bfd/
[deliverable/binutils-gdb.git] / bfd / elflink.c
CommitLineData
252b5132 1/* ELF linking support for BFD.
7e9f0867 2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
7898deda 3 Free Software Foundation, Inc.
252b5132 4
8fdd7217 5 This file is part of BFD, the Binary File Descriptor library.
252b5132 6
8fdd7217
NC
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
252b5132 11
8fdd7217
NC
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
252b5132 16
8fdd7217
NC
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
252b5132
RH
20
21#include "bfd.h"
22#include "sysdep.h"
23#include "bfdlink.h"
24#include "libbfd.h"
25#define ARCH_SIZE 0
26#include "elf-bfd.h"
4ad4eba5 27#include "safe-ctype.h"
ccf2f652 28#include "libiberty.h"
252b5132 29
b34976b6 30bfd_boolean
268b6b39 31_bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
252b5132
RH
32{
33 flagword flags;
aad5d350 34 asection *s;
252b5132 35 struct elf_link_hash_entry *h;
14a793b2 36 struct bfd_link_hash_entry *bh;
9c5bfbb7 37 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
252b5132
RH
38 int ptralign;
39
40 /* This function may be called more than once. */
aad5d350
AM
41 s = bfd_get_section_by_name (abfd, ".got");
42 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
b34976b6 43 return TRUE;
252b5132
RH
44
45 switch (bed->s->arch_size)
46 {
bb0deeff
AO
47 case 32:
48 ptralign = 2;
49 break;
50
51 case 64:
52 ptralign = 3;
53 break;
54
55 default:
56 bfd_set_error (bfd_error_bad_value);
b34976b6 57 return FALSE;
252b5132
RH
58 }
59
e5a52504 60 flags = bed->dynamic_sec_flags;
252b5132
RH
61
62 s = bfd_make_section (abfd, ".got");
63 if (s == NULL
64 || !bfd_set_section_flags (abfd, s, flags)
65 || !bfd_set_section_alignment (abfd, s, ptralign))
b34976b6 66 return FALSE;
252b5132
RH
67
68 if (bed->want_got_plt)
69 {
70 s = bfd_make_section (abfd, ".got.plt");
71 if (s == NULL
72 || !bfd_set_section_flags (abfd, s, flags)
73 || !bfd_set_section_alignment (abfd, s, ptralign))
b34976b6 74 return FALSE;
252b5132
RH
75 }
76
2517a57f
AM
77 if (bed->want_got_sym)
78 {
79 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
80 (or .got.plt) section. We don't do this in the linker script
81 because we don't want to define the symbol if we are not creating
82 a global offset table. */
14a793b2 83 bh = NULL;
2517a57f
AM
84 if (!(_bfd_generic_link_add_one_symbol
85 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
268b6b39 86 bed->got_symbol_offset, NULL, FALSE, bed->collect, &bh)))
b34976b6 87 return FALSE;
14a793b2 88 h = (struct elf_link_hash_entry *) bh;
f5385ebf 89 h->def_regular = 1;
2517a57f 90 h->type = STT_OBJECT;
e6857c0c 91 h->other = STV_HIDDEN;
252b5132 92
36af4a4e 93 if (! info->executable
c152c796 94 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 95 return FALSE;
252b5132 96
2517a57f
AM
97 elf_hash_table (info)->hgot = h;
98 }
252b5132
RH
99
100 /* The first bit of the global offset table is the header. */
eea6121a 101 s->size += bed->got_header_size + bed->got_symbol_offset;
252b5132 102
b34976b6 103 return TRUE;
252b5132
RH
104}
105\f
7e9f0867
AM
106/* Create a strtab to hold the dynamic symbol names. */
107static bfd_boolean
108_bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
109{
110 struct elf_link_hash_table *hash_table;
111
112 hash_table = elf_hash_table (info);
113 if (hash_table->dynobj == NULL)
114 hash_table->dynobj = abfd;
115
116 if (hash_table->dynstr == NULL)
117 {
118 hash_table->dynstr = _bfd_elf_strtab_init ();
119 if (hash_table->dynstr == NULL)
120 return FALSE;
121 }
122 return TRUE;
123}
124
45d6a902
AM
125/* Create some sections which will be filled in with dynamic linking
126 information. ABFD is an input file which requires dynamic sections
127 to be created. The dynamic sections take up virtual memory space
128 when the final executable is run, so we need to create them before
129 addresses are assigned to the output sections. We work out the
130 actual contents and size of these sections later. */
252b5132 131
b34976b6 132bfd_boolean
268b6b39 133_bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
252b5132 134{
45d6a902
AM
135 flagword flags;
136 register asection *s;
137 struct elf_link_hash_entry *h;
138 struct bfd_link_hash_entry *bh;
9c5bfbb7 139 const struct elf_backend_data *bed;
252b5132 140
0eddce27 141 if (! is_elf_hash_table (info->hash))
45d6a902
AM
142 return FALSE;
143
144 if (elf_hash_table (info)->dynamic_sections_created)
145 return TRUE;
146
7e9f0867
AM
147 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
148 return FALSE;
45d6a902 149
7e9f0867 150 abfd = elf_hash_table (info)->dynobj;
e5a52504
MM
151 bed = get_elf_backend_data (abfd);
152
153 flags = bed->dynamic_sec_flags;
45d6a902
AM
154
155 /* A dynamically linked executable has a .interp section, but a
156 shared library does not. */
36af4a4e 157 if (info->executable)
252b5132 158 {
45d6a902
AM
159 s = bfd_make_section (abfd, ".interp");
160 if (s == NULL
161 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
162 return FALSE;
163 }
bb0deeff 164
0eddce27 165 if (! info->traditional_format)
45d6a902
AM
166 {
167 s = bfd_make_section (abfd, ".eh_frame_hdr");
168 if (s == NULL
169 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
170 || ! bfd_set_section_alignment (abfd, s, 2))
171 return FALSE;
172 elf_hash_table (info)->eh_info.hdr_sec = s;
173 }
bb0deeff 174
45d6a902
AM
175 /* Create sections to hold version informations. These are removed
176 if they are not needed. */
177 s = bfd_make_section (abfd, ".gnu.version_d");
178 if (s == NULL
179 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
180 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
181 return FALSE;
182
183 s = bfd_make_section (abfd, ".gnu.version");
184 if (s == NULL
185 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
186 || ! bfd_set_section_alignment (abfd, s, 1))
187 return FALSE;
188
189 s = bfd_make_section (abfd, ".gnu.version_r");
190 if (s == NULL
191 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
192 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
193 return FALSE;
194
195 s = bfd_make_section (abfd, ".dynsym");
196 if (s == NULL
197 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
198 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
199 return FALSE;
200
201 s = bfd_make_section (abfd, ".dynstr");
202 if (s == NULL
203 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
204 return FALSE;
205
45d6a902
AM
206 s = bfd_make_section (abfd, ".dynamic");
207 if (s == NULL
208 || ! bfd_set_section_flags (abfd, s, flags)
209 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
210 return FALSE;
211
212 /* The special symbol _DYNAMIC is always set to the start of the
213 .dynamic section. This call occurs before we have processed the
214 symbols for any dynamic object, so we don't have to worry about
215 overriding a dynamic definition. We could set _DYNAMIC in a
216 linker script, but we only want to define it if we are, in fact,
217 creating a .dynamic section. We don't want to define it if there
218 is no .dynamic section, since on some ELF platforms the start up
219 code examines it to decide how to initialize the process. */
220 bh = NULL;
221 if (! (_bfd_generic_link_add_one_symbol
268b6b39
AM
222 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, 0, NULL, FALSE,
223 get_elf_backend_data (abfd)->collect, &bh)))
45d6a902
AM
224 return FALSE;
225 h = (struct elf_link_hash_entry *) bh;
f5385ebf 226 h->def_regular = 1;
45d6a902
AM
227 h->type = STT_OBJECT;
228
36af4a4e 229 if (! info->executable
c152c796 230 && ! bfd_elf_link_record_dynamic_symbol (info, h))
45d6a902
AM
231 return FALSE;
232
233 s = bfd_make_section (abfd, ".hash");
234 if (s == NULL
235 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
236 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
237 return FALSE;
238 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
239
240 /* Let the backend create the rest of the sections. This lets the
241 backend set the right flags. The backend will normally create
242 the .got and .plt sections. */
243 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
244 return FALSE;
245
246 elf_hash_table (info)->dynamic_sections_created = TRUE;
247
248 return TRUE;
249}
250
251/* Create dynamic sections when linking against a dynamic object. */
252
253bfd_boolean
268b6b39 254_bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
45d6a902
AM
255{
256 flagword flags, pltflags;
257 asection *s;
9c5bfbb7 258 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
45d6a902 259
252b5132
RH
260 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
261 .rel[a].bss sections. */
e5a52504 262 flags = bed->dynamic_sec_flags;
252b5132
RH
263
264 pltflags = flags;
252b5132 265 if (bed->plt_not_loaded)
6df4d94c
MM
266 /* We do not clear SEC_ALLOC here because we still want the OS to
267 allocate space for the section; it's just that there's nothing
268 to read in from the object file. */
5d1634d7 269 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
6df4d94c
MM
270 else
271 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
252b5132
RH
272 if (bed->plt_readonly)
273 pltflags |= SEC_READONLY;
274
275 s = bfd_make_section (abfd, ".plt");
276 if (s == NULL
277 || ! bfd_set_section_flags (abfd, s, pltflags)
278 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
b34976b6 279 return FALSE;
252b5132
RH
280
281 if (bed->want_plt_sym)
282 {
283 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
284 .plt section. */
14a793b2
AM
285 struct elf_link_hash_entry *h;
286 struct bfd_link_hash_entry *bh = NULL;
287
252b5132 288 if (! (_bfd_generic_link_add_one_symbol
268b6b39
AM
289 (info, abfd, "_PROCEDURE_LINKAGE_TABLE_", BSF_GLOBAL, s, 0, NULL,
290 FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 291 return FALSE;
14a793b2 292 h = (struct elf_link_hash_entry *) bh;
f5385ebf 293 h->def_regular = 1;
252b5132
RH
294 h->type = STT_OBJECT;
295
36af4a4e 296 if (! info->executable
c152c796 297 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 298 return FALSE;
252b5132
RH
299 }
300
3e932841 301 s = bfd_make_section (abfd,
bf572ba0 302 bed->default_use_rela_p ? ".rela.plt" : ".rel.plt");
252b5132
RH
303 if (s == NULL
304 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
45d6a902 305 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
b34976b6 306 return FALSE;
252b5132
RH
307
308 if (! _bfd_elf_create_got_section (abfd, info))
b34976b6 309 return FALSE;
252b5132 310
3018b441
RH
311 if (bed->want_dynbss)
312 {
313 /* The .dynbss section is a place to put symbols which are defined
314 by dynamic objects, are referenced by regular objects, and are
315 not functions. We must allocate space for them in the process
316 image and use a R_*_COPY reloc to tell the dynamic linker to
317 initialize them at run time. The linker script puts the .dynbss
318 section into the .bss section of the final image. */
319 s = bfd_make_section (abfd, ".dynbss");
320 if (s == NULL
77f3d027 321 || ! bfd_set_section_flags (abfd, s, SEC_ALLOC | SEC_LINKER_CREATED))
b34976b6 322 return FALSE;
252b5132 323
3018b441 324 /* The .rel[a].bss section holds copy relocs. This section is not
252b5132
RH
325 normally needed. We need to create it here, though, so that the
326 linker will map it to an output section. We can't just create it
327 only if we need it, because we will not know whether we need it
328 until we have seen all the input files, and the first time the
329 main linker code calls BFD after examining all the input files
330 (size_dynamic_sections) the input sections have already been
331 mapped to the output sections. If the section turns out not to
332 be needed, we can discard it later. We will never need this
333 section when generating a shared object, since they do not use
334 copy relocs. */
3018b441
RH
335 if (! info->shared)
336 {
3e932841
KH
337 s = bfd_make_section (abfd,
338 (bed->default_use_rela_p
339 ? ".rela.bss" : ".rel.bss"));
3018b441
RH
340 if (s == NULL
341 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
45d6a902 342 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
b34976b6 343 return FALSE;
3018b441 344 }
252b5132
RH
345 }
346
b34976b6 347 return TRUE;
252b5132
RH
348}
349\f
252b5132
RH
350/* Record a new dynamic symbol. We record the dynamic symbols as we
351 read the input files, since we need to have a list of all of them
352 before we can determine the final sizes of the output sections.
353 Note that we may actually call this function even though we are not
354 going to output any dynamic symbols; in some cases we know that a
355 symbol should be in the dynamic symbol table, but only if there is
356 one. */
357
b34976b6 358bfd_boolean
c152c796
AM
359bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
360 struct elf_link_hash_entry *h)
252b5132
RH
361{
362 if (h->dynindx == -1)
363 {
2b0f7ef9 364 struct elf_strtab_hash *dynstr;
68b6ddd0 365 char *p;
252b5132 366 const char *name;
252b5132
RH
367 bfd_size_type indx;
368
7a13edea
NC
369 /* XXX: The ABI draft says the linker must turn hidden and
370 internal symbols into STB_LOCAL symbols when producing the
371 DSO. However, if ld.so honors st_other in the dynamic table,
372 this would not be necessary. */
373 switch (ELF_ST_VISIBILITY (h->other))
374 {
375 case STV_INTERNAL:
376 case STV_HIDDEN:
9d6eee78
L
377 if (h->root.type != bfd_link_hash_undefined
378 && h->root.type != bfd_link_hash_undefweak)
38048eb9 379 {
f5385ebf 380 h->forced_local = 1;
b34976b6 381 return TRUE;
7a13edea 382 }
0444bdd4 383
7a13edea
NC
384 default:
385 break;
386 }
387
252b5132
RH
388 h->dynindx = elf_hash_table (info)->dynsymcount;
389 ++elf_hash_table (info)->dynsymcount;
390
391 dynstr = elf_hash_table (info)->dynstr;
392 if (dynstr == NULL)
393 {
394 /* Create a strtab to hold the dynamic symbol names. */
2b0f7ef9 395 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
252b5132 396 if (dynstr == NULL)
b34976b6 397 return FALSE;
252b5132
RH
398 }
399
400 /* We don't put any version information in the dynamic string
aad5d350 401 table. */
252b5132
RH
402 name = h->root.root.string;
403 p = strchr (name, ELF_VER_CHR);
68b6ddd0
AM
404 if (p != NULL)
405 /* We know that the p points into writable memory. In fact,
406 there are only a few symbols that have read-only names, being
407 those like _GLOBAL_OFFSET_TABLE_ that are created specially
408 by the backends. Most symbols will have names pointing into
409 an ELF string table read from a file, or to objalloc memory. */
410 *p = 0;
411
412 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
413
414 if (p != NULL)
415 *p = ELF_VER_CHR;
252b5132
RH
416
417 if (indx == (bfd_size_type) -1)
b34976b6 418 return FALSE;
252b5132
RH
419 h->dynstr_index = indx;
420 }
421
b34976b6 422 return TRUE;
252b5132 423}
45d6a902
AM
424\f
425/* Record an assignment to a symbol made by a linker script. We need
426 this in case some dynamic object refers to this symbol. */
427
428bfd_boolean
268b6b39
AM
429bfd_elf_record_link_assignment (bfd *output_bfd ATTRIBUTE_UNUSED,
430 struct bfd_link_info *info,
431 const char *name,
432 bfd_boolean provide)
45d6a902
AM
433{
434 struct elf_link_hash_entry *h;
435
0eddce27 436 if (!is_elf_hash_table (info->hash))
45d6a902
AM
437 return TRUE;
438
439 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, TRUE, FALSE);
440 if (h == NULL)
441 return FALSE;
442
02bb6eae
AO
443 /* Since we're defining the symbol, don't let it seem to have not
444 been defined. record_dynamic_symbol and size_dynamic_sections
a010d60f
AM
445 may depend on this.
446 ??? Changing bfd_link_hash_undefined to bfd_link_hash_new (or
447 to bfd_link_hash_undefweak, see linker.c:link_action) runs the risk
448 of some later symbol manipulation setting the symbol back to
449 bfd_link_hash_undefined, and the linker trying to add the symbol to
450 the undefs list twice. */
02bb6eae
AO
451 if (h->root.type == bfd_link_hash_undefweak
452 || h->root.type == bfd_link_hash_undefined)
453 h->root.type = bfd_link_hash_new;
454
45d6a902 455 if (h->root.type == bfd_link_hash_new)
f5385ebf 456 h->non_elf = 0;
45d6a902
AM
457
458 /* If this symbol is being provided by the linker script, and it is
459 currently defined by a dynamic object, but not by a regular
460 object, then mark it as undefined so that the generic linker will
461 force the correct value. */
462 if (provide
f5385ebf
AM
463 && h->def_dynamic
464 && !h->def_regular)
45d6a902
AM
465 h->root.type = bfd_link_hash_undefined;
466
467 /* If this symbol is not being provided by the linker script, and it is
468 currently defined by a dynamic object, but not by a regular object,
469 then clear out any version information because the symbol will not be
470 associated with the dynamic object any more. */
471 if (!provide
f5385ebf
AM
472 && h->def_dynamic
473 && !h->def_regular)
45d6a902
AM
474 h->verinfo.verdef = NULL;
475
f5385ebf 476 h->def_regular = 1;
45d6a902 477
f5385ebf
AM
478 if ((h->def_dynamic
479 || h->ref_dynamic
45d6a902
AM
480 || info->shared)
481 && h->dynindx == -1)
482 {
c152c796 483 if (! bfd_elf_link_record_dynamic_symbol (info, h))
45d6a902
AM
484 return FALSE;
485
486 /* If this is a weak defined symbol, and we know a corresponding
487 real symbol from the same dynamic object, make sure the real
488 symbol is also made into a dynamic symbol. */
f6e332e6
AM
489 if (h->u.weakdef != NULL
490 && h->u.weakdef->dynindx == -1)
45d6a902 491 {
f6e332e6 492 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
45d6a902
AM
493 return FALSE;
494 }
495 }
496
497 return TRUE;
498}
42751cf3 499
8c58d23b
AM
500/* Record a new local dynamic symbol. Returns 0 on failure, 1 on
501 success, and 2 on a failure caused by attempting to record a symbol
502 in a discarded section, eg. a discarded link-once section symbol. */
503
504int
c152c796
AM
505bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
506 bfd *input_bfd,
507 long input_indx)
8c58d23b
AM
508{
509 bfd_size_type amt;
510 struct elf_link_local_dynamic_entry *entry;
511 struct elf_link_hash_table *eht;
512 struct elf_strtab_hash *dynstr;
513 unsigned long dynstr_index;
514 char *name;
515 Elf_External_Sym_Shndx eshndx;
516 char esym[sizeof (Elf64_External_Sym)];
517
0eddce27 518 if (! is_elf_hash_table (info->hash))
8c58d23b
AM
519 return 0;
520
521 /* See if the entry exists already. */
522 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
523 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
524 return 1;
525
526 amt = sizeof (*entry);
268b6b39 527 entry = bfd_alloc (input_bfd, amt);
8c58d23b
AM
528 if (entry == NULL)
529 return 0;
530
531 /* Go find the symbol, so that we can find it's name. */
532 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
268b6b39 533 1, input_indx, &entry->isym, esym, &eshndx))
8c58d23b
AM
534 {
535 bfd_release (input_bfd, entry);
536 return 0;
537 }
538
539 if (entry->isym.st_shndx != SHN_UNDEF
540 && (entry->isym.st_shndx < SHN_LORESERVE
541 || entry->isym.st_shndx > SHN_HIRESERVE))
542 {
543 asection *s;
544
545 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
546 if (s == NULL || bfd_is_abs_section (s->output_section))
547 {
548 /* We can still bfd_release here as nothing has done another
549 bfd_alloc. We can't do this later in this function. */
550 bfd_release (input_bfd, entry);
551 return 2;
552 }
553 }
554
555 name = (bfd_elf_string_from_elf_section
556 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
557 entry->isym.st_name));
558
559 dynstr = elf_hash_table (info)->dynstr;
560 if (dynstr == NULL)
561 {
562 /* Create a strtab to hold the dynamic symbol names. */
563 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
564 if (dynstr == NULL)
565 return 0;
566 }
567
b34976b6 568 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
8c58d23b
AM
569 if (dynstr_index == (unsigned long) -1)
570 return 0;
571 entry->isym.st_name = dynstr_index;
572
573 eht = elf_hash_table (info);
574
575 entry->next = eht->dynlocal;
576 eht->dynlocal = entry;
577 entry->input_bfd = input_bfd;
578 entry->input_indx = input_indx;
579 eht->dynsymcount++;
580
581 /* Whatever binding the symbol had before, it's now local. */
582 entry->isym.st_info
583 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
584
585 /* The dynindx will be set at the end of size_dynamic_sections. */
586
587 return 1;
588}
589
30b30c21 590/* Return the dynindex of a local dynamic symbol. */
42751cf3 591
30b30c21 592long
268b6b39
AM
593_bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
594 bfd *input_bfd,
595 long input_indx)
30b30c21
RH
596{
597 struct elf_link_local_dynamic_entry *e;
598
599 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
600 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
601 return e->dynindx;
602 return -1;
603}
604
605/* This function is used to renumber the dynamic symbols, if some of
606 them are removed because they are marked as local. This is called
607 via elf_link_hash_traverse. */
608
b34976b6 609static bfd_boolean
268b6b39
AM
610elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
611 void *data)
42751cf3 612{
268b6b39 613 size_t *count = data;
30b30c21 614
e92d460e
AM
615 if (h->root.type == bfd_link_hash_warning)
616 h = (struct elf_link_hash_entry *) h->root.u.i.link;
617
42751cf3 618 if (h->dynindx != -1)
30b30c21
RH
619 h->dynindx = ++(*count);
620
b34976b6 621 return TRUE;
42751cf3 622}
30b30c21 623
aee6f5b4
AO
624/* Return true if the dynamic symbol for a given section should be
625 omitted when creating a shared library. */
626bfd_boolean
627_bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
628 struct bfd_link_info *info,
629 asection *p)
630{
631 switch (elf_section_data (p)->this_hdr.sh_type)
632 {
633 case SHT_PROGBITS:
634 case SHT_NOBITS:
635 /* If sh_type is yet undecided, assume it could be
636 SHT_PROGBITS/SHT_NOBITS. */
637 case SHT_NULL:
638 if (strcmp (p->name, ".got") == 0
639 || strcmp (p->name, ".got.plt") == 0
640 || strcmp (p->name, ".plt") == 0)
641 {
642 asection *ip;
643 bfd *dynobj = elf_hash_table (info)->dynobj;
644
645 if (dynobj != NULL
1da212d6 646 && (ip = bfd_get_section_by_name (dynobj, p->name)) != NULL
aee6f5b4
AO
647 && (ip->flags & SEC_LINKER_CREATED)
648 && ip->output_section == p)
649 return TRUE;
650 }
651 return FALSE;
652
653 /* There shouldn't be section relative relocations
654 against any other section. */
655 default:
656 return TRUE;
657 }
658}
659
062e2358 660/* Assign dynsym indices. In a shared library we generate a section
30b30c21
RH
661 symbol for each output section, which come first. Next come all of
662 the back-end allocated local dynamic syms, followed by the rest of
663 the global symbols. */
664
665unsigned long
268b6b39 666_bfd_elf_link_renumber_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
30b30c21
RH
667{
668 unsigned long dynsymcount = 0;
669
670 if (info->shared)
671 {
aee6f5b4 672 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
30b30c21
RH
673 asection *p;
674 for (p = output_bfd->sections; p ; p = p->next)
8c37241b 675 if ((p->flags & SEC_EXCLUDE) == 0
aee6f5b4
AO
676 && (p->flags & SEC_ALLOC) != 0
677 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
678 elf_section_data (p)->dynindx = ++dynsymcount;
30b30c21
RH
679 }
680
681 if (elf_hash_table (info)->dynlocal)
682 {
683 struct elf_link_local_dynamic_entry *p;
684 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
685 p->dynindx = ++dynsymcount;
686 }
687
688 elf_link_hash_traverse (elf_hash_table (info),
689 elf_link_renumber_hash_table_dynsyms,
690 &dynsymcount);
691
692 /* There is an unused NULL entry at the head of the table which
693 we must account for in our count. Unless there weren't any
694 symbols, which means we'll have no table at all. */
695 if (dynsymcount != 0)
696 ++dynsymcount;
697
698 return elf_hash_table (info)->dynsymcount = dynsymcount;
699}
252b5132 700
45d6a902
AM
701/* This function is called when we want to define a new symbol. It
702 handles the various cases which arise when we find a definition in
703 a dynamic object, or when there is already a definition in a
704 dynamic object. The new symbol is described by NAME, SYM, PSEC,
705 and PVALUE. We set SYM_HASH to the hash table entry. We set
706 OVERRIDE if the old symbol is overriding a new definition. We set
707 TYPE_CHANGE_OK if it is OK for the type to change. We set
708 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
709 change, we mean that we shouldn't warn if the type or size does
0f8a2703 710 change. */
45d6a902
AM
711
712bfd_boolean
268b6b39
AM
713_bfd_elf_merge_symbol (bfd *abfd,
714 struct bfd_link_info *info,
715 const char *name,
716 Elf_Internal_Sym *sym,
717 asection **psec,
718 bfd_vma *pvalue,
719 struct elf_link_hash_entry **sym_hash,
720 bfd_boolean *skip,
721 bfd_boolean *override,
722 bfd_boolean *type_change_ok,
0f8a2703 723 bfd_boolean *size_change_ok)
252b5132 724{
7479dfd4 725 asection *sec, *oldsec;
45d6a902
AM
726 struct elf_link_hash_entry *h;
727 struct elf_link_hash_entry *flip;
728 int bind;
729 bfd *oldbfd;
730 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
a5db907e 731 bfd_boolean newweak, oldweak, old_asneeded;
45d6a902
AM
732
733 *skip = FALSE;
734 *override = FALSE;
735
736 sec = *psec;
737 bind = ELF_ST_BIND (sym->st_info);
738
739 if (! bfd_is_und_section (sec))
740 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
741 else
742 h = ((struct elf_link_hash_entry *)
743 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
744 if (h == NULL)
745 return FALSE;
746 *sym_hash = h;
252b5132 747
45d6a902
AM
748 /* This code is for coping with dynamic objects, and is only useful
749 if we are doing an ELF link. */
750 if (info->hash->creator != abfd->xvec)
751 return TRUE;
252b5132 752
45d6a902
AM
753 /* For merging, we only care about real symbols. */
754
755 while (h->root.type == bfd_link_hash_indirect
756 || h->root.type == bfd_link_hash_warning)
757 h = (struct elf_link_hash_entry *) h->root.u.i.link;
758
759 /* If we just created the symbol, mark it as being an ELF symbol.
760 Other than that, there is nothing to do--there is no merge issue
761 with a newly defined symbol--so we just return. */
762
763 if (h->root.type == bfd_link_hash_new)
252b5132 764 {
f5385ebf 765 h->non_elf = 0;
45d6a902
AM
766 return TRUE;
767 }
252b5132 768
7479dfd4
L
769 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
770 existing symbol. */
252b5132 771
45d6a902
AM
772 switch (h->root.type)
773 {
774 default:
775 oldbfd = NULL;
7479dfd4 776 oldsec = NULL;
45d6a902 777 break;
252b5132 778
45d6a902
AM
779 case bfd_link_hash_undefined:
780 case bfd_link_hash_undefweak:
781 oldbfd = h->root.u.undef.abfd;
7479dfd4 782 oldsec = NULL;
45d6a902
AM
783 break;
784
785 case bfd_link_hash_defined:
786 case bfd_link_hash_defweak:
787 oldbfd = h->root.u.def.section->owner;
7479dfd4 788 oldsec = h->root.u.def.section;
45d6a902
AM
789 break;
790
791 case bfd_link_hash_common:
792 oldbfd = h->root.u.c.p->section->owner;
7479dfd4 793 oldsec = h->root.u.c.p->section;
45d6a902
AM
794 break;
795 }
796
797 /* In cases involving weak versioned symbols, we may wind up trying
798 to merge a symbol with itself. Catch that here, to avoid the
799 confusion that results if we try to override a symbol with
800 itself. The additional tests catch cases like
801 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
802 dynamic object, which we do want to handle here. */
803 if (abfd == oldbfd
804 && ((abfd->flags & DYNAMIC) == 0
f5385ebf 805 || !h->def_regular))
45d6a902
AM
806 return TRUE;
807
808 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
809 respectively, is from a dynamic object. */
810
811 if ((abfd->flags & DYNAMIC) != 0)
812 newdyn = TRUE;
813 else
814 newdyn = FALSE;
815
816 if (oldbfd != NULL)
817 olddyn = (oldbfd->flags & DYNAMIC) != 0;
818 else
819 {
820 asection *hsec;
821
822 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
823 indices used by MIPS ELF. */
824 switch (h->root.type)
252b5132 825 {
45d6a902
AM
826 default:
827 hsec = NULL;
828 break;
252b5132 829
45d6a902
AM
830 case bfd_link_hash_defined:
831 case bfd_link_hash_defweak:
832 hsec = h->root.u.def.section;
833 break;
252b5132 834
45d6a902
AM
835 case bfd_link_hash_common:
836 hsec = h->root.u.c.p->section;
837 break;
252b5132 838 }
252b5132 839
45d6a902
AM
840 if (hsec == NULL)
841 olddyn = FALSE;
842 else
843 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
844 }
252b5132 845
45d6a902
AM
846 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
847 respectively, appear to be a definition rather than reference. */
848
849 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
850 newdef = FALSE;
851 else
852 newdef = TRUE;
853
854 if (h->root.type == bfd_link_hash_undefined
855 || h->root.type == bfd_link_hash_undefweak
856 || h->root.type == bfd_link_hash_common)
857 olddef = FALSE;
858 else
859 olddef = TRUE;
860
a5db907e
AM
861 /* If the old definition came from an as-needed dynamic library which
862 wasn't found to be needed, treat the sym as undefined. */
863 old_asneeded = FALSE;
864 if (newdyn
865 && olddyn
866 && (elf_dyn_lib_class (oldbfd) & DYN_AS_NEEDED) != 0)
867 old_asneeded = TRUE;
868
7479dfd4
L
869 /* Check TLS symbol. */
870 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
871 && ELF_ST_TYPE (sym->st_info) != h->type)
872 {
873 bfd *ntbfd, *tbfd;
874 bfd_boolean ntdef, tdef;
875 asection *ntsec, *tsec;
876
877 if (h->type == STT_TLS)
878 {
879 ntbfd = abfd;
880 ntsec = sec;
881 ntdef = newdef;
882 tbfd = oldbfd;
883 tsec = oldsec;
884 tdef = olddef;
885 }
886 else
887 {
888 ntbfd = oldbfd;
889 ntsec = oldsec;
890 ntdef = olddef;
891 tbfd = abfd;
892 tsec = sec;
893 tdef = newdef;
894 }
895
896 if (tdef && ntdef)
897 (*_bfd_error_handler)
898 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
899 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
900 else if (!tdef && !ntdef)
901 (*_bfd_error_handler)
902 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
903 tbfd, ntbfd, h->root.root.string);
904 else if (tdef)
905 (*_bfd_error_handler)
906 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
907 tbfd, tsec, ntbfd, h->root.root.string);
908 else
909 (*_bfd_error_handler)
910 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
911 tbfd, ntbfd, ntsec, h->root.root.string);
912
913 bfd_set_error (bfd_error_bad_value);
914 return FALSE;
915 }
916
4cc11e76 917 /* We need to remember if a symbol has a definition in a dynamic
45d6a902
AM
918 object or is weak in all dynamic objects. Internal and hidden
919 visibility will make it unavailable to dynamic objects. */
f5385ebf 920 if (newdyn && !h->dynamic_def)
45d6a902
AM
921 {
922 if (!bfd_is_und_section (sec))
f5385ebf 923 h->dynamic_def = 1;
45d6a902 924 else
252b5132 925 {
45d6a902
AM
926 /* Check if this symbol is weak in all dynamic objects. If it
927 is the first time we see it in a dynamic object, we mark
928 if it is weak. Otherwise, we clear it. */
f5385ebf 929 if (!h->ref_dynamic)
79349b09 930 {
45d6a902 931 if (bind == STB_WEAK)
f5385ebf 932 h->dynamic_weak = 1;
252b5132 933 }
45d6a902 934 else if (bind != STB_WEAK)
f5385ebf 935 h->dynamic_weak = 0;
252b5132 936 }
45d6a902 937 }
252b5132 938
45d6a902
AM
939 /* If the old symbol has non-default visibility, we ignore the new
940 definition from a dynamic object. */
941 if (newdyn
9c7a29a3 942 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
45d6a902
AM
943 && !bfd_is_und_section (sec))
944 {
945 *skip = TRUE;
946 /* Make sure this symbol is dynamic. */
f5385ebf 947 h->ref_dynamic = 1;
45d6a902
AM
948 /* A protected symbol has external availability. Make sure it is
949 recorded as dynamic.
950
951 FIXME: Should we check type and size for protected symbol? */
952 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
c152c796 953 return bfd_elf_link_record_dynamic_symbol (info, h);
45d6a902
AM
954 else
955 return TRUE;
956 }
957 else if (!newdyn
9c7a29a3 958 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
f5385ebf 959 && h->def_dynamic)
45d6a902
AM
960 {
961 /* If the new symbol with non-default visibility comes from a
962 relocatable file and the old definition comes from a dynamic
963 object, we remove the old definition. */
964 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
965 h = *sym_hash;
1de1a317 966
f6e332e6 967 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1de1a317
L
968 && bfd_is_und_section (sec))
969 {
970 /* If the new symbol is undefined and the old symbol was
971 also undefined before, we need to make sure
972 _bfd_generic_link_add_one_symbol doesn't mess
f6e332e6 973 up the linker hash table undefs list. Since the old
1de1a317
L
974 definition came from a dynamic object, it is still on the
975 undefs list. */
976 h->root.type = bfd_link_hash_undefined;
1de1a317
L
977 h->root.u.undef.abfd = abfd;
978 }
979 else
980 {
981 h->root.type = bfd_link_hash_new;
982 h->root.u.undef.abfd = NULL;
983 }
984
f5385ebf 985 if (h->def_dynamic)
252b5132 986 {
f5385ebf
AM
987 h->def_dynamic = 0;
988 h->ref_dynamic = 1;
989 h->dynamic_def = 1;
45d6a902
AM
990 }
991 /* FIXME: Should we check type and size for protected symbol? */
992 h->size = 0;
993 h->type = 0;
994 return TRUE;
995 }
14a793b2 996
79349b09
AM
997 /* Differentiate strong and weak symbols. */
998 newweak = bind == STB_WEAK;
999 oldweak = (h->root.type == bfd_link_hash_defweak
1000 || h->root.type == bfd_link_hash_undefweak);
14a793b2 1001
15b43f48
AM
1002 /* If a new weak symbol definition comes from a regular file and the
1003 old symbol comes from a dynamic library, we treat the new one as
1004 strong. Similarly, an old weak symbol definition from a regular
1005 file is treated as strong when the new symbol comes from a dynamic
1006 library. Further, an old weak symbol from a dynamic library is
1007 treated as strong if the new symbol is from a dynamic library.
1008 This reflects the way glibc's ld.so works.
1009
1010 Do this before setting *type_change_ok or *size_change_ok so that
1011 we warn properly when dynamic library symbols are overridden. */
1012
1013 if (newdef && !newdyn && olddyn)
0f8a2703 1014 newweak = FALSE;
15b43f48 1015 if (olddef && newdyn)
0f8a2703
AM
1016 oldweak = FALSE;
1017
79349b09
AM
1018 /* It's OK to change the type if either the existing symbol or the
1019 new symbol is weak. A type change is also OK if the old symbol
1020 is undefined and the new symbol is defined. */
252b5132 1021
79349b09
AM
1022 if (oldweak
1023 || newweak
1024 || (newdef
1025 && h->root.type == bfd_link_hash_undefined))
1026 *type_change_ok = TRUE;
1027
1028 /* It's OK to change the size if either the existing symbol or the
1029 new symbol is weak, or if the old symbol is undefined. */
1030
1031 if (*type_change_ok
1032 || h->root.type == bfd_link_hash_undefined)
1033 *size_change_ok = TRUE;
45d6a902 1034
45d6a902
AM
1035 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1036 symbol, respectively, appears to be a common symbol in a dynamic
1037 object. If a symbol appears in an uninitialized section, and is
1038 not weak, and is not a function, then it may be a common symbol
1039 which was resolved when the dynamic object was created. We want
1040 to treat such symbols specially, because they raise special
1041 considerations when setting the symbol size: if the symbol
1042 appears as a common symbol in a regular object, and the size in
1043 the regular object is larger, we must make sure that we use the
1044 larger size. This problematic case can always be avoided in C,
1045 but it must be handled correctly when using Fortran shared
1046 libraries.
1047
1048 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1049 likewise for OLDDYNCOMMON and OLDDEF.
1050
1051 Note that this test is just a heuristic, and that it is quite
1052 possible to have an uninitialized symbol in a shared object which
1053 is really a definition, rather than a common symbol. This could
1054 lead to some minor confusion when the symbol really is a common
1055 symbol in some regular object. However, I think it will be
1056 harmless. */
1057
1058 if (newdyn
1059 && newdef
79349b09 1060 && !newweak
45d6a902
AM
1061 && (sec->flags & SEC_ALLOC) != 0
1062 && (sec->flags & SEC_LOAD) == 0
1063 && sym->st_size > 0
45d6a902
AM
1064 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
1065 newdyncommon = TRUE;
1066 else
1067 newdyncommon = FALSE;
1068
1069 if (olddyn
1070 && olddef
a5db907e 1071 && !old_asneeded
45d6a902 1072 && h->root.type == bfd_link_hash_defined
f5385ebf 1073 && h->def_dynamic
45d6a902
AM
1074 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1075 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1076 && h->size > 0
1077 && h->type != STT_FUNC)
1078 olddyncommon = TRUE;
1079 else
1080 olddyncommon = FALSE;
1081
45d6a902
AM
1082 /* If both the old and the new symbols look like common symbols in a
1083 dynamic object, set the size of the symbol to the larger of the
1084 two. */
1085
1086 if (olddyncommon
1087 && newdyncommon
1088 && sym->st_size != h->size)
1089 {
1090 /* Since we think we have two common symbols, issue a multiple
1091 common warning if desired. Note that we only warn if the
1092 size is different. If the size is the same, we simply let
1093 the old symbol override the new one as normally happens with
1094 symbols defined in dynamic objects. */
1095
1096 if (! ((*info->callbacks->multiple_common)
1097 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1098 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1099 return FALSE;
252b5132 1100
45d6a902
AM
1101 if (sym->st_size > h->size)
1102 h->size = sym->st_size;
252b5132 1103
45d6a902 1104 *size_change_ok = TRUE;
252b5132
RH
1105 }
1106
45d6a902
AM
1107 /* If we are looking at a dynamic object, and we have found a
1108 definition, we need to see if the symbol was already defined by
1109 some other object. If so, we want to use the existing
1110 definition, and we do not want to report a multiple symbol
1111 definition error; we do this by clobbering *PSEC to be
1112 bfd_und_section_ptr.
1113
1114 We treat a common symbol as a definition if the symbol in the
1115 shared library is a function, since common symbols always
1116 represent variables; this can cause confusion in principle, but
1117 any such confusion would seem to indicate an erroneous program or
1118 shared library. We also permit a common symbol in a regular
79349b09 1119 object to override a weak symbol in a shared object. */
45d6a902
AM
1120
1121 if (newdyn
1122 && newdef
a5db907e 1123 && ((olddef && !old_asneeded)
45d6a902 1124 || (h->root.type == bfd_link_hash_common
79349b09 1125 && (newweak
0f8a2703 1126 || ELF_ST_TYPE (sym->st_info) == STT_FUNC))))
45d6a902
AM
1127 {
1128 *override = TRUE;
1129 newdef = FALSE;
1130 newdyncommon = FALSE;
252b5132 1131
45d6a902
AM
1132 *psec = sec = bfd_und_section_ptr;
1133 *size_change_ok = TRUE;
252b5132 1134
45d6a902
AM
1135 /* If we get here when the old symbol is a common symbol, then
1136 we are explicitly letting it override a weak symbol or
1137 function in a dynamic object, and we don't want to warn about
1138 a type change. If the old symbol is a defined symbol, a type
1139 change warning may still be appropriate. */
252b5132 1140
45d6a902
AM
1141 if (h->root.type == bfd_link_hash_common)
1142 *type_change_ok = TRUE;
1143 }
1144
1145 /* Handle the special case of an old common symbol merging with a
1146 new symbol which looks like a common symbol in a shared object.
1147 We change *PSEC and *PVALUE to make the new symbol look like a
1148 common symbol, and let _bfd_generic_link_add_one_symbol will do
1149 the right thing. */
1150
1151 if (newdyncommon
1152 && h->root.type == bfd_link_hash_common)
1153 {
1154 *override = TRUE;
1155 newdef = FALSE;
1156 newdyncommon = FALSE;
1157 *pvalue = sym->st_size;
1158 *psec = sec = bfd_com_section_ptr;
1159 *size_change_ok = TRUE;
1160 }
1161
1162 /* If the old symbol is from a dynamic object, and the new symbol is
1163 a definition which is not from a dynamic object, then the new
1164 symbol overrides the old symbol. Symbols from regular files
1165 always take precedence over symbols from dynamic objects, even if
1166 they are defined after the dynamic object in the link.
1167
1168 As above, we again permit a common symbol in a regular object to
1169 override a definition in a shared object if the shared object
0f8a2703 1170 symbol is a function or is weak. */
45d6a902
AM
1171
1172 flip = NULL;
a5db907e 1173 if ((!newdyn || old_asneeded)
45d6a902
AM
1174 && (newdef
1175 || (bfd_is_com_section (sec)
79349b09
AM
1176 && (oldweak
1177 || h->type == STT_FUNC)))
45d6a902
AM
1178 && olddyn
1179 && olddef
f5385ebf 1180 && h->def_dynamic)
45d6a902
AM
1181 {
1182 /* Change the hash table entry to undefined, and let
1183 _bfd_generic_link_add_one_symbol do the right thing with the
1184 new definition. */
1185
1186 h->root.type = bfd_link_hash_undefined;
1187 h->root.u.undef.abfd = h->root.u.def.section->owner;
1188 *size_change_ok = TRUE;
1189
1190 olddef = FALSE;
1191 olddyncommon = FALSE;
1192
1193 /* We again permit a type change when a common symbol may be
1194 overriding a function. */
1195
1196 if (bfd_is_com_section (sec))
1197 *type_change_ok = TRUE;
1198
1199 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1200 flip = *sym_hash;
1201 else
1202 /* This union may have been set to be non-NULL when this symbol
1203 was seen in a dynamic object. We must force the union to be
1204 NULL, so that it is correct for a regular symbol. */
1205 h->verinfo.vertree = NULL;
1206 }
1207
1208 /* Handle the special case of a new common symbol merging with an
1209 old symbol that looks like it might be a common symbol defined in
1210 a shared object. Note that we have already handled the case in
1211 which a new common symbol should simply override the definition
1212 in the shared library. */
1213
1214 if (! newdyn
1215 && bfd_is_com_section (sec)
1216 && olddyncommon)
1217 {
1218 /* It would be best if we could set the hash table entry to a
1219 common symbol, but we don't know what to use for the section
1220 or the alignment. */
1221 if (! ((*info->callbacks->multiple_common)
1222 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1223 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1224 return FALSE;
1225
4cc11e76 1226 /* If the presumed common symbol in the dynamic object is
45d6a902
AM
1227 larger, pretend that the new symbol has its size. */
1228
1229 if (h->size > *pvalue)
1230 *pvalue = h->size;
1231
1232 /* FIXME: We no longer know the alignment required by the symbol
1233 in the dynamic object, so we just wind up using the one from
1234 the regular object. */
1235
1236 olddef = FALSE;
1237 olddyncommon = FALSE;
1238
1239 h->root.type = bfd_link_hash_undefined;
1240 h->root.u.undef.abfd = h->root.u.def.section->owner;
1241
1242 *size_change_ok = TRUE;
1243 *type_change_ok = TRUE;
1244
1245 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1246 flip = *sym_hash;
1247 else
1248 h->verinfo.vertree = NULL;
1249 }
1250
1251 if (flip != NULL)
1252 {
1253 /* Handle the case where we had a versioned symbol in a dynamic
1254 library and now find a definition in a normal object. In this
1255 case, we make the versioned symbol point to the normal one. */
9c5bfbb7 1256 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
45d6a902
AM
1257 flip->root.type = h->root.type;
1258 h->root.type = bfd_link_hash_indirect;
1259 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1260 (*bed->elf_backend_copy_indirect_symbol) (bed, flip, h);
1261 flip->root.u.undef.abfd = h->root.u.undef.abfd;
f5385ebf 1262 if (h->def_dynamic)
45d6a902 1263 {
f5385ebf
AM
1264 h->def_dynamic = 0;
1265 flip->ref_dynamic = 1;
45d6a902
AM
1266 }
1267 }
1268
45d6a902
AM
1269 return TRUE;
1270}
1271
1272/* This function is called to create an indirect symbol from the
1273 default for the symbol with the default version if needed. The
1274 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
0f8a2703 1275 set DYNSYM if the new indirect symbol is dynamic. */
45d6a902
AM
1276
1277bfd_boolean
268b6b39
AM
1278_bfd_elf_add_default_symbol (bfd *abfd,
1279 struct bfd_link_info *info,
1280 struct elf_link_hash_entry *h,
1281 const char *name,
1282 Elf_Internal_Sym *sym,
1283 asection **psec,
1284 bfd_vma *value,
1285 bfd_boolean *dynsym,
0f8a2703 1286 bfd_boolean override)
45d6a902
AM
1287{
1288 bfd_boolean type_change_ok;
1289 bfd_boolean size_change_ok;
1290 bfd_boolean skip;
1291 char *shortname;
1292 struct elf_link_hash_entry *hi;
1293 struct bfd_link_hash_entry *bh;
9c5bfbb7 1294 const struct elf_backend_data *bed;
45d6a902
AM
1295 bfd_boolean collect;
1296 bfd_boolean dynamic;
1297 char *p;
1298 size_t len, shortlen;
1299 asection *sec;
1300
1301 /* If this symbol has a version, and it is the default version, we
1302 create an indirect symbol from the default name to the fully
1303 decorated name. This will cause external references which do not
1304 specify a version to be bound to this version of the symbol. */
1305 p = strchr (name, ELF_VER_CHR);
1306 if (p == NULL || p[1] != ELF_VER_CHR)
1307 return TRUE;
1308
1309 if (override)
1310 {
4cc11e76 1311 /* We are overridden by an old definition. We need to check if we
45d6a902
AM
1312 need to create the indirect symbol from the default name. */
1313 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1314 FALSE, FALSE);
1315 BFD_ASSERT (hi != NULL);
1316 if (hi == h)
1317 return TRUE;
1318 while (hi->root.type == bfd_link_hash_indirect
1319 || hi->root.type == bfd_link_hash_warning)
1320 {
1321 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1322 if (hi == h)
1323 return TRUE;
1324 }
1325 }
1326
1327 bed = get_elf_backend_data (abfd);
1328 collect = bed->collect;
1329 dynamic = (abfd->flags & DYNAMIC) != 0;
1330
1331 shortlen = p - name;
1332 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1333 if (shortname == NULL)
1334 return FALSE;
1335 memcpy (shortname, name, shortlen);
1336 shortname[shortlen] = '\0';
1337
1338 /* We are going to create a new symbol. Merge it with any existing
1339 symbol with this name. For the purposes of the merge, act as
1340 though we were defining the symbol we just defined, although we
1341 actually going to define an indirect symbol. */
1342 type_change_ok = FALSE;
1343 size_change_ok = FALSE;
1344 sec = *psec;
1345 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1346 &hi, &skip, &override, &type_change_ok,
0f8a2703 1347 &size_change_ok))
45d6a902
AM
1348 return FALSE;
1349
1350 if (skip)
1351 goto nondefault;
1352
1353 if (! override)
1354 {
1355 bh = &hi->root;
1356 if (! (_bfd_generic_link_add_one_symbol
1357 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
268b6b39 1358 0, name, FALSE, collect, &bh)))
45d6a902
AM
1359 return FALSE;
1360 hi = (struct elf_link_hash_entry *) bh;
1361 }
1362 else
1363 {
1364 /* In this case the symbol named SHORTNAME is overriding the
1365 indirect symbol we want to add. We were planning on making
1366 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1367 is the name without a version. NAME is the fully versioned
1368 name, and it is the default version.
1369
1370 Overriding means that we already saw a definition for the
1371 symbol SHORTNAME in a regular object, and it is overriding
1372 the symbol defined in the dynamic object.
1373
1374 When this happens, we actually want to change NAME, the
1375 symbol we just added, to refer to SHORTNAME. This will cause
1376 references to NAME in the shared object to become references
1377 to SHORTNAME in the regular object. This is what we expect
1378 when we override a function in a shared object: that the
1379 references in the shared object will be mapped to the
1380 definition in the regular object. */
1381
1382 while (hi->root.type == bfd_link_hash_indirect
1383 || hi->root.type == bfd_link_hash_warning)
1384 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1385
1386 h->root.type = bfd_link_hash_indirect;
1387 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
f5385ebf 1388 if (h->def_dynamic)
45d6a902 1389 {
f5385ebf
AM
1390 h->def_dynamic = 0;
1391 hi->ref_dynamic = 1;
1392 if (hi->ref_regular
1393 || hi->def_regular)
45d6a902 1394 {
c152c796 1395 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
45d6a902
AM
1396 return FALSE;
1397 }
1398 }
1399
1400 /* Now set HI to H, so that the following code will set the
1401 other fields correctly. */
1402 hi = h;
1403 }
1404
1405 /* If there is a duplicate definition somewhere, then HI may not
1406 point to an indirect symbol. We will have reported an error to
1407 the user in that case. */
1408
1409 if (hi->root.type == bfd_link_hash_indirect)
1410 {
1411 struct elf_link_hash_entry *ht;
1412
45d6a902
AM
1413 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1414 (*bed->elf_backend_copy_indirect_symbol) (bed, ht, hi);
1415
1416 /* See if the new flags lead us to realize that the symbol must
1417 be dynamic. */
1418 if (! *dynsym)
1419 {
1420 if (! dynamic)
1421 {
1422 if (info->shared
f5385ebf 1423 || hi->ref_dynamic)
45d6a902
AM
1424 *dynsym = TRUE;
1425 }
1426 else
1427 {
f5385ebf 1428 if (hi->ref_regular)
45d6a902
AM
1429 *dynsym = TRUE;
1430 }
1431 }
1432 }
1433
1434 /* We also need to define an indirection from the nondefault version
1435 of the symbol. */
1436
1437nondefault:
1438 len = strlen (name);
1439 shortname = bfd_hash_allocate (&info->hash->table, len);
1440 if (shortname == NULL)
1441 return FALSE;
1442 memcpy (shortname, name, shortlen);
1443 memcpy (shortname + shortlen, p + 1, len - shortlen);
1444
1445 /* Once again, merge with any existing symbol. */
1446 type_change_ok = FALSE;
1447 size_change_ok = FALSE;
1448 sec = *psec;
1449 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1450 &hi, &skip, &override, &type_change_ok,
0f8a2703 1451 &size_change_ok))
45d6a902
AM
1452 return FALSE;
1453
1454 if (skip)
1455 return TRUE;
1456
1457 if (override)
1458 {
1459 /* Here SHORTNAME is a versioned name, so we don't expect to see
1460 the type of override we do in the case above unless it is
4cc11e76 1461 overridden by a versioned definition. */
45d6a902
AM
1462 if (hi->root.type != bfd_link_hash_defined
1463 && hi->root.type != bfd_link_hash_defweak)
1464 (*_bfd_error_handler)
d003868e
AM
1465 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1466 abfd, shortname);
45d6a902
AM
1467 }
1468 else
1469 {
1470 bh = &hi->root;
1471 if (! (_bfd_generic_link_add_one_symbol
1472 (info, abfd, shortname, BSF_INDIRECT,
268b6b39 1473 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
45d6a902
AM
1474 return FALSE;
1475 hi = (struct elf_link_hash_entry *) bh;
1476
1477 /* If there is a duplicate definition somewhere, then HI may not
1478 point to an indirect symbol. We will have reported an error
1479 to the user in that case. */
1480
1481 if (hi->root.type == bfd_link_hash_indirect)
1482 {
45d6a902
AM
1483 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
1484
1485 /* See if the new flags lead us to realize that the symbol
1486 must be dynamic. */
1487 if (! *dynsym)
1488 {
1489 if (! dynamic)
1490 {
1491 if (info->shared
f5385ebf 1492 || hi->ref_dynamic)
45d6a902
AM
1493 *dynsym = TRUE;
1494 }
1495 else
1496 {
f5385ebf 1497 if (hi->ref_regular)
45d6a902
AM
1498 *dynsym = TRUE;
1499 }
1500 }
1501 }
1502 }
1503
1504 return TRUE;
1505}
1506\f
1507/* This routine is used to export all defined symbols into the dynamic
1508 symbol table. It is called via elf_link_hash_traverse. */
1509
1510bfd_boolean
268b6b39 1511_bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
45d6a902 1512{
268b6b39 1513 struct elf_info_failed *eif = data;
45d6a902
AM
1514
1515 /* Ignore indirect symbols. These are added by the versioning code. */
1516 if (h->root.type == bfd_link_hash_indirect)
1517 return TRUE;
1518
1519 if (h->root.type == bfd_link_hash_warning)
1520 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1521
1522 if (h->dynindx == -1
f5385ebf
AM
1523 && (h->def_regular
1524 || h->ref_regular))
45d6a902
AM
1525 {
1526 struct bfd_elf_version_tree *t;
1527 struct bfd_elf_version_expr *d;
1528
1529 for (t = eif->verdefs; t != NULL; t = t->next)
1530 {
108ba305 1531 if (t->globals.list != NULL)
45d6a902 1532 {
108ba305
JJ
1533 d = (*t->match) (&t->globals, NULL, h->root.root.string);
1534 if (d != NULL)
1535 goto doit;
45d6a902
AM
1536 }
1537
108ba305 1538 if (t->locals.list != NULL)
45d6a902 1539 {
108ba305
JJ
1540 d = (*t->match) (&t->locals, NULL, h->root.root.string);
1541 if (d != NULL)
1542 return TRUE;
45d6a902
AM
1543 }
1544 }
1545
1546 if (!eif->verdefs)
1547 {
1548 doit:
c152c796 1549 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
45d6a902
AM
1550 {
1551 eif->failed = TRUE;
1552 return FALSE;
1553 }
1554 }
1555 }
1556
1557 return TRUE;
1558}
1559\f
1560/* Look through the symbols which are defined in other shared
1561 libraries and referenced here. Update the list of version
1562 dependencies. This will be put into the .gnu.version_r section.
1563 This function is called via elf_link_hash_traverse. */
1564
1565bfd_boolean
268b6b39
AM
1566_bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1567 void *data)
45d6a902 1568{
268b6b39 1569 struct elf_find_verdep_info *rinfo = data;
45d6a902
AM
1570 Elf_Internal_Verneed *t;
1571 Elf_Internal_Vernaux *a;
1572 bfd_size_type amt;
1573
1574 if (h->root.type == bfd_link_hash_warning)
1575 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1576
1577 /* We only care about symbols defined in shared objects with version
1578 information. */
f5385ebf
AM
1579 if (!h->def_dynamic
1580 || h->def_regular
45d6a902
AM
1581 || h->dynindx == -1
1582 || h->verinfo.verdef == NULL)
1583 return TRUE;
1584
1585 /* See if we already know about this version. */
1586 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
1587 {
1588 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1589 continue;
1590
1591 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1592 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1593 return TRUE;
1594
1595 break;
1596 }
1597
1598 /* This is a new version. Add it to tree we are building. */
1599
1600 if (t == NULL)
1601 {
1602 amt = sizeof *t;
268b6b39 1603 t = bfd_zalloc (rinfo->output_bfd, amt);
45d6a902
AM
1604 if (t == NULL)
1605 {
1606 rinfo->failed = TRUE;
1607 return FALSE;
1608 }
1609
1610 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1611 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
1612 elf_tdata (rinfo->output_bfd)->verref = t;
1613 }
1614
1615 amt = sizeof *a;
268b6b39 1616 a = bfd_zalloc (rinfo->output_bfd, amt);
45d6a902
AM
1617
1618 /* Note that we are copying a string pointer here, and testing it
1619 above. If bfd_elf_string_from_elf_section is ever changed to
1620 discard the string data when low in memory, this will have to be
1621 fixed. */
1622 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1623
1624 a->vna_flags = h->verinfo.verdef->vd_flags;
1625 a->vna_nextptr = t->vn_auxptr;
1626
1627 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1628 ++rinfo->vers;
1629
1630 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1631
1632 t->vn_auxptr = a;
1633
1634 return TRUE;
1635}
1636
1637/* Figure out appropriate versions for all the symbols. We may not
1638 have the version number script until we have read all of the input
1639 files, so until that point we don't know which symbols should be
1640 local. This function is called via elf_link_hash_traverse. */
1641
1642bfd_boolean
268b6b39 1643_bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
45d6a902
AM
1644{
1645 struct elf_assign_sym_version_info *sinfo;
1646 struct bfd_link_info *info;
9c5bfbb7 1647 const struct elf_backend_data *bed;
45d6a902
AM
1648 struct elf_info_failed eif;
1649 char *p;
1650 bfd_size_type amt;
1651
268b6b39 1652 sinfo = data;
45d6a902
AM
1653 info = sinfo->info;
1654
1655 if (h->root.type == bfd_link_hash_warning)
1656 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1657
1658 /* Fix the symbol flags. */
1659 eif.failed = FALSE;
1660 eif.info = info;
1661 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1662 {
1663 if (eif.failed)
1664 sinfo->failed = TRUE;
1665 return FALSE;
1666 }
1667
1668 /* We only need version numbers for symbols defined in regular
1669 objects. */
f5385ebf 1670 if (!h->def_regular)
45d6a902
AM
1671 return TRUE;
1672
1673 bed = get_elf_backend_data (sinfo->output_bfd);
1674 p = strchr (h->root.root.string, ELF_VER_CHR);
1675 if (p != NULL && h->verinfo.vertree == NULL)
1676 {
1677 struct bfd_elf_version_tree *t;
1678 bfd_boolean hidden;
1679
1680 hidden = TRUE;
1681
1682 /* There are two consecutive ELF_VER_CHR characters if this is
1683 not a hidden symbol. */
1684 ++p;
1685 if (*p == ELF_VER_CHR)
1686 {
1687 hidden = FALSE;
1688 ++p;
1689 }
1690
1691 /* If there is no version string, we can just return out. */
1692 if (*p == '\0')
1693 {
1694 if (hidden)
f5385ebf 1695 h->hidden = 1;
45d6a902
AM
1696 return TRUE;
1697 }
1698
1699 /* Look for the version. If we find it, it is no longer weak. */
1700 for (t = sinfo->verdefs; t != NULL; t = t->next)
1701 {
1702 if (strcmp (t->name, p) == 0)
1703 {
1704 size_t len;
1705 char *alc;
1706 struct bfd_elf_version_expr *d;
1707
1708 len = p - h->root.root.string;
268b6b39 1709 alc = bfd_malloc (len);
45d6a902
AM
1710 if (alc == NULL)
1711 return FALSE;
1712 memcpy (alc, h->root.root.string, len - 1);
1713 alc[len - 1] = '\0';
1714 if (alc[len - 2] == ELF_VER_CHR)
1715 alc[len - 2] = '\0';
1716
1717 h->verinfo.vertree = t;
1718 t->used = TRUE;
1719 d = NULL;
1720
108ba305
JJ
1721 if (t->globals.list != NULL)
1722 d = (*t->match) (&t->globals, NULL, alc);
45d6a902
AM
1723
1724 /* See if there is anything to force this symbol to
1725 local scope. */
108ba305 1726 if (d == NULL && t->locals.list != NULL)
45d6a902 1727 {
108ba305
JJ
1728 d = (*t->match) (&t->locals, NULL, alc);
1729 if (d != NULL
1730 && h->dynindx != -1
1731 && info->shared
1732 && ! info->export_dynamic)
1733 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
45d6a902
AM
1734 }
1735
1736 free (alc);
1737 break;
1738 }
1739 }
1740
1741 /* If we are building an application, we need to create a
1742 version node for this version. */
36af4a4e 1743 if (t == NULL && info->executable)
45d6a902
AM
1744 {
1745 struct bfd_elf_version_tree **pp;
1746 int version_index;
1747
1748 /* If we aren't going to export this symbol, we don't need
1749 to worry about it. */
1750 if (h->dynindx == -1)
1751 return TRUE;
1752
1753 amt = sizeof *t;
108ba305 1754 t = bfd_zalloc (sinfo->output_bfd, amt);
45d6a902
AM
1755 if (t == NULL)
1756 {
1757 sinfo->failed = TRUE;
1758 return FALSE;
1759 }
1760
45d6a902 1761 t->name = p;
45d6a902
AM
1762 t->name_indx = (unsigned int) -1;
1763 t->used = TRUE;
1764
1765 version_index = 1;
1766 /* Don't count anonymous version tag. */
1767 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
1768 version_index = 0;
1769 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
1770 ++version_index;
1771 t->vernum = version_index;
1772
1773 *pp = t;
1774
1775 h->verinfo.vertree = t;
1776 }
1777 else if (t == NULL)
1778 {
1779 /* We could not find the version for a symbol when
1780 generating a shared archive. Return an error. */
1781 (*_bfd_error_handler)
d003868e
AM
1782 (_("%B: undefined versioned symbol name %s"),
1783 sinfo->output_bfd, h->root.root.string);
45d6a902
AM
1784 bfd_set_error (bfd_error_bad_value);
1785 sinfo->failed = TRUE;
1786 return FALSE;
1787 }
1788
1789 if (hidden)
f5385ebf 1790 h->hidden = 1;
45d6a902
AM
1791 }
1792
1793 /* If we don't have a version for this symbol, see if we can find
1794 something. */
1795 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
1796 {
1797 struct bfd_elf_version_tree *t;
1798 struct bfd_elf_version_tree *local_ver;
1799 struct bfd_elf_version_expr *d;
1800
1801 /* See if can find what version this symbol is in. If the
1802 symbol is supposed to be local, then don't actually register
1803 it. */
1804 local_ver = NULL;
1805 for (t = sinfo->verdefs; t != NULL; t = t->next)
1806 {
108ba305 1807 if (t->globals.list != NULL)
45d6a902
AM
1808 {
1809 bfd_boolean matched;
1810
1811 matched = FALSE;
108ba305
JJ
1812 d = NULL;
1813 while ((d = (*t->match) (&t->globals, d,
1814 h->root.root.string)) != NULL)
1815 if (d->symver)
1816 matched = TRUE;
1817 else
1818 {
1819 /* There is a version without definition. Make
1820 the symbol the default definition for this
1821 version. */
1822 h->verinfo.vertree = t;
1823 local_ver = NULL;
1824 d->script = 1;
1825 break;
1826 }
45d6a902
AM
1827 if (d != NULL)
1828 break;
1829 else if (matched)
1830 /* There is no undefined version for this symbol. Hide the
1831 default one. */
1832 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1833 }
1834
108ba305 1835 if (t->locals.list != NULL)
45d6a902 1836 {
108ba305
JJ
1837 d = NULL;
1838 while ((d = (*t->match) (&t->locals, d,
1839 h->root.root.string)) != NULL)
45d6a902 1840 {
108ba305 1841 local_ver = t;
45d6a902 1842 /* If the match is "*", keep looking for a more
108ba305
JJ
1843 explicit, perhaps even global, match.
1844 XXX: Shouldn't this be !d->wildcard instead? */
1845 if (d->pattern[0] != '*' || d->pattern[1] != '\0')
1846 break;
45d6a902
AM
1847 }
1848
1849 if (d != NULL)
1850 break;
1851 }
1852 }
1853
1854 if (local_ver != NULL)
1855 {
1856 h->verinfo.vertree = local_ver;
1857 if (h->dynindx != -1
1858 && info->shared
1859 && ! info->export_dynamic)
1860 {
1861 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1862 }
1863 }
1864 }
1865
1866 return TRUE;
1867}
1868\f
45d6a902
AM
1869/* Read and swap the relocs from the section indicated by SHDR. This
1870 may be either a REL or a RELA section. The relocations are
1871 translated into RELA relocations and stored in INTERNAL_RELOCS,
1872 which should have already been allocated to contain enough space.
1873 The EXTERNAL_RELOCS are a buffer where the external form of the
1874 relocations should be stored.
1875
1876 Returns FALSE if something goes wrong. */
1877
1878static bfd_boolean
268b6b39 1879elf_link_read_relocs_from_section (bfd *abfd,
243ef1e0 1880 asection *sec,
268b6b39
AM
1881 Elf_Internal_Shdr *shdr,
1882 void *external_relocs,
1883 Elf_Internal_Rela *internal_relocs)
45d6a902 1884{
9c5bfbb7 1885 const struct elf_backend_data *bed;
268b6b39 1886 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
45d6a902
AM
1887 const bfd_byte *erela;
1888 const bfd_byte *erelaend;
1889 Elf_Internal_Rela *irela;
243ef1e0
L
1890 Elf_Internal_Shdr *symtab_hdr;
1891 size_t nsyms;
45d6a902 1892
45d6a902
AM
1893 /* Position ourselves at the start of the section. */
1894 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
1895 return FALSE;
1896
1897 /* Read the relocations. */
1898 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
1899 return FALSE;
1900
243ef1e0
L
1901 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1902 nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
1903
45d6a902
AM
1904 bed = get_elf_backend_data (abfd);
1905
1906 /* Convert the external relocations to the internal format. */
1907 if (shdr->sh_entsize == bed->s->sizeof_rel)
1908 swap_in = bed->s->swap_reloc_in;
1909 else if (shdr->sh_entsize == bed->s->sizeof_rela)
1910 swap_in = bed->s->swap_reloca_in;
1911 else
1912 {
1913 bfd_set_error (bfd_error_wrong_format);
1914 return FALSE;
1915 }
1916
1917 erela = external_relocs;
51992aec 1918 erelaend = erela + shdr->sh_size;
45d6a902
AM
1919 irela = internal_relocs;
1920 while (erela < erelaend)
1921 {
243ef1e0
L
1922 bfd_vma r_symndx;
1923
45d6a902 1924 (*swap_in) (abfd, erela, irela);
243ef1e0
L
1925 r_symndx = ELF32_R_SYM (irela->r_info);
1926 if (bed->s->arch_size == 64)
1927 r_symndx >>= 24;
1928 if ((size_t) r_symndx >= nsyms)
1929 {
1930 (*_bfd_error_handler)
d003868e
AM
1931 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
1932 " for offset 0x%lx in section `%A'"),
1933 abfd, sec,
1934 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
243ef1e0
L
1935 bfd_set_error (bfd_error_bad_value);
1936 return FALSE;
1937 }
45d6a902
AM
1938 irela += bed->s->int_rels_per_ext_rel;
1939 erela += shdr->sh_entsize;
1940 }
1941
1942 return TRUE;
1943}
1944
1945/* Read and swap the relocs for a section O. They may have been
1946 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
1947 not NULL, they are used as buffers to read into. They are known to
1948 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
1949 the return value is allocated using either malloc or bfd_alloc,
1950 according to the KEEP_MEMORY argument. If O has two relocation
1951 sections (both REL and RELA relocations), then the REL_HDR
1952 relocations will appear first in INTERNAL_RELOCS, followed by the
1953 REL_HDR2 relocations. */
1954
1955Elf_Internal_Rela *
268b6b39
AM
1956_bfd_elf_link_read_relocs (bfd *abfd,
1957 asection *o,
1958 void *external_relocs,
1959 Elf_Internal_Rela *internal_relocs,
1960 bfd_boolean keep_memory)
45d6a902
AM
1961{
1962 Elf_Internal_Shdr *rel_hdr;
268b6b39 1963 void *alloc1 = NULL;
45d6a902 1964 Elf_Internal_Rela *alloc2 = NULL;
9c5bfbb7 1965 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
45d6a902
AM
1966
1967 if (elf_section_data (o)->relocs != NULL)
1968 return elf_section_data (o)->relocs;
1969
1970 if (o->reloc_count == 0)
1971 return NULL;
1972
1973 rel_hdr = &elf_section_data (o)->rel_hdr;
1974
1975 if (internal_relocs == NULL)
1976 {
1977 bfd_size_type size;
1978
1979 size = o->reloc_count;
1980 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
1981 if (keep_memory)
268b6b39 1982 internal_relocs = bfd_alloc (abfd, size);
45d6a902 1983 else
268b6b39 1984 internal_relocs = alloc2 = bfd_malloc (size);
45d6a902
AM
1985 if (internal_relocs == NULL)
1986 goto error_return;
1987 }
1988
1989 if (external_relocs == NULL)
1990 {
1991 bfd_size_type size = rel_hdr->sh_size;
1992
1993 if (elf_section_data (o)->rel_hdr2)
1994 size += elf_section_data (o)->rel_hdr2->sh_size;
268b6b39 1995 alloc1 = bfd_malloc (size);
45d6a902
AM
1996 if (alloc1 == NULL)
1997 goto error_return;
1998 external_relocs = alloc1;
1999 }
2000
243ef1e0 2001 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
45d6a902
AM
2002 external_relocs,
2003 internal_relocs))
2004 goto error_return;
51992aec
AM
2005 if (elf_section_data (o)->rel_hdr2
2006 && (!elf_link_read_relocs_from_section
2007 (abfd, o,
2008 elf_section_data (o)->rel_hdr2,
2009 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2010 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2011 * bed->s->int_rels_per_ext_rel))))
45d6a902
AM
2012 goto error_return;
2013
2014 /* Cache the results for next time, if we can. */
2015 if (keep_memory)
2016 elf_section_data (o)->relocs = internal_relocs;
2017
2018 if (alloc1 != NULL)
2019 free (alloc1);
2020
2021 /* Don't free alloc2, since if it was allocated we are passing it
2022 back (under the name of internal_relocs). */
2023
2024 return internal_relocs;
2025
2026 error_return:
2027 if (alloc1 != NULL)
2028 free (alloc1);
2029 if (alloc2 != NULL)
2030 free (alloc2);
2031 return NULL;
2032}
2033
2034/* Compute the size of, and allocate space for, REL_HDR which is the
2035 section header for a section containing relocations for O. */
2036
2037bfd_boolean
268b6b39
AM
2038_bfd_elf_link_size_reloc_section (bfd *abfd,
2039 Elf_Internal_Shdr *rel_hdr,
2040 asection *o)
45d6a902
AM
2041{
2042 bfd_size_type reloc_count;
2043 bfd_size_type num_rel_hashes;
2044
2045 /* Figure out how many relocations there will be. */
2046 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2047 reloc_count = elf_section_data (o)->rel_count;
2048 else
2049 reloc_count = elf_section_data (o)->rel_count2;
2050
2051 num_rel_hashes = o->reloc_count;
2052 if (num_rel_hashes < reloc_count)
2053 num_rel_hashes = reloc_count;
2054
2055 /* That allows us to calculate the size of the section. */
2056 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2057
2058 /* The contents field must last into write_object_contents, so we
2059 allocate it with bfd_alloc rather than malloc. Also since we
2060 cannot be sure that the contents will actually be filled in,
2061 we zero the allocated space. */
268b6b39 2062 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
45d6a902
AM
2063 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2064 return FALSE;
2065
2066 /* We only allocate one set of hash entries, so we only do it the
2067 first time we are called. */
2068 if (elf_section_data (o)->rel_hashes == NULL
2069 && num_rel_hashes)
2070 {
2071 struct elf_link_hash_entry **p;
2072
268b6b39 2073 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
45d6a902
AM
2074 if (p == NULL)
2075 return FALSE;
2076
2077 elf_section_data (o)->rel_hashes = p;
2078 }
2079
2080 return TRUE;
2081}
2082
2083/* Copy the relocations indicated by the INTERNAL_RELOCS (which
2084 originated from the section given by INPUT_REL_HDR) to the
2085 OUTPUT_BFD. */
2086
2087bfd_boolean
268b6b39
AM
2088_bfd_elf_link_output_relocs (bfd *output_bfd,
2089 asection *input_section,
2090 Elf_Internal_Shdr *input_rel_hdr,
2091 Elf_Internal_Rela *internal_relocs)
45d6a902
AM
2092{
2093 Elf_Internal_Rela *irela;
2094 Elf_Internal_Rela *irelaend;
2095 bfd_byte *erel;
2096 Elf_Internal_Shdr *output_rel_hdr;
2097 asection *output_section;
2098 unsigned int *rel_countp = NULL;
9c5bfbb7 2099 const struct elf_backend_data *bed;
268b6b39 2100 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
45d6a902
AM
2101
2102 output_section = input_section->output_section;
2103 output_rel_hdr = NULL;
2104
2105 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2106 == input_rel_hdr->sh_entsize)
2107 {
2108 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2109 rel_countp = &elf_section_data (output_section)->rel_count;
2110 }
2111 else if (elf_section_data (output_section)->rel_hdr2
2112 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2113 == input_rel_hdr->sh_entsize))
2114 {
2115 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2116 rel_countp = &elf_section_data (output_section)->rel_count2;
2117 }
2118 else
2119 {
2120 (*_bfd_error_handler)
d003868e
AM
2121 (_("%B: relocation size mismatch in %B section %A"),
2122 output_bfd, input_section->owner, input_section);
45d6a902
AM
2123 bfd_set_error (bfd_error_wrong_object_format);
2124 return FALSE;
2125 }
2126
2127 bed = get_elf_backend_data (output_bfd);
2128 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2129 swap_out = bed->s->swap_reloc_out;
2130 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2131 swap_out = bed->s->swap_reloca_out;
2132 else
2133 abort ();
2134
2135 erel = output_rel_hdr->contents;
2136 erel += *rel_countp * input_rel_hdr->sh_entsize;
2137 irela = internal_relocs;
2138 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2139 * bed->s->int_rels_per_ext_rel);
2140 while (irela < irelaend)
2141 {
2142 (*swap_out) (output_bfd, irela, erel);
2143 irela += bed->s->int_rels_per_ext_rel;
2144 erel += input_rel_hdr->sh_entsize;
2145 }
2146
2147 /* Bump the counter, so that we know where to add the next set of
2148 relocations. */
2149 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2150
2151 return TRUE;
2152}
2153\f
2154/* Fix up the flags for a symbol. This handles various cases which
2155 can only be fixed after all the input files are seen. This is
2156 currently called by both adjust_dynamic_symbol and
2157 assign_sym_version, which is unnecessary but perhaps more robust in
2158 the face of future changes. */
2159
2160bfd_boolean
268b6b39
AM
2161_bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2162 struct elf_info_failed *eif)
45d6a902
AM
2163{
2164 /* If this symbol was mentioned in a non-ELF file, try to set
2165 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2166 permit a non-ELF file to correctly refer to a symbol defined in
2167 an ELF dynamic object. */
f5385ebf 2168 if (h->non_elf)
45d6a902
AM
2169 {
2170 while (h->root.type == bfd_link_hash_indirect)
2171 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2172
2173 if (h->root.type != bfd_link_hash_defined
2174 && h->root.type != bfd_link_hash_defweak)
f5385ebf
AM
2175 {
2176 h->ref_regular = 1;
2177 h->ref_regular_nonweak = 1;
2178 }
45d6a902
AM
2179 else
2180 {
2181 if (h->root.u.def.section->owner != NULL
2182 && (bfd_get_flavour (h->root.u.def.section->owner)
2183 == bfd_target_elf_flavour))
f5385ebf
AM
2184 {
2185 h->ref_regular = 1;
2186 h->ref_regular_nonweak = 1;
2187 }
45d6a902 2188 else
f5385ebf 2189 h->def_regular = 1;
45d6a902
AM
2190 }
2191
2192 if (h->dynindx == -1
f5385ebf
AM
2193 && (h->def_dynamic
2194 || h->ref_dynamic))
45d6a902 2195 {
c152c796 2196 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
45d6a902
AM
2197 {
2198 eif->failed = TRUE;
2199 return FALSE;
2200 }
2201 }
2202 }
2203 else
2204 {
f5385ebf 2205 /* Unfortunately, NON_ELF is only correct if the symbol
45d6a902
AM
2206 was first seen in a non-ELF file. Fortunately, if the symbol
2207 was first seen in an ELF file, we're probably OK unless the
2208 symbol was defined in a non-ELF file. Catch that case here.
2209 FIXME: We're still in trouble if the symbol was first seen in
2210 a dynamic object, and then later in a non-ELF regular object. */
2211 if ((h->root.type == bfd_link_hash_defined
2212 || h->root.type == bfd_link_hash_defweak)
f5385ebf 2213 && !h->def_regular
45d6a902
AM
2214 && (h->root.u.def.section->owner != NULL
2215 ? (bfd_get_flavour (h->root.u.def.section->owner)
2216 != bfd_target_elf_flavour)
2217 : (bfd_is_abs_section (h->root.u.def.section)
f5385ebf
AM
2218 && !h->def_dynamic)))
2219 h->def_regular = 1;
45d6a902
AM
2220 }
2221
2222 /* If this is a final link, and the symbol was defined as a common
2223 symbol in a regular object file, and there was no definition in
2224 any dynamic object, then the linker will have allocated space for
f5385ebf 2225 the symbol in a common section but the DEF_REGULAR
45d6a902
AM
2226 flag will not have been set. */
2227 if (h->root.type == bfd_link_hash_defined
f5385ebf
AM
2228 && !h->def_regular
2229 && h->ref_regular
2230 && !h->def_dynamic
45d6a902 2231 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
f5385ebf 2232 h->def_regular = 1;
45d6a902
AM
2233
2234 /* If -Bsymbolic was used (which means to bind references to global
2235 symbols to the definition within the shared object), and this
2236 symbol was defined in a regular object, then it actually doesn't
9c7a29a3
AM
2237 need a PLT entry. Likewise, if the symbol has non-default
2238 visibility. If the symbol has hidden or internal visibility, we
c1be741f 2239 will force it local. */
f5385ebf 2240 if (h->needs_plt
45d6a902 2241 && eif->info->shared
0eddce27 2242 && is_elf_hash_table (eif->info->hash)
45d6a902 2243 && (eif->info->symbolic
c1be741f 2244 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
f5385ebf 2245 && h->def_regular)
45d6a902 2246 {
9c5bfbb7 2247 const struct elf_backend_data *bed;
45d6a902
AM
2248 bfd_boolean force_local;
2249
2250 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2251
2252 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2253 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2254 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2255 }
2256
2257 /* If a weak undefined symbol has non-default visibility, we also
2258 hide it from the dynamic linker. */
9c7a29a3 2259 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
45d6a902
AM
2260 && h->root.type == bfd_link_hash_undefweak)
2261 {
9c5bfbb7 2262 const struct elf_backend_data *bed;
45d6a902
AM
2263 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2264 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2265 }
2266
2267 /* If this is a weak defined symbol in a dynamic object, and we know
2268 the real definition in the dynamic object, copy interesting flags
2269 over to the real definition. */
f6e332e6 2270 if (h->u.weakdef != NULL)
45d6a902
AM
2271 {
2272 struct elf_link_hash_entry *weakdef;
2273
f6e332e6 2274 weakdef = h->u.weakdef;
45d6a902
AM
2275 if (h->root.type == bfd_link_hash_indirect)
2276 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2277
2278 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2279 || h->root.type == bfd_link_hash_defweak);
2280 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2281 || weakdef->root.type == bfd_link_hash_defweak);
f5385ebf 2282 BFD_ASSERT (weakdef->def_dynamic);
45d6a902
AM
2283
2284 /* If the real definition is defined by a regular object file,
2285 don't do anything special. See the longer description in
2286 _bfd_elf_adjust_dynamic_symbol, below. */
f5385ebf 2287 if (weakdef->def_regular)
f6e332e6 2288 h->u.weakdef = NULL;
45d6a902
AM
2289 else
2290 {
9c5bfbb7 2291 const struct elf_backend_data *bed;
45d6a902
AM
2292
2293 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2294 (*bed->elf_backend_copy_indirect_symbol) (bed, weakdef, h);
2295 }
2296 }
2297
2298 return TRUE;
2299}
2300
2301/* Make the backend pick a good value for a dynamic symbol. This is
2302 called via elf_link_hash_traverse, and also calls itself
2303 recursively. */
2304
2305bfd_boolean
268b6b39 2306_bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
45d6a902 2307{
268b6b39 2308 struct elf_info_failed *eif = data;
45d6a902 2309 bfd *dynobj;
9c5bfbb7 2310 const struct elf_backend_data *bed;
45d6a902 2311
0eddce27 2312 if (! is_elf_hash_table (eif->info->hash))
45d6a902
AM
2313 return FALSE;
2314
2315 if (h->root.type == bfd_link_hash_warning)
2316 {
2317 h->plt = elf_hash_table (eif->info)->init_offset;
2318 h->got = elf_hash_table (eif->info)->init_offset;
2319
2320 /* When warning symbols are created, they **replace** the "real"
2321 entry in the hash table, thus we never get to see the real
2322 symbol in a hash traversal. So look at it now. */
2323 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2324 }
2325
2326 /* Ignore indirect symbols. These are added by the versioning code. */
2327 if (h->root.type == bfd_link_hash_indirect)
2328 return TRUE;
2329
2330 /* Fix the symbol flags. */
2331 if (! _bfd_elf_fix_symbol_flags (h, eif))
2332 return FALSE;
2333
2334 /* If this symbol does not require a PLT entry, and it is not
2335 defined by a dynamic object, or is not referenced by a regular
2336 object, ignore it. We do have to handle a weak defined symbol,
2337 even if no regular object refers to it, if we decided to add it
2338 to the dynamic symbol table. FIXME: Do we normally need to worry
2339 about symbols which are defined by one dynamic object and
2340 referenced by another one? */
f5385ebf
AM
2341 if (!h->needs_plt
2342 && (h->def_regular
2343 || !h->def_dynamic
2344 || (!h->ref_regular
f6e332e6 2345 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
45d6a902
AM
2346 {
2347 h->plt = elf_hash_table (eif->info)->init_offset;
2348 return TRUE;
2349 }
2350
2351 /* If we've already adjusted this symbol, don't do it again. This
2352 can happen via a recursive call. */
f5385ebf 2353 if (h->dynamic_adjusted)
45d6a902
AM
2354 return TRUE;
2355
2356 /* Don't look at this symbol again. Note that we must set this
2357 after checking the above conditions, because we may look at a
2358 symbol once, decide not to do anything, and then get called
2359 recursively later after REF_REGULAR is set below. */
f5385ebf 2360 h->dynamic_adjusted = 1;
45d6a902
AM
2361
2362 /* If this is a weak definition, and we know a real definition, and
2363 the real symbol is not itself defined by a regular object file,
2364 then get a good value for the real definition. We handle the
2365 real symbol first, for the convenience of the backend routine.
2366
2367 Note that there is a confusing case here. If the real definition
2368 is defined by a regular object file, we don't get the real symbol
2369 from the dynamic object, but we do get the weak symbol. If the
2370 processor backend uses a COPY reloc, then if some routine in the
2371 dynamic object changes the real symbol, we will not see that
2372 change in the corresponding weak symbol. This is the way other
2373 ELF linkers work as well, and seems to be a result of the shared
2374 library model.
2375
2376 I will clarify this issue. Most SVR4 shared libraries define the
2377 variable _timezone and define timezone as a weak synonym. The
2378 tzset call changes _timezone. If you write
2379 extern int timezone;
2380 int _timezone = 5;
2381 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2382 you might expect that, since timezone is a synonym for _timezone,
2383 the same number will print both times. However, if the processor
2384 backend uses a COPY reloc, then actually timezone will be copied
2385 into your process image, and, since you define _timezone
2386 yourself, _timezone will not. Thus timezone and _timezone will
2387 wind up at different memory locations. The tzset call will set
2388 _timezone, leaving timezone unchanged. */
2389
f6e332e6 2390 if (h->u.weakdef != NULL)
45d6a902
AM
2391 {
2392 /* If we get to this point, we know there is an implicit
2393 reference by a regular object file via the weak symbol H.
2394 FIXME: Is this really true? What if the traversal finds
f6e332e6
AM
2395 H->U.WEAKDEF before it finds H? */
2396 h->u.weakdef->ref_regular = 1;
45d6a902 2397
f6e332e6 2398 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
45d6a902
AM
2399 return FALSE;
2400 }
2401
2402 /* If a symbol has no type and no size and does not require a PLT
2403 entry, then we are probably about to do the wrong thing here: we
2404 are probably going to create a COPY reloc for an empty object.
2405 This case can arise when a shared object is built with assembly
2406 code, and the assembly code fails to set the symbol type. */
2407 if (h->size == 0
2408 && h->type == STT_NOTYPE
f5385ebf 2409 && !h->needs_plt)
45d6a902
AM
2410 (*_bfd_error_handler)
2411 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2412 h->root.root.string);
2413
2414 dynobj = elf_hash_table (eif->info)->dynobj;
2415 bed = get_elf_backend_data (dynobj);
2416 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2417 {
2418 eif->failed = TRUE;
2419 return FALSE;
2420 }
2421
2422 return TRUE;
2423}
2424
2425/* Adjust all external symbols pointing into SEC_MERGE sections
2426 to reflect the object merging within the sections. */
2427
2428bfd_boolean
268b6b39 2429_bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
45d6a902
AM
2430{
2431 asection *sec;
2432
2433 if (h->root.type == bfd_link_hash_warning)
2434 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2435
2436 if ((h->root.type == bfd_link_hash_defined
2437 || h->root.type == bfd_link_hash_defweak)
2438 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2439 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2440 {
268b6b39 2441 bfd *output_bfd = data;
45d6a902
AM
2442
2443 h->root.u.def.value =
2444 _bfd_merged_section_offset (output_bfd,
2445 &h->root.u.def.section,
2446 elf_section_data (sec)->sec_info,
753731ee 2447 h->root.u.def.value);
45d6a902
AM
2448 }
2449
2450 return TRUE;
2451}
986a241f
RH
2452
2453/* Returns false if the symbol referred to by H should be considered
2454 to resolve local to the current module, and true if it should be
2455 considered to bind dynamically. */
2456
2457bfd_boolean
268b6b39
AM
2458_bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2459 struct bfd_link_info *info,
2460 bfd_boolean ignore_protected)
986a241f
RH
2461{
2462 bfd_boolean binding_stays_local_p;
2463
2464 if (h == NULL)
2465 return FALSE;
2466
2467 while (h->root.type == bfd_link_hash_indirect
2468 || h->root.type == bfd_link_hash_warning)
2469 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2470
2471 /* If it was forced local, then clearly it's not dynamic. */
2472 if (h->dynindx == -1)
2473 return FALSE;
f5385ebf 2474 if (h->forced_local)
986a241f
RH
2475 return FALSE;
2476
2477 /* Identify the cases where name binding rules say that a
2478 visible symbol resolves locally. */
2479 binding_stays_local_p = info->executable || info->symbolic;
2480
2481 switch (ELF_ST_VISIBILITY (h->other))
2482 {
2483 case STV_INTERNAL:
2484 case STV_HIDDEN:
2485 return FALSE;
2486
2487 case STV_PROTECTED:
2488 /* Proper resolution for function pointer equality may require
2489 that these symbols perhaps be resolved dynamically, even though
2490 we should be resolving them to the current module. */
1c16dfa5 2491 if (!ignore_protected || h->type != STT_FUNC)
986a241f
RH
2492 binding_stays_local_p = TRUE;
2493 break;
2494
2495 default:
986a241f
RH
2496 break;
2497 }
2498
aa37626c 2499 /* If it isn't defined locally, then clearly it's dynamic. */
f5385ebf 2500 if (!h->def_regular)
aa37626c
L
2501 return TRUE;
2502
986a241f
RH
2503 /* Otherwise, the symbol is dynamic if binding rules don't tell
2504 us that it remains local. */
2505 return !binding_stays_local_p;
2506}
f6c52c13
AM
2507
2508/* Return true if the symbol referred to by H should be considered
2509 to resolve local to the current module, and false otherwise. Differs
2510 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2511 undefined symbols and weak symbols. */
2512
2513bfd_boolean
268b6b39
AM
2514_bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2515 struct bfd_link_info *info,
2516 bfd_boolean local_protected)
f6c52c13
AM
2517{
2518 /* If it's a local sym, of course we resolve locally. */
2519 if (h == NULL)
2520 return TRUE;
2521
7e2294f9
AO
2522 /* Common symbols that become definitions don't get the DEF_REGULAR
2523 flag set, so test it first, and don't bail out. */
2524 if (ELF_COMMON_DEF_P (h))
2525 /* Do nothing. */;
f6c52c13
AM
2526 /* If we don't have a definition in a regular file, then we can't
2527 resolve locally. The sym is either undefined or dynamic. */
f5385ebf 2528 else if (!h->def_regular)
f6c52c13
AM
2529 return FALSE;
2530
2531 /* Forced local symbols resolve locally. */
f5385ebf 2532 if (h->forced_local)
f6c52c13
AM
2533 return TRUE;
2534
2535 /* As do non-dynamic symbols. */
2536 if (h->dynindx == -1)
2537 return TRUE;
2538
2539 /* At this point, we know the symbol is defined and dynamic. In an
2540 executable it must resolve locally, likewise when building symbolic
2541 shared libraries. */
2542 if (info->executable || info->symbolic)
2543 return TRUE;
2544
2545 /* Now deal with defined dynamic symbols in shared libraries. Ones
2546 with default visibility might not resolve locally. */
2547 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2548 return FALSE;
2549
2550 /* However, STV_HIDDEN or STV_INTERNAL ones must be local. */
2551 if (ELF_ST_VISIBILITY (h->other) != STV_PROTECTED)
2552 return TRUE;
2553
1c16dfa5
L
2554 /* STV_PROTECTED non-function symbols are local. */
2555 if (h->type != STT_FUNC)
2556 return TRUE;
2557
f6c52c13
AM
2558 /* Function pointer equality tests may require that STV_PROTECTED
2559 symbols be treated as dynamic symbols, even when we know that the
2560 dynamic linker will resolve them locally. */
2561 return local_protected;
2562}
e1918d23
AM
2563
2564/* Caches some TLS segment info, and ensures that the TLS segment vma is
2565 aligned. Returns the first TLS output section. */
2566
2567struct bfd_section *
2568_bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2569{
2570 struct bfd_section *sec, *tls;
2571 unsigned int align = 0;
2572
2573 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2574 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2575 break;
2576 tls = sec;
2577
2578 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2579 if (sec->alignment_power > align)
2580 align = sec->alignment_power;
2581
2582 elf_hash_table (info)->tls_sec = tls;
2583
2584 /* Ensure the alignment of the first section is the largest alignment,
2585 so that the tls segment starts aligned. */
2586 if (tls != NULL)
2587 tls->alignment_power = align;
2588
2589 return tls;
2590}
0ad989f9
L
2591
2592/* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2593static bfd_boolean
2594is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2595 Elf_Internal_Sym *sym)
2596{
2597 /* Local symbols do not count, but target specific ones might. */
2598 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2599 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2600 return FALSE;
2601
2602 /* Function symbols do not count. */
2603 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
2604 return FALSE;
2605
2606 /* If the section is undefined, then so is the symbol. */
2607 if (sym->st_shndx == SHN_UNDEF)
2608 return FALSE;
2609
2610 /* If the symbol is defined in the common section, then
2611 it is a common definition and so does not count. */
2612 if (sym->st_shndx == SHN_COMMON)
2613 return FALSE;
2614
2615 /* If the symbol is in a target specific section then we
2616 must rely upon the backend to tell us what it is. */
2617 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2618 /* FIXME - this function is not coded yet:
2619
2620 return _bfd_is_global_symbol_definition (abfd, sym);
2621
2622 Instead for now assume that the definition is not global,
2623 Even if this is wrong, at least the linker will behave
2624 in the same way that it used to do. */
2625 return FALSE;
2626
2627 return TRUE;
2628}
2629
2630/* Search the symbol table of the archive element of the archive ABFD
2631 whose archive map contains a mention of SYMDEF, and determine if
2632 the symbol is defined in this element. */
2633static bfd_boolean
2634elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2635{
2636 Elf_Internal_Shdr * hdr;
2637 bfd_size_type symcount;
2638 bfd_size_type extsymcount;
2639 bfd_size_type extsymoff;
2640 Elf_Internal_Sym *isymbuf;
2641 Elf_Internal_Sym *isym;
2642 Elf_Internal_Sym *isymend;
2643 bfd_boolean result;
2644
2645 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2646 if (abfd == NULL)
2647 return FALSE;
2648
2649 if (! bfd_check_format (abfd, bfd_object))
2650 return FALSE;
2651
2652 /* If we have already included the element containing this symbol in the
2653 link then we do not need to include it again. Just claim that any symbol
2654 it contains is not a definition, so that our caller will not decide to
2655 (re)include this element. */
2656 if (abfd->archive_pass)
2657 return FALSE;
2658
2659 /* Select the appropriate symbol table. */
2660 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2661 hdr = &elf_tdata (abfd)->symtab_hdr;
2662 else
2663 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2664
2665 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2666
2667 /* The sh_info field of the symtab header tells us where the
2668 external symbols start. We don't care about the local symbols. */
2669 if (elf_bad_symtab (abfd))
2670 {
2671 extsymcount = symcount;
2672 extsymoff = 0;
2673 }
2674 else
2675 {
2676 extsymcount = symcount - hdr->sh_info;
2677 extsymoff = hdr->sh_info;
2678 }
2679
2680 if (extsymcount == 0)
2681 return FALSE;
2682
2683 /* Read in the symbol table. */
2684 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2685 NULL, NULL, NULL);
2686 if (isymbuf == NULL)
2687 return FALSE;
2688
2689 /* Scan the symbol table looking for SYMDEF. */
2690 result = FALSE;
2691 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2692 {
2693 const char *name;
2694
2695 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2696 isym->st_name);
2697 if (name == NULL)
2698 break;
2699
2700 if (strcmp (name, symdef->name) == 0)
2701 {
2702 result = is_global_data_symbol_definition (abfd, isym);
2703 break;
2704 }
2705 }
2706
2707 free (isymbuf);
2708
2709 return result;
2710}
2711\f
5a580b3a
AM
2712/* Add an entry to the .dynamic table. */
2713
2714bfd_boolean
2715_bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2716 bfd_vma tag,
2717 bfd_vma val)
2718{
2719 struct elf_link_hash_table *hash_table;
2720 const struct elf_backend_data *bed;
2721 asection *s;
2722 bfd_size_type newsize;
2723 bfd_byte *newcontents;
2724 Elf_Internal_Dyn dyn;
2725
2726 hash_table = elf_hash_table (info);
2727 if (! is_elf_hash_table (hash_table))
2728 return FALSE;
2729
8fdd7217
NC
2730 if (info->warn_shared_textrel && info->shared && tag == DT_TEXTREL)
2731 _bfd_error_handler
2732 (_("warning: creating a DT_TEXTREL in a shared object."));
2733
5a580b3a
AM
2734 bed = get_elf_backend_data (hash_table->dynobj);
2735 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
2736 BFD_ASSERT (s != NULL);
2737
eea6121a 2738 newsize = s->size + bed->s->sizeof_dyn;
5a580b3a
AM
2739 newcontents = bfd_realloc (s->contents, newsize);
2740 if (newcontents == NULL)
2741 return FALSE;
2742
2743 dyn.d_tag = tag;
2744 dyn.d_un.d_val = val;
eea6121a 2745 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
5a580b3a 2746
eea6121a 2747 s->size = newsize;
5a580b3a
AM
2748 s->contents = newcontents;
2749
2750 return TRUE;
2751}
2752
2753/* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
2754 otherwise just check whether one already exists. Returns -1 on error,
2755 1 if a DT_NEEDED tag already exists, and 0 on success. */
2756
4ad4eba5 2757static int
7e9f0867
AM
2758elf_add_dt_needed_tag (bfd *abfd,
2759 struct bfd_link_info *info,
4ad4eba5
AM
2760 const char *soname,
2761 bfd_boolean do_it)
5a580b3a
AM
2762{
2763 struct elf_link_hash_table *hash_table;
2764 bfd_size_type oldsize;
2765 bfd_size_type strindex;
2766
7e9f0867
AM
2767 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
2768 return -1;
2769
5a580b3a
AM
2770 hash_table = elf_hash_table (info);
2771 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
2772 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
2773 if (strindex == (bfd_size_type) -1)
2774 return -1;
2775
2776 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
2777 {
2778 asection *sdyn;
2779 const struct elf_backend_data *bed;
2780 bfd_byte *extdyn;
2781
2782 bed = get_elf_backend_data (hash_table->dynobj);
2783 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
7e9f0867
AM
2784 if (sdyn != NULL)
2785 for (extdyn = sdyn->contents;
2786 extdyn < sdyn->contents + sdyn->size;
2787 extdyn += bed->s->sizeof_dyn)
2788 {
2789 Elf_Internal_Dyn dyn;
5a580b3a 2790
7e9f0867
AM
2791 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
2792 if (dyn.d_tag == DT_NEEDED
2793 && dyn.d_un.d_val == strindex)
2794 {
2795 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2796 return 1;
2797 }
2798 }
5a580b3a
AM
2799 }
2800
2801 if (do_it)
2802 {
7e9f0867
AM
2803 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
2804 return -1;
2805
5a580b3a
AM
2806 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
2807 return -1;
2808 }
2809 else
2810 /* We were just checking for existence of the tag. */
2811 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2812
2813 return 0;
2814}
2815
2816/* Sort symbol by value and section. */
4ad4eba5
AM
2817static int
2818elf_sort_symbol (const void *arg1, const void *arg2)
5a580b3a
AM
2819{
2820 const struct elf_link_hash_entry *h1;
2821 const struct elf_link_hash_entry *h2;
10b7e05b 2822 bfd_signed_vma vdiff;
5a580b3a
AM
2823
2824 h1 = *(const struct elf_link_hash_entry **) arg1;
2825 h2 = *(const struct elf_link_hash_entry **) arg2;
10b7e05b
NC
2826 vdiff = h1->root.u.def.value - h2->root.u.def.value;
2827 if (vdiff != 0)
2828 return vdiff > 0 ? 1 : -1;
2829 else
2830 {
2831 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
2832 if (sdiff != 0)
2833 return sdiff > 0 ? 1 : -1;
2834 }
5a580b3a
AM
2835 return 0;
2836}
4ad4eba5 2837
5a580b3a
AM
2838/* This function is used to adjust offsets into .dynstr for
2839 dynamic symbols. This is called via elf_link_hash_traverse. */
2840
2841static bfd_boolean
2842elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
2843{
2844 struct elf_strtab_hash *dynstr = data;
2845
2846 if (h->root.type == bfd_link_hash_warning)
2847 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2848
2849 if (h->dynindx != -1)
2850 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
2851 return TRUE;
2852}
2853
2854/* Assign string offsets in .dynstr, update all structures referencing
2855 them. */
2856
4ad4eba5
AM
2857static bfd_boolean
2858elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
5a580b3a
AM
2859{
2860 struct elf_link_hash_table *hash_table = elf_hash_table (info);
2861 struct elf_link_local_dynamic_entry *entry;
2862 struct elf_strtab_hash *dynstr = hash_table->dynstr;
2863 bfd *dynobj = hash_table->dynobj;
2864 asection *sdyn;
2865 bfd_size_type size;
2866 const struct elf_backend_data *bed;
2867 bfd_byte *extdyn;
2868
2869 _bfd_elf_strtab_finalize (dynstr);
2870 size = _bfd_elf_strtab_size (dynstr);
2871
2872 bed = get_elf_backend_data (dynobj);
2873 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2874 BFD_ASSERT (sdyn != NULL);
2875
2876 /* Update all .dynamic entries referencing .dynstr strings. */
2877 for (extdyn = sdyn->contents;
eea6121a 2878 extdyn < sdyn->contents + sdyn->size;
5a580b3a
AM
2879 extdyn += bed->s->sizeof_dyn)
2880 {
2881 Elf_Internal_Dyn dyn;
2882
2883 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
2884 switch (dyn.d_tag)
2885 {
2886 case DT_STRSZ:
2887 dyn.d_un.d_val = size;
2888 break;
2889 case DT_NEEDED:
2890 case DT_SONAME:
2891 case DT_RPATH:
2892 case DT_RUNPATH:
2893 case DT_FILTER:
2894 case DT_AUXILIARY:
2895 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
2896 break;
2897 default:
2898 continue;
2899 }
2900 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
2901 }
2902
2903 /* Now update local dynamic symbols. */
2904 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
2905 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
2906 entry->isym.st_name);
2907
2908 /* And the rest of dynamic symbols. */
2909 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
2910
2911 /* Adjust version definitions. */
2912 if (elf_tdata (output_bfd)->cverdefs)
2913 {
2914 asection *s;
2915 bfd_byte *p;
2916 bfd_size_type i;
2917 Elf_Internal_Verdef def;
2918 Elf_Internal_Verdaux defaux;
2919
2920 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
2921 p = s->contents;
2922 do
2923 {
2924 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
2925 &def);
2926 p += sizeof (Elf_External_Verdef);
3e3b46e5
PB
2927 if (def.vd_aux != sizeof (Elf_External_Verdef))
2928 continue;
5a580b3a
AM
2929 for (i = 0; i < def.vd_cnt; ++i)
2930 {
2931 _bfd_elf_swap_verdaux_in (output_bfd,
2932 (Elf_External_Verdaux *) p, &defaux);
2933 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
2934 defaux.vda_name);
2935 _bfd_elf_swap_verdaux_out (output_bfd,
2936 &defaux, (Elf_External_Verdaux *) p);
2937 p += sizeof (Elf_External_Verdaux);
2938 }
2939 }
2940 while (def.vd_next);
2941 }
2942
2943 /* Adjust version references. */
2944 if (elf_tdata (output_bfd)->verref)
2945 {
2946 asection *s;
2947 bfd_byte *p;
2948 bfd_size_type i;
2949 Elf_Internal_Verneed need;
2950 Elf_Internal_Vernaux needaux;
2951
2952 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
2953 p = s->contents;
2954 do
2955 {
2956 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
2957 &need);
2958 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
2959 _bfd_elf_swap_verneed_out (output_bfd, &need,
2960 (Elf_External_Verneed *) p);
2961 p += sizeof (Elf_External_Verneed);
2962 for (i = 0; i < need.vn_cnt; ++i)
2963 {
2964 _bfd_elf_swap_vernaux_in (output_bfd,
2965 (Elf_External_Vernaux *) p, &needaux);
2966 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
2967 needaux.vna_name);
2968 _bfd_elf_swap_vernaux_out (output_bfd,
2969 &needaux,
2970 (Elf_External_Vernaux *) p);
2971 p += sizeof (Elf_External_Vernaux);
2972 }
2973 }
2974 while (need.vn_next);
2975 }
2976
2977 return TRUE;
2978}
2979\f
4ad4eba5
AM
2980/* Add symbols from an ELF object file to the linker hash table. */
2981
2982static bfd_boolean
2983elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
2984{
2985 bfd_boolean (*add_symbol_hook)
555cd476 2986 (bfd *, struct bfd_link_info *, Elf_Internal_Sym *,
4ad4eba5
AM
2987 const char **, flagword *, asection **, bfd_vma *);
2988 bfd_boolean (*check_relocs)
2989 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
85fbca6a
NC
2990 bfd_boolean (*check_directives)
2991 (bfd *, struct bfd_link_info *);
4ad4eba5
AM
2992 bfd_boolean collect;
2993 Elf_Internal_Shdr *hdr;
2994 bfd_size_type symcount;
2995 bfd_size_type extsymcount;
2996 bfd_size_type extsymoff;
2997 struct elf_link_hash_entry **sym_hash;
2998 bfd_boolean dynamic;
2999 Elf_External_Versym *extversym = NULL;
3000 Elf_External_Versym *ever;
3001 struct elf_link_hash_entry *weaks;
3002 struct elf_link_hash_entry **nondeflt_vers = NULL;
3003 bfd_size_type nondeflt_vers_cnt = 0;
3004 Elf_Internal_Sym *isymbuf = NULL;
3005 Elf_Internal_Sym *isym;
3006 Elf_Internal_Sym *isymend;
3007 const struct elf_backend_data *bed;
3008 bfd_boolean add_needed;
3009 struct elf_link_hash_table * hash_table;
3010 bfd_size_type amt;
3011
3012 hash_table = elf_hash_table (info);
3013
3014 bed = get_elf_backend_data (abfd);
3015 add_symbol_hook = bed->elf_add_symbol_hook;
3016 collect = bed->collect;
3017
3018 if ((abfd->flags & DYNAMIC) == 0)
3019 dynamic = FALSE;
3020 else
3021 {
3022 dynamic = TRUE;
3023
3024 /* You can't use -r against a dynamic object. Also, there's no
3025 hope of using a dynamic object which does not exactly match
3026 the format of the output file. */
3027 if (info->relocatable
3028 || !is_elf_hash_table (hash_table)
3029 || hash_table->root.creator != abfd->xvec)
3030 {
9a0789ec
NC
3031 if (info->relocatable)
3032 bfd_set_error (bfd_error_invalid_operation);
3033 else
3034 bfd_set_error (bfd_error_wrong_format);
4ad4eba5
AM
3035 goto error_return;
3036 }
3037 }
3038
3039 /* As a GNU extension, any input sections which are named
3040 .gnu.warning.SYMBOL are treated as warning symbols for the given
3041 symbol. This differs from .gnu.warning sections, which generate
3042 warnings when they are included in an output file. */
3043 if (info->executable)
3044 {
3045 asection *s;
3046
3047 for (s = abfd->sections; s != NULL; s = s->next)
3048 {
3049 const char *name;
3050
3051 name = bfd_get_section_name (abfd, s);
3052 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
3053 {
3054 char *msg;
3055 bfd_size_type sz;
3056 bfd_size_type prefix_len;
3057 const char * gnu_warning_prefix = _("warning: ");
3058
3059 name += sizeof ".gnu.warning." - 1;
3060
3061 /* If this is a shared object, then look up the symbol
3062 in the hash table. If it is there, and it is already
3063 been defined, then we will not be using the entry
3064 from this shared object, so we don't need to warn.
3065 FIXME: If we see the definition in a regular object
3066 later on, we will warn, but we shouldn't. The only
3067 fix is to keep track of what warnings we are supposed
3068 to emit, and then handle them all at the end of the
3069 link. */
3070 if (dynamic)
3071 {
3072 struct elf_link_hash_entry *h;
3073
3074 h = elf_link_hash_lookup (hash_table, name,
3075 FALSE, FALSE, TRUE);
3076
3077 /* FIXME: What about bfd_link_hash_common? */
3078 if (h != NULL
3079 && (h->root.type == bfd_link_hash_defined
3080 || h->root.type == bfd_link_hash_defweak))
3081 {
3082 /* We don't want to issue this warning. Clobber
3083 the section size so that the warning does not
3084 get copied into the output file. */
eea6121a 3085 s->size = 0;
4ad4eba5
AM
3086 continue;
3087 }
3088 }
3089
eea6121a 3090 sz = s->size;
4ad4eba5
AM
3091 prefix_len = strlen (gnu_warning_prefix);
3092 msg = bfd_alloc (abfd, prefix_len + sz + 1);
3093 if (msg == NULL)
3094 goto error_return;
3095
3096 strcpy (msg, gnu_warning_prefix);
3097 if (! bfd_get_section_contents (abfd, s, msg + prefix_len, 0, sz))
3098 goto error_return;
3099
3100 msg[prefix_len + sz] = '\0';
3101
3102 if (! (_bfd_generic_link_add_one_symbol
3103 (info, abfd, name, BSF_WARNING, s, 0, msg,
3104 FALSE, collect, NULL)))
3105 goto error_return;
3106
3107 if (! info->relocatable)
3108 {
3109 /* Clobber the section size so that the warning does
3110 not get copied into the output file. */
eea6121a 3111 s->size = 0;
4ad4eba5
AM
3112 }
3113 }
3114 }
3115 }
3116
3117 add_needed = TRUE;
3118 if (! dynamic)
3119 {
3120 /* If we are creating a shared library, create all the dynamic
3121 sections immediately. We need to attach them to something,
3122 so we attach them to this BFD, provided it is the right
3123 format. FIXME: If there are no input BFD's of the same
3124 format as the output, we can't make a shared library. */
3125 if (info->shared
3126 && is_elf_hash_table (hash_table)
3127 && hash_table->root.creator == abfd->xvec
3128 && ! hash_table->dynamic_sections_created)
3129 {
3130 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3131 goto error_return;
3132 }
3133 }
3134 else if (!is_elf_hash_table (hash_table))
3135 goto error_return;
3136 else
3137 {
3138 asection *s;
3139 const char *soname = NULL;
3140 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3141 int ret;
3142
3143 /* ld --just-symbols and dynamic objects don't mix very well.
3144 Test for --just-symbols by looking at info set up by
3145 _bfd_elf_link_just_syms. */
3146 if ((s = abfd->sections) != NULL
3147 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3148 goto error_return;
3149
3150 /* If this dynamic lib was specified on the command line with
3151 --as-needed in effect, then we don't want to add a DT_NEEDED
3152 tag unless the lib is actually used. Similary for libs brought
e56f61be
L
3153 in by another lib's DT_NEEDED. When --no-add-needed is used
3154 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3155 any dynamic library in DT_NEEDED tags in the dynamic lib at
3156 all. */
3157 add_needed = (elf_dyn_lib_class (abfd)
3158 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3159 | DYN_NO_NEEDED)) == 0;
4ad4eba5
AM
3160
3161 s = bfd_get_section_by_name (abfd, ".dynamic");
3162 if (s != NULL)
3163 {
3164 bfd_byte *dynbuf;
3165 bfd_byte *extdyn;
3166 int elfsec;
3167 unsigned long shlink;
3168
eea6121a 3169 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
4ad4eba5
AM
3170 goto error_free_dyn;
3171
3172 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3173 if (elfsec == -1)
3174 goto error_free_dyn;
3175 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3176
3177 for (extdyn = dynbuf;
eea6121a 3178 extdyn < dynbuf + s->size;
4ad4eba5
AM
3179 extdyn += bed->s->sizeof_dyn)
3180 {
3181 Elf_Internal_Dyn dyn;
3182
3183 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3184 if (dyn.d_tag == DT_SONAME)
3185 {
3186 unsigned int tagv = dyn.d_un.d_val;
3187 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3188 if (soname == NULL)
3189 goto error_free_dyn;
3190 }
3191 if (dyn.d_tag == DT_NEEDED)
3192 {
3193 struct bfd_link_needed_list *n, **pn;
3194 char *fnm, *anm;
3195 unsigned int tagv = dyn.d_un.d_val;
3196
3197 amt = sizeof (struct bfd_link_needed_list);
3198 n = bfd_alloc (abfd, amt);
3199 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3200 if (n == NULL || fnm == NULL)
3201 goto error_free_dyn;
3202 amt = strlen (fnm) + 1;
3203 anm = bfd_alloc (abfd, amt);
3204 if (anm == NULL)
3205 goto error_free_dyn;
3206 memcpy (anm, fnm, amt);
3207 n->name = anm;
3208 n->by = abfd;
3209 n->next = NULL;
3210 for (pn = & hash_table->needed;
3211 *pn != NULL;
3212 pn = &(*pn)->next)
3213 ;
3214 *pn = n;
3215 }
3216 if (dyn.d_tag == DT_RUNPATH)
3217 {
3218 struct bfd_link_needed_list *n, **pn;
3219 char *fnm, *anm;
3220 unsigned int tagv = dyn.d_un.d_val;
3221
3222 amt = sizeof (struct bfd_link_needed_list);
3223 n = bfd_alloc (abfd, amt);
3224 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3225 if (n == NULL || fnm == NULL)
3226 goto error_free_dyn;
3227 amt = strlen (fnm) + 1;
3228 anm = bfd_alloc (abfd, amt);
3229 if (anm == NULL)
3230 goto error_free_dyn;
3231 memcpy (anm, fnm, amt);
3232 n->name = anm;
3233 n->by = abfd;
3234 n->next = NULL;
3235 for (pn = & runpath;
3236 *pn != NULL;
3237 pn = &(*pn)->next)
3238 ;
3239 *pn = n;
3240 }
3241 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3242 if (!runpath && dyn.d_tag == DT_RPATH)
3243 {
3244 struct bfd_link_needed_list *n, **pn;
3245 char *fnm, *anm;
3246 unsigned int tagv = dyn.d_un.d_val;
3247
3248 amt = sizeof (struct bfd_link_needed_list);
3249 n = bfd_alloc (abfd, amt);
3250 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3251 if (n == NULL || fnm == NULL)
3252 goto error_free_dyn;
3253 amt = strlen (fnm) + 1;
3254 anm = bfd_alloc (abfd, amt);
3255 if (anm == NULL)
3256 {
3257 error_free_dyn:
3258 free (dynbuf);
3259 goto error_return;
3260 }
3261 memcpy (anm, fnm, amt);
3262 n->name = anm;
3263 n->by = abfd;
3264 n->next = NULL;
3265 for (pn = & rpath;
3266 *pn != NULL;
3267 pn = &(*pn)->next)
3268 ;
3269 *pn = n;
3270 }
3271 }
3272
3273 free (dynbuf);
3274 }
3275
3276 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3277 frees all more recently bfd_alloc'd blocks as well. */
3278 if (runpath)
3279 rpath = runpath;
3280
3281 if (rpath)
3282 {
3283 struct bfd_link_needed_list **pn;
3284 for (pn = & hash_table->runpath;
3285 *pn != NULL;
3286 pn = &(*pn)->next)
3287 ;
3288 *pn = rpath;
3289 }
3290
3291 /* We do not want to include any of the sections in a dynamic
3292 object in the output file. We hack by simply clobbering the
3293 list of sections in the BFD. This could be handled more
3294 cleanly by, say, a new section flag; the existing
3295 SEC_NEVER_LOAD flag is not the one we want, because that one
3296 still implies that the section takes up space in the output
3297 file. */
3298 bfd_section_list_clear (abfd);
3299
4ad4eba5
AM
3300 /* Find the name to use in a DT_NEEDED entry that refers to this
3301 object. If the object has a DT_SONAME entry, we use it.
3302 Otherwise, if the generic linker stuck something in
3303 elf_dt_name, we use that. Otherwise, we just use the file
3304 name. */
3305 if (soname == NULL || *soname == '\0')
3306 {
3307 soname = elf_dt_name (abfd);
3308 if (soname == NULL || *soname == '\0')
3309 soname = bfd_get_filename (abfd);
3310 }
3311
3312 /* Save the SONAME because sometimes the linker emulation code
3313 will need to know it. */
3314 elf_dt_name (abfd) = soname;
3315
7e9f0867 3316 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4ad4eba5
AM
3317 if (ret < 0)
3318 goto error_return;
3319
3320 /* If we have already included this dynamic object in the
3321 link, just ignore it. There is no reason to include a
3322 particular dynamic object more than once. */
3323 if (ret > 0)
3324 return TRUE;
3325 }
3326
3327 /* If this is a dynamic object, we always link against the .dynsym
3328 symbol table, not the .symtab symbol table. The dynamic linker
3329 will only see the .dynsym symbol table, so there is no reason to
3330 look at .symtab for a dynamic object. */
3331
3332 if (! dynamic || elf_dynsymtab (abfd) == 0)
3333 hdr = &elf_tdata (abfd)->symtab_hdr;
3334 else
3335 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3336
3337 symcount = hdr->sh_size / bed->s->sizeof_sym;
3338
3339 /* The sh_info field of the symtab header tells us where the
3340 external symbols start. We don't care about the local symbols at
3341 this point. */
3342 if (elf_bad_symtab (abfd))
3343 {
3344 extsymcount = symcount;
3345 extsymoff = 0;
3346 }
3347 else
3348 {
3349 extsymcount = symcount - hdr->sh_info;
3350 extsymoff = hdr->sh_info;
3351 }
3352
3353 sym_hash = NULL;
3354 if (extsymcount != 0)
3355 {
3356 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3357 NULL, NULL, NULL);
3358 if (isymbuf == NULL)
3359 goto error_return;
3360
3361 /* We store a pointer to the hash table entry for each external
3362 symbol. */
3363 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3364 sym_hash = bfd_alloc (abfd, amt);
3365 if (sym_hash == NULL)
3366 goto error_free_sym;
3367 elf_sym_hashes (abfd) = sym_hash;
3368 }
3369
3370 if (dynamic)
3371 {
3372 /* Read in any version definitions. */
fc0e6df6
PB
3373 if (!_bfd_elf_slurp_version_tables (abfd,
3374 info->default_imported_symver))
4ad4eba5
AM
3375 goto error_free_sym;
3376
3377 /* Read in the symbol versions, but don't bother to convert them
3378 to internal format. */
3379 if (elf_dynversym (abfd) != 0)
3380 {
3381 Elf_Internal_Shdr *versymhdr;
3382
3383 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3384 extversym = bfd_malloc (versymhdr->sh_size);
3385 if (extversym == NULL)
3386 goto error_free_sym;
3387 amt = versymhdr->sh_size;
3388 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3389 || bfd_bread (extversym, amt, abfd) != amt)
3390 goto error_free_vers;
3391 }
3392 }
3393
3394 weaks = NULL;
3395
3396 ever = extversym != NULL ? extversym + extsymoff : NULL;
3397 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3398 isym < isymend;
3399 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3400 {
3401 int bind;
3402 bfd_vma value;
3403 asection *sec;
3404 flagword flags;
3405 const char *name;
3406 struct elf_link_hash_entry *h;
3407 bfd_boolean definition;
3408 bfd_boolean size_change_ok;
3409 bfd_boolean type_change_ok;
3410 bfd_boolean new_weakdef;
3411 bfd_boolean override;
3412 unsigned int old_alignment;
3413 bfd *old_bfd;
3414
3415 override = FALSE;
3416
3417 flags = BSF_NO_FLAGS;
3418 sec = NULL;
3419 value = isym->st_value;
3420 *sym_hash = NULL;
3421
3422 bind = ELF_ST_BIND (isym->st_info);
3423 if (bind == STB_LOCAL)
3424 {
3425 /* This should be impossible, since ELF requires that all
3426 global symbols follow all local symbols, and that sh_info
3427 point to the first global symbol. Unfortunately, Irix 5
3428 screws this up. */
3429 continue;
3430 }
3431 else if (bind == STB_GLOBAL)
3432 {
3433 if (isym->st_shndx != SHN_UNDEF
3434 && isym->st_shndx != SHN_COMMON)
3435 flags = BSF_GLOBAL;
3436 }
3437 else if (bind == STB_WEAK)
3438 flags = BSF_WEAK;
3439 else
3440 {
3441 /* Leave it up to the processor backend. */
3442 }
3443
3444 if (isym->st_shndx == SHN_UNDEF)
3445 sec = bfd_und_section_ptr;
3446 else if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
3447 {
3448 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3449 if (sec == NULL)
3450 sec = bfd_abs_section_ptr;
529fcb95
PB
3451 else if (sec->kept_section)
3452 {
3453 /* Symbols from discarded section are undefined. */
3454 sec = bfd_und_section_ptr;
3455 isym->st_shndx = SHN_UNDEF;
3456 }
4ad4eba5
AM
3457 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3458 value -= sec->vma;
3459 }
3460 else if (isym->st_shndx == SHN_ABS)
3461 sec = bfd_abs_section_ptr;
3462 else if (isym->st_shndx == SHN_COMMON)
3463 {
3464 sec = bfd_com_section_ptr;
3465 /* What ELF calls the size we call the value. What ELF
3466 calls the value we call the alignment. */
3467 value = isym->st_size;
3468 }
3469 else
3470 {
3471 /* Leave it up to the processor backend. */
3472 }
3473
3474 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3475 isym->st_name);
3476 if (name == NULL)
3477 goto error_free_vers;
3478
3479 if (isym->st_shndx == SHN_COMMON
3480 && ELF_ST_TYPE (isym->st_info) == STT_TLS)
3481 {
3482 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3483
3484 if (tcomm == NULL)
3485 {
3486 tcomm = bfd_make_section (abfd, ".tcommon");
3487 if (tcomm == NULL
3488 || !bfd_set_section_flags (abfd, tcomm, (SEC_ALLOC
3489 | SEC_IS_COMMON
3490 | SEC_LINKER_CREATED
3491 | SEC_THREAD_LOCAL)))
3492 goto error_free_vers;
3493 }
3494 sec = tcomm;
3495 }
3496 else if (add_symbol_hook)
3497 {
3498 if (! (*add_symbol_hook) (abfd, info, isym, &name, &flags, &sec,
3499 &value))
3500 goto error_free_vers;
3501
3502 /* The hook function sets the name to NULL if this symbol
3503 should be skipped for some reason. */
3504 if (name == NULL)
3505 continue;
3506 }
3507
3508 /* Sanity check that all possibilities were handled. */
3509 if (sec == NULL)
3510 {
3511 bfd_set_error (bfd_error_bad_value);
3512 goto error_free_vers;
3513 }
3514
3515 if (bfd_is_und_section (sec)
3516 || bfd_is_com_section (sec))
3517 definition = FALSE;
3518 else
3519 definition = TRUE;
3520
3521 size_change_ok = FALSE;
3522 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
3523 old_alignment = 0;
3524 old_bfd = NULL;
3525
3526 if (is_elf_hash_table (hash_table))
3527 {
3528 Elf_Internal_Versym iver;
3529 unsigned int vernum = 0;
3530 bfd_boolean skip;
3531
fc0e6df6 3532 if (ever == NULL)
4ad4eba5 3533 {
fc0e6df6
PB
3534 if (info->default_imported_symver)
3535 /* Use the default symbol version created earlier. */
3536 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3537 else
3538 iver.vs_vers = 0;
3539 }
3540 else
3541 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3542
3543 vernum = iver.vs_vers & VERSYM_VERSION;
3544
3545 /* If this is a hidden symbol, or if it is not version
3546 1, we append the version name to the symbol name.
3547 However, we do not modify a non-hidden absolute
3548 symbol, because it might be the version symbol
3549 itself. FIXME: What if it isn't? */
3550 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3551 || (vernum > 1 && ! bfd_is_abs_section (sec)))
3552 {
3553 const char *verstr;
3554 size_t namelen, verlen, newlen;
3555 char *newname, *p;
3556
3557 if (isym->st_shndx != SHN_UNDEF)
4ad4eba5 3558 {
fc0e6df6
PB
3559 if (vernum > elf_tdata (abfd)->cverdefs)
3560 verstr = NULL;
3561 else if (vernum > 1)
3562 verstr =
3563 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
3564 else
3565 verstr = "";
4ad4eba5 3566
fc0e6df6 3567 if (verstr == NULL)
4ad4eba5 3568 {
fc0e6df6
PB
3569 (*_bfd_error_handler)
3570 (_("%B: %s: invalid version %u (max %d)"),
3571 abfd, name, vernum,
3572 elf_tdata (abfd)->cverdefs);
3573 bfd_set_error (bfd_error_bad_value);
3574 goto error_free_vers;
4ad4eba5 3575 }
fc0e6df6
PB
3576 }
3577 else
3578 {
3579 /* We cannot simply test for the number of
3580 entries in the VERNEED section since the
3581 numbers for the needed versions do not start
3582 at 0. */
3583 Elf_Internal_Verneed *t;
3584
3585 verstr = NULL;
3586 for (t = elf_tdata (abfd)->verref;
3587 t != NULL;
3588 t = t->vn_nextref)
4ad4eba5 3589 {
fc0e6df6 3590 Elf_Internal_Vernaux *a;
4ad4eba5 3591
fc0e6df6
PB
3592 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3593 {
3594 if (a->vna_other == vernum)
4ad4eba5 3595 {
fc0e6df6
PB
3596 verstr = a->vna_nodename;
3597 break;
4ad4eba5 3598 }
4ad4eba5 3599 }
fc0e6df6
PB
3600 if (a != NULL)
3601 break;
3602 }
3603 if (verstr == NULL)
3604 {
3605 (*_bfd_error_handler)
3606 (_("%B: %s: invalid needed version %d"),
3607 abfd, name, vernum);
3608 bfd_set_error (bfd_error_bad_value);
3609 goto error_free_vers;
4ad4eba5 3610 }
4ad4eba5 3611 }
fc0e6df6
PB
3612
3613 namelen = strlen (name);
3614 verlen = strlen (verstr);
3615 newlen = namelen + verlen + 2;
3616 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3617 && isym->st_shndx != SHN_UNDEF)
3618 ++newlen;
3619
3620 newname = bfd_alloc (abfd, newlen);
3621 if (newname == NULL)
3622 goto error_free_vers;
3623 memcpy (newname, name, namelen);
3624 p = newname + namelen;
3625 *p++ = ELF_VER_CHR;
3626 /* If this is a defined non-hidden version symbol,
3627 we add another @ to the name. This indicates the
3628 default version of the symbol. */
3629 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3630 && isym->st_shndx != SHN_UNDEF)
3631 *p++ = ELF_VER_CHR;
3632 memcpy (p, verstr, verlen + 1);
3633
3634 name = newname;
4ad4eba5
AM
3635 }
3636
3637 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
3638 sym_hash, &skip, &override,
3639 &type_change_ok, &size_change_ok))
3640 goto error_free_vers;
3641
3642 if (skip)
3643 continue;
3644
3645 if (override)
3646 definition = FALSE;
3647
3648 h = *sym_hash;
3649 while (h->root.type == bfd_link_hash_indirect
3650 || h->root.type == bfd_link_hash_warning)
3651 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3652
3653 /* Remember the old alignment if this is a common symbol, so
3654 that we don't reduce the alignment later on. We can't
3655 check later, because _bfd_generic_link_add_one_symbol
3656 will set a default for the alignment which we want to
3657 override. We also remember the old bfd where the existing
3658 definition comes from. */
3659 switch (h->root.type)
3660 {
3661 default:
3662 break;
3663
3664 case bfd_link_hash_defined:
3665 case bfd_link_hash_defweak:
3666 old_bfd = h->root.u.def.section->owner;
3667 break;
3668
3669 case bfd_link_hash_common:
3670 old_bfd = h->root.u.c.p->section->owner;
3671 old_alignment = h->root.u.c.p->alignment_power;
3672 break;
3673 }
3674
3675 if (elf_tdata (abfd)->verdef != NULL
3676 && ! override
3677 && vernum > 1
3678 && definition)
3679 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
3680 }
3681
3682 if (! (_bfd_generic_link_add_one_symbol
3683 (info, abfd, name, flags, sec, value, NULL, FALSE, collect,
3684 (struct bfd_link_hash_entry **) sym_hash)))
3685 goto error_free_vers;
3686
3687 h = *sym_hash;
3688 while (h->root.type == bfd_link_hash_indirect
3689 || h->root.type == bfd_link_hash_warning)
3690 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3691 *sym_hash = h;
3692
3693 new_weakdef = FALSE;
3694 if (dynamic
3695 && definition
3696 && (flags & BSF_WEAK) != 0
3697 && ELF_ST_TYPE (isym->st_info) != STT_FUNC
3698 && is_elf_hash_table (hash_table)
f6e332e6 3699 && h->u.weakdef == NULL)
4ad4eba5
AM
3700 {
3701 /* Keep a list of all weak defined non function symbols from
3702 a dynamic object, using the weakdef field. Later in this
3703 function we will set the weakdef field to the correct
3704 value. We only put non-function symbols from dynamic
3705 objects on this list, because that happens to be the only
3706 time we need to know the normal symbol corresponding to a
3707 weak symbol, and the information is time consuming to
3708 figure out. If the weakdef field is not already NULL,
3709 then this symbol was already defined by some previous
3710 dynamic object, and we will be using that previous
3711 definition anyhow. */
3712
f6e332e6 3713 h->u.weakdef = weaks;
4ad4eba5
AM
3714 weaks = h;
3715 new_weakdef = TRUE;
3716 }
3717
3718 /* Set the alignment of a common symbol. */
3719 if (isym->st_shndx == SHN_COMMON
3720 && h->root.type == bfd_link_hash_common)
3721 {
3722 unsigned int align;
3723
3724 align = bfd_log2 (isym->st_value);
3725 if (align > old_alignment
3726 /* Permit an alignment power of zero if an alignment of one
3727 is specified and no other alignments have been specified. */
3728 || (isym->st_value == 1 && old_alignment == 0))
3729 h->root.u.c.p->alignment_power = align;
3730 else
3731 h->root.u.c.p->alignment_power = old_alignment;
3732 }
3733
3734 if (is_elf_hash_table (hash_table))
3735 {
4ad4eba5 3736 bfd_boolean dynsym;
4ad4eba5
AM
3737
3738 /* Check the alignment when a common symbol is involved. This
3739 can change when a common symbol is overridden by a normal
3740 definition or a common symbol is ignored due to the old
3741 normal definition. We need to make sure the maximum
3742 alignment is maintained. */
3743 if ((old_alignment || isym->st_shndx == SHN_COMMON)
3744 && h->root.type != bfd_link_hash_common)
3745 {
3746 unsigned int common_align;
3747 unsigned int normal_align;
3748 unsigned int symbol_align;
3749 bfd *normal_bfd;
3750 bfd *common_bfd;
3751
3752 symbol_align = ffs (h->root.u.def.value) - 1;
3753 if (h->root.u.def.section->owner != NULL
3754 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3755 {
3756 normal_align = h->root.u.def.section->alignment_power;
3757 if (normal_align > symbol_align)
3758 normal_align = symbol_align;
3759 }
3760 else
3761 normal_align = symbol_align;
3762
3763 if (old_alignment)
3764 {
3765 common_align = old_alignment;
3766 common_bfd = old_bfd;
3767 normal_bfd = abfd;
3768 }
3769 else
3770 {
3771 common_align = bfd_log2 (isym->st_value);
3772 common_bfd = abfd;
3773 normal_bfd = old_bfd;
3774 }
3775
3776 if (normal_align < common_align)
3777 (*_bfd_error_handler)
d003868e
AM
3778 (_("Warning: alignment %u of symbol `%s' in %B"
3779 " is smaller than %u in %B"),
3780 normal_bfd, common_bfd,
3781 1 << normal_align, name, 1 << common_align);
4ad4eba5
AM
3782 }
3783
3784 /* Remember the symbol size and type. */
3785 if (isym->st_size != 0
3786 && (definition || h->size == 0))
3787 {
3788 if (h->size != 0 && h->size != isym->st_size && ! size_change_ok)
3789 (*_bfd_error_handler)
d003868e
AM
3790 (_("Warning: size of symbol `%s' changed"
3791 " from %lu in %B to %lu in %B"),
3792 old_bfd, abfd,
4ad4eba5 3793 name, (unsigned long) h->size,
d003868e 3794 (unsigned long) isym->st_size);
4ad4eba5
AM
3795
3796 h->size = isym->st_size;
3797 }
3798
3799 /* If this is a common symbol, then we always want H->SIZE
3800 to be the size of the common symbol. The code just above
3801 won't fix the size if a common symbol becomes larger. We
3802 don't warn about a size change here, because that is
3803 covered by --warn-common. */
3804 if (h->root.type == bfd_link_hash_common)
3805 h->size = h->root.u.c.size;
3806
3807 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
3808 && (definition || h->type == STT_NOTYPE))
3809 {
3810 if (h->type != STT_NOTYPE
3811 && h->type != ELF_ST_TYPE (isym->st_info)
3812 && ! type_change_ok)
3813 (*_bfd_error_handler)
d003868e
AM
3814 (_("Warning: type of symbol `%s' changed"
3815 " from %d to %d in %B"),
3816 abfd, name, h->type, ELF_ST_TYPE (isym->st_info));
4ad4eba5
AM
3817
3818 h->type = ELF_ST_TYPE (isym->st_info);
3819 }
3820
3821 /* If st_other has a processor-specific meaning, specific
3822 code might be needed here. We never merge the visibility
3823 attribute with the one from a dynamic object. */
3824 if (bed->elf_backend_merge_symbol_attribute)
3825 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
3826 dynamic);
3827
b58f81ae
DJ
3828 /* If this symbol has default visibility and the user has requested
3829 we not re-export it, then mark it as hidden. */
3830 if (definition && !dynamic
3831 && (abfd->no_export
3832 || (abfd->my_archive && abfd->my_archive->no_export))
3833 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
3834 isym->st_other = STV_HIDDEN | (isym->st_other & ~ ELF_ST_VISIBILITY (-1));
3835
4ad4eba5
AM
3836 if (isym->st_other != 0 && !dynamic)
3837 {
3838 unsigned char hvis, symvis, other, nvis;
3839
3840 /* Take the balance of OTHER from the definition. */
3841 other = (definition ? isym->st_other : h->other);
3842 other &= ~ ELF_ST_VISIBILITY (-1);
3843
3844 /* Combine visibilities, using the most constraining one. */
3845 hvis = ELF_ST_VISIBILITY (h->other);
3846 symvis = ELF_ST_VISIBILITY (isym->st_other);
3847 if (! hvis)
3848 nvis = symvis;
3849 else if (! symvis)
3850 nvis = hvis;
3851 else
3852 nvis = hvis < symvis ? hvis : symvis;
3853
3854 h->other = other | nvis;
3855 }
3856
3857 /* Set a flag in the hash table entry indicating the type of
3858 reference or definition we just found. Keep a count of
3859 the number of dynamic symbols we find. A dynamic symbol
3860 is one which is referenced or defined by both a regular
3861 object and a shared object. */
4ad4eba5
AM
3862 dynsym = FALSE;
3863 if (! dynamic)
3864 {
3865 if (! definition)
3866 {
f5385ebf 3867 h->ref_regular = 1;
4ad4eba5 3868 if (bind != STB_WEAK)
f5385ebf 3869 h->ref_regular_nonweak = 1;
4ad4eba5
AM
3870 }
3871 else
f5385ebf 3872 h->def_regular = 1;
4ad4eba5 3873 if (! info->executable
f5385ebf
AM
3874 || h->def_dynamic
3875 || h->ref_dynamic)
4ad4eba5
AM
3876 dynsym = TRUE;
3877 }
3878 else
3879 {
3880 if (! definition)
f5385ebf 3881 h->ref_dynamic = 1;
4ad4eba5 3882 else
f5385ebf
AM
3883 h->def_dynamic = 1;
3884 if (h->def_regular
3885 || h->ref_regular
f6e332e6 3886 || (h->u.weakdef != NULL
4ad4eba5 3887 && ! new_weakdef
f6e332e6 3888 && h->u.weakdef->dynindx != -1))
4ad4eba5
AM
3889 dynsym = TRUE;
3890 }
3891
4ad4eba5
AM
3892 /* Check to see if we need to add an indirect symbol for
3893 the default name. */
3894 if (definition || h->root.type == bfd_link_hash_common)
3895 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
3896 &sec, &value, &dynsym,
3897 override))
3898 goto error_free_vers;
3899
3900 if (definition && !dynamic)
3901 {
3902 char *p = strchr (name, ELF_VER_CHR);
3903 if (p != NULL && p[1] != ELF_VER_CHR)
3904 {
3905 /* Queue non-default versions so that .symver x, x@FOO
3906 aliases can be checked. */
3907 if (! nondeflt_vers)
3908 {
3909 amt = (isymend - isym + 1)
3910 * sizeof (struct elf_link_hash_entry *);
3911 nondeflt_vers = bfd_malloc (amt);
3912 }
3913 nondeflt_vers [nondeflt_vers_cnt++] = h;
3914 }
3915 }
3916
3917 if (dynsym && h->dynindx == -1)
3918 {
c152c796 3919 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4ad4eba5 3920 goto error_free_vers;
f6e332e6 3921 if (h->u.weakdef != NULL
4ad4eba5 3922 && ! new_weakdef
f6e332e6 3923 && h->u.weakdef->dynindx == -1)
4ad4eba5 3924 {
f6e332e6 3925 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4ad4eba5
AM
3926 goto error_free_vers;
3927 }
3928 }
3929 else if (dynsym && h->dynindx != -1)
3930 /* If the symbol already has a dynamic index, but
3931 visibility says it should not be visible, turn it into
3932 a local symbol. */
3933 switch (ELF_ST_VISIBILITY (h->other))
3934 {
3935 case STV_INTERNAL:
3936 case STV_HIDDEN:
3937 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
3938 dynsym = FALSE;
3939 break;
3940 }
3941
3942 if (!add_needed
3943 && definition
3944 && dynsym
f5385ebf 3945 && h->ref_regular)
4ad4eba5
AM
3946 {
3947 int ret;
3948 const char *soname = elf_dt_name (abfd);
3949
3950 /* A symbol from a library loaded via DT_NEEDED of some
3951 other library is referenced by a regular object.
e56f61be
L
3952 Add a DT_NEEDED entry for it. Issue an error if
3953 --no-add-needed is used. */
3954 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
3955 {
3956 (*_bfd_error_handler)
3957 (_("%s: invalid DSO for symbol `%s' definition"),
d003868e 3958 abfd, name);
e56f61be
L
3959 bfd_set_error (bfd_error_bad_value);
3960 goto error_free_vers;
3961 }
3962
a5db907e
AM
3963 elf_dyn_lib_class (abfd) &= ~DYN_AS_NEEDED;
3964
4ad4eba5 3965 add_needed = TRUE;
7e9f0867 3966 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4ad4eba5
AM
3967 if (ret < 0)
3968 goto error_free_vers;
3969
3970 BFD_ASSERT (ret == 0);
3971 }
3972 }
3973 }
3974
3975 /* Now that all the symbols from this input file are created, handle
3976 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
3977 if (nondeflt_vers != NULL)
3978 {
3979 bfd_size_type cnt, symidx;
3980
3981 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
3982 {
3983 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
3984 char *shortname, *p;
3985
3986 p = strchr (h->root.root.string, ELF_VER_CHR);
3987 if (p == NULL
3988 || (h->root.type != bfd_link_hash_defined
3989 && h->root.type != bfd_link_hash_defweak))
3990 continue;
3991
3992 amt = p - h->root.root.string;
3993 shortname = bfd_malloc (amt + 1);
3994 memcpy (shortname, h->root.root.string, amt);
3995 shortname[amt] = '\0';
3996
3997 hi = (struct elf_link_hash_entry *)
3998 bfd_link_hash_lookup (&hash_table->root, shortname,
3999 FALSE, FALSE, FALSE);
4000 if (hi != NULL
4001 && hi->root.type == h->root.type
4002 && hi->root.u.def.value == h->root.u.def.value
4003 && hi->root.u.def.section == h->root.u.def.section)
4004 {
4005 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4006 hi->root.type = bfd_link_hash_indirect;
4007 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4008 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
4009 sym_hash = elf_sym_hashes (abfd);
4010 if (sym_hash)
4011 for (symidx = 0; symidx < extsymcount; ++symidx)
4012 if (sym_hash[symidx] == hi)
4013 {
4014 sym_hash[symidx] = h;
4015 break;
4016 }
4017 }
4018 free (shortname);
4019 }
4020 free (nondeflt_vers);
4021 nondeflt_vers = NULL;
4022 }
4023
4024 if (extversym != NULL)
4025 {
4026 free (extversym);
4027 extversym = NULL;
4028 }
4029
4030 if (isymbuf != NULL)
4031 free (isymbuf);
4032 isymbuf = NULL;
4033
4034 /* Now set the weakdefs field correctly for all the weak defined
4035 symbols we found. The only way to do this is to search all the
4036 symbols. Since we only need the information for non functions in
4037 dynamic objects, that's the only time we actually put anything on
4038 the list WEAKS. We need this information so that if a regular
4039 object refers to a symbol defined weakly in a dynamic object, the
4040 real symbol in the dynamic object is also put in the dynamic
4041 symbols; we also must arrange for both symbols to point to the
4042 same memory location. We could handle the general case of symbol
4043 aliasing, but a general symbol alias can only be generated in
4044 assembler code, handling it correctly would be very time
4045 consuming, and other ELF linkers don't handle general aliasing
4046 either. */
4047 if (weaks != NULL)
4048 {
4049 struct elf_link_hash_entry **hpp;
4050 struct elf_link_hash_entry **hppend;
4051 struct elf_link_hash_entry **sorted_sym_hash;
4052 struct elf_link_hash_entry *h;
4053 size_t sym_count;
4054
4055 /* Since we have to search the whole symbol list for each weak
4056 defined symbol, search time for N weak defined symbols will be
4057 O(N^2). Binary search will cut it down to O(NlogN). */
4058 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4059 sorted_sym_hash = bfd_malloc (amt);
4060 if (sorted_sym_hash == NULL)
4061 goto error_return;
4062 sym_hash = sorted_sym_hash;
4063 hpp = elf_sym_hashes (abfd);
4064 hppend = hpp + extsymcount;
4065 sym_count = 0;
4066 for (; hpp < hppend; hpp++)
4067 {
4068 h = *hpp;
4069 if (h != NULL
4070 && h->root.type == bfd_link_hash_defined
4071 && h->type != STT_FUNC)
4072 {
4073 *sym_hash = h;
4074 sym_hash++;
4075 sym_count++;
4076 }
4077 }
4078
4079 qsort (sorted_sym_hash, sym_count,
4080 sizeof (struct elf_link_hash_entry *),
4081 elf_sort_symbol);
4082
4083 while (weaks != NULL)
4084 {
4085 struct elf_link_hash_entry *hlook;
4086 asection *slook;
4087 bfd_vma vlook;
4088 long ilook;
4089 size_t i, j, idx;
4090
4091 hlook = weaks;
f6e332e6
AM
4092 weaks = hlook->u.weakdef;
4093 hlook->u.weakdef = NULL;
4ad4eba5
AM
4094
4095 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4096 || hlook->root.type == bfd_link_hash_defweak
4097 || hlook->root.type == bfd_link_hash_common
4098 || hlook->root.type == bfd_link_hash_indirect);
4099 slook = hlook->root.u.def.section;
4100 vlook = hlook->root.u.def.value;
4101
4102 ilook = -1;
4103 i = 0;
4104 j = sym_count;
4105 while (i < j)
4106 {
4107 bfd_signed_vma vdiff;
4108 idx = (i + j) / 2;
4109 h = sorted_sym_hash [idx];
4110 vdiff = vlook - h->root.u.def.value;
4111 if (vdiff < 0)
4112 j = idx;
4113 else if (vdiff > 0)
4114 i = idx + 1;
4115 else
4116 {
a9b881be 4117 long sdiff = slook->id - h->root.u.def.section->id;
4ad4eba5
AM
4118 if (sdiff < 0)
4119 j = idx;
4120 else if (sdiff > 0)
4121 i = idx + 1;
4122 else
4123 {
4124 ilook = idx;
4125 break;
4126 }
4127 }
4128 }
4129
4130 /* We didn't find a value/section match. */
4131 if (ilook == -1)
4132 continue;
4133
4134 for (i = ilook; i < sym_count; i++)
4135 {
4136 h = sorted_sym_hash [i];
4137
4138 /* Stop if value or section doesn't match. */
4139 if (h->root.u.def.value != vlook
4140 || h->root.u.def.section != slook)
4141 break;
4142 else if (h != hlook)
4143 {
f6e332e6 4144 hlook->u.weakdef = h;
4ad4eba5
AM
4145
4146 /* If the weak definition is in the list of dynamic
4147 symbols, make sure the real definition is put
4148 there as well. */
4149 if (hlook->dynindx != -1 && h->dynindx == -1)
4150 {
c152c796 4151 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4ad4eba5
AM
4152 goto error_return;
4153 }
4154
4155 /* If the real definition is in the list of dynamic
4156 symbols, make sure the weak definition is put
4157 there as well. If we don't do this, then the
4158 dynamic loader might not merge the entries for the
4159 real definition and the weak definition. */
4160 if (h->dynindx != -1 && hlook->dynindx == -1)
4161 {
c152c796 4162 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4ad4eba5
AM
4163 goto error_return;
4164 }
4165 break;
4166 }
4167 }
4168 }
4169
4170 free (sorted_sym_hash);
4171 }
4172
85fbca6a
NC
4173 check_directives = get_elf_backend_data (abfd)->check_directives;
4174 if (check_directives)
4175 check_directives (abfd, info);
4176
4ad4eba5
AM
4177 /* If this object is the same format as the output object, and it is
4178 not a shared library, then let the backend look through the
4179 relocs.
4180
4181 This is required to build global offset table entries and to
4182 arrange for dynamic relocs. It is not required for the
4183 particular common case of linking non PIC code, even when linking
4184 against shared libraries, but unfortunately there is no way of
4185 knowing whether an object file has been compiled PIC or not.
4186 Looking through the relocs is not particularly time consuming.
4187 The problem is that we must either (1) keep the relocs in memory,
4188 which causes the linker to require additional runtime memory or
4189 (2) read the relocs twice from the input file, which wastes time.
4190 This would be a good case for using mmap.
4191
4192 I have no idea how to handle linking PIC code into a file of a
4193 different format. It probably can't be done. */
4194 check_relocs = get_elf_backend_data (abfd)->check_relocs;
4195 if (! dynamic
4196 && is_elf_hash_table (hash_table)
4197 && hash_table->root.creator == abfd->xvec
4198 && check_relocs != NULL)
4199 {
4200 asection *o;
4201
4202 for (o = abfd->sections; o != NULL; o = o->next)
4203 {
4204 Elf_Internal_Rela *internal_relocs;
4205 bfd_boolean ok;
4206
4207 if ((o->flags & SEC_RELOC) == 0
4208 || o->reloc_count == 0
4209 || ((info->strip == strip_all || info->strip == strip_debugger)
4210 && (o->flags & SEC_DEBUGGING) != 0)
4211 || bfd_is_abs_section (o->output_section))
4212 continue;
4213
4214 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4215 info->keep_memory);
4216 if (internal_relocs == NULL)
4217 goto error_return;
4218
4219 ok = (*check_relocs) (abfd, info, o, internal_relocs);
4220
4221 if (elf_section_data (o)->relocs != internal_relocs)
4222 free (internal_relocs);
4223
4224 if (! ok)
4225 goto error_return;
4226 }
4227 }
4228
4229 /* If this is a non-traditional link, try to optimize the handling
4230 of the .stab/.stabstr sections. */
4231 if (! dynamic
4232 && ! info->traditional_format
4233 && is_elf_hash_table (hash_table)
4234 && (info->strip != strip_all && info->strip != strip_debugger))
4235 {
4236 asection *stabstr;
4237
4238 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4239 if (stabstr != NULL)
4240 {
4241 bfd_size_type string_offset = 0;
4242 asection *stab;
4243
4244 for (stab = abfd->sections; stab; stab = stab->next)
4245 if (strncmp (".stab", stab->name, 5) == 0
4246 && (!stab->name[5] ||
4247 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4248 && (stab->flags & SEC_MERGE) == 0
4249 && !bfd_is_abs_section (stab->output_section))
4250 {
4251 struct bfd_elf_section_data *secdata;
4252
4253 secdata = elf_section_data (stab);
4254 if (! _bfd_link_section_stabs (abfd,
3722b82f 4255 &hash_table->stab_info,
4ad4eba5
AM
4256 stab, stabstr,
4257 &secdata->sec_info,
4258 &string_offset))
4259 goto error_return;
4260 if (secdata->sec_info)
4261 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4262 }
4263 }
4264 }
4265
4ad4eba5
AM
4266 if (is_elf_hash_table (hash_table))
4267 {
4268 /* Add this bfd to the loaded list. */
4269 struct elf_link_loaded_list *n;
4270
4271 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4272 if (n == NULL)
4273 goto error_return;
4274 n->abfd = abfd;
4275 n->next = hash_table->loaded;
4276 hash_table->loaded = n;
4277 }
4278
4279 return TRUE;
4280
4281 error_free_vers:
4282 if (nondeflt_vers != NULL)
4283 free (nondeflt_vers);
4284 if (extversym != NULL)
4285 free (extversym);
4286 error_free_sym:
4287 if (isymbuf != NULL)
4288 free (isymbuf);
4289 error_return:
4290 return FALSE;
4291}
4292
8387904d
AM
4293/* Return the linker hash table entry of a symbol that might be
4294 satisfied by an archive symbol. Return -1 on error. */
4295
4296struct elf_link_hash_entry *
4297_bfd_elf_archive_symbol_lookup (bfd *abfd,
4298 struct bfd_link_info *info,
4299 const char *name)
4300{
4301 struct elf_link_hash_entry *h;
4302 char *p, *copy;
4303 size_t len, first;
4304
4305 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4306 if (h != NULL)
4307 return h;
4308
4309 /* If this is a default version (the name contains @@), look up the
4310 symbol again with only one `@' as well as without the version.
4311 The effect is that references to the symbol with and without the
4312 version will be matched by the default symbol in the archive. */
4313
4314 p = strchr (name, ELF_VER_CHR);
4315 if (p == NULL || p[1] != ELF_VER_CHR)
4316 return h;
4317
4318 /* First check with only one `@'. */
4319 len = strlen (name);
4320 copy = bfd_alloc (abfd, len);
4321 if (copy == NULL)
4322 return (struct elf_link_hash_entry *) 0 - 1;
4323
4324 first = p - name + 1;
4325 memcpy (copy, name, first);
4326 memcpy (copy + first, name + first + 1, len - first);
4327
4328 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4329 if (h == NULL)
4330 {
4331 /* We also need to check references to the symbol without the
4332 version. */
4333 copy[first - 1] = '\0';
4334 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4335 FALSE, FALSE, FALSE);
4336 }
4337
4338 bfd_release (abfd, copy);
4339 return h;
4340}
4341
0ad989f9
L
4342/* Add symbols from an ELF archive file to the linker hash table. We
4343 don't use _bfd_generic_link_add_archive_symbols because of a
4344 problem which arises on UnixWare. The UnixWare libc.so is an
4345 archive which includes an entry libc.so.1 which defines a bunch of
4346 symbols. The libc.so archive also includes a number of other
4347 object files, which also define symbols, some of which are the same
4348 as those defined in libc.so.1. Correct linking requires that we
4349 consider each object file in turn, and include it if it defines any
4350 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4351 this; it looks through the list of undefined symbols, and includes
4352 any object file which defines them. When this algorithm is used on
4353 UnixWare, it winds up pulling in libc.so.1 early and defining a
4354 bunch of symbols. This means that some of the other objects in the
4355 archive are not included in the link, which is incorrect since they
4356 precede libc.so.1 in the archive.
4357
4358 Fortunately, ELF archive handling is simpler than that done by
4359 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4360 oddities. In ELF, if we find a symbol in the archive map, and the
4361 symbol is currently undefined, we know that we must pull in that
4362 object file.
4363
4364 Unfortunately, we do have to make multiple passes over the symbol
4365 table until nothing further is resolved. */
4366
4ad4eba5
AM
4367static bfd_boolean
4368elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
0ad989f9
L
4369{
4370 symindex c;
4371 bfd_boolean *defined = NULL;
4372 bfd_boolean *included = NULL;
4373 carsym *symdefs;
4374 bfd_boolean loop;
4375 bfd_size_type amt;
8387904d
AM
4376 const struct elf_backend_data *bed;
4377 struct elf_link_hash_entry * (*archive_symbol_lookup)
4378 (bfd *, struct bfd_link_info *, const char *);
0ad989f9
L
4379
4380 if (! bfd_has_map (abfd))
4381 {
4382 /* An empty archive is a special case. */
4383 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4384 return TRUE;
4385 bfd_set_error (bfd_error_no_armap);
4386 return FALSE;
4387 }
4388
4389 /* Keep track of all symbols we know to be already defined, and all
4390 files we know to be already included. This is to speed up the
4391 second and subsequent passes. */
4392 c = bfd_ardata (abfd)->symdef_count;
4393 if (c == 0)
4394 return TRUE;
4395 amt = c;
4396 amt *= sizeof (bfd_boolean);
4397 defined = bfd_zmalloc (amt);
4398 included = bfd_zmalloc (amt);
4399 if (defined == NULL || included == NULL)
4400 goto error_return;
4401
4402 symdefs = bfd_ardata (abfd)->symdefs;
8387904d
AM
4403 bed = get_elf_backend_data (abfd);
4404 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
0ad989f9
L
4405
4406 do
4407 {
4408 file_ptr last;
4409 symindex i;
4410 carsym *symdef;
4411 carsym *symdefend;
4412
4413 loop = FALSE;
4414 last = -1;
4415
4416 symdef = symdefs;
4417 symdefend = symdef + c;
4418 for (i = 0; symdef < symdefend; symdef++, i++)
4419 {
4420 struct elf_link_hash_entry *h;
4421 bfd *element;
4422 struct bfd_link_hash_entry *undefs_tail;
4423 symindex mark;
4424
4425 if (defined[i] || included[i])
4426 continue;
4427 if (symdef->file_offset == last)
4428 {
4429 included[i] = TRUE;
4430 continue;
4431 }
4432
8387904d
AM
4433 h = archive_symbol_lookup (abfd, info, symdef->name);
4434 if (h == (struct elf_link_hash_entry *) 0 - 1)
4435 goto error_return;
0ad989f9
L
4436
4437 if (h == NULL)
4438 continue;
4439
4440 if (h->root.type == bfd_link_hash_common)
4441 {
4442 /* We currently have a common symbol. The archive map contains
4443 a reference to this symbol, so we may want to include it. We
4444 only want to include it however, if this archive element
4445 contains a definition of the symbol, not just another common
4446 declaration of it.
4447
4448 Unfortunately some archivers (including GNU ar) will put
4449 declarations of common symbols into their archive maps, as
4450 well as real definitions, so we cannot just go by the archive
4451 map alone. Instead we must read in the element's symbol
4452 table and check that to see what kind of symbol definition
4453 this is. */
4454 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
4455 continue;
4456 }
4457 else if (h->root.type != bfd_link_hash_undefined)
4458 {
4459 if (h->root.type != bfd_link_hash_undefweak)
4460 defined[i] = TRUE;
4461 continue;
4462 }
4463
4464 /* We need to include this archive member. */
4465 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
4466 if (element == NULL)
4467 goto error_return;
4468
4469 if (! bfd_check_format (element, bfd_object))
4470 goto error_return;
4471
4472 /* Doublecheck that we have not included this object
4473 already--it should be impossible, but there may be
4474 something wrong with the archive. */
4475 if (element->archive_pass != 0)
4476 {
4477 bfd_set_error (bfd_error_bad_value);
4478 goto error_return;
4479 }
4480 element->archive_pass = 1;
4481
4482 undefs_tail = info->hash->undefs_tail;
4483
4484 if (! (*info->callbacks->add_archive_element) (info, element,
4485 symdef->name))
4486 goto error_return;
4487 if (! bfd_link_add_symbols (element, info))
4488 goto error_return;
4489
4490 /* If there are any new undefined symbols, we need to make
4491 another pass through the archive in order to see whether
4492 they can be defined. FIXME: This isn't perfect, because
4493 common symbols wind up on undefs_tail and because an
4494 undefined symbol which is defined later on in this pass
4495 does not require another pass. This isn't a bug, but it
4496 does make the code less efficient than it could be. */
4497 if (undefs_tail != info->hash->undefs_tail)
4498 loop = TRUE;
4499
4500 /* Look backward to mark all symbols from this object file
4501 which we have already seen in this pass. */
4502 mark = i;
4503 do
4504 {
4505 included[mark] = TRUE;
4506 if (mark == 0)
4507 break;
4508 --mark;
4509 }
4510 while (symdefs[mark].file_offset == symdef->file_offset);
4511
4512 /* We mark subsequent symbols from this object file as we go
4513 on through the loop. */
4514 last = symdef->file_offset;
4515 }
4516 }
4517 while (loop);
4518
4519 free (defined);
4520 free (included);
4521
4522 return TRUE;
4523
4524 error_return:
4525 if (defined != NULL)
4526 free (defined);
4527 if (included != NULL)
4528 free (included);
4529 return FALSE;
4530}
4ad4eba5
AM
4531
4532/* Given an ELF BFD, add symbols to the global hash table as
4533 appropriate. */
4534
4535bfd_boolean
4536bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
4537{
4538 switch (bfd_get_format (abfd))
4539 {
4540 case bfd_object:
4541 return elf_link_add_object_symbols (abfd, info);
4542 case bfd_archive:
4543 return elf_link_add_archive_symbols (abfd, info);
4544 default:
4545 bfd_set_error (bfd_error_wrong_format);
4546 return FALSE;
4547 }
4548}
5a580b3a
AM
4549\f
4550/* This function will be called though elf_link_hash_traverse to store
4551 all hash value of the exported symbols in an array. */
4552
4553static bfd_boolean
4554elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
4555{
4556 unsigned long **valuep = data;
4557 const char *name;
4558 char *p;
4559 unsigned long ha;
4560 char *alc = NULL;
4561
4562 if (h->root.type == bfd_link_hash_warning)
4563 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4564
4565 /* Ignore indirect symbols. These are added by the versioning code. */
4566 if (h->dynindx == -1)
4567 return TRUE;
4568
4569 name = h->root.root.string;
4570 p = strchr (name, ELF_VER_CHR);
4571 if (p != NULL)
4572 {
4573 alc = bfd_malloc (p - name + 1);
4574 memcpy (alc, name, p - name);
4575 alc[p - name] = '\0';
4576 name = alc;
4577 }
4578
4579 /* Compute the hash value. */
4580 ha = bfd_elf_hash (name);
4581
4582 /* Store the found hash value in the array given as the argument. */
4583 *(*valuep)++ = ha;
4584
4585 /* And store it in the struct so that we can put it in the hash table
4586 later. */
f6e332e6 4587 h->u.elf_hash_value = ha;
5a580b3a
AM
4588
4589 if (alc != NULL)
4590 free (alc);
4591
4592 return TRUE;
4593}
4594
4595/* Array used to determine the number of hash table buckets to use
4596 based on the number of symbols there are. If there are fewer than
4597 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
4598 fewer than 37 we use 17 buckets, and so forth. We never use more
4599 than 32771 buckets. */
4600
4601static const size_t elf_buckets[] =
4602{
4603 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
4604 16411, 32771, 0
4605};
4606
4607/* Compute bucket count for hashing table. We do not use a static set
4608 of possible tables sizes anymore. Instead we determine for all
4609 possible reasonable sizes of the table the outcome (i.e., the
4610 number of collisions etc) and choose the best solution. The
4611 weighting functions are not too simple to allow the table to grow
4612 without bounds. Instead one of the weighting factors is the size.
4613 Therefore the result is always a good payoff between few collisions
4614 (= short chain lengths) and table size. */
4615static size_t
4616compute_bucket_count (struct bfd_link_info *info)
4617{
4618 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
4619 size_t best_size = 0;
4620 unsigned long int *hashcodes;
4621 unsigned long int *hashcodesp;
4622 unsigned long int i;
4623 bfd_size_type amt;
4624
4625 /* Compute the hash values for all exported symbols. At the same
4626 time store the values in an array so that we could use them for
4627 optimizations. */
4628 amt = dynsymcount;
4629 amt *= sizeof (unsigned long int);
4630 hashcodes = bfd_malloc (amt);
4631 if (hashcodes == NULL)
4632 return 0;
4633 hashcodesp = hashcodes;
4634
4635 /* Put all hash values in HASHCODES. */
4636 elf_link_hash_traverse (elf_hash_table (info),
4637 elf_collect_hash_codes, &hashcodesp);
4638
4639 /* We have a problem here. The following code to optimize the table
4640 size requires an integer type with more the 32 bits. If
4641 BFD_HOST_U_64_BIT is set we know about such a type. */
4642#ifdef BFD_HOST_U_64_BIT
4643 if (info->optimize)
4644 {
4645 unsigned long int nsyms = hashcodesp - hashcodes;
4646 size_t minsize;
4647 size_t maxsize;
4648 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
4649 unsigned long int *counts ;
4650 bfd *dynobj = elf_hash_table (info)->dynobj;
4651 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
4652
4653 /* Possible optimization parameters: if we have NSYMS symbols we say
4654 that the hashing table must at least have NSYMS/4 and at most
4655 2*NSYMS buckets. */
4656 minsize = nsyms / 4;
4657 if (minsize == 0)
4658 minsize = 1;
4659 best_size = maxsize = nsyms * 2;
4660
4661 /* Create array where we count the collisions in. We must use bfd_malloc
4662 since the size could be large. */
4663 amt = maxsize;
4664 amt *= sizeof (unsigned long int);
4665 counts = bfd_malloc (amt);
4666 if (counts == NULL)
4667 {
4668 free (hashcodes);
4669 return 0;
4670 }
4671
4672 /* Compute the "optimal" size for the hash table. The criteria is a
4673 minimal chain length. The minor criteria is (of course) the size
4674 of the table. */
4675 for (i = minsize; i < maxsize; ++i)
4676 {
4677 /* Walk through the array of hashcodes and count the collisions. */
4678 BFD_HOST_U_64_BIT max;
4679 unsigned long int j;
4680 unsigned long int fact;
4681
4682 memset (counts, '\0', i * sizeof (unsigned long int));
4683
4684 /* Determine how often each hash bucket is used. */
4685 for (j = 0; j < nsyms; ++j)
4686 ++counts[hashcodes[j] % i];
4687
4688 /* For the weight function we need some information about the
4689 pagesize on the target. This is information need not be 100%
4690 accurate. Since this information is not available (so far) we
4691 define it here to a reasonable default value. If it is crucial
4692 to have a better value some day simply define this value. */
4693# ifndef BFD_TARGET_PAGESIZE
4694# define BFD_TARGET_PAGESIZE (4096)
4695# endif
4696
4697 /* We in any case need 2 + NSYMS entries for the size values and
4698 the chains. */
4699 max = (2 + nsyms) * (bed->s->arch_size / 8);
4700
4701# if 1
4702 /* Variant 1: optimize for short chains. We add the squares
4703 of all the chain lengths (which favors many small chain
4704 over a few long chains). */
4705 for (j = 0; j < i; ++j)
4706 max += counts[j] * counts[j];
4707
4708 /* This adds penalties for the overall size of the table. */
4709 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4710 max *= fact * fact;
4711# else
4712 /* Variant 2: Optimize a lot more for small table. Here we
4713 also add squares of the size but we also add penalties for
4714 empty slots (the +1 term). */
4715 for (j = 0; j < i; ++j)
4716 max += (1 + counts[j]) * (1 + counts[j]);
4717
4718 /* The overall size of the table is considered, but not as
4719 strong as in variant 1, where it is squared. */
4720 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4721 max *= fact;
4722# endif
4723
4724 /* Compare with current best results. */
4725 if (max < best_chlen)
4726 {
4727 best_chlen = max;
4728 best_size = i;
4729 }
4730 }
4731
4732 free (counts);
4733 }
4734 else
4735#endif /* defined (BFD_HOST_U_64_BIT) */
4736 {
4737 /* This is the fallback solution if no 64bit type is available or if we
4738 are not supposed to spend much time on optimizations. We select the
4739 bucket count using a fixed set of numbers. */
4740 for (i = 0; elf_buckets[i] != 0; i++)
4741 {
4742 best_size = elf_buckets[i];
4743 if (dynsymcount < elf_buckets[i + 1])
4744 break;
4745 }
4746 }
4747
4748 /* Free the arrays we needed. */
4749 free (hashcodes);
4750
4751 return best_size;
4752}
4753
4754/* Set up the sizes and contents of the ELF dynamic sections. This is
4755 called by the ELF linker emulation before_allocation routine. We
4756 must set the sizes of the sections before the linker sets the
4757 addresses of the various sections. */
4758
4759bfd_boolean
4760bfd_elf_size_dynamic_sections (bfd *output_bfd,
4761 const char *soname,
4762 const char *rpath,
4763 const char *filter_shlib,
4764 const char * const *auxiliary_filters,
4765 struct bfd_link_info *info,
4766 asection **sinterpptr,
4767 struct bfd_elf_version_tree *verdefs)
4768{
4769 bfd_size_type soname_indx;
4770 bfd *dynobj;
4771 const struct elf_backend_data *bed;
4772 struct elf_assign_sym_version_info asvinfo;
4773
4774 *sinterpptr = NULL;
4775
4776 soname_indx = (bfd_size_type) -1;
4777
4778 if (!is_elf_hash_table (info->hash))
4779 return TRUE;
4780
8c37241b 4781 elf_tdata (output_bfd)->relro = info->relro;
5a580b3a
AM
4782 if (info->execstack)
4783 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
4784 else if (info->noexecstack)
4785 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
4786 else
4787 {
4788 bfd *inputobj;
4789 asection *notesec = NULL;
4790 int exec = 0;
4791
4792 for (inputobj = info->input_bfds;
4793 inputobj;
4794 inputobj = inputobj->link_next)
4795 {
4796 asection *s;
4797
4798 if (inputobj->flags & DYNAMIC)
4799 continue;
4800 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
4801 if (s)
4802 {
4803 if (s->flags & SEC_CODE)
4804 exec = PF_X;
4805 notesec = s;
4806 }
4807 else
4808 exec = PF_X;
4809 }
4810 if (notesec)
4811 {
4812 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
4813 if (exec && info->relocatable
4814 && notesec->output_section != bfd_abs_section_ptr)
4815 notesec->output_section->flags |= SEC_CODE;
4816 }
4817 }
4818
4819 /* Any syms created from now on start with -1 in
4820 got.refcount/offset and plt.refcount/offset. */
4821 elf_hash_table (info)->init_refcount = elf_hash_table (info)->init_offset;
4822
4823 /* The backend may have to create some sections regardless of whether
4824 we're dynamic or not. */
4825 bed = get_elf_backend_data (output_bfd);
4826 if (bed->elf_backend_always_size_sections
4827 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
4828 return FALSE;
4829
4830 dynobj = elf_hash_table (info)->dynobj;
4831
4832 /* If there were no dynamic objects in the link, there is nothing to
4833 do here. */
4834 if (dynobj == NULL)
4835 return TRUE;
4836
4837 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
4838 return FALSE;
4839
4840 if (elf_hash_table (info)->dynamic_sections_created)
4841 {
4842 struct elf_info_failed eif;
4843 struct elf_link_hash_entry *h;
4844 asection *dynstr;
4845 struct bfd_elf_version_tree *t;
4846 struct bfd_elf_version_expr *d;
4847 bfd_boolean all_defined;
4848
4849 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
4850 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
4851
4852 if (soname != NULL)
4853 {
4854 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
4855 soname, TRUE);
4856 if (soname_indx == (bfd_size_type) -1
4857 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
4858 return FALSE;
4859 }
4860
4861 if (info->symbolic)
4862 {
4863 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
4864 return FALSE;
4865 info->flags |= DF_SYMBOLIC;
4866 }
4867
4868 if (rpath != NULL)
4869 {
4870 bfd_size_type indx;
4871
4872 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
4873 TRUE);
4874 if (indx == (bfd_size_type) -1
4875 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
4876 return FALSE;
4877
4878 if (info->new_dtags)
4879 {
4880 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
4881 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
4882 return FALSE;
4883 }
4884 }
4885
4886 if (filter_shlib != NULL)
4887 {
4888 bfd_size_type indx;
4889
4890 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
4891 filter_shlib, TRUE);
4892 if (indx == (bfd_size_type) -1
4893 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
4894 return FALSE;
4895 }
4896
4897 if (auxiliary_filters != NULL)
4898 {
4899 const char * const *p;
4900
4901 for (p = auxiliary_filters; *p != NULL; p++)
4902 {
4903 bfd_size_type indx;
4904
4905 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
4906 *p, TRUE);
4907 if (indx == (bfd_size_type) -1
4908 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
4909 return FALSE;
4910 }
4911 }
4912
4913 eif.info = info;
4914 eif.verdefs = verdefs;
4915 eif.failed = FALSE;
4916
4917 /* If we are supposed to export all symbols into the dynamic symbol
4918 table (this is not the normal case), then do so. */
4919 if (info->export_dynamic)
4920 {
4921 elf_link_hash_traverse (elf_hash_table (info),
4922 _bfd_elf_export_symbol,
4923 &eif);
4924 if (eif.failed)
4925 return FALSE;
4926 }
4927
4928 /* Make all global versions with definition. */
4929 for (t = verdefs; t != NULL; t = t->next)
4930 for (d = t->globals.list; d != NULL; d = d->next)
4931 if (!d->symver && d->symbol)
4932 {
4933 const char *verstr, *name;
4934 size_t namelen, verlen, newlen;
4935 char *newname, *p;
4936 struct elf_link_hash_entry *newh;
4937
4938 name = d->symbol;
4939 namelen = strlen (name);
4940 verstr = t->name;
4941 verlen = strlen (verstr);
4942 newlen = namelen + verlen + 3;
4943
4944 newname = bfd_malloc (newlen);
4945 if (newname == NULL)
4946 return FALSE;
4947 memcpy (newname, name, namelen);
4948
4949 /* Check the hidden versioned definition. */
4950 p = newname + namelen;
4951 *p++ = ELF_VER_CHR;
4952 memcpy (p, verstr, verlen + 1);
4953 newh = elf_link_hash_lookup (elf_hash_table (info),
4954 newname, FALSE, FALSE,
4955 FALSE);
4956 if (newh == NULL
4957 || (newh->root.type != bfd_link_hash_defined
4958 && newh->root.type != bfd_link_hash_defweak))
4959 {
4960 /* Check the default versioned definition. */
4961 *p++ = ELF_VER_CHR;
4962 memcpy (p, verstr, verlen + 1);
4963 newh = elf_link_hash_lookup (elf_hash_table (info),
4964 newname, FALSE, FALSE,
4965 FALSE);
4966 }
4967 free (newname);
4968
4969 /* Mark this version if there is a definition and it is
4970 not defined in a shared object. */
4971 if (newh != NULL
f5385ebf 4972 && !newh->def_dynamic
5a580b3a
AM
4973 && (newh->root.type == bfd_link_hash_defined
4974 || newh->root.type == bfd_link_hash_defweak))
4975 d->symver = 1;
4976 }
4977
4978 /* Attach all the symbols to their version information. */
4979 asvinfo.output_bfd = output_bfd;
4980 asvinfo.info = info;
4981 asvinfo.verdefs = verdefs;
4982 asvinfo.failed = FALSE;
4983
4984 elf_link_hash_traverse (elf_hash_table (info),
4985 _bfd_elf_link_assign_sym_version,
4986 &asvinfo);
4987 if (asvinfo.failed)
4988 return FALSE;
4989
4990 if (!info->allow_undefined_version)
4991 {
4992 /* Check if all global versions have a definition. */
4993 all_defined = TRUE;
4994 for (t = verdefs; t != NULL; t = t->next)
4995 for (d = t->globals.list; d != NULL; d = d->next)
4996 if (!d->symver && !d->script)
4997 {
4998 (*_bfd_error_handler)
4999 (_("%s: undefined version: %s"),
5000 d->pattern, t->name);
5001 all_defined = FALSE;
5002 }
5003
5004 if (!all_defined)
5005 {
5006 bfd_set_error (bfd_error_bad_value);
5007 return FALSE;
5008 }
5009 }
5010
5011 /* Find all symbols which were defined in a dynamic object and make
5012 the backend pick a reasonable value for them. */
5013 elf_link_hash_traverse (elf_hash_table (info),
5014 _bfd_elf_adjust_dynamic_symbol,
5015 &eif);
5016 if (eif.failed)
5017 return FALSE;
5018
5019 /* Add some entries to the .dynamic section. We fill in some of the
ee75fd95 5020 values later, in bfd_elf_final_link, but we must add the entries
5a580b3a
AM
5021 now so that we know the final size of the .dynamic section. */
5022
5023 /* If there are initialization and/or finalization functions to
5024 call then add the corresponding DT_INIT/DT_FINI entries. */
5025 h = (info->init_function
5026 ? elf_link_hash_lookup (elf_hash_table (info),
5027 info->init_function, FALSE,
5028 FALSE, FALSE)
5029 : NULL);
5030 if (h != NULL
f5385ebf
AM
5031 && (h->ref_regular
5032 || h->def_regular))
5a580b3a
AM
5033 {
5034 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5035 return FALSE;
5036 }
5037 h = (info->fini_function
5038 ? elf_link_hash_lookup (elf_hash_table (info),
5039 info->fini_function, FALSE,
5040 FALSE, FALSE)
5041 : NULL);
5042 if (h != NULL
f5385ebf
AM
5043 && (h->ref_regular
5044 || h->def_regular))
5a580b3a
AM
5045 {
5046 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5047 return FALSE;
5048 }
5049
5050 if (bfd_get_section_by_name (output_bfd, ".preinit_array") != NULL)
5051 {
5052 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5053 if (! info->executable)
5054 {
5055 bfd *sub;
5056 asection *o;
5057
5058 for (sub = info->input_bfds; sub != NULL;
5059 sub = sub->link_next)
5060 for (o = sub->sections; o != NULL; o = o->next)
5061 if (elf_section_data (o)->this_hdr.sh_type
5062 == SHT_PREINIT_ARRAY)
5063 {
5064 (*_bfd_error_handler)
d003868e
AM
5065 (_("%B: .preinit_array section is not allowed in DSO"),
5066 sub);
5a580b3a
AM
5067 break;
5068 }
5069
5070 bfd_set_error (bfd_error_nonrepresentable_section);
5071 return FALSE;
5072 }
5073
5074 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5075 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5076 return FALSE;
5077 }
5078 if (bfd_get_section_by_name (output_bfd, ".init_array") != NULL)
5079 {
5080 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5081 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5082 return FALSE;
5083 }
5084 if (bfd_get_section_by_name (output_bfd, ".fini_array") != NULL)
5085 {
5086 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5087 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5088 return FALSE;
5089 }
5090
5091 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5092 /* If .dynstr is excluded from the link, we don't want any of
5093 these tags. Strictly, we should be checking each section
5094 individually; This quick check covers for the case where
5095 someone does a /DISCARD/ : { *(*) }. */
5096 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5097 {
5098 bfd_size_type strsize;
5099
5100 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5101 if (!_bfd_elf_add_dynamic_entry (info, DT_HASH, 0)
5102 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5103 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5104 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5105 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5106 bed->s->sizeof_sym))
5107 return FALSE;
5108 }
5109 }
5110
5111 /* The backend must work out the sizes of all the other dynamic
5112 sections. */
5113 if (bed->elf_backend_size_dynamic_sections
5114 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5115 return FALSE;
5116
5117 if (elf_hash_table (info)->dynamic_sections_created)
5118 {
5119 bfd_size_type dynsymcount;
5120 asection *s;
5121 size_t bucketcount = 0;
5122 size_t hash_entry_size;
5123 unsigned int dtagcount;
5124
5125 /* Set up the version definition section. */
5126 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5127 BFD_ASSERT (s != NULL);
5128
5129 /* We may have created additional version definitions if we are
5130 just linking a regular application. */
5131 verdefs = asvinfo.verdefs;
5132
5133 /* Skip anonymous version tag. */
5134 if (verdefs != NULL && verdefs->vernum == 0)
5135 verdefs = verdefs->next;
5136
3e3b46e5 5137 if (verdefs == NULL && !info->create_default_symver)
5a580b3a
AM
5138 _bfd_strip_section_from_output (info, s);
5139 else
5140 {
5141 unsigned int cdefs;
5142 bfd_size_type size;
5143 struct bfd_elf_version_tree *t;
5144 bfd_byte *p;
5145 Elf_Internal_Verdef def;
5146 Elf_Internal_Verdaux defaux;
3e3b46e5
PB
5147 struct bfd_link_hash_entry *bh;
5148 struct elf_link_hash_entry *h;
5149 const char *name;
5a580b3a
AM
5150
5151 cdefs = 0;
5152 size = 0;
5153
5154 /* Make space for the base version. */
5155 size += sizeof (Elf_External_Verdef);
5156 size += sizeof (Elf_External_Verdaux);
5157 ++cdefs;
5158
3e3b46e5
PB
5159 /* Make space for the default version. */
5160 if (info->create_default_symver)
5161 {
5162 size += sizeof (Elf_External_Verdef);
5163 ++cdefs;
5164 }
5165
5a580b3a
AM
5166 for (t = verdefs; t != NULL; t = t->next)
5167 {
5168 struct bfd_elf_version_deps *n;
5169
5170 size += sizeof (Elf_External_Verdef);
5171 size += sizeof (Elf_External_Verdaux);
5172 ++cdefs;
5173
5174 for (n = t->deps; n != NULL; n = n->next)
5175 size += sizeof (Elf_External_Verdaux);
5176 }
5177
eea6121a
AM
5178 s->size = size;
5179 s->contents = bfd_alloc (output_bfd, s->size);
5180 if (s->contents == NULL && s->size != 0)
5a580b3a
AM
5181 return FALSE;
5182
5183 /* Fill in the version definition section. */
5184
5185 p = s->contents;
5186
5187 def.vd_version = VER_DEF_CURRENT;
5188 def.vd_flags = VER_FLG_BASE;
5189 def.vd_ndx = 1;
5190 def.vd_cnt = 1;
3e3b46e5
PB
5191 if (info->create_default_symver)
5192 {
5193 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5194 def.vd_next = sizeof (Elf_External_Verdef);
5195 }
5196 else
5197 {
5198 def.vd_aux = sizeof (Elf_External_Verdef);
5199 def.vd_next = (sizeof (Elf_External_Verdef)
5200 + sizeof (Elf_External_Verdaux));
5201 }
5a580b3a
AM
5202
5203 if (soname_indx != (bfd_size_type) -1)
5204 {
5205 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5206 soname_indx);
5207 def.vd_hash = bfd_elf_hash (soname);
5208 defaux.vda_name = soname_indx;
3e3b46e5 5209 name = soname;
5a580b3a
AM
5210 }
5211 else
5212 {
5a580b3a
AM
5213 bfd_size_type indx;
5214
5215 name = basename (output_bfd->filename);
5216 def.vd_hash = bfd_elf_hash (name);
5217 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5218 name, FALSE);
5219 if (indx == (bfd_size_type) -1)
5220 return FALSE;
5221 defaux.vda_name = indx;
5222 }
5223 defaux.vda_next = 0;
5224
5225 _bfd_elf_swap_verdef_out (output_bfd, &def,
5226 (Elf_External_Verdef *) p);
5227 p += sizeof (Elf_External_Verdef);
3e3b46e5
PB
5228 if (info->create_default_symver)
5229 {
5230 /* Add a symbol representing this version. */
5231 bh = NULL;
5232 if (! (_bfd_generic_link_add_one_symbol
5233 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5234 0, NULL, FALSE,
5235 get_elf_backend_data (dynobj)->collect, &bh)))
5236 return FALSE;
5237 h = (struct elf_link_hash_entry *) bh;
5238 h->non_elf = 0;
5239 h->def_regular = 1;
5240 h->type = STT_OBJECT;
5241 h->verinfo.vertree = NULL;
5242
5243 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5244 return FALSE;
5245
5246 /* Create a duplicate of the base version with the same
5247 aux block, but different flags. */
5248 def.vd_flags = 0;
5249 def.vd_ndx = 2;
5250 def.vd_aux = sizeof (Elf_External_Verdef);
5251 if (verdefs)
5252 def.vd_next = (sizeof (Elf_External_Verdef)
5253 + sizeof (Elf_External_Verdaux));
5254 else
5255 def.vd_next = 0;
5256 _bfd_elf_swap_verdef_out (output_bfd, &def,
5257 (Elf_External_Verdef *) p);
5258 p += sizeof (Elf_External_Verdef);
5259 }
5a580b3a
AM
5260 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5261 (Elf_External_Verdaux *) p);
5262 p += sizeof (Elf_External_Verdaux);
5263
5264 for (t = verdefs; t != NULL; t = t->next)
5265 {
5266 unsigned int cdeps;
5267 struct bfd_elf_version_deps *n;
5a580b3a
AM
5268
5269 cdeps = 0;
5270 for (n = t->deps; n != NULL; n = n->next)
5271 ++cdeps;
5272
5273 /* Add a symbol representing this version. */
5274 bh = NULL;
5275 if (! (_bfd_generic_link_add_one_symbol
5276 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5277 0, NULL, FALSE,
5278 get_elf_backend_data (dynobj)->collect, &bh)))
5279 return FALSE;
5280 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5281 h->non_elf = 0;
5282 h->def_regular = 1;
5a580b3a
AM
5283 h->type = STT_OBJECT;
5284 h->verinfo.vertree = t;
5285
c152c796 5286 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5a580b3a
AM
5287 return FALSE;
5288
5289 def.vd_version = VER_DEF_CURRENT;
5290 def.vd_flags = 0;
5291 if (t->globals.list == NULL
5292 && t->locals.list == NULL
5293 && ! t->used)
5294 def.vd_flags |= VER_FLG_WEAK;
3e3b46e5 5295 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
5a580b3a
AM
5296 def.vd_cnt = cdeps + 1;
5297 def.vd_hash = bfd_elf_hash (t->name);
5298 def.vd_aux = sizeof (Elf_External_Verdef);
5299 def.vd_next = 0;
5300 if (t->next != NULL)
5301 def.vd_next = (sizeof (Elf_External_Verdef)
5302 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5303
5304 _bfd_elf_swap_verdef_out (output_bfd, &def,
5305 (Elf_External_Verdef *) p);
5306 p += sizeof (Elf_External_Verdef);
5307
5308 defaux.vda_name = h->dynstr_index;
5309 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5310 h->dynstr_index);
5311 defaux.vda_next = 0;
5312 if (t->deps != NULL)
5313 defaux.vda_next = sizeof (Elf_External_Verdaux);
5314 t->name_indx = defaux.vda_name;
5315
5316 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5317 (Elf_External_Verdaux *) p);
5318 p += sizeof (Elf_External_Verdaux);
5319
5320 for (n = t->deps; n != NULL; n = n->next)
5321 {
5322 if (n->version_needed == NULL)
5323 {
5324 /* This can happen if there was an error in the
5325 version script. */
5326 defaux.vda_name = 0;
5327 }
5328 else
5329 {
5330 defaux.vda_name = n->version_needed->name_indx;
5331 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5332 defaux.vda_name);
5333 }
5334 if (n->next == NULL)
5335 defaux.vda_next = 0;
5336 else
5337 defaux.vda_next = sizeof (Elf_External_Verdaux);
5338
5339 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5340 (Elf_External_Verdaux *) p);
5341 p += sizeof (Elf_External_Verdaux);
5342 }
5343 }
5344
5345 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
5346 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
5347 return FALSE;
5348
5349 elf_tdata (output_bfd)->cverdefs = cdefs;
5350 }
5351
5352 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
5353 {
5354 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
5355 return FALSE;
5356 }
5357 else if (info->flags & DF_BIND_NOW)
5358 {
5359 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
5360 return FALSE;
5361 }
5362
5363 if (info->flags_1)
5364 {
5365 if (info->executable)
5366 info->flags_1 &= ~ (DF_1_INITFIRST
5367 | DF_1_NODELETE
5368 | DF_1_NOOPEN);
5369 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
5370 return FALSE;
5371 }
5372
5373 /* Work out the size of the version reference section. */
5374
5375 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
5376 BFD_ASSERT (s != NULL);
5377 {
5378 struct elf_find_verdep_info sinfo;
5379
5380 sinfo.output_bfd = output_bfd;
5381 sinfo.info = info;
5382 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
5383 if (sinfo.vers == 0)
5384 sinfo.vers = 1;
5385 sinfo.failed = FALSE;
5386
5387 elf_link_hash_traverse (elf_hash_table (info),
5388 _bfd_elf_link_find_version_dependencies,
5389 &sinfo);
5390
5391 if (elf_tdata (output_bfd)->verref == NULL)
5392 _bfd_strip_section_from_output (info, s);
5393 else
5394 {
5395 Elf_Internal_Verneed *t;
5396 unsigned int size;
5397 unsigned int crefs;
5398 bfd_byte *p;
5399
5400 /* Build the version definition section. */
5401 size = 0;
5402 crefs = 0;
5403 for (t = elf_tdata (output_bfd)->verref;
5404 t != NULL;
5405 t = t->vn_nextref)
5406 {
5407 Elf_Internal_Vernaux *a;
5408
5409 size += sizeof (Elf_External_Verneed);
5410 ++crefs;
5411 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5412 size += sizeof (Elf_External_Vernaux);
5413 }
5414
eea6121a
AM
5415 s->size = size;
5416 s->contents = bfd_alloc (output_bfd, s->size);
5a580b3a
AM
5417 if (s->contents == NULL)
5418 return FALSE;
5419
5420 p = s->contents;
5421 for (t = elf_tdata (output_bfd)->verref;
5422 t != NULL;
5423 t = t->vn_nextref)
5424 {
5425 unsigned int caux;
5426 Elf_Internal_Vernaux *a;
5427 bfd_size_type indx;
5428
5429 caux = 0;
5430 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5431 ++caux;
5432
5433 t->vn_version = VER_NEED_CURRENT;
5434 t->vn_cnt = caux;
5435 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5436 elf_dt_name (t->vn_bfd) != NULL
5437 ? elf_dt_name (t->vn_bfd)
5438 : basename (t->vn_bfd->filename),
5439 FALSE);
5440 if (indx == (bfd_size_type) -1)
5441 return FALSE;
5442 t->vn_file = indx;
5443 t->vn_aux = sizeof (Elf_External_Verneed);
5444 if (t->vn_nextref == NULL)
5445 t->vn_next = 0;
5446 else
5447 t->vn_next = (sizeof (Elf_External_Verneed)
5448 + caux * sizeof (Elf_External_Vernaux));
5449
5450 _bfd_elf_swap_verneed_out (output_bfd, t,
5451 (Elf_External_Verneed *) p);
5452 p += sizeof (Elf_External_Verneed);
5453
5454 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5455 {
5456 a->vna_hash = bfd_elf_hash (a->vna_nodename);
5457 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5458 a->vna_nodename, FALSE);
5459 if (indx == (bfd_size_type) -1)
5460 return FALSE;
5461 a->vna_name = indx;
5462 if (a->vna_nextptr == NULL)
5463 a->vna_next = 0;
5464 else
5465 a->vna_next = sizeof (Elf_External_Vernaux);
5466
5467 _bfd_elf_swap_vernaux_out (output_bfd, a,
5468 (Elf_External_Vernaux *) p);
5469 p += sizeof (Elf_External_Vernaux);
5470 }
5471 }
5472
5473 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
5474 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
5475 return FALSE;
5476
5477 elf_tdata (output_bfd)->cverrefs = crefs;
5478 }
5479 }
5480
5481 /* Assign dynsym indicies. In a shared library we generate a
5482 section symbol for each output section, which come first.
5483 Next come all of the back-end allocated local dynamic syms,
5484 followed by the rest of the global symbols. */
5485
5486 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
5487
5488 /* Work out the size of the symbol version section. */
5489 s = bfd_get_section_by_name (dynobj, ".gnu.version");
5490 BFD_ASSERT (s != NULL);
5491 if (dynsymcount == 0
3e3b46e5
PB
5492 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL
5493 && !info->create_default_symver))
5a580b3a
AM
5494 {
5495 _bfd_strip_section_from_output (info, s);
5496 /* The DYNSYMCOUNT might have changed if we were going to
5497 output a dynamic symbol table entry for S. */
5498 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
5499 }
5500 else
5501 {
eea6121a
AM
5502 s->size = dynsymcount * sizeof (Elf_External_Versym);
5503 s->contents = bfd_zalloc (output_bfd, s->size);
5a580b3a
AM
5504 if (s->contents == NULL)
5505 return FALSE;
5506
5507 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
5508 return FALSE;
5509 }
5510
5511 /* Set the size of the .dynsym and .hash sections. We counted
5512 the number of dynamic symbols in elf_link_add_object_symbols.
5513 We will build the contents of .dynsym and .hash when we build
5514 the final symbol table, because until then we do not know the
5515 correct value to give the symbols. We built the .dynstr
5516 section as we went along in elf_link_add_object_symbols. */
5517 s = bfd_get_section_by_name (dynobj, ".dynsym");
5518 BFD_ASSERT (s != NULL);
eea6121a
AM
5519 s->size = dynsymcount * bed->s->sizeof_sym;
5520 s->contents = bfd_alloc (output_bfd, s->size);
5521 if (s->contents == NULL && s->size != 0)
5a580b3a
AM
5522 return FALSE;
5523
5524 if (dynsymcount != 0)
5525 {
5526 Elf_Internal_Sym isym;
5527
5528 /* The first entry in .dynsym is a dummy symbol. */
5529 isym.st_value = 0;
5530 isym.st_size = 0;
5531 isym.st_name = 0;
5532 isym.st_info = 0;
5533 isym.st_other = 0;
5534 isym.st_shndx = 0;
5535 bed->s->swap_symbol_out (output_bfd, &isym, s->contents, 0);
5536 }
5537
5538 /* Compute the size of the hashing table. As a side effect this
5539 computes the hash values for all the names we export. */
5540 bucketcount = compute_bucket_count (info);
5541
5542 s = bfd_get_section_by_name (dynobj, ".hash");
5543 BFD_ASSERT (s != NULL);
5544 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
eea6121a
AM
5545 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
5546 s->contents = bfd_zalloc (output_bfd, s->size);
5a580b3a
AM
5547 if (s->contents == NULL)
5548 return FALSE;
5549
5550 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
5551 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
5552 s->contents + hash_entry_size);
5553
5554 elf_hash_table (info)->bucketcount = bucketcount;
5555
5556 s = bfd_get_section_by_name (dynobj, ".dynstr");
5557 BFD_ASSERT (s != NULL);
5558
4ad4eba5 5559 elf_finalize_dynstr (output_bfd, info);
5a580b3a 5560
eea6121a 5561 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5a580b3a
AM
5562
5563 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
5564 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
5565 return FALSE;
5566 }
5567
5568 return TRUE;
5569}
c152c796
AM
5570
5571/* Final phase of ELF linker. */
5572
5573/* A structure we use to avoid passing large numbers of arguments. */
5574
5575struct elf_final_link_info
5576{
5577 /* General link information. */
5578 struct bfd_link_info *info;
5579 /* Output BFD. */
5580 bfd *output_bfd;
5581 /* Symbol string table. */
5582 struct bfd_strtab_hash *symstrtab;
5583 /* .dynsym section. */
5584 asection *dynsym_sec;
5585 /* .hash section. */
5586 asection *hash_sec;
5587 /* symbol version section (.gnu.version). */
5588 asection *symver_sec;
5589 /* Buffer large enough to hold contents of any section. */
5590 bfd_byte *contents;
5591 /* Buffer large enough to hold external relocs of any section. */
5592 void *external_relocs;
5593 /* Buffer large enough to hold internal relocs of any section. */
5594 Elf_Internal_Rela *internal_relocs;
5595 /* Buffer large enough to hold external local symbols of any input
5596 BFD. */
5597 bfd_byte *external_syms;
5598 /* And a buffer for symbol section indices. */
5599 Elf_External_Sym_Shndx *locsym_shndx;
5600 /* Buffer large enough to hold internal local symbols of any input
5601 BFD. */
5602 Elf_Internal_Sym *internal_syms;
5603 /* Array large enough to hold a symbol index for each local symbol
5604 of any input BFD. */
5605 long *indices;
5606 /* Array large enough to hold a section pointer for each local
5607 symbol of any input BFD. */
5608 asection **sections;
5609 /* Buffer to hold swapped out symbols. */
5610 bfd_byte *symbuf;
5611 /* And one for symbol section indices. */
5612 Elf_External_Sym_Shndx *symshndxbuf;
5613 /* Number of swapped out symbols in buffer. */
5614 size_t symbuf_count;
5615 /* Number of symbols which fit in symbuf. */
5616 size_t symbuf_size;
5617 /* And same for symshndxbuf. */
5618 size_t shndxbuf_size;
5619};
5620
5621/* This struct is used to pass information to elf_link_output_extsym. */
5622
5623struct elf_outext_info
5624{
5625 bfd_boolean failed;
5626 bfd_boolean localsyms;
5627 struct elf_final_link_info *finfo;
5628};
5629
5630/* When performing a relocatable link, the input relocations are
5631 preserved. But, if they reference global symbols, the indices
5632 referenced must be updated. Update all the relocations in
5633 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
5634
5635static void
5636elf_link_adjust_relocs (bfd *abfd,
5637 Elf_Internal_Shdr *rel_hdr,
5638 unsigned int count,
5639 struct elf_link_hash_entry **rel_hash)
5640{
5641 unsigned int i;
5642 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5643 bfd_byte *erela;
5644 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5645 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
5646 bfd_vma r_type_mask;
5647 int r_sym_shift;
5648
5649 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
5650 {
5651 swap_in = bed->s->swap_reloc_in;
5652 swap_out = bed->s->swap_reloc_out;
5653 }
5654 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
5655 {
5656 swap_in = bed->s->swap_reloca_in;
5657 swap_out = bed->s->swap_reloca_out;
5658 }
5659 else
5660 abort ();
5661
5662 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
5663 abort ();
5664
5665 if (bed->s->arch_size == 32)
5666 {
5667 r_type_mask = 0xff;
5668 r_sym_shift = 8;
5669 }
5670 else
5671 {
5672 r_type_mask = 0xffffffff;
5673 r_sym_shift = 32;
5674 }
5675
5676 erela = rel_hdr->contents;
5677 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
5678 {
5679 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
5680 unsigned int j;
5681
5682 if (*rel_hash == NULL)
5683 continue;
5684
5685 BFD_ASSERT ((*rel_hash)->indx >= 0);
5686
5687 (*swap_in) (abfd, erela, irela);
5688 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
5689 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
5690 | (irela[j].r_info & r_type_mask));
5691 (*swap_out) (abfd, irela, erela);
5692 }
5693}
5694
5695struct elf_link_sort_rela
5696{
5697 union {
5698 bfd_vma offset;
5699 bfd_vma sym_mask;
5700 } u;
5701 enum elf_reloc_type_class type;
5702 /* We use this as an array of size int_rels_per_ext_rel. */
5703 Elf_Internal_Rela rela[1];
5704};
5705
5706static int
5707elf_link_sort_cmp1 (const void *A, const void *B)
5708{
5709 const struct elf_link_sort_rela *a = A;
5710 const struct elf_link_sort_rela *b = B;
5711 int relativea, relativeb;
5712
5713 relativea = a->type == reloc_class_relative;
5714 relativeb = b->type == reloc_class_relative;
5715
5716 if (relativea < relativeb)
5717 return 1;
5718 if (relativea > relativeb)
5719 return -1;
5720 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
5721 return -1;
5722 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
5723 return 1;
5724 if (a->rela->r_offset < b->rela->r_offset)
5725 return -1;
5726 if (a->rela->r_offset > b->rela->r_offset)
5727 return 1;
5728 return 0;
5729}
5730
5731static int
5732elf_link_sort_cmp2 (const void *A, const void *B)
5733{
5734 const struct elf_link_sort_rela *a = A;
5735 const struct elf_link_sort_rela *b = B;
5736 int copya, copyb;
5737
5738 if (a->u.offset < b->u.offset)
5739 return -1;
5740 if (a->u.offset > b->u.offset)
5741 return 1;
5742 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
5743 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
5744 if (copya < copyb)
5745 return -1;
5746 if (copya > copyb)
5747 return 1;
5748 if (a->rela->r_offset < b->rela->r_offset)
5749 return -1;
5750 if (a->rela->r_offset > b->rela->r_offset)
5751 return 1;
5752 return 0;
5753}
5754
5755static size_t
5756elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
5757{
5758 asection *reldyn;
5759 bfd_size_type count, size;
5760 size_t i, ret, sort_elt, ext_size;
5761 bfd_byte *sort, *s_non_relative, *p;
5762 struct elf_link_sort_rela *sq;
5763 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5764 int i2e = bed->s->int_rels_per_ext_rel;
5765 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5766 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
5767 struct bfd_link_order *lo;
5768 bfd_vma r_sym_mask;
5769
5770 reldyn = bfd_get_section_by_name (abfd, ".rela.dyn");
eea6121a 5771 if (reldyn == NULL || reldyn->size == 0)
c152c796
AM
5772 {
5773 reldyn = bfd_get_section_by_name (abfd, ".rel.dyn");
eea6121a 5774 if (reldyn == NULL || reldyn->size == 0)
c152c796
AM
5775 return 0;
5776 ext_size = bed->s->sizeof_rel;
5777 swap_in = bed->s->swap_reloc_in;
5778 swap_out = bed->s->swap_reloc_out;
5779 }
5780 else
5781 {
5782 ext_size = bed->s->sizeof_rela;
5783 swap_in = bed->s->swap_reloca_in;
5784 swap_out = bed->s->swap_reloca_out;
5785 }
eea6121a 5786 count = reldyn->size / ext_size;
c152c796
AM
5787
5788 size = 0;
5789 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next)
5790 if (lo->type == bfd_indirect_link_order)
5791 {
5792 asection *o = lo->u.indirect.section;
eea6121a 5793 size += o->size;
c152c796
AM
5794 }
5795
eea6121a 5796 if (size != reldyn->size)
c152c796
AM
5797 return 0;
5798
5799 sort_elt = (sizeof (struct elf_link_sort_rela)
5800 + (i2e - 1) * sizeof (Elf_Internal_Rela));
5801 sort = bfd_zmalloc (sort_elt * count);
5802 if (sort == NULL)
5803 {
5804 (*info->callbacks->warning)
5805 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
5806 return 0;
5807 }
5808
5809 if (bed->s->arch_size == 32)
5810 r_sym_mask = ~(bfd_vma) 0xff;
5811 else
5812 r_sym_mask = ~(bfd_vma) 0xffffffff;
5813
5814 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next)
5815 if (lo->type == bfd_indirect_link_order)
5816 {
5817 bfd_byte *erel, *erelend;
5818 asection *o = lo->u.indirect.section;
5819
1da212d6
AM
5820 if (o->contents == NULL && o->size != 0)
5821 {
5822 /* This is a reloc section that is being handled as a normal
5823 section. See bfd_section_from_shdr. We can't combine
5824 relocs in this case. */
5825 free (sort);
5826 return 0;
5827 }
c152c796 5828 erel = o->contents;
eea6121a 5829 erelend = o->contents + o->size;
c152c796
AM
5830 p = sort + o->output_offset / ext_size * sort_elt;
5831 while (erel < erelend)
5832 {
5833 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
5834 (*swap_in) (abfd, erel, s->rela);
5835 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
5836 s->u.sym_mask = r_sym_mask;
5837 p += sort_elt;
5838 erel += ext_size;
5839 }
5840 }
5841
5842 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
5843
5844 for (i = 0, p = sort; i < count; i++, p += sort_elt)
5845 {
5846 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
5847 if (s->type != reloc_class_relative)
5848 break;
5849 }
5850 ret = i;
5851 s_non_relative = p;
5852
5853 sq = (struct elf_link_sort_rela *) s_non_relative;
5854 for (; i < count; i++, p += sort_elt)
5855 {
5856 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
5857 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
5858 sq = sp;
5859 sp->u.offset = sq->rela->r_offset;
5860 }
5861
5862 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
5863
5864 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next)
5865 if (lo->type == bfd_indirect_link_order)
5866 {
5867 bfd_byte *erel, *erelend;
5868 asection *o = lo->u.indirect.section;
5869
5870 erel = o->contents;
eea6121a 5871 erelend = o->contents + o->size;
c152c796
AM
5872 p = sort + o->output_offset / ext_size * sort_elt;
5873 while (erel < erelend)
5874 {
5875 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
5876 (*swap_out) (abfd, s->rela, erel);
5877 p += sort_elt;
5878 erel += ext_size;
5879 }
5880 }
5881
5882 free (sort);
5883 *psec = reldyn;
5884 return ret;
5885}
5886
5887/* Flush the output symbols to the file. */
5888
5889static bfd_boolean
5890elf_link_flush_output_syms (struct elf_final_link_info *finfo,
5891 const struct elf_backend_data *bed)
5892{
5893 if (finfo->symbuf_count > 0)
5894 {
5895 Elf_Internal_Shdr *hdr;
5896 file_ptr pos;
5897 bfd_size_type amt;
5898
5899 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
5900 pos = hdr->sh_offset + hdr->sh_size;
5901 amt = finfo->symbuf_count * bed->s->sizeof_sym;
5902 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
5903 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
5904 return FALSE;
5905
5906 hdr->sh_size += amt;
5907 finfo->symbuf_count = 0;
5908 }
5909
5910 return TRUE;
5911}
5912
5913/* Add a symbol to the output symbol table. */
5914
5915static bfd_boolean
5916elf_link_output_sym (struct elf_final_link_info *finfo,
5917 const char *name,
5918 Elf_Internal_Sym *elfsym,
5919 asection *input_sec,
5920 struct elf_link_hash_entry *h)
5921{
5922 bfd_byte *dest;
5923 Elf_External_Sym_Shndx *destshndx;
5924 bfd_boolean (*output_symbol_hook)
5925 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
5926 struct elf_link_hash_entry *);
5927 const struct elf_backend_data *bed;
5928
5929 bed = get_elf_backend_data (finfo->output_bfd);
5930 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
5931 if (output_symbol_hook != NULL)
5932 {
5933 if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h))
5934 return FALSE;
5935 }
5936
5937 if (name == NULL || *name == '\0')
5938 elfsym->st_name = 0;
5939 else if (input_sec->flags & SEC_EXCLUDE)
5940 elfsym->st_name = 0;
5941 else
5942 {
5943 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
5944 name, TRUE, FALSE);
5945 if (elfsym->st_name == (unsigned long) -1)
5946 return FALSE;
5947 }
5948
5949 if (finfo->symbuf_count >= finfo->symbuf_size)
5950 {
5951 if (! elf_link_flush_output_syms (finfo, bed))
5952 return FALSE;
5953 }
5954
5955 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
5956 destshndx = finfo->symshndxbuf;
5957 if (destshndx != NULL)
5958 {
5959 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
5960 {
5961 bfd_size_type amt;
5962
5963 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
5964 finfo->symshndxbuf = destshndx = bfd_realloc (destshndx, amt * 2);
5965 if (destshndx == NULL)
5966 return FALSE;
5967 memset ((char *) destshndx + amt, 0, amt);
5968 finfo->shndxbuf_size *= 2;
5969 }
5970 destshndx += bfd_get_symcount (finfo->output_bfd);
5971 }
5972
5973 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
5974 finfo->symbuf_count += 1;
5975 bfd_get_symcount (finfo->output_bfd) += 1;
5976
5977 return TRUE;
5978}
5979
5980/* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
5981 allowing an unsatisfied unversioned symbol in the DSO to match a
5982 versioned symbol that would normally require an explicit version.
5983 We also handle the case that a DSO references a hidden symbol
5984 which may be satisfied by a versioned symbol in another DSO. */
5985
5986static bfd_boolean
5987elf_link_check_versioned_symbol (struct bfd_link_info *info,
5988 const struct elf_backend_data *bed,
5989 struct elf_link_hash_entry *h)
5990{
5991 bfd *abfd;
5992 struct elf_link_loaded_list *loaded;
5993
5994 if (!is_elf_hash_table (info->hash))
5995 return FALSE;
5996
5997 switch (h->root.type)
5998 {
5999 default:
6000 abfd = NULL;
6001 break;
6002
6003 case bfd_link_hash_undefined:
6004 case bfd_link_hash_undefweak:
6005 abfd = h->root.u.undef.abfd;
6006 if ((abfd->flags & DYNAMIC) == 0
e56f61be 6007 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
c152c796
AM
6008 return FALSE;
6009 break;
6010
6011 case bfd_link_hash_defined:
6012 case bfd_link_hash_defweak:
6013 abfd = h->root.u.def.section->owner;
6014 break;
6015
6016 case bfd_link_hash_common:
6017 abfd = h->root.u.c.p->section->owner;
6018 break;
6019 }
6020 BFD_ASSERT (abfd != NULL);
6021
6022 for (loaded = elf_hash_table (info)->loaded;
6023 loaded != NULL;
6024 loaded = loaded->next)
6025 {
6026 bfd *input;
6027 Elf_Internal_Shdr *hdr;
6028 bfd_size_type symcount;
6029 bfd_size_type extsymcount;
6030 bfd_size_type extsymoff;
6031 Elf_Internal_Shdr *versymhdr;
6032 Elf_Internal_Sym *isym;
6033 Elf_Internal_Sym *isymend;
6034 Elf_Internal_Sym *isymbuf;
6035 Elf_External_Versym *ever;
6036 Elf_External_Versym *extversym;
6037
6038 input = loaded->abfd;
6039
6040 /* We check each DSO for a possible hidden versioned definition. */
6041 if (input == abfd
6042 || (input->flags & DYNAMIC) == 0
6043 || elf_dynversym (input) == 0)
6044 continue;
6045
6046 hdr = &elf_tdata (input)->dynsymtab_hdr;
6047
6048 symcount = hdr->sh_size / bed->s->sizeof_sym;
6049 if (elf_bad_symtab (input))
6050 {
6051 extsymcount = symcount;
6052 extsymoff = 0;
6053 }
6054 else
6055 {
6056 extsymcount = symcount - hdr->sh_info;
6057 extsymoff = hdr->sh_info;
6058 }
6059
6060 if (extsymcount == 0)
6061 continue;
6062
6063 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
6064 NULL, NULL, NULL);
6065 if (isymbuf == NULL)
6066 return FALSE;
6067
6068 /* Read in any version definitions. */
6069 versymhdr = &elf_tdata (input)->dynversym_hdr;
6070 extversym = bfd_malloc (versymhdr->sh_size);
6071 if (extversym == NULL)
6072 goto error_ret;
6073
6074 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
6075 || (bfd_bread (extversym, versymhdr->sh_size, input)
6076 != versymhdr->sh_size))
6077 {
6078 free (extversym);
6079 error_ret:
6080 free (isymbuf);
6081 return FALSE;
6082 }
6083
6084 ever = extversym + extsymoff;
6085 isymend = isymbuf + extsymcount;
6086 for (isym = isymbuf; isym < isymend; isym++, ever++)
6087 {
6088 const char *name;
6089 Elf_Internal_Versym iver;
6090 unsigned short version_index;
6091
6092 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
6093 || isym->st_shndx == SHN_UNDEF)
6094 continue;
6095
6096 name = bfd_elf_string_from_elf_section (input,
6097 hdr->sh_link,
6098 isym->st_name);
6099 if (strcmp (name, h->root.root.string) != 0)
6100 continue;
6101
6102 _bfd_elf_swap_versym_in (input, ever, &iver);
6103
6104 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
6105 {
6106 /* If we have a non-hidden versioned sym, then it should
6107 have provided a definition for the undefined sym. */
6108 abort ();
6109 }
6110
6111 version_index = iver.vs_vers & VERSYM_VERSION;
6112 if (version_index == 1 || version_index == 2)
6113 {
6114 /* This is the base or first version. We can use it. */
6115 free (extversym);
6116 free (isymbuf);
6117 return TRUE;
6118 }
6119 }
6120
6121 free (extversym);
6122 free (isymbuf);
6123 }
6124
6125 return FALSE;
6126}
6127
6128/* Add an external symbol to the symbol table. This is called from
6129 the hash table traversal routine. When generating a shared object,
6130 we go through the symbol table twice. The first time we output
6131 anything that might have been forced to local scope in a version
6132 script. The second time we output the symbols that are still
6133 global symbols. */
6134
6135static bfd_boolean
6136elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
6137{
6138 struct elf_outext_info *eoinfo = data;
6139 struct elf_final_link_info *finfo = eoinfo->finfo;
6140 bfd_boolean strip;
6141 Elf_Internal_Sym sym;
6142 asection *input_sec;
6143 const struct elf_backend_data *bed;
6144
6145 if (h->root.type == bfd_link_hash_warning)
6146 {
6147 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6148 if (h->root.type == bfd_link_hash_new)
6149 return TRUE;
6150 }
6151
6152 /* Decide whether to output this symbol in this pass. */
6153 if (eoinfo->localsyms)
6154 {
f5385ebf 6155 if (!h->forced_local)
c152c796
AM
6156 return TRUE;
6157 }
6158 else
6159 {
f5385ebf 6160 if (h->forced_local)
c152c796
AM
6161 return TRUE;
6162 }
6163
6164 bed = get_elf_backend_data (finfo->output_bfd);
6165
6166 /* If we have an undefined symbol reference here then it must have
6167 come from a shared library that is being linked in. (Undefined
6168 references in regular files have already been handled). If we
6169 are reporting errors for this situation then do so now. */
6170 if (h->root.type == bfd_link_hash_undefined
f5385ebf
AM
6171 && h->ref_dynamic
6172 && !h->ref_regular
7e9f0867 6173 && (elf_dyn_lib_class (h->root.u.undef.abfd) & DYN_AS_NEEDED) == 0
c152c796
AM
6174 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
6175 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
6176 {
6177 if (! ((*finfo->info->callbacks->undefined_symbol)
6178 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
6179 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
6180 {
6181 eoinfo->failed = TRUE;
6182 return FALSE;
6183 }
6184 }
6185
6186 /* We should also warn if a forced local symbol is referenced from
6187 shared libraries. */
6188 if (! finfo->info->relocatable
6189 && (! finfo->info->shared)
f5385ebf
AM
6190 && h->forced_local
6191 && h->ref_dynamic
6192 && !h->dynamic_def
6193 && !h->dynamic_weak
c152c796
AM
6194 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
6195 {
6196 (*_bfd_error_handler)
d003868e
AM
6197 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
6198 finfo->output_bfd, h->root.u.def.section->owner,
c152c796
AM
6199 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
6200 ? "internal"
6201 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
d003868e
AM
6202 ? "hidden" : "local",
6203 h->root.root.string);
c152c796
AM
6204 eoinfo->failed = TRUE;
6205 return FALSE;
6206 }
6207
6208 /* We don't want to output symbols that have never been mentioned by
6209 a regular file, or that we have been told to strip. However, if
6210 h->indx is set to -2, the symbol is used by a reloc and we must
6211 output it. */
6212 if (h->indx == -2)
6213 strip = FALSE;
f5385ebf
AM
6214 else if ((h->def_dynamic
6215 || h->ref_dynamic)
6216 && !h->def_regular
6217 && !h->ref_regular)
c152c796
AM
6218 strip = TRUE;
6219 else if (finfo->info->strip == strip_all)
6220 strip = TRUE;
6221 else if (finfo->info->strip == strip_some
6222 && bfd_hash_lookup (finfo->info->keep_hash,
6223 h->root.root.string, FALSE, FALSE) == NULL)
6224 strip = TRUE;
6225 else if (finfo->info->strip_discarded
6226 && (h->root.type == bfd_link_hash_defined
6227 || h->root.type == bfd_link_hash_defweak)
6228 && elf_discarded_section (h->root.u.def.section))
6229 strip = TRUE;
6230 else
6231 strip = FALSE;
6232
6233 /* If we're stripping it, and it's not a dynamic symbol, there's
6234 nothing else to do unless it is a forced local symbol. */
6235 if (strip
6236 && h->dynindx == -1
f5385ebf 6237 && !h->forced_local)
c152c796
AM
6238 return TRUE;
6239
6240 sym.st_value = 0;
6241 sym.st_size = h->size;
6242 sym.st_other = h->other;
f5385ebf 6243 if (h->forced_local)
c152c796
AM
6244 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
6245 else if (h->root.type == bfd_link_hash_undefweak
6246 || h->root.type == bfd_link_hash_defweak)
6247 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
6248 else
6249 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
6250
6251 switch (h->root.type)
6252 {
6253 default:
6254 case bfd_link_hash_new:
6255 case bfd_link_hash_warning:
6256 abort ();
6257 return FALSE;
6258
6259 case bfd_link_hash_undefined:
6260 case bfd_link_hash_undefweak:
6261 input_sec = bfd_und_section_ptr;
6262 sym.st_shndx = SHN_UNDEF;
6263 break;
6264
6265 case bfd_link_hash_defined:
6266 case bfd_link_hash_defweak:
6267 {
6268 input_sec = h->root.u.def.section;
6269 if (input_sec->output_section != NULL)
6270 {
6271 sym.st_shndx =
6272 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
6273 input_sec->output_section);
6274 if (sym.st_shndx == SHN_BAD)
6275 {
6276 (*_bfd_error_handler)
d003868e
AM
6277 (_("%B: could not find output section %A for input section %A"),
6278 finfo->output_bfd, input_sec->output_section, input_sec);
c152c796
AM
6279 eoinfo->failed = TRUE;
6280 return FALSE;
6281 }
6282
6283 /* ELF symbols in relocatable files are section relative,
6284 but in nonrelocatable files they are virtual
6285 addresses. */
6286 sym.st_value = h->root.u.def.value + input_sec->output_offset;
6287 if (! finfo->info->relocatable)
6288 {
6289 sym.st_value += input_sec->output_section->vma;
6290 if (h->type == STT_TLS)
6291 {
6292 /* STT_TLS symbols are relative to PT_TLS segment
6293 base. */
6294 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
6295 sym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
6296 }
6297 }
6298 }
6299 else
6300 {
6301 BFD_ASSERT (input_sec->owner == NULL
6302 || (input_sec->owner->flags & DYNAMIC) != 0);
6303 sym.st_shndx = SHN_UNDEF;
6304 input_sec = bfd_und_section_ptr;
6305 }
6306 }
6307 break;
6308
6309 case bfd_link_hash_common:
6310 input_sec = h->root.u.c.p->section;
6311 sym.st_shndx = SHN_COMMON;
6312 sym.st_value = 1 << h->root.u.c.p->alignment_power;
6313 break;
6314
6315 case bfd_link_hash_indirect:
6316 /* These symbols are created by symbol versioning. They point
6317 to the decorated version of the name. For example, if the
6318 symbol foo@@GNU_1.2 is the default, which should be used when
6319 foo is used with no version, then we add an indirect symbol
6320 foo which points to foo@@GNU_1.2. We ignore these symbols,
6321 since the indirected symbol is already in the hash table. */
6322 return TRUE;
6323 }
6324
6325 /* Give the processor backend a chance to tweak the symbol value,
6326 and also to finish up anything that needs to be done for this
6327 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
6328 forced local syms when non-shared is due to a historical quirk. */
6329 if ((h->dynindx != -1
f5385ebf 6330 || h->forced_local)
c152c796
AM
6331 && ((finfo->info->shared
6332 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6333 || h->root.type != bfd_link_hash_undefweak))
f5385ebf 6334 || !h->forced_local)
c152c796
AM
6335 && elf_hash_table (finfo->info)->dynamic_sections_created)
6336 {
6337 if (! ((*bed->elf_backend_finish_dynamic_symbol)
6338 (finfo->output_bfd, finfo->info, h, &sym)))
6339 {
6340 eoinfo->failed = TRUE;
6341 return FALSE;
6342 }
6343 }
6344
6345 /* If we are marking the symbol as undefined, and there are no
6346 non-weak references to this symbol from a regular object, then
6347 mark the symbol as weak undefined; if there are non-weak
6348 references, mark the symbol as strong. We can't do this earlier,
6349 because it might not be marked as undefined until the
6350 finish_dynamic_symbol routine gets through with it. */
6351 if (sym.st_shndx == SHN_UNDEF
f5385ebf 6352 && h->ref_regular
c152c796
AM
6353 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
6354 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
6355 {
6356 int bindtype;
6357
f5385ebf 6358 if (h->ref_regular_nonweak)
c152c796
AM
6359 bindtype = STB_GLOBAL;
6360 else
6361 bindtype = STB_WEAK;
6362 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
6363 }
6364
6365 /* If a non-weak symbol with non-default visibility is not defined
6366 locally, it is a fatal error. */
6367 if (! finfo->info->relocatable
6368 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
6369 && ELF_ST_BIND (sym.st_info) != STB_WEAK
6370 && h->root.type == bfd_link_hash_undefined
f5385ebf 6371 && !h->def_regular)
c152c796
AM
6372 {
6373 (*_bfd_error_handler)
d003868e
AM
6374 (_("%B: %s symbol `%s' isn't defined"),
6375 finfo->output_bfd,
6376 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
6377 ? "protected"
6378 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
6379 ? "internal" : "hidden",
6380 h->root.root.string);
c152c796
AM
6381 eoinfo->failed = TRUE;
6382 return FALSE;
6383 }
6384
6385 /* If this symbol should be put in the .dynsym section, then put it
6386 there now. We already know the symbol index. We also fill in
6387 the entry in the .hash section. */
6388 if (h->dynindx != -1
6389 && elf_hash_table (finfo->info)->dynamic_sections_created)
6390 {
6391 size_t bucketcount;
6392 size_t bucket;
6393 size_t hash_entry_size;
6394 bfd_byte *bucketpos;
6395 bfd_vma chain;
6396 bfd_byte *esym;
6397
6398 sym.st_name = h->dynstr_index;
6399 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
6400 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
6401
6402 bucketcount = elf_hash_table (finfo->info)->bucketcount;
f6e332e6 6403 bucket = h->u.elf_hash_value % bucketcount;
c152c796
AM
6404 hash_entry_size
6405 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
6406 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
6407 + (bucket + 2) * hash_entry_size);
6408 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
6409 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
6410 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
6411 ((bfd_byte *) finfo->hash_sec->contents
6412 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
6413
6414 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
6415 {
6416 Elf_Internal_Versym iversym;
6417 Elf_External_Versym *eversym;
6418
f5385ebf 6419 if (!h->def_regular)
c152c796
AM
6420 {
6421 if (h->verinfo.verdef == NULL)
6422 iversym.vs_vers = 0;
6423 else
6424 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
6425 }
6426 else
6427 {
6428 if (h->verinfo.vertree == NULL)
6429 iversym.vs_vers = 1;
6430 else
6431 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
3e3b46e5
PB
6432 if (finfo->info->create_default_symver)
6433 iversym.vs_vers++;
c152c796
AM
6434 }
6435
f5385ebf 6436 if (h->hidden)
c152c796
AM
6437 iversym.vs_vers |= VERSYM_HIDDEN;
6438
6439 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
6440 eversym += h->dynindx;
6441 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
6442 }
6443 }
6444
6445 /* If we're stripping it, then it was just a dynamic symbol, and
6446 there's nothing else to do. */
6447 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
6448 return TRUE;
6449
6450 h->indx = bfd_get_symcount (finfo->output_bfd);
6451
6452 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h))
6453 {
6454 eoinfo->failed = TRUE;
6455 return FALSE;
6456 }
6457
6458 return TRUE;
6459}
6460
cdd3575c
AM
6461/* Return TRUE if special handling is done for relocs in SEC against
6462 symbols defined in discarded sections. */
6463
c152c796
AM
6464static bfd_boolean
6465elf_section_ignore_discarded_relocs (asection *sec)
6466{
6467 const struct elf_backend_data *bed;
6468
cdd3575c
AM
6469 switch (sec->sec_info_type)
6470 {
6471 case ELF_INFO_TYPE_STABS:
6472 case ELF_INFO_TYPE_EH_FRAME:
6473 return TRUE;
6474 default:
6475 break;
6476 }
c152c796
AM
6477
6478 bed = get_elf_backend_data (sec->owner);
6479 if (bed->elf_backend_ignore_discarded_relocs != NULL
6480 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
6481 return TRUE;
6482
6483 return FALSE;
6484}
6485
9e66c942
AM
6486enum action_discarded
6487 {
6488 COMPLAIN = 1,
6489 PRETEND = 2
6490 };
6491
6492/* Return a mask saying how ld should treat relocations in SEC against
6493 symbols defined in discarded sections. If this function returns
6494 COMPLAIN set, ld will issue a warning message. If this function
6495 returns PRETEND set, and the discarded section was link-once and the
6496 same size as the kept link-once section, ld will pretend that the
6497 symbol was actually defined in the kept section. Otherwise ld will
6498 zero the reloc (at least that is the intent, but some cooperation by
6499 the target dependent code is needed, particularly for REL targets). */
6500
6501static unsigned int
6502elf_action_discarded (asection *sec)
cdd3575c 6503{
9e66c942
AM
6504 if (sec->flags & SEC_DEBUGGING)
6505 return PRETEND;
cdd3575c
AM
6506
6507 if (strcmp (".eh_frame", sec->name) == 0)
9e66c942 6508 return 0;
cdd3575c
AM
6509
6510 if (strcmp (".gcc_except_table", sec->name) == 0)
9e66c942 6511 return 0;
cdd3575c 6512
27b56da8 6513 if (strcmp (".PARISC.unwind", sec->name) == 0)
9e66c942 6514 return 0;
327c1315
AM
6515
6516 if (strcmp (".fixup", sec->name) == 0)
9e66c942 6517 return 0;
27b56da8 6518
9e66c942 6519 return COMPLAIN | PRETEND;
cdd3575c
AM
6520}
6521
3d7f7666
L
6522/* Find a match between a section and a member of a section group. */
6523
6524static asection *
6525match_group_member (asection *sec, asection *group)
6526{
6527 asection *first = elf_next_in_group (group);
6528 asection *s = first;
6529
6530 while (s != NULL)
6531 {
6532 if (bfd_elf_match_symbols_in_sections (s, sec))
6533 return s;
6534
6535 if (s == first)
6536 break;
6537 }
6538
6539 return NULL;
6540}
6541
c152c796
AM
6542/* Link an input file into the linker output file. This function
6543 handles all the sections and relocations of the input file at once.
6544 This is so that we only have to read the local symbols once, and
6545 don't have to keep them in memory. */
6546
6547static bfd_boolean
6548elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
6549{
6550 bfd_boolean (*relocate_section)
6551 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
6552 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
6553 bfd *output_bfd;
6554 Elf_Internal_Shdr *symtab_hdr;
6555 size_t locsymcount;
6556 size_t extsymoff;
6557 Elf_Internal_Sym *isymbuf;
6558 Elf_Internal_Sym *isym;
6559 Elf_Internal_Sym *isymend;
6560 long *pindex;
6561 asection **ppsection;
6562 asection *o;
6563 const struct elf_backend_data *bed;
6564 bfd_boolean emit_relocs;
6565 struct elf_link_hash_entry **sym_hashes;
6566
6567 output_bfd = finfo->output_bfd;
6568 bed = get_elf_backend_data (output_bfd);
6569 relocate_section = bed->elf_backend_relocate_section;
6570
6571 /* If this is a dynamic object, we don't want to do anything here:
6572 we don't want the local symbols, and we don't want the section
6573 contents. */
6574 if ((input_bfd->flags & DYNAMIC) != 0)
6575 return TRUE;
6576
6577 emit_relocs = (finfo->info->relocatable
6578 || finfo->info->emitrelocations
6579 || bed->elf_backend_emit_relocs);
6580
6581 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6582 if (elf_bad_symtab (input_bfd))
6583 {
6584 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
6585 extsymoff = 0;
6586 }
6587 else
6588 {
6589 locsymcount = symtab_hdr->sh_info;
6590 extsymoff = symtab_hdr->sh_info;
6591 }
6592
6593 /* Read the local symbols. */
6594 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6595 if (isymbuf == NULL && locsymcount != 0)
6596 {
6597 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6598 finfo->internal_syms,
6599 finfo->external_syms,
6600 finfo->locsym_shndx);
6601 if (isymbuf == NULL)
6602 return FALSE;
6603 }
6604
6605 /* Find local symbol sections and adjust values of symbols in
6606 SEC_MERGE sections. Write out those local symbols we know are
6607 going into the output file. */
6608 isymend = isymbuf + locsymcount;
6609 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
6610 isym < isymend;
6611 isym++, pindex++, ppsection++)
6612 {
6613 asection *isec;
6614 const char *name;
6615 Elf_Internal_Sym osym;
6616
6617 *pindex = -1;
6618
6619 if (elf_bad_symtab (input_bfd))
6620 {
6621 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
6622 {
6623 *ppsection = NULL;
6624 continue;
6625 }
6626 }
6627
6628 if (isym->st_shndx == SHN_UNDEF)
6629 isec = bfd_und_section_ptr;
6630 else if (isym->st_shndx < SHN_LORESERVE
6631 || isym->st_shndx > SHN_HIRESERVE)
6632 {
6633 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
6634 if (isec
6635 && isec->sec_info_type == ELF_INFO_TYPE_MERGE
6636 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
6637 isym->st_value =
6638 _bfd_merged_section_offset (output_bfd, &isec,
6639 elf_section_data (isec)->sec_info,
753731ee 6640 isym->st_value);
c152c796
AM
6641 }
6642 else if (isym->st_shndx == SHN_ABS)
6643 isec = bfd_abs_section_ptr;
6644 else if (isym->st_shndx == SHN_COMMON)
6645 isec = bfd_com_section_ptr;
6646 else
6647 {
6648 /* Who knows? */
6649 isec = NULL;
6650 }
6651
6652 *ppsection = isec;
6653
6654 /* Don't output the first, undefined, symbol. */
6655 if (ppsection == finfo->sections)
6656 continue;
6657
6658 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
6659 {
6660 /* We never output section symbols. Instead, we use the
6661 section symbol of the corresponding section in the output
6662 file. */
6663 continue;
6664 }
6665
6666 /* If we are stripping all symbols, we don't want to output this
6667 one. */
6668 if (finfo->info->strip == strip_all)
6669 continue;
6670
6671 /* If we are discarding all local symbols, we don't want to
6672 output this one. If we are generating a relocatable output
6673 file, then some of the local symbols may be required by
6674 relocs; we output them below as we discover that they are
6675 needed. */
6676 if (finfo->info->discard == discard_all)
6677 continue;
6678
6679 /* If this symbol is defined in a section which we are
6680 discarding, we don't need to keep it, but note that
6681 linker_mark is only reliable for sections that have contents.
6682 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
6683 as well as linker_mark. */
6684 if ((isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
6685 && isec != NULL
6686 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
6687 || (! finfo->info->relocatable
6688 && (isec->flags & SEC_EXCLUDE) != 0)))
6689 continue;
6690
6691 /* Get the name of the symbol. */
6692 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
6693 isym->st_name);
6694 if (name == NULL)
6695 return FALSE;
6696
6697 /* See if we are discarding symbols with this name. */
6698 if ((finfo->info->strip == strip_some
6699 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
6700 == NULL))
6701 || (((finfo->info->discard == discard_sec_merge
6702 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
6703 || finfo->info->discard == discard_l)
6704 && bfd_is_local_label_name (input_bfd, name)))
6705 continue;
6706
6707 /* If we get here, we are going to output this symbol. */
6708
6709 osym = *isym;
6710
6711 /* Adjust the section index for the output file. */
6712 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
6713 isec->output_section);
6714 if (osym.st_shndx == SHN_BAD)
6715 return FALSE;
6716
6717 *pindex = bfd_get_symcount (output_bfd);
6718
6719 /* ELF symbols in relocatable files are section relative, but
6720 in executable files they are virtual addresses. Note that
6721 this code assumes that all ELF sections have an associated
6722 BFD section with a reasonable value for output_offset; below
6723 we assume that they also have a reasonable value for
6724 output_section. Any special sections must be set up to meet
6725 these requirements. */
6726 osym.st_value += isec->output_offset;
6727 if (! finfo->info->relocatable)
6728 {
6729 osym.st_value += isec->output_section->vma;
6730 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
6731 {
6732 /* STT_TLS symbols are relative to PT_TLS segment base. */
6733 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
6734 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
6735 }
6736 }
6737
6738 if (! elf_link_output_sym (finfo, name, &osym, isec, NULL))
6739 return FALSE;
6740 }
6741
6742 /* Relocate the contents of each section. */
6743 sym_hashes = elf_sym_hashes (input_bfd);
6744 for (o = input_bfd->sections; o != NULL; o = o->next)
6745 {
6746 bfd_byte *contents;
6747
6748 if (! o->linker_mark)
6749 {
6750 /* This section was omitted from the link. */
6751 continue;
6752 }
6753
6754 if ((o->flags & SEC_HAS_CONTENTS) == 0
eea6121a 6755 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
c152c796
AM
6756 continue;
6757
6758 if ((o->flags & SEC_LINKER_CREATED) != 0)
6759 {
6760 /* Section was created by _bfd_elf_link_create_dynamic_sections
6761 or somesuch. */
6762 continue;
6763 }
6764
6765 /* Get the contents of the section. They have been cached by a
6766 relaxation routine. Note that o is a section in an input
6767 file, so the contents field will not have been set by any of
6768 the routines which work on output files. */
6769 if (elf_section_data (o)->this_hdr.contents != NULL)
6770 contents = elf_section_data (o)->this_hdr.contents;
6771 else
6772 {
eea6121a
AM
6773 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
6774
c152c796 6775 contents = finfo->contents;
eea6121a 6776 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
c152c796
AM
6777 return FALSE;
6778 }
6779
6780 if ((o->flags & SEC_RELOC) != 0)
6781 {
6782 Elf_Internal_Rela *internal_relocs;
6783 bfd_vma r_type_mask;
6784 int r_sym_shift;
6785
6786 /* Get the swapped relocs. */
6787 internal_relocs
6788 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
6789 finfo->internal_relocs, FALSE);
6790 if (internal_relocs == NULL
6791 && o->reloc_count > 0)
6792 return FALSE;
6793
6794 if (bed->s->arch_size == 32)
6795 {
6796 r_type_mask = 0xff;
6797 r_sym_shift = 8;
6798 }
6799 else
6800 {
6801 r_type_mask = 0xffffffff;
6802 r_sym_shift = 32;
6803 }
6804
6805 /* Run through the relocs looking for any against symbols
6806 from discarded sections and section symbols from
6807 removed link-once sections. Complain about relocs
6808 against discarded sections. Zero relocs against removed
6809 link-once sections. Preserve debug information as much
6810 as we can. */
6811 if (!elf_section_ignore_discarded_relocs (o))
6812 {
6813 Elf_Internal_Rela *rel, *relend;
9e66c942 6814 unsigned int action = elf_action_discarded (o);
c152c796
AM
6815
6816 rel = internal_relocs;
6817 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
6818 for ( ; rel < relend; rel++)
6819 {
6820 unsigned long r_symndx = rel->r_info >> r_sym_shift;
cdd3575c
AM
6821 asection **ps, *sec;
6822 struct elf_link_hash_entry *h = NULL;
6823 const char *sym_name;
c152c796 6824
ee75fd95
AM
6825 if (r_symndx == STN_UNDEF)
6826 continue;
6827
c152c796
AM
6828 if (r_symndx >= locsymcount
6829 || (elf_bad_symtab (input_bfd)
6830 && finfo->sections[r_symndx] == NULL))
6831 {
c152c796
AM
6832 h = sym_hashes[r_symndx - extsymoff];
6833 while (h->root.type == bfd_link_hash_indirect
6834 || h->root.type == bfd_link_hash_warning)
6835 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6836
cdd3575c
AM
6837 if (h->root.type != bfd_link_hash_defined
6838 && h->root.type != bfd_link_hash_defweak)
6839 continue;
6840
6841 ps = &h->root.u.def.section;
6842 sym_name = h->root.root.string;
c152c796
AM
6843 }
6844 else
6845 {
cdd3575c
AM
6846 Elf_Internal_Sym *sym = isymbuf + r_symndx;
6847 ps = &finfo->sections[r_symndx];
be8dd2ca 6848 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym);
cdd3575c 6849 }
c152c796 6850
cdd3575c
AM
6851 /* Complain if the definition comes from a
6852 discarded section. */
6853 if ((sec = *ps) != NULL && elf_discarded_section (sec))
6854 {
87e5235d 6855 asection *kept;
3d7f7666 6856
87e5235d 6857 BFD_ASSERT (r_symndx != 0);
9e66c942 6858 if (action & COMPLAIN)
cdd3575c 6859 {
d003868e
AM
6860 (*_bfd_error_handler)
6861 (_("`%s' referenced in section `%A' of %B: "
6862 "defined in discarded section `%A' of %B\n"),
6863 o, input_bfd, sec, sec->owner, sym_name);
cdd3575c
AM
6864 }
6865
87e5235d
AM
6866 /* Try to do the best we can to support buggy old
6867 versions of gcc. If we've warned, or this is
6868 debugging info, pretend that the symbol is
6869 really defined in the kept linkonce section.
6870 FIXME: This is quite broken. Modifying the
6871 symbol here means we will be changing all later
6872 uses of the symbol, not just in this section.
6873 The only thing that makes this half reasonable
6874 is that we warn in non-debug sections, and
6875 debug sections tend to come after other
6876 sections. */
6877 kept = sec->kept_section;
9e66c942 6878 if (kept != NULL && (action & PRETEND))
87e5235d
AM
6879 {
6880 if (elf_sec_group (sec) != NULL)
6881 kept = match_group_member (sec, kept);
6882 if (kept != NULL
6883 && sec->size == kept->size)
6884 {
6885 *ps = kept;
6886 continue;
6887 }
6888 }
6889
cdd3575c
AM
6890 /* Remove the symbol reference from the reloc, but
6891 don't kill the reloc completely. This is so that
6892 a zero value will be written into the section,
6893 which may have non-zero contents put there by the
6894 assembler. Zero in things like an eh_frame fde
6895 pc_begin allows stack unwinders to recognize the
6896 fde as bogus. */
6897 rel->r_info &= r_type_mask;
6898 rel->r_addend = 0;
c152c796
AM
6899 }
6900 }
6901 }
6902
6903 /* Relocate the section by invoking a back end routine.
6904
6905 The back end routine is responsible for adjusting the
6906 section contents as necessary, and (if using Rela relocs
6907 and generating a relocatable output file) adjusting the
6908 reloc addend as necessary.
6909
6910 The back end routine does not have to worry about setting
6911 the reloc address or the reloc symbol index.
6912
6913 The back end routine is given a pointer to the swapped in
6914 internal symbols, and can access the hash table entries
6915 for the external symbols via elf_sym_hashes (input_bfd).
6916
6917 When generating relocatable output, the back end routine
6918 must handle STB_LOCAL/STT_SECTION symbols specially. The
6919 output symbol is going to be a section symbol
6920 corresponding to the output section, which will require
6921 the addend to be adjusted. */
6922
6923 if (! (*relocate_section) (output_bfd, finfo->info,
6924 input_bfd, o, contents,
6925 internal_relocs,
6926 isymbuf,
6927 finfo->sections))
6928 return FALSE;
6929
6930 if (emit_relocs)
6931 {
6932 Elf_Internal_Rela *irela;
6933 Elf_Internal_Rela *irelaend;
6934 bfd_vma last_offset;
6935 struct elf_link_hash_entry **rel_hash;
6936 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
6937 unsigned int next_erel;
6938 bfd_boolean (*reloc_emitter)
6939 (bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *);
6940 bfd_boolean rela_normal;
6941
6942 input_rel_hdr = &elf_section_data (o)->rel_hdr;
6943 rela_normal = (bed->rela_normal
6944 && (input_rel_hdr->sh_entsize
6945 == bed->s->sizeof_rela));
6946
6947 /* Adjust the reloc addresses and symbol indices. */
6948
6949 irela = internal_relocs;
6950 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
6951 rel_hash = (elf_section_data (o->output_section)->rel_hashes
6952 + elf_section_data (o->output_section)->rel_count
6953 + elf_section_data (o->output_section)->rel_count2);
6954 last_offset = o->output_offset;
6955 if (!finfo->info->relocatable)
6956 last_offset += o->output_section->vma;
6957 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
6958 {
6959 unsigned long r_symndx;
6960 asection *sec;
6961 Elf_Internal_Sym sym;
6962
6963 if (next_erel == bed->s->int_rels_per_ext_rel)
6964 {
6965 rel_hash++;
6966 next_erel = 0;
6967 }
6968
6969 irela->r_offset = _bfd_elf_section_offset (output_bfd,
6970 finfo->info, o,
6971 irela->r_offset);
6972 if (irela->r_offset >= (bfd_vma) -2)
6973 {
6974 /* This is a reloc for a deleted entry or somesuch.
6975 Turn it into an R_*_NONE reloc, at the same
6976 offset as the last reloc. elf_eh_frame.c and
6977 elf_bfd_discard_info rely on reloc offsets
6978 being ordered. */
6979 irela->r_offset = last_offset;
6980 irela->r_info = 0;
6981 irela->r_addend = 0;
6982 continue;
6983 }
6984
6985 irela->r_offset += o->output_offset;
6986
6987 /* Relocs in an executable have to be virtual addresses. */
6988 if (!finfo->info->relocatable)
6989 irela->r_offset += o->output_section->vma;
6990
6991 last_offset = irela->r_offset;
6992
6993 r_symndx = irela->r_info >> r_sym_shift;
6994 if (r_symndx == STN_UNDEF)
6995 continue;
6996
6997 if (r_symndx >= locsymcount
6998 || (elf_bad_symtab (input_bfd)
6999 && finfo->sections[r_symndx] == NULL))
7000 {
7001 struct elf_link_hash_entry *rh;
7002 unsigned long indx;
7003
7004 /* This is a reloc against a global symbol. We
7005 have not yet output all the local symbols, so
7006 we do not know the symbol index of any global
7007 symbol. We set the rel_hash entry for this
7008 reloc to point to the global hash table entry
7009 for this symbol. The symbol index is then
ee75fd95 7010 set at the end of bfd_elf_final_link. */
c152c796
AM
7011 indx = r_symndx - extsymoff;
7012 rh = elf_sym_hashes (input_bfd)[indx];
7013 while (rh->root.type == bfd_link_hash_indirect
7014 || rh->root.type == bfd_link_hash_warning)
7015 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
7016
7017 /* Setting the index to -2 tells
7018 elf_link_output_extsym that this symbol is
7019 used by a reloc. */
7020 BFD_ASSERT (rh->indx < 0);
7021 rh->indx = -2;
7022
7023 *rel_hash = rh;
7024
7025 continue;
7026 }
7027
7028 /* This is a reloc against a local symbol. */
7029
7030 *rel_hash = NULL;
7031 sym = isymbuf[r_symndx];
7032 sec = finfo->sections[r_symndx];
7033 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
7034 {
7035 /* I suppose the backend ought to fill in the
7036 section of any STT_SECTION symbol against a
6a8d1586
AM
7037 processor specific section. */
7038 r_symndx = 0;
7039 if (bfd_is_abs_section (sec))
7040 ;
c152c796
AM
7041 else if (sec == NULL || sec->owner == NULL)
7042 {
7043 bfd_set_error (bfd_error_bad_value);
7044 return FALSE;
7045 }
7046 else
7047 {
6a8d1586
AM
7048 asection *osec = sec->output_section;
7049
7050 /* If we have discarded a section, the output
7051 section will be the absolute section. In
7052 case of discarded link-once and discarded
7053 SEC_MERGE sections, use the kept section. */
7054 if (bfd_is_abs_section (osec)
7055 && sec->kept_section != NULL
7056 && sec->kept_section->output_section != NULL)
7057 {
7058 osec = sec->kept_section->output_section;
7059 irela->r_addend -= osec->vma;
7060 }
7061
7062 if (!bfd_is_abs_section (osec))
7063 {
7064 r_symndx = osec->target_index;
7065 BFD_ASSERT (r_symndx != 0);
7066 }
c152c796
AM
7067 }
7068
7069 /* Adjust the addend according to where the
7070 section winds up in the output section. */
7071 if (rela_normal)
7072 irela->r_addend += sec->output_offset;
7073 }
7074 else
7075 {
7076 if (finfo->indices[r_symndx] == -1)
7077 {
7078 unsigned long shlink;
7079 const char *name;
7080 asection *osec;
7081
7082 if (finfo->info->strip == strip_all)
7083 {
7084 /* You can't do ld -r -s. */
7085 bfd_set_error (bfd_error_invalid_operation);
7086 return FALSE;
7087 }
7088
7089 /* This symbol was skipped earlier, but
7090 since it is needed by a reloc, we
7091 must output it now. */
7092 shlink = symtab_hdr->sh_link;
7093 name = (bfd_elf_string_from_elf_section
7094 (input_bfd, shlink, sym.st_name));
7095 if (name == NULL)
7096 return FALSE;
7097
7098 osec = sec->output_section;
7099 sym.st_shndx =
7100 _bfd_elf_section_from_bfd_section (output_bfd,
7101 osec);
7102 if (sym.st_shndx == SHN_BAD)
7103 return FALSE;
7104
7105 sym.st_value += sec->output_offset;
7106 if (! finfo->info->relocatable)
7107 {
7108 sym.st_value += osec->vma;
7109 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
7110 {
7111 /* STT_TLS symbols are relative to PT_TLS
7112 segment base. */
7113 BFD_ASSERT (elf_hash_table (finfo->info)
7114 ->tls_sec != NULL);
7115 sym.st_value -= (elf_hash_table (finfo->info)
7116 ->tls_sec->vma);
7117 }
7118 }
7119
7120 finfo->indices[r_symndx]
7121 = bfd_get_symcount (output_bfd);
7122
7123 if (! elf_link_output_sym (finfo, name, &sym, sec,
7124 NULL))
7125 return FALSE;
7126 }
7127
7128 r_symndx = finfo->indices[r_symndx];
7129 }
7130
7131 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
7132 | (irela->r_info & r_type_mask));
7133 }
7134
7135 /* Swap out the relocs. */
7136 if (bed->elf_backend_emit_relocs
7137 && !(finfo->info->relocatable
7138 || finfo->info->emitrelocations))
7139 reloc_emitter = bed->elf_backend_emit_relocs;
7140 else
7141 reloc_emitter = _bfd_elf_link_output_relocs;
7142
7143 if (input_rel_hdr->sh_size != 0
7144 && ! (*reloc_emitter) (output_bfd, o, input_rel_hdr,
7145 internal_relocs))
7146 return FALSE;
7147
7148 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
7149 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
7150 {
7151 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
7152 * bed->s->int_rels_per_ext_rel);
7153 if (! (*reloc_emitter) (output_bfd, o, input_rel_hdr2,
7154 internal_relocs))
7155 return FALSE;
7156 }
7157 }
7158 }
7159
7160 /* Write out the modified section contents. */
7161 if (bed->elf_backend_write_section
7162 && (*bed->elf_backend_write_section) (output_bfd, o, contents))
7163 {
7164 /* Section written out. */
7165 }
7166 else switch (o->sec_info_type)
7167 {
7168 case ELF_INFO_TYPE_STABS:
7169 if (! (_bfd_write_section_stabs
7170 (output_bfd,
7171 &elf_hash_table (finfo->info)->stab_info,
7172 o, &elf_section_data (o)->sec_info, contents)))
7173 return FALSE;
7174 break;
7175 case ELF_INFO_TYPE_MERGE:
7176 if (! _bfd_write_merged_section (output_bfd, o,
7177 elf_section_data (o)->sec_info))
7178 return FALSE;
7179 break;
7180 case ELF_INFO_TYPE_EH_FRAME:
7181 {
7182 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
7183 o, contents))
7184 return FALSE;
7185 }
7186 break;
7187 default:
7188 {
c152c796
AM
7189 if (! (o->flags & SEC_EXCLUDE)
7190 && ! bfd_set_section_contents (output_bfd, o->output_section,
7191 contents,
7192 (file_ptr) o->output_offset,
eea6121a 7193 o->size))
c152c796
AM
7194 return FALSE;
7195 }
7196 break;
7197 }
7198 }
7199
7200 return TRUE;
7201}
7202
7203/* Generate a reloc when linking an ELF file. This is a reloc
7204 requested by the linker, and does come from any input file. This
7205 is used to build constructor and destructor tables when linking
7206 with -Ur. */
7207
7208static bfd_boolean
7209elf_reloc_link_order (bfd *output_bfd,
7210 struct bfd_link_info *info,
7211 asection *output_section,
7212 struct bfd_link_order *link_order)
7213{
7214 reloc_howto_type *howto;
7215 long indx;
7216 bfd_vma offset;
7217 bfd_vma addend;
7218 struct elf_link_hash_entry **rel_hash_ptr;
7219 Elf_Internal_Shdr *rel_hdr;
7220 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
7221 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
7222 bfd_byte *erel;
7223 unsigned int i;
7224
7225 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
7226 if (howto == NULL)
7227 {
7228 bfd_set_error (bfd_error_bad_value);
7229 return FALSE;
7230 }
7231
7232 addend = link_order->u.reloc.p->addend;
7233
7234 /* Figure out the symbol index. */
7235 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
7236 + elf_section_data (output_section)->rel_count
7237 + elf_section_data (output_section)->rel_count2);
7238 if (link_order->type == bfd_section_reloc_link_order)
7239 {
7240 indx = link_order->u.reloc.p->u.section->target_index;
7241 BFD_ASSERT (indx != 0);
7242 *rel_hash_ptr = NULL;
7243 }
7244 else
7245 {
7246 struct elf_link_hash_entry *h;
7247
7248 /* Treat a reloc against a defined symbol as though it were
7249 actually against the section. */
7250 h = ((struct elf_link_hash_entry *)
7251 bfd_wrapped_link_hash_lookup (output_bfd, info,
7252 link_order->u.reloc.p->u.name,
7253 FALSE, FALSE, TRUE));
7254 if (h != NULL
7255 && (h->root.type == bfd_link_hash_defined
7256 || h->root.type == bfd_link_hash_defweak))
7257 {
7258 asection *section;
7259
7260 section = h->root.u.def.section;
7261 indx = section->output_section->target_index;
7262 *rel_hash_ptr = NULL;
7263 /* It seems that we ought to add the symbol value to the
7264 addend here, but in practice it has already been added
7265 because it was passed to constructor_callback. */
7266 addend += section->output_section->vma + section->output_offset;
7267 }
7268 else if (h != NULL)
7269 {
7270 /* Setting the index to -2 tells elf_link_output_extsym that
7271 this symbol is used by a reloc. */
7272 h->indx = -2;
7273 *rel_hash_ptr = h;
7274 indx = 0;
7275 }
7276 else
7277 {
7278 if (! ((*info->callbacks->unattached_reloc)
7279 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
7280 return FALSE;
7281 indx = 0;
7282 }
7283 }
7284
7285 /* If this is an inplace reloc, we must write the addend into the
7286 object file. */
7287 if (howto->partial_inplace && addend != 0)
7288 {
7289 bfd_size_type size;
7290 bfd_reloc_status_type rstat;
7291 bfd_byte *buf;
7292 bfd_boolean ok;
7293 const char *sym_name;
7294
7295 size = bfd_get_reloc_size (howto);
7296 buf = bfd_zmalloc (size);
7297 if (buf == NULL)
7298 return FALSE;
7299 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
7300 switch (rstat)
7301 {
7302 case bfd_reloc_ok:
7303 break;
7304
7305 default:
7306 case bfd_reloc_outofrange:
7307 abort ();
7308
7309 case bfd_reloc_overflow:
7310 if (link_order->type == bfd_section_reloc_link_order)
7311 sym_name = bfd_section_name (output_bfd,
7312 link_order->u.reloc.p->u.section);
7313 else
7314 sym_name = link_order->u.reloc.p->u.name;
7315 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f
L
7316 (info, NULL, sym_name, howto->name, addend, NULL,
7317 NULL, (bfd_vma) 0)))
c152c796
AM
7318 {
7319 free (buf);
7320 return FALSE;
7321 }
7322 break;
7323 }
7324 ok = bfd_set_section_contents (output_bfd, output_section, buf,
7325 link_order->offset, size);
7326 free (buf);
7327 if (! ok)
7328 return FALSE;
7329 }
7330
7331 /* The address of a reloc is relative to the section in a
7332 relocatable file, and is a virtual address in an executable
7333 file. */
7334 offset = link_order->offset;
7335 if (! info->relocatable)
7336 offset += output_section->vma;
7337
7338 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7339 {
7340 irel[i].r_offset = offset;
7341 irel[i].r_info = 0;
7342 irel[i].r_addend = 0;
7343 }
7344 if (bed->s->arch_size == 32)
7345 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
7346 else
7347 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
7348
7349 rel_hdr = &elf_section_data (output_section)->rel_hdr;
7350 erel = rel_hdr->contents;
7351 if (rel_hdr->sh_type == SHT_REL)
7352 {
7353 erel += (elf_section_data (output_section)->rel_count
7354 * bed->s->sizeof_rel);
7355 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
7356 }
7357 else
7358 {
7359 irel[0].r_addend = addend;
7360 erel += (elf_section_data (output_section)->rel_count
7361 * bed->s->sizeof_rela);
7362 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
7363 }
7364
7365 ++elf_section_data (output_section)->rel_count;
7366
7367 return TRUE;
7368}
7369
0b52efa6
PB
7370
7371/* Get the output vma of the section pointed to by the sh_link field. */
7372
7373static bfd_vma
7374elf_get_linked_section_vma (struct bfd_link_order *p)
7375{
7376 Elf_Internal_Shdr **elf_shdrp;
7377 asection *s;
7378 int elfsec;
7379
7380 s = p->u.indirect.section;
7381 elf_shdrp = elf_elfsections (s->owner);
7382 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
7383 elfsec = elf_shdrp[elfsec]->sh_link;
185d09ad
L
7384 /* PR 290:
7385 The Intel C compiler generates SHT_IA_64_UNWIND with
7386 SHF_LINK_ORDER. But it doesn't set theh sh_link or
7387 sh_info fields. Hence we could get the situation
7388 where elfsec is 0. */
7389 if (elfsec == 0)
7390 {
7391 const struct elf_backend_data *bed
7392 = get_elf_backend_data (s->owner);
7393 if (bed->link_order_error_handler)
d003868e
AM
7394 bed->link_order_error_handler
7395 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
185d09ad
L
7396 return 0;
7397 }
7398 else
7399 {
7400 s = elf_shdrp[elfsec]->bfd_section;
7401 return s->output_section->vma + s->output_offset;
7402 }
0b52efa6
PB
7403}
7404
7405
7406/* Compare two sections based on the locations of the sections they are
7407 linked to. Used by elf_fixup_link_order. */
7408
7409static int
7410compare_link_order (const void * a, const void * b)
7411{
7412 bfd_vma apos;
7413 bfd_vma bpos;
7414
7415 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
7416 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
7417 if (apos < bpos)
7418 return -1;
7419 return apos > bpos;
7420}
7421
7422
7423/* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
7424 order as their linked sections. Returns false if this could not be done
7425 because an output section includes both ordered and unordered
7426 sections. Ideally we'd do this in the linker proper. */
7427
7428static bfd_boolean
7429elf_fixup_link_order (bfd *abfd, asection *o)
7430{
7431 int seen_linkorder;
7432 int seen_other;
7433 int n;
7434 struct bfd_link_order *p;
7435 bfd *sub;
7436 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7437 int elfsec;
7438 struct bfd_link_order **sections;
7439 asection *s;
7440 bfd_vma offset;
7441
7442 seen_other = 0;
7443 seen_linkorder = 0;
7444 for (p = o->link_order_head; p != NULL; p = p->next)
7445 {
7446 if (p->type == bfd_indirect_link_order
7447 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
7448 == bfd_target_elf_flavour)
7449 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
7450 {
7451 s = p->u.indirect.section;
7452 elfsec = _bfd_elf_section_from_bfd_section (sub, s);
7453 if (elfsec != -1
7454 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER)
7455 seen_linkorder++;
7456 else
7457 seen_other++;
7458 }
7459 else
7460 seen_other++;
7461 }
7462
7463 if (!seen_linkorder)
7464 return TRUE;
7465
7466 if (seen_other && seen_linkorder)
08ccf96b 7467 {
d003868e
AM
7468 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
7469 o);
08ccf96b
L
7470 bfd_set_error (bfd_error_bad_value);
7471 return FALSE;
7472 }
0b52efa6
PB
7473
7474 sections = (struct bfd_link_order **)
7475 xmalloc (seen_linkorder * sizeof (struct bfd_link_order *));
7476 seen_linkorder = 0;
7477
7478 for (p = o->link_order_head; p != NULL; p = p->next)
7479 {
7480 sections[seen_linkorder++] = p;
7481 }
7482 /* Sort the input sections in the order of their linked section. */
7483 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
7484 compare_link_order);
7485
7486 /* Change the offsets of the sections. */
7487 offset = 0;
7488 for (n = 0; n < seen_linkorder; n++)
7489 {
7490 s = sections[n]->u.indirect.section;
7491 offset &= ~(bfd_vma)((1 << s->alignment_power) - 1);
7492 s->output_offset = offset;
7493 sections[n]->offset = offset;
7494 offset += sections[n]->size;
7495 }
7496
7497 return TRUE;
7498}
7499
7500
c152c796
AM
7501/* Do the final step of an ELF link. */
7502
7503bfd_boolean
7504bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
7505{
7506 bfd_boolean dynamic;
7507 bfd_boolean emit_relocs;
7508 bfd *dynobj;
7509 struct elf_final_link_info finfo;
7510 register asection *o;
7511 register struct bfd_link_order *p;
7512 register bfd *sub;
7513 bfd_size_type max_contents_size;
7514 bfd_size_type max_external_reloc_size;
7515 bfd_size_type max_internal_reloc_count;
7516 bfd_size_type max_sym_count;
7517 bfd_size_type max_sym_shndx_count;
7518 file_ptr off;
7519 Elf_Internal_Sym elfsym;
7520 unsigned int i;
7521 Elf_Internal_Shdr *symtab_hdr;
7522 Elf_Internal_Shdr *symtab_shndx_hdr;
7523 Elf_Internal_Shdr *symstrtab_hdr;
7524 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7525 struct elf_outext_info eoinfo;
7526 bfd_boolean merged;
7527 size_t relativecount = 0;
7528 asection *reldyn = 0;
7529 bfd_size_type amt;
7530
7531 if (! is_elf_hash_table (info->hash))
7532 return FALSE;
7533
7534 if (info->shared)
7535 abfd->flags |= DYNAMIC;
7536
7537 dynamic = elf_hash_table (info)->dynamic_sections_created;
7538 dynobj = elf_hash_table (info)->dynobj;
7539
7540 emit_relocs = (info->relocatable
7541 || info->emitrelocations
7542 || bed->elf_backend_emit_relocs);
7543
7544 finfo.info = info;
7545 finfo.output_bfd = abfd;
7546 finfo.symstrtab = _bfd_elf_stringtab_init ();
7547 if (finfo.symstrtab == NULL)
7548 return FALSE;
7549
7550 if (! dynamic)
7551 {
7552 finfo.dynsym_sec = NULL;
7553 finfo.hash_sec = NULL;
7554 finfo.symver_sec = NULL;
7555 }
7556 else
7557 {
7558 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
7559 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
7560 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
7561 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
7562 /* Note that it is OK if symver_sec is NULL. */
7563 }
7564
7565 finfo.contents = NULL;
7566 finfo.external_relocs = NULL;
7567 finfo.internal_relocs = NULL;
7568 finfo.external_syms = NULL;
7569 finfo.locsym_shndx = NULL;
7570 finfo.internal_syms = NULL;
7571 finfo.indices = NULL;
7572 finfo.sections = NULL;
7573 finfo.symbuf = NULL;
7574 finfo.symshndxbuf = NULL;
7575 finfo.symbuf_count = 0;
7576 finfo.shndxbuf_size = 0;
7577
7578 /* Count up the number of relocations we will output for each output
7579 section, so that we know the sizes of the reloc sections. We
7580 also figure out some maximum sizes. */
7581 max_contents_size = 0;
7582 max_external_reloc_size = 0;
7583 max_internal_reloc_count = 0;
7584 max_sym_count = 0;
7585 max_sym_shndx_count = 0;
7586 merged = FALSE;
7587 for (o = abfd->sections; o != NULL; o = o->next)
7588 {
7589 struct bfd_elf_section_data *esdo = elf_section_data (o);
7590 o->reloc_count = 0;
7591
7592 for (p = o->link_order_head; p != NULL; p = p->next)
7593 {
7594 unsigned int reloc_count = 0;
7595 struct bfd_elf_section_data *esdi = NULL;
7596 unsigned int *rel_count1;
7597
7598 if (p->type == bfd_section_reloc_link_order
7599 || p->type == bfd_symbol_reloc_link_order)
7600 reloc_count = 1;
7601 else if (p->type == bfd_indirect_link_order)
7602 {
7603 asection *sec;
7604
7605 sec = p->u.indirect.section;
7606 esdi = elf_section_data (sec);
7607
7608 /* Mark all sections which are to be included in the
7609 link. This will normally be every section. We need
7610 to do this so that we can identify any sections which
7611 the linker has decided to not include. */
7612 sec->linker_mark = TRUE;
7613
7614 if (sec->flags & SEC_MERGE)
7615 merged = TRUE;
7616
7617 if (info->relocatable || info->emitrelocations)
7618 reloc_count = sec->reloc_count;
7619 else if (bed->elf_backend_count_relocs)
7620 {
7621 Elf_Internal_Rela * relocs;
7622
7623 relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
7624 info->keep_memory);
7625
7626 reloc_count = (*bed->elf_backend_count_relocs) (sec, relocs);
7627
7628 if (elf_section_data (o)->relocs != relocs)
7629 free (relocs);
7630 }
7631
eea6121a
AM
7632 if (sec->rawsize > max_contents_size)
7633 max_contents_size = sec->rawsize;
7634 if (sec->size > max_contents_size)
7635 max_contents_size = sec->size;
c152c796
AM
7636
7637 /* We are interested in just local symbols, not all
7638 symbols. */
7639 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
7640 && (sec->owner->flags & DYNAMIC) == 0)
7641 {
7642 size_t sym_count;
7643
7644 if (elf_bad_symtab (sec->owner))
7645 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
7646 / bed->s->sizeof_sym);
7647 else
7648 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
7649
7650 if (sym_count > max_sym_count)
7651 max_sym_count = sym_count;
7652
7653 if (sym_count > max_sym_shndx_count
7654 && elf_symtab_shndx (sec->owner) != 0)
7655 max_sym_shndx_count = sym_count;
7656
7657 if ((sec->flags & SEC_RELOC) != 0)
7658 {
7659 size_t ext_size;
7660
7661 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
7662 if (ext_size > max_external_reloc_size)
7663 max_external_reloc_size = ext_size;
7664 if (sec->reloc_count > max_internal_reloc_count)
7665 max_internal_reloc_count = sec->reloc_count;
7666 }
7667 }
7668 }
7669
7670 if (reloc_count == 0)
7671 continue;
7672
7673 o->reloc_count += reloc_count;
7674
7675 /* MIPS may have a mix of REL and RELA relocs on sections.
7676 To support this curious ABI we keep reloc counts in
7677 elf_section_data too. We must be careful to add the
7678 relocations from the input section to the right output
7679 count. FIXME: Get rid of one count. We have
7680 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
7681 rel_count1 = &esdo->rel_count;
7682 if (esdi != NULL)
7683 {
7684 bfd_boolean same_size;
7685 bfd_size_type entsize1;
7686
7687 entsize1 = esdi->rel_hdr.sh_entsize;
7688 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
7689 || entsize1 == bed->s->sizeof_rela);
7690 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
7691
7692 if (!same_size)
7693 rel_count1 = &esdo->rel_count2;
7694
7695 if (esdi->rel_hdr2 != NULL)
7696 {
7697 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
7698 unsigned int alt_count;
7699 unsigned int *rel_count2;
7700
7701 BFD_ASSERT (entsize2 != entsize1
7702 && (entsize2 == bed->s->sizeof_rel
7703 || entsize2 == bed->s->sizeof_rela));
7704
7705 rel_count2 = &esdo->rel_count2;
7706 if (!same_size)
7707 rel_count2 = &esdo->rel_count;
7708
7709 /* The following is probably too simplistic if the
7710 backend counts output relocs unusually. */
7711 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
7712 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
7713 *rel_count2 += alt_count;
7714 reloc_count -= alt_count;
7715 }
7716 }
7717 *rel_count1 += reloc_count;
7718 }
7719
7720 if (o->reloc_count > 0)
7721 o->flags |= SEC_RELOC;
7722 else
7723 {
7724 /* Explicitly clear the SEC_RELOC flag. The linker tends to
7725 set it (this is probably a bug) and if it is set
7726 assign_section_numbers will create a reloc section. */
7727 o->flags &=~ SEC_RELOC;
7728 }
7729
7730 /* If the SEC_ALLOC flag is not set, force the section VMA to
7731 zero. This is done in elf_fake_sections as well, but forcing
7732 the VMA to 0 here will ensure that relocs against these
7733 sections are handled correctly. */
7734 if ((o->flags & SEC_ALLOC) == 0
7735 && ! o->user_set_vma)
7736 o->vma = 0;
7737 }
7738
7739 if (! info->relocatable && merged)
7740 elf_link_hash_traverse (elf_hash_table (info),
7741 _bfd_elf_link_sec_merge_syms, abfd);
7742
7743 /* Figure out the file positions for everything but the symbol table
7744 and the relocs. We set symcount to force assign_section_numbers
7745 to create a symbol table. */
7746 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
7747 BFD_ASSERT (! abfd->output_has_begun);
7748 if (! _bfd_elf_compute_section_file_positions (abfd, info))
7749 goto error_return;
7750
ee75fd95 7751 /* Set sizes, and assign file positions for reloc sections. */
c152c796
AM
7752 for (o = abfd->sections; o != NULL; o = o->next)
7753 {
7754 if ((o->flags & SEC_RELOC) != 0)
7755 {
7756 if (!(_bfd_elf_link_size_reloc_section
7757 (abfd, &elf_section_data (o)->rel_hdr, o)))
7758 goto error_return;
7759
7760 if (elf_section_data (o)->rel_hdr2
7761 && !(_bfd_elf_link_size_reloc_section
7762 (abfd, elf_section_data (o)->rel_hdr2, o)))
7763 goto error_return;
7764 }
7765
7766 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
7767 to count upwards while actually outputting the relocations. */
7768 elf_section_data (o)->rel_count = 0;
7769 elf_section_data (o)->rel_count2 = 0;
7770 }
7771
7772 _bfd_elf_assign_file_positions_for_relocs (abfd);
7773
7774 /* We have now assigned file positions for all the sections except
7775 .symtab and .strtab. We start the .symtab section at the current
7776 file position, and write directly to it. We build the .strtab
7777 section in memory. */
7778 bfd_get_symcount (abfd) = 0;
7779 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7780 /* sh_name is set in prep_headers. */
7781 symtab_hdr->sh_type = SHT_SYMTAB;
7782 /* sh_flags, sh_addr and sh_size all start off zero. */
7783 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
7784 /* sh_link is set in assign_section_numbers. */
7785 /* sh_info is set below. */
7786 /* sh_offset is set just below. */
7787 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
7788
7789 off = elf_tdata (abfd)->next_file_pos;
7790 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
7791
7792 /* Note that at this point elf_tdata (abfd)->next_file_pos is
7793 incorrect. We do not yet know the size of the .symtab section.
7794 We correct next_file_pos below, after we do know the size. */
7795
7796 /* Allocate a buffer to hold swapped out symbols. This is to avoid
7797 continuously seeking to the right position in the file. */
7798 if (! info->keep_memory || max_sym_count < 20)
7799 finfo.symbuf_size = 20;
7800 else
7801 finfo.symbuf_size = max_sym_count;
7802 amt = finfo.symbuf_size;
7803 amt *= bed->s->sizeof_sym;
7804 finfo.symbuf = bfd_malloc (amt);
7805 if (finfo.symbuf == NULL)
7806 goto error_return;
7807 if (elf_numsections (abfd) > SHN_LORESERVE)
7808 {
7809 /* Wild guess at number of output symbols. realloc'd as needed. */
7810 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
7811 finfo.shndxbuf_size = amt;
7812 amt *= sizeof (Elf_External_Sym_Shndx);
7813 finfo.symshndxbuf = bfd_zmalloc (amt);
7814 if (finfo.symshndxbuf == NULL)
7815 goto error_return;
7816 }
7817
7818 /* Start writing out the symbol table. The first symbol is always a
7819 dummy symbol. */
7820 if (info->strip != strip_all
7821 || emit_relocs)
7822 {
7823 elfsym.st_value = 0;
7824 elfsym.st_size = 0;
7825 elfsym.st_info = 0;
7826 elfsym.st_other = 0;
7827 elfsym.st_shndx = SHN_UNDEF;
7828 if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
7829 NULL))
7830 goto error_return;
7831 }
7832
7833#if 0
7834 /* Some standard ELF linkers do this, but we don't because it causes
7835 bootstrap comparison failures. */
7836 /* Output a file symbol for the output file as the second symbol.
7837 We output this even if we are discarding local symbols, although
7838 I'm not sure if this is correct. */
7839 elfsym.st_value = 0;
7840 elfsym.st_size = 0;
7841 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
7842 elfsym.st_other = 0;
7843 elfsym.st_shndx = SHN_ABS;
7844 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
7845 &elfsym, bfd_abs_section_ptr, NULL))
7846 goto error_return;
7847#endif
7848
7849 /* Output a symbol for each section. We output these even if we are
7850 discarding local symbols, since they are used for relocs. These
7851 symbols have no names. We store the index of each one in the
7852 index field of the section, so that we can find it again when
7853 outputting relocs. */
7854 if (info->strip != strip_all
7855 || emit_relocs)
7856 {
7857 elfsym.st_size = 0;
7858 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
7859 elfsym.st_other = 0;
7860 for (i = 1; i < elf_numsections (abfd); i++)
7861 {
7862 o = bfd_section_from_elf_index (abfd, i);
7863 if (o != NULL)
7864 o->target_index = bfd_get_symcount (abfd);
7865 elfsym.st_shndx = i;
7866 if (info->relocatable || o == NULL)
7867 elfsym.st_value = 0;
7868 else
7869 elfsym.st_value = o->vma;
7870 if (! elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL))
7871 goto error_return;
7872 if (i == SHN_LORESERVE - 1)
7873 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
7874 }
7875 }
7876
7877 /* Allocate some memory to hold information read in from the input
7878 files. */
7879 if (max_contents_size != 0)
7880 {
7881 finfo.contents = bfd_malloc (max_contents_size);
7882 if (finfo.contents == NULL)
7883 goto error_return;
7884 }
7885
7886 if (max_external_reloc_size != 0)
7887 {
7888 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
7889 if (finfo.external_relocs == NULL)
7890 goto error_return;
7891 }
7892
7893 if (max_internal_reloc_count != 0)
7894 {
7895 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
7896 amt *= sizeof (Elf_Internal_Rela);
7897 finfo.internal_relocs = bfd_malloc (amt);
7898 if (finfo.internal_relocs == NULL)
7899 goto error_return;
7900 }
7901
7902 if (max_sym_count != 0)
7903 {
7904 amt = max_sym_count * bed->s->sizeof_sym;
7905 finfo.external_syms = bfd_malloc (amt);
7906 if (finfo.external_syms == NULL)
7907 goto error_return;
7908
7909 amt = max_sym_count * sizeof (Elf_Internal_Sym);
7910 finfo.internal_syms = bfd_malloc (amt);
7911 if (finfo.internal_syms == NULL)
7912 goto error_return;
7913
7914 amt = max_sym_count * sizeof (long);
7915 finfo.indices = bfd_malloc (amt);
7916 if (finfo.indices == NULL)
7917 goto error_return;
7918
7919 amt = max_sym_count * sizeof (asection *);
7920 finfo.sections = bfd_malloc (amt);
7921 if (finfo.sections == NULL)
7922 goto error_return;
7923 }
7924
7925 if (max_sym_shndx_count != 0)
7926 {
7927 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
7928 finfo.locsym_shndx = bfd_malloc (amt);
7929 if (finfo.locsym_shndx == NULL)
7930 goto error_return;
7931 }
7932
7933 if (elf_hash_table (info)->tls_sec)
7934 {
7935 bfd_vma base, end = 0;
7936 asection *sec;
7937
7938 for (sec = elf_hash_table (info)->tls_sec;
7939 sec && (sec->flags & SEC_THREAD_LOCAL);
7940 sec = sec->next)
7941 {
eea6121a 7942 bfd_vma size = sec->size;
c152c796
AM
7943
7944 if (size == 0 && (sec->flags & SEC_HAS_CONTENTS) == 0)
7945 {
7946 struct bfd_link_order *o;
7947
7948 for (o = sec->link_order_head; o != NULL; o = o->next)
7949 if (size < o->offset + o->size)
7950 size = o->offset + o->size;
7951 }
7952 end = sec->vma + size;
7953 }
7954 base = elf_hash_table (info)->tls_sec->vma;
7955 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
7956 elf_hash_table (info)->tls_size = end - base;
7957 }
7958
0b52efa6
PB
7959 /* Reorder SHF_LINK_ORDER sections. */
7960 for (o = abfd->sections; o != NULL; o = o->next)
7961 {
7962 if (!elf_fixup_link_order (abfd, o))
7963 return FALSE;
7964 }
7965
c152c796
AM
7966 /* Since ELF permits relocations to be against local symbols, we
7967 must have the local symbols available when we do the relocations.
7968 Since we would rather only read the local symbols once, and we
7969 would rather not keep them in memory, we handle all the
7970 relocations for a single input file at the same time.
7971
7972 Unfortunately, there is no way to know the total number of local
7973 symbols until we have seen all of them, and the local symbol
7974 indices precede the global symbol indices. This means that when
7975 we are generating relocatable output, and we see a reloc against
7976 a global symbol, we can not know the symbol index until we have
7977 finished examining all the local symbols to see which ones we are
7978 going to output. To deal with this, we keep the relocations in
7979 memory, and don't output them until the end of the link. This is
7980 an unfortunate waste of memory, but I don't see a good way around
7981 it. Fortunately, it only happens when performing a relocatable
7982 link, which is not the common case. FIXME: If keep_memory is set
7983 we could write the relocs out and then read them again; I don't
7984 know how bad the memory loss will be. */
7985
7986 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
7987 sub->output_has_begun = FALSE;
7988 for (o = abfd->sections; o != NULL; o = o->next)
7989 {
7990 for (p = o->link_order_head; p != NULL; p = p->next)
7991 {
7992 if (p->type == bfd_indirect_link_order
7993 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
7994 == bfd_target_elf_flavour)
7995 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
7996 {
7997 if (! sub->output_has_begun)
7998 {
7999 if (! elf_link_input_bfd (&finfo, sub))
8000 goto error_return;
8001 sub->output_has_begun = TRUE;
8002 }
8003 }
8004 else if (p->type == bfd_section_reloc_link_order
8005 || p->type == bfd_symbol_reloc_link_order)
8006 {
8007 if (! elf_reloc_link_order (abfd, info, o, p))
8008 goto error_return;
8009 }
8010 else
8011 {
8012 if (! _bfd_default_link_order (abfd, info, o, p))
8013 goto error_return;
8014 }
8015 }
8016 }
8017
8018 /* Output any global symbols that got converted to local in a
8019 version script or due to symbol visibility. We do this in a
8020 separate step since ELF requires all local symbols to appear
8021 prior to any global symbols. FIXME: We should only do this if
8022 some global symbols were, in fact, converted to become local.
8023 FIXME: Will this work correctly with the Irix 5 linker? */
8024 eoinfo.failed = FALSE;
8025 eoinfo.finfo = &finfo;
8026 eoinfo.localsyms = TRUE;
8027 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
8028 &eoinfo);
8029 if (eoinfo.failed)
8030 return FALSE;
8031
8032 /* That wrote out all the local symbols. Finish up the symbol table
8033 with the global symbols. Even if we want to strip everything we
8034 can, we still need to deal with those global symbols that got
8035 converted to local in a version script. */
8036
8037 /* The sh_info field records the index of the first non local symbol. */
8038 symtab_hdr->sh_info = bfd_get_symcount (abfd);
8039
8040 if (dynamic
8041 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
8042 {
8043 Elf_Internal_Sym sym;
8044 bfd_byte *dynsym = finfo.dynsym_sec->contents;
8045 long last_local = 0;
8046
8047 /* Write out the section symbols for the output sections. */
8048 if (info->shared)
8049 {
8050 asection *s;
8051
8052 sym.st_size = 0;
8053 sym.st_name = 0;
8054 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8055 sym.st_other = 0;
8056
8057 for (s = abfd->sections; s != NULL; s = s->next)
8058 {
8059 int indx;
8060 bfd_byte *dest;
8061 long dynindx;
8062
c152c796 8063 dynindx = elf_section_data (s)->dynindx;
8c37241b
JJ
8064 if (dynindx <= 0)
8065 continue;
8066 indx = elf_section_data (s)->this_idx;
c152c796
AM
8067 BFD_ASSERT (indx > 0);
8068 sym.st_shndx = indx;
8069 sym.st_value = s->vma;
8070 dest = dynsym + dynindx * bed->s->sizeof_sym;
8c37241b
JJ
8071 if (last_local < dynindx)
8072 last_local = dynindx;
c152c796
AM
8073 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
8074 }
c152c796
AM
8075 }
8076
8077 /* Write out the local dynsyms. */
8078 if (elf_hash_table (info)->dynlocal)
8079 {
8080 struct elf_link_local_dynamic_entry *e;
8081 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
8082 {
8083 asection *s;
8084 bfd_byte *dest;
8085
8086 sym.st_size = e->isym.st_size;
8087 sym.st_other = e->isym.st_other;
8088
8089 /* Copy the internal symbol as is.
8090 Note that we saved a word of storage and overwrote
8091 the original st_name with the dynstr_index. */
8092 sym = e->isym;
8093
8094 if (e->isym.st_shndx != SHN_UNDEF
8095 && (e->isym.st_shndx < SHN_LORESERVE
8096 || e->isym.st_shndx > SHN_HIRESERVE))
8097 {
8098 s = bfd_section_from_elf_index (e->input_bfd,
8099 e->isym.st_shndx);
8100
8101 sym.st_shndx =
8102 elf_section_data (s->output_section)->this_idx;
8103 sym.st_value = (s->output_section->vma
8104 + s->output_offset
8105 + e->isym.st_value);
8106 }
8107
8108 if (last_local < e->dynindx)
8109 last_local = e->dynindx;
8110
8111 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
8112 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
8113 }
8114 }
8115
8116 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
8117 last_local + 1;
8118 }
8119
8120 /* We get the global symbols from the hash table. */
8121 eoinfo.failed = FALSE;
8122 eoinfo.localsyms = FALSE;
8123 eoinfo.finfo = &finfo;
8124 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
8125 &eoinfo);
8126 if (eoinfo.failed)
8127 return FALSE;
8128
8129 /* If backend needs to output some symbols not present in the hash
8130 table, do it now. */
8131 if (bed->elf_backend_output_arch_syms)
8132 {
8133 typedef bfd_boolean (*out_sym_func)
8134 (void *, const char *, Elf_Internal_Sym *, asection *,
8135 struct elf_link_hash_entry *);
8136
8137 if (! ((*bed->elf_backend_output_arch_syms)
8138 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
8139 return FALSE;
8140 }
8141
8142 /* Flush all symbols to the file. */
8143 if (! elf_link_flush_output_syms (&finfo, bed))
8144 return FALSE;
8145
8146 /* Now we know the size of the symtab section. */
8147 off += symtab_hdr->sh_size;
8148
8149 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
8150 if (symtab_shndx_hdr->sh_name != 0)
8151 {
8152 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
8153 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
8154 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
8155 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
8156 symtab_shndx_hdr->sh_size = amt;
8157
8158 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
8159 off, TRUE);
8160
8161 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
8162 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
8163 return FALSE;
8164 }
8165
8166
8167 /* Finish up and write out the symbol string table (.strtab)
8168 section. */
8169 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
8170 /* sh_name was set in prep_headers. */
8171 symstrtab_hdr->sh_type = SHT_STRTAB;
8172 symstrtab_hdr->sh_flags = 0;
8173 symstrtab_hdr->sh_addr = 0;
8174 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
8175 symstrtab_hdr->sh_entsize = 0;
8176 symstrtab_hdr->sh_link = 0;
8177 symstrtab_hdr->sh_info = 0;
8178 /* sh_offset is set just below. */
8179 symstrtab_hdr->sh_addralign = 1;
8180
8181 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
8182 elf_tdata (abfd)->next_file_pos = off;
8183
8184 if (bfd_get_symcount (abfd) > 0)
8185 {
8186 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
8187 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
8188 return FALSE;
8189 }
8190
8191 /* Adjust the relocs to have the correct symbol indices. */
8192 for (o = abfd->sections; o != NULL; o = o->next)
8193 {
8194 if ((o->flags & SEC_RELOC) == 0)
8195 continue;
8196
8197 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
8198 elf_section_data (o)->rel_count,
8199 elf_section_data (o)->rel_hashes);
8200 if (elf_section_data (o)->rel_hdr2 != NULL)
8201 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
8202 elf_section_data (o)->rel_count2,
8203 (elf_section_data (o)->rel_hashes
8204 + elf_section_data (o)->rel_count));
8205
8206 /* Set the reloc_count field to 0 to prevent write_relocs from
8207 trying to swap the relocs out itself. */
8208 o->reloc_count = 0;
8209 }
8210
8211 if (dynamic && info->combreloc && dynobj != NULL)
8212 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
8213
8214 /* If we are linking against a dynamic object, or generating a
8215 shared library, finish up the dynamic linking information. */
8216 if (dynamic)
8217 {
8218 bfd_byte *dyncon, *dynconend;
8219
8220 /* Fix up .dynamic entries. */
8221 o = bfd_get_section_by_name (dynobj, ".dynamic");
8222 BFD_ASSERT (o != NULL);
8223
8224 dyncon = o->contents;
eea6121a 8225 dynconend = o->contents + o->size;
c152c796
AM
8226 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
8227 {
8228 Elf_Internal_Dyn dyn;
8229 const char *name;
8230 unsigned int type;
8231
8232 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
8233
8234 switch (dyn.d_tag)
8235 {
8236 default:
8237 continue;
8238 case DT_NULL:
8239 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
8240 {
8241 switch (elf_section_data (reldyn)->this_hdr.sh_type)
8242 {
8243 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
8244 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
8245 default: continue;
8246 }
8247 dyn.d_un.d_val = relativecount;
8248 relativecount = 0;
8249 break;
8250 }
8251 continue;
8252
8253 case DT_INIT:
8254 name = info->init_function;
8255 goto get_sym;
8256 case DT_FINI:
8257 name = info->fini_function;
8258 get_sym:
8259 {
8260 struct elf_link_hash_entry *h;
8261
8262 h = elf_link_hash_lookup (elf_hash_table (info), name,
8263 FALSE, FALSE, TRUE);
8264 if (h != NULL
8265 && (h->root.type == bfd_link_hash_defined
8266 || h->root.type == bfd_link_hash_defweak))
8267 {
8268 dyn.d_un.d_val = h->root.u.def.value;
8269 o = h->root.u.def.section;
8270 if (o->output_section != NULL)
8271 dyn.d_un.d_val += (o->output_section->vma
8272 + o->output_offset);
8273 else
8274 {
8275 /* The symbol is imported from another shared
8276 library and does not apply to this one. */
8277 dyn.d_un.d_val = 0;
8278 }
8279 break;
8280 }
8281 }
8282 continue;
8283
8284 case DT_PREINIT_ARRAYSZ:
8285 name = ".preinit_array";
8286 goto get_size;
8287 case DT_INIT_ARRAYSZ:
8288 name = ".init_array";
8289 goto get_size;
8290 case DT_FINI_ARRAYSZ:
8291 name = ".fini_array";
8292 get_size:
8293 o = bfd_get_section_by_name (abfd, name);
8294 if (o == NULL)
8295 {
8296 (*_bfd_error_handler)
d003868e 8297 (_("%B: could not find output section %s"), abfd, name);
c152c796
AM
8298 goto error_return;
8299 }
eea6121a 8300 if (o->size == 0)
c152c796
AM
8301 (*_bfd_error_handler)
8302 (_("warning: %s section has zero size"), name);
eea6121a 8303 dyn.d_un.d_val = o->size;
c152c796
AM
8304 break;
8305
8306 case DT_PREINIT_ARRAY:
8307 name = ".preinit_array";
8308 goto get_vma;
8309 case DT_INIT_ARRAY:
8310 name = ".init_array";
8311 goto get_vma;
8312 case DT_FINI_ARRAY:
8313 name = ".fini_array";
8314 goto get_vma;
8315
8316 case DT_HASH:
8317 name = ".hash";
8318 goto get_vma;
8319 case DT_STRTAB:
8320 name = ".dynstr";
8321 goto get_vma;
8322 case DT_SYMTAB:
8323 name = ".dynsym";
8324 goto get_vma;
8325 case DT_VERDEF:
8326 name = ".gnu.version_d";
8327 goto get_vma;
8328 case DT_VERNEED:
8329 name = ".gnu.version_r";
8330 goto get_vma;
8331 case DT_VERSYM:
8332 name = ".gnu.version";
8333 get_vma:
8334 o = bfd_get_section_by_name (abfd, name);
8335 if (o == NULL)
8336 {
8337 (*_bfd_error_handler)
d003868e 8338 (_("%B: could not find output section %s"), abfd, name);
c152c796
AM
8339 goto error_return;
8340 }
8341 dyn.d_un.d_ptr = o->vma;
8342 break;
8343
8344 case DT_REL:
8345 case DT_RELA:
8346 case DT_RELSZ:
8347 case DT_RELASZ:
8348 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
8349 type = SHT_REL;
8350 else
8351 type = SHT_RELA;
8352 dyn.d_un.d_val = 0;
8353 for (i = 1; i < elf_numsections (abfd); i++)
8354 {
8355 Elf_Internal_Shdr *hdr;
8356
8357 hdr = elf_elfsections (abfd)[i];
8358 if (hdr->sh_type == type
8359 && (hdr->sh_flags & SHF_ALLOC) != 0)
8360 {
8361 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
8362 dyn.d_un.d_val += hdr->sh_size;
8363 else
8364 {
8365 if (dyn.d_un.d_val == 0
8366 || hdr->sh_addr < dyn.d_un.d_val)
8367 dyn.d_un.d_val = hdr->sh_addr;
8368 }
8369 }
8370 }
8371 break;
8372 }
8373 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
8374 }
8375 }
8376
8377 /* If we have created any dynamic sections, then output them. */
8378 if (dynobj != NULL)
8379 {
8380 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
8381 goto error_return;
8382
8383 for (o = dynobj->sections; o != NULL; o = o->next)
8384 {
8385 if ((o->flags & SEC_HAS_CONTENTS) == 0
eea6121a 8386 || o->size == 0
c152c796
AM
8387 || o->output_section == bfd_abs_section_ptr)
8388 continue;
8389 if ((o->flags & SEC_LINKER_CREATED) == 0)
8390 {
8391 /* At this point, we are only interested in sections
8392 created by _bfd_elf_link_create_dynamic_sections. */
8393 continue;
8394 }
3722b82f
AM
8395 if (elf_hash_table (info)->stab_info.stabstr == o)
8396 continue;
eea6121a
AM
8397 if (elf_hash_table (info)->eh_info.hdr_sec == o)
8398 continue;
c152c796
AM
8399 if ((elf_section_data (o->output_section)->this_hdr.sh_type
8400 != SHT_STRTAB)
8401 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
8402 {
8403 if (! bfd_set_section_contents (abfd, o->output_section,
8404 o->contents,
8405 (file_ptr) o->output_offset,
eea6121a 8406 o->size))
c152c796
AM
8407 goto error_return;
8408 }
8409 else
8410 {
8411 /* The contents of the .dynstr section are actually in a
8412 stringtab. */
8413 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
8414 if (bfd_seek (abfd, off, SEEK_SET) != 0
8415 || ! _bfd_elf_strtab_emit (abfd,
8416 elf_hash_table (info)->dynstr))
8417 goto error_return;
8418 }
8419 }
8420 }
8421
8422 if (info->relocatable)
8423 {
8424 bfd_boolean failed = FALSE;
8425
8426 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
8427 if (failed)
8428 goto error_return;
8429 }
8430
8431 /* If we have optimized stabs strings, output them. */
3722b82f 8432 if (elf_hash_table (info)->stab_info.stabstr != NULL)
c152c796
AM
8433 {
8434 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
8435 goto error_return;
8436 }
8437
8438 if (info->eh_frame_hdr)
8439 {
8440 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
8441 goto error_return;
8442 }
8443
8444 if (finfo.symstrtab != NULL)
8445 _bfd_stringtab_free (finfo.symstrtab);
8446 if (finfo.contents != NULL)
8447 free (finfo.contents);
8448 if (finfo.external_relocs != NULL)
8449 free (finfo.external_relocs);
8450 if (finfo.internal_relocs != NULL)
8451 free (finfo.internal_relocs);
8452 if (finfo.external_syms != NULL)
8453 free (finfo.external_syms);
8454 if (finfo.locsym_shndx != NULL)
8455 free (finfo.locsym_shndx);
8456 if (finfo.internal_syms != NULL)
8457 free (finfo.internal_syms);
8458 if (finfo.indices != NULL)
8459 free (finfo.indices);
8460 if (finfo.sections != NULL)
8461 free (finfo.sections);
8462 if (finfo.symbuf != NULL)
8463 free (finfo.symbuf);
8464 if (finfo.symshndxbuf != NULL)
8465 free (finfo.symshndxbuf);
8466 for (o = abfd->sections; o != NULL; o = o->next)
8467 {
8468 if ((o->flags & SEC_RELOC) != 0
8469 && elf_section_data (o)->rel_hashes != NULL)
8470 free (elf_section_data (o)->rel_hashes);
8471 }
8472
8473 elf_tdata (abfd)->linker = TRUE;
8474
8475 return TRUE;
8476
8477 error_return:
8478 if (finfo.symstrtab != NULL)
8479 _bfd_stringtab_free (finfo.symstrtab);
8480 if (finfo.contents != NULL)
8481 free (finfo.contents);
8482 if (finfo.external_relocs != NULL)
8483 free (finfo.external_relocs);
8484 if (finfo.internal_relocs != NULL)
8485 free (finfo.internal_relocs);
8486 if (finfo.external_syms != NULL)
8487 free (finfo.external_syms);
8488 if (finfo.locsym_shndx != NULL)
8489 free (finfo.locsym_shndx);
8490 if (finfo.internal_syms != NULL)
8491 free (finfo.internal_syms);
8492 if (finfo.indices != NULL)
8493 free (finfo.indices);
8494 if (finfo.sections != NULL)
8495 free (finfo.sections);
8496 if (finfo.symbuf != NULL)
8497 free (finfo.symbuf);
8498 if (finfo.symshndxbuf != NULL)
8499 free (finfo.symshndxbuf);
8500 for (o = abfd->sections; o != NULL; o = o->next)
8501 {
8502 if ((o->flags & SEC_RELOC) != 0
8503 && elf_section_data (o)->rel_hashes != NULL)
8504 free (elf_section_data (o)->rel_hashes);
8505 }
8506
8507 return FALSE;
8508}
8509\f
8510/* Garbage collect unused sections. */
8511
8512/* The mark phase of garbage collection. For a given section, mark
8513 it and any sections in this section's group, and all the sections
8514 which define symbols to which it refers. */
8515
8516typedef asection * (*gc_mark_hook_fn)
8517 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
8518 struct elf_link_hash_entry *, Elf_Internal_Sym *);
8519
ccfa59ea
AM
8520bfd_boolean
8521_bfd_elf_gc_mark (struct bfd_link_info *info,
8522 asection *sec,
8523 gc_mark_hook_fn gc_mark_hook)
c152c796
AM
8524{
8525 bfd_boolean ret;
8526 asection *group_sec;
8527
8528 sec->gc_mark = 1;
8529
8530 /* Mark all the sections in the group. */
8531 group_sec = elf_section_data (sec)->next_in_group;
8532 if (group_sec && !group_sec->gc_mark)
ccfa59ea 8533 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
c152c796
AM
8534 return FALSE;
8535
8536 /* Look through the section relocs. */
8537 ret = TRUE;
8538 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
8539 {
8540 Elf_Internal_Rela *relstart, *rel, *relend;
8541 Elf_Internal_Shdr *symtab_hdr;
8542 struct elf_link_hash_entry **sym_hashes;
8543 size_t nlocsyms;
8544 size_t extsymoff;
8545 bfd *input_bfd = sec->owner;
8546 const struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
8547 Elf_Internal_Sym *isym = NULL;
8548 int r_sym_shift;
8549
8550 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8551 sym_hashes = elf_sym_hashes (input_bfd);
8552
8553 /* Read the local symbols. */
8554 if (elf_bad_symtab (input_bfd))
8555 {
8556 nlocsyms = symtab_hdr->sh_size / bed->s->sizeof_sym;
8557 extsymoff = 0;
8558 }
8559 else
8560 extsymoff = nlocsyms = symtab_hdr->sh_info;
8561
8562 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
8563 if (isym == NULL && nlocsyms != 0)
8564 {
8565 isym = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, nlocsyms, 0,
8566 NULL, NULL, NULL);
8567 if (isym == NULL)
8568 return FALSE;
8569 }
8570
8571 /* Read the relocations. */
8572 relstart = _bfd_elf_link_read_relocs (input_bfd, sec, NULL, NULL,
8573 info->keep_memory);
8574 if (relstart == NULL)
8575 {
8576 ret = FALSE;
8577 goto out1;
8578 }
8579 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8580
8581 if (bed->s->arch_size == 32)
8582 r_sym_shift = 8;
8583 else
8584 r_sym_shift = 32;
8585
8586 for (rel = relstart; rel < relend; rel++)
8587 {
8588 unsigned long r_symndx;
8589 asection *rsec;
8590 struct elf_link_hash_entry *h;
8591
8592 r_symndx = rel->r_info >> r_sym_shift;
8593 if (r_symndx == 0)
8594 continue;
8595
8596 if (r_symndx >= nlocsyms
8597 || ELF_ST_BIND (isym[r_symndx].st_info) != STB_LOCAL)
8598 {
8599 h = sym_hashes[r_symndx - extsymoff];
20f0a1ad
AM
8600 while (h->root.type == bfd_link_hash_indirect
8601 || h->root.type == bfd_link_hash_warning)
8602 h = (struct elf_link_hash_entry *) h->root.u.i.link;
c152c796
AM
8603 rsec = (*gc_mark_hook) (sec, info, rel, h, NULL);
8604 }
8605 else
8606 {
8607 rsec = (*gc_mark_hook) (sec, info, rel, NULL, &isym[r_symndx]);
8608 }
8609
8610 if (rsec && !rsec->gc_mark)
8611 {
8612 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
8613 rsec->gc_mark = 1;
ccfa59ea 8614 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
c152c796
AM
8615 {
8616 ret = FALSE;
8617 goto out2;
8618 }
8619 }
8620 }
8621
8622 out2:
8623 if (elf_section_data (sec)->relocs != relstart)
8624 free (relstart);
8625 out1:
8626 if (isym != NULL && symtab_hdr->contents != (unsigned char *) isym)
8627 {
8628 if (! info->keep_memory)
8629 free (isym);
8630 else
8631 symtab_hdr->contents = (unsigned char *) isym;
8632 }
8633 }
8634
8635 return ret;
8636}
8637
8638/* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
8639
8640static bfd_boolean
8641elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *idxptr)
8642{
8643 int *idx = idxptr;
8644
8645 if (h->root.type == bfd_link_hash_warning)
8646 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8647
8648 if (h->dynindx != -1
8649 && ((h->root.type != bfd_link_hash_defined
8650 && h->root.type != bfd_link_hash_defweak)
8651 || h->root.u.def.section->gc_mark))
8652 h->dynindx = (*idx)++;
8653
8654 return TRUE;
8655}
8656
8657/* The sweep phase of garbage collection. Remove all garbage sections. */
8658
8659typedef bfd_boolean (*gc_sweep_hook_fn)
8660 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
8661
8662static bfd_boolean
8663elf_gc_sweep (struct bfd_link_info *info, gc_sweep_hook_fn gc_sweep_hook)
8664{
8665 bfd *sub;
8666
8667 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8668 {
8669 asection *o;
8670
8671 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
8672 continue;
8673
8674 for (o = sub->sections; o != NULL; o = o->next)
8675 {
7c2c8505
AM
8676 /* Keep debug and special sections. */
8677 if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
8678 || (o->flags & (SEC_ALLOC | SEC_LOAD)) == 0)
c152c796
AM
8679 o->gc_mark = 1;
8680
8681 if (o->gc_mark)
8682 continue;
8683
8684 /* Skip sweeping sections already excluded. */
8685 if (o->flags & SEC_EXCLUDE)
8686 continue;
8687
8688 /* Since this is early in the link process, it is simple
8689 to remove a section from the output. */
8690 o->flags |= SEC_EXCLUDE;
8691
8692 /* But we also have to update some of the relocation
8693 info we collected before. */
8694 if (gc_sweep_hook
8695 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
8696 {
8697 Elf_Internal_Rela *internal_relocs;
8698 bfd_boolean r;
8699
8700 internal_relocs
8701 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
8702 info->keep_memory);
8703 if (internal_relocs == NULL)
8704 return FALSE;
8705
8706 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
8707
8708 if (elf_section_data (o)->relocs != internal_relocs)
8709 free (internal_relocs);
8710
8711 if (!r)
8712 return FALSE;
8713 }
8714 }
8715 }
8716
8717 /* Remove the symbols that were in the swept sections from the dynamic
8718 symbol table. GCFIXME: Anyone know how to get them out of the
8719 static symbol table as well? */
8720 {
8721 int i = 0;
8722
8723 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol, &i);
8724
8725 elf_hash_table (info)->dynsymcount = i;
8726 }
8727
8728 return TRUE;
8729}
8730
8731/* Propagate collected vtable information. This is called through
8732 elf_link_hash_traverse. */
8733
8734static bfd_boolean
8735elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
8736{
8737 if (h->root.type == bfd_link_hash_warning)
8738 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8739
8740 /* Those that are not vtables. */
f6e332e6 8741 if (h->vtable == NULL || h->vtable->parent == NULL)
c152c796
AM
8742 return TRUE;
8743
8744 /* Those vtables that do not have parents, we cannot merge. */
f6e332e6 8745 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
c152c796
AM
8746 return TRUE;
8747
8748 /* If we've already been done, exit. */
f6e332e6 8749 if (h->vtable->used && h->vtable->used[-1])
c152c796
AM
8750 return TRUE;
8751
8752 /* Make sure the parent's table is up to date. */
f6e332e6 8753 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
c152c796 8754
f6e332e6 8755 if (h->vtable->used == NULL)
c152c796
AM
8756 {
8757 /* None of this table's entries were referenced. Re-use the
8758 parent's table. */
f6e332e6
AM
8759 h->vtable->used = h->vtable->parent->vtable->used;
8760 h->vtable->size = h->vtable->parent->vtable->size;
c152c796
AM
8761 }
8762 else
8763 {
8764 size_t n;
8765 bfd_boolean *cu, *pu;
8766
8767 /* Or the parent's entries into ours. */
f6e332e6 8768 cu = h->vtable->used;
c152c796 8769 cu[-1] = TRUE;
f6e332e6 8770 pu = h->vtable->parent->vtable->used;
c152c796
AM
8771 if (pu != NULL)
8772 {
8773 const struct elf_backend_data *bed;
8774 unsigned int log_file_align;
8775
8776 bed = get_elf_backend_data (h->root.u.def.section->owner);
8777 log_file_align = bed->s->log_file_align;
f6e332e6 8778 n = h->vtable->parent->vtable->size >> log_file_align;
c152c796
AM
8779 while (n--)
8780 {
8781 if (*pu)
8782 *cu = TRUE;
8783 pu++;
8784 cu++;
8785 }
8786 }
8787 }
8788
8789 return TRUE;
8790}
8791
8792static bfd_boolean
8793elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
8794{
8795 asection *sec;
8796 bfd_vma hstart, hend;
8797 Elf_Internal_Rela *relstart, *relend, *rel;
8798 const struct elf_backend_data *bed;
8799 unsigned int log_file_align;
8800
8801 if (h->root.type == bfd_link_hash_warning)
8802 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8803
8804 /* Take care of both those symbols that do not describe vtables as
8805 well as those that are not loaded. */
f6e332e6 8806 if (h->vtable == NULL || h->vtable->parent == NULL)
c152c796
AM
8807 return TRUE;
8808
8809 BFD_ASSERT (h->root.type == bfd_link_hash_defined
8810 || h->root.type == bfd_link_hash_defweak);
8811
8812 sec = h->root.u.def.section;
8813 hstart = h->root.u.def.value;
8814 hend = hstart + h->size;
8815
8816 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
8817 if (!relstart)
8818 return *(bfd_boolean *) okp = FALSE;
8819 bed = get_elf_backend_data (sec->owner);
8820 log_file_align = bed->s->log_file_align;
8821
8822 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8823
8824 for (rel = relstart; rel < relend; ++rel)
8825 if (rel->r_offset >= hstart && rel->r_offset < hend)
8826 {
8827 /* If the entry is in use, do nothing. */
f6e332e6
AM
8828 if (h->vtable->used
8829 && (rel->r_offset - hstart) < h->vtable->size)
c152c796
AM
8830 {
8831 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
f6e332e6 8832 if (h->vtable->used[entry])
c152c796
AM
8833 continue;
8834 }
8835 /* Otherwise, kill it. */
8836 rel->r_offset = rel->r_info = rel->r_addend = 0;
8837 }
8838
8839 return TRUE;
8840}
8841
715df9b8
EB
8842/* Mark sections containing dynamically referenced symbols. This is called
8843 through elf_link_hash_traverse. */
8844
8845static bfd_boolean
8846elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h,
8847 void *okp ATTRIBUTE_UNUSED)
8848{
8849 if (h->root.type == bfd_link_hash_warning)
8850 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8851
8852 if ((h->root.type == bfd_link_hash_defined
8853 || h->root.type == bfd_link_hash_defweak)
f5385ebf 8854 && h->ref_dynamic)
715df9b8
EB
8855 h->root.u.def.section->flags |= SEC_KEEP;
8856
8857 return TRUE;
8858}
8859
c152c796
AM
8860/* Do mark and sweep of unused sections. */
8861
8862bfd_boolean
8863bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
8864{
8865 bfd_boolean ok = TRUE;
8866 bfd *sub;
8867 asection * (*gc_mark_hook)
8868 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
8869 struct elf_link_hash_entry *h, Elf_Internal_Sym *);
8870
8871 if (!get_elf_backend_data (abfd)->can_gc_sections
8872 || info->relocatable
8873 || info->emitrelocations
715df9b8
EB
8874 || info->shared
8875 || !is_elf_hash_table (info->hash))
c152c796
AM
8876 {
8877 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
8878 return TRUE;
8879 }
8880
8881 /* Apply transitive closure to the vtable entry usage info. */
8882 elf_link_hash_traverse (elf_hash_table (info),
8883 elf_gc_propagate_vtable_entries_used,
8884 &ok);
8885 if (!ok)
8886 return FALSE;
8887
8888 /* Kill the vtable relocations that were not used. */
8889 elf_link_hash_traverse (elf_hash_table (info),
8890 elf_gc_smash_unused_vtentry_relocs,
8891 &ok);
8892 if (!ok)
8893 return FALSE;
8894
715df9b8
EB
8895 /* Mark dynamically referenced symbols. */
8896 if (elf_hash_table (info)->dynamic_sections_created)
8897 elf_link_hash_traverse (elf_hash_table (info),
8898 elf_gc_mark_dynamic_ref_symbol,
8899 &ok);
8900 if (!ok)
8901 return FALSE;
c152c796 8902
715df9b8 8903 /* Grovel through relocs to find out who stays ... */
c152c796
AM
8904 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
8905 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8906 {
8907 asection *o;
8908
8909 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
8910 continue;
8911
8912 for (o = sub->sections; o != NULL; o = o->next)
8913 {
8914 if (o->flags & SEC_KEEP)
715df9b8
EB
8915 {
8916 /* _bfd_elf_discard_section_eh_frame knows how to discard
8917 orphaned FDEs so don't mark sections referenced by the
8918 EH frame section. */
8919 if (strcmp (o->name, ".eh_frame") == 0)
8920 o->gc_mark = 1;
ccfa59ea 8921 else if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
715df9b8
EB
8922 return FALSE;
8923 }
c152c796
AM
8924 }
8925 }
8926
8927 /* ... and mark SEC_EXCLUDE for those that go. */
8928 if (!elf_gc_sweep (info, get_elf_backend_data (abfd)->gc_sweep_hook))
8929 return FALSE;
8930
8931 return TRUE;
8932}
8933\f
8934/* Called from check_relocs to record the existence of a VTINHERIT reloc. */
8935
8936bfd_boolean
8937bfd_elf_gc_record_vtinherit (bfd *abfd,
8938 asection *sec,
8939 struct elf_link_hash_entry *h,
8940 bfd_vma offset)
8941{
8942 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
8943 struct elf_link_hash_entry **search, *child;
8944 bfd_size_type extsymcount;
8945 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8946
8947 /* The sh_info field of the symtab header tells us where the
8948 external symbols start. We don't care about the local symbols at
8949 this point. */
8950 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
8951 if (!elf_bad_symtab (abfd))
8952 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
8953
8954 sym_hashes = elf_sym_hashes (abfd);
8955 sym_hashes_end = sym_hashes + extsymcount;
8956
8957 /* Hunt down the child symbol, which is in this section at the same
8958 offset as the relocation. */
8959 for (search = sym_hashes; search != sym_hashes_end; ++search)
8960 {
8961 if ((child = *search) != NULL
8962 && (child->root.type == bfd_link_hash_defined
8963 || child->root.type == bfd_link_hash_defweak)
8964 && child->root.u.def.section == sec
8965 && child->root.u.def.value == offset)
8966 goto win;
8967 }
8968
d003868e
AM
8969 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
8970 abfd, sec, (unsigned long) offset);
c152c796
AM
8971 bfd_set_error (bfd_error_invalid_operation);
8972 return FALSE;
8973
8974 win:
f6e332e6
AM
8975 if (!child->vtable)
8976 {
8977 child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable));
8978 if (!child->vtable)
8979 return FALSE;
8980 }
c152c796
AM
8981 if (!h)
8982 {
8983 /* This *should* only be the absolute section. It could potentially
8984 be that someone has defined a non-global vtable though, which
8985 would be bad. It isn't worth paging in the local symbols to be
8986 sure though; that case should simply be handled by the assembler. */
8987
f6e332e6 8988 child->vtable->parent = (struct elf_link_hash_entry *) -1;
c152c796
AM
8989 }
8990 else
f6e332e6 8991 child->vtable->parent = h;
c152c796
AM
8992
8993 return TRUE;
8994}
8995
8996/* Called from check_relocs to record the existence of a VTENTRY reloc. */
8997
8998bfd_boolean
8999bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
9000 asection *sec ATTRIBUTE_UNUSED,
9001 struct elf_link_hash_entry *h,
9002 bfd_vma addend)
9003{
9004 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9005 unsigned int log_file_align = bed->s->log_file_align;
9006
f6e332e6
AM
9007 if (!h->vtable)
9008 {
9009 h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable));
9010 if (!h->vtable)
9011 return FALSE;
9012 }
9013
9014 if (addend >= h->vtable->size)
c152c796
AM
9015 {
9016 size_t size, bytes, file_align;
f6e332e6 9017 bfd_boolean *ptr = h->vtable->used;
c152c796
AM
9018
9019 /* While the symbol is undefined, we have to be prepared to handle
9020 a zero size. */
9021 file_align = 1 << log_file_align;
9022 if (h->root.type == bfd_link_hash_undefined)
9023 size = addend + file_align;
9024 else
9025 {
9026 size = h->size;
9027 if (addend >= size)
9028 {
9029 /* Oops! We've got a reference past the defined end of
9030 the table. This is probably a bug -- shall we warn? */
9031 size = addend + file_align;
9032 }
9033 }
9034 size = (size + file_align - 1) & -file_align;
9035
9036 /* Allocate one extra entry for use as a "done" flag for the
9037 consolidation pass. */
9038 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
9039
9040 if (ptr)
9041 {
9042 ptr = bfd_realloc (ptr - 1, bytes);
9043
9044 if (ptr != NULL)
9045 {
9046 size_t oldbytes;
9047
f6e332e6 9048 oldbytes = (((h->vtable->size >> log_file_align) + 1)
c152c796
AM
9049 * sizeof (bfd_boolean));
9050 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
9051 }
9052 }
9053 else
9054 ptr = bfd_zmalloc (bytes);
9055
9056 if (ptr == NULL)
9057 return FALSE;
9058
9059 /* And arrange for that done flag to be at index -1. */
f6e332e6
AM
9060 h->vtable->used = ptr + 1;
9061 h->vtable->size = size;
c152c796
AM
9062 }
9063
f6e332e6 9064 h->vtable->used[addend >> log_file_align] = TRUE;
c152c796
AM
9065
9066 return TRUE;
9067}
9068
9069struct alloc_got_off_arg {
9070 bfd_vma gotoff;
9071 unsigned int got_elt_size;
9072};
9073
9074/* We need a special top-level link routine to convert got reference counts
9075 to real got offsets. */
9076
9077static bfd_boolean
9078elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
9079{
9080 struct alloc_got_off_arg *gofarg = arg;
9081
9082 if (h->root.type == bfd_link_hash_warning)
9083 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9084
9085 if (h->got.refcount > 0)
9086 {
9087 h->got.offset = gofarg->gotoff;
9088 gofarg->gotoff += gofarg->got_elt_size;
9089 }
9090 else
9091 h->got.offset = (bfd_vma) -1;
9092
9093 return TRUE;
9094}
9095
9096/* And an accompanying bit to work out final got entry offsets once
9097 we're done. Should be called from final_link. */
9098
9099bfd_boolean
9100bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
9101 struct bfd_link_info *info)
9102{
9103 bfd *i;
9104 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9105 bfd_vma gotoff;
9106 unsigned int got_elt_size = bed->s->arch_size / 8;
9107 struct alloc_got_off_arg gofarg;
9108
9109 if (! is_elf_hash_table (info->hash))
9110 return FALSE;
9111
9112 /* The GOT offset is relative to the .got section, but the GOT header is
9113 put into the .got.plt section, if the backend uses it. */
9114 if (bed->want_got_plt)
9115 gotoff = 0;
9116 else
9117 gotoff = bed->got_header_size;
9118
9119 /* Do the local .got entries first. */
9120 for (i = info->input_bfds; i; i = i->link_next)
9121 {
9122 bfd_signed_vma *local_got;
9123 bfd_size_type j, locsymcount;
9124 Elf_Internal_Shdr *symtab_hdr;
9125
9126 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
9127 continue;
9128
9129 local_got = elf_local_got_refcounts (i);
9130 if (!local_got)
9131 continue;
9132
9133 symtab_hdr = &elf_tdata (i)->symtab_hdr;
9134 if (elf_bad_symtab (i))
9135 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9136 else
9137 locsymcount = symtab_hdr->sh_info;
9138
9139 for (j = 0; j < locsymcount; ++j)
9140 {
9141 if (local_got[j] > 0)
9142 {
9143 local_got[j] = gotoff;
9144 gotoff += got_elt_size;
9145 }
9146 else
9147 local_got[j] = (bfd_vma) -1;
9148 }
9149 }
9150
9151 /* Then the global .got entries. .plt refcounts are handled by
9152 adjust_dynamic_symbol */
9153 gofarg.gotoff = gotoff;
9154 gofarg.got_elt_size = got_elt_size;
9155 elf_link_hash_traverse (elf_hash_table (info),
9156 elf_gc_allocate_got_offsets,
9157 &gofarg);
9158 return TRUE;
9159}
9160
9161/* Many folk need no more in the way of final link than this, once
9162 got entry reference counting is enabled. */
9163
9164bfd_boolean
9165bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
9166{
9167 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
9168 return FALSE;
9169
9170 /* Invoke the regular ELF backend linker to do all the work. */
9171 return bfd_elf_final_link (abfd, info);
9172}
9173
9174bfd_boolean
9175bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
9176{
9177 struct elf_reloc_cookie *rcookie = cookie;
9178
9179 if (rcookie->bad_symtab)
9180 rcookie->rel = rcookie->rels;
9181
9182 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
9183 {
9184 unsigned long r_symndx;
9185
9186 if (! rcookie->bad_symtab)
9187 if (rcookie->rel->r_offset > offset)
9188 return FALSE;
9189 if (rcookie->rel->r_offset != offset)
9190 continue;
9191
9192 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
9193 if (r_symndx == SHN_UNDEF)
9194 return TRUE;
9195
9196 if (r_symndx >= rcookie->locsymcount
9197 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
9198 {
9199 struct elf_link_hash_entry *h;
9200
9201 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
9202
9203 while (h->root.type == bfd_link_hash_indirect
9204 || h->root.type == bfd_link_hash_warning)
9205 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9206
9207 if ((h->root.type == bfd_link_hash_defined
9208 || h->root.type == bfd_link_hash_defweak)
9209 && elf_discarded_section (h->root.u.def.section))
9210 return TRUE;
9211 else
9212 return FALSE;
9213 }
9214 else
9215 {
9216 /* It's not a relocation against a global symbol,
9217 but it could be a relocation against a local
9218 symbol for a discarded section. */
9219 asection *isec;
9220 Elf_Internal_Sym *isym;
9221
9222 /* Need to: get the symbol; get the section. */
9223 isym = &rcookie->locsyms[r_symndx];
9224 if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
9225 {
9226 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
9227 if (isec != NULL && elf_discarded_section (isec))
9228 return TRUE;
9229 }
9230 }
9231 return FALSE;
9232 }
9233 return FALSE;
9234}
9235
9236/* Discard unneeded references to discarded sections.
9237 Returns TRUE if any section's size was changed. */
9238/* This function assumes that the relocations are in sorted order,
9239 which is true for all known assemblers. */
9240
9241bfd_boolean
9242bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
9243{
9244 struct elf_reloc_cookie cookie;
9245 asection *stab, *eh;
9246 Elf_Internal_Shdr *symtab_hdr;
9247 const struct elf_backend_data *bed;
9248 bfd *abfd;
9249 unsigned int count;
9250 bfd_boolean ret = FALSE;
9251
9252 if (info->traditional_format
9253 || !is_elf_hash_table (info->hash))
9254 return FALSE;
9255
9256 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
9257 {
9258 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
9259 continue;
9260
9261 bed = get_elf_backend_data (abfd);
9262
9263 if ((abfd->flags & DYNAMIC) != 0)
9264 continue;
9265
9266 eh = bfd_get_section_by_name (abfd, ".eh_frame");
9267 if (info->relocatable
9268 || (eh != NULL
eea6121a 9269 && (eh->size == 0
c152c796
AM
9270 || bfd_is_abs_section (eh->output_section))))
9271 eh = NULL;
9272
9273 stab = bfd_get_section_by_name (abfd, ".stab");
9274 if (stab != NULL
eea6121a 9275 && (stab->size == 0
c152c796
AM
9276 || bfd_is_abs_section (stab->output_section)
9277 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
9278 stab = NULL;
9279
9280 if (stab == NULL
9281 && eh == NULL
9282 && bed->elf_backend_discard_info == NULL)
9283 continue;
9284
9285 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9286 cookie.abfd = abfd;
9287 cookie.sym_hashes = elf_sym_hashes (abfd);
9288 cookie.bad_symtab = elf_bad_symtab (abfd);
9289 if (cookie.bad_symtab)
9290 {
9291 cookie.locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9292 cookie.extsymoff = 0;
9293 }
9294 else
9295 {
9296 cookie.locsymcount = symtab_hdr->sh_info;
9297 cookie.extsymoff = symtab_hdr->sh_info;
9298 }
9299
9300 if (bed->s->arch_size == 32)
9301 cookie.r_sym_shift = 8;
9302 else
9303 cookie.r_sym_shift = 32;
9304
9305 cookie.locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
9306 if (cookie.locsyms == NULL && cookie.locsymcount != 0)
9307 {
9308 cookie.locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
9309 cookie.locsymcount, 0,
9310 NULL, NULL, NULL);
9311 if (cookie.locsyms == NULL)
9312 return FALSE;
9313 }
9314
9315 if (stab != NULL)
9316 {
9317 cookie.rels = NULL;
9318 count = stab->reloc_count;
9319 if (count != 0)
9320 cookie.rels = _bfd_elf_link_read_relocs (abfd, stab, NULL, NULL,
9321 info->keep_memory);
9322 if (cookie.rels != NULL)
9323 {
9324 cookie.rel = cookie.rels;
9325 cookie.relend = cookie.rels;
9326 cookie.relend += count * bed->s->int_rels_per_ext_rel;
9327 if (_bfd_discard_section_stabs (abfd, stab,
9328 elf_section_data (stab)->sec_info,
9329 bfd_elf_reloc_symbol_deleted_p,
9330 &cookie))
9331 ret = TRUE;
9332 if (elf_section_data (stab)->relocs != cookie.rels)
9333 free (cookie.rels);
9334 }
9335 }
9336
9337 if (eh != NULL)
9338 {
9339 cookie.rels = NULL;
9340 count = eh->reloc_count;
9341 if (count != 0)
9342 cookie.rels = _bfd_elf_link_read_relocs (abfd, eh, NULL, NULL,
9343 info->keep_memory);
9344 cookie.rel = cookie.rels;
9345 cookie.relend = cookie.rels;
9346 if (cookie.rels != NULL)
9347 cookie.relend += count * bed->s->int_rels_per_ext_rel;
9348
9349 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
9350 bfd_elf_reloc_symbol_deleted_p,
9351 &cookie))
9352 ret = TRUE;
9353
9354 if (cookie.rels != NULL
9355 && elf_section_data (eh)->relocs != cookie.rels)
9356 free (cookie.rels);
9357 }
9358
9359 if (bed->elf_backend_discard_info != NULL
9360 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
9361 ret = TRUE;
9362
9363 if (cookie.locsyms != NULL
9364 && symtab_hdr->contents != (unsigned char *) cookie.locsyms)
9365 {
9366 if (! info->keep_memory)
9367 free (cookie.locsyms);
9368 else
9369 symtab_hdr->contents = (unsigned char *) cookie.locsyms;
9370 }
9371 }
9372
9373 if (info->eh_frame_hdr
9374 && !info->relocatable
9375 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
9376 ret = TRUE;
9377
9378 return ret;
9379}
082b7297
L
9380
9381void
9382_bfd_elf_section_already_linked (bfd *abfd, struct bfd_section * sec)
9383{
9384 flagword flags;
6d2cd210 9385 const char *name, *p;
082b7297
L
9386 struct bfd_section_already_linked *l;
9387 struct bfd_section_already_linked_hash_entry *already_linked_list;
3d7f7666
L
9388 asection *group;
9389
9390 /* A single member comdat group section may be discarded by a
9391 linkonce section. See below. */
9392 if (sec->output_section == bfd_abs_section_ptr)
9393 return;
082b7297
L
9394
9395 flags = sec->flags;
3d7f7666
L
9396
9397 /* Check if it belongs to a section group. */
9398 group = elf_sec_group (sec);
9399
9400 /* Return if it isn't a linkonce section nor a member of a group. A
9401 comdat group section also has SEC_LINK_ONCE set. */
9402 if ((flags & SEC_LINK_ONCE) == 0 && group == NULL)
082b7297
L
9403 return;
9404
3d7f7666
L
9405 if (group)
9406 {
9407 /* If this is the member of a single member comdat group, check if
9408 the group should be discarded. */
9409 if (elf_next_in_group (sec) == sec
9410 && (group->flags & SEC_LINK_ONCE) != 0)
9411 sec = group;
9412 else
9413 return;
9414 }
9415
082b7297
L
9416 /* FIXME: When doing a relocatable link, we may have trouble
9417 copying relocations in other sections that refer to local symbols
9418 in the section being discarded. Those relocations will have to
9419 be converted somehow; as of this writing I'm not sure that any of
9420 the backends handle that correctly.
9421
9422 It is tempting to instead not discard link once sections when
9423 doing a relocatable link (technically, they should be discarded
9424 whenever we are building constructors). However, that fails,
9425 because the linker winds up combining all the link once sections
9426 into a single large link once section, which defeats the purpose
9427 of having link once sections in the first place.
9428
9429 Also, not merging link once sections in a relocatable link
9430 causes trouble for MIPS ELF, which relies on link once semantics
9431 to handle the .reginfo section correctly. */
9432
9433 name = bfd_get_section_name (abfd, sec);
9434
6d2cd210
JJ
9435 if (strncmp (name, ".gnu.linkonce.", sizeof (".gnu.linkonce.") - 1) == 0
9436 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
9437 p++;
9438 else
9439 p = name;
9440
9441 already_linked_list = bfd_section_already_linked_table_lookup (p);
082b7297
L
9442
9443 for (l = already_linked_list->entry; l != NULL; l = l->next)
9444 {
9445 /* We may have 3 different sections on the list: group section,
9446 comdat section and linkonce section. SEC may be a linkonce or
9447 group section. We match a group section with a group section,
9448 a linkonce section with a linkonce section, and ignore comdat
9449 section. */
3d7f7666 9450 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
6d2cd210 9451 && strcmp (name, l->sec->name) == 0
082b7297
L
9452 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
9453 {
9454 /* The section has already been linked. See if we should
6d2cd210 9455 issue a warning. */
082b7297
L
9456 switch (flags & SEC_LINK_DUPLICATES)
9457 {
9458 default:
9459 abort ();
9460
9461 case SEC_LINK_DUPLICATES_DISCARD:
9462 break;
9463
9464 case SEC_LINK_DUPLICATES_ONE_ONLY:
9465 (*_bfd_error_handler)
d003868e
AM
9466 (_("%B: ignoring duplicate section `%A'\n"),
9467 abfd, sec);
082b7297
L
9468 break;
9469
9470 case SEC_LINK_DUPLICATES_SAME_SIZE:
9471 if (sec->size != l->sec->size)
9472 (*_bfd_error_handler)
d003868e
AM
9473 (_("%B: duplicate section `%A' has different size\n"),
9474 abfd, sec);
082b7297 9475 break;
ea5158d8
DJ
9476
9477 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
9478 if (sec->size != l->sec->size)
9479 (*_bfd_error_handler)
9480 (_("%B: duplicate section `%A' has different size\n"),
9481 abfd, sec);
9482 else if (sec->size != 0)
9483 {
9484 bfd_byte *sec_contents, *l_sec_contents;
9485
9486 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
9487 (*_bfd_error_handler)
9488 (_("%B: warning: could not read contents of section `%A'\n"),
9489 abfd, sec);
9490 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
9491 &l_sec_contents))
9492 (*_bfd_error_handler)
9493 (_("%B: warning: could not read contents of section `%A'\n"),
9494 l->sec->owner, l->sec);
9495 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
9496 (*_bfd_error_handler)
9497 (_("%B: warning: duplicate section `%A' has different contents\n"),
9498 abfd, sec);
9499
9500 if (sec_contents)
9501 free (sec_contents);
9502 if (l_sec_contents)
9503 free (l_sec_contents);
9504 }
9505 break;
082b7297
L
9506 }
9507
9508 /* Set the output_section field so that lang_add_section
9509 does not create a lang_input_section structure for this
9510 section. Since there might be a symbol in the section
9511 being discarded, we must retain a pointer to the section
9512 which we are really going to use. */
9513 sec->output_section = bfd_abs_section_ptr;
9514 sec->kept_section = l->sec;
9515
9516 if (flags & SEC_GROUP)
3d7f7666
L
9517 {
9518 asection *first = elf_next_in_group (sec);
9519 asection *s = first;
9520
9521 while (s != NULL)
9522 {
9523 s->output_section = bfd_abs_section_ptr;
9524 /* Record which group discards it. */
9525 s->kept_section = l->sec;
9526 s = elf_next_in_group (s);
9527 /* These lists are circular. */
9528 if (s == first)
9529 break;
9530 }
9531 }
082b7297
L
9532
9533 return;
9534 }
9535 }
9536
3d7f7666
L
9537 if (group)
9538 {
9539 /* If this is the member of a single member comdat group and the
9540 group hasn't be discarded, we check if it matches a linkonce
9541 section. We only record the discarded comdat group. Otherwise
9542 the undiscarded group will be discarded incorrectly later since
9543 itself has been recorded. */
6d2cd210
JJ
9544 for (l = already_linked_list->entry; l != NULL; l = l->next)
9545 if ((l->sec->flags & SEC_GROUP) == 0
9546 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
9547 && bfd_elf_match_symbols_in_sections (l->sec,
9548 elf_next_in_group (sec)))
9549 {
9550 elf_next_in_group (sec)->output_section = bfd_abs_section_ptr;
9551 elf_next_in_group (sec)->kept_section = l->sec;
9552 group->output_section = bfd_abs_section_ptr;
9553 break;
9554 }
9555 if (l == NULL)
3d7f7666
L
9556 return;
9557 }
9558 else
9559 /* There is no direct match. But for linkonce section, we should
9560 check if there is a match with comdat group member. We always
9561 record the linkonce section, discarded or not. */
6d2cd210
JJ
9562 for (l = already_linked_list->entry; l != NULL; l = l->next)
9563 if (l->sec->flags & SEC_GROUP)
9564 {
9565 asection *first = elf_next_in_group (l->sec);
9566
9567 if (first != NULL
9568 && elf_next_in_group (first) == first
9569 && bfd_elf_match_symbols_in_sections (first, sec))
9570 {
9571 sec->output_section = bfd_abs_section_ptr;
9572 sec->kept_section = l->sec;
9573 break;
9574 }
9575 }
9576
082b7297
L
9577 /* This is the first section with this name. Record it. */
9578 bfd_section_already_linked_table_insert (already_linked_list, sec);
9579}
This page took 0.818035 seconds and 4 git commands to generate.