* gdbint.texinfo: Add some info about symbol readers.
[deliverable/binutils-gdb.git] / bfd / elflink.h
CommitLineData
8afe83be 1/* ELF linker support.
f6727b90 2 Copyright 1995, 1996, 1997, 1998 Free Software Foundation, Inc.
8afe83be
KR
3
4This file is part of BFD, the Binary File Descriptor library.
5
6This program is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2 of the License, or
9(at your option) any later version.
10
11This program is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with this program; if not, write to the Free Software
943fbd5b 18Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
452a5efb 19
ede4eed4
KR
20/* ELF linker code. */
21
c19fbe0f
ILT
22/* This struct is used to pass information to routines called via
23 elf_link_hash_traverse which must return failure. */
24
25struct elf_info_failed
26{
27 boolean failed;
28 struct bfd_link_info *info;
29};
30
ede4eed4
KR
31static boolean elf_link_add_object_symbols
32 PARAMS ((bfd *, struct bfd_link_info *));
33static boolean elf_link_add_archive_symbols
34 PARAMS ((bfd *, struct bfd_link_info *));
044d7d49
ILT
35static boolean elf_merge_symbol
36 PARAMS ((bfd *, struct bfd_link_info *, const char *, Elf_Internal_Sym *,
37 asection **, bfd_vma *, struct elf_link_hash_entry **,
38 boolean *, boolean *, boolean *));
ede4eed4
KR
39static boolean elf_export_symbol
40 PARAMS ((struct elf_link_hash_entry *, PTR));
c19fbe0f
ILT
41static boolean elf_fix_symbol_flags
42 PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
ede4eed4
KR
43static boolean elf_adjust_dynamic_symbol
44 PARAMS ((struct elf_link_hash_entry *, PTR));
d044b40a
ILT
45static boolean elf_link_find_version_dependencies
46 PARAMS ((struct elf_link_hash_entry *, PTR));
47static boolean elf_link_find_version_dependencies
48 PARAMS ((struct elf_link_hash_entry *, PTR));
49static boolean elf_link_assign_sym_version
50 PARAMS ((struct elf_link_hash_entry *, PTR));
51static boolean elf_link_renumber_dynsyms
52 PARAMS ((struct elf_link_hash_entry *, PTR));
e429c897
UD
53static boolean elf_collect_hash_codes
54 PARAMS ((struct elf_link_hash_entry *, PTR));
ede4eed4 55
ede4eed4
KR
56/* Given an ELF BFD, add symbols to the global hash table as
57 appropriate. */
58
59boolean
60elf_bfd_link_add_symbols (abfd, info)
61 bfd *abfd;
62 struct bfd_link_info *info;
63{
ede4eed4
KR
64 switch (bfd_get_format (abfd))
65 {
66 case bfd_object:
67 return elf_link_add_object_symbols (abfd, info);
68 case bfd_archive:
ede4eed4
KR
69 return elf_link_add_archive_symbols (abfd, info);
70 default:
71 bfd_set_error (bfd_error_wrong_format);
72 return false;
73 }
74}
3b3753b8 75\f
ede4eed4
KR
76
77/* Add symbols from an ELF archive file to the linker hash table. We
78 don't use _bfd_generic_link_add_archive_symbols because of a
79 problem which arises on UnixWare. The UnixWare libc.so is an
80 archive which includes an entry libc.so.1 which defines a bunch of
81 symbols. The libc.so archive also includes a number of other
82 object files, which also define symbols, some of which are the same
83 as those defined in libc.so.1. Correct linking requires that we
84 consider each object file in turn, and include it if it defines any
85 symbols we need. _bfd_generic_link_add_archive_symbols does not do
86 this; it looks through the list of undefined symbols, and includes
87 any object file which defines them. When this algorithm is used on
88 UnixWare, it winds up pulling in libc.so.1 early and defining a
89 bunch of symbols. This means that some of the other objects in the
90 archive are not included in the link, which is incorrect since they
91 precede libc.so.1 in the archive.
92
93 Fortunately, ELF archive handling is simpler than that done by
94 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
95 oddities. In ELF, if we find a symbol in the archive map, and the
96 symbol is currently undefined, we know that we must pull in that
97 object file.
98
99 Unfortunately, we do have to make multiple passes over the symbol
100 table until nothing further is resolved. */
101
102static boolean
103elf_link_add_archive_symbols (abfd, info)
104 bfd *abfd;
105 struct bfd_link_info *info;
106{
107 symindex c;
108 boolean *defined = NULL;
109 boolean *included = NULL;
110 carsym *symdefs;
111 boolean loop;
112
113 if (! bfd_has_map (abfd))
114 {
115 /* An empty archive is a special case. */
116 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
117 return true;
118 bfd_set_error (bfd_error_no_armap);
119 return false;
120 }
121
122 /* Keep track of all symbols we know to be already defined, and all
123 files we know to be already included. This is to speed up the
124 second and subsequent passes. */
125 c = bfd_ardata (abfd)->symdef_count;
126 if (c == 0)
127 return true;
58142f10
ILT
128 defined = (boolean *) bfd_malloc (c * sizeof (boolean));
129 included = (boolean *) bfd_malloc (c * sizeof (boolean));
ede4eed4 130 if (defined == (boolean *) NULL || included == (boolean *) NULL)
58142f10 131 goto error_return;
ede4eed4
KR
132 memset (defined, 0, c * sizeof (boolean));
133 memset (included, 0, c * sizeof (boolean));
134
135 symdefs = bfd_ardata (abfd)->symdefs;
136
137 do
138 {
139 file_ptr last;
140 symindex i;
141 carsym *symdef;
142 carsym *symdefend;
143
144 loop = false;
145 last = -1;
146
147 symdef = symdefs;
148 symdefend = symdef + c;
149 for (i = 0; symdef < symdefend; symdef++, i++)
150 {
151 struct elf_link_hash_entry *h;
152 bfd *element;
153 struct bfd_link_hash_entry *undefs_tail;
154 symindex mark;
155
156 if (defined[i] || included[i])
157 continue;
158 if (symdef->file_offset == last)
159 {
160 included[i] = true;
161 continue;
162 }
163
164 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
165 false, false, false);
d044b40a
ILT
166
167 if (h == NULL)
168 {
169 char *p, *copy;
170
171 /* If this is a default version (the name contains @@),
172 look up the symbol again without the version. The
173 effect is that references to the symbol without the
174 version will be matched by the default symbol in the
175 archive. */
176
177 p = strchr (symdef->name, ELF_VER_CHR);
178 if (p == NULL || p[1] != ELF_VER_CHR)
179 continue;
180
181 copy = bfd_alloc (abfd, p - symdef->name + 1);
182 if (copy == NULL)
183 goto error_return;
184 memcpy (copy, symdef->name, p - symdef->name);
185 copy[p - symdef->name] = '\0';
186
187 h = elf_link_hash_lookup (elf_hash_table (info), copy,
188 false, false, false);
189
190 bfd_release (abfd, copy);
191 }
192
193 if (h == NULL)
ede4eed4 194 continue;
d044b40a 195
ede4eed4
KR
196 if (h->root.type != bfd_link_hash_undefined)
197 {
68807a39
ILT
198 if (h->root.type != bfd_link_hash_undefweak)
199 defined[i] = true;
ede4eed4
KR
200 continue;
201 }
202
203 /* We need to include this archive member. */
204
205 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
206 if (element == (bfd *) NULL)
207 goto error_return;
208
209 if (! bfd_check_format (element, bfd_object))
210 goto error_return;
211
212 /* Doublecheck that we have not included this object
213 already--it should be impossible, but there may be
214 something wrong with the archive. */
215 if (element->archive_pass != 0)
216 {
217 bfd_set_error (bfd_error_bad_value);
218 goto error_return;
219 }
220 element->archive_pass = 1;
221
222 undefs_tail = info->hash->undefs_tail;
223
224 if (! (*info->callbacks->add_archive_element) (info, element,
225 symdef->name))
226 goto error_return;
227 if (! elf_link_add_object_symbols (element, info))
228 goto error_return;
229
230 /* If there are any new undefined symbols, we need to make
231 another pass through the archive in order to see whether
232 they can be defined. FIXME: This isn't perfect, because
233 common symbols wind up on undefs_tail and because an
234 undefined symbol which is defined later on in this pass
235 does not require another pass. This isn't a bug, but it
236 does make the code less efficient than it could be. */
237 if (undefs_tail != info->hash->undefs_tail)
238 loop = true;
239
240 /* Look backward to mark all symbols from this object file
241 which we have already seen in this pass. */
242 mark = i;
243 do
244 {
245 included[mark] = true;
246 if (mark == 0)
247 break;
248 --mark;
249 }
250 while (symdefs[mark].file_offset == symdef->file_offset);
251
252 /* We mark subsequent symbols from this object file as we go
253 on through the loop. */
254 last = symdef->file_offset;
255 }
256 }
257 while (loop);
258
259 free (defined);
260 free (included);
261
262 return true;
263
264 error_return:
265 if (defined != (boolean *) NULL)
266 free (defined);
267 if (included != (boolean *) NULL)
268 free (included);
269 return false;
270}
271
044d7d49
ILT
272/* This function is called when we want to define a new symbol. It
273 handles the various cases which arise when we find a definition in
274 a dynamic object, or when there is already a definition in a
275 dynamic object. The new symbol is described by NAME, SYM, PSEC,
276 and PVALUE. We set SYM_HASH to the hash table entry. We set
277 OVERRIDE if the old symbol is overriding a new definition. We set
278 TYPE_CHANGE_OK if it is OK for the type to change. We set
279 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
280 change, we mean that we shouldn't warn if the type or size does
281 change. */
282
283static boolean
284elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
285 override, type_change_ok, size_change_ok)
286 bfd *abfd;
287 struct bfd_link_info *info;
288 const char *name;
289 Elf_Internal_Sym *sym;
290 asection **psec;
291 bfd_vma *pvalue;
292 struct elf_link_hash_entry **sym_hash;
293 boolean *override;
294 boolean *type_change_ok;
295 boolean *size_change_ok;
296{
297 asection *sec;
298 struct elf_link_hash_entry *h;
299 int bind;
300 bfd *oldbfd;
301 boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
302
044d7d49 303 *override = false;
044d7d49
ILT
304
305 sec = *psec;
306 bind = ELF_ST_BIND (sym->st_info);
307
308 if (! bfd_is_und_section (sec))
309 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
310 else
311 h = ((struct elf_link_hash_entry *)
312 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
313 if (h == NULL)
314 return false;
315 *sym_hash = h;
316
3359a0bc
ILT
317 /* This code is for coping with dynamic objects, and is only useful
318 if we are doing an ELF link. */
319 if (info->hash->creator != abfd->xvec)
320 return true;
321
e9982ee5
ILT
322 /* For merging, we only care about real symbols. */
323
324 while (h->root.type == bfd_link_hash_indirect
325 || h->root.type == bfd_link_hash_warning)
326 h = (struct elf_link_hash_entry *) h->root.u.i.link;
327
044d7d49
ILT
328 /* If we just created the symbol, mark it as being an ELF symbol.
329 Other than that, there is nothing to do--there is no merge issue
330 with a newly defined symbol--so we just return. */
331
332 if (h->root.type == bfd_link_hash_new)
333 {
334 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
335 return true;
336 }
337
044d7d49
ILT
338 /* OLDBFD is a BFD associated with the existing symbol. */
339
340 switch (h->root.type)
341 {
342 default:
343 oldbfd = NULL;
344 break;
345
346 case bfd_link_hash_undefined:
347 case bfd_link_hash_undefweak:
348 oldbfd = h->root.u.undef.abfd;
349 break;
350
351 case bfd_link_hash_defined:
352 case bfd_link_hash_defweak:
353 oldbfd = h->root.u.def.section->owner;
354 break;
355
356 case bfd_link_hash_common:
357 oldbfd = h->root.u.c.p->section->owner;
358 break;
359 }
360
361 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
362 respectively, is from a dynamic object. */
363
364 if ((abfd->flags & DYNAMIC) != 0)
365 newdyn = true;
366 else
367 newdyn = false;
368
369 if (oldbfd == NULL || (oldbfd->flags & DYNAMIC) == 0)
370 olddyn = false;
371 else
372 olddyn = true;
373
374 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
375 respectively, appear to be a definition rather than reference. */
376
377 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
378 newdef = false;
379 else
380 newdef = true;
381
382 if (h->root.type == bfd_link_hash_undefined
383 || h->root.type == bfd_link_hash_undefweak
384 || h->root.type == bfd_link_hash_common)
385 olddef = false;
386 else
387 olddef = true;
388
389 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
390 symbol, respectively, appears to be a common symbol in a dynamic
391 object. If a symbol appears in an uninitialized section, and is
392 not weak, and is not a function, then it may be a common symbol
393 which was resolved when the dynamic object was created. We want
394 to treat such symbols specially, because they raise special
395 considerations when setting the symbol size: if the symbol
396 appears as a common symbol in a regular object, and the size in
397 the regular object is larger, we must make sure that we use the
398 larger size. This problematic case can always be avoided in C,
399 but it must be handled correctly when using Fortran shared
400 libraries.
401
402 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
403 likewise for OLDDYNCOMMON and OLDDEF.
404
405 Note that this test is just a heuristic, and that it is quite
406 possible to have an uninitialized symbol in a shared object which
407 is really a definition, rather than a common symbol. This could
408 lead to some minor confusion when the symbol really is a common
409 symbol in some regular object. However, I think it will be
410 harmless. */
411
412 if (newdyn
413 && newdef
414 && (sec->flags & SEC_ALLOC) != 0
415 && (sec->flags & SEC_LOAD) == 0
416 && sym->st_size > 0
417 && bind != STB_WEAK
418 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
419 newdyncommon = true;
420 else
421 newdyncommon = false;
422
423 if (olddyn
424 && olddef
425 && h->root.type == bfd_link_hash_defined
426 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
427 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
428 && (h->root.u.def.section->flags & SEC_LOAD) == 0
429 && h->size > 0
430 && h->type != STT_FUNC)
431 olddyncommon = true;
432 else
433 olddyncommon = false;
434
435 /* It's OK to change the type if either the existing symbol or the
436 new symbol is weak. */
437
438 if (h->root.type == bfd_link_hash_defweak
439 || h->root.type == bfd_link_hash_undefweak
440 || bind == STB_WEAK)
441 *type_change_ok = true;
442
443 /* It's OK to change the size if either the existing symbol or the
444 new symbol is weak, or if the old symbol is undefined. */
445
446 if (*type_change_ok
447 || h->root.type == bfd_link_hash_undefined)
448 *size_change_ok = true;
449
450 /* If both the old and the new symbols look like common symbols in a
451 dynamic object, set the size of the symbol to the larger of the
452 two. */
453
454 if (olddyncommon
455 && newdyncommon
456 && sym->st_size != h->size)
457 {
458 /* Since we think we have two common symbols, issue a multiple
459 common warning if desired. Note that we only warn if the
460 size is different. If the size is the same, we simply let
461 the old symbol override the new one as normally happens with
462 symbols defined in dynamic objects. */
463
464 if (! ((*info->callbacks->multiple_common)
465 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
466 h->size, abfd, bfd_link_hash_common, sym->st_size)))
467 return false;
468
469 if (sym->st_size > h->size)
470 h->size = sym->st_size;
471
472 *size_change_ok = true;
473 }
474
475 /* If we are looking at a dynamic object, and we have found a
476 definition, we need to see if the symbol was already defined by
477 some other object. If so, we want to use the existing
478 definition, and we do not want to report a multiple symbol
479 definition error; we do this by clobbering *PSEC to be
480 bfd_und_section_ptr.
481
482 We treat a common symbol as a definition if the symbol in the
483 shared library is a function, since common symbols always
484 represent variables; this can cause confusion in principle, but
485 any such confusion would seem to indicate an erroneous program or
486 shared library. We also permit a common symbol in a regular
487 object to override a weak symbol in a shared object. */
488
489 if (newdyn
490 && newdef
491 && (olddef
492 || (h->root.type == bfd_link_hash_common
493 && (bind == STB_WEAK
494 || ELF_ST_TYPE (sym->st_info) == STT_FUNC))))
495 {
496 *override = true;
497 newdef = false;
498 newdyncommon = false;
499
500 *psec = sec = bfd_und_section_ptr;
501 *size_change_ok = true;
502
503 /* If we get here when the old symbol is a common symbol, then
504 we are explicitly letting it override a weak symbol or
505 function in a dynamic object, and we don't want to warn about
506 a type change. If the old symbol is a defined symbol, a type
507 change warning may still be appropriate. */
508
509 if (h->root.type == bfd_link_hash_common)
510 *type_change_ok = true;
511 }
512
513 /* Handle the special case of an old common symbol merging with a
514 new symbol which looks like a common symbol in a shared object.
515 We change *PSEC and *PVALUE to make the new symbol look like a
516 common symbol, and let _bfd_generic_link_add_one_symbol will do
517 the right thing. */
518
519 if (newdyncommon
520 && h->root.type == bfd_link_hash_common)
521 {
522 *override = true;
523 newdef = false;
524 newdyncommon = false;
525 *pvalue = sym->st_size;
526 *psec = sec = bfd_com_section_ptr;
527 *size_change_ok = true;
528 }
529
530 /* If the old symbol is from a dynamic object, and the new symbol is
531 a definition which is not from a dynamic object, then the new
532 symbol overrides the old symbol. Symbols from regular files
533 always take precedence over symbols from dynamic objects, even if
534 they are defined after the dynamic object in the link.
535
536 As above, we again permit a common symbol in a regular object to
537 override a definition in a shared object if the shared object
538 symbol is a function or is weak. */
539
540 if (! newdyn
541 && (newdef
542 || (bfd_is_com_section (sec)
543 && (h->root.type == bfd_link_hash_defweak
544 || h->type == STT_FUNC)))
545 && olddyn
546 && olddef
547 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
548 {
549 /* Change the hash table entry to undefined, and let
550 _bfd_generic_link_add_one_symbol do the right thing with the
551 new definition. */
552
553 h->root.type = bfd_link_hash_undefined;
554 h->root.u.undef.abfd = h->root.u.def.section->owner;
555 *size_change_ok = true;
556
557 olddef = false;
558 olddyncommon = false;
559
560 /* We again permit a type change when a common symbol may be
561 overriding a function. */
562
563 if (bfd_is_com_section (sec))
564 *type_change_ok = true;
565
566 /* This union may have been set to be non-NULL when this symbol
567 was seen in a dynamic object. We must force the union to be
568 NULL, so that it is correct for a regular symbol. */
569
570 h->verinfo.vertree = NULL;
541a4b54
ILT
571
572 /* In this special case, if H is the target of an indirection,
573 we want the caller to frob with H rather than with the
574 indirect symbol. That will permit the caller to redefine the
575 target of the indirection, rather than the indirect symbol
862eaedc
ILT
576 itself. FIXME: This will break the -y option if we store a
577 symbol with a different name. */
541a4b54 578 *sym_hash = h;
044d7d49
ILT
579 }
580
581 /* Handle the special case of a new common symbol merging with an
582 old symbol that looks like it might be a common symbol defined in
583 a shared object. Note that we have already handled the case in
584 which a new common symbol should simply override the definition
585 in the shared library. */
586
587 if (! newdyn
588 && bfd_is_com_section (sec)
589 && olddyncommon)
590 {
591 /* It would be best if we could set the hash table entry to a
592 common symbol, but we don't know what to use for the section
593 or the alignment. */
594 if (! ((*info->callbacks->multiple_common)
595 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
596 h->size, abfd, bfd_link_hash_common, sym->st_size)))
597 return false;
598
599 /* If the predumed common symbol in the dynamic object is
600 larger, pretend that the new symbol has its size. */
601
602 if (h->size > *pvalue)
603 *pvalue = h->size;
604
605 /* FIXME: We no longer know the alignment required by the symbol
606 in the dynamic object, so we just wind up using the one from
607 the regular object. */
608
609 olddef = false;
610 olddyncommon = false;
611
612 h->root.type = bfd_link_hash_undefined;
613 h->root.u.undef.abfd = h->root.u.def.section->owner;
614
615 *size_change_ok = true;
616 *type_change_ok = true;
617
618 h->verinfo.vertree = NULL;
619 }
620
621 return true;
622}
623
ede4eed4
KR
624/* Add symbols from an ELF object file to the linker hash table. */
625
626static boolean
627elf_link_add_object_symbols (abfd, info)
628 bfd *abfd;
629 struct bfd_link_info *info;
630{
631 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
632 const Elf_Internal_Sym *,
633 const char **, flagword *,
634 asection **, bfd_vma *));
635 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
636 asection *, const Elf_Internal_Rela *));
637 boolean collect;
638 Elf_Internal_Shdr *hdr;
639 size_t symcount;
640 size_t extsymcount;
641 size_t extsymoff;
642 Elf_External_Sym *buf = NULL;
643 struct elf_link_hash_entry **sym_hash;
644 boolean dynamic;
d044b40a
ILT
645 bfd_byte *dynver = NULL;
646 Elf_External_Versym *extversym = NULL;
647 Elf_External_Versym *ever;
ede4eed4
KR
648 Elf_External_Dyn *dynbuf = NULL;
649 struct elf_link_hash_entry *weaks;
650 Elf_External_Sym *esym;
651 Elf_External_Sym *esymend;
652
653 add_symbol_hook = get_elf_backend_data (abfd)->elf_add_symbol_hook;
654 collect = get_elf_backend_data (abfd)->collect;
655
d044b40a
ILT
656 if ((abfd->flags & DYNAMIC) == 0)
657 dynamic = false;
658 else
659 {
660 dynamic = true;
661
662 /* You can't use -r against a dynamic object. Also, there's no
663 hope of using a dynamic object which does not exactly match
664 the format of the output file. */
665 if (info->relocateable || info->hash->creator != abfd->xvec)
666 {
667 bfd_set_error (bfd_error_invalid_operation);
668 goto error_return;
669 }
670 }
671
0cb70568
ILT
672 /* As a GNU extension, any input sections which are named
673 .gnu.warning.SYMBOL are treated as warning symbols for the given
674 symbol. This differs from .gnu.warning sections, which generate
675 warnings when they are included in an output file. */
676 if (! info->shared)
677 {
678 asection *s;
679
680 for (s = abfd->sections; s != NULL; s = s->next)
681 {
682 const char *name;
683
684 name = bfd_get_section_name (abfd, s);
685 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
686 {
687 char *msg;
688 bfd_size_type sz;
689
54626f1a
ILT
690 name += sizeof ".gnu.warning." - 1;
691
692 /* If this is a shared object, then look up the symbol
693 in the hash table. If it is there, and it is already
694 been defined, then we will not be using the entry
695 from this shared object, so we don't need to warn.
696 FIXME: If we see the definition in a regular object
697 later on, we will warn, but we shouldn't. The only
698 fix is to keep track of what warnings we are supposed
699 to emit, and then handle them all at the end of the
700 link. */
d044b40a 701 if (dynamic && abfd->xvec == info->hash->creator)
54626f1a
ILT
702 {
703 struct elf_link_hash_entry *h;
704
705 h = elf_link_hash_lookup (elf_hash_table (info), name,
706 false, false, true);
707
708 /* FIXME: What about bfd_link_hash_common? */
709 if (h != NULL
710 && (h->root.type == bfd_link_hash_defined
711 || h->root.type == bfd_link_hash_defweak))
712 {
713 /* We don't want to issue this warning. Clobber
714 the section size so that the warning does not
715 get copied into the output file. */
716 s->_raw_size = 0;
717 continue;
718 }
719 }
720
0cb70568 721 sz = bfd_section_size (abfd, s);
d7298d8f 722 msg = (char *) bfd_alloc (abfd, sz + 1);
0cb70568 723 if (msg == NULL)
a9713b91 724 goto error_return;
0cb70568
ILT
725
726 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
727 goto error_return;
728
d7298d8f
ILT
729 msg[sz] = '\0';
730
0cb70568 731 if (! (_bfd_generic_link_add_one_symbol
54626f1a
ILT
732 (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
733 false, collect, (struct bfd_link_hash_entry **) NULL)))
0cb70568
ILT
734 goto error_return;
735
736 if (! info->relocateable)
737 {
738 /* Clobber the section size so that the warning does
739 not get copied into the output file. */
740 s->_raw_size = 0;
741 }
742 }
743 }
744 }
745
d044b40a
ILT
746 /* If this is a dynamic object, we always link against the .dynsym
747 symbol table, not the .symtab symbol table. The dynamic linker
748 will only see the .dynsym symbol table, so there is no reason to
749 look at .symtab for a dynamic object. */
750
751 if (! dynamic || elf_dynsymtab (abfd) == 0)
752 hdr = &elf_tdata (abfd)->symtab_hdr;
753 else
754 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
755
756 if (dynamic)
ede4eed4 757 {
d044b40a
ILT
758 /* Read in any version definitions. */
759
601acd61
UD
760 if (! _bfd_elf_slurp_version_tables (abfd))
761 goto error_return;
d044b40a
ILT
762
763 /* Read in the symbol versions, but don't bother to convert them
764 to internal format. */
765 if (elf_dynversym (abfd) != 0)
766 {
767 Elf_Internal_Shdr *versymhdr;
768
769 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
770 extversym = (Elf_External_Versym *) bfd_malloc (hdr->sh_size);
771 if (extversym == NULL)
772 goto error_return;
773 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
774 || (bfd_read ((PTR) extversym, 1, versymhdr->sh_size, abfd)
775 != versymhdr->sh_size))
776 goto error_return;
777 }
ede4eed4
KR
778 }
779
ede4eed4
KR
780 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
781
782 /* The sh_info field of the symtab header tells us where the
783 external symbols start. We don't care about the local symbols at
784 this point. */
785 if (elf_bad_symtab (abfd))
786 {
787 extsymcount = symcount;
788 extsymoff = 0;
789 }
790 else
791 {
792 extsymcount = symcount - hdr->sh_info;
793 extsymoff = hdr->sh_info;
794 }
795
58142f10
ILT
796 buf = ((Elf_External_Sym *)
797 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
ede4eed4 798 if (buf == NULL && extsymcount != 0)
58142f10 799 goto error_return;
ede4eed4
KR
800
801 /* We store a pointer to the hash table entry for each external
802 symbol. */
803 sym_hash = ((struct elf_link_hash_entry **)
804 bfd_alloc (abfd,
805 extsymcount * sizeof (struct elf_link_hash_entry *)));
806 if (sym_hash == NULL)
a9713b91 807 goto error_return;
ede4eed4
KR
808 elf_sym_hashes (abfd) = sym_hash;
809
d044b40a 810 if (! dynamic)
ede4eed4 811 {
ede4eed4
KR
812 /* If we are creating a shared library, create all the dynamic
813 sections immediately. We need to attach them to something,
814 so we attach them to this BFD, provided it is the right
815 format. FIXME: If there are no input BFD's of the same
816 format as the output, we can't make a shared library. */
817 if (info->shared
818 && ! elf_hash_table (info)->dynamic_sections_created
819 && abfd->xvec == info->hash->creator)
820 {
821 if (! elf_link_create_dynamic_sections (abfd, info))
822 goto error_return;
823 }
824 }
825 else
826 {
827 asection *s;
828 boolean add_needed;
829 const char *name;
830 bfd_size_type oldsize;
831 bfd_size_type strindex;
832
ede4eed4
KR
833 /* Find the name to use in a DT_NEEDED entry that refers to this
834 object. If the object has a DT_SONAME entry, we use it.
835 Otherwise, if the generic linker stuck something in
60a49e7f
ILT
836 elf_dt_name, we use that. Otherwise, we just use the file
837 name. If the generic linker put a null string into
838 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
839 there is a DT_SONAME entry. */
ede4eed4
KR
840 add_needed = true;
841 name = bfd_get_filename (abfd);
60a49e7f 842 if (elf_dt_name (abfd) != NULL)
ede4eed4 843 {
60a49e7f 844 name = elf_dt_name (abfd);
ede4eed4
KR
845 if (*name == '\0')
846 add_needed = false;
847 }
848 s = bfd_get_section_by_name (abfd, ".dynamic");
849 if (s != NULL)
850 {
851 Elf_External_Dyn *extdyn;
852 Elf_External_Dyn *extdynend;
853 int elfsec;
854 unsigned long link;
855
58142f10 856 dynbuf = (Elf_External_Dyn *) bfd_malloc ((size_t) s->_raw_size);
ede4eed4 857 if (dynbuf == NULL)
58142f10 858 goto error_return;
ede4eed4
KR
859
860 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
861 (file_ptr) 0, s->_raw_size))
862 goto error_return;
863
864 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
865 if (elfsec == -1)
866 goto error_return;
867 link = elf_elfsections (abfd)[elfsec]->sh_link;
868
869 extdyn = dynbuf;
870 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
871 for (; extdyn < extdynend; extdyn++)
872 {
873 Elf_Internal_Dyn dyn;
874
875 elf_swap_dyn_in (abfd, extdyn, &dyn);
60a49e7f 876 if (dyn.d_tag == DT_SONAME)
ede4eed4
KR
877 {
878 name = bfd_elf_string_from_elf_section (abfd, link,
879 dyn.d_un.d_val);
880 if (name == NULL)
881 goto error_return;
882 }
883 if (dyn.d_tag == DT_NEEDED)
884 {
54406786 885 struct bfd_link_needed_list *n, **pn;
ede4eed4
KR
886 char *fnm, *anm;
887
54406786
ILT
888 n = ((struct bfd_link_needed_list *)
889 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
ede4eed4
KR
890 fnm = bfd_elf_string_from_elf_section (abfd, link,
891 dyn.d_un.d_val);
892 if (n == NULL || fnm == NULL)
893 goto error_return;
894 anm = bfd_alloc (abfd, strlen (fnm) + 1);
895 if (anm == NULL)
896 goto error_return;
897 strcpy (anm, fnm);
898 n->name = anm;
899 n->by = abfd;
900 n->next = NULL;
901 for (pn = &elf_hash_table (info)->needed;
902 *pn != NULL;
903 pn = &(*pn)->next)
904 ;
905 *pn = n;
906 }
907 }
908
909 free (dynbuf);
910 dynbuf = NULL;
911 }
912
913 /* We do not want to include any of the sections in a dynamic
914 object in the output file. We hack by simply clobbering the
915 list of sections in the BFD. This could be handled more
916 cleanly by, say, a new section flag; the existing
917 SEC_NEVER_LOAD flag is not the one we want, because that one
918 still implies that the section takes up space in the output
919 file. */
920 abfd->sections = NULL;
010d9f2d 921 abfd->section_count = 0;
ede4eed4
KR
922
923 /* If this is the first dynamic object found in the link, create
924 the special sections required for dynamic linking. */
925 if (! elf_hash_table (info)->dynamic_sections_created)
926 {
927 if (! elf_link_create_dynamic_sections (abfd, info))
928 goto error_return;
929 }
930
931 if (add_needed)
932 {
933 /* Add a DT_NEEDED entry for this dynamic object. */
934 oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
935 strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name,
936 true, false);
937 if (strindex == (bfd_size_type) -1)
938 goto error_return;
939
940 if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
941 {
942 asection *sdyn;
943 Elf_External_Dyn *dyncon, *dynconend;
944
945 /* The hash table size did not change, which means that
946 the dynamic object name was already entered. If we
947 have already included this dynamic object in the
948 link, just ignore it. There is no reason to include
949 a particular dynamic object more than once. */
950 sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
951 ".dynamic");
952 BFD_ASSERT (sdyn != NULL);
953
954 dyncon = (Elf_External_Dyn *) sdyn->contents;
955 dynconend = (Elf_External_Dyn *) (sdyn->contents +
956 sdyn->_raw_size);
957 for (; dyncon < dynconend; dyncon++)
958 {
959 Elf_Internal_Dyn dyn;
960
961 elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon,
962 &dyn);
963 if (dyn.d_tag == DT_NEEDED
964 && dyn.d_un.d_val == strindex)
965 {
966 if (buf != NULL)
967 free (buf);
d044b40a
ILT
968 if (extversym != NULL)
969 free (extversym);
ede4eed4
KR
970 return true;
971 }
972 }
973 }
974
975 if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
976 goto error_return;
977 }
60a49e7f
ILT
978
979 /* Save the SONAME, if there is one, because sometimes the
980 linker emulation code will need to know it. */
981 if (*name == '\0')
982 name = bfd_get_filename (abfd);
983 elf_dt_name (abfd) = name;
ede4eed4
KR
984 }
985
986 if (bfd_seek (abfd,
987 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
988 SEEK_SET) != 0
989 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
990 != extsymcount * sizeof (Elf_External_Sym)))
991 goto error_return;
992
993 weaks = NULL;
994
e549b1d2 995 ever = extversym != NULL ? extversym + extsymoff : NULL;
ede4eed4 996 esymend = buf + extsymcount;
d044b40a
ILT
997 for (esym = buf;
998 esym < esymend;
999 esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
ede4eed4
KR
1000 {
1001 Elf_Internal_Sym sym;
1002 int bind;
1003 bfd_vma value;
1004 asection *sec;
1005 flagword flags;
1006 const char *name;
0cb70568 1007 struct elf_link_hash_entry *h;
ede4eed4 1008 boolean definition;
ee9f09cd 1009 boolean size_change_ok, type_change_ok;
452a5efb 1010 boolean new_weakdef;
fd6c00ba 1011 unsigned int old_alignment;
ede4eed4
KR
1012
1013 elf_swap_symbol_in (abfd, esym, &sym);
1014
1015 flags = BSF_NO_FLAGS;
1016 sec = NULL;
1017 value = sym.st_value;
1018 *sym_hash = NULL;
1019
1020 bind = ELF_ST_BIND (sym.st_info);
1021 if (bind == STB_LOCAL)
1022 {
1023 /* This should be impossible, since ELF requires that all
1024 global symbols follow all local symbols, and that sh_info
1025 point to the first global symbol. Unfortunatealy, Irix 5
1026 screws this up. */
1027 continue;
1028 }
1029 else if (bind == STB_GLOBAL)
1030 {
1031 if (sym.st_shndx != SHN_UNDEF
1032 && sym.st_shndx != SHN_COMMON)
1033 flags = BSF_GLOBAL;
1034 else
1035 flags = 0;
1036 }
1037 else if (bind == STB_WEAK)
1038 flags = BSF_WEAK;
1039 else
1040 {
1041 /* Leave it up to the processor backend. */
1042 }
1043
1044 if (sym.st_shndx == SHN_UNDEF)
1045 sec = bfd_und_section_ptr;
1046 else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE)
1047 {
1048 sec = section_from_elf_index (abfd, sym.st_shndx);
f02004e9 1049 if (sec == NULL)
ede4eed4 1050 sec = bfd_abs_section_ptr;
f02004e9
ILT
1051 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
1052 value -= sec->vma;
ede4eed4
KR
1053 }
1054 else if (sym.st_shndx == SHN_ABS)
1055 sec = bfd_abs_section_ptr;
1056 else if (sym.st_shndx == SHN_COMMON)
1057 {
1058 sec = bfd_com_section_ptr;
1059 /* What ELF calls the size we call the value. What ELF
1060 calls the value we call the alignment. */
1061 value = sym.st_size;
1062 }
1063 else
1064 {
1065 /* Leave it up to the processor backend. */
1066 }
1067
1068 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
1069 if (name == (const char *) NULL)
1070 goto error_return;
1071
1072 if (add_symbol_hook)
1073 {
1074 if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
1075 &value))
1076 goto error_return;
1077
1078 /* The hook function sets the name to NULL if this symbol
1079 should be skipped for some reason. */
1080 if (name == (const char *) NULL)
1081 continue;
1082 }
1083
1084 /* Sanity check that all possibilities were handled. */
1085 if (sec == (asection *) NULL)
1086 {
1087 bfd_set_error (bfd_error_bad_value);
1088 goto error_return;
1089 }
1090
1091 if (bfd_is_und_section (sec)
1092 || bfd_is_com_section (sec))
1093 definition = false;
1094 else
1095 definition = true;
1096
ee9f09cd 1097 size_change_ok = false;
5b3b9ff6 1098 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
fd6c00ba 1099 old_alignment = 0;
ede4eed4
KR
1100 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1101 {
d044b40a 1102 Elf_Internal_Versym iver;
f6727b90 1103 unsigned int vernum = 0;
d044b40a
ILT
1104 boolean override;
1105
1106 if (ever != NULL)
1107 {
1108 _bfd_elf_swap_versym_in (abfd, ever, &iver);
1109 vernum = iver.vs_vers & VERSYM_VERSION;
1110
1111 /* If this is a hidden symbol, or if it is not version
1112 1, we append the version name to the symbol name.
1113 However, we do not modify a non-hidden absolute
1114 symbol, because it might be the version symbol
1115 itself. FIXME: What if it isn't? */
1116 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
1117 || (vernum > 1 && ! bfd_is_abs_section (sec)))
1118 {
1119 const char *verstr;
1120 int namelen, newlen;
1121 char *newname, *p;
1122
601acd61 1123 if (sym.st_shndx != SHN_UNDEF)
e549b1d2 1124 {
601acd61
UD
1125 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
1126 {
1127 (*_bfd_error_handler)
53d3ce37 1128 (_("%s: %s: invalid version %u (max %d)"),
601acd61
UD
1129 abfd->filename, name, vernum,
1130 elf_tdata (abfd)->dynverdef_hdr.sh_info);
1131 bfd_set_error (bfd_error_bad_value);
1132 goto error_return;
1133 }
1134 else if (vernum > 1)
1135 verstr =
1136 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1137 else
1138 verstr = "";
e549b1d2 1139 }
d044b40a 1140 else
601acd61
UD
1141 {
1142 /* We cannot simply test for the number of
1143 entries in the VERNEED section since the
1144 numbers for the needed versions do not start
1145 at 0. */
1146 Elf_Internal_Verneed *t;
1147
1148 verstr = NULL;
1149 for (t = elf_tdata (abfd)->verref;
1150 t != NULL;
1151 t = t->vn_nextref)
1152 {
1153 Elf_Internal_Vernaux *a;
1154
1155 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1156 {
1157 if (a->vna_other == vernum)
1158 {
1159 verstr = a->vna_nodename;
1160 break;
1161 }
1162 }
1163 if (a != NULL)
1164 break;
1165 }
1166 if (verstr == NULL)
1167 {
1168 (*_bfd_error_handler)
53d3ce37 1169 (_("%s: %s: invalid needed version %d"),
601acd61
UD
1170 abfd->filename, name, vernum);
1171 bfd_set_error (bfd_error_bad_value);
1172 goto error_return;
1173 }
1174 }
d044b40a
ILT
1175
1176 namelen = strlen (name);
1177 newlen = namelen + strlen (verstr) + 2;
1178 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1179 ++newlen;
1180
1181 newname = (char *) bfd_alloc (abfd, newlen);
1182 if (newname == NULL)
1183 goto error_return;
1184 strcpy (newname, name);
1185 p = newname + namelen;
1186 *p++ = ELF_VER_CHR;
1187 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1188 *p++ = ELF_VER_CHR;
1189 strcpy (p, verstr);
1190
1191 name = newname;
1192 }
1193 }
1194
044d7d49
ILT
1195 if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value,
1196 sym_hash, &override, &type_change_ok,
1197 &size_change_ok))
ede4eed4 1198 goto error_return;
ede4eed4 1199
044d7d49
ILT
1200 if (override)
1201 definition = false;
869b7d80 1202
044d7d49 1203 h = *sym_hash;
0cb70568
ILT
1204 while (h->root.type == bfd_link_hash_indirect
1205 || h->root.type == bfd_link_hash_warning)
c4badc83 1206 h = (struct elf_link_hash_entry *) h->root.u.i.link;
0cb70568 1207
044d7d49
ILT
1208 /* Remember the old alignment if this is a common symbol, so
1209 that we don't reduce the alignment later on. We can't
1210 check later, because _bfd_generic_link_add_one_symbol
1211 will set a default for the alignment which we want to
1212 override. */
fd6c00ba
ILT
1213 if (h->root.type == bfd_link_hash_common)
1214 old_alignment = h->root.u.c.p->alignment_power;
1215
13eb6306 1216 if (elf_tdata (abfd)->verdef != NULL
d044b40a
ILT
1217 && ! override
1218 && vernum > 1
13eb6306 1219 && definition)
d044b40a 1220 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
ede4eed4
KR
1221 }
1222
1223 if (! (_bfd_generic_link_add_one_symbol
1224 (info, abfd, name, flags, sec, value, (const char *) NULL,
1225 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
1226 goto error_return;
1227
0cb70568
ILT
1228 h = *sym_hash;
1229 while (h->root.type == bfd_link_hash_indirect
1230 || h->root.type == bfd_link_hash_warning)
1231 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1232 *sym_hash = h;
1233
452a5efb 1234 new_weakdef = false;
ede4eed4
KR
1235 if (dynamic
1236 && definition
1237 && (flags & BSF_WEAK) != 0
1238 && ELF_ST_TYPE (sym.st_info) != STT_FUNC
1239 && info->hash->creator->flavour == bfd_target_elf_flavour
0cb70568 1240 && h->weakdef == NULL)
ede4eed4
KR
1241 {
1242 /* Keep a list of all weak defined non function symbols from
1243 a dynamic object, using the weakdef field. Later in this
1244 function we will set the weakdef field to the correct
1245 value. We only put non-function symbols from dynamic
1246 objects on this list, because that happens to be the only
1247 time we need to know the normal symbol corresponding to a
1248 weak symbol, and the information is time consuming to
1249 figure out. If the weakdef field is not already NULL,
1250 then this symbol was already defined by some previous
1251 dynamic object, and we will be using that previous
1252 definition anyhow. */
1253
0cb70568
ILT
1254 h->weakdef = weaks;
1255 weaks = h;
452a5efb 1256 new_weakdef = true;
ede4eed4
KR
1257 }
1258
fd6c00ba 1259 /* Set the alignment of a common symbol. */
ede4eed4 1260 if (sym.st_shndx == SHN_COMMON
0cb70568 1261 && h->root.type == bfd_link_hash_common)
fd6c00ba
ILT
1262 {
1263 unsigned int align;
1264
1265 align = bfd_log2 (sym.st_value);
1266 if (align > old_alignment)
1267 h->root.u.c.p->alignment_power = align;
1268 }
ede4eed4
KR
1269
1270 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1271 {
1272 int old_flags;
1273 boolean dynsym;
1274 int new_flag;
1275
1276 /* Remember the symbol size and type. */
3d7c42c9
ILT
1277 if (sym.st_size != 0
1278 && (definition || h->size == 0))
ede4eed4 1279 {
ee9f09cd 1280 if (h->size != 0 && h->size != sym.st_size && ! size_change_ok)
3d7c42c9 1281 (*_bfd_error_handler)
53d3ce37 1282 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
ba254dc5
ILT
1283 name, (unsigned long) h->size, (unsigned long) sym.st_size,
1284 bfd_get_filename (abfd));
1285
1286 h->size = sym.st_size;
ede4eed4 1287 }
031dfce0
ILT
1288
1289 /* If this is a common symbol, then we always want H->SIZE
1290 to be the size of the common symbol. The code just above
1291 won't fix the size if a common symbol becomes larger. We
1292 don't warn about a size change here, because that is
1293 covered by --warn-common. */
1294 if (h->root.type == bfd_link_hash_common)
1295 h->size = h->root.u.c.size;
1296
3d7c42c9
ILT
1297 if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE
1298 && (definition || h->type == STT_NOTYPE))
ede4eed4 1299 {
3d7c42c9 1300 if (h->type != STT_NOTYPE
8235c112 1301 && h->type != ELF_ST_TYPE (sym.st_info)
ee9f09cd 1302 && ! type_change_ok)
3d7c42c9 1303 (*_bfd_error_handler)
53d3ce37 1304 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
3d7c42c9
ILT
1305 name, h->type, ELF_ST_TYPE (sym.st_info),
1306 bfd_get_filename (abfd));
1307
ede4eed4
KR
1308 h->type = ELF_ST_TYPE (sym.st_info);
1309 }
1310
6c02f1a0
ILT
1311 if (sym.st_other != 0
1312 && (definition || h->other == 0))
1313 h->other = sym.st_other;
1314
ede4eed4
KR
1315 /* Set a flag in the hash table entry indicating the type of
1316 reference or definition we just found. Keep a count of
1317 the number of dynamic symbols we find. A dynamic symbol
1318 is one which is referenced or defined by both a regular
440f3914 1319 object and a shared object. */
ede4eed4
KR
1320 old_flags = h->elf_link_hash_flags;
1321 dynsym = false;
1322 if (! dynamic)
1323 {
1324 if (! definition)
1325 new_flag = ELF_LINK_HASH_REF_REGULAR;
1326 else
1327 new_flag = ELF_LINK_HASH_DEF_REGULAR;
1328 if (info->shared
1329 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
1330 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
1331 dynsym = true;
1332 }
1333 else
1334 {
1335 if (! definition)
1336 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
1337 else
1338 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
0db6249c 1339 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
1c4794f5
ILT
1340 | ELF_LINK_HASH_REF_REGULAR)) != 0
1341 || (h->weakdef != NULL
440f3914
ILT
1342 && ! new_weakdef
1343 && h->weakdef->dynindx != -1))
ede4eed4
KR
1344 dynsym = true;
1345 }
1346
1347 h->elf_link_hash_flags |= new_flag;
d044b40a
ILT
1348
1349 /* If this symbol has a version, and it is the default
1350 version, we create an indirect symbol from the default
1351 name to the fully decorated name. This will cause
1352 external references which do not specify a version to be
1353 bound to this version of the symbol. */
1354 if (definition)
1355 {
1356 char *p;
1357
1358 p = strchr (name, ELF_VER_CHR);
1359 if (p != NULL && p[1] == ELF_VER_CHR)
1360 {
1361 char *shortname;
044d7d49
ILT
1362 struct elf_link_hash_entry *hi;
1363 boolean override;
d044b40a
ILT
1364
1365 shortname = bfd_hash_allocate (&info->hash->table,
1366 p - name + 1);
1367 if (shortname == NULL)
1368 goto error_return;
1369 strncpy (shortname, name, p - name);
1370 shortname[p - name] = '\0';
1371
044d7d49
ILT
1372 /* We are going to create a new symbol. Merge it
1373 with any existing symbol with this name. For the
1374 purposes of the merge, act as though we were
1375 defining the symbol we just defined, although we
1376 actually going to define an indirect symbol. */
0e039bdc
ILT
1377 type_change_ok = false;
1378 size_change_ok = false;
044d7d49
ILT
1379 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1380 &value, &hi, &override,
1381 &type_change_ok, &size_change_ok))
1382 goto error_return;
d044b40a 1383
044d7d49 1384 if (! override)
d6bfcdb5 1385 {
52c92c7f
ILT
1386 if (! (_bfd_generic_link_add_one_symbol
1387 (info, abfd, shortname, BSF_INDIRECT,
1388 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1389 collect, (struct bfd_link_hash_entry **) &hi)))
1390 goto error_return;
541a4b54
ILT
1391 }
1392 else
1393 {
1394 /* In this case the symbol named SHORTNAME is
1395 overriding the indirect symbol we want to
1396 add. We were planning on making SHORTNAME an
1397 indirect symbol referring to NAME. SHORTNAME
1398 is the name without a version. NAME is the
1399 fully versioned name, and it is the default
1400 version.
1401
1402 Overriding means that we already saw a
1403 definition for the symbol SHORTNAME in a
1404 regular object, and it is overriding the
1405 symbol defined in the dynamic object.
1406
1407 When this happens, we actually want to change
1408 NAME, the symbol we just added, to refer to
1409 SHORTNAME. This will cause references to
1410 NAME in the shared object to become
1411 references to SHORTNAME in the regular
1412 object. This is what we expect when we
1413 override a function in a shared object: that
1414 the references in the shared object will be
1415 mapped to the definition in the regular
1416 object. */
1417
677525e9
ILT
1418 while (hi->root.type == bfd_link_hash_indirect
1419 || hi->root.type == bfd_link_hash_warning)
1420 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1421
541a4b54
ILT
1422 h->root.type = bfd_link_hash_indirect;
1423 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1424 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1425 {
1426 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1427 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1bec01fc
ILT
1428 if (hi->elf_link_hash_flags
1429 & (ELF_LINK_HASH_REF_REGULAR
1430 | ELF_LINK_HASH_DEF_REGULAR))
1431 {
1432 if (! _bfd_elf_link_record_dynamic_symbol (info,
1433 hi))
1434 goto error_return;
1435 }
541a4b54 1436 }
52c92c7f 1437
541a4b54
ILT
1438 /* Now set HI to H, so that the following code
1439 will set the other fields correctly. */
1440 hi = h;
1441 }
52c92c7f 1442
541a4b54
ILT
1443 /* If there is a duplicate definition somewhere,
1444 then HI may not point to an indirect symbol. We
1445 will have reported an error to the user in that
1446 case. */
1447
1448 if (hi->root.type == bfd_link_hash_indirect)
1449 {
1450 struct elf_link_hash_entry *ht;
1451
1452 /* If the symbol became indirect, then we assume
1453 that we have not seen a definition before. */
1454 BFD_ASSERT ((hi->elf_link_hash_flags
1455 & (ELF_LINK_HASH_DEF_DYNAMIC
1456 | ELF_LINK_HASH_DEF_REGULAR))
1457 == 0);
1458
1459 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1460
1461 /* Copy down any references that we may have
1462 already seen to the symbol which just became
1463 indirect. */
1464 ht->elf_link_hash_flags |=
1465 (hi->elf_link_hash_flags
1466 & (ELF_LINK_HASH_REF_DYNAMIC
1467 | ELF_LINK_HASH_REF_REGULAR));
1468
be228e0d
ILT
1469 /* Copy over the global and procedure linkage table
1470 offset entries. These may have been already set
1471 up by a check_relocs routine. */
303b4cc6 1472 if (ht->got.offset == (bfd_vma) -1)
52c92c7f 1473 {
303b4cc6
RH
1474 ht->got.offset = hi->got.offset;
1475 hi->got.offset = (bfd_vma) -1;
541a4b54 1476 }
303b4cc6 1477 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
e549b1d2 1478
be228e0d
ILT
1479 if (ht->plt.offset == (bfd_vma) -1)
1480 {
1481 ht->plt.offset = hi->plt.offset;
1482 hi->plt.offset = (bfd_vma) -1;
1483 }
1484 BFD_ASSERT (hi->plt.offset == (bfd_vma) -1);
1485
541a4b54
ILT
1486 if (ht->dynindx == -1)
1487 {
1488 ht->dynindx = hi->dynindx;
1489 ht->dynstr_index = hi->dynstr_index;
1490 hi->dynindx = -1;
1491 hi->dynstr_index = 0;
1492 }
1493 BFD_ASSERT (hi->dynindx == -1);
e549b1d2 1494
541a4b54
ILT
1495 /* FIXME: There may be other information to copy
1496 over for particular targets. */
1497
1498 /* See if the new flags lead us to realize that
1499 the symbol must be dynamic. */
1500 if (! dynsym)
1501 {
1502 if (! dynamic)
e549b1d2 1503 {
541a4b54
ILT
1504 if (info->shared
1505 || ((hi->elf_link_hash_flags
1506 & ELF_LINK_HASH_REF_DYNAMIC)
1507 != 0))
1508 dynsym = true;
e549b1d2 1509 }
541a4b54 1510 else
e549b1d2 1511 {
541a4b54
ILT
1512 if ((hi->elf_link_hash_flags
1513 & ELF_LINK_HASH_REF_REGULAR) != 0)
1514 dynsym = true;
e549b1d2 1515 }
52c92c7f 1516 }
d6bfcdb5
ILT
1517 }
1518
1519 /* We also need to define an indirection from the
1520 nondefault version of the symbol. */
1521
1522 shortname = bfd_hash_allocate (&info->hash->table,
1523 strlen (name));
1524 if (shortname == NULL)
1525 goto error_return;
1526 strncpy (shortname, name, p - name);
1527 strcpy (shortname + (p - name), p + 1);
1528
044d7d49 1529 /* Once again, merge with any existing symbol. */
0e039bdc
ILT
1530 type_change_ok = false;
1531 size_change_ok = false;
044d7d49
ILT
1532 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1533 &value, &hi, &override,
1534 &type_change_ok, &size_change_ok))
1535 goto error_return;
d6bfcdb5 1536
541a4b54
ILT
1537 if (override)
1538 {
1539 /* Here SHORTNAME is a versioned name, so we
1540 don't expect to see the type of override we
1541 do in the case above. */
1542 (*_bfd_error_handler)
53d3ce37 1543 (_("%s: warning: unexpected redefinition of `%s'"),
541a4b54
ILT
1544 bfd_get_filename (abfd), shortname);
1545 }
1546 else
d6bfcdb5 1547 {
52c92c7f
ILT
1548 if (! (_bfd_generic_link_add_one_symbol
1549 (info, abfd, shortname, BSF_INDIRECT,
1550 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1551 collect, (struct bfd_link_hash_entry **) &hi)))
1552 goto error_return;
1553
1554 /* If there is a duplicate definition somewhere,
1555 then HI may not point to an indirect symbol.
1556 We will have reported an error to the user in
1557 that case. */
1558
1559 if (hi->root.type == bfd_link_hash_indirect)
1560 {
e549b1d2
ILT
1561 /* If the symbol became indirect, then we
1562 assume that we have not seen a definition
1563 before. */
1564 BFD_ASSERT ((hi->elf_link_hash_flags
1565 & (ELF_LINK_HASH_DEF_DYNAMIC
1566 | ELF_LINK_HASH_DEF_REGULAR))
1567 == 0);
1568
1569 /* Copy down any references that we may have
1570 already seen to the symbol which just
1571 became indirect. */
1572 h->elf_link_hash_flags |=
1573 (hi->elf_link_hash_flags
1574 & (ELF_LINK_HASH_REF_DYNAMIC
1575 | ELF_LINK_HASH_REF_REGULAR));
1576
be228e0d
ILT
1577 /* Copy over the global and procedure linkage
1578 table offset entries. These may have been
1579 already set up by a check_relocs routine. */
303b4cc6 1580 if (h->got.offset == (bfd_vma) -1)
e549b1d2 1581 {
303b4cc6
RH
1582 h->got.offset = hi->got.offset;
1583 hi->got.offset = (bfd_vma) -1;
e549b1d2 1584 }
303b4cc6 1585 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
e549b1d2 1586
be228e0d
ILT
1587 if (h->plt.offset == (bfd_vma) -1)
1588 {
1589 h->plt.offset = hi->plt.offset;
1590 hi->plt.offset = (bfd_vma) -1;
1591 }
1592 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1593
e549b1d2
ILT
1594 if (h->dynindx == -1)
1595 {
1596 h->dynindx = hi->dynindx;
1597 h->dynstr_index = hi->dynstr_index;
1598 hi->dynindx = -1;
1599 hi->dynstr_index = 0;
1600 }
1601 BFD_ASSERT (hi->dynindx == -1);
1602
1603 /* FIXME: There may be other information to
1604 copy over for particular targets. */
1605
1606 /* See if the new flags lead us to realize
1607 that the symbol must be dynamic. */
1608 if (! dynsym)
1609 {
1610 if (! dynamic)
1611 {
1612 if (info->shared
1613 || ((hi->elf_link_hash_flags
1614 & ELF_LINK_HASH_REF_DYNAMIC)
1615 != 0))
1616 dynsym = true;
1617 }
1618 else
1619 {
1620 if ((hi->elf_link_hash_flags
1621 & ELF_LINK_HASH_REF_REGULAR) != 0)
1622 dynsym = true;
1623 }
1624 }
52c92c7f 1625 }
d6bfcdb5 1626 }
d044b40a
ILT
1627 }
1628 }
1629
ede4eed4
KR
1630 if (dynsym && h->dynindx == -1)
1631 {
1632 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1633 goto error_return;
452a5efb
ILT
1634 if (h->weakdef != NULL
1635 && ! new_weakdef
1636 && h->weakdef->dynindx == -1)
1637 {
1638 if (! _bfd_elf_link_record_dynamic_symbol (info,
1639 h->weakdef))
1640 goto error_return;
1641 }
ede4eed4
KR
1642 }
1643 }
1644 }
1645
1646 /* Now set the weakdefs field correctly for all the weak defined
1647 symbols we found. The only way to do this is to search all the
1648 symbols. Since we only need the information for non functions in
1649 dynamic objects, that's the only time we actually put anything on
1650 the list WEAKS. We need this information so that if a regular
1651 object refers to a symbol defined weakly in a dynamic object, the
1652 real symbol in the dynamic object is also put in the dynamic
1653 symbols; we also must arrange for both symbols to point to the
1654 same memory location. We could handle the general case of symbol
1655 aliasing, but a general symbol alias can only be generated in
1656 assembler code, handling it correctly would be very time
1657 consuming, and other ELF linkers don't handle general aliasing
1658 either. */
1659 while (weaks != NULL)
1660 {
1661 struct elf_link_hash_entry *hlook;
1662 asection *slook;
1663 bfd_vma vlook;
1664 struct elf_link_hash_entry **hpp;
1665 struct elf_link_hash_entry **hppend;
1666
1667 hlook = weaks;
1668 weaks = hlook->weakdef;
1669 hlook->weakdef = NULL;
1670
1671 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
1672 || hlook->root.type == bfd_link_hash_defweak
1673 || hlook->root.type == bfd_link_hash_common
1674 || hlook->root.type == bfd_link_hash_indirect);
1675 slook = hlook->root.u.def.section;
1676 vlook = hlook->root.u.def.value;
1677
1678 hpp = elf_sym_hashes (abfd);
1679 hppend = hpp + extsymcount;
1680 for (; hpp < hppend; hpp++)
1681 {
1682 struct elf_link_hash_entry *h;
1683
1684 h = *hpp;
1685 if (h != NULL && h != hlook
d2bb6c79 1686 && h->root.type == bfd_link_hash_defined
ede4eed4
KR
1687 && h->root.u.def.section == slook
1688 && h->root.u.def.value == vlook)
1689 {
1690 hlook->weakdef = h;
1691
1692 /* If the weak definition is in the list of dynamic
1693 symbols, make sure the real definition is put there
1694 as well. */
1695 if (hlook->dynindx != -1
1696 && h->dynindx == -1)
1697 {
1698 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1699 goto error_return;
1700 }
1701
440f3914
ILT
1702 /* If the real definition is in the list of dynamic
1703 symbols, make sure the weak definition is put there
1704 as well. If we don't do this, then the dynamic
1705 loader might not merge the entries for the real
1706 definition and the weak definition. */
1707 if (h->dynindx != -1
1708 && hlook->dynindx == -1)
1709 {
1710 if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
1711 goto error_return;
1712 }
1713
ede4eed4
KR
1714 break;
1715 }
1716 }
1717 }
1718
1719 if (buf != NULL)
1720 {
1721 free (buf);
1722 buf = NULL;
1723 }
1724
d044b40a
ILT
1725 if (extversym != NULL)
1726 {
1727 free (extversym);
1728 extversym = NULL;
1729 }
1730
ede4eed4
KR
1731 /* If this object is the same format as the output object, and it is
1732 not a shared library, then let the backend look through the
1733 relocs.
1734
1735 This is required to build global offset table entries and to
1736 arrange for dynamic relocs. It is not required for the
1737 particular common case of linking non PIC code, even when linking
1738 against shared libraries, but unfortunately there is no way of
1739 knowing whether an object file has been compiled PIC or not.
1740 Looking through the relocs is not particularly time consuming.
1741 The problem is that we must either (1) keep the relocs in memory,
1742 which causes the linker to require additional runtime memory or
1743 (2) read the relocs twice from the input file, which wastes time.
1744 This would be a good case for using mmap.
1745
1746 I have no idea how to handle linking PIC code into a file of a
1747 different format. It probably can't be done. */
1748 check_relocs = get_elf_backend_data (abfd)->check_relocs;
1749 if (! dynamic
1750 && abfd->xvec == info->hash->creator
1751 && check_relocs != NULL)
1752 {
1753 asection *o;
1754
1755 for (o = abfd->sections; o != NULL; o = o->next)
1756 {
1757 Elf_Internal_Rela *internal_relocs;
1758 boolean ok;
1759
1760 if ((o->flags & SEC_RELOC) == 0
a0c80726
ILT
1761 || o->reloc_count == 0
1762 || ((info->strip == strip_all || info->strip == strip_debugger)
94e05b00
ILT
1763 && (o->flags & SEC_DEBUGGING) != 0)
1764 || bfd_is_abs_section (o->output_section))
ede4eed4
KR
1765 continue;
1766
c86158e5
ILT
1767 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
1768 (abfd, o, (PTR) NULL,
1769 (Elf_Internal_Rela *) NULL,
1770 info->keep_memory));
ede4eed4
KR
1771 if (internal_relocs == NULL)
1772 goto error_return;
1773
1774 ok = (*check_relocs) (abfd, info, o, internal_relocs);
1775
1776 if (! info->keep_memory)
1777 free (internal_relocs);
1778
1779 if (! ok)
1780 goto error_return;
1781 }
1782 }
1783
1726b8f0
ILT
1784 /* If this is a non-traditional, non-relocateable link, try to
1785 optimize the handling of the .stab/.stabstr sections. */
1786 if (! dynamic
1787 && ! info->relocateable
1788 && ! info->traditional_format
1789 && info->hash->creator->flavour == bfd_target_elf_flavour
1790 && (info->strip != strip_all && info->strip != strip_debugger))
1791 {
1792 asection *stab, *stabstr;
1793
1794 stab = bfd_get_section_by_name (abfd, ".stab");
1795 if (stab != NULL)
1796 {
1797 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
1798
1799 if (stabstr != NULL)
1800 {
1801 struct bfd_elf_section_data *secdata;
1802
1803 secdata = elf_section_data (stab);
1804 if (! _bfd_link_section_stabs (abfd,
1805 &elf_hash_table (info)->stab_info,
1806 stab, stabstr,
1807 &secdata->stab_info))
1808 goto error_return;
1809 }
1810 }
1811 }
1812
ede4eed4
KR
1813 return true;
1814
1815 error_return:
1816 if (buf != NULL)
1817 free (buf);
1818 if (dynbuf != NULL)
1819 free (dynbuf);
d044b40a
ILT
1820 if (dynver != NULL)
1821 free (dynver);
1822 if (extversym != NULL)
1823 free (extversym);
ede4eed4
KR
1824 return false;
1825}
1826
1827/* Create some sections which will be filled in with dynamic linking
1828 information. ABFD is an input file which requires dynamic sections
1829 to be created. The dynamic sections take up virtual memory space
1830 when the final executable is run, so we need to create them before
1831 addresses are assigned to the output sections. We work out the
1832 actual contents and size of these sections later. */
1833
1834boolean
1835elf_link_create_dynamic_sections (abfd, info)
1836 bfd *abfd;
1837 struct bfd_link_info *info;
1838{
1839 flagword flags;
1840 register asection *s;
1841 struct elf_link_hash_entry *h;
1842 struct elf_backend_data *bed;
1843
1844 if (elf_hash_table (info)->dynamic_sections_created)
1845 return true;
1846
1847 /* Make sure that all dynamic sections use the same input BFD. */
1848 if (elf_hash_table (info)->dynobj == NULL)
1849 elf_hash_table (info)->dynobj = abfd;
1850 else
1851 abfd = elf_hash_table (info)->dynobj;
1852
1853 /* Note that we set the SEC_IN_MEMORY flag for all of these
1854 sections. */
ff12f303
ILT
1855 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
1856 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
ede4eed4
KR
1857
1858 /* A dynamically linked executable has a .interp section, but a
1859 shared library does not. */
1860 if (! info->shared)
1861 {
1862 s = bfd_make_section (abfd, ".interp");
1863 if (s == NULL
1864 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
1865 return false;
1866 }
1867
d044b40a
ILT
1868 /* Create sections to hold version informations. These are removed
1869 if they are not needed. */
1870 s = bfd_make_section (abfd, ".gnu.version_d");
1871 if (s == NULL
1872 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
65c2dd6e 1873 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
d044b40a
ILT
1874 return false;
1875
1876 s = bfd_make_section (abfd, ".gnu.version");
1877 if (s == NULL
1878 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1879 || ! bfd_set_section_alignment (abfd, s, 1))
1880 return false;
1881
1882 s = bfd_make_section (abfd, ".gnu.version_r");
1883 if (s == NULL
1884 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
65c2dd6e 1885 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
d044b40a
ILT
1886 return false;
1887
ede4eed4
KR
1888 s = bfd_make_section (abfd, ".dynsym");
1889 if (s == NULL
1890 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1891 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1892 return false;
1893
1894 s = bfd_make_section (abfd, ".dynstr");
1895 if (s == NULL
1896 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
1897 return false;
1898
1899 /* Create a strtab to hold the dynamic symbol names. */
1900 if (elf_hash_table (info)->dynstr == NULL)
1901 {
1902 elf_hash_table (info)->dynstr = elf_stringtab_init ();
1903 if (elf_hash_table (info)->dynstr == NULL)
1904 return false;
1905 }
1906
1907 s = bfd_make_section (abfd, ".dynamic");
1908 if (s == NULL
1909 || ! bfd_set_section_flags (abfd, s, flags)
1910 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1911 return false;
1912
1913 /* The special symbol _DYNAMIC is always set to the start of the
1914 .dynamic section. This call occurs before we have processed the
1915 symbols for any dynamic object, so we don't have to worry about
1916 overriding a dynamic definition. We could set _DYNAMIC in a
1917 linker script, but we only want to define it if we are, in fact,
1918 creating a .dynamic section. We don't want to define it if there
1919 is no .dynamic section, since on some ELF platforms the start up
1920 code examines it to decide how to initialize the process. */
1921 h = NULL;
1922 if (! (_bfd_generic_link_add_one_symbol
1923 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
1924 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
1925 (struct bfd_link_hash_entry **) &h)))
1926 return false;
1927 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
1928 h->type = STT_OBJECT;
1929
1930 if (info->shared
1931 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
1932 return false;
1933
1934 s = bfd_make_section (abfd, ".hash");
1935 if (s == NULL
1936 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1937 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1938 return false;
1939
1940 /* Let the backend create the rest of the sections. This lets the
1941 backend set the right flags. The backend will normally create
1942 the .got and .plt sections. */
1943 bed = get_elf_backend_data (abfd);
1944 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
1945 return false;
1946
1947 elf_hash_table (info)->dynamic_sections_created = true;
1948
1949 return true;
1950}
1951
1952/* Add an entry to the .dynamic table. */
1953
1954boolean
1955elf_add_dynamic_entry (info, tag, val)
1956 struct bfd_link_info *info;
1957 bfd_vma tag;
1958 bfd_vma val;
1959{
1960 Elf_Internal_Dyn dyn;
1961 bfd *dynobj;
1962 asection *s;
1963 size_t newsize;
1964 bfd_byte *newcontents;
1965
1966 dynobj = elf_hash_table (info)->dynobj;
1967
1968 s = bfd_get_section_by_name (dynobj, ".dynamic");
1969 BFD_ASSERT (s != NULL);
1970
1971 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
58142f10 1972 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
ede4eed4 1973 if (newcontents == NULL)
58142f10 1974 return false;
ede4eed4
KR
1975
1976 dyn.d_tag = tag;
1977 dyn.d_un.d_val = val;
1978 elf_swap_dyn_out (dynobj, &dyn,
1979 (Elf_External_Dyn *) (newcontents + s->_raw_size));
1980
1981 s->_raw_size = newsize;
1982 s->contents = newcontents;
1983
1984 return true;
1985}
3b3753b8 1986\f
ede4eed4
KR
1987
1988/* Read and swap the relocs for a section. They may have been cached.
1989 If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are not NULL,
1990 they are used as buffers to read into. They are known to be large
1991 enough. If the INTERNAL_RELOCS relocs argument is NULL, the return
1992 value is allocated using either malloc or bfd_alloc, according to
1993 the KEEP_MEMORY argument. */
1994
c86158e5
ILT
1995Elf_Internal_Rela *
1996NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
1997 keep_memory)
ede4eed4
KR
1998 bfd *abfd;
1999 asection *o;
2000 PTR external_relocs;
2001 Elf_Internal_Rela *internal_relocs;
2002 boolean keep_memory;
2003{
2004 Elf_Internal_Shdr *rel_hdr;
2005 PTR alloc1 = NULL;
2006 Elf_Internal_Rela *alloc2 = NULL;
2007
2008 if (elf_section_data (o)->relocs != NULL)
2009 return elf_section_data (o)->relocs;
2010
2011 if (o->reloc_count == 0)
2012 return NULL;
2013
2014 rel_hdr = &elf_section_data (o)->rel_hdr;
2015
2016 if (internal_relocs == NULL)
2017 {
2018 size_t size;
2019
2020 size = o->reloc_count * sizeof (Elf_Internal_Rela);
2021 if (keep_memory)
2022 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2023 else
58142f10 2024 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
ede4eed4 2025 if (internal_relocs == NULL)
58142f10 2026 goto error_return;
ede4eed4
KR
2027 }
2028
2029 if (external_relocs == NULL)
2030 {
58142f10 2031 alloc1 = (PTR) bfd_malloc ((size_t) rel_hdr->sh_size);
ede4eed4 2032 if (alloc1 == NULL)
58142f10 2033 goto error_return;
ede4eed4
KR
2034 external_relocs = alloc1;
2035 }
2036
2037 if ((bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0)
2038 || (bfd_read (external_relocs, 1, rel_hdr->sh_size, abfd)
2039 != rel_hdr->sh_size))
2040 goto error_return;
2041
2042 /* Swap in the relocs. For convenience, we always produce an
2043 Elf_Internal_Rela array; if the relocs are Rel, we set the addend
2044 to 0. */
2045 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
2046 {
2047 Elf_External_Rel *erel;
2048 Elf_External_Rel *erelend;
2049 Elf_Internal_Rela *irela;
2050
2051 erel = (Elf_External_Rel *) external_relocs;
2052 erelend = erel + o->reloc_count;
2053 irela = internal_relocs;
2054 for (; erel < erelend; erel++, irela++)
2055 {
2056 Elf_Internal_Rel irel;
2057
2058 elf_swap_reloc_in (abfd, erel, &irel);
2059 irela->r_offset = irel.r_offset;
2060 irela->r_info = irel.r_info;
2061 irela->r_addend = 0;
2062 }
2063 }
2064 else
2065 {
2066 Elf_External_Rela *erela;
2067 Elf_External_Rela *erelaend;
2068 Elf_Internal_Rela *irela;
2069
2070 BFD_ASSERT (rel_hdr->sh_entsize == sizeof (Elf_External_Rela));
2071
2072 erela = (Elf_External_Rela *) external_relocs;
2073 erelaend = erela + o->reloc_count;
2074 irela = internal_relocs;
2075 for (; erela < erelaend; erela++, irela++)
2076 elf_swap_reloca_in (abfd, erela, irela);
2077 }
2078
2079 /* Cache the results for next time, if we can. */
2080 if (keep_memory)
2081 elf_section_data (o)->relocs = internal_relocs;
ff12f303 2082
ede4eed4
KR
2083 if (alloc1 != NULL)
2084 free (alloc1);
2085
2086 /* Don't free alloc2, since if it was allocated we are passing it
2087 back (under the name of internal_relocs). */
2088
2089 return internal_relocs;
2090
2091 error_return:
2092 if (alloc1 != NULL)
2093 free (alloc1);
2094 if (alloc2 != NULL)
2095 free (alloc2);
2096 return NULL;
2097}
3b3753b8 2098\f
ede4eed4
KR
2099
2100/* Record an assignment to a symbol made by a linker script. We need
2101 this in case some dynamic object refers to this symbol. */
2102
2103/*ARGSUSED*/
2104boolean
2105NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
2106 bfd *output_bfd;
2107 struct bfd_link_info *info;
2108 const char *name;
2109 boolean provide;
2110{
2111 struct elf_link_hash_entry *h;
2112
2113 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2114 return true;
2115
2116 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
2117 if (h == NULL)
2118 return false;
2119
869b7d80
ILT
2120 if (h->root.type == bfd_link_hash_new)
2121 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
2122
ede4eed4
KR
2123 /* If this symbol is being provided by the linker script, and it is
2124 currently defined by a dynamic object, but not by a regular
2125 object, then mark it as undefined so that the generic linker will
2126 force the correct value. */
2127 if (provide
2128 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2129 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2130 h->root.type = bfd_link_hash_undefined;
2131
13eb6306
ILT
2132 /* If this symbol is not being provided by the linker script, and it is
2133 currently defined by a dynamic object, but not by a regular object,
2134 then clear out any version information because the symbol will not be
2135 associated with the dynamic object any more. */
2136 if (!provide
2137 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2138 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2139 h->verinfo.verdef = NULL;
2140
ede4eed4
KR
2141 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2142 h->type = STT_OBJECT;
2143
2144 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2145 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
2146 || info->shared)
2147 && h->dynindx == -1)
2148 {
2149 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2150 return false;
2151
2152 /* If this is a weak defined symbol, and we know a corresponding
2153 real symbol from the same dynamic object, make sure the real
2154 symbol is also made into a dynamic symbol. */
2155 if (h->weakdef != NULL
2156 && h->weakdef->dynindx == -1)
2157 {
2158 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2159 return false;
2160 }
2161 }
2162
2163 return true;
2164}
3b3753b8 2165\f
d044b40a
ILT
2166/* This structure is used to pass information to
2167 elf_link_assign_sym_version. */
2168
2169struct elf_assign_sym_version_info
2170{
2171 /* Output BFD. */
2172 bfd *output_bfd;
2173 /* General link information. */
2174 struct bfd_link_info *info;
2175 /* Version tree. */
2176 struct bfd_elf_version_tree *verdefs;
2177 /* Whether we are exporting all dynamic symbols. */
2178 boolean export_dynamic;
2179 /* Whether we removed any symbols from the dynamic symbol table. */
2180 boolean removed_dynamic;
2181 /* Whether we had a failure. */
2182 boolean failed;
2183};
2184
2185/* This structure is used to pass information to
2186 elf_link_find_version_dependencies. */
2187
2188struct elf_find_verdep_info
2189{
2190 /* Output BFD. */
2191 bfd *output_bfd;
2192 /* General link information. */
2193 struct bfd_link_info *info;
2194 /* The number of dependencies. */
2195 unsigned int vers;
2196 /* Whether we had a failure. */
2197 boolean failed;
2198};
ede4eed4
KR
2199
2200/* Array used to determine the number of hash table buckets to use
2201 based on the number of symbols there are. If there are fewer than
2202 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2203 fewer than 37 we use 17 buckets, and so forth. We never use more
6b8ec6f3 2204 than 32771 buckets. */
ede4eed4
KR
2205
2206static const size_t elf_buckets[] =
2207{
6b8ec6f3
ILT
2208 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2209 16411, 32771, 0
ede4eed4
KR
2210};
2211
e429c897
UD
2212/* Compute bucket count for hashing table. We do not use a static set
2213 of possible tables sizes anymore. Instead we determine for all
2214 possible reasonable sizes of the table the outcome (i.e., the
2215 number of collisions etc) and choose the best solution. The
2216 weighting functions are not too simple to allow the table to grow
2217 without bounds. Instead one of the weighting factors is the size.
2218 Therefore the result is always a good payoff between few collisions
2219 (= short chain lengths) and table size. */
2220static size_t
2221compute_bucket_count (info)
2222 struct bfd_link_info *info;
2223{
2224 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
2225 size_t best_size;
2226 unsigned long int *hashcodes;
2227 unsigned long int *hashcodesp;
2228 unsigned long int i;
2229
2230 /* Compute the hash values for all exported symbols. At the same
2231 time store the values in an array so that we could use them for
2232 optimizations. */
2233 hashcodes = (unsigned long int *) bfd_malloc (dynsymcount
2234 * sizeof (unsigned long int));
2235 if (hashcodes == NULL)
2236 return 0;
2237 hashcodesp = hashcodes;
2238
2239 /* Put all hash values in HASHCODES. */
2240 elf_link_hash_traverse (elf_hash_table (info),
2241 elf_collect_hash_codes, &hashcodesp);
2242
2243/* We have a problem here. The following code to optimize the table size
2244 requires an integer type with more the 32 bits. If BFD_HOST_U_64_BIT
2245 is set or GCC 2 is used we know about such a type. */
2246#if defined BFD_HOST_U_64_BIT || __GNUC__ >= 2
2247# ifndef BFD_HOST_U_64_BIT
2248# define BFD_HOST_U_64_BIT unsigned long long int
2249# endif
2250 if (info->optimize == true)
2251 {
2252 unsigned long int nsyms = hashcodesp - hashcodes;
2253 size_t minsize;
2254 size_t maxsize;
2255 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
2256 unsigned long int *counts ;
2257
2258 /* Possible optimization parameters: if we have NSYMS symbols we say
2259 that the hashing table must at least have NSYMS/4 and at most
2260 2*NSYMS buckets. */
2261 minsize = nsyms / 4;
5825dfc5
RH
2262 if (minsize == 0)
2263 minsize = 1;
e429c897
UD
2264 best_size = maxsize = nsyms * 2;
2265
2266 /* Create array where we count the collisions in. We must use bfd_malloc
2267 since the size could be large. */
2268 counts = (unsigned long int *) bfd_malloc (maxsize
2269 * sizeof (unsigned long int));
2270 if (counts == NULL)
2271 {
2272 free (hashcodes);
2273 return 0;
2274 }
2275
2276 /* Compute the "optimal" size for the hash table. The criteria is a
2277 minimal chain length. The minor criteria is (of course) the size
2278 of the table. */
2279 for (i = minsize; i < maxsize; ++i)
2280 {
2281 /* Walk through the array of hashcodes and count the collisions. */
2282 BFD_HOST_U_64_BIT max;
2283 unsigned long int j;
2284 unsigned long int fact;
2285
2286 memset (counts, '\0', i * sizeof (unsigned long int));
2287
2288 /* Determine how often each hash bucket is used. */
2289 for (j = 0; j < nsyms; ++j)
2290 ++counts[hashcodes[j] % i];
2291
2292 /* For the weight function we need some information about the
2293 pagesize on the target. This is information need not be 100%
2294 accurate. Since this information is not available (so far) we
2295 define it here to a reasonable default value. If it is crucial
2296 to have a better value some day simply define this value. */
2297# ifndef BFD_TARGET_PAGESIZE
2298# define BFD_TARGET_PAGESIZE (4096)
2299# endif
2300
2301 /* We in any case need 2 + NSYMS entries for the size values and
2302 the chains. */
2303 max = (2 + nsyms) * (ARCH_SIZE / 8);
2304
2305# if 1
2306 /* Variant 1: optimize for short chains. We add the squares
2307 of all the chain lengths (which favous many small chain
2308 over a few long chains). */
2309 for (j = 0; j < i; ++j)
2310 max += counts[j] * counts[j];
2311
2312 /* This adds penalties for the overall size of the table. */
2313 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2314 max *= fact * fact;
2315# else
2316 /* Variant 2: Optimize a lot more for small table. Here we
2317 also add squares of the size but we also add penalties for
2318 empty slots (the +1 term). */
2319 for (j = 0; j < i; ++j)
2320 max += (1 + counts[j]) * (1 + counts[j]);
2321
2322 /* The overall size of the table is considered, but not as
2323 strong as in variant 1, where it is squared. */
2324 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2325 max *= fact;
2326# endif
2327
2328 /* Compare with current best results. */
2329 if (max < best_chlen)
2330 {
2331 best_chlen = max;
2332 best_size = i;
2333 }
2334 }
2335
2336 free (counts);
2337 }
2338 else
2339#endif
2340 {
2341 /* This is the fallback solution if no 64bit type is available or if we
2342 are not supposed to spend much time on optimizations. We select the
2343 bucket count using a fixed set of numbers. */
2344 for (i = 0; elf_buckets[i] != 0; i++)
2345 {
2346 best_size = elf_buckets[i];
2347 if (dynsymcount < elf_buckets[i + 1])
2348 break;
2349 }
2350 }
2351
2352 /* Free the arrays we needed. */
2353 free (hashcodes);
2354
2355 return best_size;
2356}
2357
ede4eed4
KR
2358/* Set up the sizes and contents of the ELF dynamic sections. This is
2359 called by the ELF linker emulation before_allocation routine. We
2360 must set the sizes of the sections before the linker sets the
2361 addresses of the various sections. */
2362
2363boolean
2364NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
148437ec 2365 export_dynamic, filter_shlib,
d044b40a
ILT
2366 auxiliary_filters, info, sinterpptr,
2367 verdefs)
ede4eed4
KR
2368 bfd *output_bfd;
2369 const char *soname;
2370 const char *rpath;
2371 boolean export_dynamic;
148437ec 2372 const char *filter_shlib;
db109ca2 2373 const char * const *auxiliary_filters;
ede4eed4
KR
2374 struct bfd_link_info *info;
2375 asection **sinterpptr;
d044b40a 2376 struct bfd_elf_version_tree *verdefs;
ede4eed4 2377{
d044b40a 2378 bfd_size_type soname_indx;
ede4eed4
KR
2379 bfd *dynobj;
2380 struct elf_backend_data *bed;
e549b1d2 2381 bfd_size_type old_dynsymcount;
c19fbe0f 2382 struct elf_assign_sym_version_info asvinfo;
ede4eed4
KR
2383
2384 *sinterpptr = NULL;
2385
f6727b90 2386 soname_indx = (bfd_size_type) -1;
d044b40a 2387
ede4eed4
KR
2388 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2389 return true;
2390
ff12f303
ILT
2391 /* The backend may have to create some sections regardless of whether
2392 we're dynamic or not. */
2393 bed = get_elf_backend_data (output_bfd);
2394 if (bed->elf_backend_always_size_sections
2395 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
2396 return false;
2397
ede4eed4
KR
2398 dynobj = elf_hash_table (info)->dynobj;
2399
2400 /* If there were no dynamic objects in the link, there is nothing to
2401 do here. */
2402 if (dynobj == NULL)
2403 return true;
2404
2405 /* If we are supposed to export all symbols into the dynamic symbol
2406 table (this is not the normal case), then do so. */
2407 if (export_dynamic)
2408 {
2409 struct elf_info_failed eif;
2410
2411 eif.failed = false;
2412 eif.info = info;
2413 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
2414 (PTR) &eif);
2415 if (eif.failed)
2416 return false;
2417 }
2418
2419 if (elf_hash_table (info)->dynamic_sections_created)
2420 {
2421 struct elf_info_failed eif;
73a68447 2422 struct elf_link_hash_entry *h;
ede4eed4
KR
2423 bfd_size_type strsize;
2424
2425 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
2426 BFD_ASSERT (*sinterpptr != NULL || info->shared);
2427
2428 if (soname != NULL)
2429 {
d044b40a
ILT
2430 soname_indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2431 soname, true, true);
2432 if (soname_indx == (bfd_size_type) -1
2433 || ! elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
ede4eed4 2434 return false;
ff12f303 2435 }
ede4eed4 2436
951fe66d
ILT
2437 if (info->symbolic)
2438 {
2439 if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
2440 return false;
2441 }
2442
ede4eed4
KR
2443 if (rpath != NULL)
2444 {
2445 bfd_size_type indx;
2446
2447 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath,
2448 true, true);
2449 if (indx == (bfd_size_type) -1
2450 || ! elf_add_dynamic_entry (info, DT_RPATH, indx))
2451 return false;
2452 }
2453
148437ec
ILT
2454 if (filter_shlib != NULL)
2455 {
2456 bfd_size_type indx;
2457
2458 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2459 filter_shlib, true, true);
2460 if (indx == (bfd_size_type) -1
2461 || ! elf_add_dynamic_entry (info, DT_FILTER, indx))
2462 return false;
2463 }
2464
db109ca2 2465 if (auxiliary_filters != NULL)
148437ec 2466 {
db109ca2 2467 const char * const *p;
148437ec 2468
db109ca2
ILT
2469 for (p = auxiliary_filters; *p != NULL; p++)
2470 {
2471 bfd_size_type indx;
2472
2473 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2474 *p, true, true);
2475 if (indx == (bfd_size_type) -1
2476 || ! elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
2477 return false;
2478 }
148437ec
ILT
2479 }
2480
c19fbe0f
ILT
2481 /* Attach all the symbols to their version information. */
2482 asvinfo.output_bfd = output_bfd;
2483 asvinfo.info = info;
2484 asvinfo.verdefs = verdefs;
2485 asvinfo.export_dynamic = export_dynamic;
2486 asvinfo.removed_dynamic = false;
2487 asvinfo.failed = false;
2488
2489 elf_link_hash_traverse (elf_hash_table (info),
2490 elf_link_assign_sym_version,
2491 (PTR) &asvinfo);
2492 if (asvinfo.failed)
2493 return false;
2494
ede4eed4
KR
2495 /* Find all symbols which were defined in a dynamic object and make
2496 the backend pick a reasonable value for them. */
2497 eif.failed = false;
2498 eif.info = info;
2499 elf_link_hash_traverse (elf_hash_table (info),
2500 elf_adjust_dynamic_symbol,
2501 (PTR) &eif);
2502 if (eif.failed)
2503 return false;
2504
2505 /* Add some entries to the .dynamic section. We fill in some of the
2506 values later, in elf_bfd_final_link, but we must add the entries
2507 now so that we know the final size of the .dynamic section. */
73a68447
ILT
2508 h = elf_link_hash_lookup (elf_hash_table (info), "_init", false,
2509 false, false);
2510 if (h != NULL
2511 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2512 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
ede4eed4
KR
2513 {
2514 if (! elf_add_dynamic_entry (info, DT_INIT, 0))
2515 return false;
2516 }
73a68447
ILT
2517 h = elf_link_hash_lookup (elf_hash_table (info), "_fini", false,
2518 false, false);
2519 if (h != NULL
2520 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2521 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
ede4eed4
KR
2522 {
2523 if (! elf_add_dynamic_entry (info, DT_FINI, 0))
2524 return false;
2525 }
2526 strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
2527 if (! elf_add_dynamic_entry (info, DT_HASH, 0)
2528 || ! elf_add_dynamic_entry (info, DT_STRTAB, 0)
2529 || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0)
2530 || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize)
2531 || ! elf_add_dynamic_entry (info, DT_SYMENT,
2532 sizeof (Elf_External_Sym)))
2533 return false;
2534 }
2535
2536 /* The backend must work out the sizes of all the other dynamic
2537 sections. */
e549b1d2 2538 old_dynsymcount = elf_hash_table (info)->dynsymcount;
37b68f72
RH
2539 if (bed->elf_backend_size_dynamic_sections
2540 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
ede4eed4
KR
2541 return false;
2542
2543 if (elf_hash_table (info)->dynamic_sections_created)
2544 {
2545 size_t dynsymcount;
2546 asection *s;
2547 size_t i;
2548 size_t bucketcount = 0;
2549 Elf_Internal_Sym isym;
2550
d044b40a
ILT
2551 /* Set up the version definition section. */
2552 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
2553 BFD_ASSERT (s != NULL);
d6bfcdb5 2554
d6bfcdb5
ILT
2555 /* We may have created additional version definitions if we are
2556 just linking a regular application. */
c19fbe0f 2557 verdefs = asvinfo.verdefs;
d6bfcdb5 2558
d044b40a
ILT
2559 if (verdefs == NULL)
2560 {
d044b40a
ILT
2561 asection **spp;
2562
d044b40a
ILT
2563 /* Don't include this section in the output file. */
2564 for (spp = &output_bfd->sections;
2565 *spp != s->output_section;
2566 spp = &(*spp)->next)
2567 ;
2568 *spp = s->output_section->next;
2569 --output_bfd->section_count;
2570 }
2571 else
2572 {
d044b40a
ILT
2573 unsigned int cdefs;
2574 bfd_size_type size;
2575 struct bfd_elf_version_tree *t;
2576 bfd_byte *p;
2577 Elf_Internal_Verdef def;
2578 Elf_Internal_Verdaux defaux;
2579
c19fbe0f 2580 if (asvinfo.removed_dynamic)
d044b40a
ILT
2581 {
2582 /* Some dynamic symbols were changed to be local
e549b1d2
ILT
2583 symbols. In this case, we renumber all of the
2584 dynamic symbols, so that we don't have a hole. If
2585 the backend changed dynsymcount, then assume that the
2586 new symbols are at the start. This is the case on
2587 the MIPS. FIXME: The names of the removed symbols
2588 will still be in the dynamic string table, wasting
2589 space. */
2590 elf_hash_table (info)->dynsymcount =
2591 1 + (elf_hash_table (info)->dynsymcount - old_dynsymcount);
d044b40a
ILT
2592 elf_link_hash_traverse (elf_hash_table (info),
2593 elf_link_renumber_dynsyms,
2594 (PTR) info);
2595 }
2596
2597 cdefs = 0;
2598 size = 0;
2599
2600 /* Make space for the base version. */
2601 size += sizeof (Elf_External_Verdef);
2602 size += sizeof (Elf_External_Verdaux);
2603 ++cdefs;
2604
2605 for (t = verdefs; t != NULL; t = t->next)
2606 {
2607 struct bfd_elf_version_deps *n;
2608
2609 size += sizeof (Elf_External_Verdef);
2610 size += sizeof (Elf_External_Verdaux);
2611 ++cdefs;
2612
2613 for (n = t->deps; n != NULL; n = n->next)
2614 size += sizeof (Elf_External_Verdaux);
2615 }
2616
2617 s->_raw_size = size;
2618 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
2619 if (s->contents == NULL && s->_raw_size != 0)
2620 return false;
2621
2622 /* Fill in the version definition section. */
2623
2624 p = s->contents;
2625
2626 def.vd_version = VER_DEF_CURRENT;
2627 def.vd_flags = VER_FLG_BASE;
2628 def.vd_ndx = 1;
2629 def.vd_cnt = 1;
2630 def.vd_aux = sizeof (Elf_External_Verdef);
2631 def.vd_next = (sizeof (Elf_External_Verdef)
2632 + sizeof (Elf_External_Verdaux));
2633
f6727b90 2634 if (soname_indx != (bfd_size_type) -1)
d044b40a
ILT
2635 {
2636 def.vd_hash = bfd_elf_hash ((const unsigned char *) soname);
2637 defaux.vda_name = soname_indx;
2638 }
2639 else
2640 {
2641 const char *name;
2642 bfd_size_type indx;
2643
2644 name = output_bfd->filename;
2645 def.vd_hash = bfd_elf_hash ((const unsigned char *) name);
2646 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2647 name, true, false);
2648 if (indx == (bfd_size_type) -1)
2649 return false;
2650 defaux.vda_name = indx;
2651 }
2652 defaux.vda_next = 0;
2653
2654 _bfd_elf_swap_verdef_out (output_bfd, &def,
2655 (Elf_External_Verdef *)p);
2656 p += sizeof (Elf_External_Verdef);
2657 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2658 (Elf_External_Verdaux *) p);
2659 p += sizeof (Elf_External_Verdaux);
2660
2661 for (t = verdefs; t != NULL; t = t->next)
2662 {
2663 unsigned int cdeps;
2664 struct bfd_elf_version_deps *n;
2665 struct elf_link_hash_entry *h;
2666
2667 cdeps = 0;
2668 for (n = t->deps; n != NULL; n = n->next)
2669 ++cdeps;
2670
2671 /* Add a symbol representing this version. */
2672 h = NULL;
2673 if (! (_bfd_generic_link_add_one_symbol
2674 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
2675 (bfd_vma) 0, (const char *) NULL, false,
2676 get_elf_backend_data (dynobj)->collect,
2677 (struct bfd_link_hash_entry **) &h)))
2678 return false;
2679 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
2680 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2681 h->type = STT_OBJECT;
2682 h->verinfo.vertree = t;
2683
d6bfcdb5
ILT
2684 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2685 return false;
d044b40a
ILT
2686
2687 def.vd_version = VER_DEF_CURRENT;
2688 def.vd_flags = 0;
2689 if (t->globals == NULL && t->locals == NULL && ! t->used)
2690 def.vd_flags |= VER_FLG_WEAK;
2691 def.vd_ndx = t->vernum + 1;
2692 def.vd_cnt = cdeps + 1;
2693 def.vd_hash = bfd_elf_hash ((const unsigned char *) t->name);
2694 def.vd_aux = sizeof (Elf_External_Verdef);
2695 if (t->next != NULL)
2696 def.vd_next = (sizeof (Elf_External_Verdef)
2697 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
2698 else
2699 def.vd_next = 0;
2700
2701 _bfd_elf_swap_verdef_out (output_bfd, &def,
2702 (Elf_External_Verdef *) p);
2703 p += sizeof (Elf_External_Verdef);
2704
2705 defaux.vda_name = h->dynstr_index;
2706 if (t->deps == NULL)
2707 defaux.vda_next = 0;
2708 else
2709 defaux.vda_next = sizeof (Elf_External_Verdaux);
2710 t->name_indx = defaux.vda_name;
2711
2712 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2713 (Elf_External_Verdaux *) p);
2714 p += sizeof (Elf_External_Verdaux);
2715
2716 for (n = t->deps; n != NULL; n = n->next)
2717 {
9793236c
ILT
2718 if (n->version_needed == NULL)
2719 {
2720 /* This can happen if there was an error in the
2721 version script. */
2722 defaux.vda_name = 0;
2723 }
2724 else
2725 defaux.vda_name = n->version_needed->name_indx;
d044b40a
ILT
2726 if (n->next == NULL)
2727 defaux.vda_next = 0;
2728 else
2729 defaux.vda_next = sizeof (Elf_External_Verdaux);
2730
2731 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2732 (Elf_External_Verdaux *) p);
2733 p += sizeof (Elf_External_Verdaux);
2734 }
2735 }
2736
2737 if (! elf_add_dynamic_entry (info, DT_VERDEF, 0)
2738 || ! elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
2739 return false;
2740
2741 elf_tdata (output_bfd)->cverdefs = cdefs;
2742 }
2743
2744 /* Work out the size of the version reference section. */
2745
2746 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
2747 BFD_ASSERT (s != NULL);
2748 {
2749 struct elf_find_verdep_info sinfo;
2750
2751 sinfo.output_bfd = output_bfd;
2752 sinfo.info = info;
2753 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
2754 if (sinfo.vers == 0)
2755 sinfo.vers = 1;
2756 sinfo.failed = false;
2757
2758 elf_link_hash_traverse (elf_hash_table (info),
2759 elf_link_find_version_dependencies,
2760 (PTR) &sinfo);
2761
2762 if (elf_tdata (output_bfd)->verref == NULL)
2763 {
2764 asection **spp;
2765
2766 /* We don't have any version definitions, so we can just
2767 remove the section. */
2768
2769 for (spp = &output_bfd->sections;
2770 *spp != s->output_section;
2771 spp = &(*spp)->next)
2772 ;
2773 *spp = s->output_section->next;
2774 --output_bfd->section_count;
2775 }
2776 else
2777 {
2778 Elf_Internal_Verneed *t;
2779 unsigned int size;
2780 unsigned int crefs;
2781 bfd_byte *p;
2782
2783 /* Build the version definition section. */
d6bfcdb5
ILT
2784 size = 0;
2785 crefs = 0;
d044b40a
ILT
2786 for (t = elf_tdata (output_bfd)->verref;
2787 t != NULL;
2788 t = t->vn_nextref)
2789 {
2790 Elf_Internal_Vernaux *a;
2791
2792 size += sizeof (Elf_External_Verneed);
2793 ++crefs;
2794 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2795 size += sizeof (Elf_External_Vernaux);
2796 }
2797
2798 s->_raw_size = size;
2799 s->contents = (bfd_byte *) bfd_alloc (output_bfd, size);
2800 if (s->contents == NULL)
2801 return false;
2802
2803 p = s->contents;
2804 for (t = elf_tdata (output_bfd)->verref;
2805 t != NULL;
2806 t = t->vn_nextref)
2807 {
2808 unsigned int caux;
2809 Elf_Internal_Vernaux *a;
2810 bfd_size_type indx;
2811
2812 caux = 0;
2813 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2814 ++caux;
2815
2816 t->vn_version = VER_NEED_CURRENT;
2817 t->vn_cnt = caux;
601acd61
UD
2818 if (elf_dt_name (t->vn_bfd) != NULL)
2819 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2820 elf_dt_name (t->vn_bfd),
2821 true, false);
2822 else
2823 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2824 t->vn_bfd->filename, true, false);
d044b40a
ILT
2825 if (indx == (bfd_size_type) -1)
2826 return false;
2827 t->vn_file = indx;
2828 t->vn_aux = sizeof (Elf_External_Verneed);
2829 if (t->vn_nextref == NULL)
2830 t->vn_next = 0;
2831 else
2832 t->vn_next = (sizeof (Elf_External_Verneed)
2833 + caux * sizeof (Elf_External_Vernaux));
2834
2835 _bfd_elf_swap_verneed_out (output_bfd, t,
2836 (Elf_External_Verneed *) p);
2837 p += sizeof (Elf_External_Verneed);
2838
2839 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2840 {
2841 a->vna_hash = bfd_elf_hash ((const unsigned char *)
2842 a->vna_nodename);
2843 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2844 a->vna_nodename, true, false);
2845 if (indx == (bfd_size_type) -1)
2846 return false;
2847 a->vna_name = indx;
2848 if (a->vna_nextptr == NULL)
2849 a->vna_next = 0;
2850 else
2851 a->vna_next = sizeof (Elf_External_Vernaux);
2852
2853 _bfd_elf_swap_vernaux_out (output_bfd, a,
2854 (Elf_External_Vernaux *) p);
2855 p += sizeof (Elf_External_Vernaux);
2856 }
2857 }
2858
2859 if (! elf_add_dynamic_entry (info, DT_VERNEED, 0)
2860 || ! elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
2861 return false;
2862
2863 elf_tdata (output_bfd)->cverrefs = crefs;
2864 }
2865 }
2866
2867 dynsymcount = elf_hash_table (info)->dynsymcount;
2868
2869 /* Work out the size of the symbol version section. */
2870 s = bfd_get_section_by_name (dynobj, ".gnu.version");
2871 BFD_ASSERT (s != NULL);
2872 if (dynsymcount == 0
2873 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
2874 {
2875 asection **spp;
2876
2877 /* We don't need any symbol versions; just discard the
2878 section. */
2879 for (spp = &output_bfd->sections;
2880 *spp != s->output_section;
2881 spp = &(*spp)->next)
2882 ;
2883 *spp = s->output_section->next;
2884 --output_bfd->section_count;
2885 }
2886 else
2887 {
d044b40a 2888 s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
e549b1d2 2889 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
d044b40a
ILT
2890 if (s->contents == NULL)
2891 return false;
2892
d044b40a
ILT
2893 if (! elf_add_dynamic_entry (info, DT_VERSYM, 0))
2894 return false;
2895 }
2896
ede4eed4
KR
2897 /* Set the size of the .dynsym and .hash sections. We counted
2898 the number of dynamic symbols in elf_link_add_object_symbols.
2899 We will build the contents of .dynsym and .hash when we build
2900 the final symbol table, because until then we do not know the
2901 correct value to give the symbols. We built the .dynstr
2902 section as we went along in elf_link_add_object_symbols. */
ede4eed4
KR
2903 s = bfd_get_section_by_name (dynobj, ".dynsym");
2904 BFD_ASSERT (s != NULL);
2905 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
2906 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
2907 if (s->contents == NULL && s->_raw_size != 0)
a9713b91 2908 return false;
ede4eed4
KR
2909
2910 /* The first entry in .dynsym is a dummy symbol. */
2911 isym.st_value = 0;
2912 isym.st_size = 0;
2913 isym.st_name = 0;
2914 isym.st_info = 0;
2915 isym.st_other = 0;
2916 isym.st_shndx = 0;
2917 elf_swap_symbol_out (output_bfd, &isym,
cf9fb9f2 2918 (PTR) (Elf_External_Sym *) s->contents);
ede4eed4 2919
e429c897
UD
2920 /* Compute the size of the hashing table. As a side effect this
2921 computes the hash values for all the names we export. */
2922 bucketcount = compute_bucket_count (info);
ede4eed4
KR
2923
2924 s = bfd_get_section_by_name (dynobj, ".hash");
2925 BFD_ASSERT (s != NULL);
2926 s->_raw_size = (2 + bucketcount + dynsymcount) * (ARCH_SIZE / 8);
2927 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
2928 if (s->contents == NULL)
a9713b91 2929 return false;
3fe22b98 2930 memset (s->contents, 0, (size_t) s->_raw_size);
ede4eed4
KR
2931
2932 put_word (output_bfd, bucketcount, s->contents);
2933 put_word (output_bfd, dynsymcount, s->contents + (ARCH_SIZE / 8));
2934
2935 elf_hash_table (info)->bucketcount = bucketcount;
2936
2937 s = bfd_get_section_by_name (dynobj, ".dynstr");
2938 BFD_ASSERT (s != NULL);
2939 s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
2940
2941 if (! elf_add_dynamic_entry (info, DT_NULL, 0))
2942 return false;
2943 }
2944
2945 return true;
2946}
3b3753b8 2947\f
c19fbe0f
ILT
2948/* Fix up the flags for a symbol. This handles various cases which
2949 can only be fixed after all the input files are seen. This is
2950 currently called by both adjust_dynamic_symbol and
2951 assign_sym_version, which is unnecessary but perhaps more robust in
2952 the face of future changes. */
ede4eed4
KR
2953
2954static boolean
c19fbe0f 2955elf_fix_symbol_flags (h, eif)
ede4eed4 2956 struct elf_link_hash_entry *h;
c19fbe0f 2957 struct elf_info_failed *eif;
ede4eed4 2958{
869b7d80
ILT
2959 /* If this symbol was mentioned in a non-ELF file, try to set
2960 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2961 permit a non-ELF file to correctly refer to a symbol defined in
2962 an ELF dynamic object. */
2963 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
2964 {
2965 if (h->root.type != bfd_link_hash_defined
2966 && h->root.type != bfd_link_hash_defweak)
2967 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
2968 else
2969 {
e303e2e3
ILT
2970 if (h->root.u.def.section->owner != NULL
2971 && (bfd_get_flavour (h->root.u.def.section->owner)
2972 == bfd_target_elf_flavour))
869b7d80
ILT
2973 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
2974 else
2975 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2976 }
2977
c19fbe0f
ILT
2978 if (h->dynindx == -1
2979 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2980 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
869b7d80
ILT
2981 {
2982 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
2983 {
2984 eif->failed = true;
2985 return false;
2986 }
2987 }
2988 }
2989
ce6a7731
ILT
2990 /* If this is a final link, and the symbol was defined as a common
2991 symbol in a regular object file, and there was no definition in
2992 any dynamic object, then the linker will have allocated space for
2993 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
2994 flag will not have been set. */
2995 if (h->root.type == bfd_link_hash_defined
2996 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
2997 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
2998 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
2999 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3000 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3001
951fe66d
ILT
3002 /* If -Bsymbolic was used (which means to bind references to global
3003 symbols to the definition within the shared object), and this
3004 symbol was defined in a regular object, then it actually doesn't
3005 need a PLT entry. */
3006 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
3007 && eif->info->shared
3008 && eif->info->symbolic
3009 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
be228e0d
ILT
3010 {
3011 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3012 h->plt.offset = (bfd_vma) -1;
3013 }
951fe66d 3014
c19fbe0f
ILT
3015 return true;
3016}
3017
3018/* Make the backend pick a good value for a dynamic symbol. This is
3019 called via elf_link_hash_traverse, and also calls itself
3020 recursively. */
3021
3022static boolean
3023elf_adjust_dynamic_symbol (h, data)
3024 struct elf_link_hash_entry *h;
3025 PTR data;
3026{
3027 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3028 bfd *dynobj;
3029 struct elf_backend_data *bed;
3030
3031 /* Ignore indirect symbols. These are added by the versioning code. */
3032 if (h->root.type == bfd_link_hash_indirect)
3033 return true;
3034
3035 /* Fix the symbol flags. */
3036 if (! elf_fix_symbol_flags (h, eif))
3037 return false;
3038
ede4eed4
KR
3039 /* If this symbol does not require a PLT entry, and it is not
3040 defined by a dynamic object, or is not referenced by a regular
452a5efb
ILT
3041 object, ignore it. We do have to handle a weak defined symbol,
3042 even if no regular object refers to it, if we decided to add it
3043 to the dynamic symbol table. FIXME: Do we normally need to worry
3044 about symbols which are defined by one dynamic object and
3045 referenced by another one? */
ede4eed4
KR
3046 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
3047 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3048 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
452a5efb
ILT
3049 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
3050 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
be228e0d
ILT
3051 {
3052 h->plt.offset = (bfd_vma) -1;
3053 return true;
3054 }
ede4eed4
KR
3055
3056 /* If we've already adjusted this symbol, don't do it again. This
3057 can happen via a recursive call. */
3058 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
3059 return true;
3060
3061 /* Don't look at this symbol again. Note that we must set this
3062 after checking the above conditions, because we may look at a
3063 symbol once, decide not to do anything, and then get called
3064 recursively later after REF_REGULAR is set below. */
3065 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
3066
3067 /* If this is a weak definition, and we know a real definition, and
3068 the real symbol is not itself defined by a regular object file,
3069 then get a good value for the real definition. We handle the
3070 real symbol first, for the convenience of the backend routine.
3071
3072 Note that there is a confusing case here. If the real definition
3073 is defined by a regular object file, we don't get the real symbol
3074 from the dynamic object, but we do get the weak symbol. If the
3075 processor backend uses a COPY reloc, then if some routine in the
3076 dynamic object changes the real symbol, we will not see that
3077 change in the corresponding weak symbol. This is the way other
3078 ELF linkers work as well, and seems to be a result of the shared
3079 library model.
3080
3081 I will clarify this issue. Most SVR4 shared libraries define the
3082 variable _timezone and define timezone as a weak synonym. The
3083 tzset call changes _timezone. If you write
3084 extern int timezone;
3085 int _timezone = 5;
3086 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3087 you might expect that, since timezone is a synonym for _timezone,
3088 the same number will print both times. However, if the processor
3089 backend uses a COPY reloc, then actually timezone will be copied
3090 into your process image, and, since you define _timezone
3091 yourself, _timezone will not. Thus timezone and _timezone will
3092 wind up at different memory locations. The tzset call will set
3093 _timezone, leaving timezone unchanged. */
3094
3095 if (h->weakdef != NULL)
3096 {
3097 struct elf_link_hash_entry *weakdef;
3098
3099 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3100 || h->root.type == bfd_link_hash_defweak);
3101 weakdef = h->weakdef;
3102 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
3103 || weakdef->root.type == bfd_link_hash_defweak);
3104 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
3105 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3106 {
3107 /* This symbol is defined by a regular object file, so we
3108 will not do anything special. Clear weakdef for the
3109 convenience of the processor backend. */
3110 h->weakdef = NULL;
3111 }
3112 else
3113 {
3114 /* There is an implicit reference by a regular object file
3115 via the weak symbol. */
3116 weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
3117 if (! elf_adjust_dynamic_symbol (weakdef, (PTR) eif))
3118 return false;
3119 }
3120 }
3121
3122 dynobj = elf_hash_table (eif->info)->dynobj;
3123 bed = get_elf_backend_data (dynobj);
3124 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3125 {
3126 eif->failed = true;
3127 return false;
3128 }
3129
3130 return true;
3131}
3132\f
d044b40a
ILT
3133/* This routine is used to export all defined symbols into the dynamic
3134 symbol table. It is called via elf_link_hash_traverse. */
3135
3136static boolean
3137elf_export_symbol (h, data)
3138 struct elf_link_hash_entry *h;
3139 PTR data;
3140{
3141 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3142
e549b1d2
ILT
3143 /* Ignore indirect symbols. These are added by the versioning code. */
3144 if (h->root.type == bfd_link_hash_indirect)
3145 return true;
3146
d044b40a
ILT
3147 if (h->dynindx == -1
3148 && (h->elf_link_hash_flags
3149 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
3150 {
3151 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3152 {
3153 eif->failed = true;
3154 return false;
3155 }
3156 }
3157
3158 return true;
3159}
3160\f
3161/* Look through the symbols which are defined in other shared
3162 libraries and referenced here. Update the list of version
3163 dependencies. This will be put into the .gnu.version_r section.
3164 This function is called via elf_link_hash_traverse. */
3165
3166static boolean
3167elf_link_find_version_dependencies (h, data)
3168 struct elf_link_hash_entry *h;
3169 PTR data;
3170{
3171 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
3172 Elf_Internal_Verneed *t;
3173 Elf_Internal_Vernaux *a;
3174
3175 /* We only care about symbols defined in shared objects with version
3176 information. */
3177 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
a48ef404 3178 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
d044b40a
ILT
3179 || h->dynindx == -1
3180 || h->verinfo.verdef == NULL)
3181 return true;
3182
3183 /* See if we already know about this version. */
3184 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
3185 {
cf2cd4cf 3186 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
d044b40a
ILT
3187 continue;
3188
3189 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3190 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
3191 return true;
3192
3193 break;
3194 }
3195
3196 /* This is a new version. Add it to tree we are building. */
3197
3198 if (t == NULL)
3199 {
3200 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, sizeof *t);
3201 if (t == NULL)
3202 {
3203 rinfo->failed = true;
3204 return false;
3205 }
3206
3207 t->vn_bfd = h->verinfo.verdef->vd_bfd;
3208 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
3209 elf_tdata (rinfo->output_bfd)->verref = t;
3210 }
3211
3212 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, sizeof *a);
3213
3214 /* Note that we are copying a string pointer here, and testing it
3215 above. If bfd_elf_string_from_elf_section is ever changed to
3216 discard the string data when low in memory, this will have to be
3217 fixed. */
3218 a->vna_nodename = h->verinfo.verdef->vd_nodename;
3219
3220 a->vna_flags = h->verinfo.verdef->vd_flags;
3221 a->vna_nextptr = t->vn_auxptr;
3222
3223 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
3224 ++rinfo->vers;
3225
3226 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
3227
3228 t->vn_auxptr = a;
3229
3230 return true;
3231}
3232
3233/* Figure out appropriate versions for all the symbols. We may not
3234 have the version number script until we have read all of the input
3235 files, so until that point we don't know which symbols should be
3236 local. This function is called via elf_link_hash_traverse. */
3237
3238static boolean
3239elf_link_assign_sym_version (h, data)
3240 struct elf_link_hash_entry *h;
3241 PTR data;
3242{
3243 struct elf_assign_sym_version_info *sinfo =
3244 (struct elf_assign_sym_version_info *) data;
3245 struct bfd_link_info *info = sinfo->info;
c19fbe0f 3246 struct elf_info_failed eif;
d044b40a
ILT
3247 char *p;
3248
c19fbe0f
ILT
3249 /* Fix the symbol flags. */
3250 eif.failed = false;
3251 eif.info = info;
3252 if (! elf_fix_symbol_flags (h, &eif))
3253 {
3254 if (eif.failed)
3255 sinfo->failed = true;
3256 return false;
3257 }
3258
d044b40a
ILT
3259 /* We only need version numbers for symbols defined in regular
3260 objects. */
3261 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3262 return true;
3263
3264 p = strchr (h->root.root.string, ELF_VER_CHR);
3265 if (p != NULL && h->verinfo.vertree == NULL)
3266 {
3267 struct bfd_elf_version_tree *t;
3268 boolean hidden;
3269
3270 hidden = true;
3271
3272 /* There are two consecutive ELF_VER_CHR characters if this is
3273 not a hidden symbol. */
3274 ++p;
3275 if (*p == ELF_VER_CHR)
3276 {
3277 hidden = false;
3278 ++p;
3279 }
3280
3281 /* If there is no version string, we can just return out. */
3282 if (*p == '\0')
3283 {
3284 if (hidden)
3285 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3286 return true;
3287 }
3288
3289 /* Look for the version. If we find it, it is no longer weak. */
3290 for (t = sinfo->verdefs; t != NULL; t = t->next)
3291 {
3292 if (strcmp (t->name, p) == 0)
3293 {
bccab630
RH
3294 int len;
3295 char *alc;
3296 struct bfd_elf_version_expr *d;
3297
3298 len = p - h->root.root.string;
3299 alc = bfd_alloc (sinfo->output_bfd, len);
3300 if (alc == NULL)
3301 return false;
3302 strncpy (alc, h->root.root.string, len - 1);
3303 alc[len - 1] = '\0';
3304 if (alc[len - 2] == ELF_VER_CHR)
3305 alc[len - 2] = '\0';
3306
d044b40a
ILT
3307 h->verinfo.vertree = t;
3308 t->used = true;
bccab630
RH
3309 d = NULL;
3310
3311 if (t->globals != NULL)
3312 {
3313 for (d = t->globals; d != NULL; d = d->next)
3314 {
3315 if ((d->match[0] == '*' && d->match[1] == '\0')
3316 || fnmatch (d->match, alc, 0) == 0)
3317 break;
3318 }
3319 }
d6bfcdb5
ILT
3320
3321 /* See if there is anything to force this symbol to
3322 local scope. */
bccab630 3323 if (d == NULL && t->locals != NULL)
d6bfcdb5 3324 {
d6bfcdb5
ILT
3325 for (d = t->locals; d != NULL; d = d->next)
3326 {
3327 if ((d->match[0] == '*' && d->match[1] == '\0')
3328 || fnmatch (d->match, alc, 0) == 0)
3329 {
3330 if (h->dynindx != -1
3331 && info->shared
c19fbe0f 3332 && ! sinfo->export_dynamic)
d6bfcdb5
ILT
3333 {
3334 sinfo->removed_dynamic = true;
52c92c7f 3335 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
c19fbe0f
ILT
3336 h->elf_link_hash_flags &=~
3337 ELF_LINK_HASH_NEEDS_PLT;
d6bfcdb5 3338 h->dynindx = -1;
be228e0d 3339 h->plt.offset = (bfd_vma) -1;
d6bfcdb5
ILT
3340 /* FIXME: The name of the symbol has
3341 already been recorded in the dynamic
3342 string table section. */
3343 }
3344
3345 break;
3346 }
3347 }
d6bfcdb5
ILT
3348 }
3349
bccab630 3350 bfd_release (sinfo->output_bfd, alc);
d044b40a
ILT
3351 break;
3352 }
3353 }
3354
d6bfcdb5
ILT
3355 /* If we are building an application, we need to create a
3356 version node for this version. */
3357 if (t == NULL && ! info->shared)
3358 {
3359 struct bfd_elf_version_tree **pp;
3360 int version_index;
3361
3362 /* If we aren't going to export this symbol, we don't need
3363 to worry about it. */
3364 if (h->dynindx == -1)
3365 return true;
3366
3367 t = ((struct bfd_elf_version_tree *)
3368 bfd_alloc (sinfo->output_bfd, sizeof *t));
3369 if (t == NULL)
3370 {
3371 sinfo->failed = true;
3372 return false;
3373 }
3374
3375 t->next = NULL;
3376 t->name = p;
3377 t->globals = NULL;
3378 t->locals = NULL;
3379 t->deps = NULL;
3380 t->name_indx = (unsigned int) -1;
3381 t->used = true;
3382
3383 version_index = 1;
3384 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
3385 ++version_index;
3386 t->vernum = version_index;
3387
3388 *pp = t;
3389
3390 h->verinfo.vertree = t;
3391 }
3392 else if (t == NULL)
d044b40a 3393 {
d6bfcdb5
ILT
3394 /* We could not find the version for a symbol when
3395 generating a shared archive. Return an error. */
d044b40a 3396 (*_bfd_error_handler)
53d3ce37 3397 (_("%s: undefined versioned symbol name %s"),
52c92c7f 3398 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
d044b40a
ILT
3399 bfd_set_error (bfd_error_bad_value);
3400 sinfo->failed = true;
3401 return false;
3402 }
3403
3404 if (hidden)
3405 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3406 }
3407
3408 /* If we don't have a version for this symbol, see if we can find
3409 something. */
3410 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
3411 {
3412 struct bfd_elf_version_tree *t;
3413 struct bfd_elf_version_tree *deflt;
3414 struct bfd_elf_version_expr *d;
3415
3416 /* See if can find what version this symbol is in. If the
c19fbe0f 3417 symbol is supposed to be local, then don't actually register
d044b40a
ILT
3418 it. */
3419 deflt = NULL;
3420 for (t = sinfo->verdefs; t != NULL; t = t->next)
3421 {
3422 if (t->globals != NULL)
3423 {
3424 for (d = t->globals; d != NULL; d = d->next)
3425 {
3426 if (fnmatch (d->match, h->root.root.string, 0) == 0)
3427 {
3428 h->verinfo.vertree = t;
3429 break;
3430 }
3431 }
3432
3433 if (d != NULL)
3434 break;
3435 }
3436
3437 if (t->locals != NULL)
3438 {
3439 for (d = t->locals; d != NULL; d = d->next)
3440 {
3441 if (d->match[0] == '*' && d->match[1] == '\0')
3442 deflt = t;
3443 else if (fnmatch (d->match, h->root.root.string, 0) == 0)
3444 {
3445 h->verinfo.vertree = t;
3446 if (h->dynindx != -1
3447 && info->shared
c19fbe0f 3448 && ! sinfo->export_dynamic)
d044b40a
ILT
3449 {
3450 sinfo->removed_dynamic = true;
52c92c7f 3451 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
c19fbe0f 3452 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
d044b40a 3453 h->dynindx = -1;
be228e0d 3454 h->plt.offset = (bfd_vma) -1;
d044b40a
ILT
3455 /* FIXME: The name of the symbol has already
3456 been recorded in the dynamic string table
3457 section. */
3458 }
3459 break;
3460 }
3461 }
3462
3463 if (d != NULL)
3464 break;
3465 }
3466 }
3467
3468 if (deflt != NULL && h->verinfo.vertree == NULL)
3469 {
3470 h->verinfo.vertree = deflt;
3471 if (h->dynindx != -1
3472 && info->shared
c19fbe0f 3473 && ! sinfo->export_dynamic)
d044b40a
ILT
3474 {
3475 sinfo->removed_dynamic = true;
52c92c7f 3476 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
c19fbe0f 3477 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
d044b40a 3478 h->dynindx = -1;
be228e0d 3479 h->plt.offset = (bfd_vma) -1;
d044b40a
ILT
3480 /* FIXME: The name of the symbol has already been
3481 recorded in the dynamic string table section. */
3482 }
3483 }
3484 }
3485
3486 return true;
3487}
3488
3489/* This function is used to renumber the dynamic symbols, if some of
3490 them are removed because they are marked as local. This is called
3491 via elf_link_hash_traverse. */
3492
3493static boolean
3494elf_link_renumber_dynsyms (h, data)
3495 struct elf_link_hash_entry *h;
3496 PTR data;
3497{
3498 struct bfd_link_info *info = (struct bfd_link_info *) data;
3499
3500 if (h->dynindx != -1)
3501 {
3502 h->dynindx = elf_hash_table (info)->dynsymcount;
3503 ++elf_hash_table (info)->dynsymcount;
3504 }
3505
3506 return true;
3507}
3508\f
ede4eed4
KR
3509/* Final phase of ELF linker. */
3510
3511/* A structure we use to avoid passing large numbers of arguments. */
3512
3513struct elf_final_link_info
3514{
3515 /* General link information. */
3516 struct bfd_link_info *info;
3517 /* Output BFD. */
3518 bfd *output_bfd;
3519 /* Symbol string table. */
3520 struct bfd_strtab_hash *symstrtab;
3521 /* .dynsym section. */
3522 asection *dynsym_sec;
3523 /* .hash section. */
3524 asection *hash_sec;
d044b40a
ILT
3525 /* symbol version section (.gnu.version). */
3526 asection *symver_sec;
ede4eed4
KR
3527 /* Buffer large enough to hold contents of any section. */
3528 bfd_byte *contents;
3529 /* Buffer large enough to hold external relocs of any section. */
3530 PTR external_relocs;
3531 /* Buffer large enough to hold internal relocs of any section. */
3532 Elf_Internal_Rela *internal_relocs;
3533 /* Buffer large enough to hold external local symbols of any input
3534 BFD. */
3535 Elf_External_Sym *external_syms;
3536 /* Buffer large enough to hold internal local symbols of any input
3537 BFD. */
3538 Elf_Internal_Sym *internal_syms;
3539 /* Array large enough to hold a symbol index for each local symbol
3540 of any input BFD. */
3541 long *indices;
3542 /* Array large enough to hold a section pointer for each local
3543 symbol of any input BFD. */
3544 asection **sections;
3545 /* Buffer to hold swapped out symbols. */
3546 Elf_External_Sym *symbuf;
3547 /* Number of swapped out symbols in buffer. */
3548 size_t symbuf_count;
3549 /* Number of symbols which fit in symbuf. */
3550 size_t symbuf_size;
3551};
3552
3553static boolean elf_link_output_sym
3554 PARAMS ((struct elf_final_link_info *, const char *,
3555 Elf_Internal_Sym *, asection *));
3556static boolean elf_link_flush_output_syms
3557 PARAMS ((struct elf_final_link_info *));
3558static boolean elf_link_output_extsym
3559 PARAMS ((struct elf_link_hash_entry *, PTR));
3560static boolean elf_link_input_bfd
3561 PARAMS ((struct elf_final_link_info *, bfd *));
3562static boolean elf_reloc_link_order
3563 PARAMS ((bfd *, struct bfd_link_info *, asection *,
3564 struct bfd_link_order *));
3565
52c92c7f 3566/* This struct is used to pass information to elf_link_output_extsym. */
ede4eed4 3567
52c92c7f 3568struct elf_outext_info
ede4eed4
KR
3569{
3570 boolean failed;
52c92c7f 3571 boolean localsyms;
ede4eed4 3572 struct elf_final_link_info *finfo;
ff12f303 3573};
ede4eed4
KR
3574
3575/* Do the final step of an ELF link. */
3576
3577boolean
3578elf_bfd_final_link (abfd, info)
3579 bfd *abfd;
3580 struct bfd_link_info *info;
3581{
3582 boolean dynamic;
3583 bfd *dynobj;
3584 struct elf_final_link_info finfo;
3585 register asection *o;
3586 register struct bfd_link_order *p;
3587 register bfd *sub;
3588 size_t max_contents_size;
3589 size_t max_external_reloc_size;
3590 size_t max_internal_reloc_count;
3591 size_t max_sym_count;
3592 file_ptr off;
3593 Elf_Internal_Sym elfsym;
3594 unsigned int i;
3595 Elf_Internal_Shdr *symtab_hdr;
3596 Elf_Internal_Shdr *symstrtab_hdr;
3597 struct elf_backend_data *bed = get_elf_backend_data (abfd);
52c92c7f 3598 struct elf_outext_info eoinfo;
ede4eed4
KR
3599
3600 if (info->shared)
3601 abfd->flags |= DYNAMIC;
3602
3603 dynamic = elf_hash_table (info)->dynamic_sections_created;
3604 dynobj = elf_hash_table (info)->dynobj;
3605
3606 finfo.info = info;
3607 finfo.output_bfd = abfd;
3608 finfo.symstrtab = elf_stringtab_init ();
3609 if (finfo.symstrtab == NULL)
3610 return false;
d044b40a 3611
ede4eed4
KR
3612 if (! dynamic)
3613 {
3614 finfo.dynsym_sec = NULL;
3615 finfo.hash_sec = NULL;
d044b40a 3616 finfo.symver_sec = NULL;
ede4eed4
KR
3617 }
3618 else
3619 {
3620 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
3621 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
3622 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
d044b40a
ILT
3623 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
3624 /* Note that it is OK if symver_sec is NULL. */
ede4eed4 3625 }
d044b40a 3626
ede4eed4
KR
3627 finfo.contents = NULL;
3628 finfo.external_relocs = NULL;
3629 finfo.internal_relocs = NULL;
3630 finfo.external_syms = NULL;
3631 finfo.internal_syms = NULL;
3632 finfo.indices = NULL;
3633 finfo.sections = NULL;
3634 finfo.symbuf = NULL;
3635 finfo.symbuf_count = 0;
3636
3637 /* Count up the number of relocations we will output for each output
3638 section, so that we know the sizes of the reloc sections. We
3639 also figure out some maximum sizes. */
3640 max_contents_size = 0;
3641 max_external_reloc_size = 0;
3642 max_internal_reloc_count = 0;
3643 max_sym_count = 0;
3644 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
3645 {
3646 o->reloc_count = 0;
3647
3648 for (p = o->link_order_head; p != NULL; p = p->next)
3649 {
3650 if (p->type == bfd_section_reloc_link_order
3651 || p->type == bfd_symbol_reloc_link_order)
3652 ++o->reloc_count;
3653 else if (p->type == bfd_indirect_link_order)
3654 {
3655 asection *sec;
3656
3657 sec = p->u.indirect.section;
3658
7ec49f91
ILT
3659 /* Mark all sections which are to be included in the
3660 link. This will normally be every section. We need
3661 to do this so that we can identify any sections which
3662 the linker has decided to not include. */
ff0e4a93 3663 sec->linker_mark = true;
7ec49f91 3664
ede4eed4
KR
3665 if (info->relocateable)
3666 o->reloc_count += sec->reloc_count;
3667
3668 if (sec->_raw_size > max_contents_size)
3669 max_contents_size = sec->_raw_size;
3670 if (sec->_cooked_size > max_contents_size)
3671 max_contents_size = sec->_cooked_size;
3672
3673 /* We are interested in just local symbols, not all
3674 symbols. */
d044b40a
ILT
3675 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
3676 && (sec->owner->flags & DYNAMIC) == 0)
ede4eed4
KR
3677 {
3678 size_t sym_count;
3679
3680 if (elf_bad_symtab (sec->owner))
3681 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
3682 / sizeof (Elf_External_Sym));
3683 else
3684 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
3685
3686 if (sym_count > max_sym_count)
3687 max_sym_count = sym_count;
3688
3689 if ((sec->flags & SEC_RELOC) != 0)
3690 {
3691 size_t ext_size;
3692
3693 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
3694 if (ext_size > max_external_reloc_size)
3695 max_external_reloc_size = ext_size;
3696 if (sec->reloc_count > max_internal_reloc_count)
3697 max_internal_reloc_count = sec->reloc_count;
3698 }
3699 }
3700 }
3701 }
3702
3703 if (o->reloc_count > 0)
3704 o->flags |= SEC_RELOC;
3705 else
3706 {
3707 /* Explicitly clear the SEC_RELOC flag. The linker tends to
3708 set it (this is probably a bug) and if it is set
3709 assign_section_numbers will create a reloc section. */
3710 o->flags &=~ SEC_RELOC;
3711 }
3712
3713 /* If the SEC_ALLOC flag is not set, force the section VMA to
3714 zero. This is done in elf_fake_sections as well, but forcing
3715 the VMA to 0 here will ensure that relocs against these
3716 sections are handled correctly. */
2e0567eb
ILT
3717 if ((o->flags & SEC_ALLOC) == 0
3718 && ! o->user_set_vma)
ede4eed4
KR
3719 o->vma = 0;
3720 }
3721
3722 /* Figure out the file positions for everything but the symbol table
3723 and the relocs. We set symcount to force assign_section_numbers
3724 to create a symbol table. */
3725 abfd->symcount = info->strip == strip_all ? 0 : 1;
3726 BFD_ASSERT (! abfd->output_has_begun);
3727 if (! _bfd_elf_compute_section_file_positions (abfd, info))
3728 goto error_return;
3729
3730 /* That created the reloc sections. Set their sizes, and assign
3731 them file positions, and allocate some buffers. */
3732 for (o = abfd->sections; o != NULL; o = o->next)
3733 {
3734 if ((o->flags & SEC_RELOC) != 0)
3735 {
3736 Elf_Internal_Shdr *rel_hdr;
3737 register struct elf_link_hash_entry **p, **pend;
3738
3739 rel_hdr = &elf_section_data (o)->rel_hdr;
3740
3741 rel_hdr->sh_size = rel_hdr->sh_entsize * o->reloc_count;
3742
3743 /* The contents field must last into write_object_contents,
3744 so we allocate it with bfd_alloc rather than malloc. */
3745 rel_hdr->contents = (PTR) bfd_alloc (abfd, rel_hdr->sh_size);
3746 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
a9713b91 3747 goto error_return;
ede4eed4
KR
3748
3749 p = ((struct elf_link_hash_entry **)
58142f10
ILT
3750 bfd_malloc (o->reloc_count
3751 * sizeof (struct elf_link_hash_entry *)));
ede4eed4 3752 if (p == NULL && o->reloc_count != 0)
58142f10 3753 goto error_return;
ede4eed4
KR
3754 elf_section_data (o)->rel_hashes = p;
3755 pend = p + o->reloc_count;
3756 for (; p < pend; p++)
3757 *p = NULL;
3758
3759 /* Use the reloc_count field as an index when outputting the
3760 relocs. */
3761 o->reloc_count = 0;
3762 }
3763 }
3764
3765 _bfd_elf_assign_file_positions_for_relocs (abfd);
3766
3767 /* We have now assigned file positions for all the sections except
3768 .symtab and .strtab. We start the .symtab section at the current
3769 file position, and write directly to it. We build the .strtab
ab276dfa 3770 section in memory. */
ede4eed4
KR
3771 abfd->symcount = 0;
3772 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
3773 /* sh_name is set in prep_headers. */
3774 symtab_hdr->sh_type = SHT_SYMTAB;
3775 symtab_hdr->sh_flags = 0;
3776 symtab_hdr->sh_addr = 0;
3777 symtab_hdr->sh_size = 0;
3778 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
3779 /* sh_link is set in assign_section_numbers. */
3780 /* sh_info is set below. */
3781 /* sh_offset is set just below. */
3782 symtab_hdr->sh_addralign = 4; /* FIXME: system dependent? */
3783
3784 off = elf_tdata (abfd)->next_file_pos;
3785 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
3786
3787 /* Note that at this point elf_tdata (abfd)->next_file_pos is
3788 incorrect. We do not yet know the size of the .symtab section.
3789 We correct next_file_pos below, after we do know the size. */
3790
3791 /* Allocate a buffer to hold swapped out symbols. This is to avoid
3792 continuously seeking to the right position in the file. */
3793 if (! info->keep_memory || max_sym_count < 20)
3794 finfo.symbuf_size = 20;
3795 else
3796 finfo.symbuf_size = max_sym_count;
3797 finfo.symbuf = ((Elf_External_Sym *)
58142f10 3798 bfd_malloc (finfo.symbuf_size * sizeof (Elf_External_Sym)));
ede4eed4 3799 if (finfo.symbuf == NULL)
58142f10 3800 goto error_return;
ede4eed4
KR
3801
3802 /* Start writing out the symbol table. The first symbol is always a
3803 dummy symbol. */
28c16b55
ILT
3804 if (info->strip != strip_all || info->relocateable)
3805 {
3806 elfsym.st_value = 0;
3807 elfsym.st_size = 0;
3808 elfsym.st_info = 0;
3809 elfsym.st_other = 0;
3810 elfsym.st_shndx = SHN_UNDEF;
3811 if (! elf_link_output_sym (&finfo, (const char *) NULL,
3812 &elfsym, bfd_und_section_ptr))
3813 goto error_return;
3814 }
ede4eed4
KR
3815
3816#if 0
3817 /* Some standard ELF linkers do this, but we don't because it causes
3818 bootstrap comparison failures. */
3819 /* Output a file symbol for the output file as the second symbol.
3820 We output this even if we are discarding local symbols, although
3821 I'm not sure if this is correct. */
3822 elfsym.st_value = 0;
3823 elfsym.st_size = 0;
3824 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
3825 elfsym.st_other = 0;
3826 elfsym.st_shndx = SHN_ABS;
3827 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
3828 &elfsym, bfd_abs_section_ptr))
3829 goto error_return;
3830#endif
3831
3832 /* Output a symbol for each section. We output these even if we are
3833 discarding local symbols, since they are used for relocs. These
3834 symbols have no names. We store the index of each one in the
3835 index field of the section, so that we can find it again when
3836 outputting relocs. */
28c16b55 3837 if (info->strip != strip_all || info->relocateable)
ede4eed4 3838 {
28c16b55
ILT
3839 elfsym.st_size = 0;
3840 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
3841 elfsym.st_other = 0;
3842 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
3843 {
3844 o = section_from_elf_index (abfd, i);
3845 if (o != NULL)
3846 o->target_index = abfd->symcount;
3847 elfsym.st_shndx = i;
34bc6ffc
ILT
3848 if (info->relocateable || o == NULL)
3849 elfsym.st_value = 0;
3850 else
3851 elfsym.st_value = o->vma;
28c16b55
ILT
3852 if (! elf_link_output_sym (&finfo, (const char *) NULL,
3853 &elfsym, o))
3854 goto error_return;
3855 }
ede4eed4
KR
3856 }
3857
3858 /* Allocate some memory to hold information read in from the input
3859 files. */
58142f10
ILT
3860 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
3861 finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
ede4eed4 3862 finfo.internal_relocs = ((Elf_Internal_Rela *)
58142f10
ILT
3863 bfd_malloc (max_internal_reloc_count
3864 * sizeof (Elf_Internal_Rela)));
ede4eed4 3865 finfo.external_syms = ((Elf_External_Sym *)
58142f10
ILT
3866 bfd_malloc (max_sym_count
3867 * sizeof (Elf_External_Sym)));
ede4eed4 3868 finfo.internal_syms = ((Elf_Internal_Sym *)
58142f10
ILT
3869 bfd_malloc (max_sym_count
3870 * sizeof (Elf_Internal_Sym)));
3871 finfo.indices = (long *) bfd_malloc (max_sym_count * sizeof (long));
3872 finfo.sections = ((asection **)
3873 bfd_malloc (max_sym_count * sizeof (asection *)));
ede4eed4
KR
3874 if ((finfo.contents == NULL && max_contents_size != 0)
3875 || (finfo.external_relocs == NULL && max_external_reloc_size != 0)
3876 || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0)
3877 || (finfo.external_syms == NULL && max_sym_count != 0)
3878 || (finfo.internal_syms == NULL && max_sym_count != 0)
3879 || (finfo.indices == NULL && max_sym_count != 0)
3880 || (finfo.sections == NULL && max_sym_count != 0))
58142f10 3881 goto error_return;
ede4eed4
KR
3882
3883 /* Since ELF permits relocations to be against local symbols, we
3884 must have the local symbols available when we do the relocations.
3885 Since we would rather only read the local symbols once, and we
3886 would rather not keep them in memory, we handle all the
3887 relocations for a single input file at the same time.
3888
3889 Unfortunately, there is no way to know the total number of local
3890 symbols until we have seen all of them, and the local symbol
3891 indices precede the global symbol indices. This means that when
3892 we are generating relocateable output, and we see a reloc against
3893 a global symbol, we can not know the symbol index until we have
3894 finished examining all the local symbols to see which ones we are
3895 going to output. To deal with this, we keep the relocations in
3896 memory, and don't output them until the end of the link. This is
3897 an unfortunate waste of memory, but I don't see a good way around
3898 it. Fortunately, it only happens when performing a relocateable
3899 link, which is not the common case. FIXME: If keep_memory is set
3900 we could write the relocs out and then read them again; I don't
3901 know how bad the memory loss will be. */
3902
146f8b77 3903 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
ede4eed4
KR
3904 sub->output_has_begun = false;
3905 for (o = abfd->sections; o != NULL; o = o->next)
3906 {
3907 for (p = o->link_order_head; p != NULL; p = p->next)
3908 {
3909 if (p->type == bfd_indirect_link_order
3910 && (bfd_get_flavour (p->u.indirect.section->owner)
3911 == bfd_target_elf_flavour))
3912 {
3913 sub = p->u.indirect.section->owner;
3914 if (! sub->output_has_begun)
3915 {
3916 if (! elf_link_input_bfd (&finfo, sub))
3917 goto error_return;
3918 sub->output_has_begun = true;
3919 }
3920 }
3921 else if (p->type == bfd_section_reloc_link_order
3922 || p->type == bfd_symbol_reloc_link_order)
3923 {
3924 if (! elf_reloc_link_order (abfd, info, o, p))
3925 goto error_return;
3926 }
3927 else
3928 {
3929 if (! _bfd_default_link_order (abfd, info, o, p))
3930 goto error_return;
3931 }
3932 }
3933 }
3934
3935 /* That wrote out all the local symbols. Finish up the symbol table
3936 with the global symbols. */
3937
52c92c7f
ILT
3938 if (info->strip != strip_all && info->shared)
3939 {
3940 /* Output any global symbols that got converted to local in a
3941 version script. We do this in a separate step since ELF
3942 requires all local symbols to appear prior to any global
3943 symbols. FIXME: We should only do this if some global
3944 symbols were, in fact, converted to become local. FIXME:
3945 Will this work correctly with the Irix 5 linker? */
3946 eoinfo.failed = false;
3947 eoinfo.finfo = &finfo;
3948 eoinfo.localsyms = true;
3949 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
3950 (PTR) &eoinfo);
3951 if (eoinfo.failed)
3952 return false;
3953 }
3954
ede4eed4
KR
3955 /* The sh_info field records the index of the first non local
3956 symbol. */
3957 symtab_hdr->sh_info = abfd->symcount;
3958 if (dynamic)
3959 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info = 1;
3960
3961 /* We get the global symbols from the hash table. */
52c92c7f
ILT
3962 eoinfo.failed = false;
3963 eoinfo.localsyms = false;
3964 eoinfo.finfo = &finfo;
ede4eed4 3965 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
52c92c7f
ILT
3966 (PTR) &eoinfo);
3967 if (eoinfo.failed)
ede4eed4
KR
3968 return false;
3969
3970 /* Flush all symbols to the file. */
3971 if (! elf_link_flush_output_syms (&finfo))
3972 return false;
3973
3974 /* Now we know the size of the symtab section. */
3975 off += symtab_hdr->sh_size;
3976
3977 /* Finish up and write out the symbol string table (.strtab)
3978 section. */
3979 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
3980 /* sh_name was set in prep_headers. */
3981 symstrtab_hdr->sh_type = SHT_STRTAB;
3982 symstrtab_hdr->sh_flags = 0;
3983 symstrtab_hdr->sh_addr = 0;
3984 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
3985 symstrtab_hdr->sh_entsize = 0;
3986 symstrtab_hdr->sh_link = 0;
3987 symstrtab_hdr->sh_info = 0;
3988 /* sh_offset is set just below. */
3989 symstrtab_hdr->sh_addralign = 1;
3990
3991 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
3992 elf_tdata (abfd)->next_file_pos = off;
3993
28c16b55
ILT
3994 if (abfd->symcount > 0)
3995 {
3996 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
3997 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
3998 return false;
3999 }
ede4eed4
KR
4000
4001 /* Adjust the relocs to have the correct symbol indices. */
4002 for (o = abfd->sections; o != NULL; o = o->next)
4003 {
4004 struct elf_link_hash_entry **rel_hash;
4005 Elf_Internal_Shdr *rel_hdr;
4006
4007 if ((o->flags & SEC_RELOC) == 0)
4008 continue;
4009
4010 rel_hash = elf_section_data (o)->rel_hashes;
4011 rel_hdr = &elf_section_data (o)->rel_hdr;
4012 for (i = 0; i < o->reloc_count; i++, rel_hash++)
4013 {
4014 if (*rel_hash == NULL)
4015 continue;
ff12f303 4016
ede4eed4
KR
4017 BFD_ASSERT ((*rel_hash)->indx >= 0);
4018
4019 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
4020 {
4021 Elf_External_Rel *erel;
4022 Elf_Internal_Rel irel;
4023
4024 erel = (Elf_External_Rel *) rel_hdr->contents + i;
4025 elf_swap_reloc_in (abfd, erel, &irel);
4026 irel.r_info = ELF_R_INFO ((*rel_hash)->indx,
4027 ELF_R_TYPE (irel.r_info));
4028 elf_swap_reloc_out (abfd, &irel, erel);
4029 }
4030 else
4031 {
4032 Elf_External_Rela *erela;
4033 Elf_Internal_Rela irela;
4034
4035 BFD_ASSERT (rel_hdr->sh_entsize
4036 == sizeof (Elf_External_Rela));
4037
4038 erela = (Elf_External_Rela *) rel_hdr->contents + i;
4039 elf_swap_reloca_in (abfd, erela, &irela);
4040 irela.r_info = ELF_R_INFO ((*rel_hash)->indx,
4041 ELF_R_TYPE (irela.r_info));
4042 elf_swap_reloca_out (abfd, &irela, erela);
4043 }
4044 }
4045
4046 /* Set the reloc_count field to 0 to prevent write_relocs from
4047 trying to swap the relocs out itself. */
4048 o->reloc_count = 0;
4049 }
4050
4051 /* If we are linking against a dynamic object, or generating a
4052 shared library, finish up the dynamic linking information. */
4053 if (dynamic)
4054 {
4055 Elf_External_Dyn *dyncon, *dynconend;
4056
4057 /* Fix up .dynamic entries. */
4058 o = bfd_get_section_by_name (dynobj, ".dynamic");
4059 BFD_ASSERT (o != NULL);
4060
4061 dyncon = (Elf_External_Dyn *) o->contents;
4062 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
4063 for (; dyncon < dynconend; dyncon++)
4064 {
4065 Elf_Internal_Dyn dyn;
4066 const char *name;
4067 unsigned int type;
4068
4069 elf_swap_dyn_in (dynobj, dyncon, &dyn);
4070
4071 switch (dyn.d_tag)
4072 {
4073 default:
4074 break;
4075
4076 /* SVR4 linkers seem to set DT_INIT and DT_FINI based on
4077 magic _init and _fini symbols. This is pretty ugly,
4078 but we are compatible. */
4079 case DT_INIT:
4080 name = "_init";
4081 goto get_sym;
4082 case DT_FINI:
4083 name = "_fini";
4084 get_sym:
4085 {
4086 struct elf_link_hash_entry *h;
4087
4088 h = elf_link_hash_lookup (elf_hash_table (info), name,
4089 false, false, true);
d6f672b8
ILT
4090 if (h != NULL
4091 && (h->root.type == bfd_link_hash_defined
4092 || h->root.type == bfd_link_hash_defweak))
ede4eed4
KR
4093 {
4094 dyn.d_un.d_val = h->root.u.def.value;
4095 o = h->root.u.def.section;
4096 if (o->output_section != NULL)
4097 dyn.d_un.d_val += (o->output_section->vma
4098 + o->output_offset);
4099 else
d6f672b8
ILT
4100 {
4101 /* The symbol is imported from another shared
4102 library and does not apply to this one. */
4103 dyn.d_un.d_val = 0;
4104 }
4105
4106 elf_swap_dyn_out (dynobj, &dyn, dyncon);
ede4eed4 4107 }
ede4eed4
KR
4108 }
4109 break;
4110
4111 case DT_HASH:
4112 name = ".hash";
4113 goto get_vma;
4114 case DT_STRTAB:
4115 name = ".dynstr";
4116 goto get_vma;
4117 case DT_SYMTAB:
4118 name = ".dynsym";
d044b40a
ILT
4119 goto get_vma;
4120 case DT_VERDEF:
4121 name = ".gnu.version_d";
4122 goto get_vma;
4123 case DT_VERNEED:
4124 name = ".gnu.version_r";
4125 goto get_vma;
4126 case DT_VERSYM:
4127 name = ".gnu.version";
ede4eed4
KR
4128 get_vma:
4129 o = bfd_get_section_by_name (abfd, name);
4130 BFD_ASSERT (o != NULL);
4131 dyn.d_un.d_ptr = o->vma;
4132 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4133 break;
4134
4135 case DT_REL:
4136 case DT_RELA:
4137 case DT_RELSZ:
4138 case DT_RELASZ:
4139 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
4140 type = SHT_REL;
4141 else
4142 type = SHT_RELA;
4143 dyn.d_un.d_val = 0;
4144 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4145 {
4146 Elf_Internal_Shdr *hdr;
4147
4148 hdr = elf_elfsections (abfd)[i];
4149 if (hdr->sh_type == type
4150 && (hdr->sh_flags & SHF_ALLOC) != 0)
4151 {
4152 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
4153 dyn.d_un.d_val += hdr->sh_size;
4154 else
4155 {
4156 if (dyn.d_un.d_val == 0
4157 || hdr->sh_addr < dyn.d_un.d_val)
4158 dyn.d_un.d_val = hdr->sh_addr;
4159 }
4160 }
4161 }
4162 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4163 break;
4164 }
4165 }
4166 }
4167
4168 /* If we have created any dynamic sections, then output them. */
4169 if (dynobj != NULL)
4170 {
4171 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
4172 goto error_return;
4173
4174 for (o = dynobj->sections; o != NULL; o = o->next)
4175 {
4176 if ((o->flags & SEC_HAS_CONTENTS) == 0
4177 || o->_raw_size == 0)
4178 continue;
ff12f303 4179 if ((o->flags & SEC_LINKER_CREATED) == 0)
ede4eed4
KR
4180 {
4181 /* At this point, we are only interested in sections
ff12f303 4182 created by elf_link_create_dynamic_sections. */
ede4eed4
KR
4183 continue;
4184 }
4185 if ((elf_section_data (o->output_section)->this_hdr.sh_type
4186 != SHT_STRTAB)
4187 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
4188 {
4189 if (! bfd_set_section_contents (abfd, o->output_section,
4190 o->contents, o->output_offset,
4191 o->_raw_size))
4192 goto error_return;
4193 }
4194 else
4195 {
4196 file_ptr off;
4197
4198 /* The contents of the .dynstr section are actually in a
4199 stringtab. */
4200 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
4201 if (bfd_seek (abfd, off, SEEK_SET) != 0
4202 || ! _bfd_stringtab_emit (abfd,
4203 elf_hash_table (info)->dynstr))
4204 goto error_return;
4205 }
4206 }
4207 }
4208
1726b8f0
ILT
4209 /* If we have optimized stabs strings, output them. */
4210 if (elf_hash_table (info)->stab_info != NULL)
4211 {
4212 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
4213 goto error_return;
4214 }
4215
ede4eed4
KR
4216 if (finfo.symstrtab != NULL)
4217 _bfd_stringtab_free (finfo.symstrtab);
4218 if (finfo.contents != NULL)
4219 free (finfo.contents);
4220 if (finfo.external_relocs != NULL)
4221 free (finfo.external_relocs);
4222 if (finfo.internal_relocs != NULL)
4223 free (finfo.internal_relocs);
4224 if (finfo.external_syms != NULL)
4225 free (finfo.external_syms);
4226 if (finfo.internal_syms != NULL)
4227 free (finfo.internal_syms);
4228 if (finfo.indices != NULL)
4229 free (finfo.indices);
4230 if (finfo.sections != NULL)
4231 free (finfo.sections);
4232 if (finfo.symbuf != NULL)
4233 free (finfo.symbuf);
4234 for (o = abfd->sections; o != NULL; o = o->next)
4235 {
4236 if ((o->flags & SEC_RELOC) != 0
4237 && elf_section_data (o)->rel_hashes != NULL)
4238 free (elf_section_data (o)->rel_hashes);
4239 }
4240
4241 elf_tdata (abfd)->linker = true;
4242
4243 return true;
4244
4245 error_return:
4246 if (finfo.symstrtab != NULL)
4247 _bfd_stringtab_free (finfo.symstrtab);
4248 if (finfo.contents != NULL)
4249 free (finfo.contents);
4250 if (finfo.external_relocs != NULL)
4251 free (finfo.external_relocs);
4252 if (finfo.internal_relocs != NULL)
4253 free (finfo.internal_relocs);
4254 if (finfo.external_syms != NULL)
4255 free (finfo.external_syms);
4256 if (finfo.internal_syms != NULL)
4257 free (finfo.internal_syms);
4258 if (finfo.indices != NULL)
4259 free (finfo.indices);
4260 if (finfo.sections != NULL)
4261 free (finfo.sections);
4262 if (finfo.symbuf != NULL)
4263 free (finfo.symbuf);
4264 for (o = abfd->sections; o != NULL; o = o->next)
4265 {
4266 if ((o->flags & SEC_RELOC) != 0
4267 && elf_section_data (o)->rel_hashes != NULL)
4268 free (elf_section_data (o)->rel_hashes);
4269 }
4270
4271 return false;
4272}
4273
4274/* Add a symbol to the output symbol table. */
4275
4276static boolean
4277elf_link_output_sym (finfo, name, elfsym, input_sec)
4278 struct elf_final_link_info *finfo;
4279 const char *name;
4280 Elf_Internal_Sym *elfsym;
4281 asection *input_sec;
4282{
4283 boolean (*output_symbol_hook) PARAMS ((bfd *,
4284 struct bfd_link_info *info,
4285 const char *,
4286 Elf_Internal_Sym *,
4287 asection *));
4288
4289 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
4290 elf_backend_link_output_symbol_hook;
4291 if (output_symbol_hook != NULL)
4292 {
4293 if (! ((*output_symbol_hook)
4294 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
4295 return false;
4296 }
4297
4298 if (name == (const char *) NULL || *name == '\0')
4299 elfsym->st_name = 0;
4300 else
4301 {
4302 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
4303 name, true,
4304 false);
4305 if (elfsym->st_name == (unsigned long) -1)
4306 return false;
4307 }
4308
4309 if (finfo->symbuf_count >= finfo->symbuf_size)
4310 {
4311 if (! elf_link_flush_output_syms (finfo))
4312 return false;
4313 }
4314
4315 elf_swap_symbol_out (finfo->output_bfd, elfsym,
cf9fb9f2 4316 (PTR) (finfo->symbuf + finfo->symbuf_count));
ede4eed4
KR
4317 ++finfo->symbuf_count;
4318
4319 ++finfo->output_bfd->symcount;
4320
4321 return true;
4322}
4323
4324/* Flush the output symbols to the file. */
4325
4326static boolean
4327elf_link_flush_output_syms (finfo)
4328 struct elf_final_link_info *finfo;
4329{
28c16b55
ILT
4330 if (finfo->symbuf_count > 0)
4331 {
4332 Elf_Internal_Shdr *symtab;
ede4eed4 4333
28c16b55 4334 symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr;
ede4eed4 4335
28c16b55
ILT
4336 if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size,
4337 SEEK_SET) != 0
4338 || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count,
4339 sizeof (Elf_External_Sym), finfo->output_bfd)
4340 != finfo->symbuf_count * sizeof (Elf_External_Sym)))
4341 return false;
ede4eed4 4342
28c16b55 4343 symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym);
ede4eed4 4344
28c16b55
ILT
4345 finfo->symbuf_count = 0;
4346 }
ede4eed4
KR
4347
4348 return true;
4349}
4350
4351/* Add an external symbol to the symbol table. This is called from
52c92c7f
ILT
4352 the hash table traversal routine. When generating a shared object,
4353 we go through the symbol table twice. The first time we output
4354 anything that might have been forced to local scope in a version
4355 script. The second time we output the symbols that are still
4356 global symbols. */
ede4eed4
KR
4357
4358static boolean
4359elf_link_output_extsym (h, data)
4360 struct elf_link_hash_entry *h;
4361 PTR data;
4362{
52c92c7f
ILT
4363 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
4364 struct elf_final_link_info *finfo = eoinfo->finfo;
ede4eed4
KR
4365 boolean strip;
4366 Elf_Internal_Sym sym;
4367 asection *input_sec;
4368
52c92c7f
ILT
4369 /* Decide whether to output this symbol in this pass. */
4370 if (eoinfo->localsyms)
4371 {
4372 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
4373 return true;
4374 }
4375 else
4376 {
4377 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4378 return true;
4379 }
4380
ede4eed4
KR
4381 /* If we are not creating a shared library, and this symbol is
4382 referenced by a shared library but is not defined anywhere, then
4383 warn that it is undefined. If we do not do this, the runtime
4384 linker will complain that the symbol is undefined when the
4385 program is run. We don't have to worry about symbols that are
4386 referenced by regular files, because we will already have issued
252239f8 4387 warnings for them. */
ede4eed4
KR
4388 if (! finfo->info->relocateable
4389 && ! finfo->info->shared
4390 && h->root.type == bfd_link_hash_undefined
4391 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
252239f8 4392 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
ede4eed4
KR
4393 {
4394 if (! ((*finfo->info->callbacks->undefined_symbol)
4395 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
4396 (asection *) NULL, 0)))
4397 {
52c92c7f 4398 eoinfo->failed = true;
ede4eed4
KR
4399 return false;
4400 }
4401 }
4402
4403 /* We don't want to output symbols that have never been mentioned by
4404 a regular file, or that we have been told to strip. However, if
4405 h->indx is set to -2, the symbol is used by a reloc and we must
4406 output it. */
4407 if (h->indx == -2)
4408 strip = false;
4409 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
4410 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
4411 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
4412 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4413 strip = true;
4414 else if (finfo->info->strip == strip_all
4415 || (finfo->info->strip == strip_some
4416 && bfd_hash_lookup (finfo->info->keep_hash,
4417 h->root.root.string,
4418 false, false) == NULL))
4419 strip = true;
4420 else
4421 strip = false;
4422
4423 /* If we're stripping it, and it's not a dynamic symbol, there's
4424 nothing else to do. */
4425 if (strip && h->dynindx == -1)
4426 return true;
4427
4428 sym.st_value = 0;
4429 sym.st_size = h->size;
6c02f1a0 4430 sym.st_other = h->other;
52c92c7f
ILT
4431 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4432 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
4433 else if (h->root.type == bfd_link_hash_undefweak
4434 || h->root.type == bfd_link_hash_defweak)
ede4eed4
KR
4435 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
4436 else
4437 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
4438
4439 switch (h->root.type)
4440 {
4441 default:
4442 case bfd_link_hash_new:
4443 abort ();
4444 return false;
4445
4446 case bfd_link_hash_undefined:
4447 input_sec = bfd_und_section_ptr;
4448 sym.st_shndx = SHN_UNDEF;
4449 break;
4450
4451 case bfd_link_hash_undefweak:
4452 input_sec = bfd_und_section_ptr;
4453 sym.st_shndx = SHN_UNDEF;
4454 break;
4455
4456 case bfd_link_hash_defined:
4457 case bfd_link_hash_defweak:
4458 {
4459 input_sec = h->root.u.def.section;
4460 if (input_sec->output_section != NULL)
4461 {
4462 sym.st_shndx =
4463 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
4464 input_sec->output_section);
4465 if (sym.st_shndx == (unsigned short) -1)
4466 {
e1079cda
ILT
4467 (*_bfd_error_handler)
4468 (_("%s: could not find output section %s for input section %s"),
4469 bfd_get_filename (finfo->output_bfd),
4470 input_sec->output_section->name,
4471 input_sec->name);
52c92c7f 4472 eoinfo->failed = true;
ede4eed4
KR
4473 return false;
4474 }
4475
4476 /* ELF symbols in relocateable files are section relative,
4477 but in nonrelocateable files they are virtual
4478 addresses. */
4479 sym.st_value = h->root.u.def.value + input_sec->output_offset;
4480 if (! finfo->info->relocateable)
4481 sym.st_value += input_sec->output_section->vma;
4482 }
4483 else
4484 {
e549b1d2
ILT
4485 BFD_ASSERT (input_sec->owner == NULL
4486 || (input_sec->owner->flags & DYNAMIC) != 0);
ede4eed4
KR
4487 sym.st_shndx = SHN_UNDEF;
4488 input_sec = bfd_und_section_ptr;
4489 }
4490 }
4491 break;
4492
4493 case bfd_link_hash_common:
8211c929 4494 input_sec = h->root.u.c.p->section;
ede4eed4
KR
4495 sym.st_shndx = SHN_COMMON;
4496 sym.st_value = 1 << h->root.u.c.p->alignment_power;
4497 break;
4498
4499 case bfd_link_hash_indirect:
d044b40a
ILT
4500 /* These symbols are created by symbol versioning. They point
4501 to the decorated version of the name. For example, if the
4502 symbol foo@@GNU_1.2 is the default, which should be used when
4503 foo is used with no version, then we add an indirect symbol
d6bfcdb5
ILT
4504 foo which points to foo@@GNU_1.2. We ignore these symbols,
4505 since the indirected symbol is already in the hash table. If
4506 the indirect symbol is non-ELF, fall through and output it. */
4507 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) == 0)
d044b40a
ILT
4508 return true;
4509
4510 /* Fall through. */
ede4eed4 4511 case bfd_link_hash_warning:
d044b40a
ILT
4512 /* We can't represent these symbols in ELF, although a warning
4513 symbol may have come from a .gnu.warning.SYMBOL section. We
1f4ae0d6
ILT
4514 just put the target symbol in the hash table. If the target
4515 symbol does not really exist, don't do anything. */
4516 if (h->root.u.i.link->type == bfd_link_hash_new)
4517 return true;
0cb70568
ILT
4518 return (elf_link_output_extsym
4519 ((struct elf_link_hash_entry *) h->root.u.i.link, data));
ede4eed4
KR
4520 }
4521
8519ea21
ILT
4522 /* Give the processor backend a chance to tweak the symbol value,
4523 and also to finish up anything that needs to be done for this
4524 symbol. */
4525 if ((h->dynindx != -1
4526 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4527 && elf_hash_table (finfo->info)->dynamic_sections_created)
4528 {
4529 struct elf_backend_data *bed;
4530
4531 bed = get_elf_backend_data (finfo->output_bfd);
4532 if (! ((*bed->elf_backend_finish_dynamic_symbol)
4533 (finfo->output_bfd, finfo->info, h, &sym)))
4534 {
4535 eoinfo->failed = true;
4536 return false;
4537 }
4538 }
4539
ede4eed4
KR
4540 /* If this symbol should be put in the .dynsym section, then put it
4541 there now. We have already know the symbol index. We also fill
4542 in the entry in the .hash section. */
4543 if (h->dynindx != -1
4544 && elf_hash_table (finfo->info)->dynamic_sections_created)
4545 {
ede4eed4
KR
4546 size_t bucketcount;
4547 size_t bucket;
4548 bfd_byte *bucketpos;
4549 bfd_vma chain;
4550
4551 sym.st_name = h->dynstr_index;
4552
ede4eed4 4553 elf_swap_symbol_out (finfo->output_bfd, &sym,
cf9fb9f2
ILT
4554 (PTR) (((Elf_External_Sym *)
4555 finfo->dynsym_sec->contents)
4556 + h->dynindx));
ede4eed4
KR
4557
4558 bucketcount = elf_hash_table (finfo->info)->bucketcount;
e429c897 4559 bucket = h->elf_hash_value % bucketcount;
ede4eed4
KR
4560 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
4561 + (bucket + 2) * (ARCH_SIZE / 8));
4562 chain = get_word (finfo->output_bfd, bucketpos);
4563 put_word (finfo->output_bfd, h->dynindx, bucketpos);
4564 put_word (finfo->output_bfd, chain,
4565 ((bfd_byte *) finfo->hash_sec->contents
4566 + (bucketcount + 2 + h->dynindx) * (ARCH_SIZE / 8)));
d044b40a 4567
d044b40a
ILT
4568 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
4569 {
4570 Elf_Internal_Versym iversym;
4571
4572 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4573 {
4574 if (h->verinfo.verdef == NULL)
4575 iversym.vs_vers = 0;
4576 else
4577 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
4578 }
4579 else
4580 {
4581 if (h->verinfo.vertree == NULL)
4582 iversym.vs_vers = 1;
4583 else
4584 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
4585 }
4586
4587 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
4588 iversym.vs_vers |= VERSYM_HIDDEN;
4589
4590 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym,
4591 (((Elf_External_Versym *)
4592 finfo->symver_sec->contents)
4593 + h->dynindx));
4594 }
ede4eed4
KR
4595 }
4596
4597 /* If we're stripping it, then it was just a dynamic symbol, and
4598 there's nothing else to do. */
4599 if (strip)
4600 return true;
4601
4602 h->indx = finfo->output_bfd->symcount;
4603
4604 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
4605 {
52c92c7f 4606 eoinfo->failed = true;
ede4eed4
KR
4607 return false;
4608 }
4609
4610 return true;
4611}
4612
4613/* Link an input file into the linker output file. This function
4614 handles all the sections and relocations of the input file at once.
4615 This is so that we only have to read the local symbols once, and
4616 don't have to keep them in memory. */
4617
4618static boolean
4619elf_link_input_bfd (finfo, input_bfd)
4620 struct elf_final_link_info *finfo;
4621 bfd *input_bfd;
4622{
4623 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
4624 bfd *, asection *, bfd_byte *,
4625 Elf_Internal_Rela *,
4626 Elf_Internal_Sym *, asection **));
4627 bfd *output_bfd;
4628 Elf_Internal_Shdr *symtab_hdr;
4629 size_t locsymcount;
4630 size_t extsymoff;
c86158e5 4631 Elf_External_Sym *external_syms;
ede4eed4
KR
4632 Elf_External_Sym *esym;
4633 Elf_External_Sym *esymend;
4634 Elf_Internal_Sym *isym;
4635 long *pindex;
4636 asection **ppsection;
4637 asection *o;
4638
4639 output_bfd = finfo->output_bfd;
4640 relocate_section =
4641 get_elf_backend_data (output_bfd)->elf_backend_relocate_section;
4642
4643 /* If this is a dynamic object, we don't want to do anything here:
4644 we don't want the local symbols, and we don't want the section
4645 contents. */
d044b40a 4646 if ((input_bfd->flags & DYNAMIC) != 0)
ede4eed4
KR
4647 return true;
4648
4649 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4650 if (elf_bad_symtab (input_bfd))
4651 {
4652 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
4653 extsymoff = 0;
4654 }
4655 else
4656 {
4657 locsymcount = symtab_hdr->sh_info;
4658 extsymoff = symtab_hdr->sh_info;
4659 }
4660
4661 /* Read the local symbols. */
c86158e5
ILT
4662 if (symtab_hdr->contents != NULL)
4663 external_syms = (Elf_External_Sym *) symtab_hdr->contents;
4664 else if (locsymcount == 0)
4665 external_syms = NULL;
4666 else
4667 {
4668 external_syms = finfo->external_syms;
4669 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
4670 || (bfd_read (external_syms, sizeof (Elf_External_Sym),
ede4eed4 4671 locsymcount, input_bfd)
c86158e5
ILT
4672 != locsymcount * sizeof (Elf_External_Sym)))
4673 return false;
4674 }
ede4eed4
KR
4675
4676 /* Swap in the local symbols and write out the ones which we know
4677 are going into the output file. */
c86158e5 4678 esym = external_syms;
ede4eed4
KR
4679 esymend = esym + locsymcount;
4680 isym = finfo->internal_syms;
4681 pindex = finfo->indices;
4682 ppsection = finfo->sections;
4683 for (; esym < esymend; esym++, isym++, pindex++, ppsection++)
4684 {
4685 asection *isec;
4686 const char *name;
4687 Elf_Internal_Sym osym;
4688
4689 elf_swap_symbol_in (input_bfd, esym, isym);
4690 *pindex = -1;
4691
4692 if (elf_bad_symtab (input_bfd))
4693 {
4694 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
4695 {
4696 *ppsection = NULL;
4697 continue;
4698 }
4699 }
4700
4701 if (isym->st_shndx == SHN_UNDEF)
4702 isec = bfd_und_section_ptr;
4703 else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE)
4704 isec = section_from_elf_index (input_bfd, isym->st_shndx);
4705 else if (isym->st_shndx == SHN_ABS)
4706 isec = bfd_abs_section_ptr;
4707 else if (isym->st_shndx == SHN_COMMON)
4708 isec = bfd_com_section_ptr;
4709 else
4710 {
4711 /* Who knows? */
4712 isec = NULL;
4713 }
4714
4715 *ppsection = isec;
4716
4717 /* Don't output the first, undefined, symbol. */
c86158e5 4718 if (esym == external_syms)
ede4eed4
KR
4719 continue;
4720
4721 /* If we are stripping all symbols, we don't want to output this
4722 one. */
4723 if (finfo->info->strip == strip_all)
4724 continue;
4725
4726 /* We never output section symbols. Instead, we use the section
4727 symbol of the corresponding section in the output file. */
4728 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4729 continue;
4730
4731 /* If we are discarding all local symbols, we don't want to
4732 output this one. If we are generating a relocateable output
4733 file, then some of the local symbols may be required by
4734 relocs; we output them below as we discover that they are
4735 needed. */
4736 if (finfo->info->discard == discard_all)
4737 continue;
4738
258b1f5d 4739 /* If this symbol is defined in a section which we are
fa802cb0
ILT
4740 discarding, we don't need to keep it, but note that
4741 linker_mark is only reliable for sections that have contents.
4742 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
4743 as well as linker_mark. */
258b1f5d
ILT
4744 if (isym->st_shndx > 0
4745 && isym->st_shndx < SHN_LORESERVE
4746 && isec != NULL
fa802cb0 4747 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
258b1f5d
ILT
4748 || (! finfo->info->relocateable
4749 && (isec->flags & SEC_EXCLUDE) != 0)))
4750 continue;
4751
ede4eed4
KR
4752 /* Get the name of the symbol. */
4753 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
258b1f5d 4754 isym->st_name);
ede4eed4
KR
4755 if (name == NULL)
4756 return false;
4757
4758 /* See if we are discarding symbols with this name. */
4759 if ((finfo->info->strip == strip_some
4760 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
4761 == NULL))
4762 || (finfo->info->discard == discard_l
e316f514 4763 && bfd_is_local_label_name (input_bfd, name)))
ede4eed4
KR
4764 continue;
4765
4766 /* If we get here, we are going to output this symbol. */
4767
4768 osym = *isym;
4769
4770 /* Adjust the section index for the output file. */
4771 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
4772 isec->output_section);
4773 if (osym.st_shndx == (unsigned short) -1)
4774 return false;
4775
4776 *pindex = output_bfd->symcount;
4777
4778 /* ELF symbols in relocateable files are section relative, but
4779 in executable files they are virtual addresses. Note that
4780 this code assumes that all ELF sections have an associated
4781 BFD section with a reasonable value for output_offset; below
4782 we assume that they also have a reasonable value for
4783 output_section. Any special sections must be set up to meet
4784 these requirements. */
4785 osym.st_value += isec->output_offset;
4786 if (! finfo->info->relocateable)
4787 osym.st_value += isec->output_section->vma;
4788
4789 if (! elf_link_output_sym (finfo, name, &osym, isec))
4790 return false;
4791 }
4792
4793 /* Relocate the contents of each section. */
4794 for (o = input_bfd->sections; o != NULL; o = o->next)
4795 {
c86158e5
ILT
4796 bfd_byte *contents;
4797
ff0e4a93 4798 if (! o->linker_mark)
7ec49f91
ILT
4799 {
4800 /* This section was omitted from the link. */
4801 continue;
4802 }
4803
1726b8f0
ILT
4804 if ((o->flags & SEC_HAS_CONTENTS) == 0
4805 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
ede4eed4
KR
4806 continue;
4807
ff12f303 4808 if ((o->flags & SEC_LINKER_CREATED) != 0)
ede4eed4 4809 {
ff12f303
ILT
4810 /* Section was created by elf_link_create_dynamic_sections
4811 or somesuch. */
ede4eed4
KR
4812 continue;
4813 }
4814
c86158e5
ILT
4815 /* Get the contents of the section. They have been cached by a
4816 relaxation routine. Note that o is a section in an input
4817 file, so the contents field will not have been set by any of
4818 the routines which work on output files. */
4819 if (elf_section_data (o)->this_hdr.contents != NULL)
4820 contents = elf_section_data (o)->this_hdr.contents;
4821 else
4822 {
4823 contents = finfo->contents;
4824 if (! bfd_get_section_contents (input_bfd, o, contents,
4825 (file_ptr) 0, o->_raw_size))
4826 return false;
4827 }
ede4eed4
KR
4828
4829 if ((o->flags & SEC_RELOC) != 0)
4830 {
4831 Elf_Internal_Rela *internal_relocs;
4832
4833 /* Get the swapped relocs. */
c86158e5
ILT
4834 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
4835 (input_bfd, o, finfo->external_relocs,
4836 finfo->internal_relocs, false));
ede4eed4
KR
4837 if (internal_relocs == NULL
4838 && o->reloc_count > 0)
4839 return false;
4840
4841 /* Relocate the section by invoking a back end routine.
4842
4843 The back end routine is responsible for adjusting the
4844 section contents as necessary, and (if using Rela relocs
4845 and generating a relocateable output file) adjusting the
4846 reloc addend as necessary.
4847
4848 The back end routine does not have to worry about setting
4849 the reloc address or the reloc symbol index.
4850
4851 The back end routine is given a pointer to the swapped in
4852 internal symbols, and can access the hash table entries
4853 for the external symbols via elf_sym_hashes (input_bfd).
4854
4855 When generating relocateable output, the back end routine
4856 must handle STB_LOCAL/STT_SECTION symbols specially. The
4857 output symbol is going to be a section symbol
4858 corresponding to the output section, which will require
4859 the addend to be adjusted. */
4860
4861 if (! (*relocate_section) (output_bfd, finfo->info,
c86158e5 4862 input_bfd, o, contents,
ede4eed4
KR
4863 internal_relocs,
4864 finfo->internal_syms,
4865 finfo->sections))
4866 return false;
4867
4868 if (finfo->info->relocateable)
4869 {
4870 Elf_Internal_Rela *irela;
4871 Elf_Internal_Rela *irelaend;
4872 struct elf_link_hash_entry **rel_hash;
4873 Elf_Internal_Shdr *input_rel_hdr;
4874 Elf_Internal_Shdr *output_rel_hdr;
4875
4876 /* Adjust the reloc addresses and symbol indices. */
4877
4878 irela = internal_relocs;
4879 irelaend = irela + o->reloc_count;
4880 rel_hash = (elf_section_data (o->output_section)->rel_hashes
4881 + o->output_section->reloc_count);
4882 for (; irela < irelaend; irela++, rel_hash++)
4883 {
ae115e51 4884 unsigned long r_symndx;
ede4eed4
KR
4885 Elf_Internal_Sym *isym;
4886 asection *sec;
4887
4888 irela->r_offset += o->output_offset;
4889
4890 r_symndx = ELF_R_SYM (irela->r_info);
4891
4892 if (r_symndx == 0)
4893 continue;
4894
4895 if (r_symndx >= locsymcount
4896 || (elf_bad_symtab (input_bfd)
4897 && finfo->sections[r_symndx] == NULL))
4898 {
5ee8d932 4899 struct elf_link_hash_entry *rh;
ede4eed4
KR
4900 long indx;
4901
4902 /* This is a reloc against a global symbol. We
4903 have not yet output all the local symbols, so
4904 we do not know the symbol index of any global
4905 symbol. We set the rel_hash entry for this
4906 reloc to point to the global hash table entry
4907 for this symbol. The symbol index is then
4908 set at the end of elf_bfd_final_link. */
4909 indx = r_symndx - extsymoff;
5ee8d932
ILT
4910 rh = elf_sym_hashes (input_bfd)[indx];
4911 while (rh->root.type == bfd_link_hash_indirect
4912 || rh->root.type == bfd_link_hash_warning)
4913 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
ede4eed4
KR
4914
4915 /* Setting the index to -2 tells
4916 elf_link_output_extsym that this symbol is
4917 used by a reloc. */
5ee8d932
ILT
4918 BFD_ASSERT (rh->indx < 0);
4919 rh->indx = -2;
4920
4921 *rel_hash = rh;
ede4eed4
KR
4922
4923 continue;
4924 }
4925
4926 /* This is a reloc against a local symbol. */
4927
4928 *rel_hash = NULL;
4929 isym = finfo->internal_syms + r_symndx;
4930 sec = finfo->sections[r_symndx];
4931 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4932 {
4933 /* I suppose the backend ought to fill in the
4934 section of any STT_SECTION symbol against a
ba4a4594
ILT
4935 processor specific section. If we have
4936 discarded a section, the output_section will
4937 be the absolute section. */
4938 if (sec != NULL
4939 && (bfd_is_abs_section (sec)
4940 || (sec->output_section != NULL
4941 && bfd_is_abs_section (sec->output_section))))
ede4eed4
KR
4942 r_symndx = 0;
4943 else if (sec == NULL || sec->owner == NULL)
4944 {
4945 bfd_set_error (bfd_error_bad_value);
4946 return false;
4947 }
4948 else
4949 {
4950 r_symndx = sec->output_section->target_index;
4951 BFD_ASSERT (r_symndx != 0);
4952 }
4953 }
4954 else
4955 {
4956 if (finfo->indices[r_symndx] == -1)
4957 {
4958 unsigned long link;
4959 const char *name;
4960 asection *osec;
4961
4962 if (finfo->info->strip == strip_all)
4963 {
4964 /* You can't do ld -r -s. */
4965 bfd_set_error (bfd_error_invalid_operation);
4966 return false;
4967 }
4968
4969 /* This symbol was skipped earlier, but
4970 since it is needed by a reloc, we
4971 must output it now. */
4972 link = symtab_hdr->sh_link;
4973 name = bfd_elf_string_from_elf_section (input_bfd,
4974 link,
4975 isym->st_name);
4976 if (name == NULL)
4977 return false;
4978
4979 osec = sec->output_section;
4980 isym->st_shndx =
4981 _bfd_elf_section_from_bfd_section (output_bfd,
4982 osec);
4983 if (isym->st_shndx == (unsigned short) -1)
4984 return false;
4985
4986 isym->st_value += sec->output_offset;
4987 if (! finfo->info->relocateable)
4988 isym->st_value += osec->vma;
4989
4990 finfo->indices[r_symndx] = output_bfd->symcount;
4991
4992 if (! elf_link_output_sym (finfo, name, isym, sec))
4993 return false;
4994 }
4995
4996 r_symndx = finfo->indices[r_symndx];
4997 }
4998
4999 irela->r_info = ELF_R_INFO (r_symndx,
5000 ELF_R_TYPE (irela->r_info));
5001 }
5002
5003 /* Swap out the relocs. */
5004 input_rel_hdr = &elf_section_data (o)->rel_hdr;
5005 output_rel_hdr = &elf_section_data (o->output_section)->rel_hdr;
5006 BFD_ASSERT (output_rel_hdr->sh_entsize
5007 == input_rel_hdr->sh_entsize);
5008 irela = internal_relocs;
5009 irelaend = irela + o->reloc_count;
5010 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
5011 {
5012 Elf_External_Rel *erel;
5013
5014 erel = ((Elf_External_Rel *) output_rel_hdr->contents
5015 + o->output_section->reloc_count);
5016 for (; irela < irelaend; irela++, erel++)
5017 {
5018 Elf_Internal_Rel irel;
5019
5020 irel.r_offset = irela->r_offset;
5021 irel.r_info = irela->r_info;
5022 BFD_ASSERT (irela->r_addend == 0);
5023 elf_swap_reloc_out (output_bfd, &irel, erel);
5024 }
5025 }
5026 else
5027 {
5028 Elf_External_Rela *erela;
5029
5030 BFD_ASSERT (input_rel_hdr->sh_entsize
5031 == sizeof (Elf_External_Rela));
5032 erela = ((Elf_External_Rela *) output_rel_hdr->contents
5033 + o->output_section->reloc_count);
5034 for (; irela < irelaend; irela++, erela++)
5035 elf_swap_reloca_out (output_bfd, irela, erela);
5036 }
5037
5038 o->output_section->reloc_count += o->reloc_count;
5039 }
5040 }
5041
5042 /* Write out the modified section contents. */
1726b8f0
ILT
5043 if (elf_section_data (o)->stab_info == NULL)
5044 {
303b4cc6
RH
5045 if (! (o->flags & SEC_EXCLUDE) &&
5046 ! bfd_set_section_contents (output_bfd, o->output_section,
c86158e5 5047 contents, o->output_offset,
1726b8f0
ILT
5048 (o->_cooked_size != 0
5049 ? o->_cooked_size
5050 : o->_raw_size)))
5051 return false;
5052 }
5053 else
5054 {
3cd5cf3d
ILT
5055 if (! (_bfd_write_section_stabs
5056 (output_bfd, &elf_hash_table (finfo->info)->stab_info,
5057 o, &elf_section_data (o)->stab_info, contents)))
1726b8f0
ILT
5058 return false;
5059 }
ede4eed4
KR
5060 }
5061
5062 return true;
5063}
5064
5065/* Generate a reloc when linking an ELF file. This is a reloc
5066 requested by the linker, and does come from any input file. This
5067 is used to build constructor and destructor tables when linking
5068 with -Ur. */
5069
5070static boolean
5071elf_reloc_link_order (output_bfd, info, output_section, link_order)
5072 bfd *output_bfd;
5073 struct bfd_link_info *info;
5074 asection *output_section;
5075 struct bfd_link_order *link_order;
5076{
5077 reloc_howto_type *howto;
5078 long indx;
5079 bfd_vma offset;
5b3b9ff6 5080 bfd_vma addend;
ede4eed4
KR
5081 struct elf_link_hash_entry **rel_hash_ptr;
5082 Elf_Internal_Shdr *rel_hdr;
5083
5084 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
5085 if (howto == NULL)
5086 {
5087 bfd_set_error (bfd_error_bad_value);
5088 return false;
5089 }
5090
5b3b9ff6
ILT
5091 addend = link_order->u.reloc.p->addend;
5092
5093 /* Figure out the symbol index. */
5094 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
5095 + output_section->reloc_count);
5096 if (link_order->type == bfd_section_reloc_link_order)
5097 {
5098 indx = link_order->u.reloc.p->u.section->target_index;
5099 BFD_ASSERT (indx != 0);
5100 *rel_hash_ptr = NULL;
5101 }
5102 else
5103 {
5104 struct elf_link_hash_entry *h;
5105
5106 /* Treat a reloc against a defined symbol as though it were
5107 actually against the section. */
8881b321
ILT
5108 h = ((struct elf_link_hash_entry *)
5109 bfd_wrapped_link_hash_lookup (output_bfd, info,
5110 link_order->u.reloc.p->u.name,
5111 false, false, true));
5b3b9ff6
ILT
5112 if (h != NULL
5113 && (h->root.type == bfd_link_hash_defined
5114 || h->root.type == bfd_link_hash_defweak))
5115 {
5116 asection *section;
5117
5118 section = h->root.u.def.section;
5119 indx = section->output_section->target_index;
5120 *rel_hash_ptr = NULL;
5121 /* It seems that we ought to add the symbol value to the
5122 addend here, but in practice it has already been added
5123 because it was passed to constructor_callback. */
5124 addend += section->output_section->vma + section->output_offset;
5125 }
5126 else if (h != NULL)
5127 {
5128 /* Setting the index to -2 tells elf_link_output_extsym that
5129 this symbol is used by a reloc. */
5130 h->indx = -2;
5131 *rel_hash_ptr = h;
5132 indx = 0;
5133 }
5134 else
5135 {
5136 if (! ((*info->callbacks->unattached_reloc)
5137 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
5138 (asection *) NULL, (bfd_vma) 0)))
5139 return false;
5140 indx = 0;
5141 }
5142 }
5143
ede4eed4
KR
5144 /* If this is an inplace reloc, we must write the addend into the
5145 object file. */
5b3b9ff6 5146 if (howto->partial_inplace && addend != 0)
ede4eed4
KR
5147 {
5148 bfd_size_type size;
5149 bfd_reloc_status_type rstat;
5150 bfd_byte *buf;
5151 boolean ok;
5152
5153 size = bfd_get_reloc_size (howto);
5154 buf = (bfd_byte *) bfd_zmalloc (size);
5155 if (buf == (bfd_byte *) NULL)
a9713b91 5156 return false;
5b3b9ff6 5157 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
ede4eed4
KR
5158 switch (rstat)
5159 {
5160 case bfd_reloc_ok:
5161 break;
5162 default:
5163 case bfd_reloc_outofrange:
5164 abort ();
5165 case bfd_reloc_overflow:
5166 if (! ((*info->callbacks->reloc_overflow)
5167 (info,
5168 (link_order->type == bfd_section_reloc_link_order
5169 ? bfd_section_name (output_bfd,
5170 link_order->u.reloc.p->u.section)
5171 : link_order->u.reloc.p->u.name),
5b3b9ff6
ILT
5172 howto->name, addend, (bfd *) NULL, (asection *) NULL,
5173 (bfd_vma) 0)))
ede4eed4
KR
5174 {
5175 free (buf);
5176 return false;
5177 }
5178 break;
5179 }
5180 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
5181 (file_ptr) link_order->offset, size);
5182 free (buf);
5183 if (! ok)
5184 return false;
5185 }
5186
ede4eed4
KR
5187 /* The address of a reloc is relative to the section in a
5188 relocateable file, and is a virtual address in an executable
5189 file. */
5190 offset = link_order->offset;
5191 if (! info->relocateable)
5192 offset += output_section->vma;
5193
5194 rel_hdr = &elf_section_data (output_section)->rel_hdr;
5195
5196 if (rel_hdr->sh_type == SHT_REL)
5197 {
5198 Elf_Internal_Rel irel;
5199 Elf_External_Rel *erel;
5200
5201 irel.r_offset = offset;
5202 irel.r_info = ELF_R_INFO (indx, howto->type);
5203 erel = ((Elf_External_Rel *) rel_hdr->contents
5204 + output_section->reloc_count);
5205 elf_swap_reloc_out (output_bfd, &irel, erel);
5206 }
5207 else
5208 {
5209 Elf_Internal_Rela irela;
5210 Elf_External_Rela *erela;
5211
5212 irela.r_offset = offset;
5213 irela.r_info = ELF_R_INFO (indx, howto->type);
5b3b9ff6 5214 irela.r_addend = addend;
ede4eed4
KR
5215 erela = ((Elf_External_Rela *) rel_hdr->contents
5216 + output_section->reloc_count);
5217 elf_swap_reloca_out (output_bfd, &irela, erela);
5218 }
5219
5220 ++output_section->reloc_count;
5221
5222 return true;
5223}
5224
3b3753b8
MM
5225\f
5226/* Allocate a pointer to live in a linker created section. */
5227
5228boolean
5229elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
5230 bfd *abfd;
5231 struct bfd_link_info *info;
5232 elf_linker_section_t *lsect;
5233 struct elf_link_hash_entry *h;
5234 const Elf_Internal_Rela *rel;
5235{
5236 elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
5237 elf_linker_section_pointers_t *linker_section_ptr;
5238 unsigned long r_symndx = ELF_R_SYM (rel->r_info);;
5239
5240 BFD_ASSERT (lsect != NULL);
5241
5242 /* Is this a global symbol? */
5243 if (h != NULL)
5244 {
5245 /* Has this symbol already been allocated, if so, our work is done */
5246 if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
5247 rel->r_addend,
5248 lsect->which))
5249 return true;
5250
5251 ptr_linker_section_ptr = &h->linker_section_pointer;
5252 /* Make sure this symbol is output as a dynamic symbol. */
5253 if (h->dynindx == -1)
5254 {
5255 if (! elf_link_record_dynamic_symbol (info, h))
5256 return false;
5257 }
5258
eb82bc60
MM
5259 if (lsect->rel_section)
5260 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
3b3753b8
MM
5261 }
5262
5263 else /* Allocation of a pointer to a local symbol */
5264 {
5265 elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
5266
5267 /* Allocate a table to hold the local symbols if first time */
5268 if (!ptr)
5269 {
f6727b90 5270 unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
3b3753b8
MM
5271 register unsigned int i;
5272
5273 ptr = (elf_linker_section_pointers_t **)
5274 bfd_alloc (abfd, num_symbols * sizeof (elf_linker_section_pointers_t *));
5275
5276 if (!ptr)
5277 return false;
5278
5279 elf_local_ptr_offsets (abfd) = ptr;
5280 for (i = 0; i < num_symbols; i++)
5281 ptr[i] = (elf_linker_section_pointers_t *)0;
5282 }
5283
5284 /* Has this symbol already been allocated, if so, our work is done */
5285 if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
5286 rel->r_addend,
5287 lsect->which))
5288 return true;
5289
5290 ptr_linker_section_ptr = &ptr[r_symndx];
5291
5292 if (info->shared)
5293 {
5294 /* If we are generating a shared object, we need to
05f927dd 5295 output a R_<xxx>_RELATIVE reloc so that the
3b3753b8
MM
5296 dynamic linker can adjust this GOT entry. */
5297 BFD_ASSERT (lsect->rel_section != NULL);
5298 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
5299 }
5300 }
5301
5302 /* Allocate space for a pointer in the linker section, and allocate a new pointer record
5303 from internal memory. */
5304 BFD_ASSERT (ptr_linker_section_ptr != NULL);
5305 linker_section_ptr = (elf_linker_section_pointers_t *)
5306 bfd_alloc (abfd, sizeof (elf_linker_section_pointers_t));
5307
5308 if (!linker_section_ptr)
5309 return false;
5310
5311 linker_section_ptr->next = *ptr_linker_section_ptr;
5312 linker_section_ptr->addend = rel->r_addend;
5313 linker_section_ptr->which = lsect->which;
5314 linker_section_ptr->written_address_p = false;
5315 *ptr_linker_section_ptr = linker_section_ptr;
5316
cb73f5d7 5317#if 0
3b3753b8
MM
5318 if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
5319 {
cb73f5d7 5320 linker_section_ptr->offset = lsect->section->_raw_size - lsect->hole_size + (ARCH_SIZE / 8);
3b3753b8
MM
5321 lsect->hole_offset += ARCH_SIZE / 8;
5322 lsect->sym_offset += ARCH_SIZE / 8;
5323 if (lsect->sym_hash) /* Bump up symbol value if needed */
4a4953f5
MM
5324 {
5325 lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
5326#ifdef DEBUG
5327 fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
5328 lsect->sym_hash->root.root.string,
5329 (long)ARCH_SIZE / 8,
5330 (long)lsect->sym_hash->root.u.def.value);
5331#endif
5332 }
3b3753b8
MM
5333 }
5334 else
cb73f5d7 5335#endif
3b3753b8
MM
5336 linker_section_ptr->offset = lsect->section->_raw_size;
5337
5338 lsect->section->_raw_size += ARCH_SIZE / 8;
5339
5340#ifdef DEBUG
5341 fprintf (stderr, "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
5342 lsect->name, (long)linker_section_ptr->offset, (long)lsect->section->_raw_size);
5343#endif
5344
5345 return true;
5346}
5347
5348\f
5349#if ARCH_SIZE==64
5350#define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
5351#endif
5352#if ARCH_SIZE==32
5353#define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
5354#endif
5355
5356/* Fill in the address for a pointer generated in alinker section. */
5357
5358bfd_vma
5359elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h, relocation, rel, relative_reloc)
5360 bfd *output_bfd;
5361 bfd *input_bfd;
5362 struct bfd_link_info *info;
5363 elf_linker_section_t *lsect;
5364 struct elf_link_hash_entry *h;
5365 bfd_vma relocation;
5366 const Elf_Internal_Rela *rel;
5367 int relative_reloc;
5368{
5369 elf_linker_section_pointers_t *linker_section_ptr;
5370
5371 BFD_ASSERT (lsect != NULL);
5372
3b3753b8
MM
5373 if (h != NULL) /* global symbol */
5374 {
5375 linker_section_ptr = _bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
5376 rel->r_addend,
5377 lsect->which);
5378
5379 BFD_ASSERT (linker_section_ptr != NULL);
5380
5381 if (! elf_hash_table (info)->dynamic_sections_created
5382 || (info->shared
5383 && info->symbolic
5384 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
5385 {
5386 /* This is actually a static link, or it is a
5387 -Bsymbolic link and the symbol is defined
5388 locally. We must initialize this entry in the
5389 global section.
5390
5391 When doing a dynamic link, we create a .rela.<xxx>
5392 relocation entry to initialize the value. This
5393 is done in the finish_dynamic_symbol routine. */
5394 if (!linker_section_ptr->written_address_p)
5395 {
5396 linker_section_ptr->written_address_p = true;
5397 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
5398 lsect->section->contents + linker_section_ptr->offset);
5399 }
5400 }
5401 }
5402 else /* local symbol */
5403 {
5404 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
5405 BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
5406 BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
5407 linker_section_ptr = _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd)[r_symndx],
5408 rel->r_addend,
5409 lsect->which);
5410
5411 BFD_ASSERT (linker_section_ptr != NULL);
5412
5413 /* Write out pointer if it hasn't been rewritten out before */
5414 if (!linker_section_ptr->written_address_p)
5415 {
5416 linker_section_ptr->written_address_p = true;
5417 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
5418 lsect->section->contents + linker_section_ptr->offset);
5419
5420 if (info->shared)
5421 {
5422 asection *srel = lsect->rel_section;
5423 Elf_Internal_Rela outrel;
5424
5425 /* We need to generate a relative reloc for the dynamic linker. */
5426 if (!srel)
5427 lsect->rel_section = srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
5428 lsect->rel_name);
5429
5430 BFD_ASSERT (srel != NULL);
5431
5432 outrel.r_offset = (lsect->section->output_section->vma
5433 + lsect->section->output_offset
5434 + linker_section_ptr->offset);
5435 outrel.r_info = ELF_R_INFO (0, relative_reloc);
5436 outrel.r_addend = 0;
5437 elf_swap_reloca_out (output_bfd, &outrel,
5a5bac64 5438 (((Elf_External_Rela *)
3b3753b8
MM
5439 lsect->section->contents)
5440 + lsect->section->reloc_count));
5441 ++lsect->section->reloc_count;
5442 }
5443 }
5444 }
5445
5446 relocation = (lsect->section->output_offset
5447 + linker_section_ptr->offset
5448 - lsect->hole_offset
5449 - lsect->sym_offset);
5450
5451#ifdef DEBUG
5452 fprintf (stderr, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
5453 lsect->name, (long)relocation, (long)relocation);
5454#endif
5455
5456 /* Subtract out the addend, because it will get added back in by the normal
5457 processing. */
5458 return relocation - linker_section_ptr->addend;
5459}
303b4cc6
RH
5460\f
5461/* Garbage collect unused sections. */
5462
e429c897 5463static boolean elf_gc_mark
303b4cc6
RH
5464 PARAMS ((struct bfd_link_info *info, asection *sec,
5465 asection * (*gc_mark_hook)
5466 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
5467 struct elf_link_hash_entry *, Elf_Internal_Sym *))));
5468
5469static boolean elf_gc_sweep
5470 PARAMS ((struct bfd_link_info *info,
5471 boolean (*gc_sweep_hook)
5472 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
5473 const Elf_Internal_Rela *relocs))));
5474
5475static boolean elf_gc_sweep_symbol
5476 PARAMS ((struct elf_link_hash_entry *h, PTR idxptr));
5477
5478static boolean elf_gc_allocate_got_offsets
5479 PARAMS ((struct elf_link_hash_entry *h, PTR offarg));
5480
1ff13765 5481static boolean elf_gc_propagate_vtable_entries_used
303b4cc6
RH
5482 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
5483
5484static boolean elf_gc_smash_unused_vtentry_relocs
5485 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
5486
5487/* The mark phase of garbage collection. For a given section, mark
5488 it, and all the sections which define symbols to which it refers. */
5489
5490static boolean
5491elf_gc_mark (info, sec, gc_mark_hook)
5492 struct bfd_link_info *info;
5493 asection *sec;
5494 asection * (*gc_mark_hook)
5495 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
5496 struct elf_link_hash_entry *, Elf_Internal_Sym *));
5497{
5498 boolean ret = true;
e429c897 5499
303b4cc6
RH
5500 sec->gc_mark = 1;
5501
5502 /* Look through the section relocs. */
5503
5504 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
5505 {
5506 Elf_Internal_Rela *relstart, *rel, *relend;
5507 Elf_Internal_Shdr *symtab_hdr;
5508 struct elf_link_hash_entry **sym_hashes;
5509 size_t nlocsyms;
5510 size_t extsymoff;
5511 Elf_External_Sym *locsyms, *freesyms = NULL;
5512 bfd *input_bfd = sec->owner;
5513
5514 /* GCFIXME: how to arrange so that relocs and symbols are not
5515 reread continually? */
5516
5517 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5518 sym_hashes = elf_sym_hashes (input_bfd);
5519
5520 /* Read the local symbols. */
5521 if (elf_bad_symtab (input_bfd))
5522 {
5523 nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
5524 extsymoff = 0;
5525 }
5526 else
5527 extsymoff = nlocsyms = symtab_hdr->sh_info;
5528 if (symtab_hdr->contents)
5529 locsyms = (Elf_External_Sym *) symtab_hdr->contents;
5530 else if (nlocsyms == 0)
5531 locsyms = NULL;
5532 else
5533 {
5534 locsyms = freesyms =
5535 bfd_malloc (nlocsyms * sizeof (Elf_External_Sym));
5536 if (freesyms == NULL
5537 || bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
5538 || (bfd_read (locsyms, sizeof (Elf_External_Sym),
5539 nlocsyms, input_bfd)
5540 != nlocsyms * sizeof (Elf_External_Sym)))
5541 {
5542 ret = false;
5543 goto out1;
5544 }
5545 }
5546
5547 /* Read the relocations. */
5548 relstart = (NAME(_bfd_elf,link_read_relocs)
5549 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL,
5550 info->keep_memory));
5551 if (relstart == NULL)
5552 {
5553 ret = false;
5554 goto out1;
5555 }
5556 relend = relstart + sec->reloc_count;
5557
5558 for (rel = relstart; rel < relend; rel++)
5559 {
5560 unsigned long r_symndx;
5561 asection *rsec;
5562 struct elf_link_hash_entry *h;
5563 Elf_Internal_Sym s;
5564
5565 r_symndx = ELF_R_SYM (rel->r_info);
5566 if (r_symndx == 0)
5567 continue;
5568
5569 if (elf_bad_symtab (sec->owner))
5570 {
5571 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
5572 if (ELF_ST_BIND (s.st_info) == STB_LOCAL)
5573 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
5574 else
5575 {
5576 h = sym_hashes[r_symndx - extsymoff];
5577 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
5578 }
5579 }
5580 else if (r_symndx >= nlocsyms)
5581 {
5582 h = sym_hashes[r_symndx - extsymoff];
5583 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
5584 }
5585 else
5586 {
5587 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
5588 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
5589 }
5590
5591 if (rsec && !rsec->gc_mark)
5592 if (!elf_gc_mark (info, rsec, gc_mark_hook))
5593 {
5594 ret = false;
5595 goto out2;
5596 }
5597 }
5598
5599 out2:
5600 if (!info->keep_memory)
5601 free (relstart);
5602 out1:
5603 if (freesyms)
5604 free (freesyms);
5605 }
5606
5607 return ret;
5608}
5609
5610/* The sweep phase of garbage collection. Remove all garbage sections. */
5611
5612static boolean
5613elf_gc_sweep (info, gc_sweep_hook)
5614 struct bfd_link_info *info;
5615 boolean (*gc_sweep_hook)
5616 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
5617 const Elf_Internal_Rela *relocs));
5618{
5619 bfd *sub;
5620
5621 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
5622 {
5623 asection *o;
5624
5625 for (o = sub->sections; o != NULL; o = o->next)
5626 {
5627 /* Keep special sections. Keep .debug sections. */
5628 if ((o->flags & SEC_LINKER_CREATED)
5629 || (o->flags & SEC_DEBUGGING))
5630 o->gc_mark = 1;
5631
5632 if (o->gc_mark)
5633 continue;
5634
5635 /* Skip sweeping sections already excluded. */
5636 if (o->flags & SEC_EXCLUDE)
5637 continue;
5638
5639 /* Since this is early in the link process, it is simple
5640 to remove a section from the output. */
5641 o->flags |= SEC_EXCLUDE;
5642
5643 /* But we also have to update some of the relocation
5644 info we collected before. */
5645 if (gc_sweep_hook
5646 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
5647 {
5648 Elf_Internal_Rela *internal_relocs;
5649 boolean r;
5650
5651 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
5652 (o->owner, o, NULL, NULL, info->keep_memory));
5653 if (internal_relocs == NULL)
5654 return false;
5655
5656 r = (*gc_sweep_hook)(o->owner, info, o, internal_relocs);
5657
5658 if (!info->keep_memory)
5659 free (internal_relocs);
5660
5661 if (!r)
5662 return false;
5663 }
5664 }
5665 }
5666
5667 /* Remove the symbols that were in the swept sections from the dynamic
5668 symbol table. GCFIXME: Anyone know how to get them out of the
5669 static symbol table as well? */
5670 {
5671 int i = 0;
5672
5673 elf_link_hash_traverse (elf_hash_table (info),
5674 elf_gc_sweep_symbol,
5675 (PTR) &i);
5676
5677 elf_hash_table (info)->dynsymcount = i;
5678 }
be228e0d
ILT
5679
5680 return true;
303b4cc6
RH
5681}
5682
5683/* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
5684
5685static boolean
5686elf_gc_sweep_symbol (h, idxptr)
5687 struct elf_link_hash_entry *h;
5688 PTR idxptr;
5689{
5690 int *idx = (int *) idxptr;
5691
5692 if (h->dynindx != -1
5693 && ((h->root.type != bfd_link_hash_defined
5694 && h->root.type != bfd_link_hash_defweak)
5695 || h->root.u.def.section->gc_mark))
5696 h->dynindx = (*idx)++;
5697
5698 return true;
5699}
5700
5701/* Propogate collected vtable information. This is called through
5702 elf_link_hash_traverse. */
5703
5704static boolean
1ff13765 5705elf_gc_propagate_vtable_entries_used (h, okp)
303b4cc6
RH
5706 struct elf_link_hash_entry *h;
5707 PTR okp;
5708{
5709 /* Those that are not vtables. */
5710 if (h->vtable_parent == NULL)
5711 return true;
5712
5713 /* Those vtables that do not have parents, we cannot merge. */
5714 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
5715 return true;
5716
5717 /* If we've already been done, exit. */
5718 if (h->vtable_entries_used && h->vtable_entries_used[-1])
5719 return true;
5720
5721 /* Make sure the parent's table is up to date. */
1ff13765 5722 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
303b4cc6
RH
5723
5724 if (h->vtable_entries_used == NULL)
5725 {
5726 /* None of this table's entries were referenced. Re-use the
5727 parent's table. */
5728 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
468bc0c5 5729 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
303b4cc6
RH
5730 }
5731 else
5732 {
5733 size_t n;
5734 boolean *cu, *pu;
5735
5736 /* Or the parent's entries into ours. */
5737 cu = h->vtable_entries_used;
5738 cu[-1] = true;
5739 pu = h->vtable_parent->vtable_entries_used;
5740 if (pu != NULL)
5741 {
468bc0c5 5742 n = h->vtable_parent->vtable_entries_size / FILE_ALIGN;
303b4cc6
RH
5743 while (--n != 0)
5744 {
5745 if (*pu) *cu = true;
5746 pu++, cu++;
5747 }
5748 }
5749 }
5750
5751 return true;
5752}
5753
5754static boolean
5755elf_gc_smash_unused_vtentry_relocs (h, okp)
5756 struct elf_link_hash_entry *h;
5757 PTR okp;
5758{
5759 asection *sec;
5760 bfd_vma hstart, hend;
5761 Elf_Internal_Rela *relstart, *relend, *rel;
5762
5763 /* Take care of both those symbols that do not describe vtables as
5764 well as those that are not loaded. */
5765 if (h->vtable_parent == NULL)
5766 return true;
5767
e429c897 5768 BFD_ASSERT (h->root.type == bfd_link_hash_defined
303b4cc6
RH
5769 || h->root.type == bfd_link_hash_defweak);
5770
5771 sec = h->root.u.def.section;
5772 hstart = h->root.u.def.value;
5773 hend = hstart + h->size;
5774
5775 relstart = (NAME(_bfd_elf,link_read_relocs)
5776 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
5777 if (!relstart)
5778 return *(boolean *)okp = false;
5779 relend = relstart + sec->reloc_count;
5780
5781 for (rel = relstart; rel < relend; ++rel)
5782 if (rel->r_offset >= hstart && rel->r_offset < hend)
5783 {
5784 /* If the entry is in use, do nothing. */
468bc0c5
RH
5785 if (h->vtable_entries_used
5786 && (rel->r_offset - hstart) < h->vtable_entries_size)
303b4cc6
RH
5787 {
5788 bfd_vma entry = (rel->r_offset - hstart) / FILE_ALIGN;
5789 if (h->vtable_entries_used[entry])
5790 continue;
5791 }
5792 /* Otherwise, kill it. */
5793 rel->r_offset = rel->r_info = rel->r_addend = 0;
5794 }
5795
5796 return true;
5797}
5798
5799/* Do mark and sweep of unused sections. */
5800
5801boolean
5802elf_gc_sections (abfd, info)
5803 bfd *abfd;
5804 struct bfd_link_info *info;
5805{
5806 boolean ok = true;
5807 bfd *sub;
5808 asection * (*gc_mark_hook)
5809 PARAMS ((bfd *abfd, struct bfd_link_info *, Elf_Internal_Rela *,
5810 struct elf_link_hash_entry *h, Elf_Internal_Sym *));
5811
5812 if (!get_elf_backend_data (abfd)->can_gc_sections
6342b062
CM
5813 || info->relocateable
5814 || elf_hash_table (info)->dynamic_sections_created)
303b4cc6
RH
5815 return true;
5816
5817 /* Apply transitive closure to the vtable entry usage info. */
5818 elf_link_hash_traverse (elf_hash_table (info),
1ff13765 5819 elf_gc_propagate_vtable_entries_used,
303b4cc6
RH
5820 (PTR) &ok);
5821 if (!ok)
5822 return false;
5823
5824 /* Kill the vtable relocations that were not used. */
5825 elf_link_hash_traverse (elf_hash_table (info),
5826 elf_gc_smash_unused_vtentry_relocs,
5827 (PTR) &ok);
5828 if (!ok)
5829 return false;
5830
5831 /* Grovel through relocs to find out who stays ... */
5832
5833 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
5834 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
5835 {
5836 asection *o;
5837 for (o = sub->sections; o != NULL; o = o->next)
5838 {
5839 if (o->flags & SEC_KEEP)
5840 if (!elf_gc_mark (info, o, gc_mark_hook))
5841 return false;
5842 }
5843 }
5844
5845 /* ... and mark SEC_EXCLUDE for those that go. */
5846 if (!elf_gc_sweep(info, get_elf_backend_data (abfd)->gc_sweep_hook))
5847 return false;
5848
5849 return true;
5850}
5851\f
5852/* Called from check_relocs to record the existance of a VTINHERIT reloc. */
5853
5854boolean
5855elf_gc_record_vtinherit (abfd, sec, h, offset)
5856 bfd *abfd;
5857 asection *sec;
5858 struct elf_link_hash_entry *h;
5859 bfd_vma offset;
5860{
5861 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
5862 struct elf_link_hash_entry **search, *child;
5863 bfd_size_type extsymcount;
5864
5865 /* The sh_info field of the symtab header tells us where the
5866 external symbols start. We don't care about the local symbols at
5867 this point. */
5868 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
5869 if (!elf_bad_symtab (abfd))
5870 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
5871
5872 sym_hashes = elf_sym_hashes (abfd);
5873 sym_hashes_end = sym_hashes + extsymcount;
5874
5875 /* Hunt down the child symbol, which is in this section at the same
5876 offset as the relocation. */
5877 for (search = sym_hashes; search != sym_hashes_end; ++search)
5878 {
5879 if ((child = *search) != NULL
5880 && (child->root.type == bfd_link_hash_defined
5881 || child->root.type == bfd_link_hash_defweak)
5882 && child->root.u.def.section == sec
5883 && child->root.u.def.value == offset)
5884 goto win;
5885 }
5886
5887 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
5888 bfd_get_filename (abfd), sec->name,
5889 (unsigned long)offset);
5890 bfd_set_error (bfd_error_invalid_operation);
5891 return false;
5892
5893win:
5894 if (!h)
5895 {
5896 /* This *should* only be the absolute section. It could potentially
5897 be that someone has defined a non-global vtable though, which
5898 would be bad. It isn't worth paging in the local symbols to be
5899 sure though; that case should simply be handled by the assembler. */
5900
5901 child->vtable_parent = (struct elf_link_hash_entry *) -1;
5902 }
5903 else
5904 child->vtable_parent = h;
5905
5906 return true;
5907}
5908
5909/* Called from check_relocs to record the existance of a VTENTRY reloc. */
5910
5911boolean
5912elf_gc_record_vtentry (abfd, sec, h, addend)
5913 bfd *abfd;
5914 asection *sec;
5915 struct elf_link_hash_entry *h;
5916 bfd_vma addend;
5917{
468bc0c5 5918 if (addend >= h->vtable_entries_size)
303b4cc6 5919 {
468bc0c5
RH
5920 size_t size, bytes;
5921 boolean *ptr = h->vtable_entries_used;
5922
5923 /* While the symbol is undefined, we have to be prepared to handle
5924 a zero size. */
5925 if (h->root.type == bfd_link_hash_undefined)
5926 size = addend;
5927 else
5928 {
5929 size = h->size;
5930 if (size < addend)
5931 {
5932 /* Oops! We've got a reference past the defined end of
5933 the table. This is probably a bug -- shall we warn? */
5934 size = addend;
5935 }
5936 }
5937
303b4cc6
RH
5938 /* Allocate one extra entry for use as a "done" flag for the
5939 consolidation pass. */
468bc0c5
RH
5940 bytes = (size / FILE_ALIGN + 1) * sizeof(boolean);
5941
5942 if (ptr)
5943 {
5944 size_t oldbytes;
5945
5946 ptr = realloc (ptr-1, bytes);
5947 if (ptr == NULL)
5948 return false;
5949
5950 oldbytes = (h->vtable_entries_size/FILE_ALIGN + 1) * sizeof(boolean);
5951 memset (ptr + oldbytes, 0, bytes - oldbytes);
5952 }
5953 else
5954 {
5955 ptr = calloc (1, bytes);
5956 if (ptr == NULL)
5957 return false;
5958 }
303b4cc6
RH
5959
5960 /* And arrange for that done flag to be at index -1. */
468bc0c5
RH
5961 h->vtable_entries_used = ptr+1;
5962 h->vtable_entries_size = size;
303b4cc6
RH
5963 }
5964 h->vtable_entries_used[addend / FILE_ALIGN] = true;
5965
5966 return true;
5967}
5968
e429c897 5969/* And an accompanying bit to work out final got entry offsets once
303b4cc6
RH
5970 we're done. Should be called from final_link. */
5971
5972boolean
5973elf_gc_common_finalize_got_offsets (abfd, info)
5974 bfd *abfd;
5975 struct bfd_link_info *info;
5976{
be228e0d 5977 bfd *i;
7993f96a
RH
5978 struct elf_backend_data *bed = get_elf_backend_data (abfd);
5979 bfd_vma gotoff;
5980
5981 /* The GOT offset is relative to the .got section, but the GOT header is
5982 put into the .got.plt section, if the backend uses it. */
5983 if (bed->want_got_plt)
5984 gotoff = 0;
5985 else
5986 gotoff = bed->got_header_size;
be228e0d
ILT
5987
5988 /* Do the local .got entries first. */
5989 for (i = info->input_bfds; i; i = i->link_next)
303b4cc6 5990 {
be228e0d
ILT
5991 bfd_signed_vma *local_got = elf_local_got_refcounts (i);
5992 bfd_size_type j, locsymcount;
5993 Elf_Internal_Shdr *symtab_hdr;
303b4cc6 5994
be228e0d
ILT
5995 if (!local_got)
5996 continue;
303b4cc6 5997
be228e0d
ILT
5998 symtab_hdr = &elf_tdata (i)->symtab_hdr;
5999 if (elf_bad_symtab (i))
6000 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6001 else
6002 locsymcount = symtab_hdr->sh_info;
303b4cc6 6003
be228e0d
ILT
6004 for (j = 0; j < locsymcount; ++j)
6005 {
6006 if (local_got[j] > 0)
6007 {
6008 local_got[j] = gotoff;
6009 gotoff += ARCH_SIZE / 8;
6010 }
303b4cc6 6011 else
be228e0d 6012 local_got[j] = (bfd_vma) -1;
303b4cc6 6013 }
303b4cc6
RH
6014 }
6015
be228e0d 6016 /* Then the global .got and .plt entries. */
be228e0d
ILT
6017 elf_link_hash_traverse (elf_hash_table (info),
6018 elf_gc_allocate_got_offsets,
965d5a46 6019 (PTR) &gotoff);
303b4cc6
RH
6020 return true;
6021}
6022
6023/* We need a special top-level link routine to convert got reference counts
6024 to real got offsets. */
6025
6026static boolean
6027elf_gc_allocate_got_offsets (h, offarg)
6028 struct elf_link_hash_entry *h;
6029 PTR offarg;
6030{
6031 bfd_vma *off = (bfd_vma *) offarg;
6032
be228e0d
ILT
6033 if (h->got.refcount > 0)
6034 {
6035 h->got.offset = off[0];
6036 off[0] += ARCH_SIZE / 8;
6037 }
6038 else
6039 h->got.offset = (bfd_vma) -1;
303b4cc6
RH
6040
6041 return true;
6042}
6043
6044/* Many folk need no more in the way of final link than this, once
6045 got entry reference counting is enabled. */
6046
6047boolean
6048elf_gc_common_final_link (abfd, info)
6049 bfd *abfd;
6050 struct bfd_link_info *info;
6051{
6052 if (!elf_gc_common_finalize_got_offsets (abfd, info))
6053 return false;
6054
6055 /* Invoke the regular ELF backend linker to do all the work. */
6056 return elf_bfd_final_link (abfd, info);
6057}
e429c897
UD
6058
6059/* This function will be called though elf_link_hash_traverse to store
6060 all hash value of the exported symbols in an array. */
6061
6062static boolean
6063elf_collect_hash_codes (h, data)
6064 struct elf_link_hash_entry *h;
6065 PTR data;
6066{
6067 unsigned long **valuep = (unsigned long **) data;
6068 const char *name;
6069 char *p;
6070 unsigned long ha;
6071 char *alc = NULL;
6072
6073 /* Ignore indirect symbols. These are added by the versioning code. */
6074 if (h->dynindx == -1)
6075 return true;
6076
6077 name = h->root.root.string;
6078 p = strchr (name, ELF_VER_CHR);
6079 if (p != NULL)
6080 {
6081 alc = bfd_malloc (p - name + 1);
6082 memcpy (alc, name, p - name);
6083 alc[p - name] = '\0';
6084 name = alc;
6085 }
6086
6087 /* Compute the hash value. */
6088 ha = bfd_elf_hash (name);
6089
6090 /* Store the found hash value in the array given as the argument. */
6091 *(*valuep)++ = ha;
6092
6093 /* And store it in the struct so that we can put it in the hash table
6094 later. */
6095 h->elf_hash_value = ha;
6096
6097 if (alc != NULL)
6098 free (alc);
6099
6100 return true;
6101}
This page took 0.402935 seconds and 4 git commands to generate.