* Makefile.am (libbfd.h): Add "Extracted from.." comment.
[deliverable/binutils-gdb.git] / bfd / elf64-hppa.c
CommitLineData
b352eebf 1/* Support for HPPA 64-bit ELF
e92d460e 2 Copyright 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
15bda425
JL
3
4This file is part of BFD, the Binary File Descriptor library.
5
6This program is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2 of the License, or
9(at your option) any later version.
10
11This program is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with this program; if not, write to the Free Software
18Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
3ef20aaa 20#include "alloca-conf.h"
15bda425
JL
21#include "bfd.h"
22#include "sysdep.h"
23#include "libbfd.h"
24#include "elf-bfd.h"
25#include "elf/hppa.h"
26#include "libhppa.h"
27#include "elf64-hppa.h"
28#define ARCH_SIZE 64
29
30#define PLT_ENTRY_SIZE 0x10
31#define DLT_ENTRY_SIZE 0x8
32#define OPD_ENTRY_SIZE 0x20
fe8bc63d 33
15bda425
JL
34#define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
35
36/* The stub is supposed to load the target address and target's DP
37 value out of the PLT, then do an external branch to the target
38 address.
39
40 LDD PLTOFF(%r27),%r1
41 BVE (%r1)
42 LDD PLTOFF+8(%r27),%r27
43
44 Note that we must use the LDD with a 14 bit displacement, not the one
45 with a 5 bit displacement. */
46static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
47 0x53, 0x7b, 0x00, 0x00 };
48
49struct elf64_hppa_dyn_hash_entry
50{
51 struct bfd_hash_entry root;
52
53 /* Offsets for this symbol in various linker sections. */
54 bfd_vma dlt_offset;
55 bfd_vma plt_offset;
56 bfd_vma opd_offset;
57 bfd_vma stub_offset;
58
edd21aca 59 /* The symbol table entry, if any, that this was derived from. */
15bda425
JL
60 struct elf_link_hash_entry *h;
61
62 /* The index of the (possibly local) symbol in the input bfd and its
63 associated BFD. Needed so that we can have relocs against local
64 symbols in shared libraries. */
dc810e39 65 long sym_indx;
15bda425
JL
66 bfd *owner;
67
68 /* Dynamic symbols may need to have two different values. One for
69 the dynamic symbol table, one for the normal symbol table.
70
71 In such cases we store the symbol's real value and section
72 index here so we can restore the real value before we write
73 the normal symbol table. */
74 bfd_vma st_value;
75 int st_shndx;
76
77 /* Used to count non-got, non-plt relocations for delayed sizing
78 of relocation sections. */
79 struct elf64_hppa_dyn_reloc_entry
80 {
81 /* Next relocation in the chain. */
82 struct elf64_hppa_dyn_reloc_entry *next;
83
84 /* The type of the relocation. */
85 int type;
86
87 /* The input section of the relocation. */
88 asection *sec;
89
90 /* The index of the section symbol for the input section of
91 the relocation. Only needed when building shared libraries. */
92 int sec_symndx;
93
94 /* The offset within the input section of the relocation. */
95 bfd_vma offset;
96
97 /* The addend for the relocation. */
98 bfd_vma addend;
99
100 } *reloc_entries;
101
102 /* Nonzero if this symbol needs an entry in one of the linker
103 sections. */
104 unsigned want_dlt;
105 unsigned want_plt;
106 unsigned want_opd;
107 unsigned want_stub;
108};
109
110struct elf64_hppa_dyn_hash_table
111{
112 struct bfd_hash_table root;
113};
114
115struct elf64_hppa_link_hash_table
116{
117 struct elf_link_hash_table root;
118
119 /* Shortcuts to get to the various linker defined sections. */
120 asection *dlt_sec;
121 asection *dlt_rel_sec;
122 asection *plt_sec;
123 asection *plt_rel_sec;
124 asection *opd_sec;
125 asection *opd_rel_sec;
126 asection *other_rel_sec;
127
128 /* Offset of __gp within .plt section. When the PLT gets large we want
129 to slide __gp into the PLT section so that we can continue to use
130 single DP relative instructions to load values out of the PLT. */
131 bfd_vma gp_offset;
132
133 /* Note this is not strictly correct. We should create a stub section for
134 each input section with calls. The stub section should be placed before
135 the section with the call. */
136 asection *stub_sec;
137
138 bfd_vma text_segment_base;
139 bfd_vma data_segment_base;
140
141 struct elf64_hppa_dyn_hash_table dyn_hash_table;
142
143 /* We build tables to map from an input section back to its
144 symbol index. This is the BFD for which we currently have
145 a map. */
146 bfd *section_syms_bfd;
147
148 /* Array of symbol numbers for each input section attached to the
149 current BFD. */
150 int *section_syms;
151};
152
153#define elf64_hppa_hash_table(p) \
154 ((struct elf64_hppa_link_hash_table *) ((p)->hash))
155
156typedef struct bfd_hash_entry *(*new_hash_entry_func)
157 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
158
159static boolean elf64_hppa_dyn_hash_table_init
160 PARAMS ((struct elf64_hppa_dyn_hash_table *ht, bfd *abfd,
161 new_hash_entry_func new));
162static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
163 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
164 const char *string));
165static struct bfd_link_hash_table *elf64_hppa_hash_table_create
166 PARAMS ((bfd *abfd));
167static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
168 PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
169 boolean create, boolean copy));
170static void elf64_hppa_dyn_hash_traverse
171 PARAMS ((struct elf64_hppa_dyn_hash_table *table,
fe8bc63d 172 boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR),
15bda425
JL
173 PTR info));
174
175static const char *get_dyn_name
0ba2a60e
AM
176 PARAMS ((asection *, struct elf_link_hash_entry *,
177 const Elf_Internal_Rela *, char **, size_t *));
15bda425 178
15bda425
JL
179/* This must follow the definitions of the various derived linker
180 hash tables and shared functions. */
181#include "elf-hppa.h"
182
15bda425
JL
183static boolean elf64_hppa_object_p
184 PARAMS ((bfd *));
185
186static boolean elf64_hppa_section_from_shdr
90937f86 187 PARAMS ((bfd *, Elf64_Internal_Shdr *, const char *));
15bda425
JL
188
189static void elf64_hppa_post_process_headers
190 PARAMS ((bfd *, struct bfd_link_info *));
191
192static boolean elf64_hppa_create_dynamic_sections
193 PARAMS ((bfd *, struct bfd_link_info *));
194
195static boolean elf64_hppa_adjust_dynamic_symbol
196 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
197
198static boolean elf64_hppa_size_dynamic_sections
199 PARAMS ((bfd *, struct bfd_link_info *));
200
99c79b2e
AJ
201static boolean elf64_hppa_link_output_symbol_hook
202PARAMS ((bfd *abfd, struct bfd_link_info *, const char *,
203 Elf_Internal_Sym *, asection *input_sec));
204
15bda425
JL
205static boolean elf64_hppa_finish_dynamic_symbol
206 PARAMS ((bfd *, struct bfd_link_info *,
207 struct elf_link_hash_entry *, Elf_Internal_Sym *));
fe8bc63d 208
99c79b2e
AJ
209static int elf64_hppa_additional_program_headers PARAMS ((bfd *));
210
211static boolean elf64_hppa_modify_segment_map PARAMS ((bfd *));
212
15bda425
JL
213static boolean elf64_hppa_finish_dynamic_sections
214 PARAMS ((bfd *, struct bfd_link_info *));
215
216static boolean elf64_hppa_check_relocs
217 PARAMS ((bfd *, struct bfd_link_info *,
218 asection *, const Elf_Internal_Rela *));
219
220static boolean elf64_hppa_dynamic_symbol_p
221 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
222
223static boolean elf64_hppa_mark_exported_functions
224 PARAMS ((struct elf_link_hash_entry *, PTR));
225
226static boolean elf64_hppa_finalize_opd
227 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
228
229static boolean elf64_hppa_finalize_dlt
230 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
231
232static boolean allocate_global_data_dlt
233 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
234
235static boolean allocate_global_data_plt
236 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
237
238static boolean allocate_global_data_stub
239 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
240
241static boolean allocate_global_data_opd
242 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
243
244static boolean get_reloc_section
245 PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
246
247static boolean count_dyn_reloc
248 PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
249 int, asection *, int, bfd_vma, bfd_vma));
250
251static boolean allocate_dynrel_entries
252 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
253
254static boolean elf64_hppa_finalize_dynreloc
255 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
256
257static boolean get_opd
258 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
259
260static boolean get_plt
261 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
262
263static boolean get_dlt
264 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
265
266static boolean get_stub
267 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
268
3fab46d0
AM
269static int elf64_hppa_elf_get_symbol_type
270 PARAMS ((Elf_Internal_Sym *, int));
271
15bda425
JL
272static boolean
273elf64_hppa_dyn_hash_table_init (ht, abfd, new)
274 struct elf64_hppa_dyn_hash_table *ht;
edd21aca 275 bfd *abfd ATTRIBUTE_UNUSED;
15bda425
JL
276 new_hash_entry_func new;
277{
fe8bc63d 278 memset (ht, 0, sizeof (*ht));
15bda425
JL
279 return bfd_hash_table_init (&ht->root, new);
280}
281
282static struct bfd_hash_entry*
283elf64_hppa_new_dyn_hash_entry (entry, table, string)
284 struct bfd_hash_entry *entry;
285 struct bfd_hash_table *table;
286 const char *string;
287{
288 struct elf64_hppa_dyn_hash_entry *ret;
289 ret = (struct elf64_hppa_dyn_hash_entry *) entry;
290
291 /* Allocate the structure if it has not already been allocated by a
292 subclass. */
293 if (!ret)
294 ret = bfd_hash_allocate (table, sizeof (*ret));
295
296 if (!ret)
297 return 0;
298
299 /* Initialize our local data. All zeros, and definitely easier
300 than setting 8 bit fields. */
fe8bc63d 301 memset (ret, 0, sizeof (*ret));
15bda425
JL
302
303 /* Call the allocation method of the superclass. */
304 ret = ((struct elf64_hppa_dyn_hash_entry *)
305 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
306
307 return &ret->root;
308}
309
310/* Create the derived linker hash table. The PA64 ELF port uses this
311 derived hash table to keep information specific to the PA ElF
312 linker (without using static variables). */
313
314static struct bfd_link_hash_table*
315elf64_hppa_hash_table_create (abfd)
316 bfd *abfd;
317{
318 struct elf64_hppa_link_hash_table *ret;
319
dc810e39 320 ret = bfd_zalloc (abfd, (bfd_size_type) sizeof (*ret));
15bda425
JL
321 if (!ret)
322 return 0;
323 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
324 _bfd_elf_link_hash_newfunc))
325 {
326 bfd_release (abfd, ret);
327 return 0;
328 }
329
330 if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
331 elf64_hppa_new_dyn_hash_entry))
332 return 0;
333 return &ret->root.root;
334}
335
336/* Look up an entry in a PA64 ELF linker hash table. */
337
338static struct elf64_hppa_dyn_hash_entry *
339elf64_hppa_dyn_hash_lookup(table, string, create, copy)
340 struct elf64_hppa_dyn_hash_table *table;
341 const char *string;
342 boolean create, copy;
343{
344 return ((struct elf64_hppa_dyn_hash_entry *)
345 bfd_hash_lookup (&table->root, string, create, copy));
346}
347
348/* Traverse a PA64 ELF linker hash table. */
349
350static void
351elf64_hppa_dyn_hash_traverse (table, func, info)
352 struct elf64_hppa_dyn_hash_table *table;
353 boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
354 PTR info;
355{
356 (bfd_hash_traverse
357 (&table->root,
358 (boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
359 info));
360}
361\f
362/* Return nonzero if ABFD represents a PA2.0 ELF64 file.
363
364 Additionally we set the default architecture and machine. */
365static boolean
366elf64_hppa_object_p (abfd)
367 bfd *abfd;
368{
24a5e751
L
369 Elf_Internal_Ehdr * i_ehdrp;
370 unsigned int flags;
d9634ba1 371
24a5e751
L
372 i_ehdrp = elf_elfheader (abfd);
373 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
374 {
375 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX)
376 return false;
377 }
378 else
379 {
380 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
381 return false;
382 }
383
384 flags = i_ehdrp->e_flags;
d9634ba1
AM
385 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
386 {
387 case EFA_PARISC_1_0:
388 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
389 case EFA_PARISC_1_1:
390 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
391 case EFA_PARISC_2_0:
392 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
393 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
394 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
395 }
396 /* Don't be fussy. */
397 return true;
15bda425
JL
398}
399
400/* Given section type (hdr->sh_type), return a boolean indicating
401 whether or not the section is an elf64-hppa specific section. */
402static boolean
403elf64_hppa_section_from_shdr (abfd, hdr, name)
404 bfd *abfd;
405 Elf64_Internal_Shdr *hdr;
90937f86 406 const char *name;
15bda425
JL
407{
408 asection *newsect;
409
410 switch (hdr->sh_type)
411 {
412 case SHT_PARISC_EXT:
413 if (strcmp (name, ".PARISC.archext") != 0)
414 return false;
415 break;
416 case SHT_PARISC_UNWIND:
417 if (strcmp (name, ".PARISC.unwind") != 0)
418 return false;
419 break;
420 case SHT_PARISC_DOC:
421 case SHT_PARISC_ANNOT:
422 default:
423 return false;
424 }
425
426 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
427 return false;
428 newsect = hdr->bfd_section;
429
430 return true;
431}
432
15bda425 433/* Construct a string for use in the elf64_hppa_dyn_hash_table. The
fe8bc63d 434 name describes what was once potentially anonymous memory. We
15bda425
JL
435 allocate memory as necessary, possibly reusing PBUF/PLEN. */
436
437static const char *
0ba2a60e
AM
438get_dyn_name (sec, h, rel, pbuf, plen)
439 asection *sec;
15bda425
JL
440 struct elf_link_hash_entry *h;
441 const Elf_Internal_Rela *rel;
442 char **pbuf;
443 size_t *plen;
444{
445 size_t nlen, tlen;
446 char *buf;
447 size_t len;
448
449 if (h && rel->r_addend == 0)
450 return h->root.root.string;
451
452 if (h)
453 nlen = strlen (h->root.root.string);
454 else
0ba2a60e
AM
455 nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
456 tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
15bda425
JL
457
458 len = *plen;
459 buf = *pbuf;
460 if (len < tlen)
461 {
462 if (buf)
463 free (buf);
464 *pbuf = buf = malloc (tlen);
465 *plen = len = tlen;
466 if (!buf)
467 return NULL;
468 }
469
470 if (h)
471 {
472 memcpy (buf, h->root.root.string, nlen);
0ba2a60e 473 buf[nlen++] = '+';
15bda425
JL
474 sprintf_vma (buf + nlen, rel->r_addend);
475 }
476 else
477 {
0ba2a60e
AM
478 nlen = sprintf (buf, "%x:%lx",
479 sec->id & 0xffffffff,
480 (long) ELF64_R_SYM (rel->r_info));
15bda425
JL
481 if (rel->r_addend)
482 {
483 buf[nlen++] = '+';
484 sprintf_vma (buf + nlen, rel->r_addend);
485 }
486 }
487
488 return buf;
489}
490
491/* SEC is a section containing relocs for an input BFD when linking; return
492 a suitable section for holding relocs in the output BFD for a link. */
493
494static boolean
495get_reloc_section (abfd, hppa_info, sec)
496 bfd *abfd;
497 struct elf64_hppa_link_hash_table *hppa_info;
498 asection *sec;
499{
500 const char *srel_name;
501 asection *srel;
502 bfd *dynobj;
503
504 srel_name = (bfd_elf_string_from_elf_section
505 (abfd, elf_elfheader(abfd)->e_shstrndx,
506 elf_section_data(sec)->rel_hdr.sh_name));
507 if (srel_name == NULL)
508 return false;
509
510 BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0
511 && strcmp (bfd_get_section_name (abfd, sec),
512 srel_name+5) == 0)
513 || (strncmp (srel_name, ".rel", 4) == 0
514 && strcmp (bfd_get_section_name (abfd, sec),
515 srel_name+4) == 0));
516
517 dynobj = hppa_info->root.dynobj;
518 if (!dynobj)
519 hppa_info->root.dynobj = dynobj = abfd;
520
521 srel = bfd_get_section_by_name (dynobj, srel_name);
522 if (srel == NULL)
523 {
524 srel = bfd_make_section (dynobj, srel_name);
525 if (srel == NULL
526 || !bfd_set_section_flags (dynobj, srel,
527 (SEC_ALLOC
528 | SEC_LOAD
529 | SEC_HAS_CONTENTS
530 | SEC_IN_MEMORY
531 | SEC_LINKER_CREATED
532 | SEC_READONLY))
533 || !bfd_set_section_alignment (dynobj, srel, 3))
534 return false;
535 }
536
537 hppa_info->other_rel_sec = srel;
538 return true;
539}
540
fe8bc63d 541/* Add a new entry to the list of dynamic relocations against DYN_H.
15bda425
JL
542
543 We use this to keep a record of all the FPTR relocations against a
544 particular symbol so that we can create FPTR relocations in the
545 output file. */
546
547static boolean
548count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
549 bfd *abfd;
550 struct elf64_hppa_dyn_hash_entry *dyn_h;
551 int type;
552 asection *sec;
553 int sec_symndx;
554 bfd_vma offset;
555 bfd_vma addend;
556{
557 struct elf64_hppa_dyn_reloc_entry *rent;
558
559 rent = (struct elf64_hppa_dyn_reloc_entry *)
dc810e39 560 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
15bda425
JL
561 if (!rent)
562 return false;
563
564 rent->next = dyn_h->reloc_entries;
565 rent->type = type;
566 rent->sec = sec;
567 rent->sec_symndx = sec_symndx;
568 rent->offset = offset;
569 rent->addend = addend;
570 dyn_h->reloc_entries = rent;
571
572 return true;
573}
574
575/* Scan the RELOCS and record the type of dynamic entries that each
576 referenced symbol needs. */
577
578static boolean
579elf64_hppa_check_relocs (abfd, info, sec, relocs)
580 bfd *abfd;
581 struct bfd_link_info *info;
582 asection *sec;
583 const Elf_Internal_Rela *relocs;
584{
585 struct elf64_hppa_link_hash_table *hppa_info;
586 const Elf_Internal_Rela *relend;
587 Elf_Internal_Shdr *symtab_hdr;
9ad5cbcf 588 Elf_Internal_Shdr *shndx_hdr;
15bda425
JL
589 const Elf_Internal_Rela *rel;
590 asection *dlt, *plt, *stubs;
591 char *buf;
592 size_t buf_len;
593 int sec_symndx;
594
595 if (info->relocateable)
596 return true;
597
598 /* If this is the first dynamic object found in the link, create
599 the special sections required for dynamic linking. */
600 if (! elf_hash_table (info)->dynamic_sections_created)
601 {
602 if (! bfd_elf64_link_create_dynamic_sections (abfd, info))
603 return false;
604 }
605
606 hppa_info = elf64_hppa_hash_table (info);
607 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
608
609 /* If necessary, build a new table holding section symbols indices
610 for this BFD. This is disgusting. */
fe8bc63d 611
15bda425
JL
612 if (info->shared && hppa_info->section_syms_bfd != abfd)
613 {
832d951b 614 unsigned long i;
9ad5cbcf 615 unsigned int highest_shndx;
15bda425
JL
616 Elf_Internal_Sym *local_syms, *isym;
617 Elf64_External_Sym *ext_syms, *esym;
9ad5cbcf 618 Elf_External_Sym_Shndx *shndx_buf, *shndx;
dc810e39 619 bfd_size_type amt;
15bda425
JL
620
621 /* We're done with the old cache of section index to section symbol
622 index information. Free it.
623
624 ?!? Note we leak the last section_syms array. Presumably we
625 could free it in one of the later routines in this file. */
626 if (hppa_info->section_syms)
627 free (hppa_info->section_syms);
628
629 /* Allocate memory for the internal and external symbols. */
dc810e39
AM
630 amt = symtab_hdr->sh_info;
631 amt *= sizeof (Elf_Internal_Sym);
632 local_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
15bda425
JL
633 if (local_syms == NULL)
634 return false;
635
dc810e39
AM
636 amt = symtab_hdr->sh_info;
637 amt *= sizeof (Elf64_External_Sym);
638 ext_syms = (Elf64_External_Sym *) bfd_malloc (amt);
15bda425
JL
639 if (ext_syms == NULL)
640 {
641 free (local_syms);
642 return false;
643 }
644
645 /* Read in the local symbols. */
646 if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0
dc810e39 647 || bfd_bread (ext_syms, amt, abfd) != amt)
15bda425 648 {
15bda425 649 free (ext_syms);
9ad5cbcf 650 free (local_syms);
15bda425
JL
651 return false;
652 }
653
9ad5cbcf
AM
654 shndx_buf = NULL;
655 shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
656 if (shndx_hdr->sh_size != 0)
657 {
658 amt = symtab_hdr->sh_info;
659 amt *= sizeof (Elf_External_Sym_Shndx);
660 shndx_buf = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
661 if (shndx_buf == NULL)
662 {
663 free (ext_syms);
664 free (local_syms);
665 return false;
666 }
667
668 if (bfd_seek (abfd, shndx_hdr->sh_offset, SEEK_SET) != 0
669 || bfd_bread (shndx_buf, amt, abfd) != amt)
670 {
671 free (shndx_buf);
672 free (ext_syms);
673 free (local_syms);
674 return false;
675 }
676 }
677
15bda425
JL
678 /* Swap in the local symbols, also record the highest section index
679 referenced by the local symbols. */
15bda425 680 highest_shndx = 0;
9ad5cbcf
AM
681 for (i = 0, isym = local_syms, esym = ext_syms, shndx = shndx_buf;
682 i < symtab_hdr->sh_info;
683 i++, esym++, isym++, shndx = (shndx != NULL ? shndx + 1 : NULL))
15bda425 684 {
9ad5cbcf 685 bfd_elf64_swap_symbol_in (abfd, esym, shndx, isym);
15bda425
JL
686 if (isym->st_shndx > highest_shndx)
687 highest_shndx = isym->st_shndx;
688 }
689
690 /* Now we can free the external symbols. */
9ad5cbcf 691 free (shndx_buf);
15bda425
JL
692 free (ext_syms);
693
694 /* Allocate an array to hold the section index to section symbol index
695 mapping. Bump by one since we start counting at zero. */
696 highest_shndx++;
dc810e39
AM
697 amt = highest_shndx;
698 amt *= sizeof (int);
699 hppa_info->section_syms = (int *) bfd_malloc (amt);
15bda425
JL
700
701 /* Now walk the local symbols again. If we find a section symbol,
702 record the index of the symbol into the section_syms array. */
703 for (isym = local_syms, i = 0; i < symtab_hdr->sh_info; i++, isym++)
704 {
705 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
706 hppa_info->section_syms[isym->st_shndx] = i;
707 }
708
709 /* We are finished with the local symbols. Get rid of them. */
710 free (local_syms);
711
712 /* Record which BFD we built the section_syms mapping for. */
713 hppa_info->section_syms_bfd = abfd;
714 }
715
716 /* Record the symbol index for this input section. We may need it for
717 relocations when building shared libraries. When not building shared
718 libraries this value is never really used, but assign it to zero to
719 prevent out of bounds memory accesses in other routines. */
720 if (info->shared)
721 {
722 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
723
724 /* If we did not find a section symbol for this section, then
725 something went terribly wrong above. */
726 if (sec_symndx == -1)
727 return false;
728
729 sec_symndx = hppa_info->section_syms[sec_symndx];
730 }
731 else
732 sec_symndx = 0;
fe8bc63d 733
15bda425
JL
734 dlt = plt = stubs = NULL;
735 buf = NULL;
736 buf_len = 0;
737
738 relend = relocs + sec->reloc_count;
739 for (rel = relocs; rel < relend; ++rel)
740 {
741 enum {
742 NEED_DLT = 1,
743 NEED_PLT = 2,
744 NEED_STUB = 4,
745 NEED_OPD = 8,
746 NEED_DYNREL = 16,
747 };
748
749 struct elf_link_hash_entry *h = NULL;
750 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
751 struct elf64_hppa_dyn_hash_entry *dyn_h;
752 int need_entry;
753 const char *addr_name;
754 boolean maybe_dynamic;
755 int dynrel_type = R_PARISC_NONE;
756 static reloc_howto_type *howto;
757
758 if (r_symndx >= symtab_hdr->sh_info)
759 {
760 /* We're dealing with a global symbol -- find its hash entry
761 and mark it as being referenced. */
762 long indx = r_symndx - symtab_hdr->sh_info;
763 h = elf_sym_hashes (abfd)[indx];
764 while (h->root.type == bfd_link_hash_indirect
765 || h->root.type == bfd_link_hash_warning)
766 h = (struct elf_link_hash_entry *) h->root.u.i.link;
767
768 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
769 }
770
771 /* We can only get preliminary data on whether a symbol is
772 locally or externally defined, as not all of the input files
773 have yet been processed. Do something with what we know, as
774 this may help reduce memory usage and processing time later. */
775 maybe_dynamic = false;
671bae9c
NC
776 if (h && ((info->shared
777 && (!info->symbolic || info->allow_shlib_undefined) )
15bda425
JL
778 || ! (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
779 || h->root.type == bfd_link_hash_defweak))
780 maybe_dynamic = true;
781
782 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
783 need_entry = 0;
784 switch (howto->type)
785 {
786 /* These are simple indirect references to symbols through the
787 DLT. We need to create a DLT entry for any symbols which
788 appears in a DLTIND relocation. */
789 case R_PARISC_DLTIND21L:
790 case R_PARISC_DLTIND14R:
791 case R_PARISC_DLTIND14F:
792 case R_PARISC_DLTIND14WR:
793 case R_PARISC_DLTIND14DR:
794 need_entry = NEED_DLT;
795 break;
796
797 /* ?!? These need a DLT entry. But I have no idea what to do with
798 the "link time TP value. */
799 case R_PARISC_LTOFF_TP21L:
800 case R_PARISC_LTOFF_TP14R:
801 case R_PARISC_LTOFF_TP14F:
802 case R_PARISC_LTOFF_TP64:
803 case R_PARISC_LTOFF_TP14WR:
804 case R_PARISC_LTOFF_TP14DR:
805 case R_PARISC_LTOFF_TP16F:
806 case R_PARISC_LTOFF_TP16WF:
807 case R_PARISC_LTOFF_TP16DF:
808 need_entry = NEED_DLT;
809 break;
810
811 /* These are function calls. Depending on their precise target we
812 may need to make a stub for them. The stub uses the PLT, so we
813 need to create PLT entries for these symbols too. */
832d951b 814 case R_PARISC_PCREL12F:
15bda425
JL
815 case R_PARISC_PCREL17F:
816 case R_PARISC_PCREL22F:
817 case R_PARISC_PCREL32:
818 case R_PARISC_PCREL64:
819 case R_PARISC_PCREL21L:
820 case R_PARISC_PCREL17R:
821 case R_PARISC_PCREL17C:
822 case R_PARISC_PCREL14R:
823 case R_PARISC_PCREL14F:
824 case R_PARISC_PCREL22C:
825 case R_PARISC_PCREL14WR:
826 case R_PARISC_PCREL14DR:
827 case R_PARISC_PCREL16F:
828 case R_PARISC_PCREL16WF:
829 case R_PARISC_PCREL16DF:
830 need_entry = (NEED_PLT | NEED_STUB);
831 break;
832
833 case R_PARISC_PLTOFF21L:
834 case R_PARISC_PLTOFF14R:
835 case R_PARISC_PLTOFF14F:
836 case R_PARISC_PLTOFF14WR:
837 case R_PARISC_PLTOFF14DR:
838 case R_PARISC_PLTOFF16F:
839 case R_PARISC_PLTOFF16WF:
840 case R_PARISC_PLTOFF16DF:
841 need_entry = (NEED_PLT);
842 break;
843
844 case R_PARISC_DIR64:
845 if (info->shared || maybe_dynamic)
846 need_entry = (NEED_DYNREL);
847 dynrel_type = R_PARISC_DIR64;
848 break;
849
850 /* This is an indirect reference through the DLT to get the address
851 of a OPD descriptor. Thus we need to make a DLT entry that points
852 to an OPD entry. */
853 case R_PARISC_LTOFF_FPTR21L:
854 case R_PARISC_LTOFF_FPTR14R:
855 case R_PARISC_LTOFF_FPTR14WR:
856 case R_PARISC_LTOFF_FPTR14DR:
857 case R_PARISC_LTOFF_FPTR32:
858 case R_PARISC_LTOFF_FPTR64:
859 case R_PARISC_LTOFF_FPTR16F:
860 case R_PARISC_LTOFF_FPTR16WF:
861 case R_PARISC_LTOFF_FPTR16DF:
862 if (info->shared || maybe_dynamic)
863 need_entry = (NEED_DLT | NEED_OPD);
864 else
865 need_entry = (NEED_DLT | NEED_OPD);
866 dynrel_type = R_PARISC_FPTR64;
867 break;
868
869 /* This is a simple OPD entry. */
870 case R_PARISC_FPTR64:
871 if (info->shared || maybe_dynamic)
872 need_entry = (NEED_OPD | NEED_DYNREL);
873 else
874 need_entry = (NEED_OPD);
875 dynrel_type = R_PARISC_FPTR64;
876 break;
877
878 /* Add more cases as needed. */
879 }
880
881 if (!need_entry)
882 continue;
883
884 /* Collect a canonical name for this address. */
0ba2a60e 885 addr_name = get_dyn_name (sec, h, rel, &buf, &buf_len);
15bda425
JL
886
887 /* Collect the canonical entry data for this address. */
888 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
889 addr_name, true, true);
890 BFD_ASSERT (dyn_h);
891
892 /* Stash away enough information to be able to find this symbol
893 regardless of whether or not it is local or global. */
894 dyn_h->h = h;
895 dyn_h->owner = abfd;
896 dyn_h->sym_indx = r_symndx;
897
898 /* ?!? We may need to do some error checking in here. */
899 /* Create what's needed. */
900 if (need_entry & NEED_DLT)
901 {
902 if (! hppa_info->dlt_sec
903 && ! get_dlt (abfd, info, hppa_info))
904 goto err_out;
905 dyn_h->want_dlt = 1;
906 }
907
908 if (need_entry & NEED_PLT)
909 {
910 if (! hppa_info->plt_sec
911 && ! get_plt (abfd, info, hppa_info))
912 goto err_out;
913 dyn_h->want_plt = 1;
914 }
915
916 if (need_entry & NEED_STUB)
917 {
918 if (! hppa_info->stub_sec
919 && ! get_stub (abfd, info, hppa_info))
920 goto err_out;
921 dyn_h->want_stub = 1;
922 }
923
924 if (need_entry & NEED_OPD)
925 {
926 if (! hppa_info->opd_sec
927 && ! get_opd (abfd, info, hppa_info))
928 goto err_out;
929
930 dyn_h->want_opd = 1;
931
932 /* FPTRs are not allocated by the dynamic linker for PA64, though
933 it is possible that will change in the future. */
fe8bc63d 934
15bda425
JL
935 /* This could be a local function that had its address taken, in
936 which case H will be NULL. */
937 if (h)
938 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
939 }
940
941 /* Add a new dynamic relocation to the chain of dynamic
942 relocations for this symbol. */
943 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
944 {
945 if (! hppa_info->other_rel_sec
946 && ! get_reloc_section (abfd, hppa_info, sec))
947 goto err_out;
948
949 if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
950 sec_symndx, rel->r_offset, rel->r_addend))
951 goto err_out;
952
953 /* If we are building a shared library and we just recorded
954 a dynamic R_PARISC_FPTR64 relocation, then make sure the
955 section symbol for this section ends up in the dynamic
956 symbol table. */
957 if (info->shared && dynrel_type == R_PARISC_FPTR64
958 && ! (_bfd_elf64_link_record_local_dynamic_symbol
959 (info, abfd, sec_symndx)))
960 return false;
961 }
962 }
963
964 if (buf)
965 free (buf);
966 return true;
967
968 err_out:
969 if (buf)
970 free (buf);
971 return false;
972}
973
974struct elf64_hppa_allocate_data
975{
976 struct bfd_link_info *info;
977 bfd_size_type ofs;
978};
979
980/* Should we do dynamic things to this symbol? */
981
982static boolean
983elf64_hppa_dynamic_symbol_p (h, info)
984 struct elf_link_hash_entry *h;
985 struct bfd_link_info *info;
986{
987 if (h == NULL)
988 return false;
989
990 while (h->root.type == bfd_link_hash_indirect
991 || h->root.type == bfd_link_hash_warning)
992 h = (struct elf_link_hash_entry *) h->root.u.i.link;
993
994 if (h->dynindx == -1)
995 return false;
996
997 if (h->root.type == bfd_link_hash_undefweak
998 || h->root.type == bfd_link_hash_defweak)
999 return true;
1000
1001 if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
1002 return false;
1003
671bae9c 1004 if ((info->shared && (!info->symbolic || info->allow_shlib_undefined))
15bda425
JL
1005 || ((h->elf_link_hash_flags
1006 & (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR))
1007 == (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR)))
1008 return true;
1009
1010 return false;
1011}
1012
1013/* Mark all funtions exported by this file so that we can later allocate
1014 entries in .opd for them. */
1015
1016static boolean
1017elf64_hppa_mark_exported_functions (h, data)
1018 struct elf_link_hash_entry *h;
1019 PTR data;
1020{
1021 struct bfd_link_info *info = (struct bfd_link_info *)data;
1022 struct elf64_hppa_link_hash_table *hppa_info;
1023
1024 hppa_info = elf64_hppa_hash_table (info);
1025
e92d460e
AM
1026 if (h->root.type == bfd_link_hash_warning)
1027 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1028
15bda425
JL
1029 if (h
1030 && (h->root.type == bfd_link_hash_defined
1031 || h->root.type == bfd_link_hash_defweak)
1032 && h->root.u.def.section->output_section != NULL
1033 && h->type == STT_FUNC)
1034 {
1035 struct elf64_hppa_dyn_hash_entry *dyn_h;
1036
1037 /* Add this symbol to the PA64 linker hash table. */
1038 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1039 h->root.root.string, true, true);
1040 BFD_ASSERT (dyn_h);
1041 dyn_h->h = h;
1042
1043 if (! hppa_info->opd_sec
1044 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
1045 return false;
1046
1047 dyn_h->want_opd = 1;
832d951b
AM
1048 /* Put a flag here for output_symbol_hook. */
1049 dyn_h->st_shndx = -1;
15bda425
JL
1050 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1051 }
1052
1053 return true;
1054}
1055
1056/* Allocate space for a DLT entry. */
1057
1058static boolean
1059allocate_global_data_dlt (dyn_h, data)
1060 struct elf64_hppa_dyn_hash_entry *dyn_h;
1061 PTR data;
1062{
1063 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1064
1065 if (dyn_h->want_dlt)
1066 {
1067 struct elf_link_hash_entry *h = dyn_h->h;
1068
1069 if (x->info->shared)
1070 {
1071 /* Possibly add the symbol to the local dynamic symbol
1072 table since we might need to create a dynamic relocation
1073 against it. */
1074 if (! h
1075 || (h && h->dynindx == -1))
1076 {
1077 bfd *owner;
1078 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1079
dc810e39
AM
1080 if (! (_bfd_elf64_link_record_local_dynamic_symbol
1081 (x->info, owner, dyn_h->sym_indx)))
15bda425
JL
1082 return false;
1083 }
1084 }
1085
1086 dyn_h->dlt_offset = x->ofs;
1087 x->ofs += DLT_ENTRY_SIZE;
1088 }
1089 return true;
1090}
1091
1092/* Allocate space for a DLT.PLT entry. */
1093
1094static boolean
1095allocate_global_data_plt (dyn_h, data)
1096 struct elf64_hppa_dyn_hash_entry *dyn_h;
1097 PTR data;
1098{
1099 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1100
1101 if (dyn_h->want_plt
1102 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1103 && !((dyn_h->h->root.type == bfd_link_hash_defined
1104 || dyn_h->h->root.type == bfd_link_hash_defweak)
1105 && dyn_h->h->root.u.def.section->output_section != NULL))
1106 {
1107 dyn_h->plt_offset = x->ofs;
1108 x->ofs += PLT_ENTRY_SIZE;
1109 if (dyn_h->plt_offset < 0x2000)
1110 elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
1111 }
1112 else
1113 dyn_h->want_plt = 0;
1114
1115 return true;
1116}
1117
1118/* Allocate space for a STUB entry. */
1119
1120static boolean
1121allocate_global_data_stub (dyn_h, data)
1122 struct elf64_hppa_dyn_hash_entry *dyn_h;
1123 PTR data;
1124{
1125 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1126
1127 if (dyn_h->want_stub
1128 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1129 && !((dyn_h->h->root.type == bfd_link_hash_defined
1130 || dyn_h->h->root.type == bfd_link_hash_defweak)
1131 && dyn_h->h->root.u.def.section->output_section != NULL))
1132 {
1133 dyn_h->stub_offset = x->ofs;
1134 x->ofs += sizeof (plt_stub);
1135 }
1136 else
1137 dyn_h->want_stub = 0;
1138 return true;
1139}
1140
1141/* Allocate space for a FPTR entry. */
1142
1143static boolean
1144allocate_global_data_opd (dyn_h, data)
1145 struct elf64_hppa_dyn_hash_entry *dyn_h;
1146 PTR data;
1147{
1148 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1149
1150 if (dyn_h->want_opd)
1151 {
1152 struct elf_link_hash_entry *h = dyn_h->h;
fe8bc63d 1153
15bda425
JL
1154 if (h)
1155 while (h->root.type == bfd_link_hash_indirect
1156 || h->root.type == bfd_link_hash_warning)
1157 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1158
1159 /* We never need an opd entry for a symbol which is not
1160 defined by this output file. */
1161 if (h && h->root.type == bfd_link_hash_undefined)
1162 dyn_h->want_opd = 0;
1163
1164 /* If we are creating a shared library, took the address of a local
1165 function or might export this function from this object file, then
1166 we have to create an opd descriptor. */
1167 else if (x->info->shared
1168 || h == NULL
1169 || h->dynindx == -1
1170 || ((h->root.type == bfd_link_hash_defined
1171 || h->root.type == bfd_link_hash_defweak)
1172 && h->root.u.def.section->output_section != NULL))
1173 {
1174 /* If we are creating a shared library, then we will have to
1175 create a runtime relocation for the symbol to properly
1176 initialize the .opd entry. Make sure the symbol gets
1177 added to the dynamic symbol table. */
1178 if (x->info->shared
1179 && (h == NULL || (h->dynindx == -1)))
1180 {
1181 bfd *owner;
1182 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1183
1184 if (!_bfd_elf64_link_record_local_dynamic_symbol
1185 (x->info, owner, dyn_h->sym_indx))
1186 return false;
1187 }
1188
1189 /* This may not be necessary or desirable anymore now that
1190 we have some support for dealing with section symbols
1191 in dynamic relocs. But name munging does make the result
1192 much easier to debug. ie, the EPLT reloc will reference
1193 a symbol like .foobar, instead of .text + offset. */
1194 if (x->info->shared && h)
1195 {
1196 char *new_name;
1197 struct elf_link_hash_entry *nh;
1198
1199 new_name = alloca (strlen (h->root.root.string) + 2);
1200 new_name[0] = '.';
1201 strcpy (new_name + 1, h->root.root.string);
1202
1203 nh = elf_link_hash_lookup (elf_hash_table (x->info),
1204 new_name, true, true, true);
1205
1206 nh->root.type = h->root.type;
1207 nh->root.u.def.value = h->root.u.def.value;
1208 nh->root.u.def.section = h->root.u.def.section;
1209
1210 if (! bfd_elf64_link_record_dynamic_symbol (x->info, nh))
1211 return false;
1212
1213 }
1214 dyn_h->opd_offset = x->ofs;
1215 x->ofs += OPD_ENTRY_SIZE;
1216 }
1217
1218 /* Otherwise we do not need an opd entry. */
1219 else
1220 dyn_h->want_opd = 0;
1221 }
1222 return true;
1223}
1224
1225/* HP requires the EI_OSABI field to be filled in. The assignment to
1226 EI_ABIVERSION may not be strictly necessary. */
1227
1228static void
1229elf64_hppa_post_process_headers (abfd, link_info)
1230 bfd * abfd;
1231 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
1232{
1233 Elf_Internal_Ehdr * i_ehdrp;
1234
1235 i_ehdrp = elf_elfheader (abfd);
1236
d952f17a
AM
1237 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
1238 {
1239 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
1240 }
1241 else
1242 {
1243 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
1244 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1245 }
15bda425
JL
1246}
1247
1248/* Create function descriptor section (.opd). This section is called .opd
1249 because it contains "official prodecure descriptors". The "official"
1250 refers to the fact that these descriptors are used when taking the address
1251 of a procedure, thus ensuring a unique address for each procedure. */
1252
1253static boolean
1254get_opd (abfd, info, hppa_info)
1255 bfd *abfd;
edd21aca 1256 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1257 struct elf64_hppa_link_hash_table *hppa_info;
1258{
1259 asection *opd;
1260 bfd *dynobj;
1261
1262 opd = hppa_info->opd_sec;
1263 if (!opd)
1264 {
1265 dynobj = hppa_info->root.dynobj;
1266 if (!dynobj)
1267 hppa_info->root.dynobj = dynobj = abfd;
1268
1269 opd = bfd_make_section (dynobj, ".opd");
1270 if (!opd
1271 || !bfd_set_section_flags (dynobj, opd,
1272 (SEC_ALLOC
1273 | SEC_LOAD
1274 | SEC_HAS_CONTENTS
1275 | SEC_IN_MEMORY
1276 | SEC_LINKER_CREATED))
1277 || !bfd_set_section_alignment (abfd, opd, 3))
1278 {
1279 BFD_ASSERT (0);
1280 return false;
1281 }
1282
1283 hppa_info->opd_sec = opd;
1284 }
1285
1286 return true;
1287}
1288
1289/* Create the PLT section. */
1290
1291static boolean
1292get_plt (abfd, info, hppa_info)
1293 bfd *abfd;
edd21aca 1294 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1295 struct elf64_hppa_link_hash_table *hppa_info;
1296{
1297 asection *plt;
1298 bfd *dynobj;
1299
1300 plt = hppa_info->plt_sec;
1301 if (!plt)
1302 {
1303 dynobj = hppa_info->root.dynobj;
1304 if (!dynobj)
1305 hppa_info->root.dynobj = dynobj = abfd;
1306
1307 plt = bfd_make_section (dynobj, ".plt");
1308 if (!plt
1309 || !bfd_set_section_flags (dynobj, plt,
1310 (SEC_ALLOC
1311 | SEC_LOAD
1312 | SEC_HAS_CONTENTS
1313 | SEC_IN_MEMORY
1314 | SEC_LINKER_CREATED))
1315 || !bfd_set_section_alignment (abfd, plt, 3))
1316 {
1317 BFD_ASSERT (0);
1318 return false;
1319 }
1320
1321 hppa_info->plt_sec = plt;
1322 }
1323
1324 return true;
1325}
1326
1327/* Create the DLT section. */
1328
1329static boolean
1330get_dlt (abfd, info, hppa_info)
1331 bfd *abfd;
edd21aca 1332 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1333 struct elf64_hppa_link_hash_table *hppa_info;
1334{
1335 asection *dlt;
1336 bfd *dynobj;
1337
1338 dlt = hppa_info->dlt_sec;
1339 if (!dlt)
1340 {
1341 dynobj = hppa_info->root.dynobj;
1342 if (!dynobj)
1343 hppa_info->root.dynobj = dynobj = abfd;
1344
1345 dlt = bfd_make_section (dynobj, ".dlt");
1346 if (!dlt
1347 || !bfd_set_section_flags (dynobj, dlt,
1348 (SEC_ALLOC
1349 | SEC_LOAD
1350 | SEC_HAS_CONTENTS
1351 | SEC_IN_MEMORY
1352 | SEC_LINKER_CREATED))
1353 || !bfd_set_section_alignment (abfd, dlt, 3))
1354 {
1355 BFD_ASSERT (0);
1356 return false;
1357 }
1358
1359 hppa_info->dlt_sec = dlt;
1360 }
1361
1362 return true;
1363}
1364
1365/* Create the stubs section. */
1366
1367static boolean
1368get_stub (abfd, info, hppa_info)
1369 bfd *abfd;
edd21aca 1370 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1371 struct elf64_hppa_link_hash_table *hppa_info;
1372{
1373 asection *stub;
1374 bfd *dynobj;
1375
1376 stub = hppa_info->stub_sec;
1377 if (!stub)
1378 {
1379 dynobj = hppa_info->root.dynobj;
1380 if (!dynobj)
1381 hppa_info->root.dynobj = dynobj = abfd;
1382
1383 stub = bfd_make_section (dynobj, ".stub");
1384 if (!stub
1385 || !bfd_set_section_flags (dynobj, stub,
1386 (SEC_ALLOC
1387 | SEC_LOAD
1388 | SEC_HAS_CONTENTS
1389 | SEC_IN_MEMORY
1390 | SEC_READONLY
1391 | SEC_LINKER_CREATED))
1392 || !bfd_set_section_alignment (abfd, stub, 3))
1393 {
1394 BFD_ASSERT (0);
1395 return false;
1396 }
1397
1398 hppa_info->stub_sec = stub;
1399 }
1400
1401 return true;
1402}
1403
1404/* Create sections necessary for dynamic linking. This is only a rough
1405 cut and will likely change as we learn more about the somewhat
1406 unusual dynamic linking scheme HP uses.
1407
1408 .stub:
1409 Contains code to implement cross-space calls. The first time one
1410 of the stubs is used it will call into the dynamic linker, later
1411 calls will go straight to the target.
1412
1413 The only stub we support right now looks like
1414
1415 ldd OFFSET(%dp),%r1
1416 bve %r0(%r1)
1417 ldd OFFSET+8(%dp),%dp
1418
1419 Other stubs may be needed in the future. We may want the remove
1420 the break/nop instruction. It is only used right now to keep the
1421 offset of a .plt entry and a .stub entry in sync.
1422
1423 .dlt:
1424 This is what most people call the .got. HP used a different name.
1425 Losers.
1426
1427 .rela.dlt:
1428 Relocations for the DLT.
1429
1430 .plt:
1431 Function pointers as address,gp pairs.
1432
1433 .rela.plt:
1434 Should contain dynamic IPLT (and EPLT?) relocations.
1435
1436 .opd:
fe8bc63d 1437 FPTRS
15bda425
JL
1438
1439 .rela.opd:
1440 EPLT relocations for symbols exported from shared libraries. */
1441
1442static boolean
1443elf64_hppa_create_dynamic_sections (abfd, info)
1444 bfd *abfd;
1445 struct bfd_link_info *info;
1446{
1447 asection *s;
1448
1449 if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
1450 return false;
1451
1452 if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
1453 return false;
1454
1455 if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
1456 return false;
1457
1458 if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
1459 return false;
1460
1461 s = bfd_make_section(abfd, ".rela.dlt");
1462 if (s == NULL
1463 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1464 | SEC_HAS_CONTENTS
1465 | SEC_IN_MEMORY
1466 | SEC_READONLY
1467 | SEC_LINKER_CREATED))
1468 || !bfd_set_section_alignment (abfd, s, 3))
1469 return false;
1470 elf64_hppa_hash_table (info)->dlt_rel_sec = s;
1471
1472 s = bfd_make_section(abfd, ".rela.plt");
1473 if (s == NULL
1474 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1475 | SEC_HAS_CONTENTS
1476 | SEC_IN_MEMORY
1477 | SEC_READONLY
1478 | SEC_LINKER_CREATED))
1479 || !bfd_set_section_alignment (abfd, s, 3))
1480 return false;
1481 elf64_hppa_hash_table (info)->plt_rel_sec = s;
1482
1483 s = bfd_make_section(abfd, ".rela.data");
1484 if (s == NULL
1485 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1486 | SEC_HAS_CONTENTS
1487 | SEC_IN_MEMORY
1488 | SEC_READONLY
1489 | SEC_LINKER_CREATED))
1490 || !bfd_set_section_alignment (abfd, s, 3))
1491 return false;
1492 elf64_hppa_hash_table (info)->other_rel_sec = s;
1493
1494 s = bfd_make_section(abfd, ".rela.opd");
1495 if (s == NULL
1496 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1497 | SEC_HAS_CONTENTS
1498 | SEC_IN_MEMORY
1499 | SEC_READONLY
1500 | SEC_LINKER_CREATED))
1501 || !bfd_set_section_alignment (abfd, s, 3))
1502 return false;
1503 elf64_hppa_hash_table (info)->opd_rel_sec = s;
1504
1505 return true;
1506}
1507
1508/* Allocate dynamic relocations for those symbols that turned out
1509 to be dynamic. */
1510
1511static boolean
1512allocate_dynrel_entries (dyn_h, data)
1513 struct elf64_hppa_dyn_hash_entry *dyn_h;
1514 PTR data;
1515{
1516 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1517 struct elf64_hppa_link_hash_table *hppa_info;
1518 struct elf64_hppa_dyn_reloc_entry *rent;
1519 boolean dynamic_symbol, shared;
1520
1521 hppa_info = elf64_hppa_hash_table (x->info);
1522 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
1523 shared = x->info->shared;
1524
1525 /* We may need to allocate relocations for a non-dynamic symbol
1526 when creating a shared library. */
1527 if (!dynamic_symbol && !shared)
1528 return true;
1529
1530 /* Take care of the normal data relocations. */
1531
1532 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
1533 {
1534 switch (rent->type)
1535 {
1536 case R_PARISC_FPTR64:
1537 /* Allocate one iff we are not building a shared library and
1538 !want_opd, which by this point will be true only if we're
1539 actually allocating one statically in the main executable. */
1540 if (!x->info->shared && dyn_h->want_opd)
1541 continue;
1542 break;
1543 }
1544 hppa_info->other_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1545
1546 /* Make sure this symbol gets into the dynamic symbol table if it is
1547 not already recorded. ?!? This should not be in the loop since
1548 the symbol need only be added once. */
1549 if (dyn_h->h == 0 || dyn_h->h->dynindx == -1)
1550 if (!_bfd_elf64_link_record_local_dynamic_symbol
1551 (x->info, rent->sec->owner, dyn_h->sym_indx))
1552 return false;
1553 }
1554
1555 /* Take care of the GOT and PLT relocations. */
1556
1557 if ((dynamic_symbol || shared) && dyn_h->want_dlt)
1558 hppa_info->dlt_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1559
1560 /* If we are building a shared library, then every symbol that has an
1561 opd entry will need an EPLT relocation to relocate the symbol's address
1562 and __gp value based on the runtime load address. */
1563 if (shared && dyn_h->want_opd)
1564 hppa_info->opd_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1565
1566 if (dyn_h->want_plt && dynamic_symbol)
1567 {
1568 bfd_size_type t = 0;
1569
1570 /* Dynamic symbols get one IPLT relocation. Local symbols in
1571 shared libraries get two REL relocations. Local symbols in
1572 main applications get nothing. */
1573 if (dynamic_symbol)
1574 t = sizeof (Elf64_External_Rela);
1575 else if (shared)
1576 t = 2 * sizeof (Elf64_External_Rela);
1577
1578 hppa_info->plt_rel_sec->_raw_size += t;
1579 }
1580
1581 return true;
1582}
1583
1584/* Adjust a symbol defined by a dynamic object and referenced by a
1585 regular object. */
1586
1587static boolean
1588elf64_hppa_adjust_dynamic_symbol (info, h)
edd21aca 1589 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1590 struct elf_link_hash_entry *h;
1591{
1592 /* ??? Undefined symbols with PLT entries should be re-defined
1593 to be the PLT entry. */
1594
1595 /* If this is a weak symbol, and there is a real definition, the
1596 processor independent code will have arranged for us to see the
1597 real definition first, and we can just use the same value. */
1598 if (h->weakdef != NULL)
1599 {
1600 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1601 || h->weakdef->root.type == bfd_link_hash_defweak);
1602 h->root.u.def.section = h->weakdef->root.u.def.section;
1603 h->root.u.def.value = h->weakdef->root.u.def.value;
1604 return true;
1605 }
1606
1607 /* If this is a reference to a symbol defined by a dynamic object which
1608 is not a function, we might allocate the symbol in our .dynbss section
1609 and allocate a COPY dynamic relocation.
1610
1611 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1612 of hackery. */
1613
1614 return true;
1615}
1616
1617/* Set the final sizes of the dynamic sections and allocate memory for
1618 the contents of our special sections. */
1619
1620static boolean
1621elf64_hppa_size_dynamic_sections (output_bfd, info)
1622 bfd *output_bfd;
1623 struct bfd_link_info *info;
1624{
1625 bfd *dynobj;
1626 asection *s;
1627 boolean plt;
1628 boolean relocs;
1629 boolean reltext;
15bda425
JL
1630 struct elf64_hppa_allocate_data data;
1631 struct elf64_hppa_link_hash_table *hppa_info;
1632
1633 hppa_info = elf64_hppa_hash_table (info);
1634
1635 dynobj = elf_hash_table (info)->dynobj;
1636 BFD_ASSERT (dynobj != NULL);
1637
1638 if (elf_hash_table (info)->dynamic_sections_created)
1639 {
1640 /* Set the contents of the .interp section to the interpreter. */
1641 if (! info->shared)
1642 {
1643 s = bfd_get_section_by_name (dynobj, ".interp");
1644 BFD_ASSERT (s != NULL);
1645 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1646 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1647 }
1648 }
1649 else
1650 {
1651 /* We may have created entries in the .rela.got section.
1652 However, if we are not creating the dynamic sections, we will
1653 not actually use these entries. Reset the size of .rela.dlt,
1654 which will cause it to get stripped from the output file
1655 below. */
1656 s = bfd_get_section_by_name (dynobj, ".rela.dlt");
1657 if (s != NULL)
1658 s->_raw_size = 0;
1659 }
1660
1661 /* Allocate the GOT entries. */
1662
1663 data.info = info;
1664 if (elf64_hppa_hash_table (info)->dlt_sec)
1665 {
1666 data.ofs = 0x0;
1667 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1668 allocate_global_data_dlt, &data);
1669 hppa_info->dlt_sec->_raw_size = data.ofs;
1670
1671 data.ofs = 0x0;
1672 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1673 allocate_global_data_plt, &data);
1674 hppa_info->plt_sec->_raw_size = data.ofs;
1675
1676 data.ofs = 0x0;
1677 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1678 allocate_global_data_stub, &data);
1679 hppa_info->stub_sec->_raw_size = data.ofs;
1680 }
1681
1682 /* Mark each function this program exports so that we will allocate
1683 space in the .opd section for each function's FPTR.
1684
1685 We have to traverse the main linker hash table since we have to
1686 find functions which may not have been mentioned in any relocs. */
1687 elf_link_hash_traverse (elf_hash_table (info),
1688 elf64_hppa_mark_exported_functions,
1689 info);
1690
1691 /* Allocate space for entries in the .opd section. */
1692 if (elf64_hppa_hash_table (info)->opd_sec)
1693 {
1694 data.ofs = 0;
1695 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1696 allocate_global_data_opd, &data);
1697 hppa_info->opd_sec->_raw_size = data.ofs;
1698 }
1699
1700 /* Now allocate space for dynamic relocations, if necessary. */
1701 if (hppa_info->root.dynamic_sections_created)
1702 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1703 allocate_dynrel_entries, &data);
1704
1705 /* The sizes of all the sections are set. Allocate memory for them. */
1706 plt = false;
1707 relocs = false;
1708 reltext = false;
1709 for (s = dynobj->sections; s != NULL; s = s->next)
1710 {
1711 const char *name;
1712 boolean strip;
1713
1714 if ((s->flags & SEC_LINKER_CREATED) == 0)
1715 continue;
1716
1717 /* It's OK to base decisions on the section name, because none
1718 of the dynobj section names depend upon the input files. */
1719 name = bfd_get_section_name (dynobj, s);
1720
1721 strip = 0;
1722
1723 if (strcmp (name, ".plt") == 0)
1724 {
1725 if (s->_raw_size == 0)
1726 {
1727 /* Strip this section if we don't need it; see the
1728 comment below. */
1729 strip = true;
1730 }
1731 else
1732 {
1733 /* Remember whether there is a PLT. */
1734 plt = true;
1735 }
1736 }
1737 else if (strcmp (name, ".dlt") == 0)
1738 {
1739 if (s->_raw_size == 0)
1740 {
1741 /* Strip this section if we don't need it; see the
1742 comment below. */
1743 strip = true;
1744 }
1745 }
1746 else if (strcmp (name, ".opd") == 0)
1747 {
1748 if (s->_raw_size == 0)
1749 {
1750 /* Strip this section if we don't need it; see the
1751 comment below. */
1752 strip = true;
1753 }
1754 }
1755 else if (strncmp (name, ".rela", 4) == 0)
1756 {
1757 if (s->_raw_size == 0)
1758 {
1759 /* If we don't need this section, strip it from the
1760 output file. This is mostly to handle .rela.bss and
1761 .rela.plt. We must create both sections in
1762 create_dynamic_sections, because they must be created
1763 before the linker maps input sections to output
1764 sections. The linker does that before
1765 adjust_dynamic_symbol is called, and it is that
1766 function which decides whether anything needs to go
1767 into these sections. */
1768 strip = true;
1769 }
1770 else
1771 {
1772 asection *target;
1773
1774 /* Remember whether there are any reloc sections other
1775 than .rela.plt. */
1776 if (strcmp (name, ".rela.plt") != 0)
1777 {
1778 const char *outname;
1779
1780 relocs = true;
1781
1782 /* If this relocation section applies to a read only
1783 section, then we probably need a DT_TEXTREL
1784 entry. The entries in the .rela.plt section
1785 really apply to the .got section, which we
1786 created ourselves and so know is not readonly. */
1787 outname = bfd_get_section_name (output_bfd,
1788 s->output_section);
1789 target = bfd_get_section_by_name (output_bfd, outname + 4);
1790 if (target != NULL
1791 && (target->flags & SEC_READONLY) != 0
1792 && (target->flags & SEC_ALLOC) != 0)
1793 reltext = true;
1794 }
1795
1796 /* We use the reloc_count field as a counter if we need
1797 to copy relocs into the output file. */
1798 s->reloc_count = 0;
1799 }
1800 }
1801 else if (strncmp (name, ".dlt", 4) != 0
1802 && strcmp (name, ".stub") != 0
1803 && strcmp (name, ".got") != 0)
1804 {
1805 /* It's not one of our sections, so don't allocate space. */
1806 continue;
1807 }
1808
1809 if (strip)
1810 {
1811 _bfd_strip_section_from_output (info, s);
1812 continue;
1813 }
1814
1815 /* Allocate memory for the section contents if it has not
832d951b
AM
1816 been allocated already. We use bfd_zalloc here in case
1817 unused entries are not reclaimed before the section's
1818 contents are written out. This should not happen, but this
1819 way if it does, we get a R_PARISC_NONE reloc instead of
1820 garbage. */
15bda425
JL
1821 if (s->contents == NULL)
1822 {
7a9af8c4 1823 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
15bda425
JL
1824 if (s->contents == NULL && s->_raw_size != 0)
1825 return false;
1826 }
1827 }
1828
1829 if (elf_hash_table (info)->dynamic_sections_created)
1830 {
1831 /* Always create a DT_PLTGOT. It actually has nothing to do with
1832 the PLT, it is how we communicate the __gp value of a load
1833 module to the dynamic linker. */
dc810e39
AM
1834#define add_dynamic_entry(TAG, VAL) \
1835 bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1836
1837 if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1838 || !add_dynamic_entry (DT_PLTGOT, 0))
15bda425
JL
1839 return false;
1840
1841 /* Add some entries to the .dynamic section. We fill in the
1842 values later, in elf64_hppa_finish_dynamic_sections, but we
1843 must add the entries now so that we get the correct size for
1844 the .dynamic section. The DT_DEBUG entry is filled in by the
1845 dynamic linker and used by the debugger. */
1846 if (! info->shared)
1847 {
dc810e39
AM
1848 if (!add_dynamic_entry (DT_DEBUG, 0)
1849 || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1850 || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
15bda425
JL
1851 return false;
1852 }
1853
1854 if (plt)
1855 {
dc810e39
AM
1856 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1857 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1858 || !add_dynamic_entry (DT_JMPREL, 0))
15bda425
JL
1859 return false;
1860 }
1861
1862 if (relocs)
1863 {
dc810e39
AM
1864 if (!add_dynamic_entry (DT_RELA, 0)
1865 || !add_dynamic_entry (DT_RELASZ, 0)
1866 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
15bda425
JL
1867 return false;
1868 }
1869
1870 if (reltext)
1871 {
dc810e39 1872 if (!add_dynamic_entry (DT_TEXTREL, 0))
15bda425 1873 return false;
d6cf2879 1874 info->flags |= DF_TEXTREL;
15bda425
JL
1875 }
1876 }
dc810e39 1877#undef add_dynamic_entry
15bda425
JL
1878
1879 return true;
1880}
1881
1882/* Called after we have output the symbol into the dynamic symbol
1883 table, but before we output the symbol into the normal symbol
1884 table.
1885
1886 For some symbols we had to change their address when outputting
1887 the dynamic symbol table. We undo that change here so that
1888 the symbols have their expected value in the normal symbol
1889 table. Ick. */
1890
1891static boolean
1892elf64_hppa_link_output_symbol_hook (abfd, info, name, sym, input_sec)
edd21aca 1893 bfd *abfd ATTRIBUTE_UNUSED;
15bda425
JL
1894 struct bfd_link_info *info;
1895 const char *name;
1896 Elf_Internal_Sym *sym;
edd21aca 1897 asection *input_sec ATTRIBUTE_UNUSED;
15bda425
JL
1898{
1899 struct elf64_hppa_link_hash_table *hppa_info;
1900 struct elf64_hppa_dyn_hash_entry *dyn_h;
1901
1902 /* We may be called with the file symbol or section symbols.
1903 They never need munging, so it is safe to ignore them. */
1904 if (!name)
1905 return true;
1906
1907 /* Get the PA dyn_symbol (if any) associated with NAME. */
1908 hppa_info = elf64_hppa_hash_table (info);
1909 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1910 name, false, false);
1911
832d951b
AM
1912 /* Function symbols for which we created .opd entries *may* have been
1913 munged by finish_dynamic_symbol and have to be un-munged here.
1914
1915 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1916 into non-dynamic ones, so we initialize st_shndx to -1 in
1917 mark_exported_functions and check to see if it was overwritten
1918 here instead of just checking dyn_h->h->dynindx. */
1919 if (dyn_h && dyn_h->want_opd && dyn_h->st_shndx != -1)
15bda425
JL
1920 {
1921 /* Restore the saved value and section index. */
1922 sym->st_value = dyn_h->st_value;
fe8bc63d 1923 sym->st_shndx = dyn_h->st_shndx;
15bda425
JL
1924 }
1925
1926 return true;
1927}
1928
1929/* Finish up dynamic symbol handling. We set the contents of various
1930 dynamic sections here. */
1931
1932static boolean
1933elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
1934 bfd *output_bfd;
1935 struct bfd_link_info *info;
1936 struct elf_link_hash_entry *h;
1937 Elf_Internal_Sym *sym;
1938{
1939 asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
1940 struct elf64_hppa_link_hash_table *hppa_info;
1941 struct elf64_hppa_dyn_hash_entry *dyn_h;
1942
1943 hppa_info = elf64_hppa_hash_table (info);
1944 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1945 h->root.root.string, false, false);
1946
1947 stub = hppa_info->stub_sec;
1948 splt = hppa_info->plt_sec;
1949 sdlt = hppa_info->dlt_sec;
1950 sopd = hppa_info->opd_sec;
1951 spltrel = hppa_info->plt_rel_sec;
1952 sdltrel = hppa_info->dlt_rel_sec;
1953
1954 BFD_ASSERT (stub != NULL && splt != NULL
1955 && sopd != NULL && sdlt != NULL)
1956
1957 /* Incredible. It is actually necessary to NOT use the symbol's real
1958 value when building the dynamic symbol table for a shared library.
1959 At least for symbols that refer to functions.
1960
1961 We will store a new value and section index into the symbol long
1962 enough to output it into the dynamic symbol table, then we restore
1963 the original values (in elf64_hppa_link_output_symbol_hook). */
1964 if (dyn_h && dyn_h->want_opd)
1965 {
1966 /* Save away the original value and section index so that we
1967 can restore them later. */
1968 dyn_h->st_value = sym->st_value;
1969 dyn_h->st_shndx = sym->st_shndx;
1970
1971 /* For the dynamic symbol table entry, we want the value to be
1972 address of this symbol's entry within the .opd section. */
1973 sym->st_value = (dyn_h->opd_offset
1974 + sopd->output_offset
1975 + sopd->output_section->vma);
1976 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1977 sopd->output_section);
1978 }
1979
1980 /* Initialize a .plt entry if requested. */
1981 if (dyn_h && dyn_h->want_plt
1982 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1983 {
1984 bfd_vma value;
1985 Elf_Internal_Rela rel;
1986
1987 /* We do not actually care about the value in the PLT entry
1988 if we are creating a shared library and the symbol is
1989 still undefined, we create a dynamic relocation to fill
1990 in the correct value. */
1991 if (info->shared && h->root.type == bfd_link_hash_undefined)
1992 value = 0;
1993 else
1994 value = (h->root.u.def.value + h->root.u.def.section->vma);
1995
fe8bc63d 1996 /* Fill in the entry in the procedure linkage table.
15bda425
JL
1997
1998 The format of a plt entry is
fe8bc63d 1999 <funcaddr> <__gp>.
15bda425
JL
2000
2001 plt_offset is the offset within the PLT section at which to
fe8bc63d 2002 install the PLT entry.
15bda425
JL
2003
2004 We are modifying the in-memory PLT contents here, so we do not add
2005 in the output_offset of the PLT section. */
2006
2007 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
2008 value = _bfd_get_gp_value (splt->output_section->owner);
2009 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
2010
2011 /* Create a dynamic IPLT relocation for this entry.
2012
2013 We are creating a relocation in the output file's PLT section,
2014 which is included within the DLT secton. So we do need to include
2015 the PLT's output_offset in the computation of the relocation's
2016 address. */
2017 rel.r_offset = (dyn_h->plt_offset + splt->output_offset
2018 + splt->output_section->vma);
2019 rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
2020 rel.r_addend = 0;
2021
2022 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel,
2023 (((Elf64_External_Rela *)
2024 spltrel->contents)
2025 + spltrel->reloc_count));
2026 spltrel->reloc_count++;
2027 }
2028
2029 /* Initialize an external call stub entry if requested. */
2030 if (dyn_h && dyn_h->want_stub
2031 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
2032 {
2033 bfd_vma value;
2034 int insn;
b352eebf 2035 unsigned int max_offset;
15bda425
JL
2036
2037 /* Install the generic stub template.
2038
2039 We are modifying the contents of the stub section, so we do not
2040 need to include the stub section's output_offset here. */
2041 memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
2042
2043 /* Fix up the first ldd instruction.
2044
2045 We are modifying the contents of the STUB section in memory,
fe8bc63d 2046 so we do not need to include its output offset in this computation.
15bda425
JL
2047
2048 Note the plt_offset value is the value of the PLT entry relative to
2049 the start of the PLT section. These instructions will reference
2050 data relative to the value of __gp, which may not necessarily have
2051 the same address as the start of the PLT section.
2052
2053 gp_offset contains the offset of __gp within the PLT section. */
2054 value = dyn_h->plt_offset - hppa_info->gp_offset;
fe8bc63d 2055
15bda425 2056 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
b352eebf
AM
2057 if (output_bfd->arch_info->mach >= 25)
2058 {
2059 /* Wide mode allows 16 bit offsets. */
2060 max_offset = 32768;
2061 insn &= ~ 0xfff1;
dc810e39 2062 insn |= re_assemble_16 ((int) value);
b352eebf
AM
2063 }
2064 else
2065 {
2066 max_offset = 8192;
2067 insn &= ~ 0x3ff1;
dc810e39 2068 insn |= re_assemble_14 ((int) value);
b352eebf
AM
2069 }
2070
2071 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2072 {
2073 (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2074 dyn_h->root.string,
2075 (long) value);
2076 return false;
2077 }
2078
dc810e39 2079 bfd_put_32 (stub->owner, (bfd_vma) insn,
15bda425
JL
2080 stub->contents + dyn_h->stub_offset);
2081
2082 /* Fix up the second ldd instruction. */
b352eebf 2083 value += 8;
15bda425 2084 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
b352eebf
AM
2085 if (output_bfd->arch_info->mach >= 25)
2086 {
2087 insn &= ~ 0xfff1;
dc810e39 2088 insn |= re_assemble_16 ((int) value);
b352eebf
AM
2089 }
2090 else
2091 {
2092 insn &= ~ 0x3ff1;
dc810e39 2093 insn |= re_assemble_14 ((int) value);
b352eebf 2094 }
dc810e39 2095 bfd_put_32 (stub->owner, (bfd_vma) insn,
15bda425
JL
2096 stub->contents + dyn_h->stub_offset + 8);
2097 }
2098
2099 /* Millicode symbols should not be put in the dynamic
2100 symbol table under any circumstances. */
2101 if (ELF_ST_TYPE (sym->st_info) == STT_PARISC_MILLI)
2102 h->dynindx = -1;
2103
2104 return true;
2105}
2106
2107/* The .opd section contains FPTRs for each function this file
2108 exports. Initialize the FPTR entries. */
2109
2110static boolean
2111elf64_hppa_finalize_opd (dyn_h, data)
2112 struct elf64_hppa_dyn_hash_entry *dyn_h;
2113 PTR data;
2114{
2115 struct bfd_link_info *info = (struct bfd_link_info *)data;
2116 struct elf64_hppa_link_hash_table *hppa_info;
2117 struct elf_link_hash_entry *h = dyn_h->h;
2118 asection *sopd;
2119 asection *sopdrel;
2120
2121 hppa_info = elf64_hppa_hash_table (info);
2122 sopd = hppa_info->opd_sec;
2123 sopdrel = hppa_info->opd_rel_sec;
2124
2125 if (h && dyn_h && dyn_h->want_opd)
2126 {
2127 bfd_vma value;
2128
fe8bc63d 2129 /* The first two words of an .opd entry are zero.
15bda425
JL
2130
2131 We are modifying the contents of the OPD section in memory, so we
2132 do not need to include its output offset in this computation. */
2133 memset (sopd->contents + dyn_h->opd_offset, 0, 16);
2134
2135 value = (h->root.u.def.value
2136 + h->root.u.def.section->output_section->vma
2137 + h->root.u.def.section->output_offset);
2138
2139 /* The next word is the address of the function. */
2140 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
2141
2142 /* The last word is our local __gp value. */
2143 value = _bfd_get_gp_value (sopd->output_section->owner);
2144 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
2145 }
2146
2147 /* If we are generating a shared library, we must generate EPLT relocations
2148 for each entry in the .opd, even for static functions (they may have
2149 had their address taken). */
2150 if (info->shared && dyn_h && dyn_h->want_opd)
2151 {
2152 Elf64_Internal_Rela rel;
15bda425
JL
2153 int dynindx;
2154
2155 /* We may need to do a relocation against a local symbol, in
2156 which case we have to look up it's dynamic symbol index off
2157 the local symbol hash table. */
2158 if (h && h->dynindx != -1)
2159 dynindx = h->dynindx;
2160 else
2161 dynindx
2162 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2163 dyn_h->sym_indx);
2164
2165 /* The offset of this relocation is the absolute address of the
2166 .opd entry for this symbol. */
2167 rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
2168 + sopd->output_section->vma);
2169
2170 /* If H is non-null, then we have an external symbol.
2171
2172 It is imperative that we use a different dynamic symbol for the
2173 EPLT relocation if the symbol has global scope.
2174
2175 In the dynamic symbol table, the function symbol will have a value
2176 which is address of the function's .opd entry.
2177
2178 Thus, we can not use that dynamic symbol for the EPLT relocation
2179 (if we did, the data in the .opd would reference itself rather
2180 than the actual address of the function). Instead we have to use
2181 a new dynamic symbol which has the same value as the original global
fe8bc63d 2182 function symbol.
15bda425
JL
2183
2184 We prefix the original symbol with a "." and use the new symbol in
2185 the EPLT relocation. This new symbol has already been recorded in
2186 the symbol table, we just have to look it up and use it.
2187
2188 We do not have such problems with static functions because we do
2189 not make their addresses in the dynamic symbol table point to
2190 the .opd entry. Ultimately this should be safe since a static
2191 function can not be directly referenced outside of its shared
2192 library.
2193
2194 We do have to play similar games for FPTR relocations in shared
2195 libraries, including those for static symbols. See the FPTR
2196 handling in elf64_hppa_finalize_dynreloc. */
2197 if (h)
2198 {
2199 char *new_name;
2200 struct elf_link_hash_entry *nh;
2201
2202 new_name = alloca (strlen (h->root.root.string) + 2);
2203 new_name[0] = '.';
2204 strcpy (new_name + 1, h->root.root.string);
2205
2206 nh = elf_link_hash_lookup (elf_hash_table (info),
2207 new_name, false, false, false);
2208
2209 /* All we really want from the new symbol is its dynamic
2210 symbol index. */
2211 dynindx = nh->dynindx;
2212 }
2213
2214 rel.r_addend = 0;
2215 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2216
2217 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel,
2218 (((Elf64_External_Rela *)
2219 sopdrel->contents)
2220 + sopdrel->reloc_count));
2221 sopdrel->reloc_count++;
2222 }
2223 return true;
2224}
2225
2226/* The .dlt section contains addresses for items referenced through the
2227 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2228 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2229
2230static boolean
2231elf64_hppa_finalize_dlt (dyn_h, data)
2232 struct elf64_hppa_dyn_hash_entry *dyn_h;
2233 PTR data;
2234{
2235 struct bfd_link_info *info = (struct bfd_link_info *)data;
2236 struct elf64_hppa_link_hash_table *hppa_info;
2237 asection *sdlt, *sdltrel;
2238 struct elf_link_hash_entry *h = dyn_h->h;
2239
2240 hppa_info = elf64_hppa_hash_table (info);
2241
2242 sdlt = hppa_info->dlt_sec;
2243 sdltrel = hppa_info->dlt_rel_sec;
2244
2245 /* H/DYN_H may refer to a local variable and we know it's
2246 address, so there is no need to create a relocation. Just install
2247 the proper value into the DLT, note this shortcut can not be
2248 skipped when building a shared library. */
2249 if (! info->shared && h && dyn_h && dyn_h->want_dlt)
2250 {
2251 bfd_vma value;
2252
2253 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
fe8bc63d 2254 to point to the FPTR entry in the .opd section.
15bda425
JL
2255
2256 We include the OPD's output offset in this computation as
2257 we are referring to an absolute address in the resulting
2258 object file. */
2259 if (dyn_h->want_opd)
2260 {
2261 value = (dyn_h->opd_offset
2262 + hppa_info->opd_sec->output_offset
2263 + hppa_info->opd_sec->output_section->vma);
2264 }
2265 else
2266 {
2267 value = (h->root.u.def.value
2268 + h->root.u.def.section->output_offset);
2269
2270 if (h->root.u.def.section->output_section)
2271 value += h->root.u.def.section->output_section->vma;
2272 else
2273 value += h->root.u.def.section->vma;
2274 }
2275
2276 /* We do not need to include the output offset of the DLT section
2277 here because we are modifying the in-memory contents. */
2278 bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
2279 }
2280
2281 /* Create a relocation for the DLT entry assocated with this symbol.
2282 When building a shared library the symbol does not have to be dynamic. */
2283 if (dyn_h->want_dlt
2284 && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
2285 {
2286 Elf64_Internal_Rela rel;
2287 int dynindx;
2288
2289 /* We may need to do a relocation against a local symbol, in
2290 which case we have to look up it's dynamic symbol index off
2291 the local symbol hash table. */
2292 if (h && h->dynindx != -1)
2293 dynindx = h->dynindx;
2294 else
2295 dynindx
2296 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2297 dyn_h->sym_indx);
2298
15bda425
JL
2299 /* Create a dynamic relocation for this entry. Do include the output
2300 offset of the DLT entry since we need an absolute address in the
2301 resulting object file. */
2302 rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
2303 + sdlt->output_section->vma);
2304 if (h && h->type == STT_FUNC)
2305 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2306 else
2307 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2308 rel.r_addend = 0;
2309
2310 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel,
2311 (((Elf64_External_Rela *)
2312 sdltrel->contents)
2313 + sdltrel->reloc_count));
2314 sdltrel->reloc_count++;
2315 }
2316 return true;
2317}
2318
2319/* Finalize the dynamic relocations. Specifically the FPTR relocations
2320 for dynamic functions used to initialize static data. */
2321
2322static boolean
2323elf64_hppa_finalize_dynreloc (dyn_h, data)
2324 struct elf64_hppa_dyn_hash_entry *dyn_h;
2325 PTR data;
2326{
2327 struct bfd_link_info *info = (struct bfd_link_info *)data;
2328 struct elf64_hppa_link_hash_table *hppa_info;
2329 struct elf_link_hash_entry *h;
2330 int dynamic_symbol;
2331
2332 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
2333
2334 if (!dynamic_symbol && !info->shared)
2335 return true;
2336
2337 if (dyn_h->reloc_entries)
2338 {
2339 struct elf64_hppa_dyn_reloc_entry *rent;
2340 int dynindx;
2341
2342 hppa_info = elf64_hppa_hash_table (info);
2343 h = dyn_h->h;
2344
2345 /* We may need to do a relocation against a local symbol, in
2346 which case we have to look up it's dynamic symbol index off
2347 the local symbol hash table. */
2348 if (h && h->dynindx != -1)
2349 dynindx = h->dynindx;
2350 else
2351 dynindx
2352 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2353 dyn_h->sym_indx);
2354
2355 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
2356 {
2357 Elf64_Internal_Rela rel;
2358
2359 switch (rent->type)
2360 {
2361 case R_PARISC_FPTR64:
2362 /* Allocate one iff we are not building a shared library and
2363 !want_opd, which by this point will be true only if we're
2364 actually allocating one statically in the main executable. */
2365 if (!info->shared && dyn_h->want_opd)
2366 continue;
2367 break;
2368 }
2369
fe8bc63d 2370 /* Create a dynamic relocation for this entry.
15bda425
JL
2371
2372 We need the output offset for the reloc's section because
2373 we are creating an absolute address in the resulting object
2374 file. */
2375 rel.r_offset = (rent->offset + rent->sec->output_offset
2376 + rent->sec->output_section->vma);
2377
2378 /* An FPTR64 relocation implies that we took the address of
2379 a function and that the function has an entry in the .opd
2380 section. We want the FPTR64 relocation to reference the
2381 entry in .opd.
2382
2383 We could munge the symbol value in the dynamic symbol table
2384 (in fact we already do for functions with global scope) to point
2385 to the .opd entry. Then we could use that dynamic symbol in
2386 this relocation.
2387
2388 Or we could do something sensible, not munge the symbol's
2389 address and instead just use a different symbol to reference
2390 the .opd entry. At least that seems sensible until you
2391 realize there's no local dynamic symbols we can use for that
2392 purpose. Thus the hair in the check_relocs routine.
fe8bc63d 2393
15bda425
JL
2394 We use a section symbol recorded by check_relocs as the
2395 base symbol for the relocation. The addend is the difference
2396 between the section symbol and the address of the .opd entry. */
2397 if (info->shared && rent->type == R_PARISC_FPTR64)
2398 {
2399 bfd_vma value, value2;
15bda425
JL
2400
2401 /* First compute the address of the opd entry for this symbol. */
2402 value = (dyn_h->opd_offset
2403 + hppa_info->opd_sec->output_section->vma
2404 + hppa_info->opd_sec->output_offset);
2405
2406 /* Compute the value of the start of the section with
2407 the relocation. */
2408 value2 = (rent->sec->output_section->vma
2409 + rent->sec->output_offset);
2410
2411 /* Compute the difference between the start of the section
2412 with the relocation and the opd entry. */
2413 value -= value2;
fe8bc63d 2414
15bda425
JL
2415 /* The result becomes the addend of the relocation. */
2416 rel.r_addend = value;
2417
2418 /* The section symbol becomes the symbol for the dynamic
2419 relocation. */
2420 dynindx
2421 = _bfd_elf_link_lookup_local_dynindx (info,
2422 rent->sec->owner,
2423 rent->sec_symndx);
2424 }
2425 else
2426 rel.r_addend = rent->addend;
2427
2428 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2429
2430 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2431 &rel,
2432 (((Elf64_External_Rela *)
2433 hppa_info->other_rel_sec->contents)
2434 + hppa_info->other_rel_sec->reloc_count));
2435 hppa_info->other_rel_sec->reloc_count++;
2436 }
2437 }
2438
2439 return true;
2440}
2441
2442/* Finish up the dynamic sections. */
2443
2444static boolean
2445elf64_hppa_finish_dynamic_sections (output_bfd, info)
2446 bfd *output_bfd;
2447 struct bfd_link_info *info;
2448{
2449 bfd *dynobj;
2450 asection *sdyn;
2451 struct elf64_hppa_link_hash_table *hppa_info;
2452
2453 hppa_info = elf64_hppa_hash_table (info);
2454
2455 /* Finalize the contents of the .opd section. */
2456 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2457 elf64_hppa_finalize_opd,
2458 info);
2459
2460 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2461 elf64_hppa_finalize_dynreloc,
2462 info);
2463
2464 /* Finalize the contents of the .dlt section. */
2465 dynobj = elf_hash_table (info)->dynobj;
2466 /* Finalize the contents of the .dlt section. */
2467 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2468 elf64_hppa_finalize_dlt,
2469 info);
2470
15bda425
JL
2471 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2472
2473 if (elf_hash_table (info)->dynamic_sections_created)
2474 {
2475 Elf64_External_Dyn *dyncon, *dynconend;
15bda425
JL
2476
2477 BFD_ASSERT (sdyn != NULL);
2478
2479 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2480 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2481 for (; dyncon < dynconend; dyncon++)
2482 {
2483 Elf_Internal_Dyn dyn;
2484 asection *s;
2485
2486 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2487
2488 switch (dyn.d_tag)
2489 {
2490 default:
2491 break;
2492
2493 case DT_HP_LOAD_MAP:
2494 /* Compute the absolute address of 16byte scratchpad area
2495 for the dynamic linker.
2496
2497 By convention the linker script will allocate the scratchpad
2498 area at the start of the .data section. So all we have to
2499 to is find the start of the .data section. */
2500 s = bfd_get_section_by_name (output_bfd, ".data");
2501 dyn.d_un.d_ptr = s->vma;
2502 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2503 break;
2504
2505 case DT_PLTGOT:
2506 /* HP's use PLTGOT to set the GOT register. */
2507 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2508 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2509 break;
2510
2511 case DT_JMPREL:
2512 s = hppa_info->plt_rel_sec;
2513 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2514 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2515 break;
2516
2517 case DT_PLTRELSZ:
2518 s = hppa_info->plt_rel_sec;
2519 dyn.d_un.d_val = s->_raw_size;
2520 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2521 break;
2522
2523 case DT_RELA:
2524 s = hppa_info->other_rel_sec;
2525 if (! s)
2526 s = hppa_info->dlt_rel_sec;
2527 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2528 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2529 break;
2530
2531 case DT_RELASZ:
2532 s = hppa_info->other_rel_sec;
2533 dyn.d_un.d_val = s->_raw_size;
2534 s = hppa_info->dlt_rel_sec;
2535 dyn.d_un.d_val += s->_raw_size;
2536 s = hppa_info->opd_rel_sec;
2537 dyn.d_un.d_val += s->_raw_size;
2538 /* There is some question about whether or not the size of
2539 the PLT relocs should be included here. HP's tools do
2540 it, so we'll emulate them. */
2541 s = hppa_info->plt_rel_sec;
2542 dyn.d_un.d_val += s->_raw_size;
2543 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2544 break;
2545
2546 }
2547 }
2548 }
2549
2550 return true;
2551}
2552
15bda425
JL
2553/* Return the number of additional phdrs we will need.
2554
2555 The generic ELF code only creates PT_PHDRs for executables. The HP
fe8bc63d 2556 dynamic linker requires PT_PHDRs for dynamic libraries too.
15bda425
JL
2557
2558 This routine indicates that the backend needs one additional program
2559 header for that case.
2560
2561 Note we do not have access to the link info structure here, so we have
2562 to guess whether or not we are building a shared library based on the
2563 existence of a .interp section. */
2564
2565static int
2566elf64_hppa_additional_program_headers (abfd)
2567 bfd *abfd;
2568{
2569 asection *s;
2570
2571 /* If we are creating a shared library, then we have to create a
2572 PT_PHDR segment. HP's dynamic linker chokes without it. */
2573 s = bfd_get_section_by_name (abfd, ".interp");
2574 if (! s)
2575 return 1;
2576 return 0;
2577}
2578
2579/* Allocate and initialize any program headers required by this
2580 specific backend.
2581
2582 The generic ELF code only creates PT_PHDRs for executables. The HP
fe8bc63d 2583 dynamic linker requires PT_PHDRs for dynamic libraries too.
15bda425
JL
2584
2585 This allocates the PT_PHDR and initializes it in a manner suitable
fe8bc63d 2586 for the HP linker.
15bda425
JL
2587
2588 Note we do not have access to the link info structure here, so we have
2589 to guess whether or not we are building a shared library based on the
2590 existence of a .interp section. */
2591
2592static boolean
2593elf64_hppa_modify_segment_map (abfd)
2594 bfd *abfd;
2595{
edd21aca 2596 struct elf_segment_map *m;
15bda425
JL
2597 asection *s;
2598
2599 s = bfd_get_section_by_name (abfd, ".interp");
2600 if (! s)
2601 {
2602 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2603 if (m->p_type == PT_PHDR)
2604 break;
2605 if (m == NULL)
2606 {
dc810e39
AM
2607 m = ((struct elf_segment_map *)
2608 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
15bda425
JL
2609 if (m == NULL)
2610 return false;
2611
2612 m->p_type = PT_PHDR;
2613 m->p_flags = PF_R | PF_X;
2614 m->p_flags_valid = 1;
2615 m->p_paddr_valid = 1;
2616 m->includes_phdrs = 1;
2617
2618 m->next = elf_tdata (abfd)->segment_map;
2619 elf_tdata (abfd)->segment_map = m;
2620 }
2621 }
2622
2623 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2624 if (m->p_type == PT_LOAD)
2625 {
0ba2a60e 2626 unsigned int i;
15bda425
JL
2627
2628 for (i = 0; i < m->count; i++)
2629 {
2630 /* The code "hint" is not really a hint. It is a requirement
2631 for certain versions of the HP dynamic linker. Worse yet,
2632 it must be set even if the shared library does not have
2633 any code in its "text" segment (thus the check for .hash
2634 to catch this situation). */
2635 if (m->sections[i]->flags & SEC_CODE
2636 || (strcmp (m->sections[i]->name, ".hash") == 0))
2637 m->p_flags |= (PF_X | PF_HP_CODE);
2638 }
2639 }
2640
2641 return true;
2642}
2643
3fab46d0
AM
2644/* Called when writing out an object file to decide the type of a
2645 symbol. */
2646static int
2647elf64_hppa_elf_get_symbol_type (elf_sym, type)
2648 Elf_Internal_Sym *elf_sym;
2649 int type;
2650{
2651 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2652 return STT_PARISC_MILLI;
2653 else
2654 return type;
2655}
2656
15bda425
JL
2657/* The hash bucket size is the standard one, namely 4. */
2658
2659const struct elf_size_info hppa64_elf_size_info =
2660{
2661 sizeof (Elf64_External_Ehdr),
2662 sizeof (Elf64_External_Phdr),
2663 sizeof (Elf64_External_Shdr),
2664 sizeof (Elf64_External_Rel),
2665 sizeof (Elf64_External_Rela),
2666 sizeof (Elf64_External_Sym),
2667 sizeof (Elf64_External_Dyn),
2668 sizeof (Elf_External_Note),
2669 4,
2670 1,
2671 64, 8,
2672 ELFCLASS64, EV_CURRENT,
2673 bfd_elf64_write_out_phdrs,
2674 bfd_elf64_write_shdrs_and_ehdr,
2675 bfd_elf64_write_relocs,
2676 bfd_elf64_swap_symbol_out,
2677 bfd_elf64_slurp_reloc_table,
2678 bfd_elf64_slurp_symbol_table,
2679 bfd_elf64_swap_dyn_in,
2680 bfd_elf64_swap_dyn_out,
2681 NULL,
2682 NULL,
2683 NULL,
2684 NULL
2685};
2686
2687#define TARGET_BIG_SYM bfd_elf64_hppa_vec
2688#define TARGET_BIG_NAME "elf64-hppa"
2689#define ELF_ARCH bfd_arch_hppa
2690#define ELF_MACHINE_CODE EM_PARISC
2691/* This is not strictly correct. The maximum page size for PA2.0 is
2692 64M. But everything still uses 4k. */
2693#define ELF_MAXPAGESIZE 0x1000
2694#define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2695#define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
2696#define elf_info_to_howto elf_hppa_info_to_howto
2697#define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
2698
2699#define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
2700#define elf_backend_object_p elf64_hppa_object_p
2701#define elf_backend_final_write_processing \
2702 elf_hppa_final_write_processing
99c79b2e 2703#define elf_backend_fake_sections elf_hppa_fake_sections
15bda425
JL
2704#define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
2705
2706#define elf_backend_relocate_section elf_hppa_relocate_section
2707
2708#define bfd_elf64_bfd_final_link elf_hppa_final_link
2709
2710#define elf_backend_create_dynamic_sections \
2711 elf64_hppa_create_dynamic_sections
2712#define elf_backend_post_process_headers elf64_hppa_post_process_headers
2713
2714#define elf_backend_adjust_dynamic_symbol \
2715 elf64_hppa_adjust_dynamic_symbol
2716
2717#define elf_backend_size_dynamic_sections \
2718 elf64_hppa_size_dynamic_sections
2719
2720#define elf_backend_finish_dynamic_symbol \
2721 elf64_hppa_finish_dynamic_symbol
2722#define elf_backend_finish_dynamic_sections \
2723 elf64_hppa_finish_dynamic_sections
2724
2725/* Stuff for the BFD linker: */
2726#define bfd_elf64_bfd_link_hash_table_create \
2727 elf64_hppa_hash_table_create
2728
2729#define elf_backend_check_relocs \
2730 elf64_hppa_check_relocs
2731
2732#define elf_backend_size_info \
2733 hppa64_elf_size_info
2734
2735#define elf_backend_additional_program_headers \
2736 elf64_hppa_additional_program_headers
2737
2738#define elf_backend_modify_segment_map \
2739 elf64_hppa_modify_segment_map
2740
2741#define elf_backend_link_output_symbol_hook \
2742 elf64_hppa_link_output_symbol_hook
2743
15bda425
JL
2744#define elf_backend_want_got_plt 0
2745#define elf_backend_plt_readonly 0
2746#define elf_backend_want_plt_sym 0
2747#define elf_backend_got_header_size 0
2748#define elf_backend_plt_header_size 0
2749#define elf_backend_type_change_ok true
3fab46d0 2750#define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
15bda425
JL
2751
2752#include "elf64-target.h"
d952f17a
AM
2753
2754#undef TARGET_BIG_SYM
2755#define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
2756#undef TARGET_BIG_NAME
2757#define TARGET_BIG_NAME "elf64-hppa-linux"
2758
2759#define INCLUDED_TARGET_FILE 1
2760#include "elf64-target.h"
This page took 0.214783 seconds and 4 git commands to generate.