Commit | Line | Data |
---|---|---|
e0001a05 | 1 | /* Xtensa-specific support for 32-bit ELF. |
b3adc24a | 2 | Copyright (C) 2003-2020 Free Software Foundation, Inc. |
e0001a05 NC |
3 | |
4 | This file is part of BFD, the Binary File Descriptor library. | |
5 | ||
6 | This program is free software; you can redistribute it and/or | |
7 | modify it under the terms of the GNU General Public License as | |
cd123cb7 | 8 | published by the Free Software Foundation; either version 3 of the |
e0001a05 NC |
9 | License, or (at your option) any later version. |
10 | ||
11 | This program is distributed in the hope that it will be useful, but | |
12 | WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with this program; if not, write to the Free Software | |
3e110533 | 18 | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA |
53e09e0a | 19 | 02110-1301, USA. */ |
e0001a05 | 20 | |
e0001a05 | 21 | #include "sysdep.h" |
3db64b00 | 22 | #include "bfd.h" |
e0001a05 | 23 | |
e0001a05 | 24 | #include <stdarg.h> |
e0001a05 NC |
25 | #include <strings.h> |
26 | ||
27 | #include "bfdlink.h" | |
28 | #include "libbfd.h" | |
29 | #include "elf-bfd.h" | |
30 | #include "elf/xtensa.h" | |
4c2af04f | 31 | #include "splay-tree.h" |
e0001a05 NC |
32 | #include "xtensa-isa.h" |
33 | #include "xtensa-config.h" | |
34 | ||
bb294208 AM |
35 | /* All users of this file have bfd_octets_per_byte (abfd, sec) == 1. */ |
36 | #define OCTETS_PER_BYTE(ABFD, SEC) 1 | |
37 | ||
43cd72b9 BW |
38 | #define XTENSA_NO_NOP_REMOVAL 0 |
39 | ||
e0001a05 NC |
40 | /* Local helper functions. */ |
41 | ||
f0e6fdb2 | 42 | static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int); |
2db662be | 43 | static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4); |
e0001a05 | 44 | static bfd_reloc_status_type bfd_elf_xtensa_reloc |
7fa3d080 | 45 | (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); |
43cd72b9 | 46 | static bfd_boolean do_fix_for_relocatable_link |
7fa3d080 | 47 | (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *); |
e0001a05 | 48 | static void do_fix_for_final_link |
7fa3d080 | 49 | (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *); |
e0001a05 NC |
50 | |
51 | /* Local functions to handle Xtensa configurability. */ | |
52 | ||
7fa3d080 BW |
53 | static bfd_boolean is_indirect_call_opcode (xtensa_opcode); |
54 | static bfd_boolean is_direct_call_opcode (xtensa_opcode); | |
55 | static bfd_boolean is_windowed_call_opcode (xtensa_opcode); | |
56 | static xtensa_opcode get_const16_opcode (void); | |
57 | static xtensa_opcode get_l32r_opcode (void); | |
58 | static bfd_vma l32r_offset (bfd_vma, bfd_vma); | |
59 | static int get_relocation_opnd (xtensa_opcode, int); | |
60 | static int get_relocation_slot (int); | |
e0001a05 | 61 | static xtensa_opcode get_relocation_opcode |
7fa3d080 | 62 | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *); |
e0001a05 | 63 | static bfd_boolean is_l32r_relocation |
7fa3d080 BW |
64 | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *); |
65 | static bfd_boolean is_alt_relocation (int); | |
66 | static bfd_boolean is_operand_relocation (int); | |
43cd72b9 | 67 | static bfd_size_type insn_decode_len |
7fa3d080 | 68 | (bfd_byte *, bfd_size_type, bfd_size_type); |
e0d0c518 MF |
69 | static int insn_num_slots |
70 | (bfd_byte *, bfd_size_type, bfd_size_type); | |
43cd72b9 | 71 | static xtensa_opcode insn_decode_opcode |
7fa3d080 | 72 | (bfd_byte *, bfd_size_type, bfd_size_type, int); |
43cd72b9 | 73 | static bfd_boolean check_branch_target_aligned |
7fa3d080 | 74 | (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma); |
43cd72b9 | 75 | static bfd_boolean check_loop_aligned |
7fa3d080 BW |
76 | (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma); |
77 | static bfd_boolean check_branch_target_aligned_address (bfd_vma, int); | |
43cd72b9 | 78 | static bfd_size_type get_asm_simplify_size |
7fa3d080 | 79 | (bfd_byte *, bfd_size_type, bfd_size_type); |
e0001a05 NC |
80 | |
81 | /* Functions for link-time code simplifications. */ | |
82 | ||
43cd72b9 | 83 | static bfd_reloc_status_type elf_xtensa_do_asm_simplify |
7fa3d080 | 84 | (bfd_byte *, bfd_vma, bfd_vma, char **); |
e0001a05 | 85 | static bfd_reloc_status_type contract_asm_expansion |
7fa3d080 BW |
86 | (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **); |
87 | static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode); | |
88 | static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *); | |
e0001a05 NC |
89 | |
90 | /* Access to internal relocations, section contents and symbols. */ | |
91 | ||
92 | static Elf_Internal_Rela *retrieve_internal_relocs | |
7fa3d080 BW |
93 | (bfd *, asection *, bfd_boolean); |
94 | static void pin_internal_relocs (asection *, Elf_Internal_Rela *); | |
95 | static void release_internal_relocs (asection *, Elf_Internal_Rela *); | |
96 | static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean); | |
97 | static void pin_contents (asection *, bfd_byte *); | |
98 | static void release_contents (asection *, bfd_byte *); | |
99 | static Elf_Internal_Sym *retrieve_local_syms (bfd *); | |
e0001a05 NC |
100 | |
101 | /* Miscellaneous utility functions. */ | |
102 | ||
f0e6fdb2 BW |
103 | static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int); |
104 | static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int); | |
7fa3d080 | 105 | static asection *get_elf_r_symndx_section (bfd *, unsigned long); |
e0001a05 | 106 | static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry |
7fa3d080 BW |
107 | (bfd *, unsigned long); |
108 | static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long); | |
109 | static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *); | |
110 | static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma); | |
111 | static bfd_boolean xtensa_is_property_section (asection *); | |
1d25768e | 112 | static bfd_boolean xtensa_is_insntable_section (asection *); |
7fa3d080 | 113 | static bfd_boolean xtensa_is_littable_section (asection *); |
1d25768e | 114 | static bfd_boolean xtensa_is_proptable_section (asection *); |
7fa3d080 BW |
115 | static int internal_reloc_compare (const void *, const void *); |
116 | static int internal_reloc_matches (const void *, const void *); | |
51c8ebc1 | 117 | static asection *xtensa_get_property_section (asection *, const char *); |
7fa3d080 | 118 | static flagword xtensa_get_property_predef_flags (asection *); |
e0001a05 NC |
119 | |
120 | /* Other functions called directly by the linker. */ | |
121 | ||
122 | typedef void (*deps_callback_t) | |
7fa3d080 | 123 | (asection *, bfd_vma, asection *, bfd_vma, void *); |
e0001a05 | 124 | extern bfd_boolean xtensa_callback_required_dependence |
7fa3d080 | 125 | (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *); |
e0001a05 NC |
126 | |
127 | ||
43cd72b9 BW |
128 | /* Globally visible flag for choosing size optimization of NOP removal |
129 | instead of branch-target-aware minimization for NOP removal. | |
130 | When nonzero, narrow all instructions and remove all NOPs possible | |
131 | around longcall expansions. */ | |
7fa3d080 | 132 | |
43cd72b9 BW |
133 | int elf32xtensa_size_opt; |
134 | ||
135 | ||
136 | /* The "new_section_hook" is used to set up a per-section | |
137 | "xtensa_relax_info" data structure with additional information used | |
138 | during relaxation. */ | |
e0001a05 | 139 | |
7fa3d080 | 140 | typedef struct xtensa_relax_info_struct xtensa_relax_info; |
e0001a05 | 141 | |
43cd72b9 | 142 | |
43cd72b9 BW |
143 | /* The GNU tools do not easily allow extending interfaces to pass around |
144 | the pointer to the Xtensa ISA information, so instead we add a global | |
145 | variable here (in BFD) that can be used by any of the tools that need | |
146 | this information. */ | |
147 | ||
148 | xtensa_isa xtensa_default_isa; | |
149 | ||
150 | ||
e0001a05 NC |
151 | /* When this is true, relocations may have been modified to refer to |
152 | symbols from other input files. The per-section list of "fix" | |
153 | records needs to be checked when resolving relocations. */ | |
154 | ||
155 | static bfd_boolean relaxing_section = FALSE; | |
156 | ||
43cd72b9 BW |
157 | /* When this is true, during final links, literals that cannot be |
158 | coalesced and their relocations may be moved to other sections. */ | |
159 | ||
160 | int elf32xtensa_no_literal_movement = 1; | |
161 | ||
8255c61b MF |
162 | /* Place property records for a section into individual property section |
163 | with xt.prop. prefix. */ | |
164 | ||
165 | bfd_boolean elf32xtensa_separate_props = FALSE; | |
166 | ||
b0dddeec AM |
167 | /* Rename one of the generic section flags to better document how it |
168 | is used here. */ | |
169 | /* Whether relocations have been processed. */ | |
170 | #define reloc_done sec_flg0 | |
e0001a05 NC |
171 | \f |
172 | static reloc_howto_type elf_howto_table[] = | |
173 | { | |
6346d5ca | 174 | HOWTO (R_XTENSA_NONE, 0, 3, 0, FALSE, 0, complain_overflow_dont, |
e0001a05 | 175 | bfd_elf_xtensa_reloc, "R_XTENSA_NONE", |
e5f131d1 | 176 | FALSE, 0, 0, FALSE), |
e0001a05 NC |
177 | HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
178 | bfd_elf_xtensa_reloc, "R_XTENSA_32", | |
179 | TRUE, 0xffffffff, 0xffffffff, FALSE), | |
e5f131d1 | 180 | |
e0001a05 NC |
181 | /* Replace a 32-bit value with a value from the runtime linker (only |
182 | used by linker-generated stub functions). The r_addend value is | |
183 | special: 1 means to substitute a pointer to the runtime linker's | |
184 | dynamic resolver function; 2 means to substitute the link map for | |
185 | the shared object. */ | |
186 | HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont, | |
e5f131d1 BW |
187 | NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE), |
188 | ||
e0001a05 NC |
189 | HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
190 | bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT", | |
e5f131d1 | 191 | FALSE, 0, 0xffffffff, FALSE), |
e0001a05 NC |
192 | HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
193 | bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT", | |
e5f131d1 | 194 | FALSE, 0, 0xffffffff, FALSE), |
e0001a05 NC |
195 | HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
196 | bfd_elf_generic_reloc, "R_XTENSA_RELATIVE", | |
e5f131d1 | 197 | FALSE, 0, 0xffffffff, FALSE), |
e0001a05 NC |
198 | HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
199 | bfd_elf_xtensa_reloc, "R_XTENSA_PLT", | |
e5f131d1 BW |
200 | FALSE, 0, 0xffffffff, FALSE), |
201 | ||
e0001a05 | 202 | EMPTY_HOWTO (7), |
e5f131d1 BW |
203 | |
204 | /* Old relocations for backward compatibility. */ | |
e0001a05 | 205 | HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 206 | bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE), |
e0001a05 | 207 | HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 208 | bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE), |
e0001a05 | 209 | HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 BW |
210 | bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE), |
211 | ||
e0001a05 NC |
212 | /* Assembly auto-expansion. */ |
213 | HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
e5f131d1 | 214 | bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE), |
e0001a05 NC |
215 | /* Relax assembly auto-expansion. */ |
216 | HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
e5f131d1 BW |
217 | bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE), |
218 | ||
e0001a05 | 219 | EMPTY_HOWTO (13), |
1bbb5f21 BW |
220 | |
221 | HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield, | |
222 | bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL", | |
223 | FALSE, 0, 0xffffffff, TRUE), | |
e5f131d1 | 224 | |
e0001a05 NC |
225 | /* GNU extension to record C++ vtable hierarchy. */ |
226 | HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont, | |
07d6d2b8 | 227 | NULL, "R_XTENSA_GNU_VTINHERIT", |
e5f131d1 | 228 | FALSE, 0, 0, FALSE), |
e0001a05 NC |
229 | /* GNU extension to record C++ vtable member usage. */ |
230 | HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont, | |
07d6d2b8 | 231 | _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY", |
e5f131d1 | 232 | FALSE, 0, 0, FALSE), |
43cd72b9 BW |
233 | |
234 | /* Relocations for supporting difference of symbols. */ | |
1058c753 | 235 | HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_signed, |
e5f131d1 | 236 | bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE), |
1058c753 | 237 | HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_signed, |
e5f131d1 | 238 | bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE), |
1058c753 | 239 | HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed, |
e5f131d1 | 240 | bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE), |
43cd72b9 BW |
241 | |
242 | /* General immediate operand relocations. */ | |
243 | HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
e5f131d1 | 244 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 245 | HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 246 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 247 | HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 248 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 249 | HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 250 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 251 | HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 252 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 253 | HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 254 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 255 | HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 256 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 257 | HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 258 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 259 | HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 260 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 261 | HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 262 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 263 | HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 264 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 265 | HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 266 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 267 | HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 268 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 269 | HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 270 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 271 | HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 272 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE), |
43cd72b9 BW |
273 | |
274 | /* "Alternate" relocations. The meaning of these is opcode-specific. */ | |
275 | HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
e5f131d1 | 276 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 277 | HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 278 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 279 | HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 280 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 281 | HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 282 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 283 | HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 284 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 285 | HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 286 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 287 | HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 288 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 289 | HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 290 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 291 | HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 292 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 293 | HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 294 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 295 | HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 296 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 297 | HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 298 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 299 | HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 300 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 301 | HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 302 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 303 | HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 304 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE), |
28dbbc02 BW |
305 | |
306 | /* TLS relocations. */ | |
307 | HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont, | |
308 | bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN", | |
309 | FALSE, 0, 0xffffffff, FALSE), | |
310 | HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont, | |
311 | bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG", | |
312 | FALSE, 0, 0xffffffff, FALSE), | |
313 | HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont, | |
314 | bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF", | |
315 | FALSE, 0, 0xffffffff, FALSE), | |
316 | HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont, | |
317 | bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF", | |
318 | FALSE, 0, 0xffffffff, FALSE), | |
319 | HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont, | |
320 | bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC", | |
321 | FALSE, 0, 0, FALSE), | |
322 | HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont, | |
323 | bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG", | |
324 | FALSE, 0, 0, FALSE), | |
325 | HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont, | |
326 | bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL", | |
327 | FALSE, 0, 0, FALSE), | |
e0001a05 NC |
328 | }; |
329 | ||
43cd72b9 | 330 | #if DEBUG_GEN_RELOC |
e0001a05 NC |
331 | #define TRACE(str) \ |
332 | fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str) | |
333 | #else | |
334 | #define TRACE(str) | |
335 | #endif | |
336 | ||
337 | static reloc_howto_type * | |
7fa3d080 BW |
338 | elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, |
339 | bfd_reloc_code_real_type code) | |
e0001a05 NC |
340 | { |
341 | switch (code) | |
342 | { | |
343 | case BFD_RELOC_NONE: | |
344 | TRACE ("BFD_RELOC_NONE"); | |
345 | return &elf_howto_table[(unsigned) R_XTENSA_NONE ]; | |
346 | ||
347 | case BFD_RELOC_32: | |
348 | TRACE ("BFD_RELOC_32"); | |
349 | return &elf_howto_table[(unsigned) R_XTENSA_32 ]; | |
350 | ||
1bbb5f21 BW |
351 | case BFD_RELOC_32_PCREL: |
352 | TRACE ("BFD_RELOC_32_PCREL"); | |
353 | return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ]; | |
354 | ||
43cd72b9 BW |
355 | case BFD_RELOC_XTENSA_DIFF8: |
356 | TRACE ("BFD_RELOC_XTENSA_DIFF8"); | |
357 | return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ]; | |
358 | ||
359 | case BFD_RELOC_XTENSA_DIFF16: | |
360 | TRACE ("BFD_RELOC_XTENSA_DIFF16"); | |
361 | return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ]; | |
362 | ||
363 | case BFD_RELOC_XTENSA_DIFF32: | |
364 | TRACE ("BFD_RELOC_XTENSA_DIFF32"); | |
365 | return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ]; | |
366 | ||
e0001a05 NC |
367 | case BFD_RELOC_XTENSA_RTLD: |
368 | TRACE ("BFD_RELOC_XTENSA_RTLD"); | |
369 | return &elf_howto_table[(unsigned) R_XTENSA_RTLD ]; | |
370 | ||
371 | case BFD_RELOC_XTENSA_GLOB_DAT: | |
372 | TRACE ("BFD_RELOC_XTENSA_GLOB_DAT"); | |
373 | return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ]; | |
374 | ||
375 | case BFD_RELOC_XTENSA_JMP_SLOT: | |
376 | TRACE ("BFD_RELOC_XTENSA_JMP_SLOT"); | |
377 | return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ]; | |
378 | ||
379 | case BFD_RELOC_XTENSA_RELATIVE: | |
380 | TRACE ("BFD_RELOC_XTENSA_RELATIVE"); | |
381 | return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ]; | |
382 | ||
383 | case BFD_RELOC_XTENSA_PLT: | |
384 | TRACE ("BFD_RELOC_XTENSA_PLT"); | |
385 | return &elf_howto_table[(unsigned) R_XTENSA_PLT ]; | |
386 | ||
387 | case BFD_RELOC_XTENSA_OP0: | |
388 | TRACE ("BFD_RELOC_XTENSA_OP0"); | |
389 | return &elf_howto_table[(unsigned) R_XTENSA_OP0 ]; | |
390 | ||
391 | case BFD_RELOC_XTENSA_OP1: | |
392 | TRACE ("BFD_RELOC_XTENSA_OP1"); | |
393 | return &elf_howto_table[(unsigned) R_XTENSA_OP1 ]; | |
394 | ||
395 | case BFD_RELOC_XTENSA_OP2: | |
396 | TRACE ("BFD_RELOC_XTENSA_OP2"); | |
397 | return &elf_howto_table[(unsigned) R_XTENSA_OP2 ]; | |
398 | ||
399 | case BFD_RELOC_XTENSA_ASM_EXPAND: | |
400 | TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND"); | |
401 | return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ]; | |
402 | ||
403 | case BFD_RELOC_XTENSA_ASM_SIMPLIFY: | |
404 | TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY"); | |
405 | return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ]; | |
406 | ||
407 | case BFD_RELOC_VTABLE_INHERIT: | |
408 | TRACE ("BFD_RELOC_VTABLE_INHERIT"); | |
409 | return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ]; | |
410 | ||
411 | case BFD_RELOC_VTABLE_ENTRY: | |
412 | TRACE ("BFD_RELOC_VTABLE_ENTRY"); | |
413 | return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ]; | |
414 | ||
28dbbc02 BW |
415 | case BFD_RELOC_XTENSA_TLSDESC_FN: |
416 | TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN"); | |
417 | return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ]; | |
418 | ||
419 | case BFD_RELOC_XTENSA_TLSDESC_ARG: | |
420 | TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG"); | |
421 | return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ]; | |
422 | ||
423 | case BFD_RELOC_XTENSA_TLS_DTPOFF: | |
424 | TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF"); | |
425 | return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ]; | |
426 | ||
427 | case BFD_RELOC_XTENSA_TLS_TPOFF: | |
428 | TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF"); | |
429 | return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ]; | |
430 | ||
431 | case BFD_RELOC_XTENSA_TLS_FUNC: | |
432 | TRACE ("BFD_RELOC_XTENSA_TLS_FUNC"); | |
433 | return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ]; | |
434 | ||
435 | case BFD_RELOC_XTENSA_TLS_ARG: | |
436 | TRACE ("BFD_RELOC_XTENSA_TLS_ARG"); | |
437 | return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ]; | |
438 | ||
439 | case BFD_RELOC_XTENSA_TLS_CALL: | |
440 | TRACE ("BFD_RELOC_XTENSA_TLS_CALL"); | |
441 | return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ]; | |
442 | ||
e0001a05 | 443 | default: |
43cd72b9 BW |
444 | if (code >= BFD_RELOC_XTENSA_SLOT0_OP |
445 | && code <= BFD_RELOC_XTENSA_SLOT14_OP) | |
446 | { | |
447 | unsigned n = (R_XTENSA_SLOT0_OP + | |
448 | (code - BFD_RELOC_XTENSA_SLOT0_OP)); | |
449 | return &elf_howto_table[n]; | |
450 | } | |
451 | ||
452 | if (code >= BFD_RELOC_XTENSA_SLOT0_ALT | |
453 | && code <= BFD_RELOC_XTENSA_SLOT14_ALT) | |
454 | { | |
455 | unsigned n = (R_XTENSA_SLOT0_ALT + | |
456 | (code - BFD_RELOC_XTENSA_SLOT0_ALT)); | |
457 | return &elf_howto_table[n]; | |
458 | } | |
459 | ||
e0001a05 NC |
460 | break; |
461 | } | |
462 | ||
f3185997 | 463 | /* xgettext:c-format */ |
e8f5af78 | 464 | _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd, (int) code); |
f3185997 | 465 | bfd_set_error (bfd_error_bad_value); |
e0001a05 NC |
466 | TRACE ("Unknown"); |
467 | return NULL; | |
468 | } | |
469 | ||
157090f7 AM |
470 | static reloc_howto_type * |
471 | elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, | |
472 | const char *r_name) | |
473 | { | |
474 | unsigned int i; | |
475 | ||
476 | for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++) | |
477 | if (elf_howto_table[i].name != NULL | |
478 | && strcasecmp (elf_howto_table[i].name, r_name) == 0) | |
479 | return &elf_howto_table[i]; | |
480 | ||
481 | return NULL; | |
482 | } | |
483 | ||
e0001a05 NC |
484 | |
485 | /* Given an ELF "rela" relocation, find the corresponding howto and record | |
486 | it in the BFD internal arelent representation of the relocation. */ | |
487 | ||
f3185997 | 488 | static bfd_boolean |
0aa13fee | 489 | elf_xtensa_info_to_howto_rela (bfd *abfd, |
7fa3d080 BW |
490 | arelent *cache_ptr, |
491 | Elf_Internal_Rela *dst) | |
e0001a05 NC |
492 | { |
493 | unsigned int r_type = ELF32_R_TYPE (dst->r_info); | |
494 | ||
5860e3f8 NC |
495 | if (r_type >= (unsigned int) R_XTENSA_max) |
496 | { | |
695344c0 | 497 | /* xgettext:c-format */ |
0aa13fee AM |
498 | _bfd_error_handler (_("%pB: unsupported relocation type %#x"), |
499 | abfd, r_type); | |
f3185997 NC |
500 | bfd_set_error (bfd_error_bad_value); |
501 | return FALSE; | |
5860e3f8 | 502 | } |
e0001a05 | 503 | cache_ptr->howto = &elf_howto_table[r_type]; |
f3185997 | 504 | return TRUE; |
e0001a05 NC |
505 | } |
506 | ||
507 | \f | |
508 | /* Functions for the Xtensa ELF linker. */ | |
509 | ||
510 | /* The name of the dynamic interpreter. This is put in the .interp | |
511 | section. */ | |
512 | ||
513 | #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so" | |
514 | ||
515 | /* The size in bytes of an entry in the procedure linkage table. | |
516 | (This does _not_ include the space for the literals associated with | |
517 | the PLT entry.) */ | |
518 | ||
519 | #define PLT_ENTRY_SIZE 16 | |
520 | ||
521 | /* For _really_ large PLTs, we may need to alternate between literals | |
522 | and code to keep the literals within the 256K range of the L32R | |
523 | instructions in the code. It's unlikely that anyone would ever need | |
524 | such a big PLT, but an arbitrary limit on the PLT size would be bad. | |
525 | Thus, we split the PLT into chunks. Since there's very little | |
526 | overhead (2 extra literals) for each chunk, the chunk size is kept | |
527 | small so that the code for handling multiple chunks get used and | |
528 | tested regularly. With 254 entries, there are 1K of literals for | |
529 | each chunk, and that seems like a nice round number. */ | |
530 | ||
531 | #define PLT_ENTRIES_PER_CHUNK 254 | |
532 | ||
533 | /* PLT entries are actually used as stub functions for lazy symbol | |
534 | resolution. Once the symbol is resolved, the stub function is never | |
535 | invoked. Note: the 32-byte frame size used here cannot be changed | |
536 | without a corresponding change in the runtime linker. */ | |
537 | ||
f7e16c2a | 538 | static const bfd_byte elf_xtensa_be_plt_entry[][PLT_ENTRY_SIZE] = |
e0001a05 | 539 | { |
f7e16c2a MF |
540 | { |
541 | 0x6c, 0x10, 0x04, /* entry sp, 32 */ | |
542 | 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */ | |
543 | 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */ | |
544 | 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */ | |
545 | 0x0a, 0x80, 0x00, /* jx a8 */ | |
546 | 0 /* unused */ | |
547 | }, | |
548 | { | |
549 | 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */ | |
550 | 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */ | |
551 | 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */ | |
552 | 0x0a, 0x80, 0x00, /* jx a8 */ | |
553 | 0 /* unused */ | |
554 | } | |
e0001a05 NC |
555 | }; |
556 | ||
f7e16c2a | 557 | static const bfd_byte elf_xtensa_le_plt_entry[][PLT_ENTRY_SIZE] = |
e0001a05 | 558 | { |
f7e16c2a MF |
559 | { |
560 | 0x36, 0x41, 0x00, /* entry sp, 32 */ | |
561 | 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */ | |
562 | 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */ | |
563 | 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */ | |
564 | 0xa0, 0x08, 0x00, /* jx a8 */ | |
565 | 0 /* unused */ | |
566 | }, | |
567 | { | |
568 | 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */ | |
569 | 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */ | |
570 | 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */ | |
571 | 0xa0, 0x08, 0x00, /* jx a8 */ | |
572 | 0 /* unused */ | |
573 | } | |
e0001a05 NC |
574 | }; |
575 | ||
28dbbc02 BW |
576 | /* The size of the thread control block. */ |
577 | #define TCB_SIZE 8 | |
578 | ||
579 | struct elf_xtensa_link_hash_entry | |
580 | { | |
581 | struct elf_link_hash_entry elf; | |
582 | ||
583 | bfd_signed_vma tlsfunc_refcount; | |
584 | ||
585 | #define GOT_UNKNOWN 0 | |
586 | #define GOT_NORMAL 1 | |
587 | #define GOT_TLS_GD 2 /* global or local dynamic */ | |
588 | #define GOT_TLS_IE 4 /* initial or local exec */ | |
589 | #define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE) | |
590 | unsigned char tls_type; | |
591 | }; | |
592 | ||
593 | #define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent)) | |
594 | ||
595 | struct elf_xtensa_obj_tdata | |
596 | { | |
597 | struct elf_obj_tdata root; | |
598 | ||
599 | /* tls_type for each local got entry. */ | |
600 | char *local_got_tls_type; | |
601 | ||
602 | bfd_signed_vma *local_tlsfunc_refcounts; | |
603 | }; | |
604 | ||
605 | #define elf_xtensa_tdata(abfd) \ | |
606 | ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any) | |
607 | ||
608 | #define elf_xtensa_local_got_tls_type(abfd) \ | |
609 | (elf_xtensa_tdata (abfd)->local_got_tls_type) | |
610 | ||
611 | #define elf_xtensa_local_tlsfunc_refcounts(abfd) \ | |
612 | (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts) | |
613 | ||
614 | #define is_xtensa_elf(bfd) \ | |
615 | (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ | |
616 | && elf_tdata (bfd) != NULL \ | |
4dfe6ac6 | 617 | && elf_object_id (bfd) == XTENSA_ELF_DATA) |
28dbbc02 BW |
618 | |
619 | static bfd_boolean | |
620 | elf_xtensa_mkobject (bfd *abfd) | |
621 | { | |
622 | return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata), | |
4dfe6ac6 | 623 | XTENSA_ELF_DATA); |
28dbbc02 BW |
624 | } |
625 | ||
f0e6fdb2 BW |
626 | /* Xtensa ELF linker hash table. */ |
627 | ||
628 | struct elf_xtensa_link_hash_table | |
629 | { | |
630 | struct elf_link_hash_table elf; | |
631 | ||
632 | /* Short-cuts to get to dynamic linker sections. */ | |
f0e6fdb2 BW |
633 | asection *sgotloc; |
634 | asection *spltlittbl; | |
635 | ||
636 | /* Total count of PLT relocations seen during check_relocs. | |
637 | The actual PLT code must be split into multiple sections and all | |
638 | the sections have to be created before size_dynamic_sections, | |
639 | where we figure out the exact number of PLT entries that will be | |
640 | needed. It is OK if this count is an overestimate, e.g., some | |
641 | relocations may be removed by GC. */ | |
642 | int plt_reloc_count; | |
28dbbc02 BW |
643 | |
644 | struct elf_xtensa_link_hash_entry *tlsbase; | |
f0e6fdb2 BW |
645 | }; |
646 | ||
647 | /* Get the Xtensa ELF linker hash table from a link_info structure. */ | |
648 | ||
649 | #define elf_xtensa_hash_table(p) \ | |
4dfe6ac6 NC |
650 | (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \ |
651 | == XTENSA_ELF_DATA ? ((struct elf_xtensa_link_hash_table *) ((p)->hash)) : NULL) | |
f0e6fdb2 | 652 | |
28dbbc02 BW |
653 | /* Create an entry in an Xtensa ELF linker hash table. */ |
654 | ||
655 | static struct bfd_hash_entry * | |
656 | elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry, | |
657 | struct bfd_hash_table *table, | |
658 | const char *string) | |
659 | { | |
660 | /* Allocate the structure if it has not already been allocated by a | |
661 | subclass. */ | |
662 | if (entry == NULL) | |
663 | { | |
664 | entry = bfd_hash_allocate (table, | |
665 | sizeof (struct elf_xtensa_link_hash_entry)); | |
666 | if (entry == NULL) | |
667 | return entry; | |
668 | } | |
669 | ||
670 | /* Call the allocation method of the superclass. */ | |
671 | entry = _bfd_elf_link_hash_newfunc (entry, table, string); | |
672 | if (entry != NULL) | |
673 | { | |
674 | struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry); | |
675 | eh->tlsfunc_refcount = 0; | |
676 | eh->tls_type = GOT_UNKNOWN; | |
677 | } | |
678 | ||
679 | return entry; | |
680 | } | |
681 | ||
f0e6fdb2 BW |
682 | /* Create an Xtensa ELF linker hash table. */ |
683 | ||
684 | static struct bfd_link_hash_table * | |
685 | elf_xtensa_link_hash_table_create (bfd *abfd) | |
686 | { | |
28dbbc02 | 687 | struct elf_link_hash_entry *tlsbase; |
f0e6fdb2 | 688 | struct elf_xtensa_link_hash_table *ret; |
986f0783 | 689 | size_t amt = sizeof (struct elf_xtensa_link_hash_table); |
f0e6fdb2 | 690 | |
7bf52ea2 | 691 | ret = bfd_zmalloc (amt); |
f0e6fdb2 BW |
692 | if (ret == NULL) |
693 | return NULL; | |
694 | ||
695 | if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, | |
28dbbc02 | 696 | elf_xtensa_link_hash_newfunc, |
4dfe6ac6 NC |
697 | sizeof (struct elf_xtensa_link_hash_entry), |
698 | XTENSA_ELF_DATA)) | |
f0e6fdb2 BW |
699 | { |
700 | free (ret); | |
701 | return NULL; | |
702 | } | |
703 | ||
28dbbc02 BW |
704 | /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking |
705 | for it later. */ | |
706 | tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_", | |
707 | TRUE, FALSE, FALSE); | |
708 | tlsbase->root.type = bfd_link_hash_new; | |
709 | tlsbase->root.u.undef.abfd = NULL; | |
710 | tlsbase->non_elf = 0; | |
711 | ret->tlsbase = elf_xtensa_hash_entry (tlsbase); | |
712 | ret->tlsbase->tls_type = GOT_UNKNOWN; | |
713 | ||
f0e6fdb2 BW |
714 | return &ret->elf.root; |
715 | } | |
571b5725 | 716 | |
28dbbc02 BW |
717 | /* Copy the extra info we tack onto an elf_link_hash_entry. */ |
718 | ||
719 | static void | |
720 | elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info, | |
721 | struct elf_link_hash_entry *dir, | |
722 | struct elf_link_hash_entry *ind) | |
723 | { | |
724 | struct elf_xtensa_link_hash_entry *edir, *eind; | |
725 | ||
726 | edir = elf_xtensa_hash_entry (dir); | |
727 | eind = elf_xtensa_hash_entry (ind); | |
728 | ||
729 | if (ind->root.type == bfd_link_hash_indirect) | |
730 | { | |
731 | edir->tlsfunc_refcount += eind->tlsfunc_refcount; | |
732 | eind->tlsfunc_refcount = 0; | |
733 | ||
734 | if (dir->got.refcount <= 0) | |
735 | { | |
736 | edir->tls_type = eind->tls_type; | |
737 | eind->tls_type = GOT_UNKNOWN; | |
738 | } | |
739 | } | |
740 | ||
741 | _bfd_elf_link_hash_copy_indirect (info, dir, ind); | |
742 | } | |
743 | ||
571b5725 | 744 | static inline bfd_boolean |
4608f3d9 | 745 | elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h, |
7fa3d080 | 746 | struct bfd_link_info *info) |
571b5725 BW |
747 | { |
748 | /* Check if we should do dynamic things to this symbol. The | |
749 | "ignore_protected" argument need not be set, because Xtensa code | |
750 | does not require special handling of STV_PROTECTED to make function | |
751 | pointer comparisons work properly. The PLT addresses are never | |
752 | used for function pointers. */ | |
753 | ||
754 | return _bfd_elf_dynamic_symbol_p (h, info, 0); | |
755 | } | |
756 | ||
e0001a05 NC |
757 | \f |
758 | static int | |
7fa3d080 | 759 | property_table_compare (const void *ap, const void *bp) |
e0001a05 NC |
760 | { |
761 | const property_table_entry *a = (const property_table_entry *) ap; | |
762 | const property_table_entry *b = (const property_table_entry *) bp; | |
763 | ||
43cd72b9 BW |
764 | if (a->address == b->address) |
765 | { | |
43cd72b9 BW |
766 | if (a->size != b->size) |
767 | return (a->size - b->size); | |
768 | ||
769 | if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN)) | |
770 | return ((b->flags & XTENSA_PROP_ALIGN) | |
771 | - (a->flags & XTENSA_PROP_ALIGN)); | |
772 | ||
773 | if ((a->flags & XTENSA_PROP_ALIGN) | |
774 | && (GET_XTENSA_PROP_ALIGNMENT (a->flags) | |
775 | != GET_XTENSA_PROP_ALIGNMENT (b->flags))) | |
776 | return (GET_XTENSA_PROP_ALIGNMENT (a->flags) | |
777 | - GET_XTENSA_PROP_ALIGNMENT (b->flags)); | |
68ffbac6 | 778 | |
43cd72b9 BW |
779 | if ((a->flags & XTENSA_PROP_UNREACHABLE) |
780 | != (b->flags & XTENSA_PROP_UNREACHABLE)) | |
781 | return ((b->flags & XTENSA_PROP_UNREACHABLE) | |
782 | - (a->flags & XTENSA_PROP_UNREACHABLE)); | |
783 | ||
784 | return (a->flags - b->flags); | |
785 | } | |
786 | ||
787 | return (a->address - b->address); | |
788 | } | |
789 | ||
790 | ||
791 | static int | |
7fa3d080 | 792 | property_table_matches (const void *ap, const void *bp) |
43cd72b9 BW |
793 | { |
794 | const property_table_entry *a = (const property_table_entry *) ap; | |
795 | const property_table_entry *b = (const property_table_entry *) bp; | |
796 | ||
797 | /* Check if one entry overlaps with the other. */ | |
e0001a05 NC |
798 | if ((b->address >= a->address && b->address < (a->address + a->size)) |
799 | || (a->address >= b->address && a->address < (b->address + b->size))) | |
800 | return 0; | |
801 | ||
802 | return (a->address - b->address); | |
803 | } | |
804 | ||
805 | ||
43cd72b9 BW |
806 | /* Get the literal table or property table entries for the given |
807 | section. Sets TABLE_P and returns the number of entries. On | |
808 | error, returns a negative value. */ | |
e0001a05 | 809 | |
4b8e28c7 | 810 | int |
7fa3d080 BW |
811 | xtensa_read_table_entries (bfd *abfd, |
812 | asection *section, | |
813 | property_table_entry **table_p, | |
814 | const char *sec_name, | |
815 | bfd_boolean output_addr) | |
e0001a05 NC |
816 | { |
817 | asection *table_section; | |
e0001a05 NC |
818 | bfd_size_type table_size = 0; |
819 | bfd_byte *table_data; | |
820 | property_table_entry *blocks; | |
e4115460 | 821 | int blk, block_count; |
e0001a05 | 822 | bfd_size_type num_records; |
bcc2cc8e BW |
823 | Elf_Internal_Rela *internal_relocs, *irel, *rel_end; |
824 | bfd_vma section_addr, off; | |
43cd72b9 | 825 | flagword predef_flags; |
bcc2cc8e | 826 | bfd_size_type table_entry_size, section_limit; |
43cd72b9 BW |
827 | |
828 | if (!section | |
829 | || !(section->flags & SEC_ALLOC) | |
830 | || (section->flags & SEC_DEBUGGING)) | |
831 | { | |
832 | *table_p = NULL; | |
833 | return 0; | |
834 | } | |
e0001a05 | 835 | |
74869ac7 | 836 | table_section = xtensa_get_property_section (section, sec_name); |
43cd72b9 | 837 | if (table_section) |
eea6121a | 838 | table_size = table_section->size; |
43cd72b9 | 839 | |
68ffbac6 | 840 | if (table_size == 0) |
e0001a05 NC |
841 | { |
842 | *table_p = NULL; | |
843 | return 0; | |
844 | } | |
845 | ||
43cd72b9 BW |
846 | predef_flags = xtensa_get_property_predef_flags (table_section); |
847 | table_entry_size = 12; | |
848 | if (predef_flags) | |
849 | table_entry_size -= 4; | |
850 | ||
851 | num_records = table_size / table_entry_size; | |
e0001a05 NC |
852 | table_data = retrieve_contents (abfd, table_section, TRUE); |
853 | blocks = (property_table_entry *) | |
854 | bfd_malloc (num_records * sizeof (property_table_entry)); | |
855 | block_count = 0; | |
43cd72b9 BW |
856 | |
857 | if (output_addr) | |
858 | section_addr = section->output_section->vma + section->output_offset; | |
859 | else | |
860 | section_addr = section->vma; | |
3ba3bc8c | 861 | |
e0001a05 | 862 | internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE); |
3ba3bc8c | 863 | if (internal_relocs && !table_section->reloc_done) |
e0001a05 | 864 | { |
bcc2cc8e BW |
865 | qsort (internal_relocs, table_section->reloc_count, |
866 | sizeof (Elf_Internal_Rela), internal_reloc_compare); | |
867 | irel = internal_relocs; | |
868 | } | |
869 | else | |
870 | irel = NULL; | |
871 | ||
872 | section_limit = bfd_get_section_limit (abfd, section); | |
873 | rel_end = internal_relocs + table_section->reloc_count; | |
874 | ||
68ffbac6 | 875 | for (off = 0; off < table_size; off += table_entry_size) |
bcc2cc8e BW |
876 | { |
877 | bfd_vma address = bfd_get_32 (abfd, table_data + off); | |
878 | ||
879 | /* Skip any relocations before the current offset. This should help | |
880 | avoid confusion caused by unexpected relocations for the preceding | |
881 | table entry. */ | |
882 | while (irel && | |
883 | (irel->r_offset < off | |
884 | || (irel->r_offset == off | |
885 | && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE))) | |
886 | { | |
887 | irel += 1; | |
888 | if (irel >= rel_end) | |
889 | irel = 0; | |
890 | } | |
e0001a05 | 891 | |
bcc2cc8e | 892 | if (irel && irel->r_offset == off) |
e0001a05 | 893 | { |
bcc2cc8e BW |
894 | bfd_vma sym_off; |
895 | unsigned long r_symndx = ELF32_R_SYM (irel->r_info); | |
896 | BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32); | |
e0001a05 | 897 | |
bcc2cc8e | 898 | if (get_elf_r_symndx_section (abfd, r_symndx) != section) |
e0001a05 NC |
899 | continue; |
900 | ||
bcc2cc8e BW |
901 | sym_off = get_elf_r_symndx_offset (abfd, r_symndx); |
902 | BFD_ASSERT (sym_off == 0); | |
903 | address += (section_addr + sym_off + irel->r_addend); | |
e0001a05 | 904 | } |
bcc2cc8e | 905 | else |
e0001a05 | 906 | { |
bcc2cc8e BW |
907 | if (address < section_addr |
908 | || address >= section_addr + section_limit) | |
909 | continue; | |
e0001a05 | 910 | } |
bcc2cc8e BW |
911 | |
912 | blocks[block_count].address = address; | |
913 | blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4); | |
914 | if (predef_flags) | |
915 | blocks[block_count].flags = predef_flags; | |
916 | else | |
917 | blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8); | |
918 | block_count++; | |
e0001a05 NC |
919 | } |
920 | ||
921 | release_contents (table_section, table_data); | |
922 | release_internal_relocs (table_section, internal_relocs); | |
923 | ||
43cd72b9 | 924 | if (block_count > 0) |
e0001a05 NC |
925 | { |
926 | /* Now sort them into address order for easy reference. */ | |
927 | qsort (blocks, block_count, sizeof (property_table_entry), | |
928 | property_table_compare); | |
e4115460 BW |
929 | |
930 | /* Check that the table contents are valid. Problems may occur, | |
07d6d2b8 | 931 | for example, if an unrelocated object file is stripped. */ |
e4115460 BW |
932 | for (blk = 1; blk < block_count; blk++) |
933 | { | |
934 | /* The only circumstance where two entries may legitimately | |
935 | have the same address is when one of them is a zero-size | |
936 | placeholder to mark a place where fill can be inserted. | |
937 | The zero-size entry should come first. */ | |
938 | if (blocks[blk - 1].address == blocks[blk].address && | |
939 | blocks[blk - 1].size != 0) | |
940 | { | |
695344c0 | 941 | /* xgettext:c-format */ |
871b3ab2 | 942 | _bfd_error_handler (_("%pB(%pA): invalid property table"), |
4eca0228 | 943 | abfd, section); |
e4115460 BW |
944 | bfd_set_error (bfd_error_bad_value); |
945 | free (blocks); | |
946 | return -1; | |
947 | } | |
948 | } | |
e0001a05 | 949 | } |
43cd72b9 | 950 | |
e0001a05 NC |
951 | *table_p = blocks; |
952 | return block_count; | |
953 | } | |
954 | ||
955 | ||
7fa3d080 BW |
956 | static property_table_entry * |
957 | elf_xtensa_find_property_entry (property_table_entry *property_table, | |
958 | int property_table_size, | |
959 | bfd_vma addr) | |
e0001a05 NC |
960 | { |
961 | property_table_entry entry; | |
43cd72b9 | 962 | property_table_entry *rv; |
e0001a05 | 963 | |
43cd72b9 BW |
964 | if (property_table_size == 0) |
965 | return NULL; | |
e0001a05 NC |
966 | |
967 | entry.address = addr; | |
968 | entry.size = 1; | |
43cd72b9 | 969 | entry.flags = 0; |
e0001a05 | 970 | |
43cd72b9 BW |
971 | rv = bsearch (&entry, property_table, property_table_size, |
972 | sizeof (property_table_entry), property_table_matches); | |
973 | return rv; | |
974 | } | |
975 | ||
976 | ||
977 | static bfd_boolean | |
7fa3d080 BW |
978 | elf_xtensa_in_literal_pool (property_table_entry *lit_table, |
979 | int lit_table_size, | |
980 | bfd_vma addr) | |
43cd72b9 BW |
981 | { |
982 | if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr)) | |
e0001a05 NC |
983 | return TRUE; |
984 | ||
985 | return FALSE; | |
986 | } | |
987 | ||
988 | \f | |
989 | /* Look through the relocs for a section during the first phase, and | |
990 | calculate needed space in the dynamic reloc sections. */ | |
991 | ||
992 | static bfd_boolean | |
7fa3d080 BW |
993 | elf_xtensa_check_relocs (bfd *abfd, |
994 | struct bfd_link_info *info, | |
995 | asection *sec, | |
996 | const Elf_Internal_Rela *relocs) | |
e0001a05 | 997 | { |
f0e6fdb2 | 998 | struct elf_xtensa_link_hash_table *htab; |
e0001a05 NC |
999 | Elf_Internal_Shdr *symtab_hdr; |
1000 | struct elf_link_hash_entry **sym_hashes; | |
1001 | const Elf_Internal_Rela *rel; | |
1002 | const Elf_Internal_Rela *rel_end; | |
e0001a05 | 1003 | |
0e1862bb | 1004 | if (bfd_link_relocatable (info) || (sec->flags & SEC_ALLOC) == 0) |
e0001a05 NC |
1005 | return TRUE; |
1006 | ||
28dbbc02 BW |
1007 | BFD_ASSERT (is_xtensa_elf (abfd)); |
1008 | ||
f0e6fdb2 | 1009 | htab = elf_xtensa_hash_table (info); |
4dfe6ac6 NC |
1010 | if (htab == NULL) |
1011 | return FALSE; | |
1012 | ||
e0001a05 NC |
1013 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
1014 | sym_hashes = elf_sym_hashes (abfd); | |
1015 | ||
e0001a05 NC |
1016 | rel_end = relocs + sec->reloc_count; |
1017 | for (rel = relocs; rel < rel_end; rel++) | |
1018 | { | |
1019 | unsigned int r_type; | |
d42c267e | 1020 | unsigned r_symndx; |
28dbbc02 BW |
1021 | struct elf_link_hash_entry *h = NULL; |
1022 | struct elf_xtensa_link_hash_entry *eh; | |
1023 | int tls_type, old_tls_type; | |
1024 | bfd_boolean is_got = FALSE; | |
1025 | bfd_boolean is_plt = FALSE; | |
1026 | bfd_boolean is_tlsfunc = FALSE; | |
e0001a05 NC |
1027 | |
1028 | r_symndx = ELF32_R_SYM (rel->r_info); | |
1029 | r_type = ELF32_R_TYPE (rel->r_info); | |
1030 | ||
1031 | if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr)) | |
1032 | { | |
695344c0 | 1033 | /* xgettext:c-format */ |
871b3ab2 | 1034 | _bfd_error_handler (_("%pB: bad symbol index: %d"), |
4eca0228 | 1035 | abfd, r_symndx); |
e0001a05 NC |
1036 | return FALSE; |
1037 | } | |
1038 | ||
28dbbc02 | 1039 | if (r_symndx >= symtab_hdr->sh_info) |
e0001a05 NC |
1040 | { |
1041 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | |
1042 | while (h->root.type == bfd_link_hash_indirect | |
1043 | || h->root.type == bfd_link_hash_warning) | |
1044 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1045 | } | |
28dbbc02 | 1046 | eh = elf_xtensa_hash_entry (h); |
e0001a05 NC |
1047 | |
1048 | switch (r_type) | |
1049 | { | |
28dbbc02 | 1050 | case R_XTENSA_TLSDESC_FN: |
0e1862bb | 1051 | if (bfd_link_pic (info)) |
28dbbc02 BW |
1052 | { |
1053 | tls_type = GOT_TLS_GD; | |
1054 | is_got = TRUE; | |
1055 | is_tlsfunc = TRUE; | |
1056 | } | |
1057 | else | |
1058 | tls_type = GOT_TLS_IE; | |
1059 | break; | |
e0001a05 | 1060 | |
28dbbc02 | 1061 | case R_XTENSA_TLSDESC_ARG: |
0e1862bb | 1062 | if (bfd_link_pic (info)) |
e0001a05 | 1063 | { |
28dbbc02 BW |
1064 | tls_type = GOT_TLS_GD; |
1065 | is_got = TRUE; | |
1066 | } | |
1067 | else | |
1068 | { | |
1069 | tls_type = GOT_TLS_IE; | |
1070 | if (h && elf_xtensa_hash_entry (h) != htab->tlsbase) | |
1071 | is_got = TRUE; | |
e0001a05 NC |
1072 | } |
1073 | break; | |
1074 | ||
28dbbc02 | 1075 | case R_XTENSA_TLS_DTPOFF: |
0e1862bb | 1076 | if (bfd_link_pic (info)) |
28dbbc02 BW |
1077 | tls_type = GOT_TLS_GD; |
1078 | else | |
1079 | tls_type = GOT_TLS_IE; | |
1080 | break; | |
1081 | ||
1082 | case R_XTENSA_TLS_TPOFF: | |
1083 | tls_type = GOT_TLS_IE; | |
0e1862bb | 1084 | if (bfd_link_pic (info)) |
28dbbc02 | 1085 | info->flags |= DF_STATIC_TLS; |
0e1862bb | 1086 | if (bfd_link_pic (info) || h) |
28dbbc02 BW |
1087 | is_got = TRUE; |
1088 | break; | |
1089 | ||
1090 | case R_XTENSA_32: | |
1091 | tls_type = GOT_NORMAL; | |
1092 | is_got = TRUE; | |
1093 | break; | |
1094 | ||
e0001a05 | 1095 | case R_XTENSA_PLT: |
28dbbc02 BW |
1096 | tls_type = GOT_NORMAL; |
1097 | is_plt = TRUE; | |
1098 | break; | |
e0001a05 | 1099 | |
28dbbc02 BW |
1100 | case R_XTENSA_GNU_VTINHERIT: |
1101 | /* This relocation describes the C++ object vtable hierarchy. | |
1102 | Reconstruct it for later use during GC. */ | |
1103 | if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) | |
1104 | return FALSE; | |
1105 | continue; | |
1106 | ||
1107 | case R_XTENSA_GNU_VTENTRY: | |
1108 | /* This relocation describes which C++ vtable entries are actually | |
1109 | used. Record for later use during GC. */ | |
a0ea3a14 | 1110 | if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) |
28dbbc02 BW |
1111 | return FALSE; |
1112 | continue; | |
1113 | ||
1114 | default: | |
1115 | /* Nothing to do for any other relocations. */ | |
1116 | continue; | |
1117 | } | |
1118 | ||
1119 | if (h) | |
1120 | { | |
1121 | if (is_plt) | |
e0001a05 | 1122 | { |
b45329f9 BW |
1123 | if (h->plt.refcount <= 0) |
1124 | { | |
1125 | h->needs_plt = 1; | |
1126 | h->plt.refcount = 1; | |
1127 | } | |
1128 | else | |
1129 | h->plt.refcount += 1; | |
e0001a05 NC |
1130 | |
1131 | /* Keep track of the total PLT relocation count even if we | |
1132 | don't yet know whether the dynamic sections will be | |
1133 | created. */ | |
f0e6fdb2 | 1134 | htab->plt_reloc_count += 1; |
e0001a05 NC |
1135 | |
1136 | if (elf_hash_table (info)->dynamic_sections_created) | |
1137 | { | |
f0e6fdb2 | 1138 | if (! add_extra_plt_sections (info, htab->plt_reloc_count)) |
e0001a05 NC |
1139 | return FALSE; |
1140 | } | |
1141 | } | |
28dbbc02 | 1142 | else if (is_got) |
b45329f9 BW |
1143 | { |
1144 | if (h->got.refcount <= 0) | |
1145 | h->got.refcount = 1; | |
1146 | else | |
1147 | h->got.refcount += 1; | |
1148 | } | |
28dbbc02 BW |
1149 | |
1150 | if (is_tlsfunc) | |
1151 | eh->tlsfunc_refcount += 1; | |
e0001a05 | 1152 | |
28dbbc02 BW |
1153 | old_tls_type = eh->tls_type; |
1154 | } | |
1155 | else | |
1156 | { | |
1157 | /* Allocate storage the first time. */ | |
1158 | if (elf_local_got_refcounts (abfd) == NULL) | |
e0001a05 | 1159 | { |
28dbbc02 BW |
1160 | bfd_size_type size = symtab_hdr->sh_info; |
1161 | void *mem; | |
e0001a05 | 1162 | |
28dbbc02 BW |
1163 | mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma)); |
1164 | if (mem == NULL) | |
1165 | return FALSE; | |
1166 | elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem; | |
e0001a05 | 1167 | |
28dbbc02 BW |
1168 | mem = bfd_zalloc (abfd, size); |
1169 | if (mem == NULL) | |
1170 | return FALSE; | |
1171 | elf_xtensa_local_got_tls_type (abfd) = (char *) mem; | |
1172 | ||
1173 | mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma)); | |
1174 | if (mem == NULL) | |
1175 | return FALSE; | |
1176 | elf_xtensa_local_tlsfunc_refcounts (abfd) | |
1177 | = (bfd_signed_vma *) mem; | |
e0001a05 | 1178 | } |
e0001a05 | 1179 | |
28dbbc02 BW |
1180 | /* This is a global offset table entry for a local symbol. */ |
1181 | if (is_got || is_plt) | |
1182 | elf_local_got_refcounts (abfd) [r_symndx] += 1; | |
e0001a05 | 1183 | |
28dbbc02 BW |
1184 | if (is_tlsfunc) |
1185 | elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1; | |
e0001a05 | 1186 | |
28dbbc02 BW |
1187 | old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx]; |
1188 | } | |
1189 | ||
1190 | if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE)) | |
1191 | tls_type |= old_tls_type; | |
1192 | /* If a TLS symbol is accessed using IE at least once, | |
1193 | there is no point to use a dynamic model for it. */ | |
1194 | else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN | |
1195 | && ((old_tls_type & GOT_TLS_GD) == 0 | |
1196 | || (tls_type & GOT_TLS_IE) == 0)) | |
1197 | { | |
1198 | if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD)) | |
1199 | tls_type = old_tls_type; | |
1200 | else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD)) | |
1201 | tls_type |= old_tls_type; | |
1202 | else | |
1203 | { | |
4eca0228 | 1204 | _bfd_error_handler |
695344c0 | 1205 | /* xgettext:c-format */ |
871b3ab2 | 1206 | (_("%pB: `%s' accessed both as normal and thread local symbol"), |
28dbbc02 BW |
1207 | abfd, |
1208 | h ? h->root.root.string : "<local>"); | |
1209 | return FALSE; | |
1210 | } | |
1211 | } | |
1212 | ||
1213 | if (old_tls_type != tls_type) | |
1214 | { | |
1215 | if (eh) | |
1216 | eh->tls_type = tls_type; | |
1217 | else | |
1218 | elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type; | |
e0001a05 NC |
1219 | } |
1220 | } | |
1221 | ||
e0001a05 NC |
1222 | return TRUE; |
1223 | } | |
1224 | ||
1225 | ||
95147441 BW |
1226 | static void |
1227 | elf_xtensa_make_sym_local (struct bfd_link_info *info, | |
07d6d2b8 | 1228 | struct elf_link_hash_entry *h) |
95147441 | 1229 | { |
0e1862bb | 1230 | if (bfd_link_pic (info)) |
95147441 BW |
1231 | { |
1232 | if (h->plt.refcount > 0) | |
07d6d2b8 | 1233 | { |
95147441 BW |
1234 | /* For shared objects, there's no need for PLT entries for local |
1235 | symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */ | |
07d6d2b8 AM |
1236 | if (h->got.refcount < 0) |
1237 | h->got.refcount = 0; | |
1238 | h->got.refcount += h->plt.refcount; | |
1239 | h->plt.refcount = 0; | |
1240 | } | |
95147441 BW |
1241 | } |
1242 | else | |
1243 | { | |
1244 | /* Don't need any dynamic relocations at all. */ | |
1245 | h->plt.refcount = 0; | |
1246 | h->got.refcount = 0; | |
1247 | } | |
1248 | } | |
1249 | ||
1250 | ||
1251 | static void | |
1252 | elf_xtensa_hide_symbol (struct bfd_link_info *info, | |
07d6d2b8 AM |
1253 | struct elf_link_hash_entry *h, |
1254 | bfd_boolean force_local) | |
95147441 BW |
1255 | { |
1256 | /* For a shared link, move the plt refcount to the got refcount to leave | |
1257 | space for RELATIVE relocs. */ | |
1258 | elf_xtensa_make_sym_local (info, h); | |
1259 | ||
1260 | _bfd_elf_link_hash_hide_symbol (info, h, force_local); | |
1261 | } | |
1262 | ||
1263 | ||
e0001a05 NC |
1264 | /* Return the section that should be marked against GC for a given |
1265 | relocation. */ | |
1266 | ||
1267 | static asection * | |
7fa3d080 | 1268 | elf_xtensa_gc_mark_hook (asection *sec, |
07adf181 | 1269 | struct bfd_link_info *info, |
7fa3d080 BW |
1270 | Elf_Internal_Rela *rel, |
1271 | struct elf_link_hash_entry *h, | |
1272 | Elf_Internal_Sym *sym) | |
e0001a05 | 1273 | { |
e1e5c0b5 BW |
1274 | /* Property sections are marked "KEEP" in the linker scripts, but they |
1275 | should not cause other sections to be marked. (This approach relies | |
1276 | on elf_xtensa_discard_info to remove property table entries that | |
1277 | describe discarded sections. Alternatively, it might be more | |
1278 | efficient to avoid using "KEEP" in the linker scripts and instead use | |
1279 | the gc_mark_extra_sections hook to mark only the property sections | |
1280 | that describe marked sections. That alternative does not work well | |
1281 | with the current property table sections, which do not correspond | |
1282 | one-to-one with the sections they describe, but that should be fixed | |
1283 | someday.) */ | |
1284 | if (xtensa_is_property_section (sec)) | |
1285 | return NULL; | |
1286 | ||
07adf181 AM |
1287 | if (h != NULL) |
1288 | switch (ELF32_R_TYPE (rel->r_info)) | |
1289 | { | |
1290 | case R_XTENSA_GNU_VTINHERIT: | |
1291 | case R_XTENSA_GNU_VTENTRY: | |
1292 | return NULL; | |
1293 | } | |
1294 | ||
1295 | return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); | |
e0001a05 NC |
1296 | } |
1297 | ||
7fa3d080 | 1298 | |
e0001a05 NC |
1299 | /* Create all the dynamic sections. */ |
1300 | ||
1301 | static bfd_boolean | |
7fa3d080 | 1302 | elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info) |
e0001a05 | 1303 | { |
f0e6fdb2 | 1304 | struct elf_xtensa_link_hash_table *htab; |
e901de89 | 1305 | flagword flags, noalloc_flags; |
f0e6fdb2 BW |
1306 | |
1307 | htab = elf_xtensa_hash_table (info); | |
4dfe6ac6 NC |
1308 | if (htab == NULL) |
1309 | return FALSE; | |
e0001a05 NC |
1310 | |
1311 | /* First do all the standard stuff. */ | |
1312 | if (! _bfd_elf_create_dynamic_sections (dynobj, info)) | |
1313 | return FALSE; | |
1314 | ||
1315 | /* Create any extra PLT sections in case check_relocs has already | |
1316 | been called on all the non-dynamic input files. */ | |
f0e6fdb2 | 1317 | if (! add_extra_plt_sections (info, htab->plt_reloc_count)) |
e0001a05 NC |
1318 | return FALSE; |
1319 | ||
e901de89 BW |
1320 | noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY |
1321 | | SEC_LINKER_CREATED | SEC_READONLY); | |
1322 | flags = noalloc_flags | SEC_ALLOC | SEC_LOAD; | |
e0001a05 NC |
1323 | |
1324 | /* Mark the ".got.plt" section READONLY. */ | |
ce558b89 | 1325 | if (htab->elf.sgotplt == NULL |
fd361982 | 1326 | || !bfd_set_section_flags (htab->elf.sgotplt, flags)) |
e0001a05 NC |
1327 | return FALSE; |
1328 | ||
e901de89 | 1329 | /* Create ".got.loc" (literal tables for use by dynamic linker). */ |
3d4d4302 AM |
1330 | htab->sgotloc = bfd_make_section_anyway_with_flags (dynobj, ".got.loc", |
1331 | flags); | |
f0e6fdb2 | 1332 | if (htab->sgotloc == NULL |
fd361982 | 1333 | || !bfd_set_section_alignment (htab->sgotloc, 2)) |
e901de89 BW |
1334 | return FALSE; |
1335 | ||
e0001a05 | 1336 | /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */ |
3d4d4302 AM |
1337 | htab->spltlittbl = bfd_make_section_anyway_with_flags (dynobj, ".xt.lit.plt", |
1338 | noalloc_flags); | |
f0e6fdb2 | 1339 | if (htab->spltlittbl == NULL |
fd361982 | 1340 | || !bfd_set_section_alignment (htab->spltlittbl, 2)) |
e0001a05 NC |
1341 | return FALSE; |
1342 | ||
1343 | return TRUE; | |
1344 | } | |
1345 | ||
1346 | ||
1347 | static bfd_boolean | |
f0e6fdb2 | 1348 | add_extra_plt_sections (struct bfd_link_info *info, int count) |
e0001a05 | 1349 | { |
f0e6fdb2 | 1350 | bfd *dynobj = elf_hash_table (info)->dynobj; |
e0001a05 NC |
1351 | int chunk; |
1352 | ||
1353 | /* Iterate over all chunks except 0 which uses the standard ".plt" and | |
1354 | ".got.plt" sections. */ | |
1355 | for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--) | |
1356 | { | |
1357 | char *sname; | |
1358 | flagword flags; | |
1359 | asection *s; | |
1360 | ||
1361 | /* Stop when we find a section has already been created. */ | |
f0e6fdb2 | 1362 | if (elf_xtensa_get_plt_section (info, chunk)) |
e0001a05 NC |
1363 | break; |
1364 | ||
1365 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | |
1366 | | SEC_LINKER_CREATED | SEC_READONLY); | |
1367 | ||
1368 | sname = (char *) bfd_malloc (10); | |
1369 | sprintf (sname, ".plt.%u", chunk); | |
3d4d4302 | 1370 | s = bfd_make_section_anyway_with_flags (dynobj, sname, flags | SEC_CODE); |
e0001a05 | 1371 | if (s == NULL |
fd361982 | 1372 | || !bfd_set_section_alignment (s, 2)) |
e0001a05 NC |
1373 | return FALSE; |
1374 | ||
1375 | sname = (char *) bfd_malloc (14); | |
1376 | sprintf (sname, ".got.plt.%u", chunk); | |
3d4d4302 | 1377 | s = bfd_make_section_anyway_with_flags (dynobj, sname, flags); |
e0001a05 | 1378 | if (s == NULL |
fd361982 | 1379 | || !bfd_set_section_alignment (s, 2)) |
e0001a05 NC |
1380 | return FALSE; |
1381 | } | |
1382 | ||
1383 | return TRUE; | |
1384 | } | |
1385 | ||
1386 | ||
1387 | /* Adjust a symbol defined by a dynamic object and referenced by a | |
1388 | regular object. The current definition is in some section of the | |
1389 | dynamic object, but we're not including those sections. We have to | |
1390 | change the definition to something the rest of the link can | |
1391 | understand. */ | |
1392 | ||
1393 | static bfd_boolean | |
7fa3d080 BW |
1394 | elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED, |
1395 | struct elf_link_hash_entry *h) | |
e0001a05 NC |
1396 | { |
1397 | /* If this is a weak symbol, and there is a real definition, the | |
1398 | processor independent code will have arranged for us to see the | |
1399 | real definition first, and we can just use the same value. */ | |
60d67dc8 | 1400 | if (h->is_weakalias) |
e0001a05 | 1401 | { |
60d67dc8 AM |
1402 | struct elf_link_hash_entry *def = weakdef (h); |
1403 | BFD_ASSERT (def->root.type == bfd_link_hash_defined); | |
1404 | h->root.u.def.section = def->root.u.def.section; | |
1405 | h->root.u.def.value = def->root.u.def.value; | |
e0001a05 NC |
1406 | return TRUE; |
1407 | } | |
1408 | ||
1409 | /* This is a reference to a symbol defined by a dynamic object. The | |
1410 | reference must go through the GOT, so there's no need for COPY relocs, | |
1411 | .dynbss, etc. */ | |
1412 | ||
1413 | return TRUE; | |
1414 | } | |
1415 | ||
1416 | ||
e0001a05 | 1417 | static bfd_boolean |
f1ab2340 | 1418 | elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg) |
e0001a05 | 1419 | { |
f1ab2340 BW |
1420 | struct bfd_link_info *info; |
1421 | struct elf_xtensa_link_hash_table *htab; | |
28dbbc02 | 1422 | struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h); |
e0001a05 | 1423 | |
f1ab2340 BW |
1424 | if (h->root.type == bfd_link_hash_indirect) |
1425 | return TRUE; | |
e0001a05 | 1426 | |
f1ab2340 BW |
1427 | info = (struct bfd_link_info *) arg; |
1428 | htab = elf_xtensa_hash_table (info); | |
4dfe6ac6 NC |
1429 | if (htab == NULL) |
1430 | return FALSE; | |
e0001a05 | 1431 | |
28dbbc02 BW |
1432 | /* If we saw any use of an IE model for this symbol, we can then optimize |
1433 | away GOT entries for any TLSDESC_FN relocs. */ | |
1434 | if ((eh->tls_type & GOT_TLS_IE) != 0) | |
1435 | { | |
1436 | BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount); | |
1437 | h->got.refcount -= eh->tlsfunc_refcount; | |
1438 | } | |
e0001a05 | 1439 | |
28dbbc02 | 1440 | if (! elf_xtensa_dynamic_symbol_p (h, info)) |
95147441 | 1441 | elf_xtensa_make_sym_local (info, h); |
e0001a05 | 1442 | |
c451bb34 MF |
1443 | if (! elf_xtensa_dynamic_symbol_p (h, info) |
1444 | && h->root.type == bfd_link_hash_undefweak) | |
1445 | return TRUE; | |
1446 | ||
f1ab2340 | 1447 | if (h->plt.refcount > 0) |
ce558b89 | 1448 | htab->elf.srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela)); |
e0001a05 NC |
1449 | |
1450 | if (h->got.refcount > 0) | |
ce558b89 | 1451 | htab->elf.srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela)); |
e0001a05 NC |
1452 | |
1453 | return TRUE; | |
1454 | } | |
1455 | ||
1456 | ||
1457 | static void | |
f0e6fdb2 | 1458 | elf_xtensa_allocate_local_got_size (struct bfd_link_info *info) |
e0001a05 | 1459 | { |
f0e6fdb2 | 1460 | struct elf_xtensa_link_hash_table *htab; |
e0001a05 NC |
1461 | bfd *i; |
1462 | ||
f0e6fdb2 | 1463 | htab = elf_xtensa_hash_table (info); |
4dfe6ac6 NC |
1464 | if (htab == NULL) |
1465 | return; | |
f0e6fdb2 | 1466 | |
c72f2fb2 | 1467 | for (i = info->input_bfds; i; i = i->link.next) |
e0001a05 NC |
1468 | { |
1469 | bfd_signed_vma *local_got_refcounts; | |
1470 | bfd_size_type j, cnt; | |
1471 | Elf_Internal_Shdr *symtab_hdr; | |
1472 | ||
1473 | local_got_refcounts = elf_local_got_refcounts (i); | |
1474 | if (!local_got_refcounts) | |
1475 | continue; | |
1476 | ||
1477 | symtab_hdr = &elf_tdata (i)->symtab_hdr; | |
1478 | cnt = symtab_hdr->sh_info; | |
1479 | ||
1480 | for (j = 0; j < cnt; ++j) | |
1481 | { | |
28dbbc02 BW |
1482 | /* If we saw any use of an IE model for this symbol, we can |
1483 | then optimize away GOT entries for any TLSDESC_FN relocs. */ | |
1484 | if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0) | |
1485 | { | |
1486 | bfd_signed_vma *tlsfunc_refcount | |
1487 | = &elf_xtensa_local_tlsfunc_refcounts (i) [j]; | |
1488 | BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount); | |
1489 | local_got_refcounts[j] -= *tlsfunc_refcount; | |
1490 | } | |
1491 | ||
e0001a05 | 1492 | if (local_got_refcounts[j] > 0) |
ce558b89 AM |
1493 | htab->elf.srelgot->size += (local_got_refcounts[j] |
1494 | * sizeof (Elf32_External_Rela)); | |
e0001a05 NC |
1495 | } |
1496 | } | |
1497 | } | |
1498 | ||
1499 | ||
1500 | /* Set the sizes of the dynamic sections. */ | |
1501 | ||
1502 | static bfd_boolean | |
7fa3d080 BW |
1503 | elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED, |
1504 | struct bfd_link_info *info) | |
e0001a05 | 1505 | { |
f0e6fdb2 | 1506 | struct elf_xtensa_link_hash_table *htab; |
e901de89 BW |
1507 | bfd *dynobj, *abfd; |
1508 | asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc; | |
e0001a05 NC |
1509 | bfd_boolean relplt, relgot; |
1510 | int plt_entries, plt_chunks, chunk; | |
1511 | ||
1512 | plt_entries = 0; | |
1513 | plt_chunks = 0; | |
e0001a05 | 1514 | |
f0e6fdb2 | 1515 | htab = elf_xtensa_hash_table (info); |
4dfe6ac6 NC |
1516 | if (htab == NULL) |
1517 | return FALSE; | |
1518 | ||
e0001a05 NC |
1519 | dynobj = elf_hash_table (info)->dynobj; |
1520 | if (dynobj == NULL) | |
1521 | abort (); | |
ce558b89 AM |
1522 | srelgot = htab->elf.srelgot; |
1523 | srelplt = htab->elf.srelplt; | |
e0001a05 NC |
1524 | |
1525 | if (elf_hash_table (info)->dynamic_sections_created) | |
1526 | { | |
ce558b89 AM |
1527 | BFD_ASSERT (htab->elf.srelgot != NULL |
1528 | && htab->elf.srelplt != NULL | |
1529 | && htab->elf.sgot != NULL | |
f0e6fdb2 BW |
1530 | && htab->spltlittbl != NULL |
1531 | && htab->sgotloc != NULL); | |
1532 | ||
e0001a05 | 1533 | /* Set the contents of the .interp section to the interpreter. */ |
9b8b325a | 1534 | if (bfd_link_executable (info) && !info->nointerp) |
e0001a05 | 1535 | { |
3d4d4302 | 1536 | s = bfd_get_linker_section (dynobj, ".interp"); |
e0001a05 NC |
1537 | if (s == NULL) |
1538 | abort (); | |
eea6121a | 1539 | s->size = sizeof ELF_DYNAMIC_INTERPRETER; |
e0001a05 NC |
1540 | s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; |
1541 | } | |
1542 | ||
1543 | /* Allocate room for one word in ".got". */ | |
ce558b89 | 1544 | htab->elf.sgot->size = 4; |
e0001a05 | 1545 | |
f1ab2340 BW |
1546 | /* Allocate space in ".rela.got" for literals that reference global |
1547 | symbols and space in ".rela.plt" for literals that have PLT | |
1548 | entries. */ | |
e0001a05 | 1549 | elf_link_hash_traverse (elf_hash_table (info), |
f1ab2340 | 1550 | elf_xtensa_allocate_dynrelocs, |
7fa3d080 | 1551 | (void *) info); |
e0001a05 | 1552 | |
e0001a05 NC |
1553 | /* If we are generating a shared object, we also need space in |
1554 | ".rela.got" for R_XTENSA_RELATIVE relocs for literals that | |
1555 | reference local symbols. */ | |
0e1862bb | 1556 | if (bfd_link_pic (info)) |
f0e6fdb2 | 1557 | elf_xtensa_allocate_local_got_size (info); |
e0001a05 | 1558 | |
e0001a05 NC |
1559 | /* Allocate space in ".plt" to match the size of ".rela.plt". For |
1560 | each PLT entry, we need the PLT code plus a 4-byte literal. | |
1561 | For each chunk of ".plt", we also need two more 4-byte | |
1562 | literals, two corresponding entries in ".rela.got", and an | |
1563 | 8-byte entry in ".xt.lit.plt". */ | |
f0e6fdb2 | 1564 | spltlittbl = htab->spltlittbl; |
eea6121a | 1565 | plt_entries = srelplt->size / sizeof (Elf32_External_Rela); |
e0001a05 NC |
1566 | plt_chunks = |
1567 | (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK; | |
1568 | ||
1569 | /* Iterate over all the PLT chunks, including any extra sections | |
1570 | created earlier because the initial count of PLT relocations | |
1571 | was an overestimate. */ | |
1572 | for (chunk = 0; | |
f0e6fdb2 | 1573 | (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL; |
e0001a05 NC |
1574 | chunk++) |
1575 | { | |
1576 | int chunk_entries; | |
1577 | ||
f0e6fdb2 BW |
1578 | sgotplt = elf_xtensa_get_gotplt_section (info, chunk); |
1579 | BFD_ASSERT (sgotplt != NULL); | |
e0001a05 NC |
1580 | |
1581 | if (chunk < plt_chunks - 1) | |
1582 | chunk_entries = PLT_ENTRIES_PER_CHUNK; | |
1583 | else if (chunk == plt_chunks - 1) | |
1584 | chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK); | |
1585 | else | |
1586 | chunk_entries = 0; | |
1587 | ||
1588 | if (chunk_entries != 0) | |
1589 | { | |
eea6121a AM |
1590 | sgotplt->size = 4 * (chunk_entries + 2); |
1591 | splt->size = PLT_ENTRY_SIZE * chunk_entries; | |
1592 | srelgot->size += 2 * sizeof (Elf32_External_Rela); | |
1593 | spltlittbl->size += 8; | |
e0001a05 NC |
1594 | } |
1595 | else | |
1596 | { | |
eea6121a AM |
1597 | sgotplt->size = 0; |
1598 | splt->size = 0; | |
e0001a05 NC |
1599 | } |
1600 | } | |
e901de89 BW |
1601 | |
1602 | /* Allocate space in ".got.loc" to match the total size of all the | |
1603 | literal tables. */ | |
f0e6fdb2 | 1604 | sgotloc = htab->sgotloc; |
eea6121a | 1605 | sgotloc->size = spltlittbl->size; |
c72f2fb2 | 1606 | for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next) |
e901de89 BW |
1607 | { |
1608 | if (abfd->flags & DYNAMIC) | |
1609 | continue; | |
1610 | for (s = abfd->sections; s != NULL; s = s->next) | |
1611 | { | |
dbaa2011 | 1612 | if (! discarded_section (s) |
b536dc1e BW |
1613 | && xtensa_is_littable_section (s) |
1614 | && s != spltlittbl) | |
eea6121a | 1615 | sgotloc->size += s->size; |
e901de89 BW |
1616 | } |
1617 | } | |
e0001a05 NC |
1618 | } |
1619 | ||
1620 | /* Allocate memory for dynamic sections. */ | |
1621 | relplt = FALSE; | |
1622 | relgot = FALSE; | |
1623 | for (s = dynobj->sections; s != NULL; s = s->next) | |
1624 | { | |
1625 | const char *name; | |
e0001a05 NC |
1626 | |
1627 | if ((s->flags & SEC_LINKER_CREATED) == 0) | |
1628 | continue; | |
1629 | ||
1630 | /* It's OK to base decisions on the section name, because none | |
1631 | of the dynobj section names depend upon the input files. */ | |
fd361982 | 1632 | name = bfd_section_name (s); |
e0001a05 | 1633 | |
0112cd26 | 1634 | if (CONST_STRNEQ (name, ".rela")) |
e0001a05 | 1635 | { |
c456f082 | 1636 | if (s->size != 0) |
e0001a05 | 1637 | { |
c456f082 AM |
1638 | if (strcmp (name, ".rela.plt") == 0) |
1639 | relplt = TRUE; | |
1640 | else if (strcmp (name, ".rela.got") == 0) | |
1641 | relgot = TRUE; | |
1642 | ||
1643 | /* We use the reloc_count field as a counter if we need | |
1644 | to copy relocs into the output file. */ | |
1645 | s->reloc_count = 0; | |
e0001a05 NC |
1646 | } |
1647 | } | |
0112cd26 NC |
1648 | else if (! CONST_STRNEQ (name, ".plt.") |
1649 | && ! CONST_STRNEQ (name, ".got.plt.") | |
c456f082 | 1650 | && strcmp (name, ".got") != 0 |
e0001a05 NC |
1651 | && strcmp (name, ".plt") != 0 |
1652 | && strcmp (name, ".got.plt") != 0 | |
e901de89 BW |
1653 | && strcmp (name, ".xt.lit.plt") != 0 |
1654 | && strcmp (name, ".got.loc") != 0) | |
e0001a05 NC |
1655 | { |
1656 | /* It's not one of our sections, so don't allocate space. */ | |
1657 | continue; | |
1658 | } | |
1659 | ||
c456f082 AM |
1660 | if (s->size == 0) |
1661 | { | |
1662 | /* If we don't need this section, strip it from the output | |
1663 | file. We must create the ".plt*" and ".got.plt*" | |
1664 | sections in create_dynamic_sections and/or check_relocs | |
1665 | based on a conservative estimate of the PLT relocation | |
1666 | count, because the sections must be created before the | |
1667 | linker maps input sections to output sections. The | |
1668 | linker does that before size_dynamic_sections, where we | |
1669 | compute the exact size of the PLT, so there may be more | |
1670 | of these sections than are actually needed. */ | |
1671 | s->flags |= SEC_EXCLUDE; | |
1672 | } | |
1673 | else if ((s->flags & SEC_HAS_CONTENTS) != 0) | |
e0001a05 NC |
1674 | { |
1675 | /* Allocate memory for the section contents. */ | |
eea6121a | 1676 | s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size); |
c456f082 | 1677 | if (s->contents == NULL) |
e0001a05 NC |
1678 | return FALSE; |
1679 | } | |
1680 | } | |
1681 | ||
1682 | if (elf_hash_table (info)->dynamic_sections_created) | |
1683 | { | |
1684 | /* Add the special XTENSA_RTLD relocations now. The offsets won't be | |
1685 | known until finish_dynamic_sections, but we need to get the relocs | |
1686 | in place before they are sorted. */ | |
e0001a05 NC |
1687 | for (chunk = 0; chunk < plt_chunks; chunk++) |
1688 | { | |
1689 | Elf_Internal_Rela irela; | |
1690 | bfd_byte *loc; | |
1691 | ||
1692 | irela.r_offset = 0; | |
1693 | irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD); | |
1694 | irela.r_addend = 0; | |
1695 | ||
1696 | loc = (srelgot->contents | |
1697 | + srelgot->reloc_count * sizeof (Elf32_External_Rela)); | |
1698 | bfd_elf32_swap_reloca_out (output_bfd, &irela, loc); | |
1699 | bfd_elf32_swap_reloca_out (output_bfd, &irela, | |
1700 | loc + sizeof (Elf32_External_Rela)); | |
1701 | srelgot->reloc_count += 2; | |
1702 | } | |
1703 | ||
1704 | /* Add some entries to the .dynamic section. We fill in the | |
1705 | values later, in elf_xtensa_finish_dynamic_sections, but we | |
1706 | must add the entries now so that we get the correct size for | |
1707 | the .dynamic section. The DT_DEBUG entry is filled in by the | |
1708 | dynamic linker and used by the debugger. */ | |
1709 | #define add_dynamic_entry(TAG, VAL) \ | |
5a580b3a | 1710 | _bfd_elf_add_dynamic_entry (info, TAG, VAL) |
e0001a05 | 1711 | |
0e1862bb | 1712 | if (bfd_link_executable (info)) |
e0001a05 NC |
1713 | { |
1714 | if (!add_dynamic_entry (DT_DEBUG, 0)) | |
1715 | return FALSE; | |
1716 | } | |
1717 | ||
1718 | if (relplt) | |
1719 | { | |
c243ad3b | 1720 | if (!add_dynamic_entry (DT_PLTRELSZ, 0) |
e0001a05 NC |
1721 | || !add_dynamic_entry (DT_PLTREL, DT_RELA) |
1722 | || !add_dynamic_entry (DT_JMPREL, 0)) | |
1723 | return FALSE; | |
1724 | } | |
1725 | ||
1726 | if (relgot) | |
1727 | { | |
1728 | if (!add_dynamic_entry (DT_RELA, 0) | |
1729 | || !add_dynamic_entry (DT_RELASZ, 0) | |
1730 | || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela))) | |
1731 | return FALSE; | |
1732 | } | |
1733 | ||
c243ad3b BW |
1734 | if (!add_dynamic_entry (DT_PLTGOT, 0) |
1735 | || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0) | |
e0001a05 NC |
1736 | || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0)) |
1737 | return FALSE; | |
1738 | } | |
1739 | #undef add_dynamic_entry | |
1740 | ||
1741 | return TRUE; | |
1742 | } | |
1743 | ||
28dbbc02 BW |
1744 | static bfd_boolean |
1745 | elf_xtensa_always_size_sections (bfd *output_bfd, | |
1746 | struct bfd_link_info *info) | |
1747 | { | |
1748 | struct elf_xtensa_link_hash_table *htab; | |
1749 | asection *tls_sec; | |
1750 | ||
1751 | htab = elf_xtensa_hash_table (info); | |
4dfe6ac6 NC |
1752 | if (htab == NULL) |
1753 | return FALSE; | |
1754 | ||
28dbbc02 BW |
1755 | tls_sec = htab->elf.tls_sec; |
1756 | ||
1757 | if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0) | |
1758 | { | |
1759 | struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf; | |
1760 | struct bfd_link_hash_entry *bh = &tlsbase->root; | |
1761 | const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); | |
1762 | ||
1763 | tlsbase->type = STT_TLS; | |
1764 | if (!(_bfd_generic_link_add_one_symbol | |
1765 | (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL, | |
1766 | tls_sec, 0, NULL, FALSE, | |
1767 | bed->collect, &bh))) | |
1768 | return FALSE; | |
1769 | tlsbase->def_regular = 1; | |
1770 | tlsbase->other = STV_HIDDEN; | |
1771 | (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE); | |
1772 | } | |
1773 | ||
1774 | return TRUE; | |
1775 | } | |
1776 | ||
e0001a05 | 1777 | \f |
28dbbc02 BW |
1778 | /* Return the base VMA address which should be subtracted from real addresses |
1779 | when resolving @dtpoff relocation. | |
1780 | This is PT_TLS segment p_vaddr. */ | |
1781 | ||
1782 | static bfd_vma | |
1783 | dtpoff_base (struct bfd_link_info *info) | |
1784 | { | |
1785 | /* If tls_sec is NULL, we should have signalled an error already. */ | |
1786 | if (elf_hash_table (info)->tls_sec == NULL) | |
1787 | return 0; | |
1788 | return elf_hash_table (info)->tls_sec->vma; | |
1789 | } | |
1790 | ||
1791 | /* Return the relocation value for @tpoff relocation | |
1792 | if STT_TLS virtual address is ADDRESS. */ | |
1793 | ||
1794 | static bfd_vma | |
1795 | tpoff (struct bfd_link_info *info, bfd_vma address) | |
1796 | { | |
1797 | struct elf_link_hash_table *htab = elf_hash_table (info); | |
1798 | bfd_vma base; | |
1799 | ||
1800 | /* If tls_sec is NULL, we should have signalled an error already. */ | |
1801 | if (htab->tls_sec == NULL) | |
1802 | return 0; | |
1803 | base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power); | |
1804 | return address - htab->tls_sec->vma + base; | |
1805 | } | |
1806 | ||
e0001a05 NC |
1807 | /* Perform the specified relocation. The instruction at (contents + address) |
1808 | is modified to set one operand to represent the value in "relocation". The | |
1809 | operand position is determined by the relocation type recorded in the | |
1810 | howto. */ | |
1811 | ||
1812 | #define CALL_SEGMENT_BITS (30) | |
7fa3d080 | 1813 | #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS) |
e0001a05 NC |
1814 | |
1815 | static bfd_reloc_status_type | |
7fa3d080 BW |
1816 | elf_xtensa_do_reloc (reloc_howto_type *howto, |
1817 | bfd *abfd, | |
1818 | asection *input_section, | |
1819 | bfd_vma relocation, | |
1820 | bfd_byte *contents, | |
1821 | bfd_vma address, | |
1822 | bfd_boolean is_weak_undef, | |
1823 | char **error_message) | |
e0001a05 | 1824 | { |
43cd72b9 | 1825 | xtensa_format fmt; |
e0001a05 | 1826 | xtensa_opcode opcode; |
e0001a05 | 1827 | xtensa_isa isa = xtensa_default_isa; |
43cd72b9 BW |
1828 | static xtensa_insnbuf ibuff = NULL; |
1829 | static xtensa_insnbuf sbuff = NULL; | |
1bbb5f21 | 1830 | bfd_vma self_address; |
43cd72b9 BW |
1831 | bfd_size_type input_size; |
1832 | int opnd, slot; | |
e0001a05 NC |
1833 | uint32 newval; |
1834 | ||
43cd72b9 BW |
1835 | if (!ibuff) |
1836 | { | |
1837 | ibuff = xtensa_insnbuf_alloc (isa); | |
1838 | sbuff = xtensa_insnbuf_alloc (isa); | |
1839 | } | |
1840 | ||
1841 | input_size = bfd_get_section_limit (abfd, input_section); | |
1842 | ||
1bbb5f21 BW |
1843 | /* Calculate the PC address for this instruction. */ |
1844 | self_address = (input_section->output_section->vma | |
1845 | + input_section->output_offset | |
1846 | + address); | |
1847 | ||
e0001a05 NC |
1848 | switch (howto->type) |
1849 | { | |
1850 | case R_XTENSA_NONE: | |
43cd72b9 BW |
1851 | case R_XTENSA_DIFF8: |
1852 | case R_XTENSA_DIFF16: | |
1853 | case R_XTENSA_DIFF32: | |
28dbbc02 BW |
1854 | case R_XTENSA_TLS_FUNC: |
1855 | case R_XTENSA_TLS_ARG: | |
1856 | case R_XTENSA_TLS_CALL: | |
e0001a05 NC |
1857 | return bfd_reloc_ok; |
1858 | ||
1859 | case R_XTENSA_ASM_EXPAND: | |
1860 | if (!is_weak_undef) | |
1861 | { | |
1862 | /* Check for windowed CALL across a 1GB boundary. */ | |
91d6fa6a NC |
1863 | opcode = get_expanded_call_opcode (contents + address, |
1864 | input_size - address, 0); | |
e0001a05 NC |
1865 | if (is_windowed_call_opcode (opcode)) |
1866 | { | |
43cd72b9 | 1867 | if ((self_address >> CALL_SEGMENT_BITS) |
68ffbac6 | 1868 | != (relocation >> CALL_SEGMENT_BITS)) |
e0001a05 NC |
1869 | { |
1870 | *error_message = "windowed longcall crosses 1GB boundary; " | |
1871 | "return may fail"; | |
1872 | return bfd_reloc_dangerous; | |
1873 | } | |
1874 | } | |
1875 | } | |
1876 | return bfd_reloc_ok; | |
1877 | ||
1878 | case R_XTENSA_ASM_SIMPLIFY: | |
43cd72b9 | 1879 | { |
07d6d2b8 | 1880 | /* Convert the L32R/CALLX to CALL. */ |
43cd72b9 BW |
1881 | bfd_reloc_status_type retval = |
1882 | elf_xtensa_do_asm_simplify (contents, address, input_size, | |
1883 | error_message); | |
e0001a05 | 1884 | if (retval != bfd_reloc_ok) |
43cd72b9 | 1885 | return bfd_reloc_dangerous; |
e0001a05 NC |
1886 | |
1887 | /* The CALL needs to be relocated. Continue below for that part. */ | |
1888 | address += 3; | |
c46082c8 | 1889 | self_address += 3; |
43cd72b9 | 1890 | howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ]; |
e0001a05 NC |
1891 | } |
1892 | break; | |
1893 | ||
1894 | case R_XTENSA_32: | |
e0001a05 NC |
1895 | { |
1896 | bfd_vma x; | |
1897 | x = bfd_get_32 (abfd, contents + address); | |
1898 | x = x + relocation; | |
1899 | bfd_put_32 (abfd, x, contents + address); | |
1900 | } | |
1901 | return bfd_reloc_ok; | |
1bbb5f21 BW |
1902 | |
1903 | case R_XTENSA_32_PCREL: | |
1904 | bfd_put_32 (abfd, relocation - self_address, contents + address); | |
1905 | return bfd_reloc_ok; | |
28dbbc02 BW |
1906 | |
1907 | case R_XTENSA_PLT: | |
1908 | case R_XTENSA_TLSDESC_FN: | |
1909 | case R_XTENSA_TLSDESC_ARG: | |
1910 | case R_XTENSA_TLS_DTPOFF: | |
1911 | case R_XTENSA_TLS_TPOFF: | |
1912 | bfd_put_32 (abfd, relocation, contents + address); | |
1913 | return bfd_reloc_ok; | |
e0001a05 NC |
1914 | } |
1915 | ||
43cd72b9 BW |
1916 | /* Only instruction slot-specific relocations handled below.... */ |
1917 | slot = get_relocation_slot (howto->type); | |
1918 | if (slot == XTENSA_UNDEFINED) | |
e0001a05 | 1919 | { |
43cd72b9 | 1920 | *error_message = "unexpected relocation"; |
e0001a05 NC |
1921 | return bfd_reloc_dangerous; |
1922 | } | |
1923 | ||
43cd72b9 BW |
1924 | /* Read the instruction into a buffer and decode the opcode. */ |
1925 | xtensa_insnbuf_from_chars (isa, ibuff, contents + address, | |
1926 | input_size - address); | |
1927 | fmt = xtensa_format_decode (isa, ibuff); | |
1928 | if (fmt == XTENSA_UNDEFINED) | |
e0001a05 | 1929 | { |
43cd72b9 | 1930 | *error_message = "cannot decode instruction format"; |
e0001a05 NC |
1931 | return bfd_reloc_dangerous; |
1932 | } | |
1933 | ||
43cd72b9 | 1934 | xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff); |
e0001a05 | 1935 | |
43cd72b9 BW |
1936 | opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff); |
1937 | if (opcode == XTENSA_UNDEFINED) | |
e0001a05 | 1938 | { |
43cd72b9 | 1939 | *error_message = "cannot decode instruction opcode"; |
e0001a05 NC |
1940 | return bfd_reloc_dangerous; |
1941 | } | |
1942 | ||
43cd72b9 BW |
1943 | /* Check for opcode-specific "alternate" relocations. */ |
1944 | if (is_alt_relocation (howto->type)) | |
1945 | { | |
1946 | if (opcode == get_l32r_opcode ()) | |
1947 | { | |
1948 | /* Handle the special-case of non-PC-relative L32R instructions. */ | |
1949 | bfd *output_bfd = input_section->output_section->owner; | |
1950 | asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4"); | |
1951 | if (!lit4_sec) | |
1952 | { | |
1953 | *error_message = "relocation references missing .lit4 section"; | |
1954 | return bfd_reloc_dangerous; | |
1955 | } | |
1956 | self_address = ((lit4_sec->vma & ~0xfff) | |
1957 | + 0x40000 - 3); /* -3 to compensate for do_reloc */ | |
1958 | newval = relocation; | |
1959 | opnd = 1; | |
1960 | } | |
1961 | else if (opcode == get_const16_opcode ()) | |
1962 | { | |
00863b8e MF |
1963 | /* ALT used for high 16 bits. |
1964 | Ignore 32-bit overflow. */ | |
1965 | newval = (relocation >> 16) & 0xffff; | |
43cd72b9 BW |
1966 | opnd = 1; |
1967 | } | |
1968 | else | |
1969 | { | |
1970 | /* No other "alternate" relocations currently defined. */ | |
1971 | *error_message = "unexpected relocation"; | |
1972 | return bfd_reloc_dangerous; | |
1973 | } | |
1974 | } | |
1975 | else /* Not an "alternate" relocation.... */ | |
1976 | { | |
1977 | if (opcode == get_const16_opcode ()) | |
1978 | { | |
1979 | newval = relocation & 0xffff; | |
1980 | opnd = 1; | |
1981 | } | |
1982 | else | |
1983 | { | |
1984 | /* ...normal PC-relative relocation.... */ | |
1985 | ||
1986 | /* Determine which operand is being relocated. */ | |
1987 | opnd = get_relocation_opnd (opcode, howto->type); | |
1988 | if (opnd == XTENSA_UNDEFINED) | |
1989 | { | |
1990 | *error_message = "unexpected relocation"; | |
1991 | return bfd_reloc_dangerous; | |
1992 | } | |
1993 | ||
1994 | if (!howto->pc_relative) | |
1995 | { | |
1996 | *error_message = "expected PC-relative relocation"; | |
1997 | return bfd_reloc_dangerous; | |
1998 | } | |
e0001a05 | 1999 | |
43cd72b9 BW |
2000 | newval = relocation; |
2001 | } | |
2002 | } | |
e0001a05 | 2003 | |
43cd72b9 BW |
2004 | /* Apply the relocation. */ |
2005 | if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address) | |
2006 | || xtensa_operand_encode (isa, opcode, opnd, &newval) | |
2007 | || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot, | |
2008 | sbuff, newval)) | |
e0001a05 | 2009 | { |
2db662be BW |
2010 | const char *opname = xtensa_opcode_name (isa, opcode); |
2011 | const char *msg; | |
2012 | ||
2013 | msg = "cannot encode"; | |
2014 | if (is_direct_call_opcode (opcode)) | |
2015 | { | |
2016 | if ((relocation & 0x3) != 0) | |
2017 | msg = "misaligned call target"; | |
2018 | else | |
2019 | msg = "call target out of range"; | |
2020 | } | |
2021 | else if (opcode == get_l32r_opcode ()) | |
2022 | { | |
2023 | if ((relocation & 0x3) != 0) | |
2024 | msg = "misaligned literal target"; | |
2025 | else if (is_alt_relocation (howto->type)) | |
2026 | msg = "literal target out of range (too many literals)"; | |
2027 | else if (self_address > relocation) | |
2028 | msg = "literal target out of range (try using text-section-literals)"; | |
2029 | else | |
2030 | msg = "literal placed after use"; | |
2031 | } | |
2032 | ||
2033 | *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg); | |
e0001a05 NC |
2034 | return bfd_reloc_dangerous; |
2035 | } | |
2036 | ||
43cd72b9 | 2037 | /* Check for calls across 1GB boundaries. */ |
e0001a05 NC |
2038 | if (is_direct_call_opcode (opcode) |
2039 | && is_windowed_call_opcode (opcode)) | |
2040 | { | |
43cd72b9 | 2041 | if ((self_address >> CALL_SEGMENT_BITS) |
68ffbac6 | 2042 | != (relocation >> CALL_SEGMENT_BITS)) |
e0001a05 | 2043 | { |
43cd72b9 BW |
2044 | *error_message = |
2045 | "windowed call crosses 1GB boundary; return may fail"; | |
e0001a05 NC |
2046 | return bfd_reloc_dangerous; |
2047 | } | |
2048 | } | |
2049 | ||
43cd72b9 BW |
2050 | /* Write the modified instruction back out of the buffer. */ |
2051 | xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff); | |
2052 | xtensa_insnbuf_to_chars (isa, ibuff, contents + address, | |
2053 | input_size - address); | |
e0001a05 NC |
2054 | return bfd_reloc_ok; |
2055 | } | |
2056 | ||
2057 | ||
2db662be | 2058 | static char * |
7fa3d080 | 2059 | vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...) |
e0001a05 NC |
2060 | { |
2061 | /* To reduce the size of the memory leak, | |
2062 | we only use a single message buffer. */ | |
2063 | static bfd_size_type alloc_size = 0; | |
2064 | static char *message = NULL; | |
2065 | bfd_size_type orig_len, len = 0; | |
2066 | bfd_boolean is_append; | |
1651e569 | 2067 | va_list ap; |
e0001a05 | 2068 | |
1651e569 | 2069 | va_start (ap, arglen); |
68ffbac6 L |
2070 | |
2071 | is_append = (origmsg == message); | |
e0001a05 NC |
2072 | |
2073 | orig_len = strlen (origmsg); | |
2074 | len = orig_len + strlen (fmt) + arglen + 20; | |
2075 | if (len > alloc_size) | |
2076 | { | |
515ef31d | 2077 | message = (char *) bfd_realloc_or_free (message, len); |
e0001a05 NC |
2078 | alloc_size = len; |
2079 | } | |
515ef31d NC |
2080 | if (message != NULL) |
2081 | { | |
2082 | if (!is_append) | |
2083 | memcpy (message, origmsg, orig_len); | |
2084 | vsprintf (message + orig_len, fmt, ap); | |
2085 | } | |
1651e569 | 2086 | va_end (ap); |
e0001a05 NC |
2087 | return message; |
2088 | } | |
2089 | ||
2090 | ||
e0001a05 NC |
2091 | /* This function is registered as the "special_function" in the |
2092 | Xtensa howto for handling simplify operations. | |
2093 | bfd_perform_relocation / bfd_install_relocation use it to | |
2094 | perform (install) the specified relocation. Since this replaces the code | |
2095 | in bfd_perform_relocation, it is basically an Xtensa-specific, | |
2096 | stripped-down version of bfd_perform_relocation. */ | |
2097 | ||
2098 | static bfd_reloc_status_type | |
7fa3d080 BW |
2099 | bfd_elf_xtensa_reloc (bfd *abfd, |
2100 | arelent *reloc_entry, | |
2101 | asymbol *symbol, | |
2102 | void *data, | |
2103 | asection *input_section, | |
2104 | bfd *output_bfd, | |
2105 | char **error_message) | |
e0001a05 NC |
2106 | { |
2107 | bfd_vma relocation; | |
2108 | bfd_reloc_status_type flag; | |
61826503 | 2109 | bfd_size_type octets = (reloc_entry->address |
bb294208 | 2110 | * OCTETS_PER_BYTE (abfd, input_section)); |
e0001a05 NC |
2111 | bfd_vma output_base = 0; |
2112 | reloc_howto_type *howto = reloc_entry->howto; | |
2113 | asection *reloc_target_output_section; | |
2114 | bfd_boolean is_weak_undef; | |
2115 | ||
dd1a320b BW |
2116 | if (!xtensa_default_isa) |
2117 | xtensa_default_isa = xtensa_isa_init (0, 0); | |
2118 | ||
1049f94e | 2119 | /* ELF relocs are against symbols. If we are producing relocatable |
e0001a05 NC |
2120 | output, and the reloc is against an external symbol, the resulting |
2121 | reloc will also be against the same symbol. In such a case, we | |
2122 | don't want to change anything about the way the reloc is handled, | |
2123 | since it will all be done at final link time. This test is similar | |
2124 | to what bfd_elf_generic_reloc does except that it lets relocs with | |
2125 | howto->partial_inplace go through even if the addend is non-zero. | |
2126 | (The real problem is that partial_inplace is set for XTENSA_32 | |
2127 | relocs to begin with, but that's a long story and there's little we | |
2128 | can do about it now....) */ | |
2129 | ||
7fa3d080 | 2130 | if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0) |
e0001a05 NC |
2131 | { |
2132 | reloc_entry->address += input_section->output_offset; | |
2133 | return bfd_reloc_ok; | |
2134 | } | |
2135 | ||
2136 | /* Is the address of the relocation really within the section? */ | |
07515404 | 2137 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
e0001a05 NC |
2138 | return bfd_reloc_outofrange; |
2139 | ||
4cc11e76 | 2140 | /* Work out which section the relocation is targeted at and the |
e0001a05 NC |
2141 | initial relocation command value. */ |
2142 | ||
2143 | /* Get symbol value. (Common symbols are special.) */ | |
2144 | if (bfd_is_com_section (symbol->section)) | |
2145 | relocation = 0; | |
2146 | else | |
2147 | relocation = symbol->value; | |
2148 | ||
2149 | reloc_target_output_section = symbol->section->output_section; | |
2150 | ||
2151 | /* Convert input-section-relative symbol value to absolute. */ | |
2152 | if ((output_bfd && !howto->partial_inplace) | |
2153 | || reloc_target_output_section == NULL) | |
2154 | output_base = 0; | |
2155 | else | |
2156 | output_base = reloc_target_output_section->vma; | |
2157 | ||
2158 | relocation += output_base + symbol->section->output_offset; | |
2159 | ||
2160 | /* Add in supplied addend. */ | |
2161 | relocation += reloc_entry->addend; | |
2162 | ||
2163 | /* Here the variable relocation holds the final address of the | |
2164 | symbol we are relocating against, plus any addend. */ | |
2165 | if (output_bfd) | |
2166 | { | |
2167 | if (!howto->partial_inplace) | |
2168 | { | |
2169 | /* This is a partial relocation, and we want to apply the relocation | |
2170 | to the reloc entry rather than the raw data. Everything except | |
2171 | relocations against section symbols has already been handled | |
2172 | above. */ | |
43cd72b9 | 2173 | |
e0001a05 NC |
2174 | BFD_ASSERT (symbol->flags & BSF_SECTION_SYM); |
2175 | reloc_entry->addend = relocation; | |
2176 | reloc_entry->address += input_section->output_offset; | |
2177 | return bfd_reloc_ok; | |
2178 | } | |
2179 | else | |
2180 | { | |
2181 | reloc_entry->address += input_section->output_offset; | |
2182 | reloc_entry->addend = 0; | |
2183 | } | |
2184 | } | |
2185 | ||
2186 | is_weak_undef = (bfd_is_und_section (symbol->section) | |
2187 | && (symbol->flags & BSF_WEAK) != 0); | |
2188 | flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation, | |
2189 | (bfd_byte *) data, (bfd_vma) octets, | |
2190 | is_weak_undef, error_message); | |
2191 | ||
2192 | if (flag == bfd_reloc_dangerous) | |
2193 | { | |
2194 | /* Add the symbol name to the error message. */ | |
2195 | if (! *error_message) | |
2196 | *error_message = ""; | |
2197 | *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)", | |
2198 | strlen (symbol->name) + 17, | |
70961b9d AM |
2199 | symbol->name, |
2200 | (unsigned long) reloc_entry->addend); | |
e0001a05 NC |
2201 | } |
2202 | ||
2203 | return flag; | |
2204 | } | |
2205 | ||
2206 | ||
2207 | /* Set up an entry in the procedure linkage table. */ | |
2208 | ||
2209 | static bfd_vma | |
f0e6fdb2 | 2210 | elf_xtensa_create_plt_entry (struct bfd_link_info *info, |
7fa3d080 BW |
2211 | bfd *output_bfd, |
2212 | unsigned reloc_index) | |
e0001a05 NC |
2213 | { |
2214 | asection *splt, *sgotplt; | |
2215 | bfd_vma plt_base, got_base; | |
92b3f008 | 2216 | bfd_vma code_offset, lit_offset, abi_offset; |
e0001a05 NC |
2217 | int chunk; |
2218 | ||
2219 | chunk = reloc_index / PLT_ENTRIES_PER_CHUNK; | |
f0e6fdb2 BW |
2220 | splt = elf_xtensa_get_plt_section (info, chunk); |
2221 | sgotplt = elf_xtensa_get_gotplt_section (info, chunk); | |
e0001a05 NC |
2222 | BFD_ASSERT (splt != NULL && sgotplt != NULL); |
2223 | ||
2224 | plt_base = splt->output_section->vma + splt->output_offset; | |
2225 | got_base = sgotplt->output_section->vma + sgotplt->output_offset; | |
2226 | ||
2227 | lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4; | |
2228 | code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE; | |
2229 | ||
2230 | /* Fill in the literal entry. This is the offset of the dynamic | |
2231 | relocation entry. */ | |
2232 | bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela), | |
2233 | sgotplt->contents + lit_offset); | |
2234 | ||
2235 | /* Fill in the entry in the procedure linkage table. */ | |
2236 | memcpy (splt->contents + code_offset, | |
2237 | (bfd_big_endian (output_bfd) | |
f7e16c2a MF |
2238 | ? elf_xtensa_be_plt_entry[XSHAL_ABI != XTHAL_ABI_WINDOWED] |
2239 | : elf_xtensa_le_plt_entry[XSHAL_ABI != XTHAL_ABI_WINDOWED]), | |
e0001a05 | 2240 | PLT_ENTRY_SIZE); |
92b3f008 | 2241 | abi_offset = XSHAL_ABI == XTHAL_ABI_WINDOWED ? 3 : 0; |
e0001a05 | 2242 | bfd_put_16 (output_bfd, l32r_offset (got_base + 0, |
92b3f008 MF |
2243 | plt_base + code_offset + abi_offset), |
2244 | splt->contents + code_offset + abi_offset + 1); | |
e0001a05 | 2245 | bfd_put_16 (output_bfd, l32r_offset (got_base + 4, |
92b3f008 MF |
2246 | plt_base + code_offset + abi_offset + 3), |
2247 | splt->contents + code_offset + abi_offset + 4); | |
e0001a05 | 2248 | bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset, |
92b3f008 MF |
2249 | plt_base + code_offset + abi_offset + 6), |
2250 | splt->contents + code_offset + abi_offset + 7); | |
e0001a05 NC |
2251 | |
2252 | return plt_base + code_offset; | |
2253 | } | |
2254 | ||
2255 | ||
28dbbc02 BW |
2256 | static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *); |
2257 | ||
2258 | static bfd_boolean | |
2259 | replace_tls_insn (Elf_Internal_Rela *rel, | |
2260 | bfd *abfd, | |
2261 | asection *input_section, | |
2262 | bfd_byte *contents, | |
2263 | bfd_boolean is_ld_model, | |
2264 | char **error_message) | |
2265 | { | |
2266 | static xtensa_insnbuf ibuff = NULL; | |
2267 | static xtensa_insnbuf sbuff = NULL; | |
2268 | xtensa_isa isa = xtensa_default_isa; | |
2269 | xtensa_format fmt; | |
2270 | xtensa_opcode old_op, new_op; | |
2271 | bfd_size_type input_size; | |
2272 | int r_type; | |
2273 | unsigned dest_reg, src_reg; | |
2274 | ||
2275 | if (ibuff == NULL) | |
2276 | { | |
2277 | ibuff = xtensa_insnbuf_alloc (isa); | |
2278 | sbuff = xtensa_insnbuf_alloc (isa); | |
2279 | } | |
2280 | ||
2281 | input_size = bfd_get_section_limit (abfd, input_section); | |
2282 | ||
2283 | /* Read the instruction into a buffer and decode the opcode. */ | |
2284 | xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset, | |
2285 | input_size - rel->r_offset); | |
2286 | fmt = xtensa_format_decode (isa, ibuff); | |
2287 | if (fmt == XTENSA_UNDEFINED) | |
2288 | { | |
2289 | *error_message = "cannot decode instruction format"; | |
2290 | return FALSE; | |
2291 | } | |
2292 | ||
2293 | BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1); | |
2294 | xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff); | |
2295 | ||
2296 | old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff); | |
2297 | if (old_op == XTENSA_UNDEFINED) | |
2298 | { | |
2299 | *error_message = "cannot decode instruction opcode"; | |
2300 | return FALSE; | |
2301 | } | |
2302 | ||
2303 | r_type = ELF32_R_TYPE (rel->r_info); | |
2304 | switch (r_type) | |
2305 | { | |
2306 | case R_XTENSA_TLS_FUNC: | |
2307 | case R_XTENSA_TLS_ARG: | |
2308 | if (old_op != get_l32r_opcode () | |
2309 | || xtensa_operand_get_field (isa, old_op, 0, fmt, 0, | |
2310 | sbuff, &dest_reg) != 0) | |
2311 | { | |
2312 | *error_message = "cannot extract L32R destination for TLS access"; | |
2313 | return FALSE; | |
2314 | } | |
2315 | break; | |
2316 | ||
2317 | case R_XTENSA_TLS_CALL: | |
2318 | if (! get_indirect_call_dest_reg (old_op, &dest_reg) | |
2319 | || xtensa_operand_get_field (isa, old_op, 0, fmt, 0, | |
2320 | sbuff, &src_reg) != 0) | |
2321 | { | |
2322 | *error_message = "cannot extract CALLXn operands for TLS access"; | |
2323 | return FALSE; | |
2324 | } | |
2325 | break; | |
2326 | ||
2327 | default: | |
2328 | abort (); | |
2329 | } | |
2330 | ||
2331 | if (is_ld_model) | |
2332 | { | |
2333 | switch (r_type) | |
2334 | { | |
2335 | case R_XTENSA_TLS_FUNC: | |
2336 | case R_XTENSA_TLS_ARG: | |
2337 | /* Change the instruction to a NOP (or "OR a1, a1, a1" for older | |
2338 | versions of Xtensa). */ | |
2339 | new_op = xtensa_opcode_lookup (isa, "nop"); | |
2340 | if (new_op == XTENSA_UNDEFINED) | |
2341 | { | |
2342 | new_op = xtensa_opcode_lookup (isa, "or"); | |
2343 | if (new_op == XTENSA_UNDEFINED | |
2344 | || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0 | |
2345 | || xtensa_operand_set_field (isa, new_op, 0, fmt, 0, | |
2346 | sbuff, 1) != 0 | |
2347 | || xtensa_operand_set_field (isa, new_op, 1, fmt, 0, | |
2348 | sbuff, 1) != 0 | |
2349 | || xtensa_operand_set_field (isa, new_op, 2, fmt, 0, | |
2350 | sbuff, 1) != 0) | |
2351 | { | |
2352 | *error_message = "cannot encode OR for TLS access"; | |
2353 | return FALSE; | |
2354 | } | |
2355 | } | |
2356 | else | |
2357 | { | |
2358 | if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0) | |
2359 | { | |
2360 | *error_message = "cannot encode NOP for TLS access"; | |
2361 | return FALSE; | |
2362 | } | |
2363 | } | |
2364 | break; | |
2365 | ||
2366 | case R_XTENSA_TLS_CALL: | |
2367 | /* Read THREADPTR into the CALLX's return value register. */ | |
2368 | new_op = xtensa_opcode_lookup (isa, "rur.threadptr"); | |
2369 | if (new_op == XTENSA_UNDEFINED | |
2370 | || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0 | |
2371 | || xtensa_operand_set_field (isa, new_op, 0, fmt, 0, | |
2372 | sbuff, dest_reg + 2) != 0) | |
2373 | { | |
2374 | *error_message = "cannot encode RUR.THREADPTR for TLS access"; | |
2375 | return FALSE; | |
2376 | } | |
2377 | break; | |
2378 | } | |
2379 | } | |
2380 | else | |
2381 | { | |
2382 | switch (r_type) | |
2383 | { | |
2384 | case R_XTENSA_TLS_FUNC: | |
2385 | new_op = xtensa_opcode_lookup (isa, "rur.threadptr"); | |
2386 | if (new_op == XTENSA_UNDEFINED | |
2387 | || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0 | |
2388 | || xtensa_operand_set_field (isa, new_op, 0, fmt, 0, | |
2389 | sbuff, dest_reg) != 0) | |
2390 | { | |
2391 | *error_message = "cannot encode RUR.THREADPTR for TLS access"; | |
2392 | return FALSE; | |
2393 | } | |
2394 | break; | |
2395 | ||
2396 | case R_XTENSA_TLS_ARG: | |
2397 | /* Nothing to do. Keep the original L32R instruction. */ | |
2398 | return TRUE; | |
2399 | ||
2400 | case R_XTENSA_TLS_CALL: | |
2401 | /* Add the CALLX's src register (holding the THREADPTR value) | |
2402 | to the first argument register (holding the offset) and put | |
2403 | the result in the CALLX's return value register. */ | |
2404 | new_op = xtensa_opcode_lookup (isa, "add"); | |
2405 | if (new_op == XTENSA_UNDEFINED | |
2406 | || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0 | |
2407 | || xtensa_operand_set_field (isa, new_op, 0, fmt, 0, | |
2408 | sbuff, dest_reg + 2) != 0 | |
2409 | || xtensa_operand_set_field (isa, new_op, 1, fmt, 0, | |
2410 | sbuff, dest_reg + 2) != 0 | |
2411 | || xtensa_operand_set_field (isa, new_op, 2, fmt, 0, | |
2412 | sbuff, src_reg) != 0) | |
2413 | { | |
2414 | *error_message = "cannot encode ADD for TLS access"; | |
2415 | return FALSE; | |
2416 | } | |
2417 | break; | |
2418 | } | |
2419 | } | |
2420 | ||
2421 | xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff); | |
2422 | xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset, | |
07d6d2b8 | 2423 | input_size - rel->r_offset); |
28dbbc02 BW |
2424 | |
2425 | return TRUE; | |
2426 | } | |
2427 | ||
2428 | ||
2429 | #define IS_XTENSA_TLS_RELOC(R_TYPE) \ | |
2430 | ((R_TYPE) == R_XTENSA_TLSDESC_FN \ | |
2431 | || (R_TYPE) == R_XTENSA_TLSDESC_ARG \ | |
2432 | || (R_TYPE) == R_XTENSA_TLS_DTPOFF \ | |
2433 | || (R_TYPE) == R_XTENSA_TLS_TPOFF \ | |
2434 | || (R_TYPE) == R_XTENSA_TLS_FUNC \ | |
2435 | || (R_TYPE) == R_XTENSA_TLS_ARG \ | |
2436 | || (R_TYPE) == R_XTENSA_TLS_CALL) | |
2437 | ||
e0001a05 | 2438 | /* Relocate an Xtensa ELF section. This is invoked by the linker for |
1049f94e | 2439 | both relocatable and final links. */ |
e0001a05 NC |
2440 | |
2441 | static bfd_boolean | |
7fa3d080 BW |
2442 | elf_xtensa_relocate_section (bfd *output_bfd, |
2443 | struct bfd_link_info *info, | |
2444 | bfd *input_bfd, | |
2445 | asection *input_section, | |
2446 | bfd_byte *contents, | |
2447 | Elf_Internal_Rela *relocs, | |
2448 | Elf_Internal_Sym *local_syms, | |
2449 | asection **local_sections) | |
e0001a05 | 2450 | { |
f0e6fdb2 | 2451 | struct elf_xtensa_link_hash_table *htab; |
e0001a05 NC |
2452 | Elf_Internal_Shdr *symtab_hdr; |
2453 | Elf_Internal_Rela *rel; | |
2454 | Elf_Internal_Rela *relend; | |
2455 | struct elf_link_hash_entry **sym_hashes; | |
88d65ad6 BW |
2456 | property_table_entry *lit_table = 0; |
2457 | int ltblsize = 0; | |
28dbbc02 | 2458 | char *local_got_tls_types; |
e0001a05 | 2459 | char *error_message = NULL; |
43cd72b9 | 2460 | bfd_size_type input_size; |
28dbbc02 | 2461 | int tls_type; |
e0001a05 | 2462 | |
43cd72b9 BW |
2463 | if (!xtensa_default_isa) |
2464 | xtensa_default_isa = xtensa_isa_init (0, 0); | |
e0001a05 | 2465 | |
7af5d5c4 AM |
2466 | if (!is_xtensa_elf (input_bfd)) |
2467 | { | |
2468 | bfd_set_error (bfd_error_wrong_format); | |
2469 | return FALSE; | |
2470 | } | |
28dbbc02 | 2471 | |
f0e6fdb2 | 2472 | htab = elf_xtensa_hash_table (info); |
4dfe6ac6 NC |
2473 | if (htab == NULL) |
2474 | return FALSE; | |
2475 | ||
e0001a05 NC |
2476 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
2477 | sym_hashes = elf_sym_hashes (input_bfd); | |
28dbbc02 | 2478 | local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd); |
e0001a05 | 2479 | |
88d65ad6 BW |
2480 | if (elf_hash_table (info)->dynamic_sections_created) |
2481 | { | |
2482 | ltblsize = xtensa_read_table_entries (input_bfd, input_section, | |
43cd72b9 BW |
2483 | &lit_table, XTENSA_LIT_SEC_NAME, |
2484 | TRUE); | |
88d65ad6 BW |
2485 | if (ltblsize < 0) |
2486 | return FALSE; | |
2487 | } | |
2488 | ||
43cd72b9 BW |
2489 | input_size = bfd_get_section_limit (input_bfd, input_section); |
2490 | ||
e0001a05 NC |
2491 | rel = relocs; |
2492 | relend = relocs + input_section->reloc_count; | |
2493 | for (; rel < relend; rel++) | |
2494 | { | |
2495 | int r_type; | |
2496 | reloc_howto_type *howto; | |
2497 | unsigned long r_symndx; | |
2498 | struct elf_link_hash_entry *h; | |
2499 | Elf_Internal_Sym *sym; | |
28dbbc02 BW |
2500 | char sym_type; |
2501 | const char *name; | |
e0001a05 NC |
2502 | asection *sec; |
2503 | bfd_vma relocation; | |
2504 | bfd_reloc_status_type r; | |
2505 | bfd_boolean is_weak_undef; | |
2506 | bfd_boolean unresolved_reloc; | |
9b8c98a4 | 2507 | bfd_boolean warned; |
28dbbc02 | 2508 | bfd_boolean dynamic_symbol; |
e0001a05 NC |
2509 | |
2510 | r_type = ELF32_R_TYPE (rel->r_info); | |
2511 | if (r_type == (int) R_XTENSA_GNU_VTINHERIT | |
2512 | || r_type == (int) R_XTENSA_GNU_VTENTRY) | |
2513 | continue; | |
2514 | ||
2515 | if (r_type < 0 || r_type >= (int) R_XTENSA_max) | |
2516 | { | |
2517 | bfd_set_error (bfd_error_bad_value); | |
2518 | return FALSE; | |
2519 | } | |
2520 | howto = &elf_howto_table[r_type]; | |
2521 | ||
2522 | r_symndx = ELF32_R_SYM (rel->r_info); | |
2523 | ||
ab96bf03 AM |
2524 | h = NULL; |
2525 | sym = NULL; | |
2526 | sec = NULL; | |
2527 | is_weak_undef = FALSE; | |
2528 | unresolved_reloc = FALSE; | |
2529 | warned = FALSE; | |
2530 | ||
0e1862bb | 2531 | if (howto->partial_inplace && !bfd_link_relocatable (info)) |
ab96bf03 AM |
2532 | { |
2533 | /* Because R_XTENSA_32 was made partial_inplace to fix some | |
2534 | problems with DWARF info in partial links, there may be | |
2535 | an addend stored in the contents. Take it out of there | |
2536 | and move it back into the addend field of the reloc. */ | |
2537 | rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset); | |
2538 | bfd_put_32 (input_bfd, 0, contents + rel->r_offset); | |
2539 | } | |
2540 | ||
2541 | if (r_symndx < symtab_hdr->sh_info) | |
2542 | { | |
2543 | sym = local_syms + r_symndx; | |
28dbbc02 | 2544 | sym_type = ELF32_ST_TYPE (sym->st_info); |
ab96bf03 AM |
2545 | sec = local_sections[r_symndx]; |
2546 | relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); | |
2547 | } | |
2548 | else | |
2549 | { | |
62d887d4 L |
2550 | bfd_boolean ignored; |
2551 | ||
ab96bf03 AM |
2552 | RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, |
2553 | r_symndx, symtab_hdr, sym_hashes, | |
2554 | h, sec, relocation, | |
62d887d4 | 2555 | unresolved_reloc, warned, ignored); |
ab96bf03 AM |
2556 | |
2557 | if (relocation == 0 | |
2558 | && !unresolved_reloc | |
2559 | && h->root.type == bfd_link_hash_undefweak) | |
2560 | is_weak_undef = TRUE; | |
28dbbc02 BW |
2561 | |
2562 | sym_type = h->type; | |
ab96bf03 AM |
2563 | } |
2564 | ||
dbaa2011 | 2565 | if (sec != NULL && discarded_section (sec)) |
e4067dbb | 2566 | RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, |
545fd46b | 2567 | rel, 1, relend, howto, 0, contents); |
ab96bf03 | 2568 | |
0e1862bb | 2569 | if (bfd_link_relocatable (info)) |
e0001a05 | 2570 | { |
7aa09196 SA |
2571 | bfd_vma dest_addr; |
2572 | asection * sym_sec = get_elf_r_symndx_section (input_bfd, r_symndx); | |
2573 | ||
43cd72b9 | 2574 | /* This is a relocatable link. |
e0001a05 NC |
2575 | 1) If the reloc is against a section symbol, adjust |
2576 | according to the output section. | |
2577 | 2) If there is a new target for this relocation, | |
2578 | the new target will be in the same output section. | |
2579 | We adjust the relocation by the output section | |
2580 | difference. */ | |
2581 | ||
2582 | if (relaxing_section) | |
2583 | { | |
2584 | /* Check if this references a section in another input file. */ | |
43cd72b9 BW |
2585 | if (!do_fix_for_relocatable_link (rel, input_bfd, input_section, |
2586 | contents)) | |
2587 | return FALSE; | |
e0001a05 NC |
2588 | } |
2589 | ||
7aa09196 SA |
2590 | dest_addr = sym_sec->output_section->vma + sym_sec->output_offset |
2591 | + get_elf_r_symndx_offset (input_bfd, r_symndx) + rel->r_addend; | |
2592 | ||
43cd72b9 | 2593 | if (r_type == R_XTENSA_ASM_SIMPLIFY) |
e0001a05 | 2594 | { |
91d6fa6a | 2595 | error_message = NULL; |
e0001a05 NC |
2596 | /* Convert ASM_SIMPLIFY into the simpler relocation |
2597 | so that they never escape a relaxing link. */ | |
43cd72b9 BW |
2598 | r = contract_asm_expansion (contents, input_size, rel, |
2599 | &error_message); | |
2600 | if (r != bfd_reloc_ok) | |
1a72702b AM |
2601 | (*info->callbacks->reloc_dangerous) |
2602 | (info, error_message, | |
2603 | input_bfd, input_section, rel->r_offset); | |
2604 | ||
e0001a05 NC |
2605 | r_type = ELF32_R_TYPE (rel->r_info); |
2606 | } | |
2607 | ||
1049f94e | 2608 | /* This is a relocatable link, so we don't have to change |
e0001a05 NC |
2609 | anything unless the reloc is against a section symbol, |
2610 | in which case we have to adjust according to where the | |
2611 | section symbol winds up in the output section. */ | |
2612 | if (r_symndx < symtab_hdr->sh_info) | |
2613 | { | |
2614 | sym = local_syms + r_symndx; | |
2615 | if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) | |
2616 | { | |
2617 | sec = local_sections[r_symndx]; | |
2618 | rel->r_addend += sec->output_offset + sym->st_value; | |
2619 | } | |
2620 | } | |
2621 | ||
2622 | /* If there is an addend with a partial_inplace howto, | |
2623 | then move the addend to the contents. This is a hack | |
1049f94e | 2624 | to work around problems with DWARF in relocatable links |
e0001a05 NC |
2625 | with some previous version of BFD. Now we can't easily get |
2626 | rid of the hack without breaking backward compatibility.... */ | |
7aa09196 SA |
2627 | r = bfd_reloc_ok; |
2628 | howto = &elf_howto_table[r_type]; | |
2629 | if (howto->partial_inplace && rel->r_addend) | |
2630 | { | |
2631 | r = elf_xtensa_do_reloc (howto, input_bfd, input_section, | |
2632 | rel->r_addend, contents, | |
2633 | rel->r_offset, FALSE, | |
2634 | &error_message); | |
2635 | rel->r_addend = 0; | |
2636 | } | |
2637 | else | |
e0001a05 | 2638 | { |
7aa09196 SA |
2639 | /* Put the correct bits in the target instruction, even |
2640 | though the relocation will still be present in the output | |
2641 | file. This makes disassembly clearer, as well as | |
2642 | allowing loadable kernel modules to work without needing | |
2643 | relocations on anything other than calls and l32r's. */ | |
2644 | ||
2645 | /* If it is not in the same section, there is nothing we can do. */ | |
2646 | if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP && | |
2647 | sym_sec->output_section == input_section->output_section) | |
e0001a05 NC |
2648 | { |
2649 | r = elf_xtensa_do_reloc (howto, input_bfd, input_section, | |
7aa09196 | 2650 | dest_addr, contents, |
e0001a05 NC |
2651 | rel->r_offset, FALSE, |
2652 | &error_message); | |
e0001a05 NC |
2653 | } |
2654 | } | |
7aa09196 | 2655 | if (r != bfd_reloc_ok) |
1a72702b AM |
2656 | (*info->callbacks->reloc_dangerous) |
2657 | (info, error_message, | |
2658 | input_bfd, input_section, rel->r_offset); | |
e0001a05 | 2659 | |
1049f94e | 2660 | /* Done with work for relocatable link; continue with next reloc. */ |
e0001a05 NC |
2661 | continue; |
2662 | } | |
2663 | ||
2664 | /* This is a final link. */ | |
2665 | ||
e0001a05 NC |
2666 | if (relaxing_section) |
2667 | { | |
2668 | /* Check if this references a section in another input file. */ | |
43cd72b9 BW |
2669 | do_fix_for_final_link (rel, input_bfd, input_section, contents, |
2670 | &relocation); | |
e0001a05 NC |
2671 | } |
2672 | ||
2673 | /* Sanity check the address. */ | |
43cd72b9 | 2674 | if (rel->r_offset >= input_size |
e0001a05 NC |
2675 | && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE) |
2676 | { | |
4eca0228 | 2677 | _bfd_error_handler |
695344c0 | 2678 | /* xgettext:c-format */ |
2dcf00ce AM |
2679 | (_("%pB(%pA+%#" PRIx64 "): " |
2680 | "relocation offset out of range (size=%#" PRIx64 ")"), | |
2681 | input_bfd, input_section, (uint64_t) rel->r_offset, | |
2682 | (uint64_t) input_size); | |
e0001a05 NC |
2683 | bfd_set_error (bfd_error_bad_value); |
2684 | return FALSE; | |
2685 | } | |
2686 | ||
28dbbc02 BW |
2687 | if (h != NULL) |
2688 | name = h->root.root.string; | |
2689 | else | |
e0001a05 | 2690 | { |
28dbbc02 BW |
2691 | name = (bfd_elf_string_from_elf_section |
2692 | (input_bfd, symtab_hdr->sh_link, sym->st_name)); | |
2693 | if (name == NULL || *name == '\0') | |
fd361982 | 2694 | name = bfd_section_name (sec); |
28dbbc02 | 2695 | } |
e0001a05 | 2696 | |
cf35638d | 2697 | if (r_symndx != STN_UNDEF |
28dbbc02 BW |
2698 | && r_type != R_XTENSA_NONE |
2699 | && (h == NULL | |
2700 | || h->root.type == bfd_link_hash_defined | |
2701 | || h->root.type == bfd_link_hash_defweak) | |
2702 | && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS)) | |
2703 | { | |
4eca0228 | 2704 | _bfd_error_handler |
28dbbc02 | 2705 | ((sym_type == STT_TLS |
695344c0 | 2706 | /* xgettext:c-format */ |
2dcf00ce | 2707 | ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s") |
695344c0 | 2708 | /* xgettext:c-format */ |
2dcf00ce | 2709 | : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")), |
28dbbc02 BW |
2710 | input_bfd, |
2711 | input_section, | |
2dcf00ce | 2712 | (uint64_t) rel->r_offset, |
28dbbc02 BW |
2713 | howto->name, |
2714 | name); | |
2715 | } | |
2716 | ||
2717 | dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info); | |
2718 | ||
2719 | tls_type = GOT_UNKNOWN; | |
2720 | if (h) | |
2721 | tls_type = elf_xtensa_hash_entry (h)->tls_type; | |
2722 | else if (local_got_tls_types) | |
2723 | tls_type = local_got_tls_types [r_symndx]; | |
2724 | ||
2725 | switch (r_type) | |
2726 | { | |
2727 | case R_XTENSA_32: | |
2728 | case R_XTENSA_PLT: | |
2729 | if (elf_hash_table (info)->dynamic_sections_created | |
2730 | && (input_section->flags & SEC_ALLOC) != 0 | |
0e1862bb | 2731 | && (dynamic_symbol || bfd_link_pic (info))) |
e0001a05 NC |
2732 | { |
2733 | Elf_Internal_Rela outrel; | |
2734 | bfd_byte *loc; | |
2735 | asection *srel; | |
2736 | ||
2737 | if (dynamic_symbol && r_type == R_XTENSA_PLT) | |
ce558b89 | 2738 | srel = htab->elf.srelplt; |
e0001a05 | 2739 | else |
ce558b89 | 2740 | srel = htab->elf.srelgot; |
e0001a05 NC |
2741 | |
2742 | BFD_ASSERT (srel != NULL); | |
2743 | ||
2744 | outrel.r_offset = | |
2745 | _bfd_elf_section_offset (output_bfd, info, | |
2746 | input_section, rel->r_offset); | |
2747 | ||
2748 | if ((outrel.r_offset | 1) == (bfd_vma) -1) | |
2749 | memset (&outrel, 0, sizeof outrel); | |
2750 | else | |
2751 | { | |
f0578e28 BW |
2752 | outrel.r_offset += (input_section->output_section->vma |
2753 | + input_section->output_offset); | |
e0001a05 | 2754 | |
88d65ad6 BW |
2755 | /* Complain if the relocation is in a read-only section |
2756 | and not in a literal pool. */ | |
2757 | if ((input_section->flags & SEC_READONLY) != 0 | |
2758 | && !elf_xtensa_in_literal_pool (lit_table, ltblsize, | |
3ba3bc8c | 2759 | outrel.r_offset)) |
88d65ad6 BW |
2760 | { |
2761 | error_message = | |
2762 | _("dynamic relocation in read-only section"); | |
1a72702b AM |
2763 | (*info->callbacks->reloc_dangerous) |
2764 | (info, error_message, | |
2765 | input_bfd, input_section, rel->r_offset); | |
88d65ad6 BW |
2766 | } |
2767 | ||
e0001a05 NC |
2768 | if (dynamic_symbol) |
2769 | { | |
2770 | outrel.r_addend = rel->r_addend; | |
2771 | rel->r_addend = 0; | |
2772 | ||
2773 | if (r_type == R_XTENSA_32) | |
2774 | { | |
2775 | outrel.r_info = | |
2776 | ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT); | |
2777 | relocation = 0; | |
2778 | } | |
2779 | else /* r_type == R_XTENSA_PLT */ | |
2780 | { | |
2781 | outrel.r_info = | |
2782 | ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT); | |
2783 | ||
2784 | /* Create the PLT entry and set the initial | |
2785 | contents of the literal entry to the address of | |
2786 | the PLT entry. */ | |
43cd72b9 | 2787 | relocation = |
f0e6fdb2 | 2788 | elf_xtensa_create_plt_entry (info, output_bfd, |
e0001a05 NC |
2789 | srel->reloc_count); |
2790 | } | |
2791 | unresolved_reloc = FALSE; | |
2792 | } | |
c451bb34 | 2793 | else if (!is_weak_undef) |
e0001a05 NC |
2794 | { |
2795 | /* Generate a RELATIVE relocation. */ | |
2796 | outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE); | |
2797 | outrel.r_addend = 0; | |
2798 | } | |
c451bb34 MF |
2799 | else |
2800 | { | |
2801 | continue; | |
2802 | } | |
e0001a05 NC |
2803 | } |
2804 | ||
2805 | loc = (srel->contents | |
2806 | + srel->reloc_count++ * sizeof (Elf32_External_Rela)); | |
2807 | bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); | |
2808 | BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count | |
eea6121a | 2809 | <= srel->size); |
e0001a05 | 2810 | } |
d9ab3f29 BW |
2811 | else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol) |
2812 | { | |
2813 | /* This should only happen for non-PIC code, which is not | |
2814 | supposed to be used on systems with dynamic linking. | |
2815 | Just ignore these relocations. */ | |
2816 | continue; | |
2817 | } | |
28dbbc02 BW |
2818 | break; |
2819 | ||
2820 | case R_XTENSA_TLS_TPOFF: | |
2821 | /* Switch to LE model for local symbols in an executable. */ | |
0e1862bb | 2822 | if (! bfd_link_pic (info) && ! dynamic_symbol) |
28dbbc02 BW |
2823 | { |
2824 | relocation = tpoff (info, relocation); | |
2825 | break; | |
2826 | } | |
2827 | /* fall through */ | |
2828 | ||
2829 | case R_XTENSA_TLSDESC_FN: | |
2830 | case R_XTENSA_TLSDESC_ARG: | |
2831 | { | |
2832 | if (r_type == R_XTENSA_TLSDESC_FN) | |
2833 | { | |
0e1862bb | 2834 | if (! bfd_link_pic (info) || (tls_type & GOT_TLS_IE) != 0) |
28dbbc02 BW |
2835 | r_type = R_XTENSA_NONE; |
2836 | } | |
2837 | else if (r_type == R_XTENSA_TLSDESC_ARG) | |
2838 | { | |
0e1862bb | 2839 | if (bfd_link_pic (info)) |
28dbbc02 BW |
2840 | { |
2841 | if ((tls_type & GOT_TLS_IE) != 0) | |
2842 | r_type = R_XTENSA_TLS_TPOFF; | |
2843 | } | |
2844 | else | |
2845 | { | |
2846 | r_type = R_XTENSA_TLS_TPOFF; | |
2847 | if (! dynamic_symbol) | |
2848 | { | |
2849 | relocation = tpoff (info, relocation); | |
2850 | break; | |
2851 | } | |
2852 | } | |
2853 | } | |
2854 | ||
2855 | if (r_type == R_XTENSA_NONE) | |
2856 | /* Nothing to do here; skip to the next reloc. */ | |
2857 | continue; | |
2858 | ||
2859 | if (! elf_hash_table (info)->dynamic_sections_created) | |
2860 | { | |
2861 | error_message = | |
2862 | _("TLS relocation invalid without dynamic sections"); | |
1a72702b AM |
2863 | (*info->callbacks->reloc_dangerous) |
2864 | (info, error_message, | |
2865 | input_bfd, input_section, rel->r_offset); | |
28dbbc02 BW |
2866 | } |
2867 | else | |
2868 | { | |
2869 | Elf_Internal_Rela outrel; | |
2870 | bfd_byte *loc; | |
ce558b89 | 2871 | asection *srel = htab->elf.srelgot; |
28dbbc02 BW |
2872 | int indx; |
2873 | ||
2874 | outrel.r_offset = (input_section->output_section->vma | |
2875 | + input_section->output_offset | |
2876 | + rel->r_offset); | |
2877 | ||
2878 | /* Complain if the relocation is in a read-only section | |
2879 | and not in a literal pool. */ | |
2880 | if ((input_section->flags & SEC_READONLY) != 0 | |
2881 | && ! elf_xtensa_in_literal_pool (lit_table, ltblsize, | |
2882 | outrel.r_offset)) | |
2883 | { | |
2884 | error_message = | |
2885 | _("dynamic relocation in read-only section"); | |
1a72702b AM |
2886 | (*info->callbacks->reloc_dangerous) |
2887 | (info, error_message, | |
2888 | input_bfd, input_section, rel->r_offset); | |
28dbbc02 BW |
2889 | } |
2890 | ||
2891 | indx = h && h->dynindx != -1 ? h->dynindx : 0; | |
2892 | if (indx == 0) | |
2893 | outrel.r_addend = relocation - dtpoff_base (info); | |
2894 | else | |
2895 | outrel.r_addend = 0; | |
2896 | rel->r_addend = 0; | |
2897 | ||
2898 | outrel.r_info = ELF32_R_INFO (indx, r_type); | |
2899 | relocation = 0; | |
2900 | unresolved_reloc = FALSE; | |
2901 | ||
2902 | BFD_ASSERT (srel); | |
2903 | loc = (srel->contents | |
2904 | + srel->reloc_count++ * sizeof (Elf32_External_Rela)); | |
2905 | bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); | |
2906 | BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count | |
2907 | <= srel->size); | |
2908 | } | |
2909 | } | |
2910 | break; | |
2911 | ||
2912 | case R_XTENSA_TLS_DTPOFF: | |
0e1862bb | 2913 | if (! bfd_link_pic (info)) |
28dbbc02 BW |
2914 | /* Switch from LD model to LE model. */ |
2915 | relocation = tpoff (info, relocation); | |
2916 | else | |
2917 | relocation -= dtpoff_base (info); | |
2918 | break; | |
2919 | ||
2920 | case R_XTENSA_TLS_FUNC: | |
2921 | case R_XTENSA_TLS_ARG: | |
2922 | case R_XTENSA_TLS_CALL: | |
2923 | /* Check if optimizing to IE or LE model. */ | |
2924 | if ((tls_type & GOT_TLS_IE) != 0) | |
2925 | { | |
2926 | bfd_boolean is_ld_model = | |
2927 | (h && elf_xtensa_hash_entry (h) == htab->tlsbase); | |
2928 | if (! replace_tls_insn (rel, input_bfd, input_section, contents, | |
2929 | is_ld_model, &error_message)) | |
1a72702b AM |
2930 | (*info->callbacks->reloc_dangerous) |
2931 | (info, error_message, | |
2932 | input_bfd, input_section, rel->r_offset); | |
28dbbc02 BW |
2933 | |
2934 | if (r_type != R_XTENSA_TLS_ARG || is_ld_model) | |
2935 | { | |
2936 | /* Skip subsequent relocations on the same instruction. */ | |
2937 | while (rel + 1 < relend && rel[1].r_offset == rel->r_offset) | |
2938 | rel++; | |
2939 | } | |
2940 | } | |
2941 | continue; | |
2942 | ||
2943 | default: | |
2944 | if (elf_hash_table (info)->dynamic_sections_created | |
2945 | && dynamic_symbol && (is_operand_relocation (r_type) | |
2946 | || r_type == R_XTENSA_32_PCREL)) | |
2947 | { | |
2948 | error_message = | |
2949 | vsprint_msg ("invalid relocation for dynamic symbol", ": %s", | |
2950 | strlen (name) + 2, name); | |
1a72702b AM |
2951 | (*info->callbacks->reloc_dangerous) |
2952 | (info, error_message, input_bfd, input_section, rel->r_offset); | |
28dbbc02 BW |
2953 | continue; |
2954 | } | |
2955 | break; | |
e0001a05 NC |
2956 | } |
2957 | ||
2958 | /* Dynamic relocs are not propagated for SEC_DEBUGGING sections | |
2959 | because such sections are not SEC_ALLOC and thus ld.so will | |
2960 | not process them. */ | |
2961 | if (unresolved_reloc | |
2962 | && !((input_section->flags & SEC_DEBUGGING) != 0 | |
1d5316ab AM |
2963 | && h->def_dynamic) |
2964 | && _bfd_elf_section_offset (output_bfd, info, input_section, | |
2965 | rel->r_offset) != (bfd_vma) -1) | |
bf1747de | 2966 | { |
4eca0228 | 2967 | _bfd_error_handler |
695344c0 | 2968 | /* xgettext:c-format */ |
2dcf00ce AM |
2969 | (_("%pB(%pA+%#" PRIx64 "): " |
2970 | "unresolvable %s relocation against symbol `%s'"), | |
bf1747de BW |
2971 | input_bfd, |
2972 | input_section, | |
2dcf00ce | 2973 | (uint64_t) rel->r_offset, |
bf1747de | 2974 | howto->name, |
28dbbc02 | 2975 | name); |
bf1747de BW |
2976 | return FALSE; |
2977 | } | |
e0001a05 | 2978 | |
28dbbc02 BW |
2979 | /* TLS optimizations may have changed r_type; update "howto". */ |
2980 | howto = &elf_howto_table[r_type]; | |
2981 | ||
e0001a05 NC |
2982 | /* There's no point in calling bfd_perform_relocation here. |
2983 | Just go directly to our "special function". */ | |
2984 | r = elf_xtensa_do_reloc (howto, input_bfd, input_section, | |
2985 | relocation + rel->r_addend, | |
2986 | contents, rel->r_offset, is_weak_undef, | |
2987 | &error_message); | |
43cd72b9 | 2988 | |
9b8c98a4 | 2989 | if (r != bfd_reloc_ok && !warned) |
e0001a05 | 2990 | { |
43cd72b9 | 2991 | BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other); |
7fa3d080 | 2992 | BFD_ASSERT (error_message != NULL); |
e0001a05 | 2993 | |
28dbbc02 BW |
2994 | if (rel->r_addend == 0) |
2995 | error_message = vsprint_msg (error_message, ": %s", | |
2996 | strlen (name) + 2, name); | |
e0001a05 | 2997 | else |
28dbbc02 BW |
2998 | error_message = vsprint_msg (error_message, ": (%s+0x%x)", |
2999 | strlen (name) + 22, | |
3000 | name, (int) rel->r_addend); | |
43cd72b9 | 3001 | |
1a72702b AM |
3002 | (*info->callbacks->reloc_dangerous) |
3003 | (info, error_message, input_bfd, input_section, rel->r_offset); | |
e0001a05 NC |
3004 | } |
3005 | } | |
3006 | ||
88d65ad6 BW |
3007 | if (lit_table) |
3008 | free (lit_table); | |
3009 | ||
3ba3bc8c BW |
3010 | input_section->reloc_done = TRUE; |
3011 | ||
e0001a05 NC |
3012 | return TRUE; |
3013 | } | |
3014 | ||
3015 | ||
3016 | /* Finish up dynamic symbol handling. There's not much to do here since | |
3017 | the PLT and GOT entries are all set up by relocate_section. */ | |
3018 | ||
3019 | static bfd_boolean | |
7fa3d080 BW |
3020 | elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED, |
3021 | struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
3022 | struct elf_link_hash_entry *h, | |
3023 | Elf_Internal_Sym *sym) | |
e0001a05 | 3024 | { |
bf1747de | 3025 | if (h->needs_plt && !h->def_regular) |
e0001a05 NC |
3026 | { |
3027 | /* Mark the symbol as undefined, rather than as defined in | |
3028 | the .plt section. Leave the value alone. */ | |
3029 | sym->st_shndx = SHN_UNDEF; | |
bf1747de BW |
3030 | /* If the symbol is weak, we do need to clear the value. |
3031 | Otherwise, the PLT entry would provide a definition for | |
3032 | the symbol even if the symbol wasn't defined anywhere, | |
3033 | and so the symbol would never be NULL. */ | |
3034 | if (!h->ref_regular_nonweak) | |
3035 | sym->st_value = 0; | |
e0001a05 NC |
3036 | } |
3037 | ||
3038 | /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ | |
9637f6ef | 3039 | if (h == elf_hash_table (info)->hdynamic |
22edb2f1 | 3040 | || h == elf_hash_table (info)->hgot) |
e0001a05 NC |
3041 | sym->st_shndx = SHN_ABS; |
3042 | ||
3043 | return TRUE; | |
3044 | } | |
3045 | ||
3046 | ||
3047 | /* Combine adjacent literal table entries in the output. Adjacent | |
3048 | entries within each input section may have been removed during | |
3049 | relaxation, but we repeat the process here, even though it's too late | |
3050 | to shrink the output section, because it's important to minimize the | |
3051 | number of literal table entries to reduce the start-up work for the | |
3052 | runtime linker. Returns the number of remaining table entries or -1 | |
3053 | on error. */ | |
3054 | ||
3055 | static int | |
7fa3d080 BW |
3056 | elf_xtensa_combine_prop_entries (bfd *output_bfd, |
3057 | asection *sxtlit, | |
3058 | asection *sgotloc) | |
e0001a05 | 3059 | { |
e0001a05 NC |
3060 | bfd_byte *contents; |
3061 | property_table_entry *table; | |
e901de89 | 3062 | bfd_size_type section_size, sgotloc_size; |
e0001a05 NC |
3063 | bfd_vma offset; |
3064 | int n, m, num; | |
3065 | ||
eea6121a | 3066 | section_size = sxtlit->size; |
e0001a05 NC |
3067 | BFD_ASSERT (section_size % 8 == 0); |
3068 | num = section_size / 8; | |
3069 | ||
eea6121a | 3070 | sgotloc_size = sgotloc->size; |
e901de89 | 3071 | if (sgotloc_size != section_size) |
b536dc1e | 3072 | { |
4eca0228 | 3073 | _bfd_error_handler |
43cd72b9 | 3074 | (_("internal inconsistency in size of .got.loc section")); |
b536dc1e BW |
3075 | return -1; |
3076 | } | |
e901de89 | 3077 | |
eea6121a AM |
3078 | table = bfd_malloc (num * sizeof (property_table_entry)); |
3079 | if (table == 0) | |
e0001a05 NC |
3080 | return -1; |
3081 | ||
3082 | /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this | |
3083 | propagates to the output section, where it doesn't really apply and | |
eea6121a | 3084 | where it breaks the following call to bfd_malloc_and_get_section. */ |
e901de89 | 3085 | sxtlit->flags &= ~SEC_IN_MEMORY; |
e0001a05 | 3086 | |
eea6121a AM |
3087 | if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents)) |
3088 | { | |
3089 | if (contents != 0) | |
3090 | free (contents); | |
3091 | free (table); | |
3092 | return -1; | |
3093 | } | |
e0001a05 NC |
3094 | |
3095 | /* There should never be any relocations left at this point, so this | |
3096 | is quite a bit easier than what is done during relaxation. */ | |
3097 | ||
3098 | /* Copy the raw contents into a property table array and sort it. */ | |
3099 | offset = 0; | |
3100 | for (n = 0; n < num; n++) | |
3101 | { | |
3102 | table[n].address = bfd_get_32 (output_bfd, &contents[offset]); | |
3103 | table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]); | |
3104 | offset += 8; | |
3105 | } | |
3106 | qsort (table, num, sizeof (property_table_entry), property_table_compare); | |
3107 | ||
3108 | for (n = 0; n < num; n++) | |
3109 | { | |
91d6fa6a | 3110 | bfd_boolean remove_entry = FALSE; |
e0001a05 NC |
3111 | |
3112 | if (table[n].size == 0) | |
91d6fa6a NC |
3113 | remove_entry = TRUE; |
3114 | else if (n > 0 | |
3115 | && (table[n-1].address + table[n-1].size == table[n].address)) | |
e0001a05 NC |
3116 | { |
3117 | table[n-1].size += table[n].size; | |
91d6fa6a | 3118 | remove_entry = TRUE; |
e0001a05 NC |
3119 | } |
3120 | ||
91d6fa6a | 3121 | if (remove_entry) |
e0001a05 NC |
3122 | { |
3123 | for (m = n; m < num - 1; m++) | |
3124 | { | |
3125 | table[m].address = table[m+1].address; | |
3126 | table[m].size = table[m+1].size; | |
3127 | } | |
3128 | ||
3129 | n--; | |
3130 | num--; | |
3131 | } | |
3132 | } | |
3133 | ||
3134 | /* Copy the data back to the raw contents. */ | |
3135 | offset = 0; | |
3136 | for (n = 0; n < num; n++) | |
3137 | { | |
3138 | bfd_put_32 (output_bfd, table[n].address, &contents[offset]); | |
3139 | bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]); | |
3140 | offset += 8; | |
3141 | } | |
3142 | ||
3143 | /* Clear the removed bytes. */ | |
3144 | if ((bfd_size_type) (num * 8) < section_size) | |
b54d4b07 | 3145 | memset (&contents[num * 8], 0, section_size - num * 8); |
e0001a05 | 3146 | |
e901de89 BW |
3147 | if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0, |
3148 | section_size)) | |
e0001a05 NC |
3149 | return -1; |
3150 | ||
e901de89 BW |
3151 | /* Copy the contents to ".got.loc". */ |
3152 | memcpy (sgotloc->contents, contents, section_size); | |
3153 | ||
e0001a05 | 3154 | free (contents); |
b614a702 | 3155 | free (table); |
e0001a05 NC |
3156 | return num; |
3157 | } | |
3158 | ||
3159 | ||
3160 | /* Finish up the dynamic sections. */ | |
3161 | ||
3162 | static bfd_boolean | |
7fa3d080 BW |
3163 | elf_xtensa_finish_dynamic_sections (bfd *output_bfd, |
3164 | struct bfd_link_info *info) | |
e0001a05 | 3165 | { |
f0e6fdb2 | 3166 | struct elf_xtensa_link_hash_table *htab; |
e0001a05 | 3167 | bfd *dynobj; |
f82863d7 | 3168 | asection *sdyn, *srelplt, *srelgot, *sgot, *sxtlit, *sgotloc; |
e0001a05 | 3169 | Elf32_External_Dyn *dyncon, *dynconend; |
d9ab3f29 | 3170 | int num_xtlit_entries = 0; |
e0001a05 NC |
3171 | |
3172 | if (! elf_hash_table (info)->dynamic_sections_created) | |
3173 | return TRUE; | |
3174 | ||
f0e6fdb2 | 3175 | htab = elf_xtensa_hash_table (info); |
4dfe6ac6 NC |
3176 | if (htab == NULL) |
3177 | return FALSE; | |
3178 | ||
e0001a05 | 3179 | dynobj = elf_hash_table (info)->dynobj; |
3d4d4302 | 3180 | sdyn = bfd_get_linker_section (dynobj, ".dynamic"); |
e0001a05 NC |
3181 | BFD_ASSERT (sdyn != NULL); |
3182 | ||
3183 | /* Set the first entry in the global offset table to the address of | |
3184 | the dynamic section. */ | |
ce558b89 | 3185 | sgot = htab->elf.sgot; |
e0001a05 NC |
3186 | if (sgot) |
3187 | { | |
eea6121a | 3188 | BFD_ASSERT (sgot->size == 4); |
e0001a05 | 3189 | if (sdyn == NULL) |
7fa3d080 | 3190 | bfd_put_32 (output_bfd, 0, sgot->contents); |
e0001a05 NC |
3191 | else |
3192 | bfd_put_32 (output_bfd, | |
3193 | sdyn->output_section->vma + sdyn->output_offset, | |
3194 | sgot->contents); | |
3195 | } | |
3196 | ||
ce558b89 | 3197 | srelplt = htab->elf.srelplt; |
f82863d7 | 3198 | srelgot = htab->elf.srelgot; |
7fa3d080 | 3199 | if (srelplt && srelplt->size != 0) |
e0001a05 | 3200 | { |
f82863d7 | 3201 | asection *sgotplt, *spltlittbl; |
e0001a05 NC |
3202 | int chunk, plt_chunks, plt_entries; |
3203 | Elf_Internal_Rela irela; | |
3204 | bfd_byte *loc; | |
3205 | unsigned rtld_reloc; | |
3206 | ||
f0e6fdb2 BW |
3207 | spltlittbl = htab->spltlittbl; |
3208 | BFD_ASSERT (srelgot != NULL && spltlittbl != NULL); | |
e0001a05 NC |
3209 | |
3210 | /* Find the first XTENSA_RTLD relocation. Presumably the rest | |
3211 | of them follow immediately after.... */ | |
3212 | for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++) | |
3213 | { | |
3214 | loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela); | |
3215 | bfd_elf32_swap_reloca_in (output_bfd, loc, &irela); | |
3216 | if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD) | |
3217 | break; | |
3218 | } | |
3219 | BFD_ASSERT (rtld_reloc < srelgot->reloc_count); | |
3220 | ||
eea6121a | 3221 | plt_entries = srelplt->size / sizeof (Elf32_External_Rela); |
e0001a05 NC |
3222 | plt_chunks = |
3223 | (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK; | |
3224 | ||
3225 | for (chunk = 0; chunk < plt_chunks; chunk++) | |
3226 | { | |
3227 | int chunk_entries = 0; | |
3228 | ||
f0e6fdb2 | 3229 | sgotplt = elf_xtensa_get_gotplt_section (info, chunk); |
e0001a05 NC |
3230 | BFD_ASSERT (sgotplt != NULL); |
3231 | ||
3232 | /* Emit special RTLD relocations for the first two entries in | |
3233 | each chunk of the .got.plt section. */ | |
3234 | ||
3235 | loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela); | |
3236 | bfd_elf32_swap_reloca_in (output_bfd, loc, &irela); | |
3237 | BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD); | |
3238 | irela.r_offset = (sgotplt->output_section->vma | |
3239 | + sgotplt->output_offset); | |
3240 | irela.r_addend = 1; /* tell rtld to set value to resolver function */ | |
3241 | bfd_elf32_swap_reloca_out (output_bfd, &irela, loc); | |
3242 | rtld_reloc += 1; | |
3243 | BFD_ASSERT (rtld_reloc <= srelgot->reloc_count); | |
3244 | ||
3245 | /* Next literal immediately follows the first. */ | |
3246 | loc += sizeof (Elf32_External_Rela); | |
3247 | bfd_elf32_swap_reloca_in (output_bfd, loc, &irela); | |
3248 | BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD); | |
3249 | irela.r_offset = (sgotplt->output_section->vma | |
3250 | + sgotplt->output_offset + 4); | |
3251 | /* Tell rtld to set value to object's link map. */ | |
3252 | irela.r_addend = 2; | |
3253 | bfd_elf32_swap_reloca_out (output_bfd, &irela, loc); | |
3254 | rtld_reloc += 1; | |
3255 | BFD_ASSERT (rtld_reloc <= srelgot->reloc_count); | |
3256 | ||
3257 | /* Fill in the literal table. */ | |
3258 | if (chunk < plt_chunks - 1) | |
3259 | chunk_entries = PLT_ENTRIES_PER_CHUNK; | |
3260 | else | |
3261 | chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK); | |
3262 | ||
eea6121a | 3263 | BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size); |
e0001a05 NC |
3264 | bfd_put_32 (output_bfd, |
3265 | sgotplt->output_section->vma + sgotplt->output_offset, | |
3266 | spltlittbl->contents + (chunk * 8) + 0); | |
3267 | bfd_put_32 (output_bfd, | |
3268 | 8 + (chunk_entries * 4), | |
3269 | spltlittbl->contents + (chunk * 8) + 4); | |
3270 | } | |
3271 | ||
e0001a05 NC |
3272 | /* The .xt.lit.plt section has just been modified. This must |
3273 | happen before the code below which combines adjacent literal | |
3274 | table entries, and the .xt.lit.plt contents have to be forced to | |
3275 | the output here. */ | |
3276 | if (! bfd_set_section_contents (output_bfd, | |
3277 | spltlittbl->output_section, | |
3278 | spltlittbl->contents, | |
3279 | spltlittbl->output_offset, | |
eea6121a | 3280 | spltlittbl->size)) |
e0001a05 NC |
3281 | return FALSE; |
3282 | /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */ | |
3283 | spltlittbl->flags &= ~SEC_HAS_CONTENTS; | |
3284 | } | |
3285 | ||
f82863d7 MF |
3286 | /* All the dynamic relocations have been emitted at this point. |
3287 | Make sure the relocation sections are the correct size. */ | |
3288 | if ((srelgot && srelgot->size != (sizeof (Elf32_External_Rela) | |
3289 | * srelgot->reloc_count)) | |
3290 | || (srelplt && srelplt->size != (sizeof (Elf32_External_Rela) | |
3291 | * srelplt->reloc_count))) | |
3292 | abort (); | |
3293 | ||
e0001a05 | 3294 | /* Combine adjacent literal table entries. */ |
0e1862bb | 3295 | BFD_ASSERT (! bfd_link_relocatable (info)); |
e901de89 | 3296 | sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit"); |
f0e6fdb2 | 3297 | sgotloc = htab->sgotloc; |
d9ab3f29 BW |
3298 | BFD_ASSERT (sgotloc); |
3299 | if (sxtlit) | |
3300 | { | |
3301 | num_xtlit_entries = | |
3302 | elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc); | |
3303 | if (num_xtlit_entries < 0) | |
3304 | return FALSE; | |
3305 | } | |
e0001a05 NC |
3306 | |
3307 | dyncon = (Elf32_External_Dyn *) sdyn->contents; | |
eea6121a | 3308 | dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size); |
e0001a05 NC |
3309 | for (; dyncon < dynconend; dyncon++) |
3310 | { | |
3311 | Elf_Internal_Dyn dyn; | |
e0001a05 NC |
3312 | |
3313 | bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); | |
3314 | ||
3315 | switch (dyn.d_tag) | |
3316 | { | |
3317 | default: | |
3318 | break; | |
3319 | ||
3320 | case DT_XTENSA_GOT_LOC_SZ: | |
e0001a05 NC |
3321 | dyn.d_un.d_val = num_xtlit_entries; |
3322 | break; | |
3323 | ||
3324 | case DT_XTENSA_GOT_LOC_OFF: | |
4ade44b7 AM |
3325 | dyn.d_un.d_ptr = (htab->sgotloc->output_section->vma |
3326 | + htab->sgotloc->output_offset); | |
f0e6fdb2 BW |
3327 | break; |
3328 | ||
e0001a05 | 3329 | case DT_PLTGOT: |
ce558b89 AM |
3330 | dyn.d_un.d_ptr = (htab->elf.sgot->output_section->vma |
3331 | + htab->elf.sgot->output_offset); | |
f0e6fdb2 BW |
3332 | break; |
3333 | ||
e0001a05 | 3334 | case DT_JMPREL: |
ce558b89 AM |
3335 | dyn.d_un.d_ptr = (htab->elf.srelplt->output_section->vma |
3336 | + htab->elf.srelplt->output_offset); | |
e0001a05 NC |
3337 | break; |
3338 | ||
3339 | case DT_PLTRELSZ: | |
ce558b89 | 3340 | dyn.d_un.d_val = htab->elf.srelplt->size; |
e0001a05 | 3341 | break; |
e0001a05 NC |
3342 | } |
3343 | ||
3344 | bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); | |
3345 | } | |
3346 | ||
3347 | return TRUE; | |
3348 | } | |
3349 | ||
3350 | \f | |
3351 | /* Functions for dealing with the e_flags field. */ | |
3352 | ||
3353 | /* Merge backend specific data from an object file to the output | |
3354 | object file when linking. */ | |
3355 | ||
3356 | static bfd_boolean | |
50e03d47 | 3357 | elf_xtensa_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info) |
e0001a05 | 3358 | { |
50e03d47 | 3359 | bfd *obfd = info->output_bfd; |
e0001a05 NC |
3360 | unsigned out_mach, in_mach; |
3361 | flagword out_flag, in_flag; | |
3362 | ||
cc643b88 | 3363 | /* Check if we have the same endianness. */ |
50e03d47 | 3364 | if (!_bfd_generic_verify_endian_match (ibfd, info)) |
e0001a05 NC |
3365 | return FALSE; |
3366 | ||
3367 | /* Don't even pretend to support mixed-format linking. */ | |
3368 | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour | |
3369 | || bfd_get_flavour (obfd) != bfd_target_elf_flavour) | |
3370 | return FALSE; | |
3371 | ||
3372 | out_flag = elf_elfheader (obfd)->e_flags; | |
3373 | in_flag = elf_elfheader (ibfd)->e_flags; | |
3374 | ||
3375 | out_mach = out_flag & EF_XTENSA_MACH; | |
3376 | in_mach = in_flag & EF_XTENSA_MACH; | |
43cd72b9 | 3377 | if (out_mach != in_mach) |
e0001a05 | 3378 | { |
4eca0228 | 3379 | _bfd_error_handler |
695344c0 | 3380 | /* xgettext:c-format */ |
38f14ab8 | 3381 | (_("%pB: incompatible machine type; output is 0x%x; input is 0x%x"), |
d003868e | 3382 | ibfd, out_mach, in_mach); |
e0001a05 NC |
3383 | bfd_set_error (bfd_error_wrong_format); |
3384 | return FALSE; | |
3385 | } | |
3386 | ||
3387 | if (! elf_flags_init (obfd)) | |
3388 | { | |
3389 | elf_flags_init (obfd) = TRUE; | |
3390 | elf_elfheader (obfd)->e_flags = in_flag; | |
43cd72b9 | 3391 | |
e0001a05 NC |
3392 | if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) |
3393 | && bfd_get_arch_info (obfd)->the_default) | |
3394 | return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), | |
3395 | bfd_get_mach (ibfd)); | |
43cd72b9 | 3396 | |
e0001a05 NC |
3397 | return TRUE; |
3398 | } | |
3399 | ||
68ffbac6 | 3400 | if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN)) |
43cd72b9 | 3401 | elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN); |
e0001a05 | 3402 | |
68ffbac6 | 3403 | if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT)) |
43cd72b9 | 3404 | elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT); |
e0001a05 NC |
3405 | |
3406 | return TRUE; | |
3407 | } | |
3408 | ||
3409 | ||
3410 | static bfd_boolean | |
7fa3d080 | 3411 | elf_xtensa_set_private_flags (bfd *abfd, flagword flags) |
e0001a05 NC |
3412 | { |
3413 | BFD_ASSERT (!elf_flags_init (abfd) | |
3414 | || elf_elfheader (abfd)->e_flags == flags); | |
3415 | ||
3416 | elf_elfheader (abfd)->e_flags |= flags; | |
3417 | elf_flags_init (abfd) = TRUE; | |
3418 | ||
3419 | return TRUE; | |
3420 | } | |
3421 | ||
3422 | ||
e0001a05 | 3423 | static bfd_boolean |
7fa3d080 | 3424 | elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg) |
e0001a05 NC |
3425 | { |
3426 | FILE *f = (FILE *) farg; | |
3427 | flagword e_flags = elf_elfheader (abfd)->e_flags; | |
3428 | ||
3429 | fprintf (f, "\nXtensa header:\n"); | |
43cd72b9 | 3430 | if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH) |
e0001a05 NC |
3431 | fprintf (f, "\nMachine = Base\n"); |
3432 | else | |
3433 | fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH); | |
3434 | ||
3435 | fprintf (f, "Insn tables = %s\n", | |
3436 | (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false"); | |
3437 | ||
3438 | fprintf (f, "Literal tables = %s\n", | |
3439 | (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false"); | |
3440 | ||
3441 | return _bfd_elf_print_private_bfd_data (abfd, farg); | |
3442 | } | |
3443 | ||
3444 | ||
3445 | /* Set the right machine number for an Xtensa ELF file. */ | |
3446 | ||
3447 | static bfd_boolean | |
7fa3d080 | 3448 | elf_xtensa_object_p (bfd *abfd) |
e0001a05 NC |
3449 | { |
3450 | int mach; | |
3451 | unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH; | |
3452 | ||
3453 | switch (arch) | |
3454 | { | |
3455 | case E_XTENSA_MACH: | |
3456 | mach = bfd_mach_xtensa; | |
3457 | break; | |
3458 | default: | |
3459 | return FALSE; | |
3460 | } | |
3461 | ||
3462 | (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach); | |
3463 | return TRUE; | |
3464 | } | |
3465 | ||
3466 | ||
3467 | /* The final processing done just before writing out an Xtensa ELF object | |
3468 | file. This gets the Xtensa architecture right based on the machine | |
3469 | number. */ | |
3470 | ||
cc364be6 AM |
3471 | static bfd_boolean |
3472 | elf_xtensa_final_write_processing (bfd *abfd) | |
e0001a05 NC |
3473 | { |
3474 | int mach; | |
c5e20471 | 3475 | unsigned long val = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH; |
e0001a05 NC |
3476 | |
3477 | switch (mach = bfd_get_mach (abfd)) | |
3478 | { | |
3479 | case bfd_mach_xtensa: | |
3480 | val = E_XTENSA_MACH; | |
3481 | break; | |
3482 | default: | |
c5e20471 | 3483 | break; |
e0001a05 NC |
3484 | } |
3485 | ||
c5e20471 | 3486 | elf_elfheader (abfd)->e_flags &= ~EF_XTENSA_MACH; |
e0001a05 | 3487 | elf_elfheader (abfd)->e_flags |= val; |
cc364be6 | 3488 | return _bfd_elf_final_write_processing (abfd); |
e0001a05 NC |
3489 | } |
3490 | ||
3491 | ||
3492 | static enum elf_reloc_type_class | |
7e612e98 AM |
3493 | elf_xtensa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED, |
3494 | const asection *rel_sec ATTRIBUTE_UNUSED, | |
3495 | const Elf_Internal_Rela *rela) | |
e0001a05 NC |
3496 | { |
3497 | switch ((int) ELF32_R_TYPE (rela->r_info)) | |
3498 | { | |
3499 | case R_XTENSA_RELATIVE: | |
3500 | return reloc_class_relative; | |
3501 | case R_XTENSA_JMP_SLOT: | |
3502 | return reloc_class_plt; | |
3503 | default: | |
3504 | return reloc_class_normal; | |
3505 | } | |
3506 | } | |
3507 | ||
3508 | \f | |
3509 | static bfd_boolean | |
7fa3d080 BW |
3510 | elf_xtensa_discard_info_for_section (bfd *abfd, |
3511 | struct elf_reloc_cookie *cookie, | |
3512 | struct bfd_link_info *info, | |
3513 | asection *sec) | |
e0001a05 NC |
3514 | { |
3515 | bfd_byte *contents; | |
e0001a05 | 3516 | bfd_vma offset, actual_offset; |
1d25768e BW |
3517 | bfd_size_type removed_bytes = 0; |
3518 | bfd_size_type entry_size; | |
e0001a05 NC |
3519 | |
3520 | if (sec->output_section | |
3521 | && bfd_is_abs_section (sec->output_section)) | |
3522 | return FALSE; | |
3523 | ||
1d25768e BW |
3524 | if (xtensa_is_proptable_section (sec)) |
3525 | entry_size = 12; | |
3526 | else | |
3527 | entry_size = 8; | |
3528 | ||
a3ef2d63 | 3529 | if (sec->size == 0 || sec->size % entry_size != 0) |
1d25768e BW |
3530 | return FALSE; |
3531 | ||
e0001a05 NC |
3532 | contents = retrieve_contents (abfd, sec, info->keep_memory); |
3533 | if (!contents) | |
3534 | return FALSE; | |
3535 | ||
3536 | cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory); | |
3537 | if (!cookie->rels) | |
3538 | { | |
3539 | release_contents (sec, contents); | |
3540 | return FALSE; | |
3541 | } | |
3542 | ||
1d25768e BW |
3543 | /* Sort the relocations. They should already be in order when |
3544 | relaxation is enabled, but it might not be. */ | |
3545 | qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela), | |
3546 | internal_reloc_compare); | |
3547 | ||
e0001a05 NC |
3548 | cookie->rel = cookie->rels; |
3549 | cookie->relend = cookie->rels + sec->reloc_count; | |
3550 | ||
a3ef2d63 | 3551 | for (offset = 0; offset < sec->size; offset += entry_size) |
e0001a05 NC |
3552 | { |
3553 | actual_offset = offset - removed_bytes; | |
3554 | ||
3555 | /* The ...symbol_deleted_p function will skip over relocs but it | |
3556 | won't adjust their offsets, so do that here. */ | |
3557 | while (cookie->rel < cookie->relend | |
3558 | && cookie->rel->r_offset < offset) | |
3559 | { | |
3560 | cookie->rel->r_offset -= removed_bytes; | |
3561 | cookie->rel++; | |
3562 | } | |
3563 | ||
3564 | while (cookie->rel < cookie->relend | |
3565 | && cookie->rel->r_offset == offset) | |
3566 | { | |
c152c796 | 3567 | if (bfd_elf_reloc_symbol_deleted_p (offset, cookie)) |
e0001a05 NC |
3568 | { |
3569 | /* Remove the table entry. (If the reloc type is NONE, then | |
3570 | the entry has already been merged with another and deleted | |
3571 | during relaxation.) */ | |
3572 | if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE) | |
3573 | { | |
3574 | /* Shift the contents up. */ | |
a3ef2d63 | 3575 | if (offset + entry_size < sec->size) |
e0001a05 | 3576 | memmove (&contents[actual_offset], |
1d25768e | 3577 | &contents[actual_offset + entry_size], |
a3ef2d63 | 3578 | sec->size - offset - entry_size); |
1d25768e | 3579 | removed_bytes += entry_size; |
e0001a05 NC |
3580 | } |
3581 | ||
3582 | /* Remove this relocation. */ | |
3583 | cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
3584 | } | |
3585 | ||
3586 | /* Adjust the relocation offset for previous removals. This | |
3587 | should not be done before calling ...symbol_deleted_p | |
3588 | because it might mess up the offset comparisons there. | |
3589 | Make sure the offset doesn't underflow in the case where | |
3590 | the first entry is removed. */ | |
3591 | if (cookie->rel->r_offset >= removed_bytes) | |
3592 | cookie->rel->r_offset -= removed_bytes; | |
3593 | else | |
3594 | cookie->rel->r_offset = 0; | |
3595 | ||
3596 | cookie->rel++; | |
3597 | } | |
3598 | } | |
3599 | ||
3600 | if (removed_bytes != 0) | |
3601 | { | |
3602 | /* Adjust any remaining relocs (shouldn't be any). */ | |
3603 | for (; cookie->rel < cookie->relend; cookie->rel++) | |
3604 | { | |
3605 | if (cookie->rel->r_offset >= removed_bytes) | |
3606 | cookie->rel->r_offset -= removed_bytes; | |
3607 | else | |
3608 | cookie->rel->r_offset = 0; | |
3609 | } | |
3610 | ||
3611 | /* Clear the removed bytes. */ | |
a3ef2d63 | 3612 | memset (&contents[sec->size - removed_bytes], 0, removed_bytes); |
e0001a05 NC |
3613 | |
3614 | pin_contents (sec, contents); | |
3615 | pin_internal_relocs (sec, cookie->rels); | |
3616 | ||
eea6121a | 3617 | /* Shrink size. */ |
a3ef2d63 BW |
3618 | if (sec->rawsize == 0) |
3619 | sec->rawsize = sec->size; | |
3620 | sec->size -= removed_bytes; | |
b536dc1e BW |
3621 | |
3622 | if (xtensa_is_littable_section (sec)) | |
3623 | { | |
f0e6fdb2 BW |
3624 | asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc; |
3625 | if (sgotloc) | |
3626 | sgotloc->size -= removed_bytes; | |
b536dc1e | 3627 | } |
e0001a05 NC |
3628 | } |
3629 | else | |
3630 | { | |
3631 | release_contents (sec, contents); | |
3632 | release_internal_relocs (sec, cookie->rels); | |
3633 | } | |
3634 | ||
3635 | return (removed_bytes != 0); | |
3636 | } | |
3637 | ||
3638 | ||
3639 | static bfd_boolean | |
7fa3d080 BW |
3640 | elf_xtensa_discard_info (bfd *abfd, |
3641 | struct elf_reloc_cookie *cookie, | |
3642 | struct bfd_link_info *info) | |
e0001a05 NC |
3643 | { |
3644 | asection *sec; | |
3645 | bfd_boolean changed = FALSE; | |
3646 | ||
3647 | for (sec = abfd->sections; sec != NULL; sec = sec->next) | |
3648 | { | |
3649 | if (xtensa_is_property_section (sec)) | |
3650 | { | |
3651 | if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec)) | |
3652 | changed = TRUE; | |
3653 | } | |
3654 | } | |
3655 | ||
3656 | return changed; | |
3657 | } | |
3658 | ||
3659 | ||
3660 | static bfd_boolean | |
7fa3d080 | 3661 | elf_xtensa_ignore_discarded_relocs (asection *sec) |
e0001a05 NC |
3662 | { |
3663 | return xtensa_is_property_section (sec); | |
3664 | } | |
3665 | ||
a77dc2cc BW |
3666 | |
3667 | static unsigned int | |
3668 | elf_xtensa_action_discarded (asection *sec) | |
3669 | { | |
3670 | if (strcmp (".xt_except_table", sec->name) == 0) | |
3671 | return 0; | |
3672 | ||
3673 | if (strcmp (".xt_except_desc", sec->name) == 0) | |
3674 | return 0; | |
3675 | ||
3676 | return _bfd_elf_default_action_discarded (sec); | |
3677 | } | |
3678 | ||
e0001a05 NC |
3679 | \f |
3680 | /* Support for core dump NOTE sections. */ | |
3681 | ||
3682 | static bfd_boolean | |
7fa3d080 | 3683 | elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) |
e0001a05 NC |
3684 | { |
3685 | int offset; | |
eea6121a | 3686 | unsigned int size; |
e0001a05 NC |
3687 | |
3688 | /* The size for Xtensa is variable, so don't try to recognize the format | |
3689 | based on the size. Just assume this is GNU/Linux. */ | |
3690 | ||
3691 | /* pr_cursig */ | |
228e534f | 3692 | elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12); |
e0001a05 NC |
3693 | |
3694 | /* pr_pid */ | |
228e534f | 3695 | elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24); |
e0001a05 NC |
3696 | |
3697 | /* pr_reg */ | |
3698 | offset = 72; | |
eea6121a | 3699 | size = note->descsz - offset - 4; |
e0001a05 NC |
3700 | |
3701 | /* Make a ".reg/999" section. */ | |
3702 | return _bfd_elfcore_make_pseudosection (abfd, ".reg", | |
eea6121a | 3703 | size, note->descpos + offset); |
e0001a05 NC |
3704 | } |
3705 | ||
3706 | ||
3707 | static bfd_boolean | |
7fa3d080 | 3708 | elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) |
e0001a05 NC |
3709 | { |
3710 | switch (note->descsz) | |
3711 | { | |
3712 | default: | |
3713 | return FALSE; | |
3714 | ||
3715 | case 128: /* GNU/Linux elf_prpsinfo */ | |
228e534f | 3716 | elf_tdata (abfd)->core->program |
e0001a05 | 3717 | = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16); |
228e534f | 3718 | elf_tdata (abfd)->core->command |
e0001a05 NC |
3719 | = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80); |
3720 | } | |
3721 | ||
3722 | /* Note that for some reason, a spurious space is tacked | |
3723 | onto the end of the args in some (at least one anyway) | |
3724 | implementations, so strip it off if it exists. */ | |
3725 | ||
3726 | { | |
228e534f | 3727 | char *command = elf_tdata (abfd)->core->command; |
e0001a05 NC |
3728 | int n = strlen (command); |
3729 | ||
3730 | if (0 < n && command[n - 1] == ' ') | |
3731 | command[n - 1] = '\0'; | |
3732 | } | |
3733 | ||
3734 | return TRUE; | |
3735 | } | |
3736 | ||
3737 | \f | |
3738 | /* Generic Xtensa configurability stuff. */ | |
3739 | ||
3740 | static xtensa_opcode callx0_op = XTENSA_UNDEFINED; | |
3741 | static xtensa_opcode callx4_op = XTENSA_UNDEFINED; | |
3742 | static xtensa_opcode callx8_op = XTENSA_UNDEFINED; | |
3743 | static xtensa_opcode callx12_op = XTENSA_UNDEFINED; | |
3744 | static xtensa_opcode call0_op = XTENSA_UNDEFINED; | |
3745 | static xtensa_opcode call4_op = XTENSA_UNDEFINED; | |
3746 | static xtensa_opcode call8_op = XTENSA_UNDEFINED; | |
3747 | static xtensa_opcode call12_op = XTENSA_UNDEFINED; | |
3748 | ||
3749 | static void | |
7fa3d080 | 3750 | init_call_opcodes (void) |
e0001a05 NC |
3751 | { |
3752 | if (callx0_op == XTENSA_UNDEFINED) | |
3753 | { | |
3754 | callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0"); | |
3755 | callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4"); | |
3756 | callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8"); | |
3757 | callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12"); | |
3758 | call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0"); | |
3759 | call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4"); | |
3760 | call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8"); | |
3761 | call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12"); | |
3762 | } | |
3763 | } | |
3764 | ||
3765 | ||
3766 | static bfd_boolean | |
7fa3d080 | 3767 | is_indirect_call_opcode (xtensa_opcode opcode) |
e0001a05 NC |
3768 | { |
3769 | init_call_opcodes (); | |
3770 | return (opcode == callx0_op | |
3771 | || opcode == callx4_op | |
3772 | || opcode == callx8_op | |
3773 | || opcode == callx12_op); | |
3774 | } | |
3775 | ||
3776 | ||
3777 | static bfd_boolean | |
7fa3d080 | 3778 | is_direct_call_opcode (xtensa_opcode opcode) |
e0001a05 NC |
3779 | { |
3780 | init_call_opcodes (); | |
3781 | return (opcode == call0_op | |
3782 | || opcode == call4_op | |
3783 | || opcode == call8_op | |
3784 | || opcode == call12_op); | |
3785 | } | |
3786 | ||
3787 | ||
3788 | static bfd_boolean | |
7fa3d080 | 3789 | is_windowed_call_opcode (xtensa_opcode opcode) |
e0001a05 NC |
3790 | { |
3791 | init_call_opcodes (); | |
3792 | return (opcode == call4_op | |
3793 | || opcode == call8_op | |
3794 | || opcode == call12_op | |
3795 | || opcode == callx4_op | |
3796 | || opcode == callx8_op | |
3797 | || opcode == callx12_op); | |
3798 | } | |
3799 | ||
3800 | ||
28dbbc02 BW |
3801 | static bfd_boolean |
3802 | get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst) | |
3803 | { | |
3804 | unsigned dst = (unsigned) -1; | |
3805 | ||
3806 | init_call_opcodes (); | |
3807 | if (opcode == callx0_op) | |
3808 | dst = 0; | |
3809 | else if (opcode == callx4_op) | |
3810 | dst = 4; | |
3811 | else if (opcode == callx8_op) | |
3812 | dst = 8; | |
3813 | else if (opcode == callx12_op) | |
3814 | dst = 12; | |
3815 | ||
3816 | if (dst == (unsigned) -1) | |
3817 | return FALSE; | |
3818 | ||
3819 | *pdst = dst; | |
3820 | return TRUE; | |
3821 | } | |
3822 | ||
3823 | ||
43cd72b9 BW |
3824 | static xtensa_opcode |
3825 | get_const16_opcode (void) | |
3826 | { | |
3827 | static bfd_boolean done_lookup = FALSE; | |
3828 | static xtensa_opcode const16_opcode = XTENSA_UNDEFINED; | |
3829 | if (!done_lookup) | |
3830 | { | |
3831 | const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16"); | |
3832 | done_lookup = TRUE; | |
3833 | } | |
3834 | return const16_opcode; | |
3835 | } | |
3836 | ||
3837 | ||
e0001a05 NC |
3838 | static xtensa_opcode |
3839 | get_l32r_opcode (void) | |
3840 | { | |
3841 | static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED; | |
43cd72b9 BW |
3842 | static bfd_boolean done_lookup = FALSE; |
3843 | ||
3844 | if (!done_lookup) | |
e0001a05 NC |
3845 | { |
3846 | l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r"); | |
43cd72b9 | 3847 | done_lookup = TRUE; |
e0001a05 NC |
3848 | } |
3849 | return l32r_opcode; | |
3850 | } | |
3851 | ||
3852 | ||
3853 | static bfd_vma | |
7fa3d080 | 3854 | l32r_offset (bfd_vma addr, bfd_vma pc) |
e0001a05 NC |
3855 | { |
3856 | bfd_vma offset; | |
3857 | ||
3858 | offset = addr - ((pc+3) & -4); | |
3859 | BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0); | |
3860 | offset = (signed int) offset >> 2; | |
3861 | BFD_ASSERT ((signed int) offset >> 16 == -1); | |
3862 | return offset; | |
3863 | } | |
3864 | ||
3865 | ||
e0d0c518 MF |
3866 | static xtensa_opcode |
3867 | get_rsr_lend_opcode (void) | |
3868 | { | |
3869 | static xtensa_opcode rsr_lend_opcode = XTENSA_UNDEFINED; | |
3870 | static bfd_boolean done_lookup = FALSE; | |
3871 | if (!done_lookup) | |
3872 | { | |
3873 | rsr_lend_opcode = xtensa_opcode_lookup (xtensa_default_isa, "rsr.lend"); | |
3874 | done_lookup = TRUE; | |
3875 | } | |
3876 | return rsr_lend_opcode; | |
3877 | } | |
3878 | ||
3879 | static xtensa_opcode | |
3880 | get_wsr_lbeg_opcode (void) | |
3881 | { | |
3882 | static xtensa_opcode wsr_lbeg_opcode = XTENSA_UNDEFINED; | |
3883 | static bfd_boolean done_lookup = FALSE; | |
3884 | if (!done_lookup) | |
3885 | { | |
3886 | wsr_lbeg_opcode = xtensa_opcode_lookup (xtensa_default_isa, "wsr.lbeg"); | |
3887 | done_lookup = TRUE; | |
3888 | } | |
3889 | return wsr_lbeg_opcode; | |
3890 | } | |
3891 | ||
3892 | ||
e0001a05 | 3893 | static int |
7fa3d080 | 3894 | get_relocation_opnd (xtensa_opcode opcode, int r_type) |
e0001a05 | 3895 | { |
43cd72b9 BW |
3896 | xtensa_isa isa = xtensa_default_isa; |
3897 | int last_immed, last_opnd, opi; | |
3898 | ||
3899 | if (opcode == XTENSA_UNDEFINED) | |
3900 | return XTENSA_UNDEFINED; | |
3901 | ||
3902 | /* Find the last visible PC-relative immediate operand for the opcode. | |
3903 | If there are no PC-relative immediates, then choose the last visible | |
3904 | immediate; otherwise, fail and return XTENSA_UNDEFINED. */ | |
3905 | last_immed = XTENSA_UNDEFINED; | |
3906 | last_opnd = xtensa_opcode_num_operands (isa, opcode); | |
3907 | for (opi = last_opnd - 1; opi >= 0; opi--) | |
3908 | { | |
3909 | if (xtensa_operand_is_visible (isa, opcode, opi) == 0) | |
3910 | continue; | |
3911 | if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1) | |
3912 | { | |
3913 | last_immed = opi; | |
3914 | break; | |
3915 | } | |
3916 | if (last_immed == XTENSA_UNDEFINED | |
3917 | && xtensa_operand_is_register (isa, opcode, opi) == 0) | |
3918 | last_immed = opi; | |
3919 | } | |
3920 | if (last_immed < 0) | |
3921 | return XTENSA_UNDEFINED; | |
3922 | ||
3923 | /* If the operand number was specified in an old-style relocation, | |
3924 | check for consistency with the operand computed above. */ | |
3925 | if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2) | |
3926 | { | |
3927 | int reloc_opnd = r_type - R_XTENSA_OP0; | |
3928 | if (reloc_opnd != last_immed) | |
3929 | return XTENSA_UNDEFINED; | |
3930 | } | |
3931 | ||
3932 | return last_immed; | |
3933 | } | |
3934 | ||
3935 | ||
3936 | int | |
7fa3d080 | 3937 | get_relocation_slot (int r_type) |
43cd72b9 BW |
3938 | { |
3939 | switch (r_type) | |
3940 | { | |
3941 | case R_XTENSA_OP0: | |
3942 | case R_XTENSA_OP1: | |
3943 | case R_XTENSA_OP2: | |
3944 | return 0; | |
3945 | ||
3946 | default: | |
3947 | if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP) | |
3948 | return r_type - R_XTENSA_SLOT0_OP; | |
3949 | if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT) | |
3950 | return r_type - R_XTENSA_SLOT0_ALT; | |
3951 | break; | |
3952 | } | |
3953 | ||
3954 | return XTENSA_UNDEFINED; | |
e0001a05 NC |
3955 | } |
3956 | ||
3957 | ||
3958 | /* Get the opcode for a relocation. */ | |
3959 | ||
3960 | static xtensa_opcode | |
7fa3d080 BW |
3961 | get_relocation_opcode (bfd *abfd, |
3962 | asection *sec, | |
3963 | bfd_byte *contents, | |
3964 | Elf_Internal_Rela *irel) | |
e0001a05 NC |
3965 | { |
3966 | static xtensa_insnbuf ibuff = NULL; | |
43cd72b9 | 3967 | static xtensa_insnbuf sbuff = NULL; |
e0001a05 | 3968 | xtensa_isa isa = xtensa_default_isa; |
43cd72b9 BW |
3969 | xtensa_format fmt; |
3970 | int slot; | |
e0001a05 NC |
3971 | |
3972 | if (contents == NULL) | |
3973 | return XTENSA_UNDEFINED; | |
3974 | ||
43cd72b9 | 3975 | if (bfd_get_section_limit (abfd, sec) <= irel->r_offset) |
e0001a05 NC |
3976 | return XTENSA_UNDEFINED; |
3977 | ||
3978 | if (ibuff == NULL) | |
43cd72b9 BW |
3979 | { |
3980 | ibuff = xtensa_insnbuf_alloc (isa); | |
3981 | sbuff = xtensa_insnbuf_alloc (isa); | |
3982 | } | |
3983 | ||
e0001a05 | 3984 | /* Decode the instruction. */ |
43cd72b9 BW |
3985 | xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset], |
3986 | sec->size - irel->r_offset); | |
3987 | fmt = xtensa_format_decode (isa, ibuff); | |
3988 | slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info)); | |
3989 | if (slot == XTENSA_UNDEFINED) | |
3990 | return XTENSA_UNDEFINED; | |
3991 | xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff); | |
3992 | return xtensa_opcode_decode (isa, fmt, slot, sbuff); | |
e0001a05 NC |
3993 | } |
3994 | ||
3995 | ||
3996 | bfd_boolean | |
7fa3d080 BW |
3997 | is_l32r_relocation (bfd *abfd, |
3998 | asection *sec, | |
3999 | bfd_byte *contents, | |
4000 | Elf_Internal_Rela *irel) | |
e0001a05 NC |
4001 | { |
4002 | xtensa_opcode opcode; | |
43cd72b9 | 4003 | if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info))) |
e0001a05 | 4004 | return FALSE; |
43cd72b9 | 4005 | opcode = get_relocation_opcode (abfd, sec, contents, irel); |
e0001a05 NC |
4006 | return (opcode == get_l32r_opcode ()); |
4007 | } | |
4008 | ||
e0001a05 | 4009 | |
43cd72b9 | 4010 | static bfd_size_type |
7fa3d080 BW |
4011 | get_asm_simplify_size (bfd_byte *contents, |
4012 | bfd_size_type content_len, | |
4013 | bfd_size_type offset) | |
e0001a05 | 4014 | { |
43cd72b9 | 4015 | bfd_size_type insnlen, size = 0; |
e0001a05 | 4016 | |
43cd72b9 BW |
4017 | /* Decode the size of the next two instructions. */ |
4018 | insnlen = insn_decode_len (contents, content_len, offset); | |
4019 | if (insnlen == 0) | |
4020 | return 0; | |
e0001a05 | 4021 | |
43cd72b9 | 4022 | size += insnlen; |
68ffbac6 | 4023 | |
43cd72b9 BW |
4024 | insnlen = insn_decode_len (contents, content_len, offset + size); |
4025 | if (insnlen == 0) | |
4026 | return 0; | |
e0001a05 | 4027 | |
43cd72b9 BW |
4028 | size += insnlen; |
4029 | return size; | |
4030 | } | |
e0001a05 | 4031 | |
43cd72b9 BW |
4032 | |
4033 | bfd_boolean | |
7fa3d080 | 4034 | is_alt_relocation (int r_type) |
43cd72b9 BW |
4035 | { |
4036 | return (r_type >= R_XTENSA_SLOT0_ALT | |
4037 | && r_type <= R_XTENSA_SLOT14_ALT); | |
e0001a05 NC |
4038 | } |
4039 | ||
4040 | ||
43cd72b9 | 4041 | bfd_boolean |
7fa3d080 | 4042 | is_operand_relocation (int r_type) |
e0001a05 | 4043 | { |
43cd72b9 BW |
4044 | switch (r_type) |
4045 | { | |
4046 | case R_XTENSA_OP0: | |
4047 | case R_XTENSA_OP1: | |
4048 | case R_XTENSA_OP2: | |
4049 | return TRUE; | |
e0001a05 | 4050 | |
43cd72b9 BW |
4051 | default: |
4052 | if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP) | |
4053 | return TRUE; | |
4054 | if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT) | |
4055 | return TRUE; | |
4056 | break; | |
4057 | } | |
e0001a05 | 4058 | |
43cd72b9 | 4059 | return FALSE; |
e0001a05 NC |
4060 | } |
4061 | ||
68ffbac6 | 4062 | |
43cd72b9 | 4063 | #define MIN_INSN_LENGTH 2 |
e0001a05 | 4064 | |
43cd72b9 BW |
4065 | /* Return 0 if it fails to decode. */ |
4066 | ||
4067 | bfd_size_type | |
7fa3d080 BW |
4068 | insn_decode_len (bfd_byte *contents, |
4069 | bfd_size_type content_len, | |
4070 | bfd_size_type offset) | |
e0001a05 | 4071 | { |
43cd72b9 BW |
4072 | int insn_len; |
4073 | xtensa_isa isa = xtensa_default_isa; | |
4074 | xtensa_format fmt; | |
4075 | static xtensa_insnbuf ibuff = NULL; | |
e0001a05 | 4076 | |
43cd72b9 BW |
4077 | if (offset + MIN_INSN_LENGTH > content_len) |
4078 | return 0; | |
e0001a05 | 4079 | |
43cd72b9 BW |
4080 | if (ibuff == NULL) |
4081 | ibuff = xtensa_insnbuf_alloc (isa); | |
4082 | xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset], | |
4083 | content_len - offset); | |
4084 | fmt = xtensa_format_decode (isa, ibuff); | |
4085 | if (fmt == XTENSA_UNDEFINED) | |
4086 | return 0; | |
4087 | insn_len = xtensa_format_length (isa, fmt); | |
4088 | if (insn_len == XTENSA_UNDEFINED) | |
4089 | return 0; | |
4090 | return insn_len; | |
e0001a05 NC |
4091 | } |
4092 | ||
e0d0c518 MF |
4093 | int |
4094 | insn_num_slots (bfd_byte *contents, | |
4095 | bfd_size_type content_len, | |
4096 | bfd_size_type offset) | |
4097 | { | |
4098 | xtensa_isa isa = xtensa_default_isa; | |
4099 | xtensa_format fmt; | |
4100 | static xtensa_insnbuf ibuff = NULL; | |
4101 | ||
4102 | if (offset + MIN_INSN_LENGTH > content_len) | |
4103 | return XTENSA_UNDEFINED; | |
4104 | ||
4105 | if (ibuff == NULL) | |
4106 | ibuff = xtensa_insnbuf_alloc (isa); | |
4107 | xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset], | |
4108 | content_len - offset); | |
4109 | fmt = xtensa_format_decode (isa, ibuff); | |
4110 | if (fmt == XTENSA_UNDEFINED) | |
4111 | return XTENSA_UNDEFINED; | |
4112 | return xtensa_format_num_slots (isa, fmt); | |
4113 | } | |
4114 | ||
e0001a05 | 4115 | |
43cd72b9 BW |
4116 | /* Decode the opcode for a single slot instruction. |
4117 | Return 0 if it fails to decode or the instruction is multi-slot. */ | |
e0001a05 | 4118 | |
43cd72b9 | 4119 | xtensa_opcode |
7fa3d080 BW |
4120 | insn_decode_opcode (bfd_byte *contents, |
4121 | bfd_size_type content_len, | |
4122 | bfd_size_type offset, | |
4123 | int slot) | |
e0001a05 | 4124 | { |
e0001a05 | 4125 | xtensa_isa isa = xtensa_default_isa; |
43cd72b9 BW |
4126 | xtensa_format fmt; |
4127 | static xtensa_insnbuf insnbuf = NULL; | |
4128 | static xtensa_insnbuf slotbuf = NULL; | |
4129 | ||
4130 | if (offset + MIN_INSN_LENGTH > content_len) | |
e0001a05 NC |
4131 | return XTENSA_UNDEFINED; |
4132 | ||
4133 | if (insnbuf == NULL) | |
43cd72b9 BW |
4134 | { |
4135 | insnbuf = xtensa_insnbuf_alloc (isa); | |
4136 | slotbuf = xtensa_insnbuf_alloc (isa); | |
4137 | } | |
4138 | ||
4139 | xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset], | |
4140 | content_len - offset); | |
4141 | fmt = xtensa_format_decode (isa, insnbuf); | |
4142 | if (fmt == XTENSA_UNDEFINED) | |
e0001a05 | 4143 | return XTENSA_UNDEFINED; |
43cd72b9 BW |
4144 | |
4145 | if (slot >= xtensa_format_num_slots (isa, fmt)) | |
e0001a05 | 4146 | return XTENSA_UNDEFINED; |
e0001a05 | 4147 | |
43cd72b9 BW |
4148 | xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf); |
4149 | return xtensa_opcode_decode (isa, fmt, slot, slotbuf); | |
4150 | } | |
e0001a05 | 4151 | |
e0001a05 | 4152 | |
43cd72b9 BW |
4153 | /* The offset is the offset in the contents. |
4154 | The address is the address of that offset. */ | |
e0001a05 | 4155 | |
43cd72b9 | 4156 | static bfd_boolean |
7fa3d080 BW |
4157 | check_branch_target_aligned (bfd_byte *contents, |
4158 | bfd_size_type content_length, | |
4159 | bfd_vma offset, | |
4160 | bfd_vma address) | |
43cd72b9 BW |
4161 | { |
4162 | bfd_size_type insn_len = insn_decode_len (contents, content_length, offset); | |
4163 | if (insn_len == 0) | |
4164 | return FALSE; | |
4165 | return check_branch_target_aligned_address (address, insn_len); | |
4166 | } | |
e0001a05 | 4167 | |
e0001a05 | 4168 | |
43cd72b9 | 4169 | static bfd_boolean |
7fa3d080 BW |
4170 | check_loop_aligned (bfd_byte *contents, |
4171 | bfd_size_type content_length, | |
4172 | bfd_vma offset, | |
4173 | bfd_vma address) | |
e0001a05 | 4174 | { |
43cd72b9 | 4175 | bfd_size_type loop_len, insn_len; |
64b607e6 | 4176 | xtensa_opcode opcode; |
e0001a05 | 4177 | |
64b607e6 BW |
4178 | opcode = insn_decode_opcode (contents, content_length, offset, 0); |
4179 | if (opcode == XTENSA_UNDEFINED | |
4180 | || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1) | |
4181 | { | |
4182 | BFD_ASSERT (FALSE); | |
4183 | return FALSE; | |
4184 | } | |
68ffbac6 | 4185 | |
43cd72b9 | 4186 | loop_len = insn_decode_len (contents, content_length, offset); |
43cd72b9 | 4187 | insn_len = insn_decode_len (contents, content_length, offset + loop_len); |
64b607e6 BW |
4188 | if (loop_len == 0 || insn_len == 0) |
4189 | { | |
4190 | BFD_ASSERT (FALSE); | |
4191 | return FALSE; | |
4192 | } | |
e0001a05 | 4193 | |
e0d0c518 MF |
4194 | /* If this is relaxed loop, analyze first instruction of the actual loop |
4195 | body. It must be at offset 27 from the loop instruction address. */ | |
4196 | if (insn_len == 3 | |
4197 | && insn_num_slots (contents, content_length, offset + loop_len) == 1 | |
4198 | && insn_decode_opcode (contents, content_length, | |
4199 | offset + loop_len, 0) == get_rsr_lend_opcode() | |
4200 | && insn_decode_len (contents, content_length, offset + loop_len + 3) == 3 | |
4201 | && insn_num_slots (contents, content_length, offset + loop_len + 3) == 1 | |
4202 | && insn_decode_opcode (contents, content_length, | |
4203 | offset + loop_len + 3, 0) == get_wsr_lbeg_opcode()) | |
4204 | { | |
4205 | loop_len = 27; | |
4206 | insn_len = insn_decode_len (contents, content_length, offset + loop_len); | |
4207 | } | |
43cd72b9 BW |
4208 | return check_branch_target_aligned_address (address + loop_len, insn_len); |
4209 | } | |
e0001a05 | 4210 | |
e0001a05 NC |
4211 | |
4212 | static bfd_boolean | |
7fa3d080 | 4213 | check_branch_target_aligned_address (bfd_vma addr, int len) |
e0001a05 | 4214 | { |
43cd72b9 BW |
4215 | if (len == 8) |
4216 | return (addr % 8 == 0); | |
4217 | return ((addr >> 2) == ((addr + len - 1) >> 2)); | |
e0001a05 NC |
4218 | } |
4219 | ||
43cd72b9 BW |
4220 | \f |
4221 | /* Instruction widening and narrowing. */ | |
e0001a05 | 4222 | |
7fa3d080 BW |
4223 | /* When FLIX is available we need to access certain instructions only |
4224 | when they are 16-bit or 24-bit instructions. This table caches | |
4225 | information about such instructions by walking through all the | |
4226 | opcodes and finding the smallest single-slot format into which each | |
4227 | can be encoded. */ | |
4228 | ||
4229 | static xtensa_format *op_single_fmt_table = NULL; | |
e0001a05 NC |
4230 | |
4231 | ||
7fa3d080 BW |
4232 | static void |
4233 | init_op_single_format_table (void) | |
e0001a05 | 4234 | { |
7fa3d080 BW |
4235 | xtensa_isa isa = xtensa_default_isa; |
4236 | xtensa_insnbuf ibuf; | |
4237 | xtensa_opcode opcode; | |
4238 | xtensa_format fmt; | |
4239 | int num_opcodes; | |
4240 | ||
4241 | if (op_single_fmt_table) | |
4242 | return; | |
4243 | ||
4244 | ibuf = xtensa_insnbuf_alloc (isa); | |
4245 | num_opcodes = xtensa_isa_num_opcodes (isa); | |
4246 | ||
4247 | op_single_fmt_table = (xtensa_format *) | |
4248 | bfd_malloc (sizeof (xtensa_format) * num_opcodes); | |
4249 | for (opcode = 0; opcode < num_opcodes; opcode++) | |
4250 | { | |
4251 | op_single_fmt_table[opcode] = XTENSA_UNDEFINED; | |
4252 | for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++) | |
4253 | { | |
4254 | if (xtensa_format_num_slots (isa, fmt) == 1 | |
4255 | && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0) | |
4256 | { | |
4257 | xtensa_opcode old_fmt = op_single_fmt_table[opcode]; | |
4258 | int fmt_length = xtensa_format_length (isa, fmt); | |
4259 | if (old_fmt == XTENSA_UNDEFINED | |
4260 | || fmt_length < xtensa_format_length (isa, old_fmt)) | |
4261 | op_single_fmt_table[opcode] = fmt; | |
4262 | } | |
4263 | } | |
4264 | } | |
4265 | xtensa_insnbuf_free (isa, ibuf); | |
4266 | } | |
4267 | ||
4268 | ||
4269 | static xtensa_format | |
4270 | get_single_format (xtensa_opcode opcode) | |
4271 | { | |
4272 | init_op_single_format_table (); | |
4273 | return op_single_fmt_table[opcode]; | |
4274 | } | |
e0001a05 | 4275 | |
e0001a05 | 4276 | |
43cd72b9 BW |
4277 | /* For the set of narrowable instructions we do NOT include the |
4278 | narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities | |
4279 | involved during linker relaxation that may require these to | |
4280 | re-expand in some conditions. Also, the narrowing "or" -> mov.n | |
4281 | requires special case code to ensure it only works when op1 == op2. */ | |
e0001a05 | 4282 | |
7fa3d080 BW |
4283 | struct string_pair |
4284 | { | |
4285 | const char *wide; | |
4286 | const char *narrow; | |
4287 | }; | |
4288 | ||
43cd72b9 | 4289 | struct string_pair narrowable[] = |
e0001a05 | 4290 | { |
43cd72b9 BW |
4291 | { "add", "add.n" }, |
4292 | { "addi", "addi.n" }, | |
4293 | { "addmi", "addi.n" }, | |
4294 | { "l32i", "l32i.n" }, | |
4295 | { "movi", "movi.n" }, | |
4296 | { "ret", "ret.n" }, | |
4297 | { "retw", "retw.n" }, | |
4298 | { "s32i", "s32i.n" }, | |
4299 | { "or", "mov.n" } /* special case only when op1 == op2 */ | |
4300 | }; | |
e0001a05 | 4301 | |
43cd72b9 | 4302 | struct string_pair widenable[] = |
e0001a05 | 4303 | { |
43cd72b9 BW |
4304 | { "add", "add.n" }, |
4305 | { "addi", "addi.n" }, | |
4306 | { "addmi", "addi.n" }, | |
4307 | { "beqz", "beqz.n" }, | |
4308 | { "bnez", "bnez.n" }, | |
4309 | { "l32i", "l32i.n" }, | |
4310 | { "movi", "movi.n" }, | |
4311 | { "ret", "ret.n" }, | |
4312 | { "retw", "retw.n" }, | |
4313 | { "s32i", "s32i.n" }, | |
4314 | { "or", "mov.n" } /* special case only when op1 == op2 */ | |
4315 | }; | |
e0001a05 NC |
4316 | |
4317 | ||
64b607e6 BW |
4318 | /* Check if an instruction can be "narrowed", i.e., changed from a standard |
4319 | 3-byte instruction to a 2-byte "density" instruction. If it is valid, | |
4320 | return the instruction buffer holding the narrow instruction. Otherwise, | |
4321 | return 0. The set of valid narrowing are specified by a string table | |
43cd72b9 BW |
4322 | but require some special case operand checks in some cases. */ |
4323 | ||
64b607e6 BW |
4324 | static xtensa_insnbuf |
4325 | can_narrow_instruction (xtensa_insnbuf slotbuf, | |
4326 | xtensa_format fmt, | |
4327 | xtensa_opcode opcode) | |
e0001a05 | 4328 | { |
43cd72b9 | 4329 | xtensa_isa isa = xtensa_default_isa; |
64b607e6 BW |
4330 | xtensa_format o_fmt; |
4331 | unsigned opi; | |
e0001a05 | 4332 | |
43cd72b9 BW |
4333 | static xtensa_insnbuf o_insnbuf = NULL; |
4334 | static xtensa_insnbuf o_slotbuf = NULL; | |
e0001a05 | 4335 | |
64b607e6 | 4336 | if (o_insnbuf == NULL) |
43cd72b9 | 4337 | { |
43cd72b9 BW |
4338 | o_insnbuf = xtensa_insnbuf_alloc (isa); |
4339 | o_slotbuf = xtensa_insnbuf_alloc (isa); | |
4340 | } | |
e0001a05 | 4341 | |
64b607e6 | 4342 | for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++) |
43cd72b9 BW |
4343 | { |
4344 | bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0); | |
e0001a05 | 4345 | |
43cd72b9 BW |
4346 | if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide)) |
4347 | { | |
4348 | uint32 value, newval; | |
4349 | int i, operand_count, o_operand_count; | |
4350 | xtensa_opcode o_opcode; | |
e0001a05 | 4351 | |
43cd72b9 BW |
4352 | /* Address does not matter in this case. We might need to |
4353 | fix it to handle branches/jumps. */ | |
4354 | bfd_vma self_address = 0; | |
e0001a05 | 4355 | |
43cd72b9 BW |
4356 | o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow); |
4357 | if (o_opcode == XTENSA_UNDEFINED) | |
64b607e6 | 4358 | return 0; |
43cd72b9 BW |
4359 | o_fmt = get_single_format (o_opcode); |
4360 | if (o_fmt == XTENSA_UNDEFINED) | |
64b607e6 | 4361 | return 0; |
e0001a05 | 4362 | |
43cd72b9 BW |
4363 | if (xtensa_format_length (isa, fmt) != 3 |
4364 | || xtensa_format_length (isa, o_fmt) != 2) | |
64b607e6 | 4365 | return 0; |
e0001a05 | 4366 | |
43cd72b9 BW |
4367 | xtensa_format_encode (isa, o_fmt, o_insnbuf); |
4368 | operand_count = xtensa_opcode_num_operands (isa, opcode); | |
4369 | o_operand_count = xtensa_opcode_num_operands (isa, o_opcode); | |
e0001a05 | 4370 | |
43cd72b9 | 4371 | if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0) |
64b607e6 | 4372 | return 0; |
e0001a05 | 4373 | |
43cd72b9 BW |
4374 | if (!is_or) |
4375 | { | |
4376 | if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count) | |
64b607e6 | 4377 | return 0; |
43cd72b9 BW |
4378 | } |
4379 | else | |
4380 | { | |
4381 | uint32 rawval0, rawval1, rawval2; | |
e0001a05 | 4382 | |
64b607e6 BW |
4383 | if (o_operand_count + 1 != operand_count |
4384 | || xtensa_operand_get_field (isa, opcode, 0, | |
4385 | fmt, 0, slotbuf, &rawval0) != 0 | |
4386 | || xtensa_operand_get_field (isa, opcode, 1, | |
4387 | fmt, 0, slotbuf, &rawval1) != 0 | |
4388 | || xtensa_operand_get_field (isa, opcode, 2, | |
4389 | fmt, 0, slotbuf, &rawval2) != 0 | |
4390 | || rawval1 != rawval2 | |
4391 | || rawval0 == rawval1 /* it is a nop */) | |
4392 | return 0; | |
43cd72b9 | 4393 | } |
e0001a05 | 4394 | |
43cd72b9 BW |
4395 | for (i = 0; i < o_operand_count; ++i) |
4396 | { | |
4397 | if (xtensa_operand_get_field (isa, opcode, i, fmt, 0, | |
4398 | slotbuf, &value) | |
4399 | || xtensa_operand_decode (isa, opcode, i, &value)) | |
64b607e6 | 4400 | return 0; |
e0001a05 | 4401 | |
43cd72b9 BW |
4402 | /* PC-relative branches need adjustment, but |
4403 | the PC-rel operand will always have a relocation. */ | |
4404 | newval = value; | |
4405 | if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval, | |
4406 | self_address) | |
4407 | || xtensa_operand_encode (isa, o_opcode, i, &newval) | |
4408 | || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0, | |
4409 | o_slotbuf, newval)) | |
64b607e6 | 4410 | return 0; |
43cd72b9 | 4411 | } |
e0001a05 | 4412 | |
64b607e6 BW |
4413 | if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf)) |
4414 | return 0; | |
e0001a05 | 4415 | |
64b607e6 | 4416 | return o_insnbuf; |
43cd72b9 BW |
4417 | } |
4418 | } | |
64b607e6 | 4419 | return 0; |
43cd72b9 | 4420 | } |
e0001a05 | 4421 | |
e0001a05 | 4422 | |
64b607e6 BW |
4423 | /* Attempt to narrow an instruction. If the narrowing is valid, perform |
4424 | the action in-place directly into the contents and return TRUE. Otherwise, | |
4425 | the return value is FALSE and the contents are not modified. */ | |
e0001a05 | 4426 | |
43cd72b9 | 4427 | static bfd_boolean |
64b607e6 BW |
4428 | narrow_instruction (bfd_byte *contents, |
4429 | bfd_size_type content_length, | |
4430 | bfd_size_type offset) | |
e0001a05 | 4431 | { |
43cd72b9 | 4432 | xtensa_opcode opcode; |
64b607e6 | 4433 | bfd_size_type insn_len; |
43cd72b9 | 4434 | xtensa_isa isa = xtensa_default_isa; |
64b607e6 BW |
4435 | xtensa_format fmt; |
4436 | xtensa_insnbuf o_insnbuf; | |
e0001a05 | 4437 | |
43cd72b9 BW |
4438 | static xtensa_insnbuf insnbuf = NULL; |
4439 | static xtensa_insnbuf slotbuf = NULL; | |
e0001a05 | 4440 | |
43cd72b9 BW |
4441 | if (insnbuf == NULL) |
4442 | { | |
4443 | insnbuf = xtensa_insnbuf_alloc (isa); | |
4444 | slotbuf = xtensa_insnbuf_alloc (isa); | |
43cd72b9 | 4445 | } |
e0001a05 | 4446 | |
43cd72b9 | 4447 | BFD_ASSERT (offset < content_length); |
2c8c90bc | 4448 | |
43cd72b9 | 4449 | if (content_length < 2) |
e0001a05 NC |
4450 | return FALSE; |
4451 | ||
64b607e6 | 4452 | /* We will hand-code a few of these for a little while. |
43cd72b9 BW |
4453 | These have all been specified in the assembler aleady. */ |
4454 | xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset], | |
4455 | content_length - offset); | |
4456 | fmt = xtensa_format_decode (isa, insnbuf); | |
4457 | if (xtensa_format_num_slots (isa, fmt) != 1) | |
e0001a05 NC |
4458 | return FALSE; |
4459 | ||
43cd72b9 | 4460 | if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0) |
e0001a05 NC |
4461 | return FALSE; |
4462 | ||
43cd72b9 BW |
4463 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); |
4464 | if (opcode == XTENSA_UNDEFINED) | |
e0001a05 | 4465 | return FALSE; |
43cd72b9 BW |
4466 | insn_len = xtensa_format_length (isa, fmt); |
4467 | if (insn_len > content_length) | |
4468 | return FALSE; | |
4469 | ||
64b607e6 BW |
4470 | o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode); |
4471 | if (o_insnbuf) | |
4472 | { | |
4473 | xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset, | |
4474 | content_length - offset); | |
4475 | return TRUE; | |
4476 | } | |
4477 | ||
4478 | return FALSE; | |
4479 | } | |
4480 | ||
4481 | ||
4482 | /* Check if an instruction can be "widened", i.e., changed from a 2-byte | |
4483 | "density" instruction to a standard 3-byte instruction. If it is valid, | |
4484 | return the instruction buffer holding the wide instruction. Otherwise, | |
4485 | return 0. The set of valid widenings are specified by a string table | |
4486 | but require some special case operand checks in some cases. */ | |
4487 | ||
4488 | static xtensa_insnbuf | |
4489 | can_widen_instruction (xtensa_insnbuf slotbuf, | |
4490 | xtensa_format fmt, | |
4491 | xtensa_opcode opcode) | |
4492 | { | |
4493 | xtensa_isa isa = xtensa_default_isa; | |
4494 | xtensa_format o_fmt; | |
4495 | unsigned opi; | |
4496 | ||
4497 | static xtensa_insnbuf o_insnbuf = NULL; | |
4498 | static xtensa_insnbuf o_slotbuf = NULL; | |
4499 | ||
4500 | if (o_insnbuf == NULL) | |
4501 | { | |
4502 | o_insnbuf = xtensa_insnbuf_alloc (isa); | |
4503 | o_slotbuf = xtensa_insnbuf_alloc (isa); | |
4504 | } | |
4505 | ||
4506 | for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++) | |
e0001a05 | 4507 | { |
43cd72b9 BW |
4508 | bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0); |
4509 | bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0 | |
4510 | || strcmp ("bnez", widenable[opi].wide) == 0); | |
e0001a05 | 4511 | |
43cd72b9 BW |
4512 | if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow)) |
4513 | { | |
4514 | uint32 value, newval; | |
4515 | int i, operand_count, o_operand_count, check_operand_count; | |
4516 | xtensa_opcode o_opcode; | |
e0001a05 | 4517 | |
43cd72b9 BW |
4518 | /* Address does not matter in this case. We might need to fix it |
4519 | to handle branches/jumps. */ | |
4520 | bfd_vma self_address = 0; | |
e0001a05 | 4521 | |
43cd72b9 BW |
4522 | o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide); |
4523 | if (o_opcode == XTENSA_UNDEFINED) | |
64b607e6 | 4524 | return 0; |
43cd72b9 BW |
4525 | o_fmt = get_single_format (o_opcode); |
4526 | if (o_fmt == XTENSA_UNDEFINED) | |
64b607e6 | 4527 | return 0; |
e0001a05 | 4528 | |
43cd72b9 BW |
4529 | if (xtensa_format_length (isa, fmt) != 2 |
4530 | || xtensa_format_length (isa, o_fmt) != 3) | |
64b607e6 | 4531 | return 0; |
e0001a05 | 4532 | |
43cd72b9 BW |
4533 | xtensa_format_encode (isa, o_fmt, o_insnbuf); |
4534 | operand_count = xtensa_opcode_num_operands (isa, opcode); | |
4535 | o_operand_count = xtensa_opcode_num_operands (isa, o_opcode); | |
4536 | check_operand_count = o_operand_count; | |
e0001a05 | 4537 | |
43cd72b9 | 4538 | if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0) |
64b607e6 | 4539 | return 0; |
e0001a05 | 4540 | |
43cd72b9 BW |
4541 | if (!is_or) |
4542 | { | |
4543 | if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count) | |
64b607e6 | 4544 | return 0; |
43cd72b9 BW |
4545 | } |
4546 | else | |
4547 | { | |
4548 | uint32 rawval0, rawval1; | |
4549 | ||
64b607e6 BW |
4550 | if (o_operand_count != operand_count + 1 |
4551 | || xtensa_operand_get_field (isa, opcode, 0, | |
4552 | fmt, 0, slotbuf, &rawval0) != 0 | |
4553 | || xtensa_operand_get_field (isa, opcode, 1, | |
4554 | fmt, 0, slotbuf, &rawval1) != 0 | |
4555 | || rawval0 == rawval1 /* it is a nop */) | |
4556 | return 0; | |
43cd72b9 BW |
4557 | } |
4558 | if (is_branch) | |
4559 | check_operand_count--; | |
4560 | ||
64b607e6 | 4561 | for (i = 0; i < check_operand_count; i++) |
43cd72b9 BW |
4562 | { |
4563 | int new_i = i; | |
4564 | if (is_or && i == o_operand_count - 1) | |
4565 | new_i = i - 1; | |
4566 | if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0, | |
4567 | slotbuf, &value) | |
4568 | || xtensa_operand_decode (isa, opcode, new_i, &value)) | |
64b607e6 | 4569 | return 0; |
43cd72b9 BW |
4570 | |
4571 | /* PC-relative branches need adjustment, but | |
4572 | the PC-rel operand will always have a relocation. */ | |
4573 | newval = value; | |
4574 | if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval, | |
4575 | self_address) | |
4576 | || xtensa_operand_encode (isa, o_opcode, i, &newval) | |
4577 | || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0, | |
4578 | o_slotbuf, newval)) | |
64b607e6 | 4579 | return 0; |
43cd72b9 BW |
4580 | } |
4581 | ||
4582 | if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf)) | |
64b607e6 | 4583 | return 0; |
43cd72b9 | 4584 | |
64b607e6 | 4585 | return o_insnbuf; |
43cd72b9 BW |
4586 | } |
4587 | } | |
64b607e6 BW |
4588 | return 0; |
4589 | } | |
4590 | ||
68ffbac6 | 4591 | |
64b607e6 BW |
4592 | /* Attempt to widen an instruction. If the widening is valid, perform |
4593 | the action in-place directly into the contents and return TRUE. Otherwise, | |
4594 | the return value is FALSE and the contents are not modified. */ | |
4595 | ||
4596 | static bfd_boolean | |
4597 | widen_instruction (bfd_byte *contents, | |
4598 | bfd_size_type content_length, | |
4599 | bfd_size_type offset) | |
4600 | { | |
4601 | xtensa_opcode opcode; | |
4602 | bfd_size_type insn_len; | |
4603 | xtensa_isa isa = xtensa_default_isa; | |
4604 | xtensa_format fmt; | |
4605 | xtensa_insnbuf o_insnbuf; | |
4606 | ||
4607 | static xtensa_insnbuf insnbuf = NULL; | |
4608 | static xtensa_insnbuf slotbuf = NULL; | |
4609 | ||
4610 | if (insnbuf == NULL) | |
4611 | { | |
4612 | insnbuf = xtensa_insnbuf_alloc (isa); | |
4613 | slotbuf = xtensa_insnbuf_alloc (isa); | |
4614 | } | |
4615 | ||
4616 | BFD_ASSERT (offset < content_length); | |
4617 | ||
4618 | if (content_length < 2) | |
4619 | return FALSE; | |
4620 | ||
4621 | /* We will hand-code a few of these for a little while. | |
4622 | These have all been specified in the assembler aleady. */ | |
4623 | xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset], | |
4624 | content_length - offset); | |
4625 | fmt = xtensa_format_decode (isa, insnbuf); | |
4626 | if (xtensa_format_num_slots (isa, fmt) != 1) | |
4627 | return FALSE; | |
4628 | ||
4629 | if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0) | |
4630 | return FALSE; | |
4631 | ||
4632 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); | |
4633 | if (opcode == XTENSA_UNDEFINED) | |
4634 | return FALSE; | |
4635 | insn_len = xtensa_format_length (isa, fmt); | |
4636 | if (insn_len > content_length) | |
4637 | return FALSE; | |
4638 | ||
4639 | o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode); | |
4640 | if (o_insnbuf) | |
4641 | { | |
4642 | xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset, | |
4643 | content_length - offset); | |
4644 | return TRUE; | |
4645 | } | |
43cd72b9 | 4646 | return FALSE; |
e0001a05 NC |
4647 | } |
4648 | ||
43cd72b9 BW |
4649 | \f |
4650 | /* Code for transforming CALLs at link-time. */ | |
e0001a05 | 4651 | |
43cd72b9 | 4652 | static bfd_reloc_status_type |
7fa3d080 BW |
4653 | elf_xtensa_do_asm_simplify (bfd_byte *contents, |
4654 | bfd_vma address, | |
4655 | bfd_vma content_length, | |
4656 | char **error_message) | |
e0001a05 | 4657 | { |
43cd72b9 BW |
4658 | static xtensa_insnbuf insnbuf = NULL; |
4659 | static xtensa_insnbuf slotbuf = NULL; | |
4660 | xtensa_format core_format = XTENSA_UNDEFINED; | |
4661 | xtensa_opcode opcode; | |
4662 | xtensa_opcode direct_call_opcode; | |
4663 | xtensa_isa isa = xtensa_default_isa; | |
4664 | bfd_byte *chbuf = contents + address; | |
4665 | int opn; | |
e0001a05 | 4666 | |
43cd72b9 | 4667 | if (insnbuf == NULL) |
e0001a05 | 4668 | { |
43cd72b9 BW |
4669 | insnbuf = xtensa_insnbuf_alloc (isa); |
4670 | slotbuf = xtensa_insnbuf_alloc (isa); | |
e0001a05 | 4671 | } |
e0001a05 | 4672 | |
43cd72b9 BW |
4673 | if (content_length < address) |
4674 | { | |
38f14ab8 | 4675 | *error_message = _("attempt to convert L32R/CALLX to CALL failed"); |
43cd72b9 BW |
4676 | return bfd_reloc_other; |
4677 | } | |
e0001a05 | 4678 | |
43cd72b9 BW |
4679 | opcode = get_expanded_call_opcode (chbuf, content_length - address, 0); |
4680 | direct_call_opcode = swap_callx_for_call_opcode (opcode); | |
4681 | if (direct_call_opcode == XTENSA_UNDEFINED) | |
4682 | { | |
38f14ab8 | 4683 | *error_message = _("attempt to convert L32R/CALLX to CALL failed"); |
43cd72b9 BW |
4684 | return bfd_reloc_other; |
4685 | } | |
68ffbac6 | 4686 | |
43cd72b9 BW |
4687 | /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */ |
4688 | core_format = xtensa_format_lookup (isa, "x24"); | |
4689 | opcode = xtensa_opcode_lookup (isa, "or"); | |
4690 | xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode); | |
68ffbac6 | 4691 | for (opn = 0; opn < 3; opn++) |
43cd72b9 BW |
4692 | { |
4693 | uint32 regno = 1; | |
4694 | xtensa_operand_encode (isa, opcode, opn, ®no); | |
4695 | xtensa_operand_set_field (isa, opcode, opn, core_format, 0, | |
4696 | slotbuf, regno); | |
4697 | } | |
4698 | xtensa_format_encode (isa, core_format, insnbuf); | |
4699 | xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf); | |
4700 | xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address); | |
e0001a05 | 4701 | |
43cd72b9 BW |
4702 | /* Assemble a CALL ("callN 0") into the 3 byte offset. */ |
4703 | xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode); | |
4704 | xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0); | |
e0001a05 | 4705 | |
43cd72b9 BW |
4706 | xtensa_format_encode (isa, core_format, insnbuf); |
4707 | xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf); | |
4708 | xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3, | |
4709 | content_length - address - 3); | |
e0001a05 | 4710 | |
43cd72b9 BW |
4711 | return bfd_reloc_ok; |
4712 | } | |
e0001a05 | 4713 | |
e0001a05 | 4714 | |
43cd72b9 | 4715 | static bfd_reloc_status_type |
7fa3d080 BW |
4716 | contract_asm_expansion (bfd_byte *contents, |
4717 | bfd_vma content_length, | |
4718 | Elf_Internal_Rela *irel, | |
4719 | char **error_message) | |
43cd72b9 BW |
4720 | { |
4721 | bfd_reloc_status_type retval = | |
4722 | elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length, | |
4723 | error_message); | |
e0001a05 | 4724 | |
43cd72b9 BW |
4725 | if (retval != bfd_reloc_ok) |
4726 | return bfd_reloc_dangerous; | |
e0001a05 | 4727 | |
43cd72b9 BW |
4728 | /* Update the irel->r_offset field so that the right immediate and |
4729 | the right instruction are modified during the relocation. */ | |
4730 | irel->r_offset += 3; | |
4731 | irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP); | |
4732 | return bfd_reloc_ok; | |
4733 | } | |
e0001a05 | 4734 | |
e0001a05 | 4735 | |
43cd72b9 | 4736 | static xtensa_opcode |
7fa3d080 | 4737 | swap_callx_for_call_opcode (xtensa_opcode opcode) |
e0001a05 | 4738 | { |
43cd72b9 | 4739 | init_call_opcodes (); |
e0001a05 | 4740 | |
43cd72b9 BW |
4741 | if (opcode == callx0_op) return call0_op; |
4742 | if (opcode == callx4_op) return call4_op; | |
4743 | if (opcode == callx8_op) return call8_op; | |
4744 | if (opcode == callx12_op) return call12_op; | |
e0001a05 | 4745 | |
43cd72b9 BW |
4746 | /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */ |
4747 | return XTENSA_UNDEFINED; | |
4748 | } | |
e0001a05 | 4749 | |
e0001a05 | 4750 | |
43cd72b9 BW |
4751 | /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN; |
4752 | CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode. | |
4753 | If not, return XTENSA_UNDEFINED. */ | |
e0001a05 | 4754 | |
43cd72b9 BW |
4755 | #define L32R_TARGET_REG_OPERAND 0 |
4756 | #define CONST16_TARGET_REG_OPERAND 0 | |
4757 | #define CALLN_SOURCE_OPERAND 0 | |
e0001a05 | 4758 | |
68ffbac6 | 4759 | static xtensa_opcode |
7fa3d080 | 4760 | get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r) |
e0001a05 | 4761 | { |
43cd72b9 BW |
4762 | static xtensa_insnbuf insnbuf = NULL; |
4763 | static xtensa_insnbuf slotbuf = NULL; | |
4764 | xtensa_format fmt; | |
4765 | xtensa_opcode opcode; | |
4766 | xtensa_isa isa = xtensa_default_isa; | |
4767 | uint32 regno, const16_regno, call_regno; | |
4768 | int offset = 0; | |
e0001a05 | 4769 | |
43cd72b9 | 4770 | if (insnbuf == NULL) |
e0001a05 | 4771 | { |
43cd72b9 BW |
4772 | insnbuf = xtensa_insnbuf_alloc (isa); |
4773 | slotbuf = xtensa_insnbuf_alloc (isa); | |
e0001a05 | 4774 | } |
43cd72b9 BW |
4775 | |
4776 | xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize); | |
4777 | fmt = xtensa_format_decode (isa, insnbuf); | |
4778 | if (fmt == XTENSA_UNDEFINED | |
4779 | || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf)) | |
4780 | return XTENSA_UNDEFINED; | |
4781 | ||
4782 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); | |
4783 | if (opcode == XTENSA_UNDEFINED) | |
4784 | return XTENSA_UNDEFINED; | |
4785 | ||
4786 | if (opcode == get_l32r_opcode ()) | |
e0001a05 | 4787 | { |
43cd72b9 BW |
4788 | if (p_uses_l32r) |
4789 | *p_uses_l32r = TRUE; | |
4790 | if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND, | |
4791 | fmt, 0, slotbuf, ®no) | |
4792 | || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND, | |
4793 | ®no)) | |
4794 | return XTENSA_UNDEFINED; | |
e0001a05 | 4795 | } |
43cd72b9 | 4796 | else if (opcode == get_const16_opcode ()) |
e0001a05 | 4797 | { |
43cd72b9 BW |
4798 | if (p_uses_l32r) |
4799 | *p_uses_l32r = FALSE; | |
4800 | if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND, | |
4801 | fmt, 0, slotbuf, ®no) | |
4802 | || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND, | |
4803 | ®no)) | |
4804 | return XTENSA_UNDEFINED; | |
4805 | ||
4806 | /* Check that the next instruction is also CONST16. */ | |
4807 | offset += xtensa_format_length (isa, fmt); | |
4808 | xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset); | |
4809 | fmt = xtensa_format_decode (isa, insnbuf); | |
4810 | if (fmt == XTENSA_UNDEFINED | |
4811 | || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf)) | |
4812 | return XTENSA_UNDEFINED; | |
4813 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); | |
4814 | if (opcode != get_const16_opcode ()) | |
4815 | return XTENSA_UNDEFINED; | |
4816 | ||
4817 | if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND, | |
4818 | fmt, 0, slotbuf, &const16_regno) | |
4819 | || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND, | |
4820 | &const16_regno) | |
4821 | || const16_regno != regno) | |
4822 | return XTENSA_UNDEFINED; | |
e0001a05 | 4823 | } |
43cd72b9 BW |
4824 | else |
4825 | return XTENSA_UNDEFINED; | |
e0001a05 | 4826 | |
43cd72b9 BW |
4827 | /* Next instruction should be an CALLXn with operand 0 == regno. */ |
4828 | offset += xtensa_format_length (isa, fmt); | |
4829 | xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset); | |
4830 | fmt = xtensa_format_decode (isa, insnbuf); | |
4831 | if (fmt == XTENSA_UNDEFINED | |
4832 | || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf)) | |
4833 | return XTENSA_UNDEFINED; | |
4834 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); | |
68ffbac6 | 4835 | if (opcode == XTENSA_UNDEFINED |
43cd72b9 BW |
4836 | || !is_indirect_call_opcode (opcode)) |
4837 | return XTENSA_UNDEFINED; | |
e0001a05 | 4838 | |
43cd72b9 BW |
4839 | if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND, |
4840 | fmt, 0, slotbuf, &call_regno) | |
4841 | || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND, | |
4842 | &call_regno)) | |
4843 | return XTENSA_UNDEFINED; | |
e0001a05 | 4844 | |
43cd72b9 BW |
4845 | if (call_regno != regno) |
4846 | return XTENSA_UNDEFINED; | |
e0001a05 | 4847 | |
43cd72b9 BW |
4848 | return opcode; |
4849 | } | |
e0001a05 | 4850 | |
43cd72b9 BW |
4851 | \f |
4852 | /* Data structures used during relaxation. */ | |
e0001a05 | 4853 | |
43cd72b9 | 4854 | /* r_reloc: relocation values. */ |
e0001a05 | 4855 | |
43cd72b9 BW |
4856 | /* Through the relaxation process, we need to keep track of the values |
4857 | that will result from evaluating relocations. The standard ELF | |
4858 | relocation structure is not sufficient for this purpose because we're | |
4859 | operating on multiple input files at once, so we need to know which | |
4860 | input file a relocation refers to. The r_reloc structure thus | |
4861 | records both the input file (bfd) and ELF relocation. | |
e0001a05 | 4862 | |
43cd72b9 BW |
4863 | For efficiency, an r_reloc also contains a "target_offset" field to |
4864 | cache the target-section-relative offset value that is represented by | |
4865 | the relocation. | |
68ffbac6 | 4866 | |
43cd72b9 BW |
4867 | The r_reloc also contains a virtual offset that allows multiple |
4868 | inserted literals to be placed at the same "address" with | |
4869 | different offsets. */ | |
e0001a05 | 4870 | |
43cd72b9 | 4871 | typedef struct r_reloc_struct r_reloc; |
e0001a05 | 4872 | |
43cd72b9 | 4873 | struct r_reloc_struct |
e0001a05 | 4874 | { |
43cd72b9 BW |
4875 | bfd *abfd; |
4876 | Elf_Internal_Rela rela; | |
e0001a05 | 4877 | bfd_vma target_offset; |
43cd72b9 | 4878 | bfd_vma virtual_offset; |
e0001a05 NC |
4879 | }; |
4880 | ||
e0001a05 | 4881 | |
43cd72b9 BW |
4882 | /* The r_reloc structure is included by value in literal_value, but not |
4883 | every literal_value has an associated relocation -- some are simple | |
4884 | constants. In such cases, we set all the fields in the r_reloc | |
4885 | struct to zero. The r_reloc_is_const function should be used to | |
4886 | detect this case. */ | |
e0001a05 | 4887 | |
43cd72b9 | 4888 | static bfd_boolean |
7fa3d080 | 4889 | r_reloc_is_const (const r_reloc *r_rel) |
e0001a05 | 4890 | { |
43cd72b9 | 4891 | return (r_rel->abfd == NULL); |
e0001a05 NC |
4892 | } |
4893 | ||
4894 | ||
43cd72b9 | 4895 | static bfd_vma |
7fa3d080 | 4896 | r_reloc_get_target_offset (const r_reloc *r_rel) |
e0001a05 | 4897 | { |
43cd72b9 BW |
4898 | bfd_vma target_offset; |
4899 | unsigned long r_symndx; | |
e0001a05 | 4900 | |
43cd72b9 BW |
4901 | BFD_ASSERT (!r_reloc_is_const (r_rel)); |
4902 | r_symndx = ELF32_R_SYM (r_rel->rela.r_info); | |
4903 | target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx); | |
4904 | return (target_offset + r_rel->rela.r_addend); | |
4905 | } | |
e0001a05 | 4906 | |
e0001a05 | 4907 | |
43cd72b9 | 4908 | static struct elf_link_hash_entry * |
7fa3d080 | 4909 | r_reloc_get_hash_entry (const r_reloc *r_rel) |
e0001a05 | 4910 | { |
43cd72b9 BW |
4911 | unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info); |
4912 | return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx); | |
4913 | } | |
e0001a05 | 4914 | |
43cd72b9 BW |
4915 | |
4916 | static asection * | |
7fa3d080 | 4917 | r_reloc_get_section (const r_reloc *r_rel) |
43cd72b9 BW |
4918 | { |
4919 | unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info); | |
4920 | return get_elf_r_symndx_section (r_rel->abfd, r_symndx); | |
4921 | } | |
e0001a05 NC |
4922 | |
4923 | ||
4924 | static bfd_boolean | |
7fa3d080 | 4925 | r_reloc_is_defined (const r_reloc *r_rel) |
e0001a05 | 4926 | { |
43cd72b9 BW |
4927 | asection *sec; |
4928 | if (r_rel == NULL) | |
e0001a05 | 4929 | return FALSE; |
e0001a05 | 4930 | |
43cd72b9 BW |
4931 | sec = r_reloc_get_section (r_rel); |
4932 | if (sec == bfd_abs_section_ptr | |
4933 | || sec == bfd_com_section_ptr | |
4934 | || sec == bfd_und_section_ptr) | |
4935 | return FALSE; | |
4936 | return TRUE; | |
e0001a05 NC |
4937 | } |
4938 | ||
4939 | ||
7fa3d080 BW |
4940 | static void |
4941 | r_reloc_init (r_reloc *r_rel, | |
4942 | bfd *abfd, | |
4943 | Elf_Internal_Rela *irel, | |
4944 | bfd_byte *contents, | |
4945 | bfd_size_type content_length) | |
4946 | { | |
4947 | int r_type; | |
4948 | reloc_howto_type *howto; | |
4949 | ||
4950 | if (irel) | |
4951 | { | |
4952 | r_rel->rela = *irel; | |
4953 | r_rel->abfd = abfd; | |
4954 | r_rel->target_offset = r_reloc_get_target_offset (r_rel); | |
4955 | r_rel->virtual_offset = 0; | |
4956 | r_type = ELF32_R_TYPE (r_rel->rela.r_info); | |
4957 | howto = &elf_howto_table[r_type]; | |
4958 | if (howto->partial_inplace) | |
4959 | { | |
4960 | bfd_vma inplace_val; | |
4961 | BFD_ASSERT (r_rel->rela.r_offset < content_length); | |
4962 | ||
4963 | inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]); | |
4964 | r_rel->target_offset += inplace_val; | |
4965 | } | |
4966 | } | |
4967 | else | |
4968 | memset (r_rel, 0, sizeof (r_reloc)); | |
4969 | } | |
4970 | ||
4971 | ||
43cd72b9 BW |
4972 | #if DEBUG |
4973 | ||
e0001a05 | 4974 | static void |
7fa3d080 | 4975 | print_r_reloc (FILE *fp, const r_reloc *r_rel) |
e0001a05 | 4976 | { |
43cd72b9 BW |
4977 | if (r_reloc_is_defined (r_rel)) |
4978 | { | |
4979 | asection *sec = r_reloc_get_section (r_rel); | |
4980 | fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name); | |
4981 | } | |
4982 | else if (r_reloc_get_hash_entry (r_rel)) | |
4983 | fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string); | |
4984 | else | |
4985 | fprintf (fp, " ?? + "); | |
e0001a05 | 4986 | |
43cd72b9 BW |
4987 | fprintf_vma (fp, r_rel->target_offset); |
4988 | if (r_rel->virtual_offset) | |
4989 | { | |
4990 | fprintf (fp, " + "); | |
4991 | fprintf_vma (fp, r_rel->virtual_offset); | |
4992 | } | |
68ffbac6 | 4993 | |
43cd72b9 BW |
4994 | fprintf (fp, ")"); |
4995 | } | |
e0001a05 | 4996 | |
43cd72b9 | 4997 | #endif /* DEBUG */ |
e0001a05 | 4998 | |
43cd72b9 BW |
4999 | \f |
5000 | /* source_reloc: relocations that reference literals. */ | |
e0001a05 | 5001 | |
43cd72b9 BW |
5002 | /* To determine whether literals can be coalesced, we need to first |
5003 | record all the relocations that reference the literals. The | |
5004 | source_reloc structure below is used for this purpose. The | |
5005 | source_reloc entries are kept in a per-literal-section array, sorted | |
5006 | by offset within the literal section (i.e., target offset). | |
e0001a05 | 5007 | |
43cd72b9 BW |
5008 | The source_sec and r_rel.rela.r_offset fields identify the source of |
5009 | the relocation. The r_rel field records the relocation value, i.e., | |
5010 | the offset of the literal being referenced. The opnd field is needed | |
5011 | to determine the range of the immediate field to which the relocation | |
5012 | applies, so we can determine whether another literal with the same | |
5013 | value is within range. The is_null field is true when the relocation | |
5014 | is being removed (e.g., when an L32R is being removed due to a CALLX | |
5015 | that is converted to a direct CALL). */ | |
e0001a05 | 5016 | |
43cd72b9 BW |
5017 | typedef struct source_reloc_struct source_reloc; |
5018 | ||
5019 | struct source_reloc_struct | |
e0001a05 | 5020 | { |
43cd72b9 BW |
5021 | asection *source_sec; |
5022 | r_reloc r_rel; | |
5023 | xtensa_opcode opcode; | |
5024 | int opnd; | |
5025 | bfd_boolean is_null; | |
5026 | bfd_boolean is_abs_literal; | |
5027 | }; | |
e0001a05 | 5028 | |
e0001a05 | 5029 | |
e0001a05 | 5030 | static void |
7fa3d080 BW |
5031 | init_source_reloc (source_reloc *reloc, |
5032 | asection *source_sec, | |
5033 | const r_reloc *r_rel, | |
5034 | xtensa_opcode opcode, | |
5035 | int opnd, | |
5036 | bfd_boolean is_abs_literal) | |
e0001a05 | 5037 | { |
43cd72b9 BW |
5038 | reloc->source_sec = source_sec; |
5039 | reloc->r_rel = *r_rel; | |
5040 | reloc->opcode = opcode; | |
5041 | reloc->opnd = opnd; | |
5042 | reloc->is_null = FALSE; | |
5043 | reloc->is_abs_literal = is_abs_literal; | |
e0001a05 NC |
5044 | } |
5045 | ||
e0001a05 | 5046 | |
43cd72b9 BW |
5047 | /* Find the source_reloc for a particular source offset and relocation |
5048 | type. Note that the array is sorted by _target_ offset, so this is | |
5049 | just a linear search. */ | |
e0001a05 | 5050 | |
43cd72b9 | 5051 | static source_reloc * |
7fa3d080 BW |
5052 | find_source_reloc (source_reloc *src_relocs, |
5053 | int src_count, | |
5054 | asection *sec, | |
5055 | Elf_Internal_Rela *irel) | |
e0001a05 | 5056 | { |
43cd72b9 | 5057 | int i; |
e0001a05 | 5058 | |
43cd72b9 BW |
5059 | for (i = 0; i < src_count; i++) |
5060 | { | |
5061 | if (src_relocs[i].source_sec == sec | |
5062 | && src_relocs[i].r_rel.rela.r_offset == irel->r_offset | |
5063 | && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info) | |
5064 | == ELF32_R_TYPE (irel->r_info))) | |
5065 | return &src_relocs[i]; | |
5066 | } | |
e0001a05 | 5067 | |
43cd72b9 | 5068 | return NULL; |
e0001a05 NC |
5069 | } |
5070 | ||
5071 | ||
43cd72b9 | 5072 | static int |
7fa3d080 | 5073 | source_reloc_compare (const void *ap, const void *bp) |
e0001a05 | 5074 | { |
43cd72b9 BW |
5075 | const source_reloc *a = (const source_reloc *) ap; |
5076 | const source_reloc *b = (const source_reloc *) bp; | |
e0001a05 | 5077 | |
43cd72b9 BW |
5078 | if (a->r_rel.target_offset != b->r_rel.target_offset) |
5079 | return (a->r_rel.target_offset - b->r_rel.target_offset); | |
e0001a05 | 5080 | |
43cd72b9 BW |
5081 | /* We don't need to sort on these criteria for correctness, |
5082 | but enforcing a more strict ordering prevents unstable qsort | |
5083 | from behaving differently with different implementations. | |
5084 | Without the code below we get correct but different results | |
5085 | on Solaris 2.7 and 2.8. We would like to always produce the | |
5086 | same results no matter the host. */ | |
5087 | ||
5088 | if ((!a->is_null) - (!b->is_null)) | |
5089 | return ((!a->is_null) - (!b->is_null)); | |
5090 | return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela); | |
e0001a05 NC |
5091 | } |
5092 | ||
43cd72b9 BW |
5093 | \f |
5094 | /* Literal values and value hash tables. */ | |
e0001a05 | 5095 | |
43cd72b9 BW |
5096 | /* Literals with the same value can be coalesced. The literal_value |
5097 | structure records the value of a literal: the "r_rel" field holds the | |
5098 | information from the relocation on the literal (if there is one) and | |
5099 | the "value" field holds the contents of the literal word itself. | |
e0001a05 | 5100 | |
43cd72b9 BW |
5101 | The value_map structure records a literal value along with the |
5102 | location of a literal holding that value. The value_map hash table | |
5103 | is indexed by the literal value, so that we can quickly check if a | |
5104 | particular literal value has been seen before and is thus a candidate | |
5105 | for coalescing. */ | |
e0001a05 | 5106 | |
43cd72b9 BW |
5107 | typedef struct literal_value_struct literal_value; |
5108 | typedef struct value_map_struct value_map; | |
5109 | typedef struct value_map_hash_table_struct value_map_hash_table; | |
e0001a05 | 5110 | |
43cd72b9 | 5111 | struct literal_value_struct |
e0001a05 | 5112 | { |
68ffbac6 | 5113 | r_reloc r_rel; |
43cd72b9 BW |
5114 | unsigned long value; |
5115 | bfd_boolean is_abs_literal; | |
5116 | }; | |
5117 | ||
5118 | struct value_map_struct | |
5119 | { | |
5120 | literal_value val; /* The literal value. */ | |
5121 | r_reloc loc; /* Location of the literal. */ | |
5122 | value_map *next; | |
5123 | }; | |
5124 | ||
5125 | struct value_map_hash_table_struct | |
5126 | { | |
5127 | unsigned bucket_count; | |
5128 | value_map **buckets; | |
5129 | unsigned count; | |
5130 | bfd_boolean has_last_loc; | |
5131 | r_reloc last_loc; | |
5132 | }; | |
5133 | ||
5134 | ||
e0001a05 | 5135 | static void |
7fa3d080 BW |
5136 | init_literal_value (literal_value *lit, |
5137 | const r_reloc *r_rel, | |
5138 | unsigned long value, | |
5139 | bfd_boolean is_abs_literal) | |
e0001a05 | 5140 | { |
43cd72b9 BW |
5141 | lit->r_rel = *r_rel; |
5142 | lit->value = value; | |
5143 | lit->is_abs_literal = is_abs_literal; | |
e0001a05 NC |
5144 | } |
5145 | ||
5146 | ||
43cd72b9 | 5147 | static bfd_boolean |
7fa3d080 BW |
5148 | literal_value_equal (const literal_value *src1, |
5149 | const literal_value *src2, | |
5150 | bfd_boolean final_static_link) | |
e0001a05 | 5151 | { |
43cd72b9 | 5152 | struct elf_link_hash_entry *h1, *h2; |
e0001a05 | 5153 | |
68ffbac6 | 5154 | if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel)) |
43cd72b9 | 5155 | return FALSE; |
e0001a05 | 5156 | |
43cd72b9 BW |
5157 | if (r_reloc_is_const (&src1->r_rel)) |
5158 | return (src1->value == src2->value); | |
e0001a05 | 5159 | |
43cd72b9 BW |
5160 | if (ELF32_R_TYPE (src1->r_rel.rela.r_info) |
5161 | != ELF32_R_TYPE (src2->r_rel.rela.r_info)) | |
5162 | return FALSE; | |
e0001a05 | 5163 | |
43cd72b9 BW |
5164 | if (src1->r_rel.target_offset != src2->r_rel.target_offset) |
5165 | return FALSE; | |
68ffbac6 | 5166 | |
43cd72b9 BW |
5167 | if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset) |
5168 | return FALSE; | |
5169 | ||
5170 | if (src1->value != src2->value) | |
5171 | return FALSE; | |
68ffbac6 | 5172 | |
43cd72b9 BW |
5173 | /* Now check for the same section (if defined) or the same elf_hash |
5174 | (if undefined or weak). */ | |
5175 | h1 = r_reloc_get_hash_entry (&src1->r_rel); | |
5176 | h2 = r_reloc_get_hash_entry (&src2->r_rel); | |
5177 | if (r_reloc_is_defined (&src1->r_rel) | |
5178 | && (final_static_link | |
5179 | || ((!h1 || h1->root.type != bfd_link_hash_defweak) | |
5180 | && (!h2 || h2->root.type != bfd_link_hash_defweak)))) | |
5181 | { | |
5182 | if (r_reloc_get_section (&src1->r_rel) | |
5183 | != r_reloc_get_section (&src2->r_rel)) | |
5184 | return FALSE; | |
5185 | } | |
5186 | else | |
5187 | { | |
5188 | /* Require that the hash entries (i.e., symbols) be identical. */ | |
5189 | if (h1 != h2 || h1 == 0) | |
5190 | return FALSE; | |
5191 | } | |
5192 | ||
5193 | if (src1->is_abs_literal != src2->is_abs_literal) | |
5194 | return FALSE; | |
5195 | ||
5196 | return TRUE; | |
e0001a05 NC |
5197 | } |
5198 | ||
e0001a05 | 5199 | |
43cd72b9 BW |
5200 | /* Must be power of 2. */ |
5201 | #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024 | |
e0001a05 | 5202 | |
43cd72b9 | 5203 | static value_map_hash_table * |
7fa3d080 | 5204 | value_map_hash_table_init (void) |
43cd72b9 BW |
5205 | { |
5206 | value_map_hash_table *values; | |
e0001a05 | 5207 | |
43cd72b9 BW |
5208 | values = (value_map_hash_table *) |
5209 | bfd_zmalloc (sizeof (value_map_hash_table)); | |
5210 | values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT; | |
5211 | values->count = 0; | |
5212 | values->buckets = (value_map **) | |
5213 | bfd_zmalloc (sizeof (value_map *) * values->bucket_count); | |
68ffbac6 | 5214 | if (values->buckets == NULL) |
43cd72b9 BW |
5215 | { |
5216 | free (values); | |
5217 | return NULL; | |
5218 | } | |
5219 | values->has_last_loc = FALSE; | |
5220 | ||
5221 | return values; | |
5222 | } | |
5223 | ||
5224 | ||
5225 | static void | |
7fa3d080 | 5226 | value_map_hash_table_delete (value_map_hash_table *table) |
e0001a05 | 5227 | { |
43cd72b9 BW |
5228 | free (table->buckets); |
5229 | free (table); | |
5230 | } | |
5231 | ||
5232 | ||
5233 | static unsigned | |
7fa3d080 | 5234 | hash_bfd_vma (bfd_vma val) |
43cd72b9 BW |
5235 | { |
5236 | return (val >> 2) + (val >> 10); | |
5237 | } | |
5238 | ||
5239 | ||
5240 | static unsigned | |
7fa3d080 | 5241 | literal_value_hash (const literal_value *src) |
43cd72b9 BW |
5242 | { |
5243 | unsigned hash_val; | |
e0001a05 | 5244 | |
43cd72b9 BW |
5245 | hash_val = hash_bfd_vma (src->value); |
5246 | if (!r_reloc_is_const (&src->r_rel)) | |
e0001a05 | 5247 | { |
43cd72b9 BW |
5248 | void *sec_or_hash; |
5249 | ||
5250 | hash_val += hash_bfd_vma (src->is_abs_literal * 1000); | |
5251 | hash_val += hash_bfd_vma (src->r_rel.target_offset); | |
5252 | hash_val += hash_bfd_vma (src->r_rel.virtual_offset); | |
68ffbac6 | 5253 | |
43cd72b9 BW |
5254 | /* Now check for the same section and the same elf_hash. */ |
5255 | if (r_reloc_is_defined (&src->r_rel)) | |
5256 | sec_or_hash = r_reloc_get_section (&src->r_rel); | |
5257 | else | |
5258 | sec_or_hash = r_reloc_get_hash_entry (&src->r_rel); | |
f60ca5e3 | 5259 | hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash); |
e0001a05 | 5260 | } |
43cd72b9 BW |
5261 | return hash_val; |
5262 | } | |
e0001a05 | 5263 | |
e0001a05 | 5264 | |
43cd72b9 | 5265 | /* Check if the specified literal_value has been seen before. */ |
e0001a05 | 5266 | |
43cd72b9 | 5267 | static value_map * |
7fa3d080 BW |
5268 | value_map_get_cached_value (value_map_hash_table *map, |
5269 | const literal_value *val, | |
5270 | bfd_boolean final_static_link) | |
43cd72b9 BW |
5271 | { |
5272 | value_map *map_e; | |
5273 | value_map *bucket; | |
5274 | unsigned idx; | |
5275 | ||
5276 | idx = literal_value_hash (val); | |
5277 | idx = idx & (map->bucket_count - 1); | |
5278 | bucket = map->buckets[idx]; | |
5279 | for (map_e = bucket; map_e; map_e = map_e->next) | |
e0001a05 | 5280 | { |
43cd72b9 BW |
5281 | if (literal_value_equal (&map_e->val, val, final_static_link)) |
5282 | return map_e; | |
5283 | } | |
5284 | return NULL; | |
5285 | } | |
e0001a05 | 5286 | |
e0001a05 | 5287 | |
43cd72b9 BW |
5288 | /* Record a new literal value. It is illegal to call this if VALUE |
5289 | already has an entry here. */ | |
5290 | ||
5291 | static value_map * | |
7fa3d080 BW |
5292 | add_value_map (value_map_hash_table *map, |
5293 | const literal_value *val, | |
5294 | const r_reloc *loc, | |
5295 | bfd_boolean final_static_link) | |
43cd72b9 BW |
5296 | { |
5297 | value_map **bucket_p; | |
5298 | unsigned idx; | |
5299 | ||
5300 | value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map)); | |
5301 | if (val_e == NULL) | |
5302 | { | |
5303 | bfd_set_error (bfd_error_no_memory); | |
5304 | return NULL; | |
e0001a05 NC |
5305 | } |
5306 | ||
43cd72b9 BW |
5307 | BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link)); |
5308 | val_e->val = *val; | |
5309 | val_e->loc = *loc; | |
5310 | ||
5311 | idx = literal_value_hash (val); | |
5312 | idx = idx & (map->bucket_count - 1); | |
5313 | bucket_p = &map->buckets[idx]; | |
5314 | ||
5315 | val_e->next = *bucket_p; | |
5316 | *bucket_p = val_e; | |
5317 | map->count++; | |
5318 | /* FIXME: Consider resizing the hash table if we get too many entries. */ | |
68ffbac6 | 5319 | |
43cd72b9 | 5320 | return val_e; |
e0001a05 NC |
5321 | } |
5322 | ||
43cd72b9 BW |
5323 | \f |
5324 | /* Lists of text actions (ta_) for narrowing, widening, longcall | |
5325 | conversion, space fill, code & literal removal, etc. */ | |
5326 | ||
5327 | /* The following text actions are generated: | |
5328 | ||
07d6d2b8 AM |
5329 | "ta_remove_insn" remove an instruction or instructions |
5330 | "ta_remove_longcall" convert longcall to call | |
43cd72b9 | 5331 | "ta_convert_longcall" convert longcall to nop/call |
07d6d2b8 AM |
5332 | "ta_narrow_insn" narrow a wide instruction |
5333 | "ta_widen" widen a narrow instruction | |
5334 | "ta_fill" add fill or remove fill | |
43cd72b9 BW |
5335 | removed < 0 is a fill; branches to the fill address will be |
5336 | changed to address + fill size (e.g., address - removed) | |
5337 | removed >= 0 branches to the fill address will stay unchanged | |
07d6d2b8 | 5338 | "ta_remove_literal" remove a literal; this action is |
43cd72b9 | 5339 | indicated when a literal is removed |
07d6d2b8 AM |
5340 | or replaced. |
5341 | "ta_add_literal" insert a new literal; this action is | |
5342 | indicated when a literal has been moved. | |
5343 | It may use a virtual_offset because | |
43cd72b9 | 5344 | multiple literals can be placed at the |
07d6d2b8 | 5345 | same location. |
43cd72b9 BW |
5346 | |
5347 | For each of these text actions, we also record the number of bytes | |
5348 | removed by performing the text action. In the case of a "ta_widen" | |
5349 | or a "ta_fill" that adds space, the removed_bytes will be negative. */ | |
5350 | ||
5351 | typedef struct text_action_struct text_action; | |
5352 | typedef struct text_action_list_struct text_action_list; | |
5353 | typedef enum text_action_enum_t text_action_t; | |
5354 | ||
5355 | enum text_action_enum_t | |
5356 | { | |
5357 | ta_none, | |
07d6d2b8 AM |
5358 | ta_remove_insn, /* removed = -size */ |
5359 | ta_remove_longcall, /* removed = -size */ | |
5360 | ta_convert_longcall, /* removed = 0 */ | |
5361 | ta_narrow_insn, /* removed = -1 */ | |
5362 | ta_widen_insn, /* removed = +1 */ | |
5363 | ta_fill, /* removed = +size */ | |
43cd72b9 BW |
5364 | ta_remove_literal, |
5365 | ta_add_literal | |
5366 | }; | |
e0001a05 | 5367 | |
e0001a05 | 5368 | |
43cd72b9 BW |
5369 | /* Structure for a text action record. */ |
5370 | struct text_action_struct | |
e0001a05 | 5371 | { |
43cd72b9 BW |
5372 | text_action_t action; |
5373 | asection *sec; /* Optional */ | |
5374 | bfd_vma offset; | |
5375 | bfd_vma virtual_offset; /* Zero except for adding literals. */ | |
5376 | int removed_bytes; | |
5377 | literal_value value; /* Only valid when adding literals. */ | |
43cd72b9 | 5378 | }; |
e0001a05 | 5379 | |
071aa5c9 MF |
5380 | struct removal_by_action_entry_struct |
5381 | { | |
5382 | bfd_vma offset; | |
5383 | int removed; | |
5384 | int eq_removed; | |
5385 | int eq_removed_before_fill; | |
5386 | }; | |
5387 | typedef struct removal_by_action_entry_struct removal_by_action_entry; | |
5388 | ||
5389 | struct removal_by_action_map_struct | |
5390 | { | |
5391 | unsigned n_entries; | |
5392 | removal_by_action_entry *entry; | |
5393 | }; | |
5394 | typedef struct removal_by_action_map_struct removal_by_action_map; | |
5395 | ||
e0001a05 | 5396 | |
43cd72b9 BW |
5397 | /* List of all of the actions taken on a text section. */ |
5398 | struct text_action_list_struct | |
5399 | { | |
4c2af04f MF |
5400 | unsigned count; |
5401 | splay_tree tree; | |
071aa5c9 | 5402 | removal_by_action_map map; |
43cd72b9 | 5403 | }; |
e0001a05 | 5404 | |
e0001a05 | 5405 | |
7fa3d080 BW |
5406 | static text_action * |
5407 | find_fill_action (text_action_list *l, asection *sec, bfd_vma offset) | |
43cd72b9 | 5408 | { |
4c2af04f | 5409 | text_action a; |
43cd72b9 BW |
5410 | |
5411 | /* It is not necessary to fill at the end of a section. */ | |
5412 | if (sec->size == offset) | |
5413 | return NULL; | |
5414 | ||
4c2af04f MF |
5415 | a.offset = offset; |
5416 | a.action = ta_fill; | |
5417 | ||
5418 | splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a); | |
5419 | if (node) | |
5420 | return (text_action *)node->value; | |
43cd72b9 BW |
5421 | return NULL; |
5422 | } | |
5423 | ||
5424 | ||
5425 | static int | |
7fa3d080 BW |
5426 | compute_removed_action_diff (const text_action *ta, |
5427 | asection *sec, | |
5428 | bfd_vma offset, | |
5429 | int removed, | |
5430 | int removable_space) | |
43cd72b9 BW |
5431 | { |
5432 | int new_removed; | |
5433 | int current_removed = 0; | |
5434 | ||
7fa3d080 | 5435 | if (ta) |
43cd72b9 BW |
5436 | current_removed = ta->removed_bytes; |
5437 | ||
5438 | BFD_ASSERT (ta == NULL || ta->offset == offset); | |
5439 | BFD_ASSERT (ta == NULL || ta->action == ta_fill); | |
5440 | ||
5441 | /* It is not necessary to fill at the end of a section. Clean this up. */ | |
5442 | if (sec->size == offset) | |
5443 | new_removed = removable_space - 0; | |
5444 | else | |
5445 | { | |
5446 | int space; | |
5447 | int added = -removed - current_removed; | |
5448 | /* Ignore multiples of the section alignment. */ | |
5449 | added = ((1 << sec->alignment_power) - 1) & added; | |
5450 | new_removed = (-added); | |
5451 | ||
5452 | /* Modify for removable. */ | |
5453 | space = removable_space - new_removed; | |
5454 | new_removed = (removable_space | |
5455 | - (((1 << sec->alignment_power) - 1) & space)); | |
5456 | } | |
5457 | return (new_removed - current_removed); | |
5458 | } | |
5459 | ||
5460 | ||
7fa3d080 BW |
5461 | static void |
5462 | adjust_fill_action (text_action *ta, int fill_diff) | |
43cd72b9 BW |
5463 | { |
5464 | ta->removed_bytes += fill_diff; | |
5465 | } | |
5466 | ||
5467 | ||
4c2af04f MF |
5468 | static int |
5469 | text_action_compare (splay_tree_key a, splay_tree_key b) | |
5470 | { | |
5471 | text_action *pa = (text_action *)a; | |
5472 | text_action *pb = (text_action *)b; | |
5473 | static const int action_priority[] = | |
5474 | { | |
5475 | [ta_fill] = 0, | |
5476 | [ta_none] = 1, | |
5477 | [ta_convert_longcall] = 2, | |
5478 | [ta_narrow_insn] = 3, | |
5479 | [ta_remove_insn] = 4, | |
5480 | [ta_remove_longcall] = 5, | |
5481 | [ta_remove_literal] = 6, | |
5482 | [ta_widen_insn] = 7, | |
5483 | [ta_add_literal] = 8, | |
5484 | }; | |
5485 | ||
5486 | if (pa->offset == pb->offset) | |
5487 | { | |
5488 | if (pa->action == pb->action) | |
5489 | return 0; | |
5490 | return action_priority[pa->action] - action_priority[pb->action]; | |
5491 | } | |
5492 | else | |
5493 | return pa->offset < pb->offset ? -1 : 1; | |
5494 | } | |
5495 | ||
5496 | static text_action * | |
5497 | action_first (text_action_list *action_list) | |
5498 | { | |
5499 | splay_tree_node node = splay_tree_min (action_list->tree); | |
5500 | return node ? (text_action *)node->value : NULL; | |
5501 | } | |
5502 | ||
5503 | static text_action * | |
5504 | action_next (text_action_list *action_list, text_action *action) | |
5505 | { | |
5506 | splay_tree_node node = splay_tree_successor (action_list->tree, | |
5507 | (splay_tree_key)action); | |
5508 | return node ? (text_action *)node->value : NULL; | |
5509 | } | |
5510 | ||
43cd72b9 BW |
5511 | /* Add a modification action to the text. For the case of adding or |
5512 | removing space, modify any current fill and assume that | |
5513 | "unreachable_space" bytes can be freely contracted. Note that a | |
5514 | negative removed value is a fill. */ | |
5515 | ||
68ffbac6 | 5516 | static void |
7fa3d080 BW |
5517 | text_action_add (text_action_list *l, |
5518 | text_action_t action, | |
5519 | asection *sec, | |
5520 | bfd_vma offset, | |
5521 | int removed) | |
43cd72b9 | 5522 | { |
43cd72b9 | 5523 | text_action *ta; |
4c2af04f | 5524 | text_action a; |
43cd72b9 BW |
5525 | |
5526 | /* It is not necessary to fill at the end of a section. */ | |
5527 | if (action == ta_fill && sec->size == offset) | |
5528 | return; | |
5529 | ||
5530 | /* It is not necessary to fill 0 bytes. */ | |
5531 | if (action == ta_fill && removed == 0) | |
5532 | return; | |
5533 | ||
4c2af04f MF |
5534 | a.action = action; |
5535 | a.offset = offset; | |
5536 | ||
5537 | if (action == ta_fill) | |
43cd72b9 | 5538 | { |
4c2af04f | 5539 | splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a); |
68ffbac6 | 5540 | |
4c2af04f | 5541 | if (node) |
43cd72b9 | 5542 | { |
4c2af04f MF |
5543 | ta = (text_action *)node->value; |
5544 | ta->removed_bytes += removed; | |
5545 | return; | |
43cd72b9 BW |
5546 | } |
5547 | } | |
4c2af04f MF |
5548 | else |
5549 | BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)&a) == NULL); | |
43cd72b9 | 5550 | |
43cd72b9 BW |
5551 | ta = (text_action *) bfd_zmalloc (sizeof (text_action)); |
5552 | ta->action = action; | |
5553 | ta->sec = sec; | |
5554 | ta->offset = offset; | |
5555 | ta->removed_bytes = removed; | |
4c2af04f MF |
5556 | splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta); |
5557 | ++l->count; | |
43cd72b9 BW |
5558 | } |
5559 | ||
5560 | ||
5561 | static void | |
7fa3d080 BW |
5562 | text_action_add_literal (text_action_list *l, |
5563 | text_action_t action, | |
5564 | const r_reloc *loc, | |
5565 | const literal_value *value, | |
5566 | int removed) | |
43cd72b9 | 5567 | { |
43cd72b9 BW |
5568 | text_action *ta; |
5569 | asection *sec = r_reloc_get_section (loc); | |
5570 | bfd_vma offset = loc->target_offset; | |
5571 | bfd_vma virtual_offset = loc->virtual_offset; | |
5572 | ||
5573 | BFD_ASSERT (action == ta_add_literal); | |
5574 | ||
43cd72b9 BW |
5575 | /* Create a new record and fill it up. */ |
5576 | ta = (text_action *) bfd_zmalloc (sizeof (text_action)); | |
5577 | ta->action = action; | |
5578 | ta->sec = sec; | |
5579 | ta->offset = offset; | |
5580 | ta->virtual_offset = virtual_offset; | |
5581 | ta->value = *value; | |
5582 | ta->removed_bytes = removed; | |
4c2af04f MF |
5583 | |
5584 | BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)ta) == NULL); | |
5585 | splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta); | |
5586 | ++l->count; | |
43cd72b9 BW |
5587 | } |
5588 | ||
5589 | ||
03669f1c BW |
5590 | /* Find the total offset adjustment for the relaxations specified by |
5591 | text_actions, beginning from a particular starting action. This is | |
5592 | typically used from offset_with_removed_text to search an entire list of | |
5593 | actions, but it may also be called directly when adjusting adjacent offsets | |
5594 | so that each search may begin where the previous one left off. */ | |
5595 | ||
5596 | static int | |
4c2af04f MF |
5597 | removed_by_actions (text_action_list *action_list, |
5598 | text_action **p_start_action, | |
03669f1c BW |
5599 | bfd_vma offset, |
5600 | bfd_boolean before_fill) | |
43cd72b9 BW |
5601 | { |
5602 | text_action *r; | |
5603 | int removed = 0; | |
5604 | ||
03669f1c | 5605 | r = *p_start_action; |
4c2af04f MF |
5606 | if (r) |
5607 | { | |
5608 | splay_tree_node node = splay_tree_lookup (action_list->tree, | |
5609 | (splay_tree_key)r); | |
5610 | BFD_ASSERT (node != NULL && r == (text_action *)node->value); | |
5611 | } | |
5612 | ||
03669f1c | 5613 | while (r) |
43cd72b9 | 5614 | { |
03669f1c BW |
5615 | if (r->offset > offset) |
5616 | break; | |
5617 | ||
5618 | if (r->offset == offset | |
5619 | && (before_fill || r->action != ta_fill || r->removed_bytes >= 0)) | |
5620 | break; | |
5621 | ||
5622 | removed += r->removed_bytes; | |
5623 | ||
4c2af04f | 5624 | r = action_next (action_list, r); |
43cd72b9 BW |
5625 | } |
5626 | ||
03669f1c BW |
5627 | *p_start_action = r; |
5628 | return removed; | |
5629 | } | |
5630 | ||
5631 | ||
68ffbac6 | 5632 | static bfd_vma |
03669f1c BW |
5633 | offset_with_removed_text (text_action_list *action_list, bfd_vma offset) |
5634 | { | |
4c2af04f MF |
5635 | text_action *r = action_first (action_list); |
5636 | ||
5637 | return offset - removed_by_actions (action_list, &r, offset, FALSE); | |
43cd72b9 BW |
5638 | } |
5639 | ||
5640 | ||
03e94c08 BW |
5641 | static unsigned |
5642 | action_list_count (text_action_list *action_list) | |
5643 | { | |
4c2af04f | 5644 | return action_list->count; |
03e94c08 BW |
5645 | } |
5646 | ||
4c2af04f MF |
5647 | typedef struct map_action_fn_context_struct map_action_fn_context; |
5648 | struct map_action_fn_context_struct | |
071aa5c9 | 5649 | { |
4c2af04f | 5650 | int removed; |
071aa5c9 MF |
5651 | removal_by_action_map map; |
5652 | bfd_boolean eq_complete; | |
4c2af04f | 5653 | }; |
071aa5c9 | 5654 | |
4c2af04f MF |
5655 | static int |
5656 | map_action_fn (splay_tree_node node, void *p) | |
5657 | { | |
5658 | map_action_fn_context *ctx = p; | |
5659 | text_action *r = (text_action *)node->value; | |
5660 | removal_by_action_entry *ientry = ctx->map.entry + ctx->map.n_entries; | |
071aa5c9 | 5661 | |
4c2af04f | 5662 | if (ctx->map.n_entries && (ientry - 1)->offset == r->offset) |
071aa5c9 | 5663 | { |
4c2af04f MF |
5664 | --ientry; |
5665 | } | |
5666 | else | |
5667 | { | |
5668 | ++ctx->map.n_entries; | |
5669 | ctx->eq_complete = FALSE; | |
5670 | ientry->offset = r->offset; | |
5671 | ientry->eq_removed_before_fill = ctx->removed; | |
5672 | } | |
071aa5c9 | 5673 | |
4c2af04f MF |
5674 | if (!ctx->eq_complete) |
5675 | { | |
5676 | if (r->action != ta_fill || r->removed_bytes >= 0) | |
071aa5c9 | 5677 | { |
4c2af04f MF |
5678 | ientry->eq_removed = ctx->removed; |
5679 | ctx->eq_complete = TRUE; | |
071aa5c9 MF |
5680 | } |
5681 | else | |
4c2af04f MF |
5682 | ientry->eq_removed = ctx->removed + r->removed_bytes; |
5683 | } | |
071aa5c9 | 5684 | |
4c2af04f MF |
5685 | ctx->removed += r->removed_bytes; |
5686 | ientry->removed = ctx->removed; | |
5687 | return 0; | |
5688 | } | |
071aa5c9 | 5689 | |
4c2af04f MF |
5690 | static void |
5691 | map_removal_by_action (text_action_list *action_list) | |
5692 | { | |
5693 | map_action_fn_context ctx; | |
5694 | ||
5695 | ctx.removed = 0; | |
5696 | ctx.map.n_entries = 0; | |
5697 | ctx.map.entry = bfd_malloc (action_list_count (action_list) * | |
5698 | sizeof (removal_by_action_entry)); | |
5699 | ctx.eq_complete = FALSE; | |
5700 | ||
5701 | splay_tree_foreach (action_list->tree, map_action_fn, &ctx); | |
5702 | action_list->map = ctx.map; | |
071aa5c9 MF |
5703 | } |
5704 | ||
5705 | static int | |
5706 | removed_by_actions_map (text_action_list *action_list, bfd_vma offset, | |
5707 | bfd_boolean before_fill) | |
5708 | { | |
5709 | unsigned a, b; | |
5710 | ||
5711 | if (!action_list->map.entry) | |
5712 | map_removal_by_action (action_list); | |
5713 | ||
5714 | if (!action_list->map.n_entries) | |
5715 | return 0; | |
5716 | ||
5717 | a = 0; | |
5718 | b = action_list->map.n_entries; | |
5719 | ||
5720 | while (b - a > 1) | |
5721 | { | |
5722 | unsigned c = (a + b) / 2; | |
5723 | ||
5724 | if (action_list->map.entry[c].offset <= offset) | |
5725 | a = c; | |
5726 | else | |
5727 | b = c; | |
5728 | } | |
5729 | ||
5730 | if (action_list->map.entry[a].offset < offset) | |
5731 | { | |
5732 | return action_list->map.entry[a].removed; | |
5733 | } | |
5734 | else if (action_list->map.entry[a].offset == offset) | |
5735 | { | |
5736 | return before_fill ? | |
5737 | action_list->map.entry[a].eq_removed_before_fill : | |
5738 | action_list->map.entry[a].eq_removed; | |
5739 | } | |
5740 | else | |
5741 | { | |
5742 | return 0; | |
5743 | } | |
5744 | } | |
5745 | ||
5746 | static bfd_vma | |
5747 | offset_with_removed_text_map (text_action_list *action_list, bfd_vma offset) | |
5748 | { | |
5749 | int removed = removed_by_actions_map (action_list, offset, FALSE); | |
5750 | return offset - removed; | |
5751 | } | |
5752 | ||
03e94c08 | 5753 | |
43cd72b9 BW |
5754 | /* The find_insn_action routine will only find non-fill actions. */ |
5755 | ||
7fa3d080 BW |
5756 | static text_action * |
5757 | find_insn_action (text_action_list *action_list, bfd_vma offset) | |
43cd72b9 | 5758 | { |
4c2af04f | 5759 | static const text_action_t action[] = |
43cd72b9 | 5760 | { |
4c2af04f MF |
5761 | ta_convert_longcall, |
5762 | ta_remove_longcall, | |
5763 | ta_widen_insn, | |
5764 | ta_narrow_insn, | |
5765 | ta_remove_insn, | |
5766 | }; | |
5767 | text_action a; | |
5768 | unsigned i; | |
5769 | ||
5770 | a.offset = offset; | |
5771 | for (i = 0; i < sizeof (action) / sizeof (*action); ++i) | |
5772 | { | |
5773 | splay_tree_node node; | |
5774 | ||
5775 | a.action = action[i]; | |
5776 | node = splay_tree_lookup (action_list->tree, (splay_tree_key)&a); | |
5777 | if (node) | |
5778 | return (text_action *)node->value; | |
43cd72b9 BW |
5779 | } |
5780 | return NULL; | |
5781 | } | |
5782 | ||
5783 | ||
5784 | #if DEBUG | |
5785 | ||
5786 | static void | |
4c2af04f MF |
5787 | print_action (FILE *fp, text_action *r) |
5788 | { | |
5789 | const char *t = "unknown"; | |
5790 | switch (r->action) | |
5791 | { | |
5792 | case ta_remove_insn: | |
5793 | t = "remove_insn"; break; | |
5794 | case ta_remove_longcall: | |
5795 | t = "remove_longcall"; break; | |
5796 | case ta_convert_longcall: | |
5797 | t = "convert_longcall"; break; | |
5798 | case ta_narrow_insn: | |
5799 | t = "narrow_insn"; break; | |
5800 | case ta_widen_insn: | |
5801 | t = "widen_insn"; break; | |
5802 | case ta_fill: | |
5803 | t = "fill"; break; | |
5804 | case ta_none: | |
5805 | t = "none"; break; | |
5806 | case ta_remove_literal: | |
5807 | t = "remove_literal"; break; | |
5808 | case ta_add_literal: | |
5809 | t = "add_literal"; break; | |
5810 | } | |
5811 | ||
5812 | fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n", | |
5813 | r->sec->owner->filename, | |
5814 | r->sec->name, (unsigned long) r->offset, t, r->removed_bytes); | |
5815 | } | |
5816 | ||
5817 | static int | |
5818 | print_action_list_fn (splay_tree_node node, void *p) | |
43cd72b9 | 5819 | { |
4c2af04f | 5820 | text_action *r = (text_action *)node->value; |
43cd72b9 | 5821 | |
4c2af04f MF |
5822 | print_action (p, r); |
5823 | return 0; | |
5824 | } | |
43cd72b9 | 5825 | |
4c2af04f MF |
5826 | static void |
5827 | print_action_list (FILE *fp, text_action_list *action_list) | |
5828 | { | |
5829 | fprintf (fp, "Text Action\n"); | |
5830 | splay_tree_foreach (action_list->tree, print_action_list_fn, fp); | |
43cd72b9 BW |
5831 | } |
5832 | ||
5833 | #endif /* DEBUG */ | |
5834 | ||
5835 | \f | |
5836 | /* Lists of literals being coalesced or removed. */ | |
5837 | ||
5838 | /* In the usual case, the literal identified by "from" is being | |
5839 | coalesced with another literal identified by "to". If the literal is | |
5840 | unused and is being removed altogether, "to.abfd" will be NULL. | |
5841 | The removed_literal entries are kept on a per-section list, sorted | |
5842 | by the "from" offset field. */ | |
5843 | ||
5844 | typedef struct removed_literal_struct removed_literal; | |
3439c466 | 5845 | typedef struct removed_literal_map_entry_struct removed_literal_map_entry; |
43cd72b9 BW |
5846 | typedef struct removed_literal_list_struct removed_literal_list; |
5847 | ||
5848 | struct removed_literal_struct | |
5849 | { | |
5850 | r_reloc from; | |
5851 | r_reloc to; | |
5852 | removed_literal *next; | |
5853 | }; | |
5854 | ||
3439c466 MF |
5855 | struct removed_literal_map_entry_struct |
5856 | { | |
5857 | bfd_vma addr; | |
5858 | removed_literal *literal; | |
5859 | }; | |
5860 | ||
43cd72b9 BW |
5861 | struct removed_literal_list_struct |
5862 | { | |
5863 | removed_literal *head; | |
5864 | removed_literal *tail; | |
3439c466 MF |
5865 | |
5866 | unsigned n_map; | |
5867 | removed_literal_map_entry *map; | |
43cd72b9 BW |
5868 | }; |
5869 | ||
5870 | ||
43cd72b9 BW |
5871 | /* Record that the literal at "from" is being removed. If "to" is not |
5872 | NULL, the "from" literal is being coalesced with the "to" literal. */ | |
5873 | ||
5874 | static void | |
7fa3d080 BW |
5875 | add_removed_literal (removed_literal_list *removed_list, |
5876 | const r_reloc *from, | |
5877 | const r_reloc *to) | |
43cd72b9 BW |
5878 | { |
5879 | removed_literal *r, *new_r, *next_r; | |
5880 | ||
5881 | new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal)); | |
5882 | ||
5883 | new_r->from = *from; | |
5884 | if (to) | |
5885 | new_r->to = *to; | |
5886 | else | |
5887 | new_r->to.abfd = NULL; | |
5888 | new_r->next = NULL; | |
68ffbac6 | 5889 | |
43cd72b9 | 5890 | r = removed_list->head; |
68ffbac6 | 5891 | if (r == NULL) |
43cd72b9 BW |
5892 | { |
5893 | removed_list->head = new_r; | |
5894 | removed_list->tail = new_r; | |
5895 | } | |
5896 | /* Special check for common case of append. */ | |
5897 | else if (removed_list->tail->from.target_offset < from->target_offset) | |
5898 | { | |
5899 | removed_list->tail->next = new_r; | |
5900 | removed_list->tail = new_r; | |
5901 | } | |
5902 | else | |
5903 | { | |
68ffbac6 | 5904 | while (r->from.target_offset < from->target_offset && r->next) |
43cd72b9 BW |
5905 | { |
5906 | r = r->next; | |
5907 | } | |
5908 | next_r = r->next; | |
5909 | r->next = new_r; | |
5910 | new_r->next = next_r; | |
5911 | if (next_r == NULL) | |
5912 | removed_list->tail = new_r; | |
5913 | } | |
5914 | } | |
5915 | ||
3439c466 MF |
5916 | static void |
5917 | map_removed_literal (removed_literal_list *removed_list) | |
5918 | { | |
5919 | unsigned n_map = 0; | |
5920 | unsigned i; | |
5921 | removed_literal_map_entry *map = NULL; | |
5922 | removed_literal *r = removed_list->head; | |
5923 | ||
5924 | for (i = 0; r; ++i, r = r->next) | |
5925 | { | |
5926 | if (i == n_map) | |
5927 | { | |
5928 | n_map = (n_map * 2) + 2; | |
5929 | map = bfd_realloc (map, n_map * sizeof (*map)); | |
5930 | } | |
5931 | map[i].addr = r->from.target_offset; | |
5932 | map[i].literal = r; | |
5933 | } | |
5934 | removed_list->map = map; | |
5935 | removed_list->n_map = i; | |
5936 | } | |
5937 | ||
5938 | static int | |
5939 | removed_literal_compare (const void *a, const void *b) | |
5940 | { | |
5941 | const removed_literal_map_entry *pa = a; | |
5942 | const removed_literal_map_entry *pb = b; | |
5943 | ||
5944 | if (pa->addr == pb->addr) | |
5945 | return 0; | |
5946 | else | |
5947 | return pa->addr < pb->addr ? -1 : 1; | |
5948 | } | |
43cd72b9 BW |
5949 | |
5950 | /* Check if the list of removed literals contains an entry for the | |
5951 | given address. Return the entry if found. */ | |
5952 | ||
5953 | static removed_literal * | |
7fa3d080 | 5954 | find_removed_literal (removed_literal_list *removed_list, bfd_vma addr) |
43cd72b9 | 5955 | { |
3439c466 MF |
5956 | removed_literal_map_entry *p; |
5957 | removed_literal *r = NULL; | |
5958 | ||
5959 | if (removed_list->map == NULL) | |
5960 | map_removed_literal (removed_list); | |
5961 | ||
5962 | p = bsearch (&addr, removed_list->map, removed_list->n_map, | |
5963 | sizeof (*removed_list->map), removed_literal_compare); | |
5964 | if (p) | |
5965 | { | |
5966 | while (p != removed_list->map && (p - 1)->addr == addr) | |
5967 | --p; | |
5968 | r = p->literal; | |
5969 | } | |
5970 | return r; | |
43cd72b9 BW |
5971 | } |
5972 | ||
5973 | ||
5974 | #if DEBUG | |
5975 | ||
5976 | static void | |
7fa3d080 | 5977 | print_removed_literals (FILE *fp, removed_literal_list *removed_list) |
43cd72b9 BW |
5978 | { |
5979 | removed_literal *r; | |
5980 | r = removed_list->head; | |
5981 | if (r) | |
5982 | fprintf (fp, "Removed Literals\n"); | |
5983 | for (; r != NULL; r = r->next) | |
5984 | { | |
5985 | print_r_reloc (fp, &r->from); | |
5986 | fprintf (fp, " => "); | |
5987 | if (r->to.abfd == NULL) | |
5988 | fprintf (fp, "REMOVED"); | |
5989 | else | |
5990 | print_r_reloc (fp, &r->to); | |
5991 | fprintf (fp, "\n"); | |
5992 | } | |
5993 | } | |
5994 | ||
5995 | #endif /* DEBUG */ | |
5996 | ||
5997 | \f | |
5998 | /* Per-section data for relaxation. */ | |
5999 | ||
6000 | typedef struct reloc_bfd_fix_struct reloc_bfd_fix; | |
6001 | ||
6002 | struct xtensa_relax_info_struct | |
6003 | { | |
6004 | bfd_boolean is_relaxable_literal_section; | |
6005 | bfd_boolean is_relaxable_asm_section; | |
6006 | int visited; /* Number of times visited. */ | |
6007 | ||
6008 | source_reloc *src_relocs; /* Array[src_count]. */ | |
6009 | int src_count; | |
6010 | int src_next; /* Next src_relocs entry to assign. */ | |
6011 | ||
6012 | removed_literal_list removed_list; | |
6013 | text_action_list action_list; | |
6014 | ||
6015 | reloc_bfd_fix *fix_list; | |
6016 | reloc_bfd_fix *fix_array; | |
6017 | unsigned fix_array_count; | |
6018 | ||
6019 | /* Support for expanding the reloc array that is stored | |
6020 | in the section structure. If the relocations have been | |
6021 | reallocated, the newly allocated relocations will be referenced | |
6022 | here along with the actual size allocated. The relocation | |
6023 | count will always be found in the section structure. */ | |
68ffbac6 | 6024 | Elf_Internal_Rela *allocated_relocs; |
43cd72b9 BW |
6025 | unsigned relocs_count; |
6026 | unsigned allocated_relocs_count; | |
6027 | }; | |
6028 | ||
6029 | struct elf_xtensa_section_data | |
6030 | { | |
6031 | struct bfd_elf_section_data elf; | |
6032 | xtensa_relax_info relax_info; | |
6033 | }; | |
6034 | ||
43cd72b9 BW |
6035 | |
6036 | static bfd_boolean | |
7fa3d080 | 6037 | elf_xtensa_new_section_hook (bfd *abfd, asection *sec) |
43cd72b9 | 6038 | { |
f592407e AM |
6039 | if (!sec->used_by_bfd) |
6040 | { | |
6041 | struct elf_xtensa_section_data *sdata; | |
986f0783 | 6042 | size_t amt = sizeof (*sdata); |
43cd72b9 | 6043 | |
f592407e AM |
6044 | sdata = bfd_zalloc (abfd, amt); |
6045 | if (sdata == NULL) | |
6046 | return FALSE; | |
6047 | sec->used_by_bfd = sdata; | |
6048 | } | |
43cd72b9 BW |
6049 | |
6050 | return _bfd_elf_new_section_hook (abfd, sec); | |
6051 | } | |
6052 | ||
6053 | ||
7fa3d080 BW |
6054 | static xtensa_relax_info * |
6055 | get_xtensa_relax_info (asection *sec) | |
6056 | { | |
6057 | struct elf_xtensa_section_data *section_data; | |
6058 | ||
6059 | /* No info available if no section or if it is an output section. */ | |
6060 | if (!sec || sec == sec->output_section) | |
6061 | return NULL; | |
6062 | ||
6063 | section_data = (struct elf_xtensa_section_data *) elf_section_data (sec); | |
6064 | return §ion_data->relax_info; | |
6065 | } | |
6066 | ||
6067 | ||
43cd72b9 | 6068 | static void |
7fa3d080 | 6069 | init_xtensa_relax_info (asection *sec) |
43cd72b9 BW |
6070 | { |
6071 | xtensa_relax_info *relax_info = get_xtensa_relax_info (sec); | |
6072 | ||
6073 | relax_info->is_relaxable_literal_section = FALSE; | |
6074 | relax_info->is_relaxable_asm_section = FALSE; | |
6075 | relax_info->visited = 0; | |
6076 | ||
6077 | relax_info->src_relocs = NULL; | |
6078 | relax_info->src_count = 0; | |
6079 | relax_info->src_next = 0; | |
6080 | ||
6081 | relax_info->removed_list.head = NULL; | |
6082 | relax_info->removed_list.tail = NULL; | |
6083 | ||
4c2af04f MF |
6084 | relax_info->action_list.tree = splay_tree_new (text_action_compare, |
6085 | NULL, NULL); | |
071aa5c9 MF |
6086 | relax_info->action_list.map.n_entries = 0; |
6087 | relax_info->action_list.map.entry = NULL; | |
6088 | ||
43cd72b9 BW |
6089 | relax_info->fix_list = NULL; |
6090 | relax_info->fix_array = NULL; | |
6091 | relax_info->fix_array_count = 0; | |
6092 | ||
68ffbac6 | 6093 | relax_info->allocated_relocs = NULL; |
43cd72b9 BW |
6094 | relax_info->relocs_count = 0; |
6095 | relax_info->allocated_relocs_count = 0; | |
6096 | } | |
6097 | ||
43cd72b9 BW |
6098 | \f |
6099 | /* Coalescing literals may require a relocation to refer to a section in | |
6100 | a different input file, but the standard relocation information | |
6101 | cannot express that. Instead, the reloc_bfd_fix structures are used | |
6102 | to "fix" the relocations that refer to sections in other input files. | |
6103 | These structures are kept on per-section lists. The "src_type" field | |
6104 | records the relocation type in case there are multiple relocations on | |
6105 | the same location. FIXME: This is ugly; an alternative might be to | |
6106 | add new symbols with the "owner" field to some other input file. */ | |
6107 | ||
6108 | struct reloc_bfd_fix_struct | |
6109 | { | |
6110 | asection *src_sec; | |
6111 | bfd_vma src_offset; | |
6112 | unsigned src_type; /* Relocation type. */ | |
68ffbac6 | 6113 | |
43cd72b9 BW |
6114 | asection *target_sec; |
6115 | bfd_vma target_offset; | |
6116 | bfd_boolean translated; | |
68ffbac6 | 6117 | |
43cd72b9 BW |
6118 | reloc_bfd_fix *next; |
6119 | }; | |
6120 | ||
6121 | ||
43cd72b9 | 6122 | static reloc_bfd_fix * |
7fa3d080 BW |
6123 | reloc_bfd_fix_init (asection *src_sec, |
6124 | bfd_vma src_offset, | |
6125 | unsigned src_type, | |
7fa3d080 BW |
6126 | asection *target_sec, |
6127 | bfd_vma target_offset, | |
6128 | bfd_boolean translated) | |
43cd72b9 BW |
6129 | { |
6130 | reloc_bfd_fix *fix; | |
6131 | ||
6132 | fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix)); | |
6133 | fix->src_sec = src_sec; | |
6134 | fix->src_offset = src_offset; | |
6135 | fix->src_type = src_type; | |
43cd72b9 BW |
6136 | fix->target_sec = target_sec; |
6137 | fix->target_offset = target_offset; | |
6138 | fix->translated = translated; | |
6139 | ||
6140 | return fix; | |
6141 | } | |
6142 | ||
6143 | ||
6144 | static void | |
7fa3d080 | 6145 | add_fix (asection *src_sec, reloc_bfd_fix *fix) |
43cd72b9 BW |
6146 | { |
6147 | xtensa_relax_info *relax_info; | |
6148 | ||
6149 | relax_info = get_xtensa_relax_info (src_sec); | |
6150 | fix->next = relax_info->fix_list; | |
6151 | relax_info->fix_list = fix; | |
6152 | } | |
6153 | ||
6154 | ||
6155 | static int | |
7fa3d080 | 6156 | fix_compare (const void *ap, const void *bp) |
43cd72b9 BW |
6157 | { |
6158 | const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap; | |
6159 | const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp; | |
6160 | ||
6161 | if (a->src_offset != b->src_offset) | |
6162 | return (a->src_offset - b->src_offset); | |
6163 | return (a->src_type - b->src_type); | |
6164 | } | |
6165 | ||
6166 | ||
6167 | static void | |
7fa3d080 | 6168 | cache_fix_array (asection *sec) |
43cd72b9 BW |
6169 | { |
6170 | unsigned i, count = 0; | |
6171 | reloc_bfd_fix *r; | |
6172 | xtensa_relax_info *relax_info = get_xtensa_relax_info (sec); | |
6173 | ||
6174 | if (relax_info == NULL) | |
6175 | return; | |
6176 | if (relax_info->fix_list == NULL) | |
6177 | return; | |
6178 | ||
6179 | for (r = relax_info->fix_list; r != NULL; r = r->next) | |
6180 | count++; | |
6181 | ||
6182 | relax_info->fix_array = | |
6183 | (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count); | |
6184 | relax_info->fix_array_count = count; | |
6185 | ||
6186 | r = relax_info->fix_list; | |
6187 | for (i = 0; i < count; i++, r = r->next) | |
6188 | { | |
6189 | relax_info->fix_array[count - 1 - i] = *r; | |
6190 | relax_info->fix_array[count - 1 - i].next = NULL; | |
6191 | } | |
6192 | ||
6193 | qsort (relax_info->fix_array, relax_info->fix_array_count, | |
6194 | sizeof (reloc_bfd_fix), fix_compare); | |
6195 | } | |
6196 | ||
6197 | ||
6198 | static reloc_bfd_fix * | |
7fa3d080 | 6199 | get_bfd_fix (asection *sec, bfd_vma offset, unsigned type) |
43cd72b9 BW |
6200 | { |
6201 | xtensa_relax_info *relax_info = get_xtensa_relax_info (sec); | |
6202 | reloc_bfd_fix *rv; | |
6203 | reloc_bfd_fix key; | |
6204 | ||
6205 | if (relax_info == NULL) | |
6206 | return NULL; | |
6207 | if (relax_info->fix_list == NULL) | |
6208 | return NULL; | |
6209 | ||
6210 | if (relax_info->fix_array == NULL) | |
6211 | cache_fix_array (sec); | |
6212 | ||
6213 | key.src_offset = offset; | |
6214 | key.src_type = type; | |
6215 | rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count, | |
6216 | sizeof (reloc_bfd_fix), fix_compare); | |
6217 | return rv; | |
6218 | } | |
6219 | ||
6220 | \f | |
6221 | /* Section caching. */ | |
6222 | ||
6223 | typedef struct section_cache_struct section_cache_t; | |
6224 | ||
6225 | struct section_cache_struct | |
6226 | { | |
6227 | asection *sec; | |
6228 | ||
6229 | bfd_byte *contents; /* Cache of the section contents. */ | |
6230 | bfd_size_type content_length; | |
6231 | ||
6232 | property_table_entry *ptbl; /* Cache of the section property table. */ | |
6233 | unsigned pte_count; | |
6234 | ||
6235 | Elf_Internal_Rela *relocs; /* Cache of the section relocations. */ | |
6236 | unsigned reloc_count; | |
6237 | }; | |
6238 | ||
6239 | ||
7fa3d080 BW |
6240 | static void |
6241 | init_section_cache (section_cache_t *sec_cache) | |
6242 | { | |
6243 | memset (sec_cache, 0, sizeof (*sec_cache)); | |
6244 | } | |
43cd72b9 BW |
6245 | |
6246 | ||
6247 | static void | |
65e911f9 | 6248 | free_section_cache (section_cache_t *sec_cache) |
43cd72b9 | 6249 | { |
7fa3d080 BW |
6250 | if (sec_cache->sec) |
6251 | { | |
6252 | release_contents (sec_cache->sec, sec_cache->contents); | |
6253 | release_internal_relocs (sec_cache->sec, sec_cache->relocs); | |
6254 | if (sec_cache->ptbl) | |
6255 | free (sec_cache->ptbl); | |
7fa3d080 | 6256 | } |
43cd72b9 BW |
6257 | } |
6258 | ||
6259 | ||
6260 | static bfd_boolean | |
7fa3d080 BW |
6261 | section_cache_section (section_cache_t *sec_cache, |
6262 | asection *sec, | |
6263 | struct bfd_link_info *link_info) | |
43cd72b9 BW |
6264 | { |
6265 | bfd *abfd; | |
6266 | property_table_entry *prop_table = NULL; | |
6267 | int ptblsize = 0; | |
6268 | bfd_byte *contents = NULL; | |
6269 | Elf_Internal_Rela *internal_relocs = NULL; | |
6270 | bfd_size_type sec_size; | |
6271 | ||
6272 | if (sec == NULL) | |
6273 | return FALSE; | |
6274 | if (sec == sec_cache->sec) | |
6275 | return TRUE; | |
6276 | ||
6277 | abfd = sec->owner; | |
6278 | sec_size = bfd_get_section_limit (abfd, sec); | |
6279 | ||
6280 | /* Get the contents. */ | |
6281 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
6282 | if (contents == NULL && sec_size != 0) | |
6283 | goto err; | |
6284 | ||
6285 | /* Get the relocations. */ | |
6286 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
6287 | link_info->keep_memory); | |
6288 | ||
6289 | /* Get the entry table. */ | |
6290 | ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table, | |
6291 | XTENSA_PROP_SEC_NAME, FALSE); | |
6292 | if (ptblsize < 0) | |
6293 | goto err; | |
6294 | ||
6295 | /* Fill in the new section cache. */ | |
65e911f9 AM |
6296 | free_section_cache (sec_cache); |
6297 | init_section_cache (sec_cache); | |
43cd72b9 BW |
6298 | |
6299 | sec_cache->sec = sec; | |
6300 | sec_cache->contents = contents; | |
6301 | sec_cache->content_length = sec_size; | |
6302 | sec_cache->relocs = internal_relocs; | |
6303 | sec_cache->reloc_count = sec->reloc_count; | |
6304 | sec_cache->pte_count = ptblsize; | |
6305 | sec_cache->ptbl = prop_table; | |
6306 | ||
6307 | return TRUE; | |
6308 | ||
6309 | err: | |
6310 | release_contents (sec, contents); | |
6311 | release_internal_relocs (sec, internal_relocs); | |
6312 | if (prop_table) | |
6313 | free (prop_table); | |
6314 | return FALSE; | |
6315 | } | |
6316 | ||
43cd72b9 BW |
6317 | \f |
6318 | /* Extended basic blocks. */ | |
6319 | ||
6320 | /* An ebb_struct represents an Extended Basic Block. Within this | |
6321 | range, we guarantee that all instructions are decodable, the | |
6322 | property table entries are contiguous, and no property table | |
6323 | specifies a segment that cannot have instructions moved. This | |
6324 | structure contains caches of the contents, property table and | |
6325 | relocations for the specified section for easy use. The range is | |
6326 | specified by ranges of indices for the byte offset, property table | |
6327 | offsets and relocation offsets. These must be consistent. */ | |
6328 | ||
6329 | typedef struct ebb_struct ebb_t; | |
6330 | ||
6331 | struct ebb_struct | |
6332 | { | |
6333 | asection *sec; | |
6334 | ||
6335 | bfd_byte *contents; /* Cache of the section contents. */ | |
6336 | bfd_size_type content_length; | |
6337 | ||
6338 | property_table_entry *ptbl; /* Cache of the section property table. */ | |
6339 | unsigned pte_count; | |
6340 | ||
6341 | Elf_Internal_Rela *relocs; /* Cache of the section relocations. */ | |
6342 | unsigned reloc_count; | |
6343 | ||
6344 | bfd_vma start_offset; /* Offset in section. */ | |
6345 | unsigned start_ptbl_idx; /* Offset in the property table. */ | |
6346 | unsigned start_reloc_idx; /* Offset in the relocations. */ | |
6347 | ||
6348 | bfd_vma end_offset; | |
6349 | unsigned end_ptbl_idx; | |
6350 | unsigned end_reloc_idx; | |
6351 | ||
6352 | bfd_boolean ends_section; /* Is this the last ebb in a section? */ | |
6353 | ||
6354 | /* The unreachable property table at the end of this set of blocks; | |
6355 | NULL if the end is not an unreachable block. */ | |
6356 | property_table_entry *ends_unreachable; | |
6357 | }; | |
6358 | ||
6359 | ||
6360 | enum ebb_target_enum | |
6361 | { | |
6362 | EBB_NO_ALIGN = 0, | |
6363 | EBB_DESIRE_TGT_ALIGN, | |
6364 | EBB_REQUIRE_TGT_ALIGN, | |
6365 | EBB_REQUIRE_LOOP_ALIGN, | |
6366 | EBB_REQUIRE_ALIGN | |
6367 | }; | |
6368 | ||
6369 | ||
6370 | /* proposed_action_struct is similar to the text_action_struct except | |
6371 | that is represents a potential transformation, not one that will | |
6372 | occur. We build a list of these for an extended basic block | |
6373 | and use them to compute the actual actions desired. We must be | |
6374 | careful that the entire set of actual actions we perform do not | |
6375 | break any relocations that would fit if the actions were not | |
6376 | performed. */ | |
6377 | ||
6378 | typedef struct proposed_action_struct proposed_action; | |
6379 | ||
6380 | struct proposed_action_struct | |
6381 | { | |
6382 | enum ebb_target_enum align_type; /* for the target alignment */ | |
6383 | bfd_vma alignment_pow; | |
6384 | text_action_t action; | |
6385 | bfd_vma offset; | |
6386 | int removed_bytes; | |
6387 | bfd_boolean do_action; /* If false, then we will not perform the action. */ | |
6388 | }; | |
6389 | ||
6390 | ||
6391 | /* The ebb_constraint_struct keeps a set of proposed actions for an | |
6392 | extended basic block. */ | |
6393 | ||
6394 | typedef struct ebb_constraint_struct ebb_constraint; | |
6395 | ||
6396 | struct ebb_constraint_struct | |
6397 | { | |
6398 | ebb_t ebb; | |
6399 | bfd_boolean start_movable; | |
6400 | ||
6401 | /* Bytes of extra space at the beginning if movable. */ | |
6402 | int start_extra_space; | |
6403 | ||
6404 | enum ebb_target_enum start_align; | |
6405 | ||
6406 | bfd_boolean end_movable; | |
6407 | ||
6408 | /* Bytes of extra space at the end if movable. */ | |
6409 | int end_extra_space; | |
6410 | ||
6411 | unsigned action_count; | |
6412 | unsigned action_allocated; | |
6413 | ||
6414 | /* Array of proposed actions. */ | |
6415 | proposed_action *actions; | |
6416 | ||
6417 | /* Action alignments -- one for each proposed action. */ | |
6418 | enum ebb_target_enum *action_aligns; | |
6419 | }; | |
6420 | ||
6421 | ||
43cd72b9 | 6422 | static void |
7fa3d080 | 6423 | init_ebb_constraint (ebb_constraint *c) |
43cd72b9 BW |
6424 | { |
6425 | memset (c, 0, sizeof (ebb_constraint)); | |
6426 | } | |
6427 | ||
6428 | ||
6429 | static void | |
7fa3d080 | 6430 | free_ebb_constraint (ebb_constraint *c) |
43cd72b9 | 6431 | { |
7fa3d080 | 6432 | if (c->actions) |
43cd72b9 BW |
6433 | free (c->actions); |
6434 | } | |
6435 | ||
6436 | ||
6437 | static void | |
7fa3d080 BW |
6438 | init_ebb (ebb_t *ebb, |
6439 | asection *sec, | |
6440 | bfd_byte *contents, | |
6441 | bfd_size_type content_length, | |
6442 | property_table_entry *prop_table, | |
6443 | unsigned ptblsize, | |
6444 | Elf_Internal_Rela *internal_relocs, | |
6445 | unsigned reloc_count) | |
43cd72b9 BW |
6446 | { |
6447 | memset (ebb, 0, sizeof (ebb_t)); | |
6448 | ebb->sec = sec; | |
6449 | ebb->contents = contents; | |
6450 | ebb->content_length = content_length; | |
6451 | ebb->ptbl = prop_table; | |
6452 | ebb->pte_count = ptblsize; | |
6453 | ebb->relocs = internal_relocs; | |
6454 | ebb->reloc_count = reloc_count; | |
6455 | ebb->start_offset = 0; | |
6456 | ebb->end_offset = ebb->content_length - 1; | |
6457 | ebb->start_ptbl_idx = 0; | |
6458 | ebb->end_ptbl_idx = ptblsize; | |
6459 | ebb->start_reloc_idx = 0; | |
6460 | ebb->end_reloc_idx = reloc_count; | |
6461 | } | |
6462 | ||
6463 | ||
6464 | /* Extend the ebb to all decodable contiguous sections. The algorithm | |
6465 | for building a basic block around an instruction is to push it | |
6466 | forward until we hit the end of a section, an unreachable block or | |
6467 | a block that cannot be transformed. Then we push it backwards | |
6468 | searching for similar conditions. */ | |
6469 | ||
7fa3d080 BW |
6470 | static bfd_boolean extend_ebb_bounds_forward (ebb_t *); |
6471 | static bfd_boolean extend_ebb_bounds_backward (ebb_t *); | |
6472 | static bfd_size_type insn_block_decodable_len | |
6473 | (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type); | |
6474 | ||
43cd72b9 | 6475 | static bfd_boolean |
7fa3d080 | 6476 | extend_ebb_bounds (ebb_t *ebb) |
43cd72b9 BW |
6477 | { |
6478 | if (!extend_ebb_bounds_forward (ebb)) | |
6479 | return FALSE; | |
6480 | if (!extend_ebb_bounds_backward (ebb)) | |
6481 | return FALSE; | |
6482 | return TRUE; | |
6483 | } | |
6484 | ||
6485 | ||
6486 | static bfd_boolean | |
7fa3d080 | 6487 | extend_ebb_bounds_forward (ebb_t *ebb) |
43cd72b9 BW |
6488 | { |
6489 | property_table_entry *the_entry, *new_entry; | |
6490 | ||
6491 | the_entry = &ebb->ptbl[ebb->end_ptbl_idx]; | |
6492 | ||
6493 | /* Stop when (1) we cannot decode an instruction, (2) we are at | |
6494 | the end of the property tables, (3) we hit a non-contiguous property | |
6495 | table entry, (4) we hit a NO_TRANSFORM region. */ | |
6496 | ||
6497 | while (1) | |
6498 | { | |
6499 | bfd_vma entry_end; | |
6500 | bfd_size_type insn_block_len; | |
6501 | ||
6502 | entry_end = the_entry->address - ebb->sec->vma + the_entry->size; | |
6503 | insn_block_len = | |
6504 | insn_block_decodable_len (ebb->contents, ebb->content_length, | |
6505 | ebb->end_offset, | |
6506 | entry_end - ebb->end_offset); | |
6507 | if (insn_block_len != (entry_end - ebb->end_offset)) | |
6508 | { | |
4eca0228 | 6509 | _bfd_error_handler |
695344c0 | 6510 | /* xgettext:c-format */ |
2dcf00ce | 6511 | (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; " |
d42c267e | 6512 | "possible configuration mismatch"), |
2dcf00ce AM |
6513 | ebb->sec->owner, ebb->sec, |
6514 | (uint64_t) (ebb->end_offset + insn_block_len)); | |
43cd72b9 BW |
6515 | return FALSE; |
6516 | } | |
6517 | ebb->end_offset += insn_block_len; | |
6518 | ||
6519 | if (ebb->end_offset == ebb->sec->size) | |
6520 | ebb->ends_section = TRUE; | |
6521 | ||
6522 | /* Update the reloc counter. */ | |
6523 | while (ebb->end_reloc_idx + 1 < ebb->reloc_count | |
6524 | && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset | |
6525 | < ebb->end_offset)) | |
6526 | { | |
6527 | ebb->end_reloc_idx++; | |
6528 | } | |
6529 | ||
6530 | if (ebb->end_ptbl_idx + 1 == ebb->pte_count) | |
6531 | return TRUE; | |
6532 | ||
6533 | new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1]; | |
6534 | if (((new_entry->flags & XTENSA_PROP_INSN) == 0) | |
99ded152 | 6535 | || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0) |
43cd72b9 BW |
6536 | || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0)) |
6537 | break; | |
6538 | ||
6539 | if (the_entry->address + the_entry->size != new_entry->address) | |
6540 | break; | |
6541 | ||
6542 | the_entry = new_entry; | |
6543 | ebb->end_ptbl_idx++; | |
6544 | } | |
6545 | ||
6546 | /* Quick check for an unreachable or end of file just at the end. */ | |
6547 | if (ebb->end_ptbl_idx + 1 == ebb->pte_count) | |
6548 | { | |
6549 | if (ebb->end_offset == ebb->content_length) | |
6550 | ebb->ends_section = TRUE; | |
6551 | } | |
6552 | else | |
6553 | { | |
6554 | new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1]; | |
6555 | if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0 | |
6556 | && the_entry->address + the_entry->size == new_entry->address) | |
6557 | ebb->ends_unreachable = new_entry; | |
6558 | } | |
6559 | ||
6560 | /* Any other ending requires exact alignment. */ | |
6561 | return TRUE; | |
6562 | } | |
6563 | ||
6564 | ||
6565 | static bfd_boolean | |
7fa3d080 | 6566 | extend_ebb_bounds_backward (ebb_t *ebb) |
43cd72b9 BW |
6567 | { |
6568 | property_table_entry *the_entry, *new_entry; | |
6569 | ||
6570 | the_entry = &ebb->ptbl[ebb->start_ptbl_idx]; | |
6571 | ||
6572 | /* Stop when (1) we cannot decode the instructions in the current entry. | |
6573 | (2) we are at the beginning of the property tables, (3) we hit a | |
6574 | non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */ | |
6575 | ||
6576 | while (1) | |
6577 | { | |
6578 | bfd_vma block_begin; | |
6579 | bfd_size_type insn_block_len; | |
6580 | ||
6581 | block_begin = the_entry->address - ebb->sec->vma; | |
6582 | insn_block_len = | |
6583 | insn_block_decodable_len (ebb->contents, ebb->content_length, | |
6584 | block_begin, | |
6585 | ebb->start_offset - block_begin); | |
6586 | if (insn_block_len != ebb->start_offset - block_begin) | |
6587 | { | |
4eca0228 | 6588 | _bfd_error_handler |
695344c0 | 6589 | /* xgettext:c-format */ |
2dcf00ce | 6590 | (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; " |
d42c267e | 6591 | "possible configuration mismatch"), |
2dcf00ce AM |
6592 | ebb->sec->owner, ebb->sec, |
6593 | (uint64_t) (ebb->end_offset + insn_block_len)); | |
43cd72b9 BW |
6594 | return FALSE; |
6595 | } | |
6596 | ebb->start_offset -= insn_block_len; | |
6597 | ||
6598 | /* Update the reloc counter. */ | |
6599 | while (ebb->start_reloc_idx > 0 | |
6600 | && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset | |
6601 | >= ebb->start_offset)) | |
6602 | { | |
6603 | ebb->start_reloc_idx--; | |
6604 | } | |
6605 | ||
6606 | if (ebb->start_ptbl_idx == 0) | |
6607 | return TRUE; | |
6608 | ||
6609 | new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1]; | |
6610 | if ((new_entry->flags & XTENSA_PROP_INSN) == 0 | |
99ded152 | 6611 | || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0) |
43cd72b9 BW |
6612 | || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0)) |
6613 | return TRUE; | |
6614 | if (new_entry->address + new_entry->size != the_entry->address) | |
6615 | return TRUE; | |
6616 | ||
6617 | the_entry = new_entry; | |
6618 | ebb->start_ptbl_idx--; | |
6619 | } | |
6620 | return TRUE; | |
6621 | } | |
6622 | ||
6623 | ||
6624 | static bfd_size_type | |
7fa3d080 BW |
6625 | insn_block_decodable_len (bfd_byte *contents, |
6626 | bfd_size_type content_len, | |
6627 | bfd_vma block_offset, | |
6628 | bfd_size_type block_len) | |
43cd72b9 BW |
6629 | { |
6630 | bfd_vma offset = block_offset; | |
6631 | ||
6632 | while (offset < block_offset + block_len) | |
6633 | { | |
6634 | bfd_size_type insn_len = 0; | |
6635 | ||
6636 | insn_len = insn_decode_len (contents, content_len, offset); | |
6637 | if (insn_len == 0) | |
6638 | return (offset - block_offset); | |
6639 | offset += insn_len; | |
6640 | } | |
6641 | return (offset - block_offset); | |
6642 | } | |
6643 | ||
6644 | ||
6645 | static void | |
7fa3d080 | 6646 | ebb_propose_action (ebb_constraint *c, |
7fa3d080 | 6647 | enum ebb_target_enum align_type, |
288f74fa | 6648 | bfd_vma alignment_pow, |
7fa3d080 BW |
6649 | text_action_t action, |
6650 | bfd_vma offset, | |
6651 | int removed_bytes, | |
6652 | bfd_boolean do_action) | |
43cd72b9 | 6653 | { |
b08b5071 | 6654 | proposed_action *act; |
43cd72b9 | 6655 | |
43cd72b9 BW |
6656 | if (c->action_allocated <= c->action_count) |
6657 | { | |
b08b5071 | 6658 | unsigned new_allocated, i; |
823fc61f | 6659 | proposed_action *new_actions; |
b08b5071 BW |
6660 | |
6661 | new_allocated = (c->action_count + 2) * 2; | |
823fc61f | 6662 | new_actions = (proposed_action *) |
43cd72b9 BW |
6663 | bfd_zmalloc (sizeof (proposed_action) * new_allocated); |
6664 | ||
6665 | for (i = 0; i < c->action_count; i++) | |
6666 | new_actions[i] = c->actions[i]; | |
7fa3d080 | 6667 | if (c->actions) |
43cd72b9 BW |
6668 | free (c->actions); |
6669 | c->actions = new_actions; | |
6670 | c->action_allocated = new_allocated; | |
6671 | } | |
b08b5071 BW |
6672 | |
6673 | act = &c->actions[c->action_count]; | |
6674 | act->align_type = align_type; | |
6675 | act->alignment_pow = alignment_pow; | |
6676 | act->action = action; | |
6677 | act->offset = offset; | |
6678 | act->removed_bytes = removed_bytes; | |
6679 | act->do_action = do_action; | |
6680 | ||
43cd72b9 BW |
6681 | c->action_count++; |
6682 | } | |
6683 | ||
6684 | \f | |
6685 | /* Access to internal relocations, section contents and symbols. */ | |
6686 | ||
6687 | /* During relaxation, we need to modify relocations, section contents, | |
6688 | and symbol definitions, and we need to keep the original values from | |
6689 | being reloaded from the input files, i.e., we need to "pin" the | |
6690 | modified values in memory. We also want to continue to observe the | |
6691 | setting of the "keep-memory" flag. The following functions wrap the | |
6692 | standard BFD functions to take care of this for us. */ | |
6693 | ||
6694 | static Elf_Internal_Rela * | |
7fa3d080 | 6695 | retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory) |
43cd72b9 BW |
6696 | { |
6697 | Elf_Internal_Rela *internal_relocs; | |
6698 | ||
6699 | if ((sec->flags & SEC_LINKER_CREATED) != 0) | |
6700 | return NULL; | |
6701 | ||
6702 | internal_relocs = elf_section_data (sec)->relocs; | |
6703 | if (internal_relocs == NULL) | |
6704 | internal_relocs = (_bfd_elf_link_read_relocs | |
7fa3d080 | 6705 | (abfd, sec, NULL, NULL, keep_memory)); |
43cd72b9 BW |
6706 | return internal_relocs; |
6707 | } | |
6708 | ||
6709 | ||
6710 | static void | |
7fa3d080 | 6711 | pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs) |
43cd72b9 BW |
6712 | { |
6713 | elf_section_data (sec)->relocs = internal_relocs; | |
6714 | } | |
6715 | ||
6716 | ||
6717 | static void | |
7fa3d080 | 6718 | release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs) |
43cd72b9 BW |
6719 | { |
6720 | if (internal_relocs | |
6721 | && elf_section_data (sec)->relocs != internal_relocs) | |
6722 | free (internal_relocs); | |
6723 | } | |
6724 | ||
6725 | ||
6726 | static bfd_byte * | |
7fa3d080 | 6727 | retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory) |
43cd72b9 BW |
6728 | { |
6729 | bfd_byte *contents; | |
6730 | bfd_size_type sec_size; | |
6731 | ||
6732 | sec_size = bfd_get_section_limit (abfd, sec); | |
6733 | contents = elf_section_data (sec)->this_hdr.contents; | |
68ffbac6 | 6734 | |
43cd72b9 BW |
6735 | if (contents == NULL && sec_size != 0) |
6736 | { | |
6737 | if (!bfd_malloc_and_get_section (abfd, sec, &contents)) | |
6738 | { | |
7fa3d080 | 6739 | if (contents) |
43cd72b9 BW |
6740 | free (contents); |
6741 | return NULL; | |
6742 | } | |
68ffbac6 | 6743 | if (keep_memory) |
43cd72b9 BW |
6744 | elf_section_data (sec)->this_hdr.contents = contents; |
6745 | } | |
6746 | return contents; | |
6747 | } | |
6748 | ||
6749 | ||
6750 | static void | |
7fa3d080 | 6751 | pin_contents (asection *sec, bfd_byte *contents) |
43cd72b9 BW |
6752 | { |
6753 | elf_section_data (sec)->this_hdr.contents = contents; | |
6754 | } | |
6755 | ||
6756 | ||
6757 | static void | |
7fa3d080 | 6758 | release_contents (asection *sec, bfd_byte *contents) |
43cd72b9 BW |
6759 | { |
6760 | if (contents && elf_section_data (sec)->this_hdr.contents != contents) | |
6761 | free (contents); | |
6762 | } | |
6763 | ||
6764 | ||
6765 | static Elf_Internal_Sym * | |
7fa3d080 | 6766 | retrieve_local_syms (bfd *input_bfd) |
43cd72b9 BW |
6767 | { |
6768 | Elf_Internal_Shdr *symtab_hdr; | |
6769 | Elf_Internal_Sym *isymbuf; | |
6770 | size_t locsymcount; | |
6771 | ||
6772 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
6773 | locsymcount = symtab_hdr->sh_info; | |
6774 | ||
6775 | isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; | |
6776 | if (isymbuf == NULL && locsymcount != 0) | |
6777 | isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0, | |
6778 | NULL, NULL, NULL); | |
6779 | ||
6780 | /* Save the symbols for this input file so they won't be read again. */ | |
6781 | if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents) | |
6782 | symtab_hdr->contents = (unsigned char *) isymbuf; | |
6783 | ||
6784 | return isymbuf; | |
6785 | } | |
6786 | ||
6787 | \f | |
6788 | /* Code for link-time relaxation. */ | |
6789 | ||
6790 | /* Initialization for relaxation: */ | |
7fa3d080 | 6791 | static bfd_boolean analyze_relocations (struct bfd_link_info *); |
43cd72b9 | 6792 | static bfd_boolean find_relaxable_sections |
7fa3d080 | 6793 | (bfd *, asection *, struct bfd_link_info *, bfd_boolean *); |
43cd72b9 | 6794 | static bfd_boolean collect_source_relocs |
7fa3d080 | 6795 | (bfd *, asection *, struct bfd_link_info *); |
43cd72b9 | 6796 | static bfd_boolean is_resolvable_asm_expansion |
7fa3d080 BW |
6797 | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *, |
6798 | bfd_boolean *); | |
43cd72b9 | 6799 | static Elf_Internal_Rela *find_associated_l32r_irel |
7fa3d080 | 6800 | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *); |
43cd72b9 | 6801 | static bfd_boolean compute_text_actions |
7fa3d080 BW |
6802 | (bfd *, asection *, struct bfd_link_info *); |
6803 | static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *); | |
6804 | static bfd_boolean compute_ebb_actions (ebb_constraint *); | |
b2b326d2 | 6805 | typedef struct reloc_range_list_struct reloc_range_list; |
43cd72b9 | 6806 | static bfd_boolean check_section_ebb_pcrels_fit |
b2b326d2 MF |
6807 | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, |
6808 | reloc_range_list *, const ebb_constraint *, | |
cb337148 | 6809 | const xtensa_opcode *); |
7fa3d080 | 6810 | static bfd_boolean check_section_ebb_reduces (const ebb_constraint *); |
43cd72b9 | 6811 | static void text_action_add_proposed |
7fa3d080 | 6812 | (text_action_list *, const ebb_constraint *, asection *); |
43cd72b9 BW |
6813 | |
6814 | /* First pass: */ | |
6815 | static bfd_boolean compute_removed_literals | |
7fa3d080 | 6816 | (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *); |
43cd72b9 | 6817 | static Elf_Internal_Rela *get_irel_at_offset |
7fa3d080 | 6818 | (asection *, Elf_Internal_Rela *, bfd_vma); |
68ffbac6 | 6819 | static bfd_boolean is_removable_literal |
99ded152 BW |
6820 | (const source_reloc *, int, const source_reloc *, int, asection *, |
6821 | property_table_entry *, int); | |
43cd72b9 | 6822 | static bfd_boolean remove_dead_literal |
7fa3d080 | 6823 | (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *, |
68ffbac6 | 6824 | Elf_Internal_Rela *, source_reloc *, property_table_entry *, int); |
7fa3d080 BW |
6825 | static bfd_boolean identify_literal_placement |
6826 | (bfd *, asection *, bfd_byte *, struct bfd_link_info *, | |
6827 | value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int, | |
6828 | source_reloc *, property_table_entry *, int, section_cache_t *, | |
6829 | bfd_boolean); | |
6830 | static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *); | |
43cd72b9 | 6831 | static bfd_boolean coalesce_shared_literal |
7fa3d080 | 6832 | (asection *, source_reloc *, property_table_entry *, int, value_map *); |
43cd72b9 | 6833 | static bfd_boolean move_shared_literal |
7fa3d080 BW |
6834 | (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *, |
6835 | int, const r_reloc *, const literal_value *, section_cache_t *); | |
43cd72b9 BW |
6836 | |
6837 | /* Second pass: */ | |
7fa3d080 BW |
6838 | static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *); |
6839 | static bfd_boolean translate_section_fixes (asection *); | |
6840 | static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *); | |
9b7f5d20 | 6841 | static asection *translate_reloc (const r_reloc *, r_reloc *, asection *); |
43cd72b9 | 6842 | static void shrink_dynamic_reloc_sections |
7fa3d080 | 6843 | (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *); |
43cd72b9 | 6844 | static bfd_boolean move_literal |
7fa3d080 BW |
6845 | (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *, |
6846 | xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *); | |
43cd72b9 | 6847 | static bfd_boolean relax_property_section |
7fa3d080 | 6848 | (bfd *, asection *, struct bfd_link_info *); |
43cd72b9 BW |
6849 | |
6850 | /* Third pass: */ | |
7fa3d080 | 6851 | static bfd_boolean relax_section_symbols (bfd *, asection *); |
43cd72b9 BW |
6852 | |
6853 | ||
68ffbac6 | 6854 | static bfd_boolean |
7fa3d080 BW |
6855 | elf_xtensa_relax_section (bfd *abfd, |
6856 | asection *sec, | |
6857 | struct bfd_link_info *link_info, | |
6858 | bfd_boolean *again) | |
43cd72b9 BW |
6859 | { |
6860 | static value_map_hash_table *values = NULL; | |
6861 | static bfd_boolean relocations_analyzed = FALSE; | |
6862 | xtensa_relax_info *relax_info; | |
6863 | ||
6864 | if (!relocations_analyzed) | |
6865 | { | |
6866 | /* Do some overall initialization for relaxation. */ | |
6867 | values = value_map_hash_table_init (); | |
6868 | if (values == NULL) | |
6869 | return FALSE; | |
6870 | relaxing_section = TRUE; | |
6871 | if (!analyze_relocations (link_info)) | |
6872 | return FALSE; | |
6873 | relocations_analyzed = TRUE; | |
6874 | } | |
6875 | *again = FALSE; | |
6876 | ||
6877 | /* Don't mess with linker-created sections. */ | |
6878 | if ((sec->flags & SEC_LINKER_CREATED) != 0) | |
6879 | return TRUE; | |
6880 | ||
6881 | relax_info = get_xtensa_relax_info (sec); | |
6882 | BFD_ASSERT (relax_info != NULL); | |
6883 | ||
6884 | switch (relax_info->visited) | |
6885 | { | |
6886 | case 0: | |
6887 | /* Note: It would be nice to fold this pass into | |
6888 | analyze_relocations, but it is important for this step that the | |
6889 | sections be examined in link order. */ | |
6890 | if (!compute_removed_literals (abfd, sec, link_info, values)) | |
6891 | return FALSE; | |
6892 | *again = TRUE; | |
6893 | break; | |
6894 | ||
6895 | case 1: | |
6896 | if (values) | |
6897 | value_map_hash_table_delete (values); | |
6898 | values = NULL; | |
6899 | if (!relax_section (abfd, sec, link_info)) | |
6900 | return FALSE; | |
6901 | *again = TRUE; | |
6902 | break; | |
6903 | ||
6904 | case 2: | |
6905 | if (!relax_section_symbols (abfd, sec)) | |
6906 | return FALSE; | |
6907 | break; | |
6908 | } | |
6909 | ||
6910 | relax_info->visited++; | |
6911 | return TRUE; | |
6912 | } | |
6913 | ||
6914 | \f | |
6915 | /* Initialization for relaxation. */ | |
6916 | ||
6917 | /* This function is called once at the start of relaxation. It scans | |
6918 | all the input sections and marks the ones that are relaxable (i.e., | |
6919 | literal sections with L32R relocations against them), and then | |
6920 | collects source_reloc information for all the relocations against | |
6921 | those relaxable sections. During this process, it also detects | |
6922 | longcalls, i.e., calls relaxed by the assembler into indirect | |
6923 | calls, that can be optimized back into direct calls. Within each | |
6924 | extended basic block (ebb) containing an optimized longcall, it | |
6925 | computes a set of "text actions" that can be performed to remove | |
6926 | the L32R associated with the longcall while optionally preserving | |
6927 | branch target alignments. */ | |
6928 | ||
6929 | static bfd_boolean | |
7fa3d080 | 6930 | analyze_relocations (struct bfd_link_info *link_info) |
43cd72b9 BW |
6931 | { |
6932 | bfd *abfd; | |
6933 | asection *sec; | |
6934 | bfd_boolean is_relaxable = FALSE; | |
6935 | ||
6936 | /* Initialize the per-section relaxation info. */ | |
c72f2fb2 | 6937 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next) |
43cd72b9 BW |
6938 | for (sec = abfd->sections; sec != NULL; sec = sec->next) |
6939 | { | |
6940 | init_xtensa_relax_info (sec); | |
6941 | } | |
6942 | ||
6943 | /* Mark relaxable sections (and count relocations against each one). */ | |
c72f2fb2 | 6944 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next) |
43cd72b9 BW |
6945 | for (sec = abfd->sections; sec != NULL; sec = sec->next) |
6946 | { | |
6947 | if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable)) | |
6948 | return FALSE; | |
6949 | } | |
6950 | ||
6951 | /* Bail out if there are no relaxable sections. */ | |
6952 | if (!is_relaxable) | |
6953 | return TRUE; | |
6954 | ||
6955 | /* Allocate space for source_relocs. */ | |
c72f2fb2 | 6956 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next) |
43cd72b9 BW |
6957 | for (sec = abfd->sections; sec != NULL; sec = sec->next) |
6958 | { | |
6959 | xtensa_relax_info *relax_info; | |
6960 | ||
6961 | relax_info = get_xtensa_relax_info (sec); | |
6962 | if (relax_info->is_relaxable_literal_section | |
6963 | || relax_info->is_relaxable_asm_section) | |
6964 | { | |
6965 | relax_info->src_relocs = (source_reloc *) | |
6966 | bfd_malloc (relax_info->src_count * sizeof (source_reloc)); | |
6967 | } | |
25c6282a BW |
6968 | else |
6969 | relax_info->src_count = 0; | |
43cd72b9 BW |
6970 | } |
6971 | ||
6972 | /* Collect info on relocations against each relaxable section. */ | |
c72f2fb2 | 6973 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next) |
43cd72b9 BW |
6974 | for (sec = abfd->sections; sec != NULL; sec = sec->next) |
6975 | { | |
6976 | if (!collect_source_relocs (abfd, sec, link_info)) | |
6977 | return FALSE; | |
6978 | } | |
6979 | ||
6980 | /* Compute the text actions. */ | |
c72f2fb2 | 6981 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next) |
43cd72b9 BW |
6982 | for (sec = abfd->sections; sec != NULL; sec = sec->next) |
6983 | { | |
6984 | if (!compute_text_actions (abfd, sec, link_info)) | |
6985 | return FALSE; | |
6986 | } | |
6987 | ||
6988 | return TRUE; | |
6989 | } | |
6990 | ||
6991 | ||
6992 | /* Find all the sections that might be relaxed. The motivation for | |
6993 | this pass is that collect_source_relocs() needs to record _all_ the | |
6994 | relocations that target each relaxable section. That is expensive | |
6995 | and unnecessary unless the target section is actually going to be | |
6996 | relaxed. This pass identifies all such sections by checking if | |
6997 | they have L32Rs pointing to them. In the process, the total number | |
6998 | of relocations targeting each section is also counted so that we | |
6999 | know how much space to allocate for source_relocs against each | |
7000 | relaxable literal section. */ | |
7001 | ||
7002 | static bfd_boolean | |
7fa3d080 BW |
7003 | find_relaxable_sections (bfd *abfd, |
7004 | asection *sec, | |
7005 | struct bfd_link_info *link_info, | |
7006 | bfd_boolean *is_relaxable_p) | |
43cd72b9 BW |
7007 | { |
7008 | Elf_Internal_Rela *internal_relocs; | |
7009 | bfd_byte *contents; | |
7010 | bfd_boolean ok = TRUE; | |
7011 | unsigned i; | |
7012 | xtensa_relax_info *source_relax_info; | |
25c6282a | 7013 | bfd_boolean is_l32r_reloc; |
43cd72b9 BW |
7014 | |
7015 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
7016 | link_info->keep_memory); | |
68ffbac6 | 7017 | if (internal_relocs == NULL) |
43cd72b9 BW |
7018 | return ok; |
7019 | ||
7020 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
7021 | if (contents == NULL && sec->size != 0) | |
7022 | { | |
7023 | ok = FALSE; | |
7024 | goto error_return; | |
7025 | } | |
7026 | ||
7027 | source_relax_info = get_xtensa_relax_info (sec); | |
68ffbac6 | 7028 | for (i = 0; i < sec->reloc_count; i++) |
43cd72b9 BW |
7029 | { |
7030 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
7031 | r_reloc r_rel; | |
7032 | asection *target_sec; | |
7033 | xtensa_relax_info *target_relax_info; | |
7034 | ||
7035 | /* If this section has not already been marked as "relaxable", and | |
7036 | if it contains any ASM_EXPAND relocations (marking expanded | |
7037 | longcalls) that can be optimized into direct calls, then mark | |
7038 | the section as "relaxable". */ | |
7039 | if (source_relax_info | |
7040 | && !source_relax_info->is_relaxable_asm_section | |
7041 | && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND) | |
7042 | { | |
7043 | bfd_boolean is_reachable = FALSE; | |
7044 | if (is_resolvable_asm_expansion (abfd, sec, contents, irel, | |
7045 | link_info, &is_reachable) | |
7046 | && is_reachable) | |
7047 | { | |
7048 | source_relax_info->is_relaxable_asm_section = TRUE; | |
7049 | *is_relaxable_p = TRUE; | |
7050 | } | |
7051 | } | |
7052 | ||
7053 | r_reloc_init (&r_rel, abfd, irel, contents, | |
7054 | bfd_get_section_limit (abfd, sec)); | |
7055 | ||
7056 | target_sec = r_reloc_get_section (&r_rel); | |
7057 | target_relax_info = get_xtensa_relax_info (target_sec); | |
7058 | if (!target_relax_info) | |
7059 | continue; | |
7060 | ||
7061 | /* Count PC-relative operand relocations against the target section. | |
07d6d2b8 | 7062 | Note: The conditions tested here must match the conditions under |
43cd72b9 | 7063 | which init_source_reloc is called in collect_source_relocs(). */ |
25c6282a BW |
7064 | is_l32r_reloc = FALSE; |
7065 | if (is_operand_relocation (ELF32_R_TYPE (irel->r_info))) | |
7066 | { | |
7067 | xtensa_opcode opcode = | |
7068 | get_relocation_opcode (abfd, sec, contents, irel); | |
7069 | if (opcode != XTENSA_UNDEFINED) | |
7070 | { | |
7071 | is_l32r_reloc = (opcode == get_l32r_opcode ()); | |
7072 | if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info)) | |
7073 | || is_l32r_reloc) | |
7074 | target_relax_info->src_count++; | |
7075 | } | |
7076 | } | |
43cd72b9 | 7077 | |
25c6282a | 7078 | if (is_l32r_reloc && r_reloc_is_defined (&r_rel)) |
43cd72b9 BW |
7079 | { |
7080 | /* Mark the target section as relaxable. */ | |
7081 | target_relax_info->is_relaxable_literal_section = TRUE; | |
7082 | *is_relaxable_p = TRUE; | |
7083 | } | |
7084 | } | |
7085 | ||
7086 | error_return: | |
7087 | release_contents (sec, contents); | |
7088 | release_internal_relocs (sec, internal_relocs); | |
7089 | return ok; | |
7090 | } | |
7091 | ||
7092 | ||
7093 | /* Record _all_ the relocations that point to relaxable sections, and | |
7094 | get rid of ASM_EXPAND relocs by either converting them to | |
7095 | ASM_SIMPLIFY or by removing them. */ | |
7096 | ||
7097 | static bfd_boolean | |
7fa3d080 BW |
7098 | collect_source_relocs (bfd *abfd, |
7099 | asection *sec, | |
7100 | struct bfd_link_info *link_info) | |
43cd72b9 BW |
7101 | { |
7102 | Elf_Internal_Rela *internal_relocs; | |
7103 | bfd_byte *contents; | |
7104 | bfd_boolean ok = TRUE; | |
7105 | unsigned i; | |
7106 | bfd_size_type sec_size; | |
7107 | ||
68ffbac6 | 7108 | internal_relocs = retrieve_internal_relocs (abfd, sec, |
43cd72b9 | 7109 | link_info->keep_memory); |
68ffbac6 | 7110 | if (internal_relocs == NULL) |
43cd72b9 BW |
7111 | return ok; |
7112 | ||
7113 | sec_size = bfd_get_section_limit (abfd, sec); | |
7114 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
7115 | if (contents == NULL && sec_size != 0) | |
7116 | { | |
7117 | ok = FALSE; | |
7118 | goto error_return; | |
7119 | } | |
7120 | ||
7121 | /* Record relocations against relaxable literal sections. */ | |
68ffbac6 | 7122 | for (i = 0; i < sec->reloc_count; i++) |
43cd72b9 BW |
7123 | { |
7124 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
7125 | r_reloc r_rel; | |
7126 | asection *target_sec; | |
7127 | xtensa_relax_info *target_relax_info; | |
7128 | ||
7129 | r_reloc_init (&r_rel, abfd, irel, contents, sec_size); | |
7130 | ||
7131 | target_sec = r_reloc_get_section (&r_rel); | |
7132 | target_relax_info = get_xtensa_relax_info (target_sec); | |
7133 | ||
7134 | if (target_relax_info | |
7135 | && (target_relax_info->is_relaxable_literal_section | |
7136 | || target_relax_info->is_relaxable_asm_section)) | |
7137 | { | |
7138 | xtensa_opcode opcode = XTENSA_UNDEFINED; | |
7139 | int opnd = -1; | |
7140 | bfd_boolean is_abs_literal = FALSE; | |
7141 | ||
7142 | if (is_alt_relocation (ELF32_R_TYPE (irel->r_info))) | |
7143 | { | |
7144 | /* None of the current alternate relocs are PC-relative, | |
7145 | and only PC-relative relocs matter here. However, we | |
7146 | still need to record the opcode for literal | |
7147 | coalescing. */ | |
7148 | opcode = get_relocation_opcode (abfd, sec, contents, irel); | |
7149 | if (opcode == get_l32r_opcode ()) | |
7150 | { | |
7151 | is_abs_literal = TRUE; | |
7152 | opnd = 1; | |
7153 | } | |
7154 | else | |
7155 | opcode = XTENSA_UNDEFINED; | |
7156 | } | |
7157 | else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info))) | |
7158 | { | |
7159 | opcode = get_relocation_opcode (abfd, sec, contents, irel); | |
7160 | opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info)); | |
7161 | } | |
7162 | ||
7163 | if (opcode != XTENSA_UNDEFINED) | |
7164 | { | |
7165 | int src_next = target_relax_info->src_next++; | |
7166 | source_reloc *s_reloc = &target_relax_info->src_relocs[src_next]; | |
7167 | ||
7168 | init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd, | |
7169 | is_abs_literal); | |
7170 | } | |
7171 | } | |
7172 | } | |
7173 | ||
7174 | /* Now get rid of ASM_EXPAND relocations. At this point, the | |
7175 | src_relocs array for the target literal section may still be | |
7176 | incomplete, but it must at least contain the entries for the L32R | |
7177 | relocations associated with ASM_EXPANDs because they were just | |
7178 | added in the preceding loop over the relocations. */ | |
7179 | ||
68ffbac6 | 7180 | for (i = 0; i < sec->reloc_count; i++) |
43cd72b9 BW |
7181 | { |
7182 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
7183 | bfd_boolean is_reachable; | |
7184 | ||
7185 | if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info, | |
7186 | &is_reachable)) | |
7187 | continue; | |
7188 | ||
7189 | if (is_reachable) | |
7190 | { | |
7191 | Elf_Internal_Rela *l32r_irel; | |
7192 | r_reloc r_rel; | |
7193 | asection *target_sec; | |
7194 | xtensa_relax_info *target_relax_info; | |
7195 | ||
7196 | /* Mark the source_reloc for the L32R so that it will be | |
7197 | removed in compute_removed_literals(), along with the | |
7198 | associated literal. */ | |
7199 | l32r_irel = find_associated_l32r_irel (abfd, sec, contents, | |
7200 | irel, internal_relocs); | |
7201 | if (l32r_irel == NULL) | |
7202 | continue; | |
7203 | ||
7204 | r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size); | |
7205 | ||
7206 | target_sec = r_reloc_get_section (&r_rel); | |
7207 | target_relax_info = get_xtensa_relax_info (target_sec); | |
7208 | ||
7209 | if (target_relax_info | |
7210 | && (target_relax_info->is_relaxable_literal_section | |
7211 | || target_relax_info->is_relaxable_asm_section)) | |
7212 | { | |
7213 | source_reloc *s_reloc; | |
7214 | ||
7215 | /* Search the source_relocs for the entry corresponding to | |
7216 | the l32r_irel. Note: The src_relocs array is not yet | |
7217 | sorted, but it wouldn't matter anyway because we're | |
7218 | searching by source offset instead of target offset. */ | |
68ffbac6 | 7219 | s_reloc = find_source_reloc (target_relax_info->src_relocs, |
43cd72b9 BW |
7220 | target_relax_info->src_next, |
7221 | sec, l32r_irel); | |
7222 | BFD_ASSERT (s_reloc); | |
7223 | s_reloc->is_null = TRUE; | |
7224 | } | |
7225 | ||
7226 | /* Convert this reloc to ASM_SIMPLIFY. */ | |
7227 | irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), | |
7228 | R_XTENSA_ASM_SIMPLIFY); | |
7229 | l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
7230 | ||
7231 | pin_internal_relocs (sec, internal_relocs); | |
7232 | } | |
7233 | else | |
7234 | { | |
7235 | /* It is resolvable but doesn't reach. We resolve now | |
7236 | by eliminating the relocation -- the call will remain | |
7237 | expanded into L32R/CALLX. */ | |
7238 | irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
7239 | pin_internal_relocs (sec, internal_relocs); | |
7240 | } | |
7241 | } | |
7242 | ||
7243 | error_return: | |
7244 | release_contents (sec, contents); | |
7245 | release_internal_relocs (sec, internal_relocs); | |
7246 | return ok; | |
7247 | } | |
7248 | ||
7249 | ||
7250 | /* Return TRUE if the asm expansion can be resolved. Generally it can | |
7251 | be resolved on a final link or when a partial link locates it in the | |
7252 | same section as the target. Set "is_reachable" flag if the target of | |
7253 | the call is within the range of a direct call, given the current VMA | |
7254 | for this section and the target section. */ | |
7255 | ||
7256 | bfd_boolean | |
7fa3d080 BW |
7257 | is_resolvable_asm_expansion (bfd *abfd, |
7258 | asection *sec, | |
7259 | bfd_byte *contents, | |
7260 | Elf_Internal_Rela *irel, | |
7261 | struct bfd_link_info *link_info, | |
7262 | bfd_boolean *is_reachable_p) | |
43cd72b9 BW |
7263 | { |
7264 | asection *target_sec; | |
eed62915 MF |
7265 | asection *s; |
7266 | bfd_vma first_vma; | |
7267 | bfd_vma last_vma; | |
7268 | unsigned int first_align; | |
7269 | unsigned int adjust; | |
43cd72b9 BW |
7270 | bfd_vma target_offset; |
7271 | r_reloc r_rel; | |
7272 | xtensa_opcode opcode, direct_call_opcode; | |
7273 | bfd_vma self_address; | |
7274 | bfd_vma dest_address; | |
7275 | bfd_boolean uses_l32r; | |
7276 | bfd_size_type sec_size; | |
7277 | ||
7278 | *is_reachable_p = FALSE; | |
7279 | ||
7280 | if (contents == NULL) | |
7281 | return FALSE; | |
7282 | ||
68ffbac6 | 7283 | if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND) |
43cd72b9 BW |
7284 | return FALSE; |
7285 | ||
7286 | sec_size = bfd_get_section_limit (abfd, sec); | |
7287 | opcode = get_expanded_call_opcode (contents + irel->r_offset, | |
7288 | sec_size - irel->r_offset, &uses_l32r); | |
7289 | /* Optimization of longcalls that use CONST16 is not yet implemented. */ | |
7290 | if (!uses_l32r) | |
7291 | return FALSE; | |
68ffbac6 | 7292 | |
43cd72b9 BW |
7293 | direct_call_opcode = swap_callx_for_call_opcode (opcode); |
7294 | if (direct_call_opcode == XTENSA_UNDEFINED) | |
7295 | return FALSE; | |
7296 | ||
7297 | /* Check and see that the target resolves. */ | |
7298 | r_reloc_init (&r_rel, abfd, irel, contents, sec_size); | |
7299 | if (!r_reloc_is_defined (&r_rel)) | |
7300 | return FALSE; | |
7301 | ||
7302 | target_sec = r_reloc_get_section (&r_rel); | |
7303 | target_offset = r_rel.target_offset; | |
7304 | ||
7305 | /* If the target is in a shared library, then it doesn't reach. This | |
7306 | isn't supposed to come up because the compiler should never generate | |
7307 | non-PIC calls on systems that use shared libraries, but the linker | |
7308 | shouldn't crash regardless. */ | |
7309 | if (!target_sec->output_section) | |
7310 | return FALSE; | |
68ffbac6 | 7311 | |
43cd72b9 BW |
7312 | /* For relocatable sections, we can only simplify when the output |
7313 | section of the target is the same as the output section of the | |
7314 | source. */ | |
0e1862bb | 7315 | if (bfd_link_relocatable (link_info) |
43cd72b9 BW |
7316 | && (target_sec->output_section != sec->output_section |
7317 | || is_reloc_sym_weak (abfd, irel))) | |
7318 | return FALSE; | |
7319 | ||
331ed130 SA |
7320 | if (target_sec->output_section != sec->output_section) |
7321 | { | |
7322 | /* If the two sections are sufficiently far away that relaxation | |
7323 | might take the call out of range, we can't simplify. For | |
7324 | example, a positive displacement call into another memory | |
7325 | could get moved to a lower address due to literal removal, | |
7326 | but the destination won't move, and so the displacment might | |
7327 | get larger. | |
7328 | ||
7329 | If the displacement is negative, assume the destination could | |
7330 | move as far back as the start of the output section. The | |
7331 | self_address will be at least as far into the output section | |
7332 | as it is prior to relaxation. | |
7333 | ||
7334 | If the displacement is postive, assume the destination will be in | |
7335 | it's pre-relaxed location (because relaxation only makes sections | |
7336 | smaller). The self_address could go all the way to the beginning | |
7337 | of the output section. */ | |
7338 | ||
7339 | dest_address = target_sec->output_section->vma; | |
7340 | self_address = sec->output_section->vma; | |
7341 | ||
7342 | if (sec->output_section->vma > target_sec->output_section->vma) | |
7343 | self_address += sec->output_offset + irel->r_offset + 3; | |
7344 | else | |
7345 | dest_address += bfd_get_section_limit (abfd, target_sec->output_section); | |
7346 | /* Call targets should be four-byte aligned. */ | |
7347 | dest_address = (dest_address + 3) & ~3; | |
7348 | } | |
7349 | else | |
7350 | { | |
7351 | ||
7352 | self_address = (sec->output_section->vma | |
7353 | + sec->output_offset + irel->r_offset + 3); | |
7354 | dest_address = (target_sec->output_section->vma | |
7355 | + target_sec->output_offset + target_offset); | |
7356 | } | |
68ffbac6 | 7357 | |
eed62915 MF |
7358 | /* Adjust addresses with alignments for the worst case to see if call insn |
7359 | can fit. Don't relax l32r + callx to call if the target can be out of | |
7360 | range due to alignment. | |
7361 | Caller and target addresses are highest and lowest address. | |
7362 | Search all sections between caller and target, looking for max alignment. | |
7363 | The adjustment is max alignment bytes. If the alignment at the lowest | |
7364 | address is less than the adjustment, apply the adjustment to highest | |
7365 | address. */ | |
7366 | ||
7367 | /* Start from lowest address. | |
7368 | Lowest address aligmnet is from input section. | |
7369 | Initial alignment (adjust) is from input section. */ | |
7370 | if (dest_address > self_address) | |
7371 | { | |
7372 | s = sec->output_section; | |
7373 | last_vma = dest_address; | |
7374 | first_align = sec->alignment_power; | |
7375 | adjust = target_sec->alignment_power; | |
7376 | } | |
7377 | else | |
7378 | { | |
7379 | s = target_sec->output_section; | |
7380 | last_vma = self_address; | |
7381 | first_align = target_sec->alignment_power; | |
7382 | adjust = sec->alignment_power; | |
7383 | } | |
7384 | ||
7385 | first_vma = s->vma; | |
7386 | ||
7387 | /* Find the largest alignment in output section list. */ | |
7388 | for (; s && s->vma >= first_vma && s->vma <= last_vma ; s = s->next) | |
7389 | { | |
7390 | if (s->alignment_power > adjust) | |
7391 | adjust = s->alignment_power; | |
7392 | } | |
7393 | ||
7394 | if (adjust > first_align) | |
7395 | { | |
7396 | /* Alignment may enlarge the range, adjust highest address. */ | |
7397 | adjust = 1 << adjust; | |
7398 | if (dest_address > self_address) | |
7399 | { | |
7400 | dest_address += adjust; | |
7401 | } | |
7402 | else | |
7403 | { | |
7404 | self_address += adjust; | |
7405 | } | |
7406 | } | |
7407 | ||
43cd72b9 BW |
7408 | *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0, |
7409 | self_address, dest_address); | |
7410 | ||
7411 | if ((self_address >> CALL_SEGMENT_BITS) != | |
7412 | (dest_address >> CALL_SEGMENT_BITS)) | |
7413 | return FALSE; | |
7414 | ||
7415 | return TRUE; | |
7416 | } | |
7417 | ||
7418 | ||
7419 | static Elf_Internal_Rela * | |
7fa3d080 BW |
7420 | find_associated_l32r_irel (bfd *abfd, |
7421 | asection *sec, | |
7422 | bfd_byte *contents, | |
7423 | Elf_Internal_Rela *other_irel, | |
7424 | Elf_Internal_Rela *internal_relocs) | |
43cd72b9 BW |
7425 | { |
7426 | unsigned i; | |
e0001a05 | 7427 | |
68ffbac6 | 7428 | for (i = 0; i < sec->reloc_count; i++) |
43cd72b9 BW |
7429 | { |
7430 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
e0001a05 | 7431 | |
43cd72b9 BW |
7432 | if (irel == other_irel) |
7433 | continue; | |
7434 | if (irel->r_offset != other_irel->r_offset) | |
7435 | continue; | |
7436 | if (is_l32r_relocation (abfd, sec, contents, irel)) | |
7437 | return irel; | |
7438 | } | |
7439 | ||
7440 | return NULL; | |
e0001a05 NC |
7441 | } |
7442 | ||
7443 | ||
cb337148 BW |
7444 | static xtensa_opcode * |
7445 | build_reloc_opcodes (bfd *abfd, | |
7446 | asection *sec, | |
7447 | bfd_byte *contents, | |
7448 | Elf_Internal_Rela *internal_relocs) | |
7449 | { | |
7450 | unsigned i; | |
7451 | xtensa_opcode *reloc_opcodes = | |
7452 | (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count); | |
7453 | for (i = 0; i < sec->reloc_count; i++) | |
7454 | { | |
7455 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
7456 | reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel); | |
7457 | } | |
7458 | return reloc_opcodes; | |
7459 | } | |
7460 | ||
b2b326d2 MF |
7461 | struct reloc_range_struct |
7462 | { | |
7463 | bfd_vma addr; | |
7464 | bfd_boolean add; /* TRUE if start of a range, FALSE otherwise. */ | |
7465 | /* Original irel index in the array of relocations for a section. */ | |
7466 | unsigned irel_index; | |
7467 | }; | |
7468 | typedef struct reloc_range_struct reloc_range; | |
7469 | ||
7470 | typedef struct reloc_range_list_entry_struct reloc_range_list_entry; | |
7471 | struct reloc_range_list_entry_struct | |
7472 | { | |
7473 | reloc_range_list_entry *next; | |
7474 | reloc_range_list_entry *prev; | |
7475 | Elf_Internal_Rela *irel; | |
7476 | xtensa_opcode opcode; | |
7477 | int opnum; | |
7478 | }; | |
7479 | ||
7480 | struct reloc_range_list_struct | |
7481 | { | |
7482 | /* The rest of the structure is only meaningful when ok is TRUE. */ | |
7483 | bfd_boolean ok; | |
7484 | ||
7485 | unsigned n_range; /* Number of range markers. */ | |
7486 | reloc_range *range; /* Sorted range markers. */ | |
7487 | ||
7488 | unsigned first; /* Index of a first range element in the list. */ | |
7489 | unsigned last; /* One past index of a last range element in the list. */ | |
7490 | ||
7491 | unsigned n_list; /* Number of list elements. */ | |
7492 | reloc_range_list_entry *reloc; /* */ | |
7493 | reloc_range_list_entry list_root; | |
7494 | }; | |
7495 | ||
7496 | static int | |
7497 | reloc_range_compare (const void *a, const void *b) | |
7498 | { | |
7499 | const reloc_range *ra = a; | |
7500 | const reloc_range *rb = b; | |
7501 | ||
7502 | if (ra->addr != rb->addr) | |
7503 | return ra->addr < rb->addr ? -1 : 1; | |
7504 | if (ra->add != rb->add) | |
7505 | return ra->add ? -1 : 1; | |
7506 | return 0; | |
7507 | } | |
7508 | ||
7509 | static void | |
7510 | build_reloc_ranges (bfd *abfd, asection *sec, | |
7511 | bfd_byte *contents, | |
7512 | Elf_Internal_Rela *internal_relocs, | |
7513 | xtensa_opcode *reloc_opcodes, | |
7514 | reloc_range_list *list) | |
7515 | { | |
7516 | unsigned i; | |
7517 | size_t n = 0; | |
7518 | size_t max_n = 0; | |
7519 | reloc_range *ranges = NULL; | |
7520 | reloc_range_list_entry *reloc = | |
7521 | bfd_malloc (sec->reloc_count * sizeof (*reloc)); | |
7522 | ||
7523 | memset (list, 0, sizeof (*list)); | |
7524 | list->ok = TRUE; | |
7525 | ||
7526 | for (i = 0; i < sec->reloc_count; i++) | |
7527 | { | |
7528 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
7529 | int r_type = ELF32_R_TYPE (irel->r_info); | |
7530 | reloc_howto_type *howto = &elf_howto_table[r_type]; | |
7531 | r_reloc r_rel; | |
7532 | ||
7533 | if (r_type == R_XTENSA_ASM_SIMPLIFY | |
7534 | || r_type == R_XTENSA_32_PCREL | |
7535 | || !howto->pc_relative) | |
7536 | continue; | |
7537 | ||
7538 | r_reloc_init (&r_rel, abfd, irel, contents, | |
7539 | bfd_get_section_limit (abfd, sec)); | |
7540 | ||
7541 | if (r_reloc_get_section (&r_rel) != sec) | |
7542 | continue; | |
7543 | ||
7544 | if (n + 2 > max_n) | |
7545 | { | |
7546 | max_n = (max_n + 2) * 2; | |
7547 | ranges = bfd_realloc (ranges, max_n * sizeof (*ranges)); | |
7548 | } | |
7549 | ||
7550 | ranges[n].addr = irel->r_offset; | |
7551 | ranges[n + 1].addr = r_rel.target_offset; | |
7552 | ||
7553 | ranges[n].add = ranges[n].addr < ranges[n + 1].addr; | |
7554 | ranges[n + 1].add = !ranges[n].add; | |
7555 | ||
7556 | ranges[n].irel_index = i; | |
7557 | ranges[n + 1].irel_index = i; | |
7558 | ||
7559 | n += 2; | |
7560 | ||
7561 | reloc[i].irel = irel; | |
7562 | ||
7563 | /* Every relocation won't possibly be checked in the optimized version of | |
07d6d2b8 | 7564 | check_section_ebb_pcrels_fit, so this needs to be done here. */ |
b2b326d2 MF |
7565 | if (is_alt_relocation (ELF32_R_TYPE (irel->r_info))) |
7566 | { | |
7567 | /* None of the current alternate relocs are PC-relative, | |
7568 | and only PC-relative relocs matter here. */ | |
7569 | } | |
7570 | else | |
7571 | { | |
7572 | xtensa_opcode opcode; | |
7573 | int opnum; | |
7574 | ||
7575 | if (reloc_opcodes) | |
7576 | opcode = reloc_opcodes[i]; | |
7577 | else | |
7578 | opcode = get_relocation_opcode (abfd, sec, contents, irel); | |
7579 | ||
7580 | if (opcode == XTENSA_UNDEFINED) | |
7581 | { | |
7582 | list->ok = FALSE; | |
7583 | break; | |
7584 | } | |
7585 | ||
7586 | opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info)); | |
7587 | if (opnum == XTENSA_UNDEFINED) | |
7588 | { | |
7589 | list->ok = FALSE; | |
7590 | break; | |
7591 | } | |
7592 | ||
7593 | /* Record relocation opcode and opnum as we've calculated them | |
7594 | anyway and they won't change. */ | |
7595 | reloc[i].opcode = opcode; | |
7596 | reloc[i].opnum = opnum; | |
7597 | } | |
7598 | } | |
7599 | ||
7600 | if (list->ok) | |
7601 | { | |
7602 | ranges = bfd_realloc (ranges, n * sizeof (*ranges)); | |
7603 | qsort (ranges, n, sizeof (*ranges), reloc_range_compare); | |
7604 | ||
7605 | list->n_range = n; | |
7606 | list->range = ranges; | |
7607 | list->reloc = reloc; | |
7608 | list->list_root.prev = &list->list_root; | |
7609 | list->list_root.next = &list->list_root; | |
7610 | } | |
7611 | else | |
7612 | { | |
7613 | free (ranges); | |
7614 | free (reloc); | |
7615 | } | |
7616 | } | |
7617 | ||
7618 | static void reloc_range_list_append (reloc_range_list *list, | |
7619 | unsigned irel_index) | |
7620 | { | |
7621 | reloc_range_list_entry *entry = list->reloc + irel_index; | |
7622 | ||
7623 | entry->prev = list->list_root.prev; | |
7624 | entry->next = &list->list_root; | |
7625 | entry->prev->next = entry; | |
7626 | entry->next->prev = entry; | |
7627 | ++list->n_list; | |
7628 | } | |
7629 | ||
7630 | static void reloc_range_list_remove (reloc_range_list *list, | |
7631 | unsigned irel_index) | |
7632 | { | |
7633 | reloc_range_list_entry *entry = list->reloc + irel_index; | |
7634 | ||
7635 | entry->next->prev = entry->prev; | |
7636 | entry->prev->next = entry->next; | |
7637 | --list->n_list; | |
7638 | } | |
7639 | ||
7640 | /* Update relocation list object so that it lists all relocations that cross | |
7641 | [first; last] range. Range bounds should not decrease with successive | |
7642 | invocations. */ | |
7643 | static void reloc_range_list_update_range (reloc_range_list *list, | |
7644 | bfd_vma first, bfd_vma last) | |
7645 | { | |
7646 | /* This should not happen: EBBs are iterated from lower addresses to higher. | |
7647 | But even if that happens there's no need to break: just flush current list | |
7648 | and start from scratch. */ | |
7649 | if ((list->last > 0 && list->range[list->last - 1].addr > last) || | |
7650 | (list->first > 0 && list->range[list->first - 1].addr >= first)) | |
7651 | { | |
7652 | list->first = 0; | |
7653 | list->last = 0; | |
7654 | list->n_list = 0; | |
7655 | list->list_root.next = &list->list_root; | |
7656 | list->list_root.prev = &list->list_root; | |
7657 | fprintf (stderr, "%s: move backwards requested\n", __func__); | |
7658 | } | |
7659 | ||
7660 | for (; list->last < list->n_range && | |
7661 | list->range[list->last].addr <= last; ++list->last) | |
7662 | if (list->range[list->last].add) | |
7663 | reloc_range_list_append (list, list->range[list->last].irel_index); | |
7664 | ||
7665 | for (; list->first < list->n_range && | |
7666 | list->range[list->first].addr < first; ++list->first) | |
7667 | if (!list->range[list->first].add) | |
7668 | reloc_range_list_remove (list, list->range[list->first].irel_index); | |
7669 | } | |
7670 | ||
7671 | static void free_reloc_range_list (reloc_range_list *list) | |
7672 | { | |
7673 | free (list->range); | |
7674 | free (list->reloc); | |
7675 | } | |
cb337148 | 7676 | |
43cd72b9 BW |
7677 | /* The compute_text_actions function will build a list of potential |
7678 | transformation actions for code in the extended basic block of each | |
7679 | longcall that is optimized to a direct call. From this list we | |
7680 | generate a set of actions to actually perform that optimizes for | |
7681 | space and, if not using size_opt, maintains branch target | |
7682 | alignments. | |
e0001a05 | 7683 | |
43cd72b9 BW |
7684 | These actions to be performed are placed on a per-section list. |
7685 | The actual changes are performed by relax_section() in the second | |
7686 | pass. */ | |
7687 | ||
7688 | bfd_boolean | |
7fa3d080 BW |
7689 | compute_text_actions (bfd *abfd, |
7690 | asection *sec, | |
7691 | struct bfd_link_info *link_info) | |
e0001a05 | 7692 | { |
cb337148 | 7693 | xtensa_opcode *reloc_opcodes = NULL; |
43cd72b9 | 7694 | xtensa_relax_info *relax_info; |
e0001a05 | 7695 | bfd_byte *contents; |
43cd72b9 | 7696 | Elf_Internal_Rela *internal_relocs; |
e0001a05 NC |
7697 | bfd_boolean ok = TRUE; |
7698 | unsigned i; | |
43cd72b9 BW |
7699 | property_table_entry *prop_table = 0; |
7700 | int ptblsize = 0; | |
7701 | bfd_size_type sec_size; | |
b2b326d2 | 7702 | reloc_range_list relevant_relocs; |
43cd72b9 | 7703 | |
43cd72b9 BW |
7704 | relax_info = get_xtensa_relax_info (sec); |
7705 | BFD_ASSERT (relax_info); | |
25c6282a BW |
7706 | BFD_ASSERT (relax_info->src_next == relax_info->src_count); |
7707 | ||
7708 | /* Do nothing if the section contains no optimized longcalls. */ | |
43cd72b9 BW |
7709 | if (!relax_info->is_relaxable_asm_section) |
7710 | return ok; | |
e0001a05 NC |
7711 | |
7712 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
7713 | link_info->keep_memory); | |
e0001a05 | 7714 | |
43cd72b9 BW |
7715 | if (internal_relocs) |
7716 | qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), | |
7717 | internal_reloc_compare); | |
7718 | ||
7719 | sec_size = bfd_get_section_limit (abfd, sec); | |
e0001a05 | 7720 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); |
43cd72b9 | 7721 | if (contents == NULL && sec_size != 0) |
e0001a05 NC |
7722 | { |
7723 | ok = FALSE; | |
7724 | goto error_return; | |
7725 | } | |
7726 | ||
43cd72b9 BW |
7727 | ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table, |
7728 | XTENSA_PROP_SEC_NAME, FALSE); | |
7729 | if (ptblsize < 0) | |
7730 | { | |
7731 | ok = FALSE; | |
7732 | goto error_return; | |
7733 | } | |
7734 | ||
b2b326d2 MF |
7735 | /* Precompute the opcode for each relocation. */ |
7736 | reloc_opcodes = build_reloc_opcodes (abfd, sec, contents, internal_relocs); | |
7737 | ||
7738 | build_reloc_ranges (abfd, sec, contents, internal_relocs, reloc_opcodes, | |
7739 | &relevant_relocs); | |
7740 | ||
43cd72b9 | 7741 | for (i = 0; i < sec->reloc_count; i++) |
e0001a05 NC |
7742 | { |
7743 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
43cd72b9 BW |
7744 | bfd_vma r_offset; |
7745 | property_table_entry *the_entry; | |
7746 | int ptbl_idx; | |
7747 | ebb_t *ebb; | |
7748 | ebb_constraint ebb_table; | |
7749 | bfd_size_type simplify_size; | |
7750 | ||
7751 | if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY) | |
7752 | continue; | |
7753 | r_offset = irel->r_offset; | |
e0001a05 | 7754 | |
43cd72b9 BW |
7755 | simplify_size = get_asm_simplify_size (contents, sec_size, r_offset); |
7756 | if (simplify_size == 0) | |
7757 | { | |
4eca0228 | 7758 | _bfd_error_handler |
695344c0 | 7759 | /* xgettext:c-format */ |
2dcf00ce | 7760 | (_("%pB(%pA+%#" PRIx64 "): could not decode instruction for " |
d42c267e AM |
7761 | "XTENSA_ASM_SIMPLIFY relocation; " |
7762 | "possible configuration mismatch"), | |
2dcf00ce | 7763 | sec->owner, sec, (uint64_t) r_offset); |
43cd72b9 BW |
7764 | continue; |
7765 | } | |
e0001a05 | 7766 | |
43cd72b9 BW |
7767 | /* If the instruction table is not around, then don't do this |
7768 | relaxation. */ | |
7769 | the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
7770 | sec->vma + irel->r_offset); | |
7771 | if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL) | |
7772 | { | |
7773 | text_action_add (&relax_info->action_list, | |
7774 | ta_convert_longcall, sec, r_offset, | |
7775 | 0); | |
7776 | continue; | |
7777 | } | |
7778 | ||
7779 | /* If the next longcall happens to be at the same address as an | |
7780 | unreachable section of size 0, then skip forward. */ | |
7781 | ptbl_idx = the_entry - prop_table; | |
7782 | while ((the_entry->flags & XTENSA_PROP_UNREACHABLE) | |
7783 | && the_entry->size == 0 | |
7784 | && ptbl_idx + 1 < ptblsize | |
7785 | && (prop_table[ptbl_idx + 1].address | |
7786 | == prop_table[ptbl_idx].address)) | |
7787 | { | |
7788 | ptbl_idx++; | |
7789 | the_entry++; | |
7790 | } | |
e0001a05 | 7791 | |
99ded152 | 7792 | if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM) |
43cd72b9 BW |
7793 | /* NO_REORDER is OK */ |
7794 | continue; | |
e0001a05 | 7795 | |
43cd72b9 BW |
7796 | init_ebb_constraint (&ebb_table); |
7797 | ebb = &ebb_table.ebb; | |
7798 | init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize, | |
7799 | internal_relocs, sec->reloc_count); | |
7800 | ebb->start_offset = r_offset + simplify_size; | |
7801 | ebb->end_offset = r_offset + simplify_size; | |
7802 | ebb->start_ptbl_idx = ptbl_idx; | |
7803 | ebb->end_ptbl_idx = ptbl_idx; | |
7804 | ebb->start_reloc_idx = i; | |
7805 | ebb->end_reloc_idx = i; | |
7806 | ||
7807 | if (!extend_ebb_bounds (ebb) | |
7808 | || !compute_ebb_proposed_actions (&ebb_table) | |
7809 | || !compute_ebb_actions (&ebb_table) | |
7810 | || !check_section_ebb_pcrels_fit (abfd, sec, contents, | |
b2b326d2 MF |
7811 | internal_relocs, |
7812 | &relevant_relocs, | |
7813 | &ebb_table, reloc_opcodes) | |
43cd72b9 | 7814 | || !check_section_ebb_reduces (&ebb_table)) |
e0001a05 | 7815 | { |
43cd72b9 BW |
7816 | /* If anything goes wrong or we get unlucky and something does |
7817 | not fit, with our plan because of expansion between | |
7818 | critical branches, just convert to a NOP. */ | |
7819 | ||
7820 | text_action_add (&relax_info->action_list, | |
7821 | ta_convert_longcall, sec, r_offset, 0); | |
7822 | i = ebb_table.ebb.end_reloc_idx; | |
7823 | free_ebb_constraint (&ebb_table); | |
7824 | continue; | |
e0001a05 | 7825 | } |
43cd72b9 BW |
7826 | |
7827 | text_action_add_proposed (&relax_info->action_list, &ebb_table, sec); | |
7828 | ||
7829 | /* Update the index so we do not go looking at the relocations | |
7830 | we have already processed. */ | |
7831 | i = ebb_table.ebb.end_reloc_idx; | |
7832 | free_ebb_constraint (&ebb_table); | |
e0001a05 NC |
7833 | } |
7834 | ||
b2b326d2 MF |
7835 | free_reloc_range_list (&relevant_relocs); |
7836 | ||
43cd72b9 | 7837 | #if DEBUG |
4c2af04f | 7838 | if (action_list_count (&relax_info->action_list)) |
43cd72b9 BW |
7839 | print_action_list (stderr, &relax_info->action_list); |
7840 | #endif | |
7841 | ||
dc1e8a47 | 7842 | error_return: |
e0001a05 NC |
7843 | release_contents (sec, contents); |
7844 | release_internal_relocs (sec, internal_relocs); | |
43cd72b9 BW |
7845 | if (prop_table) |
7846 | free (prop_table); | |
cb337148 BW |
7847 | if (reloc_opcodes) |
7848 | free (reloc_opcodes); | |
43cd72b9 | 7849 | |
e0001a05 NC |
7850 | return ok; |
7851 | } | |
7852 | ||
7853 | ||
64b607e6 BW |
7854 | /* Do not widen an instruction if it is preceeded by a |
7855 | loop opcode. It might cause misalignment. */ | |
7856 | ||
7857 | static bfd_boolean | |
7858 | prev_instr_is_a_loop (bfd_byte *contents, | |
7859 | bfd_size_type content_length, | |
7860 | bfd_size_type offset) | |
7861 | { | |
7862 | xtensa_opcode prev_opcode; | |
7863 | ||
7864 | if (offset < 3) | |
7865 | return FALSE; | |
7866 | prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0); | |
7867 | return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1); | |
68ffbac6 | 7868 | } |
64b607e6 BW |
7869 | |
7870 | ||
43cd72b9 | 7871 | /* Find all of the possible actions for an extended basic block. */ |
e0001a05 | 7872 | |
43cd72b9 | 7873 | bfd_boolean |
7fa3d080 | 7874 | compute_ebb_proposed_actions (ebb_constraint *ebb_table) |
e0001a05 | 7875 | { |
43cd72b9 BW |
7876 | const ebb_t *ebb = &ebb_table->ebb; |
7877 | unsigned rel_idx = ebb->start_reloc_idx; | |
7878 | property_table_entry *entry, *start_entry, *end_entry; | |
64b607e6 BW |
7879 | bfd_vma offset = 0; |
7880 | xtensa_isa isa = xtensa_default_isa; | |
7881 | xtensa_format fmt; | |
7882 | static xtensa_insnbuf insnbuf = NULL; | |
7883 | static xtensa_insnbuf slotbuf = NULL; | |
7884 | ||
7885 | if (insnbuf == NULL) | |
7886 | { | |
7887 | insnbuf = xtensa_insnbuf_alloc (isa); | |
7888 | slotbuf = xtensa_insnbuf_alloc (isa); | |
7889 | } | |
e0001a05 | 7890 | |
43cd72b9 BW |
7891 | start_entry = &ebb->ptbl[ebb->start_ptbl_idx]; |
7892 | end_entry = &ebb->ptbl[ebb->end_ptbl_idx]; | |
e0001a05 | 7893 | |
43cd72b9 | 7894 | for (entry = start_entry; entry <= end_entry; entry++) |
e0001a05 | 7895 | { |
64b607e6 | 7896 | bfd_vma start_offset, end_offset; |
43cd72b9 | 7897 | bfd_size_type insn_len; |
e0001a05 | 7898 | |
43cd72b9 BW |
7899 | start_offset = entry->address - ebb->sec->vma; |
7900 | end_offset = entry->address + entry->size - ebb->sec->vma; | |
e0001a05 | 7901 | |
43cd72b9 BW |
7902 | if (entry == start_entry) |
7903 | start_offset = ebb->start_offset; | |
7904 | if (entry == end_entry) | |
7905 | end_offset = ebb->end_offset; | |
7906 | offset = start_offset; | |
e0001a05 | 7907 | |
43cd72b9 BW |
7908 | if (offset == entry->address - ebb->sec->vma |
7909 | && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0) | |
7910 | { | |
7911 | enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN; | |
7912 | BFD_ASSERT (offset != end_offset); | |
7913 | if (offset == end_offset) | |
7914 | return FALSE; | |
e0001a05 | 7915 | |
43cd72b9 BW |
7916 | insn_len = insn_decode_len (ebb->contents, ebb->content_length, |
7917 | offset); | |
68ffbac6 | 7918 | if (insn_len == 0) |
64b607e6 BW |
7919 | goto decode_error; |
7920 | ||
43cd72b9 BW |
7921 | if (check_branch_target_aligned_address (offset, insn_len)) |
7922 | align_type = EBB_REQUIRE_TGT_ALIGN; | |
7923 | ||
7924 | ebb_propose_action (ebb_table, align_type, 0, | |
7925 | ta_none, offset, 0, TRUE); | |
7926 | } | |
7927 | ||
7928 | while (offset != end_offset) | |
e0001a05 | 7929 | { |
43cd72b9 | 7930 | Elf_Internal_Rela *irel; |
e0001a05 | 7931 | xtensa_opcode opcode; |
e0001a05 | 7932 | |
43cd72b9 BW |
7933 | while (rel_idx < ebb->end_reloc_idx |
7934 | && (ebb->relocs[rel_idx].r_offset < offset | |
7935 | || (ebb->relocs[rel_idx].r_offset == offset | |
7936 | && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info) | |
7937 | != R_XTENSA_ASM_SIMPLIFY)))) | |
7938 | rel_idx++; | |
7939 | ||
7940 | /* Check for longcall. */ | |
7941 | irel = &ebb->relocs[rel_idx]; | |
7942 | if (irel->r_offset == offset | |
7943 | && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY) | |
7944 | { | |
7945 | bfd_size_type simplify_size; | |
e0001a05 | 7946 | |
68ffbac6 | 7947 | simplify_size = get_asm_simplify_size (ebb->contents, |
43cd72b9 BW |
7948 | ebb->content_length, |
7949 | irel->r_offset); | |
7950 | if (simplify_size == 0) | |
64b607e6 | 7951 | goto decode_error; |
43cd72b9 BW |
7952 | |
7953 | ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, | |
7954 | ta_convert_longcall, offset, 0, TRUE); | |
68ffbac6 | 7955 | |
43cd72b9 BW |
7956 | offset += simplify_size; |
7957 | continue; | |
7958 | } | |
e0001a05 | 7959 | |
64b607e6 BW |
7960 | if (offset + MIN_INSN_LENGTH > ebb->content_length) |
7961 | goto decode_error; | |
7962 | xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset], | |
7963 | ebb->content_length - offset); | |
7964 | fmt = xtensa_format_decode (isa, insnbuf); | |
7965 | if (fmt == XTENSA_UNDEFINED) | |
7966 | goto decode_error; | |
7967 | insn_len = xtensa_format_length (isa, fmt); | |
7968 | if (insn_len == (bfd_size_type) XTENSA_UNDEFINED) | |
7969 | goto decode_error; | |
7970 | ||
7971 | if (xtensa_format_num_slots (isa, fmt) != 1) | |
43cd72b9 | 7972 | { |
64b607e6 BW |
7973 | offset += insn_len; |
7974 | continue; | |
43cd72b9 | 7975 | } |
64b607e6 BW |
7976 | |
7977 | xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf); | |
7978 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); | |
7979 | if (opcode == XTENSA_UNDEFINED) | |
7980 | goto decode_error; | |
7981 | ||
43cd72b9 | 7982 | if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0 |
99ded152 | 7983 | && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0 |
64b607e6 | 7984 | && can_narrow_instruction (slotbuf, fmt, opcode) != 0) |
43cd72b9 BW |
7985 | { |
7986 | /* Add an instruction narrow action. */ | |
7987 | ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, | |
7988 | ta_narrow_insn, offset, 0, FALSE); | |
43cd72b9 | 7989 | } |
99ded152 | 7990 | else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0 |
64b607e6 BW |
7991 | && can_widen_instruction (slotbuf, fmt, opcode) != 0 |
7992 | && ! prev_instr_is_a_loop (ebb->contents, | |
7993 | ebb->content_length, offset)) | |
43cd72b9 BW |
7994 | { |
7995 | /* Add an instruction widen action. */ | |
7996 | ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, | |
7997 | ta_widen_insn, offset, 0, FALSE); | |
43cd72b9 | 7998 | } |
64b607e6 | 7999 | else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1) |
43cd72b9 BW |
8000 | { |
8001 | /* Check for branch targets. */ | |
8002 | ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0, | |
8003 | ta_none, offset, 0, TRUE); | |
43cd72b9 BW |
8004 | } |
8005 | ||
8006 | offset += insn_len; | |
e0001a05 NC |
8007 | } |
8008 | } | |
8009 | ||
43cd72b9 BW |
8010 | if (ebb->ends_unreachable) |
8011 | { | |
8012 | ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, | |
8013 | ta_fill, ebb->end_offset, 0, TRUE); | |
8014 | } | |
e0001a05 | 8015 | |
43cd72b9 | 8016 | return TRUE; |
64b607e6 BW |
8017 | |
8018 | decode_error: | |
4eca0228 | 8019 | _bfd_error_handler |
695344c0 | 8020 | /* xgettext:c-format */ |
2dcf00ce | 8021 | (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; " |
d42c267e | 8022 | "possible configuration mismatch"), |
2dcf00ce | 8023 | ebb->sec->owner, ebb->sec, (uint64_t) offset); |
64b607e6 | 8024 | return FALSE; |
43cd72b9 BW |
8025 | } |
8026 | ||
8027 | ||
8028 | /* After all of the information has collected about the | |
8029 | transformations possible in an EBB, compute the appropriate actions | |
8030 | here in compute_ebb_actions. We still must check later to make | |
8031 | sure that the actions do not break any relocations. The algorithm | |
8032 | used here is pretty greedy. Basically, it removes as many no-ops | |
8033 | as possible so that the end of the EBB has the same alignment | |
8034 | characteristics as the original. First, it uses narrowing, then | |
8035 | fill space at the end of the EBB, and finally widenings. If that | |
8036 | does not work, it tries again with one fewer no-op removed. The | |
8037 | optimization will only be performed if all of the branch targets | |
8038 | that were aligned before transformation are also aligned after the | |
8039 | transformation. | |
8040 | ||
8041 | When the size_opt flag is set, ignore the branch target alignments, | |
8042 | narrow all wide instructions, and remove all no-ops unless the end | |
8043 | of the EBB prevents it. */ | |
8044 | ||
8045 | bfd_boolean | |
7fa3d080 | 8046 | compute_ebb_actions (ebb_constraint *ebb_table) |
43cd72b9 BW |
8047 | { |
8048 | unsigned i = 0; | |
8049 | unsigned j; | |
8050 | int removed_bytes = 0; | |
8051 | ebb_t *ebb = &ebb_table->ebb; | |
8052 | unsigned seg_idx_start = 0; | |
8053 | unsigned seg_idx_end = 0; | |
8054 | ||
8055 | /* We perform this like the assembler relaxation algorithm: Start by | |
8056 | assuming all instructions are narrow and all no-ops removed; then | |
8057 | walk through.... */ | |
8058 | ||
8059 | /* For each segment of this that has a solid constraint, check to | |
8060 | see if there are any combinations that will keep the constraint. | |
8061 | If so, use it. */ | |
8062 | for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++) | |
e0001a05 | 8063 | { |
43cd72b9 BW |
8064 | bfd_boolean requires_text_end_align = FALSE; |
8065 | unsigned longcall_count = 0; | |
8066 | unsigned longcall_convert_count = 0; | |
8067 | unsigned narrowable_count = 0; | |
8068 | unsigned narrowable_convert_count = 0; | |
8069 | unsigned widenable_count = 0; | |
8070 | unsigned widenable_convert_count = 0; | |
e0001a05 | 8071 | |
43cd72b9 BW |
8072 | proposed_action *action = NULL; |
8073 | int align = (1 << ebb_table->ebb.sec->alignment_power); | |
e0001a05 | 8074 | |
43cd72b9 | 8075 | seg_idx_start = seg_idx_end; |
e0001a05 | 8076 | |
43cd72b9 BW |
8077 | for (i = seg_idx_start; i < ebb_table->action_count; i++) |
8078 | { | |
8079 | action = &ebb_table->actions[i]; | |
8080 | if (action->action == ta_convert_longcall) | |
8081 | longcall_count++; | |
8082 | if (action->action == ta_narrow_insn) | |
8083 | narrowable_count++; | |
8084 | if (action->action == ta_widen_insn) | |
8085 | widenable_count++; | |
8086 | if (action->action == ta_fill) | |
8087 | break; | |
8088 | if (action->align_type == EBB_REQUIRE_LOOP_ALIGN) | |
8089 | break; | |
8090 | if (action->align_type == EBB_REQUIRE_TGT_ALIGN | |
8091 | && !elf32xtensa_size_opt) | |
8092 | break; | |
8093 | } | |
8094 | seg_idx_end = i; | |
e0001a05 | 8095 | |
43cd72b9 BW |
8096 | if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable) |
8097 | requires_text_end_align = TRUE; | |
e0001a05 | 8098 | |
43cd72b9 BW |
8099 | if (elf32xtensa_size_opt && !requires_text_end_align |
8100 | && action->align_type != EBB_REQUIRE_LOOP_ALIGN | |
8101 | && action->align_type != EBB_REQUIRE_TGT_ALIGN) | |
8102 | { | |
8103 | longcall_convert_count = longcall_count; | |
8104 | narrowable_convert_count = narrowable_count; | |
8105 | widenable_convert_count = 0; | |
8106 | } | |
8107 | else | |
8108 | { | |
8109 | /* There is a constraint. Convert the max number of longcalls. */ | |
8110 | narrowable_convert_count = 0; | |
8111 | longcall_convert_count = 0; | |
8112 | widenable_convert_count = 0; | |
e0001a05 | 8113 | |
43cd72b9 | 8114 | for (j = 0; j < longcall_count; j++) |
e0001a05 | 8115 | { |
43cd72b9 BW |
8116 | int removed = (longcall_count - j) * 3 & (align - 1); |
8117 | unsigned desire_narrow = (align - removed) & (align - 1); | |
8118 | unsigned desire_widen = removed; | |
8119 | if (desire_narrow <= narrowable_count) | |
8120 | { | |
8121 | narrowable_convert_count = desire_narrow; | |
8122 | narrowable_convert_count += | |
8123 | (align * ((narrowable_count - narrowable_convert_count) | |
8124 | / align)); | |
8125 | longcall_convert_count = (longcall_count - j); | |
8126 | widenable_convert_count = 0; | |
8127 | break; | |
8128 | } | |
8129 | if (desire_widen <= widenable_count && !elf32xtensa_size_opt) | |
8130 | { | |
8131 | narrowable_convert_count = 0; | |
8132 | longcall_convert_count = longcall_count - j; | |
8133 | widenable_convert_count = desire_widen; | |
8134 | break; | |
8135 | } | |
8136 | } | |
8137 | } | |
e0001a05 | 8138 | |
43cd72b9 BW |
8139 | /* Now the number of conversions are saved. Do them. */ |
8140 | for (i = seg_idx_start; i < seg_idx_end; i++) | |
8141 | { | |
8142 | action = &ebb_table->actions[i]; | |
8143 | switch (action->action) | |
8144 | { | |
8145 | case ta_convert_longcall: | |
8146 | if (longcall_convert_count != 0) | |
8147 | { | |
8148 | action->action = ta_remove_longcall; | |
8149 | action->do_action = TRUE; | |
8150 | action->removed_bytes += 3; | |
8151 | longcall_convert_count--; | |
8152 | } | |
8153 | break; | |
8154 | case ta_narrow_insn: | |
8155 | if (narrowable_convert_count != 0) | |
8156 | { | |
8157 | action->do_action = TRUE; | |
8158 | action->removed_bytes += 1; | |
8159 | narrowable_convert_count--; | |
8160 | } | |
8161 | break; | |
8162 | case ta_widen_insn: | |
8163 | if (widenable_convert_count != 0) | |
8164 | { | |
8165 | action->do_action = TRUE; | |
8166 | action->removed_bytes -= 1; | |
8167 | widenable_convert_count--; | |
8168 | } | |
8169 | break; | |
8170 | default: | |
8171 | break; | |
e0001a05 | 8172 | } |
43cd72b9 BW |
8173 | } |
8174 | } | |
e0001a05 | 8175 | |
43cd72b9 BW |
8176 | /* Now we move on to some local opts. Try to remove each of the |
8177 | remaining longcalls. */ | |
e0001a05 | 8178 | |
43cd72b9 BW |
8179 | if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable) |
8180 | { | |
8181 | removed_bytes = 0; | |
8182 | for (i = 0; i < ebb_table->action_count; i++) | |
e0001a05 | 8183 | { |
43cd72b9 BW |
8184 | int old_removed_bytes = removed_bytes; |
8185 | proposed_action *action = &ebb_table->actions[i]; | |
8186 | ||
8187 | if (action->do_action && action->action == ta_convert_longcall) | |
8188 | { | |
8189 | bfd_boolean bad_alignment = FALSE; | |
8190 | removed_bytes += 3; | |
8191 | for (j = i + 1; j < ebb_table->action_count; j++) | |
8192 | { | |
8193 | proposed_action *new_action = &ebb_table->actions[j]; | |
8194 | bfd_vma offset = new_action->offset; | |
8195 | if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN) | |
8196 | { | |
8197 | if (!check_branch_target_aligned | |
8198 | (ebb_table->ebb.contents, | |
8199 | ebb_table->ebb.content_length, | |
8200 | offset, offset - removed_bytes)) | |
8201 | { | |
8202 | bad_alignment = TRUE; | |
8203 | break; | |
8204 | } | |
8205 | } | |
8206 | if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN) | |
8207 | { | |
8208 | if (!check_loop_aligned (ebb_table->ebb.contents, | |
8209 | ebb_table->ebb.content_length, | |
8210 | offset, | |
8211 | offset - removed_bytes)) | |
8212 | { | |
8213 | bad_alignment = TRUE; | |
8214 | break; | |
8215 | } | |
8216 | } | |
8217 | if (new_action->action == ta_narrow_insn | |
8218 | && !new_action->do_action | |
8219 | && ebb_table->ebb.sec->alignment_power == 2) | |
8220 | { | |
8221 | /* Narrow an instruction and we are done. */ | |
8222 | new_action->do_action = TRUE; | |
8223 | new_action->removed_bytes += 1; | |
8224 | bad_alignment = FALSE; | |
8225 | break; | |
8226 | } | |
8227 | if (new_action->action == ta_widen_insn | |
8228 | && new_action->do_action | |
8229 | && ebb_table->ebb.sec->alignment_power == 2) | |
8230 | { | |
8231 | /* Narrow an instruction and we are done. */ | |
8232 | new_action->do_action = FALSE; | |
8233 | new_action->removed_bytes += 1; | |
8234 | bad_alignment = FALSE; | |
8235 | break; | |
8236 | } | |
5c5d6806 BW |
8237 | if (new_action->do_action) |
8238 | removed_bytes += new_action->removed_bytes; | |
43cd72b9 BW |
8239 | } |
8240 | if (!bad_alignment) | |
8241 | { | |
8242 | action->removed_bytes += 3; | |
8243 | action->action = ta_remove_longcall; | |
8244 | action->do_action = TRUE; | |
8245 | } | |
8246 | } | |
8247 | removed_bytes = old_removed_bytes; | |
8248 | if (action->do_action) | |
8249 | removed_bytes += action->removed_bytes; | |
e0001a05 NC |
8250 | } |
8251 | } | |
8252 | ||
43cd72b9 BW |
8253 | removed_bytes = 0; |
8254 | for (i = 0; i < ebb_table->action_count; ++i) | |
8255 | { | |
8256 | proposed_action *action = &ebb_table->actions[i]; | |
8257 | if (action->do_action) | |
8258 | removed_bytes += action->removed_bytes; | |
8259 | } | |
8260 | ||
8261 | if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0 | |
8262 | && ebb->ends_unreachable) | |
8263 | { | |
8264 | proposed_action *action; | |
8265 | int br; | |
8266 | int extra_space; | |
8267 | ||
8268 | BFD_ASSERT (ebb_table->action_count != 0); | |
8269 | action = &ebb_table->actions[ebb_table->action_count - 1]; | |
8270 | BFD_ASSERT (action->action == ta_fill); | |
8271 | BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE); | |
8272 | ||
4b8e28c7 | 8273 | extra_space = xtensa_compute_fill_extra_space (ebb->ends_unreachable); |
43cd72b9 BW |
8274 | br = action->removed_bytes + removed_bytes + extra_space; |
8275 | br = br & ((1 << ebb->sec->alignment_power ) - 1); | |
8276 | ||
8277 | action->removed_bytes = extra_space - br; | |
8278 | } | |
8279 | return TRUE; | |
e0001a05 NC |
8280 | } |
8281 | ||
8282 | ||
03e94c08 BW |
8283 | /* The xlate_map is a sorted array of address mappings designed to |
8284 | answer the offset_with_removed_text() query with a binary search instead | |
8285 | of a linear search through the section's action_list. */ | |
8286 | ||
8287 | typedef struct xlate_map_entry xlate_map_entry_t; | |
8288 | typedef struct xlate_map xlate_map_t; | |
8289 | ||
8290 | struct xlate_map_entry | |
8291 | { | |
0854d504 MF |
8292 | bfd_vma orig_address; |
8293 | bfd_vma new_address; | |
03e94c08 BW |
8294 | unsigned size; |
8295 | }; | |
8296 | ||
8297 | struct xlate_map | |
8298 | { | |
8299 | unsigned entry_count; | |
8300 | xlate_map_entry_t *entry; | |
8301 | }; | |
8302 | ||
8303 | ||
68ffbac6 | 8304 | static int |
03e94c08 BW |
8305 | xlate_compare (const void *a_v, const void *b_v) |
8306 | { | |
8307 | const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v; | |
8308 | const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v; | |
8309 | if (a->orig_address < b->orig_address) | |
8310 | return -1; | |
8311 | if (a->orig_address > (b->orig_address + b->size - 1)) | |
8312 | return 1; | |
8313 | return 0; | |
8314 | } | |
8315 | ||
8316 | ||
8317 | static bfd_vma | |
8318 | xlate_offset_with_removed_text (const xlate_map_t *map, | |
8319 | text_action_list *action_list, | |
8320 | bfd_vma offset) | |
8321 | { | |
03e94c08 BW |
8322 | void *r; |
8323 | xlate_map_entry_t *e; | |
0854d504 | 8324 | struct xlate_map_entry se; |
03e94c08 BW |
8325 | |
8326 | if (map == NULL) | |
8327 | return offset_with_removed_text (action_list, offset); | |
8328 | ||
8329 | if (map->entry_count == 0) | |
8330 | return offset; | |
8331 | ||
0854d504 MF |
8332 | se.orig_address = offset; |
8333 | r = bsearch (&se, map->entry, map->entry_count, | |
03e94c08 BW |
8334 | sizeof (xlate_map_entry_t), &xlate_compare); |
8335 | e = (xlate_map_entry_t *) r; | |
68ffbac6 | 8336 | |
0854d504 MF |
8337 | /* There could be a jump past the end of the section, |
8338 | allow it using the last xlate map entry to translate its address. */ | |
8339 | if (e == NULL) | |
8340 | { | |
8341 | e = map->entry + map->entry_count - 1; | |
8342 | if (xlate_compare (&se, e) <= 0) | |
8343 | e = NULL; | |
8344 | } | |
03e94c08 BW |
8345 | BFD_ASSERT (e != NULL); |
8346 | if (e == NULL) | |
8347 | return offset; | |
8348 | return e->new_address - e->orig_address + offset; | |
8349 | } | |
8350 | ||
4c2af04f MF |
8351 | typedef struct xlate_map_context_struct xlate_map_context; |
8352 | struct xlate_map_context_struct | |
8353 | { | |
8354 | xlate_map_t *map; | |
8355 | xlate_map_entry_t *current_entry; | |
8356 | int removed; | |
8357 | }; | |
8358 | ||
8359 | static int | |
8360 | xlate_map_fn (splay_tree_node node, void *p) | |
8361 | { | |
8362 | text_action *r = (text_action *)node->value; | |
8363 | xlate_map_context *ctx = p; | |
8364 | unsigned orig_size = 0; | |
8365 | ||
8366 | switch (r->action) | |
8367 | { | |
8368 | case ta_none: | |
8369 | case ta_remove_insn: | |
8370 | case ta_convert_longcall: | |
8371 | case ta_remove_literal: | |
8372 | case ta_add_literal: | |
8373 | break; | |
8374 | case ta_remove_longcall: | |
8375 | orig_size = 6; | |
8376 | break; | |
8377 | case ta_narrow_insn: | |
8378 | orig_size = 3; | |
8379 | break; | |
8380 | case ta_widen_insn: | |
8381 | orig_size = 2; | |
8382 | break; | |
8383 | case ta_fill: | |
8384 | break; | |
8385 | } | |
8386 | ctx->current_entry->size = | |
8387 | r->offset + orig_size - ctx->current_entry->orig_address; | |
8388 | if (ctx->current_entry->size != 0) | |
8389 | { | |
8390 | ctx->current_entry++; | |
8391 | ctx->map->entry_count++; | |
8392 | } | |
8393 | ctx->current_entry->orig_address = r->offset + orig_size; | |
8394 | ctx->removed += r->removed_bytes; | |
8395 | ctx->current_entry->new_address = r->offset + orig_size - ctx->removed; | |
8396 | ctx->current_entry->size = 0; | |
8397 | return 0; | |
8398 | } | |
03e94c08 BW |
8399 | |
8400 | /* Build a binary searchable offset translation map from a section's | |
8401 | action list. */ | |
8402 | ||
8403 | static xlate_map_t * | |
8404 | build_xlate_map (asection *sec, xtensa_relax_info *relax_info) | |
8405 | { | |
03e94c08 BW |
8406 | text_action_list *action_list = &relax_info->action_list; |
8407 | unsigned num_actions = 0; | |
4c2af04f | 8408 | xlate_map_context ctx; |
03e94c08 | 8409 | |
4c2af04f MF |
8410 | ctx.map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t)); |
8411 | ||
8412 | if (ctx.map == NULL) | |
03e94c08 BW |
8413 | return NULL; |
8414 | ||
8415 | num_actions = action_list_count (action_list); | |
4c2af04f | 8416 | ctx.map->entry = (xlate_map_entry_t *) |
03e94c08 | 8417 | bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1)); |
4c2af04f | 8418 | if (ctx.map->entry == NULL) |
03e94c08 | 8419 | { |
4c2af04f | 8420 | free (ctx.map); |
03e94c08 BW |
8421 | return NULL; |
8422 | } | |
4c2af04f | 8423 | ctx.map->entry_count = 0; |
68ffbac6 | 8424 | |
4c2af04f MF |
8425 | ctx.removed = 0; |
8426 | ctx.current_entry = &ctx.map->entry[0]; | |
03e94c08 | 8427 | |
4c2af04f MF |
8428 | ctx.current_entry->orig_address = 0; |
8429 | ctx.current_entry->new_address = 0; | |
8430 | ctx.current_entry->size = 0; | |
03e94c08 | 8431 | |
4c2af04f | 8432 | splay_tree_foreach (action_list->tree, xlate_map_fn, &ctx); |
03e94c08 | 8433 | |
4c2af04f MF |
8434 | ctx.current_entry->size = (bfd_get_section_limit (sec->owner, sec) |
8435 | - ctx.current_entry->orig_address); | |
8436 | if (ctx.current_entry->size != 0) | |
8437 | ctx.map->entry_count++; | |
03e94c08 | 8438 | |
4c2af04f | 8439 | return ctx.map; |
03e94c08 BW |
8440 | } |
8441 | ||
8442 | ||
8443 | /* Free an offset translation map. */ | |
8444 | ||
68ffbac6 | 8445 | static void |
03e94c08 BW |
8446 | free_xlate_map (xlate_map_t *map) |
8447 | { | |
8448 | if (map && map->entry) | |
8449 | free (map->entry); | |
8450 | if (map) | |
8451 | free (map); | |
8452 | } | |
8453 | ||
8454 | ||
43cd72b9 BW |
8455 | /* Use check_section_ebb_pcrels_fit to make sure that all of the |
8456 | relocations in a section will fit if a proposed set of actions | |
8457 | are performed. */ | |
e0001a05 | 8458 | |
43cd72b9 | 8459 | static bfd_boolean |
7fa3d080 BW |
8460 | check_section_ebb_pcrels_fit (bfd *abfd, |
8461 | asection *sec, | |
8462 | bfd_byte *contents, | |
8463 | Elf_Internal_Rela *internal_relocs, | |
b2b326d2 | 8464 | reloc_range_list *relevant_relocs, |
cb337148 BW |
8465 | const ebb_constraint *constraint, |
8466 | const xtensa_opcode *reloc_opcodes) | |
e0001a05 | 8467 | { |
43cd72b9 | 8468 | unsigned i, j; |
b2b326d2 | 8469 | unsigned n = sec->reloc_count; |
43cd72b9 | 8470 | Elf_Internal_Rela *irel; |
03e94c08 BW |
8471 | xlate_map_t *xmap = NULL; |
8472 | bfd_boolean ok = TRUE; | |
43cd72b9 | 8473 | xtensa_relax_info *relax_info; |
b2b326d2 | 8474 | reloc_range_list_entry *entry = NULL; |
e0001a05 | 8475 | |
43cd72b9 | 8476 | relax_info = get_xtensa_relax_info (sec); |
e0001a05 | 8477 | |
03e94c08 BW |
8478 | if (relax_info && sec->reloc_count > 100) |
8479 | { | |
8480 | xmap = build_xlate_map (sec, relax_info); | |
8481 | /* NULL indicates out of memory, but the slow version | |
8482 | can still be used. */ | |
8483 | } | |
8484 | ||
b2b326d2 MF |
8485 | if (relevant_relocs && constraint->action_count) |
8486 | { | |
8487 | if (!relevant_relocs->ok) | |
8488 | { | |
8489 | ok = FALSE; | |
8490 | n = 0; | |
8491 | } | |
8492 | else | |
8493 | { | |
8494 | bfd_vma min_offset, max_offset; | |
8495 | min_offset = max_offset = constraint->actions[0].offset; | |
8496 | ||
8497 | for (i = 1; i < constraint->action_count; ++i) | |
8498 | { | |
8499 | proposed_action *action = &constraint->actions[i]; | |
8500 | bfd_vma offset = action->offset; | |
8501 | ||
8502 | if (offset < min_offset) | |
8503 | min_offset = offset; | |
8504 | if (offset > max_offset) | |
8505 | max_offset = offset; | |
8506 | } | |
8507 | reloc_range_list_update_range (relevant_relocs, min_offset, | |
8508 | max_offset); | |
8509 | n = relevant_relocs->n_list; | |
8510 | entry = &relevant_relocs->list_root; | |
8511 | } | |
8512 | } | |
8513 | else | |
8514 | { | |
8515 | relevant_relocs = NULL; | |
8516 | } | |
8517 | ||
8518 | for (i = 0; i < n; i++) | |
43cd72b9 BW |
8519 | { |
8520 | r_reloc r_rel; | |
8521 | bfd_vma orig_self_offset, orig_target_offset; | |
8522 | bfd_vma self_offset, target_offset; | |
8523 | int r_type; | |
8524 | reloc_howto_type *howto; | |
8525 | int self_removed_bytes, target_removed_bytes; | |
e0001a05 | 8526 | |
b2b326d2 MF |
8527 | if (relevant_relocs) |
8528 | { | |
8529 | entry = entry->next; | |
8530 | irel = entry->irel; | |
8531 | } | |
8532 | else | |
8533 | { | |
8534 | irel = internal_relocs + i; | |
8535 | } | |
43cd72b9 | 8536 | r_type = ELF32_R_TYPE (irel->r_info); |
e0001a05 | 8537 | |
43cd72b9 BW |
8538 | howto = &elf_howto_table[r_type]; |
8539 | /* We maintain the required invariant: PC-relative relocations | |
8540 | that fit before linking must fit after linking. Thus we only | |
8541 | need to deal with relocations to the same section that are | |
8542 | PC-relative. */ | |
1bbb5f21 BW |
8543 | if (r_type == R_XTENSA_ASM_SIMPLIFY |
8544 | || r_type == R_XTENSA_32_PCREL | |
43cd72b9 BW |
8545 | || !howto->pc_relative) |
8546 | continue; | |
e0001a05 | 8547 | |
43cd72b9 BW |
8548 | r_reloc_init (&r_rel, abfd, irel, contents, |
8549 | bfd_get_section_limit (abfd, sec)); | |
e0001a05 | 8550 | |
43cd72b9 BW |
8551 | if (r_reloc_get_section (&r_rel) != sec) |
8552 | continue; | |
e0001a05 | 8553 | |
43cd72b9 BW |
8554 | orig_self_offset = irel->r_offset; |
8555 | orig_target_offset = r_rel.target_offset; | |
e0001a05 | 8556 | |
43cd72b9 BW |
8557 | self_offset = orig_self_offset; |
8558 | target_offset = orig_target_offset; | |
8559 | ||
8560 | if (relax_info) | |
8561 | { | |
03e94c08 BW |
8562 | self_offset = |
8563 | xlate_offset_with_removed_text (xmap, &relax_info->action_list, | |
8564 | orig_self_offset); | |
8565 | target_offset = | |
8566 | xlate_offset_with_removed_text (xmap, &relax_info->action_list, | |
8567 | orig_target_offset); | |
43cd72b9 BW |
8568 | } |
8569 | ||
8570 | self_removed_bytes = 0; | |
8571 | target_removed_bytes = 0; | |
8572 | ||
8573 | for (j = 0; j < constraint->action_count; ++j) | |
8574 | { | |
8575 | proposed_action *action = &constraint->actions[j]; | |
8576 | bfd_vma offset = action->offset; | |
8577 | int removed_bytes = action->removed_bytes; | |
8578 | if (offset < orig_self_offset | |
8579 | || (offset == orig_self_offset && action->action == ta_fill | |
8580 | && action->removed_bytes < 0)) | |
8581 | self_removed_bytes += removed_bytes; | |
8582 | if (offset < orig_target_offset | |
8583 | || (offset == orig_target_offset && action->action == ta_fill | |
8584 | && action->removed_bytes < 0)) | |
8585 | target_removed_bytes += removed_bytes; | |
8586 | } | |
8587 | self_offset -= self_removed_bytes; | |
8588 | target_offset -= target_removed_bytes; | |
8589 | ||
8590 | /* Try to encode it. Get the operand and check. */ | |
8591 | if (is_alt_relocation (ELF32_R_TYPE (irel->r_info))) | |
8592 | { | |
8593 | /* None of the current alternate relocs are PC-relative, | |
8594 | and only PC-relative relocs matter here. */ | |
8595 | } | |
8596 | else | |
8597 | { | |
8598 | xtensa_opcode opcode; | |
8599 | int opnum; | |
8600 | ||
b2b326d2 | 8601 | if (relevant_relocs) |
03e94c08 | 8602 | { |
b2b326d2 MF |
8603 | opcode = entry->opcode; |
8604 | opnum = entry->opnum; | |
03e94c08 | 8605 | } |
b2b326d2 | 8606 | else |
03e94c08 | 8607 | { |
b2b326d2 MF |
8608 | if (reloc_opcodes) |
8609 | opcode = reloc_opcodes[relevant_relocs ? | |
8610 | (unsigned)(entry - relevant_relocs->reloc) : i]; | |
8611 | else | |
8612 | opcode = get_relocation_opcode (abfd, sec, contents, irel); | |
8613 | if (opcode == XTENSA_UNDEFINED) | |
8614 | { | |
8615 | ok = FALSE; | |
8616 | break; | |
8617 | } | |
8618 | ||
8619 | opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info)); | |
8620 | if (opnum == XTENSA_UNDEFINED) | |
8621 | { | |
8622 | ok = FALSE; | |
8623 | break; | |
8624 | } | |
03e94c08 | 8625 | } |
43cd72b9 BW |
8626 | |
8627 | if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset)) | |
03e94c08 BW |
8628 | { |
8629 | ok = FALSE; | |
8630 | break; | |
8631 | } | |
43cd72b9 BW |
8632 | } |
8633 | } | |
8634 | ||
03e94c08 BW |
8635 | if (xmap) |
8636 | free_xlate_map (xmap); | |
8637 | ||
8638 | return ok; | |
43cd72b9 BW |
8639 | } |
8640 | ||
8641 | ||
8642 | static bfd_boolean | |
7fa3d080 | 8643 | check_section_ebb_reduces (const ebb_constraint *constraint) |
43cd72b9 BW |
8644 | { |
8645 | int removed = 0; | |
8646 | unsigned i; | |
8647 | ||
8648 | for (i = 0; i < constraint->action_count; i++) | |
8649 | { | |
8650 | const proposed_action *action = &constraint->actions[i]; | |
8651 | if (action->do_action) | |
8652 | removed += action->removed_bytes; | |
8653 | } | |
8654 | if (removed < 0) | |
e0001a05 NC |
8655 | return FALSE; |
8656 | ||
8657 | return TRUE; | |
8658 | } | |
8659 | ||
8660 | ||
43cd72b9 | 8661 | void |
7fa3d080 BW |
8662 | text_action_add_proposed (text_action_list *l, |
8663 | const ebb_constraint *ebb_table, | |
8664 | asection *sec) | |
e0001a05 NC |
8665 | { |
8666 | unsigned i; | |
8667 | ||
43cd72b9 | 8668 | for (i = 0; i < ebb_table->action_count; i++) |
e0001a05 | 8669 | { |
43cd72b9 | 8670 | proposed_action *action = &ebb_table->actions[i]; |
e0001a05 | 8671 | |
43cd72b9 | 8672 | if (!action->do_action) |
e0001a05 | 8673 | continue; |
43cd72b9 BW |
8674 | switch (action->action) |
8675 | { | |
8676 | case ta_remove_insn: | |
8677 | case ta_remove_longcall: | |
8678 | case ta_convert_longcall: | |
8679 | case ta_narrow_insn: | |
8680 | case ta_widen_insn: | |
8681 | case ta_fill: | |
8682 | case ta_remove_literal: | |
8683 | text_action_add (l, action->action, sec, action->offset, | |
8684 | action->removed_bytes); | |
8685 | break; | |
8686 | case ta_none: | |
8687 | break; | |
8688 | default: | |
8689 | BFD_ASSERT (0); | |
8690 | break; | |
8691 | } | |
e0001a05 | 8692 | } |
43cd72b9 | 8693 | } |
e0001a05 | 8694 | |
43cd72b9 BW |
8695 | |
8696 | int | |
4b8e28c7 | 8697 | xtensa_compute_fill_extra_space (property_table_entry *entry) |
43cd72b9 BW |
8698 | { |
8699 | int fill_extra_space; | |
8700 | ||
8701 | if (!entry) | |
8702 | return 0; | |
8703 | ||
8704 | if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0) | |
8705 | return 0; | |
8706 | ||
8707 | fill_extra_space = entry->size; | |
8708 | if ((entry->flags & XTENSA_PROP_ALIGN) != 0) | |
8709 | { | |
8710 | /* Fill bytes for alignment: | |
8711 | (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */ | |
8712 | int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags); | |
8713 | int nsm = (1 << pow) - 1; | |
8714 | bfd_vma addr = entry->address + entry->size; | |
8715 | bfd_vma align_fill = nsm - ((addr + nsm) & nsm); | |
8716 | fill_extra_space += align_fill; | |
8717 | } | |
8718 | return fill_extra_space; | |
e0001a05 NC |
8719 | } |
8720 | ||
43cd72b9 | 8721 | \f |
e0001a05 NC |
8722 | /* First relaxation pass. */ |
8723 | ||
43cd72b9 BW |
8724 | /* If the section contains relaxable literals, check each literal to |
8725 | see if it has the same value as another literal that has already | |
8726 | been seen, either in the current section or a previous one. If so, | |
8727 | add an entry to the per-section list of removed literals. The | |
e0001a05 NC |
8728 | actual changes are deferred until the next pass. */ |
8729 | ||
68ffbac6 | 8730 | static bfd_boolean |
7fa3d080 BW |
8731 | compute_removed_literals (bfd *abfd, |
8732 | asection *sec, | |
8733 | struct bfd_link_info *link_info, | |
8734 | value_map_hash_table *values) | |
e0001a05 NC |
8735 | { |
8736 | xtensa_relax_info *relax_info; | |
8737 | bfd_byte *contents; | |
8738 | Elf_Internal_Rela *internal_relocs; | |
43cd72b9 | 8739 | source_reloc *src_relocs, *rel; |
e0001a05 | 8740 | bfd_boolean ok = TRUE; |
43cd72b9 BW |
8741 | property_table_entry *prop_table = NULL; |
8742 | int ptblsize; | |
8743 | int i, prev_i; | |
8744 | bfd_boolean last_loc_is_prev = FALSE; | |
8745 | bfd_vma last_target_offset = 0; | |
8746 | section_cache_t target_sec_cache; | |
8747 | bfd_size_type sec_size; | |
8748 | ||
8749 | init_section_cache (&target_sec_cache); | |
e0001a05 NC |
8750 | |
8751 | /* Do nothing if it is not a relaxable literal section. */ | |
8752 | relax_info = get_xtensa_relax_info (sec); | |
8753 | BFD_ASSERT (relax_info); | |
e0001a05 NC |
8754 | if (!relax_info->is_relaxable_literal_section) |
8755 | return ok; | |
8756 | ||
68ffbac6 | 8757 | internal_relocs = retrieve_internal_relocs (abfd, sec, |
e0001a05 NC |
8758 | link_info->keep_memory); |
8759 | ||
43cd72b9 | 8760 | sec_size = bfd_get_section_limit (abfd, sec); |
e0001a05 | 8761 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); |
43cd72b9 | 8762 | if (contents == NULL && sec_size != 0) |
e0001a05 NC |
8763 | { |
8764 | ok = FALSE; | |
8765 | goto error_return; | |
8766 | } | |
8767 | ||
8768 | /* Sort the source_relocs by target offset. */ | |
8769 | src_relocs = relax_info->src_relocs; | |
8770 | qsort (src_relocs, relax_info->src_count, | |
8771 | sizeof (source_reloc), source_reloc_compare); | |
43cd72b9 BW |
8772 | qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), |
8773 | internal_reloc_compare); | |
e0001a05 | 8774 | |
43cd72b9 BW |
8775 | ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table, |
8776 | XTENSA_PROP_SEC_NAME, FALSE); | |
8777 | if (ptblsize < 0) | |
8778 | { | |
8779 | ok = FALSE; | |
8780 | goto error_return; | |
8781 | } | |
8782 | ||
8783 | prev_i = -1; | |
e0001a05 NC |
8784 | for (i = 0; i < relax_info->src_count; i++) |
8785 | { | |
e0001a05 | 8786 | Elf_Internal_Rela *irel = NULL; |
e0001a05 NC |
8787 | |
8788 | rel = &src_relocs[i]; | |
43cd72b9 BW |
8789 | if (get_l32r_opcode () != rel->opcode) |
8790 | continue; | |
e0001a05 NC |
8791 | irel = get_irel_at_offset (sec, internal_relocs, |
8792 | rel->r_rel.target_offset); | |
8793 | ||
43cd72b9 BW |
8794 | /* If the relocation on this is not a simple R_XTENSA_32 or |
8795 | R_XTENSA_PLT then do not consider it. This may happen when | |
8796 | the difference of two symbols is used in a literal. */ | |
8797 | if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32 | |
8798 | && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT)) | |
8799 | continue; | |
8800 | ||
e0001a05 NC |
8801 | /* If the target_offset for this relocation is the same as the |
8802 | previous relocation, then we've already considered whether the | |
8803 | literal can be coalesced. Skip to the next one.... */ | |
43cd72b9 BW |
8804 | if (i != 0 && prev_i != -1 |
8805 | && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset) | |
e0001a05 | 8806 | continue; |
43cd72b9 BW |
8807 | prev_i = i; |
8808 | ||
68ffbac6 | 8809 | if (last_loc_is_prev && |
43cd72b9 BW |
8810 | last_target_offset + 4 != rel->r_rel.target_offset) |
8811 | last_loc_is_prev = FALSE; | |
e0001a05 NC |
8812 | |
8813 | /* Check if the relocation was from an L32R that is being removed | |
8814 | because a CALLX was converted to a direct CALL, and check if | |
8815 | there are no other relocations to the literal. */ | |
68ffbac6 | 8816 | if (is_removable_literal (rel, i, src_relocs, relax_info->src_count, |
99ded152 | 8817 | sec, prop_table, ptblsize)) |
e0001a05 | 8818 | { |
43cd72b9 BW |
8819 | if (!remove_dead_literal (abfd, sec, link_info, internal_relocs, |
8820 | irel, rel, prop_table, ptblsize)) | |
e0001a05 | 8821 | { |
43cd72b9 BW |
8822 | ok = FALSE; |
8823 | goto error_return; | |
e0001a05 | 8824 | } |
43cd72b9 | 8825 | last_target_offset = rel->r_rel.target_offset; |
e0001a05 NC |
8826 | continue; |
8827 | } | |
8828 | ||
43cd72b9 | 8829 | if (!identify_literal_placement (abfd, sec, contents, link_info, |
68ffbac6 L |
8830 | values, |
8831 | &last_loc_is_prev, irel, | |
43cd72b9 BW |
8832 | relax_info->src_count - i, rel, |
8833 | prop_table, ptblsize, | |
8834 | &target_sec_cache, rel->is_abs_literal)) | |
e0001a05 | 8835 | { |
43cd72b9 BW |
8836 | ok = FALSE; |
8837 | goto error_return; | |
8838 | } | |
8839 | last_target_offset = rel->r_rel.target_offset; | |
8840 | } | |
e0001a05 | 8841 | |
43cd72b9 BW |
8842 | #if DEBUG |
8843 | print_removed_literals (stderr, &relax_info->removed_list); | |
8844 | print_action_list (stderr, &relax_info->action_list); | |
8845 | #endif /* DEBUG */ | |
8846 | ||
dc1e8a47 | 8847 | error_return: |
65e911f9 AM |
8848 | if (prop_table) |
8849 | free (prop_table); | |
8850 | free_section_cache (&target_sec_cache); | |
43cd72b9 BW |
8851 | |
8852 | release_contents (sec, contents); | |
8853 | release_internal_relocs (sec, internal_relocs); | |
8854 | return ok; | |
8855 | } | |
8856 | ||
8857 | ||
8858 | static Elf_Internal_Rela * | |
7fa3d080 BW |
8859 | get_irel_at_offset (asection *sec, |
8860 | Elf_Internal_Rela *internal_relocs, | |
8861 | bfd_vma offset) | |
43cd72b9 BW |
8862 | { |
8863 | unsigned i; | |
8864 | Elf_Internal_Rela *irel; | |
8865 | unsigned r_type; | |
8866 | Elf_Internal_Rela key; | |
8867 | ||
68ffbac6 | 8868 | if (!internal_relocs) |
43cd72b9 BW |
8869 | return NULL; |
8870 | ||
8871 | key.r_offset = offset; | |
8872 | irel = bsearch (&key, internal_relocs, sec->reloc_count, | |
8873 | sizeof (Elf_Internal_Rela), internal_reloc_matches); | |
8874 | if (!irel) | |
8875 | return NULL; | |
8876 | ||
8877 | /* bsearch does not guarantee which will be returned if there are | |
8878 | multiple matches. We need the first that is not an alignment. */ | |
8879 | i = irel - internal_relocs; | |
8880 | while (i > 0) | |
8881 | { | |
8882 | if (internal_relocs[i-1].r_offset != offset) | |
8883 | break; | |
8884 | i--; | |
8885 | } | |
8886 | for ( ; i < sec->reloc_count; i++) | |
8887 | { | |
8888 | irel = &internal_relocs[i]; | |
8889 | r_type = ELF32_R_TYPE (irel->r_info); | |
8890 | if (irel->r_offset == offset && r_type != R_XTENSA_NONE) | |
8891 | return irel; | |
8892 | } | |
8893 | ||
8894 | return NULL; | |
8895 | } | |
8896 | ||
8897 | ||
8898 | bfd_boolean | |
7fa3d080 BW |
8899 | is_removable_literal (const source_reloc *rel, |
8900 | int i, | |
8901 | const source_reloc *src_relocs, | |
99ded152 BW |
8902 | int src_count, |
8903 | asection *sec, | |
8904 | property_table_entry *prop_table, | |
8905 | int ptblsize) | |
43cd72b9 BW |
8906 | { |
8907 | const source_reloc *curr_rel; | |
99ded152 BW |
8908 | property_table_entry *entry; |
8909 | ||
43cd72b9 BW |
8910 | if (!rel->is_null) |
8911 | return FALSE; | |
68ffbac6 L |
8912 | |
8913 | entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
99ded152 BW |
8914 | sec->vma + rel->r_rel.target_offset); |
8915 | if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM)) | |
8916 | return FALSE; | |
8917 | ||
43cd72b9 BW |
8918 | for (++i; i < src_count; ++i) |
8919 | { | |
8920 | curr_rel = &src_relocs[i]; | |
8921 | /* If all others have the same target offset.... */ | |
8922 | if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset) | |
8923 | return TRUE; | |
8924 | ||
8925 | if (!curr_rel->is_null | |
8926 | && !xtensa_is_property_section (curr_rel->source_sec) | |
8927 | && !(curr_rel->source_sec->flags & SEC_DEBUGGING)) | |
8928 | return FALSE; | |
8929 | } | |
8930 | return TRUE; | |
8931 | } | |
8932 | ||
8933 | ||
68ffbac6 | 8934 | bfd_boolean |
7fa3d080 BW |
8935 | remove_dead_literal (bfd *abfd, |
8936 | asection *sec, | |
8937 | struct bfd_link_info *link_info, | |
8938 | Elf_Internal_Rela *internal_relocs, | |
8939 | Elf_Internal_Rela *irel, | |
8940 | source_reloc *rel, | |
8941 | property_table_entry *prop_table, | |
8942 | int ptblsize) | |
43cd72b9 BW |
8943 | { |
8944 | property_table_entry *entry; | |
8945 | xtensa_relax_info *relax_info; | |
8946 | ||
8947 | relax_info = get_xtensa_relax_info (sec); | |
8948 | if (!relax_info) | |
8949 | return FALSE; | |
8950 | ||
8951 | entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
8952 | sec->vma + rel->r_rel.target_offset); | |
8953 | ||
8954 | /* Mark the unused literal so that it will be removed. */ | |
8955 | add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL); | |
8956 | ||
8957 | text_action_add (&relax_info->action_list, | |
8958 | ta_remove_literal, sec, rel->r_rel.target_offset, 4); | |
8959 | ||
8960 | /* If the section is 4-byte aligned, do not add fill. */ | |
68ffbac6 | 8961 | if (sec->alignment_power > 2) |
43cd72b9 BW |
8962 | { |
8963 | int fill_extra_space; | |
8964 | bfd_vma entry_sec_offset; | |
8965 | text_action *fa; | |
8966 | property_table_entry *the_add_entry; | |
8967 | int removed_diff; | |
8968 | ||
8969 | if (entry) | |
8970 | entry_sec_offset = entry->address - sec->vma + entry->size; | |
8971 | else | |
8972 | entry_sec_offset = rel->r_rel.target_offset + 4; | |
8973 | ||
8974 | /* If the literal range is at the end of the section, | |
8975 | do not add fill. */ | |
8976 | the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
8977 | entry_sec_offset); | |
4b8e28c7 | 8978 | fill_extra_space = xtensa_compute_fill_extra_space (the_add_entry); |
43cd72b9 BW |
8979 | |
8980 | fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset); | |
8981 | removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset, | |
8982 | -4, fill_extra_space); | |
8983 | if (fa) | |
8984 | adjust_fill_action (fa, removed_diff); | |
8985 | else | |
8986 | text_action_add (&relax_info->action_list, | |
8987 | ta_fill, sec, entry_sec_offset, removed_diff); | |
8988 | } | |
8989 | ||
8990 | /* Zero out the relocation on this literal location. */ | |
8991 | if (irel) | |
8992 | { | |
8993 | if (elf_hash_table (link_info)->dynamic_sections_created) | |
8994 | shrink_dynamic_reloc_sections (link_info, abfd, sec, irel); | |
8995 | ||
8996 | irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
8997 | pin_internal_relocs (sec, internal_relocs); | |
8998 | } | |
8999 | ||
9000 | /* Do not modify "last_loc_is_prev". */ | |
9001 | return TRUE; | |
9002 | } | |
9003 | ||
9004 | ||
68ffbac6 | 9005 | bfd_boolean |
7fa3d080 BW |
9006 | identify_literal_placement (bfd *abfd, |
9007 | asection *sec, | |
9008 | bfd_byte *contents, | |
9009 | struct bfd_link_info *link_info, | |
9010 | value_map_hash_table *values, | |
9011 | bfd_boolean *last_loc_is_prev_p, | |
9012 | Elf_Internal_Rela *irel, | |
9013 | int remaining_src_rels, | |
9014 | source_reloc *rel, | |
9015 | property_table_entry *prop_table, | |
9016 | int ptblsize, | |
9017 | section_cache_t *target_sec_cache, | |
9018 | bfd_boolean is_abs_literal) | |
43cd72b9 BW |
9019 | { |
9020 | literal_value val; | |
9021 | value_map *val_map; | |
9022 | xtensa_relax_info *relax_info; | |
9023 | bfd_boolean literal_placed = FALSE; | |
9024 | r_reloc r_rel; | |
9025 | unsigned long value; | |
9026 | bfd_boolean final_static_link; | |
9027 | bfd_size_type sec_size; | |
9028 | ||
9029 | relax_info = get_xtensa_relax_info (sec); | |
9030 | if (!relax_info) | |
9031 | return FALSE; | |
9032 | ||
9033 | sec_size = bfd_get_section_limit (abfd, sec); | |
9034 | ||
9035 | final_static_link = | |
0e1862bb | 9036 | (!bfd_link_relocatable (link_info) |
43cd72b9 BW |
9037 | && !elf_hash_table (link_info)->dynamic_sections_created); |
9038 | ||
9039 | /* The placement algorithm first checks to see if the literal is | |
9040 | already in the value map. If so and the value map is reachable | |
9041 | from all uses, then the literal is moved to that location. If | |
9042 | not, then we identify the last location where a fresh literal was | |
9043 | placed. If the literal can be safely moved there, then we do so. | |
9044 | If not, then we assume that the literal is not to move and leave | |
9045 | the literal where it is, marking it as the last literal | |
9046 | location. */ | |
9047 | ||
9048 | /* Find the literal value. */ | |
9049 | value = 0; | |
9050 | r_reloc_init (&r_rel, abfd, irel, contents, sec_size); | |
9051 | if (!irel) | |
9052 | { | |
9053 | BFD_ASSERT (rel->r_rel.target_offset < sec_size); | |
9054 | value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset); | |
9055 | } | |
9056 | init_literal_value (&val, &r_rel, value, is_abs_literal); | |
9057 | ||
9058 | /* Check if we've seen another literal with the same value that | |
9059 | is in the same output section. */ | |
9060 | val_map = value_map_get_cached_value (values, &val, final_static_link); | |
9061 | ||
9062 | if (val_map | |
9063 | && (r_reloc_get_section (&val_map->loc)->output_section | |
9064 | == sec->output_section) | |
9065 | && relocations_reach (rel, remaining_src_rels, &val_map->loc) | |
9066 | && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map)) | |
9067 | { | |
9068 | /* No change to last_loc_is_prev. */ | |
9069 | literal_placed = TRUE; | |
9070 | } | |
9071 | ||
9072 | /* For relocatable links, do not try to move literals. To do it | |
9073 | correctly might increase the number of relocations in an input | |
9074 | section making the default relocatable linking fail. */ | |
0e1862bb | 9075 | if (!bfd_link_relocatable (link_info) && !literal_placed |
43cd72b9 BW |
9076 | && values->has_last_loc && !(*last_loc_is_prev_p)) |
9077 | { | |
9078 | asection *target_sec = r_reloc_get_section (&values->last_loc); | |
9079 | if (target_sec && target_sec->output_section == sec->output_section) | |
9080 | { | |
9081 | /* Increment the virtual offset. */ | |
9082 | r_reloc try_loc = values->last_loc; | |
9083 | try_loc.virtual_offset += 4; | |
9084 | ||
9085 | /* There is a last loc that was in the same output section. */ | |
9086 | if (relocations_reach (rel, remaining_src_rels, &try_loc) | |
9087 | && move_shared_literal (sec, link_info, rel, | |
68ffbac6 | 9088 | prop_table, ptblsize, |
43cd72b9 | 9089 | &try_loc, &val, target_sec_cache)) |
e0001a05 | 9090 | { |
43cd72b9 BW |
9091 | values->last_loc.virtual_offset += 4; |
9092 | literal_placed = TRUE; | |
9093 | if (!val_map) | |
9094 | val_map = add_value_map (values, &val, &try_loc, | |
9095 | final_static_link); | |
9096 | else | |
9097 | val_map->loc = try_loc; | |
e0001a05 NC |
9098 | } |
9099 | } | |
43cd72b9 BW |
9100 | } |
9101 | ||
9102 | if (!literal_placed) | |
9103 | { | |
9104 | /* Nothing worked, leave the literal alone but update the last loc. */ | |
9105 | values->has_last_loc = TRUE; | |
9106 | values->last_loc = rel->r_rel; | |
9107 | if (!val_map) | |
9108 | val_map = add_value_map (values, &val, &rel->r_rel, final_static_link); | |
e0001a05 | 9109 | else |
43cd72b9 BW |
9110 | val_map->loc = rel->r_rel; |
9111 | *last_loc_is_prev_p = TRUE; | |
e0001a05 NC |
9112 | } |
9113 | ||
43cd72b9 | 9114 | return TRUE; |
e0001a05 NC |
9115 | } |
9116 | ||
9117 | ||
9118 | /* Check if the original relocations (presumably on L32R instructions) | |
9119 | identified by reloc[0..N] can be changed to reference the literal | |
9120 | identified by r_rel. If r_rel is out of range for any of the | |
9121 | original relocations, then we don't want to coalesce the original | |
9122 | literal with the one at r_rel. We only check reloc[0..N], where the | |
9123 | offsets are all the same as for reloc[0] (i.e., they're all | |
9124 | referencing the same literal) and where N is also bounded by the | |
9125 | number of remaining entries in the "reloc" array. The "reloc" array | |
9126 | is sorted by target offset so we know all the entries for the same | |
9127 | literal will be contiguous. */ | |
9128 | ||
9129 | static bfd_boolean | |
7fa3d080 BW |
9130 | relocations_reach (source_reloc *reloc, |
9131 | int remaining_relocs, | |
9132 | const r_reloc *r_rel) | |
e0001a05 NC |
9133 | { |
9134 | bfd_vma from_offset, source_address, dest_address; | |
9135 | asection *sec; | |
9136 | int i; | |
9137 | ||
9138 | if (!r_reloc_is_defined (r_rel)) | |
9139 | return FALSE; | |
9140 | ||
9141 | sec = r_reloc_get_section (r_rel); | |
9142 | from_offset = reloc[0].r_rel.target_offset; | |
9143 | ||
9144 | for (i = 0; i < remaining_relocs; i++) | |
9145 | { | |
9146 | if (reloc[i].r_rel.target_offset != from_offset) | |
9147 | break; | |
9148 | ||
9149 | /* Ignore relocations that have been removed. */ | |
9150 | if (reloc[i].is_null) | |
9151 | continue; | |
9152 | ||
9153 | /* The original and new output section for these must be the same | |
07d6d2b8 | 9154 | in order to coalesce. */ |
e0001a05 NC |
9155 | if (r_reloc_get_section (&reloc[i].r_rel)->output_section |
9156 | != sec->output_section) | |
9157 | return FALSE; | |
9158 | ||
d638e0ac BW |
9159 | /* Absolute literals in the same output section can always be |
9160 | combined. */ | |
9161 | if (reloc[i].is_abs_literal) | |
9162 | continue; | |
9163 | ||
43cd72b9 BW |
9164 | /* A literal with no PC-relative relocations can be moved anywhere. */ |
9165 | if (reloc[i].opnd != -1) | |
e0001a05 NC |
9166 | { |
9167 | /* Otherwise, check to see that it fits. */ | |
9168 | source_address = (reloc[i].source_sec->output_section->vma | |
9169 | + reloc[i].source_sec->output_offset | |
9170 | + reloc[i].r_rel.rela.r_offset); | |
9171 | dest_address = (sec->output_section->vma | |
9172 | + sec->output_offset | |
9173 | + r_rel->target_offset); | |
9174 | ||
43cd72b9 BW |
9175 | if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd, |
9176 | source_address, dest_address)) | |
e0001a05 NC |
9177 | return FALSE; |
9178 | } | |
9179 | } | |
9180 | ||
9181 | return TRUE; | |
9182 | } | |
9183 | ||
9184 | ||
43cd72b9 BW |
9185 | /* Move a literal to another literal location because it is |
9186 | the same as the other literal value. */ | |
e0001a05 | 9187 | |
68ffbac6 | 9188 | static bfd_boolean |
7fa3d080 BW |
9189 | coalesce_shared_literal (asection *sec, |
9190 | source_reloc *rel, | |
9191 | property_table_entry *prop_table, | |
9192 | int ptblsize, | |
9193 | value_map *val_map) | |
e0001a05 | 9194 | { |
43cd72b9 BW |
9195 | property_table_entry *entry; |
9196 | text_action *fa; | |
9197 | property_table_entry *the_add_entry; | |
9198 | int removed_diff; | |
9199 | xtensa_relax_info *relax_info; | |
9200 | ||
9201 | relax_info = get_xtensa_relax_info (sec); | |
9202 | if (!relax_info) | |
9203 | return FALSE; | |
9204 | ||
9205 | entry = elf_xtensa_find_property_entry | |
9206 | (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset); | |
99ded152 | 9207 | if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM)) |
43cd72b9 BW |
9208 | return TRUE; |
9209 | ||
9210 | /* Mark that the literal will be coalesced. */ | |
9211 | add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc); | |
9212 | ||
9213 | text_action_add (&relax_info->action_list, | |
9214 | ta_remove_literal, sec, rel->r_rel.target_offset, 4); | |
9215 | ||
9216 | /* If the section is 4-byte aligned, do not add fill. */ | |
68ffbac6 | 9217 | if (sec->alignment_power > 2) |
e0001a05 | 9218 | { |
43cd72b9 BW |
9219 | int fill_extra_space; |
9220 | bfd_vma entry_sec_offset; | |
9221 | ||
9222 | if (entry) | |
9223 | entry_sec_offset = entry->address - sec->vma + entry->size; | |
9224 | else | |
9225 | entry_sec_offset = rel->r_rel.target_offset + 4; | |
9226 | ||
9227 | /* If the literal range is at the end of the section, | |
9228 | do not add fill. */ | |
9229 | fill_extra_space = 0; | |
9230 | the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
9231 | entry_sec_offset); | |
9232 | if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE)) | |
9233 | fill_extra_space = the_add_entry->size; | |
9234 | ||
9235 | fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset); | |
9236 | removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset, | |
9237 | -4, fill_extra_space); | |
9238 | if (fa) | |
9239 | adjust_fill_action (fa, removed_diff); | |
9240 | else | |
9241 | text_action_add (&relax_info->action_list, | |
9242 | ta_fill, sec, entry_sec_offset, removed_diff); | |
e0001a05 | 9243 | } |
43cd72b9 BW |
9244 | |
9245 | return TRUE; | |
9246 | } | |
9247 | ||
9248 | ||
9249 | /* Move a literal to another location. This may actually increase the | |
9250 | total amount of space used because of alignments so we need to do | |
9251 | this carefully. Also, it may make a branch go out of range. */ | |
9252 | ||
68ffbac6 | 9253 | static bfd_boolean |
7fa3d080 BW |
9254 | move_shared_literal (asection *sec, |
9255 | struct bfd_link_info *link_info, | |
9256 | source_reloc *rel, | |
9257 | property_table_entry *prop_table, | |
9258 | int ptblsize, | |
9259 | const r_reloc *target_loc, | |
9260 | const literal_value *lit_value, | |
9261 | section_cache_t *target_sec_cache) | |
43cd72b9 BW |
9262 | { |
9263 | property_table_entry *the_add_entry, *src_entry, *target_entry = NULL; | |
9264 | text_action *fa, *target_fa; | |
9265 | int removed_diff; | |
9266 | xtensa_relax_info *relax_info, *target_relax_info; | |
9267 | asection *target_sec; | |
9268 | ebb_t *ebb; | |
9269 | ebb_constraint ebb_table; | |
9270 | bfd_boolean relocs_fit; | |
9271 | ||
9272 | /* If this routine always returns FALSE, the literals that cannot be | |
9273 | coalesced will not be moved. */ | |
9274 | if (elf32xtensa_no_literal_movement) | |
9275 | return FALSE; | |
9276 | ||
9277 | relax_info = get_xtensa_relax_info (sec); | |
9278 | if (!relax_info) | |
9279 | return FALSE; | |
9280 | ||
9281 | target_sec = r_reloc_get_section (target_loc); | |
9282 | target_relax_info = get_xtensa_relax_info (target_sec); | |
9283 | ||
9284 | /* Literals to undefined sections may not be moved because they | |
9285 | must report an error. */ | |
9286 | if (bfd_is_und_section (target_sec)) | |
9287 | return FALSE; | |
9288 | ||
9289 | src_entry = elf_xtensa_find_property_entry | |
9290 | (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset); | |
9291 | ||
9292 | if (!section_cache_section (target_sec_cache, target_sec, link_info)) | |
9293 | return FALSE; | |
9294 | ||
9295 | target_entry = elf_xtensa_find_property_entry | |
68ffbac6 | 9296 | (target_sec_cache->ptbl, target_sec_cache->pte_count, |
43cd72b9 BW |
9297 | target_sec->vma + target_loc->target_offset); |
9298 | ||
9299 | if (!target_entry) | |
9300 | return FALSE; | |
9301 | ||
9302 | /* Make sure that we have not broken any branches. */ | |
9303 | relocs_fit = FALSE; | |
9304 | ||
9305 | init_ebb_constraint (&ebb_table); | |
9306 | ebb = &ebb_table.ebb; | |
68ffbac6 | 9307 | init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents, |
43cd72b9 BW |
9308 | target_sec_cache->content_length, |
9309 | target_sec_cache->ptbl, target_sec_cache->pte_count, | |
9310 | target_sec_cache->relocs, target_sec_cache->reloc_count); | |
9311 | ||
9312 | /* Propose to add 4 bytes + worst-case alignment size increase to | |
9313 | destination. */ | |
9314 | ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0, | |
9315 | ta_fill, target_loc->target_offset, | |
9316 | -4 - (1 << target_sec->alignment_power), TRUE); | |
9317 | ||
9318 | /* Check all of the PC-relative relocations to make sure they still fit. */ | |
68ffbac6 | 9319 | relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec, |
43cd72b9 | 9320 | target_sec_cache->contents, |
b2b326d2 | 9321 | target_sec_cache->relocs, NULL, |
cb337148 | 9322 | &ebb_table, NULL); |
43cd72b9 | 9323 | |
68ffbac6 | 9324 | if (!relocs_fit) |
43cd72b9 BW |
9325 | return FALSE; |
9326 | ||
9327 | text_action_add_literal (&target_relax_info->action_list, | |
9328 | ta_add_literal, target_loc, lit_value, -4); | |
9329 | ||
68ffbac6 | 9330 | if (target_sec->alignment_power > 2 && target_entry != src_entry) |
43cd72b9 BW |
9331 | { |
9332 | /* May need to add or remove some fill to maintain alignment. */ | |
9333 | int fill_extra_space; | |
9334 | bfd_vma entry_sec_offset; | |
9335 | ||
68ffbac6 | 9336 | entry_sec_offset = |
43cd72b9 BW |
9337 | target_entry->address - target_sec->vma + target_entry->size; |
9338 | ||
9339 | /* If the literal range is at the end of the section, | |
9340 | do not add fill. */ | |
9341 | fill_extra_space = 0; | |
9342 | the_add_entry = | |
9343 | elf_xtensa_find_property_entry (target_sec_cache->ptbl, | |
9344 | target_sec_cache->pte_count, | |
9345 | entry_sec_offset); | |
9346 | if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE)) | |
9347 | fill_extra_space = the_add_entry->size; | |
9348 | ||
9349 | target_fa = find_fill_action (&target_relax_info->action_list, | |
9350 | target_sec, entry_sec_offset); | |
9351 | removed_diff = compute_removed_action_diff (target_fa, target_sec, | |
9352 | entry_sec_offset, 4, | |
9353 | fill_extra_space); | |
9354 | if (target_fa) | |
9355 | adjust_fill_action (target_fa, removed_diff); | |
9356 | else | |
9357 | text_action_add (&target_relax_info->action_list, | |
9358 | ta_fill, target_sec, entry_sec_offset, removed_diff); | |
9359 | } | |
9360 | ||
9361 | /* Mark that the literal will be moved to the new location. */ | |
9362 | add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc); | |
9363 | ||
9364 | /* Remove the literal. */ | |
9365 | text_action_add (&relax_info->action_list, | |
9366 | ta_remove_literal, sec, rel->r_rel.target_offset, 4); | |
9367 | ||
9368 | /* If the section is 4-byte aligned, do not add fill. */ | |
68ffbac6 | 9369 | if (sec->alignment_power > 2 && target_entry != src_entry) |
43cd72b9 BW |
9370 | { |
9371 | int fill_extra_space; | |
9372 | bfd_vma entry_sec_offset; | |
9373 | ||
9374 | if (src_entry) | |
9375 | entry_sec_offset = src_entry->address - sec->vma + src_entry->size; | |
9376 | else | |
9377 | entry_sec_offset = rel->r_rel.target_offset+4; | |
9378 | ||
9379 | /* If the literal range is at the end of the section, | |
9380 | do not add fill. */ | |
9381 | fill_extra_space = 0; | |
9382 | the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
9383 | entry_sec_offset); | |
9384 | if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE)) | |
9385 | fill_extra_space = the_add_entry->size; | |
9386 | ||
9387 | fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset); | |
9388 | removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset, | |
9389 | -4, fill_extra_space); | |
9390 | if (fa) | |
9391 | adjust_fill_action (fa, removed_diff); | |
9392 | else | |
9393 | text_action_add (&relax_info->action_list, | |
9394 | ta_fill, sec, entry_sec_offset, removed_diff); | |
9395 | } | |
9396 | ||
9397 | return TRUE; | |
e0001a05 NC |
9398 | } |
9399 | ||
9400 | \f | |
9401 | /* Second relaxation pass. */ | |
9402 | ||
4c2af04f MF |
9403 | static int |
9404 | action_remove_bytes_fn (splay_tree_node node, void *p) | |
9405 | { | |
9406 | bfd_size_type *final_size = p; | |
9407 | text_action *action = (text_action *)node->value; | |
9408 | ||
9409 | *final_size -= action->removed_bytes; | |
9410 | return 0; | |
9411 | } | |
9412 | ||
e0001a05 NC |
9413 | /* Modify all of the relocations to point to the right spot, and if this |
9414 | is a relaxable section, delete the unwanted literals and fix the | |
43cd72b9 | 9415 | section size. */ |
e0001a05 | 9416 | |
43cd72b9 | 9417 | bfd_boolean |
7fa3d080 | 9418 | relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info) |
e0001a05 NC |
9419 | { |
9420 | Elf_Internal_Rela *internal_relocs; | |
9421 | xtensa_relax_info *relax_info; | |
9422 | bfd_byte *contents; | |
9423 | bfd_boolean ok = TRUE; | |
9424 | unsigned i; | |
43cd72b9 BW |
9425 | bfd_boolean rv = FALSE; |
9426 | bfd_boolean virtual_action; | |
9427 | bfd_size_type sec_size; | |
e0001a05 | 9428 | |
43cd72b9 | 9429 | sec_size = bfd_get_section_limit (abfd, sec); |
e0001a05 NC |
9430 | relax_info = get_xtensa_relax_info (sec); |
9431 | BFD_ASSERT (relax_info); | |
9432 | ||
43cd72b9 BW |
9433 | /* First translate any of the fixes that have been added already. */ |
9434 | translate_section_fixes (sec); | |
9435 | ||
e0001a05 NC |
9436 | /* Handle property sections (e.g., literal tables) specially. */ |
9437 | if (xtensa_is_property_section (sec)) | |
9438 | { | |
9439 | BFD_ASSERT (!relax_info->is_relaxable_literal_section); | |
9440 | return relax_property_section (abfd, sec, link_info); | |
9441 | } | |
9442 | ||
68ffbac6 | 9443 | internal_relocs = retrieve_internal_relocs (abfd, sec, |
43cd72b9 | 9444 | link_info->keep_memory); |
4c2af04f | 9445 | if (!internal_relocs && !action_list_count (&relax_info->action_list)) |
7aa09196 SA |
9446 | return TRUE; |
9447 | ||
43cd72b9 BW |
9448 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); |
9449 | if (contents == NULL && sec_size != 0) | |
9450 | { | |
9451 | ok = FALSE; | |
9452 | goto error_return; | |
9453 | } | |
9454 | ||
9455 | if (internal_relocs) | |
9456 | { | |
9457 | for (i = 0; i < sec->reloc_count; i++) | |
9458 | { | |
9459 | Elf_Internal_Rela *irel; | |
9460 | xtensa_relax_info *target_relax_info; | |
9461 | bfd_vma source_offset, old_source_offset; | |
9462 | r_reloc r_rel; | |
9463 | unsigned r_type; | |
9464 | asection *target_sec; | |
9465 | ||
9466 | /* Locally change the source address. | |
9467 | Translate the target to the new target address. | |
9468 | If it points to this section and has been removed, | |
9469 | NULLify it. | |
9470 | Write it back. */ | |
9471 | ||
9472 | irel = &internal_relocs[i]; | |
9473 | source_offset = irel->r_offset; | |
9474 | old_source_offset = source_offset; | |
9475 | ||
9476 | r_type = ELF32_R_TYPE (irel->r_info); | |
9477 | r_reloc_init (&r_rel, abfd, irel, contents, | |
9478 | bfd_get_section_limit (abfd, sec)); | |
9479 | ||
9480 | /* If this section could have changed then we may need to | |
9481 | change the relocation's offset. */ | |
9482 | ||
9483 | if (relax_info->is_relaxable_literal_section | |
9484 | || relax_info->is_relaxable_asm_section) | |
9485 | { | |
9b7f5d20 BW |
9486 | pin_internal_relocs (sec, internal_relocs); |
9487 | ||
43cd72b9 BW |
9488 | if (r_type != R_XTENSA_NONE |
9489 | && find_removed_literal (&relax_info->removed_list, | |
9490 | irel->r_offset)) | |
9491 | { | |
9492 | /* Remove this relocation. */ | |
9493 | if (elf_hash_table (link_info)->dynamic_sections_created) | |
9494 | shrink_dynamic_reloc_sections (link_info, abfd, sec, irel); | |
9495 | irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
071aa5c9 | 9496 | irel->r_offset = offset_with_removed_text_map |
43cd72b9 | 9497 | (&relax_info->action_list, irel->r_offset); |
43cd72b9 BW |
9498 | continue; |
9499 | } | |
9500 | ||
9501 | if (r_type == R_XTENSA_ASM_SIMPLIFY) | |
9502 | { | |
9503 | text_action *action = | |
9504 | find_insn_action (&relax_info->action_list, | |
9505 | irel->r_offset); | |
9506 | if (action && (action->action == ta_convert_longcall | |
9507 | || action->action == ta_remove_longcall)) | |
9508 | { | |
9509 | bfd_reloc_status_type retval; | |
9510 | char *error_message = NULL; | |
9511 | ||
9512 | retval = contract_asm_expansion (contents, sec_size, | |
9513 | irel, &error_message); | |
9514 | if (retval != bfd_reloc_ok) | |
9515 | { | |
9516 | (*link_info->callbacks->reloc_dangerous) | |
9517 | (link_info, error_message, abfd, sec, | |
9518 | irel->r_offset); | |
9519 | goto error_return; | |
9520 | } | |
9521 | /* Update the action so that the code that moves | |
9522 | the contents will do the right thing. */ | |
4c2af04f | 9523 | /* ta_remove_longcall and ta_remove_insn actions are |
07d6d2b8 | 9524 | grouped together in the tree as well as |
4c2af04f MF |
9525 | ta_convert_longcall and ta_none, so that changes below |
9526 | can be done w/o removing and reinserting action into | |
9527 | the tree. */ | |
9528 | ||
43cd72b9 BW |
9529 | if (action->action == ta_remove_longcall) |
9530 | action->action = ta_remove_insn; | |
9531 | else | |
9532 | action->action = ta_none; | |
9533 | /* Refresh the info in the r_rel. */ | |
9534 | r_reloc_init (&r_rel, abfd, irel, contents, sec_size); | |
9535 | r_type = ELF32_R_TYPE (irel->r_info); | |
9536 | } | |
9537 | } | |
9538 | ||
071aa5c9 | 9539 | source_offset = offset_with_removed_text_map |
43cd72b9 BW |
9540 | (&relax_info->action_list, irel->r_offset); |
9541 | irel->r_offset = source_offset; | |
9542 | } | |
9543 | ||
9544 | /* If the target section could have changed then | |
9545 | we may need to change the relocation's target offset. */ | |
9546 | ||
9547 | target_sec = r_reloc_get_section (&r_rel); | |
43cd72b9 | 9548 | |
ae326da8 BW |
9549 | /* For a reference to a discarded section from a DWARF section, |
9550 | i.e., where action_discarded is PRETEND, the symbol will | |
9551 | eventually be modified to refer to the kept section (at least if | |
9552 | the kept and discarded sections are the same size). Anticipate | |
9553 | that here and adjust things accordingly. */ | |
9554 | if (! elf_xtensa_ignore_discarded_relocs (sec) | |
9555 | && elf_xtensa_action_discarded (sec) == PRETEND | |
dbaa2011 | 9556 | && sec->sec_info_type != SEC_INFO_TYPE_STABS |
ae326da8 | 9557 | && target_sec != NULL |
dbaa2011 | 9558 | && discarded_section (target_sec)) |
ae326da8 BW |
9559 | { |
9560 | /* It would be natural to call _bfd_elf_check_kept_section | |
9561 | here, but it's not exported from elflink.c. It's also a | |
9562 | fairly expensive check. Adjusting the relocations to the | |
9563 | discarded section is fairly harmless; it will only adjust | |
9564 | some addends and difference values. If it turns out that | |
9565 | _bfd_elf_check_kept_section fails later, it won't matter, | |
9566 | so just compare the section names to find the right group | |
9567 | member. */ | |
9568 | asection *kept = target_sec->kept_section; | |
9569 | if (kept != NULL) | |
9570 | { | |
9571 | if ((kept->flags & SEC_GROUP) != 0) | |
9572 | { | |
9573 | asection *first = elf_next_in_group (kept); | |
9574 | asection *s = first; | |
9575 | ||
9576 | kept = NULL; | |
9577 | while (s != NULL) | |
9578 | { | |
9579 | if (strcmp (s->name, target_sec->name) == 0) | |
9580 | { | |
9581 | kept = s; | |
9582 | break; | |
9583 | } | |
9584 | s = elf_next_in_group (s); | |
9585 | if (s == first) | |
9586 | break; | |
9587 | } | |
9588 | } | |
9589 | } | |
9590 | if (kept != NULL | |
9591 | && ((target_sec->rawsize != 0 | |
9592 | ? target_sec->rawsize : target_sec->size) | |
9593 | == (kept->rawsize != 0 ? kept->rawsize : kept->size))) | |
9594 | target_sec = kept; | |
9595 | } | |
9596 | ||
9597 | target_relax_info = get_xtensa_relax_info (target_sec); | |
43cd72b9 BW |
9598 | if (target_relax_info |
9599 | && (target_relax_info->is_relaxable_literal_section | |
9600 | || target_relax_info->is_relaxable_asm_section)) | |
9601 | { | |
9602 | r_reloc new_reloc; | |
9b7f5d20 | 9603 | target_sec = translate_reloc (&r_rel, &new_reloc, target_sec); |
43cd72b9 BW |
9604 | |
9605 | if (r_type == R_XTENSA_DIFF8 | |
9606 | || r_type == R_XTENSA_DIFF16 | |
9607 | || r_type == R_XTENSA_DIFF32) | |
9608 | { | |
1058c753 VA |
9609 | bfd_signed_vma diff_value = 0; |
9610 | bfd_vma new_end_offset, diff_mask = 0; | |
43cd72b9 BW |
9611 | |
9612 | if (bfd_get_section_limit (abfd, sec) < old_source_offset) | |
9613 | { | |
9614 | (*link_info->callbacks->reloc_dangerous) | |
9615 | (link_info, _("invalid relocation address"), | |
9616 | abfd, sec, old_source_offset); | |
9617 | goto error_return; | |
9618 | } | |
9619 | ||
9620 | switch (r_type) | |
9621 | { | |
9622 | case R_XTENSA_DIFF8: | |
9623 | diff_value = | |
1058c753 | 9624 | bfd_get_signed_8 (abfd, &contents[old_source_offset]); |
43cd72b9 BW |
9625 | break; |
9626 | case R_XTENSA_DIFF16: | |
9627 | diff_value = | |
1058c753 | 9628 | bfd_get_signed_16 (abfd, &contents[old_source_offset]); |
43cd72b9 BW |
9629 | break; |
9630 | case R_XTENSA_DIFF32: | |
9631 | diff_value = | |
1058c753 | 9632 | bfd_get_signed_32 (abfd, &contents[old_source_offset]); |
43cd72b9 BW |
9633 | break; |
9634 | } | |
9635 | ||
071aa5c9 | 9636 | new_end_offset = offset_with_removed_text_map |
43cd72b9 BW |
9637 | (&target_relax_info->action_list, |
9638 | r_rel.target_offset + diff_value); | |
9639 | diff_value = new_end_offset - new_reloc.target_offset; | |
9640 | ||
9641 | switch (r_type) | |
9642 | { | |
9643 | case R_XTENSA_DIFF8: | |
1058c753 VA |
9644 | diff_mask = 0x7f; |
9645 | bfd_put_signed_8 (abfd, diff_value, | |
43cd72b9 BW |
9646 | &contents[old_source_offset]); |
9647 | break; | |
9648 | case R_XTENSA_DIFF16: | |
1058c753 VA |
9649 | diff_mask = 0x7fff; |
9650 | bfd_put_signed_16 (abfd, diff_value, | |
43cd72b9 BW |
9651 | &contents[old_source_offset]); |
9652 | break; | |
9653 | case R_XTENSA_DIFF32: | |
1058c753 VA |
9654 | diff_mask = 0x7fffffff; |
9655 | bfd_put_signed_32 (abfd, diff_value, | |
43cd72b9 BW |
9656 | &contents[old_source_offset]); |
9657 | break; | |
9658 | } | |
9659 | ||
1058c753 VA |
9660 | /* Check for overflow. Sign bits must be all zeroes or all ones */ |
9661 | if ((diff_value & ~diff_mask) != 0 && | |
9662 | (diff_value & ~diff_mask) != (-1 & ~diff_mask)) | |
43cd72b9 BW |
9663 | { |
9664 | (*link_info->callbacks->reloc_dangerous) | |
9665 | (link_info, _("overflow after relaxation"), | |
9666 | abfd, sec, old_source_offset); | |
9667 | goto error_return; | |
9668 | } | |
9669 | ||
9670 | pin_contents (sec, contents); | |
9671 | } | |
dc96b90a BW |
9672 | |
9673 | /* If the relocation still references a section in the same | |
9674 | input file, modify the relocation directly instead of | |
9675 | adding a "fix" record. */ | |
9676 | if (target_sec->owner == abfd) | |
9677 | { | |
9678 | unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info); | |
9679 | irel->r_info = ELF32_R_INFO (r_symndx, r_type); | |
9680 | irel->r_addend = new_reloc.rela.r_addend; | |
9681 | pin_internal_relocs (sec, internal_relocs); | |
9682 | } | |
9b7f5d20 BW |
9683 | else |
9684 | { | |
dc96b90a BW |
9685 | bfd_vma addend_displacement; |
9686 | reloc_bfd_fix *fix; | |
9687 | ||
9688 | addend_displacement = | |
9689 | new_reloc.target_offset + new_reloc.virtual_offset; | |
9690 | fix = reloc_bfd_fix_init (sec, source_offset, r_type, | |
9691 | target_sec, | |
9692 | addend_displacement, TRUE); | |
9693 | add_fix (sec, fix); | |
9b7f5d20 | 9694 | } |
43cd72b9 | 9695 | } |
43cd72b9 BW |
9696 | } |
9697 | } | |
9698 | ||
9699 | if ((relax_info->is_relaxable_literal_section | |
9700 | || relax_info->is_relaxable_asm_section) | |
4c2af04f | 9701 | && action_list_count (&relax_info->action_list)) |
43cd72b9 BW |
9702 | { |
9703 | /* Walk through the planned actions and build up a table | |
9704 | of move, copy and fill records. Use the move, copy and | |
9705 | fill records to perform the actions once. */ | |
9706 | ||
43cd72b9 BW |
9707 | bfd_size_type final_size, copy_size, orig_insn_size; |
9708 | bfd_byte *scratch = NULL; | |
9709 | bfd_byte *dup_contents = NULL; | |
a3ef2d63 | 9710 | bfd_size_type orig_size = sec->size; |
43cd72b9 BW |
9711 | bfd_vma orig_dot = 0; |
9712 | bfd_vma orig_dot_copied = 0; /* Byte copied already from | |
9713 | orig dot in physical memory. */ | |
9714 | bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */ | |
9715 | bfd_vma dup_dot = 0; | |
9716 | ||
4c2af04f | 9717 | text_action *action; |
43cd72b9 BW |
9718 | |
9719 | final_size = sec->size; | |
43cd72b9 | 9720 | |
4c2af04f MF |
9721 | splay_tree_foreach (relax_info->action_list.tree, |
9722 | action_remove_bytes_fn, &final_size); | |
43cd72b9 BW |
9723 | scratch = (bfd_byte *) bfd_zmalloc (final_size); |
9724 | dup_contents = (bfd_byte *) bfd_zmalloc (final_size); | |
9725 | ||
9726 | /* The dot is the current fill location. */ | |
9727 | #if DEBUG | |
9728 | print_action_list (stderr, &relax_info->action_list); | |
9729 | #endif | |
9730 | ||
4c2af04f MF |
9731 | for (action = action_first (&relax_info->action_list); action; |
9732 | action = action_next (&relax_info->action_list, action)) | |
43cd72b9 BW |
9733 | { |
9734 | virtual_action = FALSE; | |
9735 | if (action->offset > orig_dot) | |
9736 | { | |
9737 | orig_dot += orig_dot_copied; | |
9738 | orig_dot_copied = 0; | |
9739 | orig_dot_vo = 0; | |
9740 | /* Out of the virtual world. */ | |
9741 | } | |
9742 | ||
9743 | if (action->offset > orig_dot) | |
9744 | { | |
9745 | copy_size = action->offset - orig_dot; | |
9746 | memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size); | |
9747 | orig_dot += copy_size; | |
9748 | dup_dot += copy_size; | |
9749 | BFD_ASSERT (action->offset == orig_dot); | |
9750 | } | |
9751 | else if (action->offset < orig_dot) | |
9752 | { | |
9753 | if (action->action == ta_fill | |
9754 | && action->offset - action->removed_bytes == orig_dot) | |
9755 | { | |
9756 | /* This is OK because the fill only effects the dup_dot. */ | |
9757 | } | |
9758 | else if (action->action == ta_add_literal) | |
9759 | { | |
9760 | /* TBD. Might need to handle this. */ | |
9761 | } | |
9762 | } | |
9763 | if (action->offset == orig_dot) | |
9764 | { | |
9765 | if (action->virtual_offset > orig_dot_vo) | |
9766 | { | |
9767 | if (orig_dot_vo == 0) | |
9768 | { | |
9769 | /* Need to copy virtual_offset bytes. Probably four. */ | |
9770 | copy_size = action->virtual_offset - orig_dot_vo; | |
9771 | memmove (&dup_contents[dup_dot], | |
9772 | &contents[orig_dot], copy_size); | |
9773 | orig_dot_copied = copy_size; | |
9774 | dup_dot += copy_size; | |
9775 | } | |
9776 | virtual_action = TRUE; | |
68ffbac6 | 9777 | } |
43cd72b9 BW |
9778 | else |
9779 | BFD_ASSERT (action->virtual_offset <= orig_dot_vo); | |
9780 | } | |
9781 | switch (action->action) | |
9782 | { | |
9783 | case ta_remove_literal: | |
9784 | case ta_remove_insn: | |
9785 | BFD_ASSERT (action->removed_bytes >= 0); | |
9786 | orig_dot += action->removed_bytes; | |
9787 | break; | |
9788 | ||
9789 | case ta_narrow_insn: | |
9790 | orig_insn_size = 3; | |
9791 | copy_size = 2; | |
9792 | memmove (scratch, &contents[orig_dot], orig_insn_size); | |
9793 | BFD_ASSERT (action->removed_bytes == 1); | |
64b607e6 | 9794 | rv = narrow_instruction (scratch, final_size, 0); |
43cd72b9 BW |
9795 | BFD_ASSERT (rv); |
9796 | memmove (&dup_contents[dup_dot], scratch, copy_size); | |
9797 | orig_dot += orig_insn_size; | |
9798 | dup_dot += copy_size; | |
9799 | break; | |
9800 | ||
9801 | case ta_fill: | |
9802 | if (action->removed_bytes >= 0) | |
9803 | orig_dot += action->removed_bytes; | |
9804 | else | |
9805 | { | |
9806 | /* Already zeroed in dup_contents. Just bump the | |
9807 | counters. */ | |
9808 | dup_dot += (-action->removed_bytes); | |
9809 | } | |
9810 | break; | |
9811 | ||
9812 | case ta_none: | |
9813 | BFD_ASSERT (action->removed_bytes == 0); | |
9814 | break; | |
9815 | ||
9816 | case ta_convert_longcall: | |
9817 | case ta_remove_longcall: | |
9818 | /* These will be removed or converted before we get here. */ | |
9819 | BFD_ASSERT (0); | |
9820 | break; | |
9821 | ||
9822 | case ta_widen_insn: | |
9823 | orig_insn_size = 2; | |
9824 | copy_size = 3; | |
9825 | memmove (scratch, &contents[orig_dot], orig_insn_size); | |
9826 | BFD_ASSERT (action->removed_bytes == -1); | |
64b607e6 | 9827 | rv = widen_instruction (scratch, final_size, 0); |
43cd72b9 BW |
9828 | BFD_ASSERT (rv); |
9829 | memmove (&dup_contents[dup_dot], scratch, copy_size); | |
9830 | orig_dot += orig_insn_size; | |
9831 | dup_dot += copy_size; | |
9832 | break; | |
9833 | ||
9834 | case ta_add_literal: | |
9835 | orig_insn_size = 0; | |
9836 | copy_size = 4; | |
9837 | BFD_ASSERT (action->removed_bytes == -4); | |
9838 | /* TBD -- place the literal value here and insert | |
9839 | into the table. */ | |
9840 | memset (&dup_contents[dup_dot], 0, 4); | |
9841 | pin_internal_relocs (sec, internal_relocs); | |
9842 | pin_contents (sec, contents); | |
9843 | ||
9844 | if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents, | |
9845 | relax_info, &internal_relocs, &action->value)) | |
9846 | goto error_return; | |
9847 | ||
68ffbac6 | 9848 | if (virtual_action) |
43cd72b9 BW |
9849 | orig_dot_vo += copy_size; |
9850 | ||
9851 | orig_dot += orig_insn_size; | |
9852 | dup_dot += copy_size; | |
9853 | break; | |
9854 | ||
9855 | default: | |
9856 | /* Not implemented yet. */ | |
9857 | BFD_ASSERT (0); | |
9858 | break; | |
9859 | } | |
9860 | ||
43cd72b9 BW |
9861 | BFD_ASSERT (dup_dot <= final_size); |
9862 | BFD_ASSERT (orig_dot <= orig_size); | |
9863 | } | |
9864 | ||
9865 | orig_dot += orig_dot_copied; | |
9866 | orig_dot_copied = 0; | |
9867 | ||
9868 | if (orig_dot != orig_size) | |
9869 | { | |
9870 | copy_size = orig_size - orig_dot; | |
9871 | BFD_ASSERT (orig_size > orig_dot); | |
9872 | BFD_ASSERT (dup_dot + copy_size == final_size); | |
9873 | memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size); | |
9874 | orig_dot += copy_size; | |
9875 | dup_dot += copy_size; | |
9876 | } | |
9877 | BFD_ASSERT (orig_size == orig_dot); | |
9878 | BFD_ASSERT (final_size == dup_dot); | |
9879 | ||
9880 | /* Move the dup_contents back. */ | |
9881 | if (final_size > orig_size) | |
9882 | { | |
9883 | /* Contents need to be reallocated. Swap the dup_contents into | |
9884 | contents. */ | |
9885 | sec->contents = dup_contents; | |
9886 | free (contents); | |
9887 | contents = dup_contents; | |
9888 | pin_contents (sec, contents); | |
9889 | } | |
9890 | else | |
9891 | { | |
9892 | BFD_ASSERT (final_size <= orig_size); | |
9893 | memset (contents, 0, orig_size); | |
9894 | memcpy (contents, dup_contents, final_size); | |
9895 | free (dup_contents); | |
9896 | } | |
9897 | free (scratch); | |
9898 | pin_contents (sec, contents); | |
9899 | ||
a3ef2d63 BW |
9900 | if (sec->rawsize == 0) |
9901 | sec->rawsize = sec->size; | |
43cd72b9 BW |
9902 | sec->size = final_size; |
9903 | } | |
9904 | ||
9905 | error_return: | |
9906 | release_internal_relocs (sec, internal_relocs); | |
9907 | release_contents (sec, contents); | |
9908 | return ok; | |
9909 | } | |
9910 | ||
9911 | ||
68ffbac6 | 9912 | static bfd_boolean |
7fa3d080 | 9913 | translate_section_fixes (asection *sec) |
43cd72b9 BW |
9914 | { |
9915 | xtensa_relax_info *relax_info; | |
9916 | reloc_bfd_fix *r; | |
9917 | ||
9918 | relax_info = get_xtensa_relax_info (sec); | |
9919 | if (!relax_info) | |
9920 | return TRUE; | |
9921 | ||
9922 | for (r = relax_info->fix_list; r != NULL; r = r->next) | |
9923 | if (!translate_reloc_bfd_fix (r)) | |
9924 | return FALSE; | |
e0001a05 | 9925 | |
43cd72b9 BW |
9926 | return TRUE; |
9927 | } | |
e0001a05 | 9928 | |
e0001a05 | 9929 | |
43cd72b9 BW |
9930 | /* Translate a fix given the mapping in the relax info for the target |
9931 | section. If it has already been translated, no work is required. */ | |
e0001a05 | 9932 | |
68ffbac6 | 9933 | static bfd_boolean |
7fa3d080 | 9934 | translate_reloc_bfd_fix (reloc_bfd_fix *fix) |
43cd72b9 BW |
9935 | { |
9936 | reloc_bfd_fix new_fix; | |
9937 | asection *sec; | |
9938 | xtensa_relax_info *relax_info; | |
9939 | removed_literal *removed; | |
9940 | bfd_vma new_offset, target_offset; | |
e0001a05 | 9941 | |
43cd72b9 BW |
9942 | if (fix->translated) |
9943 | return TRUE; | |
e0001a05 | 9944 | |
43cd72b9 BW |
9945 | sec = fix->target_sec; |
9946 | target_offset = fix->target_offset; | |
e0001a05 | 9947 | |
43cd72b9 BW |
9948 | relax_info = get_xtensa_relax_info (sec); |
9949 | if (!relax_info) | |
9950 | { | |
9951 | fix->translated = TRUE; | |
9952 | return TRUE; | |
9953 | } | |
e0001a05 | 9954 | |
43cd72b9 | 9955 | new_fix = *fix; |
e0001a05 | 9956 | |
43cd72b9 BW |
9957 | /* The fix does not need to be translated if the section cannot change. */ |
9958 | if (!relax_info->is_relaxable_literal_section | |
9959 | && !relax_info->is_relaxable_asm_section) | |
9960 | { | |
9961 | fix->translated = TRUE; | |
9962 | return TRUE; | |
9963 | } | |
e0001a05 | 9964 | |
43cd72b9 BW |
9965 | /* If the literal has been moved and this relocation was on an |
9966 | opcode, then the relocation should move to the new literal | |
9967 | location. Otherwise, the relocation should move within the | |
9968 | section. */ | |
9969 | ||
9970 | removed = FALSE; | |
9971 | if (is_operand_relocation (fix->src_type)) | |
9972 | { | |
9973 | /* Check if the original relocation is against a literal being | |
9974 | removed. */ | |
9975 | removed = find_removed_literal (&relax_info->removed_list, | |
9976 | target_offset); | |
e0001a05 NC |
9977 | } |
9978 | ||
68ffbac6 | 9979 | if (removed) |
e0001a05 | 9980 | { |
43cd72b9 | 9981 | asection *new_sec; |
e0001a05 | 9982 | |
43cd72b9 BW |
9983 | /* The fact that there is still a relocation to this literal indicates |
9984 | that the literal is being coalesced, not simply removed. */ | |
9985 | BFD_ASSERT (removed->to.abfd != NULL); | |
e0001a05 | 9986 | |
43cd72b9 BW |
9987 | /* This was moved to some other address (possibly another section). */ |
9988 | new_sec = r_reloc_get_section (&removed->to); | |
68ffbac6 | 9989 | if (new_sec != sec) |
e0001a05 | 9990 | { |
43cd72b9 BW |
9991 | sec = new_sec; |
9992 | relax_info = get_xtensa_relax_info (sec); | |
68ffbac6 | 9993 | if (!relax_info || |
43cd72b9 BW |
9994 | (!relax_info->is_relaxable_literal_section |
9995 | && !relax_info->is_relaxable_asm_section)) | |
e0001a05 | 9996 | { |
43cd72b9 BW |
9997 | target_offset = removed->to.target_offset; |
9998 | new_fix.target_sec = new_sec; | |
9999 | new_fix.target_offset = target_offset; | |
10000 | new_fix.translated = TRUE; | |
10001 | *fix = new_fix; | |
10002 | return TRUE; | |
e0001a05 | 10003 | } |
e0001a05 | 10004 | } |
43cd72b9 BW |
10005 | target_offset = removed->to.target_offset; |
10006 | new_fix.target_sec = new_sec; | |
e0001a05 | 10007 | } |
43cd72b9 BW |
10008 | |
10009 | /* The target address may have been moved within its section. */ | |
10010 | new_offset = offset_with_removed_text (&relax_info->action_list, | |
10011 | target_offset); | |
10012 | ||
10013 | new_fix.target_offset = new_offset; | |
10014 | new_fix.target_offset = new_offset; | |
10015 | new_fix.translated = TRUE; | |
10016 | *fix = new_fix; | |
10017 | return TRUE; | |
e0001a05 NC |
10018 | } |
10019 | ||
10020 | ||
10021 | /* Fix up a relocation to take account of removed literals. */ | |
10022 | ||
9b7f5d20 BW |
10023 | static asection * |
10024 | translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec) | |
e0001a05 | 10025 | { |
e0001a05 NC |
10026 | xtensa_relax_info *relax_info; |
10027 | removed_literal *removed; | |
9b7f5d20 | 10028 | bfd_vma target_offset, base_offset; |
e0001a05 NC |
10029 | |
10030 | *new_rel = *orig_rel; | |
10031 | ||
10032 | if (!r_reloc_is_defined (orig_rel)) | |
9b7f5d20 | 10033 | return sec ; |
e0001a05 NC |
10034 | |
10035 | relax_info = get_xtensa_relax_info (sec); | |
9b7f5d20 BW |
10036 | BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section |
10037 | || relax_info->is_relaxable_asm_section)); | |
e0001a05 | 10038 | |
43cd72b9 BW |
10039 | target_offset = orig_rel->target_offset; |
10040 | ||
10041 | removed = FALSE; | |
10042 | if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info))) | |
10043 | { | |
10044 | /* Check if the original relocation is against a literal being | |
10045 | removed. */ | |
10046 | removed = find_removed_literal (&relax_info->removed_list, | |
10047 | target_offset); | |
10048 | } | |
10049 | if (removed && removed->to.abfd) | |
e0001a05 NC |
10050 | { |
10051 | asection *new_sec; | |
10052 | ||
10053 | /* The fact that there is still a relocation to this literal indicates | |
10054 | that the literal is being coalesced, not simply removed. */ | |
10055 | BFD_ASSERT (removed->to.abfd != NULL); | |
10056 | ||
43cd72b9 BW |
10057 | /* This was moved to some other address |
10058 | (possibly in another section). */ | |
e0001a05 NC |
10059 | *new_rel = removed->to; |
10060 | new_sec = r_reloc_get_section (new_rel); | |
43cd72b9 | 10061 | if (new_sec != sec) |
e0001a05 NC |
10062 | { |
10063 | sec = new_sec; | |
10064 | relax_info = get_xtensa_relax_info (sec); | |
43cd72b9 BW |
10065 | if (!relax_info |
10066 | || (!relax_info->is_relaxable_literal_section | |
10067 | && !relax_info->is_relaxable_asm_section)) | |
9b7f5d20 | 10068 | return sec; |
e0001a05 | 10069 | } |
43cd72b9 | 10070 | target_offset = new_rel->target_offset; |
e0001a05 NC |
10071 | } |
10072 | ||
9b7f5d20 BW |
10073 | /* Find the base offset of the reloc symbol, excluding any addend from the |
10074 | reloc or from the section contents (for a partial_inplace reloc). Then | |
10075 | find the adjusted values of the offsets due to relaxation. The base | |
10076 | offset is needed to determine the change to the reloc's addend; the reloc | |
10077 | addend should not be adjusted due to relaxations located before the base | |
10078 | offset. */ | |
10079 | ||
10080 | base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend; | |
9b7f5d20 BW |
10081 | if (base_offset <= target_offset) |
10082 | { | |
071aa5c9 MF |
10083 | int base_removed = removed_by_actions_map (&relax_info->action_list, |
10084 | base_offset, FALSE); | |
10085 | int addend_removed = removed_by_actions_map (&relax_info->action_list, | |
10086 | target_offset, FALSE) - | |
10087 | base_removed; | |
10088 | ||
9b7f5d20 BW |
10089 | new_rel->target_offset = target_offset - base_removed - addend_removed; |
10090 | new_rel->rela.r_addend -= addend_removed; | |
10091 | } | |
10092 | else | |
10093 | { | |
10094 | /* Handle a negative addend. The base offset comes first. */ | |
071aa5c9 MF |
10095 | int tgt_removed = removed_by_actions_map (&relax_info->action_list, |
10096 | target_offset, FALSE); | |
10097 | int addend_removed = removed_by_actions_map (&relax_info->action_list, | |
10098 | base_offset, FALSE) - | |
10099 | tgt_removed; | |
10100 | ||
9b7f5d20 BW |
10101 | new_rel->target_offset = target_offset - tgt_removed; |
10102 | new_rel->rela.r_addend += addend_removed; | |
10103 | } | |
e0001a05 | 10104 | |
9b7f5d20 | 10105 | return sec; |
e0001a05 NC |
10106 | } |
10107 | ||
10108 | ||
10109 | /* For dynamic links, there may be a dynamic relocation for each | |
10110 | literal. The number of dynamic relocations must be computed in | |
10111 | size_dynamic_sections, which occurs before relaxation. When a | |
10112 | literal is removed, this function checks if there is a corresponding | |
10113 | dynamic relocation and shrinks the size of the appropriate dynamic | |
10114 | relocation section accordingly. At this point, the contents of the | |
10115 | dynamic relocation sections have not yet been filled in, so there's | |
10116 | nothing else that needs to be done. */ | |
10117 | ||
10118 | static void | |
7fa3d080 BW |
10119 | shrink_dynamic_reloc_sections (struct bfd_link_info *info, |
10120 | bfd *abfd, | |
10121 | asection *input_section, | |
10122 | Elf_Internal_Rela *rel) | |
e0001a05 | 10123 | { |
f0e6fdb2 | 10124 | struct elf_xtensa_link_hash_table *htab; |
e0001a05 NC |
10125 | Elf_Internal_Shdr *symtab_hdr; |
10126 | struct elf_link_hash_entry **sym_hashes; | |
10127 | unsigned long r_symndx; | |
10128 | int r_type; | |
10129 | struct elf_link_hash_entry *h; | |
10130 | bfd_boolean dynamic_symbol; | |
10131 | ||
f0e6fdb2 | 10132 | htab = elf_xtensa_hash_table (info); |
4dfe6ac6 NC |
10133 | if (htab == NULL) |
10134 | return; | |
10135 | ||
e0001a05 NC |
10136 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
10137 | sym_hashes = elf_sym_hashes (abfd); | |
10138 | ||
10139 | r_type = ELF32_R_TYPE (rel->r_info); | |
10140 | r_symndx = ELF32_R_SYM (rel->r_info); | |
10141 | ||
10142 | if (r_symndx < symtab_hdr->sh_info) | |
10143 | h = NULL; | |
10144 | else | |
10145 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | |
10146 | ||
4608f3d9 | 10147 | dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info); |
e0001a05 NC |
10148 | |
10149 | if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT) | |
10150 | && (input_section->flags & SEC_ALLOC) != 0 | |
c451bb34 | 10151 | && (dynamic_symbol || bfd_link_pic (info)) |
5d3a462f | 10152 | && (!h || h->root.type != bfd_link_hash_undefweak |
2487ef07 MF |
10153 | || (dynamic_symbol |
10154 | && (bfd_link_dll (info) || info->export_dynamic)))) | |
e0001a05 | 10155 | { |
e0001a05 NC |
10156 | asection *srel; |
10157 | bfd_boolean is_plt = FALSE; | |
10158 | ||
e0001a05 NC |
10159 | if (dynamic_symbol && r_type == R_XTENSA_PLT) |
10160 | { | |
ce558b89 | 10161 | srel = htab->elf.srelplt; |
e0001a05 NC |
10162 | is_plt = TRUE; |
10163 | } | |
10164 | else | |
ce558b89 | 10165 | srel = htab->elf.srelgot; |
e0001a05 NC |
10166 | |
10167 | /* Reduce size of the .rela.* section by one reloc. */ | |
e0001a05 | 10168 | BFD_ASSERT (srel != NULL); |
eea6121a AM |
10169 | BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela)); |
10170 | srel->size -= sizeof (Elf32_External_Rela); | |
e0001a05 NC |
10171 | |
10172 | if (is_plt) | |
10173 | { | |
10174 | asection *splt, *sgotplt, *srelgot; | |
10175 | int reloc_index, chunk; | |
10176 | ||
10177 | /* Find the PLT reloc index of the entry being removed. This | |
10178 | is computed from the size of ".rela.plt". It is needed to | |
10179 | figure out which PLT chunk to resize. Usually "last index | |
10180 | = size - 1" since the index starts at zero, but in this | |
10181 | context, the size has just been decremented so there's no | |
10182 | need to subtract one. */ | |
eea6121a | 10183 | reloc_index = srel->size / sizeof (Elf32_External_Rela); |
e0001a05 NC |
10184 | |
10185 | chunk = reloc_index / PLT_ENTRIES_PER_CHUNK; | |
f0e6fdb2 BW |
10186 | splt = elf_xtensa_get_plt_section (info, chunk); |
10187 | sgotplt = elf_xtensa_get_gotplt_section (info, chunk); | |
e0001a05 NC |
10188 | BFD_ASSERT (splt != NULL && sgotplt != NULL); |
10189 | ||
10190 | /* Check if an entire PLT chunk has just been eliminated. */ | |
10191 | if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0) | |
10192 | { | |
10193 | /* The two magic GOT entries for that chunk can go away. */ | |
ce558b89 | 10194 | srelgot = htab->elf.srelgot; |
e0001a05 NC |
10195 | BFD_ASSERT (srelgot != NULL); |
10196 | srelgot->reloc_count -= 2; | |
eea6121a AM |
10197 | srelgot->size -= 2 * sizeof (Elf32_External_Rela); |
10198 | sgotplt->size -= 8; | |
e0001a05 NC |
10199 | |
10200 | /* There should be only one entry left (and it will be | |
10201 | removed below). */ | |
eea6121a AM |
10202 | BFD_ASSERT (sgotplt->size == 4); |
10203 | BFD_ASSERT (splt->size == PLT_ENTRY_SIZE); | |
e0001a05 NC |
10204 | } |
10205 | ||
eea6121a AM |
10206 | BFD_ASSERT (sgotplt->size >= 4); |
10207 | BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE); | |
e0001a05 | 10208 | |
eea6121a AM |
10209 | sgotplt->size -= 4; |
10210 | splt->size -= PLT_ENTRY_SIZE; | |
e0001a05 NC |
10211 | } |
10212 | } | |
10213 | } | |
10214 | ||
10215 | ||
43cd72b9 BW |
10216 | /* Take an r_rel and move it to another section. This usually |
10217 | requires extending the interal_relocation array and pinning it. If | |
10218 | the original r_rel is from the same BFD, we can complete this here. | |
10219 | Otherwise, we add a fix record to let the final link fix the | |
10220 | appropriate address. Contents and internal relocations for the | |
10221 | section must be pinned after calling this routine. */ | |
10222 | ||
10223 | static bfd_boolean | |
7fa3d080 BW |
10224 | move_literal (bfd *abfd, |
10225 | struct bfd_link_info *link_info, | |
10226 | asection *sec, | |
10227 | bfd_vma offset, | |
10228 | bfd_byte *contents, | |
10229 | xtensa_relax_info *relax_info, | |
10230 | Elf_Internal_Rela **internal_relocs_p, | |
10231 | const literal_value *lit) | |
43cd72b9 BW |
10232 | { |
10233 | Elf_Internal_Rela *new_relocs = NULL; | |
10234 | size_t new_relocs_count = 0; | |
10235 | Elf_Internal_Rela this_rela; | |
10236 | const r_reloc *r_rel; | |
10237 | ||
10238 | r_rel = &lit->r_rel; | |
10239 | BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p); | |
10240 | ||
10241 | if (r_reloc_is_const (r_rel)) | |
10242 | bfd_put_32 (abfd, lit->value, contents + offset); | |
10243 | else | |
10244 | { | |
10245 | int r_type; | |
10246 | unsigned i; | |
43cd72b9 BW |
10247 | reloc_bfd_fix *fix; |
10248 | unsigned insert_at; | |
10249 | ||
10250 | r_type = ELF32_R_TYPE (r_rel->rela.r_info); | |
43cd72b9 BW |
10251 | |
10252 | /* This is the difficult case. We have to create a fix up. */ | |
10253 | this_rela.r_offset = offset; | |
10254 | this_rela.r_info = ELF32_R_INFO (0, r_type); | |
10255 | this_rela.r_addend = | |
10256 | r_rel->target_offset - r_reloc_get_target_offset (r_rel); | |
10257 | bfd_put_32 (abfd, lit->value, contents + offset); | |
10258 | ||
10259 | /* Currently, we cannot move relocations during a relocatable link. */ | |
0e1862bb | 10260 | BFD_ASSERT (!bfd_link_relocatable (link_info)); |
0f5f1638 | 10261 | fix = reloc_bfd_fix_init (sec, offset, r_type, |
43cd72b9 BW |
10262 | r_reloc_get_section (r_rel), |
10263 | r_rel->target_offset + r_rel->virtual_offset, | |
10264 | FALSE); | |
10265 | /* We also need to mark that relocations are needed here. */ | |
10266 | sec->flags |= SEC_RELOC; | |
10267 | ||
10268 | translate_reloc_bfd_fix (fix); | |
10269 | /* This fix has not yet been translated. */ | |
10270 | add_fix (sec, fix); | |
10271 | ||
10272 | /* Add the relocation. If we have already allocated our own | |
10273 | space for the relocations and we have room for more, then use | |
10274 | it. Otherwise, allocate new space and move the literals. */ | |
10275 | insert_at = sec->reloc_count; | |
10276 | for (i = 0; i < sec->reloc_count; ++i) | |
10277 | { | |
10278 | if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset) | |
10279 | { | |
10280 | insert_at = i; | |
10281 | break; | |
10282 | } | |
10283 | } | |
10284 | ||
10285 | if (*internal_relocs_p != relax_info->allocated_relocs | |
10286 | || sec->reloc_count + 1 > relax_info->allocated_relocs_count) | |
10287 | { | |
10288 | BFD_ASSERT (relax_info->allocated_relocs == NULL | |
10289 | || sec->reloc_count == relax_info->relocs_count); | |
10290 | ||
68ffbac6 | 10291 | if (relax_info->allocated_relocs_count == 0) |
43cd72b9 BW |
10292 | new_relocs_count = (sec->reloc_count + 2) * 2; |
10293 | else | |
10294 | new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2; | |
10295 | ||
10296 | new_relocs = (Elf_Internal_Rela *) | |
10297 | bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count)); | |
10298 | if (!new_relocs) | |
10299 | return FALSE; | |
10300 | ||
10301 | /* We could handle this more quickly by finding the split point. */ | |
10302 | if (insert_at != 0) | |
10303 | memcpy (new_relocs, *internal_relocs_p, | |
10304 | insert_at * sizeof (Elf_Internal_Rela)); | |
10305 | ||
10306 | new_relocs[insert_at] = this_rela; | |
10307 | ||
10308 | if (insert_at != sec->reloc_count) | |
10309 | memcpy (new_relocs + insert_at + 1, | |
10310 | (*internal_relocs_p) + insert_at, | |
68ffbac6 | 10311 | (sec->reloc_count - insert_at) |
43cd72b9 BW |
10312 | * sizeof (Elf_Internal_Rela)); |
10313 | ||
10314 | if (*internal_relocs_p != relax_info->allocated_relocs) | |
10315 | { | |
10316 | /* The first time we re-allocate, we can only free the | |
10317 | old relocs if they were allocated with bfd_malloc. | |
10318 | This is not true when keep_memory is in effect. */ | |
10319 | if (!link_info->keep_memory) | |
10320 | free (*internal_relocs_p); | |
10321 | } | |
10322 | else | |
10323 | free (*internal_relocs_p); | |
10324 | relax_info->allocated_relocs = new_relocs; | |
10325 | relax_info->allocated_relocs_count = new_relocs_count; | |
10326 | elf_section_data (sec)->relocs = new_relocs; | |
10327 | sec->reloc_count++; | |
10328 | relax_info->relocs_count = sec->reloc_count; | |
10329 | *internal_relocs_p = new_relocs; | |
10330 | } | |
10331 | else | |
10332 | { | |
10333 | if (insert_at != sec->reloc_count) | |
10334 | { | |
10335 | unsigned idx; | |
10336 | for (idx = sec->reloc_count; idx > insert_at; idx--) | |
10337 | (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1]; | |
10338 | } | |
10339 | (*internal_relocs_p)[insert_at] = this_rela; | |
10340 | sec->reloc_count++; | |
10341 | if (relax_info->allocated_relocs) | |
10342 | relax_info->relocs_count = sec->reloc_count; | |
10343 | } | |
10344 | } | |
10345 | return TRUE; | |
10346 | } | |
10347 | ||
10348 | ||
e0001a05 NC |
10349 | /* This is similar to relax_section except that when a target is moved, |
10350 | we shift addresses up. We also need to modify the size. This | |
10351 | algorithm does NOT allow for relocations into the middle of the | |
10352 | property sections. */ | |
10353 | ||
43cd72b9 | 10354 | static bfd_boolean |
7fa3d080 BW |
10355 | relax_property_section (bfd *abfd, |
10356 | asection *sec, | |
10357 | struct bfd_link_info *link_info) | |
e0001a05 NC |
10358 | { |
10359 | Elf_Internal_Rela *internal_relocs; | |
10360 | bfd_byte *contents; | |
1d25768e | 10361 | unsigned i; |
e0001a05 | 10362 | bfd_boolean ok = TRUE; |
43cd72b9 BW |
10363 | bfd_boolean is_full_prop_section; |
10364 | size_t last_zfill_target_offset = 0; | |
10365 | asection *last_zfill_target_sec = NULL; | |
10366 | bfd_size_type sec_size; | |
1d25768e | 10367 | bfd_size_type entry_size; |
e0001a05 | 10368 | |
43cd72b9 | 10369 | sec_size = bfd_get_section_limit (abfd, sec); |
68ffbac6 | 10370 | internal_relocs = retrieve_internal_relocs (abfd, sec, |
e0001a05 NC |
10371 | link_info->keep_memory); |
10372 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
43cd72b9 | 10373 | if (contents == NULL && sec_size != 0) |
e0001a05 NC |
10374 | { |
10375 | ok = FALSE; | |
10376 | goto error_return; | |
10377 | } | |
10378 | ||
1d25768e BW |
10379 | is_full_prop_section = xtensa_is_proptable_section (sec); |
10380 | if (is_full_prop_section) | |
10381 | entry_size = 12; | |
10382 | else | |
10383 | entry_size = 8; | |
43cd72b9 BW |
10384 | |
10385 | if (internal_relocs) | |
e0001a05 | 10386 | { |
43cd72b9 | 10387 | for (i = 0; i < sec->reloc_count; i++) |
e0001a05 NC |
10388 | { |
10389 | Elf_Internal_Rela *irel; | |
10390 | xtensa_relax_info *target_relax_info; | |
e0001a05 NC |
10391 | unsigned r_type; |
10392 | asection *target_sec; | |
43cd72b9 BW |
10393 | literal_value val; |
10394 | bfd_byte *size_p, *flags_p; | |
e0001a05 NC |
10395 | |
10396 | /* Locally change the source address. | |
10397 | Translate the target to the new target address. | |
10398 | If it points to this section and has been removed, MOVE IT. | |
10399 | Also, don't forget to modify the associated SIZE at | |
10400 | (offset + 4). */ | |
10401 | ||
10402 | irel = &internal_relocs[i]; | |
10403 | r_type = ELF32_R_TYPE (irel->r_info); | |
10404 | if (r_type == R_XTENSA_NONE) | |
10405 | continue; | |
10406 | ||
43cd72b9 BW |
10407 | /* Find the literal value. */ |
10408 | r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size); | |
10409 | size_p = &contents[irel->r_offset + 4]; | |
10410 | flags_p = NULL; | |
10411 | if (is_full_prop_section) | |
1d25768e BW |
10412 | flags_p = &contents[irel->r_offset + 8]; |
10413 | BFD_ASSERT (irel->r_offset + entry_size <= sec_size); | |
e0001a05 | 10414 | |
43cd72b9 | 10415 | target_sec = r_reloc_get_section (&val.r_rel); |
e0001a05 NC |
10416 | target_relax_info = get_xtensa_relax_info (target_sec); |
10417 | ||
10418 | if (target_relax_info | |
43cd72b9 BW |
10419 | && (target_relax_info->is_relaxable_literal_section |
10420 | || target_relax_info->is_relaxable_asm_section )) | |
e0001a05 NC |
10421 | { |
10422 | /* Translate the relocation's destination. */ | |
03669f1c BW |
10423 | bfd_vma old_offset = val.r_rel.target_offset; |
10424 | bfd_vma new_offset; | |
e0001a05 | 10425 | long old_size, new_size; |
071aa5c9 MF |
10426 | int removed_by_old_offset = |
10427 | removed_by_actions_map (&target_relax_info->action_list, | |
10428 | old_offset, FALSE); | |
10429 | new_offset = old_offset - removed_by_old_offset; | |
e0001a05 NC |
10430 | |
10431 | /* Assert that we are not out of bounds. */ | |
43cd72b9 | 10432 | old_size = bfd_get_32 (abfd, size_p); |
03669f1c | 10433 | new_size = old_size; |
43cd72b9 BW |
10434 | |
10435 | if (old_size == 0) | |
10436 | { | |
10437 | /* Only the first zero-sized unreachable entry is | |
10438 | allowed to expand. In this case the new offset | |
10439 | should be the offset before the fill and the new | |
10440 | size is the expansion size. For other zero-sized | |
10441 | entries the resulting size should be zero with an | |
10442 | offset before or after the fill address depending | |
10443 | on whether the expanding unreachable entry | |
10444 | preceeds it. */ | |
03669f1c BW |
10445 | if (last_zfill_target_sec == 0 |
10446 | || last_zfill_target_sec != target_sec | |
10447 | || last_zfill_target_offset != old_offset) | |
43cd72b9 | 10448 | { |
03669f1c BW |
10449 | bfd_vma new_end_offset = new_offset; |
10450 | ||
10451 | /* Recompute the new_offset, but this time don't | |
10452 | include any fill inserted by relaxation. */ | |
071aa5c9 MF |
10453 | removed_by_old_offset = |
10454 | removed_by_actions_map (&target_relax_info->action_list, | |
10455 | old_offset, TRUE); | |
10456 | new_offset = old_offset - removed_by_old_offset; | |
43cd72b9 BW |
10457 | |
10458 | /* If it is not unreachable and we have not yet | |
10459 | seen an unreachable at this address, place it | |
10460 | before the fill address. */ | |
03669f1c BW |
10461 | if (flags_p && (bfd_get_32 (abfd, flags_p) |
10462 | & XTENSA_PROP_UNREACHABLE) != 0) | |
43cd72b9 | 10463 | { |
03669f1c BW |
10464 | new_size = new_end_offset - new_offset; |
10465 | ||
43cd72b9 | 10466 | last_zfill_target_sec = target_sec; |
03669f1c | 10467 | last_zfill_target_offset = old_offset; |
43cd72b9 BW |
10468 | } |
10469 | } | |
10470 | } | |
10471 | else | |
071aa5c9 MF |
10472 | { |
10473 | int removed_by_old_offset_size = | |
10474 | removed_by_actions_map (&target_relax_info->action_list, | |
10475 | old_offset + old_size, TRUE); | |
10476 | new_size -= removed_by_old_offset_size - removed_by_old_offset; | |
10477 | } | |
43cd72b9 | 10478 | |
e0001a05 NC |
10479 | if (new_size != old_size) |
10480 | { | |
10481 | bfd_put_32 (abfd, new_size, size_p); | |
10482 | pin_contents (sec, contents); | |
10483 | } | |
43cd72b9 | 10484 | |
03669f1c | 10485 | if (new_offset != old_offset) |
e0001a05 | 10486 | { |
03669f1c | 10487 | bfd_vma diff = new_offset - old_offset; |
e0001a05 NC |
10488 | irel->r_addend += diff; |
10489 | pin_internal_relocs (sec, internal_relocs); | |
10490 | } | |
10491 | } | |
10492 | } | |
10493 | } | |
10494 | ||
10495 | /* Combine adjacent property table entries. This is also done in | |
10496 | finish_dynamic_sections() but at that point it's too late to | |
10497 | reclaim the space in the output section, so we do this twice. */ | |
10498 | ||
0e1862bb | 10499 | if (internal_relocs && (!bfd_link_relocatable (link_info) |
1d25768e | 10500 | || xtensa_is_littable_section (sec))) |
e0001a05 NC |
10501 | { |
10502 | Elf_Internal_Rela *last_irel = NULL; | |
1d25768e | 10503 | Elf_Internal_Rela *irel, *next_rel, *rel_end; |
e0001a05 | 10504 | int removed_bytes = 0; |
1d25768e | 10505 | bfd_vma offset; |
43cd72b9 BW |
10506 | flagword predef_flags; |
10507 | ||
43cd72b9 | 10508 | predef_flags = xtensa_get_property_predef_flags (sec); |
e0001a05 | 10509 | |
1d25768e | 10510 | /* Walk over memory and relocations at the same time. |
07d6d2b8 | 10511 | This REQUIRES that the internal_relocs be sorted by offset. */ |
e0001a05 NC |
10512 | qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), |
10513 | internal_reloc_compare); | |
e0001a05 NC |
10514 | |
10515 | pin_internal_relocs (sec, internal_relocs); | |
10516 | pin_contents (sec, contents); | |
10517 | ||
1d25768e BW |
10518 | next_rel = internal_relocs; |
10519 | rel_end = internal_relocs + sec->reloc_count; | |
10520 | ||
a3ef2d63 | 10521 | BFD_ASSERT (sec->size % entry_size == 0); |
e0001a05 | 10522 | |
a3ef2d63 | 10523 | for (offset = 0; offset < sec->size; offset += entry_size) |
e0001a05 | 10524 | { |
1d25768e | 10525 | Elf_Internal_Rela *offset_rel, *extra_rel; |
e0001a05 | 10526 | bfd_vma bytes_to_remove, size, actual_offset; |
1d25768e | 10527 | bfd_boolean remove_this_rel; |
43cd72b9 | 10528 | flagword flags; |
e0001a05 | 10529 | |
1d25768e BW |
10530 | /* Find the first relocation for the entry at the current offset. |
10531 | Adjust the offsets of any extra relocations for the previous | |
10532 | entry. */ | |
10533 | offset_rel = NULL; | |
10534 | if (next_rel) | |
10535 | { | |
10536 | for (irel = next_rel; irel < rel_end; irel++) | |
10537 | { | |
10538 | if ((irel->r_offset == offset | |
10539 | && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE) | |
10540 | || irel->r_offset > offset) | |
10541 | { | |
10542 | offset_rel = irel; | |
10543 | break; | |
10544 | } | |
10545 | irel->r_offset -= removed_bytes; | |
1d25768e BW |
10546 | } |
10547 | } | |
e0001a05 | 10548 | |
1d25768e BW |
10549 | /* Find the next relocation (if there are any left). */ |
10550 | extra_rel = NULL; | |
10551 | if (offset_rel) | |
e0001a05 | 10552 | { |
1d25768e | 10553 | for (irel = offset_rel + 1; irel < rel_end; irel++) |
e0001a05 | 10554 | { |
1d25768e BW |
10555 | if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE) |
10556 | { | |
10557 | extra_rel = irel; | |
10558 | break; | |
10559 | } | |
e0001a05 | 10560 | } |
e0001a05 NC |
10561 | } |
10562 | ||
1d25768e BW |
10563 | /* Check if there are relocations on the current entry. There |
10564 | should usually be a relocation on the offset field. If there | |
10565 | are relocations on the size or flags, then we can't optimize | |
10566 | this entry. Also, find the next relocation to examine on the | |
10567 | next iteration. */ | |
10568 | if (offset_rel) | |
e0001a05 | 10569 | { |
1d25768e | 10570 | if (offset_rel->r_offset >= offset + entry_size) |
e0001a05 | 10571 | { |
1d25768e BW |
10572 | next_rel = offset_rel; |
10573 | /* There are no relocations on the current entry, but we | |
10574 | might still be able to remove it if the size is zero. */ | |
10575 | offset_rel = NULL; | |
10576 | } | |
10577 | else if (offset_rel->r_offset > offset | |
10578 | || (extra_rel | |
10579 | && extra_rel->r_offset < offset + entry_size)) | |
10580 | { | |
10581 | /* There is a relocation on the size or flags, so we can't | |
10582 | do anything with this entry. Continue with the next. */ | |
10583 | next_rel = offset_rel; | |
10584 | continue; | |
10585 | } | |
10586 | else | |
10587 | { | |
10588 | BFD_ASSERT (offset_rel->r_offset == offset); | |
10589 | offset_rel->r_offset -= removed_bytes; | |
10590 | next_rel = offset_rel + 1; | |
e0001a05 | 10591 | } |
e0001a05 | 10592 | } |
1d25768e BW |
10593 | else |
10594 | next_rel = NULL; | |
e0001a05 | 10595 | |
1d25768e | 10596 | remove_this_rel = FALSE; |
e0001a05 NC |
10597 | bytes_to_remove = 0; |
10598 | actual_offset = offset - removed_bytes; | |
10599 | size = bfd_get_32 (abfd, &contents[actual_offset + 4]); | |
10600 | ||
68ffbac6 | 10601 | if (is_full_prop_section) |
43cd72b9 BW |
10602 | flags = bfd_get_32 (abfd, &contents[actual_offset + 8]); |
10603 | else | |
10604 | flags = predef_flags; | |
10605 | ||
1d25768e BW |
10606 | if (size == 0 |
10607 | && (flags & XTENSA_PROP_ALIGN) == 0 | |
10608 | && (flags & XTENSA_PROP_UNREACHABLE) == 0) | |
e0001a05 | 10609 | { |
43cd72b9 BW |
10610 | /* Always remove entries with zero size and no alignment. */ |
10611 | bytes_to_remove = entry_size; | |
1d25768e BW |
10612 | if (offset_rel) |
10613 | remove_this_rel = TRUE; | |
e0001a05 | 10614 | } |
1d25768e BW |
10615 | else if (offset_rel |
10616 | && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32) | |
e0001a05 | 10617 | { |
1d25768e | 10618 | if (last_irel) |
e0001a05 | 10619 | { |
1d25768e BW |
10620 | flagword old_flags; |
10621 | bfd_vma old_size = | |
10622 | bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]); | |
10623 | bfd_vma old_address = | |
10624 | (last_irel->r_addend | |
10625 | + bfd_get_32 (abfd, &contents[last_irel->r_offset])); | |
10626 | bfd_vma new_address = | |
10627 | (offset_rel->r_addend | |
10628 | + bfd_get_32 (abfd, &contents[actual_offset])); | |
68ffbac6 | 10629 | if (is_full_prop_section) |
1d25768e BW |
10630 | old_flags = bfd_get_32 |
10631 | (abfd, &contents[last_irel->r_offset + 8]); | |
10632 | else | |
10633 | old_flags = predef_flags; | |
10634 | ||
10635 | if ((ELF32_R_SYM (offset_rel->r_info) | |
10636 | == ELF32_R_SYM (last_irel->r_info)) | |
10637 | && old_address + old_size == new_address | |
10638 | && old_flags == flags | |
10639 | && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0 | |
10640 | && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0) | |
e0001a05 | 10641 | { |
1d25768e BW |
10642 | /* Fix the old size. */ |
10643 | bfd_put_32 (abfd, old_size + size, | |
10644 | &contents[last_irel->r_offset + 4]); | |
10645 | bytes_to_remove = entry_size; | |
10646 | remove_this_rel = TRUE; | |
e0001a05 NC |
10647 | } |
10648 | else | |
1d25768e | 10649 | last_irel = offset_rel; |
e0001a05 | 10650 | } |
1d25768e BW |
10651 | else |
10652 | last_irel = offset_rel; | |
e0001a05 NC |
10653 | } |
10654 | ||
1d25768e | 10655 | if (remove_this_rel) |
e0001a05 | 10656 | { |
1d25768e | 10657 | offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); |
3df502ae | 10658 | offset_rel->r_offset = 0; |
e0001a05 NC |
10659 | } |
10660 | ||
10661 | if (bytes_to_remove != 0) | |
10662 | { | |
10663 | removed_bytes += bytes_to_remove; | |
a3ef2d63 | 10664 | if (offset + bytes_to_remove < sec->size) |
e0001a05 | 10665 | memmove (&contents[actual_offset], |
43cd72b9 | 10666 | &contents[actual_offset + bytes_to_remove], |
a3ef2d63 | 10667 | sec->size - offset - bytes_to_remove); |
e0001a05 NC |
10668 | } |
10669 | } | |
10670 | ||
43cd72b9 | 10671 | if (removed_bytes) |
e0001a05 | 10672 | { |
1d25768e BW |
10673 | /* Fix up any extra relocations on the last entry. */ |
10674 | for (irel = next_rel; irel < rel_end; irel++) | |
10675 | irel->r_offset -= removed_bytes; | |
10676 | ||
e0001a05 | 10677 | /* Clear the removed bytes. */ |
a3ef2d63 | 10678 | memset (&contents[sec->size - removed_bytes], 0, removed_bytes); |
e0001a05 | 10679 | |
a3ef2d63 BW |
10680 | if (sec->rawsize == 0) |
10681 | sec->rawsize = sec->size; | |
10682 | sec->size -= removed_bytes; | |
e901de89 BW |
10683 | |
10684 | if (xtensa_is_littable_section (sec)) | |
10685 | { | |
f0e6fdb2 BW |
10686 | asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc; |
10687 | if (sgotloc) | |
10688 | sgotloc->size -= removed_bytes; | |
e901de89 | 10689 | } |
e0001a05 NC |
10690 | } |
10691 | } | |
e901de89 | 10692 | |
e0001a05 NC |
10693 | error_return: |
10694 | release_internal_relocs (sec, internal_relocs); | |
10695 | release_contents (sec, contents); | |
10696 | return ok; | |
10697 | } | |
10698 | ||
10699 | \f | |
10700 | /* Third relaxation pass. */ | |
10701 | ||
10702 | /* Change symbol values to account for removed literals. */ | |
10703 | ||
43cd72b9 | 10704 | bfd_boolean |
7fa3d080 | 10705 | relax_section_symbols (bfd *abfd, asection *sec) |
e0001a05 NC |
10706 | { |
10707 | xtensa_relax_info *relax_info; | |
10708 | unsigned int sec_shndx; | |
10709 | Elf_Internal_Shdr *symtab_hdr; | |
10710 | Elf_Internal_Sym *isymbuf; | |
10711 | unsigned i, num_syms, num_locals; | |
10712 | ||
10713 | relax_info = get_xtensa_relax_info (sec); | |
10714 | BFD_ASSERT (relax_info); | |
10715 | ||
43cd72b9 BW |
10716 | if (!relax_info->is_relaxable_literal_section |
10717 | && !relax_info->is_relaxable_asm_section) | |
e0001a05 NC |
10718 | return TRUE; |
10719 | ||
10720 | sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); | |
10721 | ||
10722 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
10723 | isymbuf = retrieve_local_syms (abfd); | |
10724 | ||
10725 | num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym); | |
10726 | num_locals = symtab_hdr->sh_info; | |
10727 | ||
10728 | /* Adjust the local symbols defined in this section. */ | |
10729 | for (i = 0; i < num_locals; i++) | |
10730 | { | |
10731 | Elf_Internal_Sym *isym = &isymbuf[i]; | |
10732 | ||
10733 | if (isym->st_shndx == sec_shndx) | |
10734 | { | |
03669f1c | 10735 | bfd_vma orig_addr = isym->st_value; |
071aa5c9 MF |
10736 | int removed = removed_by_actions_map (&relax_info->action_list, |
10737 | orig_addr, FALSE); | |
43cd72b9 | 10738 | |
071aa5c9 | 10739 | isym->st_value -= removed; |
03669f1c BW |
10740 | if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC) |
10741 | isym->st_size -= | |
071aa5c9 MF |
10742 | removed_by_actions_map (&relax_info->action_list, |
10743 | orig_addr + isym->st_size, FALSE) - | |
10744 | removed; | |
e0001a05 NC |
10745 | } |
10746 | } | |
10747 | ||
10748 | /* Now adjust the global symbols defined in this section. */ | |
10749 | for (i = 0; i < (num_syms - num_locals); i++) | |
10750 | { | |
10751 | struct elf_link_hash_entry *sym_hash; | |
10752 | ||
10753 | sym_hash = elf_sym_hashes (abfd)[i]; | |
10754 | ||
10755 | if (sym_hash->root.type == bfd_link_hash_warning) | |
10756 | sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link; | |
10757 | ||
10758 | if ((sym_hash->root.type == bfd_link_hash_defined | |
10759 | || sym_hash->root.type == bfd_link_hash_defweak) | |
10760 | && sym_hash->root.u.def.section == sec) | |
10761 | { | |
03669f1c | 10762 | bfd_vma orig_addr = sym_hash->root.u.def.value; |
071aa5c9 MF |
10763 | int removed = removed_by_actions_map (&relax_info->action_list, |
10764 | orig_addr, FALSE); | |
43cd72b9 | 10765 | |
071aa5c9 | 10766 | sym_hash->root.u.def.value -= removed; |
43cd72b9 | 10767 | |
03669f1c BW |
10768 | if (sym_hash->type == STT_FUNC) |
10769 | sym_hash->size -= | |
071aa5c9 MF |
10770 | removed_by_actions_map (&relax_info->action_list, |
10771 | orig_addr + sym_hash->size, FALSE) - | |
10772 | removed; | |
e0001a05 NC |
10773 | } |
10774 | } | |
10775 | ||
10776 | return TRUE; | |
10777 | } | |
10778 | ||
10779 | \f | |
10780 | /* "Fix" handling functions, called while performing relocations. */ | |
10781 | ||
43cd72b9 | 10782 | static bfd_boolean |
7fa3d080 BW |
10783 | do_fix_for_relocatable_link (Elf_Internal_Rela *rel, |
10784 | bfd *input_bfd, | |
10785 | asection *input_section, | |
10786 | bfd_byte *contents) | |
e0001a05 NC |
10787 | { |
10788 | r_reloc r_rel; | |
10789 | asection *sec, *old_sec; | |
10790 | bfd_vma old_offset; | |
10791 | int r_type = ELF32_R_TYPE (rel->r_info); | |
e0001a05 NC |
10792 | reloc_bfd_fix *fix; |
10793 | ||
10794 | if (r_type == R_XTENSA_NONE) | |
43cd72b9 | 10795 | return TRUE; |
e0001a05 | 10796 | |
43cd72b9 BW |
10797 | fix = get_bfd_fix (input_section, rel->r_offset, r_type); |
10798 | if (!fix) | |
10799 | return TRUE; | |
e0001a05 | 10800 | |
43cd72b9 BW |
10801 | r_reloc_init (&r_rel, input_bfd, rel, contents, |
10802 | bfd_get_section_limit (input_bfd, input_section)); | |
e0001a05 | 10803 | old_sec = r_reloc_get_section (&r_rel); |
43cd72b9 BW |
10804 | old_offset = r_rel.target_offset; |
10805 | ||
10806 | if (!old_sec || !r_reloc_is_defined (&r_rel)) | |
e0001a05 | 10807 | { |
43cd72b9 BW |
10808 | if (r_type != R_XTENSA_ASM_EXPAND) |
10809 | { | |
4eca0228 | 10810 | _bfd_error_handler |
695344c0 | 10811 | /* xgettext:c-format */ |
2dcf00ce AM |
10812 | (_("%pB(%pA+%#" PRIx64 "): unexpected fix for %s relocation"), |
10813 | input_bfd, input_section, (uint64_t) rel->r_offset, | |
43cd72b9 BW |
10814 | elf_howto_table[r_type].name); |
10815 | return FALSE; | |
10816 | } | |
e0001a05 NC |
10817 | /* Leave it be. Resolution will happen in a later stage. */ |
10818 | } | |
10819 | else | |
10820 | { | |
10821 | sec = fix->target_sec; | |
10822 | rel->r_addend += ((sec->output_offset + fix->target_offset) | |
10823 | - (old_sec->output_offset + old_offset)); | |
10824 | } | |
43cd72b9 | 10825 | return TRUE; |
e0001a05 NC |
10826 | } |
10827 | ||
10828 | ||
10829 | static void | |
7fa3d080 BW |
10830 | do_fix_for_final_link (Elf_Internal_Rela *rel, |
10831 | bfd *input_bfd, | |
10832 | asection *input_section, | |
10833 | bfd_byte *contents, | |
10834 | bfd_vma *relocationp) | |
e0001a05 NC |
10835 | { |
10836 | asection *sec; | |
10837 | int r_type = ELF32_R_TYPE (rel->r_info); | |
e0001a05 | 10838 | reloc_bfd_fix *fix; |
43cd72b9 | 10839 | bfd_vma fixup_diff; |
e0001a05 NC |
10840 | |
10841 | if (r_type == R_XTENSA_NONE) | |
10842 | return; | |
10843 | ||
43cd72b9 BW |
10844 | fix = get_bfd_fix (input_section, rel->r_offset, r_type); |
10845 | if (!fix) | |
e0001a05 NC |
10846 | return; |
10847 | ||
10848 | sec = fix->target_sec; | |
43cd72b9 BW |
10849 | |
10850 | fixup_diff = rel->r_addend; | |
10851 | if (elf_howto_table[fix->src_type].partial_inplace) | |
10852 | { | |
10853 | bfd_vma inplace_val; | |
10854 | BFD_ASSERT (fix->src_offset | |
10855 | < bfd_get_section_limit (input_bfd, input_section)); | |
10856 | inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]); | |
10857 | fixup_diff += inplace_val; | |
10858 | } | |
10859 | ||
e0001a05 NC |
10860 | *relocationp = (sec->output_section->vma |
10861 | + sec->output_offset | |
43cd72b9 | 10862 | + fix->target_offset - fixup_diff); |
e0001a05 NC |
10863 | } |
10864 | ||
10865 | \f | |
10866 | /* Miscellaneous utility functions.... */ | |
10867 | ||
10868 | static asection * | |
f0e6fdb2 | 10869 | elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk) |
e0001a05 | 10870 | { |
f0e6fdb2 | 10871 | bfd *dynobj; |
0bae9e9e | 10872 | char plt_name[17]; |
e0001a05 NC |
10873 | |
10874 | if (chunk == 0) | |
ce558b89 | 10875 | return elf_hash_table (info)->splt; |
e0001a05 | 10876 | |
f0e6fdb2 | 10877 | dynobj = elf_hash_table (info)->dynobj; |
e0001a05 | 10878 | sprintf (plt_name, ".plt.%u", chunk); |
3d4d4302 | 10879 | return bfd_get_linker_section (dynobj, plt_name); |
e0001a05 NC |
10880 | } |
10881 | ||
10882 | ||
10883 | static asection * | |
f0e6fdb2 | 10884 | elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk) |
e0001a05 | 10885 | { |
f0e6fdb2 | 10886 | bfd *dynobj; |
0bae9e9e | 10887 | char got_name[21]; |
e0001a05 NC |
10888 | |
10889 | if (chunk == 0) | |
ce558b89 | 10890 | return elf_hash_table (info)->sgotplt; |
e0001a05 | 10891 | |
f0e6fdb2 | 10892 | dynobj = elf_hash_table (info)->dynobj; |
e0001a05 | 10893 | sprintf (got_name, ".got.plt.%u", chunk); |
3d4d4302 | 10894 | return bfd_get_linker_section (dynobj, got_name); |
e0001a05 NC |
10895 | } |
10896 | ||
10897 | ||
10898 | /* Get the input section for a given symbol index. | |
10899 | If the symbol is: | |
10900 | . a section symbol, return the section; | |
10901 | . a common symbol, return the common section; | |
10902 | . an undefined symbol, return the undefined section; | |
10903 | . an indirect symbol, follow the links; | |
10904 | . an absolute value, return the absolute section. */ | |
10905 | ||
10906 | static asection * | |
7fa3d080 | 10907 | get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx) |
e0001a05 NC |
10908 | { |
10909 | Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
10910 | asection *target_sec = NULL; | |
43cd72b9 | 10911 | if (r_symndx < symtab_hdr->sh_info) |
e0001a05 NC |
10912 | { |
10913 | Elf_Internal_Sym *isymbuf; | |
10914 | unsigned int section_index; | |
10915 | ||
10916 | isymbuf = retrieve_local_syms (abfd); | |
10917 | section_index = isymbuf[r_symndx].st_shndx; | |
10918 | ||
10919 | if (section_index == SHN_UNDEF) | |
10920 | target_sec = bfd_und_section_ptr; | |
e0001a05 NC |
10921 | else if (section_index == SHN_ABS) |
10922 | target_sec = bfd_abs_section_ptr; | |
10923 | else if (section_index == SHN_COMMON) | |
10924 | target_sec = bfd_com_section_ptr; | |
43cd72b9 | 10925 | else |
cb33740c | 10926 | target_sec = bfd_section_from_elf_index (abfd, section_index); |
e0001a05 NC |
10927 | } |
10928 | else | |
10929 | { | |
10930 | unsigned long indx = r_symndx - symtab_hdr->sh_info; | |
10931 | struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx]; | |
10932 | ||
10933 | while (h->root.type == bfd_link_hash_indirect | |
07d6d2b8 AM |
10934 | || h->root.type == bfd_link_hash_warning) |
10935 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
e0001a05 NC |
10936 | |
10937 | switch (h->root.type) | |
10938 | { | |
10939 | case bfd_link_hash_defined: | |
10940 | case bfd_link_hash_defweak: | |
10941 | target_sec = h->root.u.def.section; | |
10942 | break; | |
10943 | case bfd_link_hash_common: | |
10944 | target_sec = bfd_com_section_ptr; | |
10945 | break; | |
10946 | case bfd_link_hash_undefined: | |
10947 | case bfd_link_hash_undefweak: | |
10948 | target_sec = bfd_und_section_ptr; | |
10949 | break; | |
10950 | default: /* New indirect warning. */ | |
10951 | target_sec = bfd_und_section_ptr; | |
10952 | break; | |
10953 | } | |
10954 | } | |
10955 | return target_sec; | |
10956 | } | |
10957 | ||
10958 | ||
10959 | static struct elf_link_hash_entry * | |
7fa3d080 | 10960 | get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx) |
e0001a05 NC |
10961 | { |
10962 | unsigned long indx; | |
10963 | struct elf_link_hash_entry *h; | |
10964 | Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
10965 | ||
10966 | if (r_symndx < symtab_hdr->sh_info) | |
10967 | return NULL; | |
43cd72b9 | 10968 | |
e0001a05 NC |
10969 | indx = r_symndx - symtab_hdr->sh_info; |
10970 | h = elf_sym_hashes (abfd)[indx]; | |
10971 | while (h->root.type == bfd_link_hash_indirect | |
10972 | || h->root.type == bfd_link_hash_warning) | |
10973 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
10974 | return h; | |
10975 | } | |
10976 | ||
10977 | ||
10978 | /* Get the section-relative offset for a symbol number. */ | |
10979 | ||
10980 | static bfd_vma | |
7fa3d080 | 10981 | get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx) |
e0001a05 NC |
10982 | { |
10983 | Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
10984 | bfd_vma offset = 0; | |
10985 | ||
43cd72b9 | 10986 | if (r_symndx < symtab_hdr->sh_info) |
e0001a05 NC |
10987 | { |
10988 | Elf_Internal_Sym *isymbuf; | |
10989 | isymbuf = retrieve_local_syms (abfd); | |
10990 | offset = isymbuf[r_symndx].st_value; | |
10991 | } | |
10992 | else | |
10993 | { | |
10994 | unsigned long indx = r_symndx - symtab_hdr->sh_info; | |
10995 | struct elf_link_hash_entry *h = | |
10996 | elf_sym_hashes (abfd)[indx]; | |
10997 | ||
10998 | while (h->root.type == bfd_link_hash_indirect | |
07d6d2b8 | 10999 | || h->root.type == bfd_link_hash_warning) |
e0001a05 NC |
11000 | h = (struct elf_link_hash_entry *) h->root.u.i.link; |
11001 | if (h->root.type == bfd_link_hash_defined | |
07d6d2b8 | 11002 | || h->root.type == bfd_link_hash_defweak) |
e0001a05 NC |
11003 | offset = h->root.u.def.value; |
11004 | } | |
11005 | return offset; | |
11006 | } | |
11007 | ||
11008 | ||
11009 | static bfd_boolean | |
7fa3d080 | 11010 | is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel) |
43cd72b9 BW |
11011 | { |
11012 | unsigned long r_symndx = ELF32_R_SYM (rel->r_info); | |
11013 | struct elf_link_hash_entry *h; | |
11014 | ||
11015 | h = get_elf_r_symndx_hash_entry (abfd, r_symndx); | |
11016 | if (h && h->root.type == bfd_link_hash_defweak) | |
11017 | return TRUE; | |
11018 | return FALSE; | |
11019 | } | |
11020 | ||
11021 | ||
11022 | static bfd_boolean | |
7fa3d080 BW |
11023 | pcrel_reloc_fits (xtensa_opcode opc, |
11024 | int opnd, | |
11025 | bfd_vma self_address, | |
11026 | bfd_vma dest_address) | |
e0001a05 | 11027 | { |
43cd72b9 BW |
11028 | xtensa_isa isa = xtensa_default_isa; |
11029 | uint32 valp = dest_address; | |
11030 | if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address) | |
11031 | || xtensa_operand_encode (isa, opc, opnd, &valp)) | |
11032 | return FALSE; | |
11033 | return TRUE; | |
e0001a05 NC |
11034 | } |
11035 | ||
11036 | ||
68ffbac6 | 11037 | static bfd_boolean |
7fa3d080 | 11038 | xtensa_is_property_section (asection *sec) |
e0001a05 | 11039 | { |
1d25768e BW |
11040 | if (xtensa_is_insntable_section (sec) |
11041 | || xtensa_is_littable_section (sec) | |
11042 | || xtensa_is_proptable_section (sec)) | |
b614a702 | 11043 | return TRUE; |
e901de89 | 11044 | |
1d25768e BW |
11045 | return FALSE; |
11046 | } | |
11047 | ||
11048 | ||
68ffbac6 | 11049 | static bfd_boolean |
1d25768e BW |
11050 | xtensa_is_insntable_section (asection *sec) |
11051 | { | |
11052 | if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME) | |
11053 | || CONST_STRNEQ (sec->name, ".gnu.linkonce.x.")) | |
e901de89 BW |
11054 | return TRUE; |
11055 | ||
e901de89 BW |
11056 | return FALSE; |
11057 | } | |
11058 | ||
11059 | ||
68ffbac6 | 11060 | static bfd_boolean |
7fa3d080 | 11061 | xtensa_is_littable_section (asection *sec) |
e901de89 | 11062 | { |
1d25768e BW |
11063 | if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME) |
11064 | || CONST_STRNEQ (sec->name, ".gnu.linkonce.p.")) | |
b614a702 | 11065 | return TRUE; |
e901de89 | 11066 | |
1d25768e BW |
11067 | return FALSE; |
11068 | } | |
11069 | ||
11070 | ||
68ffbac6 | 11071 | static bfd_boolean |
1d25768e BW |
11072 | xtensa_is_proptable_section (asection *sec) |
11073 | { | |
11074 | if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME) | |
11075 | || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop.")) | |
e901de89 | 11076 | return TRUE; |
e0001a05 | 11077 | |
e901de89 | 11078 | return FALSE; |
e0001a05 NC |
11079 | } |
11080 | ||
11081 | ||
43cd72b9 | 11082 | static int |
7fa3d080 | 11083 | internal_reloc_compare (const void *ap, const void *bp) |
e0001a05 | 11084 | { |
43cd72b9 BW |
11085 | const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap; |
11086 | const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp; | |
11087 | ||
11088 | if (a->r_offset != b->r_offset) | |
11089 | return (a->r_offset - b->r_offset); | |
11090 | ||
11091 | /* We don't need to sort on these criteria for correctness, | |
11092 | but enforcing a more strict ordering prevents unstable qsort | |
11093 | from behaving differently with different implementations. | |
11094 | Without the code below we get correct but different results | |
11095 | on Solaris 2.7 and 2.8. We would like to always produce the | |
11096 | same results no matter the host. */ | |
11097 | ||
11098 | if (a->r_info != b->r_info) | |
11099 | return (a->r_info - b->r_info); | |
11100 | ||
11101 | return (a->r_addend - b->r_addend); | |
e0001a05 NC |
11102 | } |
11103 | ||
11104 | ||
11105 | static int | |
7fa3d080 | 11106 | internal_reloc_matches (const void *ap, const void *bp) |
e0001a05 NC |
11107 | { |
11108 | const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap; | |
11109 | const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp; | |
11110 | ||
43cd72b9 BW |
11111 | /* Check if one entry overlaps with the other; this shouldn't happen |
11112 | except when searching for a match. */ | |
e0001a05 NC |
11113 | return (a->r_offset - b->r_offset); |
11114 | } | |
11115 | ||
11116 | ||
74869ac7 BW |
11117 | /* Predicate function used to look up a section in a particular group. */ |
11118 | ||
11119 | static bfd_boolean | |
11120 | match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf) | |
11121 | { | |
11122 | const char *gname = inf; | |
11123 | const char *group_name = elf_group_name (sec); | |
68ffbac6 | 11124 | |
74869ac7 BW |
11125 | return (group_name == gname |
11126 | || (group_name != NULL | |
11127 | && gname != NULL | |
11128 | && strcmp (group_name, gname) == 0)); | |
11129 | } | |
11130 | ||
11131 | ||
8255c61b MF |
11132 | static char * |
11133 | xtensa_add_names (const char *base, const char *suffix) | |
11134 | { | |
11135 | if (suffix) | |
11136 | { | |
11137 | size_t base_len = strlen (base); | |
11138 | size_t suffix_len = strlen (suffix); | |
11139 | char *str = bfd_malloc (base_len + suffix_len + 1); | |
11140 | ||
11141 | memcpy (str, base, base_len); | |
11142 | memcpy (str + base_len, suffix, suffix_len + 1); | |
11143 | return str; | |
11144 | } | |
11145 | else | |
11146 | { | |
11147 | return strdup (base); | |
11148 | } | |
11149 | } | |
11150 | ||
1d25768e BW |
11151 | static int linkonce_len = sizeof (".gnu.linkonce.") - 1; |
11152 | ||
51c8ebc1 | 11153 | static char * |
8255c61b MF |
11154 | xtensa_property_section_name (asection *sec, const char *base_name, |
11155 | bfd_boolean separate_sections) | |
e0001a05 | 11156 | { |
74869ac7 BW |
11157 | const char *suffix, *group_name; |
11158 | char *prop_sec_name; | |
74869ac7 BW |
11159 | |
11160 | group_name = elf_group_name (sec); | |
11161 | if (group_name) | |
11162 | { | |
11163 | suffix = strrchr (sec->name, '.'); | |
11164 | if (suffix == sec->name) | |
11165 | suffix = 0; | |
8255c61b | 11166 | prop_sec_name = xtensa_add_names (base_name, suffix); |
74869ac7 BW |
11167 | } |
11168 | else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0) | |
e0001a05 | 11169 | { |
43cd72b9 | 11170 | char *linkonce_kind = 0; |
b614a702 | 11171 | |
68ffbac6 | 11172 | if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0) |
7db48a12 | 11173 | linkonce_kind = "x."; |
68ffbac6 | 11174 | else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0) |
7db48a12 | 11175 | linkonce_kind = "p."; |
43cd72b9 BW |
11176 | else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0) |
11177 | linkonce_kind = "prop."; | |
e0001a05 | 11178 | else |
b614a702 BW |
11179 | abort (); |
11180 | ||
43cd72b9 BW |
11181 | prop_sec_name = (char *) bfd_malloc (strlen (sec->name) |
11182 | + strlen (linkonce_kind) + 1); | |
b614a702 | 11183 | memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len); |
43cd72b9 | 11184 | strcpy (prop_sec_name + linkonce_len, linkonce_kind); |
b614a702 BW |
11185 | |
11186 | suffix = sec->name + linkonce_len; | |
096c35a7 | 11187 | /* For backward compatibility, replace "t." instead of inserting |
07d6d2b8 | 11188 | the new linkonce_kind (but not for "prop" sections). */ |
0112cd26 | 11189 | if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.') |
07d6d2b8 | 11190 | suffix += 2; |
43cd72b9 | 11191 | strcat (prop_sec_name + linkonce_len, suffix); |
74869ac7 BW |
11192 | } |
11193 | else | |
8255c61b MF |
11194 | { |
11195 | prop_sec_name = xtensa_add_names (base_name, | |
11196 | separate_sections ? sec->name : NULL); | |
11197 | } | |
74869ac7 | 11198 | |
51c8ebc1 BW |
11199 | return prop_sec_name; |
11200 | } | |
11201 | ||
11202 | ||
11203 | static asection * | |
8255c61b MF |
11204 | xtensa_get_separate_property_section (asection *sec, const char *base_name, |
11205 | bfd_boolean separate_section) | |
51c8ebc1 BW |
11206 | { |
11207 | char *prop_sec_name; | |
11208 | asection *prop_sec; | |
11209 | ||
8255c61b MF |
11210 | prop_sec_name = xtensa_property_section_name (sec, base_name, |
11211 | separate_section); | |
51c8ebc1 BW |
11212 | prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name, |
11213 | match_section_group, | |
11214 | (void *) elf_group_name (sec)); | |
11215 | free (prop_sec_name); | |
11216 | return prop_sec; | |
11217 | } | |
11218 | ||
8255c61b MF |
11219 | static asection * |
11220 | xtensa_get_property_section (asection *sec, const char *base_name) | |
11221 | { | |
11222 | asection *prop_sec; | |
11223 | ||
11224 | /* Try individual property section first. */ | |
11225 | prop_sec = xtensa_get_separate_property_section (sec, base_name, TRUE); | |
11226 | ||
11227 | /* Refer to a common property section if individual is not present. */ | |
11228 | if (!prop_sec) | |
11229 | prop_sec = xtensa_get_separate_property_section (sec, base_name, FALSE); | |
11230 | ||
11231 | return prop_sec; | |
11232 | } | |
11233 | ||
51c8ebc1 BW |
11234 | |
11235 | asection * | |
11236 | xtensa_make_property_section (asection *sec, const char *base_name) | |
11237 | { | |
11238 | char *prop_sec_name; | |
11239 | asection *prop_sec; | |
11240 | ||
74869ac7 | 11241 | /* Check if the section already exists. */ |
8255c61b MF |
11242 | prop_sec_name = xtensa_property_section_name (sec, base_name, |
11243 | elf32xtensa_separate_props); | |
74869ac7 BW |
11244 | prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name, |
11245 | match_section_group, | |
51c8ebc1 | 11246 | (void *) elf_group_name (sec)); |
74869ac7 BW |
11247 | /* If not, create it. */ |
11248 | if (! prop_sec) | |
11249 | { | |
11250 | flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY); | |
fd361982 | 11251 | flags |= (bfd_section_flags (sec) |
74869ac7 BW |
11252 | & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES)); |
11253 | ||
11254 | prop_sec = bfd_make_section_anyway_with_flags | |
11255 | (sec->owner, strdup (prop_sec_name), flags); | |
11256 | if (! prop_sec) | |
11257 | return 0; | |
b614a702 | 11258 | |
51c8ebc1 | 11259 | elf_group_name (prop_sec) = elf_group_name (sec); |
e0001a05 NC |
11260 | } |
11261 | ||
74869ac7 BW |
11262 | free (prop_sec_name); |
11263 | return prop_sec; | |
e0001a05 NC |
11264 | } |
11265 | ||
43cd72b9 BW |
11266 | |
11267 | flagword | |
7fa3d080 | 11268 | xtensa_get_property_predef_flags (asection *sec) |
43cd72b9 | 11269 | { |
1d25768e | 11270 | if (xtensa_is_insntable_section (sec)) |
43cd72b9 | 11271 | return (XTENSA_PROP_INSN |
99ded152 | 11272 | | XTENSA_PROP_NO_TRANSFORM |
43cd72b9 BW |
11273 | | XTENSA_PROP_INSN_NO_REORDER); |
11274 | ||
11275 | if (xtensa_is_littable_section (sec)) | |
11276 | return (XTENSA_PROP_LITERAL | |
99ded152 | 11277 | | XTENSA_PROP_NO_TRANSFORM |
43cd72b9 BW |
11278 | | XTENSA_PROP_INSN_NO_REORDER); |
11279 | ||
11280 | return 0; | |
11281 | } | |
11282 | ||
e0001a05 NC |
11283 | \f |
11284 | /* Other functions called directly by the linker. */ | |
11285 | ||
11286 | bfd_boolean | |
7fa3d080 BW |
11287 | xtensa_callback_required_dependence (bfd *abfd, |
11288 | asection *sec, | |
11289 | struct bfd_link_info *link_info, | |
11290 | deps_callback_t callback, | |
11291 | void *closure) | |
e0001a05 NC |
11292 | { |
11293 | Elf_Internal_Rela *internal_relocs; | |
11294 | bfd_byte *contents; | |
11295 | unsigned i; | |
11296 | bfd_boolean ok = TRUE; | |
43cd72b9 BW |
11297 | bfd_size_type sec_size; |
11298 | ||
11299 | sec_size = bfd_get_section_limit (abfd, sec); | |
e0001a05 NC |
11300 | |
11301 | /* ".plt*" sections have no explicit relocations but they contain L32R | |
11302 | instructions that reference the corresponding ".got.plt*" sections. */ | |
11303 | if ((sec->flags & SEC_LINKER_CREATED) != 0 | |
0112cd26 | 11304 | && CONST_STRNEQ (sec->name, ".plt")) |
e0001a05 NC |
11305 | { |
11306 | asection *sgotplt; | |
11307 | ||
11308 | /* Find the corresponding ".got.plt*" section. */ | |
11309 | if (sec->name[4] == '\0') | |
ce558b89 | 11310 | sgotplt = elf_hash_table (link_info)->sgotplt; |
e0001a05 NC |
11311 | else |
11312 | { | |
11313 | char got_name[14]; | |
11314 | int chunk = 0; | |
11315 | ||
11316 | BFD_ASSERT (sec->name[4] == '.'); | |
11317 | chunk = strtol (&sec->name[5], NULL, 10); | |
11318 | ||
11319 | sprintf (got_name, ".got.plt.%u", chunk); | |
3d4d4302 | 11320 | sgotplt = bfd_get_linker_section (sec->owner, got_name); |
e0001a05 NC |
11321 | } |
11322 | BFD_ASSERT (sgotplt); | |
11323 | ||
11324 | /* Assume worst-case offsets: L32R at the very end of the ".plt" | |
11325 | section referencing a literal at the very beginning of | |
11326 | ".got.plt". This is very close to the real dependence, anyway. */ | |
43cd72b9 | 11327 | (*callback) (sec, sec_size, sgotplt, 0, closure); |
e0001a05 NC |
11328 | } |
11329 | ||
13161072 BW |
11330 | /* Only ELF files are supported for Xtensa. Check here to avoid a segfault |
11331 | when building uclibc, which runs "ld -b binary /dev/null". */ | |
11332 | if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) | |
11333 | return ok; | |
11334 | ||
68ffbac6 | 11335 | internal_relocs = retrieve_internal_relocs (abfd, sec, |
e0001a05 NC |
11336 | link_info->keep_memory); |
11337 | if (internal_relocs == NULL | |
43cd72b9 | 11338 | || sec->reloc_count == 0) |
e0001a05 NC |
11339 | return ok; |
11340 | ||
11341 | /* Cache the contents for the duration of this scan. */ | |
11342 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
43cd72b9 | 11343 | if (contents == NULL && sec_size != 0) |
e0001a05 NC |
11344 | { |
11345 | ok = FALSE; | |
11346 | goto error_return; | |
11347 | } | |
11348 | ||
43cd72b9 BW |
11349 | if (!xtensa_default_isa) |
11350 | xtensa_default_isa = xtensa_isa_init (0, 0); | |
e0001a05 | 11351 | |
43cd72b9 | 11352 | for (i = 0; i < sec->reloc_count; i++) |
e0001a05 NC |
11353 | { |
11354 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
43cd72b9 | 11355 | if (is_l32r_relocation (abfd, sec, contents, irel)) |
e0001a05 NC |
11356 | { |
11357 | r_reloc l32r_rel; | |
11358 | asection *target_sec; | |
11359 | bfd_vma target_offset; | |
43cd72b9 BW |
11360 | |
11361 | r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size); | |
e0001a05 NC |
11362 | target_sec = NULL; |
11363 | target_offset = 0; | |
11364 | /* L32Rs must be local to the input file. */ | |
11365 | if (r_reloc_is_defined (&l32r_rel)) | |
11366 | { | |
11367 | target_sec = r_reloc_get_section (&l32r_rel); | |
43cd72b9 | 11368 | target_offset = l32r_rel.target_offset; |
e0001a05 NC |
11369 | } |
11370 | (*callback) (sec, irel->r_offset, target_sec, target_offset, | |
11371 | closure); | |
11372 | } | |
11373 | } | |
11374 | ||
11375 | error_return: | |
11376 | release_internal_relocs (sec, internal_relocs); | |
11377 | release_contents (sec, contents); | |
11378 | return ok; | |
11379 | } | |
11380 | ||
2f89ff8d L |
11381 | /* The default literal sections should always be marked as "code" (i.e., |
11382 | SHF_EXECINSTR). This is particularly important for the Linux kernel | |
11383 | module loader so that the literals are not placed after the text. */ | |
b35d266b | 11384 | static const struct bfd_elf_special_section elf_xtensa_special_sections[] = |
2f89ff8d | 11385 | { |
0112cd26 NC |
11386 | { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, |
11387 | { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, | |
07d6d2b8 AM |
11388 | { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, |
11389 | { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 }, | |
11390 | { NULL, 0, 0, 0, 0 } | |
7f4d3958 | 11391 | }; |
e0001a05 | 11392 | \f |
ae95ffa6 | 11393 | #define ELF_TARGET_ID XTENSA_ELF_DATA |
e0001a05 | 11394 | #ifndef ELF_ARCH |
6d00b590 | 11395 | #define TARGET_LITTLE_SYM xtensa_elf32_le_vec |
e0001a05 | 11396 | #define TARGET_LITTLE_NAME "elf32-xtensa-le" |
6d00b590 | 11397 | #define TARGET_BIG_SYM xtensa_elf32_be_vec |
e0001a05 NC |
11398 | #define TARGET_BIG_NAME "elf32-xtensa-be" |
11399 | #define ELF_ARCH bfd_arch_xtensa | |
11400 | ||
4af0a1d8 BW |
11401 | #define ELF_MACHINE_CODE EM_XTENSA |
11402 | #define ELF_MACHINE_ALT1 EM_XTENSA_OLD | |
e0001a05 | 11403 | |
f7e16c2a | 11404 | #define ELF_MAXPAGESIZE 0x1000 |
e0001a05 NC |
11405 | #endif /* ELF_ARCH */ |
11406 | ||
11407 | #define elf_backend_can_gc_sections 1 | |
11408 | #define elf_backend_can_refcount 1 | |
11409 | #define elf_backend_plt_readonly 1 | |
11410 | #define elf_backend_got_header_size 4 | |
11411 | #define elf_backend_want_dynbss 0 | |
11412 | #define elf_backend_want_got_plt 1 | |
64f52338 | 11413 | #define elf_backend_dtrel_excludes_plt 1 |
e0001a05 NC |
11414 | |
11415 | #define elf_info_to_howto elf_xtensa_info_to_howto_rela | |
11416 | ||
28dbbc02 BW |
11417 | #define bfd_elf32_mkobject elf_xtensa_mkobject |
11418 | ||
e0001a05 NC |
11419 | #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data |
11420 | #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook | |
11421 | #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data | |
11422 | #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section | |
11423 | #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup | |
157090f7 AM |
11424 | #define bfd_elf32_bfd_reloc_name_lookup \ |
11425 | elf_xtensa_reloc_name_lookup | |
e0001a05 | 11426 | #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags |
f0e6fdb2 | 11427 | #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create |
e0001a05 NC |
11428 | |
11429 | #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol | |
11430 | #define elf_backend_check_relocs elf_xtensa_check_relocs | |
e0001a05 NC |
11431 | #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections |
11432 | #define elf_backend_discard_info elf_xtensa_discard_info | |
11433 | #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs | |
11434 | #define elf_backend_final_write_processing elf_xtensa_final_write_processing | |
11435 | #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections | |
11436 | #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol | |
11437 | #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook | |
e0001a05 NC |
11438 | #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus |
11439 | #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo | |
95147441 | 11440 | #define elf_backend_hide_symbol elf_xtensa_hide_symbol |
e0001a05 NC |
11441 | #define elf_backend_object_p elf_xtensa_object_p |
11442 | #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class | |
11443 | #define elf_backend_relocate_section elf_xtensa_relocate_section | |
11444 | #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections | |
28dbbc02 | 11445 | #define elf_backend_always_size_sections elf_xtensa_always_size_sections |
d00dd7dc | 11446 | #define elf_backend_omit_section_dynsym _bfd_elf_omit_section_dynsym_all |
29ef7005 | 11447 | #define elf_backend_special_sections elf_xtensa_special_sections |
a77dc2cc | 11448 | #define elf_backend_action_discarded elf_xtensa_action_discarded |
28dbbc02 | 11449 | #define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol |
e0001a05 NC |
11450 | |
11451 | #include "elf32-target.h" |