Automatic date update in version.in
[deliverable/binutils-gdb.git] / bfd / elf32-xtensa.c
CommitLineData
e0001a05 1/* Xtensa-specific support for 32-bit ELF.
6f2750fe 2 Copyright (C) 2003-2016 Free Software Foundation, Inc.
e0001a05
NC
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
cd123cb7 8 published by the Free Software Foundation; either version 3 of the
e0001a05
NC
9 License, or (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
3e110533 18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
53e09e0a 19 02110-1301, USA. */
e0001a05 20
e0001a05 21#include "sysdep.h"
3db64b00 22#include "bfd.h"
e0001a05 23
e0001a05 24#include <stdarg.h>
e0001a05
NC
25#include <strings.h>
26
27#include "bfdlink.h"
28#include "libbfd.h"
29#include "elf-bfd.h"
30#include "elf/xtensa.h"
4c2af04f 31#include "splay-tree.h"
e0001a05
NC
32#include "xtensa-isa.h"
33#include "xtensa-config.h"
34
43cd72b9
BW
35#define XTENSA_NO_NOP_REMOVAL 0
36
e0001a05
NC
37/* Local helper functions. */
38
f0e6fdb2 39static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
2db662be 40static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
e0001a05 41static bfd_reloc_status_type bfd_elf_xtensa_reloc
7fa3d080 42 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43cd72b9 43static bfd_boolean do_fix_for_relocatable_link
7fa3d080 44 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
e0001a05 45static void do_fix_for_final_link
7fa3d080 46 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
e0001a05
NC
47
48/* Local functions to handle Xtensa configurability. */
49
7fa3d080
BW
50static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
51static bfd_boolean is_direct_call_opcode (xtensa_opcode);
52static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
53static xtensa_opcode get_const16_opcode (void);
54static xtensa_opcode get_l32r_opcode (void);
55static bfd_vma l32r_offset (bfd_vma, bfd_vma);
56static int get_relocation_opnd (xtensa_opcode, int);
57static int get_relocation_slot (int);
e0001a05 58static xtensa_opcode get_relocation_opcode
7fa3d080 59 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
e0001a05 60static bfd_boolean is_l32r_relocation
7fa3d080
BW
61 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
62static bfd_boolean is_alt_relocation (int);
63static bfd_boolean is_operand_relocation (int);
43cd72b9 64static bfd_size_type insn_decode_len
7fa3d080 65 (bfd_byte *, bfd_size_type, bfd_size_type);
43cd72b9 66static xtensa_opcode insn_decode_opcode
7fa3d080 67 (bfd_byte *, bfd_size_type, bfd_size_type, int);
43cd72b9 68static bfd_boolean check_branch_target_aligned
7fa3d080 69 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
43cd72b9 70static bfd_boolean check_loop_aligned
7fa3d080
BW
71 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
72static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
43cd72b9 73static bfd_size_type get_asm_simplify_size
7fa3d080 74 (bfd_byte *, bfd_size_type, bfd_size_type);
e0001a05
NC
75
76/* Functions for link-time code simplifications. */
77
43cd72b9 78static bfd_reloc_status_type elf_xtensa_do_asm_simplify
7fa3d080 79 (bfd_byte *, bfd_vma, bfd_vma, char **);
e0001a05 80static bfd_reloc_status_type contract_asm_expansion
7fa3d080
BW
81 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
82static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
83static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
e0001a05
NC
84
85/* Access to internal relocations, section contents and symbols. */
86
87static Elf_Internal_Rela *retrieve_internal_relocs
7fa3d080
BW
88 (bfd *, asection *, bfd_boolean);
89static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
90static void release_internal_relocs (asection *, Elf_Internal_Rela *);
91static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
92static void pin_contents (asection *, bfd_byte *);
93static void release_contents (asection *, bfd_byte *);
94static Elf_Internal_Sym *retrieve_local_syms (bfd *);
e0001a05
NC
95
96/* Miscellaneous utility functions. */
97
f0e6fdb2
BW
98static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
99static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
7fa3d080 100static asection *get_elf_r_symndx_section (bfd *, unsigned long);
e0001a05 101static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
7fa3d080
BW
102 (bfd *, unsigned long);
103static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
104static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
105static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
106static bfd_boolean xtensa_is_property_section (asection *);
1d25768e 107static bfd_boolean xtensa_is_insntable_section (asection *);
7fa3d080 108static bfd_boolean xtensa_is_littable_section (asection *);
1d25768e 109static bfd_boolean xtensa_is_proptable_section (asection *);
7fa3d080
BW
110static int internal_reloc_compare (const void *, const void *);
111static int internal_reloc_matches (const void *, const void *);
51c8ebc1
BW
112static asection *xtensa_get_property_section (asection *, const char *);
113extern asection *xtensa_make_property_section (asection *, const char *);
7fa3d080 114static flagword xtensa_get_property_predef_flags (asection *);
e0001a05
NC
115
116/* Other functions called directly by the linker. */
117
118typedef void (*deps_callback_t)
7fa3d080 119 (asection *, bfd_vma, asection *, bfd_vma, void *);
e0001a05 120extern bfd_boolean xtensa_callback_required_dependence
7fa3d080 121 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
e0001a05
NC
122
123
43cd72b9
BW
124/* Globally visible flag for choosing size optimization of NOP removal
125 instead of branch-target-aware minimization for NOP removal.
126 When nonzero, narrow all instructions and remove all NOPs possible
127 around longcall expansions. */
7fa3d080 128
43cd72b9
BW
129int elf32xtensa_size_opt;
130
131
132/* The "new_section_hook" is used to set up a per-section
133 "xtensa_relax_info" data structure with additional information used
134 during relaxation. */
e0001a05 135
7fa3d080 136typedef struct xtensa_relax_info_struct xtensa_relax_info;
e0001a05 137
43cd72b9 138
43cd72b9
BW
139/* The GNU tools do not easily allow extending interfaces to pass around
140 the pointer to the Xtensa ISA information, so instead we add a global
141 variable here (in BFD) that can be used by any of the tools that need
142 this information. */
143
144xtensa_isa xtensa_default_isa;
145
146
e0001a05
NC
147/* When this is true, relocations may have been modified to refer to
148 symbols from other input files. The per-section list of "fix"
149 records needs to be checked when resolving relocations. */
150
151static bfd_boolean relaxing_section = FALSE;
152
43cd72b9
BW
153/* When this is true, during final links, literals that cannot be
154 coalesced and their relocations may be moved to other sections. */
155
156int elf32xtensa_no_literal_movement = 1;
157
b0dddeec
AM
158/* Rename one of the generic section flags to better document how it
159 is used here. */
160/* Whether relocations have been processed. */
161#define reloc_done sec_flg0
e0001a05
NC
162\f
163static reloc_howto_type elf_howto_table[] =
164{
6346d5ca 165 HOWTO (R_XTENSA_NONE, 0, 3, 0, FALSE, 0, complain_overflow_dont,
e0001a05 166 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
e5f131d1 167 FALSE, 0, 0, FALSE),
e0001a05
NC
168 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
169 bfd_elf_xtensa_reloc, "R_XTENSA_32",
170 TRUE, 0xffffffff, 0xffffffff, FALSE),
e5f131d1 171
e0001a05
NC
172 /* Replace a 32-bit value with a value from the runtime linker (only
173 used by linker-generated stub functions). The r_addend value is
174 special: 1 means to substitute a pointer to the runtime linker's
175 dynamic resolver function; 2 means to substitute the link map for
176 the shared object. */
177 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
e5f131d1
BW
178 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
179
e0001a05
NC
180 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
181 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
e5f131d1 182 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
183 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
184 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
e5f131d1 185 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
186 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
187 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
e5f131d1 188 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
189 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
190 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
e5f131d1
BW
191 FALSE, 0, 0xffffffff, FALSE),
192
e0001a05 193 EMPTY_HOWTO (7),
e5f131d1
BW
194
195 /* Old relocations for backward compatibility. */
e0001a05 196 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 197 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
e0001a05 198 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 199 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
e0001a05 200 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1
BW
201 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
202
e0001a05
NC
203 /* Assembly auto-expansion. */
204 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 205 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
e0001a05
NC
206 /* Relax assembly auto-expansion. */
207 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1
BW
208 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
209
e0001a05 210 EMPTY_HOWTO (13),
1bbb5f21
BW
211
212 HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
213 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
214 FALSE, 0, 0xffffffff, TRUE),
e5f131d1 215
e0001a05
NC
216 /* GNU extension to record C++ vtable hierarchy. */
217 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
218 NULL, "R_XTENSA_GNU_VTINHERIT",
e5f131d1 219 FALSE, 0, 0, FALSE),
e0001a05
NC
220 /* GNU extension to record C++ vtable member usage. */
221 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
222 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
e5f131d1 223 FALSE, 0, 0, FALSE),
43cd72b9
BW
224
225 /* Relocations for supporting difference of symbols. */
1058c753 226 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_signed,
e5f131d1 227 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
1058c753 228 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_signed,
e5f131d1 229 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
1058c753 230 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
e5f131d1 231 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
43cd72b9
BW
232
233 /* General immediate operand relocations. */
234 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 235 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
43cd72b9 236 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 237 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
43cd72b9 238 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 239 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
43cd72b9 240 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 241 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
43cd72b9 242 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 243 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
43cd72b9 244 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 245 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
43cd72b9 246 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 247 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
43cd72b9 248 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 249 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
43cd72b9 250 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 251 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
43cd72b9 252 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 253 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
43cd72b9 254 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 255 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
43cd72b9 256 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 257 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
43cd72b9 258 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 259 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
43cd72b9 260 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 261 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
43cd72b9 262 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 263 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
43cd72b9
BW
264
265 /* "Alternate" relocations. The meaning of these is opcode-specific. */
266 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 267 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
43cd72b9 268 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 269 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
43cd72b9 270 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 271 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
43cd72b9 272 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 273 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
43cd72b9 274 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 275 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
43cd72b9 276 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 277 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
43cd72b9 278 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 279 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
43cd72b9 280 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 281 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
43cd72b9 282 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 283 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
43cd72b9 284 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 285 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
43cd72b9 286 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 287 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
43cd72b9 288 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 289 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
43cd72b9 290 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 291 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
43cd72b9 292 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 293 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
43cd72b9 294 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 295 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
28dbbc02
BW
296
297 /* TLS relocations. */
298 HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont,
299 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN",
300 FALSE, 0, 0xffffffff, FALSE),
301 HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont,
302 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG",
303 FALSE, 0, 0xffffffff, FALSE),
304 HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
305 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF",
306 FALSE, 0, 0xffffffff, FALSE),
307 HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
308 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF",
309 FALSE, 0, 0xffffffff, FALSE),
310 HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont,
311 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC",
312 FALSE, 0, 0, FALSE),
313 HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont,
314 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG",
315 FALSE, 0, 0, FALSE),
316 HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont,
317 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL",
318 FALSE, 0, 0, FALSE),
e0001a05
NC
319};
320
43cd72b9 321#if DEBUG_GEN_RELOC
e0001a05
NC
322#define TRACE(str) \
323 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
324#else
325#define TRACE(str)
326#endif
327
328static reloc_howto_type *
7fa3d080
BW
329elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
330 bfd_reloc_code_real_type code)
e0001a05
NC
331{
332 switch (code)
333 {
334 case BFD_RELOC_NONE:
335 TRACE ("BFD_RELOC_NONE");
336 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
337
338 case BFD_RELOC_32:
339 TRACE ("BFD_RELOC_32");
340 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
341
1bbb5f21
BW
342 case BFD_RELOC_32_PCREL:
343 TRACE ("BFD_RELOC_32_PCREL");
344 return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
345
43cd72b9
BW
346 case BFD_RELOC_XTENSA_DIFF8:
347 TRACE ("BFD_RELOC_XTENSA_DIFF8");
348 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
349
350 case BFD_RELOC_XTENSA_DIFF16:
351 TRACE ("BFD_RELOC_XTENSA_DIFF16");
352 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
353
354 case BFD_RELOC_XTENSA_DIFF32:
355 TRACE ("BFD_RELOC_XTENSA_DIFF32");
356 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
357
e0001a05
NC
358 case BFD_RELOC_XTENSA_RTLD:
359 TRACE ("BFD_RELOC_XTENSA_RTLD");
360 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
361
362 case BFD_RELOC_XTENSA_GLOB_DAT:
363 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
364 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
365
366 case BFD_RELOC_XTENSA_JMP_SLOT:
367 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
368 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
369
370 case BFD_RELOC_XTENSA_RELATIVE:
371 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
372 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
373
374 case BFD_RELOC_XTENSA_PLT:
375 TRACE ("BFD_RELOC_XTENSA_PLT");
376 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
377
378 case BFD_RELOC_XTENSA_OP0:
379 TRACE ("BFD_RELOC_XTENSA_OP0");
380 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
381
382 case BFD_RELOC_XTENSA_OP1:
383 TRACE ("BFD_RELOC_XTENSA_OP1");
384 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
385
386 case BFD_RELOC_XTENSA_OP2:
387 TRACE ("BFD_RELOC_XTENSA_OP2");
388 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
389
390 case BFD_RELOC_XTENSA_ASM_EXPAND:
391 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
392 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
393
394 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
395 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
396 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
397
398 case BFD_RELOC_VTABLE_INHERIT:
399 TRACE ("BFD_RELOC_VTABLE_INHERIT");
400 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
401
402 case BFD_RELOC_VTABLE_ENTRY:
403 TRACE ("BFD_RELOC_VTABLE_ENTRY");
404 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
405
28dbbc02
BW
406 case BFD_RELOC_XTENSA_TLSDESC_FN:
407 TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
408 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ];
409
410 case BFD_RELOC_XTENSA_TLSDESC_ARG:
411 TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
412 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ];
413
414 case BFD_RELOC_XTENSA_TLS_DTPOFF:
415 TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
416 return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ];
417
418 case BFD_RELOC_XTENSA_TLS_TPOFF:
419 TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
420 return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ];
421
422 case BFD_RELOC_XTENSA_TLS_FUNC:
423 TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
424 return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ];
425
426 case BFD_RELOC_XTENSA_TLS_ARG:
427 TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
428 return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ];
429
430 case BFD_RELOC_XTENSA_TLS_CALL:
431 TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
432 return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ];
433
e0001a05 434 default:
43cd72b9
BW
435 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
436 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
437 {
438 unsigned n = (R_XTENSA_SLOT0_OP +
439 (code - BFD_RELOC_XTENSA_SLOT0_OP));
440 return &elf_howto_table[n];
441 }
442
443 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
444 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
445 {
446 unsigned n = (R_XTENSA_SLOT0_ALT +
447 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
448 return &elf_howto_table[n];
449 }
450
e0001a05
NC
451 break;
452 }
453
454 TRACE ("Unknown");
455 return NULL;
456}
457
157090f7
AM
458static reloc_howto_type *
459elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
460 const char *r_name)
461{
462 unsigned int i;
463
464 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
465 if (elf_howto_table[i].name != NULL
466 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
467 return &elf_howto_table[i];
468
469 return NULL;
470}
471
e0001a05
NC
472
473/* Given an ELF "rela" relocation, find the corresponding howto and record
474 it in the BFD internal arelent representation of the relocation. */
475
476static void
7fa3d080
BW
477elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
478 arelent *cache_ptr,
479 Elf_Internal_Rela *dst)
e0001a05
NC
480{
481 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
482
5860e3f8
NC
483 if (r_type >= (unsigned int) R_XTENSA_max)
484 {
64d29018 485 _bfd_error_handler (_("%B: invalid XTENSA reloc number: %d"), abfd, r_type);
5860e3f8
NC
486 r_type = 0;
487 }
e0001a05
NC
488 cache_ptr->howto = &elf_howto_table[r_type];
489}
490
491\f
492/* Functions for the Xtensa ELF linker. */
493
494/* The name of the dynamic interpreter. This is put in the .interp
495 section. */
496
497#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
498
499/* The size in bytes of an entry in the procedure linkage table.
500 (This does _not_ include the space for the literals associated with
501 the PLT entry.) */
502
503#define PLT_ENTRY_SIZE 16
504
505/* For _really_ large PLTs, we may need to alternate between literals
506 and code to keep the literals within the 256K range of the L32R
507 instructions in the code. It's unlikely that anyone would ever need
508 such a big PLT, but an arbitrary limit on the PLT size would be bad.
509 Thus, we split the PLT into chunks. Since there's very little
510 overhead (2 extra literals) for each chunk, the chunk size is kept
511 small so that the code for handling multiple chunks get used and
512 tested regularly. With 254 entries, there are 1K of literals for
513 each chunk, and that seems like a nice round number. */
514
515#define PLT_ENTRIES_PER_CHUNK 254
516
517/* PLT entries are actually used as stub functions for lazy symbol
518 resolution. Once the symbol is resolved, the stub function is never
519 invoked. Note: the 32-byte frame size used here cannot be changed
520 without a corresponding change in the runtime linker. */
521
522static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
523{
92b3f008 524#if XSHAL_ABI == XTHAL_ABI_WINDOWED
e0001a05 525 0x6c, 0x10, 0x04, /* entry sp, 32 */
92b3f008 526#endif
e0001a05
NC
527 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
528 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
529 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
530 0x0a, 0x80, 0x00, /* jx a8 */
531 0 /* unused */
532};
533
534static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
535{
92b3f008 536#if XSHAL_ABI == XTHAL_ABI_WINDOWED
e0001a05 537 0x36, 0x41, 0x00, /* entry sp, 32 */
92b3f008 538#endif
e0001a05
NC
539 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
540 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
541 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
542 0xa0, 0x08, 0x00, /* jx a8 */
543 0 /* unused */
544};
545
28dbbc02
BW
546/* The size of the thread control block. */
547#define TCB_SIZE 8
548
549struct elf_xtensa_link_hash_entry
550{
551 struct elf_link_hash_entry elf;
552
553 bfd_signed_vma tlsfunc_refcount;
554
555#define GOT_UNKNOWN 0
556#define GOT_NORMAL 1
557#define GOT_TLS_GD 2 /* global or local dynamic */
558#define GOT_TLS_IE 4 /* initial or local exec */
559#define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE)
560 unsigned char tls_type;
561};
562
563#define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
564
565struct elf_xtensa_obj_tdata
566{
567 struct elf_obj_tdata root;
568
569 /* tls_type for each local got entry. */
570 char *local_got_tls_type;
571
572 bfd_signed_vma *local_tlsfunc_refcounts;
573};
574
575#define elf_xtensa_tdata(abfd) \
576 ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
577
578#define elf_xtensa_local_got_tls_type(abfd) \
579 (elf_xtensa_tdata (abfd)->local_got_tls_type)
580
581#define elf_xtensa_local_tlsfunc_refcounts(abfd) \
582 (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
583
584#define is_xtensa_elf(bfd) \
585 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
586 && elf_tdata (bfd) != NULL \
4dfe6ac6 587 && elf_object_id (bfd) == XTENSA_ELF_DATA)
28dbbc02
BW
588
589static bfd_boolean
590elf_xtensa_mkobject (bfd *abfd)
591{
592 return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata),
4dfe6ac6 593 XTENSA_ELF_DATA);
28dbbc02
BW
594}
595
f0e6fdb2
BW
596/* Xtensa ELF linker hash table. */
597
598struct elf_xtensa_link_hash_table
599{
600 struct elf_link_hash_table elf;
601
602 /* Short-cuts to get to dynamic linker sections. */
603 asection *sgot;
604 asection *sgotplt;
605 asection *srelgot;
606 asection *splt;
607 asection *srelplt;
608 asection *sgotloc;
609 asection *spltlittbl;
610
611 /* Total count of PLT relocations seen during check_relocs.
612 The actual PLT code must be split into multiple sections and all
613 the sections have to be created before size_dynamic_sections,
614 where we figure out the exact number of PLT entries that will be
615 needed. It is OK if this count is an overestimate, e.g., some
616 relocations may be removed by GC. */
617 int plt_reloc_count;
28dbbc02
BW
618
619 struct elf_xtensa_link_hash_entry *tlsbase;
f0e6fdb2
BW
620};
621
622/* Get the Xtensa ELF linker hash table from a link_info structure. */
623
624#define elf_xtensa_hash_table(p) \
4dfe6ac6
NC
625 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
626 == XTENSA_ELF_DATA ? ((struct elf_xtensa_link_hash_table *) ((p)->hash)) : NULL)
f0e6fdb2 627
28dbbc02
BW
628/* Create an entry in an Xtensa ELF linker hash table. */
629
630static struct bfd_hash_entry *
631elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry,
632 struct bfd_hash_table *table,
633 const char *string)
634{
635 /* Allocate the structure if it has not already been allocated by a
636 subclass. */
637 if (entry == NULL)
638 {
639 entry = bfd_hash_allocate (table,
640 sizeof (struct elf_xtensa_link_hash_entry));
641 if (entry == NULL)
642 return entry;
643 }
644
645 /* Call the allocation method of the superclass. */
646 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
647 if (entry != NULL)
648 {
649 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry);
650 eh->tlsfunc_refcount = 0;
651 eh->tls_type = GOT_UNKNOWN;
652 }
653
654 return entry;
655}
656
f0e6fdb2
BW
657/* Create an Xtensa ELF linker hash table. */
658
659static struct bfd_link_hash_table *
660elf_xtensa_link_hash_table_create (bfd *abfd)
661{
28dbbc02 662 struct elf_link_hash_entry *tlsbase;
f0e6fdb2
BW
663 struct elf_xtensa_link_hash_table *ret;
664 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
665
7bf52ea2 666 ret = bfd_zmalloc (amt);
f0e6fdb2
BW
667 if (ret == NULL)
668 return NULL;
669
670 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
28dbbc02 671 elf_xtensa_link_hash_newfunc,
4dfe6ac6
NC
672 sizeof (struct elf_xtensa_link_hash_entry),
673 XTENSA_ELF_DATA))
f0e6fdb2
BW
674 {
675 free (ret);
676 return NULL;
677 }
678
28dbbc02
BW
679 /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
680 for it later. */
681 tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_",
682 TRUE, FALSE, FALSE);
683 tlsbase->root.type = bfd_link_hash_new;
684 tlsbase->root.u.undef.abfd = NULL;
685 tlsbase->non_elf = 0;
686 ret->tlsbase = elf_xtensa_hash_entry (tlsbase);
687 ret->tlsbase->tls_type = GOT_UNKNOWN;
688
f0e6fdb2
BW
689 return &ret->elf.root;
690}
571b5725 691
28dbbc02
BW
692/* Copy the extra info we tack onto an elf_link_hash_entry. */
693
694static void
695elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info,
696 struct elf_link_hash_entry *dir,
697 struct elf_link_hash_entry *ind)
698{
699 struct elf_xtensa_link_hash_entry *edir, *eind;
700
701 edir = elf_xtensa_hash_entry (dir);
702 eind = elf_xtensa_hash_entry (ind);
703
704 if (ind->root.type == bfd_link_hash_indirect)
705 {
706 edir->tlsfunc_refcount += eind->tlsfunc_refcount;
707 eind->tlsfunc_refcount = 0;
708
709 if (dir->got.refcount <= 0)
710 {
711 edir->tls_type = eind->tls_type;
712 eind->tls_type = GOT_UNKNOWN;
713 }
714 }
715
716 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
717}
718
571b5725 719static inline bfd_boolean
4608f3d9 720elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
7fa3d080 721 struct bfd_link_info *info)
571b5725
BW
722{
723 /* Check if we should do dynamic things to this symbol. The
724 "ignore_protected" argument need not be set, because Xtensa code
725 does not require special handling of STV_PROTECTED to make function
726 pointer comparisons work properly. The PLT addresses are never
727 used for function pointers. */
728
729 return _bfd_elf_dynamic_symbol_p (h, info, 0);
730}
731
e0001a05
NC
732\f
733static int
7fa3d080 734property_table_compare (const void *ap, const void *bp)
e0001a05
NC
735{
736 const property_table_entry *a = (const property_table_entry *) ap;
737 const property_table_entry *b = (const property_table_entry *) bp;
738
43cd72b9
BW
739 if (a->address == b->address)
740 {
43cd72b9
BW
741 if (a->size != b->size)
742 return (a->size - b->size);
743
744 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
745 return ((b->flags & XTENSA_PROP_ALIGN)
746 - (a->flags & XTENSA_PROP_ALIGN));
747
748 if ((a->flags & XTENSA_PROP_ALIGN)
749 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
750 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
751 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
752 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
68ffbac6 753
43cd72b9
BW
754 if ((a->flags & XTENSA_PROP_UNREACHABLE)
755 != (b->flags & XTENSA_PROP_UNREACHABLE))
756 return ((b->flags & XTENSA_PROP_UNREACHABLE)
757 - (a->flags & XTENSA_PROP_UNREACHABLE));
758
759 return (a->flags - b->flags);
760 }
761
762 return (a->address - b->address);
763}
764
765
766static int
7fa3d080 767property_table_matches (const void *ap, const void *bp)
43cd72b9
BW
768{
769 const property_table_entry *a = (const property_table_entry *) ap;
770 const property_table_entry *b = (const property_table_entry *) bp;
771
772 /* Check if one entry overlaps with the other. */
e0001a05
NC
773 if ((b->address >= a->address && b->address < (a->address + a->size))
774 || (a->address >= b->address && a->address < (b->address + b->size)))
775 return 0;
776
777 return (a->address - b->address);
778}
779
780
43cd72b9
BW
781/* Get the literal table or property table entries for the given
782 section. Sets TABLE_P and returns the number of entries. On
783 error, returns a negative value. */
e0001a05 784
7fa3d080
BW
785static int
786xtensa_read_table_entries (bfd *abfd,
787 asection *section,
788 property_table_entry **table_p,
789 const char *sec_name,
790 bfd_boolean output_addr)
e0001a05
NC
791{
792 asection *table_section;
e0001a05
NC
793 bfd_size_type table_size = 0;
794 bfd_byte *table_data;
795 property_table_entry *blocks;
e4115460 796 int blk, block_count;
e0001a05 797 bfd_size_type num_records;
bcc2cc8e
BW
798 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
799 bfd_vma section_addr, off;
43cd72b9 800 flagword predef_flags;
bcc2cc8e 801 bfd_size_type table_entry_size, section_limit;
43cd72b9
BW
802
803 if (!section
804 || !(section->flags & SEC_ALLOC)
805 || (section->flags & SEC_DEBUGGING))
806 {
807 *table_p = NULL;
808 return 0;
809 }
e0001a05 810
74869ac7 811 table_section = xtensa_get_property_section (section, sec_name);
43cd72b9 812 if (table_section)
eea6121a 813 table_size = table_section->size;
43cd72b9 814
68ffbac6 815 if (table_size == 0)
e0001a05
NC
816 {
817 *table_p = NULL;
818 return 0;
819 }
820
43cd72b9
BW
821 predef_flags = xtensa_get_property_predef_flags (table_section);
822 table_entry_size = 12;
823 if (predef_flags)
824 table_entry_size -= 4;
825
826 num_records = table_size / table_entry_size;
e0001a05
NC
827 table_data = retrieve_contents (abfd, table_section, TRUE);
828 blocks = (property_table_entry *)
829 bfd_malloc (num_records * sizeof (property_table_entry));
830 block_count = 0;
43cd72b9
BW
831
832 if (output_addr)
833 section_addr = section->output_section->vma + section->output_offset;
834 else
835 section_addr = section->vma;
3ba3bc8c 836
e0001a05 837 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
3ba3bc8c 838 if (internal_relocs && !table_section->reloc_done)
e0001a05 839 {
bcc2cc8e
BW
840 qsort (internal_relocs, table_section->reloc_count,
841 sizeof (Elf_Internal_Rela), internal_reloc_compare);
842 irel = internal_relocs;
843 }
844 else
845 irel = NULL;
846
847 section_limit = bfd_get_section_limit (abfd, section);
848 rel_end = internal_relocs + table_section->reloc_count;
849
68ffbac6 850 for (off = 0; off < table_size; off += table_entry_size)
bcc2cc8e
BW
851 {
852 bfd_vma address = bfd_get_32 (abfd, table_data + off);
853
854 /* Skip any relocations before the current offset. This should help
855 avoid confusion caused by unexpected relocations for the preceding
856 table entry. */
857 while (irel &&
858 (irel->r_offset < off
859 || (irel->r_offset == off
860 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
861 {
862 irel += 1;
863 if (irel >= rel_end)
864 irel = 0;
865 }
e0001a05 866
bcc2cc8e 867 if (irel && irel->r_offset == off)
e0001a05 868 {
bcc2cc8e
BW
869 bfd_vma sym_off;
870 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
871 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
e0001a05 872
bcc2cc8e 873 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
e0001a05
NC
874 continue;
875
bcc2cc8e
BW
876 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
877 BFD_ASSERT (sym_off == 0);
878 address += (section_addr + sym_off + irel->r_addend);
e0001a05 879 }
bcc2cc8e 880 else
e0001a05 881 {
bcc2cc8e
BW
882 if (address < section_addr
883 || address >= section_addr + section_limit)
884 continue;
e0001a05 885 }
bcc2cc8e
BW
886
887 blocks[block_count].address = address;
888 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
889 if (predef_flags)
890 blocks[block_count].flags = predef_flags;
891 else
892 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
893 block_count++;
e0001a05
NC
894 }
895
896 release_contents (table_section, table_data);
897 release_internal_relocs (table_section, internal_relocs);
898
43cd72b9 899 if (block_count > 0)
e0001a05
NC
900 {
901 /* Now sort them into address order for easy reference. */
902 qsort (blocks, block_count, sizeof (property_table_entry),
903 property_table_compare);
e4115460
BW
904
905 /* Check that the table contents are valid. Problems may occur,
906 for example, if an unrelocated object file is stripped. */
907 for (blk = 1; blk < block_count; blk++)
908 {
909 /* The only circumstance where two entries may legitimately
910 have the same address is when one of them is a zero-size
911 placeholder to mark a place where fill can be inserted.
912 The zero-size entry should come first. */
913 if (blocks[blk - 1].address == blocks[blk].address &&
914 blocks[blk - 1].size != 0)
915 {
916 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
917 abfd, section);
918 bfd_set_error (bfd_error_bad_value);
919 free (blocks);
920 return -1;
921 }
922 }
e0001a05 923 }
43cd72b9 924
e0001a05
NC
925 *table_p = blocks;
926 return block_count;
927}
928
929
7fa3d080
BW
930static property_table_entry *
931elf_xtensa_find_property_entry (property_table_entry *property_table,
932 int property_table_size,
933 bfd_vma addr)
e0001a05
NC
934{
935 property_table_entry entry;
43cd72b9 936 property_table_entry *rv;
e0001a05 937
43cd72b9
BW
938 if (property_table_size == 0)
939 return NULL;
e0001a05
NC
940
941 entry.address = addr;
942 entry.size = 1;
43cd72b9 943 entry.flags = 0;
e0001a05 944
43cd72b9
BW
945 rv = bsearch (&entry, property_table, property_table_size,
946 sizeof (property_table_entry), property_table_matches);
947 return rv;
948}
949
950
951static bfd_boolean
7fa3d080
BW
952elf_xtensa_in_literal_pool (property_table_entry *lit_table,
953 int lit_table_size,
954 bfd_vma addr)
43cd72b9
BW
955{
956 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
e0001a05
NC
957 return TRUE;
958
959 return FALSE;
960}
961
962\f
963/* Look through the relocs for a section during the first phase, and
964 calculate needed space in the dynamic reloc sections. */
965
966static bfd_boolean
7fa3d080
BW
967elf_xtensa_check_relocs (bfd *abfd,
968 struct bfd_link_info *info,
969 asection *sec,
970 const Elf_Internal_Rela *relocs)
e0001a05 971{
f0e6fdb2 972 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
973 Elf_Internal_Shdr *symtab_hdr;
974 struct elf_link_hash_entry **sym_hashes;
975 const Elf_Internal_Rela *rel;
976 const Elf_Internal_Rela *rel_end;
e0001a05 977
0e1862bb 978 if (bfd_link_relocatable (info) || (sec->flags & SEC_ALLOC) == 0)
e0001a05
NC
979 return TRUE;
980
28dbbc02
BW
981 BFD_ASSERT (is_xtensa_elf (abfd));
982
f0e6fdb2 983 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
984 if (htab == NULL)
985 return FALSE;
986
e0001a05
NC
987 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
988 sym_hashes = elf_sym_hashes (abfd);
989
e0001a05
NC
990 rel_end = relocs + sec->reloc_count;
991 for (rel = relocs; rel < rel_end; rel++)
992 {
993 unsigned int r_type;
994 unsigned long r_symndx;
28dbbc02
BW
995 struct elf_link_hash_entry *h = NULL;
996 struct elf_xtensa_link_hash_entry *eh;
997 int tls_type, old_tls_type;
998 bfd_boolean is_got = FALSE;
999 bfd_boolean is_plt = FALSE;
1000 bfd_boolean is_tlsfunc = FALSE;
e0001a05
NC
1001
1002 r_symndx = ELF32_R_SYM (rel->r_info);
1003 r_type = ELF32_R_TYPE (rel->r_info);
1004
1005 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1006 {
d003868e
AM
1007 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1008 abfd, r_symndx);
e0001a05
NC
1009 return FALSE;
1010 }
1011
28dbbc02 1012 if (r_symndx >= symtab_hdr->sh_info)
e0001a05
NC
1013 {
1014 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1015 while (h->root.type == bfd_link_hash_indirect
1016 || h->root.type == bfd_link_hash_warning)
1017 h = (struct elf_link_hash_entry *) h->root.u.i.link;
81fbe831
AM
1018
1019 /* PR15323, ref flags aren't set for references in the same
1020 object. */
1021 h->root.non_ir_ref = 1;
e0001a05 1022 }
28dbbc02 1023 eh = elf_xtensa_hash_entry (h);
e0001a05
NC
1024
1025 switch (r_type)
1026 {
28dbbc02 1027 case R_XTENSA_TLSDESC_FN:
0e1862bb 1028 if (bfd_link_pic (info))
28dbbc02
BW
1029 {
1030 tls_type = GOT_TLS_GD;
1031 is_got = TRUE;
1032 is_tlsfunc = TRUE;
1033 }
1034 else
1035 tls_type = GOT_TLS_IE;
1036 break;
e0001a05 1037
28dbbc02 1038 case R_XTENSA_TLSDESC_ARG:
0e1862bb 1039 if (bfd_link_pic (info))
e0001a05 1040 {
28dbbc02
BW
1041 tls_type = GOT_TLS_GD;
1042 is_got = TRUE;
1043 }
1044 else
1045 {
1046 tls_type = GOT_TLS_IE;
1047 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1048 is_got = TRUE;
e0001a05
NC
1049 }
1050 break;
1051
28dbbc02 1052 case R_XTENSA_TLS_DTPOFF:
0e1862bb 1053 if (bfd_link_pic (info))
28dbbc02
BW
1054 tls_type = GOT_TLS_GD;
1055 else
1056 tls_type = GOT_TLS_IE;
1057 break;
1058
1059 case R_XTENSA_TLS_TPOFF:
1060 tls_type = GOT_TLS_IE;
0e1862bb 1061 if (bfd_link_pic (info))
28dbbc02 1062 info->flags |= DF_STATIC_TLS;
0e1862bb 1063 if (bfd_link_pic (info) || h)
28dbbc02
BW
1064 is_got = TRUE;
1065 break;
1066
1067 case R_XTENSA_32:
1068 tls_type = GOT_NORMAL;
1069 is_got = TRUE;
1070 break;
1071
e0001a05 1072 case R_XTENSA_PLT:
28dbbc02
BW
1073 tls_type = GOT_NORMAL;
1074 is_plt = TRUE;
1075 break;
e0001a05 1076
28dbbc02
BW
1077 case R_XTENSA_GNU_VTINHERIT:
1078 /* This relocation describes the C++ object vtable hierarchy.
1079 Reconstruct it for later use during GC. */
1080 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1081 return FALSE;
1082 continue;
1083
1084 case R_XTENSA_GNU_VTENTRY:
1085 /* This relocation describes which C++ vtable entries are actually
1086 used. Record for later use during GC. */
1087 BFD_ASSERT (h != NULL);
1088 if (h != NULL
1089 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1090 return FALSE;
1091 continue;
1092
1093 default:
1094 /* Nothing to do for any other relocations. */
1095 continue;
1096 }
1097
1098 if (h)
1099 {
1100 if (is_plt)
e0001a05 1101 {
b45329f9
BW
1102 if (h->plt.refcount <= 0)
1103 {
1104 h->needs_plt = 1;
1105 h->plt.refcount = 1;
1106 }
1107 else
1108 h->plt.refcount += 1;
e0001a05
NC
1109
1110 /* Keep track of the total PLT relocation count even if we
1111 don't yet know whether the dynamic sections will be
1112 created. */
f0e6fdb2 1113 htab->plt_reloc_count += 1;
e0001a05
NC
1114
1115 if (elf_hash_table (info)->dynamic_sections_created)
1116 {
f0e6fdb2 1117 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
e0001a05
NC
1118 return FALSE;
1119 }
1120 }
28dbbc02 1121 else if (is_got)
b45329f9
BW
1122 {
1123 if (h->got.refcount <= 0)
1124 h->got.refcount = 1;
1125 else
1126 h->got.refcount += 1;
1127 }
28dbbc02
BW
1128
1129 if (is_tlsfunc)
1130 eh->tlsfunc_refcount += 1;
e0001a05 1131
28dbbc02
BW
1132 old_tls_type = eh->tls_type;
1133 }
1134 else
1135 {
1136 /* Allocate storage the first time. */
1137 if (elf_local_got_refcounts (abfd) == NULL)
e0001a05 1138 {
28dbbc02
BW
1139 bfd_size_type size = symtab_hdr->sh_info;
1140 void *mem;
e0001a05 1141
28dbbc02
BW
1142 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1143 if (mem == NULL)
1144 return FALSE;
1145 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem;
e0001a05 1146
28dbbc02
BW
1147 mem = bfd_zalloc (abfd, size);
1148 if (mem == NULL)
1149 return FALSE;
1150 elf_xtensa_local_got_tls_type (abfd) = (char *) mem;
1151
1152 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1153 if (mem == NULL)
1154 return FALSE;
1155 elf_xtensa_local_tlsfunc_refcounts (abfd)
1156 = (bfd_signed_vma *) mem;
e0001a05 1157 }
e0001a05 1158
28dbbc02
BW
1159 /* This is a global offset table entry for a local symbol. */
1160 if (is_got || is_plt)
1161 elf_local_got_refcounts (abfd) [r_symndx] += 1;
e0001a05 1162
28dbbc02
BW
1163 if (is_tlsfunc)
1164 elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1;
e0001a05 1165
28dbbc02
BW
1166 old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx];
1167 }
1168
1169 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
1170 tls_type |= old_tls_type;
1171 /* If a TLS symbol is accessed using IE at least once,
1172 there is no point to use a dynamic model for it. */
1173 else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1174 && ((old_tls_type & GOT_TLS_GD) == 0
1175 || (tls_type & GOT_TLS_IE) == 0))
1176 {
1177 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD))
1178 tls_type = old_tls_type;
1179 else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD))
1180 tls_type |= old_tls_type;
1181 else
1182 {
1183 (*_bfd_error_handler)
1184 (_("%B: `%s' accessed both as normal and thread local symbol"),
1185 abfd,
1186 h ? h->root.root.string : "<local>");
1187 return FALSE;
1188 }
1189 }
1190
1191 if (old_tls_type != tls_type)
1192 {
1193 if (eh)
1194 eh->tls_type = tls_type;
1195 else
1196 elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type;
e0001a05
NC
1197 }
1198 }
1199
e0001a05
NC
1200 return TRUE;
1201}
1202
1203
95147441
BW
1204static void
1205elf_xtensa_make_sym_local (struct bfd_link_info *info,
1206 struct elf_link_hash_entry *h)
1207{
0e1862bb 1208 if (bfd_link_pic (info))
95147441
BW
1209 {
1210 if (h->plt.refcount > 0)
1211 {
1212 /* For shared objects, there's no need for PLT entries for local
1213 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
1214 if (h->got.refcount < 0)
1215 h->got.refcount = 0;
1216 h->got.refcount += h->plt.refcount;
1217 h->plt.refcount = 0;
1218 }
1219 }
1220 else
1221 {
1222 /* Don't need any dynamic relocations at all. */
1223 h->plt.refcount = 0;
1224 h->got.refcount = 0;
1225 }
1226}
1227
1228
1229static void
1230elf_xtensa_hide_symbol (struct bfd_link_info *info,
1231 struct elf_link_hash_entry *h,
1232 bfd_boolean force_local)
1233{
1234 /* For a shared link, move the plt refcount to the got refcount to leave
1235 space for RELATIVE relocs. */
1236 elf_xtensa_make_sym_local (info, h);
1237
1238 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
1239}
1240
1241
e0001a05
NC
1242/* Return the section that should be marked against GC for a given
1243 relocation. */
1244
1245static asection *
7fa3d080 1246elf_xtensa_gc_mark_hook (asection *sec,
07adf181 1247 struct bfd_link_info *info,
7fa3d080
BW
1248 Elf_Internal_Rela *rel,
1249 struct elf_link_hash_entry *h,
1250 Elf_Internal_Sym *sym)
e0001a05 1251{
e1e5c0b5
BW
1252 /* Property sections are marked "KEEP" in the linker scripts, but they
1253 should not cause other sections to be marked. (This approach relies
1254 on elf_xtensa_discard_info to remove property table entries that
1255 describe discarded sections. Alternatively, it might be more
1256 efficient to avoid using "KEEP" in the linker scripts and instead use
1257 the gc_mark_extra_sections hook to mark only the property sections
1258 that describe marked sections. That alternative does not work well
1259 with the current property table sections, which do not correspond
1260 one-to-one with the sections they describe, but that should be fixed
1261 someday.) */
1262 if (xtensa_is_property_section (sec))
1263 return NULL;
1264
07adf181
AM
1265 if (h != NULL)
1266 switch (ELF32_R_TYPE (rel->r_info))
1267 {
1268 case R_XTENSA_GNU_VTINHERIT:
1269 case R_XTENSA_GNU_VTENTRY:
1270 return NULL;
1271 }
1272
1273 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
e0001a05
NC
1274}
1275
7fa3d080 1276
e0001a05
NC
1277/* Update the GOT & PLT entry reference counts
1278 for the section being removed. */
1279
1280static bfd_boolean
7fa3d080 1281elf_xtensa_gc_sweep_hook (bfd *abfd,
28dbbc02 1282 struct bfd_link_info *info,
7fa3d080
BW
1283 asection *sec,
1284 const Elf_Internal_Rela *relocs)
e0001a05
NC
1285{
1286 Elf_Internal_Shdr *symtab_hdr;
1287 struct elf_link_hash_entry **sym_hashes;
e0001a05 1288 const Elf_Internal_Rela *rel, *relend;
28dbbc02
BW
1289 struct elf_xtensa_link_hash_table *htab;
1290
1291 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1292 if (htab == NULL)
1293 return FALSE;
e0001a05 1294
0e1862bb 1295 if (bfd_link_relocatable (info))
7dda2462
TG
1296 return TRUE;
1297
e0001a05
NC
1298 if ((sec->flags & SEC_ALLOC) == 0)
1299 return TRUE;
1300
1301 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1302 sym_hashes = elf_sym_hashes (abfd);
e0001a05
NC
1303
1304 relend = relocs + sec->reloc_count;
1305 for (rel = relocs; rel < relend; rel++)
1306 {
1307 unsigned long r_symndx;
1308 unsigned int r_type;
1309 struct elf_link_hash_entry *h = NULL;
28dbbc02
BW
1310 struct elf_xtensa_link_hash_entry *eh;
1311 bfd_boolean is_got = FALSE;
1312 bfd_boolean is_plt = FALSE;
1313 bfd_boolean is_tlsfunc = FALSE;
e0001a05
NC
1314
1315 r_symndx = ELF32_R_SYM (rel->r_info);
1316 if (r_symndx >= symtab_hdr->sh_info)
3eb128b2
AM
1317 {
1318 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1319 while (h->root.type == bfd_link_hash_indirect
1320 || h->root.type == bfd_link_hash_warning)
1321 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1322 }
28dbbc02 1323 eh = elf_xtensa_hash_entry (h);
e0001a05
NC
1324
1325 r_type = ELF32_R_TYPE (rel->r_info);
1326 switch (r_type)
1327 {
28dbbc02 1328 case R_XTENSA_TLSDESC_FN:
0e1862bb 1329 if (bfd_link_pic (info))
28dbbc02
BW
1330 {
1331 is_got = TRUE;
1332 is_tlsfunc = TRUE;
1333 }
e0001a05
NC
1334 break;
1335
28dbbc02 1336 case R_XTENSA_TLSDESC_ARG:
0e1862bb 1337 if (bfd_link_pic (info))
28dbbc02
BW
1338 is_got = TRUE;
1339 else
1340 {
1341 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1342 is_got = TRUE;
1343 }
e0001a05
NC
1344 break;
1345
28dbbc02 1346 case R_XTENSA_TLS_TPOFF:
0e1862bb 1347 if (bfd_link_pic (info) || h)
28dbbc02 1348 is_got = TRUE;
e0001a05
NC
1349 break;
1350
28dbbc02
BW
1351 case R_XTENSA_32:
1352 is_got = TRUE;
e0001a05 1353 break;
28dbbc02
BW
1354
1355 case R_XTENSA_PLT:
1356 is_plt = TRUE;
1357 break;
1358
1359 default:
1360 continue;
1361 }
1362
1363 if (h)
1364 {
1365 if (is_plt)
1366 {
e6c9a083
MF
1367 /* If the symbol has been localized its plt.refcount got moved
1368 to got.refcount. Handle it as GOT. */
28dbbc02
BW
1369 if (h->plt.refcount > 0)
1370 h->plt.refcount--;
e6c9a083
MF
1371 else
1372 is_got = TRUE;
28dbbc02 1373 }
e6c9a083 1374 if (is_got)
28dbbc02
BW
1375 {
1376 if (h->got.refcount > 0)
1377 h->got.refcount--;
1378 }
1379 if (is_tlsfunc)
1380 {
1381 if (eh->tlsfunc_refcount > 0)
1382 eh->tlsfunc_refcount--;
1383 }
1384 }
1385 else
1386 {
1387 if (is_got || is_plt)
1388 {
1389 bfd_signed_vma *got_refcount
1390 = &elf_local_got_refcounts (abfd) [r_symndx];
1391 if (*got_refcount > 0)
1392 *got_refcount -= 1;
1393 }
1394 if (is_tlsfunc)
1395 {
1396 bfd_signed_vma *tlsfunc_refcount
1397 = &elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx];
1398 if (*tlsfunc_refcount > 0)
1399 *tlsfunc_refcount -= 1;
1400 }
e0001a05
NC
1401 }
1402 }
1403
1404 return TRUE;
1405}
1406
1407
1408/* Create all the dynamic sections. */
1409
1410static bfd_boolean
7fa3d080 1411elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
e0001a05 1412{
f0e6fdb2 1413 struct elf_xtensa_link_hash_table *htab;
e901de89 1414 flagword flags, noalloc_flags;
f0e6fdb2
BW
1415
1416 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1417 if (htab == NULL)
1418 return FALSE;
e0001a05
NC
1419
1420 /* First do all the standard stuff. */
1421 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1422 return FALSE;
3d4d4302
AM
1423 htab->splt = bfd_get_linker_section (dynobj, ".plt");
1424 htab->srelplt = bfd_get_linker_section (dynobj, ".rela.plt");
1425 htab->sgot = bfd_get_linker_section (dynobj, ".got");
1426 htab->sgotplt = bfd_get_linker_section (dynobj, ".got.plt");
1427 htab->srelgot = bfd_get_linker_section (dynobj, ".rela.got");
e0001a05
NC
1428
1429 /* Create any extra PLT sections in case check_relocs has already
1430 been called on all the non-dynamic input files. */
f0e6fdb2 1431 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
e0001a05
NC
1432 return FALSE;
1433
e901de89
BW
1434 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1435 | SEC_LINKER_CREATED | SEC_READONLY);
1436 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
e0001a05
NC
1437
1438 /* Mark the ".got.plt" section READONLY. */
f0e6fdb2
BW
1439 if (htab->sgotplt == NULL
1440 || ! bfd_set_section_flags (dynobj, htab->sgotplt, flags))
e0001a05
NC
1441 return FALSE;
1442
e901de89 1443 /* Create ".got.loc" (literal tables for use by dynamic linker). */
3d4d4302
AM
1444 htab->sgotloc = bfd_make_section_anyway_with_flags (dynobj, ".got.loc",
1445 flags);
f0e6fdb2
BW
1446 if (htab->sgotloc == NULL
1447 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
e901de89
BW
1448 return FALSE;
1449
e0001a05 1450 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
3d4d4302
AM
1451 htab->spltlittbl = bfd_make_section_anyway_with_flags (dynobj, ".xt.lit.plt",
1452 noalloc_flags);
f0e6fdb2
BW
1453 if (htab->spltlittbl == NULL
1454 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
e0001a05
NC
1455 return FALSE;
1456
1457 return TRUE;
1458}
1459
1460
1461static bfd_boolean
f0e6fdb2 1462add_extra_plt_sections (struct bfd_link_info *info, int count)
e0001a05 1463{
f0e6fdb2 1464 bfd *dynobj = elf_hash_table (info)->dynobj;
e0001a05
NC
1465 int chunk;
1466
1467 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1468 ".got.plt" sections. */
1469 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1470 {
1471 char *sname;
1472 flagword flags;
1473 asection *s;
1474
1475 /* Stop when we find a section has already been created. */
f0e6fdb2 1476 if (elf_xtensa_get_plt_section (info, chunk))
e0001a05
NC
1477 break;
1478
1479 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1480 | SEC_LINKER_CREATED | SEC_READONLY);
1481
1482 sname = (char *) bfd_malloc (10);
1483 sprintf (sname, ".plt.%u", chunk);
3d4d4302 1484 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags | SEC_CODE);
e0001a05 1485 if (s == NULL
e0001a05
NC
1486 || ! bfd_set_section_alignment (dynobj, s, 2))
1487 return FALSE;
1488
1489 sname = (char *) bfd_malloc (14);
1490 sprintf (sname, ".got.plt.%u", chunk);
3d4d4302 1491 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags);
e0001a05 1492 if (s == NULL
e0001a05
NC
1493 || ! bfd_set_section_alignment (dynobj, s, 2))
1494 return FALSE;
1495 }
1496
1497 return TRUE;
1498}
1499
1500
1501/* Adjust a symbol defined by a dynamic object and referenced by a
1502 regular object. The current definition is in some section of the
1503 dynamic object, but we're not including those sections. We have to
1504 change the definition to something the rest of the link can
1505 understand. */
1506
1507static bfd_boolean
7fa3d080
BW
1508elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1509 struct elf_link_hash_entry *h)
e0001a05
NC
1510{
1511 /* If this is a weak symbol, and there is a real definition, the
1512 processor independent code will have arranged for us to see the
1513 real definition first, and we can just use the same value. */
7fa3d080 1514 if (h->u.weakdef)
e0001a05 1515 {
f6e332e6
AM
1516 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1517 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1518 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1519 h->root.u.def.value = h->u.weakdef->root.u.def.value;
e0001a05
NC
1520 return TRUE;
1521 }
1522
1523 /* This is a reference to a symbol defined by a dynamic object. The
1524 reference must go through the GOT, so there's no need for COPY relocs,
1525 .dynbss, etc. */
1526
1527 return TRUE;
1528}
1529
1530
e0001a05 1531static bfd_boolean
f1ab2340 1532elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
e0001a05 1533{
f1ab2340
BW
1534 struct bfd_link_info *info;
1535 struct elf_xtensa_link_hash_table *htab;
28dbbc02 1536 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h);
e0001a05 1537
f1ab2340
BW
1538 if (h->root.type == bfd_link_hash_indirect)
1539 return TRUE;
e0001a05 1540
f1ab2340
BW
1541 info = (struct bfd_link_info *) arg;
1542 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1543 if (htab == NULL)
1544 return FALSE;
e0001a05 1545
28dbbc02
BW
1546 /* If we saw any use of an IE model for this symbol, we can then optimize
1547 away GOT entries for any TLSDESC_FN relocs. */
1548 if ((eh->tls_type & GOT_TLS_IE) != 0)
1549 {
1550 BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount);
1551 h->got.refcount -= eh->tlsfunc_refcount;
1552 }
e0001a05 1553
28dbbc02 1554 if (! elf_xtensa_dynamic_symbol_p (h, info))
95147441 1555 elf_xtensa_make_sym_local (info, h);
e0001a05 1556
f1ab2340
BW
1557 if (h->plt.refcount > 0)
1558 htab->srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1559
1560 if (h->got.refcount > 0)
f1ab2340 1561 htab->srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1562
1563 return TRUE;
1564}
1565
1566
1567static void
f0e6fdb2 1568elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
e0001a05 1569{
f0e6fdb2 1570 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
1571 bfd *i;
1572
f0e6fdb2 1573 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1574 if (htab == NULL)
1575 return;
f0e6fdb2 1576
c72f2fb2 1577 for (i = info->input_bfds; i; i = i->link.next)
e0001a05
NC
1578 {
1579 bfd_signed_vma *local_got_refcounts;
1580 bfd_size_type j, cnt;
1581 Elf_Internal_Shdr *symtab_hdr;
1582
1583 local_got_refcounts = elf_local_got_refcounts (i);
1584 if (!local_got_refcounts)
1585 continue;
1586
1587 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1588 cnt = symtab_hdr->sh_info;
1589
1590 for (j = 0; j < cnt; ++j)
1591 {
28dbbc02
BW
1592 /* If we saw any use of an IE model for this symbol, we can
1593 then optimize away GOT entries for any TLSDESC_FN relocs. */
1594 if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0)
1595 {
1596 bfd_signed_vma *tlsfunc_refcount
1597 = &elf_xtensa_local_tlsfunc_refcounts (i) [j];
1598 BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount);
1599 local_got_refcounts[j] -= *tlsfunc_refcount;
1600 }
1601
e0001a05 1602 if (local_got_refcounts[j] > 0)
f0e6fdb2
BW
1603 htab->srelgot->size += (local_got_refcounts[j]
1604 * sizeof (Elf32_External_Rela));
e0001a05
NC
1605 }
1606 }
1607}
1608
1609
1610/* Set the sizes of the dynamic sections. */
1611
1612static bfd_boolean
7fa3d080
BW
1613elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1614 struct bfd_link_info *info)
e0001a05 1615{
f0e6fdb2 1616 struct elf_xtensa_link_hash_table *htab;
e901de89
BW
1617 bfd *dynobj, *abfd;
1618 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
e0001a05
NC
1619 bfd_boolean relplt, relgot;
1620 int plt_entries, plt_chunks, chunk;
1621
1622 plt_entries = 0;
1623 plt_chunks = 0;
e0001a05 1624
f0e6fdb2 1625 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1626 if (htab == NULL)
1627 return FALSE;
1628
e0001a05
NC
1629 dynobj = elf_hash_table (info)->dynobj;
1630 if (dynobj == NULL)
1631 abort ();
f0e6fdb2
BW
1632 srelgot = htab->srelgot;
1633 srelplt = htab->srelplt;
e0001a05
NC
1634
1635 if (elf_hash_table (info)->dynamic_sections_created)
1636 {
f0e6fdb2
BW
1637 BFD_ASSERT (htab->srelgot != NULL
1638 && htab->srelplt != NULL
1639 && htab->sgot != NULL
1640 && htab->spltlittbl != NULL
1641 && htab->sgotloc != NULL);
1642
e0001a05 1643 /* Set the contents of the .interp section to the interpreter. */
9b8b325a 1644 if (bfd_link_executable (info) && !info->nointerp)
e0001a05 1645 {
3d4d4302 1646 s = bfd_get_linker_section (dynobj, ".interp");
e0001a05
NC
1647 if (s == NULL)
1648 abort ();
eea6121a 1649 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
e0001a05
NC
1650 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1651 }
1652
1653 /* Allocate room for one word in ".got". */
f0e6fdb2 1654 htab->sgot->size = 4;
e0001a05 1655
f1ab2340
BW
1656 /* Allocate space in ".rela.got" for literals that reference global
1657 symbols and space in ".rela.plt" for literals that have PLT
1658 entries. */
e0001a05 1659 elf_link_hash_traverse (elf_hash_table (info),
f1ab2340 1660 elf_xtensa_allocate_dynrelocs,
7fa3d080 1661 (void *) info);
e0001a05 1662
e0001a05
NC
1663 /* If we are generating a shared object, we also need space in
1664 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1665 reference local symbols. */
0e1862bb 1666 if (bfd_link_pic (info))
f0e6fdb2 1667 elf_xtensa_allocate_local_got_size (info);
e0001a05 1668
e0001a05
NC
1669 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1670 each PLT entry, we need the PLT code plus a 4-byte literal.
1671 For each chunk of ".plt", we also need two more 4-byte
1672 literals, two corresponding entries in ".rela.got", and an
1673 8-byte entry in ".xt.lit.plt". */
f0e6fdb2 1674 spltlittbl = htab->spltlittbl;
eea6121a 1675 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
1676 plt_chunks =
1677 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1678
1679 /* Iterate over all the PLT chunks, including any extra sections
1680 created earlier because the initial count of PLT relocations
1681 was an overestimate. */
1682 for (chunk = 0;
f0e6fdb2 1683 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
e0001a05
NC
1684 chunk++)
1685 {
1686 int chunk_entries;
1687
f0e6fdb2
BW
1688 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1689 BFD_ASSERT (sgotplt != NULL);
e0001a05
NC
1690
1691 if (chunk < plt_chunks - 1)
1692 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1693 else if (chunk == plt_chunks - 1)
1694 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1695 else
1696 chunk_entries = 0;
1697
1698 if (chunk_entries != 0)
1699 {
eea6121a
AM
1700 sgotplt->size = 4 * (chunk_entries + 2);
1701 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1702 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1703 spltlittbl->size += 8;
e0001a05
NC
1704 }
1705 else
1706 {
eea6121a
AM
1707 sgotplt->size = 0;
1708 splt->size = 0;
e0001a05
NC
1709 }
1710 }
e901de89
BW
1711
1712 /* Allocate space in ".got.loc" to match the total size of all the
1713 literal tables. */
f0e6fdb2 1714 sgotloc = htab->sgotloc;
eea6121a 1715 sgotloc->size = spltlittbl->size;
c72f2fb2 1716 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
e901de89
BW
1717 {
1718 if (abfd->flags & DYNAMIC)
1719 continue;
1720 for (s = abfd->sections; s != NULL; s = s->next)
1721 {
dbaa2011 1722 if (! discarded_section (s)
b536dc1e
BW
1723 && xtensa_is_littable_section (s)
1724 && s != spltlittbl)
eea6121a 1725 sgotloc->size += s->size;
e901de89
BW
1726 }
1727 }
e0001a05
NC
1728 }
1729
1730 /* Allocate memory for dynamic sections. */
1731 relplt = FALSE;
1732 relgot = FALSE;
1733 for (s = dynobj->sections; s != NULL; s = s->next)
1734 {
1735 const char *name;
e0001a05
NC
1736
1737 if ((s->flags & SEC_LINKER_CREATED) == 0)
1738 continue;
1739
1740 /* It's OK to base decisions on the section name, because none
1741 of the dynobj section names depend upon the input files. */
1742 name = bfd_get_section_name (dynobj, s);
1743
0112cd26 1744 if (CONST_STRNEQ (name, ".rela"))
e0001a05 1745 {
c456f082 1746 if (s->size != 0)
e0001a05 1747 {
c456f082
AM
1748 if (strcmp (name, ".rela.plt") == 0)
1749 relplt = TRUE;
1750 else if (strcmp (name, ".rela.got") == 0)
1751 relgot = TRUE;
1752
1753 /* We use the reloc_count field as a counter if we need
1754 to copy relocs into the output file. */
1755 s->reloc_count = 0;
e0001a05
NC
1756 }
1757 }
0112cd26
NC
1758 else if (! CONST_STRNEQ (name, ".plt.")
1759 && ! CONST_STRNEQ (name, ".got.plt.")
c456f082 1760 && strcmp (name, ".got") != 0
e0001a05
NC
1761 && strcmp (name, ".plt") != 0
1762 && strcmp (name, ".got.plt") != 0
e901de89
BW
1763 && strcmp (name, ".xt.lit.plt") != 0
1764 && strcmp (name, ".got.loc") != 0)
e0001a05
NC
1765 {
1766 /* It's not one of our sections, so don't allocate space. */
1767 continue;
1768 }
1769
c456f082
AM
1770 if (s->size == 0)
1771 {
1772 /* If we don't need this section, strip it from the output
1773 file. We must create the ".plt*" and ".got.plt*"
1774 sections in create_dynamic_sections and/or check_relocs
1775 based on a conservative estimate of the PLT relocation
1776 count, because the sections must be created before the
1777 linker maps input sections to output sections. The
1778 linker does that before size_dynamic_sections, where we
1779 compute the exact size of the PLT, so there may be more
1780 of these sections than are actually needed. */
1781 s->flags |= SEC_EXCLUDE;
1782 }
1783 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
e0001a05
NC
1784 {
1785 /* Allocate memory for the section contents. */
eea6121a 1786 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
c456f082 1787 if (s->contents == NULL)
e0001a05
NC
1788 return FALSE;
1789 }
1790 }
1791
1792 if (elf_hash_table (info)->dynamic_sections_created)
1793 {
1794 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1795 known until finish_dynamic_sections, but we need to get the relocs
1796 in place before they are sorted. */
e0001a05
NC
1797 for (chunk = 0; chunk < plt_chunks; chunk++)
1798 {
1799 Elf_Internal_Rela irela;
1800 bfd_byte *loc;
1801
1802 irela.r_offset = 0;
1803 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1804 irela.r_addend = 0;
1805
1806 loc = (srelgot->contents
1807 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1808 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1809 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1810 loc + sizeof (Elf32_External_Rela));
1811 srelgot->reloc_count += 2;
1812 }
1813
1814 /* Add some entries to the .dynamic section. We fill in the
1815 values later, in elf_xtensa_finish_dynamic_sections, but we
1816 must add the entries now so that we get the correct size for
1817 the .dynamic section. The DT_DEBUG entry is filled in by the
1818 dynamic linker and used by the debugger. */
1819#define add_dynamic_entry(TAG, VAL) \
5a580b3a 1820 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
e0001a05 1821
0e1862bb 1822 if (bfd_link_executable (info))
e0001a05
NC
1823 {
1824 if (!add_dynamic_entry (DT_DEBUG, 0))
1825 return FALSE;
1826 }
1827
1828 if (relplt)
1829 {
c243ad3b 1830 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
e0001a05
NC
1831 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1832 || !add_dynamic_entry (DT_JMPREL, 0))
1833 return FALSE;
1834 }
1835
1836 if (relgot)
1837 {
1838 if (!add_dynamic_entry (DT_RELA, 0)
1839 || !add_dynamic_entry (DT_RELASZ, 0)
1840 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1841 return FALSE;
1842 }
1843
c243ad3b
BW
1844 if (!add_dynamic_entry (DT_PLTGOT, 0)
1845 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
e0001a05
NC
1846 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1847 return FALSE;
1848 }
1849#undef add_dynamic_entry
1850
1851 return TRUE;
1852}
1853
28dbbc02
BW
1854static bfd_boolean
1855elf_xtensa_always_size_sections (bfd *output_bfd,
1856 struct bfd_link_info *info)
1857{
1858 struct elf_xtensa_link_hash_table *htab;
1859 asection *tls_sec;
1860
1861 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1862 if (htab == NULL)
1863 return FALSE;
1864
28dbbc02
BW
1865 tls_sec = htab->elf.tls_sec;
1866
1867 if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0)
1868 {
1869 struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf;
1870 struct bfd_link_hash_entry *bh = &tlsbase->root;
1871 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
1872
1873 tlsbase->type = STT_TLS;
1874 if (!(_bfd_generic_link_add_one_symbol
1875 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
1876 tls_sec, 0, NULL, FALSE,
1877 bed->collect, &bh)))
1878 return FALSE;
1879 tlsbase->def_regular = 1;
1880 tlsbase->other = STV_HIDDEN;
1881 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
1882 }
1883
1884 return TRUE;
1885}
1886
e0001a05 1887\f
28dbbc02
BW
1888/* Return the base VMA address which should be subtracted from real addresses
1889 when resolving @dtpoff relocation.
1890 This is PT_TLS segment p_vaddr. */
1891
1892static bfd_vma
1893dtpoff_base (struct bfd_link_info *info)
1894{
1895 /* If tls_sec is NULL, we should have signalled an error already. */
1896 if (elf_hash_table (info)->tls_sec == NULL)
1897 return 0;
1898 return elf_hash_table (info)->tls_sec->vma;
1899}
1900
1901/* Return the relocation value for @tpoff relocation
1902 if STT_TLS virtual address is ADDRESS. */
1903
1904static bfd_vma
1905tpoff (struct bfd_link_info *info, bfd_vma address)
1906{
1907 struct elf_link_hash_table *htab = elf_hash_table (info);
1908 bfd_vma base;
1909
1910 /* If tls_sec is NULL, we should have signalled an error already. */
1911 if (htab->tls_sec == NULL)
1912 return 0;
1913 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
1914 return address - htab->tls_sec->vma + base;
1915}
1916
e0001a05
NC
1917/* Perform the specified relocation. The instruction at (contents + address)
1918 is modified to set one operand to represent the value in "relocation". The
1919 operand position is determined by the relocation type recorded in the
1920 howto. */
1921
1922#define CALL_SEGMENT_BITS (30)
7fa3d080 1923#define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
e0001a05
NC
1924
1925static bfd_reloc_status_type
7fa3d080
BW
1926elf_xtensa_do_reloc (reloc_howto_type *howto,
1927 bfd *abfd,
1928 asection *input_section,
1929 bfd_vma relocation,
1930 bfd_byte *contents,
1931 bfd_vma address,
1932 bfd_boolean is_weak_undef,
1933 char **error_message)
e0001a05 1934{
43cd72b9 1935 xtensa_format fmt;
e0001a05 1936 xtensa_opcode opcode;
e0001a05 1937 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
1938 static xtensa_insnbuf ibuff = NULL;
1939 static xtensa_insnbuf sbuff = NULL;
1bbb5f21 1940 bfd_vma self_address;
43cd72b9
BW
1941 bfd_size_type input_size;
1942 int opnd, slot;
e0001a05
NC
1943 uint32 newval;
1944
43cd72b9
BW
1945 if (!ibuff)
1946 {
1947 ibuff = xtensa_insnbuf_alloc (isa);
1948 sbuff = xtensa_insnbuf_alloc (isa);
1949 }
1950
1951 input_size = bfd_get_section_limit (abfd, input_section);
1952
1bbb5f21
BW
1953 /* Calculate the PC address for this instruction. */
1954 self_address = (input_section->output_section->vma
1955 + input_section->output_offset
1956 + address);
1957
e0001a05
NC
1958 switch (howto->type)
1959 {
1960 case R_XTENSA_NONE:
43cd72b9
BW
1961 case R_XTENSA_DIFF8:
1962 case R_XTENSA_DIFF16:
1963 case R_XTENSA_DIFF32:
28dbbc02
BW
1964 case R_XTENSA_TLS_FUNC:
1965 case R_XTENSA_TLS_ARG:
1966 case R_XTENSA_TLS_CALL:
e0001a05
NC
1967 return bfd_reloc_ok;
1968
1969 case R_XTENSA_ASM_EXPAND:
1970 if (!is_weak_undef)
1971 {
1972 /* Check for windowed CALL across a 1GB boundary. */
91d6fa6a
NC
1973 opcode = get_expanded_call_opcode (contents + address,
1974 input_size - address, 0);
e0001a05
NC
1975 if (is_windowed_call_opcode (opcode))
1976 {
43cd72b9 1977 if ((self_address >> CALL_SEGMENT_BITS)
68ffbac6 1978 != (relocation >> CALL_SEGMENT_BITS))
e0001a05
NC
1979 {
1980 *error_message = "windowed longcall crosses 1GB boundary; "
1981 "return may fail";
1982 return bfd_reloc_dangerous;
1983 }
1984 }
1985 }
1986 return bfd_reloc_ok;
1987
1988 case R_XTENSA_ASM_SIMPLIFY:
43cd72b9 1989 {
e0001a05 1990 /* Convert the L32R/CALLX to CALL. */
43cd72b9
BW
1991 bfd_reloc_status_type retval =
1992 elf_xtensa_do_asm_simplify (contents, address, input_size,
1993 error_message);
e0001a05 1994 if (retval != bfd_reloc_ok)
43cd72b9 1995 return bfd_reloc_dangerous;
e0001a05
NC
1996
1997 /* The CALL needs to be relocated. Continue below for that part. */
1998 address += 3;
c46082c8 1999 self_address += 3;
43cd72b9 2000 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
e0001a05
NC
2001 }
2002 break;
2003
2004 case R_XTENSA_32:
e0001a05
NC
2005 {
2006 bfd_vma x;
2007 x = bfd_get_32 (abfd, contents + address);
2008 x = x + relocation;
2009 bfd_put_32 (abfd, x, contents + address);
2010 }
2011 return bfd_reloc_ok;
1bbb5f21
BW
2012
2013 case R_XTENSA_32_PCREL:
2014 bfd_put_32 (abfd, relocation - self_address, contents + address);
2015 return bfd_reloc_ok;
28dbbc02
BW
2016
2017 case R_XTENSA_PLT:
2018 case R_XTENSA_TLSDESC_FN:
2019 case R_XTENSA_TLSDESC_ARG:
2020 case R_XTENSA_TLS_DTPOFF:
2021 case R_XTENSA_TLS_TPOFF:
2022 bfd_put_32 (abfd, relocation, contents + address);
2023 return bfd_reloc_ok;
e0001a05
NC
2024 }
2025
43cd72b9
BW
2026 /* Only instruction slot-specific relocations handled below.... */
2027 slot = get_relocation_slot (howto->type);
2028 if (slot == XTENSA_UNDEFINED)
e0001a05 2029 {
43cd72b9 2030 *error_message = "unexpected relocation";
e0001a05
NC
2031 return bfd_reloc_dangerous;
2032 }
2033
43cd72b9
BW
2034 /* Read the instruction into a buffer and decode the opcode. */
2035 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
2036 input_size - address);
2037 fmt = xtensa_format_decode (isa, ibuff);
2038 if (fmt == XTENSA_UNDEFINED)
e0001a05 2039 {
43cd72b9 2040 *error_message = "cannot decode instruction format";
e0001a05
NC
2041 return bfd_reloc_dangerous;
2042 }
2043
43cd72b9 2044 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
e0001a05 2045
43cd72b9
BW
2046 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
2047 if (opcode == XTENSA_UNDEFINED)
e0001a05 2048 {
43cd72b9 2049 *error_message = "cannot decode instruction opcode";
e0001a05
NC
2050 return bfd_reloc_dangerous;
2051 }
2052
43cd72b9
BW
2053 /* Check for opcode-specific "alternate" relocations. */
2054 if (is_alt_relocation (howto->type))
2055 {
2056 if (opcode == get_l32r_opcode ())
2057 {
2058 /* Handle the special-case of non-PC-relative L32R instructions. */
2059 bfd *output_bfd = input_section->output_section->owner;
2060 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
2061 if (!lit4_sec)
2062 {
2063 *error_message = "relocation references missing .lit4 section";
2064 return bfd_reloc_dangerous;
2065 }
2066 self_address = ((lit4_sec->vma & ~0xfff)
2067 + 0x40000 - 3); /* -3 to compensate for do_reloc */
2068 newval = relocation;
2069 opnd = 1;
2070 }
2071 else if (opcode == get_const16_opcode ())
2072 {
2073 /* ALT used for high 16 bits. */
2074 newval = relocation >> 16;
2075 opnd = 1;
2076 }
2077 else
2078 {
2079 /* No other "alternate" relocations currently defined. */
2080 *error_message = "unexpected relocation";
2081 return bfd_reloc_dangerous;
2082 }
2083 }
2084 else /* Not an "alternate" relocation.... */
2085 {
2086 if (opcode == get_const16_opcode ())
2087 {
2088 newval = relocation & 0xffff;
2089 opnd = 1;
2090 }
2091 else
2092 {
2093 /* ...normal PC-relative relocation.... */
2094
2095 /* Determine which operand is being relocated. */
2096 opnd = get_relocation_opnd (opcode, howto->type);
2097 if (opnd == XTENSA_UNDEFINED)
2098 {
2099 *error_message = "unexpected relocation";
2100 return bfd_reloc_dangerous;
2101 }
2102
2103 if (!howto->pc_relative)
2104 {
2105 *error_message = "expected PC-relative relocation";
2106 return bfd_reloc_dangerous;
2107 }
e0001a05 2108
43cd72b9
BW
2109 newval = relocation;
2110 }
2111 }
e0001a05 2112
43cd72b9
BW
2113 /* Apply the relocation. */
2114 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
2115 || xtensa_operand_encode (isa, opcode, opnd, &newval)
2116 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
2117 sbuff, newval))
e0001a05 2118 {
2db662be
BW
2119 const char *opname = xtensa_opcode_name (isa, opcode);
2120 const char *msg;
2121
2122 msg = "cannot encode";
2123 if (is_direct_call_opcode (opcode))
2124 {
2125 if ((relocation & 0x3) != 0)
2126 msg = "misaligned call target";
2127 else
2128 msg = "call target out of range";
2129 }
2130 else if (opcode == get_l32r_opcode ())
2131 {
2132 if ((relocation & 0x3) != 0)
2133 msg = "misaligned literal target";
2134 else if (is_alt_relocation (howto->type))
2135 msg = "literal target out of range (too many literals)";
2136 else if (self_address > relocation)
2137 msg = "literal target out of range (try using text-section-literals)";
2138 else
2139 msg = "literal placed after use";
2140 }
2141
2142 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
e0001a05
NC
2143 return bfd_reloc_dangerous;
2144 }
2145
43cd72b9 2146 /* Check for calls across 1GB boundaries. */
e0001a05
NC
2147 if (is_direct_call_opcode (opcode)
2148 && is_windowed_call_opcode (opcode))
2149 {
43cd72b9 2150 if ((self_address >> CALL_SEGMENT_BITS)
68ffbac6 2151 != (relocation >> CALL_SEGMENT_BITS))
e0001a05 2152 {
43cd72b9
BW
2153 *error_message =
2154 "windowed call crosses 1GB boundary; return may fail";
e0001a05
NC
2155 return bfd_reloc_dangerous;
2156 }
2157 }
2158
43cd72b9
BW
2159 /* Write the modified instruction back out of the buffer. */
2160 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
2161 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
2162 input_size - address);
e0001a05
NC
2163 return bfd_reloc_ok;
2164}
2165
2166
2db662be 2167static char *
7fa3d080 2168vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
e0001a05
NC
2169{
2170 /* To reduce the size of the memory leak,
2171 we only use a single message buffer. */
2172 static bfd_size_type alloc_size = 0;
2173 static char *message = NULL;
2174 bfd_size_type orig_len, len = 0;
2175 bfd_boolean is_append;
1651e569 2176 va_list ap;
e0001a05 2177
1651e569 2178 va_start (ap, arglen);
68ffbac6
L
2179
2180 is_append = (origmsg == message);
e0001a05
NC
2181
2182 orig_len = strlen (origmsg);
2183 len = orig_len + strlen (fmt) + arglen + 20;
2184 if (len > alloc_size)
2185 {
515ef31d 2186 message = (char *) bfd_realloc_or_free (message, len);
e0001a05
NC
2187 alloc_size = len;
2188 }
515ef31d
NC
2189 if (message != NULL)
2190 {
2191 if (!is_append)
2192 memcpy (message, origmsg, orig_len);
2193 vsprintf (message + orig_len, fmt, ap);
2194 }
1651e569 2195 va_end (ap);
e0001a05
NC
2196 return message;
2197}
2198
2199
e0001a05
NC
2200/* This function is registered as the "special_function" in the
2201 Xtensa howto for handling simplify operations.
2202 bfd_perform_relocation / bfd_install_relocation use it to
2203 perform (install) the specified relocation. Since this replaces the code
2204 in bfd_perform_relocation, it is basically an Xtensa-specific,
2205 stripped-down version of bfd_perform_relocation. */
2206
2207static bfd_reloc_status_type
7fa3d080
BW
2208bfd_elf_xtensa_reloc (bfd *abfd,
2209 arelent *reloc_entry,
2210 asymbol *symbol,
2211 void *data,
2212 asection *input_section,
2213 bfd *output_bfd,
2214 char **error_message)
e0001a05
NC
2215{
2216 bfd_vma relocation;
2217 bfd_reloc_status_type flag;
2218 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2219 bfd_vma output_base = 0;
2220 reloc_howto_type *howto = reloc_entry->howto;
2221 asection *reloc_target_output_section;
2222 bfd_boolean is_weak_undef;
2223
dd1a320b
BW
2224 if (!xtensa_default_isa)
2225 xtensa_default_isa = xtensa_isa_init (0, 0);
2226
1049f94e 2227 /* ELF relocs are against symbols. If we are producing relocatable
e0001a05
NC
2228 output, and the reloc is against an external symbol, the resulting
2229 reloc will also be against the same symbol. In such a case, we
2230 don't want to change anything about the way the reloc is handled,
2231 since it will all be done at final link time. This test is similar
2232 to what bfd_elf_generic_reloc does except that it lets relocs with
2233 howto->partial_inplace go through even if the addend is non-zero.
2234 (The real problem is that partial_inplace is set for XTENSA_32
2235 relocs to begin with, but that's a long story and there's little we
2236 can do about it now....) */
2237
7fa3d080 2238 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
e0001a05
NC
2239 {
2240 reloc_entry->address += input_section->output_offset;
2241 return bfd_reloc_ok;
2242 }
2243
2244 /* Is the address of the relocation really within the section? */
07515404 2245 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
e0001a05
NC
2246 return bfd_reloc_outofrange;
2247
4cc11e76 2248 /* Work out which section the relocation is targeted at and the
e0001a05
NC
2249 initial relocation command value. */
2250
2251 /* Get symbol value. (Common symbols are special.) */
2252 if (bfd_is_com_section (symbol->section))
2253 relocation = 0;
2254 else
2255 relocation = symbol->value;
2256
2257 reloc_target_output_section = symbol->section->output_section;
2258
2259 /* Convert input-section-relative symbol value to absolute. */
2260 if ((output_bfd && !howto->partial_inplace)
2261 || reloc_target_output_section == NULL)
2262 output_base = 0;
2263 else
2264 output_base = reloc_target_output_section->vma;
2265
2266 relocation += output_base + symbol->section->output_offset;
2267
2268 /* Add in supplied addend. */
2269 relocation += reloc_entry->addend;
2270
2271 /* Here the variable relocation holds the final address of the
2272 symbol we are relocating against, plus any addend. */
2273 if (output_bfd)
2274 {
2275 if (!howto->partial_inplace)
2276 {
2277 /* This is a partial relocation, and we want to apply the relocation
2278 to the reloc entry rather than the raw data. Everything except
2279 relocations against section symbols has already been handled
2280 above. */
43cd72b9 2281
e0001a05
NC
2282 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
2283 reloc_entry->addend = relocation;
2284 reloc_entry->address += input_section->output_offset;
2285 return bfd_reloc_ok;
2286 }
2287 else
2288 {
2289 reloc_entry->address += input_section->output_offset;
2290 reloc_entry->addend = 0;
2291 }
2292 }
2293
2294 is_weak_undef = (bfd_is_und_section (symbol->section)
2295 && (symbol->flags & BSF_WEAK) != 0);
2296 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
2297 (bfd_byte *) data, (bfd_vma) octets,
2298 is_weak_undef, error_message);
2299
2300 if (flag == bfd_reloc_dangerous)
2301 {
2302 /* Add the symbol name to the error message. */
2303 if (! *error_message)
2304 *error_message = "";
2305 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
2306 strlen (symbol->name) + 17,
70961b9d
AM
2307 symbol->name,
2308 (unsigned long) reloc_entry->addend);
e0001a05
NC
2309 }
2310
2311 return flag;
2312}
2313
2314
2315/* Set up an entry in the procedure linkage table. */
2316
2317static bfd_vma
f0e6fdb2 2318elf_xtensa_create_plt_entry (struct bfd_link_info *info,
7fa3d080
BW
2319 bfd *output_bfd,
2320 unsigned reloc_index)
e0001a05
NC
2321{
2322 asection *splt, *sgotplt;
2323 bfd_vma plt_base, got_base;
92b3f008 2324 bfd_vma code_offset, lit_offset, abi_offset;
e0001a05
NC
2325 int chunk;
2326
2327 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
f0e6fdb2
BW
2328 splt = elf_xtensa_get_plt_section (info, chunk);
2329 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
2330 BFD_ASSERT (splt != NULL && sgotplt != NULL);
2331
2332 plt_base = splt->output_section->vma + splt->output_offset;
2333 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
2334
2335 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
2336 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
2337
2338 /* Fill in the literal entry. This is the offset of the dynamic
2339 relocation entry. */
2340 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
2341 sgotplt->contents + lit_offset);
2342
2343 /* Fill in the entry in the procedure linkage table. */
2344 memcpy (splt->contents + code_offset,
2345 (bfd_big_endian (output_bfd)
2346 ? elf_xtensa_be_plt_entry
2347 : elf_xtensa_le_plt_entry),
2348 PLT_ENTRY_SIZE);
92b3f008 2349 abi_offset = XSHAL_ABI == XTHAL_ABI_WINDOWED ? 3 : 0;
e0001a05 2350 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
92b3f008
MF
2351 plt_base + code_offset + abi_offset),
2352 splt->contents + code_offset + abi_offset + 1);
e0001a05 2353 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
92b3f008
MF
2354 plt_base + code_offset + abi_offset + 3),
2355 splt->contents + code_offset + abi_offset + 4);
e0001a05 2356 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
92b3f008
MF
2357 plt_base + code_offset + abi_offset + 6),
2358 splt->contents + code_offset + abi_offset + 7);
e0001a05
NC
2359
2360 return plt_base + code_offset;
2361}
2362
2363
28dbbc02
BW
2364static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *);
2365
2366static bfd_boolean
2367replace_tls_insn (Elf_Internal_Rela *rel,
2368 bfd *abfd,
2369 asection *input_section,
2370 bfd_byte *contents,
2371 bfd_boolean is_ld_model,
2372 char **error_message)
2373{
2374 static xtensa_insnbuf ibuff = NULL;
2375 static xtensa_insnbuf sbuff = NULL;
2376 xtensa_isa isa = xtensa_default_isa;
2377 xtensa_format fmt;
2378 xtensa_opcode old_op, new_op;
2379 bfd_size_type input_size;
2380 int r_type;
2381 unsigned dest_reg, src_reg;
2382
2383 if (ibuff == NULL)
2384 {
2385 ibuff = xtensa_insnbuf_alloc (isa);
2386 sbuff = xtensa_insnbuf_alloc (isa);
2387 }
2388
2389 input_size = bfd_get_section_limit (abfd, input_section);
2390
2391 /* Read the instruction into a buffer and decode the opcode. */
2392 xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset,
2393 input_size - rel->r_offset);
2394 fmt = xtensa_format_decode (isa, ibuff);
2395 if (fmt == XTENSA_UNDEFINED)
2396 {
2397 *error_message = "cannot decode instruction format";
2398 return FALSE;
2399 }
2400
2401 BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1);
2402 xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff);
2403
2404 old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff);
2405 if (old_op == XTENSA_UNDEFINED)
2406 {
2407 *error_message = "cannot decode instruction opcode";
2408 return FALSE;
2409 }
2410
2411 r_type = ELF32_R_TYPE (rel->r_info);
2412 switch (r_type)
2413 {
2414 case R_XTENSA_TLS_FUNC:
2415 case R_XTENSA_TLS_ARG:
2416 if (old_op != get_l32r_opcode ()
2417 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2418 sbuff, &dest_reg) != 0)
2419 {
2420 *error_message = "cannot extract L32R destination for TLS access";
2421 return FALSE;
2422 }
2423 break;
2424
2425 case R_XTENSA_TLS_CALL:
2426 if (! get_indirect_call_dest_reg (old_op, &dest_reg)
2427 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2428 sbuff, &src_reg) != 0)
2429 {
2430 *error_message = "cannot extract CALLXn operands for TLS access";
2431 return FALSE;
2432 }
2433 break;
2434
2435 default:
2436 abort ();
2437 }
2438
2439 if (is_ld_model)
2440 {
2441 switch (r_type)
2442 {
2443 case R_XTENSA_TLS_FUNC:
2444 case R_XTENSA_TLS_ARG:
2445 /* Change the instruction to a NOP (or "OR a1, a1, a1" for older
2446 versions of Xtensa). */
2447 new_op = xtensa_opcode_lookup (isa, "nop");
2448 if (new_op == XTENSA_UNDEFINED)
2449 {
2450 new_op = xtensa_opcode_lookup (isa, "or");
2451 if (new_op == XTENSA_UNDEFINED
2452 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2453 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2454 sbuff, 1) != 0
2455 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2456 sbuff, 1) != 0
2457 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2458 sbuff, 1) != 0)
2459 {
2460 *error_message = "cannot encode OR for TLS access";
2461 return FALSE;
2462 }
2463 }
2464 else
2465 {
2466 if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0)
2467 {
2468 *error_message = "cannot encode NOP for TLS access";
2469 return FALSE;
2470 }
2471 }
2472 break;
2473
2474 case R_XTENSA_TLS_CALL:
2475 /* Read THREADPTR into the CALLX's return value register. */
2476 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2477 if (new_op == XTENSA_UNDEFINED
2478 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2479 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2480 sbuff, dest_reg + 2) != 0)
2481 {
2482 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2483 return FALSE;
2484 }
2485 break;
2486 }
2487 }
2488 else
2489 {
2490 switch (r_type)
2491 {
2492 case R_XTENSA_TLS_FUNC:
2493 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2494 if (new_op == XTENSA_UNDEFINED
2495 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2496 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2497 sbuff, dest_reg) != 0)
2498 {
2499 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2500 return FALSE;
2501 }
2502 break;
2503
2504 case R_XTENSA_TLS_ARG:
2505 /* Nothing to do. Keep the original L32R instruction. */
2506 return TRUE;
2507
2508 case R_XTENSA_TLS_CALL:
2509 /* Add the CALLX's src register (holding the THREADPTR value)
2510 to the first argument register (holding the offset) and put
2511 the result in the CALLX's return value register. */
2512 new_op = xtensa_opcode_lookup (isa, "add");
2513 if (new_op == XTENSA_UNDEFINED
2514 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2515 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2516 sbuff, dest_reg + 2) != 0
2517 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2518 sbuff, dest_reg + 2) != 0
2519 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2520 sbuff, src_reg) != 0)
2521 {
2522 *error_message = "cannot encode ADD for TLS access";
2523 return FALSE;
2524 }
2525 break;
2526 }
2527 }
2528
2529 xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff);
2530 xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset,
2531 input_size - rel->r_offset);
2532
2533 return TRUE;
2534}
2535
2536
2537#define IS_XTENSA_TLS_RELOC(R_TYPE) \
2538 ((R_TYPE) == R_XTENSA_TLSDESC_FN \
2539 || (R_TYPE) == R_XTENSA_TLSDESC_ARG \
2540 || (R_TYPE) == R_XTENSA_TLS_DTPOFF \
2541 || (R_TYPE) == R_XTENSA_TLS_TPOFF \
2542 || (R_TYPE) == R_XTENSA_TLS_FUNC \
2543 || (R_TYPE) == R_XTENSA_TLS_ARG \
2544 || (R_TYPE) == R_XTENSA_TLS_CALL)
2545
e0001a05 2546/* Relocate an Xtensa ELF section. This is invoked by the linker for
1049f94e 2547 both relocatable and final links. */
e0001a05
NC
2548
2549static bfd_boolean
7fa3d080
BW
2550elf_xtensa_relocate_section (bfd *output_bfd,
2551 struct bfd_link_info *info,
2552 bfd *input_bfd,
2553 asection *input_section,
2554 bfd_byte *contents,
2555 Elf_Internal_Rela *relocs,
2556 Elf_Internal_Sym *local_syms,
2557 asection **local_sections)
e0001a05 2558{
f0e6fdb2 2559 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
2560 Elf_Internal_Shdr *symtab_hdr;
2561 Elf_Internal_Rela *rel;
2562 Elf_Internal_Rela *relend;
2563 struct elf_link_hash_entry **sym_hashes;
88d65ad6
BW
2564 property_table_entry *lit_table = 0;
2565 int ltblsize = 0;
28dbbc02 2566 char *local_got_tls_types;
e0001a05 2567 char *error_message = NULL;
43cd72b9 2568 bfd_size_type input_size;
28dbbc02 2569 int tls_type;
e0001a05 2570
43cd72b9
BW
2571 if (!xtensa_default_isa)
2572 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 2573
28dbbc02
BW
2574 BFD_ASSERT (is_xtensa_elf (input_bfd));
2575
f0e6fdb2 2576 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
2577 if (htab == NULL)
2578 return FALSE;
2579
e0001a05
NC
2580 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2581 sym_hashes = elf_sym_hashes (input_bfd);
28dbbc02 2582 local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd);
e0001a05 2583
88d65ad6
BW
2584 if (elf_hash_table (info)->dynamic_sections_created)
2585 {
2586 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
43cd72b9
BW
2587 &lit_table, XTENSA_LIT_SEC_NAME,
2588 TRUE);
88d65ad6
BW
2589 if (ltblsize < 0)
2590 return FALSE;
2591 }
2592
43cd72b9
BW
2593 input_size = bfd_get_section_limit (input_bfd, input_section);
2594
e0001a05
NC
2595 rel = relocs;
2596 relend = relocs + input_section->reloc_count;
2597 for (; rel < relend; rel++)
2598 {
2599 int r_type;
2600 reloc_howto_type *howto;
2601 unsigned long r_symndx;
2602 struct elf_link_hash_entry *h;
2603 Elf_Internal_Sym *sym;
28dbbc02
BW
2604 char sym_type;
2605 const char *name;
e0001a05
NC
2606 asection *sec;
2607 bfd_vma relocation;
2608 bfd_reloc_status_type r;
2609 bfd_boolean is_weak_undef;
2610 bfd_boolean unresolved_reloc;
9b8c98a4 2611 bfd_boolean warned;
28dbbc02 2612 bfd_boolean dynamic_symbol;
e0001a05
NC
2613
2614 r_type = ELF32_R_TYPE (rel->r_info);
2615 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2616 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2617 continue;
2618
2619 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2620 {
2621 bfd_set_error (bfd_error_bad_value);
2622 return FALSE;
2623 }
2624 howto = &elf_howto_table[r_type];
2625
2626 r_symndx = ELF32_R_SYM (rel->r_info);
2627
ab96bf03
AM
2628 h = NULL;
2629 sym = NULL;
2630 sec = NULL;
2631 is_weak_undef = FALSE;
2632 unresolved_reloc = FALSE;
2633 warned = FALSE;
2634
0e1862bb 2635 if (howto->partial_inplace && !bfd_link_relocatable (info))
ab96bf03
AM
2636 {
2637 /* Because R_XTENSA_32 was made partial_inplace to fix some
2638 problems with DWARF info in partial links, there may be
2639 an addend stored in the contents. Take it out of there
2640 and move it back into the addend field of the reloc. */
2641 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2642 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2643 }
2644
2645 if (r_symndx < symtab_hdr->sh_info)
2646 {
2647 sym = local_syms + r_symndx;
28dbbc02 2648 sym_type = ELF32_ST_TYPE (sym->st_info);
ab96bf03
AM
2649 sec = local_sections[r_symndx];
2650 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2651 }
2652 else
2653 {
62d887d4
L
2654 bfd_boolean ignored;
2655
ab96bf03
AM
2656 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2657 r_symndx, symtab_hdr, sym_hashes,
2658 h, sec, relocation,
62d887d4 2659 unresolved_reloc, warned, ignored);
ab96bf03
AM
2660
2661 if (relocation == 0
2662 && !unresolved_reloc
2663 && h->root.type == bfd_link_hash_undefweak)
2664 is_weak_undef = TRUE;
28dbbc02
BW
2665
2666 sym_type = h->type;
ab96bf03
AM
2667 }
2668
dbaa2011 2669 if (sec != NULL && discarded_section (sec))
e4067dbb 2670 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
545fd46b 2671 rel, 1, relend, howto, 0, contents);
ab96bf03 2672
0e1862bb 2673 if (bfd_link_relocatable (info))
e0001a05 2674 {
7aa09196
SA
2675 bfd_vma dest_addr;
2676 asection * sym_sec = get_elf_r_symndx_section (input_bfd, r_symndx);
2677
43cd72b9 2678 /* This is a relocatable link.
e0001a05
NC
2679 1) If the reloc is against a section symbol, adjust
2680 according to the output section.
2681 2) If there is a new target for this relocation,
2682 the new target will be in the same output section.
2683 We adjust the relocation by the output section
2684 difference. */
2685
2686 if (relaxing_section)
2687 {
2688 /* Check if this references a section in another input file. */
43cd72b9
BW
2689 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2690 contents))
2691 return FALSE;
e0001a05
NC
2692 }
2693
7aa09196
SA
2694 dest_addr = sym_sec->output_section->vma + sym_sec->output_offset
2695 + get_elf_r_symndx_offset (input_bfd, r_symndx) + rel->r_addend;
2696
43cd72b9 2697 if (r_type == R_XTENSA_ASM_SIMPLIFY)
e0001a05 2698 {
91d6fa6a 2699 error_message = NULL;
e0001a05
NC
2700 /* Convert ASM_SIMPLIFY into the simpler relocation
2701 so that they never escape a relaxing link. */
43cd72b9
BW
2702 r = contract_asm_expansion (contents, input_size, rel,
2703 &error_message);
2704 if (r != bfd_reloc_ok)
1a72702b
AM
2705 (*info->callbacks->reloc_dangerous)
2706 (info, error_message,
2707 input_bfd, input_section, rel->r_offset);
2708
e0001a05
NC
2709 r_type = ELF32_R_TYPE (rel->r_info);
2710 }
2711
1049f94e 2712 /* This is a relocatable link, so we don't have to change
e0001a05
NC
2713 anything unless the reloc is against a section symbol,
2714 in which case we have to adjust according to where the
2715 section symbol winds up in the output section. */
2716 if (r_symndx < symtab_hdr->sh_info)
2717 {
2718 sym = local_syms + r_symndx;
2719 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2720 {
2721 sec = local_sections[r_symndx];
2722 rel->r_addend += sec->output_offset + sym->st_value;
2723 }
2724 }
2725
2726 /* If there is an addend with a partial_inplace howto,
2727 then move the addend to the contents. This is a hack
1049f94e 2728 to work around problems with DWARF in relocatable links
e0001a05
NC
2729 with some previous version of BFD. Now we can't easily get
2730 rid of the hack without breaking backward compatibility.... */
7aa09196
SA
2731 r = bfd_reloc_ok;
2732 howto = &elf_howto_table[r_type];
2733 if (howto->partial_inplace && rel->r_addend)
2734 {
2735 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2736 rel->r_addend, contents,
2737 rel->r_offset, FALSE,
2738 &error_message);
2739 rel->r_addend = 0;
2740 }
2741 else
e0001a05 2742 {
7aa09196
SA
2743 /* Put the correct bits in the target instruction, even
2744 though the relocation will still be present in the output
2745 file. This makes disassembly clearer, as well as
2746 allowing loadable kernel modules to work without needing
2747 relocations on anything other than calls and l32r's. */
2748
2749 /* If it is not in the same section, there is nothing we can do. */
2750 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP &&
2751 sym_sec->output_section == input_section->output_section)
e0001a05
NC
2752 {
2753 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
7aa09196 2754 dest_addr, contents,
e0001a05
NC
2755 rel->r_offset, FALSE,
2756 &error_message);
e0001a05
NC
2757 }
2758 }
7aa09196 2759 if (r != bfd_reloc_ok)
1a72702b
AM
2760 (*info->callbacks->reloc_dangerous)
2761 (info, error_message,
2762 input_bfd, input_section, rel->r_offset);
e0001a05 2763
1049f94e 2764 /* Done with work for relocatable link; continue with next reloc. */
e0001a05
NC
2765 continue;
2766 }
2767
2768 /* This is a final link. */
2769
e0001a05
NC
2770 if (relaxing_section)
2771 {
2772 /* Check if this references a section in another input file. */
43cd72b9
BW
2773 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2774 &relocation);
e0001a05
NC
2775 }
2776
2777 /* Sanity check the address. */
43cd72b9 2778 if (rel->r_offset >= input_size
e0001a05
NC
2779 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2780 {
43cd72b9
BW
2781 (*_bfd_error_handler)
2782 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2783 input_bfd, input_section, rel->r_offset, input_size);
e0001a05
NC
2784 bfd_set_error (bfd_error_bad_value);
2785 return FALSE;
2786 }
2787
28dbbc02
BW
2788 if (h != NULL)
2789 name = h->root.root.string;
2790 else
e0001a05 2791 {
28dbbc02
BW
2792 name = (bfd_elf_string_from_elf_section
2793 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2794 if (name == NULL || *name == '\0')
2795 name = bfd_section_name (input_bfd, sec);
2796 }
e0001a05 2797
cf35638d 2798 if (r_symndx != STN_UNDEF
28dbbc02
BW
2799 && r_type != R_XTENSA_NONE
2800 && (h == NULL
2801 || h->root.type == bfd_link_hash_defined
2802 || h->root.type == bfd_link_hash_defweak)
2803 && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS))
2804 {
2805 (*_bfd_error_handler)
2806 ((sym_type == STT_TLS
2807 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
2808 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
2809 input_bfd,
2810 input_section,
2811 (long) rel->r_offset,
2812 howto->name,
2813 name);
2814 }
2815
2816 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2817
2818 tls_type = GOT_UNKNOWN;
2819 if (h)
2820 tls_type = elf_xtensa_hash_entry (h)->tls_type;
2821 else if (local_got_tls_types)
2822 tls_type = local_got_tls_types [r_symndx];
2823
2824 switch (r_type)
2825 {
2826 case R_XTENSA_32:
2827 case R_XTENSA_PLT:
2828 if (elf_hash_table (info)->dynamic_sections_created
2829 && (input_section->flags & SEC_ALLOC) != 0
0e1862bb 2830 && (dynamic_symbol || bfd_link_pic (info)))
e0001a05
NC
2831 {
2832 Elf_Internal_Rela outrel;
2833 bfd_byte *loc;
2834 asection *srel;
2835
2836 if (dynamic_symbol && r_type == R_XTENSA_PLT)
f0e6fdb2 2837 srel = htab->srelplt;
e0001a05 2838 else
f0e6fdb2 2839 srel = htab->srelgot;
e0001a05
NC
2840
2841 BFD_ASSERT (srel != NULL);
2842
2843 outrel.r_offset =
2844 _bfd_elf_section_offset (output_bfd, info,
2845 input_section, rel->r_offset);
2846
2847 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2848 memset (&outrel, 0, sizeof outrel);
2849 else
2850 {
f0578e28
BW
2851 outrel.r_offset += (input_section->output_section->vma
2852 + input_section->output_offset);
e0001a05 2853
88d65ad6
BW
2854 /* Complain if the relocation is in a read-only section
2855 and not in a literal pool. */
2856 if ((input_section->flags & SEC_READONLY) != 0
2857 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
3ba3bc8c 2858 outrel.r_offset))
88d65ad6
BW
2859 {
2860 error_message =
2861 _("dynamic relocation in read-only section");
1a72702b
AM
2862 (*info->callbacks->reloc_dangerous)
2863 (info, error_message,
2864 input_bfd, input_section, rel->r_offset);
88d65ad6
BW
2865 }
2866
e0001a05
NC
2867 if (dynamic_symbol)
2868 {
2869 outrel.r_addend = rel->r_addend;
2870 rel->r_addend = 0;
2871
2872 if (r_type == R_XTENSA_32)
2873 {
2874 outrel.r_info =
2875 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2876 relocation = 0;
2877 }
2878 else /* r_type == R_XTENSA_PLT */
2879 {
2880 outrel.r_info =
2881 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2882
2883 /* Create the PLT entry and set the initial
2884 contents of the literal entry to the address of
2885 the PLT entry. */
43cd72b9 2886 relocation =
f0e6fdb2 2887 elf_xtensa_create_plt_entry (info, output_bfd,
e0001a05
NC
2888 srel->reloc_count);
2889 }
2890 unresolved_reloc = FALSE;
2891 }
2892 else
2893 {
2894 /* Generate a RELATIVE relocation. */
2895 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2896 outrel.r_addend = 0;
2897 }
2898 }
2899
2900 loc = (srel->contents
2901 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2902 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2903 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
eea6121a 2904 <= srel->size);
e0001a05 2905 }
d9ab3f29
BW
2906 else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
2907 {
2908 /* This should only happen for non-PIC code, which is not
2909 supposed to be used on systems with dynamic linking.
2910 Just ignore these relocations. */
2911 continue;
2912 }
28dbbc02
BW
2913 break;
2914
2915 case R_XTENSA_TLS_TPOFF:
2916 /* Switch to LE model for local symbols in an executable. */
0e1862bb 2917 if (! bfd_link_pic (info) && ! dynamic_symbol)
28dbbc02
BW
2918 {
2919 relocation = tpoff (info, relocation);
2920 break;
2921 }
2922 /* fall through */
2923
2924 case R_XTENSA_TLSDESC_FN:
2925 case R_XTENSA_TLSDESC_ARG:
2926 {
2927 if (r_type == R_XTENSA_TLSDESC_FN)
2928 {
0e1862bb 2929 if (! bfd_link_pic (info) || (tls_type & GOT_TLS_IE) != 0)
28dbbc02
BW
2930 r_type = R_XTENSA_NONE;
2931 }
2932 else if (r_type == R_XTENSA_TLSDESC_ARG)
2933 {
0e1862bb 2934 if (bfd_link_pic (info))
28dbbc02
BW
2935 {
2936 if ((tls_type & GOT_TLS_IE) != 0)
2937 r_type = R_XTENSA_TLS_TPOFF;
2938 }
2939 else
2940 {
2941 r_type = R_XTENSA_TLS_TPOFF;
2942 if (! dynamic_symbol)
2943 {
2944 relocation = tpoff (info, relocation);
2945 break;
2946 }
2947 }
2948 }
2949
2950 if (r_type == R_XTENSA_NONE)
2951 /* Nothing to do here; skip to the next reloc. */
2952 continue;
2953
2954 if (! elf_hash_table (info)->dynamic_sections_created)
2955 {
2956 error_message =
2957 _("TLS relocation invalid without dynamic sections");
1a72702b
AM
2958 (*info->callbacks->reloc_dangerous)
2959 (info, error_message,
2960 input_bfd, input_section, rel->r_offset);
28dbbc02
BW
2961 }
2962 else
2963 {
2964 Elf_Internal_Rela outrel;
2965 bfd_byte *loc;
2966 asection *srel = htab->srelgot;
2967 int indx;
2968
2969 outrel.r_offset = (input_section->output_section->vma
2970 + input_section->output_offset
2971 + rel->r_offset);
2972
2973 /* Complain if the relocation is in a read-only section
2974 and not in a literal pool. */
2975 if ((input_section->flags & SEC_READONLY) != 0
2976 && ! elf_xtensa_in_literal_pool (lit_table, ltblsize,
2977 outrel.r_offset))
2978 {
2979 error_message =
2980 _("dynamic relocation in read-only section");
1a72702b
AM
2981 (*info->callbacks->reloc_dangerous)
2982 (info, error_message,
2983 input_bfd, input_section, rel->r_offset);
28dbbc02
BW
2984 }
2985
2986 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2987 if (indx == 0)
2988 outrel.r_addend = relocation - dtpoff_base (info);
2989 else
2990 outrel.r_addend = 0;
2991 rel->r_addend = 0;
2992
2993 outrel.r_info = ELF32_R_INFO (indx, r_type);
2994 relocation = 0;
2995 unresolved_reloc = FALSE;
2996
2997 BFD_ASSERT (srel);
2998 loc = (srel->contents
2999 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
3000 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3001 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
3002 <= srel->size);
3003 }
3004 }
3005 break;
3006
3007 case R_XTENSA_TLS_DTPOFF:
0e1862bb 3008 if (! bfd_link_pic (info))
28dbbc02
BW
3009 /* Switch from LD model to LE model. */
3010 relocation = tpoff (info, relocation);
3011 else
3012 relocation -= dtpoff_base (info);
3013 break;
3014
3015 case R_XTENSA_TLS_FUNC:
3016 case R_XTENSA_TLS_ARG:
3017 case R_XTENSA_TLS_CALL:
3018 /* Check if optimizing to IE or LE model. */
3019 if ((tls_type & GOT_TLS_IE) != 0)
3020 {
3021 bfd_boolean is_ld_model =
3022 (h && elf_xtensa_hash_entry (h) == htab->tlsbase);
3023 if (! replace_tls_insn (rel, input_bfd, input_section, contents,
3024 is_ld_model, &error_message))
1a72702b
AM
3025 (*info->callbacks->reloc_dangerous)
3026 (info, error_message,
3027 input_bfd, input_section, rel->r_offset);
28dbbc02
BW
3028
3029 if (r_type != R_XTENSA_TLS_ARG || is_ld_model)
3030 {
3031 /* Skip subsequent relocations on the same instruction. */
3032 while (rel + 1 < relend && rel[1].r_offset == rel->r_offset)
3033 rel++;
3034 }
3035 }
3036 continue;
3037
3038 default:
3039 if (elf_hash_table (info)->dynamic_sections_created
3040 && dynamic_symbol && (is_operand_relocation (r_type)
3041 || r_type == R_XTENSA_32_PCREL))
3042 {
3043 error_message =
3044 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
3045 strlen (name) + 2, name);
1a72702b
AM
3046 (*info->callbacks->reloc_dangerous)
3047 (info, error_message, input_bfd, input_section, rel->r_offset);
28dbbc02
BW
3048 continue;
3049 }
3050 break;
e0001a05
NC
3051 }
3052
3053 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3054 because such sections are not SEC_ALLOC and thus ld.so will
3055 not process them. */
3056 if (unresolved_reloc
3057 && !((input_section->flags & SEC_DEBUGGING) != 0
1d5316ab
AM
3058 && h->def_dynamic)
3059 && _bfd_elf_section_offset (output_bfd, info, input_section,
3060 rel->r_offset) != (bfd_vma) -1)
bf1747de
BW
3061 {
3062 (*_bfd_error_handler)
3063 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3064 input_bfd,
3065 input_section,
3066 (long) rel->r_offset,
3067 howto->name,
28dbbc02 3068 name);
bf1747de
BW
3069 return FALSE;
3070 }
e0001a05 3071
28dbbc02
BW
3072 /* TLS optimizations may have changed r_type; update "howto". */
3073 howto = &elf_howto_table[r_type];
3074
e0001a05
NC
3075 /* There's no point in calling bfd_perform_relocation here.
3076 Just go directly to our "special function". */
3077 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
3078 relocation + rel->r_addend,
3079 contents, rel->r_offset, is_weak_undef,
3080 &error_message);
43cd72b9 3081
9b8c98a4 3082 if (r != bfd_reloc_ok && !warned)
e0001a05 3083 {
43cd72b9 3084 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
7fa3d080 3085 BFD_ASSERT (error_message != NULL);
e0001a05 3086
28dbbc02
BW
3087 if (rel->r_addend == 0)
3088 error_message = vsprint_msg (error_message, ": %s",
3089 strlen (name) + 2, name);
e0001a05 3090 else
28dbbc02
BW
3091 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
3092 strlen (name) + 22,
3093 name, (int) rel->r_addend);
43cd72b9 3094
1a72702b
AM
3095 (*info->callbacks->reloc_dangerous)
3096 (info, error_message, input_bfd, input_section, rel->r_offset);
e0001a05
NC
3097 }
3098 }
3099
88d65ad6
BW
3100 if (lit_table)
3101 free (lit_table);
3102
3ba3bc8c
BW
3103 input_section->reloc_done = TRUE;
3104
e0001a05
NC
3105 return TRUE;
3106}
3107
3108
3109/* Finish up dynamic symbol handling. There's not much to do here since
3110 the PLT and GOT entries are all set up by relocate_section. */
3111
3112static bfd_boolean
7fa3d080
BW
3113elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3114 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3115 struct elf_link_hash_entry *h,
3116 Elf_Internal_Sym *sym)
e0001a05 3117{
bf1747de 3118 if (h->needs_plt && !h->def_regular)
e0001a05
NC
3119 {
3120 /* Mark the symbol as undefined, rather than as defined in
3121 the .plt section. Leave the value alone. */
3122 sym->st_shndx = SHN_UNDEF;
bf1747de
BW
3123 /* If the symbol is weak, we do need to clear the value.
3124 Otherwise, the PLT entry would provide a definition for
3125 the symbol even if the symbol wasn't defined anywhere,
3126 and so the symbol would never be NULL. */
3127 if (!h->ref_regular_nonweak)
3128 sym->st_value = 0;
e0001a05
NC
3129 }
3130
3131 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
9637f6ef 3132 if (h == elf_hash_table (info)->hdynamic
22edb2f1 3133 || h == elf_hash_table (info)->hgot)
e0001a05
NC
3134 sym->st_shndx = SHN_ABS;
3135
3136 return TRUE;
3137}
3138
3139
3140/* Combine adjacent literal table entries in the output. Adjacent
3141 entries within each input section may have been removed during
3142 relaxation, but we repeat the process here, even though it's too late
3143 to shrink the output section, because it's important to minimize the
3144 number of literal table entries to reduce the start-up work for the
3145 runtime linker. Returns the number of remaining table entries or -1
3146 on error. */
3147
3148static int
7fa3d080
BW
3149elf_xtensa_combine_prop_entries (bfd *output_bfd,
3150 asection *sxtlit,
3151 asection *sgotloc)
e0001a05 3152{
e0001a05
NC
3153 bfd_byte *contents;
3154 property_table_entry *table;
e901de89 3155 bfd_size_type section_size, sgotloc_size;
e0001a05
NC
3156 bfd_vma offset;
3157 int n, m, num;
3158
eea6121a 3159 section_size = sxtlit->size;
e0001a05
NC
3160 BFD_ASSERT (section_size % 8 == 0);
3161 num = section_size / 8;
3162
eea6121a 3163 sgotloc_size = sgotloc->size;
e901de89 3164 if (sgotloc_size != section_size)
b536dc1e
BW
3165 {
3166 (*_bfd_error_handler)
43cd72b9 3167 (_("internal inconsistency in size of .got.loc section"));
b536dc1e
BW
3168 return -1;
3169 }
e901de89 3170
eea6121a
AM
3171 table = bfd_malloc (num * sizeof (property_table_entry));
3172 if (table == 0)
e0001a05
NC
3173 return -1;
3174
3175 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
3176 propagates to the output section, where it doesn't really apply and
eea6121a 3177 where it breaks the following call to bfd_malloc_and_get_section. */
e901de89 3178 sxtlit->flags &= ~SEC_IN_MEMORY;
e0001a05 3179
eea6121a
AM
3180 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
3181 {
3182 if (contents != 0)
3183 free (contents);
3184 free (table);
3185 return -1;
3186 }
e0001a05
NC
3187
3188 /* There should never be any relocations left at this point, so this
3189 is quite a bit easier than what is done during relaxation. */
3190
3191 /* Copy the raw contents into a property table array and sort it. */
3192 offset = 0;
3193 for (n = 0; n < num; n++)
3194 {
3195 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
3196 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
3197 offset += 8;
3198 }
3199 qsort (table, num, sizeof (property_table_entry), property_table_compare);
3200
3201 for (n = 0; n < num; n++)
3202 {
91d6fa6a 3203 bfd_boolean remove_entry = FALSE;
e0001a05
NC
3204
3205 if (table[n].size == 0)
91d6fa6a
NC
3206 remove_entry = TRUE;
3207 else if (n > 0
3208 && (table[n-1].address + table[n-1].size == table[n].address))
e0001a05
NC
3209 {
3210 table[n-1].size += table[n].size;
91d6fa6a 3211 remove_entry = TRUE;
e0001a05
NC
3212 }
3213
91d6fa6a 3214 if (remove_entry)
e0001a05
NC
3215 {
3216 for (m = n; m < num - 1; m++)
3217 {
3218 table[m].address = table[m+1].address;
3219 table[m].size = table[m+1].size;
3220 }
3221
3222 n--;
3223 num--;
3224 }
3225 }
3226
3227 /* Copy the data back to the raw contents. */
3228 offset = 0;
3229 for (n = 0; n < num; n++)
3230 {
3231 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
3232 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
3233 offset += 8;
3234 }
3235
3236 /* Clear the removed bytes. */
3237 if ((bfd_size_type) (num * 8) < section_size)
b54d4b07 3238 memset (&contents[num * 8], 0, section_size - num * 8);
e0001a05 3239
e901de89
BW
3240 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
3241 section_size))
e0001a05
NC
3242 return -1;
3243
e901de89
BW
3244 /* Copy the contents to ".got.loc". */
3245 memcpy (sgotloc->contents, contents, section_size);
3246
e0001a05 3247 free (contents);
b614a702 3248 free (table);
e0001a05
NC
3249 return num;
3250}
3251
3252
3253/* Finish up the dynamic sections. */
3254
3255static bfd_boolean
7fa3d080
BW
3256elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
3257 struct bfd_link_info *info)
e0001a05 3258{
f0e6fdb2 3259 struct elf_xtensa_link_hash_table *htab;
e0001a05 3260 bfd *dynobj;
e901de89 3261 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
e0001a05 3262 Elf32_External_Dyn *dyncon, *dynconend;
d9ab3f29 3263 int num_xtlit_entries = 0;
e0001a05
NC
3264
3265 if (! elf_hash_table (info)->dynamic_sections_created)
3266 return TRUE;
3267
f0e6fdb2 3268 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
3269 if (htab == NULL)
3270 return FALSE;
3271
e0001a05 3272 dynobj = elf_hash_table (info)->dynobj;
3d4d4302 3273 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
e0001a05
NC
3274 BFD_ASSERT (sdyn != NULL);
3275
3276 /* Set the first entry in the global offset table to the address of
3277 the dynamic section. */
f0e6fdb2 3278 sgot = htab->sgot;
e0001a05
NC
3279 if (sgot)
3280 {
eea6121a 3281 BFD_ASSERT (sgot->size == 4);
e0001a05 3282 if (sdyn == NULL)
7fa3d080 3283 bfd_put_32 (output_bfd, 0, sgot->contents);
e0001a05
NC
3284 else
3285 bfd_put_32 (output_bfd,
3286 sdyn->output_section->vma + sdyn->output_offset,
3287 sgot->contents);
3288 }
3289
f0e6fdb2 3290 srelplt = htab->srelplt;
7fa3d080 3291 if (srelplt && srelplt->size != 0)
e0001a05
NC
3292 {
3293 asection *sgotplt, *srelgot, *spltlittbl;
3294 int chunk, plt_chunks, plt_entries;
3295 Elf_Internal_Rela irela;
3296 bfd_byte *loc;
3297 unsigned rtld_reloc;
3298
f0e6fdb2
BW
3299 srelgot = htab->srelgot;
3300 spltlittbl = htab->spltlittbl;
3301 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
e0001a05
NC
3302
3303 /* Find the first XTENSA_RTLD relocation. Presumably the rest
3304 of them follow immediately after.... */
3305 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
3306 {
3307 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3308 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3309 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
3310 break;
3311 }
3312 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
3313
eea6121a 3314 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
3315 plt_chunks =
3316 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
3317
3318 for (chunk = 0; chunk < plt_chunks; chunk++)
3319 {
3320 int chunk_entries = 0;
3321
f0e6fdb2 3322 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
3323 BFD_ASSERT (sgotplt != NULL);
3324
3325 /* Emit special RTLD relocations for the first two entries in
3326 each chunk of the .got.plt section. */
3327
3328 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3329 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3330 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3331 irela.r_offset = (sgotplt->output_section->vma
3332 + sgotplt->output_offset);
3333 irela.r_addend = 1; /* tell rtld to set value to resolver function */
3334 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3335 rtld_reloc += 1;
3336 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3337
3338 /* Next literal immediately follows the first. */
3339 loc += sizeof (Elf32_External_Rela);
3340 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3341 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3342 irela.r_offset = (sgotplt->output_section->vma
3343 + sgotplt->output_offset + 4);
3344 /* Tell rtld to set value to object's link map. */
3345 irela.r_addend = 2;
3346 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3347 rtld_reloc += 1;
3348 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3349
3350 /* Fill in the literal table. */
3351 if (chunk < plt_chunks - 1)
3352 chunk_entries = PLT_ENTRIES_PER_CHUNK;
3353 else
3354 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
3355
eea6121a 3356 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
e0001a05
NC
3357 bfd_put_32 (output_bfd,
3358 sgotplt->output_section->vma + sgotplt->output_offset,
3359 spltlittbl->contents + (chunk * 8) + 0);
3360 bfd_put_32 (output_bfd,
3361 8 + (chunk_entries * 4),
3362 spltlittbl->contents + (chunk * 8) + 4);
3363 }
3364
3365 /* All the dynamic relocations have been emitted at this point.
3366 Make sure the relocation sections are the correct size. */
eea6121a
AM
3367 if (srelgot->size != (sizeof (Elf32_External_Rela)
3368 * srelgot->reloc_count)
3369 || srelplt->size != (sizeof (Elf32_External_Rela)
3370 * srelplt->reloc_count))
e0001a05
NC
3371 abort ();
3372
3373 /* The .xt.lit.plt section has just been modified. This must
3374 happen before the code below which combines adjacent literal
3375 table entries, and the .xt.lit.plt contents have to be forced to
3376 the output here. */
3377 if (! bfd_set_section_contents (output_bfd,
3378 spltlittbl->output_section,
3379 spltlittbl->contents,
3380 spltlittbl->output_offset,
eea6121a 3381 spltlittbl->size))
e0001a05
NC
3382 return FALSE;
3383 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
3384 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
3385 }
3386
3387 /* Combine adjacent literal table entries. */
0e1862bb 3388 BFD_ASSERT (! bfd_link_relocatable (info));
e901de89 3389 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
f0e6fdb2 3390 sgotloc = htab->sgotloc;
d9ab3f29
BW
3391 BFD_ASSERT (sgotloc);
3392 if (sxtlit)
3393 {
3394 num_xtlit_entries =
3395 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
3396 if (num_xtlit_entries < 0)
3397 return FALSE;
3398 }
e0001a05
NC
3399
3400 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 3401 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
e0001a05
NC
3402 for (; dyncon < dynconend; dyncon++)
3403 {
3404 Elf_Internal_Dyn dyn;
e0001a05
NC
3405
3406 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3407
3408 switch (dyn.d_tag)
3409 {
3410 default:
3411 break;
3412
3413 case DT_XTENSA_GOT_LOC_SZ:
e0001a05
NC
3414 dyn.d_un.d_val = num_xtlit_entries;
3415 break;
3416
3417 case DT_XTENSA_GOT_LOC_OFF:
4ade44b7
AM
3418 dyn.d_un.d_ptr = (htab->sgotloc->output_section->vma
3419 + htab->sgotloc->output_offset);
f0e6fdb2
BW
3420 break;
3421
e0001a05 3422 case DT_PLTGOT:
4ade44b7
AM
3423 dyn.d_un.d_ptr = (htab->sgot->output_section->vma
3424 + htab->sgot->output_offset);
f0e6fdb2
BW
3425 break;
3426
e0001a05 3427 case DT_JMPREL:
4ade44b7
AM
3428 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
3429 + htab->srelplt->output_offset);
e0001a05
NC
3430 break;
3431
3432 case DT_PLTRELSZ:
4ade44b7 3433 dyn.d_un.d_val = htab->srelplt->size;
e0001a05
NC
3434 break;
3435
3436 case DT_RELASZ:
3437 /* Adjust RELASZ to not include JMPREL. This matches what
3438 glibc expects and what is done for several other ELF
3439 targets (e.g., i386, alpha), but the "correct" behavior
3440 seems to be unresolved. Since the linker script arranges
3441 for .rela.plt to follow all other relocation sections, we
3442 don't have to worry about changing the DT_RELA entry. */
f0e6fdb2 3443 if (htab->srelplt)
4ade44b7 3444 dyn.d_un.d_val -= htab->srelplt->size;
e0001a05
NC
3445 break;
3446 }
3447
3448 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3449 }
3450
3451 return TRUE;
3452}
3453
3454\f
3455/* Functions for dealing with the e_flags field. */
3456
3457/* Merge backend specific data from an object file to the output
3458 object file when linking. */
3459
3460static bfd_boolean
7fa3d080 3461elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
e0001a05
NC
3462{
3463 unsigned out_mach, in_mach;
3464 flagword out_flag, in_flag;
3465
cc643b88 3466 /* Check if we have the same endianness. */
e0001a05
NC
3467 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
3468 return FALSE;
3469
3470 /* Don't even pretend to support mixed-format linking. */
3471 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3472 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3473 return FALSE;
3474
3475 out_flag = elf_elfheader (obfd)->e_flags;
3476 in_flag = elf_elfheader (ibfd)->e_flags;
3477
3478 out_mach = out_flag & EF_XTENSA_MACH;
3479 in_mach = in_flag & EF_XTENSA_MACH;
43cd72b9 3480 if (out_mach != in_mach)
e0001a05
NC
3481 {
3482 (*_bfd_error_handler)
43cd72b9 3483 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
d003868e 3484 ibfd, out_mach, in_mach);
e0001a05
NC
3485 bfd_set_error (bfd_error_wrong_format);
3486 return FALSE;
3487 }
3488
3489 if (! elf_flags_init (obfd))
3490 {
3491 elf_flags_init (obfd) = TRUE;
3492 elf_elfheader (obfd)->e_flags = in_flag;
43cd72b9 3493
e0001a05
NC
3494 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
3495 && bfd_get_arch_info (obfd)->the_default)
3496 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
3497 bfd_get_mach (ibfd));
43cd72b9 3498
e0001a05
NC
3499 return TRUE;
3500 }
3501
68ffbac6 3502 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
43cd72b9 3503 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
e0001a05 3504
68ffbac6 3505 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
43cd72b9 3506 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
e0001a05
NC
3507
3508 return TRUE;
3509}
3510
3511
3512static bfd_boolean
7fa3d080 3513elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
e0001a05
NC
3514{
3515 BFD_ASSERT (!elf_flags_init (abfd)
3516 || elf_elfheader (abfd)->e_flags == flags);
3517
3518 elf_elfheader (abfd)->e_flags |= flags;
3519 elf_flags_init (abfd) = TRUE;
3520
3521 return TRUE;
3522}
3523
3524
e0001a05 3525static bfd_boolean
7fa3d080 3526elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
e0001a05
NC
3527{
3528 FILE *f = (FILE *) farg;
3529 flagword e_flags = elf_elfheader (abfd)->e_flags;
3530
3531 fprintf (f, "\nXtensa header:\n");
43cd72b9 3532 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
e0001a05
NC
3533 fprintf (f, "\nMachine = Base\n");
3534 else
3535 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
3536
3537 fprintf (f, "Insn tables = %s\n",
3538 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
3539
3540 fprintf (f, "Literal tables = %s\n",
3541 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
3542
3543 return _bfd_elf_print_private_bfd_data (abfd, farg);
3544}
3545
3546
3547/* Set the right machine number for an Xtensa ELF file. */
3548
3549static bfd_boolean
7fa3d080 3550elf_xtensa_object_p (bfd *abfd)
e0001a05
NC
3551{
3552 int mach;
3553 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3554
3555 switch (arch)
3556 {
3557 case E_XTENSA_MACH:
3558 mach = bfd_mach_xtensa;
3559 break;
3560 default:
3561 return FALSE;
3562 }
3563
3564 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
3565 return TRUE;
3566}
3567
3568
3569/* The final processing done just before writing out an Xtensa ELF object
3570 file. This gets the Xtensa architecture right based on the machine
3571 number. */
3572
3573static void
7fa3d080
BW
3574elf_xtensa_final_write_processing (bfd *abfd,
3575 bfd_boolean linker ATTRIBUTE_UNUSED)
e0001a05
NC
3576{
3577 int mach;
3578 unsigned long val;
3579
3580 switch (mach = bfd_get_mach (abfd))
3581 {
3582 case bfd_mach_xtensa:
3583 val = E_XTENSA_MACH;
3584 break;
3585 default:
3586 return;
3587 }
3588
3589 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
3590 elf_elfheader (abfd)->e_flags |= val;
3591}
3592
3593
3594static enum elf_reloc_type_class
7e612e98
AM
3595elf_xtensa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
3596 const asection *rel_sec ATTRIBUTE_UNUSED,
3597 const Elf_Internal_Rela *rela)
e0001a05
NC
3598{
3599 switch ((int) ELF32_R_TYPE (rela->r_info))
3600 {
3601 case R_XTENSA_RELATIVE:
3602 return reloc_class_relative;
3603 case R_XTENSA_JMP_SLOT:
3604 return reloc_class_plt;
3605 default:
3606 return reloc_class_normal;
3607 }
3608}
3609
3610\f
3611static bfd_boolean
7fa3d080
BW
3612elf_xtensa_discard_info_for_section (bfd *abfd,
3613 struct elf_reloc_cookie *cookie,
3614 struct bfd_link_info *info,
3615 asection *sec)
e0001a05
NC
3616{
3617 bfd_byte *contents;
e0001a05 3618 bfd_vma offset, actual_offset;
1d25768e
BW
3619 bfd_size_type removed_bytes = 0;
3620 bfd_size_type entry_size;
e0001a05
NC
3621
3622 if (sec->output_section
3623 && bfd_is_abs_section (sec->output_section))
3624 return FALSE;
3625
1d25768e
BW
3626 if (xtensa_is_proptable_section (sec))
3627 entry_size = 12;
3628 else
3629 entry_size = 8;
3630
a3ef2d63 3631 if (sec->size == 0 || sec->size % entry_size != 0)
1d25768e
BW
3632 return FALSE;
3633
e0001a05
NC
3634 contents = retrieve_contents (abfd, sec, info->keep_memory);
3635 if (!contents)
3636 return FALSE;
3637
3638 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
3639 if (!cookie->rels)
3640 {
3641 release_contents (sec, contents);
3642 return FALSE;
3643 }
3644
1d25768e
BW
3645 /* Sort the relocations. They should already be in order when
3646 relaxation is enabled, but it might not be. */
3647 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
3648 internal_reloc_compare);
3649
e0001a05
NC
3650 cookie->rel = cookie->rels;
3651 cookie->relend = cookie->rels + sec->reloc_count;
3652
a3ef2d63 3653 for (offset = 0; offset < sec->size; offset += entry_size)
e0001a05
NC
3654 {
3655 actual_offset = offset - removed_bytes;
3656
3657 /* The ...symbol_deleted_p function will skip over relocs but it
3658 won't adjust their offsets, so do that here. */
3659 while (cookie->rel < cookie->relend
3660 && cookie->rel->r_offset < offset)
3661 {
3662 cookie->rel->r_offset -= removed_bytes;
3663 cookie->rel++;
3664 }
3665
3666 while (cookie->rel < cookie->relend
3667 && cookie->rel->r_offset == offset)
3668 {
c152c796 3669 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
e0001a05
NC
3670 {
3671 /* Remove the table entry. (If the reloc type is NONE, then
3672 the entry has already been merged with another and deleted
3673 during relaxation.) */
3674 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
3675 {
3676 /* Shift the contents up. */
a3ef2d63 3677 if (offset + entry_size < sec->size)
e0001a05 3678 memmove (&contents[actual_offset],
1d25768e 3679 &contents[actual_offset + entry_size],
a3ef2d63 3680 sec->size - offset - entry_size);
1d25768e 3681 removed_bytes += entry_size;
e0001a05
NC
3682 }
3683
3684 /* Remove this relocation. */
3685 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3686 }
3687
3688 /* Adjust the relocation offset for previous removals. This
3689 should not be done before calling ...symbol_deleted_p
3690 because it might mess up the offset comparisons there.
3691 Make sure the offset doesn't underflow in the case where
3692 the first entry is removed. */
3693 if (cookie->rel->r_offset >= removed_bytes)
3694 cookie->rel->r_offset -= removed_bytes;
3695 else
3696 cookie->rel->r_offset = 0;
3697
3698 cookie->rel++;
3699 }
3700 }
3701
3702 if (removed_bytes != 0)
3703 {
3704 /* Adjust any remaining relocs (shouldn't be any). */
3705 for (; cookie->rel < cookie->relend; cookie->rel++)
3706 {
3707 if (cookie->rel->r_offset >= removed_bytes)
3708 cookie->rel->r_offset -= removed_bytes;
3709 else
3710 cookie->rel->r_offset = 0;
3711 }
3712
3713 /* Clear the removed bytes. */
a3ef2d63 3714 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
e0001a05
NC
3715
3716 pin_contents (sec, contents);
3717 pin_internal_relocs (sec, cookie->rels);
3718
eea6121a 3719 /* Shrink size. */
a3ef2d63
BW
3720 if (sec->rawsize == 0)
3721 sec->rawsize = sec->size;
3722 sec->size -= removed_bytes;
b536dc1e
BW
3723
3724 if (xtensa_is_littable_section (sec))
3725 {
f0e6fdb2
BW
3726 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
3727 if (sgotloc)
3728 sgotloc->size -= removed_bytes;
b536dc1e 3729 }
e0001a05
NC
3730 }
3731 else
3732 {
3733 release_contents (sec, contents);
3734 release_internal_relocs (sec, cookie->rels);
3735 }
3736
3737 return (removed_bytes != 0);
3738}
3739
3740
3741static bfd_boolean
7fa3d080
BW
3742elf_xtensa_discard_info (bfd *abfd,
3743 struct elf_reloc_cookie *cookie,
3744 struct bfd_link_info *info)
e0001a05
NC
3745{
3746 asection *sec;
3747 bfd_boolean changed = FALSE;
3748
3749 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3750 {
3751 if (xtensa_is_property_section (sec))
3752 {
3753 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
3754 changed = TRUE;
3755 }
3756 }
3757
3758 return changed;
3759}
3760
3761
3762static bfd_boolean
7fa3d080 3763elf_xtensa_ignore_discarded_relocs (asection *sec)
e0001a05
NC
3764{
3765 return xtensa_is_property_section (sec);
3766}
3767
a77dc2cc
BW
3768
3769static unsigned int
3770elf_xtensa_action_discarded (asection *sec)
3771{
3772 if (strcmp (".xt_except_table", sec->name) == 0)
3773 return 0;
3774
3775 if (strcmp (".xt_except_desc", sec->name) == 0)
3776 return 0;
3777
3778 return _bfd_elf_default_action_discarded (sec);
3779}
3780
e0001a05
NC
3781\f
3782/* Support for core dump NOTE sections. */
3783
3784static bfd_boolean
7fa3d080 3785elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
3786{
3787 int offset;
eea6121a 3788 unsigned int size;
e0001a05
NC
3789
3790 /* The size for Xtensa is variable, so don't try to recognize the format
3791 based on the size. Just assume this is GNU/Linux. */
3792
3793 /* pr_cursig */
228e534f 3794 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
e0001a05
NC
3795
3796 /* pr_pid */
228e534f 3797 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
e0001a05
NC
3798
3799 /* pr_reg */
3800 offset = 72;
eea6121a 3801 size = note->descsz - offset - 4;
e0001a05
NC
3802
3803 /* Make a ".reg/999" section. */
3804 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
eea6121a 3805 size, note->descpos + offset);
e0001a05
NC
3806}
3807
3808
3809static bfd_boolean
7fa3d080 3810elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
3811{
3812 switch (note->descsz)
3813 {
3814 default:
3815 return FALSE;
3816
3817 case 128: /* GNU/Linux elf_prpsinfo */
228e534f 3818 elf_tdata (abfd)->core->program
e0001a05 3819 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
228e534f 3820 elf_tdata (abfd)->core->command
e0001a05
NC
3821 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3822 }
3823
3824 /* Note that for some reason, a spurious space is tacked
3825 onto the end of the args in some (at least one anyway)
3826 implementations, so strip it off if it exists. */
3827
3828 {
228e534f 3829 char *command = elf_tdata (abfd)->core->command;
e0001a05
NC
3830 int n = strlen (command);
3831
3832 if (0 < n && command[n - 1] == ' ')
3833 command[n - 1] = '\0';
3834 }
3835
3836 return TRUE;
3837}
3838
3839\f
3840/* Generic Xtensa configurability stuff. */
3841
3842static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3843static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3844static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3845static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3846static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3847static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3848static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3849static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3850
3851static void
7fa3d080 3852init_call_opcodes (void)
e0001a05
NC
3853{
3854 if (callx0_op == XTENSA_UNDEFINED)
3855 {
3856 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3857 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3858 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3859 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3860 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3861 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3862 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3863 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3864 }
3865}
3866
3867
3868static bfd_boolean
7fa3d080 3869is_indirect_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3870{
3871 init_call_opcodes ();
3872 return (opcode == callx0_op
3873 || opcode == callx4_op
3874 || opcode == callx8_op
3875 || opcode == callx12_op);
3876}
3877
3878
3879static bfd_boolean
7fa3d080 3880is_direct_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3881{
3882 init_call_opcodes ();
3883 return (opcode == call0_op
3884 || opcode == call4_op
3885 || opcode == call8_op
3886 || opcode == call12_op);
3887}
3888
3889
3890static bfd_boolean
7fa3d080 3891is_windowed_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3892{
3893 init_call_opcodes ();
3894 return (opcode == call4_op
3895 || opcode == call8_op
3896 || opcode == call12_op
3897 || opcode == callx4_op
3898 || opcode == callx8_op
3899 || opcode == callx12_op);
3900}
3901
3902
28dbbc02
BW
3903static bfd_boolean
3904get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst)
3905{
3906 unsigned dst = (unsigned) -1;
3907
3908 init_call_opcodes ();
3909 if (opcode == callx0_op)
3910 dst = 0;
3911 else if (opcode == callx4_op)
3912 dst = 4;
3913 else if (opcode == callx8_op)
3914 dst = 8;
3915 else if (opcode == callx12_op)
3916 dst = 12;
3917
3918 if (dst == (unsigned) -1)
3919 return FALSE;
3920
3921 *pdst = dst;
3922 return TRUE;
3923}
3924
3925
43cd72b9
BW
3926static xtensa_opcode
3927get_const16_opcode (void)
3928{
3929 static bfd_boolean done_lookup = FALSE;
3930 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3931 if (!done_lookup)
3932 {
3933 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3934 done_lookup = TRUE;
3935 }
3936 return const16_opcode;
3937}
3938
3939
e0001a05
NC
3940static xtensa_opcode
3941get_l32r_opcode (void)
3942{
3943 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
43cd72b9
BW
3944 static bfd_boolean done_lookup = FALSE;
3945
3946 if (!done_lookup)
e0001a05
NC
3947 {
3948 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
43cd72b9 3949 done_lookup = TRUE;
e0001a05
NC
3950 }
3951 return l32r_opcode;
3952}
3953
3954
3955static bfd_vma
7fa3d080 3956l32r_offset (bfd_vma addr, bfd_vma pc)
e0001a05
NC
3957{
3958 bfd_vma offset;
3959
3960 offset = addr - ((pc+3) & -4);
3961 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3962 offset = (signed int) offset >> 2;
3963 BFD_ASSERT ((signed int) offset >> 16 == -1);
3964 return offset;
3965}
3966
3967
e0001a05 3968static int
7fa3d080 3969get_relocation_opnd (xtensa_opcode opcode, int r_type)
e0001a05 3970{
43cd72b9
BW
3971 xtensa_isa isa = xtensa_default_isa;
3972 int last_immed, last_opnd, opi;
3973
3974 if (opcode == XTENSA_UNDEFINED)
3975 return XTENSA_UNDEFINED;
3976
3977 /* Find the last visible PC-relative immediate operand for the opcode.
3978 If there are no PC-relative immediates, then choose the last visible
3979 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3980 last_immed = XTENSA_UNDEFINED;
3981 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3982 for (opi = last_opnd - 1; opi >= 0; opi--)
3983 {
3984 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3985 continue;
3986 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3987 {
3988 last_immed = opi;
3989 break;
3990 }
3991 if (last_immed == XTENSA_UNDEFINED
3992 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3993 last_immed = opi;
3994 }
3995 if (last_immed < 0)
3996 return XTENSA_UNDEFINED;
3997
3998 /* If the operand number was specified in an old-style relocation,
3999 check for consistency with the operand computed above. */
4000 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
4001 {
4002 int reloc_opnd = r_type - R_XTENSA_OP0;
4003 if (reloc_opnd != last_immed)
4004 return XTENSA_UNDEFINED;
4005 }
4006
4007 return last_immed;
4008}
4009
4010
4011int
7fa3d080 4012get_relocation_slot (int r_type)
43cd72b9
BW
4013{
4014 switch (r_type)
4015 {
4016 case R_XTENSA_OP0:
4017 case R_XTENSA_OP1:
4018 case R_XTENSA_OP2:
4019 return 0;
4020
4021 default:
4022 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4023 return r_type - R_XTENSA_SLOT0_OP;
4024 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4025 return r_type - R_XTENSA_SLOT0_ALT;
4026 break;
4027 }
4028
4029 return XTENSA_UNDEFINED;
e0001a05
NC
4030}
4031
4032
4033/* Get the opcode for a relocation. */
4034
4035static xtensa_opcode
7fa3d080
BW
4036get_relocation_opcode (bfd *abfd,
4037 asection *sec,
4038 bfd_byte *contents,
4039 Elf_Internal_Rela *irel)
e0001a05
NC
4040{
4041 static xtensa_insnbuf ibuff = NULL;
43cd72b9 4042 static xtensa_insnbuf sbuff = NULL;
e0001a05 4043 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
4044 xtensa_format fmt;
4045 int slot;
e0001a05
NC
4046
4047 if (contents == NULL)
4048 return XTENSA_UNDEFINED;
4049
43cd72b9 4050 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
e0001a05
NC
4051 return XTENSA_UNDEFINED;
4052
4053 if (ibuff == NULL)
43cd72b9
BW
4054 {
4055 ibuff = xtensa_insnbuf_alloc (isa);
4056 sbuff = xtensa_insnbuf_alloc (isa);
4057 }
4058
e0001a05 4059 /* Decode the instruction. */
43cd72b9
BW
4060 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
4061 sec->size - irel->r_offset);
4062 fmt = xtensa_format_decode (isa, ibuff);
4063 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
4064 if (slot == XTENSA_UNDEFINED)
4065 return XTENSA_UNDEFINED;
4066 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
4067 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
e0001a05
NC
4068}
4069
4070
4071bfd_boolean
7fa3d080
BW
4072is_l32r_relocation (bfd *abfd,
4073 asection *sec,
4074 bfd_byte *contents,
4075 Elf_Internal_Rela *irel)
e0001a05
NC
4076{
4077 xtensa_opcode opcode;
43cd72b9 4078 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
e0001a05 4079 return FALSE;
43cd72b9 4080 opcode = get_relocation_opcode (abfd, sec, contents, irel);
e0001a05
NC
4081 return (opcode == get_l32r_opcode ());
4082}
4083
e0001a05 4084
43cd72b9 4085static bfd_size_type
7fa3d080
BW
4086get_asm_simplify_size (bfd_byte *contents,
4087 bfd_size_type content_len,
4088 bfd_size_type offset)
e0001a05 4089{
43cd72b9 4090 bfd_size_type insnlen, size = 0;
e0001a05 4091
43cd72b9
BW
4092 /* Decode the size of the next two instructions. */
4093 insnlen = insn_decode_len (contents, content_len, offset);
4094 if (insnlen == 0)
4095 return 0;
e0001a05 4096
43cd72b9 4097 size += insnlen;
68ffbac6 4098
43cd72b9
BW
4099 insnlen = insn_decode_len (contents, content_len, offset + size);
4100 if (insnlen == 0)
4101 return 0;
e0001a05 4102
43cd72b9
BW
4103 size += insnlen;
4104 return size;
4105}
e0001a05 4106
43cd72b9
BW
4107
4108bfd_boolean
7fa3d080 4109is_alt_relocation (int r_type)
43cd72b9
BW
4110{
4111 return (r_type >= R_XTENSA_SLOT0_ALT
4112 && r_type <= R_XTENSA_SLOT14_ALT);
e0001a05
NC
4113}
4114
4115
43cd72b9 4116bfd_boolean
7fa3d080 4117is_operand_relocation (int r_type)
e0001a05 4118{
43cd72b9
BW
4119 switch (r_type)
4120 {
4121 case R_XTENSA_OP0:
4122 case R_XTENSA_OP1:
4123 case R_XTENSA_OP2:
4124 return TRUE;
e0001a05 4125
43cd72b9
BW
4126 default:
4127 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4128 return TRUE;
4129 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4130 return TRUE;
4131 break;
4132 }
e0001a05 4133
43cd72b9 4134 return FALSE;
e0001a05
NC
4135}
4136
68ffbac6 4137
43cd72b9 4138#define MIN_INSN_LENGTH 2
e0001a05 4139
43cd72b9
BW
4140/* Return 0 if it fails to decode. */
4141
4142bfd_size_type
7fa3d080
BW
4143insn_decode_len (bfd_byte *contents,
4144 bfd_size_type content_len,
4145 bfd_size_type offset)
e0001a05 4146{
43cd72b9
BW
4147 int insn_len;
4148 xtensa_isa isa = xtensa_default_isa;
4149 xtensa_format fmt;
4150 static xtensa_insnbuf ibuff = NULL;
e0001a05 4151
43cd72b9
BW
4152 if (offset + MIN_INSN_LENGTH > content_len)
4153 return 0;
e0001a05 4154
43cd72b9
BW
4155 if (ibuff == NULL)
4156 ibuff = xtensa_insnbuf_alloc (isa);
4157 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4158 content_len - offset);
4159 fmt = xtensa_format_decode (isa, ibuff);
4160 if (fmt == XTENSA_UNDEFINED)
4161 return 0;
4162 insn_len = xtensa_format_length (isa, fmt);
4163 if (insn_len == XTENSA_UNDEFINED)
4164 return 0;
4165 return insn_len;
e0001a05
NC
4166}
4167
4168
43cd72b9
BW
4169/* Decode the opcode for a single slot instruction.
4170 Return 0 if it fails to decode or the instruction is multi-slot. */
e0001a05 4171
43cd72b9 4172xtensa_opcode
7fa3d080
BW
4173insn_decode_opcode (bfd_byte *contents,
4174 bfd_size_type content_len,
4175 bfd_size_type offset,
4176 int slot)
e0001a05 4177{
e0001a05 4178 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
4179 xtensa_format fmt;
4180 static xtensa_insnbuf insnbuf = NULL;
4181 static xtensa_insnbuf slotbuf = NULL;
4182
4183 if (offset + MIN_INSN_LENGTH > content_len)
e0001a05
NC
4184 return XTENSA_UNDEFINED;
4185
4186 if (insnbuf == NULL)
43cd72b9
BW
4187 {
4188 insnbuf = xtensa_insnbuf_alloc (isa);
4189 slotbuf = xtensa_insnbuf_alloc (isa);
4190 }
4191
4192 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4193 content_len - offset);
4194 fmt = xtensa_format_decode (isa, insnbuf);
4195 if (fmt == XTENSA_UNDEFINED)
e0001a05 4196 return XTENSA_UNDEFINED;
43cd72b9
BW
4197
4198 if (slot >= xtensa_format_num_slots (isa, fmt))
e0001a05 4199 return XTENSA_UNDEFINED;
e0001a05 4200
43cd72b9
BW
4201 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4202 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4203}
e0001a05 4204
e0001a05 4205
43cd72b9
BW
4206/* The offset is the offset in the contents.
4207 The address is the address of that offset. */
e0001a05 4208
43cd72b9 4209static bfd_boolean
7fa3d080
BW
4210check_branch_target_aligned (bfd_byte *contents,
4211 bfd_size_type content_length,
4212 bfd_vma offset,
4213 bfd_vma address)
43cd72b9
BW
4214{
4215 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
4216 if (insn_len == 0)
4217 return FALSE;
4218 return check_branch_target_aligned_address (address, insn_len);
4219}
e0001a05 4220
e0001a05 4221
43cd72b9 4222static bfd_boolean
7fa3d080
BW
4223check_loop_aligned (bfd_byte *contents,
4224 bfd_size_type content_length,
4225 bfd_vma offset,
4226 bfd_vma address)
e0001a05 4227{
43cd72b9 4228 bfd_size_type loop_len, insn_len;
64b607e6 4229 xtensa_opcode opcode;
e0001a05 4230
64b607e6
BW
4231 opcode = insn_decode_opcode (contents, content_length, offset, 0);
4232 if (opcode == XTENSA_UNDEFINED
4233 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
4234 {
4235 BFD_ASSERT (FALSE);
4236 return FALSE;
4237 }
68ffbac6 4238
43cd72b9 4239 loop_len = insn_decode_len (contents, content_length, offset);
43cd72b9 4240 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
64b607e6
BW
4241 if (loop_len == 0 || insn_len == 0)
4242 {
4243 BFD_ASSERT (FALSE);
4244 return FALSE;
4245 }
e0001a05 4246
43cd72b9
BW
4247 return check_branch_target_aligned_address (address + loop_len, insn_len);
4248}
e0001a05 4249
e0001a05
NC
4250
4251static bfd_boolean
7fa3d080 4252check_branch_target_aligned_address (bfd_vma addr, int len)
e0001a05 4253{
43cd72b9
BW
4254 if (len == 8)
4255 return (addr % 8 == 0);
4256 return ((addr >> 2) == ((addr + len - 1) >> 2));
e0001a05
NC
4257}
4258
43cd72b9
BW
4259\f
4260/* Instruction widening and narrowing. */
e0001a05 4261
7fa3d080
BW
4262/* When FLIX is available we need to access certain instructions only
4263 when they are 16-bit or 24-bit instructions. This table caches
4264 information about such instructions by walking through all the
4265 opcodes and finding the smallest single-slot format into which each
4266 can be encoded. */
4267
4268static xtensa_format *op_single_fmt_table = NULL;
e0001a05
NC
4269
4270
7fa3d080
BW
4271static void
4272init_op_single_format_table (void)
e0001a05 4273{
7fa3d080
BW
4274 xtensa_isa isa = xtensa_default_isa;
4275 xtensa_insnbuf ibuf;
4276 xtensa_opcode opcode;
4277 xtensa_format fmt;
4278 int num_opcodes;
4279
4280 if (op_single_fmt_table)
4281 return;
4282
4283 ibuf = xtensa_insnbuf_alloc (isa);
4284 num_opcodes = xtensa_isa_num_opcodes (isa);
4285
4286 op_single_fmt_table = (xtensa_format *)
4287 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
4288 for (opcode = 0; opcode < num_opcodes; opcode++)
4289 {
4290 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
4291 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
4292 {
4293 if (xtensa_format_num_slots (isa, fmt) == 1
4294 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
4295 {
4296 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
4297 int fmt_length = xtensa_format_length (isa, fmt);
4298 if (old_fmt == XTENSA_UNDEFINED
4299 || fmt_length < xtensa_format_length (isa, old_fmt))
4300 op_single_fmt_table[opcode] = fmt;
4301 }
4302 }
4303 }
4304 xtensa_insnbuf_free (isa, ibuf);
4305}
4306
4307
4308static xtensa_format
4309get_single_format (xtensa_opcode opcode)
4310{
4311 init_op_single_format_table ();
4312 return op_single_fmt_table[opcode];
4313}
e0001a05 4314
e0001a05 4315
43cd72b9
BW
4316/* For the set of narrowable instructions we do NOT include the
4317 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
4318 involved during linker relaxation that may require these to
4319 re-expand in some conditions. Also, the narrowing "or" -> mov.n
4320 requires special case code to ensure it only works when op1 == op2. */
e0001a05 4321
7fa3d080
BW
4322struct string_pair
4323{
4324 const char *wide;
4325 const char *narrow;
4326};
4327
43cd72b9 4328struct string_pair narrowable[] =
e0001a05 4329{
43cd72b9
BW
4330 { "add", "add.n" },
4331 { "addi", "addi.n" },
4332 { "addmi", "addi.n" },
4333 { "l32i", "l32i.n" },
4334 { "movi", "movi.n" },
4335 { "ret", "ret.n" },
4336 { "retw", "retw.n" },
4337 { "s32i", "s32i.n" },
4338 { "or", "mov.n" } /* special case only when op1 == op2 */
4339};
e0001a05 4340
43cd72b9 4341struct string_pair widenable[] =
e0001a05 4342{
43cd72b9
BW
4343 { "add", "add.n" },
4344 { "addi", "addi.n" },
4345 { "addmi", "addi.n" },
4346 { "beqz", "beqz.n" },
4347 { "bnez", "bnez.n" },
4348 { "l32i", "l32i.n" },
4349 { "movi", "movi.n" },
4350 { "ret", "ret.n" },
4351 { "retw", "retw.n" },
4352 { "s32i", "s32i.n" },
4353 { "or", "mov.n" } /* special case only when op1 == op2 */
4354};
e0001a05
NC
4355
4356
64b607e6
BW
4357/* Check if an instruction can be "narrowed", i.e., changed from a standard
4358 3-byte instruction to a 2-byte "density" instruction. If it is valid,
4359 return the instruction buffer holding the narrow instruction. Otherwise,
4360 return 0. The set of valid narrowing are specified by a string table
43cd72b9
BW
4361 but require some special case operand checks in some cases. */
4362
64b607e6
BW
4363static xtensa_insnbuf
4364can_narrow_instruction (xtensa_insnbuf slotbuf,
4365 xtensa_format fmt,
4366 xtensa_opcode opcode)
e0001a05 4367{
43cd72b9 4368 xtensa_isa isa = xtensa_default_isa;
64b607e6
BW
4369 xtensa_format o_fmt;
4370 unsigned opi;
e0001a05 4371
43cd72b9
BW
4372 static xtensa_insnbuf o_insnbuf = NULL;
4373 static xtensa_insnbuf o_slotbuf = NULL;
e0001a05 4374
64b607e6 4375 if (o_insnbuf == NULL)
43cd72b9 4376 {
43cd72b9
BW
4377 o_insnbuf = xtensa_insnbuf_alloc (isa);
4378 o_slotbuf = xtensa_insnbuf_alloc (isa);
4379 }
e0001a05 4380
64b607e6 4381 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
43cd72b9
BW
4382 {
4383 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
e0001a05 4384
43cd72b9
BW
4385 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
4386 {
4387 uint32 value, newval;
4388 int i, operand_count, o_operand_count;
4389 xtensa_opcode o_opcode;
e0001a05 4390
43cd72b9
BW
4391 /* Address does not matter in this case. We might need to
4392 fix it to handle branches/jumps. */
4393 bfd_vma self_address = 0;
e0001a05 4394
43cd72b9
BW
4395 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
4396 if (o_opcode == XTENSA_UNDEFINED)
64b607e6 4397 return 0;
43cd72b9
BW
4398 o_fmt = get_single_format (o_opcode);
4399 if (o_fmt == XTENSA_UNDEFINED)
64b607e6 4400 return 0;
e0001a05 4401
43cd72b9
BW
4402 if (xtensa_format_length (isa, fmt) != 3
4403 || xtensa_format_length (isa, o_fmt) != 2)
64b607e6 4404 return 0;
e0001a05 4405
43cd72b9
BW
4406 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4407 operand_count = xtensa_opcode_num_operands (isa, opcode);
4408 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
e0001a05 4409
43cd72b9 4410 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
64b607e6 4411 return 0;
e0001a05 4412
43cd72b9
BW
4413 if (!is_or)
4414 {
4415 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
64b607e6 4416 return 0;
43cd72b9
BW
4417 }
4418 else
4419 {
4420 uint32 rawval0, rawval1, rawval2;
e0001a05 4421
64b607e6
BW
4422 if (o_operand_count + 1 != operand_count
4423 || xtensa_operand_get_field (isa, opcode, 0,
4424 fmt, 0, slotbuf, &rawval0) != 0
4425 || xtensa_operand_get_field (isa, opcode, 1,
4426 fmt, 0, slotbuf, &rawval1) != 0
4427 || xtensa_operand_get_field (isa, opcode, 2,
4428 fmt, 0, slotbuf, &rawval2) != 0
4429 || rawval1 != rawval2
4430 || rawval0 == rawval1 /* it is a nop */)
4431 return 0;
43cd72b9 4432 }
e0001a05 4433
43cd72b9
BW
4434 for (i = 0; i < o_operand_count; ++i)
4435 {
4436 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
4437 slotbuf, &value)
4438 || xtensa_operand_decode (isa, opcode, i, &value))
64b607e6 4439 return 0;
e0001a05 4440
43cd72b9
BW
4441 /* PC-relative branches need adjustment, but
4442 the PC-rel operand will always have a relocation. */
4443 newval = value;
4444 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4445 self_address)
4446 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4447 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4448 o_slotbuf, newval))
64b607e6 4449 return 0;
43cd72b9 4450 }
e0001a05 4451
64b607e6
BW
4452 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4453 return 0;
e0001a05 4454
64b607e6 4455 return o_insnbuf;
43cd72b9
BW
4456 }
4457 }
64b607e6 4458 return 0;
43cd72b9 4459}
e0001a05 4460
e0001a05 4461
64b607e6
BW
4462/* Attempt to narrow an instruction. If the narrowing is valid, perform
4463 the action in-place directly into the contents and return TRUE. Otherwise,
4464 the return value is FALSE and the contents are not modified. */
e0001a05 4465
43cd72b9 4466static bfd_boolean
64b607e6
BW
4467narrow_instruction (bfd_byte *contents,
4468 bfd_size_type content_length,
4469 bfd_size_type offset)
e0001a05 4470{
43cd72b9 4471 xtensa_opcode opcode;
64b607e6 4472 bfd_size_type insn_len;
43cd72b9 4473 xtensa_isa isa = xtensa_default_isa;
64b607e6
BW
4474 xtensa_format fmt;
4475 xtensa_insnbuf o_insnbuf;
e0001a05 4476
43cd72b9
BW
4477 static xtensa_insnbuf insnbuf = NULL;
4478 static xtensa_insnbuf slotbuf = NULL;
e0001a05 4479
43cd72b9
BW
4480 if (insnbuf == NULL)
4481 {
4482 insnbuf = xtensa_insnbuf_alloc (isa);
4483 slotbuf = xtensa_insnbuf_alloc (isa);
43cd72b9 4484 }
e0001a05 4485
43cd72b9 4486 BFD_ASSERT (offset < content_length);
2c8c90bc 4487
43cd72b9 4488 if (content_length < 2)
e0001a05
NC
4489 return FALSE;
4490
64b607e6 4491 /* We will hand-code a few of these for a little while.
43cd72b9
BW
4492 These have all been specified in the assembler aleady. */
4493 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4494 content_length - offset);
4495 fmt = xtensa_format_decode (isa, insnbuf);
4496 if (xtensa_format_num_slots (isa, fmt) != 1)
e0001a05
NC
4497 return FALSE;
4498
43cd72b9 4499 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
e0001a05
NC
4500 return FALSE;
4501
43cd72b9
BW
4502 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4503 if (opcode == XTENSA_UNDEFINED)
e0001a05 4504 return FALSE;
43cd72b9
BW
4505 insn_len = xtensa_format_length (isa, fmt);
4506 if (insn_len > content_length)
4507 return FALSE;
4508
64b607e6
BW
4509 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
4510 if (o_insnbuf)
4511 {
4512 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4513 content_length - offset);
4514 return TRUE;
4515 }
4516
4517 return FALSE;
4518}
4519
4520
4521/* Check if an instruction can be "widened", i.e., changed from a 2-byte
4522 "density" instruction to a standard 3-byte instruction. If it is valid,
4523 return the instruction buffer holding the wide instruction. Otherwise,
4524 return 0. The set of valid widenings are specified by a string table
4525 but require some special case operand checks in some cases. */
4526
4527static xtensa_insnbuf
4528can_widen_instruction (xtensa_insnbuf slotbuf,
4529 xtensa_format fmt,
4530 xtensa_opcode opcode)
4531{
4532 xtensa_isa isa = xtensa_default_isa;
4533 xtensa_format o_fmt;
4534 unsigned opi;
4535
4536 static xtensa_insnbuf o_insnbuf = NULL;
4537 static xtensa_insnbuf o_slotbuf = NULL;
4538
4539 if (o_insnbuf == NULL)
4540 {
4541 o_insnbuf = xtensa_insnbuf_alloc (isa);
4542 o_slotbuf = xtensa_insnbuf_alloc (isa);
4543 }
4544
4545 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
e0001a05 4546 {
43cd72b9
BW
4547 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
4548 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
4549 || strcmp ("bnez", widenable[opi].wide) == 0);
e0001a05 4550
43cd72b9
BW
4551 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
4552 {
4553 uint32 value, newval;
4554 int i, operand_count, o_operand_count, check_operand_count;
4555 xtensa_opcode o_opcode;
e0001a05 4556
43cd72b9
BW
4557 /* Address does not matter in this case. We might need to fix it
4558 to handle branches/jumps. */
4559 bfd_vma self_address = 0;
e0001a05 4560
43cd72b9
BW
4561 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
4562 if (o_opcode == XTENSA_UNDEFINED)
64b607e6 4563 return 0;
43cd72b9
BW
4564 o_fmt = get_single_format (o_opcode);
4565 if (o_fmt == XTENSA_UNDEFINED)
64b607e6 4566 return 0;
e0001a05 4567
43cd72b9
BW
4568 if (xtensa_format_length (isa, fmt) != 2
4569 || xtensa_format_length (isa, o_fmt) != 3)
64b607e6 4570 return 0;
e0001a05 4571
43cd72b9
BW
4572 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4573 operand_count = xtensa_opcode_num_operands (isa, opcode);
4574 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4575 check_operand_count = o_operand_count;
e0001a05 4576
43cd72b9 4577 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
64b607e6 4578 return 0;
e0001a05 4579
43cd72b9
BW
4580 if (!is_or)
4581 {
4582 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
64b607e6 4583 return 0;
43cd72b9
BW
4584 }
4585 else
4586 {
4587 uint32 rawval0, rawval1;
4588
64b607e6
BW
4589 if (o_operand_count != operand_count + 1
4590 || xtensa_operand_get_field (isa, opcode, 0,
4591 fmt, 0, slotbuf, &rawval0) != 0
4592 || xtensa_operand_get_field (isa, opcode, 1,
4593 fmt, 0, slotbuf, &rawval1) != 0
4594 || rawval0 == rawval1 /* it is a nop */)
4595 return 0;
43cd72b9
BW
4596 }
4597 if (is_branch)
4598 check_operand_count--;
4599
64b607e6 4600 for (i = 0; i < check_operand_count; i++)
43cd72b9
BW
4601 {
4602 int new_i = i;
4603 if (is_or && i == o_operand_count - 1)
4604 new_i = i - 1;
4605 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
4606 slotbuf, &value)
4607 || xtensa_operand_decode (isa, opcode, new_i, &value))
64b607e6 4608 return 0;
43cd72b9
BW
4609
4610 /* PC-relative branches need adjustment, but
4611 the PC-rel operand will always have a relocation. */
4612 newval = value;
4613 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4614 self_address)
4615 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4616 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4617 o_slotbuf, newval))
64b607e6 4618 return 0;
43cd72b9
BW
4619 }
4620
4621 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
64b607e6 4622 return 0;
43cd72b9 4623
64b607e6 4624 return o_insnbuf;
43cd72b9
BW
4625 }
4626 }
64b607e6
BW
4627 return 0;
4628}
4629
68ffbac6 4630
64b607e6
BW
4631/* Attempt to widen an instruction. If the widening is valid, perform
4632 the action in-place directly into the contents and return TRUE. Otherwise,
4633 the return value is FALSE and the contents are not modified. */
4634
4635static bfd_boolean
4636widen_instruction (bfd_byte *contents,
4637 bfd_size_type content_length,
4638 bfd_size_type offset)
4639{
4640 xtensa_opcode opcode;
4641 bfd_size_type insn_len;
4642 xtensa_isa isa = xtensa_default_isa;
4643 xtensa_format fmt;
4644 xtensa_insnbuf o_insnbuf;
4645
4646 static xtensa_insnbuf insnbuf = NULL;
4647 static xtensa_insnbuf slotbuf = NULL;
4648
4649 if (insnbuf == NULL)
4650 {
4651 insnbuf = xtensa_insnbuf_alloc (isa);
4652 slotbuf = xtensa_insnbuf_alloc (isa);
4653 }
4654
4655 BFD_ASSERT (offset < content_length);
4656
4657 if (content_length < 2)
4658 return FALSE;
4659
4660 /* We will hand-code a few of these for a little while.
4661 These have all been specified in the assembler aleady. */
4662 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4663 content_length - offset);
4664 fmt = xtensa_format_decode (isa, insnbuf);
4665 if (xtensa_format_num_slots (isa, fmt) != 1)
4666 return FALSE;
4667
4668 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4669 return FALSE;
4670
4671 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4672 if (opcode == XTENSA_UNDEFINED)
4673 return FALSE;
4674 insn_len = xtensa_format_length (isa, fmt);
4675 if (insn_len > content_length)
4676 return FALSE;
4677
4678 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
4679 if (o_insnbuf)
4680 {
4681 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4682 content_length - offset);
4683 return TRUE;
4684 }
43cd72b9 4685 return FALSE;
e0001a05
NC
4686}
4687
43cd72b9
BW
4688\f
4689/* Code for transforming CALLs at link-time. */
e0001a05 4690
43cd72b9 4691static bfd_reloc_status_type
7fa3d080
BW
4692elf_xtensa_do_asm_simplify (bfd_byte *contents,
4693 bfd_vma address,
4694 bfd_vma content_length,
4695 char **error_message)
e0001a05 4696{
43cd72b9
BW
4697 static xtensa_insnbuf insnbuf = NULL;
4698 static xtensa_insnbuf slotbuf = NULL;
4699 xtensa_format core_format = XTENSA_UNDEFINED;
4700 xtensa_opcode opcode;
4701 xtensa_opcode direct_call_opcode;
4702 xtensa_isa isa = xtensa_default_isa;
4703 bfd_byte *chbuf = contents + address;
4704 int opn;
e0001a05 4705
43cd72b9 4706 if (insnbuf == NULL)
e0001a05 4707 {
43cd72b9
BW
4708 insnbuf = xtensa_insnbuf_alloc (isa);
4709 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 4710 }
e0001a05 4711
43cd72b9
BW
4712 if (content_length < address)
4713 {
4714 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4715 return bfd_reloc_other;
4716 }
e0001a05 4717
43cd72b9
BW
4718 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
4719 direct_call_opcode = swap_callx_for_call_opcode (opcode);
4720 if (direct_call_opcode == XTENSA_UNDEFINED)
4721 {
4722 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4723 return bfd_reloc_other;
4724 }
68ffbac6 4725
43cd72b9
BW
4726 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
4727 core_format = xtensa_format_lookup (isa, "x24");
4728 opcode = xtensa_opcode_lookup (isa, "or");
4729 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
68ffbac6 4730 for (opn = 0; opn < 3; opn++)
43cd72b9
BW
4731 {
4732 uint32 regno = 1;
4733 xtensa_operand_encode (isa, opcode, opn, &regno);
4734 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
4735 slotbuf, regno);
4736 }
4737 xtensa_format_encode (isa, core_format, insnbuf);
4738 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4739 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
e0001a05 4740
43cd72b9
BW
4741 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
4742 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
4743 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
e0001a05 4744
43cd72b9
BW
4745 xtensa_format_encode (isa, core_format, insnbuf);
4746 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4747 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
4748 content_length - address - 3);
e0001a05 4749
43cd72b9
BW
4750 return bfd_reloc_ok;
4751}
e0001a05 4752
e0001a05 4753
43cd72b9 4754static bfd_reloc_status_type
7fa3d080
BW
4755contract_asm_expansion (bfd_byte *contents,
4756 bfd_vma content_length,
4757 Elf_Internal_Rela *irel,
4758 char **error_message)
43cd72b9
BW
4759{
4760 bfd_reloc_status_type retval =
4761 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
4762 error_message);
e0001a05 4763
43cd72b9
BW
4764 if (retval != bfd_reloc_ok)
4765 return bfd_reloc_dangerous;
e0001a05 4766
43cd72b9
BW
4767 /* Update the irel->r_offset field so that the right immediate and
4768 the right instruction are modified during the relocation. */
4769 irel->r_offset += 3;
4770 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
4771 return bfd_reloc_ok;
4772}
e0001a05 4773
e0001a05 4774
43cd72b9 4775static xtensa_opcode
7fa3d080 4776swap_callx_for_call_opcode (xtensa_opcode opcode)
e0001a05 4777{
43cd72b9 4778 init_call_opcodes ();
e0001a05 4779
43cd72b9
BW
4780 if (opcode == callx0_op) return call0_op;
4781 if (opcode == callx4_op) return call4_op;
4782 if (opcode == callx8_op) return call8_op;
4783 if (opcode == callx12_op) return call12_op;
e0001a05 4784
43cd72b9
BW
4785 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
4786 return XTENSA_UNDEFINED;
4787}
e0001a05 4788
e0001a05 4789
43cd72b9
BW
4790/* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
4791 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
4792 If not, return XTENSA_UNDEFINED. */
e0001a05 4793
43cd72b9
BW
4794#define L32R_TARGET_REG_OPERAND 0
4795#define CONST16_TARGET_REG_OPERAND 0
4796#define CALLN_SOURCE_OPERAND 0
e0001a05 4797
68ffbac6 4798static xtensa_opcode
7fa3d080 4799get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
e0001a05 4800{
43cd72b9
BW
4801 static xtensa_insnbuf insnbuf = NULL;
4802 static xtensa_insnbuf slotbuf = NULL;
4803 xtensa_format fmt;
4804 xtensa_opcode opcode;
4805 xtensa_isa isa = xtensa_default_isa;
4806 uint32 regno, const16_regno, call_regno;
4807 int offset = 0;
e0001a05 4808
43cd72b9 4809 if (insnbuf == NULL)
e0001a05 4810 {
43cd72b9
BW
4811 insnbuf = xtensa_insnbuf_alloc (isa);
4812 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 4813 }
43cd72b9
BW
4814
4815 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4816 fmt = xtensa_format_decode (isa, insnbuf);
4817 if (fmt == XTENSA_UNDEFINED
4818 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4819 return XTENSA_UNDEFINED;
4820
4821 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4822 if (opcode == XTENSA_UNDEFINED)
4823 return XTENSA_UNDEFINED;
4824
4825 if (opcode == get_l32r_opcode ())
e0001a05 4826 {
43cd72b9
BW
4827 if (p_uses_l32r)
4828 *p_uses_l32r = TRUE;
4829 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4830 fmt, 0, slotbuf, &regno)
4831 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4832 &regno))
4833 return XTENSA_UNDEFINED;
e0001a05 4834 }
43cd72b9 4835 else if (opcode == get_const16_opcode ())
e0001a05 4836 {
43cd72b9
BW
4837 if (p_uses_l32r)
4838 *p_uses_l32r = FALSE;
4839 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4840 fmt, 0, slotbuf, &regno)
4841 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4842 &regno))
4843 return XTENSA_UNDEFINED;
4844
4845 /* Check that the next instruction is also CONST16. */
4846 offset += xtensa_format_length (isa, fmt);
4847 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4848 fmt = xtensa_format_decode (isa, insnbuf);
4849 if (fmt == XTENSA_UNDEFINED
4850 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4851 return XTENSA_UNDEFINED;
4852 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4853 if (opcode != get_const16_opcode ())
4854 return XTENSA_UNDEFINED;
4855
4856 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4857 fmt, 0, slotbuf, &const16_regno)
4858 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4859 &const16_regno)
4860 || const16_regno != regno)
4861 return XTENSA_UNDEFINED;
e0001a05 4862 }
43cd72b9
BW
4863 else
4864 return XTENSA_UNDEFINED;
e0001a05 4865
43cd72b9
BW
4866 /* Next instruction should be an CALLXn with operand 0 == regno. */
4867 offset += xtensa_format_length (isa, fmt);
4868 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4869 fmt = xtensa_format_decode (isa, insnbuf);
4870 if (fmt == XTENSA_UNDEFINED
4871 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4872 return XTENSA_UNDEFINED;
4873 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
68ffbac6 4874 if (opcode == XTENSA_UNDEFINED
43cd72b9
BW
4875 || !is_indirect_call_opcode (opcode))
4876 return XTENSA_UNDEFINED;
e0001a05 4877
43cd72b9
BW
4878 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4879 fmt, 0, slotbuf, &call_regno)
4880 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4881 &call_regno))
4882 return XTENSA_UNDEFINED;
e0001a05 4883
43cd72b9
BW
4884 if (call_regno != regno)
4885 return XTENSA_UNDEFINED;
e0001a05 4886
43cd72b9
BW
4887 return opcode;
4888}
e0001a05 4889
43cd72b9
BW
4890\f
4891/* Data structures used during relaxation. */
e0001a05 4892
43cd72b9 4893/* r_reloc: relocation values. */
e0001a05 4894
43cd72b9
BW
4895/* Through the relaxation process, we need to keep track of the values
4896 that will result from evaluating relocations. The standard ELF
4897 relocation structure is not sufficient for this purpose because we're
4898 operating on multiple input files at once, so we need to know which
4899 input file a relocation refers to. The r_reloc structure thus
4900 records both the input file (bfd) and ELF relocation.
e0001a05 4901
43cd72b9
BW
4902 For efficiency, an r_reloc also contains a "target_offset" field to
4903 cache the target-section-relative offset value that is represented by
4904 the relocation.
68ffbac6 4905
43cd72b9
BW
4906 The r_reloc also contains a virtual offset that allows multiple
4907 inserted literals to be placed at the same "address" with
4908 different offsets. */
e0001a05 4909
43cd72b9 4910typedef struct r_reloc_struct r_reloc;
e0001a05 4911
43cd72b9 4912struct r_reloc_struct
e0001a05 4913{
43cd72b9
BW
4914 bfd *abfd;
4915 Elf_Internal_Rela rela;
e0001a05 4916 bfd_vma target_offset;
43cd72b9 4917 bfd_vma virtual_offset;
e0001a05
NC
4918};
4919
e0001a05 4920
43cd72b9
BW
4921/* The r_reloc structure is included by value in literal_value, but not
4922 every literal_value has an associated relocation -- some are simple
4923 constants. In such cases, we set all the fields in the r_reloc
4924 struct to zero. The r_reloc_is_const function should be used to
4925 detect this case. */
e0001a05 4926
43cd72b9 4927static bfd_boolean
7fa3d080 4928r_reloc_is_const (const r_reloc *r_rel)
e0001a05 4929{
43cd72b9 4930 return (r_rel->abfd == NULL);
e0001a05
NC
4931}
4932
4933
43cd72b9 4934static bfd_vma
7fa3d080 4935r_reloc_get_target_offset (const r_reloc *r_rel)
e0001a05 4936{
43cd72b9
BW
4937 bfd_vma target_offset;
4938 unsigned long r_symndx;
e0001a05 4939
43cd72b9
BW
4940 BFD_ASSERT (!r_reloc_is_const (r_rel));
4941 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4942 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4943 return (target_offset + r_rel->rela.r_addend);
4944}
e0001a05 4945
e0001a05 4946
43cd72b9 4947static struct elf_link_hash_entry *
7fa3d080 4948r_reloc_get_hash_entry (const r_reloc *r_rel)
e0001a05 4949{
43cd72b9
BW
4950 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4951 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4952}
e0001a05 4953
43cd72b9
BW
4954
4955static asection *
7fa3d080 4956r_reloc_get_section (const r_reloc *r_rel)
43cd72b9
BW
4957{
4958 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4959 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4960}
e0001a05
NC
4961
4962
4963static bfd_boolean
7fa3d080 4964r_reloc_is_defined (const r_reloc *r_rel)
e0001a05 4965{
43cd72b9
BW
4966 asection *sec;
4967 if (r_rel == NULL)
e0001a05 4968 return FALSE;
e0001a05 4969
43cd72b9
BW
4970 sec = r_reloc_get_section (r_rel);
4971 if (sec == bfd_abs_section_ptr
4972 || sec == bfd_com_section_ptr
4973 || sec == bfd_und_section_ptr)
4974 return FALSE;
4975 return TRUE;
e0001a05
NC
4976}
4977
4978
7fa3d080
BW
4979static void
4980r_reloc_init (r_reloc *r_rel,
4981 bfd *abfd,
4982 Elf_Internal_Rela *irel,
4983 bfd_byte *contents,
4984 bfd_size_type content_length)
4985{
4986 int r_type;
4987 reloc_howto_type *howto;
4988
4989 if (irel)
4990 {
4991 r_rel->rela = *irel;
4992 r_rel->abfd = abfd;
4993 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4994 r_rel->virtual_offset = 0;
4995 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4996 howto = &elf_howto_table[r_type];
4997 if (howto->partial_inplace)
4998 {
4999 bfd_vma inplace_val;
5000 BFD_ASSERT (r_rel->rela.r_offset < content_length);
5001
5002 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
5003 r_rel->target_offset += inplace_val;
5004 }
5005 }
5006 else
5007 memset (r_rel, 0, sizeof (r_reloc));
5008}
5009
5010
43cd72b9
BW
5011#if DEBUG
5012
e0001a05 5013static void
7fa3d080 5014print_r_reloc (FILE *fp, const r_reloc *r_rel)
e0001a05 5015{
43cd72b9
BW
5016 if (r_reloc_is_defined (r_rel))
5017 {
5018 asection *sec = r_reloc_get_section (r_rel);
5019 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
5020 }
5021 else if (r_reloc_get_hash_entry (r_rel))
5022 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
5023 else
5024 fprintf (fp, " ?? + ");
e0001a05 5025
43cd72b9
BW
5026 fprintf_vma (fp, r_rel->target_offset);
5027 if (r_rel->virtual_offset)
5028 {
5029 fprintf (fp, " + ");
5030 fprintf_vma (fp, r_rel->virtual_offset);
5031 }
68ffbac6 5032
43cd72b9
BW
5033 fprintf (fp, ")");
5034}
e0001a05 5035
43cd72b9 5036#endif /* DEBUG */
e0001a05 5037
43cd72b9
BW
5038\f
5039/* source_reloc: relocations that reference literals. */
e0001a05 5040
43cd72b9
BW
5041/* To determine whether literals can be coalesced, we need to first
5042 record all the relocations that reference the literals. The
5043 source_reloc structure below is used for this purpose. The
5044 source_reloc entries are kept in a per-literal-section array, sorted
5045 by offset within the literal section (i.e., target offset).
e0001a05 5046
43cd72b9
BW
5047 The source_sec and r_rel.rela.r_offset fields identify the source of
5048 the relocation. The r_rel field records the relocation value, i.e.,
5049 the offset of the literal being referenced. The opnd field is needed
5050 to determine the range of the immediate field to which the relocation
5051 applies, so we can determine whether another literal with the same
5052 value is within range. The is_null field is true when the relocation
5053 is being removed (e.g., when an L32R is being removed due to a CALLX
5054 that is converted to a direct CALL). */
e0001a05 5055
43cd72b9
BW
5056typedef struct source_reloc_struct source_reloc;
5057
5058struct source_reloc_struct
e0001a05 5059{
43cd72b9
BW
5060 asection *source_sec;
5061 r_reloc r_rel;
5062 xtensa_opcode opcode;
5063 int opnd;
5064 bfd_boolean is_null;
5065 bfd_boolean is_abs_literal;
5066};
e0001a05 5067
e0001a05 5068
e0001a05 5069static void
7fa3d080
BW
5070init_source_reloc (source_reloc *reloc,
5071 asection *source_sec,
5072 const r_reloc *r_rel,
5073 xtensa_opcode opcode,
5074 int opnd,
5075 bfd_boolean is_abs_literal)
e0001a05 5076{
43cd72b9
BW
5077 reloc->source_sec = source_sec;
5078 reloc->r_rel = *r_rel;
5079 reloc->opcode = opcode;
5080 reloc->opnd = opnd;
5081 reloc->is_null = FALSE;
5082 reloc->is_abs_literal = is_abs_literal;
e0001a05
NC
5083}
5084
e0001a05 5085
43cd72b9
BW
5086/* Find the source_reloc for a particular source offset and relocation
5087 type. Note that the array is sorted by _target_ offset, so this is
5088 just a linear search. */
e0001a05 5089
43cd72b9 5090static source_reloc *
7fa3d080
BW
5091find_source_reloc (source_reloc *src_relocs,
5092 int src_count,
5093 asection *sec,
5094 Elf_Internal_Rela *irel)
e0001a05 5095{
43cd72b9 5096 int i;
e0001a05 5097
43cd72b9
BW
5098 for (i = 0; i < src_count; i++)
5099 {
5100 if (src_relocs[i].source_sec == sec
5101 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
5102 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
5103 == ELF32_R_TYPE (irel->r_info)))
5104 return &src_relocs[i];
5105 }
e0001a05 5106
43cd72b9 5107 return NULL;
e0001a05
NC
5108}
5109
5110
43cd72b9 5111static int
7fa3d080 5112source_reloc_compare (const void *ap, const void *bp)
e0001a05 5113{
43cd72b9
BW
5114 const source_reloc *a = (const source_reloc *) ap;
5115 const source_reloc *b = (const source_reloc *) bp;
e0001a05 5116
43cd72b9
BW
5117 if (a->r_rel.target_offset != b->r_rel.target_offset)
5118 return (a->r_rel.target_offset - b->r_rel.target_offset);
e0001a05 5119
43cd72b9
BW
5120 /* We don't need to sort on these criteria for correctness,
5121 but enforcing a more strict ordering prevents unstable qsort
5122 from behaving differently with different implementations.
5123 Without the code below we get correct but different results
5124 on Solaris 2.7 and 2.8. We would like to always produce the
5125 same results no matter the host. */
5126
5127 if ((!a->is_null) - (!b->is_null))
5128 return ((!a->is_null) - (!b->is_null));
5129 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
e0001a05
NC
5130}
5131
43cd72b9
BW
5132\f
5133/* Literal values and value hash tables. */
e0001a05 5134
43cd72b9
BW
5135/* Literals with the same value can be coalesced. The literal_value
5136 structure records the value of a literal: the "r_rel" field holds the
5137 information from the relocation on the literal (if there is one) and
5138 the "value" field holds the contents of the literal word itself.
e0001a05 5139
43cd72b9
BW
5140 The value_map structure records a literal value along with the
5141 location of a literal holding that value. The value_map hash table
5142 is indexed by the literal value, so that we can quickly check if a
5143 particular literal value has been seen before and is thus a candidate
5144 for coalescing. */
e0001a05 5145
43cd72b9
BW
5146typedef struct literal_value_struct literal_value;
5147typedef struct value_map_struct value_map;
5148typedef struct value_map_hash_table_struct value_map_hash_table;
e0001a05 5149
43cd72b9 5150struct literal_value_struct
e0001a05 5151{
68ffbac6 5152 r_reloc r_rel;
43cd72b9
BW
5153 unsigned long value;
5154 bfd_boolean is_abs_literal;
5155};
5156
5157struct value_map_struct
5158{
5159 literal_value val; /* The literal value. */
5160 r_reloc loc; /* Location of the literal. */
5161 value_map *next;
5162};
5163
5164struct value_map_hash_table_struct
5165{
5166 unsigned bucket_count;
5167 value_map **buckets;
5168 unsigned count;
5169 bfd_boolean has_last_loc;
5170 r_reloc last_loc;
5171};
5172
5173
e0001a05 5174static void
7fa3d080
BW
5175init_literal_value (literal_value *lit,
5176 const r_reloc *r_rel,
5177 unsigned long value,
5178 bfd_boolean is_abs_literal)
e0001a05 5179{
43cd72b9
BW
5180 lit->r_rel = *r_rel;
5181 lit->value = value;
5182 lit->is_abs_literal = is_abs_literal;
e0001a05
NC
5183}
5184
5185
43cd72b9 5186static bfd_boolean
7fa3d080
BW
5187literal_value_equal (const literal_value *src1,
5188 const literal_value *src2,
5189 bfd_boolean final_static_link)
e0001a05 5190{
43cd72b9 5191 struct elf_link_hash_entry *h1, *h2;
e0001a05 5192
68ffbac6 5193 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
43cd72b9 5194 return FALSE;
e0001a05 5195
43cd72b9
BW
5196 if (r_reloc_is_const (&src1->r_rel))
5197 return (src1->value == src2->value);
e0001a05 5198
43cd72b9
BW
5199 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
5200 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
5201 return FALSE;
e0001a05 5202
43cd72b9
BW
5203 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
5204 return FALSE;
68ffbac6 5205
43cd72b9
BW
5206 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
5207 return FALSE;
5208
5209 if (src1->value != src2->value)
5210 return FALSE;
68ffbac6 5211
43cd72b9
BW
5212 /* Now check for the same section (if defined) or the same elf_hash
5213 (if undefined or weak). */
5214 h1 = r_reloc_get_hash_entry (&src1->r_rel);
5215 h2 = r_reloc_get_hash_entry (&src2->r_rel);
5216 if (r_reloc_is_defined (&src1->r_rel)
5217 && (final_static_link
5218 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
5219 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
5220 {
5221 if (r_reloc_get_section (&src1->r_rel)
5222 != r_reloc_get_section (&src2->r_rel))
5223 return FALSE;
5224 }
5225 else
5226 {
5227 /* Require that the hash entries (i.e., symbols) be identical. */
5228 if (h1 != h2 || h1 == 0)
5229 return FALSE;
5230 }
5231
5232 if (src1->is_abs_literal != src2->is_abs_literal)
5233 return FALSE;
5234
5235 return TRUE;
e0001a05
NC
5236}
5237
e0001a05 5238
43cd72b9
BW
5239/* Must be power of 2. */
5240#define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
e0001a05 5241
43cd72b9 5242static value_map_hash_table *
7fa3d080 5243value_map_hash_table_init (void)
43cd72b9
BW
5244{
5245 value_map_hash_table *values;
e0001a05 5246
43cd72b9
BW
5247 values = (value_map_hash_table *)
5248 bfd_zmalloc (sizeof (value_map_hash_table));
5249 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
5250 values->count = 0;
5251 values->buckets = (value_map **)
5252 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
68ffbac6 5253 if (values->buckets == NULL)
43cd72b9
BW
5254 {
5255 free (values);
5256 return NULL;
5257 }
5258 values->has_last_loc = FALSE;
5259
5260 return values;
5261}
5262
5263
5264static void
7fa3d080 5265value_map_hash_table_delete (value_map_hash_table *table)
e0001a05 5266{
43cd72b9
BW
5267 free (table->buckets);
5268 free (table);
5269}
5270
5271
5272static unsigned
7fa3d080 5273hash_bfd_vma (bfd_vma val)
43cd72b9
BW
5274{
5275 return (val >> 2) + (val >> 10);
5276}
5277
5278
5279static unsigned
7fa3d080 5280literal_value_hash (const literal_value *src)
43cd72b9
BW
5281{
5282 unsigned hash_val;
e0001a05 5283
43cd72b9
BW
5284 hash_val = hash_bfd_vma (src->value);
5285 if (!r_reloc_is_const (&src->r_rel))
e0001a05 5286 {
43cd72b9
BW
5287 void *sec_or_hash;
5288
5289 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
5290 hash_val += hash_bfd_vma (src->r_rel.target_offset);
5291 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
68ffbac6 5292
43cd72b9
BW
5293 /* Now check for the same section and the same elf_hash. */
5294 if (r_reloc_is_defined (&src->r_rel))
5295 sec_or_hash = r_reloc_get_section (&src->r_rel);
5296 else
5297 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
f60ca5e3 5298 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
e0001a05 5299 }
43cd72b9
BW
5300 return hash_val;
5301}
e0001a05 5302
e0001a05 5303
43cd72b9 5304/* Check if the specified literal_value has been seen before. */
e0001a05 5305
43cd72b9 5306static value_map *
7fa3d080
BW
5307value_map_get_cached_value (value_map_hash_table *map,
5308 const literal_value *val,
5309 bfd_boolean final_static_link)
43cd72b9
BW
5310{
5311 value_map *map_e;
5312 value_map *bucket;
5313 unsigned idx;
5314
5315 idx = literal_value_hash (val);
5316 idx = idx & (map->bucket_count - 1);
5317 bucket = map->buckets[idx];
5318 for (map_e = bucket; map_e; map_e = map_e->next)
e0001a05 5319 {
43cd72b9
BW
5320 if (literal_value_equal (&map_e->val, val, final_static_link))
5321 return map_e;
5322 }
5323 return NULL;
5324}
e0001a05 5325
e0001a05 5326
43cd72b9
BW
5327/* Record a new literal value. It is illegal to call this if VALUE
5328 already has an entry here. */
5329
5330static value_map *
7fa3d080
BW
5331add_value_map (value_map_hash_table *map,
5332 const literal_value *val,
5333 const r_reloc *loc,
5334 bfd_boolean final_static_link)
43cd72b9
BW
5335{
5336 value_map **bucket_p;
5337 unsigned idx;
5338
5339 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
5340 if (val_e == NULL)
5341 {
5342 bfd_set_error (bfd_error_no_memory);
5343 return NULL;
e0001a05
NC
5344 }
5345
43cd72b9
BW
5346 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
5347 val_e->val = *val;
5348 val_e->loc = *loc;
5349
5350 idx = literal_value_hash (val);
5351 idx = idx & (map->bucket_count - 1);
5352 bucket_p = &map->buckets[idx];
5353
5354 val_e->next = *bucket_p;
5355 *bucket_p = val_e;
5356 map->count++;
5357 /* FIXME: Consider resizing the hash table if we get too many entries. */
68ffbac6 5358
43cd72b9 5359 return val_e;
e0001a05
NC
5360}
5361
43cd72b9
BW
5362\f
5363/* Lists of text actions (ta_) for narrowing, widening, longcall
5364 conversion, space fill, code & literal removal, etc. */
5365
5366/* The following text actions are generated:
5367
5368 "ta_remove_insn" remove an instruction or instructions
5369 "ta_remove_longcall" convert longcall to call
5370 "ta_convert_longcall" convert longcall to nop/call
5371 "ta_narrow_insn" narrow a wide instruction
5372 "ta_widen" widen a narrow instruction
5373 "ta_fill" add fill or remove fill
5374 removed < 0 is a fill; branches to the fill address will be
5375 changed to address + fill size (e.g., address - removed)
5376 removed >= 0 branches to the fill address will stay unchanged
5377 "ta_remove_literal" remove a literal; this action is
5378 indicated when a literal is removed
5379 or replaced.
5380 "ta_add_literal" insert a new literal; this action is
5381 indicated when a literal has been moved.
5382 It may use a virtual_offset because
5383 multiple literals can be placed at the
5384 same location.
5385
5386 For each of these text actions, we also record the number of bytes
5387 removed by performing the text action. In the case of a "ta_widen"
5388 or a "ta_fill" that adds space, the removed_bytes will be negative. */
5389
5390typedef struct text_action_struct text_action;
5391typedef struct text_action_list_struct text_action_list;
5392typedef enum text_action_enum_t text_action_t;
5393
5394enum text_action_enum_t
5395{
5396 ta_none,
5397 ta_remove_insn, /* removed = -size */
5398 ta_remove_longcall, /* removed = -size */
5399 ta_convert_longcall, /* removed = 0 */
5400 ta_narrow_insn, /* removed = -1 */
5401 ta_widen_insn, /* removed = +1 */
5402 ta_fill, /* removed = +size */
5403 ta_remove_literal,
5404 ta_add_literal
5405};
e0001a05 5406
e0001a05 5407
43cd72b9
BW
5408/* Structure for a text action record. */
5409struct text_action_struct
e0001a05 5410{
43cd72b9
BW
5411 text_action_t action;
5412 asection *sec; /* Optional */
5413 bfd_vma offset;
5414 bfd_vma virtual_offset; /* Zero except for adding literals. */
5415 int removed_bytes;
5416 literal_value value; /* Only valid when adding literals. */
43cd72b9 5417};
e0001a05 5418
071aa5c9
MF
5419struct removal_by_action_entry_struct
5420{
5421 bfd_vma offset;
5422 int removed;
5423 int eq_removed;
5424 int eq_removed_before_fill;
5425};
5426typedef struct removal_by_action_entry_struct removal_by_action_entry;
5427
5428struct removal_by_action_map_struct
5429{
5430 unsigned n_entries;
5431 removal_by_action_entry *entry;
5432};
5433typedef struct removal_by_action_map_struct removal_by_action_map;
5434
e0001a05 5435
43cd72b9
BW
5436/* List of all of the actions taken on a text section. */
5437struct text_action_list_struct
5438{
4c2af04f
MF
5439 unsigned count;
5440 splay_tree tree;
071aa5c9 5441 removal_by_action_map map;
43cd72b9 5442};
e0001a05 5443
e0001a05 5444
7fa3d080
BW
5445static text_action *
5446find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
43cd72b9 5447{
4c2af04f 5448 text_action a;
43cd72b9
BW
5449
5450 /* It is not necessary to fill at the end of a section. */
5451 if (sec->size == offset)
5452 return NULL;
5453
4c2af04f
MF
5454 a.offset = offset;
5455 a.action = ta_fill;
5456
5457 splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a);
5458 if (node)
5459 return (text_action *)node->value;
43cd72b9
BW
5460 return NULL;
5461}
5462
5463
5464static int
7fa3d080
BW
5465compute_removed_action_diff (const text_action *ta,
5466 asection *sec,
5467 bfd_vma offset,
5468 int removed,
5469 int removable_space)
43cd72b9
BW
5470{
5471 int new_removed;
5472 int current_removed = 0;
5473
7fa3d080 5474 if (ta)
43cd72b9
BW
5475 current_removed = ta->removed_bytes;
5476
5477 BFD_ASSERT (ta == NULL || ta->offset == offset);
5478 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
5479
5480 /* It is not necessary to fill at the end of a section. Clean this up. */
5481 if (sec->size == offset)
5482 new_removed = removable_space - 0;
5483 else
5484 {
5485 int space;
5486 int added = -removed - current_removed;
5487 /* Ignore multiples of the section alignment. */
5488 added = ((1 << sec->alignment_power) - 1) & added;
5489 new_removed = (-added);
5490
5491 /* Modify for removable. */
5492 space = removable_space - new_removed;
5493 new_removed = (removable_space
5494 - (((1 << sec->alignment_power) - 1) & space));
5495 }
5496 return (new_removed - current_removed);
5497}
5498
5499
7fa3d080
BW
5500static void
5501adjust_fill_action (text_action *ta, int fill_diff)
43cd72b9
BW
5502{
5503 ta->removed_bytes += fill_diff;
5504}
5505
5506
4c2af04f
MF
5507static int
5508text_action_compare (splay_tree_key a, splay_tree_key b)
5509{
5510 text_action *pa = (text_action *)a;
5511 text_action *pb = (text_action *)b;
5512 static const int action_priority[] =
5513 {
5514 [ta_fill] = 0,
5515 [ta_none] = 1,
5516 [ta_convert_longcall] = 2,
5517 [ta_narrow_insn] = 3,
5518 [ta_remove_insn] = 4,
5519 [ta_remove_longcall] = 5,
5520 [ta_remove_literal] = 6,
5521 [ta_widen_insn] = 7,
5522 [ta_add_literal] = 8,
5523 };
5524
5525 if (pa->offset == pb->offset)
5526 {
5527 if (pa->action == pb->action)
5528 return 0;
5529 return action_priority[pa->action] - action_priority[pb->action];
5530 }
5531 else
5532 return pa->offset < pb->offset ? -1 : 1;
5533}
5534
5535static text_action *
5536action_first (text_action_list *action_list)
5537{
5538 splay_tree_node node = splay_tree_min (action_list->tree);
5539 return node ? (text_action *)node->value : NULL;
5540}
5541
5542static text_action *
5543action_next (text_action_list *action_list, text_action *action)
5544{
5545 splay_tree_node node = splay_tree_successor (action_list->tree,
5546 (splay_tree_key)action);
5547 return node ? (text_action *)node->value : NULL;
5548}
5549
43cd72b9
BW
5550/* Add a modification action to the text. For the case of adding or
5551 removing space, modify any current fill and assume that
5552 "unreachable_space" bytes can be freely contracted. Note that a
5553 negative removed value is a fill. */
5554
68ffbac6 5555static void
7fa3d080
BW
5556text_action_add (text_action_list *l,
5557 text_action_t action,
5558 asection *sec,
5559 bfd_vma offset,
5560 int removed)
43cd72b9 5561{
43cd72b9 5562 text_action *ta;
4c2af04f 5563 text_action a;
43cd72b9
BW
5564
5565 /* It is not necessary to fill at the end of a section. */
5566 if (action == ta_fill && sec->size == offset)
5567 return;
5568
5569 /* It is not necessary to fill 0 bytes. */
5570 if (action == ta_fill && removed == 0)
5571 return;
5572
4c2af04f
MF
5573 a.action = action;
5574 a.offset = offset;
5575
5576 if (action == ta_fill)
43cd72b9 5577 {
4c2af04f 5578 splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a);
68ffbac6 5579
4c2af04f 5580 if (node)
43cd72b9 5581 {
4c2af04f
MF
5582 ta = (text_action *)node->value;
5583 ta->removed_bytes += removed;
5584 return;
43cd72b9
BW
5585 }
5586 }
4c2af04f
MF
5587 else
5588 BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)&a) == NULL);
43cd72b9 5589
43cd72b9
BW
5590 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5591 ta->action = action;
5592 ta->sec = sec;
5593 ta->offset = offset;
5594 ta->removed_bytes = removed;
4c2af04f
MF
5595 splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta);
5596 ++l->count;
43cd72b9
BW
5597}
5598
5599
5600static void
7fa3d080
BW
5601text_action_add_literal (text_action_list *l,
5602 text_action_t action,
5603 const r_reloc *loc,
5604 const literal_value *value,
5605 int removed)
43cd72b9 5606{
43cd72b9
BW
5607 text_action *ta;
5608 asection *sec = r_reloc_get_section (loc);
5609 bfd_vma offset = loc->target_offset;
5610 bfd_vma virtual_offset = loc->virtual_offset;
5611
5612 BFD_ASSERT (action == ta_add_literal);
5613
43cd72b9
BW
5614 /* Create a new record and fill it up. */
5615 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5616 ta->action = action;
5617 ta->sec = sec;
5618 ta->offset = offset;
5619 ta->virtual_offset = virtual_offset;
5620 ta->value = *value;
5621 ta->removed_bytes = removed;
4c2af04f
MF
5622
5623 BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)ta) == NULL);
5624 splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta);
5625 ++l->count;
43cd72b9
BW
5626}
5627
5628
03669f1c
BW
5629/* Find the total offset adjustment for the relaxations specified by
5630 text_actions, beginning from a particular starting action. This is
5631 typically used from offset_with_removed_text to search an entire list of
5632 actions, but it may also be called directly when adjusting adjacent offsets
5633 so that each search may begin where the previous one left off. */
5634
5635static int
4c2af04f
MF
5636removed_by_actions (text_action_list *action_list,
5637 text_action **p_start_action,
03669f1c
BW
5638 bfd_vma offset,
5639 bfd_boolean before_fill)
43cd72b9
BW
5640{
5641 text_action *r;
5642 int removed = 0;
5643
03669f1c 5644 r = *p_start_action;
4c2af04f
MF
5645 if (r)
5646 {
5647 splay_tree_node node = splay_tree_lookup (action_list->tree,
5648 (splay_tree_key)r);
5649 BFD_ASSERT (node != NULL && r == (text_action *)node->value);
5650 }
5651
03669f1c 5652 while (r)
43cd72b9 5653 {
03669f1c
BW
5654 if (r->offset > offset)
5655 break;
5656
5657 if (r->offset == offset
5658 && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
5659 break;
5660
5661 removed += r->removed_bytes;
5662
4c2af04f 5663 r = action_next (action_list, r);
43cd72b9
BW
5664 }
5665
03669f1c
BW
5666 *p_start_action = r;
5667 return removed;
5668}
5669
5670
68ffbac6 5671static bfd_vma
03669f1c
BW
5672offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
5673{
4c2af04f
MF
5674 text_action *r = action_first (action_list);
5675
5676 return offset - removed_by_actions (action_list, &r, offset, FALSE);
43cd72b9
BW
5677}
5678
5679
03e94c08
BW
5680static unsigned
5681action_list_count (text_action_list *action_list)
5682{
4c2af04f 5683 return action_list->count;
03e94c08
BW
5684}
5685
4c2af04f
MF
5686typedef struct map_action_fn_context_struct map_action_fn_context;
5687struct map_action_fn_context_struct
071aa5c9 5688{
4c2af04f 5689 int removed;
071aa5c9
MF
5690 removal_by_action_map map;
5691 bfd_boolean eq_complete;
4c2af04f 5692};
071aa5c9 5693
4c2af04f
MF
5694static int
5695map_action_fn (splay_tree_node node, void *p)
5696{
5697 map_action_fn_context *ctx = p;
5698 text_action *r = (text_action *)node->value;
5699 removal_by_action_entry *ientry = ctx->map.entry + ctx->map.n_entries;
071aa5c9 5700
4c2af04f 5701 if (ctx->map.n_entries && (ientry - 1)->offset == r->offset)
071aa5c9 5702 {
4c2af04f
MF
5703 --ientry;
5704 }
5705 else
5706 {
5707 ++ctx->map.n_entries;
5708 ctx->eq_complete = FALSE;
5709 ientry->offset = r->offset;
5710 ientry->eq_removed_before_fill = ctx->removed;
5711 }
071aa5c9 5712
4c2af04f
MF
5713 if (!ctx->eq_complete)
5714 {
5715 if (r->action != ta_fill || r->removed_bytes >= 0)
071aa5c9 5716 {
4c2af04f
MF
5717 ientry->eq_removed = ctx->removed;
5718 ctx->eq_complete = TRUE;
071aa5c9
MF
5719 }
5720 else
4c2af04f
MF
5721 ientry->eq_removed = ctx->removed + r->removed_bytes;
5722 }
071aa5c9 5723
4c2af04f
MF
5724 ctx->removed += r->removed_bytes;
5725 ientry->removed = ctx->removed;
5726 return 0;
5727}
071aa5c9 5728
4c2af04f
MF
5729static void
5730map_removal_by_action (text_action_list *action_list)
5731{
5732 map_action_fn_context ctx;
5733
5734 ctx.removed = 0;
5735 ctx.map.n_entries = 0;
5736 ctx.map.entry = bfd_malloc (action_list_count (action_list) *
5737 sizeof (removal_by_action_entry));
5738 ctx.eq_complete = FALSE;
5739
5740 splay_tree_foreach (action_list->tree, map_action_fn, &ctx);
5741 action_list->map = ctx.map;
071aa5c9
MF
5742}
5743
5744static int
5745removed_by_actions_map (text_action_list *action_list, bfd_vma offset,
5746 bfd_boolean before_fill)
5747{
5748 unsigned a, b;
5749
5750 if (!action_list->map.entry)
5751 map_removal_by_action (action_list);
5752
5753 if (!action_list->map.n_entries)
5754 return 0;
5755
5756 a = 0;
5757 b = action_list->map.n_entries;
5758
5759 while (b - a > 1)
5760 {
5761 unsigned c = (a + b) / 2;
5762
5763 if (action_list->map.entry[c].offset <= offset)
5764 a = c;
5765 else
5766 b = c;
5767 }
5768
5769 if (action_list->map.entry[a].offset < offset)
5770 {
5771 return action_list->map.entry[a].removed;
5772 }
5773 else if (action_list->map.entry[a].offset == offset)
5774 {
5775 return before_fill ?
5776 action_list->map.entry[a].eq_removed_before_fill :
5777 action_list->map.entry[a].eq_removed;
5778 }
5779 else
5780 {
5781 return 0;
5782 }
5783}
5784
5785static bfd_vma
5786offset_with_removed_text_map (text_action_list *action_list, bfd_vma offset)
5787{
5788 int removed = removed_by_actions_map (action_list, offset, FALSE);
5789 return offset - removed;
5790}
5791
03e94c08 5792
43cd72b9
BW
5793/* The find_insn_action routine will only find non-fill actions. */
5794
7fa3d080
BW
5795static text_action *
5796find_insn_action (text_action_list *action_list, bfd_vma offset)
43cd72b9 5797{
4c2af04f 5798 static const text_action_t action[] =
43cd72b9 5799 {
4c2af04f
MF
5800 ta_convert_longcall,
5801 ta_remove_longcall,
5802 ta_widen_insn,
5803 ta_narrow_insn,
5804 ta_remove_insn,
5805 };
5806 text_action a;
5807 unsigned i;
5808
5809 a.offset = offset;
5810 for (i = 0; i < sizeof (action) / sizeof (*action); ++i)
5811 {
5812 splay_tree_node node;
5813
5814 a.action = action[i];
5815 node = splay_tree_lookup (action_list->tree, (splay_tree_key)&a);
5816 if (node)
5817 return (text_action *)node->value;
43cd72b9
BW
5818 }
5819 return NULL;
5820}
5821
5822
5823#if DEBUG
5824
5825static void
4c2af04f
MF
5826print_action (FILE *fp, text_action *r)
5827{
5828 const char *t = "unknown";
5829 switch (r->action)
5830 {
5831 case ta_remove_insn:
5832 t = "remove_insn"; break;
5833 case ta_remove_longcall:
5834 t = "remove_longcall"; break;
5835 case ta_convert_longcall:
5836 t = "convert_longcall"; break;
5837 case ta_narrow_insn:
5838 t = "narrow_insn"; break;
5839 case ta_widen_insn:
5840 t = "widen_insn"; break;
5841 case ta_fill:
5842 t = "fill"; break;
5843 case ta_none:
5844 t = "none"; break;
5845 case ta_remove_literal:
5846 t = "remove_literal"; break;
5847 case ta_add_literal:
5848 t = "add_literal"; break;
5849 }
5850
5851 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
5852 r->sec->owner->filename,
5853 r->sec->name, (unsigned long) r->offset, t, r->removed_bytes);
5854}
5855
5856static int
5857print_action_list_fn (splay_tree_node node, void *p)
43cd72b9 5858{
4c2af04f 5859 text_action *r = (text_action *)node->value;
43cd72b9 5860
4c2af04f
MF
5861 print_action (p, r);
5862 return 0;
5863}
43cd72b9 5864
4c2af04f
MF
5865static void
5866print_action_list (FILE *fp, text_action_list *action_list)
5867{
5868 fprintf (fp, "Text Action\n");
5869 splay_tree_foreach (action_list->tree, print_action_list_fn, fp);
43cd72b9
BW
5870}
5871
5872#endif /* DEBUG */
5873
5874\f
5875/* Lists of literals being coalesced or removed. */
5876
5877/* In the usual case, the literal identified by "from" is being
5878 coalesced with another literal identified by "to". If the literal is
5879 unused and is being removed altogether, "to.abfd" will be NULL.
5880 The removed_literal entries are kept on a per-section list, sorted
5881 by the "from" offset field. */
5882
5883typedef struct removed_literal_struct removed_literal;
3439c466 5884typedef struct removed_literal_map_entry_struct removed_literal_map_entry;
43cd72b9
BW
5885typedef struct removed_literal_list_struct removed_literal_list;
5886
5887struct removed_literal_struct
5888{
5889 r_reloc from;
5890 r_reloc to;
5891 removed_literal *next;
5892};
5893
3439c466
MF
5894struct removed_literal_map_entry_struct
5895{
5896 bfd_vma addr;
5897 removed_literal *literal;
5898};
5899
43cd72b9
BW
5900struct removed_literal_list_struct
5901{
5902 removed_literal *head;
5903 removed_literal *tail;
3439c466
MF
5904
5905 unsigned n_map;
5906 removed_literal_map_entry *map;
43cd72b9
BW
5907};
5908
5909
43cd72b9
BW
5910/* Record that the literal at "from" is being removed. If "to" is not
5911 NULL, the "from" literal is being coalesced with the "to" literal. */
5912
5913static void
7fa3d080
BW
5914add_removed_literal (removed_literal_list *removed_list,
5915 const r_reloc *from,
5916 const r_reloc *to)
43cd72b9
BW
5917{
5918 removed_literal *r, *new_r, *next_r;
5919
5920 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
5921
5922 new_r->from = *from;
5923 if (to)
5924 new_r->to = *to;
5925 else
5926 new_r->to.abfd = NULL;
5927 new_r->next = NULL;
68ffbac6 5928
43cd72b9 5929 r = removed_list->head;
68ffbac6 5930 if (r == NULL)
43cd72b9
BW
5931 {
5932 removed_list->head = new_r;
5933 removed_list->tail = new_r;
5934 }
5935 /* Special check for common case of append. */
5936 else if (removed_list->tail->from.target_offset < from->target_offset)
5937 {
5938 removed_list->tail->next = new_r;
5939 removed_list->tail = new_r;
5940 }
5941 else
5942 {
68ffbac6 5943 while (r->from.target_offset < from->target_offset && r->next)
43cd72b9
BW
5944 {
5945 r = r->next;
5946 }
5947 next_r = r->next;
5948 r->next = new_r;
5949 new_r->next = next_r;
5950 if (next_r == NULL)
5951 removed_list->tail = new_r;
5952 }
5953}
5954
3439c466
MF
5955static void
5956map_removed_literal (removed_literal_list *removed_list)
5957{
5958 unsigned n_map = 0;
5959 unsigned i;
5960 removed_literal_map_entry *map = NULL;
5961 removed_literal *r = removed_list->head;
5962
5963 for (i = 0; r; ++i, r = r->next)
5964 {
5965 if (i == n_map)
5966 {
5967 n_map = (n_map * 2) + 2;
5968 map = bfd_realloc (map, n_map * sizeof (*map));
5969 }
5970 map[i].addr = r->from.target_offset;
5971 map[i].literal = r;
5972 }
5973 removed_list->map = map;
5974 removed_list->n_map = i;
5975}
5976
5977static int
5978removed_literal_compare (const void *a, const void *b)
5979{
5980 const removed_literal_map_entry *pa = a;
5981 const removed_literal_map_entry *pb = b;
5982
5983 if (pa->addr == pb->addr)
5984 return 0;
5985 else
5986 return pa->addr < pb->addr ? -1 : 1;
5987}
43cd72b9
BW
5988
5989/* Check if the list of removed literals contains an entry for the
5990 given address. Return the entry if found. */
5991
5992static removed_literal *
7fa3d080 5993find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
43cd72b9 5994{
3439c466
MF
5995 removed_literal_map_entry *p;
5996 removed_literal *r = NULL;
5997
5998 if (removed_list->map == NULL)
5999 map_removed_literal (removed_list);
6000
6001 p = bsearch (&addr, removed_list->map, removed_list->n_map,
6002 sizeof (*removed_list->map), removed_literal_compare);
6003 if (p)
6004 {
6005 while (p != removed_list->map && (p - 1)->addr == addr)
6006 --p;
6007 r = p->literal;
6008 }
6009 return r;
43cd72b9
BW
6010}
6011
6012
6013#if DEBUG
6014
6015static void
7fa3d080 6016print_removed_literals (FILE *fp, removed_literal_list *removed_list)
43cd72b9
BW
6017{
6018 removed_literal *r;
6019 r = removed_list->head;
6020 if (r)
6021 fprintf (fp, "Removed Literals\n");
6022 for (; r != NULL; r = r->next)
6023 {
6024 print_r_reloc (fp, &r->from);
6025 fprintf (fp, " => ");
6026 if (r->to.abfd == NULL)
6027 fprintf (fp, "REMOVED");
6028 else
6029 print_r_reloc (fp, &r->to);
6030 fprintf (fp, "\n");
6031 }
6032}
6033
6034#endif /* DEBUG */
6035
6036\f
6037/* Per-section data for relaxation. */
6038
6039typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
6040
6041struct xtensa_relax_info_struct
6042{
6043 bfd_boolean is_relaxable_literal_section;
6044 bfd_boolean is_relaxable_asm_section;
6045 int visited; /* Number of times visited. */
6046
6047 source_reloc *src_relocs; /* Array[src_count]. */
6048 int src_count;
6049 int src_next; /* Next src_relocs entry to assign. */
6050
6051 removed_literal_list removed_list;
6052 text_action_list action_list;
6053
6054 reloc_bfd_fix *fix_list;
6055 reloc_bfd_fix *fix_array;
6056 unsigned fix_array_count;
6057
6058 /* Support for expanding the reloc array that is stored
6059 in the section structure. If the relocations have been
6060 reallocated, the newly allocated relocations will be referenced
6061 here along with the actual size allocated. The relocation
6062 count will always be found in the section structure. */
68ffbac6 6063 Elf_Internal_Rela *allocated_relocs;
43cd72b9
BW
6064 unsigned relocs_count;
6065 unsigned allocated_relocs_count;
6066};
6067
6068struct elf_xtensa_section_data
6069{
6070 struct bfd_elf_section_data elf;
6071 xtensa_relax_info relax_info;
6072};
6073
43cd72b9
BW
6074
6075static bfd_boolean
7fa3d080 6076elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
43cd72b9 6077{
f592407e
AM
6078 if (!sec->used_by_bfd)
6079 {
6080 struct elf_xtensa_section_data *sdata;
6081 bfd_size_type amt = sizeof (*sdata);
43cd72b9 6082
f592407e
AM
6083 sdata = bfd_zalloc (abfd, amt);
6084 if (sdata == NULL)
6085 return FALSE;
6086 sec->used_by_bfd = sdata;
6087 }
43cd72b9
BW
6088
6089 return _bfd_elf_new_section_hook (abfd, sec);
6090}
6091
6092
7fa3d080
BW
6093static xtensa_relax_info *
6094get_xtensa_relax_info (asection *sec)
6095{
6096 struct elf_xtensa_section_data *section_data;
6097
6098 /* No info available if no section or if it is an output section. */
6099 if (!sec || sec == sec->output_section)
6100 return NULL;
6101
6102 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
6103 return &section_data->relax_info;
6104}
6105
6106
43cd72b9 6107static void
7fa3d080 6108init_xtensa_relax_info (asection *sec)
43cd72b9
BW
6109{
6110 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6111
6112 relax_info->is_relaxable_literal_section = FALSE;
6113 relax_info->is_relaxable_asm_section = FALSE;
6114 relax_info->visited = 0;
6115
6116 relax_info->src_relocs = NULL;
6117 relax_info->src_count = 0;
6118 relax_info->src_next = 0;
6119
6120 relax_info->removed_list.head = NULL;
6121 relax_info->removed_list.tail = NULL;
6122
4c2af04f
MF
6123 relax_info->action_list.tree = splay_tree_new (text_action_compare,
6124 NULL, NULL);
071aa5c9
MF
6125 relax_info->action_list.map.n_entries = 0;
6126 relax_info->action_list.map.entry = NULL;
6127
43cd72b9
BW
6128 relax_info->fix_list = NULL;
6129 relax_info->fix_array = NULL;
6130 relax_info->fix_array_count = 0;
6131
68ffbac6 6132 relax_info->allocated_relocs = NULL;
43cd72b9
BW
6133 relax_info->relocs_count = 0;
6134 relax_info->allocated_relocs_count = 0;
6135}
6136
43cd72b9
BW
6137\f
6138/* Coalescing literals may require a relocation to refer to a section in
6139 a different input file, but the standard relocation information
6140 cannot express that. Instead, the reloc_bfd_fix structures are used
6141 to "fix" the relocations that refer to sections in other input files.
6142 These structures are kept on per-section lists. The "src_type" field
6143 records the relocation type in case there are multiple relocations on
6144 the same location. FIXME: This is ugly; an alternative might be to
6145 add new symbols with the "owner" field to some other input file. */
6146
6147struct reloc_bfd_fix_struct
6148{
6149 asection *src_sec;
6150 bfd_vma src_offset;
6151 unsigned src_type; /* Relocation type. */
68ffbac6 6152
43cd72b9
BW
6153 asection *target_sec;
6154 bfd_vma target_offset;
6155 bfd_boolean translated;
68ffbac6 6156
43cd72b9
BW
6157 reloc_bfd_fix *next;
6158};
6159
6160
43cd72b9 6161static reloc_bfd_fix *
7fa3d080
BW
6162reloc_bfd_fix_init (asection *src_sec,
6163 bfd_vma src_offset,
6164 unsigned src_type,
7fa3d080
BW
6165 asection *target_sec,
6166 bfd_vma target_offset,
6167 bfd_boolean translated)
43cd72b9
BW
6168{
6169 reloc_bfd_fix *fix;
6170
6171 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
6172 fix->src_sec = src_sec;
6173 fix->src_offset = src_offset;
6174 fix->src_type = src_type;
43cd72b9
BW
6175 fix->target_sec = target_sec;
6176 fix->target_offset = target_offset;
6177 fix->translated = translated;
6178
6179 return fix;
6180}
6181
6182
6183static void
7fa3d080 6184add_fix (asection *src_sec, reloc_bfd_fix *fix)
43cd72b9
BW
6185{
6186 xtensa_relax_info *relax_info;
6187
6188 relax_info = get_xtensa_relax_info (src_sec);
6189 fix->next = relax_info->fix_list;
6190 relax_info->fix_list = fix;
6191}
6192
6193
6194static int
7fa3d080 6195fix_compare (const void *ap, const void *bp)
43cd72b9
BW
6196{
6197 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
6198 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
6199
6200 if (a->src_offset != b->src_offset)
6201 return (a->src_offset - b->src_offset);
6202 return (a->src_type - b->src_type);
6203}
6204
6205
6206static void
7fa3d080 6207cache_fix_array (asection *sec)
43cd72b9
BW
6208{
6209 unsigned i, count = 0;
6210 reloc_bfd_fix *r;
6211 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6212
6213 if (relax_info == NULL)
6214 return;
6215 if (relax_info->fix_list == NULL)
6216 return;
6217
6218 for (r = relax_info->fix_list; r != NULL; r = r->next)
6219 count++;
6220
6221 relax_info->fix_array =
6222 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
6223 relax_info->fix_array_count = count;
6224
6225 r = relax_info->fix_list;
6226 for (i = 0; i < count; i++, r = r->next)
6227 {
6228 relax_info->fix_array[count - 1 - i] = *r;
6229 relax_info->fix_array[count - 1 - i].next = NULL;
6230 }
6231
6232 qsort (relax_info->fix_array, relax_info->fix_array_count,
6233 sizeof (reloc_bfd_fix), fix_compare);
6234}
6235
6236
6237static reloc_bfd_fix *
7fa3d080 6238get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
43cd72b9
BW
6239{
6240 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6241 reloc_bfd_fix *rv;
6242 reloc_bfd_fix key;
6243
6244 if (relax_info == NULL)
6245 return NULL;
6246 if (relax_info->fix_list == NULL)
6247 return NULL;
6248
6249 if (relax_info->fix_array == NULL)
6250 cache_fix_array (sec);
6251
6252 key.src_offset = offset;
6253 key.src_type = type;
6254 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
6255 sizeof (reloc_bfd_fix), fix_compare);
6256 return rv;
6257}
6258
6259\f
6260/* Section caching. */
6261
6262typedef struct section_cache_struct section_cache_t;
6263
6264struct section_cache_struct
6265{
6266 asection *sec;
6267
6268 bfd_byte *contents; /* Cache of the section contents. */
6269 bfd_size_type content_length;
6270
6271 property_table_entry *ptbl; /* Cache of the section property table. */
6272 unsigned pte_count;
6273
6274 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6275 unsigned reloc_count;
6276};
6277
6278
7fa3d080
BW
6279static void
6280init_section_cache (section_cache_t *sec_cache)
6281{
6282 memset (sec_cache, 0, sizeof (*sec_cache));
6283}
43cd72b9
BW
6284
6285
6286static void
65e911f9 6287free_section_cache (section_cache_t *sec_cache)
43cd72b9 6288{
7fa3d080
BW
6289 if (sec_cache->sec)
6290 {
6291 release_contents (sec_cache->sec, sec_cache->contents);
6292 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
6293 if (sec_cache->ptbl)
6294 free (sec_cache->ptbl);
7fa3d080 6295 }
43cd72b9
BW
6296}
6297
6298
6299static bfd_boolean
7fa3d080
BW
6300section_cache_section (section_cache_t *sec_cache,
6301 asection *sec,
6302 struct bfd_link_info *link_info)
43cd72b9
BW
6303{
6304 bfd *abfd;
6305 property_table_entry *prop_table = NULL;
6306 int ptblsize = 0;
6307 bfd_byte *contents = NULL;
6308 Elf_Internal_Rela *internal_relocs = NULL;
6309 bfd_size_type sec_size;
6310
6311 if (sec == NULL)
6312 return FALSE;
6313 if (sec == sec_cache->sec)
6314 return TRUE;
6315
6316 abfd = sec->owner;
6317 sec_size = bfd_get_section_limit (abfd, sec);
6318
6319 /* Get the contents. */
6320 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6321 if (contents == NULL && sec_size != 0)
6322 goto err;
6323
6324 /* Get the relocations. */
6325 internal_relocs = retrieve_internal_relocs (abfd, sec,
6326 link_info->keep_memory);
6327
6328 /* Get the entry table. */
6329 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6330 XTENSA_PROP_SEC_NAME, FALSE);
6331 if (ptblsize < 0)
6332 goto err;
6333
6334 /* Fill in the new section cache. */
65e911f9
AM
6335 free_section_cache (sec_cache);
6336 init_section_cache (sec_cache);
43cd72b9
BW
6337
6338 sec_cache->sec = sec;
6339 sec_cache->contents = contents;
6340 sec_cache->content_length = sec_size;
6341 sec_cache->relocs = internal_relocs;
6342 sec_cache->reloc_count = sec->reloc_count;
6343 sec_cache->pte_count = ptblsize;
6344 sec_cache->ptbl = prop_table;
6345
6346 return TRUE;
6347
6348 err:
6349 release_contents (sec, contents);
6350 release_internal_relocs (sec, internal_relocs);
6351 if (prop_table)
6352 free (prop_table);
6353 return FALSE;
6354}
6355
43cd72b9
BW
6356\f
6357/* Extended basic blocks. */
6358
6359/* An ebb_struct represents an Extended Basic Block. Within this
6360 range, we guarantee that all instructions are decodable, the
6361 property table entries are contiguous, and no property table
6362 specifies a segment that cannot have instructions moved. This
6363 structure contains caches of the contents, property table and
6364 relocations for the specified section for easy use. The range is
6365 specified by ranges of indices for the byte offset, property table
6366 offsets and relocation offsets. These must be consistent. */
6367
6368typedef struct ebb_struct ebb_t;
6369
6370struct ebb_struct
6371{
6372 asection *sec;
6373
6374 bfd_byte *contents; /* Cache of the section contents. */
6375 bfd_size_type content_length;
6376
6377 property_table_entry *ptbl; /* Cache of the section property table. */
6378 unsigned pte_count;
6379
6380 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6381 unsigned reloc_count;
6382
6383 bfd_vma start_offset; /* Offset in section. */
6384 unsigned start_ptbl_idx; /* Offset in the property table. */
6385 unsigned start_reloc_idx; /* Offset in the relocations. */
6386
6387 bfd_vma end_offset;
6388 unsigned end_ptbl_idx;
6389 unsigned end_reloc_idx;
6390
6391 bfd_boolean ends_section; /* Is this the last ebb in a section? */
6392
6393 /* The unreachable property table at the end of this set of blocks;
6394 NULL if the end is not an unreachable block. */
6395 property_table_entry *ends_unreachable;
6396};
6397
6398
6399enum ebb_target_enum
6400{
6401 EBB_NO_ALIGN = 0,
6402 EBB_DESIRE_TGT_ALIGN,
6403 EBB_REQUIRE_TGT_ALIGN,
6404 EBB_REQUIRE_LOOP_ALIGN,
6405 EBB_REQUIRE_ALIGN
6406};
6407
6408
6409/* proposed_action_struct is similar to the text_action_struct except
6410 that is represents a potential transformation, not one that will
6411 occur. We build a list of these for an extended basic block
6412 and use them to compute the actual actions desired. We must be
6413 careful that the entire set of actual actions we perform do not
6414 break any relocations that would fit if the actions were not
6415 performed. */
6416
6417typedef struct proposed_action_struct proposed_action;
6418
6419struct proposed_action_struct
6420{
6421 enum ebb_target_enum align_type; /* for the target alignment */
6422 bfd_vma alignment_pow;
6423 text_action_t action;
6424 bfd_vma offset;
6425 int removed_bytes;
6426 bfd_boolean do_action; /* If false, then we will not perform the action. */
6427};
6428
6429
6430/* The ebb_constraint_struct keeps a set of proposed actions for an
6431 extended basic block. */
6432
6433typedef struct ebb_constraint_struct ebb_constraint;
6434
6435struct ebb_constraint_struct
6436{
6437 ebb_t ebb;
6438 bfd_boolean start_movable;
6439
6440 /* Bytes of extra space at the beginning if movable. */
6441 int start_extra_space;
6442
6443 enum ebb_target_enum start_align;
6444
6445 bfd_boolean end_movable;
6446
6447 /* Bytes of extra space at the end if movable. */
6448 int end_extra_space;
6449
6450 unsigned action_count;
6451 unsigned action_allocated;
6452
6453 /* Array of proposed actions. */
6454 proposed_action *actions;
6455
6456 /* Action alignments -- one for each proposed action. */
6457 enum ebb_target_enum *action_aligns;
6458};
6459
6460
43cd72b9 6461static void
7fa3d080 6462init_ebb_constraint (ebb_constraint *c)
43cd72b9
BW
6463{
6464 memset (c, 0, sizeof (ebb_constraint));
6465}
6466
6467
6468static void
7fa3d080 6469free_ebb_constraint (ebb_constraint *c)
43cd72b9 6470{
7fa3d080 6471 if (c->actions)
43cd72b9
BW
6472 free (c->actions);
6473}
6474
6475
6476static void
7fa3d080
BW
6477init_ebb (ebb_t *ebb,
6478 asection *sec,
6479 bfd_byte *contents,
6480 bfd_size_type content_length,
6481 property_table_entry *prop_table,
6482 unsigned ptblsize,
6483 Elf_Internal_Rela *internal_relocs,
6484 unsigned reloc_count)
43cd72b9
BW
6485{
6486 memset (ebb, 0, sizeof (ebb_t));
6487 ebb->sec = sec;
6488 ebb->contents = contents;
6489 ebb->content_length = content_length;
6490 ebb->ptbl = prop_table;
6491 ebb->pte_count = ptblsize;
6492 ebb->relocs = internal_relocs;
6493 ebb->reloc_count = reloc_count;
6494 ebb->start_offset = 0;
6495 ebb->end_offset = ebb->content_length - 1;
6496 ebb->start_ptbl_idx = 0;
6497 ebb->end_ptbl_idx = ptblsize;
6498 ebb->start_reloc_idx = 0;
6499 ebb->end_reloc_idx = reloc_count;
6500}
6501
6502
6503/* Extend the ebb to all decodable contiguous sections. The algorithm
6504 for building a basic block around an instruction is to push it
6505 forward until we hit the end of a section, an unreachable block or
6506 a block that cannot be transformed. Then we push it backwards
6507 searching for similar conditions. */
6508
7fa3d080
BW
6509static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
6510static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
6511static bfd_size_type insn_block_decodable_len
6512 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
6513
43cd72b9 6514static bfd_boolean
7fa3d080 6515extend_ebb_bounds (ebb_t *ebb)
43cd72b9
BW
6516{
6517 if (!extend_ebb_bounds_forward (ebb))
6518 return FALSE;
6519 if (!extend_ebb_bounds_backward (ebb))
6520 return FALSE;
6521 return TRUE;
6522}
6523
6524
6525static bfd_boolean
7fa3d080 6526extend_ebb_bounds_forward (ebb_t *ebb)
43cd72b9
BW
6527{
6528 property_table_entry *the_entry, *new_entry;
6529
6530 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6531
6532 /* Stop when (1) we cannot decode an instruction, (2) we are at
6533 the end of the property tables, (3) we hit a non-contiguous property
6534 table entry, (4) we hit a NO_TRANSFORM region. */
6535
6536 while (1)
6537 {
6538 bfd_vma entry_end;
6539 bfd_size_type insn_block_len;
6540
6541 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
6542 insn_block_len =
6543 insn_block_decodable_len (ebb->contents, ebb->content_length,
6544 ebb->end_offset,
6545 entry_end - ebb->end_offset);
6546 if (insn_block_len != (entry_end - ebb->end_offset))
6547 {
6548 (*_bfd_error_handler)
6549 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6550 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6551 return FALSE;
6552 }
6553 ebb->end_offset += insn_block_len;
6554
6555 if (ebb->end_offset == ebb->sec->size)
6556 ebb->ends_section = TRUE;
6557
6558 /* Update the reloc counter. */
6559 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
6560 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
6561 < ebb->end_offset))
6562 {
6563 ebb->end_reloc_idx++;
6564 }
6565
6566 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6567 return TRUE;
6568
6569 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6570 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
99ded152 6571 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
43cd72b9
BW
6572 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
6573 break;
6574
6575 if (the_entry->address + the_entry->size != new_entry->address)
6576 break;
6577
6578 the_entry = new_entry;
6579 ebb->end_ptbl_idx++;
6580 }
6581
6582 /* Quick check for an unreachable or end of file just at the end. */
6583 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6584 {
6585 if (ebb->end_offset == ebb->content_length)
6586 ebb->ends_section = TRUE;
6587 }
6588 else
6589 {
6590 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6591 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
6592 && the_entry->address + the_entry->size == new_entry->address)
6593 ebb->ends_unreachable = new_entry;
6594 }
6595
6596 /* Any other ending requires exact alignment. */
6597 return TRUE;
6598}
6599
6600
6601static bfd_boolean
7fa3d080 6602extend_ebb_bounds_backward (ebb_t *ebb)
43cd72b9
BW
6603{
6604 property_table_entry *the_entry, *new_entry;
6605
6606 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6607
6608 /* Stop when (1) we cannot decode the instructions in the current entry.
6609 (2) we are at the beginning of the property tables, (3) we hit a
6610 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
6611
6612 while (1)
6613 {
6614 bfd_vma block_begin;
6615 bfd_size_type insn_block_len;
6616
6617 block_begin = the_entry->address - ebb->sec->vma;
6618 insn_block_len =
6619 insn_block_decodable_len (ebb->contents, ebb->content_length,
6620 block_begin,
6621 ebb->start_offset - block_begin);
6622 if (insn_block_len != ebb->start_offset - block_begin)
6623 {
6624 (*_bfd_error_handler)
6625 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6626 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6627 return FALSE;
6628 }
6629 ebb->start_offset -= insn_block_len;
6630
6631 /* Update the reloc counter. */
6632 while (ebb->start_reloc_idx > 0
6633 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
6634 >= ebb->start_offset))
6635 {
6636 ebb->start_reloc_idx--;
6637 }
6638
6639 if (ebb->start_ptbl_idx == 0)
6640 return TRUE;
6641
6642 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
6643 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
99ded152 6644 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
43cd72b9
BW
6645 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
6646 return TRUE;
6647 if (new_entry->address + new_entry->size != the_entry->address)
6648 return TRUE;
6649
6650 the_entry = new_entry;
6651 ebb->start_ptbl_idx--;
6652 }
6653 return TRUE;
6654}
6655
6656
6657static bfd_size_type
7fa3d080
BW
6658insn_block_decodable_len (bfd_byte *contents,
6659 bfd_size_type content_len,
6660 bfd_vma block_offset,
6661 bfd_size_type block_len)
43cd72b9
BW
6662{
6663 bfd_vma offset = block_offset;
6664
6665 while (offset < block_offset + block_len)
6666 {
6667 bfd_size_type insn_len = 0;
6668
6669 insn_len = insn_decode_len (contents, content_len, offset);
6670 if (insn_len == 0)
6671 return (offset - block_offset);
6672 offset += insn_len;
6673 }
6674 return (offset - block_offset);
6675}
6676
6677
6678static void
7fa3d080 6679ebb_propose_action (ebb_constraint *c,
7fa3d080 6680 enum ebb_target_enum align_type,
288f74fa 6681 bfd_vma alignment_pow,
7fa3d080
BW
6682 text_action_t action,
6683 bfd_vma offset,
6684 int removed_bytes,
6685 bfd_boolean do_action)
43cd72b9 6686{
b08b5071 6687 proposed_action *act;
43cd72b9 6688
43cd72b9
BW
6689 if (c->action_allocated <= c->action_count)
6690 {
b08b5071 6691 unsigned new_allocated, i;
823fc61f 6692 proposed_action *new_actions;
b08b5071
BW
6693
6694 new_allocated = (c->action_count + 2) * 2;
823fc61f 6695 new_actions = (proposed_action *)
43cd72b9
BW
6696 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
6697
6698 for (i = 0; i < c->action_count; i++)
6699 new_actions[i] = c->actions[i];
7fa3d080 6700 if (c->actions)
43cd72b9
BW
6701 free (c->actions);
6702 c->actions = new_actions;
6703 c->action_allocated = new_allocated;
6704 }
b08b5071
BW
6705
6706 act = &c->actions[c->action_count];
6707 act->align_type = align_type;
6708 act->alignment_pow = alignment_pow;
6709 act->action = action;
6710 act->offset = offset;
6711 act->removed_bytes = removed_bytes;
6712 act->do_action = do_action;
6713
43cd72b9
BW
6714 c->action_count++;
6715}
6716
6717\f
6718/* Access to internal relocations, section contents and symbols. */
6719
6720/* During relaxation, we need to modify relocations, section contents,
6721 and symbol definitions, and we need to keep the original values from
6722 being reloaded from the input files, i.e., we need to "pin" the
6723 modified values in memory. We also want to continue to observe the
6724 setting of the "keep-memory" flag. The following functions wrap the
6725 standard BFD functions to take care of this for us. */
6726
6727static Elf_Internal_Rela *
7fa3d080 6728retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
6729{
6730 Elf_Internal_Rela *internal_relocs;
6731
6732 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6733 return NULL;
6734
6735 internal_relocs = elf_section_data (sec)->relocs;
6736 if (internal_relocs == NULL)
6737 internal_relocs = (_bfd_elf_link_read_relocs
7fa3d080 6738 (abfd, sec, NULL, NULL, keep_memory));
43cd72b9
BW
6739 return internal_relocs;
6740}
6741
6742
6743static void
7fa3d080 6744pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
6745{
6746 elf_section_data (sec)->relocs = internal_relocs;
6747}
6748
6749
6750static void
7fa3d080 6751release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
6752{
6753 if (internal_relocs
6754 && elf_section_data (sec)->relocs != internal_relocs)
6755 free (internal_relocs);
6756}
6757
6758
6759static bfd_byte *
7fa3d080 6760retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
6761{
6762 bfd_byte *contents;
6763 bfd_size_type sec_size;
6764
6765 sec_size = bfd_get_section_limit (abfd, sec);
6766 contents = elf_section_data (sec)->this_hdr.contents;
68ffbac6 6767
43cd72b9
BW
6768 if (contents == NULL && sec_size != 0)
6769 {
6770 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6771 {
7fa3d080 6772 if (contents)
43cd72b9
BW
6773 free (contents);
6774 return NULL;
6775 }
68ffbac6 6776 if (keep_memory)
43cd72b9
BW
6777 elf_section_data (sec)->this_hdr.contents = contents;
6778 }
6779 return contents;
6780}
6781
6782
6783static void
7fa3d080 6784pin_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
6785{
6786 elf_section_data (sec)->this_hdr.contents = contents;
6787}
6788
6789
6790static void
7fa3d080 6791release_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
6792{
6793 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
6794 free (contents);
6795}
6796
6797
6798static Elf_Internal_Sym *
7fa3d080 6799retrieve_local_syms (bfd *input_bfd)
43cd72b9
BW
6800{
6801 Elf_Internal_Shdr *symtab_hdr;
6802 Elf_Internal_Sym *isymbuf;
6803 size_t locsymcount;
6804
6805 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6806 locsymcount = symtab_hdr->sh_info;
6807
6808 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6809 if (isymbuf == NULL && locsymcount != 0)
6810 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6811 NULL, NULL, NULL);
6812
6813 /* Save the symbols for this input file so they won't be read again. */
6814 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
6815 symtab_hdr->contents = (unsigned char *) isymbuf;
6816
6817 return isymbuf;
6818}
6819
6820\f
6821/* Code for link-time relaxation. */
6822
6823/* Initialization for relaxation: */
7fa3d080 6824static bfd_boolean analyze_relocations (struct bfd_link_info *);
43cd72b9 6825static bfd_boolean find_relaxable_sections
7fa3d080 6826 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
43cd72b9 6827static bfd_boolean collect_source_relocs
7fa3d080 6828 (bfd *, asection *, struct bfd_link_info *);
43cd72b9 6829static bfd_boolean is_resolvable_asm_expansion
7fa3d080
BW
6830 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
6831 bfd_boolean *);
43cd72b9 6832static Elf_Internal_Rela *find_associated_l32r_irel
7fa3d080 6833 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
43cd72b9 6834static bfd_boolean compute_text_actions
7fa3d080
BW
6835 (bfd *, asection *, struct bfd_link_info *);
6836static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
6837static bfd_boolean compute_ebb_actions (ebb_constraint *);
b2b326d2 6838typedef struct reloc_range_list_struct reloc_range_list;
43cd72b9 6839static bfd_boolean check_section_ebb_pcrels_fit
b2b326d2
MF
6840 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *,
6841 reloc_range_list *, const ebb_constraint *,
cb337148 6842 const xtensa_opcode *);
7fa3d080 6843static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
43cd72b9 6844static void text_action_add_proposed
7fa3d080
BW
6845 (text_action_list *, const ebb_constraint *, asection *);
6846static int compute_fill_extra_space (property_table_entry *);
43cd72b9
BW
6847
6848/* First pass: */
6849static bfd_boolean compute_removed_literals
7fa3d080 6850 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
43cd72b9 6851static Elf_Internal_Rela *get_irel_at_offset
7fa3d080 6852 (asection *, Elf_Internal_Rela *, bfd_vma);
68ffbac6 6853static bfd_boolean is_removable_literal
99ded152
BW
6854 (const source_reloc *, int, const source_reloc *, int, asection *,
6855 property_table_entry *, int);
43cd72b9 6856static bfd_boolean remove_dead_literal
7fa3d080 6857 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
68ffbac6 6858 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
7fa3d080
BW
6859static bfd_boolean identify_literal_placement
6860 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
6861 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
6862 source_reloc *, property_table_entry *, int, section_cache_t *,
6863 bfd_boolean);
6864static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
43cd72b9 6865static bfd_boolean coalesce_shared_literal
7fa3d080 6866 (asection *, source_reloc *, property_table_entry *, int, value_map *);
43cd72b9 6867static bfd_boolean move_shared_literal
7fa3d080
BW
6868 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
6869 int, const r_reloc *, const literal_value *, section_cache_t *);
43cd72b9
BW
6870
6871/* Second pass: */
7fa3d080
BW
6872static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
6873static bfd_boolean translate_section_fixes (asection *);
6874static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
9b7f5d20 6875static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
43cd72b9 6876static void shrink_dynamic_reloc_sections
7fa3d080 6877 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
43cd72b9 6878static bfd_boolean move_literal
7fa3d080
BW
6879 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
6880 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
43cd72b9 6881static bfd_boolean relax_property_section
7fa3d080 6882 (bfd *, asection *, struct bfd_link_info *);
43cd72b9
BW
6883
6884/* Third pass: */
7fa3d080 6885static bfd_boolean relax_section_symbols (bfd *, asection *);
43cd72b9
BW
6886
6887
68ffbac6 6888static bfd_boolean
7fa3d080
BW
6889elf_xtensa_relax_section (bfd *abfd,
6890 asection *sec,
6891 struct bfd_link_info *link_info,
6892 bfd_boolean *again)
43cd72b9
BW
6893{
6894 static value_map_hash_table *values = NULL;
6895 static bfd_boolean relocations_analyzed = FALSE;
6896 xtensa_relax_info *relax_info;
6897
6898 if (!relocations_analyzed)
6899 {
6900 /* Do some overall initialization for relaxation. */
6901 values = value_map_hash_table_init ();
6902 if (values == NULL)
6903 return FALSE;
6904 relaxing_section = TRUE;
6905 if (!analyze_relocations (link_info))
6906 return FALSE;
6907 relocations_analyzed = TRUE;
6908 }
6909 *again = FALSE;
6910
6911 /* Don't mess with linker-created sections. */
6912 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6913 return TRUE;
6914
6915 relax_info = get_xtensa_relax_info (sec);
6916 BFD_ASSERT (relax_info != NULL);
6917
6918 switch (relax_info->visited)
6919 {
6920 case 0:
6921 /* Note: It would be nice to fold this pass into
6922 analyze_relocations, but it is important for this step that the
6923 sections be examined in link order. */
6924 if (!compute_removed_literals (abfd, sec, link_info, values))
6925 return FALSE;
6926 *again = TRUE;
6927 break;
6928
6929 case 1:
6930 if (values)
6931 value_map_hash_table_delete (values);
6932 values = NULL;
6933 if (!relax_section (abfd, sec, link_info))
6934 return FALSE;
6935 *again = TRUE;
6936 break;
6937
6938 case 2:
6939 if (!relax_section_symbols (abfd, sec))
6940 return FALSE;
6941 break;
6942 }
6943
6944 relax_info->visited++;
6945 return TRUE;
6946}
6947
6948\f
6949/* Initialization for relaxation. */
6950
6951/* This function is called once at the start of relaxation. It scans
6952 all the input sections and marks the ones that are relaxable (i.e.,
6953 literal sections with L32R relocations against them), and then
6954 collects source_reloc information for all the relocations against
6955 those relaxable sections. During this process, it also detects
6956 longcalls, i.e., calls relaxed by the assembler into indirect
6957 calls, that can be optimized back into direct calls. Within each
6958 extended basic block (ebb) containing an optimized longcall, it
6959 computes a set of "text actions" that can be performed to remove
6960 the L32R associated with the longcall while optionally preserving
6961 branch target alignments. */
6962
6963static bfd_boolean
7fa3d080 6964analyze_relocations (struct bfd_link_info *link_info)
43cd72b9
BW
6965{
6966 bfd *abfd;
6967 asection *sec;
6968 bfd_boolean is_relaxable = FALSE;
6969
6970 /* Initialize the per-section relaxation info. */
c72f2fb2 6971 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
43cd72b9
BW
6972 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6973 {
6974 init_xtensa_relax_info (sec);
6975 }
6976
6977 /* Mark relaxable sections (and count relocations against each one). */
c72f2fb2 6978 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
43cd72b9
BW
6979 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6980 {
6981 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
6982 return FALSE;
6983 }
6984
6985 /* Bail out if there are no relaxable sections. */
6986 if (!is_relaxable)
6987 return TRUE;
6988
6989 /* Allocate space for source_relocs. */
c72f2fb2 6990 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
43cd72b9
BW
6991 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6992 {
6993 xtensa_relax_info *relax_info;
6994
6995 relax_info = get_xtensa_relax_info (sec);
6996 if (relax_info->is_relaxable_literal_section
6997 || relax_info->is_relaxable_asm_section)
6998 {
6999 relax_info->src_relocs = (source_reloc *)
7000 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
7001 }
25c6282a
BW
7002 else
7003 relax_info->src_count = 0;
43cd72b9
BW
7004 }
7005
7006 /* Collect info on relocations against each relaxable section. */
c72f2fb2 7007 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
43cd72b9
BW
7008 for (sec = abfd->sections; sec != NULL; sec = sec->next)
7009 {
7010 if (!collect_source_relocs (abfd, sec, link_info))
7011 return FALSE;
7012 }
7013
7014 /* Compute the text actions. */
c72f2fb2 7015 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
43cd72b9
BW
7016 for (sec = abfd->sections; sec != NULL; sec = sec->next)
7017 {
7018 if (!compute_text_actions (abfd, sec, link_info))
7019 return FALSE;
7020 }
7021
7022 return TRUE;
7023}
7024
7025
7026/* Find all the sections that might be relaxed. The motivation for
7027 this pass is that collect_source_relocs() needs to record _all_ the
7028 relocations that target each relaxable section. That is expensive
7029 and unnecessary unless the target section is actually going to be
7030 relaxed. This pass identifies all such sections by checking if
7031 they have L32Rs pointing to them. In the process, the total number
7032 of relocations targeting each section is also counted so that we
7033 know how much space to allocate for source_relocs against each
7034 relaxable literal section. */
7035
7036static bfd_boolean
7fa3d080
BW
7037find_relaxable_sections (bfd *abfd,
7038 asection *sec,
7039 struct bfd_link_info *link_info,
7040 bfd_boolean *is_relaxable_p)
43cd72b9
BW
7041{
7042 Elf_Internal_Rela *internal_relocs;
7043 bfd_byte *contents;
7044 bfd_boolean ok = TRUE;
7045 unsigned i;
7046 xtensa_relax_info *source_relax_info;
25c6282a 7047 bfd_boolean is_l32r_reloc;
43cd72b9
BW
7048
7049 internal_relocs = retrieve_internal_relocs (abfd, sec,
7050 link_info->keep_memory);
68ffbac6 7051 if (internal_relocs == NULL)
43cd72b9
BW
7052 return ok;
7053
7054 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7055 if (contents == NULL && sec->size != 0)
7056 {
7057 ok = FALSE;
7058 goto error_return;
7059 }
7060
7061 source_relax_info = get_xtensa_relax_info (sec);
68ffbac6 7062 for (i = 0; i < sec->reloc_count; i++)
43cd72b9
BW
7063 {
7064 Elf_Internal_Rela *irel = &internal_relocs[i];
7065 r_reloc r_rel;
7066 asection *target_sec;
7067 xtensa_relax_info *target_relax_info;
7068
7069 /* If this section has not already been marked as "relaxable", and
7070 if it contains any ASM_EXPAND relocations (marking expanded
7071 longcalls) that can be optimized into direct calls, then mark
7072 the section as "relaxable". */
7073 if (source_relax_info
7074 && !source_relax_info->is_relaxable_asm_section
7075 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
7076 {
7077 bfd_boolean is_reachable = FALSE;
7078 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
7079 link_info, &is_reachable)
7080 && is_reachable)
7081 {
7082 source_relax_info->is_relaxable_asm_section = TRUE;
7083 *is_relaxable_p = TRUE;
7084 }
7085 }
7086
7087 r_reloc_init (&r_rel, abfd, irel, contents,
7088 bfd_get_section_limit (abfd, sec));
7089
7090 target_sec = r_reloc_get_section (&r_rel);
7091 target_relax_info = get_xtensa_relax_info (target_sec);
7092 if (!target_relax_info)
7093 continue;
7094
7095 /* Count PC-relative operand relocations against the target section.
7096 Note: The conditions tested here must match the conditions under
7097 which init_source_reloc is called in collect_source_relocs(). */
25c6282a
BW
7098 is_l32r_reloc = FALSE;
7099 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
7100 {
7101 xtensa_opcode opcode =
7102 get_relocation_opcode (abfd, sec, contents, irel);
7103 if (opcode != XTENSA_UNDEFINED)
7104 {
7105 is_l32r_reloc = (opcode == get_l32r_opcode ());
7106 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
7107 || is_l32r_reloc)
7108 target_relax_info->src_count++;
7109 }
7110 }
43cd72b9 7111
25c6282a 7112 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
43cd72b9
BW
7113 {
7114 /* Mark the target section as relaxable. */
7115 target_relax_info->is_relaxable_literal_section = TRUE;
7116 *is_relaxable_p = TRUE;
7117 }
7118 }
7119
7120 error_return:
7121 release_contents (sec, contents);
7122 release_internal_relocs (sec, internal_relocs);
7123 return ok;
7124}
7125
7126
7127/* Record _all_ the relocations that point to relaxable sections, and
7128 get rid of ASM_EXPAND relocs by either converting them to
7129 ASM_SIMPLIFY or by removing them. */
7130
7131static bfd_boolean
7fa3d080
BW
7132collect_source_relocs (bfd *abfd,
7133 asection *sec,
7134 struct bfd_link_info *link_info)
43cd72b9
BW
7135{
7136 Elf_Internal_Rela *internal_relocs;
7137 bfd_byte *contents;
7138 bfd_boolean ok = TRUE;
7139 unsigned i;
7140 bfd_size_type sec_size;
7141
68ffbac6 7142 internal_relocs = retrieve_internal_relocs (abfd, sec,
43cd72b9 7143 link_info->keep_memory);
68ffbac6 7144 if (internal_relocs == NULL)
43cd72b9
BW
7145 return ok;
7146
7147 sec_size = bfd_get_section_limit (abfd, sec);
7148 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7149 if (contents == NULL && sec_size != 0)
7150 {
7151 ok = FALSE;
7152 goto error_return;
7153 }
7154
7155 /* Record relocations against relaxable literal sections. */
68ffbac6 7156 for (i = 0; i < sec->reloc_count; i++)
43cd72b9
BW
7157 {
7158 Elf_Internal_Rela *irel = &internal_relocs[i];
7159 r_reloc r_rel;
7160 asection *target_sec;
7161 xtensa_relax_info *target_relax_info;
7162
7163 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7164
7165 target_sec = r_reloc_get_section (&r_rel);
7166 target_relax_info = get_xtensa_relax_info (target_sec);
7167
7168 if (target_relax_info
7169 && (target_relax_info->is_relaxable_literal_section
7170 || target_relax_info->is_relaxable_asm_section))
7171 {
7172 xtensa_opcode opcode = XTENSA_UNDEFINED;
7173 int opnd = -1;
7174 bfd_boolean is_abs_literal = FALSE;
7175
7176 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7177 {
7178 /* None of the current alternate relocs are PC-relative,
7179 and only PC-relative relocs matter here. However, we
7180 still need to record the opcode for literal
7181 coalescing. */
7182 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7183 if (opcode == get_l32r_opcode ())
7184 {
7185 is_abs_literal = TRUE;
7186 opnd = 1;
7187 }
7188 else
7189 opcode = XTENSA_UNDEFINED;
7190 }
7191 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
7192 {
7193 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7194 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7195 }
7196
7197 if (opcode != XTENSA_UNDEFINED)
7198 {
7199 int src_next = target_relax_info->src_next++;
7200 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
7201
7202 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
7203 is_abs_literal);
7204 }
7205 }
7206 }
7207
7208 /* Now get rid of ASM_EXPAND relocations. At this point, the
7209 src_relocs array for the target literal section may still be
7210 incomplete, but it must at least contain the entries for the L32R
7211 relocations associated with ASM_EXPANDs because they were just
7212 added in the preceding loop over the relocations. */
7213
68ffbac6 7214 for (i = 0; i < sec->reloc_count; i++)
43cd72b9
BW
7215 {
7216 Elf_Internal_Rela *irel = &internal_relocs[i];
7217 bfd_boolean is_reachable;
7218
7219 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
7220 &is_reachable))
7221 continue;
7222
7223 if (is_reachable)
7224 {
7225 Elf_Internal_Rela *l32r_irel;
7226 r_reloc r_rel;
7227 asection *target_sec;
7228 xtensa_relax_info *target_relax_info;
7229
7230 /* Mark the source_reloc for the L32R so that it will be
7231 removed in compute_removed_literals(), along with the
7232 associated literal. */
7233 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
7234 irel, internal_relocs);
7235 if (l32r_irel == NULL)
7236 continue;
7237
7238 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
7239
7240 target_sec = r_reloc_get_section (&r_rel);
7241 target_relax_info = get_xtensa_relax_info (target_sec);
7242
7243 if (target_relax_info
7244 && (target_relax_info->is_relaxable_literal_section
7245 || target_relax_info->is_relaxable_asm_section))
7246 {
7247 source_reloc *s_reloc;
7248
7249 /* Search the source_relocs for the entry corresponding to
7250 the l32r_irel. Note: The src_relocs array is not yet
7251 sorted, but it wouldn't matter anyway because we're
7252 searching by source offset instead of target offset. */
68ffbac6 7253 s_reloc = find_source_reloc (target_relax_info->src_relocs,
43cd72b9
BW
7254 target_relax_info->src_next,
7255 sec, l32r_irel);
7256 BFD_ASSERT (s_reloc);
7257 s_reloc->is_null = TRUE;
7258 }
7259
7260 /* Convert this reloc to ASM_SIMPLIFY. */
7261 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
7262 R_XTENSA_ASM_SIMPLIFY);
7263 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7264
7265 pin_internal_relocs (sec, internal_relocs);
7266 }
7267 else
7268 {
7269 /* It is resolvable but doesn't reach. We resolve now
7270 by eliminating the relocation -- the call will remain
7271 expanded into L32R/CALLX. */
7272 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7273 pin_internal_relocs (sec, internal_relocs);
7274 }
7275 }
7276
7277 error_return:
7278 release_contents (sec, contents);
7279 release_internal_relocs (sec, internal_relocs);
7280 return ok;
7281}
7282
7283
7284/* Return TRUE if the asm expansion can be resolved. Generally it can
7285 be resolved on a final link or when a partial link locates it in the
7286 same section as the target. Set "is_reachable" flag if the target of
7287 the call is within the range of a direct call, given the current VMA
7288 for this section and the target section. */
7289
7290bfd_boolean
7fa3d080
BW
7291is_resolvable_asm_expansion (bfd *abfd,
7292 asection *sec,
7293 bfd_byte *contents,
7294 Elf_Internal_Rela *irel,
7295 struct bfd_link_info *link_info,
7296 bfd_boolean *is_reachable_p)
43cd72b9
BW
7297{
7298 asection *target_sec;
7299 bfd_vma target_offset;
7300 r_reloc r_rel;
7301 xtensa_opcode opcode, direct_call_opcode;
7302 bfd_vma self_address;
7303 bfd_vma dest_address;
7304 bfd_boolean uses_l32r;
7305 bfd_size_type sec_size;
7306
7307 *is_reachable_p = FALSE;
7308
7309 if (contents == NULL)
7310 return FALSE;
7311
68ffbac6 7312 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
43cd72b9
BW
7313 return FALSE;
7314
7315 sec_size = bfd_get_section_limit (abfd, sec);
7316 opcode = get_expanded_call_opcode (contents + irel->r_offset,
7317 sec_size - irel->r_offset, &uses_l32r);
7318 /* Optimization of longcalls that use CONST16 is not yet implemented. */
7319 if (!uses_l32r)
7320 return FALSE;
68ffbac6 7321
43cd72b9
BW
7322 direct_call_opcode = swap_callx_for_call_opcode (opcode);
7323 if (direct_call_opcode == XTENSA_UNDEFINED)
7324 return FALSE;
7325
7326 /* Check and see that the target resolves. */
7327 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7328 if (!r_reloc_is_defined (&r_rel))
7329 return FALSE;
7330
7331 target_sec = r_reloc_get_section (&r_rel);
7332 target_offset = r_rel.target_offset;
7333
7334 /* If the target is in a shared library, then it doesn't reach. This
7335 isn't supposed to come up because the compiler should never generate
7336 non-PIC calls on systems that use shared libraries, but the linker
7337 shouldn't crash regardless. */
7338 if (!target_sec->output_section)
7339 return FALSE;
68ffbac6 7340
43cd72b9
BW
7341 /* For relocatable sections, we can only simplify when the output
7342 section of the target is the same as the output section of the
7343 source. */
0e1862bb 7344 if (bfd_link_relocatable (link_info)
43cd72b9
BW
7345 && (target_sec->output_section != sec->output_section
7346 || is_reloc_sym_weak (abfd, irel)))
7347 return FALSE;
7348
331ed130
SA
7349 if (target_sec->output_section != sec->output_section)
7350 {
7351 /* If the two sections are sufficiently far away that relaxation
7352 might take the call out of range, we can't simplify. For
7353 example, a positive displacement call into another memory
7354 could get moved to a lower address due to literal removal,
7355 but the destination won't move, and so the displacment might
7356 get larger.
7357
7358 If the displacement is negative, assume the destination could
7359 move as far back as the start of the output section. The
7360 self_address will be at least as far into the output section
7361 as it is prior to relaxation.
7362
7363 If the displacement is postive, assume the destination will be in
7364 it's pre-relaxed location (because relaxation only makes sections
7365 smaller). The self_address could go all the way to the beginning
7366 of the output section. */
7367
7368 dest_address = target_sec->output_section->vma;
7369 self_address = sec->output_section->vma;
7370
7371 if (sec->output_section->vma > target_sec->output_section->vma)
7372 self_address += sec->output_offset + irel->r_offset + 3;
7373 else
7374 dest_address += bfd_get_section_limit (abfd, target_sec->output_section);
7375 /* Call targets should be four-byte aligned. */
7376 dest_address = (dest_address + 3) & ~3;
7377 }
7378 else
7379 {
7380
7381 self_address = (sec->output_section->vma
7382 + sec->output_offset + irel->r_offset + 3);
7383 dest_address = (target_sec->output_section->vma
7384 + target_sec->output_offset + target_offset);
7385 }
68ffbac6 7386
43cd72b9
BW
7387 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
7388 self_address, dest_address);
7389
7390 if ((self_address >> CALL_SEGMENT_BITS) !=
7391 (dest_address >> CALL_SEGMENT_BITS))
7392 return FALSE;
7393
7394 return TRUE;
7395}
7396
7397
7398static Elf_Internal_Rela *
7fa3d080
BW
7399find_associated_l32r_irel (bfd *abfd,
7400 asection *sec,
7401 bfd_byte *contents,
7402 Elf_Internal_Rela *other_irel,
7403 Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
7404{
7405 unsigned i;
e0001a05 7406
68ffbac6 7407 for (i = 0; i < sec->reloc_count; i++)
43cd72b9
BW
7408 {
7409 Elf_Internal_Rela *irel = &internal_relocs[i];
e0001a05 7410
43cd72b9
BW
7411 if (irel == other_irel)
7412 continue;
7413 if (irel->r_offset != other_irel->r_offset)
7414 continue;
7415 if (is_l32r_relocation (abfd, sec, contents, irel))
7416 return irel;
7417 }
7418
7419 return NULL;
e0001a05
NC
7420}
7421
7422
cb337148
BW
7423static xtensa_opcode *
7424build_reloc_opcodes (bfd *abfd,
7425 asection *sec,
7426 bfd_byte *contents,
7427 Elf_Internal_Rela *internal_relocs)
7428{
7429 unsigned i;
7430 xtensa_opcode *reloc_opcodes =
7431 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
7432 for (i = 0; i < sec->reloc_count; i++)
7433 {
7434 Elf_Internal_Rela *irel = &internal_relocs[i];
7435 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
7436 }
7437 return reloc_opcodes;
7438}
7439
b2b326d2
MF
7440struct reloc_range_struct
7441{
7442 bfd_vma addr;
7443 bfd_boolean add; /* TRUE if start of a range, FALSE otherwise. */
7444 /* Original irel index in the array of relocations for a section. */
7445 unsigned irel_index;
7446};
7447typedef struct reloc_range_struct reloc_range;
7448
7449typedef struct reloc_range_list_entry_struct reloc_range_list_entry;
7450struct reloc_range_list_entry_struct
7451{
7452 reloc_range_list_entry *next;
7453 reloc_range_list_entry *prev;
7454 Elf_Internal_Rela *irel;
7455 xtensa_opcode opcode;
7456 int opnum;
7457};
7458
7459struct reloc_range_list_struct
7460{
7461 /* The rest of the structure is only meaningful when ok is TRUE. */
7462 bfd_boolean ok;
7463
7464 unsigned n_range; /* Number of range markers. */
7465 reloc_range *range; /* Sorted range markers. */
7466
7467 unsigned first; /* Index of a first range element in the list. */
7468 unsigned last; /* One past index of a last range element in the list. */
7469
7470 unsigned n_list; /* Number of list elements. */
7471 reloc_range_list_entry *reloc; /* */
7472 reloc_range_list_entry list_root;
7473};
7474
7475static int
7476reloc_range_compare (const void *a, const void *b)
7477{
7478 const reloc_range *ra = a;
7479 const reloc_range *rb = b;
7480
7481 if (ra->addr != rb->addr)
7482 return ra->addr < rb->addr ? -1 : 1;
7483 if (ra->add != rb->add)
7484 return ra->add ? -1 : 1;
7485 return 0;
7486}
7487
7488static void
7489build_reloc_ranges (bfd *abfd, asection *sec,
7490 bfd_byte *contents,
7491 Elf_Internal_Rela *internal_relocs,
7492 xtensa_opcode *reloc_opcodes,
7493 reloc_range_list *list)
7494{
7495 unsigned i;
7496 size_t n = 0;
7497 size_t max_n = 0;
7498 reloc_range *ranges = NULL;
7499 reloc_range_list_entry *reloc =
7500 bfd_malloc (sec->reloc_count * sizeof (*reloc));
7501
7502 memset (list, 0, sizeof (*list));
7503 list->ok = TRUE;
7504
7505 for (i = 0; i < sec->reloc_count; i++)
7506 {
7507 Elf_Internal_Rela *irel = &internal_relocs[i];
7508 int r_type = ELF32_R_TYPE (irel->r_info);
7509 reloc_howto_type *howto = &elf_howto_table[r_type];
7510 r_reloc r_rel;
7511
7512 if (r_type == R_XTENSA_ASM_SIMPLIFY
7513 || r_type == R_XTENSA_32_PCREL
7514 || !howto->pc_relative)
7515 continue;
7516
7517 r_reloc_init (&r_rel, abfd, irel, contents,
7518 bfd_get_section_limit (abfd, sec));
7519
7520 if (r_reloc_get_section (&r_rel) != sec)
7521 continue;
7522
7523 if (n + 2 > max_n)
7524 {
7525 max_n = (max_n + 2) * 2;
7526 ranges = bfd_realloc (ranges, max_n * sizeof (*ranges));
7527 }
7528
7529 ranges[n].addr = irel->r_offset;
7530 ranges[n + 1].addr = r_rel.target_offset;
7531
7532 ranges[n].add = ranges[n].addr < ranges[n + 1].addr;
7533 ranges[n + 1].add = !ranges[n].add;
7534
7535 ranges[n].irel_index = i;
7536 ranges[n + 1].irel_index = i;
7537
7538 n += 2;
7539
7540 reloc[i].irel = irel;
7541
7542 /* Every relocation won't possibly be checked in the optimized version of
7543 check_section_ebb_pcrels_fit, so this needs to be done here. */
7544 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7545 {
7546 /* None of the current alternate relocs are PC-relative,
7547 and only PC-relative relocs matter here. */
7548 }
7549 else
7550 {
7551 xtensa_opcode opcode;
7552 int opnum;
7553
7554 if (reloc_opcodes)
7555 opcode = reloc_opcodes[i];
7556 else
7557 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7558
7559 if (opcode == XTENSA_UNDEFINED)
7560 {
7561 list->ok = FALSE;
7562 break;
7563 }
7564
7565 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7566 if (opnum == XTENSA_UNDEFINED)
7567 {
7568 list->ok = FALSE;
7569 break;
7570 }
7571
7572 /* Record relocation opcode and opnum as we've calculated them
7573 anyway and they won't change. */
7574 reloc[i].opcode = opcode;
7575 reloc[i].opnum = opnum;
7576 }
7577 }
7578
7579 if (list->ok)
7580 {
7581 ranges = bfd_realloc (ranges, n * sizeof (*ranges));
7582 qsort (ranges, n, sizeof (*ranges), reloc_range_compare);
7583
7584 list->n_range = n;
7585 list->range = ranges;
7586 list->reloc = reloc;
7587 list->list_root.prev = &list->list_root;
7588 list->list_root.next = &list->list_root;
7589 }
7590 else
7591 {
7592 free (ranges);
7593 free (reloc);
7594 }
7595}
7596
7597static void reloc_range_list_append (reloc_range_list *list,
7598 unsigned irel_index)
7599{
7600 reloc_range_list_entry *entry = list->reloc + irel_index;
7601
7602 entry->prev = list->list_root.prev;
7603 entry->next = &list->list_root;
7604 entry->prev->next = entry;
7605 entry->next->prev = entry;
7606 ++list->n_list;
7607}
7608
7609static void reloc_range_list_remove (reloc_range_list *list,
7610 unsigned irel_index)
7611{
7612 reloc_range_list_entry *entry = list->reloc + irel_index;
7613
7614 entry->next->prev = entry->prev;
7615 entry->prev->next = entry->next;
7616 --list->n_list;
7617}
7618
7619/* Update relocation list object so that it lists all relocations that cross
7620 [first; last] range. Range bounds should not decrease with successive
7621 invocations. */
7622static void reloc_range_list_update_range (reloc_range_list *list,
7623 bfd_vma first, bfd_vma last)
7624{
7625 /* This should not happen: EBBs are iterated from lower addresses to higher.
7626 But even if that happens there's no need to break: just flush current list
7627 and start from scratch. */
7628 if ((list->last > 0 && list->range[list->last - 1].addr > last) ||
7629 (list->first > 0 && list->range[list->first - 1].addr >= first))
7630 {
7631 list->first = 0;
7632 list->last = 0;
7633 list->n_list = 0;
7634 list->list_root.next = &list->list_root;
7635 list->list_root.prev = &list->list_root;
7636 fprintf (stderr, "%s: move backwards requested\n", __func__);
7637 }
7638
7639 for (; list->last < list->n_range &&
7640 list->range[list->last].addr <= last; ++list->last)
7641 if (list->range[list->last].add)
7642 reloc_range_list_append (list, list->range[list->last].irel_index);
7643
7644 for (; list->first < list->n_range &&
7645 list->range[list->first].addr < first; ++list->first)
7646 if (!list->range[list->first].add)
7647 reloc_range_list_remove (list, list->range[list->first].irel_index);
7648}
7649
7650static void free_reloc_range_list (reloc_range_list *list)
7651{
7652 free (list->range);
7653 free (list->reloc);
7654}
cb337148 7655
43cd72b9
BW
7656/* The compute_text_actions function will build a list of potential
7657 transformation actions for code in the extended basic block of each
7658 longcall that is optimized to a direct call. From this list we
7659 generate a set of actions to actually perform that optimizes for
7660 space and, if not using size_opt, maintains branch target
7661 alignments.
e0001a05 7662
43cd72b9
BW
7663 These actions to be performed are placed on a per-section list.
7664 The actual changes are performed by relax_section() in the second
7665 pass. */
7666
7667bfd_boolean
7fa3d080
BW
7668compute_text_actions (bfd *abfd,
7669 asection *sec,
7670 struct bfd_link_info *link_info)
e0001a05 7671{
cb337148 7672 xtensa_opcode *reloc_opcodes = NULL;
43cd72b9 7673 xtensa_relax_info *relax_info;
e0001a05 7674 bfd_byte *contents;
43cd72b9 7675 Elf_Internal_Rela *internal_relocs;
e0001a05
NC
7676 bfd_boolean ok = TRUE;
7677 unsigned i;
43cd72b9
BW
7678 property_table_entry *prop_table = 0;
7679 int ptblsize = 0;
7680 bfd_size_type sec_size;
b2b326d2 7681 reloc_range_list relevant_relocs;
43cd72b9 7682
43cd72b9
BW
7683 relax_info = get_xtensa_relax_info (sec);
7684 BFD_ASSERT (relax_info);
25c6282a
BW
7685 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
7686
7687 /* Do nothing if the section contains no optimized longcalls. */
43cd72b9
BW
7688 if (!relax_info->is_relaxable_asm_section)
7689 return ok;
e0001a05
NC
7690
7691 internal_relocs = retrieve_internal_relocs (abfd, sec,
7692 link_info->keep_memory);
e0001a05 7693
43cd72b9
BW
7694 if (internal_relocs)
7695 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7696 internal_reloc_compare);
7697
7698 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 7699 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 7700 if (contents == NULL && sec_size != 0)
e0001a05
NC
7701 {
7702 ok = FALSE;
7703 goto error_return;
7704 }
7705
43cd72b9
BW
7706 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7707 XTENSA_PROP_SEC_NAME, FALSE);
7708 if (ptblsize < 0)
7709 {
7710 ok = FALSE;
7711 goto error_return;
7712 }
7713
b2b326d2
MF
7714 /* Precompute the opcode for each relocation. */
7715 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents, internal_relocs);
7716
7717 build_reloc_ranges (abfd, sec, contents, internal_relocs, reloc_opcodes,
7718 &relevant_relocs);
7719
43cd72b9 7720 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
7721 {
7722 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9
BW
7723 bfd_vma r_offset;
7724 property_table_entry *the_entry;
7725 int ptbl_idx;
7726 ebb_t *ebb;
7727 ebb_constraint ebb_table;
7728 bfd_size_type simplify_size;
7729
7730 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
7731 continue;
7732 r_offset = irel->r_offset;
e0001a05 7733
43cd72b9
BW
7734 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
7735 if (simplify_size == 0)
7736 {
7737 (*_bfd_error_handler)
7738 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
7739 sec->owner, sec, r_offset);
7740 continue;
7741 }
e0001a05 7742
43cd72b9
BW
7743 /* If the instruction table is not around, then don't do this
7744 relaxation. */
7745 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7746 sec->vma + irel->r_offset);
7747 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
7748 {
7749 text_action_add (&relax_info->action_list,
7750 ta_convert_longcall, sec, r_offset,
7751 0);
7752 continue;
7753 }
7754
7755 /* If the next longcall happens to be at the same address as an
7756 unreachable section of size 0, then skip forward. */
7757 ptbl_idx = the_entry - prop_table;
7758 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
7759 && the_entry->size == 0
7760 && ptbl_idx + 1 < ptblsize
7761 && (prop_table[ptbl_idx + 1].address
7762 == prop_table[ptbl_idx].address))
7763 {
7764 ptbl_idx++;
7765 the_entry++;
7766 }
e0001a05 7767
99ded152 7768 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
43cd72b9
BW
7769 /* NO_REORDER is OK */
7770 continue;
e0001a05 7771
43cd72b9
BW
7772 init_ebb_constraint (&ebb_table);
7773 ebb = &ebb_table.ebb;
7774 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
7775 internal_relocs, sec->reloc_count);
7776 ebb->start_offset = r_offset + simplify_size;
7777 ebb->end_offset = r_offset + simplify_size;
7778 ebb->start_ptbl_idx = ptbl_idx;
7779 ebb->end_ptbl_idx = ptbl_idx;
7780 ebb->start_reloc_idx = i;
7781 ebb->end_reloc_idx = i;
7782
7783 if (!extend_ebb_bounds (ebb)
7784 || !compute_ebb_proposed_actions (&ebb_table)
7785 || !compute_ebb_actions (&ebb_table)
7786 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
b2b326d2
MF
7787 internal_relocs,
7788 &relevant_relocs,
7789 &ebb_table, reloc_opcodes)
43cd72b9 7790 || !check_section_ebb_reduces (&ebb_table))
e0001a05 7791 {
43cd72b9
BW
7792 /* If anything goes wrong or we get unlucky and something does
7793 not fit, with our plan because of expansion between
7794 critical branches, just convert to a NOP. */
7795
7796 text_action_add (&relax_info->action_list,
7797 ta_convert_longcall, sec, r_offset, 0);
7798 i = ebb_table.ebb.end_reloc_idx;
7799 free_ebb_constraint (&ebb_table);
7800 continue;
e0001a05 7801 }
43cd72b9
BW
7802
7803 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
7804
7805 /* Update the index so we do not go looking at the relocations
7806 we have already processed. */
7807 i = ebb_table.ebb.end_reloc_idx;
7808 free_ebb_constraint (&ebb_table);
e0001a05
NC
7809 }
7810
b2b326d2
MF
7811 free_reloc_range_list (&relevant_relocs);
7812
43cd72b9 7813#if DEBUG
4c2af04f 7814 if (action_list_count (&relax_info->action_list))
43cd72b9
BW
7815 print_action_list (stderr, &relax_info->action_list);
7816#endif
7817
7818error_return:
e0001a05
NC
7819 release_contents (sec, contents);
7820 release_internal_relocs (sec, internal_relocs);
43cd72b9
BW
7821 if (prop_table)
7822 free (prop_table);
cb337148
BW
7823 if (reloc_opcodes)
7824 free (reloc_opcodes);
43cd72b9 7825
e0001a05
NC
7826 return ok;
7827}
7828
7829
64b607e6
BW
7830/* Do not widen an instruction if it is preceeded by a
7831 loop opcode. It might cause misalignment. */
7832
7833static bfd_boolean
7834prev_instr_is_a_loop (bfd_byte *contents,
7835 bfd_size_type content_length,
7836 bfd_size_type offset)
7837{
7838 xtensa_opcode prev_opcode;
7839
7840 if (offset < 3)
7841 return FALSE;
7842 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
7843 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
68ffbac6 7844}
64b607e6
BW
7845
7846
43cd72b9 7847/* Find all of the possible actions for an extended basic block. */
e0001a05 7848
43cd72b9 7849bfd_boolean
7fa3d080 7850compute_ebb_proposed_actions (ebb_constraint *ebb_table)
e0001a05 7851{
43cd72b9
BW
7852 const ebb_t *ebb = &ebb_table->ebb;
7853 unsigned rel_idx = ebb->start_reloc_idx;
7854 property_table_entry *entry, *start_entry, *end_entry;
64b607e6
BW
7855 bfd_vma offset = 0;
7856 xtensa_isa isa = xtensa_default_isa;
7857 xtensa_format fmt;
7858 static xtensa_insnbuf insnbuf = NULL;
7859 static xtensa_insnbuf slotbuf = NULL;
7860
7861 if (insnbuf == NULL)
7862 {
7863 insnbuf = xtensa_insnbuf_alloc (isa);
7864 slotbuf = xtensa_insnbuf_alloc (isa);
7865 }
e0001a05 7866
43cd72b9
BW
7867 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
7868 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
e0001a05 7869
43cd72b9 7870 for (entry = start_entry; entry <= end_entry; entry++)
e0001a05 7871 {
64b607e6 7872 bfd_vma start_offset, end_offset;
43cd72b9 7873 bfd_size_type insn_len;
e0001a05 7874
43cd72b9
BW
7875 start_offset = entry->address - ebb->sec->vma;
7876 end_offset = entry->address + entry->size - ebb->sec->vma;
e0001a05 7877
43cd72b9
BW
7878 if (entry == start_entry)
7879 start_offset = ebb->start_offset;
7880 if (entry == end_entry)
7881 end_offset = ebb->end_offset;
7882 offset = start_offset;
e0001a05 7883
43cd72b9
BW
7884 if (offset == entry->address - ebb->sec->vma
7885 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
7886 {
7887 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
7888 BFD_ASSERT (offset != end_offset);
7889 if (offset == end_offset)
7890 return FALSE;
e0001a05 7891
43cd72b9
BW
7892 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
7893 offset);
68ffbac6 7894 if (insn_len == 0)
64b607e6
BW
7895 goto decode_error;
7896
43cd72b9
BW
7897 if (check_branch_target_aligned_address (offset, insn_len))
7898 align_type = EBB_REQUIRE_TGT_ALIGN;
7899
7900 ebb_propose_action (ebb_table, align_type, 0,
7901 ta_none, offset, 0, TRUE);
7902 }
7903
7904 while (offset != end_offset)
e0001a05 7905 {
43cd72b9 7906 Elf_Internal_Rela *irel;
e0001a05 7907 xtensa_opcode opcode;
e0001a05 7908
43cd72b9
BW
7909 while (rel_idx < ebb->end_reloc_idx
7910 && (ebb->relocs[rel_idx].r_offset < offset
7911 || (ebb->relocs[rel_idx].r_offset == offset
7912 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
7913 != R_XTENSA_ASM_SIMPLIFY))))
7914 rel_idx++;
7915
7916 /* Check for longcall. */
7917 irel = &ebb->relocs[rel_idx];
7918 if (irel->r_offset == offset
7919 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
7920 {
7921 bfd_size_type simplify_size;
e0001a05 7922
68ffbac6 7923 simplify_size = get_asm_simplify_size (ebb->contents,
43cd72b9
BW
7924 ebb->content_length,
7925 irel->r_offset);
7926 if (simplify_size == 0)
64b607e6 7927 goto decode_error;
43cd72b9
BW
7928
7929 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7930 ta_convert_longcall, offset, 0, TRUE);
68ffbac6 7931
43cd72b9
BW
7932 offset += simplify_size;
7933 continue;
7934 }
e0001a05 7935
64b607e6
BW
7936 if (offset + MIN_INSN_LENGTH > ebb->content_length)
7937 goto decode_error;
7938 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
7939 ebb->content_length - offset);
7940 fmt = xtensa_format_decode (isa, insnbuf);
7941 if (fmt == XTENSA_UNDEFINED)
7942 goto decode_error;
7943 insn_len = xtensa_format_length (isa, fmt);
7944 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
7945 goto decode_error;
7946
7947 if (xtensa_format_num_slots (isa, fmt) != 1)
43cd72b9 7948 {
64b607e6
BW
7949 offset += insn_len;
7950 continue;
43cd72b9 7951 }
64b607e6
BW
7952
7953 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7954 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
7955 if (opcode == XTENSA_UNDEFINED)
7956 goto decode_error;
7957
43cd72b9 7958 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
99ded152 7959 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
64b607e6 7960 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
43cd72b9
BW
7961 {
7962 /* Add an instruction narrow action. */
7963 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7964 ta_narrow_insn, offset, 0, FALSE);
43cd72b9 7965 }
99ded152 7966 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
64b607e6
BW
7967 && can_widen_instruction (slotbuf, fmt, opcode) != 0
7968 && ! prev_instr_is_a_loop (ebb->contents,
7969 ebb->content_length, offset))
43cd72b9
BW
7970 {
7971 /* Add an instruction widen action. */
7972 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7973 ta_widen_insn, offset, 0, FALSE);
43cd72b9 7974 }
64b607e6 7975 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
43cd72b9
BW
7976 {
7977 /* Check for branch targets. */
7978 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
7979 ta_none, offset, 0, TRUE);
43cd72b9
BW
7980 }
7981
7982 offset += insn_len;
e0001a05
NC
7983 }
7984 }
7985
43cd72b9
BW
7986 if (ebb->ends_unreachable)
7987 {
7988 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7989 ta_fill, ebb->end_offset, 0, TRUE);
7990 }
e0001a05 7991
43cd72b9 7992 return TRUE;
64b607e6
BW
7993
7994 decode_error:
7995 (*_bfd_error_handler)
7996 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
7997 ebb->sec->owner, ebb->sec, offset);
7998 return FALSE;
43cd72b9
BW
7999}
8000
8001
8002/* After all of the information has collected about the
8003 transformations possible in an EBB, compute the appropriate actions
8004 here in compute_ebb_actions. We still must check later to make
8005 sure that the actions do not break any relocations. The algorithm
8006 used here is pretty greedy. Basically, it removes as many no-ops
8007 as possible so that the end of the EBB has the same alignment
8008 characteristics as the original. First, it uses narrowing, then
8009 fill space at the end of the EBB, and finally widenings. If that
8010 does not work, it tries again with one fewer no-op removed. The
8011 optimization will only be performed if all of the branch targets
8012 that were aligned before transformation are also aligned after the
8013 transformation.
8014
8015 When the size_opt flag is set, ignore the branch target alignments,
8016 narrow all wide instructions, and remove all no-ops unless the end
8017 of the EBB prevents it. */
8018
8019bfd_boolean
7fa3d080 8020compute_ebb_actions (ebb_constraint *ebb_table)
43cd72b9
BW
8021{
8022 unsigned i = 0;
8023 unsigned j;
8024 int removed_bytes = 0;
8025 ebb_t *ebb = &ebb_table->ebb;
8026 unsigned seg_idx_start = 0;
8027 unsigned seg_idx_end = 0;
8028
8029 /* We perform this like the assembler relaxation algorithm: Start by
8030 assuming all instructions are narrow and all no-ops removed; then
8031 walk through.... */
8032
8033 /* For each segment of this that has a solid constraint, check to
8034 see if there are any combinations that will keep the constraint.
8035 If so, use it. */
8036 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
e0001a05 8037 {
43cd72b9
BW
8038 bfd_boolean requires_text_end_align = FALSE;
8039 unsigned longcall_count = 0;
8040 unsigned longcall_convert_count = 0;
8041 unsigned narrowable_count = 0;
8042 unsigned narrowable_convert_count = 0;
8043 unsigned widenable_count = 0;
8044 unsigned widenable_convert_count = 0;
e0001a05 8045
43cd72b9
BW
8046 proposed_action *action = NULL;
8047 int align = (1 << ebb_table->ebb.sec->alignment_power);
e0001a05 8048
43cd72b9 8049 seg_idx_start = seg_idx_end;
e0001a05 8050
43cd72b9
BW
8051 for (i = seg_idx_start; i < ebb_table->action_count; i++)
8052 {
8053 action = &ebb_table->actions[i];
8054 if (action->action == ta_convert_longcall)
8055 longcall_count++;
8056 if (action->action == ta_narrow_insn)
8057 narrowable_count++;
8058 if (action->action == ta_widen_insn)
8059 widenable_count++;
8060 if (action->action == ta_fill)
8061 break;
8062 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
8063 break;
8064 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
8065 && !elf32xtensa_size_opt)
8066 break;
8067 }
8068 seg_idx_end = i;
e0001a05 8069
43cd72b9
BW
8070 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
8071 requires_text_end_align = TRUE;
e0001a05 8072
43cd72b9
BW
8073 if (elf32xtensa_size_opt && !requires_text_end_align
8074 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
8075 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
8076 {
8077 longcall_convert_count = longcall_count;
8078 narrowable_convert_count = narrowable_count;
8079 widenable_convert_count = 0;
8080 }
8081 else
8082 {
8083 /* There is a constraint. Convert the max number of longcalls. */
8084 narrowable_convert_count = 0;
8085 longcall_convert_count = 0;
8086 widenable_convert_count = 0;
e0001a05 8087
43cd72b9 8088 for (j = 0; j < longcall_count; j++)
e0001a05 8089 {
43cd72b9
BW
8090 int removed = (longcall_count - j) * 3 & (align - 1);
8091 unsigned desire_narrow = (align - removed) & (align - 1);
8092 unsigned desire_widen = removed;
8093 if (desire_narrow <= narrowable_count)
8094 {
8095 narrowable_convert_count = desire_narrow;
8096 narrowable_convert_count +=
8097 (align * ((narrowable_count - narrowable_convert_count)
8098 / align));
8099 longcall_convert_count = (longcall_count - j);
8100 widenable_convert_count = 0;
8101 break;
8102 }
8103 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
8104 {
8105 narrowable_convert_count = 0;
8106 longcall_convert_count = longcall_count - j;
8107 widenable_convert_count = desire_widen;
8108 break;
8109 }
8110 }
8111 }
e0001a05 8112
43cd72b9
BW
8113 /* Now the number of conversions are saved. Do them. */
8114 for (i = seg_idx_start; i < seg_idx_end; i++)
8115 {
8116 action = &ebb_table->actions[i];
8117 switch (action->action)
8118 {
8119 case ta_convert_longcall:
8120 if (longcall_convert_count != 0)
8121 {
8122 action->action = ta_remove_longcall;
8123 action->do_action = TRUE;
8124 action->removed_bytes += 3;
8125 longcall_convert_count--;
8126 }
8127 break;
8128 case ta_narrow_insn:
8129 if (narrowable_convert_count != 0)
8130 {
8131 action->do_action = TRUE;
8132 action->removed_bytes += 1;
8133 narrowable_convert_count--;
8134 }
8135 break;
8136 case ta_widen_insn:
8137 if (widenable_convert_count != 0)
8138 {
8139 action->do_action = TRUE;
8140 action->removed_bytes -= 1;
8141 widenable_convert_count--;
8142 }
8143 break;
8144 default:
8145 break;
e0001a05 8146 }
43cd72b9
BW
8147 }
8148 }
e0001a05 8149
43cd72b9
BW
8150 /* Now we move on to some local opts. Try to remove each of the
8151 remaining longcalls. */
e0001a05 8152
43cd72b9
BW
8153 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
8154 {
8155 removed_bytes = 0;
8156 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 8157 {
43cd72b9
BW
8158 int old_removed_bytes = removed_bytes;
8159 proposed_action *action = &ebb_table->actions[i];
8160
8161 if (action->do_action && action->action == ta_convert_longcall)
8162 {
8163 bfd_boolean bad_alignment = FALSE;
8164 removed_bytes += 3;
8165 for (j = i + 1; j < ebb_table->action_count; j++)
8166 {
8167 proposed_action *new_action = &ebb_table->actions[j];
8168 bfd_vma offset = new_action->offset;
8169 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
8170 {
8171 if (!check_branch_target_aligned
8172 (ebb_table->ebb.contents,
8173 ebb_table->ebb.content_length,
8174 offset, offset - removed_bytes))
8175 {
8176 bad_alignment = TRUE;
8177 break;
8178 }
8179 }
8180 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
8181 {
8182 if (!check_loop_aligned (ebb_table->ebb.contents,
8183 ebb_table->ebb.content_length,
8184 offset,
8185 offset - removed_bytes))
8186 {
8187 bad_alignment = TRUE;
8188 break;
8189 }
8190 }
8191 if (new_action->action == ta_narrow_insn
8192 && !new_action->do_action
8193 && ebb_table->ebb.sec->alignment_power == 2)
8194 {
8195 /* Narrow an instruction and we are done. */
8196 new_action->do_action = TRUE;
8197 new_action->removed_bytes += 1;
8198 bad_alignment = FALSE;
8199 break;
8200 }
8201 if (new_action->action == ta_widen_insn
8202 && new_action->do_action
8203 && ebb_table->ebb.sec->alignment_power == 2)
8204 {
8205 /* Narrow an instruction and we are done. */
8206 new_action->do_action = FALSE;
8207 new_action->removed_bytes += 1;
8208 bad_alignment = FALSE;
8209 break;
8210 }
5c5d6806
BW
8211 if (new_action->do_action)
8212 removed_bytes += new_action->removed_bytes;
43cd72b9
BW
8213 }
8214 if (!bad_alignment)
8215 {
8216 action->removed_bytes += 3;
8217 action->action = ta_remove_longcall;
8218 action->do_action = TRUE;
8219 }
8220 }
8221 removed_bytes = old_removed_bytes;
8222 if (action->do_action)
8223 removed_bytes += action->removed_bytes;
e0001a05
NC
8224 }
8225 }
8226
43cd72b9
BW
8227 removed_bytes = 0;
8228 for (i = 0; i < ebb_table->action_count; ++i)
8229 {
8230 proposed_action *action = &ebb_table->actions[i];
8231 if (action->do_action)
8232 removed_bytes += action->removed_bytes;
8233 }
8234
8235 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
8236 && ebb->ends_unreachable)
8237 {
8238 proposed_action *action;
8239 int br;
8240 int extra_space;
8241
8242 BFD_ASSERT (ebb_table->action_count != 0);
8243 action = &ebb_table->actions[ebb_table->action_count - 1];
8244 BFD_ASSERT (action->action == ta_fill);
8245 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
8246
8247 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
8248 br = action->removed_bytes + removed_bytes + extra_space;
8249 br = br & ((1 << ebb->sec->alignment_power ) - 1);
8250
8251 action->removed_bytes = extra_space - br;
8252 }
8253 return TRUE;
e0001a05
NC
8254}
8255
8256
03e94c08
BW
8257/* The xlate_map is a sorted array of address mappings designed to
8258 answer the offset_with_removed_text() query with a binary search instead
8259 of a linear search through the section's action_list. */
8260
8261typedef struct xlate_map_entry xlate_map_entry_t;
8262typedef struct xlate_map xlate_map_t;
8263
8264struct xlate_map_entry
8265{
8266 unsigned orig_address;
8267 unsigned new_address;
8268 unsigned size;
8269};
8270
8271struct xlate_map
8272{
8273 unsigned entry_count;
8274 xlate_map_entry_t *entry;
8275};
8276
8277
68ffbac6 8278static int
03e94c08
BW
8279xlate_compare (const void *a_v, const void *b_v)
8280{
8281 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
8282 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
8283 if (a->orig_address < b->orig_address)
8284 return -1;
8285 if (a->orig_address > (b->orig_address + b->size - 1))
8286 return 1;
8287 return 0;
8288}
8289
8290
8291static bfd_vma
8292xlate_offset_with_removed_text (const xlate_map_t *map,
8293 text_action_list *action_list,
8294 bfd_vma offset)
8295{
03e94c08
BW
8296 void *r;
8297 xlate_map_entry_t *e;
8298
8299 if (map == NULL)
8300 return offset_with_removed_text (action_list, offset);
8301
8302 if (map->entry_count == 0)
8303 return offset;
8304
03e94c08
BW
8305 r = bsearch (&offset, map->entry, map->entry_count,
8306 sizeof (xlate_map_entry_t), &xlate_compare);
8307 e = (xlate_map_entry_t *) r;
68ffbac6 8308
03e94c08
BW
8309 BFD_ASSERT (e != NULL);
8310 if (e == NULL)
8311 return offset;
8312 return e->new_address - e->orig_address + offset;
8313}
8314
4c2af04f
MF
8315typedef struct xlate_map_context_struct xlate_map_context;
8316struct xlate_map_context_struct
8317{
8318 xlate_map_t *map;
8319 xlate_map_entry_t *current_entry;
8320 int removed;
8321};
8322
8323static int
8324xlate_map_fn (splay_tree_node node, void *p)
8325{
8326 text_action *r = (text_action *)node->value;
8327 xlate_map_context *ctx = p;
8328 unsigned orig_size = 0;
8329
8330 switch (r->action)
8331 {
8332 case ta_none:
8333 case ta_remove_insn:
8334 case ta_convert_longcall:
8335 case ta_remove_literal:
8336 case ta_add_literal:
8337 break;
8338 case ta_remove_longcall:
8339 orig_size = 6;
8340 break;
8341 case ta_narrow_insn:
8342 orig_size = 3;
8343 break;
8344 case ta_widen_insn:
8345 orig_size = 2;
8346 break;
8347 case ta_fill:
8348 break;
8349 }
8350 ctx->current_entry->size =
8351 r->offset + orig_size - ctx->current_entry->orig_address;
8352 if (ctx->current_entry->size != 0)
8353 {
8354 ctx->current_entry++;
8355 ctx->map->entry_count++;
8356 }
8357 ctx->current_entry->orig_address = r->offset + orig_size;
8358 ctx->removed += r->removed_bytes;
8359 ctx->current_entry->new_address = r->offset + orig_size - ctx->removed;
8360 ctx->current_entry->size = 0;
8361 return 0;
8362}
03e94c08
BW
8363
8364/* Build a binary searchable offset translation map from a section's
8365 action list. */
8366
8367static xlate_map_t *
8368build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
8369{
03e94c08
BW
8370 text_action_list *action_list = &relax_info->action_list;
8371 unsigned num_actions = 0;
4c2af04f 8372 xlate_map_context ctx;
03e94c08 8373
4c2af04f
MF
8374 ctx.map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
8375
8376 if (ctx.map == NULL)
03e94c08
BW
8377 return NULL;
8378
8379 num_actions = action_list_count (action_list);
4c2af04f 8380 ctx.map->entry = (xlate_map_entry_t *)
03e94c08 8381 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
4c2af04f 8382 if (ctx.map->entry == NULL)
03e94c08 8383 {
4c2af04f 8384 free (ctx.map);
03e94c08
BW
8385 return NULL;
8386 }
4c2af04f 8387 ctx.map->entry_count = 0;
68ffbac6 8388
4c2af04f
MF
8389 ctx.removed = 0;
8390 ctx.current_entry = &ctx.map->entry[0];
03e94c08 8391
4c2af04f
MF
8392 ctx.current_entry->orig_address = 0;
8393 ctx.current_entry->new_address = 0;
8394 ctx.current_entry->size = 0;
03e94c08 8395
4c2af04f 8396 splay_tree_foreach (action_list->tree, xlate_map_fn, &ctx);
03e94c08 8397
4c2af04f
MF
8398 ctx.current_entry->size = (bfd_get_section_limit (sec->owner, sec)
8399 - ctx.current_entry->orig_address);
8400 if (ctx.current_entry->size != 0)
8401 ctx.map->entry_count++;
03e94c08 8402
4c2af04f 8403 return ctx.map;
03e94c08
BW
8404}
8405
8406
8407/* Free an offset translation map. */
8408
68ffbac6 8409static void
03e94c08
BW
8410free_xlate_map (xlate_map_t *map)
8411{
8412 if (map && map->entry)
8413 free (map->entry);
8414 if (map)
8415 free (map);
8416}
8417
8418
43cd72b9
BW
8419/* Use check_section_ebb_pcrels_fit to make sure that all of the
8420 relocations in a section will fit if a proposed set of actions
8421 are performed. */
e0001a05 8422
43cd72b9 8423static bfd_boolean
7fa3d080
BW
8424check_section_ebb_pcrels_fit (bfd *abfd,
8425 asection *sec,
8426 bfd_byte *contents,
8427 Elf_Internal_Rela *internal_relocs,
b2b326d2 8428 reloc_range_list *relevant_relocs,
cb337148
BW
8429 const ebb_constraint *constraint,
8430 const xtensa_opcode *reloc_opcodes)
e0001a05 8431{
43cd72b9 8432 unsigned i, j;
b2b326d2 8433 unsigned n = sec->reloc_count;
43cd72b9 8434 Elf_Internal_Rela *irel;
03e94c08
BW
8435 xlate_map_t *xmap = NULL;
8436 bfd_boolean ok = TRUE;
43cd72b9 8437 xtensa_relax_info *relax_info;
b2b326d2 8438 reloc_range_list_entry *entry = NULL;
e0001a05 8439
43cd72b9 8440 relax_info = get_xtensa_relax_info (sec);
e0001a05 8441
03e94c08
BW
8442 if (relax_info && sec->reloc_count > 100)
8443 {
8444 xmap = build_xlate_map (sec, relax_info);
8445 /* NULL indicates out of memory, but the slow version
8446 can still be used. */
8447 }
8448
b2b326d2
MF
8449 if (relevant_relocs && constraint->action_count)
8450 {
8451 if (!relevant_relocs->ok)
8452 {
8453 ok = FALSE;
8454 n = 0;
8455 }
8456 else
8457 {
8458 bfd_vma min_offset, max_offset;
8459 min_offset = max_offset = constraint->actions[0].offset;
8460
8461 for (i = 1; i < constraint->action_count; ++i)
8462 {
8463 proposed_action *action = &constraint->actions[i];
8464 bfd_vma offset = action->offset;
8465
8466 if (offset < min_offset)
8467 min_offset = offset;
8468 if (offset > max_offset)
8469 max_offset = offset;
8470 }
8471 reloc_range_list_update_range (relevant_relocs, min_offset,
8472 max_offset);
8473 n = relevant_relocs->n_list;
8474 entry = &relevant_relocs->list_root;
8475 }
8476 }
8477 else
8478 {
8479 relevant_relocs = NULL;
8480 }
8481
8482 for (i = 0; i < n; i++)
43cd72b9
BW
8483 {
8484 r_reloc r_rel;
8485 bfd_vma orig_self_offset, orig_target_offset;
8486 bfd_vma self_offset, target_offset;
8487 int r_type;
8488 reloc_howto_type *howto;
8489 int self_removed_bytes, target_removed_bytes;
e0001a05 8490
b2b326d2
MF
8491 if (relevant_relocs)
8492 {
8493 entry = entry->next;
8494 irel = entry->irel;
8495 }
8496 else
8497 {
8498 irel = internal_relocs + i;
8499 }
43cd72b9 8500 r_type = ELF32_R_TYPE (irel->r_info);
e0001a05 8501
43cd72b9
BW
8502 howto = &elf_howto_table[r_type];
8503 /* We maintain the required invariant: PC-relative relocations
8504 that fit before linking must fit after linking. Thus we only
8505 need to deal with relocations to the same section that are
8506 PC-relative. */
1bbb5f21
BW
8507 if (r_type == R_XTENSA_ASM_SIMPLIFY
8508 || r_type == R_XTENSA_32_PCREL
43cd72b9
BW
8509 || !howto->pc_relative)
8510 continue;
e0001a05 8511
43cd72b9
BW
8512 r_reloc_init (&r_rel, abfd, irel, contents,
8513 bfd_get_section_limit (abfd, sec));
e0001a05 8514
43cd72b9
BW
8515 if (r_reloc_get_section (&r_rel) != sec)
8516 continue;
e0001a05 8517
43cd72b9
BW
8518 orig_self_offset = irel->r_offset;
8519 orig_target_offset = r_rel.target_offset;
e0001a05 8520
43cd72b9
BW
8521 self_offset = orig_self_offset;
8522 target_offset = orig_target_offset;
8523
8524 if (relax_info)
8525 {
03e94c08
BW
8526 self_offset =
8527 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8528 orig_self_offset);
8529 target_offset =
8530 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8531 orig_target_offset);
43cd72b9
BW
8532 }
8533
8534 self_removed_bytes = 0;
8535 target_removed_bytes = 0;
8536
8537 for (j = 0; j < constraint->action_count; ++j)
8538 {
8539 proposed_action *action = &constraint->actions[j];
8540 bfd_vma offset = action->offset;
8541 int removed_bytes = action->removed_bytes;
8542 if (offset < orig_self_offset
8543 || (offset == orig_self_offset && action->action == ta_fill
8544 && action->removed_bytes < 0))
8545 self_removed_bytes += removed_bytes;
8546 if (offset < orig_target_offset
8547 || (offset == orig_target_offset && action->action == ta_fill
8548 && action->removed_bytes < 0))
8549 target_removed_bytes += removed_bytes;
8550 }
8551 self_offset -= self_removed_bytes;
8552 target_offset -= target_removed_bytes;
8553
8554 /* Try to encode it. Get the operand and check. */
8555 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
8556 {
8557 /* None of the current alternate relocs are PC-relative,
8558 and only PC-relative relocs matter here. */
8559 }
8560 else
8561 {
8562 xtensa_opcode opcode;
8563 int opnum;
8564
b2b326d2 8565 if (relevant_relocs)
03e94c08 8566 {
b2b326d2
MF
8567 opcode = entry->opcode;
8568 opnum = entry->opnum;
03e94c08 8569 }
b2b326d2 8570 else
03e94c08 8571 {
b2b326d2
MF
8572 if (reloc_opcodes)
8573 opcode = reloc_opcodes[relevant_relocs ?
8574 (unsigned)(entry - relevant_relocs->reloc) : i];
8575 else
8576 opcode = get_relocation_opcode (abfd, sec, contents, irel);
8577 if (opcode == XTENSA_UNDEFINED)
8578 {
8579 ok = FALSE;
8580 break;
8581 }
8582
8583 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
8584 if (opnum == XTENSA_UNDEFINED)
8585 {
8586 ok = FALSE;
8587 break;
8588 }
03e94c08 8589 }
43cd72b9
BW
8590
8591 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
03e94c08
BW
8592 {
8593 ok = FALSE;
8594 break;
8595 }
43cd72b9
BW
8596 }
8597 }
8598
03e94c08
BW
8599 if (xmap)
8600 free_xlate_map (xmap);
8601
8602 return ok;
43cd72b9
BW
8603}
8604
8605
8606static bfd_boolean
7fa3d080 8607check_section_ebb_reduces (const ebb_constraint *constraint)
43cd72b9
BW
8608{
8609 int removed = 0;
8610 unsigned i;
8611
8612 for (i = 0; i < constraint->action_count; i++)
8613 {
8614 const proposed_action *action = &constraint->actions[i];
8615 if (action->do_action)
8616 removed += action->removed_bytes;
8617 }
8618 if (removed < 0)
e0001a05
NC
8619 return FALSE;
8620
8621 return TRUE;
8622}
8623
8624
43cd72b9 8625void
7fa3d080
BW
8626text_action_add_proposed (text_action_list *l,
8627 const ebb_constraint *ebb_table,
8628 asection *sec)
e0001a05
NC
8629{
8630 unsigned i;
8631
43cd72b9 8632 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 8633 {
43cd72b9 8634 proposed_action *action = &ebb_table->actions[i];
e0001a05 8635
43cd72b9 8636 if (!action->do_action)
e0001a05 8637 continue;
43cd72b9
BW
8638 switch (action->action)
8639 {
8640 case ta_remove_insn:
8641 case ta_remove_longcall:
8642 case ta_convert_longcall:
8643 case ta_narrow_insn:
8644 case ta_widen_insn:
8645 case ta_fill:
8646 case ta_remove_literal:
8647 text_action_add (l, action->action, sec, action->offset,
8648 action->removed_bytes);
8649 break;
8650 case ta_none:
8651 break;
8652 default:
8653 BFD_ASSERT (0);
8654 break;
8655 }
e0001a05 8656 }
43cd72b9 8657}
e0001a05 8658
43cd72b9
BW
8659
8660int
7fa3d080 8661compute_fill_extra_space (property_table_entry *entry)
43cd72b9
BW
8662{
8663 int fill_extra_space;
8664
8665 if (!entry)
8666 return 0;
8667
8668 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
8669 return 0;
8670
8671 fill_extra_space = entry->size;
8672 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
8673 {
8674 /* Fill bytes for alignment:
8675 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
8676 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
8677 int nsm = (1 << pow) - 1;
8678 bfd_vma addr = entry->address + entry->size;
8679 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
8680 fill_extra_space += align_fill;
8681 }
8682 return fill_extra_space;
e0001a05
NC
8683}
8684
43cd72b9 8685\f
e0001a05
NC
8686/* First relaxation pass. */
8687
43cd72b9
BW
8688/* If the section contains relaxable literals, check each literal to
8689 see if it has the same value as another literal that has already
8690 been seen, either in the current section or a previous one. If so,
8691 add an entry to the per-section list of removed literals. The
e0001a05
NC
8692 actual changes are deferred until the next pass. */
8693
68ffbac6 8694static bfd_boolean
7fa3d080
BW
8695compute_removed_literals (bfd *abfd,
8696 asection *sec,
8697 struct bfd_link_info *link_info,
8698 value_map_hash_table *values)
e0001a05
NC
8699{
8700 xtensa_relax_info *relax_info;
8701 bfd_byte *contents;
8702 Elf_Internal_Rela *internal_relocs;
43cd72b9 8703 source_reloc *src_relocs, *rel;
e0001a05 8704 bfd_boolean ok = TRUE;
43cd72b9
BW
8705 property_table_entry *prop_table = NULL;
8706 int ptblsize;
8707 int i, prev_i;
8708 bfd_boolean last_loc_is_prev = FALSE;
8709 bfd_vma last_target_offset = 0;
8710 section_cache_t target_sec_cache;
8711 bfd_size_type sec_size;
8712
8713 init_section_cache (&target_sec_cache);
e0001a05
NC
8714
8715 /* Do nothing if it is not a relaxable literal section. */
8716 relax_info = get_xtensa_relax_info (sec);
8717 BFD_ASSERT (relax_info);
e0001a05
NC
8718 if (!relax_info->is_relaxable_literal_section)
8719 return ok;
8720
68ffbac6 8721 internal_relocs = retrieve_internal_relocs (abfd, sec,
e0001a05
NC
8722 link_info->keep_memory);
8723
43cd72b9 8724 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 8725 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 8726 if (contents == NULL && sec_size != 0)
e0001a05
NC
8727 {
8728 ok = FALSE;
8729 goto error_return;
8730 }
8731
8732 /* Sort the source_relocs by target offset. */
8733 src_relocs = relax_info->src_relocs;
8734 qsort (src_relocs, relax_info->src_count,
8735 sizeof (source_reloc), source_reloc_compare);
43cd72b9
BW
8736 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8737 internal_reloc_compare);
e0001a05 8738
43cd72b9
BW
8739 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
8740 XTENSA_PROP_SEC_NAME, FALSE);
8741 if (ptblsize < 0)
8742 {
8743 ok = FALSE;
8744 goto error_return;
8745 }
8746
8747 prev_i = -1;
e0001a05
NC
8748 for (i = 0; i < relax_info->src_count; i++)
8749 {
e0001a05 8750 Elf_Internal_Rela *irel = NULL;
e0001a05
NC
8751
8752 rel = &src_relocs[i];
43cd72b9
BW
8753 if (get_l32r_opcode () != rel->opcode)
8754 continue;
e0001a05
NC
8755 irel = get_irel_at_offset (sec, internal_relocs,
8756 rel->r_rel.target_offset);
8757
43cd72b9
BW
8758 /* If the relocation on this is not a simple R_XTENSA_32 or
8759 R_XTENSA_PLT then do not consider it. This may happen when
8760 the difference of two symbols is used in a literal. */
8761 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
8762 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
8763 continue;
8764
e0001a05
NC
8765 /* If the target_offset for this relocation is the same as the
8766 previous relocation, then we've already considered whether the
8767 literal can be coalesced. Skip to the next one.... */
43cd72b9
BW
8768 if (i != 0 && prev_i != -1
8769 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
e0001a05 8770 continue;
43cd72b9
BW
8771 prev_i = i;
8772
68ffbac6 8773 if (last_loc_is_prev &&
43cd72b9
BW
8774 last_target_offset + 4 != rel->r_rel.target_offset)
8775 last_loc_is_prev = FALSE;
e0001a05
NC
8776
8777 /* Check if the relocation was from an L32R that is being removed
8778 because a CALLX was converted to a direct CALL, and check if
8779 there are no other relocations to the literal. */
68ffbac6 8780 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
99ded152 8781 sec, prop_table, ptblsize))
e0001a05 8782 {
43cd72b9
BW
8783 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
8784 irel, rel, prop_table, ptblsize))
e0001a05 8785 {
43cd72b9
BW
8786 ok = FALSE;
8787 goto error_return;
e0001a05 8788 }
43cd72b9 8789 last_target_offset = rel->r_rel.target_offset;
e0001a05
NC
8790 continue;
8791 }
8792
43cd72b9 8793 if (!identify_literal_placement (abfd, sec, contents, link_info,
68ffbac6
L
8794 values,
8795 &last_loc_is_prev, irel,
43cd72b9
BW
8796 relax_info->src_count - i, rel,
8797 prop_table, ptblsize,
8798 &target_sec_cache, rel->is_abs_literal))
e0001a05 8799 {
43cd72b9
BW
8800 ok = FALSE;
8801 goto error_return;
8802 }
8803 last_target_offset = rel->r_rel.target_offset;
8804 }
e0001a05 8805
43cd72b9
BW
8806#if DEBUG
8807 print_removed_literals (stderr, &relax_info->removed_list);
8808 print_action_list (stderr, &relax_info->action_list);
8809#endif /* DEBUG */
8810
8811error_return:
65e911f9
AM
8812 if (prop_table)
8813 free (prop_table);
8814 free_section_cache (&target_sec_cache);
43cd72b9
BW
8815
8816 release_contents (sec, contents);
8817 release_internal_relocs (sec, internal_relocs);
8818 return ok;
8819}
8820
8821
8822static Elf_Internal_Rela *
7fa3d080
BW
8823get_irel_at_offset (asection *sec,
8824 Elf_Internal_Rela *internal_relocs,
8825 bfd_vma offset)
43cd72b9
BW
8826{
8827 unsigned i;
8828 Elf_Internal_Rela *irel;
8829 unsigned r_type;
8830 Elf_Internal_Rela key;
8831
68ffbac6 8832 if (!internal_relocs)
43cd72b9
BW
8833 return NULL;
8834
8835 key.r_offset = offset;
8836 irel = bsearch (&key, internal_relocs, sec->reloc_count,
8837 sizeof (Elf_Internal_Rela), internal_reloc_matches);
8838 if (!irel)
8839 return NULL;
8840
8841 /* bsearch does not guarantee which will be returned if there are
8842 multiple matches. We need the first that is not an alignment. */
8843 i = irel - internal_relocs;
8844 while (i > 0)
8845 {
8846 if (internal_relocs[i-1].r_offset != offset)
8847 break;
8848 i--;
8849 }
8850 for ( ; i < sec->reloc_count; i++)
8851 {
8852 irel = &internal_relocs[i];
8853 r_type = ELF32_R_TYPE (irel->r_info);
8854 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
8855 return irel;
8856 }
8857
8858 return NULL;
8859}
8860
8861
8862bfd_boolean
7fa3d080
BW
8863is_removable_literal (const source_reloc *rel,
8864 int i,
8865 const source_reloc *src_relocs,
99ded152
BW
8866 int src_count,
8867 asection *sec,
8868 property_table_entry *prop_table,
8869 int ptblsize)
43cd72b9
BW
8870{
8871 const source_reloc *curr_rel;
99ded152
BW
8872 property_table_entry *entry;
8873
43cd72b9
BW
8874 if (!rel->is_null)
8875 return FALSE;
68ffbac6
L
8876
8877 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
99ded152
BW
8878 sec->vma + rel->r_rel.target_offset);
8879 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8880 return FALSE;
8881
43cd72b9
BW
8882 for (++i; i < src_count; ++i)
8883 {
8884 curr_rel = &src_relocs[i];
8885 /* If all others have the same target offset.... */
8886 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
8887 return TRUE;
8888
8889 if (!curr_rel->is_null
8890 && !xtensa_is_property_section (curr_rel->source_sec)
8891 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
8892 return FALSE;
8893 }
8894 return TRUE;
8895}
8896
8897
68ffbac6 8898bfd_boolean
7fa3d080
BW
8899remove_dead_literal (bfd *abfd,
8900 asection *sec,
8901 struct bfd_link_info *link_info,
8902 Elf_Internal_Rela *internal_relocs,
8903 Elf_Internal_Rela *irel,
8904 source_reloc *rel,
8905 property_table_entry *prop_table,
8906 int ptblsize)
43cd72b9
BW
8907{
8908 property_table_entry *entry;
8909 xtensa_relax_info *relax_info;
8910
8911 relax_info = get_xtensa_relax_info (sec);
8912 if (!relax_info)
8913 return FALSE;
8914
8915 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8916 sec->vma + rel->r_rel.target_offset);
8917
8918 /* Mark the unused literal so that it will be removed. */
8919 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
8920
8921 text_action_add (&relax_info->action_list,
8922 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8923
8924 /* If the section is 4-byte aligned, do not add fill. */
68ffbac6 8925 if (sec->alignment_power > 2)
43cd72b9
BW
8926 {
8927 int fill_extra_space;
8928 bfd_vma entry_sec_offset;
8929 text_action *fa;
8930 property_table_entry *the_add_entry;
8931 int removed_diff;
8932
8933 if (entry)
8934 entry_sec_offset = entry->address - sec->vma + entry->size;
8935 else
8936 entry_sec_offset = rel->r_rel.target_offset + 4;
8937
8938 /* If the literal range is at the end of the section,
8939 do not add fill. */
8940 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8941 entry_sec_offset);
8942 fill_extra_space = compute_fill_extra_space (the_add_entry);
8943
8944 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8945 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8946 -4, fill_extra_space);
8947 if (fa)
8948 adjust_fill_action (fa, removed_diff);
8949 else
8950 text_action_add (&relax_info->action_list,
8951 ta_fill, sec, entry_sec_offset, removed_diff);
8952 }
8953
8954 /* Zero out the relocation on this literal location. */
8955 if (irel)
8956 {
8957 if (elf_hash_table (link_info)->dynamic_sections_created)
8958 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8959
8960 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8961 pin_internal_relocs (sec, internal_relocs);
8962 }
8963
8964 /* Do not modify "last_loc_is_prev". */
8965 return TRUE;
8966}
8967
8968
68ffbac6 8969bfd_boolean
7fa3d080
BW
8970identify_literal_placement (bfd *abfd,
8971 asection *sec,
8972 bfd_byte *contents,
8973 struct bfd_link_info *link_info,
8974 value_map_hash_table *values,
8975 bfd_boolean *last_loc_is_prev_p,
8976 Elf_Internal_Rela *irel,
8977 int remaining_src_rels,
8978 source_reloc *rel,
8979 property_table_entry *prop_table,
8980 int ptblsize,
8981 section_cache_t *target_sec_cache,
8982 bfd_boolean is_abs_literal)
43cd72b9
BW
8983{
8984 literal_value val;
8985 value_map *val_map;
8986 xtensa_relax_info *relax_info;
8987 bfd_boolean literal_placed = FALSE;
8988 r_reloc r_rel;
8989 unsigned long value;
8990 bfd_boolean final_static_link;
8991 bfd_size_type sec_size;
8992
8993 relax_info = get_xtensa_relax_info (sec);
8994 if (!relax_info)
8995 return FALSE;
8996
8997 sec_size = bfd_get_section_limit (abfd, sec);
8998
8999 final_static_link =
0e1862bb 9000 (!bfd_link_relocatable (link_info)
43cd72b9
BW
9001 && !elf_hash_table (link_info)->dynamic_sections_created);
9002
9003 /* The placement algorithm first checks to see if the literal is
9004 already in the value map. If so and the value map is reachable
9005 from all uses, then the literal is moved to that location. If
9006 not, then we identify the last location where a fresh literal was
9007 placed. If the literal can be safely moved there, then we do so.
9008 If not, then we assume that the literal is not to move and leave
9009 the literal where it is, marking it as the last literal
9010 location. */
9011
9012 /* Find the literal value. */
9013 value = 0;
9014 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
9015 if (!irel)
9016 {
9017 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
9018 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
9019 }
9020 init_literal_value (&val, &r_rel, value, is_abs_literal);
9021
9022 /* Check if we've seen another literal with the same value that
9023 is in the same output section. */
9024 val_map = value_map_get_cached_value (values, &val, final_static_link);
9025
9026 if (val_map
9027 && (r_reloc_get_section (&val_map->loc)->output_section
9028 == sec->output_section)
9029 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
9030 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
9031 {
9032 /* No change to last_loc_is_prev. */
9033 literal_placed = TRUE;
9034 }
9035
9036 /* For relocatable links, do not try to move literals. To do it
9037 correctly might increase the number of relocations in an input
9038 section making the default relocatable linking fail. */
0e1862bb 9039 if (!bfd_link_relocatable (link_info) && !literal_placed
43cd72b9
BW
9040 && values->has_last_loc && !(*last_loc_is_prev_p))
9041 {
9042 asection *target_sec = r_reloc_get_section (&values->last_loc);
9043 if (target_sec && target_sec->output_section == sec->output_section)
9044 {
9045 /* Increment the virtual offset. */
9046 r_reloc try_loc = values->last_loc;
9047 try_loc.virtual_offset += 4;
9048
9049 /* There is a last loc that was in the same output section. */
9050 if (relocations_reach (rel, remaining_src_rels, &try_loc)
9051 && move_shared_literal (sec, link_info, rel,
68ffbac6 9052 prop_table, ptblsize,
43cd72b9 9053 &try_loc, &val, target_sec_cache))
e0001a05 9054 {
43cd72b9
BW
9055 values->last_loc.virtual_offset += 4;
9056 literal_placed = TRUE;
9057 if (!val_map)
9058 val_map = add_value_map (values, &val, &try_loc,
9059 final_static_link);
9060 else
9061 val_map->loc = try_loc;
e0001a05
NC
9062 }
9063 }
43cd72b9
BW
9064 }
9065
9066 if (!literal_placed)
9067 {
9068 /* Nothing worked, leave the literal alone but update the last loc. */
9069 values->has_last_loc = TRUE;
9070 values->last_loc = rel->r_rel;
9071 if (!val_map)
9072 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
e0001a05 9073 else
43cd72b9
BW
9074 val_map->loc = rel->r_rel;
9075 *last_loc_is_prev_p = TRUE;
e0001a05
NC
9076 }
9077
43cd72b9 9078 return TRUE;
e0001a05
NC
9079}
9080
9081
9082/* Check if the original relocations (presumably on L32R instructions)
9083 identified by reloc[0..N] can be changed to reference the literal
9084 identified by r_rel. If r_rel is out of range for any of the
9085 original relocations, then we don't want to coalesce the original
9086 literal with the one at r_rel. We only check reloc[0..N], where the
9087 offsets are all the same as for reloc[0] (i.e., they're all
9088 referencing the same literal) and where N is also bounded by the
9089 number of remaining entries in the "reloc" array. The "reloc" array
9090 is sorted by target offset so we know all the entries for the same
9091 literal will be contiguous. */
9092
9093static bfd_boolean
7fa3d080
BW
9094relocations_reach (source_reloc *reloc,
9095 int remaining_relocs,
9096 const r_reloc *r_rel)
e0001a05
NC
9097{
9098 bfd_vma from_offset, source_address, dest_address;
9099 asection *sec;
9100 int i;
9101
9102 if (!r_reloc_is_defined (r_rel))
9103 return FALSE;
9104
9105 sec = r_reloc_get_section (r_rel);
9106 from_offset = reloc[0].r_rel.target_offset;
9107
9108 for (i = 0; i < remaining_relocs; i++)
9109 {
9110 if (reloc[i].r_rel.target_offset != from_offset)
9111 break;
9112
9113 /* Ignore relocations that have been removed. */
9114 if (reloc[i].is_null)
9115 continue;
9116
9117 /* The original and new output section for these must be the same
9118 in order to coalesce. */
9119 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
9120 != sec->output_section)
9121 return FALSE;
9122
d638e0ac
BW
9123 /* Absolute literals in the same output section can always be
9124 combined. */
9125 if (reloc[i].is_abs_literal)
9126 continue;
9127
43cd72b9
BW
9128 /* A literal with no PC-relative relocations can be moved anywhere. */
9129 if (reloc[i].opnd != -1)
e0001a05
NC
9130 {
9131 /* Otherwise, check to see that it fits. */
9132 source_address = (reloc[i].source_sec->output_section->vma
9133 + reloc[i].source_sec->output_offset
9134 + reloc[i].r_rel.rela.r_offset);
9135 dest_address = (sec->output_section->vma
9136 + sec->output_offset
9137 + r_rel->target_offset);
9138
43cd72b9
BW
9139 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
9140 source_address, dest_address))
e0001a05
NC
9141 return FALSE;
9142 }
9143 }
9144
9145 return TRUE;
9146}
9147
9148
43cd72b9
BW
9149/* Move a literal to another literal location because it is
9150 the same as the other literal value. */
e0001a05 9151
68ffbac6 9152static bfd_boolean
7fa3d080
BW
9153coalesce_shared_literal (asection *sec,
9154 source_reloc *rel,
9155 property_table_entry *prop_table,
9156 int ptblsize,
9157 value_map *val_map)
e0001a05 9158{
43cd72b9
BW
9159 property_table_entry *entry;
9160 text_action *fa;
9161 property_table_entry *the_add_entry;
9162 int removed_diff;
9163 xtensa_relax_info *relax_info;
9164
9165 relax_info = get_xtensa_relax_info (sec);
9166 if (!relax_info)
9167 return FALSE;
9168
9169 entry = elf_xtensa_find_property_entry
9170 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
99ded152 9171 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
43cd72b9
BW
9172 return TRUE;
9173
9174 /* Mark that the literal will be coalesced. */
9175 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
9176
9177 text_action_add (&relax_info->action_list,
9178 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9179
9180 /* If the section is 4-byte aligned, do not add fill. */
68ffbac6 9181 if (sec->alignment_power > 2)
e0001a05 9182 {
43cd72b9
BW
9183 int fill_extra_space;
9184 bfd_vma entry_sec_offset;
9185
9186 if (entry)
9187 entry_sec_offset = entry->address - sec->vma + entry->size;
9188 else
9189 entry_sec_offset = rel->r_rel.target_offset + 4;
9190
9191 /* If the literal range is at the end of the section,
9192 do not add fill. */
9193 fill_extra_space = 0;
9194 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9195 entry_sec_offset);
9196 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9197 fill_extra_space = the_add_entry->size;
9198
9199 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9200 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9201 -4, fill_extra_space);
9202 if (fa)
9203 adjust_fill_action (fa, removed_diff);
9204 else
9205 text_action_add (&relax_info->action_list,
9206 ta_fill, sec, entry_sec_offset, removed_diff);
e0001a05 9207 }
43cd72b9
BW
9208
9209 return TRUE;
9210}
9211
9212
9213/* Move a literal to another location. This may actually increase the
9214 total amount of space used because of alignments so we need to do
9215 this carefully. Also, it may make a branch go out of range. */
9216
68ffbac6 9217static bfd_boolean
7fa3d080
BW
9218move_shared_literal (asection *sec,
9219 struct bfd_link_info *link_info,
9220 source_reloc *rel,
9221 property_table_entry *prop_table,
9222 int ptblsize,
9223 const r_reloc *target_loc,
9224 const literal_value *lit_value,
9225 section_cache_t *target_sec_cache)
43cd72b9
BW
9226{
9227 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
9228 text_action *fa, *target_fa;
9229 int removed_diff;
9230 xtensa_relax_info *relax_info, *target_relax_info;
9231 asection *target_sec;
9232 ebb_t *ebb;
9233 ebb_constraint ebb_table;
9234 bfd_boolean relocs_fit;
9235
9236 /* If this routine always returns FALSE, the literals that cannot be
9237 coalesced will not be moved. */
9238 if (elf32xtensa_no_literal_movement)
9239 return FALSE;
9240
9241 relax_info = get_xtensa_relax_info (sec);
9242 if (!relax_info)
9243 return FALSE;
9244
9245 target_sec = r_reloc_get_section (target_loc);
9246 target_relax_info = get_xtensa_relax_info (target_sec);
9247
9248 /* Literals to undefined sections may not be moved because they
9249 must report an error. */
9250 if (bfd_is_und_section (target_sec))
9251 return FALSE;
9252
9253 src_entry = elf_xtensa_find_property_entry
9254 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
9255
9256 if (!section_cache_section (target_sec_cache, target_sec, link_info))
9257 return FALSE;
9258
9259 target_entry = elf_xtensa_find_property_entry
68ffbac6 9260 (target_sec_cache->ptbl, target_sec_cache->pte_count,
43cd72b9
BW
9261 target_sec->vma + target_loc->target_offset);
9262
9263 if (!target_entry)
9264 return FALSE;
9265
9266 /* Make sure that we have not broken any branches. */
9267 relocs_fit = FALSE;
9268
9269 init_ebb_constraint (&ebb_table);
9270 ebb = &ebb_table.ebb;
68ffbac6 9271 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
43cd72b9
BW
9272 target_sec_cache->content_length,
9273 target_sec_cache->ptbl, target_sec_cache->pte_count,
9274 target_sec_cache->relocs, target_sec_cache->reloc_count);
9275
9276 /* Propose to add 4 bytes + worst-case alignment size increase to
9277 destination. */
9278 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
9279 ta_fill, target_loc->target_offset,
9280 -4 - (1 << target_sec->alignment_power), TRUE);
9281
9282 /* Check all of the PC-relative relocations to make sure they still fit. */
68ffbac6 9283 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
43cd72b9 9284 target_sec_cache->contents,
b2b326d2 9285 target_sec_cache->relocs, NULL,
cb337148 9286 &ebb_table, NULL);
43cd72b9 9287
68ffbac6 9288 if (!relocs_fit)
43cd72b9
BW
9289 return FALSE;
9290
9291 text_action_add_literal (&target_relax_info->action_list,
9292 ta_add_literal, target_loc, lit_value, -4);
9293
68ffbac6 9294 if (target_sec->alignment_power > 2 && target_entry != src_entry)
43cd72b9
BW
9295 {
9296 /* May need to add or remove some fill to maintain alignment. */
9297 int fill_extra_space;
9298 bfd_vma entry_sec_offset;
9299
68ffbac6 9300 entry_sec_offset =
43cd72b9
BW
9301 target_entry->address - target_sec->vma + target_entry->size;
9302
9303 /* If the literal range is at the end of the section,
9304 do not add fill. */
9305 fill_extra_space = 0;
9306 the_add_entry =
9307 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
9308 target_sec_cache->pte_count,
9309 entry_sec_offset);
9310 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9311 fill_extra_space = the_add_entry->size;
9312
9313 target_fa = find_fill_action (&target_relax_info->action_list,
9314 target_sec, entry_sec_offset);
9315 removed_diff = compute_removed_action_diff (target_fa, target_sec,
9316 entry_sec_offset, 4,
9317 fill_extra_space);
9318 if (target_fa)
9319 adjust_fill_action (target_fa, removed_diff);
9320 else
9321 text_action_add (&target_relax_info->action_list,
9322 ta_fill, target_sec, entry_sec_offset, removed_diff);
9323 }
9324
9325 /* Mark that the literal will be moved to the new location. */
9326 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
9327
9328 /* Remove the literal. */
9329 text_action_add (&relax_info->action_list,
9330 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9331
9332 /* If the section is 4-byte aligned, do not add fill. */
68ffbac6 9333 if (sec->alignment_power > 2 && target_entry != src_entry)
43cd72b9
BW
9334 {
9335 int fill_extra_space;
9336 bfd_vma entry_sec_offset;
9337
9338 if (src_entry)
9339 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
9340 else
9341 entry_sec_offset = rel->r_rel.target_offset+4;
9342
9343 /* If the literal range is at the end of the section,
9344 do not add fill. */
9345 fill_extra_space = 0;
9346 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9347 entry_sec_offset);
9348 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9349 fill_extra_space = the_add_entry->size;
9350
9351 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9352 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9353 -4, fill_extra_space);
9354 if (fa)
9355 adjust_fill_action (fa, removed_diff);
9356 else
9357 text_action_add (&relax_info->action_list,
9358 ta_fill, sec, entry_sec_offset, removed_diff);
9359 }
9360
9361 return TRUE;
e0001a05
NC
9362}
9363
9364\f
9365/* Second relaxation pass. */
9366
4c2af04f
MF
9367static int
9368action_remove_bytes_fn (splay_tree_node node, void *p)
9369{
9370 bfd_size_type *final_size = p;
9371 text_action *action = (text_action *)node->value;
9372
9373 *final_size -= action->removed_bytes;
9374 return 0;
9375}
9376
e0001a05
NC
9377/* Modify all of the relocations to point to the right spot, and if this
9378 is a relaxable section, delete the unwanted literals and fix the
43cd72b9 9379 section size. */
e0001a05 9380
43cd72b9 9381bfd_boolean
7fa3d080 9382relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
e0001a05
NC
9383{
9384 Elf_Internal_Rela *internal_relocs;
9385 xtensa_relax_info *relax_info;
9386 bfd_byte *contents;
9387 bfd_boolean ok = TRUE;
9388 unsigned i;
43cd72b9
BW
9389 bfd_boolean rv = FALSE;
9390 bfd_boolean virtual_action;
9391 bfd_size_type sec_size;
e0001a05 9392
43cd72b9 9393 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
9394 relax_info = get_xtensa_relax_info (sec);
9395 BFD_ASSERT (relax_info);
9396
43cd72b9
BW
9397 /* First translate any of the fixes that have been added already. */
9398 translate_section_fixes (sec);
9399
e0001a05
NC
9400 /* Handle property sections (e.g., literal tables) specially. */
9401 if (xtensa_is_property_section (sec))
9402 {
9403 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
9404 return relax_property_section (abfd, sec, link_info);
9405 }
9406
68ffbac6 9407 internal_relocs = retrieve_internal_relocs (abfd, sec,
43cd72b9 9408 link_info->keep_memory);
4c2af04f 9409 if (!internal_relocs && !action_list_count (&relax_info->action_list))
7aa09196
SA
9410 return TRUE;
9411
43cd72b9
BW
9412 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
9413 if (contents == NULL && sec_size != 0)
9414 {
9415 ok = FALSE;
9416 goto error_return;
9417 }
9418
9419 if (internal_relocs)
9420 {
9421 for (i = 0; i < sec->reloc_count; i++)
9422 {
9423 Elf_Internal_Rela *irel;
9424 xtensa_relax_info *target_relax_info;
9425 bfd_vma source_offset, old_source_offset;
9426 r_reloc r_rel;
9427 unsigned r_type;
9428 asection *target_sec;
9429
9430 /* Locally change the source address.
9431 Translate the target to the new target address.
9432 If it points to this section and has been removed,
9433 NULLify it.
9434 Write it back. */
9435
9436 irel = &internal_relocs[i];
9437 source_offset = irel->r_offset;
9438 old_source_offset = source_offset;
9439
9440 r_type = ELF32_R_TYPE (irel->r_info);
9441 r_reloc_init (&r_rel, abfd, irel, contents,
9442 bfd_get_section_limit (abfd, sec));
9443
9444 /* If this section could have changed then we may need to
9445 change the relocation's offset. */
9446
9447 if (relax_info->is_relaxable_literal_section
9448 || relax_info->is_relaxable_asm_section)
9449 {
9b7f5d20
BW
9450 pin_internal_relocs (sec, internal_relocs);
9451
43cd72b9
BW
9452 if (r_type != R_XTENSA_NONE
9453 && find_removed_literal (&relax_info->removed_list,
9454 irel->r_offset))
9455 {
9456 /* Remove this relocation. */
9457 if (elf_hash_table (link_info)->dynamic_sections_created)
9458 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
9459 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
071aa5c9 9460 irel->r_offset = offset_with_removed_text_map
43cd72b9 9461 (&relax_info->action_list, irel->r_offset);
43cd72b9
BW
9462 continue;
9463 }
9464
9465 if (r_type == R_XTENSA_ASM_SIMPLIFY)
9466 {
9467 text_action *action =
9468 find_insn_action (&relax_info->action_list,
9469 irel->r_offset);
9470 if (action && (action->action == ta_convert_longcall
9471 || action->action == ta_remove_longcall))
9472 {
9473 bfd_reloc_status_type retval;
9474 char *error_message = NULL;
9475
9476 retval = contract_asm_expansion (contents, sec_size,
9477 irel, &error_message);
9478 if (retval != bfd_reloc_ok)
9479 {
9480 (*link_info->callbacks->reloc_dangerous)
9481 (link_info, error_message, abfd, sec,
9482 irel->r_offset);
9483 goto error_return;
9484 }
9485 /* Update the action so that the code that moves
9486 the contents will do the right thing. */
4c2af04f
MF
9487 /* ta_remove_longcall and ta_remove_insn actions are
9488 grouped together in the tree as well as
9489 ta_convert_longcall and ta_none, so that changes below
9490 can be done w/o removing and reinserting action into
9491 the tree. */
9492
43cd72b9
BW
9493 if (action->action == ta_remove_longcall)
9494 action->action = ta_remove_insn;
9495 else
9496 action->action = ta_none;
9497 /* Refresh the info in the r_rel. */
9498 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
9499 r_type = ELF32_R_TYPE (irel->r_info);
9500 }
9501 }
9502
071aa5c9 9503 source_offset = offset_with_removed_text_map
43cd72b9
BW
9504 (&relax_info->action_list, irel->r_offset);
9505 irel->r_offset = source_offset;
9506 }
9507
9508 /* If the target section could have changed then
9509 we may need to change the relocation's target offset. */
9510
9511 target_sec = r_reloc_get_section (&r_rel);
43cd72b9 9512
ae326da8
BW
9513 /* For a reference to a discarded section from a DWARF section,
9514 i.e., where action_discarded is PRETEND, the symbol will
9515 eventually be modified to refer to the kept section (at least if
9516 the kept and discarded sections are the same size). Anticipate
9517 that here and adjust things accordingly. */
9518 if (! elf_xtensa_ignore_discarded_relocs (sec)
9519 && elf_xtensa_action_discarded (sec) == PRETEND
dbaa2011 9520 && sec->sec_info_type != SEC_INFO_TYPE_STABS
ae326da8 9521 && target_sec != NULL
dbaa2011 9522 && discarded_section (target_sec))
ae326da8
BW
9523 {
9524 /* It would be natural to call _bfd_elf_check_kept_section
9525 here, but it's not exported from elflink.c. It's also a
9526 fairly expensive check. Adjusting the relocations to the
9527 discarded section is fairly harmless; it will only adjust
9528 some addends and difference values. If it turns out that
9529 _bfd_elf_check_kept_section fails later, it won't matter,
9530 so just compare the section names to find the right group
9531 member. */
9532 asection *kept = target_sec->kept_section;
9533 if (kept != NULL)
9534 {
9535 if ((kept->flags & SEC_GROUP) != 0)
9536 {
9537 asection *first = elf_next_in_group (kept);
9538 asection *s = first;
9539
9540 kept = NULL;
9541 while (s != NULL)
9542 {
9543 if (strcmp (s->name, target_sec->name) == 0)
9544 {
9545 kept = s;
9546 break;
9547 }
9548 s = elf_next_in_group (s);
9549 if (s == first)
9550 break;
9551 }
9552 }
9553 }
9554 if (kept != NULL
9555 && ((target_sec->rawsize != 0
9556 ? target_sec->rawsize : target_sec->size)
9557 == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9558 target_sec = kept;
9559 }
9560
9561 target_relax_info = get_xtensa_relax_info (target_sec);
43cd72b9
BW
9562 if (target_relax_info
9563 && (target_relax_info->is_relaxable_literal_section
9564 || target_relax_info->is_relaxable_asm_section))
9565 {
9566 r_reloc new_reloc;
9b7f5d20 9567 target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
43cd72b9
BW
9568
9569 if (r_type == R_XTENSA_DIFF8
9570 || r_type == R_XTENSA_DIFF16
9571 || r_type == R_XTENSA_DIFF32)
9572 {
1058c753
VA
9573 bfd_signed_vma diff_value = 0;
9574 bfd_vma new_end_offset, diff_mask = 0;
43cd72b9
BW
9575
9576 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
9577 {
9578 (*link_info->callbacks->reloc_dangerous)
9579 (link_info, _("invalid relocation address"),
9580 abfd, sec, old_source_offset);
9581 goto error_return;
9582 }
9583
9584 switch (r_type)
9585 {
9586 case R_XTENSA_DIFF8:
9587 diff_value =
1058c753 9588 bfd_get_signed_8 (abfd, &contents[old_source_offset]);
43cd72b9
BW
9589 break;
9590 case R_XTENSA_DIFF16:
9591 diff_value =
1058c753 9592 bfd_get_signed_16 (abfd, &contents[old_source_offset]);
43cd72b9
BW
9593 break;
9594 case R_XTENSA_DIFF32:
9595 diff_value =
1058c753 9596 bfd_get_signed_32 (abfd, &contents[old_source_offset]);
43cd72b9
BW
9597 break;
9598 }
9599
071aa5c9 9600 new_end_offset = offset_with_removed_text_map
43cd72b9
BW
9601 (&target_relax_info->action_list,
9602 r_rel.target_offset + diff_value);
9603 diff_value = new_end_offset - new_reloc.target_offset;
9604
9605 switch (r_type)
9606 {
9607 case R_XTENSA_DIFF8:
1058c753
VA
9608 diff_mask = 0x7f;
9609 bfd_put_signed_8 (abfd, diff_value,
43cd72b9
BW
9610 &contents[old_source_offset]);
9611 break;
9612 case R_XTENSA_DIFF16:
1058c753
VA
9613 diff_mask = 0x7fff;
9614 bfd_put_signed_16 (abfd, diff_value,
43cd72b9
BW
9615 &contents[old_source_offset]);
9616 break;
9617 case R_XTENSA_DIFF32:
1058c753
VA
9618 diff_mask = 0x7fffffff;
9619 bfd_put_signed_32 (abfd, diff_value,
43cd72b9
BW
9620 &contents[old_source_offset]);
9621 break;
9622 }
9623
1058c753
VA
9624 /* Check for overflow. Sign bits must be all zeroes or all ones */
9625 if ((diff_value & ~diff_mask) != 0 &&
9626 (diff_value & ~diff_mask) != (-1 & ~diff_mask))
43cd72b9
BW
9627 {
9628 (*link_info->callbacks->reloc_dangerous)
9629 (link_info, _("overflow after relaxation"),
9630 abfd, sec, old_source_offset);
9631 goto error_return;
9632 }
9633
9634 pin_contents (sec, contents);
9635 }
dc96b90a
BW
9636
9637 /* If the relocation still references a section in the same
9638 input file, modify the relocation directly instead of
9639 adding a "fix" record. */
9640 if (target_sec->owner == abfd)
9641 {
9642 unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
9643 irel->r_info = ELF32_R_INFO (r_symndx, r_type);
9644 irel->r_addend = new_reloc.rela.r_addend;
9645 pin_internal_relocs (sec, internal_relocs);
9646 }
9b7f5d20
BW
9647 else
9648 {
dc96b90a
BW
9649 bfd_vma addend_displacement;
9650 reloc_bfd_fix *fix;
9651
9652 addend_displacement =
9653 new_reloc.target_offset + new_reloc.virtual_offset;
9654 fix = reloc_bfd_fix_init (sec, source_offset, r_type,
9655 target_sec,
9656 addend_displacement, TRUE);
9657 add_fix (sec, fix);
9b7f5d20 9658 }
43cd72b9 9659 }
43cd72b9
BW
9660 }
9661 }
9662
9663 if ((relax_info->is_relaxable_literal_section
9664 || relax_info->is_relaxable_asm_section)
4c2af04f 9665 && action_list_count (&relax_info->action_list))
43cd72b9
BW
9666 {
9667 /* Walk through the planned actions and build up a table
9668 of move, copy and fill records. Use the move, copy and
9669 fill records to perform the actions once. */
9670
43cd72b9
BW
9671 bfd_size_type final_size, copy_size, orig_insn_size;
9672 bfd_byte *scratch = NULL;
9673 bfd_byte *dup_contents = NULL;
a3ef2d63 9674 bfd_size_type orig_size = sec->size;
43cd72b9
BW
9675 bfd_vma orig_dot = 0;
9676 bfd_vma orig_dot_copied = 0; /* Byte copied already from
9677 orig dot in physical memory. */
9678 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
9679 bfd_vma dup_dot = 0;
9680
4c2af04f 9681 text_action *action;
43cd72b9
BW
9682
9683 final_size = sec->size;
43cd72b9 9684
4c2af04f
MF
9685 splay_tree_foreach (relax_info->action_list.tree,
9686 action_remove_bytes_fn, &final_size);
43cd72b9
BW
9687 scratch = (bfd_byte *) bfd_zmalloc (final_size);
9688 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
9689
9690 /* The dot is the current fill location. */
9691#if DEBUG
9692 print_action_list (stderr, &relax_info->action_list);
9693#endif
9694
4c2af04f
MF
9695 for (action = action_first (&relax_info->action_list); action;
9696 action = action_next (&relax_info->action_list, action))
43cd72b9
BW
9697 {
9698 virtual_action = FALSE;
9699 if (action->offset > orig_dot)
9700 {
9701 orig_dot += orig_dot_copied;
9702 orig_dot_copied = 0;
9703 orig_dot_vo = 0;
9704 /* Out of the virtual world. */
9705 }
9706
9707 if (action->offset > orig_dot)
9708 {
9709 copy_size = action->offset - orig_dot;
9710 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9711 orig_dot += copy_size;
9712 dup_dot += copy_size;
9713 BFD_ASSERT (action->offset == orig_dot);
9714 }
9715 else if (action->offset < orig_dot)
9716 {
9717 if (action->action == ta_fill
9718 && action->offset - action->removed_bytes == orig_dot)
9719 {
9720 /* This is OK because the fill only effects the dup_dot. */
9721 }
9722 else if (action->action == ta_add_literal)
9723 {
9724 /* TBD. Might need to handle this. */
9725 }
9726 }
9727 if (action->offset == orig_dot)
9728 {
9729 if (action->virtual_offset > orig_dot_vo)
9730 {
9731 if (orig_dot_vo == 0)
9732 {
9733 /* Need to copy virtual_offset bytes. Probably four. */
9734 copy_size = action->virtual_offset - orig_dot_vo;
9735 memmove (&dup_contents[dup_dot],
9736 &contents[orig_dot], copy_size);
9737 orig_dot_copied = copy_size;
9738 dup_dot += copy_size;
9739 }
9740 virtual_action = TRUE;
68ffbac6 9741 }
43cd72b9
BW
9742 else
9743 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
9744 }
9745 switch (action->action)
9746 {
9747 case ta_remove_literal:
9748 case ta_remove_insn:
9749 BFD_ASSERT (action->removed_bytes >= 0);
9750 orig_dot += action->removed_bytes;
9751 break;
9752
9753 case ta_narrow_insn:
9754 orig_insn_size = 3;
9755 copy_size = 2;
9756 memmove (scratch, &contents[orig_dot], orig_insn_size);
9757 BFD_ASSERT (action->removed_bytes == 1);
64b607e6 9758 rv = narrow_instruction (scratch, final_size, 0);
43cd72b9
BW
9759 BFD_ASSERT (rv);
9760 memmove (&dup_contents[dup_dot], scratch, copy_size);
9761 orig_dot += orig_insn_size;
9762 dup_dot += copy_size;
9763 break;
9764
9765 case ta_fill:
9766 if (action->removed_bytes >= 0)
9767 orig_dot += action->removed_bytes;
9768 else
9769 {
9770 /* Already zeroed in dup_contents. Just bump the
9771 counters. */
9772 dup_dot += (-action->removed_bytes);
9773 }
9774 break;
9775
9776 case ta_none:
9777 BFD_ASSERT (action->removed_bytes == 0);
9778 break;
9779
9780 case ta_convert_longcall:
9781 case ta_remove_longcall:
9782 /* These will be removed or converted before we get here. */
9783 BFD_ASSERT (0);
9784 break;
9785
9786 case ta_widen_insn:
9787 orig_insn_size = 2;
9788 copy_size = 3;
9789 memmove (scratch, &contents[orig_dot], orig_insn_size);
9790 BFD_ASSERT (action->removed_bytes == -1);
64b607e6 9791 rv = widen_instruction (scratch, final_size, 0);
43cd72b9
BW
9792 BFD_ASSERT (rv);
9793 memmove (&dup_contents[dup_dot], scratch, copy_size);
9794 orig_dot += orig_insn_size;
9795 dup_dot += copy_size;
9796 break;
9797
9798 case ta_add_literal:
9799 orig_insn_size = 0;
9800 copy_size = 4;
9801 BFD_ASSERT (action->removed_bytes == -4);
9802 /* TBD -- place the literal value here and insert
9803 into the table. */
9804 memset (&dup_contents[dup_dot], 0, 4);
9805 pin_internal_relocs (sec, internal_relocs);
9806 pin_contents (sec, contents);
9807
9808 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
9809 relax_info, &internal_relocs, &action->value))
9810 goto error_return;
9811
68ffbac6 9812 if (virtual_action)
43cd72b9
BW
9813 orig_dot_vo += copy_size;
9814
9815 orig_dot += orig_insn_size;
9816 dup_dot += copy_size;
9817 break;
9818
9819 default:
9820 /* Not implemented yet. */
9821 BFD_ASSERT (0);
9822 break;
9823 }
9824
43cd72b9
BW
9825 BFD_ASSERT (dup_dot <= final_size);
9826 BFD_ASSERT (orig_dot <= orig_size);
9827 }
9828
9829 orig_dot += orig_dot_copied;
9830 orig_dot_copied = 0;
9831
9832 if (orig_dot != orig_size)
9833 {
9834 copy_size = orig_size - orig_dot;
9835 BFD_ASSERT (orig_size > orig_dot);
9836 BFD_ASSERT (dup_dot + copy_size == final_size);
9837 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9838 orig_dot += copy_size;
9839 dup_dot += copy_size;
9840 }
9841 BFD_ASSERT (orig_size == orig_dot);
9842 BFD_ASSERT (final_size == dup_dot);
9843
9844 /* Move the dup_contents back. */
9845 if (final_size > orig_size)
9846 {
9847 /* Contents need to be reallocated. Swap the dup_contents into
9848 contents. */
9849 sec->contents = dup_contents;
9850 free (contents);
9851 contents = dup_contents;
9852 pin_contents (sec, contents);
9853 }
9854 else
9855 {
9856 BFD_ASSERT (final_size <= orig_size);
9857 memset (contents, 0, orig_size);
9858 memcpy (contents, dup_contents, final_size);
9859 free (dup_contents);
9860 }
9861 free (scratch);
9862 pin_contents (sec, contents);
9863
a3ef2d63
BW
9864 if (sec->rawsize == 0)
9865 sec->rawsize = sec->size;
43cd72b9
BW
9866 sec->size = final_size;
9867 }
9868
9869 error_return:
9870 release_internal_relocs (sec, internal_relocs);
9871 release_contents (sec, contents);
9872 return ok;
9873}
9874
9875
68ffbac6 9876static bfd_boolean
7fa3d080 9877translate_section_fixes (asection *sec)
43cd72b9
BW
9878{
9879 xtensa_relax_info *relax_info;
9880 reloc_bfd_fix *r;
9881
9882 relax_info = get_xtensa_relax_info (sec);
9883 if (!relax_info)
9884 return TRUE;
9885
9886 for (r = relax_info->fix_list; r != NULL; r = r->next)
9887 if (!translate_reloc_bfd_fix (r))
9888 return FALSE;
e0001a05 9889
43cd72b9
BW
9890 return TRUE;
9891}
e0001a05 9892
e0001a05 9893
43cd72b9
BW
9894/* Translate a fix given the mapping in the relax info for the target
9895 section. If it has already been translated, no work is required. */
e0001a05 9896
68ffbac6 9897static bfd_boolean
7fa3d080 9898translate_reloc_bfd_fix (reloc_bfd_fix *fix)
43cd72b9
BW
9899{
9900 reloc_bfd_fix new_fix;
9901 asection *sec;
9902 xtensa_relax_info *relax_info;
9903 removed_literal *removed;
9904 bfd_vma new_offset, target_offset;
e0001a05 9905
43cd72b9
BW
9906 if (fix->translated)
9907 return TRUE;
e0001a05 9908
43cd72b9
BW
9909 sec = fix->target_sec;
9910 target_offset = fix->target_offset;
e0001a05 9911
43cd72b9
BW
9912 relax_info = get_xtensa_relax_info (sec);
9913 if (!relax_info)
9914 {
9915 fix->translated = TRUE;
9916 return TRUE;
9917 }
e0001a05 9918
43cd72b9 9919 new_fix = *fix;
e0001a05 9920
43cd72b9
BW
9921 /* The fix does not need to be translated if the section cannot change. */
9922 if (!relax_info->is_relaxable_literal_section
9923 && !relax_info->is_relaxable_asm_section)
9924 {
9925 fix->translated = TRUE;
9926 return TRUE;
9927 }
e0001a05 9928
43cd72b9
BW
9929 /* If the literal has been moved and this relocation was on an
9930 opcode, then the relocation should move to the new literal
9931 location. Otherwise, the relocation should move within the
9932 section. */
9933
9934 removed = FALSE;
9935 if (is_operand_relocation (fix->src_type))
9936 {
9937 /* Check if the original relocation is against a literal being
9938 removed. */
9939 removed = find_removed_literal (&relax_info->removed_list,
9940 target_offset);
e0001a05
NC
9941 }
9942
68ffbac6 9943 if (removed)
e0001a05 9944 {
43cd72b9 9945 asection *new_sec;
e0001a05 9946
43cd72b9
BW
9947 /* The fact that there is still a relocation to this literal indicates
9948 that the literal is being coalesced, not simply removed. */
9949 BFD_ASSERT (removed->to.abfd != NULL);
e0001a05 9950
43cd72b9
BW
9951 /* This was moved to some other address (possibly another section). */
9952 new_sec = r_reloc_get_section (&removed->to);
68ffbac6 9953 if (new_sec != sec)
e0001a05 9954 {
43cd72b9
BW
9955 sec = new_sec;
9956 relax_info = get_xtensa_relax_info (sec);
68ffbac6 9957 if (!relax_info ||
43cd72b9
BW
9958 (!relax_info->is_relaxable_literal_section
9959 && !relax_info->is_relaxable_asm_section))
e0001a05 9960 {
43cd72b9
BW
9961 target_offset = removed->to.target_offset;
9962 new_fix.target_sec = new_sec;
9963 new_fix.target_offset = target_offset;
9964 new_fix.translated = TRUE;
9965 *fix = new_fix;
9966 return TRUE;
e0001a05 9967 }
e0001a05 9968 }
43cd72b9
BW
9969 target_offset = removed->to.target_offset;
9970 new_fix.target_sec = new_sec;
e0001a05 9971 }
43cd72b9
BW
9972
9973 /* The target address may have been moved within its section. */
9974 new_offset = offset_with_removed_text (&relax_info->action_list,
9975 target_offset);
9976
9977 new_fix.target_offset = new_offset;
9978 new_fix.target_offset = new_offset;
9979 new_fix.translated = TRUE;
9980 *fix = new_fix;
9981 return TRUE;
e0001a05
NC
9982}
9983
9984
9985/* Fix up a relocation to take account of removed literals. */
9986
9b7f5d20
BW
9987static asection *
9988translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
e0001a05 9989{
e0001a05
NC
9990 xtensa_relax_info *relax_info;
9991 removed_literal *removed;
9b7f5d20 9992 bfd_vma target_offset, base_offset;
e0001a05
NC
9993
9994 *new_rel = *orig_rel;
9995
9996 if (!r_reloc_is_defined (orig_rel))
9b7f5d20 9997 return sec ;
e0001a05
NC
9998
9999 relax_info = get_xtensa_relax_info (sec);
9b7f5d20
BW
10000 BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
10001 || relax_info->is_relaxable_asm_section));
e0001a05 10002
43cd72b9
BW
10003 target_offset = orig_rel->target_offset;
10004
10005 removed = FALSE;
10006 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
10007 {
10008 /* Check if the original relocation is against a literal being
10009 removed. */
10010 removed = find_removed_literal (&relax_info->removed_list,
10011 target_offset);
10012 }
10013 if (removed && removed->to.abfd)
e0001a05
NC
10014 {
10015 asection *new_sec;
10016
10017 /* The fact that there is still a relocation to this literal indicates
10018 that the literal is being coalesced, not simply removed. */
10019 BFD_ASSERT (removed->to.abfd != NULL);
10020
43cd72b9
BW
10021 /* This was moved to some other address
10022 (possibly in another section). */
e0001a05
NC
10023 *new_rel = removed->to;
10024 new_sec = r_reloc_get_section (new_rel);
43cd72b9 10025 if (new_sec != sec)
e0001a05
NC
10026 {
10027 sec = new_sec;
10028 relax_info = get_xtensa_relax_info (sec);
43cd72b9
BW
10029 if (!relax_info
10030 || (!relax_info->is_relaxable_literal_section
10031 && !relax_info->is_relaxable_asm_section))
9b7f5d20 10032 return sec;
e0001a05 10033 }
43cd72b9 10034 target_offset = new_rel->target_offset;
e0001a05
NC
10035 }
10036
9b7f5d20
BW
10037 /* Find the base offset of the reloc symbol, excluding any addend from the
10038 reloc or from the section contents (for a partial_inplace reloc). Then
10039 find the adjusted values of the offsets due to relaxation. The base
10040 offset is needed to determine the change to the reloc's addend; the reloc
10041 addend should not be adjusted due to relaxations located before the base
10042 offset. */
10043
10044 base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
9b7f5d20
BW
10045 if (base_offset <= target_offset)
10046 {
071aa5c9
MF
10047 int base_removed = removed_by_actions_map (&relax_info->action_list,
10048 base_offset, FALSE);
10049 int addend_removed = removed_by_actions_map (&relax_info->action_list,
10050 target_offset, FALSE) -
10051 base_removed;
10052
9b7f5d20
BW
10053 new_rel->target_offset = target_offset - base_removed - addend_removed;
10054 new_rel->rela.r_addend -= addend_removed;
10055 }
10056 else
10057 {
10058 /* Handle a negative addend. The base offset comes first. */
071aa5c9
MF
10059 int tgt_removed = removed_by_actions_map (&relax_info->action_list,
10060 target_offset, FALSE);
10061 int addend_removed = removed_by_actions_map (&relax_info->action_list,
10062 base_offset, FALSE) -
10063 tgt_removed;
10064
9b7f5d20
BW
10065 new_rel->target_offset = target_offset - tgt_removed;
10066 new_rel->rela.r_addend += addend_removed;
10067 }
e0001a05 10068
9b7f5d20 10069 return sec;
e0001a05
NC
10070}
10071
10072
10073/* For dynamic links, there may be a dynamic relocation for each
10074 literal. The number of dynamic relocations must be computed in
10075 size_dynamic_sections, which occurs before relaxation. When a
10076 literal is removed, this function checks if there is a corresponding
10077 dynamic relocation and shrinks the size of the appropriate dynamic
10078 relocation section accordingly. At this point, the contents of the
10079 dynamic relocation sections have not yet been filled in, so there's
10080 nothing else that needs to be done. */
10081
10082static void
7fa3d080
BW
10083shrink_dynamic_reloc_sections (struct bfd_link_info *info,
10084 bfd *abfd,
10085 asection *input_section,
10086 Elf_Internal_Rela *rel)
e0001a05 10087{
f0e6fdb2 10088 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
10089 Elf_Internal_Shdr *symtab_hdr;
10090 struct elf_link_hash_entry **sym_hashes;
10091 unsigned long r_symndx;
10092 int r_type;
10093 struct elf_link_hash_entry *h;
10094 bfd_boolean dynamic_symbol;
10095
f0e6fdb2 10096 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
10097 if (htab == NULL)
10098 return;
10099
e0001a05
NC
10100 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10101 sym_hashes = elf_sym_hashes (abfd);
10102
10103 r_type = ELF32_R_TYPE (rel->r_info);
10104 r_symndx = ELF32_R_SYM (rel->r_info);
10105
10106 if (r_symndx < symtab_hdr->sh_info)
10107 h = NULL;
10108 else
10109 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
10110
4608f3d9 10111 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
e0001a05
NC
10112
10113 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
10114 && (input_section->flags & SEC_ALLOC) != 0
0e1862bb 10115 && (dynamic_symbol || bfd_link_pic (info)))
e0001a05 10116 {
e0001a05
NC
10117 asection *srel;
10118 bfd_boolean is_plt = FALSE;
10119
e0001a05
NC
10120 if (dynamic_symbol && r_type == R_XTENSA_PLT)
10121 {
f0e6fdb2 10122 srel = htab->srelplt;
e0001a05
NC
10123 is_plt = TRUE;
10124 }
10125 else
f0e6fdb2 10126 srel = htab->srelgot;
e0001a05
NC
10127
10128 /* Reduce size of the .rela.* section by one reloc. */
e0001a05 10129 BFD_ASSERT (srel != NULL);
eea6121a
AM
10130 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
10131 srel->size -= sizeof (Elf32_External_Rela);
e0001a05
NC
10132
10133 if (is_plt)
10134 {
10135 asection *splt, *sgotplt, *srelgot;
10136 int reloc_index, chunk;
10137
10138 /* Find the PLT reloc index of the entry being removed. This
10139 is computed from the size of ".rela.plt". It is needed to
10140 figure out which PLT chunk to resize. Usually "last index
10141 = size - 1" since the index starts at zero, but in this
10142 context, the size has just been decremented so there's no
10143 need to subtract one. */
eea6121a 10144 reloc_index = srel->size / sizeof (Elf32_External_Rela);
e0001a05
NC
10145
10146 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
f0e6fdb2
BW
10147 splt = elf_xtensa_get_plt_section (info, chunk);
10148 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
10149 BFD_ASSERT (splt != NULL && sgotplt != NULL);
10150
10151 /* Check if an entire PLT chunk has just been eliminated. */
10152 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
10153 {
10154 /* The two magic GOT entries for that chunk can go away. */
f0e6fdb2 10155 srelgot = htab->srelgot;
e0001a05
NC
10156 BFD_ASSERT (srelgot != NULL);
10157 srelgot->reloc_count -= 2;
eea6121a
AM
10158 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
10159 sgotplt->size -= 8;
e0001a05
NC
10160
10161 /* There should be only one entry left (and it will be
10162 removed below). */
eea6121a
AM
10163 BFD_ASSERT (sgotplt->size == 4);
10164 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
e0001a05
NC
10165 }
10166
eea6121a
AM
10167 BFD_ASSERT (sgotplt->size >= 4);
10168 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
e0001a05 10169
eea6121a
AM
10170 sgotplt->size -= 4;
10171 splt->size -= PLT_ENTRY_SIZE;
e0001a05
NC
10172 }
10173 }
10174}
10175
10176
43cd72b9
BW
10177/* Take an r_rel and move it to another section. This usually
10178 requires extending the interal_relocation array and pinning it. If
10179 the original r_rel is from the same BFD, we can complete this here.
10180 Otherwise, we add a fix record to let the final link fix the
10181 appropriate address. Contents and internal relocations for the
10182 section must be pinned after calling this routine. */
10183
10184static bfd_boolean
7fa3d080
BW
10185move_literal (bfd *abfd,
10186 struct bfd_link_info *link_info,
10187 asection *sec,
10188 bfd_vma offset,
10189 bfd_byte *contents,
10190 xtensa_relax_info *relax_info,
10191 Elf_Internal_Rela **internal_relocs_p,
10192 const literal_value *lit)
43cd72b9
BW
10193{
10194 Elf_Internal_Rela *new_relocs = NULL;
10195 size_t new_relocs_count = 0;
10196 Elf_Internal_Rela this_rela;
10197 const r_reloc *r_rel;
10198
10199 r_rel = &lit->r_rel;
10200 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
10201
10202 if (r_reloc_is_const (r_rel))
10203 bfd_put_32 (abfd, lit->value, contents + offset);
10204 else
10205 {
10206 int r_type;
10207 unsigned i;
43cd72b9
BW
10208 reloc_bfd_fix *fix;
10209 unsigned insert_at;
10210
10211 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
43cd72b9
BW
10212
10213 /* This is the difficult case. We have to create a fix up. */
10214 this_rela.r_offset = offset;
10215 this_rela.r_info = ELF32_R_INFO (0, r_type);
10216 this_rela.r_addend =
10217 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
10218 bfd_put_32 (abfd, lit->value, contents + offset);
10219
10220 /* Currently, we cannot move relocations during a relocatable link. */
0e1862bb 10221 BFD_ASSERT (!bfd_link_relocatable (link_info));
0f5f1638 10222 fix = reloc_bfd_fix_init (sec, offset, r_type,
43cd72b9
BW
10223 r_reloc_get_section (r_rel),
10224 r_rel->target_offset + r_rel->virtual_offset,
10225 FALSE);
10226 /* We also need to mark that relocations are needed here. */
10227 sec->flags |= SEC_RELOC;
10228
10229 translate_reloc_bfd_fix (fix);
10230 /* This fix has not yet been translated. */
10231 add_fix (sec, fix);
10232
10233 /* Add the relocation. If we have already allocated our own
10234 space for the relocations and we have room for more, then use
10235 it. Otherwise, allocate new space and move the literals. */
10236 insert_at = sec->reloc_count;
10237 for (i = 0; i < sec->reloc_count; ++i)
10238 {
10239 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
10240 {
10241 insert_at = i;
10242 break;
10243 }
10244 }
10245
10246 if (*internal_relocs_p != relax_info->allocated_relocs
10247 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
10248 {
10249 BFD_ASSERT (relax_info->allocated_relocs == NULL
10250 || sec->reloc_count == relax_info->relocs_count);
10251
68ffbac6 10252 if (relax_info->allocated_relocs_count == 0)
43cd72b9
BW
10253 new_relocs_count = (sec->reloc_count + 2) * 2;
10254 else
10255 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
10256
10257 new_relocs = (Elf_Internal_Rela *)
10258 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
10259 if (!new_relocs)
10260 return FALSE;
10261
10262 /* We could handle this more quickly by finding the split point. */
10263 if (insert_at != 0)
10264 memcpy (new_relocs, *internal_relocs_p,
10265 insert_at * sizeof (Elf_Internal_Rela));
10266
10267 new_relocs[insert_at] = this_rela;
10268
10269 if (insert_at != sec->reloc_count)
10270 memcpy (new_relocs + insert_at + 1,
10271 (*internal_relocs_p) + insert_at,
68ffbac6 10272 (sec->reloc_count - insert_at)
43cd72b9
BW
10273 * sizeof (Elf_Internal_Rela));
10274
10275 if (*internal_relocs_p != relax_info->allocated_relocs)
10276 {
10277 /* The first time we re-allocate, we can only free the
10278 old relocs if they were allocated with bfd_malloc.
10279 This is not true when keep_memory is in effect. */
10280 if (!link_info->keep_memory)
10281 free (*internal_relocs_p);
10282 }
10283 else
10284 free (*internal_relocs_p);
10285 relax_info->allocated_relocs = new_relocs;
10286 relax_info->allocated_relocs_count = new_relocs_count;
10287 elf_section_data (sec)->relocs = new_relocs;
10288 sec->reloc_count++;
10289 relax_info->relocs_count = sec->reloc_count;
10290 *internal_relocs_p = new_relocs;
10291 }
10292 else
10293 {
10294 if (insert_at != sec->reloc_count)
10295 {
10296 unsigned idx;
10297 for (idx = sec->reloc_count; idx > insert_at; idx--)
10298 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
10299 }
10300 (*internal_relocs_p)[insert_at] = this_rela;
10301 sec->reloc_count++;
10302 if (relax_info->allocated_relocs)
10303 relax_info->relocs_count = sec->reloc_count;
10304 }
10305 }
10306 return TRUE;
10307}
10308
10309
e0001a05
NC
10310/* This is similar to relax_section except that when a target is moved,
10311 we shift addresses up. We also need to modify the size. This
10312 algorithm does NOT allow for relocations into the middle of the
10313 property sections. */
10314
43cd72b9 10315static bfd_boolean
7fa3d080
BW
10316relax_property_section (bfd *abfd,
10317 asection *sec,
10318 struct bfd_link_info *link_info)
e0001a05
NC
10319{
10320 Elf_Internal_Rela *internal_relocs;
10321 bfd_byte *contents;
1d25768e 10322 unsigned i;
e0001a05 10323 bfd_boolean ok = TRUE;
43cd72b9
BW
10324 bfd_boolean is_full_prop_section;
10325 size_t last_zfill_target_offset = 0;
10326 asection *last_zfill_target_sec = NULL;
10327 bfd_size_type sec_size;
1d25768e 10328 bfd_size_type entry_size;
e0001a05 10329
43cd72b9 10330 sec_size = bfd_get_section_limit (abfd, sec);
68ffbac6 10331 internal_relocs = retrieve_internal_relocs (abfd, sec,
e0001a05
NC
10332 link_info->keep_memory);
10333 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 10334 if (contents == NULL && sec_size != 0)
e0001a05
NC
10335 {
10336 ok = FALSE;
10337 goto error_return;
10338 }
10339
1d25768e
BW
10340 is_full_prop_section = xtensa_is_proptable_section (sec);
10341 if (is_full_prop_section)
10342 entry_size = 12;
10343 else
10344 entry_size = 8;
43cd72b9
BW
10345
10346 if (internal_relocs)
e0001a05 10347 {
43cd72b9 10348 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
10349 {
10350 Elf_Internal_Rela *irel;
10351 xtensa_relax_info *target_relax_info;
e0001a05
NC
10352 unsigned r_type;
10353 asection *target_sec;
43cd72b9
BW
10354 literal_value val;
10355 bfd_byte *size_p, *flags_p;
e0001a05
NC
10356
10357 /* Locally change the source address.
10358 Translate the target to the new target address.
10359 If it points to this section and has been removed, MOVE IT.
10360 Also, don't forget to modify the associated SIZE at
10361 (offset + 4). */
10362
10363 irel = &internal_relocs[i];
10364 r_type = ELF32_R_TYPE (irel->r_info);
10365 if (r_type == R_XTENSA_NONE)
10366 continue;
10367
43cd72b9
BW
10368 /* Find the literal value. */
10369 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
10370 size_p = &contents[irel->r_offset + 4];
10371 flags_p = NULL;
10372 if (is_full_prop_section)
1d25768e
BW
10373 flags_p = &contents[irel->r_offset + 8];
10374 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
e0001a05 10375
43cd72b9 10376 target_sec = r_reloc_get_section (&val.r_rel);
e0001a05
NC
10377 target_relax_info = get_xtensa_relax_info (target_sec);
10378
10379 if (target_relax_info
43cd72b9
BW
10380 && (target_relax_info->is_relaxable_literal_section
10381 || target_relax_info->is_relaxable_asm_section ))
e0001a05
NC
10382 {
10383 /* Translate the relocation's destination. */
03669f1c
BW
10384 bfd_vma old_offset = val.r_rel.target_offset;
10385 bfd_vma new_offset;
e0001a05 10386 long old_size, new_size;
071aa5c9
MF
10387 int removed_by_old_offset =
10388 removed_by_actions_map (&target_relax_info->action_list,
10389 old_offset, FALSE);
10390 new_offset = old_offset - removed_by_old_offset;
e0001a05
NC
10391
10392 /* Assert that we are not out of bounds. */
43cd72b9 10393 old_size = bfd_get_32 (abfd, size_p);
03669f1c 10394 new_size = old_size;
43cd72b9
BW
10395
10396 if (old_size == 0)
10397 {
10398 /* Only the first zero-sized unreachable entry is
10399 allowed to expand. In this case the new offset
10400 should be the offset before the fill and the new
10401 size is the expansion size. For other zero-sized
10402 entries the resulting size should be zero with an
10403 offset before or after the fill address depending
10404 on whether the expanding unreachable entry
10405 preceeds it. */
03669f1c
BW
10406 if (last_zfill_target_sec == 0
10407 || last_zfill_target_sec != target_sec
10408 || last_zfill_target_offset != old_offset)
43cd72b9 10409 {
03669f1c
BW
10410 bfd_vma new_end_offset = new_offset;
10411
10412 /* Recompute the new_offset, but this time don't
10413 include any fill inserted by relaxation. */
071aa5c9
MF
10414 removed_by_old_offset =
10415 removed_by_actions_map (&target_relax_info->action_list,
10416 old_offset, TRUE);
10417 new_offset = old_offset - removed_by_old_offset;
43cd72b9
BW
10418
10419 /* If it is not unreachable and we have not yet
10420 seen an unreachable at this address, place it
10421 before the fill address. */
03669f1c
BW
10422 if (flags_p && (bfd_get_32 (abfd, flags_p)
10423 & XTENSA_PROP_UNREACHABLE) != 0)
43cd72b9 10424 {
03669f1c
BW
10425 new_size = new_end_offset - new_offset;
10426
43cd72b9 10427 last_zfill_target_sec = target_sec;
03669f1c 10428 last_zfill_target_offset = old_offset;
43cd72b9
BW
10429 }
10430 }
10431 }
10432 else
071aa5c9
MF
10433 {
10434 int removed_by_old_offset_size =
10435 removed_by_actions_map (&target_relax_info->action_list,
10436 old_offset + old_size, TRUE);
10437 new_size -= removed_by_old_offset_size - removed_by_old_offset;
10438 }
43cd72b9 10439
e0001a05
NC
10440 if (new_size != old_size)
10441 {
10442 bfd_put_32 (abfd, new_size, size_p);
10443 pin_contents (sec, contents);
10444 }
43cd72b9 10445
03669f1c 10446 if (new_offset != old_offset)
e0001a05 10447 {
03669f1c 10448 bfd_vma diff = new_offset - old_offset;
e0001a05
NC
10449 irel->r_addend += diff;
10450 pin_internal_relocs (sec, internal_relocs);
10451 }
10452 }
10453 }
10454 }
10455
10456 /* Combine adjacent property table entries. This is also done in
10457 finish_dynamic_sections() but at that point it's too late to
10458 reclaim the space in the output section, so we do this twice. */
10459
0e1862bb 10460 if (internal_relocs && (!bfd_link_relocatable (link_info)
1d25768e 10461 || xtensa_is_littable_section (sec)))
e0001a05
NC
10462 {
10463 Elf_Internal_Rela *last_irel = NULL;
1d25768e 10464 Elf_Internal_Rela *irel, *next_rel, *rel_end;
e0001a05 10465 int removed_bytes = 0;
1d25768e 10466 bfd_vma offset;
43cd72b9
BW
10467 flagword predef_flags;
10468
43cd72b9 10469 predef_flags = xtensa_get_property_predef_flags (sec);
e0001a05 10470
1d25768e 10471 /* Walk over memory and relocations at the same time.
e0001a05
NC
10472 This REQUIRES that the internal_relocs be sorted by offset. */
10473 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
10474 internal_reloc_compare);
e0001a05
NC
10475
10476 pin_internal_relocs (sec, internal_relocs);
10477 pin_contents (sec, contents);
10478
1d25768e
BW
10479 next_rel = internal_relocs;
10480 rel_end = internal_relocs + sec->reloc_count;
10481
a3ef2d63 10482 BFD_ASSERT (sec->size % entry_size == 0);
e0001a05 10483
a3ef2d63 10484 for (offset = 0; offset < sec->size; offset += entry_size)
e0001a05 10485 {
1d25768e 10486 Elf_Internal_Rela *offset_rel, *extra_rel;
e0001a05 10487 bfd_vma bytes_to_remove, size, actual_offset;
1d25768e 10488 bfd_boolean remove_this_rel;
43cd72b9 10489 flagword flags;
e0001a05 10490
1d25768e
BW
10491 /* Find the first relocation for the entry at the current offset.
10492 Adjust the offsets of any extra relocations for the previous
10493 entry. */
10494 offset_rel = NULL;
10495 if (next_rel)
10496 {
10497 for (irel = next_rel; irel < rel_end; irel++)
10498 {
10499 if ((irel->r_offset == offset
10500 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10501 || irel->r_offset > offset)
10502 {
10503 offset_rel = irel;
10504 break;
10505 }
10506 irel->r_offset -= removed_bytes;
1d25768e
BW
10507 }
10508 }
e0001a05 10509
1d25768e
BW
10510 /* Find the next relocation (if there are any left). */
10511 extra_rel = NULL;
10512 if (offset_rel)
e0001a05 10513 {
1d25768e 10514 for (irel = offset_rel + 1; irel < rel_end; irel++)
e0001a05 10515 {
1d25768e
BW
10516 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10517 {
10518 extra_rel = irel;
10519 break;
10520 }
e0001a05 10521 }
e0001a05
NC
10522 }
10523
1d25768e
BW
10524 /* Check if there are relocations on the current entry. There
10525 should usually be a relocation on the offset field. If there
10526 are relocations on the size or flags, then we can't optimize
10527 this entry. Also, find the next relocation to examine on the
10528 next iteration. */
10529 if (offset_rel)
e0001a05 10530 {
1d25768e 10531 if (offset_rel->r_offset >= offset + entry_size)
e0001a05 10532 {
1d25768e
BW
10533 next_rel = offset_rel;
10534 /* There are no relocations on the current entry, but we
10535 might still be able to remove it if the size is zero. */
10536 offset_rel = NULL;
10537 }
10538 else if (offset_rel->r_offset > offset
10539 || (extra_rel
10540 && extra_rel->r_offset < offset + entry_size))
10541 {
10542 /* There is a relocation on the size or flags, so we can't
10543 do anything with this entry. Continue with the next. */
10544 next_rel = offset_rel;
10545 continue;
10546 }
10547 else
10548 {
10549 BFD_ASSERT (offset_rel->r_offset == offset);
10550 offset_rel->r_offset -= removed_bytes;
10551 next_rel = offset_rel + 1;
e0001a05 10552 }
e0001a05 10553 }
1d25768e
BW
10554 else
10555 next_rel = NULL;
e0001a05 10556
1d25768e 10557 remove_this_rel = FALSE;
e0001a05
NC
10558 bytes_to_remove = 0;
10559 actual_offset = offset - removed_bytes;
10560 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
10561
68ffbac6 10562 if (is_full_prop_section)
43cd72b9
BW
10563 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
10564 else
10565 flags = predef_flags;
10566
1d25768e
BW
10567 if (size == 0
10568 && (flags & XTENSA_PROP_ALIGN) == 0
10569 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
e0001a05 10570 {
43cd72b9
BW
10571 /* Always remove entries with zero size and no alignment. */
10572 bytes_to_remove = entry_size;
1d25768e
BW
10573 if (offset_rel)
10574 remove_this_rel = TRUE;
e0001a05 10575 }
1d25768e
BW
10576 else if (offset_rel
10577 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
e0001a05 10578 {
1d25768e 10579 if (last_irel)
e0001a05 10580 {
1d25768e
BW
10581 flagword old_flags;
10582 bfd_vma old_size =
10583 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
10584 bfd_vma old_address =
10585 (last_irel->r_addend
10586 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
10587 bfd_vma new_address =
10588 (offset_rel->r_addend
10589 + bfd_get_32 (abfd, &contents[actual_offset]));
68ffbac6 10590 if (is_full_prop_section)
1d25768e
BW
10591 old_flags = bfd_get_32
10592 (abfd, &contents[last_irel->r_offset + 8]);
10593 else
10594 old_flags = predef_flags;
10595
10596 if ((ELF32_R_SYM (offset_rel->r_info)
10597 == ELF32_R_SYM (last_irel->r_info))
10598 && old_address + old_size == new_address
10599 && old_flags == flags
10600 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
10601 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
e0001a05 10602 {
1d25768e
BW
10603 /* Fix the old size. */
10604 bfd_put_32 (abfd, old_size + size,
10605 &contents[last_irel->r_offset + 4]);
10606 bytes_to_remove = entry_size;
10607 remove_this_rel = TRUE;
e0001a05
NC
10608 }
10609 else
1d25768e 10610 last_irel = offset_rel;
e0001a05 10611 }
1d25768e
BW
10612 else
10613 last_irel = offset_rel;
e0001a05
NC
10614 }
10615
1d25768e 10616 if (remove_this_rel)
e0001a05 10617 {
1d25768e 10618 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3df502ae 10619 offset_rel->r_offset = 0;
e0001a05
NC
10620 }
10621
10622 if (bytes_to_remove != 0)
10623 {
10624 removed_bytes += bytes_to_remove;
a3ef2d63 10625 if (offset + bytes_to_remove < sec->size)
e0001a05 10626 memmove (&contents[actual_offset],
43cd72b9 10627 &contents[actual_offset + bytes_to_remove],
a3ef2d63 10628 sec->size - offset - bytes_to_remove);
e0001a05
NC
10629 }
10630 }
10631
43cd72b9 10632 if (removed_bytes)
e0001a05 10633 {
1d25768e
BW
10634 /* Fix up any extra relocations on the last entry. */
10635 for (irel = next_rel; irel < rel_end; irel++)
10636 irel->r_offset -= removed_bytes;
10637
e0001a05 10638 /* Clear the removed bytes. */
a3ef2d63 10639 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
e0001a05 10640
a3ef2d63
BW
10641 if (sec->rawsize == 0)
10642 sec->rawsize = sec->size;
10643 sec->size -= removed_bytes;
e901de89
BW
10644
10645 if (xtensa_is_littable_section (sec))
10646 {
f0e6fdb2
BW
10647 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
10648 if (sgotloc)
10649 sgotloc->size -= removed_bytes;
e901de89 10650 }
e0001a05
NC
10651 }
10652 }
e901de89 10653
e0001a05
NC
10654 error_return:
10655 release_internal_relocs (sec, internal_relocs);
10656 release_contents (sec, contents);
10657 return ok;
10658}
10659
10660\f
10661/* Third relaxation pass. */
10662
10663/* Change symbol values to account for removed literals. */
10664
43cd72b9 10665bfd_boolean
7fa3d080 10666relax_section_symbols (bfd *abfd, asection *sec)
e0001a05
NC
10667{
10668 xtensa_relax_info *relax_info;
10669 unsigned int sec_shndx;
10670 Elf_Internal_Shdr *symtab_hdr;
10671 Elf_Internal_Sym *isymbuf;
10672 unsigned i, num_syms, num_locals;
10673
10674 relax_info = get_xtensa_relax_info (sec);
10675 BFD_ASSERT (relax_info);
10676
43cd72b9
BW
10677 if (!relax_info->is_relaxable_literal_section
10678 && !relax_info->is_relaxable_asm_section)
e0001a05
NC
10679 return TRUE;
10680
10681 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
10682
10683 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10684 isymbuf = retrieve_local_syms (abfd);
10685
10686 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
10687 num_locals = symtab_hdr->sh_info;
10688
10689 /* Adjust the local symbols defined in this section. */
10690 for (i = 0; i < num_locals; i++)
10691 {
10692 Elf_Internal_Sym *isym = &isymbuf[i];
10693
10694 if (isym->st_shndx == sec_shndx)
10695 {
03669f1c 10696 bfd_vma orig_addr = isym->st_value;
071aa5c9
MF
10697 int removed = removed_by_actions_map (&relax_info->action_list,
10698 orig_addr, FALSE);
43cd72b9 10699
071aa5c9 10700 isym->st_value -= removed;
03669f1c
BW
10701 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
10702 isym->st_size -=
071aa5c9
MF
10703 removed_by_actions_map (&relax_info->action_list,
10704 orig_addr + isym->st_size, FALSE) -
10705 removed;
e0001a05
NC
10706 }
10707 }
10708
10709 /* Now adjust the global symbols defined in this section. */
10710 for (i = 0; i < (num_syms - num_locals); i++)
10711 {
10712 struct elf_link_hash_entry *sym_hash;
10713
10714 sym_hash = elf_sym_hashes (abfd)[i];
10715
10716 if (sym_hash->root.type == bfd_link_hash_warning)
10717 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
10718
10719 if ((sym_hash->root.type == bfd_link_hash_defined
10720 || sym_hash->root.type == bfd_link_hash_defweak)
10721 && sym_hash->root.u.def.section == sec)
10722 {
03669f1c 10723 bfd_vma orig_addr = sym_hash->root.u.def.value;
071aa5c9
MF
10724 int removed = removed_by_actions_map (&relax_info->action_list,
10725 orig_addr, FALSE);
43cd72b9 10726
071aa5c9 10727 sym_hash->root.u.def.value -= removed;
43cd72b9 10728
03669f1c
BW
10729 if (sym_hash->type == STT_FUNC)
10730 sym_hash->size -=
071aa5c9
MF
10731 removed_by_actions_map (&relax_info->action_list,
10732 orig_addr + sym_hash->size, FALSE) -
10733 removed;
e0001a05
NC
10734 }
10735 }
10736
10737 return TRUE;
10738}
10739
10740\f
10741/* "Fix" handling functions, called while performing relocations. */
10742
43cd72b9 10743static bfd_boolean
7fa3d080
BW
10744do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
10745 bfd *input_bfd,
10746 asection *input_section,
10747 bfd_byte *contents)
e0001a05
NC
10748{
10749 r_reloc r_rel;
10750 asection *sec, *old_sec;
10751 bfd_vma old_offset;
10752 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05
NC
10753 reloc_bfd_fix *fix;
10754
10755 if (r_type == R_XTENSA_NONE)
43cd72b9 10756 return TRUE;
e0001a05 10757
43cd72b9
BW
10758 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10759 if (!fix)
10760 return TRUE;
e0001a05 10761
43cd72b9
BW
10762 r_reloc_init (&r_rel, input_bfd, rel, contents,
10763 bfd_get_section_limit (input_bfd, input_section));
e0001a05 10764 old_sec = r_reloc_get_section (&r_rel);
43cd72b9
BW
10765 old_offset = r_rel.target_offset;
10766
10767 if (!old_sec || !r_reloc_is_defined (&r_rel))
e0001a05 10768 {
43cd72b9
BW
10769 if (r_type != R_XTENSA_ASM_EXPAND)
10770 {
10771 (*_bfd_error_handler)
10772 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
10773 input_bfd, input_section, rel->r_offset,
10774 elf_howto_table[r_type].name);
10775 return FALSE;
10776 }
e0001a05
NC
10777 /* Leave it be. Resolution will happen in a later stage. */
10778 }
10779 else
10780 {
10781 sec = fix->target_sec;
10782 rel->r_addend += ((sec->output_offset + fix->target_offset)
10783 - (old_sec->output_offset + old_offset));
10784 }
43cd72b9 10785 return TRUE;
e0001a05
NC
10786}
10787
10788
10789static void
7fa3d080
BW
10790do_fix_for_final_link (Elf_Internal_Rela *rel,
10791 bfd *input_bfd,
10792 asection *input_section,
10793 bfd_byte *contents,
10794 bfd_vma *relocationp)
e0001a05
NC
10795{
10796 asection *sec;
10797 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05 10798 reloc_bfd_fix *fix;
43cd72b9 10799 bfd_vma fixup_diff;
e0001a05
NC
10800
10801 if (r_type == R_XTENSA_NONE)
10802 return;
10803
43cd72b9
BW
10804 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10805 if (!fix)
e0001a05
NC
10806 return;
10807
10808 sec = fix->target_sec;
43cd72b9
BW
10809
10810 fixup_diff = rel->r_addend;
10811 if (elf_howto_table[fix->src_type].partial_inplace)
10812 {
10813 bfd_vma inplace_val;
10814 BFD_ASSERT (fix->src_offset
10815 < bfd_get_section_limit (input_bfd, input_section));
10816 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
10817 fixup_diff += inplace_val;
10818 }
10819
e0001a05
NC
10820 *relocationp = (sec->output_section->vma
10821 + sec->output_offset
43cd72b9 10822 + fix->target_offset - fixup_diff);
e0001a05
NC
10823}
10824
10825\f
10826/* Miscellaneous utility functions.... */
10827
10828static asection *
f0e6fdb2 10829elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
e0001a05 10830{
f0e6fdb2
BW
10831 struct elf_xtensa_link_hash_table *htab;
10832 bfd *dynobj;
e0001a05
NC
10833 char plt_name[10];
10834
10835 if (chunk == 0)
f0e6fdb2
BW
10836 {
10837 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
10838 if (htab == NULL)
10839 return NULL;
10840
f0e6fdb2
BW
10841 return htab->splt;
10842 }
e0001a05 10843
f0e6fdb2 10844 dynobj = elf_hash_table (info)->dynobj;
e0001a05 10845 sprintf (plt_name, ".plt.%u", chunk);
3d4d4302 10846 return bfd_get_linker_section (dynobj, plt_name);
e0001a05
NC
10847}
10848
10849
10850static asection *
f0e6fdb2 10851elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
e0001a05 10852{
f0e6fdb2
BW
10853 struct elf_xtensa_link_hash_table *htab;
10854 bfd *dynobj;
e0001a05
NC
10855 char got_name[14];
10856
10857 if (chunk == 0)
f0e6fdb2
BW
10858 {
10859 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
10860 if (htab == NULL)
10861 return NULL;
f0e6fdb2
BW
10862 return htab->sgotplt;
10863 }
e0001a05 10864
f0e6fdb2 10865 dynobj = elf_hash_table (info)->dynobj;
e0001a05 10866 sprintf (got_name, ".got.plt.%u", chunk);
3d4d4302 10867 return bfd_get_linker_section (dynobj, got_name);
e0001a05
NC
10868}
10869
10870
10871/* Get the input section for a given symbol index.
10872 If the symbol is:
10873 . a section symbol, return the section;
10874 . a common symbol, return the common section;
10875 . an undefined symbol, return the undefined section;
10876 . an indirect symbol, follow the links;
10877 . an absolute value, return the absolute section. */
10878
10879static asection *
7fa3d080 10880get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
10881{
10882 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10883 asection *target_sec = NULL;
43cd72b9 10884 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
10885 {
10886 Elf_Internal_Sym *isymbuf;
10887 unsigned int section_index;
10888
10889 isymbuf = retrieve_local_syms (abfd);
10890 section_index = isymbuf[r_symndx].st_shndx;
10891
10892 if (section_index == SHN_UNDEF)
10893 target_sec = bfd_und_section_ptr;
e0001a05
NC
10894 else if (section_index == SHN_ABS)
10895 target_sec = bfd_abs_section_ptr;
10896 else if (section_index == SHN_COMMON)
10897 target_sec = bfd_com_section_ptr;
43cd72b9 10898 else
cb33740c 10899 target_sec = bfd_section_from_elf_index (abfd, section_index);
e0001a05
NC
10900 }
10901 else
10902 {
10903 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10904 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
10905
10906 while (h->root.type == bfd_link_hash_indirect
10907 || h->root.type == bfd_link_hash_warning)
10908 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10909
10910 switch (h->root.type)
10911 {
10912 case bfd_link_hash_defined:
10913 case bfd_link_hash_defweak:
10914 target_sec = h->root.u.def.section;
10915 break;
10916 case bfd_link_hash_common:
10917 target_sec = bfd_com_section_ptr;
10918 break;
10919 case bfd_link_hash_undefined:
10920 case bfd_link_hash_undefweak:
10921 target_sec = bfd_und_section_ptr;
10922 break;
10923 default: /* New indirect warning. */
10924 target_sec = bfd_und_section_ptr;
10925 break;
10926 }
10927 }
10928 return target_sec;
10929}
10930
10931
10932static struct elf_link_hash_entry *
7fa3d080 10933get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
10934{
10935 unsigned long indx;
10936 struct elf_link_hash_entry *h;
10937 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10938
10939 if (r_symndx < symtab_hdr->sh_info)
10940 return NULL;
43cd72b9 10941
e0001a05
NC
10942 indx = r_symndx - symtab_hdr->sh_info;
10943 h = elf_sym_hashes (abfd)[indx];
10944 while (h->root.type == bfd_link_hash_indirect
10945 || h->root.type == bfd_link_hash_warning)
10946 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10947 return h;
10948}
10949
10950
10951/* Get the section-relative offset for a symbol number. */
10952
10953static bfd_vma
7fa3d080 10954get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
10955{
10956 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10957 bfd_vma offset = 0;
10958
43cd72b9 10959 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
10960 {
10961 Elf_Internal_Sym *isymbuf;
10962 isymbuf = retrieve_local_syms (abfd);
10963 offset = isymbuf[r_symndx].st_value;
10964 }
10965 else
10966 {
10967 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10968 struct elf_link_hash_entry *h =
10969 elf_sym_hashes (abfd)[indx];
10970
10971 while (h->root.type == bfd_link_hash_indirect
10972 || h->root.type == bfd_link_hash_warning)
10973 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10974 if (h->root.type == bfd_link_hash_defined
10975 || h->root.type == bfd_link_hash_defweak)
10976 offset = h->root.u.def.value;
10977 }
10978 return offset;
10979}
10980
10981
10982static bfd_boolean
7fa3d080 10983is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
43cd72b9
BW
10984{
10985 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
10986 struct elf_link_hash_entry *h;
10987
10988 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
10989 if (h && h->root.type == bfd_link_hash_defweak)
10990 return TRUE;
10991 return FALSE;
10992}
10993
10994
10995static bfd_boolean
7fa3d080
BW
10996pcrel_reloc_fits (xtensa_opcode opc,
10997 int opnd,
10998 bfd_vma self_address,
10999 bfd_vma dest_address)
e0001a05 11000{
43cd72b9
BW
11001 xtensa_isa isa = xtensa_default_isa;
11002 uint32 valp = dest_address;
11003 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
11004 || xtensa_operand_encode (isa, opc, opnd, &valp))
11005 return FALSE;
11006 return TRUE;
e0001a05
NC
11007}
11008
11009
68ffbac6 11010static bfd_boolean
7fa3d080 11011xtensa_is_property_section (asection *sec)
e0001a05 11012{
1d25768e
BW
11013 if (xtensa_is_insntable_section (sec)
11014 || xtensa_is_littable_section (sec)
11015 || xtensa_is_proptable_section (sec))
b614a702 11016 return TRUE;
e901de89 11017
1d25768e
BW
11018 return FALSE;
11019}
11020
11021
68ffbac6 11022static bfd_boolean
1d25768e
BW
11023xtensa_is_insntable_section (asection *sec)
11024{
11025 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
11026 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
e901de89
BW
11027 return TRUE;
11028
e901de89
BW
11029 return FALSE;
11030}
11031
11032
68ffbac6 11033static bfd_boolean
7fa3d080 11034xtensa_is_littable_section (asection *sec)
e901de89 11035{
1d25768e
BW
11036 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
11037 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
b614a702 11038 return TRUE;
e901de89 11039
1d25768e
BW
11040 return FALSE;
11041}
11042
11043
68ffbac6 11044static bfd_boolean
1d25768e
BW
11045xtensa_is_proptable_section (asection *sec)
11046{
11047 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
11048 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
e901de89 11049 return TRUE;
e0001a05 11050
e901de89 11051 return FALSE;
e0001a05
NC
11052}
11053
11054
43cd72b9 11055static int
7fa3d080 11056internal_reloc_compare (const void *ap, const void *bp)
e0001a05 11057{
43cd72b9
BW
11058 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
11059 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
11060
11061 if (a->r_offset != b->r_offset)
11062 return (a->r_offset - b->r_offset);
11063
11064 /* We don't need to sort on these criteria for correctness,
11065 but enforcing a more strict ordering prevents unstable qsort
11066 from behaving differently with different implementations.
11067 Without the code below we get correct but different results
11068 on Solaris 2.7 and 2.8. We would like to always produce the
11069 same results no matter the host. */
11070
11071 if (a->r_info != b->r_info)
11072 return (a->r_info - b->r_info);
11073
11074 return (a->r_addend - b->r_addend);
e0001a05
NC
11075}
11076
11077
11078static int
7fa3d080 11079internal_reloc_matches (const void *ap, const void *bp)
e0001a05
NC
11080{
11081 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
11082 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
11083
43cd72b9
BW
11084 /* Check if one entry overlaps with the other; this shouldn't happen
11085 except when searching for a match. */
e0001a05
NC
11086 return (a->r_offset - b->r_offset);
11087}
11088
11089
74869ac7
BW
11090/* Predicate function used to look up a section in a particular group. */
11091
11092static bfd_boolean
11093match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
11094{
11095 const char *gname = inf;
11096 const char *group_name = elf_group_name (sec);
68ffbac6 11097
74869ac7
BW
11098 return (group_name == gname
11099 || (group_name != NULL
11100 && gname != NULL
11101 && strcmp (group_name, gname) == 0));
11102}
11103
11104
1d25768e
BW
11105static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
11106
51c8ebc1
BW
11107static char *
11108xtensa_property_section_name (asection *sec, const char *base_name)
e0001a05 11109{
74869ac7
BW
11110 const char *suffix, *group_name;
11111 char *prop_sec_name;
74869ac7
BW
11112
11113 group_name = elf_group_name (sec);
11114 if (group_name)
11115 {
11116 suffix = strrchr (sec->name, '.');
11117 if (suffix == sec->name)
11118 suffix = 0;
11119 prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
11120 + (suffix ? strlen (suffix) : 0));
11121 strcpy (prop_sec_name, base_name);
11122 if (suffix)
11123 strcat (prop_sec_name, suffix);
11124 }
11125 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
e0001a05 11126 {
43cd72b9 11127 char *linkonce_kind = 0;
b614a702 11128
68ffbac6 11129 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
7db48a12 11130 linkonce_kind = "x.";
68ffbac6 11131 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
7db48a12 11132 linkonce_kind = "p.";
43cd72b9
BW
11133 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
11134 linkonce_kind = "prop.";
e0001a05 11135 else
b614a702
BW
11136 abort ();
11137
43cd72b9
BW
11138 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
11139 + strlen (linkonce_kind) + 1);
b614a702 11140 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
43cd72b9 11141 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
b614a702
BW
11142
11143 suffix = sec->name + linkonce_len;
096c35a7 11144 /* For backward compatibility, replace "t." instead of inserting
43cd72b9 11145 the new linkonce_kind (but not for "prop" sections). */
0112cd26 11146 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
43cd72b9
BW
11147 suffix += 2;
11148 strcat (prop_sec_name + linkonce_len, suffix);
74869ac7
BW
11149 }
11150 else
11151 prop_sec_name = strdup (base_name);
11152
51c8ebc1
BW
11153 return prop_sec_name;
11154}
11155
11156
11157static asection *
11158xtensa_get_property_section (asection *sec, const char *base_name)
11159{
11160 char *prop_sec_name;
11161 asection *prop_sec;
11162
11163 prop_sec_name = xtensa_property_section_name (sec, base_name);
11164 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
11165 match_section_group,
11166 (void *) elf_group_name (sec));
11167 free (prop_sec_name);
11168 return prop_sec;
11169}
11170
11171
11172asection *
11173xtensa_make_property_section (asection *sec, const char *base_name)
11174{
11175 char *prop_sec_name;
11176 asection *prop_sec;
11177
74869ac7 11178 /* Check if the section already exists. */
51c8ebc1 11179 prop_sec_name = xtensa_property_section_name (sec, base_name);
74869ac7
BW
11180 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
11181 match_section_group,
51c8ebc1 11182 (void *) elf_group_name (sec));
74869ac7
BW
11183 /* If not, create it. */
11184 if (! prop_sec)
11185 {
11186 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
11187 flags |= (bfd_get_section_flags (sec->owner, sec)
11188 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
11189
11190 prop_sec = bfd_make_section_anyway_with_flags
11191 (sec->owner, strdup (prop_sec_name), flags);
11192 if (! prop_sec)
11193 return 0;
b614a702 11194
51c8ebc1 11195 elf_group_name (prop_sec) = elf_group_name (sec);
e0001a05
NC
11196 }
11197
74869ac7
BW
11198 free (prop_sec_name);
11199 return prop_sec;
e0001a05
NC
11200}
11201
43cd72b9
BW
11202
11203flagword
7fa3d080 11204xtensa_get_property_predef_flags (asection *sec)
43cd72b9 11205{
1d25768e 11206 if (xtensa_is_insntable_section (sec))
43cd72b9 11207 return (XTENSA_PROP_INSN
99ded152 11208 | XTENSA_PROP_NO_TRANSFORM
43cd72b9
BW
11209 | XTENSA_PROP_INSN_NO_REORDER);
11210
11211 if (xtensa_is_littable_section (sec))
11212 return (XTENSA_PROP_LITERAL
99ded152 11213 | XTENSA_PROP_NO_TRANSFORM
43cd72b9
BW
11214 | XTENSA_PROP_INSN_NO_REORDER);
11215
11216 return 0;
11217}
11218
e0001a05
NC
11219\f
11220/* Other functions called directly by the linker. */
11221
11222bfd_boolean
7fa3d080
BW
11223xtensa_callback_required_dependence (bfd *abfd,
11224 asection *sec,
11225 struct bfd_link_info *link_info,
11226 deps_callback_t callback,
11227 void *closure)
e0001a05
NC
11228{
11229 Elf_Internal_Rela *internal_relocs;
11230 bfd_byte *contents;
11231 unsigned i;
11232 bfd_boolean ok = TRUE;
43cd72b9
BW
11233 bfd_size_type sec_size;
11234
11235 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
11236
11237 /* ".plt*" sections have no explicit relocations but they contain L32R
11238 instructions that reference the corresponding ".got.plt*" sections. */
11239 if ((sec->flags & SEC_LINKER_CREATED) != 0
0112cd26 11240 && CONST_STRNEQ (sec->name, ".plt"))
e0001a05
NC
11241 {
11242 asection *sgotplt;
11243
11244 /* Find the corresponding ".got.plt*" section. */
11245 if (sec->name[4] == '\0')
3d4d4302 11246 sgotplt = bfd_get_linker_section (sec->owner, ".got.plt");
e0001a05
NC
11247 else
11248 {
11249 char got_name[14];
11250 int chunk = 0;
11251
11252 BFD_ASSERT (sec->name[4] == '.');
11253 chunk = strtol (&sec->name[5], NULL, 10);
11254
11255 sprintf (got_name, ".got.plt.%u", chunk);
3d4d4302 11256 sgotplt = bfd_get_linker_section (sec->owner, got_name);
e0001a05
NC
11257 }
11258 BFD_ASSERT (sgotplt);
11259
11260 /* Assume worst-case offsets: L32R at the very end of the ".plt"
11261 section referencing a literal at the very beginning of
11262 ".got.plt". This is very close to the real dependence, anyway. */
43cd72b9 11263 (*callback) (sec, sec_size, sgotplt, 0, closure);
e0001a05
NC
11264 }
11265
13161072
BW
11266 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
11267 when building uclibc, which runs "ld -b binary /dev/null". */
11268 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
11269 return ok;
11270
68ffbac6 11271 internal_relocs = retrieve_internal_relocs (abfd, sec,
e0001a05
NC
11272 link_info->keep_memory);
11273 if (internal_relocs == NULL
43cd72b9 11274 || sec->reloc_count == 0)
e0001a05
NC
11275 return ok;
11276
11277 /* Cache the contents for the duration of this scan. */
11278 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 11279 if (contents == NULL && sec_size != 0)
e0001a05
NC
11280 {
11281 ok = FALSE;
11282 goto error_return;
11283 }
11284
43cd72b9
BW
11285 if (!xtensa_default_isa)
11286 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 11287
43cd72b9 11288 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
11289 {
11290 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9 11291 if (is_l32r_relocation (abfd, sec, contents, irel))
e0001a05
NC
11292 {
11293 r_reloc l32r_rel;
11294 asection *target_sec;
11295 bfd_vma target_offset;
43cd72b9
BW
11296
11297 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
e0001a05
NC
11298 target_sec = NULL;
11299 target_offset = 0;
11300 /* L32Rs must be local to the input file. */
11301 if (r_reloc_is_defined (&l32r_rel))
11302 {
11303 target_sec = r_reloc_get_section (&l32r_rel);
43cd72b9 11304 target_offset = l32r_rel.target_offset;
e0001a05
NC
11305 }
11306 (*callback) (sec, irel->r_offset, target_sec, target_offset,
11307 closure);
11308 }
11309 }
11310
11311 error_return:
11312 release_internal_relocs (sec, internal_relocs);
11313 release_contents (sec, contents);
11314 return ok;
11315}
11316
2f89ff8d
L
11317/* The default literal sections should always be marked as "code" (i.e.,
11318 SHF_EXECINSTR). This is particularly important for the Linux kernel
11319 module loader so that the literals are not placed after the text. */
b35d266b 11320static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
2f89ff8d 11321{
0112cd26
NC
11322 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11323 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11324 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2caa7ca0 11325 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
0112cd26 11326 { NULL, 0, 0, 0, 0 }
7f4d3958 11327};
e0001a05 11328\f
ae95ffa6 11329#define ELF_TARGET_ID XTENSA_ELF_DATA
e0001a05 11330#ifndef ELF_ARCH
6d00b590 11331#define TARGET_LITTLE_SYM xtensa_elf32_le_vec
e0001a05 11332#define TARGET_LITTLE_NAME "elf32-xtensa-le"
6d00b590 11333#define TARGET_BIG_SYM xtensa_elf32_be_vec
e0001a05
NC
11334#define TARGET_BIG_NAME "elf32-xtensa-be"
11335#define ELF_ARCH bfd_arch_xtensa
11336
4af0a1d8
BW
11337#define ELF_MACHINE_CODE EM_XTENSA
11338#define ELF_MACHINE_ALT1 EM_XTENSA_OLD
e0001a05
NC
11339
11340#if XCHAL_HAVE_MMU
11341#define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
11342#else /* !XCHAL_HAVE_MMU */
11343#define ELF_MAXPAGESIZE 1
11344#endif /* !XCHAL_HAVE_MMU */
11345#endif /* ELF_ARCH */
11346
11347#define elf_backend_can_gc_sections 1
11348#define elf_backend_can_refcount 1
11349#define elf_backend_plt_readonly 1
11350#define elf_backend_got_header_size 4
11351#define elf_backend_want_dynbss 0
11352#define elf_backend_want_got_plt 1
11353
11354#define elf_info_to_howto elf_xtensa_info_to_howto_rela
11355
28dbbc02
BW
11356#define bfd_elf32_mkobject elf_xtensa_mkobject
11357
e0001a05
NC
11358#define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
11359#define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
11360#define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
11361#define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
11362#define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
157090f7
AM
11363#define bfd_elf32_bfd_reloc_name_lookup \
11364 elf_xtensa_reloc_name_lookup
e0001a05 11365#define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
f0e6fdb2 11366#define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
e0001a05
NC
11367
11368#define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
11369#define elf_backend_check_relocs elf_xtensa_check_relocs
e0001a05
NC
11370#define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
11371#define elf_backend_discard_info elf_xtensa_discard_info
11372#define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
11373#define elf_backend_final_write_processing elf_xtensa_final_write_processing
11374#define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
11375#define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
11376#define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
11377#define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
11378#define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
11379#define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
95147441 11380#define elf_backend_hide_symbol elf_xtensa_hide_symbol
e0001a05
NC
11381#define elf_backend_object_p elf_xtensa_object_p
11382#define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
11383#define elf_backend_relocate_section elf_xtensa_relocate_section
11384#define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
28dbbc02 11385#define elf_backend_always_size_sections elf_xtensa_always_size_sections
74541ad4
AM
11386#define elf_backend_omit_section_dynsym \
11387 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
29ef7005 11388#define elf_backend_special_sections elf_xtensa_special_sections
a77dc2cc 11389#define elf_backend_action_discarded elf_xtensa_action_discarded
28dbbc02 11390#define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol
e0001a05
NC
11391
11392#include "elf32-target.h"
This page took 2.176893 seconds and 4 git commands to generate.