*** empty log message ***
[deliverable/binutils-gdb.git] / bfd / elf64-hppa.c
CommitLineData
b352eebf 1/* Support for HPPA 64-bit ELF
336549c1 2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005
5a580b3a 3 Free Software Foundation, Inc.
15bda425 4
ae9a127f 5 This file is part of BFD, the Binary File Descriptor library.
15bda425 6
ae9a127f
NC
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
15bda425 11
ae9a127f
NC
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
15bda425 16
ae9a127f
NC
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
3e110533 19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
15bda425 20
3ef20aaa 21#include "alloca-conf.h"
15bda425
JL
22#include "bfd.h"
23#include "sysdep.h"
24#include "libbfd.h"
25#include "elf-bfd.h"
26#include "elf/hppa.h"
27#include "libhppa.h"
28#include "elf64-hppa.h"
29#define ARCH_SIZE 64
30
31#define PLT_ENTRY_SIZE 0x10
32#define DLT_ENTRY_SIZE 0x8
33#define OPD_ENTRY_SIZE 0x20
fe8bc63d 34
15bda425
JL
35#define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
36
37/* The stub is supposed to load the target address and target's DP
38 value out of the PLT, then do an external branch to the target
39 address.
40
41 LDD PLTOFF(%r27),%r1
42 BVE (%r1)
43 LDD PLTOFF+8(%r27),%r27
44
45 Note that we must use the LDD with a 14 bit displacement, not the one
46 with a 5 bit displacement. */
47static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
48 0x53, 0x7b, 0x00, 0x00 };
49
50struct elf64_hppa_dyn_hash_entry
51{
52 struct bfd_hash_entry root;
53
54 /* Offsets for this symbol in various linker sections. */
55 bfd_vma dlt_offset;
56 bfd_vma plt_offset;
57 bfd_vma opd_offset;
58 bfd_vma stub_offset;
59
edd21aca 60 /* The symbol table entry, if any, that this was derived from. */
15bda425
JL
61 struct elf_link_hash_entry *h;
62
63 /* The index of the (possibly local) symbol in the input bfd and its
64 associated BFD. Needed so that we can have relocs against local
65 symbols in shared libraries. */
dc810e39 66 long sym_indx;
15bda425
JL
67 bfd *owner;
68
69 /* Dynamic symbols may need to have two different values. One for
70 the dynamic symbol table, one for the normal symbol table.
71
72 In such cases we store the symbol's real value and section
73 index here so we can restore the real value before we write
74 the normal symbol table. */
75 bfd_vma st_value;
76 int st_shndx;
77
78 /* Used to count non-got, non-plt relocations for delayed sizing
79 of relocation sections. */
80 struct elf64_hppa_dyn_reloc_entry
81 {
82 /* Next relocation in the chain. */
83 struct elf64_hppa_dyn_reloc_entry *next;
84
85 /* The type of the relocation. */
86 int type;
87
88 /* The input section of the relocation. */
89 asection *sec;
90
91 /* The index of the section symbol for the input section of
92 the relocation. Only needed when building shared libraries. */
93 int sec_symndx;
94
95 /* The offset within the input section of the relocation. */
96 bfd_vma offset;
97
98 /* The addend for the relocation. */
99 bfd_vma addend;
100
101 } *reloc_entries;
102
103 /* Nonzero if this symbol needs an entry in one of the linker
104 sections. */
105 unsigned want_dlt;
106 unsigned want_plt;
107 unsigned want_opd;
108 unsigned want_stub;
109};
110
111struct elf64_hppa_dyn_hash_table
112{
113 struct bfd_hash_table root;
114};
115
116struct elf64_hppa_link_hash_table
117{
118 struct elf_link_hash_table root;
119
120 /* Shortcuts to get to the various linker defined sections. */
121 asection *dlt_sec;
122 asection *dlt_rel_sec;
123 asection *plt_sec;
124 asection *plt_rel_sec;
125 asection *opd_sec;
126 asection *opd_rel_sec;
127 asection *other_rel_sec;
128
129 /* Offset of __gp within .plt section. When the PLT gets large we want
130 to slide __gp into the PLT section so that we can continue to use
131 single DP relative instructions to load values out of the PLT. */
132 bfd_vma gp_offset;
133
134 /* Note this is not strictly correct. We should create a stub section for
135 each input section with calls. The stub section should be placed before
136 the section with the call. */
137 asection *stub_sec;
138
139 bfd_vma text_segment_base;
140 bfd_vma data_segment_base;
141
142 struct elf64_hppa_dyn_hash_table dyn_hash_table;
143
144 /* We build tables to map from an input section back to its
145 symbol index. This is the BFD for which we currently have
146 a map. */
147 bfd *section_syms_bfd;
148
149 /* Array of symbol numbers for each input section attached to the
150 current BFD. */
151 int *section_syms;
152};
153
154#define elf64_hppa_hash_table(p) \
155 ((struct elf64_hppa_link_hash_table *) ((p)->hash))
156
157typedef struct bfd_hash_entry *(*new_hash_entry_func)
158 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
159
b34976b6 160static bfd_boolean elf64_hppa_dyn_hash_table_init
15bda425
JL
161 PARAMS ((struct elf64_hppa_dyn_hash_table *ht, bfd *abfd,
162 new_hash_entry_func new));
163static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
164 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
165 const char *string));
166static struct bfd_link_hash_table *elf64_hppa_hash_table_create
167 PARAMS ((bfd *abfd));
168static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
169 PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
b34976b6 170 bfd_boolean create, bfd_boolean copy));
15bda425
JL
171static void elf64_hppa_dyn_hash_traverse
172 PARAMS ((struct elf64_hppa_dyn_hash_table *table,
b34976b6 173 bfd_boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR),
15bda425
JL
174 PTR info));
175
176static const char *get_dyn_name
d63b5ed9 177 PARAMS ((bfd *, struct elf_link_hash_entry *,
0ba2a60e 178 const Elf_Internal_Rela *, char **, size_t *));
15bda425 179
15bda425
JL
180/* This must follow the definitions of the various derived linker
181 hash tables and shared functions. */
182#include "elf-hppa.h"
183
b34976b6 184static bfd_boolean elf64_hppa_object_p
15bda425
JL
185 PARAMS ((bfd *));
186
15bda425
JL
187static void elf64_hppa_post_process_headers
188 PARAMS ((bfd *, struct bfd_link_info *));
189
b34976b6 190static bfd_boolean elf64_hppa_create_dynamic_sections
15bda425
JL
191 PARAMS ((bfd *, struct bfd_link_info *));
192
b34976b6 193static bfd_boolean elf64_hppa_adjust_dynamic_symbol
15bda425
JL
194 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
195
b34976b6 196static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
47b7c2db
AM
197 PARAMS ((struct elf_link_hash_entry *, PTR));
198
b34976b6 199static bfd_boolean elf64_hppa_size_dynamic_sections
15bda425
JL
200 PARAMS ((bfd *, struct bfd_link_info *));
201
b34976b6 202static bfd_boolean elf64_hppa_link_output_symbol_hook
754021d0
AM
203 PARAMS ((struct bfd_link_info *, const char *, Elf_Internal_Sym *,
204 asection *, struct elf_link_hash_entry *));
99c79b2e 205
b34976b6 206static bfd_boolean elf64_hppa_finish_dynamic_symbol
15bda425
JL
207 PARAMS ((bfd *, struct bfd_link_info *,
208 struct elf_link_hash_entry *, Elf_Internal_Sym *));
fe8bc63d 209
b34976b6
AM
210static int elf64_hppa_additional_program_headers
211 PARAMS ((bfd *));
99c79b2e 212
b34976b6 213static bfd_boolean elf64_hppa_modify_segment_map
c84fca4d 214 PARAMS ((bfd *, struct bfd_link_info *));
99c79b2e 215
5ac81c74
JL
216static enum elf_reloc_type_class elf64_hppa_reloc_type_class
217 PARAMS ((const Elf_Internal_Rela *));
218
b34976b6 219static bfd_boolean elf64_hppa_finish_dynamic_sections
15bda425
JL
220 PARAMS ((bfd *, struct bfd_link_info *));
221
b34976b6 222static bfd_boolean elf64_hppa_check_relocs
15bda425
JL
223 PARAMS ((bfd *, struct bfd_link_info *,
224 asection *, const Elf_Internal_Rela *));
225
b34976b6 226static bfd_boolean elf64_hppa_dynamic_symbol_p
15bda425
JL
227 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
228
b34976b6 229static bfd_boolean elf64_hppa_mark_exported_functions
15bda425
JL
230 PARAMS ((struct elf_link_hash_entry *, PTR));
231
b34976b6 232static bfd_boolean elf64_hppa_finalize_opd
15bda425
JL
233 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
234
b34976b6 235static bfd_boolean elf64_hppa_finalize_dlt
15bda425
JL
236 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
237
b34976b6 238static bfd_boolean allocate_global_data_dlt
15bda425
JL
239 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
240
b34976b6 241static bfd_boolean allocate_global_data_plt
15bda425
JL
242 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
243
b34976b6 244static bfd_boolean allocate_global_data_stub
15bda425
JL
245 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
246
b34976b6 247static bfd_boolean allocate_global_data_opd
15bda425
JL
248 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
249
b34976b6 250static bfd_boolean get_reloc_section
15bda425
JL
251 PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
252
b34976b6 253static bfd_boolean count_dyn_reloc
15bda425
JL
254 PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
255 int, asection *, int, bfd_vma, bfd_vma));
256
b34976b6 257static bfd_boolean allocate_dynrel_entries
15bda425
JL
258 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
259
b34976b6 260static bfd_boolean elf64_hppa_finalize_dynreloc
15bda425
JL
261 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
262
b34976b6 263static bfd_boolean get_opd
15bda425
JL
264 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
265
b34976b6 266static bfd_boolean get_plt
15bda425
JL
267 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
268
b34976b6 269static bfd_boolean get_dlt
15bda425
JL
270 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
271
b34976b6 272static bfd_boolean get_stub
15bda425
JL
273 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
274
3fab46d0
AM
275static int elf64_hppa_elf_get_symbol_type
276 PARAMS ((Elf_Internal_Sym *, int));
277
b34976b6 278static bfd_boolean
15bda425
JL
279elf64_hppa_dyn_hash_table_init (ht, abfd, new)
280 struct elf64_hppa_dyn_hash_table *ht;
edd21aca 281 bfd *abfd ATTRIBUTE_UNUSED;
15bda425
JL
282 new_hash_entry_func new;
283{
fe8bc63d 284 memset (ht, 0, sizeof (*ht));
15bda425
JL
285 return bfd_hash_table_init (&ht->root, new);
286}
287
288static struct bfd_hash_entry*
289elf64_hppa_new_dyn_hash_entry (entry, table, string)
290 struct bfd_hash_entry *entry;
291 struct bfd_hash_table *table;
292 const char *string;
293{
294 struct elf64_hppa_dyn_hash_entry *ret;
295 ret = (struct elf64_hppa_dyn_hash_entry *) entry;
296
297 /* Allocate the structure if it has not already been allocated by a
298 subclass. */
299 if (!ret)
300 ret = bfd_hash_allocate (table, sizeof (*ret));
301
302 if (!ret)
303 return 0;
304
15bda425
JL
305 /* Call the allocation method of the superclass. */
306 ret = ((struct elf64_hppa_dyn_hash_entry *)
307 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
308
336549c1
AM
309 /* Initialize our local data. All zeros. */
310 memset (&ret->dlt_offset, 0,
311 (sizeof (struct elf64_hppa_dyn_hash_entry)
312 - offsetof (struct elf64_hppa_dyn_hash_entry, dlt_offset)));
313
15bda425
JL
314 return &ret->root;
315}
316
317/* Create the derived linker hash table. The PA64 ELF port uses this
318 derived hash table to keep information specific to the PA ElF
319 linker (without using static variables). */
320
321static struct bfd_link_hash_table*
322elf64_hppa_hash_table_create (abfd)
323 bfd *abfd;
324{
325 struct elf64_hppa_link_hash_table *ret;
326
dc810e39 327 ret = bfd_zalloc (abfd, (bfd_size_type) sizeof (*ret));
15bda425
JL
328 if (!ret)
329 return 0;
330 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
331 _bfd_elf_link_hash_newfunc))
332 {
333 bfd_release (abfd, ret);
334 return 0;
335 }
336
337 if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
338 elf64_hppa_new_dyn_hash_entry))
339 return 0;
340 return &ret->root.root;
341}
342
343/* Look up an entry in a PA64 ELF linker hash table. */
344
345static struct elf64_hppa_dyn_hash_entry *
346elf64_hppa_dyn_hash_lookup(table, string, create, copy)
347 struct elf64_hppa_dyn_hash_table *table;
348 const char *string;
b34976b6 349 bfd_boolean create, copy;
15bda425
JL
350{
351 return ((struct elf64_hppa_dyn_hash_entry *)
352 bfd_hash_lookup (&table->root, string, create, copy));
353}
354
355/* Traverse a PA64 ELF linker hash table. */
356
357static void
358elf64_hppa_dyn_hash_traverse (table, func, info)
359 struct elf64_hppa_dyn_hash_table *table;
b34976b6 360 bfd_boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
15bda425
JL
361 PTR info;
362{
363 (bfd_hash_traverse
364 (&table->root,
b34976b6 365 (bfd_boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
15bda425
JL
366 info));
367}
368\f
369/* Return nonzero if ABFD represents a PA2.0 ELF64 file.
370
371 Additionally we set the default architecture and machine. */
b34976b6 372static bfd_boolean
15bda425
JL
373elf64_hppa_object_p (abfd)
374 bfd *abfd;
375{
24a5e751
L
376 Elf_Internal_Ehdr * i_ehdrp;
377 unsigned int flags;
d9634ba1 378
24a5e751
L
379 i_ehdrp = elf_elfheader (abfd);
380 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
381 {
6c21aa76
NC
382 /* GCC on hppa-linux produces binaries with OSABI=Linux,
383 but the kernel produces corefiles with OSABI=SysV. */
d97a8924
DA
384 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX
385 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
b34976b6 386 return FALSE;
24a5e751
L
387 }
388 else
389 {
d97a8924
DA
390 /* HPUX produces binaries with OSABI=HPUX,
391 but the kernel produces corefiles with OSABI=SysV. */
392 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX
393 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
b34976b6 394 return FALSE;
24a5e751
L
395 }
396
397 flags = i_ehdrp->e_flags;
d9634ba1
AM
398 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
399 {
400 case EFA_PARISC_1_0:
401 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
402 case EFA_PARISC_1_1:
403 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
404 case EFA_PARISC_2_0:
d97a8924
DA
405 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
406 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
407 else
408 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
d9634ba1
AM
409 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
410 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
411 }
412 /* Don't be fussy. */
b34976b6 413 return TRUE;
15bda425
JL
414}
415
416/* Given section type (hdr->sh_type), return a boolean indicating
417 whether or not the section is an elf64-hppa specific section. */
b34976b6 418static bfd_boolean
6dc132d9
L
419elf64_hppa_section_from_shdr (bfd *abfd,
420 Elf_Internal_Shdr *hdr,
421 const char *name,
422 int shindex)
15bda425
JL
423{
424 asection *newsect;
425
426 switch (hdr->sh_type)
427 {
428 case SHT_PARISC_EXT:
429 if (strcmp (name, ".PARISC.archext") != 0)
b34976b6 430 return FALSE;
15bda425
JL
431 break;
432 case SHT_PARISC_UNWIND:
433 if (strcmp (name, ".PARISC.unwind") != 0)
b34976b6 434 return FALSE;
15bda425
JL
435 break;
436 case SHT_PARISC_DOC:
437 case SHT_PARISC_ANNOT:
438 default:
b34976b6 439 return FALSE;
15bda425
JL
440 }
441
6dc132d9 442 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 443 return FALSE;
15bda425
JL
444 newsect = hdr->bfd_section;
445
b34976b6 446 return TRUE;
15bda425
JL
447}
448
15bda425 449/* Construct a string for use in the elf64_hppa_dyn_hash_table. The
fe8bc63d 450 name describes what was once potentially anonymous memory. We
15bda425
JL
451 allocate memory as necessary, possibly reusing PBUF/PLEN. */
452
453static const char *
d63b5ed9
DA
454get_dyn_name (abfd, h, rel, pbuf, plen)
455 bfd *abfd;
15bda425
JL
456 struct elf_link_hash_entry *h;
457 const Elf_Internal_Rela *rel;
458 char **pbuf;
459 size_t *plen;
460{
d63b5ed9 461 asection *sec = abfd->sections;
15bda425
JL
462 size_t nlen, tlen;
463 char *buf;
464 size_t len;
465
466 if (h && rel->r_addend == 0)
467 return h->root.root.string;
468
469 if (h)
470 nlen = strlen (h->root.root.string);
471 else
0ba2a60e
AM
472 nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
473 tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
15bda425
JL
474
475 len = *plen;
476 buf = *pbuf;
477 if (len < tlen)
478 {
479 if (buf)
480 free (buf);
481 *pbuf = buf = malloc (tlen);
482 *plen = len = tlen;
483 if (!buf)
484 return NULL;
485 }
486
487 if (h)
488 {
489 memcpy (buf, h->root.root.string, nlen);
0ba2a60e 490 buf[nlen++] = '+';
15bda425
JL
491 sprintf_vma (buf + nlen, rel->r_addend);
492 }
493 else
494 {
0ba2a60e
AM
495 nlen = sprintf (buf, "%x:%lx",
496 sec->id & 0xffffffff,
497 (long) ELF64_R_SYM (rel->r_info));
15bda425
JL
498 if (rel->r_addend)
499 {
500 buf[nlen++] = '+';
501 sprintf_vma (buf + nlen, rel->r_addend);
502 }
503 }
504
505 return buf;
506}
507
508/* SEC is a section containing relocs for an input BFD when linking; return
509 a suitable section for holding relocs in the output BFD for a link. */
510
b34976b6 511static bfd_boolean
15bda425
JL
512get_reloc_section (abfd, hppa_info, sec)
513 bfd *abfd;
514 struct elf64_hppa_link_hash_table *hppa_info;
515 asection *sec;
516{
517 const char *srel_name;
518 asection *srel;
519 bfd *dynobj;
520
521 srel_name = (bfd_elf_string_from_elf_section
522 (abfd, elf_elfheader(abfd)->e_shstrndx,
523 elf_section_data(sec)->rel_hdr.sh_name));
524 if (srel_name == NULL)
b34976b6 525 return FALSE;
15bda425
JL
526
527 BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0
528 && strcmp (bfd_get_section_name (abfd, sec),
529 srel_name+5) == 0)
530 || (strncmp (srel_name, ".rel", 4) == 0
531 && strcmp (bfd_get_section_name (abfd, sec),
532 srel_name+4) == 0));
533
534 dynobj = hppa_info->root.dynobj;
535 if (!dynobj)
536 hppa_info->root.dynobj = dynobj = abfd;
537
538 srel = bfd_get_section_by_name (dynobj, srel_name);
539 if (srel == NULL)
540 {
3496cb2a
L
541 srel = bfd_make_section_with_flags (dynobj, srel_name,
542 (SEC_ALLOC
543 | SEC_LOAD
544 | SEC_HAS_CONTENTS
545 | SEC_IN_MEMORY
546 | SEC_LINKER_CREATED
547 | SEC_READONLY));
15bda425 548 if (srel == NULL
15bda425 549 || !bfd_set_section_alignment (dynobj, srel, 3))
b34976b6 550 return FALSE;
15bda425
JL
551 }
552
553 hppa_info->other_rel_sec = srel;
b34976b6 554 return TRUE;
15bda425
JL
555}
556
fe8bc63d 557/* Add a new entry to the list of dynamic relocations against DYN_H.
15bda425
JL
558
559 We use this to keep a record of all the FPTR relocations against a
560 particular symbol so that we can create FPTR relocations in the
561 output file. */
562
b34976b6 563static bfd_boolean
15bda425
JL
564count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
565 bfd *abfd;
566 struct elf64_hppa_dyn_hash_entry *dyn_h;
567 int type;
568 asection *sec;
569 int sec_symndx;
570 bfd_vma offset;
571 bfd_vma addend;
572{
573 struct elf64_hppa_dyn_reloc_entry *rent;
574
575 rent = (struct elf64_hppa_dyn_reloc_entry *)
dc810e39 576 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
15bda425 577 if (!rent)
b34976b6 578 return FALSE;
15bda425
JL
579
580 rent->next = dyn_h->reloc_entries;
581 rent->type = type;
582 rent->sec = sec;
583 rent->sec_symndx = sec_symndx;
584 rent->offset = offset;
585 rent->addend = addend;
586 dyn_h->reloc_entries = rent;
587
b34976b6 588 return TRUE;
15bda425
JL
589}
590
591/* Scan the RELOCS and record the type of dynamic entries that each
592 referenced symbol needs. */
593
b34976b6 594static bfd_boolean
15bda425
JL
595elf64_hppa_check_relocs (abfd, info, sec, relocs)
596 bfd *abfd;
597 struct bfd_link_info *info;
598 asection *sec;
599 const Elf_Internal_Rela *relocs;
600{
601 struct elf64_hppa_link_hash_table *hppa_info;
602 const Elf_Internal_Rela *relend;
603 Elf_Internal_Shdr *symtab_hdr;
604 const Elf_Internal_Rela *rel;
605 asection *dlt, *plt, *stubs;
606 char *buf;
607 size_t buf_len;
608 int sec_symndx;
609
1049f94e 610 if (info->relocatable)
b34976b6 611 return TRUE;
15bda425
JL
612
613 /* If this is the first dynamic object found in the link, create
614 the special sections required for dynamic linking. */
615 if (! elf_hash_table (info)->dynamic_sections_created)
616 {
45d6a902 617 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
b34976b6 618 return FALSE;
15bda425
JL
619 }
620
621 hppa_info = elf64_hppa_hash_table (info);
622 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
623
624 /* If necessary, build a new table holding section symbols indices
6cdc0ccc 625 for this BFD. */
fe8bc63d 626
15bda425
JL
627 if (info->shared && hppa_info->section_syms_bfd != abfd)
628 {
832d951b 629 unsigned long i;
9ad5cbcf 630 unsigned int highest_shndx;
6cdc0ccc
AM
631 Elf_Internal_Sym *local_syms = NULL;
632 Elf_Internal_Sym *isym, *isymend;
dc810e39 633 bfd_size_type amt;
15bda425
JL
634
635 /* We're done with the old cache of section index to section symbol
636 index information. Free it.
637
638 ?!? Note we leak the last section_syms array. Presumably we
639 could free it in one of the later routines in this file. */
640 if (hppa_info->section_syms)
641 free (hppa_info->section_syms);
642
6cdc0ccc
AM
643 /* Read this BFD's local symbols. */
644 if (symtab_hdr->sh_info != 0)
47b7c2db 645 {
6cdc0ccc
AM
646 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
647 if (local_syms == NULL)
648 local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
649 symtab_hdr->sh_info, 0,
650 NULL, NULL, NULL);
651 if (local_syms == NULL)
b34976b6 652 return FALSE;
9ad5cbcf
AM
653 }
654
6cdc0ccc 655 /* Record the highest section index referenced by the local symbols. */
15bda425 656 highest_shndx = 0;
6cdc0ccc
AM
657 isymend = local_syms + symtab_hdr->sh_info;
658 for (isym = local_syms; isym < isymend; isym++)
15bda425 659 {
15bda425
JL
660 if (isym->st_shndx > highest_shndx)
661 highest_shndx = isym->st_shndx;
662 }
663
15bda425
JL
664 /* Allocate an array to hold the section index to section symbol index
665 mapping. Bump by one since we start counting at zero. */
666 highest_shndx++;
dc810e39
AM
667 amt = highest_shndx;
668 amt *= sizeof (int);
669 hppa_info->section_syms = (int *) bfd_malloc (amt);
15bda425
JL
670
671 /* Now walk the local symbols again. If we find a section symbol,
672 record the index of the symbol into the section_syms array. */
6cdc0ccc 673 for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
15bda425
JL
674 {
675 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
676 hppa_info->section_syms[isym->st_shndx] = i;
677 }
678
6cdc0ccc
AM
679 /* We are finished with the local symbols. */
680 if (local_syms != NULL
681 && symtab_hdr->contents != (unsigned char *) local_syms)
682 {
683 if (! info->keep_memory)
684 free (local_syms);
685 else
686 {
687 /* Cache the symbols for elf_link_input_bfd. */
688 symtab_hdr->contents = (unsigned char *) local_syms;
689 }
690 }
15bda425
JL
691
692 /* Record which BFD we built the section_syms mapping for. */
693 hppa_info->section_syms_bfd = abfd;
694 }
695
696 /* Record the symbol index for this input section. We may need it for
697 relocations when building shared libraries. When not building shared
698 libraries this value is never really used, but assign it to zero to
699 prevent out of bounds memory accesses in other routines. */
700 if (info->shared)
701 {
702 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
703
704 /* If we did not find a section symbol for this section, then
705 something went terribly wrong above. */
706 if (sec_symndx == -1)
b34976b6 707 return FALSE;
15bda425
JL
708
709 sec_symndx = hppa_info->section_syms[sec_symndx];
710 }
711 else
712 sec_symndx = 0;
fe8bc63d 713
15bda425
JL
714 dlt = plt = stubs = NULL;
715 buf = NULL;
716 buf_len = 0;
717
718 relend = relocs + sec->reloc_count;
719 for (rel = relocs; rel < relend; ++rel)
720 {
560e09e9
NC
721 enum
722 {
723 NEED_DLT = 1,
724 NEED_PLT = 2,
725 NEED_STUB = 4,
726 NEED_OPD = 8,
727 NEED_DYNREL = 16,
728 };
15bda425
JL
729
730 struct elf_link_hash_entry *h = NULL;
731 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
732 struct elf64_hppa_dyn_hash_entry *dyn_h;
733 int need_entry;
734 const char *addr_name;
b34976b6 735 bfd_boolean maybe_dynamic;
15bda425
JL
736 int dynrel_type = R_PARISC_NONE;
737 static reloc_howto_type *howto;
738
739 if (r_symndx >= symtab_hdr->sh_info)
740 {
741 /* We're dealing with a global symbol -- find its hash entry
742 and mark it as being referenced. */
743 long indx = r_symndx - symtab_hdr->sh_info;
744 h = elf_sym_hashes (abfd)[indx];
745 while (h->root.type == bfd_link_hash_indirect
746 || h->root.type == bfd_link_hash_warning)
747 h = (struct elf_link_hash_entry *) h->root.u.i.link;
748
f5385ebf 749 h->ref_regular = 1;
15bda425
JL
750 }
751
752 /* We can only get preliminary data on whether a symbol is
753 locally or externally defined, as not all of the input files
754 have yet been processed. Do something with what we know, as
755 this may help reduce memory usage and processing time later. */
b34976b6 756 maybe_dynamic = FALSE;
671bae9c 757 if (h && ((info->shared
f5385ebf
AM
758 && (!info->symbolic
759 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
760 || !h->def_regular
15bda425 761 || h->root.type == bfd_link_hash_defweak))
b34976b6 762 maybe_dynamic = TRUE;
15bda425
JL
763
764 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
765 need_entry = 0;
766 switch (howto->type)
767 {
768 /* These are simple indirect references to symbols through the
769 DLT. We need to create a DLT entry for any symbols which
770 appears in a DLTIND relocation. */
771 case R_PARISC_DLTIND21L:
772 case R_PARISC_DLTIND14R:
773 case R_PARISC_DLTIND14F:
774 case R_PARISC_DLTIND14WR:
775 case R_PARISC_DLTIND14DR:
776 need_entry = NEED_DLT;
777 break;
778
779 /* ?!? These need a DLT entry. But I have no idea what to do with
780 the "link time TP value. */
781 case R_PARISC_LTOFF_TP21L:
782 case R_PARISC_LTOFF_TP14R:
783 case R_PARISC_LTOFF_TP14F:
784 case R_PARISC_LTOFF_TP64:
785 case R_PARISC_LTOFF_TP14WR:
786 case R_PARISC_LTOFF_TP14DR:
787 case R_PARISC_LTOFF_TP16F:
788 case R_PARISC_LTOFF_TP16WF:
789 case R_PARISC_LTOFF_TP16DF:
790 need_entry = NEED_DLT;
791 break;
792
793 /* These are function calls. Depending on their precise target we
794 may need to make a stub for them. The stub uses the PLT, so we
795 need to create PLT entries for these symbols too. */
832d951b 796 case R_PARISC_PCREL12F:
15bda425
JL
797 case R_PARISC_PCREL17F:
798 case R_PARISC_PCREL22F:
799 case R_PARISC_PCREL32:
800 case R_PARISC_PCREL64:
801 case R_PARISC_PCREL21L:
802 case R_PARISC_PCREL17R:
803 case R_PARISC_PCREL17C:
804 case R_PARISC_PCREL14R:
805 case R_PARISC_PCREL14F:
806 case R_PARISC_PCREL22C:
807 case R_PARISC_PCREL14WR:
808 case R_PARISC_PCREL14DR:
809 case R_PARISC_PCREL16F:
810 case R_PARISC_PCREL16WF:
811 case R_PARISC_PCREL16DF:
812 need_entry = (NEED_PLT | NEED_STUB);
813 break;
814
815 case R_PARISC_PLTOFF21L:
816 case R_PARISC_PLTOFF14R:
817 case R_PARISC_PLTOFF14F:
818 case R_PARISC_PLTOFF14WR:
819 case R_PARISC_PLTOFF14DR:
820 case R_PARISC_PLTOFF16F:
821 case R_PARISC_PLTOFF16WF:
822 case R_PARISC_PLTOFF16DF:
823 need_entry = (NEED_PLT);
824 break;
825
826 case R_PARISC_DIR64:
827 if (info->shared || maybe_dynamic)
828 need_entry = (NEED_DYNREL);
829 dynrel_type = R_PARISC_DIR64;
830 break;
831
832 /* This is an indirect reference through the DLT to get the address
833 of a OPD descriptor. Thus we need to make a DLT entry that points
834 to an OPD entry. */
835 case R_PARISC_LTOFF_FPTR21L:
836 case R_PARISC_LTOFF_FPTR14R:
837 case R_PARISC_LTOFF_FPTR14WR:
838 case R_PARISC_LTOFF_FPTR14DR:
839 case R_PARISC_LTOFF_FPTR32:
840 case R_PARISC_LTOFF_FPTR64:
841 case R_PARISC_LTOFF_FPTR16F:
842 case R_PARISC_LTOFF_FPTR16WF:
843 case R_PARISC_LTOFF_FPTR16DF:
844 if (info->shared || maybe_dynamic)
845 need_entry = (NEED_DLT | NEED_OPD);
846 else
847 need_entry = (NEED_DLT | NEED_OPD);
848 dynrel_type = R_PARISC_FPTR64;
849 break;
850
851 /* This is a simple OPD entry. */
852 case R_PARISC_FPTR64:
853 if (info->shared || maybe_dynamic)
854 need_entry = (NEED_OPD | NEED_DYNREL);
855 else
856 need_entry = (NEED_OPD);
857 dynrel_type = R_PARISC_FPTR64;
858 break;
859
860 /* Add more cases as needed. */
861 }
862
863 if (!need_entry)
864 continue;
865
866 /* Collect a canonical name for this address. */
d63b5ed9 867 addr_name = get_dyn_name (abfd, h, rel, &buf, &buf_len);
15bda425
JL
868
869 /* Collect the canonical entry data for this address. */
870 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
b34976b6 871 addr_name, TRUE, TRUE);
15bda425
JL
872 BFD_ASSERT (dyn_h);
873
874 /* Stash away enough information to be able to find this symbol
875 regardless of whether or not it is local or global. */
876 dyn_h->h = h;
877 dyn_h->owner = abfd;
878 dyn_h->sym_indx = r_symndx;
879
880 /* ?!? We may need to do some error checking in here. */
881 /* Create what's needed. */
882 if (need_entry & NEED_DLT)
883 {
884 if (! hppa_info->dlt_sec
885 && ! get_dlt (abfd, info, hppa_info))
886 goto err_out;
887 dyn_h->want_dlt = 1;
888 }
889
890 if (need_entry & NEED_PLT)
891 {
892 if (! hppa_info->plt_sec
893 && ! get_plt (abfd, info, hppa_info))
894 goto err_out;
895 dyn_h->want_plt = 1;
896 }
897
898 if (need_entry & NEED_STUB)
899 {
900 if (! hppa_info->stub_sec
901 && ! get_stub (abfd, info, hppa_info))
902 goto err_out;
903 dyn_h->want_stub = 1;
904 }
905
906 if (need_entry & NEED_OPD)
907 {
908 if (! hppa_info->opd_sec
909 && ! get_opd (abfd, info, hppa_info))
910 goto err_out;
911
912 dyn_h->want_opd = 1;
913
914 /* FPTRs are not allocated by the dynamic linker for PA64, though
915 it is possible that will change in the future. */
fe8bc63d 916
15bda425
JL
917 /* This could be a local function that had its address taken, in
918 which case H will be NULL. */
919 if (h)
f5385ebf 920 h->needs_plt = 1;
15bda425
JL
921 }
922
923 /* Add a new dynamic relocation to the chain of dynamic
924 relocations for this symbol. */
925 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
926 {
927 if (! hppa_info->other_rel_sec
928 && ! get_reloc_section (abfd, hppa_info, sec))
929 goto err_out;
930
931 if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
932 sec_symndx, rel->r_offset, rel->r_addend))
933 goto err_out;
934
935 /* If we are building a shared library and we just recorded
936 a dynamic R_PARISC_FPTR64 relocation, then make sure the
937 section symbol for this section ends up in the dynamic
938 symbol table. */
939 if (info->shared && dynrel_type == R_PARISC_FPTR64
c152c796 940 && ! (bfd_elf_link_record_local_dynamic_symbol
15bda425 941 (info, abfd, sec_symndx)))
b34976b6 942 return FALSE;
15bda425
JL
943 }
944 }
945
946 if (buf)
947 free (buf);
b34976b6 948 return TRUE;
15bda425
JL
949
950 err_out:
951 if (buf)
952 free (buf);
b34976b6 953 return FALSE;
15bda425
JL
954}
955
956struct elf64_hppa_allocate_data
957{
958 struct bfd_link_info *info;
959 bfd_size_type ofs;
960};
961
962/* Should we do dynamic things to this symbol? */
963
b34976b6 964static bfd_boolean
15bda425
JL
965elf64_hppa_dynamic_symbol_p (h, info)
966 struct elf_link_hash_entry *h;
967 struct bfd_link_info *info;
968{
986a241f
RH
969 /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
970 and relocations that retrieve a function descriptor? Assume the
971 worst for now. */
972 if (_bfd_elf_dynamic_symbol_p (h, info, 1))
973 {
974 /* ??? Why is this here and not elsewhere is_local_label_name. */
975 if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
976 return FALSE;
15bda425 977
986a241f
RH
978 return TRUE;
979 }
980 else
b34976b6 981 return FALSE;
15bda425
JL
982}
983
4cc11e76 984/* Mark all functions exported by this file so that we can later allocate
15bda425
JL
985 entries in .opd for them. */
986
b34976b6 987static bfd_boolean
15bda425
JL
988elf64_hppa_mark_exported_functions (h, data)
989 struct elf_link_hash_entry *h;
990 PTR data;
991{
992 struct bfd_link_info *info = (struct bfd_link_info *)data;
993 struct elf64_hppa_link_hash_table *hppa_info;
994
995 hppa_info = elf64_hppa_hash_table (info);
996
e92d460e
AM
997 if (h->root.type == bfd_link_hash_warning)
998 h = (struct elf_link_hash_entry *) h->root.u.i.link;
999
15bda425
JL
1000 if (h
1001 && (h->root.type == bfd_link_hash_defined
1002 || h->root.type == bfd_link_hash_defweak)
1003 && h->root.u.def.section->output_section != NULL
1004 && h->type == STT_FUNC)
1005 {
1006 struct elf64_hppa_dyn_hash_entry *dyn_h;
1007
1008 /* Add this symbol to the PA64 linker hash table. */
1009 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
b34976b6 1010 h->root.root.string, TRUE, TRUE);
15bda425
JL
1011 BFD_ASSERT (dyn_h);
1012 dyn_h->h = h;
1013
1014 if (! hppa_info->opd_sec
1015 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
b34976b6 1016 return FALSE;
15bda425
JL
1017
1018 dyn_h->want_opd = 1;
832d951b
AM
1019 /* Put a flag here for output_symbol_hook. */
1020 dyn_h->st_shndx = -1;
f5385ebf 1021 h->needs_plt = 1;
15bda425
JL
1022 }
1023
b34976b6 1024 return TRUE;
15bda425
JL
1025}
1026
1027/* Allocate space for a DLT entry. */
1028
b34976b6 1029static bfd_boolean
15bda425
JL
1030allocate_global_data_dlt (dyn_h, data)
1031 struct elf64_hppa_dyn_hash_entry *dyn_h;
1032 PTR data;
1033{
1034 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1035
1036 if (dyn_h->want_dlt)
1037 {
1038 struct elf_link_hash_entry *h = dyn_h->h;
1039
1040 if (x->info->shared)
1041 {
1042 /* Possibly add the symbol to the local dynamic symbol
1043 table since we might need to create a dynamic relocation
1044 against it. */
1045 if (! h
47b7c2db 1046 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI))
15bda425
JL
1047 {
1048 bfd *owner;
1049 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1050
c152c796 1051 if (! (bfd_elf_link_record_local_dynamic_symbol
dc810e39 1052 (x->info, owner, dyn_h->sym_indx)))
b34976b6 1053 return FALSE;
15bda425
JL
1054 }
1055 }
1056
1057 dyn_h->dlt_offset = x->ofs;
1058 x->ofs += DLT_ENTRY_SIZE;
1059 }
b34976b6 1060 return TRUE;
15bda425
JL
1061}
1062
1063/* Allocate space for a DLT.PLT entry. */
1064
b34976b6 1065static bfd_boolean
15bda425
JL
1066allocate_global_data_plt (dyn_h, data)
1067 struct elf64_hppa_dyn_hash_entry *dyn_h;
1068 PTR data;
1069{
1070 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1071
1072 if (dyn_h->want_plt
1073 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1074 && !((dyn_h->h->root.type == bfd_link_hash_defined
1075 || dyn_h->h->root.type == bfd_link_hash_defweak)
1076 && dyn_h->h->root.u.def.section->output_section != NULL))
1077 {
1078 dyn_h->plt_offset = x->ofs;
1079 x->ofs += PLT_ENTRY_SIZE;
1080 if (dyn_h->plt_offset < 0x2000)
1081 elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
1082 }
1083 else
1084 dyn_h->want_plt = 0;
1085
b34976b6 1086 return TRUE;
15bda425
JL
1087}
1088
1089/* Allocate space for a STUB entry. */
1090
b34976b6 1091static bfd_boolean
15bda425
JL
1092allocate_global_data_stub (dyn_h, data)
1093 struct elf64_hppa_dyn_hash_entry *dyn_h;
1094 PTR data;
1095{
1096 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1097
1098 if (dyn_h->want_stub
1099 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1100 && !((dyn_h->h->root.type == bfd_link_hash_defined
1101 || dyn_h->h->root.type == bfd_link_hash_defweak)
1102 && dyn_h->h->root.u.def.section->output_section != NULL))
1103 {
1104 dyn_h->stub_offset = x->ofs;
1105 x->ofs += sizeof (plt_stub);
1106 }
1107 else
1108 dyn_h->want_stub = 0;
b34976b6 1109 return TRUE;
15bda425
JL
1110}
1111
1112/* Allocate space for a FPTR entry. */
1113
b34976b6 1114static bfd_boolean
15bda425
JL
1115allocate_global_data_opd (dyn_h, data)
1116 struct elf64_hppa_dyn_hash_entry *dyn_h;
1117 PTR data;
1118{
1119 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1120
1121 if (dyn_h->want_opd)
1122 {
1123 struct elf_link_hash_entry *h = dyn_h->h;
fe8bc63d 1124
15bda425
JL
1125 if (h)
1126 while (h->root.type == bfd_link_hash_indirect
1127 || h->root.type == bfd_link_hash_warning)
1128 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1129
1130 /* We never need an opd entry for a symbol which is not
1131 defined by this output file. */
3db4b612
JL
1132 if (h && (h->root.type == bfd_link_hash_undefined
1133 || h->root.u.def.section->output_section == NULL))
15bda425
JL
1134 dyn_h->want_opd = 0;
1135
1136 /* If we are creating a shared library, took the address of a local
1137 function or might export this function from this object file, then
1138 we have to create an opd descriptor. */
1139 else if (x->info->shared
1140 || h == NULL
47b7c2db 1141 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI)
3db4b612
JL
1142 || (h->root.type == bfd_link_hash_defined
1143 || h->root.type == bfd_link_hash_defweak))
15bda425
JL
1144 {
1145 /* If we are creating a shared library, then we will have to
1146 create a runtime relocation for the symbol to properly
1147 initialize the .opd entry. Make sure the symbol gets
1148 added to the dynamic symbol table. */
1149 if (x->info->shared
1150 && (h == NULL || (h->dynindx == -1)))
1151 {
1152 bfd *owner;
1153 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1154
c152c796 1155 if (!bfd_elf_link_record_local_dynamic_symbol
15bda425 1156 (x->info, owner, dyn_h->sym_indx))
b34976b6 1157 return FALSE;
15bda425
JL
1158 }
1159
1160 /* This may not be necessary or desirable anymore now that
1161 we have some support for dealing with section symbols
1162 in dynamic relocs. But name munging does make the result
1163 much easier to debug. ie, the EPLT reloc will reference
1164 a symbol like .foobar, instead of .text + offset. */
1165 if (x->info->shared && h)
1166 {
1167 char *new_name;
1168 struct elf_link_hash_entry *nh;
1169
1170 new_name = alloca (strlen (h->root.root.string) + 2);
1171 new_name[0] = '.';
1172 strcpy (new_name + 1, h->root.root.string);
1173
1174 nh = elf_link_hash_lookup (elf_hash_table (x->info),
b34976b6 1175 new_name, TRUE, TRUE, TRUE);
15bda425
JL
1176
1177 nh->root.type = h->root.type;
1178 nh->root.u.def.value = h->root.u.def.value;
1179 nh->root.u.def.section = h->root.u.def.section;
1180
c152c796 1181 if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
b34976b6 1182 return FALSE;
15bda425
JL
1183
1184 }
1185 dyn_h->opd_offset = x->ofs;
1186 x->ofs += OPD_ENTRY_SIZE;
1187 }
1188
1189 /* Otherwise we do not need an opd entry. */
1190 else
1191 dyn_h->want_opd = 0;
1192 }
b34976b6 1193 return TRUE;
15bda425
JL
1194}
1195
1196/* HP requires the EI_OSABI field to be filled in. The assignment to
1197 EI_ABIVERSION may not be strictly necessary. */
1198
1199static void
1200elf64_hppa_post_process_headers (abfd, link_info)
1201 bfd * abfd;
1202 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
1203{
1204 Elf_Internal_Ehdr * i_ehdrp;
1205
1206 i_ehdrp = elf_elfheader (abfd);
1207
d952f17a
AM
1208 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
1209 {
1210 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
1211 }
1212 else
1213 {
1214 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
1215 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1216 }
15bda425
JL
1217}
1218
1219/* Create function descriptor section (.opd). This section is called .opd
4cc11e76 1220 because it contains "official procedure descriptors". The "official"
15bda425
JL
1221 refers to the fact that these descriptors are used when taking the address
1222 of a procedure, thus ensuring a unique address for each procedure. */
1223
b34976b6 1224static bfd_boolean
15bda425
JL
1225get_opd (abfd, info, hppa_info)
1226 bfd *abfd;
edd21aca 1227 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1228 struct elf64_hppa_link_hash_table *hppa_info;
1229{
1230 asection *opd;
1231 bfd *dynobj;
1232
1233 opd = hppa_info->opd_sec;
1234 if (!opd)
1235 {
1236 dynobj = hppa_info->root.dynobj;
1237 if (!dynobj)
1238 hppa_info->root.dynobj = dynobj = abfd;
1239
3496cb2a
L
1240 opd = bfd_make_section_with_flags (dynobj, ".opd",
1241 (SEC_ALLOC
1242 | SEC_LOAD
1243 | SEC_HAS_CONTENTS
1244 | SEC_IN_MEMORY
1245 | SEC_LINKER_CREATED));
15bda425 1246 if (!opd
15bda425
JL
1247 || !bfd_set_section_alignment (abfd, opd, 3))
1248 {
1249 BFD_ASSERT (0);
b34976b6 1250 return FALSE;
15bda425
JL
1251 }
1252
1253 hppa_info->opd_sec = opd;
1254 }
1255
b34976b6 1256 return TRUE;
15bda425
JL
1257}
1258
1259/* Create the PLT section. */
1260
b34976b6 1261static bfd_boolean
15bda425
JL
1262get_plt (abfd, info, hppa_info)
1263 bfd *abfd;
edd21aca 1264 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1265 struct elf64_hppa_link_hash_table *hppa_info;
1266{
1267 asection *plt;
1268 bfd *dynobj;
1269
1270 plt = hppa_info->plt_sec;
1271 if (!plt)
1272 {
1273 dynobj = hppa_info->root.dynobj;
1274 if (!dynobj)
1275 hppa_info->root.dynobj = dynobj = abfd;
1276
3496cb2a
L
1277 plt = bfd_make_section_with_flags (dynobj, ".plt",
1278 (SEC_ALLOC
1279 | SEC_LOAD
1280 | SEC_HAS_CONTENTS
1281 | SEC_IN_MEMORY
1282 | SEC_LINKER_CREATED));
15bda425 1283 if (!plt
15bda425
JL
1284 || !bfd_set_section_alignment (abfd, plt, 3))
1285 {
1286 BFD_ASSERT (0);
b34976b6 1287 return FALSE;
15bda425
JL
1288 }
1289
1290 hppa_info->plt_sec = plt;
1291 }
1292
b34976b6 1293 return TRUE;
15bda425
JL
1294}
1295
1296/* Create the DLT section. */
1297
b34976b6 1298static bfd_boolean
15bda425
JL
1299get_dlt (abfd, info, hppa_info)
1300 bfd *abfd;
edd21aca 1301 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1302 struct elf64_hppa_link_hash_table *hppa_info;
1303{
1304 asection *dlt;
1305 bfd *dynobj;
1306
1307 dlt = hppa_info->dlt_sec;
1308 if (!dlt)
1309 {
1310 dynobj = hppa_info->root.dynobj;
1311 if (!dynobj)
1312 hppa_info->root.dynobj = dynobj = abfd;
1313
3496cb2a
L
1314 dlt = bfd_make_section_with_flags (dynobj, ".dlt",
1315 (SEC_ALLOC
1316 | SEC_LOAD
1317 | SEC_HAS_CONTENTS
1318 | SEC_IN_MEMORY
1319 | SEC_LINKER_CREATED));
15bda425 1320 if (!dlt
15bda425
JL
1321 || !bfd_set_section_alignment (abfd, dlt, 3))
1322 {
1323 BFD_ASSERT (0);
b34976b6 1324 return FALSE;
15bda425
JL
1325 }
1326
1327 hppa_info->dlt_sec = dlt;
1328 }
1329
b34976b6 1330 return TRUE;
15bda425
JL
1331}
1332
1333/* Create the stubs section. */
1334
b34976b6 1335static bfd_boolean
15bda425
JL
1336get_stub (abfd, info, hppa_info)
1337 bfd *abfd;
edd21aca 1338 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1339 struct elf64_hppa_link_hash_table *hppa_info;
1340{
1341 asection *stub;
1342 bfd *dynobj;
1343
1344 stub = hppa_info->stub_sec;
1345 if (!stub)
1346 {
1347 dynobj = hppa_info->root.dynobj;
1348 if (!dynobj)
1349 hppa_info->root.dynobj = dynobj = abfd;
1350
3496cb2a
L
1351 stub = bfd_make_section_with_flags (dynobj, ".stub",
1352 (SEC_ALLOC | SEC_LOAD
1353 | SEC_HAS_CONTENTS
1354 | SEC_IN_MEMORY
1355 | SEC_READONLY
1356 | SEC_LINKER_CREATED));
15bda425 1357 if (!stub
15bda425
JL
1358 || !bfd_set_section_alignment (abfd, stub, 3))
1359 {
1360 BFD_ASSERT (0);
b34976b6 1361 return FALSE;
15bda425
JL
1362 }
1363
1364 hppa_info->stub_sec = stub;
1365 }
1366
b34976b6 1367 return TRUE;
15bda425
JL
1368}
1369
1370/* Create sections necessary for dynamic linking. This is only a rough
1371 cut and will likely change as we learn more about the somewhat
1372 unusual dynamic linking scheme HP uses.
1373
1374 .stub:
1375 Contains code to implement cross-space calls. The first time one
1376 of the stubs is used it will call into the dynamic linker, later
1377 calls will go straight to the target.
1378
1379 The only stub we support right now looks like
1380
1381 ldd OFFSET(%dp),%r1
1382 bve %r0(%r1)
1383 ldd OFFSET+8(%dp),%dp
1384
1385 Other stubs may be needed in the future. We may want the remove
1386 the break/nop instruction. It is only used right now to keep the
1387 offset of a .plt entry and a .stub entry in sync.
1388
1389 .dlt:
1390 This is what most people call the .got. HP used a different name.
1391 Losers.
1392
1393 .rela.dlt:
1394 Relocations for the DLT.
1395
1396 .plt:
1397 Function pointers as address,gp pairs.
1398
1399 .rela.plt:
1400 Should contain dynamic IPLT (and EPLT?) relocations.
1401
1402 .opd:
fe8bc63d 1403 FPTRS
15bda425
JL
1404
1405 .rela.opd:
1406 EPLT relocations for symbols exported from shared libraries. */
1407
b34976b6 1408static bfd_boolean
15bda425
JL
1409elf64_hppa_create_dynamic_sections (abfd, info)
1410 bfd *abfd;
1411 struct bfd_link_info *info;
1412{
1413 asection *s;
1414
1415 if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
b34976b6 1416 return FALSE;
15bda425
JL
1417
1418 if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
b34976b6 1419 return FALSE;
15bda425
JL
1420
1421 if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
b34976b6 1422 return FALSE;
15bda425
JL
1423
1424 if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
b34976b6 1425 return FALSE;
15bda425 1426
3496cb2a
L
1427 s = bfd_make_section_with_flags (abfd, ".rela.dlt",
1428 (SEC_ALLOC | SEC_LOAD
1429 | SEC_HAS_CONTENTS
1430 | SEC_IN_MEMORY
1431 | SEC_READONLY
1432 | SEC_LINKER_CREATED));
15bda425 1433 if (s == NULL
15bda425 1434 || !bfd_set_section_alignment (abfd, s, 3))
b34976b6 1435 return FALSE;
15bda425
JL
1436 elf64_hppa_hash_table (info)->dlt_rel_sec = s;
1437
3496cb2a
L
1438 s = bfd_make_section_with_flags (abfd, ".rela.plt",
1439 (SEC_ALLOC | SEC_LOAD
1440 | SEC_HAS_CONTENTS
1441 | SEC_IN_MEMORY
1442 | SEC_READONLY
1443 | SEC_LINKER_CREATED));
15bda425 1444 if (s == NULL
15bda425 1445 || !bfd_set_section_alignment (abfd, s, 3))
b34976b6 1446 return FALSE;
15bda425
JL
1447 elf64_hppa_hash_table (info)->plt_rel_sec = s;
1448
3496cb2a
L
1449 s = bfd_make_section_with_flags (abfd, ".rela.data",
1450 (SEC_ALLOC | SEC_LOAD
1451 | SEC_HAS_CONTENTS
1452 | SEC_IN_MEMORY
1453 | SEC_READONLY
1454 | SEC_LINKER_CREATED));
15bda425 1455 if (s == NULL
15bda425 1456 || !bfd_set_section_alignment (abfd, s, 3))
b34976b6 1457 return FALSE;
15bda425
JL
1458 elf64_hppa_hash_table (info)->other_rel_sec = s;
1459
3496cb2a
L
1460 s = bfd_make_section_with_flags (abfd, ".rela.opd",
1461 (SEC_ALLOC | SEC_LOAD
1462 | SEC_HAS_CONTENTS
1463 | SEC_IN_MEMORY
1464 | SEC_READONLY
1465 | SEC_LINKER_CREATED));
15bda425 1466 if (s == NULL
15bda425 1467 || !bfd_set_section_alignment (abfd, s, 3))
b34976b6 1468 return FALSE;
15bda425
JL
1469 elf64_hppa_hash_table (info)->opd_rel_sec = s;
1470
b34976b6 1471 return TRUE;
15bda425
JL
1472}
1473
1474/* Allocate dynamic relocations for those symbols that turned out
1475 to be dynamic. */
1476
b34976b6 1477static bfd_boolean
15bda425
JL
1478allocate_dynrel_entries (dyn_h, data)
1479 struct elf64_hppa_dyn_hash_entry *dyn_h;
1480 PTR data;
1481{
1482 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1483 struct elf64_hppa_link_hash_table *hppa_info;
1484 struct elf64_hppa_dyn_reloc_entry *rent;
b34976b6 1485 bfd_boolean dynamic_symbol, shared;
15bda425
JL
1486
1487 hppa_info = elf64_hppa_hash_table (x->info);
1488 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
1489 shared = x->info->shared;
1490
1491 /* We may need to allocate relocations for a non-dynamic symbol
1492 when creating a shared library. */
1493 if (!dynamic_symbol && !shared)
b34976b6 1494 return TRUE;
15bda425
JL
1495
1496 /* Take care of the normal data relocations. */
1497
1498 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
1499 {
d663e1cd
JL
1500 /* Allocate one iff we are building a shared library, the relocation
1501 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
1502 if (!shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
1503 continue;
1504
eea6121a 1505 hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);
15bda425
JL
1506
1507 /* Make sure this symbol gets into the dynamic symbol table if it is
1508 not already recorded. ?!? This should not be in the loop since
1509 the symbol need only be added once. */
47b7c2db
AM
1510 if (dyn_h->h == 0
1511 || (dyn_h->h->dynindx == -1 && dyn_h->h->type != STT_PARISC_MILLI))
c152c796 1512 if (!bfd_elf_link_record_local_dynamic_symbol
15bda425 1513 (x->info, rent->sec->owner, dyn_h->sym_indx))
b34976b6 1514 return FALSE;
15bda425
JL
1515 }
1516
1517 /* Take care of the GOT and PLT relocations. */
1518
1519 if ((dynamic_symbol || shared) && dyn_h->want_dlt)
eea6121a 1520 hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);
15bda425
JL
1521
1522 /* If we are building a shared library, then every symbol that has an
1523 opd entry will need an EPLT relocation to relocate the symbol's address
1524 and __gp value based on the runtime load address. */
1525 if (shared && dyn_h->want_opd)
eea6121a 1526 hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);
15bda425
JL
1527
1528 if (dyn_h->want_plt && dynamic_symbol)
1529 {
1530 bfd_size_type t = 0;
1531
1532 /* Dynamic symbols get one IPLT relocation. Local symbols in
1533 shared libraries get two REL relocations. Local symbols in
1534 main applications get nothing. */
1535 if (dynamic_symbol)
1536 t = sizeof (Elf64_External_Rela);
1537 else if (shared)
1538 t = 2 * sizeof (Elf64_External_Rela);
1539
eea6121a 1540 hppa_info->plt_rel_sec->size += t;
15bda425
JL
1541 }
1542
b34976b6 1543 return TRUE;
15bda425
JL
1544}
1545
1546/* Adjust a symbol defined by a dynamic object and referenced by a
1547 regular object. */
1548
b34976b6 1549static bfd_boolean
15bda425 1550elf64_hppa_adjust_dynamic_symbol (info, h)
edd21aca 1551 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1552 struct elf_link_hash_entry *h;
1553{
1554 /* ??? Undefined symbols with PLT entries should be re-defined
1555 to be the PLT entry. */
1556
1557 /* If this is a weak symbol, and there is a real definition, the
1558 processor independent code will have arranged for us to see the
1559 real definition first, and we can just use the same value. */
f6e332e6 1560 if (h->u.weakdef != NULL)
15bda425 1561 {
f6e332e6
AM
1562 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1563 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1564 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1565 h->root.u.def.value = h->u.weakdef->root.u.def.value;
b34976b6 1566 return TRUE;
15bda425
JL
1567 }
1568
1569 /* If this is a reference to a symbol defined by a dynamic object which
1570 is not a function, we might allocate the symbol in our .dynbss section
1571 and allocate a COPY dynamic relocation.
1572
1573 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1574 of hackery. */
1575
b34976b6 1576 return TRUE;
15bda425
JL
1577}
1578
47b7c2db
AM
1579/* This function is called via elf_link_hash_traverse to mark millicode
1580 symbols with a dynindx of -1 and to remove the string table reference
1581 from the dynamic symbol table. If the symbol is not a millicode symbol,
1582 elf64_hppa_mark_exported_functions is called. */
1583
b34976b6 1584static bfd_boolean
47b7c2db
AM
1585elf64_hppa_mark_milli_and_exported_functions (h, data)
1586 struct elf_link_hash_entry *h;
1587 PTR data;
1588{
1589 struct bfd_link_info *info = (struct bfd_link_info *)data;
1590 struct elf_link_hash_entry *elf = h;
1591
1592 if (elf->root.type == bfd_link_hash_warning)
1593 elf = (struct elf_link_hash_entry *) elf->root.u.i.link;
1594
1595 if (elf->type == STT_PARISC_MILLI)
1596 {
1597 if (elf->dynindx != -1)
1598 {
1599 elf->dynindx = -1;
1600 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1601 elf->dynstr_index);
1602 }
b34976b6 1603 return TRUE;
47b7c2db
AM
1604 }
1605
1606 return elf64_hppa_mark_exported_functions (h, data);
1607}
1608
15bda425
JL
1609/* Set the final sizes of the dynamic sections and allocate memory for
1610 the contents of our special sections. */
1611
b34976b6 1612static bfd_boolean
15bda425
JL
1613elf64_hppa_size_dynamic_sections (output_bfd, info)
1614 bfd *output_bfd;
1615 struct bfd_link_info *info;
1616{
1617 bfd *dynobj;
1618 asection *s;
b34976b6
AM
1619 bfd_boolean plt;
1620 bfd_boolean relocs;
1621 bfd_boolean reltext;
15bda425
JL
1622 struct elf64_hppa_allocate_data data;
1623 struct elf64_hppa_link_hash_table *hppa_info;
1624
1625 hppa_info = elf64_hppa_hash_table (info);
1626
1627 dynobj = elf_hash_table (info)->dynobj;
1628 BFD_ASSERT (dynobj != NULL);
1629
47b7c2db
AM
1630 /* Mark each function this program exports so that we will allocate
1631 space in the .opd section for each function's FPTR. If we are
1632 creating dynamic sections, change the dynamic index of millicode
1633 symbols to -1 and remove them from the string table for .dynstr.
1634
1635 We have to traverse the main linker hash table since we have to
1636 find functions which may not have been mentioned in any relocs. */
1637 elf_link_hash_traverse (elf_hash_table (info),
1638 (elf_hash_table (info)->dynamic_sections_created
1639 ? elf64_hppa_mark_milli_and_exported_functions
1640 : elf64_hppa_mark_exported_functions),
1641 info);
1642
15bda425
JL
1643 if (elf_hash_table (info)->dynamic_sections_created)
1644 {
1645 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 1646 if (info->executable)
15bda425
JL
1647 {
1648 s = bfd_get_section_by_name (dynobj, ".interp");
1649 BFD_ASSERT (s != NULL);
eea6121a 1650 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
15bda425
JL
1651 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1652 }
1653 }
1654 else
1655 {
1656 /* We may have created entries in the .rela.got section.
1657 However, if we are not creating the dynamic sections, we will
1658 not actually use these entries. Reset the size of .rela.dlt,
1659 which will cause it to get stripped from the output file
1660 below. */
1661 s = bfd_get_section_by_name (dynobj, ".rela.dlt");
1662 if (s != NULL)
eea6121a 1663 s->size = 0;
15bda425
JL
1664 }
1665
1666 /* Allocate the GOT entries. */
1667
1668 data.info = info;
1669 if (elf64_hppa_hash_table (info)->dlt_sec)
1670 {
1671 data.ofs = 0x0;
1672 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1673 allocate_global_data_dlt, &data);
eea6121a 1674 hppa_info->dlt_sec->size = data.ofs;
15bda425
JL
1675
1676 data.ofs = 0x0;
1677 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1678 allocate_global_data_plt, &data);
eea6121a 1679 hppa_info->plt_sec->size = data.ofs;
15bda425
JL
1680
1681 data.ofs = 0x0;
1682 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1683 allocate_global_data_stub, &data);
eea6121a 1684 hppa_info->stub_sec->size = data.ofs;
15bda425
JL
1685 }
1686
15bda425
JL
1687 /* Allocate space for entries in the .opd section. */
1688 if (elf64_hppa_hash_table (info)->opd_sec)
1689 {
1690 data.ofs = 0;
1691 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1692 allocate_global_data_opd, &data);
eea6121a 1693 hppa_info->opd_sec->size = data.ofs;
15bda425
JL
1694 }
1695
1696 /* Now allocate space for dynamic relocations, if necessary. */
1697 if (hppa_info->root.dynamic_sections_created)
1698 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1699 allocate_dynrel_entries, &data);
1700
1701 /* The sizes of all the sections are set. Allocate memory for them. */
b34976b6
AM
1702 plt = FALSE;
1703 relocs = FALSE;
1704 reltext = FALSE;
15bda425
JL
1705 for (s = dynobj->sections; s != NULL; s = s->next)
1706 {
1707 const char *name;
15bda425
JL
1708
1709 if ((s->flags & SEC_LINKER_CREATED) == 0)
1710 continue;
1711
1712 /* It's OK to base decisions on the section name, because none
1713 of the dynobj section names depend upon the input files. */
1714 name = bfd_get_section_name (dynobj, s);
1715
15bda425
JL
1716 if (strcmp (name, ".plt") == 0)
1717 {
c456f082
AM
1718 /* Remember whether there is a PLT. */
1719 plt = s->size != 0;
15bda425 1720 }
c456f082
AM
1721 else if (strcmp (name, ".opd") == 0
1722 || strncmp (name, ".dlt", 4) == 0
1723 || strcmp (name, ".stub") == 0
1724 || strcmp (name, ".got") == 0)
15bda425 1725 {
d663e1cd 1726 /* Strip this section if we don't need it; see the comment below. */
15bda425 1727 }
d663e1cd 1728 else if (strncmp (name, ".rela", 5) == 0)
15bda425 1729 {
c456f082 1730 if (s->size != 0)
15bda425
JL
1731 {
1732 asection *target;
1733
1734 /* Remember whether there are any reloc sections other
1735 than .rela.plt. */
1736 if (strcmp (name, ".rela.plt") != 0)
1737 {
1738 const char *outname;
1739
b34976b6 1740 relocs = TRUE;
15bda425
JL
1741
1742 /* If this relocation section applies to a read only
1743 section, then we probably need a DT_TEXTREL
1744 entry. The entries in the .rela.plt section
1745 really apply to the .got section, which we
1746 created ourselves and so know is not readonly. */
1747 outname = bfd_get_section_name (output_bfd,
1748 s->output_section);
1749 target = bfd_get_section_by_name (output_bfd, outname + 4);
1750 if (target != NULL
1751 && (target->flags & SEC_READONLY) != 0
1752 && (target->flags & SEC_ALLOC) != 0)
b34976b6 1753 reltext = TRUE;
15bda425
JL
1754 }
1755
1756 /* We use the reloc_count field as a counter if we need
1757 to copy relocs into the output file. */
1758 s->reloc_count = 0;
1759 }
1760 }
c456f082 1761 else
15bda425
JL
1762 {
1763 /* It's not one of our sections, so don't allocate space. */
1764 continue;
1765 }
1766
c456f082 1767 if (s->size == 0)
15bda425 1768 {
c456f082
AM
1769 /* If we don't need this section, strip it from the
1770 output file. This is mostly to handle .rela.bss and
1771 .rela.plt. We must create both sections in
1772 create_dynamic_sections, because they must be created
1773 before the linker maps input sections to output
1774 sections. The linker does that before
1775 adjust_dynamic_symbol is called, and it is that
1776 function which decides whether anything needs to go
1777 into these sections. */
8423293d 1778 s->flags |= SEC_EXCLUDE;
15bda425
JL
1779 continue;
1780 }
1781
c456f082
AM
1782 if ((s->flags & SEC_HAS_CONTENTS) == 0)
1783 continue;
1784
15bda425 1785 /* Allocate memory for the section contents if it has not
832d951b
AM
1786 been allocated already. We use bfd_zalloc here in case
1787 unused entries are not reclaimed before the section's
1788 contents are written out. This should not happen, but this
1789 way if it does, we get a R_PARISC_NONE reloc instead of
1790 garbage. */
15bda425
JL
1791 if (s->contents == NULL)
1792 {
eea6121a 1793 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
c456f082 1794 if (s->contents == NULL)
b34976b6 1795 return FALSE;
15bda425
JL
1796 }
1797 }
1798
1799 if (elf_hash_table (info)->dynamic_sections_created)
1800 {
1801 /* Always create a DT_PLTGOT. It actually has nothing to do with
1802 the PLT, it is how we communicate the __gp value of a load
1803 module to the dynamic linker. */
dc810e39 1804#define add_dynamic_entry(TAG, VAL) \
5a580b3a 1805 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
dc810e39
AM
1806
1807 if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1808 || !add_dynamic_entry (DT_PLTGOT, 0))
b34976b6 1809 return FALSE;
15bda425
JL
1810
1811 /* Add some entries to the .dynamic section. We fill in the
1812 values later, in elf64_hppa_finish_dynamic_sections, but we
1813 must add the entries now so that we get the correct size for
1814 the .dynamic section. The DT_DEBUG entry is filled in by the
1815 dynamic linker and used by the debugger. */
1816 if (! info->shared)
1817 {
dc810e39
AM
1818 if (!add_dynamic_entry (DT_DEBUG, 0)
1819 || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1820 || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
b34976b6 1821 return FALSE;
15bda425
JL
1822 }
1823
f2482cb2
NC
1824 /* Force DT_FLAGS to always be set.
1825 Required by HPUX 11.00 patch PHSS_26559. */
1826 if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
b34976b6 1827 return FALSE;
f2482cb2 1828
15bda425
JL
1829 if (plt)
1830 {
dc810e39
AM
1831 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1832 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1833 || !add_dynamic_entry (DT_JMPREL, 0))
b34976b6 1834 return FALSE;
15bda425
JL
1835 }
1836
1837 if (relocs)
1838 {
dc810e39
AM
1839 if (!add_dynamic_entry (DT_RELA, 0)
1840 || !add_dynamic_entry (DT_RELASZ, 0)
1841 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
b34976b6 1842 return FALSE;
15bda425
JL
1843 }
1844
1845 if (reltext)
1846 {
dc810e39 1847 if (!add_dynamic_entry (DT_TEXTREL, 0))
b34976b6 1848 return FALSE;
d6cf2879 1849 info->flags |= DF_TEXTREL;
15bda425
JL
1850 }
1851 }
dc810e39 1852#undef add_dynamic_entry
15bda425 1853
b34976b6 1854 return TRUE;
15bda425
JL
1855}
1856
1857/* Called after we have output the symbol into the dynamic symbol
1858 table, but before we output the symbol into the normal symbol
1859 table.
1860
1861 For some symbols we had to change their address when outputting
1862 the dynamic symbol table. We undo that change here so that
1863 the symbols have their expected value in the normal symbol
1864 table. Ick. */
1865
b34976b6 1866static bfd_boolean
754021d0 1867elf64_hppa_link_output_symbol_hook (info, name, sym, input_sec, h)
15bda425
JL
1868 struct bfd_link_info *info;
1869 const char *name;
1870 Elf_Internal_Sym *sym;
edd21aca 1871 asection *input_sec ATTRIBUTE_UNUSED;
754021d0 1872 struct elf_link_hash_entry *h;
15bda425
JL
1873{
1874 struct elf64_hppa_link_hash_table *hppa_info;
1875 struct elf64_hppa_dyn_hash_entry *dyn_h;
1876
1877 /* We may be called with the file symbol or section symbols.
1878 They never need munging, so it is safe to ignore them. */
1879 if (!name)
b34976b6 1880 return TRUE;
15bda425
JL
1881
1882 /* Get the PA dyn_symbol (if any) associated with NAME. */
1883 hppa_info = elf64_hppa_hash_table (info);
1884 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
b34976b6 1885 name, FALSE, FALSE);
ac7bbf74 1886 if (!dyn_h || dyn_h->h != h)
754021d0 1887 return TRUE;
15bda425 1888
832d951b
AM
1889 /* Function symbols for which we created .opd entries *may* have been
1890 munged by finish_dynamic_symbol and have to be un-munged here.
1891
1892 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1893 into non-dynamic ones, so we initialize st_shndx to -1 in
1894 mark_exported_functions and check to see if it was overwritten
1895 here instead of just checking dyn_h->h->dynindx. */
ac7bbf74 1896 if (dyn_h->want_opd && dyn_h->st_shndx != -1)
15bda425
JL
1897 {
1898 /* Restore the saved value and section index. */
1899 sym->st_value = dyn_h->st_value;
fe8bc63d 1900 sym->st_shndx = dyn_h->st_shndx;
15bda425
JL
1901 }
1902
b34976b6 1903 return TRUE;
15bda425
JL
1904}
1905
1906/* Finish up dynamic symbol handling. We set the contents of various
1907 dynamic sections here. */
1908
b34976b6 1909static bfd_boolean
15bda425
JL
1910elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
1911 bfd *output_bfd;
1912 struct bfd_link_info *info;
1913 struct elf_link_hash_entry *h;
1914 Elf_Internal_Sym *sym;
1915{
1916 asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
1917 struct elf64_hppa_link_hash_table *hppa_info;
1918 struct elf64_hppa_dyn_hash_entry *dyn_h;
1919
1920 hppa_info = elf64_hppa_hash_table (info);
1921 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
b34976b6 1922 h->root.root.string, FALSE, FALSE);
15bda425
JL
1923
1924 stub = hppa_info->stub_sec;
1925 splt = hppa_info->plt_sec;
1926 sdlt = hppa_info->dlt_sec;
1927 sopd = hppa_info->opd_sec;
1928 spltrel = hppa_info->plt_rel_sec;
1929 sdltrel = hppa_info->dlt_rel_sec;
1930
15bda425
JL
1931 /* Incredible. It is actually necessary to NOT use the symbol's real
1932 value when building the dynamic symbol table for a shared library.
1933 At least for symbols that refer to functions.
1934
1935 We will store a new value and section index into the symbol long
1936 enough to output it into the dynamic symbol table, then we restore
1937 the original values (in elf64_hppa_link_output_symbol_hook). */
1938 if (dyn_h && dyn_h->want_opd)
1939 {
f12123c0 1940 BFD_ASSERT (sopd != NULL);
d663e1cd 1941
15bda425
JL
1942 /* Save away the original value and section index so that we
1943 can restore them later. */
1944 dyn_h->st_value = sym->st_value;
1945 dyn_h->st_shndx = sym->st_shndx;
1946
1947 /* For the dynamic symbol table entry, we want the value to be
1948 address of this symbol's entry within the .opd section. */
1949 sym->st_value = (dyn_h->opd_offset
1950 + sopd->output_offset
1951 + sopd->output_section->vma);
1952 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1953 sopd->output_section);
1954 }
1955
1956 /* Initialize a .plt entry if requested. */
1957 if (dyn_h && dyn_h->want_plt
1958 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1959 {
1960 bfd_vma value;
1961 Elf_Internal_Rela rel;
947216bf 1962 bfd_byte *loc;
15bda425 1963
f12123c0 1964 BFD_ASSERT (splt != NULL && spltrel != NULL);
d663e1cd 1965
15bda425
JL
1966 /* We do not actually care about the value in the PLT entry
1967 if we are creating a shared library and the symbol is
1968 still undefined, we create a dynamic relocation to fill
1969 in the correct value. */
1970 if (info->shared && h->root.type == bfd_link_hash_undefined)
1971 value = 0;
1972 else
1973 value = (h->root.u.def.value + h->root.u.def.section->vma);
1974
fe8bc63d 1975 /* Fill in the entry in the procedure linkage table.
15bda425
JL
1976
1977 The format of a plt entry is
fe8bc63d 1978 <funcaddr> <__gp>.
15bda425
JL
1979
1980 plt_offset is the offset within the PLT section at which to
fe8bc63d 1981 install the PLT entry.
15bda425
JL
1982
1983 We are modifying the in-memory PLT contents here, so we do not add
1984 in the output_offset of the PLT section. */
1985
1986 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
1987 value = _bfd_get_gp_value (splt->output_section->owner);
1988 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
1989
1990 /* Create a dynamic IPLT relocation for this entry.
1991
1992 We are creating a relocation in the output file's PLT section,
1993 which is included within the DLT secton. So we do need to include
1994 the PLT's output_offset in the computation of the relocation's
1995 address. */
1996 rel.r_offset = (dyn_h->plt_offset + splt->output_offset
1997 + splt->output_section->vma);
1998 rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
1999 rel.r_addend = 0;
2000
947216bf
AM
2001 loc = spltrel->contents;
2002 loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2003 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
15bda425
JL
2004 }
2005
2006 /* Initialize an external call stub entry if requested. */
2007 if (dyn_h && dyn_h->want_stub
2008 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
2009 {
2010 bfd_vma value;
2011 int insn;
b352eebf 2012 unsigned int max_offset;
15bda425 2013
f12123c0 2014 BFD_ASSERT (stub != NULL);
d663e1cd 2015
15bda425
JL
2016 /* Install the generic stub template.
2017
2018 We are modifying the contents of the stub section, so we do not
2019 need to include the stub section's output_offset here. */
2020 memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
2021
2022 /* Fix up the first ldd instruction.
2023
2024 We are modifying the contents of the STUB section in memory,
fe8bc63d 2025 so we do not need to include its output offset in this computation.
15bda425
JL
2026
2027 Note the plt_offset value is the value of the PLT entry relative to
2028 the start of the PLT section. These instructions will reference
2029 data relative to the value of __gp, which may not necessarily have
2030 the same address as the start of the PLT section.
2031
2032 gp_offset contains the offset of __gp within the PLT section. */
2033 value = dyn_h->plt_offset - hppa_info->gp_offset;
fe8bc63d 2034
15bda425 2035 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
b352eebf
AM
2036 if (output_bfd->arch_info->mach >= 25)
2037 {
2038 /* Wide mode allows 16 bit offsets. */
2039 max_offset = 32768;
2040 insn &= ~ 0xfff1;
dc810e39 2041 insn |= re_assemble_16 ((int) value);
b352eebf
AM
2042 }
2043 else
2044 {
2045 max_offset = 8192;
2046 insn &= ~ 0x3ff1;
dc810e39 2047 insn |= re_assemble_14 ((int) value);
b352eebf
AM
2048 }
2049
2050 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2051 {
2052 (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2053 dyn_h->root.string,
2054 (long) value);
b34976b6 2055 return FALSE;
b352eebf
AM
2056 }
2057
dc810e39 2058 bfd_put_32 (stub->owner, (bfd_vma) insn,
15bda425
JL
2059 stub->contents + dyn_h->stub_offset);
2060
2061 /* Fix up the second ldd instruction. */
b352eebf 2062 value += 8;
15bda425 2063 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
b352eebf
AM
2064 if (output_bfd->arch_info->mach >= 25)
2065 {
2066 insn &= ~ 0xfff1;
dc810e39 2067 insn |= re_assemble_16 ((int) value);
b352eebf
AM
2068 }
2069 else
2070 {
2071 insn &= ~ 0x3ff1;
dc810e39 2072 insn |= re_assemble_14 ((int) value);
b352eebf 2073 }
dc810e39 2074 bfd_put_32 (stub->owner, (bfd_vma) insn,
15bda425
JL
2075 stub->contents + dyn_h->stub_offset + 8);
2076 }
2077
b34976b6 2078 return TRUE;
15bda425
JL
2079}
2080
2081/* The .opd section contains FPTRs for each function this file
2082 exports. Initialize the FPTR entries. */
2083
b34976b6 2084static bfd_boolean
15bda425
JL
2085elf64_hppa_finalize_opd (dyn_h, data)
2086 struct elf64_hppa_dyn_hash_entry *dyn_h;
2087 PTR data;
2088{
2089 struct bfd_link_info *info = (struct bfd_link_info *)data;
2090 struct elf64_hppa_link_hash_table *hppa_info;
3db4b612 2091 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
15bda425
JL
2092 asection *sopd;
2093 asection *sopdrel;
2094
2095 hppa_info = elf64_hppa_hash_table (info);
2096 sopd = hppa_info->opd_sec;
2097 sopdrel = hppa_info->opd_rel_sec;
2098
3db4b612 2099 if (h && dyn_h->want_opd)
15bda425
JL
2100 {
2101 bfd_vma value;
2102
fe8bc63d 2103 /* The first two words of an .opd entry are zero.
15bda425
JL
2104
2105 We are modifying the contents of the OPD section in memory, so we
2106 do not need to include its output offset in this computation. */
2107 memset (sopd->contents + dyn_h->opd_offset, 0, 16);
2108
2109 value = (h->root.u.def.value
2110 + h->root.u.def.section->output_section->vma
2111 + h->root.u.def.section->output_offset);
2112
2113 /* The next word is the address of the function. */
2114 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
2115
2116 /* The last word is our local __gp value. */
2117 value = _bfd_get_gp_value (sopd->output_section->owner);
2118 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
2119 }
2120
2121 /* If we are generating a shared library, we must generate EPLT relocations
2122 for each entry in the .opd, even for static functions (they may have
2123 had their address taken). */
2124 if (info->shared && dyn_h && dyn_h->want_opd)
2125 {
947216bf
AM
2126 Elf_Internal_Rela rel;
2127 bfd_byte *loc;
15bda425
JL
2128 int dynindx;
2129
2130 /* We may need to do a relocation against a local symbol, in
2131 which case we have to look up it's dynamic symbol index off
2132 the local symbol hash table. */
2133 if (h && h->dynindx != -1)
2134 dynindx = h->dynindx;
2135 else
2136 dynindx
2137 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2138 dyn_h->sym_indx);
2139
2140 /* The offset of this relocation is the absolute address of the
2141 .opd entry for this symbol. */
2142 rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
2143 + sopd->output_section->vma);
2144
2145 /* If H is non-null, then we have an external symbol.
2146
2147 It is imperative that we use a different dynamic symbol for the
2148 EPLT relocation if the symbol has global scope.
2149
2150 In the dynamic symbol table, the function symbol will have a value
2151 which is address of the function's .opd entry.
2152
2153 Thus, we can not use that dynamic symbol for the EPLT relocation
2154 (if we did, the data in the .opd would reference itself rather
2155 than the actual address of the function). Instead we have to use
2156 a new dynamic symbol which has the same value as the original global
fe8bc63d 2157 function symbol.
15bda425
JL
2158
2159 We prefix the original symbol with a "." and use the new symbol in
2160 the EPLT relocation. This new symbol has already been recorded in
2161 the symbol table, we just have to look it up and use it.
2162
2163 We do not have such problems with static functions because we do
2164 not make their addresses in the dynamic symbol table point to
2165 the .opd entry. Ultimately this should be safe since a static
2166 function can not be directly referenced outside of its shared
2167 library.
2168
2169 We do have to play similar games for FPTR relocations in shared
2170 libraries, including those for static symbols. See the FPTR
2171 handling in elf64_hppa_finalize_dynreloc. */
2172 if (h)
2173 {
2174 char *new_name;
2175 struct elf_link_hash_entry *nh;
2176
2177 new_name = alloca (strlen (h->root.root.string) + 2);
2178 new_name[0] = '.';
2179 strcpy (new_name + 1, h->root.root.string);
2180
2181 nh = elf_link_hash_lookup (elf_hash_table (info),
b34976b6 2182 new_name, FALSE, FALSE, FALSE);
15bda425
JL
2183
2184 /* All we really want from the new symbol is its dynamic
2185 symbol index. */
2186 dynindx = nh->dynindx;
2187 }
2188
2189 rel.r_addend = 0;
2190 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2191
947216bf
AM
2192 loc = sopdrel->contents;
2193 loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
2194 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc);
15bda425 2195 }
b34976b6 2196 return TRUE;
15bda425
JL
2197}
2198
2199/* The .dlt section contains addresses for items referenced through the
2200 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2201 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2202
b34976b6 2203static bfd_boolean
15bda425
JL
2204elf64_hppa_finalize_dlt (dyn_h, data)
2205 struct elf64_hppa_dyn_hash_entry *dyn_h;
2206 PTR data;
2207{
2208 struct bfd_link_info *info = (struct bfd_link_info *)data;
2209 struct elf64_hppa_link_hash_table *hppa_info;
2210 asection *sdlt, *sdltrel;
3db4b612 2211 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
15bda425
JL
2212
2213 hppa_info = elf64_hppa_hash_table (info);
2214
2215 sdlt = hppa_info->dlt_sec;
2216 sdltrel = hppa_info->dlt_rel_sec;
2217
2218 /* H/DYN_H may refer to a local variable and we know it's
2219 address, so there is no need to create a relocation. Just install
2220 the proper value into the DLT, note this shortcut can not be
2221 skipped when building a shared library. */
3db4b612 2222 if (! info->shared && h && dyn_h->want_dlt)
15bda425
JL
2223 {
2224 bfd_vma value;
2225
2226 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
fe8bc63d 2227 to point to the FPTR entry in the .opd section.
15bda425
JL
2228
2229 We include the OPD's output offset in this computation as
2230 we are referring to an absolute address in the resulting
2231 object file. */
2232 if (dyn_h->want_opd)
2233 {
2234 value = (dyn_h->opd_offset
2235 + hppa_info->opd_sec->output_offset
2236 + hppa_info->opd_sec->output_section->vma);
2237 }
37f4508b
AM
2238 else if ((h->root.type == bfd_link_hash_defined
2239 || h->root.type == bfd_link_hash_defweak)
2240 && h->root.u.def.section)
15bda425 2241 {
3db4b612 2242 value = h->root.u.def.value + h->root.u.def.section->output_offset;
15bda425
JL
2243 if (h->root.u.def.section->output_section)
2244 value += h->root.u.def.section->output_section->vma;
2245 else
2246 value += h->root.u.def.section->vma;
2247 }
3db4b612
JL
2248 else
2249 /* We have an undefined function reference. */
2250 value = 0;
15bda425
JL
2251
2252 /* We do not need to include the output offset of the DLT section
2253 here because we are modifying the in-memory contents. */
2254 bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
2255 }
2256
4cc11e76 2257 /* Create a relocation for the DLT entry associated with this symbol.
15bda425
JL
2258 When building a shared library the symbol does not have to be dynamic. */
2259 if (dyn_h->want_dlt
2260 && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
2261 {
947216bf
AM
2262 Elf_Internal_Rela rel;
2263 bfd_byte *loc;
15bda425
JL
2264 int dynindx;
2265
2266 /* We may need to do a relocation against a local symbol, in
2267 which case we have to look up it's dynamic symbol index off
2268 the local symbol hash table. */
2269 if (h && h->dynindx != -1)
2270 dynindx = h->dynindx;
2271 else
2272 dynindx
2273 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2274 dyn_h->sym_indx);
2275
15bda425
JL
2276 /* Create a dynamic relocation for this entry. Do include the output
2277 offset of the DLT entry since we need an absolute address in the
2278 resulting object file. */
2279 rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
2280 + sdlt->output_section->vma);
2281 if (h && h->type == STT_FUNC)
2282 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2283 else
2284 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2285 rel.r_addend = 0;
2286
947216bf
AM
2287 loc = sdltrel->contents;
2288 loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2289 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc);
15bda425 2290 }
b34976b6 2291 return TRUE;
15bda425
JL
2292}
2293
2294/* Finalize the dynamic relocations. Specifically the FPTR relocations
2295 for dynamic functions used to initialize static data. */
2296
b34976b6 2297static bfd_boolean
15bda425
JL
2298elf64_hppa_finalize_dynreloc (dyn_h, data)
2299 struct elf64_hppa_dyn_hash_entry *dyn_h;
2300 PTR data;
2301{
2302 struct bfd_link_info *info = (struct bfd_link_info *)data;
2303 struct elf64_hppa_link_hash_table *hppa_info;
2304 struct elf_link_hash_entry *h;
2305 int dynamic_symbol;
2306
2307 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
2308
2309 if (!dynamic_symbol && !info->shared)
b34976b6 2310 return TRUE;
15bda425
JL
2311
2312 if (dyn_h->reloc_entries)
2313 {
2314 struct elf64_hppa_dyn_reloc_entry *rent;
2315 int dynindx;
2316
2317 hppa_info = elf64_hppa_hash_table (info);
2318 h = dyn_h->h;
2319
2320 /* We may need to do a relocation against a local symbol, in
2321 which case we have to look up it's dynamic symbol index off
2322 the local symbol hash table. */
2323 if (h && h->dynindx != -1)
2324 dynindx = h->dynindx;
2325 else
2326 dynindx
2327 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2328 dyn_h->sym_indx);
2329
2330 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
2331 {
947216bf
AM
2332 Elf_Internal_Rela rel;
2333 bfd_byte *loc;
15bda425 2334
d663e1cd
JL
2335 /* Allocate one iff we are building a shared library, the relocation
2336 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
2337 if (!info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2338 continue;
15bda425 2339
fe8bc63d 2340 /* Create a dynamic relocation for this entry.
15bda425
JL
2341
2342 We need the output offset for the reloc's section because
2343 we are creating an absolute address in the resulting object
2344 file. */
2345 rel.r_offset = (rent->offset + rent->sec->output_offset
2346 + rent->sec->output_section->vma);
2347
2348 /* An FPTR64 relocation implies that we took the address of
2349 a function and that the function has an entry in the .opd
2350 section. We want the FPTR64 relocation to reference the
2351 entry in .opd.
2352
2353 We could munge the symbol value in the dynamic symbol table
2354 (in fact we already do for functions with global scope) to point
2355 to the .opd entry. Then we could use that dynamic symbol in
2356 this relocation.
2357
2358 Or we could do something sensible, not munge the symbol's
2359 address and instead just use a different symbol to reference
2360 the .opd entry. At least that seems sensible until you
2361 realize there's no local dynamic symbols we can use for that
2362 purpose. Thus the hair in the check_relocs routine.
fe8bc63d 2363
15bda425
JL
2364 We use a section symbol recorded by check_relocs as the
2365 base symbol for the relocation. The addend is the difference
2366 between the section symbol and the address of the .opd entry. */
3db4b612 2367 if (info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
15bda425
JL
2368 {
2369 bfd_vma value, value2;
15bda425
JL
2370
2371 /* First compute the address of the opd entry for this symbol. */
2372 value = (dyn_h->opd_offset
2373 + hppa_info->opd_sec->output_section->vma
2374 + hppa_info->opd_sec->output_offset);
2375
2376 /* Compute the value of the start of the section with
2377 the relocation. */
2378 value2 = (rent->sec->output_section->vma
2379 + rent->sec->output_offset);
2380
2381 /* Compute the difference between the start of the section
2382 with the relocation and the opd entry. */
2383 value -= value2;
fe8bc63d 2384
15bda425
JL
2385 /* The result becomes the addend of the relocation. */
2386 rel.r_addend = value;
2387
2388 /* The section symbol becomes the symbol for the dynamic
2389 relocation. */
2390 dynindx
2391 = _bfd_elf_link_lookup_local_dynindx (info,
2392 rent->sec->owner,
2393 rent->sec_symndx);
2394 }
2395 else
2396 rel.r_addend = rent->addend;
2397
2398 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2399
947216bf
AM
2400 loc = hppa_info->other_rel_sec->contents;
2401 loc += (hppa_info->other_rel_sec->reloc_count++
2402 * sizeof (Elf64_External_Rela));
15bda425 2403 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
947216bf 2404 &rel, loc);
15bda425
JL
2405 }
2406 }
2407
b34976b6 2408 return TRUE;
15bda425
JL
2409}
2410
5ac81c74
JL
2411/* Used to decide how to sort relocs in an optimal manner for the
2412 dynamic linker, before writing them out. */
2413
2414static enum elf_reloc_type_class
2415elf64_hppa_reloc_type_class (rela)
2416 const Elf_Internal_Rela *rela;
2417{
2418 if (ELF64_R_SYM (rela->r_info) == 0)
2419 return reloc_class_relative;
2420
2421 switch ((int) ELF64_R_TYPE (rela->r_info))
2422 {
2423 case R_PARISC_IPLT:
2424 return reloc_class_plt;
2425 case R_PARISC_COPY:
2426 return reloc_class_copy;
2427 default:
2428 return reloc_class_normal;
2429 }
2430}
2431
15bda425
JL
2432/* Finish up the dynamic sections. */
2433
b34976b6 2434static bfd_boolean
15bda425
JL
2435elf64_hppa_finish_dynamic_sections (output_bfd, info)
2436 bfd *output_bfd;
2437 struct bfd_link_info *info;
2438{
2439 bfd *dynobj;
2440 asection *sdyn;
2441 struct elf64_hppa_link_hash_table *hppa_info;
2442
2443 hppa_info = elf64_hppa_hash_table (info);
2444
2445 /* Finalize the contents of the .opd section. */
2446 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2447 elf64_hppa_finalize_opd,
2448 info);
2449
2450 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2451 elf64_hppa_finalize_dynreloc,
2452 info);
2453
2454 /* Finalize the contents of the .dlt section. */
2455 dynobj = elf_hash_table (info)->dynobj;
2456 /* Finalize the contents of the .dlt section. */
2457 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2458 elf64_hppa_finalize_dlt,
2459 info);
2460
15bda425
JL
2461 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2462
2463 if (elf_hash_table (info)->dynamic_sections_created)
2464 {
2465 Elf64_External_Dyn *dyncon, *dynconend;
15bda425
JL
2466
2467 BFD_ASSERT (sdyn != NULL);
2468
2469 dyncon = (Elf64_External_Dyn *) sdyn->contents;
eea6121a 2470 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
15bda425
JL
2471 for (; dyncon < dynconend; dyncon++)
2472 {
2473 Elf_Internal_Dyn dyn;
2474 asection *s;
2475
2476 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2477
2478 switch (dyn.d_tag)
2479 {
2480 default:
2481 break;
2482
2483 case DT_HP_LOAD_MAP:
2484 /* Compute the absolute address of 16byte scratchpad area
2485 for the dynamic linker.
2486
2487 By convention the linker script will allocate the scratchpad
2488 area at the start of the .data section. So all we have to
2489 to is find the start of the .data section. */
2490 s = bfd_get_section_by_name (output_bfd, ".data");
2491 dyn.d_un.d_ptr = s->vma;
2492 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2493 break;
2494
2495 case DT_PLTGOT:
2496 /* HP's use PLTGOT to set the GOT register. */
2497 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2498 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2499 break;
2500
2501 case DT_JMPREL:
2502 s = hppa_info->plt_rel_sec;
2503 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2504 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2505 break;
2506
2507 case DT_PLTRELSZ:
2508 s = hppa_info->plt_rel_sec;
eea6121a 2509 dyn.d_un.d_val = s->size;
15bda425
JL
2510 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2511 break;
2512
2513 case DT_RELA:
2514 s = hppa_info->other_rel_sec;
eea6121a 2515 if (! s || ! s->size)
15bda425 2516 s = hppa_info->dlt_rel_sec;
eea6121a 2517 if (! s || ! s->size)
5ac81c74 2518 s = hppa_info->opd_rel_sec;
15bda425
JL
2519 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2520 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2521 break;
2522
2523 case DT_RELASZ:
2524 s = hppa_info->other_rel_sec;
eea6121a 2525 dyn.d_un.d_val = s->size;
15bda425 2526 s = hppa_info->dlt_rel_sec;
eea6121a 2527 dyn.d_un.d_val += s->size;
15bda425 2528 s = hppa_info->opd_rel_sec;
eea6121a 2529 dyn.d_un.d_val += s->size;
15bda425
JL
2530 /* There is some question about whether or not the size of
2531 the PLT relocs should be included here. HP's tools do
2532 it, so we'll emulate them. */
2533 s = hppa_info->plt_rel_sec;
eea6121a 2534 dyn.d_un.d_val += s->size;
15bda425
JL
2535 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2536 break;
2537
2538 }
2539 }
2540 }
2541
b34976b6 2542 return TRUE;
15bda425
JL
2543}
2544
15bda425
JL
2545/* Return the number of additional phdrs we will need.
2546
2547 The generic ELF code only creates PT_PHDRs for executables. The HP
fe8bc63d 2548 dynamic linker requires PT_PHDRs for dynamic libraries too.
15bda425
JL
2549
2550 This routine indicates that the backend needs one additional program
2551 header for that case.
2552
2553 Note we do not have access to the link info structure here, so we have
2554 to guess whether or not we are building a shared library based on the
2555 existence of a .interp section. */
2556
2557static int
2558elf64_hppa_additional_program_headers (abfd)
2559 bfd *abfd;
2560{
2561 asection *s;
2562
2563 /* If we are creating a shared library, then we have to create a
2564 PT_PHDR segment. HP's dynamic linker chokes without it. */
2565 s = bfd_get_section_by_name (abfd, ".interp");
2566 if (! s)
2567 return 1;
2568 return 0;
2569}
2570
2571/* Allocate and initialize any program headers required by this
2572 specific backend.
2573
2574 The generic ELF code only creates PT_PHDRs for executables. The HP
fe8bc63d 2575 dynamic linker requires PT_PHDRs for dynamic libraries too.
15bda425
JL
2576
2577 This allocates the PT_PHDR and initializes it in a manner suitable
fe8bc63d 2578 for the HP linker.
15bda425
JL
2579
2580 Note we do not have access to the link info structure here, so we have
2581 to guess whether or not we are building a shared library based on the
2582 existence of a .interp section. */
2583
b34976b6 2584static bfd_boolean
c84fca4d 2585elf64_hppa_modify_segment_map (abfd, info)
15bda425 2586 bfd *abfd;
c84fca4d 2587 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425 2588{
edd21aca 2589 struct elf_segment_map *m;
15bda425
JL
2590 asection *s;
2591
2592 s = bfd_get_section_by_name (abfd, ".interp");
2593 if (! s)
2594 {
2595 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2596 if (m->p_type == PT_PHDR)
2597 break;
2598 if (m == NULL)
2599 {
dc810e39
AM
2600 m = ((struct elf_segment_map *)
2601 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
15bda425 2602 if (m == NULL)
b34976b6 2603 return FALSE;
15bda425
JL
2604
2605 m->p_type = PT_PHDR;
2606 m->p_flags = PF_R | PF_X;
2607 m->p_flags_valid = 1;
2608 m->p_paddr_valid = 1;
2609 m->includes_phdrs = 1;
2610
2611 m->next = elf_tdata (abfd)->segment_map;
2612 elf_tdata (abfd)->segment_map = m;
2613 }
2614 }
2615
2616 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2617 if (m->p_type == PT_LOAD)
2618 {
0ba2a60e 2619 unsigned int i;
15bda425
JL
2620
2621 for (i = 0; i < m->count; i++)
2622 {
2623 /* The code "hint" is not really a hint. It is a requirement
2624 for certain versions of the HP dynamic linker. Worse yet,
2625 it must be set even if the shared library does not have
2626 any code in its "text" segment (thus the check for .hash
2627 to catch this situation). */
2628 if (m->sections[i]->flags & SEC_CODE
2629 || (strcmp (m->sections[i]->name, ".hash") == 0))
2630 m->p_flags |= (PF_X | PF_HP_CODE);
2631 }
2632 }
2633
b34976b6 2634 return TRUE;
15bda425
JL
2635}
2636
3fab46d0
AM
2637/* Called when writing out an object file to decide the type of a
2638 symbol. */
2639static int
2640elf64_hppa_elf_get_symbol_type (elf_sym, type)
2641 Elf_Internal_Sym *elf_sym;
2642 int type;
2643{
2644 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2645 return STT_PARISC_MILLI;
2646 else
2647 return type;
2648}
2649
d97a8924
DA
2650/* Support HP specific sections for core files. */
2651static bfd_boolean
2652elf64_hppa_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index,
2653 const char *typename)
2654{
927e625f
MK
2655 if (hdr->p_type == PT_HP_CORE_KERNEL)
2656 {
2657 asection *sect;
2658
2659 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename))
2660 return FALSE;
2661
2662 sect = bfd_make_section_anyway (abfd, ".kernel");
2663 if (sect == NULL)
2664 return FALSE;
2665 sect->size = hdr->p_filesz;
2666 sect->filepos = hdr->p_offset;
2667 sect->flags = SEC_HAS_CONTENTS | SEC_READONLY;
2668 return TRUE;
2669 }
2670
d97a8924
DA
2671 if (hdr->p_type == PT_HP_CORE_PROC)
2672 {
2673 int sig;
2674
2675 if (bfd_seek (abfd, hdr->p_offset, SEEK_SET) != 0)
2676 return FALSE;
2677 if (bfd_bread (&sig, 4, abfd) != 4)
2678 return FALSE;
2679
2680 elf_tdata (abfd)->core_signal = sig;
2681
927e625f 2682 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename))
d97a8924 2683 return FALSE;
927e625f
MK
2684
2685 /* GDB uses the ".reg" section to read register contents. */
2686 return _bfd_elfcore_make_pseudosection (abfd, ".reg", hdr->p_filesz,
2687 hdr->p_offset);
d97a8924
DA
2688 }
2689
2690 if (hdr->p_type == PT_HP_CORE_LOADABLE
2691 || hdr->p_type == PT_HP_CORE_STACK
2692 || hdr->p_type == PT_HP_CORE_MMF)
2693 hdr->p_type = PT_LOAD;
2694
2695 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, typename);
2696}
2697
b35d266b 2698static const struct bfd_elf_special_section elf64_hppa_special_sections[] =
2f89ff8d 2699{
4fc35ca9
DA
2700 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2701 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2702 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2703 { ".dlt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2704 { ".sdata", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2705 { ".sbss", 5, 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2706 { ".tbss", 5, 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_WEAKORDER },
2707 { NULL, 0, 0, 0, 0 }
2f89ff8d
L
2708};
2709
15bda425
JL
2710/* The hash bucket size is the standard one, namely 4. */
2711
2712const struct elf_size_info hppa64_elf_size_info =
2713{
2714 sizeof (Elf64_External_Ehdr),
2715 sizeof (Elf64_External_Phdr),
2716 sizeof (Elf64_External_Shdr),
2717 sizeof (Elf64_External_Rel),
2718 sizeof (Elf64_External_Rela),
2719 sizeof (Elf64_External_Sym),
2720 sizeof (Elf64_External_Dyn),
2721 sizeof (Elf_External_Note),
2722 4,
2723 1,
45d6a902 2724 64, 3,
15bda425
JL
2725 ELFCLASS64, EV_CURRENT,
2726 bfd_elf64_write_out_phdrs,
2727 bfd_elf64_write_shdrs_and_ehdr,
2728 bfd_elf64_write_relocs,
73ff0d56 2729 bfd_elf64_swap_symbol_in,
15bda425
JL
2730 bfd_elf64_swap_symbol_out,
2731 bfd_elf64_slurp_reloc_table,
2732 bfd_elf64_slurp_symbol_table,
2733 bfd_elf64_swap_dyn_in,
2734 bfd_elf64_swap_dyn_out,
947216bf
AM
2735 bfd_elf64_swap_reloc_in,
2736 bfd_elf64_swap_reloc_out,
2737 bfd_elf64_swap_reloca_in,
2738 bfd_elf64_swap_reloca_out
15bda425
JL
2739};
2740
2741#define TARGET_BIG_SYM bfd_elf64_hppa_vec
2742#define TARGET_BIG_NAME "elf64-hppa"
2743#define ELF_ARCH bfd_arch_hppa
2744#define ELF_MACHINE_CODE EM_PARISC
2745/* This is not strictly correct. The maximum page size for PA2.0 is
2746 64M. But everything still uses 4k. */
2747#define ELF_MAXPAGESIZE 0x1000
2748#define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2749#define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
2750#define elf_info_to_howto elf_hppa_info_to_howto
2751#define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
2752
2753#define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
2754#define elf_backend_object_p elf64_hppa_object_p
2755#define elf_backend_final_write_processing \
2756 elf_hppa_final_write_processing
99c79b2e 2757#define elf_backend_fake_sections elf_hppa_fake_sections
15bda425
JL
2758#define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
2759
f0fe0e16 2760#define elf_backend_relocate_section elf_hppa_relocate_section
15bda425
JL
2761
2762#define bfd_elf64_bfd_final_link elf_hppa_final_link
2763
2764#define elf_backend_create_dynamic_sections \
2765 elf64_hppa_create_dynamic_sections
2766#define elf_backend_post_process_headers elf64_hppa_post_process_headers
2767
2768#define elf_backend_adjust_dynamic_symbol \
2769 elf64_hppa_adjust_dynamic_symbol
2770
2771#define elf_backend_size_dynamic_sections \
2772 elf64_hppa_size_dynamic_sections
2773
2774#define elf_backend_finish_dynamic_symbol \
2775 elf64_hppa_finish_dynamic_symbol
2776#define elf_backend_finish_dynamic_sections \
2777 elf64_hppa_finish_dynamic_sections
2778
2779/* Stuff for the BFD linker: */
2780#define bfd_elf64_bfd_link_hash_table_create \
2781 elf64_hppa_hash_table_create
2782
2783#define elf_backend_check_relocs \
2784 elf64_hppa_check_relocs
2785
2786#define elf_backend_size_info \
2787 hppa64_elf_size_info
2788
2789#define elf_backend_additional_program_headers \
2790 elf64_hppa_additional_program_headers
2791
2792#define elf_backend_modify_segment_map \
2793 elf64_hppa_modify_segment_map
2794
2795#define elf_backend_link_output_symbol_hook \
2796 elf64_hppa_link_output_symbol_hook
2797
15bda425
JL
2798#define elf_backend_want_got_plt 0
2799#define elf_backend_plt_readonly 0
2800#define elf_backend_want_plt_sym 0
2801#define elf_backend_got_header_size 0
b34976b6
AM
2802#define elf_backend_type_change_ok TRUE
2803#define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
2804#define elf_backend_reloc_type_class elf64_hppa_reloc_type_class
2805#define elf_backend_rela_normal 1
29ef7005 2806#define elf_backend_special_sections elf64_hppa_special_sections
8a696751 2807#define elf_backend_action_discarded elf_hppa_action_discarded
d97a8924 2808#define elf_backend_section_from_phdr elf64_hppa_section_from_phdr
15bda425
JL
2809
2810#include "elf64-target.h"
d952f17a
AM
2811
2812#undef TARGET_BIG_SYM
2813#define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
2814#undef TARGET_BIG_NAME
2815#define TARGET_BIG_NAME "elf64-hppa-linux"
2816
29ef7005 2817#undef elf_backend_special_sections
2f89ff8d 2818
d952f17a
AM
2819#define INCLUDED_TARGET_FILE 1
2820#include "elf64-target.h"
This page took 0.456957 seconds and 4 git commands to generate.