* dwarf1.c (alloc_dwarf1_unit): Allocate using bfd_zalloc.
[deliverable/binutils-gdb.git] / bfd / elflink.h
CommitLineData
252b5132
RH
1/* ELF linker support.
2 Copyright 1995, 1996, 1997, 1998, 1999 Free Software Foundation, Inc.
3
4This file is part of BFD, the Binary File Descriptor library.
5
6This program is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2 of the License, or
9(at your option) any later version.
10
11This program is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with this program; if not, write to the Free Software
18Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20/* ELF linker code. */
21
22/* This struct is used to pass information to routines called via
23 elf_link_hash_traverse which must return failure. */
24
25struct elf_info_failed
26{
27 boolean failed;
28 struct bfd_link_info *info;
29};
30
31static boolean elf_link_add_object_symbols
32 PARAMS ((bfd *, struct bfd_link_info *));
33static boolean elf_link_add_archive_symbols
34 PARAMS ((bfd *, struct bfd_link_info *));
35static boolean elf_merge_symbol
36 PARAMS ((bfd *, struct bfd_link_info *, const char *, Elf_Internal_Sym *,
37 asection **, bfd_vma *, struct elf_link_hash_entry **,
38 boolean *, boolean *, boolean *));
39static boolean elf_export_symbol
40 PARAMS ((struct elf_link_hash_entry *, PTR));
41static boolean elf_fix_symbol_flags
42 PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
43static boolean elf_adjust_dynamic_symbol
44 PARAMS ((struct elf_link_hash_entry *, PTR));
45static boolean elf_link_find_version_dependencies
46 PARAMS ((struct elf_link_hash_entry *, PTR));
47static boolean elf_link_find_version_dependencies
48 PARAMS ((struct elf_link_hash_entry *, PTR));
49static boolean elf_link_assign_sym_version
50 PARAMS ((struct elf_link_hash_entry *, PTR));
51static boolean elf_link_renumber_dynsyms
52 PARAMS ((struct elf_link_hash_entry *, PTR));
53static boolean elf_collect_hash_codes
54 PARAMS ((struct elf_link_hash_entry *, PTR));
6b5bd373
MM
55static boolean elf_link_read_relocs_from_section
56 PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *));
42751cf3 57static void elf_link_remove_section_and_adjust_dynindices
78de0b43 58 PARAMS ((struct bfd_link_info *, asection *));
252b5132
RH
59
60/* Given an ELF BFD, add symbols to the global hash table as
61 appropriate. */
62
63boolean
64elf_bfd_link_add_symbols (abfd, info)
65 bfd *abfd;
66 struct bfd_link_info *info;
67{
68 switch (bfd_get_format (abfd))
69 {
70 case bfd_object:
71 return elf_link_add_object_symbols (abfd, info);
72 case bfd_archive:
73 return elf_link_add_archive_symbols (abfd, info);
74 default:
75 bfd_set_error (bfd_error_wrong_format);
76 return false;
77 }
78}
79\f
80
81/* Add symbols from an ELF archive file to the linker hash table. We
82 don't use _bfd_generic_link_add_archive_symbols because of a
83 problem which arises on UnixWare. The UnixWare libc.so is an
84 archive which includes an entry libc.so.1 which defines a bunch of
85 symbols. The libc.so archive also includes a number of other
86 object files, which also define symbols, some of which are the same
87 as those defined in libc.so.1. Correct linking requires that we
88 consider each object file in turn, and include it if it defines any
89 symbols we need. _bfd_generic_link_add_archive_symbols does not do
90 this; it looks through the list of undefined symbols, and includes
91 any object file which defines them. When this algorithm is used on
92 UnixWare, it winds up pulling in libc.so.1 early and defining a
93 bunch of symbols. This means that some of the other objects in the
94 archive are not included in the link, which is incorrect since they
95 precede libc.so.1 in the archive.
96
97 Fortunately, ELF archive handling is simpler than that done by
98 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
99 oddities. In ELF, if we find a symbol in the archive map, and the
100 symbol is currently undefined, we know that we must pull in that
101 object file.
102
103 Unfortunately, we do have to make multiple passes over the symbol
104 table until nothing further is resolved. */
105
106static boolean
107elf_link_add_archive_symbols (abfd, info)
108 bfd *abfd;
109 struct bfd_link_info *info;
110{
111 symindex c;
112 boolean *defined = NULL;
113 boolean *included = NULL;
114 carsym *symdefs;
115 boolean loop;
116
117 if (! bfd_has_map (abfd))
118 {
119 /* An empty archive is a special case. */
120 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
121 return true;
122 bfd_set_error (bfd_error_no_armap);
123 return false;
124 }
125
126 /* Keep track of all symbols we know to be already defined, and all
127 files we know to be already included. This is to speed up the
128 second and subsequent passes. */
129 c = bfd_ardata (abfd)->symdef_count;
130 if (c == 0)
131 return true;
132 defined = (boolean *) bfd_malloc (c * sizeof (boolean));
133 included = (boolean *) bfd_malloc (c * sizeof (boolean));
134 if (defined == (boolean *) NULL || included == (boolean *) NULL)
135 goto error_return;
136 memset (defined, 0, c * sizeof (boolean));
137 memset (included, 0, c * sizeof (boolean));
138
139 symdefs = bfd_ardata (abfd)->symdefs;
140
141 do
142 {
143 file_ptr last;
144 symindex i;
145 carsym *symdef;
146 carsym *symdefend;
147
148 loop = false;
149 last = -1;
150
151 symdef = symdefs;
152 symdefend = symdef + c;
153 for (i = 0; symdef < symdefend; symdef++, i++)
154 {
155 struct elf_link_hash_entry *h;
156 bfd *element;
157 struct bfd_link_hash_entry *undefs_tail;
158 symindex mark;
159
160 if (defined[i] || included[i])
161 continue;
162 if (symdef->file_offset == last)
163 {
164 included[i] = true;
165 continue;
166 }
167
168 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
169 false, false, false);
170
171 if (h == NULL)
172 {
173 char *p, *copy;
174
175 /* If this is a default version (the name contains @@),
176 look up the symbol again without the version. The
177 effect is that references to the symbol without the
178 version will be matched by the default symbol in the
179 archive. */
180
181 p = strchr (symdef->name, ELF_VER_CHR);
182 if (p == NULL || p[1] != ELF_VER_CHR)
183 continue;
184
185 copy = bfd_alloc (abfd, p - symdef->name + 1);
186 if (copy == NULL)
187 goto error_return;
188 memcpy (copy, symdef->name, p - symdef->name);
189 copy[p - symdef->name] = '\0';
190
191 h = elf_link_hash_lookup (elf_hash_table (info), copy,
192 false, false, false);
193
194 bfd_release (abfd, copy);
195 }
196
197 if (h == NULL)
198 continue;
199
200 if (h->root.type != bfd_link_hash_undefined)
201 {
202 if (h->root.type != bfd_link_hash_undefweak)
203 defined[i] = true;
204 continue;
205 }
206
207 /* We need to include this archive member. */
208
209 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
210 if (element == (bfd *) NULL)
211 goto error_return;
212
213 if (! bfd_check_format (element, bfd_object))
214 goto error_return;
215
216 /* Doublecheck that we have not included this object
217 already--it should be impossible, but there may be
218 something wrong with the archive. */
219 if (element->archive_pass != 0)
220 {
221 bfd_set_error (bfd_error_bad_value);
222 goto error_return;
223 }
224 element->archive_pass = 1;
225
226 undefs_tail = info->hash->undefs_tail;
227
228 if (! (*info->callbacks->add_archive_element) (info, element,
229 symdef->name))
230 goto error_return;
231 if (! elf_link_add_object_symbols (element, info))
232 goto error_return;
233
234 /* If there are any new undefined symbols, we need to make
235 another pass through the archive in order to see whether
236 they can be defined. FIXME: This isn't perfect, because
237 common symbols wind up on undefs_tail and because an
238 undefined symbol which is defined later on in this pass
239 does not require another pass. This isn't a bug, but it
240 does make the code less efficient than it could be. */
241 if (undefs_tail != info->hash->undefs_tail)
242 loop = true;
243
244 /* Look backward to mark all symbols from this object file
245 which we have already seen in this pass. */
246 mark = i;
247 do
248 {
249 included[mark] = true;
250 if (mark == 0)
251 break;
252 --mark;
253 }
254 while (symdefs[mark].file_offset == symdef->file_offset);
255
256 /* We mark subsequent symbols from this object file as we go
257 on through the loop. */
258 last = symdef->file_offset;
259 }
260 }
261 while (loop);
262
263 free (defined);
264 free (included);
265
266 return true;
267
268 error_return:
269 if (defined != (boolean *) NULL)
270 free (defined);
271 if (included != (boolean *) NULL)
272 free (included);
273 return false;
274}
275
276/* This function is called when we want to define a new symbol. It
277 handles the various cases which arise when we find a definition in
278 a dynamic object, or when there is already a definition in a
279 dynamic object. The new symbol is described by NAME, SYM, PSEC,
280 and PVALUE. We set SYM_HASH to the hash table entry. We set
281 OVERRIDE if the old symbol is overriding a new definition. We set
282 TYPE_CHANGE_OK if it is OK for the type to change. We set
283 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
284 change, we mean that we shouldn't warn if the type or size does
285 change. */
286
287static boolean
288elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
289 override, type_change_ok, size_change_ok)
290 bfd *abfd;
291 struct bfd_link_info *info;
292 const char *name;
293 Elf_Internal_Sym *sym;
294 asection **psec;
295 bfd_vma *pvalue;
296 struct elf_link_hash_entry **sym_hash;
297 boolean *override;
298 boolean *type_change_ok;
299 boolean *size_change_ok;
300{
301 asection *sec;
302 struct elf_link_hash_entry *h;
303 int bind;
304 bfd *oldbfd;
305 boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
306
307 *override = false;
308
309 sec = *psec;
310 bind = ELF_ST_BIND (sym->st_info);
311
312 if (! bfd_is_und_section (sec))
313 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
314 else
315 h = ((struct elf_link_hash_entry *)
316 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
317 if (h == NULL)
318 return false;
319 *sym_hash = h;
320
321 /* This code is for coping with dynamic objects, and is only useful
322 if we are doing an ELF link. */
323 if (info->hash->creator != abfd->xvec)
324 return true;
325
326 /* For merging, we only care about real symbols. */
327
328 while (h->root.type == bfd_link_hash_indirect
329 || h->root.type == bfd_link_hash_warning)
330 h = (struct elf_link_hash_entry *) h->root.u.i.link;
331
332 /* If we just created the symbol, mark it as being an ELF symbol.
333 Other than that, there is nothing to do--there is no merge issue
334 with a newly defined symbol--so we just return. */
335
336 if (h->root.type == bfd_link_hash_new)
337 {
338 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
339 return true;
340 }
341
342 /* OLDBFD is a BFD associated with the existing symbol. */
343
344 switch (h->root.type)
345 {
346 default:
347 oldbfd = NULL;
348 break;
349
350 case bfd_link_hash_undefined:
351 case bfd_link_hash_undefweak:
352 oldbfd = h->root.u.undef.abfd;
353 break;
354
355 case bfd_link_hash_defined:
356 case bfd_link_hash_defweak:
357 oldbfd = h->root.u.def.section->owner;
358 break;
359
360 case bfd_link_hash_common:
361 oldbfd = h->root.u.c.p->section->owner;
362 break;
363 }
364
365 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
366 respectively, is from a dynamic object. */
367
368 if ((abfd->flags & DYNAMIC) != 0)
369 newdyn = true;
370 else
371 newdyn = false;
372
373 if (oldbfd == NULL || (oldbfd->flags & DYNAMIC) == 0)
374 olddyn = false;
375 else
376 olddyn = true;
377
378 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
379 respectively, appear to be a definition rather than reference. */
380
381 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
382 newdef = false;
383 else
384 newdef = true;
385
386 if (h->root.type == bfd_link_hash_undefined
387 || h->root.type == bfd_link_hash_undefweak
388 || h->root.type == bfd_link_hash_common)
389 olddef = false;
390 else
391 olddef = true;
392
393 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
394 symbol, respectively, appears to be a common symbol in a dynamic
395 object. If a symbol appears in an uninitialized section, and is
396 not weak, and is not a function, then it may be a common symbol
397 which was resolved when the dynamic object was created. We want
398 to treat such symbols specially, because they raise special
399 considerations when setting the symbol size: if the symbol
400 appears as a common symbol in a regular object, and the size in
401 the regular object is larger, we must make sure that we use the
402 larger size. This problematic case can always be avoided in C,
403 but it must be handled correctly when using Fortran shared
404 libraries.
405
406 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
407 likewise for OLDDYNCOMMON and OLDDEF.
408
409 Note that this test is just a heuristic, and that it is quite
410 possible to have an uninitialized symbol in a shared object which
411 is really a definition, rather than a common symbol. This could
412 lead to some minor confusion when the symbol really is a common
413 symbol in some regular object. However, I think it will be
414 harmless. */
415
416 if (newdyn
417 && newdef
418 && (sec->flags & SEC_ALLOC) != 0
419 && (sec->flags & SEC_LOAD) == 0
420 && sym->st_size > 0
421 && bind != STB_WEAK
422 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
423 newdyncommon = true;
424 else
425 newdyncommon = false;
426
427 if (olddyn
428 && olddef
429 && h->root.type == bfd_link_hash_defined
430 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
431 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
432 && (h->root.u.def.section->flags & SEC_LOAD) == 0
433 && h->size > 0
434 && h->type != STT_FUNC)
435 olddyncommon = true;
436 else
437 olddyncommon = false;
438
439 /* It's OK to change the type if either the existing symbol or the
440 new symbol is weak. */
441
442 if (h->root.type == bfd_link_hash_defweak
443 || h->root.type == bfd_link_hash_undefweak
444 || bind == STB_WEAK)
445 *type_change_ok = true;
446
447 /* It's OK to change the size if either the existing symbol or the
448 new symbol is weak, or if the old symbol is undefined. */
449
450 if (*type_change_ok
451 || h->root.type == bfd_link_hash_undefined)
452 *size_change_ok = true;
453
454 /* If both the old and the new symbols look like common symbols in a
455 dynamic object, set the size of the symbol to the larger of the
456 two. */
457
458 if (olddyncommon
459 && newdyncommon
460 && sym->st_size != h->size)
461 {
462 /* Since we think we have two common symbols, issue a multiple
463 common warning if desired. Note that we only warn if the
464 size is different. If the size is the same, we simply let
465 the old symbol override the new one as normally happens with
466 symbols defined in dynamic objects. */
467
468 if (! ((*info->callbacks->multiple_common)
469 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
470 h->size, abfd, bfd_link_hash_common, sym->st_size)))
471 return false;
472
473 if (sym->st_size > h->size)
474 h->size = sym->st_size;
475
476 *size_change_ok = true;
477 }
478
479 /* If we are looking at a dynamic object, and we have found a
480 definition, we need to see if the symbol was already defined by
481 some other object. If so, we want to use the existing
482 definition, and we do not want to report a multiple symbol
483 definition error; we do this by clobbering *PSEC to be
484 bfd_und_section_ptr.
485
486 We treat a common symbol as a definition if the symbol in the
487 shared library is a function, since common symbols always
488 represent variables; this can cause confusion in principle, but
489 any such confusion would seem to indicate an erroneous program or
490 shared library. We also permit a common symbol in a regular
491 object to override a weak symbol in a shared object. */
492
493 if (newdyn
494 && newdef
495 && (olddef
496 || (h->root.type == bfd_link_hash_common
497 && (bind == STB_WEAK
498 || ELF_ST_TYPE (sym->st_info) == STT_FUNC))))
499 {
500 *override = true;
501 newdef = false;
502 newdyncommon = false;
503
504 *psec = sec = bfd_und_section_ptr;
505 *size_change_ok = true;
506
507 /* If we get here when the old symbol is a common symbol, then
508 we are explicitly letting it override a weak symbol or
509 function in a dynamic object, and we don't want to warn about
510 a type change. If the old symbol is a defined symbol, a type
511 change warning may still be appropriate. */
512
513 if (h->root.type == bfd_link_hash_common)
514 *type_change_ok = true;
515 }
516
517 /* Handle the special case of an old common symbol merging with a
518 new symbol which looks like a common symbol in a shared object.
519 We change *PSEC and *PVALUE to make the new symbol look like a
520 common symbol, and let _bfd_generic_link_add_one_symbol will do
521 the right thing. */
522
523 if (newdyncommon
524 && h->root.type == bfd_link_hash_common)
525 {
526 *override = true;
527 newdef = false;
528 newdyncommon = false;
529 *pvalue = sym->st_size;
530 *psec = sec = bfd_com_section_ptr;
531 *size_change_ok = true;
532 }
533
534 /* If the old symbol is from a dynamic object, and the new symbol is
535 a definition which is not from a dynamic object, then the new
536 symbol overrides the old symbol. Symbols from regular files
537 always take precedence over symbols from dynamic objects, even if
538 they are defined after the dynamic object in the link.
539
540 As above, we again permit a common symbol in a regular object to
541 override a definition in a shared object if the shared object
542 symbol is a function or is weak. */
543
544 if (! newdyn
545 && (newdef
546 || (bfd_is_com_section (sec)
547 && (h->root.type == bfd_link_hash_defweak
548 || h->type == STT_FUNC)))
549 && olddyn
550 && olddef
551 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
552 {
553 /* Change the hash table entry to undefined, and let
554 _bfd_generic_link_add_one_symbol do the right thing with the
555 new definition. */
556
557 h->root.type = bfd_link_hash_undefined;
558 h->root.u.undef.abfd = h->root.u.def.section->owner;
559 *size_change_ok = true;
560
561 olddef = false;
562 olddyncommon = false;
563
564 /* We again permit a type change when a common symbol may be
565 overriding a function. */
566
567 if (bfd_is_com_section (sec))
568 *type_change_ok = true;
569
570 /* This union may have been set to be non-NULL when this symbol
571 was seen in a dynamic object. We must force the union to be
572 NULL, so that it is correct for a regular symbol. */
573
574 h->verinfo.vertree = NULL;
575
576 /* In this special case, if H is the target of an indirection,
577 we want the caller to frob with H rather than with the
578 indirect symbol. That will permit the caller to redefine the
579 target of the indirection, rather than the indirect symbol
580 itself. FIXME: This will break the -y option if we store a
581 symbol with a different name. */
582 *sym_hash = h;
583 }
584
585 /* Handle the special case of a new common symbol merging with an
586 old symbol that looks like it might be a common symbol defined in
587 a shared object. Note that we have already handled the case in
588 which a new common symbol should simply override the definition
589 in the shared library. */
590
591 if (! newdyn
592 && bfd_is_com_section (sec)
593 && olddyncommon)
594 {
595 /* It would be best if we could set the hash table entry to a
596 common symbol, but we don't know what to use for the section
597 or the alignment. */
598 if (! ((*info->callbacks->multiple_common)
599 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
600 h->size, abfd, bfd_link_hash_common, sym->st_size)))
601 return false;
602
603 /* If the predumed common symbol in the dynamic object is
604 larger, pretend that the new symbol has its size. */
605
606 if (h->size > *pvalue)
607 *pvalue = h->size;
608
609 /* FIXME: We no longer know the alignment required by the symbol
610 in the dynamic object, so we just wind up using the one from
611 the regular object. */
612
613 olddef = false;
614 olddyncommon = false;
615
616 h->root.type = bfd_link_hash_undefined;
617 h->root.u.undef.abfd = h->root.u.def.section->owner;
618
619 *size_change_ok = true;
620 *type_change_ok = true;
621
622 h->verinfo.vertree = NULL;
623 }
624
625 return true;
626}
627
628/* Add symbols from an ELF object file to the linker hash table. */
629
630static boolean
631elf_link_add_object_symbols (abfd, info)
632 bfd *abfd;
633 struct bfd_link_info *info;
634{
635 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
636 const Elf_Internal_Sym *,
637 const char **, flagword *,
638 asection **, bfd_vma *));
639 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
640 asection *, const Elf_Internal_Rela *));
641 boolean collect;
642 Elf_Internal_Shdr *hdr;
643 size_t symcount;
644 size_t extsymcount;
645 size_t extsymoff;
646 Elf_External_Sym *buf = NULL;
647 struct elf_link_hash_entry **sym_hash;
648 boolean dynamic;
649 bfd_byte *dynver = NULL;
650 Elf_External_Versym *extversym = NULL;
651 Elf_External_Versym *ever;
652 Elf_External_Dyn *dynbuf = NULL;
653 struct elf_link_hash_entry *weaks;
654 Elf_External_Sym *esym;
655 Elf_External_Sym *esymend;
656
657 add_symbol_hook = get_elf_backend_data (abfd)->elf_add_symbol_hook;
658 collect = get_elf_backend_data (abfd)->collect;
659
660 if ((abfd->flags & DYNAMIC) == 0)
661 dynamic = false;
662 else
663 {
664 dynamic = true;
665
666 /* You can't use -r against a dynamic object. Also, there's no
667 hope of using a dynamic object which does not exactly match
668 the format of the output file. */
669 if (info->relocateable || info->hash->creator != abfd->xvec)
670 {
671 bfd_set_error (bfd_error_invalid_operation);
672 goto error_return;
673 }
674 }
675
676 /* As a GNU extension, any input sections which are named
677 .gnu.warning.SYMBOL are treated as warning symbols for the given
678 symbol. This differs from .gnu.warning sections, which generate
679 warnings when they are included in an output file. */
680 if (! info->shared)
681 {
682 asection *s;
683
684 for (s = abfd->sections; s != NULL; s = s->next)
685 {
686 const char *name;
687
688 name = bfd_get_section_name (abfd, s);
689 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
690 {
691 char *msg;
692 bfd_size_type sz;
693
694 name += sizeof ".gnu.warning." - 1;
695
696 /* If this is a shared object, then look up the symbol
697 in the hash table. If it is there, and it is already
698 been defined, then we will not be using the entry
699 from this shared object, so we don't need to warn.
700 FIXME: If we see the definition in a regular object
701 later on, we will warn, but we shouldn't. The only
702 fix is to keep track of what warnings we are supposed
703 to emit, and then handle them all at the end of the
704 link. */
705 if (dynamic && abfd->xvec == info->hash->creator)
706 {
707 struct elf_link_hash_entry *h;
708
709 h = elf_link_hash_lookup (elf_hash_table (info), name,
710 false, false, true);
711
712 /* FIXME: What about bfd_link_hash_common? */
713 if (h != NULL
714 && (h->root.type == bfd_link_hash_defined
715 || h->root.type == bfd_link_hash_defweak))
716 {
717 /* We don't want to issue this warning. Clobber
718 the section size so that the warning does not
719 get copied into the output file. */
720 s->_raw_size = 0;
721 continue;
722 }
723 }
724
725 sz = bfd_section_size (abfd, s);
726 msg = (char *) bfd_alloc (abfd, sz + 1);
727 if (msg == NULL)
728 goto error_return;
729
730 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
731 goto error_return;
732
733 msg[sz] = '\0';
734
735 if (! (_bfd_generic_link_add_one_symbol
736 (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
737 false, collect, (struct bfd_link_hash_entry **) NULL)))
738 goto error_return;
739
740 if (! info->relocateable)
741 {
742 /* Clobber the section size so that the warning does
743 not get copied into the output file. */
744 s->_raw_size = 0;
745 }
746 }
747 }
748 }
749
750 /* If this is a dynamic object, we always link against the .dynsym
751 symbol table, not the .symtab symbol table. The dynamic linker
752 will only see the .dynsym symbol table, so there is no reason to
753 look at .symtab for a dynamic object. */
754
755 if (! dynamic || elf_dynsymtab (abfd) == 0)
756 hdr = &elf_tdata (abfd)->symtab_hdr;
757 else
758 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
759
760 if (dynamic)
761 {
762 /* Read in any version definitions. */
763
764 if (! _bfd_elf_slurp_version_tables (abfd))
765 goto error_return;
766
767 /* Read in the symbol versions, but don't bother to convert them
768 to internal format. */
769 if (elf_dynversym (abfd) != 0)
770 {
771 Elf_Internal_Shdr *versymhdr;
772
773 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
774 extversym = (Elf_External_Versym *) bfd_malloc (hdr->sh_size);
775 if (extversym == NULL)
776 goto error_return;
777 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
778 || (bfd_read ((PTR) extversym, 1, versymhdr->sh_size, abfd)
779 != versymhdr->sh_size))
780 goto error_return;
781 }
782 }
783
784 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
785
786 /* The sh_info field of the symtab header tells us where the
787 external symbols start. We don't care about the local symbols at
788 this point. */
789 if (elf_bad_symtab (abfd))
790 {
791 extsymcount = symcount;
792 extsymoff = 0;
793 }
794 else
795 {
796 extsymcount = symcount - hdr->sh_info;
797 extsymoff = hdr->sh_info;
798 }
799
800 buf = ((Elf_External_Sym *)
801 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
802 if (buf == NULL && extsymcount != 0)
803 goto error_return;
804
805 /* We store a pointer to the hash table entry for each external
806 symbol. */
807 sym_hash = ((struct elf_link_hash_entry **)
808 bfd_alloc (abfd,
809 extsymcount * sizeof (struct elf_link_hash_entry *)));
810 if (sym_hash == NULL)
811 goto error_return;
812 elf_sym_hashes (abfd) = sym_hash;
813
814 if (! dynamic)
815 {
816 /* If we are creating a shared library, create all the dynamic
817 sections immediately. We need to attach them to something,
818 so we attach them to this BFD, provided it is the right
819 format. FIXME: If there are no input BFD's of the same
820 format as the output, we can't make a shared library. */
821 if (info->shared
822 && ! elf_hash_table (info)->dynamic_sections_created
823 && abfd->xvec == info->hash->creator)
824 {
825 if (! elf_link_create_dynamic_sections (abfd, info))
826 goto error_return;
827 }
828 }
829 else
830 {
831 asection *s;
832 boolean add_needed;
833 const char *name;
834 bfd_size_type oldsize;
835 bfd_size_type strindex;
836
837 /* Find the name to use in a DT_NEEDED entry that refers to this
838 object. If the object has a DT_SONAME entry, we use it.
839 Otherwise, if the generic linker stuck something in
840 elf_dt_name, we use that. Otherwise, we just use the file
841 name. If the generic linker put a null string into
842 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
843 there is a DT_SONAME entry. */
844 add_needed = true;
845 name = bfd_get_filename (abfd);
846 if (elf_dt_name (abfd) != NULL)
847 {
848 name = elf_dt_name (abfd);
849 if (*name == '\0')
850 add_needed = false;
851 }
852 s = bfd_get_section_by_name (abfd, ".dynamic");
853 if (s != NULL)
854 {
855 Elf_External_Dyn *extdyn;
856 Elf_External_Dyn *extdynend;
857 int elfsec;
858 unsigned long link;
859
860 dynbuf = (Elf_External_Dyn *) bfd_malloc ((size_t) s->_raw_size);
861 if (dynbuf == NULL)
862 goto error_return;
863
864 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
865 (file_ptr) 0, s->_raw_size))
866 goto error_return;
867
868 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
869 if (elfsec == -1)
870 goto error_return;
871 link = elf_elfsections (abfd)[elfsec]->sh_link;
872
873 extdyn = dynbuf;
874 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
875 for (; extdyn < extdynend; extdyn++)
876 {
877 Elf_Internal_Dyn dyn;
878
879 elf_swap_dyn_in (abfd, extdyn, &dyn);
880 if (dyn.d_tag == DT_SONAME)
881 {
882 name = bfd_elf_string_from_elf_section (abfd, link,
883 dyn.d_un.d_val);
884 if (name == NULL)
885 goto error_return;
886 }
887 if (dyn.d_tag == DT_NEEDED)
888 {
889 struct bfd_link_needed_list *n, **pn;
890 char *fnm, *anm;
891
892 n = ((struct bfd_link_needed_list *)
893 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
894 fnm = bfd_elf_string_from_elf_section (abfd, link,
895 dyn.d_un.d_val);
896 if (n == NULL || fnm == NULL)
897 goto error_return;
898 anm = bfd_alloc (abfd, strlen (fnm) + 1);
899 if (anm == NULL)
900 goto error_return;
901 strcpy (anm, fnm);
902 n->name = anm;
903 n->by = abfd;
904 n->next = NULL;
905 for (pn = &elf_hash_table (info)->needed;
906 *pn != NULL;
907 pn = &(*pn)->next)
908 ;
909 *pn = n;
910 }
911 }
912
913 free (dynbuf);
914 dynbuf = NULL;
915 }
916
917 /* We do not want to include any of the sections in a dynamic
918 object in the output file. We hack by simply clobbering the
919 list of sections in the BFD. This could be handled more
920 cleanly by, say, a new section flag; the existing
921 SEC_NEVER_LOAD flag is not the one we want, because that one
922 still implies that the section takes up space in the output
923 file. */
924 abfd->sections = NULL;
925 abfd->section_count = 0;
926
927 /* If this is the first dynamic object found in the link, create
928 the special sections required for dynamic linking. */
929 if (! elf_hash_table (info)->dynamic_sections_created)
930 {
931 if (! elf_link_create_dynamic_sections (abfd, info))
932 goto error_return;
933 }
934
935 if (add_needed)
936 {
937 /* Add a DT_NEEDED entry for this dynamic object. */
938 oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
939 strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name,
940 true, false);
941 if (strindex == (bfd_size_type) -1)
942 goto error_return;
943
944 if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
945 {
946 asection *sdyn;
947 Elf_External_Dyn *dyncon, *dynconend;
948
949 /* The hash table size did not change, which means that
950 the dynamic object name was already entered. If we
951 have already included this dynamic object in the
952 link, just ignore it. There is no reason to include
953 a particular dynamic object more than once. */
954 sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
955 ".dynamic");
956 BFD_ASSERT (sdyn != NULL);
957
958 dyncon = (Elf_External_Dyn *) sdyn->contents;
959 dynconend = (Elf_External_Dyn *) (sdyn->contents +
960 sdyn->_raw_size);
961 for (; dyncon < dynconend; dyncon++)
962 {
963 Elf_Internal_Dyn dyn;
964
965 elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon,
966 &dyn);
967 if (dyn.d_tag == DT_NEEDED
968 && dyn.d_un.d_val == strindex)
969 {
970 if (buf != NULL)
971 free (buf);
972 if (extversym != NULL)
973 free (extversym);
974 return true;
975 }
976 }
977 }
978
979 if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
980 goto error_return;
981 }
982
983 /* Save the SONAME, if there is one, because sometimes the
984 linker emulation code will need to know it. */
985 if (*name == '\0')
986 name = bfd_get_filename (abfd);
987 elf_dt_name (abfd) = name;
988 }
989
990 if (bfd_seek (abfd,
991 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
992 SEEK_SET) != 0
993 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
994 != extsymcount * sizeof (Elf_External_Sym)))
995 goto error_return;
996
997 weaks = NULL;
998
999 ever = extversym != NULL ? extversym + extsymoff : NULL;
1000 esymend = buf + extsymcount;
1001 for (esym = buf;
1002 esym < esymend;
1003 esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
1004 {
1005 Elf_Internal_Sym sym;
1006 int bind;
1007 bfd_vma value;
1008 asection *sec;
1009 flagword flags;
1010 const char *name;
1011 struct elf_link_hash_entry *h;
1012 boolean definition;
1013 boolean size_change_ok, type_change_ok;
1014 boolean new_weakdef;
1015 unsigned int old_alignment;
1016
1017 elf_swap_symbol_in (abfd, esym, &sym);
1018
1019 flags = BSF_NO_FLAGS;
1020 sec = NULL;
1021 value = sym.st_value;
1022 *sym_hash = NULL;
1023
1024 bind = ELF_ST_BIND (sym.st_info);
1025 if (bind == STB_LOCAL)
1026 {
1027 /* This should be impossible, since ELF requires that all
1028 global symbols follow all local symbols, and that sh_info
1029 point to the first global symbol. Unfortunatealy, Irix 5
1030 screws this up. */
1031 continue;
1032 }
1033 else if (bind == STB_GLOBAL)
1034 {
1035 if (sym.st_shndx != SHN_UNDEF
1036 && sym.st_shndx != SHN_COMMON)
1037 flags = BSF_GLOBAL;
1038 else
1039 flags = 0;
1040 }
1041 else if (bind == STB_WEAK)
1042 flags = BSF_WEAK;
1043 else
1044 {
1045 /* Leave it up to the processor backend. */
1046 }
1047
1048 if (sym.st_shndx == SHN_UNDEF)
1049 sec = bfd_und_section_ptr;
1050 else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE)
1051 {
1052 sec = section_from_elf_index (abfd, sym.st_shndx);
1053 if (sec == NULL)
1054 sec = bfd_abs_section_ptr;
1055 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
1056 value -= sec->vma;
1057 }
1058 else if (sym.st_shndx == SHN_ABS)
1059 sec = bfd_abs_section_ptr;
1060 else if (sym.st_shndx == SHN_COMMON)
1061 {
1062 sec = bfd_com_section_ptr;
1063 /* What ELF calls the size we call the value. What ELF
1064 calls the value we call the alignment. */
1065 value = sym.st_size;
1066 }
1067 else
1068 {
1069 /* Leave it up to the processor backend. */
1070 }
1071
1072 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
1073 if (name == (const char *) NULL)
1074 goto error_return;
1075
1076 if (add_symbol_hook)
1077 {
1078 if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
1079 &value))
1080 goto error_return;
1081
1082 /* The hook function sets the name to NULL if this symbol
1083 should be skipped for some reason. */
1084 if (name == (const char *) NULL)
1085 continue;
1086 }
1087
1088 /* Sanity check that all possibilities were handled. */
1089 if (sec == (asection *) NULL)
1090 {
1091 bfd_set_error (bfd_error_bad_value);
1092 goto error_return;
1093 }
1094
1095 if (bfd_is_und_section (sec)
1096 || bfd_is_com_section (sec))
1097 definition = false;
1098 else
1099 definition = true;
1100
1101 size_change_ok = false;
1102 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
1103 old_alignment = 0;
1104 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1105 {
1106 Elf_Internal_Versym iver;
1107 unsigned int vernum = 0;
1108 boolean override;
1109
1110 if (ever != NULL)
1111 {
1112 _bfd_elf_swap_versym_in (abfd, ever, &iver);
1113 vernum = iver.vs_vers & VERSYM_VERSION;
1114
1115 /* If this is a hidden symbol, or if it is not version
1116 1, we append the version name to the symbol name.
1117 However, we do not modify a non-hidden absolute
1118 symbol, because it might be the version symbol
1119 itself. FIXME: What if it isn't? */
1120 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
1121 || (vernum > 1 && ! bfd_is_abs_section (sec)))
1122 {
1123 const char *verstr;
1124 int namelen, newlen;
1125 char *newname, *p;
1126
1127 if (sym.st_shndx != SHN_UNDEF)
1128 {
1129 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
1130 {
1131 (*_bfd_error_handler)
1132 (_("%s: %s: invalid version %u (max %d)"),
1133 bfd_get_filename (abfd), name, vernum,
1134 elf_tdata (abfd)->dynverdef_hdr.sh_info);
1135 bfd_set_error (bfd_error_bad_value);
1136 goto error_return;
1137 }
1138 else if (vernum > 1)
1139 verstr =
1140 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1141 else
1142 verstr = "";
1143 }
1144 else
1145 {
1146 /* We cannot simply test for the number of
1147 entries in the VERNEED section since the
1148 numbers for the needed versions do not start
1149 at 0. */
1150 Elf_Internal_Verneed *t;
1151
1152 verstr = NULL;
1153 for (t = elf_tdata (abfd)->verref;
1154 t != NULL;
1155 t = t->vn_nextref)
1156 {
1157 Elf_Internal_Vernaux *a;
1158
1159 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1160 {
1161 if (a->vna_other == vernum)
1162 {
1163 verstr = a->vna_nodename;
1164 break;
1165 }
1166 }
1167 if (a != NULL)
1168 break;
1169 }
1170 if (verstr == NULL)
1171 {
1172 (*_bfd_error_handler)
1173 (_("%s: %s: invalid needed version %d"),
1174 bfd_get_filename (abfd), name, vernum);
1175 bfd_set_error (bfd_error_bad_value);
1176 goto error_return;
1177 }
1178 }
1179
1180 namelen = strlen (name);
1181 newlen = namelen + strlen (verstr) + 2;
1182 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1183 ++newlen;
1184
1185 newname = (char *) bfd_alloc (abfd, newlen);
1186 if (newname == NULL)
1187 goto error_return;
1188 strcpy (newname, name);
1189 p = newname + namelen;
1190 *p++ = ELF_VER_CHR;
1191 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1192 *p++ = ELF_VER_CHR;
1193 strcpy (p, verstr);
1194
1195 name = newname;
1196 }
1197 }
1198
1199 if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value,
1200 sym_hash, &override, &type_change_ok,
1201 &size_change_ok))
1202 goto error_return;
1203
1204 if (override)
1205 definition = false;
1206
1207 h = *sym_hash;
1208 while (h->root.type == bfd_link_hash_indirect
1209 || h->root.type == bfd_link_hash_warning)
1210 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1211
1212 /* Remember the old alignment if this is a common symbol, so
1213 that we don't reduce the alignment later on. We can't
1214 check later, because _bfd_generic_link_add_one_symbol
1215 will set a default for the alignment which we want to
1216 override. */
1217 if (h->root.type == bfd_link_hash_common)
1218 old_alignment = h->root.u.c.p->alignment_power;
1219
1220 if (elf_tdata (abfd)->verdef != NULL
1221 && ! override
1222 && vernum > 1
1223 && definition)
1224 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
1225 }
1226
1227 if (! (_bfd_generic_link_add_one_symbol
1228 (info, abfd, name, flags, sec, value, (const char *) NULL,
1229 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
1230 goto error_return;
1231
1232 h = *sym_hash;
1233 while (h->root.type == bfd_link_hash_indirect
1234 || h->root.type == bfd_link_hash_warning)
1235 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1236 *sym_hash = h;
1237
1238 new_weakdef = false;
1239 if (dynamic
1240 && definition
1241 && (flags & BSF_WEAK) != 0
1242 && ELF_ST_TYPE (sym.st_info) != STT_FUNC
1243 && info->hash->creator->flavour == bfd_target_elf_flavour
1244 && h->weakdef == NULL)
1245 {
1246 /* Keep a list of all weak defined non function symbols from
1247 a dynamic object, using the weakdef field. Later in this
1248 function we will set the weakdef field to the correct
1249 value. We only put non-function symbols from dynamic
1250 objects on this list, because that happens to be the only
1251 time we need to know the normal symbol corresponding to a
1252 weak symbol, and the information is time consuming to
1253 figure out. If the weakdef field is not already NULL,
1254 then this symbol was already defined by some previous
1255 dynamic object, and we will be using that previous
1256 definition anyhow. */
1257
1258 h->weakdef = weaks;
1259 weaks = h;
1260 new_weakdef = true;
1261 }
1262
1263 /* Set the alignment of a common symbol. */
1264 if (sym.st_shndx == SHN_COMMON
1265 && h->root.type == bfd_link_hash_common)
1266 {
1267 unsigned int align;
1268
1269 align = bfd_log2 (sym.st_value);
1270 if (align > old_alignment)
1271 h->root.u.c.p->alignment_power = align;
1272 }
1273
1274 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1275 {
1276 int old_flags;
1277 boolean dynsym;
1278 int new_flag;
1279
1280 /* Remember the symbol size and type. */
1281 if (sym.st_size != 0
1282 && (definition || h->size == 0))
1283 {
1284 if (h->size != 0 && h->size != sym.st_size && ! size_change_ok)
1285 (*_bfd_error_handler)
1286 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1287 name, (unsigned long) h->size, (unsigned long) sym.st_size,
1288 bfd_get_filename (abfd));
1289
1290 h->size = sym.st_size;
1291 }
1292
1293 /* If this is a common symbol, then we always want H->SIZE
1294 to be the size of the common symbol. The code just above
1295 won't fix the size if a common symbol becomes larger. We
1296 don't warn about a size change here, because that is
1297 covered by --warn-common. */
1298 if (h->root.type == bfd_link_hash_common)
1299 h->size = h->root.u.c.size;
1300
1301 if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE
1302 && (definition || h->type == STT_NOTYPE))
1303 {
1304 if (h->type != STT_NOTYPE
1305 && h->type != ELF_ST_TYPE (sym.st_info)
1306 && ! type_change_ok)
1307 (*_bfd_error_handler)
1308 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1309 name, h->type, ELF_ST_TYPE (sym.st_info),
1310 bfd_get_filename (abfd));
1311
1312 h->type = ELF_ST_TYPE (sym.st_info);
1313 }
1314
1315 if (sym.st_other != 0
1316 && (definition || h->other == 0))
1317 h->other = sym.st_other;
1318
1319 /* Set a flag in the hash table entry indicating the type of
1320 reference or definition we just found. Keep a count of
1321 the number of dynamic symbols we find. A dynamic symbol
1322 is one which is referenced or defined by both a regular
1323 object and a shared object. */
1324 old_flags = h->elf_link_hash_flags;
1325 dynsym = false;
1326 if (! dynamic)
1327 {
1328 if (! definition)
1329 {
1330 new_flag = ELF_LINK_HASH_REF_REGULAR;
1331 if (bind != STB_WEAK)
1332 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
1333 }
1334 else
1335 new_flag = ELF_LINK_HASH_DEF_REGULAR;
1336 if (info->shared
1337 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
1338 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
1339 dynsym = true;
1340 }
1341 else
1342 {
1343 if (! definition)
1344 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
1345 else
1346 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
1347 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
1348 | ELF_LINK_HASH_REF_REGULAR)) != 0
1349 || (h->weakdef != NULL
1350 && ! new_weakdef
1351 && h->weakdef->dynindx != -1))
1352 dynsym = true;
1353 }
1354
1355 h->elf_link_hash_flags |= new_flag;
1356
1357 /* If this symbol has a version, and it is the default
1358 version, we create an indirect symbol from the default
1359 name to the fully decorated name. This will cause
1360 external references which do not specify a version to be
1361 bound to this version of the symbol. */
1362 if (definition)
1363 {
1364 char *p;
1365
1366 p = strchr (name, ELF_VER_CHR);
1367 if (p != NULL && p[1] == ELF_VER_CHR)
1368 {
1369 char *shortname;
1370 struct elf_link_hash_entry *hi;
1371 boolean override;
1372
1373 shortname = bfd_hash_allocate (&info->hash->table,
1374 p - name + 1);
1375 if (shortname == NULL)
1376 goto error_return;
1377 strncpy (shortname, name, p - name);
1378 shortname[p - name] = '\0';
1379
1380 /* We are going to create a new symbol. Merge it
1381 with any existing symbol with this name. For the
1382 purposes of the merge, act as though we were
1383 defining the symbol we just defined, although we
1384 actually going to define an indirect symbol. */
1385 type_change_ok = false;
1386 size_change_ok = false;
1387 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1388 &value, &hi, &override,
1389 &type_change_ok, &size_change_ok))
1390 goto error_return;
1391
1392 if (! override)
1393 {
1394 if (! (_bfd_generic_link_add_one_symbol
1395 (info, abfd, shortname, BSF_INDIRECT,
1396 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1397 collect, (struct bfd_link_hash_entry **) &hi)))
1398 goto error_return;
1399 }
1400 else
1401 {
1402 /* In this case the symbol named SHORTNAME is
1403 overriding the indirect symbol we want to
1404 add. We were planning on making SHORTNAME an
1405 indirect symbol referring to NAME. SHORTNAME
1406 is the name without a version. NAME is the
1407 fully versioned name, and it is the default
1408 version.
1409
1410 Overriding means that we already saw a
1411 definition for the symbol SHORTNAME in a
1412 regular object, and it is overriding the
1413 symbol defined in the dynamic object.
1414
1415 When this happens, we actually want to change
1416 NAME, the symbol we just added, to refer to
1417 SHORTNAME. This will cause references to
1418 NAME in the shared object to become
1419 references to SHORTNAME in the regular
1420 object. This is what we expect when we
1421 override a function in a shared object: that
1422 the references in the shared object will be
1423 mapped to the definition in the regular
1424 object. */
1425
1426 while (hi->root.type == bfd_link_hash_indirect
1427 || hi->root.type == bfd_link_hash_warning)
1428 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1429
1430 h->root.type = bfd_link_hash_indirect;
1431 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1432 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1433 {
1434 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1435 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1436 if (hi->elf_link_hash_flags
1437 & (ELF_LINK_HASH_REF_REGULAR
1438 | ELF_LINK_HASH_DEF_REGULAR))
1439 {
1440 if (! _bfd_elf_link_record_dynamic_symbol (info,
1441 hi))
1442 goto error_return;
1443 }
1444 }
1445
1446 /* Now set HI to H, so that the following code
1447 will set the other fields correctly. */
1448 hi = h;
1449 }
1450
1451 /* If there is a duplicate definition somewhere,
1452 then HI may not point to an indirect symbol. We
1453 will have reported an error to the user in that
1454 case. */
1455
1456 if (hi->root.type == bfd_link_hash_indirect)
1457 {
1458 struct elf_link_hash_entry *ht;
1459
1460 /* If the symbol became indirect, then we assume
1461 that we have not seen a definition before. */
1462 BFD_ASSERT ((hi->elf_link_hash_flags
1463 & (ELF_LINK_HASH_DEF_DYNAMIC
1464 | ELF_LINK_HASH_DEF_REGULAR))
1465 == 0);
1466
1467 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1468
1469 /* Copy down any references that we may have
1470 already seen to the symbol which just became
1471 indirect. */
1472 ht->elf_link_hash_flags |=
1473 (hi->elf_link_hash_flags
1474 & (ELF_LINK_HASH_REF_DYNAMIC
1475 | ELF_LINK_HASH_REF_REGULAR
1476 | ELF_LINK_HASH_REF_REGULAR_NONWEAK));
1477
1478 /* Copy over the global and procedure linkage table
1479 offset entries. These may have been already set
1480 up by a check_relocs routine. */
1481 if (ht->got.offset == (bfd_vma) -1)
1482 {
1483 ht->got.offset = hi->got.offset;
1484 hi->got.offset = (bfd_vma) -1;
1485 }
1486 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1487
1488 if (ht->plt.offset == (bfd_vma) -1)
1489 {
1490 ht->plt.offset = hi->plt.offset;
1491 hi->plt.offset = (bfd_vma) -1;
1492 }
1493 BFD_ASSERT (hi->plt.offset == (bfd_vma) -1);
1494
1495 if (ht->dynindx == -1)
1496 {
1497 ht->dynindx = hi->dynindx;
1498 ht->dynstr_index = hi->dynstr_index;
1499 hi->dynindx = -1;
1500 hi->dynstr_index = 0;
1501 }
1502 BFD_ASSERT (hi->dynindx == -1);
1503
1504 /* FIXME: There may be other information to copy
1505 over for particular targets. */
1506
1507 /* See if the new flags lead us to realize that
1508 the symbol must be dynamic. */
1509 if (! dynsym)
1510 {
1511 if (! dynamic)
1512 {
1513 if (info->shared
1514 || ((hi->elf_link_hash_flags
1515 & ELF_LINK_HASH_REF_DYNAMIC)
1516 != 0))
1517 dynsym = true;
1518 }
1519 else
1520 {
1521 if ((hi->elf_link_hash_flags
1522 & ELF_LINK_HASH_REF_REGULAR) != 0)
1523 dynsym = true;
1524 }
1525 }
1526 }
1527
1528 /* We also need to define an indirection from the
1529 nondefault version of the symbol. */
1530
1531 shortname = bfd_hash_allocate (&info->hash->table,
1532 strlen (name));
1533 if (shortname == NULL)
1534 goto error_return;
1535 strncpy (shortname, name, p - name);
1536 strcpy (shortname + (p - name), p + 1);
1537
1538 /* Once again, merge with any existing symbol. */
1539 type_change_ok = false;
1540 size_change_ok = false;
1541 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1542 &value, &hi, &override,
1543 &type_change_ok, &size_change_ok))
1544 goto error_return;
1545
1546 if (override)
1547 {
1548 /* Here SHORTNAME is a versioned name, so we
1549 don't expect to see the type of override we
1550 do in the case above. */
1551 (*_bfd_error_handler)
1552 (_("%s: warning: unexpected redefinition of `%s'"),
1553 bfd_get_filename (abfd), shortname);
1554 }
1555 else
1556 {
1557 if (! (_bfd_generic_link_add_one_symbol
1558 (info, abfd, shortname, BSF_INDIRECT,
1559 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1560 collect, (struct bfd_link_hash_entry **) &hi)))
1561 goto error_return;
1562
1563 /* If there is a duplicate definition somewhere,
1564 then HI may not point to an indirect symbol.
1565 We will have reported an error to the user in
1566 that case. */
1567
1568 if (hi->root.type == bfd_link_hash_indirect)
1569 {
1570 /* If the symbol became indirect, then we
1571 assume that we have not seen a definition
1572 before. */
1573 BFD_ASSERT ((hi->elf_link_hash_flags
1574 & (ELF_LINK_HASH_DEF_DYNAMIC
1575 | ELF_LINK_HASH_DEF_REGULAR))
1576 == 0);
1577
1578 /* Copy down any references that we may have
1579 already seen to the symbol which just
1580 became indirect. */
1581 h->elf_link_hash_flags |=
1582 (hi->elf_link_hash_flags
1583 & (ELF_LINK_HASH_REF_DYNAMIC
1584 | ELF_LINK_HASH_REF_REGULAR
1585 | ELF_LINK_HASH_REF_REGULAR_NONWEAK));
1586
1587 /* Copy over the global and procedure linkage
1588 table offset entries. These may have been
1589 already set up by a check_relocs routine. */
1590 if (h->got.offset == (bfd_vma) -1)
1591 {
1592 h->got.offset = hi->got.offset;
1593 hi->got.offset = (bfd_vma) -1;
1594 }
1595 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1596
1597 if (h->plt.offset == (bfd_vma) -1)
1598 {
1599 h->plt.offset = hi->plt.offset;
1600 hi->plt.offset = (bfd_vma) -1;
1601 }
1602 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1603
1604 if (h->dynindx == -1)
1605 {
1606 h->dynindx = hi->dynindx;
1607 h->dynstr_index = hi->dynstr_index;
1608 hi->dynindx = -1;
1609 hi->dynstr_index = 0;
1610 }
1611 BFD_ASSERT (hi->dynindx == -1);
1612
1613 /* FIXME: There may be other information to
1614 copy over for particular targets. */
1615
1616 /* See if the new flags lead us to realize
1617 that the symbol must be dynamic. */
1618 if (! dynsym)
1619 {
1620 if (! dynamic)
1621 {
1622 if (info->shared
1623 || ((hi->elf_link_hash_flags
1624 & ELF_LINK_HASH_REF_DYNAMIC)
1625 != 0))
1626 dynsym = true;
1627 }
1628 else
1629 {
1630 if ((hi->elf_link_hash_flags
1631 & ELF_LINK_HASH_REF_REGULAR) != 0)
1632 dynsym = true;
1633 }
1634 }
1635 }
1636 }
1637 }
1638 }
1639
1640 if (dynsym && h->dynindx == -1)
1641 {
1642 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1643 goto error_return;
1644 if (h->weakdef != NULL
1645 && ! new_weakdef
1646 && h->weakdef->dynindx == -1)
1647 {
1648 if (! _bfd_elf_link_record_dynamic_symbol (info,
1649 h->weakdef))
1650 goto error_return;
1651 }
1652 }
1653 }
1654 }
1655
1656 /* Now set the weakdefs field correctly for all the weak defined
1657 symbols we found. The only way to do this is to search all the
1658 symbols. Since we only need the information for non functions in
1659 dynamic objects, that's the only time we actually put anything on
1660 the list WEAKS. We need this information so that if a regular
1661 object refers to a symbol defined weakly in a dynamic object, the
1662 real symbol in the dynamic object is also put in the dynamic
1663 symbols; we also must arrange for both symbols to point to the
1664 same memory location. We could handle the general case of symbol
1665 aliasing, but a general symbol alias can only be generated in
1666 assembler code, handling it correctly would be very time
1667 consuming, and other ELF linkers don't handle general aliasing
1668 either. */
1669 while (weaks != NULL)
1670 {
1671 struct elf_link_hash_entry *hlook;
1672 asection *slook;
1673 bfd_vma vlook;
1674 struct elf_link_hash_entry **hpp;
1675 struct elf_link_hash_entry **hppend;
1676
1677 hlook = weaks;
1678 weaks = hlook->weakdef;
1679 hlook->weakdef = NULL;
1680
1681 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
1682 || hlook->root.type == bfd_link_hash_defweak
1683 || hlook->root.type == bfd_link_hash_common
1684 || hlook->root.type == bfd_link_hash_indirect);
1685 slook = hlook->root.u.def.section;
1686 vlook = hlook->root.u.def.value;
1687
1688 hpp = elf_sym_hashes (abfd);
1689 hppend = hpp + extsymcount;
1690 for (; hpp < hppend; hpp++)
1691 {
1692 struct elf_link_hash_entry *h;
1693
1694 h = *hpp;
1695 if (h != NULL && h != hlook
1696 && h->root.type == bfd_link_hash_defined
1697 && h->root.u.def.section == slook
1698 && h->root.u.def.value == vlook)
1699 {
1700 hlook->weakdef = h;
1701
1702 /* If the weak definition is in the list of dynamic
1703 symbols, make sure the real definition is put there
1704 as well. */
1705 if (hlook->dynindx != -1
1706 && h->dynindx == -1)
1707 {
1708 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1709 goto error_return;
1710 }
1711
1712 /* If the real definition is in the list of dynamic
1713 symbols, make sure the weak definition is put there
1714 as well. If we don't do this, then the dynamic
1715 loader might not merge the entries for the real
1716 definition and the weak definition. */
1717 if (h->dynindx != -1
1718 && hlook->dynindx == -1)
1719 {
1720 if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
1721 goto error_return;
1722 }
1723
1724 break;
1725 }
1726 }
1727 }
1728
1729 if (buf != NULL)
1730 {
1731 free (buf);
1732 buf = NULL;
1733 }
1734
1735 if (extversym != NULL)
1736 {
1737 free (extversym);
1738 extversym = NULL;
1739 }
1740
1741 /* If this object is the same format as the output object, and it is
1742 not a shared library, then let the backend look through the
1743 relocs.
1744
1745 This is required to build global offset table entries and to
1746 arrange for dynamic relocs. It is not required for the
1747 particular common case of linking non PIC code, even when linking
1748 against shared libraries, but unfortunately there is no way of
1749 knowing whether an object file has been compiled PIC or not.
1750 Looking through the relocs is not particularly time consuming.
1751 The problem is that we must either (1) keep the relocs in memory,
1752 which causes the linker to require additional runtime memory or
1753 (2) read the relocs twice from the input file, which wastes time.
1754 This would be a good case for using mmap.
1755
1756 I have no idea how to handle linking PIC code into a file of a
1757 different format. It probably can't be done. */
1758 check_relocs = get_elf_backend_data (abfd)->check_relocs;
1759 if (! dynamic
1760 && abfd->xvec == info->hash->creator
1761 && check_relocs != NULL)
1762 {
1763 asection *o;
1764
1765 for (o = abfd->sections; o != NULL; o = o->next)
1766 {
1767 Elf_Internal_Rela *internal_relocs;
1768 boolean ok;
1769
1770 if ((o->flags & SEC_RELOC) == 0
1771 || o->reloc_count == 0
1772 || ((info->strip == strip_all || info->strip == strip_debugger)
1773 && (o->flags & SEC_DEBUGGING) != 0)
1774 || bfd_is_abs_section (o->output_section))
1775 continue;
1776
1777 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
1778 (abfd, o, (PTR) NULL,
1779 (Elf_Internal_Rela *) NULL,
1780 info->keep_memory));
1781 if (internal_relocs == NULL)
1782 goto error_return;
1783
1784 ok = (*check_relocs) (abfd, info, o, internal_relocs);
1785
1786 if (! info->keep_memory)
1787 free (internal_relocs);
1788
1789 if (! ok)
1790 goto error_return;
1791 }
1792 }
1793
1794 /* If this is a non-traditional, non-relocateable link, try to
1795 optimize the handling of the .stab/.stabstr sections. */
1796 if (! dynamic
1797 && ! info->relocateable
1798 && ! info->traditional_format
1799 && info->hash->creator->flavour == bfd_target_elf_flavour
1800 && (info->strip != strip_all && info->strip != strip_debugger))
1801 {
1802 asection *stab, *stabstr;
1803
1804 stab = bfd_get_section_by_name (abfd, ".stab");
1805 if (stab != NULL)
1806 {
1807 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
1808
1809 if (stabstr != NULL)
1810 {
1811 struct bfd_elf_section_data *secdata;
1812
1813 secdata = elf_section_data (stab);
1814 if (! _bfd_link_section_stabs (abfd,
1815 &elf_hash_table (info)->stab_info,
1816 stab, stabstr,
1817 &secdata->stab_info))
1818 goto error_return;
1819 }
1820 }
1821 }
1822
1823 return true;
1824
1825 error_return:
1826 if (buf != NULL)
1827 free (buf);
1828 if (dynbuf != NULL)
1829 free (dynbuf);
1830 if (dynver != NULL)
1831 free (dynver);
1832 if (extversym != NULL)
1833 free (extversym);
1834 return false;
1835}
1836
1837/* Create some sections which will be filled in with dynamic linking
1838 information. ABFD is an input file which requires dynamic sections
1839 to be created. The dynamic sections take up virtual memory space
1840 when the final executable is run, so we need to create them before
1841 addresses are assigned to the output sections. We work out the
1842 actual contents and size of these sections later. */
1843
1844boolean
1845elf_link_create_dynamic_sections (abfd, info)
1846 bfd *abfd;
1847 struct bfd_link_info *info;
1848{
1849 flagword flags;
1850 register asection *s;
1851 struct elf_link_hash_entry *h;
1852 struct elf_backend_data *bed;
1853
1854 if (elf_hash_table (info)->dynamic_sections_created)
1855 return true;
1856
1857 /* Make sure that all dynamic sections use the same input BFD. */
1858 if (elf_hash_table (info)->dynobj == NULL)
1859 elf_hash_table (info)->dynobj = abfd;
1860 else
1861 abfd = elf_hash_table (info)->dynobj;
1862
1863 /* Note that we set the SEC_IN_MEMORY flag for all of these
1864 sections. */
1865 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
1866 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1867
1868 /* A dynamically linked executable has a .interp section, but a
1869 shared library does not. */
1870 if (! info->shared)
1871 {
1872 s = bfd_make_section (abfd, ".interp");
1873 if (s == NULL
1874 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
1875 return false;
1876 }
1877
1878 /* Create sections to hold version informations. These are removed
1879 if they are not needed. */
1880 s = bfd_make_section (abfd, ".gnu.version_d");
1881 if (s == NULL
1882 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1883 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1884 return false;
1885
1886 s = bfd_make_section (abfd, ".gnu.version");
1887 if (s == NULL
1888 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1889 || ! bfd_set_section_alignment (abfd, s, 1))
1890 return false;
1891
1892 s = bfd_make_section (abfd, ".gnu.version_r");
1893 if (s == NULL
1894 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1895 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1896 return false;
1897
1898 s = bfd_make_section (abfd, ".dynsym");
1899 if (s == NULL
1900 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1901 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1902 return false;
1903
1904 s = bfd_make_section (abfd, ".dynstr");
1905 if (s == NULL
1906 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
1907 return false;
1908
1909 /* Create a strtab to hold the dynamic symbol names. */
1910 if (elf_hash_table (info)->dynstr == NULL)
1911 {
1912 elf_hash_table (info)->dynstr = elf_stringtab_init ();
1913 if (elf_hash_table (info)->dynstr == NULL)
1914 return false;
1915 }
1916
1917 s = bfd_make_section (abfd, ".dynamic");
1918 if (s == NULL
1919 || ! bfd_set_section_flags (abfd, s, flags)
1920 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1921 return false;
1922
1923 /* The special symbol _DYNAMIC is always set to the start of the
1924 .dynamic section. This call occurs before we have processed the
1925 symbols for any dynamic object, so we don't have to worry about
1926 overriding a dynamic definition. We could set _DYNAMIC in a
1927 linker script, but we only want to define it if we are, in fact,
1928 creating a .dynamic section. We don't want to define it if there
1929 is no .dynamic section, since on some ELF platforms the start up
1930 code examines it to decide how to initialize the process. */
1931 h = NULL;
1932 if (! (_bfd_generic_link_add_one_symbol
1933 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
1934 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
1935 (struct bfd_link_hash_entry **) &h)))
1936 return false;
1937 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
1938 h->type = STT_OBJECT;
1939
1940 if (info->shared
1941 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
1942 return false;
1943
1944 s = bfd_make_section (abfd, ".hash");
1945 if (s == NULL
1946 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1947 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1948 return false;
1949
1950 /* Let the backend create the rest of the sections. This lets the
1951 backend set the right flags. The backend will normally create
1952 the .got and .plt sections. */
1953 bed = get_elf_backend_data (abfd);
1954 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
1955 return false;
1956
1957 elf_hash_table (info)->dynamic_sections_created = true;
1958
1959 return true;
1960}
1961
1962/* Add an entry to the .dynamic table. */
1963
1964boolean
1965elf_add_dynamic_entry (info, tag, val)
1966 struct bfd_link_info *info;
1967 bfd_vma tag;
1968 bfd_vma val;
1969{
1970 Elf_Internal_Dyn dyn;
1971 bfd *dynobj;
1972 asection *s;
1973 size_t newsize;
1974 bfd_byte *newcontents;
1975
1976 dynobj = elf_hash_table (info)->dynobj;
1977
1978 s = bfd_get_section_by_name (dynobj, ".dynamic");
1979 BFD_ASSERT (s != NULL);
1980
1981 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
1982 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
1983 if (newcontents == NULL)
1984 return false;
1985
1986 dyn.d_tag = tag;
1987 dyn.d_un.d_val = val;
1988 elf_swap_dyn_out (dynobj, &dyn,
1989 (Elf_External_Dyn *) (newcontents + s->_raw_size));
1990
1991 s->_raw_size = newsize;
1992 s->contents = newcontents;
1993
1994 return true;
1995}
1996\f
1997
6b5bd373
MM
1998/* Read and swap the relocs from the section indicated by SHDR. This
1999 may be either a REL or a RELA section. The relocations are
2000 translated into RELA relocations and stored in INTERNAL_RELOCS,
2001 which should have already been allocated to contain enough space.
2002 The EXTERNAL_RELOCS are a buffer where the external form of the
2003 relocations should be stored.
2004
2005 Returns false if something goes wrong. */
2006
2007static boolean
2008elf_link_read_relocs_from_section (abfd, shdr, external_relocs,
2009 internal_relocs)
2010 bfd *abfd;
2011 Elf_Internal_Shdr *shdr;
2012 PTR external_relocs;
2013 Elf_Internal_Rela *internal_relocs;
2014{
2015 /* If there aren't any relocations, that's OK. */
2016 if (!shdr)
2017 return true;
2018
2019 /* Position ourselves at the start of the section. */
2020 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2021 return false;
2022
2023 /* Read the relocations. */
2024 if (bfd_read (external_relocs, 1, shdr->sh_size, abfd)
2025 != shdr->sh_size)
2026 return false;
2027
2028 /* Convert the external relocations to the internal format. */
2029 if (shdr->sh_entsize == sizeof (Elf_External_Rel))
2030 {
2031 Elf_External_Rel *erel;
2032 Elf_External_Rel *erelend;
2033 Elf_Internal_Rela *irela;
2034
2035 erel = (Elf_External_Rel *) external_relocs;
2036 erelend = erel + shdr->sh_size / shdr->sh_entsize;
2037 irela = internal_relocs;
2038 for (; erel < erelend; erel++, irela++)
2039 {
2040 Elf_Internal_Rel irel;
2041
2042 elf_swap_reloc_in (abfd, erel, &irel);
2043 irela->r_offset = irel.r_offset;
2044 irela->r_info = irel.r_info;
2045 irela->r_addend = 0;
2046 }
2047 }
2048 else
2049 {
2050 Elf_External_Rela *erela;
2051 Elf_External_Rela *erelaend;
2052 Elf_Internal_Rela *irela;
2053
2054 BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela));
2055
2056 erela = (Elf_External_Rela *) external_relocs;
2057 erelaend = erela + shdr->sh_size / shdr->sh_entsize;
2058 irela = internal_relocs;
2059 for (; erela < erelaend; erela++, irela++)
2060 elf_swap_reloca_in (abfd, erela, irela);
2061 }
2062
2063 return true;
2064}
2065
252b5132
RH
2066/* Read and swap the relocs for a section. They may have been cached.
2067 If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are not NULL,
2068 they are used as buffers to read into. They are known to be large
2069 enough. If the INTERNAL_RELOCS relocs argument is NULL, the return
2070 value is allocated using either malloc or bfd_alloc, according to
2071 the KEEP_MEMORY argument. */
2072
2073Elf_Internal_Rela *
2074NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
2075 keep_memory)
2076 bfd *abfd;
2077 asection *o;
2078 PTR external_relocs;
2079 Elf_Internal_Rela *internal_relocs;
2080 boolean keep_memory;
2081{
2082 Elf_Internal_Shdr *rel_hdr;
2083 PTR alloc1 = NULL;
2084 Elf_Internal_Rela *alloc2 = NULL;
2085
2086 if (elf_section_data (o)->relocs != NULL)
2087 return elf_section_data (o)->relocs;
2088
2089 if (o->reloc_count == 0)
2090 return NULL;
2091
2092 rel_hdr = &elf_section_data (o)->rel_hdr;
2093
2094 if (internal_relocs == NULL)
2095 {
2096 size_t size;
2097
2098 size = o->reloc_count * sizeof (Elf_Internal_Rela);
2099 if (keep_memory)
2100 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2101 else
2102 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2103 if (internal_relocs == NULL)
2104 goto error_return;
2105 }
2106
2107 if (external_relocs == NULL)
2108 {
6b5bd373
MM
2109 size_t size = (size_t) rel_hdr->sh_size;
2110
2111 if (elf_section_data (o)->rel_hdr2)
2112 size += (size_t) elf_section_data (o)->rel_hdr2->sh_size;
2113 alloc1 = (PTR) bfd_malloc (size);
252b5132
RH
2114 if (alloc1 == NULL)
2115 goto error_return;
2116 external_relocs = alloc1;
2117 }
2118
6b5bd373
MM
2119 if (!elf_link_read_relocs_from_section (abfd, rel_hdr,
2120 external_relocs,
2121 internal_relocs))
2122 goto error_return;
2123 if (!elf_link_read_relocs_from_section
2124 (abfd,
2125 elf_section_data (o)->rel_hdr2,
2126 external_relocs + rel_hdr->sh_size,
2127 internal_relocs + rel_hdr->sh_size / rel_hdr->sh_entsize))
252b5132 2128 goto error_return;
252b5132
RH
2129
2130 /* Cache the results for next time, if we can. */
2131 if (keep_memory)
2132 elf_section_data (o)->relocs = internal_relocs;
2133
2134 if (alloc1 != NULL)
2135 free (alloc1);
2136
2137 /* Don't free alloc2, since if it was allocated we are passing it
2138 back (under the name of internal_relocs). */
2139
2140 return internal_relocs;
2141
2142 error_return:
2143 if (alloc1 != NULL)
2144 free (alloc1);
2145 if (alloc2 != NULL)
2146 free (alloc2);
2147 return NULL;
2148}
2149\f
2150
2151/* Record an assignment to a symbol made by a linker script. We need
2152 this in case some dynamic object refers to this symbol. */
2153
2154/*ARGSUSED*/
2155boolean
2156NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
2157 bfd *output_bfd;
2158 struct bfd_link_info *info;
2159 const char *name;
2160 boolean provide;
2161{
2162 struct elf_link_hash_entry *h;
2163
2164 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2165 return true;
2166
2167 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
2168 if (h == NULL)
2169 return false;
2170
2171 if (h->root.type == bfd_link_hash_new)
2172 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
2173
2174 /* If this symbol is being provided by the linker script, and it is
2175 currently defined by a dynamic object, but not by a regular
2176 object, then mark it as undefined so that the generic linker will
2177 force the correct value. */
2178 if (provide
2179 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2180 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2181 h->root.type = bfd_link_hash_undefined;
2182
2183 /* If this symbol is not being provided by the linker script, and it is
2184 currently defined by a dynamic object, but not by a regular object,
2185 then clear out any version information because the symbol will not be
2186 associated with the dynamic object any more. */
2187 if (!provide
2188 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2189 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2190 h->verinfo.verdef = NULL;
2191
2192 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2193 h->type = STT_OBJECT;
2194
2195 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2196 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
2197 || info->shared)
2198 && h->dynindx == -1)
2199 {
2200 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2201 return false;
2202
2203 /* If this is a weak defined symbol, and we know a corresponding
2204 real symbol from the same dynamic object, make sure the real
2205 symbol is also made into a dynamic symbol. */
2206 if (h->weakdef != NULL
2207 && h->weakdef->dynindx == -1)
2208 {
2209 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2210 return false;
2211 }
2212 }
2213
2214 return true;
2215}
2216\f
2217/* This structure is used to pass information to
2218 elf_link_assign_sym_version. */
2219
2220struct elf_assign_sym_version_info
2221{
2222 /* Output BFD. */
2223 bfd *output_bfd;
2224 /* General link information. */
2225 struct bfd_link_info *info;
2226 /* Version tree. */
2227 struct bfd_elf_version_tree *verdefs;
2228 /* Whether we are exporting all dynamic symbols. */
2229 boolean export_dynamic;
2230 /* Whether we removed any symbols from the dynamic symbol table. */
2231 boolean removed_dynamic;
2232 /* Whether we had a failure. */
2233 boolean failed;
2234};
2235
2236/* This structure is used to pass information to
2237 elf_link_find_version_dependencies. */
2238
2239struct elf_find_verdep_info
2240{
2241 /* Output BFD. */
2242 bfd *output_bfd;
2243 /* General link information. */
2244 struct bfd_link_info *info;
2245 /* The number of dependencies. */
2246 unsigned int vers;
2247 /* Whether we had a failure. */
2248 boolean failed;
2249};
2250
2251/* Array used to determine the number of hash table buckets to use
2252 based on the number of symbols there are. If there are fewer than
2253 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2254 fewer than 37 we use 17 buckets, and so forth. We never use more
2255 than 32771 buckets. */
2256
2257static const size_t elf_buckets[] =
2258{
2259 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2260 16411, 32771, 0
2261};
2262
2263/* Compute bucket count for hashing table. We do not use a static set
2264 of possible tables sizes anymore. Instead we determine for all
2265 possible reasonable sizes of the table the outcome (i.e., the
2266 number of collisions etc) and choose the best solution. The
2267 weighting functions are not too simple to allow the table to grow
2268 without bounds. Instead one of the weighting factors is the size.
2269 Therefore the result is always a good payoff between few collisions
2270 (= short chain lengths) and table size. */
2271static size_t
2272compute_bucket_count (info)
2273 struct bfd_link_info *info;
2274{
2275 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
2276 size_t best_size;
2277 unsigned long int *hashcodes;
2278 unsigned long int *hashcodesp;
2279 unsigned long int i;
2280
2281 /* Compute the hash values for all exported symbols. At the same
2282 time store the values in an array so that we could use them for
2283 optimizations. */
2284 hashcodes = (unsigned long int *) bfd_malloc (dynsymcount
2285 * sizeof (unsigned long int));
2286 if (hashcodes == NULL)
2287 return 0;
2288 hashcodesp = hashcodes;
2289
2290 /* Put all hash values in HASHCODES. */
2291 elf_link_hash_traverse (elf_hash_table (info),
2292 elf_collect_hash_codes, &hashcodesp);
2293
2294/* We have a problem here. The following code to optimize the table
2295 size requires an integer type with more the 32 bits. If
2296 BFD_HOST_U_64_BIT is set we know about such a type. */
2297#ifdef BFD_HOST_U_64_BIT
2298 if (info->optimize == true)
2299 {
2300 unsigned long int nsyms = hashcodesp - hashcodes;
2301 size_t minsize;
2302 size_t maxsize;
2303 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
2304 unsigned long int *counts ;
2305
2306 /* Possible optimization parameters: if we have NSYMS symbols we say
2307 that the hashing table must at least have NSYMS/4 and at most
2308 2*NSYMS buckets. */
2309 minsize = nsyms / 4;
2310 if (minsize == 0)
2311 minsize = 1;
2312 best_size = maxsize = nsyms * 2;
2313
2314 /* Create array where we count the collisions in. We must use bfd_malloc
2315 since the size could be large. */
2316 counts = (unsigned long int *) bfd_malloc (maxsize
2317 * sizeof (unsigned long int));
2318 if (counts == NULL)
2319 {
2320 free (hashcodes);
2321 return 0;
2322 }
2323
2324 /* Compute the "optimal" size for the hash table. The criteria is a
2325 minimal chain length. The minor criteria is (of course) the size
2326 of the table. */
2327 for (i = minsize; i < maxsize; ++i)
2328 {
2329 /* Walk through the array of hashcodes and count the collisions. */
2330 BFD_HOST_U_64_BIT max;
2331 unsigned long int j;
2332 unsigned long int fact;
2333
2334 memset (counts, '\0', i * sizeof (unsigned long int));
2335
2336 /* Determine how often each hash bucket is used. */
2337 for (j = 0; j < nsyms; ++j)
2338 ++counts[hashcodes[j] % i];
2339
2340 /* For the weight function we need some information about the
2341 pagesize on the target. This is information need not be 100%
2342 accurate. Since this information is not available (so far) we
2343 define it here to a reasonable default value. If it is crucial
2344 to have a better value some day simply define this value. */
2345# ifndef BFD_TARGET_PAGESIZE
2346# define BFD_TARGET_PAGESIZE (4096)
2347# endif
2348
2349 /* We in any case need 2 + NSYMS entries for the size values and
2350 the chains. */
2351 max = (2 + nsyms) * (ARCH_SIZE / 8);
2352
2353# if 1
2354 /* Variant 1: optimize for short chains. We add the squares
2355 of all the chain lengths (which favous many small chain
2356 over a few long chains). */
2357 for (j = 0; j < i; ++j)
2358 max += counts[j] * counts[j];
2359
2360 /* This adds penalties for the overall size of the table. */
2361 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2362 max *= fact * fact;
2363# else
2364 /* Variant 2: Optimize a lot more for small table. Here we
2365 also add squares of the size but we also add penalties for
2366 empty slots (the +1 term). */
2367 for (j = 0; j < i; ++j)
2368 max += (1 + counts[j]) * (1 + counts[j]);
2369
2370 /* The overall size of the table is considered, but not as
2371 strong as in variant 1, where it is squared. */
2372 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2373 max *= fact;
2374# endif
2375
2376 /* Compare with current best results. */
2377 if (max < best_chlen)
2378 {
2379 best_chlen = max;
2380 best_size = i;
2381 }
2382 }
2383
2384 free (counts);
2385 }
2386 else
2387#endif /* defined (BFD_HOST_U_64_BIT) */
2388 {
2389 /* This is the fallback solution if no 64bit type is available or if we
2390 are not supposed to spend much time on optimizations. We select the
2391 bucket count using a fixed set of numbers. */
2392 for (i = 0; elf_buckets[i] != 0; i++)
2393 {
2394 best_size = elf_buckets[i];
2395 if (dynsymcount < elf_buckets[i + 1])
2396 break;
2397 }
2398 }
2399
2400 /* Free the arrays we needed. */
2401 free (hashcodes);
2402
2403 return best_size;
2404}
2405
42751cf3
MM
2406/* Remove SECTION from the BFD. If a symbol for SECTION was going to
2407 be put into the dynamic symbol table, remove it, and renumber
2408 subsequent entries. */
2409
2410static void
78de0b43 2411elf_link_remove_section_and_adjust_dynindices (info, section)
42751cf3
MM
2412 struct bfd_link_info *info;
2413 asection *section;
2414{
2415 asection **spp;
2416
2417 /* Remove the section from the output list. */
78de0b43 2418 _bfd_strip_section_from_output (section);
42751cf3
MM
2419
2420 if (elf_section_data (section->output_section)->dynindx)
2421 {
2422 asection *s;
2423 int increment = -1;
2424
2425 /* We were going to output an entry in the dynamic symbol table
2426 for the symbol corresponding to this section. Now, the
2427 section is gone. So, we must renumber the dynamic indices of
2428 all subsequent sections and all other entries in the dynamic
2429 symbol table. */
2430 elf_section_data (section->output_section)->dynindx = 0;
2431 for (s = section->output_section->next; s; s = s->next)
2432 if (elf_section_data (s)->dynindx)
2433 --elf_section_data (s)->dynindx;
2434
2435 elf_link_hash_traverse (elf_hash_table (info),
2436 _bfd_elf_link_adjust_dynindx,
2437 &increment);
2438
2439 /* There is one less dynamic symbol than there was before. */
2440 --elf_hash_table (info)->dynsymcount;
2441 }
2442}
2443
252b5132
RH
2444/* Set up the sizes and contents of the ELF dynamic sections. This is
2445 called by the ELF linker emulation before_allocation routine. We
2446 must set the sizes of the sections before the linker sets the
2447 addresses of the various sections. */
2448
2449boolean
2450NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
2451 export_dynamic, filter_shlib,
2452 auxiliary_filters, info, sinterpptr,
2453 verdefs)
2454 bfd *output_bfd;
2455 const char *soname;
2456 const char *rpath;
2457 boolean export_dynamic;
2458 const char *filter_shlib;
2459 const char * const *auxiliary_filters;
2460 struct bfd_link_info *info;
2461 asection **sinterpptr;
2462 struct bfd_elf_version_tree *verdefs;
2463{
2464 bfd_size_type soname_indx;
2465 bfd *dynobj;
2466 struct elf_backend_data *bed;
2467 bfd_size_type old_dynsymcount;
2468 struct elf_assign_sym_version_info asvinfo;
2469
2470 *sinterpptr = NULL;
2471
2472 soname_indx = (bfd_size_type) -1;
2473
2474 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2475 return true;
2476
2477 /* The backend may have to create some sections regardless of whether
2478 we're dynamic or not. */
2479 bed = get_elf_backend_data (output_bfd);
2480 if (bed->elf_backend_always_size_sections
2481 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
2482 return false;
2483
2484 dynobj = elf_hash_table (info)->dynobj;
2485
2486 /* If there were no dynamic objects in the link, there is nothing to
2487 do here. */
2488 if (dynobj == NULL)
2489 return true;
2490
2491 /* If we are supposed to export all symbols into the dynamic symbol
2492 table (this is not the normal case), then do so. */
2493 if (export_dynamic)
2494 {
2495 struct elf_info_failed eif;
2496
2497 eif.failed = false;
2498 eif.info = info;
2499 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
2500 (PTR) &eif);
2501 if (eif.failed)
2502 return false;
2503 }
2504
2505 if (elf_hash_table (info)->dynamic_sections_created)
2506 {
2507 struct elf_info_failed eif;
2508 struct elf_link_hash_entry *h;
2509 bfd_size_type strsize;
2510
2511 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
2512 BFD_ASSERT (*sinterpptr != NULL || info->shared);
2513
2514 if (soname != NULL)
2515 {
2516 soname_indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2517 soname, true, true);
2518 if (soname_indx == (bfd_size_type) -1
2519 || ! elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
2520 return false;
2521 }
2522
2523 if (info->symbolic)
2524 {
2525 if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
2526 return false;
2527 }
2528
2529 if (rpath != NULL)
2530 {
2531 bfd_size_type indx;
2532
2533 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath,
2534 true, true);
2535 if (indx == (bfd_size_type) -1
2536 || ! elf_add_dynamic_entry (info, DT_RPATH, indx))
2537 return false;
2538 }
2539
2540 if (filter_shlib != NULL)
2541 {
2542 bfd_size_type indx;
2543
2544 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2545 filter_shlib, true, true);
2546 if (indx == (bfd_size_type) -1
2547 || ! elf_add_dynamic_entry (info, DT_FILTER, indx))
2548 return false;
2549 }
2550
2551 if (auxiliary_filters != NULL)
2552 {
2553 const char * const *p;
2554
2555 for (p = auxiliary_filters; *p != NULL; p++)
2556 {
2557 bfd_size_type indx;
2558
2559 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2560 *p, true, true);
2561 if (indx == (bfd_size_type) -1
2562 || ! elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
2563 return false;
2564 }
2565 }
2566
2567 /* Attach all the symbols to their version information. */
2568 asvinfo.output_bfd = output_bfd;
2569 asvinfo.info = info;
2570 asvinfo.verdefs = verdefs;
2571 asvinfo.export_dynamic = export_dynamic;
2572 asvinfo.removed_dynamic = false;
2573 asvinfo.failed = false;
2574
2575 elf_link_hash_traverse (elf_hash_table (info),
2576 elf_link_assign_sym_version,
2577 (PTR) &asvinfo);
2578 if (asvinfo.failed)
2579 return false;
2580
2581 /* Find all symbols which were defined in a dynamic object and make
2582 the backend pick a reasonable value for them. */
2583 eif.failed = false;
2584 eif.info = info;
2585 elf_link_hash_traverse (elf_hash_table (info),
2586 elf_adjust_dynamic_symbol,
2587 (PTR) &eif);
2588 if (eif.failed)
2589 return false;
2590
2591 /* Add some entries to the .dynamic section. We fill in some of the
2592 values later, in elf_bfd_final_link, but we must add the entries
2593 now so that we know the final size of the .dynamic section. */
2594 h = elf_link_hash_lookup (elf_hash_table (info), "_init", false,
2595 false, false);
2596 if (h != NULL
2597 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2598 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
2599 {
2600 if (! elf_add_dynamic_entry (info, DT_INIT, 0))
2601 return false;
2602 }
2603 h = elf_link_hash_lookup (elf_hash_table (info), "_fini", false,
2604 false, false);
2605 if (h != NULL
2606 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2607 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
2608 {
2609 if (! elf_add_dynamic_entry (info, DT_FINI, 0))
2610 return false;
2611 }
2612 strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
2613 if (! elf_add_dynamic_entry (info, DT_HASH, 0)
2614 || ! elf_add_dynamic_entry (info, DT_STRTAB, 0)
2615 || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0)
2616 || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize)
2617 || ! elf_add_dynamic_entry (info, DT_SYMENT,
2618 sizeof (Elf_External_Sym)))
2619 return false;
2620 }
2621
2622 /* The backend must work out the sizes of all the other dynamic
2623 sections. */
2624 old_dynsymcount = elf_hash_table (info)->dynsymcount;
2625 if (bed->elf_backend_size_dynamic_sections
2626 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
2627 return false;
2628
2629 if (elf_hash_table (info)->dynamic_sections_created)
2630 {
2631 size_t dynsymcount;
2632 asection *s;
2633 size_t bucketcount = 0;
2634 Elf_Internal_Sym isym;
2635
2636 /* Set up the version definition section. */
2637 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
2638 BFD_ASSERT (s != NULL);
2639
2640 /* We may have created additional version definitions if we are
2641 just linking a regular application. */
2642 verdefs = asvinfo.verdefs;
2643
2644 if (verdefs == NULL)
78de0b43 2645 elf_link_remove_section_and_adjust_dynindices (info, s);
252b5132
RH
2646 else
2647 {
2648 unsigned int cdefs;
2649 bfd_size_type size;
2650 struct bfd_elf_version_tree *t;
2651 bfd_byte *p;
2652 Elf_Internal_Verdef def;
2653 Elf_Internal_Verdaux defaux;
2654
2655 if (asvinfo.removed_dynamic)
2656 {
2657 /* Some dynamic symbols were changed to be local
2658 symbols. In this case, we renumber all of the
2659 dynamic symbols, so that we don't have a hole. If
2660 the backend changed dynsymcount, then assume that the
2661 new symbols are at the start. This is the case on
2662 the MIPS. FIXME: The names of the removed symbols
2663 will still be in the dynamic string table, wasting
2664 space. */
2665 elf_hash_table (info)->dynsymcount =
2666 1 + (elf_hash_table (info)->dynsymcount - old_dynsymcount);
2667 elf_link_hash_traverse (elf_hash_table (info),
2668 elf_link_renumber_dynsyms,
2669 (PTR) info);
2670 }
2671
2672 cdefs = 0;
2673 size = 0;
2674
2675 /* Make space for the base version. */
2676 size += sizeof (Elf_External_Verdef);
2677 size += sizeof (Elf_External_Verdaux);
2678 ++cdefs;
2679
2680 for (t = verdefs; t != NULL; t = t->next)
2681 {
2682 struct bfd_elf_version_deps *n;
2683
2684 size += sizeof (Elf_External_Verdef);
2685 size += sizeof (Elf_External_Verdaux);
2686 ++cdefs;
2687
2688 for (n = t->deps; n != NULL; n = n->next)
2689 size += sizeof (Elf_External_Verdaux);
2690 }
2691
2692 s->_raw_size = size;
2693 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
2694 if (s->contents == NULL && s->_raw_size != 0)
2695 return false;
2696
2697 /* Fill in the version definition section. */
2698
2699 p = s->contents;
2700
2701 def.vd_version = VER_DEF_CURRENT;
2702 def.vd_flags = VER_FLG_BASE;
2703 def.vd_ndx = 1;
2704 def.vd_cnt = 1;
2705 def.vd_aux = sizeof (Elf_External_Verdef);
2706 def.vd_next = (sizeof (Elf_External_Verdef)
2707 + sizeof (Elf_External_Verdaux));
2708
2709 if (soname_indx != (bfd_size_type) -1)
2710 {
2711 def.vd_hash = bfd_elf_hash ((const unsigned char *) soname);
2712 defaux.vda_name = soname_indx;
2713 }
2714 else
2715 {
2716 const char *name;
2717 bfd_size_type indx;
2718
2719 name = output_bfd->filename;
2720 def.vd_hash = bfd_elf_hash ((const unsigned char *) name);
2721 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2722 name, true, false);
2723 if (indx == (bfd_size_type) -1)
2724 return false;
2725 defaux.vda_name = indx;
2726 }
2727 defaux.vda_next = 0;
2728
2729 _bfd_elf_swap_verdef_out (output_bfd, &def,
2730 (Elf_External_Verdef *)p);
2731 p += sizeof (Elf_External_Verdef);
2732 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2733 (Elf_External_Verdaux *) p);
2734 p += sizeof (Elf_External_Verdaux);
2735
2736 for (t = verdefs; t != NULL; t = t->next)
2737 {
2738 unsigned int cdeps;
2739 struct bfd_elf_version_deps *n;
2740 struct elf_link_hash_entry *h;
2741
2742 cdeps = 0;
2743 for (n = t->deps; n != NULL; n = n->next)
2744 ++cdeps;
2745
2746 /* Add a symbol representing this version. */
2747 h = NULL;
2748 if (! (_bfd_generic_link_add_one_symbol
2749 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
2750 (bfd_vma) 0, (const char *) NULL, false,
2751 get_elf_backend_data (dynobj)->collect,
2752 (struct bfd_link_hash_entry **) &h)))
2753 return false;
2754 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
2755 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2756 h->type = STT_OBJECT;
2757 h->verinfo.vertree = t;
2758
2759 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2760 return false;
2761
2762 def.vd_version = VER_DEF_CURRENT;
2763 def.vd_flags = 0;
2764 if (t->globals == NULL && t->locals == NULL && ! t->used)
2765 def.vd_flags |= VER_FLG_WEAK;
2766 def.vd_ndx = t->vernum + 1;
2767 def.vd_cnt = cdeps + 1;
2768 def.vd_hash = bfd_elf_hash ((const unsigned char *) t->name);
2769 def.vd_aux = sizeof (Elf_External_Verdef);
2770 if (t->next != NULL)
2771 def.vd_next = (sizeof (Elf_External_Verdef)
2772 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
2773 else
2774 def.vd_next = 0;
2775
2776 _bfd_elf_swap_verdef_out (output_bfd, &def,
2777 (Elf_External_Verdef *) p);
2778 p += sizeof (Elf_External_Verdef);
2779
2780 defaux.vda_name = h->dynstr_index;
2781 if (t->deps == NULL)
2782 defaux.vda_next = 0;
2783 else
2784 defaux.vda_next = sizeof (Elf_External_Verdaux);
2785 t->name_indx = defaux.vda_name;
2786
2787 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2788 (Elf_External_Verdaux *) p);
2789 p += sizeof (Elf_External_Verdaux);
2790
2791 for (n = t->deps; n != NULL; n = n->next)
2792 {
2793 if (n->version_needed == NULL)
2794 {
2795 /* This can happen if there was an error in the
2796 version script. */
2797 defaux.vda_name = 0;
2798 }
2799 else
2800 defaux.vda_name = n->version_needed->name_indx;
2801 if (n->next == NULL)
2802 defaux.vda_next = 0;
2803 else
2804 defaux.vda_next = sizeof (Elf_External_Verdaux);
2805
2806 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2807 (Elf_External_Verdaux *) p);
2808 p += sizeof (Elf_External_Verdaux);
2809 }
2810 }
2811
2812 if (! elf_add_dynamic_entry (info, DT_VERDEF, 0)
2813 || ! elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
2814 return false;
2815
2816 elf_tdata (output_bfd)->cverdefs = cdefs;
2817 }
2818
2819 /* Work out the size of the version reference section. */
2820
2821 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
2822 BFD_ASSERT (s != NULL);
2823 {
2824 struct elf_find_verdep_info sinfo;
2825
2826 sinfo.output_bfd = output_bfd;
2827 sinfo.info = info;
2828 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
2829 if (sinfo.vers == 0)
2830 sinfo.vers = 1;
2831 sinfo.failed = false;
2832
2833 elf_link_hash_traverse (elf_hash_table (info),
2834 elf_link_find_version_dependencies,
2835 (PTR) &sinfo);
2836
2837 if (elf_tdata (output_bfd)->verref == NULL)
78de0b43 2838 elf_link_remove_section_and_adjust_dynindices (info, s);
252b5132
RH
2839 else
2840 {
2841 Elf_Internal_Verneed *t;
2842 unsigned int size;
2843 unsigned int crefs;
2844 bfd_byte *p;
2845
2846 /* Build the version definition section. */
2847 size = 0;
2848 crefs = 0;
2849 for (t = elf_tdata (output_bfd)->verref;
2850 t != NULL;
2851 t = t->vn_nextref)
2852 {
2853 Elf_Internal_Vernaux *a;
2854
2855 size += sizeof (Elf_External_Verneed);
2856 ++crefs;
2857 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2858 size += sizeof (Elf_External_Vernaux);
2859 }
2860
2861 s->_raw_size = size;
2862 s->contents = (bfd_byte *) bfd_alloc (output_bfd, size);
2863 if (s->contents == NULL)
2864 return false;
2865
2866 p = s->contents;
2867 for (t = elf_tdata (output_bfd)->verref;
2868 t != NULL;
2869 t = t->vn_nextref)
2870 {
2871 unsigned int caux;
2872 Elf_Internal_Vernaux *a;
2873 bfd_size_type indx;
2874
2875 caux = 0;
2876 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2877 ++caux;
2878
2879 t->vn_version = VER_NEED_CURRENT;
2880 t->vn_cnt = caux;
2881 if (elf_dt_name (t->vn_bfd) != NULL)
2882 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2883 elf_dt_name (t->vn_bfd),
2884 true, false);
2885 else
2886 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2887 t->vn_bfd->filename, true, false);
2888 if (indx == (bfd_size_type) -1)
2889 return false;
2890 t->vn_file = indx;
2891 t->vn_aux = sizeof (Elf_External_Verneed);
2892 if (t->vn_nextref == NULL)
2893 t->vn_next = 0;
2894 else
2895 t->vn_next = (sizeof (Elf_External_Verneed)
2896 + caux * sizeof (Elf_External_Vernaux));
2897
2898 _bfd_elf_swap_verneed_out (output_bfd, t,
2899 (Elf_External_Verneed *) p);
2900 p += sizeof (Elf_External_Verneed);
2901
2902 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2903 {
2904 a->vna_hash = bfd_elf_hash ((const unsigned char *)
2905 a->vna_nodename);
2906 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2907 a->vna_nodename, true, false);
2908 if (indx == (bfd_size_type) -1)
2909 return false;
2910 a->vna_name = indx;
2911 if (a->vna_nextptr == NULL)
2912 a->vna_next = 0;
2913 else
2914 a->vna_next = sizeof (Elf_External_Vernaux);
2915
2916 _bfd_elf_swap_vernaux_out (output_bfd, a,
2917 (Elf_External_Vernaux *) p);
2918 p += sizeof (Elf_External_Vernaux);
2919 }
2920 }
2921
2922 if (! elf_add_dynamic_entry (info, DT_VERNEED, 0)
2923 || ! elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
2924 return false;
2925
2926 elf_tdata (output_bfd)->cverrefs = crefs;
2927 }
2928 }
2929
2930 dynsymcount = elf_hash_table (info)->dynsymcount;
2931
2932 /* Work out the size of the symbol version section. */
2933 s = bfd_get_section_by_name (dynobj, ".gnu.version");
2934 BFD_ASSERT (s != NULL);
2935 if (dynsymcount == 0
2936 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
2937 {
78de0b43 2938 elf_link_remove_section_and_adjust_dynindices (info, s);
42751cf3
MM
2939 /* The DYNSYMCOUNT might have changed if we were going to
2940 output a dynamic symbol table entry for S. */
2941 dynsymcount = elf_hash_table (info)->dynsymcount;
252b5132
RH
2942 }
2943 else
2944 {
2945 s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
2946 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
2947 if (s->contents == NULL)
2948 return false;
2949
2950 if (! elf_add_dynamic_entry (info, DT_VERSYM, 0))
2951 return false;
2952 }
2953
2954 /* Set the size of the .dynsym and .hash sections. We counted
2955 the number of dynamic symbols in elf_link_add_object_symbols.
2956 We will build the contents of .dynsym and .hash when we build
2957 the final symbol table, because until then we do not know the
2958 correct value to give the symbols. We built the .dynstr
2959 section as we went along in elf_link_add_object_symbols. */
2960 s = bfd_get_section_by_name (dynobj, ".dynsym");
2961 BFD_ASSERT (s != NULL);
2962 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
2963 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
2964 if (s->contents == NULL && s->_raw_size != 0)
2965 return false;
2966
2967 /* The first entry in .dynsym is a dummy symbol. */
2968 isym.st_value = 0;
2969 isym.st_size = 0;
2970 isym.st_name = 0;
2971 isym.st_info = 0;
2972 isym.st_other = 0;
2973 isym.st_shndx = 0;
2974 elf_swap_symbol_out (output_bfd, &isym,
2975 (PTR) (Elf_External_Sym *) s->contents);
2976
2977 /* Compute the size of the hashing table. As a side effect this
2978 computes the hash values for all the names we export. */
2979 bucketcount = compute_bucket_count (info);
2980
2981 s = bfd_get_section_by_name (dynobj, ".hash");
2982 BFD_ASSERT (s != NULL);
2983 s->_raw_size = (2 + bucketcount + dynsymcount) * (ARCH_SIZE / 8);
2984 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
2985 if (s->contents == NULL)
2986 return false;
2987 memset (s->contents, 0, (size_t) s->_raw_size);
2988
2989 put_word (output_bfd, bucketcount, s->contents);
2990 put_word (output_bfd, dynsymcount, s->contents + (ARCH_SIZE / 8));
2991
2992 elf_hash_table (info)->bucketcount = bucketcount;
2993
2994 s = bfd_get_section_by_name (dynobj, ".dynstr");
2995 BFD_ASSERT (s != NULL);
2996 s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
2997
2998 if (! elf_add_dynamic_entry (info, DT_NULL, 0))
2999 return false;
3000 }
3001
3002 return true;
3003}
3004\f
3005/* Fix up the flags for a symbol. This handles various cases which
3006 can only be fixed after all the input files are seen. This is
3007 currently called by both adjust_dynamic_symbol and
3008 assign_sym_version, which is unnecessary but perhaps more robust in
3009 the face of future changes. */
3010
3011static boolean
3012elf_fix_symbol_flags (h, eif)
3013 struct elf_link_hash_entry *h;
3014 struct elf_info_failed *eif;
3015{
3016 /* If this symbol was mentioned in a non-ELF file, try to set
3017 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
3018 permit a non-ELF file to correctly refer to a symbol defined in
3019 an ELF dynamic object. */
3020 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
3021 {
3022 if (h->root.type != bfd_link_hash_defined
3023 && h->root.type != bfd_link_hash_defweak)
3024 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3025 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3026 else
3027 {
3028 if (h->root.u.def.section->owner != NULL
3029 && (bfd_get_flavour (h->root.u.def.section->owner)
3030 == bfd_target_elf_flavour))
3031 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3032 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3033 else
3034 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3035 }
3036
3037 if (h->dynindx == -1
3038 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3039 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
3040 {
3041 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3042 {
3043 eif->failed = true;
3044 return false;
3045 }
3046 }
3047 }
3048 else
3049 {
3050 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
3051 was first seen in a non-ELF file. Fortunately, if the symbol
3052 was first seen in an ELF file, we're probably OK unless the
3053 symbol was defined in a non-ELF file. Catch that case here.
3054 FIXME: We're still in trouble if the symbol was first seen in
3055 a dynamic object, and then later in a non-ELF regular object. */
3056 if ((h->root.type == bfd_link_hash_defined
3057 || h->root.type == bfd_link_hash_defweak)
3058 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3059 && (h->root.u.def.section->owner != NULL
3060 ? (bfd_get_flavour (h->root.u.def.section->owner)
3061 != bfd_target_elf_flavour)
3062 : (bfd_is_abs_section (h->root.u.def.section)
3063 && (h->elf_link_hash_flags
3064 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
3065 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3066 }
3067
3068 /* If this is a final link, and the symbol was defined as a common
3069 symbol in a regular object file, and there was no definition in
3070 any dynamic object, then the linker will have allocated space for
3071 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3072 flag will not have been set. */
3073 if (h->root.type == bfd_link_hash_defined
3074 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3075 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
3076 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3077 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3078 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3079
3080 /* If -Bsymbolic was used (which means to bind references to global
3081 symbols to the definition within the shared object), and this
3082 symbol was defined in a regular object, then it actually doesn't
3083 need a PLT entry. */
3084 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
3085 && eif->info->shared
3086 && eif->info->symbolic
3087 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3088 {
3089 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3090 h->plt.offset = (bfd_vma) -1;
3091 }
3092
3093 return true;
3094}
3095
3096/* Make the backend pick a good value for a dynamic symbol. This is
3097 called via elf_link_hash_traverse, and also calls itself
3098 recursively. */
3099
3100static boolean
3101elf_adjust_dynamic_symbol (h, data)
3102 struct elf_link_hash_entry *h;
3103 PTR data;
3104{
3105 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3106 bfd *dynobj;
3107 struct elf_backend_data *bed;
3108
3109 /* Ignore indirect symbols. These are added by the versioning code. */
3110 if (h->root.type == bfd_link_hash_indirect)
3111 return true;
3112
3113 /* Fix the symbol flags. */
3114 if (! elf_fix_symbol_flags (h, eif))
3115 return false;
3116
3117 /* If this symbol does not require a PLT entry, and it is not
3118 defined by a dynamic object, or is not referenced by a regular
3119 object, ignore it. We do have to handle a weak defined symbol,
3120 even if no regular object refers to it, if we decided to add it
3121 to the dynamic symbol table. FIXME: Do we normally need to worry
3122 about symbols which are defined by one dynamic object and
3123 referenced by another one? */
3124 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
3125 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3126 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3127 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
3128 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
3129 {
3130 h->plt.offset = (bfd_vma) -1;
3131 return true;
3132 }
3133
3134 /* If we've already adjusted this symbol, don't do it again. This
3135 can happen via a recursive call. */
3136 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
3137 return true;
3138
3139 /* Don't look at this symbol again. Note that we must set this
3140 after checking the above conditions, because we may look at a
3141 symbol once, decide not to do anything, and then get called
3142 recursively later after REF_REGULAR is set below. */
3143 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
3144
3145 /* If this is a weak definition, and we know a real definition, and
3146 the real symbol is not itself defined by a regular object file,
3147 then get a good value for the real definition. We handle the
3148 real symbol first, for the convenience of the backend routine.
3149
3150 Note that there is a confusing case here. If the real definition
3151 is defined by a regular object file, we don't get the real symbol
3152 from the dynamic object, but we do get the weak symbol. If the
3153 processor backend uses a COPY reloc, then if some routine in the
3154 dynamic object changes the real symbol, we will not see that
3155 change in the corresponding weak symbol. This is the way other
3156 ELF linkers work as well, and seems to be a result of the shared
3157 library model.
3158
3159 I will clarify this issue. Most SVR4 shared libraries define the
3160 variable _timezone and define timezone as a weak synonym. The
3161 tzset call changes _timezone. If you write
3162 extern int timezone;
3163 int _timezone = 5;
3164 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3165 you might expect that, since timezone is a synonym for _timezone,
3166 the same number will print both times. However, if the processor
3167 backend uses a COPY reloc, then actually timezone will be copied
3168 into your process image, and, since you define _timezone
3169 yourself, _timezone will not. Thus timezone and _timezone will
3170 wind up at different memory locations. The tzset call will set
3171 _timezone, leaving timezone unchanged. */
3172
3173 if (h->weakdef != NULL)
3174 {
3175 struct elf_link_hash_entry *weakdef;
3176
3177 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3178 || h->root.type == bfd_link_hash_defweak);
3179 weakdef = h->weakdef;
3180 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
3181 || weakdef->root.type == bfd_link_hash_defweak);
3182 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
3183 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3184 {
3185 /* This symbol is defined by a regular object file, so we
3186 will not do anything special. Clear weakdef for the
3187 convenience of the processor backend. */
3188 h->weakdef = NULL;
3189 }
3190 else
3191 {
3192 /* There is an implicit reference by a regular object file
3193 via the weak symbol. */
3194 weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
3195 if (h->weakdef->elf_link_hash_flags
3196 & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
3197 weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
3198 if (! elf_adjust_dynamic_symbol (weakdef, (PTR) eif))
3199 return false;
3200 }
3201 }
3202
3203 /* If a symbol has no type and no size and does not require a PLT
3204 entry, then we are probably about to do the wrong thing here: we
3205 are probably going to create a COPY reloc for an empty object.
3206 This case can arise when a shared object is built with assembly
3207 code, and the assembly code fails to set the symbol type. */
3208 if (h->size == 0
3209 && h->type == STT_NOTYPE
3210 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
3211 (*_bfd_error_handler)
3212 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3213 h->root.root.string);
3214
3215 dynobj = elf_hash_table (eif->info)->dynobj;
3216 bed = get_elf_backend_data (dynobj);
3217 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3218 {
3219 eif->failed = true;
3220 return false;
3221 }
3222
3223 return true;
3224}
3225\f
3226/* This routine is used to export all defined symbols into the dynamic
3227 symbol table. It is called via elf_link_hash_traverse. */
3228
3229static boolean
3230elf_export_symbol (h, data)
3231 struct elf_link_hash_entry *h;
3232 PTR data;
3233{
3234 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3235
3236 /* Ignore indirect symbols. These are added by the versioning code. */
3237 if (h->root.type == bfd_link_hash_indirect)
3238 return true;
3239
3240 if (h->dynindx == -1
3241 && (h->elf_link_hash_flags
3242 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
3243 {
3244 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3245 {
3246 eif->failed = true;
3247 return false;
3248 }
3249 }
3250
3251 return true;
3252}
3253\f
3254/* Look through the symbols which are defined in other shared
3255 libraries and referenced here. Update the list of version
3256 dependencies. This will be put into the .gnu.version_r section.
3257 This function is called via elf_link_hash_traverse. */
3258
3259static boolean
3260elf_link_find_version_dependencies (h, data)
3261 struct elf_link_hash_entry *h;
3262 PTR data;
3263{
3264 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
3265 Elf_Internal_Verneed *t;
3266 Elf_Internal_Vernaux *a;
3267
3268 /* We only care about symbols defined in shared objects with version
3269 information. */
3270 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3271 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3272 || h->dynindx == -1
3273 || h->verinfo.verdef == NULL)
3274 return true;
3275
3276 /* See if we already know about this version. */
3277 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
3278 {
3279 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
3280 continue;
3281
3282 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3283 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
3284 return true;
3285
3286 break;
3287 }
3288
3289 /* This is a new version. Add it to tree we are building. */
3290
3291 if (t == NULL)
3292 {
3293 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, sizeof *t);
3294 if (t == NULL)
3295 {
3296 rinfo->failed = true;
3297 return false;
3298 }
3299
3300 t->vn_bfd = h->verinfo.verdef->vd_bfd;
3301 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
3302 elf_tdata (rinfo->output_bfd)->verref = t;
3303 }
3304
3305 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, sizeof *a);
3306
3307 /* Note that we are copying a string pointer here, and testing it
3308 above. If bfd_elf_string_from_elf_section is ever changed to
3309 discard the string data when low in memory, this will have to be
3310 fixed. */
3311 a->vna_nodename = h->verinfo.verdef->vd_nodename;
3312
3313 a->vna_flags = h->verinfo.verdef->vd_flags;
3314 a->vna_nextptr = t->vn_auxptr;
3315
3316 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
3317 ++rinfo->vers;
3318
3319 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
3320
3321 t->vn_auxptr = a;
3322
3323 return true;
3324}
3325
3326/* Figure out appropriate versions for all the symbols. We may not
3327 have the version number script until we have read all of the input
3328 files, so until that point we don't know which symbols should be
3329 local. This function is called via elf_link_hash_traverse. */
3330
3331static boolean
3332elf_link_assign_sym_version (h, data)
3333 struct elf_link_hash_entry *h;
3334 PTR data;
3335{
3336 struct elf_assign_sym_version_info *sinfo =
3337 (struct elf_assign_sym_version_info *) data;
3338 struct bfd_link_info *info = sinfo->info;
3339 struct elf_info_failed eif;
3340 char *p;
3341
3342 /* Fix the symbol flags. */
3343 eif.failed = false;
3344 eif.info = info;
3345 if (! elf_fix_symbol_flags (h, &eif))
3346 {
3347 if (eif.failed)
3348 sinfo->failed = true;
3349 return false;
3350 }
3351
3352 /* We only need version numbers for symbols defined in regular
3353 objects. */
3354 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3355 return true;
3356
3357 p = strchr (h->root.root.string, ELF_VER_CHR);
3358 if (p != NULL && h->verinfo.vertree == NULL)
3359 {
3360 struct bfd_elf_version_tree *t;
3361 boolean hidden;
3362
3363 hidden = true;
3364
3365 /* There are two consecutive ELF_VER_CHR characters if this is
3366 not a hidden symbol. */
3367 ++p;
3368 if (*p == ELF_VER_CHR)
3369 {
3370 hidden = false;
3371 ++p;
3372 }
3373
3374 /* If there is no version string, we can just return out. */
3375 if (*p == '\0')
3376 {
3377 if (hidden)
3378 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3379 return true;
3380 }
3381
3382 /* Look for the version. If we find it, it is no longer weak. */
3383 for (t = sinfo->verdefs; t != NULL; t = t->next)
3384 {
3385 if (strcmp (t->name, p) == 0)
3386 {
3387 int len;
3388 char *alc;
3389 struct bfd_elf_version_expr *d;
3390
3391 len = p - h->root.root.string;
3392 alc = bfd_alloc (sinfo->output_bfd, len);
3393 if (alc == NULL)
3394 return false;
3395 strncpy (alc, h->root.root.string, len - 1);
3396 alc[len - 1] = '\0';
3397 if (alc[len - 2] == ELF_VER_CHR)
3398 alc[len - 2] = '\0';
3399
3400 h->verinfo.vertree = t;
3401 t->used = true;
3402 d = NULL;
3403
3404 if (t->globals != NULL)
3405 {
3406 for (d = t->globals; d != NULL; d = d->next)
3407 if ((*d->match) (d, alc))
3408 break;
3409 }
3410
3411 /* See if there is anything to force this symbol to
3412 local scope. */
3413 if (d == NULL && t->locals != NULL)
3414 {
3415 for (d = t->locals; d != NULL; d = d->next)
3416 {
3417 if ((*d->match) (d, alc))
3418 {
3419 if (h->dynindx != -1
3420 && info->shared
3421 && ! sinfo->export_dynamic)
3422 {
3423 sinfo->removed_dynamic = true;
3424 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3425 h->elf_link_hash_flags &=~
3426 ELF_LINK_HASH_NEEDS_PLT;
3427 h->dynindx = -1;
3428 h->plt.offset = (bfd_vma) -1;
3429 /* FIXME: The name of the symbol has
3430 already been recorded in the dynamic
3431 string table section. */
3432 }
3433
3434 break;
3435 }
3436 }
3437 }
3438
3439 bfd_release (sinfo->output_bfd, alc);
3440 break;
3441 }
3442 }
3443
3444 /* If we are building an application, we need to create a
3445 version node for this version. */
3446 if (t == NULL && ! info->shared)
3447 {
3448 struct bfd_elf_version_tree **pp;
3449 int version_index;
3450
3451 /* If we aren't going to export this symbol, we don't need
3452 to worry about it. */
3453 if (h->dynindx == -1)
3454 return true;
3455
3456 t = ((struct bfd_elf_version_tree *)
3457 bfd_alloc (sinfo->output_bfd, sizeof *t));
3458 if (t == NULL)
3459 {
3460 sinfo->failed = true;
3461 return false;
3462 }
3463
3464 t->next = NULL;
3465 t->name = p;
3466 t->globals = NULL;
3467 t->locals = NULL;
3468 t->deps = NULL;
3469 t->name_indx = (unsigned int) -1;
3470 t->used = true;
3471
3472 version_index = 1;
3473 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
3474 ++version_index;
3475 t->vernum = version_index;
3476
3477 *pp = t;
3478
3479 h->verinfo.vertree = t;
3480 }
3481 else if (t == NULL)
3482 {
3483 /* We could not find the version for a symbol when
3484 generating a shared archive. Return an error. */
3485 (*_bfd_error_handler)
3486 (_("%s: undefined versioned symbol name %s"),
3487 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
3488 bfd_set_error (bfd_error_bad_value);
3489 sinfo->failed = true;
3490 return false;
3491 }
3492
3493 if (hidden)
3494 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3495 }
3496
3497 /* If we don't have a version for this symbol, see if we can find
3498 something. */
3499 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
3500 {
3501 struct bfd_elf_version_tree *t;
3502 struct bfd_elf_version_tree *deflt;
3503 struct bfd_elf_version_expr *d;
3504
3505 /* See if can find what version this symbol is in. If the
3506 symbol is supposed to be local, then don't actually register
3507 it. */
3508 deflt = NULL;
3509 for (t = sinfo->verdefs; t != NULL; t = t->next)
3510 {
3511 if (t->globals != NULL)
3512 {
3513 for (d = t->globals; d != NULL; d = d->next)
3514 {
3515 if ((*d->match) (d, h->root.root.string))
3516 {
3517 h->verinfo.vertree = t;
3518 break;
3519 }
3520 }
3521
3522 if (d != NULL)
3523 break;
3524 }
3525
3526 if (t->locals != NULL)
3527 {
3528 for (d = t->locals; d != NULL; d = d->next)
3529 {
3530 if (d->pattern[0] == '*' && d->pattern[1] == '\0')
3531 deflt = t;
3532 else if ((*d->match) (d, h->root.root.string))
3533 {
3534 h->verinfo.vertree = t;
3535 if (h->dynindx != -1
3536 && info->shared
3537 && ! sinfo->export_dynamic)
3538 {
3539 sinfo->removed_dynamic = true;
3540 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3541 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3542 h->dynindx = -1;
3543 h->plt.offset = (bfd_vma) -1;
3544 /* FIXME: The name of the symbol has already
3545 been recorded in the dynamic string table
3546 section. */
3547 }
3548 break;
3549 }
3550 }
3551
3552 if (d != NULL)
3553 break;
3554 }
3555 }
3556
3557 if (deflt != NULL && h->verinfo.vertree == NULL)
3558 {
3559 h->verinfo.vertree = deflt;
3560 if (h->dynindx != -1
3561 && info->shared
3562 && ! sinfo->export_dynamic)
3563 {
3564 sinfo->removed_dynamic = true;
3565 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3566 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3567 h->dynindx = -1;
3568 h->plt.offset = (bfd_vma) -1;
3569 /* FIXME: The name of the symbol has already been
3570 recorded in the dynamic string table section. */
3571 }
3572 }
3573 }
3574
3575 return true;
3576}
3577
3578/* This function is used to renumber the dynamic symbols, if some of
3579 them are removed because they are marked as local. This is called
3580 via elf_link_hash_traverse. */
3581
3582static boolean
3583elf_link_renumber_dynsyms (h, data)
3584 struct elf_link_hash_entry *h;
3585 PTR data;
3586{
3587 struct bfd_link_info *info = (struct bfd_link_info *) data;
3588
3589 if (h->dynindx != -1)
3590 {
3591 h->dynindx = elf_hash_table (info)->dynsymcount;
3592 ++elf_hash_table (info)->dynsymcount;
3593 }
3594
3595 return true;
3596}
3597\f
3598/* Final phase of ELF linker. */
3599
3600/* A structure we use to avoid passing large numbers of arguments. */
3601
3602struct elf_final_link_info
3603{
3604 /* General link information. */
3605 struct bfd_link_info *info;
3606 /* Output BFD. */
3607 bfd *output_bfd;
3608 /* Symbol string table. */
3609 struct bfd_strtab_hash *symstrtab;
3610 /* .dynsym section. */
3611 asection *dynsym_sec;
3612 /* .hash section. */
3613 asection *hash_sec;
3614 /* symbol version section (.gnu.version). */
3615 asection *symver_sec;
3616 /* Buffer large enough to hold contents of any section. */
3617 bfd_byte *contents;
3618 /* Buffer large enough to hold external relocs of any section. */
3619 PTR external_relocs;
3620 /* Buffer large enough to hold internal relocs of any section. */
3621 Elf_Internal_Rela *internal_relocs;
3622 /* Buffer large enough to hold external local symbols of any input
3623 BFD. */
3624 Elf_External_Sym *external_syms;
3625 /* Buffer large enough to hold internal local symbols of any input
3626 BFD. */
3627 Elf_Internal_Sym *internal_syms;
3628 /* Array large enough to hold a symbol index for each local symbol
3629 of any input BFD. */
3630 long *indices;
3631 /* Array large enough to hold a section pointer for each local
3632 symbol of any input BFD. */
3633 asection **sections;
3634 /* Buffer to hold swapped out symbols. */
3635 Elf_External_Sym *symbuf;
3636 /* Number of swapped out symbols in buffer. */
3637 size_t symbuf_count;
3638 /* Number of symbols which fit in symbuf. */
3639 size_t symbuf_size;
3640};
3641
3642static boolean elf_link_output_sym
3643 PARAMS ((struct elf_final_link_info *, const char *,
3644 Elf_Internal_Sym *, asection *));
3645static boolean elf_link_flush_output_syms
3646 PARAMS ((struct elf_final_link_info *));
3647static boolean elf_link_output_extsym
3648 PARAMS ((struct elf_link_hash_entry *, PTR));
3649static boolean elf_link_input_bfd
3650 PARAMS ((struct elf_final_link_info *, bfd *));
3651static boolean elf_reloc_link_order
3652 PARAMS ((bfd *, struct bfd_link_info *, asection *,
3653 struct bfd_link_order *));
3654
3655/* This struct is used to pass information to elf_link_output_extsym. */
3656
3657struct elf_outext_info
3658{
3659 boolean failed;
3660 boolean localsyms;
3661 struct elf_final_link_info *finfo;
3662};
3663
3664/* Do the final step of an ELF link. */
3665
3666boolean
3667elf_bfd_final_link (abfd, info)
3668 bfd *abfd;
3669 struct bfd_link_info *info;
3670{
3671 boolean dynamic;
3672 bfd *dynobj;
3673 struct elf_final_link_info finfo;
3674 register asection *o;
3675 register struct bfd_link_order *p;
3676 register bfd *sub;
3677 size_t max_contents_size;
3678 size_t max_external_reloc_size;
3679 size_t max_internal_reloc_count;
3680 size_t max_sym_count;
3681 file_ptr off;
3682 Elf_Internal_Sym elfsym;
3683 unsigned int i;
3684 Elf_Internal_Shdr *symtab_hdr;
3685 Elf_Internal_Shdr *symstrtab_hdr;
3686 struct elf_backend_data *bed = get_elf_backend_data (abfd);
3687 struct elf_outext_info eoinfo;
3688
3689 if (info->shared)
3690 abfd->flags |= DYNAMIC;
3691
3692 dynamic = elf_hash_table (info)->dynamic_sections_created;
3693 dynobj = elf_hash_table (info)->dynobj;
3694
3695 finfo.info = info;
3696 finfo.output_bfd = abfd;
3697 finfo.symstrtab = elf_stringtab_init ();
3698 if (finfo.symstrtab == NULL)
3699 return false;
3700
3701 if (! dynamic)
3702 {
3703 finfo.dynsym_sec = NULL;
3704 finfo.hash_sec = NULL;
3705 finfo.symver_sec = NULL;
3706 }
3707 else
3708 {
3709 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
3710 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
3711 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
3712 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
3713 /* Note that it is OK if symver_sec is NULL. */
3714 }
3715
3716 finfo.contents = NULL;
3717 finfo.external_relocs = NULL;
3718 finfo.internal_relocs = NULL;
3719 finfo.external_syms = NULL;
3720 finfo.internal_syms = NULL;
3721 finfo.indices = NULL;
3722 finfo.sections = NULL;
3723 finfo.symbuf = NULL;
3724 finfo.symbuf_count = 0;
3725
3726 /* Count up the number of relocations we will output for each output
3727 section, so that we know the sizes of the reloc sections. We
3728 also figure out some maximum sizes. */
3729 max_contents_size = 0;
3730 max_external_reloc_size = 0;
3731 max_internal_reloc_count = 0;
3732 max_sym_count = 0;
3733 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
3734 {
3735 o->reloc_count = 0;
3736
3737 for (p = o->link_order_head; p != NULL; p = p->next)
3738 {
3739 if (p->type == bfd_section_reloc_link_order
3740 || p->type == bfd_symbol_reloc_link_order)
3741 ++o->reloc_count;
3742 else if (p->type == bfd_indirect_link_order)
3743 {
3744 asection *sec;
3745
3746 sec = p->u.indirect.section;
3747
3748 /* Mark all sections which are to be included in the
3749 link. This will normally be every section. We need
3750 to do this so that we can identify any sections which
3751 the linker has decided to not include. */
3752 sec->linker_mark = true;
3753
3754 if (info->relocateable)
3755 o->reloc_count += sec->reloc_count;
3756
3757 if (sec->_raw_size > max_contents_size)
3758 max_contents_size = sec->_raw_size;
3759 if (sec->_cooked_size > max_contents_size)
3760 max_contents_size = sec->_cooked_size;
3761
3762 /* We are interested in just local symbols, not all
3763 symbols. */
3764 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
3765 && (sec->owner->flags & DYNAMIC) == 0)
3766 {
3767 size_t sym_count;
3768
3769 if (elf_bad_symtab (sec->owner))
3770 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
3771 / sizeof (Elf_External_Sym));
3772 else
3773 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
3774
3775 if (sym_count > max_sym_count)
3776 max_sym_count = sym_count;
3777
3778 if ((sec->flags & SEC_RELOC) != 0)
3779 {
3780 size_t ext_size;
3781
3782 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
3783 if (ext_size > max_external_reloc_size)
3784 max_external_reloc_size = ext_size;
3785 if (sec->reloc_count > max_internal_reloc_count)
3786 max_internal_reloc_count = sec->reloc_count;
3787 }
3788 }
3789 }
3790 }
3791
3792 if (o->reloc_count > 0)
3793 o->flags |= SEC_RELOC;
3794 else
3795 {
3796 /* Explicitly clear the SEC_RELOC flag. The linker tends to
3797 set it (this is probably a bug) and if it is set
3798 assign_section_numbers will create a reloc section. */
3799 o->flags &=~ SEC_RELOC;
3800 }
3801
3802 /* If the SEC_ALLOC flag is not set, force the section VMA to
3803 zero. This is done in elf_fake_sections as well, but forcing
3804 the VMA to 0 here will ensure that relocs against these
3805 sections are handled correctly. */
3806 if ((o->flags & SEC_ALLOC) == 0
3807 && ! o->user_set_vma)
3808 o->vma = 0;
3809 }
3810
3811 /* Figure out the file positions for everything but the symbol table
3812 and the relocs. We set symcount to force assign_section_numbers
3813 to create a symbol table. */
3814 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
3815 BFD_ASSERT (! abfd->output_has_begun);
3816 if (! _bfd_elf_compute_section_file_positions (abfd, info))
3817 goto error_return;
3818
3819 /* That created the reloc sections. Set their sizes, and assign
3820 them file positions, and allocate some buffers. */
3821 for (o = abfd->sections; o != NULL; o = o->next)
3822 {
3823 if ((o->flags & SEC_RELOC) != 0)
3824 {
3825 Elf_Internal_Shdr *rel_hdr;
3826 register struct elf_link_hash_entry **p, **pend;
3827
3828 rel_hdr = &elf_section_data (o)->rel_hdr;
3829
3830 rel_hdr->sh_size = rel_hdr->sh_entsize * o->reloc_count;
3831
3832 /* The contents field must last into write_object_contents,
3833 so we allocate it with bfd_alloc rather than malloc. */
3834 rel_hdr->contents = (PTR) bfd_alloc (abfd, rel_hdr->sh_size);
3835 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
3836 goto error_return;
3837
3838 p = ((struct elf_link_hash_entry **)
3839 bfd_malloc (o->reloc_count
3840 * sizeof (struct elf_link_hash_entry *)));
3841 if (p == NULL && o->reloc_count != 0)
3842 goto error_return;
3843 elf_section_data (o)->rel_hashes = p;
3844 pend = p + o->reloc_count;
3845 for (; p < pend; p++)
3846 *p = NULL;
3847
3848 /* Use the reloc_count field as an index when outputting the
3849 relocs. */
3850 o->reloc_count = 0;
3851 }
3852 }
3853
3854 _bfd_elf_assign_file_positions_for_relocs (abfd);
3855
3856 /* We have now assigned file positions for all the sections except
3857 .symtab and .strtab. We start the .symtab section at the current
3858 file position, and write directly to it. We build the .strtab
3859 section in memory. */
3860 bfd_get_symcount (abfd) = 0;
3861 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
3862 /* sh_name is set in prep_headers. */
3863 symtab_hdr->sh_type = SHT_SYMTAB;
3864 symtab_hdr->sh_flags = 0;
3865 symtab_hdr->sh_addr = 0;
3866 symtab_hdr->sh_size = 0;
3867 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
3868 /* sh_link is set in assign_section_numbers. */
3869 /* sh_info is set below. */
3870 /* sh_offset is set just below. */
3871 symtab_hdr->sh_addralign = 4; /* FIXME: system dependent? */
3872
3873 off = elf_tdata (abfd)->next_file_pos;
3874 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
3875
3876 /* Note that at this point elf_tdata (abfd)->next_file_pos is
3877 incorrect. We do not yet know the size of the .symtab section.
3878 We correct next_file_pos below, after we do know the size. */
3879
3880 /* Allocate a buffer to hold swapped out symbols. This is to avoid
3881 continuously seeking to the right position in the file. */
3882 if (! info->keep_memory || max_sym_count < 20)
3883 finfo.symbuf_size = 20;
3884 else
3885 finfo.symbuf_size = max_sym_count;
3886 finfo.symbuf = ((Elf_External_Sym *)
3887 bfd_malloc (finfo.symbuf_size * sizeof (Elf_External_Sym)));
3888 if (finfo.symbuf == NULL)
3889 goto error_return;
3890
3891 /* Start writing out the symbol table. The first symbol is always a
3892 dummy symbol. */
3893 if (info->strip != strip_all || info->relocateable)
3894 {
3895 elfsym.st_value = 0;
3896 elfsym.st_size = 0;
3897 elfsym.st_info = 0;
3898 elfsym.st_other = 0;
3899 elfsym.st_shndx = SHN_UNDEF;
3900 if (! elf_link_output_sym (&finfo, (const char *) NULL,
3901 &elfsym, bfd_und_section_ptr))
3902 goto error_return;
3903 }
3904
3905#if 0
3906 /* Some standard ELF linkers do this, but we don't because it causes
3907 bootstrap comparison failures. */
3908 /* Output a file symbol for the output file as the second symbol.
3909 We output this even if we are discarding local symbols, although
3910 I'm not sure if this is correct. */
3911 elfsym.st_value = 0;
3912 elfsym.st_size = 0;
3913 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
3914 elfsym.st_other = 0;
3915 elfsym.st_shndx = SHN_ABS;
3916 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
3917 &elfsym, bfd_abs_section_ptr))
3918 goto error_return;
3919#endif
3920
3921 /* Output a symbol for each section. We output these even if we are
3922 discarding local symbols, since they are used for relocs. These
3923 symbols have no names. We store the index of each one in the
3924 index field of the section, so that we can find it again when
3925 outputting relocs. */
3926 if (info->strip != strip_all || info->relocateable)
3927 {
3928 elfsym.st_size = 0;
3929 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
3930 elfsym.st_other = 0;
3931 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
3932 {
3933 o = section_from_elf_index (abfd, i);
3934 if (o != NULL)
3935 o->target_index = bfd_get_symcount (abfd);
3936 elfsym.st_shndx = i;
3937 if (info->relocateable || o == NULL)
3938 elfsym.st_value = 0;
3939 else
3940 elfsym.st_value = o->vma;
3941 if (! elf_link_output_sym (&finfo, (const char *) NULL,
3942 &elfsym, o))
3943 goto error_return;
3944 }
3945 }
3946
3947 /* Allocate some memory to hold information read in from the input
3948 files. */
3949 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
3950 finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
3951 finfo.internal_relocs = ((Elf_Internal_Rela *)
3952 bfd_malloc (max_internal_reloc_count
3953 * sizeof (Elf_Internal_Rela)));
3954 finfo.external_syms = ((Elf_External_Sym *)
3955 bfd_malloc (max_sym_count
3956 * sizeof (Elf_External_Sym)));
3957 finfo.internal_syms = ((Elf_Internal_Sym *)
3958 bfd_malloc (max_sym_count
3959 * sizeof (Elf_Internal_Sym)));
3960 finfo.indices = (long *) bfd_malloc (max_sym_count * sizeof (long));
3961 finfo.sections = ((asection **)
3962 bfd_malloc (max_sym_count * sizeof (asection *)));
3963 if ((finfo.contents == NULL && max_contents_size != 0)
3964 || (finfo.external_relocs == NULL && max_external_reloc_size != 0)
3965 || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0)
3966 || (finfo.external_syms == NULL && max_sym_count != 0)
3967 || (finfo.internal_syms == NULL && max_sym_count != 0)
3968 || (finfo.indices == NULL && max_sym_count != 0)
3969 || (finfo.sections == NULL && max_sym_count != 0))
3970 goto error_return;
3971
3972 /* Since ELF permits relocations to be against local symbols, we
3973 must have the local symbols available when we do the relocations.
3974 Since we would rather only read the local symbols once, and we
3975 would rather not keep them in memory, we handle all the
3976 relocations for a single input file at the same time.
3977
3978 Unfortunately, there is no way to know the total number of local
3979 symbols until we have seen all of them, and the local symbol
3980 indices precede the global symbol indices. This means that when
3981 we are generating relocateable output, and we see a reloc against
3982 a global symbol, we can not know the symbol index until we have
3983 finished examining all the local symbols to see which ones we are
3984 going to output. To deal with this, we keep the relocations in
3985 memory, and don't output them until the end of the link. This is
3986 an unfortunate waste of memory, but I don't see a good way around
3987 it. Fortunately, it only happens when performing a relocateable
3988 link, which is not the common case. FIXME: If keep_memory is set
3989 we could write the relocs out and then read them again; I don't
3990 know how bad the memory loss will be. */
3991
3992 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
3993 sub->output_has_begun = false;
3994 for (o = abfd->sections; o != NULL; o = o->next)
3995 {
3996 for (p = o->link_order_head; p != NULL; p = p->next)
3997 {
3998 if (p->type == bfd_indirect_link_order
3999 && (bfd_get_flavour (p->u.indirect.section->owner)
4000 == bfd_target_elf_flavour))
4001 {
4002 sub = p->u.indirect.section->owner;
4003 if (! sub->output_has_begun)
4004 {
4005 if (! elf_link_input_bfd (&finfo, sub))
4006 goto error_return;
4007 sub->output_has_begun = true;
4008 }
4009 }
4010 else if (p->type == bfd_section_reloc_link_order
4011 || p->type == bfd_symbol_reloc_link_order)
4012 {
4013 if (! elf_reloc_link_order (abfd, info, o, p))
4014 goto error_return;
4015 }
4016 else
4017 {
4018 if (! _bfd_default_link_order (abfd, info, o, p))
4019 goto error_return;
4020 }
4021 }
4022 }
4023
4024 /* That wrote out all the local symbols. Finish up the symbol table
4025 with the global symbols. */
4026
4027 if (info->strip != strip_all && info->shared)
4028 {
4029 /* Output any global symbols that got converted to local in a
4030 version script. We do this in a separate step since ELF
4031 requires all local symbols to appear prior to any global
4032 symbols. FIXME: We should only do this if some global
4033 symbols were, in fact, converted to become local. FIXME:
4034 Will this work correctly with the Irix 5 linker? */
4035 eoinfo.failed = false;
4036 eoinfo.finfo = &finfo;
4037 eoinfo.localsyms = true;
4038 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4039 (PTR) &eoinfo);
4040 if (eoinfo.failed)
4041 return false;
4042 }
4043
4044 /* The sh_info field records the index of the first non local
4045 symbol. */
4046 symtab_hdr->sh_info = bfd_get_symcount (abfd);
4047 if (dynamic)
4048 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info = 1;
4049
4050 /* We get the global symbols from the hash table. */
4051 eoinfo.failed = false;
4052 eoinfo.localsyms = false;
4053 eoinfo.finfo = &finfo;
4054 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4055 (PTR) &eoinfo);
4056 if (eoinfo.failed)
4057 return false;
4058
4059 /* Flush all symbols to the file. */
4060 if (! elf_link_flush_output_syms (&finfo))
4061 return false;
4062
4063 /* Now we know the size of the symtab section. */
4064 off += symtab_hdr->sh_size;
4065
4066 /* Finish up and write out the symbol string table (.strtab)
4067 section. */
4068 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
4069 /* sh_name was set in prep_headers. */
4070 symstrtab_hdr->sh_type = SHT_STRTAB;
4071 symstrtab_hdr->sh_flags = 0;
4072 symstrtab_hdr->sh_addr = 0;
4073 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
4074 symstrtab_hdr->sh_entsize = 0;
4075 symstrtab_hdr->sh_link = 0;
4076 symstrtab_hdr->sh_info = 0;
4077 /* sh_offset is set just below. */
4078 symstrtab_hdr->sh_addralign = 1;
4079
4080 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
4081 elf_tdata (abfd)->next_file_pos = off;
4082
4083 if (bfd_get_symcount (abfd) > 0)
4084 {
4085 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
4086 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
4087 return false;
4088 }
4089
4090 /* Adjust the relocs to have the correct symbol indices. */
4091 for (o = abfd->sections; o != NULL; o = o->next)
4092 {
4093 struct elf_link_hash_entry **rel_hash;
4094 Elf_Internal_Shdr *rel_hdr;
4095
4096 if ((o->flags & SEC_RELOC) == 0)
4097 continue;
4098
4099 rel_hash = elf_section_data (o)->rel_hashes;
4100 rel_hdr = &elf_section_data (o)->rel_hdr;
4101 for (i = 0; i < o->reloc_count; i++, rel_hash++)
4102 {
4103 if (*rel_hash == NULL)
4104 continue;
4105
4106 BFD_ASSERT ((*rel_hash)->indx >= 0);
4107
4108 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
4109 {
4110 Elf_External_Rel *erel;
4111 Elf_Internal_Rel irel;
4112
4113 erel = (Elf_External_Rel *) rel_hdr->contents + i;
4114 elf_swap_reloc_in (abfd, erel, &irel);
4115 irel.r_info = ELF_R_INFO ((*rel_hash)->indx,
4116 ELF_R_TYPE (irel.r_info));
4117 elf_swap_reloc_out (abfd, &irel, erel);
4118 }
4119 else
4120 {
4121 Elf_External_Rela *erela;
4122 Elf_Internal_Rela irela;
4123
4124 BFD_ASSERT (rel_hdr->sh_entsize
4125 == sizeof (Elf_External_Rela));
4126
4127 erela = (Elf_External_Rela *) rel_hdr->contents + i;
4128 elf_swap_reloca_in (abfd, erela, &irela);
4129 irela.r_info = ELF_R_INFO ((*rel_hash)->indx,
4130 ELF_R_TYPE (irela.r_info));
4131 elf_swap_reloca_out (abfd, &irela, erela);
4132 }
4133 }
4134
4135 /* Set the reloc_count field to 0 to prevent write_relocs from
4136 trying to swap the relocs out itself. */
4137 o->reloc_count = 0;
4138 }
4139
4140 /* If we are linking against a dynamic object, or generating a
4141 shared library, finish up the dynamic linking information. */
4142 if (dynamic)
4143 {
4144 Elf_External_Dyn *dyncon, *dynconend;
4145
4146 /* Fix up .dynamic entries. */
4147 o = bfd_get_section_by_name (dynobj, ".dynamic");
4148 BFD_ASSERT (o != NULL);
4149
4150 dyncon = (Elf_External_Dyn *) o->contents;
4151 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
4152 for (; dyncon < dynconend; dyncon++)
4153 {
4154 Elf_Internal_Dyn dyn;
4155 const char *name;
4156 unsigned int type;
4157
4158 elf_swap_dyn_in (dynobj, dyncon, &dyn);
4159
4160 switch (dyn.d_tag)
4161 {
4162 default:
4163 break;
4164
4165 /* SVR4 linkers seem to set DT_INIT and DT_FINI based on
4166 magic _init and _fini symbols. This is pretty ugly,
4167 but we are compatible. */
4168 case DT_INIT:
4169 name = "_init";
4170 goto get_sym;
4171 case DT_FINI:
4172 name = "_fini";
4173 get_sym:
4174 {
4175 struct elf_link_hash_entry *h;
4176
4177 h = elf_link_hash_lookup (elf_hash_table (info), name,
4178 false, false, true);
4179 if (h != NULL
4180 && (h->root.type == bfd_link_hash_defined
4181 || h->root.type == bfd_link_hash_defweak))
4182 {
4183 dyn.d_un.d_val = h->root.u.def.value;
4184 o = h->root.u.def.section;
4185 if (o->output_section != NULL)
4186 dyn.d_un.d_val += (o->output_section->vma
4187 + o->output_offset);
4188 else
4189 {
4190 /* The symbol is imported from another shared
4191 library and does not apply to this one. */
4192 dyn.d_un.d_val = 0;
4193 }
4194
4195 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4196 }
4197 }
4198 break;
4199
4200 case DT_HASH:
4201 name = ".hash";
4202 goto get_vma;
4203 case DT_STRTAB:
4204 name = ".dynstr";
4205 goto get_vma;
4206 case DT_SYMTAB:
4207 name = ".dynsym";
4208 goto get_vma;
4209 case DT_VERDEF:
4210 name = ".gnu.version_d";
4211 goto get_vma;
4212 case DT_VERNEED:
4213 name = ".gnu.version_r";
4214 goto get_vma;
4215 case DT_VERSYM:
4216 name = ".gnu.version";
4217 get_vma:
4218 o = bfd_get_section_by_name (abfd, name);
4219 BFD_ASSERT (o != NULL);
4220 dyn.d_un.d_ptr = o->vma;
4221 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4222 break;
4223
4224 case DT_REL:
4225 case DT_RELA:
4226 case DT_RELSZ:
4227 case DT_RELASZ:
4228 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
4229 type = SHT_REL;
4230 else
4231 type = SHT_RELA;
4232 dyn.d_un.d_val = 0;
4233 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4234 {
4235 Elf_Internal_Shdr *hdr;
4236
4237 hdr = elf_elfsections (abfd)[i];
4238 if (hdr->sh_type == type
4239 && (hdr->sh_flags & SHF_ALLOC) != 0)
4240 {
4241 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
4242 dyn.d_un.d_val += hdr->sh_size;
4243 else
4244 {
4245 if (dyn.d_un.d_val == 0
4246 || hdr->sh_addr < dyn.d_un.d_val)
4247 dyn.d_un.d_val = hdr->sh_addr;
4248 }
4249 }
4250 }
4251 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4252 break;
4253 }
4254 }
4255 }
4256
4257 /* If we have created any dynamic sections, then output them. */
4258 if (dynobj != NULL)
4259 {
4260 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
4261 goto error_return;
4262
4263 for (o = dynobj->sections; o != NULL; o = o->next)
4264 {
4265 if ((o->flags & SEC_HAS_CONTENTS) == 0
4266 || o->_raw_size == 0)
4267 continue;
4268 if ((o->flags & SEC_LINKER_CREATED) == 0)
4269 {
4270 /* At this point, we are only interested in sections
4271 created by elf_link_create_dynamic_sections. */
4272 continue;
4273 }
4274 if ((elf_section_data (o->output_section)->this_hdr.sh_type
4275 != SHT_STRTAB)
4276 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
4277 {
4278 if (! bfd_set_section_contents (abfd, o->output_section,
4279 o->contents, o->output_offset,
4280 o->_raw_size))
4281 goto error_return;
4282 }
4283 else
4284 {
4285 file_ptr off;
4286
4287 /* The contents of the .dynstr section are actually in a
4288 stringtab. */
4289 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
4290 if (bfd_seek (abfd, off, SEEK_SET) != 0
4291 || ! _bfd_stringtab_emit (abfd,
4292 elf_hash_table (info)->dynstr))
4293 goto error_return;
4294 }
4295 }
4296 }
4297
4298 /* If we have optimized stabs strings, output them. */
4299 if (elf_hash_table (info)->stab_info != NULL)
4300 {
4301 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
4302 goto error_return;
4303 }
4304
4305 if (finfo.symstrtab != NULL)
4306 _bfd_stringtab_free (finfo.symstrtab);
4307 if (finfo.contents != NULL)
4308 free (finfo.contents);
4309 if (finfo.external_relocs != NULL)
4310 free (finfo.external_relocs);
4311 if (finfo.internal_relocs != NULL)
4312 free (finfo.internal_relocs);
4313 if (finfo.external_syms != NULL)
4314 free (finfo.external_syms);
4315 if (finfo.internal_syms != NULL)
4316 free (finfo.internal_syms);
4317 if (finfo.indices != NULL)
4318 free (finfo.indices);
4319 if (finfo.sections != NULL)
4320 free (finfo.sections);
4321 if (finfo.symbuf != NULL)
4322 free (finfo.symbuf);
4323 for (o = abfd->sections; o != NULL; o = o->next)
4324 {
4325 if ((o->flags & SEC_RELOC) != 0
4326 && elf_section_data (o)->rel_hashes != NULL)
4327 free (elf_section_data (o)->rel_hashes);
4328 }
4329
4330 elf_tdata (abfd)->linker = true;
4331
4332 return true;
4333
4334 error_return:
4335 if (finfo.symstrtab != NULL)
4336 _bfd_stringtab_free (finfo.symstrtab);
4337 if (finfo.contents != NULL)
4338 free (finfo.contents);
4339 if (finfo.external_relocs != NULL)
4340 free (finfo.external_relocs);
4341 if (finfo.internal_relocs != NULL)
4342 free (finfo.internal_relocs);
4343 if (finfo.external_syms != NULL)
4344 free (finfo.external_syms);
4345 if (finfo.internal_syms != NULL)
4346 free (finfo.internal_syms);
4347 if (finfo.indices != NULL)
4348 free (finfo.indices);
4349 if (finfo.sections != NULL)
4350 free (finfo.sections);
4351 if (finfo.symbuf != NULL)
4352 free (finfo.symbuf);
4353 for (o = abfd->sections; o != NULL; o = o->next)
4354 {
4355 if ((o->flags & SEC_RELOC) != 0
4356 && elf_section_data (o)->rel_hashes != NULL)
4357 free (elf_section_data (o)->rel_hashes);
4358 }
4359
4360 return false;
4361}
4362
4363/* Add a symbol to the output symbol table. */
4364
4365static boolean
4366elf_link_output_sym (finfo, name, elfsym, input_sec)
4367 struct elf_final_link_info *finfo;
4368 const char *name;
4369 Elf_Internal_Sym *elfsym;
4370 asection *input_sec;
4371{
4372 boolean (*output_symbol_hook) PARAMS ((bfd *,
4373 struct bfd_link_info *info,
4374 const char *,
4375 Elf_Internal_Sym *,
4376 asection *));
4377
4378 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
4379 elf_backend_link_output_symbol_hook;
4380 if (output_symbol_hook != NULL)
4381 {
4382 if (! ((*output_symbol_hook)
4383 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
4384 return false;
4385 }
4386
4387 if (name == (const char *) NULL || *name == '\0')
4388 elfsym->st_name = 0;
4389 else if (input_sec->flags & SEC_EXCLUDE)
4390 elfsym->st_name = 0;
4391 else
4392 {
4393 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
4394 name, true,
4395 false);
4396 if (elfsym->st_name == (unsigned long) -1)
4397 return false;
4398 }
4399
4400 if (finfo->symbuf_count >= finfo->symbuf_size)
4401 {
4402 if (! elf_link_flush_output_syms (finfo))
4403 return false;
4404 }
4405
4406 elf_swap_symbol_out (finfo->output_bfd, elfsym,
4407 (PTR) (finfo->symbuf + finfo->symbuf_count));
4408 ++finfo->symbuf_count;
4409
4410 ++ bfd_get_symcount (finfo->output_bfd);
4411
4412 return true;
4413}
4414
4415/* Flush the output symbols to the file. */
4416
4417static boolean
4418elf_link_flush_output_syms (finfo)
4419 struct elf_final_link_info *finfo;
4420{
4421 if (finfo->symbuf_count > 0)
4422 {
4423 Elf_Internal_Shdr *symtab;
4424
4425 symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr;
4426
4427 if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size,
4428 SEEK_SET) != 0
4429 || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count,
4430 sizeof (Elf_External_Sym), finfo->output_bfd)
4431 != finfo->symbuf_count * sizeof (Elf_External_Sym)))
4432 return false;
4433
4434 symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym);
4435
4436 finfo->symbuf_count = 0;
4437 }
4438
4439 return true;
4440}
4441
4442/* Add an external symbol to the symbol table. This is called from
4443 the hash table traversal routine. When generating a shared object,
4444 we go through the symbol table twice. The first time we output
4445 anything that might have been forced to local scope in a version
4446 script. The second time we output the symbols that are still
4447 global symbols. */
4448
4449static boolean
4450elf_link_output_extsym (h, data)
4451 struct elf_link_hash_entry *h;
4452 PTR data;
4453{
4454 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
4455 struct elf_final_link_info *finfo = eoinfo->finfo;
4456 boolean strip;
4457 Elf_Internal_Sym sym;
4458 asection *input_sec;
4459
4460 /* Decide whether to output this symbol in this pass. */
4461 if (eoinfo->localsyms)
4462 {
4463 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
4464 return true;
4465 }
4466 else
4467 {
4468 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4469 return true;
4470 }
4471
4472 /* If we are not creating a shared library, and this symbol is
4473 referenced by a shared library but is not defined anywhere, then
4474 warn that it is undefined. If we do not do this, the runtime
4475 linker will complain that the symbol is undefined when the
4476 program is run. We don't have to worry about symbols that are
4477 referenced by regular files, because we will already have issued
4478 warnings for them. */
4479 if (! finfo->info->relocateable
4480 && ! (finfo->info->shared
4481 && !finfo->info->symbolic
4482 && !finfo->info->no_undefined)
4483 && h->root.type == bfd_link_hash_undefined
4484 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
4485 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4486 {
4487 if (! ((*finfo->info->callbacks->undefined_symbol)
4488 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
4489 (asection *) NULL, 0)))
4490 {
4491 eoinfo->failed = true;
4492 return false;
4493 }
4494 }
4495
4496 /* We don't want to output symbols that have never been mentioned by
4497 a regular file, or that we have been told to strip. However, if
4498 h->indx is set to -2, the symbol is used by a reloc and we must
4499 output it. */
4500 if (h->indx == -2)
4501 strip = false;
4502 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
4503 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
4504 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
4505 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4506 strip = true;
4507 else if (finfo->info->strip == strip_all
4508 || (finfo->info->strip == strip_some
4509 && bfd_hash_lookup (finfo->info->keep_hash,
4510 h->root.root.string,
4511 false, false) == NULL))
4512 strip = true;
4513 else
4514 strip = false;
4515
4516 /* If we're stripping it, and it's not a dynamic symbol, there's
4517 nothing else to do. */
4518 if (strip && h->dynindx == -1)
4519 return true;
4520
4521 sym.st_value = 0;
4522 sym.st_size = h->size;
4523 sym.st_other = h->other;
4524 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4525 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
4526 else if (h->root.type == bfd_link_hash_undefweak
4527 || h->root.type == bfd_link_hash_defweak)
4528 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
4529 else
4530 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
4531
4532 switch (h->root.type)
4533 {
4534 default:
4535 case bfd_link_hash_new:
4536 abort ();
4537 return false;
4538
4539 case bfd_link_hash_undefined:
4540 input_sec = bfd_und_section_ptr;
4541 sym.st_shndx = SHN_UNDEF;
4542 break;
4543
4544 case bfd_link_hash_undefweak:
4545 input_sec = bfd_und_section_ptr;
4546 sym.st_shndx = SHN_UNDEF;
4547 break;
4548
4549 case bfd_link_hash_defined:
4550 case bfd_link_hash_defweak:
4551 {
4552 input_sec = h->root.u.def.section;
4553 if (input_sec->output_section != NULL)
4554 {
4555 sym.st_shndx =
4556 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
4557 input_sec->output_section);
4558 if (sym.st_shndx == (unsigned short) -1)
4559 {
4560 (*_bfd_error_handler)
4561 (_("%s: could not find output section %s for input section %s"),
4562 bfd_get_filename (finfo->output_bfd),
4563 input_sec->output_section->name,
4564 input_sec->name);
4565 eoinfo->failed = true;
4566 return false;
4567 }
4568
4569 /* ELF symbols in relocateable files are section relative,
4570 but in nonrelocateable files they are virtual
4571 addresses. */
4572 sym.st_value = h->root.u.def.value + input_sec->output_offset;
4573 if (! finfo->info->relocateable)
4574 sym.st_value += input_sec->output_section->vma;
4575 }
4576 else
4577 {
4578 BFD_ASSERT (input_sec->owner == NULL
4579 || (input_sec->owner->flags & DYNAMIC) != 0);
4580 sym.st_shndx = SHN_UNDEF;
4581 input_sec = bfd_und_section_ptr;
4582 }
4583 }
4584 break;
4585
4586 case bfd_link_hash_common:
4587 input_sec = h->root.u.c.p->section;
4588 sym.st_shndx = SHN_COMMON;
4589 sym.st_value = 1 << h->root.u.c.p->alignment_power;
4590 break;
4591
4592 case bfd_link_hash_indirect:
4593 /* These symbols are created by symbol versioning. They point
4594 to the decorated version of the name. For example, if the
4595 symbol foo@@GNU_1.2 is the default, which should be used when
4596 foo is used with no version, then we add an indirect symbol
4597 foo which points to foo@@GNU_1.2. We ignore these symbols,
4598 since the indirected symbol is already in the hash table. If
4599 the indirect symbol is non-ELF, fall through and output it. */
4600 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) == 0)
4601 return true;
4602
4603 /* Fall through. */
4604 case bfd_link_hash_warning:
4605 /* We can't represent these symbols in ELF, although a warning
4606 symbol may have come from a .gnu.warning.SYMBOL section. We
4607 just put the target symbol in the hash table. If the target
4608 symbol does not really exist, don't do anything. */
4609 if (h->root.u.i.link->type == bfd_link_hash_new)
4610 return true;
4611 return (elf_link_output_extsym
4612 ((struct elf_link_hash_entry *) h->root.u.i.link, data));
4613 }
4614
4615 /* Give the processor backend a chance to tweak the symbol value,
4616 and also to finish up anything that needs to be done for this
4617 symbol. */
4618 if ((h->dynindx != -1
4619 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4620 && elf_hash_table (finfo->info)->dynamic_sections_created)
4621 {
4622 struct elf_backend_data *bed;
4623
4624 bed = get_elf_backend_data (finfo->output_bfd);
4625 if (! ((*bed->elf_backend_finish_dynamic_symbol)
4626 (finfo->output_bfd, finfo->info, h, &sym)))
4627 {
4628 eoinfo->failed = true;
4629 return false;
4630 }
4631 }
4632
4633 /* If we are marking the symbol as undefined, and there are no
4634 non-weak references to this symbol from a regular object, then
4635 mark the symbol as weak undefined. We can't do this earlier,
4636 because it might not be marked as undefined until the
4637 finish_dynamic_symbol routine gets through with it. */
4638 if (sym.st_shndx == SHN_UNDEF
4639 && sym.st_info == ELF_ST_INFO (STB_GLOBAL, h->type)
4640 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
4641 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) == 0)
4642 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
4643
4644 /* If this symbol should be put in the .dynsym section, then put it
4645 there now. We have already know the symbol index. We also fill
4646 in the entry in the .hash section. */
4647 if (h->dynindx != -1
4648 && elf_hash_table (finfo->info)->dynamic_sections_created)
4649 {
4650 size_t bucketcount;
4651 size_t bucket;
4652 bfd_byte *bucketpos;
4653 bfd_vma chain;
4654
4655 sym.st_name = h->dynstr_index;
4656
4657 elf_swap_symbol_out (finfo->output_bfd, &sym,
4658 (PTR) (((Elf_External_Sym *)
4659 finfo->dynsym_sec->contents)
4660 + h->dynindx));
4661
4662 bucketcount = elf_hash_table (finfo->info)->bucketcount;
4663 bucket = h->elf_hash_value % bucketcount;
4664 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
4665 + (bucket + 2) * (ARCH_SIZE / 8));
4666 chain = get_word (finfo->output_bfd, bucketpos);
4667 put_word (finfo->output_bfd, h->dynindx, bucketpos);
4668 put_word (finfo->output_bfd, chain,
4669 ((bfd_byte *) finfo->hash_sec->contents
4670 + (bucketcount + 2 + h->dynindx) * (ARCH_SIZE / 8)));
4671
4672 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
4673 {
4674 Elf_Internal_Versym iversym;
4675
4676 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4677 {
4678 if (h->verinfo.verdef == NULL)
4679 iversym.vs_vers = 0;
4680 else
4681 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
4682 }
4683 else
4684 {
4685 if (h->verinfo.vertree == NULL)
4686 iversym.vs_vers = 1;
4687 else
4688 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
4689 }
4690
4691 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
4692 iversym.vs_vers |= VERSYM_HIDDEN;
4693
4694 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym,
4695 (((Elf_External_Versym *)
4696 finfo->symver_sec->contents)
4697 + h->dynindx));
4698 }
4699 }
4700
4701 /* If we're stripping it, then it was just a dynamic symbol, and
4702 there's nothing else to do. */
4703 if (strip)
4704 return true;
4705
4706 h->indx = bfd_get_symcount (finfo->output_bfd);
4707
4708 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
4709 {
4710 eoinfo->failed = true;
4711 return false;
4712 }
4713
4714 return true;
4715}
4716
4717/* Link an input file into the linker output file. This function
4718 handles all the sections and relocations of the input file at once.
4719 This is so that we only have to read the local symbols once, and
4720 don't have to keep them in memory. */
4721
4722static boolean
4723elf_link_input_bfd (finfo, input_bfd)
4724 struct elf_final_link_info *finfo;
4725 bfd *input_bfd;
4726{
4727 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
4728 bfd *, asection *, bfd_byte *,
4729 Elf_Internal_Rela *,
4730 Elf_Internal_Sym *, asection **));
4731 bfd *output_bfd;
4732 Elf_Internal_Shdr *symtab_hdr;
4733 size_t locsymcount;
4734 size_t extsymoff;
4735 Elf_External_Sym *external_syms;
4736 Elf_External_Sym *esym;
4737 Elf_External_Sym *esymend;
4738 Elf_Internal_Sym *isym;
4739 long *pindex;
4740 asection **ppsection;
4741 asection *o;
4742
4743 output_bfd = finfo->output_bfd;
4744 relocate_section =
4745 get_elf_backend_data (output_bfd)->elf_backend_relocate_section;
4746
4747 /* If this is a dynamic object, we don't want to do anything here:
4748 we don't want the local symbols, and we don't want the section
4749 contents. */
4750 if ((input_bfd->flags & DYNAMIC) != 0)
4751 return true;
4752
4753 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4754 if (elf_bad_symtab (input_bfd))
4755 {
4756 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
4757 extsymoff = 0;
4758 }
4759 else
4760 {
4761 locsymcount = symtab_hdr->sh_info;
4762 extsymoff = symtab_hdr->sh_info;
4763 }
4764
4765 /* Read the local symbols. */
4766 if (symtab_hdr->contents != NULL)
4767 external_syms = (Elf_External_Sym *) symtab_hdr->contents;
4768 else if (locsymcount == 0)
4769 external_syms = NULL;
4770 else
4771 {
4772 external_syms = finfo->external_syms;
4773 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
4774 || (bfd_read (external_syms, sizeof (Elf_External_Sym),
4775 locsymcount, input_bfd)
4776 != locsymcount * sizeof (Elf_External_Sym)))
4777 return false;
4778 }
4779
4780 /* Swap in the local symbols and write out the ones which we know
4781 are going into the output file. */
4782 esym = external_syms;
4783 esymend = esym + locsymcount;
4784 isym = finfo->internal_syms;
4785 pindex = finfo->indices;
4786 ppsection = finfo->sections;
4787 for (; esym < esymend; esym++, isym++, pindex++, ppsection++)
4788 {
4789 asection *isec;
4790 const char *name;
4791 Elf_Internal_Sym osym;
4792
4793 elf_swap_symbol_in (input_bfd, esym, isym);
4794 *pindex = -1;
4795
4796 if (elf_bad_symtab (input_bfd))
4797 {
4798 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
4799 {
4800 *ppsection = NULL;
4801 continue;
4802 }
4803 }
4804
4805 if (isym->st_shndx == SHN_UNDEF)
4806 isec = bfd_und_section_ptr;
4807 else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE)
4808 isec = section_from_elf_index (input_bfd, isym->st_shndx);
4809 else if (isym->st_shndx == SHN_ABS)
4810 isec = bfd_abs_section_ptr;
4811 else if (isym->st_shndx == SHN_COMMON)
4812 isec = bfd_com_section_ptr;
4813 else
4814 {
4815 /* Who knows? */
4816 isec = NULL;
4817 }
4818
4819 *ppsection = isec;
4820
4821 /* Don't output the first, undefined, symbol. */
4822 if (esym == external_syms)
4823 continue;
4824
4825 /* If we are stripping all symbols, we don't want to output this
4826 one. */
4827 if (finfo->info->strip == strip_all)
4828 continue;
4829
4830 /* We never output section symbols. Instead, we use the section
4831 symbol of the corresponding section in the output file. */
4832 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4833 continue;
4834
4835 /* If we are discarding all local symbols, we don't want to
4836 output this one. If we are generating a relocateable output
4837 file, then some of the local symbols may be required by
4838 relocs; we output them below as we discover that they are
4839 needed. */
4840 if (finfo->info->discard == discard_all)
4841 continue;
4842
4843 /* If this symbol is defined in a section which we are
4844 discarding, we don't need to keep it, but note that
4845 linker_mark is only reliable for sections that have contents.
4846 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
4847 as well as linker_mark. */
4848 if (isym->st_shndx > 0
4849 && isym->st_shndx < SHN_LORESERVE
4850 && isec != NULL
4851 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
4852 || (! finfo->info->relocateable
4853 && (isec->flags & SEC_EXCLUDE) != 0)))
4854 continue;
4855
4856 /* Get the name of the symbol. */
4857 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
4858 isym->st_name);
4859 if (name == NULL)
4860 return false;
4861
4862 /* See if we are discarding symbols with this name. */
4863 if ((finfo->info->strip == strip_some
4864 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
4865 == NULL))
4866 || (finfo->info->discard == discard_l
4867 && bfd_is_local_label_name (input_bfd, name)))
4868 continue;
4869
4870 /* If we get here, we are going to output this symbol. */
4871
4872 osym = *isym;
4873
4874 /* Adjust the section index for the output file. */
4875 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
4876 isec->output_section);
4877 if (osym.st_shndx == (unsigned short) -1)
4878 return false;
4879
4880 *pindex = bfd_get_symcount (output_bfd);
4881
4882 /* ELF symbols in relocateable files are section relative, but
4883 in executable files they are virtual addresses. Note that
4884 this code assumes that all ELF sections have an associated
4885 BFD section with a reasonable value for output_offset; below
4886 we assume that they also have a reasonable value for
4887 output_section. Any special sections must be set up to meet
4888 these requirements. */
4889 osym.st_value += isec->output_offset;
4890 if (! finfo->info->relocateable)
4891 osym.st_value += isec->output_section->vma;
4892
4893 if (! elf_link_output_sym (finfo, name, &osym, isec))
4894 return false;
4895 }
4896
4897 /* Relocate the contents of each section. */
4898 for (o = input_bfd->sections; o != NULL; o = o->next)
4899 {
4900 bfd_byte *contents;
4901
4902 if (! o->linker_mark)
4903 {
4904 /* This section was omitted from the link. */
4905 continue;
4906 }
4907
4908 if ((o->flags & SEC_HAS_CONTENTS) == 0
4909 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
4910 continue;
4911
4912 if ((o->flags & SEC_LINKER_CREATED) != 0)
4913 {
4914 /* Section was created by elf_link_create_dynamic_sections
4915 or somesuch. */
4916 continue;
4917 }
4918
4919 /* Get the contents of the section. They have been cached by a
4920 relaxation routine. Note that o is a section in an input
4921 file, so the contents field will not have been set by any of
4922 the routines which work on output files. */
4923 if (elf_section_data (o)->this_hdr.contents != NULL)
4924 contents = elf_section_data (o)->this_hdr.contents;
4925 else
4926 {
4927 contents = finfo->contents;
4928 if (! bfd_get_section_contents (input_bfd, o, contents,
4929 (file_ptr) 0, o->_raw_size))
4930 return false;
4931 }
4932
4933 if ((o->flags & SEC_RELOC) != 0)
4934 {
4935 Elf_Internal_Rela *internal_relocs;
4936
4937 /* Get the swapped relocs. */
4938 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
4939 (input_bfd, o, finfo->external_relocs,
4940 finfo->internal_relocs, false));
4941 if (internal_relocs == NULL
4942 && o->reloc_count > 0)
4943 return false;
4944
4945 /* Relocate the section by invoking a back end routine.
4946
4947 The back end routine is responsible for adjusting the
4948 section contents as necessary, and (if using Rela relocs
4949 and generating a relocateable output file) adjusting the
4950 reloc addend as necessary.
4951
4952 The back end routine does not have to worry about setting
4953 the reloc address or the reloc symbol index.
4954
4955 The back end routine is given a pointer to the swapped in
4956 internal symbols, and can access the hash table entries
4957 for the external symbols via elf_sym_hashes (input_bfd).
4958
4959 When generating relocateable output, the back end routine
4960 must handle STB_LOCAL/STT_SECTION symbols specially. The
4961 output symbol is going to be a section symbol
4962 corresponding to the output section, which will require
4963 the addend to be adjusted. */
4964
4965 if (! (*relocate_section) (output_bfd, finfo->info,
4966 input_bfd, o, contents,
4967 internal_relocs,
4968 finfo->internal_syms,
4969 finfo->sections))
4970 return false;
4971
4972 if (finfo->info->relocateable)
4973 {
4974 Elf_Internal_Rela *irela;
4975 Elf_Internal_Rela *irelaend;
4976 struct elf_link_hash_entry **rel_hash;
4977 Elf_Internal_Shdr *input_rel_hdr;
4978 Elf_Internal_Shdr *output_rel_hdr;
4979
4980 /* Adjust the reloc addresses and symbol indices. */
4981
4982 irela = internal_relocs;
4983 irelaend = irela + o->reloc_count;
4984 rel_hash = (elf_section_data (o->output_section)->rel_hashes
4985 + o->output_section->reloc_count);
4986 for (; irela < irelaend; irela++, rel_hash++)
4987 {
4988 unsigned long r_symndx;
4989 Elf_Internal_Sym *isym;
4990 asection *sec;
4991
4992 irela->r_offset += o->output_offset;
4993
4994 r_symndx = ELF_R_SYM (irela->r_info);
4995
4996 if (r_symndx == 0)
4997 continue;
4998
4999 if (r_symndx >= locsymcount
5000 || (elf_bad_symtab (input_bfd)
5001 && finfo->sections[r_symndx] == NULL))
5002 {
5003 struct elf_link_hash_entry *rh;
5004 long indx;
5005
5006 /* This is a reloc against a global symbol. We
5007 have not yet output all the local symbols, so
5008 we do not know the symbol index of any global
5009 symbol. We set the rel_hash entry for this
5010 reloc to point to the global hash table entry
5011 for this symbol. The symbol index is then
5012 set at the end of elf_bfd_final_link. */
5013 indx = r_symndx - extsymoff;
5014 rh = elf_sym_hashes (input_bfd)[indx];
5015 while (rh->root.type == bfd_link_hash_indirect
5016 || rh->root.type == bfd_link_hash_warning)
5017 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
5018
5019 /* Setting the index to -2 tells
5020 elf_link_output_extsym that this symbol is
5021 used by a reloc. */
5022 BFD_ASSERT (rh->indx < 0);
5023 rh->indx = -2;
5024
5025 *rel_hash = rh;
5026
5027 continue;
5028 }
5029
5030 /* This is a reloc against a local symbol. */
5031
5032 *rel_hash = NULL;
5033 isym = finfo->internal_syms + r_symndx;
5034 sec = finfo->sections[r_symndx];
5035 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5036 {
5037 /* I suppose the backend ought to fill in the
5038 section of any STT_SECTION symbol against a
5039 processor specific section. If we have
5040 discarded a section, the output_section will
5041 be the absolute section. */
5042 if (sec != NULL
5043 && (bfd_is_abs_section (sec)
5044 || (sec->output_section != NULL
5045 && bfd_is_abs_section (sec->output_section))))
5046 r_symndx = 0;
5047 else if (sec == NULL || sec->owner == NULL)
5048 {
5049 bfd_set_error (bfd_error_bad_value);
5050 return false;
5051 }
5052 else
5053 {
5054 r_symndx = sec->output_section->target_index;
5055 BFD_ASSERT (r_symndx != 0);
5056 }
5057 }
5058 else
5059 {
5060 if (finfo->indices[r_symndx] == -1)
5061 {
5062 unsigned long link;
5063 const char *name;
5064 asection *osec;
5065
5066 if (finfo->info->strip == strip_all)
5067 {
5068 /* You can't do ld -r -s. */
5069 bfd_set_error (bfd_error_invalid_operation);
5070 return false;
5071 }
5072
5073 /* This symbol was skipped earlier, but
5074 since it is needed by a reloc, we
5075 must output it now. */
5076 link = symtab_hdr->sh_link;
5077 name = bfd_elf_string_from_elf_section (input_bfd,
5078 link,
5079 isym->st_name);
5080 if (name == NULL)
5081 return false;
5082
5083 osec = sec->output_section;
5084 isym->st_shndx =
5085 _bfd_elf_section_from_bfd_section (output_bfd,
5086 osec);
5087 if (isym->st_shndx == (unsigned short) -1)
5088 return false;
5089
5090 isym->st_value += sec->output_offset;
5091 if (! finfo->info->relocateable)
5092 isym->st_value += osec->vma;
5093
5094 finfo->indices[r_symndx] = bfd_get_symcount (output_bfd);
5095
5096 if (! elf_link_output_sym (finfo, name, isym, sec))
5097 return false;
5098 }
5099
5100 r_symndx = finfo->indices[r_symndx];
5101 }
5102
5103 irela->r_info = ELF_R_INFO (r_symndx,
5104 ELF_R_TYPE (irela->r_info));
5105 }
5106
5107 /* Swap out the relocs. */
5108 input_rel_hdr = &elf_section_data (o)->rel_hdr;
5109 output_rel_hdr = &elf_section_data (o->output_section)->rel_hdr;
5110 BFD_ASSERT (output_rel_hdr->sh_entsize
5111 == input_rel_hdr->sh_entsize);
5112 irela = internal_relocs;
5113 irelaend = irela + o->reloc_count;
5114 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
5115 {
5116 Elf_External_Rel *erel;
5117
5118 erel = ((Elf_External_Rel *) output_rel_hdr->contents
5119 + o->output_section->reloc_count);
5120 for (; irela < irelaend; irela++, erel++)
5121 {
5122 Elf_Internal_Rel irel;
5123
5124 irel.r_offset = irela->r_offset;
5125 irel.r_info = irela->r_info;
5126 BFD_ASSERT (irela->r_addend == 0);
5127 elf_swap_reloc_out (output_bfd, &irel, erel);
5128 }
5129 }
5130 else
5131 {
5132 Elf_External_Rela *erela;
5133
5134 BFD_ASSERT (input_rel_hdr->sh_entsize
5135 == sizeof (Elf_External_Rela));
5136 erela = ((Elf_External_Rela *) output_rel_hdr->contents
5137 + o->output_section->reloc_count);
5138 for (; irela < irelaend; irela++, erela++)
5139 elf_swap_reloca_out (output_bfd, irela, erela);
5140 }
5141
5142 o->output_section->reloc_count += o->reloc_count;
5143 }
5144 }
5145
5146 /* Write out the modified section contents. */
5147 if (elf_section_data (o)->stab_info == NULL)
5148 {
5149 if (! (o->flags & SEC_EXCLUDE) &&
5150 ! bfd_set_section_contents (output_bfd, o->output_section,
5151 contents, o->output_offset,
5152 (o->_cooked_size != 0
5153 ? o->_cooked_size
5154 : o->_raw_size)))
5155 return false;
5156 }
5157 else
5158 {
5159 if (! (_bfd_write_section_stabs
5160 (output_bfd, &elf_hash_table (finfo->info)->stab_info,
5161 o, &elf_section_data (o)->stab_info, contents)))
5162 return false;
5163 }
5164 }
5165
5166 return true;
5167}
5168
5169/* Generate a reloc when linking an ELF file. This is a reloc
5170 requested by the linker, and does come from any input file. This
5171 is used to build constructor and destructor tables when linking
5172 with -Ur. */
5173
5174static boolean
5175elf_reloc_link_order (output_bfd, info, output_section, link_order)
5176 bfd *output_bfd;
5177 struct bfd_link_info *info;
5178 asection *output_section;
5179 struct bfd_link_order *link_order;
5180{
5181 reloc_howto_type *howto;
5182 long indx;
5183 bfd_vma offset;
5184 bfd_vma addend;
5185 struct elf_link_hash_entry **rel_hash_ptr;
5186 Elf_Internal_Shdr *rel_hdr;
5187
5188 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
5189 if (howto == NULL)
5190 {
5191 bfd_set_error (bfd_error_bad_value);
5192 return false;
5193 }
5194
5195 addend = link_order->u.reloc.p->addend;
5196
5197 /* Figure out the symbol index. */
5198 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
5199 + output_section->reloc_count);
5200 if (link_order->type == bfd_section_reloc_link_order)
5201 {
5202 indx = link_order->u.reloc.p->u.section->target_index;
5203 BFD_ASSERT (indx != 0);
5204 *rel_hash_ptr = NULL;
5205 }
5206 else
5207 {
5208 struct elf_link_hash_entry *h;
5209
5210 /* Treat a reloc against a defined symbol as though it were
5211 actually against the section. */
5212 h = ((struct elf_link_hash_entry *)
5213 bfd_wrapped_link_hash_lookup (output_bfd, info,
5214 link_order->u.reloc.p->u.name,
5215 false, false, true));
5216 if (h != NULL
5217 && (h->root.type == bfd_link_hash_defined
5218 || h->root.type == bfd_link_hash_defweak))
5219 {
5220 asection *section;
5221
5222 section = h->root.u.def.section;
5223 indx = section->output_section->target_index;
5224 *rel_hash_ptr = NULL;
5225 /* It seems that we ought to add the symbol value to the
5226 addend here, but in practice it has already been added
5227 because it was passed to constructor_callback. */
5228 addend += section->output_section->vma + section->output_offset;
5229 }
5230 else if (h != NULL)
5231 {
5232 /* Setting the index to -2 tells elf_link_output_extsym that
5233 this symbol is used by a reloc. */
5234 h->indx = -2;
5235 *rel_hash_ptr = h;
5236 indx = 0;
5237 }
5238 else
5239 {
5240 if (! ((*info->callbacks->unattached_reloc)
5241 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
5242 (asection *) NULL, (bfd_vma) 0)))
5243 return false;
5244 indx = 0;
5245 }
5246 }
5247
5248 /* If this is an inplace reloc, we must write the addend into the
5249 object file. */
5250 if (howto->partial_inplace && addend != 0)
5251 {
5252 bfd_size_type size;
5253 bfd_reloc_status_type rstat;
5254 bfd_byte *buf;
5255 boolean ok;
5256
5257 size = bfd_get_reloc_size (howto);
5258 buf = (bfd_byte *) bfd_zmalloc (size);
5259 if (buf == (bfd_byte *) NULL)
5260 return false;
5261 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
5262 switch (rstat)
5263 {
5264 case bfd_reloc_ok:
5265 break;
5266 default:
5267 case bfd_reloc_outofrange:
5268 abort ();
5269 case bfd_reloc_overflow:
5270 if (! ((*info->callbacks->reloc_overflow)
5271 (info,
5272 (link_order->type == bfd_section_reloc_link_order
5273 ? bfd_section_name (output_bfd,
5274 link_order->u.reloc.p->u.section)
5275 : link_order->u.reloc.p->u.name),
5276 howto->name, addend, (bfd *) NULL, (asection *) NULL,
5277 (bfd_vma) 0)))
5278 {
5279 free (buf);
5280 return false;
5281 }
5282 break;
5283 }
5284 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
5285 (file_ptr) link_order->offset, size);
5286 free (buf);
5287 if (! ok)
5288 return false;
5289 }
5290
5291 /* The address of a reloc is relative to the section in a
5292 relocateable file, and is a virtual address in an executable
5293 file. */
5294 offset = link_order->offset;
5295 if (! info->relocateable)
5296 offset += output_section->vma;
5297
5298 rel_hdr = &elf_section_data (output_section)->rel_hdr;
5299
5300 if (rel_hdr->sh_type == SHT_REL)
5301 {
5302 Elf_Internal_Rel irel;
5303 Elf_External_Rel *erel;
5304
5305 irel.r_offset = offset;
5306 irel.r_info = ELF_R_INFO (indx, howto->type);
5307 erel = ((Elf_External_Rel *) rel_hdr->contents
5308 + output_section->reloc_count);
5309 elf_swap_reloc_out (output_bfd, &irel, erel);
5310 }
5311 else
5312 {
5313 Elf_Internal_Rela irela;
5314 Elf_External_Rela *erela;
5315
5316 irela.r_offset = offset;
5317 irela.r_info = ELF_R_INFO (indx, howto->type);
5318 irela.r_addend = addend;
5319 erela = ((Elf_External_Rela *) rel_hdr->contents
5320 + output_section->reloc_count);
5321 elf_swap_reloca_out (output_bfd, &irela, erela);
5322 }
5323
5324 ++output_section->reloc_count;
5325
5326 return true;
5327}
5328
5329\f
5330/* Allocate a pointer to live in a linker created section. */
5331
5332boolean
5333elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
5334 bfd *abfd;
5335 struct bfd_link_info *info;
5336 elf_linker_section_t *lsect;
5337 struct elf_link_hash_entry *h;
5338 const Elf_Internal_Rela *rel;
5339{
5340 elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
5341 elf_linker_section_pointers_t *linker_section_ptr;
5342 unsigned long r_symndx = ELF_R_SYM (rel->r_info);;
5343
5344 BFD_ASSERT (lsect != NULL);
5345
5346 /* Is this a global symbol? */
5347 if (h != NULL)
5348 {
5349 /* Has this symbol already been allocated, if so, our work is done */
5350 if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
5351 rel->r_addend,
5352 lsect->which))
5353 return true;
5354
5355 ptr_linker_section_ptr = &h->linker_section_pointer;
5356 /* Make sure this symbol is output as a dynamic symbol. */
5357 if (h->dynindx == -1)
5358 {
5359 if (! elf_link_record_dynamic_symbol (info, h))
5360 return false;
5361 }
5362
5363 if (lsect->rel_section)
5364 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
5365 }
5366
5367 else /* Allocation of a pointer to a local symbol */
5368 {
5369 elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
5370
5371 /* Allocate a table to hold the local symbols if first time */
5372 if (!ptr)
5373 {
5374 unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
5375 register unsigned int i;
5376
5377 ptr = (elf_linker_section_pointers_t **)
5378 bfd_alloc (abfd, num_symbols * sizeof (elf_linker_section_pointers_t *));
5379
5380 if (!ptr)
5381 return false;
5382
5383 elf_local_ptr_offsets (abfd) = ptr;
5384 for (i = 0; i < num_symbols; i++)
5385 ptr[i] = (elf_linker_section_pointers_t *)0;
5386 }
5387
5388 /* Has this symbol already been allocated, if so, our work is done */
5389 if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
5390 rel->r_addend,
5391 lsect->which))
5392 return true;
5393
5394 ptr_linker_section_ptr = &ptr[r_symndx];
5395
5396 if (info->shared)
5397 {
5398 /* If we are generating a shared object, we need to
5399 output a R_<xxx>_RELATIVE reloc so that the
5400 dynamic linker can adjust this GOT entry. */
5401 BFD_ASSERT (lsect->rel_section != NULL);
5402 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
5403 }
5404 }
5405
5406 /* Allocate space for a pointer in the linker section, and allocate a new pointer record
5407 from internal memory. */
5408 BFD_ASSERT (ptr_linker_section_ptr != NULL);
5409 linker_section_ptr = (elf_linker_section_pointers_t *)
5410 bfd_alloc (abfd, sizeof (elf_linker_section_pointers_t));
5411
5412 if (!linker_section_ptr)
5413 return false;
5414
5415 linker_section_ptr->next = *ptr_linker_section_ptr;
5416 linker_section_ptr->addend = rel->r_addend;
5417 linker_section_ptr->which = lsect->which;
5418 linker_section_ptr->written_address_p = false;
5419 *ptr_linker_section_ptr = linker_section_ptr;
5420
5421#if 0
5422 if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
5423 {
5424 linker_section_ptr->offset = lsect->section->_raw_size - lsect->hole_size + (ARCH_SIZE / 8);
5425 lsect->hole_offset += ARCH_SIZE / 8;
5426 lsect->sym_offset += ARCH_SIZE / 8;
5427 if (lsect->sym_hash) /* Bump up symbol value if needed */
5428 {
5429 lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
5430#ifdef DEBUG
5431 fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
5432 lsect->sym_hash->root.root.string,
5433 (long)ARCH_SIZE / 8,
5434 (long)lsect->sym_hash->root.u.def.value);
5435#endif
5436 }
5437 }
5438 else
5439#endif
5440 linker_section_ptr->offset = lsect->section->_raw_size;
5441
5442 lsect->section->_raw_size += ARCH_SIZE / 8;
5443
5444#ifdef DEBUG
5445 fprintf (stderr, "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
5446 lsect->name, (long)linker_section_ptr->offset, (long)lsect->section->_raw_size);
5447#endif
5448
5449 return true;
5450}
5451
5452\f
5453#if ARCH_SIZE==64
5454#define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
5455#endif
5456#if ARCH_SIZE==32
5457#define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
5458#endif
5459
5460/* Fill in the address for a pointer generated in alinker section. */
5461
5462bfd_vma
5463elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h, relocation, rel, relative_reloc)
5464 bfd *output_bfd;
5465 bfd *input_bfd;
5466 struct bfd_link_info *info;
5467 elf_linker_section_t *lsect;
5468 struct elf_link_hash_entry *h;
5469 bfd_vma relocation;
5470 const Elf_Internal_Rela *rel;
5471 int relative_reloc;
5472{
5473 elf_linker_section_pointers_t *linker_section_ptr;
5474
5475 BFD_ASSERT (lsect != NULL);
5476
5477 if (h != NULL) /* global symbol */
5478 {
5479 linker_section_ptr = _bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
5480 rel->r_addend,
5481 lsect->which);
5482
5483 BFD_ASSERT (linker_section_ptr != NULL);
5484
5485 if (! elf_hash_table (info)->dynamic_sections_created
5486 || (info->shared
5487 && info->symbolic
5488 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
5489 {
5490 /* This is actually a static link, or it is a
5491 -Bsymbolic link and the symbol is defined
5492 locally. We must initialize this entry in the
5493 global section.
5494
5495 When doing a dynamic link, we create a .rela.<xxx>
5496 relocation entry to initialize the value. This
5497 is done in the finish_dynamic_symbol routine. */
5498 if (!linker_section_ptr->written_address_p)
5499 {
5500 linker_section_ptr->written_address_p = true;
5501 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
5502 lsect->section->contents + linker_section_ptr->offset);
5503 }
5504 }
5505 }
5506 else /* local symbol */
5507 {
5508 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
5509 BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
5510 BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
5511 linker_section_ptr = _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd)[r_symndx],
5512 rel->r_addend,
5513 lsect->which);
5514
5515 BFD_ASSERT (linker_section_ptr != NULL);
5516
5517 /* Write out pointer if it hasn't been rewritten out before */
5518 if (!linker_section_ptr->written_address_p)
5519 {
5520 linker_section_ptr->written_address_p = true;
5521 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
5522 lsect->section->contents + linker_section_ptr->offset);
5523
5524 if (info->shared)
5525 {
5526 asection *srel = lsect->rel_section;
5527 Elf_Internal_Rela outrel;
5528
5529 /* We need to generate a relative reloc for the dynamic linker. */
5530 if (!srel)
5531 lsect->rel_section = srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
5532 lsect->rel_name);
5533
5534 BFD_ASSERT (srel != NULL);
5535
5536 outrel.r_offset = (lsect->section->output_section->vma
5537 + lsect->section->output_offset
5538 + linker_section_ptr->offset);
5539 outrel.r_info = ELF_R_INFO (0, relative_reloc);
5540 outrel.r_addend = 0;
5541 elf_swap_reloca_out (output_bfd, &outrel,
5542 (((Elf_External_Rela *)
5543 lsect->section->contents)
5544 + lsect->section->reloc_count));
5545 ++lsect->section->reloc_count;
5546 }
5547 }
5548 }
5549
5550 relocation = (lsect->section->output_offset
5551 + linker_section_ptr->offset
5552 - lsect->hole_offset
5553 - lsect->sym_offset);
5554
5555#ifdef DEBUG
5556 fprintf (stderr, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
5557 lsect->name, (long)relocation, (long)relocation);
5558#endif
5559
5560 /* Subtract out the addend, because it will get added back in by the normal
5561 processing. */
5562 return relocation - linker_section_ptr->addend;
5563}
5564\f
5565/* Garbage collect unused sections. */
5566
5567static boolean elf_gc_mark
5568 PARAMS ((struct bfd_link_info *info, asection *sec,
5569 asection * (*gc_mark_hook)
5570 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
5571 struct elf_link_hash_entry *, Elf_Internal_Sym *))));
5572
5573static boolean elf_gc_sweep
5574 PARAMS ((struct bfd_link_info *info,
5575 boolean (*gc_sweep_hook)
5576 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
5577 const Elf_Internal_Rela *relocs))));
5578
5579static boolean elf_gc_sweep_symbol
5580 PARAMS ((struct elf_link_hash_entry *h, PTR idxptr));
5581
5582static boolean elf_gc_allocate_got_offsets
5583 PARAMS ((struct elf_link_hash_entry *h, PTR offarg));
5584
5585static boolean elf_gc_propagate_vtable_entries_used
5586 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
5587
5588static boolean elf_gc_smash_unused_vtentry_relocs
5589 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
5590
5591/* The mark phase of garbage collection. For a given section, mark
5592 it, and all the sections which define symbols to which it refers. */
5593
5594static boolean
5595elf_gc_mark (info, sec, gc_mark_hook)
5596 struct bfd_link_info *info;
5597 asection *sec;
5598 asection * (*gc_mark_hook)
5599 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
5600 struct elf_link_hash_entry *, Elf_Internal_Sym *));
5601{
5602 boolean ret = true;
5603
5604 sec->gc_mark = 1;
5605
5606 /* Look through the section relocs. */
5607
5608 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
5609 {
5610 Elf_Internal_Rela *relstart, *rel, *relend;
5611 Elf_Internal_Shdr *symtab_hdr;
5612 struct elf_link_hash_entry **sym_hashes;
5613 size_t nlocsyms;
5614 size_t extsymoff;
5615 Elf_External_Sym *locsyms, *freesyms = NULL;
5616 bfd *input_bfd = sec->owner;
5617
5618 /* GCFIXME: how to arrange so that relocs and symbols are not
5619 reread continually? */
5620
5621 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5622 sym_hashes = elf_sym_hashes (input_bfd);
5623
5624 /* Read the local symbols. */
5625 if (elf_bad_symtab (input_bfd))
5626 {
5627 nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
5628 extsymoff = 0;
5629 }
5630 else
5631 extsymoff = nlocsyms = symtab_hdr->sh_info;
5632 if (symtab_hdr->contents)
5633 locsyms = (Elf_External_Sym *) symtab_hdr->contents;
5634 else if (nlocsyms == 0)
5635 locsyms = NULL;
5636 else
5637 {
5638 locsyms = freesyms =
5639 bfd_malloc (nlocsyms * sizeof (Elf_External_Sym));
5640 if (freesyms == NULL
5641 || bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
5642 || (bfd_read (locsyms, sizeof (Elf_External_Sym),
5643 nlocsyms, input_bfd)
5644 != nlocsyms * sizeof (Elf_External_Sym)))
5645 {
5646 ret = false;
5647 goto out1;
5648 }
5649 }
5650
5651 /* Read the relocations. */
5652 relstart = (NAME(_bfd_elf,link_read_relocs)
5653 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL,
5654 info->keep_memory));
5655 if (relstart == NULL)
5656 {
5657 ret = false;
5658 goto out1;
5659 }
5660 relend = relstart + sec->reloc_count;
5661
5662 for (rel = relstart; rel < relend; rel++)
5663 {
5664 unsigned long r_symndx;
5665 asection *rsec;
5666 struct elf_link_hash_entry *h;
5667 Elf_Internal_Sym s;
5668
5669 r_symndx = ELF_R_SYM (rel->r_info);
5670 if (r_symndx == 0)
5671 continue;
5672
5673 if (elf_bad_symtab (sec->owner))
5674 {
5675 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
5676 if (ELF_ST_BIND (s.st_info) == STB_LOCAL)
5677 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
5678 else
5679 {
5680 h = sym_hashes[r_symndx - extsymoff];
5681 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
5682 }
5683 }
5684 else if (r_symndx >= nlocsyms)
5685 {
5686 h = sym_hashes[r_symndx - extsymoff];
5687 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
5688 }
5689 else
5690 {
5691 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
5692 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
5693 }
5694
5695 if (rsec && !rsec->gc_mark)
5696 if (!elf_gc_mark (info, rsec, gc_mark_hook))
5697 {
5698 ret = false;
5699 goto out2;
5700 }
5701 }
5702
5703 out2:
5704 if (!info->keep_memory)
5705 free (relstart);
5706 out1:
5707 if (freesyms)
5708 free (freesyms);
5709 }
5710
5711 return ret;
5712}
5713
5714/* The sweep phase of garbage collection. Remove all garbage sections. */
5715
5716static boolean
5717elf_gc_sweep (info, gc_sweep_hook)
5718 struct bfd_link_info *info;
5719 boolean (*gc_sweep_hook)
5720 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
5721 const Elf_Internal_Rela *relocs));
5722{
5723 bfd *sub;
5724
5725 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
5726 {
5727 asection *o;
5728
5729 for (o = sub->sections; o != NULL; o = o->next)
5730 {
5731 /* Keep special sections. Keep .debug sections. */
5732 if ((o->flags & SEC_LINKER_CREATED)
5733 || (o->flags & SEC_DEBUGGING))
5734 o->gc_mark = 1;
5735
5736 if (o->gc_mark)
5737 continue;
5738
5739 /* Skip sweeping sections already excluded. */
5740 if (o->flags & SEC_EXCLUDE)
5741 continue;
5742
5743 /* Since this is early in the link process, it is simple
5744 to remove a section from the output. */
5745 o->flags |= SEC_EXCLUDE;
5746
5747 /* But we also have to update some of the relocation
5748 info we collected before. */
5749 if (gc_sweep_hook
5750 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
5751 {
5752 Elf_Internal_Rela *internal_relocs;
5753 boolean r;
5754
5755 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
5756 (o->owner, o, NULL, NULL, info->keep_memory));
5757 if (internal_relocs == NULL)
5758 return false;
5759
5760 r = (*gc_sweep_hook)(o->owner, info, o, internal_relocs);
5761
5762 if (!info->keep_memory)
5763 free (internal_relocs);
5764
5765 if (!r)
5766 return false;
5767 }
5768 }
5769 }
5770
5771 /* Remove the symbols that were in the swept sections from the dynamic
5772 symbol table. GCFIXME: Anyone know how to get them out of the
5773 static symbol table as well? */
5774 {
5775 int i = 0;
5776
5777 elf_link_hash_traverse (elf_hash_table (info),
5778 elf_gc_sweep_symbol,
5779 (PTR) &i);
5780
5781 elf_hash_table (info)->dynsymcount = i;
5782 }
5783
5784 return true;
5785}
5786
5787/* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
5788
5789static boolean
5790elf_gc_sweep_symbol (h, idxptr)
5791 struct elf_link_hash_entry *h;
5792 PTR idxptr;
5793{
5794 int *idx = (int *) idxptr;
5795
5796 if (h->dynindx != -1
5797 && ((h->root.type != bfd_link_hash_defined
5798 && h->root.type != bfd_link_hash_defweak)
5799 || h->root.u.def.section->gc_mark))
5800 h->dynindx = (*idx)++;
5801
5802 return true;
5803}
5804
5805/* Propogate collected vtable information. This is called through
5806 elf_link_hash_traverse. */
5807
5808static boolean
5809elf_gc_propagate_vtable_entries_used (h, okp)
5810 struct elf_link_hash_entry *h;
5811 PTR okp;
5812{
5813 /* Those that are not vtables. */
5814 if (h->vtable_parent == NULL)
5815 return true;
5816
5817 /* Those vtables that do not have parents, we cannot merge. */
5818 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
5819 return true;
5820
5821 /* If we've already been done, exit. */
5822 if (h->vtable_entries_used && h->vtable_entries_used[-1])
5823 return true;
5824
5825 /* Make sure the parent's table is up to date. */
5826 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
5827
5828 if (h->vtable_entries_used == NULL)
5829 {
5830 /* None of this table's entries were referenced. Re-use the
5831 parent's table. */
5832 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
5833 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
5834 }
5835 else
5836 {
5837 size_t n;
5838 boolean *cu, *pu;
5839
5840 /* Or the parent's entries into ours. */
5841 cu = h->vtable_entries_used;
5842 cu[-1] = true;
5843 pu = h->vtable_parent->vtable_entries_used;
5844 if (pu != NULL)
5845 {
5846 n = h->vtable_parent->vtable_entries_size / FILE_ALIGN;
5847 while (--n != 0)
5848 {
5849 if (*pu) *cu = true;
5850 pu++, cu++;
5851 }
5852 }
5853 }
5854
5855 return true;
5856}
5857
5858static boolean
5859elf_gc_smash_unused_vtentry_relocs (h, okp)
5860 struct elf_link_hash_entry *h;
5861 PTR okp;
5862{
5863 asection *sec;
5864 bfd_vma hstart, hend;
5865 Elf_Internal_Rela *relstart, *relend, *rel;
5866
5867 /* Take care of both those symbols that do not describe vtables as
5868 well as those that are not loaded. */
5869 if (h->vtable_parent == NULL)
5870 return true;
5871
5872 BFD_ASSERT (h->root.type == bfd_link_hash_defined
5873 || h->root.type == bfd_link_hash_defweak);
5874
5875 sec = h->root.u.def.section;
5876 hstart = h->root.u.def.value;
5877 hend = hstart + h->size;
5878
5879 relstart = (NAME(_bfd_elf,link_read_relocs)
5880 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
5881 if (!relstart)
5882 return *(boolean *)okp = false;
5883 relend = relstart + sec->reloc_count;
5884
5885 for (rel = relstart; rel < relend; ++rel)
5886 if (rel->r_offset >= hstart && rel->r_offset < hend)
5887 {
5888 /* If the entry is in use, do nothing. */
5889 if (h->vtable_entries_used
5890 && (rel->r_offset - hstart) < h->vtable_entries_size)
5891 {
5892 bfd_vma entry = (rel->r_offset - hstart) / FILE_ALIGN;
5893 if (h->vtable_entries_used[entry])
5894 continue;
5895 }
5896 /* Otherwise, kill it. */
5897 rel->r_offset = rel->r_info = rel->r_addend = 0;
5898 }
5899
5900 return true;
5901}
5902
5903/* Do mark and sweep of unused sections. */
5904
5905boolean
5906elf_gc_sections (abfd, info)
5907 bfd *abfd;
5908 struct bfd_link_info *info;
5909{
5910 boolean ok = true;
5911 bfd *sub;
5912 asection * (*gc_mark_hook)
5913 PARAMS ((bfd *abfd, struct bfd_link_info *, Elf_Internal_Rela *,
5914 struct elf_link_hash_entry *h, Elf_Internal_Sym *));
5915
5916 if (!get_elf_backend_data (abfd)->can_gc_sections
5917 || info->relocateable
5918 || elf_hash_table (info)->dynamic_sections_created)
5919 return true;
5920
5921 /* Apply transitive closure to the vtable entry usage info. */
5922 elf_link_hash_traverse (elf_hash_table (info),
5923 elf_gc_propagate_vtable_entries_used,
5924 (PTR) &ok);
5925 if (!ok)
5926 return false;
5927
5928 /* Kill the vtable relocations that were not used. */
5929 elf_link_hash_traverse (elf_hash_table (info),
5930 elf_gc_smash_unused_vtentry_relocs,
5931 (PTR) &ok);
5932 if (!ok)
5933 return false;
5934
5935 /* Grovel through relocs to find out who stays ... */
5936
5937 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
5938 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
5939 {
5940 asection *o;
5941 for (o = sub->sections; o != NULL; o = o->next)
5942 {
5943 if (o->flags & SEC_KEEP)
5944 if (!elf_gc_mark (info, o, gc_mark_hook))
5945 return false;
5946 }
5947 }
5948
5949 /* ... and mark SEC_EXCLUDE for those that go. */
5950 if (!elf_gc_sweep(info, get_elf_backend_data (abfd)->gc_sweep_hook))
5951 return false;
5952
5953 return true;
5954}
5955\f
5956/* Called from check_relocs to record the existance of a VTINHERIT reloc. */
5957
5958boolean
5959elf_gc_record_vtinherit (abfd, sec, h, offset)
5960 bfd *abfd;
5961 asection *sec;
5962 struct elf_link_hash_entry *h;
5963 bfd_vma offset;
5964{
5965 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
5966 struct elf_link_hash_entry **search, *child;
5967 bfd_size_type extsymcount;
5968
5969 /* The sh_info field of the symtab header tells us where the
5970 external symbols start. We don't care about the local symbols at
5971 this point. */
5972 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
5973 if (!elf_bad_symtab (abfd))
5974 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
5975
5976 sym_hashes = elf_sym_hashes (abfd);
5977 sym_hashes_end = sym_hashes + extsymcount;
5978
5979 /* Hunt down the child symbol, which is in this section at the same
5980 offset as the relocation. */
5981 for (search = sym_hashes; search != sym_hashes_end; ++search)
5982 {
5983 if ((child = *search) != NULL
5984 && (child->root.type == bfd_link_hash_defined
5985 || child->root.type == bfd_link_hash_defweak)
5986 && child->root.u.def.section == sec
5987 && child->root.u.def.value == offset)
5988 goto win;
5989 }
5990
5991 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
5992 bfd_get_filename (abfd), sec->name,
5993 (unsigned long)offset);
5994 bfd_set_error (bfd_error_invalid_operation);
5995 return false;
5996
5997win:
5998 if (!h)
5999 {
6000 /* This *should* only be the absolute section. It could potentially
6001 be that someone has defined a non-global vtable though, which
6002 would be bad. It isn't worth paging in the local symbols to be
6003 sure though; that case should simply be handled by the assembler. */
6004
6005 child->vtable_parent = (struct elf_link_hash_entry *) -1;
6006 }
6007 else
6008 child->vtable_parent = h;
6009
6010 return true;
6011}
6012
6013/* Called from check_relocs to record the existance of a VTENTRY reloc. */
6014
6015boolean
6016elf_gc_record_vtentry (abfd, sec, h, addend)
6017 bfd *abfd;
6018 asection *sec;
6019 struct elf_link_hash_entry *h;
6020 bfd_vma addend;
6021{
6022 if (addend >= h->vtable_entries_size)
6023 {
6024 size_t size, bytes;
6025 boolean *ptr = h->vtable_entries_used;
6026
6027 /* While the symbol is undefined, we have to be prepared to handle
6028 a zero size. */
6029 if (h->root.type == bfd_link_hash_undefined)
6030 size = addend;
6031 else
6032 {
6033 size = h->size;
6034 if (size < addend)
6035 {
6036 /* Oops! We've got a reference past the defined end of
6037 the table. This is probably a bug -- shall we warn? */
6038 size = addend;
6039 }
6040 }
6041
6042 /* Allocate one extra entry for use as a "done" flag for the
6043 consolidation pass. */
6044 bytes = (size / FILE_ALIGN + 1) * sizeof(boolean);
6045
6046 if (ptr)
6047 {
6048 size_t oldbytes;
6049
6050 ptr = realloc (ptr-1, bytes);
6051 if (ptr == NULL)
6052 return false;
6053
6054 oldbytes = (h->vtable_entries_size/FILE_ALIGN + 1) * sizeof(boolean);
6055 memset (ptr + oldbytes, 0, bytes - oldbytes);
6056 }
6057 else
6058 {
6059 ptr = calloc (1, bytes);
6060 if (ptr == NULL)
6061 return false;
6062 }
6063
6064 /* And arrange for that done flag to be at index -1. */
6065 h->vtable_entries_used = ptr+1;
6066 h->vtable_entries_size = size;
6067 }
6068 h->vtable_entries_used[addend / FILE_ALIGN] = true;
6069
6070 return true;
6071}
6072
6073/* And an accompanying bit to work out final got entry offsets once
6074 we're done. Should be called from final_link. */
6075
6076boolean
6077elf_gc_common_finalize_got_offsets (abfd, info)
6078 bfd *abfd;
6079 struct bfd_link_info *info;
6080{
6081 bfd *i;
6082 struct elf_backend_data *bed = get_elf_backend_data (abfd);
6083 bfd_vma gotoff;
6084
6085 /* The GOT offset is relative to the .got section, but the GOT header is
6086 put into the .got.plt section, if the backend uses it. */
6087 if (bed->want_got_plt)
6088 gotoff = 0;
6089 else
6090 gotoff = bed->got_header_size;
6091
6092 /* Do the local .got entries first. */
6093 for (i = info->input_bfds; i; i = i->link_next)
6094 {
6095 bfd_signed_vma *local_got = elf_local_got_refcounts (i);
6096 bfd_size_type j, locsymcount;
6097 Elf_Internal_Shdr *symtab_hdr;
6098
6099 if (!local_got)
6100 continue;
6101
6102 symtab_hdr = &elf_tdata (i)->symtab_hdr;
6103 if (elf_bad_symtab (i))
6104 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6105 else
6106 locsymcount = symtab_hdr->sh_info;
6107
6108 for (j = 0; j < locsymcount; ++j)
6109 {
6110 if (local_got[j] > 0)
6111 {
6112 local_got[j] = gotoff;
6113 gotoff += ARCH_SIZE / 8;
6114 }
6115 else
6116 local_got[j] = (bfd_vma) -1;
6117 }
6118 }
6119
6120 /* Then the global .got and .plt entries. */
6121 elf_link_hash_traverse (elf_hash_table (info),
6122 elf_gc_allocate_got_offsets,
6123 (PTR) &gotoff);
6124 return true;
6125}
6126
6127/* We need a special top-level link routine to convert got reference counts
6128 to real got offsets. */
6129
6130static boolean
6131elf_gc_allocate_got_offsets (h, offarg)
6132 struct elf_link_hash_entry *h;
6133 PTR offarg;
6134{
6135 bfd_vma *off = (bfd_vma *) offarg;
6136
6137 if (h->got.refcount > 0)
6138 {
6139 h->got.offset = off[0];
6140 off[0] += ARCH_SIZE / 8;
6141 }
6142 else
6143 h->got.offset = (bfd_vma) -1;
6144
6145 return true;
6146}
6147
6148/* Many folk need no more in the way of final link than this, once
6149 got entry reference counting is enabled. */
6150
6151boolean
6152elf_gc_common_final_link (abfd, info)
6153 bfd *abfd;
6154 struct bfd_link_info *info;
6155{
6156 if (!elf_gc_common_finalize_got_offsets (abfd, info))
6157 return false;
6158
6159 /* Invoke the regular ELF backend linker to do all the work. */
6160 return elf_bfd_final_link (abfd, info);
6161}
6162
6163/* This function will be called though elf_link_hash_traverse to store
6164 all hash value of the exported symbols in an array. */
6165
6166static boolean
6167elf_collect_hash_codes (h, data)
6168 struct elf_link_hash_entry *h;
6169 PTR data;
6170{
6171 unsigned long **valuep = (unsigned long **) data;
6172 const char *name;
6173 char *p;
6174 unsigned long ha;
6175 char *alc = NULL;
6176
6177 /* Ignore indirect symbols. These are added by the versioning code. */
6178 if (h->dynindx == -1)
6179 return true;
6180
6181 name = h->root.root.string;
6182 p = strchr (name, ELF_VER_CHR);
6183 if (p != NULL)
6184 {
6185 alc = bfd_malloc (p - name + 1);
6186 memcpy (alc, name, p - name);
6187 alc[p - name] = '\0';
6188 name = alc;
6189 }
6190
6191 /* Compute the hash value. */
6192 ha = bfd_elf_hash (name);
6193
6194 /* Store the found hash value in the array given as the argument. */
6195 *(*valuep)++ = ha;
6196
6197 /* And store it in the struct so that we can put it in the hash table
6198 later. */
6199 h->elf_hash_value = ha;
6200
6201 if (alc != NULL)
6202 free (alc);
6203
6204 return true;
6205}
This page took 0.249468 seconds and 4 git commands to generate.