Removed superflous code.
[deliverable/binutils-gdb.git] / bfd / elflink.h
CommitLineData
8afe83be 1/* ELF linker support.
f6727b90 2 Copyright 1995, 1996, 1997, 1998 Free Software Foundation, Inc.
8afe83be
KR
3
4This file is part of BFD, the Binary File Descriptor library.
5
6This program is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2 of the License, or
9(at your option) any later version.
10
11This program is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with this program; if not, write to the Free Software
943fbd5b 18Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
452a5efb 19
ede4eed4
KR
20/* ELF linker code. */
21
c19fbe0f
ILT
22/* This struct is used to pass information to routines called via
23 elf_link_hash_traverse which must return failure. */
24
25struct elf_info_failed
26{
27 boolean failed;
28 struct bfd_link_info *info;
29};
30
ede4eed4
KR
31static boolean elf_link_add_object_symbols
32 PARAMS ((bfd *, struct bfd_link_info *));
33static boolean elf_link_add_archive_symbols
34 PARAMS ((bfd *, struct bfd_link_info *));
044d7d49
ILT
35static boolean elf_merge_symbol
36 PARAMS ((bfd *, struct bfd_link_info *, const char *, Elf_Internal_Sym *,
37 asection **, bfd_vma *, struct elf_link_hash_entry **,
38 boolean *, boolean *, boolean *));
ede4eed4
KR
39static boolean elf_export_symbol
40 PARAMS ((struct elf_link_hash_entry *, PTR));
c19fbe0f
ILT
41static boolean elf_fix_symbol_flags
42 PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
ede4eed4
KR
43static boolean elf_adjust_dynamic_symbol
44 PARAMS ((struct elf_link_hash_entry *, PTR));
d044b40a
ILT
45static boolean elf_link_find_version_dependencies
46 PARAMS ((struct elf_link_hash_entry *, PTR));
47static boolean elf_link_find_version_dependencies
48 PARAMS ((struct elf_link_hash_entry *, PTR));
49static boolean elf_link_assign_sym_version
50 PARAMS ((struct elf_link_hash_entry *, PTR));
51static boolean elf_link_renumber_dynsyms
52 PARAMS ((struct elf_link_hash_entry *, PTR));
e429c897
UD
53static boolean elf_collect_hash_codes
54 PARAMS ((struct elf_link_hash_entry *, PTR));
ede4eed4 55
ede4eed4
KR
56/* Given an ELF BFD, add symbols to the global hash table as
57 appropriate. */
58
59boolean
60elf_bfd_link_add_symbols (abfd, info)
61 bfd *abfd;
62 struct bfd_link_info *info;
63{
ede4eed4
KR
64 switch (bfd_get_format (abfd))
65 {
66 case bfd_object:
67 return elf_link_add_object_symbols (abfd, info);
68 case bfd_archive:
ede4eed4
KR
69 return elf_link_add_archive_symbols (abfd, info);
70 default:
71 bfd_set_error (bfd_error_wrong_format);
72 return false;
73 }
74}
3b3753b8 75\f
ede4eed4
KR
76
77/* Add symbols from an ELF archive file to the linker hash table. We
78 don't use _bfd_generic_link_add_archive_symbols because of a
79 problem which arises on UnixWare. The UnixWare libc.so is an
80 archive which includes an entry libc.so.1 which defines a bunch of
81 symbols. The libc.so archive also includes a number of other
82 object files, which also define symbols, some of which are the same
83 as those defined in libc.so.1. Correct linking requires that we
84 consider each object file in turn, and include it if it defines any
85 symbols we need. _bfd_generic_link_add_archive_symbols does not do
86 this; it looks through the list of undefined symbols, and includes
87 any object file which defines them. When this algorithm is used on
88 UnixWare, it winds up pulling in libc.so.1 early and defining a
89 bunch of symbols. This means that some of the other objects in the
90 archive are not included in the link, which is incorrect since they
91 precede libc.so.1 in the archive.
92
93 Fortunately, ELF archive handling is simpler than that done by
94 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
95 oddities. In ELF, if we find a symbol in the archive map, and the
96 symbol is currently undefined, we know that we must pull in that
97 object file.
98
99 Unfortunately, we do have to make multiple passes over the symbol
100 table until nothing further is resolved. */
101
102static boolean
103elf_link_add_archive_symbols (abfd, info)
104 bfd *abfd;
105 struct bfd_link_info *info;
106{
107 symindex c;
108 boolean *defined = NULL;
109 boolean *included = NULL;
110 carsym *symdefs;
111 boolean loop;
112
113 if (! bfd_has_map (abfd))
114 {
115 /* An empty archive is a special case. */
116 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
117 return true;
118 bfd_set_error (bfd_error_no_armap);
119 return false;
120 }
121
122 /* Keep track of all symbols we know to be already defined, and all
123 files we know to be already included. This is to speed up the
124 second and subsequent passes. */
125 c = bfd_ardata (abfd)->symdef_count;
126 if (c == 0)
127 return true;
58142f10
ILT
128 defined = (boolean *) bfd_malloc (c * sizeof (boolean));
129 included = (boolean *) bfd_malloc (c * sizeof (boolean));
ede4eed4 130 if (defined == (boolean *) NULL || included == (boolean *) NULL)
58142f10 131 goto error_return;
ede4eed4
KR
132 memset (defined, 0, c * sizeof (boolean));
133 memset (included, 0, c * sizeof (boolean));
134
135 symdefs = bfd_ardata (abfd)->symdefs;
136
137 do
138 {
139 file_ptr last;
140 symindex i;
141 carsym *symdef;
142 carsym *symdefend;
143
144 loop = false;
145 last = -1;
146
147 symdef = symdefs;
148 symdefend = symdef + c;
149 for (i = 0; symdef < symdefend; symdef++, i++)
150 {
151 struct elf_link_hash_entry *h;
152 bfd *element;
153 struct bfd_link_hash_entry *undefs_tail;
154 symindex mark;
155
156 if (defined[i] || included[i])
157 continue;
158 if (symdef->file_offset == last)
159 {
160 included[i] = true;
161 continue;
162 }
163
164 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
165 false, false, false);
d044b40a
ILT
166
167 if (h == NULL)
168 {
169 char *p, *copy;
170
171 /* If this is a default version (the name contains @@),
172 look up the symbol again without the version. The
173 effect is that references to the symbol without the
174 version will be matched by the default symbol in the
175 archive. */
176
177 p = strchr (symdef->name, ELF_VER_CHR);
178 if (p == NULL || p[1] != ELF_VER_CHR)
179 continue;
180
181 copy = bfd_alloc (abfd, p - symdef->name + 1);
182 if (copy == NULL)
183 goto error_return;
184 memcpy (copy, symdef->name, p - symdef->name);
185 copy[p - symdef->name] = '\0';
186
187 h = elf_link_hash_lookup (elf_hash_table (info), copy,
188 false, false, false);
189
190 bfd_release (abfd, copy);
191 }
192
193 if (h == NULL)
ede4eed4 194 continue;
d044b40a 195
ede4eed4
KR
196 if (h->root.type != bfd_link_hash_undefined)
197 {
68807a39
ILT
198 if (h->root.type != bfd_link_hash_undefweak)
199 defined[i] = true;
ede4eed4
KR
200 continue;
201 }
202
203 /* We need to include this archive member. */
204
205 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
206 if (element == (bfd *) NULL)
207 goto error_return;
208
209 if (! bfd_check_format (element, bfd_object))
210 goto error_return;
211
212 /* Doublecheck that we have not included this object
213 already--it should be impossible, but there may be
214 something wrong with the archive. */
215 if (element->archive_pass != 0)
216 {
217 bfd_set_error (bfd_error_bad_value);
218 goto error_return;
219 }
220 element->archive_pass = 1;
221
222 undefs_tail = info->hash->undefs_tail;
223
224 if (! (*info->callbacks->add_archive_element) (info, element,
225 symdef->name))
226 goto error_return;
227 if (! elf_link_add_object_symbols (element, info))
228 goto error_return;
229
230 /* If there are any new undefined symbols, we need to make
231 another pass through the archive in order to see whether
232 they can be defined. FIXME: This isn't perfect, because
233 common symbols wind up on undefs_tail and because an
234 undefined symbol which is defined later on in this pass
235 does not require another pass. This isn't a bug, but it
236 does make the code less efficient than it could be. */
237 if (undefs_tail != info->hash->undefs_tail)
238 loop = true;
239
240 /* Look backward to mark all symbols from this object file
241 which we have already seen in this pass. */
242 mark = i;
243 do
244 {
245 included[mark] = true;
246 if (mark == 0)
247 break;
248 --mark;
249 }
250 while (symdefs[mark].file_offset == symdef->file_offset);
251
252 /* We mark subsequent symbols from this object file as we go
253 on through the loop. */
254 last = symdef->file_offset;
255 }
256 }
257 while (loop);
258
259 free (defined);
260 free (included);
261
262 return true;
263
264 error_return:
265 if (defined != (boolean *) NULL)
266 free (defined);
267 if (included != (boolean *) NULL)
268 free (included);
269 return false;
270}
271
044d7d49
ILT
272/* This function is called when we want to define a new symbol. It
273 handles the various cases which arise when we find a definition in
274 a dynamic object, or when there is already a definition in a
275 dynamic object. The new symbol is described by NAME, SYM, PSEC,
276 and PVALUE. We set SYM_HASH to the hash table entry. We set
277 OVERRIDE if the old symbol is overriding a new definition. We set
278 TYPE_CHANGE_OK if it is OK for the type to change. We set
279 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
280 change, we mean that we shouldn't warn if the type or size does
281 change. */
282
283static boolean
284elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
285 override, type_change_ok, size_change_ok)
286 bfd *abfd;
287 struct bfd_link_info *info;
288 const char *name;
289 Elf_Internal_Sym *sym;
290 asection **psec;
291 bfd_vma *pvalue;
292 struct elf_link_hash_entry **sym_hash;
293 boolean *override;
294 boolean *type_change_ok;
295 boolean *size_change_ok;
296{
297 asection *sec;
298 struct elf_link_hash_entry *h;
299 int bind;
300 bfd *oldbfd;
301 boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
302
044d7d49 303 *override = false;
044d7d49
ILT
304
305 sec = *psec;
306 bind = ELF_ST_BIND (sym->st_info);
307
308 if (! bfd_is_und_section (sec))
309 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
310 else
311 h = ((struct elf_link_hash_entry *)
312 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
313 if (h == NULL)
314 return false;
315 *sym_hash = h;
316
3359a0bc
ILT
317 /* This code is for coping with dynamic objects, and is only useful
318 if we are doing an ELF link. */
319 if (info->hash->creator != abfd->xvec)
320 return true;
321
e9982ee5
ILT
322 /* For merging, we only care about real symbols. */
323
324 while (h->root.type == bfd_link_hash_indirect
325 || h->root.type == bfd_link_hash_warning)
326 h = (struct elf_link_hash_entry *) h->root.u.i.link;
327
044d7d49
ILT
328 /* If we just created the symbol, mark it as being an ELF symbol.
329 Other than that, there is nothing to do--there is no merge issue
330 with a newly defined symbol--so we just return. */
331
332 if (h->root.type == bfd_link_hash_new)
333 {
334 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
335 return true;
336 }
337
044d7d49
ILT
338 /* OLDBFD is a BFD associated with the existing symbol. */
339
340 switch (h->root.type)
341 {
342 default:
343 oldbfd = NULL;
344 break;
345
346 case bfd_link_hash_undefined:
347 case bfd_link_hash_undefweak:
348 oldbfd = h->root.u.undef.abfd;
349 break;
350
351 case bfd_link_hash_defined:
352 case bfd_link_hash_defweak:
353 oldbfd = h->root.u.def.section->owner;
354 break;
355
356 case bfd_link_hash_common:
357 oldbfd = h->root.u.c.p->section->owner;
358 break;
359 }
360
361 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
362 respectively, is from a dynamic object. */
363
364 if ((abfd->flags & DYNAMIC) != 0)
365 newdyn = true;
366 else
367 newdyn = false;
368
369 if (oldbfd == NULL || (oldbfd->flags & DYNAMIC) == 0)
370 olddyn = false;
371 else
372 olddyn = true;
373
374 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
375 respectively, appear to be a definition rather than reference. */
376
377 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
378 newdef = false;
379 else
380 newdef = true;
381
382 if (h->root.type == bfd_link_hash_undefined
383 || h->root.type == bfd_link_hash_undefweak
384 || h->root.type == bfd_link_hash_common)
385 olddef = false;
386 else
387 olddef = true;
388
389 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
390 symbol, respectively, appears to be a common symbol in a dynamic
391 object. If a symbol appears in an uninitialized section, and is
392 not weak, and is not a function, then it may be a common symbol
393 which was resolved when the dynamic object was created. We want
394 to treat such symbols specially, because they raise special
395 considerations when setting the symbol size: if the symbol
396 appears as a common symbol in a regular object, and the size in
397 the regular object is larger, we must make sure that we use the
398 larger size. This problematic case can always be avoided in C,
399 but it must be handled correctly when using Fortran shared
400 libraries.
401
402 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
403 likewise for OLDDYNCOMMON and OLDDEF.
404
405 Note that this test is just a heuristic, and that it is quite
406 possible to have an uninitialized symbol in a shared object which
407 is really a definition, rather than a common symbol. This could
408 lead to some minor confusion when the symbol really is a common
409 symbol in some regular object. However, I think it will be
410 harmless. */
411
412 if (newdyn
413 && newdef
414 && (sec->flags & SEC_ALLOC) != 0
415 && (sec->flags & SEC_LOAD) == 0
416 && sym->st_size > 0
417 && bind != STB_WEAK
418 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
419 newdyncommon = true;
420 else
421 newdyncommon = false;
422
423 if (olddyn
424 && olddef
425 && h->root.type == bfd_link_hash_defined
426 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
427 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
428 && (h->root.u.def.section->flags & SEC_LOAD) == 0
429 && h->size > 0
430 && h->type != STT_FUNC)
431 olddyncommon = true;
432 else
433 olddyncommon = false;
434
435 /* It's OK to change the type if either the existing symbol or the
436 new symbol is weak. */
437
438 if (h->root.type == bfd_link_hash_defweak
439 || h->root.type == bfd_link_hash_undefweak
440 || bind == STB_WEAK)
441 *type_change_ok = true;
442
443 /* It's OK to change the size if either the existing symbol or the
444 new symbol is weak, or if the old symbol is undefined. */
445
446 if (*type_change_ok
447 || h->root.type == bfd_link_hash_undefined)
448 *size_change_ok = true;
449
450 /* If both the old and the new symbols look like common symbols in a
451 dynamic object, set the size of the symbol to the larger of the
452 two. */
453
454 if (olddyncommon
455 && newdyncommon
456 && sym->st_size != h->size)
457 {
458 /* Since we think we have two common symbols, issue a multiple
459 common warning if desired. Note that we only warn if the
460 size is different. If the size is the same, we simply let
461 the old symbol override the new one as normally happens with
462 symbols defined in dynamic objects. */
463
464 if (! ((*info->callbacks->multiple_common)
465 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
466 h->size, abfd, bfd_link_hash_common, sym->st_size)))
467 return false;
468
469 if (sym->st_size > h->size)
470 h->size = sym->st_size;
471
472 *size_change_ok = true;
473 }
474
475 /* If we are looking at a dynamic object, and we have found a
476 definition, we need to see if the symbol was already defined by
477 some other object. If so, we want to use the existing
478 definition, and we do not want to report a multiple symbol
479 definition error; we do this by clobbering *PSEC to be
480 bfd_und_section_ptr.
481
482 We treat a common symbol as a definition if the symbol in the
483 shared library is a function, since common symbols always
484 represent variables; this can cause confusion in principle, but
485 any such confusion would seem to indicate an erroneous program or
486 shared library. We also permit a common symbol in a regular
487 object to override a weak symbol in a shared object. */
488
489 if (newdyn
490 && newdef
491 && (olddef
492 || (h->root.type == bfd_link_hash_common
493 && (bind == STB_WEAK
494 || ELF_ST_TYPE (sym->st_info) == STT_FUNC))))
495 {
496 *override = true;
497 newdef = false;
498 newdyncommon = false;
499
500 *psec = sec = bfd_und_section_ptr;
501 *size_change_ok = true;
502
503 /* If we get here when the old symbol is a common symbol, then
504 we are explicitly letting it override a weak symbol or
505 function in a dynamic object, and we don't want to warn about
506 a type change. If the old symbol is a defined symbol, a type
507 change warning may still be appropriate. */
508
509 if (h->root.type == bfd_link_hash_common)
510 *type_change_ok = true;
511 }
512
513 /* Handle the special case of an old common symbol merging with a
514 new symbol which looks like a common symbol in a shared object.
515 We change *PSEC and *PVALUE to make the new symbol look like a
516 common symbol, and let _bfd_generic_link_add_one_symbol will do
517 the right thing. */
518
519 if (newdyncommon
520 && h->root.type == bfd_link_hash_common)
521 {
522 *override = true;
523 newdef = false;
524 newdyncommon = false;
525 *pvalue = sym->st_size;
526 *psec = sec = bfd_com_section_ptr;
527 *size_change_ok = true;
528 }
529
530 /* If the old symbol is from a dynamic object, and the new symbol is
531 a definition which is not from a dynamic object, then the new
532 symbol overrides the old symbol. Symbols from regular files
533 always take precedence over symbols from dynamic objects, even if
534 they are defined after the dynamic object in the link.
535
536 As above, we again permit a common symbol in a regular object to
537 override a definition in a shared object if the shared object
538 symbol is a function or is weak. */
539
540 if (! newdyn
541 && (newdef
542 || (bfd_is_com_section (sec)
543 && (h->root.type == bfd_link_hash_defweak
544 || h->type == STT_FUNC)))
545 && olddyn
546 && olddef
547 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
548 {
549 /* Change the hash table entry to undefined, and let
550 _bfd_generic_link_add_one_symbol do the right thing with the
551 new definition. */
552
553 h->root.type = bfd_link_hash_undefined;
554 h->root.u.undef.abfd = h->root.u.def.section->owner;
555 *size_change_ok = true;
556
557 olddef = false;
558 olddyncommon = false;
559
560 /* We again permit a type change when a common symbol may be
561 overriding a function. */
562
563 if (bfd_is_com_section (sec))
564 *type_change_ok = true;
565
566 /* This union may have been set to be non-NULL when this symbol
567 was seen in a dynamic object. We must force the union to be
568 NULL, so that it is correct for a regular symbol. */
569
570 h->verinfo.vertree = NULL;
541a4b54
ILT
571
572 /* In this special case, if H is the target of an indirection,
573 we want the caller to frob with H rather than with the
574 indirect symbol. That will permit the caller to redefine the
575 target of the indirection, rather than the indirect symbol
862eaedc
ILT
576 itself. FIXME: This will break the -y option if we store a
577 symbol with a different name. */
541a4b54 578 *sym_hash = h;
044d7d49
ILT
579 }
580
581 /* Handle the special case of a new common symbol merging with an
582 old symbol that looks like it might be a common symbol defined in
583 a shared object. Note that we have already handled the case in
584 which a new common symbol should simply override the definition
585 in the shared library. */
586
587 if (! newdyn
588 && bfd_is_com_section (sec)
589 && olddyncommon)
590 {
591 /* It would be best if we could set the hash table entry to a
592 common symbol, but we don't know what to use for the section
593 or the alignment. */
594 if (! ((*info->callbacks->multiple_common)
595 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
596 h->size, abfd, bfd_link_hash_common, sym->st_size)))
597 return false;
598
599 /* If the predumed common symbol in the dynamic object is
600 larger, pretend that the new symbol has its size. */
601
602 if (h->size > *pvalue)
603 *pvalue = h->size;
604
605 /* FIXME: We no longer know the alignment required by the symbol
606 in the dynamic object, so we just wind up using the one from
607 the regular object. */
608
609 olddef = false;
610 olddyncommon = false;
611
612 h->root.type = bfd_link_hash_undefined;
613 h->root.u.undef.abfd = h->root.u.def.section->owner;
614
615 *size_change_ok = true;
616 *type_change_ok = true;
617
618 h->verinfo.vertree = NULL;
619 }
620
621 return true;
622}
623
ede4eed4
KR
624/* Add symbols from an ELF object file to the linker hash table. */
625
626static boolean
627elf_link_add_object_symbols (abfd, info)
628 bfd *abfd;
629 struct bfd_link_info *info;
630{
631 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
632 const Elf_Internal_Sym *,
633 const char **, flagword *,
634 asection **, bfd_vma *));
635 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
636 asection *, const Elf_Internal_Rela *));
637 boolean collect;
638 Elf_Internal_Shdr *hdr;
639 size_t symcount;
640 size_t extsymcount;
641 size_t extsymoff;
642 Elf_External_Sym *buf = NULL;
643 struct elf_link_hash_entry **sym_hash;
644 boolean dynamic;
d044b40a
ILT
645 bfd_byte *dynver = NULL;
646 Elf_External_Versym *extversym = NULL;
647 Elf_External_Versym *ever;
ede4eed4
KR
648 Elf_External_Dyn *dynbuf = NULL;
649 struct elf_link_hash_entry *weaks;
650 Elf_External_Sym *esym;
651 Elf_External_Sym *esymend;
652
653 add_symbol_hook = get_elf_backend_data (abfd)->elf_add_symbol_hook;
654 collect = get_elf_backend_data (abfd)->collect;
655
d044b40a
ILT
656 if ((abfd->flags & DYNAMIC) == 0)
657 dynamic = false;
658 else
659 {
660 dynamic = true;
661
662 /* You can't use -r against a dynamic object. Also, there's no
663 hope of using a dynamic object which does not exactly match
664 the format of the output file. */
665 if (info->relocateable || info->hash->creator != abfd->xvec)
666 {
667 bfd_set_error (bfd_error_invalid_operation);
668 goto error_return;
669 }
670 }
671
0cb70568
ILT
672 /* As a GNU extension, any input sections which are named
673 .gnu.warning.SYMBOL are treated as warning symbols for the given
674 symbol. This differs from .gnu.warning sections, which generate
675 warnings when they are included in an output file. */
676 if (! info->shared)
677 {
678 asection *s;
679
680 for (s = abfd->sections; s != NULL; s = s->next)
681 {
682 const char *name;
683
684 name = bfd_get_section_name (abfd, s);
685 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
686 {
687 char *msg;
688 bfd_size_type sz;
689
54626f1a
ILT
690 name += sizeof ".gnu.warning." - 1;
691
692 /* If this is a shared object, then look up the symbol
693 in the hash table. If it is there, and it is already
694 been defined, then we will not be using the entry
695 from this shared object, so we don't need to warn.
696 FIXME: If we see the definition in a regular object
697 later on, we will warn, but we shouldn't. The only
698 fix is to keep track of what warnings we are supposed
699 to emit, and then handle them all at the end of the
700 link. */
d044b40a 701 if (dynamic && abfd->xvec == info->hash->creator)
54626f1a
ILT
702 {
703 struct elf_link_hash_entry *h;
704
705 h = elf_link_hash_lookup (elf_hash_table (info), name,
706 false, false, true);
707
708 /* FIXME: What about bfd_link_hash_common? */
709 if (h != NULL
710 && (h->root.type == bfd_link_hash_defined
711 || h->root.type == bfd_link_hash_defweak))
712 {
713 /* We don't want to issue this warning. Clobber
714 the section size so that the warning does not
715 get copied into the output file. */
716 s->_raw_size = 0;
717 continue;
718 }
719 }
720
0cb70568 721 sz = bfd_section_size (abfd, s);
d7298d8f 722 msg = (char *) bfd_alloc (abfd, sz + 1);
0cb70568 723 if (msg == NULL)
a9713b91 724 goto error_return;
0cb70568
ILT
725
726 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
727 goto error_return;
728
d7298d8f
ILT
729 msg[sz] = '\0';
730
0cb70568 731 if (! (_bfd_generic_link_add_one_symbol
54626f1a
ILT
732 (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
733 false, collect, (struct bfd_link_hash_entry **) NULL)))
0cb70568
ILT
734 goto error_return;
735
736 if (! info->relocateable)
737 {
738 /* Clobber the section size so that the warning does
739 not get copied into the output file. */
740 s->_raw_size = 0;
741 }
742 }
743 }
744 }
745
d044b40a
ILT
746 /* If this is a dynamic object, we always link against the .dynsym
747 symbol table, not the .symtab symbol table. The dynamic linker
748 will only see the .dynsym symbol table, so there is no reason to
749 look at .symtab for a dynamic object. */
750
751 if (! dynamic || elf_dynsymtab (abfd) == 0)
752 hdr = &elf_tdata (abfd)->symtab_hdr;
753 else
754 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
755
756 if (dynamic)
ede4eed4 757 {
d044b40a
ILT
758 /* Read in any version definitions. */
759
601acd61
UD
760 if (! _bfd_elf_slurp_version_tables (abfd))
761 goto error_return;
d044b40a
ILT
762
763 /* Read in the symbol versions, but don't bother to convert them
764 to internal format. */
765 if (elf_dynversym (abfd) != 0)
766 {
767 Elf_Internal_Shdr *versymhdr;
768
769 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
770 extversym = (Elf_External_Versym *) bfd_malloc (hdr->sh_size);
771 if (extversym == NULL)
772 goto error_return;
773 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
774 || (bfd_read ((PTR) extversym, 1, versymhdr->sh_size, abfd)
775 != versymhdr->sh_size))
776 goto error_return;
777 }
ede4eed4
KR
778 }
779
ede4eed4
KR
780 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
781
782 /* The sh_info field of the symtab header tells us where the
783 external symbols start. We don't care about the local symbols at
784 this point. */
785 if (elf_bad_symtab (abfd))
786 {
787 extsymcount = symcount;
788 extsymoff = 0;
789 }
790 else
791 {
792 extsymcount = symcount - hdr->sh_info;
793 extsymoff = hdr->sh_info;
794 }
795
58142f10
ILT
796 buf = ((Elf_External_Sym *)
797 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
ede4eed4 798 if (buf == NULL && extsymcount != 0)
58142f10 799 goto error_return;
ede4eed4
KR
800
801 /* We store a pointer to the hash table entry for each external
802 symbol. */
803 sym_hash = ((struct elf_link_hash_entry **)
804 bfd_alloc (abfd,
805 extsymcount * sizeof (struct elf_link_hash_entry *)));
806 if (sym_hash == NULL)
a9713b91 807 goto error_return;
ede4eed4
KR
808 elf_sym_hashes (abfd) = sym_hash;
809
d044b40a 810 if (! dynamic)
ede4eed4 811 {
ede4eed4
KR
812 /* If we are creating a shared library, create all the dynamic
813 sections immediately. We need to attach them to something,
814 so we attach them to this BFD, provided it is the right
815 format. FIXME: If there are no input BFD's of the same
816 format as the output, we can't make a shared library. */
817 if (info->shared
818 && ! elf_hash_table (info)->dynamic_sections_created
819 && abfd->xvec == info->hash->creator)
820 {
821 if (! elf_link_create_dynamic_sections (abfd, info))
822 goto error_return;
823 }
824 }
825 else
826 {
827 asection *s;
828 boolean add_needed;
829 const char *name;
830 bfd_size_type oldsize;
831 bfd_size_type strindex;
832
ede4eed4
KR
833 /* Find the name to use in a DT_NEEDED entry that refers to this
834 object. If the object has a DT_SONAME entry, we use it.
835 Otherwise, if the generic linker stuck something in
60a49e7f
ILT
836 elf_dt_name, we use that. Otherwise, we just use the file
837 name. If the generic linker put a null string into
838 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
839 there is a DT_SONAME entry. */
ede4eed4
KR
840 add_needed = true;
841 name = bfd_get_filename (abfd);
60a49e7f 842 if (elf_dt_name (abfd) != NULL)
ede4eed4 843 {
60a49e7f 844 name = elf_dt_name (abfd);
ede4eed4
KR
845 if (*name == '\0')
846 add_needed = false;
847 }
848 s = bfd_get_section_by_name (abfd, ".dynamic");
849 if (s != NULL)
850 {
851 Elf_External_Dyn *extdyn;
852 Elf_External_Dyn *extdynend;
853 int elfsec;
854 unsigned long link;
855
58142f10 856 dynbuf = (Elf_External_Dyn *) bfd_malloc ((size_t) s->_raw_size);
ede4eed4 857 if (dynbuf == NULL)
58142f10 858 goto error_return;
ede4eed4
KR
859
860 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
861 (file_ptr) 0, s->_raw_size))
862 goto error_return;
863
864 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
865 if (elfsec == -1)
866 goto error_return;
867 link = elf_elfsections (abfd)[elfsec]->sh_link;
868
869 extdyn = dynbuf;
870 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
871 for (; extdyn < extdynend; extdyn++)
872 {
873 Elf_Internal_Dyn dyn;
874
875 elf_swap_dyn_in (abfd, extdyn, &dyn);
60a49e7f 876 if (dyn.d_tag == DT_SONAME)
ede4eed4
KR
877 {
878 name = bfd_elf_string_from_elf_section (abfd, link,
879 dyn.d_un.d_val);
880 if (name == NULL)
881 goto error_return;
882 }
883 if (dyn.d_tag == DT_NEEDED)
884 {
54406786 885 struct bfd_link_needed_list *n, **pn;
ede4eed4
KR
886 char *fnm, *anm;
887
54406786
ILT
888 n = ((struct bfd_link_needed_list *)
889 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
ede4eed4
KR
890 fnm = bfd_elf_string_from_elf_section (abfd, link,
891 dyn.d_un.d_val);
892 if (n == NULL || fnm == NULL)
893 goto error_return;
894 anm = bfd_alloc (abfd, strlen (fnm) + 1);
895 if (anm == NULL)
896 goto error_return;
897 strcpy (anm, fnm);
898 n->name = anm;
899 n->by = abfd;
900 n->next = NULL;
901 for (pn = &elf_hash_table (info)->needed;
902 *pn != NULL;
903 pn = &(*pn)->next)
904 ;
905 *pn = n;
906 }
907 }
908
909 free (dynbuf);
910 dynbuf = NULL;
911 }
912
913 /* We do not want to include any of the sections in a dynamic
914 object in the output file. We hack by simply clobbering the
915 list of sections in the BFD. This could be handled more
916 cleanly by, say, a new section flag; the existing
917 SEC_NEVER_LOAD flag is not the one we want, because that one
918 still implies that the section takes up space in the output
919 file. */
920 abfd->sections = NULL;
010d9f2d 921 abfd->section_count = 0;
ede4eed4
KR
922
923 /* If this is the first dynamic object found in the link, create
924 the special sections required for dynamic linking. */
925 if (! elf_hash_table (info)->dynamic_sections_created)
926 {
927 if (! elf_link_create_dynamic_sections (abfd, info))
928 goto error_return;
929 }
930
931 if (add_needed)
932 {
933 /* Add a DT_NEEDED entry for this dynamic object. */
934 oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
935 strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name,
936 true, false);
937 if (strindex == (bfd_size_type) -1)
938 goto error_return;
939
940 if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
941 {
942 asection *sdyn;
943 Elf_External_Dyn *dyncon, *dynconend;
944
945 /* The hash table size did not change, which means that
946 the dynamic object name was already entered. If we
947 have already included this dynamic object in the
948 link, just ignore it. There is no reason to include
949 a particular dynamic object more than once. */
950 sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
951 ".dynamic");
952 BFD_ASSERT (sdyn != NULL);
953
954 dyncon = (Elf_External_Dyn *) sdyn->contents;
955 dynconend = (Elf_External_Dyn *) (sdyn->contents +
956 sdyn->_raw_size);
957 for (; dyncon < dynconend; dyncon++)
958 {
959 Elf_Internal_Dyn dyn;
960
961 elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon,
962 &dyn);
963 if (dyn.d_tag == DT_NEEDED
964 && dyn.d_un.d_val == strindex)
965 {
966 if (buf != NULL)
967 free (buf);
d044b40a
ILT
968 if (extversym != NULL)
969 free (extversym);
ede4eed4
KR
970 return true;
971 }
972 }
973 }
974
975 if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
976 goto error_return;
977 }
60a49e7f
ILT
978
979 /* Save the SONAME, if there is one, because sometimes the
980 linker emulation code will need to know it. */
981 if (*name == '\0')
982 name = bfd_get_filename (abfd);
983 elf_dt_name (abfd) = name;
ede4eed4
KR
984 }
985
986 if (bfd_seek (abfd,
987 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
988 SEEK_SET) != 0
989 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
990 != extsymcount * sizeof (Elf_External_Sym)))
991 goto error_return;
992
993 weaks = NULL;
994
e549b1d2 995 ever = extversym != NULL ? extversym + extsymoff : NULL;
ede4eed4 996 esymend = buf + extsymcount;
d044b40a
ILT
997 for (esym = buf;
998 esym < esymend;
999 esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
ede4eed4
KR
1000 {
1001 Elf_Internal_Sym sym;
1002 int bind;
1003 bfd_vma value;
1004 asection *sec;
1005 flagword flags;
1006 const char *name;
0cb70568 1007 struct elf_link_hash_entry *h;
ede4eed4 1008 boolean definition;
ee9f09cd 1009 boolean size_change_ok, type_change_ok;
452a5efb 1010 boolean new_weakdef;
fd6c00ba 1011 unsigned int old_alignment;
ede4eed4
KR
1012
1013 elf_swap_symbol_in (abfd, esym, &sym);
1014
1015 flags = BSF_NO_FLAGS;
1016 sec = NULL;
1017 value = sym.st_value;
1018 *sym_hash = NULL;
1019
1020 bind = ELF_ST_BIND (sym.st_info);
1021 if (bind == STB_LOCAL)
1022 {
1023 /* This should be impossible, since ELF requires that all
1024 global symbols follow all local symbols, and that sh_info
1025 point to the first global symbol. Unfortunatealy, Irix 5
1026 screws this up. */
1027 continue;
1028 }
1029 else if (bind == STB_GLOBAL)
1030 {
1031 if (sym.st_shndx != SHN_UNDEF
1032 && sym.st_shndx != SHN_COMMON)
1033 flags = BSF_GLOBAL;
1034 else
1035 flags = 0;
1036 }
1037 else if (bind == STB_WEAK)
1038 flags = BSF_WEAK;
1039 else
1040 {
1041 /* Leave it up to the processor backend. */
1042 }
1043
1044 if (sym.st_shndx == SHN_UNDEF)
1045 sec = bfd_und_section_ptr;
1046 else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE)
1047 {
1048 sec = section_from_elf_index (abfd, sym.st_shndx);
f02004e9 1049 if (sec == NULL)
ede4eed4 1050 sec = bfd_abs_section_ptr;
f02004e9
ILT
1051 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
1052 value -= sec->vma;
ede4eed4
KR
1053 }
1054 else if (sym.st_shndx == SHN_ABS)
1055 sec = bfd_abs_section_ptr;
1056 else if (sym.st_shndx == SHN_COMMON)
1057 {
1058 sec = bfd_com_section_ptr;
1059 /* What ELF calls the size we call the value. What ELF
1060 calls the value we call the alignment. */
1061 value = sym.st_size;
1062 }
1063 else
1064 {
1065 /* Leave it up to the processor backend. */
1066 }
1067
1068 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
1069 if (name == (const char *) NULL)
1070 goto error_return;
1071
1072 if (add_symbol_hook)
1073 {
1074 if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
1075 &value))
1076 goto error_return;
1077
1078 /* The hook function sets the name to NULL if this symbol
1079 should be skipped for some reason. */
1080 if (name == (const char *) NULL)
1081 continue;
1082 }
1083
1084 /* Sanity check that all possibilities were handled. */
1085 if (sec == (asection *) NULL)
1086 {
1087 bfd_set_error (bfd_error_bad_value);
1088 goto error_return;
1089 }
1090
1091 if (bfd_is_und_section (sec)
1092 || bfd_is_com_section (sec))
1093 definition = false;
1094 else
1095 definition = true;
1096
ee9f09cd 1097 size_change_ok = false;
5b3b9ff6 1098 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
fd6c00ba 1099 old_alignment = 0;
ede4eed4
KR
1100 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1101 {
d044b40a 1102 Elf_Internal_Versym iver;
f6727b90 1103 unsigned int vernum = 0;
d044b40a
ILT
1104 boolean override;
1105
1106 if (ever != NULL)
1107 {
1108 _bfd_elf_swap_versym_in (abfd, ever, &iver);
1109 vernum = iver.vs_vers & VERSYM_VERSION;
1110
1111 /* If this is a hidden symbol, or if it is not version
1112 1, we append the version name to the symbol name.
1113 However, we do not modify a non-hidden absolute
1114 symbol, because it might be the version symbol
1115 itself. FIXME: What if it isn't? */
1116 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
1117 || (vernum > 1 && ! bfd_is_abs_section (sec)))
1118 {
1119 const char *verstr;
1120 int namelen, newlen;
1121 char *newname, *p;
1122
601acd61 1123 if (sym.st_shndx != SHN_UNDEF)
e549b1d2 1124 {
601acd61
UD
1125 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
1126 {
1127 (*_bfd_error_handler)
53d3ce37 1128 (_("%s: %s: invalid version %u (max %d)"),
601acd61
UD
1129 abfd->filename, name, vernum,
1130 elf_tdata (abfd)->dynverdef_hdr.sh_info);
1131 bfd_set_error (bfd_error_bad_value);
1132 goto error_return;
1133 }
1134 else if (vernum > 1)
1135 verstr =
1136 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1137 else
1138 verstr = "";
e549b1d2 1139 }
d044b40a 1140 else
601acd61
UD
1141 {
1142 /* We cannot simply test for the number of
1143 entries in the VERNEED section since the
1144 numbers for the needed versions do not start
1145 at 0. */
1146 Elf_Internal_Verneed *t;
1147
1148 verstr = NULL;
1149 for (t = elf_tdata (abfd)->verref;
1150 t != NULL;
1151 t = t->vn_nextref)
1152 {
1153 Elf_Internal_Vernaux *a;
1154
1155 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1156 {
1157 if (a->vna_other == vernum)
1158 {
1159 verstr = a->vna_nodename;
1160 break;
1161 }
1162 }
1163 if (a != NULL)
1164 break;
1165 }
1166 if (verstr == NULL)
1167 {
1168 (*_bfd_error_handler)
53d3ce37 1169 (_("%s: %s: invalid needed version %d"),
601acd61
UD
1170 abfd->filename, name, vernum);
1171 bfd_set_error (bfd_error_bad_value);
1172 goto error_return;
1173 }
1174 }
d044b40a
ILT
1175
1176 namelen = strlen (name);
1177 newlen = namelen + strlen (verstr) + 2;
1178 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1179 ++newlen;
1180
1181 newname = (char *) bfd_alloc (abfd, newlen);
1182 if (newname == NULL)
1183 goto error_return;
1184 strcpy (newname, name);
1185 p = newname + namelen;
1186 *p++ = ELF_VER_CHR;
1187 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1188 *p++ = ELF_VER_CHR;
1189 strcpy (p, verstr);
1190
1191 name = newname;
1192 }
1193 }
1194
044d7d49
ILT
1195 if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value,
1196 sym_hash, &override, &type_change_ok,
1197 &size_change_ok))
ede4eed4 1198 goto error_return;
ede4eed4 1199
044d7d49
ILT
1200 if (override)
1201 definition = false;
869b7d80 1202
044d7d49 1203 h = *sym_hash;
0cb70568
ILT
1204 while (h->root.type == bfd_link_hash_indirect
1205 || h->root.type == bfd_link_hash_warning)
c4badc83 1206 h = (struct elf_link_hash_entry *) h->root.u.i.link;
0cb70568 1207
044d7d49
ILT
1208 /* Remember the old alignment if this is a common symbol, so
1209 that we don't reduce the alignment later on. We can't
1210 check later, because _bfd_generic_link_add_one_symbol
1211 will set a default for the alignment which we want to
1212 override. */
fd6c00ba
ILT
1213 if (h->root.type == bfd_link_hash_common)
1214 old_alignment = h->root.u.c.p->alignment_power;
1215
13eb6306 1216 if (elf_tdata (abfd)->verdef != NULL
d044b40a
ILT
1217 && ! override
1218 && vernum > 1
13eb6306 1219 && definition)
d044b40a 1220 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
ede4eed4
KR
1221 }
1222
1223 if (! (_bfd_generic_link_add_one_symbol
1224 (info, abfd, name, flags, sec, value, (const char *) NULL,
1225 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
1226 goto error_return;
1227
0cb70568
ILT
1228 h = *sym_hash;
1229 while (h->root.type == bfd_link_hash_indirect
1230 || h->root.type == bfd_link_hash_warning)
1231 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1232 *sym_hash = h;
1233
452a5efb 1234 new_weakdef = false;
ede4eed4
KR
1235 if (dynamic
1236 && definition
1237 && (flags & BSF_WEAK) != 0
1238 && ELF_ST_TYPE (sym.st_info) != STT_FUNC
1239 && info->hash->creator->flavour == bfd_target_elf_flavour
0cb70568 1240 && h->weakdef == NULL)
ede4eed4
KR
1241 {
1242 /* Keep a list of all weak defined non function symbols from
1243 a dynamic object, using the weakdef field. Later in this
1244 function we will set the weakdef field to the correct
1245 value. We only put non-function symbols from dynamic
1246 objects on this list, because that happens to be the only
1247 time we need to know the normal symbol corresponding to a
1248 weak symbol, and the information is time consuming to
1249 figure out. If the weakdef field is not already NULL,
1250 then this symbol was already defined by some previous
1251 dynamic object, and we will be using that previous
1252 definition anyhow. */
1253
0cb70568
ILT
1254 h->weakdef = weaks;
1255 weaks = h;
452a5efb 1256 new_weakdef = true;
ede4eed4
KR
1257 }
1258
fd6c00ba 1259 /* Set the alignment of a common symbol. */
ede4eed4 1260 if (sym.st_shndx == SHN_COMMON
0cb70568 1261 && h->root.type == bfd_link_hash_common)
fd6c00ba
ILT
1262 {
1263 unsigned int align;
1264
1265 align = bfd_log2 (sym.st_value);
1266 if (align > old_alignment)
1267 h->root.u.c.p->alignment_power = align;
1268 }
ede4eed4
KR
1269
1270 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1271 {
1272 int old_flags;
1273 boolean dynsym;
1274 int new_flag;
1275
1276 /* Remember the symbol size and type. */
3d7c42c9
ILT
1277 if (sym.st_size != 0
1278 && (definition || h->size == 0))
ede4eed4 1279 {
ee9f09cd 1280 if (h->size != 0 && h->size != sym.st_size && ! size_change_ok)
3d7c42c9 1281 (*_bfd_error_handler)
53d3ce37 1282 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
ba254dc5
ILT
1283 name, (unsigned long) h->size, (unsigned long) sym.st_size,
1284 bfd_get_filename (abfd));
1285
1286 h->size = sym.st_size;
ede4eed4 1287 }
031dfce0
ILT
1288
1289 /* If this is a common symbol, then we always want H->SIZE
1290 to be the size of the common symbol. The code just above
1291 won't fix the size if a common symbol becomes larger. We
1292 don't warn about a size change here, because that is
1293 covered by --warn-common. */
1294 if (h->root.type == bfd_link_hash_common)
1295 h->size = h->root.u.c.size;
1296
3d7c42c9
ILT
1297 if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE
1298 && (definition || h->type == STT_NOTYPE))
ede4eed4 1299 {
3d7c42c9 1300 if (h->type != STT_NOTYPE
8235c112 1301 && h->type != ELF_ST_TYPE (sym.st_info)
ee9f09cd 1302 && ! type_change_ok)
3d7c42c9 1303 (*_bfd_error_handler)
53d3ce37 1304 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
3d7c42c9
ILT
1305 name, h->type, ELF_ST_TYPE (sym.st_info),
1306 bfd_get_filename (abfd));
1307
ede4eed4
KR
1308 h->type = ELF_ST_TYPE (sym.st_info);
1309 }
1310
6c02f1a0
ILT
1311 if (sym.st_other != 0
1312 && (definition || h->other == 0))
1313 h->other = sym.st_other;
1314
ede4eed4
KR
1315 /* Set a flag in the hash table entry indicating the type of
1316 reference or definition we just found. Keep a count of
1317 the number of dynamic symbols we find. A dynamic symbol
1318 is one which is referenced or defined by both a regular
440f3914 1319 object and a shared object. */
ede4eed4
KR
1320 old_flags = h->elf_link_hash_flags;
1321 dynsym = false;
1322 if (! dynamic)
1323 {
1324 if (! definition)
1325 new_flag = ELF_LINK_HASH_REF_REGULAR;
1326 else
1327 new_flag = ELF_LINK_HASH_DEF_REGULAR;
1328 if (info->shared
1329 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
1330 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
1331 dynsym = true;
1332 }
1333 else
1334 {
1335 if (! definition)
1336 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
1337 else
1338 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
0db6249c 1339 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
1c4794f5
ILT
1340 | ELF_LINK_HASH_REF_REGULAR)) != 0
1341 || (h->weakdef != NULL
440f3914
ILT
1342 && ! new_weakdef
1343 && h->weakdef->dynindx != -1))
ede4eed4
KR
1344 dynsym = true;
1345 }
1346
1347 h->elf_link_hash_flags |= new_flag;
d044b40a
ILT
1348
1349 /* If this symbol has a version, and it is the default
1350 version, we create an indirect symbol from the default
1351 name to the fully decorated name. This will cause
1352 external references which do not specify a version to be
1353 bound to this version of the symbol. */
1354 if (definition)
1355 {
1356 char *p;
1357
1358 p = strchr (name, ELF_VER_CHR);
1359 if (p != NULL && p[1] == ELF_VER_CHR)
1360 {
1361 char *shortname;
044d7d49
ILT
1362 struct elf_link_hash_entry *hi;
1363 boolean override;
d044b40a
ILT
1364
1365 shortname = bfd_hash_allocate (&info->hash->table,
1366 p - name + 1);
1367 if (shortname == NULL)
1368 goto error_return;
1369 strncpy (shortname, name, p - name);
1370 shortname[p - name] = '\0';
1371
044d7d49
ILT
1372 /* We are going to create a new symbol. Merge it
1373 with any existing symbol with this name. For the
1374 purposes of the merge, act as though we were
1375 defining the symbol we just defined, although we
1376 actually going to define an indirect symbol. */
0e039bdc
ILT
1377 type_change_ok = false;
1378 size_change_ok = false;
044d7d49
ILT
1379 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1380 &value, &hi, &override,
1381 &type_change_ok, &size_change_ok))
1382 goto error_return;
d044b40a 1383
044d7d49 1384 if (! override)
d6bfcdb5 1385 {
52c92c7f
ILT
1386 if (! (_bfd_generic_link_add_one_symbol
1387 (info, abfd, shortname, BSF_INDIRECT,
1388 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1389 collect, (struct bfd_link_hash_entry **) &hi)))
1390 goto error_return;
541a4b54
ILT
1391 }
1392 else
1393 {
1394 /* In this case the symbol named SHORTNAME is
1395 overriding the indirect symbol we want to
1396 add. We were planning on making SHORTNAME an
1397 indirect symbol referring to NAME. SHORTNAME
1398 is the name without a version. NAME is the
1399 fully versioned name, and it is the default
1400 version.
1401
1402 Overriding means that we already saw a
1403 definition for the symbol SHORTNAME in a
1404 regular object, and it is overriding the
1405 symbol defined in the dynamic object.
1406
1407 When this happens, we actually want to change
1408 NAME, the symbol we just added, to refer to
1409 SHORTNAME. This will cause references to
1410 NAME in the shared object to become
1411 references to SHORTNAME in the regular
1412 object. This is what we expect when we
1413 override a function in a shared object: that
1414 the references in the shared object will be
1415 mapped to the definition in the regular
1416 object. */
1417
677525e9
ILT
1418 while (hi->root.type == bfd_link_hash_indirect
1419 || hi->root.type == bfd_link_hash_warning)
1420 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1421
541a4b54
ILT
1422 h->root.type = bfd_link_hash_indirect;
1423 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1424 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1425 {
1426 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1427 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1bec01fc
ILT
1428 if (hi->elf_link_hash_flags
1429 & (ELF_LINK_HASH_REF_REGULAR
1430 | ELF_LINK_HASH_DEF_REGULAR))
1431 {
1432 if (! _bfd_elf_link_record_dynamic_symbol (info,
1433 hi))
1434 goto error_return;
1435 }
541a4b54 1436 }
52c92c7f 1437
541a4b54
ILT
1438 /* Now set HI to H, so that the following code
1439 will set the other fields correctly. */
1440 hi = h;
1441 }
52c92c7f 1442
541a4b54
ILT
1443 /* If there is a duplicate definition somewhere,
1444 then HI may not point to an indirect symbol. We
1445 will have reported an error to the user in that
1446 case. */
1447
1448 if (hi->root.type == bfd_link_hash_indirect)
1449 {
1450 struct elf_link_hash_entry *ht;
1451
1452 /* If the symbol became indirect, then we assume
1453 that we have not seen a definition before. */
1454 BFD_ASSERT ((hi->elf_link_hash_flags
1455 & (ELF_LINK_HASH_DEF_DYNAMIC
1456 | ELF_LINK_HASH_DEF_REGULAR))
1457 == 0);
1458
1459 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1460
1461 /* Copy down any references that we may have
1462 already seen to the symbol which just became
1463 indirect. */
1464 ht->elf_link_hash_flags |=
1465 (hi->elf_link_hash_flags
1466 & (ELF_LINK_HASH_REF_DYNAMIC
1467 | ELF_LINK_HASH_REF_REGULAR));
1468
be228e0d
ILT
1469 /* Copy over the global and procedure linkage table
1470 offset entries. These may have been already set
1471 up by a check_relocs routine. */
303b4cc6 1472 if (ht->got.offset == (bfd_vma) -1)
52c92c7f 1473 {
303b4cc6
RH
1474 ht->got.offset = hi->got.offset;
1475 hi->got.offset = (bfd_vma) -1;
541a4b54 1476 }
303b4cc6 1477 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
e549b1d2 1478
be228e0d
ILT
1479 if (ht->plt.offset == (bfd_vma) -1)
1480 {
1481 ht->plt.offset = hi->plt.offset;
1482 hi->plt.offset = (bfd_vma) -1;
1483 }
1484 BFD_ASSERT (hi->plt.offset == (bfd_vma) -1);
1485
541a4b54
ILT
1486 if (ht->dynindx == -1)
1487 {
1488 ht->dynindx = hi->dynindx;
1489 ht->dynstr_index = hi->dynstr_index;
1490 hi->dynindx = -1;
1491 hi->dynstr_index = 0;
1492 }
1493 BFD_ASSERT (hi->dynindx == -1);
e549b1d2 1494
541a4b54
ILT
1495 /* FIXME: There may be other information to copy
1496 over for particular targets. */
1497
1498 /* See if the new flags lead us to realize that
1499 the symbol must be dynamic. */
1500 if (! dynsym)
1501 {
1502 if (! dynamic)
e549b1d2 1503 {
541a4b54
ILT
1504 if (info->shared
1505 || ((hi->elf_link_hash_flags
1506 & ELF_LINK_HASH_REF_DYNAMIC)
1507 != 0))
1508 dynsym = true;
e549b1d2 1509 }
541a4b54 1510 else
e549b1d2 1511 {
541a4b54
ILT
1512 if ((hi->elf_link_hash_flags
1513 & ELF_LINK_HASH_REF_REGULAR) != 0)
1514 dynsym = true;
e549b1d2 1515 }
52c92c7f 1516 }
d6bfcdb5
ILT
1517 }
1518
1519 /* We also need to define an indirection from the
1520 nondefault version of the symbol. */
1521
1522 shortname = bfd_hash_allocate (&info->hash->table,
1523 strlen (name));
1524 if (shortname == NULL)
1525 goto error_return;
1526 strncpy (shortname, name, p - name);
1527 strcpy (shortname + (p - name), p + 1);
1528
044d7d49 1529 /* Once again, merge with any existing symbol. */
0e039bdc
ILT
1530 type_change_ok = false;
1531 size_change_ok = false;
044d7d49
ILT
1532 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1533 &value, &hi, &override,
1534 &type_change_ok, &size_change_ok))
1535 goto error_return;
d6bfcdb5 1536
541a4b54
ILT
1537 if (override)
1538 {
1539 /* Here SHORTNAME is a versioned name, so we
1540 don't expect to see the type of override we
1541 do in the case above. */
1542 (*_bfd_error_handler)
53d3ce37 1543 (_("%s: warning: unexpected redefinition of `%s'"),
541a4b54
ILT
1544 bfd_get_filename (abfd), shortname);
1545 }
1546 else
d6bfcdb5 1547 {
52c92c7f
ILT
1548 if (! (_bfd_generic_link_add_one_symbol
1549 (info, abfd, shortname, BSF_INDIRECT,
1550 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1551 collect, (struct bfd_link_hash_entry **) &hi)))
1552 goto error_return;
1553
1554 /* If there is a duplicate definition somewhere,
1555 then HI may not point to an indirect symbol.
1556 We will have reported an error to the user in
1557 that case. */
1558
1559 if (hi->root.type == bfd_link_hash_indirect)
1560 {
e549b1d2
ILT
1561 /* If the symbol became indirect, then we
1562 assume that we have not seen a definition
1563 before. */
1564 BFD_ASSERT ((hi->elf_link_hash_flags
1565 & (ELF_LINK_HASH_DEF_DYNAMIC
1566 | ELF_LINK_HASH_DEF_REGULAR))
1567 == 0);
1568
1569 /* Copy down any references that we may have
1570 already seen to the symbol which just
1571 became indirect. */
1572 h->elf_link_hash_flags |=
1573 (hi->elf_link_hash_flags
1574 & (ELF_LINK_HASH_REF_DYNAMIC
1575 | ELF_LINK_HASH_REF_REGULAR));
1576
be228e0d
ILT
1577 /* Copy over the global and procedure linkage
1578 table offset entries. These may have been
1579 already set up by a check_relocs routine. */
303b4cc6 1580 if (h->got.offset == (bfd_vma) -1)
e549b1d2 1581 {
303b4cc6
RH
1582 h->got.offset = hi->got.offset;
1583 hi->got.offset = (bfd_vma) -1;
e549b1d2 1584 }
303b4cc6 1585 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
e549b1d2 1586
be228e0d
ILT
1587 if (h->plt.offset == (bfd_vma) -1)
1588 {
1589 h->plt.offset = hi->plt.offset;
1590 hi->plt.offset = (bfd_vma) -1;
1591 }
1592 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1593
e549b1d2
ILT
1594 if (h->dynindx == -1)
1595 {
1596 h->dynindx = hi->dynindx;
1597 h->dynstr_index = hi->dynstr_index;
1598 hi->dynindx = -1;
1599 hi->dynstr_index = 0;
1600 }
1601 BFD_ASSERT (hi->dynindx == -1);
1602
1603 /* FIXME: There may be other information to
1604 copy over for particular targets. */
1605
1606 /* See if the new flags lead us to realize
1607 that the symbol must be dynamic. */
1608 if (! dynsym)
1609 {
1610 if (! dynamic)
1611 {
1612 if (info->shared
1613 || ((hi->elf_link_hash_flags
1614 & ELF_LINK_HASH_REF_DYNAMIC)
1615 != 0))
1616 dynsym = true;
1617 }
1618 else
1619 {
1620 if ((hi->elf_link_hash_flags
1621 & ELF_LINK_HASH_REF_REGULAR) != 0)
1622 dynsym = true;
1623 }
1624 }
52c92c7f 1625 }
d6bfcdb5 1626 }
d044b40a
ILT
1627 }
1628 }
1629
ede4eed4
KR
1630 if (dynsym && h->dynindx == -1)
1631 {
1632 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1633 goto error_return;
452a5efb
ILT
1634 if (h->weakdef != NULL
1635 && ! new_weakdef
1636 && h->weakdef->dynindx == -1)
1637 {
1638 if (! _bfd_elf_link_record_dynamic_symbol (info,
1639 h->weakdef))
1640 goto error_return;
1641 }
ede4eed4
KR
1642 }
1643 }
1644 }
1645
1646 /* Now set the weakdefs field correctly for all the weak defined
1647 symbols we found. The only way to do this is to search all the
1648 symbols. Since we only need the information for non functions in
1649 dynamic objects, that's the only time we actually put anything on
1650 the list WEAKS. We need this information so that if a regular
1651 object refers to a symbol defined weakly in a dynamic object, the
1652 real symbol in the dynamic object is also put in the dynamic
1653 symbols; we also must arrange for both symbols to point to the
1654 same memory location. We could handle the general case of symbol
1655 aliasing, but a general symbol alias can only be generated in
1656 assembler code, handling it correctly would be very time
1657 consuming, and other ELF linkers don't handle general aliasing
1658 either. */
1659 while (weaks != NULL)
1660 {
1661 struct elf_link_hash_entry *hlook;
1662 asection *slook;
1663 bfd_vma vlook;
1664 struct elf_link_hash_entry **hpp;
1665 struct elf_link_hash_entry **hppend;
1666
1667 hlook = weaks;
1668 weaks = hlook->weakdef;
1669 hlook->weakdef = NULL;
1670
1671 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
1672 || hlook->root.type == bfd_link_hash_defweak
1673 || hlook->root.type == bfd_link_hash_common
1674 || hlook->root.type == bfd_link_hash_indirect);
1675 slook = hlook->root.u.def.section;
1676 vlook = hlook->root.u.def.value;
1677
1678 hpp = elf_sym_hashes (abfd);
1679 hppend = hpp + extsymcount;
1680 for (; hpp < hppend; hpp++)
1681 {
1682 struct elf_link_hash_entry *h;
1683
1684 h = *hpp;
1685 if (h != NULL && h != hlook
d2bb6c79 1686 && h->root.type == bfd_link_hash_defined
ede4eed4
KR
1687 && h->root.u.def.section == slook
1688 && h->root.u.def.value == vlook)
1689 {
1690 hlook->weakdef = h;
1691
1692 /* If the weak definition is in the list of dynamic
1693 symbols, make sure the real definition is put there
1694 as well. */
1695 if (hlook->dynindx != -1
1696 && h->dynindx == -1)
1697 {
1698 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1699 goto error_return;
1700 }
1701
440f3914
ILT
1702 /* If the real definition is in the list of dynamic
1703 symbols, make sure the weak definition is put there
1704 as well. If we don't do this, then the dynamic
1705 loader might not merge the entries for the real
1706 definition and the weak definition. */
1707 if (h->dynindx != -1
1708 && hlook->dynindx == -1)
1709 {
1710 if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
1711 goto error_return;
1712 }
1713
ede4eed4
KR
1714 break;
1715 }
1716 }
1717 }
1718
1719 if (buf != NULL)
1720 {
1721 free (buf);
1722 buf = NULL;
1723 }
1724
d044b40a
ILT
1725 if (extversym != NULL)
1726 {
1727 free (extversym);
1728 extversym = NULL;
1729 }
1730
ede4eed4
KR
1731 /* If this object is the same format as the output object, and it is
1732 not a shared library, then let the backend look through the
1733 relocs.
1734
1735 This is required to build global offset table entries and to
1736 arrange for dynamic relocs. It is not required for the
1737 particular common case of linking non PIC code, even when linking
1738 against shared libraries, but unfortunately there is no way of
1739 knowing whether an object file has been compiled PIC or not.
1740 Looking through the relocs is not particularly time consuming.
1741 The problem is that we must either (1) keep the relocs in memory,
1742 which causes the linker to require additional runtime memory or
1743 (2) read the relocs twice from the input file, which wastes time.
1744 This would be a good case for using mmap.
1745
1746 I have no idea how to handle linking PIC code into a file of a
1747 different format. It probably can't be done. */
1748 check_relocs = get_elf_backend_data (abfd)->check_relocs;
1749 if (! dynamic
1750 && abfd->xvec == info->hash->creator
1751 && check_relocs != NULL)
1752 {
1753 asection *o;
1754
1755 for (o = abfd->sections; o != NULL; o = o->next)
1756 {
1757 Elf_Internal_Rela *internal_relocs;
1758 boolean ok;
1759
1760 if ((o->flags & SEC_RELOC) == 0
a0c80726
ILT
1761 || o->reloc_count == 0
1762 || ((info->strip == strip_all || info->strip == strip_debugger)
94e05b00
ILT
1763 && (o->flags & SEC_DEBUGGING) != 0)
1764 || bfd_is_abs_section (o->output_section))
ede4eed4
KR
1765 continue;
1766
c86158e5
ILT
1767 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
1768 (abfd, o, (PTR) NULL,
1769 (Elf_Internal_Rela *) NULL,
1770 info->keep_memory));
ede4eed4
KR
1771 if (internal_relocs == NULL)
1772 goto error_return;
1773
1774 ok = (*check_relocs) (abfd, info, o, internal_relocs);
1775
1776 if (! info->keep_memory)
1777 free (internal_relocs);
1778
1779 if (! ok)
1780 goto error_return;
1781 }
1782 }
1783
1726b8f0
ILT
1784 /* If this is a non-traditional, non-relocateable link, try to
1785 optimize the handling of the .stab/.stabstr sections. */
1786 if (! dynamic
1787 && ! info->relocateable
1788 && ! info->traditional_format
1789 && info->hash->creator->flavour == bfd_target_elf_flavour
1790 && (info->strip != strip_all && info->strip != strip_debugger))
1791 {
1792 asection *stab, *stabstr;
1793
1794 stab = bfd_get_section_by_name (abfd, ".stab");
1795 if (stab != NULL)
1796 {
1797 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
1798
1799 if (stabstr != NULL)
1800 {
1801 struct bfd_elf_section_data *secdata;
1802
1803 secdata = elf_section_data (stab);
1804 if (! _bfd_link_section_stabs (abfd,
1805 &elf_hash_table (info)->stab_info,
1806 stab, stabstr,
1807 &secdata->stab_info))
1808 goto error_return;
1809 }
1810 }
1811 }
1812
ede4eed4
KR
1813 return true;
1814
1815 error_return:
1816 if (buf != NULL)
1817 free (buf);
1818 if (dynbuf != NULL)
1819 free (dynbuf);
d044b40a
ILT
1820 if (dynver != NULL)
1821 free (dynver);
1822 if (extversym != NULL)
1823 free (extversym);
ede4eed4
KR
1824 return false;
1825}
1826
1827/* Create some sections which will be filled in with dynamic linking
1828 information. ABFD is an input file which requires dynamic sections
1829 to be created. The dynamic sections take up virtual memory space
1830 when the final executable is run, so we need to create them before
1831 addresses are assigned to the output sections. We work out the
1832 actual contents and size of these sections later. */
1833
1834boolean
1835elf_link_create_dynamic_sections (abfd, info)
1836 bfd *abfd;
1837 struct bfd_link_info *info;
1838{
1839 flagword flags;
1840 register asection *s;
1841 struct elf_link_hash_entry *h;
1842 struct elf_backend_data *bed;
1843
1844 if (elf_hash_table (info)->dynamic_sections_created)
1845 return true;
1846
1847 /* Make sure that all dynamic sections use the same input BFD. */
1848 if (elf_hash_table (info)->dynobj == NULL)
1849 elf_hash_table (info)->dynobj = abfd;
1850 else
1851 abfd = elf_hash_table (info)->dynobj;
1852
1853 /* Note that we set the SEC_IN_MEMORY flag for all of these
1854 sections. */
ff12f303
ILT
1855 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
1856 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
ede4eed4
KR
1857
1858 /* A dynamically linked executable has a .interp section, but a
1859 shared library does not. */
1860 if (! info->shared)
1861 {
1862 s = bfd_make_section (abfd, ".interp");
1863 if (s == NULL
1864 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
1865 return false;
1866 }
1867
d044b40a
ILT
1868 /* Create sections to hold version informations. These are removed
1869 if they are not needed. */
1870 s = bfd_make_section (abfd, ".gnu.version_d");
1871 if (s == NULL
1872 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
65c2dd6e 1873 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
d044b40a
ILT
1874 return false;
1875
1876 s = bfd_make_section (abfd, ".gnu.version");
1877 if (s == NULL
1878 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1879 || ! bfd_set_section_alignment (abfd, s, 1))
1880 return false;
1881
1882 s = bfd_make_section (abfd, ".gnu.version_r");
1883 if (s == NULL
1884 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
65c2dd6e 1885 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
d044b40a
ILT
1886 return false;
1887
ede4eed4
KR
1888 s = bfd_make_section (abfd, ".dynsym");
1889 if (s == NULL
1890 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1891 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1892 return false;
1893
1894 s = bfd_make_section (abfd, ".dynstr");
1895 if (s == NULL
1896 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
1897 return false;
1898
1899 /* Create a strtab to hold the dynamic symbol names. */
1900 if (elf_hash_table (info)->dynstr == NULL)
1901 {
1902 elf_hash_table (info)->dynstr = elf_stringtab_init ();
1903 if (elf_hash_table (info)->dynstr == NULL)
1904 return false;
1905 }
1906
1907 s = bfd_make_section (abfd, ".dynamic");
1908 if (s == NULL
1909 || ! bfd_set_section_flags (abfd, s, flags)
1910 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1911 return false;
1912
1913 /* The special symbol _DYNAMIC is always set to the start of the
1914 .dynamic section. This call occurs before we have processed the
1915 symbols for any dynamic object, so we don't have to worry about
1916 overriding a dynamic definition. We could set _DYNAMIC in a
1917 linker script, but we only want to define it if we are, in fact,
1918 creating a .dynamic section. We don't want to define it if there
1919 is no .dynamic section, since on some ELF platforms the start up
1920 code examines it to decide how to initialize the process. */
1921 h = NULL;
1922 if (! (_bfd_generic_link_add_one_symbol
1923 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
1924 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
1925 (struct bfd_link_hash_entry **) &h)))
1926 return false;
1927 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
1928 h->type = STT_OBJECT;
1929
1930 if (info->shared
1931 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
1932 return false;
1933
1934 s = bfd_make_section (abfd, ".hash");
1935 if (s == NULL
1936 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1937 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1938 return false;
1939
1940 /* Let the backend create the rest of the sections. This lets the
1941 backend set the right flags. The backend will normally create
1942 the .got and .plt sections. */
1943 bed = get_elf_backend_data (abfd);
1944 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
1945 return false;
1946
1947 elf_hash_table (info)->dynamic_sections_created = true;
1948
1949 return true;
1950}
1951
1952/* Add an entry to the .dynamic table. */
1953
1954boolean
1955elf_add_dynamic_entry (info, tag, val)
1956 struct bfd_link_info *info;
1957 bfd_vma tag;
1958 bfd_vma val;
1959{
1960 Elf_Internal_Dyn dyn;
1961 bfd *dynobj;
1962 asection *s;
1963 size_t newsize;
1964 bfd_byte *newcontents;
1965
1966 dynobj = elf_hash_table (info)->dynobj;
1967
1968 s = bfd_get_section_by_name (dynobj, ".dynamic");
1969 BFD_ASSERT (s != NULL);
1970
1971 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
58142f10 1972 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
ede4eed4 1973 if (newcontents == NULL)
58142f10 1974 return false;
ede4eed4
KR
1975
1976 dyn.d_tag = tag;
1977 dyn.d_un.d_val = val;
1978 elf_swap_dyn_out (dynobj, &dyn,
1979 (Elf_External_Dyn *) (newcontents + s->_raw_size));
1980
1981 s->_raw_size = newsize;
1982 s->contents = newcontents;
1983
1984 return true;
1985}
3b3753b8 1986\f
ede4eed4
KR
1987
1988/* Read and swap the relocs for a section. They may have been cached.
1989 If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are not NULL,
1990 they are used as buffers to read into. They are known to be large
1991 enough. If the INTERNAL_RELOCS relocs argument is NULL, the return
1992 value is allocated using either malloc or bfd_alloc, according to
1993 the KEEP_MEMORY argument. */
1994
c86158e5
ILT
1995Elf_Internal_Rela *
1996NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
1997 keep_memory)
ede4eed4
KR
1998 bfd *abfd;
1999 asection *o;
2000 PTR external_relocs;
2001 Elf_Internal_Rela *internal_relocs;
2002 boolean keep_memory;
2003{
2004 Elf_Internal_Shdr *rel_hdr;
2005 PTR alloc1 = NULL;
2006 Elf_Internal_Rela *alloc2 = NULL;
2007
2008 if (elf_section_data (o)->relocs != NULL)
2009 return elf_section_data (o)->relocs;
2010
2011 if (o->reloc_count == 0)
2012 return NULL;
2013
2014 rel_hdr = &elf_section_data (o)->rel_hdr;
2015
2016 if (internal_relocs == NULL)
2017 {
2018 size_t size;
2019
2020 size = o->reloc_count * sizeof (Elf_Internal_Rela);
2021 if (keep_memory)
2022 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2023 else
58142f10 2024 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
ede4eed4 2025 if (internal_relocs == NULL)
58142f10 2026 goto error_return;
ede4eed4
KR
2027 }
2028
2029 if (external_relocs == NULL)
2030 {
58142f10 2031 alloc1 = (PTR) bfd_malloc ((size_t) rel_hdr->sh_size);
ede4eed4 2032 if (alloc1 == NULL)
58142f10 2033 goto error_return;
ede4eed4
KR
2034 external_relocs = alloc1;
2035 }
2036
2037 if ((bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0)
2038 || (bfd_read (external_relocs, 1, rel_hdr->sh_size, abfd)
2039 != rel_hdr->sh_size))
2040 goto error_return;
2041
2042 /* Swap in the relocs. For convenience, we always produce an
2043 Elf_Internal_Rela array; if the relocs are Rel, we set the addend
2044 to 0. */
2045 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
2046 {
2047 Elf_External_Rel *erel;
2048 Elf_External_Rel *erelend;
2049 Elf_Internal_Rela *irela;
2050
2051 erel = (Elf_External_Rel *) external_relocs;
2052 erelend = erel + o->reloc_count;
2053 irela = internal_relocs;
2054 for (; erel < erelend; erel++, irela++)
2055 {
2056 Elf_Internal_Rel irel;
2057
2058 elf_swap_reloc_in (abfd, erel, &irel);
2059 irela->r_offset = irel.r_offset;
2060 irela->r_info = irel.r_info;
2061 irela->r_addend = 0;
2062 }
2063 }
2064 else
2065 {
2066 Elf_External_Rela *erela;
2067 Elf_External_Rela *erelaend;
2068 Elf_Internal_Rela *irela;
2069
2070 BFD_ASSERT (rel_hdr->sh_entsize == sizeof (Elf_External_Rela));
2071
2072 erela = (Elf_External_Rela *) external_relocs;
2073 erelaend = erela + o->reloc_count;
2074 irela = internal_relocs;
2075 for (; erela < erelaend; erela++, irela++)
2076 elf_swap_reloca_in (abfd, erela, irela);
2077 }
2078
2079 /* Cache the results for next time, if we can. */
2080 if (keep_memory)
2081 elf_section_data (o)->relocs = internal_relocs;
ff12f303 2082
ede4eed4
KR
2083 if (alloc1 != NULL)
2084 free (alloc1);
2085
2086 /* Don't free alloc2, since if it was allocated we are passing it
2087 back (under the name of internal_relocs). */
2088
2089 return internal_relocs;
2090
2091 error_return:
2092 if (alloc1 != NULL)
2093 free (alloc1);
2094 if (alloc2 != NULL)
2095 free (alloc2);
2096 return NULL;
2097}
3b3753b8 2098\f
ede4eed4
KR
2099
2100/* Record an assignment to a symbol made by a linker script. We need
2101 this in case some dynamic object refers to this symbol. */
2102
2103/*ARGSUSED*/
2104boolean
2105NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
2106 bfd *output_bfd;
2107 struct bfd_link_info *info;
2108 const char *name;
2109 boolean provide;
2110{
2111 struct elf_link_hash_entry *h;
2112
2113 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2114 return true;
2115
2116 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
2117 if (h == NULL)
2118 return false;
2119
869b7d80
ILT
2120 if (h->root.type == bfd_link_hash_new)
2121 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
2122
ede4eed4
KR
2123 /* If this symbol is being provided by the linker script, and it is
2124 currently defined by a dynamic object, but not by a regular
2125 object, then mark it as undefined so that the generic linker will
2126 force the correct value. */
2127 if (provide
2128 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2129 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2130 h->root.type = bfd_link_hash_undefined;
2131
13eb6306
ILT
2132 /* If this symbol is not being provided by the linker script, and it is
2133 currently defined by a dynamic object, but not by a regular object,
2134 then clear out any version information because the symbol will not be
2135 associated with the dynamic object any more. */
2136 if (!provide
2137 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2138 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2139 h->verinfo.verdef = NULL;
2140
ede4eed4
KR
2141 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2142 h->type = STT_OBJECT;
2143
2144 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2145 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
2146 || info->shared)
2147 && h->dynindx == -1)
2148 {
2149 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2150 return false;
2151
2152 /* If this is a weak defined symbol, and we know a corresponding
2153 real symbol from the same dynamic object, make sure the real
2154 symbol is also made into a dynamic symbol. */
2155 if (h->weakdef != NULL
2156 && h->weakdef->dynindx == -1)
2157 {
2158 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2159 return false;
2160 }
2161 }
2162
2163 return true;
2164}
3b3753b8 2165\f
d044b40a
ILT
2166/* This structure is used to pass information to
2167 elf_link_assign_sym_version. */
2168
2169struct elf_assign_sym_version_info
2170{
2171 /* Output BFD. */
2172 bfd *output_bfd;
2173 /* General link information. */
2174 struct bfd_link_info *info;
2175 /* Version tree. */
2176 struct bfd_elf_version_tree *verdefs;
2177 /* Whether we are exporting all dynamic symbols. */
2178 boolean export_dynamic;
2179 /* Whether we removed any symbols from the dynamic symbol table. */
2180 boolean removed_dynamic;
2181 /* Whether we had a failure. */
2182 boolean failed;
2183};
2184
2185/* This structure is used to pass information to
2186 elf_link_find_version_dependencies. */
2187
2188struct elf_find_verdep_info
2189{
2190 /* Output BFD. */
2191 bfd *output_bfd;
2192 /* General link information. */
2193 struct bfd_link_info *info;
2194 /* The number of dependencies. */
2195 unsigned int vers;
2196 /* Whether we had a failure. */
2197 boolean failed;
2198};
ede4eed4
KR
2199
2200/* Array used to determine the number of hash table buckets to use
2201 based on the number of symbols there are. If there are fewer than
2202 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2203 fewer than 37 we use 17 buckets, and so forth. We never use more
6b8ec6f3 2204 than 32771 buckets. */
ede4eed4
KR
2205
2206static const size_t elf_buckets[] =
2207{
6b8ec6f3
ILT
2208 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2209 16411, 32771, 0
ede4eed4
KR
2210};
2211
e429c897
UD
2212/* Compute bucket count for hashing table. We do not use a static set
2213 of possible tables sizes anymore. Instead we determine for all
2214 possible reasonable sizes of the table the outcome (i.e., the
2215 number of collisions etc) and choose the best solution. The
2216 weighting functions are not too simple to allow the table to grow
2217 without bounds. Instead one of the weighting factors is the size.
2218 Therefore the result is always a good payoff between few collisions
2219 (= short chain lengths) and table size. */
2220static size_t
2221compute_bucket_count (info)
2222 struct bfd_link_info *info;
2223{
2224 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
2225 size_t best_size;
2226 unsigned long int *hashcodes;
2227 unsigned long int *hashcodesp;
2228 unsigned long int i;
2229
2230 /* Compute the hash values for all exported symbols. At the same
2231 time store the values in an array so that we could use them for
2232 optimizations. */
2233 hashcodes = (unsigned long int *) bfd_malloc (dynsymcount
2234 * sizeof (unsigned long int));
2235 if (hashcodes == NULL)
2236 return 0;
2237 hashcodesp = hashcodes;
2238
2239 /* Put all hash values in HASHCODES. */
2240 elf_link_hash_traverse (elf_hash_table (info),
2241 elf_collect_hash_codes, &hashcodesp);
2242
2243/* We have a problem here. The following code to optimize the table size
2244 requires an integer type with more the 32 bits. If BFD_HOST_U_64_BIT
2245 is set or GCC 2 is used we know about such a type. */
2246#if defined BFD_HOST_U_64_BIT || __GNUC__ >= 2
2247# ifndef BFD_HOST_U_64_BIT
2248# define BFD_HOST_U_64_BIT unsigned long long int
2249# endif
2250 if (info->optimize == true)
2251 {
2252 unsigned long int nsyms = hashcodesp - hashcodes;
2253 size_t minsize;
2254 size_t maxsize;
2255 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
2256 unsigned long int *counts ;
2257
2258 /* Possible optimization parameters: if we have NSYMS symbols we say
2259 that the hashing table must at least have NSYMS/4 and at most
2260 2*NSYMS buckets. */
2261 minsize = nsyms / 4;
2262 best_size = maxsize = nsyms * 2;
2263
2264 /* Create array where we count the collisions in. We must use bfd_malloc
2265 since the size could be large. */
2266 counts = (unsigned long int *) bfd_malloc (maxsize
2267 * sizeof (unsigned long int));
2268 if (counts == NULL)
2269 {
2270 free (hashcodes);
2271 return 0;
2272 }
2273
2274 /* Compute the "optimal" size for the hash table. The criteria is a
2275 minimal chain length. The minor criteria is (of course) the size
2276 of the table. */
2277 for (i = minsize; i < maxsize; ++i)
2278 {
2279 /* Walk through the array of hashcodes and count the collisions. */
2280 BFD_HOST_U_64_BIT max;
2281 unsigned long int j;
2282 unsigned long int fact;
2283
2284 memset (counts, '\0', i * sizeof (unsigned long int));
2285
2286 /* Determine how often each hash bucket is used. */
2287 for (j = 0; j < nsyms; ++j)
2288 ++counts[hashcodes[j] % i];
2289
2290 /* For the weight function we need some information about the
2291 pagesize on the target. This is information need not be 100%
2292 accurate. Since this information is not available (so far) we
2293 define it here to a reasonable default value. If it is crucial
2294 to have a better value some day simply define this value. */
2295# ifndef BFD_TARGET_PAGESIZE
2296# define BFD_TARGET_PAGESIZE (4096)
2297# endif
2298
2299 /* We in any case need 2 + NSYMS entries for the size values and
2300 the chains. */
2301 max = (2 + nsyms) * (ARCH_SIZE / 8);
2302
2303# if 1
2304 /* Variant 1: optimize for short chains. We add the squares
2305 of all the chain lengths (which favous many small chain
2306 over a few long chains). */
2307 for (j = 0; j < i; ++j)
2308 max += counts[j] * counts[j];
2309
2310 /* This adds penalties for the overall size of the table. */
2311 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2312 max *= fact * fact;
2313# else
2314 /* Variant 2: Optimize a lot more for small table. Here we
2315 also add squares of the size but we also add penalties for
2316 empty slots (the +1 term). */
2317 for (j = 0; j < i; ++j)
2318 max += (1 + counts[j]) * (1 + counts[j]);
2319
2320 /* The overall size of the table is considered, but not as
2321 strong as in variant 1, where it is squared. */
2322 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2323 max *= fact;
2324# endif
2325
2326 /* Compare with current best results. */
2327 if (max < best_chlen)
2328 {
2329 best_chlen = max;
2330 best_size = i;
2331 }
2332 }
2333
2334 free (counts);
2335 }
2336 else
2337#endif
2338 {
2339 /* This is the fallback solution if no 64bit type is available or if we
2340 are not supposed to spend much time on optimizations. We select the
2341 bucket count using a fixed set of numbers. */
2342 for (i = 0; elf_buckets[i] != 0; i++)
2343 {
2344 best_size = elf_buckets[i];
2345 if (dynsymcount < elf_buckets[i + 1])
2346 break;
2347 }
2348 }
2349
2350 /* Free the arrays we needed. */
2351 free (hashcodes);
2352
2353 return best_size;
2354}
2355
ede4eed4
KR
2356/* Set up the sizes and contents of the ELF dynamic sections. This is
2357 called by the ELF linker emulation before_allocation routine. We
2358 must set the sizes of the sections before the linker sets the
2359 addresses of the various sections. */
2360
2361boolean
2362NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
148437ec 2363 export_dynamic, filter_shlib,
d044b40a
ILT
2364 auxiliary_filters, info, sinterpptr,
2365 verdefs)
ede4eed4
KR
2366 bfd *output_bfd;
2367 const char *soname;
2368 const char *rpath;
2369 boolean export_dynamic;
148437ec 2370 const char *filter_shlib;
db109ca2 2371 const char * const *auxiliary_filters;
ede4eed4
KR
2372 struct bfd_link_info *info;
2373 asection **sinterpptr;
d044b40a 2374 struct bfd_elf_version_tree *verdefs;
ede4eed4 2375{
d044b40a 2376 bfd_size_type soname_indx;
ede4eed4
KR
2377 bfd *dynobj;
2378 struct elf_backend_data *bed;
e549b1d2 2379 bfd_size_type old_dynsymcount;
c19fbe0f 2380 struct elf_assign_sym_version_info asvinfo;
ede4eed4
KR
2381
2382 *sinterpptr = NULL;
2383
f6727b90 2384 soname_indx = (bfd_size_type) -1;
d044b40a 2385
ede4eed4
KR
2386 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2387 return true;
2388
ff12f303
ILT
2389 /* The backend may have to create some sections regardless of whether
2390 we're dynamic or not. */
2391 bed = get_elf_backend_data (output_bfd);
2392 if (bed->elf_backend_always_size_sections
2393 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
2394 return false;
2395
ede4eed4
KR
2396 dynobj = elf_hash_table (info)->dynobj;
2397
2398 /* If there were no dynamic objects in the link, there is nothing to
2399 do here. */
2400 if (dynobj == NULL)
2401 return true;
2402
2403 /* If we are supposed to export all symbols into the dynamic symbol
2404 table (this is not the normal case), then do so. */
2405 if (export_dynamic)
2406 {
2407 struct elf_info_failed eif;
2408
2409 eif.failed = false;
2410 eif.info = info;
2411 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
2412 (PTR) &eif);
2413 if (eif.failed)
2414 return false;
2415 }
2416
2417 if (elf_hash_table (info)->dynamic_sections_created)
2418 {
2419 struct elf_info_failed eif;
73a68447 2420 struct elf_link_hash_entry *h;
ede4eed4
KR
2421 bfd_size_type strsize;
2422
2423 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
2424 BFD_ASSERT (*sinterpptr != NULL || info->shared);
2425
2426 if (soname != NULL)
2427 {
d044b40a
ILT
2428 soname_indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2429 soname, true, true);
2430 if (soname_indx == (bfd_size_type) -1
2431 || ! elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
ede4eed4 2432 return false;
ff12f303 2433 }
ede4eed4 2434
951fe66d
ILT
2435 if (info->symbolic)
2436 {
2437 if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
2438 return false;
2439 }
2440
ede4eed4
KR
2441 if (rpath != NULL)
2442 {
2443 bfd_size_type indx;
2444
2445 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath,
2446 true, true);
2447 if (indx == (bfd_size_type) -1
2448 || ! elf_add_dynamic_entry (info, DT_RPATH, indx))
2449 return false;
2450 }
2451
148437ec
ILT
2452 if (filter_shlib != NULL)
2453 {
2454 bfd_size_type indx;
2455
2456 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2457 filter_shlib, true, true);
2458 if (indx == (bfd_size_type) -1
2459 || ! elf_add_dynamic_entry (info, DT_FILTER, indx))
2460 return false;
2461 }
2462
db109ca2 2463 if (auxiliary_filters != NULL)
148437ec 2464 {
db109ca2 2465 const char * const *p;
148437ec 2466
db109ca2
ILT
2467 for (p = auxiliary_filters; *p != NULL; p++)
2468 {
2469 bfd_size_type indx;
2470
2471 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2472 *p, true, true);
2473 if (indx == (bfd_size_type) -1
2474 || ! elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
2475 return false;
2476 }
148437ec
ILT
2477 }
2478
c19fbe0f
ILT
2479 /* Attach all the symbols to their version information. */
2480 asvinfo.output_bfd = output_bfd;
2481 asvinfo.info = info;
2482 asvinfo.verdefs = verdefs;
2483 asvinfo.export_dynamic = export_dynamic;
2484 asvinfo.removed_dynamic = false;
2485 asvinfo.failed = false;
2486
2487 elf_link_hash_traverse (elf_hash_table (info),
2488 elf_link_assign_sym_version,
2489 (PTR) &asvinfo);
2490 if (asvinfo.failed)
2491 return false;
2492
ede4eed4
KR
2493 /* Find all symbols which were defined in a dynamic object and make
2494 the backend pick a reasonable value for them. */
2495 eif.failed = false;
2496 eif.info = info;
2497 elf_link_hash_traverse (elf_hash_table (info),
2498 elf_adjust_dynamic_symbol,
2499 (PTR) &eif);
2500 if (eif.failed)
2501 return false;
2502
2503 /* Add some entries to the .dynamic section. We fill in some of the
2504 values later, in elf_bfd_final_link, but we must add the entries
2505 now so that we know the final size of the .dynamic section. */
73a68447
ILT
2506 h = elf_link_hash_lookup (elf_hash_table (info), "_init", false,
2507 false, false);
2508 if (h != NULL
2509 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2510 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
ede4eed4
KR
2511 {
2512 if (! elf_add_dynamic_entry (info, DT_INIT, 0))
2513 return false;
2514 }
73a68447
ILT
2515 h = elf_link_hash_lookup (elf_hash_table (info), "_fini", false,
2516 false, false);
2517 if (h != NULL
2518 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2519 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
ede4eed4
KR
2520 {
2521 if (! elf_add_dynamic_entry (info, DT_FINI, 0))
2522 return false;
2523 }
2524 strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
2525 if (! elf_add_dynamic_entry (info, DT_HASH, 0)
2526 || ! elf_add_dynamic_entry (info, DT_STRTAB, 0)
2527 || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0)
2528 || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize)
2529 || ! elf_add_dynamic_entry (info, DT_SYMENT,
2530 sizeof (Elf_External_Sym)))
2531 return false;
2532 }
2533
2534 /* The backend must work out the sizes of all the other dynamic
2535 sections. */
e549b1d2 2536 old_dynsymcount = elf_hash_table (info)->dynsymcount;
37b68f72
RH
2537 if (bed->elf_backend_size_dynamic_sections
2538 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
ede4eed4
KR
2539 return false;
2540
2541 if (elf_hash_table (info)->dynamic_sections_created)
2542 {
2543 size_t dynsymcount;
2544 asection *s;
2545 size_t i;
2546 size_t bucketcount = 0;
2547 Elf_Internal_Sym isym;
2548
d044b40a
ILT
2549 /* Set up the version definition section. */
2550 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
2551 BFD_ASSERT (s != NULL);
d6bfcdb5 2552
d6bfcdb5
ILT
2553 /* We may have created additional version definitions if we are
2554 just linking a regular application. */
c19fbe0f 2555 verdefs = asvinfo.verdefs;
d6bfcdb5 2556
d044b40a
ILT
2557 if (verdefs == NULL)
2558 {
d044b40a
ILT
2559 asection **spp;
2560
d044b40a
ILT
2561 /* Don't include this section in the output file. */
2562 for (spp = &output_bfd->sections;
2563 *spp != s->output_section;
2564 spp = &(*spp)->next)
2565 ;
2566 *spp = s->output_section->next;
2567 --output_bfd->section_count;
2568 }
2569 else
2570 {
d044b40a
ILT
2571 unsigned int cdefs;
2572 bfd_size_type size;
2573 struct bfd_elf_version_tree *t;
2574 bfd_byte *p;
2575 Elf_Internal_Verdef def;
2576 Elf_Internal_Verdaux defaux;
2577
c19fbe0f 2578 if (asvinfo.removed_dynamic)
d044b40a
ILT
2579 {
2580 /* Some dynamic symbols were changed to be local
e549b1d2
ILT
2581 symbols. In this case, we renumber all of the
2582 dynamic symbols, so that we don't have a hole. If
2583 the backend changed dynsymcount, then assume that the
2584 new symbols are at the start. This is the case on
2585 the MIPS. FIXME: The names of the removed symbols
2586 will still be in the dynamic string table, wasting
2587 space. */
2588 elf_hash_table (info)->dynsymcount =
2589 1 + (elf_hash_table (info)->dynsymcount - old_dynsymcount);
d044b40a
ILT
2590 elf_link_hash_traverse (elf_hash_table (info),
2591 elf_link_renumber_dynsyms,
2592 (PTR) info);
2593 }
2594
2595 cdefs = 0;
2596 size = 0;
2597
2598 /* Make space for the base version. */
2599 size += sizeof (Elf_External_Verdef);
2600 size += sizeof (Elf_External_Verdaux);
2601 ++cdefs;
2602
2603 for (t = verdefs; t != NULL; t = t->next)
2604 {
2605 struct bfd_elf_version_deps *n;
2606
2607 size += sizeof (Elf_External_Verdef);
2608 size += sizeof (Elf_External_Verdaux);
2609 ++cdefs;
2610
2611 for (n = t->deps; n != NULL; n = n->next)
2612 size += sizeof (Elf_External_Verdaux);
2613 }
2614
2615 s->_raw_size = size;
2616 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
2617 if (s->contents == NULL && s->_raw_size != 0)
2618 return false;
2619
2620 /* Fill in the version definition section. */
2621
2622 p = s->contents;
2623
2624 def.vd_version = VER_DEF_CURRENT;
2625 def.vd_flags = VER_FLG_BASE;
2626 def.vd_ndx = 1;
2627 def.vd_cnt = 1;
2628 def.vd_aux = sizeof (Elf_External_Verdef);
2629 def.vd_next = (sizeof (Elf_External_Verdef)
2630 + sizeof (Elf_External_Verdaux));
2631
f6727b90 2632 if (soname_indx != (bfd_size_type) -1)
d044b40a
ILT
2633 {
2634 def.vd_hash = bfd_elf_hash ((const unsigned char *) soname);
2635 defaux.vda_name = soname_indx;
2636 }
2637 else
2638 {
2639 const char *name;
2640 bfd_size_type indx;
2641
2642 name = output_bfd->filename;
2643 def.vd_hash = bfd_elf_hash ((const unsigned char *) name);
2644 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2645 name, true, false);
2646 if (indx == (bfd_size_type) -1)
2647 return false;
2648 defaux.vda_name = indx;
2649 }
2650 defaux.vda_next = 0;
2651
2652 _bfd_elf_swap_verdef_out (output_bfd, &def,
2653 (Elf_External_Verdef *)p);
2654 p += sizeof (Elf_External_Verdef);
2655 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2656 (Elf_External_Verdaux *) p);
2657 p += sizeof (Elf_External_Verdaux);
2658
2659 for (t = verdefs; t != NULL; t = t->next)
2660 {
2661 unsigned int cdeps;
2662 struct bfd_elf_version_deps *n;
2663 struct elf_link_hash_entry *h;
2664
2665 cdeps = 0;
2666 for (n = t->deps; n != NULL; n = n->next)
2667 ++cdeps;
2668
2669 /* Add a symbol representing this version. */
2670 h = NULL;
2671 if (! (_bfd_generic_link_add_one_symbol
2672 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
2673 (bfd_vma) 0, (const char *) NULL, false,
2674 get_elf_backend_data (dynobj)->collect,
2675 (struct bfd_link_hash_entry **) &h)))
2676 return false;
2677 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
2678 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2679 h->type = STT_OBJECT;
2680 h->verinfo.vertree = t;
2681
d6bfcdb5
ILT
2682 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2683 return false;
d044b40a
ILT
2684
2685 def.vd_version = VER_DEF_CURRENT;
2686 def.vd_flags = 0;
2687 if (t->globals == NULL && t->locals == NULL && ! t->used)
2688 def.vd_flags |= VER_FLG_WEAK;
2689 def.vd_ndx = t->vernum + 1;
2690 def.vd_cnt = cdeps + 1;
2691 def.vd_hash = bfd_elf_hash ((const unsigned char *) t->name);
2692 def.vd_aux = sizeof (Elf_External_Verdef);
2693 if (t->next != NULL)
2694 def.vd_next = (sizeof (Elf_External_Verdef)
2695 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
2696 else
2697 def.vd_next = 0;
2698
2699 _bfd_elf_swap_verdef_out (output_bfd, &def,
2700 (Elf_External_Verdef *) p);
2701 p += sizeof (Elf_External_Verdef);
2702
2703 defaux.vda_name = h->dynstr_index;
2704 if (t->deps == NULL)
2705 defaux.vda_next = 0;
2706 else
2707 defaux.vda_next = sizeof (Elf_External_Verdaux);
2708 t->name_indx = defaux.vda_name;
2709
2710 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2711 (Elf_External_Verdaux *) p);
2712 p += sizeof (Elf_External_Verdaux);
2713
2714 for (n = t->deps; n != NULL; n = n->next)
2715 {
9793236c
ILT
2716 if (n->version_needed == NULL)
2717 {
2718 /* This can happen if there was an error in the
2719 version script. */
2720 defaux.vda_name = 0;
2721 }
2722 else
2723 defaux.vda_name = n->version_needed->name_indx;
d044b40a
ILT
2724 if (n->next == NULL)
2725 defaux.vda_next = 0;
2726 else
2727 defaux.vda_next = sizeof (Elf_External_Verdaux);
2728
2729 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2730 (Elf_External_Verdaux *) p);
2731 p += sizeof (Elf_External_Verdaux);
2732 }
2733 }
2734
2735 if (! elf_add_dynamic_entry (info, DT_VERDEF, 0)
2736 || ! elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
2737 return false;
2738
2739 elf_tdata (output_bfd)->cverdefs = cdefs;
2740 }
2741
2742 /* Work out the size of the version reference section. */
2743
2744 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
2745 BFD_ASSERT (s != NULL);
2746 {
2747 struct elf_find_verdep_info sinfo;
2748
2749 sinfo.output_bfd = output_bfd;
2750 sinfo.info = info;
2751 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
2752 if (sinfo.vers == 0)
2753 sinfo.vers = 1;
2754 sinfo.failed = false;
2755
2756 elf_link_hash_traverse (elf_hash_table (info),
2757 elf_link_find_version_dependencies,
2758 (PTR) &sinfo);
2759
2760 if (elf_tdata (output_bfd)->verref == NULL)
2761 {
2762 asection **spp;
2763
2764 /* We don't have any version definitions, so we can just
2765 remove the section. */
2766
2767 for (spp = &output_bfd->sections;
2768 *spp != s->output_section;
2769 spp = &(*spp)->next)
2770 ;
2771 *spp = s->output_section->next;
2772 --output_bfd->section_count;
2773 }
2774 else
2775 {
2776 Elf_Internal_Verneed *t;
2777 unsigned int size;
2778 unsigned int crefs;
2779 bfd_byte *p;
2780
2781 /* Build the version definition section. */
d6bfcdb5
ILT
2782 size = 0;
2783 crefs = 0;
d044b40a
ILT
2784 for (t = elf_tdata (output_bfd)->verref;
2785 t != NULL;
2786 t = t->vn_nextref)
2787 {
2788 Elf_Internal_Vernaux *a;
2789
2790 size += sizeof (Elf_External_Verneed);
2791 ++crefs;
2792 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2793 size += sizeof (Elf_External_Vernaux);
2794 }
2795
2796 s->_raw_size = size;
2797 s->contents = (bfd_byte *) bfd_alloc (output_bfd, size);
2798 if (s->contents == NULL)
2799 return false;
2800
2801 p = s->contents;
2802 for (t = elf_tdata (output_bfd)->verref;
2803 t != NULL;
2804 t = t->vn_nextref)
2805 {
2806 unsigned int caux;
2807 Elf_Internal_Vernaux *a;
2808 bfd_size_type indx;
2809
2810 caux = 0;
2811 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2812 ++caux;
2813
2814 t->vn_version = VER_NEED_CURRENT;
2815 t->vn_cnt = caux;
601acd61
UD
2816 if (elf_dt_name (t->vn_bfd) != NULL)
2817 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2818 elf_dt_name (t->vn_bfd),
2819 true, false);
2820 else
2821 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2822 t->vn_bfd->filename, true, false);
d044b40a
ILT
2823 if (indx == (bfd_size_type) -1)
2824 return false;
2825 t->vn_file = indx;
2826 t->vn_aux = sizeof (Elf_External_Verneed);
2827 if (t->vn_nextref == NULL)
2828 t->vn_next = 0;
2829 else
2830 t->vn_next = (sizeof (Elf_External_Verneed)
2831 + caux * sizeof (Elf_External_Vernaux));
2832
2833 _bfd_elf_swap_verneed_out (output_bfd, t,
2834 (Elf_External_Verneed *) p);
2835 p += sizeof (Elf_External_Verneed);
2836
2837 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2838 {
2839 a->vna_hash = bfd_elf_hash ((const unsigned char *)
2840 a->vna_nodename);
2841 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2842 a->vna_nodename, true, false);
2843 if (indx == (bfd_size_type) -1)
2844 return false;
2845 a->vna_name = indx;
2846 if (a->vna_nextptr == NULL)
2847 a->vna_next = 0;
2848 else
2849 a->vna_next = sizeof (Elf_External_Vernaux);
2850
2851 _bfd_elf_swap_vernaux_out (output_bfd, a,
2852 (Elf_External_Vernaux *) p);
2853 p += sizeof (Elf_External_Vernaux);
2854 }
2855 }
2856
2857 if (! elf_add_dynamic_entry (info, DT_VERNEED, 0)
2858 || ! elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
2859 return false;
2860
2861 elf_tdata (output_bfd)->cverrefs = crefs;
2862 }
2863 }
2864
2865 dynsymcount = elf_hash_table (info)->dynsymcount;
2866
2867 /* Work out the size of the symbol version section. */
2868 s = bfd_get_section_by_name (dynobj, ".gnu.version");
2869 BFD_ASSERT (s != NULL);
2870 if (dynsymcount == 0
2871 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
2872 {
2873 asection **spp;
2874
2875 /* We don't need any symbol versions; just discard the
2876 section. */
2877 for (spp = &output_bfd->sections;
2878 *spp != s->output_section;
2879 spp = &(*spp)->next)
2880 ;
2881 *spp = s->output_section->next;
2882 --output_bfd->section_count;
2883 }
2884 else
2885 {
d044b40a 2886 s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
e549b1d2 2887 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
d044b40a
ILT
2888 if (s->contents == NULL)
2889 return false;
2890
d044b40a
ILT
2891 if (! elf_add_dynamic_entry (info, DT_VERSYM, 0))
2892 return false;
2893 }
2894
ede4eed4
KR
2895 /* Set the size of the .dynsym and .hash sections. We counted
2896 the number of dynamic symbols in elf_link_add_object_symbols.
2897 We will build the contents of .dynsym and .hash when we build
2898 the final symbol table, because until then we do not know the
2899 correct value to give the symbols. We built the .dynstr
2900 section as we went along in elf_link_add_object_symbols. */
ede4eed4
KR
2901 s = bfd_get_section_by_name (dynobj, ".dynsym");
2902 BFD_ASSERT (s != NULL);
2903 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
2904 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
2905 if (s->contents == NULL && s->_raw_size != 0)
a9713b91 2906 return false;
ede4eed4
KR
2907
2908 /* The first entry in .dynsym is a dummy symbol. */
2909 isym.st_value = 0;
2910 isym.st_size = 0;
2911 isym.st_name = 0;
2912 isym.st_info = 0;
2913 isym.st_other = 0;
2914 isym.st_shndx = 0;
2915 elf_swap_symbol_out (output_bfd, &isym,
cf9fb9f2 2916 (PTR) (Elf_External_Sym *) s->contents);
ede4eed4 2917
e429c897
UD
2918 /* Compute the size of the hashing table. As a side effect this
2919 computes the hash values for all the names we export. */
2920 bucketcount = compute_bucket_count (info);
ede4eed4
KR
2921
2922 s = bfd_get_section_by_name (dynobj, ".hash");
2923 BFD_ASSERT (s != NULL);
2924 s->_raw_size = (2 + bucketcount + dynsymcount) * (ARCH_SIZE / 8);
2925 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
2926 if (s->contents == NULL)
a9713b91 2927 return false;
3fe22b98 2928 memset (s->contents, 0, (size_t) s->_raw_size);
ede4eed4
KR
2929
2930 put_word (output_bfd, bucketcount, s->contents);
2931 put_word (output_bfd, dynsymcount, s->contents + (ARCH_SIZE / 8));
2932
2933 elf_hash_table (info)->bucketcount = bucketcount;
2934
2935 s = bfd_get_section_by_name (dynobj, ".dynstr");
2936 BFD_ASSERT (s != NULL);
2937 s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
2938
2939 if (! elf_add_dynamic_entry (info, DT_NULL, 0))
2940 return false;
2941 }
2942
2943 return true;
2944}
3b3753b8 2945\f
c19fbe0f
ILT
2946/* Fix up the flags for a symbol. This handles various cases which
2947 can only be fixed after all the input files are seen. This is
2948 currently called by both adjust_dynamic_symbol and
2949 assign_sym_version, which is unnecessary but perhaps more robust in
2950 the face of future changes. */
ede4eed4
KR
2951
2952static boolean
c19fbe0f 2953elf_fix_symbol_flags (h, eif)
ede4eed4 2954 struct elf_link_hash_entry *h;
c19fbe0f 2955 struct elf_info_failed *eif;
ede4eed4 2956{
869b7d80
ILT
2957 /* If this symbol was mentioned in a non-ELF file, try to set
2958 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2959 permit a non-ELF file to correctly refer to a symbol defined in
2960 an ELF dynamic object. */
2961 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
2962 {
2963 if (h->root.type != bfd_link_hash_defined
2964 && h->root.type != bfd_link_hash_defweak)
2965 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
2966 else
2967 {
e303e2e3
ILT
2968 if (h->root.u.def.section->owner != NULL
2969 && (bfd_get_flavour (h->root.u.def.section->owner)
2970 == bfd_target_elf_flavour))
869b7d80
ILT
2971 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
2972 else
2973 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2974 }
2975
c19fbe0f
ILT
2976 if (h->dynindx == -1
2977 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2978 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
869b7d80
ILT
2979 {
2980 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
2981 {
2982 eif->failed = true;
2983 return false;
2984 }
2985 }
2986 }
2987
ce6a7731
ILT
2988 /* If this is a final link, and the symbol was defined as a common
2989 symbol in a regular object file, and there was no definition in
2990 any dynamic object, then the linker will have allocated space for
2991 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
2992 flag will not have been set. */
2993 if (h->root.type == bfd_link_hash_defined
2994 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
2995 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
2996 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
2997 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2998 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2999
951fe66d
ILT
3000 /* If -Bsymbolic was used (which means to bind references to global
3001 symbols to the definition within the shared object), and this
3002 symbol was defined in a regular object, then it actually doesn't
3003 need a PLT entry. */
3004 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
3005 && eif->info->shared
3006 && eif->info->symbolic
3007 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
be228e0d
ILT
3008 {
3009 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3010 h->plt.offset = (bfd_vma) -1;
3011 }
951fe66d 3012
c19fbe0f
ILT
3013 return true;
3014}
3015
3016/* Make the backend pick a good value for a dynamic symbol. This is
3017 called via elf_link_hash_traverse, and also calls itself
3018 recursively. */
3019
3020static boolean
3021elf_adjust_dynamic_symbol (h, data)
3022 struct elf_link_hash_entry *h;
3023 PTR data;
3024{
3025 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3026 bfd *dynobj;
3027 struct elf_backend_data *bed;
3028
3029 /* Ignore indirect symbols. These are added by the versioning code. */
3030 if (h->root.type == bfd_link_hash_indirect)
3031 return true;
3032
3033 /* Fix the symbol flags. */
3034 if (! elf_fix_symbol_flags (h, eif))
3035 return false;
3036
ede4eed4
KR
3037 /* If this symbol does not require a PLT entry, and it is not
3038 defined by a dynamic object, or is not referenced by a regular
452a5efb
ILT
3039 object, ignore it. We do have to handle a weak defined symbol,
3040 even if no regular object refers to it, if we decided to add it
3041 to the dynamic symbol table. FIXME: Do we normally need to worry
3042 about symbols which are defined by one dynamic object and
3043 referenced by another one? */
ede4eed4
KR
3044 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
3045 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3046 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
452a5efb
ILT
3047 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
3048 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
be228e0d
ILT
3049 {
3050 h->plt.offset = (bfd_vma) -1;
3051 return true;
3052 }
ede4eed4
KR
3053
3054 /* If we've already adjusted this symbol, don't do it again. This
3055 can happen via a recursive call. */
3056 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
3057 return true;
3058
3059 /* Don't look at this symbol again. Note that we must set this
3060 after checking the above conditions, because we may look at a
3061 symbol once, decide not to do anything, and then get called
3062 recursively later after REF_REGULAR is set below. */
3063 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
3064
3065 /* If this is a weak definition, and we know a real definition, and
3066 the real symbol is not itself defined by a regular object file,
3067 then get a good value for the real definition. We handle the
3068 real symbol first, for the convenience of the backend routine.
3069
3070 Note that there is a confusing case here. If the real definition
3071 is defined by a regular object file, we don't get the real symbol
3072 from the dynamic object, but we do get the weak symbol. If the
3073 processor backend uses a COPY reloc, then if some routine in the
3074 dynamic object changes the real symbol, we will not see that
3075 change in the corresponding weak symbol. This is the way other
3076 ELF linkers work as well, and seems to be a result of the shared
3077 library model.
3078
3079 I will clarify this issue. Most SVR4 shared libraries define the
3080 variable _timezone and define timezone as a weak synonym. The
3081 tzset call changes _timezone. If you write
3082 extern int timezone;
3083 int _timezone = 5;
3084 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3085 you might expect that, since timezone is a synonym for _timezone,
3086 the same number will print both times. However, if the processor
3087 backend uses a COPY reloc, then actually timezone will be copied
3088 into your process image, and, since you define _timezone
3089 yourself, _timezone will not. Thus timezone and _timezone will
3090 wind up at different memory locations. The tzset call will set
3091 _timezone, leaving timezone unchanged. */
3092
3093 if (h->weakdef != NULL)
3094 {
3095 struct elf_link_hash_entry *weakdef;
3096
3097 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3098 || h->root.type == bfd_link_hash_defweak);
3099 weakdef = h->weakdef;
3100 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
3101 || weakdef->root.type == bfd_link_hash_defweak);
3102 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
3103 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3104 {
3105 /* This symbol is defined by a regular object file, so we
3106 will not do anything special. Clear weakdef for the
3107 convenience of the processor backend. */
3108 h->weakdef = NULL;
3109 }
3110 else
3111 {
3112 /* There is an implicit reference by a regular object file
3113 via the weak symbol. */
3114 weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
3115 if (! elf_adjust_dynamic_symbol (weakdef, (PTR) eif))
3116 return false;
3117 }
3118 }
3119
3120 dynobj = elf_hash_table (eif->info)->dynobj;
3121 bed = get_elf_backend_data (dynobj);
3122 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3123 {
3124 eif->failed = true;
3125 return false;
3126 }
3127
3128 return true;
3129}
3130\f
d044b40a
ILT
3131/* This routine is used to export all defined symbols into the dynamic
3132 symbol table. It is called via elf_link_hash_traverse. */
3133
3134static boolean
3135elf_export_symbol (h, data)
3136 struct elf_link_hash_entry *h;
3137 PTR data;
3138{
3139 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3140
e549b1d2
ILT
3141 /* Ignore indirect symbols. These are added by the versioning code. */
3142 if (h->root.type == bfd_link_hash_indirect)
3143 return true;
3144
d044b40a
ILT
3145 if (h->dynindx == -1
3146 && (h->elf_link_hash_flags
3147 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
3148 {
3149 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3150 {
3151 eif->failed = true;
3152 return false;
3153 }
3154 }
3155
3156 return true;
3157}
3158\f
3159/* Look through the symbols which are defined in other shared
3160 libraries and referenced here. Update the list of version
3161 dependencies. This will be put into the .gnu.version_r section.
3162 This function is called via elf_link_hash_traverse. */
3163
3164static boolean
3165elf_link_find_version_dependencies (h, data)
3166 struct elf_link_hash_entry *h;
3167 PTR data;
3168{
3169 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
3170 Elf_Internal_Verneed *t;
3171 Elf_Internal_Vernaux *a;
3172
3173 /* We only care about symbols defined in shared objects with version
3174 information. */
3175 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
a48ef404 3176 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
d044b40a
ILT
3177 || h->dynindx == -1
3178 || h->verinfo.verdef == NULL)
3179 return true;
3180
3181 /* See if we already know about this version. */
3182 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
3183 {
cf2cd4cf 3184 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
d044b40a
ILT
3185 continue;
3186
3187 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3188 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
3189 return true;
3190
3191 break;
3192 }
3193
3194 /* This is a new version. Add it to tree we are building. */
3195
3196 if (t == NULL)
3197 {
3198 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, sizeof *t);
3199 if (t == NULL)
3200 {
3201 rinfo->failed = true;
3202 return false;
3203 }
3204
3205 t->vn_bfd = h->verinfo.verdef->vd_bfd;
3206 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
3207 elf_tdata (rinfo->output_bfd)->verref = t;
3208 }
3209
3210 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, sizeof *a);
3211
3212 /* Note that we are copying a string pointer here, and testing it
3213 above. If bfd_elf_string_from_elf_section is ever changed to
3214 discard the string data when low in memory, this will have to be
3215 fixed. */
3216 a->vna_nodename = h->verinfo.verdef->vd_nodename;
3217
3218 a->vna_flags = h->verinfo.verdef->vd_flags;
3219 a->vna_nextptr = t->vn_auxptr;
3220
3221 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
3222 ++rinfo->vers;
3223
3224 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
3225
3226 t->vn_auxptr = a;
3227
3228 return true;
3229}
3230
3231/* Figure out appropriate versions for all the symbols. We may not
3232 have the version number script until we have read all of the input
3233 files, so until that point we don't know which symbols should be
3234 local. This function is called via elf_link_hash_traverse. */
3235
3236static boolean
3237elf_link_assign_sym_version (h, data)
3238 struct elf_link_hash_entry *h;
3239 PTR data;
3240{
3241 struct elf_assign_sym_version_info *sinfo =
3242 (struct elf_assign_sym_version_info *) data;
3243 struct bfd_link_info *info = sinfo->info;
c19fbe0f 3244 struct elf_info_failed eif;
d044b40a
ILT
3245 char *p;
3246
c19fbe0f
ILT
3247 /* Fix the symbol flags. */
3248 eif.failed = false;
3249 eif.info = info;
3250 if (! elf_fix_symbol_flags (h, &eif))
3251 {
3252 if (eif.failed)
3253 sinfo->failed = true;
3254 return false;
3255 }
3256
d044b40a
ILT
3257 /* We only need version numbers for symbols defined in regular
3258 objects. */
3259 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3260 return true;
3261
3262 p = strchr (h->root.root.string, ELF_VER_CHR);
3263 if (p != NULL && h->verinfo.vertree == NULL)
3264 {
3265 struct bfd_elf_version_tree *t;
3266 boolean hidden;
3267
3268 hidden = true;
3269
3270 /* There are two consecutive ELF_VER_CHR characters if this is
3271 not a hidden symbol. */
3272 ++p;
3273 if (*p == ELF_VER_CHR)
3274 {
3275 hidden = false;
3276 ++p;
3277 }
3278
3279 /* If there is no version string, we can just return out. */
3280 if (*p == '\0')
3281 {
3282 if (hidden)
3283 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3284 return true;
3285 }
3286
3287 /* Look for the version. If we find it, it is no longer weak. */
3288 for (t = sinfo->verdefs; t != NULL; t = t->next)
3289 {
3290 if (strcmp (t->name, p) == 0)
3291 {
bccab630
RH
3292 int len;
3293 char *alc;
3294 struct bfd_elf_version_expr *d;
3295
3296 len = p - h->root.root.string;
3297 alc = bfd_alloc (sinfo->output_bfd, len);
3298 if (alc == NULL)
3299 return false;
3300 strncpy (alc, h->root.root.string, len - 1);
3301 alc[len - 1] = '\0';
3302 if (alc[len - 2] == ELF_VER_CHR)
3303 alc[len - 2] = '\0';
3304
d044b40a
ILT
3305 h->verinfo.vertree = t;
3306 t->used = true;
bccab630
RH
3307 d = NULL;
3308
3309 if (t->globals != NULL)
3310 {
3311 for (d = t->globals; d != NULL; d = d->next)
3312 {
3313 if ((d->match[0] == '*' && d->match[1] == '\0')
3314 || fnmatch (d->match, alc, 0) == 0)
3315 break;
3316 }
3317 }
d6bfcdb5
ILT
3318
3319 /* See if there is anything to force this symbol to
3320 local scope. */
bccab630 3321 if (d == NULL && t->locals != NULL)
d6bfcdb5 3322 {
d6bfcdb5
ILT
3323 for (d = t->locals; d != NULL; d = d->next)
3324 {
3325 if ((d->match[0] == '*' && d->match[1] == '\0')
3326 || fnmatch (d->match, alc, 0) == 0)
3327 {
3328 if (h->dynindx != -1
3329 && info->shared
c19fbe0f 3330 && ! sinfo->export_dynamic)
d6bfcdb5
ILT
3331 {
3332 sinfo->removed_dynamic = true;
52c92c7f 3333 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
c19fbe0f
ILT
3334 h->elf_link_hash_flags &=~
3335 ELF_LINK_HASH_NEEDS_PLT;
d6bfcdb5 3336 h->dynindx = -1;
be228e0d 3337 h->plt.offset = (bfd_vma) -1;
d6bfcdb5
ILT
3338 /* FIXME: The name of the symbol has
3339 already been recorded in the dynamic
3340 string table section. */
3341 }
3342
3343 break;
3344 }
3345 }
d6bfcdb5
ILT
3346 }
3347
bccab630 3348 bfd_release (sinfo->output_bfd, alc);
d044b40a
ILT
3349 break;
3350 }
3351 }
3352
d6bfcdb5
ILT
3353 /* If we are building an application, we need to create a
3354 version node for this version. */
3355 if (t == NULL && ! info->shared)
3356 {
3357 struct bfd_elf_version_tree **pp;
3358 int version_index;
3359
3360 /* If we aren't going to export this symbol, we don't need
3361 to worry about it. */
3362 if (h->dynindx == -1)
3363 return true;
3364
3365 t = ((struct bfd_elf_version_tree *)
3366 bfd_alloc (sinfo->output_bfd, sizeof *t));
3367 if (t == NULL)
3368 {
3369 sinfo->failed = true;
3370 return false;
3371 }
3372
3373 t->next = NULL;
3374 t->name = p;
3375 t->globals = NULL;
3376 t->locals = NULL;
3377 t->deps = NULL;
3378 t->name_indx = (unsigned int) -1;
3379 t->used = true;
3380
3381 version_index = 1;
3382 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
3383 ++version_index;
3384 t->vernum = version_index;
3385
3386 *pp = t;
3387
3388 h->verinfo.vertree = t;
3389 }
3390 else if (t == NULL)
d044b40a 3391 {
d6bfcdb5
ILT
3392 /* We could not find the version for a symbol when
3393 generating a shared archive. Return an error. */
d044b40a 3394 (*_bfd_error_handler)
53d3ce37 3395 (_("%s: undefined versioned symbol name %s"),
52c92c7f 3396 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
d044b40a
ILT
3397 bfd_set_error (bfd_error_bad_value);
3398 sinfo->failed = true;
3399 return false;
3400 }
3401
3402 if (hidden)
3403 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3404 }
3405
3406 /* If we don't have a version for this symbol, see if we can find
3407 something. */
3408 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
3409 {
3410 struct bfd_elf_version_tree *t;
3411 struct bfd_elf_version_tree *deflt;
3412 struct bfd_elf_version_expr *d;
3413
3414 /* See if can find what version this symbol is in. If the
c19fbe0f 3415 symbol is supposed to be local, then don't actually register
d044b40a
ILT
3416 it. */
3417 deflt = NULL;
3418 for (t = sinfo->verdefs; t != NULL; t = t->next)
3419 {
3420 if (t->globals != NULL)
3421 {
3422 for (d = t->globals; d != NULL; d = d->next)
3423 {
3424 if (fnmatch (d->match, h->root.root.string, 0) == 0)
3425 {
3426 h->verinfo.vertree = t;
3427 break;
3428 }
3429 }
3430
3431 if (d != NULL)
3432 break;
3433 }
3434
3435 if (t->locals != NULL)
3436 {
3437 for (d = t->locals; d != NULL; d = d->next)
3438 {
3439 if (d->match[0] == '*' && d->match[1] == '\0')
3440 deflt = t;
3441 else if (fnmatch (d->match, h->root.root.string, 0) == 0)
3442 {
3443 h->verinfo.vertree = t;
3444 if (h->dynindx != -1
3445 && info->shared
c19fbe0f 3446 && ! sinfo->export_dynamic)
d044b40a
ILT
3447 {
3448 sinfo->removed_dynamic = true;
52c92c7f 3449 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
c19fbe0f 3450 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
d044b40a 3451 h->dynindx = -1;
be228e0d 3452 h->plt.offset = (bfd_vma) -1;
d044b40a
ILT
3453 /* FIXME: The name of the symbol has already
3454 been recorded in the dynamic string table
3455 section. */
3456 }
3457 break;
3458 }
3459 }
3460
3461 if (d != NULL)
3462 break;
3463 }
3464 }
3465
3466 if (deflt != NULL && h->verinfo.vertree == NULL)
3467 {
3468 h->verinfo.vertree = deflt;
3469 if (h->dynindx != -1
3470 && info->shared
c19fbe0f 3471 && ! sinfo->export_dynamic)
d044b40a
ILT
3472 {
3473 sinfo->removed_dynamic = true;
52c92c7f 3474 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
c19fbe0f 3475 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
d044b40a 3476 h->dynindx = -1;
be228e0d 3477 h->plt.offset = (bfd_vma) -1;
d044b40a
ILT
3478 /* FIXME: The name of the symbol has already been
3479 recorded in the dynamic string table section. */
3480 }
3481 }
3482 }
3483
3484 return true;
3485}
3486
3487/* This function is used to renumber the dynamic symbols, if some of
3488 them are removed because they are marked as local. This is called
3489 via elf_link_hash_traverse. */
3490
3491static boolean
3492elf_link_renumber_dynsyms (h, data)
3493 struct elf_link_hash_entry *h;
3494 PTR data;
3495{
3496 struct bfd_link_info *info = (struct bfd_link_info *) data;
3497
3498 if (h->dynindx != -1)
3499 {
3500 h->dynindx = elf_hash_table (info)->dynsymcount;
3501 ++elf_hash_table (info)->dynsymcount;
3502 }
3503
3504 return true;
3505}
3506\f
ede4eed4
KR
3507/* Final phase of ELF linker. */
3508
3509/* A structure we use to avoid passing large numbers of arguments. */
3510
3511struct elf_final_link_info
3512{
3513 /* General link information. */
3514 struct bfd_link_info *info;
3515 /* Output BFD. */
3516 bfd *output_bfd;
3517 /* Symbol string table. */
3518 struct bfd_strtab_hash *symstrtab;
3519 /* .dynsym section. */
3520 asection *dynsym_sec;
3521 /* .hash section. */
3522 asection *hash_sec;
d044b40a
ILT
3523 /* symbol version section (.gnu.version). */
3524 asection *symver_sec;
ede4eed4
KR
3525 /* Buffer large enough to hold contents of any section. */
3526 bfd_byte *contents;
3527 /* Buffer large enough to hold external relocs of any section. */
3528 PTR external_relocs;
3529 /* Buffer large enough to hold internal relocs of any section. */
3530 Elf_Internal_Rela *internal_relocs;
3531 /* Buffer large enough to hold external local symbols of any input
3532 BFD. */
3533 Elf_External_Sym *external_syms;
3534 /* Buffer large enough to hold internal local symbols of any input
3535 BFD. */
3536 Elf_Internal_Sym *internal_syms;
3537 /* Array large enough to hold a symbol index for each local symbol
3538 of any input BFD. */
3539 long *indices;
3540 /* Array large enough to hold a section pointer for each local
3541 symbol of any input BFD. */
3542 asection **sections;
3543 /* Buffer to hold swapped out symbols. */
3544 Elf_External_Sym *symbuf;
3545 /* Number of swapped out symbols in buffer. */
3546 size_t symbuf_count;
3547 /* Number of symbols which fit in symbuf. */
3548 size_t symbuf_size;
3549};
3550
3551static boolean elf_link_output_sym
3552 PARAMS ((struct elf_final_link_info *, const char *,
3553 Elf_Internal_Sym *, asection *));
3554static boolean elf_link_flush_output_syms
3555 PARAMS ((struct elf_final_link_info *));
3556static boolean elf_link_output_extsym
3557 PARAMS ((struct elf_link_hash_entry *, PTR));
3558static boolean elf_link_input_bfd
3559 PARAMS ((struct elf_final_link_info *, bfd *));
3560static boolean elf_reloc_link_order
3561 PARAMS ((bfd *, struct bfd_link_info *, asection *,
3562 struct bfd_link_order *));
3563
52c92c7f 3564/* This struct is used to pass information to elf_link_output_extsym. */
ede4eed4 3565
52c92c7f 3566struct elf_outext_info
ede4eed4
KR
3567{
3568 boolean failed;
52c92c7f 3569 boolean localsyms;
ede4eed4 3570 struct elf_final_link_info *finfo;
ff12f303 3571};
ede4eed4
KR
3572
3573/* Do the final step of an ELF link. */
3574
3575boolean
3576elf_bfd_final_link (abfd, info)
3577 bfd *abfd;
3578 struct bfd_link_info *info;
3579{
3580 boolean dynamic;
3581 bfd *dynobj;
3582 struct elf_final_link_info finfo;
3583 register asection *o;
3584 register struct bfd_link_order *p;
3585 register bfd *sub;
3586 size_t max_contents_size;
3587 size_t max_external_reloc_size;
3588 size_t max_internal_reloc_count;
3589 size_t max_sym_count;
3590 file_ptr off;
3591 Elf_Internal_Sym elfsym;
3592 unsigned int i;
3593 Elf_Internal_Shdr *symtab_hdr;
3594 Elf_Internal_Shdr *symstrtab_hdr;
3595 struct elf_backend_data *bed = get_elf_backend_data (abfd);
52c92c7f 3596 struct elf_outext_info eoinfo;
ede4eed4
KR
3597
3598 if (info->shared)
3599 abfd->flags |= DYNAMIC;
3600
3601 dynamic = elf_hash_table (info)->dynamic_sections_created;
3602 dynobj = elf_hash_table (info)->dynobj;
3603
3604 finfo.info = info;
3605 finfo.output_bfd = abfd;
3606 finfo.symstrtab = elf_stringtab_init ();
3607 if (finfo.symstrtab == NULL)
3608 return false;
d044b40a 3609
ede4eed4
KR
3610 if (! dynamic)
3611 {
3612 finfo.dynsym_sec = NULL;
3613 finfo.hash_sec = NULL;
d044b40a 3614 finfo.symver_sec = NULL;
ede4eed4
KR
3615 }
3616 else
3617 {
3618 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
3619 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
3620 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
d044b40a
ILT
3621 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
3622 /* Note that it is OK if symver_sec is NULL. */
ede4eed4 3623 }
d044b40a 3624
ede4eed4
KR
3625 finfo.contents = NULL;
3626 finfo.external_relocs = NULL;
3627 finfo.internal_relocs = NULL;
3628 finfo.external_syms = NULL;
3629 finfo.internal_syms = NULL;
3630 finfo.indices = NULL;
3631 finfo.sections = NULL;
3632 finfo.symbuf = NULL;
3633 finfo.symbuf_count = 0;
3634
3635 /* Count up the number of relocations we will output for each output
3636 section, so that we know the sizes of the reloc sections. We
3637 also figure out some maximum sizes. */
3638 max_contents_size = 0;
3639 max_external_reloc_size = 0;
3640 max_internal_reloc_count = 0;
3641 max_sym_count = 0;
3642 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
3643 {
3644 o->reloc_count = 0;
3645
3646 for (p = o->link_order_head; p != NULL; p = p->next)
3647 {
3648 if (p->type == bfd_section_reloc_link_order
3649 || p->type == bfd_symbol_reloc_link_order)
3650 ++o->reloc_count;
3651 else if (p->type == bfd_indirect_link_order)
3652 {
3653 asection *sec;
3654
3655 sec = p->u.indirect.section;
3656
7ec49f91
ILT
3657 /* Mark all sections which are to be included in the
3658 link. This will normally be every section. We need
3659 to do this so that we can identify any sections which
3660 the linker has decided to not include. */
ff0e4a93 3661 sec->linker_mark = true;
7ec49f91 3662
ede4eed4
KR
3663 if (info->relocateable)
3664 o->reloc_count += sec->reloc_count;
3665
3666 if (sec->_raw_size > max_contents_size)
3667 max_contents_size = sec->_raw_size;
3668 if (sec->_cooked_size > max_contents_size)
3669 max_contents_size = sec->_cooked_size;
3670
3671 /* We are interested in just local symbols, not all
3672 symbols. */
d044b40a
ILT
3673 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
3674 && (sec->owner->flags & DYNAMIC) == 0)
ede4eed4
KR
3675 {
3676 size_t sym_count;
3677
3678 if (elf_bad_symtab (sec->owner))
3679 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
3680 / sizeof (Elf_External_Sym));
3681 else
3682 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
3683
3684 if (sym_count > max_sym_count)
3685 max_sym_count = sym_count;
3686
3687 if ((sec->flags & SEC_RELOC) != 0)
3688 {
3689 size_t ext_size;
3690
3691 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
3692 if (ext_size > max_external_reloc_size)
3693 max_external_reloc_size = ext_size;
3694 if (sec->reloc_count > max_internal_reloc_count)
3695 max_internal_reloc_count = sec->reloc_count;
3696 }
3697 }
3698 }
3699 }
3700
3701 if (o->reloc_count > 0)
3702 o->flags |= SEC_RELOC;
3703 else
3704 {
3705 /* Explicitly clear the SEC_RELOC flag. The linker tends to
3706 set it (this is probably a bug) and if it is set
3707 assign_section_numbers will create a reloc section. */
3708 o->flags &=~ SEC_RELOC;
3709 }
3710
3711 /* If the SEC_ALLOC flag is not set, force the section VMA to
3712 zero. This is done in elf_fake_sections as well, but forcing
3713 the VMA to 0 here will ensure that relocs against these
3714 sections are handled correctly. */
2e0567eb
ILT
3715 if ((o->flags & SEC_ALLOC) == 0
3716 && ! o->user_set_vma)
ede4eed4
KR
3717 o->vma = 0;
3718 }
3719
3720 /* Figure out the file positions for everything but the symbol table
3721 and the relocs. We set symcount to force assign_section_numbers
3722 to create a symbol table. */
3723 abfd->symcount = info->strip == strip_all ? 0 : 1;
3724 BFD_ASSERT (! abfd->output_has_begun);
3725 if (! _bfd_elf_compute_section_file_positions (abfd, info))
3726 goto error_return;
3727
3728 /* That created the reloc sections. Set their sizes, and assign
3729 them file positions, and allocate some buffers. */
3730 for (o = abfd->sections; o != NULL; o = o->next)
3731 {
3732 if ((o->flags & SEC_RELOC) != 0)
3733 {
3734 Elf_Internal_Shdr *rel_hdr;
3735 register struct elf_link_hash_entry **p, **pend;
3736
3737 rel_hdr = &elf_section_data (o)->rel_hdr;
3738
3739 rel_hdr->sh_size = rel_hdr->sh_entsize * o->reloc_count;
3740
3741 /* The contents field must last into write_object_contents,
3742 so we allocate it with bfd_alloc rather than malloc. */
3743 rel_hdr->contents = (PTR) bfd_alloc (abfd, rel_hdr->sh_size);
3744 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
a9713b91 3745 goto error_return;
ede4eed4
KR
3746
3747 p = ((struct elf_link_hash_entry **)
58142f10
ILT
3748 bfd_malloc (o->reloc_count
3749 * sizeof (struct elf_link_hash_entry *)));
ede4eed4 3750 if (p == NULL && o->reloc_count != 0)
58142f10 3751 goto error_return;
ede4eed4
KR
3752 elf_section_data (o)->rel_hashes = p;
3753 pend = p + o->reloc_count;
3754 for (; p < pend; p++)
3755 *p = NULL;
3756
3757 /* Use the reloc_count field as an index when outputting the
3758 relocs. */
3759 o->reloc_count = 0;
3760 }
3761 }
3762
3763 _bfd_elf_assign_file_positions_for_relocs (abfd);
3764
3765 /* We have now assigned file positions for all the sections except
3766 .symtab and .strtab. We start the .symtab section at the current
3767 file position, and write directly to it. We build the .strtab
ab276dfa 3768 section in memory. */
ede4eed4
KR
3769 abfd->symcount = 0;
3770 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
3771 /* sh_name is set in prep_headers. */
3772 symtab_hdr->sh_type = SHT_SYMTAB;
3773 symtab_hdr->sh_flags = 0;
3774 symtab_hdr->sh_addr = 0;
3775 symtab_hdr->sh_size = 0;
3776 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
3777 /* sh_link is set in assign_section_numbers. */
3778 /* sh_info is set below. */
3779 /* sh_offset is set just below. */
3780 symtab_hdr->sh_addralign = 4; /* FIXME: system dependent? */
3781
3782 off = elf_tdata (abfd)->next_file_pos;
3783 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
3784
3785 /* Note that at this point elf_tdata (abfd)->next_file_pos is
3786 incorrect. We do not yet know the size of the .symtab section.
3787 We correct next_file_pos below, after we do know the size. */
3788
3789 /* Allocate a buffer to hold swapped out symbols. This is to avoid
3790 continuously seeking to the right position in the file. */
3791 if (! info->keep_memory || max_sym_count < 20)
3792 finfo.symbuf_size = 20;
3793 else
3794 finfo.symbuf_size = max_sym_count;
3795 finfo.symbuf = ((Elf_External_Sym *)
58142f10 3796 bfd_malloc (finfo.symbuf_size * sizeof (Elf_External_Sym)));
ede4eed4 3797 if (finfo.symbuf == NULL)
58142f10 3798 goto error_return;
ede4eed4
KR
3799
3800 /* Start writing out the symbol table. The first symbol is always a
3801 dummy symbol. */
28c16b55
ILT
3802 if (info->strip != strip_all || info->relocateable)
3803 {
3804 elfsym.st_value = 0;
3805 elfsym.st_size = 0;
3806 elfsym.st_info = 0;
3807 elfsym.st_other = 0;
3808 elfsym.st_shndx = SHN_UNDEF;
3809 if (! elf_link_output_sym (&finfo, (const char *) NULL,
3810 &elfsym, bfd_und_section_ptr))
3811 goto error_return;
3812 }
ede4eed4
KR
3813
3814#if 0
3815 /* Some standard ELF linkers do this, but we don't because it causes
3816 bootstrap comparison failures. */
3817 /* Output a file symbol for the output file as the second symbol.
3818 We output this even if we are discarding local symbols, although
3819 I'm not sure if this is correct. */
3820 elfsym.st_value = 0;
3821 elfsym.st_size = 0;
3822 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
3823 elfsym.st_other = 0;
3824 elfsym.st_shndx = SHN_ABS;
3825 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
3826 &elfsym, bfd_abs_section_ptr))
3827 goto error_return;
3828#endif
3829
3830 /* Output a symbol for each section. We output these even if we are
3831 discarding local symbols, since they are used for relocs. These
3832 symbols have no names. We store the index of each one in the
3833 index field of the section, so that we can find it again when
3834 outputting relocs. */
28c16b55 3835 if (info->strip != strip_all || info->relocateable)
ede4eed4 3836 {
28c16b55
ILT
3837 elfsym.st_size = 0;
3838 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
3839 elfsym.st_other = 0;
3840 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
3841 {
3842 o = section_from_elf_index (abfd, i);
3843 if (o != NULL)
3844 o->target_index = abfd->symcount;
3845 elfsym.st_shndx = i;
34bc6ffc
ILT
3846 if (info->relocateable || o == NULL)
3847 elfsym.st_value = 0;
3848 else
3849 elfsym.st_value = o->vma;
28c16b55
ILT
3850 if (! elf_link_output_sym (&finfo, (const char *) NULL,
3851 &elfsym, o))
3852 goto error_return;
3853 }
ede4eed4
KR
3854 }
3855
3856 /* Allocate some memory to hold information read in from the input
3857 files. */
58142f10
ILT
3858 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
3859 finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
ede4eed4 3860 finfo.internal_relocs = ((Elf_Internal_Rela *)
58142f10
ILT
3861 bfd_malloc (max_internal_reloc_count
3862 * sizeof (Elf_Internal_Rela)));
ede4eed4 3863 finfo.external_syms = ((Elf_External_Sym *)
58142f10
ILT
3864 bfd_malloc (max_sym_count
3865 * sizeof (Elf_External_Sym)));
ede4eed4 3866 finfo.internal_syms = ((Elf_Internal_Sym *)
58142f10
ILT
3867 bfd_malloc (max_sym_count
3868 * sizeof (Elf_Internal_Sym)));
3869 finfo.indices = (long *) bfd_malloc (max_sym_count * sizeof (long));
3870 finfo.sections = ((asection **)
3871 bfd_malloc (max_sym_count * sizeof (asection *)));
ede4eed4
KR
3872 if ((finfo.contents == NULL && max_contents_size != 0)
3873 || (finfo.external_relocs == NULL && max_external_reloc_size != 0)
3874 || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0)
3875 || (finfo.external_syms == NULL && max_sym_count != 0)
3876 || (finfo.internal_syms == NULL && max_sym_count != 0)
3877 || (finfo.indices == NULL && max_sym_count != 0)
3878 || (finfo.sections == NULL && max_sym_count != 0))
58142f10 3879 goto error_return;
ede4eed4
KR
3880
3881 /* Since ELF permits relocations to be against local symbols, we
3882 must have the local symbols available when we do the relocations.
3883 Since we would rather only read the local symbols once, and we
3884 would rather not keep them in memory, we handle all the
3885 relocations for a single input file at the same time.
3886
3887 Unfortunately, there is no way to know the total number of local
3888 symbols until we have seen all of them, and the local symbol
3889 indices precede the global symbol indices. This means that when
3890 we are generating relocateable output, and we see a reloc against
3891 a global symbol, we can not know the symbol index until we have
3892 finished examining all the local symbols to see which ones we are
3893 going to output. To deal with this, we keep the relocations in
3894 memory, and don't output them until the end of the link. This is
3895 an unfortunate waste of memory, but I don't see a good way around
3896 it. Fortunately, it only happens when performing a relocateable
3897 link, which is not the common case. FIXME: If keep_memory is set
3898 we could write the relocs out and then read them again; I don't
3899 know how bad the memory loss will be. */
3900
146f8b77 3901 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
ede4eed4
KR
3902 sub->output_has_begun = false;
3903 for (o = abfd->sections; o != NULL; o = o->next)
3904 {
3905 for (p = o->link_order_head; p != NULL; p = p->next)
3906 {
3907 if (p->type == bfd_indirect_link_order
3908 && (bfd_get_flavour (p->u.indirect.section->owner)
3909 == bfd_target_elf_flavour))
3910 {
3911 sub = p->u.indirect.section->owner;
3912 if (! sub->output_has_begun)
3913 {
3914 if (! elf_link_input_bfd (&finfo, sub))
3915 goto error_return;
3916 sub->output_has_begun = true;
3917 }
3918 }
3919 else if (p->type == bfd_section_reloc_link_order
3920 || p->type == bfd_symbol_reloc_link_order)
3921 {
3922 if (! elf_reloc_link_order (abfd, info, o, p))
3923 goto error_return;
3924 }
3925 else
3926 {
3927 if (! _bfd_default_link_order (abfd, info, o, p))
3928 goto error_return;
3929 }
3930 }
3931 }
3932
3933 /* That wrote out all the local symbols. Finish up the symbol table
3934 with the global symbols. */
3935
52c92c7f
ILT
3936 if (info->strip != strip_all && info->shared)
3937 {
3938 /* Output any global symbols that got converted to local in a
3939 version script. We do this in a separate step since ELF
3940 requires all local symbols to appear prior to any global
3941 symbols. FIXME: We should only do this if some global
3942 symbols were, in fact, converted to become local. FIXME:
3943 Will this work correctly with the Irix 5 linker? */
3944 eoinfo.failed = false;
3945 eoinfo.finfo = &finfo;
3946 eoinfo.localsyms = true;
3947 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
3948 (PTR) &eoinfo);
3949 if (eoinfo.failed)
3950 return false;
3951 }
3952
ede4eed4
KR
3953 /* The sh_info field records the index of the first non local
3954 symbol. */
3955 symtab_hdr->sh_info = abfd->symcount;
3956 if (dynamic)
3957 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info = 1;
3958
3959 /* We get the global symbols from the hash table. */
52c92c7f
ILT
3960 eoinfo.failed = false;
3961 eoinfo.localsyms = false;
3962 eoinfo.finfo = &finfo;
ede4eed4 3963 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
52c92c7f
ILT
3964 (PTR) &eoinfo);
3965 if (eoinfo.failed)
ede4eed4
KR
3966 return false;
3967
3968 /* Flush all symbols to the file. */
3969 if (! elf_link_flush_output_syms (&finfo))
3970 return false;
3971
3972 /* Now we know the size of the symtab section. */
3973 off += symtab_hdr->sh_size;
3974
3975 /* Finish up and write out the symbol string table (.strtab)
3976 section. */
3977 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
3978 /* sh_name was set in prep_headers. */
3979 symstrtab_hdr->sh_type = SHT_STRTAB;
3980 symstrtab_hdr->sh_flags = 0;
3981 symstrtab_hdr->sh_addr = 0;
3982 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
3983 symstrtab_hdr->sh_entsize = 0;
3984 symstrtab_hdr->sh_link = 0;
3985 symstrtab_hdr->sh_info = 0;
3986 /* sh_offset is set just below. */
3987 symstrtab_hdr->sh_addralign = 1;
3988
3989 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
3990 elf_tdata (abfd)->next_file_pos = off;
3991
28c16b55
ILT
3992 if (abfd->symcount > 0)
3993 {
3994 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
3995 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
3996 return false;
3997 }
ede4eed4
KR
3998
3999 /* Adjust the relocs to have the correct symbol indices. */
4000 for (o = abfd->sections; o != NULL; o = o->next)
4001 {
4002 struct elf_link_hash_entry **rel_hash;
4003 Elf_Internal_Shdr *rel_hdr;
4004
4005 if ((o->flags & SEC_RELOC) == 0)
4006 continue;
4007
4008 rel_hash = elf_section_data (o)->rel_hashes;
4009 rel_hdr = &elf_section_data (o)->rel_hdr;
4010 for (i = 0; i < o->reloc_count; i++, rel_hash++)
4011 {
4012 if (*rel_hash == NULL)
4013 continue;
ff12f303 4014
ede4eed4
KR
4015 BFD_ASSERT ((*rel_hash)->indx >= 0);
4016
4017 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
4018 {
4019 Elf_External_Rel *erel;
4020 Elf_Internal_Rel irel;
4021
4022 erel = (Elf_External_Rel *) rel_hdr->contents + i;
4023 elf_swap_reloc_in (abfd, erel, &irel);
4024 irel.r_info = ELF_R_INFO ((*rel_hash)->indx,
4025 ELF_R_TYPE (irel.r_info));
4026 elf_swap_reloc_out (abfd, &irel, erel);
4027 }
4028 else
4029 {
4030 Elf_External_Rela *erela;
4031 Elf_Internal_Rela irela;
4032
4033 BFD_ASSERT (rel_hdr->sh_entsize
4034 == sizeof (Elf_External_Rela));
4035
4036 erela = (Elf_External_Rela *) rel_hdr->contents + i;
4037 elf_swap_reloca_in (abfd, erela, &irela);
4038 irela.r_info = ELF_R_INFO ((*rel_hash)->indx,
4039 ELF_R_TYPE (irela.r_info));
4040 elf_swap_reloca_out (abfd, &irela, erela);
4041 }
4042 }
4043
4044 /* Set the reloc_count field to 0 to prevent write_relocs from
4045 trying to swap the relocs out itself. */
4046 o->reloc_count = 0;
4047 }
4048
4049 /* If we are linking against a dynamic object, or generating a
4050 shared library, finish up the dynamic linking information. */
4051 if (dynamic)
4052 {
4053 Elf_External_Dyn *dyncon, *dynconend;
4054
4055 /* Fix up .dynamic entries. */
4056 o = bfd_get_section_by_name (dynobj, ".dynamic");
4057 BFD_ASSERT (o != NULL);
4058
4059 dyncon = (Elf_External_Dyn *) o->contents;
4060 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
4061 for (; dyncon < dynconend; dyncon++)
4062 {
4063 Elf_Internal_Dyn dyn;
4064 const char *name;
4065 unsigned int type;
4066
4067 elf_swap_dyn_in (dynobj, dyncon, &dyn);
4068
4069 switch (dyn.d_tag)
4070 {
4071 default:
4072 break;
4073
4074 /* SVR4 linkers seem to set DT_INIT and DT_FINI based on
4075 magic _init and _fini symbols. This is pretty ugly,
4076 but we are compatible. */
4077 case DT_INIT:
4078 name = "_init";
4079 goto get_sym;
4080 case DT_FINI:
4081 name = "_fini";
4082 get_sym:
4083 {
4084 struct elf_link_hash_entry *h;
4085
4086 h = elf_link_hash_lookup (elf_hash_table (info), name,
4087 false, false, true);
d6f672b8
ILT
4088 if (h != NULL
4089 && (h->root.type == bfd_link_hash_defined
4090 || h->root.type == bfd_link_hash_defweak))
ede4eed4
KR
4091 {
4092 dyn.d_un.d_val = h->root.u.def.value;
4093 o = h->root.u.def.section;
4094 if (o->output_section != NULL)
4095 dyn.d_un.d_val += (o->output_section->vma
4096 + o->output_offset);
4097 else
d6f672b8
ILT
4098 {
4099 /* The symbol is imported from another shared
4100 library and does not apply to this one. */
4101 dyn.d_un.d_val = 0;
4102 }
4103
4104 elf_swap_dyn_out (dynobj, &dyn, dyncon);
ede4eed4 4105 }
ede4eed4
KR
4106 }
4107 break;
4108
4109 case DT_HASH:
4110 name = ".hash";
4111 goto get_vma;
4112 case DT_STRTAB:
4113 name = ".dynstr";
4114 goto get_vma;
4115 case DT_SYMTAB:
4116 name = ".dynsym";
d044b40a
ILT
4117 goto get_vma;
4118 case DT_VERDEF:
4119 name = ".gnu.version_d";
4120 goto get_vma;
4121 case DT_VERNEED:
4122 name = ".gnu.version_r";
4123 goto get_vma;
4124 case DT_VERSYM:
4125 name = ".gnu.version";
ede4eed4
KR
4126 get_vma:
4127 o = bfd_get_section_by_name (abfd, name);
4128 BFD_ASSERT (o != NULL);
4129 dyn.d_un.d_ptr = o->vma;
4130 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4131 break;
4132
4133 case DT_REL:
4134 case DT_RELA:
4135 case DT_RELSZ:
4136 case DT_RELASZ:
4137 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
4138 type = SHT_REL;
4139 else
4140 type = SHT_RELA;
4141 dyn.d_un.d_val = 0;
4142 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4143 {
4144 Elf_Internal_Shdr *hdr;
4145
4146 hdr = elf_elfsections (abfd)[i];
4147 if (hdr->sh_type == type
4148 && (hdr->sh_flags & SHF_ALLOC) != 0)
4149 {
4150 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
4151 dyn.d_un.d_val += hdr->sh_size;
4152 else
4153 {
4154 if (dyn.d_un.d_val == 0
4155 || hdr->sh_addr < dyn.d_un.d_val)
4156 dyn.d_un.d_val = hdr->sh_addr;
4157 }
4158 }
4159 }
4160 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4161 break;
4162 }
4163 }
4164 }
4165
4166 /* If we have created any dynamic sections, then output them. */
4167 if (dynobj != NULL)
4168 {
4169 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
4170 goto error_return;
4171
4172 for (o = dynobj->sections; o != NULL; o = o->next)
4173 {
4174 if ((o->flags & SEC_HAS_CONTENTS) == 0
4175 || o->_raw_size == 0)
4176 continue;
ff12f303 4177 if ((o->flags & SEC_LINKER_CREATED) == 0)
ede4eed4
KR
4178 {
4179 /* At this point, we are only interested in sections
ff12f303 4180 created by elf_link_create_dynamic_sections. */
ede4eed4
KR
4181 continue;
4182 }
4183 if ((elf_section_data (o->output_section)->this_hdr.sh_type
4184 != SHT_STRTAB)
4185 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
4186 {
4187 if (! bfd_set_section_contents (abfd, o->output_section,
4188 o->contents, o->output_offset,
4189 o->_raw_size))
4190 goto error_return;
4191 }
4192 else
4193 {
4194 file_ptr off;
4195
4196 /* The contents of the .dynstr section are actually in a
4197 stringtab. */
4198 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
4199 if (bfd_seek (abfd, off, SEEK_SET) != 0
4200 || ! _bfd_stringtab_emit (abfd,
4201 elf_hash_table (info)->dynstr))
4202 goto error_return;
4203 }
4204 }
4205 }
4206
1726b8f0
ILT
4207 /* If we have optimized stabs strings, output them. */
4208 if (elf_hash_table (info)->stab_info != NULL)
4209 {
4210 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
4211 goto error_return;
4212 }
4213
ede4eed4
KR
4214 if (finfo.symstrtab != NULL)
4215 _bfd_stringtab_free (finfo.symstrtab);
4216 if (finfo.contents != NULL)
4217 free (finfo.contents);
4218 if (finfo.external_relocs != NULL)
4219 free (finfo.external_relocs);
4220 if (finfo.internal_relocs != NULL)
4221 free (finfo.internal_relocs);
4222 if (finfo.external_syms != NULL)
4223 free (finfo.external_syms);
4224 if (finfo.internal_syms != NULL)
4225 free (finfo.internal_syms);
4226 if (finfo.indices != NULL)
4227 free (finfo.indices);
4228 if (finfo.sections != NULL)
4229 free (finfo.sections);
4230 if (finfo.symbuf != NULL)
4231 free (finfo.symbuf);
4232 for (o = abfd->sections; o != NULL; o = o->next)
4233 {
4234 if ((o->flags & SEC_RELOC) != 0
4235 && elf_section_data (o)->rel_hashes != NULL)
4236 free (elf_section_data (o)->rel_hashes);
4237 }
4238
4239 elf_tdata (abfd)->linker = true;
4240
4241 return true;
4242
4243 error_return:
4244 if (finfo.symstrtab != NULL)
4245 _bfd_stringtab_free (finfo.symstrtab);
4246 if (finfo.contents != NULL)
4247 free (finfo.contents);
4248 if (finfo.external_relocs != NULL)
4249 free (finfo.external_relocs);
4250 if (finfo.internal_relocs != NULL)
4251 free (finfo.internal_relocs);
4252 if (finfo.external_syms != NULL)
4253 free (finfo.external_syms);
4254 if (finfo.internal_syms != NULL)
4255 free (finfo.internal_syms);
4256 if (finfo.indices != NULL)
4257 free (finfo.indices);
4258 if (finfo.sections != NULL)
4259 free (finfo.sections);
4260 if (finfo.symbuf != NULL)
4261 free (finfo.symbuf);
4262 for (o = abfd->sections; o != NULL; o = o->next)
4263 {
4264 if ((o->flags & SEC_RELOC) != 0
4265 && elf_section_data (o)->rel_hashes != NULL)
4266 free (elf_section_data (o)->rel_hashes);
4267 }
4268
4269 return false;
4270}
4271
4272/* Add a symbol to the output symbol table. */
4273
4274static boolean
4275elf_link_output_sym (finfo, name, elfsym, input_sec)
4276 struct elf_final_link_info *finfo;
4277 const char *name;
4278 Elf_Internal_Sym *elfsym;
4279 asection *input_sec;
4280{
4281 boolean (*output_symbol_hook) PARAMS ((bfd *,
4282 struct bfd_link_info *info,
4283 const char *,
4284 Elf_Internal_Sym *,
4285 asection *));
4286
4287 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
4288 elf_backend_link_output_symbol_hook;
4289 if (output_symbol_hook != NULL)
4290 {
4291 if (! ((*output_symbol_hook)
4292 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
4293 return false;
4294 }
4295
4296 if (name == (const char *) NULL || *name == '\0')
4297 elfsym->st_name = 0;
4298 else
4299 {
4300 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
4301 name, true,
4302 false);
4303 if (elfsym->st_name == (unsigned long) -1)
4304 return false;
4305 }
4306
4307 if (finfo->symbuf_count >= finfo->symbuf_size)
4308 {
4309 if (! elf_link_flush_output_syms (finfo))
4310 return false;
4311 }
4312
4313 elf_swap_symbol_out (finfo->output_bfd, elfsym,
cf9fb9f2 4314 (PTR) (finfo->symbuf + finfo->symbuf_count));
ede4eed4
KR
4315 ++finfo->symbuf_count;
4316
4317 ++finfo->output_bfd->symcount;
4318
4319 return true;
4320}
4321
4322/* Flush the output symbols to the file. */
4323
4324static boolean
4325elf_link_flush_output_syms (finfo)
4326 struct elf_final_link_info *finfo;
4327{
28c16b55
ILT
4328 if (finfo->symbuf_count > 0)
4329 {
4330 Elf_Internal_Shdr *symtab;
ede4eed4 4331
28c16b55 4332 symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr;
ede4eed4 4333
28c16b55
ILT
4334 if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size,
4335 SEEK_SET) != 0
4336 || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count,
4337 sizeof (Elf_External_Sym), finfo->output_bfd)
4338 != finfo->symbuf_count * sizeof (Elf_External_Sym)))
4339 return false;
ede4eed4 4340
28c16b55 4341 symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym);
ede4eed4 4342
28c16b55
ILT
4343 finfo->symbuf_count = 0;
4344 }
ede4eed4
KR
4345
4346 return true;
4347}
4348
4349/* Add an external symbol to the symbol table. This is called from
52c92c7f
ILT
4350 the hash table traversal routine. When generating a shared object,
4351 we go through the symbol table twice. The first time we output
4352 anything that might have been forced to local scope in a version
4353 script. The second time we output the symbols that are still
4354 global symbols. */
ede4eed4
KR
4355
4356static boolean
4357elf_link_output_extsym (h, data)
4358 struct elf_link_hash_entry *h;
4359 PTR data;
4360{
52c92c7f
ILT
4361 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
4362 struct elf_final_link_info *finfo = eoinfo->finfo;
ede4eed4
KR
4363 boolean strip;
4364 Elf_Internal_Sym sym;
4365 asection *input_sec;
4366
52c92c7f
ILT
4367 /* Decide whether to output this symbol in this pass. */
4368 if (eoinfo->localsyms)
4369 {
4370 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
4371 return true;
4372 }
4373 else
4374 {
4375 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4376 return true;
4377 }
4378
ede4eed4
KR
4379 /* If we are not creating a shared library, and this symbol is
4380 referenced by a shared library but is not defined anywhere, then
4381 warn that it is undefined. If we do not do this, the runtime
4382 linker will complain that the symbol is undefined when the
4383 program is run. We don't have to worry about symbols that are
4384 referenced by regular files, because we will already have issued
252239f8 4385 warnings for them. */
ede4eed4
KR
4386 if (! finfo->info->relocateable
4387 && ! finfo->info->shared
4388 && h->root.type == bfd_link_hash_undefined
4389 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
252239f8 4390 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
ede4eed4
KR
4391 {
4392 if (! ((*finfo->info->callbacks->undefined_symbol)
4393 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
4394 (asection *) NULL, 0)))
4395 {
52c92c7f 4396 eoinfo->failed = true;
ede4eed4
KR
4397 return false;
4398 }
4399 }
4400
4401 /* We don't want to output symbols that have never been mentioned by
4402 a regular file, or that we have been told to strip. However, if
4403 h->indx is set to -2, the symbol is used by a reloc and we must
4404 output it. */
4405 if (h->indx == -2)
4406 strip = false;
4407 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
4408 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
4409 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
4410 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4411 strip = true;
4412 else if (finfo->info->strip == strip_all
4413 || (finfo->info->strip == strip_some
4414 && bfd_hash_lookup (finfo->info->keep_hash,
4415 h->root.root.string,
4416 false, false) == NULL))
4417 strip = true;
4418 else
4419 strip = false;
4420
4421 /* If we're stripping it, and it's not a dynamic symbol, there's
4422 nothing else to do. */
4423 if (strip && h->dynindx == -1)
4424 return true;
4425
4426 sym.st_value = 0;
4427 sym.st_size = h->size;
6c02f1a0 4428 sym.st_other = h->other;
52c92c7f
ILT
4429 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4430 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
4431 else if (h->root.type == bfd_link_hash_undefweak
4432 || h->root.type == bfd_link_hash_defweak)
ede4eed4
KR
4433 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
4434 else
4435 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
4436
4437 switch (h->root.type)
4438 {
4439 default:
4440 case bfd_link_hash_new:
4441 abort ();
4442 return false;
4443
4444 case bfd_link_hash_undefined:
4445 input_sec = bfd_und_section_ptr;
4446 sym.st_shndx = SHN_UNDEF;
4447 break;
4448
4449 case bfd_link_hash_undefweak:
4450 input_sec = bfd_und_section_ptr;
4451 sym.st_shndx = SHN_UNDEF;
4452 break;
4453
4454 case bfd_link_hash_defined:
4455 case bfd_link_hash_defweak:
4456 {
4457 input_sec = h->root.u.def.section;
4458 if (input_sec->output_section != NULL)
4459 {
4460 sym.st_shndx =
4461 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
4462 input_sec->output_section);
4463 if (sym.st_shndx == (unsigned short) -1)
4464 {
e1079cda
ILT
4465 (*_bfd_error_handler)
4466 (_("%s: could not find output section %s for input section %s"),
4467 bfd_get_filename (finfo->output_bfd),
4468 input_sec->output_section->name,
4469 input_sec->name);
52c92c7f 4470 eoinfo->failed = true;
ede4eed4
KR
4471 return false;
4472 }
4473
4474 /* ELF symbols in relocateable files are section relative,
4475 but in nonrelocateable files they are virtual
4476 addresses. */
4477 sym.st_value = h->root.u.def.value + input_sec->output_offset;
4478 if (! finfo->info->relocateable)
4479 sym.st_value += input_sec->output_section->vma;
4480 }
4481 else
4482 {
e549b1d2
ILT
4483 BFD_ASSERT (input_sec->owner == NULL
4484 || (input_sec->owner->flags & DYNAMIC) != 0);
ede4eed4
KR
4485 sym.st_shndx = SHN_UNDEF;
4486 input_sec = bfd_und_section_ptr;
4487 }
4488 }
4489 break;
4490
4491 case bfd_link_hash_common:
8211c929 4492 input_sec = h->root.u.c.p->section;
ede4eed4
KR
4493 sym.st_shndx = SHN_COMMON;
4494 sym.st_value = 1 << h->root.u.c.p->alignment_power;
4495 break;
4496
4497 case bfd_link_hash_indirect:
d044b40a
ILT
4498 /* These symbols are created by symbol versioning. They point
4499 to the decorated version of the name. For example, if the
4500 symbol foo@@GNU_1.2 is the default, which should be used when
4501 foo is used with no version, then we add an indirect symbol
d6bfcdb5
ILT
4502 foo which points to foo@@GNU_1.2. We ignore these symbols,
4503 since the indirected symbol is already in the hash table. If
4504 the indirect symbol is non-ELF, fall through and output it. */
4505 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) == 0)
d044b40a
ILT
4506 return true;
4507
4508 /* Fall through. */
ede4eed4 4509 case bfd_link_hash_warning:
d044b40a
ILT
4510 /* We can't represent these symbols in ELF, although a warning
4511 symbol may have come from a .gnu.warning.SYMBOL section. We
1f4ae0d6
ILT
4512 just put the target symbol in the hash table. If the target
4513 symbol does not really exist, don't do anything. */
4514 if (h->root.u.i.link->type == bfd_link_hash_new)
4515 return true;
0cb70568
ILT
4516 return (elf_link_output_extsym
4517 ((struct elf_link_hash_entry *) h->root.u.i.link, data));
ede4eed4
KR
4518 }
4519
8519ea21
ILT
4520 /* Give the processor backend a chance to tweak the symbol value,
4521 and also to finish up anything that needs to be done for this
4522 symbol. */
4523 if ((h->dynindx != -1
4524 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4525 && elf_hash_table (finfo->info)->dynamic_sections_created)
4526 {
4527 struct elf_backend_data *bed;
4528
4529 bed = get_elf_backend_data (finfo->output_bfd);
4530 if (! ((*bed->elf_backend_finish_dynamic_symbol)
4531 (finfo->output_bfd, finfo->info, h, &sym)))
4532 {
4533 eoinfo->failed = true;
4534 return false;
4535 }
4536 }
4537
ede4eed4
KR
4538 /* If this symbol should be put in the .dynsym section, then put it
4539 there now. We have already know the symbol index. We also fill
4540 in the entry in the .hash section. */
4541 if (h->dynindx != -1
4542 && elf_hash_table (finfo->info)->dynamic_sections_created)
4543 {
ede4eed4
KR
4544 size_t bucketcount;
4545 size_t bucket;
4546 bfd_byte *bucketpos;
4547 bfd_vma chain;
4548
4549 sym.st_name = h->dynstr_index;
4550
ede4eed4 4551 elf_swap_symbol_out (finfo->output_bfd, &sym,
cf9fb9f2
ILT
4552 (PTR) (((Elf_External_Sym *)
4553 finfo->dynsym_sec->contents)
4554 + h->dynindx));
ede4eed4
KR
4555
4556 bucketcount = elf_hash_table (finfo->info)->bucketcount;
e429c897 4557 bucket = h->elf_hash_value % bucketcount;
ede4eed4
KR
4558 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
4559 + (bucket + 2) * (ARCH_SIZE / 8));
4560 chain = get_word (finfo->output_bfd, bucketpos);
4561 put_word (finfo->output_bfd, h->dynindx, bucketpos);
4562 put_word (finfo->output_bfd, chain,
4563 ((bfd_byte *) finfo->hash_sec->contents
4564 + (bucketcount + 2 + h->dynindx) * (ARCH_SIZE / 8)));
d044b40a 4565
d044b40a
ILT
4566 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
4567 {
4568 Elf_Internal_Versym iversym;
4569
4570 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4571 {
4572 if (h->verinfo.verdef == NULL)
4573 iversym.vs_vers = 0;
4574 else
4575 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
4576 }
4577 else
4578 {
4579 if (h->verinfo.vertree == NULL)
4580 iversym.vs_vers = 1;
4581 else
4582 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
4583 }
4584
4585 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
4586 iversym.vs_vers |= VERSYM_HIDDEN;
4587
4588 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym,
4589 (((Elf_External_Versym *)
4590 finfo->symver_sec->contents)
4591 + h->dynindx));
4592 }
ede4eed4
KR
4593 }
4594
4595 /* If we're stripping it, then it was just a dynamic symbol, and
4596 there's nothing else to do. */
4597 if (strip)
4598 return true;
4599
4600 h->indx = finfo->output_bfd->symcount;
4601
4602 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
4603 {
52c92c7f 4604 eoinfo->failed = true;
ede4eed4
KR
4605 return false;
4606 }
4607
4608 return true;
4609}
4610
4611/* Link an input file into the linker output file. This function
4612 handles all the sections and relocations of the input file at once.
4613 This is so that we only have to read the local symbols once, and
4614 don't have to keep them in memory. */
4615
4616static boolean
4617elf_link_input_bfd (finfo, input_bfd)
4618 struct elf_final_link_info *finfo;
4619 bfd *input_bfd;
4620{
4621 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
4622 bfd *, asection *, bfd_byte *,
4623 Elf_Internal_Rela *,
4624 Elf_Internal_Sym *, asection **));
4625 bfd *output_bfd;
4626 Elf_Internal_Shdr *symtab_hdr;
4627 size_t locsymcount;
4628 size_t extsymoff;
c86158e5 4629 Elf_External_Sym *external_syms;
ede4eed4
KR
4630 Elf_External_Sym *esym;
4631 Elf_External_Sym *esymend;
4632 Elf_Internal_Sym *isym;
4633 long *pindex;
4634 asection **ppsection;
4635 asection *o;
4636
4637 output_bfd = finfo->output_bfd;
4638 relocate_section =
4639 get_elf_backend_data (output_bfd)->elf_backend_relocate_section;
4640
4641 /* If this is a dynamic object, we don't want to do anything here:
4642 we don't want the local symbols, and we don't want the section
4643 contents. */
d044b40a 4644 if ((input_bfd->flags & DYNAMIC) != 0)
ede4eed4
KR
4645 return true;
4646
4647 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4648 if (elf_bad_symtab (input_bfd))
4649 {
4650 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
4651 extsymoff = 0;
4652 }
4653 else
4654 {
4655 locsymcount = symtab_hdr->sh_info;
4656 extsymoff = symtab_hdr->sh_info;
4657 }
4658
4659 /* Read the local symbols. */
c86158e5
ILT
4660 if (symtab_hdr->contents != NULL)
4661 external_syms = (Elf_External_Sym *) symtab_hdr->contents;
4662 else if (locsymcount == 0)
4663 external_syms = NULL;
4664 else
4665 {
4666 external_syms = finfo->external_syms;
4667 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
4668 || (bfd_read (external_syms, sizeof (Elf_External_Sym),
ede4eed4 4669 locsymcount, input_bfd)
c86158e5
ILT
4670 != locsymcount * sizeof (Elf_External_Sym)))
4671 return false;
4672 }
ede4eed4
KR
4673
4674 /* Swap in the local symbols and write out the ones which we know
4675 are going into the output file. */
c86158e5 4676 esym = external_syms;
ede4eed4
KR
4677 esymend = esym + locsymcount;
4678 isym = finfo->internal_syms;
4679 pindex = finfo->indices;
4680 ppsection = finfo->sections;
4681 for (; esym < esymend; esym++, isym++, pindex++, ppsection++)
4682 {
4683 asection *isec;
4684 const char *name;
4685 Elf_Internal_Sym osym;
4686
4687 elf_swap_symbol_in (input_bfd, esym, isym);
4688 *pindex = -1;
4689
4690 if (elf_bad_symtab (input_bfd))
4691 {
4692 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
4693 {
4694 *ppsection = NULL;
4695 continue;
4696 }
4697 }
4698
4699 if (isym->st_shndx == SHN_UNDEF)
4700 isec = bfd_und_section_ptr;
4701 else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE)
4702 isec = section_from_elf_index (input_bfd, isym->st_shndx);
4703 else if (isym->st_shndx == SHN_ABS)
4704 isec = bfd_abs_section_ptr;
4705 else if (isym->st_shndx == SHN_COMMON)
4706 isec = bfd_com_section_ptr;
4707 else
4708 {
4709 /* Who knows? */
4710 isec = NULL;
4711 }
4712
4713 *ppsection = isec;
4714
4715 /* Don't output the first, undefined, symbol. */
c86158e5 4716 if (esym == external_syms)
ede4eed4
KR
4717 continue;
4718
4719 /* If we are stripping all symbols, we don't want to output this
4720 one. */
4721 if (finfo->info->strip == strip_all)
4722 continue;
4723
4724 /* We never output section symbols. Instead, we use the section
4725 symbol of the corresponding section in the output file. */
4726 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4727 continue;
4728
4729 /* If we are discarding all local symbols, we don't want to
4730 output this one. If we are generating a relocateable output
4731 file, then some of the local symbols may be required by
4732 relocs; we output them below as we discover that they are
4733 needed. */
4734 if (finfo->info->discard == discard_all)
4735 continue;
4736
258b1f5d 4737 /* If this symbol is defined in a section which we are
fa802cb0
ILT
4738 discarding, we don't need to keep it, but note that
4739 linker_mark is only reliable for sections that have contents.
4740 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
4741 as well as linker_mark. */
258b1f5d
ILT
4742 if (isym->st_shndx > 0
4743 && isym->st_shndx < SHN_LORESERVE
4744 && isec != NULL
fa802cb0 4745 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
258b1f5d
ILT
4746 || (! finfo->info->relocateable
4747 && (isec->flags & SEC_EXCLUDE) != 0)))
4748 continue;
4749
ede4eed4
KR
4750 /* Get the name of the symbol. */
4751 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
258b1f5d 4752 isym->st_name);
ede4eed4
KR
4753 if (name == NULL)
4754 return false;
4755
4756 /* See if we are discarding symbols with this name. */
4757 if ((finfo->info->strip == strip_some
4758 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
4759 == NULL))
4760 || (finfo->info->discard == discard_l
e316f514 4761 && bfd_is_local_label_name (input_bfd, name)))
ede4eed4
KR
4762 continue;
4763
4764 /* If we get here, we are going to output this symbol. */
4765
4766 osym = *isym;
4767
4768 /* Adjust the section index for the output file. */
4769 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
4770 isec->output_section);
4771 if (osym.st_shndx == (unsigned short) -1)
4772 return false;
4773
4774 *pindex = output_bfd->symcount;
4775
4776 /* ELF symbols in relocateable files are section relative, but
4777 in executable files they are virtual addresses. Note that
4778 this code assumes that all ELF sections have an associated
4779 BFD section with a reasonable value for output_offset; below
4780 we assume that they also have a reasonable value for
4781 output_section. Any special sections must be set up to meet
4782 these requirements. */
4783 osym.st_value += isec->output_offset;
4784 if (! finfo->info->relocateable)
4785 osym.st_value += isec->output_section->vma;
4786
4787 if (! elf_link_output_sym (finfo, name, &osym, isec))
4788 return false;
4789 }
4790
4791 /* Relocate the contents of each section. */
4792 for (o = input_bfd->sections; o != NULL; o = o->next)
4793 {
c86158e5
ILT
4794 bfd_byte *contents;
4795
ff0e4a93 4796 if (! o->linker_mark)
7ec49f91
ILT
4797 {
4798 /* This section was omitted from the link. */
4799 continue;
4800 }
4801
1726b8f0
ILT
4802 if ((o->flags & SEC_HAS_CONTENTS) == 0
4803 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
ede4eed4
KR
4804 continue;
4805
ff12f303 4806 if ((o->flags & SEC_LINKER_CREATED) != 0)
ede4eed4 4807 {
ff12f303
ILT
4808 /* Section was created by elf_link_create_dynamic_sections
4809 or somesuch. */
ede4eed4
KR
4810 continue;
4811 }
4812
c86158e5
ILT
4813 /* Get the contents of the section. They have been cached by a
4814 relaxation routine. Note that o is a section in an input
4815 file, so the contents field will not have been set by any of
4816 the routines which work on output files. */
4817 if (elf_section_data (o)->this_hdr.contents != NULL)
4818 contents = elf_section_data (o)->this_hdr.contents;
4819 else
4820 {
4821 contents = finfo->contents;
4822 if (! bfd_get_section_contents (input_bfd, o, contents,
4823 (file_ptr) 0, o->_raw_size))
4824 return false;
4825 }
ede4eed4
KR
4826
4827 if ((o->flags & SEC_RELOC) != 0)
4828 {
4829 Elf_Internal_Rela *internal_relocs;
4830
4831 /* Get the swapped relocs. */
c86158e5
ILT
4832 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
4833 (input_bfd, o, finfo->external_relocs,
4834 finfo->internal_relocs, false));
ede4eed4
KR
4835 if (internal_relocs == NULL
4836 && o->reloc_count > 0)
4837 return false;
4838
4839 /* Relocate the section by invoking a back end routine.
4840
4841 The back end routine is responsible for adjusting the
4842 section contents as necessary, and (if using Rela relocs
4843 and generating a relocateable output file) adjusting the
4844 reloc addend as necessary.
4845
4846 The back end routine does not have to worry about setting
4847 the reloc address or the reloc symbol index.
4848
4849 The back end routine is given a pointer to the swapped in
4850 internal symbols, and can access the hash table entries
4851 for the external symbols via elf_sym_hashes (input_bfd).
4852
4853 When generating relocateable output, the back end routine
4854 must handle STB_LOCAL/STT_SECTION symbols specially. The
4855 output symbol is going to be a section symbol
4856 corresponding to the output section, which will require
4857 the addend to be adjusted. */
4858
4859 if (! (*relocate_section) (output_bfd, finfo->info,
c86158e5 4860 input_bfd, o, contents,
ede4eed4
KR
4861 internal_relocs,
4862 finfo->internal_syms,
4863 finfo->sections))
4864 return false;
4865
4866 if (finfo->info->relocateable)
4867 {
4868 Elf_Internal_Rela *irela;
4869 Elf_Internal_Rela *irelaend;
4870 struct elf_link_hash_entry **rel_hash;
4871 Elf_Internal_Shdr *input_rel_hdr;
4872 Elf_Internal_Shdr *output_rel_hdr;
4873
4874 /* Adjust the reloc addresses and symbol indices. */
4875
4876 irela = internal_relocs;
4877 irelaend = irela + o->reloc_count;
4878 rel_hash = (elf_section_data (o->output_section)->rel_hashes
4879 + o->output_section->reloc_count);
4880 for (; irela < irelaend; irela++, rel_hash++)
4881 {
ae115e51 4882 unsigned long r_symndx;
ede4eed4
KR
4883 Elf_Internal_Sym *isym;
4884 asection *sec;
4885
4886 irela->r_offset += o->output_offset;
4887
4888 r_symndx = ELF_R_SYM (irela->r_info);
4889
4890 if (r_symndx == 0)
4891 continue;
4892
4893 if (r_symndx >= locsymcount
4894 || (elf_bad_symtab (input_bfd)
4895 && finfo->sections[r_symndx] == NULL))
4896 {
5ee8d932 4897 struct elf_link_hash_entry *rh;
ede4eed4
KR
4898 long indx;
4899
4900 /* This is a reloc against a global symbol. We
4901 have not yet output all the local symbols, so
4902 we do not know the symbol index of any global
4903 symbol. We set the rel_hash entry for this
4904 reloc to point to the global hash table entry
4905 for this symbol. The symbol index is then
4906 set at the end of elf_bfd_final_link. */
4907 indx = r_symndx - extsymoff;
5ee8d932
ILT
4908 rh = elf_sym_hashes (input_bfd)[indx];
4909 while (rh->root.type == bfd_link_hash_indirect
4910 || rh->root.type == bfd_link_hash_warning)
4911 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
ede4eed4
KR
4912
4913 /* Setting the index to -2 tells
4914 elf_link_output_extsym that this symbol is
4915 used by a reloc. */
5ee8d932
ILT
4916 BFD_ASSERT (rh->indx < 0);
4917 rh->indx = -2;
4918
4919 *rel_hash = rh;
ede4eed4
KR
4920
4921 continue;
4922 }
4923
4924 /* This is a reloc against a local symbol. */
4925
4926 *rel_hash = NULL;
4927 isym = finfo->internal_syms + r_symndx;
4928 sec = finfo->sections[r_symndx];
4929 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4930 {
4931 /* I suppose the backend ought to fill in the
4932 section of any STT_SECTION symbol against a
ba4a4594
ILT
4933 processor specific section. If we have
4934 discarded a section, the output_section will
4935 be the absolute section. */
4936 if (sec != NULL
4937 && (bfd_is_abs_section (sec)
4938 || (sec->output_section != NULL
4939 && bfd_is_abs_section (sec->output_section))))
ede4eed4
KR
4940 r_symndx = 0;
4941 else if (sec == NULL || sec->owner == NULL)
4942 {
4943 bfd_set_error (bfd_error_bad_value);
4944 return false;
4945 }
4946 else
4947 {
4948 r_symndx = sec->output_section->target_index;
4949 BFD_ASSERT (r_symndx != 0);
4950 }
4951 }
4952 else
4953 {
4954 if (finfo->indices[r_symndx] == -1)
4955 {
4956 unsigned long link;
4957 const char *name;
4958 asection *osec;
4959
4960 if (finfo->info->strip == strip_all)
4961 {
4962 /* You can't do ld -r -s. */
4963 bfd_set_error (bfd_error_invalid_operation);
4964 return false;
4965 }
4966
4967 /* This symbol was skipped earlier, but
4968 since it is needed by a reloc, we
4969 must output it now. */
4970 link = symtab_hdr->sh_link;
4971 name = bfd_elf_string_from_elf_section (input_bfd,
4972 link,
4973 isym->st_name);
4974 if (name == NULL)
4975 return false;
4976
4977 osec = sec->output_section;
4978 isym->st_shndx =
4979 _bfd_elf_section_from_bfd_section (output_bfd,
4980 osec);
4981 if (isym->st_shndx == (unsigned short) -1)
4982 return false;
4983
4984 isym->st_value += sec->output_offset;
4985 if (! finfo->info->relocateable)
4986 isym->st_value += osec->vma;
4987
4988 finfo->indices[r_symndx] = output_bfd->symcount;
4989
4990 if (! elf_link_output_sym (finfo, name, isym, sec))
4991 return false;
4992 }
4993
4994 r_symndx = finfo->indices[r_symndx];
4995 }
4996
4997 irela->r_info = ELF_R_INFO (r_symndx,
4998 ELF_R_TYPE (irela->r_info));
4999 }
5000
5001 /* Swap out the relocs. */
5002 input_rel_hdr = &elf_section_data (o)->rel_hdr;
5003 output_rel_hdr = &elf_section_data (o->output_section)->rel_hdr;
5004 BFD_ASSERT (output_rel_hdr->sh_entsize
5005 == input_rel_hdr->sh_entsize);
5006 irela = internal_relocs;
5007 irelaend = irela + o->reloc_count;
5008 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
5009 {
5010 Elf_External_Rel *erel;
5011
5012 erel = ((Elf_External_Rel *) output_rel_hdr->contents
5013 + o->output_section->reloc_count);
5014 for (; irela < irelaend; irela++, erel++)
5015 {
5016 Elf_Internal_Rel irel;
5017
5018 irel.r_offset = irela->r_offset;
5019 irel.r_info = irela->r_info;
5020 BFD_ASSERT (irela->r_addend == 0);
5021 elf_swap_reloc_out (output_bfd, &irel, erel);
5022 }
5023 }
5024 else
5025 {
5026 Elf_External_Rela *erela;
5027
5028 BFD_ASSERT (input_rel_hdr->sh_entsize
5029 == sizeof (Elf_External_Rela));
5030 erela = ((Elf_External_Rela *) output_rel_hdr->contents
5031 + o->output_section->reloc_count);
5032 for (; irela < irelaend; irela++, erela++)
5033 elf_swap_reloca_out (output_bfd, irela, erela);
5034 }
5035
5036 o->output_section->reloc_count += o->reloc_count;
5037 }
5038 }
5039
5040 /* Write out the modified section contents. */
1726b8f0
ILT
5041 if (elf_section_data (o)->stab_info == NULL)
5042 {
303b4cc6
RH
5043 if (! (o->flags & SEC_EXCLUDE) &&
5044 ! bfd_set_section_contents (output_bfd, o->output_section,
c86158e5 5045 contents, o->output_offset,
1726b8f0
ILT
5046 (o->_cooked_size != 0
5047 ? o->_cooked_size
5048 : o->_raw_size)))
5049 return false;
5050 }
5051 else
5052 {
3cd5cf3d
ILT
5053 if (! (_bfd_write_section_stabs
5054 (output_bfd, &elf_hash_table (finfo->info)->stab_info,
5055 o, &elf_section_data (o)->stab_info, contents)))
1726b8f0
ILT
5056 return false;
5057 }
ede4eed4
KR
5058 }
5059
5060 return true;
5061}
5062
5063/* Generate a reloc when linking an ELF file. This is a reloc
5064 requested by the linker, and does come from any input file. This
5065 is used to build constructor and destructor tables when linking
5066 with -Ur. */
5067
5068static boolean
5069elf_reloc_link_order (output_bfd, info, output_section, link_order)
5070 bfd *output_bfd;
5071 struct bfd_link_info *info;
5072 asection *output_section;
5073 struct bfd_link_order *link_order;
5074{
5075 reloc_howto_type *howto;
5076 long indx;
5077 bfd_vma offset;
5b3b9ff6 5078 bfd_vma addend;
ede4eed4
KR
5079 struct elf_link_hash_entry **rel_hash_ptr;
5080 Elf_Internal_Shdr *rel_hdr;
5081
5082 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
5083 if (howto == NULL)
5084 {
5085 bfd_set_error (bfd_error_bad_value);
5086 return false;
5087 }
5088
5b3b9ff6
ILT
5089 addend = link_order->u.reloc.p->addend;
5090
5091 /* Figure out the symbol index. */
5092 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
5093 + output_section->reloc_count);
5094 if (link_order->type == bfd_section_reloc_link_order)
5095 {
5096 indx = link_order->u.reloc.p->u.section->target_index;
5097 BFD_ASSERT (indx != 0);
5098 *rel_hash_ptr = NULL;
5099 }
5100 else
5101 {
5102 struct elf_link_hash_entry *h;
5103
5104 /* Treat a reloc against a defined symbol as though it were
5105 actually against the section. */
8881b321
ILT
5106 h = ((struct elf_link_hash_entry *)
5107 bfd_wrapped_link_hash_lookup (output_bfd, info,
5108 link_order->u.reloc.p->u.name,
5109 false, false, true));
5b3b9ff6
ILT
5110 if (h != NULL
5111 && (h->root.type == bfd_link_hash_defined
5112 || h->root.type == bfd_link_hash_defweak))
5113 {
5114 asection *section;
5115
5116 section = h->root.u.def.section;
5117 indx = section->output_section->target_index;
5118 *rel_hash_ptr = NULL;
5119 /* It seems that we ought to add the symbol value to the
5120 addend here, but in practice it has already been added
5121 because it was passed to constructor_callback. */
5122 addend += section->output_section->vma + section->output_offset;
5123 }
5124 else if (h != NULL)
5125 {
5126 /* Setting the index to -2 tells elf_link_output_extsym that
5127 this symbol is used by a reloc. */
5128 h->indx = -2;
5129 *rel_hash_ptr = h;
5130 indx = 0;
5131 }
5132 else
5133 {
5134 if (! ((*info->callbacks->unattached_reloc)
5135 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
5136 (asection *) NULL, (bfd_vma) 0)))
5137 return false;
5138 indx = 0;
5139 }
5140 }
5141
ede4eed4
KR
5142 /* If this is an inplace reloc, we must write the addend into the
5143 object file. */
5b3b9ff6 5144 if (howto->partial_inplace && addend != 0)
ede4eed4
KR
5145 {
5146 bfd_size_type size;
5147 bfd_reloc_status_type rstat;
5148 bfd_byte *buf;
5149 boolean ok;
5150
5151 size = bfd_get_reloc_size (howto);
5152 buf = (bfd_byte *) bfd_zmalloc (size);
5153 if (buf == (bfd_byte *) NULL)
a9713b91 5154 return false;
5b3b9ff6 5155 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
ede4eed4
KR
5156 switch (rstat)
5157 {
5158 case bfd_reloc_ok:
5159 break;
5160 default:
5161 case bfd_reloc_outofrange:
5162 abort ();
5163 case bfd_reloc_overflow:
5164 if (! ((*info->callbacks->reloc_overflow)
5165 (info,
5166 (link_order->type == bfd_section_reloc_link_order
5167 ? bfd_section_name (output_bfd,
5168 link_order->u.reloc.p->u.section)
5169 : link_order->u.reloc.p->u.name),
5b3b9ff6
ILT
5170 howto->name, addend, (bfd *) NULL, (asection *) NULL,
5171 (bfd_vma) 0)))
ede4eed4
KR
5172 {
5173 free (buf);
5174 return false;
5175 }
5176 break;
5177 }
5178 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
5179 (file_ptr) link_order->offset, size);
5180 free (buf);
5181 if (! ok)
5182 return false;
5183 }
5184
ede4eed4
KR
5185 /* The address of a reloc is relative to the section in a
5186 relocateable file, and is a virtual address in an executable
5187 file. */
5188 offset = link_order->offset;
5189 if (! info->relocateable)
5190 offset += output_section->vma;
5191
5192 rel_hdr = &elf_section_data (output_section)->rel_hdr;
5193
5194 if (rel_hdr->sh_type == SHT_REL)
5195 {
5196 Elf_Internal_Rel irel;
5197 Elf_External_Rel *erel;
5198
5199 irel.r_offset = offset;
5200 irel.r_info = ELF_R_INFO (indx, howto->type);
5201 erel = ((Elf_External_Rel *) rel_hdr->contents
5202 + output_section->reloc_count);
5203 elf_swap_reloc_out (output_bfd, &irel, erel);
5204 }
5205 else
5206 {
5207 Elf_Internal_Rela irela;
5208 Elf_External_Rela *erela;
5209
5210 irela.r_offset = offset;
5211 irela.r_info = ELF_R_INFO (indx, howto->type);
5b3b9ff6 5212 irela.r_addend = addend;
ede4eed4
KR
5213 erela = ((Elf_External_Rela *) rel_hdr->contents
5214 + output_section->reloc_count);
5215 elf_swap_reloca_out (output_bfd, &irela, erela);
5216 }
5217
5218 ++output_section->reloc_count;
5219
5220 return true;
5221}
5222
3b3753b8
MM
5223\f
5224/* Allocate a pointer to live in a linker created section. */
5225
5226boolean
5227elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
5228 bfd *abfd;
5229 struct bfd_link_info *info;
5230 elf_linker_section_t *lsect;
5231 struct elf_link_hash_entry *h;
5232 const Elf_Internal_Rela *rel;
5233{
5234 elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
5235 elf_linker_section_pointers_t *linker_section_ptr;
5236 unsigned long r_symndx = ELF_R_SYM (rel->r_info);;
5237
5238 BFD_ASSERT (lsect != NULL);
5239
5240 /* Is this a global symbol? */
5241 if (h != NULL)
5242 {
5243 /* Has this symbol already been allocated, if so, our work is done */
5244 if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
5245 rel->r_addend,
5246 lsect->which))
5247 return true;
5248
5249 ptr_linker_section_ptr = &h->linker_section_pointer;
5250 /* Make sure this symbol is output as a dynamic symbol. */
5251 if (h->dynindx == -1)
5252 {
5253 if (! elf_link_record_dynamic_symbol (info, h))
5254 return false;
5255 }
5256
eb82bc60
MM
5257 if (lsect->rel_section)
5258 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
3b3753b8
MM
5259 }
5260
5261 else /* Allocation of a pointer to a local symbol */
5262 {
5263 elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
5264
5265 /* Allocate a table to hold the local symbols if first time */
5266 if (!ptr)
5267 {
f6727b90 5268 unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
3b3753b8
MM
5269 register unsigned int i;
5270
5271 ptr = (elf_linker_section_pointers_t **)
5272 bfd_alloc (abfd, num_symbols * sizeof (elf_linker_section_pointers_t *));
5273
5274 if (!ptr)
5275 return false;
5276
5277 elf_local_ptr_offsets (abfd) = ptr;
5278 for (i = 0; i < num_symbols; i++)
5279 ptr[i] = (elf_linker_section_pointers_t *)0;
5280 }
5281
5282 /* Has this symbol already been allocated, if so, our work is done */
5283 if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
5284 rel->r_addend,
5285 lsect->which))
5286 return true;
5287
5288 ptr_linker_section_ptr = &ptr[r_symndx];
5289
5290 if (info->shared)
5291 {
5292 /* If we are generating a shared object, we need to
05f927dd 5293 output a R_<xxx>_RELATIVE reloc so that the
3b3753b8
MM
5294 dynamic linker can adjust this GOT entry. */
5295 BFD_ASSERT (lsect->rel_section != NULL);
5296 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
5297 }
5298 }
5299
5300 /* Allocate space for a pointer in the linker section, and allocate a new pointer record
5301 from internal memory. */
5302 BFD_ASSERT (ptr_linker_section_ptr != NULL);
5303 linker_section_ptr = (elf_linker_section_pointers_t *)
5304 bfd_alloc (abfd, sizeof (elf_linker_section_pointers_t));
5305
5306 if (!linker_section_ptr)
5307 return false;
5308
5309 linker_section_ptr->next = *ptr_linker_section_ptr;
5310 linker_section_ptr->addend = rel->r_addend;
5311 linker_section_ptr->which = lsect->which;
5312 linker_section_ptr->written_address_p = false;
5313 *ptr_linker_section_ptr = linker_section_ptr;
5314
cb73f5d7 5315#if 0
3b3753b8
MM
5316 if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
5317 {
cb73f5d7 5318 linker_section_ptr->offset = lsect->section->_raw_size - lsect->hole_size + (ARCH_SIZE / 8);
3b3753b8
MM
5319 lsect->hole_offset += ARCH_SIZE / 8;
5320 lsect->sym_offset += ARCH_SIZE / 8;
5321 if (lsect->sym_hash) /* Bump up symbol value if needed */
4a4953f5
MM
5322 {
5323 lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
5324#ifdef DEBUG
5325 fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
5326 lsect->sym_hash->root.root.string,
5327 (long)ARCH_SIZE / 8,
5328 (long)lsect->sym_hash->root.u.def.value);
5329#endif
5330 }
3b3753b8
MM
5331 }
5332 else
cb73f5d7 5333#endif
3b3753b8
MM
5334 linker_section_ptr->offset = lsect->section->_raw_size;
5335
5336 lsect->section->_raw_size += ARCH_SIZE / 8;
5337
5338#ifdef DEBUG
5339 fprintf (stderr, "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
5340 lsect->name, (long)linker_section_ptr->offset, (long)lsect->section->_raw_size);
5341#endif
5342
5343 return true;
5344}
5345
5346\f
5347#if ARCH_SIZE==64
5348#define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
5349#endif
5350#if ARCH_SIZE==32
5351#define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
5352#endif
5353
5354/* Fill in the address for a pointer generated in alinker section. */
5355
5356bfd_vma
5357elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h, relocation, rel, relative_reloc)
5358 bfd *output_bfd;
5359 bfd *input_bfd;
5360 struct bfd_link_info *info;
5361 elf_linker_section_t *lsect;
5362 struct elf_link_hash_entry *h;
5363 bfd_vma relocation;
5364 const Elf_Internal_Rela *rel;
5365 int relative_reloc;
5366{
5367 elf_linker_section_pointers_t *linker_section_ptr;
5368
5369 BFD_ASSERT (lsect != NULL);
5370
3b3753b8
MM
5371 if (h != NULL) /* global symbol */
5372 {
5373 linker_section_ptr = _bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
5374 rel->r_addend,
5375 lsect->which);
5376
5377 BFD_ASSERT (linker_section_ptr != NULL);
5378
5379 if (! elf_hash_table (info)->dynamic_sections_created
5380 || (info->shared
5381 && info->symbolic
5382 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
5383 {
5384 /* This is actually a static link, or it is a
5385 -Bsymbolic link and the symbol is defined
5386 locally. We must initialize this entry in the
5387 global section.
5388
5389 When doing a dynamic link, we create a .rela.<xxx>
5390 relocation entry to initialize the value. This
5391 is done in the finish_dynamic_symbol routine. */
5392 if (!linker_section_ptr->written_address_p)
5393 {
5394 linker_section_ptr->written_address_p = true;
5395 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
5396 lsect->section->contents + linker_section_ptr->offset);
5397 }
5398 }
5399 }
5400 else /* local symbol */
5401 {
5402 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
5403 BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
5404 BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
5405 linker_section_ptr = _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd)[r_symndx],
5406 rel->r_addend,
5407 lsect->which);
5408
5409 BFD_ASSERT (linker_section_ptr != NULL);
5410
5411 /* Write out pointer if it hasn't been rewritten out before */
5412 if (!linker_section_ptr->written_address_p)
5413 {
5414 linker_section_ptr->written_address_p = true;
5415 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
5416 lsect->section->contents + linker_section_ptr->offset);
5417
5418 if (info->shared)
5419 {
5420 asection *srel = lsect->rel_section;
5421 Elf_Internal_Rela outrel;
5422
5423 /* We need to generate a relative reloc for the dynamic linker. */
5424 if (!srel)
5425 lsect->rel_section = srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
5426 lsect->rel_name);
5427
5428 BFD_ASSERT (srel != NULL);
5429
5430 outrel.r_offset = (lsect->section->output_section->vma
5431 + lsect->section->output_offset
5432 + linker_section_ptr->offset);
5433 outrel.r_info = ELF_R_INFO (0, relative_reloc);
5434 outrel.r_addend = 0;
5435 elf_swap_reloca_out (output_bfd, &outrel,
5a5bac64 5436 (((Elf_External_Rela *)
3b3753b8
MM
5437 lsect->section->contents)
5438 + lsect->section->reloc_count));
5439 ++lsect->section->reloc_count;
5440 }
5441 }
5442 }
5443
5444 relocation = (lsect->section->output_offset
5445 + linker_section_ptr->offset
5446 - lsect->hole_offset
5447 - lsect->sym_offset);
5448
5449#ifdef DEBUG
5450 fprintf (stderr, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
5451 lsect->name, (long)relocation, (long)relocation);
5452#endif
5453
5454 /* Subtract out the addend, because it will get added back in by the normal
5455 processing. */
5456 return relocation - linker_section_ptr->addend;
5457}
303b4cc6
RH
5458\f
5459/* Garbage collect unused sections. */
5460
e429c897 5461static boolean elf_gc_mark
303b4cc6
RH
5462 PARAMS ((struct bfd_link_info *info, asection *sec,
5463 asection * (*gc_mark_hook)
5464 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
5465 struct elf_link_hash_entry *, Elf_Internal_Sym *))));
5466
5467static boolean elf_gc_sweep
5468 PARAMS ((struct bfd_link_info *info,
5469 boolean (*gc_sweep_hook)
5470 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
5471 const Elf_Internal_Rela *relocs))));
5472
5473static boolean elf_gc_sweep_symbol
5474 PARAMS ((struct elf_link_hash_entry *h, PTR idxptr));
5475
5476static boolean elf_gc_allocate_got_offsets
5477 PARAMS ((struct elf_link_hash_entry *h, PTR offarg));
5478
1ff13765 5479static boolean elf_gc_propagate_vtable_entries_used
303b4cc6
RH
5480 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
5481
5482static boolean elf_gc_smash_unused_vtentry_relocs
5483 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
5484
5485/* The mark phase of garbage collection. For a given section, mark
5486 it, and all the sections which define symbols to which it refers. */
5487
5488static boolean
5489elf_gc_mark (info, sec, gc_mark_hook)
5490 struct bfd_link_info *info;
5491 asection *sec;
5492 asection * (*gc_mark_hook)
5493 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
5494 struct elf_link_hash_entry *, Elf_Internal_Sym *));
5495{
5496 boolean ret = true;
e429c897 5497
303b4cc6
RH
5498 sec->gc_mark = 1;
5499
5500 /* Look through the section relocs. */
5501
5502 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
5503 {
5504 Elf_Internal_Rela *relstart, *rel, *relend;
5505 Elf_Internal_Shdr *symtab_hdr;
5506 struct elf_link_hash_entry **sym_hashes;
5507 size_t nlocsyms;
5508 size_t extsymoff;
5509 Elf_External_Sym *locsyms, *freesyms = NULL;
5510 bfd *input_bfd = sec->owner;
5511
5512 /* GCFIXME: how to arrange so that relocs and symbols are not
5513 reread continually? */
5514
5515 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5516 sym_hashes = elf_sym_hashes (input_bfd);
5517
5518 /* Read the local symbols. */
5519 if (elf_bad_symtab (input_bfd))
5520 {
5521 nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
5522 extsymoff = 0;
5523 }
5524 else
5525 extsymoff = nlocsyms = symtab_hdr->sh_info;
5526 if (symtab_hdr->contents)
5527 locsyms = (Elf_External_Sym *) symtab_hdr->contents;
5528 else if (nlocsyms == 0)
5529 locsyms = NULL;
5530 else
5531 {
5532 locsyms = freesyms =
5533 bfd_malloc (nlocsyms * sizeof (Elf_External_Sym));
5534 if (freesyms == NULL
5535 || bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
5536 || (bfd_read (locsyms, sizeof (Elf_External_Sym),
5537 nlocsyms, input_bfd)
5538 != nlocsyms * sizeof (Elf_External_Sym)))
5539 {
5540 ret = false;
5541 goto out1;
5542 }
5543 }
5544
5545 /* Read the relocations. */
5546 relstart = (NAME(_bfd_elf,link_read_relocs)
5547 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL,
5548 info->keep_memory));
5549 if (relstart == NULL)
5550 {
5551 ret = false;
5552 goto out1;
5553 }
5554 relend = relstart + sec->reloc_count;
5555
5556 for (rel = relstart; rel < relend; rel++)
5557 {
5558 unsigned long r_symndx;
5559 asection *rsec;
5560 struct elf_link_hash_entry *h;
5561 Elf_Internal_Sym s;
5562
5563 r_symndx = ELF_R_SYM (rel->r_info);
5564 if (r_symndx == 0)
5565 continue;
5566
5567 if (elf_bad_symtab (sec->owner))
5568 {
5569 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
5570 if (ELF_ST_BIND (s.st_info) == STB_LOCAL)
5571 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
5572 else
5573 {
5574 h = sym_hashes[r_symndx - extsymoff];
5575 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
5576 }
5577 }
5578 else if (r_symndx >= nlocsyms)
5579 {
5580 h = sym_hashes[r_symndx - extsymoff];
5581 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
5582 }
5583 else
5584 {
5585 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
5586 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
5587 }
5588
5589 if (rsec && !rsec->gc_mark)
5590 if (!elf_gc_mark (info, rsec, gc_mark_hook))
5591 {
5592 ret = false;
5593 goto out2;
5594 }
5595 }
5596
5597 out2:
5598 if (!info->keep_memory)
5599 free (relstart);
5600 out1:
5601 if (freesyms)
5602 free (freesyms);
5603 }
5604
5605 return ret;
5606}
5607
5608/* The sweep phase of garbage collection. Remove all garbage sections. */
5609
5610static boolean
5611elf_gc_sweep (info, gc_sweep_hook)
5612 struct bfd_link_info *info;
5613 boolean (*gc_sweep_hook)
5614 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
5615 const Elf_Internal_Rela *relocs));
5616{
5617 bfd *sub;
5618
5619 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
5620 {
5621 asection *o;
5622
5623 for (o = sub->sections; o != NULL; o = o->next)
5624 {
5625 /* Keep special sections. Keep .debug sections. */
5626 if ((o->flags & SEC_LINKER_CREATED)
5627 || (o->flags & SEC_DEBUGGING))
5628 o->gc_mark = 1;
5629
5630 if (o->gc_mark)
5631 continue;
5632
5633 /* Skip sweeping sections already excluded. */
5634 if (o->flags & SEC_EXCLUDE)
5635 continue;
5636
5637 /* Since this is early in the link process, it is simple
5638 to remove a section from the output. */
5639 o->flags |= SEC_EXCLUDE;
5640
5641 /* But we also have to update some of the relocation
5642 info we collected before. */
5643 if (gc_sweep_hook
5644 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
5645 {
5646 Elf_Internal_Rela *internal_relocs;
5647 boolean r;
5648
5649 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
5650 (o->owner, o, NULL, NULL, info->keep_memory));
5651 if (internal_relocs == NULL)
5652 return false;
5653
5654 r = (*gc_sweep_hook)(o->owner, info, o, internal_relocs);
5655
5656 if (!info->keep_memory)
5657 free (internal_relocs);
5658
5659 if (!r)
5660 return false;
5661 }
5662 }
5663 }
5664
5665 /* Remove the symbols that were in the swept sections from the dynamic
5666 symbol table. GCFIXME: Anyone know how to get them out of the
5667 static symbol table as well? */
5668 {
5669 int i = 0;
5670
5671 elf_link_hash_traverse (elf_hash_table (info),
5672 elf_gc_sweep_symbol,
5673 (PTR) &i);
5674
5675 elf_hash_table (info)->dynsymcount = i;
5676 }
be228e0d
ILT
5677
5678 return true;
303b4cc6
RH
5679}
5680
5681/* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
5682
5683static boolean
5684elf_gc_sweep_symbol (h, idxptr)
5685 struct elf_link_hash_entry *h;
5686 PTR idxptr;
5687{
5688 int *idx = (int *) idxptr;
5689
5690 if (h->dynindx != -1
5691 && ((h->root.type != bfd_link_hash_defined
5692 && h->root.type != bfd_link_hash_defweak)
5693 || h->root.u.def.section->gc_mark))
5694 h->dynindx = (*idx)++;
5695
5696 return true;
5697}
5698
5699/* Propogate collected vtable information. This is called through
5700 elf_link_hash_traverse. */
5701
5702static boolean
1ff13765 5703elf_gc_propagate_vtable_entries_used (h, okp)
303b4cc6
RH
5704 struct elf_link_hash_entry *h;
5705 PTR okp;
5706{
5707 /* Those that are not vtables. */
5708 if (h->vtable_parent == NULL)
5709 return true;
5710
5711 /* Those vtables that do not have parents, we cannot merge. */
5712 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
5713 return true;
5714
5715 /* If we've already been done, exit. */
5716 if (h->vtable_entries_used && h->vtable_entries_used[-1])
5717 return true;
5718
5719 /* Make sure the parent's table is up to date. */
1ff13765 5720 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
303b4cc6
RH
5721
5722 if (h->vtable_entries_used == NULL)
5723 {
5724 /* None of this table's entries were referenced. Re-use the
5725 parent's table. */
5726 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
5727 }
5728 else
5729 {
5730 size_t n;
5731 boolean *cu, *pu;
5732
5733 /* Or the parent's entries into ours. */
5734 cu = h->vtable_entries_used;
5735 cu[-1] = true;
5736 pu = h->vtable_parent->vtable_entries_used;
5737 if (pu != NULL)
5738 {
5739 n = h->vtable_parent->size / FILE_ALIGN;
5740 while (--n != 0)
5741 {
5742 if (*pu) *cu = true;
5743 pu++, cu++;
5744 }
5745 }
5746 }
5747
5748 return true;
5749}
5750
5751static boolean
5752elf_gc_smash_unused_vtentry_relocs (h, okp)
5753 struct elf_link_hash_entry *h;
5754 PTR okp;
5755{
5756 asection *sec;
5757 bfd_vma hstart, hend;
5758 Elf_Internal_Rela *relstart, *relend, *rel;
5759
5760 /* Take care of both those symbols that do not describe vtables as
5761 well as those that are not loaded. */
5762 if (h->vtable_parent == NULL)
5763 return true;
5764
e429c897 5765 BFD_ASSERT (h->root.type == bfd_link_hash_defined
303b4cc6
RH
5766 || h->root.type == bfd_link_hash_defweak);
5767
5768 sec = h->root.u.def.section;
5769 hstart = h->root.u.def.value;
5770 hend = hstart + h->size;
5771
5772 relstart = (NAME(_bfd_elf,link_read_relocs)
5773 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
5774 if (!relstart)
5775 return *(boolean *)okp = false;
5776 relend = relstart + sec->reloc_count;
5777
5778 for (rel = relstart; rel < relend; ++rel)
5779 if (rel->r_offset >= hstart && rel->r_offset < hend)
5780 {
5781 /* If the entry is in use, do nothing. */
5782 if (h->vtable_entries_used)
5783 {
5784 bfd_vma entry = (rel->r_offset - hstart) / FILE_ALIGN;
5785 if (h->vtable_entries_used[entry])
5786 continue;
5787 }
5788 /* Otherwise, kill it. */
5789 rel->r_offset = rel->r_info = rel->r_addend = 0;
5790 }
5791
5792 return true;
5793}
5794
5795/* Do mark and sweep of unused sections. */
5796
5797boolean
5798elf_gc_sections (abfd, info)
5799 bfd *abfd;
5800 struct bfd_link_info *info;
5801{
5802 boolean ok = true;
5803 bfd *sub;
5804 asection * (*gc_mark_hook)
5805 PARAMS ((bfd *abfd, struct bfd_link_info *, Elf_Internal_Rela *,
5806 struct elf_link_hash_entry *h, Elf_Internal_Sym *));
5807
5808 if (!get_elf_backend_data (abfd)->can_gc_sections
6342b062
CM
5809 || info->relocateable
5810 || elf_hash_table (info)->dynamic_sections_created)
303b4cc6
RH
5811 return true;
5812
5813 /* Apply transitive closure to the vtable entry usage info. */
5814 elf_link_hash_traverse (elf_hash_table (info),
1ff13765 5815 elf_gc_propagate_vtable_entries_used,
303b4cc6
RH
5816 (PTR) &ok);
5817 if (!ok)
5818 return false;
5819
5820 /* Kill the vtable relocations that were not used. */
5821 elf_link_hash_traverse (elf_hash_table (info),
5822 elf_gc_smash_unused_vtentry_relocs,
5823 (PTR) &ok);
5824 if (!ok)
5825 return false;
5826
5827 /* Grovel through relocs to find out who stays ... */
5828
5829 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
5830 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
5831 {
5832 asection *o;
5833 for (o = sub->sections; o != NULL; o = o->next)
5834 {
5835 if (o->flags & SEC_KEEP)
5836 if (!elf_gc_mark (info, o, gc_mark_hook))
5837 return false;
5838 }
5839 }
5840
5841 /* ... and mark SEC_EXCLUDE for those that go. */
5842 if (!elf_gc_sweep(info, get_elf_backend_data (abfd)->gc_sweep_hook))
5843 return false;
5844
5845 return true;
5846}
5847\f
5848/* Called from check_relocs to record the existance of a VTINHERIT reloc. */
5849
5850boolean
5851elf_gc_record_vtinherit (abfd, sec, h, offset)
5852 bfd *abfd;
5853 asection *sec;
5854 struct elf_link_hash_entry *h;
5855 bfd_vma offset;
5856{
5857 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
5858 struct elf_link_hash_entry **search, *child;
5859 bfd_size_type extsymcount;
5860
5861 /* The sh_info field of the symtab header tells us where the
5862 external symbols start. We don't care about the local symbols at
5863 this point. */
5864 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
5865 if (!elf_bad_symtab (abfd))
5866 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
5867
5868 sym_hashes = elf_sym_hashes (abfd);
5869 sym_hashes_end = sym_hashes + extsymcount;
5870
5871 /* Hunt down the child symbol, which is in this section at the same
5872 offset as the relocation. */
5873 for (search = sym_hashes; search != sym_hashes_end; ++search)
5874 {
5875 if ((child = *search) != NULL
5876 && (child->root.type == bfd_link_hash_defined
5877 || child->root.type == bfd_link_hash_defweak)
5878 && child->root.u.def.section == sec
5879 && child->root.u.def.value == offset)
5880 goto win;
5881 }
5882
5883 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
5884 bfd_get_filename (abfd), sec->name,
5885 (unsigned long)offset);
5886 bfd_set_error (bfd_error_invalid_operation);
5887 return false;
5888
5889win:
5890 if (!h)
5891 {
5892 /* This *should* only be the absolute section. It could potentially
5893 be that someone has defined a non-global vtable though, which
5894 would be bad. It isn't worth paging in the local symbols to be
5895 sure though; that case should simply be handled by the assembler. */
5896
5897 child->vtable_parent = (struct elf_link_hash_entry *) -1;
5898 }
5899 else
5900 child->vtable_parent = h;
5901
5902 return true;
5903}
5904
5905/* Called from check_relocs to record the existance of a VTENTRY reloc. */
5906
5907boolean
5908elf_gc_record_vtentry (abfd, sec, h, addend)
5909 bfd *abfd;
5910 asection *sec;
5911 struct elf_link_hash_entry *h;
5912 bfd_vma addend;
5913{
5914 if (h->vtable_entries_used == NULL)
5915 {
5916 /* Allocate one extra entry for use as a "done" flag for the
5917 consolidation pass. */
5918 size_t size = (h->size / FILE_ALIGN + 1) * sizeof(boolean);
5919 h->vtable_entries_used = (boolean *) bfd_alloc (abfd, size);
5920 if (h->vtable_entries_used == NULL)
5921 return false;
5922
5923 /* And arrange for that done flag to be at index -1. */
5924 memset (h->vtable_entries_used++, 0, size);
5925 }
5926 h->vtable_entries_used[addend / FILE_ALIGN] = true;
5927
5928 return true;
5929}
5930
e429c897 5931/* And an accompanying bit to work out final got entry offsets once
303b4cc6
RH
5932 we're done. Should be called from final_link. */
5933
5934boolean
5935elf_gc_common_finalize_got_offsets (abfd, info)
5936 bfd *abfd;
5937 struct bfd_link_info *info;
5938{
be228e0d 5939 bfd *i;
7993f96a
RH
5940 struct elf_backend_data *bed = get_elf_backend_data (abfd);
5941 bfd_vma gotoff;
5942
5943 /* The GOT offset is relative to the .got section, but the GOT header is
5944 put into the .got.plt section, if the backend uses it. */
5945 if (bed->want_got_plt)
5946 gotoff = 0;
5947 else
5948 gotoff = bed->got_header_size;
be228e0d
ILT
5949
5950 /* Do the local .got entries first. */
5951 for (i = info->input_bfds; i; i = i->link_next)
303b4cc6 5952 {
be228e0d
ILT
5953 bfd_signed_vma *local_got = elf_local_got_refcounts (i);
5954 bfd_size_type j, locsymcount;
5955 Elf_Internal_Shdr *symtab_hdr;
303b4cc6 5956
be228e0d
ILT
5957 if (!local_got)
5958 continue;
303b4cc6 5959
be228e0d
ILT
5960 symtab_hdr = &elf_tdata (i)->symtab_hdr;
5961 if (elf_bad_symtab (i))
5962 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
5963 else
5964 locsymcount = symtab_hdr->sh_info;
303b4cc6 5965
be228e0d
ILT
5966 for (j = 0; j < locsymcount; ++j)
5967 {
5968 if (local_got[j] > 0)
5969 {
5970 local_got[j] = gotoff;
5971 gotoff += ARCH_SIZE / 8;
5972 }
303b4cc6 5973 else
be228e0d 5974 local_got[j] = (bfd_vma) -1;
303b4cc6 5975 }
303b4cc6
RH
5976 }
5977
be228e0d 5978 /* Then the global .got and .plt entries. */
be228e0d
ILT
5979 elf_link_hash_traverse (elf_hash_table (info),
5980 elf_gc_allocate_got_offsets,
965d5a46 5981 (PTR) &gotoff);
303b4cc6
RH
5982 return true;
5983}
5984
5985/* We need a special top-level link routine to convert got reference counts
5986 to real got offsets. */
5987
5988static boolean
5989elf_gc_allocate_got_offsets (h, offarg)
5990 struct elf_link_hash_entry *h;
5991 PTR offarg;
5992{
5993 bfd_vma *off = (bfd_vma *) offarg;
5994
be228e0d
ILT
5995 if (h->got.refcount > 0)
5996 {
5997 h->got.offset = off[0];
5998 off[0] += ARCH_SIZE / 8;
5999 }
6000 else
6001 h->got.offset = (bfd_vma) -1;
303b4cc6
RH
6002
6003 return true;
6004}
6005
6006/* Many folk need no more in the way of final link than this, once
6007 got entry reference counting is enabled. */
6008
6009boolean
6010elf_gc_common_final_link (abfd, info)
6011 bfd *abfd;
6012 struct bfd_link_info *info;
6013{
6014 if (!elf_gc_common_finalize_got_offsets (abfd, info))
6015 return false;
6016
6017 /* Invoke the regular ELF backend linker to do all the work. */
6018 return elf_bfd_final_link (abfd, info);
6019}
e429c897
UD
6020
6021/* This function will be called though elf_link_hash_traverse to store
6022 all hash value of the exported symbols in an array. */
6023
6024static boolean
6025elf_collect_hash_codes (h, data)
6026 struct elf_link_hash_entry *h;
6027 PTR data;
6028{
6029 unsigned long **valuep = (unsigned long **) data;
6030 const char *name;
6031 char *p;
6032 unsigned long ha;
6033 char *alc = NULL;
6034
6035 /* Ignore indirect symbols. These are added by the versioning code. */
6036 if (h->dynindx == -1)
6037 return true;
6038
6039 name = h->root.root.string;
6040 p = strchr (name, ELF_VER_CHR);
6041 if (p != NULL)
6042 {
6043 alc = bfd_malloc (p - name + 1);
6044 memcpy (alc, name, p - name);
6045 alc[p - name] = '\0';
6046 name = alc;
6047 }
6048
6049 /* Compute the hash value. */
6050 ha = bfd_elf_hash (name);
6051
6052 /* Store the found hash value in the array given as the argument. */
6053 *(*valuep)++ = ha;
6054
6055 /* And store it in the struct so that we can put it in the hash table
6056 later. */
6057 h->elf_hash_value = ha;
6058
6059 if (alc != NULL)
6060 free (alc);
6061
6062 return true;
6063}
This page took 0.40287 seconds and 4 git commands to generate.