Fix typo
[deliverable/binutils-gdb.git] / bfd / elf64-sparc.c
CommitLineData
252b5132 1/* SPARC-specific support for 64-bit ELF
7898deda 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
37fb6db1 3 Free Software Foundation, Inc.
252b5132
RH
4
5This file is part of BFD, the Binary File Descriptor library.
6
7This program is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2 of the License, or
10(at your option) any later version.
11
12This program is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with this program; if not, write to the Free Software
19Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21#include "bfd.h"
22#include "sysdep.h"
23#include "libbfd.h"
24#include "elf-bfd.h"
f7775d95 25#include "opcode/sparc.h"
252b5132
RH
26
27/* This is defined if one wants to build upward compatible binaries
28 with the original sparc64-elf toolchain. The support is kept in for
29 now but is turned off by default. dje 970930 */
30/*#define SPARC64_OLD_RELOCS*/
31
32#include "elf/sparc.h"
33
34/* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35#define MINUS_ONE (~ (bfd_vma) 0)
36
587ff49e 37static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
99c79b2e
AJ
38 PARAMS ((bfd *));
39static bfd_reloc_status_type init_insn_reloc
40 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *,
41 bfd *, bfd_vma *, bfd_vma *));
252b5132
RH
42static reloc_howto_type *sparc64_elf_reloc_type_lookup
43 PARAMS ((bfd *, bfd_reloc_code_real_type));
44static void sparc64_elf_info_to_howto
45 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
46
47static void sparc64_elf_build_plt
99c79b2e 48 PARAMS ((bfd *, unsigned char *, int));
252b5132 49static bfd_vma sparc64_elf_plt_entry_offset
99c79b2e 50 PARAMS ((int));
252b5132 51static bfd_vma sparc64_elf_plt_ptr_offset
99c79b2e 52 PARAMS ((int, int));
252b5132
RH
53
54static boolean sparc64_elf_check_relocs
99c79b2e
AJ
55 PARAMS ((bfd *, struct bfd_link_info *, asection *sec,
56 const Elf_Internal_Rela *));
252b5132 57static boolean sparc64_elf_adjust_dynamic_symbol
99c79b2e 58 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
252b5132 59static boolean sparc64_elf_size_dynamic_sections
99c79b2e 60 PARAMS ((bfd *, struct bfd_link_info *));
587ff49e
RH
61static int sparc64_elf_get_symbol_type
62 PARAMS (( Elf_Internal_Sym *, int));
63static boolean sparc64_elf_add_symbol_hook
64 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
99c79b2e 65 const char **, flagword *, asection **, bfd_vma *));
5d964dfa
AM
66static boolean sparc64_elf_output_arch_syms
67 PARAMS ((bfd *, struct bfd_link_info *, PTR,
68 boolean (*) (PTR, const char *, Elf_Internal_Sym *, asection *)));
587ff49e
RH
69static void sparc64_elf_symbol_processing
70 PARAMS ((bfd *, asymbol *));
252b5132 71
069f40e5
JJ
72static boolean sparc64_elf_copy_private_bfd_data
73 PARAMS ((bfd *, bfd *));
252b5132
RH
74static boolean sparc64_elf_merge_private_bfd_data
75 PARAMS ((bfd *, bfd *));
76
99c79b2e
AJ
77static const char *sparc64_elf_print_symbol_all
78 PARAMS ((bfd *, PTR, asymbol *));
f7775d95
JJ
79static boolean sparc64_elf_relax_section
80 PARAMS ((bfd *, asection *, struct bfd_link_info *, boolean *));
252b5132
RH
81static boolean sparc64_elf_relocate_section
82 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
83 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
99c79b2e
AJ
84static boolean sparc64_elf_finish_dynamic_symbol
85 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
86 Elf_Internal_Sym *));
87static boolean sparc64_elf_finish_dynamic_sections
88 PARAMS ((bfd *, struct bfd_link_info *));
252b5132 89static boolean sparc64_elf_object_p PARAMS ((bfd *));
f65054f7
RH
90static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
91static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
92static boolean sparc64_elf_slurp_one_reloc_table
93 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, boolean));
94static boolean sparc64_elf_slurp_reloc_table
95 PARAMS ((bfd *, asection *, asymbol **, boolean));
96static long sparc64_elf_canonicalize_dynamic_reloc
97 PARAMS ((bfd *, arelent **, asymbol **));
98static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
db6751f2 99static enum elf_reloc_type_class sparc64_elf_reloc_type_class PARAMS ((int));
252b5132
RH
100\f
101/* The relocation "howto" table. */
102
103static bfd_reloc_status_type sparc_elf_notsup_reloc
104 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
105static bfd_reloc_status_type sparc_elf_wdisp16_reloc
106 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
107static bfd_reloc_status_type sparc_elf_hix22_reloc
108 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
109static bfd_reloc_status_type sparc_elf_lox10_reloc
110 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
111
112static reloc_howto_type sparc64_elf_howto_table[] =
113{
114 HOWTO(R_SPARC_NONE, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_NONE", false,0,0x00000000,true),
115 HOWTO(R_SPARC_8, 0,0, 8,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_8", false,0,0x000000ff,true),
116 HOWTO(R_SPARC_16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_16", false,0,0x0000ffff,true),
117 HOWTO(R_SPARC_32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_32", false,0,0xffffffff,true),
118 HOWTO(R_SPARC_DISP8, 0,0, 8,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP8", false,0,0x000000ff,true),
119 HOWTO(R_SPARC_DISP16, 0,1,16,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP16", false,0,0x0000ffff,true),
120 HOWTO(R_SPARC_DISP32, 0,2,32,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP32", false,0,0x00ffffff,true),
121 HOWTO(R_SPARC_WDISP30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP30", false,0,0x3fffffff,true),
122 HOWTO(R_SPARC_WDISP22, 2,2,22,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP22", false,0,0x003fffff,true),
123 HOWTO(R_SPARC_HI22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HI22", false,0,0x003fffff,true),
124 HOWTO(R_SPARC_22, 0,2,22,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_22", false,0,0x003fffff,true),
125 HOWTO(R_SPARC_13, 0,2,13,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_13", false,0,0x00001fff,true),
126 HOWTO(R_SPARC_LO10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LO10", false,0,0x000003ff,true),
127 HOWTO(R_SPARC_GOT10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT10", false,0,0x000003ff,true),
128 HOWTO(R_SPARC_GOT13, 0,2,13,false,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_GOT13", false,0,0x00001fff,true),
129 HOWTO(R_SPARC_GOT22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT22", false,0,0x003fffff,true),
130 HOWTO(R_SPARC_PC10, 0,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC10", false,0,0x000003ff,true),
131 HOWTO(R_SPARC_PC22, 10,2,22,true, 0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PC22", false,0,0x003fffff,true),
132 HOWTO(R_SPARC_WPLT30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WPLT30", false,0,0x3fffffff,true),
133 HOWTO(R_SPARC_COPY, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_COPY", false,0,0x00000000,true),
134 HOWTO(R_SPARC_GLOB_DAT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GLOB_DAT",false,0,0x00000000,true),
135 HOWTO(R_SPARC_JMP_SLOT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_JMP_SLOT",false,0,0x00000000,true),
136 HOWTO(R_SPARC_RELATIVE, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_RELATIVE",false,0,0x00000000,true),
9fc54e19 137 HOWTO(R_SPARC_UA32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA32", false,0,0xffffffff,true),
252b5132
RH
138#ifndef SPARC64_OLD_RELOCS
139 /* These aren't implemented yet. */
140 HOWTO(R_SPARC_PLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PLT32", false,0,0x00000000,true),
141 HOWTO(R_SPARC_HIPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_HIPLT22", false,0,0x00000000,true),
142 HOWTO(R_SPARC_LOPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_LOPLT10", false,0,0x00000000,true),
143 HOWTO(R_SPARC_PCPLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT32", false,0,0x00000000,true),
144 HOWTO(R_SPARC_PCPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT22", false,0,0x00000000,true),
145 HOWTO(R_SPARC_PCPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT10", false,0,0x00000000,true),
146#endif
147 HOWTO(R_SPARC_10, 0,2,10,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_10", false,0,0x000003ff,true),
148 HOWTO(R_SPARC_11, 0,2,11,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_11", false,0,0x000007ff,true),
149 HOWTO(R_SPARC_64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_64", false,0,MINUS_ONE, true),
150 HOWTO(R_SPARC_OLO10, 0,2,13,false,0,complain_overflow_signed, sparc_elf_notsup_reloc, "R_SPARC_OLO10", false,0,0x00001fff,true),
151 HOWTO(R_SPARC_HH22, 42,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_HH22", false,0,0x003fffff,true),
152 HOWTO(R_SPARC_HM10, 32,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HM10", false,0,0x000003ff,true),
153 HOWTO(R_SPARC_LM22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LM22", false,0,0x003fffff,true),
154 HOWTO(R_SPARC_PC_HH22, 42,2,22,true, 0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_PC_HH22", false,0,0x003fffff,true),
155 HOWTO(R_SPARC_PC_HM10, 32,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_HM10", false,0,0x000003ff,true),
156 HOWTO(R_SPARC_PC_LM22, 10,2,22,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_LM22", false,0,0x003fffff,true),
157 HOWTO(R_SPARC_WDISP16, 2,2,16,true, 0,complain_overflow_signed, sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", false,0,0x00000000,true),
158 HOWTO(R_SPARC_WDISP19, 2,2,19,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP19", false,0,0x0007ffff,true),
159 HOWTO(R_SPARC_UNUSED_42, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UNUSED_42",false,0,0x00000000,true),
160 HOWTO(R_SPARC_7, 0,2, 7,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_7", false,0,0x0000007f,true),
161 HOWTO(R_SPARC_5, 0,2, 5,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_5", false,0,0x0000001f,true),
162 HOWTO(R_SPARC_6, 0,2, 6,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_6", false,0,0x0000003f,true),
163 HOWTO(R_SPARC_DISP64, 0,4,64,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP64", false,0,MINUS_ONE, true),
164 HOWTO(R_SPARC_PLT64, 0,4,64,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_PLT64", false,0,MINUS_ONE, false),
165 HOWTO(R_SPARC_HIX22, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_HIX22", false,0,MINUS_ONE, false),
166 HOWTO(R_SPARC_LOX10, 0,4, 0,false,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_LOX10", false,0,MINUS_ONE, false),
167 HOWTO(R_SPARC_H44, 22,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_H44", false,0,0x003fffff,false),
168 HOWTO(R_SPARC_M44, 12,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_M44", false,0,0x000003ff,false),
169 HOWTO(R_SPARC_L44, 0,2,13,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_L44", false,0,0x00000fff,false),
170 HOWTO(R_SPARC_REGISTER, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",false,0,MINUS_ONE, false),
171 HOWTO(R_SPARC_UA64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA64", false,0,MINUS_ONE, true),
172 HOWTO(R_SPARC_UA16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA16", false,0,0x0000ffff,true)
173};
174
175struct elf_reloc_map {
176 bfd_reloc_code_real_type bfd_reloc_val;
177 unsigned char elf_reloc_val;
178};
179
180static CONST struct elf_reloc_map sparc_reloc_map[] =
181{
182 { BFD_RELOC_NONE, R_SPARC_NONE, },
183 { BFD_RELOC_16, R_SPARC_16, },
184 { BFD_RELOC_8, R_SPARC_8 },
185 { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
186 { BFD_RELOC_CTOR, R_SPARC_64 },
187 { BFD_RELOC_32, R_SPARC_32 },
188 { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
189 { BFD_RELOC_HI22, R_SPARC_HI22 },
190 { BFD_RELOC_LO10, R_SPARC_LO10, },
191 { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
192 { BFD_RELOC_SPARC22, R_SPARC_22 },
193 { BFD_RELOC_SPARC13, R_SPARC_13 },
194 { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
195 { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
196 { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
197 { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
198 { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
199 { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
200 { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
201 { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
202 { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
203 { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
204 { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
0f2712ed
NC
205 { BFD_RELOC_SPARC_UA16, R_SPARC_UA16 },
206 { BFD_RELOC_SPARC_UA32, R_SPARC_UA32 },
207 { BFD_RELOC_SPARC_UA64, R_SPARC_UA64 },
208 { BFD_RELOC_SPARC_10, R_SPARC_10 },
209 { BFD_RELOC_SPARC_11, R_SPARC_11 },
210 { BFD_RELOC_SPARC_64, R_SPARC_64 },
211 { BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10 },
212 { BFD_RELOC_SPARC_HH22, R_SPARC_HH22 },
213 { BFD_RELOC_SPARC_HM10, R_SPARC_HM10 },
214 { BFD_RELOC_SPARC_LM22, R_SPARC_LM22 },
215 { BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22 },
216 { BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10 },
217 { BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22 },
218 { BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16 },
219 { BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19 },
220 { BFD_RELOC_SPARC_7, R_SPARC_7 },
221 { BFD_RELOC_SPARC_5, R_SPARC_5 },
222 { BFD_RELOC_SPARC_6, R_SPARC_6 },
223 { BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64 },
224 { BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64 },
225 { BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22 },
226 { BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10 },
227 { BFD_RELOC_SPARC_H44, R_SPARC_H44 },
228 { BFD_RELOC_SPARC_M44, R_SPARC_M44 },
229 { BFD_RELOC_SPARC_L44, R_SPARC_L44 },
230 { BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER }
252b5132
RH
231};
232
233static reloc_howto_type *
234sparc64_elf_reloc_type_lookup (abfd, code)
6c08d697 235 bfd *abfd ATTRIBUTE_UNUSED;
252b5132
RH
236 bfd_reloc_code_real_type code;
237{
238 unsigned int i;
239 for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
240 {
241 if (sparc_reloc_map[i].bfd_reloc_val == code)
242 return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
243 }
244 return 0;
245}
246
247static void
248sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
6c08d697 249 bfd *abfd ATTRIBUTE_UNUSED;
252b5132
RH
250 arelent *cache_ptr;
251 Elf64_Internal_Rela *dst;
252{
f65054f7
RH
253 BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
254 cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
255}
256\f
257/* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
258 section can represent up to two relocs, we must tell the user to allocate
259 more space. */
435b1e90 260
f65054f7
RH
261static long
262sparc64_elf_get_reloc_upper_bound (abfd, sec)
6c08d697 263 bfd *abfd ATTRIBUTE_UNUSED;
f65054f7
RH
264 asection *sec;
265{
266 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
267}
268
269static long
270sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
271 bfd *abfd;
272{
273 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
274}
275
435b1e90 276/* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
f65054f7
RH
277 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
278 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
279 for the same location, R_SPARC_LO10 and R_SPARC_13. */
280
281static boolean
282sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
283 bfd *abfd;
284 asection *asect;
285 Elf_Internal_Shdr *rel_hdr;
286 asymbol **symbols;
287 boolean dynamic;
288{
f65054f7
RH
289 PTR allocated = NULL;
290 bfd_byte *native_relocs;
291 arelent *relent;
292 unsigned int i;
293 int entsize;
294 bfd_size_type count;
295 arelent *relents;
296
297 allocated = (PTR) bfd_malloc ((size_t) rel_hdr->sh_size);
298 if (allocated == NULL)
299 goto error_return;
300
301 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
302 || (bfd_read (allocated, 1, rel_hdr->sh_size, abfd)
303 != rel_hdr->sh_size))
304 goto error_return;
305
306 native_relocs = (bfd_byte *) allocated;
307
308 relents = asect->relocation + asect->reloc_count;
309
310 entsize = rel_hdr->sh_entsize;
311 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
435b1e90 312
f65054f7
RH
313 count = rel_hdr->sh_size / entsize;
314
315 for (i = 0, relent = relents; i < count;
316 i++, relent++, native_relocs += entsize)
317 {
318 Elf_Internal_Rela rela;
319
320 bfd_elf64_swap_reloca_in (abfd, (Elf64_External_Rela *) native_relocs, &rela);
321
322 /* The address of an ELF reloc is section relative for an object
323 file, and absolute for an executable file or shared library.
324 The address of a normal BFD reloc is always section relative,
325 and the address of a dynamic reloc is absolute.. */
326 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
327 relent->address = rela.r_offset;
328 else
329 relent->address = rela.r_offset - asect->vma;
330
331 if (ELF64_R_SYM (rela.r_info) == 0)
332 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
333 else
334 {
335 asymbol **ps, *s;
336
337 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
338 s = *ps;
339
340 /* Canonicalize ELF section symbols. FIXME: Why? */
341 if ((s->flags & BSF_SECTION_SYM) == 0)
342 relent->sym_ptr_ptr = ps;
343 else
344 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
345 }
346
347 relent->addend = rela.r_addend;
348
349 BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
350 if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
351 {
352 relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
353 relent[1].address = relent->address;
354 relent++;
355 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
356 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
357 relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
358 }
359 else
360 relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
361 }
362
363 asect->reloc_count += relent - relents;
364
365 if (allocated != NULL)
366 free (allocated);
367
368 return true;
369
370 error_return:
371 if (allocated != NULL)
372 free (allocated);
373 return false;
374}
375
376/* Read in and swap the external relocs. */
377
378static boolean
379sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
380 bfd *abfd;
381 asection *asect;
382 asymbol **symbols;
383 boolean dynamic;
384{
385 struct bfd_elf_section_data * const d = elf_section_data (asect);
386 Elf_Internal_Shdr *rel_hdr;
387 Elf_Internal_Shdr *rel_hdr2;
388
389 if (asect->relocation != NULL)
390 return true;
391
392 if (! dynamic)
393 {
394 if ((asect->flags & SEC_RELOC) == 0
395 || asect->reloc_count == 0)
396 return true;
397
398 rel_hdr = &d->rel_hdr;
399 rel_hdr2 = d->rel_hdr2;
400
401 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
402 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
403 }
404 else
405 {
406 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
407 case because relocations against this section may use the
408 dynamic symbol table, and in that case bfd_section_from_shdr
409 in elf.c does not update the RELOC_COUNT. */
410 if (asect->_raw_size == 0)
411 return true;
412
413 rel_hdr = &d->this_hdr;
d9bc7a44 414 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
f65054f7
RH
415 rel_hdr2 = NULL;
416 }
417
435b1e90
KH
418 asect->relocation = ((arelent *)
419 bfd_alloc (abfd,
f65054f7
RH
420 asect->reloc_count * 2 * sizeof (arelent)));
421 if (asect->relocation == NULL)
422 return false;
423
424 /* The sparc64_elf_slurp_one_reloc_table routine increments reloc_count. */
425 asect->reloc_count = 0;
435b1e90 426
f65054f7
RH
427 if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
428 dynamic))
429 return false;
435b1e90
KH
430
431 if (rel_hdr2
f65054f7
RH
432 && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
433 dynamic))
434 return false;
435
436 return true;
437}
438
439/* Canonicalize the dynamic relocation entries. Note that we return
440 the dynamic relocations as a single block, although they are
441 actually associated with particular sections; the interface, which
442 was designed for SunOS style shared libraries, expects that there
443 is only one set of dynamic relocs. Any section that was actually
444 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
445 the dynamic symbol table, is considered to be a dynamic reloc
446 section. */
447
448static long
449sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
450 bfd *abfd;
451 arelent **storage;
452 asymbol **syms;
453{
454 asection *s;
455 long ret;
456
457 if (elf_dynsymtab (abfd) == 0)
458 {
459 bfd_set_error (bfd_error_invalid_operation);
460 return -1;
461 }
462
463 ret = 0;
464 for (s = abfd->sections; s != NULL; s = s->next)
465 {
466 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
467 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
468 {
469 arelent *p;
470 long count, i;
471
472 if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, true))
473 return -1;
474 count = s->reloc_count;
475 p = s->relocation;
476 for (i = 0; i < count; i++)
477 *storage++ = p++;
478 ret += count;
479 }
480 }
481
482 *storage = NULL;
483
484 return ret;
485}
486
487/* Write out the relocs. */
488
489static void
490sparc64_elf_write_relocs (abfd, sec, data)
491 bfd *abfd;
492 asection *sec;
493 PTR data;
494{
495 boolean *failedp = (boolean *) data;
496 Elf_Internal_Shdr *rela_hdr;
37fb6db1 497 Elf64_External_Rela *outbound_relocas, *src_rela;
f65054f7
RH
498 unsigned int idx, count;
499 asymbol *last_sym = 0;
500 int last_sym_idx = 0;
501
502 /* If we have already failed, don't do anything. */
503 if (*failedp)
504 return;
505
506 if ((sec->flags & SEC_RELOC) == 0)
507 return;
508
509 /* The linker backend writes the relocs out itself, and sets the
510 reloc_count field to zero to inhibit writing them here. Also,
511 sometimes the SEC_RELOC flag gets set even when there aren't any
512 relocs. */
513 if (sec->reloc_count == 0)
514 return;
515
516 /* We can combine two relocs that refer to the same address
517 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
518 latter is R_SPARC_13 with no associated symbol. */
519 count = 0;
520 for (idx = 0; idx < sec->reloc_count; idx++)
521 {
522 bfd_vma addr;
f65054f7
RH
523
524 ++count;
525
526 addr = sec->orelocation[idx]->address;
527 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
528 && idx < sec->reloc_count - 1)
529 {
530 arelent *r = sec->orelocation[idx + 1];
531
532 if (r->howto->type == R_SPARC_13
533 && r->address == addr
534 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
535 && (*r->sym_ptr_ptr)->value == 0)
536 ++idx;
537 }
538 }
539
540 rela_hdr = &elf_section_data (sec)->rel_hdr;
541
542 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
543 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
544 if (rela_hdr->contents == NULL)
545 {
546 *failedp = true;
547 return;
548 }
549
550 /* Figure out whether the relocations are RELA or REL relocations. */
551 if (rela_hdr->sh_type != SHT_RELA)
552 abort ();
553
435b1e90 554 /* orelocation has the data, reloc_count has the count... */
f65054f7 555 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
37fb6db1 556 src_rela = outbound_relocas;
f65054f7
RH
557
558 for (idx = 0; idx < sec->reloc_count; idx++)
559 {
560 Elf_Internal_Rela dst_rela;
f65054f7
RH
561 arelent *ptr;
562 asymbol *sym;
563 int n;
564
565 ptr = sec->orelocation[idx];
f65054f7
RH
566
567 /* The address of an ELF reloc is section relative for an object
568 file, and absolute for an executable file or shared library.
569 The address of a BFD reloc is always section relative. */
570 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
571 dst_rela.r_offset = ptr->address;
572 else
573 dst_rela.r_offset = ptr->address + sec->vma;
574
575 sym = *ptr->sym_ptr_ptr;
576 if (sym == last_sym)
577 n = last_sym_idx;
578 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
579 n = STN_UNDEF;
580 else
581 {
582 last_sym = sym;
583 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
584 if (n < 0)
585 {
586 *failedp = true;
587 return;
588 }
589 last_sym_idx = n;
590 }
591
592 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
593 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
594 && ! _bfd_elf_validate_reloc (abfd, ptr))
595 {
596 *failedp = true;
597 return;
598 }
599
600 if (ptr->howto->type == R_SPARC_LO10
601 && idx < sec->reloc_count - 1)
602 {
603 arelent *r = sec->orelocation[idx + 1];
604
605 if (r->howto->type == R_SPARC_13
606 && r->address == ptr->address
607 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
608 && (*r->sym_ptr_ptr)->value == 0)
609 {
610 idx++;
611 dst_rela.r_info
612 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
613 R_SPARC_OLO10));
614 }
615 else
616 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
617 }
618 else
619 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
620
621 dst_rela.r_addend = ptr->addend;
622 bfd_elf64_swap_reloca_out (abfd, &dst_rela, src_rela);
37fb6db1 623 ++src_rela;
f65054f7 624 }
252b5132 625}
587ff49e
RH
626\f
627/* Sparc64 ELF linker hash table. */
628
629struct sparc64_elf_app_reg
630{
631 unsigned char bind;
632 unsigned short shndx;
633 bfd *abfd;
634 char *name;
635};
636
637struct sparc64_elf_link_hash_table
638{
639 struct elf_link_hash_table root;
640
641 struct sparc64_elf_app_reg app_regs [4];
642};
643
644/* Get the Sparc64 ELF linker hash table from a link_info structure. */
645
646#define sparc64_elf_hash_table(p) \
647 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
435b1e90 648
587ff49e
RH
649/* Create a Sparc64 ELF linker hash table. */
650
651static struct bfd_link_hash_table *
652sparc64_elf_bfd_link_hash_table_create (abfd)
653 bfd *abfd;
654{
655 struct sparc64_elf_link_hash_table *ret;
656
657 ret = ((struct sparc64_elf_link_hash_table *)
658 bfd_zalloc (abfd, sizeof (struct sparc64_elf_link_hash_table)));
659 if (ret == (struct sparc64_elf_link_hash_table *) NULL)
660 return NULL;
661
662 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
663 _bfd_elf_link_hash_newfunc))
664 {
665 bfd_release (abfd, ret);
666 return NULL;
667 }
668
669 return &ret->root.root;
670}
252b5132
RH
671\f
672/* Utility for performing the standard initial work of an instruction
673 relocation.
674 *PRELOCATION will contain the relocated item.
675 *PINSN will contain the instruction from the input stream.
676 If the result is `bfd_reloc_other' the caller can continue with
677 performing the relocation. Otherwise it must stop and return the
678 value to its caller. */
679
680static bfd_reloc_status_type
681init_insn_reloc (abfd,
682 reloc_entry,
683 symbol,
684 data,
685 input_section,
686 output_bfd,
687 prelocation,
688 pinsn)
689 bfd *abfd;
690 arelent *reloc_entry;
691 asymbol *symbol;
692 PTR data;
693 asection *input_section;
694 bfd *output_bfd;
695 bfd_vma *prelocation;
696 bfd_vma *pinsn;
697{
698 bfd_vma relocation;
699 reloc_howto_type *howto = reloc_entry->howto;
700
701 if (output_bfd != (bfd *) NULL
702 && (symbol->flags & BSF_SECTION_SYM) == 0
703 && (! howto->partial_inplace
704 || reloc_entry->addend == 0))
705 {
706 reloc_entry->address += input_section->output_offset;
707 return bfd_reloc_ok;
708 }
709
710 /* This works because partial_inplace == false. */
711 if (output_bfd != NULL)
712 return bfd_reloc_continue;
713
714 if (reloc_entry->address > input_section->_cooked_size)
715 return bfd_reloc_outofrange;
716
717 relocation = (symbol->value
718 + symbol->section->output_section->vma
719 + symbol->section->output_offset);
720 relocation += reloc_entry->addend;
721 if (howto->pc_relative)
722 {
723 relocation -= (input_section->output_section->vma
724 + input_section->output_offset);
725 relocation -= reloc_entry->address;
726 }
727
728 *prelocation = relocation;
729 *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
730 return bfd_reloc_other;
731}
732
733/* For unsupported relocs. */
734
735static bfd_reloc_status_type
736sparc_elf_notsup_reloc (abfd,
737 reloc_entry,
738 symbol,
739 data,
740 input_section,
741 output_bfd,
742 error_message)
6c08d697
JJ
743 bfd *abfd ATTRIBUTE_UNUSED;
744 arelent *reloc_entry ATTRIBUTE_UNUSED;
745 asymbol *symbol ATTRIBUTE_UNUSED;
746 PTR data ATTRIBUTE_UNUSED;
747 asection *input_section ATTRIBUTE_UNUSED;
748 bfd *output_bfd ATTRIBUTE_UNUSED;
749 char **error_message ATTRIBUTE_UNUSED;
252b5132
RH
750{
751 return bfd_reloc_notsupported;
752}
753
754/* Handle the WDISP16 reloc. */
755
756static bfd_reloc_status_type
757sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
758 output_bfd, error_message)
759 bfd *abfd;
760 arelent *reloc_entry;
761 asymbol *symbol;
762 PTR data;
763 asection *input_section;
764 bfd *output_bfd;
6c08d697 765 char **error_message ATTRIBUTE_UNUSED;
252b5132
RH
766{
767 bfd_vma relocation;
768 bfd_vma insn;
769 bfd_reloc_status_type status;
770
771 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
772 input_section, output_bfd, &relocation, &insn);
773 if (status != bfd_reloc_other)
774 return status;
775
776 insn = (insn & ~0x303fff) | ((((relocation >> 2) & 0xc000) << 6)
777 | ((relocation >> 2) & 0x3fff));
778 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
779
780 if ((bfd_signed_vma) relocation < - 0x40000
781 || (bfd_signed_vma) relocation > 0x3ffff)
782 return bfd_reloc_overflow;
783 else
784 return bfd_reloc_ok;
785}
786
787/* Handle the HIX22 reloc. */
788
789static bfd_reloc_status_type
790sparc_elf_hix22_reloc (abfd,
791 reloc_entry,
792 symbol,
793 data,
794 input_section,
795 output_bfd,
796 error_message)
797 bfd *abfd;
798 arelent *reloc_entry;
799 asymbol *symbol;
800 PTR data;
801 asection *input_section;
802 bfd *output_bfd;
6c08d697 803 char **error_message ATTRIBUTE_UNUSED;
252b5132
RH
804{
805 bfd_vma relocation;
806 bfd_vma insn;
807 bfd_reloc_status_type status;
808
809 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
810 input_section, output_bfd, &relocation, &insn);
811 if (status != bfd_reloc_other)
812 return status;
813
814 relocation ^= MINUS_ONE;
815 insn = (insn & ~0x3fffff) | ((relocation >> 10) & 0x3fffff);
816 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
817
818 if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
819 return bfd_reloc_overflow;
820 else
821 return bfd_reloc_ok;
822}
823
824/* Handle the LOX10 reloc. */
825
826static bfd_reloc_status_type
827sparc_elf_lox10_reloc (abfd,
828 reloc_entry,
829 symbol,
830 data,
831 input_section,
832 output_bfd,
833 error_message)
834 bfd *abfd;
835 arelent *reloc_entry;
836 asymbol *symbol;
837 PTR data;
838 asection *input_section;
839 bfd *output_bfd;
6c08d697 840 char **error_message ATTRIBUTE_UNUSED;
252b5132
RH
841{
842 bfd_vma relocation;
843 bfd_vma insn;
844 bfd_reloc_status_type status;
845
846 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
847 input_section, output_bfd, &relocation, &insn);
848 if (status != bfd_reloc_other)
849 return status;
850
851 insn = (insn & ~0x1fff) | 0x1c00 | (relocation & 0x3ff);
852 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
853
854 return bfd_reloc_ok;
855}
856\f
857/* PLT/GOT stuff */
858
859/* Both the headers and the entries are icache aligned. */
860#define PLT_ENTRY_SIZE 32
861#define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
862#define LARGE_PLT_THRESHOLD 32768
863#define GOT_RESERVED_ENTRIES 1
864
865#define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
866
252b5132
RH
867/* Fill in the .plt section. */
868
869static void
870sparc64_elf_build_plt (output_bfd, contents, nentries)
871 bfd *output_bfd;
872 unsigned char *contents;
873 int nentries;
874{
875 const unsigned int nop = 0x01000000;
876 int i, j;
435b1e90 877
252b5132
RH
878 /* The first four entries are reserved, and are initially undefined.
879 We fill them with `illtrap 0' to force ld.so to do something. */
880
881 for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
882 bfd_put_32 (output_bfd, 0, contents+i*4);
883
884 /* The first 32768 entries are close enough to plt1 to get there via
885 a straight branch. */
886
887 for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
888 {
889 unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
890 unsigned int sethi, ba;
891
892 /* sethi (. - plt0), %g1 */
893 sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
894
a11c78e7
RH
895 /* ba,a,pt %xcc, plt1 */
896 ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
252b5132
RH
897
898 bfd_put_32 (output_bfd, sethi, entry);
899 bfd_put_32 (output_bfd, ba, entry+4);
900 bfd_put_32 (output_bfd, nop, entry+8);
901 bfd_put_32 (output_bfd, nop, entry+12);
902 bfd_put_32 (output_bfd, nop, entry+16);
903 bfd_put_32 (output_bfd, nop, entry+20);
904 bfd_put_32 (output_bfd, nop, entry+24);
905 bfd_put_32 (output_bfd, nop, entry+28);
906 }
907
908 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
909 160: 160 entries and 160 pointers. This is to separate code from data,
910 which is much friendlier on the cache. */
435b1e90 911
252b5132
RH
912 for (; i < nentries; i += 160)
913 {
914 int block = (i + 160 <= nentries ? 160 : nentries - i);
915 for (j = 0; j < block; ++j)
916 {
917 unsigned char *entry, *ptr;
918 unsigned int ldx;
919
920 entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
921 ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
922
923 /* ldx [%o7 + ptr - entry+4], %g1 */
924 ldx = 0xc25be000 | ((ptr - entry+4) & 0x1fff);
925
926 bfd_put_32 (output_bfd, 0x8a10000f, entry); /* mov %o7,%g5 */
927 bfd_put_32 (output_bfd, 0x40000002, entry+4); /* call .+8 */
928 bfd_put_32 (output_bfd, nop, entry+8); /* nop */
929 bfd_put_32 (output_bfd, ldx, entry+12); /* ldx [%o7+P],%g1 */
930 bfd_put_32 (output_bfd, 0x83c3c001, entry+16); /* jmpl %o7+%g1,%g1 */
931 bfd_put_32 (output_bfd, 0x9e100005, entry+20); /* mov %g5,%o7 */
932
a11c78e7 933 bfd_put_64 (output_bfd, contents - (entry+4), ptr);
252b5132
RH
934 }
935 }
936}
937
938/* Return the offset of a particular plt entry within the .plt section. */
939
940static bfd_vma
941sparc64_elf_plt_entry_offset (index)
942 int index;
943{
944 int block, ofs;
945
946 if (index < LARGE_PLT_THRESHOLD)
947 return index * PLT_ENTRY_SIZE;
948
949 /* See above for details. */
950
951 block = (index - LARGE_PLT_THRESHOLD) / 160;
952 ofs = (index - LARGE_PLT_THRESHOLD) % 160;
953
435b1e90 954 return ((bfd_vma) (LARGE_PLT_THRESHOLD + block*160) * PLT_ENTRY_SIZE
252b5132
RH
955 + ofs * 6*4);
956}
957
958static bfd_vma
959sparc64_elf_plt_ptr_offset (index, max)
960 int index, max;
961{
962 int block, ofs, last;
963
964 BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
965
966 /* See above for details. */
967
a11c78e7
RH
968 block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160)
969 + LARGE_PLT_THRESHOLD;
970 ofs = index - block;
971 if (block + 160 > max)
972 last = (max - LARGE_PLT_THRESHOLD) % 160;
973 else
974 last = 160;
252b5132 975
a11c78e7 976 return (block * PLT_ENTRY_SIZE
252b5132
RH
977 + last * 6*4
978 + ofs * 8);
979}
252b5132
RH
980\f
981/* Look through the relocs for a section during the first phase, and
982 allocate space in the global offset table or procedure linkage
983 table. */
984
985static boolean
986sparc64_elf_check_relocs (abfd, info, sec, relocs)
987 bfd *abfd;
988 struct bfd_link_info *info;
989 asection *sec;
990 const Elf_Internal_Rela *relocs;
991{
992 bfd *dynobj;
993 Elf_Internal_Shdr *symtab_hdr;
994 struct elf_link_hash_entry **sym_hashes;
995 bfd_vma *local_got_offsets;
996 const Elf_Internal_Rela *rel;
997 const Elf_Internal_Rela *rel_end;
998 asection *sgot;
999 asection *srelgot;
1000 asection *sreloc;
1001
1002 if (info->relocateable || !(sec->flags & SEC_ALLOC))
1003 return true;
1004
1005 dynobj = elf_hash_table (info)->dynobj;
1006 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1007 sym_hashes = elf_sym_hashes (abfd);
1008 local_got_offsets = elf_local_got_offsets (abfd);
1009
1010 sgot = NULL;
1011 srelgot = NULL;
1012 sreloc = NULL;
1013
d9bc7a44 1014 rel_end = relocs + NUM_SHDR_ENTRIES (& elf_section_data (sec)->rel_hdr);
252b5132
RH
1015 for (rel = relocs; rel < rel_end; rel++)
1016 {
1017 unsigned long r_symndx;
1018 struct elf_link_hash_entry *h;
1019
1020 r_symndx = ELF64_R_SYM (rel->r_info);
1021 if (r_symndx < symtab_hdr->sh_info)
1022 h = NULL;
1023 else
1024 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1025
f65054f7 1026 switch (ELF64_R_TYPE_ID (rel->r_info))
252b5132
RH
1027 {
1028 case R_SPARC_GOT10:
1029 case R_SPARC_GOT13:
1030 case R_SPARC_GOT22:
1031 /* This symbol requires a global offset table entry. */
1032
1033 if (dynobj == NULL)
1034 {
1035 /* Create the .got section. */
1036 elf_hash_table (info)->dynobj = dynobj = abfd;
1037 if (! _bfd_elf_create_got_section (dynobj, info))
1038 return false;
1039 }
1040
1041 if (sgot == NULL)
1042 {
1043 sgot = bfd_get_section_by_name (dynobj, ".got");
1044 BFD_ASSERT (sgot != NULL);
1045 }
1046
1047 if (srelgot == NULL && (h != NULL || info->shared))
1048 {
1049 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1050 if (srelgot == NULL)
1051 {
1052 srelgot = bfd_make_section (dynobj, ".rela.got");
1053 if (srelgot == NULL
1054 || ! bfd_set_section_flags (dynobj, srelgot,
1055 (SEC_ALLOC
1056 | SEC_LOAD
1057 | SEC_HAS_CONTENTS
1058 | SEC_IN_MEMORY
1059 | SEC_LINKER_CREATED
1060 | SEC_READONLY))
1061 || ! bfd_set_section_alignment (dynobj, srelgot, 3))
1062 return false;
1063 }
1064 }
1065
1066 if (h != NULL)
1067 {
1068 if (h->got.offset != (bfd_vma) -1)
1069 {
1070 /* We have already allocated space in the .got. */
1071 break;
1072 }
1073 h->got.offset = sgot->_raw_size;
1074
1075 /* Make sure this symbol is output as a dynamic symbol. */
1076 if (h->dynindx == -1)
1077 {
1078 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1079 return false;
1080 }
1081
1082 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1083 }
1084 else
1085 {
1086 /* This is a global offset table entry for a local
1087 symbol. */
1088 if (local_got_offsets == NULL)
1089 {
1090 size_t size;
1091 register unsigned int i;
1092
1093 size = symtab_hdr->sh_info * sizeof (bfd_vma);
1094 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
1095 if (local_got_offsets == NULL)
1096 return false;
1097 elf_local_got_offsets (abfd) = local_got_offsets;
1098 for (i = 0; i < symtab_hdr->sh_info; i++)
1099 local_got_offsets[i] = (bfd_vma) -1;
1100 }
1101 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1102 {
1103 /* We have already allocated space in the .got. */
1104 break;
1105 }
1106 local_got_offsets[r_symndx] = sgot->_raw_size;
1107
1108 if (info->shared)
1109 {
1110 /* If we are generating a shared object, we need to
1111 output a R_SPARC_RELATIVE reloc so that the
1112 dynamic linker can adjust this GOT entry. */
1113 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1114 }
1115 }
1116
1117 sgot->_raw_size += 8;
1118
1119#if 0
1120 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1121 unsigned numbers. If we permit ourselves to modify
1122 code so we get sethi/xor, this could work.
1123 Question: do we consider conditionally re-enabling
1124 this for -fpic, once we know about object code models? */
1125 /* If the .got section is more than 0x1000 bytes, we add
1126 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1127 bit relocations have a greater chance of working. */
1128 if (sgot->_raw_size >= 0x1000
1129 && elf_hash_table (info)->hgot->root.u.def.value == 0)
1130 elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
1131#endif
1132
1133 break;
1134
1135 case R_SPARC_WPLT30:
1136 case R_SPARC_PLT32:
1137 case R_SPARC_HIPLT22:
1138 case R_SPARC_LOPLT10:
1139 case R_SPARC_PCPLT32:
1140 case R_SPARC_PCPLT22:
1141 case R_SPARC_PCPLT10:
1142 case R_SPARC_PLT64:
1143 /* This symbol requires a procedure linkage table entry. We
1144 actually build the entry in adjust_dynamic_symbol,
1145 because this might be a case of linking PIC code without
1146 linking in any dynamic objects, in which case we don't
1147 need to generate a procedure linkage table after all. */
1148
1149 if (h == NULL)
1150 {
1151 /* It does not make sense to have a procedure linkage
1152 table entry for a local symbol. */
1153 bfd_set_error (bfd_error_bad_value);
1154 return false;
1155 }
1156
1157 /* Make sure this symbol is output as a dynamic symbol. */
1158 if (h->dynindx == -1)
1159 {
1160 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1161 return false;
1162 }
1163
1164 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1165 break;
1166
1167 case R_SPARC_PC10:
1168 case R_SPARC_PC22:
1169 case R_SPARC_PC_HH22:
1170 case R_SPARC_PC_HM10:
1171 case R_SPARC_PC_LM22:
1172 if (h != NULL
1173 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1174 break;
1175 /* Fall through. */
1176 case R_SPARC_DISP8:
1177 case R_SPARC_DISP16:
1178 case R_SPARC_DISP32:
1179 case R_SPARC_DISP64:
1180 case R_SPARC_WDISP30:
1181 case R_SPARC_WDISP22:
1182 case R_SPARC_WDISP19:
1183 case R_SPARC_WDISP16:
1184 if (h == NULL)
1185 break;
1186 /* Fall through. */
1187 case R_SPARC_8:
1188 case R_SPARC_16:
1189 case R_SPARC_32:
1190 case R_SPARC_HI22:
1191 case R_SPARC_22:
1192 case R_SPARC_13:
1193 case R_SPARC_LO10:
1194 case R_SPARC_UA32:
1195 case R_SPARC_10:
1196 case R_SPARC_11:
1197 case R_SPARC_64:
1198 case R_SPARC_OLO10:
1199 case R_SPARC_HH22:
1200 case R_SPARC_HM10:
1201 case R_SPARC_LM22:
1202 case R_SPARC_7:
1203 case R_SPARC_5:
1204 case R_SPARC_6:
1205 case R_SPARC_HIX22:
1206 case R_SPARC_LOX10:
1207 case R_SPARC_H44:
1208 case R_SPARC_M44:
1209 case R_SPARC_L44:
1210 case R_SPARC_UA64:
1211 case R_SPARC_UA16:
1212 /* When creating a shared object, we must copy these relocs
1213 into the output file. We create a reloc section in
435b1e90 1214 dynobj and make room for the reloc.
252b5132
RH
1215
1216 But don't do this for debugging sections -- this shows up
1217 with DWARF2 -- first because they are not loaded, and
1218 second because DWARF sez the debug info is not to be
1219 biased by the load address. */
1220 if (info->shared && (sec->flags & SEC_ALLOC))
1221 {
1222 if (sreloc == NULL)
1223 {
1224 const char *name;
1225
1226 name = (bfd_elf_string_from_elf_section
1227 (abfd,
1228 elf_elfheader (abfd)->e_shstrndx,
1229 elf_section_data (sec)->rel_hdr.sh_name));
1230 if (name == NULL)
1231 return false;
1232
1233 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1234 && strcmp (bfd_get_section_name (abfd, sec),
1235 name + 5) == 0);
1236
1237 sreloc = bfd_get_section_by_name (dynobj, name);
1238 if (sreloc == NULL)
1239 {
1240 flagword flags;
1241
1242 sreloc = bfd_make_section (dynobj, name);
1243 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1244 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1245 if ((sec->flags & SEC_ALLOC) != 0)
1246 flags |= SEC_ALLOC | SEC_LOAD;
1247 if (sreloc == NULL
1248 || ! bfd_set_section_flags (dynobj, sreloc, flags)
1249 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1250 return false;
1251 }
db6751f2
JJ
1252 if (sec->flags & SEC_READONLY)
1253 info->flags |= DF_TEXTREL;
252b5132
RH
1254 }
1255
1256 sreloc->_raw_size += sizeof (Elf64_External_Rela);
1257 }
1258 break;
1259
1260 case R_SPARC_REGISTER:
1261 /* Nothing to do. */
1262 break;
1263
1264 default:
435b1e90 1265 (*_bfd_error_handler) (_("%s: check_relocs: unhandled reloc type %d"),
252b5132 1266 bfd_get_filename(abfd),
f65054f7 1267 ELF64_R_TYPE_ID (rel->r_info));
252b5132
RH
1268 return false;
1269 }
1270 }
1271
1272 return true;
1273}
1274
587ff49e
RH
1275/* Hook called by the linker routine which adds symbols from an object
1276 file. We use it for STT_REGISTER symbols. */
1277
1278static boolean
1279sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1280 bfd *abfd;
1281 struct bfd_link_info *info;
1282 const Elf_Internal_Sym *sym;
1283 const char **namep;
6c08d697
JJ
1284 flagword *flagsp ATTRIBUTE_UNUSED;
1285 asection **secp ATTRIBUTE_UNUSED;
1286 bfd_vma *valp ATTRIBUTE_UNUSED;
587ff49e
RH
1287{
1288 static char *stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1289
1290 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
1291 {
1292 int reg;
1293 struct sparc64_elf_app_reg *p;
435b1e90 1294
587ff49e
RH
1295 reg = (int)sym->st_value;
1296 switch (reg & ~1)
1297 {
1298 case 2: reg -= 2; break;
1299 case 6: reg -= 4; break;
1300 default:
1301 (*_bfd_error_handler)
1302 (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
1303 bfd_get_filename (abfd));
1304 return false;
1305 }
1306
1307 if (info->hash->creator != abfd->xvec
1308 || (abfd->flags & DYNAMIC) != 0)
1309 {
1310 /* STT_REGISTER only works when linking an elf64_sparc object.
1311 If STT_REGISTER comes from a dynamic object, don't put it into
1312 the output bfd. The dynamic linker will recheck it. */
1313 *namep = NULL;
1314 return true;
1315 }
1316
1317 p = sparc64_elf_hash_table(info)->app_regs + reg;
1318
1319 if (p->name != NULL && strcmp (p->name, *namep))
1320 {
1321 (*_bfd_error_handler)
1322 (_("Register %%g%d used incompatibly: "
1323 "previously declared in %s to %s, in %s redefined to %s"),
1324 (int)sym->st_value,
1325 bfd_get_filename (p->abfd), *p->name ? p->name : "#scratch",
1326 bfd_get_filename (abfd), **namep ? *namep : "#scratch");
1327 return false;
1328 }
1329
1330 if (p->name == NULL)
1331 {
1332 if (**namep)
1333 {
1334 struct elf_link_hash_entry *h;
435b1e90 1335
587ff49e
RH
1336 h = (struct elf_link_hash_entry *)
1337 bfd_link_hash_lookup (info->hash, *namep, false, false, false);
1338
1339 if (h != NULL)
1340 {
1341 unsigned char type = h->type;
1342
1343 if (type > STT_FUNC) type = 0;
1344 (*_bfd_error_handler)
1345 (_("Symbol `%s' has differing types: "
1346 "previously %s, REGISTER in %s"),
1347 *namep, stt_types [type], bfd_get_filename (abfd));
1348 return false;
1349 }
1350
1351 p->name = bfd_hash_allocate (&info->hash->table,
1352 strlen (*namep) + 1);
1353 if (!p->name)
1354 return false;
1355
1356 strcpy (p->name, *namep);
1357 }
1358 else
1359 p->name = "";
1360 p->bind = ELF_ST_BIND (sym->st_info);
1361 p->abfd = abfd;
1362 p->shndx = sym->st_shndx;
1363 }
1364 else
1365 {
1366 if (p->bind == STB_WEAK
1367 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
1368 {
1369 p->bind = STB_GLOBAL;
1370 p->abfd = abfd;
1371 }
1372 }
1373 *namep = NULL;
1374 return true;
1375 }
1376 else if (! *namep || ! **namep)
1377 return true;
1378 else
1379 {
1380 int i;
1381 struct sparc64_elf_app_reg *p;
1382
1383 p = sparc64_elf_hash_table(info)->app_regs;
1384 for (i = 0; i < 4; i++, p++)
1385 if (p->name != NULL && ! strcmp (p->name, *namep))
1386 {
1387 unsigned char type = ELF_ST_TYPE (sym->st_info);
1388
1389 if (type > STT_FUNC) type = 0;
1390 (*_bfd_error_handler)
1391 (_("Symbol `%s' has differing types: "
1392 "REGISTER in %s, %s in %s"),
1393 *namep, bfd_get_filename (p->abfd), stt_types [type],
1394 bfd_get_filename (abfd));
1395 return false;
1396 }
1397 }
1398 return true;
1399}
1400
1401/* This function takes care of emiting STT_REGISTER symbols
1402 which we cannot easily keep in the symbol hash table. */
1403
1404static boolean
1405sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
6c08d697 1406 bfd *output_bfd ATTRIBUTE_UNUSED;
587ff49e
RH
1407 struct bfd_link_info *info;
1408 PTR finfo;
1409 boolean (*func) PARAMS ((PTR, const char *,
1410 Elf_Internal_Sym *, asection *));
1411{
1412 int reg;
1413 struct sparc64_elf_app_reg *app_regs =
1414 sparc64_elf_hash_table(info)->app_regs;
1415 Elf_Internal_Sym sym;
1416
1417 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1418 at the end of the dynlocal list, so they came at the end of the local
1419 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1420 to back up symtab->sh_info. */
1421 if (elf_hash_table (info)->dynlocal)
1422 {
1fa0ddb3
RH
1423 bfd * dynobj = elf_hash_table (info)->dynobj;
1424 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
587ff49e
RH
1425 struct elf_link_local_dynamic_entry *e;
1426
1427 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
1428 if (e->input_indx == -1)
1429 break;
1430 if (e)
1431 {
1432 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
1433 = e->dynindx;
1434 }
1435 }
1436
1437 if (info->strip == strip_all)
1438 return true;
1439
1440 for (reg = 0; reg < 4; reg++)
1441 if (app_regs [reg].name != NULL)
1442 {
1443 if (info->strip == strip_some
1444 && bfd_hash_lookup (info->keep_hash,
1445 app_regs [reg].name,
1446 false, false) == NULL)
1447 continue;
1448
1449 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
1450 sym.st_size = 0;
1451 sym.st_other = 0;
1452 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
1453 sym.st_shndx = app_regs [reg].shndx;
1454 if (! (*func) (finfo, app_regs [reg].name, &sym,
1455 sym.st_shndx == SHN_ABS
1456 ? bfd_abs_section_ptr : bfd_und_section_ptr))
1457 return false;
1458 }
1459
1460 return true;
1461}
1462
1463static int
1464sparc64_elf_get_symbol_type (elf_sym, type)
1465 Elf_Internal_Sym * elf_sym;
1466 int type;
1467{
1468 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
1469 return STT_REGISTER;
1470 else
1471 return type;
1472}
1473
1474/* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1475 even in SHN_UNDEF section. */
1476
1477static void
1478sparc64_elf_symbol_processing (abfd, asym)
6c08d697 1479 bfd *abfd ATTRIBUTE_UNUSED;
587ff49e
RH
1480 asymbol *asym;
1481{
1482 elf_symbol_type *elfsym;
1483
1484 elfsym = (elf_symbol_type *) asym;
1485 if (elfsym->internal_elf_sym.st_info
1486 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
1487 {
1488 asym->flags |= BSF_GLOBAL;
1489 }
1490}
1491
252b5132
RH
1492/* Adjust a symbol defined by a dynamic object and referenced by a
1493 regular object. The current definition is in some section of the
1494 dynamic object, but we're not including those sections. We have to
1495 change the definition to something the rest of the link can
1496 understand. */
1497
1498static boolean
1499sparc64_elf_adjust_dynamic_symbol (info, h)
1500 struct bfd_link_info *info;
1501 struct elf_link_hash_entry *h;
1502{
1503 bfd *dynobj;
1504 asection *s;
1505 unsigned int power_of_two;
1506
1507 dynobj = elf_hash_table (info)->dynobj;
1508
1509 /* Make sure we know what is going on here. */
1510 BFD_ASSERT (dynobj != NULL
1511 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
1512 || h->weakdef != NULL
1513 || ((h->elf_link_hash_flags
1514 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1515 && (h->elf_link_hash_flags
1516 & ELF_LINK_HASH_REF_REGULAR) != 0
1517 && (h->elf_link_hash_flags
1518 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
1519
1520 /* If this is a function, put it in the procedure linkage table. We
1521 will fill in the contents of the procedure linkage table later
1522 (although we could actually do it here). The STT_NOTYPE
1523 condition is a hack specifically for the Oracle libraries
1524 delivered for Solaris; for some inexplicable reason, they define
1525 some of their functions as STT_NOTYPE when they really should be
1526 STT_FUNC. */
1527 if (h->type == STT_FUNC
1528 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
1529 || (h->type == STT_NOTYPE
1530 && (h->root.type == bfd_link_hash_defined
1531 || h->root.type == bfd_link_hash_defweak)
1532 && (h->root.u.def.section->flags & SEC_CODE) != 0))
1533 {
1534 if (! elf_hash_table (info)->dynamic_sections_created)
1535 {
1536 /* This case can occur if we saw a WPLT30 reloc in an input
1537 file, but none of the input files were dynamic objects.
1538 In such a case, we don't actually need to build a
1539 procedure linkage table, and we can just do a WDISP30
1540 reloc instead. */
1541 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
1542 return true;
1543 }
1544
1545 s = bfd_get_section_by_name (dynobj, ".plt");
1546 BFD_ASSERT (s != NULL);
1547
1548 /* The first four bit in .plt is reserved. */
1549 if (s->_raw_size == 0)
1550 s->_raw_size = PLT_HEADER_SIZE;
1551
1552 /* If this symbol is not defined in a regular file, and we are
1553 not generating a shared library, then set the symbol to this
1554 location in the .plt. This is required to make function
1555 pointers compare as equal between the normal executable and
1556 the shared library. */
1557 if (! info->shared
1558 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1559 {
1560 h->root.u.def.section = s;
1561 h->root.u.def.value = s->_raw_size;
1562 }
1563
1564 /* To simplify matters later, just store the plt index here. */
1565 h->plt.offset = s->_raw_size / PLT_ENTRY_SIZE;
1566
1567 /* Make room for this entry. */
1568 s->_raw_size += PLT_ENTRY_SIZE;
1569
1570 /* We also need to make an entry in the .rela.plt section. */
1571
1572 s = bfd_get_section_by_name (dynobj, ".rela.plt");
1573 BFD_ASSERT (s != NULL);
1574
252b5132
RH
1575 s->_raw_size += sizeof (Elf64_External_Rela);
1576
1577 /* The procedure linkage table size is bounded by the magnitude
1578 of the offset we can describe in the entry. */
1579 if (s->_raw_size >= (bfd_vma)1 << 32)
1580 {
1581 bfd_set_error (bfd_error_bad_value);
1582 return false;
1583 }
1584
1585 return true;
1586 }
1587
1588 /* If this is a weak symbol, and there is a real definition, the
1589 processor independent code will have arranged for us to see the
1590 real definition first, and we can just use the same value. */
1591 if (h->weakdef != NULL)
1592 {
1593 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1594 || h->weakdef->root.type == bfd_link_hash_defweak);
1595 h->root.u.def.section = h->weakdef->root.u.def.section;
1596 h->root.u.def.value = h->weakdef->root.u.def.value;
1597 return true;
1598 }
1599
1600 /* This is a reference to a symbol defined by a dynamic object which
1601 is not a function. */
1602
1603 /* If we are creating a shared library, we must presume that the
1604 only references to the symbol are via the global offset table.
1605 For such cases we need not do anything here; the relocations will
1606 be handled correctly by relocate_section. */
1607 if (info->shared)
1608 return true;
1609
1610 /* We must allocate the symbol in our .dynbss section, which will
1611 become part of the .bss section of the executable. There will be
1612 an entry for this symbol in the .dynsym section. The dynamic
1613 object will contain position independent code, so all references
1614 from the dynamic object to this symbol will go through the global
1615 offset table. The dynamic linker will use the .dynsym entry to
1616 determine the address it must put in the global offset table, so
1617 both the dynamic object and the regular object will refer to the
1618 same memory location for the variable. */
1619
1620 s = bfd_get_section_by_name (dynobj, ".dynbss");
1621 BFD_ASSERT (s != NULL);
1622
1623 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1624 to copy the initial value out of the dynamic object and into the
1625 runtime process image. We need to remember the offset into the
1626 .rel.bss section we are going to use. */
1627 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1628 {
1629 asection *srel;
1630
1631 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1632 BFD_ASSERT (srel != NULL);
1633 srel->_raw_size += sizeof (Elf64_External_Rela);
1634 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1635 }
1636
1637 /* We need to figure out the alignment required for this symbol. I
1638 have no idea how ELF linkers handle this. 16-bytes is the size
1639 of the largest type that requires hard alignment -- long double. */
1640 power_of_two = bfd_log2 (h->size);
1641 if (power_of_two > 4)
1642 power_of_two = 4;
1643
1644 /* Apply the required alignment. */
1645 s->_raw_size = BFD_ALIGN (s->_raw_size,
1646 (bfd_size_type) (1 << power_of_two));
1647 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1648 {
1649 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1650 return false;
1651 }
1652
1653 /* Define the symbol as being at this point in the section. */
1654 h->root.u.def.section = s;
1655 h->root.u.def.value = s->_raw_size;
1656
1657 /* Increment the section size to make room for the symbol. */
1658 s->_raw_size += h->size;
1659
1660 return true;
1661}
1662
1663/* Set the sizes of the dynamic sections. */
1664
1665static boolean
1666sparc64_elf_size_dynamic_sections (output_bfd, info)
1667 bfd *output_bfd;
1668 struct bfd_link_info *info;
1669{
1670 bfd *dynobj;
1671 asection *s;
252b5132
RH
1672 boolean relplt;
1673
1674 dynobj = elf_hash_table (info)->dynobj;
1675 BFD_ASSERT (dynobj != NULL);
1676
1677 if (elf_hash_table (info)->dynamic_sections_created)
1678 {
1679 /* Set the contents of the .interp section to the interpreter. */
1680 if (! info->shared)
1681 {
1682 s = bfd_get_section_by_name (dynobj, ".interp");
1683 BFD_ASSERT (s != NULL);
1684 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1685 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1686 }
1687 }
1688 else
1689 {
1690 /* We may have created entries in the .rela.got section.
1691 However, if we are not creating the dynamic sections, we will
1692 not actually use these entries. Reset the size of .rela.got,
1693 which will cause it to get stripped from the output file
1694 below. */
1695 s = bfd_get_section_by_name (dynobj, ".rela.got");
1696 if (s != NULL)
1697 s->_raw_size = 0;
1698 }
1699
1700 /* The check_relocs and adjust_dynamic_symbol entry points have
1701 determined the sizes of the various dynamic sections. Allocate
1702 memory for them. */
252b5132
RH
1703 relplt = false;
1704 for (s = dynobj->sections; s != NULL; s = s->next)
1705 {
1706 const char *name;
1707 boolean strip;
1708
1709 if ((s->flags & SEC_LINKER_CREATED) == 0)
1710 continue;
1711
1712 /* It's OK to base decisions on the section name, because none
1713 of the dynobj section names depend upon the input files. */
1714 name = bfd_get_section_name (dynobj, s);
1715
1716 strip = false;
1717
1718 if (strncmp (name, ".rela", 5) == 0)
1719 {
1720 if (s->_raw_size == 0)
1721 {
1722 /* If we don't need this section, strip it from the
1723 output file. This is to handle .rela.bss and
1724 .rel.plt. We must create it in
1725 create_dynamic_sections, because it must be created
1726 before the linker maps input sections to output
1727 sections. The linker does that before
1728 adjust_dynamic_symbol is called, and it is that
1729 function which decides whether anything needs to go
1730 into these sections. */
1731 strip = true;
1732 }
1733 else
1734 {
252b5132
RH
1735 if (strcmp (name, ".rela.plt") == 0)
1736 relplt = true;
1737
1738 /* We use the reloc_count field as a counter if we need
1739 to copy relocs into the output file. */
1740 s->reloc_count = 0;
1741 }
1742 }
1743 else if (strcmp (name, ".plt") != 0
1744 && strncmp (name, ".got", 4) != 0)
1745 {
1746 /* It's not one of our sections, so don't allocate space. */
1747 continue;
1748 }
1749
1750 if (strip)
1751 {
7f8d5fc9 1752 _bfd_strip_section_from_output (info, s);
252b5132
RH
1753 continue;
1754 }
1755
1756 /* Allocate memory for the section contents. Zero the memory
1757 for the benefit of .rela.plt, which has 4 unused entries
1758 at the beginning, and we don't want garbage. */
1759 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1760 if (s->contents == NULL && s->_raw_size != 0)
1761 return false;
1762 }
1763
1764 if (elf_hash_table (info)->dynamic_sections_created)
1765 {
1766 /* Add some entries to the .dynamic section. We fill in the
1767 values later, in sparc64_elf_finish_dynamic_sections, but we
1768 must add the entries now so that we get the correct size for
1769 the .dynamic section. The DT_DEBUG entry is filled in by the
1770 dynamic linker and used by the debugger. */
587ff49e
RH
1771 int reg;
1772 struct sparc64_elf_app_reg * app_regs;
1773 struct bfd_strtab_hash *dynstr;
1774 struct elf_link_hash_table *eht = elf_hash_table (info);
1775
252b5132
RH
1776 if (! info->shared)
1777 {
1778 if (! bfd_elf64_add_dynamic_entry (info, DT_DEBUG, 0))
1779 return false;
1780 }
1781
1782 if (relplt)
1783 {
1784 if (! bfd_elf64_add_dynamic_entry (info, DT_PLTGOT, 0)
1785 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTRELSZ, 0)
1786 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
d6bcbdc1 1787 || ! bfd_elf64_add_dynamic_entry (info, DT_JMPREL, 0))
252b5132
RH
1788 return false;
1789 }
1790
1791 if (! bfd_elf64_add_dynamic_entry (info, DT_RELA, 0)
1792 || ! bfd_elf64_add_dynamic_entry (info, DT_RELASZ, 0)
1793 || ! bfd_elf64_add_dynamic_entry (info, DT_RELAENT,
1794 sizeof (Elf64_External_Rela)))
1795 return false;
1796
db6751f2 1797 if (info->flags & DF_TEXTREL)
252b5132
RH
1798 {
1799 if (! bfd_elf64_add_dynamic_entry (info, DT_TEXTREL, 0))
1800 return false;
1801 }
587ff49e
RH
1802
1803 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1804 entries if needed. */
1805 app_regs = sparc64_elf_hash_table (info)->app_regs;
1806 dynstr = eht->dynstr;
1807
1808 for (reg = 0; reg < 4; reg++)
1809 if (app_regs [reg].name != NULL)
1810 {
1811 struct elf_link_local_dynamic_entry *entry, *e;
435b1e90 1812
587ff49e
RH
1813 if (! bfd_elf64_add_dynamic_entry (info, DT_SPARC_REGISTER, 0))
1814 return false;
1815
1816 entry = (struct elf_link_local_dynamic_entry *)
1817 bfd_hash_allocate (&info->hash->table, sizeof (*entry));
1818 if (entry == NULL)
1819 return false;
1820
1821 /* We cheat here a little bit: the symbol will not be local, so we
1822 put it at the end of the dynlocal linked list. We will fix it
1823 later on, as we have to fix other fields anyway. */
1824 entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
1825 entry->isym.st_size = 0;
1826 if (*app_regs [reg].name != '\0')
1827 entry->isym.st_name
1828 = _bfd_stringtab_add (dynstr, app_regs[reg].name, true, false);
1829 else
1830 entry->isym.st_name = 0;
1831 entry->isym.st_other = 0;
1832 entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
1833 STT_REGISTER);
1834 entry->isym.st_shndx = app_regs [reg].shndx;
1835 entry->next = NULL;
1836 entry->input_bfd = output_bfd;
1837 entry->input_indx = -1;
1838
1839 if (eht->dynlocal == NULL)
1840 eht->dynlocal = entry;
1841 else
1842 {
1843 for (e = eht->dynlocal; e->next; e = e->next)
1844 ;
1845 e->next = entry;
1846 }
1847 eht->dynsymcount++;
1848 }
252b5132
RH
1849 }
1850
252b5132
RH
1851 return true;
1852}
252b5132 1853\f
f7775d95
JJ
1854#define SET_SEC_DO_RELAX(section) do { elf_section_data(section)->tdata = (void *)1; } while (0)
1855#define SEC_DO_RELAX(section) (elf_section_data(section)->tdata == (void *)1)
1856
f7775d95
JJ
1857static boolean
1858sparc64_elf_relax_section (abfd, section, link_info, again)
1859 bfd *abfd ATTRIBUTE_UNUSED;
1860 asection *section ATTRIBUTE_UNUSED;
1861 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
1862 boolean *again;
1863{
1864 *again = false;
1865 SET_SEC_DO_RELAX (section);
1866 return true;
1867}
1868\f
252b5132
RH
1869/* Relocate a SPARC64 ELF section. */
1870
1871static boolean
1872sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1873 contents, relocs, local_syms, local_sections)
1874 bfd *output_bfd;
1875 struct bfd_link_info *info;
1876 bfd *input_bfd;
1877 asection *input_section;
1878 bfd_byte *contents;
1879 Elf_Internal_Rela *relocs;
1880 Elf_Internal_Sym *local_syms;
1881 asection **local_sections;
1882{
1883 bfd *dynobj;
1884 Elf_Internal_Shdr *symtab_hdr;
1885 struct elf_link_hash_entry **sym_hashes;
1886 bfd_vma *local_got_offsets;
1887 bfd_vma got_base;
1888 asection *sgot;
1889 asection *splt;
1890 asection *sreloc;
1891 Elf_Internal_Rela *rel;
1892 Elf_Internal_Rela *relend;
1893
1894 dynobj = elf_hash_table (info)->dynobj;
1895 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1896 sym_hashes = elf_sym_hashes (input_bfd);
1897 local_got_offsets = elf_local_got_offsets (input_bfd);
1898
1899 if (elf_hash_table(info)->hgot == NULL)
1900 got_base = 0;
1901 else
1902 got_base = elf_hash_table (info)->hgot->root.u.def.value;
1903
1904 sgot = splt = sreloc = NULL;
1905
1906 rel = relocs;
e90fdc1a 1907 relend = relocs + NUM_SHDR_ENTRIES (& elf_section_data (input_section)->rel_hdr);
252b5132
RH
1908 for (; rel < relend; rel++)
1909 {
1910 int r_type;
1911 reloc_howto_type *howto;
6c08d697 1912 unsigned long r_symndx;
252b5132
RH
1913 struct elf_link_hash_entry *h;
1914 Elf_Internal_Sym *sym;
1915 asection *sec;
1916 bfd_vma relocation;
1917 bfd_reloc_status_type r;
1918
f65054f7 1919 r_type = ELF64_R_TYPE_ID (rel->r_info);
60dac299 1920 if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
252b5132
RH
1921 {
1922 bfd_set_error (bfd_error_bad_value);
1923 return false;
1924 }
1925 howto = sparc64_elf_howto_table + r_type;
1926
1927 r_symndx = ELF64_R_SYM (rel->r_info);
1928
1929 if (info->relocateable)
1930 {
1931 /* This is a relocateable link. We don't have to change
1932 anything, unless the reloc is against a section symbol,
1933 in which case we have to adjust according to where the
1934 section symbol winds up in the output section. */
1935 if (r_symndx < symtab_hdr->sh_info)
1936 {
1937 sym = local_syms + r_symndx;
1938 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1939 {
1940 sec = local_sections[r_symndx];
1941 rel->r_addend += sec->output_offset + sym->st_value;
1942 }
1943 }
1944
1945 continue;
1946 }
1947
1948 /* This is a final link. */
1949 h = NULL;
1950 sym = NULL;
1951 sec = NULL;
1952 if (r_symndx < symtab_hdr->sh_info)
1953 {
1954 sym = local_syms + r_symndx;
1955 sec = local_sections[r_symndx];
1956 relocation = (sec->output_section->vma
1957 + sec->output_offset
1958 + sym->st_value);
1959 }
1960 else
1961 {
1962 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1963 while (h->root.type == bfd_link_hash_indirect
1964 || h->root.type == bfd_link_hash_warning)
1965 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1966 if (h->root.type == bfd_link_hash_defined
1967 || h->root.type == bfd_link_hash_defweak)
1968 {
1969 boolean skip_it = false;
1970 sec = h->root.u.def.section;
1971
1972 switch (r_type)
1973 {
1974 case R_SPARC_WPLT30:
1975 case R_SPARC_PLT32:
1976 case R_SPARC_HIPLT22:
1977 case R_SPARC_LOPLT10:
1978 case R_SPARC_PCPLT32:
1979 case R_SPARC_PCPLT22:
1980 case R_SPARC_PCPLT10:
1981 case R_SPARC_PLT64:
1982 if (h->plt.offset != (bfd_vma) -1)
1983 skip_it = true;
1984 break;
1985
1986 case R_SPARC_GOT10:
1987 case R_SPARC_GOT13:
1988 case R_SPARC_GOT22:
1989 if (elf_hash_table(info)->dynamic_sections_created
1990 && (!info->shared
1991 || (!info->symbolic && h->dynindx != -1)
1992 || !(h->elf_link_hash_flags
1993 & ELF_LINK_HASH_DEF_REGULAR)))
1994 skip_it = true;
1995 break;
1996
1997 case R_SPARC_PC10:
1998 case R_SPARC_PC22:
1999 case R_SPARC_PC_HH22:
2000 case R_SPARC_PC_HM10:
2001 case R_SPARC_PC_LM22:
2002 if (!strcmp(h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2003 break;
2004 /* FALLTHRU */
2005
2006 case R_SPARC_8:
2007 case R_SPARC_16:
2008 case R_SPARC_32:
2009 case R_SPARC_DISP8:
2010 case R_SPARC_DISP16:
2011 case R_SPARC_DISP32:
2012 case R_SPARC_WDISP30:
2013 case R_SPARC_WDISP22:
2014 case R_SPARC_HI22:
2015 case R_SPARC_22:
2016 case R_SPARC_13:
2017 case R_SPARC_LO10:
2018 case R_SPARC_UA32:
2019 case R_SPARC_10:
2020 case R_SPARC_11:
2021 case R_SPARC_64:
2022 case R_SPARC_OLO10:
2023 case R_SPARC_HH22:
2024 case R_SPARC_HM10:
2025 case R_SPARC_LM22:
2026 case R_SPARC_WDISP19:
2027 case R_SPARC_WDISP16:
2028 case R_SPARC_7:
2029 case R_SPARC_5:
2030 case R_SPARC_6:
2031 case R_SPARC_DISP64:
2032 case R_SPARC_HIX22:
2033 case R_SPARC_LOX10:
2034 case R_SPARC_H44:
2035 case R_SPARC_M44:
2036 case R_SPARC_L44:
2037 case R_SPARC_UA64:
2038 case R_SPARC_UA16:
2039 if (info->shared
2040 && ((!info->symbolic && h->dynindx != -1)
2041 || !(h->elf_link_hash_flags
2042 & ELF_LINK_HASH_DEF_REGULAR)))
2043 skip_it = true;
2044 break;
2045 }
2046
2047 if (skip_it)
2048 {
2049 /* In these cases, we don't need the relocation
2050 value. We check specially because in some
2051 obscure cases sec->output_section will be NULL. */
2052 relocation = 0;
2053 }
2054 else
2055 {
2056 relocation = (h->root.u.def.value
2057 + sec->output_section->vma
2058 + sec->output_offset);
2059 }
2060 }
2061 else if (h->root.type == bfd_link_hash_undefweak)
2062 relocation = 0;
3a27a730
L
2063 else if (info->shared && !info->symbolic
2064 && !info->no_undefined
2065 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
252b5132
RH
2066 relocation = 0;
2067 else
2068 {
2069 if (! ((*info->callbacks->undefined_symbol)
2070 (info, h->root.root.string, input_bfd,
5cc7c785 2071 input_section, rel->r_offset,
3a27a730
L
2072 (!info->shared || info->no_undefined
2073 || ELF_ST_VISIBILITY (h->other)))))
252b5132 2074 return false;
be040dbb
JJ
2075
2076 /* To avoid generating warning messages about truncated
2077 relocations, set the relocation's address to be the same as
2078 the start of this section. */
2079
2080 if (input_section->output_section != NULL)
2081 relocation = input_section->output_section->vma;
2082 else
2083 relocation = 0;
252b5132
RH
2084 }
2085 }
2086
2087 /* When generating a shared object, these relocations are copied
2088 into the output file to be resolved at run time. */
2089 if (info->shared && (input_section->flags & SEC_ALLOC))
2090 {
2091 switch (r_type)
2092 {
2093 case R_SPARC_PC10:
2094 case R_SPARC_PC22:
2095 case R_SPARC_PC_HH22:
2096 case R_SPARC_PC_HM10:
2097 case R_SPARC_PC_LM22:
2098 if (h != NULL
2099 && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2100 break;
2101 /* Fall through. */
2102 case R_SPARC_DISP8:
2103 case R_SPARC_DISP16:
2104 case R_SPARC_DISP32:
2105 case R_SPARC_WDISP30:
2106 case R_SPARC_WDISP22:
2107 case R_SPARC_WDISP19:
2108 case R_SPARC_WDISP16:
2109 case R_SPARC_DISP64:
2110 if (h == NULL)
2111 break;
2112 /* Fall through. */
2113 case R_SPARC_8:
2114 case R_SPARC_16:
2115 case R_SPARC_32:
2116 case R_SPARC_HI22:
2117 case R_SPARC_22:
2118 case R_SPARC_13:
2119 case R_SPARC_LO10:
2120 case R_SPARC_UA32:
2121 case R_SPARC_10:
2122 case R_SPARC_11:
2123 case R_SPARC_64:
2124 case R_SPARC_OLO10:
2125 case R_SPARC_HH22:
2126 case R_SPARC_HM10:
2127 case R_SPARC_LM22:
2128 case R_SPARC_7:
2129 case R_SPARC_5:
2130 case R_SPARC_6:
2131 case R_SPARC_HIX22:
2132 case R_SPARC_LOX10:
2133 case R_SPARC_H44:
2134 case R_SPARC_M44:
2135 case R_SPARC_L44:
2136 case R_SPARC_UA64:
2137 case R_SPARC_UA16:
2138 {
2139 Elf_Internal_Rela outrel;
2140 boolean skip;
2141
2142 if (sreloc == NULL)
2143 {
2144 const char *name =
2145 (bfd_elf_string_from_elf_section
2146 (input_bfd,
2147 elf_elfheader (input_bfd)->e_shstrndx,
2148 elf_section_data (input_section)->rel_hdr.sh_name));
2149
2150 if (name == NULL)
2151 return false;
2152
2153 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
2154 && strcmp (bfd_get_section_name(input_bfd,
2155 input_section),
2156 name + 5) == 0);
2157
2158 sreloc = bfd_get_section_by_name (dynobj, name);
2159 BFD_ASSERT (sreloc != NULL);
2160 }
2161
2162 skip = false;
2163
2164 if (elf_section_data (input_section)->stab_info == NULL)
2165 outrel.r_offset = rel->r_offset;
2166 else
2167 {
2168 bfd_vma off;
2169
2170 off = (_bfd_stab_section_offset
2171 (output_bfd, &elf_hash_table (info)->stab_info,
2172 input_section,
2173 &elf_section_data (input_section)->stab_info,
2174 rel->r_offset));
2175 if (off == MINUS_ONE)
2176 skip = true;
2177 outrel.r_offset = off;
2178 }
2179
2180 outrel.r_offset += (input_section->output_section->vma
2181 + input_section->output_offset);
2182
2183 /* Optimize unaligned reloc usage now that we know where
2184 it finally resides. */
2185 switch (r_type)
2186 {
2187 case R_SPARC_16:
2188 if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
2189 break;
2190 case R_SPARC_UA16:
2191 if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
2192 break;
2193 case R_SPARC_32:
2194 if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
2195 break;
2196 case R_SPARC_UA32:
2197 if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
2198 break;
2199 case R_SPARC_64:
2200 if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
2201 break;
2202 case R_SPARC_UA64:
2203 if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
2204 break;
2205 }
2206
2207 if (skip)
2208 memset (&outrel, 0, sizeof outrel);
2209 /* h->dynindx may be -1 if the symbol was marked to
2210 become local. */
2211 else if (h != NULL
2212 && ((! info->symbolic && h->dynindx != -1)
2213 || (h->elf_link_hash_flags
2214 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2215 {
2216 BFD_ASSERT (h->dynindx != -1);
f65054f7
RH
2217 outrel.r_info
2218 = ELF64_R_INFO (h->dynindx,
2219 ELF64_R_TYPE_INFO (
2220 ELF64_R_TYPE_DATA (rel->r_info),
2221 r_type));
252b5132
RH
2222 outrel.r_addend = rel->r_addend;
2223 }
2224 else
2225 {
2226 if (r_type == R_SPARC_64)
2227 {
2228 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2229 outrel.r_addend = relocation + rel->r_addend;
2230 }
2231 else
2232 {
2233 long indx;
2234
2235 if (h == NULL)
2236 sec = local_sections[r_symndx];
2237 else
2238 {
2239 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2240 || (h->root.type
2241 == bfd_link_hash_defweak));
2242 sec = h->root.u.def.section;
2243 }
2244 if (sec != NULL && bfd_is_abs_section (sec))
2245 indx = 0;
2246 else if (sec == NULL || sec->owner == NULL)
2247 {
2248 bfd_set_error (bfd_error_bad_value);
2249 return false;
2250 }
2251 else
2252 {
2253 asection *osec;
2254
2255 osec = sec->output_section;
2256 indx = elf_section_data (osec)->dynindx;
2257
2258 /* FIXME: we really should be able to link non-pic
2259 shared libraries. */
2260 if (indx == 0)
2261 {
2262 BFD_FAIL ();
2263 (*_bfd_error_handler)
2264 (_("%s: probably compiled without -fPIC?"),
2265 bfd_get_filename (input_bfd));
2266 bfd_set_error (bfd_error_bad_value);
2267 return false;
2268 }
2269 }
2270
f65054f7
RH
2271 outrel.r_info
2272 = ELF64_R_INFO (indx,
2273 ELF64_R_TYPE_INFO (
2274 ELF64_R_TYPE_DATA (rel->r_info),
2275 r_type));
840a9995 2276 outrel.r_addend = relocation + rel->r_addend;
252b5132
RH
2277 }
2278 }
2279
2280 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2281 (((Elf64_External_Rela *)
2282 sreloc->contents)
2283 + sreloc->reloc_count));
2284 ++sreloc->reloc_count;
2285
2286 /* This reloc will be computed at runtime, so there's no
20278fa3
JJ
2287 need to do anything now. */
2288 continue;
252b5132
RH
2289 }
2290 break;
2291 }
2292 }
2293
2294 switch (r_type)
2295 {
2296 case R_SPARC_GOT10:
2297 case R_SPARC_GOT13:
2298 case R_SPARC_GOT22:
2299 /* Relocation is to the entry for this symbol in the global
2300 offset table. */
2301 if (sgot == NULL)
2302 {
2303 sgot = bfd_get_section_by_name (dynobj, ".got");
2304 BFD_ASSERT (sgot != NULL);
2305 }
2306
2307 if (h != NULL)
2308 {
2309 bfd_vma off = h->got.offset;
2310 BFD_ASSERT (off != (bfd_vma) -1);
2311
2312 if (! elf_hash_table (info)->dynamic_sections_created
2313 || (info->shared
2314 && (info->symbolic || h->dynindx == -1)
2315 && (h->elf_link_hash_flags
2316 & ELF_LINK_HASH_DEF_REGULAR)))
2317 {
2318 /* This is actually a static link, or it is a -Bsymbolic
2319 link and the symbol is defined locally, or the symbol
2320 was forced to be local because of a version file. We
2321 must initialize this entry in the global offset table.
2322 Since the offset must always be a multiple of 8, we
2323 use the least significant bit to record whether we
2324 have initialized it already.
2325
2326 When doing a dynamic link, we create a .rela.got
2327 relocation entry to initialize the value. This is
2328 done in the finish_dynamic_symbol routine. */
2329
2330 if ((off & 1) != 0)
2331 off &= ~1;
2332 else
2333 {
2334 bfd_put_64 (output_bfd, relocation,
2335 sgot->contents + off);
2336 h->got.offset |= 1;
2337 }
2338 }
2339 relocation = sgot->output_offset + off - got_base;
2340 }
2341 else
2342 {
2343 bfd_vma off;
2344
2345 BFD_ASSERT (local_got_offsets != NULL);
2346 off = local_got_offsets[r_symndx];
2347 BFD_ASSERT (off != (bfd_vma) -1);
2348
2349 /* The offset must always be a multiple of 8. We use
2350 the least significant bit to record whether we have
2351 already processed this entry. */
2352 if ((off & 1) != 0)
2353 off &= ~1;
2354 else
2355 {
252b5132
RH
2356 local_got_offsets[r_symndx] |= 1;
2357
2358 if (info->shared)
2359 {
2360 asection *srelgot;
2361 Elf_Internal_Rela outrel;
2362
ea5fbc67
GK
2363 /* The Solaris 2.7 64-bit linker adds the contents
2364 of the location to the value of the reloc.
2365 Note this is different behaviour to the
2366 32-bit linker, which both adds the contents
2367 and ignores the addend. So clear the location. */
2368 bfd_put_64 (output_bfd, 0, sgot->contents + off);
435b1e90 2369
252b5132
RH
2370 /* We need to generate a R_SPARC_RELATIVE reloc
2371 for the dynamic linker. */
2372 srelgot = bfd_get_section_by_name(dynobj, ".rela.got");
2373 BFD_ASSERT (srelgot != NULL);
2374
2375 outrel.r_offset = (sgot->output_section->vma
2376 + sgot->output_offset
2377 + off);
2378 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2379 outrel.r_addend = relocation;
2380 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2381 (((Elf64_External_Rela *)
2382 srelgot->contents)
2383 + srelgot->reloc_count));
2384 ++srelgot->reloc_count;
2385 }
ea5fbc67
GK
2386 else
2387 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
252b5132
RH
2388 }
2389 relocation = sgot->output_offset + off - got_base;
2390 }
2391 goto do_default;
2392
2393 case R_SPARC_WPLT30:
2394 case R_SPARC_PLT32:
2395 case R_SPARC_HIPLT22:
2396 case R_SPARC_LOPLT10:
2397 case R_SPARC_PCPLT32:
2398 case R_SPARC_PCPLT22:
2399 case R_SPARC_PCPLT10:
2400 case R_SPARC_PLT64:
2401 /* Relocation is to the entry for this symbol in the
2402 procedure linkage table. */
2403 BFD_ASSERT (h != NULL);
2404
2405 if (h->plt.offset == (bfd_vma) -1)
2406 {
2407 /* We didn't make a PLT entry for this symbol. This
2408 happens when statically linking PIC code, or when
2409 using -Bsymbolic. */
2410 goto do_default;
2411 }
2412
2413 if (splt == NULL)
2414 {
2415 splt = bfd_get_section_by_name (dynobj, ".plt");
2416 BFD_ASSERT (splt != NULL);
2417 }
2418
2419 relocation = (splt->output_section->vma
2420 + splt->output_offset
2421 + sparc64_elf_plt_entry_offset (h->plt.offset));
f7775d95
JJ
2422 if (r_type == R_SPARC_WPLT30)
2423 goto do_wplt30;
252b5132
RH
2424 goto do_default;
2425
2426 case R_SPARC_OLO10:
2427 {
2428 bfd_vma x;
2429
2430 relocation += rel->r_addend;
2431 relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
2432
2433 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2434 x = (x & ~0x1fff) | (relocation & 0x1fff);
2435 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2436
2437 r = bfd_check_overflow (howto->complain_on_overflow,
2438 howto->bitsize, howto->rightshift,
2439 bfd_arch_bits_per_address (input_bfd),
2440 relocation);
2441 }
2442 break;
2443
2444 case R_SPARC_WDISP16:
2445 {
2446 bfd_vma x;
2447
2448 relocation += rel->r_addend;
2449 /* Adjust for pc-relative-ness. */
2450 relocation -= (input_section->output_section->vma
2451 + input_section->output_offset);
2452 relocation -= rel->r_offset;
2453
2454 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2455 x = (x & ~0x303fff) | ((((relocation >> 2) & 0xc000) << 6)
2456 | ((relocation >> 2) & 0x3fff));
2457 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2458
2459 r = bfd_check_overflow (howto->complain_on_overflow,
2460 howto->bitsize, howto->rightshift,
2461 bfd_arch_bits_per_address (input_bfd),
2462 relocation);
2463 }
2464 break;
2465
2466 case R_SPARC_HIX22:
2467 {
2468 bfd_vma x;
2469
2470 relocation += rel->r_addend;
2471 relocation = relocation ^ MINUS_ONE;
2472
2473 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2474 x = (x & ~0x3fffff) | ((relocation >> 10) & 0x3fffff);
2475 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2476
2477 r = bfd_check_overflow (howto->complain_on_overflow,
2478 howto->bitsize, howto->rightshift,
2479 bfd_arch_bits_per_address (input_bfd),
2480 relocation);
2481 }
2482 break;
2483
2484 case R_SPARC_LOX10:
2485 {
2486 bfd_vma x;
2487
2488 relocation += rel->r_addend;
2489 relocation = (relocation & 0x3ff) | 0x1c00;
2490
2491 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2492 x = (x & ~0x1fff) | relocation;
2493 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2494
2495 r = bfd_reloc_ok;
2496 }
2497 break;
2498
f7775d95
JJ
2499 case R_SPARC_WDISP30:
2500 do_wplt30:
2501 if (SEC_DO_RELAX (input_section)
2502 && rel->r_offset + 4 < input_section->_raw_size)
2503 {
2504#define G0 0
2505#define O7 15
2506#define XCC (2 << 20)
2507#define COND(x) (((x)&0xf)<<25)
2508#define CONDA COND(0x8)
2509#define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
2510#define INSN_BA (F2(0,2) | CONDA)
2511#define INSN_OR F3(2, 0x2, 0)
2512#define INSN_NOP F2(0,4)
2513
2514 bfd_vma x, y;
2515
2516 /* If the instruction is a call with either:
2517 restore
2518 arithmetic instruction with rd == %o7
2519 where rs1 != %o7 and rs2 if it is register != %o7
2520 then we can optimize if the call destination is near
2521 by changing the call into a branch always. */
2522 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2523 y = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
2524 if ((x & OP(~0)) == OP(1) && (y & OP(~0)) == OP(2))
2525 {
2526 if (((y & OP3(~0)) == OP3(0x3d) /* restore */
2527 || ((y & OP3(0x28)) == 0 /* arithmetic */
2528 && (y & RD(~0)) == RD(O7)))
2529 && (y & RS1(~0)) != RS1(O7)
2530 && ((y & F3I(~0))
2531 || (y & RS2(~0)) != RS2(O7)))
2532 {
2533 bfd_vma reloc;
2534
2535 reloc = relocation + rel->r_addend - rel->r_offset;
2536 reloc -= (input_section->output_section->vma
2537 + input_section->output_offset);
2538 if (reloc & 3)
2539 goto do_default;
2540
2541 /* Ensure the branch fits into simm22. */
2542 if ((reloc & ~(bfd_vma)0x7fffff)
2543 && ((reloc | 0x7fffff) != MINUS_ONE))
2544 goto do_default;
2545 reloc >>= 2;
2546
2547 /* Check whether it fits into simm19. */
2548 if ((reloc & 0x3c0000) == 0
2549 || (reloc & 0x3c0000) == 0x3c0000)
2550 x = INSN_BPA | (reloc & 0x7ffff); /* ba,pt %xcc */
2551 else
2552 x = INSN_BA | (reloc & 0x3fffff); /* ba */
2553 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2554 r = bfd_reloc_ok;
2555 if (rel->r_offset >= 4
2556 && (y & (0xffffffff ^ RS1(~0)))
2557 == (INSN_OR | RD(O7) | RS2(G0)))
2558 {
2559 bfd_vma z;
2560 unsigned int reg;
2561
2562 z = bfd_get_32 (input_bfd,
2563 contents + rel->r_offset - 4);
2564 if ((z & (0xffffffff ^ RD(~0)))
2565 != (INSN_OR | RS1(O7) | RS2(G0)))
2566 break;
2567
2568 /* The sequence was
2569 or %o7, %g0, %rN
2570 call foo
2571 or %rN, %g0, %o7
2572
2573 If call foo was replaced with ba, replace
2574 or %rN, %g0, %o7 with nop. */
2575
2576 reg = (y & RS1(~0)) >> 14;
2577 if (reg != ((z & RD(~0)) >> 25)
2578 || reg == G0 || reg == O7)
2579 break;
2580
2581 bfd_put_32 (input_bfd, INSN_NOP,
2582 contents + rel->r_offset + 4);
2583 }
2584 break;
2585 }
2586 }
2587 }
2588 /* FALLTHROUGH */
2589
252b5132
RH
2590 default:
2591 do_default:
2592 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2593 contents, rel->r_offset,
2594 relocation, rel->r_addend);
2595 break;
2596 }
2597
2598 switch (r)
2599 {
2600 case bfd_reloc_ok:
2601 break;
2602
2603 default:
2604 case bfd_reloc_outofrange:
2605 abort ();
2606
2607 case bfd_reloc_overflow:
2608 {
2609 const char *name;
2610
2611 if (h != NULL)
2612 {
2613 if (h->root.type == bfd_link_hash_undefweak
2614 && howto->pc_relative)
2615 {
2616 /* Assume this is a call protected by other code that
2617 detect the symbol is undefined. If this is the case,
435b1e90 2618 we can safely ignore the overflow. If not, the
252b5132
RH
2619 program is hosed anyway, and a little warning isn't
2620 going to help. */
2621 break;
2622 }
435b1e90 2623
252b5132
RH
2624 name = h->root.root.string;
2625 }
2626 else
2627 {
2628 name = (bfd_elf_string_from_elf_section
2629 (input_bfd,
2630 symtab_hdr->sh_link,
2631 sym->st_name));
2632 if (name == NULL)
2633 return false;
2634 if (*name == '\0')
2635 name = bfd_section_name (input_bfd, sec);
2636 }
2637 if (! ((*info->callbacks->reloc_overflow)
2638 (info, name, howto->name, (bfd_vma) 0,
2639 input_bfd, input_section, rel->r_offset)))
2640 return false;
2641 }
2642 break;
2643 }
2644 }
2645
2646 return true;
2647}
2648
2649/* Finish up dynamic symbol handling. We set the contents of various
2650 dynamic sections here. */
2651
2652static boolean
2653sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
2654 bfd *output_bfd;
2655 struct bfd_link_info *info;
2656 struct elf_link_hash_entry *h;
2657 Elf_Internal_Sym *sym;
2658{
2659 bfd *dynobj;
2660
2661 dynobj = elf_hash_table (info)->dynobj;
2662
2663 if (h->plt.offset != (bfd_vma) -1)
2664 {
2665 asection *splt;
2666 asection *srela;
2667 Elf_Internal_Rela rela;
2668
435b1e90 2669 /* This symbol has an entry in the PLT. Set it up. */
252b5132
RH
2670
2671 BFD_ASSERT (h->dynindx != -1);
2672
2673 splt = bfd_get_section_by_name (dynobj, ".plt");
2674 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
2675 BFD_ASSERT (splt != NULL && srela != NULL);
2676
2677 /* Fill in the entry in the .rela.plt section. */
2678
2679 if (h->plt.offset < LARGE_PLT_THRESHOLD)
2680 {
2681 rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
2682 rela.r_addend = 0;
2683 }
2684 else
2685 {
2686 int max = splt->_raw_size / PLT_ENTRY_SIZE;
2687 rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
a11c78e7
RH
2688 rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
2689 -(splt->output_section->vma + splt->output_offset);
252b5132
RH
2690 }
2691 rela.r_offset += (splt->output_section->vma + splt->output_offset);
2692 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
2693
be040dbb
JJ
2694 /* Adjust for the first 4 reserved elements in the .plt section
2695 when setting the offset in the .rela.plt section.
2696 Sun forgot to read their own ABI and copied elf32-sparc behaviour,
2697 thus .plt[4] has corresponding .rela.plt[0] and so on. */
2698
252b5132
RH
2699 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2700 ((Elf64_External_Rela *) srela->contents
be040dbb 2701 + (h->plt.offset - 4)));
252b5132
RH
2702
2703 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2704 {
2705 /* Mark the symbol as undefined, rather than as defined in
2706 the .plt section. Leave the value alone. */
2707 sym->st_shndx = SHN_UNDEF;
8701c1bc
JJ
2708 /* If the symbol is weak, we do need to clear the value.
2709 Otherwise, the PLT entry would provide a definition for
2710 the symbol even if the symbol wasn't defined anywhere,
2711 and so the symbol would never be NULL. */
2712 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
2713 == 0)
2714 sym->st_value = 0;
252b5132
RH
2715 }
2716 }
2717
2718 if (h->got.offset != (bfd_vma) -1)
2719 {
2720 asection *sgot;
2721 asection *srela;
2722 Elf_Internal_Rela rela;
2723
2724 /* This symbol has an entry in the GOT. Set it up. */
2725
2726 sgot = bfd_get_section_by_name (dynobj, ".got");
2727 srela = bfd_get_section_by_name (dynobj, ".rela.got");
2728 BFD_ASSERT (sgot != NULL && srela != NULL);
2729
2730 rela.r_offset = (sgot->output_section->vma
2731 + sgot->output_offset
2732 + (h->got.offset &~ 1));
2733
2734 /* If this is a -Bsymbolic link, and the symbol is defined
2735 locally, we just want to emit a RELATIVE reloc. Likewise if
2736 the symbol was forced to be local because of a version file.
2737 The entry in the global offset table will already have been
2738 initialized in the relocate_section function. */
2739 if (info->shared
2740 && (info->symbolic || h->dynindx == -1)
2741 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2742 {
2743 asection *sec = h->root.u.def.section;
2744 rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2745 rela.r_addend = (h->root.u.def.value
2746 + sec->output_section->vma
2747 + sec->output_offset);
2748 }
2749 else
2750 {
2751 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
2752 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
2753 rela.r_addend = 0;
2754 }
2755
2756 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2757 ((Elf64_External_Rela *) srela->contents
2758 + srela->reloc_count));
2759 ++srela->reloc_count;
2760 }
2761
2762 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2763 {
2764 asection *s;
2765 Elf_Internal_Rela rela;
2766
2767 /* This symbols needs a copy reloc. Set it up. */
2768
2769 BFD_ASSERT (h->dynindx != -1);
2770
2771 s = bfd_get_section_by_name (h->root.u.def.section->owner,
2772 ".rela.bss");
2773 BFD_ASSERT (s != NULL);
2774
2775 rela.r_offset = (h->root.u.def.value
2776 + h->root.u.def.section->output_section->vma
2777 + h->root.u.def.section->output_offset);
2778 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
2779 rela.r_addend = 0;
2780 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2781 ((Elf64_External_Rela *) s->contents
2782 + s->reloc_count));
2783 ++s->reloc_count;
2784 }
2785
2786 /* Mark some specially defined symbols as absolute. */
2787 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2788 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2789 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2790 sym->st_shndx = SHN_ABS;
2791
2792 return true;
2793}
2794
2795/* Finish up the dynamic sections. */
2796
2797static boolean
2798sparc64_elf_finish_dynamic_sections (output_bfd, info)
2799 bfd *output_bfd;
2800 struct bfd_link_info *info;
2801{
2802 bfd *dynobj;
587ff49e 2803 int stt_regidx = -1;
252b5132
RH
2804 asection *sdyn;
2805 asection *sgot;
2806
2807 dynobj = elf_hash_table (info)->dynobj;
2808
2809 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2810
2811 if (elf_hash_table (info)->dynamic_sections_created)
2812 {
2813 asection *splt;
2814 Elf64_External_Dyn *dyncon, *dynconend;
2815
2816 splt = bfd_get_section_by_name (dynobj, ".plt");
2817 BFD_ASSERT (splt != NULL && sdyn != NULL);
2818
2819 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2820 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2821 for (; dyncon < dynconend; dyncon++)
2822 {
2823 Elf_Internal_Dyn dyn;
2824 const char *name;
2825 boolean size;
2826
2827 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2828
2829 switch (dyn.d_tag)
2830 {
2831 case DT_PLTGOT: name = ".plt"; size = false; break;
2832 case DT_PLTRELSZ: name = ".rela.plt"; size = true; break;
2833 case DT_JMPREL: name = ".rela.plt"; size = false; break;
587ff49e
RH
2834 case DT_SPARC_REGISTER:
2835 if (stt_regidx == -1)
2836 {
2837 stt_regidx =
2838 _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
2839 if (stt_regidx == -1)
2840 return false;
2841 }
2842 dyn.d_un.d_val = stt_regidx++;
2843 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2844 /* fallthrough */
252b5132
RH
2845 default: name = NULL; size = false; break;
2846 }
2847
2848 if (name != NULL)
2849 {
2850 asection *s;
2851
2852 s = bfd_get_section_by_name (output_bfd, name);
2853 if (s == NULL)
2854 dyn.d_un.d_val = 0;
2855 else
2856 {
2857 if (! size)
2858 dyn.d_un.d_ptr = s->vma;
2859 else
2860 {
2861 if (s->_cooked_size != 0)
2862 dyn.d_un.d_val = s->_cooked_size;
2863 else
2864 dyn.d_un.d_val = s->_raw_size;
2865 }
2866 }
2867 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2868 }
2869 }
2870
2871 /* Initialize the contents of the .plt section. */
2872 if (splt->_raw_size > 0)
2873 {
2874 sparc64_elf_build_plt(output_bfd, splt->contents,
2875 splt->_raw_size / PLT_ENTRY_SIZE);
2876 }
2877
2878 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
2879 PLT_ENTRY_SIZE;
2880 }
2881
2882 /* Set the first entry in the global offset table to the address of
2883 the dynamic section. */
2884 sgot = bfd_get_section_by_name (dynobj, ".got");
2885 BFD_ASSERT (sgot != NULL);
2886 if (sgot->_raw_size > 0)
2887 {
2888 if (sdyn == NULL)
2889 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
2890 else
2891 bfd_put_64 (output_bfd,
2892 sdyn->output_section->vma + sdyn->output_offset,
2893 sgot->contents);
2894 }
2895
2896 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
2897
252b5132
RH
2898 return true;
2899}
db6751f2
JJ
2900
2901static enum elf_reloc_type_class
2902sparc64_elf_reloc_type_class (type)
2903 int type;
2904{
2905 switch (type)
2906 {
2907 case R_SPARC_RELATIVE:
2908 return reloc_class_relative;
2909 case R_SPARC_JMP_SLOT:
2910 return reloc_class_plt;
2911 case R_SPARC_COPY:
2912 return reloc_class_copy;
2913 default:
2914 return reloc_class_normal;
2915 }
2916}
252b5132 2917\f
435b1e90 2918/* Functions for dealing with the e_flags field. */
252b5132 2919
069f40e5
JJ
2920/* Copy backend specific data from one object module to another */
2921static boolean
2922sparc64_elf_copy_private_bfd_data (ibfd, obfd)
2923 bfd *ibfd, *obfd;
2924{
2925 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2926 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2927 return true;
2928
2929 BFD_ASSERT (!elf_flags_init (obfd)
2930 || (elf_elfheader (obfd)->e_flags
2931 == elf_elfheader (ibfd)->e_flags));
2932
2933 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
2934 elf_flags_init (obfd) = true;
2935 return true;
2936}
2937
252b5132
RH
2938/* Merge backend specific data from an object file to the output
2939 object file when linking. */
2940
2941static boolean
2942sparc64_elf_merge_private_bfd_data (ibfd, obfd)
2943 bfd *ibfd;
2944 bfd *obfd;
2945{
2946 boolean error;
2947 flagword new_flags, old_flags;
2948 int new_mm, old_mm;
2949
2950 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2951 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2952 return true;
2953
2954 new_flags = elf_elfheader (ibfd)->e_flags;
2955 old_flags = elf_elfheader (obfd)->e_flags;
2956
2957 if (!elf_flags_init (obfd)) /* First call, no flags set */
2958 {
2959 elf_flags_init (obfd) = true;
2960 elf_elfheader (obfd)->e_flags = new_flags;
2961 }
435b1e90 2962
252b5132
RH
2963 else if (new_flags == old_flags) /* Compatible flags are ok */
2964 ;
435b1e90 2965
252b5132
RH
2966 else /* Incompatible flags */
2967 {
2968 error = false;
19f7b010
JJ
2969
2970#define EF_SPARC_ISA_EXTENSIONS \
2971 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
2972
37fb6db1
ILT
2973 if ((ibfd->flags & DYNAMIC) != 0)
2974 {
2975 /* We don't want dynamic objects memory ordering and
2976 architecture to have any role. That's what dynamic linker
2977 should do. */
19f7b010 2978 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
6c08d697 2979 new_flags |= (old_flags
19f7b010 2980 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
37fb6db1
ILT
2981 }
2982 else
2983 {
2984 /* Choose the highest architecture requirements. */
19f7b010
JJ
2985 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
2986 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
2987 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
2988 && (old_flags & EF_SPARC_HAL_R1))
37fb6db1
ILT
2989 {
2990 error = true;
2991 (*_bfd_error_handler)
2992 (_("%s: linking UltraSPARC specific with HAL specific code"),
2993 bfd_get_filename (ibfd));
2994 }
2995 /* Choose the most restrictive memory ordering. */
2996 old_mm = (old_flags & EF_SPARCV9_MM);
2997 new_mm = (new_flags & EF_SPARCV9_MM);
2998 old_flags &= ~EF_SPARCV9_MM;
2999 new_flags &= ~EF_SPARCV9_MM;
3000 if (new_mm < old_mm)
3001 old_mm = new_mm;
3002 old_flags |= old_mm;
3003 new_flags |= old_mm;
3004 }
252b5132
RH
3005
3006 /* Warn about any other mismatches */
3007 if (new_flags != old_flags)
3008 {
3009 error = true;
3010 (*_bfd_error_handler)
3011 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
3012 bfd_get_filename (ibfd), (long)new_flags, (long)old_flags);
3013 }
3014
3015 elf_elfheader (obfd)->e_flags = old_flags;
3016
3017 if (error)
3018 {
3019 bfd_set_error (bfd_error_bad_value);
3020 return false;
3021 }
3022 }
3023 return true;
3024}
587ff49e
RH
3025\f
3026/* Print a STT_REGISTER symbol to file FILE. */
252b5132 3027
587ff49e
RH
3028static const char *
3029sparc64_elf_print_symbol_all (abfd, filep, symbol)
6c08d697 3030 bfd *abfd ATTRIBUTE_UNUSED;
587ff49e
RH
3031 PTR filep;
3032 asymbol *symbol;
3033{
3034 FILE *file = (FILE *) filep;
3035 int reg, type;
435b1e90 3036
587ff49e
RH
3037 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
3038 != STT_REGISTER)
3039 return NULL;
3040
3041 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
3042 type = symbol->flags;
3043 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
3044 ((type & BSF_LOCAL)
3045 ? (type & BSF_GLOBAL) ? '!' : 'l'
99c79b2e
AJ
3046 : (type & BSF_GLOBAL) ? 'g' : ' '),
3047 (type & BSF_WEAK) ? 'w' : ' ');
587ff49e
RH
3048 if (symbol->name == NULL || symbol->name [0] == '\0')
3049 return "#scratch";
3050 else
3051 return symbol->name;
3052}
252b5132
RH
3053\f
3054/* Set the right machine number for a SPARC64 ELF file. */
3055
3056static boolean
3057sparc64_elf_object_p (abfd)
3058 bfd *abfd;
3059{
3060 unsigned long mach = bfd_mach_sparc_v9;
19f7b010
JJ
3061
3062 if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US3)
3063 mach = bfd_mach_sparc_v9b;
3064 else if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
252b5132
RH
3065 mach = bfd_mach_sparc_v9a;
3066 return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
3067}
3068
f65054f7
RH
3069/* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3070 standard ELF, because R_SPARC_OLO10 has secondary addend in
3071 ELF64_R_TYPE_DATA field. This structure is used to redirect the
3072 relocation handling routines. */
3073
3074const struct elf_size_info sparc64_elf_size_info =
3075{
3076 sizeof (Elf64_External_Ehdr),
3077 sizeof (Elf64_External_Phdr),
3078 sizeof (Elf64_External_Shdr),
3079 sizeof (Elf64_External_Rel),
3080 sizeof (Elf64_External_Rela),
3081 sizeof (Elf64_External_Sym),
3082 sizeof (Elf64_External_Dyn),
3083 sizeof (Elf_External_Note),
a11c78e7 3084 4, /* hash-table entry size */
f65054f7
RH
3085 /* internal relocations per external relocations.
3086 For link purposes we use just 1 internal per
3087 1 external, for assembly and slurp symbol table
435b1e90 3088 we use 2. */
f65054f7
RH
3089 1,
3090 64, /* arch_size */
3091 8, /* file_align */
3092 ELFCLASS64,
3093 EV_CURRENT,
3094 bfd_elf64_write_out_phdrs,
3095 bfd_elf64_write_shdrs_and_ehdr,
3096 sparc64_elf_write_relocs,
3097 bfd_elf64_swap_symbol_out,
3098 sparc64_elf_slurp_reloc_table,
3099 bfd_elf64_slurp_symbol_table,
3100 bfd_elf64_swap_dyn_in,
3101 bfd_elf64_swap_dyn_out,
3102 NULL,
3103 NULL,
3104 NULL,
3105 NULL
3106};
3107
252b5132
RH
3108#define TARGET_BIG_SYM bfd_elf64_sparc_vec
3109#define TARGET_BIG_NAME "elf64-sparc"
3110#define ELF_ARCH bfd_arch_sparc
3111#define ELF_MAXPAGESIZE 0x100000
3112
3113/* This is the official ABI value. */
3114#define ELF_MACHINE_CODE EM_SPARCV9
3115
3116/* This is the value that we used before the ABI was released. */
3117#define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3118
587ff49e
RH
3119#define bfd_elf64_bfd_link_hash_table_create \
3120 sparc64_elf_bfd_link_hash_table_create
435b1e90 3121
252b5132
RH
3122#define elf_info_to_howto \
3123 sparc64_elf_info_to_howto
f65054f7
RH
3124#define bfd_elf64_get_reloc_upper_bound \
3125 sparc64_elf_get_reloc_upper_bound
3126#define bfd_elf64_get_dynamic_reloc_upper_bound \
3127 sparc64_elf_get_dynamic_reloc_upper_bound
3128#define bfd_elf64_canonicalize_dynamic_reloc \
3129 sparc64_elf_canonicalize_dynamic_reloc
252b5132
RH
3130#define bfd_elf64_bfd_reloc_type_lookup \
3131 sparc64_elf_reloc_type_lookup
f7775d95
JJ
3132#define bfd_elf64_bfd_relax_section \
3133 sparc64_elf_relax_section
252b5132
RH
3134
3135#define elf_backend_create_dynamic_sections \
3136 _bfd_elf_create_dynamic_sections
587ff49e
RH
3137#define elf_backend_add_symbol_hook \
3138 sparc64_elf_add_symbol_hook
3139#define elf_backend_get_symbol_type \
3140 sparc64_elf_get_symbol_type
3141#define elf_backend_symbol_processing \
3142 sparc64_elf_symbol_processing
252b5132
RH
3143#define elf_backend_check_relocs \
3144 sparc64_elf_check_relocs
3145#define elf_backend_adjust_dynamic_symbol \
3146 sparc64_elf_adjust_dynamic_symbol
3147#define elf_backend_size_dynamic_sections \
3148 sparc64_elf_size_dynamic_sections
3149#define elf_backend_relocate_section \
3150 sparc64_elf_relocate_section
3151#define elf_backend_finish_dynamic_symbol \
3152 sparc64_elf_finish_dynamic_symbol
3153#define elf_backend_finish_dynamic_sections \
3154 sparc64_elf_finish_dynamic_sections
587ff49e
RH
3155#define elf_backend_print_symbol_all \
3156 sparc64_elf_print_symbol_all
3157#define elf_backend_output_arch_syms \
3158 sparc64_elf_output_arch_syms
069f40e5
JJ
3159#define bfd_elf64_bfd_copy_private_bfd_data \
3160 sparc64_elf_copy_private_bfd_data
252b5132
RH
3161#define bfd_elf64_bfd_merge_private_bfd_data \
3162 sparc64_elf_merge_private_bfd_data
3163
f65054f7
RH
3164#define elf_backend_size_info \
3165 sparc64_elf_size_info
252b5132
RH
3166#define elf_backend_object_p \
3167 sparc64_elf_object_p
db6751f2
JJ
3168#define elf_backend_reloc_type_class \
3169 sparc64_elf_reloc_type_class
252b5132
RH
3170
3171#define elf_backend_want_got_plt 0
3172#define elf_backend_plt_readonly 0
3173#define elf_backend_want_plt_sym 1
3174
3175/* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3176#define elf_backend_plt_alignment 8
3177
3178#define elf_backend_got_header_size 8
3179#define elf_backend_plt_header_size PLT_HEADER_SIZE
3180
3181#include "elf64-target.h"
This page took 0.218741 seconds and 4 git commands to generate.