Handle MIPS64 relocs which use a non-1 valued int_rels_per_ext_rel
[deliverable/binutils-gdb.git] / bfd / elflink.h
CommitLineData
252b5132 1/* ELF linker support.
7898deda
NC
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
252b5132
RH
4
5This file is part of BFD, the Binary File Descriptor library.
6
7This program is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2 of the License, or
10(at your option) any later version.
11
12This program is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with this program; if not, write to the Free Software
19Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21/* ELF linker code. */
22
23/* This struct is used to pass information to routines called via
24 elf_link_hash_traverse which must return failure. */
25
26struct elf_info_failed
27{
28 boolean failed;
29 struct bfd_link_info *info;
30};
31
32static boolean elf_link_add_object_symbols
33 PARAMS ((bfd *, struct bfd_link_info *));
34static boolean elf_link_add_archive_symbols
35 PARAMS ((bfd *, struct bfd_link_info *));
36static boolean elf_merge_symbol
37 PARAMS ((bfd *, struct bfd_link_info *, const char *, Elf_Internal_Sym *,
38 asection **, bfd_vma *, struct elf_link_hash_entry **,
456981d7 39 boolean *, boolean *, boolean *, boolean));
252b5132
RH
40static boolean elf_export_symbol
41 PARAMS ((struct elf_link_hash_entry *, PTR));
42static boolean elf_fix_symbol_flags
43 PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
44static boolean elf_adjust_dynamic_symbol
45 PARAMS ((struct elf_link_hash_entry *, PTR));
46static boolean elf_link_find_version_dependencies
47 PARAMS ((struct elf_link_hash_entry *, PTR));
48static boolean elf_link_find_version_dependencies
49 PARAMS ((struct elf_link_hash_entry *, PTR));
50static boolean elf_link_assign_sym_version
51 PARAMS ((struct elf_link_hash_entry *, PTR));
252b5132
RH
52static boolean elf_collect_hash_codes
53 PARAMS ((struct elf_link_hash_entry *, PTR));
3e932841 54static boolean elf_link_read_relocs_from_section
6b5bd373 55 PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *));
23bc299b
MM
56static void elf_link_output_relocs
57 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *));
58static boolean elf_link_size_reloc_section
59 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
3e932841
KH
60static void elf_link_adjust_relocs
61 PARAMS ((bfd *, Elf_Internal_Shdr *, unsigned int,
31367b81 62 struct elf_link_hash_entry **));
252b5132
RH
63
64/* Given an ELF BFD, add symbols to the global hash table as
65 appropriate. */
66
67boolean
68elf_bfd_link_add_symbols (abfd, info)
69 bfd *abfd;
70 struct bfd_link_info *info;
71{
72 switch (bfd_get_format (abfd))
73 {
74 case bfd_object:
75 return elf_link_add_object_symbols (abfd, info);
76 case bfd_archive:
77 return elf_link_add_archive_symbols (abfd, info);
78 default:
79 bfd_set_error (bfd_error_wrong_format);
80 return false;
81 }
82}
83\f
7da9d88f 84/* Return true iff this is a non-common, definition of a non-function symbol. */
48dfb430 85static boolean
7da9d88f 86is_global_data_symbol_definition (abfd, sym)
86033394 87 bfd * abfd ATTRIBUTE_UNUSED;
48dfb430
NC
88 Elf_Internal_Sym * sym;
89{
90 /* Local symbols do not count, but target specific ones might. */
91 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
92 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
93 return false;
94
7da9d88f
NC
95 /* Function symbols do not count. */
96 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
97 return false;
98
48dfb430
NC
99 /* If the section is undefined, then so is the symbol. */
100 if (sym->st_shndx == SHN_UNDEF)
101 return false;
3e932841 102
48dfb430
NC
103 /* If the symbol is defined in the common section, then
104 it is a common definition and so does not count. */
105 if (sym->st_shndx == SHN_COMMON)
106 return false;
107
108 /* If the symbol is in a target specific section then we
109 must rely upon the backend to tell us what it is. */
110 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
111 /* FIXME - this function is not coded yet:
3e932841 112
48dfb430 113 return _bfd_is_global_symbol_definition (abfd, sym);
3e932841 114
48dfb430
NC
115 Instead for now assume that the definition is not global,
116 Even if this is wrong, at least the linker will behave
117 in the same way that it used to do. */
118 return false;
3e932841 119
48dfb430
NC
120 return true;
121}
122
a3a8c91d 123/* Search the symbol table of the archive element of the archive ABFD
7da9d88f 124 whoes archive map contains a mention of SYMDEF, and determine if
a3a8c91d
NC
125 the symbol is defined in this element. */
126static boolean
127elf_link_is_defined_archive_symbol (abfd, symdef)
128 bfd * abfd;
129 carsym * symdef;
130{
131 Elf_Internal_Shdr * hdr;
132 Elf_External_Sym * esym;
133 Elf_External_Sym * esymend;
134 Elf_External_Sym * buf = NULL;
135 size_t symcount;
136 size_t extsymcount;
137 size_t extsymoff;
138 boolean result = false;
3e932841 139
a3a8c91d
NC
140 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
141 if (abfd == (bfd *) NULL)
142 return false;
143
144 if (! bfd_check_format (abfd, bfd_object))
145 return false;
146
48dfb430
NC
147 /* If we have already included the element containing this symbol in the
148 link then we do not need to include it again. Just claim that any symbol
149 it contains is not a definition, so that our caller will not decide to
150 (re)include this element. */
151 if (abfd->archive_pass)
152 return false;
3e932841 153
a3a8c91d
NC
154 /* Select the appropriate symbol table. */
155 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
156 hdr = &elf_tdata (abfd)->symtab_hdr;
157 else
158 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
159
160 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
161
162 /* The sh_info field of the symtab header tells us where the
163 external symbols start. We don't care about the local symbols. */
164 if (elf_bad_symtab (abfd))
165 {
166 extsymcount = symcount;
167 extsymoff = 0;
168 }
169 else
170 {
171 extsymcount = symcount - hdr->sh_info;
172 extsymoff = hdr->sh_info;
173 }
174
175 buf = ((Elf_External_Sym *)
176 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
177 if (buf == NULL && extsymcount != 0)
178 return false;
179
180 /* Read in the symbol table.
181 FIXME: This ought to be cached somewhere. */
182 if (bfd_seek (abfd,
183 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
184 SEEK_SET) != 0
185 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
186 != extsymcount * sizeof (Elf_External_Sym)))
187 {
188 free (buf);
189 return false;
190 }
191
192 /* Scan the symbol table looking for SYMDEF. */
193 esymend = buf + extsymcount;
194 for (esym = buf;
195 esym < esymend;
196 esym++)
197 {
198 Elf_Internal_Sym sym;
199 const char * name;
200
201 elf_swap_symbol_in (abfd, esym, & sym);
202
203 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
204 if (name == (const char *) NULL)
205 break;
206
207 if (strcmp (name, symdef->name) == 0)
208 {
7da9d88f 209 result = is_global_data_symbol_definition (abfd, & sym);
a3a8c91d
NC
210 break;
211 }
212 }
213
214 free (buf);
3e932841 215
a3a8c91d
NC
216 return result;
217}
218\f
252b5132
RH
219/* Add symbols from an ELF archive file to the linker hash table. We
220 don't use _bfd_generic_link_add_archive_symbols because of a
221 problem which arises on UnixWare. The UnixWare libc.so is an
222 archive which includes an entry libc.so.1 which defines a bunch of
223 symbols. The libc.so archive also includes a number of other
224 object files, which also define symbols, some of which are the same
225 as those defined in libc.so.1. Correct linking requires that we
226 consider each object file in turn, and include it if it defines any
227 symbols we need. _bfd_generic_link_add_archive_symbols does not do
228 this; it looks through the list of undefined symbols, and includes
229 any object file which defines them. When this algorithm is used on
230 UnixWare, it winds up pulling in libc.so.1 early and defining a
231 bunch of symbols. This means that some of the other objects in the
232 archive are not included in the link, which is incorrect since they
233 precede libc.so.1 in the archive.
234
235 Fortunately, ELF archive handling is simpler than that done by
236 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
237 oddities. In ELF, if we find a symbol in the archive map, and the
238 symbol is currently undefined, we know that we must pull in that
239 object file.
240
241 Unfortunately, we do have to make multiple passes over the symbol
242 table until nothing further is resolved. */
243
244static boolean
245elf_link_add_archive_symbols (abfd, info)
246 bfd *abfd;
247 struct bfd_link_info *info;
248{
249 symindex c;
250 boolean *defined = NULL;
251 boolean *included = NULL;
252 carsym *symdefs;
253 boolean loop;
254
255 if (! bfd_has_map (abfd))
256 {
257 /* An empty archive is a special case. */
258 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
259 return true;
260 bfd_set_error (bfd_error_no_armap);
261 return false;
262 }
263
264 /* Keep track of all symbols we know to be already defined, and all
265 files we know to be already included. This is to speed up the
266 second and subsequent passes. */
267 c = bfd_ardata (abfd)->symdef_count;
268 if (c == 0)
269 return true;
270 defined = (boolean *) bfd_malloc (c * sizeof (boolean));
271 included = (boolean *) bfd_malloc (c * sizeof (boolean));
272 if (defined == (boolean *) NULL || included == (boolean *) NULL)
273 goto error_return;
274 memset (defined, 0, c * sizeof (boolean));
275 memset (included, 0, c * sizeof (boolean));
276
277 symdefs = bfd_ardata (abfd)->symdefs;
278
279 do
280 {
281 file_ptr last;
282 symindex i;
283 carsym *symdef;
284 carsym *symdefend;
285
286 loop = false;
287 last = -1;
288
289 symdef = symdefs;
290 symdefend = symdef + c;
291 for (i = 0; symdef < symdefend; symdef++, i++)
292 {
293 struct elf_link_hash_entry *h;
294 bfd *element;
295 struct bfd_link_hash_entry *undefs_tail;
296 symindex mark;
297
298 if (defined[i] || included[i])
299 continue;
300 if (symdef->file_offset == last)
301 {
302 included[i] = true;
303 continue;
304 }
305
306 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
307 false, false, false);
308
309 if (h == NULL)
310 {
311 char *p, *copy;
312
313 /* If this is a default version (the name contains @@),
314 look up the symbol again without the version. The
315 effect is that references to the symbol without the
316 version will be matched by the default symbol in the
317 archive. */
318
319 p = strchr (symdef->name, ELF_VER_CHR);
320 if (p == NULL || p[1] != ELF_VER_CHR)
321 continue;
322
323 copy = bfd_alloc (abfd, p - symdef->name + 1);
324 if (copy == NULL)
325 goto error_return;
326 memcpy (copy, symdef->name, p - symdef->name);
327 copy[p - symdef->name] = '\0';
328
329 h = elf_link_hash_lookup (elf_hash_table (info), copy,
330 false, false, false);
331
332 bfd_release (abfd, copy);
333 }
334
335 if (h == NULL)
336 continue;
337
a3a8c91d
NC
338 if (h->root.type == bfd_link_hash_common)
339 {
340 /* We currently have a common symbol. The archive map contains
341 a reference to this symbol, so we may want to include it. We
342 only want to include it however, if this archive element
343 contains a definition of the symbol, not just another common
344 declaration of it.
345
346 Unfortunately some archivers (including GNU ar) will put
347 declarations of common symbols into their archive maps, as
348 well as real definitions, so we cannot just go by the archive
349 map alone. Instead we must read in the element's symbol
350 table and check that to see what kind of symbol definition
351 this is. */
352 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
353 continue;
354 }
355 else if (h->root.type != bfd_link_hash_undefined)
252b5132
RH
356 {
357 if (h->root.type != bfd_link_hash_undefweak)
358 defined[i] = true;
359 continue;
360 }
361
362 /* We need to include this archive member. */
252b5132
RH
363 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
364 if (element == (bfd *) NULL)
365 goto error_return;
366
367 if (! bfd_check_format (element, bfd_object))
368 goto error_return;
369
370 /* Doublecheck that we have not included this object
371 already--it should be impossible, but there may be
372 something wrong with the archive. */
373 if (element->archive_pass != 0)
374 {
375 bfd_set_error (bfd_error_bad_value);
376 goto error_return;
377 }
378 element->archive_pass = 1;
379
380 undefs_tail = info->hash->undefs_tail;
381
382 if (! (*info->callbacks->add_archive_element) (info, element,
383 symdef->name))
384 goto error_return;
385 if (! elf_link_add_object_symbols (element, info))
386 goto error_return;
387
388 /* If there are any new undefined symbols, we need to make
389 another pass through the archive in order to see whether
390 they can be defined. FIXME: This isn't perfect, because
391 common symbols wind up on undefs_tail and because an
392 undefined symbol which is defined later on in this pass
393 does not require another pass. This isn't a bug, but it
394 does make the code less efficient than it could be. */
395 if (undefs_tail != info->hash->undefs_tail)
396 loop = true;
397
398 /* Look backward to mark all symbols from this object file
399 which we have already seen in this pass. */
400 mark = i;
401 do
402 {
403 included[mark] = true;
404 if (mark == 0)
405 break;
406 --mark;
407 }
408 while (symdefs[mark].file_offset == symdef->file_offset);
409
410 /* We mark subsequent symbols from this object file as we go
411 on through the loop. */
412 last = symdef->file_offset;
413 }
414 }
415 while (loop);
416
417 free (defined);
418 free (included);
419
420 return true;
421
422 error_return:
423 if (defined != (boolean *) NULL)
424 free (defined);
425 if (included != (boolean *) NULL)
426 free (included);
427 return false;
428}
429
430/* This function is called when we want to define a new symbol. It
431 handles the various cases which arise when we find a definition in
432 a dynamic object, or when there is already a definition in a
433 dynamic object. The new symbol is described by NAME, SYM, PSEC,
434 and PVALUE. We set SYM_HASH to the hash table entry. We set
435 OVERRIDE if the old symbol is overriding a new definition. We set
436 TYPE_CHANGE_OK if it is OK for the type to change. We set
437 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
438 change, we mean that we shouldn't warn if the type or size does
456981d7
L
439 change. DT_NEEDED indicates if it comes from a DT_NEEDED entry of
440 a shared object. */
252b5132
RH
441
442static boolean
443elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
456981d7 444 override, type_change_ok, size_change_ok, dt_needed)
252b5132
RH
445 bfd *abfd;
446 struct bfd_link_info *info;
447 const char *name;
448 Elf_Internal_Sym *sym;
449 asection **psec;
450 bfd_vma *pvalue;
451 struct elf_link_hash_entry **sym_hash;
452 boolean *override;
453 boolean *type_change_ok;
454 boolean *size_change_ok;
456981d7 455 boolean dt_needed;
252b5132
RH
456{
457 asection *sec;
458 struct elf_link_hash_entry *h;
459 int bind;
460 bfd *oldbfd;
461 boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
462
463 *override = false;
464
465 sec = *psec;
466 bind = ELF_ST_BIND (sym->st_info);
467
468 if (! bfd_is_und_section (sec))
469 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
470 else
471 h = ((struct elf_link_hash_entry *)
472 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
473 if (h == NULL)
474 return false;
475 *sym_hash = h;
476
477 /* This code is for coping with dynamic objects, and is only useful
478 if we are doing an ELF link. */
479 if (info->hash->creator != abfd->xvec)
480 return true;
481
482 /* For merging, we only care about real symbols. */
483
484 while (h->root.type == bfd_link_hash_indirect
485 || h->root.type == bfd_link_hash_warning)
486 h = (struct elf_link_hash_entry *) h->root.u.i.link;
487
488 /* If we just created the symbol, mark it as being an ELF symbol.
489 Other than that, there is nothing to do--there is no merge issue
490 with a newly defined symbol--so we just return. */
491
492 if (h->root.type == bfd_link_hash_new)
493 {
494 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
495 return true;
496 }
497
498 /* OLDBFD is a BFD associated with the existing symbol. */
499
500 switch (h->root.type)
501 {
502 default:
503 oldbfd = NULL;
504 break;
505
506 case bfd_link_hash_undefined:
507 case bfd_link_hash_undefweak:
508 oldbfd = h->root.u.undef.abfd;
509 break;
510
511 case bfd_link_hash_defined:
512 case bfd_link_hash_defweak:
513 oldbfd = h->root.u.def.section->owner;
514 break;
515
516 case bfd_link_hash_common:
517 oldbfd = h->root.u.c.p->section->owner;
518 break;
519 }
520
b4536acd
ILT
521 /* In cases involving weak versioned symbols, we may wind up trying
522 to merge a symbol with itself. Catch that here, to avoid the
523 confusion that results if we try to override a symbol with
accc7f69
ILT
524 itself. The additional tests catch cases like
525 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
526 dynamic object, which we do want to handle here. */
527 if (abfd == oldbfd
528 && ((abfd->flags & DYNAMIC) == 0
529 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
b4536acd
ILT
530 return true;
531
252b5132
RH
532 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
533 respectively, is from a dynamic object. */
534
535 if ((abfd->flags & DYNAMIC) != 0)
536 newdyn = true;
537 else
538 newdyn = false;
539
0035bd7b
ILT
540 if (oldbfd != NULL)
541 olddyn = (oldbfd->flags & DYNAMIC) != 0;
252b5132 542 else
0035bd7b
ILT
543 {
544 asection *hsec;
545
546 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
547 indices used by MIPS ELF. */
548 switch (h->root.type)
549 {
550 default:
551 hsec = NULL;
552 break;
553
554 case bfd_link_hash_defined:
555 case bfd_link_hash_defweak:
556 hsec = h->root.u.def.section;
557 break;
558
559 case bfd_link_hash_common:
560 hsec = h->root.u.c.p->section;
561 break;
562 }
563
564 if (hsec == NULL)
565 olddyn = false;
566 else
567 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
568 }
252b5132
RH
569
570 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
571 respectively, appear to be a definition rather than reference. */
572
573 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
574 newdef = false;
575 else
576 newdef = true;
577
578 if (h->root.type == bfd_link_hash_undefined
579 || h->root.type == bfd_link_hash_undefweak
580 || h->root.type == bfd_link_hash_common)
581 olddef = false;
582 else
583 olddef = true;
584
585 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
586 symbol, respectively, appears to be a common symbol in a dynamic
587 object. If a symbol appears in an uninitialized section, and is
588 not weak, and is not a function, then it may be a common symbol
589 which was resolved when the dynamic object was created. We want
590 to treat such symbols specially, because they raise special
591 considerations when setting the symbol size: if the symbol
592 appears as a common symbol in a regular object, and the size in
593 the regular object is larger, we must make sure that we use the
594 larger size. This problematic case can always be avoided in C,
595 but it must be handled correctly when using Fortran shared
596 libraries.
597
598 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
599 likewise for OLDDYNCOMMON and OLDDEF.
600
601 Note that this test is just a heuristic, and that it is quite
602 possible to have an uninitialized symbol in a shared object which
603 is really a definition, rather than a common symbol. This could
604 lead to some minor confusion when the symbol really is a common
605 symbol in some regular object. However, I think it will be
606 harmless. */
607
608 if (newdyn
609 && newdef
610 && (sec->flags & SEC_ALLOC) != 0
611 && (sec->flags & SEC_LOAD) == 0
612 && sym->st_size > 0
613 && bind != STB_WEAK
614 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
615 newdyncommon = true;
616 else
617 newdyncommon = false;
618
619 if (olddyn
620 && olddef
621 && h->root.type == bfd_link_hash_defined
622 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
623 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
624 && (h->root.u.def.section->flags & SEC_LOAD) == 0
625 && h->size > 0
626 && h->type != STT_FUNC)
627 olddyncommon = true;
628 else
629 olddyncommon = false;
630
631 /* It's OK to change the type if either the existing symbol or the
456981d7
L
632 new symbol is weak unless it comes from a DT_NEEDED entry of
633 a shared object, in which case, the DT_NEEDED entry may not be
3e932841 634 required at the run time. */
252b5132 635
456981d7 636 if ((! dt_needed && h->root.type == bfd_link_hash_defweak)
252b5132
RH
637 || h->root.type == bfd_link_hash_undefweak
638 || bind == STB_WEAK)
639 *type_change_ok = true;
640
641 /* It's OK to change the size if either the existing symbol or the
642 new symbol is weak, or if the old symbol is undefined. */
643
644 if (*type_change_ok
645 || h->root.type == bfd_link_hash_undefined)
646 *size_change_ok = true;
647
648 /* If both the old and the new symbols look like common symbols in a
649 dynamic object, set the size of the symbol to the larger of the
650 two. */
651
652 if (olddyncommon
653 && newdyncommon
654 && sym->st_size != h->size)
655 {
656 /* Since we think we have two common symbols, issue a multiple
657 common warning if desired. Note that we only warn if the
658 size is different. If the size is the same, we simply let
659 the old symbol override the new one as normally happens with
660 symbols defined in dynamic objects. */
661
662 if (! ((*info->callbacks->multiple_common)
663 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
664 h->size, abfd, bfd_link_hash_common, sym->st_size)))
665 return false;
666
667 if (sym->st_size > h->size)
668 h->size = sym->st_size;
669
670 *size_change_ok = true;
671 }
672
673 /* If we are looking at a dynamic object, and we have found a
674 definition, we need to see if the symbol was already defined by
675 some other object. If so, we want to use the existing
676 definition, and we do not want to report a multiple symbol
677 definition error; we do this by clobbering *PSEC to be
678 bfd_und_section_ptr.
679
680 We treat a common symbol as a definition if the symbol in the
681 shared library is a function, since common symbols always
682 represent variables; this can cause confusion in principle, but
683 any such confusion would seem to indicate an erroneous program or
684 shared library. We also permit a common symbol in a regular
0525d26e
ILT
685 object to override a weak symbol in a shared object.
686
687 We prefer a non-weak definition in a shared library to a weak
456981d7
L
688 definition in the executable unless it comes from a DT_NEEDED
689 entry of a shared object, in which case, the DT_NEEDED entry
3e932841 690 may not be required at the run time. */
252b5132
RH
691
692 if (newdyn
693 && newdef
694 && (olddef
695 || (h->root.type == bfd_link_hash_common
696 && (bind == STB_WEAK
0525d26e 697 || ELF_ST_TYPE (sym->st_info) == STT_FUNC)))
3e932841 698 && (h->root.type != bfd_link_hash_defweak
456981d7 699 || dt_needed
0525d26e 700 || bind == STB_WEAK))
252b5132
RH
701 {
702 *override = true;
703 newdef = false;
704 newdyncommon = false;
705
706 *psec = sec = bfd_und_section_ptr;
707 *size_change_ok = true;
708
709 /* If we get here when the old symbol is a common symbol, then
710 we are explicitly letting it override a weak symbol or
711 function in a dynamic object, and we don't want to warn about
712 a type change. If the old symbol is a defined symbol, a type
713 change warning may still be appropriate. */
714
715 if (h->root.type == bfd_link_hash_common)
716 *type_change_ok = true;
717 }
718
719 /* Handle the special case of an old common symbol merging with a
720 new symbol which looks like a common symbol in a shared object.
721 We change *PSEC and *PVALUE to make the new symbol look like a
722 common symbol, and let _bfd_generic_link_add_one_symbol will do
723 the right thing. */
724
725 if (newdyncommon
726 && h->root.type == bfd_link_hash_common)
727 {
728 *override = true;
729 newdef = false;
730 newdyncommon = false;
731 *pvalue = sym->st_size;
732 *psec = sec = bfd_com_section_ptr;
733 *size_change_ok = true;
734 }
735
736 /* If the old symbol is from a dynamic object, and the new symbol is
737 a definition which is not from a dynamic object, then the new
738 symbol overrides the old symbol. Symbols from regular files
739 always take precedence over symbols from dynamic objects, even if
740 they are defined after the dynamic object in the link.
741
742 As above, we again permit a common symbol in a regular object to
743 override a definition in a shared object if the shared object
0525d26e
ILT
744 symbol is a function or is weak.
745
746 As above, we permit a non-weak definition in a shared object to
747 override a weak definition in a regular object. */
252b5132
RH
748
749 if (! newdyn
750 && (newdef
751 || (bfd_is_com_section (sec)
752 && (h->root.type == bfd_link_hash_defweak
753 || h->type == STT_FUNC)))
754 && olddyn
755 && olddef
0525d26e
ILT
756 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
757 && (bind != STB_WEAK
758 || h->root.type == bfd_link_hash_defweak))
252b5132
RH
759 {
760 /* Change the hash table entry to undefined, and let
761 _bfd_generic_link_add_one_symbol do the right thing with the
762 new definition. */
763
764 h->root.type = bfd_link_hash_undefined;
765 h->root.u.undef.abfd = h->root.u.def.section->owner;
766 *size_change_ok = true;
767
768 olddef = false;
769 olddyncommon = false;
770
771 /* We again permit a type change when a common symbol may be
772 overriding a function. */
773
774 if (bfd_is_com_section (sec))
775 *type_change_ok = true;
776
777 /* This union may have been set to be non-NULL when this symbol
778 was seen in a dynamic object. We must force the union to be
779 NULL, so that it is correct for a regular symbol. */
780
781 h->verinfo.vertree = NULL;
782
783 /* In this special case, if H is the target of an indirection,
784 we want the caller to frob with H rather than with the
785 indirect symbol. That will permit the caller to redefine the
786 target of the indirection, rather than the indirect symbol
787 itself. FIXME: This will break the -y option if we store a
788 symbol with a different name. */
789 *sym_hash = h;
790 }
791
792 /* Handle the special case of a new common symbol merging with an
793 old symbol that looks like it might be a common symbol defined in
794 a shared object. Note that we have already handled the case in
795 which a new common symbol should simply override the definition
796 in the shared library. */
797
798 if (! newdyn
799 && bfd_is_com_section (sec)
800 && olddyncommon)
801 {
802 /* It would be best if we could set the hash table entry to a
803 common symbol, but we don't know what to use for the section
804 or the alignment. */
805 if (! ((*info->callbacks->multiple_common)
806 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
807 h->size, abfd, bfd_link_hash_common, sym->st_size)))
808 return false;
809
810 /* If the predumed common symbol in the dynamic object is
811 larger, pretend that the new symbol has its size. */
812
813 if (h->size > *pvalue)
814 *pvalue = h->size;
815
816 /* FIXME: We no longer know the alignment required by the symbol
817 in the dynamic object, so we just wind up using the one from
818 the regular object. */
819
820 olddef = false;
821 olddyncommon = false;
822
823 h->root.type = bfd_link_hash_undefined;
824 h->root.u.undef.abfd = h->root.u.def.section->owner;
825
826 *size_change_ok = true;
827 *type_change_ok = true;
828
829 h->verinfo.vertree = NULL;
830 }
831
0525d26e
ILT
832 /* Handle the special case of a weak definition in a regular object
833 followed by a non-weak definition in a shared object. In this
456981d7
L
834 case, we prefer the definition in the shared object unless it
835 comes from a DT_NEEDED entry of a shared object, in which case,
3e932841 836 the DT_NEEDED entry may not be required at the run time. */
0525d26e 837 if (olddef
456981d7 838 && ! dt_needed
0525d26e
ILT
839 && h->root.type == bfd_link_hash_defweak
840 && newdef
841 && newdyn
842 && bind != STB_WEAK)
b4536acd
ILT
843 {
844 /* To make this work we have to frob the flags so that the rest
845 of the code does not think we are using the regular
846 definition. */
64df8d0b
ILT
847 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
848 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
849 else if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
850 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
851 h->elf_link_hash_flags &= ~ (ELF_LINK_HASH_DEF_REGULAR
852 | ELF_LINK_HASH_DEF_DYNAMIC);
b4536acd
ILT
853
854 /* If H is the target of an indirection, we want the caller to
855 use H rather than the indirect symbol. Otherwise if we are
856 defining a new indirect symbol we will wind up attaching it
857 to the entry we are overriding. */
858 *sym_hash = h;
859 }
0525d26e
ILT
860
861 /* Handle the special case of a non-weak definition in a shared
862 object followed by a weak definition in a regular object. In
863 this case we prefer to definition in the shared object. To make
864 this work we have to tell the caller to not treat the new symbol
865 as a definition. */
866 if (olddef
867 && olddyn
868 && h->root.type != bfd_link_hash_defweak
869 && newdef
870 && ! newdyn
871 && bind == STB_WEAK)
872 *override = true;
873
252b5132
RH
874 return true;
875}
876
877/* Add symbols from an ELF object file to the linker hash table. */
878
879static boolean
880elf_link_add_object_symbols (abfd, info)
881 bfd *abfd;
882 struct bfd_link_info *info;
883{
884 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
885 const Elf_Internal_Sym *,
886 const char **, flagword *,
887 asection **, bfd_vma *));
888 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
889 asection *, const Elf_Internal_Rela *));
890 boolean collect;
891 Elf_Internal_Shdr *hdr;
892 size_t symcount;
893 size_t extsymcount;
894 size_t extsymoff;
895 Elf_External_Sym *buf = NULL;
896 struct elf_link_hash_entry **sym_hash;
897 boolean dynamic;
252b5132
RH
898 Elf_External_Versym *extversym = NULL;
899 Elf_External_Versym *ever;
900 Elf_External_Dyn *dynbuf = NULL;
901 struct elf_link_hash_entry *weaks;
902 Elf_External_Sym *esym;
903 Elf_External_Sym *esymend;
c61b8717 904 struct elf_backend_data *bed;
74816898 905 boolean dt_needed;
252b5132 906
c61b8717
RH
907 bed = get_elf_backend_data (abfd);
908 add_symbol_hook = bed->elf_add_symbol_hook;
909 collect = bed->collect;
252b5132
RH
910
911 if ((abfd->flags & DYNAMIC) == 0)
912 dynamic = false;
913 else
914 {
915 dynamic = true;
916
917 /* You can't use -r against a dynamic object. Also, there's no
918 hope of using a dynamic object which does not exactly match
919 the format of the output file. */
920 if (info->relocateable || info->hash->creator != abfd->xvec)
921 {
922 bfd_set_error (bfd_error_invalid_operation);
923 goto error_return;
924 }
925 }
926
927 /* As a GNU extension, any input sections which are named
928 .gnu.warning.SYMBOL are treated as warning symbols for the given
929 symbol. This differs from .gnu.warning sections, which generate
930 warnings when they are included in an output file. */
931 if (! info->shared)
932 {
933 asection *s;
934
935 for (s = abfd->sections; s != NULL; s = s->next)
936 {
937 const char *name;
938
939 name = bfd_get_section_name (abfd, s);
940 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
941 {
942 char *msg;
943 bfd_size_type sz;
944
945 name += sizeof ".gnu.warning." - 1;
946
947 /* If this is a shared object, then look up the symbol
948 in the hash table. If it is there, and it is already
949 been defined, then we will not be using the entry
950 from this shared object, so we don't need to warn.
951 FIXME: If we see the definition in a regular object
952 later on, we will warn, but we shouldn't. The only
953 fix is to keep track of what warnings we are supposed
954 to emit, and then handle them all at the end of the
955 link. */
956 if (dynamic && abfd->xvec == info->hash->creator)
957 {
958 struct elf_link_hash_entry *h;
959
960 h = elf_link_hash_lookup (elf_hash_table (info), name,
961 false, false, true);
962
963 /* FIXME: What about bfd_link_hash_common? */
964 if (h != NULL
965 && (h->root.type == bfd_link_hash_defined
966 || h->root.type == bfd_link_hash_defweak))
967 {
968 /* We don't want to issue this warning. Clobber
969 the section size so that the warning does not
970 get copied into the output file. */
971 s->_raw_size = 0;
972 continue;
973 }
974 }
975
976 sz = bfd_section_size (abfd, s);
977 msg = (char *) bfd_alloc (abfd, sz + 1);
978 if (msg == NULL)
979 goto error_return;
980
981 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
982 goto error_return;
983
984 msg[sz] = '\0';
985
986 if (! (_bfd_generic_link_add_one_symbol
987 (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
988 false, collect, (struct bfd_link_hash_entry **) NULL)))
989 goto error_return;
990
991 if (! info->relocateable)
992 {
993 /* Clobber the section size so that the warning does
994 not get copied into the output file. */
995 s->_raw_size = 0;
996 }
997 }
998 }
999 }
1000
1001 /* If this is a dynamic object, we always link against the .dynsym
1002 symbol table, not the .symtab symbol table. The dynamic linker
1003 will only see the .dynsym symbol table, so there is no reason to
1004 look at .symtab for a dynamic object. */
1005
1006 if (! dynamic || elf_dynsymtab (abfd) == 0)
1007 hdr = &elf_tdata (abfd)->symtab_hdr;
1008 else
1009 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1010
1011 if (dynamic)
1012 {
1013 /* Read in any version definitions. */
1014
1015 if (! _bfd_elf_slurp_version_tables (abfd))
1016 goto error_return;
1017
1018 /* Read in the symbol versions, but don't bother to convert them
1019 to internal format. */
1020 if (elf_dynversym (abfd) != 0)
1021 {
1022 Elf_Internal_Shdr *versymhdr;
1023
1024 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
6e5222be 1025 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
252b5132
RH
1026 if (extversym == NULL)
1027 goto error_return;
1028 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
1029 || (bfd_read ((PTR) extversym, 1, versymhdr->sh_size, abfd)
1030 != versymhdr->sh_size))
1031 goto error_return;
1032 }
1033 }
1034
1035 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
1036
1037 /* The sh_info field of the symtab header tells us where the
1038 external symbols start. We don't care about the local symbols at
1039 this point. */
1040 if (elf_bad_symtab (abfd))
1041 {
1042 extsymcount = symcount;
1043 extsymoff = 0;
1044 }
1045 else
1046 {
1047 extsymcount = symcount - hdr->sh_info;
1048 extsymoff = hdr->sh_info;
1049 }
1050
1051 buf = ((Elf_External_Sym *)
1052 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
1053 if (buf == NULL && extsymcount != 0)
1054 goto error_return;
1055
1056 /* We store a pointer to the hash table entry for each external
1057 symbol. */
1058 sym_hash = ((struct elf_link_hash_entry **)
1059 bfd_alloc (abfd,
1060 extsymcount * sizeof (struct elf_link_hash_entry *)));
1061 if (sym_hash == NULL)
1062 goto error_return;
1063 elf_sym_hashes (abfd) = sym_hash;
1064
74816898
L
1065 dt_needed = false;
1066
252b5132
RH
1067 if (! dynamic)
1068 {
1069 /* If we are creating a shared library, create all the dynamic
1070 sections immediately. We need to attach them to something,
1071 so we attach them to this BFD, provided it is the right
1072 format. FIXME: If there are no input BFD's of the same
1073 format as the output, we can't make a shared library. */
1074 if (info->shared
1075 && ! elf_hash_table (info)->dynamic_sections_created
1076 && abfd->xvec == info->hash->creator)
1077 {
1078 if (! elf_link_create_dynamic_sections (abfd, info))
1079 goto error_return;
1080 }
1081 }
1082 else
1083 {
1084 asection *s;
1085 boolean add_needed;
1086 const char *name;
1087 bfd_size_type oldsize;
1088 bfd_size_type strindex;
1089
1090 /* Find the name to use in a DT_NEEDED entry that refers to this
1091 object. If the object has a DT_SONAME entry, we use it.
1092 Otherwise, if the generic linker stuck something in
1093 elf_dt_name, we use that. Otherwise, we just use the file
1094 name. If the generic linker put a null string into
1095 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
1096 there is a DT_SONAME entry. */
1097 add_needed = true;
7913c838 1098 name = bfd_get_filename (abfd);
252b5132
RH
1099 if (elf_dt_name (abfd) != NULL)
1100 {
1101 name = elf_dt_name (abfd);
1102 if (*name == '\0')
74816898
L
1103 {
1104 if (elf_dt_soname (abfd) != NULL)
1105 dt_needed = true;
1106
1107 add_needed = false;
1108 }
252b5132
RH
1109 }
1110 s = bfd_get_section_by_name (abfd, ".dynamic");
1111 if (s != NULL)
1112 {
1113 Elf_External_Dyn *extdyn;
1114 Elf_External_Dyn *extdynend;
1115 int elfsec;
1116 unsigned long link;
a963dc6a
L
1117 int rpath;
1118 int runpath;
252b5132
RH
1119
1120 dynbuf = (Elf_External_Dyn *) bfd_malloc ((size_t) s->_raw_size);
1121 if (dynbuf == NULL)
1122 goto error_return;
1123
1124 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
1125 (file_ptr) 0, s->_raw_size))
1126 goto error_return;
1127
1128 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1129 if (elfsec == -1)
1130 goto error_return;
1131 link = elf_elfsections (abfd)[elfsec]->sh_link;
1132
20e29382
JL
1133 {
1134 /* The shared libraries distributed with hpux11 have a bogus
1135 sh_link field for the ".dynamic" section. This code detects
1136 when LINK refers to a section that is not a string table and
1137 tries to find the string table for the ".dynsym" section
1138 instead. */
1139 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[link];
1140 if (hdr->sh_type != SHT_STRTAB)
1141 {
1142 asection *s = bfd_get_section_by_name (abfd, ".dynsym");
1143 int elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1144 if (elfsec == -1)
1145 goto error_return;
1146 link = elf_elfsections (abfd)[elfsec]->sh_link;
1147 }
1148 }
1149
252b5132
RH
1150 extdyn = dynbuf;
1151 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
a963dc6a
L
1152 rpath = 0;
1153 runpath = 0;
252b5132
RH
1154 for (; extdyn < extdynend; extdyn++)
1155 {
1156 Elf_Internal_Dyn dyn;
1157
1158 elf_swap_dyn_in (abfd, extdyn, &dyn);
1159 if (dyn.d_tag == DT_SONAME)
1160 {
1161 name = bfd_elf_string_from_elf_section (abfd, link,
1162 dyn.d_un.d_val);
1163 if (name == NULL)
1164 goto error_return;
1165 }
1166 if (dyn.d_tag == DT_NEEDED)
1167 {
1168 struct bfd_link_needed_list *n, **pn;
1169 char *fnm, *anm;
1170
1171 n = ((struct bfd_link_needed_list *)
1172 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
1173 fnm = bfd_elf_string_from_elf_section (abfd, link,
1174 dyn.d_un.d_val);
1175 if (n == NULL || fnm == NULL)
1176 goto error_return;
1177 anm = bfd_alloc (abfd, strlen (fnm) + 1);
1178 if (anm == NULL)
1179 goto error_return;
1180 strcpy (anm, fnm);
1181 n->name = anm;
1182 n->by = abfd;
1183 n->next = NULL;
1184 for (pn = &elf_hash_table (info)->needed;
1185 *pn != NULL;
1186 pn = &(*pn)->next)
1187 ;
1188 *pn = n;
1189 }
a963dc6a
L
1190 if (dyn.d_tag == DT_RUNPATH)
1191 {
1192 struct bfd_link_needed_list *n, **pn;
1193 char *fnm, *anm;
1194
1195 /* When we see DT_RPATH before DT_RUNPATH, we have
512a2384
AM
1196 to clear runpath. Do _NOT_ bfd_release, as that
1197 frees all more recently bfd_alloc'd blocks as
1198 well. */
a963dc6a 1199 if (rpath && elf_hash_table (info)->runpath)
512a2384 1200 elf_hash_table (info)->runpath = NULL;
a963dc6a
L
1201
1202 n = ((struct bfd_link_needed_list *)
1203 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
1204 fnm = bfd_elf_string_from_elf_section (abfd, link,
1205 dyn.d_un.d_val);
1206 if (n == NULL || fnm == NULL)
1207 goto error_return;
1208 anm = bfd_alloc (abfd, strlen (fnm) + 1);
1209 if (anm == NULL)
1210 goto error_return;
1211 strcpy (anm, fnm);
1212 n->name = anm;
1213 n->by = abfd;
1214 n->next = NULL;
1215 for (pn = &elf_hash_table (info)->runpath;
1216 *pn != NULL;
1217 pn = &(*pn)->next)
1218 ;
1219 *pn = n;
1220 runpath = 1;
1221 rpath = 0;
1222 }
3e932841 1223 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
a963dc6a
L
1224 if (!runpath && dyn.d_tag == DT_RPATH)
1225 {
1226 struct bfd_link_needed_list *n, **pn;
1227 char *fnm, *anm;
1228
1229 n = ((struct bfd_link_needed_list *)
1230 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
1231 fnm = bfd_elf_string_from_elf_section (abfd, link,
1232 dyn.d_un.d_val);
1233 if (n == NULL || fnm == NULL)
1234 goto error_return;
1235 anm = bfd_alloc (abfd, strlen (fnm) + 1);
1236 if (anm == NULL)
1237 goto error_return;
1238 strcpy (anm, fnm);
1239 n->name = anm;
1240 n->by = abfd;
1241 n->next = NULL;
1242 for (pn = &elf_hash_table (info)->runpath;
1243 *pn != NULL;
1244 pn = &(*pn)->next)
1245 ;
1246 *pn = n;
1247 rpath = 1;
1248 }
252b5132
RH
1249 }
1250
1251 free (dynbuf);
1252 dynbuf = NULL;
1253 }
1254
1255 /* We do not want to include any of the sections in a dynamic
1256 object in the output file. We hack by simply clobbering the
1257 list of sections in the BFD. This could be handled more
1258 cleanly by, say, a new section flag; the existing
1259 SEC_NEVER_LOAD flag is not the one we want, because that one
1260 still implies that the section takes up space in the output
1261 file. */
1262 abfd->sections = NULL;
1263 abfd->section_count = 0;
1264
1265 /* If this is the first dynamic object found in the link, create
1266 the special sections required for dynamic linking. */
1267 if (! elf_hash_table (info)->dynamic_sections_created)
1268 {
1269 if (! elf_link_create_dynamic_sections (abfd, info))
1270 goto error_return;
1271 }
1272
1273 if (add_needed)
1274 {
1275 /* Add a DT_NEEDED entry for this dynamic object. */
1276 oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
1277 strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name,
1278 true, false);
1279 if (strindex == (bfd_size_type) -1)
1280 goto error_return;
1281
1282 if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
1283 {
1284 asection *sdyn;
1285 Elf_External_Dyn *dyncon, *dynconend;
1286
1287 /* The hash table size did not change, which means that
1288 the dynamic object name was already entered. If we
1289 have already included this dynamic object in the
1290 link, just ignore it. There is no reason to include
1291 a particular dynamic object more than once. */
1292 sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
1293 ".dynamic");
1294 BFD_ASSERT (sdyn != NULL);
1295
1296 dyncon = (Elf_External_Dyn *) sdyn->contents;
1297 dynconend = (Elf_External_Dyn *) (sdyn->contents +
1298 sdyn->_raw_size);
1299 for (; dyncon < dynconend; dyncon++)
1300 {
1301 Elf_Internal_Dyn dyn;
1302
1303 elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon,
1304 &dyn);
1305 if (dyn.d_tag == DT_NEEDED
1306 && dyn.d_un.d_val == strindex)
1307 {
1308 if (buf != NULL)
1309 free (buf);
1310 if (extversym != NULL)
1311 free (extversym);
1312 return true;
1313 }
1314 }
1315 }
1316
1317 if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
1318 goto error_return;
1319 }
1320
1321 /* Save the SONAME, if there is one, because sometimes the
1322 linker emulation code will need to know it. */
1323 if (*name == '\0')
210ba1e8 1324 name = basename (bfd_get_filename (abfd));
252b5132
RH
1325 elf_dt_name (abfd) = name;
1326 }
1327
1328 if (bfd_seek (abfd,
1329 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
1330 SEEK_SET) != 0
1331 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
1332 != extsymcount * sizeof (Elf_External_Sym)))
1333 goto error_return;
1334
1335 weaks = NULL;
1336
1337 ever = extversym != NULL ? extversym + extsymoff : NULL;
1338 esymend = buf + extsymcount;
1339 for (esym = buf;
1340 esym < esymend;
1341 esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
1342 {
1343 Elf_Internal_Sym sym;
1344 int bind;
1345 bfd_vma value;
1346 asection *sec;
1347 flagword flags;
1348 const char *name;
1349 struct elf_link_hash_entry *h;
1350 boolean definition;
1351 boolean size_change_ok, type_change_ok;
1352 boolean new_weakdef;
1353 unsigned int old_alignment;
1354
1355 elf_swap_symbol_in (abfd, esym, &sym);
1356
1357 flags = BSF_NO_FLAGS;
1358 sec = NULL;
1359 value = sym.st_value;
1360 *sym_hash = NULL;
1361
1362 bind = ELF_ST_BIND (sym.st_info);
1363 if (bind == STB_LOCAL)
1364 {
1365 /* This should be impossible, since ELF requires that all
1366 global symbols follow all local symbols, and that sh_info
1367 point to the first global symbol. Unfortunatealy, Irix 5
1368 screws this up. */
1369 continue;
1370 }
1371 else if (bind == STB_GLOBAL)
1372 {
1373 if (sym.st_shndx != SHN_UNDEF
1374 && sym.st_shndx != SHN_COMMON)
1375 flags = BSF_GLOBAL;
252b5132
RH
1376 }
1377 else if (bind == STB_WEAK)
1378 flags = BSF_WEAK;
1379 else
1380 {
1381 /* Leave it up to the processor backend. */
1382 }
1383
1384 if (sym.st_shndx == SHN_UNDEF)
1385 sec = bfd_und_section_ptr;
1386 else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE)
1387 {
1388 sec = section_from_elf_index (abfd, sym.st_shndx);
1389 if (sec == NULL)
1390 sec = bfd_abs_section_ptr;
1391 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
1392 value -= sec->vma;
1393 }
1394 else if (sym.st_shndx == SHN_ABS)
1395 sec = bfd_abs_section_ptr;
1396 else if (sym.st_shndx == SHN_COMMON)
1397 {
1398 sec = bfd_com_section_ptr;
1399 /* What ELF calls the size we call the value. What ELF
1400 calls the value we call the alignment. */
1401 value = sym.st_size;
1402 }
1403 else
1404 {
1405 /* Leave it up to the processor backend. */
1406 }
1407
1408 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
1409 if (name == (const char *) NULL)
1410 goto error_return;
1411
1412 if (add_symbol_hook)
1413 {
1414 if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
1415 &value))
1416 goto error_return;
1417
1418 /* The hook function sets the name to NULL if this symbol
1419 should be skipped for some reason. */
1420 if (name == (const char *) NULL)
1421 continue;
1422 }
1423
1424 /* Sanity check that all possibilities were handled. */
1425 if (sec == (asection *) NULL)
1426 {
1427 bfd_set_error (bfd_error_bad_value);
1428 goto error_return;
1429 }
1430
1431 if (bfd_is_und_section (sec)
1432 || bfd_is_com_section (sec))
1433 definition = false;
1434 else
1435 definition = true;
1436
1437 size_change_ok = false;
1438 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
1439 old_alignment = 0;
1440 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1441 {
1442 Elf_Internal_Versym iver;
1443 unsigned int vernum = 0;
1444 boolean override;
1445
1446 if (ever != NULL)
1447 {
1448 _bfd_elf_swap_versym_in (abfd, ever, &iver);
1449 vernum = iver.vs_vers & VERSYM_VERSION;
1450
1451 /* If this is a hidden symbol, or if it is not version
1452 1, we append the version name to the symbol name.
1453 However, we do not modify a non-hidden absolute
1454 symbol, because it might be the version symbol
1455 itself. FIXME: What if it isn't? */
1456 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
1457 || (vernum > 1 && ! bfd_is_abs_section (sec)))
1458 {
1459 const char *verstr;
1460 int namelen, newlen;
1461 char *newname, *p;
1462
1463 if (sym.st_shndx != SHN_UNDEF)
1464 {
1465 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
1466 {
1467 (*_bfd_error_handler)
1468 (_("%s: %s: invalid version %u (max %d)"),
1469 bfd_get_filename (abfd), name, vernum,
1470 elf_tdata (abfd)->dynverdef_hdr.sh_info);
1471 bfd_set_error (bfd_error_bad_value);
1472 goto error_return;
1473 }
1474 else if (vernum > 1)
1475 verstr =
1476 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1477 else
1478 verstr = "";
1479 }
1480 else
1481 {
1482 /* We cannot simply test for the number of
1483 entries in the VERNEED section since the
1484 numbers for the needed versions do not start
1485 at 0. */
1486 Elf_Internal_Verneed *t;
1487
1488 verstr = NULL;
1489 for (t = elf_tdata (abfd)->verref;
1490 t != NULL;
1491 t = t->vn_nextref)
1492 {
1493 Elf_Internal_Vernaux *a;
1494
1495 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1496 {
1497 if (a->vna_other == vernum)
1498 {
1499 verstr = a->vna_nodename;
1500 break;
1501 }
1502 }
1503 if (a != NULL)
1504 break;
1505 }
1506 if (verstr == NULL)
1507 {
1508 (*_bfd_error_handler)
1509 (_("%s: %s: invalid needed version %d"),
1510 bfd_get_filename (abfd), name, vernum);
1511 bfd_set_error (bfd_error_bad_value);
1512 goto error_return;
1513 }
1514 }
1515
1516 namelen = strlen (name);
1517 newlen = namelen + strlen (verstr) + 2;
1518 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1519 ++newlen;
1520
1521 newname = (char *) bfd_alloc (abfd, newlen);
1522 if (newname == NULL)
1523 goto error_return;
1524 strcpy (newname, name);
1525 p = newname + namelen;
1526 *p++ = ELF_VER_CHR;
1287d1cc
ILT
1527 /* If this is a defined non-hidden version symbol,
1528 we add another @ to the name. This indicates the
1529 default version of the symbol. */
1530 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
1531 && sym.st_shndx != SHN_UNDEF)
252b5132
RH
1532 *p++ = ELF_VER_CHR;
1533 strcpy (p, verstr);
1534
1535 name = newname;
1536 }
1537 }
1538
1539 if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value,
1540 sym_hash, &override, &type_change_ok,
456981d7 1541 &size_change_ok, dt_needed))
252b5132
RH
1542 goto error_return;
1543
1544 if (override)
1545 definition = false;
1546
1547 h = *sym_hash;
1548 while (h->root.type == bfd_link_hash_indirect
1549 || h->root.type == bfd_link_hash_warning)
1550 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1551
1552 /* Remember the old alignment if this is a common symbol, so
1553 that we don't reduce the alignment later on. We can't
1554 check later, because _bfd_generic_link_add_one_symbol
1555 will set a default for the alignment which we want to
1556 override. */
1557 if (h->root.type == bfd_link_hash_common)
1558 old_alignment = h->root.u.c.p->alignment_power;
1559
1560 if (elf_tdata (abfd)->verdef != NULL
1561 && ! override
1562 && vernum > 1
1563 && definition)
1564 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
1565 }
1566
1567 if (! (_bfd_generic_link_add_one_symbol
1568 (info, abfd, name, flags, sec, value, (const char *) NULL,
1569 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
1570 goto error_return;
1571
1572 h = *sym_hash;
1573 while (h->root.type == bfd_link_hash_indirect
1574 || h->root.type == bfd_link_hash_warning)
1575 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1576 *sym_hash = h;
1577
1578 new_weakdef = false;
1579 if (dynamic
1580 && definition
1581 && (flags & BSF_WEAK) != 0
1582 && ELF_ST_TYPE (sym.st_info) != STT_FUNC
1583 && info->hash->creator->flavour == bfd_target_elf_flavour
1584 && h->weakdef == NULL)
1585 {
1586 /* Keep a list of all weak defined non function symbols from
1587 a dynamic object, using the weakdef field. Later in this
1588 function we will set the weakdef field to the correct
1589 value. We only put non-function symbols from dynamic
1590 objects on this list, because that happens to be the only
1591 time we need to know the normal symbol corresponding to a
1592 weak symbol, and the information is time consuming to
1593 figure out. If the weakdef field is not already NULL,
1594 then this symbol was already defined by some previous
1595 dynamic object, and we will be using that previous
1596 definition anyhow. */
1597
1598 h->weakdef = weaks;
1599 weaks = h;
1600 new_weakdef = true;
1601 }
1602
1603 /* Set the alignment of a common symbol. */
1604 if (sym.st_shndx == SHN_COMMON
1605 && h->root.type == bfd_link_hash_common)
1606 {
1607 unsigned int align;
1608
1609 align = bfd_log2 (sym.st_value);
724982f6
NC
1610 if (align > old_alignment
1611 /* Permit an alignment power of zero if an alignment of one
1612 is specified and no other alignments have been specified. */
1613 || (sym.st_value == 1 && old_alignment == 0))
252b5132
RH
1614 h->root.u.c.p->alignment_power = align;
1615 }
1616
1617 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1618 {
1619 int old_flags;
1620 boolean dynsym;
1621 int new_flag;
1622
1623 /* Remember the symbol size and type. */
1624 if (sym.st_size != 0
1625 && (definition || h->size == 0))
1626 {
1627 if (h->size != 0 && h->size != sym.st_size && ! size_change_ok)
1628 (*_bfd_error_handler)
1629 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1630 name, (unsigned long) h->size, (unsigned long) sym.st_size,
1631 bfd_get_filename (abfd));
1632
1633 h->size = sym.st_size;
1634 }
1635
1636 /* If this is a common symbol, then we always want H->SIZE
1637 to be the size of the common symbol. The code just above
1638 won't fix the size if a common symbol becomes larger. We
1639 don't warn about a size change here, because that is
1640 covered by --warn-common. */
1641 if (h->root.type == bfd_link_hash_common)
1642 h->size = h->root.u.c.size;
1643
1644 if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE
1645 && (definition || h->type == STT_NOTYPE))
1646 {
1647 if (h->type != STT_NOTYPE
1648 && h->type != ELF_ST_TYPE (sym.st_info)
1649 && ! type_change_ok)
1650 (*_bfd_error_handler)
1651 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1652 name, h->type, ELF_ST_TYPE (sym.st_info),
1653 bfd_get_filename (abfd));
1654
1655 h->type = ELF_ST_TYPE (sym.st_info);
1656 }
1657
7a13edea
NC
1658 /* If st_other has a processor-specific meaning, specific code
1659 might be needed here. */
1660 if (sym.st_other != 0)
1661 {
1662 /* Combine visibilities, using the most constraining one. */
1663 unsigned char hvis = ELF_ST_VISIBILITY (h->other);
1664 unsigned char symvis = ELF_ST_VISIBILITY (sym.st_other);
3e932841 1665
7a13edea 1666 if (symvis && (hvis > symvis || hvis == 0))
38048eb9 1667 h->other = sym.st_other;
3e932841 1668
7a13edea
NC
1669 /* If neither has visibility, use the st_other of the
1670 definition. This is an arbitrary choice, since the
1671 other bits have no general meaning. */
1672 if (!symvis && !hvis
1673 && (definition || h->other == 0))
1674 h->other = sym.st_other;
1675 }
252b5132
RH
1676
1677 /* Set a flag in the hash table entry indicating the type of
1678 reference or definition we just found. Keep a count of
1679 the number of dynamic symbols we find. A dynamic symbol
1680 is one which is referenced or defined by both a regular
1681 object and a shared object. */
1682 old_flags = h->elf_link_hash_flags;
1683 dynsym = false;
1684 if (! dynamic)
1685 {
1686 if (! definition)
1687 {
1688 new_flag = ELF_LINK_HASH_REF_REGULAR;
1689 if (bind != STB_WEAK)
1690 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
1691 }
1692 else
1693 new_flag = ELF_LINK_HASH_DEF_REGULAR;
1694 if (info->shared
1695 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
1696 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
1697 dynsym = true;
1698 }
1699 else
1700 {
1701 if (! definition)
1702 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
1703 else
1704 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
1705 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
1706 | ELF_LINK_HASH_REF_REGULAR)) != 0
1707 || (h->weakdef != NULL
1708 && ! new_weakdef
1709 && h->weakdef->dynindx != -1))
1710 dynsym = true;
1711 }
1712
1713 h->elf_link_hash_flags |= new_flag;
1714
1715 /* If this symbol has a version, and it is the default
1716 version, we create an indirect symbol from the default
1717 name to the fully decorated name. This will cause
1718 external references which do not specify a version to be
1719 bound to this version of the symbol. */
051b8577 1720 if (definition || h->root.type == bfd_link_hash_common)
252b5132
RH
1721 {
1722 char *p;
1723
1724 p = strchr (name, ELF_VER_CHR);
1725 if (p != NULL && p[1] == ELF_VER_CHR)
1726 {
1727 char *shortname;
1728 struct elf_link_hash_entry *hi;
1729 boolean override;
1730
1731 shortname = bfd_hash_allocate (&info->hash->table,
1732 p - name + 1);
1733 if (shortname == NULL)
1734 goto error_return;
1735 strncpy (shortname, name, p - name);
1736 shortname[p - name] = '\0';
1737
1738 /* We are going to create a new symbol. Merge it
1739 with any existing symbol with this name. For the
1740 purposes of the merge, act as though we were
1741 defining the symbol we just defined, although we
1742 actually going to define an indirect symbol. */
1743 type_change_ok = false;
1744 size_change_ok = false;
1745 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1746 &value, &hi, &override,
456981d7
L
1747 &type_change_ok,
1748 &size_change_ok, dt_needed))
252b5132
RH
1749 goto error_return;
1750
1751 if (! override)
1752 {
1753 if (! (_bfd_generic_link_add_one_symbol
1754 (info, abfd, shortname, BSF_INDIRECT,
1755 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1756 collect, (struct bfd_link_hash_entry **) &hi)))
1757 goto error_return;
1758 }
1759 else
1760 {
1761 /* In this case the symbol named SHORTNAME is
1762 overriding the indirect symbol we want to
1763 add. We were planning on making SHORTNAME an
1764 indirect symbol referring to NAME. SHORTNAME
1765 is the name without a version. NAME is the
1766 fully versioned name, and it is the default
1767 version.
1768
1769 Overriding means that we already saw a
1770 definition for the symbol SHORTNAME in a
1771 regular object, and it is overriding the
1772 symbol defined in the dynamic object.
1773
1774 When this happens, we actually want to change
1775 NAME, the symbol we just added, to refer to
1776 SHORTNAME. This will cause references to
1777 NAME in the shared object to become
1778 references to SHORTNAME in the regular
1779 object. This is what we expect when we
1780 override a function in a shared object: that
1781 the references in the shared object will be
1782 mapped to the definition in the regular
1783 object. */
1784
1785 while (hi->root.type == bfd_link_hash_indirect
1786 || hi->root.type == bfd_link_hash_warning)
1787 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1788
1789 h->root.type = bfd_link_hash_indirect;
1790 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1791 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1792 {
1793 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1794 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1795 if (hi->elf_link_hash_flags
1796 & (ELF_LINK_HASH_REF_REGULAR
1797 | ELF_LINK_HASH_DEF_REGULAR))
1798 {
1799 if (! _bfd_elf_link_record_dynamic_symbol (info,
1800 hi))
1801 goto error_return;
1802 }
1803 }
1804
1805 /* Now set HI to H, so that the following code
1806 will set the other fields correctly. */
1807 hi = h;
1808 }
1809
1810 /* If there is a duplicate definition somewhere,
1811 then HI may not point to an indirect symbol. We
1812 will have reported an error to the user in that
1813 case. */
1814
1815 if (hi->root.type == bfd_link_hash_indirect)
1816 {
1817 struct elf_link_hash_entry *ht;
1818
1819 /* If the symbol became indirect, then we assume
1820 that we have not seen a definition before. */
1821 BFD_ASSERT ((hi->elf_link_hash_flags
1822 & (ELF_LINK_HASH_DEF_DYNAMIC
1823 | ELF_LINK_HASH_DEF_REGULAR))
1824 == 0);
1825
1826 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
c61b8717 1827 (*bed->elf_backend_copy_indirect_symbol) (ht, hi);
252b5132
RH
1828
1829 /* See if the new flags lead us to realize that
1830 the symbol must be dynamic. */
1831 if (! dynsym)
1832 {
1833 if (! dynamic)
1834 {
1835 if (info->shared
1836 || ((hi->elf_link_hash_flags
1837 & ELF_LINK_HASH_REF_DYNAMIC)
1838 != 0))
1839 dynsym = true;
1840 }
1841 else
1842 {
1843 if ((hi->elf_link_hash_flags
1844 & ELF_LINK_HASH_REF_REGULAR) != 0)
1845 dynsym = true;
1846 }
1847 }
1848 }
1849
1850 /* We also need to define an indirection from the
1851 nondefault version of the symbol. */
1852
1853 shortname = bfd_hash_allocate (&info->hash->table,
1854 strlen (name));
1855 if (shortname == NULL)
1856 goto error_return;
1857 strncpy (shortname, name, p - name);
1858 strcpy (shortname + (p - name), p + 1);
1859
1860 /* Once again, merge with any existing symbol. */
1861 type_change_ok = false;
1862 size_change_ok = false;
1863 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1864 &value, &hi, &override,
456981d7
L
1865 &type_change_ok,
1866 &size_change_ok, dt_needed))
252b5132
RH
1867 goto error_return;
1868
1869 if (override)
1870 {
1871 /* Here SHORTNAME is a versioned name, so we
1872 don't expect to see the type of override we
1873 do in the case above. */
1874 (*_bfd_error_handler)
1875 (_("%s: warning: unexpected redefinition of `%s'"),
1876 bfd_get_filename (abfd), shortname);
1877 }
1878 else
1879 {
1880 if (! (_bfd_generic_link_add_one_symbol
1881 (info, abfd, shortname, BSF_INDIRECT,
1882 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1883 collect, (struct bfd_link_hash_entry **) &hi)))
1884 goto error_return;
1885
1886 /* If there is a duplicate definition somewhere,
1887 then HI may not point to an indirect symbol.
1888 We will have reported an error to the user in
1889 that case. */
1890
1891 if (hi->root.type == bfd_link_hash_indirect)
1892 {
1893 /* If the symbol became indirect, then we
1894 assume that we have not seen a definition
1895 before. */
1896 BFD_ASSERT ((hi->elf_link_hash_flags
1897 & (ELF_LINK_HASH_DEF_DYNAMIC
1898 | ELF_LINK_HASH_DEF_REGULAR))
1899 == 0);
1900
c61b8717 1901 (*bed->elf_backend_copy_indirect_symbol) (h, hi);
252b5132
RH
1902
1903 /* See if the new flags lead us to realize
1904 that the symbol must be dynamic. */
1905 if (! dynsym)
1906 {
1907 if (! dynamic)
1908 {
1909 if (info->shared
1910 || ((hi->elf_link_hash_flags
1911 & ELF_LINK_HASH_REF_DYNAMIC)
1912 != 0))
1913 dynsym = true;
1914 }
1915 else
1916 {
1917 if ((hi->elf_link_hash_flags
1918 & ELF_LINK_HASH_REF_REGULAR) != 0)
1919 dynsym = true;
1920 }
1921 }
1922 }
1923 }
1924 }
1925 }
1926
1927 if (dynsym && h->dynindx == -1)
1928 {
1929 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1930 goto error_return;
1931 if (h->weakdef != NULL
1932 && ! new_weakdef
1933 && h->weakdef->dynindx == -1)
1934 {
1935 if (! _bfd_elf_link_record_dynamic_symbol (info,
1936 h->weakdef))
1937 goto error_return;
1938 }
1939 }
38048eb9 1940 else if (dynsym && h->dynindx != -1)
0444bdd4
L
1941 /* If the symbol already has a dynamic index, but
1942 visibility says it should not be visible, turn it into
1943 a local symbol. */
1944 switch (ELF_ST_VISIBILITY (h->other))
1945 {
1946 case STV_INTERNAL:
3e932841 1947 case STV_HIDDEN:
0444bdd4 1948 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
f41cbf03 1949 (*bed->elf_backend_hide_symbol) (info, h);
0444bdd4
L
1950 break;
1951 }
74816898
L
1952
1953 if (dt_needed && definition
1954 && (h->elf_link_hash_flags
1955 & ELF_LINK_HASH_REF_REGULAR) != 0)
1956 {
1957 bfd_size_type oldsize;
1958 bfd_size_type strindex;
1959
1960 /* The symbol from a DT_NEEDED object is referenced from
1961 the regular object to create a dynamic executable. We
3e932841 1962 have to make sure there is a DT_NEEDED entry for it. */
74816898
L
1963
1964 dt_needed = false;
1965 oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
1966 strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
1967 elf_dt_soname (abfd),
1968 true, false);
1969 if (strindex == (bfd_size_type) -1)
1970 goto error_return;
1971
1972 if (oldsize
1973 == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
1974 {
1975 asection *sdyn;
1976 Elf_External_Dyn *dyncon, *dynconend;
1977
1978 sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
1979 ".dynamic");
1980 BFD_ASSERT (sdyn != NULL);
1981
1982 dyncon = (Elf_External_Dyn *) sdyn->contents;
1983 dynconend = (Elf_External_Dyn *) (sdyn->contents +
1984 sdyn->_raw_size);
1985 for (; dyncon < dynconend; dyncon++)
1986 {
1987 Elf_Internal_Dyn dyn;
1988
1989 elf_swap_dyn_in (elf_hash_table (info)->dynobj,
1990 dyncon, &dyn);
1991 BFD_ASSERT (dyn.d_tag != DT_NEEDED ||
1992 dyn.d_un.d_val != strindex);
1993 }
1994 }
1995
1996 if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
1997 goto error_return;
1998 }
252b5132
RH
1999 }
2000 }
2001
2002 /* Now set the weakdefs field correctly for all the weak defined
2003 symbols we found. The only way to do this is to search all the
2004 symbols. Since we only need the information for non functions in
2005 dynamic objects, that's the only time we actually put anything on
2006 the list WEAKS. We need this information so that if a regular
2007 object refers to a symbol defined weakly in a dynamic object, the
2008 real symbol in the dynamic object is also put in the dynamic
2009 symbols; we also must arrange for both symbols to point to the
2010 same memory location. We could handle the general case of symbol
2011 aliasing, but a general symbol alias can only be generated in
2012 assembler code, handling it correctly would be very time
2013 consuming, and other ELF linkers don't handle general aliasing
2014 either. */
2015 while (weaks != NULL)
2016 {
2017 struct elf_link_hash_entry *hlook;
2018 asection *slook;
2019 bfd_vma vlook;
2020 struct elf_link_hash_entry **hpp;
2021 struct elf_link_hash_entry **hppend;
2022
2023 hlook = weaks;
2024 weaks = hlook->weakdef;
2025 hlook->weakdef = NULL;
2026
2027 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
2028 || hlook->root.type == bfd_link_hash_defweak
2029 || hlook->root.type == bfd_link_hash_common
2030 || hlook->root.type == bfd_link_hash_indirect);
2031 slook = hlook->root.u.def.section;
2032 vlook = hlook->root.u.def.value;
2033
2034 hpp = elf_sym_hashes (abfd);
2035 hppend = hpp + extsymcount;
2036 for (; hpp < hppend; hpp++)
2037 {
2038 struct elf_link_hash_entry *h;
2039
2040 h = *hpp;
2041 if (h != NULL && h != hlook
2042 && h->root.type == bfd_link_hash_defined
2043 && h->root.u.def.section == slook
2044 && h->root.u.def.value == vlook)
2045 {
2046 hlook->weakdef = h;
2047
2048 /* If the weak definition is in the list of dynamic
2049 symbols, make sure the real definition is put there
2050 as well. */
2051 if (hlook->dynindx != -1
2052 && h->dynindx == -1)
2053 {
2054 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2055 goto error_return;
2056 }
2057
2058 /* If the real definition is in the list of dynamic
2059 symbols, make sure the weak definition is put there
2060 as well. If we don't do this, then the dynamic
2061 loader might not merge the entries for the real
2062 definition and the weak definition. */
2063 if (h->dynindx != -1
2064 && hlook->dynindx == -1)
2065 {
2066 if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
2067 goto error_return;
2068 }
2069
2070 break;
2071 }
2072 }
2073 }
2074
2075 if (buf != NULL)
2076 {
2077 free (buf);
2078 buf = NULL;
2079 }
2080
2081 if (extversym != NULL)
2082 {
2083 free (extversym);
2084 extversym = NULL;
2085 }
2086
2087 /* If this object is the same format as the output object, and it is
2088 not a shared library, then let the backend look through the
2089 relocs.
2090
2091 This is required to build global offset table entries and to
2092 arrange for dynamic relocs. It is not required for the
2093 particular common case of linking non PIC code, even when linking
2094 against shared libraries, but unfortunately there is no way of
2095 knowing whether an object file has been compiled PIC or not.
2096 Looking through the relocs is not particularly time consuming.
2097 The problem is that we must either (1) keep the relocs in memory,
2098 which causes the linker to require additional runtime memory or
2099 (2) read the relocs twice from the input file, which wastes time.
2100 This would be a good case for using mmap.
2101
2102 I have no idea how to handle linking PIC code into a file of a
2103 different format. It probably can't be done. */
2104 check_relocs = get_elf_backend_data (abfd)->check_relocs;
2105 if (! dynamic
2106 && abfd->xvec == info->hash->creator
2107 && check_relocs != NULL)
2108 {
2109 asection *o;
2110
2111 for (o = abfd->sections; o != NULL; o = o->next)
2112 {
2113 Elf_Internal_Rela *internal_relocs;
2114 boolean ok;
2115
2116 if ((o->flags & SEC_RELOC) == 0
2117 || o->reloc_count == 0
2118 || ((info->strip == strip_all || info->strip == strip_debugger)
2119 && (o->flags & SEC_DEBUGGING) != 0)
2120 || bfd_is_abs_section (o->output_section))
2121 continue;
2122
2123 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
2124 (abfd, o, (PTR) NULL,
2125 (Elf_Internal_Rela *) NULL,
2126 info->keep_memory));
2127 if (internal_relocs == NULL)
2128 goto error_return;
2129
2130 ok = (*check_relocs) (abfd, info, o, internal_relocs);
2131
2132 if (! info->keep_memory)
2133 free (internal_relocs);
2134
2135 if (! ok)
2136 goto error_return;
2137 }
2138 }
2139
2140 /* If this is a non-traditional, non-relocateable link, try to
2141 optimize the handling of the .stab/.stabstr sections. */
2142 if (! dynamic
2143 && ! info->relocateable
2144 && ! info->traditional_format
2145 && info->hash->creator->flavour == bfd_target_elf_flavour
2146 && (info->strip != strip_all && info->strip != strip_debugger))
2147 {
2148 asection *stab, *stabstr;
2149
2150 stab = bfd_get_section_by_name (abfd, ".stab");
2151 if (stab != NULL)
2152 {
2153 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
2154
2155 if (stabstr != NULL)
2156 {
2157 struct bfd_elf_section_data *secdata;
2158
2159 secdata = elf_section_data (stab);
2160 if (! _bfd_link_section_stabs (abfd,
2161 &elf_hash_table (info)->stab_info,
2162 stab, stabstr,
2163 &secdata->stab_info))
2164 goto error_return;
2165 }
2166 }
2167 }
2168
f5fa8ca2
JJ
2169 if (! info->relocateable && ! dynamic)
2170 {
2171 asection *s;
2172
2173 for (s = abfd->sections; s != NULL; s = s->next)
2174 if ((s->flags & SEC_MERGE)
2175 && ! _bfd_merge_section (abfd,
2176 &elf_hash_table (info)->merge_info,
2177 s, &elf_section_data (s)->merge_info))
2178 goto error_return;
2179 }
2180
252b5132
RH
2181 return true;
2182
2183 error_return:
2184 if (buf != NULL)
2185 free (buf);
2186 if (dynbuf != NULL)
2187 free (dynbuf);
252b5132
RH
2188 if (extversym != NULL)
2189 free (extversym);
2190 return false;
2191}
2192
2193/* Create some sections which will be filled in with dynamic linking
2194 information. ABFD is an input file which requires dynamic sections
2195 to be created. The dynamic sections take up virtual memory space
2196 when the final executable is run, so we need to create them before
2197 addresses are assigned to the output sections. We work out the
2198 actual contents and size of these sections later. */
2199
2200boolean
2201elf_link_create_dynamic_sections (abfd, info)
2202 bfd *abfd;
2203 struct bfd_link_info *info;
2204{
2205 flagword flags;
2206 register asection *s;
2207 struct elf_link_hash_entry *h;
2208 struct elf_backend_data *bed;
2209
2210 if (elf_hash_table (info)->dynamic_sections_created)
2211 return true;
2212
2213 /* Make sure that all dynamic sections use the same input BFD. */
2214 if (elf_hash_table (info)->dynobj == NULL)
2215 elf_hash_table (info)->dynobj = abfd;
2216 else
2217 abfd = elf_hash_table (info)->dynobj;
2218
2219 /* Note that we set the SEC_IN_MEMORY flag for all of these
2220 sections. */
2221 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
2222 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2223
2224 /* A dynamically linked executable has a .interp section, but a
2225 shared library does not. */
2226 if (! info->shared)
2227 {
2228 s = bfd_make_section (abfd, ".interp");
2229 if (s == NULL
2230 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2231 return false;
2232 }
2233
2234 /* Create sections to hold version informations. These are removed
2235 if they are not needed. */
2236 s = bfd_make_section (abfd, ".gnu.version_d");
2237 if (s == NULL
2238 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2239 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2240 return false;
2241
2242 s = bfd_make_section (abfd, ".gnu.version");
2243 if (s == NULL
2244 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2245 || ! bfd_set_section_alignment (abfd, s, 1))
2246 return false;
2247
2248 s = bfd_make_section (abfd, ".gnu.version_r");
2249 if (s == NULL
2250 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2251 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2252 return false;
2253
2254 s = bfd_make_section (abfd, ".dynsym");
2255 if (s == NULL
2256 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2257 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2258 return false;
2259
2260 s = bfd_make_section (abfd, ".dynstr");
2261 if (s == NULL
2262 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2263 return false;
2264
2265 /* Create a strtab to hold the dynamic symbol names. */
2266 if (elf_hash_table (info)->dynstr == NULL)
2267 {
2268 elf_hash_table (info)->dynstr = elf_stringtab_init ();
2269 if (elf_hash_table (info)->dynstr == NULL)
2270 return false;
2271 }
2272
2273 s = bfd_make_section (abfd, ".dynamic");
2274 if (s == NULL
2275 || ! bfd_set_section_flags (abfd, s, flags)
2276 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2277 return false;
2278
2279 /* The special symbol _DYNAMIC is always set to the start of the
2280 .dynamic section. This call occurs before we have processed the
2281 symbols for any dynamic object, so we don't have to worry about
2282 overriding a dynamic definition. We could set _DYNAMIC in a
2283 linker script, but we only want to define it if we are, in fact,
2284 creating a .dynamic section. We don't want to define it if there
2285 is no .dynamic section, since on some ELF platforms the start up
2286 code examines it to decide how to initialize the process. */
2287 h = NULL;
2288 if (! (_bfd_generic_link_add_one_symbol
2289 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
2290 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
2291 (struct bfd_link_hash_entry **) &h)))
2292 return false;
2293 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2294 h->type = STT_OBJECT;
2295
2296 if (info->shared
2297 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
2298 return false;
2299
c7ac6ff8
MM
2300 bed = get_elf_backend_data (abfd);
2301
252b5132
RH
2302 s = bfd_make_section (abfd, ".hash");
2303 if (s == NULL
2304 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2305 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2306 return false;
c7ac6ff8 2307 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
252b5132
RH
2308
2309 /* Let the backend create the rest of the sections. This lets the
2310 backend set the right flags. The backend will normally create
2311 the .got and .plt sections. */
252b5132
RH
2312 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
2313 return false;
2314
2315 elf_hash_table (info)->dynamic_sections_created = true;
2316
2317 return true;
2318}
2319
2320/* Add an entry to the .dynamic table. */
2321
2322boolean
2323elf_add_dynamic_entry (info, tag, val)
2324 struct bfd_link_info *info;
2325 bfd_vma tag;
2326 bfd_vma val;
2327{
2328 Elf_Internal_Dyn dyn;
2329 bfd *dynobj;
2330 asection *s;
2331 size_t newsize;
2332 bfd_byte *newcontents;
2333
2334 dynobj = elf_hash_table (info)->dynobj;
2335
2336 s = bfd_get_section_by_name (dynobj, ".dynamic");
2337 BFD_ASSERT (s != NULL);
2338
2339 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
2340 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
2341 if (newcontents == NULL)
2342 return false;
2343
2344 dyn.d_tag = tag;
2345 dyn.d_un.d_val = val;
2346 elf_swap_dyn_out (dynobj, &dyn,
2347 (Elf_External_Dyn *) (newcontents + s->_raw_size));
2348
2349 s->_raw_size = newsize;
2350 s->contents = newcontents;
2351
2352 return true;
2353}
30b30c21
RH
2354
2355/* Record a new local dynamic symbol. */
2356
2357boolean
2358elf_link_record_local_dynamic_symbol (info, input_bfd, input_indx)
2359 struct bfd_link_info *info;
2360 bfd *input_bfd;
2361 long input_indx;
2362{
2363 struct elf_link_local_dynamic_entry *entry;
2364 struct elf_link_hash_table *eht;
2365 struct bfd_strtab_hash *dynstr;
2366 Elf_External_Sym esym;
2367 unsigned long dynstr_index;
2368 char *name;
30b30c21
RH
2369
2370 /* See if the entry exists already. */
2371 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
2372 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
2373 return true;
2374
2375 entry = (struct elf_link_local_dynamic_entry *)
2376 bfd_alloc (input_bfd, sizeof (*entry));
2377 if (entry == NULL)
2378 return false;
2379
2380 /* Go find the symbol, so that we can find it's name. */
2381 if (bfd_seek (input_bfd,
2382 (elf_tdata (input_bfd)->symtab_hdr.sh_offset
2383 + input_indx * sizeof (Elf_External_Sym)),
2384 SEEK_SET) != 0
2385 || (bfd_read (&esym, sizeof (Elf_External_Sym), 1, input_bfd)
2386 != sizeof (Elf_External_Sym)))
2387 return false;
2388 elf_swap_symbol_in (input_bfd, &esym, &entry->isym);
2389
2390 name = (bfd_elf_string_from_elf_section
2391 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
2392 entry->isym.st_name));
2393
2394 dynstr = elf_hash_table (info)->dynstr;
2395 if (dynstr == NULL)
2396 {
2397 /* Create a strtab to hold the dynamic symbol names. */
2398 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_stringtab_init ();
2399 if (dynstr == NULL)
2400 return false;
2401 }
2402
2403 dynstr_index = _bfd_stringtab_add (dynstr, name, true, false);
2404 if (dynstr_index == (unsigned long) -1)
2405 return false;
2406 entry->isym.st_name = dynstr_index;
2407
2408 eht = elf_hash_table (info);
2409
2410 entry->next = eht->dynlocal;
2411 eht->dynlocal = entry;
2412 entry->input_bfd = input_bfd;
2413 entry->input_indx = input_indx;
2414 eht->dynsymcount++;
2415
587ff49e
RH
2416 /* Whatever binding the symbol had before, it's now local. */
2417 entry->isym.st_info
2418 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
2419
30b30c21
RH
2420 /* The dynindx will be set at the end of size_dynamic_sections. */
2421
2422 return true;
2423}
252b5132 2424\f
6b5bd373
MM
2425/* Read and swap the relocs from the section indicated by SHDR. This
2426 may be either a REL or a RELA section. The relocations are
2427 translated into RELA relocations and stored in INTERNAL_RELOCS,
2428 which should have already been allocated to contain enough space.
2429 The EXTERNAL_RELOCS are a buffer where the external form of the
2430 relocations should be stored.
2431
2432 Returns false if something goes wrong. */
2433
2434static boolean
2435elf_link_read_relocs_from_section (abfd, shdr, external_relocs,
2436 internal_relocs)
2437 bfd *abfd;
2438 Elf_Internal_Shdr *shdr;
2439 PTR external_relocs;
2440 Elf_Internal_Rela *internal_relocs;
2441{
c7ac6ff8
MM
2442 struct elf_backend_data *bed;
2443
6b5bd373
MM
2444 /* If there aren't any relocations, that's OK. */
2445 if (!shdr)
2446 return true;
2447
2448 /* Position ourselves at the start of the section. */
2449 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2450 return false;
2451
2452 /* Read the relocations. */
2453 if (bfd_read (external_relocs, 1, shdr->sh_size, abfd)
2454 != shdr->sh_size)
2455 return false;
2456
c7ac6ff8
MM
2457 bed = get_elf_backend_data (abfd);
2458
6b5bd373
MM
2459 /* Convert the external relocations to the internal format. */
2460 if (shdr->sh_entsize == sizeof (Elf_External_Rel))
2461 {
2462 Elf_External_Rel *erel;
2463 Elf_External_Rel *erelend;
2464 Elf_Internal_Rela *irela;
c7ac6ff8 2465 Elf_Internal_Rel *irel;
6b5bd373
MM
2466
2467 erel = (Elf_External_Rel *) external_relocs;
d9bc7a44 2468 erelend = erel + NUM_SHDR_ENTRIES (shdr);
6b5bd373 2469 irela = internal_relocs;
c7ac6ff8
MM
2470 irel = bfd_alloc (abfd, (bed->s->int_rels_per_ext_rel
2471 * sizeof (Elf_Internal_Rel)));
2472 for (; erel < erelend; erel++, irela += bed->s->int_rels_per_ext_rel)
6b5bd373 2473 {
65388f2d 2474 unsigned char i;
c7ac6ff8
MM
2475
2476 if (bed->s->swap_reloc_in)
2477 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
2478 else
2479 elf_swap_reloc_in (abfd, erel, irel);
6b5bd373 2480
c7ac6ff8
MM
2481 for (i = 0; i < bed->s->int_rels_per_ext_rel; ++i)
2482 {
2483 irela[i].r_offset = irel[i].r_offset;
2484 irela[i].r_info = irel[i].r_info;
2485 irela[i].r_addend = 0;
2486 }
6b5bd373
MM
2487 }
2488 }
2489 else
2490 {
2491 Elf_External_Rela *erela;
2492 Elf_External_Rela *erelaend;
2493 Elf_Internal_Rela *irela;
2494
2495 BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela));
2496
2497 erela = (Elf_External_Rela *) external_relocs;
d9bc7a44 2498 erelaend = erela + NUM_SHDR_ENTRIES (shdr);
6b5bd373 2499 irela = internal_relocs;
c7ac6ff8
MM
2500 for (; erela < erelaend; erela++, irela += bed->s->int_rels_per_ext_rel)
2501 {
2502 if (bed->s->swap_reloca_in)
2503 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
2504 else
2505 elf_swap_reloca_in (abfd, erela, irela);
2506 }
6b5bd373
MM
2507 }
2508
2509 return true;
2510}
2511
23bc299b
MM
2512/* Read and swap the relocs for a section O. They may have been
2513 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2514 not NULL, they are used as buffers to read into. They are known to
2515 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2516 the return value is allocated using either malloc or bfd_alloc,
2517 according to the KEEP_MEMORY argument. If O has two relocation
2518 sections (both REL and RELA relocations), then the REL_HDR
2519 relocations will appear first in INTERNAL_RELOCS, followed by the
2520 REL_HDR2 relocations. */
252b5132
RH
2521
2522Elf_Internal_Rela *
2523NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
2524 keep_memory)
2525 bfd *abfd;
2526 asection *o;
2527 PTR external_relocs;
2528 Elf_Internal_Rela *internal_relocs;
2529 boolean keep_memory;
2530{
2531 Elf_Internal_Shdr *rel_hdr;
2532 PTR alloc1 = NULL;
2533 Elf_Internal_Rela *alloc2 = NULL;
c7ac6ff8 2534 struct elf_backend_data *bed = get_elf_backend_data (abfd);
252b5132
RH
2535
2536 if (elf_section_data (o)->relocs != NULL)
2537 return elf_section_data (o)->relocs;
2538
2539 if (o->reloc_count == 0)
2540 return NULL;
2541
2542 rel_hdr = &elf_section_data (o)->rel_hdr;
2543
2544 if (internal_relocs == NULL)
2545 {
2546 size_t size;
2547
3e932841 2548 size = (o->reloc_count * bed->s->int_rels_per_ext_rel
c7ac6ff8 2549 * sizeof (Elf_Internal_Rela));
252b5132
RH
2550 if (keep_memory)
2551 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2552 else
2553 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2554 if (internal_relocs == NULL)
2555 goto error_return;
2556 }
2557
2558 if (external_relocs == NULL)
2559 {
6b5bd373
MM
2560 size_t size = (size_t) rel_hdr->sh_size;
2561
2562 if (elf_section_data (o)->rel_hdr2)
2563 size += (size_t) elf_section_data (o)->rel_hdr2->sh_size;
2564 alloc1 = (PTR) bfd_malloc (size);
252b5132
RH
2565 if (alloc1 == NULL)
2566 goto error_return;
2567 external_relocs = alloc1;
2568 }
2569
6b5bd373
MM
2570 if (!elf_link_read_relocs_from_section (abfd, rel_hdr,
2571 external_relocs,
2572 internal_relocs))
2573 goto error_return;
3e932841
KH
2574 if (!elf_link_read_relocs_from_section
2575 (abfd,
6b5bd373 2576 elf_section_data (o)->rel_hdr2,
2f5116e2 2577 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
d9bc7a44 2578 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
c7ac6ff8 2579 * bed->s->int_rels_per_ext_rel)))
252b5132 2580 goto error_return;
252b5132
RH
2581
2582 /* Cache the results for next time, if we can. */
2583 if (keep_memory)
2584 elf_section_data (o)->relocs = internal_relocs;
2585
2586 if (alloc1 != NULL)
2587 free (alloc1);
2588
2589 /* Don't free alloc2, since if it was allocated we are passing it
2590 back (under the name of internal_relocs). */
2591
2592 return internal_relocs;
2593
2594 error_return:
2595 if (alloc1 != NULL)
2596 free (alloc1);
2597 if (alloc2 != NULL)
2598 free (alloc2);
2599 return NULL;
2600}
2601\f
252b5132
RH
2602/* Record an assignment to a symbol made by a linker script. We need
2603 this in case some dynamic object refers to this symbol. */
2604
2605/*ARGSUSED*/
2606boolean
2607NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
7442e600 2608 bfd *output_bfd ATTRIBUTE_UNUSED;
252b5132
RH
2609 struct bfd_link_info *info;
2610 const char *name;
2611 boolean provide;
2612{
2613 struct elf_link_hash_entry *h;
2614
2615 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2616 return true;
2617
2618 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
2619 if (h == NULL)
2620 return false;
2621
2622 if (h->root.type == bfd_link_hash_new)
2623 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
2624
2625 /* If this symbol is being provided by the linker script, and it is
2626 currently defined by a dynamic object, but not by a regular
2627 object, then mark it as undefined so that the generic linker will
2628 force the correct value. */
2629 if (provide
2630 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2631 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2632 h->root.type = bfd_link_hash_undefined;
2633
2634 /* If this symbol is not being provided by the linker script, and it is
2635 currently defined by a dynamic object, but not by a regular object,
2636 then clear out any version information because the symbol will not be
2637 associated with the dynamic object any more. */
2638 if (!provide
2639 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2640 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2641 h->verinfo.verdef = NULL;
2642
2643 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
994819d2
NC
2644
2645 /* When possible, keep the original type of the symbol */
2646 if (h->type == STT_NOTYPE)
2647 h->type = STT_OBJECT;
252b5132
RH
2648
2649 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2650 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
2651 || info->shared)
2652 && h->dynindx == -1)
2653 {
2654 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2655 return false;
2656
2657 /* If this is a weak defined symbol, and we know a corresponding
2658 real symbol from the same dynamic object, make sure the real
2659 symbol is also made into a dynamic symbol. */
2660 if (h->weakdef != NULL
2661 && h->weakdef->dynindx == -1)
2662 {
2663 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2664 return false;
2665 }
2666 }
2667
2668 return true;
2669}
2670\f
2671/* This structure is used to pass information to
2672 elf_link_assign_sym_version. */
2673
2674struct elf_assign_sym_version_info
2675{
2676 /* Output BFD. */
2677 bfd *output_bfd;
2678 /* General link information. */
2679 struct bfd_link_info *info;
2680 /* Version tree. */
2681 struct bfd_elf_version_tree *verdefs;
2682 /* Whether we are exporting all dynamic symbols. */
2683 boolean export_dynamic;
252b5132
RH
2684 /* Whether we had a failure. */
2685 boolean failed;
2686};
2687
2688/* This structure is used to pass information to
2689 elf_link_find_version_dependencies. */
2690
2691struct elf_find_verdep_info
2692{
2693 /* Output BFD. */
2694 bfd *output_bfd;
2695 /* General link information. */
2696 struct bfd_link_info *info;
2697 /* The number of dependencies. */
2698 unsigned int vers;
2699 /* Whether we had a failure. */
2700 boolean failed;
2701};
2702
2703/* Array used to determine the number of hash table buckets to use
2704 based on the number of symbols there are. If there are fewer than
2705 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2706 fewer than 37 we use 17 buckets, and so forth. We never use more
2707 than 32771 buckets. */
2708
2709static const size_t elf_buckets[] =
2710{
2711 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2712 16411, 32771, 0
2713};
2714
2715/* Compute bucket count for hashing table. We do not use a static set
2716 of possible tables sizes anymore. Instead we determine for all
2717 possible reasonable sizes of the table the outcome (i.e., the
2718 number of collisions etc) and choose the best solution. The
2719 weighting functions are not too simple to allow the table to grow
2720 without bounds. Instead one of the weighting factors is the size.
2721 Therefore the result is always a good payoff between few collisions
2722 (= short chain lengths) and table size. */
2723static size_t
2724compute_bucket_count (info)
2725 struct bfd_link_info *info;
2726{
2727 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
7442e600 2728 size_t best_size = 0;
252b5132
RH
2729 unsigned long int *hashcodes;
2730 unsigned long int *hashcodesp;
2731 unsigned long int i;
2732
2733 /* Compute the hash values for all exported symbols. At the same
2734 time store the values in an array so that we could use them for
2735 optimizations. */
2736 hashcodes = (unsigned long int *) bfd_malloc (dynsymcount
2737 * sizeof (unsigned long int));
2738 if (hashcodes == NULL)
2739 return 0;
2740 hashcodesp = hashcodes;
2741
2742 /* Put all hash values in HASHCODES. */
2743 elf_link_hash_traverse (elf_hash_table (info),
2744 elf_collect_hash_codes, &hashcodesp);
2745
2746/* We have a problem here. The following code to optimize the table
2747 size requires an integer type with more the 32 bits. If
2748 BFD_HOST_U_64_BIT is set we know about such a type. */
2749#ifdef BFD_HOST_U_64_BIT
2750 if (info->optimize == true)
2751 {
2752 unsigned long int nsyms = hashcodesp - hashcodes;
2753 size_t minsize;
2754 size_t maxsize;
2755 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
2756 unsigned long int *counts ;
2757
2758 /* Possible optimization parameters: if we have NSYMS symbols we say
2759 that the hashing table must at least have NSYMS/4 and at most
2760 2*NSYMS buckets. */
2761 minsize = nsyms / 4;
2762 if (minsize == 0)
2763 minsize = 1;
2764 best_size = maxsize = nsyms * 2;
2765
2766 /* Create array where we count the collisions in. We must use bfd_malloc
2767 since the size could be large. */
2768 counts = (unsigned long int *) bfd_malloc (maxsize
2769 * sizeof (unsigned long int));
2770 if (counts == NULL)
2771 {
2772 free (hashcodes);
2773 return 0;
2774 }
2775
2776 /* Compute the "optimal" size for the hash table. The criteria is a
2777 minimal chain length. The minor criteria is (of course) the size
2778 of the table. */
2779 for (i = minsize; i < maxsize; ++i)
2780 {
2781 /* Walk through the array of hashcodes and count the collisions. */
2782 BFD_HOST_U_64_BIT max;
2783 unsigned long int j;
2784 unsigned long int fact;
2785
2786 memset (counts, '\0', i * sizeof (unsigned long int));
2787
2788 /* Determine how often each hash bucket is used. */
2789 for (j = 0; j < nsyms; ++j)
2790 ++counts[hashcodes[j] % i];
2791
2792 /* For the weight function we need some information about the
2793 pagesize on the target. This is information need not be 100%
2794 accurate. Since this information is not available (so far) we
2795 define it here to a reasonable default value. If it is crucial
2796 to have a better value some day simply define this value. */
2797# ifndef BFD_TARGET_PAGESIZE
2798# define BFD_TARGET_PAGESIZE (4096)
2799# endif
2800
2801 /* We in any case need 2 + NSYMS entries for the size values and
2802 the chains. */
2803 max = (2 + nsyms) * (ARCH_SIZE / 8);
2804
2805# if 1
2806 /* Variant 1: optimize for short chains. We add the squares
2807 of all the chain lengths (which favous many small chain
2808 over a few long chains). */
2809 for (j = 0; j < i; ++j)
2810 max += counts[j] * counts[j];
2811
2812 /* This adds penalties for the overall size of the table. */
2813 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2814 max *= fact * fact;
2815# else
2816 /* Variant 2: Optimize a lot more for small table. Here we
2817 also add squares of the size but we also add penalties for
2818 empty slots (the +1 term). */
2819 for (j = 0; j < i; ++j)
2820 max += (1 + counts[j]) * (1 + counts[j]);
2821
2822 /* The overall size of the table is considered, but not as
2823 strong as in variant 1, where it is squared. */
2824 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2825 max *= fact;
2826# endif
2827
2828 /* Compare with current best results. */
2829 if (max < best_chlen)
2830 {
2831 best_chlen = max;
2832 best_size = i;
2833 }
2834 }
2835
2836 free (counts);
2837 }
2838 else
2839#endif /* defined (BFD_HOST_U_64_BIT) */
2840 {
2841 /* This is the fallback solution if no 64bit type is available or if we
2842 are not supposed to spend much time on optimizations. We select the
2843 bucket count using a fixed set of numbers. */
2844 for (i = 0; elf_buckets[i] != 0; i++)
2845 {
2846 best_size = elf_buckets[i];
2847 if (dynsymcount < elf_buckets[i + 1])
2848 break;
2849 }
2850 }
2851
2852 /* Free the arrays we needed. */
2853 free (hashcodes);
2854
2855 return best_size;
2856}
2857
2858/* Set up the sizes and contents of the ELF dynamic sections. This is
2859 called by the ELF linker emulation before_allocation routine. We
2860 must set the sizes of the sections before the linker sets the
2861 addresses of the various sections. */
2862
2863boolean
2864NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
2865 export_dynamic, filter_shlib,
2866 auxiliary_filters, info, sinterpptr,
2867 verdefs)
2868 bfd *output_bfd;
2869 const char *soname;
2870 const char *rpath;
2871 boolean export_dynamic;
2872 const char *filter_shlib;
2873 const char * const *auxiliary_filters;
2874 struct bfd_link_info *info;
2875 asection **sinterpptr;
2876 struct bfd_elf_version_tree *verdefs;
2877{
2878 bfd_size_type soname_indx;
2879 bfd *dynobj;
2880 struct elf_backend_data *bed;
252b5132
RH
2881 struct elf_assign_sym_version_info asvinfo;
2882
2883 *sinterpptr = NULL;
2884
2885 soname_indx = (bfd_size_type) -1;
2886
2887 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2888 return true;
2889
2890 /* The backend may have to create some sections regardless of whether
2891 we're dynamic or not. */
2892 bed = get_elf_backend_data (output_bfd);
2893 if (bed->elf_backend_always_size_sections
2894 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
2895 return false;
2896
2897 dynobj = elf_hash_table (info)->dynobj;
2898
2899 /* If there were no dynamic objects in the link, there is nothing to
2900 do here. */
2901 if (dynobj == NULL)
2902 return true;
2903
252b5132
RH
2904 if (elf_hash_table (info)->dynamic_sections_created)
2905 {
2906 struct elf_info_failed eif;
2907 struct elf_link_hash_entry *h;
fc8c40a0 2908 asection *dynstr;
252b5132
RH
2909
2910 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
2911 BFD_ASSERT (*sinterpptr != NULL || info->shared);
2912
2913 if (soname != NULL)
2914 {
2915 soname_indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2916 soname, true, true);
2917 if (soname_indx == (bfd_size_type) -1
2918 || ! elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
2919 return false;
2920 }
2921
2922 if (info->symbolic)
2923 {
2924 if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
2925 return false;
d6cf2879 2926 info->flags |= DF_SYMBOLIC;
252b5132
RH
2927 }
2928
2929 if (rpath != NULL)
2930 {
2931 bfd_size_type indx;
2932
2933 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath,
2934 true, true);
2935 if (indx == (bfd_size_type) -1
d6cf2879 2936 || ! elf_add_dynamic_entry (info, DT_RPATH, indx)
c25373b7
L
2937 || (info->new_dtags
2938 && ! elf_add_dynamic_entry (info, DT_RUNPATH, indx)))
252b5132
RH
2939 return false;
2940 }
2941
2942 if (filter_shlib != NULL)
2943 {
2944 bfd_size_type indx;
2945
2946 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2947 filter_shlib, true, true);
2948 if (indx == (bfd_size_type) -1
2949 || ! elf_add_dynamic_entry (info, DT_FILTER, indx))
2950 return false;
2951 }
2952
2953 if (auxiliary_filters != NULL)
2954 {
2955 const char * const *p;
2956
2957 for (p = auxiliary_filters; *p != NULL; p++)
2958 {
2959 bfd_size_type indx;
2960
2961 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2962 *p, true, true);
2963 if (indx == (bfd_size_type) -1
2964 || ! elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
2965 return false;
2966 }
2967 }
2968
391a809a
AM
2969 eif.info = info;
2970 eif.failed = false;
2971
ea44b734
RH
2972 /* If we are supposed to export all symbols into the dynamic symbol
2973 table (this is not the normal case), then do so. */
2974 if (export_dynamic)
2975 {
ea44b734
RH
2976 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
2977 (PTR) &eif);
2978 if (eif.failed)
2979 return false;
2980 }
2981
252b5132
RH
2982 /* Attach all the symbols to their version information. */
2983 asvinfo.output_bfd = output_bfd;
2984 asvinfo.info = info;
2985 asvinfo.verdefs = verdefs;
2986 asvinfo.export_dynamic = export_dynamic;
252b5132
RH
2987 asvinfo.failed = false;
2988
2989 elf_link_hash_traverse (elf_hash_table (info),
2990 elf_link_assign_sym_version,
2991 (PTR) &asvinfo);
2992 if (asvinfo.failed)
2993 return false;
2994
2995 /* Find all symbols which were defined in a dynamic object and make
2996 the backend pick a reasonable value for them. */
252b5132
RH
2997 elf_link_hash_traverse (elf_hash_table (info),
2998 elf_adjust_dynamic_symbol,
2999 (PTR) &eif);
3000 if (eif.failed)
3001 return false;
3002
3003 /* Add some entries to the .dynamic section. We fill in some of the
3004 values later, in elf_bfd_final_link, but we must add the entries
3005 now so that we know the final size of the .dynamic section. */
f0c2e336
MM
3006
3007 /* If there are initialization and/or finalization functions to
3008 call then add the corresponding DT_INIT/DT_FINI entries. */
3009 h = (info->init_function
3e932841 3010 ? elf_link_hash_lookup (elf_hash_table (info),
f0c2e336
MM
3011 info->init_function, false,
3012 false, false)
3013 : NULL);
252b5132
RH
3014 if (h != NULL
3015 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
3016 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
3017 {
3018 if (! elf_add_dynamic_entry (info, DT_INIT, 0))
3019 return false;
3020 }
f0c2e336 3021 h = (info->fini_function
3e932841 3022 ? elf_link_hash_lookup (elf_hash_table (info),
f0c2e336
MM
3023 info->fini_function, false,
3024 false, false)
3025 : NULL);
252b5132
RH
3026 if (h != NULL
3027 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
3028 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
3029 {
3030 if (! elf_add_dynamic_entry (info, DT_FINI, 0))
3031 return false;
3032 }
f0c2e336 3033
fc8c40a0
AM
3034 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
3035 /* If .dynstr is excluded from the link, we don't want any of
3036 these tags. Strictly, we should be checking each section
3037 individually; This quick check covers for the case where
3038 someone does a /DISCARD/ : { *(*) }. */
3039 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
3040 {
3041 bfd_size_type strsize;
3042
3043 strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
3044 if (! elf_add_dynamic_entry (info, DT_HASH, 0)
3045 || ! elf_add_dynamic_entry (info, DT_STRTAB, 0)
3046 || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0)
3047 || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize)
3048 || ! elf_add_dynamic_entry (info, DT_SYMENT,
3049 sizeof (Elf_External_Sym)))
3050 return false;
3051 }
252b5132
RH
3052 }
3053
3054 /* The backend must work out the sizes of all the other dynamic
3055 sections. */
252b5132
RH
3056 if (bed->elf_backend_size_dynamic_sections
3057 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
3058 return false;
3059
3060 if (elf_hash_table (info)->dynamic_sections_created)
3061 {
3062 size_t dynsymcount;
3063 asection *s;
3064 size_t bucketcount = 0;
c7ac6ff8 3065 size_t hash_entry_size;
252b5132
RH
3066
3067 /* Set up the version definition section. */
3068 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3069 BFD_ASSERT (s != NULL);
3070
3071 /* We may have created additional version definitions if we are
3072 just linking a regular application. */
3073 verdefs = asvinfo.verdefs;
3074
3075 if (verdefs == NULL)
7f8d5fc9 3076 _bfd_strip_section_from_output (info, s);
252b5132
RH
3077 else
3078 {
3079 unsigned int cdefs;
3080 bfd_size_type size;
3081 struct bfd_elf_version_tree *t;
3082 bfd_byte *p;
3083 Elf_Internal_Verdef def;
3084 Elf_Internal_Verdaux defaux;
3085
252b5132
RH
3086 cdefs = 0;
3087 size = 0;
3088
3089 /* Make space for the base version. */
3090 size += sizeof (Elf_External_Verdef);
3091 size += sizeof (Elf_External_Verdaux);
3092 ++cdefs;
3093
3094 for (t = verdefs; t != NULL; t = t->next)
3095 {
3096 struct bfd_elf_version_deps *n;
3097
3098 size += sizeof (Elf_External_Verdef);
3099 size += sizeof (Elf_External_Verdaux);
3100 ++cdefs;
3101
3102 for (n = t->deps; n != NULL; n = n->next)
3103 size += sizeof (Elf_External_Verdaux);
3104 }
3105
3106 s->_raw_size = size;
3107 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3108 if (s->contents == NULL && s->_raw_size != 0)
3109 return false;
3110
3111 /* Fill in the version definition section. */
3112
3113 p = s->contents;
3114
3115 def.vd_version = VER_DEF_CURRENT;
3116 def.vd_flags = VER_FLG_BASE;
3117 def.vd_ndx = 1;
3118 def.vd_cnt = 1;
3119 def.vd_aux = sizeof (Elf_External_Verdef);
3120 def.vd_next = (sizeof (Elf_External_Verdef)
3121 + sizeof (Elf_External_Verdaux));
3122
3123 if (soname_indx != (bfd_size_type) -1)
3124 {
3a99b017 3125 def.vd_hash = bfd_elf_hash (soname);
252b5132
RH
3126 defaux.vda_name = soname_indx;
3127 }
3128 else
3129 {
3130 const char *name;
3131 bfd_size_type indx;
3132
96fd004e 3133 name = basename (output_bfd->filename);
3a99b017 3134 def.vd_hash = bfd_elf_hash (name);
252b5132
RH
3135 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3136 name, true, false);
3137 if (indx == (bfd_size_type) -1)
3138 return false;
3139 defaux.vda_name = indx;
3140 }
3141 defaux.vda_next = 0;
3142
3143 _bfd_elf_swap_verdef_out (output_bfd, &def,
3144 (Elf_External_Verdef *)p);
3145 p += sizeof (Elf_External_Verdef);
3146 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3147 (Elf_External_Verdaux *) p);
3148 p += sizeof (Elf_External_Verdaux);
3149
3150 for (t = verdefs; t != NULL; t = t->next)
3151 {
3152 unsigned int cdeps;
3153 struct bfd_elf_version_deps *n;
3154 struct elf_link_hash_entry *h;
3155
3156 cdeps = 0;
3157 for (n = t->deps; n != NULL; n = n->next)
3158 ++cdeps;
3159
3160 /* Add a symbol representing this version. */
3161 h = NULL;
3162 if (! (_bfd_generic_link_add_one_symbol
3163 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
3164 (bfd_vma) 0, (const char *) NULL, false,
3165 get_elf_backend_data (dynobj)->collect,
3166 (struct bfd_link_hash_entry **) &h)))
3167 return false;
3168 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
3169 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3170 h->type = STT_OBJECT;
3171 h->verinfo.vertree = t;
3172
3173 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
3174 return false;
3175
3176 def.vd_version = VER_DEF_CURRENT;
3177 def.vd_flags = 0;
3178 if (t->globals == NULL && t->locals == NULL && ! t->used)
3179 def.vd_flags |= VER_FLG_WEAK;
3180 def.vd_ndx = t->vernum + 1;
3181 def.vd_cnt = cdeps + 1;
3a99b017 3182 def.vd_hash = bfd_elf_hash (t->name);
252b5132
RH
3183 def.vd_aux = sizeof (Elf_External_Verdef);
3184 if (t->next != NULL)
3185 def.vd_next = (sizeof (Elf_External_Verdef)
3186 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
3187 else
3188 def.vd_next = 0;
3189
3190 _bfd_elf_swap_verdef_out (output_bfd, &def,
3191 (Elf_External_Verdef *) p);
3192 p += sizeof (Elf_External_Verdef);
3193
3194 defaux.vda_name = h->dynstr_index;
3195 if (t->deps == NULL)
3196 defaux.vda_next = 0;
3197 else
3198 defaux.vda_next = sizeof (Elf_External_Verdaux);
3199 t->name_indx = defaux.vda_name;
3200
3201 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3202 (Elf_External_Verdaux *) p);
3203 p += sizeof (Elf_External_Verdaux);
3204
3205 for (n = t->deps; n != NULL; n = n->next)
3206 {
3207 if (n->version_needed == NULL)
3208 {
3209 /* This can happen if there was an error in the
3210 version script. */
3211 defaux.vda_name = 0;
3212 }
3213 else
3214 defaux.vda_name = n->version_needed->name_indx;
3215 if (n->next == NULL)
3216 defaux.vda_next = 0;
3217 else
3218 defaux.vda_next = sizeof (Elf_External_Verdaux);
3219
3220 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3221 (Elf_External_Verdaux *) p);
3222 p += sizeof (Elf_External_Verdaux);
3223 }
3224 }
3225
3226 if (! elf_add_dynamic_entry (info, DT_VERDEF, 0)
3227 || ! elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
3228 return false;
3229
3230 elf_tdata (output_bfd)->cverdefs = cdefs;
3231 }
3232
c25373b7 3233 if (info->new_dtags && info->flags)
d6cf2879
L
3234 {
3235 if (! elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
3236 return false;
3237 }
3238
4d538889 3239 if (info->flags_1)
d6cf2879
L
3240 {
3241 if (! info->shared)
3242 info->flags_1 &= ~ (DF_1_INITFIRST
3243 | DF_1_NODELETE
3244 | DF_1_NOOPEN);
3245 if (! elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
3246 return false;
3247 }
3248
252b5132
RH
3249 /* Work out the size of the version reference section. */
3250
3251 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3252 BFD_ASSERT (s != NULL);
3253 {
3254 struct elf_find_verdep_info sinfo;
3255
3256 sinfo.output_bfd = output_bfd;
3257 sinfo.info = info;
3258 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
3259 if (sinfo.vers == 0)
3260 sinfo.vers = 1;
3261 sinfo.failed = false;
3262
3263 elf_link_hash_traverse (elf_hash_table (info),
3264 elf_link_find_version_dependencies,
3265 (PTR) &sinfo);
3266
3267 if (elf_tdata (output_bfd)->verref == NULL)
7f8d5fc9 3268 _bfd_strip_section_from_output (info, s);
252b5132
RH
3269 else
3270 {
3271 Elf_Internal_Verneed *t;
3272 unsigned int size;
3273 unsigned int crefs;
3274 bfd_byte *p;
3275
3276 /* Build the version definition section. */
3277 size = 0;
3278 crefs = 0;
3279 for (t = elf_tdata (output_bfd)->verref;
3280 t != NULL;
3281 t = t->vn_nextref)
3282 {
3283 Elf_Internal_Vernaux *a;
3284
3285 size += sizeof (Elf_External_Verneed);
3286 ++crefs;
3287 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3288 size += sizeof (Elf_External_Vernaux);
3289 }
3290
3291 s->_raw_size = size;
3292 s->contents = (bfd_byte *) bfd_alloc (output_bfd, size);
3293 if (s->contents == NULL)
3294 return false;
3295
3296 p = s->contents;
3297 for (t = elf_tdata (output_bfd)->verref;
3298 t != NULL;
3299 t = t->vn_nextref)
3300 {
3301 unsigned int caux;
3302 Elf_Internal_Vernaux *a;
3303 bfd_size_type indx;
3304
3305 caux = 0;
3306 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3307 ++caux;
3308
3309 t->vn_version = VER_NEED_CURRENT;
3310 t->vn_cnt = caux;
3311 if (elf_dt_name (t->vn_bfd) != NULL)
3312 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3313 elf_dt_name (t->vn_bfd),
3314 true, false);
3315 else
3316 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
210ba1e8
L
3317 basename (t->vn_bfd->filename),
3318 true, false);
252b5132
RH
3319 if (indx == (bfd_size_type) -1)
3320 return false;
3321 t->vn_file = indx;
3322 t->vn_aux = sizeof (Elf_External_Verneed);
3323 if (t->vn_nextref == NULL)
3324 t->vn_next = 0;
3325 else
3326 t->vn_next = (sizeof (Elf_External_Verneed)
3327 + caux * sizeof (Elf_External_Vernaux));
3328
3329 _bfd_elf_swap_verneed_out (output_bfd, t,
3330 (Elf_External_Verneed *) p);
3331 p += sizeof (Elf_External_Verneed);
3332
3333 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3334 {
3a99b017 3335 a->vna_hash = bfd_elf_hash (a->vna_nodename);
252b5132
RH
3336 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3337 a->vna_nodename, true, false);
3338 if (indx == (bfd_size_type) -1)
3339 return false;
3340 a->vna_name = indx;
3341 if (a->vna_nextptr == NULL)
3342 a->vna_next = 0;
3343 else
3344 a->vna_next = sizeof (Elf_External_Vernaux);
3345
3346 _bfd_elf_swap_vernaux_out (output_bfd, a,
3347 (Elf_External_Vernaux *) p);
3348 p += sizeof (Elf_External_Vernaux);
3349 }
3350 }
3351
3352 if (! elf_add_dynamic_entry (info, DT_VERNEED, 0)
3353 || ! elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
3354 return false;
3355
3356 elf_tdata (output_bfd)->cverrefs = crefs;
3357 }
3358 }
3359
3e932841 3360 /* Assign dynsym indicies. In a shared library we generate a
30b30c21
RH
3361 section symbol for each output section, which come first.
3362 Next come all of the back-end allocated local dynamic syms,
3363 followed by the rest of the global symbols. */
3364
3365 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
252b5132
RH
3366
3367 /* Work out the size of the symbol version section. */
3368 s = bfd_get_section_by_name (dynobj, ".gnu.version");
3369 BFD_ASSERT (s != NULL);
3370 if (dynsymcount == 0
3371 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
3372 {
7f8d5fc9 3373 _bfd_strip_section_from_output (info, s);
42751cf3
MM
3374 /* The DYNSYMCOUNT might have changed if we were going to
3375 output a dynamic symbol table entry for S. */
30b30c21 3376 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
252b5132
RH
3377 }
3378 else
3379 {
3380 s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
3381 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
3382 if (s->contents == NULL)
3383 return false;
3384
3385 if (! elf_add_dynamic_entry (info, DT_VERSYM, 0))
3386 return false;
3387 }
3388
3389 /* Set the size of the .dynsym and .hash sections. We counted
3390 the number of dynamic symbols in elf_link_add_object_symbols.
3391 We will build the contents of .dynsym and .hash when we build
3392 the final symbol table, because until then we do not know the
3393 correct value to give the symbols. We built the .dynstr
3394 section as we went along in elf_link_add_object_symbols. */
3395 s = bfd_get_section_by_name (dynobj, ".dynsym");
3396 BFD_ASSERT (s != NULL);
3397 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
3398 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3399 if (s->contents == NULL && s->_raw_size != 0)
3400 return false;
3401
fc8c40a0
AM
3402 if (dynsymcount != 0)
3403 {
3404 Elf_Internal_Sym isym;
3405
3406 /* The first entry in .dynsym is a dummy symbol. */
3407 isym.st_value = 0;
3408 isym.st_size = 0;
3409 isym.st_name = 0;
3410 isym.st_info = 0;
3411 isym.st_other = 0;
3412 isym.st_shndx = 0;
3413 elf_swap_symbol_out (output_bfd, &isym,
3414 (PTR) (Elf_External_Sym *) s->contents);
3415 }
252b5132
RH
3416
3417 /* Compute the size of the hashing table. As a side effect this
3418 computes the hash values for all the names we export. */
3419 bucketcount = compute_bucket_count (info);
3420
3421 s = bfd_get_section_by_name (dynobj, ".hash");
3422 BFD_ASSERT (s != NULL);
c7ac6ff8
MM
3423 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
3424 s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
252b5132
RH
3425 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3426 if (s->contents == NULL)
3427 return false;
3428 memset (s->contents, 0, (size_t) s->_raw_size);
3429
c7ac6ff8 3430 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
3e932841 3431 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
c7ac6ff8 3432 s->contents + hash_entry_size);
252b5132
RH
3433
3434 elf_hash_table (info)->bucketcount = bucketcount;
3435
3436 s = bfd_get_section_by_name (dynobj, ".dynstr");
3437 BFD_ASSERT (s != NULL);
3438 s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
3439
3440 if (! elf_add_dynamic_entry (info, DT_NULL, 0))
3441 return false;
3442 }
3443
3444 return true;
3445}
3446\f
3447/* Fix up the flags for a symbol. This handles various cases which
3448 can only be fixed after all the input files are seen. This is
3449 currently called by both adjust_dynamic_symbol and
3450 assign_sym_version, which is unnecessary but perhaps more robust in
3451 the face of future changes. */
3452
3453static boolean
3454elf_fix_symbol_flags (h, eif)
3455 struct elf_link_hash_entry *h;
3456 struct elf_info_failed *eif;
3457{
3458 /* If this symbol was mentioned in a non-ELF file, try to set
3459 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
3460 permit a non-ELF file to correctly refer to a symbol defined in
3461 an ELF dynamic object. */
3462 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
3463 {
94b6c40a
L
3464 while (h->root.type == bfd_link_hash_indirect)
3465 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3466
252b5132
RH
3467 if (h->root.type != bfd_link_hash_defined
3468 && h->root.type != bfd_link_hash_defweak)
3469 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3470 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3471 else
3472 {
3473 if (h->root.u.def.section->owner != NULL
3474 && (bfd_get_flavour (h->root.u.def.section->owner)
3475 == bfd_target_elf_flavour))
3476 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3477 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3478 else
3479 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3480 }
3481
3482 if (h->dynindx == -1
3483 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3484 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
3485 {
3486 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3487 {
3488 eif->failed = true;
3489 return false;
3490 }
3491 }
3492 }
3493 else
3494 {
3495 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
3496 was first seen in a non-ELF file. Fortunately, if the symbol
3497 was first seen in an ELF file, we're probably OK unless the
3498 symbol was defined in a non-ELF file. Catch that case here.
3499 FIXME: We're still in trouble if the symbol was first seen in
3500 a dynamic object, and then later in a non-ELF regular object. */
3501 if ((h->root.type == bfd_link_hash_defined
3502 || h->root.type == bfd_link_hash_defweak)
3503 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3504 && (h->root.u.def.section->owner != NULL
3505 ? (bfd_get_flavour (h->root.u.def.section->owner)
3506 != bfd_target_elf_flavour)
3507 : (bfd_is_abs_section (h->root.u.def.section)
3508 && (h->elf_link_hash_flags
3509 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
3510 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3511 }
3512
3513 /* If this is a final link, and the symbol was defined as a common
3514 symbol in a regular object file, and there was no definition in
3515 any dynamic object, then the linker will have allocated space for
3516 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3517 flag will not have been set. */
3518 if (h->root.type == bfd_link_hash_defined
3519 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3520 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
3521 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3522 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3523 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3524
3525 /* If -Bsymbolic was used (which means to bind references to global
3526 symbols to the definition within the shared object), and this
3527 symbol was defined in a regular object, then it actually doesn't
d954b040
HPN
3528 need a PLT entry, and we can accomplish that by forcing it local.
3529 Likewise, if the symbol has hidden or internal visibility.
3530 FIXME: It might be that we also do not need a PLT for other
3531 non-hidden visibilities, but we would have to tell that to the
3532 backend specifically; we can't just clear PLT-related data here. */
252b5132
RH
3533 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
3534 && eif->info->shared
d954b040
HPN
3535 && (eif->info->symbolic
3536 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
3537 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
252b5132
RH
3538 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3539 {
391a809a
AM
3540 struct elf_backend_data *bed;
3541 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
5fba655a
L
3542 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
3543 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
3544 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
391a809a 3545 (*bed->elf_backend_hide_symbol) (eif->info, h);
252b5132
RH
3546 }
3547
fc4cc5bb
ILT
3548 /* If this is a weak defined symbol in a dynamic object, and we know
3549 the real definition in the dynamic object, copy interesting flags
3550 over to the real definition. */
3551 if (h->weakdef != NULL)
3552 {
3553 struct elf_link_hash_entry *weakdef;
3554
3555 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3556 || h->root.type == bfd_link_hash_defweak);
3557 weakdef = h->weakdef;
3558 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
3559 || weakdef->root.type == bfd_link_hash_defweak);
3560 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
3561
3562 /* If the real definition is defined by a regular object file,
3563 don't do anything special. See the longer description in
3564 elf_adjust_dynamic_symbol, below. */
3565 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3566 h->weakdef = NULL;
3567 else
3568 weakdef->elf_link_hash_flags |=
3569 (h->elf_link_hash_flags
3570 & (ELF_LINK_HASH_REF_REGULAR
3571 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
3572 | ELF_LINK_NON_GOT_REF));
3573 }
3574
252b5132
RH
3575 return true;
3576}
3577
3578/* Make the backend pick a good value for a dynamic symbol. This is
3579 called via elf_link_hash_traverse, and also calls itself
3580 recursively. */
3581
3582static boolean
3583elf_adjust_dynamic_symbol (h, data)
3584 struct elf_link_hash_entry *h;
3585 PTR data;
3586{
3587 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3588 bfd *dynobj;
3589 struct elf_backend_data *bed;
3590
3591 /* Ignore indirect symbols. These are added by the versioning code. */
3592 if (h->root.type == bfd_link_hash_indirect)
3593 return true;
3594
3595 /* Fix the symbol flags. */
3596 if (! elf_fix_symbol_flags (h, eif))
3597 return false;
3598
3599 /* If this symbol does not require a PLT entry, and it is not
3600 defined by a dynamic object, or is not referenced by a regular
3601 object, ignore it. We do have to handle a weak defined symbol,
3602 even if no regular object refers to it, if we decided to add it
3603 to the dynamic symbol table. FIXME: Do we normally need to worry
3604 about symbols which are defined by one dynamic object and
3605 referenced by another one? */
3606 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
3607 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3608 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3609 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
3610 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
3611 {
3612 h->plt.offset = (bfd_vma) -1;
3613 return true;
3614 }
3615
3616 /* If we've already adjusted this symbol, don't do it again. This
3617 can happen via a recursive call. */
3618 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
3619 return true;
3620
3621 /* Don't look at this symbol again. Note that we must set this
3622 after checking the above conditions, because we may look at a
3623 symbol once, decide not to do anything, and then get called
3624 recursively later after REF_REGULAR is set below. */
3625 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
3626
3627 /* If this is a weak definition, and we know a real definition, and
3628 the real symbol is not itself defined by a regular object file,
3629 then get a good value for the real definition. We handle the
3630 real symbol first, for the convenience of the backend routine.
3631
3632 Note that there is a confusing case here. If the real definition
3633 is defined by a regular object file, we don't get the real symbol
3634 from the dynamic object, but we do get the weak symbol. If the
3635 processor backend uses a COPY reloc, then if some routine in the
3636 dynamic object changes the real symbol, we will not see that
3637 change in the corresponding weak symbol. This is the way other
3638 ELF linkers work as well, and seems to be a result of the shared
3639 library model.
3640
3641 I will clarify this issue. Most SVR4 shared libraries define the
3642 variable _timezone and define timezone as a weak synonym. The
3643 tzset call changes _timezone. If you write
3644 extern int timezone;
3645 int _timezone = 5;
3646 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3647 you might expect that, since timezone is a synonym for _timezone,
3648 the same number will print both times. However, if the processor
3649 backend uses a COPY reloc, then actually timezone will be copied
3650 into your process image, and, since you define _timezone
3651 yourself, _timezone will not. Thus timezone and _timezone will
3652 wind up at different memory locations. The tzset call will set
3653 _timezone, leaving timezone unchanged. */
3654
3655 if (h->weakdef != NULL)
3656 {
fc4cc5bb
ILT
3657 /* If we get to this point, we know there is an implicit
3658 reference by a regular object file via the weak symbol H.
3659 FIXME: Is this really true? What if the traversal finds
3660 H->WEAKDEF before it finds H? */
3661 h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
252b5132 3662
fc4cc5bb
ILT
3663 if (! elf_adjust_dynamic_symbol (h->weakdef, (PTR) eif))
3664 return false;
252b5132
RH
3665 }
3666
3667 /* If a symbol has no type and no size and does not require a PLT
3668 entry, then we are probably about to do the wrong thing here: we
3669 are probably going to create a COPY reloc for an empty object.
3670 This case can arise when a shared object is built with assembly
3671 code, and the assembly code fails to set the symbol type. */
3672 if (h->size == 0
3673 && h->type == STT_NOTYPE
3674 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
3675 (*_bfd_error_handler)
3676 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3677 h->root.root.string);
3678
3679 dynobj = elf_hash_table (eif->info)->dynobj;
3680 bed = get_elf_backend_data (dynobj);
3681 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3682 {
3683 eif->failed = true;
3684 return false;
3685 }
3686
3687 return true;
3688}
3689\f
3690/* This routine is used to export all defined symbols into the dynamic
3691 symbol table. It is called via elf_link_hash_traverse. */
3692
3693static boolean
3694elf_export_symbol (h, data)
3695 struct elf_link_hash_entry *h;
3696 PTR data;
3697{
3698 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3699
3700 /* Ignore indirect symbols. These are added by the versioning code. */
3701 if (h->root.type == bfd_link_hash_indirect)
3702 return true;
3703
3704 if (h->dynindx == -1
3705 && (h->elf_link_hash_flags
3706 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
3707 {
3708 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3709 {
3710 eif->failed = true;
3711 return false;
3712 }
3713 }
3714
3715 return true;
3716}
3717\f
3718/* Look through the symbols which are defined in other shared
3719 libraries and referenced here. Update the list of version
3720 dependencies. This will be put into the .gnu.version_r section.
3721 This function is called via elf_link_hash_traverse. */
3722
3723static boolean
3724elf_link_find_version_dependencies (h, data)
3725 struct elf_link_hash_entry *h;
3726 PTR data;
3727{
3728 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
3729 Elf_Internal_Verneed *t;
3730 Elf_Internal_Vernaux *a;
3731
3732 /* We only care about symbols defined in shared objects with version
3733 information. */
3734 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3735 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3736 || h->dynindx == -1
3737 || h->verinfo.verdef == NULL)
3738 return true;
3739
3740 /* See if we already know about this version. */
3741 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
3742 {
3743 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
3744 continue;
3745
3746 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3747 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
3748 return true;
3749
3750 break;
3751 }
3752
3753 /* This is a new version. Add it to tree we are building. */
3754
3755 if (t == NULL)
3756 {
3757 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, sizeof *t);
3758 if (t == NULL)
3759 {
3760 rinfo->failed = true;
3761 return false;
3762 }
3763
3764 t->vn_bfd = h->verinfo.verdef->vd_bfd;
3765 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
3766 elf_tdata (rinfo->output_bfd)->verref = t;
3767 }
3768
3769 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, sizeof *a);
3770
3771 /* Note that we are copying a string pointer here, and testing it
3772 above. If bfd_elf_string_from_elf_section is ever changed to
3773 discard the string data when low in memory, this will have to be
3774 fixed. */
3775 a->vna_nodename = h->verinfo.verdef->vd_nodename;
3776
3777 a->vna_flags = h->verinfo.verdef->vd_flags;
3778 a->vna_nextptr = t->vn_auxptr;
3779
3780 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
3781 ++rinfo->vers;
3782
3783 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
3784
3785 t->vn_auxptr = a;
3786
3787 return true;
3788}
3789
3790/* Figure out appropriate versions for all the symbols. We may not
3791 have the version number script until we have read all of the input
3792 files, so until that point we don't know which symbols should be
3793 local. This function is called via elf_link_hash_traverse. */
3794
3795static boolean
3796elf_link_assign_sym_version (h, data)
3797 struct elf_link_hash_entry *h;
3798 PTR data;
3799{
3800 struct elf_assign_sym_version_info *sinfo =
3801 (struct elf_assign_sym_version_info *) data;
3802 struct bfd_link_info *info = sinfo->info;
c61b8717 3803 struct elf_backend_data *bed;
252b5132
RH
3804 struct elf_info_failed eif;
3805 char *p;
3806
3807 /* Fix the symbol flags. */
3808 eif.failed = false;
3809 eif.info = info;
3810 if (! elf_fix_symbol_flags (h, &eif))
3811 {
3812 if (eif.failed)
3813 sinfo->failed = true;
3814 return false;
3815 }
3816
3817 /* We only need version numbers for symbols defined in regular
3818 objects. */
3819 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3820 return true;
3821
c61b8717 3822 bed = get_elf_backend_data (sinfo->output_bfd);
252b5132
RH
3823 p = strchr (h->root.root.string, ELF_VER_CHR);
3824 if (p != NULL && h->verinfo.vertree == NULL)
3825 {
3826 struct bfd_elf_version_tree *t;
3827 boolean hidden;
3828
3829 hidden = true;
3830
3831 /* There are two consecutive ELF_VER_CHR characters if this is
3832 not a hidden symbol. */
3833 ++p;
3834 if (*p == ELF_VER_CHR)
3835 {
3836 hidden = false;
3837 ++p;
3838 }
3839
3840 /* If there is no version string, we can just return out. */
3841 if (*p == '\0')
3842 {
3843 if (hidden)
3844 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3845 return true;
3846 }
3847
3848 /* Look for the version. If we find it, it is no longer weak. */
3849 for (t = sinfo->verdefs; t != NULL; t = t->next)
3850 {
3851 if (strcmp (t->name, p) == 0)
3852 {
3853 int len;
3854 char *alc;
3855 struct bfd_elf_version_expr *d;
3856
3857 len = p - h->root.root.string;
3858 alc = bfd_alloc (sinfo->output_bfd, len);
3859 if (alc == NULL)
3860 return false;
3861 strncpy (alc, h->root.root.string, len - 1);
3862 alc[len - 1] = '\0';
3863 if (alc[len - 2] == ELF_VER_CHR)
3864 alc[len - 2] = '\0';
3865
3866 h->verinfo.vertree = t;
3867 t->used = true;
3868 d = NULL;
3869
3870 if (t->globals != NULL)
3871 {
3872 for (d = t->globals; d != NULL; d = d->next)
3873 if ((*d->match) (d, alc))
3874 break;
3875 }
3876
3877 /* See if there is anything to force this symbol to
3878 local scope. */
3879 if (d == NULL && t->locals != NULL)
3880 {
3881 for (d = t->locals; d != NULL; d = d->next)
3882 {
3883 if ((*d->match) (d, alc))
3884 {
3885 if (h->dynindx != -1
3886 && info->shared
3887 && ! sinfo->export_dynamic)
3888 {
252b5132 3889 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
f41cbf03 3890 (*bed->elf_backend_hide_symbol) (info, h);
252b5132
RH
3891 /* FIXME: The name of the symbol has
3892 already been recorded in the dynamic
3893 string table section. */
3894 }
3895
3896 break;
3897 }
3898 }
3899 }
3900
3901 bfd_release (sinfo->output_bfd, alc);
3902 break;
3903 }
3904 }
3905
3906 /* If we are building an application, we need to create a
3907 version node for this version. */
3908 if (t == NULL && ! info->shared)
3909 {
3910 struct bfd_elf_version_tree **pp;
3911 int version_index;
3912
3913 /* If we aren't going to export this symbol, we don't need
3e932841 3914 to worry about it. */
252b5132
RH
3915 if (h->dynindx == -1)
3916 return true;
3917
3918 t = ((struct bfd_elf_version_tree *)
3919 bfd_alloc (sinfo->output_bfd, sizeof *t));
3920 if (t == NULL)
3921 {
3922 sinfo->failed = true;
3923 return false;
3924 }
3925
3926 t->next = NULL;
3927 t->name = p;
3928 t->globals = NULL;
3929 t->locals = NULL;
3930 t->deps = NULL;
3931 t->name_indx = (unsigned int) -1;
3932 t->used = true;
3933
3934 version_index = 1;
3935 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
3936 ++version_index;
3937 t->vernum = version_index;
3938
3939 *pp = t;
3940
3941 h->verinfo.vertree = t;
3942 }
3943 else if (t == NULL)
3944 {
3945 /* We could not find the version for a symbol when
3946 generating a shared archive. Return an error. */
3947 (*_bfd_error_handler)
3948 (_("%s: undefined versioned symbol name %s"),
3949 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
3950 bfd_set_error (bfd_error_bad_value);
3951 sinfo->failed = true;
3952 return false;
3953 }
3954
3955 if (hidden)
3956 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3957 }
3958
3959 /* If we don't have a version for this symbol, see if we can find
3960 something. */
3961 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
3962 {
3963 struct bfd_elf_version_tree *t;
3964 struct bfd_elf_version_tree *deflt;
3965 struct bfd_elf_version_expr *d;
3966
3967 /* See if can find what version this symbol is in. If the
3968 symbol is supposed to be local, then don't actually register
3969 it. */
3970 deflt = NULL;
3971 for (t = sinfo->verdefs; t != NULL; t = t->next)
3972 {
3973 if (t->globals != NULL)
3974 {
3975 for (d = t->globals; d != NULL; d = d->next)
3976 {
3977 if ((*d->match) (d, h->root.root.string))
3978 {
3979 h->verinfo.vertree = t;
3980 break;
3981 }
3982 }
3983
3984 if (d != NULL)
3985 break;
3986 }
3987
3988 if (t->locals != NULL)
3989 {
3990 for (d = t->locals; d != NULL; d = d->next)
3991 {
3992 if (d->pattern[0] == '*' && d->pattern[1] == '\0')
3993 deflt = t;
3994 else if ((*d->match) (d, h->root.root.string))
3995 {
3996 h->verinfo.vertree = t;
3997 if (h->dynindx != -1
3998 && info->shared
3999 && ! sinfo->export_dynamic)
4000 {
252b5132 4001 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
f41cbf03 4002 (*bed->elf_backend_hide_symbol) (info, h);
252b5132
RH
4003 /* FIXME: The name of the symbol has already
4004 been recorded in the dynamic string table
4005 section. */
4006 }
4007 break;
4008 }
4009 }
4010
4011 if (d != NULL)
4012 break;
4013 }
4014 }
4015
4016 if (deflt != NULL && h->verinfo.vertree == NULL)
4017 {
4018 h->verinfo.vertree = deflt;
4019 if (h->dynindx != -1
4020 && info->shared
4021 && ! sinfo->export_dynamic)
4022 {
252b5132 4023 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
f41cbf03 4024 (*bed->elf_backend_hide_symbol) (info, h);
252b5132
RH
4025 /* FIXME: The name of the symbol has already been
4026 recorded in the dynamic string table section. */
4027 }
4028 }
4029 }
4030
4031 return true;
4032}
252b5132
RH
4033\f
4034/* Final phase of ELF linker. */
4035
4036/* A structure we use to avoid passing large numbers of arguments. */
4037
4038struct elf_final_link_info
4039{
4040 /* General link information. */
4041 struct bfd_link_info *info;
4042 /* Output BFD. */
4043 bfd *output_bfd;
4044 /* Symbol string table. */
4045 struct bfd_strtab_hash *symstrtab;
4046 /* .dynsym section. */
4047 asection *dynsym_sec;
4048 /* .hash section. */
4049 asection *hash_sec;
4050 /* symbol version section (.gnu.version). */
4051 asection *symver_sec;
4052 /* Buffer large enough to hold contents of any section. */
4053 bfd_byte *contents;
4054 /* Buffer large enough to hold external relocs of any section. */
4055 PTR external_relocs;
4056 /* Buffer large enough to hold internal relocs of any section. */
4057 Elf_Internal_Rela *internal_relocs;
4058 /* Buffer large enough to hold external local symbols of any input
4059 BFD. */
4060 Elf_External_Sym *external_syms;
4061 /* Buffer large enough to hold internal local symbols of any input
4062 BFD. */
4063 Elf_Internal_Sym *internal_syms;
4064 /* Array large enough to hold a symbol index for each local symbol
4065 of any input BFD. */
4066 long *indices;
4067 /* Array large enough to hold a section pointer for each local
4068 symbol of any input BFD. */
4069 asection **sections;
4070 /* Buffer to hold swapped out symbols. */
4071 Elf_External_Sym *symbuf;
4072 /* Number of swapped out symbols in buffer. */
4073 size_t symbuf_count;
4074 /* Number of symbols which fit in symbuf. */
4075 size_t symbuf_size;
4076};
4077
4078static boolean elf_link_output_sym
4079 PARAMS ((struct elf_final_link_info *, const char *,
4080 Elf_Internal_Sym *, asection *));
4081static boolean elf_link_flush_output_syms
4082 PARAMS ((struct elf_final_link_info *));
4083static boolean elf_link_output_extsym
4084 PARAMS ((struct elf_link_hash_entry *, PTR));
f5fa8ca2
JJ
4085static boolean elf_link_sec_merge_syms
4086 PARAMS ((struct elf_link_hash_entry *, PTR));
252b5132
RH
4087static boolean elf_link_input_bfd
4088 PARAMS ((struct elf_final_link_info *, bfd *));
4089static boolean elf_reloc_link_order
4090 PARAMS ((bfd *, struct bfd_link_info *, asection *,
4091 struct bfd_link_order *));
4092
4093/* This struct is used to pass information to elf_link_output_extsym. */
4094
4095struct elf_outext_info
4096{
4097 boolean failed;
4098 boolean localsyms;
4099 struct elf_final_link_info *finfo;
4100};
4101
23bc299b
MM
4102/* Compute the size of, and allocate space for, REL_HDR which is the
4103 section header for a section containing relocations for O. */
4104
4105static boolean
4106elf_link_size_reloc_section (abfd, rel_hdr, o)
4107 bfd *abfd;
4108 Elf_Internal_Shdr *rel_hdr;
4109 asection *o;
4110{
b037af20 4111 unsigned reloc_count;
23bc299b 4112
b037af20
MM
4113 /* Figure out how many relocations there will be. */
4114 if (rel_hdr == &elf_section_data (o)->rel_hdr)
4115 reloc_count = elf_section_data (o)->rel_count;
4116 else
4117 reloc_count = elf_section_data (o)->rel_count2;
4118
4119 /* That allows us to calculate the size of the section. */
4120 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
23bc299b
MM
4121
4122 /* The contents field must last into write_object_contents, so we
755cfd29
NC
4123 allocate it with bfd_alloc rather than malloc. Also since we
4124 cannot be sure that the contents will actually be filled in,
4125 we zero the allocated space. */
4126 rel_hdr->contents = (PTR) bfd_zalloc (abfd, rel_hdr->sh_size);
23bc299b
MM
4127 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
4128 return false;
3e932841 4129
b037af20
MM
4130 /* We only allocate one set of hash entries, so we only do it the
4131 first time we are called. */
4132 if (elf_section_data (o)->rel_hashes == NULL)
4133 {
209f668e
NC
4134 struct elf_link_hash_entry **p;
4135
b037af20 4136 p = ((struct elf_link_hash_entry **)
209f668e
NC
4137 bfd_zmalloc (o->reloc_count
4138 * sizeof (struct elf_link_hash_entry *)));
b037af20
MM
4139 if (p == NULL && o->reloc_count != 0)
4140 return false;
23bc299b 4141
b037af20 4142 elf_section_data (o)->rel_hashes = p;
b037af20 4143 }
23bc299b
MM
4144
4145 return true;
4146}
4147
31367b81
MM
4148/* When performing a relocateable link, the input relocations are
4149 preserved. But, if they reference global symbols, the indices
4150 referenced must be updated. Update all the relocations in
4151 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
4152
4153static void
4154elf_link_adjust_relocs (abfd, rel_hdr, count, rel_hash)
4155 bfd *abfd;
4156 Elf_Internal_Shdr *rel_hdr;
4157 unsigned int count;
4158 struct elf_link_hash_entry **rel_hash;
4159{
4160 unsigned int i;
32f0787a 4161 struct elf_backend_data *bed = get_elf_backend_data (abfd);
209f668e
NC
4162 Elf_Internal_Rel *irel;
4163 Elf_Internal_Rela *irela;
4164
4165 irel = (Elf_Internal_Rel *) bfd_zmalloc (sizeof (Elf_Internal_Rel)
4166 * bed->s->int_rels_per_ext_rel);
4167 if (irel == NULL)
4168 {
4169 (*_bfd_error_handler) (_("Error: out of memory"));
4170 abort ();
4171 }
4172
4173 irela = (Elf_Internal_Rela *) bfd_zmalloc (sizeof (Elf_Internal_Rela)
4174 * bed->s->int_rels_per_ext_rel);
4175 if (irela == NULL)
4176 {
4177 (*_bfd_error_handler) (_("Error: out of memory"));
4178 abort ();
4179 }
31367b81
MM
4180
4181 for (i = 0; i < count; i++, rel_hash++)
4182 {
4183 if (*rel_hash == NULL)
4184 continue;
4185
4186 BFD_ASSERT ((*rel_hash)->indx >= 0);
4187
4188 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
4189 {
4190 Elf_External_Rel *erel;
209f668e 4191 unsigned int j;
3e932841 4192
31367b81 4193 erel = (Elf_External_Rel *) rel_hdr->contents + i;
32f0787a 4194 if (bed->s->swap_reloc_in)
209f668e 4195 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
32f0787a 4196 else
209f668e
NC
4197 elf_swap_reloc_in (abfd, erel, irel);
4198
4199 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
4200 irel[j].r_info = ELF_R_INFO ((*rel_hash)->indx,
4201 ELF_R_TYPE (irel[j].r_info));
4202
32f0787a 4203 if (bed->s->swap_reloc_out)
209f668e 4204 (*bed->s->swap_reloc_out) (abfd, irel, (bfd_byte *) erel);
32f0787a 4205 else
209f668e 4206 elf_swap_reloc_out (abfd, irel, erel);
31367b81
MM
4207 }
4208 else
4209 {
4210 Elf_External_Rela *erela;
209f668e 4211 unsigned int j;
3e932841 4212
31367b81
MM
4213 BFD_ASSERT (rel_hdr->sh_entsize
4214 == sizeof (Elf_External_Rela));
3e932841 4215
31367b81 4216 erela = (Elf_External_Rela *) rel_hdr->contents + i;
32f0787a 4217 if (bed->s->swap_reloca_in)
209f668e 4218 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
32f0787a 4219 else
209f668e
NC
4220 elf_swap_reloca_in (abfd, erela, irela);
4221
4222 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
4223 irela[j].r_info = ELF_R_INFO ((*rel_hash)->indx,
4224 ELF_R_TYPE (irela[j].r_info));
4225
32f0787a 4226 if (bed->s->swap_reloca_out)
209f668e 4227 (*bed->s->swap_reloca_out) (abfd, irela, (bfd_byte *) erela);
32f0787a 4228 else
209f668e 4229 elf_swap_reloca_out (abfd, irela, erela);
31367b81
MM
4230 }
4231 }
209f668e
NC
4232
4233 free (irel);
4234 free (irela);
31367b81
MM
4235}
4236
252b5132
RH
4237/* Do the final step of an ELF link. */
4238
4239boolean
4240elf_bfd_final_link (abfd, info)
4241 bfd *abfd;
4242 struct bfd_link_info *info;
4243{
4244 boolean dynamic;
4245 bfd *dynobj;
4246 struct elf_final_link_info finfo;
4247 register asection *o;
4248 register struct bfd_link_order *p;
4249 register bfd *sub;
4250 size_t max_contents_size;
4251 size_t max_external_reloc_size;
4252 size_t max_internal_reloc_count;
4253 size_t max_sym_count;
4254 file_ptr off;
4255 Elf_Internal_Sym elfsym;
4256 unsigned int i;
4257 Elf_Internal_Shdr *symtab_hdr;
4258 Elf_Internal_Shdr *symstrtab_hdr;
4259 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4260 struct elf_outext_info eoinfo;
f5fa8ca2 4261 boolean merged;
252b5132
RH
4262
4263 if (info->shared)
4264 abfd->flags |= DYNAMIC;
4265
4266 dynamic = elf_hash_table (info)->dynamic_sections_created;
4267 dynobj = elf_hash_table (info)->dynobj;
4268
4269 finfo.info = info;
4270 finfo.output_bfd = abfd;
4271 finfo.symstrtab = elf_stringtab_init ();
4272 if (finfo.symstrtab == NULL)
4273 return false;
4274
4275 if (! dynamic)
4276 {
4277 finfo.dynsym_sec = NULL;
4278 finfo.hash_sec = NULL;
4279 finfo.symver_sec = NULL;
4280 }
4281 else
4282 {
4283 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
4284 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
4285 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
4286 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
4287 /* Note that it is OK if symver_sec is NULL. */
4288 }
4289
4290 finfo.contents = NULL;
4291 finfo.external_relocs = NULL;
4292 finfo.internal_relocs = NULL;
4293 finfo.external_syms = NULL;
4294 finfo.internal_syms = NULL;
4295 finfo.indices = NULL;
4296 finfo.sections = NULL;
4297 finfo.symbuf = NULL;
4298 finfo.symbuf_count = 0;
4299
4300 /* Count up the number of relocations we will output for each output
4301 section, so that we know the sizes of the reloc sections. We
4302 also figure out some maximum sizes. */
4303 max_contents_size = 0;
4304 max_external_reloc_size = 0;
4305 max_internal_reloc_count = 0;
4306 max_sym_count = 0;
f5fa8ca2 4307 merged = false;
252b5132
RH
4308 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4309 {
4310 o->reloc_count = 0;
4311
4312 for (p = o->link_order_head; p != NULL; p = p->next)
4313 {
4314 if (p->type == bfd_section_reloc_link_order
4315 || p->type == bfd_symbol_reloc_link_order)
4316 ++o->reloc_count;
4317 else if (p->type == bfd_indirect_link_order)
4318 {
4319 asection *sec;
4320
4321 sec = p->u.indirect.section;
4322
4323 /* Mark all sections which are to be included in the
4324 link. This will normally be every section. We need
4325 to do this so that we can identify any sections which
4326 the linker has decided to not include. */
4327 sec->linker_mark = true;
4328
f5fa8ca2
JJ
4329 if (sec->flags & SEC_MERGE)
4330 merged = true;
4331
a712da20 4332 if (info->relocateable || info->emitrelocations)
252b5132
RH
4333 o->reloc_count += sec->reloc_count;
4334
4335 if (sec->_raw_size > max_contents_size)
4336 max_contents_size = sec->_raw_size;
4337 if (sec->_cooked_size > max_contents_size)
4338 max_contents_size = sec->_cooked_size;
4339
4340 /* We are interested in just local symbols, not all
4341 symbols. */
4342 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
4343 && (sec->owner->flags & DYNAMIC) == 0)
4344 {
4345 size_t sym_count;
4346
4347 if (elf_bad_symtab (sec->owner))
4348 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
4349 / sizeof (Elf_External_Sym));
4350 else
4351 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
4352
4353 if (sym_count > max_sym_count)
4354 max_sym_count = sym_count;
4355
4356 if ((sec->flags & SEC_RELOC) != 0)
4357 {
4358 size_t ext_size;
4359
4360 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
4361 if (ext_size > max_external_reloc_size)
4362 max_external_reloc_size = ext_size;
4363 if (sec->reloc_count > max_internal_reloc_count)
4364 max_internal_reloc_count = sec->reloc_count;
4365 }
4366 }
4367 }
4368 }
4369
4370 if (o->reloc_count > 0)
4371 o->flags |= SEC_RELOC;
4372 else
4373 {
4374 /* Explicitly clear the SEC_RELOC flag. The linker tends to
4375 set it (this is probably a bug) and if it is set
4376 assign_section_numbers will create a reloc section. */
4377 o->flags &=~ SEC_RELOC;
4378 }
4379
4380 /* If the SEC_ALLOC flag is not set, force the section VMA to
4381 zero. This is done in elf_fake_sections as well, but forcing
4382 the VMA to 0 here will ensure that relocs against these
4383 sections are handled correctly. */
4384 if ((o->flags & SEC_ALLOC) == 0
4385 && ! o->user_set_vma)
4386 o->vma = 0;
4387 }
4388
f5fa8ca2
JJ
4389 if (! info->relocateable && merged)
4390 elf_link_hash_traverse (elf_hash_table (info),
4391 elf_link_sec_merge_syms, (PTR) abfd);
4392
252b5132
RH
4393 /* Figure out the file positions for everything but the symbol table
4394 and the relocs. We set symcount to force assign_section_numbers
4395 to create a symbol table. */
4396 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
4397 BFD_ASSERT (! abfd->output_has_begun);
4398 if (! _bfd_elf_compute_section_file_positions (abfd, info))
4399 goto error_return;
4400
b037af20
MM
4401 /* Figure out how many relocations we will have in each section.
4402 Just using RELOC_COUNT isn't good enough since that doesn't
4403 maintain a separate value for REL vs. RELA relocations. */
a712da20 4404 if (info->relocateable || info->emitrelocations)
b037af20
MM
4405 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4406 for (o = sub->sections; o != NULL; o = o->next)
4407 {
814fe68a 4408 asection *output_section;
b037af20 4409
814fe68a
ILT
4410 if (! o->linker_mark)
4411 {
4412 /* This section was omitted from the link. */
4413 continue;
4414 }
4415
4416 output_section = o->output_section;
4417
4418 if (output_section != NULL
4419 && (o->flags & SEC_RELOC) != 0)
b037af20 4420 {
3e932841 4421 struct bfd_elf_section_data *esdi
b037af20 4422 = elf_section_data (o);
3e932841 4423 struct bfd_elf_section_data *esdo
b037af20 4424 = elf_section_data (output_section);
ce006217
MM
4425 unsigned int *rel_count;
4426 unsigned int *rel_count2;
b037af20 4427
ce006217
MM
4428 /* We must be careful to add the relocation froms the
4429 input section to the right output count. */
4430 if (esdi->rel_hdr.sh_entsize == esdo->rel_hdr.sh_entsize)
4431 {
4432 rel_count = &esdo->rel_count;
4433 rel_count2 = &esdo->rel_count2;
4434 }
4435 else
4436 {
4437 rel_count = &esdo->rel_count2;
4438 rel_count2 = &esdo->rel_count;
4439 }
3e932841 4440
d9bc7a44 4441 *rel_count += NUM_SHDR_ENTRIES (& esdi->rel_hdr);
b037af20 4442 if (esdi->rel_hdr2)
d9bc7a44 4443 *rel_count2 += NUM_SHDR_ENTRIES (esdi->rel_hdr2);
b037af20
MM
4444 }
4445 }
4446
252b5132
RH
4447 /* That created the reloc sections. Set their sizes, and assign
4448 them file positions, and allocate some buffers. */
4449 for (o = abfd->sections; o != NULL; o = o->next)
4450 {
4451 if ((o->flags & SEC_RELOC) != 0)
4452 {
23bc299b
MM
4453 if (!elf_link_size_reloc_section (abfd,
4454 &elf_section_data (o)->rel_hdr,
4455 o))
252b5132
RH
4456 goto error_return;
4457
23bc299b
MM
4458 if (elf_section_data (o)->rel_hdr2
4459 && !elf_link_size_reloc_section (abfd,
4460 elf_section_data (o)->rel_hdr2,
4461 o))
252b5132 4462 goto error_return;
252b5132 4463 }
b037af20
MM
4464
4465 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
3e932841 4466 to count upwards while actually outputting the relocations. */
b037af20
MM
4467 elf_section_data (o)->rel_count = 0;
4468 elf_section_data (o)->rel_count2 = 0;
252b5132
RH
4469 }
4470
4471 _bfd_elf_assign_file_positions_for_relocs (abfd);
4472
4473 /* We have now assigned file positions for all the sections except
4474 .symtab and .strtab. We start the .symtab section at the current
4475 file position, and write directly to it. We build the .strtab
4476 section in memory. */
4477 bfd_get_symcount (abfd) = 0;
4478 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4479 /* sh_name is set in prep_headers. */
4480 symtab_hdr->sh_type = SHT_SYMTAB;
4481 symtab_hdr->sh_flags = 0;
4482 symtab_hdr->sh_addr = 0;
4483 symtab_hdr->sh_size = 0;
4484 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
4485 /* sh_link is set in assign_section_numbers. */
4486 /* sh_info is set below. */
4487 /* sh_offset is set just below. */
f0e1d18a 4488 symtab_hdr->sh_addralign = bed->s->file_align;
252b5132
RH
4489
4490 off = elf_tdata (abfd)->next_file_pos;
4491 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
4492
4493 /* Note that at this point elf_tdata (abfd)->next_file_pos is
4494 incorrect. We do not yet know the size of the .symtab section.
4495 We correct next_file_pos below, after we do know the size. */
4496
4497 /* Allocate a buffer to hold swapped out symbols. This is to avoid
4498 continuously seeking to the right position in the file. */
4499 if (! info->keep_memory || max_sym_count < 20)
4500 finfo.symbuf_size = 20;
4501 else
4502 finfo.symbuf_size = max_sym_count;
4503 finfo.symbuf = ((Elf_External_Sym *)
4504 bfd_malloc (finfo.symbuf_size * sizeof (Elf_External_Sym)));
4505 if (finfo.symbuf == NULL)
4506 goto error_return;
4507
4508 /* Start writing out the symbol table. The first symbol is always a
4509 dummy symbol. */
a712da20 4510 if (info->strip != strip_all || info->relocateable || info->emitrelocations)
252b5132
RH
4511 {
4512 elfsym.st_value = 0;
4513 elfsym.st_size = 0;
4514 elfsym.st_info = 0;
4515 elfsym.st_other = 0;
4516 elfsym.st_shndx = SHN_UNDEF;
4517 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4518 &elfsym, bfd_und_section_ptr))
4519 goto error_return;
4520 }
4521
4522#if 0
4523 /* Some standard ELF linkers do this, but we don't because it causes
4524 bootstrap comparison failures. */
4525 /* Output a file symbol for the output file as the second symbol.
4526 We output this even if we are discarding local symbols, although
4527 I'm not sure if this is correct. */
4528 elfsym.st_value = 0;
4529 elfsym.st_size = 0;
4530 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
4531 elfsym.st_other = 0;
4532 elfsym.st_shndx = SHN_ABS;
4533 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
4534 &elfsym, bfd_abs_section_ptr))
4535 goto error_return;
4536#endif
4537
4538 /* Output a symbol for each section. We output these even if we are
4539 discarding local symbols, since they are used for relocs. These
4540 symbols have no names. We store the index of each one in the
4541 index field of the section, so that we can find it again when
4542 outputting relocs. */
a712da20 4543 if (info->strip != strip_all || info->relocateable || info->emitrelocations)
252b5132
RH
4544 {
4545 elfsym.st_size = 0;
4546 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4547 elfsym.st_other = 0;
4548 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4549 {
4550 o = section_from_elf_index (abfd, i);
4551 if (o != NULL)
4552 o->target_index = bfd_get_symcount (abfd);
4553 elfsym.st_shndx = i;
7ad34365 4554 if (info->relocateable || o == NULL)
252b5132
RH
4555 elfsym.st_value = 0;
4556 else
4557 elfsym.st_value = o->vma;
4558 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4559 &elfsym, o))
4560 goto error_return;
4561 }
4562 }
4563
4564 /* Allocate some memory to hold information read in from the input
4565 files. */
4566 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
4567 finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
4568 finfo.internal_relocs = ((Elf_Internal_Rela *)
4569 bfd_malloc (max_internal_reloc_count
c7ac6ff8
MM
4570 * sizeof (Elf_Internal_Rela)
4571 * bed->s->int_rels_per_ext_rel));
252b5132
RH
4572 finfo.external_syms = ((Elf_External_Sym *)
4573 bfd_malloc (max_sym_count
4574 * sizeof (Elf_External_Sym)));
4575 finfo.internal_syms = ((Elf_Internal_Sym *)
4576 bfd_malloc (max_sym_count
4577 * sizeof (Elf_Internal_Sym)));
4578 finfo.indices = (long *) bfd_malloc (max_sym_count * sizeof (long));
4579 finfo.sections = ((asection **)
4580 bfd_malloc (max_sym_count * sizeof (asection *)));
4581 if ((finfo.contents == NULL && max_contents_size != 0)
4582 || (finfo.external_relocs == NULL && max_external_reloc_size != 0)
4583 || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0)
4584 || (finfo.external_syms == NULL && max_sym_count != 0)
4585 || (finfo.internal_syms == NULL && max_sym_count != 0)
4586 || (finfo.indices == NULL && max_sym_count != 0)
4587 || (finfo.sections == NULL && max_sym_count != 0))
4588 goto error_return;
4589
4590 /* Since ELF permits relocations to be against local symbols, we
4591 must have the local symbols available when we do the relocations.
4592 Since we would rather only read the local symbols once, and we
4593 would rather not keep them in memory, we handle all the
4594 relocations for a single input file at the same time.
4595
4596 Unfortunately, there is no way to know the total number of local
4597 symbols until we have seen all of them, and the local symbol
4598 indices precede the global symbol indices. This means that when
4599 we are generating relocateable output, and we see a reloc against
4600 a global symbol, we can not know the symbol index until we have
4601 finished examining all the local symbols to see which ones we are
4602 going to output. To deal with this, we keep the relocations in
4603 memory, and don't output them until the end of the link. This is
4604 an unfortunate waste of memory, but I don't see a good way around
4605 it. Fortunately, it only happens when performing a relocateable
4606 link, which is not the common case. FIXME: If keep_memory is set
4607 we could write the relocs out and then read them again; I don't
4608 know how bad the memory loss will be. */
4609
4610 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4611 sub->output_has_begun = false;
4612 for (o = abfd->sections; o != NULL; o = o->next)
4613 {
4614 for (p = o->link_order_head; p != NULL; p = p->next)
4615 {
4616 if (p->type == bfd_indirect_link_order
4617 && (bfd_get_flavour (p->u.indirect.section->owner)
4618 == bfd_target_elf_flavour))
4619 {
4620 sub = p->u.indirect.section->owner;
4621 if (! sub->output_has_begun)
4622 {
4623 if (! elf_link_input_bfd (&finfo, sub))
4624 goto error_return;
4625 sub->output_has_begun = true;
4626 }
4627 }
4628 else if (p->type == bfd_section_reloc_link_order
4629 || p->type == bfd_symbol_reloc_link_order)
4630 {
4631 if (! elf_reloc_link_order (abfd, info, o, p))
4632 goto error_return;
4633 }
4634 else
4635 {
4636 if (! _bfd_default_link_order (abfd, info, o, p))
4637 goto error_return;
4638 }
4639 }
4640 }
4641
4642 /* That wrote out all the local symbols. Finish up the symbol table
5cc7c785
L
4643 with the global symbols. Even if we want to strip everything we
4644 can, we still need to deal with those global symbols that got
3e932841 4645 converted to local in a version script. */
252b5132 4646
2bd171e0 4647 if (info->shared)
252b5132
RH
4648 {
4649 /* Output any global symbols that got converted to local in a
4650 version script. We do this in a separate step since ELF
4651 requires all local symbols to appear prior to any global
4652 symbols. FIXME: We should only do this if some global
4653 symbols were, in fact, converted to become local. FIXME:
4654 Will this work correctly with the Irix 5 linker? */
4655 eoinfo.failed = false;
4656 eoinfo.finfo = &finfo;
4657 eoinfo.localsyms = true;
4658 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4659 (PTR) &eoinfo);
4660 if (eoinfo.failed)
4661 return false;
4662 }
4663
30b30c21 4664 /* The sh_info field records the index of the first non local symbol. */
252b5132 4665 symtab_hdr->sh_info = bfd_get_symcount (abfd);
30b30c21 4666
fc8c40a0
AM
4667 if (dynamic
4668 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
30b30c21
RH
4669 {
4670 Elf_Internal_Sym sym;
4671 Elf_External_Sym *dynsym =
4672 (Elf_External_Sym *)finfo.dynsym_sec->contents;
71a40b32 4673 long last_local = 0;
30b30c21
RH
4674
4675 /* Write out the section symbols for the output sections. */
4676 if (info->shared)
4677 {
4678 asection *s;
4679
4680 sym.st_size = 0;
4681 sym.st_name = 0;
4682 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4683 sym.st_other = 0;
4684
4685 for (s = abfd->sections; s != NULL; s = s->next)
4686 {
4687 int indx;
4688 indx = elf_section_data (s)->this_idx;
4689 BFD_ASSERT (indx > 0);
4690 sym.st_shndx = indx;
4691 sym.st_value = s->vma;
4692
4693 elf_swap_symbol_out (abfd, &sym,
4694 dynsym + elf_section_data (s)->dynindx);
4695 }
4696
4697 last_local = bfd_count_sections (abfd);
4698 }
4699
4700 /* Write out the local dynsyms. */
4701 if (elf_hash_table (info)->dynlocal)
4702 {
4703 struct elf_link_local_dynamic_entry *e;
4704 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
4705 {
318da145 4706 asection *s;
30b30c21 4707
b037af20
MM
4708 sym.st_size = e->isym.st_size;
4709 sym.st_other = e->isym.st_other;
4710
1fa0ddb3
RH
4711 /* Copy the internal symbol as is.
4712 Note that we saved a word of storage and overwrote
30b30c21 4713 the original st_name with the dynstr_index. */
1fa0ddb3 4714 sym = e->isym;
30b30c21 4715
1fa0ddb3 4716 if (e->isym.st_shndx > 0 && e->isym.st_shndx < SHN_LORESERVE)
587ff49e
RH
4717 {
4718 s = bfd_section_from_elf_index (e->input_bfd,
4719 e->isym.st_shndx);
4720
4721 sym.st_shndx =
4722 elf_section_data (s->output_section)->this_idx;
4723 sym.st_value = (s->output_section->vma
4724 + s->output_offset
4725 + e->isym.st_value);
4726 }
30b30c21
RH
4727
4728 if (last_local < e->dynindx)
4729 last_local = e->dynindx;
4730
4731 elf_swap_symbol_out (abfd, &sym, dynsym + e->dynindx);
4732 }
4733 }
4734
71a40b32
ILT
4735 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
4736 last_local + 1;
30b30c21 4737 }
252b5132
RH
4738
4739 /* We get the global symbols from the hash table. */
4740 eoinfo.failed = false;
4741 eoinfo.localsyms = false;
4742 eoinfo.finfo = &finfo;
4743 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4744 (PTR) &eoinfo);
4745 if (eoinfo.failed)
4746 return false;
4747
587ff49e
RH
4748 /* If backend needs to output some symbols not present in the hash
4749 table, do it now. */
4750 if (bed->elf_backend_output_arch_syms)
4751 {
4752 if (! (*bed->elf_backend_output_arch_syms)
4753 (abfd, info, (PTR) &finfo,
4754 (boolean (*) PARAMS ((PTR, const char *,
4755 Elf_Internal_Sym *, asection *)))
4756 elf_link_output_sym))
4757 return false;
3e932841 4758 }
587ff49e 4759
252b5132
RH
4760 /* Flush all symbols to the file. */
4761 if (! elf_link_flush_output_syms (&finfo))
4762 return false;
4763
4764 /* Now we know the size of the symtab section. */
4765 off += symtab_hdr->sh_size;
4766
4767 /* Finish up and write out the symbol string table (.strtab)
4768 section. */
4769 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
4770 /* sh_name was set in prep_headers. */
4771 symstrtab_hdr->sh_type = SHT_STRTAB;
4772 symstrtab_hdr->sh_flags = 0;
4773 symstrtab_hdr->sh_addr = 0;
4774 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
4775 symstrtab_hdr->sh_entsize = 0;
4776 symstrtab_hdr->sh_link = 0;
4777 symstrtab_hdr->sh_info = 0;
4778 /* sh_offset is set just below. */
4779 symstrtab_hdr->sh_addralign = 1;
4780
4781 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
4782 elf_tdata (abfd)->next_file_pos = off;
4783
4784 if (bfd_get_symcount (abfd) > 0)
4785 {
4786 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
4787 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
4788 return false;
4789 }
4790
4791 /* Adjust the relocs to have the correct symbol indices. */
4792 for (o = abfd->sections; o != NULL; o = o->next)
4793 {
252b5132
RH
4794 if ((o->flags & SEC_RELOC) == 0)
4795 continue;
4796
3e932841 4797 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
31367b81
MM
4798 elf_section_data (o)->rel_count,
4799 elf_section_data (o)->rel_hashes);
4800 if (elf_section_data (o)->rel_hdr2 != NULL)
4801 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
4802 elf_section_data (o)->rel_count2,
3e932841 4803 (elf_section_data (o)->rel_hashes
31367b81 4804 + elf_section_data (o)->rel_count));
252b5132
RH
4805
4806 /* Set the reloc_count field to 0 to prevent write_relocs from
4807 trying to swap the relocs out itself. */
4808 o->reloc_count = 0;
4809 }
4810
4811 /* If we are linking against a dynamic object, or generating a
4812 shared library, finish up the dynamic linking information. */
4813 if (dynamic)
4814 {
4815 Elf_External_Dyn *dyncon, *dynconend;
4816
4817 /* Fix up .dynamic entries. */
4818 o = bfd_get_section_by_name (dynobj, ".dynamic");
4819 BFD_ASSERT (o != NULL);
4820
4821 dyncon = (Elf_External_Dyn *) o->contents;
4822 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
4823 for (; dyncon < dynconend; dyncon++)
4824 {
4825 Elf_Internal_Dyn dyn;
4826 const char *name;
4827 unsigned int type;
4828
4829 elf_swap_dyn_in (dynobj, dyncon, &dyn);
4830
4831 switch (dyn.d_tag)
4832 {
4833 default:
4834 break;
252b5132 4835 case DT_INIT:
f0c2e336 4836 name = info->init_function;
252b5132
RH
4837 goto get_sym;
4838 case DT_FINI:
f0c2e336 4839 name = info->fini_function;
252b5132
RH
4840 get_sym:
4841 {
4842 struct elf_link_hash_entry *h;
4843
4844 h = elf_link_hash_lookup (elf_hash_table (info), name,
4845 false, false, true);
4846 if (h != NULL
4847 && (h->root.type == bfd_link_hash_defined
4848 || h->root.type == bfd_link_hash_defweak))
4849 {
4850 dyn.d_un.d_val = h->root.u.def.value;
4851 o = h->root.u.def.section;
4852 if (o->output_section != NULL)
4853 dyn.d_un.d_val += (o->output_section->vma
4854 + o->output_offset);
4855 else
4856 {
4857 /* The symbol is imported from another shared
4858 library and does not apply to this one. */
4859 dyn.d_un.d_val = 0;
4860 }
4861
4862 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4863 }
4864 }
4865 break;
4866
4867 case DT_HASH:
4868 name = ".hash";
4869 goto get_vma;
4870 case DT_STRTAB:
4871 name = ".dynstr";
4872 goto get_vma;
4873 case DT_SYMTAB:
4874 name = ".dynsym";
4875 goto get_vma;
4876 case DT_VERDEF:
4877 name = ".gnu.version_d";
4878 goto get_vma;
4879 case DT_VERNEED:
4880 name = ".gnu.version_r";
4881 goto get_vma;
4882 case DT_VERSYM:
4883 name = ".gnu.version";
4884 get_vma:
4885 o = bfd_get_section_by_name (abfd, name);
4886 BFD_ASSERT (o != NULL);
4887 dyn.d_un.d_ptr = o->vma;
4888 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4889 break;
4890
4891 case DT_REL:
4892 case DT_RELA:
4893 case DT_RELSZ:
4894 case DT_RELASZ:
4895 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
4896 type = SHT_REL;
4897 else
4898 type = SHT_RELA;
4899 dyn.d_un.d_val = 0;
4900 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4901 {
4902 Elf_Internal_Shdr *hdr;
4903
4904 hdr = elf_elfsections (abfd)[i];
4905 if (hdr->sh_type == type
4906 && (hdr->sh_flags & SHF_ALLOC) != 0)
4907 {
4908 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
4909 dyn.d_un.d_val += hdr->sh_size;
4910 else
4911 {
4912 if (dyn.d_un.d_val == 0
4913 || hdr->sh_addr < dyn.d_un.d_val)
4914 dyn.d_un.d_val = hdr->sh_addr;
4915 }
4916 }
4917 }
4918 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4919 break;
4920 }
4921 }
4922 }
4923
4924 /* If we have created any dynamic sections, then output them. */
4925 if (dynobj != NULL)
4926 {
4927 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
4928 goto error_return;
4929
4930 for (o = dynobj->sections; o != NULL; o = o->next)
4931 {
4932 if ((o->flags & SEC_HAS_CONTENTS) == 0
fc8c40a0
AM
4933 || o->_raw_size == 0
4934 || o->output_section == bfd_abs_section_ptr)
252b5132
RH
4935 continue;
4936 if ((o->flags & SEC_LINKER_CREATED) == 0)
4937 {
4938 /* At this point, we are only interested in sections
4939 created by elf_link_create_dynamic_sections. */
4940 continue;
4941 }
4942 if ((elf_section_data (o->output_section)->this_hdr.sh_type
4943 != SHT_STRTAB)
4944 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
4945 {
4946 if (! bfd_set_section_contents (abfd, o->output_section,
4947 o->contents, o->output_offset,
4948 o->_raw_size))
4949 goto error_return;
4950 }
4951 else
4952 {
4953 file_ptr off;
4954
4955 /* The contents of the .dynstr section are actually in a
4956 stringtab. */
4957 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
4958 if (bfd_seek (abfd, off, SEEK_SET) != 0
4959 || ! _bfd_stringtab_emit (abfd,
4960 elf_hash_table (info)->dynstr))
4961 goto error_return;
4962 }
4963 }
4964 }
4965
4966 /* If we have optimized stabs strings, output them. */
4967 if (elf_hash_table (info)->stab_info != NULL)
4968 {
4969 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
4970 goto error_return;
4971 }
4972
4973 if (finfo.symstrtab != NULL)
4974 _bfd_stringtab_free (finfo.symstrtab);
4975 if (finfo.contents != NULL)
4976 free (finfo.contents);
4977 if (finfo.external_relocs != NULL)
4978 free (finfo.external_relocs);
4979 if (finfo.internal_relocs != NULL)
4980 free (finfo.internal_relocs);
4981 if (finfo.external_syms != NULL)
4982 free (finfo.external_syms);
4983 if (finfo.internal_syms != NULL)
4984 free (finfo.internal_syms);
4985 if (finfo.indices != NULL)
4986 free (finfo.indices);
4987 if (finfo.sections != NULL)
4988 free (finfo.sections);
4989 if (finfo.symbuf != NULL)
4990 free (finfo.symbuf);
4991 for (o = abfd->sections; o != NULL; o = o->next)
4992 {
4993 if ((o->flags & SEC_RELOC) != 0
4994 && elf_section_data (o)->rel_hashes != NULL)
4995 free (elf_section_data (o)->rel_hashes);
4996 }
4997
4998 elf_tdata (abfd)->linker = true;
4999
5000 return true;
5001
5002 error_return:
5003 if (finfo.symstrtab != NULL)
5004 _bfd_stringtab_free (finfo.symstrtab);
5005 if (finfo.contents != NULL)
5006 free (finfo.contents);
5007 if (finfo.external_relocs != NULL)
5008 free (finfo.external_relocs);
5009 if (finfo.internal_relocs != NULL)
5010 free (finfo.internal_relocs);
5011 if (finfo.external_syms != NULL)
5012 free (finfo.external_syms);
5013 if (finfo.internal_syms != NULL)
5014 free (finfo.internal_syms);
5015 if (finfo.indices != NULL)
5016 free (finfo.indices);
5017 if (finfo.sections != NULL)
5018 free (finfo.sections);
5019 if (finfo.symbuf != NULL)
5020 free (finfo.symbuf);
5021 for (o = abfd->sections; o != NULL; o = o->next)
5022 {
5023 if ((o->flags & SEC_RELOC) != 0
5024 && elf_section_data (o)->rel_hashes != NULL)
5025 free (elf_section_data (o)->rel_hashes);
5026 }
5027
5028 return false;
5029}
5030
5031/* Add a symbol to the output symbol table. */
5032
5033static boolean
5034elf_link_output_sym (finfo, name, elfsym, input_sec)
5035 struct elf_final_link_info *finfo;
5036 const char *name;
5037 Elf_Internal_Sym *elfsym;
5038 asection *input_sec;
5039{
5040 boolean (*output_symbol_hook) PARAMS ((bfd *,
5041 struct bfd_link_info *info,
5042 const char *,
5043 Elf_Internal_Sym *,
5044 asection *));
5045
5046 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
5047 elf_backend_link_output_symbol_hook;
5048 if (output_symbol_hook != NULL)
5049 {
5050 if (! ((*output_symbol_hook)
5051 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
5052 return false;
5053 }
5054
5055 if (name == (const char *) NULL || *name == '\0')
5056 elfsym->st_name = 0;
5057 else if (input_sec->flags & SEC_EXCLUDE)
5058 elfsym->st_name = 0;
5059 else
5060 {
5061 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
5062 name, true,
5063 false);
5064 if (elfsym->st_name == (unsigned long) -1)
5065 return false;
5066 }
5067
5068 if (finfo->symbuf_count >= finfo->symbuf_size)
5069 {
5070 if (! elf_link_flush_output_syms (finfo))
5071 return false;
5072 }
5073
5074 elf_swap_symbol_out (finfo->output_bfd, elfsym,
5075 (PTR) (finfo->symbuf + finfo->symbuf_count));
5076 ++finfo->symbuf_count;
5077
5078 ++ bfd_get_symcount (finfo->output_bfd);
5079
5080 return true;
5081}
5082
5083/* Flush the output symbols to the file. */
5084
5085static boolean
5086elf_link_flush_output_syms (finfo)
5087 struct elf_final_link_info *finfo;
5088{
5089 if (finfo->symbuf_count > 0)
5090 {
5091 Elf_Internal_Shdr *symtab;
5092
5093 symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr;
5094
5095 if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size,
5096 SEEK_SET) != 0
5097 || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count,
5098 sizeof (Elf_External_Sym), finfo->output_bfd)
5099 != finfo->symbuf_count * sizeof (Elf_External_Sym)))
5100 return false;
5101
5102 symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym);
5103
5104 finfo->symbuf_count = 0;
5105 }
5106
5107 return true;
5108}
5109
f5fa8ca2
JJ
5110/* Adjust all external symbols pointing into SEC_MERGE sections
5111 to reflect the object merging within the sections. */
5112
5113static boolean
5114elf_link_sec_merge_syms (h, data)
5115 struct elf_link_hash_entry *h;
5116 PTR data;
5117{
5118 asection *sec;
5119
5120 if ((h->root.type == bfd_link_hash_defined
5121 || h->root.type == bfd_link_hash_defweak)
5122 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
5123 && elf_section_data (sec)->merge_info)
5124 {
5125 bfd *output_bfd = (bfd *) data;
5126
5127 h->root.u.def.value =
5128 _bfd_merged_section_offset (output_bfd,
5129 &h->root.u.def.section,
5130 elf_section_data (sec)->merge_info,
5131 h->root.u.def.value, (bfd_vma) 0);
5132 }
5133
5134 return true;
5135}
5136
252b5132
RH
5137/* Add an external symbol to the symbol table. This is called from
5138 the hash table traversal routine. When generating a shared object,
5139 we go through the symbol table twice. The first time we output
5140 anything that might have been forced to local scope in a version
5141 script. The second time we output the symbols that are still
5142 global symbols. */
5143
5144static boolean
5145elf_link_output_extsym (h, data)
5146 struct elf_link_hash_entry *h;
5147 PTR data;
5148{
5149 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
5150 struct elf_final_link_info *finfo = eoinfo->finfo;
5151 boolean strip;
5152 Elf_Internal_Sym sym;
5153 asection *input_sec;
5154
5155 /* Decide whether to output this symbol in this pass. */
5156 if (eoinfo->localsyms)
5157 {
5158 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
5159 return true;
5160 }
5161 else
5162 {
5163 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5164 return true;
5165 }
5166
5167 /* If we are not creating a shared library, and this symbol is
5168 referenced by a shared library but is not defined anywhere, then
5169 warn that it is undefined. If we do not do this, the runtime
5170 linker will complain that the symbol is undefined when the
5171 program is run. We don't have to worry about symbols that are
5172 referenced by regular files, because we will already have issued
5173 warnings for them. */
5174 if (! finfo->info->relocateable
b79e8c78 5175 && ! finfo->info->allow_shlib_undefined
252b5132 5176 && ! (finfo->info->shared
252b5132
RH
5177 && !finfo->info->no_undefined)
5178 && h->root.type == bfd_link_hash_undefined
5179 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
5180 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
5181 {
5182 if (! ((*finfo->info->callbacks->undefined_symbol)
5183 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
5cc7c785 5184 (asection *) NULL, 0, true)))
252b5132
RH
5185 {
5186 eoinfo->failed = true;
5187 return false;
5188 }
5189 }
5190
5191 /* We don't want to output symbols that have never been mentioned by
5192 a regular file, or that we have been told to strip. However, if
5193 h->indx is set to -2, the symbol is used by a reloc and we must
5194 output it. */
5195 if (h->indx == -2)
5196 strip = false;
5197 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
5198 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
5199 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
5200 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
5201 strip = true;
5202 else if (finfo->info->strip == strip_all
5203 || (finfo->info->strip == strip_some
5204 && bfd_hash_lookup (finfo->info->keep_hash,
5205 h->root.root.string,
5206 false, false) == NULL))
5207 strip = true;
5208 else
5209 strip = false;
5210
5211 /* If we're stripping it, and it's not a dynamic symbol, there's
2bd171e0
ILT
5212 nothing else to do unless it is a forced local symbol. */
5213 if (strip
5214 && h->dynindx == -1
5215 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
252b5132
RH
5216 return true;
5217
5218 sym.st_value = 0;
5219 sym.st_size = h->size;
5220 sym.st_other = h->other;
5221 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5222 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
5223 else if (h->root.type == bfd_link_hash_undefweak
5224 || h->root.type == bfd_link_hash_defweak)
5225 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
5226 else
5227 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
5228
5229 switch (h->root.type)
5230 {
5231 default:
5232 case bfd_link_hash_new:
5233 abort ();
5234 return false;
5235
5236 case bfd_link_hash_undefined:
5237 input_sec = bfd_und_section_ptr;
5238 sym.st_shndx = SHN_UNDEF;
5239 break;
5240
5241 case bfd_link_hash_undefweak:
5242 input_sec = bfd_und_section_ptr;
5243 sym.st_shndx = SHN_UNDEF;
5244 break;
5245
5246 case bfd_link_hash_defined:
5247 case bfd_link_hash_defweak:
5248 {
5249 input_sec = h->root.u.def.section;
5250 if (input_sec->output_section != NULL)
5251 {
5252 sym.st_shndx =
5253 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
5254 input_sec->output_section);
5255 if (sym.st_shndx == (unsigned short) -1)
5256 {
5257 (*_bfd_error_handler)
5258 (_("%s: could not find output section %s for input section %s"),
5259 bfd_get_filename (finfo->output_bfd),
5260 input_sec->output_section->name,
5261 input_sec->name);
5262 eoinfo->failed = true;
5263 return false;
5264 }
5265
5266 /* ELF symbols in relocateable files are section relative,
5267 but in nonrelocateable files they are virtual
5268 addresses. */
5269 sym.st_value = h->root.u.def.value + input_sec->output_offset;
5270 if (! finfo->info->relocateable)
5271 sym.st_value += input_sec->output_section->vma;
5272 }
5273 else
5274 {
5275 BFD_ASSERT (input_sec->owner == NULL
5276 || (input_sec->owner->flags & DYNAMIC) != 0);
5277 sym.st_shndx = SHN_UNDEF;
5278 input_sec = bfd_und_section_ptr;
5279 }
5280 }
5281 break;
5282
5283 case bfd_link_hash_common:
5284 input_sec = h->root.u.c.p->section;
5285 sym.st_shndx = SHN_COMMON;
5286 sym.st_value = 1 << h->root.u.c.p->alignment_power;
5287 break;
5288
5289 case bfd_link_hash_indirect:
5290 /* These symbols are created by symbol versioning. They point
5291 to the decorated version of the name. For example, if the
5292 symbol foo@@GNU_1.2 is the default, which should be used when
5293 foo is used with no version, then we add an indirect symbol
5294 foo which points to foo@@GNU_1.2. We ignore these symbols,
94b6c40a
L
5295 since the indirected symbol is already in the hash table. */
5296 return true;
252b5132 5297
252b5132
RH
5298 case bfd_link_hash_warning:
5299 /* We can't represent these symbols in ELF, although a warning
5300 symbol may have come from a .gnu.warning.SYMBOL section. We
5301 just put the target symbol in the hash table. If the target
5302 symbol does not really exist, don't do anything. */
5303 if (h->root.u.i.link->type == bfd_link_hash_new)
5304 return true;
5305 return (elf_link_output_extsym
5306 ((struct elf_link_hash_entry *) h->root.u.i.link, data));
5307 }
5308
5309 /* Give the processor backend a chance to tweak the symbol value,
5310 and also to finish up anything that needs to be done for this
5311 symbol. */
5312 if ((h->dynindx != -1
5313 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5314 && elf_hash_table (finfo->info)->dynamic_sections_created)
5315 {
5316 struct elf_backend_data *bed;
5317
5318 bed = get_elf_backend_data (finfo->output_bfd);
5319 if (! ((*bed->elf_backend_finish_dynamic_symbol)
5320 (finfo->output_bfd, finfo->info, h, &sym)))
5321 {
5322 eoinfo->failed = true;
5323 return false;
5324 }
5325 }
5326
5327 /* If we are marking the symbol as undefined, and there are no
5328 non-weak references to this symbol from a regular object, then
91d3970e
ILT
5329 mark the symbol as weak undefined; if there are non-weak
5330 references, mark the symbol as strong. We can't do this earlier,
252b5132
RH
5331 because it might not be marked as undefined until the
5332 finish_dynamic_symbol routine gets through with it. */
5333 if (sym.st_shndx == SHN_UNDEF
252b5132 5334 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
91d3970e
ILT
5335 && (ELF_ST_BIND(sym.st_info) == STB_GLOBAL
5336 || ELF_ST_BIND(sym.st_info) == STB_WEAK))
5337 {
5338 int bindtype;
5339
5340 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0)
5341 bindtype = STB_GLOBAL;
5342 else
5343 bindtype = STB_WEAK;
5344 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
5345 }
252b5132 5346
32c092c3 5347 /* If a symbol is not defined locally, we clear the visibility
3e932841 5348 field. */
32c092c3
L
5349 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5350 sym.st_other ^= ELF_ST_VISIBILITY(sym.st_other);
5351
252b5132
RH
5352 /* If this symbol should be put in the .dynsym section, then put it
5353 there now. We have already know the symbol index. We also fill
5354 in the entry in the .hash section. */
5355 if (h->dynindx != -1
5356 && elf_hash_table (finfo->info)->dynamic_sections_created)
5357 {
5358 size_t bucketcount;
5359 size_t bucket;
c7ac6ff8 5360 size_t hash_entry_size;
252b5132
RH
5361 bfd_byte *bucketpos;
5362 bfd_vma chain;
5363
5364 sym.st_name = h->dynstr_index;
5365
5366 elf_swap_symbol_out (finfo->output_bfd, &sym,
5367 (PTR) (((Elf_External_Sym *)
5368 finfo->dynsym_sec->contents)
5369 + h->dynindx));
5370
5371 bucketcount = elf_hash_table (finfo->info)->bucketcount;
5372 bucket = h->elf_hash_value % bucketcount;
3e932841 5373 hash_entry_size
c7ac6ff8 5374 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
252b5132 5375 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
c7ac6ff8
MM
5376 + (bucket + 2) * hash_entry_size);
5377 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
5378 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
5379 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
5380 ((bfd_byte *) finfo->hash_sec->contents
5381 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
252b5132
RH
5382
5383 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
5384 {
5385 Elf_Internal_Versym iversym;
5386
5387 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5388 {
5389 if (h->verinfo.verdef == NULL)
5390 iversym.vs_vers = 0;
5391 else
5392 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
5393 }
5394 else
5395 {
5396 if (h->verinfo.vertree == NULL)
5397 iversym.vs_vers = 1;
5398 else
5399 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
5400 }
5401
5402 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
5403 iversym.vs_vers |= VERSYM_HIDDEN;
5404
5405 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym,
5406 (((Elf_External_Versym *)
5407 finfo->symver_sec->contents)
5408 + h->dynindx));
5409 }
5410 }
5411
5412 /* If we're stripping it, then it was just a dynamic symbol, and
5413 there's nothing else to do. */
5414 if (strip)
5415 return true;
5416
5417 h->indx = bfd_get_symcount (finfo->output_bfd);
5418
5419 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
5420 {
5421 eoinfo->failed = true;
5422 return false;
5423 }
5424
5425 return true;
5426}
5427
23bc299b
MM
5428/* Copy the relocations indicated by the INTERNAL_RELOCS (which
5429 originated from the section given by INPUT_REL_HDR) to the
5430 OUTPUT_BFD. */
5431
5432static void
3e932841 5433elf_link_output_relocs (output_bfd, input_section, input_rel_hdr,
23bc299b
MM
5434 internal_relocs)
5435 bfd *output_bfd;
5436 asection *input_section;
5437 Elf_Internal_Shdr *input_rel_hdr;
5438 Elf_Internal_Rela *internal_relocs;
5439{
5440 Elf_Internal_Rela *irela;
5441 Elf_Internal_Rela *irelaend;
5442 Elf_Internal_Shdr *output_rel_hdr;
5443 asection *output_section;
7442e600 5444 unsigned int *rel_countp = NULL;
32f0787a 5445 struct elf_backend_data *bed;
23bc299b
MM
5446
5447 output_section = input_section->output_section;
5448 output_rel_hdr = NULL;
5449
3e932841 5450 if (elf_section_data (output_section)->rel_hdr.sh_entsize
23bc299b
MM
5451 == input_rel_hdr->sh_entsize)
5452 {
5453 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
5454 rel_countp = &elf_section_data (output_section)->rel_count;
5455 }
5456 else if (elf_section_data (output_section)->rel_hdr2
5457 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
5458 == input_rel_hdr->sh_entsize))
5459 {
5460 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
5461 rel_countp = &elf_section_data (output_section)->rel_count2;
5462 }
5463
5464 BFD_ASSERT (output_rel_hdr != NULL);
32f0787a
UC
5465
5466 bed = get_elf_backend_data (output_bfd);
23bc299b 5467 irela = internal_relocs;
209f668e
NC
5468 irelaend = irela + NUM_SHDR_ENTRIES (input_rel_hdr)
5469 * bed->s->int_rels_per_ext_rel;
5470
23bc299b
MM
5471 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
5472 {
5473 Elf_External_Rel *erel;
209f668e
NC
5474 Elf_Internal_Rel *irel;
5475
5476 irel = (Elf_Internal_Rel *) bfd_zmalloc (bed->s->int_rels_per_ext_rel
5477 * sizeof (Elf_Internal_Rel));
5478 if (irel == NULL)
5479 {
5480 (*_bfd_error_handler) (_("Error: out of memory"));
5481 abort ();
5482 }
23bc299b
MM
5483
5484 erel = ((Elf_External_Rel *) output_rel_hdr->contents + *rel_countp);
209f668e 5485 for (; irela < irelaend; irela += bed->s->int_rels_per_ext_rel, erel++)
23bc299b 5486 {
209f668e
NC
5487 unsigned char i;
5488
5489 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
5490 {
5491 irel[i].r_offset = irela[i].r_offset;
5492 irel[i].r_info = irela[i].r_info;
5493 BFD_ASSERT (irela[i].r_addend == 0);
5494 }
23bc299b 5495
32f0787a 5496 if (bed->s->swap_reloc_out)
209f668e 5497 (*bed->s->swap_reloc_out) (output_bfd, irel, (PTR) erel);
32f0787a 5498 else
209f668e 5499 elf_swap_reloc_out (output_bfd, irel, erel);
23bc299b 5500 }
209f668e
NC
5501
5502 free (irel);
23bc299b
MM
5503 }
5504 else
5505 {
5506 Elf_External_Rela *erela;
5507
209f668e
NC
5508 BFD_ASSERT (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rela));
5509
23bc299b 5510 erela = ((Elf_External_Rela *) output_rel_hdr->contents + *rel_countp);
209f668e 5511 for (; irela < irelaend; irela += bed->s->int_rels_per_ext_rel, erela++)
32f0787a
UC
5512 if (bed->s->swap_reloca_out)
5513 (*bed->s->swap_reloca_out) (output_bfd, irela, (PTR) erela);
5514 else
5515 elf_swap_reloca_out (output_bfd, irela, erela);
23bc299b
MM
5516 }
5517
5518 /* Bump the counter, so that we know where to add the next set of
5519 relocations. */
d9bc7a44 5520 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
23bc299b
MM
5521}
5522
252b5132
RH
5523/* Link an input file into the linker output file. This function
5524 handles all the sections and relocations of the input file at once.
5525 This is so that we only have to read the local symbols once, and
5526 don't have to keep them in memory. */
5527
5528static boolean
5529elf_link_input_bfd (finfo, input_bfd)
5530 struct elf_final_link_info *finfo;
5531 bfd *input_bfd;
5532{
5533 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
5534 bfd *, asection *, bfd_byte *,
5535 Elf_Internal_Rela *,
5536 Elf_Internal_Sym *, asection **));
5537 bfd *output_bfd;
5538 Elf_Internal_Shdr *symtab_hdr;
5539 size_t locsymcount;
5540 size_t extsymoff;
5541 Elf_External_Sym *external_syms;
5542 Elf_External_Sym *esym;
5543 Elf_External_Sym *esymend;
5544 Elf_Internal_Sym *isym;
5545 long *pindex;
5546 asection **ppsection;
5547 asection *o;
c7ac6ff8 5548 struct elf_backend_data *bed;
252b5132
RH
5549
5550 output_bfd = finfo->output_bfd;
c7ac6ff8
MM
5551 bed = get_elf_backend_data (output_bfd);
5552 relocate_section = bed->elf_backend_relocate_section;
252b5132
RH
5553
5554 /* If this is a dynamic object, we don't want to do anything here:
5555 we don't want the local symbols, and we don't want the section
5556 contents. */
5557 if ((input_bfd->flags & DYNAMIC) != 0)
5558 return true;
5559
5560 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5561 if (elf_bad_symtab (input_bfd))
5562 {
5563 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
5564 extsymoff = 0;
5565 }
5566 else
5567 {
5568 locsymcount = symtab_hdr->sh_info;
5569 extsymoff = symtab_hdr->sh_info;
5570 }
5571
5572 /* Read the local symbols. */
5573 if (symtab_hdr->contents != NULL)
5574 external_syms = (Elf_External_Sym *) symtab_hdr->contents;
5575 else if (locsymcount == 0)
5576 external_syms = NULL;
5577 else
5578 {
5579 external_syms = finfo->external_syms;
5580 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
5581 || (bfd_read (external_syms, sizeof (Elf_External_Sym),
5582 locsymcount, input_bfd)
5583 != locsymcount * sizeof (Elf_External_Sym)))
5584 return false;
5585 }
5586
5587 /* Swap in the local symbols and write out the ones which we know
5588 are going into the output file. */
5589 esym = external_syms;
5590 esymend = esym + locsymcount;
5591 isym = finfo->internal_syms;
5592 pindex = finfo->indices;
5593 ppsection = finfo->sections;
5594 for (; esym < esymend; esym++, isym++, pindex++, ppsection++)
5595 {
5596 asection *isec;
5597 const char *name;
5598 Elf_Internal_Sym osym;
5599
5600 elf_swap_symbol_in (input_bfd, esym, isym);
5601 *pindex = -1;
5602
5603 if (elf_bad_symtab (input_bfd))
5604 {
5605 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
5606 {
5607 *ppsection = NULL;
5608 continue;
5609 }
5610 }
5611
ea412e04 5612 name = NULL;
252b5132 5613 if (isym->st_shndx == SHN_UNDEF)
ea412e04
L
5614 {
5615 isec = bfd_und_section_ptr;
5616 name = isec->name;
5617 }
252b5132 5618 else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE)
f5fa8ca2
JJ
5619 {
5620 isec = section_from_elf_index (input_bfd, isym->st_shndx);
5621 if (isec && elf_section_data (isec)->merge_info
5622 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
5623 isym->st_value =
5624 _bfd_merged_section_offset (output_bfd, &isec,
5625 elf_section_data (isec)->merge_info,
5626 isym->st_value, (bfd_vma) 0);
5627 }
252b5132 5628 else if (isym->st_shndx == SHN_ABS)
ea412e04
L
5629 {
5630 isec = bfd_abs_section_ptr;
5631 name = isec->name;
5632 }
252b5132 5633 else if (isym->st_shndx == SHN_COMMON)
ea412e04
L
5634 {
5635 isec = bfd_com_section_ptr;
5636 name = isec->name;
5637 }
252b5132
RH
5638 else
5639 {
5640 /* Who knows? */
5641 isec = NULL;
5642 }
5643
5644 *ppsection = isec;
5645
5646 /* Don't output the first, undefined, symbol. */
5647 if (esym == external_syms)
5648 continue;
5649
24376d1b
AM
5650 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5651 {
5652 asection *ksec;
5653
5654 /* Save away all section symbol values. */
5655 if (isec != NULL)
ea412e04
L
5656 {
5657 if (name)
5658 {
5659 if (isec->symbol->value != isym->st_value)
5660 (*_bfd_error_handler)
5661 (_("%s: invalid section symbol index 0x%x (%s) ingored"),
5662 bfd_get_filename (input_bfd), isym->st_shndx,
5663 name);
5664 continue;
5665 }
5666 isec->symbol->value = isym->st_value;
5667 }
24376d1b
AM
5668
5669 /* If this is a discarded link-once section symbol, update
5670 it's value to that of the kept section symbol. The
5671 linker will keep the first of any matching link-once
5672 sections, so we should have already seen it's section
5673 symbol. I trust no-one will have the bright idea of
5674 re-ordering the bfd list... */
5675 if (isec != NULL
5676 && (bfd_get_section_flags (input_bfd, isec) & SEC_LINK_ONCE) != 0
5677 && (ksec = isec->kept_section) != NULL)
5678 {
5679 isym->st_value = ksec->symbol->value;
5680
5681 /* That put the value right, but the section info is all
5682 wrong. I hope this works. */
5683 isec->output_offset = ksec->output_offset;
5684 isec->output_section = ksec->output_section;
5685 }
5686
5687 /* We never output section symbols. Instead, we use the
5688 section symbol of the corresponding section in the output
5689 file. */
5690 continue;
5691 }
5692
252b5132
RH
5693 /* If we are stripping all symbols, we don't want to output this
5694 one. */
5695 if (finfo->info->strip == strip_all)
5696 continue;
5697
252b5132
RH
5698 /* If we are discarding all local symbols, we don't want to
5699 output this one. If we are generating a relocateable output
5700 file, then some of the local symbols may be required by
5701 relocs; we output them below as we discover that they are
5702 needed. */
5703 if (finfo->info->discard == discard_all)
5704 continue;
5705
5706 /* If this symbol is defined in a section which we are
5707 discarding, we don't need to keep it, but note that
5708 linker_mark is only reliable for sections that have contents.
5709 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
5710 as well as linker_mark. */
5711 if (isym->st_shndx > 0
5712 && isym->st_shndx < SHN_LORESERVE
5713 && isec != NULL
5714 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
5715 || (! finfo->info->relocateable
5716 && (isec->flags & SEC_EXCLUDE) != 0)))
5717 continue;
5718
5719 /* Get the name of the symbol. */
5720 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
5721 isym->st_name);
5722 if (name == NULL)
5723 return false;
5724
5725 /* See if we are discarding symbols with this name. */
5726 if ((finfo->info->strip == strip_some
5727 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
5728 == NULL))
f5fa8ca2
JJ
5729 || (((finfo->info->discard == discard_sec_merge
5730 && (isec->flags & SEC_MERGE) && ! finfo->info->relocateable)
5731 || finfo->info->discard == discard_l)
252b5132
RH
5732 && bfd_is_local_label_name (input_bfd, name)))
5733 continue;
5734
5735 /* If we get here, we are going to output this symbol. */
5736
5737 osym = *isym;
5738
5739 /* Adjust the section index for the output file. */
5740 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
5741 isec->output_section);
5742 if (osym.st_shndx == (unsigned short) -1)
5743 return false;
5744
5745 *pindex = bfd_get_symcount (output_bfd);
5746
5747 /* ELF symbols in relocateable files are section relative, but
5748 in executable files they are virtual addresses. Note that
5749 this code assumes that all ELF sections have an associated
5750 BFD section with a reasonable value for output_offset; below
5751 we assume that they also have a reasonable value for
5752 output_section. Any special sections must be set up to meet
5753 these requirements. */
5754 osym.st_value += isec->output_offset;
5755 if (! finfo->info->relocateable)
5756 osym.st_value += isec->output_section->vma;
5757
5758 if (! elf_link_output_sym (finfo, name, &osym, isec))
5759 return false;
5760 }
5761
5762 /* Relocate the contents of each section. */
5763 for (o = input_bfd->sections; o != NULL; o = o->next)
5764 {
5765 bfd_byte *contents;
5766
5767 if (! o->linker_mark)
5768 {
5769 /* This section was omitted from the link. */
5770 continue;
5771 }
5772
5773 if ((o->flags & SEC_HAS_CONTENTS) == 0
5774 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
5775 continue;
5776
5777 if ((o->flags & SEC_LINKER_CREATED) != 0)
5778 {
5779 /* Section was created by elf_link_create_dynamic_sections
5780 or somesuch. */
5781 continue;
5782 }
5783
5784 /* Get the contents of the section. They have been cached by a
5785 relaxation routine. Note that o is a section in an input
5786 file, so the contents field will not have been set by any of
5787 the routines which work on output files. */
5788 if (elf_section_data (o)->this_hdr.contents != NULL)
5789 contents = elf_section_data (o)->this_hdr.contents;
5790 else
5791 {
5792 contents = finfo->contents;
5793 if (! bfd_get_section_contents (input_bfd, o, contents,
5794 (file_ptr) 0, o->_raw_size))
5795 return false;
5796 }
5797
5798 if ((o->flags & SEC_RELOC) != 0)
5799 {
5800 Elf_Internal_Rela *internal_relocs;
5801
5802 /* Get the swapped relocs. */
5803 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
5804 (input_bfd, o, finfo->external_relocs,
5805 finfo->internal_relocs, false));
5806 if (internal_relocs == NULL
5807 && o->reloc_count > 0)
5808 return false;
5809
5810 /* Relocate the section by invoking a back end routine.
5811
5812 The back end routine is responsible for adjusting the
5813 section contents as necessary, and (if using Rela relocs
5814 and generating a relocateable output file) adjusting the
5815 reloc addend as necessary.
5816
5817 The back end routine does not have to worry about setting
5818 the reloc address or the reloc symbol index.
5819
5820 The back end routine is given a pointer to the swapped in
5821 internal symbols, and can access the hash table entries
5822 for the external symbols via elf_sym_hashes (input_bfd).
5823
5824 When generating relocateable output, the back end routine
5825 must handle STB_LOCAL/STT_SECTION symbols specially. The
5826 output symbol is going to be a section symbol
5827 corresponding to the output section, which will require
5828 the addend to be adjusted. */
5829
5830 if (! (*relocate_section) (output_bfd, finfo->info,
5831 input_bfd, o, contents,
5832 internal_relocs,
5833 finfo->internal_syms,
5834 finfo->sections))
5835 return false;
5836
a712da20 5837 if (finfo->info->relocateable || finfo->info->emitrelocations)
252b5132
RH
5838 {
5839 Elf_Internal_Rela *irela;
5840 Elf_Internal_Rela *irelaend;
5841 struct elf_link_hash_entry **rel_hash;
5842 Elf_Internal_Shdr *input_rel_hdr;
209f668e 5843 unsigned char next_erel;
252b5132
RH
5844
5845 /* Adjust the reloc addresses and symbol indices. */
5846
5847 irela = internal_relocs;
209f668e
NC
5848 irelaend = irela
5849 + o->reloc_count * bed->s->int_rels_per_ext_rel;
252b5132 5850 rel_hash = (elf_section_data (o->output_section)->rel_hashes
31367b81
MM
5851 + elf_section_data (o->output_section)->rel_count
5852 + elf_section_data (o->output_section)->rel_count2);
209f668e 5853 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
252b5132
RH
5854 {
5855 unsigned long r_symndx;
5856 Elf_Internal_Sym *isym;
5857 asection *sec;
5858
209f668e
NC
5859 if (next_erel == bed->s->int_rels_per_ext_rel)
5860 {
5861 rel_hash++;
5862 next_erel = 0;
5863 }
5864
252b5132
RH
5865 irela->r_offset += o->output_offset;
5866
7ad34365
NC
5867 /* Relocs in an executable have to be virtual addresses. */
5868 if (finfo->info->emitrelocations)
5869 irela->r_offset += o->output_section->vma;
5870
252b5132
RH
5871 r_symndx = ELF_R_SYM (irela->r_info);
5872
5873 if (r_symndx == 0)
5874 continue;
5875
5876 if (r_symndx >= locsymcount
5877 || (elf_bad_symtab (input_bfd)
5878 && finfo->sections[r_symndx] == NULL))
5879 {
5880 struct elf_link_hash_entry *rh;
209f668e 5881 unsigned long indx;
252b5132
RH
5882
5883 /* This is a reloc against a global symbol. We
5884 have not yet output all the local symbols, so
5885 we do not know the symbol index of any global
5886 symbol. We set the rel_hash entry for this
5887 reloc to point to the global hash table entry
5888 for this symbol. The symbol index is then
5889 set at the end of elf_bfd_final_link. */
5890 indx = r_symndx - extsymoff;
5891 rh = elf_sym_hashes (input_bfd)[indx];
5892 while (rh->root.type == bfd_link_hash_indirect
5893 || rh->root.type == bfd_link_hash_warning)
5894 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
5895
5896 /* Setting the index to -2 tells
5897 elf_link_output_extsym that this symbol is
5898 used by a reloc. */
5899 BFD_ASSERT (rh->indx < 0);
5900 rh->indx = -2;
5901
5902 *rel_hash = rh;
5903
5904 continue;
5905 }
5906
3e932841 5907 /* This is a reloc against a local symbol. */
252b5132
RH
5908
5909 *rel_hash = NULL;
5910 isym = finfo->internal_syms + r_symndx;
5911 sec = finfo->sections[r_symndx];
5912 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5913 {
5914 /* I suppose the backend ought to fill in the
5915 section of any STT_SECTION symbol against a
5916 processor specific section. If we have
5917 discarded a section, the output_section will
5918 be the absolute section. */
5919 if (sec != NULL
5920 && (bfd_is_abs_section (sec)
5921 || (sec->output_section != NULL
5922 && bfd_is_abs_section (sec->output_section))))
5923 r_symndx = 0;
5924 else if (sec == NULL || sec->owner == NULL)
5925 {
5926 bfd_set_error (bfd_error_bad_value);
5927 return false;
5928 }
5929 else
5930 {
5931 r_symndx = sec->output_section->target_index;
5932 BFD_ASSERT (r_symndx != 0);
5933 }
5934 }
5935 else
5936 {
5937 if (finfo->indices[r_symndx] == -1)
5938 {
5939 unsigned long link;
5940 const char *name;
5941 asection *osec;
5942
5943 if (finfo->info->strip == strip_all)
5944 {
5945 /* You can't do ld -r -s. */
5946 bfd_set_error (bfd_error_invalid_operation);
5947 return false;
5948 }
5949
5950 /* This symbol was skipped earlier, but
5951 since it is needed by a reloc, we
5952 must output it now. */
5953 link = symtab_hdr->sh_link;
5954 name = bfd_elf_string_from_elf_section (input_bfd,
5955 link,
5956 isym->st_name);
5957 if (name == NULL)
5958 return false;
5959
5960 osec = sec->output_section;
5961 isym->st_shndx =
5962 _bfd_elf_section_from_bfd_section (output_bfd,
5963 osec);
5964 if (isym->st_shndx == (unsigned short) -1)
5965 return false;
5966
5967 isym->st_value += sec->output_offset;
5968 if (! finfo->info->relocateable)
5969 isym->st_value += osec->vma;
5970
5971 finfo->indices[r_symndx] = bfd_get_symcount (output_bfd);
5972
5973 if (! elf_link_output_sym (finfo, name, isym, sec))
5974 return false;
5975 }
5976
5977 r_symndx = finfo->indices[r_symndx];
5978 }
5979
5980 irela->r_info = ELF_R_INFO (r_symndx,
5981 ELF_R_TYPE (irela->r_info));
5982 }
5983
5984 /* Swap out the relocs. */
5985 input_rel_hdr = &elf_section_data (o)->rel_hdr;
3e932841 5986 elf_link_output_relocs (output_bfd, o,
23bc299b
MM
5987 input_rel_hdr,
5988 internal_relocs);
209f668e
NC
5989 internal_relocs += NUM_SHDR_ENTRIES (input_rel_hdr)
5990 * bed->s->int_rels_per_ext_rel;
23bc299b
MM
5991 input_rel_hdr = elf_section_data (o)->rel_hdr2;
5992 if (input_rel_hdr)
3e932841 5993 elf_link_output_relocs (output_bfd, o,
23bc299b
MM
5994 input_rel_hdr,
5995 internal_relocs);
252b5132
RH
5996 }
5997 }
5998
5999 /* Write out the modified section contents. */
f5fa8ca2
JJ
6000 if (elf_section_data (o)->stab_info)
6001 {
6002 if (! (_bfd_write_section_stabs
6003 (output_bfd, &elf_hash_table (finfo->info)->stab_info,
6004 o, &elf_section_data (o)->stab_info, contents)))
6005 return false;
6006 }
6007 else if (elf_section_data (o)->merge_info)
6008 {
6009 if (! (_bfd_write_merged_section
6010 (output_bfd, o, elf_section_data (o)->merge_info)))
6011 return false;
6012 }
6013 else
252b5132
RH
6014 {
6015 if (! (o->flags & SEC_EXCLUDE) &&
6016 ! bfd_set_section_contents (output_bfd, o->output_section,
6017 contents, o->output_offset,
6018 (o->_cooked_size != 0
6019 ? o->_cooked_size
6020 : o->_raw_size)))
6021 return false;
252b5132
RH
6022 }
6023 }
6024
6025 return true;
6026}
6027
6028/* Generate a reloc when linking an ELF file. This is a reloc
6029 requested by the linker, and does come from any input file. This
6030 is used to build constructor and destructor tables when linking
6031 with -Ur. */
6032
6033static boolean
6034elf_reloc_link_order (output_bfd, info, output_section, link_order)
6035 bfd *output_bfd;
6036 struct bfd_link_info *info;
6037 asection *output_section;
6038 struct bfd_link_order *link_order;
6039{
6040 reloc_howto_type *howto;
6041 long indx;
6042 bfd_vma offset;
6043 bfd_vma addend;
6044 struct elf_link_hash_entry **rel_hash_ptr;
6045 Elf_Internal_Shdr *rel_hdr;
32f0787a 6046 struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
252b5132
RH
6047
6048 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
6049 if (howto == NULL)
6050 {
6051 bfd_set_error (bfd_error_bad_value);
6052 return false;
6053 }
6054
6055 addend = link_order->u.reloc.p->addend;
6056
6057 /* Figure out the symbol index. */
6058 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
31367b81
MM
6059 + elf_section_data (output_section)->rel_count
6060 + elf_section_data (output_section)->rel_count2);
252b5132
RH
6061 if (link_order->type == bfd_section_reloc_link_order)
6062 {
6063 indx = link_order->u.reloc.p->u.section->target_index;
6064 BFD_ASSERT (indx != 0);
6065 *rel_hash_ptr = NULL;
6066 }
6067 else
6068 {
6069 struct elf_link_hash_entry *h;
6070
6071 /* Treat a reloc against a defined symbol as though it were
6072 actually against the section. */
6073 h = ((struct elf_link_hash_entry *)
6074 bfd_wrapped_link_hash_lookup (output_bfd, info,
6075 link_order->u.reloc.p->u.name,
6076 false, false, true));
6077 if (h != NULL
6078 && (h->root.type == bfd_link_hash_defined
6079 || h->root.type == bfd_link_hash_defweak))
6080 {
6081 asection *section;
6082
6083 section = h->root.u.def.section;
6084 indx = section->output_section->target_index;
6085 *rel_hash_ptr = NULL;
6086 /* It seems that we ought to add the symbol value to the
6087 addend here, but in practice it has already been added
6088 because it was passed to constructor_callback. */
6089 addend += section->output_section->vma + section->output_offset;
6090 }
6091 else if (h != NULL)
6092 {
6093 /* Setting the index to -2 tells elf_link_output_extsym that
6094 this symbol is used by a reloc. */
6095 h->indx = -2;
6096 *rel_hash_ptr = h;
6097 indx = 0;
6098 }
6099 else
6100 {
6101 if (! ((*info->callbacks->unattached_reloc)
6102 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
6103 (asection *) NULL, (bfd_vma) 0)))
6104 return false;
6105 indx = 0;
6106 }
6107 }
6108
6109 /* If this is an inplace reloc, we must write the addend into the
6110 object file. */
6111 if (howto->partial_inplace && addend != 0)
6112 {
6113 bfd_size_type size;
6114 bfd_reloc_status_type rstat;
6115 bfd_byte *buf;
6116 boolean ok;
6117
6118 size = bfd_get_reloc_size (howto);
6119 buf = (bfd_byte *) bfd_zmalloc (size);
6120 if (buf == (bfd_byte *) NULL)
6121 return false;
6122 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
6123 switch (rstat)
6124 {
6125 case bfd_reloc_ok:
6126 break;
6127 default:
6128 case bfd_reloc_outofrange:
6129 abort ();
6130 case bfd_reloc_overflow:
6131 if (! ((*info->callbacks->reloc_overflow)
6132 (info,
6133 (link_order->type == bfd_section_reloc_link_order
6134 ? bfd_section_name (output_bfd,
6135 link_order->u.reloc.p->u.section)
6136 : link_order->u.reloc.p->u.name),
6137 howto->name, addend, (bfd *) NULL, (asection *) NULL,
6138 (bfd_vma) 0)))
6139 {
6140 free (buf);
6141 return false;
6142 }
6143 break;
6144 }
6145 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
6146 (file_ptr) link_order->offset, size);
6147 free (buf);
6148 if (! ok)
6149 return false;
6150 }
6151
6152 /* The address of a reloc is relative to the section in a
6153 relocateable file, and is a virtual address in an executable
6154 file. */
6155 offset = link_order->offset;
6156 if (! info->relocateable)
6157 offset += output_section->vma;
6158
6159 rel_hdr = &elf_section_data (output_section)->rel_hdr;
6160
6161 if (rel_hdr->sh_type == SHT_REL)
6162 {
209f668e 6163 Elf_Internal_Rel *irel;
252b5132 6164 Elf_External_Rel *erel;
209f668e
NC
6165 unsigned char i;
6166
6167 irel = (Elf_Internal_Rel *) bfd_zmalloc (bed->s->int_rels_per_ext_rel
6168 * sizeof (Elf_Internal_Rel));
6169 if (irel == NULL)
6170 return false;
6171
6172 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
6173 irel[i].r_offset = offset;
6174 irel[0].r_info = ELF_R_INFO (indx, howto->type);
252b5132 6175
252b5132 6176 erel = ((Elf_External_Rel *) rel_hdr->contents
0525d26e 6177 + elf_section_data (output_section)->rel_count);
209f668e 6178
32f0787a 6179 if (bed->s->swap_reloc_out)
209f668e 6180 (*bed->s->swap_reloc_out) (output_bfd, irel, (bfd_byte *) erel);
32f0787a 6181 else
209f668e
NC
6182 elf_swap_reloc_out (output_bfd, irel, erel);
6183
6184 free (irel);
252b5132
RH
6185 }
6186 else
6187 {
209f668e 6188 Elf_Internal_Rela *irela;
252b5132 6189 Elf_External_Rela *erela;
209f668e
NC
6190 unsigned char i;
6191
6192 irela = (Elf_Internal_Rela *) bfd_zmalloc (bed->s->int_rels_per_ext_rel
6193 * sizeof (Elf_Internal_Rela));
6194 if (irela == NULL)
6195 return false;
6196
6197 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
6198 irela[i].r_offset = offset;
6199 irela[0].r_info = ELF_R_INFO (indx, howto->type);
6200 irela[0].r_addend = addend;
252b5132 6201
252b5132 6202 erela = ((Elf_External_Rela *) rel_hdr->contents
0525d26e 6203 + elf_section_data (output_section)->rel_count);
209f668e 6204
32f0787a 6205 if (bed->s->swap_reloca_out)
209f668e 6206 (*bed->s->swap_reloca_out) (output_bfd, irela, (bfd_byte *) erela);
32f0787a 6207 else
209f668e 6208 elf_swap_reloca_out (output_bfd, irela, erela);
252b5132
RH
6209 }
6210
0525d26e 6211 ++elf_section_data (output_section)->rel_count;
252b5132
RH
6212
6213 return true;
6214}
252b5132
RH
6215\f
6216/* Allocate a pointer to live in a linker created section. */
6217
6218boolean
6219elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
6220 bfd *abfd;
6221 struct bfd_link_info *info;
6222 elf_linker_section_t *lsect;
6223 struct elf_link_hash_entry *h;
6224 const Elf_Internal_Rela *rel;
6225{
6226 elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
6227 elf_linker_section_pointers_t *linker_section_ptr;
6228 unsigned long r_symndx = ELF_R_SYM (rel->r_info);;
6229
6230 BFD_ASSERT (lsect != NULL);
6231
6232 /* Is this a global symbol? */
6233 if (h != NULL)
6234 {
6235 /* Has this symbol already been allocated, if so, our work is done */
6236 if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
6237 rel->r_addend,
6238 lsect->which))
6239 return true;
6240
6241 ptr_linker_section_ptr = &h->linker_section_pointer;
6242 /* Make sure this symbol is output as a dynamic symbol. */
6243 if (h->dynindx == -1)
6244 {
6245 if (! elf_link_record_dynamic_symbol (info, h))
6246 return false;
6247 }
6248
6249 if (lsect->rel_section)
6250 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
6251 }
6252
6253 else /* Allocation of a pointer to a local symbol */
6254 {
6255 elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
6256
6257 /* Allocate a table to hold the local symbols if first time */
6258 if (!ptr)
6259 {
6260 unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
6261 register unsigned int i;
6262
6263 ptr = (elf_linker_section_pointers_t **)
6264 bfd_alloc (abfd, num_symbols * sizeof (elf_linker_section_pointers_t *));
6265
6266 if (!ptr)
6267 return false;
6268
6269 elf_local_ptr_offsets (abfd) = ptr;
6270 for (i = 0; i < num_symbols; i++)
6271 ptr[i] = (elf_linker_section_pointers_t *)0;
6272 }
6273
6274 /* Has this symbol already been allocated, if so, our work is done */
6275 if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
6276 rel->r_addend,
6277 lsect->which))
6278 return true;
6279
6280 ptr_linker_section_ptr = &ptr[r_symndx];
6281
6282 if (info->shared)
6283 {
6284 /* If we are generating a shared object, we need to
6285 output a R_<xxx>_RELATIVE reloc so that the
6286 dynamic linker can adjust this GOT entry. */
6287 BFD_ASSERT (lsect->rel_section != NULL);
6288 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
6289 }
6290 }
6291
6292 /* Allocate space for a pointer in the linker section, and allocate a new pointer record
6293 from internal memory. */
6294 BFD_ASSERT (ptr_linker_section_ptr != NULL);
6295 linker_section_ptr = (elf_linker_section_pointers_t *)
6296 bfd_alloc (abfd, sizeof (elf_linker_section_pointers_t));
6297
6298 if (!linker_section_ptr)
6299 return false;
6300
6301 linker_section_ptr->next = *ptr_linker_section_ptr;
6302 linker_section_ptr->addend = rel->r_addend;
6303 linker_section_ptr->which = lsect->which;
6304 linker_section_ptr->written_address_p = false;
6305 *ptr_linker_section_ptr = linker_section_ptr;
6306
6307#if 0
6308 if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
6309 {
6310 linker_section_ptr->offset = lsect->section->_raw_size - lsect->hole_size + (ARCH_SIZE / 8);
6311 lsect->hole_offset += ARCH_SIZE / 8;
6312 lsect->sym_offset += ARCH_SIZE / 8;
6313 if (lsect->sym_hash) /* Bump up symbol value if needed */
6314 {
6315 lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
6316#ifdef DEBUG
6317 fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
6318 lsect->sym_hash->root.root.string,
6319 (long)ARCH_SIZE / 8,
6320 (long)lsect->sym_hash->root.u.def.value);
6321#endif
6322 }
6323 }
6324 else
6325#endif
6326 linker_section_ptr->offset = lsect->section->_raw_size;
6327
6328 lsect->section->_raw_size += ARCH_SIZE / 8;
6329
6330#ifdef DEBUG
6331 fprintf (stderr, "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
6332 lsect->name, (long)linker_section_ptr->offset, (long)lsect->section->_raw_size);
6333#endif
6334
6335 return true;
6336}
252b5132
RH
6337\f
6338#if ARCH_SIZE==64
6339#define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
6340#endif
6341#if ARCH_SIZE==32
6342#define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
6343#endif
6344
209f668e 6345/* Fill in the address for a pointer generated in a linker section. */
252b5132
RH
6346
6347bfd_vma
6348elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h, relocation, rel, relative_reloc)
6349 bfd *output_bfd;
6350 bfd *input_bfd;
6351 struct bfd_link_info *info;
6352 elf_linker_section_t *lsect;
6353 struct elf_link_hash_entry *h;
6354 bfd_vma relocation;
6355 const Elf_Internal_Rela *rel;
6356 int relative_reloc;
6357{
6358 elf_linker_section_pointers_t *linker_section_ptr;
6359
6360 BFD_ASSERT (lsect != NULL);
6361
6362 if (h != NULL) /* global symbol */
6363 {
6364 linker_section_ptr = _bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
6365 rel->r_addend,
6366 lsect->which);
6367
6368 BFD_ASSERT (linker_section_ptr != NULL);
6369
6370 if (! elf_hash_table (info)->dynamic_sections_created
6371 || (info->shared
6372 && info->symbolic
6373 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
6374 {
6375 /* This is actually a static link, or it is a
6376 -Bsymbolic link and the symbol is defined
6377 locally. We must initialize this entry in the
6378 global section.
6379
6380 When doing a dynamic link, we create a .rela.<xxx>
6381 relocation entry to initialize the value. This
6382 is done in the finish_dynamic_symbol routine. */
6383 if (!linker_section_ptr->written_address_p)
6384 {
6385 linker_section_ptr->written_address_p = true;
6386 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
6387 lsect->section->contents + linker_section_ptr->offset);
6388 }
6389 }
6390 }
6391 else /* local symbol */
6392 {
6393 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
6394 BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
6395 BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
6396 linker_section_ptr = _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd)[r_symndx],
6397 rel->r_addend,
6398 lsect->which);
6399
6400 BFD_ASSERT (linker_section_ptr != NULL);
6401
6402 /* Write out pointer if it hasn't been rewritten out before */
6403 if (!linker_section_ptr->written_address_p)
6404 {
6405 linker_section_ptr->written_address_p = true;
6406 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
6407 lsect->section->contents + linker_section_ptr->offset);
6408
6409 if (info->shared)
6410 {
6411 asection *srel = lsect->rel_section;
209f668e
NC
6412 Elf_Internal_Rela *outrel;
6413 struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
6414 unsigned int i;
6415
6416 outrel = (Elf_Internal_Rela *) bfd_zmalloc (sizeof (Elf_Internal_Rela)
6417 * bed->s->int_rels_per_ext_rel);
6418 if (outrel == NULL)
6419 {
6420 (*_bfd_error_handler) (_("Error: out of memory"));
6421 return 0;
6422 }
252b5132
RH
6423
6424 /* We need to generate a relative reloc for the dynamic linker. */
6425 if (!srel)
6426 lsect->rel_section = srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
6427 lsect->rel_name);
6428
6429 BFD_ASSERT (srel != NULL);
6430
209f668e
NC
6431 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
6432 outrel[i].r_offset = (lsect->section->output_section->vma
6433 + lsect->section->output_offset
6434 + linker_section_ptr->offset);
6435 outrel[0].r_info = ELF_R_INFO (0, relative_reloc);
6436 outrel[0].r_addend = 0;
6437 elf_swap_reloca_out (output_bfd, outrel,
252b5132
RH
6438 (((Elf_External_Rela *)
6439 lsect->section->contents)
0525d26e
ILT
6440 + elf_section_data (lsect->section)->rel_count));
6441 ++elf_section_data (lsect->section)->rel_count;
209f668e
NC
6442
6443 free (outrel);
252b5132
RH
6444 }
6445 }
6446 }
6447
6448 relocation = (lsect->section->output_offset
6449 + linker_section_ptr->offset
6450 - lsect->hole_offset
6451 - lsect->sym_offset);
6452
6453#ifdef DEBUG
6454 fprintf (stderr, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
6455 lsect->name, (long)relocation, (long)relocation);
6456#endif
6457
6458 /* Subtract out the addend, because it will get added back in by the normal
6459 processing. */
6460 return relocation - linker_section_ptr->addend;
6461}
6462\f
6463/* Garbage collect unused sections. */
6464
6465static boolean elf_gc_mark
6466 PARAMS ((struct bfd_link_info *info, asection *sec,
6467 asection * (*gc_mark_hook)
6468 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
6469 struct elf_link_hash_entry *, Elf_Internal_Sym *))));
6470
6471static boolean elf_gc_sweep
6472 PARAMS ((struct bfd_link_info *info,
6473 boolean (*gc_sweep_hook)
6474 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
6475 const Elf_Internal_Rela *relocs))));
6476
6477static boolean elf_gc_sweep_symbol
6478 PARAMS ((struct elf_link_hash_entry *h, PTR idxptr));
6479
6480static boolean elf_gc_allocate_got_offsets
6481 PARAMS ((struct elf_link_hash_entry *h, PTR offarg));
6482
6483static boolean elf_gc_propagate_vtable_entries_used
6484 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
6485
6486static boolean elf_gc_smash_unused_vtentry_relocs
6487 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
6488
6489/* The mark phase of garbage collection. For a given section, mark
6490 it, and all the sections which define symbols to which it refers. */
6491
6492static boolean
6493elf_gc_mark (info, sec, gc_mark_hook)
6494 struct bfd_link_info *info;
6495 asection *sec;
6496 asection * (*gc_mark_hook)
6497 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
6498 struct elf_link_hash_entry *, Elf_Internal_Sym *));
6499{
6500 boolean ret = true;
6501
6502 sec->gc_mark = 1;
6503
6504 /* Look through the section relocs. */
6505
6506 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
6507 {
6508 Elf_Internal_Rela *relstart, *rel, *relend;
6509 Elf_Internal_Shdr *symtab_hdr;
6510 struct elf_link_hash_entry **sym_hashes;
6511 size_t nlocsyms;
6512 size_t extsymoff;
6513 Elf_External_Sym *locsyms, *freesyms = NULL;
6514 bfd *input_bfd = sec->owner;
c7ac6ff8 6515 struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
252b5132
RH
6516
6517 /* GCFIXME: how to arrange so that relocs and symbols are not
6518 reread continually? */
6519
6520 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6521 sym_hashes = elf_sym_hashes (input_bfd);
6522
6523 /* Read the local symbols. */
6524 if (elf_bad_symtab (input_bfd))
6525 {
6526 nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6527 extsymoff = 0;
6528 }
6529 else
6530 extsymoff = nlocsyms = symtab_hdr->sh_info;
6531 if (symtab_hdr->contents)
6532 locsyms = (Elf_External_Sym *) symtab_hdr->contents;
6533 else if (nlocsyms == 0)
6534 locsyms = NULL;
6535 else
6536 {
6537 locsyms = freesyms =
6538 bfd_malloc (nlocsyms * sizeof (Elf_External_Sym));
6539 if (freesyms == NULL
6540 || bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
6541 || (bfd_read (locsyms, sizeof (Elf_External_Sym),
6542 nlocsyms, input_bfd)
6543 != nlocsyms * sizeof (Elf_External_Sym)))
6544 {
6545 ret = false;
6546 goto out1;
6547 }
6548 }
6549
6550 /* Read the relocations. */
6551 relstart = (NAME(_bfd_elf,link_read_relocs)
6552 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL,
6553 info->keep_memory));
6554 if (relstart == NULL)
6555 {
6556 ret = false;
6557 goto out1;
6558 }
c7ac6ff8 6559 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
252b5132
RH
6560
6561 for (rel = relstart; rel < relend; rel++)
6562 {
6563 unsigned long r_symndx;
6564 asection *rsec;
6565 struct elf_link_hash_entry *h;
6566 Elf_Internal_Sym s;
6567
6568 r_symndx = ELF_R_SYM (rel->r_info);
6569 if (r_symndx == 0)
6570 continue;
6571
6572 if (elf_bad_symtab (sec->owner))
6573 {
6574 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
6575 if (ELF_ST_BIND (s.st_info) == STB_LOCAL)
3e932841 6576 rsec = (*gc_mark_hook) (sec->owner, info, rel, NULL, &s);
252b5132
RH
6577 else
6578 {
6579 h = sym_hashes[r_symndx - extsymoff];
3e932841 6580 rsec = (*gc_mark_hook) (sec->owner, info, rel, h, NULL);
252b5132
RH
6581 }
6582 }
6583 else if (r_symndx >= nlocsyms)
6584 {
6585 h = sym_hashes[r_symndx - extsymoff];
3e932841 6586 rsec = (*gc_mark_hook) (sec->owner, info, rel, h, NULL);
252b5132
RH
6587 }
6588 else
6589 {
6590 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
3e932841 6591 rsec = (*gc_mark_hook) (sec->owner, info, rel, NULL, &s);
252b5132
RH
6592 }
6593
6594 if (rsec && !rsec->gc_mark)
6595 if (!elf_gc_mark (info, rsec, gc_mark_hook))
6596 {
6597 ret = false;
6598 goto out2;
6599 }
6600 }
6601
6602 out2:
6603 if (!info->keep_memory)
6604 free (relstart);
6605 out1:
6606 if (freesyms)
6607 free (freesyms);
6608 }
6609
6610 return ret;
6611}
6612
6613/* The sweep phase of garbage collection. Remove all garbage sections. */
6614
6615static boolean
6616elf_gc_sweep (info, gc_sweep_hook)
6617 struct bfd_link_info *info;
6618 boolean (*gc_sweep_hook)
6619 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
6620 const Elf_Internal_Rela *relocs));
6621{
6622 bfd *sub;
6623
6624 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6625 {
6626 asection *o;
6627
f6af82bd
AM
6628 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
6629 continue;
6630
252b5132
RH
6631 for (o = sub->sections; o != NULL; o = o->next)
6632 {
6633 /* Keep special sections. Keep .debug sections. */
6634 if ((o->flags & SEC_LINKER_CREATED)
6635 || (o->flags & SEC_DEBUGGING))
6636 o->gc_mark = 1;
6637
6638 if (o->gc_mark)
6639 continue;
6640
6641 /* Skip sweeping sections already excluded. */
6642 if (o->flags & SEC_EXCLUDE)
6643 continue;
6644
6645 /* Since this is early in the link process, it is simple
6646 to remove a section from the output. */
6647 o->flags |= SEC_EXCLUDE;
6648
6649 /* But we also have to update some of the relocation
6650 info we collected before. */
6651 if (gc_sweep_hook
6652 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
6653 {
6654 Elf_Internal_Rela *internal_relocs;
6655 boolean r;
6656
6657 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
6658 (o->owner, o, NULL, NULL, info->keep_memory));
6659 if (internal_relocs == NULL)
6660 return false;
6661
3e932841 6662 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
252b5132
RH
6663
6664 if (!info->keep_memory)
6665 free (internal_relocs);
6666
6667 if (!r)
6668 return false;
6669 }
6670 }
6671 }
6672
6673 /* Remove the symbols that were in the swept sections from the dynamic
6674 symbol table. GCFIXME: Anyone know how to get them out of the
6675 static symbol table as well? */
6676 {
6677 int i = 0;
6678
6679 elf_link_hash_traverse (elf_hash_table (info),
6680 elf_gc_sweep_symbol,
6681 (PTR) &i);
6682
6683 elf_hash_table (info)->dynsymcount = i;
6684 }
6685
6686 return true;
6687}
6688
6689/* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6690
6691static boolean
6692elf_gc_sweep_symbol (h, idxptr)
6693 struct elf_link_hash_entry *h;
6694 PTR idxptr;
6695{
6696 int *idx = (int *) idxptr;
6697
6698 if (h->dynindx != -1
6699 && ((h->root.type != bfd_link_hash_defined
6700 && h->root.type != bfd_link_hash_defweak)
6701 || h->root.u.def.section->gc_mark))
6702 h->dynindx = (*idx)++;
6703
6704 return true;
6705}
6706
6707/* Propogate collected vtable information. This is called through
6708 elf_link_hash_traverse. */
6709
6710static boolean
6711elf_gc_propagate_vtable_entries_used (h, okp)
6712 struct elf_link_hash_entry *h;
6713 PTR okp;
6714{
3e932841 6715 /* Those that are not vtables. */
252b5132
RH
6716 if (h->vtable_parent == NULL)
6717 return true;
6718
6719 /* Those vtables that do not have parents, we cannot merge. */
6720 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
6721 return true;
6722
6723 /* If we've already been done, exit. */
6724 if (h->vtable_entries_used && h->vtable_entries_used[-1])
6725 return true;
6726
6727 /* Make sure the parent's table is up to date. */
6728 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
6729
6730 if (h->vtable_entries_used == NULL)
6731 {
6732 /* None of this table's entries were referenced. Re-use the
6733 parent's table. */
6734 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
6735 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
6736 }
6737 else
6738 {
6739 size_t n;
6740 boolean *cu, *pu;
6741
6742 /* Or the parent's entries into ours. */
6743 cu = h->vtable_entries_used;
6744 cu[-1] = true;
6745 pu = h->vtable_parent->vtable_entries_used;
6746 if (pu != NULL)
6747 {
6748 n = h->vtable_parent->vtable_entries_size / FILE_ALIGN;
6749 while (--n != 0)
6750 {
6751 if (*pu) *cu = true;
6752 pu++, cu++;
6753 }
6754 }
6755 }
6756
6757 return true;
6758}
6759
6760static boolean
6761elf_gc_smash_unused_vtentry_relocs (h, okp)
6762 struct elf_link_hash_entry *h;
6763 PTR okp;
6764{
6765 asection *sec;
6766 bfd_vma hstart, hend;
6767 Elf_Internal_Rela *relstart, *relend, *rel;
c7ac6ff8 6768 struct elf_backend_data *bed;
252b5132
RH
6769
6770 /* Take care of both those symbols that do not describe vtables as
6771 well as those that are not loaded. */
6772 if (h->vtable_parent == NULL)
6773 return true;
6774
6775 BFD_ASSERT (h->root.type == bfd_link_hash_defined
6776 || h->root.type == bfd_link_hash_defweak);
6777
6778 sec = h->root.u.def.section;
6779 hstart = h->root.u.def.value;
6780 hend = hstart + h->size;
6781
6782 relstart = (NAME(_bfd_elf,link_read_relocs)
6783 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
6784 if (!relstart)
6785 return *(boolean *)okp = false;
c7ac6ff8
MM
6786 bed = get_elf_backend_data (sec->owner);
6787 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
252b5132
RH
6788
6789 for (rel = relstart; rel < relend; ++rel)
6790 if (rel->r_offset >= hstart && rel->r_offset < hend)
6791 {
6792 /* If the entry is in use, do nothing. */
6793 if (h->vtable_entries_used
6794 && (rel->r_offset - hstart) < h->vtable_entries_size)
6795 {
6796 bfd_vma entry = (rel->r_offset - hstart) / FILE_ALIGN;
6797 if (h->vtable_entries_used[entry])
6798 continue;
6799 }
6800 /* Otherwise, kill it. */
6801 rel->r_offset = rel->r_info = rel->r_addend = 0;
6802 }
6803
6804 return true;
6805}
6806
6807/* Do mark and sweep of unused sections. */
6808
6809boolean
6810elf_gc_sections (abfd, info)
6811 bfd *abfd;
6812 struct bfd_link_info *info;
6813{
6814 boolean ok = true;
6815 bfd *sub;
6816 asection * (*gc_mark_hook)
6817 PARAMS ((bfd *abfd, struct bfd_link_info *, Elf_Internal_Rela *,
6818 struct elf_link_hash_entry *h, Elf_Internal_Sym *));
6819
6820 if (!get_elf_backend_data (abfd)->can_gc_sections
6d3e950b 6821 || info->relocateable || info->emitrelocations
252b5132
RH
6822 || elf_hash_table (info)->dynamic_sections_created)
6823 return true;
6824
6825 /* Apply transitive closure to the vtable entry usage info. */
6826 elf_link_hash_traverse (elf_hash_table (info),
6827 elf_gc_propagate_vtable_entries_used,
6828 (PTR) &ok);
6829 if (!ok)
6830 return false;
6831
6832 /* Kill the vtable relocations that were not used. */
6833 elf_link_hash_traverse (elf_hash_table (info),
6834 elf_gc_smash_unused_vtentry_relocs,
6835 (PTR) &ok);
6836 if (!ok)
6837 return false;
6838
6839 /* Grovel through relocs to find out who stays ... */
6840
6841 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
6842 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6843 {
6844 asection *o;
f6af82bd
AM
6845
6846 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
6847 continue;
6848
252b5132
RH
6849 for (o = sub->sections; o != NULL; o = o->next)
6850 {
6851 if (o->flags & SEC_KEEP)
6852 if (!elf_gc_mark (info, o, gc_mark_hook))
6853 return false;
6854 }
6855 }
6856
6857 /* ... and mark SEC_EXCLUDE for those that go. */
6858 if (!elf_gc_sweep(info, get_elf_backend_data (abfd)->gc_sweep_hook))
6859 return false;
6860
6861 return true;
6862}
6863\f
6864/* Called from check_relocs to record the existance of a VTINHERIT reloc. */
6865
6866boolean
6867elf_gc_record_vtinherit (abfd, sec, h, offset)
6868 bfd *abfd;
6869 asection *sec;
6870 struct elf_link_hash_entry *h;
6871 bfd_vma offset;
6872{
6873 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
6874 struct elf_link_hash_entry **search, *child;
6875 bfd_size_type extsymcount;
6876
6877 /* The sh_info field of the symtab header tells us where the
6878 external symbols start. We don't care about the local symbols at
6879 this point. */
6880 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
6881 if (!elf_bad_symtab (abfd))
6882 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
6883
6884 sym_hashes = elf_sym_hashes (abfd);
6885 sym_hashes_end = sym_hashes + extsymcount;
6886
6887 /* Hunt down the child symbol, which is in this section at the same
6888 offset as the relocation. */
6889 for (search = sym_hashes; search != sym_hashes_end; ++search)
6890 {
6891 if ((child = *search) != NULL
6892 && (child->root.type == bfd_link_hash_defined
6893 || child->root.type == bfd_link_hash_defweak)
6894 && child->root.u.def.section == sec
6895 && child->root.u.def.value == offset)
6896 goto win;
6897 }
6898
6899 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
6900 bfd_get_filename (abfd), sec->name,
6901 (unsigned long)offset);
6902 bfd_set_error (bfd_error_invalid_operation);
6903 return false;
6904
6905win:
6906 if (!h)
6907 {
6908 /* This *should* only be the absolute section. It could potentially
6909 be that someone has defined a non-global vtable though, which
6910 would be bad. It isn't worth paging in the local symbols to be
6911 sure though; that case should simply be handled by the assembler. */
6912
6913 child->vtable_parent = (struct elf_link_hash_entry *) -1;
6914 }
6915 else
6916 child->vtable_parent = h;
6917
6918 return true;
6919}
6920
6921/* Called from check_relocs to record the existance of a VTENTRY reloc. */
6922
6923boolean
6924elf_gc_record_vtentry (abfd, sec, h, addend)
7442e600
ILT
6925 bfd *abfd ATTRIBUTE_UNUSED;
6926 asection *sec ATTRIBUTE_UNUSED;
252b5132
RH
6927 struct elf_link_hash_entry *h;
6928 bfd_vma addend;
6929{
6930 if (addend >= h->vtable_entries_size)
6931 {
6932 size_t size, bytes;
6933 boolean *ptr = h->vtable_entries_used;
6934
6935 /* While the symbol is undefined, we have to be prepared to handle
6936 a zero size. */
6937 if (h->root.type == bfd_link_hash_undefined)
6938 size = addend;
6939 else
6940 {
6941 size = h->size;
6942 if (size < addend)
6943 {
6944 /* Oops! We've got a reference past the defined end of
6945 the table. This is probably a bug -- shall we warn? */
6946 size = addend;
6947 }
6948 }
6949
6950 /* Allocate one extra entry for use as a "done" flag for the
6951 consolidation pass. */
fed79cc6 6952 bytes = (size / FILE_ALIGN + 1) * sizeof (boolean);
252b5132
RH
6953
6954 if (ptr)
6955 {
fed79cc6 6956 ptr = bfd_realloc (ptr - 1, bytes);
3e932841 6957
fed79cc6
NC
6958 if (ptr != NULL)
6959 {
6960 size_t oldbytes;
252b5132 6961
fed79cc6
NC
6962 oldbytes = (h->vtable_entries_size/FILE_ALIGN + 1) * sizeof (boolean);
6963 memset (((char *)ptr) + oldbytes, 0, bytes - oldbytes);
6964 }
252b5132
RH
6965 }
6966 else
fed79cc6 6967 ptr = bfd_zmalloc (bytes);
252b5132 6968
fed79cc6
NC
6969 if (ptr == NULL)
6970 return false;
3e932841 6971
252b5132 6972 /* And arrange for that done flag to be at index -1. */
fed79cc6 6973 h->vtable_entries_used = ptr + 1;
252b5132
RH
6974 h->vtable_entries_size = size;
6975 }
3e932841 6976
252b5132
RH
6977 h->vtable_entries_used[addend / FILE_ALIGN] = true;
6978
6979 return true;
6980}
6981
6982/* And an accompanying bit to work out final got entry offsets once
6983 we're done. Should be called from final_link. */
6984
6985boolean
6986elf_gc_common_finalize_got_offsets (abfd, info)
6987 bfd *abfd;
6988 struct bfd_link_info *info;
6989{
6990 bfd *i;
6991 struct elf_backend_data *bed = get_elf_backend_data (abfd);
6992 bfd_vma gotoff;
6993
6994 /* The GOT offset is relative to the .got section, but the GOT header is
6995 put into the .got.plt section, if the backend uses it. */
6996 if (bed->want_got_plt)
6997 gotoff = 0;
6998 else
6999 gotoff = bed->got_header_size;
7000
7001 /* Do the local .got entries first. */
7002 for (i = info->input_bfds; i; i = i->link_next)
7003 {
f6af82bd 7004 bfd_signed_vma *local_got;
252b5132
RH
7005 bfd_size_type j, locsymcount;
7006 Elf_Internal_Shdr *symtab_hdr;
7007
f6af82bd
AM
7008 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
7009 continue;
7010
7011 local_got = elf_local_got_refcounts (i);
252b5132
RH
7012 if (!local_got)
7013 continue;
7014
7015 symtab_hdr = &elf_tdata (i)->symtab_hdr;
7016 if (elf_bad_symtab (i))
7017 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
7018 else
7019 locsymcount = symtab_hdr->sh_info;
7020
7021 for (j = 0; j < locsymcount; ++j)
7022 {
7023 if (local_got[j] > 0)
7024 {
7025 local_got[j] = gotoff;
7026 gotoff += ARCH_SIZE / 8;
7027 }
7028 else
7029 local_got[j] = (bfd_vma) -1;
7030 }
7031 }
7032
dd5724d5
AM
7033 /* Then the global .got entries. .plt refcounts are handled by
7034 adjust_dynamic_symbol */
252b5132
RH
7035 elf_link_hash_traverse (elf_hash_table (info),
7036 elf_gc_allocate_got_offsets,
7037 (PTR) &gotoff);
7038 return true;
7039}
7040
7041/* We need a special top-level link routine to convert got reference counts
7042 to real got offsets. */
7043
7044static boolean
7045elf_gc_allocate_got_offsets (h, offarg)
7046 struct elf_link_hash_entry *h;
7047 PTR offarg;
7048{
7049 bfd_vma *off = (bfd_vma *) offarg;
7050
7051 if (h->got.refcount > 0)
7052 {
7053 h->got.offset = off[0];
7054 off[0] += ARCH_SIZE / 8;
7055 }
7056 else
7057 h->got.offset = (bfd_vma) -1;
7058
7059 return true;
7060}
7061
7062/* Many folk need no more in the way of final link than this, once
7063 got entry reference counting is enabled. */
7064
7065boolean
7066elf_gc_common_final_link (abfd, info)
7067 bfd *abfd;
7068 struct bfd_link_info *info;
7069{
7070 if (!elf_gc_common_finalize_got_offsets (abfd, info))
7071 return false;
7072
7073 /* Invoke the regular ELF backend linker to do all the work. */
7074 return elf_bfd_final_link (abfd, info);
7075}
7076
7077/* This function will be called though elf_link_hash_traverse to store
7078 all hash value of the exported symbols in an array. */
7079
7080static boolean
7081elf_collect_hash_codes (h, data)
7082 struct elf_link_hash_entry *h;
7083 PTR data;
7084{
7085 unsigned long **valuep = (unsigned long **) data;
7086 const char *name;
7087 char *p;
7088 unsigned long ha;
7089 char *alc = NULL;
7090
7091 /* Ignore indirect symbols. These are added by the versioning code. */
7092 if (h->dynindx == -1)
7093 return true;
7094
7095 name = h->root.root.string;
7096 p = strchr (name, ELF_VER_CHR);
7097 if (p != NULL)
7098 {
7099 alc = bfd_malloc (p - name + 1);
7100 memcpy (alc, name, p - name);
7101 alc[p - name] = '\0';
7102 name = alc;
7103 }
7104
7105 /* Compute the hash value. */
7106 ha = bfd_elf_hash (name);
7107
7108 /* Store the found hash value in the array given as the argument. */
7109 *(*valuep)++ = ha;
7110
7111 /* And store it in the struct so that we can put it in the hash table
7112 later. */
7113 h->elf_hash_value = ha;
7114
7115 if (alc != NULL)
7116 free (alc);
7117
7118 return true;
7119}
This page took 0.430267 seconds and 4 git commands to generate.