* som.c (struct fixup_format): Constify `format'.
[deliverable/binutils-gdb.git] / bfd / elflink.h
CommitLineData
252b5132 1/* ELF linker support.
2bd171e0 2 Copyright 1995, 1996, 1997, 1998, 1999, 2000 Free Software Foundation, Inc.
252b5132
RH
3
4This file is part of BFD, the Binary File Descriptor library.
5
6This program is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2 of the License, or
9(at your option) any later version.
10
11This program is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with this program; if not, write to the Free Software
18Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20/* ELF linker code. */
21
22/* This struct is used to pass information to routines called via
23 elf_link_hash_traverse which must return failure. */
24
25struct elf_info_failed
26{
27 boolean failed;
28 struct bfd_link_info *info;
29};
30
31static boolean elf_link_add_object_symbols
32 PARAMS ((bfd *, struct bfd_link_info *));
33static boolean elf_link_add_archive_symbols
34 PARAMS ((bfd *, struct bfd_link_info *));
35static boolean elf_merge_symbol
36 PARAMS ((bfd *, struct bfd_link_info *, const char *, Elf_Internal_Sym *,
37 asection **, bfd_vma *, struct elf_link_hash_entry **,
456981d7 38 boolean *, boolean *, boolean *, boolean));
252b5132
RH
39static boolean elf_export_symbol
40 PARAMS ((struct elf_link_hash_entry *, PTR));
41static boolean elf_fix_symbol_flags
42 PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
43static boolean elf_adjust_dynamic_symbol
44 PARAMS ((struct elf_link_hash_entry *, PTR));
45static boolean elf_link_find_version_dependencies
46 PARAMS ((struct elf_link_hash_entry *, PTR));
47static boolean elf_link_find_version_dependencies
48 PARAMS ((struct elf_link_hash_entry *, PTR));
49static boolean elf_link_assign_sym_version
50 PARAMS ((struct elf_link_hash_entry *, PTR));
252b5132
RH
51static boolean elf_collect_hash_codes
52 PARAMS ((struct elf_link_hash_entry *, PTR));
6b5bd373
MM
53static boolean elf_link_read_relocs_from_section
54 PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *));
23bc299b
MM
55static void elf_link_output_relocs
56 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *));
57static boolean elf_link_size_reloc_section
58 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
31367b81
MM
59static void elf_link_adjust_relocs
60 PARAMS ((bfd *, Elf_Internal_Shdr *, unsigned int,
61 struct elf_link_hash_entry **));
252b5132
RH
62
63/* Given an ELF BFD, add symbols to the global hash table as
64 appropriate. */
65
66boolean
67elf_bfd_link_add_symbols (abfd, info)
68 bfd *abfd;
69 struct bfd_link_info *info;
70{
71 switch (bfd_get_format (abfd))
72 {
73 case bfd_object:
74 return elf_link_add_object_symbols (abfd, info);
75 case bfd_archive:
76 return elf_link_add_archive_symbols (abfd, info);
77 default:
78 bfd_set_error (bfd_error_wrong_format);
79 return false;
80 }
81}
82\f
48dfb430
NC
83/* Return true iff this is a non-common definition of a symbol. */
84static boolean
85is_global_symbol_definition (abfd, sym)
86033394 86 bfd * abfd ATTRIBUTE_UNUSED;
48dfb430
NC
87 Elf_Internal_Sym * sym;
88{
89 /* Local symbols do not count, but target specific ones might. */
90 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
91 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
92 return false;
93
94 /* If the section is undefined, then so is the symbol. */
95 if (sym->st_shndx == SHN_UNDEF)
96 return false;
97
98 /* If the symbol is defined in the common section, then
99 it is a common definition and so does not count. */
100 if (sym->st_shndx == SHN_COMMON)
101 return false;
102
103 /* If the symbol is in a target specific section then we
104 must rely upon the backend to tell us what it is. */
105 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
106 /* FIXME - this function is not coded yet:
107
108 return _bfd_is_global_symbol_definition (abfd, sym);
109
110 Instead for now assume that the definition is not global,
111 Even if this is wrong, at least the linker will behave
112 in the same way that it used to do. */
113 return false;
114
115 return true;
116}
117
118
a3a8c91d
NC
119/* Search the symbol table of the archive element of the archive ABFD
120 whoes archove map contains a mention of SYMDEF, and determine if
121 the symbol is defined in this element. */
122static boolean
123elf_link_is_defined_archive_symbol (abfd, symdef)
124 bfd * abfd;
125 carsym * symdef;
126{
127 Elf_Internal_Shdr * hdr;
128 Elf_External_Sym * esym;
129 Elf_External_Sym * esymend;
130 Elf_External_Sym * buf = NULL;
131 size_t symcount;
132 size_t extsymcount;
133 size_t extsymoff;
134 boolean result = false;
135
136 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
137 if (abfd == (bfd *) NULL)
138 return false;
139
140 if (! bfd_check_format (abfd, bfd_object))
141 return false;
142
48dfb430
NC
143 /* If we have already included the element containing this symbol in the
144 link then we do not need to include it again. Just claim that any symbol
145 it contains is not a definition, so that our caller will not decide to
146 (re)include this element. */
147 if (abfd->archive_pass)
148 return false;
149
a3a8c91d
NC
150 /* Select the appropriate symbol table. */
151 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
152 hdr = &elf_tdata (abfd)->symtab_hdr;
153 else
154 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
155
156 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
157
158 /* The sh_info field of the symtab header tells us where the
159 external symbols start. We don't care about the local symbols. */
160 if (elf_bad_symtab (abfd))
161 {
162 extsymcount = symcount;
163 extsymoff = 0;
164 }
165 else
166 {
167 extsymcount = symcount - hdr->sh_info;
168 extsymoff = hdr->sh_info;
169 }
170
171 buf = ((Elf_External_Sym *)
172 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
173 if (buf == NULL && extsymcount != 0)
174 return false;
175
176 /* Read in the symbol table.
177 FIXME: This ought to be cached somewhere. */
178 if (bfd_seek (abfd,
179 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
180 SEEK_SET) != 0
181 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
182 != extsymcount * sizeof (Elf_External_Sym)))
183 {
184 free (buf);
185 return false;
186 }
187
188 /* Scan the symbol table looking for SYMDEF. */
189 esymend = buf + extsymcount;
190 for (esym = buf;
191 esym < esymend;
192 esym++)
193 {
194 Elf_Internal_Sym sym;
195 const char * name;
196
197 elf_swap_symbol_in (abfd, esym, & sym);
198
199 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
200 if (name == (const char *) NULL)
201 break;
202
203 if (strcmp (name, symdef->name) == 0)
204 {
48dfb430 205 result = is_global_symbol_definition (abfd, & sym);
a3a8c91d
NC
206 break;
207 }
208 }
209
210 free (buf);
211
212 return result;
213}
214\f
252b5132
RH
215
216/* Add symbols from an ELF archive file to the linker hash table. We
217 don't use _bfd_generic_link_add_archive_symbols because of a
218 problem which arises on UnixWare. The UnixWare libc.so is an
219 archive which includes an entry libc.so.1 which defines a bunch of
220 symbols. The libc.so archive also includes a number of other
221 object files, which also define symbols, some of which are the same
222 as those defined in libc.so.1. Correct linking requires that we
223 consider each object file in turn, and include it if it defines any
224 symbols we need. _bfd_generic_link_add_archive_symbols does not do
225 this; it looks through the list of undefined symbols, and includes
226 any object file which defines them. When this algorithm is used on
227 UnixWare, it winds up pulling in libc.so.1 early and defining a
228 bunch of symbols. This means that some of the other objects in the
229 archive are not included in the link, which is incorrect since they
230 precede libc.so.1 in the archive.
231
232 Fortunately, ELF archive handling is simpler than that done by
233 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
234 oddities. In ELF, if we find a symbol in the archive map, and the
235 symbol is currently undefined, we know that we must pull in that
236 object file.
237
238 Unfortunately, we do have to make multiple passes over the symbol
239 table until nothing further is resolved. */
240
241static boolean
242elf_link_add_archive_symbols (abfd, info)
243 bfd *abfd;
244 struct bfd_link_info *info;
245{
246 symindex c;
247 boolean *defined = NULL;
248 boolean *included = NULL;
249 carsym *symdefs;
250 boolean loop;
251
252 if (! bfd_has_map (abfd))
253 {
254 /* An empty archive is a special case. */
255 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
256 return true;
257 bfd_set_error (bfd_error_no_armap);
258 return false;
259 }
260
261 /* Keep track of all symbols we know to be already defined, and all
262 files we know to be already included. This is to speed up the
263 second and subsequent passes. */
264 c = bfd_ardata (abfd)->symdef_count;
265 if (c == 0)
266 return true;
267 defined = (boolean *) bfd_malloc (c * sizeof (boolean));
268 included = (boolean *) bfd_malloc (c * sizeof (boolean));
269 if (defined == (boolean *) NULL || included == (boolean *) NULL)
270 goto error_return;
271 memset (defined, 0, c * sizeof (boolean));
272 memset (included, 0, c * sizeof (boolean));
273
274 symdefs = bfd_ardata (abfd)->symdefs;
275
276 do
277 {
278 file_ptr last;
279 symindex i;
280 carsym *symdef;
281 carsym *symdefend;
282
283 loop = false;
284 last = -1;
285
286 symdef = symdefs;
287 symdefend = symdef + c;
288 for (i = 0; symdef < symdefend; symdef++, i++)
289 {
290 struct elf_link_hash_entry *h;
291 bfd *element;
292 struct bfd_link_hash_entry *undefs_tail;
293 symindex mark;
294
295 if (defined[i] || included[i])
296 continue;
297 if (symdef->file_offset == last)
298 {
299 included[i] = true;
300 continue;
301 }
302
303 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
304 false, false, false);
305
306 if (h == NULL)
307 {
308 char *p, *copy;
309
310 /* If this is a default version (the name contains @@),
311 look up the symbol again without the version. The
312 effect is that references to the symbol without the
313 version will be matched by the default symbol in the
314 archive. */
315
316 p = strchr (symdef->name, ELF_VER_CHR);
317 if (p == NULL || p[1] != ELF_VER_CHR)
318 continue;
319
320 copy = bfd_alloc (abfd, p - symdef->name + 1);
321 if (copy == NULL)
322 goto error_return;
323 memcpy (copy, symdef->name, p - symdef->name);
324 copy[p - symdef->name] = '\0';
325
326 h = elf_link_hash_lookup (elf_hash_table (info), copy,
327 false, false, false);
328
329 bfd_release (abfd, copy);
330 }
331
332 if (h == NULL)
333 continue;
334
a3a8c91d
NC
335 if (h->root.type == bfd_link_hash_common)
336 {
337 /* We currently have a common symbol. The archive map contains
338 a reference to this symbol, so we may want to include it. We
339 only want to include it however, if this archive element
340 contains a definition of the symbol, not just another common
341 declaration of it.
342
343 Unfortunately some archivers (including GNU ar) will put
344 declarations of common symbols into their archive maps, as
345 well as real definitions, so we cannot just go by the archive
346 map alone. Instead we must read in the element's symbol
347 table and check that to see what kind of symbol definition
348 this is. */
349 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
350 continue;
351 }
352 else if (h->root.type != bfd_link_hash_undefined)
252b5132
RH
353 {
354 if (h->root.type != bfd_link_hash_undefweak)
355 defined[i] = true;
356 continue;
357 }
358
359 /* We need to include this archive member. */
252b5132
RH
360 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
361 if (element == (bfd *) NULL)
362 goto error_return;
363
364 if (! bfd_check_format (element, bfd_object))
365 goto error_return;
366
367 /* Doublecheck that we have not included this object
368 already--it should be impossible, but there may be
369 something wrong with the archive. */
370 if (element->archive_pass != 0)
371 {
372 bfd_set_error (bfd_error_bad_value);
373 goto error_return;
374 }
375 element->archive_pass = 1;
376
377 undefs_tail = info->hash->undefs_tail;
378
379 if (! (*info->callbacks->add_archive_element) (info, element,
380 symdef->name))
381 goto error_return;
382 if (! elf_link_add_object_symbols (element, info))
383 goto error_return;
384
385 /* If there are any new undefined symbols, we need to make
386 another pass through the archive in order to see whether
387 they can be defined. FIXME: This isn't perfect, because
388 common symbols wind up on undefs_tail and because an
389 undefined symbol which is defined later on in this pass
390 does not require another pass. This isn't a bug, but it
391 does make the code less efficient than it could be. */
392 if (undefs_tail != info->hash->undefs_tail)
393 loop = true;
394
395 /* Look backward to mark all symbols from this object file
396 which we have already seen in this pass. */
397 mark = i;
398 do
399 {
400 included[mark] = true;
401 if (mark == 0)
402 break;
403 --mark;
404 }
405 while (symdefs[mark].file_offset == symdef->file_offset);
406
407 /* We mark subsequent symbols from this object file as we go
408 on through the loop. */
409 last = symdef->file_offset;
410 }
411 }
412 while (loop);
413
414 free (defined);
415 free (included);
416
417 return true;
418
419 error_return:
420 if (defined != (boolean *) NULL)
421 free (defined);
422 if (included != (boolean *) NULL)
423 free (included);
424 return false;
425}
426
427/* This function is called when we want to define a new symbol. It
428 handles the various cases which arise when we find a definition in
429 a dynamic object, or when there is already a definition in a
430 dynamic object. The new symbol is described by NAME, SYM, PSEC,
431 and PVALUE. We set SYM_HASH to the hash table entry. We set
432 OVERRIDE if the old symbol is overriding a new definition. We set
433 TYPE_CHANGE_OK if it is OK for the type to change. We set
434 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
435 change, we mean that we shouldn't warn if the type or size does
456981d7
L
436 change. DT_NEEDED indicates if it comes from a DT_NEEDED entry of
437 a shared object. */
252b5132
RH
438
439static boolean
440elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
456981d7 441 override, type_change_ok, size_change_ok, dt_needed)
252b5132
RH
442 bfd *abfd;
443 struct bfd_link_info *info;
444 const char *name;
445 Elf_Internal_Sym *sym;
446 asection **psec;
447 bfd_vma *pvalue;
448 struct elf_link_hash_entry **sym_hash;
449 boolean *override;
450 boolean *type_change_ok;
451 boolean *size_change_ok;
456981d7 452 boolean dt_needed;
252b5132
RH
453{
454 asection *sec;
455 struct elf_link_hash_entry *h;
456 int bind;
457 bfd *oldbfd;
458 boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
459
460 *override = false;
461
462 sec = *psec;
463 bind = ELF_ST_BIND (sym->st_info);
464
465 if (! bfd_is_und_section (sec))
466 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
467 else
468 h = ((struct elf_link_hash_entry *)
469 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
470 if (h == NULL)
471 return false;
472 *sym_hash = h;
473
474 /* This code is for coping with dynamic objects, and is only useful
475 if we are doing an ELF link. */
476 if (info->hash->creator != abfd->xvec)
477 return true;
478
479 /* For merging, we only care about real symbols. */
480
481 while (h->root.type == bfd_link_hash_indirect
482 || h->root.type == bfd_link_hash_warning)
483 h = (struct elf_link_hash_entry *) h->root.u.i.link;
484
485 /* If we just created the symbol, mark it as being an ELF symbol.
486 Other than that, there is nothing to do--there is no merge issue
487 with a newly defined symbol--so we just return. */
488
489 if (h->root.type == bfd_link_hash_new)
490 {
491 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
492 return true;
493 }
494
495 /* OLDBFD is a BFD associated with the existing symbol. */
496
497 switch (h->root.type)
498 {
499 default:
500 oldbfd = NULL;
501 break;
502
503 case bfd_link_hash_undefined:
504 case bfd_link_hash_undefweak:
505 oldbfd = h->root.u.undef.abfd;
506 break;
507
508 case bfd_link_hash_defined:
509 case bfd_link_hash_defweak:
510 oldbfd = h->root.u.def.section->owner;
511 break;
512
513 case bfd_link_hash_common:
514 oldbfd = h->root.u.c.p->section->owner;
515 break;
516 }
517
b4536acd
ILT
518 /* In cases involving weak versioned symbols, we may wind up trying
519 to merge a symbol with itself. Catch that here, to avoid the
520 confusion that results if we try to override a symbol with
accc7f69
ILT
521 itself. The additional tests catch cases like
522 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
523 dynamic object, which we do want to handle here. */
524 if (abfd == oldbfd
525 && ((abfd->flags & DYNAMIC) == 0
526 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
b4536acd
ILT
527 return true;
528
252b5132
RH
529 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
530 respectively, is from a dynamic object. */
531
532 if ((abfd->flags & DYNAMIC) != 0)
533 newdyn = true;
534 else
535 newdyn = false;
536
0035bd7b
ILT
537 if (oldbfd != NULL)
538 olddyn = (oldbfd->flags & DYNAMIC) != 0;
252b5132 539 else
0035bd7b
ILT
540 {
541 asection *hsec;
542
543 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
544 indices used by MIPS ELF. */
545 switch (h->root.type)
546 {
547 default:
548 hsec = NULL;
549 break;
550
551 case bfd_link_hash_defined:
552 case bfd_link_hash_defweak:
553 hsec = h->root.u.def.section;
554 break;
555
556 case bfd_link_hash_common:
557 hsec = h->root.u.c.p->section;
558 break;
559 }
560
561 if (hsec == NULL)
562 olddyn = false;
563 else
564 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
565 }
252b5132
RH
566
567 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
568 respectively, appear to be a definition rather than reference. */
569
570 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
571 newdef = false;
572 else
573 newdef = true;
574
575 if (h->root.type == bfd_link_hash_undefined
576 || h->root.type == bfd_link_hash_undefweak
577 || h->root.type == bfd_link_hash_common)
578 olddef = false;
579 else
580 olddef = true;
581
582 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
583 symbol, respectively, appears to be a common symbol in a dynamic
584 object. If a symbol appears in an uninitialized section, and is
585 not weak, and is not a function, then it may be a common symbol
586 which was resolved when the dynamic object was created. We want
587 to treat such symbols specially, because they raise special
588 considerations when setting the symbol size: if the symbol
589 appears as a common symbol in a regular object, and the size in
590 the regular object is larger, we must make sure that we use the
591 larger size. This problematic case can always be avoided in C,
592 but it must be handled correctly when using Fortran shared
593 libraries.
594
595 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
596 likewise for OLDDYNCOMMON and OLDDEF.
597
598 Note that this test is just a heuristic, and that it is quite
599 possible to have an uninitialized symbol in a shared object which
600 is really a definition, rather than a common symbol. This could
601 lead to some minor confusion when the symbol really is a common
602 symbol in some regular object. However, I think it will be
603 harmless. */
604
605 if (newdyn
606 && newdef
607 && (sec->flags & SEC_ALLOC) != 0
608 && (sec->flags & SEC_LOAD) == 0
609 && sym->st_size > 0
610 && bind != STB_WEAK
611 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
612 newdyncommon = true;
613 else
614 newdyncommon = false;
615
616 if (olddyn
617 && olddef
618 && h->root.type == bfd_link_hash_defined
619 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
620 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
621 && (h->root.u.def.section->flags & SEC_LOAD) == 0
622 && h->size > 0
623 && h->type != STT_FUNC)
624 olddyncommon = true;
625 else
626 olddyncommon = false;
627
628 /* It's OK to change the type if either the existing symbol or the
456981d7
L
629 new symbol is weak unless it comes from a DT_NEEDED entry of
630 a shared object, in which case, the DT_NEEDED entry may not be
631 required at the run time. */
252b5132 632
456981d7 633 if ((! dt_needed && h->root.type == bfd_link_hash_defweak)
252b5132
RH
634 || h->root.type == bfd_link_hash_undefweak
635 || bind == STB_WEAK)
636 *type_change_ok = true;
637
638 /* It's OK to change the size if either the existing symbol or the
639 new symbol is weak, or if the old symbol is undefined. */
640
641 if (*type_change_ok
642 || h->root.type == bfd_link_hash_undefined)
643 *size_change_ok = true;
644
645 /* If both the old and the new symbols look like common symbols in a
646 dynamic object, set the size of the symbol to the larger of the
647 two. */
648
649 if (olddyncommon
650 && newdyncommon
651 && sym->st_size != h->size)
652 {
653 /* Since we think we have two common symbols, issue a multiple
654 common warning if desired. Note that we only warn if the
655 size is different. If the size is the same, we simply let
656 the old symbol override the new one as normally happens with
657 symbols defined in dynamic objects. */
658
659 if (! ((*info->callbacks->multiple_common)
660 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
661 h->size, abfd, bfd_link_hash_common, sym->st_size)))
662 return false;
663
664 if (sym->st_size > h->size)
665 h->size = sym->st_size;
666
667 *size_change_ok = true;
668 }
669
670 /* If we are looking at a dynamic object, and we have found a
671 definition, we need to see if the symbol was already defined by
672 some other object. If so, we want to use the existing
673 definition, and we do not want to report a multiple symbol
674 definition error; we do this by clobbering *PSEC to be
675 bfd_und_section_ptr.
676
677 We treat a common symbol as a definition if the symbol in the
678 shared library is a function, since common symbols always
679 represent variables; this can cause confusion in principle, but
680 any such confusion would seem to indicate an erroneous program or
681 shared library. We also permit a common symbol in a regular
0525d26e
ILT
682 object to override a weak symbol in a shared object.
683
684 We prefer a non-weak definition in a shared library to a weak
456981d7
L
685 definition in the executable unless it comes from a DT_NEEDED
686 entry of a shared object, in which case, the DT_NEEDED entry
687 may not be required at the run time. */
252b5132
RH
688
689 if (newdyn
690 && newdef
691 && (olddef
692 || (h->root.type == bfd_link_hash_common
693 && (bind == STB_WEAK
0525d26e 694 || ELF_ST_TYPE (sym->st_info) == STT_FUNC)))
456981d7
L
695 && (h->root.type != bfd_link_hash_defweak
696 || dt_needed
0525d26e 697 || bind == STB_WEAK))
252b5132
RH
698 {
699 *override = true;
700 newdef = false;
701 newdyncommon = false;
702
703 *psec = sec = bfd_und_section_ptr;
704 *size_change_ok = true;
705
706 /* If we get here when the old symbol is a common symbol, then
707 we are explicitly letting it override a weak symbol or
708 function in a dynamic object, and we don't want to warn about
709 a type change. If the old symbol is a defined symbol, a type
710 change warning may still be appropriate. */
711
712 if (h->root.type == bfd_link_hash_common)
713 *type_change_ok = true;
714 }
715
716 /* Handle the special case of an old common symbol merging with a
717 new symbol which looks like a common symbol in a shared object.
718 We change *PSEC and *PVALUE to make the new symbol look like a
719 common symbol, and let _bfd_generic_link_add_one_symbol will do
720 the right thing. */
721
722 if (newdyncommon
723 && h->root.type == bfd_link_hash_common)
724 {
725 *override = true;
726 newdef = false;
727 newdyncommon = false;
728 *pvalue = sym->st_size;
729 *psec = sec = bfd_com_section_ptr;
730 *size_change_ok = true;
731 }
732
733 /* If the old symbol is from a dynamic object, and the new symbol is
734 a definition which is not from a dynamic object, then the new
735 symbol overrides the old symbol. Symbols from regular files
736 always take precedence over symbols from dynamic objects, even if
737 they are defined after the dynamic object in the link.
738
739 As above, we again permit a common symbol in a regular object to
740 override a definition in a shared object if the shared object
0525d26e
ILT
741 symbol is a function or is weak.
742
743 As above, we permit a non-weak definition in a shared object to
744 override a weak definition in a regular object. */
252b5132
RH
745
746 if (! newdyn
747 && (newdef
748 || (bfd_is_com_section (sec)
749 && (h->root.type == bfd_link_hash_defweak
750 || h->type == STT_FUNC)))
751 && olddyn
752 && olddef
0525d26e
ILT
753 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
754 && (bind != STB_WEAK
755 || h->root.type == bfd_link_hash_defweak))
252b5132
RH
756 {
757 /* Change the hash table entry to undefined, and let
758 _bfd_generic_link_add_one_symbol do the right thing with the
759 new definition. */
760
761 h->root.type = bfd_link_hash_undefined;
762 h->root.u.undef.abfd = h->root.u.def.section->owner;
763 *size_change_ok = true;
764
765 olddef = false;
766 olddyncommon = false;
767
768 /* We again permit a type change when a common symbol may be
769 overriding a function. */
770
771 if (bfd_is_com_section (sec))
772 *type_change_ok = true;
773
774 /* This union may have been set to be non-NULL when this symbol
775 was seen in a dynamic object. We must force the union to be
776 NULL, so that it is correct for a regular symbol. */
777
778 h->verinfo.vertree = NULL;
779
780 /* In this special case, if H is the target of an indirection,
781 we want the caller to frob with H rather than with the
782 indirect symbol. That will permit the caller to redefine the
783 target of the indirection, rather than the indirect symbol
784 itself. FIXME: This will break the -y option if we store a
785 symbol with a different name. */
786 *sym_hash = h;
787 }
788
789 /* Handle the special case of a new common symbol merging with an
790 old symbol that looks like it might be a common symbol defined in
791 a shared object. Note that we have already handled the case in
792 which a new common symbol should simply override the definition
793 in the shared library. */
794
795 if (! newdyn
796 && bfd_is_com_section (sec)
797 && olddyncommon)
798 {
799 /* It would be best if we could set the hash table entry to a
800 common symbol, but we don't know what to use for the section
801 or the alignment. */
802 if (! ((*info->callbacks->multiple_common)
803 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
804 h->size, abfd, bfd_link_hash_common, sym->st_size)))
805 return false;
806
807 /* If the predumed common symbol in the dynamic object is
808 larger, pretend that the new symbol has its size. */
809
810 if (h->size > *pvalue)
811 *pvalue = h->size;
812
813 /* FIXME: We no longer know the alignment required by the symbol
814 in the dynamic object, so we just wind up using the one from
815 the regular object. */
816
817 olddef = false;
818 olddyncommon = false;
819
820 h->root.type = bfd_link_hash_undefined;
821 h->root.u.undef.abfd = h->root.u.def.section->owner;
822
823 *size_change_ok = true;
824 *type_change_ok = true;
825
826 h->verinfo.vertree = NULL;
827 }
828
0525d26e
ILT
829 /* Handle the special case of a weak definition in a regular object
830 followed by a non-weak definition in a shared object. In this
456981d7
L
831 case, we prefer the definition in the shared object unless it
832 comes from a DT_NEEDED entry of a shared object, in which case,
833 the DT_NEEDED entry may not be required at the run time. */
0525d26e 834 if (olddef
456981d7 835 && ! dt_needed
0525d26e
ILT
836 && h->root.type == bfd_link_hash_defweak
837 && newdef
838 && newdyn
839 && bind != STB_WEAK)
b4536acd
ILT
840 {
841 /* To make this work we have to frob the flags so that the rest
842 of the code does not think we are using the regular
843 definition. */
64df8d0b
ILT
844 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
845 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
846 else if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
847 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
848 h->elf_link_hash_flags &= ~ (ELF_LINK_HASH_DEF_REGULAR
849 | ELF_LINK_HASH_DEF_DYNAMIC);
b4536acd
ILT
850
851 /* If H is the target of an indirection, we want the caller to
852 use H rather than the indirect symbol. Otherwise if we are
853 defining a new indirect symbol we will wind up attaching it
854 to the entry we are overriding. */
855 *sym_hash = h;
856 }
0525d26e
ILT
857
858 /* Handle the special case of a non-weak definition in a shared
859 object followed by a weak definition in a regular object. In
860 this case we prefer to definition in the shared object. To make
861 this work we have to tell the caller to not treat the new symbol
862 as a definition. */
863 if (olddef
864 && olddyn
865 && h->root.type != bfd_link_hash_defweak
866 && newdef
867 && ! newdyn
868 && bind == STB_WEAK)
869 *override = true;
870
252b5132
RH
871 return true;
872}
873
874/* Add symbols from an ELF object file to the linker hash table. */
875
876static boolean
877elf_link_add_object_symbols (abfd, info)
878 bfd *abfd;
879 struct bfd_link_info *info;
880{
881 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
882 const Elf_Internal_Sym *,
883 const char **, flagword *,
884 asection **, bfd_vma *));
885 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
886 asection *, const Elf_Internal_Rela *));
887 boolean collect;
888 Elf_Internal_Shdr *hdr;
889 size_t symcount;
890 size_t extsymcount;
891 size_t extsymoff;
892 Elf_External_Sym *buf = NULL;
893 struct elf_link_hash_entry **sym_hash;
894 boolean dynamic;
895 bfd_byte *dynver = NULL;
896 Elf_External_Versym *extversym = NULL;
897 Elf_External_Versym *ever;
898 Elf_External_Dyn *dynbuf = NULL;
899 struct elf_link_hash_entry *weaks;
900 Elf_External_Sym *esym;
901 Elf_External_Sym *esymend;
c61b8717 902 struct elf_backend_data *bed;
74816898 903 boolean dt_needed;
252b5132 904
c61b8717
RH
905 bed = get_elf_backend_data (abfd);
906 add_symbol_hook = bed->elf_add_symbol_hook;
907 collect = bed->collect;
252b5132
RH
908
909 if ((abfd->flags & DYNAMIC) == 0)
910 dynamic = false;
911 else
912 {
913 dynamic = true;
914
915 /* You can't use -r against a dynamic object. Also, there's no
916 hope of using a dynamic object which does not exactly match
917 the format of the output file. */
918 if (info->relocateable || info->hash->creator != abfd->xvec)
919 {
920 bfd_set_error (bfd_error_invalid_operation);
921 goto error_return;
922 }
923 }
924
925 /* As a GNU extension, any input sections which are named
926 .gnu.warning.SYMBOL are treated as warning symbols for the given
927 symbol. This differs from .gnu.warning sections, which generate
928 warnings when they are included in an output file. */
929 if (! info->shared)
930 {
931 asection *s;
932
933 for (s = abfd->sections; s != NULL; s = s->next)
934 {
935 const char *name;
936
937 name = bfd_get_section_name (abfd, s);
938 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
939 {
940 char *msg;
941 bfd_size_type sz;
942
943 name += sizeof ".gnu.warning." - 1;
944
945 /* If this is a shared object, then look up the symbol
946 in the hash table. If it is there, and it is already
947 been defined, then we will not be using the entry
948 from this shared object, so we don't need to warn.
949 FIXME: If we see the definition in a regular object
950 later on, we will warn, but we shouldn't. The only
951 fix is to keep track of what warnings we are supposed
952 to emit, and then handle them all at the end of the
953 link. */
954 if (dynamic && abfd->xvec == info->hash->creator)
955 {
956 struct elf_link_hash_entry *h;
957
958 h = elf_link_hash_lookup (elf_hash_table (info), name,
959 false, false, true);
960
961 /* FIXME: What about bfd_link_hash_common? */
962 if (h != NULL
963 && (h->root.type == bfd_link_hash_defined
964 || h->root.type == bfd_link_hash_defweak))
965 {
966 /* We don't want to issue this warning. Clobber
967 the section size so that the warning does not
968 get copied into the output file. */
969 s->_raw_size = 0;
970 continue;
971 }
972 }
973
974 sz = bfd_section_size (abfd, s);
975 msg = (char *) bfd_alloc (abfd, sz + 1);
976 if (msg == NULL)
977 goto error_return;
978
979 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
980 goto error_return;
981
982 msg[sz] = '\0';
983
984 if (! (_bfd_generic_link_add_one_symbol
985 (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
986 false, collect, (struct bfd_link_hash_entry **) NULL)))
987 goto error_return;
988
989 if (! info->relocateable)
990 {
991 /* Clobber the section size so that the warning does
992 not get copied into the output file. */
993 s->_raw_size = 0;
994 }
995 }
996 }
997 }
998
999 /* If this is a dynamic object, we always link against the .dynsym
1000 symbol table, not the .symtab symbol table. The dynamic linker
1001 will only see the .dynsym symbol table, so there is no reason to
1002 look at .symtab for a dynamic object. */
1003
1004 if (! dynamic || elf_dynsymtab (abfd) == 0)
1005 hdr = &elf_tdata (abfd)->symtab_hdr;
1006 else
1007 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1008
1009 if (dynamic)
1010 {
1011 /* Read in any version definitions. */
1012
1013 if (! _bfd_elf_slurp_version_tables (abfd))
1014 goto error_return;
1015
1016 /* Read in the symbol versions, but don't bother to convert them
1017 to internal format. */
1018 if (elf_dynversym (abfd) != 0)
1019 {
1020 Elf_Internal_Shdr *versymhdr;
1021
1022 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
1023 extversym = (Elf_External_Versym *) bfd_malloc (hdr->sh_size);
1024 if (extversym == NULL)
1025 goto error_return;
1026 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
1027 || (bfd_read ((PTR) extversym, 1, versymhdr->sh_size, abfd)
1028 != versymhdr->sh_size))
1029 goto error_return;
1030 }
1031 }
1032
1033 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
1034
1035 /* The sh_info field of the symtab header tells us where the
1036 external symbols start. We don't care about the local symbols at
1037 this point. */
1038 if (elf_bad_symtab (abfd))
1039 {
1040 extsymcount = symcount;
1041 extsymoff = 0;
1042 }
1043 else
1044 {
1045 extsymcount = symcount - hdr->sh_info;
1046 extsymoff = hdr->sh_info;
1047 }
1048
1049 buf = ((Elf_External_Sym *)
1050 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
1051 if (buf == NULL && extsymcount != 0)
1052 goto error_return;
1053
1054 /* We store a pointer to the hash table entry for each external
1055 symbol. */
1056 sym_hash = ((struct elf_link_hash_entry **)
1057 bfd_alloc (abfd,
1058 extsymcount * sizeof (struct elf_link_hash_entry *)));
1059 if (sym_hash == NULL)
1060 goto error_return;
1061 elf_sym_hashes (abfd) = sym_hash;
1062
74816898
L
1063 dt_needed = false;
1064
252b5132
RH
1065 if (! dynamic)
1066 {
1067 /* If we are creating a shared library, create all the dynamic
1068 sections immediately. We need to attach them to something,
1069 so we attach them to this BFD, provided it is the right
1070 format. FIXME: If there are no input BFD's of the same
1071 format as the output, we can't make a shared library. */
1072 if (info->shared
1073 && ! elf_hash_table (info)->dynamic_sections_created
1074 && abfd->xvec == info->hash->creator)
1075 {
1076 if (! elf_link_create_dynamic_sections (abfd, info))
1077 goto error_return;
1078 }
1079 }
1080 else
1081 {
1082 asection *s;
1083 boolean add_needed;
1084 const char *name;
1085 bfd_size_type oldsize;
1086 bfd_size_type strindex;
1087
1088 /* Find the name to use in a DT_NEEDED entry that refers to this
1089 object. If the object has a DT_SONAME entry, we use it.
1090 Otherwise, if the generic linker stuck something in
1091 elf_dt_name, we use that. Otherwise, we just use the file
1092 name. If the generic linker put a null string into
1093 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
1094 there is a DT_SONAME entry. */
1095 add_needed = true;
1096 name = bfd_get_filename (abfd);
1097 if (elf_dt_name (abfd) != NULL)
1098 {
1099 name = elf_dt_name (abfd);
1100 if (*name == '\0')
74816898
L
1101 {
1102 if (elf_dt_soname (abfd) != NULL)
1103 dt_needed = true;
1104
1105 add_needed = false;
1106 }
252b5132
RH
1107 }
1108 s = bfd_get_section_by_name (abfd, ".dynamic");
1109 if (s != NULL)
1110 {
1111 Elf_External_Dyn *extdyn;
1112 Elf_External_Dyn *extdynend;
1113 int elfsec;
1114 unsigned long link;
1115
1116 dynbuf = (Elf_External_Dyn *) bfd_malloc ((size_t) s->_raw_size);
1117 if (dynbuf == NULL)
1118 goto error_return;
1119
1120 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
1121 (file_ptr) 0, s->_raw_size))
1122 goto error_return;
1123
1124 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1125 if (elfsec == -1)
1126 goto error_return;
1127 link = elf_elfsections (abfd)[elfsec]->sh_link;
1128
20e29382
JL
1129 {
1130 /* The shared libraries distributed with hpux11 have a bogus
1131 sh_link field for the ".dynamic" section. This code detects
1132 when LINK refers to a section that is not a string table and
1133 tries to find the string table for the ".dynsym" section
1134 instead. */
1135 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[link];
1136 if (hdr->sh_type != SHT_STRTAB)
1137 {
1138 asection *s = bfd_get_section_by_name (abfd, ".dynsym");
1139 int elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1140 if (elfsec == -1)
1141 goto error_return;
1142 link = elf_elfsections (abfd)[elfsec]->sh_link;
1143 }
1144 }
1145
252b5132
RH
1146 extdyn = dynbuf;
1147 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
1148 for (; extdyn < extdynend; extdyn++)
1149 {
1150 Elf_Internal_Dyn dyn;
1151
1152 elf_swap_dyn_in (abfd, extdyn, &dyn);
1153 if (dyn.d_tag == DT_SONAME)
1154 {
1155 name = bfd_elf_string_from_elf_section (abfd, link,
1156 dyn.d_un.d_val);
1157 if (name == NULL)
1158 goto error_return;
1159 }
1160 if (dyn.d_tag == DT_NEEDED)
1161 {
1162 struct bfd_link_needed_list *n, **pn;
1163 char *fnm, *anm;
1164
1165 n = ((struct bfd_link_needed_list *)
1166 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
1167 fnm = bfd_elf_string_from_elf_section (abfd, link,
1168 dyn.d_un.d_val);
1169 if (n == NULL || fnm == NULL)
1170 goto error_return;
1171 anm = bfd_alloc (abfd, strlen (fnm) + 1);
1172 if (anm == NULL)
1173 goto error_return;
1174 strcpy (anm, fnm);
1175 n->name = anm;
1176 n->by = abfd;
1177 n->next = NULL;
1178 for (pn = &elf_hash_table (info)->needed;
1179 *pn != NULL;
1180 pn = &(*pn)->next)
1181 ;
1182 *pn = n;
1183 }
1184 }
1185
1186 free (dynbuf);
1187 dynbuf = NULL;
1188 }
1189
1190 /* We do not want to include any of the sections in a dynamic
1191 object in the output file. We hack by simply clobbering the
1192 list of sections in the BFD. This could be handled more
1193 cleanly by, say, a new section flag; the existing
1194 SEC_NEVER_LOAD flag is not the one we want, because that one
1195 still implies that the section takes up space in the output
1196 file. */
1197 abfd->sections = NULL;
1198 abfd->section_count = 0;
1199
1200 /* If this is the first dynamic object found in the link, create
1201 the special sections required for dynamic linking. */
1202 if (! elf_hash_table (info)->dynamic_sections_created)
1203 {
1204 if (! elf_link_create_dynamic_sections (abfd, info))
1205 goto error_return;
1206 }
1207
1208 if (add_needed)
1209 {
1210 /* Add a DT_NEEDED entry for this dynamic object. */
1211 oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
1212 strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name,
1213 true, false);
1214 if (strindex == (bfd_size_type) -1)
1215 goto error_return;
1216
1217 if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
1218 {
1219 asection *sdyn;
1220 Elf_External_Dyn *dyncon, *dynconend;
1221
1222 /* The hash table size did not change, which means that
1223 the dynamic object name was already entered. If we
1224 have already included this dynamic object in the
1225 link, just ignore it. There is no reason to include
1226 a particular dynamic object more than once. */
1227 sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
1228 ".dynamic");
1229 BFD_ASSERT (sdyn != NULL);
1230
1231 dyncon = (Elf_External_Dyn *) sdyn->contents;
1232 dynconend = (Elf_External_Dyn *) (sdyn->contents +
1233 sdyn->_raw_size);
1234 for (; dyncon < dynconend; dyncon++)
1235 {
1236 Elf_Internal_Dyn dyn;
1237
1238 elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon,
1239 &dyn);
1240 if (dyn.d_tag == DT_NEEDED
1241 && dyn.d_un.d_val == strindex)
1242 {
1243 if (buf != NULL)
1244 free (buf);
1245 if (extversym != NULL)
1246 free (extversym);
1247 return true;
1248 }
1249 }
1250 }
1251
1252 if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
1253 goto error_return;
1254 }
1255
1256 /* Save the SONAME, if there is one, because sometimes the
1257 linker emulation code will need to know it. */
1258 if (*name == '\0')
1259 name = bfd_get_filename (abfd);
1260 elf_dt_name (abfd) = name;
1261 }
1262
1263 if (bfd_seek (abfd,
1264 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
1265 SEEK_SET) != 0
1266 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
1267 != extsymcount * sizeof (Elf_External_Sym)))
1268 goto error_return;
1269
1270 weaks = NULL;
1271
1272 ever = extversym != NULL ? extversym + extsymoff : NULL;
1273 esymend = buf + extsymcount;
1274 for (esym = buf;
1275 esym < esymend;
1276 esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
1277 {
1278 Elf_Internal_Sym sym;
1279 int bind;
1280 bfd_vma value;
1281 asection *sec;
1282 flagword flags;
1283 const char *name;
1284 struct elf_link_hash_entry *h;
1285 boolean definition;
1286 boolean size_change_ok, type_change_ok;
1287 boolean new_weakdef;
1288 unsigned int old_alignment;
1289
1290 elf_swap_symbol_in (abfd, esym, &sym);
1291
1292 flags = BSF_NO_FLAGS;
1293 sec = NULL;
1294 value = sym.st_value;
1295 *sym_hash = NULL;
1296
1297 bind = ELF_ST_BIND (sym.st_info);
1298 if (bind == STB_LOCAL)
1299 {
1300 /* This should be impossible, since ELF requires that all
1301 global symbols follow all local symbols, and that sh_info
1302 point to the first global symbol. Unfortunatealy, Irix 5
1303 screws this up. */
1304 continue;
1305 }
1306 else if (bind == STB_GLOBAL)
1307 {
1308 if (sym.st_shndx != SHN_UNDEF
1309 && sym.st_shndx != SHN_COMMON)
1310 flags = BSF_GLOBAL;
1311 else
1312 flags = 0;
1313 }
1314 else if (bind == STB_WEAK)
1315 flags = BSF_WEAK;
1316 else
1317 {
1318 /* Leave it up to the processor backend. */
1319 }
1320
1321 if (sym.st_shndx == SHN_UNDEF)
1322 sec = bfd_und_section_ptr;
1323 else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE)
1324 {
1325 sec = section_from_elf_index (abfd, sym.st_shndx);
1326 if (sec == NULL)
1327 sec = bfd_abs_section_ptr;
1328 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
1329 value -= sec->vma;
1330 }
1331 else if (sym.st_shndx == SHN_ABS)
1332 sec = bfd_abs_section_ptr;
1333 else if (sym.st_shndx == SHN_COMMON)
1334 {
1335 sec = bfd_com_section_ptr;
1336 /* What ELF calls the size we call the value. What ELF
1337 calls the value we call the alignment. */
1338 value = sym.st_size;
1339 }
1340 else
1341 {
1342 /* Leave it up to the processor backend. */
1343 }
1344
1345 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
1346 if (name == (const char *) NULL)
1347 goto error_return;
1348
1349 if (add_symbol_hook)
1350 {
1351 if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
1352 &value))
1353 goto error_return;
1354
1355 /* The hook function sets the name to NULL if this symbol
1356 should be skipped for some reason. */
1357 if (name == (const char *) NULL)
1358 continue;
1359 }
1360
1361 /* Sanity check that all possibilities were handled. */
1362 if (sec == (asection *) NULL)
1363 {
1364 bfd_set_error (bfd_error_bad_value);
1365 goto error_return;
1366 }
1367
1368 if (bfd_is_und_section (sec)
1369 || bfd_is_com_section (sec))
1370 definition = false;
1371 else
1372 definition = true;
1373
1374 size_change_ok = false;
1375 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
1376 old_alignment = 0;
1377 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1378 {
1379 Elf_Internal_Versym iver;
1380 unsigned int vernum = 0;
1381 boolean override;
1382
1383 if (ever != NULL)
1384 {
1385 _bfd_elf_swap_versym_in (abfd, ever, &iver);
1386 vernum = iver.vs_vers & VERSYM_VERSION;
1387
1388 /* If this is a hidden symbol, or if it is not version
1389 1, we append the version name to the symbol name.
1390 However, we do not modify a non-hidden absolute
1391 symbol, because it might be the version symbol
1392 itself. FIXME: What if it isn't? */
1393 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
1394 || (vernum > 1 && ! bfd_is_abs_section (sec)))
1395 {
1396 const char *verstr;
1397 int namelen, newlen;
1398 char *newname, *p;
1399
1400 if (sym.st_shndx != SHN_UNDEF)
1401 {
1402 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
1403 {
1404 (*_bfd_error_handler)
1405 (_("%s: %s: invalid version %u (max %d)"),
1406 bfd_get_filename (abfd), name, vernum,
1407 elf_tdata (abfd)->dynverdef_hdr.sh_info);
1408 bfd_set_error (bfd_error_bad_value);
1409 goto error_return;
1410 }
1411 else if (vernum > 1)
1412 verstr =
1413 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1414 else
1415 verstr = "";
1416 }
1417 else
1418 {
1419 /* We cannot simply test for the number of
1420 entries in the VERNEED section since the
1421 numbers for the needed versions do not start
1422 at 0. */
1423 Elf_Internal_Verneed *t;
1424
1425 verstr = NULL;
1426 for (t = elf_tdata (abfd)->verref;
1427 t != NULL;
1428 t = t->vn_nextref)
1429 {
1430 Elf_Internal_Vernaux *a;
1431
1432 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1433 {
1434 if (a->vna_other == vernum)
1435 {
1436 verstr = a->vna_nodename;
1437 break;
1438 }
1439 }
1440 if (a != NULL)
1441 break;
1442 }
1443 if (verstr == NULL)
1444 {
1445 (*_bfd_error_handler)
1446 (_("%s: %s: invalid needed version %d"),
1447 bfd_get_filename (abfd), name, vernum);
1448 bfd_set_error (bfd_error_bad_value);
1449 goto error_return;
1450 }
1451 }
1452
1453 namelen = strlen (name);
1454 newlen = namelen + strlen (verstr) + 2;
1455 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1456 ++newlen;
1457
1458 newname = (char *) bfd_alloc (abfd, newlen);
1459 if (newname == NULL)
1460 goto error_return;
1461 strcpy (newname, name);
1462 p = newname + namelen;
1463 *p++ = ELF_VER_CHR;
1287d1cc
ILT
1464 /* If this is a defined non-hidden version symbol,
1465 we add another @ to the name. This indicates the
1466 default version of the symbol. */
1467 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
1468 && sym.st_shndx != SHN_UNDEF)
252b5132
RH
1469 *p++ = ELF_VER_CHR;
1470 strcpy (p, verstr);
1471
1472 name = newname;
1473 }
1474 }
1475
1476 if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value,
1477 sym_hash, &override, &type_change_ok,
456981d7 1478 &size_change_ok, dt_needed))
252b5132
RH
1479 goto error_return;
1480
1481 if (override)
1482 definition = false;
1483
1484 h = *sym_hash;
1485 while (h->root.type == bfd_link_hash_indirect
1486 || h->root.type == bfd_link_hash_warning)
1487 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1488
1489 /* Remember the old alignment if this is a common symbol, so
1490 that we don't reduce the alignment later on. We can't
1491 check later, because _bfd_generic_link_add_one_symbol
1492 will set a default for the alignment which we want to
1493 override. */
1494 if (h->root.type == bfd_link_hash_common)
1495 old_alignment = h->root.u.c.p->alignment_power;
1496
1497 if (elf_tdata (abfd)->verdef != NULL
1498 && ! override
1499 && vernum > 1
1500 && definition)
1501 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
1502 }
1503
1504 if (! (_bfd_generic_link_add_one_symbol
1505 (info, abfd, name, flags, sec, value, (const char *) NULL,
1506 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
1507 goto error_return;
1508
1509 h = *sym_hash;
1510 while (h->root.type == bfd_link_hash_indirect
1511 || h->root.type == bfd_link_hash_warning)
1512 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1513 *sym_hash = h;
1514
1515 new_weakdef = false;
1516 if (dynamic
1517 && definition
1518 && (flags & BSF_WEAK) != 0
1519 && ELF_ST_TYPE (sym.st_info) != STT_FUNC
1520 && info->hash->creator->flavour == bfd_target_elf_flavour
1521 && h->weakdef == NULL)
1522 {
1523 /* Keep a list of all weak defined non function symbols from
1524 a dynamic object, using the weakdef field. Later in this
1525 function we will set the weakdef field to the correct
1526 value. We only put non-function symbols from dynamic
1527 objects on this list, because that happens to be the only
1528 time we need to know the normal symbol corresponding to a
1529 weak symbol, and the information is time consuming to
1530 figure out. If the weakdef field is not already NULL,
1531 then this symbol was already defined by some previous
1532 dynamic object, and we will be using that previous
1533 definition anyhow. */
1534
1535 h->weakdef = weaks;
1536 weaks = h;
1537 new_weakdef = true;
1538 }
1539
1540 /* Set the alignment of a common symbol. */
1541 if (sym.st_shndx == SHN_COMMON
1542 && h->root.type == bfd_link_hash_common)
1543 {
1544 unsigned int align;
1545
1546 align = bfd_log2 (sym.st_value);
1547 if (align > old_alignment)
1548 h->root.u.c.p->alignment_power = align;
1549 }
1550
1551 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1552 {
1553 int old_flags;
1554 boolean dynsym;
1555 int new_flag;
1556
1557 /* Remember the symbol size and type. */
1558 if (sym.st_size != 0
1559 && (definition || h->size == 0))
1560 {
1561 if (h->size != 0 && h->size != sym.st_size && ! size_change_ok)
1562 (*_bfd_error_handler)
1563 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1564 name, (unsigned long) h->size, (unsigned long) sym.st_size,
1565 bfd_get_filename (abfd));
1566
1567 h->size = sym.st_size;
1568 }
1569
1570 /* If this is a common symbol, then we always want H->SIZE
1571 to be the size of the common symbol. The code just above
1572 won't fix the size if a common symbol becomes larger. We
1573 don't warn about a size change here, because that is
1574 covered by --warn-common. */
1575 if (h->root.type == bfd_link_hash_common)
1576 h->size = h->root.u.c.size;
1577
1578 if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE
1579 && (definition || h->type == STT_NOTYPE))
1580 {
1581 if (h->type != STT_NOTYPE
1582 && h->type != ELF_ST_TYPE (sym.st_info)
1583 && ! type_change_ok)
1584 (*_bfd_error_handler)
1585 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1586 name, h->type, ELF_ST_TYPE (sym.st_info),
1587 bfd_get_filename (abfd));
1588
1589 h->type = ELF_ST_TYPE (sym.st_info);
1590 }
1591
7a13edea
NC
1592 /* If st_other has a processor-specific meaning, specific code
1593 might be needed here. */
1594 if (sym.st_other != 0)
1595 {
1596 /* Combine visibilities, using the most constraining one. */
1597 unsigned char hvis = ELF_ST_VISIBILITY (h->other);
1598 unsigned char symvis = ELF_ST_VISIBILITY (sym.st_other);
1599
1600 if (symvis && (hvis > symvis || hvis == 0))
38048eb9 1601 h->other = sym.st_other;
7a13edea
NC
1602
1603 /* If neither has visibility, use the st_other of the
1604 definition. This is an arbitrary choice, since the
1605 other bits have no general meaning. */
1606 if (!symvis && !hvis
1607 && (definition || h->other == 0))
1608 h->other = sym.st_other;
1609 }
252b5132
RH
1610
1611 /* Set a flag in the hash table entry indicating the type of
1612 reference or definition we just found. Keep a count of
1613 the number of dynamic symbols we find. A dynamic symbol
1614 is one which is referenced or defined by both a regular
1615 object and a shared object. */
1616 old_flags = h->elf_link_hash_flags;
1617 dynsym = false;
1618 if (! dynamic)
1619 {
1620 if (! definition)
1621 {
1622 new_flag = ELF_LINK_HASH_REF_REGULAR;
1623 if (bind != STB_WEAK)
1624 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
1625 }
1626 else
1627 new_flag = ELF_LINK_HASH_DEF_REGULAR;
1628 if (info->shared
1629 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
1630 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
1631 dynsym = true;
1632 }
1633 else
1634 {
1635 if (! definition)
1636 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
1637 else
1638 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
1639 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
1640 | ELF_LINK_HASH_REF_REGULAR)) != 0
1641 || (h->weakdef != NULL
1642 && ! new_weakdef
1643 && h->weakdef->dynindx != -1))
1644 dynsym = true;
1645 }
1646
1647 h->elf_link_hash_flags |= new_flag;
1648
1649 /* If this symbol has a version, and it is the default
1650 version, we create an indirect symbol from the default
1651 name to the fully decorated name. This will cause
1652 external references which do not specify a version to be
1653 bound to this version of the symbol. */
1654 if (definition)
1655 {
1656 char *p;
1657
1658 p = strchr (name, ELF_VER_CHR);
1659 if (p != NULL && p[1] == ELF_VER_CHR)
1660 {
1661 char *shortname;
1662 struct elf_link_hash_entry *hi;
1663 boolean override;
1664
1665 shortname = bfd_hash_allocate (&info->hash->table,
1666 p - name + 1);
1667 if (shortname == NULL)
1668 goto error_return;
1669 strncpy (shortname, name, p - name);
1670 shortname[p - name] = '\0';
1671
1672 /* We are going to create a new symbol. Merge it
1673 with any existing symbol with this name. For the
1674 purposes of the merge, act as though we were
1675 defining the symbol we just defined, although we
1676 actually going to define an indirect symbol. */
1677 type_change_ok = false;
1678 size_change_ok = false;
1679 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1680 &value, &hi, &override,
456981d7
L
1681 &type_change_ok,
1682 &size_change_ok, dt_needed))
252b5132
RH
1683 goto error_return;
1684
1685 if (! override)
1686 {
1687 if (! (_bfd_generic_link_add_one_symbol
1688 (info, abfd, shortname, BSF_INDIRECT,
1689 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1690 collect, (struct bfd_link_hash_entry **) &hi)))
1691 goto error_return;
1692 }
1693 else
1694 {
1695 /* In this case the symbol named SHORTNAME is
1696 overriding the indirect symbol we want to
1697 add. We were planning on making SHORTNAME an
1698 indirect symbol referring to NAME. SHORTNAME
1699 is the name without a version. NAME is the
1700 fully versioned name, and it is the default
1701 version.
1702
1703 Overriding means that we already saw a
1704 definition for the symbol SHORTNAME in a
1705 regular object, and it is overriding the
1706 symbol defined in the dynamic object.
1707
1708 When this happens, we actually want to change
1709 NAME, the symbol we just added, to refer to
1710 SHORTNAME. This will cause references to
1711 NAME in the shared object to become
1712 references to SHORTNAME in the regular
1713 object. This is what we expect when we
1714 override a function in a shared object: that
1715 the references in the shared object will be
1716 mapped to the definition in the regular
1717 object. */
1718
1719 while (hi->root.type == bfd_link_hash_indirect
1720 || hi->root.type == bfd_link_hash_warning)
1721 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1722
1723 h->root.type = bfd_link_hash_indirect;
1724 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1725 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1726 {
1727 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1728 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1729 if (hi->elf_link_hash_flags
1730 & (ELF_LINK_HASH_REF_REGULAR
1731 | ELF_LINK_HASH_DEF_REGULAR))
1732 {
1733 if (! _bfd_elf_link_record_dynamic_symbol (info,
1734 hi))
1735 goto error_return;
1736 }
1737 }
1738
1739 /* Now set HI to H, so that the following code
1740 will set the other fields correctly. */
1741 hi = h;
1742 }
1743
1744 /* If there is a duplicate definition somewhere,
1745 then HI may not point to an indirect symbol. We
1746 will have reported an error to the user in that
1747 case. */
1748
1749 if (hi->root.type == bfd_link_hash_indirect)
1750 {
1751 struct elf_link_hash_entry *ht;
1752
1753 /* If the symbol became indirect, then we assume
1754 that we have not seen a definition before. */
1755 BFD_ASSERT ((hi->elf_link_hash_flags
1756 & (ELF_LINK_HASH_DEF_DYNAMIC
1757 | ELF_LINK_HASH_DEF_REGULAR))
1758 == 0);
1759
1760 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
c61b8717 1761 (*bed->elf_backend_copy_indirect_symbol) (ht, hi);
252b5132
RH
1762
1763 /* See if the new flags lead us to realize that
1764 the symbol must be dynamic. */
1765 if (! dynsym)
1766 {
1767 if (! dynamic)
1768 {
1769 if (info->shared
1770 || ((hi->elf_link_hash_flags
1771 & ELF_LINK_HASH_REF_DYNAMIC)
1772 != 0))
1773 dynsym = true;
1774 }
1775 else
1776 {
1777 if ((hi->elf_link_hash_flags
1778 & ELF_LINK_HASH_REF_REGULAR) != 0)
1779 dynsym = true;
1780 }
1781 }
1782 }
1783
1784 /* We also need to define an indirection from the
1785 nondefault version of the symbol. */
1786
1787 shortname = bfd_hash_allocate (&info->hash->table,
1788 strlen (name));
1789 if (shortname == NULL)
1790 goto error_return;
1791 strncpy (shortname, name, p - name);
1792 strcpy (shortname + (p - name), p + 1);
1793
1794 /* Once again, merge with any existing symbol. */
1795 type_change_ok = false;
1796 size_change_ok = false;
1797 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1798 &value, &hi, &override,
456981d7
L
1799 &type_change_ok,
1800 &size_change_ok, dt_needed))
252b5132
RH
1801 goto error_return;
1802
1803 if (override)
1804 {
1805 /* Here SHORTNAME is a versioned name, so we
1806 don't expect to see the type of override we
1807 do in the case above. */
1808 (*_bfd_error_handler)
1809 (_("%s: warning: unexpected redefinition of `%s'"),
1810 bfd_get_filename (abfd), shortname);
1811 }
1812 else
1813 {
1814 if (! (_bfd_generic_link_add_one_symbol
1815 (info, abfd, shortname, BSF_INDIRECT,
1816 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1817 collect, (struct bfd_link_hash_entry **) &hi)))
1818 goto error_return;
1819
1820 /* If there is a duplicate definition somewhere,
1821 then HI may not point to an indirect symbol.
1822 We will have reported an error to the user in
1823 that case. */
1824
1825 if (hi->root.type == bfd_link_hash_indirect)
1826 {
1827 /* If the symbol became indirect, then we
1828 assume that we have not seen a definition
1829 before. */
1830 BFD_ASSERT ((hi->elf_link_hash_flags
1831 & (ELF_LINK_HASH_DEF_DYNAMIC
1832 | ELF_LINK_HASH_DEF_REGULAR))
1833 == 0);
1834
c61b8717 1835 (*bed->elf_backend_copy_indirect_symbol) (h, hi);
252b5132
RH
1836
1837 /* See if the new flags lead us to realize
1838 that the symbol must be dynamic. */
1839 if (! dynsym)
1840 {
1841 if (! dynamic)
1842 {
1843 if (info->shared
1844 || ((hi->elf_link_hash_flags
1845 & ELF_LINK_HASH_REF_DYNAMIC)
1846 != 0))
1847 dynsym = true;
1848 }
1849 else
1850 {
1851 if ((hi->elf_link_hash_flags
1852 & ELF_LINK_HASH_REF_REGULAR) != 0)
1853 dynsym = true;
1854 }
1855 }
1856 }
1857 }
1858 }
1859 }
1860
1861 if (dynsym && h->dynindx == -1)
1862 {
1863 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1864 goto error_return;
1865 if (h->weakdef != NULL
1866 && ! new_weakdef
1867 && h->weakdef->dynindx == -1)
1868 {
1869 if (! _bfd_elf_link_record_dynamic_symbol (info,
1870 h->weakdef))
1871 goto error_return;
1872 }
1873 }
38048eb9 1874 else if (dynsym && h->dynindx != -1)
0444bdd4
L
1875 /* If the symbol already has a dynamic index, but
1876 visibility says it should not be visible, turn it into
1877 a local symbol. */
1878 switch (ELF_ST_VISIBILITY (h->other))
1879 {
1880 case STV_INTERNAL:
1881 case STV_HIDDEN:
1882 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
f41cbf03 1883 (*bed->elf_backend_hide_symbol) (info, h);
0444bdd4
L
1884 break;
1885 }
74816898
L
1886
1887 if (dt_needed && definition
1888 && (h->elf_link_hash_flags
1889 & ELF_LINK_HASH_REF_REGULAR) != 0)
1890 {
1891 bfd_size_type oldsize;
1892 bfd_size_type strindex;
1893
1894 /* The symbol from a DT_NEEDED object is referenced from
1895 the regular object to create a dynamic executable. We
1896 have to make sure there is a DT_NEEDED entry for it. */
1897
1898 dt_needed = false;
1899 oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
1900 strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
1901 elf_dt_soname (abfd),
1902 true, false);
1903 if (strindex == (bfd_size_type) -1)
1904 goto error_return;
1905
1906 if (oldsize
1907 == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
1908 {
1909 asection *sdyn;
1910 Elf_External_Dyn *dyncon, *dynconend;
1911
1912 sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
1913 ".dynamic");
1914 BFD_ASSERT (sdyn != NULL);
1915
1916 dyncon = (Elf_External_Dyn *) sdyn->contents;
1917 dynconend = (Elf_External_Dyn *) (sdyn->contents +
1918 sdyn->_raw_size);
1919 for (; dyncon < dynconend; dyncon++)
1920 {
1921 Elf_Internal_Dyn dyn;
1922
1923 elf_swap_dyn_in (elf_hash_table (info)->dynobj,
1924 dyncon, &dyn);
1925 BFD_ASSERT (dyn.d_tag != DT_NEEDED ||
1926 dyn.d_un.d_val != strindex);
1927 }
1928 }
1929
1930 if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
1931 goto error_return;
1932 }
252b5132
RH
1933 }
1934 }
1935
1936 /* Now set the weakdefs field correctly for all the weak defined
1937 symbols we found. The only way to do this is to search all the
1938 symbols. Since we only need the information for non functions in
1939 dynamic objects, that's the only time we actually put anything on
1940 the list WEAKS. We need this information so that if a regular
1941 object refers to a symbol defined weakly in a dynamic object, the
1942 real symbol in the dynamic object is also put in the dynamic
1943 symbols; we also must arrange for both symbols to point to the
1944 same memory location. We could handle the general case of symbol
1945 aliasing, but a general symbol alias can only be generated in
1946 assembler code, handling it correctly would be very time
1947 consuming, and other ELF linkers don't handle general aliasing
1948 either. */
1949 while (weaks != NULL)
1950 {
1951 struct elf_link_hash_entry *hlook;
1952 asection *slook;
1953 bfd_vma vlook;
1954 struct elf_link_hash_entry **hpp;
1955 struct elf_link_hash_entry **hppend;
1956
1957 hlook = weaks;
1958 weaks = hlook->weakdef;
1959 hlook->weakdef = NULL;
1960
1961 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
1962 || hlook->root.type == bfd_link_hash_defweak
1963 || hlook->root.type == bfd_link_hash_common
1964 || hlook->root.type == bfd_link_hash_indirect);
1965 slook = hlook->root.u.def.section;
1966 vlook = hlook->root.u.def.value;
1967
1968 hpp = elf_sym_hashes (abfd);
1969 hppend = hpp + extsymcount;
1970 for (; hpp < hppend; hpp++)
1971 {
1972 struct elf_link_hash_entry *h;
1973
1974 h = *hpp;
1975 if (h != NULL && h != hlook
1976 && h->root.type == bfd_link_hash_defined
1977 && h->root.u.def.section == slook
1978 && h->root.u.def.value == vlook)
1979 {
1980 hlook->weakdef = h;
1981
1982 /* If the weak definition is in the list of dynamic
1983 symbols, make sure the real definition is put there
1984 as well. */
1985 if (hlook->dynindx != -1
1986 && h->dynindx == -1)
1987 {
1988 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1989 goto error_return;
1990 }
1991
1992 /* If the real definition is in the list of dynamic
1993 symbols, make sure the weak definition is put there
1994 as well. If we don't do this, then the dynamic
1995 loader might not merge the entries for the real
1996 definition and the weak definition. */
1997 if (h->dynindx != -1
1998 && hlook->dynindx == -1)
1999 {
2000 if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
2001 goto error_return;
2002 }
2003
2004 break;
2005 }
2006 }
2007 }
2008
2009 if (buf != NULL)
2010 {
2011 free (buf);
2012 buf = NULL;
2013 }
2014
2015 if (extversym != NULL)
2016 {
2017 free (extversym);
2018 extversym = NULL;
2019 }
2020
2021 /* If this object is the same format as the output object, and it is
2022 not a shared library, then let the backend look through the
2023 relocs.
2024
2025 This is required to build global offset table entries and to
2026 arrange for dynamic relocs. It is not required for the
2027 particular common case of linking non PIC code, even when linking
2028 against shared libraries, but unfortunately there is no way of
2029 knowing whether an object file has been compiled PIC or not.
2030 Looking through the relocs is not particularly time consuming.
2031 The problem is that we must either (1) keep the relocs in memory,
2032 which causes the linker to require additional runtime memory or
2033 (2) read the relocs twice from the input file, which wastes time.
2034 This would be a good case for using mmap.
2035
2036 I have no idea how to handle linking PIC code into a file of a
2037 different format. It probably can't be done. */
2038 check_relocs = get_elf_backend_data (abfd)->check_relocs;
2039 if (! dynamic
2040 && abfd->xvec == info->hash->creator
2041 && check_relocs != NULL)
2042 {
2043 asection *o;
2044
2045 for (o = abfd->sections; o != NULL; o = o->next)
2046 {
2047 Elf_Internal_Rela *internal_relocs;
2048 boolean ok;
2049
2050 if ((o->flags & SEC_RELOC) == 0
2051 || o->reloc_count == 0
2052 || ((info->strip == strip_all || info->strip == strip_debugger)
2053 && (o->flags & SEC_DEBUGGING) != 0)
2054 || bfd_is_abs_section (o->output_section))
2055 continue;
2056
2057 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
2058 (abfd, o, (PTR) NULL,
2059 (Elf_Internal_Rela *) NULL,
2060 info->keep_memory));
2061 if (internal_relocs == NULL)
2062 goto error_return;
2063
2064 ok = (*check_relocs) (abfd, info, o, internal_relocs);
2065
2066 if (! info->keep_memory)
2067 free (internal_relocs);
2068
2069 if (! ok)
2070 goto error_return;
2071 }
2072 }
2073
2074 /* If this is a non-traditional, non-relocateable link, try to
2075 optimize the handling of the .stab/.stabstr sections. */
2076 if (! dynamic
2077 && ! info->relocateable
2078 && ! info->traditional_format
2079 && info->hash->creator->flavour == bfd_target_elf_flavour
2080 && (info->strip != strip_all && info->strip != strip_debugger))
2081 {
2082 asection *stab, *stabstr;
2083
2084 stab = bfd_get_section_by_name (abfd, ".stab");
2085 if (stab != NULL)
2086 {
2087 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
2088
2089 if (stabstr != NULL)
2090 {
2091 struct bfd_elf_section_data *secdata;
2092
2093 secdata = elf_section_data (stab);
2094 if (! _bfd_link_section_stabs (abfd,
2095 &elf_hash_table (info)->stab_info,
2096 stab, stabstr,
2097 &secdata->stab_info))
2098 goto error_return;
2099 }
2100 }
2101 }
2102
2103 return true;
2104
2105 error_return:
2106 if (buf != NULL)
2107 free (buf);
2108 if (dynbuf != NULL)
2109 free (dynbuf);
2110 if (dynver != NULL)
2111 free (dynver);
2112 if (extversym != NULL)
2113 free (extversym);
2114 return false;
2115}
2116
2117/* Create some sections which will be filled in with dynamic linking
2118 information. ABFD is an input file which requires dynamic sections
2119 to be created. The dynamic sections take up virtual memory space
2120 when the final executable is run, so we need to create them before
2121 addresses are assigned to the output sections. We work out the
2122 actual contents and size of these sections later. */
2123
2124boolean
2125elf_link_create_dynamic_sections (abfd, info)
2126 bfd *abfd;
2127 struct bfd_link_info *info;
2128{
2129 flagword flags;
2130 register asection *s;
2131 struct elf_link_hash_entry *h;
2132 struct elf_backend_data *bed;
2133
2134 if (elf_hash_table (info)->dynamic_sections_created)
2135 return true;
2136
2137 /* Make sure that all dynamic sections use the same input BFD. */
2138 if (elf_hash_table (info)->dynobj == NULL)
2139 elf_hash_table (info)->dynobj = abfd;
2140 else
2141 abfd = elf_hash_table (info)->dynobj;
2142
2143 /* Note that we set the SEC_IN_MEMORY flag for all of these
2144 sections. */
2145 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
2146 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2147
2148 /* A dynamically linked executable has a .interp section, but a
2149 shared library does not. */
2150 if (! info->shared)
2151 {
2152 s = bfd_make_section (abfd, ".interp");
2153 if (s == NULL
2154 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2155 return false;
2156 }
2157
2158 /* Create sections to hold version informations. These are removed
2159 if they are not needed. */
2160 s = bfd_make_section (abfd, ".gnu.version_d");
2161 if (s == NULL
2162 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2163 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2164 return false;
2165
2166 s = bfd_make_section (abfd, ".gnu.version");
2167 if (s == NULL
2168 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2169 || ! bfd_set_section_alignment (abfd, s, 1))
2170 return false;
2171
2172 s = bfd_make_section (abfd, ".gnu.version_r");
2173 if (s == NULL
2174 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2175 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2176 return false;
2177
2178 s = bfd_make_section (abfd, ".dynsym");
2179 if (s == NULL
2180 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2181 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2182 return false;
2183
2184 s = bfd_make_section (abfd, ".dynstr");
2185 if (s == NULL
2186 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2187 return false;
2188
2189 /* Create a strtab to hold the dynamic symbol names. */
2190 if (elf_hash_table (info)->dynstr == NULL)
2191 {
2192 elf_hash_table (info)->dynstr = elf_stringtab_init ();
2193 if (elf_hash_table (info)->dynstr == NULL)
2194 return false;
2195 }
2196
2197 s = bfd_make_section (abfd, ".dynamic");
2198 if (s == NULL
2199 || ! bfd_set_section_flags (abfd, s, flags)
2200 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2201 return false;
2202
2203 /* The special symbol _DYNAMIC is always set to the start of the
2204 .dynamic section. This call occurs before we have processed the
2205 symbols for any dynamic object, so we don't have to worry about
2206 overriding a dynamic definition. We could set _DYNAMIC in a
2207 linker script, but we only want to define it if we are, in fact,
2208 creating a .dynamic section. We don't want to define it if there
2209 is no .dynamic section, since on some ELF platforms the start up
2210 code examines it to decide how to initialize the process. */
2211 h = NULL;
2212 if (! (_bfd_generic_link_add_one_symbol
2213 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
2214 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
2215 (struct bfd_link_hash_entry **) &h)))
2216 return false;
2217 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2218 h->type = STT_OBJECT;
2219
2220 if (info->shared
2221 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
2222 return false;
2223
c7ac6ff8
MM
2224 bed = get_elf_backend_data (abfd);
2225
252b5132
RH
2226 s = bfd_make_section (abfd, ".hash");
2227 if (s == NULL
2228 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2229 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2230 return false;
c7ac6ff8 2231 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
252b5132
RH
2232
2233 /* Let the backend create the rest of the sections. This lets the
2234 backend set the right flags. The backend will normally create
2235 the .got and .plt sections. */
252b5132
RH
2236 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
2237 return false;
2238
2239 elf_hash_table (info)->dynamic_sections_created = true;
2240
2241 return true;
2242}
2243
2244/* Add an entry to the .dynamic table. */
2245
2246boolean
2247elf_add_dynamic_entry (info, tag, val)
2248 struct bfd_link_info *info;
2249 bfd_vma tag;
2250 bfd_vma val;
2251{
2252 Elf_Internal_Dyn dyn;
2253 bfd *dynobj;
2254 asection *s;
2255 size_t newsize;
2256 bfd_byte *newcontents;
2257
2258 dynobj = elf_hash_table (info)->dynobj;
2259
2260 s = bfd_get_section_by_name (dynobj, ".dynamic");
2261 BFD_ASSERT (s != NULL);
2262
2263 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
2264 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
2265 if (newcontents == NULL)
2266 return false;
2267
2268 dyn.d_tag = tag;
2269 dyn.d_un.d_val = val;
2270 elf_swap_dyn_out (dynobj, &dyn,
2271 (Elf_External_Dyn *) (newcontents + s->_raw_size));
2272
2273 s->_raw_size = newsize;
2274 s->contents = newcontents;
2275
2276 return true;
2277}
30b30c21
RH
2278
2279/* Record a new local dynamic symbol. */
2280
2281boolean
2282elf_link_record_local_dynamic_symbol (info, input_bfd, input_indx)
2283 struct bfd_link_info *info;
2284 bfd *input_bfd;
2285 long input_indx;
2286{
2287 struct elf_link_local_dynamic_entry *entry;
2288 struct elf_link_hash_table *eht;
2289 struct bfd_strtab_hash *dynstr;
2290 Elf_External_Sym esym;
2291 unsigned long dynstr_index;
2292 char *name;
30b30c21
RH
2293
2294 /* See if the entry exists already. */
2295 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
2296 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
2297 return true;
2298
2299 entry = (struct elf_link_local_dynamic_entry *)
2300 bfd_alloc (input_bfd, sizeof (*entry));
2301 if (entry == NULL)
2302 return false;
2303
2304 /* Go find the symbol, so that we can find it's name. */
2305 if (bfd_seek (input_bfd,
2306 (elf_tdata (input_bfd)->symtab_hdr.sh_offset
2307 + input_indx * sizeof (Elf_External_Sym)),
2308 SEEK_SET) != 0
2309 || (bfd_read (&esym, sizeof (Elf_External_Sym), 1, input_bfd)
2310 != sizeof (Elf_External_Sym)))
2311 return false;
2312 elf_swap_symbol_in (input_bfd, &esym, &entry->isym);
2313
2314 name = (bfd_elf_string_from_elf_section
2315 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
2316 entry->isym.st_name));
2317
2318 dynstr = elf_hash_table (info)->dynstr;
2319 if (dynstr == NULL)
2320 {
2321 /* Create a strtab to hold the dynamic symbol names. */
2322 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_stringtab_init ();
2323 if (dynstr == NULL)
2324 return false;
2325 }
2326
2327 dynstr_index = _bfd_stringtab_add (dynstr, name, true, false);
2328 if (dynstr_index == (unsigned long) -1)
2329 return false;
2330 entry->isym.st_name = dynstr_index;
2331
2332 eht = elf_hash_table (info);
2333
2334 entry->next = eht->dynlocal;
2335 eht->dynlocal = entry;
2336 entry->input_bfd = input_bfd;
2337 entry->input_indx = input_indx;
2338 eht->dynsymcount++;
2339
587ff49e
RH
2340 /* Whatever binding the symbol had before, it's now local. */
2341 entry->isym.st_info
2342 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
2343
30b30c21
RH
2344 /* The dynindx will be set at the end of size_dynamic_sections. */
2345
2346 return true;
2347}
252b5132
RH
2348\f
2349
6b5bd373
MM
2350/* Read and swap the relocs from the section indicated by SHDR. This
2351 may be either a REL or a RELA section. The relocations are
2352 translated into RELA relocations and stored in INTERNAL_RELOCS,
2353 which should have already been allocated to contain enough space.
2354 The EXTERNAL_RELOCS are a buffer where the external form of the
2355 relocations should be stored.
2356
2357 Returns false if something goes wrong. */
2358
2359static boolean
2360elf_link_read_relocs_from_section (abfd, shdr, external_relocs,
2361 internal_relocs)
2362 bfd *abfd;
2363 Elf_Internal_Shdr *shdr;
2364 PTR external_relocs;
2365 Elf_Internal_Rela *internal_relocs;
2366{
c7ac6ff8
MM
2367 struct elf_backend_data *bed;
2368
6b5bd373
MM
2369 /* If there aren't any relocations, that's OK. */
2370 if (!shdr)
2371 return true;
2372
2373 /* Position ourselves at the start of the section. */
2374 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2375 return false;
2376
2377 /* Read the relocations. */
2378 if (bfd_read (external_relocs, 1, shdr->sh_size, abfd)
2379 != shdr->sh_size)
2380 return false;
2381
c7ac6ff8
MM
2382 bed = get_elf_backend_data (abfd);
2383
6b5bd373
MM
2384 /* Convert the external relocations to the internal format. */
2385 if (shdr->sh_entsize == sizeof (Elf_External_Rel))
2386 {
2387 Elf_External_Rel *erel;
2388 Elf_External_Rel *erelend;
2389 Elf_Internal_Rela *irela;
c7ac6ff8 2390 Elf_Internal_Rel *irel;
6b5bd373
MM
2391
2392 erel = (Elf_External_Rel *) external_relocs;
2393 erelend = erel + shdr->sh_size / shdr->sh_entsize;
2394 irela = internal_relocs;
c7ac6ff8
MM
2395 irel = bfd_alloc (abfd, (bed->s->int_rels_per_ext_rel
2396 * sizeof (Elf_Internal_Rel)));
2397 for (; erel < erelend; erel++, irela += bed->s->int_rels_per_ext_rel)
6b5bd373 2398 {
65388f2d 2399 unsigned char i;
c7ac6ff8
MM
2400
2401 if (bed->s->swap_reloc_in)
2402 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
2403 else
2404 elf_swap_reloc_in (abfd, erel, irel);
6b5bd373 2405
c7ac6ff8
MM
2406 for (i = 0; i < bed->s->int_rels_per_ext_rel; ++i)
2407 {
2408 irela[i].r_offset = irel[i].r_offset;
2409 irela[i].r_info = irel[i].r_info;
2410 irela[i].r_addend = 0;
2411 }
6b5bd373
MM
2412 }
2413 }
2414 else
2415 {
2416 Elf_External_Rela *erela;
2417 Elf_External_Rela *erelaend;
2418 Elf_Internal_Rela *irela;
2419
2420 BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela));
2421
2422 erela = (Elf_External_Rela *) external_relocs;
2423 erelaend = erela + shdr->sh_size / shdr->sh_entsize;
2424 irela = internal_relocs;
c7ac6ff8
MM
2425 for (; erela < erelaend; erela++, irela += bed->s->int_rels_per_ext_rel)
2426 {
2427 if (bed->s->swap_reloca_in)
2428 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
2429 else
2430 elf_swap_reloca_in (abfd, erela, irela);
2431 }
6b5bd373
MM
2432 }
2433
2434 return true;
2435}
2436
23bc299b
MM
2437/* Read and swap the relocs for a section O. They may have been
2438 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2439 not NULL, they are used as buffers to read into. They are known to
2440 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2441 the return value is allocated using either malloc or bfd_alloc,
2442 according to the KEEP_MEMORY argument. If O has two relocation
2443 sections (both REL and RELA relocations), then the REL_HDR
2444 relocations will appear first in INTERNAL_RELOCS, followed by the
2445 REL_HDR2 relocations. */
252b5132
RH
2446
2447Elf_Internal_Rela *
2448NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
2449 keep_memory)
2450 bfd *abfd;
2451 asection *o;
2452 PTR external_relocs;
2453 Elf_Internal_Rela *internal_relocs;
2454 boolean keep_memory;
2455{
2456 Elf_Internal_Shdr *rel_hdr;
2457 PTR alloc1 = NULL;
2458 Elf_Internal_Rela *alloc2 = NULL;
c7ac6ff8 2459 struct elf_backend_data *bed = get_elf_backend_data (abfd);
252b5132
RH
2460
2461 if (elf_section_data (o)->relocs != NULL)
2462 return elf_section_data (o)->relocs;
2463
2464 if (o->reloc_count == 0)
2465 return NULL;
2466
2467 rel_hdr = &elf_section_data (o)->rel_hdr;
2468
2469 if (internal_relocs == NULL)
2470 {
2471 size_t size;
2472
c7ac6ff8
MM
2473 size = (o->reloc_count * bed->s->int_rels_per_ext_rel
2474 * sizeof (Elf_Internal_Rela));
252b5132
RH
2475 if (keep_memory)
2476 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2477 else
2478 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2479 if (internal_relocs == NULL)
2480 goto error_return;
2481 }
2482
2483 if (external_relocs == NULL)
2484 {
6b5bd373
MM
2485 size_t size = (size_t) rel_hdr->sh_size;
2486
2487 if (elf_section_data (o)->rel_hdr2)
2488 size += (size_t) elf_section_data (o)->rel_hdr2->sh_size;
2489 alloc1 = (PTR) bfd_malloc (size);
252b5132
RH
2490 if (alloc1 == NULL)
2491 goto error_return;
2492 external_relocs = alloc1;
2493 }
2494
6b5bd373
MM
2495 if (!elf_link_read_relocs_from_section (abfd, rel_hdr,
2496 external_relocs,
2497 internal_relocs))
2498 goto error_return;
2499 if (!elf_link_read_relocs_from_section
2500 (abfd,
2501 elf_section_data (o)->rel_hdr2,
2f5116e2 2502 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
c7ac6ff8
MM
2503 internal_relocs + (rel_hdr->sh_size / rel_hdr->sh_entsize
2504 * bed->s->int_rels_per_ext_rel)))
252b5132 2505 goto error_return;
252b5132
RH
2506
2507 /* Cache the results for next time, if we can. */
2508 if (keep_memory)
2509 elf_section_data (o)->relocs = internal_relocs;
2510
2511 if (alloc1 != NULL)
2512 free (alloc1);
2513
2514 /* Don't free alloc2, since if it was allocated we are passing it
2515 back (under the name of internal_relocs). */
2516
2517 return internal_relocs;
2518
2519 error_return:
2520 if (alloc1 != NULL)
2521 free (alloc1);
2522 if (alloc2 != NULL)
2523 free (alloc2);
2524 return NULL;
2525}
2526\f
2527
2528/* Record an assignment to a symbol made by a linker script. We need
2529 this in case some dynamic object refers to this symbol. */
2530
2531/*ARGSUSED*/
2532boolean
2533NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
7442e600 2534 bfd *output_bfd ATTRIBUTE_UNUSED;
252b5132
RH
2535 struct bfd_link_info *info;
2536 const char *name;
2537 boolean provide;
2538{
2539 struct elf_link_hash_entry *h;
2540
2541 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2542 return true;
2543
2544 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
2545 if (h == NULL)
2546 return false;
2547
2548 if (h->root.type == bfd_link_hash_new)
2549 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
2550
2551 /* If this symbol is being provided by the linker script, and it is
2552 currently defined by a dynamic object, but not by a regular
2553 object, then mark it as undefined so that the generic linker will
2554 force the correct value. */
2555 if (provide
2556 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2557 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2558 h->root.type = bfd_link_hash_undefined;
2559
2560 /* If this symbol is not being provided by the linker script, and it is
2561 currently defined by a dynamic object, but not by a regular object,
2562 then clear out any version information because the symbol will not be
2563 associated with the dynamic object any more. */
2564 if (!provide
2565 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2566 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2567 h->verinfo.verdef = NULL;
2568
2569 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
994819d2
NC
2570
2571 /* When possible, keep the original type of the symbol */
2572 if (h->type == STT_NOTYPE)
2573 h->type = STT_OBJECT;
252b5132
RH
2574
2575 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2576 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
2577 || info->shared)
2578 && h->dynindx == -1)
2579 {
2580 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2581 return false;
2582
2583 /* If this is a weak defined symbol, and we know a corresponding
2584 real symbol from the same dynamic object, make sure the real
2585 symbol is also made into a dynamic symbol. */
2586 if (h->weakdef != NULL
2587 && h->weakdef->dynindx == -1)
2588 {
2589 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2590 return false;
2591 }
2592 }
2593
2594 return true;
2595}
2596\f
2597/* This structure is used to pass information to
2598 elf_link_assign_sym_version. */
2599
2600struct elf_assign_sym_version_info
2601{
2602 /* Output BFD. */
2603 bfd *output_bfd;
2604 /* General link information. */
2605 struct bfd_link_info *info;
2606 /* Version tree. */
2607 struct bfd_elf_version_tree *verdefs;
2608 /* Whether we are exporting all dynamic symbols. */
2609 boolean export_dynamic;
252b5132
RH
2610 /* Whether we had a failure. */
2611 boolean failed;
2612};
2613
2614/* This structure is used to pass information to
2615 elf_link_find_version_dependencies. */
2616
2617struct elf_find_verdep_info
2618{
2619 /* Output BFD. */
2620 bfd *output_bfd;
2621 /* General link information. */
2622 struct bfd_link_info *info;
2623 /* The number of dependencies. */
2624 unsigned int vers;
2625 /* Whether we had a failure. */
2626 boolean failed;
2627};
2628
2629/* Array used to determine the number of hash table buckets to use
2630 based on the number of symbols there are. If there are fewer than
2631 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2632 fewer than 37 we use 17 buckets, and so forth. We never use more
2633 than 32771 buckets. */
2634
2635static const size_t elf_buckets[] =
2636{
2637 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2638 16411, 32771, 0
2639};
2640
2641/* Compute bucket count for hashing table. We do not use a static set
2642 of possible tables sizes anymore. Instead we determine for all
2643 possible reasonable sizes of the table the outcome (i.e., the
2644 number of collisions etc) and choose the best solution. The
2645 weighting functions are not too simple to allow the table to grow
2646 without bounds. Instead one of the weighting factors is the size.
2647 Therefore the result is always a good payoff between few collisions
2648 (= short chain lengths) and table size. */
2649static size_t
2650compute_bucket_count (info)
2651 struct bfd_link_info *info;
2652{
2653 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
7442e600 2654 size_t best_size = 0;
252b5132
RH
2655 unsigned long int *hashcodes;
2656 unsigned long int *hashcodesp;
2657 unsigned long int i;
2658
2659 /* Compute the hash values for all exported symbols. At the same
2660 time store the values in an array so that we could use them for
2661 optimizations. */
2662 hashcodes = (unsigned long int *) bfd_malloc (dynsymcount
2663 * sizeof (unsigned long int));
2664 if (hashcodes == NULL)
2665 return 0;
2666 hashcodesp = hashcodes;
2667
2668 /* Put all hash values in HASHCODES. */
2669 elf_link_hash_traverse (elf_hash_table (info),
2670 elf_collect_hash_codes, &hashcodesp);
2671
2672/* We have a problem here. The following code to optimize the table
2673 size requires an integer type with more the 32 bits. If
2674 BFD_HOST_U_64_BIT is set we know about such a type. */
2675#ifdef BFD_HOST_U_64_BIT
2676 if (info->optimize == true)
2677 {
2678 unsigned long int nsyms = hashcodesp - hashcodes;
2679 size_t minsize;
2680 size_t maxsize;
2681 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
2682 unsigned long int *counts ;
2683
2684 /* Possible optimization parameters: if we have NSYMS symbols we say
2685 that the hashing table must at least have NSYMS/4 and at most
2686 2*NSYMS buckets. */
2687 minsize = nsyms / 4;
2688 if (minsize == 0)
2689 minsize = 1;
2690 best_size = maxsize = nsyms * 2;
2691
2692 /* Create array where we count the collisions in. We must use bfd_malloc
2693 since the size could be large. */
2694 counts = (unsigned long int *) bfd_malloc (maxsize
2695 * sizeof (unsigned long int));
2696 if (counts == NULL)
2697 {
2698 free (hashcodes);
2699 return 0;
2700 }
2701
2702 /* Compute the "optimal" size for the hash table. The criteria is a
2703 minimal chain length. The minor criteria is (of course) the size
2704 of the table. */
2705 for (i = minsize; i < maxsize; ++i)
2706 {
2707 /* Walk through the array of hashcodes and count the collisions. */
2708 BFD_HOST_U_64_BIT max;
2709 unsigned long int j;
2710 unsigned long int fact;
2711
2712 memset (counts, '\0', i * sizeof (unsigned long int));
2713
2714 /* Determine how often each hash bucket is used. */
2715 for (j = 0; j < nsyms; ++j)
2716 ++counts[hashcodes[j] % i];
2717
2718 /* For the weight function we need some information about the
2719 pagesize on the target. This is information need not be 100%
2720 accurate. Since this information is not available (so far) we
2721 define it here to a reasonable default value. If it is crucial
2722 to have a better value some day simply define this value. */
2723# ifndef BFD_TARGET_PAGESIZE
2724# define BFD_TARGET_PAGESIZE (4096)
2725# endif
2726
2727 /* We in any case need 2 + NSYMS entries for the size values and
2728 the chains. */
2729 max = (2 + nsyms) * (ARCH_SIZE / 8);
2730
2731# if 1
2732 /* Variant 1: optimize for short chains. We add the squares
2733 of all the chain lengths (which favous many small chain
2734 over a few long chains). */
2735 for (j = 0; j < i; ++j)
2736 max += counts[j] * counts[j];
2737
2738 /* This adds penalties for the overall size of the table. */
2739 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2740 max *= fact * fact;
2741# else
2742 /* Variant 2: Optimize a lot more for small table. Here we
2743 also add squares of the size but we also add penalties for
2744 empty slots (the +1 term). */
2745 for (j = 0; j < i; ++j)
2746 max += (1 + counts[j]) * (1 + counts[j]);
2747
2748 /* The overall size of the table is considered, but not as
2749 strong as in variant 1, where it is squared. */
2750 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2751 max *= fact;
2752# endif
2753
2754 /* Compare with current best results. */
2755 if (max < best_chlen)
2756 {
2757 best_chlen = max;
2758 best_size = i;
2759 }
2760 }
2761
2762 free (counts);
2763 }
2764 else
2765#endif /* defined (BFD_HOST_U_64_BIT) */
2766 {
2767 /* This is the fallback solution if no 64bit type is available or if we
2768 are not supposed to spend much time on optimizations. We select the
2769 bucket count using a fixed set of numbers. */
2770 for (i = 0; elf_buckets[i] != 0; i++)
2771 {
2772 best_size = elf_buckets[i];
2773 if (dynsymcount < elf_buckets[i + 1])
2774 break;
2775 }
2776 }
2777
2778 /* Free the arrays we needed. */
2779 free (hashcodes);
2780
2781 return best_size;
2782}
2783
2784/* Set up the sizes and contents of the ELF dynamic sections. This is
2785 called by the ELF linker emulation before_allocation routine. We
2786 must set the sizes of the sections before the linker sets the
2787 addresses of the various sections. */
2788
2789boolean
2790NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
2791 export_dynamic, filter_shlib,
2792 auxiliary_filters, info, sinterpptr,
2793 verdefs)
2794 bfd *output_bfd;
2795 const char *soname;
2796 const char *rpath;
2797 boolean export_dynamic;
2798 const char *filter_shlib;
2799 const char * const *auxiliary_filters;
2800 struct bfd_link_info *info;
2801 asection **sinterpptr;
2802 struct bfd_elf_version_tree *verdefs;
2803{
2804 bfd_size_type soname_indx;
2805 bfd *dynobj;
2806 struct elf_backend_data *bed;
252b5132
RH
2807 struct elf_assign_sym_version_info asvinfo;
2808
2809 *sinterpptr = NULL;
2810
2811 soname_indx = (bfd_size_type) -1;
2812
2813 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2814 return true;
2815
2816 /* The backend may have to create some sections regardless of whether
2817 we're dynamic or not. */
2818 bed = get_elf_backend_data (output_bfd);
2819 if (bed->elf_backend_always_size_sections
2820 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
2821 return false;
2822
2823 dynobj = elf_hash_table (info)->dynobj;
2824
2825 /* If there were no dynamic objects in the link, there is nothing to
2826 do here. */
2827 if (dynobj == NULL)
2828 return true;
2829
252b5132
RH
2830 if (elf_hash_table (info)->dynamic_sections_created)
2831 {
2832 struct elf_info_failed eif;
2833 struct elf_link_hash_entry *h;
2834 bfd_size_type strsize;
2835
2836 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
2837 BFD_ASSERT (*sinterpptr != NULL || info->shared);
2838
2839 if (soname != NULL)
2840 {
2841 soname_indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2842 soname, true, true);
2843 if (soname_indx == (bfd_size_type) -1
2844 || ! elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
2845 return false;
2846 }
2847
2848 if (info->symbolic)
2849 {
2850 if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
2851 return false;
d6cf2879 2852 info->flags |= DF_SYMBOLIC;
252b5132
RH
2853 }
2854
2855 if (rpath != NULL)
2856 {
2857 bfd_size_type indx;
2858
2859 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath,
2860 true, true);
2861 if (indx == (bfd_size_type) -1
d6cf2879 2862 || ! elf_add_dynamic_entry (info, DT_RPATH, indx)
c25373b7
L
2863 || (info->new_dtags
2864 && ! elf_add_dynamic_entry (info, DT_RUNPATH, indx)))
252b5132
RH
2865 return false;
2866 }
2867
2868 if (filter_shlib != NULL)
2869 {
2870 bfd_size_type indx;
2871
2872 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2873 filter_shlib, true, true);
2874 if (indx == (bfd_size_type) -1
2875 || ! elf_add_dynamic_entry (info, DT_FILTER, indx))
2876 return false;
2877 }
2878
2879 if (auxiliary_filters != NULL)
2880 {
2881 const char * const *p;
2882
2883 for (p = auxiliary_filters; *p != NULL; p++)
2884 {
2885 bfd_size_type indx;
2886
2887 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2888 *p, true, true);
2889 if (indx == (bfd_size_type) -1
2890 || ! elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
2891 return false;
2892 }
2893 }
2894
ea44b734
RH
2895 /* If we are supposed to export all symbols into the dynamic symbol
2896 table (this is not the normal case), then do so. */
2897 if (export_dynamic)
2898 {
2899 struct elf_info_failed eif;
2900
2901 eif.failed = false;
2902 eif.info = info;
2903 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
2904 (PTR) &eif);
2905 if (eif.failed)
2906 return false;
2907 }
2908
252b5132
RH
2909 /* Attach all the symbols to their version information. */
2910 asvinfo.output_bfd = output_bfd;
2911 asvinfo.info = info;
2912 asvinfo.verdefs = verdefs;
2913 asvinfo.export_dynamic = export_dynamic;
252b5132
RH
2914 asvinfo.failed = false;
2915
2916 elf_link_hash_traverse (elf_hash_table (info),
2917 elf_link_assign_sym_version,
2918 (PTR) &asvinfo);
2919 if (asvinfo.failed)
2920 return false;
2921
2922 /* Find all symbols which were defined in a dynamic object and make
2923 the backend pick a reasonable value for them. */
2924 eif.failed = false;
2925 eif.info = info;
2926 elf_link_hash_traverse (elf_hash_table (info),
2927 elf_adjust_dynamic_symbol,
2928 (PTR) &eif);
2929 if (eif.failed)
2930 return false;
2931
2932 /* Add some entries to the .dynamic section. We fill in some of the
2933 values later, in elf_bfd_final_link, but we must add the entries
2934 now so that we know the final size of the .dynamic section. */
f0c2e336
MM
2935
2936 /* If there are initialization and/or finalization functions to
2937 call then add the corresponding DT_INIT/DT_FINI entries. */
2938 h = (info->init_function
2939 ? elf_link_hash_lookup (elf_hash_table (info),
2940 info->init_function, false,
2941 false, false)
2942 : NULL);
252b5132
RH
2943 if (h != NULL
2944 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2945 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
2946 {
2947 if (! elf_add_dynamic_entry (info, DT_INIT, 0))
2948 return false;
2949 }
f0c2e336
MM
2950 h = (info->fini_function
2951 ? elf_link_hash_lookup (elf_hash_table (info),
2952 info->fini_function, false,
2953 false, false)
2954 : NULL);
252b5132
RH
2955 if (h != NULL
2956 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2957 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
2958 {
2959 if (! elf_add_dynamic_entry (info, DT_FINI, 0))
2960 return false;
2961 }
f0c2e336 2962
252b5132
RH
2963 strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
2964 if (! elf_add_dynamic_entry (info, DT_HASH, 0)
2965 || ! elf_add_dynamic_entry (info, DT_STRTAB, 0)
2966 || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0)
2967 || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize)
2968 || ! elf_add_dynamic_entry (info, DT_SYMENT,
2969 sizeof (Elf_External_Sym)))
2970 return false;
2971 }
2972
2973 /* The backend must work out the sizes of all the other dynamic
2974 sections. */
252b5132
RH
2975 if (bed->elf_backend_size_dynamic_sections
2976 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
2977 return false;
2978
2979 if (elf_hash_table (info)->dynamic_sections_created)
2980 {
2981 size_t dynsymcount;
2982 asection *s;
2983 size_t bucketcount = 0;
2984 Elf_Internal_Sym isym;
c7ac6ff8 2985 size_t hash_entry_size;
252b5132
RH
2986
2987 /* Set up the version definition section. */
2988 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
2989 BFD_ASSERT (s != NULL);
2990
2991 /* We may have created additional version definitions if we are
2992 just linking a regular application. */
2993 verdefs = asvinfo.verdefs;
2994
2995 if (verdefs == NULL)
7f8d5fc9 2996 _bfd_strip_section_from_output (info, s);
252b5132
RH
2997 else
2998 {
2999 unsigned int cdefs;
3000 bfd_size_type size;
3001 struct bfd_elf_version_tree *t;
3002 bfd_byte *p;
3003 Elf_Internal_Verdef def;
3004 Elf_Internal_Verdaux defaux;
3005
252b5132
RH
3006 cdefs = 0;
3007 size = 0;
3008
3009 /* Make space for the base version. */
3010 size += sizeof (Elf_External_Verdef);
3011 size += sizeof (Elf_External_Verdaux);
3012 ++cdefs;
3013
3014 for (t = verdefs; t != NULL; t = t->next)
3015 {
3016 struct bfd_elf_version_deps *n;
3017
3018 size += sizeof (Elf_External_Verdef);
3019 size += sizeof (Elf_External_Verdaux);
3020 ++cdefs;
3021
3022 for (n = t->deps; n != NULL; n = n->next)
3023 size += sizeof (Elf_External_Verdaux);
3024 }
3025
3026 s->_raw_size = size;
3027 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3028 if (s->contents == NULL && s->_raw_size != 0)
3029 return false;
3030
3031 /* Fill in the version definition section. */
3032
3033 p = s->contents;
3034
3035 def.vd_version = VER_DEF_CURRENT;
3036 def.vd_flags = VER_FLG_BASE;
3037 def.vd_ndx = 1;
3038 def.vd_cnt = 1;
3039 def.vd_aux = sizeof (Elf_External_Verdef);
3040 def.vd_next = (sizeof (Elf_External_Verdef)
3041 + sizeof (Elf_External_Verdaux));
3042
3043 if (soname_indx != (bfd_size_type) -1)
3044 {
3a99b017 3045 def.vd_hash = bfd_elf_hash (soname);
252b5132
RH
3046 defaux.vda_name = soname_indx;
3047 }
3048 else
3049 {
3050 const char *name;
3051 bfd_size_type indx;
3052
3053 name = output_bfd->filename;
3a99b017 3054 def.vd_hash = bfd_elf_hash (name);
252b5132
RH
3055 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3056 name, true, false);
3057 if (indx == (bfd_size_type) -1)
3058 return false;
3059 defaux.vda_name = indx;
3060 }
3061 defaux.vda_next = 0;
3062
3063 _bfd_elf_swap_verdef_out (output_bfd, &def,
3064 (Elf_External_Verdef *)p);
3065 p += sizeof (Elf_External_Verdef);
3066 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3067 (Elf_External_Verdaux *) p);
3068 p += sizeof (Elf_External_Verdaux);
3069
3070 for (t = verdefs; t != NULL; t = t->next)
3071 {
3072 unsigned int cdeps;
3073 struct bfd_elf_version_deps *n;
3074 struct elf_link_hash_entry *h;
3075
3076 cdeps = 0;
3077 for (n = t->deps; n != NULL; n = n->next)
3078 ++cdeps;
3079
3080 /* Add a symbol representing this version. */
3081 h = NULL;
3082 if (! (_bfd_generic_link_add_one_symbol
3083 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
3084 (bfd_vma) 0, (const char *) NULL, false,
3085 get_elf_backend_data (dynobj)->collect,
3086 (struct bfd_link_hash_entry **) &h)))
3087 return false;
3088 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
3089 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3090 h->type = STT_OBJECT;
3091 h->verinfo.vertree = t;
3092
3093 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
3094 return false;
3095
3096 def.vd_version = VER_DEF_CURRENT;
3097 def.vd_flags = 0;
3098 if (t->globals == NULL && t->locals == NULL && ! t->used)
3099 def.vd_flags |= VER_FLG_WEAK;
3100 def.vd_ndx = t->vernum + 1;
3101 def.vd_cnt = cdeps + 1;
3a99b017 3102 def.vd_hash = bfd_elf_hash (t->name);
252b5132
RH
3103 def.vd_aux = sizeof (Elf_External_Verdef);
3104 if (t->next != NULL)
3105 def.vd_next = (sizeof (Elf_External_Verdef)
3106 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
3107 else
3108 def.vd_next = 0;
3109
3110 _bfd_elf_swap_verdef_out (output_bfd, &def,
3111 (Elf_External_Verdef *) p);
3112 p += sizeof (Elf_External_Verdef);
3113
3114 defaux.vda_name = h->dynstr_index;
3115 if (t->deps == NULL)
3116 defaux.vda_next = 0;
3117 else
3118 defaux.vda_next = sizeof (Elf_External_Verdaux);
3119 t->name_indx = defaux.vda_name;
3120
3121 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3122 (Elf_External_Verdaux *) p);
3123 p += sizeof (Elf_External_Verdaux);
3124
3125 for (n = t->deps; n != NULL; n = n->next)
3126 {
3127 if (n->version_needed == NULL)
3128 {
3129 /* This can happen if there was an error in the
3130 version script. */
3131 defaux.vda_name = 0;
3132 }
3133 else
3134 defaux.vda_name = n->version_needed->name_indx;
3135 if (n->next == NULL)
3136 defaux.vda_next = 0;
3137 else
3138 defaux.vda_next = sizeof (Elf_External_Verdaux);
3139
3140 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3141 (Elf_External_Verdaux *) p);
3142 p += sizeof (Elf_External_Verdaux);
3143 }
3144 }
3145
3146 if (! elf_add_dynamic_entry (info, DT_VERDEF, 0)
3147 || ! elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
3148 return false;
3149
3150 elf_tdata (output_bfd)->cverdefs = cdefs;
3151 }
3152
c25373b7 3153 if (info->new_dtags && info->flags)
d6cf2879
L
3154 {
3155 if (! elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
3156 return false;
3157 }
3158
4d538889 3159 if (info->flags_1)
d6cf2879
L
3160 {
3161 if (! info->shared)
3162 info->flags_1 &= ~ (DF_1_INITFIRST
3163 | DF_1_NODELETE
3164 | DF_1_NOOPEN);
3165 if (! elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
3166 return false;
3167 }
3168
252b5132
RH
3169 /* Work out the size of the version reference section. */
3170
3171 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3172 BFD_ASSERT (s != NULL);
3173 {
3174 struct elf_find_verdep_info sinfo;
3175
3176 sinfo.output_bfd = output_bfd;
3177 sinfo.info = info;
3178 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
3179 if (sinfo.vers == 0)
3180 sinfo.vers = 1;
3181 sinfo.failed = false;
3182
3183 elf_link_hash_traverse (elf_hash_table (info),
3184 elf_link_find_version_dependencies,
3185 (PTR) &sinfo);
3186
3187 if (elf_tdata (output_bfd)->verref == NULL)
7f8d5fc9 3188 _bfd_strip_section_from_output (info, s);
252b5132
RH
3189 else
3190 {
3191 Elf_Internal_Verneed *t;
3192 unsigned int size;
3193 unsigned int crefs;
3194 bfd_byte *p;
3195
3196 /* Build the version definition section. */
3197 size = 0;
3198 crefs = 0;
3199 for (t = elf_tdata (output_bfd)->verref;
3200 t != NULL;
3201 t = t->vn_nextref)
3202 {
3203 Elf_Internal_Vernaux *a;
3204
3205 size += sizeof (Elf_External_Verneed);
3206 ++crefs;
3207 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3208 size += sizeof (Elf_External_Vernaux);
3209 }
3210
3211 s->_raw_size = size;
3212 s->contents = (bfd_byte *) bfd_alloc (output_bfd, size);
3213 if (s->contents == NULL)
3214 return false;
3215
3216 p = s->contents;
3217 for (t = elf_tdata (output_bfd)->verref;
3218 t != NULL;
3219 t = t->vn_nextref)
3220 {
3221 unsigned int caux;
3222 Elf_Internal_Vernaux *a;
3223 bfd_size_type indx;
3224
3225 caux = 0;
3226 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3227 ++caux;
3228
3229 t->vn_version = VER_NEED_CURRENT;
3230 t->vn_cnt = caux;
3231 if (elf_dt_name (t->vn_bfd) != NULL)
3232 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3233 elf_dt_name (t->vn_bfd),
3234 true, false);
3235 else
3236 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3237 t->vn_bfd->filename, true, false);
3238 if (indx == (bfd_size_type) -1)
3239 return false;
3240 t->vn_file = indx;
3241 t->vn_aux = sizeof (Elf_External_Verneed);
3242 if (t->vn_nextref == NULL)
3243 t->vn_next = 0;
3244 else
3245 t->vn_next = (sizeof (Elf_External_Verneed)
3246 + caux * sizeof (Elf_External_Vernaux));
3247
3248 _bfd_elf_swap_verneed_out (output_bfd, t,
3249 (Elf_External_Verneed *) p);
3250 p += sizeof (Elf_External_Verneed);
3251
3252 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3253 {
3a99b017 3254 a->vna_hash = bfd_elf_hash (a->vna_nodename);
252b5132
RH
3255 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3256 a->vna_nodename, true, false);
3257 if (indx == (bfd_size_type) -1)
3258 return false;
3259 a->vna_name = indx;
3260 if (a->vna_nextptr == NULL)
3261 a->vna_next = 0;
3262 else
3263 a->vna_next = sizeof (Elf_External_Vernaux);
3264
3265 _bfd_elf_swap_vernaux_out (output_bfd, a,
3266 (Elf_External_Vernaux *) p);
3267 p += sizeof (Elf_External_Vernaux);
3268 }
3269 }
3270
3271 if (! elf_add_dynamic_entry (info, DT_VERNEED, 0)
3272 || ! elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
3273 return false;
3274
3275 elf_tdata (output_bfd)->cverrefs = crefs;
3276 }
3277 }
3278
30b30c21
RH
3279 /* Assign dynsym indicies. In a shared library we generate a
3280 section symbol for each output section, which come first.
3281 Next come all of the back-end allocated local dynamic syms,
3282 followed by the rest of the global symbols. */
3283
3284 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
252b5132
RH
3285
3286 /* Work out the size of the symbol version section. */
3287 s = bfd_get_section_by_name (dynobj, ".gnu.version");
3288 BFD_ASSERT (s != NULL);
3289 if (dynsymcount == 0
3290 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
3291 {
7f8d5fc9 3292 _bfd_strip_section_from_output (info, s);
42751cf3
MM
3293 /* The DYNSYMCOUNT might have changed if we were going to
3294 output a dynamic symbol table entry for S. */
30b30c21 3295 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
252b5132
RH
3296 }
3297 else
3298 {
3299 s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
3300 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
3301 if (s->contents == NULL)
3302 return false;
3303
3304 if (! elf_add_dynamic_entry (info, DT_VERSYM, 0))
3305 return false;
3306 }
3307
3308 /* Set the size of the .dynsym and .hash sections. We counted
3309 the number of dynamic symbols in elf_link_add_object_symbols.
3310 We will build the contents of .dynsym and .hash when we build
3311 the final symbol table, because until then we do not know the
3312 correct value to give the symbols. We built the .dynstr
3313 section as we went along in elf_link_add_object_symbols. */
3314 s = bfd_get_section_by_name (dynobj, ".dynsym");
3315 BFD_ASSERT (s != NULL);
3316 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
3317 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3318 if (s->contents == NULL && s->_raw_size != 0)
3319 return false;
3320
3321 /* The first entry in .dynsym is a dummy symbol. */
3322 isym.st_value = 0;
3323 isym.st_size = 0;
3324 isym.st_name = 0;
3325 isym.st_info = 0;
3326 isym.st_other = 0;
3327 isym.st_shndx = 0;
3328 elf_swap_symbol_out (output_bfd, &isym,
3329 (PTR) (Elf_External_Sym *) s->contents);
3330
3331 /* Compute the size of the hashing table. As a side effect this
3332 computes the hash values for all the names we export. */
3333 bucketcount = compute_bucket_count (info);
3334
3335 s = bfd_get_section_by_name (dynobj, ".hash");
3336 BFD_ASSERT (s != NULL);
c7ac6ff8
MM
3337 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
3338 s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
252b5132
RH
3339 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3340 if (s->contents == NULL)
3341 return false;
3342 memset (s->contents, 0, (size_t) s->_raw_size);
3343
c7ac6ff8
MM
3344 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
3345 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
3346 s->contents + hash_entry_size);
252b5132
RH
3347
3348 elf_hash_table (info)->bucketcount = bucketcount;
3349
3350 s = bfd_get_section_by_name (dynobj, ".dynstr");
3351 BFD_ASSERT (s != NULL);
3352 s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
3353
3354 if (! elf_add_dynamic_entry (info, DT_NULL, 0))
3355 return false;
3356 }
3357
3358 return true;
3359}
3360\f
3361/* Fix up the flags for a symbol. This handles various cases which
3362 can only be fixed after all the input files are seen. This is
3363 currently called by both adjust_dynamic_symbol and
3364 assign_sym_version, which is unnecessary but perhaps more robust in
3365 the face of future changes. */
3366
3367static boolean
3368elf_fix_symbol_flags (h, eif)
3369 struct elf_link_hash_entry *h;
3370 struct elf_info_failed *eif;
3371{
3372 /* If this symbol was mentioned in a non-ELF file, try to set
3373 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
3374 permit a non-ELF file to correctly refer to a symbol defined in
3375 an ELF dynamic object. */
3376 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
3377 {
94b6c40a
L
3378 while (h->root.type == bfd_link_hash_indirect)
3379 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3380
252b5132
RH
3381 if (h->root.type != bfd_link_hash_defined
3382 && h->root.type != bfd_link_hash_defweak)
3383 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3384 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3385 else
3386 {
3387 if (h->root.u.def.section->owner != NULL
3388 && (bfd_get_flavour (h->root.u.def.section->owner)
3389 == bfd_target_elf_flavour))
3390 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3391 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3392 else
3393 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3394 }
3395
3396 if (h->dynindx == -1
3397 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3398 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
3399 {
3400 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3401 {
3402 eif->failed = true;
3403 return false;
3404 }
3405 }
3406 }
3407 else
3408 {
3409 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
3410 was first seen in a non-ELF file. Fortunately, if the symbol
3411 was first seen in an ELF file, we're probably OK unless the
3412 symbol was defined in a non-ELF file. Catch that case here.
3413 FIXME: We're still in trouble if the symbol was first seen in
3414 a dynamic object, and then later in a non-ELF regular object. */
3415 if ((h->root.type == bfd_link_hash_defined
3416 || h->root.type == bfd_link_hash_defweak)
3417 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3418 && (h->root.u.def.section->owner != NULL
3419 ? (bfd_get_flavour (h->root.u.def.section->owner)
3420 != bfd_target_elf_flavour)
3421 : (bfd_is_abs_section (h->root.u.def.section)
3422 && (h->elf_link_hash_flags
3423 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
3424 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3425 }
3426
3427 /* If this is a final link, and the symbol was defined as a common
3428 symbol in a regular object file, and there was no definition in
3429 any dynamic object, then the linker will have allocated space for
3430 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3431 flag will not have been set. */
3432 if (h->root.type == bfd_link_hash_defined
3433 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3434 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
3435 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3436 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3437 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3438
3439 /* If -Bsymbolic was used (which means to bind references to global
3440 symbols to the definition within the shared object), and this
3441 symbol was defined in a regular object, then it actually doesn't
0444bdd4
L
3442 need a PLT entry. Likewise, if the symbol has any kind of
3443 visibility (internal, hidden, or protected), it doesn't need a
3444 PLT. */
252b5132
RH
3445 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
3446 && eif->info->shared
0444bdd4 3447 && (eif->info->symbolic || ELF_ST_VISIBILITY (h->other))
252b5132
RH
3448 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3449 {
3450 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3451 h->plt.offset = (bfd_vma) -1;
3452 }
3453
fc4cc5bb
ILT
3454 /* If this is a weak defined symbol in a dynamic object, and we know
3455 the real definition in the dynamic object, copy interesting flags
3456 over to the real definition. */
3457 if (h->weakdef != NULL)
3458 {
3459 struct elf_link_hash_entry *weakdef;
3460
3461 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3462 || h->root.type == bfd_link_hash_defweak);
3463 weakdef = h->weakdef;
3464 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
3465 || weakdef->root.type == bfd_link_hash_defweak);
3466 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
3467
3468 /* If the real definition is defined by a regular object file,
3469 don't do anything special. See the longer description in
3470 elf_adjust_dynamic_symbol, below. */
3471 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3472 h->weakdef = NULL;
3473 else
3474 weakdef->elf_link_hash_flags |=
3475 (h->elf_link_hash_flags
3476 & (ELF_LINK_HASH_REF_REGULAR
3477 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
3478 | ELF_LINK_NON_GOT_REF));
3479 }
3480
252b5132
RH
3481 return true;
3482}
3483
3484/* Make the backend pick a good value for a dynamic symbol. This is
3485 called via elf_link_hash_traverse, and also calls itself
3486 recursively. */
3487
3488static boolean
3489elf_adjust_dynamic_symbol (h, data)
3490 struct elf_link_hash_entry *h;
3491 PTR data;
3492{
3493 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3494 bfd *dynobj;
3495 struct elf_backend_data *bed;
3496
3497 /* Ignore indirect symbols. These are added by the versioning code. */
3498 if (h->root.type == bfd_link_hash_indirect)
3499 return true;
3500
3501 /* Fix the symbol flags. */
3502 if (! elf_fix_symbol_flags (h, eif))
3503 return false;
3504
3505 /* If this symbol does not require a PLT entry, and it is not
3506 defined by a dynamic object, or is not referenced by a regular
3507 object, ignore it. We do have to handle a weak defined symbol,
3508 even if no regular object refers to it, if we decided to add it
3509 to the dynamic symbol table. FIXME: Do we normally need to worry
3510 about symbols which are defined by one dynamic object and
3511 referenced by another one? */
3512 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
3513 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3514 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3515 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
3516 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
3517 {
3518 h->plt.offset = (bfd_vma) -1;
3519 return true;
3520 }
3521
3522 /* If we've already adjusted this symbol, don't do it again. This
3523 can happen via a recursive call. */
3524 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
3525 return true;
3526
3527 /* Don't look at this symbol again. Note that we must set this
3528 after checking the above conditions, because we may look at a
3529 symbol once, decide not to do anything, and then get called
3530 recursively later after REF_REGULAR is set below. */
3531 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
3532
3533 /* If this is a weak definition, and we know a real definition, and
3534 the real symbol is not itself defined by a regular object file,
3535 then get a good value for the real definition. We handle the
3536 real symbol first, for the convenience of the backend routine.
3537
3538 Note that there is a confusing case here. If the real definition
3539 is defined by a regular object file, we don't get the real symbol
3540 from the dynamic object, but we do get the weak symbol. If the
3541 processor backend uses a COPY reloc, then if some routine in the
3542 dynamic object changes the real symbol, we will not see that
3543 change in the corresponding weak symbol. This is the way other
3544 ELF linkers work as well, and seems to be a result of the shared
3545 library model.
3546
3547 I will clarify this issue. Most SVR4 shared libraries define the
3548 variable _timezone and define timezone as a weak synonym. The
3549 tzset call changes _timezone. If you write
3550 extern int timezone;
3551 int _timezone = 5;
3552 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3553 you might expect that, since timezone is a synonym for _timezone,
3554 the same number will print both times. However, if the processor
3555 backend uses a COPY reloc, then actually timezone will be copied
3556 into your process image, and, since you define _timezone
3557 yourself, _timezone will not. Thus timezone and _timezone will
3558 wind up at different memory locations. The tzset call will set
3559 _timezone, leaving timezone unchanged. */
3560
3561 if (h->weakdef != NULL)
3562 {
fc4cc5bb
ILT
3563 /* If we get to this point, we know there is an implicit
3564 reference by a regular object file via the weak symbol H.
3565 FIXME: Is this really true? What if the traversal finds
3566 H->WEAKDEF before it finds H? */
3567 h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
252b5132 3568
fc4cc5bb
ILT
3569 if (! elf_adjust_dynamic_symbol (h->weakdef, (PTR) eif))
3570 return false;
252b5132
RH
3571 }
3572
3573 /* If a symbol has no type and no size and does not require a PLT
3574 entry, then we are probably about to do the wrong thing here: we
3575 are probably going to create a COPY reloc for an empty object.
3576 This case can arise when a shared object is built with assembly
3577 code, and the assembly code fails to set the symbol type. */
3578 if (h->size == 0
3579 && h->type == STT_NOTYPE
3580 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
3581 (*_bfd_error_handler)
3582 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3583 h->root.root.string);
3584
3585 dynobj = elf_hash_table (eif->info)->dynobj;
3586 bed = get_elf_backend_data (dynobj);
3587 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3588 {
3589 eif->failed = true;
3590 return false;
3591 }
3592
3593 return true;
3594}
3595\f
3596/* This routine is used to export all defined symbols into the dynamic
3597 symbol table. It is called via elf_link_hash_traverse. */
3598
3599static boolean
3600elf_export_symbol (h, data)
3601 struct elf_link_hash_entry *h;
3602 PTR data;
3603{
3604 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3605
3606 /* Ignore indirect symbols. These are added by the versioning code. */
3607 if (h->root.type == bfd_link_hash_indirect)
3608 return true;
3609
3610 if (h->dynindx == -1
3611 && (h->elf_link_hash_flags
3612 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
3613 {
3614 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3615 {
3616 eif->failed = true;
3617 return false;
3618 }
3619 }
3620
3621 return true;
3622}
3623\f
3624/* Look through the symbols which are defined in other shared
3625 libraries and referenced here. Update the list of version
3626 dependencies. This will be put into the .gnu.version_r section.
3627 This function is called via elf_link_hash_traverse. */
3628
3629static boolean
3630elf_link_find_version_dependencies (h, data)
3631 struct elf_link_hash_entry *h;
3632 PTR data;
3633{
3634 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
3635 Elf_Internal_Verneed *t;
3636 Elf_Internal_Vernaux *a;
3637
3638 /* We only care about symbols defined in shared objects with version
3639 information. */
3640 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3641 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3642 || h->dynindx == -1
3643 || h->verinfo.verdef == NULL)
3644 return true;
3645
3646 /* See if we already know about this version. */
3647 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
3648 {
3649 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
3650 continue;
3651
3652 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3653 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
3654 return true;
3655
3656 break;
3657 }
3658
3659 /* This is a new version. Add it to tree we are building. */
3660
3661 if (t == NULL)
3662 {
3663 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, sizeof *t);
3664 if (t == NULL)
3665 {
3666 rinfo->failed = true;
3667 return false;
3668 }
3669
3670 t->vn_bfd = h->verinfo.verdef->vd_bfd;
3671 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
3672 elf_tdata (rinfo->output_bfd)->verref = t;
3673 }
3674
3675 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, sizeof *a);
3676
3677 /* Note that we are copying a string pointer here, and testing it
3678 above. If bfd_elf_string_from_elf_section is ever changed to
3679 discard the string data when low in memory, this will have to be
3680 fixed. */
3681 a->vna_nodename = h->verinfo.verdef->vd_nodename;
3682
3683 a->vna_flags = h->verinfo.verdef->vd_flags;
3684 a->vna_nextptr = t->vn_auxptr;
3685
3686 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
3687 ++rinfo->vers;
3688
3689 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
3690
3691 t->vn_auxptr = a;
3692
3693 return true;
3694}
3695
3696/* Figure out appropriate versions for all the symbols. We may not
3697 have the version number script until we have read all of the input
3698 files, so until that point we don't know which symbols should be
3699 local. This function is called via elf_link_hash_traverse. */
3700
3701static boolean
3702elf_link_assign_sym_version (h, data)
3703 struct elf_link_hash_entry *h;
3704 PTR data;
3705{
3706 struct elf_assign_sym_version_info *sinfo =
3707 (struct elf_assign_sym_version_info *) data;
3708 struct bfd_link_info *info = sinfo->info;
c61b8717 3709 struct elf_backend_data *bed;
252b5132
RH
3710 struct elf_info_failed eif;
3711 char *p;
3712
3713 /* Fix the symbol flags. */
3714 eif.failed = false;
3715 eif.info = info;
3716 if (! elf_fix_symbol_flags (h, &eif))
3717 {
3718 if (eif.failed)
3719 sinfo->failed = true;
3720 return false;
3721 }
3722
3723 /* We only need version numbers for symbols defined in regular
3724 objects. */
3725 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3726 return true;
3727
c61b8717 3728 bed = get_elf_backend_data (sinfo->output_bfd);
252b5132
RH
3729 p = strchr (h->root.root.string, ELF_VER_CHR);
3730 if (p != NULL && h->verinfo.vertree == NULL)
3731 {
3732 struct bfd_elf_version_tree *t;
3733 boolean hidden;
3734
3735 hidden = true;
3736
3737 /* There are two consecutive ELF_VER_CHR characters if this is
3738 not a hidden symbol. */
3739 ++p;
3740 if (*p == ELF_VER_CHR)
3741 {
3742 hidden = false;
3743 ++p;
3744 }
3745
3746 /* If there is no version string, we can just return out. */
3747 if (*p == '\0')
3748 {
3749 if (hidden)
3750 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3751 return true;
3752 }
3753
3754 /* Look for the version. If we find it, it is no longer weak. */
3755 for (t = sinfo->verdefs; t != NULL; t = t->next)
3756 {
3757 if (strcmp (t->name, p) == 0)
3758 {
3759 int len;
3760 char *alc;
3761 struct bfd_elf_version_expr *d;
3762
3763 len = p - h->root.root.string;
3764 alc = bfd_alloc (sinfo->output_bfd, len);
3765 if (alc == NULL)
3766 return false;
3767 strncpy (alc, h->root.root.string, len - 1);
3768 alc[len - 1] = '\0';
3769 if (alc[len - 2] == ELF_VER_CHR)
3770 alc[len - 2] = '\0';
3771
3772 h->verinfo.vertree = t;
3773 t->used = true;
3774 d = NULL;
3775
3776 if (t->globals != NULL)
3777 {
3778 for (d = t->globals; d != NULL; d = d->next)
3779 if ((*d->match) (d, alc))
3780 break;
3781 }
3782
3783 /* See if there is anything to force this symbol to
3784 local scope. */
3785 if (d == NULL && t->locals != NULL)
3786 {
3787 for (d = t->locals; d != NULL; d = d->next)
3788 {
3789 if ((*d->match) (d, alc))
3790 {
3791 if (h->dynindx != -1
3792 && info->shared
3793 && ! sinfo->export_dynamic)
3794 {
252b5132 3795 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
f41cbf03 3796 (*bed->elf_backend_hide_symbol) (info, h);
252b5132
RH
3797 /* FIXME: The name of the symbol has
3798 already been recorded in the dynamic
3799 string table section. */
3800 }
3801
3802 break;
3803 }
3804 }
3805 }
3806
3807 bfd_release (sinfo->output_bfd, alc);
3808 break;
3809 }
3810 }
3811
3812 /* If we are building an application, we need to create a
3813 version node for this version. */
3814 if (t == NULL && ! info->shared)
3815 {
3816 struct bfd_elf_version_tree **pp;
3817 int version_index;
3818
3819 /* If we aren't going to export this symbol, we don't need
3820 to worry about it. */
3821 if (h->dynindx == -1)
3822 return true;
3823
3824 t = ((struct bfd_elf_version_tree *)
3825 bfd_alloc (sinfo->output_bfd, sizeof *t));
3826 if (t == NULL)
3827 {
3828 sinfo->failed = true;
3829 return false;
3830 }
3831
3832 t->next = NULL;
3833 t->name = p;
3834 t->globals = NULL;
3835 t->locals = NULL;
3836 t->deps = NULL;
3837 t->name_indx = (unsigned int) -1;
3838 t->used = true;
3839
3840 version_index = 1;
3841 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
3842 ++version_index;
3843 t->vernum = version_index;
3844
3845 *pp = t;
3846
3847 h->verinfo.vertree = t;
3848 }
3849 else if (t == NULL)
3850 {
3851 /* We could not find the version for a symbol when
3852 generating a shared archive. Return an error. */
3853 (*_bfd_error_handler)
3854 (_("%s: undefined versioned symbol name %s"),
3855 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
3856 bfd_set_error (bfd_error_bad_value);
3857 sinfo->failed = true;
3858 return false;
3859 }
3860
3861 if (hidden)
3862 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3863 }
3864
3865 /* If we don't have a version for this symbol, see if we can find
3866 something. */
3867 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
3868 {
3869 struct bfd_elf_version_tree *t;
3870 struct bfd_elf_version_tree *deflt;
3871 struct bfd_elf_version_expr *d;
3872
3873 /* See if can find what version this symbol is in. If the
3874 symbol is supposed to be local, then don't actually register
3875 it. */
3876 deflt = NULL;
3877 for (t = sinfo->verdefs; t != NULL; t = t->next)
3878 {
3879 if (t->globals != NULL)
3880 {
3881 for (d = t->globals; d != NULL; d = d->next)
3882 {
3883 if ((*d->match) (d, h->root.root.string))
3884 {
3885 h->verinfo.vertree = t;
3886 break;
3887 }
3888 }
3889
3890 if (d != NULL)
3891 break;
3892 }
3893
3894 if (t->locals != NULL)
3895 {
3896 for (d = t->locals; d != NULL; d = d->next)
3897 {
3898 if (d->pattern[0] == '*' && d->pattern[1] == '\0')
3899 deflt = t;
3900 else if ((*d->match) (d, h->root.root.string))
3901 {
3902 h->verinfo.vertree = t;
3903 if (h->dynindx != -1
3904 && info->shared
3905 && ! sinfo->export_dynamic)
3906 {
252b5132 3907 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
f41cbf03 3908 (*bed->elf_backend_hide_symbol) (info, h);
252b5132
RH
3909 /* FIXME: The name of the symbol has already
3910 been recorded in the dynamic string table
3911 section. */
3912 }
3913 break;
3914 }
3915 }
3916
3917 if (d != NULL)
3918 break;
3919 }
3920 }
3921
3922 if (deflt != NULL && h->verinfo.vertree == NULL)
3923 {
3924 h->verinfo.vertree = deflt;
3925 if (h->dynindx != -1
3926 && info->shared
3927 && ! sinfo->export_dynamic)
3928 {
252b5132 3929 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
f41cbf03 3930 (*bed->elf_backend_hide_symbol) (info, h);
252b5132
RH
3931 /* FIXME: The name of the symbol has already been
3932 recorded in the dynamic string table section. */
3933 }
3934 }
3935 }
3936
3937 return true;
3938}
252b5132
RH
3939\f
3940/* Final phase of ELF linker. */
3941
3942/* A structure we use to avoid passing large numbers of arguments. */
3943
3944struct elf_final_link_info
3945{
3946 /* General link information. */
3947 struct bfd_link_info *info;
3948 /* Output BFD. */
3949 bfd *output_bfd;
3950 /* Symbol string table. */
3951 struct bfd_strtab_hash *symstrtab;
3952 /* .dynsym section. */
3953 asection *dynsym_sec;
3954 /* .hash section. */
3955 asection *hash_sec;
3956 /* symbol version section (.gnu.version). */
3957 asection *symver_sec;
3958 /* Buffer large enough to hold contents of any section. */
3959 bfd_byte *contents;
3960 /* Buffer large enough to hold external relocs of any section. */
3961 PTR external_relocs;
3962 /* Buffer large enough to hold internal relocs of any section. */
3963 Elf_Internal_Rela *internal_relocs;
3964 /* Buffer large enough to hold external local symbols of any input
3965 BFD. */
3966 Elf_External_Sym *external_syms;
3967 /* Buffer large enough to hold internal local symbols of any input
3968 BFD. */
3969 Elf_Internal_Sym *internal_syms;
3970 /* Array large enough to hold a symbol index for each local symbol
3971 of any input BFD. */
3972 long *indices;
3973 /* Array large enough to hold a section pointer for each local
3974 symbol of any input BFD. */
3975 asection **sections;
3976 /* Buffer to hold swapped out symbols. */
3977 Elf_External_Sym *symbuf;
3978 /* Number of swapped out symbols in buffer. */
3979 size_t symbuf_count;
3980 /* Number of symbols which fit in symbuf. */
3981 size_t symbuf_size;
3982};
3983
3984static boolean elf_link_output_sym
3985 PARAMS ((struct elf_final_link_info *, const char *,
3986 Elf_Internal_Sym *, asection *));
3987static boolean elf_link_flush_output_syms
3988 PARAMS ((struct elf_final_link_info *));
3989static boolean elf_link_output_extsym
3990 PARAMS ((struct elf_link_hash_entry *, PTR));
3991static boolean elf_link_input_bfd
3992 PARAMS ((struct elf_final_link_info *, bfd *));
3993static boolean elf_reloc_link_order
3994 PARAMS ((bfd *, struct bfd_link_info *, asection *,
3995 struct bfd_link_order *));
3996
3997/* This struct is used to pass information to elf_link_output_extsym. */
3998
3999struct elf_outext_info
4000{
4001 boolean failed;
4002 boolean localsyms;
4003 struct elf_final_link_info *finfo;
4004};
4005
23bc299b
MM
4006/* Compute the size of, and allocate space for, REL_HDR which is the
4007 section header for a section containing relocations for O. */
4008
4009static boolean
4010elf_link_size_reloc_section (abfd, rel_hdr, o)
4011 bfd *abfd;
4012 Elf_Internal_Shdr *rel_hdr;
4013 asection *o;
4014{
4015 register struct elf_link_hash_entry **p, **pend;
b037af20 4016 unsigned reloc_count;
23bc299b 4017
b037af20
MM
4018 /* Figure out how many relocations there will be. */
4019 if (rel_hdr == &elf_section_data (o)->rel_hdr)
4020 reloc_count = elf_section_data (o)->rel_count;
4021 else
4022 reloc_count = elf_section_data (o)->rel_count2;
4023
4024 /* That allows us to calculate the size of the section. */
4025 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
23bc299b
MM
4026
4027 /* The contents field must last into write_object_contents, so we
755cfd29
NC
4028 allocate it with bfd_alloc rather than malloc. Also since we
4029 cannot be sure that the contents will actually be filled in,
4030 we zero the allocated space. */
4031 rel_hdr->contents = (PTR) bfd_zalloc (abfd, rel_hdr->sh_size);
23bc299b
MM
4032 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
4033 return false;
b037af20
MM
4034
4035 /* We only allocate one set of hash entries, so we only do it the
4036 first time we are called. */
4037 if (elf_section_data (o)->rel_hashes == NULL)
4038 {
4039 p = ((struct elf_link_hash_entry **)
4040 bfd_malloc (o->reloc_count
4041 * sizeof (struct elf_link_hash_entry *)));
4042 if (p == NULL && o->reloc_count != 0)
4043 return false;
23bc299b 4044
b037af20
MM
4045 elf_section_data (o)->rel_hashes = p;
4046 pend = p + o->reloc_count;
4047 for (; p < pend; p++)
4048 *p = NULL;
4049 }
23bc299b
MM
4050
4051 return true;
4052}
4053
31367b81
MM
4054/* When performing a relocateable link, the input relocations are
4055 preserved. But, if they reference global symbols, the indices
4056 referenced must be updated. Update all the relocations in
4057 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
4058
4059static void
4060elf_link_adjust_relocs (abfd, rel_hdr, count, rel_hash)
4061 bfd *abfd;
4062 Elf_Internal_Shdr *rel_hdr;
4063 unsigned int count;
4064 struct elf_link_hash_entry **rel_hash;
4065{
4066 unsigned int i;
32f0787a 4067 struct elf_backend_data *bed = get_elf_backend_data (abfd);
31367b81
MM
4068
4069 for (i = 0; i < count; i++, rel_hash++)
4070 {
4071 if (*rel_hash == NULL)
4072 continue;
4073
4074 BFD_ASSERT ((*rel_hash)->indx >= 0);
4075
4076 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
4077 {
4078 Elf_External_Rel *erel;
4079 Elf_Internal_Rel irel;
4080
4081 erel = (Elf_External_Rel *) rel_hdr->contents + i;
32f0787a
UC
4082 if (bed->s->swap_reloc_in)
4083 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, &irel);
4084 else
4085 elf_swap_reloc_in (abfd, erel, &irel);
31367b81
MM
4086 irel.r_info = ELF_R_INFO ((*rel_hash)->indx,
4087 ELF_R_TYPE (irel.r_info));
32f0787a
UC
4088 if (bed->s->swap_reloc_out)
4089 (*bed->s->swap_reloc_out) (abfd, &irel, (bfd_byte *) erel);
4090 else
4091 elf_swap_reloc_out (abfd, &irel, erel);
31367b81
MM
4092 }
4093 else
4094 {
4095 Elf_External_Rela *erela;
4096 Elf_Internal_Rela irela;
4097
4098 BFD_ASSERT (rel_hdr->sh_entsize
4099 == sizeof (Elf_External_Rela));
4100
4101 erela = (Elf_External_Rela *) rel_hdr->contents + i;
32f0787a
UC
4102 if (bed->s->swap_reloca_in)
4103 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, &irela);
4104 else
4105 elf_swap_reloca_in (abfd, erela, &irela);
31367b81
MM
4106 irela.r_info = ELF_R_INFO ((*rel_hash)->indx,
4107 ELF_R_TYPE (irela.r_info));
32f0787a
UC
4108 if (bed->s->swap_reloca_out)
4109 (*bed->s->swap_reloca_out) (abfd, &irela, (bfd_byte *) erela);
4110 else
4111 elf_swap_reloca_out (abfd, &irela, erela);
31367b81
MM
4112 }
4113 }
4114}
4115
252b5132
RH
4116/* Do the final step of an ELF link. */
4117
4118boolean
4119elf_bfd_final_link (abfd, info)
4120 bfd *abfd;
4121 struct bfd_link_info *info;
4122{
4123 boolean dynamic;
4124 bfd *dynobj;
4125 struct elf_final_link_info finfo;
4126 register asection *o;
4127 register struct bfd_link_order *p;
4128 register bfd *sub;
4129 size_t max_contents_size;
4130 size_t max_external_reloc_size;
4131 size_t max_internal_reloc_count;
4132 size_t max_sym_count;
4133 file_ptr off;
4134 Elf_Internal_Sym elfsym;
4135 unsigned int i;
4136 Elf_Internal_Shdr *symtab_hdr;
4137 Elf_Internal_Shdr *symstrtab_hdr;
4138 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4139 struct elf_outext_info eoinfo;
4140
4141 if (info->shared)
4142 abfd->flags |= DYNAMIC;
4143
4144 dynamic = elf_hash_table (info)->dynamic_sections_created;
4145 dynobj = elf_hash_table (info)->dynobj;
4146
4147 finfo.info = info;
4148 finfo.output_bfd = abfd;
4149 finfo.symstrtab = elf_stringtab_init ();
4150 if (finfo.symstrtab == NULL)
4151 return false;
4152
4153 if (! dynamic)
4154 {
4155 finfo.dynsym_sec = NULL;
4156 finfo.hash_sec = NULL;
4157 finfo.symver_sec = NULL;
4158 }
4159 else
4160 {
4161 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
4162 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
4163 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
4164 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
4165 /* Note that it is OK if symver_sec is NULL. */
4166 }
4167
4168 finfo.contents = NULL;
4169 finfo.external_relocs = NULL;
4170 finfo.internal_relocs = NULL;
4171 finfo.external_syms = NULL;
4172 finfo.internal_syms = NULL;
4173 finfo.indices = NULL;
4174 finfo.sections = NULL;
4175 finfo.symbuf = NULL;
4176 finfo.symbuf_count = 0;
4177
4178 /* Count up the number of relocations we will output for each output
4179 section, so that we know the sizes of the reloc sections. We
4180 also figure out some maximum sizes. */
4181 max_contents_size = 0;
4182 max_external_reloc_size = 0;
4183 max_internal_reloc_count = 0;
4184 max_sym_count = 0;
4185 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4186 {
4187 o->reloc_count = 0;
4188
4189 for (p = o->link_order_head; p != NULL; p = p->next)
4190 {
4191 if (p->type == bfd_section_reloc_link_order
4192 || p->type == bfd_symbol_reloc_link_order)
4193 ++o->reloc_count;
4194 else if (p->type == bfd_indirect_link_order)
4195 {
4196 asection *sec;
4197
4198 sec = p->u.indirect.section;
4199
4200 /* Mark all sections which are to be included in the
4201 link. This will normally be every section. We need
4202 to do this so that we can identify any sections which
4203 the linker has decided to not include. */
4204 sec->linker_mark = true;
4205
a712da20 4206 if (info->relocateable || info->emitrelocations)
252b5132
RH
4207 o->reloc_count += sec->reloc_count;
4208
4209 if (sec->_raw_size > max_contents_size)
4210 max_contents_size = sec->_raw_size;
4211 if (sec->_cooked_size > max_contents_size)
4212 max_contents_size = sec->_cooked_size;
4213
4214 /* We are interested in just local symbols, not all
4215 symbols. */
4216 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
4217 && (sec->owner->flags & DYNAMIC) == 0)
4218 {
4219 size_t sym_count;
4220
4221 if (elf_bad_symtab (sec->owner))
4222 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
4223 / sizeof (Elf_External_Sym));
4224 else
4225 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
4226
4227 if (sym_count > max_sym_count)
4228 max_sym_count = sym_count;
4229
4230 if ((sec->flags & SEC_RELOC) != 0)
4231 {
4232 size_t ext_size;
4233
4234 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
4235 if (ext_size > max_external_reloc_size)
4236 max_external_reloc_size = ext_size;
4237 if (sec->reloc_count > max_internal_reloc_count)
4238 max_internal_reloc_count = sec->reloc_count;
4239 }
4240 }
4241 }
4242 }
4243
4244 if (o->reloc_count > 0)
4245 o->flags |= SEC_RELOC;
4246 else
4247 {
4248 /* Explicitly clear the SEC_RELOC flag. The linker tends to
4249 set it (this is probably a bug) and if it is set
4250 assign_section_numbers will create a reloc section. */
4251 o->flags &=~ SEC_RELOC;
4252 }
4253
4254 /* If the SEC_ALLOC flag is not set, force the section VMA to
4255 zero. This is done in elf_fake_sections as well, but forcing
4256 the VMA to 0 here will ensure that relocs against these
4257 sections are handled correctly. */
4258 if ((o->flags & SEC_ALLOC) == 0
4259 && ! o->user_set_vma)
4260 o->vma = 0;
4261 }
4262
4263 /* Figure out the file positions for everything but the symbol table
4264 and the relocs. We set symcount to force assign_section_numbers
4265 to create a symbol table. */
4266 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
4267 BFD_ASSERT (! abfd->output_has_begun);
4268 if (! _bfd_elf_compute_section_file_positions (abfd, info))
4269 goto error_return;
4270
b037af20
MM
4271 /* Figure out how many relocations we will have in each section.
4272 Just using RELOC_COUNT isn't good enough since that doesn't
4273 maintain a separate value for REL vs. RELA relocations. */
a712da20 4274 if (info->relocateable || info->emitrelocations)
b037af20
MM
4275 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4276 for (o = sub->sections; o != NULL; o = o->next)
4277 {
814fe68a 4278 asection *output_section;
b037af20 4279
814fe68a
ILT
4280 if (! o->linker_mark)
4281 {
4282 /* This section was omitted from the link. */
4283 continue;
4284 }
4285
4286 output_section = o->output_section;
4287
4288 if (output_section != NULL
4289 && (o->flags & SEC_RELOC) != 0)
b037af20
MM
4290 {
4291 struct bfd_elf_section_data *esdi
4292 = elf_section_data (o);
4293 struct bfd_elf_section_data *esdo
4294 = elf_section_data (output_section);
ce006217
MM
4295 unsigned int *rel_count;
4296 unsigned int *rel_count2;
b037af20 4297
ce006217
MM
4298 /* We must be careful to add the relocation froms the
4299 input section to the right output count. */
4300 if (esdi->rel_hdr.sh_entsize == esdo->rel_hdr.sh_entsize)
4301 {
4302 rel_count = &esdo->rel_count;
4303 rel_count2 = &esdo->rel_count2;
4304 }
4305 else
4306 {
4307 rel_count = &esdo->rel_count2;
4308 rel_count2 = &esdo->rel_count;
4309 }
4310
4311 *rel_count += (esdi->rel_hdr.sh_size
4312 / esdi->rel_hdr.sh_entsize);
b037af20 4313 if (esdi->rel_hdr2)
ce006217
MM
4314 *rel_count2 += (esdi->rel_hdr2->sh_size
4315 / esdi->rel_hdr2->sh_entsize);
b037af20
MM
4316 }
4317 }
4318
252b5132
RH
4319 /* That created the reloc sections. Set their sizes, and assign
4320 them file positions, and allocate some buffers. */
4321 for (o = abfd->sections; o != NULL; o = o->next)
4322 {
4323 if ((o->flags & SEC_RELOC) != 0)
4324 {
23bc299b
MM
4325 if (!elf_link_size_reloc_section (abfd,
4326 &elf_section_data (o)->rel_hdr,
4327 o))
252b5132
RH
4328 goto error_return;
4329
23bc299b
MM
4330 if (elf_section_data (o)->rel_hdr2
4331 && !elf_link_size_reloc_section (abfd,
4332 elf_section_data (o)->rel_hdr2,
4333 o))
252b5132 4334 goto error_return;
252b5132 4335 }
b037af20
MM
4336
4337 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
4338 to count upwards while actually outputting the relocations. */
4339 elf_section_data (o)->rel_count = 0;
4340 elf_section_data (o)->rel_count2 = 0;
252b5132
RH
4341 }
4342
4343 _bfd_elf_assign_file_positions_for_relocs (abfd);
4344
4345 /* We have now assigned file positions for all the sections except
4346 .symtab and .strtab. We start the .symtab section at the current
4347 file position, and write directly to it. We build the .strtab
4348 section in memory. */
4349 bfd_get_symcount (abfd) = 0;
4350 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4351 /* sh_name is set in prep_headers. */
4352 symtab_hdr->sh_type = SHT_SYMTAB;
4353 symtab_hdr->sh_flags = 0;
4354 symtab_hdr->sh_addr = 0;
4355 symtab_hdr->sh_size = 0;
4356 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
4357 /* sh_link is set in assign_section_numbers. */
4358 /* sh_info is set below. */
4359 /* sh_offset is set just below. */
4360 symtab_hdr->sh_addralign = 4; /* FIXME: system dependent? */
4361
4362 off = elf_tdata (abfd)->next_file_pos;
4363 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
4364
4365 /* Note that at this point elf_tdata (abfd)->next_file_pos is
4366 incorrect. We do not yet know the size of the .symtab section.
4367 We correct next_file_pos below, after we do know the size. */
4368
4369 /* Allocate a buffer to hold swapped out symbols. This is to avoid
4370 continuously seeking to the right position in the file. */
4371 if (! info->keep_memory || max_sym_count < 20)
4372 finfo.symbuf_size = 20;
4373 else
4374 finfo.symbuf_size = max_sym_count;
4375 finfo.symbuf = ((Elf_External_Sym *)
4376 bfd_malloc (finfo.symbuf_size * sizeof (Elf_External_Sym)));
4377 if (finfo.symbuf == NULL)
4378 goto error_return;
4379
4380 /* Start writing out the symbol table. The first symbol is always a
4381 dummy symbol. */
a712da20 4382 if (info->strip != strip_all || info->relocateable || info->emitrelocations)
252b5132
RH
4383 {
4384 elfsym.st_value = 0;
4385 elfsym.st_size = 0;
4386 elfsym.st_info = 0;
4387 elfsym.st_other = 0;
4388 elfsym.st_shndx = SHN_UNDEF;
4389 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4390 &elfsym, bfd_und_section_ptr))
4391 goto error_return;
4392 }
4393
4394#if 0
4395 /* Some standard ELF linkers do this, but we don't because it causes
4396 bootstrap comparison failures. */
4397 /* Output a file symbol for the output file as the second symbol.
4398 We output this even if we are discarding local symbols, although
4399 I'm not sure if this is correct. */
4400 elfsym.st_value = 0;
4401 elfsym.st_size = 0;
4402 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
4403 elfsym.st_other = 0;
4404 elfsym.st_shndx = SHN_ABS;
4405 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
4406 &elfsym, bfd_abs_section_ptr))
4407 goto error_return;
4408#endif
4409
4410 /* Output a symbol for each section. We output these even if we are
4411 discarding local symbols, since they are used for relocs. These
4412 symbols have no names. We store the index of each one in the
4413 index field of the section, so that we can find it again when
4414 outputting relocs. */
a712da20 4415 if (info->strip != strip_all || info->relocateable || info->emitrelocations)
252b5132
RH
4416 {
4417 elfsym.st_size = 0;
4418 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4419 elfsym.st_other = 0;
4420 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4421 {
4422 o = section_from_elf_index (abfd, i);
4423 if (o != NULL)
4424 o->target_index = bfd_get_symcount (abfd);
4425 elfsym.st_shndx = i;
7ad34365 4426 if (info->relocateable || o == NULL)
252b5132
RH
4427 elfsym.st_value = 0;
4428 else
4429 elfsym.st_value = o->vma;
4430 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4431 &elfsym, o))
4432 goto error_return;
4433 }
4434 }
4435
4436 /* Allocate some memory to hold information read in from the input
4437 files. */
4438 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
4439 finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
4440 finfo.internal_relocs = ((Elf_Internal_Rela *)
4441 bfd_malloc (max_internal_reloc_count
c7ac6ff8
MM
4442 * sizeof (Elf_Internal_Rela)
4443 * bed->s->int_rels_per_ext_rel));
252b5132
RH
4444 finfo.external_syms = ((Elf_External_Sym *)
4445 bfd_malloc (max_sym_count
4446 * sizeof (Elf_External_Sym)));
4447 finfo.internal_syms = ((Elf_Internal_Sym *)
4448 bfd_malloc (max_sym_count
4449 * sizeof (Elf_Internal_Sym)));
4450 finfo.indices = (long *) bfd_malloc (max_sym_count * sizeof (long));
4451 finfo.sections = ((asection **)
4452 bfd_malloc (max_sym_count * sizeof (asection *)));
4453 if ((finfo.contents == NULL && max_contents_size != 0)
4454 || (finfo.external_relocs == NULL && max_external_reloc_size != 0)
4455 || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0)
4456 || (finfo.external_syms == NULL && max_sym_count != 0)
4457 || (finfo.internal_syms == NULL && max_sym_count != 0)
4458 || (finfo.indices == NULL && max_sym_count != 0)
4459 || (finfo.sections == NULL && max_sym_count != 0))
4460 goto error_return;
4461
4462 /* Since ELF permits relocations to be against local symbols, we
4463 must have the local symbols available when we do the relocations.
4464 Since we would rather only read the local symbols once, and we
4465 would rather not keep them in memory, we handle all the
4466 relocations for a single input file at the same time.
4467
4468 Unfortunately, there is no way to know the total number of local
4469 symbols until we have seen all of them, and the local symbol
4470 indices precede the global symbol indices. This means that when
4471 we are generating relocateable output, and we see a reloc against
4472 a global symbol, we can not know the symbol index until we have
4473 finished examining all the local symbols to see which ones we are
4474 going to output. To deal with this, we keep the relocations in
4475 memory, and don't output them until the end of the link. This is
4476 an unfortunate waste of memory, but I don't see a good way around
4477 it. Fortunately, it only happens when performing a relocateable
4478 link, which is not the common case. FIXME: If keep_memory is set
4479 we could write the relocs out and then read them again; I don't
4480 know how bad the memory loss will be. */
4481
4482 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4483 sub->output_has_begun = false;
4484 for (o = abfd->sections; o != NULL; o = o->next)
4485 {
4486 for (p = o->link_order_head; p != NULL; p = p->next)
4487 {
4488 if (p->type == bfd_indirect_link_order
4489 && (bfd_get_flavour (p->u.indirect.section->owner)
4490 == bfd_target_elf_flavour))
4491 {
4492 sub = p->u.indirect.section->owner;
4493 if (! sub->output_has_begun)
4494 {
4495 if (! elf_link_input_bfd (&finfo, sub))
4496 goto error_return;
4497 sub->output_has_begun = true;
4498 }
4499 }
4500 else if (p->type == bfd_section_reloc_link_order
4501 || p->type == bfd_symbol_reloc_link_order)
4502 {
4503 if (! elf_reloc_link_order (abfd, info, o, p))
4504 goto error_return;
4505 }
4506 else
4507 {
4508 if (! _bfd_default_link_order (abfd, info, o, p))
4509 goto error_return;
4510 }
4511 }
4512 }
4513
4514 /* That wrote out all the local symbols. Finish up the symbol table
5cc7c785
L
4515 with the global symbols. Even if we want to strip everything we
4516 can, we still need to deal with those global symbols that got
4517 converted to local in a version script. */
252b5132 4518
2bd171e0 4519 if (info->shared)
252b5132
RH
4520 {
4521 /* Output any global symbols that got converted to local in a
4522 version script. We do this in a separate step since ELF
4523 requires all local symbols to appear prior to any global
4524 symbols. FIXME: We should only do this if some global
4525 symbols were, in fact, converted to become local. FIXME:
4526 Will this work correctly with the Irix 5 linker? */
4527 eoinfo.failed = false;
4528 eoinfo.finfo = &finfo;
4529 eoinfo.localsyms = true;
4530 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4531 (PTR) &eoinfo);
4532 if (eoinfo.failed)
4533 return false;
4534 }
4535
30b30c21 4536 /* The sh_info field records the index of the first non local symbol. */
252b5132 4537 symtab_hdr->sh_info = bfd_get_symcount (abfd);
30b30c21 4538
252b5132 4539 if (dynamic)
30b30c21
RH
4540 {
4541 Elf_Internal_Sym sym;
4542 Elf_External_Sym *dynsym =
4543 (Elf_External_Sym *)finfo.dynsym_sec->contents;
71a40b32 4544 long last_local = 0;
30b30c21
RH
4545
4546 /* Write out the section symbols for the output sections. */
4547 if (info->shared)
4548 {
4549 asection *s;
4550
4551 sym.st_size = 0;
4552 sym.st_name = 0;
4553 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4554 sym.st_other = 0;
4555
4556 for (s = abfd->sections; s != NULL; s = s->next)
4557 {
4558 int indx;
4559 indx = elf_section_data (s)->this_idx;
4560 BFD_ASSERT (indx > 0);
4561 sym.st_shndx = indx;
4562 sym.st_value = s->vma;
4563
4564 elf_swap_symbol_out (abfd, &sym,
4565 dynsym + elf_section_data (s)->dynindx);
4566 }
4567
4568 last_local = bfd_count_sections (abfd);
4569 }
4570
4571 /* Write out the local dynsyms. */
4572 if (elf_hash_table (info)->dynlocal)
4573 {
4574 struct elf_link_local_dynamic_entry *e;
4575 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
4576 {
318da145 4577 asection *s;
30b30c21 4578
b037af20
MM
4579 sym.st_size = e->isym.st_size;
4580 sym.st_other = e->isym.st_other;
4581
1fa0ddb3
RH
4582 /* Copy the internal symbol as is.
4583 Note that we saved a word of storage and overwrote
30b30c21 4584 the original st_name with the dynstr_index. */
1fa0ddb3 4585 sym = e->isym;
30b30c21 4586
1fa0ddb3 4587 if (e->isym.st_shndx > 0 && e->isym.st_shndx < SHN_LORESERVE)
587ff49e
RH
4588 {
4589 s = bfd_section_from_elf_index (e->input_bfd,
4590 e->isym.st_shndx);
4591
4592 sym.st_shndx =
4593 elf_section_data (s->output_section)->this_idx;
4594 sym.st_value = (s->output_section->vma
4595 + s->output_offset
4596 + e->isym.st_value);
4597 }
30b30c21
RH
4598
4599 if (last_local < e->dynindx)
4600 last_local = e->dynindx;
4601
4602 elf_swap_symbol_out (abfd, &sym, dynsym + e->dynindx);
4603 }
4604 }
4605
71a40b32
ILT
4606 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
4607 last_local + 1;
30b30c21 4608 }
252b5132
RH
4609
4610 /* We get the global symbols from the hash table. */
4611 eoinfo.failed = false;
4612 eoinfo.localsyms = false;
4613 eoinfo.finfo = &finfo;
4614 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4615 (PTR) &eoinfo);
4616 if (eoinfo.failed)
4617 return false;
4618
587ff49e
RH
4619 /* If backend needs to output some symbols not present in the hash
4620 table, do it now. */
4621 if (bed->elf_backend_output_arch_syms)
4622 {
4623 if (! (*bed->elf_backend_output_arch_syms)
4624 (abfd, info, (PTR) &finfo,
4625 (boolean (*) PARAMS ((PTR, const char *,
4626 Elf_Internal_Sym *, asection *)))
4627 elf_link_output_sym))
4628 return false;
4629 }
4630
252b5132
RH
4631 /* Flush all symbols to the file. */
4632 if (! elf_link_flush_output_syms (&finfo))
4633 return false;
4634
4635 /* Now we know the size of the symtab section. */
4636 off += symtab_hdr->sh_size;
4637
4638 /* Finish up and write out the symbol string table (.strtab)
4639 section. */
4640 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
4641 /* sh_name was set in prep_headers. */
4642 symstrtab_hdr->sh_type = SHT_STRTAB;
4643 symstrtab_hdr->sh_flags = 0;
4644 symstrtab_hdr->sh_addr = 0;
4645 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
4646 symstrtab_hdr->sh_entsize = 0;
4647 symstrtab_hdr->sh_link = 0;
4648 symstrtab_hdr->sh_info = 0;
4649 /* sh_offset is set just below. */
4650 symstrtab_hdr->sh_addralign = 1;
4651
4652 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
4653 elf_tdata (abfd)->next_file_pos = off;
4654
4655 if (bfd_get_symcount (abfd) > 0)
4656 {
4657 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
4658 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
4659 return false;
4660 }
4661
4662 /* Adjust the relocs to have the correct symbol indices. */
4663 for (o = abfd->sections; o != NULL; o = o->next)
4664 {
252b5132
RH
4665 if ((o->flags & SEC_RELOC) == 0)
4666 continue;
4667
31367b81
MM
4668 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
4669 elf_section_data (o)->rel_count,
4670 elf_section_data (o)->rel_hashes);
4671 if (elf_section_data (o)->rel_hdr2 != NULL)
4672 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
4673 elf_section_data (o)->rel_count2,
4674 (elf_section_data (o)->rel_hashes
4675 + elf_section_data (o)->rel_count));
252b5132
RH
4676
4677 /* Set the reloc_count field to 0 to prevent write_relocs from
4678 trying to swap the relocs out itself. */
4679 o->reloc_count = 0;
4680 }
4681
4682 /* If we are linking against a dynamic object, or generating a
4683 shared library, finish up the dynamic linking information. */
4684 if (dynamic)
4685 {
4686 Elf_External_Dyn *dyncon, *dynconend;
4687
4688 /* Fix up .dynamic entries. */
4689 o = bfd_get_section_by_name (dynobj, ".dynamic");
4690 BFD_ASSERT (o != NULL);
4691
4692 dyncon = (Elf_External_Dyn *) o->contents;
4693 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
4694 for (; dyncon < dynconend; dyncon++)
4695 {
4696 Elf_Internal_Dyn dyn;
4697 const char *name;
4698 unsigned int type;
4699
4700 elf_swap_dyn_in (dynobj, dyncon, &dyn);
4701
4702 switch (dyn.d_tag)
4703 {
4704 default:
4705 break;
252b5132 4706 case DT_INIT:
f0c2e336 4707 name = info->init_function;
252b5132
RH
4708 goto get_sym;
4709 case DT_FINI:
f0c2e336 4710 name = info->fini_function;
252b5132
RH
4711 get_sym:
4712 {
4713 struct elf_link_hash_entry *h;
4714
4715 h = elf_link_hash_lookup (elf_hash_table (info), name,
4716 false, false, true);
4717 if (h != NULL
4718 && (h->root.type == bfd_link_hash_defined
4719 || h->root.type == bfd_link_hash_defweak))
4720 {
4721 dyn.d_un.d_val = h->root.u.def.value;
4722 o = h->root.u.def.section;
4723 if (o->output_section != NULL)
4724 dyn.d_un.d_val += (o->output_section->vma
4725 + o->output_offset);
4726 else
4727 {
4728 /* The symbol is imported from another shared
4729 library and does not apply to this one. */
4730 dyn.d_un.d_val = 0;
4731 }
4732
4733 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4734 }
4735 }
4736 break;
4737
4738 case DT_HASH:
4739 name = ".hash";
4740 goto get_vma;
4741 case DT_STRTAB:
4742 name = ".dynstr";
4743 goto get_vma;
4744 case DT_SYMTAB:
4745 name = ".dynsym";
4746 goto get_vma;
4747 case DT_VERDEF:
4748 name = ".gnu.version_d";
4749 goto get_vma;
4750 case DT_VERNEED:
4751 name = ".gnu.version_r";
4752 goto get_vma;
4753 case DT_VERSYM:
4754 name = ".gnu.version";
4755 get_vma:
4756 o = bfd_get_section_by_name (abfd, name);
4757 BFD_ASSERT (o != NULL);
4758 dyn.d_un.d_ptr = o->vma;
4759 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4760 break;
4761
4762 case DT_REL:
4763 case DT_RELA:
4764 case DT_RELSZ:
4765 case DT_RELASZ:
4766 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
4767 type = SHT_REL;
4768 else
4769 type = SHT_RELA;
4770 dyn.d_un.d_val = 0;
4771 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4772 {
4773 Elf_Internal_Shdr *hdr;
4774
4775 hdr = elf_elfsections (abfd)[i];
4776 if (hdr->sh_type == type
4777 && (hdr->sh_flags & SHF_ALLOC) != 0)
4778 {
4779 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
4780 dyn.d_un.d_val += hdr->sh_size;
4781 else
4782 {
4783 if (dyn.d_un.d_val == 0
4784 || hdr->sh_addr < dyn.d_un.d_val)
4785 dyn.d_un.d_val = hdr->sh_addr;
4786 }
4787 }
4788 }
4789 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4790 break;
4791 }
4792 }
4793 }
4794
4795 /* If we have created any dynamic sections, then output them. */
4796 if (dynobj != NULL)
4797 {
4798 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
4799 goto error_return;
4800
4801 for (o = dynobj->sections; o != NULL; o = o->next)
4802 {
4803 if ((o->flags & SEC_HAS_CONTENTS) == 0
4804 || o->_raw_size == 0)
4805 continue;
4806 if ((o->flags & SEC_LINKER_CREATED) == 0)
4807 {
4808 /* At this point, we are only interested in sections
4809 created by elf_link_create_dynamic_sections. */
4810 continue;
4811 }
4812 if ((elf_section_data (o->output_section)->this_hdr.sh_type
4813 != SHT_STRTAB)
4814 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
4815 {
4816 if (! bfd_set_section_contents (abfd, o->output_section,
4817 o->contents, o->output_offset,
4818 o->_raw_size))
4819 goto error_return;
4820 }
4821 else
4822 {
4823 file_ptr off;
4824
4825 /* The contents of the .dynstr section are actually in a
4826 stringtab. */
4827 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
4828 if (bfd_seek (abfd, off, SEEK_SET) != 0
4829 || ! _bfd_stringtab_emit (abfd,
4830 elf_hash_table (info)->dynstr))
4831 goto error_return;
4832 }
4833 }
4834 }
4835
4836 /* If we have optimized stabs strings, output them. */
4837 if (elf_hash_table (info)->stab_info != NULL)
4838 {
4839 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
4840 goto error_return;
4841 }
4842
4843 if (finfo.symstrtab != NULL)
4844 _bfd_stringtab_free (finfo.symstrtab);
4845 if (finfo.contents != NULL)
4846 free (finfo.contents);
4847 if (finfo.external_relocs != NULL)
4848 free (finfo.external_relocs);
4849 if (finfo.internal_relocs != NULL)
4850 free (finfo.internal_relocs);
4851 if (finfo.external_syms != NULL)
4852 free (finfo.external_syms);
4853 if (finfo.internal_syms != NULL)
4854 free (finfo.internal_syms);
4855 if (finfo.indices != NULL)
4856 free (finfo.indices);
4857 if (finfo.sections != NULL)
4858 free (finfo.sections);
4859 if (finfo.symbuf != NULL)
4860 free (finfo.symbuf);
4861 for (o = abfd->sections; o != NULL; o = o->next)
4862 {
4863 if ((o->flags & SEC_RELOC) != 0
4864 && elf_section_data (o)->rel_hashes != NULL)
4865 free (elf_section_data (o)->rel_hashes);
4866 }
4867
4868 elf_tdata (abfd)->linker = true;
4869
4870 return true;
4871
4872 error_return:
4873 if (finfo.symstrtab != NULL)
4874 _bfd_stringtab_free (finfo.symstrtab);
4875 if (finfo.contents != NULL)
4876 free (finfo.contents);
4877 if (finfo.external_relocs != NULL)
4878 free (finfo.external_relocs);
4879 if (finfo.internal_relocs != NULL)
4880 free (finfo.internal_relocs);
4881 if (finfo.external_syms != NULL)
4882 free (finfo.external_syms);
4883 if (finfo.internal_syms != NULL)
4884 free (finfo.internal_syms);
4885 if (finfo.indices != NULL)
4886 free (finfo.indices);
4887 if (finfo.sections != NULL)
4888 free (finfo.sections);
4889 if (finfo.symbuf != NULL)
4890 free (finfo.symbuf);
4891 for (o = abfd->sections; o != NULL; o = o->next)
4892 {
4893 if ((o->flags & SEC_RELOC) != 0
4894 && elf_section_data (o)->rel_hashes != NULL)
4895 free (elf_section_data (o)->rel_hashes);
4896 }
4897
4898 return false;
4899}
4900
4901/* Add a symbol to the output symbol table. */
4902
4903static boolean
4904elf_link_output_sym (finfo, name, elfsym, input_sec)
4905 struct elf_final_link_info *finfo;
4906 const char *name;
4907 Elf_Internal_Sym *elfsym;
4908 asection *input_sec;
4909{
4910 boolean (*output_symbol_hook) PARAMS ((bfd *,
4911 struct bfd_link_info *info,
4912 const char *,
4913 Elf_Internal_Sym *,
4914 asection *));
4915
4916 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
4917 elf_backend_link_output_symbol_hook;
4918 if (output_symbol_hook != NULL)
4919 {
4920 if (! ((*output_symbol_hook)
4921 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
4922 return false;
4923 }
4924
4925 if (name == (const char *) NULL || *name == '\0')
4926 elfsym->st_name = 0;
4927 else if (input_sec->flags & SEC_EXCLUDE)
4928 elfsym->st_name = 0;
4929 else
4930 {
4931 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
4932 name, true,
4933 false);
4934 if (elfsym->st_name == (unsigned long) -1)
4935 return false;
4936 }
4937
4938 if (finfo->symbuf_count >= finfo->symbuf_size)
4939 {
4940 if (! elf_link_flush_output_syms (finfo))
4941 return false;
4942 }
4943
4944 elf_swap_symbol_out (finfo->output_bfd, elfsym,
4945 (PTR) (finfo->symbuf + finfo->symbuf_count));
4946 ++finfo->symbuf_count;
4947
4948 ++ bfd_get_symcount (finfo->output_bfd);
4949
4950 return true;
4951}
4952
4953/* Flush the output symbols to the file. */
4954
4955static boolean
4956elf_link_flush_output_syms (finfo)
4957 struct elf_final_link_info *finfo;
4958{
4959 if (finfo->symbuf_count > 0)
4960 {
4961 Elf_Internal_Shdr *symtab;
4962
4963 symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr;
4964
4965 if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size,
4966 SEEK_SET) != 0
4967 || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count,
4968 sizeof (Elf_External_Sym), finfo->output_bfd)
4969 != finfo->symbuf_count * sizeof (Elf_External_Sym)))
4970 return false;
4971
4972 symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym);
4973
4974 finfo->symbuf_count = 0;
4975 }
4976
4977 return true;
4978}
4979
4980/* Add an external symbol to the symbol table. This is called from
4981 the hash table traversal routine. When generating a shared object,
4982 we go through the symbol table twice. The first time we output
4983 anything that might have been forced to local scope in a version
4984 script. The second time we output the symbols that are still
4985 global symbols. */
4986
4987static boolean
4988elf_link_output_extsym (h, data)
4989 struct elf_link_hash_entry *h;
4990 PTR data;
4991{
4992 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
4993 struct elf_final_link_info *finfo = eoinfo->finfo;
4994 boolean strip;
4995 Elf_Internal_Sym sym;
4996 asection *input_sec;
4997
4998 /* Decide whether to output this symbol in this pass. */
4999 if (eoinfo->localsyms)
5000 {
5001 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
5002 return true;
5003 }
5004 else
5005 {
5006 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5007 return true;
5008 }
5009
5010 /* If we are not creating a shared library, and this symbol is
5011 referenced by a shared library but is not defined anywhere, then
5012 warn that it is undefined. If we do not do this, the runtime
5013 linker will complain that the symbol is undefined when the
5014 program is run. We don't have to worry about symbols that are
5015 referenced by regular files, because we will already have issued
5016 warnings for them. */
5017 if (! finfo->info->relocateable
5018 && ! (finfo->info->shared
252b5132
RH
5019 && !finfo->info->no_undefined)
5020 && h->root.type == bfd_link_hash_undefined
5021 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
5022 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
5023 {
5024 if (! ((*finfo->info->callbacks->undefined_symbol)
5025 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
5cc7c785 5026 (asection *) NULL, 0, true)))
252b5132
RH
5027 {
5028 eoinfo->failed = true;
5029 return false;
5030 }
5031 }
5032
5033 /* We don't want to output symbols that have never been mentioned by
5034 a regular file, or that we have been told to strip. However, if
5035 h->indx is set to -2, the symbol is used by a reloc and we must
5036 output it. */
5037 if (h->indx == -2)
5038 strip = false;
5039 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
5040 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
5041 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
5042 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
5043 strip = true;
5044 else if (finfo->info->strip == strip_all
5045 || (finfo->info->strip == strip_some
5046 && bfd_hash_lookup (finfo->info->keep_hash,
5047 h->root.root.string,
5048 false, false) == NULL))
5049 strip = true;
5050 else
5051 strip = false;
5052
5053 /* If we're stripping it, and it's not a dynamic symbol, there's
2bd171e0
ILT
5054 nothing else to do unless it is a forced local symbol. */
5055 if (strip
5056 && h->dynindx == -1
5057 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
252b5132
RH
5058 return true;
5059
5060 sym.st_value = 0;
5061 sym.st_size = h->size;
5062 sym.st_other = h->other;
5063 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5064 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
5065 else if (h->root.type == bfd_link_hash_undefweak
5066 || h->root.type == bfd_link_hash_defweak)
5067 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
5068 else
5069 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
5070
5071 switch (h->root.type)
5072 {
5073 default:
5074 case bfd_link_hash_new:
5075 abort ();
5076 return false;
5077
5078 case bfd_link_hash_undefined:
5079 input_sec = bfd_und_section_ptr;
5080 sym.st_shndx = SHN_UNDEF;
5081 break;
5082
5083 case bfd_link_hash_undefweak:
5084 input_sec = bfd_und_section_ptr;
5085 sym.st_shndx = SHN_UNDEF;
5086 break;
5087
5088 case bfd_link_hash_defined:
5089 case bfd_link_hash_defweak:
5090 {
5091 input_sec = h->root.u.def.section;
5092 if (input_sec->output_section != NULL)
5093 {
5094 sym.st_shndx =
5095 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
5096 input_sec->output_section);
5097 if (sym.st_shndx == (unsigned short) -1)
5098 {
5099 (*_bfd_error_handler)
5100 (_("%s: could not find output section %s for input section %s"),
5101 bfd_get_filename (finfo->output_bfd),
5102 input_sec->output_section->name,
5103 input_sec->name);
5104 eoinfo->failed = true;
5105 return false;
5106 }
5107
5108 /* ELF symbols in relocateable files are section relative,
5109 but in nonrelocateable files they are virtual
5110 addresses. */
5111 sym.st_value = h->root.u.def.value + input_sec->output_offset;
5112 if (! finfo->info->relocateable)
5113 sym.st_value += input_sec->output_section->vma;
5114 }
5115 else
5116 {
5117 BFD_ASSERT (input_sec->owner == NULL
5118 || (input_sec->owner->flags & DYNAMIC) != 0);
5119 sym.st_shndx = SHN_UNDEF;
5120 input_sec = bfd_und_section_ptr;
5121 }
5122 }
5123 break;
5124
5125 case bfd_link_hash_common:
5126 input_sec = h->root.u.c.p->section;
5127 sym.st_shndx = SHN_COMMON;
5128 sym.st_value = 1 << h->root.u.c.p->alignment_power;
5129 break;
5130
5131 case bfd_link_hash_indirect:
5132 /* These symbols are created by symbol versioning. They point
5133 to the decorated version of the name. For example, if the
5134 symbol foo@@GNU_1.2 is the default, which should be used when
5135 foo is used with no version, then we add an indirect symbol
5136 foo which points to foo@@GNU_1.2. We ignore these symbols,
94b6c40a
L
5137 since the indirected symbol is already in the hash table. */
5138 return true;
252b5132 5139
252b5132
RH
5140 case bfd_link_hash_warning:
5141 /* We can't represent these symbols in ELF, although a warning
5142 symbol may have come from a .gnu.warning.SYMBOL section. We
5143 just put the target symbol in the hash table. If the target
5144 symbol does not really exist, don't do anything. */
5145 if (h->root.u.i.link->type == bfd_link_hash_new)
5146 return true;
5147 return (elf_link_output_extsym
5148 ((struct elf_link_hash_entry *) h->root.u.i.link, data));
5149 }
5150
5151 /* Give the processor backend a chance to tweak the symbol value,
5152 and also to finish up anything that needs to be done for this
5153 symbol. */
5154 if ((h->dynindx != -1
5155 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5156 && elf_hash_table (finfo->info)->dynamic_sections_created)
5157 {
5158 struct elf_backend_data *bed;
5159
5160 bed = get_elf_backend_data (finfo->output_bfd);
5161 if (! ((*bed->elf_backend_finish_dynamic_symbol)
5162 (finfo->output_bfd, finfo->info, h, &sym)))
5163 {
5164 eoinfo->failed = true;
5165 return false;
5166 }
5167 }
5168
5169 /* If we are marking the symbol as undefined, and there are no
5170 non-weak references to this symbol from a regular object, then
91d3970e
ILT
5171 mark the symbol as weak undefined; if there are non-weak
5172 references, mark the symbol as strong. We can't do this earlier,
252b5132
RH
5173 because it might not be marked as undefined until the
5174 finish_dynamic_symbol routine gets through with it. */
5175 if (sym.st_shndx == SHN_UNDEF
252b5132 5176 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
91d3970e
ILT
5177 && (ELF_ST_BIND(sym.st_info) == STB_GLOBAL
5178 || ELF_ST_BIND(sym.st_info) == STB_WEAK))
5179 {
5180 int bindtype;
5181
5182 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0)
5183 bindtype = STB_GLOBAL;
5184 else
5185 bindtype = STB_WEAK;
5186 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
5187 }
252b5132 5188
32c092c3
L
5189 /* If a symbol is not defined locally, we clear the visibility
5190 field. */
5191 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5192 sym.st_other ^= ELF_ST_VISIBILITY(sym.st_other);
5193
252b5132
RH
5194 /* If this symbol should be put in the .dynsym section, then put it
5195 there now. We have already know the symbol index. We also fill
5196 in the entry in the .hash section. */
5197 if (h->dynindx != -1
5198 && elf_hash_table (finfo->info)->dynamic_sections_created)
5199 {
5200 size_t bucketcount;
5201 size_t bucket;
c7ac6ff8 5202 size_t hash_entry_size;
252b5132
RH
5203 bfd_byte *bucketpos;
5204 bfd_vma chain;
5205
5206 sym.st_name = h->dynstr_index;
5207
5208 elf_swap_symbol_out (finfo->output_bfd, &sym,
5209 (PTR) (((Elf_External_Sym *)
5210 finfo->dynsym_sec->contents)
5211 + h->dynindx));
5212
5213 bucketcount = elf_hash_table (finfo->info)->bucketcount;
5214 bucket = h->elf_hash_value % bucketcount;
c7ac6ff8
MM
5215 hash_entry_size
5216 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
252b5132 5217 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
c7ac6ff8
MM
5218 + (bucket + 2) * hash_entry_size);
5219 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
5220 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
5221 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
5222 ((bfd_byte *) finfo->hash_sec->contents
5223 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
252b5132
RH
5224
5225 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
5226 {
5227 Elf_Internal_Versym iversym;
5228
5229 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5230 {
5231 if (h->verinfo.verdef == NULL)
5232 iversym.vs_vers = 0;
5233 else
5234 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
5235 }
5236 else
5237 {
5238 if (h->verinfo.vertree == NULL)
5239 iversym.vs_vers = 1;
5240 else
5241 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
5242 }
5243
5244 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
5245 iversym.vs_vers |= VERSYM_HIDDEN;
5246
5247 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym,
5248 (((Elf_External_Versym *)
5249 finfo->symver_sec->contents)
5250 + h->dynindx));
5251 }
5252 }
5253
5254 /* If we're stripping it, then it was just a dynamic symbol, and
5255 there's nothing else to do. */
5256 if (strip)
5257 return true;
5258
5259 h->indx = bfd_get_symcount (finfo->output_bfd);
5260
5261 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
5262 {
5263 eoinfo->failed = true;
5264 return false;
5265 }
5266
5267 return true;
5268}
5269
23bc299b
MM
5270/* Copy the relocations indicated by the INTERNAL_RELOCS (which
5271 originated from the section given by INPUT_REL_HDR) to the
5272 OUTPUT_BFD. */
5273
5274static void
5275elf_link_output_relocs (output_bfd, input_section, input_rel_hdr,
5276 internal_relocs)
5277 bfd *output_bfd;
5278 asection *input_section;
5279 Elf_Internal_Shdr *input_rel_hdr;
5280 Elf_Internal_Rela *internal_relocs;
5281{
5282 Elf_Internal_Rela *irela;
5283 Elf_Internal_Rela *irelaend;
5284 Elf_Internal_Shdr *output_rel_hdr;
5285 asection *output_section;
7442e600 5286 unsigned int *rel_countp = NULL;
32f0787a 5287 struct elf_backend_data *bed;
23bc299b
MM
5288
5289 output_section = input_section->output_section;
5290 output_rel_hdr = NULL;
5291
5292 if (elf_section_data (output_section)->rel_hdr.sh_entsize
5293 == input_rel_hdr->sh_entsize)
5294 {
5295 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
5296 rel_countp = &elf_section_data (output_section)->rel_count;
5297 }
5298 else if (elf_section_data (output_section)->rel_hdr2
5299 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
5300 == input_rel_hdr->sh_entsize))
5301 {
5302 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
5303 rel_countp = &elf_section_data (output_section)->rel_count2;
5304 }
5305
5306 BFD_ASSERT (output_rel_hdr != NULL);
32f0787a
UC
5307
5308 bed = get_elf_backend_data (output_bfd);
23bc299b
MM
5309 irela = internal_relocs;
5310 irelaend = irela + input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5311 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
5312 {
5313 Elf_External_Rel *erel;
5314
5315 erel = ((Elf_External_Rel *) output_rel_hdr->contents + *rel_countp);
5316 for (; irela < irelaend; irela++, erel++)
5317 {
5318 Elf_Internal_Rel irel;
5319
5320 irel.r_offset = irela->r_offset;
5321 irel.r_info = irela->r_info;
5322 BFD_ASSERT (irela->r_addend == 0);
32f0787a
UC
5323 if (bed->s->swap_reloc_out)
5324 (*bed->s->swap_reloc_out) (output_bfd, &irel, (PTR) erel);
5325 else
5326 elf_swap_reloc_out (output_bfd, &irel, erel);
23bc299b
MM
5327 }
5328 }
5329 else
5330 {
5331 Elf_External_Rela *erela;
5332
5333 BFD_ASSERT (input_rel_hdr->sh_entsize
5334 == sizeof (Elf_External_Rela));
5335 erela = ((Elf_External_Rela *) output_rel_hdr->contents + *rel_countp);
5336 for (; irela < irelaend; irela++, erela++)
32f0787a
UC
5337 if (bed->s->swap_reloca_out)
5338 (*bed->s->swap_reloca_out) (output_bfd, irela, (PTR) erela);
5339 else
5340 elf_swap_reloca_out (output_bfd, irela, erela);
23bc299b
MM
5341 }
5342
5343 /* Bump the counter, so that we know where to add the next set of
5344 relocations. */
5345 *rel_countp += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5346}
5347
252b5132
RH
5348/* Link an input file into the linker output file. This function
5349 handles all the sections and relocations of the input file at once.
5350 This is so that we only have to read the local symbols once, and
5351 don't have to keep them in memory. */
5352
5353static boolean
5354elf_link_input_bfd (finfo, input_bfd)
5355 struct elf_final_link_info *finfo;
5356 bfd *input_bfd;
5357{
5358 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
5359 bfd *, asection *, bfd_byte *,
5360 Elf_Internal_Rela *,
5361 Elf_Internal_Sym *, asection **));
5362 bfd *output_bfd;
5363 Elf_Internal_Shdr *symtab_hdr;
5364 size_t locsymcount;
5365 size_t extsymoff;
5366 Elf_External_Sym *external_syms;
5367 Elf_External_Sym *esym;
5368 Elf_External_Sym *esymend;
5369 Elf_Internal_Sym *isym;
5370 long *pindex;
5371 asection **ppsection;
5372 asection *o;
c7ac6ff8 5373 struct elf_backend_data *bed;
252b5132
RH
5374
5375 output_bfd = finfo->output_bfd;
c7ac6ff8
MM
5376 bed = get_elf_backend_data (output_bfd);
5377 relocate_section = bed->elf_backend_relocate_section;
252b5132
RH
5378
5379 /* If this is a dynamic object, we don't want to do anything here:
5380 we don't want the local symbols, and we don't want the section
5381 contents. */
5382 if ((input_bfd->flags & DYNAMIC) != 0)
5383 return true;
5384
5385 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5386 if (elf_bad_symtab (input_bfd))
5387 {
5388 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
5389 extsymoff = 0;
5390 }
5391 else
5392 {
5393 locsymcount = symtab_hdr->sh_info;
5394 extsymoff = symtab_hdr->sh_info;
5395 }
5396
5397 /* Read the local symbols. */
5398 if (symtab_hdr->contents != NULL)
5399 external_syms = (Elf_External_Sym *) symtab_hdr->contents;
5400 else if (locsymcount == 0)
5401 external_syms = NULL;
5402 else
5403 {
5404 external_syms = finfo->external_syms;
5405 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
5406 || (bfd_read (external_syms, sizeof (Elf_External_Sym),
5407 locsymcount, input_bfd)
5408 != locsymcount * sizeof (Elf_External_Sym)))
5409 return false;
5410 }
5411
5412 /* Swap in the local symbols and write out the ones which we know
5413 are going into the output file. */
5414 esym = external_syms;
5415 esymend = esym + locsymcount;
5416 isym = finfo->internal_syms;
5417 pindex = finfo->indices;
5418 ppsection = finfo->sections;
5419 for (; esym < esymend; esym++, isym++, pindex++, ppsection++)
5420 {
5421 asection *isec;
5422 const char *name;
5423 Elf_Internal_Sym osym;
5424
5425 elf_swap_symbol_in (input_bfd, esym, isym);
5426 *pindex = -1;
5427
5428 if (elf_bad_symtab (input_bfd))
5429 {
5430 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
5431 {
5432 *ppsection = NULL;
5433 continue;
5434 }
5435 }
5436
5437 if (isym->st_shndx == SHN_UNDEF)
5438 isec = bfd_und_section_ptr;
5439 else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE)
5440 isec = section_from_elf_index (input_bfd, isym->st_shndx);
5441 else if (isym->st_shndx == SHN_ABS)
5442 isec = bfd_abs_section_ptr;
5443 else if (isym->st_shndx == SHN_COMMON)
5444 isec = bfd_com_section_ptr;
5445 else
5446 {
5447 /* Who knows? */
5448 isec = NULL;
5449 }
5450
5451 *ppsection = isec;
5452
5453 /* Don't output the first, undefined, symbol. */
5454 if (esym == external_syms)
5455 continue;
5456
5457 /* If we are stripping all symbols, we don't want to output this
5458 one. */
5459 if (finfo->info->strip == strip_all)
5460 continue;
5461
5462 /* We never output section symbols. Instead, we use the section
5463 symbol of the corresponding section in the output file. */
5464 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5465 continue;
5466
5467 /* If we are discarding all local symbols, we don't want to
5468 output this one. If we are generating a relocateable output
5469 file, then some of the local symbols may be required by
5470 relocs; we output them below as we discover that they are
5471 needed. */
5472 if (finfo->info->discard == discard_all)
5473 continue;
5474
5475 /* If this symbol is defined in a section which we are
5476 discarding, we don't need to keep it, but note that
5477 linker_mark is only reliable for sections that have contents.
5478 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
5479 as well as linker_mark. */
5480 if (isym->st_shndx > 0
5481 && isym->st_shndx < SHN_LORESERVE
5482 && isec != NULL
5483 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
5484 || (! finfo->info->relocateable
5485 && (isec->flags & SEC_EXCLUDE) != 0)))
5486 continue;
5487
5488 /* Get the name of the symbol. */
5489 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
5490 isym->st_name);
5491 if (name == NULL)
5492 return false;
5493
5494 /* See if we are discarding symbols with this name. */
5495 if ((finfo->info->strip == strip_some
5496 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
5497 == NULL))
5498 || (finfo->info->discard == discard_l
5499 && bfd_is_local_label_name (input_bfd, name)))
5500 continue;
5501
5502 /* If we get here, we are going to output this symbol. */
5503
5504 osym = *isym;
5505
5506 /* Adjust the section index for the output file. */
5507 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
5508 isec->output_section);
5509 if (osym.st_shndx == (unsigned short) -1)
5510 return false;
5511
5512 *pindex = bfd_get_symcount (output_bfd);
5513
5514 /* ELF symbols in relocateable files are section relative, but
5515 in executable files they are virtual addresses. Note that
5516 this code assumes that all ELF sections have an associated
5517 BFD section with a reasonable value for output_offset; below
5518 we assume that they also have a reasonable value for
5519 output_section. Any special sections must be set up to meet
5520 these requirements. */
5521 osym.st_value += isec->output_offset;
5522 if (! finfo->info->relocateable)
5523 osym.st_value += isec->output_section->vma;
5524
5525 if (! elf_link_output_sym (finfo, name, &osym, isec))
5526 return false;
5527 }
5528
5529 /* Relocate the contents of each section. */
5530 for (o = input_bfd->sections; o != NULL; o = o->next)
5531 {
5532 bfd_byte *contents;
5533
5534 if (! o->linker_mark)
5535 {
5536 /* This section was omitted from the link. */
5537 continue;
5538 }
5539
5540 if ((o->flags & SEC_HAS_CONTENTS) == 0
5541 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
5542 continue;
5543
5544 if ((o->flags & SEC_LINKER_CREATED) != 0)
5545 {
5546 /* Section was created by elf_link_create_dynamic_sections
5547 or somesuch. */
5548 continue;
5549 }
5550
5551 /* Get the contents of the section. They have been cached by a
5552 relaxation routine. Note that o is a section in an input
5553 file, so the contents field will not have been set by any of
5554 the routines which work on output files. */
5555 if (elf_section_data (o)->this_hdr.contents != NULL)
5556 contents = elf_section_data (o)->this_hdr.contents;
5557 else
5558 {
5559 contents = finfo->contents;
5560 if (! bfd_get_section_contents (input_bfd, o, contents,
5561 (file_ptr) 0, o->_raw_size))
5562 return false;
5563 }
5564
5565 if ((o->flags & SEC_RELOC) != 0)
5566 {
5567 Elf_Internal_Rela *internal_relocs;
5568
5569 /* Get the swapped relocs. */
5570 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
5571 (input_bfd, o, finfo->external_relocs,
5572 finfo->internal_relocs, false));
5573 if (internal_relocs == NULL
5574 && o->reloc_count > 0)
5575 return false;
5576
5577 /* Relocate the section by invoking a back end routine.
5578
5579 The back end routine is responsible for adjusting the
5580 section contents as necessary, and (if using Rela relocs
5581 and generating a relocateable output file) adjusting the
5582 reloc addend as necessary.
5583
5584 The back end routine does not have to worry about setting
5585 the reloc address or the reloc symbol index.
5586
5587 The back end routine is given a pointer to the swapped in
5588 internal symbols, and can access the hash table entries
5589 for the external symbols via elf_sym_hashes (input_bfd).
5590
5591 When generating relocateable output, the back end routine
5592 must handle STB_LOCAL/STT_SECTION symbols specially. The
5593 output symbol is going to be a section symbol
5594 corresponding to the output section, which will require
5595 the addend to be adjusted. */
5596
5597 if (! (*relocate_section) (output_bfd, finfo->info,
5598 input_bfd, o, contents,
5599 internal_relocs,
5600 finfo->internal_syms,
5601 finfo->sections))
5602 return false;
5603
a712da20 5604 if (finfo->info->relocateable || finfo->info->emitrelocations)
252b5132
RH
5605 {
5606 Elf_Internal_Rela *irela;
5607 Elf_Internal_Rela *irelaend;
5608 struct elf_link_hash_entry **rel_hash;
5609 Elf_Internal_Shdr *input_rel_hdr;
252b5132
RH
5610
5611 /* Adjust the reloc addresses and symbol indices. */
5612
5613 irela = internal_relocs;
c7ac6ff8
MM
5614 irelaend =
5615 irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
252b5132 5616 rel_hash = (elf_section_data (o->output_section)->rel_hashes
31367b81
MM
5617 + elf_section_data (o->output_section)->rel_count
5618 + elf_section_data (o->output_section)->rel_count2);
252b5132
RH
5619 for (; irela < irelaend; irela++, rel_hash++)
5620 {
5621 unsigned long r_symndx;
5622 Elf_Internal_Sym *isym;
5623 asection *sec;
5624
5625 irela->r_offset += o->output_offset;
5626
7ad34365
NC
5627 /* Relocs in an executable have to be virtual addresses. */
5628 if (finfo->info->emitrelocations)
5629 irela->r_offset += o->output_section->vma;
5630
252b5132
RH
5631 r_symndx = ELF_R_SYM (irela->r_info);
5632
5633 if (r_symndx == 0)
5634 continue;
5635
5636 if (r_symndx >= locsymcount
5637 || (elf_bad_symtab (input_bfd)
5638 && finfo->sections[r_symndx] == NULL))
5639 {
5640 struct elf_link_hash_entry *rh;
5641 long indx;
5642
5643 /* This is a reloc against a global symbol. We
5644 have not yet output all the local symbols, so
5645 we do not know the symbol index of any global
5646 symbol. We set the rel_hash entry for this
5647 reloc to point to the global hash table entry
5648 for this symbol. The symbol index is then
5649 set at the end of elf_bfd_final_link. */
5650 indx = r_symndx - extsymoff;
5651 rh = elf_sym_hashes (input_bfd)[indx];
5652 while (rh->root.type == bfd_link_hash_indirect
5653 || rh->root.type == bfd_link_hash_warning)
5654 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
5655
5656 /* Setting the index to -2 tells
5657 elf_link_output_extsym that this symbol is
5658 used by a reloc. */
5659 BFD_ASSERT (rh->indx < 0);
5660 rh->indx = -2;
5661
5662 *rel_hash = rh;
5663
5664 continue;
5665 }
5666
5667 /* This is a reloc against a local symbol. */
5668
5669 *rel_hash = NULL;
5670 isym = finfo->internal_syms + r_symndx;
5671 sec = finfo->sections[r_symndx];
5672 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5673 {
5674 /* I suppose the backend ought to fill in the
5675 section of any STT_SECTION symbol against a
5676 processor specific section. If we have
5677 discarded a section, the output_section will
5678 be the absolute section. */
5679 if (sec != NULL
5680 && (bfd_is_abs_section (sec)
5681 || (sec->output_section != NULL
5682 && bfd_is_abs_section (sec->output_section))))
5683 r_symndx = 0;
5684 else if (sec == NULL || sec->owner == NULL)
5685 {
5686 bfd_set_error (bfd_error_bad_value);
5687 return false;
5688 }
5689 else
5690 {
5691 r_symndx = sec->output_section->target_index;
5692 BFD_ASSERT (r_symndx != 0);
5693 }
5694 }
5695 else
5696 {
5697 if (finfo->indices[r_symndx] == -1)
5698 {
5699 unsigned long link;
5700 const char *name;
5701 asection *osec;
5702
5703 if (finfo->info->strip == strip_all)
5704 {
5705 /* You can't do ld -r -s. */
5706 bfd_set_error (bfd_error_invalid_operation);
5707 return false;
5708 }
5709
5710 /* This symbol was skipped earlier, but
5711 since it is needed by a reloc, we
5712 must output it now. */
5713 link = symtab_hdr->sh_link;
5714 name = bfd_elf_string_from_elf_section (input_bfd,
5715 link,
5716 isym->st_name);
5717 if (name == NULL)
5718 return false;
5719
5720 osec = sec->output_section;
5721 isym->st_shndx =
5722 _bfd_elf_section_from_bfd_section (output_bfd,
5723 osec);
5724 if (isym->st_shndx == (unsigned short) -1)
5725 return false;
5726
5727 isym->st_value += sec->output_offset;
5728 if (! finfo->info->relocateable)
5729 isym->st_value += osec->vma;
5730
5731 finfo->indices[r_symndx] = bfd_get_symcount (output_bfd);
5732
5733 if (! elf_link_output_sym (finfo, name, isym, sec))
5734 return false;
5735 }
5736
5737 r_symndx = finfo->indices[r_symndx];
5738 }
5739
5740 irela->r_info = ELF_R_INFO (r_symndx,
5741 ELF_R_TYPE (irela->r_info));
5742 }
5743
5744 /* Swap out the relocs. */
5745 input_rel_hdr = &elf_section_data (o)->rel_hdr;
23bc299b
MM
5746 elf_link_output_relocs (output_bfd, o,
5747 input_rel_hdr,
5748 internal_relocs);
5749 internal_relocs
5750 += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5751 input_rel_hdr = elf_section_data (o)->rel_hdr2;
5752 if (input_rel_hdr)
5753 elf_link_output_relocs (output_bfd, o,
5754 input_rel_hdr,
5755 internal_relocs);
252b5132
RH
5756 }
5757 }
5758
5759 /* Write out the modified section contents. */
5760 if (elf_section_data (o)->stab_info == NULL)
5761 {
5762 if (! (o->flags & SEC_EXCLUDE) &&
5763 ! bfd_set_section_contents (output_bfd, o->output_section,
5764 contents, o->output_offset,
5765 (o->_cooked_size != 0
5766 ? o->_cooked_size
5767 : o->_raw_size)))
5768 return false;
5769 }
5770 else
5771 {
5772 if (! (_bfd_write_section_stabs
5773 (output_bfd, &elf_hash_table (finfo->info)->stab_info,
5774 o, &elf_section_data (o)->stab_info, contents)))
5775 return false;
5776 }
5777 }
5778
5779 return true;
5780}
5781
5782/* Generate a reloc when linking an ELF file. This is a reloc
5783 requested by the linker, and does come from any input file. This
5784 is used to build constructor and destructor tables when linking
5785 with -Ur. */
5786
5787static boolean
5788elf_reloc_link_order (output_bfd, info, output_section, link_order)
5789 bfd *output_bfd;
5790 struct bfd_link_info *info;
5791 asection *output_section;
5792 struct bfd_link_order *link_order;
5793{
5794 reloc_howto_type *howto;
5795 long indx;
5796 bfd_vma offset;
5797 bfd_vma addend;
5798 struct elf_link_hash_entry **rel_hash_ptr;
5799 Elf_Internal_Shdr *rel_hdr;
32f0787a 5800 struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
252b5132
RH
5801
5802 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
5803 if (howto == NULL)
5804 {
5805 bfd_set_error (bfd_error_bad_value);
5806 return false;
5807 }
5808
5809 addend = link_order->u.reloc.p->addend;
5810
5811 /* Figure out the symbol index. */
5812 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
31367b81
MM
5813 + elf_section_data (output_section)->rel_count
5814 + elf_section_data (output_section)->rel_count2);
252b5132
RH
5815 if (link_order->type == bfd_section_reloc_link_order)
5816 {
5817 indx = link_order->u.reloc.p->u.section->target_index;
5818 BFD_ASSERT (indx != 0);
5819 *rel_hash_ptr = NULL;
5820 }
5821 else
5822 {
5823 struct elf_link_hash_entry *h;
5824
5825 /* Treat a reloc against a defined symbol as though it were
5826 actually against the section. */
5827 h = ((struct elf_link_hash_entry *)
5828 bfd_wrapped_link_hash_lookup (output_bfd, info,
5829 link_order->u.reloc.p->u.name,
5830 false, false, true));
5831 if (h != NULL
5832 && (h->root.type == bfd_link_hash_defined
5833 || h->root.type == bfd_link_hash_defweak))
5834 {
5835 asection *section;
5836
5837 section = h->root.u.def.section;
5838 indx = section->output_section->target_index;
5839 *rel_hash_ptr = NULL;
5840 /* It seems that we ought to add the symbol value to the
5841 addend here, but in practice it has already been added
5842 because it was passed to constructor_callback. */
5843 addend += section->output_section->vma + section->output_offset;
5844 }
5845 else if (h != NULL)
5846 {
5847 /* Setting the index to -2 tells elf_link_output_extsym that
5848 this symbol is used by a reloc. */
5849 h->indx = -2;
5850 *rel_hash_ptr = h;
5851 indx = 0;
5852 }
5853 else
5854 {
5855 if (! ((*info->callbacks->unattached_reloc)
5856 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
5857 (asection *) NULL, (bfd_vma) 0)))
5858 return false;
5859 indx = 0;
5860 }
5861 }
5862
5863 /* If this is an inplace reloc, we must write the addend into the
5864 object file. */
5865 if (howto->partial_inplace && addend != 0)
5866 {
5867 bfd_size_type size;
5868 bfd_reloc_status_type rstat;
5869 bfd_byte *buf;
5870 boolean ok;
5871
5872 size = bfd_get_reloc_size (howto);
5873 buf = (bfd_byte *) bfd_zmalloc (size);
5874 if (buf == (bfd_byte *) NULL)
5875 return false;
5876 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
5877 switch (rstat)
5878 {
5879 case bfd_reloc_ok:
5880 break;
5881 default:
5882 case bfd_reloc_outofrange:
5883 abort ();
5884 case bfd_reloc_overflow:
5885 if (! ((*info->callbacks->reloc_overflow)
5886 (info,
5887 (link_order->type == bfd_section_reloc_link_order
5888 ? bfd_section_name (output_bfd,
5889 link_order->u.reloc.p->u.section)
5890 : link_order->u.reloc.p->u.name),
5891 howto->name, addend, (bfd *) NULL, (asection *) NULL,
5892 (bfd_vma) 0)))
5893 {
5894 free (buf);
5895 return false;
5896 }
5897 break;
5898 }
5899 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
5900 (file_ptr) link_order->offset, size);
5901 free (buf);
5902 if (! ok)
5903 return false;
5904 }
5905
5906 /* The address of a reloc is relative to the section in a
5907 relocateable file, and is a virtual address in an executable
5908 file. */
5909 offset = link_order->offset;
5910 if (! info->relocateable)
5911 offset += output_section->vma;
5912
5913 rel_hdr = &elf_section_data (output_section)->rel_hdr;
5914
5915 if (rel_hdr->sh_type == SHT_REL)
5916 {
5917 Elf_Internal_Rel irel;
5918 Elf_External_Rel *erel;
5919
5920 irel.r_offset = offset;
5921 irel.r_info = ELF_R_INFO (indx, howto->type);
5922 erel = ((Elf_External_Rel *) rel_hdr->contents
0525d26e 5923 + elf_section_data (output_section)->rel_count);
32f0787a
UC
5924 if (bed->s->swap_reloc_out)
5925 (*bed->s->swap_reloc_out) (output_bfd, &irel, (bfd_byte *) erel);
5926 else
5927 elf_swap_reloc_out (output_bfd, &irel, erel);
252b5132
RH
5928 }
5929 else
5930 {
5931 Elf_Internal_Rela irela;
5932 Elf_External_Rela *erela;
5933
5934 irela.r_offset = offset;
5935 irela.r_info = ELF_R_INFO (indx, howto->type);
5936 irela.r_addend = addend;
5937 erela = ((Elf_External_Rela *) rel_hdr->contents
0525d26e 5938 + elf_section_data (output_section)->rel_count);
32f0787a
UC
5939 if (bed->s->swap_reloca_out)
5940 (*bed->s->swap_reloca_out) (output_bfd, &irela, (bfd_byte *) erela);
5941 else
5942 elf_swap_reloca_out (output_bfd, &irela, erela);
252b5132
RH
5943 }
5944
0525d26e 5945 ++elf_section_data (output_section)->rel_count;
252b5132
RH
5946
5947 return true;
5948}
5949
5950\f
5951/* Allocate a pointer to live in a linker created section. */
5952
5953boolean
5954elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
5955 bfd *abfd;
5956 struct bfd_link_info *info;
5957 elf_linker_section_t *lsect;
5958 struct elf_link_hash_entry *h;
5959 const Elf_Internal_Rela *rel;
5960{
5961 elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
5962 elf_linker_section_pointers_t *linker_section_ptr;
5963 unsigned long r_symndx = ELF_R_SYM (rel->r_info);;
5964
5965 BFD_ASSERT (lsect != NULL);
5966
5967 /* Is this a global symbol? */
5968 if (h != NULL)
5969 {
5970 /* Has this symbol already been allocated, if so, our work is done */
5971 if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
5972 rel->r_addend,
5973 lsect->which))
5974 return true;
5975
5976 ptr_linker_section_ptr = &h->linker_section_pointer;
5977 /* Make sure this symbol is output as a dynamic symbol. */
5978 if (h->dynindx == -1)
5979 {
5980 if (! elf_link_record_dynamic_symbol (info, h))
5981 return false;
5982 }
5983
5984 if (lsect->rel_section)
5985 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
5986 }
5987
5988 else /* Allocation of a pointer to a local symbol */
5989 {
5990 elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
5991
5992 /* Allocate a table to hold the local symbols if first time */
5993 if (!ptr)
5994 {
5995 unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
5996 register unsigned int i;
5997
5998 ptr = (elf_linker_section_pointers_t **)
5999 bfd_alloc (abfd, num_symbols * sizeof (elf_linker_section_pointers_t *));
6000
6001 if (!ptr)
6002 return false;
6003
6004 elf_local_ptr_offsets (abfd) = ptr;
6005 for (i = 0; i < num_symbols; i++)
6006 ptr[i] = (elf_linker_section_pointers_t *)0;
6007 }
6008
6009 /* Has this symbol already been allocated, if so, our work is done */
6010 if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
6011 rel->r_addend,
6012 lsect->which))
6013 return true;
6014
6015 ptr_linker_section_ptr = &ptr[r_symndx];
6016
6017 if (info->shared)
6018 {
6019 /* If we are generating a shared object, we need to
6020 output a R_<xxx>_RELATIVE reloc so that the
6021 dynamic linker can adjust this GOT entry. */
6022 BFD_ASSERT (lsect->rel_section != NULL);
6023 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
6024 }
6025 }
6026
6027 /* Allocate space for a pointer in the linker section, and allocate a new pointer record
6028 from internal memory. */
6029 BFD_ASSERT (ptr_linker_section_ptr != NULL);
6030 linker_section_ptr = (elf_linker_section_pointers_t *)
6031 bfd_alloc (abfd, sizeof (elf_linker_section_pointers_t));
6032
6033 if (!linker_section_ptr)
6034 return false;
6035
6036 linker_section_ptr->next = *ptr_linker_section_ptr;
6037 linker_section_ptr->addend = rel->r_addend;
6038 linker_section_ptr->which = lsect->which;
6039 linker_section_ptr->written_address_p = false;
6040 *ptr_linker_section_ptr = linker_section_ptr;
6041
6042#if 0
6043 if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
6044 {
6045 linker_section_ptr->offset = lsect->section->_raw_size - lsect->hole_size + (ARCH_SIZE / 8);
6046 lsect->hole_offset += ARCH_SIZE / 8;
6047 lsect->sym_offset += ARCH_SIZE / 8;
6048 if (lsect->sym_hash) /* Bump up symbol value if needed */
6049 {
6050 lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
6051#ifdef DEBUG
6052 fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
6053 lsect->sym_hash->root.root.string,
6054 (long)ARCH_SIZE / 8,
6055 (long)lsect->sym_hash->root.u.def.value);
6056#endif
6057 }
6058 }
6059 else
6060#endif
6061 linker_section_ptr->offset = lsect->section->_raw_size;
6062
6063 lsect->section->_raw_size += ARCH_SIZE / 8;
6064
6065#ifdef DEBUG
6066 fprintf (stderr, "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
6067 lsect->name, (long)linker_section_ptr->offset, (long)lsect->section->_raw_size);
6068#endif
6069
6070 return true;
6071}
6072
6073\f
6074#if ARCH_SIZE==64
6075#define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
6076#endif
6077#if ARCH_SIZE==32
6078#define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
6079#endif
6080
6081/* Fill in the address for a pointer generated in alinker section. */
6082
6083bfd_vma
6084elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h, relocation, rel, relative_reloc)
6085 bfd *output_bfd;
6086 bfd *input_bfd;
6087 struct bfd_link_info *info;
6088 elf_linker_section_t *lsect;
6089 struct elf_link_hash_entry *h;
6090 bfd_vma relocation;
6091 const Elf_Internal_Rela *rel;
6092 int relative_reloc;
6093{
6094 elf_linker_section_pointers_t *linker_section_ptr;
6095
6096 BFD_ASSERT (lsect != NULL);
6097
6098 if (h != NULL) /* global symbol */
6099 {
6100 linker_section_ptr = _bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
6101 rel->r_addend,
6102 lsect->which);
6103
6104 BFD_ASSERT (linker_section_ptr != NULL);
6105
6106 if (! elf_hash_table (info)->dynamic_sections_created
6107 || (info->shared
6108 && info->symbolic
6109 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
6110 {
6111 /* This is actually a static link, or it is a
6112 -Bsymbolic link and the symbol is defined
6113 locally. We must initialize this entry in the
6114 global section.
6115
6116 When doing a dynamic link, we create a .rela.<xxx>
6117 relocation entry to initialize the value. This
6118 is done in the finish_dynamic_symbol routine. */
6119 if (!linker_section_ptr->written_address_p)
6120 {
6121 linker_section_ptr->written_address_p = true;
6122 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
6123 lsect->section->contents + linker_section_ptr->offset);
6124 }
6125 }
6126 }
6127 else /* local symbol */
6128 {
6129 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
6130 BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
6131 BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
6132 linker_section_ptr = _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd)[r_symndx],
6133 rel->r_addend,
6134 lsect->which);
6135
6136 BFD_ASSERT (linker_section_ptr != NULL);
6137
6138 /* Write out pointer if it hasn't been rewritten out before */
6139 if (!linker_section_ptr->written_address_p)
6140 {
6141 linker_section_ptr->written_address_p = true;
6142 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
6143 lsect->section->contents + linker_section_ptr->offset);
6144
6145 if (info->shared)
6146 {
6147 asection *srel = lsect->rel_section;
6148 Elf_Internal_Rela outrel;
6149
6150 /* We need to generate a relative reloc for the dynamic linker. */
6151 if (!srel)
6152 lsect->rel_section = srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
6153 lsect->rel_name);
6154
6155 BFD_ASSERT (srel != NULL);
6156
6157 outrel.r_offset = (lsect->section->output_section->vma
6158 + lsect->section->output_offset
6159 + linker_section_ptr->offset);
6160 outrel.r_info = ELF_R_INFO (0, relative_reloc);
6161 outrel.r_addend = 0;
6162 elf_swap_reloca_out (output_bfd, &outrel,
6163 (((Elf_External_Rela *)
6164 lsect->section->contents)
0525d26e
ILT
6165 + elf_section_data (lsect->section)->rel_count));
6166 ++elf_section_data (lsect->section)->rel_count;
252b5132
RH
6167 }
6168 }
6169 }
6170
6171 relocation = (lsect->section->output_offset
6172 + linker_section_ptr->offset
6173 - lsect->hole_offset
6174 - lsect->sym_offset);
6175
6176#ifdef DEBUG
6177 fprintf (stderr, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
6178 lsect->name, (long)relocation, (long)relocation);
6179#endif
6180
6181 /* Subtract out the addend, because it will get added back in by the normal
6182 processing. */
6183 return relocation - linker_section_ptr->addend;
6184}
6185\f
6186/* Garbage collect unused sections. */
6187
6188static boolean elf_gc_mark
6189 PARAMS ((struct bfd_link_info *info, asection *sec,
6190 asection * (*gc_mark_hook)
6191 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
6192 struct elf_link_hash_entry *, Elf_Internal_Sym *))));
6193
6194static boolean elf_gc_sweep
6195 PARAMS ((struct bfd_link_info *info,
6196 boolean (*gc_sweep_hook)
6197 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
6198 const Elf_Internal_Rela *relocs))));
6199
6200static boolean elf_gc_sweep_symbol
6201 PARAMS ((struct elf_link_hash_entry *h, PTR idxptr));
6202
6203static boolean elf_gc_allocate_got_offsets
6204 PARAMS ((struct elf_link_hash_entry *h, PTR offarg));
6205
6206static boolean elf_gc_propagate_vtable_entries_used
6207 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
6208
6209static boolean elf_gc_smash_unused_vtentry_relocs
6210 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
6211
6212/* The mark phase of garbage collection. For a given section, mark
6213 it, and all the sections which define symbols to which it refers. */
6214
6215static boolean
6216elf_gc_mark (info, sec, gc_mark_hook)
6217 struct bfd_link_info *info;
6218 asection *sec;
6219 asection * (*gc_mark_hook)
6220 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
6221 struct elf_link_hash_entry *, Elf_Internal_Sym *));
6222{
6223 boolean ret = true;
6224
6225 sec->gc_mark = 1;
6226
6227 /* Look through the section relocs. */
6228
6229 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
6230 {
6231 Elf_Internal_Rela *relstart, *rel, *relend;
6232 Elf_Internal_Shdr *symtab_hdr;
6233 struct elf_link_hash_entry **sym_hashes;
6234 size_t nlocsyms;
6235 size_t extsymoff;
6236 Elf_External_Sym *locsyms, *freesyms = NULL;
6237 bfd *input_bfd = sec->owner;
c7ac6ff8 6238 struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
252b5132
RH
6239
6240 /* GCFIXME: how to arrange so that relocs and symbols are not
6241 reread continually? */
6242
6243 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6244 sym_hashes = elf_sym_hashes (input_bfd);
6245
6246 /* Read the local symbols. */
6247 if (elf_bad_symtab (input_bfd))
6248 {
6249 nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6250 extsymoff = 0;
6251 }
6252 else
6253 extsymoff = nlocsyms = symtab_hdr->sh_info;
6254 if (symtab_hdr->contents)
6255 locsyms = (Elf_External_Sym *) symtab_hdr->contents;
6256 else if (nlocsyms == 0)
6257 locsyms = NULL;
6258 else
6259 {
6260 locsyms = freesyms =
6261 bfd_malloc (nlocsyms * sizeof (Elf_External_Sym));
6262 if (freesyms == NULL
6263 || bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
6264 || (bfd_read (locsyms, sizeof (Elf_External_Sym),
6265 nlocsyms, input_bfd)
6266 != nlocsyms * sizeof (Elf_External_Sym)))
6267 {
6268 ret = false;
6269 goto out1;
6270 }
6271 }
6272
6273 /* Read the relocations. */
6274 relstart = (NAME(_bfd_elf,link_read_relocs)
6275 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL,
6276 info->keep_memory));
6277 if (relstart == NULL)
6278 {
6279 ret = false;
6280 goto out1;
6281 }
c7ac6ff8 6282 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
252b5132
RH
6283
6284 for (rel = relstart; rel < relend; rel++)
6285 {
6286 unsigned long r_symndx;
6287 asection *rsec;
6288 struct elf_link_hash_entry *h;
6289 Elf_Internal_Sym s;
6290
6291 r_symndx = ELF_R_SYM (rel->r_info);
6292 if (r_symndx == 0)
6293 continue;
6294
6295 if (elf_bad_symtab (sec->owner))
6296 {
6297 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
6298 if (ELF_ST_BIND (s.st_info) == STB_LOCAL)
6299 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
6300 else
6301 {
6302 h = sym_hashes[r_symndx - extsymoff];
6303 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
6304 }
6305 }
6306 else if (r_symndx >= nlocsyms)
6307 {
6308 h = sym_hashes[r_symndx - extsymoff];
6309 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
6310 }
6311 else
6312 {
6313 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
6314 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
6315 }
6316
6317 if (rsec && !rsec->gc_mark)
6318 if (!elf_gc_mark (info, rsec, gc_mark_hook))
6319 {
6320 ret = false;
6321 goto out2;
6322 }
6323 }
6324
6325 out2:
6326 if (!info->keep_memory)
6327 free (relstart);
6328 out1:
6329 if (freesyms)
6330 free (freesyms);
6331 }
6332
6333 return ret;
6334}
6335
6336/* The sweep phase of garbage collection. Remove all garbage sections. */
6337
6338static boolean
6339elf_gc_sweep (info, gc_sweep_hook)
6340 struct bfd_link_info *info;
6341 boolean (*gc_sweep_hook)
6342 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
6343 const Elf_Internal_Rela *relocs));
6344{
6345 bfd *sub;
6346
6347 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6348 {
6349 asection *o;
6350
f6af82bd
AM
6351 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
6352 continue;
6353
252b5132
RH
6354 for (o = sub->sections; o != NULL; o = o->next)
6355 {
6356 /* Keep special sections. Keep .debug sections. */
6357 if ((o->flags & SEC_LINKER_CREATED)
6358 || (o->flags & SEC_DEBUGGING))
6359 o->gc_mark = 1;
6360
6361 if (o->gc_mark)
6362 continue;
6363
6364 /* Skip sweeping sections already excluded. */
6365 if (o->flags & SEC_EXCLUDE)
6366 continue;
6367
6368 /* Since this is early in the link process, it is simple
6369 to remove a section from the output. */
6370 o->flags |= SEC_EXCLUDE;
6371
6372 /* But we also have to update some of the relocation
6373 info we collected before. */
6374 if (gc_sweep_hook
6375 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
6376 {
6377 Elf_Internal_Rela *internal_relocs;
6378 boolean r;
6379
6380 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
6381 (o->owner, o, NULL, NULL, info->keep_memory));
6382 if (internal_relocs == NULL)
6383 return false;
6384
6385 r = (*gc_sweep_hook)(o->owner, info, o, internal_relocs);
6386
6387 if (!info->keep_memory)
6388 free (internal_relocs);
6389
6390 if (!r)
6391 return false;
6392 }
6393 }
6394 }
6395
6396 /* Remove the symbols that were in the swept sections from the dynamic
6397 symbol table. GCFIXME: Anyone know how to get them out of the
6398 static symbol table as well? */
6399 {
6400 int i = 0;
6401
6402 elf_link_hash_traverse (elf_hash_table (info),
6403 elf_gc_sweep_symbol,
6404 (PTR) &i);
6405
6406 elf_hash_table (info)->dynsymcount = i;
6407 }
6408
6409 return true;
6410}
6411
6412/* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6413
6414static boolean
6415elf_gc_sweep_symbol (h, idxptr)
6416 struct elf_link_hash_entry *h;
6417 PTR idxptr;
6418{
6419 int *idx = (int *) idxptr;
6420
6421 if (h->dynindx != -1
6422 && ((h->root.type != bfd_link_hash_defined
6423 && h->root.type != bfd_link_hash_defweak)
6424 || h->root.u.def.section->gc_mark))
6425 h->dynindx = (*idx)++;
6426
6427 return true;
6428}
6429
6430/* Propogate collected vtable information. This is called through
6431 elf_link_hash_traverse. */
6432
6433static boolean
6434elf_gc_propagate_vtable_entries_used (h, okp)
6435 struct elf_link_hash_entry *h;
6436 PTR okp;
6437{
6438 /* Those that are not vtables. */
6439 if (h->vtable_parent == NULL)
6440 return true;
6441
6442 /* Those vtables that do not have parents, we cannot merge. */
6443 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
6444 return true;
6445
6446 /* If we've already been done, exit. */
6447 if (h->vtable_entries_used && h->vtable_entries_used[-1])
6448 return true;
6449
6450 /* Make sure the parent's table is up to date. */
6451 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
6452
6453 if (h->vtable_entries_used == NULL)
6454 {
6455 /* None of this table's entries were referenced. Re-use the
6456 parent's table. */
6457 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
6458 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
6459 }
6460 else
6461 {
6462 size_t n;
6463 boolean *cu, *pu;
6464
6465 /* Or the parent's entries into ours. */
6466 cu = h->vtable_entries_used;
6467 cu[-1] = true;
6468 pu = h->vtable_parent->vtable_entries_used;
6469 if (pu != NULL)
6470 {
6471 n = h->vtable_parent->vtable_entries_size / FILE_ALIGN;
6472 while (--n != 0)
6473 {
6474 if (*pu) *cu = true;
6475 pu++, cu++;
6476 }
6477 }
6478 }
6479
6480 return true;
6481}
6482
6483static boolean
6484elf_gc_smash_unused_vtentry_relocs (h, okp)
6485 struct elf_link_hash_entry *h;
6486 PTR okp;
6487{
6488 asection *sec;
6489 bfd_vma hstart, hend;
6490 Elf_Internal_Rela *relstart, *relend, *rel;
c7ac6ff8 6491 struct elf_backend_data *bed;
252b5132
RH
6492
6493 /* Take care of both those symbols that do not describe vtables as
6494 well as those that are not loaded. */
6495 if (h->vtable_parent == NULL)
6496 return true;
6497
6498 BFD_ASSERT (h->root.type == bfd_link_hash_defined
6499 || h->root.type == bfd_link_hash_defweak);
6500
6501 sec = h->root.u.def.section;
6502 hstart = h->root.u.def.value;
6503 hend = hstart + h->size;
6504
6505 relstart = (NAME(_bfd_elf,link_read_relocs)
6506 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
6507 if (!relstart)
6508 return *(boolean *)okp = false;
c7ac6ff8
MM
6509 bed = get_elf_backend_data (sec->owner);
6510 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
252b5132
RH
6511
6512 for (rel = relstart; rel < relend; ++rel)
6513 if (rel->r_offset >= hstart && rel->r_offset < hend)
6514 {
6515 /* If the entry is in use, do nothing. */
6516 if (h->vtable_entries_used
6517 && (rel->r_offset - hstart) < h->vtable_entries_size)
6518 {
6519 bfd_vma entry = (rel->r_offset - hstart) / FILE_ALIGN;
6520 if (h->vtable_entries_used[entry])
6521 continue;
6522 }
6523 /* Otherwise, kill it. */
6524 rel->r_offset = rel->r_info = rel->r_addend = 0;
6525 }
6526
6527 return true;
6528}
6529
6530/* Do mark and sweep of unused sections. */
6531
6532boolean
6533elf_gc_sections (abfd, info)
6534 bfd *abfd;
6535 struct bfd_link_info *info;
6536{
6537 boolean ok = true;
6538 bfd *sub;
6539 asection * (*gc_mark_hook)
6540 PARAMS ((bfd *abfd, struct bfd_link_info *, Elf_Internal_Rela *,
6541 struct elf_link_hash_entry *h, Elf_Internal_Sym *));
6542
6543 if (!get_elf_backend_data (abfd)->can_gc_sections
6d3e950b 6544 || info->relocateable || info->emitrelocations
252b5132
RH
6545 || elf_hash_table (info)->dynamic_sections_created)
6546 return true;
6547
6548 /* Apply transitive closure to the vtable entry usage info. */
6549 elf_link_hash_traverse (elf_hash_table (info),
6550 elf_gc_propagate_vtable_entries_used,
6551 (PTR) &ok);
6552 if (!ok)
6553 return false;
6554
6555 /* Kill the vtable relocations that were not used. */
6556 elf_link_hash_traverse (elf_hash_table (info),
6557 elf_gc_smash_unused_vtentry_relocs,
6558 (PTR) &ok);
6559 if (!ok)
6560 return false;
6561
6562 /* Grovel through relocs to find out who stays ... */
6563
6564 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
6565 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6566 {
6567 asection *o;
f6af82bd
AM
6568
6569 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
6570 continue;
6571
252b5132
RH
6572 for (o = sub->sections; o != NULL; o = o->next)
6573 {
6574 if (o->flags & SEC_KEEP)
6575 if (!elf_gc_mark (info, o, gc_mark_hook))
6576 return false;
6577 }
6578 }
6579
6580 /* ... and mark SEC_EXCLUDE for those that go. */
6581 if (!elf_gc_sweep(info, get_elf_backend_data (abfd)->gc_sweep_hook))
6582 return false;
6583
6584 return true;
6585}
6586\f
6587/* Called from check_relocs to record the existance of a VTINHERIT reloc. */
6588
6589boolean
6590elf_gc_record_vtinherit (abfd, sec, h, offset)
6591 bfd *abfd;
6592 asection *sec;
6593 struct elf_link_hash_entry *h;
6594 bfd_vma offset;
6595{
6596 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
6597 struct elf_link_hash_entry **search, *child;
6598 bfd_size_type extsymcount;
6599
6600 /* The sh_info field of the symtab header tells us where the
6601 external symbols start. We don't care about the local symbols at
6602 this point. */
6603 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
6604 if (!elf_bad_symtab (abfd))
6605 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
6606
6607 sym_hashes = elf_sym_hashes (abfd);
6608 sym_hashes_end = sym_hashes + extsymcount;
6609
6610 /* Hunt down the child symbol, which is in this section at the same
6611 offset as the relocation. */
6612 for (search = sym_hashes; search != sym_hashes_end; ++search)
6613 {
6614 if ((child = *search) != NULL
6615 && (child->root.type == bfd_link_hash_defined
6616 || child->root.type == bfd_link_hash_defweak)
6617 && child->root.u.def.section == sec
6618 && child->root.u.def.value == offset)
6619 goto win;
6620 }
6621
6622 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
6623 bfd_get_filename (abfd), sec->name,
6624 (unsigned long)offset);
6625 bfd_set_error (bfd_error_invalid_operation);
6626 return false;
6627
6628win:
6629 if (!h)
6630 {
6631 /* This *should* only be the absolute section. It could potentially
6632 be that someone has defined a non-global vtable though, which
6633 would be bad. It isn't worth paging in the local symbols to be
6634 sure though; that case should simply be handled by the assembler. */
6635
6636 child->vtable_parent = (struct elf_link_hash_entry *) -1;
6637 }
6638 else
6639 child->vtable_parent = h;
6640
6641 return true;
6642}
6643
6644/* Called from check_relocs to record the existance of a VTENTRY reloc. */
6645
6646boolean
6647elf_gc_record_vtentry (abfd, sec, h, addend)
7442e600
ILT
6648 bfd *abfd ATTRIBUTE_UNUSED;
6649 asection *sec ATTRIBUTE_UNUSED;
252b5132
RH
6650 struct elf_link_hash_entry *h;
6651 bfd_vma addend;
6652{
6653 if (addend >= h->vtable_entries_size)
6654 {
6655 size_t size, bytes;
6656 boolean *ptr = h->vtable_entries_used;
6657
6658 /* While the symbol is undefined, we have to be prepared to handle
6659 a zero size. */
6660 if (h->root.type == bfd_link_hash_undefined)
6661 size = addend;
6662 else
6663 {
6664 size = h->size;
6665 if (size < addend)
6666 {
6667 /* Oops! We've got a reference past the defined end of
6668 the table. This is probably a bug -- shall we warn? */
6669 size = addend;
6670 }
6671 }
6672
6673 /* Allocate one extra entry for use as a "done" flag for the
6674 consolidation pass. */
fed79cc6 6675 bytes = (size / FILE_ALIGN + 1) * sizeof (boolean);
252b5132
RH
6676
6677 if (ptr)
6678 {
fed79cc6
NC
6679 ptr = bfd_realloc (ptr - 1, bytes);
6680
6681 if (ptr != NULL)
6682 {
6683 size_t oldbytes;
252b5132 6684
fed79cc6
NC
6685 oldbytes = (h->vtable_entries_size/FILE_ALIGN + 1) * sizeof (boolean);
6686 memset (((char *)ptr) + oldbytes, 0, bytes - oldbytes);
6687 }
252b5132
RH
6688 }
6689 else
fed79cc6 6690 ptr = bfd_zmalloc (bytes);
252b5132 6691
fed79cc6
NC
6692 if (ptr == NULL)
6693 return false;
6694
252b5132 6695 /* And arrange for that done flag to be at index -1. */
fed79cc6 6696 h->vtable_entries_used = ptr + 1;
252b5132
RH
6697 h->vtable_entries_size = size;
6698 }
fed79cc6 6699
252b5132
RH
6700 h->vtable_entries_used[addend / FILE_ALIGN] = true;
6701
6702 return true;
6703}
6704
6705/* And an accompanying bit to work out final got entry offsets once
6706 we're done. Should be called from final_link. */
6707
6708boolean
6709elf_gc_common_finalize_got_offsets (abfd, info)
6710 bfd *abfd;
6711 struct bfd_link_info *info;
6712{
6713 bfd *i;
6714 struct elf_backend_data *bed = get_elf_backend_data (abfd);
6715 bfd_vma gotoff;
6716
6717 /* The GOT offset is relative to the .got section, but the GOT header is
6718 put into the .got.plt section, if the backend uses it. */
6719 if (bed->want_got_plt)
6720 gotoff = 0;
6721 else
6722 gotoff = bed->got_header_size;
6723
6724 /* Do the local .got entries first. */
6725 for (i = info->input_bfds; i; i = i->link_next)
6726 {
f6af82bd 6727 bfd_signed_vma *local_got;
252b5132
RH
6728 bfd_size_type j, locsymcount;
6729 Elf_Internal_Shdr *symtab_hdr;
6730
f6af82bd
AM
6731 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
6732 continue;
6733
6734 local_got = elf_local_got_refcounts (i);
252b5132
RH
6735 if (!local_got)
6736 continue;
6737
6738 symtab_hdr = &elf_tdata (i)->symtab_hdr;
6739 if (elf_bad_symtab (i))
6740 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6741 else
6742 locsymcount = symtab_hdr->sh_info;
6743
6744 for (j = 0; j < locsymcount; ++j)
6745 {
6746 if (local_got[j] > 0)
6747 {
6748 local_got[j] = gotoff;
6749 gotoff += ARCH_SIZE / 8;
6750 }
6751 else
6752 local_got[j] = (bfd_vma) -1;
6753 }
6754 }
6755
dd5724d5
AM
6756 /* Then the global .got entries. .plt refcounts are handled by
6757 adjust_dynamic_symbol */
252b5132
RH
6758 elf_link_hash_traverse (elf_hash_table (info),
6759 elf_gc_allocate_got_offsets,
6760 (PTR) &gotoff);
6761 return true;
6762}
6763
6764/* We need a special top-level link routine to convert got reference counts
6765 to real got offsets. */
6766
6767static boolean
6768elf_gc_allocate_got_offsets (h, offarg)
6769 struct elf_link_hash_entry *h;
6770 PTR offarg;
6771{
6772 bfd_vma *off = (bfd_vma *) offarg;
6773
6774 if (h->got.refcount > 0)
6775 {
6776 h->got.offset = off[0];
6777 off[0] += ARCH_SIZE / 8;
6778 }
6779 else
6780 h->got.offset = (bfd_vma) -1;
6781
6782 return true;
6783}
6784
6785/* Many folk need no more in the way of final link than this, once
6786 got entry reference counting is enabled. */
6787
6788boolean
6789elf_gc_common_final_link (abfd, info)
6790 bfd *abfd;
6791 struct bfd_link_info *info;
6792{
6793 if (!elf_gc_common_finalize_got_offsets (abfd, info))
6794 return false;
6795
6796 /* Invoke the regular ELF backend linker to do all the work. */
6797 return elf_bfd_final_link (abfd, info);
6798}
6799
6800/* This function will be called though elf_link_hash_traverse to store
6801 all hash value of the exported symbols in an array. */
6802
6803static boolean
6804elf_collect_hash_codes (h, data)
6805 struct elf_link_hash_entry *h;
6806 PTR data;
6807{
6808 unsigned long **valuep = (unsigned long **) data;
6809 const char *name;
6810 char *p;
6811 unsigned long ha;
6812 char *alc = NULL;
6813
6814 /* Ignore indirect symbols. These are added by the versioning code. */
6815 if (h->dynindx == -1)
6816 return true;
6817
6818 name = h->root.root.string;
6819 p = strchr (name, ELF_VER_CHR);
6820 if (p != NULL)
6821 {
6822 alc = bfd_malloc (p - name + 1);
6823 memcpy (alc, name, p - name);
6824 alc[p - name] = '\0';
6825 name = alc;
6826 }
6827
6828 /* Compute the hash value. */
6829 ha = bfd_elf_hash (name);
6830
6831 /* Store the found hash value in the array given as the argument. */
6832 *(*valuep)++ = ha;
6833
6834 /* And store it in the struct so that we can put it in the hash table
6835 later. */
6836 h->elf_hash_value = ha;
6837
6838 if (alc != NULL)
6839 free (alc);
6840
6841 return true;
6842}
This page took 0.351124 seconds and 4 git commands to generate.