*** empty log message ***
[deliverable/binutils-gdb.git] / bfd / elf64-sparc.c
CommitLineData
252b5132 1/* SPARC-specific support for 64-bit ELF
f0abc2a1 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
5a580b3a 3 2003, 2004 Free Software Foundation, Inc.
252b5132 4
ae9a127f 5 This file is part of BFD, the Binary File Descriptor library.
252b5132 6
ae9a127f
NC
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
252b5132 11
ae9a127f
NC
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
252b5132 16
ae9a127f
NC
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
252b5132
RH
20
21#include "bfd.h"
22#include "sysdep.h"
23#include "libbfd.h"
24#include "elf-bfd.h"
f7775d95 25#include "opcode/sparc.h"
252b5132
RH
26
27/* This is defined if one wants to build upward compatible binaries
28 with the original sparc64-elf toolchain. The support is kept in for
29 now but is turned off by default. dje 970930 */
30/*#define SPARC64_OLD_RELOCS*/
31
32#include "elf/sparc.h"
33
34/* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35#define MINUS_ONE (~ (bfd_vma) 0)
36
587ff49e 37static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
99c79b2e
AJ
38 PARAMS ((bfd *));
39static bfd_reloc_status_type init_insn_reloc
40 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *,
41 bfd *, bfd_vma *, bfd_vma *));
252b5132
RH
42static reloc_howto_type *sparc64_elf_reloc_type_lookup
43 PARAMS ((bfd *, bfd_reloc_code_real_type));
44static void sparc64_elf_info_to_howto
45 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
46
47static void sparc64_elf_build_plt
99c79b2e 48 PARAMS ((bfd *, unsigned char *, int));
252b5132 49static bfd_vma sparc64_elf_plt_entry_offset
dc810e39 50 PARAMS ((bfd_vma));
252b5132 51static bfd_vma sparc64_elf_plt_ptr_offset
dc810e39 52 PARAMS ((bfd_vma, bfd_vma));
252b5132 53
b34976b6 54static bfd_boolean sparc64_elf_check_relocs
99c79b2e
AJ
55 PARAMS ((bfd *, struct bfd_link_info *, asection *sec,
56 const Elf_Internal_Rela *));
b34976b6 57static bfd_boolean sparc64_elf_adjust_dynamic_symbol
99c79b2e 58 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
b34976b6 59static bfd_boolean sparc64_elf_size_dynamic_sections
99c79b2e 60 PARAMS ((bfd *, struct bfd_link_info *));
587ff49e
RH
61static int sparc64_elf_get_symbol_type
62 PARAMS (( Elf_Internal_Sym *, int));
b34976b6 63static bfd_boolean sparc64_elf_add_symbol_hook
555cd476 64 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Sym *,
99c79b2e 65 const char **, flagword *, asection **, bfd_vma *));
b34976b6 66static bfd_boolean sparc64_elf_output_arch_syms
5d964dfa 67 PARAMS ((bfd *, struct bfd_link_info *, PTR,
754021d0
AM
68 bfd_boolean (*) (PTR, const char *, Elf_Internal_Sym *,
69 asection *, struct elf_link_hash_entry *)));
587ff49e
RH
70static void sparc64_elf_symbol_processing
71 PARAMS ((bfd *, asymbol *));
252b5132 72
b34976b6 73static bfd_boolean sparc64_elf_merge_private_bfd_data
252b5132
RH
74 PARAMS ((bfd *, bfd *));
75
b34976b6 76static bfd_boolean sparc64_elf_fake_sections
947216bf 77 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
0594c12d 78
99c79b2e
AJ
79static const char *sparc64_elf_print_symbol_all
80 PARAMS ((bfd *, PTR, asymbol *));
f0abc2a1
AM
81static bfd_boolean sparc64_elf_new_section_hook
82 PARAMS ((bfd *, asection *));
b34976b6
AM
83static bfd_boolean sparc64_elf_relax_section
84 PARAMS ((bfd *, asection *, struct bfd_link_info *, bfd_boolean *));
85static bfd_boolean sparc64_elf_relocate_section
252b5132
RH
86 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
87 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
b34976b6 88static bfd_boolean sparc64_elf_finish_dynamic_symbol
99c79b2e
AJ
89 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
90 Elf_Internal_Sym *));
b34976b6 91static bfd_boolean sparc64_elf_finish_dynamic_sections
99c79b2e 92 PARAMS ((bfd *, struct bfd_link_info *));
b34976b6 93static bfd_boolean sparc64_elf_object_p PARAMS ((bfd *));
f65054f7
RH
94static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
95static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
b34976b6
AM
96static bfd_boolean sparc64_elf_slurp_one_reloc_table
97 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, bfd_boolean));
98static bfd_boolean sparc64_elf_slurp_reloc_table
99 PARAMS ((bfd *, asection *, asymbol **, bfd_boolean));
3e1d7f19
JJ
100static long sparc64_elf_canonicalize_reloc
101 PARAMS ((bfd *, asection *, arelent **, asymbol **));
f65054f7
RH
102static long sparc64_elf_canonicalize_dynamic_reloc
103 PARAMS ((bfd *, arelent **, asymbol **));
104static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
f51e552e
AM
105static enum elf_reloc_type_class sparc64_elf_reloc_type_class
106 PARAMS ((const Elf_Internal_Rela *));
252b5132
RH
107\f
108/* The relocation "howto" table. */
109
110static bfd_reloc_status_type sparc_elf_notsup_reloc
111 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
112static bfd_reloc_status_type sparc_elf_wdisp16_reloc
113 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
114static bfd_reloc_status_type sparc_elf_hix22_reloc
115 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
116static bfd_reloc_status_type sparc_elf_lox10_reloc
117 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
118
119static reloc_howto_type sparc64_elf_howto_table[] =
120{
b34976b6
AM
121 HOWTO(R_SPARC_NONE, 0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_NONE", FALSE,0,0x00000000,TRUE),
122 HOWTO(R_SPARC_8, 0,0, 8,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_8", FALSE,0,0x000000ff,TRUE),
123 HOWTO(R_SPARC_16, 0,1,16,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_16", FALSE,0,0x0000ffff,TRUE),
124 HOWTO(R_SPARC_32, 0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_32", FALSE,0,0xffffffff,TRUE),
125 HOWTO(R_SPARC_DISP8, 0,0, 8,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP8", FALSE,0,0x000000ff,TRUE),
126 HOWTO(R_SPARC_DISP16, 0,1,16,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP16", FALSE,0,0x0000ffff,TRUE),
127 HOWTO(R_SPARC_DISP32, 0,2,32,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP32", FALSE,0,0xffffffff,TRUE),
128 HOWTO(R_SPARC_WDISP30, 2,2,30,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP30", FALSE,0,0x3fffffff,TRUE),
129 HOWTO(R_SPARC_WDISP22, 2,2,22,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP22", FALSE,0,0x003fffff,TRUE),
130 HOWTO(R_SPARC_HI22, 10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HI22", FALSE,0,0x003fffff,TRUE),
131 HOWTO(R_SPARC_22, 0,2,22,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_22", FALSE,0,0x003fffff,TRUE),
132 HOWTO(R_SPARC_13, 0,2,13,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_13", FALSE,0,0x00001fff,TRUE),
133 HOWTO(R_SPARC_LO10, 0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LO10", FALSE,0,0x000003ff,TRUE),
134 HOWTO(R_SPARC_GOT10, 0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT10", FALSE,0,0x000003ff,TRUE),
135 HOWTO(R_SPARC_GOT13, 0,2,13,FALSE,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_GOT13", FALSE,0,0x00001fff,TRUE),
136 HOWTO(R_SPARC_GOT22, 10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT22", FALSE,0,0x003fffff,TRUE),
137 HOWTO(R_SPARC_PC10, 0,2,10,TRUE, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC10", FALSE,0,0x000003ff,TRUE),
138 HOWTO(R_SPARC_PC22, 10,2,22,TRUE, 0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PC22", FALSE,0,0x003fffff,TRUE),
139 HOWTO(R_SPARC_WPLT30, 2,2,30,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WPLT30", FALSE,0,0x3fffffff,TRUE),
140 HOWTO(R_SPARC_COPY, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_COPY", FALSE,0,0x00000000,TRUE),
141 HOWTO(R_SPARC_GLOB_DAT, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GLOB_DAT",FALSE,0,0x00000000,TRUE),
142 HOWTO(R_SPARC_JMP_SLOT, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_JMP_SLOT",FALSE,0,0x00000000,TRUE),
143 HOWTO(R_SPARC_RELATIVE, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_RELATIVE",FALSE,0,0x00000000,TRUE),
144 HOWTO(R_SPARC_UA32, 0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA32", FALSE,0,0xffffffff,TRUE),
252b5132 145#ifndef SPARC64_OLD_RELOCS
b34976b6 146 HOWTO(R_SPARC_PLT32, 0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT32", FALSE,0,0xffffffff,TRUE),
252b5132 147 /* These aren't implemented yet. */
b34976b6
AM
148 HOWTO(R_SPARC_HIPLT22, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_HIPLT22", FALSE,0,0x00000000,TRUE),
149 HOWTO(R_SPARC_LOPLT10, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_LOPLT10", FALSE,0,0x00000000,TRUE),
150 HOWTO(R_SPARC_PCPLT32, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT32", FALSE,0,0x00000000,TRUE),
151 HOWTO(R_SPARC_PCPLT22, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT22", FALSE,0,0x00000000,TRUE),
152 HOWTO(R_SPARC_PCPLT10, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT10", FALSE,0,0x00000000,TRUE),
252b5132 153#endif
b34976b6
AM
154 HOWTO(R_SPARC_10, 0,2,10,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_10", FALSE,0,0x000003ff,TRUE),
155 HOWTO(R_SPARC_11, 0,2,11,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_11", FALSE,0,0x000007ff,TRUE),
156 HOWTO(R_SPARC_64, 0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_64", FALSE,0,MINUS_ONE, TRUE),
157 HOWTO(R_SPARC_OLO10, 0,2,13,FALSE,0,complain_overflow_signed, sparc_elf_notsup_reloc, "R_SPARC_OLO10", FALSE,0,0x00001fff,TRUE),
158 HOWTO(R_SPARC_HH22, 42,2,22,FALSE,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_HH22", FALSE,0,0x003fffff,TRUE),
159 HOWTO(R_SPARC_HM10, 32,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HM10", FALSE,0,0x000003ff,TRUE),
160 HOWTO(R_SPARC_LM22, 10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LM22", FALSE,0,0x003fffff,TRUE),
161 HOWTO(R_SPARC_PC_HH22, 42,2,22,TRUE, 0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_PC_HH22", FALSE,0,0x003fffff,TRUE),
162 HOWTO(R_SPARC_PC_HM10, 32,2,10,TRUE, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_HM10", FALSE,0,0x000003ff,TRUE),
163 HOWTO(R_SPARC_PC_LM22, 10,2,22,TRUE, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_LM22", FALSE,0,0x003fffff,TRUE),
164 HOWTO(R_SPARC_WDISP16, 2,2,16,TRUE, 0,complain_overflow_signed, sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", FALSE,0,0x00000000,TRUE),
165 HOWTO(R_SPARC_WDISP19, 2,2,19,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP19", FALSE,0,0x0007ffff,TRUE),
166 HOWTO(R_SPARC_UNUSED_42, 0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UNUSED_42",FALSE,0,0x00000000,TRUE),
167 HOWTO(R_SPARC_7, 0,2, 7,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_7", FALSE,0,0x0000007f,TRUE),
168 HOWTO(R_SPARC_5, 0,2, 5,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_5", FALSE,0,0x0000001f,TRUE),
169 HOWTO(R_SPARC_6, 0,2, 6,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_6", FALSE,0,0x0000003f,TRUE),
170 HOWTO(R_SPARC_DISP64, 0,4,64,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP64", FALSE,0,MINUS_ONE, TRUE),
171 HOWTO(R_SPARC_PLT64, 0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT64", FALSE,0,MINUS_ONE, TRUE),
172 HOWTO(R_SPARC_HIX22, 0,4, 0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_HIX22", FALSE,0,MINUS_ONE, FALSE),
173 HOWTO(R_SPARC_LOX10, 0,4, 0,FALSE,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_LOX10", FALSE,0,MINUS_ONE, FALSE),
174 HOWTO(R_SPARC_H44, 22,2,22,FALSE,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_H44", FALSE,0,0x003fffff,FALSE),
175 HOWTO(R_SPARC_M44, 12,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_M44", FALSE,0,0x000003ff,FALSE),
176 HOWTO(R_SPARC_L44, 0,2,13,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_L44", FALSE,0,0x00000fff,FALSE),
177 HOWTO(R_SPARC_REGISTER, 0,4, 0,FALSE,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",FALSE,0,MINUS_ONE, FALSE),
178 HOWTO(R_SPARC_UA64, 0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA64", FALSE,0,MINUS_ONE, TRUE),
b9734f35
JJ
179 HOWTO(R_SPARC_UA16, 0,1,16,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA16", FALSE,0,0x0000ffff,TRUE),
180 HOWTO(R_SPARC_TLS_GD_HI22,10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_HI22",FALSE,0,0x003fffff,TRUE),
181 HOWTO(R_SPARC_TLS_GD_LO10,0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_LO10",FALSE,0,0x000003ff,TRUE),
182 HOWTO(R_SPARC_TLS_GD_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_ADD",FALSE,0,0x00000000,TRUE),
183 HOWTO(R_SPARC_TLS_GD_CALL,2,2,30,TRUE,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_CALL",FALSE,0,0x3fffffff,TRUE),
184 HOWTO(R_SPARC_TLS_LDM_HI22,10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_HI22",FALSE,0,0x003fffff,TRUE),
185 HOWTO(R_SPARC_TLS_LDM_LO10,0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_LO10",FALSE,0,0x000003ff,TRUE),
186 HOWTO(R_SPARC_TLS_LDM_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_ADD",FALSE,0,0x00000000,TRUE),
187 HOWTO(R_SPARC_TLS_LDM_CALL,2,2,30,TRUE,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_CALL",FALSE,0,0x3fffffff,TRUE),
188 HOWTO(R_SPARC_TLS_LDO_HIX22,0,2,0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc,"R_SPARC_TLS_LDO_HIX22",FALSE,0,0x003fffff, FALSE),
189 HOWTO(R_SPARC_TLS_LDO_LOX10,0,2,0,FALSE,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_TLS_LDO_LOX10",FALSE,0,0x000003ff, FALSE),
190 HOWTO(R_SPARC_TLS_LDO_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDO_ADD",FALSE,0,0x00000000,TRUE),
191 HOWTO(R_SPARC_TLS_IE_HI22,10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_HI22",FALSE,0,0x003fffff,TRUE),
192 HOWTO(R_SPARC_TLS_IE_LO10,0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_LO10",FALSE,0,0x000003ff,TRUE),
193 HOWTO(R_SPARC_TLS_IE_LD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_LD",FALSE,0,0x00000000,TRUE),
194 HOWTO(R_SPARC_TLS_IE_LDX,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_LDX",FALSE,0,0x00000000,TRUE),
195 HOWTO(R_SPARC_TLS_IE_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_ADD",FALSE,0,0x00000000,TRUE),
196 HOWTO(R_SPARC_TLS_LE_HIX22,0,2,0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_TLS_LE_HIX22",FALSE,0,0x003fffff, FALSE),
197 HOWTO(R_SPARC_TLS_LE_LOX10,0,2,0,FALSE,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_TLS_LE_LOX10",FALSE,0,0x000003ff, FALSE),
198 HOWTO(R_SPARC_TLS_DTPMOD32,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_DTPMOD32",FALSE,0,0x00000000,TRUE),
199 HOWTO(R_SPARC_TLS_DTPMOD64,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_DTPMOD64",FALSE,0,0x00000000,TRUE),
200 HOWTO(R_SPARC_TLS_DTPOFF32,0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_TLS_DTPOFF32",FALSE,0,0xffffffff,TRUE),
201 HOWTO(R_SPARC_TLS_DTPOFF64,0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_TLS_DTPOFF64",FALSE,0,MINUS_ONE,TRUE),
202 HOWTO(R_SPARC_TLS_TPOFF32,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_TPOFF32",FALSE,0,0x00000000,TRUE),
203 HOWTO(R_SPARC_TLS_TPOFF64,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_TPOFF64",FALSE,0,0x00000000,TRUE)
252b5132
RH
204};
205
206struct elf_reloc_map {
207 bfd_reloc_code_real_type bfd_reloc_val;
208 unsigned char elf_reloc_val;
209};
210
dc810e39 211static const struct elf_reloc_map sparc_reloc_map[] =
252b5132
RH
212{
213 { BFD_RELOC_NONE, R_SPARC_NONE, },
214 { BFD_RELOC_16, R_SPARC_16, },
bd5e6e7e 215 { BFD_RELOC_16_PCREL, R_SPARC_DISP16 },
252b5132
RH
216 { BFD_RELOC_8, R_SPARC_8 },
217 { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
218 { BFD_RELOC_CTOR, R_SPARC_64 },
219 { BFD_RELOC_32, R_SPARC_32 },
220 { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
221 { BFD_RELOC_HI22, R_SPARC_HI22 },
222 { BFD_RELOC_LO10, R_SPARC_LO10, },
223 { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
bd5e6e7e 224 { BFD_RELOC_64_PCREL, R_SPARC_DISP64 },
252b5132
RH
225 { BFD_RELOC_SPARC22, R_SPARC_22 },
226 { BFD_RELOC_SPARC13, R_SPARC_13 },
227 { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
228 { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
229 { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
230 { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
231 { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
232 { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
233 { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
234 { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
235 { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
236 { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
237 { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
0f2712ed
NC
238 { BFD_RELOC_SPARC_UA16, R_SPARC_UA16 },
239 { BFD_RELOC_SPARC_UA32, R_SPARC_UA32 },
240 { BFD_RELOC_SPARC_UA64, R_SPARC_UA64 },
241 { BFD_RELOC_SPARC_10, R_SPARC_10 },
242 { BFD_RELOC_SPARC_11, R_SPARC_11 },
243 { BFD_RELOC_SPARC_64, R_SPARC_64 },
244 { BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10 },
245 { BFD_RELOC_SPARC_HH22, R_SPARC_HH22 },
246 { BFD_RELOC_SPARC_HM10, R_SPARC_HM10 },
247 { BFD_RELOC_SPARC_LM22, R_SPARC_LM22 },
248 { BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22 },
249 { BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10 },
250 { BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22 },
251 { BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16 },
252 { BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19 },
253 { BFD_RELOC_SPARC_7, R_SPARC_7 },
254 { BFD_RELOC_SPARC_5, R_SPARC_5 },
255 { BFD_RELOC_SPARC_6, R_SPARC_6 },
256 { BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64 },
b9734f35
JJ
257 { BFD_RELOC_SPARC_TLS_GD_HI22, R_SPARC_TLS_GD_HI22 },
258 { BFD_RELOC_SPARC_TLS_GD_LO10, R_SPARC_TLS_GD_LO10 },
259 { BFD_RELOC_SPARC_TLS_GD_ADD, R_SPARC_TLS_GD_ADD },
260 { BFD_RELOC_SPARC_TLS_GD_CALL, R_SPARC_TLS_GD_CALL },
261 { BFD_RELOC_SPARC_TLS_LDM_HI22, R_SPARC_TLS_LDM_HI22 },
262 { BFD_RELOC_SPARC_TLS_LDM_LO10, R_SPARC_TLS_LDM_LO10 },
263 { BFD_RELOC_SPARC_TLS_LDM_ADD, R_SPARC_TLS_LDM_ADD },
264 { BFD_RELOC_SPARC_TLS_LDM_CALL, R_SPARC_TLS_LDM_CALL },
265 { BFD_RELOC_SPARC_TLS_LDO_HIX22, R_SPARC_TLS_LDO_HIX22 },
266 { BFD_RELOC_SPARC_TLS_LDO_LOX10, R_SPARC_TLS_LDO_LOX10 },
267 { BFD_RELOC_SPARC_TLS_LDO_ADD, R_SPARC_TLS_LDO_ADD },
268 { BFD_RELOC_SPARC_TLS_IE_HI22, R_SPARC_TLS_IE_HI22 },
269 { BFD_RELOC_SPARC_TLS_IE_LO10, R_SPARC_TLS_IE_LO10 },
270 { BFD_RELOC_SPARC_TLS_IE_LD, R_SPARC_TLS_IE_LD },
271 { BFD_RELOC_SPARC_TLS_IE_LDX, R_SPARC_TLS_IE_LDX },
272 { BFD_RELOC_SPARC_TLS_IE_ADD, R_SPARC_TLS_IE_ADD },
273 { BFD_RELOC_SPARC_TLS_LE_HIX22, R_SPARC_TLS_LE_HIX22 },
274 { BFD_RELOC_SPARC_TLS_LE_LOX10, R_SPARC_TLS_LE_LOX10 },
275 { BFD_RELOC_SPARC_TLS_DTPMOD32, R_SPARC_TLS_DTPMOD32 },
276 { BFD_RELOC_SPARC_TLS_DTPMOD64, R_SPARC_TLS_DTPMOD64 },
277 { BFD_RELOC_SPARC_TLS_DTPOFF32, R_SPARC_TLS_DTPOFF32 },
278 { BFD_RELOC_SPARC_TLS_DTPOFF64, R_SPARC_TLS_DTPOFF64 },
279 { BFD_RELOC_SPARC_TLS_TPOFF32, R_SPARC_TLS_TPOFF32 },
280 { BFD_RELOC_SPARC_TLS_TPOFF64, R_SPARC_TLS_TPOFF64 },
bd5e6e7e
JJ
281#ifndef SPARC64_OLD_RELOCS
282 { BFD_RELOC_SPARC_PLT32, R_SPARC_PLT32 },
283#endif
0f2712ed
NC
284 { BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64 },
285 { BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22 },
286 { BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10 },
287 { BFD_RELOC_SPARC_H44, R_SPARC_H44 },
288 { BFD_RELOC_SPARC_M44, R_SPARC_M44 },
289 { BFD_RELOC_SPARC_L44, R_SPARC_L44 },
290 { BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER }
252b5132
RH
291};
292
293static reloc_howto_type *
294sparc64_elf_reloc_type_lookup (abfd, code)
6c08d697 295 bfd *abfd ATTRIBUTE_UNUSED;
252b5132
RH
296 bfd_reloc_code_real_type code;
297{
298 unsigned int i;
299 for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
300 {
301 if (sparc_reloc_map[i].bfd_reloc_val == code)
302 return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
303 }
304 return 0;
305}
306
307static void
308sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
6c08d697 309 bfd *abfd ATTRIBUTE_UNUSED;
252b5132 310 arelent *cache_ptr;
947216bf 311 Elf_Internal_Rela *dst;
252b5132 312{
f65054f7
RH
313 BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
314 cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
315}
316\f
3e1d7f19
JJ
317struct sparc64_elf_section_data
318{
319 struct bfd_elf_section_data elf;
320 unsigned int do_relax, reloc_count;
321};
322
323#define sec_do_relax(sec) \
324 ((struct sparc64_elf_section_data *) elf_section_data (sec))->do_relax
325#define canon_reloc_count(sec) \
326 ((struct sparc64_elf_section_data *) elf_section_data (sec))->reloc_count
327
f65054f7
RH
328/* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
329 section can represent up to two relocs, we must tell the user to allocate
330 more space. */
435b1e90 331
f65054f7
RH
332static long
333sparc64_elf_get_reloc_upper_bound (abfd, sec)
6c08d697 334 bfd *abfd ATTRIBUTE_UNUSED;
f65054f7
RH
335 asection *sec;
336{
337 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
338}
339
340static long
341sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
342 bfd *abfd;
343{
344 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
345}
346
435b1e90 347/* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
f65054f7
RH
348 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
349 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
350 for the same location, R_SPARC_LO10 and R_SPARC_13. */
351
b34976b6 352static bfd_boolean
f65054f7
RH
353sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
354 bfd *abfd;
355 asection *asect;
356 Elf_Internal_Shdr *rel_hdr;
357 asymbol **symbols;
b34976b6 358 bfd_boolean dynamic;
f65054f7 359{
f65054f7
RH
360 PTR allocated = NULL;
361 bfd_byte *native_relocs;
362 arelent *relent;
363 unsigned int i;
364 int entsize;
365 bfd_size_type count;
366 arelent *relents;
367
dc810e39 368 allocated = (PTR) bfd_malloc (rel_hdr->sh_size);
f65054f7
RH
369 if (allocated == NULL)
370 goto error_return;
371
372 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
dc810e39 373 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
f65054f7
RH
374 goto error_return;
375
376 native_relocs = (bfd_byte *) allocated;
377
3e1d7f19 378 relents = asect->relocation + canon_reloc_count (asect);
f65054f7
RH
379
380 entsize = rel_hdr->sh_entsize;
381 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
435b1e90 382
f65054f7
RH
383 count = rel_hdr->sh_size / entsize;
384
385 for (i = 0, relent = relents; i < count;
386 i++, relent++, native_relocs += entsize)
387 {
388 Elf_Internal_Rela rela;
389
947216bf 390 bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela);
f65054f7
RH
391
392 /* The address of an ELF reloc is section relative for an object
393 file, and absolute for an executable file or shared library.
394 The address of a normal BFD reloc is always section relative,
395 and the address of a dynamic reloc is absolute.. */
396 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
397 relent->address = rela.r_offset;
398 else
399 relent->address = rela.r_offset - asect->vma;
400
401 if (ELF64_R_SYM (rela.r_info) == 0)
402 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
403 else
404 {
405 asymbol **ps, *s;
406
407 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
408 s = *ps;
409
410 /* Canonicalize ELF section symbols. FIXME: Why? */
411 if ((s->flags & BSF_SECTION_SYM) == 0)
412 relent->sym_ptr_ptr = ps;
413 else
414 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
415 }
416
417 relent->addend = rela.r_addend;
418
419 BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
420 if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
421 {
422 relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
423 relent[1].address = relent->address;
424 relent++;
425 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
426 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
427 relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
428 }
429 else
430 relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
431 }
432
3e1d7f19 433 canon_reloc_count (asect) += relent - relents;
f65054f7
RH
434
435 if (allocated != NULL)
436 free (allocated);
437
b34976b6 438 return TRUE;
f65054f7
RH
439
440 error_return:
441 if (allocated != NULL)
442 free (allocated);
b34976b6 443 return FALSE;
f65054f7
RH
444}
445
446/* Read in and swap the external relocs. */
447
b34976b6 448static bfd_boolean
f65054f7
RH
449sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
450 bfd *abfd;
451 asection *asect;
452 asymbol **symbols;
b34976b6 453 bfd_boolean dynamic;
f65054f7
RH
454{
455 struct bfd_elf_section_data * const d = elf_section_data (asect);
456 Elf_Internal_Shdr *rel_hdr;
457 Elf_Internal_Shdr *rel_hdr2;
dc810e39 458 bfd_size_type amt;
f65054f7
RH
459
460 if (asect->relocation != NULL)
b34976b6 461 return TRUE;
f65054f7
RH
462
463 if (! dynamic)
464 {
465 if ((asect->flags & SEC_RELOC) == 0
466 || asect->reloc_count == 0)
b34976b6 467 return TRUE;
f65054f7
RH
468
469 rel_hdr = &d->rel_hdr;
470 rel_hdr2 = d->rel_hdr2;
471
472 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
473 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
474 }
475 else
476 {
477 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
478 case because relocations against this section may use the
479 dynamic symbol table, and in that case bfd_section_from_shdr
480 in elf.c does not update the RELOC_COUNT. */
eea6121a 481 if (asect->size == 0)
b34976b6 482 return TRUE;
f65054f7
RH
483
484 rel_hdr = &d->this_hdr;
d9bc7a44 485 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
f65054f7
RH
486 rel_hdr2 = NULL;
487 }
488
dc810e39
AM
489 amt = asect->reloc_count;
490 amt *= 2 * sizeof (arelent);
491 asect->relocation = (arelent *) bfd_alloc (abfd, amt);
f65054f7 492 if (asect->relocation == NULL)
b34976b6 493 return FALSE;
f65054f7 494
3e1d7f19
JJ
495 /* The sparc64_elf_slurp_one_reloc_table routine increments
496 canon_reloc_count. */
497 canon_reloc_count (asect) = 0;
435b1e90 498
f65054f7
RH
499 if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
500 dynamic))
b34976b6 501 return FALSE;
435b1e90
KH
502
503 if (rel_hdr2
f65054f7
RH
504 && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
505 dynamic))
b34976b6 506 return FALSE;
f65054f7 507
b34976b6 508 return TRUE;
f65054f7
RH
509}
510
3e1d7f19
JJ
511/* Canonicalize the relocs. */
512
513static long
514sparc64_elf_canonicalize_reloc (abfd, section, relptr, symbols)
515 bfd *abfd;
516 sec_ptr section;
517 arelent **relptr;
518 asymbol **symbols;
519{
520 arelent *tblptr;
521 unsigned int i;
9c5bfbb7 522 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3e1d7f19
JJ
523
524 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
525 return -1;
526
527 tblptr = section->relocation;
528 for (i = 0; i < canon_reloc_count (section); i++)
529 *relptr++ = tblptr++;
530
531 *relptr = NULL;
532
533 return canon_reloc_count (section);
534}
535
536
f65054f7
RH
537/* Canonicalize the dynamic relocation entries. Note that we return
538 the dynamic relocations as a single block, although they are
539 actually associated with particular sections; the interface, which
540 was designed for SunOS style shared libraries, expects that there
541 is only one set of dynamic relocs. Any section that was actually
542 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
543 the dynamic symbol table, is considered to be a dynamic reloc
544 section. */
545
546static long
547sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
548 bfd *abfd;
549 arelent **storage;
550 asymbol **syms;
551{
552 asection *s;
553 long ret;
554
555 if (elf_dynsymtab (abfd) == 0)
556 {
557 bfd_set_error (bfd_error_invalid_operation);
558 return -1;
559 }
560
561 ret = 0;
562 for (s = abfd->sections; s != NULL; s = s->next)
563 {
564 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
565 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
566 {
567 arelent *p;
568 long count, i;
569
b34976b6 570 if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, TRUE))
f65054f7 571 return -1;
3e1d7f19 572 count = canon_reloc_count (s);
f65054f7
RH
573 p = s->relocation;
574 for (i = 0; i < count; i++)
575 *storage++ = p++;
576 ret += count;
577 }
578 }
579
580 *storage = NULL;
581
582 return ret;
583}
584
585/* Write out the relocs. */
586
587static void
588sparc64_elf_write_relocs (abfd, sec, data)
589 bfd *abfd;
590 asection *sec;
591 PTR data;
592{
b34976b6 593 bfd_boolean *failedp = (bfd_boolean *) data;
f65054f7 594 Elf_Internal_Shdr *rela_hdr;
37fb6db1 595 Elf64_External_Rela *outbound_relocas, *src_rela;
f65054f7
RH
596 unsigned int idx, count;
597 asymbol *last_sym = 0;
598 int last_sym_idx = 0;
599
600 /* If we have already failed, don't do anything. */
601 if (*failedp)
602 return;
603
604 if ((sec->flags & SEC_RELOC) == 0)
605 return;
606
607 /* The linker backend writes the relocs out itself, and sets the
608 reloc_count field to zero to inhibit writing them here. Also,
609 sometimes the SEC_RELOC flag gets set even when there aren't any
610 relocs. */
611 if (sec->reloc_count == 0)
612 return;
613
614 /* We can combine two relocs that refer to the same address
615 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
616 latter is R_SPARC_13 with no associated symbol. */
617 count = 0;
618 for (idx = 0; idx < sec->reloc_count; idx++)
619 {
620 bfd_vma addr;
f65054f7
RH
621
622 ++count;
623
624 addr = sec->orelocation[idx]->address;
625 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
626 && idx < sec->reloc_count - 1)
627 {
628 arelent *r = sec->orelocation[idx + 1];
629
630 if (r->howto->type == R_SPARC_13
631 && r->address == addr
632 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
633 && (*r->sym_ptr_ptr)->value == 0)
634 ++idx;
635 }
636 }
637
638 rela_hdr = &elf_section_data (sec)->rel_hdr;
639
640 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
641 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
642 if (rela_hdr->contents == NULL)
643 {
b34976b6 644 *failedp = TRUE;
f65054f7
RH
645 return;
646 }
647
648 /* Figure out whether the relocations are RELA or REL relocations. */
649 if (rela_hdr->sh_type != SHT_RELA)
650 abort ();
651
435b1e90 652 /* orelocation has the data, reloc_count has the count... */
f65054f7 653 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
37fb6db1 654 src_rela = outbound_relocas;
f65054f7
RH
655
656 for (idx = 0; idx < sec->reloc_count; idx++)
657 {
658 Elf_Internal_Rela dst_rela;
f65054f7
RH
659 arelent *ptr;
660 asymbol *sym;
661 int n;
662
663 ptr = sec->orelocation[idx];
f65054f7
RH
664
665 /* The address of an ELF reloc is section relative for an object
666 file, and absolute for an executable file or shared library.
667 The address of a BFD reloc is always section relative. */
668 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
669 dst_rela.r_offset = ptr->address;
670 else
671 dst_rela.r_offset = ptr->address + sec->vma;
672
673 sym = *ptr->sym_ptr_ptr;
674 if (sym == last_sym)
675 n = last_sym_idx;
676 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
677 n = STN_UNDEF;
678 else
679 {
680 last_sym = sym;
681 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
682 if (n < 0)
683 {
b34976b6 684 *failedp = TRUE;
f65054f7
RH
685 return;
686 }
687 last_sym_idx = n;
688 }
689
690 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
691 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
692 && ! _bfd_elf_validate_reloc (abfd, ptr))
693 {
b34976b6 694 *failedp = TRUE;
f65054f7
RH
695 return;
696 }
697
698 if (ptr->howto->type == R_SPARC_LO10
699 && idx < sec->reloc_count - 1)
700 {
701 arelent *r = sec->orelocation[idx + 1];
702
703 if (r->howto->type == R_SPARC_13
704 && r->address == ptr->address
705 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
706 && (*r->sym_ptr_ptr)->value == 0)
707 {
708 idx++;
709 dst_rela.r_info
710 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
711 R_SPARC_OLO10));
712 }
713 else
714 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
715 }
716 else
717 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
718
719 dst_rela.r_addend = ptr->addend;
947216bf 720 bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela);
37fb6db1 721 ++src_rela;
f65054f7 722 }
252b5132 723}
587ff49e
RH
724\f
725/* Sparc64 ELF linker hash table. */
726
727struct sparc64_elf_app_reg
728{
729 unsigned char bind;
730 unsigned short shndx;
731 bfd *abfd;
732 char *name;
733};
734
735struct sparc64_elf_link_hash_table
736{
737 struct elf_link_hash_table root;
738
739 struct sparc64_elf_app_reg app_regs [4];
740};
741
742/* Get the Sparc64 ELF linker hash table from a link_info structure. */
743
744#define sparc64_elf_hash_table(p) \
745 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
435b1e90 746
587ff49e
RH
747/* Create a Sparc64 ELF linker hash table. */
748
749static struct bfd_link_hash_table *
750sparc64_elf_bfd_link_hash_table_create (abfd)
751 bfd *abfd;
752{
753 struct sparc64_elf_link_hash_table *ret;
dc810e39 754 bfd_size_type amt = sizeof (struct sparc64_elf_link_hash_table);
587ff49e 755
e2d34d7d 756 ret = (struct sparc64_elf_link_hash_table *) bfd_zmalloc (amt);
587ff49e
RH
757 if (ret == (struct sparc64_elf_link_hash_table *) NULL)
758 return NULL;
759
760 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
761 _bfd_elf_link_hash_newfunc))
762 {
e2d34d7d 763 free (ret);
587ff49e
RH
764 return NULL;
765 }
766
767 return &ret->root.root;
768}
252b5132
RH
769\f
770/* Utility for performing the standard initial work of an instruction
771 relocation.
772 *PRELOCATION will contain the relocated item.
773 *PINSN will contain the instruction from the input stream.
774 If the result is `bfd_reloc_other' the caller can continue with
775 performing the relocation. Otherwise it must stop and return the
776 value to its caller. */
777
778static bfd_reloc_status_type
779init_insn_reloc (abfd,
780 reloc_entry,
781 symbol,
782 data,
783 input_section,
784 output_bfd,
785 prelocation,
786 pinsn)
787 bfd *abfd;
788 arelent *reloc_entry;
789 asymbol *symbol;
790 PTR data;
791 asection *input_section;
792 bfd *output_bfd;
793 bfd_vma *prelocation;
794 bfd_vma *pinsn;
795{
796 bfd_vma relocation;
797 reloc_howto_type *howto = reloc_entry->howto;
798
799 if (output_bfd != (bfd *) NULL
800 && (symbol->flags & BSF_SECTION_SYM) == 0
801 && (! howto->partial_inplace
802 || reloc_entry->addend == 0))
803 {
804 reloc_entry->address += input_section->output_offset;
805 return bfd_reloc_ok;
806 }
807
b34976b6 808 /* This works because partial_inplace is FALSE. */
252b5132
RH
809 if (output_bfd != NULL)
810 return bfd_reloc_continue;
811
07515404 812 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
252b5132
RH
813 return bfd_reloc_outofrange;
814
815 relocation = (symbol->value
816 + symbol->section->output_section->vma
817 + symbol->section->output_offset);
818 relocation += reloc_entry->addend;
819 if (howto->pc_relative)
820 {
821 relocation -= (input_section->output_section->vma
822 + input_section->output_offset);
823 relocation -= reloc_entry->address;
824 }
825
826 *prelocation = relocation;
827 *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
828 return bfd_reloc_other;
829}
830
831/* For unsupported relocs. */
832
833static bfd_reloc_status_type
834sparc_elf_notsup_reloc (abfd,
835 reloc_entry,
836 symbol,
837 data,
838 input_section,
839 output_bfd,
840 error_message)
6c08d697
JJ
841 bfd *abfd ATTRIBUTE_UNUSED;
842 arelent *reloc_entry ATTRIBUTE_UNUSED;
843 asymbol *symbol ATTRIBUTE_UNUSED;
844 PTR data ATTRIBUTE_UNUSED;
845 asection *input_section ATTRIBUTE_UNUSED;
846 bfd *output_bfd ATTRIBUTE_UNUSED;
847 char **error_message ATTRIBUTE_UNUSED;
252b5132
RH
848{
849 return bfd_reloc_notsupported;
850}
851
852/* Handle the WDISP16 reloc. */
853
854static bfd_reloc_status_type
855sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
856 output_bfd, error_message)
857 bfd *abfd;
858 arelent *reloc_entry;
859 asymbol *symbol;
860 PTR data;
861 asection *input_section;
862 bfd *output_bfd;
6c08d697 863 char **error_message ATTRIBUTE_UNUSED;
252b5132
RH
864{
865 bfd_vma relocation;
866 bfd_vma insn;
867 bfd_reloc_status_type status;
868
869 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
870 input_section, output_bfd, &relocation, &insn);
871 if (status != bfd_reloc_other)
872 return status;
873
dc810e39
AM
874 insn &= ~ (bfd_vma) 0x303fff;
875 insn |= (((relocation >> 2) & 0xc000) << 6) | ((relocation >> 2) & 0x3fff);
252b5132
RH
876 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
877
878 if ((bfd_signed_vma) relocation < - 0x40000
879 || (bfd_signed_vma) relocation > 0x3ffff)
880 return bfd_reloc_overflow;
881 else
882 return bfd_reloc_ok;
883}
884
885/* Handle the HIX22 reloc. */
886
887static bfd_reloc_status_type
888sparc_elf_hix22_reloc (abfd,
889 reloc_entry,
890 symbol,
891 data,
892 input_section,
893 output_bfd,
894 error_message)
895 bfd *abfd;
896 arelent *reloc_entry;
897 asymbol *symbol;
898 PTR data;
899 asection *input_section;
900 bfd *output_bfd;
6c08d697 901 char **error_message ATTRIBUTE_UNUSED;
252b5132
RH
902{
903 bfd_vma relocation;
904 bfd_vma insn;
905 bfd_reloc_status_type status;
906
907 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
908 input_section, output_bfd, &relocation, &insn);
909 if (status != bfd_reloc_other)
910 return status;
911
912 relocation ^= MINUS_ONE;
dc810e39 913 insn = (insn &~ (bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
252b5132
RH
914 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
915
916 if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
917 return bfd_reloc_overflow;
918 else
919 return bfd_reloc_ok;
920}
921
922/* Handle the LOX10 reloc. */
923
924static bfd_reloc_status_type
925sparc_elf_lox10_reloc (abfd,
926 reloc_entry,
927 symbol,
928 data,
929 input_section,
930 output_bfd,
931 error_message)
932 bfd *abfd;
933 arelent *reloc_entry;
934 asymbol *symbol;
935 PTR data;
936 asection *input_section;
937 bfd *output_bfd;
6c08d697 938 char **error_message ATTRIBUTE_UNUSED;
252b5132
RH
939{
940 bfd_vma relocation;
941 bfd_vma insn;
942 bfd_reloc_status_type status;
943
944 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
945 input_section, output_bfd, &relocation, &insn);
946 if (status != bfd_reloc_other)
947 return status;
948
dc810e39 949 insn = (insn &~ (bfd_vma) 0x1fff) | 0x1c00 | (relocation & 0x3ff);
252b5132
RH
950 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
951
952 return bfd_reloc_ok;
953}
954\f
955/* PLT/GOT stuff */
956
957/* Both the headers and the entries are icache aligned. */
958#define PLT_ENTRY_SIZE 32
959#define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
960#define LARGE_PLT_THRESHOLD 32768
961#define GOT_RESERVED_ENTRIES 1
962
963#define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
964
252b5132
RH
965/* Fill in the .plt section. */
966
967static void
968sparc64_elf_build_plt (output_bfd, contents, nentries)
969 bfd *output_bfd;
970 unsigned char *contents;
971 int nentries;
972{
973 const unsigned int nop = 0x01000000;
974 int i, j;
435b1e90 975
252b5132
RH
976 /* The first four entries are reserved, and are initially undefined.
977 We fill them with `illtrap 0' to force ld.so to do something. */
978
979 for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
dc810e39 980 bfd_put_32 (output_bfd, (bfd_vma) 0, contents+i*4);
252b5132
RH
981
982 /* The first 32768 entries are close enough to plt1 to get there via
983 a straight branch. */
984
985 for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
986 {
987 unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
988 unsigned int sethi, ba;
989
990 /* sethi (. - plt0), %g1 */
991 sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
992
a11c78e7
RH
993 /* ba,a,pt %xcc, plt1 */
994 ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
252b5132 995
dc810e39
AM
996 bfd_put_32 (output_bfd, (bfd_vma) sethi, entry);
997 bfd_put_32 (output_bfd, (bfd_vma) ba, entry + 4);
998 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
999 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 12);
1000 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 16);
1001 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 20);
1002 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 24);
1003 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 28);
252b5132
RH
1004 }
1005
1006 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
1007 160: 160 entries and 160 pointers. This is to separate code from data,
1008 which is much friendlier on the cache. */
435b1e90 1009
252b5132
RH
1010 for (; i < nentries; i += 160)
1011 {
1012 int block = (i + 160 <= nentries ? 160 : nentries - i);
1013 for (j = 0; j < block; ++j)
1014 {
1015 unsigned char *entry, *ptr;
1016 unsigned int ldx;
1017
1018 entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
1019 ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
1020
e62de969
JJ
1021 /* ldx [%o7 + ptr - (entry+4)], %g1 */
1022 ldx = 0xc25be000 | ((ptr - (entry+4)) & 0x1fff);
252b5132 1023
dc810e39
AM
1024 /* mov %o7,%g5
1025 call .+8
1026 nop
1027 ldx [%o7+P],%g1
1028 jmpl %o7+%g1,%g1
1029 mov %g5,%o7 */
1030 bfd_put_32 (output_bfd, (bfd_vma) 0x8a10000f, entry);
1031 bfd_put_32 (output_bfd, (bfd_vma) 0x40000002, entry + 4);
1032 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
1033 bfd_put_32 (output_bfd, (bfd_vma) ldx, entry + 12);
1034 bfd_put_32 (output_bfd, (bfd_vma) 0x83c3c001, entry + 16);
1035 bfd_put_32 (output_bfd, (bfd_vma) 0x9e100005, entry + 20);
1036
1037 bfd_put_64 (output_bfd, (bfd_vma) (contents - (entry + 4)), ptr);
252b5132
RH
1038 }
1039 }
1040}
1041
1042/* Return the offset of a particular plt entry within the .plt section. */
1043
1044static bfd_vma
1045sparc64_elf_plt_entry_offset (index)
dc810e39 1046 bfd_vma index;
252b5132 1047{
dc810e39 1048 bfd_vma block, ofs;
252b5132
RH
1049
1050 if (index < LARGE_PLT_THRESHOLD)
1051 return index * PLT_ENTRY_SIZE;
1052
1053 /* See above for details. */
1054
1055 block = (index - LARGE_PLT_THRESHOLD) / 160;
1056 ofs = (index - LARGE_PLT_THRESHOLD) % 160;
1057
dc810e39 1058 return (LARGE_PLT_THRESHOLD + block * 160) * PLT_ENTRY_SIZE + ofs * 6 * 4;
252b5132
RH
1059}
1060
1061static bfd_vma
1062sparc64_elf_plt_ptr_offset (index, max)
dc810e39
AM
1063 bfd_vma index;
1064 bfd_vma max;
252b5132 1065{
dc810e39 1066 bfd_vma block, ofs, last;
252b5132
RH
1067
1068 BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
1069
1070 /* See above for details. */
1071
dc810e39 1072 block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160) + LARGE_PLT_THRESHOLD;
a11c78e7
RH
1073 ofs = index - block;
1074 if (block + 160 > max)
1075 last = (max - LARGE_PLT_THRESHOLD) % 160;
1076 else
1077 last = 160;
252b5132 1078
a11c78e7 1079 return (block * PLT_ENTRY_SIZE
252b5132
RH
1080 + last * 6*4
1081 + ofs * 8);
1082}
252b5132
RH
1083\f
1084/* Look through the relocs for a section during the first phase, and
1085 allocate space in the global offset table or procedure linkage
1086 table. */
1087
b34976b6 1088static bfd_boolean
252b5132
RH
1089sparc64_elf_check_relocs (abfd, info, sec, relocs)
1090 bfd *abfd;
1091 struct bfd_link_info *info;
1092 asection *sec;
1093 const Elf_Internal_Rela *relocs;
1094{
1095 bfd *dynobj;
1096 Elf_Internal_Shdr *symtab_hdr;
1097 struct elf_link_hash_entry **sym_hashes;
1098 bfd_vma *local_got_offsets;
1099 const Elf_Internal_Rela *rel;
1100 const Elf_Internal_Rela *rel_end;
1101 asection *sgot;
1102 asection *srelgot;
1103 asection *sreloc;
1104
1049f94e 1105 if (info->relocatable || !(sec->flags & SEC_ALLOC))
b34976b6 1106 return TRUE;
252b5132
RH
1107
1108 dynobj = elf_hash_table (info)->dynobj;
1109 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1110 sym_hashes = elf_sym_hashes (abfd);
1111 local_got_offsets = elf_local_got_offsets (abfd);
1112
1113 sgot = NULL;
1114 srelgot = NULL;
1115 sreloc = NULL;
1116
d9bc7a44 1117 rel_end = relocs + NUM_SHDR_ENTRIES (& elf_section_data (sec)->rel_hdr);
252b5132
RH
1118 for (rel = relocs; rel < rel_end; rel++)
1119 {
1120 unsigned long r_symndx;
1121 struct elf_link_hash_entry *h;
1122
1123 r_symndx = ELF64_R_SYM (rel->r_info);
1124 if (r_symndx < symtab_hdr->sh_info)
1125 h = NULL;
1126 else
1127 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1128
f65054f7 1129 switch (ELF64_R_TYPE_ID (rel->r_info))
252b5132
RH
1130 {
1131 case R_SPARC_GOT10:
1132 case R_SPARC_GOT13:
1133 case R_SPARC_GOT22:
1134 /* This symbol requires a global offset table entry. */
1135
1136 if (dynobj == NULL)
1137 {
1138 /* Create the .got section. */
1139 elf_hash_table (info)->dynobj = dynobj = abfd;
1140 if (! _bfd_elf_create_got_section (dynobj, info))
b34976b6 1141 return FALSE;
252b5132
RH
1142 }
1143
1144 if (sgot == NULL)
1145 {
1146 sgot = bfd_get_section_by_name (dynobj, ".got");
1147 BFD_ASSERT (sgot != NULL);
1148 }
1149
1150 if (srelgot == NULL && (h != NULL || info->shared))
1151 {
1152 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1153 if (srelgot == NULL)
1154 {
1155 srelgot = bfd_make_section (dynobj, ".rela.got");
1156 if (srelgot == NULL
1157 || ! bfd_set_section_flags (dynobj, srelgot,
1158 (SEC_ALLOC
1159 | SEC_LOAD
1160 | SEC_HAS_CONTENTS
1161 | SEC_IN_MEMORY
1162 | SEC_LINKER_CREATED
1163 | SEC_READONLY))
1164 || ! bfd_set_section_alignment (dynobj, srelgot, 3))
b34976b6 1165 return FALSE;
252b5132
RH
1166 }
1167 }
1168
1169 if (h != NULL)
1170 {
1171 if (h->got.offset != (bfd_vma) -1)
1172 {
1173 /* We have already allocated space in the .got. */
1174 break;
1175 }
eea6121a 1176 h->got.offset = sgot->size;
252b5132
RH
1177
1178 /* Make sure this symbol is output as a dynamic symbol. */
1179 if (h->dynindx == -1)
1180 {
c152c796 1181 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 1182 return FALSE;
252b5132
RH
1183 }
1184
eea6121a 1185 srelgot->size += sizeof (Elf64_External_Rela);
252b5132
RH
1186 }
1187 else
1188 {
1189 /* This is a global offset table entry for a local
1190 symbol. */
1191 if (local_got_offsets == NULL)
1192 {
dc810e39 1193 bfd_size_type size;
252b5132
RH
1194 register unsigned int i;
1195
dc810e39
AM
1196 size = symtab_hdr->sh_info;
1197 size *= sizeof (bfd_vma);
252b5132
RH
1198 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
1199 if (local_got_offsets == NULL)
b34976b6 1200 return FALSE;
252b5132
RH
1201 elf_local_got_offsets (abfd) = local_got_offsets;
1202 for (i = 0; i < symtab_hdr->sh_info; i++)
1203 local_got_offsets[i] = (bfd_vma) -1;
1204 }
1205 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1206 {
1207 /* We have already allocated space in the .got. */
1208 break;
1209 }
eea6121a 1210 local_got_offsets[r_symndx] = sgot->size;
252b5132
RH
1211
1212 if (info->shared)
1213 {
1214 /* If we are generating a shared object, we need to
1215 output a R_SPARC_RELATIVE reloc so that the
1216 dynamic linker can adjust this GOT entry. */
eea6121a 1217 srelgot->size += sizeof (Elf64_External_Rela);
252b5132
RH
1218 }
1219 }
1220
eea6121a 1221 sgot->size += 8;
252b5132
RH
1222
1223#if 0
1224 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1225 unsigned numbers. If we permit ourselves to modify
1226 code so we get sethi/xor, this could work.
1227 Question: do we consider conditionally re-enabling
1228 this for -fpic, once we know about object code models? */
1229 /* If the .got section is more than 0x1000 bytes, we add
1230 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1231 bit relocations have a greater chance of working. */
eea6121a 1232 if (sgot->size >= 0x1000
252b5132
RH
1233 && elf_hash_table (info)->hgot->root.u.def.value == 0)
1234 elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
1235#endif
1236
1237 break;
1238
1239 case R_SPARC_WPLT30:
1240 case R_SPARC_PLT32:
1241 case R_SPARC_HIPLT22:
1242 case R_SPARC_LOPLT10:
1243 case R_SPARC_PCPLT32:
1244 case R_SPARC_PCPLT22:
1245 case R_SPARC_PCPLT10:
1246 case R_SPARC_PLT64:
1247 /* This symbol requires a procedure linkage table entry. We
1248 actually build the entry in adjust_dynamic_symbol,
1249 because this might be a case of linking PIC code without
1250 linking in any dynamic objects, in which case we don't
1251 need to generate a procedure linkage table after all. */
1252
1253 if (h == NULL)
1254 {
1255 /* It does not make sense to have a procedure linkage
1256 table entry for a local symbol. */
1257 bfd_set_error (bfd_error_bad_value);
b34976b6 1258 return FALSE;
252b5132
RH
1259 }
1260
1261 /* Make sure this symbol is output as a dynamic symbol. */
1262 if (h->dynindx == -1)
1263 {
c152c796 1264 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 1265 return FALSE;
252b5132
RH
1266 }
1267
1268 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
bd5e6e7e
JJ
1269 if (ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT32
1270 && ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT64)
1271 break;
1272 /* Fall through. */
252b5132
RH
1273 case R_SPARC_PC10:
1274 case R_SPARC_PC22:
1275 case R_SPARC_PC_HH22:
1276 case R_SPARC_PC_HM10:
1277 case R_SPARC_PC_LM22:
1278 if (h != NULL
1279 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1280 break;
1281 /* Fall through. */
1282 case R_SPARC_DISP8:
1283 case R_SPARC_DISP16:
1284 case R_SPARC_DISP32:
1285 case R_SPARC_DISP64:
1286 case R_SPARC_WDISP30:
1287 case R_SPARC_WDISP22:
1288 case R_SPARC_WDISP19:
1289 case R_SPARC_WDISP16:
1290 if (h == NULL)
1291 break;
1292 /* Fall through. */
1293 case R_SPARC_8:
1294 case R_SPARC_16:
1295 case R_SPARC_32:
1296 case R_SPARC_HI22:
1297 case R_SPARC_22:
1298 case R_SPARC_13:
1299 case R_SPARC_LO10:
1300 case R_SPARC_UA32:
1301 case R_SPARC_10:
1302 case R_SPARC_11:
1303 case R_SPARC_64:
1304 case R_SPARC_OLO10:
1305 case R_SPARC_HH22:
1306 case R_SPARC_HM10:
1307 case R_SPARC_LM22:
1308 case R_SPARC_7:
1309 case R_SPARC_5:
1310 case R_SPARC_6:
1311 case R_SPARC_HIX22:
1312 case R_SPARC_LOX10:
1313 case R_SPARC_H44:
1314 case R_SPARC_M44:
1315 case R_SPARC_L44:
1316 case R_SPARC_UA64:
1317 case R_SPARC_UA16:
1318 /* When creating a shared object, we must copy these relocs
1319 into the output file. We create a reloc section in
435b1e90 1320 dynobj and make room for the reloc.
252b5132
RH
1321
1322 But don't do this for debugging sections -- this shows up
1323 with DWARF2 -- first because they are not loaded, and
1324 second because DWARF sez the debug info is not to be
1325 biased by the load address. */
1326 if (info->shared && (sec->flags & SEC_ALLOC))
1327 {
1328 if (sreloc == NULL)
1329 {
1330 const char *name;
1331
1332 name = (bfd_elf_string_from_elf_section
1333 (abfd,
1334 elf_elfheader (abfd)->e_shstrndx,
1335 elf_section_data (sec)->rel_hdr.sh_name));
1336 if (name == NULL)
b34976b6 1337 return FALSE;
252b5132
RH
1338
1339 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1340 && strcmp (bfd_get_section_name (abfd, sec),
1341 name + 5) == 0);
1342
1343 sreloc = bfd_get_section_by_name (dynobj, name);
1344 if (sreloc == NULL)
1345 {
1346 flagword flags;
1347
1348 sreloc = bfd_make_section (dynobj, name);
1349 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1350 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1351 if ((sec->flags & SEC_ALLOC) != 0)
1352 flags |= SEC_ALLOC | SEC_LOAD;
1353 if (sreloc == NULL
1354 || ! bfd_set_section_flags (dynobj, sreloc, flags)
1355 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
b34976b6 1356 return FALSE;
252b5132 1357 }
db6751f2
JJ
1358 if (sec->flags & SEC_READONLY)
1359 info->flags |= DF_TEXTREL;
252b5132
RH
1360 }
1361
eea6121a 1362 sreloc->size += sizeof (Elf64_External_Rela);
252b5132
RH
1363 }
1364 break;
1365
1366 case R_SPARC_REGISTER:
1367 /* Nothing to do. */
1368 break;
1369
1370 default:
435b1e90 1371 (*_bfd_error_handler) (_("%s: check_relocs: unhandled reloc type %d"),
8f615d07 1372 bfd_archive_filename (abfd),
f65054f7 1373 ELF64_R_TYPE_ID (rel->r_info));
b34976b6 1374 return FALSE;
252b5132
RH
1375 }
1376 }
1377
b34976b6 1378 return TRUE;
252b5132
RH
1379}
1380
587ff49e
RH
1381/* Hook called by the linker routine which adds symbols from an object
1382 file. We use it for STT_REGISTER symbols. */
1383
b34976b6 1384static bfd_boolean
587ff49e
RH
1385sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1386 bfd *abfd;
1387 struct bfd_link_info *info;
555cd476 1388 Elf_Internal_Sym *sym;
587ff49e 1389 const char **namep;
6c08d697
JJ
1390 flagword *flagsp ATTRIBUTE_UNUSED;
1391 asection **secp ATTRIBUTE_UNUSED;
1392 bfd_vma *valp ATTRIBUTE_UNUSED;
587ff49e 1393{
8f615d07 1394 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
587ff49e
RH
1395
1396 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
1397 {
1398 int reg;
1399 struct sparc64_elf_app_reg *p;
435b1e90 1400
587ff49e
RH
1401 reg = (int)sym->st_value;
1402 switch (reg & ~1)
1403 {
1404 case 2: reg -= 2; break;
1405 case 6: reg -= 4; break;
1406 default:
1407 (*_bfd_error_handler)
1408 (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
8f615d07 1409 bfd_archive_filename (abfd));
b34976b6 1410 return FALSE;
587ff49e
RH
1411 }
1412
1413 if (info->hash->creator != abfd->xvec
1414 || (abfd->flags & DYNAMIC) != 0)
1415 {
1416 /* STT_REGISTER only works when linking an elf64_sparc object.
1417 If STT_REGISTER comes from a dynamic object, don't put it into
1418 the output bfd. The dynamic linker will recheck it. */
1419 *namep = NULL;
b34976b6 1420 return TRUE;
587ff49e
RH
1421 }
1422
1423 p = sparc64_elf_hash_table(info)->app_regs + reg;
1424
1425 if (p->name != NULL && strcmp (p->name, *namep))
1426 {
1427 (*_bfd_error_handler)
ca09e32b 1428 (_("Register %%g%d used incompatibly: %s in %s, previously %s in %s"),
8f615d07 1429 (int) sym->st_value,
ca09e32b 1430 **namep ? *namep : "#scratch", bfd_archive_filename (abfd),
8f615d07 1431 *p->name ? p->name : "#scratch", bfd_archive_filename (p->abfd));
b34976b6 1432 return FALSE;
587ff49e
RH
1433 }
1434
1435 if (p->name == NULL)
1436 {
1437 if (**namep)
1438 {
1439 struct elf_link_hash_entry *h;
435b1e90 1440
587ff49e 1441 h = (struct elf_link_hash_entry *)
b34976b6 1442 bfd_link_hash_lookup (info->hash, *namep, FALSE, FALSE, FALSE);
587ff49e
RH
1443
1444 if (h != NULL)
1445 {
1446 unsigned char type = h->type;
1447
8f615d07
AM
1448 if (type > STT_FUNC)
1449 type = 0;
1450 (*_bfd_error_handler)
ca09e32b
NC
1451 (_("Symbol `%s' has differing types: REGISTER in %s, previously %s in %s"),
1452 *namep, bfd_archive_filename (abfd),
8f615d07 1453 stt_types[type], bfd_archive_filename (p->abfd));
b34976b6 1454 return FALSE;
587ff49e
RH
1455 }
1456
1457 p->name = bfd_hash_allocate (&info->hash->table,
1458 strlen (*namep) + 1);
1459 if (!p->name)
b34976b6 1460 return FALSE;
587ff49e
RH
1461
1462 strcpy (p->name, *namep);
1463 }
1464 else
1465 p->name = "";
1466 p->bind = ELF_ST_BIND (sym->st_info);
1467 p->abfd = abfd;
1468 p->shndx = sym->st_shndx;
1469 }
1470 else
1471 {
1472 if (p->bind == STB_WEAK
1473 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
1474 {
1475 p->bind = STB_GLOBAL;
1476 p->abfd = abfd;
1477 }
1478 }
1479 *namep = NULL;
b34976b6 1480 return TRUE;
587ff49e 1481 }
4ab82700 1482 else if (*namep && **namep
986b7daa 1483 && info->hash->creator == abfd->xvec)
587ff49e
RH
1484 {
1485 int i;
1486 struct sparc64_elf_app_reg *p;
1487
1488 p = sparc64_elf_hash_table(info)->app_regs;
1489 for (i = 0; i < 4; i++, p++)
1490 if (p->name != NULL && ! strcmp (p->name, *namep))
1491 {
1492 unsigned char type = ELF_ST_TYPE (sym->st_info);
1493
8f615d07
AM
1494 if (type > STT_FUNC)
1495 type = 0;
1496 (*_bfd_error_handler)
ca09e32b
NC
1497 (_("Symbol `%s' has differing types: %s in %s, previously REGISTER in %s"),
1498 *namep, stt_types[type], bfd_archive_filename (abfd),
1499 bfd_archive_filename (p->abfd));
b34976b6 1500 return FALSE;
587ff49e
RH
1501 }
1502 }
b34976b6 1503 return TRUE;
587ff49e
RH
1504}
1505
4cc11e76 1506/* This function takes care of emitting STT_REGISTER symbols
587ff49e
RH
1507 which we cannot easily keep in the symbol hash table. */
1508
b34976b6 1509static bfd_boolean
587ff49e 1510sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
6c08d697 1511 bfd *output_bfd ATTRIBUTE_UNUSED;
587ff49e
RH
1512 struct bfd_link_info *info;
1513 PTR finfo;
b34976b6 1514 bfd_boolean (*func)
754021d0
AM
1515 PARAMS ((PTR, const char *, Elf_Internal_Sym *, asection *,
1516 struct elf_link_hash_entry *));
587ff49e
RH
1517{
1518 int reg;
1519 struct sparc64_elf_app_reg *app_regs =
1520 sparc64_elf_hash_table(info)->app_regs;
1521 Elf_Internal_Sym sym;
1522
1523 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1524 at the end of the dynlocal list, so they came at the end of the local
1525 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1526 to back up symtab->sh_info. */
1527 if (elf_hash_table (info)->dynlocal)
1528 {
1fa0ddb3
RH
1529 bfd * dynobj = elf_hash_table (info)->dynobj;
1530 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
587ff49e
RH
1531 struct elf_link_local_dynamic_entry *e;
1532
1533 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
1534 if (e->input_indx == -1)
1535 break;
1536 if (e)
1537 {
1538 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
1539 = e->dynindx;
1540 }
1541 }
1542
1543 if (info->strip == strip_all)
b34976b6 1544 return TRUE;
587ff49e
RH
1545
1546 for (reg = 0; reg < 4; reg++)
1547 if (app_regs [reg].name != NULL)
1548 {
1549 if (info->strip == strip_some
1550 && bfd_hash_lookup (info->keep_hash,
1551 app_regs [reg].name,
b34976b6 1552 FALSE, FALSE) == NULL)
587ff49e
RH
1553 continue;
1554
1555 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
1556 sym.st_size = 0;
1557 sym.st_other = 0;
1558 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
1559 sym.st_shndx = app_regs [reg].shndx;
1560 if (! (*func) (finfo, app_regs [reg].name, &sym,
1561 sym.st_shndx == SHN_ABS
754021d0
AM
1562 ? bfd_abs_section_ptr : bfd_und_section_ptr,
1563 NULL))
b34976b6 1564 return FALSE;
587ff49e
RH
1565 }
1566
b34976b6 1567 return TRUE;
587ff49e
RH
1568}
1569
1570static int
1571sparc64_elf_get_symbol_type (elf_sym, type)
1572 Elf_Internal_Sym * elf_sym;
1573 int type;
1574{
1575 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
1576 return STT_REGISTER;
1577 else
1578 return type;
1579}
1580
1581/* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1582 even in SHN_UNDEF section. */
1583
1584static void
1585sparc64_elf_symbol_processing (abfd, asym)
6c08d697 1586 bfd *abfd ATTRIBUTE_UNUSED;
587ff49e
RH
1587 asymbol *asym;
1588{
1589 elf_symbol_type *elfsym;
1590
1591 elfsym = (elf_symbol_type *) asym;
1592 if (elfsym->internal_elf_sym.st_info
1593 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
1594 {
1595 asym->flags |= BSF_GLOBAL;
1596 }
1597}
1598
252b5132
RH
1599/* Adjust a symbol defined by a dynamic object and referenced by a
1600 regular object. The current definition is in some section of the
1601 dynamic object, but we're not including those sections. We have to
1602 change the definition to something the rest of the link can
1603 understand. */
1604
b34976b6 1605static bfd_boolean
252b5132
RH
1606sparc64_elf_adjust_dynamic_symbol (info, h)
1607 struct bfd_link_info *info;
1608 struct elf_link_hash_entry *h;
1609{
1610 bfd *dynobj;
1611 asection *s;
1612 unsigned int power_of_two;
1613
1614 dynobj = elf_hash_table (info)->dynobj;
1615
1616 /* Make sure we know what is going on here. */
1617 BFD_ASSERT (dynobj != NULL
1618 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
1619 || h->weakdef != NULL
1620 || ((h->elf_link_hash_flags
1621 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1622 && (h->elf_link_hash_flags
1623 & ELF_LINK_HASH_REF_REGULAR) != 0
1624 && (h->elf_link_hash_flags
1625 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
1626
1627 /* If this is a function, put it in the procedure linkage table. We
1628 will fill in the contents of the procedure linkage table later
1629 (although we could actually do it here). The STT_NOTYPE
1630 condition is a hack specifically for the Oracle libraries
1631 delivered for Solaris; for some inexplicable reason, they define
1632 some of their functions as STT_NOTYPE when they really should be
1633 STT_FUNC. */
1634 if (h->type == STT_FUNC
1635 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
1636 || (h->type == STT_NOTYPE
1637 && (h->root.type == bfd_link_hash_defined
1638 || h->root.type == bfd_link_hash_defweak)
1639 && (h->root.u.def.section->flags & SEC_CODE) != 0))
1640 {
1641 if (! elf_hash_table (info)->dynamic_sections_created)
1642 {
1643 /* This case can occur if we saw a WPLT30 reloc in an input
1644 file, but none of the input files were dynamic objects.
1645 In such a case, we don't actually need to build a
1646 procedure linkage table, and we can just do a WDISP30
1647 reloc instead. */
1648 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
b34976b6 1649 return TRUE;
252b5132
RH
1650 }
1651
1652 s = bfd_get_section_by_name (dynobj, ".plt");
1653 BFD_ASSERT (s != NULL);
1654
1655 /* The first four bit in .plt is reserved. */
eea6121a
AM
1656 if (s->size == 0)
1657 s->size = PLT_HEADER_SIZE;
252b5132 1658
7c319a27 1659 /* To simplify matters later, just store the plt index here. */
eea6121a 1660 h->plt.offset = s->size / PLT_ENTRY_SIZE;
7c319a27 1661
252b5132
RH
1662 /* If this symbol is not defined in a regular file, and we are
1663 not generating a shared library, then set the symbol to this
1664 location in the .plt. This is required to make function
1665 pointers compare as equal between the normal executable and
1666 the shared library. */
1667 if (! info->shared
1668 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1669 {
1670 h->root.u.def.section = s;
7c319a27 1671 h->root.u.def.value = sparc64_elf_plt_entry_offset (h->plt.offset);
252b5132
RH
1672 }
1673
252b5132 1674 /* Make room for this entry. */
eea6121a 1675 s->size += PLT_ENTRY_SIZE;
252b5132
RH
1676
1677 /* We also need to make an entry in the .rela.plt section. */
1678
1679 s = bfd_get_section_by_name (dynobj, ".rela.plt");
1680 BFD_ASSERT (s != NULL);
1681
eea6121a 1682 s->size += sizeof (Elf64_External_Rela);
252b5132
RH
1683
1684 /* The procedure linkage table size is bounded by the magnitude
1685 of the offset we can describe in the entry. */
eea6121a 1686 if (s->size >= (bfd_vma)1 << 32)
252b5132
RH
1687 {
1688 bfd_set_error (bfd_error_bad_value);
b34976b6 1689 return FALSE;
252b5132
RH
1690 }
1691
b34976b6 1692 return TRUE;
252b5132
RH
1693 }
1694
1695 /* If this is a weak symbol, and there is a real definition, the
1696 processor independent code will have arranged for us to see the
1697 real definition first, and we can just use the same value. */
1698 if (h->weakdef != NULL)
1699 {
1700 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1701 || h->weakdef->root.type == bfd_link_hash_defweak);
1702 h->root.u.def.section = h->weakdef->root.u.def.section;
1703 h->root.u.def.value = h->weakdef->root.u.def.value;
b34976b6 1704 return TRUE;
252b5132
RH
1705 }
1706
1707 /* This is a reference to a symbol defined by a dynamic object which
1708 is not a function. */
1709
1710 /* If we are creating a shared library, we must presume that the
1711 only references to the symbol are via the global offset table.
1712 For such cases we need not do anything here; the relocations will
1713 be handled correctly by relocate_section. */
1714 if (info->shared)
b34976b6 1715 return TRUE;
252b5132
RH
1716
1717 /* We must allocate the symbol in our .dynbss section, which will
1718 become part of the .bss section of the executable. There will be
1719 an entry for this symbol in the .dynsym section. The dynamic
1720 object will contain position independent code, so all references
1721 from the dynamic object to this symbol will go through the global
1722 offset table. The dynamic linker will use the .dynsym entry to
1723 determine the address it must put in the global offset table, so
1724 both the dynamic object and the regular object will refer to the
1725 same memory location for the variable. */
1726
1727 s = bfd_get_section_by_name (dynobj, ".dynbss");
1728 BFD_ASSERT (s != NULL);
1729
1730 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1731 to copy the initial value out of the dynamic object and into the
1732 runtime process image. We need to remember the offset into the
1733 .rel.bss section we are going to use. */
1734 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1735 {
1736 asection *srel;
1737
1738 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1739 BFD_ASSERT (srel != NULL);
eea6121a 1740 srel->size += sizeof (Elf64_External_Rela);
252b5132
RH
1741 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1742 }
1743
1744 /* We need to figure out the alignment required for this symbol. I
1745 have no idea how ELF linkers handle this. 16-bytes is the size
1746 of the largest type that requires hard alignment -- long double. */
1747 power_of_two = bfd_log2 (h->size);
1748 if (power_of_two > 4)
1749 power_of_two = 4;
1750
1751 /* Apply the required alignment. */
eea6121a 1752 s->size = BFD_ALIGN (s->size, (bfd_size_type) (1 << power_of_two));
252b5132
RH
1753 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1754 {
1755 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
b34976b6 1756 return FALSE;
252b5132
RH
1757 }
1758
1759 /* Define the symbol as being at this point in the section. */
1760 h->root.u.def.section = s;
eea6121a 1761 h->root.u.def.value = s->size;
252b5132
RH
1762
1763 /* Increment the section size to make room for the symbol. */
eea6121a 1764 s->size += h->size;
252b5132 1765
b34976b6 1766 return TRUE;
252b5132
RH
1767}
1768
1769/* Set the sizes of the dynamic sections. */
1770
b34976b6 1771static bfd_boolean
252b5132
RH
1772sparc64_elf_size_dynamic_sections (output_bfd, info)
1773 bfd *output_bfd;
1774 struct bfd_link_info *info;
1775{
1776 bfd *dynobj;
1777 asection *s;
b34976b6 1778 bfd_boolean relplt;
252b5132
RH
1779
1780 dynobj = elf_hash_table (info)->dynobj;
1781 BFD_ASSERT (dynobj != NULL);
1782
1783 if (elf_hash_table (info)->dynamic_sections_created)
1784 {
1785 /* Set the contents of the .interp section to the interpreter. */
36af4a4e 1786 if (info->executable)
252b5132
RH
1787 {
1788 s = bfd_get_section_by_name (dynobj, ".interp");
1789 BFD_ASSERT (s != NULL);
eea6121a 1790 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
252b5132
RH
1791 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1792 }
1793 }
1794 else
1795 {
1796 /* We may have created entries in the .rela.got section.
1797 However, if we are not creating the dynamic sections, we will
1798 not actually use these entries. Reset the size of .rela.got,
1799 which will cause it to get stripped from the output file
1800 below. */
1801 s = bfd_get_section_by_name (dynobj, ".rela.got");
1802 if (s != NULL)
eea6121a 1803 s->size = 0;
252b5132
RH
1804 }
1805
1806 /* The check_relocs and adjust_dynamic_symbol entry points have
1807 determined the sizes of the various dynamic sections. Allocate
1808 memory for them. */
b34976b6 1809 relplt = FALSE;
252b5132
RH
1810 for (s = dynobj->sections; s != NULL; s = s->next)
1811 {
1812 const char *name;
b34976b6 1813 bfd_boolean strip;
252b5132
RH
1814
1815 if ((s->flags & SEC_LINKER_CREATED) == 0)
1816 continue;
1817
1818 /* It's OK to base decisions on the section name, because none
1819 of the dynobj section names depend upon the input files. */
1820 name = bfd_get_section_name (dynobj, s);
1821
b34976b6 1822 strip = FALSE;
252b5132
RH
1823
1824 if (strncmp (name, ".rela", 5) == 0)
1825 {
eea6121a 1826 if (s->size == 0)
252b5132
RH
1827 {
1828 /* If we don't need this section, strip it from the
1829 output file. This is to handle .rela.bss and
1830 .rel.plt. We must create it in
1831 create_dynamic_sections, because it must be created
1832 before the linker maps input sections to output
1833 sections. The linker does that before
1834 adjust_dynamic_symbol is called, and it is that
1835 function which decides whether anything needs to go
1836 into these sections. */
b34976b6 1837 strip = TRUE;
252b5132
RH
1838 }
1839 else
1840 {
252b5132 1841 if (strcmp (name, ".rela.plt") == 0)
b34976b6 1842 relplt = TRUE;
252b5132
RH
1843
1844 /* We use the reloc_count field as a counter if we need
1845 to copy relocs into the output file. */
1846 s->reloc_count = 0;
1847 }
1848 }
1849 else if (strcmp (name, ".plt") != 0
1850 && strncmp (name, ".got", 4) != 0)
1851 {
1852 /* It's not one of our sections, so don't allocate space. */
1853 continue;
1854 }
1855
1856 if (strip)
1857 {
7f8d5fc9 1858 _bfd_strip_section_from_output (info, s);
252b5132
RH
1859 continue;
1860 }
1861
1862 /* Allocate memory for the section contents. Zero the memory
1863 for the benefit of .rela.plt, which has 4 unused entries
1864 at the beginning, and we don't want garbage. */
eea6121a
AM
1865 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1866 if (s->contents == NULL && s->size != 0)
b34976b6 1867 return FALSE;
252b5132
RH
1868 }
1869
1870 if (elf_hash_table (info)->dynamic_sections_created)
1871 {
1872 /* Add some entries to the .dynamic section. We fill in the
1873 values later, in sparc64_elf_finish_dynamic_sections, but we
1874 must add the entries now so that we get the correct size for
1875 the .dynamic section. The DT_DEBUG entry is filled in by the
1876 dynamic linker and used by the debugger. */
dc810e39 1877#define add_dynamic_entry(TAG, VAL) \
5a580b3a 1878 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
dc810e39 1879
587ff49e
RH
1880 int reg;
1881 struct sparc64_elf_app_reg * app_regs;
350836e3 1882 struct elf_strtab_hash *dynstr;
587ff49e
RH
1883 struct elf_link_hash_table *eht = elf_hash_table (info);
1884
36af4a4e 1885 if (info->executable)
252b5132 1886 {
dc810e39 1887 if (!add_dynamic_entry (DT_DEBUG, 0))
b34976b6 1888 return FALSE;
252b5132
RH
1889 }
1890
1891 if (relplt)
1892 {
dc810e39
AM
1893 if (!add_dynamic_entry (DT_PLTGOT, 0)
1894 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1895 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1896 || !add_dynamic_entry (DT_JMPREL, 0))
b34976b6 1897 return FALSE;
252b5132
RH
1898 }
1899
dc810e39
AM
1900 if (!add_dynamic_entry (DT_RELA, 0)
1901 || !add_dynamic_entry (DT_RELASZ, 0)
1902 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
b34976b6 1903 return FALSE;
252b5132 1904
db6751f2 1905 if (info->flags & DF_TEXTREL)
252b5132 1906 {
dc810e39 1907 if (!add_dynamic_entry (DT_TEXTREL, 0))
b34976b6 1908 return FALSE;
252b5132 1909 }
587ff49e
RH
1910
1911 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1912 entries if needed. */
1913 app_regs = sparc64_elf_hash_table (info)->app_regs;
1914 dynstr = eht->dynstr;
1915
1916 for (reg = 0; reg < 4; reg++)
1917 if (app_regs [reg].name != NULL)
1918 {
1919 struct elf_link_local_dynamic_entry *entry, *e;
435b1e90 1920
dc810e39 1921 if (!add_dynamic_entry (DT_SPARC_REGISTER, 0))
b34976b6 1922 return FALSE;
587ff49e
RH
1923
1924 entry = (struct elf_link_local_dynamic_entry *)
1925 bfd_hash_allocate (&info->hash->table, sizeof (*entry));
1926 if (entry == NULL)
b34976b6 1927 return FALSE;
587ff49e
RH
1928
1929 /* We cheat here a little bit: the symbol will not be local, so we
1930 put it at the end of the dynlocal linked list. We will fix it
1931 later on, as we have to fix other fields anyway. */
1932 entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
1933 entry->isym.st_size = 0;
1934 if (*app_regs [reg].name != '\0')
1935 entry->isym.st_name
b34976b6 1936 = _bfd_elf_strtab_add (dynstr, app_regs[reg].name, FALSE);
587ff49e
RH
1937 else
1938 entry->isym.st_name = 0;
1939 entry->isym.st_other = 0;
1940 entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
1941 STT_REGISTER);
1942 entry->isym.st_shndx = app_regs [reg].shndx;
1943 entry->next = NULL;
1944 entry->input_bfd = output_bfd;
1945 entry->input_indx = -1;
1946
1947 if (eht->dynlocal == NULL)
1948 eht->dynlocal = entry;
1949 else
1950 {
1951 for (e = eht->dynlocal; e->next; e = e->next)
1952 ;
1953 e->next = entry;
1954 }
1955 eht->dynsymcount++;
1956 }
252b5132 1957 }
dc810e39 1958#undef add_dynamic_entry
252b5132 1959
b34976b6 1960 return TRUE;
252b5132 1961}
252b5132 1962\f
f0abc2a1
AM
1963static bfd_boolean
1964sparc64_elf_new_section_hook (abfd, sec)
1965 bfd *abfd;
1966 asection *sec;
1967{
1968 struct sparc64_elf_section_data *sdata;
1969 bfd_size_type amt = sizeof (*sdata);
1970
1971 sdata = (struct sparc64_elf_section_data *) bfd_zalloc (abfd, amt);
1972 if (sdata == NULL)
1973 return FALSE;
1974 sec->used_by_bfd = (PTR) sdata;
1975
1976 return _bfd_elf_new_section_hook (abfd, sec);
1977}
f7775d95 1978
b34976b6 1979static bfd_boolean
f7775d95
JJ
1980sparc64_elf_relax_section (abfd, section, link_info, again)
1981 bfd *abfd ATTRIBUTE_UNUSED;
1982 asection *section ATTRIBUTE_UNUSED;
1983 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
b34976b6 1984 bfd_boolean *again;
f7775d95 1985{
b34976b6 1986 *again = FALSE;
f0abc2a1 1987 sec_do_relax (section) = 1;
b34976b6 1988 return TRUE;
f7775d95
JJ
1989}
1990\f
252b5132
RH
1991/* Relocate a SPARC64 ELF section. */
1992
b34976b6 1993static bfd_boolean
252b5132
RH
1994sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1995 contents, relocs, local_syms, local_sections)
1996 bfd *output_bfd;
1997 struct bfd_link_info *info;
1998 bfd *input_bfd;
1999 asection *input_section;
2000 bfd_byte *contents;
2001 Elf_Internal_Rela *relocs;
2002 Elf_Internal_Sym *local_syms;
2003 asection **local_sections;
2004{
2005 bfd *dynobj;
2006 Elf_Internal_Shdr *symtab_hdr;
2007 struct elf_link_hash_entry **sym_hashes;
2008 bfd_vma *local_got_offsets;
2009 bfd_vma got_base;
2010 asection *sgot;
2011 asection *splt;
2012 asection *sreloc;
2013 Elf_Internal_Rela *rel;
2014 Elf_Internal_Rela *relend;
2015
1049f94e 2016 if (info->relocatable)
b34976b6 2017 return TRUE;
f0fe0e16 2018
252b5132
RH
2019 dynobj = elf_hash_table (info)->dynobj;
2020 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2021 sym_hashes = elf_sym_hashes (input_bfd);
2022 local_got_offsets = elf_local_got_offsets (input_bfd);
2023
2024 if (elf_hash_table(info)->hgot == NULL)
2025 got_base = 0;
2026 else
2027 got_base = elf_hash_table (info)->hgot->root.u.def.value;
2028
019b892f
AM
2029 sgot = splt = sreloc = NULL;
2030 if (dynobj != NULL)
2031 splt = bfd_get_section_by_name (dynobj, ".plt");
252b5132
RH
2032
2033 rel = relocs;
e90fdc1a 2034 relend = relocs + NUM_SHDR_ENTRIES (& elf_section_data (input_section)->rel_hdr);
252b5132
RH
2035 for (; rel < relend; rel++)
2036 {
2037 int r_type;
2038 reloc_howto_type *howto;
6c08d697 2039 unsigned long r_symndx;
252b5132
RH
2040 struct elf_link_hash_entry *h;
2041 Elf_Internal_Sym *sym;
2042 asection *sec;
e36f7d53 2043 bfd_vma relocation, off;
252b5132 2044 bfd_reloc_status_type r;
b34976b6
AM
2045 bfd_boolean is_plt = FALSE;
2046 bfd_boolean unresolved_reloc;
252b5132 2047
f65054f7 2048 r_type = ELF64_R_TYPE_ID (rel->r_info);
60dac299 2049 if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
252b5132
RH
2050 {
2051 bfd_set_error (bfd_error_bad_value);
b34976b6 2052 return FALSE;
252b5132
RH
2053 }
2054 howto = sparc64_elf_howto_table + r_type;
2055
252b5132 2056 /* This is a final link. */
f0fe0e16 2057 r_symndx = ELF64_R_SYM (rel->r_info);
252b5132
RH
2058 h = NULL;
2059 sym = NULL;
2060 sec = NULL;
b34976b6 2061 unresolved_reloc = FALSE;
252b5132
RH
2062 if (r_symndx < symtab_hdr->sh_info)
2063 {
2064 sym = local_syms + r_symndx;
2065 sec = local_sections[r_symndx];
8517fae7 2066 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
252b5132
RH
2067 }
2068 else
2069 {
560e09e9 2070 bfd_boolean warned;
e36f7d53 2071
b2a8e766
AM
2072 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2073 r_symndx, symtab_hdr, sym_hashes,
2074 h, sec, relocation,
2075 unresolved_reloc, warned);
560e09e9 2076 if (warned)
252b5132 2077 {
be040dbb
JJ
2078 /* To avoid generating warning messages about truncated
2079 relocations, set the relocation's address to be the same as
2080 the start of this section. */
be040dbb
JJ
2081 if (input_section->output_section != NULL)
2082 relocation = input_section->output_section->vma;
2083 else
2084 relocation = 0;
252b5132
RH
2085 }
2086 }
2087
e36f7d53 2088 do_dynreloc:
252b5132
RH
2089 /* When generating a shared object, these relocations are copied
2090 into the output file to be resolved at run time. */
ec338859 2091 if (info->shared && r_symndx != 0 && (input_section->flags & SEC_ALLOC))
252b5132
RH
2092 {
2093 switch (r_type)
2094 {
2095 case R_SPARC_PC10:
2096 case R_SPARC_PC22:
2097 case R_SPARC_PC_HH22:
2098 case R_SPARC_PC_HM10:
2099 case R_SPARC_PC_LM22:
2100 if (h != NULL
2101 && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2102 break;
2103 /* Fall through. */
2104 case R_SPARC_DISP8:
2105 case R_SPARC_DISP16:
2106 case R_SPARC_DISP32:
b88a866a 2107 case R_SPARC_DISP64:
252b5132
RH
2108 case R_SPARC_WDISP30:
2109 case R_SPARC_WDISP22:
2110 case R_SPARC_WDISP19:
2111 case R_SPARC_WDISP16:
252b5132
RH
2112 if (h == NULL)
2113 break;
2114 /* Fall through. */
2115 case R_SPARC_8:
2116 case R_SPARC_16:
2117 case R_SPARC_32:
2118 case R_SPARC_HI22:
2119 case R_SPARC_22:
2120 case R_SPARC_13:
2121 case R_SPARC_LO10:
2122 case R_SPARC_UA32:
2123 case R_SPARC_10:
2124 case R_SPARC_11:
2125 case R_SPARC_64:
2126 case R_SPARC_OLO10:
2127 case R_SPARC_HH22:
2128 case R_SPARC_HM10:
2129 case R_SPARC_LM22:
2130 case R_SPARC_7:
2131 case R_SPARC_5:
2132 case R_SPARC_6:
2133 case R_SPARC_HIX22:
2134 case R_SPARC_LOX10:
2135 case R_SPARC_H44:
2136 case R_SPARC_M44:
2137 case R_SPARC_L44:
2138 case R_SPARC_UA64:
2139 case R_SPARC_UA16:
2140 {
2141 Elf_Internal_Rela outrel;
947216bf 2142 bfd_byte *loc;
b34976b6 2143 bfd_boolean skip, relocate;
252b5132
RH
2144
2145 if (sreloc == NULL)
2146 {
2147 const char *name =
2148 (bfd_elf_string_from_elf_section
2149 (input_bfd,
2150 elf_elfheader (input_bfd)->e_shstrndx,
2151 elf_section_data (input_section)->rel_hdr.sh_name));
2152
2153 if (name == NULL)
b34976b6 2154 return FALSE;
252b5132
RH
2155
2156 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
2157 && strcmp (bfd_get_section_name(input_bfd,
2158 input_section),
2159 name + 5) == 0);
2160
2161 sreloc = bfd_get_section_by_name (dynobj, name);
2162 BFD_ASSERT (sreloc != NULL);
2163 }
2164
b34976b6
AM
2165 skip = FALSE;
2166 relocate = FALSE;
252b5132 2167
c629eae0
JJ
2168 outrel.r_offset =
2169 _bfd_elf_section_offset (output_bfd, info, input_section,
2170 rel->r_offset);
2171 if (outrel.r_offset == (bfd_vma) -1)
b34976b6 2172 skip = TRUE;
0bb2d96a 2173 else if (outrel.r_offset == (bfd_vma) -2)
b34976b6 2174 skip = TRUE, relocate = TRUE;
252b5132
RH
2175
2176 outrel.r_offset += (input_section->output_section->vma
2177 + input_section->output_offset);
2178
2179 /* Optimize unaligned reloc usage now that we know where
2180 it finally resides. */
2181 switch (r_type)
2182 {
2183 case R_SPARC_16:
2184 if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
2185 break;
2186 case R_SPARC_UA16:
2187 if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
2188 break;
2189 case R_SPARC_32:
2190 if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
2191 break;
2192 case R_SPARC_UA32:
2193 if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
2194 break;
2195 case R_SPARC_64:
2196 if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
2197 break;
2198 case R_SPARC_UA64:
2199 if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
2200 break;
b88a866a
JJ
2201 case R_SPARC_DISP8:
2202 case R_SPARC_DISP16:
2203 case R_SPARC_DISP32:
2204 case R_SPARC_DISP64:
2205 /* If the symbol is not dynamic, we should not keep
2206 a dynamic relocation. But an .rela.* slot has been
2207 allocated for it, output R_SPARC_NONE.
2208 FIXME: Add code tracking needed dynamic relocs as
2209 e.g. i386 has. */
2210 if (h->dynindx == -1)
b34976b6 2211 skip = TRUE, relocate = TRUE;
b88a866a 2212 break;
252b5132
RH
2213 }
2214
4dc570c2
JJ
2215 /* FIXME: Dynamic reloc handling really needs to be rewritten. */
2216 if (!skip
2217 && h != NULL
2218 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2219 && h->root.type == bfd_link_hash_undefweak)
2220 skip = TRUE, relocate = TRUE;
2221
252b5132
RH
2222 if (skip)
2223 memset (&outrel, 0, sizeof outrel);
2224 /* h->dynindx may be -1 if the symbol was marked to
2225 become local. */
bd5e6e7e 2226 else if (h != NULL && ! is_plt
252b5132
RH
2227 && ((! info->symbolic && h->dynindx != -1)
2228 || (h->elf_link_hash_flags
2229 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2230 {
2231 BFD_ASSERT (h->dynindx != -1);
f65054f7
RH
2232 outrel.r_info
2233 = ELF64_R_INFO (h->dynindx,
2234 ELF64_R_TYPE_INFO (
2235 ELF64_R_TYPE_DATA (rel->r_info),
2236 r_type));
252b5132
RH
2237 outrel.r_addend = rel->r_addend;
2238 }
2239 else
2240 {
dad62816 2241 outrel.r_addend = relocation + rel->r_addend;
252b5132 2242 if (r_type == R_SPARC_64)
dad62816 2243 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
252b5132
RH
2244 else
2245 {
2246 long indx;
2247
bd5e6e7e
JJ
2248 if (is_plt)
2249 sec = splt;
8517fae7
AM
2250
2251 if (bfd_is_abs_section (sec))
252b5132
RH
2252 indx = 0;
2253 else if (sec == NULL || sec->owner == NULL)
2254 {
2255 bfd_set_error (bfd_error_bad_value);
b34976b6 2256 return FALSE;
252b5132
RH
2257 }
2258 else
2259 {
2260 asection *osec;
2261
2262 osec = sec->output_section;
2263 indx = elf_section_data (osec)->dynindx;
2264
dad62816
AM
2265 /* We are turning this relocation into one
2266 against a section symbol, so subtract out
2267 the output section's address but not the
2268 offset of the input section in the output
2269 section. */
2270 outrel.r_addend -= osec->vma;
2271
252b5132
RH
2272 /* FIXME: we really should be able to link non-pic
2273 shared libraries. */
2274 if (indx == 0)
2275 {
2276 BFD_FAIL ();
2277 (*_bfd_error_handler)
2278 (_("%s: probably compiled without -fPIC?"),
8f615d07 2279 bfd_archive_filename (input_bfd));
252b5132 2280 bfd_set_error (bfd_error_bad_value);
b34976b6 2281 return FALSE;
252b5132
RH
2282 }
2283 }
2284
f65054f7
RH
2285 outrel.r_info
2286 = ELF64_R_INFO (indx,
2287 ELF64_R_TYPE_INFO (
2288 ELF64_R_TYPE_DATA (rel->r_info),
2289 r_type));
252b5132
RH
2290 }
2291 }
2292
947216bf
AM
2293 loc = sreloc->contents;
2294 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
2295 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
252b5132
RH
2296
2297 /* This reloc will be computed at runtime, so there's no
20278fa3 2298 need to do anything now. */
0bb2d96a
JJ
2299 if (! relocate)
2300 continue;
252b5132
RH
2301 }
2302 break;
2303 }
2304 }
2305
2306 switch (r_type)
2307 {
2308 case R_SPARC_GOT10:
2309 case R_SPARC_GOT13:
2310 case R_SPARC_GOT22:
2311 /* Relocation is to the entry for this symbol in the global
2312 offset table. */
2313 if (sgot == NULL)
2314 {
2315 sgot = bfd_get_section_by_name (dynobj, ".got");
2316 BFD_ASSERT (sgot != NULL);
2317 }
2318
2319 if (h != NULL)
2320 {
b34976b6 2321 bfd_boolean dyn;
e36f7d53
RH
2322
2323 off = h->got.offset;
252b5132 2324 BFD_ASSERT (off != (bfd_vma) -1);
e36f7d53 2325 dyn = elf_hash_table (info)->dynamic_sections_created;
252b5132 2326
c152c796 2327 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
252b5132 2328 || (info->shared
e36f7d53
RH
2329 && (info->symbolic
2330 || h->dynindx == -1
2331 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
2332 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
252b5132
RH
2333 {
2334 /* This is actually a static link, or it is a -Bsymbolic
2335 link and the symbol is defined locally, or the symbol
2336 was forced to be local because of a version file. We
2337 must initialize this entry in the global offset table.
2338 Since the offset must always be a multiple of 8, we
2339 use the least significant bit to record whether we
2340 have initialized it already.
2341
2342 When doing a dynamic link, we create a .rela.got
2343 relocation entry to initialize the value. This is
2344 done in the finish_dynamic_symbol routine. */
2345
2346 if ((off & 1) != 0)
2347 off &= ~1;
2348 else
2349 {
2350 bfd_put_64 (output_bfd, relocation,
2351 sgot->contents + off);
2352 h->got.offset |= 1;
2353 }
2354 }
e36f7d53 2355 else
b34976b6 2356 unresolved_reloc = FALSE;
252b5132
RH
2357 }
2358 else
2359 {
252b5132
RH
2360 BFD_ASSERT (local_got_offsets != NULL);
2361 off = local_got_offsets[r_symndx];
2362 BFD_ASSERT (off != (bfd_vma) -1);
2363
2364 /* The offset must always be a multiple of 8. We use
2365 the least significant bit to record whether we have
2366 already processed this entry. */
2367 if ((off & 1) != 0)
2368 off &= ~1;
2369 else
2370 {
252b5132
RH
2371 local_got_offsets[r_symndx] |= 1;
2372
2373 if (info->shared)
2374 {
947216bf 2375 asection *s;
252b5132 2376 Elf_Internal_Rela outrel;
947216bf 2377 bfd_byte *loc;
252b5132 2378
ea5fbc67
GK
2379 /* The Solaris 2.7 64-bit linker adds the contents
2380 of the location to the value of the reloc.
2381 Note this is different behaviour to the
2382 32-bit linker, which both adds the contents
2383 and ignores the addend. So clear the location. */
dc810e39
AM
2384 bfd_put_64 (output_bfd, (bfd_vma) 0,
2385 sgot->contents + off);
435b1e90 2386
252b5132
RH
2387 /* We need to generate a R_SPARC_RELATIVE reloc
2388 for the dynamic linker. */
947216bf
AM
2389 s = bfd_get_section_by_name(dynobj, ".rela.got");
2390 BFD_ASSERT (s != NULL);
252b5132
RH
2391
2392 outrel.r_offset = (sgot->output_section->vma
2393 + sgot->output_offset
2394 + off);
2395 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2396 outrel.r_addend = relocation;
947216bf
AM
2397 loc = s->contents;
2398 loc += s->reloc_count++ * sizeof (Elf64_External_Rela);
2399 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
252b5132 2400 }
ea5fbc67
GK
2401 else
2402 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
252b5132 2403 }
252b5132 2404 }
e36f7d53 2405 relocation = sgot->output_offset + off - got_base;
252b5132
RH
2406 goto do_default;
2407
2408 case R_SPARC_WPLT30:
2409 case R_SPARC_PLT32:
2410 case R_SPARC_HIPLT22:
2411 case R_SPARC_LOPLT10:
2412 case R_SPARC_PCPLT32:
2413 case R_SPARC_PCPLT22:
2414 case R_SPARC_PCPLT10:
2415 case R_SPARC_PLT64:
2416 /* Relocation is to the entry for this symbol in the
2417 procedure linkage table. */
2418 BFD_ASSERT (h != NULL);
2419
6de00a78 2420 if (h->plt.offset == (bfd_vma) -1 || splt == NULL)
252b5132
RH
2421 {
2422 /* We didn't make a PLT entry for this symbol. This
2423 happens when statically linking PIC code, or when
2424 using -Bsymbolic. */
2425 goto do_default;
2426 }
2427
252b5132
RH
2428 relocation = (splt->output_section->vma
2429 + splt->output_offset
2430 + sparc64_elf_plt_entry_offset (h->plt.offset));
b34976b6 2431 unresolved_reloc = FALSE;
f7775d95
JJ
2432 if (r_type == R_SPARC_WPLT30)
2433 goto do_wplt30;
bd5e6e7e
JJ
2434 if (r_type == R_SPARC_PLT32 || r_type == R_SPARC_PLT64)
2435 {
2436 r_type = r_type == R_SPARC_PLT32 ? R_SPARC_32 : R_SPARC_64;
b34976b6 2437 is_plt = TRUE;
bd5e6e7e
JJ
2438 goto do_dynreloc;
2439 }
252b5132
RH
2440 goto do_default;
2441
2442 case R_SPARC_OLO10:
2443 {
2444 bfd_vma x;
2445
2446 relocation += rel->r_addend;
2447 relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
2448
2449 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
dc810e39 2450 x = (x & ~(bfd_vma) 0x1fff) | (relocation & 0x1fff);
252b5132
RH
2451 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2452
2453 r = bfd_check_overflow (howto->complain_on_overflow,
2454 howto->bitsize, howto->rightshift,
2455 bfd_arch_bits_per_address (input_bfd),
2456 relocation);
2457 }
2458 break;
2459
2460 case R_SPARC_WDISP16:
2461 {
2462 bfd_vma x;
2463
2464 relocation += rel->r_addend;
2465 /* Adjust for pc-relative-ness. */
2466 relocation -= (input_section->output_section->vma
2467 + input_section->output_offset);
2468 relocation -= rel->r_offset;
2469
2470 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
dc810e39
AM
2471 x &= ~(bfd_vma) 0x303fff;
2472 x |= ((((relocation >> 2) & 0xc000) << 6)
2473 | ((relocation >> 2) & 0x3fff));
252b5132
RH
2474 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2475
2476 r = bfd_check_overflow (howto->complain_on_overflow,
2477 howto->bitsize, howto->rightshift,
2478 bfd_arch_bits_per_address (input_bfd),
2479 relocation);
2480 }
2481 break;
2482
2483 case R_SPARC_HIX22:
2484 {
2485 bfd_vma x;
2486
2487 relocation += rel->r_addend;
2488 relocation = relocation ^ MINUS_ONE;
2489
2490 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
dc810e39 2491 x = (x & ~(bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
252b5132
RH
2492 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2493
2494 r = bfd_check_overflow (howto->complain_on_overflow,
2495 howto->bitsize, howto->rightshift,
2496 bfd_arch_bits_per_address (input_bfd),
2497 relocation);
2498 }
2499 break;
2500
2501 case R_SPARC_LOX10:
2502 {
2503 bfd_vma x;
2504
2505 relocation += rel->r_addend;
2506 relocation = (relocation & 0x3ff) | 0x1c00;
2507
2508 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
dc810e39 2509 x = (x & ~(bfd_vma) 0x1fff) | relocation;
252b5132
RH
2510 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2511
2512 r = bfd_reloc_ok;
2513 }
2514 break;
2515
f7775d95
JJ
2516 case R_SPARC_WDISP30:
2517 do_wplt30:
f0abc2a1 2518 if (sec_do_relax (input_section)
eea6121a 2519 && rel->r_offset + 4 < input_section->size)
f7775d95
JJ
2520 {
2521#define G0 0
2522#define O7 15
2523#define XCC (2 << 20)
2524#define COND(x) (((x)&0xf)<<25)
2525#define CONDA COND(0x8)
2526#define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
2527#define INSN_BA (F2(0,2) | CONDA)
2528#define INSN_OR F3(2, 0x2, 0)
2529#define INSN_NOP F2(0,4)
2530
2531 bfd_vma x, y;
2532
2533 /* If the instruction is a call with either:
2534 restore
2535 arithmetic instruction with rd == %o7
2536 where rs1 != %o7 and rs2 if it is register != %o7
2537 then we can optimize if the call destination is near
2538 by changing the call into a branch always. */
2539 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2540 y = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
2541 if ((x & OP(~0)) == OP(1) && (y & OP(~0)) == OP(2))
2542 {
2543 if (((y & OP3(~0)) == OP3(0x3d) /* restore */
2544 || ((y & OP3(0x28)) == 0 /* arithmetic */
2545 && (y & RD(~0)) == RD(O7)))
2546 && (y & RS1(~0)) != RS1(O7)
2547 && ((y & F3I(~0))
2548 || (y & RS2(~0)) != RS2(O7)))
2549 {
2550 bfd_vma reloc;
2551
2552 reloc = relocation + rel->r_addend - rel->r_offset;
2553 reloc -= (input_section->output_section->vma
2554 + input_section->output_offset);
2555 if (reloc & 3)
2556 goto do_default;
2557
2558 /* Ensure the branch fits into simm22. */
2559 if ((reloc & ~(bfd_vma)0x7fffff)
2560 && ((reloc | 0x7fffff) != MINUS_ONE))
2561 goto do_default;
2562 reloc >>= 2;
2563
2564 /* Check whether it fits into simm19. */
2565 if ((reloc & 0x3c0000) == 0
2566 || (reloc & 0x3c0000) == 0x3c0000)
2567 x = INSN_BPA | (reloc & 0x7ffff); /* ba,pt %xcc */
2568 else
2569 x = INSN_BA | (reloc & 0x3fffff); /* ba */
2570 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2571 r = bfd_reloc_ok;
2572 if (rel->r_offset >= 4
2573 && (y & (0xffffffff ^ RS1(~0)))
2574 == (INSN_OR | RD(O7) | RS2(G0)))
2575 {
2576 bfd_vma z;
2577 unsigned int reg;
2578
2579 z = bfd_get_32 (input_bfd,
2580 contents + rel->r_offset - 4);
2581 if ((z & (0xffffffff ^ RD(~0)))
2582 != (INSN_OR | RS1(O7) | RS2(G0)))
2583 break;
2584
2585 /* The sequence was
2586 or %o7, %g0, %rN
2587 call foo
2588 or %rN, %g0, %o7
2589
2590 If call foo was replaced with ba, replace
2591 or %rN, %g0, %o7 with nop. */
2592
2593 reg = (y & RS1(~0)) >> 14;
2594 if (reg != ((z & RD(~0)) >> 25)
2595 || reg == G0 || reg == O7)
2596 break;
2597
dc810e39 2598 bfd_put_32 (input_bfd, (bfd_vma) INSN_NOP,
f7775d95
JJ
2599 contents + rel->r_offset + 4);
2600 }
2601 break;
2602 }
2603 }
2604 }
ae9a127f 2605 /* Fall through. */
f7775d95 2606
252b5132
RH
2607 default:
2608 do_default:
2609 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2610 contents, rel->r_offset,
2611 relocation, rel->r_addend);
2612 break;
2613 }
2614
239e1f3a
AM
2615 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2616 because such sections are not SEC_ALLOC and thus ld.so will
2617 not process them. */
e36f7d53 2618 if (unresolved_reloc
239e1f3a 2619 && !((input_section->flags & SEC_DEBUGGING) != 0
e36f7d53
RH
2620 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
2621 (*_bfd_error_handler)
2622 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
2623 bfd_archive_filename (input_bfd),
2624 bfd_get_section_name (input_bfd, input_section),
2625 (long) rel->r_offset,
2626 h->root.root.string);
2627
252b5132
RH
2628 switch (r)
2629 {
2630 case bfd_reloc_ok:
2631 break;
2632
2633 default:
2634 case bfd_reloc_outofrange:
2635 abort ();
2636
2637 case bfd_reloc_overflow:
2638 {
2639 const char *name;
2640
6361c4c9
AO
2641 /* The Solaris native linker silently disregards
2642 overflows. We don't, but this breaks stabs debugging
2643 info, whose relocations are only 32-bits wide. Ignore
99eb2ac8 2644 overflows for discarded entries. */
83615de0 2645 if ((r_type == R_SPARC_32 || r_type == R_SPARC_DISP32)
99eb2ac8
AM
2646 && _bfd_elf_section_offset (output_bfd, info, input_section,
2647 rel->r_offset) == (bfd_vma) -1)
6361c4c9
AO
2648 break;
2649
252b5132
RH
2650 if (h != NULL)
2651 {
2652 if (h->root.type == bfd_link_hash_undefweak
2653 && howto->pc_relative)
2654 {
2655 /* Assume this is a call protected by other code that
2656 detect the symbol is undefined. If this is the case,
435b1e90 2657 we can safely ignore the overflow. If not, the
252b5132
RH
2658 program is hosed anyway, and a little warning isn't
2659 going to help. */
2660 break;
2661 }
435b1e90 2662
252b5132
RH
2663 name = h->root.root.string;
2664 }
2665 else
2666 {
2667 name = (bfd_elf_string_from_elf_section
2668 (input_bfd,
2669 symtab_hdr->sh_link,
2670 sym->st_name));
2671 if (name == NULL)
b34976b6 2672 return FALSE;
252b5132
RH
2673 if (*name == '\0')
2674 name = bfd_section_name (input_bfd, sec);
2675 }
2676 if (! ((*info->callbacks->reloc_overflow)
2677 (info, name, howto->name, (bfd_vma) 0,
2678 input_bfd, input_section, rel->r_offset)))
b34976b6 2679 return FALSE;
252b5132
RH
2680 }
2681 break;
2682 }
2683 }
2684
b34976b6 2685 return TRUE;
252b5132
RH
2686}
2687
2688/* Finish up dynamic symbol handling. We set the contents of various
2689 dynamic sections here. */
2690
b34976b6 2691static bfd_boolean
252b5132
RH
2692sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
2693 bfd *output_bfd;
2694 struct bfd_link_info *info;
2695 struct elf_link_hash_entry *h;
2696 Elf_Internal_Sym *sym;
2697{
2698 bfd *dynobj;
2699
2700 dynobj = elf_hash_table (info)->dynobj;
2701
2702 if (h->plt.offset != (bfd_vma) -1)
2703 {
2704 asection *splt;
2705 asection *srela;
2706 Elf_Internal_Rela rela;
947216bf 2707 bfd_byte *loc;
252b5132 2708
435b1e90 2709 /* This symbol has an entry in the PLT. Set it up. */
252b5132
RH
2710
2711 BFD_ASSERT (h->dynindx != -1);
2712
2713 splt = bfd_get_section_by_name (dynobj, ".plt");
2714 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
2715 BFD_ASSERT (splt != NULL && srela != NULL);
2716
2717 /* Fill in the entry in the .rela.plt section. */
2718
2719 if (h->plt.offset < LARGE_PLT_THRESHOLD)
2720 {
2721 rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
2722 rela.r_addend = 0;
2723 }
2724 else
2725 {
eea6121a 2726 bfd_vma max = splt->size / PLT_ENTRY_SIZE;
252b5132 2727 rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
a11c78e7
RH
2728 rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
2729 -(splt->output_section->vma + splt->output_offset);
252b5132
RH
2730 }
2731 rela.r_offset += (splt->output_section->vma + splt->output_offset);
2732 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
2733
be040dbb
JJ
2734 /* Adjust for the first 4 reserved elements in the .plt section
2735 when setting the offset in the .rela.plt section.
2736 Sun forgot to read their own ABI and copied elf32-sparc behaviour,
2737 thus .plt[4] has corresponding .rela.plt[0] and so on. */
2738
947216bf
AM
2739 loc = srela->contents;
2740 loc += (h->plt.offset - 4) * sizeof (Elf64_External_Rela);
2741 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
252b5132
RH
2742
2743 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2744 {
2745 /* Mark the symbol as undefined, rather than as defined in
2746 the .plt section. Leave the value alone. */
2747 sym->st_shndx = SHN_UNDEF;
8701c1bc
JJ
2748 /* If the symbol is weak, we do need to clear the value.
2749 Otherwise, the PLT entry would provide a definition for
2750 the symbol even if the symbol wasn't defined anywhere,
2751 and so the symbol would never be NULL. */
2752 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
2753 == 0)
2754 sym->st_value = 0;
252b5132
RH
2755 }
2756 }
2757
2758 if (h->got.offset != (bfd_vma) -1)
2759 {
2760 asection *sgot;
2761 asection *srela;
2762 Elf_Internal_Rela rela;
947216bf 2763 bfd_byte *loc;
252b5132
RH
2764
2765 /* This symbol has an entry in the GOT. Set it up. */
2766
2767 sgot = bfd_get_section_by_name (dynobj, ".got");
2768 srela = bfd_get_section_by_name (dynobj, ".rela.got");
2769 BFD_ASSERT (sgot != NULL && srela != NULL);
2770
2771 rela.r_offset = (sgot->output_section->vma
2772 + sgot->output_offset
dc810e39 2773 + (h->got.offset &~ (bfd_vma) 1));
252b5132
RH
2774
2775 /* If this is a -Bsymbolic link, and the symbol is defined
2776 locally, we just want to emit a RELATIVE reloc. Likewise if
2777 the symbol was forced to be local because of a version file.
2778 The entry in the global offset table will already have been
2779 initialized in the relocate_section function. */
2780 if (info->shared
2781 && (info->symbolic || h->dynindx == -1)
2782 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2783 {
2784 asection *sec = h->root.u.def.section;
2785 rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2786 rela.r_addend = (h->root.u.def.value
2787 + sec->output_section->vma
2788 + sec->output_offset);
2789 }
2790 else
2791 {
252b5132
RH
2792 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
2793 rela.r_addend = 0;
2794 }
2795
6b3ac709
JJ
2796 bfd_put_64 (output_bfd, (bfd_vma) 0,
2797 sgot->contents + (h->got.offset &~ (bfd_vma) 1));
947216bf
AM
2798 loc = srela->contents;
2799 loc += srela->reloc_count++ * sizeof (Elf64_External_Rela);
2800 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
252b5132
RH
2801 }
2802
2803 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2804 {
2805 asection *s;
2806 Elf_Internal_Rela rela;
947216bf 2807 bfd_byte *loc;
252b5132
RH
2808
2809 /* This symbols needs a copy reloc. Set it up. */
252b5132
RH
2810 BFD_ASSERT (h->dynindx != -1);
2811
2812 s = bfd_get_section_by_name (h->root.u.def.section->owner,
2813 ".rela.bss");
2814 BFD_ASSERT (s != NULL);
2815
2816 rela.r_offset = (h->root.u.def.value
2817 + h->root.u.def.section->output_section->vma
2818 + h->root.u.def.section->output_offset);
2819 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
2820 rela.r_addend = 0;
947216bf
AM
2821 loc = s->contents + s->reloc_count++ * sizeof (Elf64_External_Rela);
2822 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
252b5132
RH
2823 }
2824
2825 /* Mark some specially defined symbols as absolute. */
2826 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2827 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2828 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2829 sym->st_shndx = SHN_ABS;
2830
b34976b6 2831 return TRUE;
252b5132
RH
2832}
2833
2834/* Finish up the dynamic sections. */
2835
b34976b6 2836static bfd_boolean
252b5132
RH
2837sparc64_elf_finish_dynamic_sections (output_bfd, info)
2838 bfd *output_bfd;
2839 struct bfd_link_info *info;
2840{
2841 bfd *dynobj;
587ff49e 2842 int stt_regidx = -1;
252b5132
RH
2843 asection *sdyn;
2844 asection *sgot;
2845
2846 dynobj = elf_hash_table (info)->dynobj;
2847
2848 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2849
2850 if (elf_hash_table (info)->dynamic_sections_created)
2851 {
2852 asection *splt;
2853 Elf64_External_Dyn *dyncon, *dynconend;
2854
2855 splt = bfd_get_section_by_name (dynobj, ".plt");
2856 BFD_ASSERT (splt != NULL && sdyn != NULL);
2857
2858 dyncon = (Elf64_External_Dyn *) sdyn->contents;
eea6121a 2859 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
252b5132
RH
2860 for (; dyncon < dynconend; dyncon++)
2861 {
2862 Elf_Internal_Dyn dyn;
2863 const char *name;
b34976b6 2864 bfd_boolean size;
252b5132
RH
2865
2866 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2867
2868 switch (dyn.d_tag)
2869 {
b34976b6
AM
2870 case DT_PLTGOT: name = ".plt"; size = FALSE; break;
2871 case DT_PLTRELSZ: name = ".rela.plt"; size = TRUE; break;
2872 case DT_JMPREL: name = ".rela.plt"; size = FALSE; break;
587ff49e
RH
2873 case DT_SPARC_REGISTER:
2874 if (stt_regidx == -1)
2875 {
2876 stt_regidx =
2877 _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
2878 if (stt_regidx == -1)
b34976b6 2879 return FALSE;
587ff49e
RH
2880 }
2881 dyn.d_un.d_val = stt_regidx++;
2882 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2883 /* fallthrough */
b34976b6 2884 default: name = NULL; size = FALSE; break;
252b5132
RH
2885 }
2886
2887 if (name != NULL)
2888 {
2889 asection *s;
2890
2891 s = bfd_get_section_by_name (output_bfd, name);
2892 if (s == NULL)
2893 dyn.d_un.d_val = 0;
2894 else
2895 {
2896 if (! size)
2897 dyn.d_un.d_ptr = s->vma;
2898 else
eea6121a 2899 dyn.d_un.d_val = s->size;
252b5132
RH
2900 }
2901 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2902 }
2903 }
2904
2905 /* Initialize the contents of the .plt section. */
eea6121a 2906 if (splt->size > 0)
ae9a127f 2907 sparc64_elf_build_plt (output_bfd, splt->contents,
eea6121a 2908 (int) (splt->size / PLT_ENTRY_SIZE));
252b5132
RH
2909
2910 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
2911 PLT_ENTRY_SIZE;
2912 }
2913
2914 /* Set the first entry in the global offset table to the address of
2915 the dynamic section. */
2916 sgot = bfd_get_section_by_name (dynobj, ".got");
2917 BFD_ASSERT (sgot != NULL);
eea6121a 2918 if (sgot->size > 0)
252b5132
RH
2919 {
2920 if (sdyn == NULL)
2921 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
2922 else
2923 bfd_put_64 (output_bfd,
2924 sdyn->output_section->vma + sdyn->output_offset,
2925 sgot->contents);
2926 }
2927
2928 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
2929
b34976b6 2930 return TRUE;
252b5132 2931}
db6751f2
JJ
2932
2933static enum elf_reloc_type_class
f51e552e
AM
2934sparc64_elf_reloc_type_class (rela)
2935 const Elf_Internal_Rela *rela;
db6751f2 2936{
f51e552e 2937 switch ((int) ELF64_R_TYPE (rela->r_info))
db6751f2
JJ
2938 {
2939 case R_SPARC_RELATIVE:
2940 return reloc_class_relative;
2941 case R_SPARC_JMP_SLOT:
2942 return reloc_class_plt;
2943 case R_SPARC_COPY:
2944 return reloc_class_copy;
2945 default:
2946 return reloc_class_normal;
2947 }
2948}
252b5132 2949\f
435b1e90 2950/* Functions for dealing with the e_flags field. */
252b5132
RH
2951
2952/* Merge backend specific data from an object file to the output
2953 object file when linking. */
2954
b34976b6 2955static bfd_boolean
252b5132
RH
2956sparc64_elf_merge_private_bfd_data (ibfd, obfd)
2957 bfd *ibfd;
2958 bfd *obfd;
2959{
b34976b6 2960 bfd_boolean error;
252b5132
RH
2961 flagword new_flags, old_flags;
2962 int new_mm, old_mm;
2963
2964 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2965 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
b34976b6 2966 return TRUE;
252b5132
RH
2967
2968 new_flags = elf_elfheader (ibfd)->e_flags;
2969 old_flags = elf_elfheader (obfd)->e_flags;
2970
2971 if (!elf_flags_init (obfd)) /* First call, no flags set */
2972 {
b34976b6 2973 elf_flags_init (obfd) = TRUE;
252b5132
RH
2974 elf_elfheader (obfd)->e_flags = new_flags;
2975 }
435b1e90 2976
252b5132
RH
2977 else if (new_flags == old_flags) /* Compatible flags are ok */
2978 ;
435b1e90 2979
252b5132
RH
2980 else /* Incompatible flags */
2981 {
b34976b6 2982 error = FALSE;
19f7b010
JJ
2983
2984#define EF_SPARC_ISA_EXTENSIONS \
2985 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
2986
37fb6db1
ILT
2987 if ((ibfd->flags & DYNAMIC) != 0)
2988 {
2989 /* We don't want dynamic objects memory ordering and
2990 architecture to have any role. That's what dynamic linker
2991 should do. */
19f7b010 2992 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
6c08d697 2993 new_flags |= (old_flags
19f7b010 2994 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
37fb6db1
ILT
2995 }
2996 else
2997 {
2998 /* Choose the highest architecture requirements. */
19f7b010
JJ
2999 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
3000 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
3001 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
3002 && (old_flags & EF_SPARC_HAL_R1))
37fb6db1 3003 {
b34976b6 3004 error = TRUE;
37fb6db1
ILT
3005 (*_bfd_error_handler)
3006 (_("%s: linking UltraSPARC specific with HAL specific code"),
8f615d07 3007 bfd_archive_filename (ibfd));
37fb6db1
ILT
3008 }
3009 /* Choose the most restrictive memory ordering. */
3010 old_mm = (old_flags & EF_SPARCV9_MM);
3011 new_mm = (new_flags & EF_SPARCV9_MM);
3012 old_flags &= ~EF_SPARCV9_MM;
3013 new_flags &= ~EF_SPARCV9_MM;
3014 if (new_mm < old_mm)
3015 old_mm = new_mm;
3016 old_flags |= old_mm;
3017 new_flags |= old_mm;
3018 }
252b5132
RH
3019
3020 /* Warn about any other mismatches */
3021 if (new_flags != old_flags)
3022 {
b34976b6 3023 error = TRUE;
252b5132
RH
3024 (*_bfd_error_handler)
3025 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
8f615d07 3026 bfd_archive_filename (ibfd), (long) new_flags, (long) old_flags);
252b5132
RH
3027 }
3028
3029 elf_elfheader (obfd)->e_flags = old_flags;
3030
3031 if (error)
3032 {
3033 bfd_set_error (bfd_error_bad_value);
b34976b6 3034 return FALSE;
252b5132
RH
3035 }
3036 }
b34976b6 3037 return TRUE;
252b5132 3038}
0594c12d
AM
3039
3040/* MARCO: Set the correct entry size for the .stab section. */
3041
b34976b6 3042static bfd_boolean
0594c12d
AM
3043sparc64_elf_fake_sections (abfd, hdr, sec)
3044 bfd *abfd ATTRIBUTE_UNUSED;
947216bf 3045 Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED;
0594c12d
AM
3046 asection *sec;
3047{
3048 const char *name;
3049
3050 name = bfd_get_section_name (abfd, sec);
3051
3052 if (strcmp (name, ".stab") == 0)
3053 {
3054 /* Even in the 64bit case the stab entries are only 12 bytes long. */
3055 elf_section_data (sec)->this_hdr.sh_entsize = 12;
3056 }
b34976b6
AM
3057
3058 return TRUE;
0594c12d 3059}
587ff49e
RH
3060\f
3061/* Print a STT_REGISTER symbol to file FILE. */
252b5132 3062
587ff49e
RH
3063static const char *
3064sparc64_elf_print_symbol_all (abfd, filep, symbol)
6c08d697 3065 bfd *abfd ATTRIBUTE_UNUSED;
587ff49e
RH
3066 PTR filep;
3067 asymbol *symbol;
3068{
3069 FILE *file = (FILE *) filep;
3070 int reg, type;
435b1e90 3071
587ff49e
RH
3072 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
3073 != STT_REGISTER)
3074 return NULL;
3075
3076 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
3077 type = symbol->flags;
3078 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
3079 ((type & BSF_LOCAL)
3080 ? (type & BSF_GLOBAL) ? '!' : 'l'
99c79b2e
AJ
3081 : (type & BSF_GLOBAL) ? 'g' : ' '),
3082 (type & BSF_WEAK) ? 'w' : ' ');
587ff49e
RH
3083 if (symbol->name == NULL || symbol->name [0] == '\0')
3084 return "#scratch";
3085 else
3086 return symbol->name;
3087}
252b5132
RH
3088\f
3089/* Set the right machine number for a SPARC64 ELF file. */
3090
b34976b6 3091static bfd_boolean
252b5132
RH
3092sparc64_elf_object_p (abfd)
3093 bfd *abfd;
3094{
3095 unsigned long mach = bfd_mach_sparc_v9;
19f7b010
JJ
3096
3097 if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US3)
3098 mach = bfd_mach_sparc_v9b;
3099 else if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
252b5132
RH
3100 mach = bfd_mach_sparc_v9a;
3101 return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
3102}
3103
4c45e5c9
JJ
3104/* Return address for Ith PLT stub in section PLT, for relocation REL
3105 or (bfd_vma) -1 if it should not be included. */
3106
3107static bfd_vma
3108sparc64_elf_plt_sym_val (bfd_vma i, const asection *plt,
1829f4b2 3109 const arelent *rel ATTRIBUTE_UNUSED)
4c45e5c9
JJ
3110{
3111 bfd_vma j;
3112
3113 i += PLT_HEADER_SIZE / PLT_ENTRY_SIZE;
3114 if (i < LARGE_PLT_THRESHOLD)
3115 return plt->vma + i * PLT_ENTRY_SIZE;
3116
3117 j = (i - LARGE_PLT_THRESHOLD) % 160;
3118 i -= j;
3119 return plt->vma + i * PLT_ENTRY_SIZE + j * 4 * 6;
3120}
3121
f65054f7
RH
3122/* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3123 standard ELF, because R_SPARC_OLO10 has secondary addend in
3124 ELF64_R_TYPE_DATA field. This structure is used to redirect the
3125 relocation handling routines. */
3126
3127const struct elf_size_info sparc64_elf_size_info =
3128{
3129 sizeof (Elf64_External_Ehdr),
3130 sizeof (Elf64_External_Phdr),
3131 sizeof (Elf64_External_Shdr),
3132 sizeof (Elf64_External_Rel),
3133 sizeof (Elf64_External_Rela),
3134 sizeof (Elf64_External_Sym),
3135 sizeof (Elf64_External_Dyn),
3136 sizeof (Elf_External_Note),
ae9a127f
NC
3137 4, /* hash-table entry size. */
3138 /* Internal relocations per external relocations.
f65054f7
RH
3139 For link purposes we use just 1 internal per
3140 1 external, for assembly and slurp symbol table
435b1e90 3141 we use 2. */
f65054f7 3142 1,
ae9a127f 3143 64, /* arch_size. */
45d6a902 3144 3, /* log_file_align. */
f65054f7
RH
3145 ELFCLASS64,
3146 EV_CURRENT,
3147 bfd_elf64_write_out_phdrs,
3148 bfd_elf64_write_shdrs_and_ehdr,
3149 sparc64_elf_write_relocs,
73ff0d56 3150 bfd_elf64_swap_symbol_in,
f65054f7
RH
3151 bfd_elf64_swap_symbol_out,
3152 sparc64_elf_slurp_reloc_table,
3153 bfd_elf64_slurp_symbol_table,
3154 bfd_elf64_swap_dyn_in,
3155 bfd_elf64_swap_dyn_out,
947216bf
AM
3156 bfd_elf64_swap_reloc_in,
3157 bfd_elf64_swap_reloc_out,
3158 bfd_elf64_swap_reloca_in,
3159 bfd_elf64_swap_reloca_out
f65054f7
RH
3160};
3161
252b5132
RH
3162#define TARGET_BIG_SYM bfd_elf64_sparc_vec
3163#define TARGET_BIG_NAME "elf64-sparc"
3164#define ELF_ARCH bfd_arch_sparc
3165#define ELF_MAXPAGESIZE 0x100000
3166
3167/* This is the official ABI value. */
3168#define ELF_MACHINE_CODE EM_SPARCV9
3169
3170/* This is the value that we used before the ABI was released. */
3171#define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3172
587ff49e
RH
3173#define bfd_elf64_bfd_link_hash_table_create \
3174 sparc64_elf_bfd_link_hash_table_create
435b1e90 3175
252b5132
RH
3176#define elf_info_to_howto \
3177 sparc64_elf_info_to_howto
f65054f7
RH
3178#define bfd_elf64_get_reloc_upper_bound \
3179 sparc64_elf_get_reloc_upper_bound
3180#define bfd_elf64_get_dynamic_reloc_upper_bound \
3181 sparc64_elf_get_dynamic_reloc_upper_bound
3e1d7f19
JJ
3182#define bfd_elf64_canonicalize_reloc \
3183 sparc64_elf_canonicalize_reloc
f65054f7
RH
3184#define bfd_elf64_canonicalize_dynamic_reloc \
3185 sparc64_elf_canonicalize_dynamic_reloc
252b5132
RH
3186#define bfd_elf64_bfd_reloc_type_lookup \
3187 sparc64_elf_reloc_type_lookup
f7775d95
JJ
3188#define bfd_elf64_bfd_relax_section \
3189 sparc64_elf_relax_section
f0abc2a1
AM
3190#define bfd_elf64_new_section_hook \
3191 sparc64_elf_new_section_hook
252b5132
RH
3192
3193#define elf_backend_create_dynamic_sections \
3194 _bfd_elf_create_dynamic_sections
587ff49e
RH
3195#define elf_backend_add_symbol_hook \
3196 sparc64_elf_add_symbol_hook
3197#define elf_backend_get_symbol_type \
3198 sparc64_elf_get_symbol_type
3199#define elf_backend_symbol_processing \
3200 sparc64_elf_symbol_processing
252b5132
RH
3201#define elf_backend_check_relocs \
3202 sparc64_elf_check_relocs
3203#define elf_backend_adjust_dynamic_symbol \
3204 sparc64_elf_adjust_dynamic_symbol
3205#define elf_backend_size_dynamic_sections \
3206 sparc64_elf_size_dynamic_sections
3207#define elf_backend_relocate_section \
3208 sparc64_elf_relocate_section
3209#define elf_backend_finish_dynamic_symbol \
3210 sparc64_elf_finish_dynamic_symbol
3211#define elf_backend_finish_dynamic_sections \
3212 sparc64_elf_finish_dynamic_sections
587ff49e
RH
3213#define elf_backend_print_symbol_all \
3214 sparc64_elf_print_symbol_all
3215#define elf_backend_output_arch_syms \
3216 sparc64_elf_output_arch_syms
252b5132
RH
3217#define bfd_elf64_bfd_merge_private_bfd_data \
3218 sparc64_elf_merge_private_bfd_data
0594c12d
AM
3219#define elf_backend_fake_sections \
3220 sparc64_elf_fake_sections
4c45e5c9
JJ
3221#define elf_backend_plt_sym_val \
3222 sparc64_elf_plt_sym_val
252b5132 3223
f65054f7
RH
3224#define elf_backend_size_info \
3225 sparc64_elf_size_info
252b5132
RH
3226#define elf_backend_object_p \
3227 sparc64_elf_object_p
db6751f2
JJ
3228#define elf_backend_reloc_type_class \
3229 sparc64_elf_reloc_type_class
252b5132
RH
3230
3231#define elf_backend_want_got_plt 0
3232#define elf_backend_plt_readonly 0
3233#define elf_backend_want_plt_sym 1
f0fe0e16 3234#define elf_backend_rela_normal 1
252b5132
RH
3235
3236/* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3237#define elf_backend_plt_alignment 8
3238
3239#define elf_backend_got_header_size 8
252b5132
RH
3240
3241#include "elf64-target.h"
This page took 0.639098 seconds and 4 git commands to generate.