | |
1948 | + input_section->output_offset | |
1949 | + address); | |
1950 | ||
e0001a05 NC |
1951 | switch (howto->type) |
1952 | { | |
1953 | case R_XTENSA_NONE: | |
43cd72b9 BW |
1954 | case R_XTENSA_DIFF8: |
1955 | case R_XTENSA_DIFF16: | |
1956 | case R_XTENSA_DIFF32: | |
28dbbc02 BW |
1957 | case R_XTENSA_TLS_FUNC: |
1958 | case R_XTENSA_TLS_ARG: | |
1959 | case R_XTENSA_TLS_CALL: | |
e0001a05 NC |
1960 | return bfd_reloc_ok; |
1961 | ||
1962 | case R_XTENSA_ASM_EXPAND: | |
1963 | if (!is_weak_undef) | |
1964 | { | |
1965 | /* Check for windowed CALL across a 1GB boundary. */ | |
91d6fa6a NC |
1966 | opcode = get_expanded_call_opcode (contents + address, |
1967 | input_size - address, 0); | |
e0001a05 NC |
1968 | if (is_windowed_call_opcode (opcode)) |
1969 | { | |
43cd72b9 | 1970 | if ((self_address >> CALL_SEGMENT_BITS) |
68ffbac6 | 1971 | != (relocation >> CALL_SEGMENT_BITS)) |
e0001a05 NC |
1972 | { |
1973 | *error_message = "windowed longcall crosses 1GB boundary; " | |
1974 | "return may fail"; | |
1975 | return bfd_reloc_dangerous; | |
1976 | } | |
1977 | } | |
1978 | } | |
1979 | return bfd_reloc_ok; | |
1980 | ||
1981 | case R_XTENSA_ASM_SIMPLIFY: | |
43cd72b9 | 1982 | { |
e0001a05 | 1983 | /* Convert the L32R/CALLX to CALL. */ |
43cd72b9 BW |
1984 | bfd_reloc_status_type retval = |
1985 | elf_xtensa_do_asm_simplify (contents, address, input_size, | |
1986 | error_message); | |
e0001a05 | 1987 | if (retval != bfd_reloc_ok) |
43cd72b9 | 1988 | return bfd_reloc_dangerous; |
e0001a05 NC |
1989 | |
1990 | /* The CALL needs to be relocated. Continue below for that part. */ | |
1991 | address += 3; | |
c46082c8 | 1992 | self_address += 3; |
43cd72b9 | 1993 | howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ]; |
e0001a05 NC |
1994 | } |
1995 | break; | |
1996 | ||
1997 | case R_XTENSA_32: | |
e0001a05 NC |
1998 | { |
1999 | bfd_vma x; | |
2000 | x = bfd_get_32 (abfd, contents + address); | |
2001 | x = x + relocation; | |
2002 | bfd_put_32 (abfd, x, contents + address); | |
2003 | } | |
2004 | return bfd_reloc_ok; | |
1bbb5f21 BW |
2005 | |
2006 | case R_XTENSA_32_PCREL: | |
2007 | bfd_put_32 (abfd, relocation - self_address, contents + address); | |
2008 | return bfd_reloc_ok; | |
28dbbc02 BW |
2009 | |
2010 | case R_XTENSA_PLT: | |
2011 | case R_XTENSA_TLSDESC_FN: | |
2012 | case R_XTENSA_TLSDESC_ARG: | |
2013 | case R_XTENSA_TLS_DTPOFF: | |
2014 | case R_XTENSA_TLS_TPOFF: | |
2015 | bfd_put_32 (abfd, relocation, contents + address); | |
2016 | return bfd_reloc_ok; | |
e0001a05 NC |
2017 | } |
2018 | ||
43cd72b9 BW |
2019 | /* Only instruction slot-specific relocations handled below.... */ |
2020 | slot = get_relocation_slot (howto->type); | |
2021 | if (slot == XTENSA_UNDEFINED) | |
e0001a05 | 2022 | { |
43cd72b9 | 2023 | *error_message = "unexpected relocation"; |
e0001a05 NC |
2024 | return bfd_reloc_dangerous; |
2025 | } | |
2026 | ||
43cd72b9 BW |
2027 | /* Read the instruction into a buffer and decode the opcode. */ |
2028 | xtensa_insnbuf_from_chars (isa, ibuff, contents + address, | |
2029 | input_size - address); | |
2030 | fmt = xtensa_format_decode (isa, ibuff); | |
2031 | if (fmt == XTENSA_UNDEFINED) | |
e0001a05 | 2032 | { |
43cd72b9 | 2033 | *error_message = "cannot decode instruction format"; |
e0001a05 NC |
2034 | return bfd_reloc_dangerous; |
2035 | } | |
2036 | ||
43cd72b9 | 2037 | xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff); |
e0001a05 | 2038 | |
43cd72b9 BW |
2039 | opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff); |
2040 | if (opcode == XTENSA_UNDEFINED) | |
e0001a05 | 2041 | { |
43cd72b9 | 2042 | *error_message = "cannot decode instruction opcode"; |
e0001a05 NC |
2043 | return bfd_reloc_dangerous; |
2044 | } | |
2045 | ||
43cd72b9 BW |
2046 | /* Check for opcode-specific "alternate" relocations. */ |
2047 | if (is_alt_relocation (howto->type)) | |
2048 | { | |
2049 | if (opcode == get_l32r_opcode ()) | |
2050 | { | |
2051 | /* Handle the special-case of non-PC-relative L32R instructions. */ | |
2052 | bfd *output_bfd = input_section->output_section->owner; | |
2053 | asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4"); | |
2054 | if (!lit4_sec) | |
2055 | { | |
2056 | *error_message = "relocation references missing .lit4 section"; | |
2057 | return bfd_reloc_dangerous; | |
2058 | } | |
2059 | self_address = ((lit4_sec->vma & ~0xfff) | |
2060 | + 0x40000 - 3); /* -3 to compensate for do_reloc */ | |
2061 | newval = relocation; | |
2062 | opnd = 1; | |
2063 | } | |
2064 | else if (opcode == get_const16_opcode ()) | |
2065 | { | |
2066 | /* ALT used for high 16 bits. */ | |
2067 | newval = relocation >> 16; | |
2068 | opnd = 1; | |
2069 | } | |
2070 | else | |
2071 | { | |
2072 | /* No other "alternate" relocations currently defined. */ | |
2073 | *error_message = "unexpected relocation"; | |
2074 | return bfd_reloc_dangerous; | |
2075 | } | |
2076 | } | |
2077 | else /* Not an "alternate" relocation.... */ | |
2078 | { | |
2079 | if (opcode == get_const16_opcode ()) | |
2080 | { | |
2081 | newval = relocation & 0xffff; | |
2082 | opnd = 1; | |
2083 | } | |
2084 | else | |
2085 | { | |
2086 | /* ...normal PC-relative relocation.... */ | |
2087 | ||
2088 | /* Determine which operand is being relocated. */ | |
2089 | opnd = get_relocation_opnd (opcode, howto->type); | |
2090 | if (opnd == XTENSA_UNDEFINED) | |
2091 | { | |
2092 | *error_message = "unexpected relocation"; | |
2093 | return bfd_reloc_dangerous; | |
2094 | } | |
2095 | ||
2096 | if (!howto->pc_relative) | |
2097 | { | |
2098 | *error_message = "expected PC-relative relocation"; | |
2099 | return bfd_reloc_dangerous; | |
2100 | } | |
e0001a05 | 2101 | |
43cd72b9 BW |
2102 | newval = relocation; |
2103 | } | |
2104 | } | |
e0001a05 | 2105 | |
43cd72b9 BW |
2106 | /* Apply the relocation. */ |
2107 | if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address) | |
2108 | || xtensa_operand_encode (isa, opcode, opnd, &newval) | |
2109 | || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot, | |
2110 | sbuff, newval)) | |
e0001a05 | 2111 | { |
2db662be BW |
2112 | const char *opname = xtensa_opcode_name (isa, opcode); |
2113 | const char *msg; | |
2114 | ||
2115 | msg = "cannot encode"; | |
2116 | if (is_direct_call_opcode (opcode)) | |
2117 | { | |
2118 | if ((relocation & 0x3) != 0) | |
2119 | msg = "misaligned call target"; | |
2120 | else | |
2121 | msg = "call target out of range"; | |
2122 | } | |
2123 | else if (opcode == get_l32r_opcode ()) | |
2124 | { | |
2125 | if ((relocation & 0x3) != 0) | |
2126 | msg = "misaligned literal target"; | |
2127 | else if (is_alt_relocation (howto->type)) | |
2128 | msg = "literal target out of range (too many literals)"; | |
2129 | else if (self_address > relocation) | |
2130 | msg = "literal target out of range (try using text-section-literals)"; | |
2131 | else | |
2132 | msg = "literal placed after use"; | |
2133 | } | |
2134 | ||
2135 | *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg); | |
e0001a05 NC |
2136 | return bfd_reloc_dangerous; |
2137 | } | |
2138 | ||
43cd72b9 | 2139 | /* Check for calls across 1GB boundaries. */ |
e0001a05 NC |
2140 | if (is_direct_call_opcode (opcode) |
2141 | && is_windowed_call_opcode (opcode)) | |
2142 | { | |
43cd72b9 | 2143 | if ((self_address >> CALL_SEGMENT_BITS) |
68ffbac6 | 2144 | != (relocation >> CALL_SEGMENT_BITS)) |
e0001a05 | 2145 | { |
43cd72b9 BW |
2146 | *error_message = |
2147 | "windowed call crosses 1GB boundary; return may fail"; | |
e0001a05 NC |
2148 | return bfd_reloc_dangerous; |
2149 | } | |
2150 | } | |
2151 | ||
43cd72b9 BW |
2152 | /* Write the modified instruction back out of the buffer. */ |
2153 | xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff); | |
2154 | xtensa_insnbuf_to_chars (isa, ibuff, contents + address, | |
2155 | input_size - address); | |
e0001a05 NC |
2156 | return bfd_reloc_ok; |
2157 | } | |
2158 | ||
2159 | ||
2db662be | 2160 | static char * |
7fa3d080 | 2161 | vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...) |
e0001a05 NC |
2162 | { |
2163 | /* To reduce the size of the memory leak, | |
2164 | we only use a single message buffer. */ | |
2165 | static bfd_size_type alloc_size = 0; | |
2166 | static char *message = NULL; | |
2167 | bfd_size_type orig_len, len = 0; | |
2168 | bfd_boolean is_append; | |
1651e569 | 2169 | va_list ap; |
e0001a05 | 2170 | |
1651e569 | 2171 | va_start (ap, arglen); |
68ffbac6 L |
2172 | |
2173 | is_append = (origmsg == message); | |
e0001a05 NC |
2174 | |
2175 | orig_len = strlen (origmsg); | |
2176 | len = orig_len + strlen (fmt) + arglen + 20; | |
2177 | if (len > alloc_size) | |
2178 | { | |
515ef31d | 2179 | message = (char *) bfd_realloc_or_free (message, len); |
e0001a05 NC |
2180 | alloc_size = len; |
2181 | } | |
515ef31d NC |
2182 | if (message != NULL) |
2183 | { | |
2184 | if (!is_append) | |
2185 | memcpy (message, origmsg, orig_len); | |
2186 | vsprintf (message + orig_len, fmt, ap); | |
2187 | } | |
1651e569 | 2188 | va_end (ap); |
e0001a05 NC |
2189 | return message; |
2190 | } | |
2191 | ||
2192 | ||
e0001a05 NC |
2193 | /* This function is registered as the "special_function" in the |
2194 | Xtensa howto for handling simplify operations. | |
2195 | bfd_perform_relocation / bfd_install_relocation use it to | |
2196 | perform (install) the specified relocation. Since this replaces the code | |
2197 | in bfd_perform_relocation, it is basically an Xtensa-specific, | |
2198 | stripped-down version of bfd_perform_relocation. */ | |
2199 | ||
2200 | static bfd_reloc_status_type | |
7fa3d080 BW |
2201 | bfd_elf_xtensa_reloc (bfd *abfd, |
2202 | arelent *reloc_entry, | |
2203 | asymbol *symbol, | |
2204 | void *data, | |
2205 | asection *input_section, | |
2206 | bfd *output_bfd, | |
2207 | char **error_message) | |
e0001a05 NC |
2208 | { |
2209 | bfd_vma relocation; | |
2210 | bfd_reloc_status_type flag; | |
2211 | bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd); | |
2212 | bfd_vma output_base = 0; | |
2213 | reloc_howto_type *howto = reloc_entry->howto; | |
2214 | asection *reloc_target_output_section; | |
2215 | bfd_boolean is_weak_undef; | |
2216 | ||
dd1a320b BW |
2217 | if (!xtensa_default_isa) |
2218 | xtensa_default_isa = xtensa_isa_init (0, 0); | |
2219 | ||
1049f94e | 2220 | /* ELF relocs are against symbols. If we are producing relocatable |
e0001a05 NC |
2221 | output, and the reloc is against an external symbol, the resulting |
2222 | reloc will also be against the same symbol. In such a case, we | |
2223 | don't want to change anything about the way the reloc is handled, | |
2224 | since it will all be done at final link time. This test is similar | |
2225 | to what bfd_elf_generic_reloc does except that it lets relocs with | |
2226 | howto->partial_inplace go through even if the addend is non-zero. | |
2227 | (The real problem is that partial_inplace is set for XTENSA_32 | |
2228 | relocs to begin with, but that's a long story and there's little we | |
2229 | can do about it now....) */ | |
2230 | ||
7fa3d080 | 2231 | if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0) |
e0001a05 NC |
2232 | { |
2233 | reloc_entry->address += input_section->output_offset; | |
2234 | return bfd_reloc_ok; | |
2235 | } | |
2236 | ||
2237 | /* Is the address of the relocation really within the section? */ | |
07515404 | 2238 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
e0001a05 NC |
2239 | return bfd_reloc_outofrange; |
2240 | ||
4cc11e76 | 2241 | /* Work out which section the relocation is targeted at and the |
e0001a05 NC |
2242 | initial relocation command value. */ |
2243 | ||
2244 | /* Get symbol value. (Common symbols are special.) */ | |
2245 | if (bfd_is_com_section (symbol->section)) | |
2246 | relocation = 0; | |
2247 | else | |
2248 | relocation = symbol->value; | |
2249 | ||
2250 | reloc_target_output_section = symbol->section->output_section; | |
2251 | ||
2252 | /* Convert input-section-relative symbol value to absolute. */ | |
2253 | if ((output_bfd && !howto->partial_inplace) | |
2254 | || reloc_target_output_section == NULL) | |
2255 | output_base = 0; | |
2256 | else | |
2257 | output_base = reloc_target_output_section->vma; | |
2258 | ||
2259 | relocation += output_base + symbol->section->output_offset; | |
2260 | ||
2261 | /* Add in supplied addend. */ | |
2262 | relocation += reloc_entry->addend; | |
2263 | ||
2264 | /* Here the variable relocation holds the final address of the | |
2265 | symbol we are relocating against, plus any addend. */ | |
2266 | if (output_bfd) | |
2267 | { | |
2268 | if (!howto->partial_inplace) | |
2269 | { | |
2270 | /* This is a partial relocation, and we want to apply the relocation | |
2271 | to the reloc entry rather than the raw data. Everything except | |
2272 | relocations against section symbols has already been handled | |
2273 | above. */ | |
43cd72b9 | 2274 | |
e0001a05 NC |
2275 | BFD_ASSERT (symbol->flags & BSF_SECTION_SYM); |
2276 | reloc_entry->addend = relocation; | |
2277 | reloc_entry->address += input_section->output_offset; | |
2278 | return bfd_reloc_ok; | |
2279 | } | |
2280 | else | |
2281 | { | |
2282 | reloc_entry->address += input_section->output_offset; | |
2283 | reloc_entry->addend = 0; | |
2284 | } | |
2285 | } | |
2286 | ||
2287 | is_weak_undef = (bfd_is_und_section (symbol->section) | |
2288 | && (symbol->flags & BSF_WEAK) != 0); | |
2289 | flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation, | |
2290 | (bfd_byte *) data, (bfd_vma) octets, | |
2291 | is_weak_undef, error_message); | |
2292 | ||
2293 | if (flag == bfd_reloc_dangerous) | |
2294 | { | |
2295 | /* Add the symbol name to the error message. */ | |
2296 | if (! *error_message) | |
2297 | *error_message = ""; | |
2298 | *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)", | |
2299 | strlen (symbol->name) + 17, | |
70961b9d AM |
2300 | symbol->name, |
2301 | (unsigned long) reloc_entry->addend); | |
e0001a05 NC |
2302 | } |
2303 | ||
2304 | return flag; | |
2305 | } | |
2306 | ||
2307 | ||
2308 | /* Set up an entry in the procedure linkage table. */ | |
2309 | ||
2310 | static bfd_vma | |
f0e6fdb2 | 2311 | elf_xtensa_create_plt_entry (struct bfd_link_info *info, |
7fa3d080 BW |
2312 | bfd *output_bfd, |
2313 | unsigned reloc_index) | |
e0001a05 NC |
2314 | { |
2315 | asection *splt, *sgotplt; | |
2316 | bfd_vma plt_base, got_base; | |
92b3f008 | 2317 | bfd_vma code_offset, lit_offset, abi_offset; |
e0001a05 NC |
2318 | int chunk; |
2319 | ||
2320 | chunk = reloc_index / PLT_ENTRIES_PER_CHUNK; | |
f0e6fdb2 BW |
2321 | splt = elf_xtensa_get_plt_section (info, chunk); |
2322 | sgotplt = elf_xtensa_get_gotplt_section (info, chunk); | |
e0001a05 NC |
2323 | BFD_ASSERT (splt != NULL && sgotplt != NULL); |
2324 | ||
2325 | plt_base = splt->output_section->vma + splt->output_offset; | |
2326 | got_base = sgotplt->output_section->vma + sgotplt->output_offset; | |
2327 | ||
2328 | lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4; | |
2329 | code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE; | |
2330 | ||
2331 | /* Fill in the literal entry. This is the offset of the dynamic | |
2332 | relocation entry. */ | |
2333 | bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela), | |
2334 | sgotplt->contents + lit_offset); | |
2335 | ||
2336 | /* Fill in the entry in the procedure linkage table. */ | |
2337 | memcpy (splt->contents + code_offset, | |
2338 | (bfd_big_endian (output_bfd) | |
2339 | ? elf_xtensa_be_plt_entry | |
2340 | : elf_xtensa_le_plt_entry), | |
2341 | PLT_ENTRY_SIZE); | |
92b3f008 | 2342 | abi_offset = XSHAL_ABI == XTHAL_ABI_WINDOWED ? 3 : 0; |
e0001a05 | 2343 | bfd_put_16 (output_bfd, l32r_offset (got_base + 0, |
92b3f008 MF |
2344 | plt_base + code_offset + abi_offset), |
2345 | splt->contents + code_offset + abi_offset + 1); | |
e0001a05 | 2346 | bfd_put_16 (output_bfd, l32r_offset (got_base + 4, |
92b3f008 MF |
2347 | plt_base + code_offset + abi_offset + 3), |
2348 | splt->contents + code_offset + abi_offset + 4); | |
e0001a05 | 2349 | bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset, |
92b3f008 MF |
2350 | plt_base + code_offset + abi_offset + 6), |
2351 | splt->contents + code_offset + abi_offset + 7); | |
e0001a05 NC |
2352 | |
2353 | return plt_base + code_offset; | |
2354 | } | |
2355 | ||
2356 | ||
28dbbc02 BW |
2357 | static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *); |
2358 | ||
2359 | static bfd_boolean | |
2360 | replace_tls_insn (Elf_Internal_Rela *rel, | |
2361 | bfd *abfd, | |
2362 | asection *input_section, | |
2363 | bfd_byte *contents, | |
2364 | bfd_boolean is_ld_model, | |
2365 | char **error_message) | |
2366 | { | |
2367 | static xtensa_insnbuf ibuff = NULL; | |
2368 | static xtensa_insnbuf sbuff = NULL; | |
2369 | xtensa_isa isa = xtensa_default_isa; | |
2370 | xtensa_format fmt; | |
2371 | xtensa_opcode old_op, new_op; | |
2372 | bfd_size_type input_size; | |
2373 | int r_type; | |
2374 | unsigned dest_reg, src_reg; | |
2375 | ||
2376 | if (ibuff == NULL) | |
2377 | { | |
2378 | ibuff = xtensa_insnbuf_alloc (isa); | |
2379 | sbuff = xtensa_insnbuf_alloc (isa); | |
2380 | } | |
2381 | ||
2382 | input_size = bfd_get_section_limit (abfd, input_section); | |
2383 | ||
2384 | /* Read the instruction into a buffer and decode the opcode. */ | |
2385 | xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset, | |
2386 | input_size - rel->r_offset); | |
2387 | fmt = xtensa_format_decode (isa, ibuff); | |
2388 | if (fmt == XTENSA_UNDEFINED) | |
2389 | { | |
2390 | *error_message = "cannot decode instruction format"; | |
2391 | return FALSE; | |
2392 | } | |
2393 | ||
2394 | BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1); | |
2395 | xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff); | |
2396 | ||
2397 | old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff); | |
2398 | if (old_op == XTENSA_UNDEFINED) | |
2399 | { | |
2400 | *error_message = "cannot decode instruction opcode"; | |
2401 | return FALSE; | |
2402 | } | |
2403 | ||
2404 | r_type = ELF32_R_TYPE (rel->r_info); | |
2405 | switch (r_type) | |
2406 | { | |
2407 | case R_XTENSA_TLS_FUNC: | |
2408 | case R_XTENSA_TLS_ARG: | |
2409 | if (old_op != get_l32r_opcode () | |
2410 | || xtensa_operand_get_field (isa, old_op, 0, fmt, 0, | |
2411 | sbuff, &dest_reg) != 0) | |
2412 | { | |
2413 | *error_message = "cannot extract L32R destination for TLS access"; | |
2414 | return FALSE; | |
2415 | } | |
2416 | break; | |
2417 | ||
2418 | case R_XTENSA_TLS_CALL: | |
2419 | if (! get_indirect_call_dest_reg (old_op, &dest_reg) | |
2420 | || xtensa_operand_get_field (isa, old_op, 0, fmt, 0, | |
2421 | sbuff, &src_reg) != 0) | |
2422 | { | |
2423 | *error_message = "cannot extract CALLXn operands for TLS access"; | |
2424 | return FALSE; | |
2425 | } | |
2426 | break; | |
2427 | ||
2428 | default: | |
2429 | abort (); | |
2430 | } | |
2431 | ||
2432 | if (is_ld_model) | |
2433 | { | |
2434 | switch (r_type) | |
2435 | { | |
2436 | case R_XTENSA_TLS_FUNC: | |
2437 | case R_XTENSA_TLS_ARG: | |
2438 | /* Change the instruction to a NOP (or "OR a1, a1, a1" for older | |
2439 | versions of Xtensa). */ | |
2440 | new_op = xtensa_opcode_lookup (isa, "nop"); | |
2441 | if (new_op == XTENSA_UNDEFINED) | |
2442 | { | |
2443 | new_op = xtensa_opcode_lookup (isa, "or"); | |
2444 | if (new_op == XTENSA_UNDEFINED | |
2445 | || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0 | |
2446 | || xtensa_operand_set_field (isa, new_op, 0, fmt, 0, | |
2447 | sbuff, 1) != 0 | |
2448 | || xtensa_operand_set_field (isa, new_op, 1, fmt, 0, | |
2449 | sbuff, 1) != 0 | |
2450 | || xtensa_operand_set_field (isa, new_op, 2, fmt, 0, | |
2451 | sbuff, 1) != 0) | |
2452 | { | |
2453 | *error_message = "cannot encode OR for TLS access"; | |
2454 | return FALSE; | |
2455 | } | |
2456 | } | |
2457 | else | |
2458 | { | |
2459 | if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0) | |
2460 | { | |
2461 | *error_message = "cannot encode NOP for TLS access"; | |
2462 | return FALSE; | |
2463 | } | |
2464 | } | |
2465 | break; | |
2466 | ||
2467 | case R_XTENSA_TLS_CALL: | |
2468 | /* Read THREADPTR into the CALLX's return value register. */ | |
2469 | new_op = xtensa_opcode_lookup (isa, "rur.threadptr"); | |
2470 | if (new_op == XTENSA_UNDEFINED | |
2471 | || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0 | |
2472 | || xtensa_operand_set_field (isa, new_op, 0, fmt, 0, | |
2473 | sbuff, dest_reg + 2) != 0) | |
2474 | { | |
2475 | *error_message = "cannot encode RUR.THREADPTR for TLS access"; | |
2476 | return FALSE; | |
2477 | } | |
2478 | break; | |
2479 | } | |
2480 | } | |
2481 | else | |
2482 | { | |
2483 | switch (r_type) | |
2484 | { | |
2485 | case R_XTENSA_TLS_FUNC: | |
2486 | new_op = xtensa_opcode_lookup (isa, "rur.threadptr"); | |
2487 | if (new_op == XTENSA_UNDEFINED | |
2488 | || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0 | |
2489 | || xtensa_operand_set_field (isa, new_op, 0, fmt, 0, | |
2490 | sbuff, dest_reg) != 0) | |
2491 | { | |
2492 | *error_message = "cannot encode RUR.THREADPTR for TLS access"; | |
2493 | return FALSE; | |
2494 | } | |
2495 | break; | |
2496 | ||
2497 | case R_XTENSA_TLS_ARG: | |
2498 | /* Nothing to do. Keep the original L32R instruction. */ | |
2499 | return TRUE; | |
2500 | ||
2501 | case R_XTENSA_TLS_CALL: | |
2502 | /* Add the CALLX's src register (holding the THREADPTR value) | |
2503 | to the first argument register (holding the offset) and put | |
2504 | the result in the CALLX's return value register. */ | |
2505 | new_op = xtensa_opcode_lookup (isa, "add"); | |
2506 | if (new_op == XTENSA_UNDEFINED | |
2507 | || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0 | |
2508 | || xtensa_operand_set_field (isa, new_op, 0, fmt, 0, | |
2509 | sbuff, dest_reg + 2) != 0 | |
2510 | || xtensa_operand_set_field (isa, new_op, 1, fmt, 0, | |
2511 | sbuff, dest_reg + 2) != 0 | |
2512 | || xtensa_operand_set_field (isa, new_op, 2, fmt, 0, | |
2513 | sbuff, src_reg) != 0) | |
2514 | { | |
2515 | *error_message = "cannot encode ADD for TLS access"; | |
2516 | return FALSE; | |
2517 | } | |
2518 | break; | |
2519 | } | |
2520 | } | |
2521 | ||
2522 | xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff); | |
2523 | xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset, | |
2524 | input_size - rel->r_offset); | |
2525 | ||
2526 | return TRUE; | |
2527 | } | |
2528 | ||
2529 | ||
2530 | #define IS_XTENSA_TLS_RELOC(R_TYPE) \ | |
2531 | ((R_TYPE) == R_XTENSA_TLSDESC_FN \ | |
2532 | || (R_TYPE) == R_XTENSA_TLSDESC_ARG \ | |
2533 | || (R_TYPE) == R_XTENSA_TLS_DTPOFF \ | |
2534 | || (R_TYPE) == R_XTENSA_TLS_TPOFF \ | |
2535 | || (R_TYPE) == R_XTENSA_TLS_FUNC \ | |
2536 | || (R_TYPE) == R_XTENSA_TLS_ARG \ | |
2537 | || (R_TYPE) == R_XTENSA_TLS_CALL) | |
2538 | ||
e0001a05 | 2539 | /* Relocate an Xtensa ELF section. This is invoked by the linker for |
1049f94e | 2540 | both relocatable and final links. */ |
e0001a05 NC |
2541 | |
2542 | static bfd_boolean | |
7fa3d080 BW |
2543 | elf_xtensa_relocate_section (bfd *output_bfd, |
2544 | struct bfd_link_info *info, | |
2545 | bfd *input_bfd, | |
2546 | asection *input_section, | |
2547 | bfd_byte *contents, | |
2548 | Elf_Internal_Rela *relocs, | |
2549 | Elf_Internal_Sym *local_syms, | |
2550 | asection **local_sections) | |
e0001a05 | 2551 | { |
f0e6fdb2 | 2552 | struct elf_xtensa_link_hash_table *htab; |
e0001a05 NC |
2553 | Elf_Internal_Shdr *symtab_hdr; |
2554 | Elf_Internal_Rela *rel; | |
2555 | Elf_Internal_Rela *relend; | |
2556 | struct elf_link_hash_entry **sym_hashes; | |
88d65ad6 BW |
2557 | property_table_entry *lit_table = 0; |
2558 | int ltblsize = 0; | |
28dbbc02 | 2559 | char *local_got_tls_types; |
e0001a05 | 2560 | char *error_message = NULL; |
43cd72b9 | 2561 | bfd_size_type input_size; |
28dbbc02 | 2562 | int tls_type; |
e0001a05 | 2563 | |
43cd72b9 BW |
2564 | if (!xtensa_default_isa) |
2565 | xtensa_default_isa = xtensa_isa_init (0, 0); | |
e0001a05 | 2566 | |
28dbbc02 BW |
2567 | BFD_ASSERT (is_xtensa_elf (input_bfd)); |
2568 | ||
f0e6fdb2 | 2569 | htab = elf_xtensa_hash_table (info); |
4dfe6ac6 NC |
2570 | if (htab == NULL) |
2571 | return FALSE; | |
2572 | ||
e0001a05 NC |
2573 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
2574 | sym_hashes = elf_sym_hashes (input_bfd); | |
28dbbc02 | 2575 | local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd); |
e0001a05 | 2576 | |
88d65ad6 BW |
2577 | if (elf_hash_table (info)->dynamic_sections_created) |
2578 | { | |
2579 | ltblsize = xtensa_read_table_entries (input_bfd, input_section, | |
43cd72b9 BW |
2580 | &lit_table, XTENSA_LIT_SEC_NAME, |
2581 | TRUE); | |
88d65ad6 BW |
2582 | if (ltblsize < 0) |
2583 | return FALSE; | |
2584 | } | |
2585 | ||
43cd72b9 BW |
2586 | input_size = bfd_get_section_limit (input_bfd, input_section); |
2587 | ||
e0001a05 NC |
2588 | rel = relocs; |
2589 | relend = relocs + input_section->reloc_count; | |
2590 | for (; rel < relend; rel++) | |
2591 | { | |
2592 | int r_type; | |
2593 | reloc_howto_type *howto; | |
2594 | unsigned long r_symndx; | |
2595 | struct elf_link_hash_entry *h; | |
2596 | Elf_Internal_Sym *sym; | |
28dbbc02 BW |
2597 | char sym_type; |
2598 | const char *name; | |
e0001a05 NC |
2599 | asection *sec; |
2600 | bfd_vma relocation; | |
2601 | bfd_reloc_status_type r; | |
2602 | bfd_boolean is_weak_undef; | |
2603 | bfd_boolean unresolved_reloc; | |
9b8c98a4 | 2604 | bfd_boolean warned; |
28dbbc02 | 2605 | bfd_boolean dynamic_symbol; |
e0001a05 NC |
2606 | |
2607 | r_type = ELF32_R_TYPE (rel->r_info); | |
2608 | if (r_type == (int) R_XTENSA_GNU_VTINHERIT | |
2609 | || r_type == (int) R_XTENSA_GNU_VTENTRY) | |
2610 | continue; | |
2611 | ||
2612 | if (r_type < 0 || r_type >= (int) R_XTENSA_max) | |
2613 | { | |
2614 | bfd_set_error (bfd_error_bad_value); | |
2615 | return FALSE; | |
2616 | } | |
2617 | howto = &elf_howto_table[r_type]; | |
2618 | ||
2619 | r_symndx = ELF32_R_SYM (rel->r_info); | |
2620 | ||
ab96bf03 AM |
2621 | h = NULL; |
2622 | sym = NULL; | |
2623 | sec = NULL; | |
2624 | is_weak_undef = FALSE; | |
2625 | unresolved_reloc = FALSE; | |
2626 | warned = FALSE; | |
2627 | ||
0e1862bb | 2628 | if (howto->partial_inplace && !bfd_link_relocatable (info)) |
ab96bf03 AM |
2629 | { |
2630 | /* Because R_XTENSA_32 was made partial_inplace to fix some | |
2631 | problems with DWARF info in partial links, there may be | |
2632 | an addend stored in the contents. Take it out of there | |
2633 | and move it back into the addend field of the reloc. */ | |
2634 | rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset); | |
2635 | bfd_put_32 (input_bfd, 0, contents + rel->r_offset); | |
2636 | } | |
2637 | ||
2638 | if (r_symndx < symtab_hdr->sh_info) | |
2639 | { | |
2640 | sym = local_syms + r_symndx; | |
28dbbc02 | 2641 | sym_type = ELF32_ST_TYPE (sym->st_info); |
ab96bf03 AM |
2642 | sec = local_sections[r_symndx]; |
2643 | relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); | |
2644 | } | |
2645 | else | |
2646 | { | |
62d887d4 L |
2647 | bfd_boolean ignored; |
2648 | ||
ab96bf03 AM |
2649 | RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, |
2650 | r_symndx, symtab_hdr, sym_hashes, | |
2651 | h, sec, relocation, | |
62d887d4 | 2652 | unresolved_reloc, warned, ignored); |
ab96bf03 AM |
2653 | |
2654 | if (relocation == 0 | |
2655 | && !unresolved_reloc | |
2656 | && h->root.type == bfd_link_hash_undefweak) | |
2657 | is_weak_undef = TRUE; | |
28dbbc02 BW |
2658 | |
2659 | sym_type = h->type; | |
ab96bf03 AM |
2660 | } |
2661 | ||
dbaa2011 | 2662 | if (sec != NULL && discarded_section (sec)) |
e4067dbb | 2663 | RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, |
545fd46b | 2664 | rel, 1, relend, howto, 0, contents); |
ab96bf03 | 2665 | |
0e1862bb | 2666 | if (bfd_link_relocatable (info)) |
e0001a05 | 2667 | { |
7aa09196 SA |
2668 | bfd_vma dest_addr; |
2669 | asection * sym_sec = get_elf_r_symndx_section (input_bfd, r_symndx); | |
2670 | ||
43cd72b9 | 2671 | /* This is a relocatable link. |
e0001a05 NC |
2672 | 1) If the reloc is against a section symbol, adjust |
2673 | according to the output section. | |
2674 | 2) If there is a new target for this relocation, | |
2675 | the new target will be in the same output section. | |
2676 | We adjust the relocation by the output section | |
2677 | difference. */ | |
2678 | ||
2679 | if (relaxing_section) | |
2680 | { | |
2681 | /* Check if this references a section in another input file. */ | |
43cd72b9 BW |
2682 | if (!do_fix_for_relocatable_link (rel, input_bfd, input_section, |
2683 | contents)) | |
2684 | return FALSE; | |
e0001a05 NC |
2685 | } |
2686 | ||
7aa09196 SA |
2687 | dest_addr = sym_sec->output_section->vma + sym_sec->output_offset |
2688 | + get_elf_r_symndx_offset (input_bfd, r_symndx) + rel->r_addend; | |
2689 | ||
43cd72b9 | 2690 | if (r_type == R_XTENSA_ASM_SIMPLIFY) |
e0001a05 | 2691 | { |
91d6fa6a | 2692 | error_message = NULL; |
e0001a05 NC |
2693 | /* Convert ASM_SIMPLIFY into the simpler relocation |
2694 | so that they never escape a relaxing link. */ | |
43cd72b9 BW |
2695 | r = contract_asm_expansion (contents, input_size, rel, |
2696 | &error_message); | |
2697 | if (r != bfd_reloc_ok) | |
1a72702b AM |
2698 | (*info->callbacks->reloc_dangerous) |
2699 | (info, error_message, | |
2700 | input_bfd, input_section, rel->r_offset); | |
2701 | ||
e0001a05 NC |
2702 | r_type = ELF32_R_TYPE (rel->r_info); |
2703 | } | |
2704 | ||
1049f94e | 2705 | /* This is a relocatable link, so we don't have to change |
e0001a05 NC |
2706 | anything unless the reloc is against a section symbol, |
2707 | in which case we have to adjust according to where the | |
2708 | section symbol winds up in the output section. */ | |
2709 | if (r_symndx < symtab_hdr->sh_info) | |
2710 | { | |
2711 | sym = local_syms + r_symndx; | |
2712 | if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) | |
2713 | { | |
2714 | sec = local_sections[r_symndx]; | |
2715 | rel->r_addend += sec->output_offset + sym->st_value; | |
2716 | } | |
2717 | } | |
2718 | ||
2719 | /* If there is an addend with a partial_inplace howto, | |
2720 | then move the addend to the contents. This is a hack | |
1049f94e | 2721 | to work around problems with DWARF in relocatable links |
e0001a05 NC |
2722 | with some previous version of BFD. Now we can't easily get |
2723 | rid of the hack without breaking backward compatibility.... */ | |
7aa09196 SA |
2724 | r = bfd_reloc_ok; |
2725 | howto = &elf_howto_table[r_type]; | |
2726 | if (howto->partial_inplace && rel->r_addend) | |
2727 | { | |
2728 | r = elf_xtensa_do_reloc (howto, input_bfd, input_section, | |
2729 | rel->r_addend, contents, | |
2730 | rel->r_offset, FALSE, | |
2731 | &error_message); | |
2732 | rel->r_addend = 0; | |
2733 | } | |
2734 | else | |
e0001a05 | 2735 | { |
7aa09196 SA |
2736 | /* Put the correct bits in the target instruction, even |
2737 | though the relocation will still be present in the output | |
2738 | file. This makes disassembly clearer, as well as | |
2739 | allowing loadable kernel modules to work without needing | |
2740 | relocations on anything other than calls and l32r's. */ | |
2741 | ||
2742 | /* If it is not in the same section, there is nothing we can do. */ | |
2743 | if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP && | |
2744 | sym_sec->output_section == input_section->output_section) | |
e0001a05 NC |
2745 | { |
2746 | r = elf_xtensa_do_reloc (howto, input_bfd, input_section, | |
7aa09196 | 2747 | dest_addr, contents, |
e0001a05 NC |
2748 | rel->r_offset, FALSE, |
2749 | &error_message); | |
e0001a05 NC |
2750 | } |
2751 | } | |
7aa09196 | 2752 | if (r != bfd_reloc_ok) |
1a72702b AM |
2753 | (*info->callbacks->reloc_dangerous) |
2754 | (info, error_message, | |
2755 | input_bfd, input_section, rel->r_offset); | |
e0001a05 | 2756 | |
1049f94e | 2757 | /* Done with work for relocatable link; continue with next reloc. */ |
e0001a05 NC |
2758 | continue; |
2759 | } | |
2760 | ||
2761 | /* This is a final link. */ | |
2762 | ||
e0001a05 NC |
2763 | if (relaxing_section) |
2764 | { | |
2765 | /* Check if this references a section in another input file. */ | |
43cd72b9 BW |
2766 | do_fix_for_final_link (rel, input_bfd, input_section, contents, |
2767 | &relocation); | |
e0001a05 NC |
2768 | } |
2769 | ||
2770 | /* Sanity check the address. */ | |
43cd72b9 | 2771 | if (rel->r_offset >= input_size |
e0001a05 NC |
2772 | && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE) |
2773 | { | |
4eca0228 | 2774 | _bfd_error_handler |
695344c0 | 2775 | /* xgettext:c-format */ |
43cd72b9 BW |
2776 | (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"), |
2777 | input_bfd, input_section, rel->r_offset, input_size); | |
e0001a05 NC |
2778 | bfd_set_error (bfd_error_bad_value); |
2779 | return FALSE; | |
2780 | } | |
2781 | ||
28dbbc02 BW |
2782 | if (h != NULL) |
2783 | name = h->root.root.string; | |
2784 | else | |
e0001a05 | 2785 | { |
28dbbc02 BW |
2786 | name = (bfd_elf_string_from_elf_section |
2787 | (input_bfd, symtab_hdr->sh_link, sym->st_name)); | |
2788 | if (name == NULL || *name == '\0') | |
2789 | name = bfd_section_name (input_bfd, sec); | |
2790 | } | |
e0001a05 | 2791 | |
cf35638d | 2792 | if (r_symndx != STN_UNDEF |
28dbbc02 BW |
2793 | && r_type != R_XTENSA_NONE |
2794 | && (h == NULL | |
2795 | || h->root.type == bfd_link_hash_defined | |
2796 | || h->root.type == bfd_link_hash_defweak) | |
2797 | && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS)) | |
2798 | { | |
4eca0228 | 2799 | _bfd_error_handler |
28dbbc02 | 2800 | ((sym_type == STT_TLS |
695344c0 | 2801 | /* xgettext:c-format */ |
28dbbc02 | 2802 | ? _("%B(%A+0x%lx): %s used with TLS symbol %s") |
695344c0 | 2803 | /* xgettext:c-format */ |
28dbbc02 BW |
2804 | : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")), |
2805 | input_bfd, | |
2806 | input_section, | |
2807 | (long) rel->r_offset, | |
2808 | howto->name, | |
2809 | name); | |
2810 | } | |
2811 | ||
2812 | dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info); | |
2813 | ||
2814 | tls_type = GOT_UNKNOWN; | |
2815 | if (h) | |
2816 | tls_type = elf_xtensa_hash_entry (h)->tls_type; | |
2817 | else if (local_got_tls_types) | |
2818 | tls_type = local_got_tls_types [r_symndx]; | |
2819 | ||
2820 | switch (r_type) | |
2821 | { | |
2822 | case R_XTENSA_32: | |
2823 | case R_XTENSA_PLT: | |
2824 | if (elf_hash_table (info)->dynamic_sections_created | |
2825 | && (input_section->flags & SEC_ALLOC) != 0 | |
0e1862bb | 2826 | && (dynamic_symbol || bfd_link_pic (info))) |
e0001a05 NC |
2827 | { |
2828 | Elf_Internal_Rela outrel; | |
2829 | bfd_byte *loc; | |
2830 | asection *srel; | |
2831 | ||
2832 | if (dynamic_symbol && r_type == R_XTENSA_PLT) | |
ce558b89 | 2833 | srel = htab->elf.srelplt; |
e0001a05 | 2834 | else |
ce558b89 | 2835 | srel = htab->elf.srelgot; |
e0001a05 NC |
2836 | |
2837 | BFD_ASSERT (srel != NULL); | |
2838 | ||
2839 | outrel.r_offset = | |
2840 | _bfd_elf_section_offset (output_bfd, info, | |
2841 | input_section, rel->r_offset); | |
2842 | ||
2843 | if ((outrel.r_offset | 1) == (bfd_vma) -1) | |
2844 | memset (&outrel, 0, sizeof outrel); | |
2845 | else | |
2846 | { | |
f0578e28 BW |
2847 | outrel.r_offset += (input_section->output_section->vma |
2848 | + input_section->output_offset); | |
e0001a05 | 2849 | |
88d65ad6 BW |
2850 | /* Complain if the relocation is in a read-only section |
2851 | and not in a literal pool. */ | |
2852 | if ((input_section->flags & SEC_READONLY) != 0 | |
2853 | && !elf_xtensa_in_literal_pool (lit_table, ltblsize, | |
3ba3bc8c | 2854 | outrel.r_offset)) |
88d65ad6 BW |
2855 | { |
2856 | error_message = | |
2857 | _("dynamic relocation in read-only section"); | |
1a72702b AM |
2858 | (*info->callbacks->reloc_dangerous) |
2859 | (info, error_message, | |
2860 | input_bfd, input_section, rel->r_offset); | |
88d65ad6 BW |
2861 | } |
2862 | ||
e0001a05 NC |
2863 | if (dynamic_symbol) |
2864 | { | |
2865 | outrel.r_addend = rel->r_addend; | |
2866 | rel->r_addend = 0; | |
2867 | ||
2868 | if (r_type == R_XTENSA_32) | |
2869 | { | |
2870 | outrel.r_info = | |
2871 | ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT); | |
2872 | relocation = 0; | |
2873 | } | |
2874 | else /* r_type == R_XTENSA_PLT */ | |
2875 | { | |
2876 | outrel.r_info = | |
2877 | ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT); | |
2878 | ||
2879 | /* Create the PLT entry and set the initial | |
2880 | contents of the literal entry to the address of | |
2881 | the PLT entry. */ | |
43cd72b9 | 2882 | relocation = |
f0e6fdb2 | 2883 | elf_xtensa_create_plt_entry (info, output_bfd, |
e0001a05 NC |
2884 | srel->reloc_count); |
2885 | } | |
2886 | unresolved_reloc = FALSE; | |
2887 | } | |
2888 | else | |
2889 | { | |
2890 | /* Generate a RELATIVE relocation. */ | |
2891 | outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE); | |
2892 | outrel.r_addend = 0; | |
2893 | } | |
2894 | } | |
2895 | ||
2896 | loc = (srel->contents | |
2897 | + srel->reloc_count++ * sizeof (Elf32_External_Rela)); | |
2898 | bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); | |
2899 | BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count | |
eea6121a | 2900 | <= srel->size); |
e0001a05 | 2901 | } |
d9ab3f29 BW |
2902 | else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol) |
2903 | { | |
2904 | /* This should only happen for non-PIC code, which is not | |
2905 | supposed to be used on systems with dynamic linking. | |
2906 | Just ignore these relocations. */ | |
2907 | continue; | |
2908 | } | |
28dbbc02 BW |
2909 | break; |
2910 | ||
2911 | case R_XTENSA_TLS_TPOFF: | |
2912 | /* Switch to LE model for local symbols in an executable. */ | |
0e1862bb | 2913 | if (! bfd_link_pic (info) && ! dynamic_symbol) |
28dbbc02 BW |
2914 | { |
2915 | relocation = tpoff (info, relocation); | |
2916 | break; | |
2917 | } | |
2918 | /* fall through */ | |
2919 | ||
2920 | case R_XTENSA_TLSDESC_FN: | |
2921 | case R_XTENSA_TLSDESC_ARG: | |
2922 | { | |
2923 | if (r_type == R_XTENSA_TLSDESC_FN) | |
2924 | { | |
0e1862bb | 2925 | if (! bfd_link_pic (info) || (tls_type & GOT_TLS_IE) != 0) |
28dbbc02 BW |
2926 | r_type = R_XTENSA_NONE; |
2927 | } | |
2928 | else if (r_type == R_XTENSA_TLSDESC_ARG) | |
2929 | { | |
0e1862bb | 2930 | if (bfd_link_pic (info)) |
28dbbc02 BW |
2931 | { |
2932 | if ((tls_type & GOT_TLS_IE) != 0) | |
2933 | r_type = R_XTENSA_TLS_TPOFF; | |
2934 | } | |
2935 | else | |
2936 | { | |
2937 | r_type = R_XTENSA_TLS_TPOFF; | |
2938 | if (! dynamic_symbol) | |
2939 | { | |
2940 | relocation = tpoff (info, relocation); | |
2941 | break; | |
2942 | } | |
2943 | } | |
2944 | } | |
2945 | ||
2946 | if (r_type == R_XTENSA_NONE) | |
2947 | /* Nothing to do here; skip to the next reloc. */ | |
2948 | continue; | |
2949 | ||
2950 | if (! elf_hash_table (info)->dynamic_sections_created) | |
2951 | { | |
2952 | error_message = | |
2953 | _("TLS relocation invalid without dynamic sections"); | |
1a72702b AM |
2954 | (*info->callbacks->reloc_dangerous) |
2955 | (info, error_message, | |
2956 | input_bfd, input_section, rel->r_offset); | |
28dbbc02 BW |
2957 | } |
2958 | else | |
2959 | { | |
2960 | Elf_Internal_Rela outrel; | |
2961 | bfd_byte *loc; | |
ce558b89 | 2962 | asection *srel = htab->elf.srelgot; |
28dbbc02 BW |
2963 | int indx; |
2964 | ||
2965 | outrel.r_offset = (input_section->output_section->vma | |
2966 | + input_section->output_offset | |
2967 | + rel->r_offset); | |
2968 | ||
2969 | /* Complain if the relocation is in a read-only section | |
2970 | and not in a literal pool. */ | |
2971 | if ((input_section->flags & SEC_READONLY) != 0 | |
2972 | && ! elf_xtensa_in_literal_pool (lit_table, ltblsize, | |
2973 | outrel.r_offset)) | |
2974 | { | |
2975 | error_message = | |
2976 | _("dynamic relocation in read-only section"); | |
1a72702b AM |
2977 | (*info->callbacks->reloc_dangerous) |
2978 | (info, error_message, | |
2979 | input_bfd, input_section, rel->r_offset); | |
28dbbc02 BW |
2980 | } |
2981 | ||
2982 | indx = h && h->dynindx != -1 ? h->dynindx : 0; | |
2983 | if (indx == 0) | |
2984 | outrel.r_addend = relocation - dtpoff_base (info); | |
2985 | else | |
2986 | outrel.r_addend = 0; | |
2987 | rel->r_addend = 0; | |
2988 | ||
2989 | outrel.r_info = ELF32_R_INFO (indx, r_type); | |
2990 | relocation = 0; | |
2991 | unresolved_reloc = FALSE; | |
2992 | ||
2993 | BFD_ASSERT (srel); | |
2994 | loc = (srel->contents | |
2995 | + srel->reloc_count++ * sizeof (Elf32_External_Rela)); | |
2996 | bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); | |
2997 | BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count | |
2998 | <= srel->size); | |
2999 | } | |
3000 | } | |
3001 | break; | |
3002 | ||
3003 | case R_XTENSA_TLS_DTPOFF: | |
0e1862bb | 3004 | if (! bfd_link_pic (info)) |
28dbbc02 BW |
3005 | /* Switch from LD model to LE model. */ |
3006 | relocation = tpoff (info, relocation); | |
3007 | else | |
3008 | relocation -= dtpoff_base (info); | |
3009 | break; | |
3010 | ||
3011 | case R_XTENSA_TLS_FUNC: | |
3012 | case R_XTENSA_TLS_ARG: | |
3013 | case R_XTENSA_TLS_CALL: | |
3014 | /* Check if optimizing to IE or LE model. */ | |
3015 | if ((tls_type & GOT_TLS_IE) != 0) | |
3016 | { | |
3017 | bfd_boolean is_ld_model = | |
3018 | (h && elf_xtensa_hash_entry (h) == htab->tlsbase); | |
3019 | if (! replace_tls_insn (rel, input_bfd, input_section, contents, | |
3020 | is_ld_model, &error_message)) | |
1a72702b AM |
3021 | (*info->callbacks->reloc_dangerous) |
3022 | (info, error_message, | |
3023 | input_bfd, input_section, rel->r_offset); | |
28dbbc02 BW |
3024 | |
3025 | if (r_type != R_XTENSA_TLS_ARG || is_ld_model) | |
3026 | { | |
3027 | /* Skip subsequent relocations on the same instruction. */ | |
3028 | while (rel + 1 < relend && rel[1].r_offset == rel->r_offset) | |
3029 | rel++; | |
3030 | } | |
3031 | } | |
3032 | continue; | |
3033 | ||
3034 | default: | |
3035 | if (elf_hash_table (info)->dynamic_sections_created | |
3036 | && dynamic_symbol && (is_operand_relocation (r_type) | |
3037 | || r_type == R_XTENSA_32_PCREL)) | |
3038 | { | |
3039 | error_message = | |
3040 | vsprint_msg ("invalid relocation for dynamic symbol", ": %s", | |
3041 | strlen (name) + 2, name); | |
1a72702b AM |
3042 | (*info->callbacks->reloc_dangerous) |
3043 | (info, error_message, input_bfd, input_section, rel->r_offset); | |
28dbbc02 BW |
3044 | continue; |
3045 | } | |
3046 | break; | |
e0001a05 NC |
3047 | } |
3048 | ||
3049 | /* Dynamic relocs are not propagated for SEC_DEBUGGING sections | |
3050 | because such sections are not SEC_ALLOC and thus ld.so will | |
3051 | not process them. */ | |
3052 | if (unresolved_reloc | |
3053 | && !((input_section->flags & SEC_DEBUGGING) != 0 | |
1d5316ab AM |
3054 | && h->def_dynamic) |
3055 | && _bfd_elf_section_offset (output_bfd, info, input_section, | |
3056 | rel->r_offset) != (bfd_vma) -1) | |
bf1747de | 3057 | { |
4eca0228 | 3058 | _bfd_error_handler |
695344c0 | 3059 | /* xgettext:c-format */ |
bf1747de BW |
3060 | (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"), |
3061 | input_bfd, | |
3062 | input_section, | |
3063 | (long) rel->r_offset, | |
3064 | howto->name, | |
28dbbc02 | 3065 | name); |
bf1747de BW |
3066 | return FALSE; |
3067 | } | |
e0001a05 | 3068 | |
28dbbc02 BW |
3069 | /* TLS optimizations may have changed r_type; update "howto". */ |
3070 | howto = &elf_howto_table[r_type]; | |
3071 | ||
e0001a05 NC |
3072 | /* There's no point in calling bfd_perform_relocation here. |
3073 | Just go directly to our "special function". */ | |
3074 | r = elf_xtensa_do_reloc (howto, input_bfd, input_section, | |
3075 | relocation + rel->r_addend, | |
3076 | contents, rel->r_offset, is_weak_undef, | |
3077 | &error_message); | |
43cd72b9 | 3078 | |
9b8c98a4 | 3079 | if (r != bfd_reloc_ok && !warned) |
e0001a05 | 3080 | { |
43cd72b9 | 3081 | BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other); |
7fa3d080 | 3082 | BFD_ASSERT (error_message != NULL); |
e0001a05 | 3083 | |
28dbbc02 BW |
3084 | if (rel->r_addend == 0) |
3085 | error_message = vsprint_msg (error_message, ": %s", | |
3086 | strlen (name) + 2, name); | |
e0001a05 | 3087 | else |
28dbbc02 BW |
3088 | error_message = vsprint_msg (error_message, ": (%s+0x%x)", |
3089 | strlen (name) + 22, | |
3090 | name, (int) rel->r_addend); | |
43cd72b9 | 3091 | |
1a72702b AM |
3092 | (*info->callbacks->reloc_dangerous) |
3093 | (info, error_message, input_bfd, input_section, rel->r_offset); | |
e0001a05 NC |
3094 | } |
3095 | } | |
3096 | ||
88d65ad6 BW |
3097 | if (lit_table) |
3098 | free (lit_table); | |
3099 | ||
3ba3bc8c BW |
3100 | input_section->reloc_done = TRUE; |
3101 | ||
e0001a05 NC |
3102 | return TRUE; |
3103 | } | |
3104 | ||
3105 | ||
3106 | /* Finish up dynamic symbol handling. There's not much to do here since | |
3107 | the PLT and GOT entries are all set up by relocate_section. */ | |
3108 | ||
3109 | static bfd_boolean | |
7fa3d080 BW |
3110 | elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED, |
3111 | struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
3112 | struct elf_link_hash_entry *h, | |
3113 | Elf_Internal_Sym *sym) | |
e0001a05 | 3114 | { |
bf1747de | 3115 | if (h->needs_plt && !h->def_regular) |
e0001a05 NC |
3116 | { |
3117 | /* Mark the symbol as undefined, rather than as defined in | |
3118 | the .plt section. Leave the value alone. */ | |
3119 | sym->st_shndx = SHN_UNDEF; | |
bf1747de BW |
3120 | /* If the symbol is weak, we do need to clear the value. |
3121 | Otherwise, the PLT entry would provide a definition for | |
3122 | the symbol even if the symbol wasn't defined anywhere, | |
3123 | and so the symbol would never be NULL. */ | |
3124 | if (!h->ref_regular_nonweak) | |
3125 | sym->st_value = 0; | |
e0001a05 NC |
3126 | } |
3127 | ||
3128 | /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ | |
9637f6ef | 3129 | if (h == elf_hash_table (info)->hdynamic |
22edb2f1 | 3130 | || h == elf_hash_table (info)->hgot) |
e0001a05 NC |
3131 | sym->st_shndx = SHN_ABS; |
3132 | ||
3133 | return TRUE; | |
3134 | } | |
3135 | ||
3136 | ||
3137 | /* Combine adjacent literal table entries in the output. Adjacent | |
3138 | entries within each input section may have been removed during | |
3139 | relaxation, but we repeat the process here, even though it's too late | |
3140 | to shrink the output section, because it's important to minimize the | |
3141 | number of literal table entries to reduce the start-up work for the | |
3142 | runtime linker. Returns the number of remaining table entries or -1 | |
3143 | on error. */ | |
3144 | ||
3145 | static int | |
7fa3d080 BW |
3146 | elf_xtensa_combine_prop_entries (bfd *output_bfd, |
3147 | asection *sxtlit, | |
3148 | asection *sgotloc) | |
e0001a05 | 3149 | { |
e0001a05 NC |
3150 | bfd_byte *contents; |
3151 | property_table_entry *table; | |
e901de89 | 3152 | bfd_size_type section_size, sgotloc_size; |
e0001a05 NC |
3153 | bfd_vma offset; |
3154 | int n, m, num; | |
3155 | ||
eea6121a | 3156 | section_size = sxtlit->size; |
e0001a05 NC |
3157 | BFD_ASSERT (section_size % 8 == 0); |
3158 | num = section_size / 8; | |
3159 | ||
eea6121a | 3160 | sgotloc_size = sgotloc->size; |
e901de89 | 3161 | if (sgotloc_size != section_size) |
b536dc1e | 3162 | { |
4eca0228 | 3163 | _bfd_error_handler |
43cd72b9 | 3164 | (_("internal inconsistency in size of .got.loc section")); |
b536dc1e BW |
3165 | return -1; |
3166 | } | |
e901de89 | 3167 | |
eea6121a AM |
3168 | table = bfd_malloc (num * sizeof (property_table_entry)); |
3169 | if (table == 0) | |
e0001a05 NC |
3170 | return -1; |
3171 | ||
3172 | /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this | |
3173 | propagates to the output section, where it doesn't really apply and | |
eea6121a | 3174 | where it breaks the following call to bfd_malloc_and_get_section. */ |
e901de89 | 3175 | sxtlit->flags &= ~SEC_IN_MEMORY; |
e0001a05 | 3176 | |
eea6121a AM |
3177 | if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents)) |
3178 | { | |
3179 | if (contents != 0) | |
3180 | free (contents); | |
3181 | free (table); | |
3182 | return -1; | |
3183 | } | |
e0001a05 NC |
3184 | |
3185 | /* There should never be any relocations left at this point, so this | |
3186 | is quite a bit easier than what is done during relaxation. */ | |
3187 | ||
3188 | /* Copy the raw contents into a property table array and sort it. */ | |
3189 | offset = 0; | |
3190 | for (n = 0; n < num; n++) | |
3191 | { | |
3192 | table[n].address = bfd_get_32 (output_bfd, &contents[offset]); | |
3193 | table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]); | |
3194 | offset += 8; | |
3195 | } | |
3196 | qsort (table, num, sizeof (property_table_entry), property_table_compare); | |
3197 | ||
3198 | for (n = 0; n < num; n++) | |
3199 | { | |
91d6fa6a | 3200 | bfd_boolean remove_entry = FALSE; |
e0001a05 NC |
3201 | |
3202 | if (table[n].size == 0) | |
91d6fa6a NC |
3203 | remove_entry = TRUE; |
3204 | else if (n > 0 | |
3205 | && (table[n-1].address + table[n-1].size == table[n].address)) | |
e0001a05 NC |
3206 | { |
3207 | table[n-1].size += table[n].size; | |
91d6fa6a | 3208 | remove_entry = TRUE; |
e0001a05 NC |
3209 | } |
3210 | ||
91d6fa6a | 3211 | if (remove_entry) |
e0001a05 NC |
3212 | { |
3213 | for (m = n; m < num - 1; m++) | |
3214 | { | |
3215 | table[m].address = table[m+1].address; | |
3216 | table[m].size = table[m+1].size; | |
3217 | } | |
3218 | ||
3219 | n--; | |
3220 | num--; | |
3221 | } | |
3222 | } | |
3223 | ||
3224 | /* Copy the data back to the raw contents. */ | |
3225 | offset = 0; | |
3226 | for (n = 0; n < num; n++) | |
3227 | { | |
3228 | bfd_put_32 (output_bfd, table[n].address, &contents[offset]); | |
3229 | bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]); | |
3230 | offset += 8; | |
3231 | } | |
3232 | ||
3233 | /* Clear the removed bytes. */ | |
3234 | if ((bfd_size_type) (num * 8) < section_size) | |
b54d4b07 | 3235 | memset (&contents[num * 8], 0, section_size - num * 8); |
e0001a05 | 3236 | |
e901de89 BW |
3237 | if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0, |
3238 | section_size)) | |
e0001a05 NC |
3239 | return -1; |
3240 | ||
e901de89 BW |
3241 | /* Copy the contents to ".got.loc". */ |
3242 | memcpy (sgotloc->contents, contents, section_size); | |
3243 | ||
e0001a05 | 3244 | free (contents); |
b614a702 | 3245 | free (table); |
e0001a05 NC |
3246 | return num; |
3247 | } | |
3248 | ||
3249 | ||
3250 | /* Finish up the dynamic sections. */ | |
3251 | ||
3252 | static bfd_boolean | |
7fa3d080 BW |
3253 | elf_xtensa_finish_dynamic_sections (bfd *output_bfd, |
3254 | struct bfd_link_info *info) | |
e0001a05 | 3255 | { |
f0e6fdb2 | 3256 | struct elf_xtensa_link_hash_table *htab; |
e0001a05 | 3257 | bfd *dynobj; |
e901de89 | 3258 | asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc; |
e0001a05 | 3259 | Elf32_External_Dyn *dyncon, *dynconend; |
d9ab3f29 | 3260 | int num_xtlit_entries = 0; |
e0001a05 NC |
3261 | |
3262 | if (! elf_hash_table (info)->dynamic_sections_created) | |
3263 | return TRUE; | |
3264 | ||
f0e6fdb2 | 3265 | htab = elf_xtensa_hash_table (info); |
4dfe6ac6 NC |
3266 | if (htab == NULL) |
3267 | return FALSE; | |
3268 | ||
e0001a05 | 3269 | dynobj = elf_hash_table (info)->dynobj; |
3d4d4302 | 3270 | sdyn = bfd_get_linker_section (dynobj, ".dynamic"); |
e0001a05 NC |
3271 | BFD_ASSERT (sdyn != NULL); |
3272 | ||
3273 | /* Set the first entry in the global offset table to the address of | |
3274 | the dynamic section. */ | |
ce558b89 | 3275 | sgot = htab->elf.sgot; |
e0001a05 NC |
3276 | if (sgot) |
3277 | { | |
eea6121a | 3278 | BFD_ASSERT (sgot->size == 4); |
e0001a05 | 3279 | if (sdyn == NULL) |
7fa3d080 | 3280 | bfd_put_32 (output_bfd, 0, sgot->contents); |
e0001a05 NC |
3281 | else |
3282 | bfd_put_32 (output_bfd, | |
3283 | sdyn->output_section->vma + sdyn->output_offset, | |
3284 | sgot->contents); | |
3285 | } | |
3286 | ||
ce558b89 | 3287 | srelplt = htab->elf.srelplt; |
7fa3d080 | 3288 | if (srelplt && srelplt->size != 0) |
e0001a05 NC |
3289 | { |
3290 | asection *sgotplt, *srelgot, *spltlittbl; | |
3291 | int chunk, plt_chunks, plt_entries; | |
3292 | Elf_Internal_Rela irela; | |
3293 | bfd_byte *loc; | |
3294 | unsigned rtld_reloc; | |
3295 | ||
ce558b89 | 3296 | srelgot = htab->elf.srelgot; |
f0e6fdb2 BW |
3297 | spltlittbl = htab->spltlittbl; |
3298 | BFD_ASSERT (srelgot != NULL && spltlittbl != NULL); | |
e0001a05 NC |
3299 | |
3300 | /* Find the first XTENSA_RTLD relocation. Presumably the rest | |
3301 | of them follow immediately after.... */ | |
3302 | for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++) | |
3303 | { | |
3304 | loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela); | |
3305 | bfd_elf32_swap_reloca_in (output_bfd, loc, &irela); | |
3306 | if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD) | |
3307 | break; | |
3308 | } | |
3309 | BFD_ASSERT (rtld_reloc < srelgot->reloc_count); | |
3310 | ||
eea6121a | 3311 | plt_entries = srelplt->size / sizeof (Elf32_External_Rela); |
e0001a05 NC |
3312 | plt_chunks = |
3313 | (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK; | |
3314 | ||
3315 | for (chunk = 0; chunk < plt_chunks; chunk++) | |
3316 | { | |
3317 | int chunk_entries = 0; | |
3318 | ||
f0e6fdb2 | 3319 | sgotplt = elf_xtensa_get_gotplt_section (info, chunk); |
e0001a05 NC |
3320 | BFD_ASSERT (sgotplt != NULL); |
3321 | ||
3322 | /* Emit special RTLD relocations for the first two entries in | |
3323 | each chunk of the .got.plt section. */ | |
3324 | ||
3325 | loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela); | |
3326 | bfd_elf32_swap_reloca_in (output_bfd, loc, &irela); | |
3327 | BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD); | |
3328 | irela.r_offset = (sgotplt->output_section->vma | |
3329 | + sgotplt->output_offset); | |
3330 | irela.r_addend = 1; /* tell rtld to set value to resolver function */ | |
3331 | bfd_elf32_swap_reloca_out (output_bfd, &irela, loc); | |
3332 | rtld_reloc += 1; | |
3333 | BFD_ASSERT (rtld_reloc <= srelgot->reloc_count); | |
3334 | ||
3335 | /* Next literal immediately follows the first. */ | |
3336 | loc += sizeof (Elf32_External_Rela); | |
3337 | bfd_elf32_swap_reloca_in (output_bfd, loc, &irela); | |
3338 | BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD); | |
3339 | irela.r_offset = (sgotplt->output_section->vma | |
3340 | + sgotplt->output_offset + 4); | |
3341 | /* Tell rtld to set value to object's link map. */ | |
3342 | irela.r_addend = 2; | |
3343 | bfd_elf32_swap_reloca_out (output_bfd, &irela, loc); | |
3344 | rtld_reloc += 1; | |
3345 | BFD_ASSERT (rtld_reloc <= srelgot->reloc_count); | |
3346 | ||
3347 | /* Fill in the literal table. */ | |
3348 | if (chunk < plt_chunks - 1) | |
3349 | chunk_entries = PLT_ENTRIES_PER_CHUNK; | |
3350 | else | |
3351 | chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK); | |
3352 | ||
eea6121a | 3353 | BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size); |
e0001a05 NC |
3354 | bfd_put_32 (output_bfd, |
3355 | sgotplt->output_section->vma + sgotplt->output_offset, | |
3356 | spltlittbl->contents + (chunk * 8) + 0); | |
3357 | bfd_put_32 (output_bfd, | |
3358 | 8 + (chunk_entries * 4), | |
3359 | spltlittbl->contents + (chunk * 8) + 4); | |
3360 | } | |
3361 | ||
3362 | /* All the dynamic relocations have been emitted at this point. | |
3363 | Make sure the relocation sections are the correct size. */ | |
eea6121a AM |
3364 | if (srelgot->size != (sizeof (Elf32_External_Rela) |
3365 | * srelgot->reloc_count) | |
3366 | || srelplt->size != (sizeof (Elf32_External_Rela) | |
3367 | * srelplt->reloc_count)) | |
e0001a05 NC |
3368 | abort (); |
3369 | ||
3370 | /* The .xt.lit.plt section has just been modified. This must | |
3371 | happen before the code below which combines adjacent literal | |
3372 | table entries, and the .xt.lit.plt contents have to be forced to | |
3373 | the output here. */ | |
3374 | if (! bfd_set_section_contents (output_bfd, | |
3375 | spltlittbl->output_section, | |
3376 | spltlittbl->contents, | |
3377 | spltlittbl->output_offset, | |
eea6121a | 3378 | spltlittbl->size)) |
e0001a05 NC |
3379 | return FALSE; |
3380 | /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */ | |
3381 | spltlittbl->flags &= ~SEC_HAS_CONTENTS; | |
3382 | } | |
3383 | ||
3384 | /* Combine adjacent literal table entries. */ | |
0e1862bb | 3385 | BFD_ASSERT (! bfd_link_relocatable (info)); |
e901de89 | 3386 | sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit"); |
f0e6fdb2 | 3387 | sgotloc = htab->sgotloc; |
d9ab3f29 BW |
3388 | BFD_ASSERT (sgotloc); |
3389 | if (sxtlit) | |
3390 | { | |
3391 | num_xtlit_entries = | |
3392 | elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc); | |
3393 | if (num_xtlit_entries < 0) | |
3394 | return FALSE; | |
3395 | } | |
e0001a05 NC |
3396 | |
3397 | dyncon = (Elf32_External_Dyn *) sdyn->contents; | |
eea6121a | 3398 | dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size); |
e0001a05 NC |
3399 | for (; dyncon < dynconend; dyncon++) |
3400 | { | |
3401 | Elf_Internal_Dyn dyn; | |
e0001a05 NC |
3402 | |
3403 | bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); | |
3404 | ||
3405 | switch (dyn.d_tag) | |
3406 | { | |
3407 | default: | |
3408 | break; | |
3409 | ||
3410 | case DT_XTENSA_GOT_LOC_SZ: | |
e0001a05 NC |
3411 | dyn.d_un.d_val = num_xtlit_entries; |
3412 | break; | |
3413 | ||
3414 | case DT_XTENSA_GOT_LOC_OFF: | |
4ade44b7 AM |
3415 | dyn.d_un.d_ptr = (htab->sgotloc->output_section->vma |
3416 | + htab->sgotloc->output_offset); | |
f0e6fdb2 BW |
3417 | break; |
3418 | ||
e0001a05 | 3419 | case DT_PLTGOT: |
ce558b89 AM |
3420 | dyn.d_un.d_ptr = (htab->elf.sgot->output_section->vma |
3421 | + htab->elf.sgot->output_offset); | |
f0e6fdb2 BW |
3422 | break; |
3423 | ||
e0001a05 | 3424 | case DT_JMPREL: |
ce558b89 AM |
3425 | dyn.d_un.d_ptr = (htab->elf.srelplt->output_section->vma |
3426 | + htab->elf.srelplt->output_offset); | |
e0001a05 NC |
3427 | break; |
3428 | ||
3429 | case DT_PLTRELSZ: | |
ce558b89 | 3430 | dyn.d_un.d_val = htab->elf.srelplt->size; |
e0001a05 | 3431 | break; |
e0001a05 NC |
3432 | } |
3433 | ||
3434 | bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); | |
3435 | } | |
3436 | ||
3437 | return TRUE; | |
3438 | } | |
3439 | ||
3440 | \f | |
3441 | /* Functions for dealing with the e_flags field. */ | |
3442 | ||
3443 | /* Merge backend specific data from an object file to the output | |
3444 | object file when linking. */ | |
3445 | ||
3446 | static bfd_boolean | |
50e03d47 | 3447 | elf_xtensa_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info) |
e0001a05 | 3448 | { |
50e03d47 | 3449 | bfd *obfd = info->output_bfd; |
e0001a05 NC |
3450 | unsigned out_mach, in_mach; |
3451 | flagword out_flag, in_flag; | |
3452 | ||
cc643b88 | 3453 | /* Check if we have the same endianness. */ |
50e03d47 | 3454 | if (!_bfd_generic_verify_endian_match (ibfd, info)) |
e0001a05 NC |
3455 | return FALSE; |
3456 | ||
3457 | /* Don't even pretend to support mixed-format linking. */ | |
3458 | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour | |
3459 | || bfd_get_flavour (obfd) != bfd_target_elf_flavour) | |
3460 | return FALSE; | |
3461 | ||
3462 | out_flag = elf_elfheader (obfd)->e_flags; | |
3463 | in_flag = elf_elfheader (ibfd)->e_flags; | |
3464 | ||
3465 | out_mach = out_flag & EF_XTENSA_MACH; | |
3466 | in_mach = in_flag & EF_XTENSA_MACH; | |
43cd72b9 | 3467 | if (out_mach != in_mach) |
e0001a05 | 3468 | { |
4eca0228 | 3469 | _bfd_error_handler |
695344c0 | 3470 | /* xgettext:c-format */ |
43cd72b9 | 3471 | (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"), |
d003868e | 3472 | ibfd, out_mach, in_mach); |
e0001a05 NC |
3473 | bfd_set_error (bfd_error_wrong_format); |
3474 | return FALSE; | |
3475 | } | |
3476 | ||
3477 | if (! elf_flags_init (obfd)) | |
3478 | { | |
3479 | elf_flags_init (obfd) = TRUE; | |
3480 | elf_elfheader (obfd)->e_flags = in_flag; | |
43cd72b9 | 3481 | |
e0001a05 NC |
3482 | if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) |
3483 | && bfd_get_arch_info (obfd)->the_default) | |
3484 | return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), | |
3485 | bfd_get_mach (ibfd)); | |
43cd72b9 | 3486 | |
e0001a05 NC |
3487 | return TRUE; |
3488 | } | |
3489 | ||
68ffbac6 | 3490 | if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN)) |
43cd72b9 | 3491 | elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN); |
e0001a05 | 3492 | |
68ffbac6 | 3493 | if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT)) |
43cd72b9 | 3494 | elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT); |
e0001a05 NC |
3495 | |
3496 | return TRUE; | |
3497 | } | |
3498 | ||
3499 | ||
3500 | static bfd_boolean | |
7fa3d080 | 3501 | elf_xtensa_set_private_flags (bfd *abfd, flagword flags) |
e0001a05 NC |
3502 | { |
3503 | BFD_ASSERT (!elf_flags_init (abfd) | |
3504 | || elf_elfheader (abfd)->e_flags == flags); | |
3505 | ||
3506 | elf_elfheader (abfd)->e_flags |= flags; | |
3507 | elf_flags_init (abfd) = TRUE; | |
3508 | ||
3509 | return TRUE; | |
3510 | } | |
3511 | ||
3512 | ||
e0001a05 | 3513 | static bfd_boolean |
7fa3d080 | 3514 | elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg) |
e0001a05 NC |
3515 | { |
3516 | FILE *f = (FILE *) farg; | |
3517 | flagword e_flags = elf_elfheader (abfd)->e_flags; | |
3518 | ||
3519 | fprintf (f, "\nXtensa header:\n"); | |
43cd72b9 | 3520 | if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH) |
e0001a05 NC |
3521 | fprintf (f, "\nMachine = Base\n"); |
3522 | else | |
3523 | fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH); | |
3524 | ||
3525 | fprintf (f, "Insn tables = %s\n", | |
3526 | (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false"); | |
3527 | ||
3528 | fprintf (f, "Literal tables = %s\n", | |
3529 | (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false"); | |
3530 | ||
3531 | return _bfd_elf_print_private_bfd_data (abfd, farg); | |
3532 | } | |
3533 | ||
3534 | ||
3535 | /* Set the right machine number for an Xtensa ELF file. */ | |
3536 | ||
3537 | static bfd_boolean | |
7fa3d080 | 3538 | elf_xtensa_object_p (bfd *abfd) |
e0001a05 NC |
3539 | { |
3540 | int mach; | |
3541 | unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH; | |
3542 | ||
3543 | switch (arch) | |
3544 | { | |
3545 | case E_XTENSA_MACH: | |
3546 | mach = bfd_mach_xtensa; | |
3547 | break; | |
3548 | default: | |
3549 | return FALSE; | |
3550 | } | |
3551 | ||
3552 | (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach); | |
3553 | return TRUE; | |
3554 | } | |
3555 | ||
3556 | ||
3557 | /* The final processing done just before writing out an Xtensa ELF object | |
3558 | file. This gets the Xtensa architecture right based on the machine | |
3559 | number. */ | |
3560 | ||
3561 | static void | |
7fa3d080 BW |
3562 | elf_xtensa_final_write_processing (bfd *abfd, |
3563 | bfd_boolean linker ATTRIBUTE_UNUSED) | |
e0001a05 NC |
3564 | { |
3565 | int mach; | |
3566 | unsigned long val; | |
3567 | ||
3568 | switch (mach = bfd_get_mach (abfd)) | |
3569 | { | |
3570 | case bfd_mach_xtensa: | |
3571 | val = E_XTENSA_MACH; | |
3572 | break; | |
3573 | default: | |
3574 | return; | |
3575 | } | |
3576 | ||
3577 | elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH); | |
3578 | elf_elfheader (abfd)->e_flags |= val; | |
3579 | } | |
3580 | ||
3581 | ||
3582 | static enum elf_reloc_type_class | |
7e612e98 AM |
3583 | elf_xtensa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED, |
3584 | const asection *rel_sec ATTRIBUTE_UNUSED, | |
3585 | const Elf_Internal_Rela *rela) | |
e0001a05 NC |
3586 | { |
3587 | switch ((int) ELF32_R_TYPE (rela->r_info)) | |
3588 | { | |
3589 | case R_XTENSA_RELATIVE: | |
3590 | return reloc_class_relative; | |
3591 | case R_XTENSA_JMP_SLOT: | |
3592 | return reloc_class_plt; | |
3593 | default: | |
3594 | return reloc_class_normal; | |
3595 | } | |
3596 | } | |
3597 | ||
3598 | \f | |
3599 | static bfd_boolean | |
7fa3d080 BW |
3600 | elf_xtensa_discard_info_for_section (bfd *abfd, |
3601 | struct elf_reloc_cookie *cookie, | |
3602 | struct bfd_link_info *info, | |
3603 | asection *sec) | |
e0001a05 NC |
3604 | { |
3605 | bfd_byte *contents; | |
e0001a05 | 3606 | bfd_vma offset, actual_offset; |
1d25768e BW |
3607 | bfd_size_type removed_bytes = 0; |
3608 | bfd_size_type entry_size; | |
e0001a05 NC |
3609 | |
3610 | if (sec->output_section | |
3611 | && bfd_is_abs_section (sec->output_section)) | |
3612 | return FALSE; | |
3613 | ||
1d25768e BW |
3614 | if (xtensa_is_proptable_section (sec)) |
3615 | entry_size = 12; | |
3616 | else | |
3617 | entry_size = 8; | |
3618 | ||
a3ef2d63 | 3619 | if (sec->size == 0 || sec->size % entry_size != 0) |
1d25768e BW |
3620 | return FALSE; |
3621 | ||
e0001a05 NC |
3622 | contents = retrieve_contents (abfd, sec, info->keep_memory); |
3623 | if (!contents) | |
3624 | return FALSE; | |
3625 | ||
3626 | cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory); | |
3627 | if (!cookie->rels) | |
3628 | { | |
3629 | release_contents (sec, contents); | |
3630 | return FALSE; | |
3631 | } | |
3632 | ||
1d25768e BW |
3633 | /* Sort the relocations. They should already be in order when |
3634 | relaxation is enabled, but it might not be. */ | |
3635 | qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela), | |
3636 | internal_reloc_compare); | |
3637 | ||
e0001a05 NC |
3638 | cookie->rel = cookie->rels; |
3639 | cookie->relend = cookie->rels + sec->reloc_count; | |
3640 | ||
a3ef2d63 | 3641 | for (offset = 0; offset < sec->size; offset += entry_size) |
e0001a05 NC |
3642 | { |
3643 | actual_offset = offset - removed_bytes; | |
3644 | ||
3645 | /* The ...symbol_deleted_p function will skip over relocs but it | |
3646 | won't adjust their offsets, so do that here. */ | |
3647 | while (cookie->rel < cookie->relend | |
3648 | && cookie->rel->r_offset < offset) | |
3649 | { | |
3650 | cookie->rel->r_offset -= removed_bytes; | |
3651 | cookie->rel++; | |
3652 | } | |
3653 | ||
3654 | while (cookie->rel < cookie->relend | |
3655 | && cookie->rel->r_offset == offset) | |
3656 | { | |
c152c796 | 3657 | if (bfd_elf_reloc_symbol_deleted_p (offset, cookie)) |
e0001a05 NC |
3658 | { |
3659 | /* Remove the table entry. (If the reloc type is NONE, then | |
3660 | the entry has already been merged with another and deleted | |
3661 | during relaxation.) */ | |
3662 | if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE) | |
3663 | { | |
3664 | /* Shift the contents up. */ | |
a3ef2d63 | 3665 | if (offset + entry_size < sec->size) |
e0001a05 | 3666 | memmove (&contents[actual_offset], |
1d25768e | 3667 | &contents[actual_offset + entry_size], |
a3ef2d63 | 3668 | sec->size - offset - entry_size); |
1d25768e | 3669 | removed_bytes += entry_size; |
e0001a05 NC |
3670 | } |
3671 | ||
3672 | /* Remove this relocation. */ | |
3673 | cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
3674 | } | |
3675 | ||
3676 | /* Adjust the relocation offset for previous removals. This | |
3677 | should not be done before calling ...symbol_deleted_p | |
3678 | because it might mess up the offset comparisons there. | |
3679 | Make sure the offset doesn't underflow in the case where | |
3680 | the first entry is removed. */ | |
3681 | if (cookie->rel->r_offset >= removed_bytes) | |
3682 | cookie->rel->r_offset -= removed_bytes; | |
3683 | else | |
3684 | cookie->rel->r_offset = 0; | |
3685 | ||
3686 | cookie->rel++; | |
3687 | } | |
3688 | } | |
3689 | ||
3690 | if (removed_bytes != 0) | |
3691 | { | |
3692 | /* Adjust any remaining relocs (shouldn't be any). */ | |
3693 | for (; cookie->rel < cookie->relend; cookie->rel++) | |
3694 | { | |
3695 | if (cookie->rel->r_offset >= removed_bytes) | |
3696 | cookie->rel->r_offset -= removed_bytes; | |
3697 | else | |
3698 | cookie->rel->r_offset = 0; | |
3699 | } | |
3700 | ||
3701 | /* Clear the removed bytes. */ | |
a3ef2d63 | 3702 | memset (&contents[sec->size - removed_bytes], 0, removed_bytes); |
e0001a05 NC |
3703 | |
3704 | pin_contents (sec, contents); | |
3705 | pin_internal_relocs (sec, cookie->rels); | |
3706 | ||
eea6121a | 3707 | /* Shrink size. */ |
a3ef2d63 BW |
3708 | if (sec->rawsize == 0) |
3709 | sec->rawsize = sec->size; | |
3710 | sec->size -= removed_bytes; | |
b536dc1e BW |
3711 | |
3712 | if (xtensa_is_littable_section (sec)) | |
3713 | { | |
f0e6fdb2 BW |
3714 | asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc; |
3715 | if (sgotloc) | |
3716 | sgotloc->size -= removed_bytes; | |
b536dc1e | 3717 | } |
e0001a05 NC |
3718 | } |
3719 | else | |
3720 | { | |
3721 | release_contents (sec, contents); | |
3722 | release_internal_relocs (sec, cookie->rels); | |
3723 | } | |
3724 | ||
3725 | return (removed_bytes != 0); | |
3726 | } | |
3727 | ||
3728 | ||
3729 | static bfd_boolean | |
7fa3d080 BW |
3730 | elf_xtensa_discard_info (bfd *abfd, |
3731 | struct elf_reloc_cookie *cookie, | |
3732 | struct bfd_link_info *info) | |
e0001a05 NC |
3733 | { |
3734 | asection *sec; | |
3735 | bfd_boolean changed = FALSE; | |
3736 | ||
3737 | for (sec = abfd->sections; sec != NULL; sec = sec->next) | |
3738 | { | |
3739 | if (xtensa_is_property_section (sec)) | |
3740 | { | |
3741 | if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec)) | |
3742 | changed = TRUE; | |
3743 | } | |
3744 | } | |
3745 | ||
3746 | return changed; | |
3747 | } | |
3748 | ||
3749 | ||
3750 | static bfd_boolean | |
7fa3d080 | 3751 | elf_xtensa_ignore_discarded_relocs (asection *sec) |
e0001a05 NC |
3752 | { |
3753 | return xtensa_is_property_section (sec); | |
3754 | } | |
3755 | ||
a77dc2cc BW |
3756 | |
3757 | static unsigned int | |
3758 | elf_xtensa_action_discarded (asection *sec) | |
3759 | { | |
3760 | if (strcmp (".xt_except_table", sec->name) == 0) | |
3761 | return 0; | |
3762 | ||
3763 | if (strcmp (".xt_except_desc", sec->name) == 0) | |
3764 | return 0; | |
3765 | ||
3766 | return _bfd_elf_default_action_discarded (sec); | |
3767 | } | |
3768 | ||
e0001a05 NC |
3769 | \f |
3770 | /* Support for core dump NOTE sections. */ | |
3771 | ||
3772 | static bfd_boolean | |
7fa3d080 | 3773 | elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) |
e0001a05 NC |
3774 | { |
3775 | int offset; | |
eea6121a | 3776 | unsigned int size; |
e0001a05 NC |
3777 | |
3778 | /* The size for Xtensa is variable, so don't try to recognize the format | |
3779 | based on the size. Just assume this is GNU/Linux. */ | |
3780 | ||
3781 | /* pr_cursig */ | |
228e534f | 3782 | elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12); |
e0001a05 NC |
3783 | |
3784 | /* pr_pid */ | |
228e534f | 3785 | elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24); |
e0001a05 NC |
3786 | |
3787 | /* pr_reg */ | |
3788 | offset = 72; | |
eea6121a | 3789 | size = note->descsz - offset - 4; |
e0001a05 NC |
3790 | |
3791 | /* Make a ".reg/999" section. */ | |
3792 | return _bfd_elfcore_make_pseudosection (abfd, ".reg", | |
eea6121a | 3793 | size, note->descpos + offset); |
e0001a05 NC |
3794 | } |
3795 | ||
3796 | ||
3797 | static bfd_boolean | |
7fa3d080 | 3798 | elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) |
e0001a05 NC |
3799 | { |
3800 | switch (note->descsz) | |
3801 | { | |
3802 | default: | |
3803 | return FALSE; | |
3804 | ||
3805 | case 128: /* GNU/Linux elf_prpsinfo */ | |
228e534f | 3806 | elf_tdata (abfd)->core->program |
e0001a05 | 3807 | = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16); |
228e534f | 3808 | elf_tdata (abfd)->core->command |
e0001a05 NC |
3809 | = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80); |
3810 | } | |
3811 | ||
3812 | /* Note that for some reason, a spurious space is tacked | |
3813 | onto the end of the args in some (at least one anyway) | |
3814 | implementations, so strip it off if it exists. */ | |
3815 | ||
3816 | { | |
228e534f | 3817 | char *command = elf_tdata (abfd)->core->command; |
e0001a05 NC |
3818 | int n = strlen (command); |
3819 | ||
3820 | if (0 < n && command[n - 1] == ' ') | |
3821 | command[n - 1] = '\0'; | |
3822 | } | |
3823 | ||
3824 | return TRUE; | |
3825 | } | |
3826 | ||
3827 | \f | |
3828 | /* Generic Xtensa configurability stuff. */ | |
3829 | ||
3830 | static xtensa_opcode callx0_op = XTENSA_UNDEFINED; | |
3831 | static xtensa_opcode callx4_op = XTENSA_UNDEFINED; | |
3832 | static xtensa_opcode callx8_op = XTENSA_UNDEFINED; | |
3833 | static xtensa_opcode callx12_op = XTENSA_UNDEFINED; | |
3834 | static xtensa_opcode call0_op = XTENSA_UNDEFINED; | |
3835 | static xtensa_opcode call4_op = XTENSA_UNDEFINED; | |
3836 | static xtensa_opcode call8_op = XTENSA_UNDEFINED; | |
3837 | static xtensa_opcode call12_op = XTENSA_UNDEFINED; | |
3838 | ||
3839 | static void | |
7fa3d080 | 3840 | init_call_opcodes (void) |
e0001a05 NC |
3841 | { |
3842 | if (callx0_op == XTENSA_UNDEFINED) | |
3843 | { | |
3844 | callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0"); | |
3845 | callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4"); | |
3846 | callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8"); | |
3847 | callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12"); | |
3848 | call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0"); | |
3849 | call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4"); | |
3850 | call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8"); | |
3851 | call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12"); | |
3852 | } | |
3853 | } | |
3854 | ||
3855 | ||
3856 | static bfd_boolean | |
7fa3d080 | 3857 | is_indirect_call_opcode (xtensa_opcode opcode) |
e0001a05 NC |
3858 | { |
3859 | init_call_opcodes (); | |
3860 | return (opcode == callx0_op | |
3861 | || opcode == callx4_op | |
3862 | || opcode == callx8_op | |
3863 | || opcode == callx12_op); | |
3864 | } | |
3865 | ||
3866 | ||
3867 | static bfd_boolean | |
7fa3d080 | 3868 | is_direct_call_opcode (xtensa_opcode opcode) |
e0001a05 NC |
3869 | { |
3870 | init_call_opcodes (); | |
3871 | return (opcode == call0_op | |
3872 | || opcode == call4_op | |
3873 | || opcode == call8_op | |
3874 | || opcode == call12_op); | |
3875 | } | |
3876 | ||
3877 | ||
3878 | static bfd_boolean | |
7fa3d080 | 3879 | is_windowed_call_opcode (xtensa_opcode opcode) |
e0001a05 NC |
3880 | { |
3881 | init_call_opcodes (); | |
3882 | return (opcode == call4_op | |
3883 | || opcode == call8_op | |
3884 | || opcode == call12_op | |
3885 | || opcode == callx4_op | |
3886 | || opcode == callx8_op | |
3887 | || opcode == callx12_op); | |
3888 | } | |
3889 | ||
3890 | ||
28dbbc02 BW |
3891 | static bfd_boolean |
3892 | get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst) | |
3893 | { | |
3894 | unsigned dst = (unsigned) -1; | |
3895 | ||
3896 | init_call_opcodes (); | |
3897 | if (opcode == callx0_op) | |
3898 | dst = 0; | |
3899 | else if (opcode == callx4_op) | |
3900 | dst = 4; | |
3901 | else if (opcode == callx8_op) | |
3902 | dst = 8; | |
3903 | else if (opcode == callx12_op) | |
3904 | dst = 12; | |
3905 | ||
3906 | if (dst == (unsigned) -1) | |
3907 | return FALSE; | |
3908 | ||
3909 | *pdst = dst; | |
3910 | return TRUE; | |
3911 | } | |
3912 | ||
3913 | ||
43cd72b9 BW |
3914 | static xtensa_opcode |
3915 | get_const16_opcode (void) | |
3916 | { | |
3917 | static bfd_boolean done_lookup = FALSE; | |
3918 | static xtensa_opcode const16_opcode = XTENSA_UNDEFINED; | |
3919 | if (!done_lookup) | |
3920 | { | |
3921 | const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16"); | |
3922 | done_lookup = TRUE; | |
3923 | } | |
3924 | return const16_opcode; | |
3925 | } | |
3926 | ||
3927 | ||
e0001a05 NC |
3928 | static xtensa_opcode |
3929 | get_l32r_opcode (void) | |
3930 | { | |
3931 | static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED; | |
43cd72b9 BW |
3932 | static bfd_boolean done_lookup = FALSE; |
3933 | ||
3934 | if (!done_lookup) | |
e0001a05 NC |
3935 | { |
3936 | l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r"); | |
43cd72b9 | 3937 | done_lookup = TRUE; |
e0001a05 NC |
3938 | } |
3939 | return l32r_opcode; | |
3940 | } | |
3941 | ||
3942 | ||
3943 | static bfd_vma | |
7fa3d080 | 3944 | l32r_offset (bfd_vma addr, bfd_vma pc) |
e0001a05 NC |
3945 | { |
3946 | bfd_vma offset; | |
3947 | ||
3948 | offset = addr - ((pc+3) & -4); | |
3949 | BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0); | |
3950 | offset = (signed int) offset >> 2; | |
3951 | BFD_ASSERT ((signed int) offset >> 16 == -1); | |
3952 | return offset; | |
3953 | } | |
3954 | ||
3955 | ||
e0001a05 | 3956 | static int |
7fa3d080 | 3957 | get_relocation_opnd (xtensa_opcode opcode, int r_type) |
e0001a05 | 3958 | { |
43cd72b9 BW |
3959 | xtensa_isa isa = xtensa_default_isa; |
3960 | int last_immed, last_opnd, opi; | |
3961 | ||
3962 | if (opcode == XTENSA_UNDEFINED) | |
3963 | return XTENSA_UNDEFINED; | |
3964 | ||
3965 | /* Find the last visible PC-relative immediate operand for the opcode. | |
3966 | If there are no PC-relative immediates, then choose the last visible | |
3967 | immediate; otherwise, fail and return XTENSA_UNDEFINED. */ | |
3968 | last_immed = XTENSA_UNDEFINED; | |
3969 | last_opnd = xtensa_opcode_num_operands (isa, opcode); | |
3970 | for (opi = last_opnd - 1; opi >= 0; opi--) | |
3971 | { | |
3972 | if (xtensa_operand_is_visible (isa, opcode, opi) == 0) | |
3973 | continue; | |
3974 | if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1) | |
3975 | { | |
3976 | last_immed = opi; | |
3977 | break; | |
3978 | } | |
3979 | if (last_immed == XTENSA_UNDEFINED | |
3980 | && xtensa_operand_is_register (isa, opcode, opi) == 0) | |
3981 | last_immed = opi; | |
3982 | } | |
3983 | if (last_immed < 0) | |
3984 | return XTENSA_UNDEFINED; | |
3985 | ||
3986 | /* If the operand number was specified in an old-style relocation, | |
3987 | check for consistency with the operand computed above. */ | |
3988 | if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2) | |
3989 | { | |
3990 | int reloc_opnd = r_type - R_XTENSA_OP0; | |
3991 | if (reloc_opnd != last_immed) | |
3992 | return XTENSA_UNDEFINED; | |
3993 | } | |
3994 | ||
3995 | return last_immed; | |
3996 | } | |
3997 | ||
3998 | ||
3999 | int | |
7fa3d080 | 4000 | get_relocation_slot (int r_type) |
43cd72b9 BW |
4001 | { |
4002 | switch (r_type) | |
4003 | { | |
4004 | case R_XTENSA_OP0: | |
4005 | case R_XTENSA_OP1: | |
4006 | case R_XTENSA_OP2: | |
4007 | return 0; | |
4008 | ||
4009 | default: | |
4010 | if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP) | |
4011 | return r_type - R_XTENSA_SLOT0_OP; | |
4012 | if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT) | |
4013 | return r_type - R_XTENSA_SLOT0_ALT; | |
4014 | break; | |
4015 | } | |
4016 | ||
4017 | return XTENSA_UNDEFINED; | |
e0001a05 NC |
4018 | } |
4019 | ||
4020 | ||
4021 | /* Get the opcode for a relocation. */ | |
4022 | ||
4023 | static xtensa_opcode | |
7fa3d080 BW |
4024 | get_relocation_opcode (bfd *abfd, |
4025 | asection *sec, | |
4026 | bfd_byte *contents, | |
4027 | Elf_Internal_Rela *irel) | |
e0001a05 NC |
4028 | { |
4029 | static xtensa_insnbuf ibuff = NULL; | |
43cd72b9 | 4030 | static xtensa_insnbuf sbuff = NULL; |
e0001a05 | 4031 | xtensa_isa isa = xtensa_default_isa; |
43cd72b9 BW |
4032 | xtensa_format fmt; |
4033 | int slot; | |
e0001a05 NC |
4034 | |
4035 | if (contents == NULL) | |
4036 | return XTENSA_UNDEFINED; | |
4037 | ||
43cd72b9 | 4038 | if (bfd_get_section_limit (abfd, sec) <= irel->r_offset) |
e0001a05 NC |
4039 | return XTENSA_UNDEFINED; |
4040 | ||
4041 | if (ibuff == NULL) | |
43cd72b9 BW |
4042 | { |
4043 | ibuff = xtensa_insnbuf_alloc (isa); | |
4044 | sbuff = xtensa_insnbuf_alloc (isa); | |
4045 | } | |
4046 | ||
e0001a05 | 4047 | /* Decode the instruction. */ |
43cd72b9 BW |
4048 | xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset], |
4049 | sec->size - irel->r_offset); | |
4050 | fmt = xtensa_format_decode (isa, ibuff); | |
4051 | slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info)); | |
4052 | if (slot == XTENSA_UNDEFINED) | |
4053 | return XTENSA_UNDEFINED; | |
4054 | xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff); | |
4055 | return xtensa_opcode_decode (isa, fmt, slot, sbuff); | |
e0001a05 NC |
4056 | } |
4057 | ||
4058 | ||
4059 | bfd_boolean | |
7fa3d080 BW |
4060 | is_l32r_relocation (bfd *abfd, |
4061 | asection *sec, | |
4062 | bfd_byte *contents, | |
4063 | Elf_Internal_Rela *irel) | |
e0001a05 NC |
4064 | { |
4065 | xtensa_opcode opcode; | |
43cd72b9 | 4066 | if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info))) |
e0001a05 | 4067 | return FALSE; |
43cd72b9 | 4068 | opcode = get_relocation_opcode (abfd, sec, contents, irel); |
e0001a05 NC |
4069 | return (opcode == get_l32r_opcode ()); |
4070 | } | |
4071 | ||
e0001a05 | 4072 | |
43cd72b9 | 4073 | static bfd_size_type |
7fa3d080 BW |
4074 | get_asm_simplify_size (bfd_byte *contents, |
4075 | bfd_size_type content_len, | |
4076 | bfd_size_type offset) | |
e0001a05 | 4077 | { |
43cd72b9 | 4078 | bfd_size_type insnlen, size = 0; |
e0001a05 | 4079 | |
43cd72b9 BW |
4080 | /* Decode the size of the next two instructions. */ |
4081 | insnlen = insn_decode_len (contents, content_len, offset); | |
4082 | if (insnlen == 0) | |
4083 | return 0; | |
e0001a05 | 4084 | |
43cd72b9 | 4085 | size += insnlen; |
68ffbac6 | 4086 | |
43cd72b9 BW |
4087 | insnlen = insn_decode_len (contents, content_len, offset + size); |
4088 | if (insnlen == 0) | |
4089 | return 0; | |
e0001a05 | 4090 | |
43cd72b9 BW |
4091 | size += insnlen; |
4092 | return size; | |
4093 | } | |
e0001a05 | 4094 | |
43cd72b9 BW |
4095 | |
4096 | bfd_boolean | |
7fa3d080 | 4097 | is_alt_relocation (int r_type) |
43cd72b9 BW |
4098 | { |
4099 | return (r_type >= R_XTENSA_SLOT0_ALT | |
4100 | && r_type <= R_XTENSA_SLOT14_ALT); | |
e0001a05 NC |
4101 | } |
4102 | ||
4103 | ||
43cd72b9 | 4104 | bfd_boolean |
7fa3d080 | 4105 | is_operand_relocation (int r_type) |
e0001a05 | 4106 | { |
43cd72b9 BW |
4107 | switch (r_type) |
4108 | { | |
4109 | case R_XTENSA_OP0: | |
4110 | case R_XTENSA_OP1: | |
4111 | case R_XTENSA_OP2: | |
4112 | return TRUE; | |
e0001a05 | 4113 | |
43cd72b9 BW |
4114 | default: |
4115 | if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP) | |
4116 | return TRUE; | |
4117 | if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT) | |
4118 | return TRUE; | |
4119 | break; | |
4120 | } | |
e0001a05 | 4121 | |
43cd72b9 | 4122 | return FALSE; |
e0001a05 NC |
4123 | } |
4124 | ||
68ffbac6 | 4125 | |
43cd72b9 | 4126 | #define MIN_INSN_LENGTH 2 |
e0001a05 | 4127 | |
43cd72b9 BW |
4128 | /* Return 0 if it fails to decode. */ |
4129 | ||
4130 | bfd_size_type | |
7fa3d080 BW |
4131 | insn_decode_len (bfd_byte *contents, |
4132 | bfd_size_type content_len, | |
4133 | bfd_size_type offset) | |
e0001a05 | 4134 | { |
43cd72b9 BW |
4135 | int insn_len; |
4136 | xtensa_isa isa = xtensa_default_isa; | |
4137 | xtensa_format fmt; | |
4138 | static xtensa_insnbuf ibuff = NULL; | |
e0001a05 | 4139 | |
43cd72b9 BW |
4140 | if (offset + MIN_INSN_LENGTH > content_len) |
4141 | return 0; | |
e0001a05 | 4142 | |
43cd72b9 BW |
4143 | if (ibuff == NULL) |
4144 | ibuff = xtensa_insnbuf_alloc (isa); | |
4145 | xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset], | |
4146 | content_len - offset); | |
4147 | fmt = xtensa_format_decode (isa, ibuff); | |
4148 | if (fmt == XTENSA_UNDEFINED) | |
4149 | return 0; | |
4150 | insn_len = xtensa_format_length (isa, fmt); | |
4151 | if (insn_len == XTENSA_UNDEFINED) | |
4152 | return 0; | |
4153 | return insn_len; | |
e0001a05 NC |
4154 | } |
4155 | ||
4156 | ||
43cd72b9 BW |
4157 | /* Decode the opcode for a single slot instruction. |
4158 | Return 0 if it fails to decode or the instruction is multi-slot. */ | |
e0001a05 | 4159 | |
43cd72b9 | 4160 | xtensa_opcode |
7fa3d080 BW |
4161 | insn_decode_opcode (bfd_byte *contents, |
4162 | bfd_size_type content_len, | |
4163 | bfd_size_type offset, | |
4164 | int slot) | |
e0001a05 | 4165 | { |
e0001a05 | 4166 | xtensa_isa isa = xtensa_default_isa; |
43cd72b9 BW |
4167 | xtensa_format fmt; |
4168 | static xtensa_insnbuf insnbuf = NULL; | |
4169 | static xtensa_insnbuf slotbuf = NULL; | |
4170 | ||
4171 | if (offset + MIN_INSN_LENGTH > content_len) | |
e0001a05 NC |
4172 | return XTENSA_UNDEFINED; |
4173 | ||
4174 | if (insnbuf == NULL) | |
43cd72b9 BW |
4175 | { |
4176 | insnbuf = xtensa_insnbuf_alloc (isa); | |
4177 | slotbuf = xtensa_insnbuf_alloc (isa); | |
4178 | } | |
4179 | ||
4180 | xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset], | |
4181 | content_len - offset); | |
4182 | fmt = xtensa_format_decode (isa, insnbuf); | |
4183 | if (fmt == XTENSA_UNDEFINED) | |
e0001a05 | 4184 | return XTENSA_UNDEFINED; |
43cd72b9 BW |
4185 | |
4186 | if (slot >= xtensa_format_num_slots (isa, fmt)) | |
e0001a05 | 4187 | return XTENSA_UNDEFINED; |
e0001a05 | 4188 | |
43cd72b9 BW |
4189 | xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf); |
4190 | return xtensa_opcode_decode (isa, fmt, slot, slotbuf); | |
4191 | } | |
e0001a05 | 4192 | |
e0001a05 | 4193 | |
43cd72b9 BW |
4194 | /* The offset is the offset in the contents. |
4195 | The address is the address of that offset. */ | |
e0001a05 | 4196 | |
43cd72b9 | 4197 | static bfd_boolean |
7fa3d080 BW |
4198 | check_branch_target_aligned (bfd_byte *contents, |
4199 | bfd_size_type content_length, | |
4200 | bfd_vma offset, | |
4201 | bfd_vma address) | |
43cd72b9 BW |
4202 | { |
4203 | bfd_size_type insn_len = insn_decode_len (contents, content_length, offset); | |
4204 | if (insn_len == 0) | |
4205 | return FALSE; | |
4206 | return check_branch_target_aligned_address (address, insn_len); | |
4207 | } | |
e0001a05 | 4208 | |
e0001a05 | 4209 | |
43cd72b9 | 4210 | static bfd_boolean |
7fa3d080 BW |
4211 | check_loop_aligned (bfd_byte *contents, |
4212 | bfd_size_type content_length, | |
4213 | bfd_vma offset, | |
4214 | bfd_vma address) | |
e0001a05 | 4215 | { |
43cd72b9 | 4216 | bfd_size_type loop_len, insn_len; |
64b607e6 | 4217 | xtensa_opcode opcode; |
e0001a05 | 4218 | |
64b607e6 BW |
4219 | opcode = insn_decode_opcode (contents, content_length, offset, 0); |
4220 | if (opcode == XTENSA_UNDEFINED | |
4221 | || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1) | |
4222 | { | |
4223 | BFD_ASSERT (FALSE); | |
4224 | return FALSE; | |
4225 | } | |
68ffbac6 | 4226 | |
43cd72b9 | 4227 | loop_len = insn_decode_len (contents, content_length, offset); |
43cd72b9 | 4228 | insn_len = insn_decode_len (contents, content_length, offset + loop_len); |
64b607e6 BW |
4229 | if (loop_len == 0 || insn_len == 0) |
4230 | { | |
4231 | BFD_ASSERT (FALSE); | |
4232 | return FALSE; | |
4233 | } | |
e0001a05 | 4234 | |
43cd72b9 BW |
4235 | return check_branch_target_aligned_address (address + loop_len, insn_len); |
4236 | } | |
e0001a05 | 4237 | |
e0001a05 NC |
4238 | |
4239 | static bfd_boolean | |
7fa3d080 | 4240 | check_branch_target_aligned_address (bfd_vma addr, int len) |
e0001a05 | 4241 | { |
43cd72b9 BW |
4242 | if (len == 8) |
4243 | return (addr % 8 == 0); | |
4244 | return ((addr >> 2) == ((addr + len - 1) >> 2)); | |
e0001a05 NC |
4245 | } |
4246 | ||
43cd72b9 BW |
4247 | \f |
4248 | /* Instruction widening and narrowing. */ | |
e0001a05 | 4249 | |
7fa3d080 BW |
4250 | /* When FLIX is available we need to access certain instructions only |
4251 | when they are 16-bit or 24-bit instructions. This table caches | |
4252 | information about such instructions by walking through all the | |
4253 | opcodes and finding the smallest single-slot format into which each | |
4254 | can be encoded. */ | |
4255 | ||
4256 | static xtensa_format *op_single_fmt_table = NULL; | |
e0001a05 NC |
4257 | |
4258 | ||
7fa3d080 BW |
4259 | static void |
4260 | init_op_single_format_table (void) | |
e0001a05 | 4261 | { |
7fa3d080 BW |
4262 | xtensa_isa isa = xtensa_default_isa; |
4263 | xtensa_insnbuf ibuf; | |
4264 | xtensa_opcode opcode; | |
4265 | xtensa_format fmt; | |
4266 | int num_opcodes; | |
4267 | ||
4268 | if (op_single_fmt_table) | |
4269 | return; | |
4270 | ||
4271 | ibuf = xtensa_insnbuf_alloc (isa); | |
4272 | num_opcodes = xtensa_isa_num_opcodes (isa); | |
4273 | ||
4274 | op_single_fmt_table = (xtensa_format *) | |
4275 | bfd_malloc (sizeof (xtensa_format) * num_opcodes); | |
4276 | for (opcode = 0; opcode < num_opcodes; opcode++) | |
4277 | { | |
4278 | op_single_fmt_table[opcode] = XTENSA_UNDEFINED; | |
4279 | for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++) | |
4280 | { | |
4281 | if (xtensa_format_num_slots (isa, fmt) == 1 | |
4282 | && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0) | |
4283 | { | |
4284 | xtensa_opcode old_fmt = op_single_fmt_table[opcode]; | |
4285 | int fmt_length = xtensa_format_length (isa, fmt); | |
4286 | if (old_fmt == XTENSA_UNDEFINED | |
4287 | || fmt_length < xtensa_format_length (isa, old_fmt)) | |
4288 | op_single_fmt_table[opcode] = fmt; | |
4289 | } | |
4290 | } | |
4291 | } | |
4292 | xtensa_insnbuf_free (isa, ibuf); | |
4293 | } | |
4294 | ||
4295 | ||
4296 | static xtensa_format | |
4297 | get_single_format (xtensa_opcode opcode) | |
4298 | { | |
4299 | init_op_single_format_table (); | |
4300 | return op_single_fmt_table[opcode]; | |
4301 | } | |
e0001a05 | 4302 | |
e0001a05 | 4303 | |
43cd72b9 BW |
4304 | /* For the set of narrowable instructions we do NOT include the |
4305 | narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities | |
4306 | involved during linker relaxation that may require these to | |
4307 | re-expand in some conditions. Also, the narrowing "or" -> mov.n | |
4308 | requires special case code to ensure it only works when op1 == op2. */ | |
e0001a05 | 4309 | |
7fa3d080 BW |
4310 | struct string_pair |
4311 | { | |
4312 | const char *wide; | |
4313 | const char *narrow; | |
4314 | }; | |
4315 | ||
43cd72b9 | 4316 | struct string_pair narrowable[] = |
e0001a05 | 4317 | { |
43cd72b9 BW |
4318 | { "add", "add.n" }, |
4319 | { "addi", "addi.n" }, | |
4320 | { "addmi", "addi.n" }, | |
4321 | { "l32i", "l32i.n" }, | |
4322 | { "movi", "movi.n" }, | |
4323 | { "ret", "ret.n" }, | |
4324 | { "retw", "retw.n" }, | |
4325 | { "s32i", "s32i.n" }, | |
4326 | { "or", "mov.n" } /* special case only when op1 == op2 */ | |
4327 | }; | |
e0001a05 | 4328 | |
43cd72b9 | 4329 | struct string_pair widenable[] = |
e0001a05 | 4330 | { |
43cd72b9 BW |
4331 | { "add", "add.n" }, |
4332 | { "addi", "addi.n" }, | |
4333 | { "addmi", "addi.n" }, | |
4334 | { "beqz", "beqz.n" }, | |
4335 | { "bnez", "bnez.n" }, | |
4336 | { "l32i", "l32i.n" }, | |
4337 | { "movi", "movi.n" }, | |
4338 | { "ret", "ret.n" }, | |
4339 | { "retw", "retw.n" }, | |
4340 | { "s32i", "s32i.n" }, | |
4341 | { "or", "mov.n" } /* special case only when op1 == op2 */ | |
4342 | }; | |
e0001a05 NC |
4343 | |
4344 | ||
64b607e6 BW |
4345 | /* Check if an instruction can be "narrowed", i.e., changed from a standard |
4346 | 3-byte instruction to a 2-byte "density" instruction. If it is valid, | |
4347 | return the instruction buffer holding the narrow instruction. Otherwise, | |
4348 | return 0. The set of valid narrowing are specified by a string table | |
43cd72b9 BW |
4349 | but require some special case operand checks in some cases. */ |
4350 | ||
64b607e6 BW |
4351 | static xtensa_insnbuf |
4352 | can_narrow_instruction (xtensa_insnbuf slotbuf, | |
4353 | xtensa_format fmt, | |
4354 | xtensa_opcode opcode) | |
e0001a05 | 4355 | { |
43cd72b9 | 4356 | xtensa_isa isa = xtensa_default_isa; |
64b607e6 BW |
4357 | xtensa_format o_fmt; |
4358 | unsigned opi; | |
e0001a05 | 4359 | |
43cd72b9 BW |
4360 | static xtensa_insnbuf o_insnbuf = NULL; |
4361 | static xtensa_insnbuf o_slotbuf = NULL; | |
e0001a05 | 4362 | |
64b607e6 | 4363 | if (o_insnbuf == NULL) |
43cd72b9 | 4364 | { |
43cd72b9 BW |
4365 | o_insnbuf = xtensa_insnbuf_alloc (isa); |
4366 | o_slotbuf = xtensa_insnbuf_alloc (isa); | |
4367 | } | |
e0001a05 | 4368 | |
64b607e6 | 4369 | for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++) |
43cd72b9 BW |
4370 | { |
4371 | bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0); | |
e0001a05 | 4372 | |
43cd72b9 BW |
4373 | if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide)) |
4374 | { | |
4375 | uint32 value, newval; | |
4376 | int i, operand_count, o_operand_count; | |
4377 | xtensa_opcode o_opcode; | |
e0001a05 | 4378 | |
43cd72b9 BW |
4379 | /* Address does not matter in this case. We might need to |
4380 | fix it to handle branches/jumps. */ | |
4381 | bfd_vma self_address = 0; | |
e0001a05 | 4382 | |
43cd72b9 BW |
4383 | o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow); |
4384 | if (o_opcode == XTENSA_UNDEFINED) | |
64b607e6 | 4385 | return 0; |
43cd72b9 BW |
4386 | o_fmt = get_single_format (o_opcode); |
4387 | if (o_fmt == XTENSA_UNDEFINED) | |
64b607e6 | 4388 | return 0; |
e0001a05 | 4389 | |
43cd72b9 BW |
4390 | if (xtensa_format_length (isa, fmt) != 3 |
4391 | || xtensa_format_length (isa, o_fmt) != 2) | |
64b607e6 | 4392 | return 0; |
e0001a05 | 4393 | |
43cd72b9 BW |
4394 | xtensa_format_encode (isa, o_fmt, o_insnbuf); |
4395 | operand_count = xtensa_opcode_num_operands (isa, opcode); | |
4396 | o_operand_count = xtensa_opcode_num_operands (isa, o_opcode); | |
e0001a05 | 4397 | |
43cd72b9 | 4398 | if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0) |
64b607e6 | 4399 | return 0; |
e0001a05 | 4400 | |
43cd72b9 BW |
4401 | if (!is_or) |
4402 | { | |
4403 | if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count) | |
64b607e6 | 4404 | return 0; |
43cd72b9 BW |
4405 | } |
4406 | else | |
4407 | { | |
4408 | uint32 rawval0, rawval1, rawval2; | |
e0001a05 | 4409 | |
64b607e6 BW |
4410 | if (o_operand_count + 1 != operand_count |
4411 | || xtensa_operand_get_field (isa, opcode, 0, | |
4412 | fmt, 0, slotbuf, &rawval0) != 0 | |
4413 | || xtensa_operand_get_field (isa, opcode, 1, | |
4414 | fmt, 0, slotbuf, &rawval1) != 0 | |
4415 | || xtensa_operand_get_field (isa, opcode, 2, | |
4416 | fmt, 0, slotbuf, &rawval2) != 0 | |
4417 | || rawval1 != rawval2 | |
4418 | || rawval0 == rawval1 /* it is a nop */) | |
4419 | return 0; | |
43cd72b9 | 4420 | } |
e0001a05 | 4421 | |
43cd72b9 BW |
4422 | for (i = 0; i < o_operand_count; ++i) |
4423 | { | |
4424 | if (xtensa_operand_get_field (isa, opcode, i, fmt, 0, | |
4425 | slotbuf, &value) | |
4426 | || xtensa_operand_decode (isa, opcode, i, &value)) | |
64b607e6 | 4427 | return 0; |
e0001a05 | 4428 | |
43cd72b9 BW |
4429 | /* PC-relative branches need adjustment, but |
4430 | the PC-rel operand will always have a relocation. */ | |
4431 | newval = value; | |
4432 | if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval, | |
4433 | self_address) | |
4434 | || xtensa_operand_encode (isa, o_opcode, i, &newval) | |
4435 | || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0, | |
4436 | o_slotbuf, newval)) | |
64b607e6 | 4437 | return 0; |
43cd72b9 | 4438 | } |
e0001a05 | 4439 | |
64b607e6 BW |
4440 | if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf)) |
4441 | return 0; | |
e0001a05 | 4442 | |
64b607e6 | 4443 | return o_insnbuf; |
43cd72b9 BW |
4444 | } |
4445 | } | |
64b607e6 | 4446 | return 0; |
43cd72b9 | 4447 | } |
e0001a05 | 4448 | |
e0001a05 | 4449 | |
64b607e6 BW |
4450 | /* Attempt to narrow an instruction. If the narrowing is valid, perform |
4451 | the action in-place directly into the contents and return TRUE. Otherwise, | |
4452 | the return value is FALSE and the contents are not modified. */ | |
e0001a05 | 4453 | |
43cd72b9 | 4454 | static bfd_boolean |
64b607e6 BW |
4455 | narrow_instruction (bfd_byte *contents, |
4456 | bfd_size_type content_length, | |
4457 | bfd_size_type offset) | |
e0001a05 | 4458 | { |
43cd72b9 | 4459 | xtensa_opcode opcode; |
64b607e6 | 4460 | bfd_size_type insn_len; |
43cd72b9 | 4461 | xtensa_isa isa = xtensa_default_isa; |
64b607e6 BW |
4462 | xtensa_format fmt; |
4463 | xtensa_insnbuf o_insnbuf; | |
e0001a05 | 4464 | |
43cd72b9 BW |
4465 | static xtensa_insnbuf insnbuf = NULL; |
4466 | static xtensa_insnbuf slotbuf = NULL; | |
e0001a05 | 4467 | |
43cd72b9 BW |
4468 | if (insnbuf == NULL) |
4469 | { | |
4470 | insnbuf = xtensa_insnbuf_alloc (isa); | |
4471 | slotbuf = xtensa_insnbuf_alloc (isa); | |
43cd72b9 | 4472 | } |
e0001a05 | 4473 | |
43cd72b9 | 4474 | BFD_ASSERT (offset < content_length); |
2c8c90bc | 4475 | |
43cd72b9 | 4476 | if (content_length < 2) |
e0001a05 NC |
4477 | return FALSE; |
4478 | ||
64b607e6 | 4479 | /* We will hand-code a few of these for a little while. |
43cd72b9 BW |
4480 | These have all been specified in the assembler aleady. */ |
4481 | xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset], | |
4482 | content_length - offset); | |
4483 | fmt = xtensa_format_decode (isa, insnbuf); | |
4484 | if (xtensa_format_num_slots (isa, fmt) != 1) | |
e0001a05 NC |
4485 | return FALSE; |
4486 | ||
43cd72b9 | 4487 | if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0) |
e0001a05 NC |
4488 | return FALSE; |
4489 | ||
43cd72b9 BW |
4490 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); |
4491 | if (opcode == XTENSA_UNDEFINED) | |
e0001a05 | 4492 | return FALSE; |
43cd72b9 BW |
4493 | insn_len = xtensa_format_length (isa, fmt); |
4494 | if (insn_len > content_length) | |
4495 | return FALSE; | |
4496 | ||
64b607e6 BW |
4497 | o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode); |
4498 | if (o_insnbuf) | |
4499 | { | |
4500 | xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset, | |
4501 | content_length - offset); | |
4502 | return TRUE; | |
4503 | } | |
4504 | ||
4505 | return FALSE; | |
4506 | } | |
4507 | ||
4508 | ||
4509 | /* Check if an instruction can be "widened", i.e., changed from a 2-byte | |
4510 | "density" instruction to a standard 3-byte instruction. If it is valid, | |
4511 | return the instruction buffer holding the wide instruction. Otherwise, | |
4512 | return 0. The set of valid widenings are specified by a string table | |
4513 | but require some special case operand checks in some cases. */ | |
4514 | ||
4515 | static xtensa_insnbuf | |
4516 | can_widen_instruction (xtensa_insnbuf slotbuf, | |
4517 | xtensa_format fmt, | |
4518 | xtensa_opcode opcode) | |
4519 | { | |
4520 | xtensa_isa isa = xtensa_default_isa; | |
4521 | xtensa_format o_fmt; | |
4522 | unsigned opi; | |
4523 | ||
4524 | static xtensa_insnbuf o_insnbuf = NULL; | |
4525 | static xtensa_insnbuf o_slotbuf = NULL; | |
4526 | ||
4527 | if (o_insnbuf == NULL) | |
4528 | { | |
4529 | o_insnbuf = xtensa_insnbuf_alloc (isa); | |
4530 | o_slotbuf = xtensa_insnbuf_alloc (isa); | |
4531 | } | |
4532 | ||
4533 | for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++) | |
e0001a05 | 4534 | { |
43cd72b9 BW |
4535 | bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0); |
4536 | bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0 | |
4537 | || strcmp ("bnez", widenable[opi].wide) == 0); | |
e0001a05 | 4538 | |
43cd72b9 BW |
4539 | if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow)) |
4540 | { | |
4541 | uint32 value, newval; | |
4542 | int i, operand_count, o_operand_count, check_operand_count; | |
4543 | xtensa_opcode o_opcode; | |
e0001a05 | 4544 | |
43cd72b9 BW |
4545 | /* Address does not matter in this case. We might need to fix it |
4546 | to handle branches/jumps. */ | |
4547 | bfd_vma self_address = 0; | |
e0001a05 | 4548 | |
43cd72b9 BW |
4549 | o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide); |
4550 | if (o_opcode == XTENSA_UNDEFINED) | |
64b607e6 | 4551 | return 0; |
43cd72b9 BW |
4552 | o_fmt = get_single_format (o_opcode); |
4553 | if (o_fmt == XTENSA_UNDEFINED) | |
64b607e6 | 4554 | return 0; |
e0001a05 | 4555 | |
43cd72b9 BW |
4556 | if (xtensa_format_length (isa, fmt) != 2 |
4557 | || xtensa_format_length (isa, o_fmt) != 3) | |
64b607e6 | 4558 | return 0; |
e0001a05 | 4559 | |
43cd72b9 BW |
4560 | xtensa_format_encode (isa, o_fmt, o_insnbuf); |
4561 | operand_count = xtensa_opcode_num_operands (isa, opcode); | |
4562 | o_operand_count = xtensa_opcode_num_operands (isa, o_opcode); | |
4563 | check_operand_count = o_operand_count; | |
e0001a05 | 4564 | |
43cd72b9 | 4565 | if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0) |
64b607e6 | 4566 | return 0; |
e0001a05 | 4567 | |
43cd72b9 BW |
4568 | if (!is_or) |
4569 | { | |
4570 | if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count) | |
64b607e6 | 4571 | return 0; |
43cd72b9 BW |
4572 | } |
4573 | else | |
4574 | { | |
4575 | uint32 rawval0, rawval1; | |
4576 | ||
64b607e6 BW |
4577 | if (o_operand_count != operand_count + 1 |
4578 | || xtensa_operand_get_field (isa, opcode, 0, | |
4579 | fmt, 0, slotbuf, &rawval0) != 0 | |
4580 | || xtensa_operand_get_field (isa, opcode, 1, | |
4581 | fmt, 0, slotbuf, &rawval1) != 0 | |
4582 | || rawval0 == rawval1 /* it is a nop */) | |
4583 | return 0; | |
43cd72b9 BW |
4584 | } |
4585 | if (is_branch) | |
4586 | check_operand_count--; | |
4587 | ||
64b607e6 | 4588 | for (i = 0; i < check_operand_count; i++) |
43cd72b9 BW |
4589 | { |
4590 | int new_i = i; | |
4591 | if (is_or && i == o_operand_count - 1) | |
4592 | new_i = i - 1; | |
4593 | if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0, | |
4594 | slotbuf, &value) | |
4595 | || xtensa_operand_decode (isa, opcode, new_i, &value)) | |
64b607e6 | 4596 | return 0; |
43cd72b9 BW |
4597 | |
4598 | /* PC-relative branches need adjustment, but | |
4599 | the PC-rel operand will always have a relocation. */ | |
4600 | newval = value; | |
4601 | if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval, | |
4602 | self_address) | |
4603 | || xtensa_operand_encode (isa, o_opcode, i, &newval) | |
4604 | || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0, | |
4605 | o_slotbuf, newval)) | |
64b607e6 | 4606 | return 0; |
43cd72b9 BW |
4607 | } |
4608 | ||
4609 | if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf)) | |
64b607e6 | 4610 | return 0; |
43cd72b9 | 4611 | |
64b607e6 | 4612 | return o_insnbuf; |
43cd72b9 BW |
4613 | } |
4614 | } | |
64b607e6 BW |
4615 | return 0; |
4616 | } | |
4617 | ||
68ffbac6 | 4618 | |
64b607e6 BW |
4619 | /* Attempt to widen an instruction. If the widening is valid, perform |
4620 | the action in-place directly into the contents and return TRUE. Otherwise, | |
4621 | the return value is FALSE and the contents are not modified. */ | |
4622 | ||
4623 | static bfd_boolean | |
4624 | widen_instruction (bfd_byte *contents, | |
4625 | bfd_size_type content_length, | |
4626 | bfd_size_type offset) | |
4627 | { | |
4628 | xtensa_opcode opcode; | |
4629 | bfd_size_type insn_len; | |
4630 | xtensa_isa isa = xtensa_default_isa; | |
4631 | xtensa_format fmt; | |
4632 | xtensa_insnbuf o_insnbuf; | |
4633 | ||
4634 | static xtensa_insnbuf insnbuf = NULL; | |
4635 | static xtensa_insnbuf slotbuf = NULL; | |
4636 | ||
4637 | if (insnbuf == NULL) | |
4638 | { | |
4639 | insnbuf = xtensa_insnbuf_alloc (isa); | |
4640 | slotbuf = xtensa_insnbuf_alloc (isa); | |
4641 | } | |
4642 | ||
4643 | BFD_ASSERT (offset < content_length); | |
4644 | ||
4645 | if (content_length < 2) | |
4646 | return FALSE; | |
4647 | ||
4648 | /* We will hand-code a few of these for a little while. | |
4649 | These have all been specified in the assembler aleady. */ | |
4650 | xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset], | |
4651 | content_length - offset); | |
4652 | fmt = xtensa_format_decode (isa, insnbuf); | |
4653 | if (xtensa_format_num_slots (isa, fmt) != 1) | |
4654 | return FALSE; | |
4655 | ||
4656 | if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0) | |
4657 | return FALSE; | |
4658 | ||
4659 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); | |
4660 | if (opcode == XTENSA_UNDEFINED) | |
4661 | return FALSE; | |
4662 | insn_len = xtensa_format_length (isa, fmt); | |
4663 | if (insn_len > content_length) | |
4664 | return FALSE; | |
4665 | ||
4666 | o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode); | |
4667 | if (o_insnbuf) | |
4668 | { | |
4669 | xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset, | |
4670 | content_length - offset); | |
4671 | return TRUE; | |
4672 | } | |
43cd72b9 | 4673 | return FALSE; |
e0001a05 NC |
4674 | } |
4675 | ||
43cd72b9 BW |
4676 | \f |
4677 | /* Code for transforming CALLs at link-time. */ | |
e0001a05 | 4678 | |
43cd72b9 | 4679 | static bfd_reloc_status_type |
7fa3d080 BW |
4680 | elf_xtensa_do_asm_simplify (bfd_byte *contents, |
4681 | bfd_vma address, | |
4682 | bfd_vma content_length, | |
4683 | char **error_message) | |
e0001a05 | 4684 | { |
43cd72b9 BW |
4685 | static xtensa_insnbuf insnbuf = NULL; |
4686 | static xtensa_insnbuf slotbuf = NULL; | |
4687 | xtensa_format core_format = XTENSA_UNDEFINED; | |
4688 | xtensa_opcode opcode; | |
4689 | xtensa_opcode direct_call_opcode; | |
4690 | xtensa_isa isa = xtensa_default_isa; | |
4691 | bfd_byte *chbuf = contents + address; | |
4692 | int opn; | |
e0001a05 | 4693 | |
43cd72b9 | 4694 | if (insnbuf == NULL) |
e0001a05 | 4695 | { |
43cd72b9 BW |
4696 | insnbuf = xtensa_insnbuf_alloc (isa); |
4697 | slotbuf = xtensa_insnbuf_alloc (isa); | |
e0001a05 | 4698 | } |
e0001a05 | 4699 | |
43cd72b9 BW |
4700 | if (content_length < address) |
4701 | { | |
4702 | *error_message = _("Attempt to convert L32R/CALLX to CALL failed"); | |
4703 | return bfd_reloc_other; | |
4704 | } | |
e0001a05 | 4705 | |
43cd72b9 BW |
4706 | opcode = get_expanded_call_opcode (chbuf, content_length - address, 0); |
4707 | direct_call_opcode = swap_callx_for_call_opcode (opcode); | |
4708 | if (direct_call_opcode == XTENSA_UNDEFINED) | |
4709 | { | |
4710 | *error_message = _("Attempt to convert L32R/CALLX to CALL failed"); | |
4711 | return bfd_reloc_other; | |
4712 | } | |
68ffbac6 | 4713 | |
43cd72b9 BW |
4714 | /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */ |
4715 | core_format = xtensa_format_lookup (isa, "x24"); | |
4716 | opcode = xtensa_opcode_lookup (isa, "or"); | |
4717 | xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode); | |
68ffbac6 | 4718 | for (opn = 0; opn < 3; opn++) |
43cd72b9 BW |
4719 | { |
4720 | uint32 regno = 1; | |
4721 | xtensa_operand_encode (isa, opcode, opn, ®no); | |
4722 | xtensa_operand_set_field (isa, opcode, opn, core_format, 0, | |
4723 | slotbuf, regno); | |
4724 | } | |
4725 | xtensa_format_encode (isa, core_format, insnbuf); | |
4726 | xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf); | |
4727 | xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address); | |
e0001a05 | 4728 | |
43cd72b9 BW |
4729 | /* Assemble a CALL ("callN 0") into the 3 byte offset. */ |
4730 | xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode); | |
4731 | xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0); | |
e0001a05 | 4732 | |
43cd72b9 BW |
4733 | xtensa_format_encode (isa, core_format, insnbuf); |
4734 | xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf); | |
4735 | xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3, | |
4736 | content_length - address - 3); | |
e0001a05 | 4737 | |
43cd72b9 BW |
4738 | return bfd_reloc_ok; |
4739 | } | |
e0001a05 | 4740 | |
e0001a05 | 4741 | |
43cd72b9 | 4742 | static bfd_reloc_status_type |
7fa3d080 BW |
4743 | contract_asm_expansion (bfd_byte *contents, |
4744 | bfd_vma content_length, | |
4745 | Elf_Internal_Rela *irel, | |
4746 | char **error_message) | |
43cd72b9 BW |
4747 | { |
4748 | bfd_reloc_status_type retval = | |
4749 | elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length, | |
4750 | error_message); | |
e0001a05 | 4751 | |
43cd72b9 BW |
4752 | if (retval != bfd_reloc_ok) |
4753 | return bfd_reloc_dangerous; | |
e0001a05 | 4754 | |
43cd72b9 BW |
4755 | /* Update the irel->r_offset field so that the right immediate and |
4756 | the right instruction are modified during the relocation. */ | |
4757 | irel->r_offset += 3; | |
4758 | irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP); | |
4759 | return bfd_reloc_ok; | |
4760 | } | |
e0001a05 | 4761 | |
e0001a05 | 4762 | |
43cd72b9 | 4763 | static xtensa_opcode |
7fa3d080 | 4764 | swap_callx_for_call_opcode (xtensa_opcode opcode) |
e0001a05 | 4765 | { |
43cd72b9 | 4766 | init_call_opcodes (); |
e0001a05 | 4767 | |
43cd72b9 BW |
4768 | if (opcode == callx0_op) return call0_op; |
4769 | if (opcode == callx4_op) return call4_op; | |
4770 | if (opcode == callx8_op) return call8_op; | |
4771 | if (opcode == callx12_op) return call12_op; | |
e0001a05 | 4772 | |
43cd72b9 BW |
4773 | /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */ |
4774 | return XTENSA_UNDEFINED; | |
4775 | } | |
e0001a05 | 4776 | |
e0001a05 | 4777 | |
43cd72b9 BW |
4778 | /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN; |
4779 | CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode. | |
4780 | If not, return XTENSA_UNDEFINED. */ | |
e0001a05 | 4781 | |
43cd72b9 BW |
4782 | #define L32R_TARGET_REG_OPERAND 0 |
4783 | #define CONST16_TARGET_REG_OPERAND 0 | |
4784 | #define CALLN_SOURCE_OPERAND 0 | |
e0001a05 | 4785 | |
68ffbac6 | 4786 | static xtensa_opcode |
7fa3d080 | 4787 | get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r) |
e0001a05 | 4788 | { |
43cd72b9 BW |
4789 | static xtensa_insnbuf insnbuf = NULL; |
4790 | static xtensa_insnbuf slotbuf = NULL; | |
4791 | xtensa_format fmt; | |
4792 | xtensa_opcode opcode; | |
4793 | xtensa_isa isa = xtensa_default_isa; | |
4794 | uint32 regno, const16_regno, call_regno; | |
4795 | int offset = 0; | |
e0001a05 | 4796 | |
43cd72b9 | 4797 | if (insnbuf == NULL) |
e0001a05 | 4798 | { |
43cd72b9 BW |
4799 | insnbuf = xtensa_insnbuf_alloc (isa); |
4800 | slotbuf = xtensa_insnbuf_alloc (isa); | |
e0001a05 | 4801 | } |
43cd72b9 BW |
4802 | |
4803 | xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize); | |
4804 | fmt = xtensa_format_decode (isa, insnbuf); | |
4805 | if (fmt == XTENSA_UNDEFINED | |
4806 | || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf)) | |
4807 | return XTENSA_UNDEFINED; | |
4808 | ||
4809 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); | |
4810 | if (opcode == XTENSA_UNDEFINED) | |
4811 | return XTENSA_UNDEFINED; | |
4812 | ||
4813 | if (opcode == get_l32r_opcode ()) | |
e0001a05 | 4814 | { |
43cd72b9 BW |
4815 | if (p_uses_l32r) |
4816 | *p_uses_l32r = TRUE; | |
4817 | if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND, | |
4818 | fmt, 0, slotbuf, ®no) | |
4819 | || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND, | |
4820 | ®no)) | |
4821 | return XTENSA_UNDEFINED; | |
e0001a05 | 4822 | } |
43cd72b9 | 4823 | else if (opcode == get_const16_opcode ()) |
e0001a05 | 4824 | { |
43cd72b9 BW |
4825 | if (p_uses_l32r) |
4826 | *p_uses_l32r = FALSE; | |
4827 | if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND, | |
4828 | fmt, 0, slotbuf, ®no) | |
4829 | || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND, | |
4830 | ®no)) | |
4831 | return XTENSA_UNDEFINED; | |
4832 | ||
4833 | /* Check that the next instruction is also CONST16. */ | |
4834 | offset += xtensa_format_length (isa, fmt); | |
4835 | xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset); | |
4836 | fmt = xtensa_format_decode (isa, insnbuf); | |
4837 | if (fmt == XTENSA_UNDEFINED | |
4838 | || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf)) | |
4839 | return XTENSA_UNDEFINED; | |
4840 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); | |
4841 | if (opcode != get_const16_opcode ()) | |
4842 | return XTENSA_UNDEFINED; | |
4843 | ||
4844 | if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND, | |
4845 | fmt, 0, slotbuf, &const16_regno) | |
4846 | || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND, | |
4847 | &const16_regno) | |
4848 | || const16_regno != regno) | |
4849 | return XTENSA_UNDEFINED; | |
e0001a05 | 4850 | } |
43cd72b9 BW |
4851 | else |
4852 | return XTENSA_UNDEFINED; | |
e0001a05 | 4853 | |
43cd72b9 BW |
4854 | /* Next instruction should be an CALLXn with operand 0 == regno. */ |
4855 | offset += xtensa_format_length (isa, fmt); | |
4856 | xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset); | |
4857 | fmt = xtensa_format_decode (isa, insnbuf); | |
4858 | if (fmt == XTENSA_UNDEFINED | |
4859 | || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf)) | |
4860 | return XTENSA_UNDEFINED; | |
4861 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); | |
68ffbac6 | 4862 | if (opcode == XTENSA_UNDEFINED |
43cd72b9 BW |
4863 | || !is_indirect_call_opcode (opcode)) |
4864 | return XTENSA_UNDEFINED; | |
e0001a05 | 4865 | |
43cd72b9 BW |
4866 | if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND, |
4867 | fmt, 0, slotbuf, &call_regno) | |
4868 | || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND, | |
4869 | &call_regno)) | |
4870 | return XTENSA_UNDEFINED; | |
e0001a05 | 4871 | |
43cd72b9 BW |
4872 | if (call_regno != regno) |
4873 | return XTENSA_UNDEFINED; | |
e0001a05 | 4874 | |
43cd72b9 BW |
4875 | return opcode; |
4876 | } | |
e0001a05 | 4877 | |
43cd72b9 BW |
4878 | \f |
4879 | /* Data structures used during relaxation. */ | |
e0001a05 | 4880 | |
43cd72b9 | 4881 | /* r_reloc: relocation values. */ |
e0001a05 | 4882 | |
43cd72b9 BW |
4883 | /* Through the relaxation process, we need to keep track of the values |
4884 | that will result from evaluating relocations. The standard ELF | |
4885 | relocation structure is not sufficient for this purpose because we're | |
4886 | operating on multiple input files at once, so we need to know which | |
4887 | input file a relocation refers to. The r_reloc structure thus | |
4888 | records both the input file (bfd) and ELF relocation. | |
e0001a05 | 4889 | |
43cd72b9 BW |
4890 | For efficiency, an r_reloc also contains a "target_offset" field to |
4891 | cache the target-section-relative offset value that is represented by | |
4892 | the relocation. | |
68ffbac6 | 4893 | |
43cd72b9 BW |
4894 | The r_reloc also contains a virtual offset that allows multiple |
4895 | inserted literals to be placed at the same "address" with | |
4896 | different offsets. */ | |
e0001a05 | 4897 | |
43cd72b9 | 4898 | typedef struct r_reloc_struct r_reloc; |
e0001a05 | 4899 | |
43cd72b9 | 4900 | struct r_reloc_struct |
e0001a05 | 4901 | { |
43cd72b9 BW |
4902 | bfd *abfd; |
4903 | Elf_Internal_Rela rela; | |
e0001a05 | 4904 | bfd_vma target_offset; |
43cd72b9 | 4905 | bfd_vma virtual_offset; |
e0001a05 NC |
4906 | }; |
4907 | ||
e0001a05 | 4908 | |
43cd72b9 BW |
4909 | /* The r_reloc structure is included by value in literal_value, but not |
4910 | every literal_value has an associated relocation -- some are simple | |
4911 | constants. In such cases, we set all the fields in the r_reloc | |
4912 | struct to zero. The r_reloc_is_const function should be used to | |
4913 | detect this case. */ | |
e0001a05 | 4914 | |
43cd72b9 | 4915 | static bfd_boolean |
7fa3d080 | 4916 | r_reloc_is_const (const r_reloc *r_rel) |
e0001a05 | 4917 | { |
43cd72b9 | 4918 | return (r_rel->abfd == NULL); |
e0001a05 NC |
4919 | } |
4920 | ||
4921 | ||
43cd72b9 | 4922 | static bfd_vma |
7fa3d080 | 4923 | r_reloc_get_target_offset (const r_reloc *r_rel) |
e0001a05 | 4924 | { |
43cd72b9 BW |
4925 | bfd_vma target_offset; |
4926 | unsigned long r_symndx; | |
e0001a05 | 4927 | |
43cd72b9 BW |
4928 | BFD_ASSERT (!r_reloc_is_const (r_rel)); |
4929 | r_symndx = ELF32_R_SYM (r_rel->rela.r_info); | |
4930 | target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx); | |
4931 | return (target_offset + r_rel->rela.r_addend); | |
4932 | } | |
e0001a05 | 4933 | |
e0001a05 | 4934 | |
43cd72b9 | 4935 | static struct elf_link_hash_entry * |
7fa3d080 | 4936 | r_reloc_get_hash_entry (const r_reloc *r_rel) |
e0001a05 | 4937 | { |
43cd72b9 BW |
4938 | unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info); |
4939 | return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx); | |
4940 | } | |
e0001a05 | 4941 | |
43cd72b9 BW |
4942 | |
4943 | static asection * | |
7fa3d080 | 4944 | r_reloc_get_section (const r_reloc *r_rel) |
43cd72b9 BW |
4945 | { |
4946 | unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info); | |
4947 | return get_elf_r_symndx_section (r_rel->abfd, r_symndx); | |
4948 | } | |
e0001a05 NC |
4949 | |
4950 | ||
4951 | static bfd_boolean | |
7fa3d080 | 4952 | r_reloc_is_defined (const r_reloc *r_rel) |
e0001a05 | 4953 | { |
43cd72b9 BW |
4954 | asection *sec; |
4955 | if (r_rel == NULL) | |
e0001a05 | 4956 | return FALSE; |
e0001a05 | 4957 | |
43cd72b9 BW |
4958 | sec = r_reloc_get_section (r_rel); |
4959 | if (sec == bfd_abs_section_ptr | |
4960 | || sec == bfd_com_section_ptr | |
4961 | || sec == bfd_und_section_ptr) | |
4962 | return FALSE; | |
4963 | return TRUE; | |
e0001a05 NC |
4964 | } |
4965 | ||
4966 | ||
7fa3d080 BW |
4967 | static void |
4968 | r_reloc_init (r_reloc *r_rel, | |
4969 | bfd *abfd, | |
4970 | Elf_Internal_Rela *irel, | |
4971 | bfd_byte *contents, | |
4972 | bfd_size_type content_length) | |
4973 | { | |
4974 | int r_type; | |
4975 | reloc_howto_type *howto; | |
4976 | ||
4977 | if (irel) | |
4978 | { | |
4979 | r_rel->rela = *irel; | |
4980 | r_rel->abfd = abfd; | |
4981 | r_rel->target_offset = r_reloc_get_target_offset (r_rel); | |
4982 | r_rel->virtual_offset = 0; | |
4983 | r_type = ELF32_R_TYPE (r_rel->rela.r_info); | |
4984 | howto = &elf_howto_table[r_type]; | |
4985 | if (howto->partial_inplace) | |
4986 | { | |
4987 | bfd_vma inplace_val; | |
4988 | BFD_ASSERT (r_rel->rela.r_offset < content_length); | |
4989 | ||
4990 | inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]); | |
4991 | r_rel->target_offset += inplace_val; | |
4992 | } | |
4993 | } | |
4994 | else | |
4995 | memset (r_rel, 0, sizeof (r_reloc)); | |
4996 | } | |
4997 | ||
4998 | ||
43cd72b9 BW |
4999 | #if DEBUG |
5000 | ||
e0001a05 | 5001 | static void |
7fa3d080 | 5002 | print_r_reloc (FILE *fp, const r_reloc *r_rel) |
e0001a05 | 5003 | { |
43cd72b9 BW |
5004 | if (r_reloc_is_defined (r_rel)) |
5005 | { | |
5006 | asection *sec = r_reloc_get_section (r_rel); | |
5007 | fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name); | |
5008 | } | |
5009 | else if (r_reloc_get_hash_entry (r_rel)) | |
5010 | fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string); | |
5011 | else | |
5012 | fprintf (fp, " ?? + "); | |
e0001a05 | 5013 | |
43cd72b9 BW |
5014 | fprintf_vma (fp, r_rel->target_offset); |
5015 | if (r_rel->virtual_offset) | |
5016 | { | |
5017 | fprintf (fp, " + "); | |
5018 | fprintf_vma (fp, r_rel->virtual_offset); | |
5019 | } | |
68ffbac6 | 5020 | |
43cd72b9 BW |
5021 | fprintf (fp, ")"); |
5022 | } | |
e0001a05 | 5023 | |
43cd72b9 | 5024 | #endif /* DEBUG */ |
e0001a05 | 5025 | |
43cd72b9 BW |
5026 | \f |
5027 | /* source_reloc: relocations that reference literals. */ | |
e0001a05 | 5028 | |
43cd72b9 BW |
5029 | /* To determine whether literals can be coalesced, we need to first |
5030 | record all the relocations that reference the literals. The | |
5031 | source_reloc structure below is used for this purpose. The | |
5032 | source_reloc entries are kept in a per-literal-section array, sorted | |
5033 | by offset within the literal section (i.e., target offset). | |
e0001a05 | 5034 | |
43cd72b9 BW |
5035 | The source_sec and r_rel.rela.r_offset fields identify the source of |
5036 | the relocation. The r_rel field records the relocation value, i.e., | |
5037 | the offset of the literal being referenced. The opnd field is needed | |
5038 | to determine the range of the immediate field to which the relocation | |
5039 | applies, so we can determine whether another literal with the same | |
5040 | value is within range. The is_null field is true when the relocation | |
5041 | is being removed (e.g., when an L32R is being removed due to a CALLX | |
5042 | that is converted to a direct CALL). */ | |
e0001a05 | 5043 | |
43cd72b9 BW |
5044 | typedef struct source_reloc_struct source_reloc; |
5045 | ||
5046 | struct source_reloc_struct | |
e0001a05 | 5047 | { |
43cd72b9 BW |
5048 | asection *source_sec; |
5049 | r_reloc r_rel; | |
5050 | xtensa_opcode opcode; | |
5051 | int opnd; | |
5052 | bfd_boolean is_null; | |
5053 | bfd_boolean is_abs_literal; | |
5054 | }; | |
e0001a05 | 5055 | |
e0001a05 | 5056 | |
e0001a05 | 5057 | static void |
7fa3d080 BW |
5058 | init_source_reloc (source_reloc *reloc, |
5059 | asection *source_sec, | |
5060 | const r_reloc *r_rel, | |
5061 | xtensa_opcode opcode, | |
5062 | int opnd, | |
5063 | bfd_boolean is_abs_literal) | |
e0001a05 | 5064 | { |
43cd72b9 BW |
5065 | reloc->source_sec = source_sec; |
5066 | reloc->r_rel = *r_rel; | |
5067 | reloc->opcode = opcode; | |
5068 | reloc->opnd = opnd; | |
5069 | reloc->is_null = FALSE; | |
5070 | reloc->is_abs_literal = is_abs_literal; | |
e0001a05 NC |
5071 | } |
5072 | ||
e0001a05 | 5073 | |
43cd72b9 BW |
5074 | /* Find the source_reloc for a particular source offset and relocation |
5075 | type. Note that the array is sorted by _target_ offset, so this is | |
5076 | just a linear search. */ | |
e0001a05 | 5077 | |
43cd72b9 | 5078 | static source_reloc * |
7fa3d080 BW |
5079 | find_source_reloc (source_reloc *src_relocs, |
5080 | int src_count, | |
5081 | asection *sec, | |
5082 | Elf_Internal_Rela *irel) | |
e0001a05 | 5083 | { |
43cd72b9 | 5084 | int i; |
e0001a05 | 5085 | |
43cd72b9 BW |
5086 | for (i = 0; i < src_count; i++) |
5087 | { | |
5088 | if (src_relocs[i].source_sec == sec | |
5089 | && src_relocs[i].r_rel.rela.r_offset == irel->r_offset | |
5090 | && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info) | |
5091 | == ELF32_R_TYPE (irel->r_info))) | |
5092 | return &src_relocs[i]; | |
5093 | } | |
e0001a05 | 5094 | |
43cd72b9 | 5095 | return NULL; |
e0001a05 NC |
5096 | } |
5097 | ||
5098 | ||
43cd72b9 | 5099 | static int |
7fa3d080 | 5100 | source_reloc_compare (const void *ap, const void *bp) |
e0001a05 | 5101 | { |
43cd72b9 BW |
5102 | const source_reloc *a = (const source_reloc *) ap; |
5103 | const source_reloc *b = (const source_reloc *) bp; | |
e0001a05 | 5104 | |
43cd72b9 BW |
5105 | if (a->r_rel.target_offset != b->r_rel.target_offset) |
5106 | return (a->r_rel.target_offset - b->r_rel.target_offset); | |
e0001a05 | 5107 | |
43cd72b9 BW |
5108 | /* We don't need to sort on these criteria for correctness, |
5109 | but enforcing a more strict ordering prevents unstable qsort | |
5110 | from behaving differently with different implementations. | |
5111 | Without the code below we get correct but different results | |
5112 | on Solaris 2.7 and 2.8. We would like to always produce the | |
5113 | same results no matter the host. */ | |
5114 | ||
5115 | if ((!a->is_null) - (!b->is_null)) | |
5116 | return ((!a->is_null) - (!b->is_null)); | |
5117 | return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela); | |
e0001a05 NC |
5118 | } |
5119 | ||
43cd72b9 BW |
5120 | \f |
5121 | /* Literal values and value hash tables. */ | |
e0001a05 | 5122 | |
43cd72b9 BW |
5123 | /* Literals with the same value can be coalesced. The literal_value |
5124 | structure records the value of a literal: the "r_rel" field holds the | |
5125 | information from the relocation on the literal (if there is one) and | |
5126 | the "value" field holds the contents of the literal word itself. | |
e0001a05 | 5127 | |
43cd72b9 BW |
5128 | The value_map structure records a literal value along with the |
5129 | location of a literal holding that value. The value_map hash table | |
5130 | is indexed by the literal value, so that we can quickly check if a | |
5131 | particular literal value has been seen before and is thus a candidate | |
5132 | for coalescing. */ | |
e0001a05 | 5133 | |
43cd72b9 BW |
5134 | typedef struct literal_value_struct literal_value; |
5135 | typedef struct value_map_struct value_map; | |
5136 | typedef struct value_map_hash_table_struct value_map_hash_table; | |
e0001a05 | 5137 | |
43cd72b9 | 5138 | struct literal_value_struct |
e0001a05 | 5139 | { |
68ffbac6 | 5140 | r_reloc r_rel; |
43cd72b9 BW |
5141 | unsigned long value; |
5142 | bfd_boolean is_abs_literal; | |
5143 | }; | |
5144 | ||
5145 | struct value_map_struct | |
5146 | { | |
5147 | literal_value val; /* The literal value. */ | |
5148 | r_reloc loc; /* Location of the literal. */ | |
5149 | value_map *next; | |
5150 | }; | |
5151 | ||
5152 | struct value_map_hash_table_struct | |
5153 | { | |
5154 | unsigned bucket_count; | |
5155 | value_map **buckets; | |
5156 | unsigned count; | |
5157 | bfd_boolean has_last_loc; | |
5158 | r_reloc last_loc; | |
5159 | }; | |
5160 | ||
5161 | ||
e0001a05 | 5162 | static void |
7fa3d080 BW |
5163 | init_literal_value (literal_value *lit, |
5164 | const r_reloc *r_rel, | |
5165 | unsigned long value, | |
5166 | bfd_boolean is_abs_literal) | |
e0001a05 | 5167 | { |
43cd72b9 BW |
5168 | lit->r_rel = *r_rel; |
5169 | lit->value = value; | |
5170 | lit->is_abs_literal = is_abs_literal; | |
e0001a05 NC |
5171 | } |
5172 | ||
5173 | ||
43cd72b9 | 5174 | static bfd_boolean |
7fa3d080 BW |
5175 | literal_value_equal (const literal_value *src1, |
5176 | const literal_value *src2, | |
5177 | bfd_boolean final_static_link) | |
e0001a05 | 5178 | { |
43cd72b9 | 5179 | struct elf_link_hash_entry *h1, *h2; |
e0001a05 | 5180 | |
68ffbac6 | 5181 | if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel)) |
43cd72b9 | 5182 | return FALSE; |
e0001a05 | 5183 | |
43cd72b9 BW |
5184 | if (r_reloc_is_const (&src1->r_rel)) |
5185 | return (src1->value == src2->value); | |
e0001a05 | 5186 | |
43cd72b9 BW |
5187 | if (ELF32_R_TYPE (src1->r_rel.rela.r_info) |
5188 | != ELF32_R_TYPE (src2->r_rel.rela.r_info)) | |
5189 | return FALSE; | |
e0001a05 | 5190 | |
43cd72b9 BW |
5191 | if (src1->r_rel.target_offset != src2->r_rel.target_offset) |
5192 | return FALSE; | |
68ffbac6 | 5193 | |
43cd72b9 BW |
5194 | if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset) |
5195 | return FALSE; | |
5196 | ||
5197 | if (src1->value != src2->value) | |
5198 | return FALSE; | |
68ffbac6 | 5199 | |
43cd72b9 BW |
5200 | /* Now check for the same section (if defined) or the same elf_hash |
5201 | (if undefined or weak). */ | |
5202 | h1 = r_reloc_get_hash_entry (&src1->r_rel); | |
5203 | h2 = r_reloc_get_hash_entry (&src2->r_rel); | |
5204 | if (r_reloc_is_defined (&src1->r_rel) | |
5205 | && (final_static_link | |
5206 | || ((!h1 || h1->root.type != bfd_link_hash_defweak) | |
5207 | && (!h2 || h2->root.type != bfd_link_hash_defweak)))) | |
5208 | { | |
5209 | if (r_reloc_get_section (&src1->r_rel) | |
5210 | != r_reloc_get_section (&src2->r_rel)) | |
5211 | return FALSE; | |
5212 | } | |
5213 | else | |
5214 | { | |
5215 | /* Require that the hash entries (i.e., symbols) be identical. */ | |
5216 | if (h1 != h2 || h1 == 0) | |
5217 | return FALSE; | |
5218 | } | |
5219 | ||
5220 | if (src1->is_abs_literal != src2->is_abs_literal) | |
5221 | return FALSE; | |
5222 | ||
5223 | return TRUE; | |
e0001a05 NC |
5224 | } |
5225 | ||
e0001a05 | 5226 | |
43cd72b9 BW |
5227 | /* Must be power of 2. */ |
5228 | #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024 | |
e0001a05 | 5229 | |
43cd72b9 | 5230 | static value_map_hash_table * |
7fa3d080 | 5231 | value_map_hash_table_init (void) |
43cd72b9 BW |
5232 | { |
5233 | value_map_hash_table *values; | |
e0001a05 | 5234 | |
43cd72b9 BW |
5235 | values = (value_map_hash_table *) |
5236 | bfd_zmalloc (sizeof (value_map_hash_table)); | |
5237 | values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT; | |
5238 | values->count = 0; | |
5239 | values->buckets = (value_map **) | |
5240 | bfd_zmalloc (sizeof (value_map *) * values->bucket_count); | |
68ffbac6 | 5241 | if (values->buckets == NULL) |
43cd72b9 BW |
5242 | { |
5243 | free (values); | |
5244 | return NULL; | |
5245 | } | |
5246 | values->has_last_loc = FALSE; | |
5247 | ||
5248 | return values; | |
5249 | } | |
5250 | ||
5251 | ||
5252 | static void | |
7fa3d080 | 5253 | value_map_hash_table_delete (value_map_hash_table *table) |
e0001a05 | 5254 | { |
43cd72b9 BW |
5255 | free (table->buckets); |
5256 | free (table); | |
5257 | } | |
5258 | ||
5259 | ||
5260 | static unsigned | |
7fa3d080 | 5261 | hash_bfd_vma (bfd_vma val) |
43cd72b9 BW |
5262 | { |
5263 | return (val >> 2) + (val >> 10); | |
5264 | } | |
5265 | ||
5266 | ||
5267 | static unsigned | |
7fa3d080 | 5268 | literal_value_hash (const literal_value *src) |
43cd72b9 BW |
5269 | { |
5270 | unsigned hash_val; | |
e0001a05 | 5271 | |
43cd72b9 BW |
5272 | hash_val = hash_bfd_vma (src->value); |
5273 | if (!r_reloc_is_const (&src->r_rel)) | |
e0001a05 | 5274 | { |
43cd72b9 BW |
5275 | void *sec_or_hash; |
5276 | ||
5277 | hash_val += hash_bfd_vma (src->is_abs_literal * 1000); | |
5278 | hash_val += hash_bfd_vma (src->r_rel.target_offset); | |
5279 | hash_val += hash_bfd_vma (src->r_rel.virtual_offset); | |
68ffbac6 | 5280 | |
43cd72b9 BW |
5281 | /* Now check for the same section and the same elf_hash. */ |
5282 | if (r_reloc_is_defined (&src->r_rel)) | |
5283 | sec_or_hash = r_reloc_get_section (&src->r_rel); | |
5284 | else | |
5285 | sec_or_hash = r_reloc_get_hash_entry (&src->r_rel); | |
f60ca5e3 | 5286 | hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash); |
e0001a05 | 5287 | } |
43cd72b9 BW |
5288 | return hash_val; |
5289 | } | |
e0001a05 | 5290 | |
e0001a05 | 5291 | |
43cd72b9 | 5292 | /* Check if the specified literal_value has been seen before. */ |
e0001a05 | 5293 | |
43cd72b9 | 5294 | static value_map * |
7fa3d080 BW |
5295 | value_map_get_cached_value (value_map_hash_table *map, |
5296 | const literal_value *val, | |
5297 | bfd_boolean final_static_link) | |
43cd72b9 BW |
5298 | { |
5299 | value_map *map_e; | |
5300 | value_map *bucket; | |
5301 | unsigned idx; | |
5302 | ||
5303 | idx = literal_value_hash (val); | |
5304 | idx = idx & (map->bucket_count - 1); | |
5305 | bucket = map->buckets[idx]; | |
5306 | for (map_e = bucket; map_e; map_e = map_e->next) | |
e0001a05 | 5307 | { |
43cd72b9 BW |
5308 | if (literal_value_equal (&map_e->val, val, final_static_link)) |
5309 | return map_e; | |
5310 | } | |
5311 | return NULL; | |
5312 | } | |
e0001a05 | 5313 | |
e0001a05 | 5314 | |
43cd72b9 BW |
5315 | /* Record a new literal value. It is illegal to call this if VALUE |
5316 | already has an entry here. */ | |
5317 | ||
5318 | static value_map * | |
7fa3d080 BW |
5319 | add_value_map (value_map_hash_table *map, |
5320 | const literal_value *val, | |
5321 | const r_reloc *loc, | |
5322 | bfd_boolean final_static_link) | |
43cd72b9 BW |
5323 | { |
5324 | value_map **bucket_p; | |
5325 | unsigned idx; | |
5326 | ||
5327 | value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map)); | |
5328 | if (val_e == NULL) | |
5329 | { | |
5330 | bfd_set_error (bfd_error_no_memory); | |
5331 | return NULL; | |
e0001a05 NC |
5332 | } |
5333 | ||
43cd72b9 BW |
5334 | BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link)); |
5335 | val_e->val = *val; | |
5336 | val_e->loc = *loc; | |
5337 | ||
5338 | idx = literal_value_hash (val); | |
5339 | idx = idx & (map->bucket_count - 1); | |
5340 | bucket_p = &map->buckets[idx]; | |
5341 | ||
5342 | val_e->next = *bucket_p; | |
5343 | *bucket_p = val_e; | |
5344 | map->count++; | |
5345 | /* FIXME: Consider resizing the hash table if we get too many entries. */ | |
68ffbac6 | 5346 | |
43cd72b9 | 5347 | return val_e; |
e0001a05 NC |
5348 | } |
5349 | ||
43cd72b9 BW |
5350 | \f |
5351 | /* Lists of text actions (ta_) for narrowing, widening, longcall | |
5352 | conversion, space fill, code & literal removal, etc. */ | |
5353 | ||
5354 | /* The following text actions are generated: | |
5355 | ||
5356 | "ta_remove_insn" remove an instruction or instructions | |
5357 | "ta_remove_longcall" convert longcall to call | |
5358 | "ta_convert_longcall" convert longcall to nop/call | |
5359 | "ta_narrow_insn" narrow a wide instruction | |
5360 | "ta_widen" widen a narrow instruction | |
5361 | "ta_fill" add fill or remove fill | |
5362 | removed < 0 is a fill; branches to the fill address will be | |
5363 | changed to address + fill size (e.g., address - removed) | |
5364 | removed >= 0 branches to the fill address will stay unchanged | |
5365 | "ta_remove_literal" remove a literal; this action is | |
5366 | indicated when a literal is removed | |
5367 | or replaced. | |
5368 | "ta_add_literal" insert a new literal; this action is | |
5369 | indicated when a literal has been moved. | |
5370 | It may use a virtual_offset because | |
5371 | multiple literals can be placed at the | |
5372 | same location. | |
5373 | ||
5374 | For each of these text actions, we also record the number of bytes | |
5375 | removed by performing the text action. In the case of a "ta_widen" | |
5376 | or a "ta_fill" that adds space, the removed_bytes will be negative. */ | |
5377 | ||
5378 | typedef struct text_action_struct text_action; | |
5379 | typedef struct text_action_list_struct text_action_list; | |
5380 | typedef enum text_action_enum_t text_action_t; | |
5381 | ||
5382 | enum text_action_enum_t | |
5383 | { | |
5384 | ta_none, | |
5385 | ta_remove_insn, /* removed = -size */ | |
5386 | ta_remove_longcall, /* removed = -size */ | |
5387 | ta_convert_longcall, /* removed = 0 */ | |
5388 | ta_narrow_insn, /* removed = -1 */ | |
5389 | ta_widen_insn, /* removed = +1 */ | |
5390 | ta_fill, /* removed = +size */ | |
5391 | ta_remove_literal, | |
5392 | ta_add_literal | |
5393 | }; | |
e0001a05 | 5394 | |
e0001a05 | 5395 | |
43cd72b9 BW |
5396 | /* Structure for a text action record. */ |
5397 | struct text_action_struct | |
e0001a05 | 5398 | { |
43cd72b9 BW |
5399 | text_action_t action; |
5400 | asection *sec; /* Optional */ | |
5401 | bfd_vma offset; | |
5402 | bfd_vma virtual_offset; /* Zero except for adding literals. */ | |
5403 | int removed_bytes; | |
5404 | literal_value value; /* Only valid when adding literals. */ | |
43cd72b9 | 5405 | }; |
e0001a05 | 5406 | |
071aa5c9 MF |
5407 | struct removal_by_action_entry_struct |
5408 | { | |
5409 | bfd_vma offset; | |
5410 | int removed; | |
5411 | int eq_removed; | |
5412 | int eq_removed_before_fill; | |
5413 | }; | |
5414 | typedef struct removal_by_action_entry_struct removal_by_action_entry; | |
5415 | ||
5416 | struct removal_by_action_map_struct | |
5417 | { | |
5418 | unsigned n_entries; | |
5419 | removal_by_action_entry *entry; | |
5420 | }; | |
5421 | typedef struct removal_by_action_map_struct removal_by_action_map; | |
5422 | ||
e0001a05 | 5423 | |
43cd72b9 BW |
5424 | /* List of all of the actions taken on a text section. */ |
5425 | struct text_action_list_struct | |
5426 | { | |
4c2af04f MF |
5427 | unsigned count; |
5428 | splay_tree tree; | |
071aa5c9 | 5429 | removal_by_action_map map; |
43cd72b9 | 5430 | }; |
e0001a05 | 5431 | |
e0001a05 | 5432 | |
7fa3d080 BW |
5433 | static text_action * |
5434 | find_fill_action (text_action_list *l, asection *sec, bfd_vma offset) | |
43cd72b9 | 5435 | { |
4c2af04f | 5436 | text_action a; |
43cd72b9 BW |
5437 | |
5438 | /* It is not necessary to fill at the end of a section. */ | |
5439 | if (sec->size == offset) | |
5440 | return NULL; | |
5441 | ||
4c2af04f MF |
5442 | a.offset = offset; |
5443 | a.action = ta_fill; | |
5444 | ||
5445 | splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a); | |
5446 | if (node) | |
5447 | return (text_action *)node->value; | |
43cd72b9 BW |
5448 | return NULL; |
5449 | } | |
5450 | ||
5451 | ||
5452 | static int | |
7fa3d080 BW |
5453 | compute_removed_action_diff (const text_action *ta, |
5454 | asection *sec, | |
5455 | bfd_vma offset, | |
5456 | int removed, | |
5457 | int removable_space) | |
43cd72b9 BW |
5458 | { |
5459 | int new_removed; | |
5460 | int current_removed = 0; | |
5461 | ||
7fa3d080 | 5462 | if (ta) |
43cd72b9 BW |
5463 | current_removed = ta->removed_bytes; |
5464 | ||
5465 | BFD_ASSERT (ta == NULL || ta->offset == offset); | |
5466 | BFD_ASSERT (ta == NULL || ta->action == ta_fill); | |
5467 | ||
5468 | /* It is not necessary to fill at the end of a section. Clean this up. */ | |
5469 | if (sec->size == offset) | |
5470 | new_removed = removable_space - 0; | |
5471 | else | |
5472 | { | |
5473 | int space; | |
5474 | int added = -removed - current_removed; | |
5475 | /* Ignore multiples of the section alignment. */ | |
5476 | added = ((1 << sec->alignment_power) - 1) & added; | |
5477 | new_removed = (-added); | |
5478 | ||
5479 | /* Modify for removable. */ | |
5480 | space = removable_space - new_removed; | |
5481 | new_removed = (removable_space | |
5482 | - (((1 << sec->alignment_power) - 1) & space)); | |
5483 | } | |
5484 | return (new_removed - current_removed); | |
5485 | } | |
5486 | ||
5487 | ||
7fa3d080 BW |
5488 | static void |
5489 | adjust_fill_action (text_action *ta, int fill_diff) | |
43cd72b9 BW |
5490 | { |
5491 | ta->removed_bytes += fill_diff; | |
5492 | } | |
5493 | ||
5494 | ||
4c2af04f MF |
5495 | static int |
5496 | text_action_compare (splay_tree_key a, splay_tree_key b) | |
5497 | { | |
5498 | text_action *pa = (text_action *)a; | |
5499 | text_action *pb = (text_action *)b; | |
5500 | static const int action_priority[] = | |
5501 | { | |
5502 | [ta_fill] = 0, | |
5503 | [ta_none] = 1, | |
5504 | [ta_convert_longcall] = 2, | |
5505 | [ta_narrow_insn] = 3, | |
5506 | [ta_remove_insn] = 4, | |
5507 | [ta_remove_longcall] = 5, | |
5508 | [ta_remove_literal] = 6, | |
5509 | [ta_widen_insn] = 7, | |
5510 | [ta_add_literal] = 8, | |
5511 | }; | |
5512 | ||
5513 | if (pa->offset == pb->offset) | |
5514 | { | |
5515 | if (pa->action == pb->action) | |
5516 | return 0; | |
5517 | return action_priority[pa->action] - action_priority[pb->action]; | |
5518 | } | |
5519 | else | |
5520 | return pa->offset < pb->offset ? -1 : 1; | |
5521 | } | |
5522 | ||
5523 | static text_action * | |
5524 | action_first (text_action_list *action_list) | |
5525 | { | |
5526 | splay_tree_node node = splay_tree_min (action_list->tree); | |
5527 | return node ? (text_action *)node->value : NULL; | |
5528 | } | |
5529 | ||
5530 | static text_action * | |
5531 | action_next (text_action_list *action_list, text_action *action) | |
5532 | { | |
5533 | splay_tree_node node = splay_tree_successor (action_list->tree, | |
5534 | (splay_tree_key)action); | |
5535 | return node ? (text_action *)node->value : NULL; | |
5536 | } | |
5537 | ||
43cd72b9 BW |
5538 | /* Add a modification action to the text. For the case of adding or |
5539 | removing space, modify any current fill and assume that | |
5540 | "unreachable_space" bytes can be freely contracted. Note that a | |
5541 | negative removed value is a fill. */ | |
5542 | ||
68ffbac6 | 5543 | static void |
7fa3d080 BW |
5544 | text_action_add (text_action_list *l, |
5545 | text_action_t action, | |
5546 | asection *sec, | |
5547 | bfd_vma offset, | |
5548 | int removed) | |
43cd72b9 | 5549 | { |
43cd72b9 | 5550 | text_action *ta; |
4c2af04f | 5551 | text_action a; |
43cd72b9 BW |
5552 | |
5553 | /* It is not necessary to fill at the end of a section. */ | |
5554 | if (action == ta_fill && sec->size == offset) | |
5555 | return; | |
5556 | ||
5557 | /* It is not necessary to fill 0 bytes. */ | |
5558 | if (action == ta_fill && removed == 0) | |
5559 | return; | |
5560 | ||
4c2af04f MF |
5561 | a.action = action; |
5562 | a.offset = offset; | |
5563 | ||
5564 | if (action == ta_fill) | |
43cd72b9 | 5565 | { |
4c2af04f | 5566 | splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a); |
68ffbac6 | 5567 | |
4c2af04f | 5568 | if (node) |
43cd72b9 | 5569 | { |
4c2af04f MF |
5570 | ta = (text_action *)node->value; |
5571 | ta->removed_bytes += removed; | |
5572 | return; | |
43cd72b9 BW |
5573 | } |
5574 | } | |
4c2af04f MF |
5575 | else |
5576 | BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)&a) == NULL); | |
43cd72b9 | 5577 | |
43cd72b9 BW |
5578 | ta = (text_action *) bfd_zmalloc (sizeof (text_action)); |
5579 | ta->action = action; | |
5580 | ta->sec = sec; | |
5581 | ta->offset = offset; | |
5582 | ta->removed_bytes = removed; | |
4c2af04f MF |
5583 | splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta); |
5584 | ++l->count; | |
43cd72b9 BW |
5585 | } |
5586 | ||
5587 | ||
5588 | static void | |
7fa3d080 BW |
5589 | text_action_add_literal (text_action_list *l, |
5590 | text_action_t action, | |
5591 | const r_reloc *loc, | |
5592 | const literal_value *value, | |
5593 | int removed) | |
43cd72b9 | 5594 | { |
43cd72b9 BW |
5595 | text_action *ta; |
5596 | asection *sec = r_reloc_get_section (loc); | |
5597 | bfd_vma offset = loc->target_offset; | |
5598 | bfd_vma virtual_offset = loc->virtual_offset; | |
5599 | ||
5600 | BFD_ASSERT (action == ta_add_literal); | |
5601 | ||
43cd72b9 BW |
5602 | /* Create a new record and fill it up. */ |
5603 | ta = (text_action *) bfd_zmalloc (sizeof (text_action)); | |
5604 | ta->action = action; | |
5605 | ta->sec = sec; | |
5606 | ta->offset = offset; | |
5607 | ta->virtual_offset = virtual_offset; | |
5608 | ta->value = *value; | |
5609 | ta->removed_bytes = removed; | |
4c2af04f MF |
5610 | |
5611 | BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)ta) == NULL); | |
5612 | splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta); | |
5613 | ++l->count; | |
43cd72b9 BW |
5614 | } |
5615 | ||
5616 | ||
03669f1c BW |
5617 | /* Find the total offset adjustment for the relaxations specified by |
5618 | text_actions, beginning from a particular starting action. This is | |
5619 | typically used from offset_with_removed_text to search an entire list of | |
5620 | actions, but it may also be called directly when adjusting adjacent offsets | |
5621 | so that each search may begin where the previous one left off. */ | |
5622 | ||
5623 | static int | |
4c2af04f MF |
5624 | removed_by_actions (text_action_list *action_list, |
5625 | text_action **p_start_action, | |
03669f1c BW |
5626 | bfd_vma offset, |
5627 | bfd_boolean before_fill) | |
43cd72b9 BW |
5628 | { |
5629 | text_action *r; | |
5630 | int removed = 0; | |
5631 | ||
03669f1c | 5632 | r = *p_start_action; |
4c2af04f MF |
5633 | if (r) |
5634 | { | |
5635 | splay_tree_node node = splay_tree_lookup (action_list->tree, | |
5636 | (splay_tree_key)r); | |
5637 | BFD_ASSERT (node != NULL && r == (text_action *)node->value); | |
5638 | } | |
5639 | ||
03669f1c | 5640 | while (r) |
43cd72b9 | 5641 | { |
03669f1c BW |
5642 | if (r->offset > offset) |
5643 | break; | |
5644 | ||
5645 | if (r->offset == offset | |
5646 | && (before_fill || r->action != ta_fill || r->removed_bytes >= 0)) | |
5647 | break; | |
5648 | ||
5649 | removed += r->removed_bytes; | |
5650 | ||
4c2af04f | 5651 | r = action_next (action_list, r); |
43cd72b9 BW |
5652 | } |
5653 | ||
03669f1c BW |
5654 | *p_start_action = r; |
5655 | return removed; | |
5656 | } | |
5657 | ||
5658 | ||
68ffbac6 | 5659 | static bfd_vma |
03669f1c BW |
5660 | offset_with_removed_text (text_action_list *action_list, bfd_vma offset) |
5661 | { | |
4c2af04f MF |
5662 | text_action *r = action_first (action_list); |
5663 | ||
5664 | return offset - removed_by_actions (action_list, &r, offset, FALSE); | |
43cd72b9 BW |
5665 | } |
5666 | ||
5667 | ||
03e94c08 BW |
5668 | static unsigned |
5669 | action_list_count (text_action_list *action_list) | |
5670 | { | |
4c2af04f | 5671 | return action_list->count; |
03e94c08 BW |
5672 | } |
5673 | ||
4c2af04f MF |
5674 | typedef struct map_action_fn_context_struct map_action_fn_context; |
5675 | struct map_action_fn_context_struct | |
071aa5c9 | 5676 | { |
4c2af04f | 5677 | int removed; |
071aa5c9 MF |
5678 | removal_by_action_map map; |
5679 | bfd_boolean eq_complete; | |
4c2af04f | 5680 | }; |
071aa5c9 | 5681 | |
4c2af04f MF |
5682 | static int |
5683 | map_action_fn (splay_tree_node node, void *p) | |
5684 | { | |
5685 | map_action_fn_context *ctx = p; | |
5686 | text_action *r = (text_action *)node->value; | |
5687 | removal_by_action_entry *ientry = ctx->map.entry + ctx->map.n_entries; | |
071aa5c9 | 5688 | |
4c2af04f | 5689 | if (ctx->map.n_entries && (ientry - 1)->offset == r->offset) |
071aa5c9 | 5690 | { |
4c2af04f MF |
5691 | --ientry; |
5692 | } | |
5693 | else | |
5694 | { | |
5695 | ++ctx->map.n_entries; | |
5696 | ctx->eq_complete = FALSE; | |
5697 | ientry->offset = r->offset; | |
5698 | ientry->eq_removed_before_fill = ctx->removed; | |
5699 | } | |
071aa5c9 | 5700 | |
4c2af04f MF |
5701 | if (!ctx->eq_complete) |
5702 | { | |
5703 | if (r->action != ta_fill || r->removed_bytes >= 0) | |
071aa5c9 | 5704 | { |
4c2af04f MF |
5705 | ientry->eq_removed = ctx->removed; |
5706 | ctx->eq_complete = TRUE; | |
071aa5c9 MF |
5707 | } |
5708 | else | |
4c2af04f MF |
5709 | ientry->eq_removed = ctx->removed + r->removed_bytes; |
5710 | } | |
071aa5c9 | 5711 | |
4c2af04f MF |
5712 | ctx->removed += r->removed_bytes; |
5713 | ientry->removed = ctx->removed; | |
5714 | return 0; | |
5715 | } | |
071aa5c9 | 5716 | |
4c2af04f MF |
5717 | static void |
5718 | map_removal_by_action (text_action_list *action_list) | |
5719 | { | |
5720 | map_action_fn_context ctx; | |
5721 | ||
5722 | ctx.removed = 0; | |
5723 | ctx.map.n_entries = 0; | |
5724 | ctx.map.entry = bfd_malloc (action_list_count (action_list) * | |
5725 | sizeof (removal_by_action_entry)); | |
5726 | ctx.eq_complete = FALSE; | |
5727 | ||
5728 | splay_tree_foreach (action_list->tree, map_action_fn, &ctx); | |
5729 | action_list->map = ctx.map; | |
071aa5c9 MF |
5730 | } |
5731 | ||
5732 | static int | |
5733 | removed_by_actions_map (text_action_list *action_list, bfd_vma offset, | |
5734 | bfd_boolean before_fill) | |
5735 | { | |
5736 | unsigned a, b; | |
5737 | ||
5738 | if (!action_list->map.entry) | |
5739 | map_removal_by_action (action_list); | |
5740 | ||
5741 | if (!action_list->map.n_entries) | |
5742 | return 0; | |
5743 | ||
5744 | a = 0; | |
5745 | b = action_list->map.n_entries; | |
5746 | ||
5747 | while (b - a > 1) | |
5748 | { | |
5749 | unsigned c = (a + b) / 2; | |
5750 | ||
5751 | if (action_list->map.entry[c].offset <= offset) | |
5752 | a = c; | |
5753 | else | |
5754 | b = c; | |
5755 | } | |
5756 | ||
5757 | if (action_list->map.entry[a].offset < offset) | |
5758 | { | |
5759 | return action_list->map.entry[a].removed; | |
5760 | } | |
5761 | else if (action_list->map.entry[a].offset == offset) | |
5762 | { | |
5763 | return before_fill ? | |
5764 | action_list->map.entry[a].eq_removed_before_fill : | |
5765 | action_list->map.entry[a].eq_removed; | |
5766 | } | |
5767 | else | |
5768 | { | |
5769 | return 0; | |
5770 | } | |
5771 | } | |
5772 | ||
5773 | static bfd_vma | |
5774 | offset_with_removed_text_map (text_action_list *action_list, bfd_vma offset) | |
5775 | { | |
5776 | int removed = removed_by_actions_map (action_list, offset, FALSE); | |
5777 | return offset - removed; | |
5778 | } | |
5779 | ||
03e94c08 | 5780 | |
43cd72b9 BW |
5781 | /* The find_insn_action routine will only find non-fill actions. */ |
5782 | ||
7fa3d080 BW |
5783 | static text_action * |
5784 | find_insn_action (text_action_list *action_list, bfd_vma offset) | |
43cd72b9 | 5785 | { |
4c2af04f | 5786 | static const text_action_t action[] = |
43cd72b9 | 5787 | { |
4c2af04f MF |
5788 | ta_convert_longcall, |
5789 | ta_remove_longcall, | |
5790 | ta_widen_insn, | |
5791 | ta_narrow_insn, | |
5792 | ta_remove_insn, | |
5793 | }; | |
5794 | text_action a; | |
5795 | unsigned i; | |
5796 | ||
5797 | a.offset = offset; | |
5798 | for (i = 0; i < sizeof (action) / sizeof (*action); ++i) | |
5799 | { | |
5800 | splay_tree_node node; | |
5801 | ||
5802 | a.action = action[i]; | |
5803 | node = splay_tree_lookup (action_list->tree, (splay_tree_key)&a); | |
5804 | if (node) | |
5805 | return (text_action *)node->value; | |
43cd72b9 BW |
5806 | } |
5807 | return NULL; | |
5808 | } | |
5809 | ||
5810 | ||
5811 | #if DEBUG | |
5812 | ||
5813 | static void | |
4c2af04f MF |
5814 | print_action (FILE *fp, text_action *r) |
5815 | { | |
5816 | const char *t = "unknown"; | |
5817 | switch (r->action) | |
5818 | { | |
5819 | case ta_remove_insn: | |
5820 | t = "remove_insn"; break; | |
5821 | case ta_remove_longcall: | |
5822 | t = "remove_longcall"; break; | |
5823 | case ta_convert_longcall: | |
5824 | t = "convert_longcall"; break; | |
5825 | case ta_narrow_insn: | |
5826 | t = "narrow_insn"; break; | |
5827 | case ta_widen_insn: | |
5828 | t = "widen_insn"; break; | |
5829 | case ta_fill: | |
5830 | t = "fill"; break; | |
5831 | case ta_none: | |
5832 | t = "none"; break; | |
5833 | case ta_remove_literal: | |
5834 | t = "remove_literal"; break; | |
5835 | case ta_add_literal: | |
5836 | t = "add_literal"; break; | |
5837 | } | |
5838 | ||
5839 | fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n", | |
5840 | r->sec->owner->filename, | |
5841 | r->sec->name, (unsigned long) r->offset, t, r->removed_bytes); | |
5842 | } | |
5843 | ||
5844 | static int | |
5845 | print_action_list_fn (splay_tree_node node, void *p) | |
43cd72b9 | 5846 | { |
4c2af04f | 5847 | text_action *r = (text_action *)node->value; |
43cd72b9 | 5848 | |
4c2af04f MF |
5849 | print_action (p, r); |
5850 | return 0; | |
5851 | } | |
43cd72b9 | 5852 | |
4c2af04f MF |
5853 | static void |
5854 | print_action_list (FILE *fp, text_action_list *action_list) | |
5855 | { | |
5856 | fprintf (fp, "Text Action\n"); | |
5857 | splay_tree_foreach (action_list->tree, print_action_list_fn, fp); | |
43cd72b9 BW |
5858 | } |
5859 | ||
5860 | #endif /* DEBUG */ | |
5861 | ||
5862 | \f | |
5863 | /* Lists of literals being coalesced or removed. */ | |
5864 | ||
5865 | /* In the usual case, the literal identified by "from" is being | |
5866 | coalesced with another literal identified by "to". If the literal is | |
5867 | unused and is being removed altogether, "to.abfd" will be NULL. | |
5868 | The removed_literal entries are kept on a per-section list, sorted | |
5869 | by the "from" offset field. */ | |
5870 | ||
5871 | typedef struct removed_literal_struct removed_literal; | |
3439c466 | 5872 | typedef struct removed_literal_map_entry_struct removed_literal_map_entry; |
43cd72b9 BW |
5873 | typedef struct removed_literal_list_struct removed_literal_list; |
5874 | ||
5875 | struct removed_literal_struct | |
5876 | { | |
5877 | r_reloc from; | |
5878 | r_reloc to; | |
5879 | removed_literal *next; | |
5880 | }; | |
5881 | ||
3439c466 MF |
5882 | struct removed_literal_map_entry_struct |
5883 | { | |
5884 | bfd_vma addr; | |
5885 | removed_literal *literal; | |
5886 | }; | |
5887 | ||
43cd72b9 BW |
5888 | struct removed_literal_list_struct |
5889 | { | |
5890 | removed_literal *head; | |
5891 | removed_literal *tail; | |
3439c466 MF |
5892 | |
5893 | unsigned n_map; | |
5894 | removed_literal_map_entry *map; | |
43cd72b9 BW |
5895 | }; |
5896 | ||
5897 | ||
43cd72b9 BW |
5898 | /* Record that the literal at "from" is being removed. If "to" is not |
5899 | NULL, the "from" literal is being coalesced with the "to" literal. */ | |
5900 | ||
5901 | static void | |
7fa3d080 BW |
5902 | add_removed_literal (removed_literal_list *removed_list, |
5903 | const r_reloc *from, | |
5904 | const r_reloc *to) | |
43cd72b9 BW |
5905 | { |
5906 | removed_literal *r, *new_r, *next_r; | |
5907 | ||
5908 | new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal)); | |
5909 | ||
5910 | new_r->from = *from; | |
5911 | if (to) | |
5912 | new_r->to = *to; | |
5913 | else | |
5914 | new_r->to.abfd = NULL; | |
5915 | new_r->next = NULL; | |
68ffbac6 | 5916 | |
43cd72b9 | 5917 | r = removed_list->head; |
68ffbac6 | 5918 | if (r == NULL) |
43cd72b9 BW |
5919 | { |
5920 | removed_list->head = new_r; | |
5921 | removed_list->tail = new_r; | |
5922 | } | |
5923 | /* Special check for common case of append. */ | |
5924 | else if (removed_list->tail->from.target_offset < from->target_offset) | |
5925 | { | |
5926 | removed_list->tail->next = new_r; | |
5927 | removed_list->tail = new_r; | |
5928 | } | |
5929 | else | |
5930 | { | |
68ffbac6 | 5931 | while (r->from.target_offset < from->target_offset && r->next) |
43cd72b9 BW |
5932 | { |
5933 | r = r->next; | |
5934 | } | |
5935 | next_r = r->next; | |
5936 | r->next = new_r; | |
5937 | new_r->next = next_r; | |
5938 | if (next_r == NULL) | |
5939 | removed_list->tail = new_r; | |
5940 | } | |
5941 | } | |
5942 | ||
3439c466 MF |
5943 | static void |
5944 | map_removed_literal (removed_literal_list *removed_list) | |
5945 | { | |
5946 | unsigned n_map = 0; | |
5947 | unsigned i; | |
5948 | removed_literal_map_entry *map = NULL; | |
5949 | removed_literal *r = removed_list->head; | |
5950 | ||
5951 | for (i = 0; r; ++i, r = r->next) | |
5952 | { | |
5953 | if (i == n_map) | |
5954 | { | |
5955 | n_map = (n_map * 2) + 2; | |
5956 | map = bfd_realloc (map, n_map * sizeof (*map)); | |
5957 | } | |
5958 | map[i].addr = r->from.target_offset; | |
5959 | map[i].literal = r; | |
5960 | } | |
5961 | removed_list->map = map; | |
5962 | removed_list->n_map = i; | |
5963 | } | |
5964 | ||
5965 | static int | |
5966 | removed_literal_compare (const void *a, const void *b) | |
5967 | { | |
5968 | const removed_literal_map_entry *pa = a; | |
5969 | const removed_literal_map_entry *pb = b; | |
5970 | ||
5971 | if (pa->addr == pb->addr) | |
5972 | return 0; | |
5973 | else | |
5974 | return pa->addr < pb->addr ? -1 : 1; | |
5975 | } | |
43cd72b9 BW |
5976 | |
5977 | /* Check if the list of removed literals contains an entry for the | |
5978 | given address. Return the entry if found. */ | |
5979 | ||
5980 | static removed_literal * | |
7fa3d080 | 5981 | find_removed_literal (removed_literal_list *removed_list, bfd_vma addr) |
43cd72b9 | 5982 | { |
3439c466 MF |
5983 | removed_literal_map_entry *p; |
5984 | removed_literal *r = NULL; | |
5985 | ||
5986 | if (removed_list->map == NULL) | |
5987 | map_removed_literal (removed_list); | |
5988 | ||
5989 | p = bsearch (&addr, removed_list->map, removed_list->n_map, | |
5990 | sizeof (*removed_list->map), removed_literal_compare); | |
5991 | if (p) | |
5992 | { | |
5993 | while (p != removed_list->map && (p - 1)->addr == addr) | |
5994 | --p; | |
5995 | r = p->literal; | |
5996 | } | |
5997 | return r; | |
43cd72b9 BW |
5998 | } |
5999 | ||
6000 | ||
6001 | #if DEBUG | |
6002 | ||
6003 | static void | |
7fa3d080 | 6004 | print_removed_literals (FILE *fp, removed_literal_list *removed_list) |
43cd72b9 BW |
6005 | { |
6006 | removed_literal *r; | |
6007 | r = removed_list->head; | |
6008 | if (r) | |
6009 | fprintf (fp, "Removed Literals\n"); | |
6010 | for (; r != NULL; r = r->next) | |
6011 | { | |
6012 | print_r_reloc (fp, &r->from); | |
6013 | fprintf (fp, " => "); | |
6014 | if (r->to.abfd == NULL) | |
6015 | fprintf (fp, "REMOVED"); | |
6016 | else | |
6017 | print_r_reloc (fp, &r->to); | |
6018 | fprintf (fp, "\n"); | |
6019 | } | |
6020 | } | |
6021 | ||
6022 | #endif /* DEBUG */ | |
6023 | ||
6024 | \f | |
6025 | /* Per-section data for relaxation. */ | |
6026 | ||
6027 | typedef struct reloc_bfd_fix_struct reloc_bfd_fix; | |
6028 | ||
6029 | struct xtensa_relax_info_struct | |
6030 | { | |
6031 | bfd_boolean is_relaxable_literal_section; | |
6032 | bfd_boolean is_relaxable_asm_section; | |
6033 | int visited; /* Number of times visited. */ | |
6034 | ||
6035 | source_reloc *src_relocs; /* Array[src_count]. */ | |
6036 | int src_count; | |
6037 | int src_next; /* Next src_relocs entry to assign. */ | |
6038 | ||
6039 | removed_literal_list removed_list; | |
6040 | text_action_list action_list; | |
6041 | ||
6042 | reloc_bfd_fix *fix_list; | |
6043 | reloc_bfd_fix *fix_array; | |
6044 | unsigned fix_array_count; | |
6045 | ||
6046 | /* Support for expanding the reloc array that is stored | |
6047 | in the section structure. If the relocations have been | |
6048 | reallocated, the newly allocated relocations will be referenced | |
6049 | here along with the actual size allocated. The relocation | |
6050 | count will always be found in the section structure. */ | |
68ffbac6 | 6051 | Elf_Internal_Rela *allocated_relocs; |
43cd72b9 BW |
6052 | unsigned relocs_count; |
6053 | unsigned allocated_relocs_count; | |
6054 | }; | |
6055 | ||
6056 | struct elf_xtensa_section_data | |
6057 | { | |
6058 | struct bfd_elf_section_data elf; | |
6059 | xtensa_relax_info relax_info; | |
6060 | }; | |
6061 | ||
43cd72b9 BW |
6062 | |
6063 | static bfd_boolean | |
7fa3d080 | 6064 | elf_xtensa_new_section_hook (bfd *abfd, asection *sec) |
43cd72b9 | 6065 | { |
f592407e AM |
6066 | if (!sec->used_by_bfd) |
6067 | { | |
6068 | struct elf_xtensa_section_data *sdata; | |
6069 | bfd_size_type amt = sizeof (*sdata); | |
43cd72b9 | 6070 | |
f592407e AM |
6071 | sdata = bfd_zalloc (abfd, amt); |
6072 | if (sdata == NULL) | |
6073 | return FALSE; | |
6074 | sec->used_by_bfd = sdata; | |
6075 | } | |
43cd72b9 BW |
6076 | |
6077 | return _bfd_elf_new_section_hook (abfd, sec); | |
6078 | } | |
6079 | ||
6080 | ||
7fa3d080 BW |
6081 | static xtensa_relax_info * |
6082 | get_xtensa_relax_info (asection *sec) | |
6083 | { | |
6084 | struct elf_xtensa_section_data *section_data; | |
6085 | ||
6086 | /* No info available if no section or if it is an output section. */ | |
6087 | if (!sec || sec == sec->output_section) | |
6088 | return NULL; | |
6089 | ||
6090 | section_data = (struct elf_xtensa_section_data *) elf_section_data (sec); | |
6091 | return §ion_data->relax_info; | |
6092 | } | |
6093 | ||
6094 | ||
43cd72b9 | 6095 | static void |
7fa3d080 | 6096 | init_xtensa_relax_info (asection *sec) |
43cd72b9 BW |
6097 | { |
6098 | xtensa_relax_info *relax_info = get_xtensa_relax_info (sec); | |
6099 | ||
6100 | relax_info->is_relaxable_literal_section = FALSE; | |
6101 | relax_info->is_relaxable_asm_section = FALSE; | |
6102 | relax_info->visited = 0; | |
6103 | ||
6104 | relax_info->src_relocs = NULL; | |
6105 | relax_info->src_count = 0; | |
6106 | relax_info->src_next = 0; | |
6107 | ||
6108 | relax_info->removed_list.head = NULL; | |
6109 | relax_info->removed_list.tail = NULL; | |
6110 | ||
4c2af04f MF |
6111 | relax_info->action_list.tree = splay_tree_new (text_action_compare, |
6112 | NULL, NULL); | |
071aa5c9 MF |
6113 | relax_info->action_list.map.n_entries = 0; |
6114 | relax_info->action_list.map.entry = NULL; | |
6115 | ||
43cd72b9 BW |
6116 | relax_info->fix_list = NULL; |
6117 | relax_info->fix_array = NULL; | |
6118 | relax_info->fix_array_count = 0; | |
6119 | ||
68ffbac6 | 6120 | relax_info->allocated_relocs = NULL; |
43cd72b9 BW |
6121 | relax_info->relocs_count = 0; |
6122 | relax_info->allocated_relocs_count = 0; | |
6123 | } | |
6124 | ||
43cd72b9 BW |
6125 | \f |
6126 | /* Coalescing literals may require a relocation to refer to a section in | |
6127 | a different input file, but the standard relocation information | |
6128 | cannot express that. Instead, the reloc_bfd_fix structures are used | |
6129 | to "fix" the relocations that refer to sections in other input files. | |
6130 | These structures are kept on per-section lists. The "src_type" field | |
6131 | records the relocation type in case there are multiple relocations on | |
6132 | the same location. FIXME: This is ugly; an alternative might be to | |
6133 | add new symbols with the "owner" field to some other input file. */ | |
6134 | ||
6135 | struct reloc_bfd_fix_struct | |
6136 | { | |
6137 | asection *src_sec; | |
6138 | bfd_vma src_offset; | |
6139 | unsigned src_type; /* Relocation type. */ | |
68ffbac6 | 6140 | |
43cd72b9 BW |
6141 | asection *target_sec; |
6142 | bfd_vma target_offset; | |
6143 | bfd_boolean translated; | |
68ffbac6 | 6144 | |
43cd72b9 BW |
6145 | reloc_bfd_fix *next; |
6146 | }; | |
6147 | ||
6148 | ||
43cd72b9 | 6149 | static reloc_bfd_fix * |
7fa3d080 BW |
6150 | reloc_bfd_fix_init (asection *src_sec, |
6151 | bfd_vma src_offset, | |
6152 | unsigned src_type, | |
7fa3d080 BW |
6153 | asection *target_sec, |
6154 | bfd_vma target_offset, | |
6155 | bfd_boolean translated) | |
43cd72b9 BW |
6156 | { |
6157 | reloc_bfd_fix *fix; | |
6158 | ||
6159 | fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix)); | |
6160 | fix->src_sec = src_sec; | |
6161 | fix->src_offset = src_offset; | |
6162 | fix->src_type = src_type; | |
43cd72b9 BW |
6163 | fix->target_sec = target_sec; |
6164 | fix->target_offset = target_offset; | |
6165 | fix->translated = translated; | |
6166 | ||
6167 | return fix; | |
6168 | } | |
6169 | ||
6170 | ||
6171 | static void | |
7fa3d080 | 6172 | add_fix (asection *src_sec, reloc_bfd_fix *fix) |
43cd72b9 BW |
6173 | { |
6174 | xtensa_relax_info *relax_info; | |
6175 | ||
6176 | relax_info = get_xtensa_relax_info (src_sec); | |
6177 | fix->next = relax_info->fix_list; | |
6178 | relax_info->fix_list = fix; | |
6179 | } | |
6180 | ||
6181 | ||
6182 | static int | |
7fa3d080 | 6183 | fix_compare (const void *ap, const void *bp) |
43cd72b9 BW |
6184 | { |
6185 | const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap; | |
6186 | const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp; | |
6187 | ||
6188 | if (a->src_offset != b->src_offset) | |
6189 | return (a->src_offset - b->src_offset); | |
6190 | return (a->src_type - b->src_type); | |
6191 | } | |
6192 | ||
6193 | ||
6194 | static void | |
7fa3d080 | 6195 | cache_fix_array (asection *sec) |
43cd72b9 BW |
6196 | { |
6197 | unsigned i, count = 0; | |
6198 | reloc_bfd_fix *r; | |
6199 | xtensa_relax_info *relax_info = get_xtensa_relax_info (sec); | |
6200 | ||
6201 | if (relax_info == NULL) | |
6202 | return; | |
6203 | if (relax_info->fix_list == NULL) | |
6204 | return; | |
6205 | ||
6206 | for (r = relax_info->fix_list; r != NULL; r = r->next) | |
6207 | count++; | |
6208 | ||
6209 | relax_info->fix_array = | |
6210 | (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count); | |
6211 | relax_info->fix_array_count = count; | |
6212 | ||
6213 | r = relax_info->fix_list; | |
6214 | for (i = 0; i < count; i++, r = r->next) | |
6215 | { | |
6216 | relax_info->fix_array[count - 1 - i] = *r; | |
6217 | relax_info->fix_array[count - 1 - i].next = NULL; | |
6218 | } | |
6219 | ||
6220 | qsort (relax_info->fix_array, relax_info->fix_array_count, | |
6221 | sizeof (reloc_bfd_fix), fix_compare); | |
6222 | } | |
6223 | ||
6224 | ||
6225 | static reloc_bfd_fix * | |
7fa3d080 | 6226 | get_bfd_fix (asection *sec, bfd_vma offset, unsigned type) |
43cd72b9 BW |
6227 | { |
6228 | xtensa_relax_info *relax_info = get_xtensa_relax_info (sec); | |
6229 | reloc_bfd_fix *rv; | |
6230 | reloc_bfd_fix key; | |
6231 | ||
6232 | if (relax_info == NULL) | |
6233 | return NULL; | |
6234 | if (relax_info->fix_list == NULL) | |
6235 | return NULL; | |
6236 | ||
6237 | if (relax_info->fix_array == NULL) | |
6238 | cache_fix_array (sec); | |
6239 | ||
6240 | key.src_offset = offset; | |
6241 | key.src_type = type; | |
6242 | rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count, | |
6243 | sizeof (reloc_bfd_fix), fix_compare); | |
6244 | return rv; | |
6245 | } | |
6246 | ||
6247 | \f | |
6248 | /* Section caching. */ | |
6249 | ||
6250 | typedef struct section_cache_struct section_cache_t; | |
6251 | ||
6252 | struct section_cache_struct | |
6253 | { | |
6254 | asection *sec; | |
6255 | ||
6256 | bfd_byte *contents; /* Cache of the section contents. */ | |
6257 | bfd_size_type content_length; | |
6258 | ||
6259 | property_table_entry *ptbl; /* Cache of the section property table. */ | |
6260 | unsigned pte_count; | |
6261 | ||
6262 | Elf_Internal_Rela *relocs; /* Cache of the section relocations. */ | |
6263 | unsigned reloc_count; | |
6264 | }; | |
6265 | ||
6266 | ||
7fa3d080 BW |
6267 | static void |
6268 | init_section_cache (section_cache_t *sec_cache) | |
6269 | { | |
6270 | memset (sec_cache, 0, sizeof (*sec_cache)); | |
6271 | } | |
43cd72b9 BW |
6272 | |
6273 | ||
6274 | static void | |
65e911f9 | 6275 | free_section_cache (section_cache_t *sec_cache) |
43cd72b9 | 6276 | { |
7fa3d080 BW |
6277 | if (sec_cache->sec) |
6278 | { | |
6279 | release_contents (sec_cache->sec, sec_cache->contents); | |
6280 | release_internal_relocs (sec_cache->sec, sec_cache->relocs); | |
6281 | if (sec_cache->ptbl) | |
6282 | free (sec_cache->ptbl); | |
7fa3d080 | 6283 | } |
43cd72b9 BW |
6284 | } |
6285 | ||
6286 | ||
6287 | static bfd_boolean | |
7fa3d080 BW |
6288 | section_cache_section (section_cache_t *sec_cache, |
6289 | asection *sec, | |
6290 | struct bfd_link_info *link_info) | |
43cd72b9 BW |
6291 | { |
6292 | bfd *abfd; | |
6293 | property_table_entry *prop_table = NULL; | |
6294 | int ptblsize = 0; | |
6295 | bfd_byte *contents = NULL; | |
6296 | Elf_Internal_Rela *internal_relocs = NULL; | |
6297 | bfd_size_type sec_size; | |
6298 | ||
6299 | if (sec == NULL) | |
6300 | return FALSE; | |
6301 | if (sec == sec_cache->sec) | |
6302 | return TRUE; | |
6303 | ||
6304 | abfd = sec->owner; | |
6305 | sec_size = bfd_get_section_limit (abfd, sec); | |
6306 | ||
6307 | /* Get the contents. */ | |
6308 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
6309 | if (contents == NULL && sec_size != 0) | |
6310 | goto err; | |
6311 | ||
6312 | /* Get the relocations. */ | |
6313 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
6314 | link_info->keep_memory); | |
6315 | ||
6316 | /* Get the entry table. */ | |
6317 | ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table, | |
6318 | XTENSA_PROP_SEC_NAME, FALSE); | |
6319 | if (ptblsize < 0) | |
6320 | goto err; | |
6321 | ||
6322 | /* Fill in the new section cache. */ | |
65e911f9 AM |
6323 | free_section_cache (sec_cache); |
6324 | init_section_cache (sec_cache); | |
43cd72b9 BW |
6325 | |
6326 | sec_cache->sec = sec; | |
6327 | sec_cache->contents = contents; | |
6328 | sec_cache->content_length = sec_size; | |
6329 | sec_cache->relocs = internal_relocs; | |
6330 | sec_cache->reloc_count = sec->reloc_count; | |
6331 | sec_cache->pte_count = ptblsize; | |
6332 | sec_cache->ptbl = prop_table; | |
6333 | ||
6334 | return TRUE; | |
6335 | ||
6336 | err: | |
6337 | release_contents (sec, contents); | |
6338 | release_internal_relocs (sec, internal_relocs); | |
6339 | if (prop_table) | |
6340 | free (prop_table); | |
6341 | return FALSE; | |
6342 | } | |
6343 | ||
43cd72b9 BW |
6344 | \f |
6345 | /* Extended basic blocks. */ | |
6346 | ||
6347 | /* An ebb_struct represents an Extended Basic Block. Within this | |
6348 | range, we guarantee that all instructions are decodable, the | |
6349 | property table entries are contiguous, and no property table | |
6350 | specifies a segment that cannot have instructions moved. This | |
6351 | structure contains caches of the contents, property table and | |
6352 | relocations for the specified section for easy use. The range is | |
6353 | specified by ranges of indices for the byte offset, property table | |
6354 | offsets and relocation offsets. These must be consistent. */ | |
6355 | ||
6356 | typedef struct ebb_struct ebb_t; | |
6357 | ||
6358 | struct ebb_struct | |
6359 | { | |
6360 | asection *sec; | |
6361 | ||
6362 | bfd_byte *contents; /* Cache of the section contents. */ | |
6363 | bfd_size_type content_length; | |
6364 | ||
6365 | property_table_entry *ptbl; /* Cache of the section property table. */ | |
6366 | unsigned pte_count; | |
6367 | ||
6368 | Elf_Internal_Rela *relocs; /* Cache of the section relocations. */ | |
6369 | unsigned reloc_count; | |
6370 | ||
6371 | bfd_vma start_offset; /* Offset in section. */ | |
6372 | unsigned start_ptbl_idx; /* Offset in the property table. */ | |
6373 | unsigned start_reloc_idx; /* Offset in the relocations. */ | |
6374 | ||
6375 | bfd_vma end_offset; | |
6376 | unsigned end_ptbl_idx; | |
6377 | unsigned end_reloc_idx; | |
6378 | ||
6379 | bfd_boolean ends_section; /* Is this the last ebb in a section? */ | |
6380 | ||
6381 | /* The unreachable property table at the end of this set of blocks; | |
6382 | NULL if the end is not an unreachable block. */ | |
6383 | property_table_entry *ends_unreachable; | |
6384 | }; | |
6385 | ||
6386 | ||
6387 | enum ebb_target_enum | |
6388 | { | |
6389 | EBB_NO_ALIGN = 0, | |
6390 | EBB_DESIRE_TGT_ALIGN, | |
6391 | EBB_REQUIRE_TGT_ALIGN, | |
6392 | EBB_REQUIRE_LOOP_ALIGN, | |
6393 | EBB_REQUIRE_ALIGN | |
6394 | }; | |
6395 | ||
6396 | ||
6397 | /* proposed_action_struct is similar to the text_action_struct except | |
6398 | that is represents a potential transformation, not one that will | |
6399 | occur. We build a list of these for an extended basic block | |
6400 | and use them to compute the actual actions desired. We must be | |
6401 | careful that the entire set of actual actions we perform do not | |
6402 | break any relocations that would fit if the actions were not | |
6403 | performed. */ | |
6404 | ||
6405 | typedef struct proposed_action_struct proposed_action; | |
6406 | ||
6407 | struct proposed_action_struct | |
6408 | { | |
6409 | enum ebb_target_enum align_type; /* for the target alignment */ | |
6410 | bfd_vma alignment_pow; | |
6411 | text_action_t action; | |
6412 | bfd_vma offset; | |
6413 | int removed_bytes; | |
6414 | bfd_boolean do_action; /* If false, then we will not perform the action. */ | |
6415 | }; | |
6416 | ||
6417 | ||
6418 | /* The ebb_constraint_struct keeps a set of proposed actions for an | |
6419 | extended basic block. */ | |
6420 | ||
6421 | typedef struct ebb_constraint_struct ebb_constraint; | |
6422 | ||
6423 | struct ebb_constraint_struct | |
6424 | { | |
6425 | ebb_t ebb; | |
6426 | bfd_boolean start_movable; | |
6427 | ||
6428 | /* Bytes of extra space at the beginning if movable. */ | |
6429 | int start_extra_space; | |
6430 | ||
6431 | enum ebb_target_enum start_align; | |
6432 | ||
6433 | bfd_boolean end_movable; | |
6434 | ||
6435 | /* Bytes of extra space at the end if movable. */ | |
6436 | int end_extra_space; | |
6437 | ||
6438 | unsigned action_count; | |
6439 | unsigned action_allocated; | |
6440 | ||
6441 | /* Array of proposed actions. */ | |
6442 | proposed_action *actions; | |
6443 | ||
6444 | /* Action alignments -- one for each proposed action. */ | |
6445 | enum ebb_target_enum *action_aligns; | |
6446 | }; | |
6447 | ||
6448 | ||
43cd72b9 | 6449 | static void |
7fa3d080 | 6450 | init_ebb_constraint (ebb_constraint *c) |
43cd72b9 BW |
6451 | { |
6452 | memset (c, 0, sizeof (ebb_constraint)); | |
6453 | } | |
6454 | ||
6455 | ||
6456 | static void | |
7fa3d080 | 6457 | free_ebb_constraint (ebb_constraint *c) |
43cd72b9 | 6458 | { |
7fa3d080 | 6459 | if (c->actions) |
43cd72b9 BW |
6460 | free (c->actions); |
6461 | } | |
6462 | ||
6463 | ||
6464 | static void | |
7fa3d080 BW |
6465 | init_ebb (ebb_t *ebb, |
6466 | asection *sec, | |
6467 | bfd_byte *contents, | |
6468 | bfd_size_type content_length, | |
6469 | property_table_entry *prop_table, | |
6470 | unsigned ptblsize, | |
6471 | Elf_Internal_Rela *internal_relocs, | |
6472 | unsigned reloc_count) | |
43cd72b9 BW |
6473 | { |
6474 | memset (ebb, 0, sizeof (ebb_t)); | |
6475 | ebb->sec = sec; | |
6476 | ebb->contents = contents; | |
6477 | ebb->content_length = content_length; | |
6478 | ebb->ptbl = prop_table; | |
6479 | ebb->pte_count = ptblsize; | |
6480 | ebb->relocs = internal_relocs; | |
6481 | ebb->reloc_count = reloc_count; | |
6482 | ebb->start_offset = 0; | |
6483 | ebb->end_offset = ebb->content_length - 1; | |
6484 | ebb->start_ptbl_idx = 0; | |
6485 | ebb->end_ptbl_idx = ptblsize; | |
6486 | ebb->start_reloc_idx = 0; | |
6487 | ebb->end_reloc_idx = reloc_count; | |
6488 | } | |
6489 | ||
6490 | ||
6491 | /* Extend the ebb to all decodable contiguous sections. The algorithm | |
6492 | for building a basic block around an instruction is to push it | |
6493 | forward until we hit the end of a section, an unreachable block or | |
6494 | a block that cannot be transformed. Then we push it backwards | |
6495 | searching for similar conditions. */ | |
6496 | ||
7fa3d080 BW |
6497 | static bfd_boolean extend_ebb_bounds_forward (ebb_t *); |
6498 | static bfd_boolean extend_ebb_bounds_backward (ebb_t *); | |
6499 | static bfd_size_type insn_block_decodable_len | |
6500 | (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type); | |
6501 | ||
43cd72b9 | 6502 | static bfd_boolean |
7fa3d080 | 6503 | extend_ebb_bounds (ebb_t *ebb) |
43cd72b9 BW |
6504 | { |
6505 | if (!extend_ebb_bounds_forward (ebb)) | |
6506 | return FALSE; | |
6507 | if (!extend_ebb_bounds_backward (ebb)) | |
6508 | return FALSE; | |
6509 | return TRUE; | |
6510 | } | |
6511 | ||
6512 | ||
6513 | static bfd_boolean | |
7fa3d080 | 6514 | extend_ebb_bounds_forward (ebb_t *ebb) |
43cd72b9 BW |
6515 | { |
6516 | property_table_entry *the_entry, *new_entry; | |
6517 | ||
6518 | the_entry = &ebb->ptbl[ebb->end_ptbl_idx]; | |
6519 | ||
6520 | /* Stop when (1) we cannot decode an instruction, (2) we are at | |
6521 | the end of the property tables, (3) we hit a non-contiguous property | |
6522 | table entry, (4) we hit a NO_TRANSFORM region. */ | |
6523 | ||
6524 | while (1) | |
6525 | { | |
6526 | bfd_vma entry_end; | |
6527 | bfd_size_type insn_block_len; | |
6528 | ||
6529 | entry_end = the_entry->address - ebb->sec->vma + the_entry->size; | |
6530 | insn_block_len = | |
6531 | insn_block_decodable_len (ebb->contents, ebb->content_length, | |
6532 | ebb->end_offset, | |
6533 | entry_end - ebb->end_offset); | |
6534 | if (insn_block_len != (entry_end - ebb->end_offset)) | |
6535 | { | |
4eca0228 | 6536 | _bfd_error_handler |
695344c0 | 6537 | /* xgettext:c-format */ |
43cd72b9 BW |
6538 | (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"), |
6539 | ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len); | |
6540 | return FALSE; | |
6541 | } | |
6542 | ebb->end_offset += insn_block_len; | |
6543 | ||
6544 | if (ebb->end_offset == ebb->sec->size) | |
6545 | ebb->ends_section = TRUE; | |
6546 | ||
6547 | /* Update the reloc counter. */ | |
6548 | while (ebb->end_reloc_idx + 1 < ebb->reloc_count | |
6549 | && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset | |
6550 | < ebb->end_offset)) | |
6551 | { | |
6552 | ebb->end_reloc_idx++; | |
6553 | } | |
6554 | ||
6555 | if (ebb->end_ptbl_idx + 1 == ebb->pte_count) | |
6556 | return TRUE; | |
6557 | ||
6558 | new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1]; | |
6559 | if (((new_entry->flags & XTENSA_PROP_INSN) == 0) | |
99ded152 | 6560 | || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0) |
43cd72b9 BW |
6561 | || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0)) |
6562 | break; | |
6563 | ||
6564 | if (the_entry->address + the_entry->size != new_entry->address) | |
6565 | break; | |
6566 | ||
6567 | the_entry = new_entry; | |
6568 | ebb->end_ptbl_idx++; | |
6569 | } | |
6570 | ||
6571 | /* Quick check for an unreachable or end of file just at the end. */ | |
6572 | if (ebb->end_ptbl_idx + 1 == ebb->pte_count) | |
6573 | { | |
6574 | if (ebb->end_offset == ebb->content_length) | |
6575 | ebb->ends_section = TRUE; | |
6576 | } | |
6577 | else | |
6578 | { | |
6579 | new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1]; | |
6580 | if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0 | |
6581 | && the_entry->address + the_entry->size == new_entry->address) | |
6582 | ebb->ends_unreachable = new_entry; | |
6583 | } | |
6584 | ||
6585 | /* Any other ending requires exact alignment. */ | |
6586 | return TRUE; | |
6587 | } | |
6588 | ||
6589 | ||
6590 | static bfd_boolean | |
7fa3d080 | 6591 | extend_ebb_bounds_backward (ebb_t *ebb) |
43cd72b9 BW |
6592 | { |
6593 | property_table_entry *the_entry, *new_entry; | |
6594 | ||
6595 | the_entry = &ebb->ptbl[ebb->start_ptbl_idx]; | |
6596 | ||
6597 | /* Stop when (1) we cannot decode the instructions in the current entry. | |
6598 | (2) we are at the beginning of the property tables, (3) we hit a | |
6599 | non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */ | |
6600 | ||
6601 | while (1) | |
6602 | { | |
6603 | bfd_vma block_begin; | |
6604 | bfd_size_type insn_block_len; | |
6605 | ||
6606 | block_begin = the_entry->address - ebb->sec->vma; | |
6607 | insn_block_len = | |
6608 | insn_block_decodable_len (ebb->contents, ebb->content_length, | |
6609 | block_begin, | |
6610 | ebb->start_offset - block_begin); | |
6611 | if (insn_block_len != ebb->start_offset - block_begin) | |
6612 | { | |
4eca0228 | 6613 | _bfd_error_handler |
695344c0 | 6614 | /* xgettext:c-format */ |
43cd72b9 BW |
6615 | (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"), |
6616 | ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len); | |
6617 | return FALSE; | |
6618 | } | |
6619 | ebb->start_offset -= insn_block_len; | |
6620 | ||
6621 | /* Update the reloc counter. */ | |
6622 | while (ebb->start_reloc_idx > 0 | |
6623 | && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset | |
6624 | >= ebb->start_offset)) | |
6625 | { | |
6626 | ebb->start_reloc_idx--; | |
6627 | } | |
6628 | ||
6629 | if (ebb->start_ptbl_idx == 0) | |
6630 | return TRUE; | |
6631 | ||
6632 | new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1]; | |
6633 | if ((new_entry->flags & XTENSA_PROP_INSN) == 0 | |
99ded152 | 6634 | || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0) |
43cd72b9 BW |
6635 | || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0)) |
6636 | return TRUE; | |
6637 | if (new_entry->address + new_entry->size != the_entry->address) | |
6638 | return TRUE; | |
6639 | ||
6640 | the_entry = new_entry; | |
6641 | ebb->start_ptbl_idx--; | |
6642 | } | |
6643 | return TRUE; | |
6644 | } | |
6645 | ||
6646 | ||
6647 | static bfd_size_type | |
7fa3d080 BW |
6648 | insn_block_decodable_len (bfd_byte *contents, |
6649 | bfd_size_type content_len, | |
6650 | bfd_vma block_offset, | |
6651 | bfd_size_type block_len) | |
43cd72b9 BW |
6652 | { |
6653 | bfd_vma offset = block_offset; | |
6654 | ||
6655 | while (offset < block_offset + block_len) | |
6656 | { | |
6657 | bfd_size_type insn_len = 0; | |
6658 | ||
6659 | insn_len = insn_decode_len (contents, content_len, offset); | |
6660 | if (insn_len == 0) | |
6661 | return (offset - block_offset); | |
6662 | offset += insn_len; | |
6663 | } | |
6664 | return (offset - block_offset); | |
6665 | } | |
6666 | ||
6667 | ||
6668 | static void | |
7fa3d080 | 6669 | ebb_propose_action (ebb_constraint *c, |
7fa3d080 | 6670 | enum ebb_target_enum align_type, |
288f74fa | 6671 | bfd_vma alignment_pow, |
7fa3d080 BW |
6672 | text_action_t action, |
6673 | bfd_vma offset, | |
6674 | int removed_bytes, | |
6675 | bfd_boolean do_action) | |
43cd72b9 | 6676 | { |
b08b5071 | 6677 | proposed_action *act; |
43cd72b9 | 6678 | |
43cd72b9 BW |
6679 | if (c->action_allocated <= c->action_count) |
6680 | { | |
b08b5071 | 6681 | unsigned new_allocated, i; |
823fc61f | 6682 | proposed_action *new_actions; |
b08b5071 BW |
6683 | |
6684 | new_allocated = (c->action_count + 2) * 2; | |
823fc61f | 6685 | new_actions = (proposed_action *) |
43cd72b9 BW |
6686 | bfd_zmalloc (sizeof (proposed_action) * new_allocated); |
6687 | ||
6688 | for (i = 0; i < c->action_count; i++) | |
6689 | new_actions[i] = c->actions[i]; | |
7fa3d080 | 6690 | if (c->actions) |
43cd72b9 BW |
6691 | free (c->actions); |
6692 | c->actions = new_actions; | |
6693 | c->action_allocated = new_allocated; | |
6694 | } | |
b08b5071 BW |
6695 | |
6696 | act = &c->actions[c->action_count]; | |
6697 | act->align_type = align_type; | |
6698 | act->alignment_pow = alignment_pow; | |
6699 | act->action = action; | |
6700 | act->offset = offset; | |
6701 | act->removed_bytes = removed_bytes; | |
6702 | act->do_action = do_action; | |
6703 | ||
43cd72b9 BW |
6704 | c->action_count++; |
6705 | } | |
6706 | ||
6707 | \f | |
6708 | /* Access to internal relocations, section contents and symbols. */ | |
6709 | ||
6710 | /* During relaxation, we need to modify relocations, section contents, | |
6711 | and symbol definitions, and we need to keep the original values from | |
6712 | being reloaded from the input files, i.e., we need to "pin" the | |
6713 | modified values in memory. We also want to continue to observe the | |
6714 | setting of the "keep-memory" flag. The following functions wrap the | |
6715 | standard BFD functions to take care of this for us. */ | |
6716 | ||
6717 | static Elf_Internal_Rela * | |
7fa3d080 | 6718 | retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory) |
43cd72b9 BW |
6719 | { |
6720 | Elf_Internal_Rela *internal_relocs; | |
6721 | ||
6722 | if ((sec->flags & SEC_LINKER_CREATED) != 0) | |
6723 | return NULL; | |
6724 | ||
6725 | internal_relocs = elf_section_data (sec)->relocs; | |
6726 | if (internal_relocs == NULL) | |
6727 | internal_relocs = (_bfd_elf_link_read_relocs | |
7fa3d080 | 6728 | (abfd, sec, NULL, NULL, keep_memory)); |
43cd72b9 BW |
6729 | return internal_relocs; |
6730 | } | |
6731 | ||
6732 | ||
6733 | static void | |
7fa3d080 | 6734 | pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs) |
43cd72b9 BW |
6735 | { |
6736 | elf_section_data (sec)->relocs = internal_relocs; | |
6737 | } | |
6738 | ||
6739 | ||
6740 | static void | |
7fa3d080 | 6741 | release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs) |
43cd72b9 BW |
6742 | { |
6743 | if (internal_relocs | |
6744 | && elf_section_data (sec)->relocs != internal_relocs) | |
6745 | free (internal_relocs); | |
6746 | } | |
6747 | ||
6748 | ||
6749 | static bfd_byte * | |
7fa3d080 | 6750 | retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory) |
43cd72b9 BW |
6751 | { |
6752 | bfd_byte *contents; | |
6753 | bfd_size_type sec_size; | |
6754 | ||
6755 | sec_size = bfd_get_section_limit (abfd, sec); | |
6756 | contents = elf_section_data (sec)->this_hdr.contents; | |
68ffbac6 | 6757 | |
43cd72b9 BW |
6758 | if (contents == NULL && sec_size != 0) |
6759 | { | |
6760 | if (!bfd_malloc_and_get_section (abfd, sec, &contents)) | |
6761 | { | |
7fa3d080 | 6762 | if (contents) |
43cd72b9 BW |
6763 | free (contents); |
6764 | return NULL; | |
6765 | } | |
68ffbac6 | 6766 | if (keep_memory) |
43cd72b9 BW |
6767 | elf_section_data (sec)->this_hdr.contents = contents; |
6768 | } | |
6769 | return contents; | |
6770 | } | |
6771 | ||
6772 | ||
6773 | static void | |
7fa3d080 | 6774 | pin_contents (asection *sec, bfd_byte *contents) |
43cd72b9 BW |
6775 | { |
6776 | elf_section_data (sec)->this_hdr.contents = contents; | |
6777 | } | |
6778 | ||
6779 | ||
6780 | static void | |
7fa3d080 | 6781 | release_contents (asection *sec, bfd_byte *contents) |
43cd72b9 BW |
6782 | { |
6783 | if (contents && elf_section_data (sec)->this_hdr.contents != contents) | |
6784 | free (contents); | |
6785 | } | |
6786 | ||
6787 | ||
6788 | static Elf_Internal_Sym * | |
7fa3d080 | 6789 | retrieve_local_syms (bfd *input_bfd) |
43cd72b9 BW |
6790 | { |
6791 | Elf_Internal_Shdr *symtab_hdr; | |
6792 | Elf_Internal_Sym *isymbuf; | |
6793 | size_t locsymcount; | |
6794 | ||
6795 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
6796 | locsymcount = symtab_hdr->sh_info; | |
6797 | ||
6798 | isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; | |
6799 | if (isymbuf == NULL && locsymcount != 0) | |
6800 | isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0, | |
6801 | NULL, NULL, NULL); | |
6802 | ||
6803 | /* Save the symbols for this input file so they won't be read again. */ | |
6804 | if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents) | |
6805 | symtab_hdr->contents = (unsigned char *) isymbuf; | |
6806 | ||
6807 | return isymbuf; | |
6808 | } | |
6809 | ||
6810 | \f | |
6811 | /* Code for link-time relaxation. */ | |
6812 | ||
6813 | /* Initialization for relaxation: */ | |
7fa3d080 | 6814 | static bfd_boolean analyze_relocations (struct bfd_link_info *); |
43cd72b9 | 6815 | static bfd_boolean find_relaxable_sections |
7fa3d080 | 6816 | (bfd *, asection *, struct bfd_link_info *, bfd_boolean *); |
43cd72b9 | 6817 | static bfd_boolean collect_source_relocs |
7fa3d080 | 6818 | (bfd *, asection *, struct bfd_link_info *); |
43cd72b9 | 6819 | static bfd_boolean is_resolvable_asm_expansion |
7fa3d080 BW |
6820 | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *, |
6821 | bfd_boolean *); | |
43cd72b9 | 6822 | static Elf_Internal_Rela *find_associated_l32r_irel |
7fa3d080 | 6823 | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *); |
43cd72b9 | 6824 | static bfd_boolean compute_text_actions |
7fa3d080 BW |
6825 | (bfd *, asection *, struct bfd_link_info *); |
6826 | static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *); | |
6827 | static bfd_boolean compute_ebb_actions (ebb_constraint *); | |
b2b326d2 | 6828 | typedef struct reloc_range_list_struct reloc_range_list; |
43cd72b9 | 6829 | static bfd_boolean check_section_ebb_pcrels_fit |
b2b326d2 MF |
6830 | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, |
6831 | reloc_range_list *, const ebb_constraint *, | |
cb337148 | 6832 | const xtensa_opcode *); |
7fa3d080 | 6833 | static bfd_boolean check_section_ebb_reduces (const ebb_constraint *); |
43cd72b9 | 6834 | static void text_action_add_proposed |
7fa3d080 BW |
6835 | (text_action_list *, const ebb_constraint *, asection *); |
6836 | static int compute_fill_extra_space (property_table_entry *); | |
43cd72b9 BW |
6837 | |
6838 | /* First pass: */ | |
6839 | static bfd_boolean compute_removed_literals | |
7fa3d080 | 6840 | (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *); |
43cd72b9 | 6841 | static Elf_Internal_Rela *get_irel_at_offset |
7fa3d080 | 6842 | (asection *, Elf_Internal_Rela *, bfd_vma); |
68ffbac6 | 6843 | static bfd_boolean is_removable_literal |
99ded152 BW |
6844 | (const source_reloc *, int, const source_reloc *, int, asection *, |
6845 | property_table_entry *, int); | |
43cd72b9 | 6846 | static bfd_boolean remove_dead_literal |
7fa3d080 | 6847 | (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *, |
68ffbac6 | 6848 | Elf_Internal_Rela *, source_reloc *, property_table_entry *, int); |
7fa3d080 BW |
6849 | static bfd_boolean identify_literal_placement |
6850 | (bfd *, asection *, bfd_byte *, struct bfd_link_info *, | |
6851 | value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int, | |
6852 | source_reloc *, property_table_entry *, int, section_cache_t *, | |
6853 | bfd_boolean); | |
6854 | static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *); | |
43cd72b9 | 6855 | static bfd_boolean coalesce_shared_literal |
7fa3d080 | 6856 | (asection *, source_reloc *, property_table_entry *, int, value_map *); |
43cd72b9 | 6857 | static bfd_boolean move_shared_literal |
7fa3d080 BW |
6858 | (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *, |
6859 | int, const r_reloc *, const literal_value *, section_cache_t *); | |
43cd72b9 BW |
6860 | |
6861 | /* Second pass: */ | |
7fa3d080 BW |
6862 | static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *); |
6863 | static bfd_boolean translate_section_fixes (asection *); | |
6864 | static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *); | |
9b7f5d20 | 6865 | static asection *translate_reloc (const r_reloc *, r_reloc *, asection *); |
43cd72b9 | 6866 | static void shrink_dynamic_reloc_sections |
7fa3d080 | 6867 | (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *); |
43cd72b9 | 6868 | static bfd_boolean move_literal |
7fa3d080 BW |
6869 | (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *, |
6870 | xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *); | |
43cd72b9 | 6871 | static bfd_boolean relax_property_section |
7fa3d080 | 6872 | (bfd *, asection *, struct bfd_link_info *); |
43cd72b9 BW |
6873 | |
6874 | /* Third pass: */ | |
7fa3d080 | 6875 | static bfd_boolean relax_section_symbols (bfd *, asection *); |
43cd72b9 BW |
6876 | |
6877 | ||
68ffbac6 | 6878 | static bfd_boolean |
7fa3d080 BW |
6879 | elf_xtensa_relax_section (bfd *abfd, |
6880 | asection *sec, | |
6881 | struct bfd_link_info *link_info, | |
6882 | bfd_boolean *again) | |
43cd72b9 BW |
6883 | { |
6884 | static value_map_hash_table *values = NULL; | |
6885 | static bfd_boolean relocations_analyzed = FALSE; | |
6886 | xtensa_relax_info *relax_info; | |
6887 | ||
6888 | if (!relocations_analyzed) | |
6889 | { | |
6890 | /* Do some overall initialization for relaxation. */ | |
6891 | values = value_map_hash_table_init (); | |
6892 | if (values == NULL) | |
6893 | return FALSE; | |
6894 | relaxing_section = TRUE; | |
6895 | if (!analyze_relocations (link_info)) | |
6896 | return FALSE; | |
6897 | relocations_analyzed = TRUE; | |
6898 | } | |
6899 | *again = FALSE; | |
6900 | ||
6901 | /* Don't mess with linker-created sections. */ | |
6902 | if ((sec->flags & SEC_LINKER_CREATED) != 0) | |
6903 | return TRUE; | |
6904 | ||
6905 | relax_info = get_xtensa_relax_info (sec); | |
6906 | BFD_ASSERT (relax_info != NULL); | |
6907 | ||
6908 | switch (relax_info->visited) | |
6909 | { | |
6910 | case 0: | |
6911 | /* Note: It would be nice to fold this pass into | |
6912 | analyze_relocations, but it is important for this step that the | |
6913 | sections be examined in link order. */ | |
6914 | if (!compute_removed_literals (abfd, sec, link_info, values)) | |
6915 | return FALSE; | |
6916 | *again = TRUE; | |
6917 | break; | |
6918 | ||
6919 | case 1: | |
6920 | if (values) | |
6921 | value_map_hash_table_delete (values); | |
6922 | values = NULL; | |
6923 | if (!relax_section (abfd, sec, link_info)) | |
6924 | return FALSE; | |
6925 | *again = TRUE; | |
6926 | break; | |
6927 | ||
6928 | case 2: | |
6929 | if (!relax_section_symbols (abfd, sec)) | |
6930 | return FALSE; | |
6931 | break; | |
6932 | } | |
6933 | ||
6934 | relax_info->visited++; | |
6935 | return TRUE; | |
6936 | } | |
6937 | ||
6938 | \f | |
6939 | /* Initialization for relaxation. */ | |
6940 | ||
6941 | /* This function is called once at the start of relaxation. It scans | |
6942 | all the input sections and marks the ones that are relaxable (i.e., | |
6943 | literal sections with L32R relocations against them), and then | |
6944 | collects source_reloc information for all the relocations against | |
6945 | those relaxable sections. During this process, it also detects | |
6946 | longcalls, i.e., calls relaxed by the assembler into indirect | |
6947 | calls, that can be optimized back into direct calls. Within each | |
6948 | extended basic block (ebb) containing an optimized longcall, it | |
6949 | computes a set of "text actions" that can be performed to remove | |
6950 | the L32R associated with the longcall while optionally preserving | |
6951 | branch target alignments. */ | |
6952 | ||
6953 | static bfd_boolean | |
7fa3d080 | 6954 | analyze_relocations (struct bfd_link_info *link_info) |
43cd72b9 BW |
6955 | { |
6956 | bfd *abfd; | |
6957 | asection *sec; | |
6958 | bfd_boolean is_relaxable = FALSE; | |
6959 | ||
6960 | /* Initialize the per-section relaxation info. */ | |
c72f2fb2 | 6961 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next) |
43cd72b9 BW |
6962 | for (sec = abfd->sections; sec != NULL; sec = sec->next) |
6963 | { | |
6964 | init_xtensa_relax_info (sec); | |
6965 | } | |
6966 | ||
6967 | /* Mark relaxable sections (and count relocations against each one). */ | |
c72f2fb2 | 6968 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next) |
43cd72b9 BW |
6969 | for (sec = abfd->sections; sec != NULL; sec = sec->next) |
6970 | { | |
6971 | if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable)) | |
6972 | return FALSE; | |
6973 | } | |
6974 | ||
6975 | /* Bail out if there are no relaxable sections. */ | |
6976 | if (!is_relaxable) | |
6977 | return TRUE; | |
6978 | ||
6979 | /* Allocate space for source_relocs. */ | |
c72f2fb2 | 6980 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next) |
43cd72b9 BW |
6981 | for (sec = abfd->sections; sec != NULL; sec = sec->next) |
6982 | { | |
6983 | xtensa_relax_info *relax_info; | |
6984 | ||
6985 | relax_info = get_xtensa_relax_info (sec); | |
6986 | if (relax_info->is_relaxable_literal_section | |
6987 | || relax_info->is_relaxable_asm_section) | |
6988 | { | |
6989 | relax_info->src_relocs = (source_reloc *) | |
6990 | bfd_malloc (relax_info->src_count * sizeof (source_reloc)); | |
6991 | } | |
25c6282a BW |
6992 | else |
6993 | relax_info->src_count = 0; | |
43cd72b9 BW |
6994 | } |
6995 | ||
6996 | /* Collect info on relocations against each relaxable section. */ | |
c72f2fb2 | 6997 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next) |
43cd72b9 BW |
6998 | for (sec = abfd->sections; sec != NULL; sec = sec->next) |
6999 | { | |
7000 | if (!collect_source_relocs (abfd, sec, link_info)) | |
7001 | return FALSE; | |
7002 | } | |
7003 | ||
7004 | /* Compute the text actions. */ | |
c72f2fb2 | 7005 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next) |
43cd72b9 BW |
7006 | for (sec = abfd->sections; sec != NULL; sec = sec->next) |
7007 | { | |
7008 | if (!compute_text_actions (abfd, sec, link_info)) | |
7009 | return FALSE; | |
7010 | } | |
7011 | ||
7012 | return TRUE; | |
7013 | } | |
7014 | ||
7015 | ||
7016 | /* Find all the sections that might be relaxed. The motivation for | |
7017 | this pass is that collect_source_relocs() needs to record _all_ the | |
7018 | relocations that target each relaxable section. That is expensive | |
7019 | and unnecessary unless the target section is actually going to be | |
7020 | relaxed. This pass identifies all such sections by checking if | |
7021 | they have L32Rs pointing to them. In the process, the total number | |
7022 | of relocations targeting each section is also counted so that we | |
7023 | know how much space to allocate for source_relocs against each | |
7024 | relaxable literal section. */ | |
7025 | ||
7026 | static bfd_boolean | |
7fa3d080 BW |
7027 | find_relaxable_sections (bfd *abfd, |
7028 | asection *sec, | |
7029 | struct bfd_link_info *link_info, | |
7030 | bfd_boolean *is_relaxable_p) | |
43cd72b9 BW |
7031 | { |
7032 | Elf_Internal_Rela *internal_relocs; | |
7033 | bfd_byte *contents; | |
7034 | bfd_boolean ok = TRUE; | |
7035 | unsigned i; | |
7036 | xtensa_relax_info *source_relax_info; | |
25c6282a | 7037 | bfd_boolean is_l32r_reloc; |
43cd72b9 BW |
7038 | |
7039 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
7040 | link_info->keep_memory); | |
68ffbac6 | 7041 | if (internal_relocs == NULL) |
43cd72b9 BW |
7042 | return ok; |
7043 | ||
7044 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
7045 | if (contents == NULL && sec->size != 0) | |
7046 | { | |
7047 | ok = FALSE; | |
7048 | goto error_return; | |
7049 | } | |
7050 | ||
7051 | source_relax_info = get_xtensa_relax_info (sec); | |
68ffbac6 | 7052 | for (i = 0; i < sec->reloc_count; i++) |
43cd72b9 BW |
7053 | { |
7054 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
7055 | r_reloc r_rel; | |
7056 | asection *target_sec; | |
7057 | xtensa_relax_info *target_relax_info; | |
7058 | ||
7059 | /* If this section has not already been marked as "relaxable", and | |
7060 | if it contains any ASM_EXPAND relocations (marking expanded | |
7061 | longcalls) that can be optimized into direct calls, then mark | |
7062 | the section as "relaxable". */ | |
7063 | if (source_relax_info | |
7064 | && !source_relax_info->is_relaxable_asm_section | |
7065 | && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND) | |
7066 | { | |
7067 | bfd_boolean is_reachable = FALSE; | |
7068 | if (is_resolvable_asm_expansion (abfd, sec, contents, irel, | |
7069 | link_info, &is_reachable) | |
7070 | && is_reachable) | |
7071 | { | |
7072 | source_relax_info->is_relaxable_asm_section = TRUE; | |
7073 | *is_relaxable_p = TRUE; | |
7074 | } | |
7075 | } | |
7076 | ||
7077 | r_reloc_init (&r_rel, abfd, irel, contents, | |
7078 | bfd_get_section_limit (abfd, sec)); | |
7079 | ||
7080 | target_sec = r_reloc_get_section (&r_rel); | |
7081 | target_relax_info = get_xtensa_relax_info (target_sec); | |
7082 | if (!target_relax_info) | |
7083 | continue; | |
7084 | ||
7085 | /* Count PC-relative operand relocations against the target section. | |
7086 | Note: The conditions tested here must match the conditions under | |
7087 | which init_source_reloc is called in collect_source_relocs(). */ | |
25c6282a BW |
7088 | is_l32r_reloc = FALSE; |
7089 | if (is_operand_relocation (ELF32_R_TYPE (irel->r_info))) | |
7090 | { | |
7091 | xtensa_opcode opcode = | |
7092 | get_relocation_opcode (abfd, sec, contents, irel); | |
7093 | if (opcode != XTENSA_UNDEFINED) | |
7094 | { | |
7095 | is_l32r_reloc = (opcode == get_l32r_opcode ()); | |
7096 | if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info)) | |
7097 | || is_l32r_reloc) | |
7098 | target_relax_info->src_count++; | |
7099 | } | |
7100 | } | |
43cd72b9 | 7101 | |
25c6282a | 7102 | if (is_l32r_reloc && r_reloc_is_defined (&r_rel)) |
43cd72b9 BW |
7103 | { |
7104 | /* Mark the target section as relaxable. */ | |
7105 | target_relax_info->is_relaxable_literal_section = TRUE; | |
7106 | *is_relaxable_p = TRUE; | |
7107 | } | |
7108 | } | |
7109 | ||
7110 | error_return: | |
7111 | release_contents (sec, contents); | |
7112 | release_internal_relocs (sec, internal_relocs); | |
7113 | return ok; | |
7114 | } | |
7115 | ||
7116 | ||
7117 | /* Record _all_ the relocations that point to relaxable sections, and | |
7118 | get rid of ASM_EXPAND relocs by either converting them to | |
7119 | ASM_SIMPLIFY or by removing them. */ | |
7120 | ||
7121 | static bfd_boolean | |
7fa3d080 BW |
7122 | collect_source_relocs (bfd *abfd, |
7123 | asection *sec, | |
7124 | struct bfd_link_info *link_info) | |
43cd72b9 BW |
7125 | { |
7126 | Elf_Internal_Rela *internal_relocs; | |
7127 | bfd_byte *contents; | |
7128 | bfd_boolean ok = TRUE; | |
7129 | unsigned i; | |
7130 | bfd_size_type sec_size; | |
7131 | ||
68ffbac6 | 7132 | internal_relocs = retrieve_internal_relocs (abfd, sec, |
43cd72b9 | 7133 | link_info->keep_memory); |
68ffbac6 | 7134 | if (internal_relocs == NULL) |
43cd72b9 BW |
7135 | return ok; |
7136 | ||
7137 | sec_size = bfd_get_section_limit (abfd, sec); | |
7138 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
7139 | if (contents == NULL && sec_size != 0) | |
7140 | { | |
7141 | ok = FALSE; | |
7142 | goto error_return; | |
7143 | } | |
7144 | ||
7145 | /* Record relocations against relaxable literal sections. */ | |
68ffbac6 | 7146 | for (i = 0; i < sec->reloc_count; i++) |
43cd72b9 BW |
7147 | { |
7148 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
7149 | r_reloc r_rel; | |
7150 | asection *target_sec; | |
7151 | xtensa_relax_info *target_relax_info; | |
7152 | ||
7153 | r_reloc_init (&r_rel, abfd, irel, contents, sec_size); | |
7154 | ||
7155 | target_sec = r_reloc_get_section (&r_rel); | |
7156 | target_relax_info = get_xtensa_relax_info (target_sec); | |
7157 | ||
7158 | if (target_relax_info | |
7159 | && (target_relax_info->is_relaxable_literal_section | |
7160 | || target_relax_info->is_relaxable_asm_section)) | |
7161 | { | |
7162 | xtensa_opcode opcode = XTENSA_UNDEFINED; | |
7163 | int opnd = -1; | |
7164 | bfd_boolean is_abs_literal = FALSE; | |
7165 | ||
7166 | if (is_alt_relocation (ELF32_R_TYPE (irel->r_info))) | |
7167 | { | |
7168 | /* None of the current alternate relocs are PC-relative, | |
7169 | and only PC-relative relocs matter here. However, we | |
7170 | still need to record the opcode for literal | |
7171 | coalescing. */ | |
7172 | opcode = get_relocation_opcode (abfd, sec, contents, irel); | |
7173 | if (opcode == get_l32r_opcode ()) | |
7174 | { | |
7175 | is_abs_literal = TRUE; | |
7176 | opnd = 1; | |
7177 | } | |
7178 | else | |
7179 | opcode = XTENSA_UNDEFINED; | |
7180 | } | |
7181 | else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info))) | |
7182 | { | |
7183 | opcode = get_relocation_opcode (abfd, sec, contents, irel); | |
7184 | opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info)); | |
7185 | } | |
7186 | ||
7187 | if (opcode != XTENSA_UNDEFINED) | |
7188 | { | |
7189 | int src_next = target_relax_info->src_next++; | |
7190 | source_reloc *s_reloc = &target_relax_info->src_relocs[src_next]; | |
7191 | ||
7192 | init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd, | |
7193 | is_abs_literal); | |
7194 | } | |
7195 | } | |
7196 | } | |
7197 | ||
7198 | /* Now get rid of ASM_EXPAND relocations. At this point, the | |
7199 | src_relocs array for the target literal section may still be | |
7200 | incomplete, but it must at least contain the entries for the L32R | |
7201 | relocations associated with ASM_EXPANDs because they were just | |
7202 | added in the preceding loop over the relocations. */ | |
7203 | ||
68ffbac6 | 7204 | for (i = 0; i < sec->reloc_count; i++) |
43cd72b9 BW |
7205 | { |
7206 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
7207 | bfd_boolean is_reachable; | |
7208 | ||
7209 | if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info, | |
7210 | &is_reachable)) | |
7211 | continue; | |
7212 | ||
7213 | if (is_reachable) | |
7214 | { | |
7215 | Elf_Internal_Rela *l32r_irel; | |
7216 | r_reloc r_rel; | |
7217 | asection *target_sec; | |
7218 | xtensa_relax_info *target_relax_info; | |
7219 | ||
7220 | /* Mark the source_reloc for the L32R so that it will be | |
7221 | removed in compute_removed_literals(), along with the | |
7222 | associated literal. */ | |
7223 | l32r_irel = find_associated_l32r_irel (abfd, sec, contents, | |
7224 | irel, internal_relocs); | |
7225 | if (l32r_irel == NULL) | |
7226 | continue; | |
7227 | ||
7228 | r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size); | |
7229 | ||
7230 | target_sec = r_reloc_get_section (&r_rel); | |
7231 | target_relax_info = get_xtensa_relax_info (target_sec); | |
7232 | ||
7233 | if (target_relax_info | |
7234 | && (target_relax_info->is_relaxable_literal_section | |
7235 | || target_relax_info->is_relaxable_asm_section)) | |
7236 | { | |
7237 | source_reloc *s_reloc; | |
7238 | ||
7239 | /* Search the source_relocs for the entry corresponding to | |
7240 | the l32r_irel. Note: The src_relocs array is not yet | |
7241 | sorted, but it wouldn't matter anyway because we're | |
7242 | searching by source offset instead of target offset. */ | |
68ffbac6 | 7243 | s_reloc = find_source_reloc (target_relax_info->src_relocs, |
43cd72b9 BW |
7244 | target_relax_info->src_next, |
7245 | sec, l32r_irel); | |
7246 | BFD_ASSERT (s_reloc); | |
7247 | s_reloc->is_null = TRUE; | |
7248 | } | |
7249 | ||
7250 | /* Convert this reloc to ASM_SIMPLIFY. */ | |
7251 | irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), | |
7252 | R_XTENSA_ASM_SIMPLIFY); | |
7253 | l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
7254 | ||
7255 | pin_internal_relocs (sec, internal_relocs); | |
7256 | } | |
7257 | else | |
7258 | { | |
7259 | /* It is resolvable but doesn't reach. We resolve now | |
7260 | by eliminating the relocation -- the call will remain | |
7261 | expanded into L32R/CALLX. */ | |
7262 | irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
7263 | pin_internal_relocs (sec, internal_relocs); | |
7264 | } | |
7265 | } | |
7266 | ||
7267 | error_return: | |
7268 | release_contents (sec, contents); | |
7269 | release_internal_relocs (sec, internal_relocs); | |
7270 | return ok; | |
7271 | } | |
7272 | ||
7273 | ||
7274 | /* Return TRUE if the asm expansion can be resolved. Generally it can | |
7275 | be resolved on a final link or when a partial link locates it in the | |
7276 | same section as the target. Set "is_reachable" flag if the target of | |
7277 | the call is within the range of a direct call, given the current VMA | |
7278 | for this section and the target section. */ | |
7279 | ||
7280 | bfd_boolean | |
7fa3d080 BW |
7281 | is_resolvable_asm_expansion (bfd *abfd, |
7282 | asection *sec, | |
7283 | bfd_byte *contents, | |
7284 | Elf_Internal_Rela *irel, | |
7285 | struct bfd_link_info *link_info, | |
7286 | bfd_boolean *is_reachable_p) | |
43cd72b9 BW |
7287 | { |
7288 | asection *target_sec; | |
7289 | bfd_vma target_offset; | |
7290 | r_reloc r_rel; | |
7291 | xtensa_opcode opcode, direct_call_opcode; | |
7292 | bfd_vma self_address; | |
7293 | bfd_vma dest_address; | |
7294 | bfd_boolean uses_l32r; | |
7295 | bfd_size_type sec_size; | |
7296 | ||
7297 | *is_reachable_p = FALSE; | |
7298 | ||
7299 | if (contents == NULL) | |
7300 | return FALSE; | |
7301 | ||
68ffbac6 | 7302 | if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND) |
43cd72b9 BW |
7303 | return FALSE; |
7304 | ||
7305 | sec_size = bfd_get_section_limit (abfd, sec); | |
7306 | opcode = get_expanded_call_opcode (contents + irel->r_offset, | |
7307 | sec_size - irel->r_offset, &uses_l32r); | |
7308 | /* Optimization of longcalls that use CONST16 is not yet implemented. */ | |
7309 | if (!uses_l32r) | |
7310 | return FALSE; | |
68ffbac6 | 7311 | |
43cd72b9 BW |
7312 | direct_call_opcode = swap_callx_for_call_opcode (opcode); |
7313 | if (direct_call_opcode == XTENSA_UNDEFINED) | |
7314 | return FALSE; | |
7315 | ||
7316 | /* Check and see that the target resolves. */ | |
7317 | r_reloc_init (&r_rel, abfd, irel, contents, sec_size); | |
7318 | if (!r_reloc_is_defined (&r_rel)) | |
7319 | return FALSE; | |
7320 | ||
7321 | target_sec = r_reloc_get_section (&r_rel); | |
7322 | target_offset = r_rel.target_offset; | |
7323 | ||
7324 | /* If the target is in a shared library, then it doesn't reach. This | |
7325 | isn't supposed to come up because the compiler should never generate | |
7326 | non-PIC calls on systems that use shared libraries, but the linker | |
7327 | shouldn't crash regardless. */ | |
7328 | if (!target_sec->output_section) | |
7329 | return FALSE; | |
68ffbac6 | 7330 | |
43cd72b9 BW |
7331 | /* For relocatable sections, we can only simplify when the output |
7332 | section of the target is the same as the output section of the | |
7333 | source. */ | |
0e1862bb | 7334 | if (bfd_link_relocatable (link_info) |
43cd72b9 BW |
7335 | && (target_sec->output_section != sec->output_section |
7336 | || is_reloc_sym_weak (abfd, irel))) | |
7337 | return FALSE; | |
7338 | ||
331ed130 SA |
7339 | if (target_sec->output_section != sec->output_section) |
7340 | { | |
7341 | /* If the two sections are sufficiently far away that relaxation | |
7342 | might take the call out of range, we can't simplify. For | |
7343 | example, a positive displacement call into another memory | |
7344 | could get moved to a lower address due to literal removal, | |
7345 | but the destination won't move, and so the displacment might | |
7346 | get larger. | |
7347 | ||
7348 | If the displacement is negative, assume the destination could | |
7349 | move as far back as the start of the output section. The | |
7350 | self_address will be at least as far into the output section | |
7351 | as it is prior to relaxation. | |
7352 | ||
7353 | If the displacement is postive, assume the destination will be in | |
7354 | it's pre-relaxed location (because relaxation only makes sections | |
7355 | smaller). The self_address could go all the way to the beginning | |
7356 | of the output section. */ | |
7357 | ||
7358 | dest_address = target_sec->output_section->vma; | |
7359 | self_address = sec->output_section->vma; | |
7360 | ||
7361 | if (sec->output_section->vma > target_sec->output_section->vma) | |
7362 | self_address += sec->output_offset + irel->r_offset + 3; | |
7363 | else | |
7364 | dest_address += bfd_get_section_limit (abfd, target_sec->output_section); | |
7365 | /* Call targets should be four-byte aligned. */ | |
7366 | dest_address = (dest_address + 3) & ~3; | |
7367 | } | |
7368 | else | |
7369 | { | |
7370 | ||
7371 | self_address = (sec->output_section->vma | |
7372 | + sec->output_offset + irel->r_offset + 3); | |
7373 | dest_address = (target_sec->output_section->vma | |
7374 | + target_sec->output_offset + target_offset); | |
7375 | } | |
68ffbac6 | 7376 | |
43cd72b9 BW |
7377 | *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0, |
7378 | self_address, dest_address); | |
7379 | ||
7380 | if ((self_address >> CALL_SEGMENT_BITS) != | |
7381 | (dest_address >> CALL_SEGMENT_BITS)) | |
7382 | return FALSE; | |
7383 | ||
7384 | return TRUE; | |
7385 | } | |
7386 | ||
7387 | ||
7388 | static Elf_Internal_Rela * | |
7fa3d080 BW |
7389 | find_associated_l32r_irel (bfd *abfd, |
7390 | asection *sec, | |
7391 | bfd_byte *contents, | |
7392 | Elf_Internal_Rela *other_irel, | |
7393 | Elf_Internal_Rela *internal_relocs) | |
43cd72b9 BW |
7394 | { |
7395 | unsigned i; | |
e0001a05 | 7396 | |
68ffbac6 | 7397 | for (i = 0; i < sec->reloc_count; i++) |
43cd72b9 BW |
7398 | { |
7399 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
e0001a05 | 7400 | |
43cd72b9 BW |
7401 | if (irel == other_irel) |
7402 | continue; | |
7403 | if (irel->r_offset != other_irel->r_offset) | |
7404 | continue; | |
7405 | if (is_l32r_relocation (abfd, sec, contents, irel)) | |
7406 | return irel; | |
7407 | } | |
7408 | ||
7409 | return NULL; | |
e0001a05 NC |
7410 | } |
7411 | ||
7412 | ||
cb337148 BW |
7413 | static xtensa_opcode * |
7414 | build_reloc_opcodes (bfd *abfd, | |
7415 | asection *sec, | |
7416 | bfd_byte *contents, | |
7417 | Elf_Internal_Rela *internal_relocs) | |
7418 | { | |
7419 | unsigned i; | |
7420 | xtensa_opcode *reloc_opcodes = | |
7421 | (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count); | |
7422 | for (i = 0; i < sec->reloc_count; i++) | |
7423 | { | |
7424 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
7425 | reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel); | |
7426 | } | |
7427 | return reloc_opcodes; | |
7428 | } | |
7429 | ||
b2b326d2 MF |
7430 | struct reloc_range_struct |
7431 | { | |
7432 | bfd_vma addr; | |
7433 | bfd_boolean add; /* TRUE if start of a range, FALSE otherwise. */ | |
7434 | /* Original irel index in the array of relocations for a section. */ | |
7435 | unsigned irel_index; | |
7436 | }; | |
7437 | typedef struct reloc_range_struct reloc_range; | |
7438 | ||
7439 | typedef struct reloc_range_list_entry_struct reloc_range_list_entry; | |
7440 | struct reloc_range_list_entry_struct | |
7441 | { | |
7442 | reloc_range_list_entry *next; | |
7443 | reloc_range_list_entry *prev; | |
7444 | Elf_Internal_Rela *irel; | |
7445 | xtensa_opcode opcode; | |
7446 | int opnum; | |
7447 | }; | |
7448 | ||
7449 | struct reloc_range_list_struct | |
7450 | { | |
7451 | /* The rest of the structure is only meaningful when ok is TRUE. */ | |
7452 | bfd_boolean ok; | |
7453 | ||
7454 | unsigned n_range; /* Number of range markers. */ | |
7455 | reloc_range *range; /* Sorted range markers. */ | |
7456 | ||
7457 | unsigned first; /* Index of a first range element in the list. */ | |
7458 | unsigned last; /* One past index of a last range element in the list. */ | |
7459 | ||
7460 | unsigned n_list; /* Number of list elements. */ | |
7461 | reloc_range_list_entry *reloc; /* */ | |
7462 | reloc_range_list_entry list_root; | |
7463 | }; | |
7464 | ||
7465 | static int | |
7466 | reloc_range_compare (const void *a, const void *b) | |
7467 | { | |
7468 | const reloc_range *ra = a; | |
7469 | const reloc_range *rb = b; | |
7470 | ||
7471 | if (ra->addr != rb->addr) | |
7472 | return ra->addr < rb->addr ? -1 : 1; | |
7473 | if (ra->add != rb->add) | |
7474 | return ra->add ? -1 : 1; | |
7475 | return 0; | |
7476 | } | |
7477 | ||
7478 | static void | |
7479 | build_reloc_ranges (bfd *abfd, asection *sec, | |
7480 | bfd_byte *contents, | |
7481 | Elf_Internal_Rela *internal_relocs, | |
7482 | xtensa_opcode *reloc_opcodes, | |
7483 | reloc_range_list *list) | |
7484 | { | |
7485 | unsigned i; | |
7486 | size_t n = 0; | |
7487 | size_t max_n = 0; | |
7488 | reloc_range *ranges = NULL; | |
7489 | reloc_range_list_entry *reloc = | |
7490 | bfd_malloc (sec->reloc_count * sizeof (*reloc)); | |
7491 | ||
7492 | memset (list, 0, sizeof (*list)); | |
7493 | list->ok = TRUE; | |
7494 | ||
7495 | for (i = 0; i < sec->reloc_count; i++) | |
7496 | { | |
7497 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
7498 | int r_type = ELF32_R_TYPE (irel->r_info); | |
7499 | reloc_howto_type *howto = &elf_howto_table[r_type]; | |
7500 | r_reloc r_rel; | |
7501 | ||
7502 | if (r_type == R_XTENSA_ASM_SIMPLIFY | |
7503 | || r_type == R_XTENSA_32_PCREL | |
7504 | || !howto->pc_relative) | |
7505 | continue; | |
7506 | ||
7507 | r_reloc_init (&r_rel, abfd, irel, contents, | |
7508 | bfd_get_section_limit (abfd, sec)); | |
7509 | ||
7510 | if (r_reloc_get_section (&r_rel) != sec) | |
7511 | continue; | |
7512 | ||
7513 | if (n + 2 > max_n) | |
7514 | { | |
7515 | max_n = (max_n + 2) * 2; | |
7516 | ranges = bfd_realloc (ranges, max_n * sizeof (*ranges)); | |
7517 | } | |
7518 | ||
7519 | ranges[n].addr = irel->r_offset; | |
7520 | ranges[n + 1].addr = r_rel.target_offset; | |
7521 | ||
7522 | ranges[n].add = ranges[n].addr < ranges[n + 1].addr; | |
7523 | ranges[n + 1].add = !ranges[n].add; | |
7524 | ||
7525 | ranges[n].irel_index = i; | |
7526 | ranges[n + 1].irel_index = i; | |
7527 | ||
7528 | n += 2; | |
7529 | ||
7530 | reloc[i].irel = irel; | |
7531 | ||
7532 | /* Every relocation won't possibly be checked in the optimized version of | |
7533 | check_section_ebb_pcrels_fit, so this needs to be done here. */ | |
7534 | if (is_alt_relocation (ELF32_R_TYPE (irel->r_info))) | |
7535 | { | |
7536 | /* None of the current alternate relocs are PC-relative, | |
7537 | and only PC-relative relocs matter here. */ | |
7538 | } | |
7539 | else | |
7540 | { | |
7541 | xtensa_opcode opcode; | |
7542 | int opnum; | |
7543 | ||
7544 | if (reloc_opcodes) | |
7545 | opcode = reloc_opcodes[i]; | |
7546 | else | |
7547 | opcode = get_relocation_opcode (abfd, sec, contents, irel); | |
7548 | ||
7549 | if (opcode == XTENSA_UNDEFINED) | |
7550 | { | |
7551 | list->ok = FALSE; | |
7552 | break; | |
7553 | } | |
7554 | ||
7555 | opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info)); | |
7556 | if (opnum == XTENSA_UNDEFINED) | |
7557 | { | |
7558 | list->ok = FALSE; | |
7559 | break; | |
7560 | } | |
7561 | ||
7562 | /* Record relocation opcode and opnum as we've calculated them | |
7563 | anyway and they won't change. */ | |
7564 | reloc[i].opcode = opcode; | |
7565 | reloc[i].opnum = opnum; | |
7566 | } | |
7567 | } | |
7568 | ||
7569 | if (list->ok) | |
7570 | { | |
7571 | ranges = bfd_realloc (ranges, n * sizeof (*ranges)); | |
7572 | qsort (ranges, n, sizeof (*ranges), reloc_range_compare); | |
7573 | ||
7574 | list->n_range = n; | |
7575 | list->range = ranges; | |
7576 | list->reloc = reloc; | |
7577 | list->list_root.prev = &list->list_root; | |
7578 | list->list_root.next = &list->list_root; | |
7579 | } | |
7580 | else | |
7581 | { | |
7582 | free (ranges); | |
7583 | free (reloc); | |
7584 | } | |
7585 | } | |
7586 | ||
7587 | static void reloc_range_list_append (reloc_range_list *list, | |
7588 | unsigned irel_index) | |
7589 | { | |
7590 | reloc_range_list_entry *entry = list->reloc + irel_index; | |
7591 | ||
7592 | entry->prev = list->list_root.prev; | |
7593 | entry->next = &list->list_root; | |
7594 | entry->prev->next = entry; | |
7595 | entry->next->prev = entry; | |
7596 | ++list->n_list; | |
7597 | } | |
7598 | ||
7599 | static void reloc_range_list_remove (reloc_range_list *list, | |
7600 | unsigned irel_index) | |
7601 | { | |
7602 | reloc_range_list_entry *entry = list->reloc + irel_index; | |
7603 | ||
7604 | entry->next->prev = entry->prev; | |
7605 | entry->prev->next = entry->next; | |
7606 | --list->n_list; | |
7607 | } | |
7608 | ||
7609 | /* Update relocation list object so that it lists all relocations that cross | |
7610 | [first; last] range. Range bounds should not decrease with successive | |
7611 | invocations. */ | |
7612 | static void reloc_range_list_update_range (reloc_range_list *list, | |
7613 | bfd_vma first, bfd_vma last) | |
7614 | { | |
7615 | /* This should not happen: EBBs are iterated from lower addresses to higher. | |
7616 | But even if that happens there's no need to break: just flush current list | |
7617 | and start from scratch. */ | |
7618 | if ((list->last > 0 && list->range[list->last - 1].addr > last) || | |
7619 | (list->first > 0 && list->range[list->first - 1].addr >= first)) | |
7620 | { | |
7621 | list->first = 0; | |
7622 | list->last = 0; | |
7623 | list->n_list = 0; | |
7624 | list->list_root.next = &list->list_root; | |
7625 | list->list_root.prev = &list->list_root; | |
7626 | fprintf (stderr, "%s: move backwards requested\n", __func__); | |
7627 | } | |
7628 | ||
7629 | for (; list->last < list->n_range && | |
7630 | list->range[list->last].addr <= last; ++list->last) | |
7631 | if (list->range[list->last].add) | |
7632 | reloc_range_list_append (list, list->range[list->last].irel_index); | |
7633 | ||
7634 | for (; list->first < list->n_range && | |
7635 | list->range[list->first].addr < first; ++list->first) | |
7636 | if (!list->range[list->first].add) | |
7637 | reloc_range_list_remove (list, list->range[list->first].irel_index); | |
7638 | } | |
7639 | ||
7640 | static void free_reloc_range_list (reloc_range_list *list) | |
7641 | { | |
7642 | free (list->range); | |
7643 | free (list->reloc); | |
7644 | } | |
cb337148 | 7645 | |
43cd72b9 BW |
7646 | /* The compute_text_actions function will build a list of potential |
7647 | transformation actions for code in the extended basic block of each | |
7648 | longcall that is optimized to a direct call. From this list we | |
7649 | generate a set of actions to actually perform that optimizes for | |
7650 | space and, if not using size_opt, maintains branch target | |
7651 | alignments. | |
e0001a05 | 7652 | |
43cd72b9 BW |
7653 | These actions to be performed are placed on a per-section list. |
7654 | The actual changes are performed by relax_section() in the second | |
7655 | pass. */ | |
7656 | ||
7657 | bfd_boolean | |
7fa3d080 BW |
7658 | compute_text_actions (bfd *abfd, |
7659 | asection *sec, | |
7660 | struct bfd_link_info *link_info) | |
e0001a05 | 7661 | { |
cb337148 | 7662 | xtensa_opcode *reloc_opcodes = NULL; |
43cd72b9 | 7663 | xtensa_relax_info *relax_info; |
e0001a05 | 7664 | bfd_byte *contents; |
43cd72b9 | 7665 | Elf_Internal_Rela *internal_relocs; |
e0001a05 NC |
7666 | bfd_boolean ok = TRUE; |
7667 | unsigned i; | |
43cd72b9 BW |
7668 | property_table_entry *prop_table = 0; |
7669 | int ptblsize = 0; | |
7670 | bfd_size_type sec_size; | |
b2b326d2 | 7671 | reloc_range_list relevant_relocs; |
43cd72b9 | 7672 | |
43cd72b9 BW |
7673 | relax_info = get_xtensa_relax_info (sec); |
7674 | BFD_ASSERT (relax_info); | |
25c6282a BW |
7675 | BFD_ASSERT (relax_info->src_next == relax_info->src_count); |
7676 | ||
7677 | /* Do nothing if the section contains no optimized longcalls. */ | |
43cd72b9 BW |
7678 | if (!relax_info->is_relaxable_asm_section) |
7679 | return ok; | |
e0001a05 NC |
7680 | |
7681 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
7682 | link_info->keep_memory); | |
e0001a05 | 7683 | |
43cd72b9 BW |
7684 | if (internal_relocs) |
7685 | qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), | |
7686 | internal_reloc_compare); | |
7687 | ||
7688 | sec_size = bfd_get_section_limit (abfd, sec); | |
e0001a05 | 7689 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); |
43cd72b9 | 7690 | if (contents == NULL && sec_size != 0) |
e0001a05 NC |
7691 | { |
7692 | ok = FALSE; | |
7693 | goto error_return; | |
7694 | } | |
7695 | ||
43cd72b9 BW |
7696 | ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table, |
7697 | XTENSA_PROP_SEC_NAME, FALSE); | |
7698 | if (ptblsize < 0) | |
7699 | { | |
7700 | ok = FALSE; | |
7701 | goto error_return; | |
7702 | } | |
7703 | ||
b2b326d2 MF |
7704 | /* Precompute the opcode for each relocation. */ |
7705 | reloc_opcodes = build_reloc_opcodes (abfd, sec, contents, internal_relocs); | |
7706 | ||
7707 | build_reloc_ranges (abfd, sec, contents, internal_relocs, reloc_opcodes, | |
7708 | &relevant_relocs); | |
7709 | ||
43cd72b9 | 7710 | for (i = 0; i < sec->reloc_count; i++) |
e0001a05 NC |
7711 | { |
7712 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
43cd72b9 BW |
7713 | bfd_vma r_offset; |
7714 | property_table_entry *the_entry; | |
7715 | int ptbl_idx; | |
7716 | ebb_t *ebb; | |
7717 | ebb_constraint ebb_table; | |
7718 | bfd_size_type simplify_size; | |
7719 | ||
7720 | if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY) | |
7721 | continue; | |
7722 | r_offset = irel->r_offset; | |
e0001a05 | 7723 | |
43cd72b9 BW |
7724 | simplify_size = get_asm_simplify_size (contents, sec_size, r_offset); |
7725 | if (simplify_size == 0) | |
7726 | { | |
4eca0228 | 7727 | _bfd_error_handler |
695344c0 | 7728 | /* xgettext:c-format */ |
43cd72b9 BW |
7729 | (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"), |
7730 | sec->owner, sec, r_offset); | |
7731 | continue; | |
7732 | } | |
e0001a05 | 7733 | |
43cd72b9 BW |
7734 | /* If the instruction table is not around, then don't do this |
7735 | relaxation. */ | |
7736 | the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
7737 | sec->vma + irel->r_offset); | |
7738 | if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL) | |
7739 | { | |
7740 | text_action_add (&relax_info->action_list, | |
7741 | ta_convert_longcall, sec, r_offset, | |
7742 | 0); | |
7743 | continue; | |
7744 | } | |
7745 | ||
7746 | /* If the next longcall happens to be at the same address as an | |
7747 | unreachable section of size 0, then skip forward. */ | |
7748 | ptbl_idx = the_entry - prop_table; | |
7749 | while ((the_entry->flags & XTENSA_PROP_UNREACHABLE) | |
7750 | && the_entry->size == 0 | |
7751 | && ptbl_idx + 1 < ptblsize | |
7752 | && (prop_table[ptbl_idx + 1].address | |
7753 | == prop_table[ptbl_idx].address)) | |
7754 | { | |
7755 | ptbl_idx++; | |
7756 | the_entry++; | |
7757 | } | |
e0001a05 | 7758 | |
99ded152 | 7759 | if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM) |
43cd72b9 BW |
7760 | /* NO_REORDER is OK */ |
7761 | continue; | |
e0001a05 | 7762 | |
43cd72b9 BW |
7763 | init_ebb_constraint (&ebb_table); |
7764 | ebb = &ebb_table.ebb; | |
7765 | init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize, | |
7766 | internal_relocs, sec->reloc_count); | |
7767 | ebb->start_offset = r_offset + simplify_size; | |
7768 | ebb->end_offset = r_offset + simplify_size; | |
7769 | ebb->start_ptbl_idx = ptbl_idx; | |
7770 | ebb->end_ptbl_idx = ptbl_idx; | |
7771 | ebb->start_reloc_idx = i; | |
7772 | ebb->end_reloc_idx = i; | |
7773 | ||
7774 | if (!extend_ebb_bounds (ebb) | |
7775 | || !compute_ebb_proposed_actions (&ebb_table) | |
7776 | || !compute_ebb_actions (&ebb_table) | |
7777 | || !check_section_ebb_pcrels_fit (abfd, sec, contents, | |
b2b326d2 MF |
7778 | internal_relocs, |
7779 | &relevant_relocs, | |
7780 | &ebb_table, reloc_opcodes) | |
43cd72b9 | 7781 | || !check_section_ebb_reduces (&ebb_table)) |
e0001a05 | 7782 | { |
43cd72b9 BW |
7783 | /* If anything goes wrong or we get unlucky and something does |
7784 | not fit, with our plan because of expansion between | |
7785 | critical branches, just convert to a NOP. */ | |
7786 | ||
7787 | text_action_add (&relax_info->action_list, | |
7788 | ta_convert_longcall, sec, r_offset, 0); | |
7789 | i = ebb_table.ebb.end_reloc_idx; | |
7790 | free_ebb_constraint (&ebb_table); | |
7791 | continue; | |
e0001a05 | 7792 | } |
43cd72b9 BW |
7793 | |
7794 | text_action_add_proposed (&relax_info->action_list, &ebb_table, sec); | |
7795 | ||
7796 | /* Update the index so we do not go looking at the relocations | |
7797 | we have already processed. */ | |
7798 | i = ebb_table.ebb.end_reloc_idx; | |
7799 | free_ebb_constraint (&ebb_table); | |
e0001a05 NC |
7800 | } |
7801 | ||
b2b326d2 MF |
7802 | free_reloc_range_list (&relevant_relocs); |
7803 | ||
43cd72b9 | 7804 | #if DEBUG |
4c2af04f | 7805 | if (action_list_count (&relax_info->action_list)) |
43cd72b9 BW |
7806 | print_action_list (stderr, &relax_info->action_list); |
7807 | #endif | |
7808 | ||
7809 | error_return: | |
e0001a05 NC |
7810 | release_contents (sec, contents); |
7811 | release_internal_relocs (sec, internal_relocs); | |
43cd72b9 BW |
7812 | if (prop_table) |
7813 | free (prop_table); | |
cb337148 BW |
7814 | if (reloc_opcodes) |
7815 | free (reloc_opcodes); | |
43cd72b9 | 7816 | |
e0001a05 NC |
7817 | return ok; |
7818 | } | |
7819 | ||
7820 | ||
64b607e6 BW |
7821 | /* Do not widen an instruction if it is preceeded by a |
7822 | loop opcode. It might cause misalignment. */ | |
7823 | ||
7824 | static bfd_boolean | |
7825 | prev_instr_is_a_loop (bfd_byte *contents, | |
7826 | bfd_size_type content_length, | |
7827 | bfd_size_type offset) | |
7828 | { | |
7829 | xtensa_opcode prev_opcode; | |
7830 | ||
7831 | if (offset < 3) | |
7832 | return FALSE; | |
7833 | prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0); | |
7834 | return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1); | |
68ffbac6 | 7835 | } |
64b607e6 BW |
7836 | |
7837 | ||
43cd72b9 | 7838 | /* Find all of the possible actions for an extended basic block. */ |
e0001a05 | 7839 | |
43cd72b9 | 7840 | bfd_boolean |
7fa3d080 | 7841 | compute_ebb_proposed_actions (ebb_constraint *ebb_table) |
e0001a05 | 7842 | { |
43cd72b9 BW |
7843 | const ebb_t *ebb = &ebb_table->ebb; |
7844 | unsigned rel_idx = ebb->start_reloc_idx; | |
7845 | property_table_entry *entry, *start_entry, *end_entry; | |
64b607e6 BW |
7846 | bfd_vma offset = 0; |
7847 | xtensa_isa isa = xtensa_default_isa; | |
7848 | xtensa_format fmt; | |
7849 | static xtensa_insnbuf insnbuf = NULL; | |
7850 | static xtensa_insnbuf slotbuf = NULL; | |
7851 | ||
7852 | if (insnbuf == NULL) | |
7853 | { | |
7854 | insnbuf = xtensa_insnbuf_alloc (isa); | |
7855 | slotbuf = xtensa_insnbuf_alloc (isa); | |
7856 | } | |
e0001a05 | 7857 | |
43cd72b9 BW |
7858 | start_entry = &ebb->ptbl[ebb->start_ptbl_idx]; |
7859 | end_entry = &ebb->ptbl[ebb->end_ptbl_idx]; | |
e0001a05 | 7860 | |
43cd72b9 | 7861 | for (entry = start_entry; entry <= end_entry; entry++) |
e0001a05 | 7862 | { |
64b607e6 | 7863 | bfd_vma start_offset, end_offset; |
43cd72b9 | 7864 | bfd_size_type insn_len; |
e0001a05 | 7865 | |
43cd72b9 BW |
7866 | start_offset = entry->address - ebb->sec->vma; |
7867 | end_offset = entry->address + entry->size - ebb->sec->vma; | |
e0001a05 | 7868 | |
43cd72b9 BW |
7869 | if (entry == start_entry) |
7870 | start_offset = ebb->start_offset; | |
7871 | if (entry == end_entry) | |
7872 | end_offset = ebb->end_offset; | |
7873 | offset = start_offset; | |
e0001a05 | 7874 | |
43cd72b9 BW |
7875 | if (offset == entry->address - ebb->sec->vma |
7876 | && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0) | |
7877 | { | |
7878 | enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN; | |
7879 | BFD_ASSERT (offset != end_offset); | |
7880 | if (offset == end_offset) | |
7881 | return FALSE; | |
e0001a05 | 7882 | |
43cd72b9 BW |
7883 | insn_len = insn_decode_len (ebb->contents, ebb->content_length, |
7884 | offset); | |
68ffbac6 | 7885 | if (insn_len == 0) |
64b607e6 BW |
7886 | goto decode_error; |
7887 | ||
43cd72b9 BW |
7888 | if (check_branch_target_aligned_address (offset, insn_len)) |
7889 | align_type = EBB_REQUIRE_TGT_ALIGN; | |
7890 | ||
7891 | ebb_propose_action (ebb_table, align_type, 0, | |
7892 | ta_none, offset, 0, TRUE); | |
7893 | } | |
7894 | ||
7895 | while (offset != end_offset) | |
e0001a05 | 7896 | { |
43cd72b9 | 7897 | Elf_Internal_Rela *irel; |
e0001a05 | 7898 | xtensa_opcode opcode; |
e0001a05 | 7899 | |
43cd72b9 BW |
7900 | while (rel_idx < ebb->end_reloc_idx |
7901 | && (ebb->relocs[rel_idx].r_offset < offset | |
7902 | || (ebb->relocs[rel_idx].r_offset == offset | |
7903 | && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info) | |
7904 | != R_XTENSA_ASM_SIMPLIFY)))) | |
7905 | rel_idx++; | |
7906 | ||
7907 | /* Check for longcall. */ | |
7908 | irel = &ebb->relocs[rel_idx]; | |
7909 | if (irel->r_offset == offset | |
7910 | && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY) | |
7911 | { | |
7912 | bfd_size_type simplify_size; | |
e0001a05 | 7913 | |
68ffbac6 | 7914 | simplify_size = get_asm_simplify_size (ebb->contents, |
43cd72b9 BW |
7915 | ebb->content_length, |
7916 | irel->r_offset); | |
7917 | if (simplify_size == 0) | |
64b607e6 | 7918 | goto decode_error; |
43cd72b9 BW |
7919 | |
7920 | ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, | |
7921 | ta_convert_longcall, offset, 0, TRUE); | |
68ffbac6 | 7922 | |
43cd72b9 BW |
7923 | offset += simplify_size; |
7924 | continue; | |
7925 | } | |
e0001a05 | 7926 | |
64b607e6 BW |
7927 | if (offset + MIN_INSN_LENGTH > ebb->content_length) |
7928 | goto decode_error; | |
7929 | xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset], | |
7930 | ebb->content_length - offset); | |
7931 | fmt = xtensa_format_decode (isa, insnbuf); | |
7932 | if (fmt == XTENSA_UNDEFINED) | |
7933 | goto decode_error; | |
7934 | insn_len = xtensa_format_length (isa, fmt); | |
7935 | if (insn_len == (bfd_size_type) XTENSA_UNDEFINED) | |
7936 | goto decode_error; | |
7937 | ||
7938 | if (xtensa_format_num_slots (isa, fmt) != 1) | |
43cd72b9 | 7939 | { |
64b607e6 BW |
7940 | offset += insn_len; |
7941 | continue; | |
43cd72b9 | 7942 | } |
64b607e6 BW |
7943 | |
7944 | xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf); | |
7945 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); | |
7946 | if (opcode == XTENSA_UNDEFINED) | |
7947 | goto decode_error; | |
7948 | ||
43cd72b9 | 7949 | if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0 |
99ded152 | 7950 | && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0 |
64b607e6 | 7951 | && can_narrow_instruction (slotbuf, fmt, opcode) != 0) |
43cd72b9 BW |
7952 | { |
7953 | /* Add an instruction narrow action. */ | |
7954 | ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, | |
7955 | ta_narrow_insn, offset, 0, FALSE); | |
43cd72b9 | 7956 | } |
99ded152 | 7957 | else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0 |
64b607e6 BW |
7958 | && can_widen_instruction (slotbuf, fmt, opcode) != 0 |
7959 | && ! prev_instr_is_a_loop (ebb->contents, | |
7960 | ebb->content_length, offset)) | |
43cd72b9 BW |
7961 | { |
7962 | /* Add an instruction widen action. */ | |
7963 | ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, | |
7964 | ta_widen_insn, offset, 0, FALSE); | |
43cd72b9 | 7965 | } |
64b607e6 | 7966 | else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1) |
43cd72b9 BW |
7967 | { |
7968 | /* Check for branch targets. */ | |
7969 | ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0, | |
7970 | ta_none, offset, 0, TRUE); | |
43cd72b9 BW |
7971 | } |
7972 | ||
7973 | offset += insn_len; | |
e0001a05 NC |
7974 | } |
7975 | } | |
7976 | ||
43cd72b9 BW |
7977 | if (ebb->ends_unreachable) |
7978 | { | |
7979 | ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, | |
7980 | ta_fill, ebb->end_offset, 0, TRUE); | |
7981 | } | |
e0001a05 | 7982 | |
43cd72b9 | 7983 | return TRUE; |
64b607e6 BW |
7984 | |
7985 | decode_error: | |
4eca0228 | 7986 | _bfd_error_handler |
695344c0 | 7987 | /* xgettext:c-format */ |
64b607e6 BW |
7988 | (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"), |
7989 | ebb->sec->owner, ebb->sec, offset); | |
7990 | return FALSE; | |
43cd72b9 BW |
7991 | } |
7992 | ||
7993 | ||
7994 | /* After all of the information has collected about the | |
7995 | transformations possible in an EBB, compute the appropriate actions | |
7996 | here in compute_ebb_actions. We still must check later to make | |
7997 | sure that the actions do not break any relocations. The algorithm | |
7998 | used here is pretty greedy. Basically, it removes as many no-ops | |
7999 | as possible so that the end of the EBB has the same alignment | |
8000 | characteristics as the original. First, it uses narrowing, then | |
8001 | fill space at the end of the EBB, and finally widenings. If that | |
8002 | does not work, it tries again with one fewer no-op removed. The | |
8003 | optimization will only be performed if all of the branch targets | |
8004 | that were aligned before transformation are also aligned after the | |
8005 | transformation. | |
8006 | ||
8007 | When the size_opt flag is set, ignore the branch target alignments, | |
8008 | narrow all wide instructions, and remove all no-ops unless the end | |
8009 | of the EBB prevents it. */ | |
8010 | ||
8011 | bfd_boolean | |
7fa3d080 | 8012 | compute_ebb_actions (ebb_constraint *ebb_table) |
43cd72b9 BW |
8013 | { |
8014 | unsigned i = 0; | |
8015 | unsigned j; | |
8016 | int removed_bytes = 0; | |
8017 | ebb_t *ebb = &ebb_table->ebb; | |
8018 | unsigned seg_idx_start = 0; | |
8019 | unsigned seg_idx_end = 0; | |
8020 | ||
8021 | /* We perform this like the assembler relaxation algorithm: Start by | |
8022 | assuming all instructions are narrow and all no-ops removed; then | |
8023 | walk through.... */ | |
8024 | ||
8025 | /* For each segment of this that has a solid constraint, check to | |
8026 | see if there are any combinations that will keep the constraint. | |
8027 | If so, use it. */ | |
8028 | for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++) | |
e0001a05 | 8029 | { |
43cd72b9 BW |
8030 | bfd_boolean requires_text_end_align = FALSE; |
8031 | unsigned longcall_count = 0; | |
8032 | unsigned longcall_convert_count = 0; | |
8033 | unsigned narrowable_count = 0; | |
8034 | unsigned narrowable_convert_count = 0; | |
8035 | unsigned widenable_count = 0; | |
8036 | unsigned widenable_convert_count = 0; | |
e0001a05 | 8037 | |
43cd72b9 BW |
8038 | proposed_action *action = NULL; |
8039 | int align = (1 << ebb_table->ebb.sec->alignment_power); | |
e0001a05 | 8040 | |
43cd72b9 | 8041 | seg_idx_start = seg_idx_end; |
e0001a05 | 8042 | |
43cd72b9 BW |
8043 | for (i = seg_idx_start; i < ebb_table->action_count; i++) |
8044 | { | |
8045 | action = &ebb_table->actions[i]; | |
8046 | if (action->action == ta_convert_longcall) | |
8047 | longcall_count++; | |
8048 | if (action->action == ta_narrow_insn) | |
8049 | narrowable_count++; | |
8050 | if (action->action == ta_widen_insn) | |
8051 | widenable_count++; | |
8052 | if (action->action == ta_fill) | |
8053 | break; | |
8054 | if (action->align_type == EBB_REQUIRE_LOOP_ALIGN) | |
8055 | break; | |
8056 | if (action->align_type == EBB_REQUIRE_TGT_ALIGN | |
8057 | && !elf32xtensa_size_opt) | |
8058 | break; | |
8059 | } | |
8060 | seg_idx_end = i; | |
e0001a05 | 8061 | |
43cd72b9 BW |
8062 | if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable) |
8063 | requires_text_end_align = TRUE; | |
e0001a05 | 8064 | |
43cd72b9 BW |
8065 | if (elf32xtensa_size_opt && !requires_text_end_align |
8066 | && action->align_type != EBB_REQUIRE_LOOP_ALIGN | |
8067 | && action->align_type != EBB_REQUIRE_TGT_ALIGN) | |
8068 | { | |
8069 | longcall_convert_count = longcall_count; | |
8070 | narrowable_convert_count = narrowable_count; | |
8071 | widenable_convert_count = 0; | |
8072 | } | |
8073 | else | |
8074 | { | |
8075 | /* There is a constraint. Convert the max number of longcalls. */ | |
8076 | narrowable_convert_count = 0; | |
8077 | longcall_convert_count = 0; | |
8078 | widenable_convert_count = 0; | |
e0001a05 | 8079 | |
43cd72b9 | 8080 | for (j = 0; j < longcall_count; j++) |
e0001a05 | 8081 | { |
43cd72b9 BW |
8082 | int removed = (longcall_count - j) * 3 & (align - 1); |
8083 | unsigned desire_narrow = (align - removed) & (align - 1); | |
8084 | unsigned desire_widen = removed; | |
8085 | if (desire_narrow <= narrowable_count) | |
8086 | { | |
8087 | narrowable_convert_count = desire_narrow; | |
8088 | narrowable_convert_count += | |
8089 | (align * ((narrowable_count - narrowable_convert_count) | |
8090 | / align)); | |
8091 | longcall_convert_count = (longcall_count - j); | |
8092 | widenable_convert_count = 0; | |
8093 | break; | |
8094 | } | |
8095 | if (desire_widen <= widenable_count && !elf32xtensa_size_opt) | |
8096 | { | |
8097 | narrowable_convert_count = 0; | |
8098 | longcall_convert_count = longcall_count - j; | |
8099 | widenable_convert_count = desire_widen; | |
8100 | break; | |
8101 | } | |
8102 | } | |
8103 | } | |
e0001a05 | 8104 | |
43cd72b9 BW |
8105 | /* Now the number of conversions are saved. Do them. */ |
8106 | for (i = seg_idx_start; i < seg_idx_end; i++) | |
8107 | { | |
8108 | action = &ebb_table->actions[i]; | |
8109 | switch (action->action) | |
8110 | { | |
8111 | case ta_convert_longcall: | |
8112 | if (longcall_convert_count != 0) | |
8113 | { | |
8114 | action->action = ta_remove_longcall; | |
8115 | action->do_action = TRUE; | |
8116 | action->removed_bytes += 3; | |
8117 | longcall_convert_count--; | |
8118 | } | |
8119 | break; | |
8120 | case ta_narrow_insn: | |
8121 | if (narrowable_convert_count != 0) | |
8122 | { | |
8123 | action->do_action = TRUE; | |
8124 | action->removed_bytes += 1; | |
8125 | narrowable_convert_count--; | |
8126 | } | |
8127 | break; | |
8128 | case ta_widen_insn: | |
8129 | if (widenable_convert_count != 0) | |
8130 | { | |
8131 | action->do_action = TRUE; | |
8132 | action->removed_bytes -= 1; | |
8133 | widenable_convert_count--; | |
8134 | } | |
8135 | break; | |
8136 | default: | |
8137 | break; | |
e0001a05 | 8138 | } |
43cd72b9 BW |
8139 | } |
8140 | } | |
e0001a05 | 8141 | |
43cd72b9 BW |
8142 | /* Now we move on to some local opts. Try to remove each of the |
8143 | remaining longcalls. */ | |
e0001a05 | 8144 | |
43cd72b9 BW |
8145 | if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable) |
8146 | { | |
8147 | removed_bytes = 0; | |
8148 | for (i = 0; i < ebb_table->action_count; i++) | |
e0001a05 | 8149 | { |
43cd72b9 BW |
8150 | int old_removed_bytes = removed_bytes; |
8151 | proposed_action *action = &ebb_table->actions[i]; | |
8152 | ||
8153 | if (action->do_action && action->action == ta_convert_longcall) | |
8154 | { | |
8155 | bfd_boolean bad_alignment = FALSE; | |
8156 | removed_bytes += 3; | |
8157 | for (j = i + 1; j < ebb_table->action_count; j++) | |
8158 | { | |
8159 | proposed_action *new_action = &ebb_table->actions[j]; | |
8160 | bfd_vma offset = new_action->offset; | |
8161 | if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN) | |
8162 | { | |
8163 | if (!check_branch_target_aligned | |
8164 | (ebb_table->ebb.contents, | |
8165 | ebb_table->ebb.content_length, | |
8166 | offset, offset - removed_bytes)) | |
8167 | { | |
8168 | bad_alignment = TRUE; | |
8169 | break; | |
8170 | } | |
8171 | } | |
8172 | if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN) | |
8173 | { | |
8174 | if (!check_loop_aligned (ebb_table->ebb.contents, | |
8175 | ebb_table->ebb.content_length, | |
8176 | offset, | |
8177 | offset - removed_bytes)) | |
8178 | { | |
8179 | bad_alignment = TRUE; | |
8180 | break; | |
8181 | } | |
8182 | } | |
8183 | if (new_action->action == ta_narrow_insn | |
8184 | && !new_action->do_action | |
8185 | && ebb_table->ebb.sec->alignment_power == 2) | |
8186 | { | |
8187 | /* Narrow an instruction and we are done. */ | |
8188 | new_action->do_action = TRUE; | |
8189 | new_action->removed_bytes += 1; | |
8190 | bad_alignment = FALSE; | |
8191 | break; | |
8192 | } | |
8193 | if (new_action->action == ta_widen_insn | |
8194 | && new_action->do_action | |
8195 | && ebb_table->ebb.sec->alignment_power == 2) | |
8196 | { | |
8197 | /* Narrow an instruction and we are done. */ | |
8198 | new_action->do_action = FALSE; | |
8199 | new_action->removed_bytes += 1; | |
8200 | bad_alignment = FALSE; | |
8201 | break; | |
8202 | } | |
5c5d6806 BW |
8203 | if (new_action->do_action) |
8204 | removed_bytes += new_action->removed_bytes; | |
43cd72b9 BW |
8205 | } |
8206 | if (!bad_alignment) | |
8207 | { | |
8208 | action->removed_bytes += 3; | |
8209 | action->action = ta_remove_longcall; | |
8210 | action->do_action = TRUE; | |
8211 | } | |
8212 | } | |
8213 | removed_bytes = old_removed_bytes; | |
8214 | if (action->do_action) | |
8215 | removed_bytes += action->removed_bytes; | |
e0001a05 NC |
8216 | } |
8217 | } | |
8218 | ||
43cd72b9 BW |
8219 | removed_bytes = 0; |
8220 | for (i = 0; i < ebb_table->action_count; ++i) | |
8221 | { | |
8222 | proposed_action *action = &ebb_table->actions[i]; | |
8223 | if (action->do_action) | |
8224 | removed_bytes += action->removed_bytes; | |
8225 | } | |
8226 | ||
8227 | if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0 | |
8228 | && ebb->ends_unreachable) | |
8229 | { | |
8230 | proposed_action *action; | |
8231 | int br; | |
8232 | int extra_space; | |
8233 | ||
8234 | BFD_ASSERT (ebb_table->action_count != 0); | |
8235 | action = &ebb_table->actions[ebb_table->action_count - 1]; | |
8236 | BFD_ASSERT (action->action == ta_fill); | |
8237 | BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE); | |
8238 | ||
8239 | extra_space = compute_fill_extra_space (ebb->ends_unreachable); | |
8240 | br = action->removed_bytes + removed_bytes + extra_space; | |
8241 | br = br & ((1 << ebb->sec->alignment_power ) - 1); | |
8242 | ||
8243 | action->removed_bytes = extra_space - br; | |
8244 | } | |
8245 | return TRUE; | |
e0001a05 NC |
8246 | } |
8247 | ||
8248 | ||
03e94c08 BW |
8249 | /* The xlate_map is a sorted array of address mappings designed to |
8250 | answer the offset_with_removed_text() query with a binary search instead | |
8251 | of a linear search through the section's action_list. */ | |
8252 | ||
8253 | typedef struct xlate_map_entry xlate_map_entry_t; | |
8254 | typedef struct xlate_map xlate_map_t; | |
8255 | ||
8256 | struct xlate_map_entry | |
8257 | { | |
8258 | unsigned orig_address; | |
8259 | unsigned new_address; | |
8260 | unsigned size; | |
8261 | }; | |
8262 | ||
8263 | struct xlate_map | |
8264 | { | |
8265 | unsigned entry_count; | |
8266 | xlate_map_entry_t *entry; | |
8267 | }; | |
8268 | ||
8269 | ||
68ffbac6 | 8270 | static int |
03e94c08 BW |
8271 | xlate_compare (const void *a_v, const void *b_v) |
8272 | { | |
8273 | const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v; | |
8274 | const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v; | |
8275 | if (a->orig_address < b->orig_address) | |
8276 | return -1; | |
8277 | if (a->orig_address > (b->orig_address + b->size - 1)) | |
8278 | return 1; | |
8279 | return 0; | |
8280 | } | |
8281 | ||
8282 | ||
8283 | static bfd_vma | |
8284 | xlate_offset_with_removed_text (const xlate_map_t *map, | |
8285 | text_action_list *action_list, | |
8286 | bfd_vma offset) | |
8287 | { | |
03e94c08 BW |
8288 | void *r; |
8289 | xlate_map_entry_t *e; | |
8290 | ||
8291 | if (map == NULL) | |
8292 | return offset_with_removed_text (action_list, offset); | |
8293 | ||
8294 | if (map->entry_count == 0) | |
8295 | return offset; | |
8296 | ||
03e94c08 BW |
8297 | r = bsearch (&offset, map->entry, map->entry_count, |
8298 | sizeof (xlate_map_entry_t), &xlate_compare); | |
8299 | e = (xlate_map_entry_t *) r; | |
68ffbac6 | 8300 | |
03e94c08 BW |
8301 | BFD_ASSERT (e != NULL); |
8302 | if (e == NULL) | |
8303 | return offset; | |
8304 | return e->new_address - e->orig_address + offset; | |
8305 | } | |
8306 | ||
4c2af04f MF |
8307 | typedef struct xlate_map_context_struct xlate_map_context; |
8308 | struct xlate_map_context_struct | |
8309 | { | |
8310 | xlate_map_t *map; | |
8311 | xlate_map_entry_t *current_entry; | |
8312 | int removed; | |
8313 | }; | |
8314 | ||
8315 | static int | |
8316 | xlate_map_fn (splay_tree_node node, void *p) | |
8317 | { | |
8318 | text_action *r = (text_action *)node->value; | |
8319 | xlate_map_context *ctx = p; | |
8320 | unsigned orig_size = 0; | |
8321 | ||
8322 | switch (r->action) | |
8323 | { | |
8324 | case ta_none: | |
8325 | case ta_remove_insn: | |
8326 | case ta_convert_longcall: | |
8327 | case ta_remove_literal: | |
8328 | case ta_add_literal: | |
8329 | break; | |
8330 | case ta_remove_longcall: | |
8331 | orig_size = 6; | |
8332 | break; | |
8333 | case ta_narrow_insn: | |
8334 | orig_size = 3; | |
8335 | break; | |
8336 | case ta_widen_insn: | |
8337 | orig_size = 2; | |
8338 | break; | |
8339 | case ta_fill: | |
8340 | break; | |
8341 | } | |
8342 | ctx->current_entry->size = | |
8343 | r->offset + orig_size - ctx->current_entry->orig_address; | |
8344 | if (ctx->current_entry->size != 0) | |
8345 | { | |
8346 | ctx->current_entry++; | |
8347 | ctx->map->entry_count++; | |
8348 | } | |
8349 | ctx->current_entry->orig_address = r->offset + orig_size; | |
8350 | ctx->removed += r->removed_bytes; | |
8351 | ctx->current_entry->new_address = r->offset + orig_size - ctx->removed; | |
8352 | ctx->current_entry->size = 0; | |
8353 | return 0; | |
8354 | } | |
03e94c08 BW |
8355 | |
8356 | /* Build a binary searchable offset translation map from a section's | |
8357 | action list. */ | |
8358 | ||
8359 | static xlate_map_t * | |
8360 | build_xlate_map (asection *sec, xtensa_relax_info *relax_info) | |
8361 | { | |
03e94c08 BW |
8362 | text_action_list *action_list = &relax_info->action_list; |
8363 | unsigned num_actions = 0; | |
4c2af04f | 8364 | xlate_map_context ctx; |
03e94c08 | 8365 | |
4c2af04f MF |
8366 | ctx.map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t)); |
8367 | ||
8368 | if (ctx.map == NULL) | |
03e94c08 BW |
8369 | return NULL; |
8370 | ||
8371 | num_actions = action_list_count (action_list); | |
4c2af04f | 8372 | ctx.map->entry = (xlate_map_entry_t *) |
03e94c08 | 8373 | bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1)); |
4c2af04f | 8374 | if (ctx.map->entry == NULL) |
03e94c08 | 8375 | { |
4c2af04f | 8376 | free (ctx.map); |
03e94c08 BW |
8377 | return NULL; |
8378 | } | |
4c2af04f | 8379 | ctx.map->entry_count = 0; |
68ffbac6 | 8380 | |
4c2af04f MF |
8381 | ctx.removed = 0; |
8382 | ctx.current_entry = &ctx.map->entry[0]; | |
03e94c08 | 8383 | |
4c2af04f MF |
8384 | ctx.current_entry->orig_address = 0; |
8385 | ctx.current_entry->new_address = 0; | |
8386 | ctx.current_entry->size = 0; | |
03e94c08 | 8387 | |
4c2af04f | 8388 | splay_tree_foreach (action_list->tree, xlate_map_fn, &ctx); |
03e94c08 | 8389 | |
4c2af04f MF |
8390 | ctx.current_entry->size = (bfd_get_section_limit (sec->owner, sec) |
8391 | - ctx.current_entry->orig_address); | |
8392 | if (ctx.current_entry->size != 0) | |
8393 | ctx.map->entry_count++; | |
03e94c08 | 8394 | |
4c2af04f | 8395 | return ctx.map; |
03e94c08 BW |
8396 | } |
8397 | ||
8398 | ||
8399 | /* Free an offset translation map. */ | |
8400 | ||
68ffbac6 | 8401 | static void |
03e94c08 BW |
8402 | free_xlate_map (xlate_map_t *map) |
8403 | { | |
8404 | if (map && map->entry) | |
8405 | free (map->entry); | |
8406 | if (map) | |
8407 | free (map); | |
8408 | } | |
8409 | ||
8410 | ||
43cd72b9 BW |
8411 | /* Use check_section_ebb_pcrels_fit to make sure that all of the |
8412 | relocations in a section will fit if a proposed set of actions | |
8413 | are performed. */ | |
e0001a05 | 8414 | |
43cd72b9 | 8415 | static bfd_boolean |
7fa3d080 BW |
8416 | check_section_ebb_pcrels_fit (bfd *abfd, |
8417 | asection *sec, | |
8418 | bfd_byte *contents, | |
8419 | Elf_Internal_Rela *internal_relocs, | |
b2b326d2 | 8420 | reloc_range_list *relevant_relocs, |
cb337148 BW |
8421 | const ebb_constraint *constraint, |
8422 | const xtensa_opcode *reloc_opcodes) | |
e0001a05 | 8423 | { |
43cd72b9 | 8424 | unsigned i, j; |
b2b326d2 | 8425 | unsigned n = sec->reloc_count; |
43cd72b9 | 8426 | Elf_Internal_Rela *irel; |
03e94c08 BW |
8427 | xlate_map_t *xmap = NULL; |
8428 | bfd_boolean ok = TRUE; | |
43cd72b9 | 8429 | xtensa_relax_info *relax_info; |
b2b326d2 | 8430 | reloc_range_list_entry *entry = NULL; |
e0001a05 | 8431 | |
43cd72b9 | 8432 | relax_info = get_xtensa_relax_info (sec); |
e0001a05 | 8433 | |
03e94c08 BW |
8434 | if (relax_info && sec->reloc_count > 100) |
8435 | { | |
8436 | xmap = build_xlate_map (sec, relax_info); | |
8437 | /* NULL indicates out of memory, but the slow version | |
8438 | can still be used. */ | |
8439 | } | |
8440 | ||
b2b326d2 MF |
8441 | if (relevant_relocs && constraint->action_count) |
8442 | { | |
8443 | if (!relevant_relocs->ok) | |
8444 | { | |
8445 | ok = FALSE; | |
8446 | n = 0; | |
8447 | } | |
8448 | else | |
8449 | { | |
8450 | bfd_vma min_offset, max_offset; | |
8451 | min_offset = max_offset = constraint->actions[0].offset; | |
8452 | ||
8453 | for (i = 1; i < constraint->action_count; ++i) | |
8454 | { | |
8455 | proposed_action *action = &constraint->actions[i]; | |
8456 | bfd_vma offset = action->offset; | |
8457 | ||
8458 | if (offset < min_offset) | |
8459 | min_offset = offset; | |
8460 | if (offset > max_offset) | |
8461 | max_offset = offset; | |
8462 | } | |
8463 | reloc_range_list_update_range (relevant_relocs, min_offset, | |
8464 | max_offset); | |
8465 | n = relevant_relocs->n_list; | |
8466 | entry = &relevant_relocs->list_root; | |
8467 | } | |
8468 | } | |
8469 | else | |
8470 | { | |
8471 | relevant_relocs = NULL; | |
8472 | } | |
8473 | ||
8474 | for (i = 0; i < n; i++) | |
43cd72b9 BW |
8475 | { |
8476 | r_reloc r_rel; | |
8477 | bfd_vma orig_self_offset, orig_target_offset; | |
8478 | bfd_vma self_offset, target_offset; | |
8479 | int r_type; | |
8480 | reloc_howto_type *howto; | |
8481 | int self_removed_bytes, target_removed_bytes; | |
e0001a05 | 8482 | |
b2b326d2 MF |
8483 | if (relevant_relocs) |
8484 | { | |
8485 | entry = entry->next; | |
8486 | irel = entry->irel; | |
8487 | } | |
8488 | else | |
8489 | { | |
8490 | irel = internal_relocs + i; | |
8491 | } | |
43cd72b9 | 8492 | r_type = ELF32_R_TYPE (irel->r_info); |
e0001a05 | 8493 | |
43cd72b9 BW |
8494 | howto = &elf_howto_table[r_type]; |
8495 | /* We maintain the required invariant: PC-relative relocations | |
8496 | that fit before linking must fit after linking. Thus we only | |
8497 | need to deal with relocations to the same section that are | |
8498 | PC-relative. */ | |
1bbb5f21 BW |
8499 | if (r_type == R_XTENSA_ASM_SIMPLIFY |
8500 | || r_type == R_XTENSA_32_PCREL | |
43cd72b9 BW |
8501 | || !howto->pc_relative) |
8502 | continue; | |
e0001a05 | 8503 | |
43cd72b9 BW |
8504 | r_reloc_init (&r_rel, abfd, irel, contents, |
8505 | bfd_get_section_limit (abfd, sec)); | |
e0001a05 | 8506 | |
43cd72b9 BW |
8507 | if (r_reloc_get_section (&r_rel) != sec) |
8508 | continue; | |
e0001a05 | 8509 | |
43cd72b9 BW |
8510 | orig_self_offset = irel->r_offset; |
8511 | orig_target_offset = r_rel.target_offset; | |
e0001a05 | 8512 | |
43cd72b9 BW |
8513 | self_offset = orig_self_offset; |
8514 | target_offset = orig_target_offset; | |
8515 | ||
8516 | if (relax_info) | |
8517 | { | |
03e94c08 BW |
8518 | self_offset = |
8519 | xlate_offset_with_removed_text (xmap, &relax_info->action_list, | |
8520 | orig_self_offset); | |
8521 | target_offset = | |
8522 | xlate_offset_with_removed_text (xmap, &relax_info->action_list, | |
8523 | orig_target_offset); | |
43cd72b9 BW |
8524 | } |
8525 | ||
8526 | self_removed_bytes = 0; | |
8527 | target_removed_bytes = 0; | |
8528 | ||
8529 | for (j = 0; j < constraint->action_count; ++j) | |
8530 | { | |
8531 | proposed_action *action = &constraint->actions[j]; | |
8532 | bfd_vma offset = action->offset; | |
8533 | int removed_bytes = action->removed_bytes; | |
8534 | if (offset < orig_self_offset | |
8535 | || (offset == orig_self_offset && action->action == ta_fill | |
8536 | && action->removed_bytes < 0)) | |
8537 | self_removed_bytes += removed_bytes; | |
8538 | if (offset < orig_target_offset | |
8539 | || (offset == orig_target_offset && action->action == ta_fill | |
8540 | && action->removed_bytes < 0)) | |
8541 | target_removed_bytes += removed_bytes; | |
8542 | } | |
8543 | self_offset -= self_removed_bytes; | |
8544 | target_offset -= target_removed_bytes; | |
8545 | ||
8546 | /* Try to encode it. Get the operand and check. */ | |
8547 | if (is_alt_relocation (ELF32_R_TYPE (irel->r_info))) | |
8548 | { | |
8549 | /* None of the current alternate relocs are PC-relative, | |
8550 | and only PC-relative relocs matter here. */ | |
8551 | } | |
8552 | else | |
8553 | { | |
8554 | xtensa_opcode opcode; | |
8555 | int opnum; | |
8556 | ||
b2b326d2 | 8557 | if (relevant_relocs) |
03e94c08 | 8558 | { |
b2b326d2 MF |
8559 | opcode = entry->opcode; |
8560 | opnum = entry->opnum; | |
03e94c08 | 8561 | } |
b2b326d2 | 8562 | else |
03e94c08 | 8563 | { |
b2b326d2 MF |
8564 | if (reloc_opcodes) |
8565 | opcode = reloc_opcodes[relevant_relocs ? | |
8566 | (unsigned)(entry - relevant_relocs->reloc) : i]; | |
8567 | else | |
8568 | opcode = get_relocation_opcode (abfd, sec, contents, irel); | |
8569 | if (opcode == XTENSA_UNDEFINED) | |
8570 | { | |
8571 | ok = FALSE; | |
8572 | break; | |
8573 | } | |
8574 | ||
8575 | opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info)); | |
8576 | if (opnum == XTENSA_UNDEFINED) | |
8577 | { | |
8578 | ok = FALSE; | |
8579 | break; | |
8580 | } | |
03e94c08 | 8581 | } |
43cd72b9 BW |
8582 | |
8583 | if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset)) | |
03e94c08 BW |
8584 | { |
8585 | ok = FALSE; | |
8586 | break; | |
8587 | } | |
43cd72b9 BW |
8588 | } |
8589 | } | |
8590 | ||
03e94c08 BW |
8591 | if (xmap) |
8592 | free_xlate_map (xmap); | |
8593 | ||
8594 | return ok; | |
43cd72b9 BW |
8595 | } |
8596 | ||
8597 | ||
8598 | static bfd_boolean | |
7fa3d080 | 8599 | check_section_ebb_reduces (const ebb_constraint *constraint) |
43cd72b9 BW |
8600 | { |
8601 | int removed = 0; | |
8602 | unsigned i; | |
8603 | ||
8604 | for (i = 0; i < constraint->action_count; i++) | |
8605 | { | |
8606 | const proposed_action *action = &constraint->actions[i]; | |
8607 | if (action->do_action) | |
8608 | removed += action->removed_bytes; | |
8609 | } | |
8610 | if (removed < 0) | |
e0001a05 NC |
8611 | return FALSE; |
8612 | ||
8613 | return TRUE; | |
8614 | } | |
8615 | ||
8616 | ||
43cd72b9 | 8617 | void |
7fa3d080 BW |
8618 | text_action_add_proposed (text_action_list *l, |
8619 | const ebb_constraint *ebb_table, | |
8620 | asection *sec) | |
e0001a05 NC |
8621 | { |
8622 | unsigned i; | |
8623 | ||
43cd72b9 | 8624 | for (i = 0; i < ebb_table->action_count; i++) |
e0001a05 | 8625 | { |
43cd72b9 | 8626 | proposed_action *action = &ebb_table->actions[i]; |
e0001a05 | 8627 | |
43cd72b9 | 8628 | if (!action->do_action) |
e0001a05 | 8629 | continue; |
43cd72b9 BW |
8630 | switch (action->action) |
8631 | { | |
8632 | case ta_remove_insn: | |
8633 | case ta_remove_longcall: | |
8634 | case ta_convert_longcall: | |
8635 | case ta_narrow_insn: | |
8636 | case ta_widen_insn: | |
8637 | case ta_fill: | |
8638 | case ta_remove_literal: | |
8639 | text_action_add (l, action->action, sec, action->offset, | |
8640 | action->removed_bytes); | |
8641 | break; | |
8642 | case ta_none: | |
8643 | break; | |
8644 | default: | |
8645 | BFD_ASSERT (0); | |
8646 | break; | |
8647 | } | |
e0001a05 | 8648 | } |
43cd72b9 | 8649 | } |
e0001a05 | 8650 | |
43cd72b9 BW |
8651 | |
8652 | int | |
7fa3d080 | 8653 | compute_fill_extra_space (property_table_entry *entry) |
43cd72b9 BW |
8654 | { |
8655 | int fill_extra_space; | |
8656 | ||
8657 | if (!entry) | |
8658 | return 0; | |
8659 | ||
8660 | if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0) | |
8661 | return 0; | |
8662 | ||
8663 | fill_extra_space = entry->size; | |
8664 | if ((entry->flags & XTENSA_PROP_ALIGN) != 0) | |
8665 | { | |
8666 | /* Fill bytes for alignment: | |
8667 | (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */ | |
8668 | int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags); | |
8669 | int nsm = (1 << pow) - 1; | |
8670 | bfd_vma addr = entry->address + entry->size; | |
8671 | bfd_vma align_fill = nsm - ((addr + nsm) & nsm); | |
8672 | fill_extra_space += align_fill; | |
8673 | } | |
8674 | return fill_extra_space; | |
e0001a05 NC |
8675 | } |
8676 | ||
43cd72b9 | 8677 | \f |
e0001a05 NC |
8678 | /* First relaxation pass. */ |
8679 | ||
43cd72b9 BW |
8680 | /* If the section contains relaxable literals, check each literal to |
8681 | see if it has the same value as another literal that has already | |
8682 | been seen, either in the current section or a previous one. If so, | |
8683 | add an entry to the per-section list of removed literals. The | |
e0001a05 NC |
8684 | actual changes are deferred until the next pass. */ |
8685 | ||
68ffbac6 | 8686 | static bfd_boolean |
7fa3d080 BW |
8687 | compute_removed_literals (bfd *abfd, |
8688 | asection *sec, | |
8689 | struct bfd_link_info *link_info, | |
8690 | value_map_hash_table *values) | |
e0001a05 NC |
8691 | { |
8692 | xtensa_relax_info *relax_info; | |
8693 | bfd_byte *contents; | |
8694 | Elf_Internal_Rela *internal_relocs; | |
43cd72b9 | 8695 | source_reloc *src_relocs, *rel; |
e0001a05 | 8696 | bfd_boolean ok = TRUE; |
43cd72b9 BW |
8697 | property_table_entry *prop_table = NULL; |
8698 | int ptblsize; | |
8699 | int i, prev_i; | |
8700 | bfd_boolean last_loc_is_prev = FALSE; | |
8701 | bfd_vma last_target_offset = 0; | |
8702 | section_cache_t target_sec_cache; | |
8703 | bfd_size_type sec_size; | |
8704 | ||
8705 | init_section_cache (&target_sec_cache); | |
e0001a05 NC |
8706 | |
8707 | /* Do nothing if it is not a relaxable literal section. */ | |
8708 | relax_info = get_xtensa_relax_info (sec); | |
8709 | BFD_ASSERT (relax_info); | |
e0001a05 NC |
8710 | if (!relax_info->is_relaxable_literal_section) |
8711 | return ok; | |
8712 | ||
68ffbac6 | 8713 | internal_relocs = retrieve_internal_relocs (abfd, sec, |
e0001a05 NC |
8714 | link_info->keep_memory); |
8715 | ||
43cd72b9 | 8716 | sec_size = bfd_get_section_limit (abfd, sec); |
e0001a05 | 8717 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); |
43cd72b9 | 8718 | if (contents == NULL && sec_size != 0) |
e0001a05 NC |
8719 | { |
8720 | ok = FALSE; | |
8721 | goto error_return; | |
8722 | } | |
8723 | ||
8724 | /* Sort the source_relocs by target offset. */ | |
8725 | src_relocs = relax_info->src_relocs; | |
8726 | qsort (src_relocs, relax_info->src_count, | |
8727 | sizeof (source_reloc), source_reloc_compare); | |
43cd72b9 BW |
8728 | qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), |
8729 | internal_reloc_compare); | |
e0001a05 | 8730 | |
43cd72b9 BW |
8731 | ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table, |
8732 | XTENSA_PROP_SEC_NAME, FALSE); | |
8733 | if (ptblsize < 0) | |
8734 | { | |
8735 | ok = FALSE; | |
8736 | goto error_return; | |
8737 | } | |
8738 | ||
8739 | prev_i = -1; | |
e0001a05 NC |
8740 | for (i = 0; i < relax_info->src_count; i++) |
8741 | { | |
e0001a05 | 8742 | Elf_Internal_Rela *irel = NULL; |
e0001a05 NC |
8743 | |
8744 | rel = &src_relocs[i]; | |
43cd72b9 BW |
8745 | if (get_l32r_opcode () != rel->opcode) |
8746 | continue; | |
e0001a05 NC |
8747 | irel = get_irel_at_offset (sec, internal_relocs, |
8748 | rel->r_rel.target_offset); | |
8749 | ||
43cd72b9 BW |
8750 | /* If the relocation on this is not a simple R_XTENSA_32 or |
8751 | R_XTENSA_PLT then do not consider it. This may happen when | |
8752 | the difference of two symbols is used in a literal. */ | |
8753 | if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32 | |
8754 | && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT)) | |
8755 | continue; | |
8756 | ||
e0001a05 NC |
8757 | /* If the target_offset for this relocation is the same as the |
8758 | previous relocation, then we've already considered whether the | |
8759 | literal can be coalesced. Skip to the next one.... */ | |
43cd72b9 BW |
8760 | if (i != 0 && prev_i != -1 |
8761 | && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset) | |
e0001a05 | 8762 | continue; |
43cd72b9 BW |
8763 | prev_i = i; |
8764 | ||
68ffbac6 | 8765 | if (last_loc_is_prev && |
43cd72b9 BW |
8766 | last_target_offset + 4 != rel->r_rel.target_offset) |
8767 | last_loc_is_prev = FALSE; | |
e0001a05 NC |
8768 | |
8769 | /* Check if the relocation was from an L32R that is being removed | |
8770 | because a CALLX was converted to a direct CALL, and check if | |
8771 | there are no other relocations to the literal. */ | |
68ffbac6 | 8772 | if (is_removable_literal (rel, i, src_relocs, relax_info->src_count, |
99ded152 | 8773 | sec, prop_table, ptblsize)) |
e0001a05 | 8774 | { |
43cd72b9 BW |
8775 | if (!remove_dead_literal (abfd, sec, link_info, internal_relocs, |
8776 | irel, rel, prop_table, ptblsize)) | |
e0001a05 | 8777 | { |
43cd72b9 BW |
8778 | ok = FALSE; |
8779 | goto error_return; | |
e0001a05 | 8780 | } |
43cd72b9 | 8781 | last_target_offset = rel->r_rel.target_offset; |
e0001a05 NC |
8782 | continue; |
8783 | } | |
8784 | ||
43cd72b9 | 8785 | if (!identify_literal_placement (abfd, sec, contents, link_info, |
68ffbac6 L |
8786 | values, |
8787 | &last_loc_is_prev, irel, | |
43cd72b9 BW |
8788 | relax_info->src_count - i, rel, |
8789 | prop_table, ptblsize, | |
8790 | &target_sec_cache, rel->is_abs_literal)) | |
e0001a05 | 8791 | { |
43cd72b9 BW |
8792 | ok = FALSE; |
8793 | goto error_return; | |
8794 | } | |
8795 | last_target_offset = rel->r_rel.target_offset; | |
8796 | } | |
e0001a05 | 8797 | |
43cd72b9 BW |
8798 | #if DEBUG |
8799 | print_removed_literals (stderr, &relax_info->removed_list); | |
8800 | print_action_list (stderr, &relax_info->action_list); | |
8801 | #endif /* DEBUG */ | |
8802 | ||
8803 | error_return: | |
65e911f9 AM |
8804 | if (prop_table) |
8805 | free (prop_table); | |
8806 | free_section_cache (&target_sec_cache); | |
43cd72b9 BW |
8807 | |
8808 | release_contents (sec, contents); | |
8809 | release_internal_relocs (sec, internal_relocs); | |
8810 | return ok; | |
8811 | } | |
8812 | ||
8813 | ||
8814 | static Elf_Internal_Rela * | |
7fa3d080 BW |
8815 | get_irel_at_offset (asection *sec, |
8816 | Elf_Internal_Rela *internal_relocs, | |
8817 | bfd_vma offset) | |
43cd72b9 BW |
8818 | { |
8819 | unsigned i; | |
8820 | Elf_Internal_Rela *irel; | |
8821 | unsigned r_type; | |
8822 | Elf_Internal_Rela key; | |
8823 | ||
68ffbac6 | 8824 | if (!internal_relocs) |
43cd72b9 BW |
8825 | return NULL; |
8826 | ||
8827 | key.r_offset = offset; | |
8828 | irel = bsearch (&key, internal_relocs, sec->reloc_count, | |
8829 | sizeof (Elf_Internal_Rela), internal_reloc_matches); | |
8830 | if (!irel) | |
8831 | return NULL; | |
8832 | ||
8833 | /* bsearch does not guarantee which will be returned if there are | |
8834 | multiple matches. We need the first that is not an alignment. */ | |
8835 | i = irel - internal_relocs; | |
8836 | while (i > 0) | |
8837 | { | |
8838 | if (internal_relocs[i-1].r_offset != offset) | |
8839 | break; | |
8840 | i--; | |
8841 | } | |
8842 | for ( ; i < sec->reloc_count; i++) | |
8843 | { | |
8844 | irel = &internal_relocs[i]; | |
8845 | r_type = ELF32_R_TYPE (irel->r_info); | |
8846 | if (irel->r_offset == offset && r_type != R_XTENSA_NONE) | |
8847 | return irel; | |
8848 | } | |
8849 | ||
8850 | return NULL; | |
8851 | } | |
8852 | ||
8853 | ||
8854 | bfd_boolean | |
7fa3d080 BW |
8855 | is_removable_literal (const source_reloc *rel, |
8856 | int i, | |
8857 | const source_reloc *src_relocs, | |
99ded152 BW |
8858 | int src_count, |
8859 | asection *sec, | |
8860 | property_table_entry *prop_table, | |
8861 | int ptblsize) | |
43cd72b9 BW |
8862 | { |
8863 | const source_reloc *curr_rel; | |
99ded152 BW |
8864 | property_table_entry *entry; |
8865 | ||
43cd72b9 BW |
8866 | if (!rel->is_null) |
8867 | return FALSE; | |
68ffbac6 L |
8868 | |
8869 | entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
99ded152 BW |
8870 | sec->vma + rel->r_rel.target_offset); |
8871 | if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM)) | |
8872 | return FALSE; | |
8873 | ||
43cd72b9 BW |
8874 | for (++i; i < src_count; ++i) |
8875 | { | |
8876 | curr_rel = &src_relocs[i]; | |
8877 | /* If all others have the same target offset.... */ | |
8878 | if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset) | |
8879 | return TRUE; | |
8880 | ||
8881 | if (!curr_rel->is_null | |
8882 | && !xtensa_is_property_section (curr_rel->source_sec) | |
8883 | && !(curr_rel->source_sec->flags & SEC_DEBUGGING)) | |
8884 | return FALSE; | |
8885 | } | |
8886 | return TRUE; | |
8887 | } | |
8888 | ||
8889 | ||
68ffbac6 | 8890 | bfd_boolean |
7fa3d080 BW |
8891 | remove_dead_literal (bfd *abfd, |
8892 | asection *sec, | |
8893 | struct bfd_link_info *link_info, | |
8894 | Elf_Internal_Rela *internal_relocs, | |
8895 | Elf_Internal_Rela *irel, | |
8896 | source_reloc *rel, | |
8897 | property_table_entry *prop_table, | |
8898 | int ptblsize) | |
43cd72b9 BW |
8899 | { |
8900 | property_table_entry *entry; | |
8901 | xtensa_relax_info *relax_info; | |
8902 | ||
8903 | relax_info = get_xtensa_relax_info (sec); | |
8904 | if (!relax_info) | |
8905 | return FALSE; | |
8906 | ||
8907 | entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
8908 | sec->vma + rel->r_rel.target_offset); | |
8909 | ||
8910 | /* Mark the unused literal so that it will be removed. */ | |
8911 | add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL); | |
8912 | ||
8913 | text_action_add (&relax_info->action_list, | |
8914 | ta_remove_literal, sec, rel->r_rel.target_offset, 4); | |
8915 | ||
8916 | /* If the section is 4-byte aligned, do not add fill. */ | |
68ffbac6 | 8917 | if (sec->alignment_power > 2) |
43cd72b9 BW |
8918 | { |
8919 | int fill_extra_space; | |
8920 | bfd_vma entry_sec_offset; | |
8921 | text_action *fa; | |
8922 | property_table_entry *the_add_entry; | |
8923 | int removed_diff; | |
8924 | ||
8925 | if (entry) | |
8926 | entry_sec_offset = entry->address - sec->vma + entry->size; | |
8927 | else | |
8928 | entry_sec_offset = rel->r_rel.target_offset + 4; | |
8929 | ||
8930 | /* If the literal range is at the end of the section, | |
8931 | do not add fill. */ | |
8932 | the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
8933 | entry_sec_offset); | |
8934 | fill_extra_space = compute_fill_extra_space (the_add_entry); | |
8935 | ||
8936 | fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset); | |
8937 | removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset, | |
8938 | -4, fill_extra_space); | |
8939 | if (fa) | |
8940 | adjust_fill_action (fa, removed_diff); | |
8941 | else | |
8942 | text_action_add (&relax_info->action_list, | |
8943 | ta_fill, sec, entry_sec_offset, removed_diff); | |
8944 | } | |
8945 | ||
8946 | /* Zero out the relocation on this literal location. */ | |
8947 | if (irel) | |
8948 | { | |
8949 | if (elf_hash_table (link_info)->dynamic_sections_created) | |
8950 | shrink_dynamic_reloc_sections (link_info, abfd, sec, irel); | |
8951 | ||
8952 | irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
8953 | pin_internal_relocs (sec, internal_relocs); | |
8954 | } | |
8955 | ||
8956 | /* Do not modify "last_loc_is_prev". */ | |
8957 | return TRUE; | |
8958 | } | |
8959 | ||
8960 | ||
68ffbac6 | 8961 | bfd_boolean |
7fa3d080 BW |
8962 | identify_literal_placement (bfd *abfd, |
8963 | asection *sec, | |
8964 | bfd_byte *contents, | |
8965 | struct bfd_link_info *link_info, | |
8966 | value_map_hash_table *values, | |
8967 | bfd_boolean *last_loc_is_prev_p, | |
8968 | Elf_Internal_Rela *irel, | |
8969 | int remaining_src_rels, | |
8970 | source_reloc *rel, | |
8971 | property_table_entry *prop_table, | |
8972 | int ptblsize, | |
8973 | section_cache_t *target_sec_cache, | |
8974 | bfd_boolean is_abs_literal) | |
43cd72b9 BW |
8975 | { |
8976 | literal_value val; | |
8977 | value_map *val_map; | |
8978 | xtensa_relax_info *relax_info; | |
8979 | bfd_boolean literal_placed = FALSE; | |
8980 | r_reloc r_rel; | |
8981 | unsigned long value; | |
8982 | bfd_boolean final_static_link; | |
8983 | bfd_size_type sec_size; | |
8984 | ||
8985 | relax_info = get_xtensa_relax_info (sec); | |
8986 | if (!relax_info) | |
8987 | return FALSE; | |
8988 | ||
8989 | sec_size = bfd_get_section_limit (abfd, sec); | |
8990 | ||
8991 | final_static_link = | |
0e1862bb | 8992 | (!bfd_link_relocatable (link_info) |
43cd72b9 BW |
8993 | && !elf_hash_table (link_info)->dynamic_sections_created); |
8994 | ||
8995 | /* The placement algorithm first checks to see if the literal is | |
8996 | already in the value map. If so and the value map is reachable | |
8997 | from all uses, then the literal is moved to that location. If | |
8998 | not, then we identify the last location where a fresh literal was | |
8999 | placed. If the literal can be safely moved there, then we do so. | |
9000 | If not, then we assume that the literal is not to move and leave | |
9001 | the literal where it is, marking it as the last literal | |
9002 | location. */ | |
9003 | ||
9004 | /* Find the literal value. */ | |
9005 | value = 0; | |
9006 | r_reloc_init (&r_rel, abfd, irel, contents, sec_size); | |
9007 | if (!irel) | |
9008 | { | |
9009 | BFD_ASSERT (rel->r_rel.target_offset < sec_size); | |
9010 | value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset); | |
9011 | } | |
9012 | init_literal_value (&val, &r_rel, value, is_abs_literal); | |
9013 | ||
9014 | /* Check if we've seen another literal with the same value that | |
9015 | is in the same output section. */ | |
9016 | val_map = value_map_get_cached_value (values, &val, final_static_link); | |
9017 | ||
9018 | if (val_map | |
9019 | && (r_reloc_get_section (&val_map->loc)->output_section | |
9020 | == sec->output_section) | |
9021 | && relocations_reach (rel, remaining_src_rels, &val_map->loc) | |
9022 | && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map)) | |
9023 | { | |
9024 | /* No change to last_loc_is_prev. */ | |
9025 | literal_placed = TRUE; | |
9026 | } | |
9027 | ||
9028 | /* For relocatable links, do not try to move literals. To do it | |
9029 | correctly might increase the number of relocations in an input | |
9030 | section making the default relocatable linking fail. */ | |
0e1862bb | 9031 | if (!bfd_link_relocatable (link_info) && !literal_placed |
43cd72b9 BW |
9032 | && values->has_last_loc && !(*last_loc_is_prev_p)) |
9033 | { | |
9034 | asection *target_sec = r_reloc_get_section (&values->last_loc); | |
9035 | if (target_sec && target_sec->output_section == sec->output_section) | |
9036 | { | |
9037 | /* Increment the virtual offset. */ | |
9038 | r_reloc try_loc = values->last_loc; | |
9039 | try_loc.virtual_offset += 4; | |
9040 | ||
9041 | /* There is a last loc that was in the same output section. */ | |
9042 | if (relocations_reach (rel, remaining_src_rels, &try_loc) | |
9043 | && move_shared_literal (sec, link_info, rel, | |
68ffbac6 | 9044 | prop_table, ptblsize, |
43cd72b9 | 9045 | &try_loc, &val, target_sec_cache)) |
e0001a05 | 9046 | { |
43cd72b9 BW |
9047 | values->last_loc.virtual_offset += 4; |
9048 | literal_placed = TRUE; | |
9049 | if (!val_map) | |
9050 | val_map = add_value_map (values, &val, &try_loc, | |
9051 | final_static_link); | |
9052 | else | |
9053 | val_map->loc = try_loc; | |
e0001a05 NC |
9054 | } |
9055 | } | |
43cd72b9 BW |
9056 | } |
9057 | ||
9058 | if (!literal_placed) | |
9059 | { | |
9060 | /* Nothing worked, leave the literal alone but update the last loc. */ | |
9061 | values->has_last_loc = TRUE; | |
9062 | values->last_loc = rel->r_rel; | |
9063 | if (!val_map) | |
9064 | val_map = add_value_map (values, &val, &rel->r_rel, final_static_link); | |
e0001a05 | 9065 | else |
43cd72b9 BW |
9066 | val_map->loc = rel->r_rel; |
9067 | *last_loc_is_prev_p = TRUE; | |
e0001a05 NC |
9068 | } |
9069 | ||
43cd72b9 | 9070 | return TRUE; |
e0001a05 NC |
9071 | } |
9072 | ||
9073 | ||
9074 | /* Check if the original relocations (presumably on L32R instructions) | |
9075 | identified by reloc[0..N] can be changed to reference the literal | |
9076 | identified by r_rel. If r_rel is out of range for any of the | |
9077 | original relocations, then we don't want to coalesce the original | |
9078 | literal with the one at r_rel. We only check reloc[0..N], where the | |
9079 | offsets are all the same as for reloc[0] (i.e., they're all | |
9080 | referencing the same literal) and where N is also bounded by the | |
9081 | number of remaining entries in the "reloc" array. The "reloc" array | |
9082 | is sorted by target offset so we know all the entries for the same | |
9083 | literal will be contiguous. */ | |
9084 | ||
9085 | static bfd_boolean | |
7fa3d080 BW |
9086 | relocations_reach (source_reloc *reloc, |
9087 | int remaining_relocs, | |
9088 | const r_reloc *r_rel) | |
e0001a05 NC |
9089 | { |
9090 | bfd_vma from_offset, source_address, dest_address; | |
9091 | asection *sec; | |
9092 | int i; | |
9093 | ||
9094 | if (!r_reloc_is_defined (r_rel)) | |
9095 | return FALSE; | |
9096 | ||
9097 | sec = r_reloc_get_section (r_rel); | |
9098 | from_offset = reloc[0].r_rel.target_offset; | |
9099 | ||
9100 | for (i = 0; i < remaining_relocs; i++) | |
9101 | { | |
9102 | if (reloc[i].r_rel.target_offset != from_offset) | |
9103 | break; | |
9104 | ||
9105 | /* Ignore relocations that have been removed. */ | |
9106 | if (reloc[i].is_null) | |
9107 | continue; | |
9108 | ||
9109 | /* The original and new output section for these must be the same | |
9110 | in order to coalesce. */ | |
9111 | if (r_reloc_get_section (&reloc[i].r_rel)->output_section | |
9112 | != sec->output_section) | |
9113 | return FALSE; | |
9114 | ||
d638e0ac BW |
9115 | /* Absolute literals in the same output section can always be |
9116 | combined. */ | |
9117 | if (reloc[i].is_abs_literal) | |
9118 | continue; | |
9119 | ||
43cd72b9 BW |
9120 | /* A literal with no PC-relative relocations can be moved anywhere. */ |
9121 | if (reloc[i].opnd != -1) | |
e0001a05 NC |
9122 | { |
9123 | /* Otherwise, check to see that it fits. */ | |
9124 | source_address = (reloc[i].source_sec->output_section->vma | |
9125 | + reloc[i].source_sec->output_offset | |
9126 | + reloc[i].r_rel.rela.r_offset); | |
9127 | dest_address = (sec->output_section->vma | |
9128 | + sec->output_offset | |
9129 | + r_rel->target_offset); | |
9130 | ||
43cd72b9 BW |
9131 | if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd, |
9132 | source_address, dest_address)) | |
e0001a05 NC |
9133 | return FALSE; |
9134 | } | |
9135 | } | |
9136 | ||
9137 | return TRUE; | |
9138 | } | |
9139 | ||
9140 | ||
43cd72b9 BW |
9141 | /* Move a literal to another literal location because it is |
9142 | the same as the other literal value. */ | |
e0001a05 | 9143 | |
68ffbac6 | 9144 | static bfd_boolean |
7fa3d080 BW |
9145 | coalesce_shared_literal (asection *sec, |
9146 | source_reloc *rel, | |
9147 | property_table_entry *prop_table, | |
9148 | int ptblsize, | |
9149 | value_map *val_map) | |
e0001a05 | 9150 | { |
43cd72b9 BW |
9151 | property_table_entry *entry; |
9152 | text_action *fa; | |
9153 | property_table_entry *the_add_entry; | |
9154 | int removed_diff; | |
9155 | xtensa_relax_info *relax_info; | |
9156 | ||
9157 | relax_info = get_xtensa_relax_info (sec); | |
9158 | if (!relax_info) | |
9159 | return FALSE; | |
9160 | ||
9161 | entry = elf_xtensa_find_property_entry | |
9162 | (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset); | |
99ded152 | 9163 | if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM)) |
43cd72b9 BW |
9164 | return TRUE; |
9165 | ||
9166 | /* Mark that the literal will be coalesced. */ | |
9167 | add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc); | |
9168 | ||
9169 | text_action_add (&relax_info->action_list, | |
9170 | ta_remove_literal, sec, rel->r_rel.target_offset, 4); | |
9171 | ||
9172 | /* If the section is 4-byte aligned, do not add fill. */ | |
68ffbac6 | 9173 | if (sec->alignment_power > 2) |
e0001a05 | 9174 | { |
43cd72b9 BW |
9175 | int fill_extra_space; |
9176 | bfd_vma entry_sec_offset; | |
9177 | ||
9178 | if (entry) | |
9179 | entry_sec_offset = entry->address - sec->vma + entry->size; | |
9180 | else | |
9181 | entry_sec_offset = rel->r_rel.target_offset + 4; | |
9182 | ||
9183 | /* If the literal range is at the end of the section, | |
9184 | do not add fill. */ | |
9185 | fill_extra_space = 0; | |
9186 | the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
9187 | entry_sec_offset); | |
9188 | if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE)) | |
9189 | fill_extra_space = the_add_entry->size; | |
9190 | ||
9191 | fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset); | |
9192 | removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset, | |
9193 | -4, fill_extra_space); | |
9194 | if (fa) | |
9195 | adjust_fill_action (fa, removed_diff); | |
9196 | else | |
9197 | text_action_add (&relax_info->action_list, | |
9198 | ta_fill, sec, entry_sec_offset, removed_diff); | |
e0001a05 | 9199 | } |
43cd72b9 BW |
9200 | |
9201 | return TRUE; | |
9202 | } | |
9203 | ||
9204 | ||
9205 | /* Move a literal to another location. This may actually increase the | |
9206 | total amount of space used because of alignments so we need to do | |
9207 | this carefully. Also, it may make a branch go out of range. */ | |
9208 | ||
68ffbac6 | 9209 | static bfd_boolean |
7fa3d080 BW |
9210 | move_shared_literal (asection *sec, |
9211 | struct bfd_link_info *link_info, | |
9212 | source_reloc *rel, | |
9213 | property_table_entry *prop_table, | |
9214 | int ptblsize, | |
9215 | const r_reloc *target_loc, | |
9216 | const literal_value *lit_value, | |
9217 | section_cache_t *target_sec_cache) | |
43cd72b9 BW |
9218 | { |
9219 | property_table_entry *the_add_entry, *src_entry, *target_entry = NULL; | |
9220 | text_action *fa, *target_fa; | |
9221 | int removed_diff; | |
9222 | xtensa_relax_info *relax_info, *target_relax_info; | |
9223 | asection *target_sec; | |
9224 | ebb_t *ebb; | |
9225 | ebb_constraint ebb_table; | |
9226 | bfd_boolean relocs_fit; | |
9227 | ||
9228 | /* If this routine always returns FALSE, the literals that cannot be | |
9229 | coalesced will not be moved. */ | |
9230 | if (elf32xtensa_no_literal_movement) | |
9231 | return FALSE; | |
9232 | ||
9233 | relax_info = get_xtensa_relax_info (sec); | |
9234 | if (!relax_info) | |
9235 | return FALSE; | |
9236 | ||
9237 | target_sec = r_reloc_get_section (target_loc); | |
9238 | target_relax_info = get_xtensa_relax_info (target_sec); | |
9239 | ||
9240 | /* Literals to undefined sections may not be moved because they | |
9241 | must report an error. */ | |
9242 | if (bfd_is_und_section (target_sec)) | |
9243 | return FALSE; | |
9244 | ||
9245 | src_entry = elf_xtensa_find_property_entry | |
9246 | (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset); | |
9247 | ||
9248 | if (!section_cache_section (target_sec_cache, target_sec, link_info)) | |
9249 | return FALSE; | |
9250 | ||
9251 | target_entry = elf_xtensa_find_property_entry | |
68ffbac6 | 9252 | (target_sec_cache->ptbl, target_sec_cache->pte_count, |
43cd72b9 BW |
9253 | target_sec->vma + target_loc->target_offset); |
9254 | ||
9255 | if (!target_entry) | |
9256 | return FALSE; | |
9257 | ||
9258 | /* Make sure that we have not broken any branches. */ | |
9259 | relocs_fit = FALSE; | |
9260 | ||
9261 | init_ebb_constraint (&ebb_table); | |
9262 | ebb = &ebb_table.ebb; | |
68ffbac6 | 9263 | init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents, |
43cd72b9 BW |
9264 | target_sec_cache->content_length, |
9265 | target_sec_cache->ptbl, target_sec_cache->pte_count, | |
9266 | target_sec_cache->relocs, target_sec_cache->reloc_count); | |
9267 | ||
9268 | /* Propose to add 4 bytes + worst-case alignment size increase to | |
9269 | destination. */ | |
9270 | ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0, | |
9271 | ta_fill, target_loc->target_offset, | |
9272 | -4 - (1 << target_sec->alignment_power), TRUE); | |
9273 | ||
9274 | /* Check all of the PC-relative relocations to make sure they still fit. */ | |
68ffbac6 | 9275 | relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec, |
43cd72b9 | 9276 | target_sec_cache->contents, |
b2b326d2 | 9277 | target_sec_cache->relocs, NULL, |
cb337148 | 9278 | &ebb_table, NULL); |
43cd72b9 | 9279 | |
68ffbac6 | 9280 | if (!relocs_fit) |
43cd72b9 BW |
9281 | return FALSE; |
9282 | ||
9283 | text_action_add_literal (&target_relax_info->action_list, | |
9284 | ta_add_literal, target_loc, lit_value, -4); | |
9285 | ||
68ffbac6 | 9286 | if (target_sec->alignment_power > 2 && target_entry != src_entry) |
43cd72b9 BW |
9287 | { |
9288 | /* May need to add or remove some fill to maintain alignment. */ | |
9289 | int fill_extra_space; | |
9290 | bfd_vma entry_sec_offset; | |
9291 | ||
68ffbac6 | 9292 | entry_sec_offset = |
43cd72b9 BW |
9293 | target_entry->address - target_sec->vma + target_entry->size; |
9294 | ||
9295 | /* If the literal range is at the end of the section, | |
9296 | do not add fill. */ | |
9297 | fill_extra_space = 0; | |
9298 | the_add_entry = | |
9299 | elf_xtensa_find_property_entry (target_sec_cache->ptbl, | |
9300 | target_sec_cache->pte_count, | |
9301 | entry_sec_offset); | |
9302 | if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE)) | |
9303 | fill_extra_space = the_add_entry->size; | |
9304 | ||
9305 | target_fa = find_fill_action (&target_relax_info->action_list, | |
9306 | target_sec, entry_sec_offset); | |
9307 | removed_diff = compute_removed_action_diff (target_fa, target_sec, | |
9308 | entry_sec_offset, 4, | |
9309 | fill_extra_space); | |
9310 | if (target_fa) | |
9311 | adjust_fill_action (target_fa, removed_diff); | |
9312 | else | |
9313 | text_action_add (&target_relax_info->action_list, | |
9314 | ta_fill, target_sec, entry_sec_offset, removed_diff); | |
9315 | } | |
9316 | ||
9317 | /* Mark that the literal will be moved to the new location. */ | |
9318 | add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc); | |
9319 | ||
9320 | /* Remove the literal. */ | |
9321 | text_action_add (&relax_info->action_list, | |
9322 | ta_remove_literal, sec, rel->r_rel.target_offset, 4); | |
9323 | ||
9324 | /* If the section is 4-byte aligned, do not add fill. */ | |
68ffbac6 | 9325 | if (sec->alignment_power > 2 && target_entry != src_entry) |
43cd72b9 BW |
9326 | { |
9327 | int fill_extra_space; | |
9328 | bfd_vma entry_sec_offset; | |
9329 | ||
9330 | if (src_entry) | |
9331 | entry_sec_offset = src_entry->address - sec->vma + src_entry->size; | |
9332 | else | |
9333 | entry_sec_offset = rel->r_rel.target_offset+4; | |
9334 | ||
9335 | /* If the literal range is at the end of the section, | |
9336 | do not add fill. */ | |
9337 | fill_extra_space = 0; | |
9338 | the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
9339 | entry_sec_offset); | |
9340 | if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE)) | |
9341 | fill_extra_space = the_add_entry->size; | |
9342 | ||
9343 | fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset); | |
9344 | removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset, | |
9345 | -4, fill_extra_space); | |
9346 | if (fa) | |
9347 | adjust_fill_action (fa, removed_diff); | |
9348 | else | |
9349 | text_action_add (&relax_info->action_list, | |
9350 | ta_fill, sec, entry_sec_offset, removed_diff); | |
9351 | } | |
9352 | ||
9353 | return TRUE; | |
e0001a05 NC |
9354 | } |
9355 | ||
9356 | \f | |
9357 | /* Second relaxation pass. */ | |
9358 | ||
4c2af04f MF |
9359 | static int |
9360 | action_remove_bytes_fn (splay_tree_node node, void *p) | |
9361 | { | |
9362 | bfd_size_type *final_size = p; | |
9363 | text_action *action = (text_action *)node->value; | |
9364 | ||
9365 | *final_size -= action->removed_bytes; | |
9366 | return 0; | |
9367 | } | |
9368 | ||
e0001a05 NC |
9369 | /* Modify all of the relocations to point to the right spot, and if this |
9370 | is a relaxable section, delete the unwanted literals and fix the | |
43cd72b9 | 9371 | section size. */ |
e0001a05 | 9372 | |
43cd72b9 | 9373 | bfd_boolean |
7fa3d080 | 9374 | relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info) |
e0001a05 NC |
9375 | { |
9376 | Elf_Internal_Rela *internal_relocs; | |
9377 | xtensa_relax_info *relax_info; | |
9378 | bfd_byte *contents; | |
9379 | bfd_boolean ok = TRUE; | |
9380 | unsigned i; | |
43cd72b9 BW |
9381 | bfd_boolean rv = FALSE; |
9382 | bfd_boolean virtual_action; | |
9383 | bfd_size_type sec_size; | |
e0001a05 | 9384 | |
43cd72b9 | 9385 | sec_size = bfd_get_section_limit (abfd, sec); |
e0001a05 NC |
9386 | relax_info = get_xtensa_relax_info (sec); |
9387 | BFD_ASSERT (relax_info); | |
9388 | ||
43cd72b9 BW |
9389 | /* First translate any of the fixes that have been added already. */ |
9390 | translate_section_fixes (sec); | |
9391 | ||
e0001a05 NC |
9392 | /* Handle property sections (e.g., literal tables) specially. */ |
9393 | if (xtensa_is_property_section (sec)) | |
9394 | { | |
9395 | BFD_ASSERT (!relax_info->is_relaxable_literal_section); | |
9396 | return relax_property_section (abfd, sec, link_info); | |
9397 | } | |
9398 | ||
68ffbac6 | 9399 | internal_relocs = retrieve_internal_relocs (abfd, sec, |
43cd72b9 | 9400 | link_info->keep_memory); |
4c2af04f | 9401 | if (!internal_relocs && !action_list_count (&relax_info->action_list)) |
7aa09196 SA |
9402 | return TRUE; |
9403 | ||
43cd72b9 BW |
9404 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); |
9405 | if (contents == NULL && sec_size != 0) | |
9406 | { | |
9407 | ok = FALSE; | |
9408 | goto error_return; | |
9409 | } | |
9410 | ||
9411 | if (internal_relocs) | |
9412 | { | |
9413 | for (i = 0; i < sec->reloc_count; i++) | |
9414 | { | |
9415 | Elf_Internal_Rela *irel; | |
9416 | xtensa_relax_info *target_relax_info; | |
9417 | bfd_vma source_offset, old_source_offset; | |
9418 | r_reloc r_rel; | |
9419 | unsigned r_type; | |
9420 | asection *target_sec; | |
9421 | ||
9422 | /* Locally change the source address. | |
9423 | Translate the target to the new target address. | |
9424 | If it points to this section and has been removed, | |
9425 | NULLify it. | |
9426 | Write it back. */ | |
9427 | ||
9428 | irel = &internal_relocs[i]; | |
9429 | source_offset = irel->r_offset; | |
9430 | old_source_offset = source_offset; | |
9431 | ||
9432 | r_type = ELF32_R_TYPE (irel->r_info); | |
9433 | r_reloc_init (&r_rel, abfd, irel, contents, | |
9434 | bfd_get_section_limit (abfd, sec)); | |
9435 | ||
9436 | /* If this section could have changed then we may need to | |
9437 | change the relocation's offset. */ | |
9438 | ||
9439 | if (relax_info->is_relaxable_literal_section | |
9440 | || relax_info->is_relaxable_asm_section) | |
9441 | { | |
9b7f5d20 BW |
9442 | pin_internal_relocs (sec, internal_relocs); |
9443 | ||
43cd72b9 BW |
9444 | if (r_type != R_XTENSA_NONE |
9445 | && find_removed_literal (&relax_info->removed_list, | |
9446 | irel->r_offset)) | |
9447 | { | |
9448 | /* Remove this relocation. */ | |
9449 | if (elf_hash_table (link_info)->dynamic_sections_created) | |
9450 | shrink_dynamic_reloc_sections (link_info, abfd, sec, irel); | |
9451 | irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
071aa5c9 | 9452 | irel->r_offset = offset_with_removed_text_map |
43cd72b9 | 9453 | (&relax_info->action_list, irel->r_offset); |
43cd72b9 BW |
9454 | continue; |
9455 | } | |
9456 | ||
9457 | if (r_type == R_XTENSA_ASM_SIMPLIFY) | |
9458 | { | |
9459 | text_action *action = | |
9460 | find_insn_action (&relax_info->action_list, | |
9461 | irel->r_offset); | |
9462 | if (action && (action->action == ta_convert_longcall | |
9463 | || action->action == ta_remove_longcall)) | |
9464 | { | |
9465 | bfd_reloc_status_type retval; | |
9466 | char *error_message = NULL; | |
9467 | ||
9468 | retval = contract_asm_expansion (contents, sec_size, | |
9469 | irel, &error_message); | |
9470 | if (retval != bfd_reloc_ok) | |
9471 | { | |
9472 | (*link_info->callbacks->reloc_dangerous) | |
9473 | (link_info, error_message, abfd, sec, | |
9474 | irel->r_offset); | |
9475 | goto error_return; | |
9476 | } | |
9477 | /* Update the action so that the code that moves | |
9478 | the contents will do the right thing. */ | |
4c2af04f MF |
9479 | /* ta_remove_longcall and ta_remove_insn actions are |
9480 | grouped together in the tree as well as | |
9481 | ta_convert_longcall and ta_none, so that changes below | |
9482 | can be done w/o removing and reinserting action into | |
9483 | the tree. */ | |
9484 | ||
43cd72b9 BW |
9485 | if (action->action == ta_remove_longcall) |
9486 | action->action = ta_remove_insn; | |
9487 | else | |
9488 | action->action = ta_none; | |
9489 | /* Refresh the info in the r_rel. */ | |
9490 | r_reloc_init (&r_rel, abfd, irel, contents, sec_size); | |
9491 | r_type = ELF32_R_TYPE (irel->r_info); | |
9492 | } | |
9493 | } | |
9494 | ||
071aa5c9 | 9495 | source_offset = offset_with_removed_text_map |
43cd72b9 BW |
9496 | (&relax_info->action_list, irel->r_offset); |
9497 | irel->r_offset = source_offset; | |
9498 | } | |
9499 | ||
9500 | /* If the target section could have changed then | |
9501 | we may need to change the relocation's target offset. */ | |
9502 | ||
9503 | target_sec = r_reloc_get_section (&r_rel); | |
43cd72b9 | 9504 | |
ae326da8 BW |
9505 | /* For a reference to a discarded section from a DWARF section, |
9506 | i.e., where action_discarded is PRETEND, the symbol will | |
9507 | eventually be modified to refer to the kept section (at least if | |
9508 | the kept and discarded sections are the same size). Anticipate | |
9509 | that here and adjust things accordingly. */ | |
9510 | if (! elf_xtensa_ignore_discarded_relocs (sec) | |
9511 | && elf_xtensa_action_discarded (sec) == PRETEND | |
dbaa2011 | 9512 | && sec->sec_info_type != SEC_INFO_TYPE_STABS |
ae326da8 | 9513 | && target_sec != NULL |
dbaa2011 | 9514 | && discarded_section (target_sec)) |
ae326da8 BW |
9515 | { |
9516 | /* It would be natural to call _bfd_elf_check_kept_section | |
9517 | here, but it's not exported from elflink.c. It's also a | |
9518 | fairly expensive check. Adjusting the relocations to the | |
9519 | discarded section is fairly harmless; it will only adjust | |
9520 | some addends and difference values. If it turns out that | |
9521 | _bfd_elf_check_kept_section fails later, it won't matter, | |
9522 | so just compare the section names to find the right group | |
9523 | member. */ | |
9524 | asection *kept = target_sec->kept_section; | |
9525 | if (kept != NULL) | |
9526 | { | |
9527 | if ((kept->flags & SEC_GROUP) != 0) | |
9528 | { | |
9529 | asection *first = elf_next_in_group (kept); | |
9530 | asection *s = first; | |
9531 | ||
9532 | kept = NULL; | |
9533 | while (s != NULL) | |
9534 | { | |
9535 | if (strcmp (s->name, target_sec->name) == 0) | |
9536 | { | |
9537 | kept = s; | |
9538 | break; | |
9539 | } | |
9540 | s = elf_next_in_group (s); | |
9541 | if (s == first) | |
9542 | break; | |
9543 | } | |
9544 | } | |
9545 | } | |
9546 | if (kept != NULL | |
9547 | && ((target_sec->rawsize != 0 | |
9548 | ? target_sec->rawsize : target_sec->size) | |
9549 | == (kept->rawsize != 0 ? kept->rawsize : kept->size))) | |
9550 | target_sec = kept; | |
9551 | } | |
9552 | ||
9553 | target_relax_info = get_xtensa_relax_info (target_sec); | |
43cd72b9 BW |
9554 | if (target_relax_info |
9555 | && (target_relax_info->is_relaxable_literal_section | |
9556 | || target_relax_info->is_relaxable_asm_section)) | |
9557 | { | |
9558 | r_reloc new_reloc; | |
9b7f5d20 | 9559 | target_sec = translate_reloc (&r_rel, &new_reloc, target_sec); |
43cd72b9 BW |
9560 | |
9561 | if (r_type == R_XTENSA_DIFF8 | |
9562 | || r_type == R_XTENSA_DIFF16 | |
9563 | || r_type == R_XTENSA_DIFF32) | |
9564 | { | |
1058c753 VA |
9565 | bfd_signed_vma diff_value = 0; |
9566 | bfd_vma new_end_offset, diff_mask = 0; | |
43cd72b9 BW |
9567 | |
9568 | if (bfd_get_section_limit (abfd, sec) < old_source_offset) | |
9569 | { | |
9570 | (*link_info->callbacks->reloc_dangerous) | |
9571 | (link_info, _("invalid relocation address"), | |
9572 | abfd, sec, old_source_offset); | |
9573 | goto error_return; | |
9574 | } | |
9575 | ||
9576 | switch (r_type) | |
9577 | { | |
9578 | case R_XTENSA_DIFF8: | |
9579 | diff_value = | |
1058c753 | 9580 | bfd_get_signed_8 (abfd, &contents[old_source_offset]); |
43cd72b9 BW |
9581 | break; |
9582 | case R_XTENSA_DIFF16: | |
9583 | diff_value = | |
1058c753 | 9584 | bfd_get_signed_16 (abfd, &contents[old_source_offset]); |
43cd72b9 BW |
9585 | break; |
9586 | case R_XTENSA_DIFF32: | |
9587 | diff_value = | |
1058c753 | 9588 | bfd_get_signed_32 (abfd, &contents[old_source_offset]); |
43cd72b9 BW |
9589 | break; |
9590 | } | |
9591 | ||
071aa5c9 | 9592 | new_end_offset = offset_with_removed_text_map |
43cd72b9 BW |
9593 | (&target_relax_info->action_list, |
9594 | r_rel.target_offset + diff_value); | |
9595 | diff_value = new_end_offset - new_reloc.target_offset; | |
9596 | ||
9597 | switch (r_type) | |
9598 | { | |
9599 | case R_XTENSA_DIFF8: | |
1058c753 VA |
9600 | diff_mask = 0x7f; |
9601 | bfd_put_signed_8 (abfd, diff_value, | |
43cd72b9 BW |
9602 | &contents[old_source_offset]); |
9603 | break; | |
9604 | case R_XTENSA_DIFF16: | |
1058c753 VA |
9605 | diff_mask = 0x7fff; |
9606 | bfd_put_signed_16 (abfd, diff_value, | |
43cd72b9 BW |
9607 | &contents[old_source_offset]); |
9608 | break; | |
9609 | case R_XTENSA_DIFF32: | |
1058c753 VA |
9610 | diff_mask = 0x7fffffff; |
9611 | bfd_put_signed_32 (abfd, diff_value, | |
43cd72b9 BW |
9612 | &contents[old_source_offset]); |
9613 | break; | |
9614 | } | |
9615 | ||
1058c753 VA |
9616 | /* Check for overflow. Sign bits must be all zeroes or all ones */ |
9617 | if ((diff_value & ~diff_mask) != 0 && | |
9618 | (diff_value & ~diff_mask) != (-1 & ~diff_mask)) | |
43cd72b9 BW |
9619 | { |
9620 | (*link_info->callbacks->reloc_dangerous) | |
9621 | (link_info, _("overflow after relaxation"), | |
9622 | abfd, sec, old_source_offset); | |
9623 | goto error_return; | |
9624 | } | |
9625 | ||
9626 | pin_contents (sec, contents); | |
9627 | } | |
dc96b90a BW |
9628 | |
9629 | /* If the relocation still references a section in the same | |
9630 | input file, modify the relocation directly instead of | |
9631 | adding a "fix" record. */ | |
9632 | if (target_sec->owner == abfd) | |
9633 | { | |
9634 | unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info); | |
9635 | irel->r_info = ELF32_R_INFO (r_symndx, r_type); | |
9636 | irel->r_addend = new_reloc.rela.r_addend; | |
9637 | pin_internal_relocs (sec, internal_relocs); | |
9638 | } | |
9b7f5d20 BW |
9639 | else |
9640 | { | |
dc96b90a BW |
9641 | bfd_vma addend_displacement; |
9642 | reloc_bfd_fix *fix; | |
9643 | ||
9644 | addend_displacement = | |
9645 | new_reloc.target_offset + new_reloc.virtual_offset; | |
9646 | fix = reloc_bfd_fix_init (sec, source_offset, r_type, | |
9647 | target_sec, | |
9648 | addend_displacement, TRUE); | |
9649 | add_fix (sec, fix); | |
9b7f5d20 | 9650 | } |
43cd72b9 | 9651 | } |
43cd72b9 BW |
9652 | } |
9653 | } | |
9654 | ||
9655 | if ((relax_info->is_relaxable_literal_section | |
9656 | || relax_info->is_relaxable_asm_section) | |
4c2af04f | 9657 | && action_list_count (&relax_info->action_list)) |
43cd72b9 BW |
9658 | { |
9659 | /* Walk through the planned actions and build up a table | |
9660 | of move, copy and fill records. Use the move, copy and | |
9661 | fill records to perform the actions once. */ | |
9662 | ||
43cd72b9 BW |
9663 | bfd_size_type final_size, copy_size, orig_insn_size; |
9664 | bfd_byte *scratch = NULL; | |
9665 | bfd_byte *dup_contents = NULL; | |
a3ef2d63 | 9666 | bfd_size_type orig_size = sec->size; |
43cd72b9 BW |
9667 | bfd_vma orig_dot = 0; |
9668 | bfd_vma orig_dot_copied = 0; /* Byte copied already from | |
9669 | orig dot in physical memory. */ | |
9670 | bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */ | |
9671 | bfd_vma dup_dot = 0; | |
9672 | ||
4c2af04f | 9673 | text_action *action; |
43cd72b9 BW |
9674 | |
9675 | final_size = sec->size; | |
43cd72b9 | 9676 | |
4c2af04f MF |
9677 | splay_tree_foreach (relax_info->action_list.tree, |
9678 | action_remove_bytes_fn, &final_size); | |
43cd72b9 BW |
9679 | scratch = (bfd_byte *) bfd_zmalloc (final_size); |
9680 | dup_contents = (bfd_byte *) bfd_zmalloc (final_size); | |
9681 | ||
9682 | /* The dot is the current fill location. */ | |
9683 | #if DEBUG | |
9684 | print_action_list (stderr, &relax_info->action_list); | |
9685 | #endif | |
9686 | ||
4c2af04f MF |
9687 | for (action = action_first (&relax_info->action_list); action; |
9688 | action = action_next (&relax_info->action_list, action)) | |
43cd72b9 BW |
9689 | { |
9690 | virtual_action = FALSE; | |
9691 | if (action->offset > orig_dot) | |
9692 | { | |
9693 | orig_dot += orig_dot_copied; | |
9694 | orig_dot_copied = 0; | |
9695 | orig_dot_vo = 0; | |
9696 | /* Out of the virtual world. */ | |
9697 | } | |
9698 | ||
9699 | if (action->offset > orig_dot) | |
9700 | { | |
9701 | copy_size = action->offset - orig_dot; | |
9702 | memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size); | |
9703 | orig_dot += copy_size; | |
9704 | dup_dot += copy_size; | |
9705 | BFD_ASSERT (action->offset == orig_dot); | |
9706 | } | |
9707 | else if (action->offset < orig_dot) | |
9708 | { | |
9709 | if (action->action == ta_fill | |
9710 | && action->offset - action->removed_bytes == orig_dot) | |
9711 | { | |
9712 | /* This is OK because the fill only effects the dup_dot. */ | |
9713 | } | |
9714 | else if (action->action == ta_add_literal) | |
9715 | { | |
9716 | /* TBD. Might need to handle this. */ | |
9717 | } | |
9718 | } | |
9719 | if (action->offset == orig_dot) | |
9720 | { | |
9721 | if (action->virtual_offset > orig_dot_vo) | |
9722 | { | |
9723 | if (orig_dot_vo == 0) | |
9724 | { | |
9725 | /* Need to copy virtual_offset bytes. Probably four. */ | |
9726 | copy_size = action->virtual_offset - orig_dot_vo; | |
9727 | memmove (&dup_contents[dup_dot], | |
9728 | &contents[orig_dot], copy_size); | |
9729 | orig_dot_copied = copy_size; | |
9730 | dup_dot += copy_size; | |
9731 | } | |
9732 | virtual_action = TRUE; | |
68ffbac6 | 9733 | } |
43cd72b9 BW |
9734 | else |
9735 | BFD_ASSERT (action->virtual_offset <= orig_dot_vo); | |
9736 | } | |
9737 | switch (action->action) | |
9738 | { | |
9739 | case ta_remove_literal: | |
9740 | case ta_remove_insn: | |
9741 | BFD_ASSERT (action->removed_bytes >= 0); | |
9742 | orig_dot += action->removed_bytes; | |
9743 | break; | |
9744 | ||
9745 | case ta_narrow_insn: | |
9746 | orig_insn_size = 3; | |
9747 | copy_size = 2; | |
9748 | memmove (scratch, &contents[orig_dot], orig_insn_size); | |
9749 | BFD_ASSERT (action->removed_bytes == 1); | |
64b607e6 | 9750 | rv = narrow_instruction (scratch, final_size, 0); |
43cd72b9 BW |
9751 | BFD_ASSERT (rv); |
9752 | memmove (&dup_contents[dup_dot], scratch, copy_size); | |
9753 | orig_dot += orig_insn_size; | |
9754 | dup_dot += copy_size; | |
9755 | break; | |
9756 | ||
9757 | case ta_fill: | |
9758 | if (action->removed_bytes >= 0) | |
9759 | orig_dot += action->removed_bytes; | |
9760 | else | |
9761 | { | |
9762 | /* Already zeroed in dup_contents. Just bump the | |
9763 | counters. */ | |
9764 | dup_dot += (-action->removed_bytes); | |
9765 | } | |
9766 | break; | |
9767 | ||
9768 | case ta_none: | |
9769 | BFD_ASSERT (action->removed_bytes == 0); | |
9770 | break; | |
9771 | ||
9772 | case ta_convert_longcall: | |
9773 | case ta_remove_longcall: | |
9774 | /* These will be removed or converted before we get here. */ | |
9775 | BFD_ASSERT (0); | |
9776 | break; | |
9777 | ||
9778 | case ta_widen_insn: | |
9779 | orig_insn_size = 2; | |
9780 | copy_size = 3; | |
9781 | memmove (scratch, &contents[orig_dot], orig_insn_size); | |
9782 | BFD_ASSERT (action->removed_bytes == -1); | |
64b607e6 | 9783 | rv = widen_instruction (scratch, final_size, 0); |
43cd72b9 BW |
9784 | BFD_ASSERT (rv); |
9785 | memmove (&dup_contents[dup_dot], scratch, copy_size); | |
9786 | orig_dot += orig_insn_size; | |
9787 | dup_dot += copy_size; | |
9788 | break; | |
9789 | ||
9790 | case ta_add_literal: | |
9791 | orig_insn_size = 0; | |
9792 | copy_size = 4; | |
9793 | BFD_ASSERT (action->removed_bytes == -4); | |
9794 | /* TBD -- place the literal value here and insert | |
9795 | into the table. */ | |
9796 | memset (&dup_contents[dup_dot], 0, 4); | |
9797 | pin_internal_relocs (sec, internal_relocs); | |
9798 | pin_contents (sec, contents); | |
9799 | ||
9800 | if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents, | |
9801 | relax_info, &internal_relocs, &action->value)) | |
9802 | goto error_return; | |
9803 | ||
68ffbac6 | 9804 | if (virtual_action) |
43cd72b9 BW |
9805 | orig_dot_vo += copy_size; |
9806 | ||
9807 | orig_dot += orig_insn_size; | |
9808 | dup_dot += copy_size; | |
9809 | break; | |
9810 | ||
9811 | default: | |
9812 | /* Not implemented yet. */ | |
9813 | BFD_ASSERT (0); | |
9814 | break; | |
9815 | } | |
9816 | ||
43cd72b9 BW |
9817 | BFD_ASSERT (dup_dot <= final_size); |
9818 | BFD_ASSERT (orig_dot <= orig_size); | |
9819 | } | |
9820 | ||
9821 | orig_dot += orig_dot_copied; | |
9822 | orig_dot_copied = 0; | |
9823 | ||
9824 | if (orig_dot != orig_size) | |
9825 | { | |
9826 | copy_size = orig_size - orig_dot; | |
9827 | BFD_ASSERT (orig_size > orig_dot); | |
9828 | BFD_ASSERT (dup_dot + copy_size == final_size); | |
9829 | memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size); | |
9830 | orig_dot += copy_size; | |
9831 | dup_dot += copy_size; | |
9832 | } | |
9833 | BFD_ASSERT (orig_size == orig_dot); | |
9834 | BFD_ASSERT (final_size == dup_dot); | |
9835 | ||
9836 | /* Move the dup_contents back. */ | |
9837 | if (final_size > orig_size) | |
9838 | { | |
9839 | /* Contents need to be reallocated. Swap the dup_contents into | |
9840 | contents. */ | |
9841 | sec->contents = dup_contents; | |
9842 | free (contents); | |
9843 | contents = dup_contents; | |
9844 | pin_contents (sec, contents); | |
9845 | } | |
9846 | else | |
9847 | { | |
9848 | BFD_ASSERT (final_size <= orig_size); | |
9849 | memset (contents, 0, orig_size); | |
9850 | memcpy (contents, dup_contents, final_size); | |
9851 | free (dup_contents); | |
9852 | } | |
9853 | free (scratch); | |
9854 | pin_contents (sec, contents); | |
9855 | ||
a3ef2d63 BW |
9856 | if (sec->rawsize == 0) |
9857 | sec->rawsize = sec->size; | |
43cd72b9 BW |
9858 | sec->size = final_size; |
9859 | } | |
9860 | ||
9861 | error_return: | |
9862 | release_internal_relocs (sec, internal_relocs); | |
9863 | release_contents (sec, contents); | |
9864 | return ok; | |
9865 | } | |
9866 | ||
9867 | ||
68ffbac6 | 9868 | static bfd_boolean |
7fa3d080 | 9869 | translate_section_fixes (asection *sec) |
43cd72b9 BW |
9870 | { |
9871 | xtensa_relax_info *relax_info; | |
9872 | reloc_bfd_fix *r; | |
9873 | ||
9874 | relax_info = get_xtensa_relax_info (sec); | |
9875 | if (!relax_info) | |
9876 | return TRUE; | |
9877 | ||
9878 | for (r = relax_info->fix_list; r != NULL; r = r->next) | |
9879 | if (!translate_reloc_bfd_fix (r)) | |
9880 | return FALSE; | |
e0001a05 | 9881 | |
43cd72b9 BW |
9882 | return TRUE; |
9883 | } | |
e0001a05 | 9884 | |
e0001a05 | 9885 | |
43cd72b9 BW |
9886 | /* Translate a fix given the mapping in the relax info for the target |
9887 | section. If it has already been translated, no work is required. */ | |
e0001a05 | 9888 | |
68ffbac6 | 9889 | static bfd_boolean |
7fa3d080 | 9890 | translate_reloc_bfd_fix (reloc_bfd_fix *fix) |
43cd72b9 BW |
9891 | { |
9892 | reloc_bfd_fix new_fix; | |
9893 | asection *sec; | |
9894 | xtensa_relax_info *relax_info; | |
9895 | removed_literal *removed; | |
9896 | bfd_vma new_offset, target_offset; | |
e0001a05 | 9897 | |
43cd72b9 BW |
9898 | if (fix->translated) |
9899 | return TRUE; | |
e0001a05 | 9900 | |
43cd72b9 BW |
9901 | sec = fix->target_sec; |
9902 | target_offset = fix->target_offset; | |
e0001a05 | 9903 | |
43cd72b9 BW |
9904 | relax_info = get_xtensa_relax_info (sec); |
9905 | if (!relax_info) | |
9906 | { | |
9907 | fix->translated = TRUE; | |
9908 | return TRUE; | |
9909 | } | |
e0001a05 | 9910 | |
43cd72b9 | 9911 | new_fix = *fix; |
e0001a05 | 9912 | |
43cd72b9 BW |
9913 | /* The fix does not need to be translated if the section cannot change. */ |
9914 | if (!relax_info->is_relaxable_literal_section | |
9915 | && !relax_info->is_relaxable_asm_section) | |
9916 | { | |
9917 | fix->translated = TRUE; | |
9918 | return TRUE; | |
9919 | } | |
e0001a05 | 9920 | |
43cd72b9 BW |
9921 | /* If the literal has been moved and this relocation was on an |
9922 | opcode, then the relocation should move to the new literal | |
9923 | location. Otherwise, the relocation should move within the | |
9924 | section. */ | |
9925 | ||
9926 | removed = FALSE; | |
9927 | if (is_operand_relocation (fix->src_type)) | |
9928 | { | |
9929 | /* Check if the original relocation is against a literal being | |
9930 | removed. */ | |
9931 | removed = find_removed_literal (&relax_info->removed_list, | |
9932 | target_offset); | |
e0001a05 NC |
9933 | } |
9934 | ||
68ffbac6 | 9935 | if (removed) |
e0001a05 | 9936 | { |
43cd72b9 | 9937 | asection *new_sec; |
e0001a05 | 9938 | |
43cd72b9 BW |
9939 | /* The fact that there is still a relocation to this literal indicates |
9940 | that the literal is being coalesced, not simply removed. */ | |
9941 | BFD_ASSERT (removed->to.abfd != NULL); | |
e0001a05 | 9942 | |
43cd72b9 BW |
9943 | /* This was moved to some other address (possibly another section). */ |
9944 | new_sec = r_reloc_get_section (&removed->to); | |
68ffbac6 | 9945 | if (new_sec != sec) |
e0001a05 | 9946 | { |
43cd72b9 BW |
9947 | sec = new_sec; |
9948 | relax_info = get_xtensa_relax_info (sec); | |
68ffbac6 | 9949 | if (!relax_info || |
43cd72b9 BW |
9950 | (!relax_info->is_relaxable_literal_section |
9951 | && !relax_info->is_relaxable_asm_section)) | |
e0001a05 | 9952 | { |
43cd72b9 BW |
9953 | target_offset = removed->to.target_offset; |
9954 | new_fix.target_sec = new_sec; | |
9955 | new_fix.target_offset = target_offset; | |
9956 | new_fix.translated = TRUE; | |
9957 | *fix = new_fix; | |
9958 | return TRUE; | |
e0001a05 | 9959 | } |
e0001a05 | 9960 | } |
43cd72b9 BW |
9961 | target_offset = removed->to.target_offset; |
9962 | new_fix.target_sec = new_sec; | |
e0001a05 | 9963 | } |
43cd72b9 BW |
9964 | |
9965 | /* The target address may have been moved within its section. */ | |
9966 | new_offset = offset_with_removed_text (&relax_info->action_list, | |
9967 | target_offset); | |
9968 | ||
9969 | new_fix.target_offset = new_offset; | |
9970 | new_fix.target_offset = new_offset; | |
9971 | new_fix.translated = TRUE; | |
9972 | *fix = new_fix; | |
9973 | return TRUE; | |
e0001a05 NC |
9974 | } |
9975 | ||
9976 | ||
9977 | /* Fix up a relocation to take account of removed literals. */ | |
9978 | ||
9b7f5d20 BW |
9979 | static asection * |
9980 | translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec) | |
e0001a05 | 9981 | { |
e0001a05 NC |
9982 | xtensa_relax_info *relax_info; |
9983 | removed_literal *removed; | |
9b7f5d20 | 9984 | bfd_vma target_offset, base_offset; |
e0001a05 NC |
9985 | |
9986 | *new_rel = *orig_rel; | |
9987 | ||
9988 | if (!r_reloc_is_defined (orig_rel)) | |
9b7f5d20 | 9989 | return sec ; |
e0001a05 NC |
9990 | |
9991 | relax_info = get_xtensa_relax_info (sec); | |
9b7f5d20 BW |
9992 | BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section |
9993 | || relax_info->is_relaxable_asm_section)); | |
e0001a05 | 9994 | |
43cd72b9 BW |
9995 | target_offset = orig_rel->target_offset; |
9996 | ||
9997 | removed = FALSE; | |
9998 | if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info))) | |
9999 | { | |
10000 | /* Check if the original relocation is against a literal being | |
10001 | removed. */ | |
10002 | removed = find_removed_literal (&relax_info->removed_list, | |
10003 | target_offset); | |
10004 | } | |
10005 | if (removed && removed->to.abfd) | |
e0001a05 NC |
10006 | { |
10007 | asection *new_sec; | |
10008 | ||
10009 | /* The fact that there is still a relocation to this literal indicates | |
10010 | that the literal is being coalesced, not simply removed. */ | |
10011 | BFD_ASSERT (removed->to.abfd != NULL); | |
10012 | ||
43cd72b9 BW |
10013 | /* This was moved to some other address |
10014 | (possibly in another section). */ | |
e0001a05 NC |
10015 | *new_rel = removed->to; |
10016 | new_sec = r_reloc_get_section (new_rel); | |
43cd72b9 | 10017 | if (new_sec != sec) |
e0001a05 NC |
10018 | { |
10019 | sec = new_sec; | |
10020 | relax_info = get_xtensa_relax_info (sec); | |
43cd72b9 BW |
10021 | if (!relax_info |
10022 | || (!relax_info->is_relaxable_literal_section | |
10023 | && !relax_info->is_relaxable_asm_section)) | |
9b7f5d20 | 10024 | return sec; |
e0001a05 | 10025 | } |
43cd72b9 | 10026 | target_offset = new_rel->target_offset; |
e0001a05 NC |
10027 | } |
10028 | ||
9b7f5d20 BW |
10029 | /* Find the base offset of the reloc symbol, excluding any addend from the |
10030 | reloc or from the section contents (for a partial_inplace reloc). Then | |
10031 | find the adjusted values of the offsets due to relaxation. The base | |
10032 | offset is needed to determine the change to the reloc's addend; the reloc | |
10033 | addend should not be adjusted due to relaxations located before the base | |
10034 | offset. */ | |
10035 | ||
10036 | base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend; | |
9b7f5d20 BW |
10037 | if (base_offset <= target_offset) |
10038 | { | |
071aa5c9 MF |
10039 | int base_removed = removed_by_actions_map (&relax_info->action_list, |
10040 | base_offset, FALSE); | |
10041 | int addend_removed = removed_by_actions_map (&relax_info->action_list, | |
10042 | target_offset, FALSE) - | |
10043 | base_removed; | |
10044 | ||
9b7f5d20 BW |
10045 | new_rel->target_offset = target_offset - base_removed - addend_removed; |
10046 | new_rel->rela.r_addend -= addend_removed; | |
10047 | } | |
10048 | else | |
10049 | { | |
10050 | /* Handle a negative addend. The base offset comes first. */ | |
071aa5c9 MF |
10051 | int tgt_removed = removed_by_actions_map (&relax_info->action_list, |
10052 | target_offset, FALSE); | |
10053 | int addend_removed = removed_by_actions_map (&relax_info->action_list, | |
10054 | base_offset, FALSE) - | |
10055 | tgt_removed; | |
10056 | ||
9b7f5d20 BW |
10057 | new_rel->target_offset = target_offset - tgt_removed; |
10058 | new_rel->rela.r_addend += addend_removed; | |
10059 | } | |
e0001a05 | 10060 | |
9b7f5d20 | 10061 | return sec; |
e0001a05 NC |
10062 | } |
10063 | ||
10064 | ||
10065 | /* For dynamic links, there may be a dynamic relocation for each | |
10066 | literal. The number of dynamic relocations must be computed in | |
10067 | size_dynamic_sections, which occurs before relaxation. When a | |
10068 | literal is removed, this function checks if there is a corresponding | |
10069 | dynamic relocation and shrinks the size of the appropriate dynamic | |
10070 | relocation section accordingly. At this point, the contents of the | |
10071 | dynamic relocation sections have not yet been filled in, so there's | |
10072 | nothing else that needs to be done. */ | |
10073 | ||
10074 | static void | |
7fa3d080 BW |
10075 | shrink_dynamic_reloc_sections (struct bfd_link_info *info, |
10076 | bfd *abfd, | |
10077 | asection *input_section, | |
10078 | Elf_Internal_Rela *rel) | |
e0001a05 | 10079 | { |
f0e6fdb2 | 10080 | struct elf_xtensa_link_hash_table *htab; |
e0001a05 NC |
10081 | Elf_Internal_Shdr *symtab_hdr; |
10082 | struct elf_link_hash_entry **sym_hashes; | |
10083 | unsigned long r_symndx; | |
10084 | int r_type; | |
10085 | struct elf_link_hash_entry *h; | |
10086 | bfd_boolean dynamic_symbol; | |
10087 | ||
f0e6fdb2 | 10088 | htab = elf_xtensa_hash_table (info); |
4dfe6ac6 NC |
10089 | if (htab == NULL) |
10090 | return; | |
10091 | ||
e0001a05 NC |
10092 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
10093 | sym_hashes = elf_sym_hashes (abfd); | |
10094 | ||
10095 | r_type = ELF32_R_TYPE (rel->r_info); | |
10096 | r_symndx = ELF32_R_SYM (rel->r_info); | |
10097 | ||
10098 | if (r_symndx < symtab_hdr->sh_info) | |
10099 | h = NULL; | |
10100 | else | |
10101 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | |
10102 | ||
4608f3d9 | 10103 | dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info); |
e0001a05 NC |
10104 | |
10105 | if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT) | |
10106 | && (input_section->flags & SEC_ALLOC) != 0 | |
0e1862bb | 10107 | && (dynamic_symbol || bfd_link_pic (info))) |
e0001a05 | 10108 | { |
e0001a05 NC |
10109 | asection *srel; |
10110 | bfd_boolean is_plt = FALSE; | |
10111 | ||
e0001a05 NC |
10112 | if (dynamic_symbol && r_type == R_XTENSA_PLT) |
10113 | { | |
ce558b89 | 10114 | srel = htab->elf.srelplt; |
e0001a05 NC |
10115 | is_plt = TRUE; |
10116 | } | |
10117 | else | |
ce558b89 | 10118 | srel = htab->elf.srelgot; |
e0001a05 NC |
10119 | |
10120 | /* Reduce size of the .rela.* section by one reloc. */ | |
e0001a05 | 10121 | BFD_ASSERT (srel != NULL); |
eea6121a AM |
10122 | BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela)); |
10123 | srel->size -= sizeof (Elf32_External_Rela); | |
e0001a05 NC |
10124 | |
10125 | if (is_plt) | |
10126 | { | |
10127 | asection *splt, *sgotplt, *srelgot; | |
10128 | int reloc_index, chunk; | |
10129 | ||
10130 | /* Find the PLT reloc index of the entry being removed. This | |
10131 | is computed from the size of ".rela.plt". It is needed to | |
10132 | figure out which PLT chunk to resize. Usually "last index | |
10133 | = size - 1" since the index starts at zero, but in this | |
10134 | context, the size has just been decremented so there's no | |
10135 | need to subtract one. */ | |
eea6121a | 10136 | reloc_index = srel->size / sizeof (Elf32_External_Rela); |
e0001a05 NC |
10137 | |
10138 | chunk = reloc_index / PLT_ENTRIES_PER_CHUNK; | |
f0e6fdb2 BW |
10139 | splt = elf_xtensa_get_plt_section (info, chunk); |
10140 | sgotplt = elf_xtensa_get_gotplt_section (info, chunk); | |
e0001a05 NC |
10141 | BFD_ASSERT (splt != NULL && sgotplt != NULL); |
10142 | ||
10143 | /* Check if an entire PLT chunk has just been eliminated. */ | |
10144 | if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0) | |
10145 | { | |
10146 | /* The two magic GOT entries for that chunk can go away. */ | |
ce558b89 | 10147 | srelgot = htab->elf.srelgot; |
e0001a05 NC |
10148 | BFD_ASSERT (srelgot != NULL); |
10149 | srelgot->reloc_count -= 2; | |
eea6121a AM |
10150 | srelgot->size -= 2 * sizeof (Elf32_External_Rela); |
10151 | sgotplt->size -= 8; | |
e0001a05 NC |
10152 | |
10153 | /* There should be only one entry left (and it will be | |
10154 | removed below). */ | |
eea6121a AM |
10155 | BFD_ASSERT (sgotplt->size == 4); |
10156 | BFD_ASSERT (splt->size == PLT_ENTRY_SIZE); | |
e0001a05 NC |
10157 | } |
10158 | ||
eea6121a AM |
10159 | BFD_ASSERT (sgotplt->size >= 4); |
10160 | BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE); | |
e0001a05 | 10161 | |
eea6121a AM |
10162 | sgotplt->size -= 4; |
10163 | splt->size -= PLT_ENTRY_SIZE; | |
e0001a05 NC |
10164 | } |
10165 | } | |
10166 | } | |
10167 | ||
10168 | ||
43cd72b9 BW |
10169 | /* Take an r_rel and move it to another section. This usually |
10170 | requires extending the interal_relocation array and pinning it. If | |
10171 | the original r_rel is from the same BFD, we can complete this here. | |
10172 | Otherwise, we add a fix record to let the final link fix the | |
10173 | appropriate address. Contents and internal relocations for the | |
10174 | section must be pinned after calling this routine. */ | |
10175 | ||
10176 | static bfd_boolean | |
7fa3d080 BW |
10177 | move_literal (bfd *abfd, |
10178 | struct bfd_link_info *link_info, | |
10179 | asection *sec, | |
10180 | bfd_vma offset, | |
10181 | bfd_byte *contents, | |
10182 | xtensa_relax_info *relax_info, | |
10183 | Elf_Internal_Rela **internal_relocs_p, | |
10184 | const literal_value *lit) | |
43cd72b9 BW |
10185 | { |
10186 | Elf_Internal_Rela *new_relocs = NULL; | |
10187 | size_t new_relocs_count = 0; | |
10188 | Elf_Internal_Rela this_rela; | |
10189 | const r_reloc *r_rel; | |
10190 | ||
10191 | r_rel = &lit->r_rel; | |
10192 | BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p); | |
10193 | ||
10194 | if (r_reloc_is_const (r_rel)) | |
10195 | bfd_put_32 (abfd, lit->value, contents + offset); | |
10196 | else | |
10197 | { | |
10198 | int r_type; | |
10199 | unsigned i; | |
43cd72b9 BW |
10200 | reloc_bfd_fix *fix; |
10201 | unsigned insert_at; | |
10202 | ||
10203 | r_type = ELF32_R_TYPE (r_rel->rela.r_info); | |
43cd72b9 BW |
10204 | |
10205 | /* This is the difficult case. We have to create a fix up. */ | |
10206 | this_rela.r_offset = offset; | |
10207 | this_rela.r_info = ELF32_R_INFO (0, r_type); | |
10208 | this_rela.r_addend = | |
10209 | r_rel->target_offset - r_reloc_get_target_offset (r_rel); | |
10210 | bfd_put_32 (abfd, lit->value, contents + offset); | |
10211 | ||
10212 | /* Currently, we cannot move relocations during a relocatable link. */ | |
0e1862bb | 10213 | BFD_ASSERT (!bfd_link_relocatable (link_info)); |
0f5f1638 | 10214 | fix = reloc_bfd_fix_init (sec, offset, r_type, |
43cd72b9 BW |
10215 | r_reloc_get_section (r_rel), |
10216 | r_rel->target_offset + r_rel->virtual_offset, | |
10217 | FALSE); | |
10218 | /* We also need to mark that relocations are needed here. */ | |
10219 | sec->flags |= SEC_RELOC; | |
10220 | ||
10221 | translate_reloc_bfd_fix (fix); | |
10222 | /* This fix has not yet been translated. */ | |
10223 | add_fix (sec, fix); | |
10224 | ||
10225 | /* Add the relocation. If we have already allocated our own | |
10226 | space for the relocations and we have room for more, then use | |
10227 | it. Otherwise, allocate new space and move the literals. */ | |
10228 | insert_at = sec->reloc_count; | |
10229 | for (i = 0; i < sec->reloc_count; ++i) | |
10230 | { | |
10231 | if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset) | |
10232 | { | |
10233 | insert_at = i; | |
10234 | break; | |
10235 | } | |
10236 | } | |
10237 | ||
10238 | if (*internal_relocs_p != relax_info->allocated_relocs | |
10239 | || sec->reloc_count + 1 > relax_info->allocated_relocs_count) | |
10240 | { | |
10241 | BFD_ASSERT (relax_info->allocated_relocs == NULL | |
10242 | || sec->reloc_count == relax_info->relocs_count); | |
10243 | ||
68ffbac6 | 10244 | if (relax_info->allocated_relocs_count == 0) |
43cd72b9 BW |
10245 | new_relocs_count = (sec->reloc_count + 2) * 2; |
10246 | else | |
10247 | new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2; | |
10248 | ||
10249 | new_relocs = (Elf_Internal_Rela *) | |
10250 | bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count)); | |
10251 | if (!new_relocs) | |
10252 | return FALSE; | |
10253 | ||
10254 | /* We could handle this more quickly by finding the split point. */ | |
10255 | if (insert_at != 0) | |
10256 | memcpy (new_relocs, *internal_relocs_p, | |
10257 | insert_at * sizeof (Elf_Internal_Rela)); | |
10258 | ||
10259 | new_relocs[insert_at] = this_rela; | |
10260 | ||
10261 | if (insert_at != sec->reloc_count) | |
10262 | memcpy (new_relocs + insert_at + 1, | |
10263 | (*internal_relocs_p) + insert_at, | |
68ffbac6 | 10264 | (sec->reloc_count - insert_at) |
43cd72b9 BW |
10265 | * sizeof (Elf_Internal_Rela)); |
10266 | ||
10267 | if (*internal_relocs_p != relax_info->allocated_relocs) | |
10268 | { | |
10269 | /* The first time we re-allocate, we can only free the | |
10270 | old relocs if they were allocated with bfd_malloc. | |
10271 | This is not true when keep_memory is in effect. */ | |
10272 | if (!link_info->keep_memory) | |
10273 | free (*internal_relocs_p); | |
10274 | } | |
10275 | else | |
10276 | free (*internal_relocs_p); | |
10277 | relax_info->allocated_relocs = new_relocs; | |
10278 | relax_info->allocated_relocs_count = new_relocs_count; | |
10279 | elf_section_data (sec)->relocs = new_relocs; | |
10280 | sec->reloc_count++; | |
10281 | relax_info->relocs_count = sec->reloc_count; | |
10282 | *internal_relocs_p = new_relocs; | |
10283 | } | |
10284 | else | |
10285 | { | |
10286 | if (insert_at != sec->reloc_count) | |
10287 | { | |
10288 | unsigned idx; | |
10289 | for (idx = sec->reloc_count; idx > insert_at; idx--) | |
10290 | (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1]; | |
10291 | } | |
10292 | (*internal_relocs_p)[insert_at] = this_rela; | |
10293 | sec->reloc_count++; | |
10294 | if (relax_info->allocated_relocs) | |
10295 | relax_info->relocs_count = sec->reloc_count; | |
10296 | } | |
10297 | } | |
10298 | return TRUE; | |
10299 | } | |
10300 | ||
10301 | ||
e0001a05 NC |
10302 | /* This is similar to relax_section except that when a target is moved, |
10303 | we shift addresses up. We also need to modify the size. This | |
10304 | algorithm does NOT allow for relocations into the middle of the | |
10305 | property sections. */ | |
10306 | ||
43cd72b9 | 10307 | static bfd_boolean |
7fa3d080 BW |
10308 | relax_property_section (bfd *abfd, |
10309 | asection *sec, | |
10310 | struct bfd_link_info *link_info) | |
e0001a05 NC |
10311 | { |
10312 | Elf_Internal_Rela *internal_relocs; | |
10313 | bfd_byte *contents; | |
1d25768e | 10314 | unsigned i; |
e0001a05 | 10315 | bfd_boolean ok = TRUE; |
43cd72b9 BW |
10316 | bfd_boolean is_full_prop_section; |
10317 | size_t last_zfill_target_offset = 0; | |
10318 | asection *last_zfill_target_sec = NULL; | |
10319 | bfd_size_type sec_size; | |
1d25768e | 10320 | bfd_size_type entry_size; |
e0001a05 | 10321 | |
43cd72b9 | 10322 | sec_size = bfd_get_section_limit (abfd, sec); |
68ffbac6 | 10323 | internal_relocs = retrieve_internal_relocs (abfd, sec, |
e0001a05 NC |
10324 | link_info->keep_memory); |
10325 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
43cd72b9 | 10326 | if (contents == NULL && sec_size != 0) |
e0001a05 NC |
10327 | { |
10328 | ok = FALSE; | |
10329 | goto error_return; | |
10330 | } | |
10331 | ||
1d25768e BW |
10332 | is_full_prop_section = xtensa_is_proptable_section (sec); |
10333 | if (is_full_prop_section) | |
10334 | entry_size = 12; | |
10335 | else | |
10336 | entry_size = 8; | |
43cd72b9 BW |
10337 | |
10338 | if (internal_relocs) | |
e0001a05 | 10339 | { |
43cd72b9 | 10340 | for (i = 0; i < sec->reloc_count; i++) |
e0001a05 NC |
10341 | { |
10342 | Elf_Internal_Rela *irel; | |
10343 | xtensa_relax_info *target_relax_info; | |
e0001a05 NC |
10344 | unsigned r_type; |
10345 | asection *target_sec; | |
43cd72b9 BW |
10346 | literal_value val; |
10347 | bfd_byte *size_p, *flags_p; | |
e0001a05 NC |
10348 | |
10349 | /* Locally change the source address. | |
10350 | Translate the target to the new target address. | |
10351 | If it points to this section and has been removed, MOVE IT. | |
10352 | Also, don't forget to modify the associated SIZE at | |
10353 | (offset + 4). */ | |
10354 | ||
10355 | irel = &internal_relocs[i]; | |
10356 | r_type = ELF32_R_TYPE (irel->r_info); | |
10357 | if (r_type == R_XTENSA_NONE) | |
10358 | continue; | |
10359 | ||
43cd72b9 BW |
10360 | /* Find the literal value. */ |
10361 | r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size); | |
10362 | size_p = &contents[irel->r_offset + 4]; | |
10363 | flags_p = NULL; | |
10364 | if (is_full_prop_section) | |
1d25768e BW |
10365 | flags_p = &contents[irel->r_offset + 8]; |
10366 | BFD_ASSERT (irel->r_offset + entry_size <= sec_size); | |
e0001a05 | 10367 | |
43cd72b9 | 10368 | target_sec = r_reloc_get_section (&val.r_rel); |
e0001a05 NC |
10369 | target_relax_info = get_xtensa_relax_info (target_sec); |
10370 | ||
10371 | if (target_relax_info | |
43cd72b9 BW |
10372 | && (target_relax_info->is_relaxable_literal_section |
10373 | || target_relax_info->is_relaxable_asm_section )) | |
e0001a05 NC |
10374 | { |
10375 | /* Translate the relocation's destination. */ | |
03669f1c BW |
10376 | bfd_vma old_offset = val.r_rel.target_offset; |
10377 | bfd_vma new_offset; | |
e0001a05 | 10378 | long old_size, new_size; |
071aa5c9 MF |
10379 | int removed_by_old_offset = |
10380 | removed_by_actions_map (&target_relax_info->action_list, | |
10381 | old_offset, FALSE); | |
10382 | new_offset = old_offset - removed_by_old_offset; | |
e0001a05 NC |
10383 | |
10384 | /* Assert that we are not out of bounds. */ | |
43cd72b9 | 10385 | old_size = bfd_get_32 (abfd, size_p); |
03669f1c | 10386 | new_size = old_size; |
43cd72b9 BW |
10387 | |
10388 | if (old_size == 0) | |
10389 | { | |
10390 | /* Only the first zero-sized unreachable entry is | |
10391 | allowed to expand. In this case the new offset | |
10392 | should be the offset before the fill and the new | |
10393 | size is the expansion size. For other zero-sized | |
10394 | entries the resulting size should be zero with an | |
10395 | offset before or after the fill address depending | |
10396 | on whether the expanding unreachable entry | |
10397 | preceeds it. */ | |
03669f1c BW |
10398 | if (last_zfill_target_sec == 0 |
10399 | || last_zfill_target_sec != target_sec | |
10400 | || last_zfill_target_offset != old_offset) | |
43cd72b9 | 10401 | { |
03669f1c BW |
10402 | bfd_vma new_end_offset = new_offset; |
10403 | ||
10404 | /* Recompute the new_offset, but this time don't | |
10405 | include any fill inserted by relaxation. */ | |
071aa5c9 MF |
10406 | removed_by_old_offset = |
10407 | removed_by_actions_map (&target_relax_info->action_list, | |
10408 | old_offset, TRUE); | |
10409 | new_offset = old_offset - removed_by_old_offset; | |
43cd72b9 BW |
10410 | |
10411 | /* If it is not unreachable and we have not yet | |
10412 | seen an unreachable at this address, place it | |
10413 | before the fill address. */ | |
03669f1c BW |
10414 | if (flags_p && (bfd_get_32 (abfd, flags_p) |
10415 | & XTENSA_PROP_UNREACHABLE) != 0) | |
43cd72b9 | 10416 | { |
03669f1c BW |
10417 | new_size = new_end_offset - new_offset; |
10418 | ||
43cd72b9 | 10419 | last_zfill_target_sec = target_sec; |
03669f1c | 10420 | last_zfill_target_offset = old_offset; |
43cd72b9 BW |
10421 | } |
10422 | } | |
10423 | } | |
10424 | else | |
071aa5c9 MF |
10425 | { |
10426 | int removed_by_old_offset_size = | |
10427 | removed_by_actions_map (&target_relax_info->action_list, | |
10428 | old_offset + old_size, TRUE); | |
10429 | new_size -= removed_by_old_offset_size - removed_by_old_offset; | |
10430 | } | |
43cd72b9 | 10431 | |
e0001a05 NC |
10432 | if (new_size != old_size) |
10433 | { | |
10434 | bfd_put_32 (abfd, new_size, size_p); | |
10435 | pin_contents (sec, contents); | |
10436 | } | |
43cd72b9 | 10437 | |
03669f1c | 10438 | if (new_offset != old_offset) |
e0001a05 | 10439 | { |
03669f1c | 10440 | bfd_vma diff = new_offset - old_offset; |
e0001a05 NC |
10441 | irel->r_addend += diff; |
10442 | pin_internal_relocs (sec, internal_relocs); | |
10443 | } | |
10444 | } | |
10445 | } | |
10446 | } | |
10447 | ||
10448 | /* Combine adjacent property table entries. This is also done in | |
10449 | finish_dynamic_sections() but at that point it's too late to | |
10450 | reclaim the space in the output section, so we do this twice. */ | |
10451 | ||
0e1862bb | 10452 | if (internal_relocs && (!bfd_link_relocatable (link_info) |
1d25768e | 10453 | || xtensa_is_littable_section (sec))) |
e0001a05 NC |
10454 | { |
10455 | Elf_Internal_Rela *last_irel = NULL; | |
1d25768e | 10456 | Elf_Internal_Rela *irel, *next_rel, *rel_end; |
e0001a05 | 10457 | int removed_bytes = 0; |
1d25768e | 10458 | bfd_vma offset; |
43cd72b9 BW |
10459 | flagword predef_flags; |
10460 | ||
43cd72b9 | 10461 | predef_flags = xtensa_get_property_predef_flags (sec); |
e0001a05 | 10462 | |
1d25768e | 10463 | /* Walk over memory and relocations at the same time. |
e0001a05 NC |
10464 | This REQUIRES that the internal_relocs be sorted by offset. */ |
10465 | qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), | |
10466 | internal_reloc_compare); | |
e0001a05 NC |
10467 | |
10468 | pin_internal_relocs (sec, internal_relocs); | |
10469 | pin_contents (sec, contents); | |
10470 | ||
1d25768e BW |
10471 | next_rel = internal_relocs; |
10472 | rel_end = internal_relocs + sec->reloc_count; | |
10473 | ||
a3ef2d63 | 10474 | BFD_ASSERT (sec->size % entry_size == 0); |
e0001a05 | 10475 | |
a3ef2d63 | 10476 | for (offset = 0; offset < sec->size; offset += entry_size) |
e0001a05 | 10477 | { |
1d25768e | 10478 | Elf_Internal_Rela *offset_rel, *extra_rel; |
e0001a05 | 10479 | bfd_vma bytes_to_remove, size, actual_offset; |
1d25768e | 10480 | bfd_boolean remove_this_rel; |
43cd72b9 | 10481 | flagword flags; |
e0001a05 | 10482 | |
1d25768e BW |
10483 | /* Find the first relocation for the entry at the current offset. |
10484 | Adjust the offsets of any extra relocations for the previous | |
10485 | entry. */ | |
10486 | offset_rel = NULL; | |
10487 | if (next_rel) | |
10488 | { | |
10489 | for (irel = next_rel; irel < rel_end; irel++) | |
10490 | { | |
10491 | if ((irel->r_offset == offset | |
10492 | && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE) | |
10493 | || irel->r_offset > offset) | |
10494 | { | |
10495 | offset_rel = irel; | |
10496 | break; | |
10497 | } | |
10498 | irel->r_offset -= removed_bytes; | |
1d25768e BW |
10499 | } |
10500 | } | |
e0001a05 | 10501 | |
1d25768e BW |
10502 | /* Find the next relocation (if there are any left). */ |
10503 | extra_rel = NULL; | |
10504 | if (offset_rel) | |
e0001a05 | 10505 | { |
1d25768e | 10506 | for (irel = offset_rel + 1; irel < rel_end; irel++) |
e0001a05 | 10507 | { |
1d25768e BW |
10508 | if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE) |
10509 | { | |
10510 | extra_rel = irel; | |
10511 | break; | |
10512 | } | |
e0001a05 | 10513 | } |
e0001a05 NC |
10514 | } |
10515 | ||
1d25768e BW |
10516 | /* Check if there are relocations on the current entry. There |
10517 | should usually be a relocation on the offset field. If there | |
10518 | are relocations on the size or flags, then we can't optimize | |
10519 | this entry. Also, find the next relocation to examine on the | |
10520 | next iteration. */ | |
10521 | if (offset_rel) | |
e0001a05 | 10522 | { |
1d25768e | 10523 | if (offset_rel->r_offset >= offset + entry_size) |
e0001a05 | 10524 | { |
1d25768e BW |
10525 | next_rel = offset_rel; |
10526 | /* There are no relocations on the current entry, but we | |
10527 | might still be able to remove it if the size is zero. */ | |
10528 | offset_rel = NULL; | |
10529 | } | |
10530 | else if (offset_rel->r_offset > offset | |
10531 | || (extra_rel | |
10532 | && extra_rel->r_offset < offset + entry_size)) | |
10533 | { | |
10534 | /* There is a relocation on the size or flags, so we can't | |
10535 | do anything with this entry. Continue with the next. */ | |
10536 | next_rel = offset_rel; | |
10537 | continue; | |
10538 | } | |
10539 | else | |
10540 | { | |
10541 | BFD_ASSERT (offset_rel->r_offset == offset); | |
10542 | offset_rel->r_offset -= removed_bytes; | |
10543 | next_rel = offset_rel + 1; | |
e0001a05 | 10544 | } |
e0001a05 | 10545 | } |
1d25768e BW |
10546 | else |
10547 | next_rel = NULL; | |
e0001a05 | 10548 | |
1d25768e | 10549 | remove_this_rel = FALSE; |
e0001a05 NC |
10550 | bytes_to_remove = 0; |
10551 | actual_offset = offset - removed_bytes; | |
10552 | size = bfd_get_32 (abfd, &contents[actual_offset + 4]); | |
10553 | ||
68ffbac6 | 10554 | if (is_full_prop_section) |
43cd72b9 BW |
10555 | flags = bfd_get_32 (abfd, &contents[actual_offset + 8]); |
10556 | else | |
10557 | flags = predef_flags; | |
10558 | ||
1d25768e BW |
10559 | if (size == 0 |
10560 | && (flags & XTENSA_PROP_ALIGN) == 0 | |
10561 | && (flags & XTENSA_PROP_UNREACHABLE) == 0) | |
e0001a05 | 10562 | { |
43cd72b9 BW |
10563 | /* Always remove entries with zero size and no alignment. */ |
10564 | bytes_to_remove = entry_size; | |
1d25768e BW |
10565 | if (offset_rel) |
10566 | remove_this_rel = TRUE; | |
e0001a05 | 10567 | } |
1d25768e BW |
10568 | else if (offset_rel |
10569 | && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32) | |
e0001a05 | 10570 | { |
1d25768e | 10571 | if (last_irel) |
e0001a05 | 10572 | { |
1d25768e BW |
10573 | flagword old_flags; |
10574 | bfd_vma old_size = | |
10575 | bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]); | |
10576 | bfd_vma old_address = | |
10577 | (last_irel->r_addend | |
10578 | + bfd_get_32 (abfd, &contents[last_irel->r_offset])); | |
10579 | bfd_vma new_address = | |
10580 | (offset_rel->r_addend | |
10581 | + bfd_get_32 (abfd, &contents[actual_offset])); | |
68ffbac6 | 10582 | if (is_full_prop_section) |
1d25768e BW |
10583 | old_flags = bfd_get_32 |
10584 | (abfd, &contents[last_irel->r_offset + 8]); | |
10585 | else | |
10586 | old_flags = predef_flags; | |
10587 | ||
10588 | if ((ELF32_R_SYM (offset_rel->r_info) | |
10589 | == ELF32_R_SYM (last_irel->r_info)) | |
10590 | && old_address + old_size == new_address | |
10591 | && old_flags == flags | |
10592 | && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0 | |
10593 | && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0) | |
e0001a05 | 10594 | { |
1d25768e BW |
10595 | /* Fix the old size. */ |
10596 | bfd_put_32 (abfd, old_size + size, | |
10597 | &contents[last_irel->r_offset + 4]); | |
10598 | bytes_to_remove = entry_size; | |
10599 | remove_this_rel = TRUE; | |
e0001a05 NC |
10600 | } |
10601 | else | |
1d25768e | 10602 | last_irel = offset_rel; |
e0001a05 | 10603 | } |
1d25768e BW |
10604 | else |
10605 | last_irel = offset_rel; | |
e0001a05 NC |
10606 | } |
10607 | ||
1d25768e | 10608 | if (remove_this_rel) |
e0001a05 | 10609 | { |
1d25768e | 10610 | offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); |
3df502ae | 10611 | offset_rel->r_offset = 0; |
e0001a05 NC |
10612 | } |
10613 | ||
10614 | if (bytes_to_remove != 0) | |
10615 | { | |
10616 | removed_bytes += bytes_to_remove; | |
a3ef2d63 | 10617 | if (offset + bytes_to_remove < sec->size) |
e0001a05 | 10618 | memmove (&contents[actual_offset], |
43cd72b9 | 10619 | &contents[actual_offset + bytes_to_remove], |
a3ef2d63 | 10620 | sec->size - offset - bytes_to_remove); |
e0001a05 NC |
10621 | } |
10622 | } | |
10623 | ||
43cd72b9 | 10624 | if (removed_bytes) |
e0001a05 | 10625 | { |
1d25768e BW |
10626 | /* Fix up any extra relocations on the last entry. */ |
10627 | for (irel = next_rel; irel < rel_end; irel++) | |
10628 | irel->r_offset -= removed_bytes; | |
10629 | ||
e0001a05 | 10630 | /* Clear the removed bytes. */ |
a3ef2d63 | 10631 | memset (&contents[sec->size - removed_bytes], 0, removed_bytes); |
e0001a05 | 10632 | |
a3ef2d63 BW |
10633 | if (sec->rawsize == 0) |
10634 | sec->rawsize = sec->size; | |
10635 | sec->size -= removed_bytes; | |
e901de89 BW |
10636 | |
10637 | if (xtensa_is_littable_section (sec)) | |
10638 | { | |
f0e6fdb2 BW |
10639 | asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc; |
10640 | if (sgotloc) | |
10641 | sgotloc->size -= removed_bytes; | |
e901de89 | 10642 | } |
e0001a05 NC |
10643 | } |
10644 | } | |
e901de89 | 10645 | |
e0001a05 NC |
10646 | error_return: |
10647 | release_internal_relocs (sec, internal_relocs); | |
10648 | release_contents (sec, contents); | |
10649 | return ok; | |
10650 | } | |
10651 | ||
10652 | \f | |
10653 | /* Third relaxation pass. */ | |
10654 | ||
10655 | /* Change symbol values to account for removed literals. */ | |
10656 | ||
43cd72b9 | 10657 | bfd_boolean |
7fa3d080 | 10658 | relax_section_symbols (bfd *abfd, asection *sec) |
e0001a05 NC |
10659 | { |
10660 | xtensa_relax_info *relax_info; | |
10661 | unsigned int sec_shndx; | |
10662 | Elf_Internal_Shdr *symtab_hdr; | |
10663 | Elf_Internal_Sym *isymbuf; | |
10664 | unsigned i, num_syms, num_locals; | |
10665 | ||
10666 | relax_info = get_xtensa_relax_info (sec); | |
10667 | BFD_ASSERT (relax_info); | |
10668 | ||
43cd72b9 BW |
10669 | if (!relax_info->is_relaxable_literal_section |
10670 | && !relax_info->is_relaxable_asm_section) | |
e0001a05 NC |
10671 | return TRUE; |
10672 | ||
10673 | sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); | |
10674 | ||
10675 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
10676 | isymbuf = retrieve_local_syms (abfd); | |
10677 | ||
10678 | num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym); | |
10679 | num_locals = symtab_hdr->sh_info; | |
10680 | ||
10681 | /* Adjust the local symbols defined in this section. */ | |
10682 | for (i = 0; i < num_locals; i++) | |
10683 | { | |
10684 | Elf_Internal_Sym *isym = &isymbuf[i]; | |
10685 | ||
10686 | if (isym->st_shndx == sec_shndx) | |
10687 | { | |
03669f1c | 10688 | bfd_vma orig_addr = isym->st_value; |
071aa5c9 MF |
10689 | int removed = removed_by_actions_map (&relax_info->action_list, |
10690 | orig_addr, FALSE); | |
43cd72b9 | 10691 | |
071aa5c9 | 10692 | isym->st_value -= removed; |
03669f1c BW |
10693 | if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC) |
10694 | isym->st_size -= | |
071aa5c9 MF |
10695 | removed_by_actions_map (&relax_info->action_list, |
10696 | orig_addr + isym->st_size, FALSE) - | |
10697 | removed; | |
e0001a05 NC |
10698 | } |
10699 | } | |
10700 | ||
10701 | /* Now adjust the global symbols defined in this section. */ | |
10702 | for (i = 0; i < (num_syms - num_locals); i++) | |
10703 | { | |
10704 | struct elf_link_hash_entry *sym_hash; | |
10705 | ||
10706 | sym_hash = elf_sym_hashes (abfd)[i]; | |
10707 | ||
10708 | if (sym_hash->root.type == bfd_link_hash_warning) | |
10709 | sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link; | |
10710 | ||
10711 | if ((sym_hash->root.type == bfd_link_hash_defined | |
10712 | || sym_hash->root.type == bfd_link_hash_defweak) | |
10713 | && sym_hash->root.u.def.section == sec) | |
10714 | { | |
03669f1c | 10715 | bfd_vma orig_addr = sym_hash->root.u.def.value; |
071aa5c9 MF |
10716 | int removed = removed_by_actions_map (&relax_info->action_list, |
10717 | orig_addr, FALSE); | |
43cd72b9 | 10718 | |
071aa5c9 | 10719 | sym_hash->root.u.def.value -= removed; |
43cd72b9 | 10720 | |
03669f1c BW |
10721 | if (sym_hash->type == STT_FUNC) |
10722 | sym_hash->size -= | |
071aa5c9 MF |
10723 | removed_by_actions_map (&relax_info->action_list, |
10724 | orig_addr + sym_hash->size, FALSE) - | |
10725 | removed; | |
e0001a05 NC |
10726 | } |
10727 | } | |
10728 | ||
10729 | return TRUE; | |
10730 | } | |
10731 | ||
10732 | \f | |
10733 | /* "Fix" handling functions, called while performing relocations. */ | |
10734 | ||
43cd72b9 | 10735 | static bfd_boolean |
7fa3d080 BW |
10736 | do_fix_for_relocatable_link (Elf_Internal_Rela *rel, |
10737 | bfd *input_bfd, | |
10738 | asection *input_section, | |
10739 | bfd_byte *contents) | |
e0001a05 NC |
10740 | { |
10741 | r_reloc r_rel; | |
10742 | asection *sec, *old_sec; | |
10743 | bfd_vma old_offset; | |
10744 | int r_type = ELF32_R_TYPE (rel->r_info); | |
e0001a05 NC |
10745 | reloc_bfd_fix *fix; |
10746 | ||
10747 | if (r_type == R_XTENSA_NONE) | |
43cd72b9 | 10748 | return TRUE; |
e0001a05 | 10749 | |
43cd72b9 BW |
10750 | fix = get_bfd_fix (input_section, rel->r_offset, r_type); |
10751 | if (!fix) | |
10752 | return TRUE; | |
e0001a05 | 10753 | |
43cd72b9 BW |
10754 | r_reloc_init (&r_rel, input_bfd, rel, contents, |
10755 | bfd_get_section_limit (input_bfd, input_section)); | |
e0001a05 | 10756 | old_sec = r_reloc_get_section (&r_rel); |
43cd72b9 BW |
10757 | old_offset = r_rel.target_offset; |
10758 | ||
10759 | if (!old_sec || !r_reloc_is_defined (&r_rel)) | |
e0001a05 | 10760 | { |
43cd72b9 BW |
10761 | if (r_type != R_XTENSA_ASM_EXPAND) |
10762 | { | |
4eca0228 | 10763 | _bfd_error_handler |
695344c0 | 10764 | /* xgettext:c-format */ |
43cd72b9 BW |
10765 | (_("%B(%A+0x%lx): unexpected fix for %s relocation"), |
10766 | input_bfd, input_section, rel->r_offset, | |
10767 | elf_howto_table[r_type].name); | |
10768 | return FALSE; | |
10769 | } | |
e0001a05 NC |
10770 | /* Leave it be. Resolution will happen in a later stage. */ |
10771 | } | |
10772 | else | |
10773 | { | |
10774 | sec = fix->target_sec; | |
10775 | rel->r_addend += ((sec->output_offset + fix->target_offset) | |
10776 | - (old_sec->output_offset + old_offset)); | |
10777 | } | |
43cd72b9 | 10778 | return TRUE; |
e0001a05 NC |
10779 | } |
10780 | ||
10781 | ||
10782 | static void | |
7fa3d080 BW |
10783 | do_fix_for_final_link (Elf_Internal_Rela *rel, |
10784 | bfd *input_bfd, | |
10785 | asection *input_section, | |
10786 | bfd_byte *contents, | |
10787 | bfd_vma *relocationp) | |
e0001a05 NC |
10788 | { |
10789 | asection *sec; | |
10790 | int r_type = ELF32_R_TYPE (rel->r_info); | |
e0001a05 | 10791 | reloc_bfd_fix *fix; |
43cd72b9 | 10792 | bfd_vma fixup_diff; |
e0001a05 NC |
10793 | |
10794 | if (r_type == R_XTENSA_NONE) | |
10795 | return; | |
10796 | ||
43cd72b9 BW |
10797 | fix = get_bfd_fix (input_section, rel->r_offset, r_type); |
10798 | if (!fix) | |
e0001a05 NC |
10799 | return; |
10800 | ||
10801 | sec = fix->target_sec; | |
43cd72b9 BW |
10802 | |
10803 | fixup_diff = rel->r_addend; | |
10804 | if (elf_howto_table[fix->src_type].partial_inplace) | |
10805 | { | |
10806 | bfd_vma inplace_val; | |
10807 | BFD_ASSERT (fix->src_offset | |
10808 | < bfd_get_section_limit (input_bfd, input_section)); | |
10809 | inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]); | |
10810 | fixup_diff += inplace_val; | |
10811 | } | |
10812 | ||
e0001a05 NC |
10813 | *relocationp = (sec->output_section->vma |
10814 | + sec->output_offset | |
43cd72b9 | 10815 | + fix->target_offset - fixup_diff); |
e0001a05 NC |
10816 | } |
10817 | ||
10818 | \f | |
10819 | /* Miscellaneous utility functions.... */ | |
10820 | ||
10821 | static asection * | |
f0e6fdb2 | 10822 | elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk) |
e0001a05 | 10823 | { |
f0e6fdb2 | 10824 | bfd *dynobj; |
e0001a05 NC |
10825 | char plt_name[10]; |
10826 | ||
10827 | if (chunk == 0) | |
ce558b89 | 10828 | return elf_hash_table (info)->splt; |
e0001a05 | 10829 | |
f0e6fdb2 | 10830 | dynobj = elf_hash_table (info)->dynobj; |
e0001a05 | 10831 | sprintf (plt_name, ".plt.%u", chunk); |
3d4d4302 | 10832 | return bfd_get_linker_section (dynobj, plt_name); |
e0001a05 NC |
10833 | } |
10834 | ||
10835 | ||
10836 | static asection * | |
f0e6fdb2 | 10837 | elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk) |
e0001a05 | 10838 | { |
f0e6fdb2 | 10839 | bfd *dynobj; |
e0001a05 NC |
10840 | char got_name[14]; |
10841 | ||
10842 | if (chunk == 0) | |
ce558b89 | 10843 | return elf_hash_table (info)->sgotplt; |
e0001a05 | 10844 | |
f0e6fdb2 | 10845 | dynobj = elf_hash_table (info)->dynobj; |
e0001a05 | 10846 | sprintf (got_name, ".got.plt.%u", chunk); |
3d4d4302 | 10847 | return bfd_get_linker_section (dynobj, got_name); |
e0001a05 NC |
10848 | } |
10849 | ||
10850 | ||
10851 | /* Get the input section for a given symbol index. | |
10852 | If the symbol is: | |
10853 | . a section symbol, return the section; | |
10854 | . a common symbol, return the common section; | |
10855 | . an undefined symbol, return the undefined section; | |
10856 | . an indirect symbol, follow the links; | |
10857 | . an absolute value, return the absolute section. */ | |
10858 | ||
10859 | static asection * | |
7fa3d080 | 10860 | get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx) |
e0001a05 NC |
10861 | { |
10862 | Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
10863 | asection *target_sec = NULL; | |
43cd72b9 | 10864 | if (r_symndx < symtab_hdr->sh_info) |
e0001a05 NC |
10865 | { |
10866 | Elf_Internal_Sym *isymbuf; | |
10867 | unsigned int section_index; | |
10868 | ||
10869 | isymbuf = retrieve_local_syms (abfd); | |
10870 | section_index = isymbuf[r_symndx].st_shndx; | |
10871 | ||
10872 | if (section_index == SHN_UNDEF) | |
10873 | target_sec = bfd_und_section_ptr; | |
e0001a05 NC |
10874 | else if (section_index == SHN_ABS) |
10875 | target_sec = bfd_abs_section_ptr; | |
10876 | else if (section_index == SHN_COMMON) | |
10877 | target_sec = bfd_com_section_ptr; | |
43cd72b9 | 10878 | else |
cb33740c | 10879 | target_sec = bfd_section_from_elf_index (abfd, section_index); |
e0001a05 NC |
10880 | } |
10881 | else | |
10882 | { | |
10883 | unsigned long indx = r_symndx - symtab_hdr->sh_info; | |
10884 | struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx]; | |
10885 | ||
10886 | while (h->root.type == bfd_link_hash_indirect | |
10887 | || h->root.type == bfd_link_hash_warning) | |
10888 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
10889 | ||
10890 | switch (h->root.type) | |
10891 | { | |
10892 | case bfd_link_hash_defined: | |
10893 | case bfd_link_hash_defweak: | |
10894 | target_sec = h->root.u.def.section; | |
10895 | break; | |
10896 | case bfd_link_hash_common: | |
10897 | target_sec = bfd_com_section_ptr; | |
10898 | break; | |
10899 | case bfd_link_hash_undefined: | |
10900 | case bfd_link_hash_undefweak: | |
10901 | target_sec = bfd_und_section_ptr; | |
10902 | break; | |
10903 | default: /* New indirect warning. */ | |
10904 | target_sec = bfd_und_section_ptr; | |
10905 | break; | |
10906 | } | |
10907 | } | |
10908 | return target_sec; | |
10909 | } | |
10910 | ||
10911 | ||
10912 | static struct elf_link_hash_entry * | |
7fa3d080 | 10913 | get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx) |
e0001a05 NC |
10914 | { |
10915 | unsigned long indx; | |
10916 | struct elf_link_hash_entry *h; | |
10917 | Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
10918 | ||
10919 | if (r_symndx < symtab_hdr->sh_info) | |
10920 | return NULL; | |
43cd72b9 | 10921 | |
e0001a05 NC |
10922 | indx = r_symndx - symtab_hdr->sh_info; |
10923 | h = elf_sym_hashes (abfd)[indx]; | |
10924 | while (h->root.type == bfd_link_hash_indirect | |
10925 | || h->root.type == bfd_link_hash_warning) | |
10926 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
10927 | return h; | |
10928 | } | |
10929 | ||
10930 | ||
10931 | /* Get the section-relative offset for a symbol number. */ | |
10932 | ||
10933 | static bfd_vma | |
7fa3d080 | 10934 | get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx) |
e0001a05 NC |
10935 | { |
10936 | Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
10937 | bfd_vma offset = 0; | |
10938 | ||
43cd72b9 | 10939 | if (r_symndx < symtab_hdr->sh_info) |
e0001a05 NC |
10940 | { |
10941 | Elf_Internal_Sym *isymbuf; | |
10942 | isymbuf = retrieve_local_syms (abfd); | |
10943 | offset = isymbuf[r_symndx].st_value; | |
10944 | } | |
10945 | else | |
10946 | { | |
10947 | unsigned long indx = r_symndx - symtab_hdr->sh_info; | |
10948 | struct elf_link_hash_entry *h = | |
10949 | elf_sym_hashes (abfd)[indx]; | |
10950 | ||
10951 | while (h->root.type == bfd_link_hash_indirect | |
10952 | || h->root.type == bfd_link_hash_warning) | |
10953 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
10954 | if (h->root.type == bfd_link_hash_defined | |
10955 | || h->root.type == bfd_link_hash_defweak) | |
10956 | offset = h->root.u.def.value; | |
10957 | } | |
10958 | return offset; | |
10959 | } | |
10960 | ||
10961 | ||
10962 | static bfd_boolean | |
7fa3d080 | 10963 | is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel) |
43cd72b9 BW |
10964 | { |
10965 | unsigned long r_symndx = ELF32_R_SYM (rel->r_info); | |
10966 | struct elf_link_hash_entry *h; | |
10967 | ||
10968 | h = get_elf_r_symndx_hash_entry (abfd, r_symndx); | |
10969 | if (h && h->root.type == bfd_link_hash_defweak) | |
10970 | return TRUE; | |
10971 | return FALSE; | |
10972 | } | |
10973 | ||
10974 | ||
10975 | static bfd_boolean | |
7fa3d080 BW |
10976 | pcrel_reloc_fits (xtensa_opcode opc, |
10977 | int opnd, | |
10978 | bfd_vma self_address, | |
10979 | bfd_vma dest_address) | |
e0001a05 | 10980 | { |
43cd72b9 BW |
10981 | xtensa_isa isa = xtensa_default_isa; |
10982 | uint32 valp = dest_address; | |
10983 | if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address) | |
10984 | || xtensa_operand_encode (isa, opc, opnd, &valp)) | |
10985 | return FALSE; | |
10986 | return TRUE; | |
e0001a05 NC |
10987 | } |
10988 | ||
10989 | ||
68ffbac6 | 10990 | static bfd_boolean |
7fa3d080 | 10991 | xtensa_is_property_section (asection *sec) |
e0001a05 | 10992 | { |
1d25768e BW |
10993 | if (xtensa_is_insntable_section (sec) |
10994 | || xtensa_is_littable_section (sec) | |
10995 | || xtensa_is_proptable_section (sec)) | |
b614a702 | 10996 | return TRUE; |
e901de89 | 10997 | |
1d25768e BW |
10998 | return FALSE; |
10999 | } | |
11000 | ||
11001 | ||
68ffbac6 | 11002 | static bfd_boolean |
1d25768e BW |
11003 | xtensa_is_insntable_section (asection *sec) |
11004 | { | |
11005 | if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME) | |
11006 | || CONST_STRNEQ (sec->name, ".gnu.linkonce.x.")) | |
e901de89 BW |
11007 | return TRUE; |
11008 | ||
e901de89 BW |
11009 | return FALSE; |
11010 | } | |
11011 | ||
11012 | ||
68ffbac6 | 11013 | static bfd_boolean |
7fa3d080 | 11014 | xtensa_is_littable_section (asection *sec) |
e901de89 | 11015 | { |
1d25768e BW |
11016 | if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME) |
11017 | || CONST_STRNEQ (sec->name, ".gnu.linkonce.p.")) | |
b614a702 | 11018 | return TRUE; |
e901de89 | 11019 | |
1d25768e BW |
11020 | return FALSE; |
11021 | } | |
11022 | ||
11023 | ||
68ffbac6 | 11024 | static bfd_boolean |
1d25768e BW |
11025 | xtensa_is_proptable_section (asection *sec) |
11026 | { | |
11027 | if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME) | |
11028 | || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop.")) | |
e901de89 | 11029 | return TRUE; |
e0001a05 | 11030 | |
e901de89 | 11031 | return FALSE; |
e0001a05 NC |
11032 | } |
11033 | ||
11034 | ||
43cd72b9 | 11035 | static int |
7fa3d080 | 11036 | internal_reloc_compare (const void *ap, const void *bp) |
e0001a05 | 11037 | { |
43cd72b9 BW |
11038 | const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap; |
11039 | const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp; | |
11040 | ||
11041 | if (a->r_offset != b->r_offset) | |
11042 | return (a->r_offset - b->r_offset); | |
11043 | ||
11044 | /* We don't need to sort on these criteria for correctness, | |
11045 | but enforcing a more strict ordering prevents unstable qsort | |
11046 | from behaving differently with different implementations. | |
11047 | Without the code below we get correct but different results | |
11048 | on Solaris 2.7 and 2.8. We would like to always produce the | |
11049 | same results no matter the host. */ | |
11050 | ||
11051 | if (a->r_info != b->r_info) | |
11052 | return (a->r_info - b->r_info); | |
11053 | ||
11054 | return (a->r_addend - b->r_addend); | |
e0001a05 NC |
11055 | } |
11056 | ||
11057 | ||
11058 | static int | |
7fa3d080 | 11059 | internal_reloc_matches (const void *ap, const void *bp) |
e0001a05 NC |
11060 | { |
11061 | const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap; | |
11062 | const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp; | |
11063 | ||
43cd72b9 BW |
11064 | /* Check if one entry overlaps with the other; this shouldn't happen |
11065 | except when searching for a match. */ | |
e0001a05 NC |
11066 | return (a->r_offset - b->r_offset); |
11067 | } | |
11068 | ||
11069 | ||
74869ac7 BW |
11070 | /* Predicate function used to look up a section in a particular group. */ |
11071 | ||
11072 | static bfd_boolean | |
11073 | match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf) | |
11074 | { | |
11075 | const char *gname = inf; | |
11076 | const char *group_name = elf_group_name (sec); | |
68ffbac6 | 11077 | |
74869ac7 BW |
11078 | return (group_name == gname |
11079 | || (group_name != NULL | |
11080 | && gname != NULL | |
11081 | && strcmp (group_name, gname) == 0)); | |
11082 | } | |
11083 | ||
11084 | ||
1d25768e BW |
11085 | static int linkonce_len = sizeof (".gnu.linkonce.") - 1; |
11086 | ||
51c8ebc1 BW |
11087 | static char * |
11088 | xtensa_property_section_name (asection *sec, const char *base_name) | |
e0001a05 | 11089 | { |
74869ac7 BW |
11090 | const char *suffix, *group_name; |
11091 | char *prop_sec_name; | |
74869ac7 BW |
11092 | |
11093 | group_name = elf_group_name (sec); | |
11094 | if (group_name) | |
11095 | { | |
11096 | suffix = strrchr (sec->name, '.'); | |
11097 | if (suffix == sec->name) | |
11098 | suffix = 0; | |
11099 | prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1 | |
11100 | + (suffix ? strlen (suffix) : 0)); | |
11101 | strcpy (prop_sec_name, base_name); | |
11102 | if (suffix) | |
11103 | strcat (prop_sec_name, suffix); | |
11104 | } | |
11105 | else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0) | |
e0001a05 | 11106 | { |
43cd72b9 | 11107 | char *linkonce_kind = 0; |
b614a702 | 11108 | |
68ffbac6 | 11109 | if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0) |
7db48a12 | 11110 | linkonce_kind = "x."; |
68ffbac6 | 11111 | else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0) |
7db48a12 | 11112 | linkonce_kind = "p."; |
43cd72b9 BW |
11113 | else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0) |
11114 | linkonce_kind = "prop."; | |
e0001a05 | 11115 | else |
b614a702 BW |
11116 | abort (); |
11117 | ||
43cd72b9 BW |
11118 | prop_sec_name = (char *) bfd_malloc (strlen (sec->name) |
11119 | + strlen (linkonce_kind) + 1); | |
b614a702 | 11120 | memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len); |
43cd72b9 | 11121 | strcpy (prop_sec_name + linkonce_len, linkonce_kind); |
b614a702 BW |
11122 | |
11123 | suffix = sec->name + linkonce_len; | |
096c35a7 | 11124 | /* For backward compatibility, replace "t." instead of inserting |
43cd72b9 | 11125 | the new linkonce_kind (but not for "prop" sections). */ |
0112cd26 | 11126 | if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.') |
43cd72b9 BW |
11127 | suffix += 2; |
11128 | strcat (prop_sec_name + linkonce_len, suffix); | |
74869ac7 BW |
11129 | } |
11130 | else | |
11131 | prop_sec_name = strdup (base_name); | |
11132 | ||
51c8ebc1 BW |
11133 | return prop_sec_name; |
11134 | } | |
11135 | ||
11136 | ||
11137 | static asection * | |
11138 | xtensa_get_property_section (asection *sec, const char *base_name) | |
11139 | { | |
11140 | char *prop_sec_name; | |
11141 | asection *prop_sec; | |
11142 | ||
11143 | prop_sec_name = xtensa_property_section_name (sec, base_name); | |
11144 | prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name, | |
11145 | match_section_group, | |
11146 | (void *) elf_group_name (sec)); | |
11147 | free (prop_sec_name); | |
11148 | return prop_sec; | |
11149 | } | |
11150 | ||
11151 | ||
11152 | asection * | |
11153 | xtensa_make_property_section (asection *sec, const char *base_name) | |
11154 | { | |
11155 | char *prop_sec_name; | |
11156 | asection *prop_sec; | |
11157 | ||
74869ac7 | 11158 | /* Check if the section already exists. */ |
51c8ebc1 | 11159 | prop_sec_name = xtensa_property_section_name (sec, base_name); |
74869ac7 BW |
11160 | prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name, |
11161 | match_section_group, | |
51c8ebc1 | 11162 | (void *) elf_group_name (sec)); |
74869ac7 BW |
11163 | /* If not, create it. */ |
11164 | if (! prop_sec) | |
11165 | { | |
11166 | flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY); | |
11167 | flags |= (bfd_get_section_flags (sec->owner, sec) | |
11168 | & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES)); | |
11169 | ||
11170 | prop_sec = bfd_make_section_anyway_with_flags | |
11171 | (sec->owner, strdup (prop_sec_name), flags); | |
11172 | if (! prop_sec) | |
11173 | return 0; | |
b614a702 | 11174 | |
51c8ebc1 | 11175 | elf_group_name (prop_sec) = elf_group_name (sec); |
e0001a05 NC |
11176 | } |
11177 | ||
74869ac7 BW |
11178 | free (prop_sec_name); |
11179 | return prop_sec; | |
e0001a05 NC |
11180 | } |
11181 | ||
43cd72b9 BW |
11182 | |
11183 | flagword | |
7fa3d080 | 11184 | xtensa_get_property_predef_flags (asection *sec) |
43cd72b9 | 11185 | { |
1d25768e | 11186 | if (xtensa_is_insntable_section (sec)) |
43cd72b9 | 11187 | return (XTENSA_PROP_INSN |
99ded152 | 11188 | | XTENSA_PROP_NO_TRANSFORM |
43cd72b9 BW |
11189 | | XTENSA_PROP_INSN_NO_REORDER); |
11190 | ||
11191 | if (xtensa_is_littable_section (sec)) | |
11192 | return (XTENSA_PROP_LITERAL | |
99ded152 | 11193 | | XTENSA_PROP_NO_TRANSFORM |
43cd72b9 BW |
11194 | | XTENSA_PROP_INSN_NO_REORDER); |
11195 | ||
11196 | return 0; | |
11197 | } | |
11198 | ||
e0001a05 NC |
11199 | \f |
11200 | /* Other functions called directly by the linker. */ | |
11201 | ||
11202 | bfd_boolean | |
7fa3d080 BW |
11203 | xtensa_callback_required_dependence (bfd *abfd, |
11204 | asection *sec, | |
11205 | struct bfd_link_info *link_info, | |
11206 | deps_callback_t callback, | |
11207 | void *closure) | |
e0001a05 NC |
11208 | { |
11209 | Elf_Internal_Rela *internal_relocs; | |
11210 | bfd_byte *contents; | |
11211 | unsigned i; | |
11212 | bfd_boolean ok = TRUE; | |
43cd72b9 BW |
11213 | bfd_size_type sec_size; |
11214 | ||
11215 | sec_size = bfd_get_section_limit (abfd, sec); | |
e0001a05 NC |
11216 | |
11217 | /* ".plt*" sections have no explicit relocations but they contain L32R | |
11218 | instructions that reference the corresponding ".got.plt*" sections. */ | |
11219 | if ((sec->flags & SEC_LINKER_CREATED) != 0 | |
0112cd26 | 11220 | && CONST_STRNEQ (sec->name, ".plt")) |
e0001a05 NC |
11221 | { |
11222 | asection *sgotplt; | |
11223 | ||
11224 | /* Find the corresponding ".got.plt*" section. */ | |
11225 | if (sec->name[4] == '\0') | |
ce558b89 | 11226 | sgotplt = elf_hash_table (link_info)->sgotplt; |
e0001a05 NC |
11227 | else |
11228 | { | |
11229 | char got_name[14]; | |
11230 | int chunk = 0; | |
11231 | ||
11232 | BFD_ASSERT (sec->name[4] == '.'); | |
11233 | chunk = strtol (&sec->name[5], NULL, 10); | |
11234 | ||
11235 | sprintf (got_name, ".got.plt.%u", chunk); | |
3d4d4302 | 11236 | sgotplt = bfd_get_linker_section (sec->owner, got_name); |
e0001a05 NC |
11237 | } |
11238 | BFD_ASSERT (sgotplt); | |
11239 | ||
11240 | /* Assume worst-case offsets: L32R at the very end of the ".plt" | |
11241 | section referencing a literal at the very beginning of | |
11242 | ".got.plt". This is very close to the real dependence, anyway. */ | |
43cd72b9 | 11243 | (*callback) (sec, sec_size, sgotplt, 0, closure); |
e0001a05 NC |
11244 | } |
11245 | ||
13161072 BW |
11246 | /* Only ELF files are supported for Xtensa. Check here to avoid a segfault |
11247 | when building uclibc, which runs "ld -b binary /dev/null". */ | |
11248 | if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) | |
11249 | return ok; | |
11250 | ||
68ffbac6 | 11251 | internal_relocs = retrieve_internal_relocs (abfd, sec, |
e0001a05 NC |
11252 | link_info->keep_memory); |
11253 | if (internal_relocs == NULL | |
43cd72b9 | 11254 | || sec->reloc_count == 0) |
e0001a05 NC |
11255 | return ok; |
11256 | ||
11257 | /* Cache the contents for the duration of this scan. */ | |
11258 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
43cd72b9 | 11259 | if (contents == NULL && sec_size != 0) |
e0001a05 NC |
11260 | { |
11261 | ok = FALSE; | |
11262 | goto error_return; | |
11263 | } | |
11264 | ||
43cd72b9 BW |
11265 | if (!xtensa_default_isa) |
11266 | xtensa_default_isa = xtensa_isa_init (0, 0); | |
e0001a05 | 11267 | |
43cd72b9 | 11268 | for (i = 0; i < sec->reloc_count; i++) |
e0001a05 NC |
11269 | { |
11270 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
43cd72b9 | 11271 | if (is_l32r_relocation (abfd, sec, contents, irel)) |
e0001a05 NC |
11272 | { |
11273 | r_reloc l32r_rel; | |
11274 | asection *target_sec; | |
11275 | bfd_vma target_offset; | |
43cd72b9 BW |
11276 | |
11277 | r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size); | |
e0001a05 NC |
11278 | target_sec = NULL; |
11279 | target_offset = 0; | |
11280 | /* L32Rs must be local to the input file. */ | |
11281 | if (r_reloc_is_defined (&l32r_rel)) | |
11282 | { | |
11283 | target_sec = r_reloc_get_section (&l32r_rel); | |
43cd72b9 | 11284 | target_offset = l32r_rel.target_offset; |
e0001a05 NC |
11285 | } |
11286 | (*callback) (sec, irel->r_offset, target_sec, target_offset, | |
11287 | closure); | |
11288 | } | |
11289 | } | |
11290 | ||
11291 | error_return: | |
11292 | release_internal_relocs (sec, internal_relocs); | |
11293 | release_contents (sec, contents); | |
11294 | return ok; | |
11295 | } | |
11296 | ||
2f89ff8d L |
11297 | /* The default literal sections should always be marked as "code" (i.e., |
11298 | SHF_EXECINSTR). This is particularly important for the Linux kernel | |
11299 | module loader so that the literals are not placed after the text. */ | |
b35d266b | 11300 | static const struct bfd_elf_special_section elf_xtensa_special_sections[] = |
2f89ff8d | 11301 | { |
0112cd26 NC |
11302 | { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, |
11303 | { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, | |
11304 | { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, | |
2caa7ca0 | 11305 | { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 }, |
0112cd26 | 11306 | { NULL, 0, 0, 0, 0 } |
7f4d3958 | 11307 | }; |
e0001a05 | 11308 | \f |
ae95ffa6 | 11309 | #define ELF_TARGET_ID XTENSA_ELF_DATA |
e0001a05 | 11310 | #ifndef ELF_ARCH |
6d00b590 | 11311 | #define TARGET_LITTLE_SYM xtensa_elf32_le_vec |
e0001a05 | 11312 | #define TARGET_LITTLE_NAME "elf32-xtensa-le" |
6d00b590 | 11313 | #define TARGET_BIG_SYM xtensa_elf32_be_vec |
e0001a05 NC |
11314 | #define TARGET_BIG_NAME "elf32-xtensa-be" |
11315 | #define ELF_ARCH bfd_arch_xtensa | |
11316 | ||
4af0a1d8 BW |
11317 | #define ELF_MACHINE_CODE EM_XTENSA |
11318 | #define ELF_MACHINE_ALT1 EM_XTENSA_OLD | |
e0001a05 NC |
11319 | |
11320 | #if XCHAL_HAVE_MMU | |
11321 | #define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE) | |
11322 | #else /* !XCHAL_HAVE_MMU */ | |
11323 | #define ELF_MAXPAGESIZE 1 | |
11324 | #endif /* !XCHAL_HAVE_MMU */ | |
11325 | #endif /* ELF_ARCH */ | |
11326 | ||
11327 | #define elf_backend_can_gc_sections 1 | |
11328 | #define elf_backend_can_refcount 1 | |
11329 | #define elf_backend_plt_readonly 1 | |
11330 | #define elf_backend_got_header_size 4 | |
11331 | #define elf_backend_want_dynbss 0 | |
11332 | #define elf_backend_want_got_plt 1 | |
64f52338 | 11333 | #define elf_backend_dtrel_excludes_plt 1 |
e0001a05 NC |
11334 | |
11335 | #define elf_info_to_howto elf_xtensa_info_to_howto_rela | |
11336 | ||
28dbbc02 BW |
11337 | #define bfd_elf32_mkobject elf_xtensa_mkobject |
11338 | ||
e0001a05 NC |
11339 | #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data |
11340 | #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook | |
11341 | #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data | |
11342 | #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section | |
11343 | #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup | |
157090f7 AM |
11344 | #define bfd_elf32_bfd_reloc_name_lookup \ |
11345 | elf_xtensa_reloc_name_lookup | |
e0001a05 | 11346 | #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags |
f0e6fdb2 | 11347 | #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create |
e0001a05 NC |
11348 | |
11349 | #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol | |
11350 | #define elf_backend_check_relocs elf_xtensa_check_relocs | |
e0001a05 NC |
11351 | #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections |
11352 | #define elf_backend_discard_info elf_xtensa_discard_info | |
11353 | #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs | |
11354 | #define elf_backend_final_write_processing elf_xtensa_final_write_processing | |
11355 | #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections | |
11356 | #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol | |
11357 | #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook | |
11358 | #define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook | |
11359 | #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus | |
11360 | #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo | |
95147441 | 11361 | #define elf_backend_hide_symbol elf_xtensa_hide_symbol |
e0001a05 NC |
11362 | #define elf_backend_object_p elf_xtensa_object_p |
11363 | #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class | |
11364 | #define elf_backend_relocate_section elf_xtensa_relocate_section | |
11365 | #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections | |
28dbbc02 | 11366 | #define elf_backend_always_size_sections elf_xtensa_always_size_sections |
74541ad4 AM |
11367 | #define elf_backend_omit_section_dynsym \ |
11368 | ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true) | |
29ef7005 | 11369 | #define elf_backend_special_sections elf_xtensa_special_sections |
a77dc2cc | 11370 | #define elf_backend_action_discarded elf_xtensa_action_discarded |
28dbbc02 | 11371 | #define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol |
e0001a05 NC |
11372 | |
11373 | #include "elf32-target.h" |