bfd/
[deliverable/binutils-gdb.git] / bfd / elflink.c
CommitLineData
252b5132 1/* ELF linking support for BFD.
64d03ab5
AM
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006 Free Software Foundation, Inc.
252b5132 4
8fdd7217 5 This file is part of BFD, the Binary File Descriptor library.
252b5132 6
8fdd7217
NC
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
252b5132 11
8fdd7217
NC
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
252b5132 16
8fdd7217
NC
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
3e110533 19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
252b5132
RH
20
21#include "bfd.h"
22#include "sysdep.h"
23#include "bfdlink.h"
24#include "libbfd.h"
25#define ARCH_SIZE 0
26#include "elf-bfd.h"
4ad4eba5 27#include "safe-ctype.h"
ccf2f652 28#include "libiberty.h"
66eb6687 29#include "objalloc.h"
252b5132 30
d98685ac
AM
31/* Define a symbol in a dynamic linkage section. */
32
33struct elf_link_hash_entry *
34_bfd_elf_define_linkage_sym (bfd *abfd,
35 struct bfd_link_info *info,
36 asection *sec,
37 const char *name)
38{
39 struct elf_link_hash_entry *h;
40 struct bfd_link_hash_entry *bh;
ccabcbe5 41 const struct elf_backend_data *bed;
d98685ac
AM
42
43 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
44 if (h != NULL)
45 {
46 /* Zap symbol defined in an as-needed lib that wasn't linked.
47 This is a symptom of a larger problem: Absolute symbols
48 defined in shared libraries can't be overridden, because we
49 lose the link to the bfd which is via the symbol section. */
50 h->root.type = bfd_link_hash_new;
51 }
52
53 bh = &h->root;
54 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
55 sec, 0, NULL, FALSE,
56 get_elf_backend_data (abfd)->collect,
57 &bh))
58 return NULL;
59 h = (struct elf_link_hash_entry *) bh;
60 h->def_regular = 1;
61 h->type = STT_OBJECT;
62 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
63
ccabcbe5
AM
64 bed = get_elf_backend_data (abfd);
65 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
d98685ac
AM
66 return h;
67}
68
b34976b6 69bfd_boolean
268b6b39 70_bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
252b5132
RH
71{
72 flagword flags;
aad5d350 73 asection *s;
252b5132 74 struct elf_link_hash_entry *h;
9c5bfbb7 75 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
252b5132
RH
76 int ptralign;
77
78 /* This function may be called more than once. */
aad5d350
AM
79 s = bfd_get_section_by_name (abfd, ".got");
80 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
b34976b6 81 return TRUE;
252b5132
RH
82
83 switch (bed->s->arch_size)
84 {
bb0deeff
AO
85 case 32:
86 ptralign = 2;
87 break;
88
89 case 64:
90 ptralign = 3;
91 break;
92
93 default:
94 bfd_set_error (bfd_error_bad_value);
b34976b6 95 return FALSE;
252b5132
RH
96 }
97
e5a52504 98 flags = bed->dynamic_sec_flags;
252b5132 99
3496cb2a 100 s = bfd_make_section_with_flags (abfd, ".got", flags);
252b5132 101 if (s == NULL
252b5132 102 || !bfd_set_section_alignment (abfd, s, ptralign))
b34976b6 103 return FALSE;
252b5132
RH
104
105 if (bed->want_got_plt)
106 {
3496cb2a 107 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
252b5132 108 if (s == NULL
252b5132 109 || !bfd_set_section_alignment (abfd, s, ptralign))
b34976b6 110 return FALSE;
252b5132
RH
111 }
112
2517a57f
AM
113 if (bed->want_got_sym)
114 {
115 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
116 (or .got.plt) section. We don't do this in the linker script
117 because we don't want to define the symbol if we are not creating
118 a global offset table. */
d98685ac 119 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_GLOBAL_OFFSET_TABLE_");
2517a57f 120 elf_hash_table (info)->hgot = h;
d98685ac
AM
121 if (h == NULL)
122 return FALSE;
2517a57f 123 }
252b5132
RH
124
125 /* The first bit of the global offset table is the header. */
3b36f7e6 126 s->size += bed->got_header_size;
252b5132 127
b34976b6 128 return TRUE;
252b5132
RH
129}
130\f
7e9f0867
AM
131/* Create a strtab to hold the dynamic symbol names. */
132static bfd_boolean
133_bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
134{
135 struct elf_link_hash_table *hash_table;
136
137 hash_table = elf_hash_table (info);
138 if (hash_table->dynobj == NULL)
139 hash_table->dynobj = abfd;
140
141 if (hash_table->dynstr == NULL)
142 {
143 hash_table->dynstr = _bfd_elf_strtab_init ();
144 if (hash_table->dynstr == NULL)
145 return FALSE;
146 }
147 return TRUE;
148}
149
45d6a902
AM
150/* Create some sections which will be filled in with dynamic linking
151 information. ABFD is an input file which requires dynamic sections
152 to be created. The dynamic sections take up virtual memory space
153 when the final executable is run, so we need to create them before
154 addresses are assigned to the output sections. We work out the
155 actual contents and size of these sections later. */
252b5132 156
b34976b6 157bfd_boolean
268b6b39 158_bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
252b5132 159{
45d6a902
AM
160 flagword flags;
161 register asection *s;
9c5bfbb7 162 const struct elf_backend_data *bed;
252b5132 163
0eddce27 164 if (! is_elf_hash_table (info->hash))
45d6a902
AM
165 return FALSE;
166
167 if (elf_hash_table (info)->dynamic_sections_created)
168 return TRUE;
169
7e9f0867
AM
170 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
171 return FALSE;
45d6a902 172
7e9f0867 173 abfd = elf_hash_table (info)->dynobj;
e5a52504
MM
174 bed = get_elf_backend_data (abfd);
175
176 flags = bed->dynamic_sec_flags;
45d6a902
AM
177
178 /* A dynamically linked executable has a .interp section, but a
179 shared library does not. */
36af4a4e 180 if (info->executable)
252b5132 181 {
3496cb2a
L
182 s = bfd_make_section_with_flags (abfd, ".interp",
183 flags | SEC_READONLY);
184 if (s == NULL)
45d6a902
AM
185 return FALSE;
186 }
bb0deeff 187
0eddce27 188 if (! info->traditional_format)
45d6a902 189 {
3496cb2a
L
190 s = bfd_make_section_with_flags (abfd, ".eh_frame_hdr",
191 flags | SEC_READONLY);
45d6a902 192 if (s == NULL
45d6a902
AM
193 || ! bfd_set_section_alignment (abfd, s, 2))
194 return FALSE;
195 elf_hash_table (info)->eh_info.hdr_sec = s;
196 }
bb0deeff 197
45d6a902
AM
198 /* Create sections to hold version informations. These are removed
199 if they are not needed. */
3496cb2a
L
200 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
201 flags | SEC_READONLY);
45d6a902 202 if (s == NULL
45d6a902
AM
203 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
204 return FALSE;
205
3496cb2a
L
206 s = bfd_make_section_with_flags (abfd, ".gnu.version",
207 flags | SEC_READONLY);
45d6a902 208 if (s == NULL
45d6a902
AM
209 || ! bfd_set_section_alignment (abfd, s, 1))
210 return FALSE;
211
3496cb2a
L
212 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
213 flags | SEC_READONLY);
45d6a902 214 if (s == NULL
45d6a902
AM
215 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
216 return FALSE;
217
3496cb2a
L
218 s = bfd_make_section_with_flags (abfd, ".dynsym",
219 flags | SEC_READONLY);
45d6a902 220 if (s == NULL
45d6a902
AM
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
222 return FALSE;
223
3496cb2a
L
224 s = bfd_make_section_with_flags (abfd, ".dynstr",
225 flags | SEC_READONLY);
226 if (s == NULL)
45d6a902
AM
227 return FALSE;
228
3496cb2a 229 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
45d6a902 230 if (s == NULL
45d6a902
AM
231 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
232 return FALSE;
233
234 /* The special symbol _DYNAMIC is always set to the start of the
77cfaee6
AM
235 .dynamic section. We could set _DYNAMIC in a linker script, but we
236 only want to define it if we are, in fact, creating a .dynamic
237 section. We don't want to define it if there is no .dynamic
238 section, since on some ELF platforms the start up code examines it
239 to decide how to initialize the process. */
d98685ac 240 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
45d6a902
AM
241 return FALSE;
242
fdc90cb4
JJ
243 if (info->emit_hash)
244 {
245 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
246 if (s == NULL
247 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
248 return FALSE;
249 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
250 }
251
252 if (info->emit_gnu_hash)
253 {
254 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
255 flags | SEC_READONLY);
256 if (s == NULL
257 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
258 return FALSE;
259 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
260 4 32-bit words followed by variable count of 64-bit words, then
261 variable count of 32-bit words. */
262 if (bed->s->arch_size == 64)
263 elf_section_data (s)->this_hdr.sh_entsize = 0;
264 else
265 elf_section_data (s)->this_hdr.sh_entsize = 4;
266 }
45d6a902
AM
267
268 /* Let the backend create the rest of the sections. This lets the
269 backend set the right flags. The backend will normally create
270 the .got and .plt sections. */
271 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
272 return FALSE;
273
274 elf_hash_table (info)->dynamic_sections_created = TRUE;
275
276 return TRUE;
277}
278
279/* Create dynamic sections when linking against a dynamic object. */
280
281bfd_boolean
268b6b39 282_bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
45d6a902
AM
283{
284 flagword flags, pltflags;
7325306f 285 struct elf_link_hash_entry *h;
45d6a902 286 asection *s;
9c5bfbb7 287 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
45d6a902 288
252b5132
RH
289 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
290 .rel[a].bss sections. */
e5a52504 291 flags = bed->dynamic_sec_flags;
252b5132
RH
292
293 pltflags = flags;
252b5132 294 if (bed->plt_not_loaded)
6df4d94c
MM
295 /* We do not clear SEC_ALLOC here because we still want the OS to
296 allocate space for the section; it's just that there's nothing
297 to read in from the object file. */
5d1634d7 298 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
6df4d94c
MM
299 else
300 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
252b5132
RH
301 if (bed->plt_readonly)
302 pltflags |= SEC_READONLY;
303
3496cb2a 304 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
252b5132 305 if (s == NULL
252b5132 306 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
b34976b6 307 return FALSE;
252b5132 308
d98685ac
AM
309 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
310 .plt section. */
7325306f
RS
311 if (bed->want_plt_sym)
312 {
313 h = _bfd_elf_define_linkage_sym (abfd, info, s,
314 "_PROCEDURE_LINKAGE_TABLE_");
315 elf_hash_table (info)->hplt = h;
316 if (h == NULL)
317 return FALSE;
318 }
252b5132 319
3496cb2a
L
320 s = bfd_make_section_with_flags (abfd,
321 (bed->default_use_rela_p
322 ? ".rela.plt" : ".rel.plt"),
323 flags | SEC_READONLY);
252b5132 324 if (s == NULL
45d6a902 325 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
b34976b6 326 return FALSE;
252b5132
RH
327
328 if (! _bfd_elf_create_got_section (abfd, info))
b34976b6 329 return FALSE;
252b5132 330
3018b441
RH
331 if (bed->want_dynbss)
332 {
333 /* The .dynbss section is a place to put symbols which are defined
334 by dynamic objects, are referenced by regular objects, and are
335 not functions. We must allocate space for them in the process
336 image and use a R_*_COPY reloc to tell the dynamic linker to
337 initialize them at run time. The linker script puts the .dynbss
338 section into the .bss section of the final image. */
3496cb2a
L
339 s = bfd_make_section_with_flags (abfd, ".dynbss",
340 (SEC_ALLOC
341 | SEC_LINKER_CREATED));
342 if (s == NULL)
b34976b6 343 return FALSE;
252b5132 344
3018b441 345 /* The .rel[a].bss section holds copy relocs. This section is not
77cfaee6
AM
346 normally needed. We need to create it here, though, so that the
347 linker will map it to an output section. We can't just create it
348 only if we need it, because we will not know whether we need it
349 until we have seen all the input files, and the first time the
350 main linker code calls BFD after examining all the input files
351 (size_dynamic_sections) the input sections have already been
352 mapped to the output sections. If the section turns out not to
353 be needed, we can discard it later. We will never need this
354 section when generating a shared object, since they do not use
355 copy relocs. */
3018b441
RH
356 if (! info->shared)
357 {
3496cb2a
L
358 s = bfd_make_section_with_flags (abfd,
359 (bed->default_use_rela_p
360 ? ".rela.bss" : ".rel.bss"),
361 flags | SEC_READONLY);
3018b441 362 if (s == NULL
45d6a902 363 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
b34976b6 364 return FALSE;
3018b441 365 }
252b5132
RH
366 }
367
b34976b6 368 return TRUE;
252b5132
RH
369}
370\f
252b5132
RH
371/* Record a new dynamic symbol. We record the dynamic symbols as we
372 read the input files, since we need to have a list of all of them
373 before we can determine the final sizes of the output sections.
374 Note that we may actually call this function even though we are not
375 going to output any dynamic symbols; in some cases we know that a
376 symbol should be in the dynamic symbol table, but only if there is
377 one. */
378
b34976b6 379bfd_boolean
c152c796
AM
380bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
381 struct elf_link_hash_entry *h)
252b5132
RH
382{
383 if (h->dynindx == -1)
384 {
2b0f7ef9 385 struct elf_strtab_hash *dynstr;
68b6ddd0 386 char *p;
252b5132 387 const char *name;
252b5132
RH
388 bfd_size_type indx;
389
7a13edea
NC
390 /* XXX: The ABI draft says the linker must turn hidden and
391 internal symbols into STB_LOCAL symbols when producing the
392 DSO. However, if ld.so honors st_other in the dynamic table,
393 this would not be necessary. */
394 switch (ELF_ST_VISIBILITY (h->other))
395 {
396 case STV_INTERNAL:
397 case STV_HIDDEN:
9d6eee78
L
398 if (h->root.type != bfd_link_hash_undefined
399 && h->root.type != bfd_link_hash_undefweak)
38048eb9 400 {
f5385ebf 401 h->forced_local = 1;
67687978
PB
402 if (!elf_hash_table (info)->is_relocatable_executable)
403 return TRUE;
7a13edea 404 }
0444bdd4 405
7a13edea
NC
406 default:
407 break;
408 }
409
252b5132
RH
410 h->dynindx = elf_hash_table (info)->dynsymcount;
411 ++elf_hash_table (info)->dynsymcount;
412
413 dynstr = elf_hash_table (info)->dynstr;
414 if (dynstr == NULL)
415 {
416 /* Create a strtab to hold the dynamic symbol names. */
2b0f7ef9 417 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
252b5132 418 if (dynstr == NULL)
b34976b6 419 return FALSE;
252b5132
RH
420 }
421
422 /* We don't put any version information in the dynamic string
aad5d350 423 table. */
252b5132
RH
424 name = h->root.root.string;
425 p = strchr (name, ELF_VER_CHR);
68b6ddd0
AM
426 if (p != NULL)
427 /* We know that the p points into writable memory. In fact,
428 there are only a few symbols that have read-only names, being
429 those like _GLOBAL_OFFSET_TABLE_ that are created specially
430 by the backends. Most symbols will have names pointing into
431 an ELF string table read from a file, or to objalloc memory. */
432 *p = 0;
433
434 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
435
436 if (p != NULL)
437 *p = ELF_VER_CHR;
252b5132
RH
438
439 if (indx == (bfd_size_type) -1)
b34976b6 440 return FALSE;
252b5132
RH
441 h->dynstr_index = indx;
442 }
443
b34976b6 444 return TRUE;
252b5132 445}
45d6a902 446\f
55255dae
L
447/* Mark a symbol dynamic. */
448
449void
450bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
451 struct elf_link_hash_entry *h)
452{
453 struct bfd_elf_dynamic_list *d = info->dynamic;
454
455 if (d == NULL || info->relocatable)
456 return;
457
458 if ((*d->match) (&d->head, NULL, h->root.root.string))
459 h->dynamic = 1;
460}
461
45d6a902
AM
462/* Record an assignment to a symbol made by a linker script. We need
463 this in case some dynamic object refers to this symbol. */
464
465bfd_boolean
fe21a8fc
L
466bfd_elf_record_link_assignment (bfd *output_bfd,
467 struct bfd_link_info *info,
268b6b39 468 const char *name,
fe21a8fc
L
469 bfd_boolean provide,
470 bfd_boolean hidden)
45d6a902
AM
471{
472 struct elf_link_hash_entry *h;
4ea42fb7 473 struct elf_link_hash_table *htab;
45d6a902 474
0eddce27 475 if (!is_elf_hash_table (info->hash))
45d6a902
AM
476 return TRUE;
477
4ea42fb7
AM
478 htab = elf_hash_table (info);
479 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
45d6a902 480 if (h == NULL)
4ea42fb7 481 return provide;
45d6a902 482
02bb6eae
AO
483 /* Since we're defining the symbol, don't let it seem to have not
484 been defined. record_dynamic_symbol and size_dynamic_sections
77cfaee6 485 may depend on this. */
02bb6eae
AO
486 if (h->root.type == bfd_link_hash_undefweak
487 || h->root.type == bfd_link_hash_undefined)
77cfaee6 488 {
4ea42fb7 489 h->root.type = bfd_link_hash_new;
77cfaee6
AM
490 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
491 bfd_link_repair_undef_list (&htab->root);
77cfaee6 492 }
02bb6eae 493
45d6a902 494 if (h->root.type == bfd_link_hash_new)
55255dae
L
495 {
496 bfd_elf_link_mark_dynamic_symbol (info, h);
497 h->non_elf = 0;
498 }
45d6a902
AM
499
500 /* If this symbol is being provided by the linker script, and it is
501 currently defined by a dynamic object, but not by a regular
502 object, then mark it as undefined so that the generic linker will
503 force the correct value. */
504 if (provide
f5385ebf
AM
505 && h->def_dynamic
506 && !h->def_regular)
45d6a902
AM
507 h->root.type = bfd_link_hash_undefined;
508
509 /* If this symbol is not being provided by the linker script, and it is
510 currently defined by a dynamic object, but not by a regular object,
511 then clear out any version information because the symbol will not be
512 associated with the dynamic object any more. */
513 if (!provide
f5385ebf
AM
514 && h->def_dynamic
515 && !h->def_regular)
45d6a902
AM
516 h->verinfo.verdef = NULL;
517
f5385ebf 518 h->def_regular = 1;
45d6a902 519
fe21a8fc
L
520 if (provide && hidden)
521 {
522 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
523
524 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
525 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
526 }
527
6fa3860b
PB
528 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
529 and executables. */
530 if (!info->relocatable
531 && h->dynindx != -1
532 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
533 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
534 h->forced_local = 1;
535
f5385ebf
AM
536 if ((h->def_dynamic
537 || h->ref_dynamic
67687978
PB
538 || info->shared
539 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
45d6a902
AM
540 && h->dynindx == -1)
541 {
c152c796 542 if (! bfd_elf_link_record_dynamic_symbol (info, h))
45d6a902
AM
543 return FALSE;
544
545 /* If this is a weak defined symbol, and we know a corresponding
546 real symbol from the same dynamic object, make sure the real
547 symbol is also made into a dynamic symbol. */
f6e332e6
AM
548 if (h->u.weakdef != NULL
549 && h->u.weakdef->dynindx == -1)
45d6a902 550 {
f6e332e6 551 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
45d6a902
AM
552 return FALSE;
553 }
554 }
555
556 return TRUE;
557}
42751cf3 558
8c58d23b
AM
559/* Record a new local dynamic symbol. Returns 0 on failure, 1 on
560 success, and 2 on a failure caused by attempting to record a symbol
561 in a discarded section, eg. a discarded link-once section symbol. */
562
563int
c152c796
AM
564bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
565 bfd *input_bfd,
566 long input_indx)
8c58d23b
AM
567{
568 bfd_size_type amt;
569 struct elf_link_local_dynamic_entry *entry;
570 struct elf_link_hash_table *eht;
571 struct elf_strtab_hash *dynstr;
572 unsigned long dynstr_index;
573 char *name;
574 Elf_External_Sym_Shndx eshndx;
575 char esym[sizeof (Elf64_External_Sym)];
576
0eddce27 577 if (! is_elf_hash_table (info->hash))
8c58d23b
AM
578 return 0;
579
580 /* See if the entry exists already. */
581 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
582 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
583 return 1;
584
585 amt = sizeof (*entry);
268b6b39 586 entry = bfd_alloc (input_bfd, amt);
8c58d23b
AM
587 if (entry == NULL)
588 return 0;
589
590 /* Go find the symbol, so that we can find it's name. */
591 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
268b6b39 592 1, input_indx, &entry->isym, esym, &eshndx))
8c58d23b
AM
593 {
594 bfd_release (input_bfd, entry);
595 return 0;
596 }
597
598 if (entry->isym.st_shndx != SHN_UNDEF
599 && (entry->isym.st_shndx < SHN_LORESERVE
600 || entry->isym.st_shndx > SHN_HIRESERVE))
601 {
602 asection *s;
603
604 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
605 if (s == NULL || bfd_is_abs_section (s->output_section))
606 {
607 /* We can still bfd_release here as nothing has done another
608 bfd_alloc. We can't do this later in this function. */
609 bfd_release (input_bfd, entry);
610 return 2;
611 }
612 }
613
614 name = (bfd_elf_string_from_elf_section
615 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
616 entry->isym.st_name));
617
618 dynstr = elf_hash_table (info)->dynstr;
619 if (dynstr == NULL)
620 {
621 /* Create a strtab to hold the dynamic symbol names. */
622 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
623 if (dynstr == NULL)
624 return 0;
625 }
626
b34976b6 627 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
8c58d23b
AM
628 if (dynstr_index == (unsigned long) -1)
629 return 0;
630 entry->isym.st_name = dynstr_index;
631
632 eht = elf_hash_table (info);
633
634 entry->next = eht->dynlocal;
635 eht->dynlocal = entry;
636 entry->input_bfd = input_bfd;
637 entry->input_indx = input_indx;
638 eht->dynsymcount++;
639
640 /* Whatever binding the symbol had before, it's now local. */
641 entry->isym.st_info
642 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
643
644 /* The dynindx will be set at the end of size_dynamic_sections. */
645
646 return 1;
647}
648
30b30c21 649/* Return the dynindex of a local dynamic symbol. */
42751cf3 650
30b30c21 651long
268b6b39
AM
652_bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
653 bfd *input_bfd,
654 long input_indx)
30b30c21
RH
655{
656 struct elf_link_local_dynamic_entry *e;
657
658 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
659 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
660 return e->dynindx;
661 return -1;
662}
663
664/* This function is used to renumber the dynamic symbols, if some of
665 them are removed because they are marked as local. This is called
666 via elf_link_hash_traverse. */
667
b34976b6 668static bfd_boolean
268b6b39
AM
669elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
670 void *data)
42751cf3 671{
268b6b39 672 size_t *count = data;
30b30c21 673
e92d460e
AM
674 if (h->root.type == bfd_link_hash_warning)
675 h = (struct elf_link_hash_entry *) h->root.u.i.link;
676
6fa3860b
PB
677 if (h->forced_local)
678 return TRUE;
679
680 if (h->dynindx != -1)
681 h->dynindx = ++(*count);
682
683 return TRUE;
684}
685
686
687/* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
688 STB_LOCAL binding. */
689
690static bfd_boolean
691elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
692 void *data)
693{
694 size_t *count = data;
695
696 if (h->root.type == bfd_link_hash_warning)
697 h = (struct elf_link_hash_entry *) h->root.u.i.link;
698
699 if (!h->forced_local)
700 return TRUE;
701
42751cf3 702 if (h->dynindx != -1)
30b30c21
RH
703 h->dynindx = ++(*count);
704
b34976b6 705 return TRUE;
42751cf3 706}
30b30c21 707
aee6f5b4
AO
708/* Return true if the dynamic symbol for a given section should be
709 omitted when creating a shared library. */
710bfd_boolean
711_bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
712 struct bfd_link_info *info,
713 asection *p)
714{
74541ad4
AM
715 struct elf_link_hash_table *htab;
716
aee6f5b4
AO
717 switch (elf_section_data (p)->this_hdr.sh_type)
718 {
719 case SHT_PROGBITS:
720 case SHT_NOBITS:
721 /* If sh_type is yet undecided, assume it could be
722 SHT_PROGBITS/SHT_NOBITS. */
723 case SHT_NULL:
74541ad4
AM
724 htab = elf_hash_table (info);
725 if (p == htab->tls_sec)
726 return FALSE;
727
728 if (htab->text_index_section != NULL)
729 return p != htab->text_index_section && p != htab->data_index_section;
730
aee6f5b4
AO
731 if (strcmp (p->name, ".got") == 0
732 || strcmp (p->name, ".got.plt") == 0
733 || strcmp (p->name, ".plt") == 0)
734 {
735 asection *ip;
aee6f5b4 736
74541ad4
AM
737 if (htab->dynobj != NULL
738 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
aee6f5b4
AO
739 && (ip->flags & SEC_LINKER_CREATED)
740 && ip->output_section == p)
741 return TRUE;
742 }
743 return FALSE;
744
745 /* There shouldn't be section relative relocations
746 against any other section. */
747 default:
748 return TRUE;
749 }
750}
751
062e2358 752/* Assign dynsym indices. In a shared library we generate a section
6fa3860b
PB
753 symbol for each output section, which come first. Next come symbols
754 which have been forced to local binding. Then all of the back-end
755 allocated local dynamic syms, followed by the rest of the global
756 symbols. */
30b30c21 757
554220db
AM
758static unsigned long
759_bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
760 struct bfd_link_info *info,
761 unsigned long *section_sym_count)
30b30c21
RH
762{
763 unsigned long dynsymcount = 0;
764
67687978 765 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
30b30c21 766 {
aee6f5b4 767 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
30b30c21
RH
768 asection *p;
769 for (p = output_bfd->sections; p ; p = p->next)
8c37241b 770 if ((p->flags & SEC_EXCLUDE) == 0
aee6f5b4
AO
771 && (p->flags & SEC_ALLOC) != 0
772 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
773 elf_section_data (p)->dynindx = ++dynsymcount;
74541ad4
AM
774 else
775 elf_section_data (p)->dynindx = 0;
30b30c21 776 }
554220db 777 *section_sym_count = dynsymcount;
30b30c21 778
6fa3860b
PB
779 elf_link_hash_traverse (elf_hash_table (info),
780 elf_link_renumber_local_hash_table_dynsyms,
781 &dynsymcount);
782
30b30c21
RH
783 if (elf_hash_table (info)->dynlocal)
784 {
785 struct elf_link_local_dynamic_entry *p;
786 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
787 p->dynindx = ++dynsymcount;
788 }
789
790 elf_link_hash_traverse (elf_hash_table (info),
791 elf_link_renumber_hash_table_dynsyms,
792 &dynsymcount);
793
794 /* There is an unused NULL entry at the head of the table which
795 we must account for in our count. Unless there weren't any
796 symbols, which means we'll have no table at all. */
797 if (dynsymcount != 0)
798 ++dynsymcount;
799
ccabcbe5
AM
800 elf_hash_table (info)->dynsymcount = dynsymcount;
801 return dynsymcount;
30b30c21 802}
252b5132 803
45d6a902
AM
804/* This function is called when we want to define a new symbol. It
805 handles the various cases which arise when we find a definition in
806 a dynamic object, or when there is already a definition in a
807 dynamic object. The new symbol is described by NAME, SYM, PSEC,
808 and PVALUE. We set SYM_HASH to the hash table entry. We set
809 OVERRIDE if the old symbol is overriding a new definition. We set
810 TYPE_CHANGE_OK if it is OK for the type to change. We set
811 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
812 change, we mean that we shouldn't warn if the type or size does
af44c138
L
813 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
814 object is overridden by a regular object. */
45d6a902
AM
815
816bfd_boolean
268b6b39
AM
817_bfd_elf_merge_symbol (bfd *abfd,
818 struct bfd_link_info *info,
819 const char *name,
820 Elf_Internal_Sym *sym,
821 asection **psec,
822 bfd_vma *pvalue,
af44c138 823 unsigned int *pold_alignment,
268b6b39
AM
824 struct elf_link_hash_entry **sym_hash,
825 bfd_boolean *skip,
826 bfd_boolean *override,
827 bfd_boolean *type_change_ok,
0f8a2703 828 bfd_boolean *size_change_ok)
252b5132 829{
7479dfd4 830 asection *sec, *oldsec;
45d6a902
AM
831 struct elf_link_hash_entry *h;
832 struct elf_link_hash_entry *flip;
833 int bind;
834 bfd *oldbfd;
835 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
77cfaee6 836 bfd_boolean newweak, oldweak;
a4d8e49b 837 const struct elf_backend_data *bed;
45d6a902
AM
838
839 *skip = FALSE;
840 *override = FALSE;
841
842 sec = *psec;
843 bind = ELF_ST_BIND (sym->st_info);
844
cd7be95b
KH
845 /* Silently discard TLS symbols from --just-syms. There's no way to
846 combine a static TLS block with a new TLS block for this executable. */
847 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
848 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
849 {
850 *skip = TRUE;
851 return TRUE;
852 }
853
45d6a902
AM
854 if (! bfd_is_und_section (sec))
855 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
856 else
857 h = ((struct elf_link_hash_entry *)
858 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
859 if (h == NULL)
860 return FALSE;
861 *sym_hash = h;
252b5132 862
45d6a902
AM
863 /* This code is for coping with dynamic objects, and is only useful
864 if we are doing an ELF link. */
865 if (info->hash->creator != abfd->xvec)
866 return TRUE;
252b5132 867
45d6a902
AM
868 /* For merging, we only care about real symbols. */
869
870 while (h->root.type == bfd_link_hash_indirect
871 || h->root.type == bfd_link_hash_warning)
872 h = (struct elf_link_hash_entry *) h->root.u.i.link;
873
874 /* If we just created the symbol, mark it as being an ELF symbol.
875 Other than that, there is nothing to do--there is no merge issue
876 with a newly defined symbol--so we just return. */
877
878 if (h->root.type == bfd_link_hash_new)
252b5132 879 {
55255dae 880 bfd_elf_link_mark_dynamic_symbol (info, h);
f5385ebf 881 h->non_elf = 0;
45d6a902
AM
882 return TRUE;
883 }
252b5132 884
7479dfd4
L
885 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
886 existing symbol. */
252b5132 887
45d6a902
AM
888 switch (h->root.type)
889 {
890 default:
891 oldbfd = NULL;
7479dfd4 892 oldsec = NULL;
45d6a902 893 break;
252b5132 894
45d6a902
AM
895 case bfd_link_hash_undefined:
896 case bfd_link_hash_undefweak:
897 oldbfd = h->root.u.undef.abfd;
7479dfd4 898 oldsec = NULL;
45d6a902
AM
899 break;
900
901 case bfd_link_hash_defined:
902 case bfd_link_hash_defweak:
903 oldbfd = h->root.u.def.section->owner;
7479dfd4 904 oldsec = h->root.u.def.section;
45d6a902
AM
905 break;
906
907 case bfd_link_hash_common:
908 oldbfd = h->root.u.c.p->section->owner;
7479dfd4 909 oldsec = h->root.u.c.p->section;
45d6a902
AM
910 break;
911 }
912
913 /* In cases involving weak versioned symbols, we may wind up trying
914 to merge a symbol with itself. Catch that here, to avoid the
915 confusion that results if we try to override a symbol with
916 itself. The additional tests catch cases like
917 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
918 dynamic object, which we do want to handle here. */
919 if (abfd == oldbfd
920 && ((abfd->flags & DYNAMIC) == 0
f5385ebf 921 || !h->def_regular))
45d6a902
AM
922 return TRUE;
923
924 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
925 respectively, is from a dynamic object. */
926
707bba77 927 newdyn = (abfd->flags & DYNAMIC) != 0;
45d6a902 928
707bba77 929 olddyn = FALSE;
45d6a902
AM
930 if (oldbfd != NULL)
931 olddyn = (oldbfd->flags & DYNAMIC) != 0;
707bba77 932 else if (oldsec != NULL)
45d6a902 933 {
707bba77 934 /* This handles the special SHN_MIPS_{TEXT,DATA} section
45d6a902 935 indices used by MIPS ELF. */
707bba77 936 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
45d6a902 937 }
252b5132 938
45d6a902
AM
939 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
940 respectively, appear to be a definition rather than reference. */
941
707bba77 942 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
45d6a902 943
707bba77
AM
944 olddef = (h->root.type != bfd_link_hash_undefined
945 && h->root.type != bfd_link_hash_undefweak
946 && h->root.type != bfd_link_hash_common);
45d6a902 947
580a2b6e
L
948 /* When we try to create a default indirect symbol from the dynamic
949 definition with the default version, we skip it if its type and
950 the type of existing regular definition mismatch. We only do it
951 if the existing regular definition won't be dynamic. */
952 if (pold_alignment == NULL
953 && !info->shared
954 && !info->export_dynamic
955 && !h->ref_dynamic
956 && newdyn
957 && newdef
958 && !olddyn
959 && (olddef || h->root.type == bfd_link_hash_common)
960 && ELF_ST_TYPE (sym->st_info) != h->type
961 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
962 && h->type != STT_NOTYPE)
963 {
964 *skip = TRUE;
965 return TRUE;
966 }
967
68f49ba3
L
968 /* Check TLS symbol. We don't check undefined symbol introduced by
969 "ld -u". */
7479dfd4 970 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
68f49ba3
L
971 && ELF_ST_TYPE (sym->st_info) != h->type
972 && oldbfd != NULL)
7479dfd4
L
973 {
974 bfd *ntbfd, *tbfd;
975 bfd_boolean ntdef, tdef;
976 asection *ntsec, *tsec;
977
978 if (h->type == STT_TLS)
979 {
3b36f7e6 980 ntbfd = abfd;
7479dfd4
L
981 ntsec = sec;
982 ntdef = newdef;
983 tbfd = oldbfd;
984 tsec = oldsec;
985 tdef = olddef;
986 }
987 else
988 {
989 ntbfd = oldbfd;
990 ntsec = oldsec;
991 ntdef = olddef;
992 tbfd = abfd;
993 tsec = sec;
994 tdef = newdef;
995 }
996
997 if (tdef && ntdef)
998 (*_bfd_error_handler)
999 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1000 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1001 else if (!tdef && !ntdef)
1002 (*_bfd_error_handler)
1003 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1004 tbfd, ntbfd, h->root.root.string);
1005 else if (tdef)
1006 (*_bfd_error_handler)
1007 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1008 tbfd, tsec, ntbfd, h->root.root.string);
1009 else
1010 (*_bfd_error_handler)
1011 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1012 tbfd, ntbfd, ntsec, h->root.root.string);
1013
1014 bfd_set_error (bfd_error_bad_value);
1015 return FALSE;
1016 }
1017
4cc11e76 1018 /* We need to remember if a symbol has a definition in a dynamic
45d6a902
AM
1019 object or is weak in all dynamic objects. Internal and hidden
1020 visibility will make it unavailable to dynamic objects. */
f5385ebf 1021 if (newdyn && !h->dynamic_def)
45d6a902
AM
1022 {
1023 if (!bfd_is_und_section (sec))
f5385ebf 1024 h->dynamic_def = 1;
45d6a902 1025 else
252b5132 1026 {
45d6a902
AM
1027 /* Check if this symbol is weak in all dynamic objects. If it
1028 is the first time we see it in a dynamic object, we mark
1029 if it is weak. Otherwise, we clear it. */
f5385ebf 1030 if (!h->ref_dynamic)
79349b09 1031 {
45d6a902 1032 if (bind == STB_WEAK)
f5385ebf 1033 h->dynamic_weak = 1;
252b5132 1034 }
45d6a902 1035 else if (bind != STB_WEAK)
f5385ebf 1036 h->dynamic_weak = 0;
252b5132 1037 }
45d6a902 1038 }
252b5132 1039
45d6a902
AM
1040 /* If the old symbol has non-default visibility, we ignore the new
1041 definition from a dynamic object. */
1042 if (newdyn
9c7a29a3 1043 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
45d6a902
AM
1044 && !bfd_is_und_section (sec))
1045 {
1046 *skip = TRUE;
1047 /* Make sure this symbol is dynamic. */
f5385ebf 1048 h->ref_dynamic = 1;
45d6a902
AM
1049 /* A protected symbol has external availability. Make sure it is
1050 recorded as dynamic.
1051
1052 FIXME: Should we check type and size for protected symbol? */
1053 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
c152c796 1054 return bfd_elf_link_record_dynamic_symbol (info, h);
45d6a902
AM
1055 else
1056 return TRUE;
1057 }
1058 else if (!newdyn
9c7a29a3 1059 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
f5385ebf 1060 && h->def_dynamic)
45d6a902
AM
1061 {
1062 /* If the new symbol with non-default visibility comes from a
1063 relocatable file and the old definition comes from a dynamic
1064 object, we remove the old definition. */
1065 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
d2dee3b2
L
1066 {
1067 /* Handle the case where the old dynamic definition is
1068 default versioned. We need to copy the symbol info from
1069 the symbol with default version to the normal one if it
1070 was referenced before. */
1071 if (h->ref_regular)
1072 {
1073 const struct elf_backend_data *bed
1074 = get_elf_backend_data (abfd);
1075 struct elf_link_hash_entry *vh = *sym_hash;
1076 vh->root.type = h->root.type;
1077 h->root.type = bfd_link_hash_indirect;
1078 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1079 /* Protected symbols will override the dynamic definition
1080 with default version. */
1081 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1082 {
1083 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1084 vh->dynamic_def = 1;
1085 vh->ref_dynamic = 1;
1086 }
1087 else
1088 {
1089 h->root.type = vh->root.type;
1090 vh->ref_dynamic = 0;
1091 /* We have to hide it here since it was made dynamic
1092 global with extra bits when the symbol info was
1093 copied from the old dynamic definition. */
1094 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1095 }
1096 h = vh;
1097 }
1098 else
1099 h = *sym_hash;
1100 }
1de1a317 1101
f6e332e6 1102 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1de1a317
L
1103 && bfd_is_und_section (sec))
1104 {
1105 /* If the new symbol is undefined and the old symbol was
1106 also undefined before, we need to make sure
1107 _bfd_generic_link_add_one_symbol doesn't mess
f6e332e6 1108 up the linker hash table undefs list. Since the old
1de1a317
L
1109 definition came from a dynamic object, it is still on the
1110 undefs list. */
1111 h->root.type = bfd_link_hash_undefined;
1de1a317
L
1112 h->root.u.undef.abfd = abfd;
1113 }
1114 else
1115 {
1116 h->root.type = bfd_link_hash_new;
1117 h->root.u.undef.abfd = NULL;
1118 }
1119
f5385ebf 1120 if (h->def_dynamic)
252b5132 1121 {
f5385ebf
AM
1122 h->def_dynamic = 0;
1123 h->ref_dynamic = 1;
1124 h->dynamic_def = 1;
45d6a902
AM
1125 }
1126 /* FIXME: Should we check type and size for protected symbol? */
1127 h->size = 0;
1128 h->type = 0;
1129 return TRUE;
1130 }
14a793b2 1131
79349b09
AM
1132 /* Differentiate strong and weak symbols. */
1133 newweak = bind == STB_WEAK;
1134 oldweak = (h->root.type == bfd_link_hash_defweak
1135 || h->root.type == bfd_link_hash_undefweak);
14a793b2 1136
15b43f48
AM
1137 /* If a new weak symbol definition comes from a regular file and the
1138 old symbol comes from a dynamic library, we treat the new one as
1139 strong. Similarly, an old weak symbol definition from a regular
1140 file is treated as strong when the new symbol comes from a dynamic
1141 library. Further, an old weak symbol from a dynamic library is
1142 treated as strong if the new symbol is from a dynamic library.
1143 This reflects the way glibc's ld.so works.
1144
1145 Do this before setting *type_change_ok or *size_change_ok so that
1146 we warn properly when dynamic library symbols are overridden. */
1147
1148 if (newdef && !newdyn && olddyn)
0f8a2703 1149 newweak = FALSE;
15b43f48 1150 if (olddef && newdyn)
0f8a2703
AM
1151 oldweak = FALSE;
1152
79349b09
AM
1153 /* It's OK to change the type if either the existing symbol or the
1154 new symbol is weak. A type change is also OK if the old symbol
1155 is undefined and the new symbol is defined. */
252b5132 1156
79349b09
AM
1157 if (oldweak
1158 || newweak
1159 || (newdef
1160 && h->root.type == bfd_link_hash_undefined))
1161 *type_change_ok = TRUE;
1162
1163 /* It's OK to change the size if either the existing symbol or the
1164 new symbol is weak, or if the old symbol is undefined. */
1165
1166 if (*type_change_ok
1167 || h->root.type == bfd_link_hash_undefined)
1168 *size_change_ok = TRUE;
45d6a902 1169
45d6a902
AM
1170 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1171 symbol, respectively, appears to be a common symbol in a dynamic
1172 object. If a symbol appears in an uninitialized section, and is
1173 not weak, and is not a function, then it may be a common symbol
1174 which was resolved when the dynamic object was created. We want
1175 to treat such symbols specially, because they raise special
1176 considerations when setting the symbol size: if the symbol
1177 appears as a common symbol in a regular object, and the size in
1178 the regular object is larger, we must make sure that we use the
1179 larger size. This problematic case can always be avoided in C,
1180 but it must be handled correctly when using Fortran shared
1181 libraries.
1182
1183 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1184 likewise for OLDDYNCOMMON and OLDDEF.
1185
1186 Note that this test is just a heuristic, and that it is quite
1187 possible to have an uninitialized symbol in a shared object which
1188 is really a definition, rather than a common symbol. This could
1189 lead to some minor confusion when the symbol really is a common
1190 symbol in some regular object. However, I think it will be
1191 harmless. */
1192
1193 if (newdyn
1194 && newdef
79349b09 1195 && !newweak
45d6a902
AM
1196 && (sec->flags & SEC_ALLOC) != 0
1197 && (sec->flags & SEC_LOAD) == 0
1198 && sym->st_size > 0
45d6a902
AM
1199 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
1200 newdyncommon = TRUE;
1201 else
1202 newdyncommon = FALSE;
1203
1204 if (olddyn
1205 && olddef
1206 && h->root.type == bfd_link_hash_defined
f5385ebf 1207 && h->def_dynamic
45d6a902
AM
1208 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1209 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1210 && h->size > 0
1211 && h->type != STT_FUNC)
1212 olddyncommon = TRUE;
1213 else
1214 olddyncommon = FALSE;
1215
a4d8e49b
L
1216 /* We now know everything about the old and new symbols. We ask the
1217 backend to check if we can merge them. */
1218 bed = get_elf_backend_data (abfd);
1219 if (bed->merge_symbol
1220 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1221 pold_alignment, skip, override,
1222 type_change_ok, size_change_ok,
1223 &newdyn, &newdef, &newdyncommon, &newweak,
1224 abfd, &sec,
1225 &olddyn, &olddef, &olddyncommon, &oldweak,
1226 oldbfd, &oldsec))
1227 return FALSE;
1228
45d6a902
AM
1229 /* If both the old and the new symbols look like common symbols in a
1230 dynamic object, set the size of the symbol to the larger of the
1231 two. */
1232
1233 if (olddyncommon
1234 && newdyncommon
1235 && sym->st_size != h->size)
1236 {
1237 /* Since we think we have two common symbols, issue a multiple
1238 common warning if desired. Note that we only warn if the
1239 size is different. If the size is the same, we simply let
1240 the old symbol override the new one as normally happens with
1241 symbols defined in dynamic objects. */
1242
1243 if (! ((*info->callbacks->multiple_common)
1244 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1245 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1246 return FALSE;
252b5132 1247
45d6a902
AM
1248 if (sym->st_size > h->size)
1249 h->size = sym->st_size;
252b5132 1250
45d6a902 1251 *size_change_ok = TRUE;
252b5132
RH
1252 }
1253
45d6a902
AM
1254 /* If we are looking at a dynamic object, and we have found a
1255 definition, we need to see if the symbol was already defined by
1256 some other object. If so, we want to use the existing
1257 definition, and we do not want to report a multiple symbol
1258 definition error; we do this by clobbering *PSEC to be
1259 bfd_und_section_ptr.
1260
1261 We treat a common symbol as a definition if the symbol in the
1262 shared library is a function, since common symbols always
1263 represent variables; this can cause confusion in principle, but
1264 any such confusion would seem to indicate an erroneous program or
1265 shared library. We also permit a common symbol in a regular
79349b09 1266 object to override a weak symbol in a shared object. */
45d6a902
AM
1267
1268 if (newdyn
1269 && newdef
77cfaee6 1270 && (olddef
45d6a902 1271 || (h->root.type == bfd_link_hash_common
79349b09 1272 && (newweak
0f8a2703 1273 || ELF_ST_TYPE (sym->st_info) == STT_FUNC))))
45d6a902
AM
1274 {
1275 *override = TRUE;
1276 newdef = FALSE;
1277 newdyncommon = FALSE;
252b5132 1278
45d6a902
AM
1279 *psec = sec = bfd_und_section_ptr;
1280 *size_change_ok = TRUE;
252b5132 1281
45d6a902
AM
1282 /* If we get here when the old symbol is a common symbol, then
1283 we are explicitly letting it override a weak symbol or
1284 function in a dynamic object, and we don't want to warn about
1285 a type change. If the old symbol is a defined symbol, a type
1286 change warning may still be appropriate. */
252b5132 1287
45d6a902
AM
1288 if (h->root.type == bfd_link_hash_common)
1289 *type_change_ok = TRUE;
1290 }
1291
1292 /* Handle the special case of an old common symbol merging with a
1293 new symbol which looks like a common symbol in a shared object.
1294 We change *PSEC and *PVALUE to make the new symbol look like a
91134c82
L
1295 common symbol, and let _bfd_generic_link_add_one_symbol do the
1296 right thing. */
45d6a902
AM
1297
1298 if (newdyncommon
1299 && h->root.type == bfd_link_hash_common)
1300 {
1301 *override = TRUE;
1302 newdef = FALSE;
1303 newdyncommon = FALSE;
1304 *pvalue = sym->st_size;
a4d8e49b 1305 *psec = sec = bed->common_section (oldsec);
45d6a902
AM
1306 *size_change_ok = TRUE;
1307 }
1308
c5e2cead 1309 /* Skip weak definitions of symbols that are already defined. */
f41d945b 1310 if (newdef && olddef && newweak)
c5e2cead
L
1311 *skip = TRUE;
1312
45d6a902
AM
1313 /* If the old symbol is from a dynamic object, and the new symbol is
1314 a definition which is not from a dynamic object, then the new
1315 symbol overrides the old symbol. Symbols from regular files
1316 always take precedence over symbols from dynamic objects, even if
1317 they are defined after the dynamic object in the link.
1318
1319 As above, we again permit a common symbol in a regular object to
1320 override a definition in a shared object if the shared object
0f8a2703 1321 symbol is a function or is weak. */
45d6a902
AM
1322
1323 flip = NULL;
77cfaee6 1324 if (!newdyn
45d6a902
AM
1325 && (newdef
1326 || (bfd_is_com_section (sec)
79349b09
AM
1327 && (oldweak
1328 || h->type == STT_FUNC)))
45d6a902
AM
1329 && olddyn
1330 && olddef
f5385ebf 1331 && h->def_dynamic)
45d6a902
AM
1332 {
1333 /* Change the hash table entry to undefined, and let
1334 _bfd_generic_link_add_one_symbol do the right thing with the
1335 new definition. */
1336
1337 h->root.type = bfd_link_hash_undefined;
1338 h->root.u.undef.abfd = h->root.u.def.section->owner;
1339 *size_change_ok = TRUE;
1340
1341 olddef = FALSE;
1342 olddyncommon = FALSE;
1343
1344 /* We again permit a type change when a common symbol may be
1345 overriding a function. */
1346
1347 if (bfd_is_com_section (sec))
1348 *type_change_ok = TRUE;
1349
1350 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1351 flip = *sym_hash;
1352 else
1353 /* This union may have been set to be non-NULL when this symbol
1354 was seen in a dynamic object. We must force the union to be
1355 NULL, so that it is correct for a regular symbol. */
1356 h->verinfo.vertree = NULL;
1357 }
1358
1359 /* Handle the special case of a new common symbol merging with an
1360 old symbol that looks like it might be a common symbol defined in
1361 a shared object. Note that we have already handled the case in
1362 which a new common symbol should simply override the definition
1363 in the shared library. */
1364
1365 if (! newdyn
1366 && bfd_is_com_section (sec)
1367 && olddyncommon)
1368 {
1369 /* It would be best if we could set the hash table entry to a
1370 common symbol, but we don't know what to use for the section
1371 or the alignment. */
1372 if (! ((*info->callbacks->multiple_common)
1373 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1374 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1375 return FALSE;
1376
4cc11e76 1377 /* If the presumed common symbol in the dynamic object is
45d6a902
AM
1378 larger, pretend that the new symbol has its size. */
1379
1380 if (h->size > *pvalue)
1381 *pvalue = h->size;
1382
af44c138
L
1383 /* We need to remember the alignment required by the symbol
1384 in the dynamic object. */
1385 BFD_ASSERT (pold_alignment);
1386 *pold_alignment = h->root.u.def.section->alignment_power;
45d6a902
AM
1387
1388 olddef = FALSE;
1389 olddyncommon = FALSE;
1390
1391 h->root.type = bfd_link_hash_undefined;
1392 h->root.u.undef.abfd = h->root.u.def.section->owner;
1393
1394 *size_change_ok = TRUE;
1395 *type_change_ok = TRUE;
1396
1397 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1398 flip = *sym_hash;
1399 else
1400 h->verinfo.vertree = NULL;
1401 }
1402
1403 if (flip != NULL)
1404 {
1405 /* Handle the case where we had a versioned symbol in a dynamic
1406 library and now find a definition in a normal object. In this
1407 case, we make the versioned symbol point to the normal one. */
9c5bfbb7 1408 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
45d6a902
AM
1409 flip->root.type = h->root.type;
1410 h->root.type = bfd_link_hash_indirect;
1411 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
fcfa13d2 1412 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
45d6a902 1413 flip->root.u.undef.abfd = h->root.u.undef.abfd;
f5385ebf 1414 if (h->def_dynamic)
45d6a902 1415 {
f5385ebf
AM
1416 h->def_dynamic = 0;
1417 flip->ref_dynamic = 1;
45d6a902
AM
1418 }
1419 }
1420
45d6a902
AM
1421 return TRUE;
1422}
1423
1424/* This function is called to create an indirect symbol from the
1425 default for the symbol with the default version if needed. The
1426 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
0f8a2703 1427 set DYNSYM if the new indirect symbol is dynamic. */
45d6a902
AM
1428
1429bfd_boolean
268b6b39
AM
1430_bfd_elf_add_default_symbol (bfd *abfd,
1431 struct bfd_link_info *info,
1432 struct elf_link_hash_entry *h,
1433 const char *name,
1434 Elf_Internal_Sym *sym,
1435 asection **psec,
1436 bfd_vma *value,
1437 bfd_boolean *dynsym,
0f8a2703 1438 bfd_boolean override)
45d6a902
AM
1439{
1440 bfd_boolean type_change_ok;
1441 bfd_boolean size_change_ok;
1442 bfd_boolean skip;
1443 char *shortname;
1444 struct elf_link_hash_entry *hi;
1445 struct bfd_link_hash_entry *bh;
9c5bfbb7 1446 const struct elf_backend_data *bed;
45d6a902
AM
1447 bfd_boolean collect;
1448 bfd_boolean dynamic;
1449 char *p;
1450 size_t len, shortlen;
1451 asection *sec;
1452
1453 /* If this symbol has a version, and it is the default version, we
1454 create an indirect symbol from the default name to the fully
1455 decorated name. This will cause external references which do not
1456 specify a version to be bound to this version of the symbol. */
1457 p = strchr (name, ELF_VER_CHR);
1458 if (p == NULL || p[1] != ELF_VER_CHR)
1459 return TRUE;
1460
1461 if (override)
1462 {
4cc11e76 1463 /* We are overridden by an old definition. We need to check if we
45d6a902
AM
1464 need to create the indirect symbol from the default name. */
1465 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1466 FALSE, FALSE);
1467 BFD_ASSERT (hi != NULL);
1468 if (hi == h)
1469 return TRUE;
1470 while (hi->root.type == bfd_link_hash_indirect
1471 || hi->root.type == bfd_link_hash_warning)
1472 {
1473 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1474 if (hi == h)
1475 return TRUE;
1476 }
1477 }
1478
1479 bed = get_elf_backend_data (abfd);
1480 collect = bed->collect;
1481 dynamic = (abfd->flags & DYNAMIC) != 0;
1482
1483 shortlen = p - name;
1484 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1485 if (shortname == NULL)
1486 return FALSE;
1487 memcpy (shortname, name, shortlen);
1488 shortname[shortlen] = '\0';
1489
1490 /* We are going to create a new symbol. Merge it with any existing
1491 symbol with this name. For the purposes of the merge, act as
1492 though we were defining the symbol we just defined, although we
1493 actually going to define an indirect symbol. */
1494 type_change_ok = FALSE;
1495 size_change_ok = FALSE;
1496 sec = *psec;
1497 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
af44c138
L
1498 NULL, &hi, &skip, &override,
1499 &type_change_ok, &size_change_ok))
45d6a902
AM
1500 return FALSE;
1501
1502 if (skip)
1503 goto nondefault;
1504
1505 if (! override)
1506 {
1507 bh = &hi->root;
1508 if (! (_bfd_generic_link_add_one_symbol
1509 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
268b6b39 1510 0, name, FALSE, collect, &bh)))
45d6a902
AM
1511 return FALSE;
1512 hi = (struct elf_link_hash_entry *) bh;
1513 }
1514 else
1515 {
1516 /* In this case the symbol named SHORTNAME is overriding the
1517 indirect symbol we want to add. We were planning on making
1518 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1519 is the name without a version. NAME is the fully versioned
1520 name, and it is the default version.
1521
1522 Overriding means that we already saw a definition for the
1523 symbol SHORTNAME in a regular object, and it is overriding
1524 the symbol defined in the dynamic object.
1525
1526 When this happens, we actually want to change NAME, the
1527 symbol we just added, to refer to SHORTNAME. This will cause
1528 references to NAME in the shared object to become references
1529 to SHORTNAME in the regular object. This is what we expect
1530 when we override a function in a shared object: that the
1531 references in the shared object will be mapped to the
1532 definition in the regular object. */
1533
1534 while (hi->root.type == bfd_link_hash_indirect
1535 || hi->root.type == bfd_link_hash_warning)
1536 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1537
1538 h->root.type = bfd_link_hash_indirect;
1539 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
f5385ebf 1540 if (h->def_dynamic)
45d6a902 1541 {
f5385ebf
AM
1542 h->def_dynamic = 0;
1543 hi->ref_dynamic = 1;
1544 if (hi->ref_regular
1545 || hi->def_regular)
45d6a902 1546 {
c152c796 1547 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
45d6a902
AM
1548 return FALSE;
1549 }
1550 }
1551
1552 /* Now set HI to H, so that the following code will set the
1553 other fields correctly. */
1554 hi = h;
1555 }
1556
1557 /* If there is a duplicate definition somewhere, then HI may not
1558 point to an indirect symbol. We will have reported an error to
1559 the user in that case. */
1560
1561 if (hi->root.type == bfd_link_hash_indirect)
1562 {
1563 struct elf_link_hash_entry *ht;
1564
45d6a902 1565 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
fcfa13d2 1566 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
45d6a902
AM
1567
1568 /* See if the new flags lead us to realize that the symbol must
1569 be dynamic. */
1570 if (! *dynsym)
1571 {
1572 if (! dynamic)
1573 {
1574 if (info->shared
f5385ebf 1575 || hi->ref_dynamic)
45d6a902
AM
1576 *dynsym = TRUE;
1577 }
1578 else
1579 {
f5385ebf 1580 if (hi->ref_regular)
45d6a902
AM
1581 *dynsym = TRUE;
1582 }
1583 }
1584 }
1585
1586 /* We also need to define an indirection from the nondefault version
1587 of the symbol. */
1588
1589nondefault:
1590 len = strlen (name);
1591 shortname = bfd_hash_allocate (&info->hash->table, len);
1592 if (shortname == NULL)
1593 return FALSE;
1594 memcpy (shortname, name, shortlen);
1595 memcpy (shortname + shortlen, p + 1, len - shortlen);
1596
1597 /* Once again, merge with any existing symbol. */
1598 type_change_ok = FALSE;
1599 size_change_ok = FALSE;
1600 sec = *psec;
1601 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
af44c138
L
1602 NULL, &hi, &skip, &override,
1603 &type_change_ok, &size_change_ok))
45d6a902
AM
1604 return FALSE;
1605
1606 if (skip)
1607 return TRUE;
1608
1609 if (override)
1610 {
1611 /* Here SHORTNAME is a versioned name, so we don't expect to see
1612 the type of override we do in the case above unless it is
4cc11e76 1613 overridden by a versioned definition. */
45d6a902
AM
1614 if (hi->root.type != bfd_link_hash_defined
1615 && hi->root.type != bfd_link_hash_defweak)
1616 (*_bfd_error_handler)
d003868e
AM
1617 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1618 abfd, shortname);
45d6a902
AM
1619 }
1620 else
1621 {
1622 bh = &hi->root;
1623 if (! (_bfd_generic_link_add_one_symbol
1624 (info, abfd, shortname, BSF_INDIRECT,
268b6b39 1625 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
45d6a902
AM
1626 return FALSE;
1627 hi = (struct elf_link_hash_entry *) bh;
1628
1629 /* If there is a duplicate definition somewhere, then HI may not
1630 point to an indirect symbol. We will have reported an error
1631 to the user in that case. */
1632
1633 if (hi->root.type == bfd_link_hash_indirect)
1634 {
fcfa13d2 1635 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
45d6a902
AM
1636
1637 /* See if the new flags lead us to realize that the symbol
1638 must be dynamic. */
1639 if (! *dynsym)
1640 {
1641 if (! dynamic)
1642 {
1643 if (info->shared
f5385ebf 1644 || hi->ref_dynamic)
45d6a902
AM
1645 *dynsym = TRUE;
1646 }
1647 else
1648 {
f5385ebf 1649 if (hi->ref_regular)
45d6a902
AM
1650 *dynsym = TRUE;
1651 }
1652 }
1653 }
1654 }
1655
1656 return TRUE;
1657}
1658\f
1659/* This routine is used to export all defined symbols into the dynamic
1660 symbol table. It is called via elf_link_hash_traverse. */
1661
1662bfd_boolean
268b6b39 1663_bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
45d6a902 1664{
268b6b39 1665 struct elf_info_failed *eif = data;
45d6a902 1666
55255dae
L
1667 /* Ignore this if we won't export it. */
1668 if (!eif->info->export_dynamic && !h->dynamic)
1669 return TRUE;
1670
45d6a902
AM
1671 /* Ignore indirect symbols. These are added by the versioning code. */
1672 if (h->root.type == bfd_link_hash_indirect)
1673 return TRUE;
1674
1675 if (h->root.type == bfd_link_hash_warning)
1676 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1677
1678 if (h->dynindx == -1
f5385ebf
AM
1679 && (h->def_regular
1680 || h->ref_regular))
45d6a902
AM
1681 {
1682 struct bfd_elf_version_tree *t;
1683 struct bfd_elf_version_expr *d;
1684
1685 for (t = eif->verdefs; t != NULL; t = t->next)
1686 {
108ba305 1687 if (t->globals.list != NULL)
45d6a902 1688 {
108ba305
JJ
1689 d = (*t->match) (&t->globals, NULL, h->root.root.string);
1690 if (d != NULL)
1691 goto doit;
45d6a902
AM
1692 }
1693
108ba305 1694 if (t->locals.list != NULL)
45d6a902 1695 {
108ba305
JJ
1696 d = (*t->match) (&t->locals, NULL, h->root.root.string);
1697 if (d != NULL)
1698 return TRUE;
45d6a902
AM
1699 }
1700 }
1701
1702 if (!eif->verdefs)
1703 {
1704 doit:
c152c796 1705 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
45d6a902
AM
1706 {
1707 eif->failed = TRUE;
1708 return FALSE;
1709 }
1710 }
1711 }
1712
1713 return TRUE;
1714}
1715\f
1716/* Look through the symbols which are defined in other shared
1717 libraries and referenced here. Update the list of version
1718 dependencies. This will be put into the .gnu.version_r section.
1719 This function is called via elf_link_hash_traverse. */
1720
1721bfd_boolean
268b6b39
AM
1722_bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1723 void *data)
45d6a902 1724{
268b6b39 1725 struct elf_find_verdep_info *rinfo = data;
45d6a902
AM
1726 Elf_Internal_Verneed *t;
1727 Elf_Internal_Vernaux *a;
1728 bfd_size_type amt;
1729
1730 if (h->root.type == bfd_link_hash_warning)
1731 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1732
1733 /* We only care about symbols defined in shared objects with version
1734 information. */
f5385ebf
AM
1735 if (!h->def_dynamic
1736 || h->def_regular
45d6a902
AM
1737 || h->dynindx == -1
1738 || h->verinfo.verdef == NULL)
1739 return TRUE;
1740
1741 /* See if we already know about this version. */
1742 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
1743 {
1744 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1745 continue;
1746
1747 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1748 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1749 return TRUE;
1750
1751 break;
1752 }
1753
1754 /* This is a new version. Add it to tree we are building. */
1755
1756 if (t == NULL)
1757 {
1758 amt = sizeof *t;
268b6b39 1759 t = bfd_zalloc (rinfo->output_bfd, amt);
45d6a902
AM
1760 if (t == NULL)
1761 {
1762 rinfo->failed = TRUE;
1763 return FALSE;
1764 }
1765
1766 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1767 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
1768 elf_tdata (rinfo->output_bfd)->verref = t;
1769 }
1770
1771 amt = sizeof *a;
268b6b39 1772 a = bfd_zalloc (rinfo->output_bfd, amt);
45d6a902
AM
1773
1774 /* Note that we are copying a string pointer here, and testing it
1775 above. If bfd_elf_string_from_elf_section is ever changed to
1776 discard the string data when low in memory, this will have to be
1777 fixed. */
1778 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1779
1780 a->vna_flags = h->verinfo.verdef->vd_flags;
1781 a->vna_nextptr = t->vn_auxptr;
1782
1783 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1784 ++rinfo->vers;
1785
1786 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1787
1788 t->vn_auxptr = a;
1789
1790 return TRUE;
1791}
1792
1793/* Figure out appropriate versions for all the symbols. We may not
1794 have the version number script until we have read all of the input
1795 files, so until that point we don't know which symbols should be
1796 local. This function is called via elf_link_hash_traverse. */
1797
1798bfd_boolean
268b6b39 1799_bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
45d6a902
AM
1800{
1801 struct elf_assign_sym_version_info *sinfo;
1802 struct bfd_link_info *info;
9c5bfbb7 1803 const struct elf_backend_data *bed;
45d6a902
AM
1804 struct elf_info_failed eif;
1805 char *p;
1806 bfd_size_type amt;
1807
268b6b39 1808 sinfo = data;
45d6a902
AM
1809 info = sinfo->info;
1810
1811 if (h->root.type == bfd_link_hash_warning)
1812 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1813
1814 /* Fix the symbol flags. */
1815 eif.failed = FALSE;
1816 eif.info = info;
1817 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1818 {
1819 if (eif.failed)
1820 sinfo->failed = TRUE;
1821 return FALSE;
1822 }
1823
1824 /* We only need version numbers for symbols defined in regular
1825 objects. */
f5385ebf 1826 if (!h->def_regular)
45d6a902
AM
1827 return TRUE;
1828
1829 bed = get_elf_backend_data (sinfo->output_bfd);
1830 p = strchr (h->root.root.string, ELF_VER_CHR);
1831 if (p != NULL && h->verinfo.vertree == NULL)
1832 {
1833 struct bfd_elf_version_tree *t;
1834 bfd_boolean hidden;
1835
1836 hidden = TRUE;
1837
1838 /* There are two consecutive ELF_VER_CHR characters if this is
1839 not a hidden symbol. */
1840 ++p;
1841 if (*p == ELF_VER_CHR)
1842 {
1843 hidden = FALSE;
1844 ++p;
1845 }
1846
1847 /* If there is no version string, we can just return out. */
1848 if (*p == '\0')
1849 {
1850 if (hidden)
f5385ebf 1851 h->hidden = 1;
45d6a902
AM
1852 return TRUE;
1853 }
1854
1855 /* Look for the version. If we find it, it is no longer weak. */
1856 for (t = sinfo->verdefs; t != NULL; t = t->next)
1857 {
1858 if (strcmp (t->name, p) == 0)
1859 {
1860 size_t len;
1861 char *alc;
1862 struct bfd_elf_version_expr *d;
1863
1864 len = p - h->root.root.string;
268b6b39 1865 alc = bfd_malloc (len);
45d6a902
AM
1866 if (alc == NULL)
1867 return FALSE;
1868 memcpy (alc, h->root.root.string, len - 1);
1869 alc[len - 1] = '\0';
1870 if (alc[len - 2] == ELF_VER_CHR)
1871 alc[len - 2] = '\0';
1872
1873 h->verinfo.vertree = t;
1874 t->used = TRUE;
1875 d = NULL;
1876
108ba305
JJ
1877 if (t->globals.list != NULL)
1878 d = (*t->match) (&t->globals, NULL, alc);
45d6a902
AM
1879
1880 /* See if there is anything to force this symbol to
1881 local scope. */
108ba305 1882 if (d == NULL && t->locals.list != NULL)
45d6a902 1883 {
108ba305
JJ
1884 d = (*t->match) (&t->locals, NULL, alc);
1885 if (d != NULL
1886 && h->dynindx != -1
108ba305
JJ
1887 && ! info->export_dynamic)
1888 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
45d6a902
AM
1889 }
1890
1891 free (alc);
1892 break;
1893 }
1894 }
1895
1896 /* If we are building an application, we need to create a
1897 version node for this version. */
36af4a4e 1898 if (t == NULL && info->executable)
45d6a902
AM
1899 {
1900 struct bfd_elf_version_tree **pp;
1901 int version_index;
1902
1903 /* If we aren't going to export this symbol, we don't need
1904 to worry about it. */
1905 if (h->dynindx == -1)
1906 return TRUE;
1907
1908 amt = sizeof *t;
108ba305 1909 t = bfd_zalloc (sinfo->output_bfd, amt);
45d6a902
AM
1910 if (t == NULL)
1911 {
1912 sinfo->failed = TRUE;
1913 return FALSE;
1914 }
1915
45d6a902 1916 t->name = p;
45d6a902
AM
1917 t->name_indx = (unsigned int) -1;
1918 t->used = TRUE;
1919
1920 version_index = 1;
1921 /* Don't count anonymous version tag. */
1922 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
1923 version_index = 0;
1924 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
1925 ++version_index;
1926 t->vernum = version_index;
1927
1928 *pp = t;
1929
1930 h->verinfo.vertree = t;
1931 }
1932 else if (t == NULL)
1933 {
1934 /* We could not find the version for a symbol when
1935 generating a shared archive. Return an error. */
1936 (*_bfd_error_handler)
d003868e
AM
1937 (_("%B: undefined versioned symbol name %s"),
1938 sinfo->output_bfd, h->root.root.string);
45d6a902
AM
1939 bfd_set_error (bfd_error_bad_value);
1940 sinfo->failed = TRUE;
1941 return FALSE;
1942 }
1943
1944 if (hidden)
f5385ebf 1945 h->hidden = 1;
45d6a902
AM
1946 }
1947
1948 /* If we don't have a version for this symbol, see if we can find
1949 something. */
1950 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
1951 {
1952 struct bfd_elf_version_tree *t;
1953 struct bfd_elf_version_tree *local_ver;
1954 struct bfd_elf_version_expr *d;
1955
1956 /* See if can find what version this symbol is in. If the
1957 symbol is supposed to be local, then don't actually register
1958 it. */
1959 local_ver = NULL;
1960 for (t = sinfo->verdefs; t != NULL; t = t->next)
1961 {
108ba305 1962 if (t->globals.list != NULL)
45d6a902
AM
1963 {
1964 bfd_boolean matched;
1965
1966 matched = FALSE;
108ba305
JJ
1967 d = NULL;
1968 while ((d = (*t->match) (&t->globals, d,
1969 h->root.root.string)) != NULL)
1970 if (d->symver)
1971 matched = TRUE;
1972 else
1973 {
1974 /* There is a version without definition. Make
1975 the symbol the default definition for this
1976 version. */
1977 h->verinfo.vertree = t;
1978 local_ver = NULL;
1979 d->script = 1;
1980 break;
1981 }
45d6a902
AM
1982 if (d != NULL)
1983 break;
1984 else if (matched)
1985 /* There is no undefined version for this symbol. Hide the
1986 default one. */
1987 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1988 }
1989
108ba305 1990 if (t->locals.list != NULL)
45d6a902 1991 {
108ba305
JJ
1992 d = NULL;
1993 while ((d = (*t->match) (&t->locals, d,
1994 h->root.root.string)) != NULL)
45d6a902 1995 {
108ba305 1996 local_ver = t;
45d6a902 1997 /* If the match is "*", keep looking for a more
108ba305
JJ
1998 explicit, perhaps even global, match.
1999 XXX: Shouldn't this be !d->wildcard instead? */
2000 if (d->pattern[0] != '*' || d->pattern[1] != '\0')
2001 break;
45d6a902
AM
2002 }
2003
2004 if (d != NULL)
2005 break;
2006 }
2007 }
2008
2009 if (local_ver != NULL)
2010 {
2011 h->verinfo.vertree = local_ver;
2012 if (h->dynindx != -1
45d6a902
AM
2013 && ! info->export_dynamic)
2014 {
2015 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2016 }
2017 }
2018 }
2019
2020 return TRUE;
2021}
2022\f
45d6a902
AM
2023/* Read and swap the relocs from the section indicated by SHDR. This
2024 may be either a REL or a RELA section. The relocations are
2025 translated into RELA relocations and stored in INTERNAL_RELOCS,
2026 which should have already been allocated to contain enough space.
2027 The EXTERNAL_RELOCS are a buffer where the external form of the
2028 relocations should be stored.
2029
2030 Returns FALSE if something goes wrong. */
2031
2032static bfd_boolean
268b6b39 2033elf_link_read_relocs_from_section (bfd *abfd,
243ef1e0 2034 asection *sec,
268b6b39
AM
2035 Elf_Internal_Shdr *shdr,
2036 void *external_relocs,
2037 Elf_Internal_Rela *internal_relocs)
45d6a902 2038{
9c5bfbb7 2039 const struct elf_backend_data *bed;
268b6b39 2040 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
45d6a902
AM
2041 const bfd_byte *erela;
2042 const bfd_byte *erelaend;
2043 Elf_Internal_Rela *irela;
243ef1e0
L
2044 Elf_Internal_Shdr *symtab_hdr;
2045 size_t nsyms;
45d6a902 2046
45d6a902
AM
2047 /* Position ourselves at the start of the section. */
2048 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2049 return FALSE;
2050
2051 /* Read the relocations. */
2052 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2053 return FALSE;
2054
243ef1e0
L
2055 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2056 nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
2057
45d6a902
AM
2058 bed = get_elf_backend_data (abfd);
2059
2060 /* Convert the external relocations to the internal format. */
2061 if (shdr->sh_entsize == bed->s->sizeof_rel)
2062 swap_in = bed->s->swap_reloc_in;
2063 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2064 swap_in = bed->s->swap_reloca_in;
2065 else
2066 {
2067 bfd_set_error (bfd_error_wrong_format);
2068 return FALSE;
2069 }
2070
2071 erela = external_relocs;
51992aec 2072 erelaend = erela + shdr->sh_size;
45d6a902
AM
2073 irela = internal_relocs;
2074 while (erela < erelaend)
2075 {
243ef1e0
L
2076 bfd_vma r_symndx;
2077
45d6a902 2078 (*swap_in) (abfd, erela, irela);
243ef1e0
L
2079 r_symndx = ELF32_R_SYM (irela->r_info);
2080 if (bed->s->arch_size == 64)
2081 r_symndx >>= 24;
2082 if ((size_t) r_symndx >= nsyms)
2083 {
2084 (*_bfd_error_handler)
d003868e
AM
2085 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2086 " for offset 0x%lx in section `%A'"),
2087 abfd, sec,
2088 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
243ef1e0
L
2089 bfd_set_error (bfd_error_bad_value);
2090 return FALSE;
2091 }
45d6a902
AM
2092 irela += bed->s->int_rels_per_ext_rel;
2093 erela += shdr->sh_entsize;
2094 }
2095
2096 return TRUE;
2097}
2098
2099/* Read and swap the relocs for a section O. They may have been
2100 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2101 not NULL, they are used as buffers to read into. They are known to
2102 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2103 the return value is allocated using either malloc or bfd_alloc,
2104 according to the KEEP_MEMORY argument. If O has two relocation
2105 sections (both REL and RELA relocations), then the REL_HDR
2106 relocations will appear first in INTERNAL_RELOCS, followed by the
2107 REL_HDR2 relocations. */
2108
2109Elf_Internal_Rela *
268b6b39
AM
2110_bfd_elf_link_read_relocs (bfd *abfd,
2111 asection *o,
2112 void *external_relocs,
2113 Elf_Internal_Rela *internal_relocs,
2114 bfd_boolean keep_memory)
45d6a902
AM
2115{
2116 Elf_Internal_Shdr *rel_hdr;
268b6b39 2117 void *alloc1 = NULL;
45d6a902 2118 Elf_Internal_Rela *alloc2 = NULL;
9c5bfbb7 2119 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
45d6a902
AM
2120
2121 if (elf_section_data (o)->relocs != NULL)
2122 return elf_section_data (o)->relocs;
2123
2124 if (o->reloc_count == 0)
2125 return NULL;
2126
2127 rel_hdr = &elf_section_data (o)->rel_hdr;
2128
2129 if (internal_relocs == NULL)
2130 {
2131 bfd_size_type size;
2132
2133 size = o->reloc_count;
2134 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2135 if (keep_memory)
268b6b39 2136 internal_relocs = bfd_alloc (abfd, size);
45d6a902 2137 else
268b6b39 2138 internal_relocs = alloc2 = bfd_malloc (size);
45d6a902
AM
2139 if (internal_relocs == NULL)
2140 goto error_return;
2141 }
2142
2143 if (external_relocs == NULL)
2144 {
2145 bfd_size_type size = rel_hdr->sh_size;
2146
2147 if (elf_section_data (o)->rel_hdr2)
2148 size += elf_section_data (o)->rel_hdr2->sh_size;
268b6b39 2149 alloc1 = bfd_malloc (size);
45d6a902
AM
2150 if (alloc1 == NULL)
2151 goto error_return;
2152 external_relocs = alloc1;
2153 }
2154
243ef1e0 2155 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
45d6a902
AM
2156 external_relocs,
2157 internal_relocs))
2158 goto error_return;
51992aec
AM
2159 if (elf_section_data (o)->rel_hdr2
2160 && (!elf_link_read_relocs_from_section
2161 (abfd, o,
2162 elf_section_data (o)->rel_hdr2,
2163 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2164 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2165 * bed->s->int_rels_per_ext_rel))))
45d6a902
AM
2166 goto error_return;
2167
2168 /* Cache the results for next time, if we can. */
2169 if (keep_memory)
2170 elf_section_data (o)->relocs = internal_relocs;
2171
2172 if (alloc1 != NULL)
2173 free (alloc1);
2174
2175 /* Don't free alloc2, since if it was allocated we are passing it
2176 back (under the name of internal_relocs). */
2177
2178 return internal_relocs;
2179
2180 error_return:
2181 if (alloc1 != NULL)
2182 free (alloc1);
2183 if (alloc2 != NULL)
2184 free (alloc2);
2185 return NULL;
2186}
2187
2188/* Compute the size of, and allocate space for, REL_HDR which is the
2189 section header for a section containing relocations for O. */
2190
2191bfd_boolean
268b6b39
AM
2192_bfd_elf_link_size_reloc_section (bfd *abfd,
2193 Elf_Internal_Shdr *rel_hdr,
2194 asection *o)
45d6a902
AM
2195{
2196 bfd_size_type reloc_count;
2197 bfd_size_type num_rel_hashes;
2198
2199 /* Figure out how many relocations there will be. */
2200 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2201 reloc_count = elf_section_data (o)->rel_count;
2202 else
2203 reloc_count = elf_section_data (o)->rel_count2;
2204
2205 num_rel_hashes = o->reloc_count;
2206 if (num_rel_hashes < reloc_count)
2207 num_rel_hashes = reloc_count;
2208
2209 /* That allows us to calculate the size of the section. */
2210 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2211
2212 /* The contents field must last into write_object_contents, so we
2213 allocate it with bfd_alloc rather than malloc. Also since we
2214 cannot be sure that the contents will actually be filled in,
2215 we zero the allocated space. */
268b6b39 2216 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
45d6a902
AM
2217 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2218 return FALSE;
2219
2220 /* We only allocate one set of hash entries, so we only do it the
2221 first time we are called. */
2222 if (elf_section_data (o)->rel_hashes == NULL
2223 && num_rel_hashes)
2224 {
2225 struct elf_link_hash_entry **p;
2226
268b6b39 2227 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
45d6a902
AM
2228 if (p == NULL)
2229 return FALSE;
2230
2231 elf_section_data (o)->rel_hashes = p;
2232 }
2233
2234 return TRUE;
2235}
2236
2237/* Copy the relocations indicated by the INTERNAL_RELOCS (which
2238 originated from the section given by INPUT_REL_HDR) to the
2239 OUTPUT_BFD. */
2240
2241bfd_boolean
268b6b39
AM
2242_bfd_elf_link_output_relocs (bfd *output_bfd,
2243 asection *input_section,
2244 Elf_Internal_Shdr *input_rel_hdr,
eac338cf
PB
2245 Elf_Internal_Rela *internal_relocs,
2246 struct elf_link_hash_entry **rel_hash
2247 ATTRIBUTE_UNUSED)
45d6a902
AM
2248{
2249 Elf_Internal_Rela *irela;
2250 Elf_Internal_Rela *irelaend;
2251 bfd_byte *erel;
2252 Elf_Internal_Shdr *output_rel_hdr;
2253 asection *output_section;
2254 unsigned int *rel_countp = NULL;
9c5bfbb7 2255 const struct elf_backend_data *bed;
268b6b39 2256 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
45d6a902
AM
2257
2258 output_section = input_section->output_section;
2259 output_rel_hdr = NULL;
2260
2261 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2262 == input_rel_hdr->sh_entsize)
2263 {
2264 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2265 rel_countp = &elf_section_data (output_section)->rel_count;
2266 }
2267 else if (elf_section_data (output_section)->rel_hdr2
2268 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2269 == input_rel_hdr->sh_entsize))
2270 {
2271 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2272 rel_countp = &elf_section_data (output_section)->rel_count2;
2273 }
2274 else
2275 {
2276 (*_bfd_error_handler)
d003868e
AM
2277 (_("%B: relocation size mismatch in %B section %A"),
2278 output_bfd, input_section->owner, input_section);
45d6a902
AM
2279 bfd_set_error (bfd_error_wrong_object_format);
2280 return FALSE;
2281 }
2282
2283 bed = get_elf_backend_data (output_bfd);
2284 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2285 swap_out = bed->s->swap_reloc_out;
2286 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2287 swap_out = bed->s->swap_reloca_out;
2288 else
2289 abort ();
2290
2291 erel = output_rel_hdr->contents;
2292 erel += *rel_countp * input_rel_hdr->sh_entsize;
2293 irela = internal_relocs;
2294 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2295 * bed->s->int_rels_per_ext_rel);
2296 while (irela < irelaend)
2297 {
2298 (*swap_out) (output_bfd, irela, erel);
2299 irela += bed->s->int_rels_per_ext_rel;
2300 erel += input_rel_hdr->sh_entsize;
2301 }
2302
2303 /* Bump the counter, so that we know where to add the next set of
2304 relocations. */
2305 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2306
2307 return TRUE;
2308}
2309\f
508c3946
L
2310/* Make weak undefined symbols in PIE dynamic. */
2311
2312bfd_boolean
2313_bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2314 struct elf_link_hash_entry *h)
2315{
2316 if (info->pie
2317 && h->dynindx == -1
2318 && h->root.type == bfd_link_hash_undefweak)
2319 return bfd_elf_link_record_dynamic_symbol (info, h);
2320
2321 return TRUE;
2322}
2323
45d6a902
AM
2324/* Fix up the flags for a symbol. This handles various cases which
2325 can only be fixed after all the input files are seen. This is
2326 currently called by both adjust_dynamic_symbol and
2327 assign_sym_version, which is unnecessary but perhaps more robust in
2328 the face of future changes. */
2329
2330bfd_boolean
268b6b39
AM
2331_bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2332 struct elf_info_failed *eif)
45d6a902 2333{
508c3946
L
2334 const struct elf_backend_data *bed = NULL;
2335
45d6a902
AM
2336 /* If this symbol was mentioned in a non-ELF file, try to set
2337 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2338 permit a non-ELF file to correctly refer to a symbol defined in
2339 an ELF dynamic object. */
f5385ebf 2340 if (h->non_elf)
45d6a902
AM
2341 {
2342 while (h->root.type == bfd_link_hash_indirect)
2343 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2344
2345 if (h->root.type != bfd_link_hash_defined
2346 && h->root.type != bfd_link_hash_defweak)
f5385ebf
AM
2347 {
2348 h->ref_regular = 1;
2349 h->ref_regular_nonweak = 1;
2350 }
45d6a902
AM
2351 else
2352 {
2353 if (h->root.u.def.section->owner != NULL
2354 && (bfd_get_flavour (h->root.u.def.section->owner)
2355 == bfd_target_elf_flavour))
f5385ebf
AM
2356 {
2357 h->ref_regular = 1;
2358 h->ref_regular_nonweak = 1;
2359 }
45d6a902 2360 else
f5385ebf 2361 h->def_regular = 1;
45d6a902
AM
2362 }
2363
2364 if (h->dynindx == -1
f5385ebf
AM
2365 && (h->def_dynamic
2366 || h->ref_dynamic))
45d6a902 2367 {
c152c796 2368 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
45d6a902
AM
2369 {
2370 eif->failed = TRUE;
2371 return FALSE;
2372 }
2373 }
2374 }
2375 else
2376 {
f5385ebf 2377 /* Unfortunately, NON_ELF is only correct if the symbol
45d6a902
AM
2378 was first seen in a non-ELF file. Fortunately, if the symbol
2379 was first seen in an ELF file, we're probably OK unless the
2380 symbol was defined in a non-ELF file. Catch that case here.
2381 FIXME: We're still in trouble if the symbol was first seen in
2382 a dynamic object, and then later in a non-ELF regular object. */
2383 if ((h->root.type == bfd_link_hash_defined
2384 || h->root.type == bfd_link_hash_defweak)
f5385ebf 2385 && !h->def_regular
45d6a902
AM
2386 && (h->root.u.def.section->owner != NULL
2387 ? (bfd_get_flavour (h->root.u.def.section->owner)
2388 != bfd_target_elf_flavour)
2389 : (bfd_is_abs_section (h->root.u.def.section)
f5385ebf
AM
2390 && !h->def_dynamic)))
2391 h->def_regular = 1;
45d6a902
AM
2392 }
2393
508c3946
L
2394 /* Backend specific symbol fixup. */
2395 if (elf_hash_table (eif->info)->dynobj)
2396 {
2397 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2398 if (bed->elf_backend_fixup_symbol
2399 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2400 return FALSE;
2401 }
2402
45d6a902
AM
2403 /* If this is a final link, and the symbol was defined as a common
2404 symbol in a regular object file, and there was no definition in
2405 any dynamic object, then the linker will have allocated space for
f5385ebf 2406 the symbol in a common section but the DEF_REGULAR
45d6a902
AM
2407 flag will not have been set. */
2408 if (h->root.type == bfd_link_hash_defined
f5385ebf
AM
2409 && !h->def_regular
2410 && h->ref_regular
2411 && !h->def_dynamic
45d6a902 2412 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
f5385ebf 2413 h->def_regular = 1;
45d6a902
AM
2414
2415 /* If -Bsymbolic was used (which means to bind references to global
2416 symbols to the definition within the shared object), and this
2417 symbol was defined in a regular object, then it actually doesn't
9c7a29a3
AM
2418 need a PLT entry. Likewise, if the symbol has non-default
2419 visibility. If the symbol has hidden or internal visibility, we
c1be741f 2420 will force it local. */
f5385ebf 2421 if (h->needs_plt
45d6a902 2422 && eif->info->shared
0eddce27 2423 && is_elf_hash_table (eif->info->hash)
55255dae 2424 && (SYMBOLIC_BIND (eif->info, h)
c1be741f 2425 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
f5385ebf 2426 && h->def_regular)
45d6a902 2427 {
45d6a902
AM
2428 bfd_boolean force_local;
2429
45d6a902
AM
2430 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2431 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2432 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2433 }
2434
2435 /* If a weak undefined symbol has non-default visibility, we also
2436 hide it from the dynamic linker. */
9c7a29a3 2437 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
45d6a902
AM
2438 && h->root.type == bfd_link_hash_undefweak)
2439 {
9c5bfbb7 2440 const struct elf_backend_data *bed;
45d6a902
AM
2441 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2442 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2443 }
2444
2445 /* If this is a weak defined symbol in a dynamic object, and we know
2446 the real definition in the dynamic object, copy interesting flags
2447 over to the real definition. */
f6e332e6 2448 if (h->u.weakdef != NULL)
45d6a902
AM
2449 {
2450 struct elf_link_hash_entry *weakdef;
2451
f6e332e6 2452 weakdef = h->u.weakdef;
45d6a902
AM
2453 if (h->root.type == bfd_link_hash_indirect)
2454 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2455
2456 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2457 || h->root.type == bfd_link_hash_defweak);
2458 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2459 || weakdef->root.type == bfd_link_hash_defweak);
f5385ebf 2460 BFD_ASSERT (weakdef->def_dynamic);
45d6a902
AM
2461
2462 /* If the real definition is defined by a regular object file,
2463 don't do anything special. See the longer description in
2464 _bfd_elf_adjust_dynamic_symbol, below. */
f5385ebf 2465 if (weakdef->def_regular)
f6e332e6 2466 h->u.weakdef = NULL;
45d6a902 2467 else
508c3946
L
2468 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef,
2469 h);
45d6a902
AM
2470 }
2471
2472 return TRUE;
2473}
2474
2475/* Make the backend pick a good value for a dynamic symbol. This is
2476 called via elf_link_hash_traverse, and also calls itself
2477 recursively. */
2478
2479bfd_boolean
268b6b39 2480_bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
45d6a902 2481{
268b6b39 2482 struct elf_info_failed *eif = data;
45d6a902 2483 bfd *dynobj;
9c5bfbb7 2484 const struct elf_backend_data *bed;
45d6a902 2485
0eddce27 2486 if (! is_elf_hash_table (eif->info->hash))
45d6a902
AM
2487 return FALSE;
2488
2489 if (h->root.type == bfd_link_hash_warning)
2490 {
a6aa5195
AM
2491 h->got = elf_hash_table (eif->info)->init_got_offset;
2492 h->plt = elf_hash_table (eif->info)->init_plt_offset;
45d6a902
AM
2493
2494 /* When warning symbols are created, they **replace** the "real"
2495 entry in the hash table, thus we never get to see the real
2496 symbol in a hash traversal. So look at it now. */
2497 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2498 }
2499
2500 /* Ignore indirect symbols. These are added by the versioning code. */
2501 if (h->root.type == bfd_link_hash_indirect)
2502 return TRUE;
2503
2504 /* Fix the symbol flags. */
2505 if (! _bfd_elf_fix_symbol_flags (h, eif))
2506 return FALSE;
2507
2508 /* If this symbol does not require a PLT entry, and it is not
2509 defined by a dynamic object, or is not referenced by a regular
2510 object, ignore it. We do have to handle a weak defined symbol,
2511 even if no regular object refers to it, if we decided to add it
2512 to the dynamic symbol table. FIXME: Do we normally need to worry
2513 about symbols which are defined by one dynamic object and
2514 referenced by another one? */
f5385ebf
AM
2515 if (!h->needs_plt
2516 && (h->def_regular
2517 || !h->def_dynamic
2518 || (!h->ref_regular
f6e332e6 2519 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
45d6a902 2520 {
a6aa5195 2521 h->plt = elf_hash_table (eif->info)->init_plt_offset;
45d6a902
AM
2522 return TRUE;
2523 }
2524
2525 /* If we've already adjusted this symbol, don't do it again. This
2526 can happen via a recursive call. */
f5385ebf 2527 if (h->dynamic_adjusted)
45d6a902
AM
2528 return TRUE;
2529
2530 /* Don't look at this symbol again. Note that we must set this
2531 after checking the above conditions, because we may look at a
2532 symbol once, decide not to do anything, and then get called
2533 recursively later after REF_REGULAR is set below. */
f5385ebf 2534 h->dynamic_adjusted = 1;
45d6a902
AM
2535
2536 /* If this is a weak definition, and we know a real definition, and
2537 the real symbol is not itself defined by a regular object file,
2538 then get a good value for the real definition. We handle the
2539 real symbol first, for the convenience of the backend routine.
2540
2541 Note that there is a confusing case here. If the real definition
2542 is defined by a regular object file, we don't get the real symbol
2543 from the dynamic object, but we do get the weak symbol. If the
2544 processor backend uses a COPY reloc, then if some routine in the
2545 dynamic object changes the real symbol, we will not see that
2546 change in the corresponding weak symbol. This is the way other
2547 ELF linkers work as well, and seems to be a result of the shared
2548 library model.
2549
2550 I will clarify this issue. Most SVR4 shared libraries define the
2551 variable _timezone and define timezone as a weak synonym. The
2552 tzset call changes _timezone. If you write
2553 extern int timezone;
2554 int _timezone = 5;
2555 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2556 you might expect that, since timezone is a synonym for _timezone,
2557 the same number will print both times. However, if the processor
2558 backend uses a COPY reloc, then actually timezone will be copied
2559 into your process image, and, since you define _timezone
2560 yourself, _timezone will not. Thus timezone and _timezone will
2561 wind up at different memory locations. The tzset call will set
2562 _timezone, leaving timezone unchanged. */
2563
f6e332e6 2564 if (h->u.weakdef != NULL)
45d6a902
AM
2565 {
2566 /* If we get to this point, we know there is an implicit
2567 reference by a regular object file via the weak symbol H.
2568 FIXME: Is this really true? What if the traversal finds
f6e332e6
AM
2569 H->U.WEAKDEF before it finds H? */
2570 h->u.weakdef->ref_regular = 1;
45d6a902 2571
f6e332e6 2572 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
45d6a902
AM
2573 return FALSE;
2574 }
2575
2576 /* If a symbol has no type and no size and does not require a PLT
2577 entry, then we are probably about to do the wrong thing here: we
2578 are probably going to create a COPY reloc for an empty object.
2579 This case can arise when a shared object is built with assembly
2580 code, and the assembly code fails to set the symbol type. */
2581 if (h->size == 0
2582 && h->type == STT_NOTYPE
f5385ebf 2583 && !h->needs_plt)
45d6a902
AM
2584 (*_bfd_error_handler)
2585 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2586 h->root.root.string);
2587
2588 dynobj = elf_hash_table (eif->info)->dynobj;
2589 bed = get_elf_backend_data (dynobj);
2590 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2591 {
2592 eif->failed = TRUE;
2593 return FALSE;
2594 }
2595
2596 return TRUE;
2597}
2598
2599/* Adjust all external symbols pointing into SEC_MERGE sections
2600 to reflect the object merging within the sections. */
2601
2602bfd_boolean
268b6b39 2603_bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
45d6a902
AM
2604{
2605 asection *sec;
2606
2607 if (h->root.type == bfd_link_hash_warning)
2608 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2609
2610 if ((h->root.type == bfd_link_hash_defined
2611 || h->root.type == bfd_link_hash_defweak)
2612 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2613 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2614 {
268b6b39 2615 bfd *output_bfd = data;
45d6a902
AM
2616
2617 h->root.u.def.value =
2618 _bfd_merged_section_offset (output_bfd,
2619 &h->root.u.def.section,
2620 elf_section_data (sec)->sec_info,
753731ee 2621 h->root.u.def.value);
45d6a902
AM
2622 }
2623
2624 return TRUE;
2625}
986a241f
RH
2626
2627/* Returns false if the symbol referred to by H should be considered
2628 to resolve local to the current module, and true if it should be
2629 considered to bind dynamically. */
2630
2631bfd_boolean
268b6b39
AM
2632_bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2633 struct bfd_link_info *info,
2634 bfd_boolean ignore_protected)
986a241f
RH
2635{
2636 bfd_boolean binding_stays_local_p;
2637
2638 if (h == NULL)
2639 return FALSE;
2640
2641 while (h->root.type == bfd_link_hash_indirect
2642 || h->root.type == bfd_link_hash_warning)
2643 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2644
2645 /* If it was forced local, then clearly it's not dynamic. */
2646 if (h->dynindx == -1)
2647 return FALSE;
f5385ebf 2648 if (h->forced_local)
986a241f
RH
2649 return FALSE;
2650
2651 /* Identify the cases where name binding rules say that a
2652 visible symbol resolves locally. */
55255dae 2653 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
986a241f
RH
2654
2655 switch (ELF_ST_VISIBILITY (h->other))
2656 {
2657 case STV_INTERNAL:
2658 case STV_HIDDEN:
2659 return FALSE;
2660
2661 case STV_PROTECTED:
2662 /* Proper resolution for function pointer equality may require
2663 that these symbols perhaps be resolved dynamically, even though
2664 we should be resolving them to the current module. */
1c16dfa5 2665 if (!ignore_protected || h->type != STT_FUNC)
986a241f
RH
2666 binding_stays_local_p = TRUE;
2667 break;
2668
2669 default:
986a241f
RH
2670 break;
2671 }
2672
aa37626c 2673 /* If it isn't defined locally, then clearly it's dynamic. */
f5385ebf 2674 if (!h->def_regular)
aa37626c
L
2675 return TRUE;
2676
986a241f
RH
2677 /* Otherwise, the symbol is dynamic if binding rules don't tell
2678 us that it remains local. */
2679 return !binding_stays_local_p;
2680}
f6c52c13
AM
2681
2682/* Return true if the symbol referred to by H should be considered
2683 to resolve local to the current module, and false otherwise. Differs
2684 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2685 undefined symbols and weak symbols. */
2686
2687bfd_boolean
268b6b39
AM
2688_bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2689 struct bfd_link_info *info,
2690 bfd_boolean local_protected)
f6c52c13
AM
2691{
2692 /* If it's a local sym, of course we resolve locally. */
2693 if (h == NULL)
2694 return TRUE;
2695
7e2294f9
AO
2696 /* Common symbols that become definitions don't get the DEF_REGULAR
2697 flag set, so test it first, and don't bail out. */
2698 if (ELF_COMMON_DEF_P (h))
2699 /* Do nothing. */;
f6c52c13 2700 /* If we don't have a definition in a regular file, then we can't
49ff44d6
L
2701 resolve locally. The sym is either undefined or dynamic. */
2702 else if (!h->def_regular)
f6c52c13
AM
2703 return FALSE;
2704
2705 /* Forced local symbols resolve locally. */
f5385ebf 2706 if (h->forced_local)
f6c52c13
AM
2707 return TRUE;
2708
2709 /* As do non-dynamic symbols. */
2710 if (h->dynindx == -1)
2711 return TRUE;
2712
2713 /* At this point, we know the symbol is defined and dynamic. In an
2714 executable it must resolve locally, likewise when building symbolic
2715 shared libraries. */
55255dae 2716 if (info->executable || SYMBOLIC_BIND (info, h))
f6c52c13
AM
2717 return TRUE;
2718
2719 /* Now deal with defined dynamic symbols in shared libraries. Ones
2720 with default visibility might not resolve locally. */
2721 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2722 return FALSE;
2723
2724 /* However, STV_HIDDEN or STV_INTERNAL ones must be local. */
2725 if (ELF_ST_VISIBILITY (h->other) != STV_PROTECTED)
2726 return TRUE;
2727
1c16dfa5
L
2728 /* STV_PROTECTED non-function symbols are local. */
2729 if (h->type != STT_FUNC)
2730 return TRUE;
2731
f6c52c13
AM
2732 /* Function pointer equality tests may require that STV_PROTECTED
2733 symbols be treated as dynamic symbols, even when we know that the
2734 dynamic linker will resolve them locally. */
2735 return local_protected;
2736}
e1918d23
AM
2737
2738/* Caches some TLS segment info, and ensures that the TLS segment vma is
2739 aligned. Returns the first TLS output section. */
2740
2741struct bfd_section *
2742_bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2743{
2744 struct bfd_section *sec, *tls;
2745 unsigned int align = 0;
2746
2747 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2748 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2749 break;
2750 tls = sec;
2751
2752 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2753 if (sec->alignment_power > align)
2754 align = sec->alignment_power;
2755
2756 elf_hash_table (info)->tls_sec = tls;
2757
2758 /* Ensure the alignment of the first section is the largest alignment,
2759 so that the tls segment starts aligned. */
2760 if (tls != NULL)
2761 tls->alignment_power = align;
2762
2763 return tls;
2764}
0ad989f9
L
2765
2766/* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2767static bfd_boolean
2768is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2769 Elf_Internal_Sym *sym)
2770{
a4d8e49b
L
2771 const struct elf_backend_data *bed;
2772
0ad989f9
L
2773 /* Local symbols do not count, but target specific ones might. */
2774 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2775 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2776 return FALSE;
2777
2778 /* Function symbols do not count. */
2779 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
2780 return FALSE;
2781
2782 /* If the section is undefined, then so is the symbol. */
2783 if (sym->st_shndx == SHN_UNDEF)
2784 return FALSE;
2785
2786 /* If the symbol is defined in the common section, then
2787 it is a common definition and so does not count. */
a4d8e49b
L
2788 bed = get_elf_backend_data (abfd);
2789 if (bed->common_definition (sym))
0ad989f9
L
2790 return FALSE;
2791
2792 /* If the symbol is in a target specific section then we
2793 must rely upon the backend to tell us what it is. */
2794 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2795 /* FIXME - this function is not coded yet:
2796
2797 return _bfd_is_global_symbol_definition (abfd, sym);
2798
2799 Instead for now assume that the definition is not global,
2800 Even if this is wrong, at least the linker will behave
2801 in the same way that it used to do. */
2802 return FALSE;
2803
2804 return TRUE;
2805}
2806
2807/* Search the symbol table of the archive element of the archive ABFD
2808 whose archive map contains a mention of SYMDEF, and determine if
2809 the symbol is defined in this element. */
2810static bfd_boolean
2811elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2812{
2813 Elf_Internal_Shdr * hdr;
2814 bfd_size_type symcount;
2815 bfd_size_type extsymcount;
2816 bfd_size_type extsymoff;
2817 Elf_Internal_Sym *isymbuf;
2818 Elf_Internal_Sym *isym;
2819 Elf_Internal_Sym *isymend;
2820 bfd_boolean result;
2821
2822 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2823 if (abfd == NULL)
2824 return FALSE;
2825
2826 if (! bfd_check_format (abfd, bfd_object))
2827 return FALSE;
2828
2829 /* If we have already included the element containing this symbol in the
2830 link then we do not need to include it again. Just claim that any symbol
2831 it contains is not a definition, so that our caller will not decide to
2832 (re)include this element. */
2833 if (abfd->archive_pass)
2834 return FALSE;
2835
2836 /* Select the appropriate symbol table. */
2837 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2838 hdr = &elf_tdata (abfd)->symtab_hdr;
2839 else
2840 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2841
2842 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2843
2844 /* The sh_info field of the symtab header tells us where the
2845 external symbols start. We don't care about the local symbols. */
2846 if (elf_bad_symtab (abfd))
2847 {
2848 extsymcount = symcount;
2849 extsymoff = 0;
2850 }
2851 else
2852 {
2853 extsymcount = symcount - hdr->sh_info;
2854 extsymoff = hdr->sh_info;
2855 }
2856
2857 if (extsymcount == 0)
2858 return FALSE;
2859
2860 /* Read in the symbol table. */
2861 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2862 NULL, NULL, NULL);
2863 if (isymbuf == NULL)
2864 return FALSE;
2865
2866 /* Scan the symbol table looking for SYMDEF. */
2867 result = FALSE;
2868 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2869 {
2870 const char *name;
2871
2872 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2873 isym->st_name);
2874 if (name == NULL)
2875 break;
2876
2877 if (strcmp (name, symdef->name) == 0)
2878 {
2879 result = is_global_data_symbol_definition (abfd, isym);
2880 break;
2881 }
2882 }
2883
2884 free (isymbuf);
2885
2886 return result;
2887}
2888\f
5a580b3a
AM
2889/* Add an entry to the .dynamic table. */
2890
2891bfd_boolean
2892_bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2893 bfd_vma tag,
2894 bfd_vma val)
2895{
2896 struct elf_link_hash_table *hash_table;
2897 const struct elf_backend_data *bed;
2898 asection *s;
2899 bfd_size_type newsize;
2900 bfd_byte *newcontents;
2901 Elf_Internal_Dyn dyn;
2902
2903 hash_table = elf_hash_table (info);
2904 if (! is_elf_hash_table (hash_table))
2905 return FALSE;
2906
2907 bed = get_elf_backend_data (hash_table->dynobj);
2908 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
2909 BFD_ASSERT (s != NULL);
2910
eea6121a 2911 newsize = s->size + bed->s->sizeof_dyn;
5a580b3a
AM
2912 newcontents = bfd_realloc (s->contents, newsize);
2913 if (newcontents == NULL)
2914 return FALSE;
2915
2916 dyn.d_tag = tag;
2917 dyn.d_un.d_val = val;
eea6121a 2918 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
5a580b3a 2919
eea6121a 2920 s->size = newsize;
5a580b3a
AM
2921 s->contents = newcontents;
2922
2923 return TRUE;
2924}
2925
2926/* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
2927 otherwise just check whether one already exists. Returns -1 on error,
2928 1 if a DT_NEEDED tag already exists, and 0 on success. */
2929
4ad4eba5 2930static int
7e9f0867
AM
2931elf_add_dt_needed_tag (bfd *abfd,
2932 struct bfd_link_info *info,
4ad4eba5
AM
2933 const char *soname,
2934 bfd_boolean do_it)
5a580b3a
AM
2935{
2936 struct elf_link_hash_table *hash_table;
2937 bfd_size_type oldsize;
2938 bfd_size_type strindex;
2939
7e9f0867
AM
2940 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
2941 return -1;
2942
5a580b3a
AM
2943 hash_table = elf_hash_table (info);
2944 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
2945 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
2946 if (strindex == (bfd_size_type) -1)
2947 return -1;
2948
2949 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
2950 {
2951 asection *sdyn;
2952 const struct elf_backend_data *bed;
2953 bfd_byte *extdyn;
2954
2955 bed = get_elf_backend_data (hash_table->dynobj);
2956 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
7e9f0867
AM
2957 if (sdyn != NULL)
2958 for (extdyn = sdyn->contents;
2959 extdyn < sdyn->contents + sdyn->size;
2960 extdyn += bed->s->sizeof_dyn)
2961 {
2962 Elf_Internal_Dyn dyn;
5a580b3a 2963
7e9f0867
AM
2964 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
2965 if (dyn.d_tag == DT_NEEDED
2966 && dyn.d_un.d_val == strindex)
2967 {
2968 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2969 return 1;
2970 }
2971 }
5a580b3a
AM
2972 }
2973
2974 if (do_it)
2975 {
7e9f0867
AM
2976 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
2977 return -1;
2978
5a580b3a
AM
2979 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
2980 return -1;
2981 }
2982 else
2983 /* We were just checking for existence of the tag. */
2984 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2985
2986 return 0;
2987}
2988
2989/* Sort symbol by value and section. */
4ad4eba5
AM
2990static int
2991elf_sort_symbol (const void *arg1, const void *arg2)
5a580b3a
AM
2992{
2993 const struct elf_link_hash_entry *h1;
2994 const struct elf_link_hash_entry *h2;
10b7e05b 2995 bfd_signed_vma vdiff;
5a580b3a
AM
2996
2997 h1 = *(const struct elf_link_hash_entry **) arg1;
2998 h2 = *(const struct elf_link_hash_entry **) arg2;
10b7e05b
NC
2999 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3000 if (vdiff != 0)
3001 return vdiff > 0 ? 1 : -1;
3002 else
3003 {
3004 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3005 if (sdiff != 0)
3006 return sdiff > 0 ? 1 : -1;
3007 }
5a580b3a
AM
3008 return 0;
3009}
4ad4eba5 3010
5a580b3a
AM
3011/* This function is used to adjust offsets into .dynstr for
3012 dynamic symbols. This is called via elf_link_hash_traverse. */
3013
3014static bfd_boolean
3015elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3016{
3017 struct elf_strtab_hash *dynstr = data;
3018
3019 if (h->root.type == bfd_link_hash_warning)
3020 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3021
3022 if (h->dynindx != -1)
3023 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3024 return TRUE;
3025}
3026
3027/* Assign string offsets in .dynstr, update all structures referencing
3028 them. */
3029
4ad4eba5
AM
3030static bfd_boolean
3031elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
5a580b3a
AM
3032{
3033 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3034 struct elf_link_local_dynamic_entry *entry;
3035 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3036 bfd *dynobj = hash_table->dynobj;
3037 asection *sdyn;
3038 bfd_size_type size;
3039 const struct elf_backend_data *bed;
3040 bfd_byte *extdyn;
3041
3042 _bfd_elf_strtab_finalize (dynstr);
3043 size = _bfd_elf_strtab_size (dynstr);
3044
3045 bed = get_elf_backend_data (dynobj);
3046 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3047 BFD_ASSERT (sdyn != NULL);
3048
3049 /* Update all .dynamic entries referencing .dynstr strings. */
3050 for (extdyn = sdyn->contents;
eea6121a 3051 extdyn < sdyn->contents + sdyn->size;
5a580b3a
AM
3052 extdyn += bed->s->sizeof_dyn)
3053 {
3054 Elf_Internal_Dyn dyn;
3055
3056 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3057 switch (dyn.d_tag)
3058 {
3059 case DT_STRSZ:
3060 dyn.d_un.d_val = size;
3061 break;
3062 case DT_NEEDED:
3063 case DT_SONAME:
3064 case DT_RPATH:
3065 case DT_RUNPATH:
3066 case DT_FILTER:
3067 case DT_AUXILIARY:
3068 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3069 break;
3070 default:
3071 continue;
3072 }
3073 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3074 }
3075
3076 /* Now update local dynamic symbols. */
3077 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3078 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3079 entry->isym.st_name);
3080
3081 /* And the rest of dynamic symbols. */
3082 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3083
3084 /* Adjust version definitions. */
3085 if (elf_tdata (output_bfd)->cverdefs)
3086 {
3087 asection *s;
3088 bfd_byte *p;
3089 bfd_size_type i;
3090 Elf_Internal_Verdef def;
3091 Elf_Internal_Verdaux defaux;
3092
3093 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3094 p = s->contents;
3095 do
3096 {
3097 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3098 &def);
3099 p += sizeof (Elf_External_Verdef);
3e3b46e5
PB
3100 if (def.vd_aux != sizeof (Elf_External_Verdef))
3101 continue;
5a580b3a
AM
3102 for (i = 0; i < def.vd_cnt; ++i)
3103 {
3104 _bfd_elf_swap_verdaux_in (output_bfd,
3105 (Elf_External_Verdaux *) p, &defaux);
3106 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3107 defaux.vda_name);
3108 _bfd_elf_swap_verdaux_out (output_bfd,
3109 &defaux, (Elf_External_Verdaux *) p);
3110 p += sizeof (Elf_External_Verdaux);
3111 }
3112 }
3113 while (def.vd_next);
3114 }
3115
3116 /* Adjust version references. */
3117 if (elf_tdata (output_bfd)->verref)
3118 {
3119 asection *s;
3120 bfd_byte *p;
3121 bfd_size_type i;
3122 Elf_Internal_Verneed need;
3123 Elf_Internal_Vernaux needaux;
3124
3125 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3126 p = s->contents;
3127 do
3128 {
3129 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3130 &need);
3131 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3132 _bfd_elf_swap_verneed_out (output_bfd, &need,
3133 (Elf_External_Verneed *) p);
3134 p += sizeof (Elf_External_Verneed);
3135 for (i = 0; i < need.vn_cnt; ++i)
3136 {
3137 _bfd_elf_swap_vernaux_in (output_bfd,
3138 (Elf_External_Vernaux *) p, &needaux);
3139 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3140 needaux.vna_name);
3141 _bfd_elf_swap_vernaux_out (output_bfd,
3142 &needaux,
3143 (Elf_External_Vernaux *) p);
3144 p += sizeof (Elf_External_Vernaux);
3145 }
3146 }
3147 while (need.vn_next);
3148 }
3149
3150 return TRUE;
3151}
3152\f
4ad4eba5
AM
3153/* Add symbols from an ELF object file to the linker hash table. */
3154
3155static bfd_boolean
3156elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3157{
4ad4eba5
AM
3158 Elf_Internal_Shdr *hdr;
3159 bfd_size_type symcount;
3160 bfd_size_type extsymcount;
3161 bfd_size_type extsymoff;
3162 struct elf_link_hash_entry **sym_hash;
3163 bfd_boolean dynamic;
3164 Elf_External_Versym *extversym = NULL;
3165 Elf_External_Versym *ever;
3166 struct elf_link_hash_entry *weaks;
3167 struct elf_link_hash_entry **nondeflt_vers = NULL;
3168 bfd_size_type nondeflt_vers_cnt = 0;
3169 Elf_Internal_Sym *isymbuf = NULL;
3170 Elf_Internal_Sym *isym;
3171 Elf_Internal_Sym *isymend;
3172 const struct elf_backend_data *bed;
3173 bfd_boolean add_needed;
66eb6687 3174 struct elf_link_hash_table *htab;
4ad4eba5 3175 bfd_size_type amt;
66eb6687 3176 void *alloc_mark = NULL;
4f87808c
AM
3177 struct bfd_hash_entry **old_table = NULL;
3178 unsigned int old_size = 0;
3179 unsigned int old_count = 0;
66eb6687
AM
3180 void *old_tab = NULL;
3181 void *old_hash;
3182 void *old_ent;
3183 struct bfd_link_hash_entry *old_undefs = NULL;
3184 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3185 long old_dynsymcount = 0;
3186 size_t tabsize = 0;
3187 size_t hashsize = 0;
4ad4eba5 3188
66eb6687 3189 htab = elf_hash_table (info);
4ad4eba5 3190 bed = get_elf_backend_data (abfd);
4ad4eba5
AM
3191
3192 if ((abfd->flags & DYNAMIC) == 0)
3193 dynamic = FALSE;
3194 else
3195 {
3196 dynamic = TRUE;
3197
3198 /* You can't use -r against a dynamic object. Also, there's no
3199 hope of using a dynamic object which does not exactly match
3200 the format of the output file. */
3201 if (info->relocatable
66eb6687
AM
3202 || !is_elf_hash_table (htab)
3203 || htab->root.creator != abfd->xvec)
4ad4eba5 3204 {
9a0789ec
NC
3205 if (info->relocatable)
3206 bfd_set_error (bfd_error_invalid_operation);
3207 else
3208 bfd_set_error (bfd_error_wrong_format);
4ad4eba5
AM
3209 goto error_return;
3210 }
3211 }
3212
3213 /* As a GNU extension, any input sections which are named
3214 .gnu.warning.SYMBOL are treated as warning symbols for the given
3215 symbol. This differs from .gnu.warning sections, which generate
3216 warnings when they are included in an output file. */
3217 if (info->executable)
3218 {
3219 asection *s;
3220
3221 for (s = abfd->sections; s != NULL; s = s->next)
3222 {
3223 const char *name;
3224
3225 name = bfd_get_section_name (abfd, s);
0112cd26 3226 if (CONST_STRNEQ (name, ".gnu.warning."))
4ad4eba5
AM
3227 {
3228 char *msg;
3229 bfd_size_type sz;
4ad4eba5
AM
3230
3231 name += sizeof ".gnu.warning." - 1;
3232
3233 /* If this is a shared object, then look up the symbol
3234 in the hash table. If it is there, and it is already
3235 been defined, then we will not be using the entry
3236 from this shared object, so we don't need to warn.
3237 FIXME: If we see the definition in a regular object
3238 later on, we will warn, but we shouldn't. The only
3239 fix is to keep track of what warnings we are supposed
3240 to emit, and then handle them all at the end of the
3241 link. */
3242 if (dynamic)
3243 {
3244 struct elf_link_hash_entry *h;
3245
66eb6687 3246 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
4ad4eba5
AM
3247
3248 /* FIXME: What about bfd_link_hash_common? */
3249 if (h != NULL
3250 && (h->root.type == bfd_link_hash_defined
3251 || h->root.type == bfd_link_hash_defweak))
3252 {
3253 /* We don't want to issue this warning. Clobber
3254 the section size so that the warning does not
3255 get copied into the output file. */
eea6121a 3256 s->size = 0;
4ad4eba5
AM
3257 continue;
3258 }
3259 }
3260
eea6121a 3261 sz = s->size;
370a0e1b 3262 msg = bfd_alloc (abfd, sz + 1);
4ad4eba5
AM
3263 if (msg == NULL)
3264 goto error_return;
3265
370a0e1b 3266 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
4ad4eba5
AM
3267 goto error_return;
3268
370a0e1b 3269 msg[sz] = '\0';
4ad4eba5
AM
3270
3271 if (! (_bfd_generic_link_add_one_symbol
3272 (info, abfd, name, BSF_WARNING, s, 0, msg,
66eb6687 3273 FALSE, bed->collect, NULL)))
4ad4eba5
AM
3274 goto error_return;
3275
3276 if (! info->relocatable)
3277 {
3278 /* Clobber the section size so that the warning does
3279 not get copied into the output file. */
eea6121a 3280 s->size = 0;
11d2f718
AM
3281
3282 /* Also set SEC_EXCLUDE, so that symbols defined in
3283 the warning section don't get copied to the output. */
3284 s->flags |= SEC_EXCLUDE;
4ad4eba5
AM
3285 }
3286 }
3287 }
3288 }
3289
3290 add_needed = TRUE;
3291 if (! dynamic)
3292 {
3293 /* If we are creating a shared library, create all the dynamic
3294 sections immediately. We need to attach them to something,
3295 so we attach them to this BFD, provided it is the right
3296 format. FIXME: If there are no input BFD's of the same
3297 format as the output, we can't make a shared library. */
3298 if (info->shared
66eb6687
AM
3299 && is_elf_hash_table (htab)
3300 && htab->root.creator == abfd->xvec
3301 && !htab->dynamic_sections_created)
4ad4eba5
AM
3302 {
3303 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3304 goto error_return;
3305 }
3306 }
66eb6687 3307 else if (!is_elf_hash_table (htab))
4ad4eba5
AM
3308 goto error_return;
3309 else
3310 {
3311 asection *s;
3312 const char *soname = NULL;
3313 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3314 int ret;
3315
3316 /* ld --just-symbols and dynamic objects don't mix very well.
92fd189d 3317 ld shouldn't allow it. */
4ad4eba5
AM
3318 if ((s = abfd->sections) != NULL
3319 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
92fd189d 3320 abort ();
4ad4eba5
AM
3321
3322 /* If this dynamic lib was specified on the command line with
3323 --as-needed in effect, then we don't want to add a DT_NEEDED
3324 tag unless the lib is actually used. Similary for libs brought
e56f61be
L
3325 in by another lib's DT_NEEDED. When --no-add-needed is used
3326 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3327 any dynamic library in DT_NEEDED tags in the dynamic lib at
3328 all. */
3329 add_needed = (elf_dyn_lib_class (abfd)
3330 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3331 | DYN_NO_NEEDED)) == 0;
4ad4eba5
AM
3332
3333 s = bfd_get_section_by_name (abfd, ".dynamic");
3334 if (s != NULL)
3335 {
3336 bfd_byte *dynbuf;
3337 bfd_byte *extdyn;
3338 int elfsec;
3339 unsigned long shlink;
3340
eea6121a 3341 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
4ad4eba5
AM
3342 goto error_free_dyn;
3343
3344 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3345 if (elfsec == -1)
3346 goto error_free_dyn;
3347 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3348
3349 for (extdyn = dynbuf;
eea6121a 3350 extdyn < dynbuf + s->size;
4ad4eba5
AM
3351 extdyn += bed->s->sizeof_dyn)
3352 {
3353 Elf_Internal_Dyn dyn;
3354
3355 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3356 if (dyn.d_tag == DT_SONAME)
3357 {
3358 unsigned int tagv = dyn.d_un.d_val;
3359 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3360 if (soname == NULL)
3361 goto error_free_dyn;
3362 }
3363 if (dyn.d_tag == DT_NEEDED)
3364 {
3365 struct bfd_link_needed_list *n, **pn;
3366 char *fnm, *anm;
3367 unsigned int tagv = dyn.d_un.d_val;
3368
3369 amt = sizeof (struct bfd_link_needed_list);
3370 n = bfd_alloc (abfd, amt);
3371 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3372 if (n == NULL || fnm == NULL)
3373 goto error_free_dyn;
3374 amt = strlen (fnm) + 1;
3375 anm = bfd_alloc (abfd, amt);
3376 if (anm == NULL)
3377 goto error_free_dyn;
3378 memcpy (anm, fnm, amt);
3379 n->name = anm;
3380 n->by = abfd;
3381 n->next = NULL;
66eb6687 3382 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
4ad4eba5
AM
3383 ;
3384 *pn = n;
3385 }
3386 if (dyn.d_tag == DT_RUNPATH)
3387 {
3388 struct bfd_link_needed_list *n, **pn;
3389 char *fnm, *anm;
3390 unsigned int tagv = dyn.d_un.d_val;
3391
3392 amt = sizeof (struct bfd_link_needed_list);
3393 n = bfd_alloc (abfd, amt);
3394 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3395 if (n == NULL || fnm == NULL)
3396 goto error_free_dyn;
3397 amt = strlen (fnm) + 1;
3398 anm = bfd_alloc (abfd, amt);
3399 if (anm == NULL)
3400 goto error_free_dyn;
3401 memcpy (anm, fnm, amt);
3402 n->name = anm;
3403 n->by = abfd;
3404 n->next = NULL;
3405 for (pn = & runpath;
3406 *pn != NULL;
3407 pn = &(*pn)->next)
3408 ;
3409 *pn = n;
3410 }
3411 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3412 if (!runpath && dyn.d_tag == DT_RPATH)
3413 {
3414 struct bfd_link_needed_list *n, **pn;
3415 char *fnm, *anm;
3416 unsigned int tagv = dyn.d_un.d_val;
3417
3418 amt = sizeof (struct bfd_link_needed_list);
3419 n = bfd_alloc (abfd, amt);
3420 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3421 if (n == NULL || fnm == NULL)
3422 goto error_free_dyn;
3423 amt = strlen (fnm) + 1;
3424 anm = bfd_alloc (abfd, amt);
3425 if (anm == NULL)
3426 {
3427 error_free_dyn:
3428 free (dynbuf);
3429 goto error_return;
3430 }
3431 memcpy (anm, fnm, amt);
3432 n->name = anm;
3433 n->by = abfd;
3434 n->next = NULL;
3435 for (pn = & rpath;
3436 *pn != NULL;
3437 pn = &(*pn)->next)
3438 ;
3439 *pn = n;
3440 }
3441 }
3442
3443 free (dynbuf);
3444 }
3445
3446 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3447 frees all more recently bfd_alloc'd blocks as well. */
3448 if (runpath)
3449 rpath = runpath;
3450
3451 if (rpath)
3452 {
3453 struct bfd_link_needed_list **pn;
66eb6687 3454 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4ad4eba5
AM
3455 ;
3456 *pn = rpath;
3457 }
3458
3459 /* We do not want to include any of the sections in a dynamic
3460 object in the output file. We hack by simply clobbering the
3461 list of sections in the BFD. This could be handled more
3462 cleanly by, say, a new section flag; the existing
3463 SEC_NEVER_LOAD flag is not the one we want, because that one
3464 still implies that the section takes up space in the output
3465 file. */
3466 bfd_section_list_clear (abfd);
3467
4ad4eba5
AM
3468 /* Find the name to use in a DT_NEEDED entry that refers to this
3469 object. If the object has a DT_SONAME entry, we use it.
3470 Otherwise, if the generic linker stuck something in
3471 elf_dt_name, we use that. Otherwise, we just use the file
3472 name. */
3473 if (soname == NULL || *soname == '\0')
3474 {
3475 soname = elf_dt_name (abfd);
3476 if (soname == NULL || *soname == '\0')
3477 soname = bfd_get_filename (abfd);
3478 }
3479
3480 /* Save the SONAME because sometimes the linker emulation code
3481 will need to know it. */
3482 elf_dt_name (abfd) = soname;
3483
7e9f0867 3484 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4ad4eba5
AM
3485 if (ret < 0)
3486 goto error_return;
3487
3488 /* If we have already included this dynamic object in the
3489 link, just ignore it. There is no reason to include a
3490 particular dynamic object more than once. */
3491 if (ret > 0)
3492 return TRUE;
3493 }
3494
3495 /* If this is a dynamic object, we always link against the .dynsym
3496 symbol table, not the .symtab symbol table. The dynamic linker
3497 will only see the .dynsym symbol table, so there is no reason to
3498 look at .symtab for a dynamic object. */
3499
3500 if (! dynamic || elf_dynsymtab (abfd) == 0)
3501 hdr = &elf_tdata (abfd)->symtab_hdr;
3502 else
3503 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3504
3505 symcount = hdr->sh_size / bed->s->sizeof_sym;
3506
3507 /* The sh_info field of the symtab header tells us where the
3508 external symbols start. We don't care about the local symbols at
3509 this point. */
3510 if (elf_bad_symtab (abfd))
3511 {
3512 extsymcount = symcount;
3513 extsymoff = 0;
3514 }
3515 else
3516 {
3517 extsymcount = symcount - hdr->sh_info;
3518 extsymoff = hdr->sh_info;
3519 }
3520
3521 sym_hash = NULL;
3522 if (extsymcount != 0)
3523 {
3524 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3525 NULL, NULL, NULL);
3526 if (isymbuf == NULL)
3527 goto error_return;
3528
3529 /* We store a pointer to the hash table entry for each external
3530 symbol. */
3531 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3532 sym_hash = bfd_alloc (abfd, amt);
3533 if (sym_hash == NULL)
3534 goto error_free_sym;
3535 elf_sym_hashes (abfd) = sym_hash;
3536 }
3537
3538 if (dynamic)
3539 {
3540 /* Read in any version definitions. */
fc0e6df6
PB
3541 if (!_bfd_elf_slurp_version_tables (abfd,
3542 info->default_imported_symver))
4ad4eba5
AM
3543 goto error_free_sym;
3544
3545 /* Read in the symbol versions, but don't bother to convert them
3546 to internal format. */
3547 if (elf_dynversym (abfd) != 0)
3548 {
3549 Elf_Internal_Shdr *versymhdr;
3550
3551 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3552 extversym = bfd_malloc (versymhdr->sh_size);
3553 if (extversym == NULL)
3554 goto error_free_sym;
3555 amt = versymhdr->sh_size;
3556 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3557 || bfd_bread (extversym, amt, abfd) != amt)
3558 goto error_free_vers;
3559 }
3560 }
3561
66eb6687
AM
3562 /* If we are loading an as-needed shared lib, save the symbol table
3563 state before we start adding symbols. If the lib turns out
3564 to be unneeded, restore the state. */
3565 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3566 {
3567 unsigned int i;
3568 size_t entsize;
3569
3570 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3571 {
3572 struct bfd_hash_entry *p;
2de92251 3573 struct elf_link_hash_entry *h;
66eb6687
AM
3574
3575 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
2de92251
AM
3576 {
3577 h = (struct elf_link_hash_entry *) p;
3578 entsize += htab->root.table.entsize;
3579 if (h->root.type == bfd_link_hash_warning)
3580 entsize += htab->root.table.entsize;
3581 }
66eb6687
AM
3582 }
3583
3584 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3585 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3586 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3587 if (old_tab == NULL)
3588 goto error_free_vers;
3589
3590 /* Remember the current objalloc pointer, so that all mem for
3591 symbols added can later be reclaimed. */
3592 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3593 if (alloc_mark == NULL)
3594 goto error_free_vers;
3595
5061a885
AM
3596 /* Make a special call to the linker "notice" function to
3597 tell it that we are about to handle an as-needed lib. */
3598 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3599 notice_as_needed))
3600 return FALSE;
3601
3602
66eb6687
AM
3603 /* Clone the symbol table and sym hashes. Remember some
3604 pointers into the symbol table, and dynamic symbol count. */
3605 old_hash = (char *) old_tab + tabsize;
3606 old_ent = (char *) old_hash + hashsize;
3607 memcpy (old_tab, htab->root.table.table, tabsize);
3608 memcpy (old_hash, sym_hash, hashsize);
3609 old_undefs = htab->root.undefs;
3610 old_undefs_tail = htab->root.undefs_tail;
4f87808c
AM
3611 old_table = htab->root.table.table;
3612 old_size = htab->root.table.size;
3613 old_count = htab->root.table.count;
66eb6687
AM
3614 old_dynsymcount = htab->dynsymcount;
3615
3616 for (i = 0; i < htab->root.table.size; i++)
3617 {
3618 struct bfd_hash_entry *p;
2de92251 3619 struct elf_link_hash_entry *h;
66eb6687
AM
3620
3621 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3622 {
3623 memcpy (old_ent, p, htab->root.table.entsize);
3624 old_ent = (char *) old_ent + htab->root.table.entsize;
2de92251
AM
3625 h = (struct elf_link_hash_entry *) p;
3626 if (h->root.type == bfd_link_hash_warning)
3627 {
3628 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3629 old_ent = (char *) old_ent + htab->root.table.entsize;
3630 }
66eb6687
AM
3631 }
3632 }
3633 }
4ad4eba5 3634
66eb6687 3635 weaks = NULL;
4ad4eba5
AM
3636 ever = extversym != NULL ? extversym + extsymoff : NULL;
3637 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3638 isym < isymend;
3639 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3640 {
3641 int bind;
3642 bfd_vma value;
af44c138 3643 asection *sec, *new_sec;
4ad4eba5
AM
3644 flagword flags;
3645 const char *name;
3646 struct elf_link_hash_entry *h;
3647 bfd_boolean definition;
3648 bfd_boolean size_change_ok;
3649 bfd_boolean type_change_ok;
3650 bfd_boolean new_weakdef;
3651 bfd_boolean override;
a4d8e49b 3652 bfd_boolean common;
4ad4eba5
AM
3653 unsigned int old_alignment;
3654 bfd *old_bfd;
3655
3656 override = FALSE;
3657
3658 flags = BSF_NO_FLAGS;
3659 sec = NULL;
3660 value = isym->st_value;
3661 *sym_hash = NULL;
a4d8e49b 3662 common = bed->common_definition (isym);
4ad4eba5
AM
3663
3664 bind = ELF_ST_BIND (isym->st_info);
3665 if (bind == STB_LOCAL)
3666 {
3667 /* This should be impossible, since ELF requires that all
3668 global symbols follow all local symbols, and that sh_info
3669 point to the first global symbol. Unfortunately, Irix 5
3670 screws this up. */
3671 continue;
3672 }
3673 else if (bind == STB_GLOBAL)
3674 {
a4d8e49b 3675 if (isym->st_shndx != SHN_UNDEF && !common)
4ad4eba5
AM
3676 flags = BSF_GLOBAL;
3677 }
3678 else if (bind == STB_WEAK)
3679 flags = BSF_WEAK;
3680 else
3681 {
3682 /* Leave it up to the processor backend. */
3683 }
3684
3685 if (isym->st_shndx == SHN_UNDEF)
3686 sec = bfd_und_section_ptr;
66eb6687
AM
3687 else if (isym->st_shndx < SHN_LORESERVE
3688 || isym->st_shndx > SHN_HIRESERVE)
4ad4eba5
AM
3689 {
3690 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3691 if (sec == NULL)
3692 sec = bfd_abs_section_ptr;
529fcb95
PB
3693 else if (sec->kept_section)
3694 {
1f02cbd9 3695 /* Symbols from discarded section are undefined, and have
3b36f7e6 3696 default visibility. */
529fcb95
PB
3697 sec = bfd_und_section_ptr;
3698 isym->st_shndx = SHN_UNDEF;
66eb6687
AM
3699 isym->st_other = (STV_DEFAULT
3700 | (isym->st_other & ~ ELF_ST_VISIBILITY (-1)));
529fcb95 3701 }
4ad4eba5
AM
3702 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3703 value -= sec->vma;
3704 }
3705 else if (isym->st_shndx == SHN_ABS)
3706 sec = bfd_abs_section_ptr;
3707 else if (isym->st_shndx == SHN_COMMON)
3708 {
3709 sec = bfd_com_section_ptr;
3710 /* What ELF calls the size we call the value. What ELF
3711 calls the value we call the alignment. */
3712 value = isym->st_size;
3713 }
3714 else
3715 {
3716 /* Leave it up to the processor backend. */
3717 }
3718
3719 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3720 isym->st_name);
3721 if (name == NULL)
3722 goto error_free_vers;
3723
3724 if (isym->st_shndx == SHN_COMMON
6a4a0940
JJ
3725 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3726 && !info->relocatable)
4ad4eba5
AM
3727 {
3728 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3729
3730 if (tcomm == NULL)
3731 {
3496cb2a
L
3732 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3733 (SEC_ALLOC
3734 | SEC_IS_COMMON
3735 | SEC_LINKER_CREATED
3736 | SEC_THREAD_LOCAL));
3737 if (tcomm == NULL)
4ad4eba5
AM
3738 goto error_free_vers;
3739 }
3740 sec = tcomm;
3741 }
66eb6687 3742 else if (bed->elf_add_symbol_hook)
4ad4eba5 3743 {
66eb6687
AM
3744 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3745 &sec, &value))
4ad4eba5
AM
3746 goto error_free_vers;
3747
3748 /* The hook function sets the name to NULL if this symbol
3749 should be skipped for some reason. */
3750 if (name == NULL)
3751 continue;
3752 }
3753
3754 /* Sanity check that all possibilities were handled. */
3755 if (sec == NULL)
3756 {
3757 bfd_set_error (bfd_error_bad_value);
3758 goto error_free_vers;
3759 }
3760
3761 if (bfd_is_und_section (sec)
3762 || bfd_is_com_section (sec))
3763 definition = FALSE;
3764 else
3765 definition = TRUE;
3766
3767 size_change_ok = FALSE;
66eb6687 3768 type_change_ok = bed->type_change_ok;
4ad4eba5
AM
3769 old_alignment = 0;
3770 old_bfd = NULL;
af44c138 3771 new_sec = sec;
4ad4eba5 3772
66eb6687 3773 if (is_elf_hash_table (htab))
4ad4eba5
AM
3774 {
3775 Elf_Internal_Versym iver;
3776 unsigned int vernum = 0;
3777 bfd_boolean skip;
3778
fc0e6df6 3779 if (ever == NULL)
4ad4eba5 3780 {
fc0e6df6
PB
3781 if (info->default_imported_symver)
3782 /* Use the default symbol version created earlier. */
3783 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3784 else
3785 iver.vs_vers = 0;
3786 }
3787 else
3788 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3789
3790 vernum = iver.vs_vers & VERSYM_VERSION;
3791
3792 /* If this is a hidden symbol, or if it is not version
3793 1, we append the version name to the symbol name.
cc86ff91
EB
3794 However, we do not modify a non-hidden absolute symbol
3795 if it is not a function, because it might be the version
3796 symbol itself. FIXME: What if it isn't? */
fc0e6df6 3797 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
cc86ff91
EB
3798 || (vernum > 1 && (! bfd_is_abs_section (sec)
3799 || ELF_ST_TYPE (isym->st_info) == STT_FUNC)))
fc0e6df6
PB
3800 {
3801 const char *verstr;
3802 size_t namelen, verlen, newlen;
3803 char *newname, *p;
3804
3805 if (isym->st_shndx != SHN_UNDEF)
4ad4eba5 3806 {
fc0e6df6
PB
3807 if (vernum > elf_tdata (abfd)->cverdefs)
3808 verstr = NULL;
3809 else if (vernum > 1)
3810 verstr =
3811 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
3812 else
3813 verstr = "";
4ad4eba5 3814
fc0e6df6 3815 if (verstr == NULL)
4ad4eba5 3816 {
fc0e6df6
PB
3817 (*_bfd_error_handler)
3818 (_("%B: %s: invalid version %u (max %d)"),
3819 abfd, name, vernum,
3820 elf_tdata (abfd)->cverdefs);
3821 bfd_set_error (bfd_error_bad_value);
3822 goto error_free_vers;
4ad4eba5 3823 }
fc0e6df6
PB
3824 }
3825 else
3826 {
3827 /* We cannot simply test for the number of
3828 entries in the VERNEED section since the
3829 numbers for the needed versions do not start
3830 at 0. */
3831 Elf_Internal_Verneed *t;
3832
3833 verstr = NULL;
3834 for (t = elf_tdata (abfd)->verref;
3835 t != NULL;
3836 t = t->vn_nextref)
4ad4eba5 3837 {
fc0e6df6 3838 Elf_Internal_Vernaux *a;
4ad4eba5 3839
fc0e6df6
PB
3840 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3841 {
3842 if (a->vna_other == vernum)
4ad4eba5 3843 {
fc0e6df6
PB
3844 verstr = a->vna_nodename;
3845 break;
4ad4eba5 3846 }
4ad4eba5 3847 }
fc0e6df6
PB
3848 if (a != NULL)
3849 break;
3850 }
3851 if (verstr == NULL)
3852 {
3853 (*_bfd_error_handler)
3854 (_("%B: %s: invalid needed version %d"),
3855 abfd, name, vernum);
3856 bfd_set_error (bfd_error_bad_value);
3857 goto error_free_vers;
4ad4eba5 3858 }
4ad4eba5 3859 }
fc0e6df6
PB
3860
3861 namelen = strlen (name);
3862 verlen = strlen (verstr);
3863 newlen = namelen + verlen + 2;
3864 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3865 && isym->st_shndx != SHN_UNDEF)
3866 ++newlen;
3867
66eb6687 3868 newname = bfd_hash_allocate (&htab->root.table, newlen);
fc0e6df6
PB
3869 if (newname == NULL)
3870 goto error_free_vers;
3871 memcpy (newname, name, namelen);
3872 p = newname + namelen;
3873 *p++ = ELF_VER_CHR;
3874 /* If this is a defined non-hidden version symbol,
3875 we add another @ to the name. This indicates the
3876 default version of the symbol. */
3877 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3878 && isym->st_shndx != SHN_UNDEF)
3879 *p++ = ELF_VER_CHR;
3880 memcpy (p, verstr, verlen + 1);
3881
3882 name = newname;
4ad4eba5
AM
3883 }
3884
af44c138
L
3885 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
3886 &value, &old_alignment,
4ad4eba5
AM
3887 sym_hash, &skip, &override,
3888 &type_change_ok, &size_change_ok))
3889 goto error_free_vers;
3890
3891 if (skip)
3892 continue;
3893
3894 if (override)
3895 definition = FALSE;
3896
3897 h = *sym_hash;
3898 while (h->root.type == bfd_link_hash_indirect
3899 || h->root.type == bfd_link_hash_warning)
3900 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3901
3902 /* Remember the old alignment if this is a common symbol, so
3903 that we don't reduce the alignment later on. We can't
3904 check later, because _bfd_generic_link_add_one_symbol
3905 will set a default for the alignment which we want to
3906 override. We also remember the old bfd where the existing
3907 definition comes from. */
3908 switch (h->root.type)
3909 {
3910 default:
3911 break;
3912
3913 case bfd_link_hash_defined:
3914 case bfd_link_hash_defweak:
3915 old_bfd = h->root.u.def.section->owner;
3916 break;
3917
3918 case bfd_link_hash_common:
3919 old_bfd = h->root.u.c.p->section->owner;
3920 old_alignment = h->root.u.c.p->alignment_power;
3921 break;
3922 }
3923
3924 if (elf_tdata (abfd)->verdef != NULL
3925 && ! override
3926 && vernum > 1
3927 && definition)
3928 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
3929 }
3930
3931 if (! (_bfd_generic_link_add_one_symbol
66eb6687 3932 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4ad4eba5
AM
3933 (struct bfd_link_hash_entry **) sym_hash)))
3934 goto error_free_vers;
3935
3936 h = *sym_hash;
3937 while (h->root.type == bfd_link_hash_indirect
3938 || h->root.type == bfd_link_hash_warning)
3939 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3940 *sym_hash = h;
3941
3942 new_weakdef = FALSE;
3943 if (dynamic
3944 && definition
3945 && (flags & BSF_WEAK) != 0
3946 && ELF_ST_TYPE (isym->st_info) != STT_FUNC
66eb6687 3947 && is_elf_hash_table (htab)
f6e332e6 3948 && h->u.weakdef == NULL)
4ad4eba5
AM
3949 {
3950 /* Keep a list of all weak defined non function symbols from
3951 a dynamic object, using the weakdef field. Later in this
3952 function we will set the weakdef field to the correct
3953 value. We only put non-function symbols from dynamic
3954 objects on this list, because that happens to be the only
3955 time we need to know the normal symbol corresponding to a
3956 weak symbol, and the information is time consuming to
3957 figure out. If the weakdef field is not already NULL,
3958 then this symbol was already defined by some previous
3959 dynamic object, and we will be using that previous
3960 definition anyhow. */
3961
f6e332e6 3962 h->u.weakdef = weaks;
4ad4eba5
AM
3963 weaks = h;
3964 new_weakdef = TRUE;
3965 }
3966
3967 /* Set the alignment of a common symbol. */
a4d8e49b 3968 if ((common || bfd_is_com_section (sec))
4ad4eba5
AM
3969 && h->root.type == bfd_link_hash_common)
3970 {
3971 unsigned int align;
3972
a4d8e49b 3973 if (common)
af44c138
L
3974 align = bfd_log2 (isym->st_value);
3975 else
3976 {
3977 /* The new symbol is a common symbol in a shared object.
3978 We need to get the alignment from the section. */
3979 align = new_sec->alignment_power;
3980 }
4ad4eba5
AM
3981 if (align > old_alignment
3982 /* Permit an alignment power of zero if an alignment of one
3983 is specified and no other alignments have been specified. */
3984 || (isym->st_value == 1 && old_alignment == 0))
3985 h->root.u.c.p->alignment_power = align;
3986 else
3987 h->root.u.c.p->alignment_power = old_alignment;
3988 }
3989
66eb6687 3990 if (is_elf_hash_table (htab))
4ad4eba5 3991 {
4ad4eba5 3992 bfd_boolean dynsym;
4ad4eba5
AM
3993
3994 /* Check the alignment when a common symbol is involved. This
3995 can change when a common symbol is overridden by a normal
3996 definition or a common symbol is ignored due to the old
3997 normal definition. We need to make sure the maximum
3998 alignment is maintained. */
a4d8e49b 3999 if ((old_alignment || common)
4ad4eba5
AM
4000 && h->root.type != bfd_link_hash_common)
4001 {
4002 unsigned int common_align;
4003 unsigned int normal_align;
4004 unsigned int symbol_align;
4005 bfd *normal_bfd;
4006 bfd *common_bfd;
4007
4008 symbol_align = ffs (h->root.u.def.value) - 1;
4009 if (h->root.u.def.section->owner != NULL
4010 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4011 {
4012 normal_align = h->root.u.def.section->alignment_power;
4013 if (normal_align > symbol_align)
4014 normal_align = symbol_align;
4015 }
4016 else
4017 normal_align = symbol_align;
4018
4019 if (old_alignment)
4020 {
4021 common_align = old_alignment;
4022 common_bfd = old_bfd;
4023 normal_bfd = abfd;
4024 }
4025 else
4026 {
4027 common_align = bfd_log2 (isym->st_value);
4028 common_bfd = abfd;
4029 normal_bfd = old_bfd;
4030 }
4031
4032 if (normal_align < common_align)
d07676f8
NC
4033 {
4034 /* PR binutils/2735 */
4035 if (normal_bfd == NULL)
4036 (*_bfd_error_handler)
4037 (_("Warning: alignment %u of common symbol `%s' in %B"
4038 " is greater than the alignment (%u) of its section %A"),
4039 common_bfd, h->root.u.def.section,
4040 1 << common_align, name, 1 << normal_align);
4041 else
4042 (*_bfd_error_handler)
4043 (_("Warning: alignment %u of symbol `%s' in %B"
4044 " is smaller than %u in %B"),
4045 normal_bfd, common_bfd,
4046 1 << normal_align, name, 1 << common_align);
4047 }
4ad4eba5
AM
4048 }
4049
4050 /* Remember the symbol size and type. */
4051 if (isym->st_size != 0
4052 && (definition || h->size == 0))
4053 {
4054 if (h->size != 0 && h->size != isym->st_size && ! size_change_ok)
4055 (*_bfd_error_handler)
d003868e
AM
4056 (_("Warning: size of symbol `%s' changed"
4057 " from %lu in %B to %lu in %B"),
4058 old_bfd, abfd,
4ad4eba5 4059 name, (unsigned long) h->size,
d003868e 4060 (unsigned long) isym->st_size);
4ad4eba5
AM
4061
4062 h->size = isym->st_size;
4063 }
4064
4065 /* If this is a common symbol, then we always want H->SIZE
4066 to be the size of the common symbol. The code just above
4067 won't fix the size if a common symbol becomes larger. We
4068 don't warn about a size change here, because that is
4069 covered by --warn-common. */
4070 if (h->root.type == bfd_link_hash_common)
4071 h->size = h->root.u.c.size;
4072
4073 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4074 && (definition || h->type == STT_NOTYPE))
4075 {
4076 if (h->type != STT_NOTYPE
4077 && h->type != ELF_ST_TYPE (isym->st_info)
4078 && ! type_change_ok)
4079 (*_bfd_error_handler)
d003868e
AM
4080 (_("Warning: type of symbol `%s' changed"
4081 " from %d to %d in %B"),
4082 abfd, name, h->type, ELF_ST_TYPE (isym->st_info));
4ad4eba5
AM
4083
4084 h->type = ELF_ST_TYPE (isym->st_info);
4085 }
4086
4087 /* If st_other has a processor-specific meaning, specific
4088 code might be needed here. We never merge the visibility
4089 attribute with the one from a dynamic object. */
4090 if (bed->elf_backend_merge_symbol_attribute)
4091 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
4092 dynamic);
4093
b58f81ae
DJ
4094 /* If this symbol has default visibility and the user has requested
4095 we not re-export it, then mark it as hidden. */
4096 if (definition && !dynamic
4097 && (abfd->no_export
4098 || (abfd->my_archive && abfd->my_archive->no_export))
4099 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
66eb6687
AM
4100 isym->st_other = (STV_HIDDEN
4101 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
b58f81ae 4102
8992f0d7 4103 if (ELF_ST_VISIBILITY (isym->st_other) != 0 && !dynamic)
4ad4eba5
AM
4104 {
4105 unsigned char hvis, symvis, other, nvis;
4106
8992f0d7
TS
4107 /* Only merge the visibility. Leave the remainder of the
4108 st_other field to elf_backend_merge_symbol_attribute. */
4109 other = h->other & ~ELF_ST_VISIBILITY (-1);
4ad4eba5
AM
4110
4111 /* Combine visibilities, using the most constraining one. */
4112 hvis = ELF_ST_VISIBILITY (h->other);
4113 symvis = ELF_ST_VISIBILITY (isym->st_other);
4114 if (! hvis)
4115 nvis = symvis;
4116 else if (! symvis)
4117 nvis = hvis;
4118 else
4119 nvis = hvis < symvis ? hvis : symvis;
4120
4121 h->other = other | nvis;
4122 }
4123
4124 /* Set a flag in the hash table entry indicating the type of
4125 reference or definition we just found. Keep a count of
4126 the number of dynamic symbols we find. A dynamic symbol
4127 is one which is referenced or defined by both a regular
4128 object and a shared object. */
4ad4eba5
AM
4129 dynsym = FALSE;
4130 if (! dynamic)
4131 {
4132 if (! definition)
4133 {
f5385ebf 4134 h->ref_regular = 1;
4ad4eba5 4135 if (bind != STB_WEAK)
f5385ebf 4136 h->ref_regular_nonweak = 1;
4ad4eba5
AM
4137 }
4138 else
f5385ebf 4139 h->def_regular = 1;
4ad4eba5 4140 if (! info->executable
f5385ebf
AM
4141 || h->def_dynamic
4142 || h->ref_dynamic)
4ad4eba5
AM
4143 dynsym = TRUE;
4144 }
4145 else
4146 {
4147 if (! definition)
f5385ebf 4148 h->ref_dynamic = 1;
4ad4eba5 4149 else
f5385ebf
AM
4150 h->def_dynamic = 1;
4151 if (h->def_regular
4152 || h->ref_regular
f6e332e6 4153 || (h->u.weakdef != NULL
4ad4eba5 4154 && ! new_weakdef
f6e332e6 4155 && h->u.weakdef->dynindx != -1))
4ad4eba5
AM
4156 dynsym = TRUE;
4157 }
4158
4ad4eba5
AM
4159 /* Check to see if we need to add an indirect symbol for
4160 the default name. */
4161 if (definition || h->root.type == bfd_link_hash_common)
4162 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4163 &sec, &value, &dynsym,
4164 override))
4165 goto error_free_vers;
4166
4167 if (definition && !dynamic)
4168 {
4169 char *p = strchr (name, ELF_VER_CHR);
4170 if (p != NULL && p[1] != ELF_VER_CHR)
4171 {
4172 /* Queue non-default versions so that .symver x, x@FOO
4173 aliases can be checked. */
66eb6687 4174 if (!nondeflt_vers)
4ad4eba5 4175 {
66eb6687
AM
4176 amt = ((isymend - isym + 1)
4177 * sizeof (struct elf_link_hash_entry *));
4ad4eba5
AM
4178 nondeflt_vers = bfd_malloc (amt);
4179 }
66eb6687 4180 nondeflt_vers[nondeflt_vers_cnt++] = h;
4ad4eba5
AM
4181 }
4182 }
4183
4184 if (dynsym && h->dynindx == -1)
4185 {
c152c796 4186 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4ad4eba5 4187 goto error_free_vers;
f6e332e6 4188 if (h->u.weakdef != NULL
4ad4eba5 4189 && ! new_weakdef
f6e332e6 4190 && h->u.weakdef->dynindx == -1)
4ad4eba5 4191 {
66eb6687 4192 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4ad4eba5
AM
4193 goto error_free_vers;
4194 }
4195 }
4196 else if (dynsym && h->dynindx != -1)
4197 /* If the symbol already has a dynamic index, but
4198 visibility says it should not be visible, turn it into
4199 a local symbol. */
4200 switch (ELF_ST_VISIBILITY (h->other))
4201 {
4202 case STV_INTERNAL:
4203 case STV_HIDDEN:
4204 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4205 dynsym = FALSE;
4206 break;
4207 }
4208
4209 if (!add_needed
4210 && definition
4211 && dynsym
f5385ebf 4212 && h->ref_regular)
4ad4eba5
AM
4213 {
4214 int ret;
4215 const char *soname = elf_dt_name (abfd);
4216
4217 /* A symbol from a library loaded via DT_NEEDED of some
4218 other library is referenced by a regular object.
e56f61be
L
4219 Add a DT_NEEDED entry for it. Issue an error if
4220 --no-add-needed is used. */
4221 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4222 {
4223 (*_bfd_error_handler)
4224 (_("%s: invalid DSO for symbol `%s' definition"),
d003868e 4225 abfd, name);
e56f61be
L
4226 bfd_set_error (bfd_error_bad_value);
4227 goto error_free_vers;
4228 }
4229
a5db907e
AM
4230 elf_dyn_lib_class (abfd) &= ~DYN_AS_NEEDED;
4231
4ad4eba5 4232 add_needed = TRUE;
7e9f0867 4233 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4ad4eba5
AM
4234 if (ret < 0)
4235 goto error_free_vers;
4236
4237 BFD_ASSERT (ret == 0);
4238 }
4239 }
4240 }
4241
66eb6687
AM
4242 if (extversym != NULL)
4243 {
4244 free (extversym);
4245 extversym = NULL;
4246 }
4247
4248 if (isymbuf != NULL)
4249 {
4250 free (isymbuf);
4251 isymbuf = NULL;
4252 }
4253
4254 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4255 {
4256 unsigned int i;
4257
4258 /* Restore the symbol table. */
4259 old_hash = (char *) old_tab + tabsize;
4260 old_ent = (char *) old_hash + hashsize;
4261 sym_hash = elf_sym_hashes (abfd);
4f87808c
AM
4262 htab->root.table.table = old_table;
4263 htab->root.table.size = old_size;
4264 htab->root.table.count = old_count;
66eb6687
AM
4265 memcpy (htab->root.table.table, old_tab, tabsize);
4266 memcpy (sym_hash, old_hash, hashsize);
4267 htab->root.undefs = old_undefs;
4268 htab->root.undefs_tail = old_undefs_tail;
4269 for (i = 0; i < htab->root.table.size; i++)
4270 {
4271 struct bfd_hash_entry *p;
4272 struct elf_link_hash_entry *h;
4273
4274 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4275 {
4276 h = (struct elf_link_hash_entry *) p;
2de92251
AM
4277 if (h->root.type == bfd_link_hash_warning)
4278 h = (struct elf_link_hash_entry *) h->root.u.i.link;
66eb6687
AM
4279 if (h->dynindx >= old_dynsymcount)
4280 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
2de92251 4281
66eb6687
AM
4282 memcpy (p, old_ent, htab->root.table.entsize);
4283 old_ent = (char *) old_ent + htab->root.table.entsize;
2de92251
AM
4284 h = (struct elf_link_hash_entry *) p;
4285 if (h->root.type == bfd_link_hash_warning)
4286 {
4287 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4288 old_ent = (char *) old_ent + htab->root.table.entsize;
4289 }
66eb6687
AM
4290 }
4291 }
4292
5061a885
AM
4293 /* Make a special call to the linker "notice" function to
4294 tell it that symbols added for crefs may need to be removed. */
4295 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4296 notice_not_needed))
4297 return FALSE;
4298
66eb6687
AM
4299 free (old_tab);
4300 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4301 alloc_mark);
4302 if (nondeflt_vers != NULL)
4303 free (nondeflt_vers);
4304 return TRUE;
4305 }
2de92251 4306
66eb6687
AM
4307 if (old_tab != NULL)
4308 {
5061a885
AM
4309 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4310 notice_needed))
4311 return FALSE;
66eb6687
AM
4312 free (old_tab);
4313 old_tab = NULL;
4314 }
4315
4ad4eba5
AM
4316 /* Now that all the symbols from this input file are created, handle
4317 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4318 if (nondeflt_vers != NULL)
4319 {
4320 bfd_size_type cnt, symidx;
4321
4322 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4323 {
4324 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4325 char *shortname, *p;
4326
4327 p = strchr (h->root.root.string, ELF_VER_CHR);
4328 if (p == NULL
4329 || (h->root.type != bfd_link_hash_defined
4330 && h->root.type != bfd_link_hash_defweak))
4331 continue;
4332
4333 amt = p - h->root.root.string;
4334 shortname = bfd_malloc (amt + 1);
4335 memcpy (shortname, h->root.root.string, amt);
4336 shortname[amt] = '\0';
4337
4338 hi = (struct elf_link_hash_entry *)
66eb6687 4339 bfd_link_hash_lookup (&htab->root, shortname,
4ad4eba5
AM
4340 FALSE, FALSE, FALSE);
4341 if (hi != NULL
4342 && hi->root.type == h->root.type
4343 && hi->root.u.def.value == h->root.u.def.value
4344 && hi->root.u.def.section == h->root.u.def.section)
4345 {
4346 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4347 hi->root.type = bfd_link_hash_indirect;
4348 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
fcfa13d2 4349 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4ad4eba5
AM
4350 sym_hash = elf_sym_hashes (abfd);
4351 if (sym_hash)
4352 for (symidx = 0; symidx < extsymcount; ++symidx)
4353 if (sym_hash[symidx] == hi)
4354 {
4355 sym_hash[symidx] = h;
4356 break;
4357 }
4358 }
4359 free (shortname);
4360 }
4361 free (nondeflt_vers);
4362 nondeflt_vers = NULL;
4363 }
4364
4ad4eba5
AM
4365 /* Now set the weakdefs field correctly for all the weak defined
4366 symbols we found. The only way to do this is to search all the
4367 symbols. Since we only need the information for non functions in
4368 dynamic objects, that's the only time we actually put anything on
4369 the list WEAKS. We need this information so that if a regular
4370 object refers to a symbol defined weakly in a dynamic object, the
4371 real symbol in the dynamic object is also put in the dynamic
4372 symbols; we also must arrange for both symbols to point to the
4373 same memory location. We could handle the general case of symbol
4374 aliasing, but a general symbol alias can only be generated in
4375 assembler code, handling it correctly would be very time
4376 consuming, and other ELF linkers don't handle general aliasing
4377 either. */
4378 if (weaks != NULL)
4379 {
4380 struct elf_link_hash_entry **hpp;
4381 struct elf_link_hash_entry **hppend;
4382 struct elf_link_hash_entry **sorted_sym_hash;
4383 struct elf_link_hash_entry *h;
4384 size_t sym_count;
4385
4386 /* Since we have to search the whole symbol list for each weak
4387 defined symbol, search time for N weak defined symbols will be
4388 O(N^2). Binary search will cut it down to O(NlogN). */
4389 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4390 sorted_sym_hash = bfd_malloc (amt);
4391 if (sorted_sym_hash == NULL)
4392 goto error_return;
4393 sym_hash = sorted_sym_hash;
4394 hpp = elf_sym_hashes (abfd);
4395 hppend = hpp + extsymcount;
4396 sym_count = 0;
4397 for (; hpp < hppend; hpp++)
4398 {
4399 h = *hpp;
4400 if (h != NULL
4401 && h->root.type == bfd_link_hash_defined
4402 && h->type != STT_FUNC)
4403 {
4404 *sym_hash = h;
4405 sym_hash++;
4406 sym_count++;
4407 }
4408 }
4409
4410 qsort (sorted_sym_hash, sym_count,
4411 sizeof (struct elf_link_hash_entry *),
4412 elf_sort_symbol);
4413
4414 while (weaks != NULL)
4415 {
4416 struct elf_link_hash_entry *hlook;
4417 asection *slook;
4418 bfd_vma vlook;
4419 long ilook;
4420 size_t i, j, idx;
4421
4422 hlook = weaks;
f6e332e6
AM
4423 weaks = hlook->u.weakdef;
4424 hlook->u.weakdef = NULL;
4ad4eba5
AM
4425
4426 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4427 || hlook->root.type == bfd_link_hash_defweak
4428 || hlook->root.type == bfd_link_hash_common
4429 || hlook->root.type == bfd_link_hash_indirect);
4430 slook = hlook->root.u.def.section;
4431 vlook = hlook->root.u.def.value;
4432
4433 ilook = -1;
4434 i = 0;
4435 j = sym_count;
4436 while (i < j)
4437 {
4438 bfd_signed_vma vdiff;
4439 idx = (i + j) / 2;
4440 h = sorted_sym_hash [idx];
4441 vdiff = vlook - h->root.u.def.value;
4442 if (vdiff < 0)
4443 j = idx;
4444 else if (vdiff > 0)
4445 i = idx + 1;
4446 else
4447 {
a9b881be 4448 long sdiff = slook->id - h->root.u.def.section->id;
4ad4eba5
AM
4449 if (sdiff < 0)
4450 j = idx;
4451 else if (sdiff > 0)
4452 i = idx + 1;
4453 else
4454 {
4455 ilook = idx;
4456 break;
4457 }
4458 }
4459 }
4460
4461 /* We didn't find a value/section match. */
4462 if (ilook == -1)
4463 continue;
4464
4465 for (i = ilook; i < sym_count; i++)
4466 {
4467 h = sorted_sym_hash [i];
4468
4469 /* Stop if value or section doesn't match. */
4470 if (h->root.u.def.value != vlook
4471 || h->root.u.def.section != slook)
4472 break;
4473 else if (h != hlook)
4474 {
f6e332e6 4475 hlook->u.weakdef = h;
4ad4eba5
AM
4476
4477 /* If the weak definition is in the list of dynamic
4478 symbols, make sure the real definition is put
4479 there as well. */
4480 if (hlook->dynindx != -1 && h->dynindx == -1)
4481 {
c152c796 4482 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4ad4eba5
AM
4483 goto error_return;
4484 }
4485
4486 /* If the real definition is in the list of dynamic
4487 symbols, make sure the weak definition is put
4488 there as well. If we don't do this, then the
4489 dynamic loader might not merge the entries for the
4490 real definition and the weak definition. */
4491 if (h->dynindx != -1 && hlook->dynindx == -1)
4492 {
c152c796 4493 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4ad4eba5
AM
4494 goto error_return;
4495 }
4496 break;
4497 }
4498 }
4499 }
4500
4501 free (sorted_sym_hash);
4502 }
4503
66eb6687
AM
4504 if (bed->check_directives)
4505 (*bed->check_directives) (abfd, info);
85fbca6a 4506
4ad4eba5
AM
4507 /* If this object is the same format as the output object, and it is
4508 not a shared library, then let the backend look through the
4509 relocs.
4510
4511 This is required to build global offset table entries and to
4512 arrange for dynamic relocs. It is not required for the
4513 particular common case of linking non PIC code, even when linking
4514 against shared libraries, but unfortunately there is no way of
4515 knowing whether an object file has been compiled PIC or not.
4516 Looking through the relocs is not particularly time consuming.
4517 The problem is that we must either (1) keep the relocs in memory,
4518 which causes the linker to require additional runtime memory or
4519 (2) read the relocs twice from the input file, which wastes time.
4520 This would be a good case for using mmap.
4521
4522 I have no idea how to handle linking PIC code into a file of a
4523 different format. It probably can't be done. */
4ad4eba5 4524 if (! dynamic
66eb6687
AM
4525 && is_elf_hash_table (htab)
4526 && htab->root.creator == abfd->xvec
4527 && bed->check_relocs != NULL)
4ad4eba5
AM
4528 {
4529 asection *o;
4530
4531 for (o = abfd->sections; o != NULL; o = o->next)
4532 {
4533 Elf_Internal_Rela *internal_relocs;
4534 bfd_boolean ok;
4535
4536 if ((o->flags & SEC_RELOC) == 0
4537 || o->reloc_count == 0
4538 || ((info->strip == strip_all || info->strip == strip_debugger)
4539 && (o->flags & SEC_DEBUGGING) != 0)
4540 || bfd_is_abs_section (o->output_section))
4541 continue;
4542
4543 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4544 info->keep_memory);
4545 if (internal_relocs == NULL)
4546 goto error_return;
4547
66eb6687 4548 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4ad4eba5
AM
4549
4550 if (elf_section_data (o)->relocs != internal_relocs)
4551 free (internal_relocs);
4552
4553 if (! ok)
4554 goto error_return;
4555 }
4556 }
4557
4558 /* If this is a non-traditional link, try to optimize the handling
4559 of the .stab/.stabstr sections. */
4560 if (! dynamic
4561 && ! info->traditional_format
66eb6687 4562 && is_elf_hash_table (htab)
4ad4eba5
AM
4563 && (info->strip != strip_all && info->strip != strip_debugger))
4564 {
4565 asection *stabstr;
4566
4567 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4568 if (stabstr != NULL)
4569 {
4570 bfd_size_type string_offset = 0;
4571 asection *stab;
4572
4573 for (stab = abfd->sections; stab; stab = stab->next)
0112cd26 4574 if (CONST_STRNEQ (stab->name, ".stab")
4ad4eba5
AM
4575 && (!stab->name[5] ||
4576 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4577 && (stab->flags & SEC_MERGE) == 0
4578 && !bfd_is_abs_section (stab->output_section))
4579 {
4580 struct bfd_elf_section_data *secdata;
4581
4582 secdata = elf_section_data (stab);
66eb6687
AM
4583 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4584 stabstr, &secdata->sec_info,
4ad4eba5
AM
4585 &string_offset))
4586 goto error_return;
4587 if (secdata->sec_info)
4588 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4589 }
4590 }
4591 }
4592
66eb6687 4593 if (is_elf_hash_table (htab) && add_needed)
4ad4eba5
AM
4594 {
4595 /* Add this bfd to the loaded list. */
4596 struct elf_link_loaded_list *n;
4597
4598 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4599 if (n == NULL)
4600 goto error_return;
4601 n->abfd = abfd;
66eb6687
AM
4602 n->next = htab->loaded;
4603 htab->loaded = n;
4ad4eba5
AM
4604 }
4605
4606 return TRUE;
4607
4608 error_free_vers:
66eb6687
AM
4609 if (old_tab != NULL)
4610 free (old_tab);
4ad4eba5
AM
4611 if (nondeflt_vers != NULL)
4612 free (nondeflt_vers);
4613 if (extversym != NULL)
4614 free (extversym);
4615 error_free_sym:
4616 if (isymbuf != NULL)
4617 free (isymbuf);
4618 error_return:
4619 return FALSE;
4620}
4621
8387904d
AM
4622/* Return the linker hash table entry of a symbol that might be
4623 satisfied by an archive symbol. Return -1 on error. */
4624
4625struct elf_link_hash_entry *
4626_bfd_elf_archive_symbol_lookup (bfd *abfd,
4627 struct bfd_link_info *info,
4628 const char *name)
4629{
4630 struct elf_link_hash_entry *h;
4631 char *p, *copy;
4632 size_t len, first;
4633
4634 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4635 if (h != NULL)
4636 return h;
4637
4638 /* If this is a default version (the name contains @@), look up the
4639 symbol again with only one `@' as well as without the version.
4640 The effect is that references to the symbol with and without the
4641 version will be matched by the default symbol in the archive. */
4642
4643 p = strchr (name, ELF_VER_CHR);
4644 if (p == NULL || p[1] != ELF_VER_CHR)
4645 return h;
4646
4647 /* First check with only one `@'. */
4648 len = strlen (name);
4649 copy = bfd_alloc (abfd, len);
4650 if (copy == NULL)
4651 return (struct elf_link_hash_entry *) 0 - 1;
4652
4653 first = p - name + 1;
4654 memcpy (copy, name, first);
4655 memcpy (copy + first, name + first + 1, len - first);
4656
4657 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4658 if (h == NULL)
4659 {
4660 /* We also need to check references to the symbol without the
4661 version. */
4662 copy[first - 1] = '\0';
4663 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4664 FALSE, FALSE, FALSE);
4665 }
4666
4667 bfd_release (abfd, copy);
4668 return h;
4669}
4670
0ad989f9
L
4671/* Add symbols from an ELF archive file to the linker hash table. We
4672 don't use _bfd_generic_link_add_archive_symbols because of a
4673 problem which arises on UnixWare. The UnixWare libc.so is an
4674 archive which includes an entry libc.so.1 which defines a bunch of
4675 symbols. The libc.so archive also includes a number of other
4676 object files, which also define symbols, some of which are the same
4677 as those defined in libc.so.1. Correct linking requires that we
4678 consider each object file in turn, and include it if it defines any
4679 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4680 this; it looks through the list of undefined symbols, and includes
4681 any object file which defines them. When this algorithm is used on
4682 UnixWare, it winds up pulling in libc.so.1 early and defining a
4683 bunch of symbols. This means that some of the other objects in the
4684 archive are not included in the link, which is incorrect since they
4685 precede libc.so.1 in the archive.
4686
4687 Fortunately, ELF archive handling is simpler than that done by
4688 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4689 oddities. In ELF, if we find a symbol in the archive map, and the
4690 symbol is currently undefined, we know that we must pull in that
4691 object file.
4692
4693 Unfortunately, we do have to make multiple passes over the symbol
4694 table until nothing further is resolved. */
4695
4ad4eba5
AM
4696static bfd_boolean
4697elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
0ad989f9
L
4698{
4699 symindex c;
4700 bfd_boolean *defined = NULL;
4701 bfd_boolean *included = NULL;
4702 carsym *symdefs;
4703 bfd_boolean loop;
4704 bfd_size_type amt;
8387904d
AM
4705 const struct elf_backend_data *bed;
4706 struct elf_link_hash_entry * (*archive_symbol_lookup)
4707 (bfd *, struct bfd_link_info *, const char *);
0ad989f9
L
4708
4709 if (! bfd_has_map (abfd))
4710 {
4711 /* An empty archive is a special case. */
4712 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4713 return TRUE;
4714 bfd_set_error (bfd_error_no_armap);
4715 return FALSE;
4716 }
4717
4718 /* Keep track of all symbols we know to be already defined, and all
4719 files we know to be already included. This is to speed up the
4720 second and subsequent passes. */
4721 c = bfd_ardata (abfd)->symdef_count;
4722 if (c == 0)
4723 return TRUE;
4724 amt = c;
4725 amt *= sizeof (bfd_boolean);
4726 defined = bfd_zmalloc (amt);
4727 included = bfd_zmalloc (amt);
4728 if (defined == NULL || included == NULL)
4729 goto error_return;
4730
4731 symdefs = bfd_ardata (abfd)->symdefs;
8387904d
AM
4732 bed = get_elf_backend_data (abfd);
4733 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
0ad989f9
L
4734
4735 do
4736 {
4737 file_ptr last;
4738 symindex i;
4739 carsym *symdef;
4740 carsym *symdefend;
4741
4742 loop = FALSE;
4743 last = -1;
4744
4745 symdef = symdefs;
4746 symdefend = symdef + c;
4747 for (i = 0; symdef < symdefend; symdef++, i++)
4748 {
4749 struct elf_link_hash_entry *h;
4750 bfd *element;
4751 struct bfd_link_hash_entry *undefs_tail;
4752 symindex mark;
4753
4754 if (defined[i] || included[i])
4755 continue;
4756 if (symdef->file_offset == last)
4757 {
4758 included[i] = TRUE;
4759 continue;
4760 }
4761
8387904d
AM
4762 h = archive_symbol_lookup (abfd, info, symdef->name);
4763 if (h == (struct elf_link_hash_entry *) 0 - 1)
4764 goto error_return;
0ad989f9
L
4765
4766 if (h == NULL)
4767 continue;
4768
4769 if (h->root.type == bfd_link_hash_common)
4770 {
4771 /* We currently have a common symbol. The archive map contains
4772 a reference to this symbol, so we may want to include it. We
4773 only want to include it however, if this archive element
4774 contains a definition of the symbol, not just another common
4775 declaration of it.
4776
4777 Unfortunately some archivers (including GNU ar) will put
4778 declarations of common symbols into their archive maps, as
4779 well as real definitions, so we cannot just go by the archive
4780 map alone. Instead we must read in the element's symbol
4781 table and check that to see what kind of symbol definition
4782 this is. */
4783 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
4784 continue;
4785 }
4786 else if (h->root.type != bfd_link_hash_undefined)
4787 {
4788 if (h->root.type != bfd_link_hash_undefweak)
4789 defined[i] = TRUE;
4790 continue;
4791 }
4792
4793 /* We need to include this archive member. */
4794 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
4795 if (element == NULL)
4796 goto error_return;
4797
4798 if (! bfd_check_format (element, bfd_object))
4799 goto error_return;
4800
4801 /* Doublecheck that we have not included this object
4802 already--it should be impossible, but there may be
4803 something wrong with the archive. */
4804 if (element->archive_pass != 0)
4805 {
4806 bfd_set_error (bfd_error_bad_value);
4807 goto error_return;
4808 }
4809 element->archive_pass = 1;
4810
4811 undefs_tail = info->hash->undefs_tail;
4812
4813 if (! (*info->callbacks->add_archive_element) (info, element,
4814 symdef->name))
4815 goto error_return;
4816 if (! bfd_link_add_symbols (element, info))
4817 goto error_return;
4818
4819 /* If there are any new undefined symbols, we need to make
4820 another pass through the archive in order to see whether
4821 they can be defined. FIXME: This isn't perfect, because
4822 common symbols wind up on undefs_tail and because an
4823 undefined symbol which is defined later on in this pass
4824 does not require another pass. This isn't a bug, but it
4825 does make the code less efficient than it could be. */
4826 if (undefs_tail != info->hash->undefs_tail)
4827 loop = TRUE;
4828
4829 /* Look backward to mark all symbols from this object file
4830 which we have already seen in this pass. */
4831 mark = i;
4832 do
4833 {
4834 included[mark] = TRUE;
4835 if (mark == 0)
4836 break;
4837 --mark;
4838 }
4839 while (symdefs[mark].file_offset == symdef->file_offset);
4840
4841 /* We mark subsequent symbols from this object file as we go
4842 on through the loop. */
4843 last = symdef->file_offset;
4844 }
4845 }
4846 while (loop);
4847
4848 free (defined);
4849 free (included);
4850
4851 return TRUE;
4852
4853 error_return:
4854 if (defined != NULL)
4855 free (defined);
4856 if (included != NULL)
4857 free (included);
4858 return FALSE;
4859}
4ad4eba5
AM
4860
4861/* Given an ELF BFD, add symbols to the global hash table as
4862 appropriate. */
4863
4864bfd_boolean
4865bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
4866{
4867 switch (bfd_get_format (abfd))
4868 {
4869 case bfd_object:
4870 return elf_link_add_object_symbols (abfd, info);
4871 case bfd_archive:
4872 return elf_link_add_archive_symbols (abfd, info);
4873 default:
4874 bfd_set_error (bfd_error_wrong_format);
4875 return FALSE;
4876 }
4877}
5a580b3a
AM
4878\f
4879/* This function will be called though elf_link_hash_traverse to store
4880 all hash value of the exported symbols in an array. */
4881
4882static bfd_boolean
4883elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
4884{
4885 unsigned long **valuep = data;
4886 const char *name;
4887 char *p;
4888 unsigned long ha;
4889 char *alc = NULL;
4890
4891 if (h->root.type == bfd_link_hash_warning)
4892 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4893
4894 /* Ignore indirect symbols. These are added by the versioning code. */
4895 if (h->dynindx == -1)
4896 return TRUE;
4897
4898 name = h->root.root.string;
4899 p = strchr (name, ELF_VER_CHR);
4900 if (p != NULL)
4901 {
4902 alc = bfd_malloc (p - name + 1);
4903 memcpy (alc, name, p - name);
4904 alc[p - name] = '\0';
4905 name = alc;
4906 }
4907
4908 /* Compute the hash value. */
4909 ha = bfd_elf_hash (name);
4910
4911 /* Store the found hash value in the array given as the argument. */
4912 *(*valuep)++ = ha;
4913
4914 /* And store it in the struct so that we can put it in the hash table
4915 later. */
f6e332e6 4916 h->u.elf_hash_value = ha;
5a580b3a
AM
4917
4918 if (alc != NULL)
4919 free (alc);
4920
4921 return TRUE;
4922}
4923
fdc90cb4
JJ
4924struct collect_gnu_hash_codes
4925{
4926 bfd *output_bfd;
4927 const struct elf_backend_data *bed;
4928 unsigned long int nsyms;
4929 unsigned long int maskbits;
4930 unsigned long int *hashcodes;
4931 unsigned long int *hashval;
4932 unsigned long int *indx;
4933 unsigned long int *counts;
4934 bfd_vma *bitmask;
4935 bfd_byte *contents;
4936 long int min_dynindx;
4937 unsigned long int bucketcount;
4938 unsigned long int symindx;
4939 long int local_indx;
4940 long int shift1, shift2;
4941 unsigned long int mask;
4942};
4943
4944/* This function will be called though elf_link_hash_traverse to store
4945 all hash value of the exported symbols in an array. */
4946
4947static bfd_boolean
4948elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
4949{
4950 struct collect_gnu_hash_codes *s = data;
4951 const char *name;
4952 char *p;
4953 unsigned long ha;
4954 char *alc = NULL;
4955
4956 if (h->root.type == bfd_link_hash_warning)
4957 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4958
4959 /* Ignore indirect symbols. These are added by the versioning code. */
4960 if (h->dynindx == -1)
4961 return TRUE;
4962
4963 /* Ignore also local symbols and undefined symbols. */
4964 if (! (*s->bed->elf_hash_symbol) (h))
4965 return TRUE;
4966
4967 name = h->root.root.string;
4968 p = strchr (name, ELF_VER_CHR);
4969 if (p != NULL)
4970 {
4971 alc = bfd_malloc (p - name + 1);
4972 memcpy (alc, name, p - name);
4973 alc[p - name] = '\0';
4974 name = alc;
4975 }
4976
4977 /* Compute the hash value. */
4978 ha = bfd_elf_gnu_hash (name);
4979
4980 /* Store the found hash value in the array for compute_bucket_count,
4981 and also for .dynsym reordering purposes. */
4982 s->hashcodes[s->nsyms] = ha;
4983 s->hashval[h->dynindx] = ha;
4984 ++s->nsyms;
4985 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
4986 s->min_dynindx = h->dynindx;
4987
4988 if (alc != NULL)
4989 free (alc);
4990
4991 return TRUE;
4992}
4993
4994/* This function will be called though elf_link_hash_traverse to do
4995 final dynaminc symbol renumbering. */
4996
4997static bfd_boolean
4998elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
4999{
5000 struct collect_gnu_hash_codes *s = data;
5001 unsigned long int bucket;
5002 unsigned long int val;
5003
5004 if (h->root.type == bfd_link_hash_warning)
5005 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5006
5007 /* Ignore indirect symbols. */
5008 if (h->dynindx == -1)
5009 return TRUE;
5010
5011 /* Ignore also local symbols and undefined symbols. */
5012 if (! (*s->bed->elf_hash_symbol) (h))
5013 {
5014 if (h->dynindx >= s->min_dynindx)
5015 h->dynindx = s->local_indx++;
5016 return TRUE;
5017 }
5018
5019 bucket = s->hashval[h->dynindx] % s->bucketcount;
5020 val = (s->hashval[h->dynindx] >> s->shift1)
5021 & ((s->maskbits >> s->shift1) - 1);
5022 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5023 s->bitmask[val]
5024 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5025 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5026 if (s->counts[bucket] == 1)
5027 /* Last element terminates the chain. */
5028 val |= 1;
5029 bfd_put_32 (s->output_bfd, val,
5030 s->contents + (s->indx[bucket] - s->symindx) * 4);
5031 --s->counts[bucket];
5032 h->dynindx = s->indx[bucket]++;
5033 return TRUE;
5034}
5035
5036/* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5037
5038bfd_boolean
5039_bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5040{
5041 return !(h->forced_local
5042 || h->root.type == bfd_link_hash_undefined
5043 || h->root.type == bfd_link_hash_undefweak
5044 || ((h->root.type == bfd_link_hash_defined
5045 || h->root.type == bfd_link_hash_defweak)
5046 && h->root.u.def.section->output_section == NULL));
5047}
5048
5a580b3a
AM
5049/* Array used to determine the number of hash table buckets to use
5050 based on the number of symbols there are. If there are fewer than
5051 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5052 fewer than 37 we use 17 buckets, and so forth. We never use more
5053 than 32771 buckets. */
5054
5055static const size_t elf_buckets[] =
5056{
5057 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5058 16411, 32771, 0
5059};
5060
5061/* Compute bucket count for hashing table. We do not use a static set
5062 of possible tables sizes anymore. Instead we determine for all
5063 possible reasonable sizes of the table the outcome (i.e., the
5064 number of collisions etc) and choose the best solution. The
5065 weighting functions are not too simple to allow the table to grow
5066 without bounds. Instead one of the weighting factors is the size.
5067 Therefore the result is always a good payoff between few collisions
5068 (= short chain lengths) and table size. */
5069static size_t
fdc90cb4
JJ
5070compute_bucket_count (struct bfd_link_info *info, unsigned long int *hashcodes,
5071 unsigned long int nsyms, int gnu_hash)
5a580b3a
AM
5072{
5073 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5074 size_t best_size = 0;
5a580b3a
AM
5075 unsigned long int i;
5076 bfd_size_type amt;
5077
5a580b3a
AM
5078 /* We have a problem here. The following code to optimize the table
5079 size requires an integer type with more the 32 bits. If
5080 BFD_HOST_U_64_BIT is set we know about such a type. */
5081#ifdef BFD_HOST_U_64_BIT
5082 if (info->optimize)
5083 {
5a580b3a
AM
5084 size_t minsize;
5085 size_t maxsize;
5086 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5a580b3a
AM
5087 bfd *dynobj = elf_hash_table (info)->dynobj;
5088 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
fdc90cb4 5089 unsigned long int *counts;
5a580b3a
AM
5090
5091 /* Possible optimization parameters: if we have NSYMS symbols we say
5092 that the hashing table must at least have NSYMS/4 and at most
5093 2*NSYMS buckets. */
5094 minsize = nsyms / 4;
5095 if (minsize == 0)
5096 minsize = 1;
5097 best_size = maxsize = nsyms * 2;
fdc90cb4
JJ
5098 if (gnu_hash)
5099 {
5100 if (minsize < 2)
5101 minsize = 2;
5102 if ((best_size & 31) == 0)
5103 ++best_size;
5104 }
5a580b3a
AM
5105
5106 /* Create array where we count the collisions in. We must use bfd_malloc
5107 since the size could be large. */
5108 amt = maxsize;
5109 amt *= sizeof (unsigned long int);
5110 counts = bfd_malloc (amt);
5111 if (counts == NULL)
fdc90cb4 5112 return 0;
5a580b3a
AM
5113
5114 /* Compute the "optimal" size for the hash table. The criteria is a
5115 minimal chain length. The minor criteria is (of course) the size
5116 of the table. */
5117 for (i = minsize; i < maxsize; ++i)
5118 {
5119 /* Walk through the array of hashcodes and count the collisions. */
5120 BFD_HOST_U_64_BIT max;
5121 unsigned long int j;
5122 unsigned long int fact;
5123
fdc90cb4
JJ
5124 if (gnu_hash && (i & 31) == 0)
5125 continue;
5126
5a580b3a
AM
5127 memset (counts, '\0', i * sizeof (unsigned long int));
5128
5129 /* Determine how often each hash bucket is used. */
5130 for (j = 0; j < nsyms; ++j)
5131 ++counts[hashcodes[j] % i];
5132
5133 /* For the weight function we need some information about the
5134 pagesize on the target. This is information need not be 100%
5135 accurate. Since this information is not available (so far) we
5136 define it here to a reasonable default value. If it is crucial
5137 to have a better value some day simply define this value. */
5138# ifndef BFD_TARGET_PAGESIZE
5139# define BFD_TARGET_PAGESIZE (4096)
5140# endif
5141
fdc90cb4
JJ
5142 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5143 and the chains. */
5144 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5a580b3a
AM
5145
5146# if 1
5147 /* Variant 1: optimize for short chains. We add the squares
5148 of all the chain lengths (which favors many small chain
5149 over a few long chains). */
5150 for (j = 0; j < i; ++j)
5151 max += counts[j] * counts[j];
5152
5153 /* This adds penalties for the overall size of the table. */
fdc90cb4 5154 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5a580b3a
AM
5155 max *= fact * fact;
5156# else
5157 /* Variant 2: Optimize a lot more for small table. Here we
5158 also add squares of the size but we also add penalties for
5159 empty slots (the +1 term). */
5160 for (j = 0; j < i; ++j)
5161 max += (1 + counts[j]) * (1 + counts[j]);
5162
5163 /* The overall size of the table is considered, but not as
5164 strong as in variant 1, where it is squared. */
fdc90cb4 5165 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5a580b3a
AM
5166 max *= fact;
5167# endif
5168
5169 /* Compare with current best results. */
5170 if (max < best_chlen)
5171 {
5172 best_chlen = max;
5173 best_size = i;
5174 }
5175 }
5176
5177 free (counts);
5178 }
5179 else
5180#endif /* defined (BFD_HOST_U_64_BIT) */
5181 {
5182 /* This is the fallback solution if no 64bit type is available or if we
5183 are not supposed to spend much time on optimizations. We select the
5184 bucket count using a fixed set of numbers. */
5185 for (i = 0; elf_buckets[i] != 0; i++)
5186 {
5187 best_size = elf_buckets[i];
fdc90cb4 5188 if (nsyms < elf_buckets[i + 1])
5a580b3a
AM
5189 break;
5190 }
fdc90cb4
JJ
5191 if (gnu_hash && best_size < 2)
5192 best_size = 2;
5a580b3a
AM
5193 }
5194
5a580b3a
AM
5195 return best_size;
5196}
5197
5198/* Set up the sizes and contents of the ELF dynamic sections. This is
5199 called by the ELF linker emulation before_allocation routine. We
5200 must set the sizes of the sections before the linker sets the
5201 addresses of the various sections. */
5202
5203bfd_boolean
5204bfd_elf_size_dynamic_sections (bfd *output_bfd,
5205 const char *soname,
5206 const char *rpath,
5207 const char *filter_shlib,
5208 const char * const *auxiliary_filters,
5209 struct bfd_link_info *info,
5210 asection **sinterpptr,
5211 struct bfd_elf_version_tree *verdefs)
5212{
5213 bfd_size_type soname_indx;
5214 bfd *dynobj;
5215 const struct elf_backend_data *bed;
5216 struct elf_assign_sym_version_info asvinfo;
5217
5218 *sinterpptr = NULL;
5219
5220 soname_indx = (bfd_size_type) -1;
5221
5222 if (!is_elf_hash_table (info->hash))
5223 return TRUE;
5224
8c37241b 5225 elf_tdata (output_bfd)->relro = info->relro;
5a580b3a
AM
5226 if (info->execstack)
5227 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5228 else if (info->noexecstack)
5229 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5230 else
5231 {
5232 bfd *inputobj;
5233 asection *notesec = NULL;
5234 int exec = 0;
5235
5236 for (inputobj = info->input_bfds;
5237 inputobj;
5238 inputobj = inputobj->link_next)
5239 {
5240 asection *s;
5241
d457dcf6 5242 if (inputobj->flags & (DYNAMIC | BFD_LINKER_CREATED))
5a580b3a
AM
5243 continue;
5244 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5245 if (s)
5246 {
5247 if (s->flags & SEC_CODE)
5248 exec = PF_X;
5249 notesec = s;
5250 }
5251 else
5252 exec = PF_X;
5253 }
5254 if (notesec)
5255 {
5256 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5257 if (exec && info->relocatable
5258 && notesec->output_section != bfd_abs_section_ptr)
5259 notesec->output_section->flags |= SEC_CODE;
5260 }
5261 }
5262
5263 /* Any syms created from now on start with -1 in
5264 got.refcount/offset and plt.refcount/offset. */
a6aa5195
AM
5265 elf_hash_table (info)->init_got_refcount
5266 = elf_hash_table (info)->init_got_offset;
5267 elf_hash_table (info)->init_plt_refcount
5268 = elf_hash_table (info)->init_plt_offset;
5a580b3a
AM
5269
5270 /* The backend may have to create some sections regardless of whether
5271 we're dynamic or not. */
5272 bed = get_elf_backend_data (output_bfd);
5273 if (bed->elf_backend_always_size_sections
5274 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5275 return FALSE;
5276
5277 dynobj = elf_hash_table (info)->dynobj;
5278
5279 /* If there were no dynamic objects in the link, there is nothing to
5280 do here. */
5281 if (dynobj == NULL)
5282 return TRUE;
5283
5284 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5285 return FALSE;
5286
5287 if (elf_hash_table (info)->dynamic_sections_created)
5288 {
5289 struct elf_info_failed eif;
5290 struct elf_link_hash_entry *h;
5291 asection *dynstr;
5292 struct bfd_elf_version_tree *t;
5293 struct bfd_elf_version_expr *d;
046183de 5294 asection *s;
5a580b3a
AM
5295 bfd_boolean all_defined;
5296
5297 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5298 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5299
5300 if (soname != NULL)
5301 {
5302 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5303 soname, TRUE);
5304 if (soname_indx == (bfd_size_type) -1
5305 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5306 return FALSE;
5307 }
5308
5309 if (info->symbolic)
5310 {
5311 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5312 return FALSE;
5313 info->flags |= DF_SYMBOLIC;
5314 }
5315
5316 if (rpath != NULL)
5317 {
5318 bfd_size_type indx;
5319
5320 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5321 TRUE);
5322 if (indx == (bfd_size_type) -1
5323 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5324 return FALSE;
5325
5326 if (info->new_dtags)
5327 {
5328 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5329 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5330 return FALSE;
5331 }
5332 }
5333
5334 if (filter_shlib != NULL)
5335 {
5336 bfd_size_type indx;
5337
5338 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5339 filter_shlib, TRUE);
5340 if (indx == (bfd_size_type) -1
5341 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5342 return FALSE;
5343 }
5344
5345 if (auxiliary_filters != NULL)
5346 {
5347 const char * const *p;
5348
5349 for (p = auxiliary_filters; *p != NULL; p++)
5350 {
5351 bfd_size_type indx;
5352
5353 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5354 *p, TRUE);
5355 if (indx == (bfd_size_type) -1
5356 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5357 return FALSE;
5358 }
5359 }
5360
5361 eif.info = info;
5362 eif.verdefs = verdefs;
5363 eif.failed = FALSE;
5364
5365 /* If we are supposed to export all symbols into the dynamic symbol
5366 table (this is not the normal case), then do so. */
55255dae
L
5367 if (info->export_dynamic
5368 || (info->executable && info->dynamic))
5a580b3a
AM
5369 {
5370 elf_link_hash_traverse (elf_hash_table (info),
5371 _bfd_elf_export_symbol,
5372 &eif);
5373 if (eif.failed)
5374 return FALSE;
5375 }
5376
5377 /* Make all global versions with definition. */
5378 for (t = verdefs; t != NULL; t = t->next)
5379 for (d = t->globals.list; d != NULL; d = d->next)
5380 if (!d->symver && d->symbol)
5381 {
5382 const char *verstr, *name;
5383 size_t namelen, verlen, newlen;
5384 char *newname, *p;
5385 struct elf_link_hash_entry *newh;
5386
5387 name = d->symbol;
5388 namelen = strlen (name);
5389 verstr = t->name;
5390 verlen = strlen (verstr);
5391 newlen = namelen + verlen + 3;
5392
5393 newname = bfd_malloc (newlen);
5394 if (newname == NULL)
5395 return FALSE;
5396 memcpy (newname, name, namelen);
5397
5398 /* Check the hidden versioned definition. */
5399 p = newname + namelen;
5400 *p++ = ELF_VER_CHR;
5401 memcpy (p, verstr, verlen + 1);
5402 newh = elf_link_hash_lookup (elf_hash_table (info),
5403 newname, FALSE, FALSE,
5404 FALSE);
5405 if (newh == NULL
5406 || (newh->root.type != bfd_link_hash_defined
5407 && newh->root.type != bfd_link_hash_defweak))
5408 {
5409 /* Check the default versioned definition. */
5410 *p++ = ELF_VER_CHR;
5411 memcpy (p, verstr, verlen + 1);
5412 newh = elf_link_hash_lookup (elf_hash_table (info),
5413 newname, FALSE, FALSE,
5414 FALSE);
5415 }
5416 free (newname);
5417
5418 /* Mark this version if there is a definition and it is
5419 not defined in a shared object. */
5420 if (newh != NULL
f5385ebf 5421 && !newh->def_dynamic
5a580b3a
AM
5422 && (newh->root.type == bfd_link_hash_defined
5423 || newh->root.type == bfd_link_hash_defweak))
5424 d->symver = 1;
5425 }
5426
5427 /* Attach all the symbols to their version information. */
5428 asvinfo.output_bfd = output_bfd;
5429 asvinfo.info = info;
5430 asvinfo.verdefs = verdefs;
5431 asvinfo.failed = FALSE;
5432
5433 elf_link_hash_traverse (elf_hash_table (info),
5434 _bfd_elf_link_assign_sym_version,
5435 &asvinfo);
5436 if (asvinfo.failed)
5437 return FALSE;
5438
5439 if (!info->allow_undefined_version)
5440 {
5441 /* Check if all global versions have a definition. */
5442 all_defined = TRUE;
5443 for (t = verdefs; t != NULL; t = t->next)
5444 for (d = t->globals.list; d != NULL; d = d->next)
5445 if (!d->symver && !d->script)
5446 {
5447 (*_bfd_error_handler)
5448 (_("%s: undefined version: %s"),
5449 d->pattern, t->name);
5450 all_defined = FALSE;
5451 }
5452
5453 if (!all_defined)
5454 {
5455 bfd_set_error (bfd_error_bad_value);
5456 return FALSE;
5457 }
5458 }
5459
5460 /* Find all symbols which were defined in a dynamic object and make
5461 the backend pick a reasonable value for them. */
5462 elf_link_hash_traverse (elf_hash_table (info),
5463 _bfd_elf_adjust_dynamic_symbol,
5464 &eif);
5465 if (eif.failed)
5466 return FALSE;
5467
5468 /* Add some entries to the .dynamic section. We fill in some of the
ee75fd95 5469 values later, in bfd_elf_final_link, but we must add the entries
5a580b3a
AM
5470 now so that we know the final size of the .dynamic section. */
5471
5472 /* If there are initialization and/or finalization functions to
5473 call then add the corresponding DT_INIT/DT_FINI entries. */
5474 h = (info->init_function
5475 ? elf_link_hash_lookup (elf_hash_table (info),
5476 info->init_function, FALSE,
5477 FALSE, FALSE)
5478 : NULL);
5479 if (h != NULL
f5385ebf
AM
5480 && (h->ref_regular
5481 || h->def_regular))
5a580b3a
AM
5482 {
5483 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5484 return FALSE;
5485 }
5486 h = (info->fini_function
5487 ? elf_link_hash_lookup (elf_hash_table (info),
5488 info->fini_function, FALSE,
5489 FALSE, FALSE)
5490 : NULL);
5491 if (h != NULL
f5385ebf
AM
5492 && (h->ref_regular
5493 || h->def_regular))
5a580b3a
AM
5494 {
5495 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5496 return FALSE;
5497 }
5498
046183de
AM
5499 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5500 if (s != NULL && s->linker_has_input)
5a580b3a
AM
5501 {
5502 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5503 if (! info->executable)
5504 {
5505 bfd *sub;
5506 asection *o;
5507
5508 for (sub = info->input_bfds; sub != NULL;
5509 sub = sub->link_next)
5510 for (o = sub->sections; o != NULL; o = o->next)
5511 if (elf_section_data (o)->this_hdr.sh_type
5512 == SHT_PREINIT_ARRAY)
5513 {
5514 (*_bfd_error_handler)
d003868e
AM
5515 (_("%B: .preinit_array section is not allowed in DSO"),
5516 sub);
5a580b3a
AM
5517 break;
5518 }
5519
5520 bfd_set_error (bfd_error_nonrepresentable_section);
5521 return FALSE;
5522 }
5523
5524 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5525 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5526 return FALSE;
5527 }
046183de
AM
5528 s = bfd_get_section_by_name (output_bfd, ".init_array");
5529 if (s != NULL && s->linker_has_input)
5a580b3a
AM
5530 {
5531 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5532 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5533 return FALSE;
5534 }
046183de
AM
5535 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5536 if (s != NULL && s->linker_has_input)
5a580b3a
AM
5537 {
5538 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5539 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5540 return FALSE;
5541 }
5542
5543 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5544 /* If .dynstr is excluded from the link, we don't want any of
5545 these tags. Strictly, we should be checking each section
5546 individually; This quick check covers for the case where
5547 someone does a /DISCARD/ : { *(*) }. */
5548 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5549 {
5550 bfd_size_type strsize;
5551
5552 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
fdc90cb4
JJ
5553 if ((info->emit_hash
5554 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5555 || (info->emit_gnu_hash
5556 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5a580b3a
AM
5557 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5558 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5559 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5560 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5561 bed->s->sizeof_sym))
5562 return FALSE;
5563 }
5564 }
5565
5566 /* The backend must work out the sizes of all the other dynamic
5567 sections. */
5568 if (bed->elf_backend_size_dynamic_sections
5569 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5570 return FALSE;
5571
5572 if (elf_hash_table (info)->dynamic_sections_created)
5573 {
554220db 5574 unsigned long section_sym_count;
5a580b3a 5575 asection *s;
5a580b3a
AM
5576
5577 /* Set up the version definition section. */
5578 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5579 BFD_ASSERT (s != NULL);
5580
5581 /* We may have created additional version definitions if we are
5582 just linking a regular application. */
5583 verdefs = asvinfo.verdefs;
5584
5585 /* Skip anonymous version tag. */
5586 if (verdefs != NULL && verdefs->vernum == 0)
5587 verdefs = verdefs->next;
5588
3e3b46e5 5589 if (verdefs == NULL && !info->create_default_symver)
8423293d 5590 s->flags |= SEC_EXCLUDE;
5a580b3a
AM
5591 else
5592 {
5593 unsigned int cdefs;
5594 bfd_size_type size;
5595 struct bfd_elf_version_tree *t;
5596 bfd_byte *p;
5597 Elf_Internal_Verdef def;
5598 Elf_Internal_Verdaux defaux;
3e3b46e5
PB
5599 struct bfd_link_hash_entry *bh;
5600 struct elf_link_hash_entry *h;
5601 const char *name;
5a580b3a
AM
5602
5603 cdefs = 0;
5604 size = 0;
5605
5606 /* Make space for the base version. */
5607 size += sizeof (Elf_External_Verdef);
5608 size += sizeof (Elf_External_Verdaux);
5609 ++cdefs;
5610
3e3b46e5
PB
5611 /* Make space for the default version. */
5612 if (info->create_default_symver)
5613 {
5614 size += sizeof (Elf_External_Verdef);
5615 ++cdefs;
5616 }
5617
5a580b3a
AM
5618 for (t = verdefs; t != NULL; t = t->next)
5619 {
5620 struct bfd_elf_version_deps *n;
5621
5622 size += sizeof (Elf_External_Verdef);
5623 size += sizeof (Elf_External_Verdaux);
5624 ++cdefs;
5625
5626 for (n = t->deps; n != NULL; n = n->next)
5627 size += sizeof (Elf_External_Verdaux);
5628 }
5629
eea6121a
AM
5630 s->size = size;
5631 s->contents = bfd_alloc (output_bfd, s->size);
5632 if (s->contents == NULL && s->size != 0)
5a580b3a
AM
5633 return FALSE;
5634
5635 /* Fill in the version definition section. */
5636
5637 p = s->contents;
5638
5639 def.vd_version = VER_DEF_CURRENT;
5640 def.vd_flags = VER_FLG_BASE;
5641 def.vd_ndx = 1;
5642 def.vd_cnt = 1;
3e3b46e5
PB
5643 if (info->create_default_symver)
5644 {
5645 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5646 def.vd_next = sizeof (Elf_External_Verdef);
5647 }
5648 else
5649 {
5650 def.vd_aux = sizeof (Elf_External_Verdef);
5651 def.vd_next = (sizeof (Elf_External_Verdef)
5652 + sizeof (Elf_External_Verdaux));
5653 }
5a580b3a
AM
5654
5655 if (soname_indx != (bfd_size_type) -1)
5656 {
5657 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5658 soname_indx);
5659 def.vd_hash = bfd_elf_hash (soname);
5660 defaux.vda_name = soname_indx;
3e3b46e5 5661 name = soname;
5a580b3a
AM
5662 }
5663 else
5664 {
5a580b3a
AM
5665 bfd_size_type indx;
5666
06084812 5667 name = lbasename (output_bfd->filename);
5a580b3a
AM
5668 def.vd_hash = bfd_elf_hash (name);
5669 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5670 name, FALSE);
5671 if (indx == (bfd_size_type) -1)
5672 return FALSE;
5673 defaux.vda_name = indx;
5674 }
5675 defaux.vda_next = 0;
5676
5677 _bfd_elf_swap_verdef_out (output_bfd, &def,
5678 (Elf_External_Verdef *) p);
5679 p += sizeof (Elf_External_Verdef);
3e3b46e5
PB
5680 if (info->create_default_symver)
5681 {
5682 /* Add a symbol representing this version. */
5683 bh = NULL;
5684 if (! (_bfd_generic_link_add_one_symbol
5685 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5686 0, NULL, FALSE,
5687 get_elf_backend_data (dynobj)->collect, &bh)))
5688 return FALSE;
5689 h = (struct elf_link_hash_entry *) bh;
5690 h->non_elf = 0;
5691 h->def_regular = 1;
5692 h->type = STT_OBJECT;
5693 h->verinfo.vertree = NULL;
5694
5695 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5696 return FALSE;
5697
5698 /* Create a duplicate of the base version with the same
5699 aux block, but different flags. */
5700 def.vd_flags = 0;
5701 def.vd_ndx = 2;
5702 def.vd_aux = sizeof (Elf_External_Verdef);
5703 if (verdefs)
5704 def.vd_next = (sizeof (Elf_External_Verdef)
5705 + sizeof (Elf_External_Verdaux));
5706 else
5707 def.vd_next = 0;
5708 _bfd_elf_swap_verdef_out (output_bfd, &def,
5709 (Elf_External_Verdef *) p);
5710 p += sizeof (Elf_External_Verdef);
5711 }
5a580b3a
AM
5712 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5713 (Elf_External_Verdaux *) p);
5714 p += sizeof (Elf_External_Verdaux);
5715
5716 for (t = verdefs; t != NULL; t = t->next)
5717 {
5718 unsigned int cdeps;
5719 struct bfd_elf_version_deps *n;
5a580b3a
AM
5720
5721 cdeps = 0;
5722 for (n = t->deps; n != NULL; n = n->next)
5723 ++cdeps;
5724
5725 /* Add a symbol representing this version. */
5726 bh = NULL;
5727 if (! (_bfd_generic_link_add_one_symbol
5728 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5729 0, NULL, FALSE,
5730 get_elf_backend_data (dynobj)->collect, &bh)))
5731 return FALSE;
5732 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5733 h->non_elf = 0;
5734 h->def_regular = 1;
5a580b3a
AM
5735 h->type = STT_OBJECT;
5736 h->verinfo.vertree = t;
5737
c152c796 5738 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5a580b3a
AM
5739 return FALSE;
5740
5741 def.vd_version = VER_DEF_CURRENT;
5742 def.vd_flags = 0;
5743 if (t->globals.list == NULL
5744 && t->locals.list == NULL
5745 && ! t->used)
5746 def.vd_flags |= VER_FLG_WEAK;
3e3b46e5 5747 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
5a580b3a
AM
5748 def.vd_cnt = cdeps + 1;
5749 def.vd_hash = bfd_elf_hash (t->name);
5750 def.vd_aux = sizeof (Elf_External_Verdef);
5751 def.vd_next = 0;
5752 if (t->next != NULL)
5753 def.vd_next = (sizeof (Elf_External_Verdef)
5754 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5755
5756 _bfd_elf_swap_verdef_out (output_bfd, &def,
5757 (Elf_External_Verdef *) p);
5758 p += sizeof (Elf_External_Verdef);
5759
5760 defaux.vda_name = h->dynstr_index;
5761 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5762 h->dynstr_index);
5763 defaux.vda_next = 0;
5764 if (t->deps != NULL)
5765 defaux.vda_next = sizeof (Elf_External_Verdaux);
5766 t->name_indx = defaux.vda_name;
5767
5768 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5769 (Elf_External_Verdaux *) p);
5770 p += sizeof (Elf_External_Verdaux);
5771
5772 for (n = t->deps; n != NULL; n = n->next)
5773 {
5774 if (n->version_needed == NULL)
5775 {
5776 /* This can happen if there was an error in the
5777 version script. */
5778 defaux.vda_name = 0;
5779 }
5780 else
5781 {
5782 defaux.vda_name = n->version_needed->name_indx;
5783 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5784 defaux.vda_name);
5785 }
5786 if (n->next == NULL)
5787 defaux.vda_next = 0;
5788 else
5789 defaux.vda_next = sizeof (Elf_External_Verdaux);
5790
5791 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5792 (Elf_External_Verdaux *) p);
5793 p += sizeof (Elf_External_Verdaux);
5794 }
5795 }
5796
5797 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
5798 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
5799 return FALSE;
5800
5801 elf_tdata (output_bfd)->cverdefs = cdefs;
5802 }
5803
5804 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
5805 {
5806 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
5807 return FALSE;
5808 }
5809 else if (info->flags & DF_BIND_NOW)
5810 {
5811 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
5812 return FALSE;
5813 }
5814
5815 if (info->flags_1)
5816 {
5817 if (info->executable)
5818 info->flags_1 &= ~ (DF_1_INITFIRST
5819 | DF_1_NODELETE
5820 | DF_1_NOOPEN);
5821 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
5822 return FALSE;
5823 }
5824
5825 /* Work out the size of the version reference section. */
5826
5827 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
5828 BFD_ASSERT (s != NULL);
5829 {
5830 struct elf_find_verdep_info sinfo;
5831
5832 sinfo.output_bfd = output_bfd;
5833 sinfo.info = info;
5834 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
5835 if (sinfo.vers == 0)
5836 sinfo.vers = 1;
5837 sinfo.failed = FALSE;
5838
5839 elf_link_hash_traverse (elf_hash_table (info),
5840 _bfd_elf_link_find_version_dependencies,
5841 &sinfo);
5842
5843 if (elf_tdata (output_bfd)->verref == NULL)
8423293d 5844 s->flags |= SEC_EXCLUDE;
5a580b3a
AM
5845 else
5846 {
5847 Elf_Internal_Verneed *t;
5848 unsigned int size;
5849 unsigned int crefs;
5850 bfd_byte *p;
5851
5852 /* Build the version definition section. */
5853 size = 0;
5854 crefs = 0;
5855 for (t = elf_tdata (output_bfd)->verref;
5856 t != NULL;
5857 t = t->vn_nextref)
5858 {
5859 Elf_Internal_Vernaux *a;
5860
5861 size += sizeof (Elf_External_Verneed);
5862 ++crefs;
5863 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5864 size += sizeof (Elf_External_Vernaux);
5865 }
5866
eea6121a
AM
5867 s->size = size;
5868 s->contents = bfd_alloc (output_bfd, s->size);
5a580b3a
AM
5869 if (s->contents == NULL)
5870 return FALSE;
5871
5872 p = s->contents;
5873 for (t = elf_tdata (output_bfd)->verref;
5874 t != NULL;
5875 t = t->vn_nextref)
5876 {
5877 unsigned int caux;
5878 Elf_Internal_Vernaux *a;
5879 bfd_size_type indx;
5880
5881 caux = 0;
5882 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5883 ++caux;
5884
5885 t->vn_version = VER_NEED_CURRENT;
5886 t->vn_cnt = caux;
5887 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5888 elf_dt_name (t->vn_bfd) != NULL
5889 ? elf_dt_name (t->vn_bfd)
06084812 5890 : lbasename (t->vn_bfd->filename),
5a580b3a
AM
5891 FALSE);
5892 if (indx == (bfd_size_type) -1)
5893 return FALSE;
5894 t->vn_file = indx;
5895 t->vn_aux = sizeof (Elf_External_Verneed);
5896 if (t->vn_nextref == NULL)
5897 t->vn_next = 0;
5898 else
5899 t->vn_next = (sizeof (Elf_External_Verneed)
5900 + caux * sizeof (Elf_External_Vernaux));
5901
5902 _bfd_elf_swap_verneed_out (output_bfd, t,
5903 (Elf_External_Verneed *) p);
5904 p += sizeof (Elf_External_Verneed);
5905
5906 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5907 {
5908 a->vna_hash = bfd_elf_hash (a->vna_nodename);
5909 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5910 a->vna_nodename, FALSE);
5911 if (indx == (bfd_size_type) -1)
5912 return FALSE;
5913 a->vna_name = indx;
5914 if (a->vna_nextptr == NULL)
5915 a->vna_next = 0;
5916 else
5917 a->vna_next = sizeof (Elf_External_Vernaux);
5918
5919 _bfd_elf_swap_vernaux_out (output_bfd, a,
5920 (Elf_External_Vernaux *) p);
5921 p += sizeof (Elf_External_Vernaux);
5922 }
5923 }
5924
5925 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
5926 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
5927 return FALSE;
5928
5929 elf_tdata (output_bfd)->cverrefs = crefs;
5930 }
5931 }
5932
8423293d
AM
5933 if ((elf_tdata (output_bfd)->cverrefs == 0
5934 && elf_tdata (output_bfd)->cverdefs == 0)
5935 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
5936 &section_sym_count) == 0)
5937 {
5938 s = bfd_get_section_by_name (dynobj, ".gnu.version");
5939 s->flags |= SEC_EXCLUDE;
5940 }
5941 }
5942 return TRUE;
5943}
5944
74541ad4
AM
5945/* Find the first non-excluded output section. We'll use its
5946 section symbol for some emitted relocs. */
5947void
5948_bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
5949{
5950 asection *s;
5951
5952 for (s = output_bfd->sections; s != NULL; s = s->next)
5953 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
5954 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
5955 {
5956 elf_hash_table (info)->text_index_section = s;
5957 break;
5958 }
5959}
5960
5961/* Find two non-excluded output sections, one for code, one for data.
5962 We'll use their section symbols for some emitted relocs. */
5963void
5964_bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
5965{
5966 asection *s;
5967
5968 for (s = output_bfd->sections; s != NULL; s = s->next)
5969 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
5970 == (SEC_ALLOC | SEC_READONLY))
5971 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
5972 {
5973 elf_hash_table (info)->text_index_section = s;
5974 break;
5975 }
5976
5977 for (s = output_bfd->sections; s != NULL; s = s->next)
5978 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
5979 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
5980 {
5981 elf_hash_table (info)->data_index_section = s;
5982 break;
5983 }
5984
5985 if (elf_hash_table (info)->text_index_section == NULL)
5986 elf_hash_table (info)->text_index_section
5987 = elf_hash_table (info)->data_index_section;
5988}
5989
8423293d
AM
5990bfd_boolean
5991bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
5992{
74541ad4
AM
5993 const struct elf_backend_data *bed;
5994
8423293d
AM
5995 if (!is_elf_hash_table (info->hash))
5996 return TRUE;
5997
74541ad4
AM
5998 bed = get_elf_backend_data (output_bfd);
5999 (*bed->elf_backend_init_index_section) (output_bfd, info);
6000
8423293d
AM
6001 if (elf_hash_table (info)->dynamic_sections_created)
6002 {
6003 bfd *dynobj;
8423293d
AM
6004 asection *s;
6005 bfd_size_type dynsymcount;
6006 unsigned long section_sym_count;
8423293d
AM
6007 unsigned int dtagcount;
6008
6009 dynobj = elf_hash_table (info)->dynobj;
6010
5a580b3a
AM
6011 /* Assign dynsym indicies. In a shared library we generate a
6012 section symbol for each output section, which come first.
6013 Next come all of the back-end allocated local dynamic syms,
6014 followed by the rest of the global symbols. */
6015
554220db
AM
6016 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6017 &section_sym_count);
5a580b3a
AM
6018
6019 /* Work out the size of the symbol version section. */
6020 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6021 BFD_ASSERT (s != NULL);
8423293d
AM
6022 if (dynsymcount != 0
6023 && (s->flags & SEC_EXCLUDE) == 0)
5a580b3a 6024 {
eea6121a
AM
6025 s->size = dynsymcount * sizeof (Elf_External_Versym);
6026 s->contents = bfd_zalloc (output_bfd, s->size);
5a580b3a
AM
6027 if (s->contents == NULL)
6028 return FALSE;
6029
6030 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6031 return FALSE;
6032 }
6033
6034 /* Set the size of the .dynsym and .hash sections. We counted
6035 the number of dynamic symbols in elf_link_add_object_symbols.
6036 We will build the contents of .dynsym and .hash when we build
6037 the final symbol table, because until then we do not know the
6038 correct value to give the symbols. We built the .dynstr
6039 section as we went along in elf_link_add_object_symbols. */
6040 s = bfd_get_section_by_name (dynobj, ".dynsym");
6041 BFD_ASSERT (s != NULL);
eea6121a 6042 s->size = dynsymcount * bed->s->sizeof_sym;
5a580b3a
AM
6043
6044 if (dynsymcount != 0)
6045 {
554220db
AM
6046 s->contents = bfd_alloc (output_bfd, s->size);
6047 if (s->contents == NULL)
6048 return FALSE;
5a580b3a 6049
554220db
AM
6050 /* The first entry in .dynsym is a dummy symbol.
6051 Clear all the section syms, in case we don't output them all. */
6052 ++section_sym_count;
6053 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
5a580b3a
AM
6054 }
6055
fdc90cb4
JJ
6056 elf_hash_table (info)->bucketcount = 0;
6057
5a580b3a
AM
6058 /* Compute the size of the hashing table. As a side effect this
6059 computes the hash values for all the names we export. */
fdc90cb4
JJ
6060 if (info->emit_hash)
6061 {
6062 unsigned long int *hashcodes;
6063 unsigned long int *hashcodesp;
6064 bfd_size_type amt;
6065 unsigned long int nsyms;
6066 size_t bucketcount;
6067 size_t hash_entry_size;
6068
6069 /* Compute the hash values for all exported symbols. At the same
6070 time store the values in an array so that we could use them for
6071 optimizations. */
6072 amt = dynsymcount * sizeof (unsigned long int);
6073 hashcodes = bfd_malloc (amt);
6074 if (hashcodes == NULL)
6075 return FALSE;
6076 hashcodesp = hashcodes;
5a580b3a 6077
fdc90cb4
JJ
6078 /* Put all hash values in HASHCODES. */
6079 elf_link_hash_traverse (elf_hash_table (info),
6080 elf_collect_hash_codes, &hashcodesp);
5a580b3a 6081
fdc90cb4
JJ
6082 nsyms = hashcodesp - hashcodes;
6083 bucketcount
6084 = compute_bucket_count (info, hashcodes, nsyms, 0);
6085 free (hashcodes);
6086
6087 if (bucketcount == 0)
6088 return FALSE;
5a580b3a 6089
fdc90cb4
JJ
6090 elf_hash_table (info)->bucketcount = bucketcount;
6091
6092 s = bfd_get_section_by_name (dynobj, ".hash");
6093 BFD_ASSERT (s != NULL);
6094 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6095 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6096 s->contents = bfd_zalloc (output_bfd, s->size);
6097 if (s->contents == NULL)
6098 return FALSE;
6099
6100 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6101 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6102 s->contents + hash_entry_size);
6103 }
6104
6105 if (info->emit_gnu_hash)
6106 {
6107 size_t i, cnt;
6108 unsigned char *contents;
6109 struct collect_gnu_hash_codes cinfo;
6110 bfd_size_type amt;
6111 size_t bucketcount;
6112
6113 memset (&cinfo, 0, sizeof (cinfo));
6114
6115 /* Compute the hash values for all exported symbols. At the same
6116 time store the values in an array so that we could use them for
6117 optimizations. */
6118 amt = dynsymcount * 2 * sizeof (unsigned long int);
6119 cinfo.hashcodes = bfd_malloc (amt);
6120 if (cinfo.hashcodes == NULL)
6121 return FALSE;
6122
6123 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6124 cinfo.min_dynindx = -1;
6125 cinfo.output_bfd = output_bfd;
6126 cinfo.bed = bed;
6127
6128 /* Put all hash values in HASHCODES. */
6129 elf_link_hash_traverse (elf_hash_table (info),
6130 elf_collect_gnu_hash_codes, &cinfo);
6131
6132 bucketcount
6133 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6134
6135 if (bucketcount == 0)
6136 {
6137 free (cinfo.hashcodes);
6138 return FALSE;
6139 }
6140
6141 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6142 BFD_ASSERT (s != NULL);
6143
6144 if (cinfo.nsyms == 0)
6145 {
6146 /* Empty .gnu.hash section is special. */
6147 BFD_ASSERT (cinfo.min_dynindx == -1);
6148 free (cinfo.hashcodes);
6149 s->size = 5 * 4 + bed->s->arch_size / 8;
6150 contents = bfd_zalloc (output_bfd, s->size);
6151 if (contents == NULL)
6152 return FALSE;
6153 s->contents = contents;
6154 /* 1 empty bucket. */
6155 bfd_put_32 (output_bfd, 1, contents);
6156 /* SYMIDX above the special symbol 0. */
6157 bfd_put_32 (output_bfd, 1, contents + 4);
6158 /* Just one word for bitmask. */
6159 bfd_put_32 (output_bfd, 1, contents + 8);
6160 /* Only hash fn bloom filter. */
6161 bfd_put_32 (output_bfd, 0, contents + 12);
6162 /* No hashes are valid - empty bitmask. */
6163 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6164 /* No hashes in the only bucket. */
6165 bfd_put_32 (output_bfd, 0,
6166 contents + 16 + bed->s->arch_size / 8);
6167 }
6168 else
6169 {
fdc90cb4 6170 unsigned long int maskwords, maskbitslog2;
0b33793d 6171 BFD_ASSERT (cinfo.min_dynindx != -1);
fdc90cb4
JJ
6172
6173 maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6174 if (maskbitslog2 < 3)
6175 maskbitslog2 = 5;
6176 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6177 maskbitslog2 = maskbitslog2 + 3;
6178 else
6179 maskbitslog2 = maskbitslog2 + 2;
6180 if (bed->s->arch_size == 64)
6181 {
6182 if (maskbitslog2 == 5)
6183 maskbitslog2 = 6;
6184 cinfo.shift1 = 6;
6185 }
6186 else
6187 cinfo.shift1 = 5;
6188 cinfo.mask = (1 << cinfo.shift1) - 1;
2ccdbfcc 6189 cinfo.shift2 = maskbitslog2;
fdc90cb4
JJ
6190 cinfo.maskbits = 1 << maskbitslog2;
6191 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6192 amt = bucketcount * sizeof (unsigned long int) * 2;
6193 amt += maskwords * sizeof (bfd_vma);
6194 cinfo.bitmask = bfd_malloc (amt);
6195 if (cinfo.bitmask == NULL)
6196 {
6197 free (cinfo.hashcodes);
6198 return FALSE;
6199 }
6200
6201 cinfo.counts = (void *) (cinfo.bitmask + maskwords);
6202 cinfo.indx = cinfo.counts + bucketcount;
6203 cinfo.symindx = dynsymcount - cinfo.nsyms;
6204 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6205
6206 /* Determine how often each hash bucket is used. */
6207 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6208 for (i = 0; i < cinfo.nsyms; ++i)
6209 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6210
6211 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6212 if (cinfo.counts[i] != 0)
6213 {
6214 cinfo.indx[i] = cnt;
6215 cnt += cinfo.counts[i];
6216 }
6217 BFD_ASSERT (cnt == dynsymcount);
6218 cinfo.bucketcount = bucketcount;
6219 cinfo.local_indx = cinfo.min_dynindx;
6220
6221 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6222 s->size += cinfo.maskbits / 8;
6223 contents = bfd_zalloc (output_bfd, s->size);
6224 if (contents == NULL)
6225 {
6226 free (cinfo.bitmask);
6227 free (cinfo.hashcodes);
6228 return FALSE;
6229 }
6230
6231 s->contents = contents;
6232 bfd_put_32 (output_bfd, bucketcount, contents);
6233 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6234 bfd_put_32 (output_bfd, maskwords, contents + 8);
6235 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6236 contents += 16 + cinfo.maskbits / 8;
6237
6238 for (i = 0; i < bucketcount; ++i)
6239 {
6240 if (cinfo.counts[i] == 0)
6241 bfd_put_32 (output_bfd, 0, contents);
6242 else
6243 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6244 contents += 4;
6245 }
6246
6247 cinfo.contents = contents;
6248
6249 /* Renumber dynamic symbols, populate .gnu.hash section. */
6250 elf_link_hash_traverse (elf_hash_table (info),
6251 elf_renumber_gnu_hash_syms, &cinfo);
6252
6253 contents = s->contents + 16;
6254 for (i = 0; i < maskwords; ++i)
6255 {
6256 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6257 contents);
6258 contents += bed->s->arch_size / 8;
6259 }
6260
6261 free (cinfo.bitmask);
6262 free (cinfo.hashcodes);
6263 }
6264 }
5a580b3a
AM
6265
6266 s = bfd_get_section_by_name (dynobj, ".dynstr");
6267 BFD_ASSERT (s != NULL);
6268
4ad4eba5 6269 elf_finalize_dynstr (output_bfd, info);
5a580b3a 6270
eea6121a 6271 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5a580b3a
AM
6272
6273 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6274 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6275 return FALSE;
6276 }
6277
6278 return TRUE;
6279}
c152c796
AM
6280
6281/* Final phase of ELF linker. */
6282
6283/* A structure we use to avoid passing large numbers of arguments. */
6284
6285struct elf_final_link_info
6286{
6287 /* General link information. */
6288 struct bfd_link_info *info;
6289 /* Output BFD. */
6290 bfd *output_bfd;
6291 /* Symbol string table. */
6292 struct bfd_strtab_hash *symstrtab;
6293 /* .dynsym section. */
6294 asection *dynsym_sec;
6295 /* .hash section. */
6296 asection *hash_sec;
6297 /* symbol version section (.gnu.version). */
6298 asection *symver_sec;
6299 /* Buffer large enough to hold contents of any section. */
6300 bfd_byte *contents;
6301 /* Buffer large enough to hold external relocs of any section. */
6302 void *external_relocs;
6303 /* Buffer large enough to hold internal relocs of any section. */
6304 Elf_Internal_Rela *internal_relocs;
6305 /* Buffer large enough to hold external local symbols of any input
6306 BFD. */
6307 bfd_byte *external_syms;
6308 /* And a buffer for symbol section indices. */
6309 Elf_External_Sym_Shndx *locsym_shndx;
6310 /* Buffer large enough to hold internal local symbols of any input
6311 BFD. */
6312 Elf_Internal_Sym *internal_syms;
6313 /* Array large enough to hold a symbol index for each local symbol
6314 of any input BFD. */
6315 long *indices;
6316 /* Array large enough to hold a section pointer for each local
6317 symbol of any input BFD. */
6318 asection **sections;
6319 /* Buffer to hold swapped out symbols. */
6320 bfd_byte *symbuf;
6321 /* And one for symbol section indices. */
6322 Elf_External_Sym_Shndx *symshndxbuf;
6323 /* Number of swapped out symbols in buffer. */
6324 size_t symbuf_count;
6325 /* Number of symbols which fit in symbuf. */
6326 size_t symbuf_size;
6327 /* And same for symshndxbuf. */
6328 size_t shndxbuf_size;
6329};
6330
6331/* This struct is used to pass information to elf_link_output_extsym. */
6332
6333struct elf_outext_info
6334{
6335 bfd_boolean failed;
6336 bfd_boolean localsyms;
6337 struct elf_final_link_info *finfo;
6338};
6339
6340/* When performing a relocatable link, the input relocations are
6341 preserved. But, if they reference global symbols, the indices
6342 referenced must be updated. Update all the relocations in
6343 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
6344
6345static void
6346elf_link_adjust_relocs (bfd *abfd,
6347 Elf_Internal_Shdr *rel_hdr,
6348 unsigned int count,
6349 struct elf_link_hash_entry **rel_hash)
6350{
6351 unsigned int i;
6352 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6353 bfd_byte *erela;
6354 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
6355 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
6356 bfd_vma r_type_mask;
6357 int r_sym_shift;
6358
6359 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
6360 {
6361 swap_in = bed->s->swap_reloc_in;
6362 swap_out = bed->s->swap_reloc_out;
6363 }
6364 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
6365 {
6366 swap_in = bed->s->swap_reloca_in;
6367 swap_out = bed->s->swap_reloca_out;
6368 }
6369 else
6370 abort ();
6371
6372 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
6373 abort ();
6374
6375 if (bed->s->arch_size == 32)
6376 {
6377 r_type_mask = 0xff;
6378 r_sym_shift = 8;
6379 }
6380 else
6381 {
6382 r_type_mask = 0xffffffff;
6383 r_sym_shift = 32;
6384 }
6385
6386 erela = rel_hdr->contents;
6387 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
6388 {
6389 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
6390 unsigned int j;
6391
6392 if (*rel_hash == NULL)
6393 continue;
6394
6395 BFD_ASSERT ((*rel_hash)->indx >= 0);
6396
6397 (*swap_in) (abfd, erela, irela);
6398 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
6399 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
6400 | (irela[j].r_info & r_type_mask));
6401 (*swap_out) (abfd, irela, erela);
6402 }
6403}
6404
6405struct elf_link_sort_rela
6406{
6407 union {
6408 bfd_vma offset;
6409 bfd_vma sym_mask;
6410 } u;
6411 enum elf_reloc_type_class type;
6412 /* We use this as an array of size int_rels_per_ext_rel. */
6413 Elf_Internal_Rela rela[1];
6414};
6415
6416static int
6417elf_link_sort_cmp1 (const void *A, const void *B)
6418{
6419 const struct elf_link_sort_rela *a = A;
6420 const struct elf_link_sort_rela *b = B;
6421 int relativea, relativeb;
6422
6423 relativea = a->type == reloc_class_relative;
6424 relativeb = b->type == reloc_class_relative;
6425
6426 if (relativea < relativeb)
6427 return 1;
6428 if (relativea > relativeb)
6429 return -1;
6430 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
6431 return -1;
6432 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
6433 return 1;
6434 if (a->rela->r_offset < b->rela->r_offset)
6435 return -1;
6436 if (a->rela->r_offset > b->rela->r_offset)
6437 return 1;
6438 return 0;
6439}
6440
6441static int
6442elf_link_sort_cmp2 (const void *A, const void *B)
6443{
6444 const struct elf_link_sort_rela *a = A;
6445 const struct elf_link_sort_rela *b = B;
6446 int copya, copyb;
6447
6448 if (a->u.offset < b->u.offset)
6449 return -1;
6450 if (a->u.offset > b->u.offset)
6451 return 1;
6452 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
6453 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
6454 if (copya < copyb)
6455 return -1;
6456 if (copya > copyb)
6457 return 1;
6458 if (a->rela->r_offset < b->rela->r_offset)
6459 return -1;
6460 if (a->rela->r_offset > b->rela->r_offset)
6461 return 1;
6462 return 0;
6463}
6464
6465static size_t
6466elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
6467{
6468 asection *reldyn;
6469 bfd_size_type count, size;
6470 size_t i, ret, sort_elt, ext_size;
6471 bfd_byte *sort, *s_non_relative, *p;
6472 struct elf_link_sort_rela *sq;
6473 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6474 int i2e = bed->s->int_rels_per_ext_rel;
6475 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
6476 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
6477 struct bfd_link_order *lo;
6478 bfd_vma r_sym_mask;
6479
6480 reldyn = bfd_get_section_by_name (abfd, ".rela.dyn");
eea6121a 6481 if (reldyn == NULL || reldyn->size == 0)
c152c796
AM
6482 {
6483 reldyn = bfd_get_section_by_name (abfd, ".rel.dyn");
eea6121a 6484 if (reldyn == NULL || reldyn->size == 0)
c152c796
AM
6485 return 0;
6486 ext_size = bed->s->sizeof_rel;
6487 swap_in = bed->s->swap_reloc_in;
6488 swap_out = bed->s->swap_reloc_out;
6489 }
6490 else
6491 {
6492 ext_size = bed->s->sizeof_rela;
6493 swap_in = bed->s->swap_reloca_in;
6494 swap_out = bed->s->swap_reloca_out;
6495 }
eea6121a 6496 count = reldyn->size / ext_size;
c152c796
AM
6497
6498 size = 0;
8423293d 6499 for (lo = reldyn->map_head.link_order; lo != NULL; lo = lo->next)
c152c796
AM
6500 if (lo->type == bfd_indirect_link_order)
6501 {
6502 asection *o = lo->u.indirect.section;
eea6121a 6503 size += o->size;
c152c796
AM
6504 }
6505
eea6121a 6506 if (size != reldyn->size)
c152c796
AM
6507 return 0;
6508
6509 sort_elt = (sizeof (struct elf_link_sort_rela)
6510 + (i2e - 1) * sizeof (Elf_Internal_Rela));
6511 sort = bfd_zmalloc (sort_elt * count);
6512 if (sort == NULL)
6513 {
6514 (*info->callbacks->warning)
6515 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
6516 return 0;
6517 }
6518
6519 if (bed->s->arch_size == 32)
6520 r_sym_mask = ~(bfd_vma) 0xff;
6521 else
6522 r_sym_mask = ~(bfd_vma) 0xffffffff;
6523
8423293d 6524 for (lo = reldyn->map_head.link_order; lo != NULL; lo = lo->next)
c152c796
AM
6525 if (lo->type == bfd_indirect_link_order)
6526 {
6527 bfd_byte *erel, *erelend;
6528 asection *o = lo->u.indirect.section;
6529
1da212d6
AM
6530 if (o->contents == NULL && o->size != 0)
6531 {
6532 /* This is a reloc section that is being handled as a normal
6533 section. See bfd_section_from_shdr. We can't combine
6534 relocs in this case. */
6535 free (sort);
6536 return 0;
6537 }
c152c796 6538 erel = o->contents;
eea6121a 6539 erelend = o->contents + o->size;
c152c796
AM
6540 p = sort + o->output_offset / ext_size * sort_elt;
6541 while (erel < erelend)
6542 {
6543 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
6544 (*swap_in) (abfd, erel, s->rela);
6545 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
6546 s->u.sym_mask = r_sym_mask;
6547 p += sort_elt;
6548 erel += ext_size;
6549 }
6550 }
6551
6552 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
6553
6554 for (i = 0, p = sort; i < count; i++, p += sort_elt)
6555 {
6556 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
6557 if (s->type != reloc_class_relative)
6558 break;
6559 }
6560 ret = i;
6561 s_non_relative = p;
6562
6563 sq = (struct elf_link_sort_rela *) s_non_relative;
6564 for (; i < count; i++, p += sort_elt)
6565 {
6566 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
6567 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
6568 sq = sp;
6569 sp->u.offset = sq->rela->r_offset;
6570 }
6571
6572 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
6573
8423293d 6574 for (lo = reldyn->map_head.link_order; lo != NULL; lo = lo->next)
c152c796
AM
6575 if (lo->type == bfd_indirect_link_order)
6576 {
6577 bfd_byte *erel, *erelend;
6578 asection *o = lo->u.indirect.section;
6579
6580 erel = o->contents;
eea6121a 6581 erelend = o->contents + o->size;
c152c796
AM
6582 p = sort + o->output_offset / ext_size * sort_elt;
6583 while (erel < erelend)
6584 {
6585 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
6586 (*swap_out) (abfd, s->rela, erel);
6587 p += sort_elt;
6588 erel += ext_size;
6589 }
6590 }
6591
6592 free (sort);
6593 *psec = reldyn;
6594 return ret;
6595}
6596
6597/* Flush the output symbols to the file. */
6598
6599static bfd_boolean
6600elf_link_flush_output_syms (struct elf_final_link_info *finfo,
6601 const struct elf_backend_data *bed)
6602{
6603 if (finfo->symbuf_count > 0)
6604 {
6605 Elf_Internal_Shdr *hdr;
6606 file_ptr pos;
6607 bfd_size_type amt;
6608
6609 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
6610 pos = hdr->sh_offset + hdr->sh_size;
6611 amt = finfo->symbuf_count * bed->s->sizeof_sym;
6612 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
6613 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
6614 return FALSE;
6615
6616 hdr->sh_size += amt;
6617 finfo->symbuf_count = 0;
6618 }
6619
6620 return TRUE;
6621}
6622
6623/* Add a symbol to the output symbol table. */
6624
6625static bfd_boolean
6626elf_link_output_sym (struct elf_final_link_info *finfo,
6627 const char *name,
6628 Elf_Internal_Sym *elfsym,
6629 asection *input_sec,
6630 struct elf_link_hash_entry *h)
6631{
6632 bfd_byte *dest;
6633 Elf_External_Sym_Shndx *destshndx;
6634 bfd_boolean (*output_symbol_hook)
6635 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
6636 struct elf_link_hash_entry *);
6637 const struct elf_backend_data *bed;
6638
6639 bed = get_elf_backend_data (finfo->output_bfd);
6640 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
6641 if (output_symbol_hook != NULL)
6642 {
6643 if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h))
6644 return FALSE;
6645 }
6646
6647 if (name == NULL || *name == '\0')
6648 elfsym->st_name = 0;
6649 else if (input_sec->flags & SEC_EXCLUDE)
6650 elfsym->st_name = 0;
6651 else
6652 {
6653 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
6654 name, TRUE, FALSE);
6655 if (elfsym->st_name == (unsigned long) -1)
6656 return FALSE;
6657 }
6658
6659 if (finfo->symbuf_count >= finfo->symbuf_size)
6660 {
6661 if (! elf_link_flush_output_syms (finfo, bed))
6662 return FALSE;
6663 }
6664
6665 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
6666 destshndx = finfo->symshndxbuf;
6667 if (destshndx != NULL)
6668 {
6669 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
6670 {
6671 bfd_size_type amt;
6672
6673 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
6674 finfo->symshndxbuf = destshndx = bfd_realloc (destshndx, amt * 2);
6675 if (destshndx == NULL)
6676 return FALSE;
6677 memset ((char *) destshndx + amt, 0, amt);
6678 finfo->shndxbuf_size *= 2;
6679 }
6680 destshndx += bfd_get_symcount (finfo->output_bfd);
6681 }
6682
6683 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
6684 finfo->symbuf_count += 1;
6685 bfd_get_symcount (finfo->output_bfd) += 1;
6686
6687 return TRUE;
6688}
6689
c0d5a53d
L
6690/* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
6691
6692static bfd_boolean
6693check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
6694{
6695 if (sym->st_shndx > SHN_HIRESERVE)
6696 {
6697 /* The gABI doesn't support dynamic symbols in output sections
6698 beyond 64k. */
6699 (*_bfd_error_handler)
6700 (_("%B: Too many sections: %d (>= %d)"),
6701 abfd, bfd_count_sections (abfd), SHN_LORESERVE);
6702 bfd_set_error (bfd_error_nonrepresentable_section);
6703 return FALSE;
6704 }
6705 return TRUE;
6706}
6707
c152c796
AM
6708/* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
6709 allowing an unsatisfied unversioned symbol in the DSO to match a
6710 versioned symbol that would normally require an explicit version.
6711 We also handle the case that a DSO references a hidden symbol
6712 which may be satisfied by a versioned symbol in another DSO. */
6713
6714static bfd_boolean
6715elf_link_check_versioned_symbol (struct bfd_link_info *info,
6716 const struct elf_backend_data *bed,
6717 struct elf_link_hash_entry *h)
6718{
6719 bfd *abfd;
6720 struct elf_link_loaded_list *loaded;
6721
6722 if (!is_elf_hash_table (info->hash))
6723 return FALSE;
6724
6725 switch (h->root.type)
6726 {
6727 default:
6728 abfd = NULL;
6729 break;
6730
6731 case bfd_link_hash_undefined:
6732 case bfd_link_hash_undefweak:
6733 abfd = h->root.u.undef.abfd;
6734 if ((abfd->flags & DYNAMIC) == 0
e56f61be 6735 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
c152c796
AM
6736 return FALSE;
6737 break;
6738
6739 case bfd_link_hash_defined:
6740 case bfd_link_hash_defweak:
6741 abfd = h->root.u.def.section->owner;
6742 break;
6743
6744 case bfd_link_hash_common:
6745 abfd = h->root.u.c.p->section->owner;
6746 break;
6747 }
6748 BFD_ASSERT (abfd != NULL);
6749
6750 for (loaded = elf_hash_table (info)->loaded;
6751 loaded != NULL;
6752 loaded = loaded->next)
6753 {
6754 bfd *input;
6755 Elf_Internal_Shdr *hdr;
6756 bfd_size_type symcount;
6757 bfd_size_type extsymcount;
6758 bfd_size_type extsymoff;
6759 Elf_Internal_Shdr *versymhdr;
6760 Elf_Internal_Sym *isym;
6761 Elf_Internal_Sym *isymend;
6762 Elf_Internal_Sym *isymbuf;
6763 Elf_External_Versym *ever;
6764 Elf_External_Versym *extversym;
6765
6766 input = loaded->abfd;
6767
6768 /* We check each DSO for a possible hidden versioned definition. */
6769 if (input == abfd
6770 || (input->flags & DYNAMIC) == 0
6771 || elf_dynversym (input) == 0)
6772 continue;
6773
6774 hdr = &elf_tdata (input)->dynsymtab_hdr;
6775
6776 symcount = hdr->sh_size / bed->s->sizeof_sym;
6777 if (elf_bad_symtab (input))
6778 {
6779 extsymcount = symcount;
6780 extsymoff = 0;
6781 }
6782 else
6783 {
6784 extsymcount = symcount - hdr->sh_info;
6785 extsymoff = hdr->sh_info;
6786 }
6787
6788 if (extsymcount == 0)
6789 continue;
6790
6791 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
6792 NULL, NULL, NULL);
6793 if (isymbuf == NULL)
6794 return FALSE;
6795
6796 /* Read in any version definitions. */
6797 versymhdr = &elf_tdata (input)->dynversym_hdr;
6798 extversym = bfd_malloc (versymhdr->sh_size);
6799 if (extversym == NULL)
6800 goto error_ret;
6801
6802 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
6803 || (bfd_bread (extversym, versymhdr->sh_size, input)
6804 != versymhdr->sh_size))
6805 {
6806 free (extversym);
6807 error_ret:
6808 free (isymbuf);
6809 return FALSE;
6810 }
6811
6812 ever = extversym + extsymoff;
6813 isymend = isymbuf + extsymcount;
6814 for (isym = isymbuf; isym < isymend; isym++, ever++)
6815 {
6816 const char *name;
6817 Elf_Internal_Versym iver;
6818 unsigned short version_index;
6819
6820 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
6821 || isym->st_shndx == SHN_UNDEF)
6822 continue;
6823
6824 name = bfd_elf_string_from_elf_section (input,
6825 hdr->sh_link,
6826 isym->st_name);
6827 if (strcmp (name, h->root.root.string) != 0)
6828 continue;
6829
6830 _bfd_elf_swap_versym_in (input, ever, &iver);
6831
6832 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
6833 {
6834 /* If we have a non-hidden versioned sym, then it should
6835 have provided a definition for the undefined sym. */
6836 abort ();
6837 }
6838
6839 version_index = iver.vs_vers & VERSYM_VERSION;
6840 if (version_index == 1 || version_index == 2)
6841 {
6842 /* This is the base or first version. We can use it. */
6843 free (extversym);
6844 free (isymbuf);
6845 return TRUE;
6846 }
6847 }
6848
6849 free (extversym);
6850 free (isymbuf);
6851 }
6852
6853 return FALSE;
6854}
6855
6856/* Add an external symbol to the symbol table. This is called from
6857 the hash table traversal routine. When generating a shared object,
6858 we go through the symbol table twice. The first time we output
6859 anything that might have been forced to local scope in a version
6860 script. The second time we output the symbols that are still
6861 global symbols. */
6862
6863static bfd_boolean
6864elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
6865{
6866 struct elf_outext_info *eoinfo = data;
6867 struct elf_final_link_info *finfo = eoinfo->finfo;
6868 bfd_boolean strip;
6869 Elf_Internal_Sym sym;
6870 asection *input_sec;
6871 const struct elf_backend_data *bed;
6872
6873 if (h->root.type == bfd_link_hash_warning)
6874 {
6875 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6876 if (h->root.type == bfd_link_hash_new)
6877 return TRUE;
6878 }
6879
6880 /* Decide whether to output this symbol in this pass. */
6881 if (eoinfo->localsyms)
6882 {
f5385ebf 6883 if (!h->forced_local)
c152c796
AM
6884 return TRUE;
6885 }
6886 else
6887 {
f5385ebf 6888 if (h->forced_local)
c152c796
AM
6889 return TRUE;
6890 }
6891
6892 bed = get_elf_backend_data (finfo->output_bfd);
6893
12ac1cf5 6894 if (h->root.type == bfd_link_hash_undefined)
c152c796 6895 {
12ac1cf5
NC
6896 /* If we have an undefined symbol reference here then it must have
6897 come from a shared library that is being linked in. (Undefined
6898 references in regular files have already been handled). */
6899 bfd_boolean ignore_undef = FALSE;
6900
6901 /* Some symbols may be special in that the fact that they're
6902 undefined can be safely ignored - let backend determine that. */
6903 if (bed->elf_backend_ignore_undef_symbol)
6904 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
6905
6906 /* If we are reporting errors for this situation then do so now. */
6907 if (ignore_undef == FALSE
6908 && h->ref_dynamic
6909 && ! h->ref_regular
6910 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
6911 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
c152c796 6912 {
12ac1cf5
NC
6913 if (! (finfo->info->callbacks->undefined_symbol
6914 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
6915 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
6916 {
6917 eoinfo->failed = TRUE;
6918 return FALSE;
6919 }
c152c796
AM
6920 }
6921 }
6922
6923 /* We should also warn if a forced local symbol is referenced from
6924 shared libraries. */
6925 if (! finfo->info->relocatable
6926 && (! finfo->info->shared)
f5385ebf
AM
6927 && h->forced_local
6928 && h->ref_dynamic
6929 && !h->dynamic_def
6930 && !h->dynamic_weak
c152c796
AM
6931 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
6932 {
6933 (*_bfd_error_handler)
d003868e 6934 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
cfca085c
L
6935 finfo->output_bfd,
6936 h->root.u.def.section == bfd_abs_section_ptr
6937 ? finfo->output_bfd : h->root.u.def.section->owner,
c152c796
AM
6938 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
6939 ? "internal"
6940 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
d003868e
AM
6941 ? "hidden" : "local",
6942 h->root.root.string);
c152c796
AM
6943 eoinfo->failed = TRUE;
6944 return FALSE;
6945 }
6946
6947 /* We don't want to output symbols that have never been mentioned by
6948 a regular file, or that we have been told to strip. However, if
6949 h->indx is set to -2, the symbol is used by a reloc and we must
6950 output it. */
6951 if (h->indx == -2)
6952 strip = FALSE;
f5385ebf 6953 else if ((h->def_dynamic
77cfaee6
AM
6954 || h->ref_dynamic
6955 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
6956 && !h->def_regular
6957 && !h->ref_regular)
c152c796
AM
6958 strip = TRUE;
6959 else if (finfo->info->strip == strip_all)
6960 strip = TRUE;
6961 else if (finfo->info->strip == strip_some
6962 && bfd_hash_lookup (finfo->info->keep_hash,
6963 h->root.root.string, FALSE, FALSE) == NULL)
6964 strip = TRUE;
6965 else if (finfo->info->strip_discarded
6966 && (h->root.type == bfd_link_hash_defined
6967 || h->root.type == bfd_link_hash_defweak)
6968 && elf_discarded_section (h->root.u.def.section))
6969 strip = TRUE;
6970 else
6971 strip = FALSE;
6972
6973 /* If we're stripping it, and it's not a dynamic symbol, there's
6974 nothing else to do unless it is a forced local symbol. */
6975 if (strip
6976 && h->dynindx == -1
f5385ebf 6977 && !h->forced_local)
c152c796
AM
6978 return TRUE;
6979
6980 sym.st_value = 0;
6981 sym.st_size = h->size;
6982 sym.st_other = h->other;
f5385ebf 6983 if (h->forced_local)
c152c796
AM
6984 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
6985 else if (h->root.type == bfd_link_hash_undefweak
6986 || h->root.type == bfd_link_hash_defweak)
6987 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
6988 else
6989 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
6990
6991 switch (h->root.type)
6992 {
6993 default:
6994 case bfd_link_hash_new:
6995 case bfd_link_hash_warning:
6996 abort ();
6997 return FALSE;
6998
6999 case bfd_link_hash_undefined:
7000 case bfd_link_hash_undefweak:
7001 input_sec = bfd_und_section_ptr;
7002 sym.st_shndx = SHN_UNDEF;
7003 break;
7004
7005 case bfd_link_hash_defined:
7006 case bfd_link_hash_defweak:
7007 {
7008 input_sec = h->root.u.def.section;
7009 if (input_sec->output_section != NULL)
7010 {
7011 sym.st_shndx =
7012 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
7013 input_sec->output_section);
7014 if (sym.st_shndx == SHN_BAD)
7015 {
7016 (*_bfd_error_handler)
d003868e
AM
7017 (_("%B: could not find output section %A for input section %A"),
7018 finfo->output_bfd, input_sec->output_section, input_sec);
c152c796
AM
7019 eoinfo->failed = TRUE;
7020 return FALSE;
7021 }
7022
7023 /* ELF symbols in relocatable files are section relative,
7024 but in nonrelocatable files they are virtual
7025 addresses. */
7026 sym.st_value = h->root.u.def.value + input_sec->output_offset;
7027 if (! finfo->info->relocatable)
7028 {
7029 sym.st_value += input_sec->output_section->vma;
7030 if (h->type == STT_TLS)
7031 {
7032 /* STT_TLS symbols are relative to PT_TLS segment
7033 base. */
7034 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
7035 sym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
7036 }
7037 }
7038 }
7039 else
7040 {
7041 BFD_ASSERT (input_sec->owner == NULL
7042 || (input_sec->owner->flags & DYNAMIC) != 0);
7043 sym.st_shndx = SHN_UNDEF;
7044 input_sec = bfd_und_section_ptr;
7045 }
7046 }
7047 break;
7048
7049 case bfd_link_hash_common:
7050 input_sec = h->root.u.c.p->section;
a4d8e49b 7051 sym.st_shndx = bed->common_section_index (input_sec);
c152c796
AM
7052 sym.st_value = 1 << h->root.u.c.p->alignment_power;
7053 break;
7054
7055 case bfd_link_hash_indirect:
7056 /* These symbols are created by symbol versioning. They point
7057 to the decorated version of the name. For example, if the
7058 symbol foo@@GNU_1.2 is the default, which should be used when
7059 foo is used with no version, then we add an indirect symbol
7060 foo which points to foo@@GNU_1.2. We ignore these symbols,
7061 since the indirected symbol is already in the hash table. */
7062 return TRUE;
7063 }
7064
7065 /* Give the processor backend a chance to tweak the symbol value,
7066 and also to finish up anything that needs to be done for this
7067 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
7068 forced local syms when non-shared is due to a historical quirk. */
7069 if ((h->dynindx != -1
f5385ebf 7070 || h->forced_local)
c152c796
AM
7071 && ((finfo->info->shared
7072 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7073 || h->root.type != bfd_link_hash_undefweak))
f5385ebf 7074 || !h->forced_local)
c152c796
AM
7075 && elf_hash_table (finfo->info)->dynamic_sections_created)
7076 {
7077 if (! ((*bed->elf_backend_finish_dynamic_symbol)
7078 (finfo->output_bfd, finfo->info, h, &sym)))
7079 {
7080 eoinfo->failed = TRUE;
7081 return FALSE;
7082 }
7083 }
7084
7085 /* If we are marking the symbol as undefined, and there are no
7086 non-weak references to this symbol from a regular object, then
7087 mark the symbol as weak undefined; if there are non-weak
7088 references, mark the symbol as strong. We can't do this earlier,
7089 because it might not be marked as undefined until the
7090 finish_dynamic_symbol routine gets through with it. */
7091 if (sym.st_shndx == SHN_UNDEF
f5385ebf 7092 && h->ref_regular
c152c796
AM
7093 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
7094 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
7095 {
7096 int bindtype;
7097
f5385ebf 7098 if (h->ref_regular_nonweak)
c152c796
AM
7099 bindtype = STB_GLOBAL;
7100 else
7101 bindtype = STB_WEAK;
7102 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
7103 }
7104
7105 /* If a non-weak symbol with non-default visibility is not defined
7106 locally, it is a fatal error. */
7107 if (! finfo->info->relocatable
7108 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
7109 && ELF_ST_BIND (sym.st_info) != STB_WEAK
7110 && h->root.type == bfd_link_hash_undefined
f5385ebf 7111 && !h->def_regular)
c152c796
AM
7112 {
7113 (*_bfd_error_handler)
d003868e
AM
7114 (_("%B: %s symbol `%s' isn't defined"),
7115 finfo->output_bfd,
7116 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
7117 ? "protected"
7118 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
7119 ? "internal" : "hidden",
7120 h->root.root.string);
c152c796
AM
7121 eoinfo->failed = TRUE;
7122 return FALSE;
7123 }
7124
7125 /* If this symbol should be put in the .dynsym section, then put it
7126 there now. We already know the symbol index. We also fill in
7127 the entry in the .hash section. */
7128 if (h->dynindx != -1
7129 && elf_hash_table (finfo->info)->dynamic_sections_created)
7130 {
c152c796
AM
7131 bfd_byte *esym;
7132
7133 sym.st_name = h->dynstr_index;
7134 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
c0d5a53d
L
7135 if (! check_dynsym (finfo->output_bfd, &sym))
7136 {
7137 eoinfo->failed = TRUE;
7138 return FALSE;
7139 }
c152c796
AM
7140 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
7141
fdc90cb4
JJ
7142 if (finfo->hash_sec != NULL)
7143 {
7144 size_t hash_entry_size;
7145 bfd_byte *bucketpos;
7146 bfd_vma chain;
41198d0c
L
7147 size_t bucketcount;
7148 size_t bucket;
7149
7150 bucketcount = elf_hash_table (finfo->info)->bucketcount;
7151 bucket = h->u.elf_hash_value % bucketcount;
fdc90cb4
JJ
7152
7153 hash_entry_size
7154 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
7155 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
7156 + (bucket + 2) * hash_entry_size);
7157 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
7158 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
7159 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
7160 ((bfd_byte *) finfo->hash_sec->contents
7161 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
7162 }
c152c796
AM
7163
7164 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
7165 {
7166 Elf_Internal_Versym iversym;
7167 Elf_External_Versym *eversym;
7168
f5385ebf 7169 if (!h->def_regular)
c152c796
AM
7170 {
7171 if (h->verinfo.verdef == NULL)
7172 iversym.vs_vers = 0;
7173 else
7174 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
7175 }
7176 else
7177 {
7178 if (h->verinfo.vertree == NULL)
7179 iversym.vs_vers = 1;
7180 else
7181 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
3e3b46e5
PB
7182 if (finfo->info->create_default_symver)
7183 iversym.vs_vers++;
c152c796
AM
7184 }
7185
f5385ebf 7186 if (h->hidden)
c152c796
AM
7187 iversym.vs_vers |= VERSYM_HIDDEN;
7188
7189 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
7190 eversym += h->dynindx;
7191 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
7192 }
7193 }
7194
7195 /* If we're stripping it, then it was just a dynamic symbol, and
7196 there's nothing else to do. */
7197 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
7198 return TRUE;
7199
7200 h->indx = bfd_get_symcount (finfo->output_bfd);
7201
7202 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h))
7203 {
7204 eoinfo->failed = TRUE;
7205 return FALSE;
7206 }
7207
7208 return TRUE;
7209}
7210
cdd3575c
AM
7211/* Return TRUE if special handling is done for relocs in SEC against
7212 symbols defined in discarded sections. */
7213
c152c796
AM
7214static bfd_boolean
7215elf_section_ignore_discarded_relocs (asection *sec)
7216{
7217 const struct elf_backend_data *bed;
7218
cdd3575c
AM
7219 switch (sec->sec_info_type)
7220 {
7221 case ELF_INFO_TYPE_STABS:
7222 case ELF_INFO_TYPE_EH_FRAME:
7223 return TRUE;
7224 default:
7225 break;
7226 }
c152c796
AM
7227
7228 bed = get_elf_backend_data (sec->owner);
7229 if (bed->elf_backend_ignore_discarded_relocs != NULL
7230 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
7231 return TRUE;
7232
7233 return FALSE;
7234}
7235
9e66c942
AM
7236/* Return a mask saying how ld should treat relocations in SEC against
7237 symbols defined in discarded sections. If this function returns
7238 COMPLAIN set, ld will issue a warning message. If this function
7239 returns PRETEND set, and the discarded section was link-once and the
7240 same size as the kept link-once section, ld will pretend that the
7241 symbol was actually defined in the kept section. Otherwise ld will
7242 zero the reloc (at least that is the intent, but some cooperation by
7243 the target dependent code is needed, particularly for REL targets). */
7244
8a696751
AM
7245unsigned int
7246_bfd_elf_default_action_discarded (asection *sec)
cdd3575c 7247{
9e66c942 7248 if (sec->flags & SEC_DEBUGGING)
69d54b1b 7249 return PRETEND;
cdd3575c
AM
7250
7251 if (strcmp (".eh_frame", sec->name) == 0)
9e66c942 7252 return 0;
cdd3575c
AM
7253
7254 if (strcmp (".gcc_except_table", sec->name) == 0)
9e66c942 7255 return 0;
cdd3575c 7256
9e66c942 7257 return COMPLAIN | PRETEND;
cdd3575c
AM
7258}
7259
3d7f7666
L
7260/* Find a match between a section and a member of a section group. */
7261
7262static asection *
7263match_group_member (asection *sec, asection *group)
7264{
7265 asection *first = elf_next_in_group (group);
7266 asection *s = first;
7267
7268 while (s != NULL)
7269 {
7270 if (bfd_elf_match_symbols_in_sections (s, sec))
7271 return s;
7272
83180ade 7273 s = elf_next_in_group (s);
3d7f7666
L
7274 if (s == first)
7275 break;
7276 }
7277
7278 return NULL;
7279}
7280
01b3c8ab
L
7281/* Check if the kept section of a discarded section SEC can be used
7282 to replace it. Return the replacement if it is OK. Otherwise return
7283 NULL. */
7284
7285asection *
7286_bfd_elf_check_kept_section (asection *sec)
7287{
7288 asection *kept;
7289
7290 kept = sec->kept_section;
7291 if (kept != NULL)
7292 {
7293 if (elf_sec_group (sec) != NULL)
7294 kept = match_group_member (sec, kept);
7295 if (kept != NULL && sec->size != kept->size)
7296 kept = NULL;
7297 }
7298 return kept;
7299}
7300
c152c796
AM
7301/* Link an input file into the linker output file. This function
7302 handles all the sections and relocations of the input file at once.
7303 This is so that we only have to read the local symbols once, and
7304 don't have to keep them in memory. */
7305
7306static bfd_boolean
7307elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
7308{
7309 bfd_boolean (*relocate_section)
7310 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
7311 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
7312 bfd *output_bfd;
7313 Elf_Internal_Shdr *symtab_hdr;
7314 size_t locsymcount;
7315 size_t extsymoff;
7316 Elf_Internal_Sym *isymbuf;
7317 Elf_Internal_Sym *isym;
7318 Elf_Internal_Sym *isymend;
7319 long *pindex;
7320 asection **ppsection;
7321 asection *o;
7322 const struct elf_backend_data *bed;
7323 bfd_boolean emit_relocs;
7324 struct elf_link_hash_entry **sym_hashes;
7325
7326 output_bfd = finfo->output_bfd;
7327 bed = get_elf_backend_data (output_bfd);
7328 relocate_section = bed->elf_backend_relocate_section;
7329
7330 /* If this is a dynamic object, we don't want to do anything here:
7331 we don't want the local symbols, and we don't want the section
7332 contents. */
7333 if ((input_bfd->flags & DYNAMIC) != 0)
7334 return TRUE;
7335
7336 emit_relocs = (finfo->info->relocatable
eac338cf 7337 || finfo->info->emitrelocations);
c152c796
AM
7338
7339 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
7340 if (elf_bad_symtab (input_bfd))
7341 {
7342 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
7343 extsymoff = 0;
7344 }
7345 else
7346 {
7347 locsymcount = symtab_hdr->sh_info;
7348 extsymoff = symtab_hdr->sh_info;
7349 }
7350
7351 /* Read the local symbols. */
7352 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
7353 if (isymbuf == NULL && locsymcount != 0)
7354 {
7355 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
7356 finfo->internal_syms,
7357 finfo->external_syms,
7358 finfo->locsym_shndx);
7359 if (isymbuf == NULL)
7360 return FALSE;
7361 }
7362
7363 /* Find local symbol sections and adjust values of symbols in
7364 SEC_MERGE sections. Write out those local symbols we know are
7365 going into the output file. */
7366 isymend = isymbuf + locsymcount;
7367 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
7368 isym < isymend;
7369 isym++, pindex++, ppsection++)
7370 {
7371 asection *isec;
7372 const char *name;
7373 Elf_Internal_Sym osym;
7374
7375 *pindex = -1;
7376
7377 if (elf_bad_symtab (input_bfd))
7378 {
7379 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
7380 {
7381 *ppsection = NULL;
7382 continue;
7383 }
7384 }
7385
7386 if (isym->st_shndx == SHN_UNDEF)
7387 isec = bfd_und_section_ptr;
7388 else if (isym->st_shndx < SHN_LORESERVE
7389 || isym->st_shndx > SHN_HIRESERVE)
7390 {
7391 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
7392 if (isec
7393 && isec->sec_info_type == ELF_INFO_TYPE_MERGE
7394 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
7395 isym->st_value =
7396 _bfd_merged_section_offset (output_bfd, &isec,
7397 elf_section_data (isec)->sec_info,
753731ee 7398 isym->st_value);
c152c796
AM
7399 }
7400 else if (isym->st_shndx == SHN_ABS)
7401 isec = bfd_abs_section_ptr;
7402 else if (isym->st_shndx == SHN_COMMON)
7403 isec = bfd_com_section_ptr;
7404 else
7405 {
f02571c5
AM
7406 /* Don't attempt to output symbols with st_shnx in the
7407 reserved range other than SHN_ABS and SHN_COMMON. */
7408 *ppsection = NULL;
7409 continue;
c152c796
AM
7410 }
7411
7412 *ppsection = isec;
7413
7414 /* Don't output the first, undefined, symbol. */
7415 if (ppsection == finfo->sections)
7416 continue;
7417
7418 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
7419 {
7420 /* We never output section symbols. Instead, we use the
7421 section symbol of the corresponding section in the output
7422 file. */
7423 continue;
7424 }
7425
7426 /* If we are stripping all symbols, we don't want to output this
7427 one. */
7428 if (finfo->info->strip == strip_all)
7429 continue;
7430
7431 /* If we are discarding all local symbols, we don't want to
7432 output this one. If we are generating a relocatable output
7433 file, then some of the local symbols may be required by
7434 relocs; we output them below as we discover that they are
7435 needed. */
7436 if (finfo->info->discard == discard_all)
7437 continue;
7438
7439 /* If this symbol is defined in a section which we are
f02571c5
AM
7440 discarding, we don't need to keep it. */
7441 if (isym->st_shndx != SHN_UNDEF
7442 && (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
ccf5f610 7443 && (isec == NULL
f02571c5
AM
7444 || bfd_section_removed_from_list (output_bfd,
7445 isec->output_section)))
e75a280b
L
7446 continue;
7447
c152c796
AM
7448 /* Get the name of the symbol. */
7449 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
7450 isym->st_name);
7451 if (name == NULL)
7452 return FALSE;
7453
7454 /* See if we are discarding symbols with this name. */
7455 if ((finfo->info->strip == strip_some
7456 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
7457 == NULL))
7458 || (((finfo->info->discard == discard_sec_merge
7459 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
7460 || finfo->info->discard == discard_l)
7461 && bfd_is_local_label_name (input_bfd, name)))
7462 continue;
7463
7464 /* If we get here, we are going to output this symbol. */
7465
7466 osym = *isym;
7467
7468 /* Adjust the section index for the output file. */
7469 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
7470 isec->output_section);
7471 if (osym.st_shndx == SHN_BAD)
7472 return FALSE;
7473
7474 *pindex = bfd_get_symcount (output_bfd);
7475
7476 /* ELF symbols in relocatable files are section relative, but
7477 in executable files they are virtual addresses. Note that
7478 this code assumes that all ELF sections have an associated
7479 BFD section with a reasonable value for output_offset; below
7480 we assume that they also have a reasonable value for
7481 output_section. Any special sections must be set up to meet
7482 these requirements. */
7483 osym.st_value += isec->output_offset;
7484 if (! finfo->info->relocatable)
7485 {
7486 osym.st_value += isec->output_section->vma;
7487 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
7488 {
7489 /* STT_TLS symbols are relative to PT_TLS segment base. */
7490 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
7491 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
7492 }
7493 }
7494
7495 if (! elf_link_output_sym (finfo, name, &osym, isec, NULL))
7496 return FALSE;
7497 }
7498
7499 /* Relocate the contents of each section. */
7500 sym_hashes = elf_sym_hashes (input_bfd);
7501 for (o = input_bfd->sections; o != NULL; o = o->next)
7502 {
7503 bfd_byte *contents;
7504
7505 if (! o->linker_mark)
7506 {
7507 /* This section was omitted from the link. */
7508 continue;
7509 }
7510
7511 if ((o->flags & SEC_HAS_CONTENTS) == 0
eea6121a 7512 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
c152c796
AM
7513 continue;
7514
7515 if ((o->flags & SEC_LINKER_CREATED) != 0)
7516 {
7517 /* Section was created by _bfd_elf_link_create_dynamic_sections
7518 or somesuch. */
7519 continue;
7520 }
7521
7522 /* Get the contents of the section. They have been cached by a
7523 relaxation routine. Note that o is a section in an input
7524 file, so the contents field will not have been set by any of
7525 the routines which work on output files. */
7526 if (elf_section_data (o)->this_hdr.contents != NULL)
7527 contents = elf_section_data (o)->this_hdr.contents;
7528 else
7529 {
eea6121a
AM
7530 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
7531
c152c796 7532 contents = finfo->contents;
eea6121a 7533 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
c152c796
AM
7534 return FALSE;
7535 }
7536
7537 if ((o->flags & SEC_RELOC) != 0)
7538 {
7539 Elf_Internal_Rela *internal_relocs;
7540 bfd_vma r_type_mask;
7541 int r_sym_shift;
7542
7543 /* Get the swapped relocs. */
7544 internal_relocs
7545 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
7546 finfo->internal_relocs, FALSE);
7547 if (internal_relocs == NULL
7548 && o->reloc_count > 0)
7549 return FALSE;
7550
7551 if (bed->s->arch_size == 32)
7552 {
7553 r_type_mask = 0xff;
7554 r_sym_shift = 8;
7555 }
7556 else
7557 {
7558 r_type_mask = 0xffffffff;
7559 r_sym_shift = 32;
7560 }
7561
7562 /* Run through the relocs looking for any against symbols
7563 from discarded sections and section symbols from
7564 removed link-once sections. Complain about relocs
7565 against discarded sections. Zero relocs against removed
e0ae6d6f 7566 link-once sections. */
c152c796
AM
7567 if (!elf_section_ignore_discarded_relocs (o))
7568 {
7569 Elf_Internal_Rela *rel, *relend;
8a696751 7570 unsigned int action = (*bed->action_discarded) (o);
c152c796
AM
7571
7572 rel = internal_relocs;
7573 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
7574 for ( ; rel < relend; rel++)
7575 {
7576 unsigned long r_symndx = rel->r_info >> r_sym_shift;
cdd3575c
AM
7577 asection **ps, *sec;
7578 struct elf_link_hash_entry *h = NULL;
7579 const char *sym_name;
c152c796 7580
ee75fd95
AM
7581 if (r_symndx == STN_UNDEF)
7582 continue;
7583
c152c796
AM
7584 if (r_symndx >= locsymcount
7585 || (elf_bad_symtab (input_bfd)
7586 && finfo->sections[r_symndx] == NULL))
7587 {
c152c796 7588 h = sym_hashes[r_symndx - extsymoff];
dce669a1 7589
8c19749a
NC
7590 /* Badly formatted input files can contain relocs that
7591 reference non-existant symbols. Check here so that
7592 we do not seg fault. */
7593 if (h == NULL)
7594 {
7595 char buffer [32];
7596
7597 sprintf_vma (buffer, rel->r_info);
7598 (*_bfd_error_handler)
7599 (_("error: %B contains a reloc (0x%s) for section %A "
7600 "that references a non-existent global symbol"),
7601 input_bfd, o, buffer);
7602 bfd_set_error (bfd_error_bad_value);
7603 return FALSE;
7604 }
3b36f7e6 7605
c152c796
AM
7606 while (h->root.type == bfd_link_hash_indirect
7607 || h->root.type == bfd_link_hash_warning)
7608 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7609
cdd3575c
AM
7610 if (h->root.type != bfd_link_hash_defined
7611 && h->root.type != bfd_link_hash_defweak)
7612 continue;
7613
7614 ps = &h->root.u.def.section;
7615 sym_name = h->root.root.string;
c152c796
AM
7616 }
7617 else
7618 {
cdd3575c
AM
7619 Elf_Internal_Sym *sym = isymbuf + r_symndx;
7620 ps = &finfo->sections[r_symndx];
26c61ae5
L
7621 sym_name = bfd_elf_sym_name (input_bfd,
7622 symtab_hdr,
7623 sym, *ps);
cdd3575c 7624 }
c152c796 7625
cdd3575c
AM
7626 /* Complain if the definition comes from a
7627 discarded section. */
7628 if ((sec = *ps) != NULL && elf_discarded_section (sec))
7629 {
87e5235d 7630 BFD_ASSERT (r_symndx != 0);
9e66c942 7631 if (action & COMPLAIN)
e1fffbe6
AM
7632 (*finfo->info->callbacks->einfo)
7633 (_("%X`%s' referenced in section `%A' of %B: "
58ac56d0 7634 "defined in discarded section `%A' of %B\n"),
e1fffbe6 7635 sym_name, o, input_bfd, sec, sec->owner);
cdd3575c 7636
87e5235d 7637 /* Try to do the best we can to support buggy old
e0ae6d6f 7638 versions of gcc. Pretend that the symbol is
87e5235d
AM
7639 really defined in the kept linkonce section.
7640 FIXME: This is quite broken. Modifying the
7641 symbol here means we will be changing all later
e0ae6d6f 7642 uses of the symbol, not just in this section. */
01b3c8ab 7643 if (action & PRETEND)
87e5235d 7644 {
01b3c8ab
L
7645 asection *kept;
7646
7647 kept = _bfd_elf_check_kept_section (sec);
7648 if (kept != NULL)
87e5235d
AM
7649 {
7650 *ps = kept;
7651 continue;
7652 }
7653 }
7654
cdd3575c
AM
7655 /* Remove the symbol reference from the reloc, but
7656 don't kill the reloc completely. This is so that
7657 a zero value will be written into the section,
7658 which may have non-zero contents put there by the
7659 assembler. Zero in things like an eh_frame fde
7660 pc_begin allows stack unwinders to recognize the
7661 fde as bogus. */
7662 rel->r_info &= r_type_mask;
7663 rel->r_addend = 0;
c152c796
AM
7664 }
7665 }
7666 }
7667
7668 /* Relocate the section by invoking a back end routine.
7669
7670 The back end routine is responsible for adjusting the
7671 section contents as necessary, and (if using Rela relocs
7672 and generating a relocatable output file) adjusting the
7673 reloc addend as necessary.
7674
7675 The back end routine does not have to worry about setting
7676 the reloc address or the reloc symbol index.
7677
7678 The back end routine is given a pointer to the swapped in
7679 internal symbols, and can access the hash table entries
7680 for the external symbols via elf_sym_hashes (input_bfd).
7681
7682 When generating relocatable output, the back end routine
7683 must handle STB_LOCAL/STT_SECTION symbols specially. The
7684 output symbol is going to be a section symbol
7685 corresponding to the output section, which will require
7686 the addend to be adjusted. */
7687
7688 if (! (*relocate_section) (output_bfd, finfo->info,
7689 input_bfd, o, contents,
7690 internal_relocs,
7691 isymbuf,
7692 finfo->sections))
7693 return FALSE;
7694
7695 if (emit_relocs)
7696 {
7697 Elf_Internal_Rela *irela;
7698 Elf_Internal_Rela *irelaend;
7699 bfd_vma last_offset;
7700 struct elf_link_hash_entry **rel_hash;
eac338cf 7701 struct elf_link_hash_entry **rel_hash_list;
c152c796
AM
7702 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
7703 unsigned int next_erel;
c152c796
AM
7704 bfd_boolean rela_normal;
7705
7706 input_rel_hdr = &elf_section_data (o)->rel_hdr;
7707 rela_normal = (bed->rela_normal
7708 && (input_rel_hdr->sh_entsize
7709 == bed->s->sizeof_rela));
7710
7711 /* Adjust the reloc addresses and symbol indices. */
7712
7713 irela = internal_relocs;
7714 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
7715 rel_hash = (elf_section_data (o->output_section)->rel_hashes
7716 + elf_section_data (o->output_section)->rel_count
7717 + elf_section_data (o->output_section)->rel_count2);
eac338cf 7718 rel_hash_list = rel_hash;
c152c796
AM
7719 last_offset = o->output_offset;
7720 if (!finfo->info->relocatable)
7721 last_offset += o->output_section->vma;
7722 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
7723 {
7724 unsigned long r_symndx;
7725 asection *sec;
7726 Elf_Internal_Sym sym;
7727
7728 if (next_erel == bed->s->int_rels_per_ext_rel)
7729 {
7730 rel_hash++;
7731 next_erel = 0;
7732 }
7733
7734 irela->r_offset = _bfd_elf_section_offset (output_bfd,
7735 finfo->info, o,
7736 irela->r_offset);
7737 if (irela->r_offset >= (bfd_vma) -2)
7738 {
7739 /* This is a reloc for a deleted entry or somesuch.
7740 Turn it into an R_*_NONE reloc, at the same
7741 offset as the last reloc. elf_eh_frame.c and
e460dd0d 7742 bfd_elf_discard_info rely on reloc offsets
c152c796
AM
7743 being ordered. */
7744 irela->r_offset = last_offset;
7745 irela->r_info = 0;
7746 irela->r_addend = 0;
7747 continue;
7748 }
7749
7750 irela->r_offset += o->output_offset;
7751
7752 /* Relocs in an executable have to be virtual addresses. */
7753 if (!finfo->info->relocatable)
7754 irela->r_offset += o->output_section->vma;
7755
7756 last_offset = irela->r_offset;
7757
7758 r_symndx = irela->r_info >> r_sym_shift;
7759 if (r_symndx == STN_UNDEF)
7760 continue;
7761
7762 if (r_symndx >= locsymcount
7763 || (elf_bad_symtab (input_bfd)
7764 && finfo->sections[r_symndx] == NULL))
7765 {
7766 struct elf_link_hash_entry *rh;
7767 unsigned long indx;
7768
7769 /* This is a reloc against a global symbol. We
7770 have not yet output all the local symbols, so
7771 we do not know the symbol index of any global
7772 symbol. We set the rel_hash entry for this
7773 reloc to point to the global hash table entry
7774 for this symbol. The symbol index is then
ee75fd95 7775 set at the end of bfd_elf_final_link. */
c152c796
AM
7776 indx = r_symndx - extsymoff;
7777 rh = elf_sym_hashes (input_bfd)[indx];
7778 while (rh->root.type == bfd_link_hash_indirect
7779 || rh->root.type == bfd_link_hash_warning)
7780 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
7781
7782 /* Setting the index to -2 tells
7783 elf_link_output_extsym that this symbol is
7784 used by a reloc. */
7785 BFD_ASSERT (rh->indx < 0);
7786 rh->indx = -2;
7787
7788 *rel_hash = rh;
7789
7790 continue;
7791 }
7792
7793 /* This is a reloc against a local symbol. */
7794
7795 *rel_hash = NULL;
7796 sym = isymbuf[r_symndx];
7797 sec = finfo->sections[r_symndx];
7798 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
7799 {
7800 /* I suppose the backend ought to fill in the
7801 section of any STT_SECTION symbol against a
6a8d1586
AM
7802 processor specific section. */
7803 r_symndx = 0;
7804 if (bfd_is_abs_section (sec))
7805 ;
c152c796
AM
7806 else if (sec == NULL || sec->owner == NULL)
7807 {
7808 bfd_set_error (bfd_error_bad_value);
7809 return FALSE;
7810 }
7811 else
7812 {
6a8d1586
AM
7813 asection *osec = sec->output_section;
7814
7815 /* If we have discarded a section, the output
7816 section will be the absolute section. In
7817 case of discarded link-once and discarded
7818 SEC_MERGE sections, use the kept section. */
7819 if (bfd_is_abs_section (osec)
7820 && sec->kept_section != NULL
7821 && sec->kept_section->output_section != NULL)
7822 {
7823 osec = sec->kept_section->output_section;
7824 irela->r_addend -= osec->vma;
7825 }
7826
7827 if (!bfd_is_abs_section (osec))
7828 {
7829 r_symndx = osec->target_index;
74541ad4
AM
7830 if (r_symndx == 0)
7831 {
7832 struct elf_link_hash_table *htab;
7833 asection *oi;
7834
7835 htab = elf_hash_table (finfo->info);
7836 oi = htab->text_index_section;
7837 if ((osec->flags & SEC_READONLY) == 0
7838 && htab->data_index_section != NULL)
7839 oi = htab->data_index_section;
7840
7841 if (oi != NULL)
7842 {
7843 irela->r_addend += osec->vma - oi->vma;
7844 r_symndx = oi->target_index;
7845 }
7846 }
7847
6a8d1586
AM
7848 BFD_ASSERT (r_symndx != 0);
7849 }
c152c796
AM
7850 }
7851
7852 /* Adjust the addend according to where the
7853 section winds up in the output section. */
7854 if (rela_normal)
7855 irela->r_addend += sec->output_offset;
7856 }
7857 else
7858 {
7859 if (finfo->indices[r_symndx] == -1)
7860 {
7861 unsigned long shlink;
7862 const char *name;
7863 asection *osec;
7864
7865 if (finfo->info->strip == strip_all)
7866 {
7867 /* You can't do ld -r -s. */
7868 bfd_set_error (bfd_error_invalid_operation);
7869 return FALSE;
7870 }
7871
7872 /* This symbol was skipped earlier, but
7873 since it is needed by a reloc, we
7874 must output it now. */
7875 shlink = symtab_hdr->sh_link;
7876 name = (bfd_elf_string_from_elf_section
7877 (input_bfd, shlink, sym.st_name));
7878 if (name == NULL)
7879 return FALSE;
7880
7881 osec = sec->output_section;
7882 sym.st_shndx =
7883 _bfd_elf_section_from_bfd_section (output_bfd,
7884 osec);
7885 if (sym.st_shndx == SHN_BAD)
7886 return FALSE;
7887
7888 sym.st_value += sec->output_offset;
7889 if (! finfo->info->relocatable)
7890 {
7891 sym.st_value += osec->vma;
7892 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
7893 {
7894 /* STT_TLS symbols are relative to PT_TLS
7895 segment base. */
7896 BFD_ASSERT (elf_hash_table (finfo->info)
7897 ->tls_sec != NULL);
7898 sym.st_value -= (elf_hash_table (finfo->info)
7899 ->tls_sec->vma);
7900 }
7901 }
7902
7903 finfo->indices[r_symndx]
7904 = bfd_get_symcount (output_bfd);
7905
7906 if (! elf_link_output_sym (finfo, name, &sym, sec,
7907 NULL))
7908 return FALSE;
7909 }
7910
7911 r_symndx = finfo->indices[r_symndx];
7912 }
7913
7914 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
7915 | (irela->r_info & r_type_mask));
7916 }
7917
7918 /* Swap out the relocs. */
c152c796 7919 if (input_rel_hdr->sh_size != 0
eac338cf
PB
7920 && !bed->elf_backend_emit_relocs (output_bfd, o,
7921 input_rel_hdr,
7922 internal_relocs,
7923 rel_hash_list))
c152c796
AM
7924 return FALSE;
7925
7926 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
7927 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
7928 {
7929 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
7930 * bed->s->int_rels_per_ext_rel);
eac338cf
PB
7931 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
7932 if (!bed->elf_backend_emit_relocs (output_bfd, o,
7933 input_rel_hdr2,
7934 internal_relocs,
7935 rel_hash_list))
c152c796
AM
7936 return FALSE;
7937 }
7938 }
7939 }
7940
7941 /* Write out the modified section contents. */
7942 if (bed->elf_backend_write_section
7943 && (*bed->elf_backend_write_section) (output_bfd, o, contents))
7944 {
7945 /* Section written out. */
7946 }
7947 else switch (o->sec_info_type)
7948 {
7949 case ELF_INFO_TYPE_STABS:
7950 if (! (_bfd_write_section_stabs
7951 (output_bfd,
7952 &elf_hash_table (finfo->info)->stab_info,
7953 o, &elf_section_data (o)->sec_info, contents)))
7954 return FALSE;
7955 break;
7956 case ELF_INFO_TYPE_MERGE:
7957 if (! _bfd_write_merged_section (output_bfd, o,
7958 elf_section_data (o)->sec_info))
7959 return FALSE;
7960 break;
7961 case ELF_INFO_TYPE_EH_FRAME:
7962 {
7963 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
7964 o, contents))
7965 return FALSE;
7966 }
7967 break;
7968 default:
7969 {
c152c796
AM
7970 if (! (o->flags & SEC_EXCLUDE)
7971 && ! bfd_set_section_contents (output_bfd, o->output_section,
7972 contents,
7973 (file_ptr) o->output_offset,
eea6121a 7974 o->size))
c152c796
AM
7975 return FALSE;
7976 }
7977 break;
7978 }
7979 }
7980
7981 return TRUE;
7982}
7983
7984/* Generate a reloc when linking an ELF file. This is a reloc
3a800eb9 7985 requested by the linker, and does not come from any input file. This
c152c796
AM
7986 is used to build constructor and destructor tables when linking
7987 with -Ur. */
7988
7989static bfd_boolean
7990elf_reloc_link_order (bfd *output_bfd,
7991 struct bfd_link_info *info,
7992 asection *output_section,
7993 struct bfd_link_order *link_order)
7994{
7995 reloc_howto_type *howto;
7996 long indx;
7997 bfd_vma offset;
7998 bfd_vma addend;
7999 struct elf_link_hash_entry **rel_hash_ptr;
8000 Elf_Internal_Shdr *rel_hdr;
8001 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
8002 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
8003 bfd_byte *erel;
8004 unsigned int i;
8005
8006 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
8007 if (howto == NULL)
8008 {
8009 bfd_set_error (bfd_error_bad_value);
8010 return FALSE;
8011 }
8012
8013 addend = link_order->u.reloc.p->addend;
8014
8015 /* Figure out the symbol index. */
8016 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
8017 + elf_section_data (output_section)->rel_count
8018 + elf_section_data (output_section)->rel_count2);
8019 if (link_order->type == bfd_section_reloc_link_order)
8020 {
8021 indx = link_order->u.reloc.p->u.section->target_index;
8022 BFD_ASSERT (indx != 0);
8023 *rel_hash_ptr = NULL;
8024 }
8025 else
8026 {
8027 struct elf_link_hash_entry *h;
8028
8029 /* Treat a reloc against a defined symbol as though it were
8030 actually against the section. */
8031 h = ((struct elf_link_hash_entry *)
8032 bfd_wrapped_link_hash_lookup (output_bfd, info,
8033 link_order->u.reloc.p->u.name,
8034 FALSE, FALSE, TRUE));
8035 if (h != NULL
8036 && (h->root.type == bfd_link_hash_defined
8037 || h->root.type == bfd_link_hash_defweak))
8038 {
8039 asection *section;
8040
8041 section = h->root.u.def.section;
8042 indx = section->output_section->target_index;
8043 *rel_hash_ptr = NULL;
8044 /* It seems that we ought to add the symbol value to the
8045 addend here, but in practice it has already been added
8046 because it was passed to constructor_callback. */
8047 addend += section->output_section->vma + section->output_offset;
8048 }
8049 else if (h != NULL)
8050 {
8051 /* Setting the index to -2 tells elf_link_output_extsym that
8052 this symbol is used by a reloc. */
8053 h->indx = -2;
8054 *rel_hash_ptr = h;
8055 indx = 0;
8056 }
8057 else
8058 {
8059 if (! ((*info->callbacks->unattached_reloc)
8060 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
8061 return FALSE;
8062 indx = 0;
8063 }
8064 }
8065
8066 /* If this is an inplace reloc, we must write the addend into the
8067 object file. */
8068 if (howto->partial_inplace && addend != 0)
8069 {
8070 bfd_size_type size;
8071 bfd_reloc_status_type rstat;
8072 bfd_byte *buf;
8073 bfd_boolean ok;
8074 const char *sym_name;
8075
8076 size = bfd_get_reloc_size (howto);
8077 buf = bfd_zmalloc (size);
8078 if (buf == NULL)
8079 return FALSE;
8080 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
8081 switch (rstat)
8082 {
8083 case bfd_reloc_ok:
8084 break;
8085
8086 default:
8087 case bfd_reloc_outofrange:
8088 abort ();
8089
8090 case bfd_reloc_overflow:
8091 if (link_order->type == bfd_section_reloc_link_order)
8092 sym_name = bfd_section_name (output_bfd,
8093 link_order->u.reloc.p->u.section);
8094 else
8095 sym_name = link_order->u.reloc.p->u.name;
8096 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f
L
8097 (info, NULL, sym_name, howto->name, addend, NULL,
8098 NULL, (bfd_vma) 0)))
c152c796
AM
8099 {
8100 free (buf);
8101 return FALSE;
8102 }
8103 break;
8104 }
8105 ok = bfd_set_section_contents (output_bfd, output_section, buf,
8106 link_order->offset, size);
8107 free (buf);
8108 if (! ok)
8109 return FALSE;
8110 }
8111
8112 /* The address of a reloc is relative to the section in a
8113 relocatable file, and is a virtual address in an executable
8114 file. */
8115 offset = link_order->offset;
8116 if (! info->relocatable)
8117 offset += output_section->vma;
8118
8119 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
8120 {
8121 irel[i].r_offset = offset;
8122 irel[i].r_info = 0;
8123 irel[i].r_addend = 0;
8124 }
8125 if (bed->s->arch_size == 32)
8126 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
8127 else
8128 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
8129
8130 rel_hdr = &elf_section_data (output_section)->rel_hdr;
8131 erel = rel_hdr->contents;
8132 if (rel_hdr->sh_type == SHT_REL)
8133 {
8134 erel += (elf_section_data (output_section)->rel_count
8135 * bed->s->sizeof_rel);
8136 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
8137 }
8138 else
8139 {
8140 irel[0].r_addend = addend;
8141 erel += (elf_section_data (output_section)->rel_count
8142 * bed->s->sizeof_rela);
8143 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
8144 }
8145
8146 ++elf_section_data (output_section)->rel_count;
8147
8148 return TRUE;
8149}
8150
0b52efa6
PB
8151
8152/* Get the output vma of the section pointed to by the sh_link field. */
8153
8154static bfd_vma
8155elf_get_linked_section_vma (struct bfd_link_order *p)
8156{
8157 Elf_Internal_Shdr **elf_shdrp;
8158 asection *s;
8159 int elfsec;
8160
8161 s = p->u.indirect.section;
8162 elf_shdrp = elf_elfsections (s->owner);
8163 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
8164 elfsec = elf_shdrp[elfsec]->sh_link;
185d09ad
L
8165 /* PR 290:
8166 The Intel C compiler generates SHT_IA_64_UNWIND with
e04bcc6d 8167 SHF_LINK_ORDER. But it doesn't set the sh_link or
185d09ad
L
8168 sh_info fields. Hence we could get the situation
8169 where elfsec is 0. */
8170 if (elfsec == 0)
8171 {
8172 const struct elf_backend_data *bed
8173 = get_elf_backend_data (s->owner);
8174 if (bed->link_order_error_handler)
d003868e
AM
8175 bed->link_order_error_handler
8176 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
185d09ad
L
8177 return 0;
8178 }
8179 else
8180 {
8181 s = elf_shdrp[elfsec]->bfd_section;
8182 return s->output_section->vma + s->output_offset;
8183 }
0b52efa6
PB
8184}
8185
8186
8187/* Compare two sections based on the locations of the sections they are
8188 linked to. Used by elf_fixup_link_order. */
8189
8190static int
8191compare_link_order (const void * a, const void * b)
8192{
8193 bfd_vma apos;
8194 bfd_vma bpos;
8195
8196 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
8197 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
8198 if (apos < bpos)
8199 return -1;
8200 return apos > bpos;
8201}
8202
8203
8204/* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
8205 order as their linked sections. Returns false if this could not be done
8206 because an output section includes both ordered and unordered
8207 sections. Ideally we'd do this in the linker proper. */
8208
8209static bfd_boolean
8210elf_fixup_link_order (bfd *abfd, asection *o)
8211{
8212 int seen_linkorder;
8213 int seen_other;
8214 int n;
8215 struct bfd_link_order *p;
8216 bfd *sub;
8217 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
b761a207 8218 unsigned elfsec;
0b52efa6 8219 struct bfd_link_order **sections;
d33cdfe3 8220 asection *s, *other_sec, *linkorder_sec;
0b52efa6 8221 bfd_vma offset;
3b36f7e6 8222
d33cdfe3
L
8223 other_sec = NULL;
8224 linkorder_sec = NULL;
0b52efa6
PB
8225 seen_other = 0;
8226 seen_linkorder = 0;
8423293d 8227 for (p = o->map_head.link_order; p != NULL; p = p->next)
0b52efa6 8228 {
d33cdfe3 8229 if (p->type == bfd_indirect_link_order)
0b52efa6
PB
8230 {
8231 s = p->u.indirect.section;
d33cdfe3
L
8232 sub = s->owner;
8233 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
8234 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
b761a207
BE
8235 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
8236 && elfsec < elf_numsections (sub)
0b52efa6 8237 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER)
d33cdfe3
L
8238 {
8239 seen_linkorder++;
8240 linkorder_sec = s;
8241 }
0b52efa6 8242 else
d33cdfe3
L
8243 {
8244 seen_other++;
8245 other_sec = s;
8246 }
0b52efa6
PB
8247 }
8248 else
8249 seen_other++;
d33cdfe3
L
8250
8251 if (seen_other && seen_linkorder)
8252 {
8253 if (other_sec && linkorder_sec)
8254 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
8255 o, linkorder_sec,
8256 linkorder_sec->owner, other_sec,
8257 other_sec->owner);
8258 else
8259 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
8260 o);
8261 bfd_set_error (bfd_error_bad_value);
8262 return FALSE;
8263 }
0b52efa6
PB
8264 }
8265
8266 if (!seen_linkorder)
8267 return TRUE;
8268
0b52efa6
PB
8269 sections = (struct bfd_link_order **)
8270 xmalloc (seen_linkorder * sizeof (struct bfd_link_order *));
8271 seen_linkorder = 0;
3b36f7e6 8272
8423293d 8273 for (p = o->map_head.link_order; p != NULL; p = p->next)
0b52efa6
PB
8274 {
8275 sections[seen_linkorder++] = p;
8276 }
8277 /* Sort the input sections in the order of their linked section. */
8278 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
8279 compare_link_order);
8280
8281 /* Change the offsets of the sections. */
8282 offset = 0;
8283 for (n = 0; n < seen_linkorder; n++)
8284 {
8285 s = sections[n]->u.indirect.section;
8286 offset &= ~(bfd_vma)((1 << s->alignment_power) - 1);
8287 s->output_offset = offset;
8288 sections[n]->offset = offset;
8289 offset += sections[n]->size;
8290 }
8291
8292 return TRUE;
8293}
8294
8295
c152c796
AM
8296/* Do the final step of an ELF link. */
8297
8298bfd_boolean
8299bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
8300{
8301 bfd_boolean dynamic;
8302 bfd_boolean emit_relocs;
8303 bfd *dynobj;
8304 struct elf_final_link_info finfo;
8305 register asection *o;
8306 register struct bfd_link_order *p;
8307 register bfd *sub;
8308 bfd_size_type max_contents_size;
8309 bfd_size_type max_external_reloc_size;
8310 bfd_size_type max_internal_reloc_count;
8311 bfd_size_type max_sym_count;
8312 bfd_size_type max_sym_shndx_count;
8313 file_ptr off;
8314 Elf_Internal_Sym elfsym;
8315 unsigned int i;
8316 Elf_Internal_Shdr *symtab_hdr;
8317 Elf_Internal_Shdr *symtab_shndx_hdr;
8318 Elf_Internal_Shdr *symstrtab_hdr;
8319 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8320 struct elf_outext_info eoinfo;
8321 bfd_boolean merged;
8322 size_t relativecount = 0;
8323 asection *reldyn = 0;
8324 bfd_size_type amt;
8325
8326 if (! is_elf_hash_table (info->hash))
8327 return FALSE;
8328
8329 if (info->shared)
8330 abfd->flags |= DYNAMIC;
8331
8332 dynamic = elf_hash_table (info)->dynamic_sections_created;
8333 dynobj = elf_hash_table (info)->dynobj;
8334
8335 emit_relocs = (info->relocatable
a4676736 8336 || info->emitrelocations);
c152c796
AM
8337
8338 finfo.info = info;
8339 finfo.output_bfd = abfd;
8340 finfo.symstrtab = _bfd_elf_stringtab_init ();
8341 if (finfo.symstrtab == NULL)
8342 return FALSE;
8343
8344 if (! dynamic)
8345 {
8346 finfo.dynsym_sec = NULL;
8347 finfo.hash_sec = NULL;
8348 finfo.symver_sec = NULL;
8349 }
8350 else
8351 {
8352 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
8353 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
fdc90cb4 8354 BFD_ASSERT (finfo.dynsym_sec != NULL);
c152c796
AM
8355 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
8356 /* Note that it is OK if symver_sec is NULL. */
8357 }
8358
8359 finfo.contents = NULL;
8360 finfo.external_relocs = NULL;
8361 finfo.internal_relocs = NULL;
8362 finfo.external_syms = NULL;
8363 finfo.locsym_shndx = NULL;
8364 finfo.internal_syms = NULL;
8365 finfo.indices = NULL;
8366 finfo.sections = NULL;
8367 finfo.symbuf = NULL;
8368 finfo.symshndxbuf = NULL;
8369 finfo.symbuf_count = 0;
8370 finfo.shndxbuf_size = 0;
8371
8372 /* Count up the number of relocations we will output for each output
8373 section, so that we know the sizes of the reloc sections. We
8374 also figure out some maximum sizes. */
8375 max_contents_size = 0;
8376 max_external_reloc_size = 0;
8377 max_internal_reloc_count = 0;
8378 max_sym_count = 0;
8379 max_sym_shndx_count = 0;
8380 merged = FALSE;
8381 for (o = abfd->sections; o != NULL; o = o->next)
8382 {
8383 struct bfd_elf_section_data *esdo = elf_section_data (o);
8384 o->reloc_count = 0;
8385
8423293d 8386 for (p = o->map_head.link_order; p != NULL; p = p->next)
c152c796
AM
8387 {
8388 unsigned int reloc_count = 0;
8389 struct bfd_elf_section_data *esdi = NULL;
8390 unsigned int *rel_count1;
8391
8392 if (p->type == bfd_section_reloc_link_order
8393 || p->type == bfd_symbol_reloc_link_order)
8394 reloc_count = 1;
8395 else if (p->type == bfd_indirect_link_order)
8396 {
8397 asection *sec;
8398
8399 sec = p->u.indirect.section;
8400 esdi = elf_section_data (sec);
8401
8402 /* Mark all sections which are to be included in the
8403 link. This will normally be every section. We need
8404 to do this so that we can identify any sections which
8405 the linker has decided to not include. */
8406 sec->linker_mark = TRUE;
8407
8408 if (sec->flags & SEC_MERGE)
8409 merged = TRUE;
8410
8411 if (info->relocatable || info->emitrelocations)
8412 reloc_count = sec->reloc_count;
8413 else if (bed->elf_backend_count_relocs)
8414 {
8415 Elf_Internal_Rela * relocs;
8416
8417 relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8418 info->keep_memory);
8419
8420 reloc_count = (*bed->elf_backend_count_relocs) (sec, relocs);
8421
8422 if (elf_section_data (o)->relocs != relocs)
8423 free (relocs);
8424 }
8425
eea6121a
AM
8426 if (sec->rawsize > max_contents_size)
8427 max_contents_size = sec->rawsize;
8428 if (sec->size > max_contents_size)
8429 max_contents_size = sec->size;
c152c796
AM
8430
8431 /* We are interested in just local symbols, not all
8432 symbols. */
8433 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
8434 && (sec->owner->flags & DYNAMIC) == 0)
8435 {
8436 size_t sym_count;
8437
8438 if (elf_bad_symtab (sec->owner))
8439 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
8440 / bed->s->sizeof_sym);
8441 else
8442 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
8443
8444 if (sym_count > max_sym_count)
8445 max_sym_count = sym_count;
8446
8447 if (sym_count > max_sym_shndx_count
8448 && elf_symtab_shndx (sec->owner) != 0)
8449 max_sym_shndx_count = sym_count;
8450
8451 if ((sec->flags & SEC_RELOC) != 0)
8452 {
8453 size_t ext_size;
8454
8455 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
8456 if (ext_size > max_external_reloc_size)
8457 max_external_reloc_size = ext_size;
8458 if (sec->reloc_count > max_internal_reloc_count)
8459 max_internal_reloc_count = sec->reloc_count;
8460 }
8461 }
8462 }
8463
8464 if (reloc_count == 0)
8465 continue;
8466
8467 o->reloc_count += reloc_count;
8468
8469 /* MIPS may have a mix of REL and RELA relocs on sections.
8470 To support this curious ABI we keep reloc counts in
8471 elf_section_data too. We must be careful to add the
8472 relocations from the input section to the right output
8473 count. FIXME: Get rid of one count. We have
8474 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
8475 rel_count1 = &esdo->rel_count;
8476 if (esdi != NULL)
8477 {
8478 bfd_boolean same_size;
8479 bfd_size_type entsize1;
8480
8481 entsize1 = esdi->rel_hdr.sh_entsize;
8482 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
8483 || entsize1 == bed->s->sizeof_rela);
8484 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
8485
8486 if (!same_size)
8487 rel_count1 = &esdo->rel_count2;
8488
8489 if (esdi->rel_hdr2 != NULL)
8490 {
8491 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
8492 unsigned int alt_count;
8493 unsigned int *rel_count2;
8494
8495 BFD_ASSERT (entsize2 != entsize1
8496 && (entsize2 == bed->s->sizeof_rel
8497 || entsize2 == bed->s->sizeof_rela));
8498
8499 rel_count2 = &esdo->rel_count2;
8500 if (!same_size)
8501 rel_count2 = &esdo->rel_count;
8502
8503 /* The following is probably too simplistic if the
8504 backend counts output relocs unusually. */
8505 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
8506 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
8507 *rel_count2 += alt_count;
8508 reloc_count -= alt_count;
8509 }
8510 }
8511 *rel_count1 += reloc_count;
8512 }
8513
8514 if (o->reloc_count > 0)
8515 o->flags |= SEC_RELOC;
8516 else
8517 {
8518 /* Explicitly clear the SEC_RELOC flag. The linker tends to
8519 set it (this is probably a bug) and if it is set
8520 assign_section_numbers will create a reloc section. */
8521 o->flags &=~ SEC_RELOC;
8522 }
8523
8524 /* If the SEC_ALLOC flag is not set, force the section VMA to
8525 zero. This is done in elf_fake_sections as well, but forcing
8526 the VMA to 0 here will ensure that relocs against these
8527 sections are handled correctly. */
8528 if ((o->flags & SEC_ALLOC) == 0
8529 && ! o->user_set_vma)
8530 o->vma = 0;
8531 }
8532
8533 if (! info->relocatable && merged)
8534 elf_link_hash_traverse (elf_hash_table (info),
8535 _bfd_elf_link_sec_merge_syms, abfd);
8536
8537 /* Figure out the file positions for everything but the symbol table
8538 and the relocs. We set symcount to force assign_section_numbers
8539 to create a symbol table. */
8540 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
8541 BFD_ASSERT (! abfd->output_has_begun);
8542 if (! _bfd_elf_compute_section_file_positions (abfd, info))
8543 goto error_return;
8544
ee75fd95 8545 /* Set sizes, and assign file positions for reloc sections. */
c152c796
AM
8546 for (o = abfd->sections; o != NULL; o = o->next)
8547 {
8548 if ((o->flags & SEC_RELOC) != 0)
8549 {
8550 if (!(_bfd_elf_link_size_reloc_section
8551 (abfd, &elf_section_data (o)->rel_hdr, o)))
8552 goto error_return;
8553
8554 if (elf_section_data (o)->rel_hdr2
8555 && !(_bfd_elf_link_size_reloc_section
8556 (abfd, elf_section_data (o)->rel_hdr2, o)))
8557 goto error_return;
8558 }
8559
8560 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
8561 to count upwards while actually outputting the relocations. */
8562 elf_section_data (o)->rel_count = 0;
8563 elf_section_data (o)->rel_count2 = 0;
8564 }
8565
8566 _bfd_elf_assign_file_positions_for_relocs (abfd);
8567
8568 /* We have now assigned file positions for all the sections except
8569 .symtab and .strtab. We start the .symtab section at the current
8570 file position, and write directly to it. We build the .strtab
8571 section in memory. */
8572 bfd_get_symcount (abfd) = 0;
8573 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8574 /* sh_name is set in prep_headers. */
8575 symtab_hdr->sh_type = SHT_SYMTAB;
8576 /* sh_flags, sh_addr and sh_size all start off zero. */
8577 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
8578 /* sh_link is set in assign_section_numbers. */
8579 /* sh_info is set below. */
8580 /* sh_offset is set just below. */
8581 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
8582
8583 off = elf_tdata (abfd)->next_file_pos;
8584 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
8585
8586 /* Note that at this point elf_tdata (abfd)->next_file_pos is
8587 incorrect. We do not yet know the size of the .symtab section.
8588 We correct next_file_pos below, after we do know the size. */
8589
8590 /* Allocate a buffer to hold swapped out symbols. This is to avoid
8591 continuously seeking to the right position in the file. */
8592 if (! info->keep_memory || max_sym_count < 20)
8593 finfo.symbuf_size = 20;
8594 else
8595 finfo.symbuf_size = max_sym_count;
8596 amt = finfo.symbuf_size;
8597 amt *= bed->s->sizeof_sym;
8598 finfo.symbuf = bfd_malloc (amt);
8599 if (finfo.symbuf == NULL)
8600 goto error_return;
8601 if (elf_numsections (abfd) > SHN_LORESERVE)
8602 {
8603 /* Wild guess at number of output symbols. realloc'd as needed. */
8604 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
8605 finfo.shndxbuf_size = amt;
8606 amt *= sizeof (Elf_External_Sym_Shndx);
8607 finfo.symshndxbuf = bfd_zmalloc (amt);
8608 if (finfo.symshndxbuf == NULL)
8609 goto error_return;
8610 }
8611
8612 /* Start writing out the symbol table. The first symbol is always a
8613 dummy symbol. */
8614 if (info->strip != strip_all
8615 || emit_relocs)
8616 {
8617 elfsym.st_value = 0;
8618 elfsym.st_size = 0;
8619 elfsym.st_info = 0;
8620 elfsym.st_other = 0;
8621 elfsym.st_shndx = SHN_UNDEF;
8622 if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
8623 NULL))
8624 goto error_return;
8625 }
8626
c152c796
AM
8627 /* Output a symbol for each section. We output these even if we are
8628 discarding local symbols, since they are used for relocs. These
8629 symbols have no names. We store the index of each one in the
8630 index field of the section, so that we can find it again when
8631 outputting relocs. */
8632 if (info->strip != strip_all
8633 || emit_relocs)
8634 {
8635 elfsym.st_size = 0;
8636 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8637 elfsym.st_other = 0;
f0b5bb34 8638 elfsym.st_value = 0;
c152c796
AM
8639 for (i = 1; i < elf_numsections (abfd); i++)
8640 {
8641 o = bfd_section_from_elf_index (abfd, i);
8642 if (o != NULL)
f0b5bb34
AM
8643 {
8644 o->target_index = bfd_get_symcount (abfd);
8645 elfsym.st_shndx = i;
8646 if (!info->relocatable)
8647 elfsym.st_value = o->vma;
8648 if (!elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL))
8649 goto error_return;
8650 }
c152c796
AM
8651 if (i == SHN_LORESERVE - 1)
8652 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
8653 }
8654 }
8655
8656 /* Allocate some memory to hold information read in from the input
8657 files. */
8658 if (max_contents_size != 0)
8659 {
8660 finfo.contents = bfd_malloc (max_contents_size);
8661 if (finfo.contents == NULL)
8662 goto error_return;
8663 }
8664
8665 if (max_external_reloc_size != 0)
8666 {
8667 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
8668 if (finfo.external_relocs == NULL)
8669 goto error_return;
8670 }
8671
8672 if (max_internal_reloc_count != 0)
8673 {
8674 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
8675 amt *= sizeof (Elf_Internal_Rela);
8676 finfo.internal_relocs = bfd_malloc (amt);
8677 if (finfo.internal_relocs == NULL)
8678 goto error_return;
8679 }
8680
8681 if (max_sym_count != 0)
8682 {
8683 amt = max_sym_count * bed->s->sizeof_sym;
8684 finfo.external_syms = bfd_malloc (amt);
8685 if (finfo.external_syms == NULL)
8686 goto error_return;
8687
8688 amt = max_sym_count * sizeof (Elf_Internal_Sym);
8689 finfo.internal_syms = bfd_malloc (amt);
8690 if (finfo.internal_syms == NULL)
8691 goto error_return;
8692
8693 amt = max_sym_count * sizeof (long);
8694 finfo.indices = bfd_malloc (amt);
8695 if (finfo.indices == NULL)
8696 goto error_return;
8697
8698 amt = max_sym_count * sizeof (asection *);
8699 finfo.sections = bfd_malloc (amt);
8700 if (finfo.sections == NULL)
8701 goto error_return;
8702 }
8703
8704 if (max_sym_shndx_count != 0)
8705 {
8706 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
8707 finfo.locsym_shndx = bfd_malloc (amt);
8708 if (finfo.locsym_shndx == NULL)
8709 goto error_return;
8710 }
8711
8712 if (elf_hash_table (info)->tls_sec)
8713 {
8714 bfd_vma base, end = 0;
8715 asection *sec;
8716
8717 for (sec = elf_hash_table (info)->tls_sec;
8718 sec && (sec->flags & SEC_THREAD_LOCAL);
8719 sec = sec->next)
8720 {
3a800eb9 8721 bfd_size_type size = sec->size;
c152c796 8722
3a800eb9
AM
8723 if (size == 0
8724 && (sec->flags & SEC_HAS_CONTENTS) == 0)
c152c796 8725 {
3a800eb9
AM
8726 struct bfd_link_order *o = sec->map_tail.link_order;
8727 if (o != NULL)
8728 size = o->offset + o->size;
c152c796
AM
8729 }
8730 end = sec->vma + size;
8731 }
8732 base = elf_hash_table (info)->tls_sec->vma;
8733 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
8734 elf_hash_table (info)->tls_size = end - base;
8735 }
8736
0b52efa6
PB
8737 /* Reorder SHF_LINK_ORDER sections. */
8738 for (o = abfd->sections; o != NULL; o = o->next)
8739 {
8740 if (!elf_fixup_link_order (abfd, o))
8741 return FALSE;
8742 }
8743
c152c796
AM
8744 /* Since ELF permits relocations to be against local symbols, we
8745 must have the local symbols available when we do the relocations.
8746 Since we would rather only read the local symbols once, and we
8747 would rather not keep them in memory, we handle all the
8748 relocations for a single input file at the same time.
8749
8750 Unfortunately, there is no way to know the total number of local
8751 symbols until we have seen all of them, and the local symbol
8752 indices precede the global symbol indices. This means that when
8753 we are generating relocatable output, and we see a reloc against
8754 a global symbol, we can not know the symbol index until we have
8755 finished examining all the local symbols to see which ones we are
8756 going to output. To deal with this, we keep the relocations in
8757 memory, and don't output them until the end of the link. This is
8758 an unfortunate waste of memory, but I don't see a good way around
8759 it. Fortunately, it only happens when performing a relocatable
8760 link, which is not the common case. FIXME: If keep_memory is set
8761 we could write the relocs out and then read them again; I don't
8762 know how bad the memory loss will be. */
8763
8764 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8765 sub->output_has_begun = FALSE;
8766 for (o = abfd->sections; o != NULL; o = o->next)
8767 {
8423293d 8768 for (p = o->map_head.link_order; p != NULL; p = p->next)
c152c796
AM
8769 {
8770 if (p->type == bfd_indirect_link_order
8771 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
8772 == bfd_target_elf_flavour)
8773 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
8774 {
8775 if (! sub->output_has_begun)
8776 {
8777 if (! elf_link_input_bfd (&finfo, sub))
8778 goto error_return;
8779 sub->output_has_begun = TRUE;
8780 }
8781 }
8782 else if (p->type == bfd_section_reloc_link_order
8783 || p->type == bfd_symbol_reloc_link_order)
8784 {
8785 if (! elf_reloc_link_order (abfd, info, o, p))
8786 goto error_return;
8787 }
8788 else
8789 {
8790 if (! _bfd_default_link_order (abfd, info, o, p))
8791 goto error_return;
8792 }
8793 }
8794 }
8795
8796 /* Output any global symbols that got converted to local in a
8797 version script or due to symbol visibility. We do this in a
8798 separate step since ELF requires all local symbols to appear
8799 prior to any global symbols. FIXME: We should only do this if
8800 some global symbols were, in fact, converted to become local.
8801 FIXME: Will this work correctly with the Irix 5 linker? */
8802 eoinfo.failed = FALSE;
8803 eoinfo.finfo = &finfo;
8804 eoinfo.localsyms = TRUE;
8805 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
8806 &eoinfo);
8807 if (eoinfo.failed)
8808 return FALSE;
8809
4e617b1e
PB
8810 /* If backend needs to output some local symbols not present in the hash
8811 table, do it now. */
8812 if (bed->elf_backend_output_arch_local_syms)
8813 {
8814 typedef bfd_boolean (*out_sym_func)
8815 (void *, const char *, Elf_Internal_Sym *, asection *,
8816 struct elf_link_hash_entry *);
8817
8818 if (! ((*bed->elf_backend_output_arch_local_syms)
8819 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
8820 return FALSE;
8821 }
8822
c152c796
AM
8823 /* That wrote out all the local symbols. Finish up the symbol table
8824 with the global symbols. Even if we want to strip everything we
8825 can, we still need to deal with those global symbols that got
8826 converted to local in a version script. */
8827
8828 /* The sh_info field records the index of the first non local symbol. */
8829 symtab_hdr->sh_info = bfd_get_symcount (abfd);
8830
8831 if (dynamic
8832 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
8833 {
8834 Elf_Internal_Sym sym;
8835 bfd_byte *dynsym = finfo.dynsym_sec->contents;
8836 long last_local = 0;
8837
8838 /* Write out the section symbols for the output sections. */
67687978 8839 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
c152c796
AM
8840 {
8841 asection *s;
8842
8843 sym.st_size = 0;
8844 sym.st_name = 0;
8845 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8846 sym.st_other = 0;
8847
8848 for (s = abfd->sections; s != NULL; s = s->next)
8849 {
8850 int indx;
8851 bfd_byte *dest;
8852 long dynindx;
8853
c152c796 8854 dynindx = elf_section_data (s)->dynindx;
8c37241b
JJ
8855 if (dynindx <= 0)
8856 continue;
8857 indx = elf_section_data (s)->this_idx;
c152c796
AM
8858 BFD_ASSERT (indx > 0);
8859 sym.st_shndx = indx;
c0d5a53d
L
8860 if (! check_dynsym (abfd, &sym))
8861 return FALSE;
c152c796
AM
8862 sym.st_value = s->vma;
8863 dest = dynsym + dynindx * bed->s->sizeof_sym;
8c37241b
JJ
8864 if (last_local < dynindx)
8865 last_local = dynindx;
c152c796
AM
8866 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
8867 }
c152c796
AM
8868 }
8869
8870 /* Write out the local dynsyms. */
8871 if (elf_hash_table (info)->dynlocal)
8872 {
8873 struct elf_link_local_dynamic_entry *e;
8874 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
8875 {
8876 asection *s;
8877 bfd_byte *dest;
8878
8879 sym.st_size = e->isym.st_size;
8880 sym.st_other = e->isym.st_other;
8881
8882 /* Copy the internal symbol as is.
8883 Note that we saved a word of storage and overwrote
8884 the original st_name with the dynstr_index. */
8885 sym = e->isym;
8886
8887 if (e->isym.st_shndx != SHN_UNDEF
8888 && (e->isym.st_shndx < SHN_LORESERVE
8889 || e->isym.st_shndx > SHN_HIRESERVE))
8890 {
8891 s = bfd_section_from_elf_index (e->input_bfd,
8892 e->isym.st_shndx);
8893
8894 sym.st_shndx =
8895 elf_section_data (s->output_section)->this_idx;
c0d5a53d
L
8896 if (! check_dynsym (abfd, &sym))
8897 return FALSE;
c152c796
AM
8898 sym.st_value = (s->output_section->vma
8899 + s->output_offset
8900 + e->isym.st_value);
8901 }
8902
8903 if (last_local < e->dynindx)
8904 last_local = e->dynindx;
8905
8906 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
8907 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
8908 }
8909 }
8910
8911 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
8912 last_local + 1;
8913 }
8914
8915 /* We get the global symbols from the hash table. */
8916 eoinfo.failed = FALSE;
8917 eoinfo.localsyms = FALSE;
8918 eoinfo.finfo = &finfo;
8919 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
8920 &eoinfo);
8921 if (eoinfo.failed)
8922 return FALSE;
8923
8924 /* If backend needs to output some symbols not present in the hash
8925 table, do it now. */
8926 if (bed->elf_backend_output_arch_syms)
8927 {
8928 typedef bfd_boolean (*out_sym_func)
8929 (void *, const char *, Elf_Internal_Sym *, asection *,
8930 struct elf_link_hash_entry *);
8931
8932 if (! ((*bed->elf_backend_output_arch_syms)
8933 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
8934 return FALSE;
8935 }
8936
8937 /* Flush all symbols to the file. */
8938 if (! elf_link_flush_output_syms (&finfo, bed))
8939 return FALSE;
8940
8941 /* Now we know the size of the symtab section. */
8942 off += symtab_hdr->sh_size;
8943
8944 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
8945 if (symtab_shndx_hdr->sh_name != 0)
8946 {
8947 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
8948 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
8949 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
8950 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
8951 symtab_shndx_hdr->sh_size = amt;
8952
8953 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
8954 off, TRUE);
8955
8956 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
8957 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
8958 return FALSE;
8959 }
8960
8961
8962 /* Finish up and write out the symbol string table (.strtab)
8963 section. */
8964 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
8965 /* sh_name was set in prep_headers. */
8966 symstrtab_hdr->sh_type = SHT_STRTAB;
8967 symstrtab_hdr->sh_flags = 0;
8968 symstrtab_hdr->sh_addr = 0;
8969 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
8970 symstrtab_hdr->sh_entsize = 0;
8971 symstrtab_hdr->sh_link = 0;
8972 symstrtab_hdr->sh_info = 0;
8973 /* sh_offset is set just below. */
8974 symstrtab_hdr->sh_addralign = 1;
8975
8976 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
8977 elf_tdata (abfd)->next_file_pos = off;
8978
8979 if (bfd_get_symcount (abfd) > 0)
8980 {
8981 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
8982 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
8983 return FALSE;
8984 }
8985
8986 /* Adjust the relocs to have the correct symbol indices. */
8987 for (o = abfd->sections; o != NULL; o = o->next)
8988 {
8989 if ((o->flags & SEC_RELOC) == 0)
8990 continue;
8991
8992 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
8993 elf_section_data (o)->rel_count,
8994 elf_section_data (o)->rel_hashes);
8995 if (elf_section_data (o)->rel_hdr2 != NULL)
8996 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
8997 elf_section_data (o)->rel_count2,
8998 (elf_section_data (o)->rel_hashes
8999 + elf_section_data (o)->rel_count));
9000
9001 /* Set the reloc_count field to 0 to prevent write_relocs from
9002 trying to swap the relocs out itself. */
9003 o->reloc_count = 0;
9004 }
9005
9006 if (dynamic && info->combreloc && dynobj != NULL)
9007 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
9008
9009 /* If we are linking against a dynamic object, or generating a
9010 shared library, finish up the dynamic linking information. */
9011 if (dynamic)
9012 {
9013 bfd_byte *dyncon, *dynconend;
9014
9015 /* Fix up .dynamic entries. */
9016 o = bfd_get_section_by_name (dynobj, ".dynamic");
9017 BFD_ASSERT (o != NULL);
9018
9019 dyncon = o->contents;
eea6121a 9020 dynconend = o->contents + o->size;
c152c796
AM
9021 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
9022 {
9023 Elf_Internal_Dyn dyn;
9024 const char *name;
9025 unsigned int type;
9026
9027 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
9028
9029 switch (dyn.d_tag)
9030 {
9031 default:
9032 continue;
9033 case DT_NULL:
9034 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
9035 {
9036 switch (elf_section_data (reldyn)->this_hdr.sh_type)
9037 {
9038 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
9039 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
9040 default: continue;
9041 }
9042 dyn.d_un.d_val = relativecount;
9043 relativecount = 0;
9044 break;
9045 }
9046 continue;
9047
9048 case DT_INIT:
9049 name = info->init_function;
9050 goto get_sym;
9051 case DT_FINI:
9052 name = info->fini_function;
9053 get_sym:
9054 {
9055 struct elf_link_hash_entry *h;
9056
9057 h = elf_link_hash_lookup (elf_hash_table (info), name,
9058 FALSE, FALSE, TRUE);
9059 if (h != NULL
9060 && (h->root.type == bfd_link_hash_defined
9061 || h->root.type == bfd_link_hash_defweak))
9062 {
9063 dyn.d_un.d_val = h->root.u.def.value;
9064 o = h->root.u.def.section;
9065 if (o->output_section != NULL)
9066 dyn.d_un.d_val += (o->output_section->vma
9067 + o->output_offset);
9068 else
9069 {
9070 /* The symbol is imported from another shared
9071 library and does not apply to this one. */
9072 dyn.d_un.d_val = 0;
9073 }
9074 break;
9075 }
9076 }
9077 continue;
9078
9079 case DT_PREINIT_ARRAYSZ:
9080 name = ".preinit_array";
9081 goto get_size;
9082 case DT_INIT_ARRAYSZ:
9083 name = ".init_array";
9084 goto get_size;
9085 case DT_FINI_ARRAYSZ:
9086 name = ".fini_array";
9087 get_size:
9088 o = bfd_get_section_by_name (abfd, name);
9089 if (o == NULL)
9090 {
9091 (*_bfd_error_handler)
d003868e 9092 (_("%B: could not find output section %s"), abfd, name);
c152c796
AM
9093 goto error_return;
9094 }
eea6121a 9095 if (o->size == 0)
c152c796
AM
9096 (*_bfd_error_handler)
9097 (_("warning: %s section has zero size"), name);
eea6121a 9098 dyn.d_un.d_val = o->size;
c152c796
AM
9099 break;
9100
9101 case DT_PREINIT_ARRAY:
9102 name = ".preinit_array";
9103 goto get_vma;
9104 case DT_INIT_ARRAY:
9105 name = ".init_array";
9106 goto get_vma;
9107 case DT_FINI_ARRAY:
9108 name = ".fini_array";
9109 goto get_vma;
9110
9111 case DT_HASH:
9112 name = ".hash";
9113 goto get_vma;
fdc90cb4
JJ
9114 case DT_GNU_HASH:
9115 name = ".gnu.hash";
9116 goto get_vma;
c152c796
AM
9117 case DT_STRTAB:
9118 name = ".dynstr";
9119 goto get_vma;
9120 case DT_SYMTAB:
9121 name = ".dynsym";
9122 goto get_vma;
9123 case DT_VERDEF:
9124 name = ".gnu.version_d";
9125 goto get_vma;
9126 case DT_VERNEED:
9127 name = ".gnu.version_r";
9128 goto get_vma;
9129 case DT_VERSYM:
9130 name = ".gnu.version";
9131 get_vma:
9132 o = bfd_get_section_by_name (abfd, name);
9133 if (o == NULL)
9134 {
9135 (*_bfd_error_handler)
d003868e 9136 (_("%B: could not find output section %s"), abfd, name);
c152c796
AM
9137 goto error_return;
9138 }
9139 dyn.d_un.d_ptr = o->vma;
9140 break;
9141
9142 case DT_REL:
9143 case DT_RELA:
9144 case DT_RELSZ:
9145 case DT_RELASZ:
9146 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
9147 type = SHT_REL;
9148 else
9149 type = SHT_RELA;
9150 dyn.d_un.d_val = 0;
9151 for (i = 1; i < elf_numsections (abfd); i++)
9152 {
9153 Elf_Internal_Shdr *hdr;
9154
9155 hdr = elf_elfsections (abfd)[i];
9156 if (hdr->sh_type == type
9157 && (hdr->sh_flags & SHF_ALLOC) != 0)
9158 {
9159 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
9160 dyn.d_un.d_val += hdr->sh_size;
9161 else
9162 {
9163 if (dyn.d_un.d_val == 0
9164 || hdr->sh_addr < dyn.d_un.d_val)
9165 dyn.d_un.d_val = hdr->sh_addr;
9166 }
9167 }
9168 }
9169 break;
9170 }
9171 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
9172 }
9173 }
9174
9175 /* If we have created any dynamic sections, then output them. */
9176 if (dynobj != NULL)
9177 {
9178 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
9179 goto error_return;
9180
943284cc
DJ
9181 /* Check for DT_TEXTREL (late, in case the backend removes it). */
9182 if (info->warn_shared_textrel && info->shared)
9183 {
9184 bfd_byte *dyncon, *dynconend;
9185
9186 /* Fix up .dynamic entries. */
9187 o = bfd_get_section_by_name (dynobj, ".dynamic");
9188 BFD_ASSERT (o != NULL);
9189
9190 dyncon = o->contents;
9191 dynconend = o->contents + o->size;
9192 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
9193 {
9194 Elf_Internal_Dyn dyn;
9195
9196 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
9197
9198 if (dyn.d_tag == DT_TEXTREL)
9199 {
9200 _bfd_error_handler
9201 (_("warning: creating a DT_TEXTREL in a shared object."));
9202 break;
9203 }
9204 }
9205 }
9206
c152c796
AM
9207 for (o = dynobj->sections; o != NULL; o = o->next)
9208 {
9209 if ((o->flags & SEC_HAS_CONTENTS) == 0
eea6121a 9210 || o->size == 0
c152c796
AM
9211 || o->output_section == bfd_abs_section_ptr)
9212 continue;
9213 if ((o->flags & SEC_LINKER_CREATED) == 0)
9214 {
9215 /* At this point, we are only interested in sections
9216 created by _bfd_elf_link_create_dynamic_sections. */
9217 continue;
9218 }
3722b82f
AM
9219 if (elf_hash_table (info)->stab_info.stabstr == o)
9220 continue;
eea6121a
AM
9221 if (elf_hash_table (info)->eh_info.hdr_sec == o)
9222 continue;
c152c796
AM
9223 if ((elf_section_data (o->output_section)->this_hdr.sh_type
9224 != SHT_STRTAB)
9225 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
9226 {
9227 if (! bfd_set_section_contents (abfd, o->output_section,
9228 o->contents,
9229 (file_ptr) o->output_offset,
eea6121a 9230 o->size))
c152c796
AM
9231 goto error_return;
9232 }
9233 else
9234 {
9235 /* The contents of the .dynstr section are actually in a
9236 stringtab. */
9237 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
9238 if (bfd_seek (abfd, off, SEEK_SET) != 0
9239 || ! _bfd_elf_strtab_emit (abfd,
9240 elf_hash_table (info)->dynstr))
9241 goto error_return;
9242 }
9243 }
9244 }
9245
9246 if (info->relocatable)
9247 {
9248 bfd_boolean failed = FALSE;
9249
9250 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
9251 if (failed)
9252 goto error_return;
9253 }
9254
9255 /* If we have optimized stabs strings, output them. */
3722b82f 9256 if (elf_hash_table (info)->stab_info.stabstr != NULL)
c152c796
AM
9257 {
9258 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
9259 goto error_return;
9260 }
9261
9262 if (info->eh_frame_hdr)
9263 {
9264 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
9265 goto error_return;
9266 }
9267
9268 if (finfo.symstrtab != NULL)
9269 _bfd_stringtab_free (finfo.symstrtab);
9270 if (finfo.contents != NULL)
9271 free (finfo.contents);
9272 if (finfo.external_relocs != NULL)
9273 free (finfo.external_relocs);
9274 if (finfo.internal_relocs != NULL)
9275 free (finfo.internal_relocs);
9276 if (finfo.external_syms != NULL)
9277 free (finfo.external_syms);
9278 if (finfo.locsym_shndx != NULL)
9279 free (finfo.locsym_shndx);
9280 if (finfo.internal_syms != NULL)
9281 free (finfo.internal_syms);
9282 if (finfo.indices != NULL)
9283 free (finfo.indices);
9284 if (finfo.sections != NULL)
9285 free (finfo.sections);
9286 if (finfo.symbuf != NULL)
9287 free (finfo.symbuf);
9288 if (finfo.symshndxbuf != NULL)
9289 free (finfo.symshndxbuf);
9290 for (o = abfd->sections; o != NULL; o = o->next)
9291 {
9292 if ((o->flags & SEC_RELOC) != 0
9293 && elf_section_data (o)->rel_hashes != NULL)
9294 free (elf_section_data (o)->rel_hashes);
9295 }
9296
9297 elf_tdata (abfd)->linker = TRUE;
9298
9299 return TRUE;
9300
9301 error_return:
9302 if (finfo.symstrtab != NULL)
9303 _bfd_stringtab_free (finfo.symstrtab);
9304 if (finfo.contents != NULL)
9305 free (finfo.contents);
9306 if (finfo.external_relocs != NULL)
9307 free (finfo.external_relocs);
9308 if (finfo.internal_relocs != NULL)
9309 free (finfo.internal_relocs);
9310 if (finfo.external_syms != NULL)
9311 free (finfo.external_syms);
9312 if (finfo.locsym_shndx != NULL)
9313 free (finfo.locsym_shndx);
9314 if (finfo.internal_syms != NULL)
9315 free (finfo.internal_syms);
9316 if (finfo.indices != NULL)
9317 free (finfo.indices);
9318 if (finfo.sections != NULL)
9319 free (finfo.sections);
9320 if (finfo.symbuf != NULL)
9321 free (finfo.symbuf);
9322 if (finfo.symshndxbuf != NULL)
9323 free (finfo.symshndxbuf);
9324 for (o = abfd->sections; o != NULL; o = o->next)
9325 {
9326 if ((o->flags & SEC_RELOC) != 0
9327 && elf_section_data (o)->rel_hashes != NULL)
9328 free (elf_section_data (o)->rel_hashes);
9329 }
9330
9331 return FALSE;
9332}
9333\f
9334/* Garbage collect unused sections. */
9335
c152c796
AM
9336typedef asection * (*gc_mark_hook_fn)
9337 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
9338 struct elf_link_hash_entry *, Elf_Internal_Sym *);
9339
07adf181
AM
9340/* Default gc_mark_hook. */
9341
9342asection *
9343_bfd_elf_gc_mark_hook (asection *sec,
9344 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9345 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
9346 struct elf_link_hash_entry *h,
9347 Elf_Internal_Sym *sym)
9348{
9349 if (h != NULL)
9350 {
9351 switch (h->root.type)
9352 {
9353 case bfd_link_hash_defined:
9354 case bfd_link_hash_defweak:
9355 return h->root.u.def.section;
9356
9357 case bfd_link_hash_common:
9358 return h->root.u.c.p->section;
9359
9360 default:
9361 break;
9362 }
9363 }
9364 else
9365 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
9366
9367 return NULL;
9368}
9369
9370/* The mark phase of garbage collection. For a given section, mark
9371 it and any sections in this section's group, and all the sections
9372 which define symbols to which it refers. */
9373
ccfa59ea
AM
9374bfd_boolean
9375_bfd_elf_gc_mark (struct bfd_link_info *info,
9376 asection *sec,
9377 gc_mark_hook_fn gc_mark_hook)
c152c796
AM
9378{
9379 bfd_boolean ret;
39c2f51b 9380 bfd_boolean is_eh;
c152c796
AM
9381 asection *group_sec;
9382
9383 sec->gc_mark = 1;
9384
9385 /* Mark all the sections in the group. */
9386 group_sec = elf_section_data (sec)->next_in_group;
9387 if (group_sec && !group_sec->gc_mark)
ccfa59ea 9388 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
c152c796
AM
9389 return FALSE;
9390
9391 /* Look through the section relocs. */
9392 ret = TRUE;
39c2f51b 9393 is_eh = strcmp (sec->name, ".eh_frame") == 0;
c152c796
AM
9394 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
9395 {
9396 Elf_Internal_Rela *relstart, *rel, *relend;
9397 Elf_Internal_Shdr *symtab_hdr;
9398 struct elf_link_hash_entry **sym_hashes;
9399 size_t nlocsyms;
9400 size_t extsymoff;
9401 bfd *input_bfd = sec->owner;
9402 const struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
9403 Elf_Internal_Sym *isym = NULL;
9404 int r_sym_shift;
9405
9406 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9407 sym_hashes = elf_sym_hashes (input_bfd);
9408
9409 /* Read the local symbols. */
9410 if (elf_bad_symtab (input_bfd))
9411 {
9412 nlocsyms = symtab_hdr->sh_size / bed->s->sizeof_sym;
9413 extsymoff = 0;
9414 }
9415 else
9416 extsymoff = nlocsyms = symtab_hdr->sh_info;
9417
9418 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
9419 if (isym == NULL && nlocsyms != 0)
9420 {
9421 isym = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, nlocsyms, 0,
9422 NULL, NULL, NULL);
9423 if (isym == NULL)
9424 return FALSE;
9425 }
9426
9427 /* Read the relocations. */
9428 relstart = _bfd_elf_link_read_relocs (input_bfd, sec, NULL, NULL,
9429 info->keep_memory);
9430 if (relstart == NULL)
9431 {
9432 ret = FALSE;
9433 goto out1;
9434 }
9435 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
9436
9437 if (bed->s->arch_size == 32)
9438 r_sym_shift = 8;
9439 else
9440 r_sym_shift = 32;
9441
9442 for (rel = relstart; rel < relend; rel++)
9443 {
9444 unsigned long r_symndx;
9445 asection *rsec;
9446 struct elf_link_hash_entry *h;
9447
9448 r_symndx = rel->r_info >> r_sym_shift;
9449 if (r_symndx == 0)
9450 continue;
9451
9452 if (r_symndx >= nlocsyms
9453 || ELF_ST_BIND (isym[r_symndx].st_info) != STB_LOCAL)
9454 {
9455 h = sym_hashes[r_symndx - extsymoff];
20f0a1ad
AM
9456 while (h->root.type == bfd_link_hash_indirect
9457 || h->root.type == bfd_link_hash_warning)
9458 h = (struct elf_link_hash_entry *) h->root.u.i.link;
c152c796
AM
9459 rsec = (*gc_mark_hook) (sec, info, rel, h, NULL);
9460 }
9461 else
9462 {
9463 rsec = (*gc_mark_hook) (sec, info, rel, NULL, &isym[r_symndx]);
9464 }
9465
9466 if (rsec && !rsec->gc_mark)
9467 {
9468 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
9469 rsec->gc_mark = 1;
39c2f51b
AM
9470 else if (is_eh)
9471 rsec->gc_mark_from_eh = 1;
ccfa59ea 9472 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
c152c796
AM
9473 {
9474 ret = FALSE;
9475 goto out2;
9476 }
9477 }
9478 }
9479
9480 out2:
9481 if (elf_section_data (sec)->relocs != relstart)
9482 free (relstart);
9483 out1:
9484 if (isym != NULL && symtab_hdr->contents != (unsigned char *) isym)
9485 {
9486 if (! info->keep_memory)
9487 free (isym);
9488 else
9489 symtab_hdr->contents = (unsigned char *) isym;
9490 }
9491 }
9492
9493 return ret;
9494}
9495
9496/* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
9497
c17d87de
NC
9498struct elf_gc_sweep_symbol_info
9499{
ccabcbe5
AM
9500 struct bfd_link_info *info;
9501 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
9502 bfd_boolean);
9503};
9504
c152c796 9505static bfd_boolean
ccabcbe5 9506elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
c152c796 9507{
c152c796
AM
9508 if (h->root.type == bfd_link_hash_warning)
9509 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9510
ccabcbe5
AM
9511 if ((h->root.type == bfd_link_hash_defined
9512 || h->root.type == bfd_link_hash_defweak)
9513 && !h->root.u.def.section->gc_mark
9514 && !(h->root.u.def.section->owner->flags & DYNAMIC))
9515 {
9516 struct elf_gc_sweep_symbol_info *inf = data;
9517 (*inf->hide_symbol) (inf->info, h, TRUE);
9518 }
c152c796
AM
9519
9520 return TRUE;
9521}
9522
9523/* The sweep phase of garbage collection. Remove all garbage sections. */
9524
9525typedef bfd_boolean (*gc_sweep_hook_fn)
9526 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
9527
9528static bfd_boolean
ccabcbe5 9529elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
c152c796
AM
9530{
9531 bfd *sub;
ccabcbe5
AM
9532 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9533 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
9534 unsigned long section_sym_count;
9535 struct elf_gc_sweep_symbol_info sweep_info;
c152c796
AM
9536
9537 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
9538 {
9539 asection *o;
9540
9541 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
9542 continue;
9543
9544 for (o = sub->sections; o != NULL; o = o->next)
9545 {
7c2c8505
AM
9546 /* Keep debug and special sections. */
9547 if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
dea5f36a 9548 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
c152c796
AM
9549 o->gc_mark = 1;
9550
9551 if (o->gc_mark)
9552 continue;
9553
9554 /* Skip sweeping sections already excluded. */
9555 if (o->flags & SEC_EXCLUDE)
9556 continue;
9557
9558 /* Since this is early in the link process, it is simple
9559 to remove a section from the output. */
9560 o->flags |= SEC_EXCLUDE;
9561
c17d87de
NC
9562 if (info->print_gc_sections == TRUE)
9563 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
9564
c152c796
AM
9565 /* But we also have to update some of the relocation
9566 info we collected before. */
9567 if (gc_sweep_hook
e8aaee2a
AM
9568 && (o->flags & SEC_RELOC) != 0
9569 && o->reloc_count > 0
9570 && !bfd_is_abs_section (o->output_section))
c152c796
AM
9571 {
9572 Elf_Internal_Rela *internal_relocs;
9573 bfd_boolean r;
9574
9575 internal_relocs
9576 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
9577 info->keep_memory);
9578 if (internal_relocs == NULL)
9579 return FALSE;
9580
9581 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
9582
9583 if (elf_section_data (o)->relocs != internal_relocs)
9584 free (internal_relocs);
9585
9586 if (!r)
9587 return FALSE;
9588 }
9589 }
9590 }
9591
9592 /* Remove the symbols that were in the swept sections from the dynamic
9593 symbol table. GCFIXME: Anyone know how to get them out of the
9594 static symbol table as well? */
ccabcbe5
AM
9595 sweep_info.info = info;
9596 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
9597 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
9598 &sweep_info);
c152c796 9599
ccabcbe5 9600 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
c152c796
AM
9601 return TRUE;
9602}
9603
9604/* Propagate collected vtable information. This is called through
9605 elf_link_hash_traverse. */
9606
9607static bfd_boolean
9608elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
9609{
9610 if (h->root.type == bfd_link_hash_warning)
9611 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9612
9613 /* Those that are not vtables. */
f6e332e6 9614 if (h->vtable == NULL || h->vtable->parent == NULL)
c152c796
AM
9615 return TRUE;
9616
9617 /* Those vtables that do not have parents, we cannot merge. */
f6e332e6 9618 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
c152c796
AM
9619 return TRUE;
9620
9621 /* If we've already been done, exit. */
f6e332e6 9622 if (h->vtable->used && h->vtable->used[-1])
c152c796
AM
9623 return TRUE;
9624
9625 /* Make sure the parent's table is up to date. */
f6e332e6 9626 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
c152c796 9627
f6e332e6 9628 if (h->vtable->used == NULL)
c152c796
AM
9629 {
9630 /* None of this table's entries were referenced. Re-use the
9631 parent's table. */
f6e332e6
AM
9632 h->vtable->used = h->vtable->parent->vtable->used;
9633 h->vtable->size = h->vtable->parent->vtable->size;
c152c796
AM
9634 }
9635 else
9636 {
9637 size_t n;
9638 bfd_boolean *cu, *pu;
9639
9640 /* Or the parent's entries into ours. */
f6e332e6 9641 cu = h->vtable->used;
c152c796 9642 cu[-1] = TRUE;
f6e332e6 9643 pu = h->vtable->parent->vtable->used;
c152c796
AM
9644 if (pu != NULL)
9645 {
9646 const struct elf_backend_data *bed;
9647 unsigned int log_file_align;
9648
9649 bed = get_elf_backend_data (h->root.u.def.section->owner);
9650 log_file_align = bed->s->log_file_align;
f6e332e6 9651 n = h->vtable->parent->vtable->size >> log_file_align;
c152c796
AM
9652 while (n--)
9653 {
9654 if (*pu)
9655 *cu = TRUE;
9656 pu++;
9657 cu++;
9658 }
9659 }
9660 }
9661
9662 return TRUE;
9663}
9664
9665static bfd_boolean
9666elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
9667{
9668 asection *sec;
9669 bfd_vma hstart, hend;
9670 Elf_Internal_Rela *relstart, *relend, *rel;
9671 const struct elf_backend_data *bed;
9672 unsigned int log_file_align;
9673
9674 if (h->root.type == bfd_link_hash_warning)
9675 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9676
9677 /* Take care of both those symbols that do not describe vtables as
9678 well as those that are not loaded. */
f6e332e6 9679 if (h->vtable == NULL || h->vtable->parent == NULL)
c152c796
AM
9680 return TRUE;
9681
9682 BFD_ASSERT (h->root.type == bfd_link_hash_defined
9683 || h->root.type == bfd_link_hash_defweak);
9684
9685 sec = h->root.u.def.section;
9686 hstart = h->root.u.def.value;
9687 hend = hstart + h->size;
9688
9689 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
9690 if (!relstart)
9691 return *(bfd_boolean *) okp = FALSE;
9692 bed = get_elf_backend_data (sec->owner);
9693 log_file_align = bed->s->log_file_align;
9694
9695 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
9696
9697 for (rel = relstart; rel < relend; ++rel)
9698 if (rel->r_offset >= hstart && rel->r_offset < hend)
9699 {
9700 /* If the entry is in use, do nothing. */
f6e332e6
AM
9701 if (h->vtable->used
9702 && (rel->r_offset - hstart) < h->vtable->size)
c152c796
AM
9703 {
9704 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
f6e332e6 9705 if (h->vtable->used[entry])
c152c796
AM
9706 continue;
9707 }
9708 /* Otherwise, kill it. */
9709 rel->r_offset = rel->r_info = rel->r_addend = 0;
9710 }
9711
9712 return TRUE;
9713}
9714
87538722
AM
9715/* Mark sections containing dynamically referenced symbols. When
9716 building shared libraries, we must assume that any visible symbol is
9717 referenced. */
715df9b8 9718
64d03ab5
AM
9719bfd_boolean
9720bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
715df9b8 9721{
87538722
AM
9722 struct bfd_link_info *info = (struct bfd_link_info *) inf;
9723
715df9b8
EB
9724 if (h->root.type == bfd_link_hash_warning)
9725 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9726
9727 if ((h->root.type == bfd_link_hash_defined
9728 || h->root.type == bfd_link_hash_defweak)
87538722 9729 && (h->ref_dynamic
5adcfd8b 9730 || (!info->executable
87538722
AM
9731 && h->def_regular
9732 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
9733 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
715df9b8
EB
9734 h->root.u.def.section->flags |= SEC_KEEP;
9735
9736 return TRUE;
9737}
3b36f7e6 9738
c152c796
AM
9739/* Do mark and sweep of unused sections. */
9740
9741bfd_boolean
9742bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
9743{
9744 bfd_boolean ok = TRUE;
9745 bfd *sub;
9746 asection * (*gc_mark_hook)
9747 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
9748 struct elf_link_hash_entry *h, Elf_Internal_Sym *);
64d03ab5 9749 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
c152c796 9750
64d03ab5 9751 if (!bed->can_gc_sections
c152c796
AM
9752 || info->relocatable
9753 || info->emitrelocations
715df9b8 9754 || !is_elf_hash_table (info->hash))
c152c796
AM
9755 {
9756 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
9757 return TRUE;
9758 }
9759
9760 /* Apply transitive closure to the vtable entry usage info. */
9761 elf_link_hash_traverse (elf_hash_table (info),
9762 elf_gc_propagate_vtable_entries_used,
9763 &ok);
9764 if (!ok)
9765 return FALSE;
9766
9767 /* Kill the vtable relocations that were not used. */
9768 elf_link_hash_traverse (elf_hash_table (info),
9769 elf_gc_smash_unused_vtentry_relocs,
9770 &ok);
9771 if (!ok)
9772 return FALSE;
9773
715df9b8
EB
9774 /* Mark dynamically referenced symbols. */
9775 if (elf_hash_table (info)->dynamic_sections_created)
9776 elf_link_hash_traverse (elf_hash_table (info),
64d03ab5 9777 bed->gc_mark_dynamic_ref,
87538722 9778 info);
c152c796 9779
715df9b8 9780 /* Grovel through relocs to find out who stays ... */
64d03ab5 9781 gc_mark_hook = bed->gc_mark_hook;
c152c796
AM
9782 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
9783 {
9784 asection *o;
9785
9786 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
9787 continue;
9788
9789 for (o = sub->sections; o != NULL; o = o->next)
39c2f51b
AM
9790 if ((o->flags & SEC_KEEP) != 0 && !o->gc_mark)
9791 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
9792 return FALSE;
c152c796
AM
9793 }
9794
9e8cc8b4
AM
9795 /* ... again for sections marked from eh_frame. */
9796 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
9797 {
9798 asection *o;
9799
9800 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
9801 continue;
9802
9803 /* Keep .gcc_except_table.* if the associated .text.* is
9804 marked. This isn't very nice, but the proper solution,
2de92251 9805 splitting .eh_frame up and using comdat doesn't pan out
9e8cc8b4
AM
9806 easily due to needing special relocs to handle the
9807 difference of two symbols in separate sections.
9808 Don't keep code sections referenced by .eh_frame. */
ea9986ff
NC
9809#define TEXT_PREFIX ".text."
9810#define GCC_EXCEPT_TABLE_PREFIX ".gcc_except_table."
9e8cc8b4
AM
9811 for (o = sub->sections; o != NULL; o = o->next)
9812 if (!o->gc_mark && o->gc_mark_from_eh && (o->flags & SEC_CODE) == 0)
9813 {
ea9986ff 9814 if (CONST_STRNEQ (o->name, GCC_EXCEPT_TABLE_PREFIX))
9e8cc8b4 9815 {
9e8cc8b4 9816 char *fn_name;
ea9986ff 9817 const char *sec_name;
9e8cc8b4 9818 asection *fn_text;
ea9986ff
NC
9819 unsigned o_name_prefix_len = strlen (GCC_EXCEPT_TABLE_PREFIX);
9820 unsigned fn_name_prefix_len = strlen (TEXT_PREFIX);
9e8cc8b4 9821
ea9986ff
NC
9822 sec_name = o->name + o_name_prefix_len;
9823 fn_name = bfd_malloc (strlen (sec_name) + fn_name_prefix_len + 1);
9e8cc8b4
AM
9824 if (fn_name == NULL)
9825 return FALSE;
ea9986ff 9826 sprintf (fn_name, "%s%s", TEXT_PREFIX, sec_name);
9e8cc8b4
AM
9827 fn_text = bfd_get_section_by_name (sub, fn_name);
9828 free (fn_name);
9829 if (fn_text == NULL || !fn_text->gc_mark)
9830 continue;
9831 }
9832
9833 /* If not using specially named exception table section,
9834 then keep whatever we are using. */
9835 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
9836 return FALSE;
9837 }
9838 }
9839
c152c796 9840 /* ... and mark SEC_EXCLUDE for those that go. */
ccabcbe5 9841 return elf_gc_sweep (abfd, info);
c152c796
AM
9842}
9843\f
9844/* Called from check_relocs to record the existence of a VTINHERIT reloc. */
9845
9846bfd_boolean
9847bfd_elf_gc_record_vtinherit (bfd *abfd,
9848 asection *sec,
9849 struct elf_link_hash_entry *h,
9850 bfd_vma offset)
9851{
9852 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
9853 struct elf_link_hash_entry **search, *child;
9854 bfd_size_type extsymcount;
9855 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9856
9857 /* The sh_info field of the symtab header tells us where the
9858 external symbols start. We don't care about the local symbols at
9859 this point. */
9860 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
9861 if (!elf_bad_symtab (abfd))
9862 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
9863
9864 sym_hashes = elf_sym_hashes (abfd);
9865 sym_hashes_end = sym_hashes + extsymcount;
9866
9867 /* Hunt down the child symbol, which is in this section at the same
9868 offset as the relocation. */
9869 for (search = sym_hashes; search != sym_hashes_end; ++search)
9870 {
9871 if ((child = *search) != NULL
9872 && (child->root.type == bfd_link_hash_defined
9873 || child->root.type == bfd_link_hash_defweak)
9874 && child->root.u.def.section == sec
9875 && child->root.u.def.value == offset)
9876 goto win;
9877 }
9878
d003868e
AM
9879 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
9880 abfd, sec, (unsigned long) offset);
c152c796
AM
9881 bfd_set_error (bfd_error_invalid_operation);
9882 return FALSE;
9883
9884 win:
f6e332e6
AM
9885 if (!child->vtable)
9886 {
9887 child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable));
9888 if (!child->vtable)
9889 return FALSE;
9890 }
c152c796
AM
9891 if (!h)
9892 {
9893 /* This *should* only be the absolute section. It could potentially
9894 be that someone has defined a non-global vtable though, which
9895 would be bad. It isn't worth paging in the local symbols to be
9896 sure though; that case should simply be handled by the assembler. */
9897
f6e332e6 9898 child->vtable->parent = (struct elf_link_hash_entry *) -1;
c152c796
AM
9899 }
9900 else
f6e332e6 9901 child->vtable->parent = h;
c152c796
AM
9902
9903 return TRUE;
9904}
9905
9906/* Called from check_relocs to record the existence of a VTENTRY reloc. */
9907
9908bfd_boolean
9909bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
9910 asection *sec ATTRIBUTE_UNUSED,
9911 struct elf_link_hash_entry *h,
9912 bfd_vma addend)
9913{
9914 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9915 unsigned int log_file_align = bed->s->log_file_align;
9916
f6e332e6
AM
9917 if (!h->vtable)
9918 {
9919 h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable));
9920 if (!h->vtable)
9921 return FALSE;
9922 }
9923
9924 if (addend >= h->vtable->size)
c152c796
AM
9925 {
9926 size_t size, bytes, file_align;
f6e332e6 9927 bfd_boolean *ptr = h->vtable->used;
c152c796
AM
9928
9929 /* While the symbol is undefined, we have to be prepared to handle
9930 a zero size. */
9931 file_align = 1 << log_file_align;
9932 if (h->root.type == bfd_link_hash_undefined)
9933 size = addend + file_align;
9934 else
9935 {
9936 size = h->size;
9937 if (addend >= size)
9938 {
9939 /* Oops! We've got a reference past the defined end of
9940 the table. This is probably a bug -- shall we warn? */
9941 size = addend + file_align;
9942 }
9943 }
9944 size = (size + file_align - 1) & -file_align;
9945
9946 /* Allocate one extra entry for use as a "done" flag for the
9947 consolidation pass. */
9948 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
9949
9950 if (ptr)
9951 {
9952 ptr = bfd_realloc (ptr - 1, bytes);
9953
9954 if (ptr != NULL)
9955 {
9956 size_t oldbytes;
9957
f6e332e6 9958 oldbytes = (((h->vtable->size >> log_file_align) + 1)
c152c796
AM
9959 * sizeof (bfd_boolean));
9960 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
9961 }
9962 }
9963 else
9964 ptr = bfd_zmalloc (bytes);
9965
9966 if (ptr == NULL)
9967 return FALSE;
9968
9969 /* And arrange for that done flag to be at index -1. */
f6e332e6
AM
9970 h->vtable->used = ptr + 1;
9971 h->vtable->size = size;
c152c796
AM
9972 }
9973
f6e332e6 9974 h->vtable->used[addend >> log_file_align] = TRUE;
c152c796
AM
9975
9976 return TRUE;
9977}
9978
9979struct alloc_got_off_arg {
9980 bfd_vma gotoff;
9981 unsigned int got_elt_size;
9982};
9983
9984/* We need a special top-level link routine to convert got reference counts
9985 to real got offsets. */
9986
9987static bfd_boolean
9988elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
9989{
9990 struct alloc_got_off_arg *gofarg = arg;
9991
9992 if (h->root.type == bfd_link_hash_warning)
9993 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9994
9995 if (h->got.refcount > 0)
9996 {
9997 h->got.offset = gofarg->gotoff;
9998 gofarg->gotoff += gofarg->got_elt_size;
9999 }
10000 else
10001 h->got.offset = (bfd_vma) -1;
10002
10003 return TRUE;
10004}
10005
10006/* And an accompanying bit to work out final got entry offsets once
10007 we're done. Should be called from final_link. */
10008
10009bfd_boolean
10010bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
10011 struct bfd_link_info *info)
10012{
10013 bfd *i;
10014 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10015 bfd_vma gotoff;
10016 unsigned int got_elt_size = bed->s->arch_size / 8;
10017 struct alloc_got_off_arg gofarg;
10018
10019 if (! is_elf_hash_table (info->hash))
10020 return FALSE;
10021
10022 /* The GOT offset is relative to the .got section, but the GOT header is
10023 put into the .got.plt section, if the backend uses it. */
10024 if (bed->want_got_plt)
10025 gotoff = 0;
10026 else
10027 gotoff = bed->got_header_size;
10028
10029 /* Do the local .got entries first. */
10030 for (i = info->input_bfds; i; i = i->link_next)
10031 {
10032 bfd_signed_vma *local_got;
10033 bfd_size_type j, locsymcount;
10034 Elf_Internal_Shdr *symtab_hdr;
10035
10036 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
10037 continue;
10038
10039 local_got = elf_local_got_refcounts (i);
10040 if (!local_got)
10041 continue;
10042
10043 symtab_hdr = &elf_tdata (i)->symtab_hdr;
10044 if (elf_bad_symtab (i))
10045 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10046 else
10047 locsymcount = symtab_hdr->sh_info;
10048
10049 for (j = 0; j < locsymcount; ++j)
10050 {
10051 if (local_got[j] > 0)
10052 {
10053 local_got[j] = gotoff;
10054 gotoff += got_elt_size;
10055 }
10056 else
10057 local_got[j] = (bfd_vma) -1;
10058 }
10059 }
10060
10061 /* Then the global .got entries. .plt refcounts are handled by
10062 adjust_dynamic_symbol */
10063 gofarg.gotoff = gotoff;
10064 gofarg.got_elt_size = got_elt_size;
10065 elf_link_hash_traverse (elf_hash_table (info),
10066 elf_gc_allocate_got_offsets,
10067 &gofarg);
10068 return TRUE;
10069}
10070
10071/* Many folk need no more in the way of final link than this, once
10072 got entry reference counting is enabled. */
10073
10074bfd_boolean
10075bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
10076{
10077 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
10078 return FALSE;
10079
10080 /* Invoke the regular ELF backend linker to do all the work. */
10081 return bfd_elf_final_link (abfd, info);
10082}
10083
10084bfd_boolean
10085bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
10086{
10087 struct elf_reloc_cookie *rcookie = cookie;
10088
10089 if (rcookie->bad_symtab)
10090 rcookie->rel = rcookie->rels;
10091
10092 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
10093 {
10094 unsigned long r_symndx;
10095
10096 if (! rcookie->bad_symtab)
10097 if (rcookie->rel->r_offset > offset)
10098 return FALSE;
10099 if (rcookie->rel->r_offset != offset)
10100 continue;
10101
10102 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
10103 if (r_symndx == SHN_UNDEF)
10104 return TRUE;
10105
10106 if (r_symndx >= rcookie->locsymcount
10107 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
10108 {
10109 struct elf_link_hash_entry *h;
10110
10111 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
10112
10113 while (h->root.type == bfd_link_hash_indirect
10114 || h->root.type == bfd_link_hash_warning)
10115 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10116
10117 if ((h->root.type == bfd_link_hash_defined
10118 || h->root.type == bfd_link_hash_defweak)
10119 && elf_discarded_section (h->root.u.def.section))
10120 return TRUE;
10121 else
10122 return FALSE;
10123 }
10124 else
10125 {
10126 /* It's not a relocation against a global symbol,
10127 but it could be a relocation against a local
10128 symbol for a discarded section. */
10129 asection *isec;
10130 Elf_Internal_Sym *isym;
10131
10132 /* Need to: get the symbol; get the section. */
10133 isym = &rcookie->locsyms[r_symndx];
10134 if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
10135 {
10136 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
10137 if (isec != NULL && elf_discarded_section (isec))
10138 return TRUE;
10139 }
10140 }
10141 return FALSE;
10142 }
10143 return FALSE;
10144}
10145
10146/* Discard unneeded references to discarded sections.
10147 Returns TRUE if any section's size was changed. */
10148/* This function assumes that the relocations are in sorted order,
10149 which is true for all known assemblers. */
10150
10151bfd_boolean
10152bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
10153{
10154 struct elf_reloc_cookie cookie;
10155 asection *stab, *eh;
10156 Elf_Internal_Shdr *symtab_hdr;
10157 const struct elf_backend_data *bed;
10158 bfd *abfd;
10159 unsigned int count;
10160 bfd_boolean ret = FALSE;
10161
10162 if (info->traditional_format
10163 || !is_elf_hash_table (info->hash))
10164 return FALSE;
10165
10166 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
10167 {
10168 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
10169 continue;
10170
10171 bed = get_elf_backend_data (abfd);
10172
10173 if ((abfd->flags & DYNAMIC) != 0)
10174 continue;
10175
10176 eh = bfd_get_section_by_name (abfd, ".eh_frame");
10177 if (info->relocatable
10178 || (eh != NULL
eea6121a 10179 && (eh->size == 0
c152c796
AM
10180 || bfd_is_abs_section (eh->output_section))))
10181 eh = NULL;
10182
10183 stab = bfd_get_section_by_name (abfd, ".stab");
10184 if (stab != NULL
eea6121a 10185 && (stab->size == 0
c152c796
AM
10186 || bfd_is_abs_section (stab->output_section)
10187 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
10188 stab = NULL;
10189
10190 if (stab == NULL
10191 && eh == NULL
10192 && bed->elf_backend_discard_info == NULL)
10193 continue;
10194
10195 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10196 cookie.abfd = abfd;
10197 cookie.sym_hashes = elf_sym_hashes (abfd);
10198 cookie.bad_symtab = elf_bad_symtab (abfd);
10199 if (cookie.bad_symtab)
10200 {
10201 cookie.locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10202 cookie.extsymoff = 0;
10203 }
10204 else
10205 {
10206 cookie.locsymcount = symtab_hdr->sh_info;
10207 cookie.extsymoff = symtab_hdr->sh_info;
10208 }
10209
10210 if (bed->s->arch_size == 32)
10211 cookie.r_sym_shift = 8;
10212 else
10213 cookie.r_sym_shift = 32;
10214
10215 cookie.locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
10216 if (cookie.locsyms == NULL && cookie.locsymcount != 0)
10217 {
10218 cookie.locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
10219 cookie.locsymcount, 0,
10220 NULL, NULL, NULL);
10221 if (cookie.locsyms == NULL)
10222 return FALSE;
10223 }
10224
10225 if (stab != NULL)
10226 {
10227 cookie.rels = NULL;
10228 count = stab->reloc_count;
10229 if (count != 0)
10230 cookie.rels = _bfd_elf_link_read_relocs (abfd, stab, NULL, NULL,
10231 info->keep_memory);
10232 if (cookie.rels != NULL)
10233 {
10234 cookie.rel = cookie.rels;
10235 cookie.relend = cookie.rels;
10236 cookie.relend += count * bed->s->int_rels_per_ext_rel;
10237 if (_bfd_discard_section_stabs (abfd, stab,
10238 elf_section_data (stab)->sec_info,
10239 bfd_elf_reloc_symbol_deleted_p,
10240 &cookie))
10241 ret = TRUE;
10242 if (elf_section_data (stab)->relocs != cookie.rels)
10243 free (cookie.rels);
10244 }
10245 }
10246
10247 if (eh != NULL)
10248 {
10249 cookie.rels = NULL;
10250 count = eh->reloc_count;
10251 if (count != 0)
10252 cookie.rels = _bfd_elf_link_read_relocs (abfd, eh, NULL, NULL,
10253 info->keep_memory);
10254 cookie.rel = cookie.rels;
10255 cookie.relend = cookie.rels;
10256 if (cookie.rels != NULL)
10257 cookie.relend += count * bed->s->int_rels_per_ext_rel;
10258
10259 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
10260 bfd_elf_reloc_symbol_deleted_p,
10261 &cookie))
10262 ret = TRUE;
10263
10264 if (cookie.rels != NULL
10265 && elf_section_data (eh)->relocs != cookie.rels)
10266 free (cookie.rels);
10267 }
10268
10269 if (bed->elf_backend_discard_info != NULL
10270 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
10271 ret = TRUE;
10272
10273 if (cookie.locsyms != NULL
10274 && symtab_hdr->contents != (unsigned char *) cookie.locsyms)
10275 {
10276 if (! info->keep_memory)
10277 free (cookie.locsyms);
10278 else
10279 symtab_hdr->contents = (unsigned char *) cookie.locsyms;
10280 }
10281 }
10282
10283 if (info->eh_frame_hdr
10284 && !info->relocatable
10285 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
10286 ret = TRUE;
10287
10288 return ret;
10289}
082b7297
L
10290
10291void
10292_bfd_elf_section_already_linked (bfd *abfd, struct bfd_section * sec)
10293{
10294 flagword flags;
6d2cd210 10295 const char *name, *p;
082b7297
L
10296 struct bfd_section_already_linked *l;
10297 struct bfd_section_already_linked_hash_entry *already_linked_list;
3d7f7666
L
10298 asection *group;
10299
10300 /* A single member comdat group section may be discarded by a
10301 linkonce section. See below. */
10302 if (sec->output_section == bfd_abs_section_ptr)
10303 return;
082b7297
L
10304
10305 flags = sec->flags;
3d7f7666
L
10306
10307 /* Check if it belongs to a section group. */
10308 group = elf_sec_group (sec);
10309
10310 /* Return if it isn't a linkonce section nor a member of a group. A
10311 comdat group section also has SEC_LINK_ONCE set. */
10312 if ((flags & SEC_LINK_ONCE) == 0 && group == NULL)
082b7297
L
10313 return;
10314
3d7f7666
L
10315 if (group)
10316 {
10317 /* If this is the member of a single member comdat group, check if
10318 the group should be discarded. */
10319 if (elf_next_in_group (sec) == sec
10320 && (group->flags & SEC_LINK_ONCE) != 0)
10321 sec = group;
10322 else
10323 return;
10324 }
10325
082b7297
L
10326 /* FIXME: When doing a relocatable link, we may have trouble
10327 copying relocations in other sections that refer to local symbols
10328 in the section being discarded. Those relocations will have to
10329 be converted somehow; as of this writing I'm not sure that any of
10330 the backends handle that correctly.
10331
10332 It is tempting to instead not discard link once sections when
10333 doing a relocatable link (technically, they should be discarded
10334 whenever we are building constructors). However, that fails,
10335 because the linker winds up combining all the link once sections
10336 into a single large link once section, which defeats the purpose
10337 of having link once sections in the first place.
10338
10339 Also, not merging link once sections in a relocatable link
10340 causes trouble for MIPS ELF, which relies on link once semantics
10341 to handle the .reginfo section correctly. */
10342
10343 name = bfd_get_section_name (abfd, sec);
10344
0112cd26 10345 if (CONST_STRNEQ (name, ".gnu.linkonce.")
6d2cd210
JJ
10346 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
10347 p++;
10348 else
10349 p = name;
10350
10351 already_linked_list = bfd_section_already_linked_table_lookup (p);
082b7297
L
10352
10353 for (l = already_linked_list->entry; l != NULL; l = l->next)
10354 {
10355 /* We may have 3 different sections on the list: group section,
10356 comdat section and linkonce section. SEC may be a linkonce or
10357 group section. We match a group section with a group section,
10358 a linkonce section with a linkonce section, and ignore comdat
10359 section. */
3d7f7666 10360 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
6d2cd210 10361 && strcmp (name, l->sec->name) == 0
082b7297
L
10362 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
10363 {
10364 /* The section has already been linked. See if we should
6d2cd210 10365 issue a warning. */
082b7297
L
10366 switch (flags & SEC_LINK_DUPLICATES)
10367 {
10368 default:
10369 abort ();
10370
10371 case SEC_LINK_DUPLICATES_DISCARD:
10372 break;
10373
10374 case SEC_LINK_DUPLICATES_ONE_ONLY:
10375 (*_bfd_error_handler)
c93625e2 10376 (_("%B: ignoring duplicate section `%A'"),
d003868e 10377 abfd, sec);
082b7297
L
10378 break;
10379
10380 case SEC_LINK_DUPLICATES_SAME_SIZE:
10381 if (sec->size != l->sec->size)
10382 (*_bfd_error_handler)
c93625e2 10383 (_("%B: duplicate section `%A' has different size"),
d003868e 10384 abfd, sec);
082b7297 10385 break;
ea5158d8
DJ
10386
10387 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
10388 if (sec->size != l->sec->size)
10389 (*_bfd_error_handler)
c93625e2 10390 (_("%B: duplicate section `%A' has different size"),
ea5158d8
DJ
10391 abfd, sec);
10392 else if (sec->size != 0)
10393 {
10394 bfd_byte *sec_contents, *l_sec_contents;
10395
10396 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
10397 (*_bfd_error_handler)
c93625e2 10398 (_("%B: warning: could not read contents of section `%A'"),
ea5158d8
DJ
10399 abfd, sec);
10400 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
10401 &l_sec_contents))
10402 (*_bfd_error_handler)
c93625e2 10403 (_("%B: warning: could not read contents of section `%A'"),
ea5158d8
DJ
10404 l->sec->owner, l->sec);
10405 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
10406 (*_bfd_error_handler)
c93625e2 10407 (_("%B: warning: duplicate section `%A' has different contents"),
ea5158d8
DJ
10408 abfd, sec);
10409
10410 if (sec_contents)
10411 free (sec_contents);
10412 if (l_sec_contents)
10413 free (l_sec_contents);
10414 }
10415 break;
082b7297
L
10416 }
10417
10418 /* Set the output_section field so that lang_add_section
10419 does not create a lang_input_section structure for this
10420 section. Since there might be a symbol in the section
10421 being discarded, we must retain a pointer to the section
10422 which we are really going to use. */
10423 sec->output_section = bfd_abs_section_ptr;
10424 sec->kept_section = l->sec;
3b36f7e6 10425
082b7297 10426 if (flags & SEC_GROUP)
3d7f7666
L
10427 {
10428 asection *first = elf_next_in_group (sec);
10429 asection *s = first;
10430
10431 while (s != NULL)
10432 {
10433 s->output_section = bfd_abs_section_ptr;
10434 /* Record which group discards it. */
10435 s->kept_section = l->sec;
10436 s = elf_next_in_group (s);
10437 /* These lists are circular. */
10438 if (s == first)
10439 break;
10440 }
10441 }
082b7297
L
10442
10443 return;
10444 }
10445 }
10446
3d7f7666
L
10447 if (group)
10448 {
10449 /* If this is the member of a single member comdat group and the
10450 group hasn't be discarded, we check if it matches a linkonce
10451 section. We only record the discarded comdat group. Otherwise
10452 the undiscarded group will be discarded incorrectly later since
10453 itself has been recorded. */
6d2cd210
JJ
10454 for (l = already_linked_list->entry; l != NULL; l = l->next)
10455 if ((l->sec->flags & SEC_GROUP) == 0
10456 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
10457 && bfd_elf_match_symbols_in_sections (l->sec,
10458 elf_next_in_group (sec)))
10459 {
10460 elf_next_in_group (sec)->output_section = bfd_abs_section_ptr;
10461 elf_next_in_group (sec)->kept_section = l->sec;
10462 group->output_section = bfd_abs_section_ptr;
10463 break;
10464 }
10465 if (l == NULL)
3d7f7666
L
10466 return;
10467 }
10468 else
10469 /* There is no direct match. But for linkonce section, we should
10470 check if there is a match with comdat group member. We always
10471 record the linkonce section, discarded or not. */
6d2cd210
JJ
10472 for (l = already_linked_list->entry; l != NULL; l = l->next)
10473 if (l->sec->flags & SEC_GROUP)
10474 {
10475 asection *first = elf_next_in_group (l->sec);
10476
10477 if (first != NULL
10478 && elf_next_in_group (first) == first
10479 && bfd_elf_match_symbols_in_sections (first, sec))
10480 {
10481 sec->output_section = bfd_abs_section_ptr;
10482 sec->kept_section = l->sec;
10483 break;
10484 }
10485 }
10486
082b7297
L
10487 /* This is the first section with this name. Record it. */
10488 bfd_section_already_linked_table_insert (already_linked_list, sec);
10489}
81e1b023 10490
a4d8e49b
L
10491bfd_boolean
10492_bfd_elf_common_definition (Elf_Internal_Sym *sym)
10493{
10494 return sym->st_shndx == SHN_COMMON;
10495}
10496
10497unsigned int
10498_bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
10499{
10500 return SHN_COMMON;
10501}
10502
10503asection *
10504_bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
10505{
10506 return bfd_com_section_ptr;
10507}
This page took 0.953472 seconds and 4 git commands to generate.