* bfdlink.h (struct bfd_link_hash_entry): Add init_function and
[deliverable/binutils-gdb.git] / bfd / elflink.h
CommitLineData
252b5132
RH
1/* ELF linker support.
2 Copyright 1995, 1996, 1997, 1998, 1999 Free Software Foundation, Inc.
3
4This file is part of BFD, the Binary File Descriptor library.
5
6This program is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2 of the License, or
9(at your option) any later version.
10
11This program is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with this program; if not, write to the Free Software
18Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20/* ELF linker code. */
21
22/* This struct is used to pass information to routines called via
23 elf_link_hash_traverse which must return failure. */
24
25struct elf_info_failed
26{
27 boolean failed;
28 struct bfd_link_info *info;
29};
30
31static boolean elf_link_add_object_symbols
32 PARAMS ((bfd *, struct bfd_link_info *));
33static boolean elf_link_add_archive_symbols
34 PARAMS ((bfd *, struct bfd_link_info *));
35static boolean elf_merge_symbol
36 PARAMS ((bfd *, struct bfd_link_info *, const char *, Elf_Internal_Sym *,
37 asection **, bfd_vma *, struct elf_link_hash_entry **,
38 boolean *, boolean *, boolean *));
39static boolean elf_export_symbol
40 PARAMS ((struct elf_link_hash_entry *, PTR));
41static boolean elf_fix_symbol_flags
42 PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
43static boolean elf_adjust_dynamic_symbol
44 PARAMS ((struct elf_link_hash_entry *, PTR));
45static boolean elf_link_find_version_dependencies
46 PARAMS ((struct elf_link_hash_entry *, PTR));
47static boolean elf_link_find_version_dependencies
48 PARAMS ((struct elf_link_hash_entry *, PTR));
49static boolean elf_link_assign_sym_version
50 PARAMS ((struct elf_link_hash_entry *, PTR));
51static boolean elf_link_renumber_dynsyms
52 PARAMS ((struct elf_link_hash_entry *, PTR));
53static boolean elf_collect_hash_codes
54 PARAMS ((struct elf_link_hash_entry *, PTR));
6b5bd373
MM
55static boolean elf_link_read_relocs_from_section
56 PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *));
42751cf3 57static void elf_link_remove_section_and_adjust_dynindices
78de0b43 58 PARAMS ((struct bfd_link_info *, asection *));
252b5132
RH
59
60/* Given an ELF BFD, add symbols to the global hash table as
61 appropriate. */
62
63boolean
64elf_bfd_link_add_symbols (abfd, info)
65 bfd *abfd;
66 struct bfd_link_info *info;
67{
68 switch (bfd_get_format (abfd))
69 {
70 case bfd_object:
71 return elf_link_add_object_symbols (abfd, info);
72 case bfd_archive:
73 return elf_link_add_archive_symbols (abfd, info);
74 default:
75 bfd_set_error (bfd_error_wrong_format);
76 return false;
77 }
78}
79\f
80
81/* Add symbols from an ELF archive file to the linker hash table. We
82 don't use _bfd_generic_link_add_archive_symbols because of a
83 problem which arises on UnixWare. The UnixWare libc.so is an
84 archive which includes an entry libc.so.1 which defines a bunch of
85 symbols. The libc.so archive also includes a number of other
86 object files, which also define symbols, some of which are the same
87 as those defined in libc.so.1. Correct linking requires that we
88 consider each object file in turn, and include it if it defines any
89 symbols we need. _bfd_generic_link_add_archive_symbols does not do
90 this; it looks through the list of undefined symbols, and includes
91 any object file which defines them. When this algorithm is used on
92 UnixWare, it winds up pulling in libc.so.1 early and defining a
93 bunch of symbols. This means that some of the other objects in the
94 archive are not included in the link, which is incorrect since they
95 precede libc.so.1 in the archive.
96
97 Fortunately, ELF archive handling is simpler than that done by
98 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
99 oddities. In ELF, if we find a symbol in the archive map, and the
100 symbol is currently undefined, we know that we must pull in that
101 object file.
102
103 Unfortunately, we do have to make multiple passes over the symbol
104 table until nothing further is resolved. */
105
106static boolean
107elf_link_add_archive_symbols (abfd, info)
108 bfd *abfd;
109 struct bfd_link_info *info;
110{
111 symindex c;
112 boolean *defined = NULL;
113 boolean *included = NULL;
114 carsym *symdefs;
115 boolean loop;
116
117 if (! bfd_has_map (abfd))
118 {
119 /* An empty archive is a special case. */
120 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
121 return true;
122 bfd_set_error (bfd_error_no_armap);
123 return false;
124 }
125
126 /* Keep track of all symbols we know to be already defined, and all
127 files we know to be already included. This is to speed up the
128 second and subsequent passes. */
129 c = bfd_ardata (abfd)->symdef_count;
130 if (c == 0)
131 return true;
132 defined = (boolean *) bfd_malloc (c * sizeof (boolean));
133 included = (boolean *) bfd_malloc (c * sizeof (boolean));
134 if (defined == (boolean *) NULL || included == (boolean *) NULL)
135 goto error_return;
136 memset (defined, 0, c * sizeof (boolean));
137 memset (included, 0, c * sizeof (boolean));
138
139 symdefs = bfd_ardata (abfd)->symdefs;
140
141 do
142 {
143 file_ptr last;
144 symindex i;
145 carsym *symdef;
146 carsym *symdefend;
147
148 loop = false;
149 last = -1;
150
151 symdef = symdefs;
152 symdefend = symdef + c;
153 for (i = 0; symdef < symdefend; symdef++, i++)
154 {
155 struct elf_link_hash_entry *h;
156 bfd *element;
157 struct bfd_link_hash_entry *undefs_tail;
158 symindex mark;
159
160 if (defined[i] || included[i])
161 continue;
162 if (symdef->file_offset == last)
163 {
164 included[i] = true;
165 continue;
166 }
167
168 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
169 false, false, false);
170
171 if (h == NULL)
172 {
173 char *p, *copy;
174
175 /* If this is a default version (the name contains @@),
176 look up the symbol again without the version. The
177 effect is that references to the symbol without the
178 version will be matched by the default symbol in the
179 archive. */
180
181 p = strchr (symdef->name, ELF_VER_CHR);
182 if (p == NULL || p[1] != ELF_VER_CHR)
183 continue;
184
185 copy = bfd_alloc (abfd, p - symdef->name + 1);
186 if (copy == NULL)
187 goto error_return;
188 memcpy (copy, symdef->name, p - symdef->name);
189 copy[p - symdef->name] = '\0';
190
191 h = elf_link_hash_lookup (elf_hash_table (info), copy,
192 false, false, false);
193
194 bfd_release (abfd, copy);
195 }
196
197 if (h == NULL)
198 continue;
199
200 if (h->root.type != bfd_link_hash_undefined)
201 {
202 if (h->root.type != bfd_link_hash_undefweak)
203 defined[i] = true;
204 continue;
205 }
206
207 /* We need to include this archive member. */
208
209 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
210 if (element == (bfd *) NULL)
211 goto error_return;
212
213 if (! bfd_check_format (element, bfd_object))
214 goto error_return;
215
216 /* Doublecheck that we have not included this object
217 already--it should be impossible, but there may be
218 something wrong with the archive. */
219 if (element->archive_pass != 0)
220 {
221 bfd_set_error (bfd_error_bad_value);
222 goto error_return;
223 }
224 element->archive_pass = 1;
225
226 undefs_tail = info->hash->undefs_tail;
227
228 if (! (*info->callbacks->add_archive_element) (info, element,
229 symdef->name))
230 goto error_return;
231 if (! elf_link_add_object_symbols (element, info))
232 goto error_return;
233
234 /* If there are any new undefined symbols, we need to make
235 another pass through the archive in order to see whether
236 they can be defined. FIXME: This isn't perfect, because
237 common symbols wind up on undefs_tail and because an
238 undefined symbol which is defined later on in this pass
239 does not require another pass. This isn't a bug, but it
240 does make the code less efficient than it could be. */
241 if (undefs_tail != info->hash->undefs_tail)
242 loop = true;
243
244 /* Look backward to mark all symbols from this object file
245 which we have already seen in this pass. */
246 mark = i;
247 do
248 {
249 included[mark] = true;
250 if (mark == 0)
251 break;
252 --mark;
253 }
254 while (symdefs[mark].file_offset == symdef->file_offset);
255
256 /* We mark subsequent symbols from this object file as we go
257 on through the loop. */
258 last = symdef->file_offset;
259 }
260 }
261 while (loop);
262
263 free (defined);
264 free (included);
265
266 return true;
267
268 error_return:
269 if (defined != (boolean *) NULL)
270 free (defined);
271 if (included != (boolean *) NULL)
272 free (included);
273 return false;
274}
275
276/* This function is called when we want to define a new symbol. It
277 handles the various cases which arise when we find a definition in
278 a dynamic object, or when there is already a definition in a
279 dynamic object. The new symbol is described by NAME, SYM, PSEC,
280 and PVALUE. We set SYM_HASH to the hash table entry. We set
281 OVERRIDE if the old symbol is overriding a new definition. We set
282 TYPE_CHANGE_OK if it is OK for the type to change. We set
283 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
284 change, we mean that we shouldn't warn if the type or size does
285 change. */
286
287static boolean
288elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
289 override, type_change_ok, size_change_ok)
290 bfd *abfd;
291 struct bfd_link_info *info;
292 const char *name;
293 Elf_Internal_Sym *sym;
294 asection **psec;
295 bfd_vma *pvalue;
296 struct elf_link_hash_entry **sym_hash;
297 boolean *override;
298 boolean *type_change_ok;
299 boolean *size_change_ok;
300{
301 asection *sec;
302 struct elf_link_hash_entry *h;
303 int bind;
304 bfd *oldbfd;
305 boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
306
307 *override = false;
308
309 sec = *psec;
310 bind = ELF_ST_BIND (sym->st_info);
311
312 if (! bfd_is_und_section (sec))
313 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
314 else
315 h = ((struct elf_link_hash_entry *)
316 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
317 if (h == NULL)
318 return false;
319 *sym_hash = h;
320
321 /* This code is for coping with dynamic objects, and is only useful
322 if we are doing an ELF link. */
323 if (info->hash->creator != abfd->xvec)
324 return true;
325
326 /* For merging, we only care about real symbols. */
327
328 while (h->root.type == bfd_link_hash_indirect
329 || h->root.type == bfd_link_hash_warning)
330 h = (struct elf_link_hash_entry *) h->root.u.i.link;
331
332 /* If we just created the symbol, mark it as being an ELF symbol.
333 Other than that, there is nothing to do--there is no merge issue
334 with a newly defined symbol--so we just return. */
335
336 if (h->root.type == bfd_link_hash_new)
337 {
338 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
339 return true;
340 }
341
342 /* OLDBFD is a BFD associated with the existing symbol. */
343
344 switch (h->root.type)
345 {
346 default:
347 oldbfd = NULL;
348 break;
349
350 case bfd_link_hash_undefined:
351 case bfd_link_hash_undefweak:
352 oldbfd = h->root.u.undef.abfd;
353 break;
354
355 case bfd_link_hash_defined:
356 case bfd_link_hash_defweak:
357 oldbfd = h->root.u.def.section->owner;
358 break;
359
360 case bfd_link_hash_common:
361 oldbfd = h->root.u.c.p->section->owner;
362 break;
363 }
364
365 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
366 respectively, is from a dynamic object. */
367
368 if ((abfd->flags & DYNAMIC) != 0)
369 newdyn = true;
370 else
371 newdyn = false;
372
373 if (oldbfd == NULL || (oldbfd->flags & DYNAMIC) == 0)
374 olddyn = false;
375 else
376 olddyn = true;
377
378 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
379 respectively, appear to be a definition rather than reference. */
380
381 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
382 newdef = false;
383 else
384 newdef = true;
385
386 if (h->root.type == bfd_link_hash_undefined
387 || h->root.type == bfd_link_hash_undefweak
388 || h->root.type == bfd_link_hash_common)
389 olddef = false;
390 else
391 olddef = true;
392
393 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
394 symbol, respectively, appears to be a common symbol in a dynamic
395 object. If a symbol appears in an uninitialized section, and is
396 not weak, and is not a function, then it may be a common symbol
397 which was resolved when the dynamic object was created. We want
398 to treat such symbols specially, because they raise special
399 considerations when setting the symbol size: if the symbol
400 appears as a common symbol in a regular object, and the size in
401 the regular object is larger, we must make sure that we use the
402 larger size. This problematic case can always be avoided in C,
403 but it must be handled correctly when using Fortran shared
404 libraries.
405
406 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
407 likewise for OLDDYNCOMMON and OLDDEF.
408
409 Note that this test is just a heuristic, and that it is quite
410 possible to have an uninitialized symbol in a shared object which
411 is really a definition, rather than a common symbol. This could
412 lead to some minor confusion when the symbol really is a common
413 symbol in some regular object. However, I think it will be
414 harmless. */
415
416 if (newdyn
417 && newdef
418 && (sec->flags & SEC_ALLOC) != 0
419 && (sec->flags & SEC_LOAD) == 0
420 && sym->st_size > 0
421 && bind != STB_WEAK
422 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
423 newdyncommon = true;
424 else
425 newdyncommon = false;
426
427 if (olddyn
428 && olddef
429 && h->root.type == bfd_link_hash_defined
430 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
431 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
432 && (h->root.u.def.section->flags & SEC_LOAD) == 0
433 && h->size > 0
434 && h->type != STT_FUNC)
435 olddyncommon = true;
436 else
437 olddyncommon = false;
438
439 /* It's OK to change the type if either the existing symbol or the
440 new symbol is weak. */
441
442 if (h->root.type == bfd_link_hash_defweak
443 || h->root.type == bfd_link_hash_undefweak
444 || bind == STB_WEAK)
445 *type_change_ok = true;
446
447 /* It's OK to change the size if either the existing symbol or the
448 new symbol is weak, or if the old symbol is undefined. */
449
450 if (*type_change_ok
451 || h->root.type == bfd_link_hash_undefined)
452 *size_change_ok = true;
453
454 /* If both the old and the new symbols look like common symbols in a
455 dynamic object, set the size of the symbol to the larger of the
456 two. */
457
458 if (olddyncommon
459 && newdyncommon
460 && sym->st_size != h->size)
461 {
462 /* Since we think we have two common symbols, issue a multiple
463 common warning if desired. Note that we only warn if the
464 size is different. If the size is the same, we simply let
465 the old symbol override the new one as normally happens with
466 symbols defined in dynamic objects. */
467
468 if (! ((*info->callbacks->multiple_common)
469 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
470 h->size, abfd, bfd_link_hash_common, sym->st_size)))
471 return false;
472
473 if (sym->st_size > h->size)
474 h->size = sym->st_size;
475
476 *size_change_ok = true;
477 }
478
479 /* If we are looking at a dynamic object, and we have found a
480 definition, we need to see if the symbol was already defined by
481 some other object. If so, we want to use the existing
482 definition, and we do not want to report a multiple symbol
483 definition error; we do this by clobbering *PSEC to be
484 bfd_und_section_ptr.
485
486 We treat a common symbol as a definition if the symbol in the
487 shared library is a function, since common symbols always
488 represent variables; this can cause confusion in principle, but
489 any such confusion would seem to indicate an erroneous program or
490 shared library. We also permit a common symbol in a regular
491 object to override a weak symbol in a shared object. */
492
493 if (newdyn
494 && newdef
495 && (olddef
496 || (h->root.type == bfd_link_hash_common
497 && (bind == STB_WEAK
498 || ELF_ST_TYPE (sym->st_info) == STT_FUNC))))
499 {
500 *override = true;
501 newdef = false;
502 newdyncommon = false;
503
504 *psec = sec = bfd_und_section_ptr;
505 *size_change_ok = true;
506
507 /* If we get here when the old symbol is a common symbol, then
508 we are explicitly letting it override a weak symbol or
509 function in a dynamic object, and we don't want to warn about
510 a type change. If the old symbol is a defined symbol, a type
511 change warning may still be appropriate. */
512
513 if (h->root.type == bfd_link_hash_common)
514 *type_change_ok = true;
515 }
516
517 /* Handle the special case of an old common symbol merging with a
518 new symbol which looks like a common symbol in a shared object.
519 We change *PSEC and *PVALUE to make the new symbol look like a
520 common symbol, and let _bfd_generic_link_add_one_symbol will do
521 the right thing. */
522
523 if (newdyncommon
524 && h->root.type == bfd_link_hash_common)
525 {
526 *override = true;
527 newdef = false;
528 newdyncommon = false;
529 *pvalue = sym->st_size;
530 *psec = sec = bfd_com_section_ptr;
531 *size_change_ok = true;
532 }
533
534 /* If the old symbol is from a dynamic object, and the new symbol is
535 a definition which is not from a dynamic object, then the new
536 symbol overrides the old symbol. Symbols from regular files
537 always take precedence over symbols from dynamic objects, even if
538 they are defined after the dynamic object in the link.
539
540 As above, we again permit a common symbol in a regular object to
541 override a definition in a shared object if the shared object
542 symbol is a function or is weak. */
543
544 if (! newdyn
545 && (newdef
546 || (bfd_is_com_section (sec)
547 && (h->root.type == bfd_link_hash_defweak
548 || h->type == STT_FUNC)))
549 && olddyn
550 && olddef
551 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
552 {
553 /* Change the hash table entry to undefined, and let
554 _bfd_generic_link_add_one_symbol do the right thing with the
555 new definition. */
556
557 h->root.type = bfd_link_hash_undefined;
558 h->root.u.undef.abfd = h->root.u.def.section->owner;
559 *size_change_ok = true;
560
561 olddef = false;
562 olddyncommon = false;
563
564 /* We again permit a type change when a common symbol may be
565 overriding a function. */
566
567 if (bfd_is_com_section (sec))
568 *type_change_ok = true;
569
570 /* This union may have been set to be non-NULL when this symbol
571 was seen in a dynamic object. We must force the union to be
572 NULL, so that it is correct for a regular symbol. */
573
574 h->verinfo.vertree = NULL;
575
576 /* In this special case, if H is the target of an indirection,
577 we want the caller to frob with H rather than with the
578 indirect symbol. That will permit the caller to redefine the
579 target of the indirection, rather than the indirect symbol
580 itself. FIXME: This will break the -y option if we store a
581 symbol with a different name. */
582 *sym_hash = h;
583 }
584
585 /* Handle the special case of a new common symbol merging with an
586 old symbol that looks like it might be a common symbol defined in
587 a shared object. Note that we have already handled the case in
588 which a new common symbol should simply override the definition
589 in the shared library. */
590
591 if (! newdyn
592 && bfd_is_com_section (sec)
593 && olddyncommon)
594 {
595 /* It would be best if we could set the hash table entry to a
596 common symbol, but we don't know what to use for the section
597 or the alignment. */
598 if (! ((*info->callbacks->multiple_common)
599 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
600 h->size, abfd, bfd_link_hash_common, sym->st_size)))
601 return false;
602
603 /* If the predumed common symbol in the dynamic object is
604 larger, pretend that the new symbol has its size. */
605
606 if (h->size > *pvalue)
607 *pvalue = h->size;
608
609 /* FIXME: We no longer know the alignment required by the symbol
610 in the dynamic object, so we just wind up using the one from
611 the regular object. */
612
613 olddef = false;
614 olddyncommon = false;
615
616 h->root.type = bfd_link_hash_undefined;
617 h->root.u.undef.abfd = h->root.u.def.section->owner;
618
619 *size_change_ok = true;
620 *type_change_ok = true;
621
622 h->verinfo.vertree = NULL;
623 }
624
625 return true;
626}
627
628/* Add symbols from an ELF object file to the linker hash table. */
629
630static boolean
631elf_link_add_object_symbols (abfd, info)
632 bfd *abfd;
633 struct bfd_link_info *info;
634{
635 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
636 const Elf_Internal_Sym *,
637 const char **, flagword *,
638 asection **, bfd_vma *));
639 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
640 asection *, const Elf_Internal_Rela *));
641 boolean collect;
642 Elf_Internal_Shdr *hdr;
643 size_t symcount;
644 size_t extsymcount;
645 size_t extsymoff;
646 Elf_External_Sym *buf = NULL;
647 struct elf_link_hash_entry **sym_hash;
648 boolean dynamic;
649 bfd_byte *dynver = NULL;
650 Elf_External_Versym *extversym = NULL;
651 Elf_External_Versym *ever;
652 Elf_External_Dyn *dynbuf = NULL;
653 struct elf_link_hash_entry *weaks;
654 Elf_External_Sym *esym;
655 Elf_External_Sym *esymend;
656
657 add_symbol_hook = get_elf_backend_data (abfd)->elf_add_symbol_hook;
658 collect = get_elf_backend_data (abfd)->collect;
659
660 if ((abfd->flags & DYNAMIC) == 0)
661 dynamic = false;
662 else
663 {
664 dynamic = true;
665
666 /* You can't use -r against a dynamic object. Also, there's no
667 hope of using a dynamic object which does not exactly match
668 the format of the output file. */
669 if (info->relocateable || info->hash->creator != abfd->xvec)
670 {
671 bfd_set_error (bfd_error_invalid_operation);
672 goto error_return;
673 }
674 }
675
676 /* As a GNU extension, any input sections which are named
677 .gnu.warning.SYMBOL are treated as warning symbols for the given
678 symbol. This differs from .gnu.warning sections, which generate
679 warnings when they are included in an output file. */
680 if (! info->shared)
681 {
682 asection *s;
683
684 for (s = abfd->sections; s != NULL; s = s->next)
685 {
686 const char *name;
687
688 name = bfd_get_section_name (abfd, s);
689 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
690 {
691 char *msg;
692 bfd_size_type sz;
693
694 name += sizeof ".gnu.warning." - 1;
695
696 /* If this is a shared object, then look up the symbol
697 in the hash table. If it is there, and it is already
698 been defined, then we will not be using the entry
699 from this shared object, so we don't need to warn.
700 FIXME: If we see the definition in a regular object
701 later on, we will warn, but we shouldn't. The only
702 fix is to keep track of what warnings we are supposed
703 to emit, and then handle them all at the end of the
704 link. */
705 if (dynamic && abfd->xvec == info->hash->creator)
706 {
707 struct elf_link_hash_entry *h;
708
709 h = elf_link_hash_lookup (elf_hash_table (info), name,
710 false, false, true);
711
712 /* FIXME: What about bfd_link_hash_common? */
713 if (h != NULL
714 && (h->root.type == bfd_link_hash_defined
715 || h->root.type == bfd_link_hash_defweak))
716 {
717 /* We don't want to issue this warning. Clobber
718 the section size so that the warning does not
719 get copied into the output file. */
720 s->_raw_size = 0;
721 continue;
722 }
723 }
724
725 sz = bfd_section_size (abfd, s);
726 msg = (char *) bfd_alloc (abfd, sz + 1);
727 if (msg == NULL)
728 goto error_return;
729
730 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
731 goto error_return;
732
733 msg[sz] = '\0';
734
735 if (! (_bfd_generic_link_add_one_symbol
736 (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
737 false, collect, (struct bfd_link_hash_entry **) NULL)))
738 goto error_return;
739
740 if (! info->relocateable)
741 {
742 /* Clobber the section size so that the warning does
743 not get copied into the output file. */
744 s->_raw_size = 0;
745 }
746 }
747 }
748 }
749
750 /* If this is a dynamic object, we always link against the .dynsym
751 symbol table, not the .symtab symbol table. The dynamic linker
752 will only see the .dynsym symbol table, so there is no reason to
753 look at .symtab for a dynamic object. */
754
755 if (! dynamic || elf_dynsymtab (abfd) == 0)
756 hdr = &elf_tdata (abfd)->symtab_hdr;
757 else
758 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
759
760 if (dynamic)
761 {
762 /* Read in any version definitions. */
763
764 if (! _bfd_elf_slurp_version_tables (abfd))
765 goto error_return;
766
767 /* Read in the symbol versions, but don't bother to convert them
768 to internal format. */
769 if (elf_dynversym (abfd) != 0)
770 {
771 Elf_Internal_Shdr *versymhdr;
772
773 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
774 extversym = (Elf_External_Versym *) bfd_malloc (hdr->sh_size);
775 if (extversym == NULL)
776 goto error_return;
777 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
778 || (bfd_read ((PTR) extversym, 1, versymhdr->sh_size, abfd)
779 != versymhdr->sh_size))
780 goto error_return;
781 }
782 }
783
784 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
785
786 /* The sh_info field of the symtab header tells us where the
787 external symbols start. We don't care about the local symbols at
788 this point. */
789 if (elf_bad_symtab (abfd))
790 {
791 extsymcount = symcount;
792 extsymoff = 0;
793 }
794 else
795 {
796 extsymcount = symcount - hdr->sh_info;
797 extsymoff = hdr->sh_info;
798 }
799
800 buf = ((Elf_External_Sym *)
801 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
802 if (buf == NULL && extsymcount != 0)
803 goto error_return;
804
805 /* We store a pointer to the hash table entry for each external
806 symbol. */
807 sym_hash = ((struct elf_link_hash_entry **)
808 bfd_alloc (abfd,
809 extsymcount * sizeof (struct elf_link_hash_entry *)));
810 if (sym_hash == NULL)
811 goto error_return;
812 elf_sym_hashes (abfd) = sym_hash;
813
814 if (! dynamic)
815 {
816 /* If we are creating a shared library, create all the dynamic
817 sections immediately. We need to attach them to something,
818 so we attach them to this BFD, provided it is the right
819 format. FIXME: If there are no input BFD's of the same
820 format as the output, we can't make a shared library. */
821 if (info->shared
822 && ! elf_hash_table (info)->dynamic_sections_created
823 && abfd->xvec == info->hash->creator)
824 {
825 if (! elf_link_create_dynamic_sections (abfd, info))
826 goto error_return;
827 }
828 }
829 else
830 {
831 asection *s;
832 boolean add_needed;
833 const char *name;
834 bfd_size_type oldsize;
835 bfd_size_type strindex;
836
837 /* Find the name to use in a DT_NEEDED entry that refers to this
838 object. If the object has a DT_SONAME entry, we use it.
839 Otherwise, if the generic linker stuck something in
840 elf_dt_name, we use that. Otherwise, we just use the file
841 name. If the generic linker put a null string into
842 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
843 there is a DT_SONAME entry. */
844 add_needed = true;
845 name = bfd_get_filename (abfd);
846 if (elf_dt_name (abfd) != NULL)
847 {
848 name = elf_dt_name (abfd);
849 if (*name == '\0')
850 add_needed = false;
851 }
852 s = bfd_get_section_by_name (abfd, ".dynamic");
853 if (s != NULL)
854 {
855 Elf_External_Dyn *extdyn;
856 Elf_External_Dyn *extdynend;
857 int elfsec;
858 unsigned long link;
859
860 dynbuf = (Elf_External_Dyn *) bfd_malloc ((size_t) s->_raw_size);
861 if (dynbuf == NULL)
862 goto error_return;
863
864 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
865 (file_ptr) 0, s->_raw_size))
866 goto error_return;
867
868 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
869 if (elfsec == -1)
870 goto error_return;
871 link = elf_elfsections (abfd)[elfsec]->sh_link;
872
873 extdyn = dynbuf;
874 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
875 for (; extdyn < extdynend; extdyn++)
876 {
877 Elf_Internal_Dyn dyn;
878
879 elf_swap_dyn_in (abfd, extdyn, &dyn);
880 if (dyn.d_tag == DT_SONAME)
881 {
882 name = bfd_elf_string_from_elf_section (abfd, link,
883 dyn.d_un.d_val);
884 if (name == NULL)
885 goto error_return;
886 }
887 if (dyn.d_tag == DT_NEEDED)
888 {
889 struct bfd_link_needed_list *n, **pn;
890 char *fnm, *anm;
891
892 n = ((struct bfd_link_needed_list *)
893 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
894 fnm = bfd_elf_string_from_elf_section (abfd, link,
895 dyn.d_un.d_val);
896 if (n == NULL || fnm == NULL)
897 goto error_return;
898 anm = bfd_alloc (abfd, strlen (fnm) + 1);
899 if (anm == NULL)
900 goto error_return;
901 strcpy (anm, fnm);
902 n->name = anm;
903 n->by = abfd;
904 n->next = NULL;
905 for (pn = &elf_hash_table (info)->needed;
906 *pn != NULL;
907 pn = &(*pn)->next)
908 ;
909 *pn = n;
910 }
911 }
912
913 free (dynbuf);
914 dynbuf = NULL;
915 }
916
917 /* We do not want to include any of the sections in a dynamic
918 object in the output file. We hack by simply clobbering the
919 list of sections in the BFD. This could be handled more
920 cleanly by, say, a new section flag; the existing
921 SEC_NEVER_LOAD flag is not the one we want, because that one
922 still implies that the section takes up space in the output
923 file. */
924 abfd->sections = NULL;
925 abfd->section_count = 0;
926
927 /* If this is the first dynamic object found in the link, create
928 the special sections required for dynamic linking. */
929 if (! elf_hash_table (info)->dynamic_sections_created)
930 {
931 if (! elf_link_create_dynamic_sections (abfd, info))
932 goto error_return;
933 }
934
935 if (add_needed)
936 {
937 /* Add a DT_NEEDED entry for this dynamic object. */
938 oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
939 strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name,
940 true, false);
941 if (strindex == (bfd_size_type) -1)
942 goto error_return;
943
944 if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
945 {
946 asection *sdyn;
947 Elf_External_Dyn *dyncon, *dynconend;
948
949 /* The hash table size did not change, which means that
950 the dynamic object name was already entered. If we
951 have already included this dynamic object in the
952 link, just ignore it. There is no reason to include
953 a particular dynamic object more than once. */
954 sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
955 ".dynamic");
956 BFD_ASSERT (sdyn != NULL);
957
958 dyncon = (Elf_External_Dyn *) sdyn->contents;
959 dynconend = (Elf_External_Dyn *) (sdyn->contents +
960 sdyn->_raw_size);
961 for (; dyncon < dynconend; dyncon++)
962 {
963 Elf_Internal_Dyn dyn;
964
965 elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon,
966 &dyn);
967 if (dyn.d_tag == DT_NEEDED
968 && dyn.d_un.d_val == strindex)
969 {
970 if (buf != NULL)
971 free (buf);
972 if (extversym != NULL)
973 free (extversym);
974 return true;
975 }
976 }
977 }
978
979 if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
980 goto error_return;
981 }
982
983 /* Save the SONAME, if there is one, because sometimes the
984 linker emulation code will need to know it. */
985 if (*name == '\0')
986 name = bfd_get_filename (abfd);
987 elf_dt_name (abfd) = name;
988 }
989
990 if (bfd_seek (abfd,
991 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
992 SEEK_SET) != 0
993 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
994 != extsymcount * sizeof (Elf_External_Sym)))
995 goto error_return;
996
997 weaks = NULL;
998
999 ever = extversym != NULL ? extversym + extsymoff : NULL;
1000 esymend = buf + extsymcount;
1001 for (esym = buf;
1002 esym < esymend;
1003 esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
1004 {
1005 Elf_Internal_Sym sym;
1006 int bind;
1007 bfd_vma value;
1008 asection *sec;
1009 flagword flags;
1010 const char *name;
1011 struct elf_link_hash_entry *h;
1012 boolean definition;
1013 boolean size_change_ok, type_change_ok;
1014 boolean new_weakdef;
1015 unsigned int old_alignment;
1016
1017 elf_swap_symbol_in (abfd, esym, &sym);
1018
1019 flags = BSF_NO_FLAGS;
1020 sec = NULL;
1021 value = sym.st_value;
1022 *sym_hash = NULL;
1023
1024 bind = ELF_ST_BIND (sym.st_info);
1025 if (bind == STB_LOCAL)
1026 {
1027 /* This should be impossible, since ELF requires that all
1028 global symbols follow all local symbols, and that sh_info
1029 point to the first global symbol. Unfortunatealy, Irix 5
1030 screws this up. */
1031 continue;
1032 }
1033 else if (bind == STB_GLOBAL)
1034 {
1035 if (sym.st_shndx != SHN_UNDEF
1036 && sym.st_shndx != SHN_COMMON)
1037 flags = BSF_GLOBAL;
1038 else
1039 flags = 0;
1040 }
1041 else if (bind == STB_WEAK)
1042 flags = BSF_WEAK;
1043 else
1044 {
1045 /* Leave it up to the processor backend. */
1046 }
1047
1048 if (sym.st_shndx == SHN_UNDEF)
1049 sec = bfd_und_section_ptr;
1050 else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE)
1051 {
1052 sec = section_from_elf_index (abfd, sym.st_shndx);
1053 if (sec == NULL)
1054 sec = bfd_abs_section_ptr;
1055 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
1056 value -= sec->vma;
1057 }
1058 else if (sym.st_shndx == SHN_ABS)
1059 sec = bfd_abs_section_ptr;
1060 else if (sym.st_shndx == SHN_COMMON)
1061 {
1062 sec = bfd_com_section_ptr;
1063 /* What ELF calls the size we call the value. What ELF
1064 calls the value we call the alignment. */
1065 value = sym.st_size;
1066 }
1067 else
1068 {
1069 /* Leave it up to the processor backend. */
1070 }
1071
1072 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
1073 if (name == (const char *) NULL)
1074 goto error_return;
1075
1076 if (add_symbol_hook)
1077 {
1078 if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
1079 &value))
1080 goto error_return;
1081
1082 /* The hook function sets the name to NULL if this symbol
1083 should be skipped for some reason. */
1084 if (name == (const char *) NULL)
1085 continue;
1086 }
1087
1088 /* Sanity check that all possibilities were handled. */
1089 if (sec == (asection *) NULL)
1090 {
1091 bfd_set_error (bfd_error_bad_value);
1092 goto error_return;
1093 }
1094
1095 if (bfd_is_und_section (sec)
1096 || bfd_is_com_section (sec))
1097 definition = false;
1098 else
1099 definition = true;
1100
1101 size_change_ok = false;
1102 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
1103 old_alignment = 0;
1104 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1105 {
1106 Elf_Internal_Versym iver;
1107 unsigned int vernum = 0;
1108 boolean override;
1109
1110 if (ever != NULL)
1111 {
1112 _bfd_elf_swap_versym_in (abfd, ever, &iver);
1113 vernum = iver.vs_vers & VERSYM_VERSION;
1114
1115 /* If this is a hidden symbol, or if it is not version
1116 1, we append the version name to the symbol name.
1117 However, we do not modify a non-hidden absolute
1118 symbol, because it might be the version symbol
1119 itself. FIXME: What if it isn't? */
1120 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
1121 || (vernum > 1 && ! bfd_is_abs_section (sec)))
1122 {
1123 const char *verstr;
1124 int namelen, newlen;
1125 char *newname, *p;
1126
1127 if (sym.st_shndx != SHN_UNDEF)
1128 {
1129 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
1130 {
1131 (*_bfd_error_handler)
1132 (_("%s: %s: invalid version %u (max %d)"),
1133 bfd_get_filename (abfd), name, vernum,
1134 elf_tdata (abfd)->dynverdef_hdr.sh_info);
1135 bfd_set_error (bfd_error_bad_value);
1136 goto error_return;
1137 }
1138 else if (vernum > 1)
1139 verstr =
1140 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1141 else
1142 verstr = "";
1143 }
1144 else
1145 {
1146 /* We cannot simply test for the number of
1147 entries in the VERNEED section since the
1148 numbers for the needed versions do not start
1149 at 0. */
1150 Elf_Internal_Verneed *t;
1151
1152 verstr = NULL;
1153 for (t = elf_tdata (abfd)->verref;
1154 t != NULL;
1155 t = t->vn_nextref)
1156 {
1157 Elf_Internal_Vernaux *a;
1158
1159 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1160 {
1161 if (a->vna_other == vernum)
1162 {
1163 verstr = a->vna_nodename;
1164 break;
1165 }
1166 }
1167 if (a != NULL)
1168 break;
1169 }
1170 if (verstr == NULL)
1171 {
1172 (*_bfd_error_handler)
1173 (_("%s: %s: invalid needed version %d"),
1174 bfd_get_filename (abfd), name, vernum);
1175 bfd_set_error (bfd_error_bad_value);
1176 goto error_return;
1177 }
1178 }
1179
1180 namelen = strlen (name);
1181 newlen = namelen + strlen (verstr) + 2;
1182 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1183 ++newlen;
1184
1185 newname = (char *) bfd_alloc (abfd, newlen);
1186 if (newname == NULL)
1187 goto error_return;
1188 strcpy (newname, name);
1189 p = newname + namelen;
1190 *p++ = ELF_VER_CHR;
1191 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1192 *p++ = ELF_VER_CHR;
1193 strcpy (p, verstr);
1194
1195 name = newname;
1196 }
1197 }
1198
1199 if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value,
1200 sym_hash, &override, &type_change_ok,
1201 &size_change_ok))
1202 goto error_return;
1203
1204 if (override)
1205 definition = false;
1206
1207 h = *sym_hash;
1208 while (h->root.type == bfd_link_hash_indirect
1209 || h->root.type == bfd_link_hash_warning)
1210 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1211
1212 /* Remember the old alignment if this is a common symbol, so
1213 that we don't reduce the alignment later on. We can't
1214 check later, because _bfd_generic_link_add_one_symbol
1215 will set a default for the alignment which we want to
1216 override. */
1217 if (h->root.type == bfd_link_hash_common)
1218 old_alignment = h->root.u.c.p->alignment_power;
1219
1220 if (elf_tdata (abfd)->verdef != NULL
1221 && ! override
1222 && vernum > 1
1223 && definition)
1224 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
1225 }
1226
1227 if (! (_bfd_generic_link_add_one_symbol
1228 (info, abfd, name, flags, sec, value, (const char *) NULL,
1229 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
1230 goto error_return;
1231
1232 h = *sym_hash;
1233 while (h->root.type == bfd_link_hash_indirect
1234 || h->root.type == bfd_link_hash_warning)
1235 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1236 *sym_hash = h;
1237
1238 new_weakdef = false;
1239 if (dynamic
1240 && definition
1241 && (flags & BSF_WEAK) != 0
1242 && ELF_ST_TYPE (sym.st_info) != STT_FUNC
1243 && info->hash->creator->flavour == bfd_target_elf_flavour
1244 && h->weakdef == NULL)
1245 {
1246 /* Keep a list of all weak defined non function symbols from
1247 a dynamic object, using the weakdef field. Later in this
1248 function we will set the weakdef field to the correct
1249 value. We only put non-function symbols from dynamic
1250 objects on this list, because that happens to be the only
1251 time we need to know the normal symbol corresponding to a
1252 weak symbol, and the information is time consuming to
1253 figure out. If the weakdef field is not already NULL,
1254 then this symbol was already defined by some previous
1255 dynamic object, and we will be using that previous
1256 definition anyhow. */
1257
1258 h->weakdef = weaks;
1259 weaks = h;
1260 new_weakdef = true;
1261 }
1262
1263 /* Set the alignment of a common symbol. */
1264 if (sym.st_shndx == SHN_COMMON
1265 && h->root.type == bfd_link_hash_common)
1266 {
1267 unsigned int align;
1268
1269 align = bfd_log2 (sym.st_value);
1270 if (align > old_alignment)
1271 h->root.u.c.p->alignment_power = align;
1272 }
1273
1274 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1275 {
1276 int old_flags;
1277 boolean dynsym;
1278 int new_flag;
1279
1280 /* Remember the symbol size and type. */
1281 if (sym.st_size != 0
1282 && (definition || h->size == 0))
1283 {
1284 if (h->size != 0 && h->size != sym.st_size && ! size_change_ok)
1285 (*_bfd_error_handler)
1286 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1287 name, (unsigned long) h->size, (unsigned long) sym.st_size,
1288 bfd_get_filename (abfd));
1289
1290 h->size = sym.st_size;
1291 }
1292
1293 /* If this is a common symbol, then we always want H->SIZE
1294 to be the size of the common symbol. The code just above
1295 won't fix the size if a common symbol becomes larger. We
1296 don't warn about a size change here, because that is
1297 covered by --warn-common. */
1298 if (h->root.type == bfd_link_hash_common)
1299 h->size = h->root.u.c.size;
1300
1301 if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE
1302 && (definition || h->type == STT_NOTYPE))
1303 {
1304 if (h->type != STT_NOTYPE
1305 && h->type != ELF_ST_TYPE (sym.st_info)
1306 && ! type_change_ok)
1307 (*_bfd_error_handler)
1308 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1309 name, h->type, ELF_ST_TYPE (sym.st_info),
1310 bfd_get_filename (abfd));
1311
1312 h->type = ELF_ST_TYPE (sym.st_info);
1313 }
1314
1315 if (sym.st_other != 0
1316 && (definition || h->other == 0))
1317 h->other = sym.st_other;
1318
1319 /* Set a flag in the hash table entry indicating the type of
1320 reference or definition we just found. Keep a count of
1321 the number of dynamic symbols we find. A dynamic symbol
1322 is one which is referenced or defined by both a regular
1323 object and a shared object. */
1324 old_flags = h->elf_link_hash_flags;
1325 dynsym = false;
1326 if (! dynamic)
1327 {
1328 if (! definition)
1329 {
1330 new_flag = ELF_LINK_HASH_REF_REGULAR;
1331 if (bind != STB_WEAK)
1332 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
1333 }
1334 else
1335 new_flag = ELF_LINK_HASH_DEF_REGULAR;
1336 if (info->shared
1337 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
1338 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
1339 dynsym = true;
1340 }
1341 else
1342 {
1343 if (! definition)
1344 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
1345 else
1346 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
1347 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
1348 | ELF_LINK_HASH_REF_REGULAR)) != 0
1349 || (h->weakdef != NULL
1350 && ! new_weakdef
1351 && h->weakdef->dynindx != -1))
1352 dynsym = true;
1353 }
1354
1355 h->elf_link_hash_flags |= new_flag;
1356
1357 /* If this symbol has a version, and it is the default
1358 version, we create an indirect symbol from the default
1359 name to the fully decorated name. This will cause
1360 external references which do not specify a version to be
1361 bound to this version of the symbol. */
1362 if (definition)
1363 {
1364 char *p;
1365
1366 p = strchr (name, ELF_VER_CHR);
1367 if (p != NULL && p[1] == ELF_VER_CHR)
1368 {
1369 char *shortname;
1370 struct elf_link_hash_entry *hi;
1371 boolean override;
1372
1373 shortname = bfd_hash_allocate (&info->hash->table,
1374 p - name + 1);
1375 if (shortname == NULL)
1376 goto error_return;
1377 strncpy (shortname, name, p - name);
1378 shortname[p - name] = '\0';
1379
1380 /* We are going to create a new symbol. Merge it
1381 with any existing symbol with this name. For the
1382 purposes of the merge, act as though we were
1383 defining the symbol we just defined, although we
1384 actually going to define an indirect symbol. */
1385 type_change_ok = false;
1386 size_change_ok = false;
1387 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1388 &value, &hi, &override,
1389 &type_change_ok, &size_change_ok))
1390 goto error_return;
1391
1392 if (! override)
1393 {
1394 if (! (_bfd_generic_link_add_one_symbol
1395 (info, abfd, shortname, BSF_INDIRECT,
1396 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1397 collect, (struct bfd_link_hash_entry **) &hi)))
1398 goto error_return;
1399 }
1400 else
1401 {
1402 /* In this case the symbol named SHORTNAME is
1403 overriding the indirect symbol we want to
1404 add. We were planning on making SHORTNAME an
1405 indirect symbol referring to NAME. SHORTNAME
1406 is the name without a version. NAME is the
1407 fully versioned name, and it is the default
1408 version.
1409
1410 Overriding means that we already saw a
1411 definition for the symbol SHORTNAME in a
1412 regular object, and it is overriding the
1413 symbol defined in the dynamic object.
1414
1415 When this happens, we actually want to change
1416 NAME, the symbol we just added, to refer to
1417 SHORTNAME. This will cause references to
1418 NAME in the shared object to become
1419 references to SHORTNAME in the regular
1420 object. This is what we expect when we
1421 override a function in a shared object: that
1422 the references in the shared object will be
1423 mapped to the definition in the regular
1424 object. */
1425
1426 while (hi->root.type == bfd_link_hash_indirect
1427 || hi->root.type == bfd_link_hash_warning)
1428 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1429
1430 h->root.type = bfd_link_hash_indirect;
1431 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1432 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1433 {
1434 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1435 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1436 if (hi->elf_link_hash_flags
1437 & (ELF_LINK_HASH_REF_REGULAR
1438 | ELF_LINK_HASH_DEF_REGULAR))
1439 {
1440 if (! _bfd_elf_link_record_dynamic_symbol (info,
1441 hi))
1442 goto error_return;
1443 }
1444 }
1445
1446 /* Now set HI to H, so that the following code
1447 will set the other fields correctly. */
1448 hi = h;
1449 }
1450
1451 /* If there is a duplicate definition somewhere,
1452 then HI may not point to an indirect symbol. We
1453 will have reported an error to the user in that
1454 case. */
1455
1456 if (hi->root.type == bfd_link_hash_indirect)
1457 {
1458 struct elf_link_hash_entry *ht;
1459
1460 /* If the symbol became indirect, then we assume
1461 that we have not seen a definition before. */
1462 BFD_ASSERT ((hi->elf_link_hash_flags
1463 & (ELF_LINK_HASH_DEF_DYNAMIC
1464 | ELF_LINK_HASH_DEF_REGULAR))
1465 == 0);
1466
1467 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1468
1469 /* Copy down any references that we may have
1470 already seen to the symbol which just became
1471 indirect. */
1472 ht->elf_link_hash_flags |=
1473 (hi->elf_link_hash_flags
1474 & (ELF_LINK_HASH_REF_DYNAMIC
1475 | ELF_LINK_HASH_REF_REGULAR
1476 | ELF_LINK_HASH_REF_REGULAR_NONWEAK));
1477
1478 /* Copy over the global and procedure linkage table
1479 offset entries. These may have been already set
1480 up by a check_relocs routine. */
1481 if (ht->got.offset == (bfd_vma) -1)
1482 {
1483 ht->got.offset = hi->got.offset;
1484 hi->got.offset = (bfd_vma) -1;
1485 }
1486 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1487
1488 if (ht->plt.offset == (bfd_vma) -1)
1489 {
1490 ht->plt.offset = hi->plt.offset;
1491 hi->plt.offset = (bfd_vma) -1;
1492 }
1493 BFD_ASSERT (hi->plt.offset == (bfd_vma) -1);
1494
1495 if (ht->dynindx == -1)
1496 {
1497 ht->dynindx = hi->dynindx;
1498 ht->dynstr_index = hi->dynstr_index;
1499 hi->dynindx = -1;
1500 hi->dynstr_index = 0;
1501 }
1502 BFD_ASSERT (hi->dynindx == -1);
1503
1504 /* FIXME: There may be other information to copy
1505 over for particular targets. */
1506
1507 /* See if the new flags lead us to realize that
1508 the symbol must be dynamic. */
1509 if (! dynsym)
1510 {
1511 if (! dynamic)
1512 {
1513 if (info->shared
1514 || ((hi->elf_link_hash_flags
1515 & ELF_LINK_HASH_REF_DYNAMIC)
1516 != 0))
1517 dynsym = true;
1518 }
1519 else
1520 {
1521 if ((hi->elf_link_hash_flags
1522 & ELF_LINK_HASH_REF_REGULAR) != 0)
1523 dynsym = true;
1524 }
1525 }
1526 }
1527
1528 /* We also need to define an indirection from the
1529 nondefault version of the symbol. */
1530
1531 shortname = bfd_hash_allocate (&info->hash->table,
1532 strlen (name));
1533 if (shortname == NULL)
1534 goto error_return;
1535 strncpy (shortname, name, p - name);
1536 strcpy (shortname + (p - name), p + 1);
1537
1538 /* Once again, merge with any existing symbol. */
1539 type_change_ok = false;
1540 size_change_ok = false;
1541 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1542 &value, &hi, &override,
1543 &type_change_ok, &size_change_ok))
1544 goto error_return;
1545
1546 if (override)
1547 {
1548 /* Here SHORTNAME is a versioned name, so we
1549 don't expect to see the type of override we
1550 do in the case above. */
1551 (*_bfd_error_handler)
1552 (_("%s: warning: unexpected redefinition of `%s'"),
1553 bfd_get_filename (abfd), shortname);
1554 }
1555 else
1556 {
1557 if (! (_bfd_generic_link_add_one_symbol
1558 (info, abfd, shortname, BSF_INDIRECT,
1559 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1560 collect, (struct bfd_link_hash_entry **) &hi)))
1561 goto error_return;
1562
1563 /* If there is a duplicate definition somewhere,
1564 then HI may not point to an indirect symbol.
1565 We will have reported an error to the user in
1566 that case. */
1567
1568 if (hi->root.type == bfd_link_hash_indirect)
1569 {
1570 /* If the symbol became indirect, then we
1571 assume that we have not seen a definition
1572 before. */
1573 BFD_ASSERT ((hi->elf_link_hash_flags
1574 & (ELF_LINK_HASH_DEF_DYNAMIC
1575 | ELF_LINK_HASH_DEF_REGULAR))
1576 == 0);
1577
1578 /* Copy down any references that we may have
1579 already seen to the symbol which just
1580 became indirect. */
1581 h->elf_link_hash_flags |=
1582 (hi->elf_link_hash_flags
1583 & (ELF_LINK_HASH_REF_DYNAMIC
1584 | ELF_LINK_HASH_REF_REGULAR
1585 | ELF_LINK_HASH_REF_REGULAR_NONWEAK));
1586
1587 /* Copy over the global and procedure linkage
1588 table offset entries. These may have been
1589 already set up by a check_relocs routine. */
1590 if (h->got.offset == (bfd_vma) -1)
1591 {
1592 h->got.offset = hi->got.offset;
1593 hi->got.offset = (bfd_vma) -1;
1594 }
1595 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1596
1597 if (h->plt.offset == (bfd_vma) -1)
1598 {
1599 h->plt.offset = hi->plt.offset;
1600 hi->plt.offset = (bfd_vma) -1;
1601 }
1602 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1603
1604 if (h->dynindx == -1)
1605 {
1606 h->dynindx = hi->dynindx;
1607 h->dynstr_index = hi->dynstr_index;
1608 hi->dynindx = -1;
1609 hi->dynstr_index = 0;
1610 }
1611 BFD_ASSERT (hi->dynindx == -1);
1612
1613 /* FIXME: There may be other information to
1614 copy over for particular targets. */
1615
1616 /* See if the new flags lead us to realize
1617 that the symbol must be dynamic. */
1618 if (! dynsym)
1619 {
1620 if (! dynamic)
1621 {
1622 if (info->shared
1623 || ((hi->elf_link_hash_flags
1624 & ELF_LINK_HASH_REF_DYNAMIC)
1625 != 0))
1626 dynsym = true;
1627 }
1628 else
1629 {
1630 if ((hi->elf_link_hash_flags
1631 & ELF_LINK_HASH_REF_REGULAR) != 0)
1632 dynsym = true;
1633 }
1634 }
1635 }
1636 }
1637 }
1638 }
1639
1640 if (dynsym && h->dynindx == -1)
1641 {
1642 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1643 goto error_return;
1644 if (h->weakdef != NULL
1645 && ! new_weakdef
1646 && h->weakdef->dynindx == -1)
1647 {
1648 if (! _bfd_elf_link_record_dynamic_symbol (info,
1649 h->weakdef))
1650 goto error_return;
1651 }
1652 }
1653 }
1654 }
1655
1656 /* Now set the weakdefs field correctly for all the weak defined
1657 symbols we found. The only way to do this is to search all the
1658 symbols. Since we only need the information for non functions in
1659 dynamic objects, that's the only time we actually put anything on
1660 the list WEAKS. We need this information so that if a regular
1661 object refers to a symbol defined weakly in a dynamic object, the
1662 real symbol in the dynamic object is also put in the dynamic
1663 symbols; we also must arrange for both symbols to point to the
1664 same memory location. We could handle the general case of symbol
1665 aliasing, but a general symbol alias can only be generated in
1666 assembler code, handling it correctly would be very time
1667 consuming, and other ELF linkers don't handle general aliasing
1668 either. */
1669 while (weaks != NULL)
1670 {
1671 struct elf_link_hash_entry *hlook;
1672 asection *slook;
1673 bfd_vma vlook;
1674 struct elf_link_hash_entry **hpp;
1675 struct elf_link_hash_entry **hppend;
1676
1677 hlook = weaks;
1678 weaks = hlook->weakdef;
1679 hlook->weakdef = NULL;
1680
1681 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
1682 || hlook->root.type == bfd_link_hash_defweak
1683 || hlook->root.type == bfd_link_hash_common
1684 || hlook->root.type == bfd_link_hash_indirect);
1685 slook = hlook->root.u.def.section;
1686 vlook = hlook->root.u.def.value;
1687
1688 hpp = elf_sym_hashes (abfd);
1689 hppend = hpp + extsymcount;
1690 for (; hpp < hppend; hpp++)
1691 {
1692 struct elf_link_hash_entry *h;
1693
1694 h = *hpp;
1695 if (h != NULL && h != hlook
1696 && h->root.type == bfd_link_hash_defined
1697 && h->root.u.def.section == slook
1698 && h->root.u.def.value == vlook)
1699 {
1700 hlook->weakdef = h;
1701
1702 /* If the weak definition is in the list of dynamic
1703 symbols, make sure the real definition is put there
1704 as well. */
1705 if (hlook->dynindx != -1
1706 && h->dynindx == -1)
1707 {
1708 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1709 goto error_return;
1710 }
1711
1712 /* If the real definition is in the list of dynamic
1713 symbols, make sure the weak definition is put there
1714 as well. If we don't do this, then the dynamic
1715 loader might not merge the entries for the real
1716 definition and the weak definition. */
1717 if (h->dynindx != -1
1718 && hlook->dynindx == -1)
1719 {
1720 if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
1721 goto error_return;
1722 }
1723
1724 break;
1725 }
1726 }
1727 }
1728
1729 if (buf != NULL)
1730 {
1731 free (buf);
1732 buf = NULL;
1733 }
1734
1735 if (extversym != NULL)
1736 {
1737 free (extversym);
1738 extversym = NULL;
1739 }
1740
1741 /* If this object is the same format as the output object, and it is
1742 not a shared library, then let the backend look through the
1743 relocs.
1744
1745 This is required to build global offset table entries and to
1746 arrange for dynamic relocs. It is not required for the
1747 particular common case of linking non PIC code, even when linking
1748 against shared libraries, but unfortunately there is no way of
1749 knowing whether an object file has been compiled PIC or not.
1750 Looking through the relocs is not particularly time consuming.
1751 The problem is that we must either (1) keep the relocs in memory,
1752 which causes the linker to require additional runtime memory or
1753 (2) read the relocs twice from the input file, which wastes time.
1754 This would be a good case for using mmap.
1755
1756 I have no idea how to handle linking PIC code into a file of a
1757 different format. It probably can't be done. */
1758 check_relocs = get_elf_backend_data (abfd)->check_relocs;
1759 if (! dynamic
1760 && abfd->xvec == info->hash->creator
1761 && check_relocs != NULL)
1762 {
1763 asection *o;
1764
1765 for (o = abfd->sections; o != NULL; o = o->next)
1766 {
1767 Elf_Internal_Rela *internal_relocs;
1768 boolean ok;
1769
1770 if ((o->flags & SEC_RELOC) == 0
1771 || o->reloc_count == 0
1772 || ((info->strip == strip_all || info->strip == strip_debugger)
1773 && (o->flags & SEC_DEBUGGING) != 0)
1774 || bfd_is_abs_section (o->output_section))
1775 continue;
1776
1777 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
1778 (abfd, o, (PTR) NULL,
1779 (Elf_Internal_Rela *) NULL,
1780 info->keep_memory));
1781 if (internal_relocs == NULL)
1782 goto error_return;
1783
1784 ok = (*check_relocs) (abfd, info, o, internal_relocs);
1785
1786 if (! info->keep_memory)
1787 free (internal_relocs);
1788
1789 if (! ok)
1790 goto error_return;
1791 }
1792 }
1793
1794 /* If this is a non-traditional, non-relocateable link, try to
1795 optimize the handling of the .stab/.stabstr sections. */
1796 if (! dynamic
1797 && ! info->relocateable
1798 && ! info->traditional_format
1799 && info->hash->creator->flavour == bfd_target_elf_flavour
1800 && (info->strip != strip_all && info->strip != strip_debugger))
1801 {
1802 asection *stab, *stabstr;
1803
1804 stab = bfd_get_section_by_name (abfd, ".stab");
1805 if (stab != NULL)
1806 {
1807 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
1808
1809 if (stabstr != NULL)
1810 {
1811 struct bfd_elf_section_data *secdata;
1812
1813 secdata = elf_section_data (stab);
1814 if (! _bfd_link_section_stabs (abfd,
1815 &elf_hash_table (info)->stab_info,
1816 stab, stabstr,
1817 &secdata->stab_info))
1818 goto error_return;
1819 }
1820 }
1821 }
1822
1823 return true;
1824
1825 error_return:
1826 if (buf != NULL)
1827 free (buf);
1828 if (dynbuf != NULL)
1829 free (dynbuf);
1830 if (dynver != NULL)
1831 free (dynver);
1832 if (extversym != NULL)
1833 free (extversym);
1834 return false;
1835}
1836
1837/* Create some sections which will be filled in with dynamic linking
1838 information. ABFD is an input file which requires dynamic sections
1839 to be created. The dynamic sections take up virtual memory space
1840 when the final executable is run, so we need to create them before
1841 addresses are assigned to the output sections. We work out the
1842 actual contents and size of these sections later. */
1843
1844boolean
1845elf_link_create_dynamic_sections (abfd, info)
1846 bfd *abfd;
1847 struct bfd_link_info *info;
1848{
1849 flagword flags;
1850 register asection *s;
1851 struct elf_link_hash_entry *h;
1852 struct elf_backend_data *bed;
1853
1854 if (elf_hash_table (info)->dynamic_sections_created)
1855 return true;
1856
1857 /* Make sure that all dynamic sections use the same input BFD. */
1858 if (elf_hash_table (info)->dynobj == NULL)
1859 elf_hash_table (info)->dynobj = abfd;
1860 else
1861 abfd = elf_hash_table (info)->dynobj;
1862
1863 /* Note that we set the SEC_IN_MEMORY flag for all of these
1864 sections. */
1865 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
1866 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1867
1868 /* A dynamically linked executable has a .interp section, but a
1869 shared library does not. */
1870 if (! info->shared)
1871 {
1872 s = bfd_make_section (abfd, ".interp");
1873 if (s == NULL
1874 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
1875 return false;
1876 }
1877
1878 /* Create sections to hold version informations. These are removed
1879 if they are not needed. */
1880 s = bfd_make_section (abfd, ".gnu.version_d");
1881 if (s == NULL
1882 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1883 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1884 return false;
1885
1886 s = bfd_make_section (abfd, ".gnu.version");
1887 if (s == NULL
1888 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1889 || ! bfd_set_section_alignment (abfd, s, 1))
1890 return false;
1891
1892 s = bfd_make_section (abfd, ".gnu.version_r");
1893 if (s == NULL
1894 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1895 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1896 return false;
1897
1898 s = bfd_make_section (abfd, ".dynsym");
1899 if (s == NULL
1900 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1901 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1902 return false;
1903
1904 s = bfd_make_section (abfd, ".dynstr");
1905 if (s == NULL
1906 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
1907 return false;
1908
1909 /* Create a strtab to hold the dynamic symbol names. */
1910 if (elf_hash_table (info)->dynstr == NULL)
1911 {
1912 elf_hash_table (info)->dynstr = elf_stringtab_init ();
1913 if (elf_hash_table (info)->dynstr == NULL)
1914 return false;
1915 }
1916
1917 s = bfd_make_section (abfd, ".dynamic");
1918 if (s == NULL
1919 || ! bfd_set_section_flags (abfd, s, flags)
1920 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1921 return false;
1922
1923 /* The special symbol _DYNAMIC is always set to the start of the
1924 .dynamic section. This call occurs before we have processed the
1925 symbols for any dynamic object, so we don't have to worry about
1926 overriding a dynamic definition. We could set _DYNAMIC in a
1927 linker script, but we only want to define it if we are, in fact,
1928 creating a .dynamic section. We don't want to define it if there
1929 is no .dynamic section, since on some ELF platforms the start up
1930 code examines it to decide how to initialize the process. */
1931 h = NULL;
1932 if (! (_bfd_generic_link_add_one_symbol
1933 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
1934 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
1935 (struct bfd_link_hash_entry **) &h)))
1936 return false;
1937 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
1938 h->type = STT_OBJECT;
1939
1940 if (info->shared
1941 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
1942 return false;
1943
1944 s = bfd_make_section (abfd, ".hash");
1945 if (s == NULL
1946 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1947 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1948 return false;
1949
1950 /* Let the backend create the rest of the sections. This lets the
1951 backend set the right flags. The backend will normally create
1952 the .got and .plt sections. */
1953 bed = get_elf_backend_data (abfd);
1954 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
1955 return false;
1956
1957 elf_hash_table (info)->dynamic_sections_created = true;
1958
1959 return true;
1960}
1961
1962/* Add an entry to the .dynamic table. */
1963
1964boolean
1965elf_add_dynamic_entry (info, tag, val)
1966 struct bfd_link_info *info;
1967 bfd_vma tag;
1968 bfd_vma val;
1969{
1970 Elf_Internal_Dyn dyn;
1971 bfd *dynobj;
1972 asection *s;
1973 size_t newsize;
1974 bfd_byte *newcontents;
1975
1976 dynobj = elf_hash_table (info)->dynobj;
1977
1978 s = bfd_get_section_by_name (dynobj, ".dynamic");
1979 BFD_ASSERT (s != NULL);
1980
1981 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
1982 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
1983 if (newcontents == NULL)
1984 return false;
1985
1986 dyn.d_tag = tag;
1987 dyn.d_un.d_val = val;
1988 elf_swap_dyn_out (dynobj, &dyn,
1989 (Elf_External_Dyn *) (newcontents + s->_raw_size));
1990
1991 s->_raw_size = newsize;
1992 s->contents = newcontents;
1993
1994 return true;
1995}
1996\f
1997
6b5bd373
MM
1998/* Read and swap the relocs from the section indicated by SHDR. This
1999 may be either a REL or a RELA section. The relocations are
2000 translated into RELA relocations and stored in INTERNAL_RELOCS,
2001 which should have already been allocated to contain enough space.
2002 The EXTERNAL_RELOCS are a buffer where the external form of the
2003 relocations should be stored.
2004
2005 Returns false if something goes wrong. */
2006
2007static boolean
2008elf_link_read_relocs_from_section (abfd, shdr, external_relocs,
2009 internal_relocs)
2010 bfd *abfd;
2011 Elf_Internal_Shdr *shdr;
2012 PTR external_relocs;
2013 Elf_Internal_Rela *internal_relocs;
2014{
2015 /* If there aren't any relocations, that's OK. */
2016 if (!shdr)
2017 return true;
2018
2019 /* Position ourselves at the start of the section. */
2020 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2021 return false;
2022
2023 /* Read the relocations. */
2024 if (bfd_read (external_relocs, 1, shdr->sh_size, abfd)
2025 != shdr->sh_size)
2026 return false;
2027
2028 /* Convert the external relocations to the internal format. */
2029 if (shdr->sh_entsize == sizeof (Elf_External_Rel))
2030 {
2031 Elf_External_Rel *erel;
2032 Elf_External_Rel *erelend;
2033 Elf_Internal_Rela *irela;
2034
2035 erel = (Elf_External_Rel *) external_relocs;
2036 erelend = erel + shdr->sh_size / shdr->sh_entsize;
2037 irela = internal_relocs;
2038 for (; erel < erelend; erel++, irela++)
2039 {
2040 Elf_Internal_Rel irel;
2041
2042 elf_swap_reloc_in (abfd, erel, &irel);
2043 irela->r_offset = irel.r_offset;
2044 irela->r_info = irel.r_info;
2045 irela->r_addend = 0;
2046 }
2047 }
2048 else
2049 {
2050 Elf_External_Rela *erela;
2051 Elf_External_Rela *erelaend;
2052 Elf_Internal_Rela *irela;
2053
2054 BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela));
2055
2056 erela = (Elf_External_Rela *) external_relocs;
2057 erelaend = erela + shdr->sh_size / shdr->sh_entsize;
2058 irela = internal_relocs;
2059 for (; erela < erelaend; erela++, irela++)
2060 elf_swap_reloca_in (abfd, erela, irela);
2061 }
2062
2063 return true;
2064}
2065
252b5132
RH
2066/* Read and swap the relocs for a section. They may have been cached.
2067 If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are not NULL,
2068 they are used as buffers to read into. They are known to be large
2069 enough. If the INTERNAL_RELOCS relocs argument is NULL, the return
2070 value is allocated using either malloc or bfd_alloc, according to
2071 the KEEP_MEMORY argument. */
2072
2073Elf_Internal_Rela *
2074NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
2075 keep_memory)
2076 bfd *abfd;
2077 asection *o;
2078 PTR external_relocs;
2079 Elf_Internal_Rela *internal_relocs;
2080 boolean keep_memory;
2081{
2082 Elf_Internal_Shdr *rel_hdr;
2083 PTR alloc1 = NULL;
2084 Elf_Internal_Rela *alloc2 = NULL;
2085
2086 if (elf_section_data (o)->relocs != NULL)
2087 return elf_section_data (o)->relocs;
2088
2089 if (o->reloc_count == 0)
2090 return NULL;
2091
2092 rel_hdr = &elf_section_data (o)->rel_hdr;
2093
2094 if (internal_relocs == NULL)
2095 {
2096 size_t size;
2097
2098 size = o->reloc_count * sizeof (Elf_Internal_Rela);
2099 if (keep_memory)
2100 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2101 else
2102 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2103 if (internal_relocs == NULL)
2104 goto error_return;
2105 }
2106
2107 if (external_relocs == NULL)
2108 {
6b5bd373
MM
2109 size_t size = (size_t) rel_hdr->sh_size;
2110
2111 if (elf_section_data (o)->rel_hdr2)
2112 size += (size_t) elf_section_data (o)->rel_hdr2->sh_size;
2113 alloc1 = (PTR) bfd_malloc (size);
252b5132
RH
2114 if (alloc1 == NULL)
2115 goto error_return;
2116 external_relocs = alloc1;
2117 }
2118
6b5bd373
MM
2119 if (!elf_link_read_relocs_from_section (abfd, rel_hdr,
2120 external_relocs,
2121 internal_relocs))
2122 goto error_return;
2123 if (!elf_link_read_relocs_from_section
2124 (abfd,
2125 elf_section_data (o)->rel_hdr2,
2f5116e2 2126 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
6b5bd373 2127 internal_relocs + rel_hdr->sh_size / rel_hdr->sh_entsize))
252b5132 2128 goto error_return;
252b5132
RH
2129
2130 /* Cache the results for next time, if we can. */
2131 if (keep_memory)
2132 elf_section_data (o)->relocs = internal_relocs;
2133
2134 if (alloc1 != NULL)
2135 free (alloc1);
2136
2137 /* Don't free alloc2, since if it was allocated we are passing it
2138 back (under the name of internal_relocs). */
2139
2140 return internal_relocs;
2141
2142 error_return:
2143 if (alloc1 != NULL)
2144 free (alloc1);
2145 if (alloc2 != NULL)
2146 free (alloc2);
2147 return NULL;
2148}
2149\f
2150
2151/* Record an assignment to a symbol made by a linker script. We need
2152 this in case some dynamic object refers to this symbol. */
2153
2154/*ARGSUSED*/
2155boolean
2156NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
2157 bfd *output_bfd;
2158 struct bfd_link_info *info;
2159 const char *name;
2160 boolean provide;
2161{
2162 struct elf_link_hash_entry *h;
2163
2164 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2165 return true;
2166
2167 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
2168 if (h == NULL)
2169 return false;
2170
2171 if (h->root.type == bfd_link_hash_new)
2172 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
2173
2174 /* If this symbol is being provided by the linker script, and it is
2175 currently defined by a dynamic object, but not by a regular
2176 object, then mark it as undefined so that the generic linker will
2177 force the correct value. */
2178 if (provide
2179 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2180 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2181 h->root.type = bfd_link_hash_undefined;
2182
2183 /* If this symbol is not being provided by the linker script, and it is
2184 currently defined by a dynamic object, but not by a regular object,
2185 then clear out any version information because the symbol will not be
2186 associated with the dynamic object any more. */
2187 if (!provide
2188 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2189 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2190 h->verinfo.verdef = NULL;
2191
2192 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2193 h->type = STT_OBJECT;
2194
2195 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2196 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
2197 || info->shared)
2198 && h->dynindx == -1)
2199 {
2200 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2201 return false;
2202
2203 /* If this is a weak defined symbol, and we know a corresponding
2204 real symbol from the same dynamic object, make sure the real
2205 symbol is also made into a dynamic symbol. */
2206 if (h->weakdef != NULL
2207 && h->weakdef->dynindx == -1)
2208 {
2209 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2210 return false;
2211 }
2212 }
2213
2214 return true;
2215}
2216\f
2217/* This structure is used to pass information to
2218 elf_link_assign_sym_version. */
2219
2220struct elf_assign_sym_version_info
2221{
2222 /* Output BFD. */
2223 bfd *output_bfd;
2224 /* General link information. */
2225 struct bfd_link_info *info;
2226 /* Version tree. */
2227 struct bfd_elf_version_tree *verdefs;
2228 /* Whether we are exporting all dynamic symbols. */
2229 boolean export_dynamic;
2230 /* Whether we removed any symbols from the dynamic symbol table. */
2231 boolean removed_dynamic;
2232 /* Whether we had a failure. */
2233 boolean failed;
2234};
2235
2236/* This structure is used to pass information to
2237 elf_link_find_version_dependencies. */
2238
2239struct elf_find_verdep_info
2240{
2241 /* Output BFD. */
2242 bfd *output_bfd;
2243 /* General link information. */
2244 struct bfd_link_info *info;
2245 /* The number of dependencies. */
2246 unsigned int vers;
2247 /* Whether we had a failure. */
2248 boolean failed;
2249};
2250
2251/* Array used to determine the number of hash table buckets to use
2252 based on the number of symbols there are. If there are fewer than
2253 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2254 fewer than 37 we use 17 buckets, and so forth. We never use more
2255 than 32771 buckets. */
2256
2257static const size_t elf_buckets[] =
2258{
2259 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2260 16411, 32771, 0
2261};
2262
2263/* Compute bucket count for hashing table. We do not use a static set
2264 of possible tables sizes anymore. Instead we determine for all
2265 possible reasonable sizes of the table the outcome (i.e., the
2266 number of collisions etc) and choose the best solution. The
2267 weighting functions are not too simple to allow the table to grow
2268 without bounds. Instead one of the weighting factors is the size.
2269 Therefore the result is always a good payoff between few collisions
2270 (= short chain lengths) and table size. */
2271static size_t
2272compute_bucket_count (info)
2273 struct bfd_link_info *info;
2274{
2275 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
2276 size_t best_size;
2277 unsigned long int *hashcodes;
2278 unsigned long int *hashcodesp;
2279 unsigned long int i;
2280
2281 /* Compute the hash values for all exported symbols. At the same
2282 time store the values in an array so that we could use them for
2283 optimizations. */
2284 hashcodes = (unsigned long int *) bfd_malloc (dynsymcount
2285 * sizeof (unsigned long int));
2286 if (hashcodes == NULL)
2287 return 0;
2288 hashcodesp = hashcodes;
2289
2290 /* Put all hash values in HASHCODES. */
2291 elf_link_hash_traverse (elf_hash_table (info),
2292 elf_collect_hash_codes, &hashcodesp);
2293
2294/* We have a problem here. The following code to optimize the table
2295 size requires an integer type with more the 32 bits. If
2296 BFD_HOST_U_64_BIT is set we know about such a type. */
2297#ifdef BFD_HOST_U_64_BIT
2298 if (info->optimize == true)
2299 {
2300 unsigned long int nsyms = hashcodesp - hashcodes;
2301 size_t minsize;
2302 size_t maxsize;
2303 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
2304 unsigned long int *counts ;
2305
2306 /* Possible optimization parameters: if we have NSYMS symbols we say
2307 that the hashing table must at least have NSYMS/4 and at most
2308 2*NSYMS buckets. */
2309 minsize = nsyms / 4;
2310 if (minsize == 0)
2311 minsize = 1;
2312 best_size = maxsize = nsyms * 2;
2313
2314 /* Create array where we count the collisions in. We must use bfd_malloc
2315 since the size could be large. */
2316 counts = (unsigned long int *) bfd_malloc (maxsize
2317 * sizeof (unsigned long int));
2318 if (counts == NULL)
2319 {
2320 free (hashcodes);
2321 return 0;
2322 }
2323
2324 /* Compute the "optimal" size for the hash table. The criteria is a
2325 minimal chain length. The minor criteria is (of course) the size
2326 of the table. */
2327 for (i = minsize; i < maxsize; ++i)
2328 {
2329 /* Walk through the array of hashcodes and count the collisions. */
2330 BFD_HOST_U_64_BIT max;
2331 unsigned long int j;
2332 unsigned long int fact;
2333
2334 memset (counts, '\0', i * sizeof (unsigned long int));
2335
2336 /* Determine how often each hash bucket is used. */
2337 for (j = 0; j < nsyms; ++j)
2338 ++counts[hashcodes[j] % i];
2339
2340 /* For the weight function we need some information about the
2341 pagesize on the target. This is information need not be 100%
2342 accurate. Since this information is not available (so far) we
2343 define it here to a reasonable default value. If it is crucial
2344 to have a better value some day simply define this value. */
2345# ifndef BFD_TARGET_PAGESIZE
2346# define BFD_TARGET_PAGESIZE (4096)
2347# endif
2348
2349 /* We in any case need 2 + NSYMS entries for the size values and
2350 the chains. */
2351 max = (2 + nsyms) * (ARCH_SIZE / 8);
2352
2353# if 1
2354 /* Variant 1: optimize for short chains. We add the squares
2355 of all the chain lengths (which favous many small chain
2356 over a few long chains). */
2357 for (j = 0; j < i; ++j)
2358 max += counts[j] * counts[j];
2359
2360 /* This adds penalties for the overall size of the table. */
2361 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2362 max *= fact * fact;
2363# else
2364 /* Variant 2: Optimize a lot more for small table. Here we
2365 also add squares of the size but we also add penalties for
2366 empty slots (the +1 term). */
2367 for (j = 0; j < i; ++j)
2368 max += (1 + counts[j]) * (1 + counts[j]);
2369
2370 /* The overall size of the table is considered, but not as
2371 strong as in variant 1, where it is squared. */
2372 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2373 max *= fact;
2374# endif
2375
2376 /* Compare with current best results. */
2377 if (max < best_chlen)
2378 {
2379 best_chlen = max;
2380 best_size = i;
2381 }
2382 }
2383
2384 free (counts);
2385 }
2386 else
2387#endif /* defined (BFD_HOST_U_64_BIT) */
2388 {
2389 /* This is the fallback solution if no 64bit type is available or if we
2390 are not supposed to spend much time on optimizations. We select the
2391 bucket count using a fixed set of numbers. */
2392 for (i = 0; elf_buckets[i] != 0; i++)
2393 {
2394 best_size = elf_buckets[i];
2395 if (dynsymcount < elf_buckets[i + 1])
2396 break;
2397 }
2398 }
2399
2400 /* Free the arrays we needed. */
2401 free (hashcodes);
2402
2403 return best_size;
2404}
2405
42751cf3
MM
2406/* Remove SECTION from the BFD. If a symbol for SECTION was going to
2407 be put into the dynamic symbol table, remove it, and renumber
2408 subsequent entries. */
2409
2410static void
78de0b43 2411elf_link_remove_section_and_adjust_dynindices (info, section)
42751cf3
MM
2412 struct bfd_link_info *info;
2413 asection *section;
2414{
42751cf3 2415 /* Remove the section from the output list. */
78de0b43 2416 _bfd_strip_section_from_output (section);
42751cf3
MM
2417
2418 if (elf_section_data (section->output_section)->dynindx)
2419 {
2420 asection *s;
2421 int increment = -1;
2422
2423 /* We were going to output an entry in the dynamic symbol table
2424 for the symbol corresponding to this section. Now, the
2425 section is gone. So, we must renumber the dynamic indices of
2426 all subsequent sections and all other entries in the dynamic
2427 symbol table. */
2428 elf_section_data (section->output_section)->dynindx = 0;
2429 for (s = section->output_section->next; s; s = s->next)
2430 if (elf_section_data (s)->dynindx)
2431 --elf_section_data (s)->dynindx;
2432
2433 elf_link_hash_traverse (elf_hash_table (info),
2434 _bfd_elf_link_adjust_dynindx,
2435 &increment);
2436
2437 /* There is one less dynamic symbol than there was before. */
2438 --elf_hash_table (info)->dynsymcount;
2439 }
2440}
2441
252b5132
RH
2442/* Set up the sizes and contents of the ELF dynamic sections. This is
2443 called by the ELF linker emulation before_allocation routine. We
2444 must set the sizes of the sections before the linker sets the
2445 addresses of the various sections. */
2446
2447boolean
2448NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
2449 export_dynamic, filter_shlib,
2450 auxiliary_filters, info, sinterpptr,
2451 verdefs)
2452 bfd *output_bfd;
2453 const char *soname;
2454 const char *rpath;
2455 boolean export_dynamic;
2456 const char *filter_shlib;
2457 const char * const *auxiliary_filters;
2458 struct bfd_link_info *info;
2459 asection **sinterpptr;
2460 struct bfd_elf_version_tree *verdefs;
2461{
2462 bfd_size_type soname_indx;
2463 bfd *dynobj;
2464 struct elf_backend_data *bed;
2465 bfd_size_type old_dynsymcount;
2466 struct elf_assign_sym_version_info asvinfo;
2467
2468 *sinterpptr = NULL;
2469
2470 soname_indx = (bfd_size_type) -1;
2471
2472 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2473 return true;
2474
2475 /* The backend may have to create some sections regardless of whether
2476 we're dynamic or not. */
2477 bed = get_elf_backend_data (output_bfd);
2478 if (bed->elf_backend_always_size_sections
2479 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
2480 return false;
2481
2482 dynobj = elf_hash_table (info)->dynobj;
2483
2484 /* If there were no dynamic objects in the link, there is nothing to
2485 do here. */
2486 if (dynobj == NULL)
2487 return true;
2488
2489 /* If we are supposed to export all symbols into the dynamic symbol
2490 table (this is not the normal case), then do so. */
2491 if (export_dynamic)
2492 {
2493 struct elf_info_failed eif;
2494
2495 eif.failed = false;
2496 eif.info = info;
2497 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
2498 (PTR) &eif);
2499 if (eif.failed)
2500 return false;
2501 }
2502
2503 if (elf_hash_table (info)->dynamic_sections_created)
2504 {
2505 struct elf_info_failed eif;
2506 struct elf_link_hash_entry *h;
2507 bfd_size_type strsize;
2508
2509 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
2510 BFD_ASSERT (*sinterpptr != NULL || info->shared);
2511
2512 if (soname != NULL)
2513 {
2514 soname_indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2515 soname, true, true);
2516 if (soname_indx == (bfd_size_type) -1
2517 || ! elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
2518 return false;
2519 }
2520
2521 if (info->symbolic)
2522 {
2523 if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
2524 return false;
2525 }
2526
2527 if (rpath != NULL)
2528 {
2529 bfd_size_type indx;
2530
2531 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath,
2532 true, true);
2533 if (indx == (bfd_size_type) -1
2534 || ! elf_add_dynamic_entry (info, DT_RPATH, indx))
2535 return false;
2536 }
2537
2538 if (filter_shlib != NULL)
2539 {
2540 bfd_size_type indx;
2541
2542 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2543 filter_shlib, true, true);
2544 if (indx == (bfd_size_type) -1
2545 || ! elf_add_dynamic_entry (info, DT_FILTER, indx))
2546 return false;
2547 }
2548
2549 if (auxiliary_filters != NULL)
2550 {
2551 const char * const *p;
2552
2553 for (p = auxiliary_filters; *p != NULL; p++)
2554 {
2555 bfd_size_type indx;
2556
2557 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2558 *p, true, true);
2559 if (indx == (bfd_size_type) -1
2560 || ! elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
2561 return false;
2562 }
2563 }
2564
2565 /* Attach all the symbols to their version information. */
2566 asvinfo.output_bfd = output_bfd;
2567 asvinfo.info = info;
2568 asvinfo.verdefs = verdefs;
2569 asvinfo.export_dynamic = export_dynamic;
2570 asvinfo.removed_dynamic = false;
2571 asvinfo.failed = false;
2572
2573 elf_link_hash_traverse (elf_hash_table (info),
2574 elf_link_assign_sym_version,
2575 (PTR) &asvinfo);
2576 if (asvinfo.failed)
2577 return false;
2578
2579 /* Find all symbols which were defined in a dynamic object and make
2580 the backend pick a reasonable value for them. */
2581 eif.failed = false;
2582 eif.info = info;
2583 elf_link_hash_traverse (elf_hash_table (info),
2584 elf_adjust_dynamic_symbol,
2585 (PTR) &eif);
2586 if (eif.failed)
2587 return false;
2588
2589 /* Add some entries to the .dynamic section. We fill in some of the
2590 values later, in elf_bfd_final_link, but we must add the entries
2591 now so that we know the final size of the .dynamic section. */
2592 h = elf_link_hash_lookup (elf_hash_table (info), "_init", false,
2593 false, false);
2594 if (h != NULL
2595 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2596 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
2597 {
2598 if (! elf_add_dynamic_entry (info, DT_INIT, 0))
2599 return false;
2600 }
2601 h = elf_link_hash_lookup (elf_hash_table (info), "_fini", false,
2602 false, false);
2603 if (h != NULL
2604 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2605 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
2606 {
2607 if (! elf_add_dynamic_entry (info, DT_FINI, 0))
2608 return false;
2609 }
2610 strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
2611 if (! elf_add_dynamic_entry (info, DT_HASH, 0)
2612 || ! elf_add_dynamic_entry (info, DT_STRTAB, 0)
2613 || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0)
2614 || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize)
2615 || ! elf_add_dynamic_entry (info, DT_SYMENT,
2616 sizeof (Elf_External_Sym)))
2617 return false;
2618 }
2619
2620 /* The backend must work out the sizes of all the other dynamic
2621 sections. */
2622 old_dynsymcount = elf_hash_table (info)->dynsymcount;
2623 if (bed->elf_backend_size_dynamic_sections
2624 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
2625 return false;
2626
2627 if (elf_hash_table (info)->dynamic_sections_created)
2628 {
2629 size_t dynsymcount;
2630 asection *s;
2631 size_t bucketcount = 0;
2632 Elf_Internal_Sym isym;
2633
2634 /* Set up the version definition section. */
2635 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
2636 BFD_ASSERT (s != NULL);
2637
2638 /* We may have created additional version definitions if we are
2639 just linking a regular application. */
2640 verdefs = asvinfo.verdefs;
2641
2642 if (verdefs == NULL)
78de0b43 2643 elf_link_remove_section_and_adjust_dynindices (info, s);
252b5132
RH
2644 else
2645 {
2646 unsigned int cdefs;
2647 bfd_size_type size;
2648 struct bfd_elf_version_tree *t;
2649 bfd_byte *p;
2650 Elf_Internal_Verdef def;
2651 Elf_Internal_Verdaux defaux;
2652
2653 if (asvinfo.removed_dynamic)
2654 {
2655 /* Some dynamic symbols were changed to be local
2656 symbols. In this case, we renumber all of the
2657 dynamic symbols, so that we don't have a hole. If
2658 the backend changed dynsymcount, then assume that the
2659 new symbols are at the start. This is the case on
2660 the MIPS. FIXME: The names of the removed symbols
2661 will still be in the dynamic string table, wasting
2662 space. */
2663 elf_hash_table (info)->dynsymcount =
2664 1 + (elf_hash_table (info)->dynsymcount - old_dynsymcount);
2665 elf_link_hash_traverse (elf_hash_table (info),
2666 elf_link_renumber_dynsyms,
2667 (PTR) info);
2668 }
2669
2670 cdefs = 0;
2671 size = 0;
2672
2673 /* Make space for the base version. */
2674 size += sizeof (Elf_External_Verdef);
2675 size += sizeof (Elf_External_Verdaux);
2676 ++cdefs;
2677
2678 for (t = verdefs; t != NULL; t = t->next)
2679 {
2680 struct bfd_elf_version_deps *n;
2681
2682 size += sizeof (Elf_External_Verdef);
2683 size += sizeof (Elf_External_Verdaux);
2684 ++cdefs;
2685
2686 for (n = t->deps; n != NULL; n = n->next)
2687 size += sizeof (Elf_External_Verdaux);
2688 }
2689
2690 s->_raw_size = size;
2691 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
2692 if (s->contents == NULL && s->_raw_size != 0)
2693 return false;
2694
2695 /* Fill in the version definition section. */
2696
2697 p = s->contents;
2698
2699 def.vd_version = VER_DEF_CURRENT;
2700 def.vd_flags = VER_FLG_BASE;
2701 def.vd_ndx = 1;
2702 def.vd_cnt = 1;
2703 def.vd_aux = sizeof (Elf_External_Verdef);
2704 def.vd_next = (sizeof (Elf_External_Verdef)
2705 + sizeof (Elf_External_Verdaux));
2706
2707 if (soname_indx != (bfd_size_type) -1)
2708 {
2709 def.vd_hash = bfd_elf_hash ((const unsigned char *) soname);
2710 defaux.vda_name = soname_indx;
2711 }
2712 else
2713 {
2714 const char *name;
2715 bfd_size_type indx;
2716
2717 name = output_bfd->filename;
2718 def.vd_hash = bfd_elf_hash ((const unsigned char *) name);
2719 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2720 name, true, false);
2721 if (indx == (bfd_size_type) -1)
2722 return false;
2723 defaux.vda_name = indx;
2724 }
2725 defaux.vda_next = 0;
2726
2727 _bfd_elf_swap_verdef_out (output_bfd, &def,
2728 (Elf_External_Verdef *)p);
2729 p += sizeof (Elf_External_Verdef);
2730 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2731 (Elf_External_Verdaux *) p);
2732 p += sizeof (Elf_External_Verdaux);
2733
2734 for (t = verdefs; t != NULL; t = t->next)
2735 {
2736 unsigned int cdeps;
2737 struct bfd_elf_version_deps *n;
2738 struct elf_link_hash_entry *h;
2739
2740 cdeps = 0;
2741 for (n = t->deps; n != NULL; n = n->next)
2742 ++cdeps;
2743
2744 /* Add a symbol representing this version. */
2745 h = NULL;
2746 if (! (_bfd_generic_link_add_one_symbol
2747 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
2748 (bfd_vma) 0, (const char *) NULL, false,
2749 get_elf_backend_data (dynobj)->collect,
2750 (struct bfd_link_hash_entry **) &h)))
2751 return false;
2752 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
2753 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2754 h->type = STT_OBJECT;
2755 h->verinfo.vertree = t;
2756
2757 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2758 return false;
2759
2760 def.vd_version = VER_DEF_CURRENT;
2761 def.vd_flags = 0;
2762 if (t->globals == NULL && t->locals == NULL && ! t->used)
2763 def.vd_flags |= VER_FLG_WEAK;
2764 def.vd_ndx = t->vernum + 1;
2765 def.vd_cnt = cdeps + 1;
2766 def.vd_hash = bfd_elf_hash ((const unsigned char *) t->name);
2767 def.vd_aux = sizeof (Elf_External_Verdef);
2768 if (t->next != NULL)
2769 def.vd_next = (sizeof (Elf_External_Verdef)
2770 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
2771 else
2772 def.vd_next = 0;
2773
2774 _bfd_elf_swap_verdef_out (output_bfd, &def,
2775 (Elf_External_Verdef *) p);
2776 p += sizeof (Elf_External_Verdef);
2777
2778 defaux.vda_name = h->dynstr_index;
2779 if (t->deps == NULL)
2780 defaux.vda_next = 0;
2781 else
2782 defaux.vda_next = sizeof (Elf_External_Verdaux);
2783 t->name_indx = defaux.vda_name;
2784
2785 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2786 (Elf_External_Verdaux *) p);
2787 p += sizeof (Elf_External_Verdaux);
2788
2789 for (n = t->deps; n != NULL; n = n->next)
2790 {
2791 if (n->version_needed == NULL)
2792 {
2793 /* This can happen if there was an error in the
2794 version script. */
2795 defaux.vda_name = 0;
2796 }
2797 else
2798 defaux.vda_name = n->version_needed->name_indx;
2799 if (n->next == NULL)
2800 defaux.vda_next = 0;
2801 else
2802 defaux.vda_next = sizeof (Elf_External_Verdaux);
2803
2804 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2805 (Elf_External_Verdaux *) p);
2806 p += sizeof (Elf_External_Verdaux);
2807 }
2808 }
2809
2810 if (! elf_add_dynamic_entry (info, DT_VERDEF, 0)
2811 || ! elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
2812 return false;
2813
2814 elf_tdata (output_bfd)->cverdefs = cdefs;
2815 }
2816
2817 /* Work out the size of the version reference section. */
2818
2819 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
2820 BFD_ASSERT (s != NULL);
2821 {
2822 struct elf_find_verdep_info sinfo;
2823
2824 sinfo.output_bfd = output_bfd;
2825 sinfo.info = info;
2826 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
2827 if (sinfo.vers == 0)
2828 sinfo.vers = 1;
2829 sinfo.failed = false;
2830
2831 elf_link_hash_traverse (elf_hash_table (info),
2832 elf_link_find_version_dependencies,
2833 (PTR) &sinfo);
2834
2835 if (elf_tdata (output_bfd)->verref == NULL)
78de0b43 2836 elf_link_remove_section_and_adjust_dynindices (info, s);
252b5132
RH
2837 else
2838 {
2839 Elf_Internal_Verneed *t;
2840 unsigned int size;
2841 unsigned int crefs;
2842 bfd_byte *p;
2843
2844 /* Build the version definition section. */
2845 size = 0;
2846 crefs = 0;
2847 for (t = elf_tdata (output_bfd)->verref;
2848 t != NULL;
2849 t = t->vn_nextref)
2850 {
2851 Elf_Internal_Vernaux *a;
2852
2853 size += sizeof (Elf_External_Verneed);
2854 ++crefs;
2855 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2856 size += sizeof (Elf_External_Vernaux);
2857 }
2858
2859 s->_raw_size = size;
2860 s->contents = (bfd_byte *) bfd_alloc (output_bfd, size);
2861 if (s->contents == NULL)
2862 return false;
2863
2864 p = s->contents;
2865 for (t = elf_tdata (output_bfd)->verref;
2866 t != NULL;
2867 t = t->vn_nextref)
2868 {
2869 unsigned int caux;
2870 Elf_Internal_Vernaux *a;
2871 bfd_size_type indx;
2872
2873 caux = 0;
2874 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2875 ++caux;
2876
2877 t->vn_version = VER_NEED_CURRENT;
2878 t->vn_cnt = caux;
2879 if (elf_dt_name (t->vn_bfd) != NULL)
2880 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2881 elf_dt_name (t->vn_bfd),
2882 true, false);
2883 else
2884 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2885 t->vn_bfd->filename, true, false);
2886 if (indx == (bfd_size_type) -1)
2887 return false;
2888 t->vn_file = indx;
2889 t->vn_aux = sizeof (Elf_External_Verneed);
2890 if (t->vn_nextref == NULL)
2891 t->vn_next = 0;
2892 else
2893 t->vn_next = (sizeof (Elf_External_Verneed)
2894 + caux * sizeof (Elf_External_Vernaux));
2895
2896 _bfd_elf_swap_verneed_out (output_bfd, t,
2897 (Elf_External_Verneed *) p);
2898 p += sizeof (Elf_External_Verneed);
2899
2900 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2901 {
2902 a->vna_hash = bfd_elf_hash ((const unsigned char *)
2903 a->vna_nodename);
2904 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2905 a->vna_nodename, true, false);
2906 if (indx == (bfd_size_type) -1)
2907 return false;
2908 a->vna_name = indx;
2909 if (a->vna_nextptr == NULL)
2910 a->vna_next = 0;
2911 else
2912 a->vna_next = sizeof (Elf_External_Vernaux);
2913
2914 _bfd_elf_swap_vernaux_out (output_bfd, a,
2915 (Elf_External_Vernaux *) p);
2916 p += sizeof (Elf_External_Vernaux);
2917 }
2918 }
2919
2920 if (! elf_add_dynamic_entry (info, DT_VERNEED, 0)
2921 || ! elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
2922 return false;
2923
2924 elf_tdata (output_bfd)->cverrefs = crefs;
2925 }
2926 }
2927
2928 dynsymcount = elf_hash_table (info)->dynsymcount;
2929
2930 /* Work out the size of the symbol version section. */
2931 s = bfd_get_section_by_name (dynobj, ".gnu.version");
2932 BFD_ASSERT (s != NULL);
2933 if (dynsymcount == 0
2934 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
2935 {
78de0b43 2936 elf_link_remove_section_and_adjust_dynindices (info, s);
42751cf3
MM
2937 /* The DYNSYMCOUNT might have changed if we were going to
2938 output a dynamic symbol table entry for S. */
2939 dynsymcount = elf_hash_table (info)->dynsymcount;
252b5132
RH
2940 }
2941 else
2942 {
2943 s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
2944 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
2945 if (s->contents == NULL)
2946 return false;
2947
2948 if (! elf_add_dynamic_entry (info, DT_VERSYM, 0))
2949 return false;
2950 }
2951
2952 /* Set the size of the .dynsym and .hash sections. We counted
2953 the number of dynamic symbols in elf_link_add_object_symbols.
2954 We will build the contents of .dynsym and .hash when we build
2955 the final symbol table, because until then we do not know the
2956 correct value to give the symbols. We built the .dynstr
2957 section as we went along in elf_link_add_object_symbols. */
2958 s = bfd_get_section_by_name (dynobj, ".dynsym");
2959 BFD_ASSERT (s != NULL);
2960 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
2961 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
2962 if (s->contents == NULL && s->_raw_size != 0)
2963 return false;
2964
2965 /* The first entry in .dynsym is a dummy symbol. */
2966 isym.st_value = 0;
2967 isym.st_size = 0;
2968 isym.st_name = 0;
2969 isym.st_info = 0;
2970 isym.st_other = 0;
2971 isym.st_shndx = 0;
2972 elf_swap_symbol_out (output_bfd, &isym,
2973 (PTR) (Elf_External_Sym *) s->contents);
2974
2975 /* Compute the size of the hashing table. As a side effect this
2976 computes the hash values for all the names we export. */
2977 bucketcount = compute_bucket_count (info);
2978
2979 s = bfd_get_section_by_name (dynobj, ".hash");
2980 BFD_ASSERT (s != NULL);
2981 s->_raw_size = (2 + bucketcount + dynsymcount) * (ARCH_SIZE / 8);
2982 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
2983 if (s->contents == NULL)
2984 return false;
2985 memset (s->contents, 0, (size_t) s->_raw_size);
2986
2987 put_word (output_bfd, bucketcount, s->contents);
2988 put_word (output_bfd, dynsymcount, s->contents + (ARCH_SIZE / 8));
2989
2990 elf_hash_table (info)->bucketcount = bucketcount;
2991
2992 s = bfd_get_section_by_name (dynobj, ".dynstr");
2993 BFD_ASSERT (s != NULL);
2994 s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
2995
2996 if (! elf_add_dynamic_entry (info, DT_NULL, 0))
2997 return false;
2998 }
2999
3000 return true;
3001}
3002\f
3003/* Fix up the flags for a symbol. This handles various cases which
3004 can only be fixed after all the input files are seen. This is
3005 currently called by both adjust_dynamic_symbol and
3006 assign_sym_version, which is unnecessary but perhaps more robust in
3007 the face of future changes. */
3008
3009static boolean
3010elf_fix_symbol_flags (h, eif)
3011 struct elf_link_hash_entry *h;
3012 struct elf_info_failed *eif;
3013{
3014 /* If this symbol was mentioned in a non-ELF file, try to set
3015 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
3016 permit a non-ELF file to correctly refer to a symbol defined in
3017 an ELF dynamic object. */
3018 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
3019 {
3020 if (h->root.type != bfd_link_hash_defined
3021 && h->root.type != bfd_link_hash_defweak)
3022 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3023 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3024 else
3025 {
3026 if (h->root.u.def.section->owner != NULL
3027 && (bfd_get_flavour (h->root.u.def.section->owner)
3028 == bfd_target_elf_flavour))
3029 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3030 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3031 else
3032 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3033 }
3034
3035 if (h->dynindx == -1
3036 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3037 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
3038 {
3039 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3040 {
3041 eif->failed = true;
3042 return false;
3043 }
3044 }
3045 }
3046 else
3047 {
3048 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
3049 was first seen in a non-ELF file. Fortunately, if the symbol
3050 was first seen in an ELF file, we're probably OK unless the
3051 symbol was defined in a non-ELF file. Catch that case here.
3052 FIXME: We're still in trouble if the symbol was first seen in
3053 a dynamic object, and then later in a non-ELF regular object. */
3054 if ((h->root.type == bfd_link_hash_defined
3055 || h->root.type == bfd_link_hash_defweak)
3056 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3057 && (h->root.u.def.section->owner != NULL
3058 ? (bfd_get_flavour (h->root.u.def.section->owner)
3059 != bfd_target_elf_flavour)
3060 : (bfd_is_abs_section (h->root.u.def.section)
3061 && (h->elf_link_hash_flags
3062 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
3063 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3064 }
3065
3066 /* If this is a final link, and the symbol was defined as a common
3067 symbol in a regular object file, and there was no definition in
3068 any dynamic object, then the linker will have allocated space for
3069 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3070 flag will not have been set. */
3071 if (h->root.type == bfd_link_hash_defined
3072 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3073 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
3074 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3075 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3076 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3077
3078 /* If -Bsymbolic was used (which means to bind references to global
3079 symbols to the definition within the shared object), and this
3080 symbol was defined in a regular object, then it actually doesn't
3081 need a PLT entry. */
3082 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
3083 && eif->info->shared
3084 && eif->info->symbolic
3085 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3086 {
3087 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3088 h->plt.offset = (bfd_vma) -1;
3089 }
3090
3091 return true;
3092}
3093
3094/* Make the backend pick a good value for a dynamic symbol. This is
3095 called via elf_link_hash_traverse, and also calls itself
3096 recursively. */
3097
3098static boolean
3099elf_adjust_dynamic_symbol (h, data)
3100 struct elf_link_hash_entry *h;
3101 PTR data;
3102{
3103 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3104 bfd *dynobj;
3105 struct elf_backend_data *bed;
3106
3107 /* Ignore indirect symbols. These are added by the versioning code. */
3108 if (h->root.type == bfd_link_hash_indirect)
3109 return true;
3110
3111 /* Fix the symbol flags. */
3112 if (! elf_fix_symbol_flags (h, eif))
3113 return false;
3114
3115 /* If this symbol does not require a PLT entry, and it is not
3116 defined by a dynamic object, or is not referenced by a regular
3117 object, ignore it. We do have to handle a weak defined symbol,
3118 even if no regular object refers to it, if we decided to add it
3119 to the dynamic symbol table. FIXME: Do we normally need to worry
3120 about symbols which are defined by one dynamic object and
3121 referenced by another one? */
3122 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
3123 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3124 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3125 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
3126 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
3127 {
3128 h->plt.offset = (bfd_vma) -1;
3129 return true;
3130 }
3131
3132 /* If we've already adjusted this symbol, don't do it again. This
3133 can happen via a recursive call. */
3134 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
3135 return true;
3136
3137 /* Don't look at this symbol again. Note that we must set this
3138 after checking the above conditions, because we may look at a
3139 symbol once, decide not to do anything, and then get called
3140 recursively later after REF_REGULAR is set below. */
3141 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
3142
3143 /* If this is a weak definition, and we know a real definition, and
3144 the real symbol is not itself defined by a regular object file,
3145 then get a good value for the real definition. We handle the
3146 real symbol first, for the convenience of the backend routine.
3147
3148 Note that there is a confusing case here. If the real definition
3149 is defined by a regular object file, we don't get the real symbol
3150 from the dynamic object, but we do get the weak symbol. If the
3151 processor backend uses a COPY reloc, then if some routine in the
3152 dynamic object changes the real symbol, we will not see that
3153 change in the corresponding weak symbol. This is the way other
3154 ELF linkers work as well, and seems to be a result of the shared
3155 library model.
3156
3157 I will clarify this issue. Most SVR4 shared libraries define the
3158 variable _timezone and define timezone as a weak synonym. The
3159 tzset call changes _timezone. If you write
3160 extern int timezone;
3161 int _timezone = 5;
3162 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3163 you might expect that, since timezone is a synonym for _timezone,
3164 the same number will print both times. However, if the processor
3165 backend uses a COPY reloc, then actually timezone will be copied
3166 into your process image, and, since you define _timezone
3167 yourself, _timezone will not. Thus timezone and _timezone will
3168 wind up at different memory locations. The tzset call will set
3169 _timezone, leaving timezone unchanged. */
3170
3171 if (h->weakdef != NULL)
3172 {
3173 struct elf_link_hash_entry *weakdef;
3174
3175 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3176 || h->root.type == bfd_link_hash_defweak);
3177 weakdef = h->weakdef;
3178 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
3179 || weakdef->root.type == bfd_link_hash_defweak);
3180 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
3181 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3182 {
3183 /* This symbol is defined by a regular object file, so we
3184 will not do anything special. Clear weakdef for the
3185 convenience of the processor backend. */
3186 h->weakdef = NULL;
3187 }
3188 else
3189 {
3190 /* There is an implicit reference by a regular object file
3191 via the weak symbol. */
3192 weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
3193 if (h->weakdef->elf_link_hash_flags
3194 & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
3195 weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
3196 if (! elf_adjust_dynamic_symbol (weakdef, (PTR) eif))
3197 return false;
3198 }
3199 }
3200
3201 /* If a symbol has no type and no size and does not require a PLT
3202 entry, then we are probably about to do the wrong thing here: we
3203 are probably going to create a COPY reloc for an empty object.
3204 This case can arise when a shared object is built with assembly
3205 code, and the assembly code fails to set the symbol type. */
3206 if (h->size == 0
3207 && h->type == STT_NOTYPE
3208 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
3209 (*_bfd_error_handler)
3210 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3211 h->root.root.string);
3212
3213 dynobj = elf_hash_table (eif->info)->dynobj;
3214 bed = get_elf_backend_data (dynobj);
3215 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3216 {
3217 eif->failed = true;
3218 return false;
3219 }
3220
3221 return true;
3222}
3223\f
3224/* This routine is used to export all defined symbols into the dynamic
3225 symbol table. It is called via elf_link_hash_traverse. */
3226
3227static boolean
3228elf_export_symbol (h, data)
3229 struct elf_link_hash_entry *h;
3230 PTR data;
3231{
3232 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3233
3234 /* Ignore indirect symbols. These are added by the versioning code. */
3235 if (h->root.type == bfd_link_hash_indirect)
3236 return true;
3237
3238 if (h->dynindx == -1
3239 && (h->elf_link_hash_flags
3240 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
3241 {
3242 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3243 {
3244 eif->failed = true;
3245 return false;
3246 }
3247 }
3248
3249 return true;
3250}
3251\f
3252/* Look through the symbols which are defined in other shared
3253 libraries and referenced here. Update the list of version
3254 dependencies. This will be put into the .gnu.version_r section.
3255 This function is called via elf_link_hash_traverse. */
3256
3257static boolean
3258elf_link_find_version_dependencies (h, data)
3259 struct elf_link_hash_entry *h;
3260 PTR data;
3261{
3262 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
3263 Elf_Internal_Verneed *t;
3264 Elf_Internal_Vernaux *a;
3265
3266 /* We only care about symbols defined in shared objects with version
3267 information. */
3268 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3269 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3270 || h->dynindx == -1
3271 || h->verinfo.verdef == NULL)
3272 return true;
3273
3274 /* See if we already know about this version. */
3275 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
3276 {
3277 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
3278 continue;
3279
3280 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3281 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
3282 return true;
3283
3284 break;
3285 }
3286
3287 /* This is a new version. Add it to tree we are building. */
3288
3289 if (t == NULL)
3290 {
3291 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, sizeof *t);
3292 if (t == NULL)
3293 {
3294 rinfo->failed = true;
3295 return false;
3296 }
3297
3298 t->vn_bfd = h->verinfo.verdef->vd_bfd;
3299 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
3300 elf_tdata (rinfo->output_bfd)->verref = t;
3301 }
3302
3303 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, sizeof *a);
3304
3305 /* Note that we are copying a string pointer here, and testing it
3306 above. If bfd_elf_string_from_elf_section is ever changed to
3307 discard the string data when low in memory, this will have to be
3308 fixed. */
3309 a->vna_nodename = h->verinfo.verdef->vd_nodename;
3310
3311 a->vna_flags = h->verinfo.verdef->vd_flags;
3312 a->vna_nextptr = t->vn_auxptr;
3313
3314 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
3315 ++rinfo->vers;
3316
3317 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
3318
3319 t->vn_auxptr = a;
3320
3321 return true;
3322}
3323
3324/* Figure out appropriate versions for all the symbols. We may not
3325 have the version number script until we have read all of the input
3326 files, so until that point we don't know which symbols should be
3327 local. This function is called via elf_link_hash_traverse. */
3328
3329static boolean
3330elf_link_assign_sym_version (h, data)
3331 struct elf_link_hash_entry *h;
3332 PTR data;
3333{
3334 struct elf_assign_sym_version_info *sinfo =
3335 (struct elf_assign_sym_version_info *) data;
3336 struct bfd_link_info *info = sinfo->info;
3337 struct elf_info_failed eif;
3338 char *p;
3339
3340 /* Fix the symbol flags. */
3341 eif.failed = false;
3342 eif.info = info;
3343 if (! elf_fix_symbol_flags (h, &eif))
3344 {
3345 if (eif.failed)
3346 sinfo->failed = true;
3347 return false;
3348 }
3349
3350 /* We only need version numbers for symbols defined in regular
3351 objects. */
3352 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3353 return true;
3354
3355 p = strchr (h->root.root.string, ELF_VER_CHR);
3356 if (p != NULL && h->verinfo.vertree == NULL)
3357 {
3358 struct bfd_elf_version_tree *t;
3359 boolean hidden;
3360
3361 hidden = true;
3362
3363 /* There are two consecutive ELF_VER_CHR characters if this is
3364 not a hidden symbol. */
3365 ++p;
3366 if (*p == ELF_VER_CHR)
3367 {
3368 hidden = false;
3369 ++p;
3370 }
3371
3372 /* If there is no version string, we can just return out. */
3373 if (*p == '\0')
3374 {
3375 if (hidden)
3376 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3377 return true;
3378 }
3379
3380 /* Look for the version. If we find it, it is no longer weak. */
3381 for (t = sinfo->verdefs; t != NULL; t = t->next)
3382 {
3383 if (strcmp (t->name, p) == 0)
3384 {
3385 int len;
3386 char *alc;
3387 struct bfd_elf_version_expr *d;
3388
3389 len = p - h->root.root.string;
3390 alc = bfd_alloc (sinfo->output_bfd, len);
3391 if (alc == NULL)
3392 return false;
3393 strncpy (alc, h->root.root.string, len - 1);
3394 alc[len - 1] = '\0';
3395 if (alc[len - 2] == ELF_VER_CHR)
3396 alc[len - 2] = '\0';
3397
3398 h->verinfo.vertree = t;
3399 t->used = true;
3400 d = NULL;
3401
3402 if (t->globals != NULL)
3403 {
3404 for (d = t->globals; d != NULL; d = d->next)
3405 if ((*d->match) (d, alc))
3406 break;
3407 }
3408
3409 /* See if there is anything to force this symbol to
3410 local scope. */
3411 if (d == NULL && t->locals != NULL)
3412 {
3413 for (d = t->locals; d != NULL; d = d->next)
3414 {
3415 if ((*d->match) (d, alc))
3416 {
3417 if (h->dynindx != -1
3418 && info->shared
3419 && ! sinfo->export_dynamic)
3420 {
3421 sinfo->removed_dynamic = true;
3422 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3423 h->elf_link_hash_flags &=~
3424 ELF_LINK_HASH_NEEDS_PLT;
3425 h->dynindx = -1;
3426 h->plt.offset = (bfd_vma) -1;
3427 /* FIXME: The name of the symbol has
3428 already been recorded in the dynamic
3429 string table section. */
3430 }
3431
3432 break;
3433 }
3434 }
3435 }
3436
3437 bfd_release (sinfo->output_bfd, alc);
3438 break;
3439 }
3440 }
3441
3442 /* If we are building an application, we need to create a
3443 version node for this version. */
3444 if (t == NULL && ! info->shared)
3445 {
3446 struct bfd_elf_version_tree **pp;
3447 int version_index;
3448
3449 /* If we aren't going to export this symbol, we don't need
3450 to worry about it. */
3451 if (h->dynindx == -1)
3452 return true;
3453
3454 t = ((struct bfd_elf_version_tree *)
3455 bfd_alloc (sinfo->output_bfd, sizeof *t));
3456 if (t == NULL)
3457 {
3458 sinfo->failed = true;
3459 return false;
3460 }
3461
3462 t->next = NULL;
3463 t->name = p;
3464 t->globals = NULL;
3465 t->locals = NULL;
3466 t->deps = NULL;
3467 t->name_indx = (unsigned int) -1;
3468 t->used = true;
3469
3470 version_index = 1;
3471 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
3472 ++version_index;
3473 t->vernum = version_index;
3474
3475 *pp = t;
3476
3477 h->verinfo.vertree = t;
3478 }
3479 else if (t == NULL)
3480 {
3481 /* We could not find the version for a symbol when
3482 generating a shared archive. Return an error. */
3483 (*_bfd_error_handler)
3484 (_("%s: undefined versioned symbol name %s"),
3485 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
3486 bfd_set_error (bfd_error_bad_value);
3487 sinfo->failed = true;
3488 return false;
3489 }
3490
3491 if (hidden)
3492 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3493 }
3494
3495 /* If we don't have a version for this symbol, see if we can find
3496 something. */
3497 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
3498 {
3499 struct bfd_elf_version_tree *t;
3500 struct bfd_elf_version_tree *deflt;
3501 struct bfd_elf_version_expr *d;
3502
3503 /* See if can find what version this symbol is in. If the
3504 symbol is supposed to be local, then don't actually register
3505 it. */
3506 deflt = NULL;
3507 for (t = sinfo->verdefs; t != NULL; t = t->next)
3508 {
3509 if (t->globals != NULL)
3510 {
3511 for (d = t->globals; d != NULL; d = d->next)
3512 {
3513 if ((*d->match) (d, h->root.root.string))
3514 {
3515 h->verinfo.vertree = t;
3516 break;
3517 }
3518 }
3519
3520 if (d != NULL)
3521 break;
3522 }
3523
3524 if (t->locals != NULL)
3525 {
3526 for (d = t->locals; d != NULL; d = d->next)
3527 {
3528 if (d->pattern[0] == '*' && d->pattern[1] == '\0')
3529 deflt = t;
3530 else if ((*d->match) (d, h->root.root.string))
3531 {
3532 h->verinfo.vertree = t;
3533 if (h->dynindx != -1
3534 && info->shared
3535 && ! sinfo->export_dynamic)
3536 {
3537 sinfo->removed_dynamic = true;
3538 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3539 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3540 h->dynindx = -1;
3541 h->plt.offset = (bfd_vma) -1;
3542 /* FIXME: The name of the symbol has already
3543 been recorded in the dynamic string table
3544 section. */
3545 }
3546 break;
3547 }
3548 }
3549
3550 if (d != NULL)
3551 break;
3552 }
3553 }
3554
3555 if (deflt != NULL && h->verinfo.vertree == NULL)
3556 {
3557 h->verinfo.vertree = deflt;
3558 if (h->dynindx != -1
3559 && info->shared
3560 && ! sinfo->export_dynamic)
3561 {
3562 sinfo->removed_dynamic = true;
3563 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3564 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3565 h->dynindx = -1;
3566 h->plt.offset = (bfd_vma) -1;
3567 /* FIXME: The name of the symbol has already been
3568 recorded in the dynamic string table section. */
3569 }
3570 }
3571 }
3572
3573 return true;
3574}
3575
3576/* This function is used to renumber the dynamic symbols, if some of
3577 them are removed because they are marked as local. This is called
3578 via elf_link_hash_traverse. */
3579
3580static boolean
3581elf_link_renumber_dynsyms (h, data)
3582 struct elf_link_hash_entry *h;
3583 PTR data;
3584{
3585 struct bfd_link_info *info = (struct bfd_link_info *) data;
3586
3587 if (h->dynindx != -1)
3588 {
3589 h->dynindx = elf_hash_table (info)->dynsymcount;
3590 ++elf_hash_table (info)->dynsymcount;
3591 }
3592
3593 return true;
3594}
3595\f
3596/* Final phase of ELF linker. */
3597
3598/* A structure we use to avoid passing large numbers of arguments. */
3599
3600struct elf_final_link_info
3601{
3602 /* General link information. */
3603 struct bfd_link_info *info;
3604 /* Output BFD. */
3605 bfd *output_bfd;
3606 /* Symbol string table. */
3607 struct bfd_strtab_hash *symstrtab;
3608 /* .dynsym section. */
3609 asection *dynsym_sec;
3610 /* .hash section. */
3611 asection *hash_sec;
3612 /* symbol version section (.gnu.version). */
3613 asection *symver_sec;
3614 /* Buffer large enough to hold contents of any section. */
3615 bfd_byte *contents;
3616 /* Buffer large enough to hold external relocs of any section. */
3617 PTR external_relocs;
3618 /* Buffer large enough to hold internal relocs of any section. */
3619 Elf_Internal_Rela *internal_relocs;
3620 /* Buffer large enough to hold external local symbols of any input
3621 BFD. */
3622 Elf_External_Sym *external_syms;
3623 /* Buffer large enough to hold internal local symbols of any input
3624 BFD. */
3625 Elf_Internal_Sym *internal_syms;
3626 /* Array large enough to hold a symbol index for each local symbol
3627 of any input BFD. */
3628 long *indices;
3629 /* Array large enough to hold a section pointer for each local
3630 symbol of any input BFD. */
3631 asection **sections;
3632 /* Buffer to hold swapped out symbols. */
3633 Elf_External_Sym *symbuf;
3634 /* Number of swapped out symbols in buffer. */
3635 size_t symbuf_count;
3636 /* Number of symbols which fit in symbuf. */
3637 size_t symbuf_size;
3638};
3639
3640static boolean elf_link_output_sym
3641 PARAMS ((struct elf_final_link_info *, const char *,
3642 Elf_Internal_Sym *, asection *));
3643static boolean elf_link_flush_output_syms
3644 PARAMS ((struct elf_final_link_info *));
3645static boolean elf_link_output_extsym
3646 PARAMS ((struct elf_link_hash_entry *, PTR));
3647static boolean elf_link_input_bfd
3648 PARAMS ((struct elf_final_link_info *, bfd *));
3649static boolean elf_reloc_link_order
3650 PARAMS ((bfd *, struct bfd_link_info *, asection *,
3651 struct bfd_link_order *));
3652
3653/* This struct is used to pass information to elf_link_output_extsym. */
3654
3655struct elf_outext_info
3656{
3657 boolean failed;
3658 boolean localsyms;
3659 struct elf_final_link_info *finfo;
3660};
3661
3662/* Do the final step of an ELF link. */
3663
3664boolean
3665elf_bfd_final_link (abfd, info)
3666 bfd *abfd;
3667 struct bfd_link_info *info;
3668{
3669 boolean dynamic;
3670 bfd *dynobj;
3671 struct elf_final_link_info finfo;
3672 register asection *o;
3673 register struct bfd_link_order *p;
3674 register bfd *sub;
3675 size_t max_contents_size;
3676 size_t max_external_reloc_size;
3677 size_t max_internal_reloc_count;
3678 size_t max_sym_count;
3679 file_ptr off;
3680 Elf_Internal_Sym elfsym;
3681 unsigned int i;
3682 Elf_Internal_Shdr *symtab_hdr;
3683 Elf_Internal_Shdr *symstrtab_hdr;
3684 struct elf_backend_data *bed = get_elf_backend_data (abfd);
3685 struct elf_outext_info eoinfo;
3686
3687 if (info->shared)
3688 abfd->flags |= DYNAMIC;
3689
3690 dynamic = elf_hash_table (info)->dynamic_sections_created;
3691 dynobj = elf_hash_table (info)->dynobj;
3692
3693 finfo.info = info;
3694 finfo.output_bfd = abfd;
3695 finfo.symstrtab = elf_stringtab_init ();
3696 if (finfo.symstrtab == NULL)
3697 return false;
3698
3699 if (! dynamic)
3700 {
3701 finfo.dynsym_sec = NULL;
3702 finfo.hash_sec = NULL;
3703 finfo.symver_sec = NULL;
3704 }
3705 else
3706 {
3707 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
3708 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
3709 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
3710 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
3711 /* Note that it is OK if symver_sec is NULL. */
3712 }
3713
3714 finfo.contents = NULL;
3715 finfo.external_relocs = NULL;
3716 finfo.internal_relocs = NULL;
3717 finfo.external_syms = NULL;
3718 finfo.internal_syms = NULL;
3719 finfo.indices = NULL;
3720 finfo.sections = NULL;
3721 finfo.symbuf = NULL;
3722 finfo.symbuf_count = 0;
3723
3724 /* Count up the number of relocations we will output for each output
3725 section, so that we know the sizes of the reloc sections. We
3726 also figure out some maximum sizes. */
3727 max_contents_size = 0;
3728 max_external_reloc_size = 0;
3729 max_internal_reloc_count = 0;
3730 max_sym_count = 0;
3731 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
3732 {
3733 o->reloc_count = 0;
3734
3735 for (p = o->link_order_head; p != NULL; p = p->next)
3736 {
3737 if (p->type == bfd_section_reloc_link_order
3738 || p->type == bfd_symbol_reloc_link_order)
3739 ++o->reloc_count;
3740 else if (p->type == bfd_indirect_link_order)
3741 {
3742 asection *sec;
3743
3744 sec = p->u.indirect.section;
3745
3746 /* Mark all sections which are to be included in the
3747 link. This will normally be every section. We need
3748 to do this so that we can identify any sections which
3749 the linker has decided to not include. */
3750 sec->linker_mark = true;
3751
3752 if (info->relocateable)
3753 o->reloc_count += sec->reloc_count;
3754
3755 if (sec->_raw_size > max_contents_size)
3756 max_contents_size = sec->_raw_size;
3757 if (sec->_cooked_size > max_contents_size)
3758 max_contents_size = sec->_cooked_size;
3759
3760 /* We are interested in just local symbols, not all
3761 symbols. */
3762 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
3763 && (sec->owner->flags & DYNAMIC) == 0)
3764 {
3765 size_t sym_count;
3766
3767 if (elf_bad_symtab (sec->owner))
3768 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
3769 / sizeof (Elf_External_Sym));
3770 else
3771 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
3772
3773 if (sym_count > max_sym_count)
3774 max_sym_count = sym_count;
3775
3776 if ((sec->flags & SEC_RELOC) != 0)
3777 {
3778 size_t ext_size;
3779
3780 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
3781 if (ext_size > max_external_reloc_size)
3782 max_external_reloc_size = ext_size;
3783 if (sec->reloc_count > max_internal_reloc_count)
3784 max_internal_reloc_count = sec->reloc_count;
3785 }
3786 }
3787 }
3788 }
3789
3790 if (o->reloc_count > 0)
3791 o->flags |= SEC_RELOC;
3792 else
3793 {
3794 /* Explicitly clear the SEC_RELOC flag. The linker tends to
3795 set it (this is probably a bug) and if it is set
3796 assign_section_numbers will create a reloc section. */
3797 o->flags &=~ SEC_RELOC;
3798 }
3799
3800 /* If the SEC_ALLOC flag is not set, force the section VMA to
3801 zero. This is done in elf_fake_sections as well, but forcing
3802 the VMA to 0 here will ensure that relocs against these
3803 sections are handled correctly. */
3804 if ((o->flags & SEC_ALLOC) == 0
3805 && ! o->user_set_vma)
3806 o->vma = 0;
3807 }
3808
3809 /* Figure out the file positions for everything but the symbol table
3810 and the relocs. We set symcount to force assign_section_numbers
3811 to create a symbol table. */
3812 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
3813 BFD_ASSERT (! abfd->output_has_begun);
3814 if (! _bfd_elf_compute_section_file_positions (abfd, info))
3815 goto error_return;
3816
3817 /* That created the reloc sections. Set their sizes, and assign
3818 them file positions, and allocate some buffers. */
3819 for (o = abfd->sections; o != NULL; o = o->next)
3820 {
3821 if ((o->flags & SEC_RELOC) != 0)
3822 {
3823 Elf_Internal_Shdr *rel_hdr;
3824 register struct elf_link_hash_entry **p, **pend;
3825
3826 rel_hdr = &elf_section_data (o)->rel_hdr;
3827
3828 rel_hdr->sh_size = rel_hdr->sh_entsize * o->reloc_count;
3829
3830 /* The contents field must last into write_object_contents,
3831 so we allocate it with bfd_alloc rather than malloc. */
3832 rel_hdr->contents = (PTR) bfd_alloc (abfd, rel_hdr->sh_size);
3833 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
3834 goto error_return;
3835
3836 p = ((struct elf_link_hash_entry **)
3837 bfd_malloc (o->reloc_count
3838 * sizeof (struct elf_link_hash_entry *)));
3839 if (p == NULL && o->reloc_count != 0)
3840 goto error_return;
3841 elf_section_data (o)->rel_hashes = p;
3842 pend = p + o->reloc_count;
3843 for (; p < pend; p++)
3844 *p = NULL;
3845
3846 /* Use the reloc_count field as an index when outputting the
3847 relocs. */
3848 o->reloc_count = 0;
3849 }
3850 }
3851
3852 _bfd_elf_assign_file_positions_for_relocs (abfd);
3853
3854 /* We have now assigned file positions for all the sections except
3855 .symtab and .strtab. We start the .symtab section at the current
3856 file position, and write directly to it. We build the .strtab
3857 section in memory. */
3858 bfd_get_symcount (abfd) = 0;
3859 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
3860 /* sh_name is set in prep_headers. */
3861 symtab_hdr->sh_type = SHT_SYMTAB;
3862 symtab_hdr->sh_flags = 0;
3863 symtab_hdr->sh_addr = 0;
3864 symtab_hdr->sh_size = 0;
3865 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
3866 /* sh_link is set in assign_section_numbers. */
3867 /* sh_info is set below. */
3868 /* sh_offset is set just below. */
3869 symtab_hdr->sh_addralign = 4; /* FIXME: system dependent? */
3870
3871 off = elf_tdata (abfd)->next_file_pos;
3872 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
3873
3874 /* Note that at this point elf_tdata (abfd)->next_file_pos is
3875 incorrect. We do not yet know the size of the .symtab section.
3876 We correct next_file_pos below, after we do know the size. */
3877
3878 /* Allocate a buffer to hold swapped out symbols. This is to avoid
3879 continuously seeking to the right position in the file. */
3880 if (! info->keep_memory || max_sym_count < 20)
3881 finfo.symbuf_size = 20;
3882 else
3883 finfo.symbuf_size = max_sym_count;
3884 finfo.symbuf = ((Elf_External_Sym *)
3885 bfd_malloc (finfo.symbuf_size * sizeof (Elf_External_Sym)));
3886 if (finfo.symbuf == NULL)
3887 goto error_return;
3888
3889 /* Start writing out the symbol table. The first symbol is always a
3890 dummy symbol. */
3891 if (info->strip != strip_all || info->relocateable)
3892 {
3893 elfsym.st_value = 0;
3894 elfsym.st_size = 0;
3895 elfsym.st_info = 0;
3896 elfsym.st_other = 0;
3897 elfsym.st_shndx = SHN_UNDEF;
3898 if (! elf_link_output_sym (&finfo, (const char *) NULL,
3899 &elfsym, bfd_und_section_ptr))
3900 goto error_return;
3901 }
3902
3903#if 0
3904 /* Some standard ELF linkers do this, but we don't because it causes
3905 bootstrap comparison failures. */
3906 /* Output a file symbol for the output file as the second symbol.
3907 We output this even if we are discarding local symbols, although
3908 I'm not sure if this is correct. */
3909 elfsym.st_value = 0;
3910 elfsym.st_size = 0;
3911 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
3912 elfsym.st_other = 0;
3913 elfsym.st_shndx = SHN_ABS;
3914 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
3915 &elfsym, bfd_abs_section_ptr))
3916 goto error_return;
3917#endif
3918
3919 /* Output a symbol for each section. We output these even if we are
3920 discarding local symbols, since they are used for relocs. These
3921 symbols have no names. We store the index of each one in the
3922 index field of the section, so that we can find it again when
3923 outputting relocs. */
3924 if (info->strip != strip_all || info->relocateable)
3925 {
3926 elfsym.st_size = 0;
3927 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
3928 elfsym.st_other = 0;
3929 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
3930 {
3931 o = section_from_elf_index (abfd, i);
3932 if (o != NULL)
3933 o->target_index = bfd_get_symcount (abfd);
3934 elfsym.st_shndx = i;
3935 if (info->relocateable || o == NULL)
3936 elfsym.st_value = 0;
3937 else
3938 elfsym.st_value = o->vma;
3939 if (! elf_link_output_sym (&finfo, (const char *) NULL,
3940 &elfsym, o))
3941 goto error_return;
3942 }
3943 }
3944
3945 /* Allocate some memory to hold information read in from the input
3946 files. */
3947 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
3948 finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
3949 finfo.internal_relocs = ((Elf_Internal_Rela *)
3950 bfd_malloc (max_internal_reloc_count
3951 * sizeof (Elf_Internal_Rela)));
3952 finfo.external_syms = ((Elf_External_Sym *)
3953 bfd_malloc (max_sym_count
3954 * sizeof (Elf_External_Sym)));
3955 finfo.internal_syms = ((Elf_Internal_Sym *)
3956 bfd_malloc (max_sym_count
3957 * sizeof (Elf_Internal_Sym)));
3958 finfo.indices = (long *) bfd_malloc (max_sym_count * sizeof (long));
3959 finfo.sections = ((asection **)
3960 bfd_malloc (max_sym_count * sizeof (asection *)));
3961 if ((finfo.contents == NULL && max_contents_size != 0)
3962 || (finfo.external_relocs == NULL && max_external_reloc_size != 0)
3963 || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0)
3964 || (finfo.external_syms == NULL && max_sym_count != 0)
3965 || (finfo.internal_syms == NULL && max_sym_count != 0)
3966 || (finfo.indices == NULL && max_sym_count != 0)
3967 || (finfo.sections == NULL && max_sym_count != 0))
3968 goto error_return;
3969
3970 /* Since ELF permits relocations to be against local symbols, we
3971 must have the local symbols available when we do the relocations.
3972 Since we would rather only read the local symbols once, and we
3973 would rather not keep them in memory, we handle all the
3974 relocations for a single input file at the same time.
3975
3976 Unfortunately, there is no way to know the total number of local
3977 symbols until we have seen all of them, and the local symbol
3978 indices precede the global symbol indices. This means that when
3979 we are generating relocateable output, and we see a reloc against
3980 a global symbol, we can not know the symbol index until we have
3981 finished examining all the local symbols to see which ones we are
3982 going to output. To deal with this, we keep the relocations in
3983 memory, and don't output them until the end of the link. This is
3984 an unfortunate waste of memory, but I don't see a good way around
3985 it. Fortunately, it only happens when performing a relocateable
3986 link, which is not the common case. FIXME: If keep_memory is set
3987 we could write the relocs out and then read them again; I don't
3988 know how bad the memory loss will be. */
3989
3990 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
3991 sub->output_has_begun = false;
3992 for (o = abfd->sections; o != NULL; o = o->next)
3993 {
3994 for (p = o->link_order_head; p != NULL; p = p->next)
3995 {
3996 if (p->type == bfd_indirect_link_order
3997 && (bfd_get_flavour (p->u.indirect.section->owner)
3998 == bfd_target_elf_flavour))
3999 {
4000 sub = p->u.indirect.section->owner;
4001 if (! sub->output_has_begun)
4002 {
4003 if (! elf_link_input_bfd (&finfo, sub))
4004 goto error_return;
4005 sub->output_has_begun = true;
4006 }
4007 }
4008 else if (p->type == bfd_section_reloc_link_order
4009 || p->type == bfd_symbol_reloc_link_order)
4010 {
4011 if (! elf_reloc_link_order (abfd, info, o, p))
4012 goto error_return;
4013 }
4014 else
4015 {
4016 if (! _bfd_default_link_order (abfd, info, o, p))
4017 goto error_return;
4018 }
4019 }
4020 }
4021
4022 /* That wrote out all the local symbols. Finish up the symbol table
4023 with the global symbols. */
4024
4025 if (info->strip != strip_all && info->shared)
4026 {
4027 /* Output any global symbols that got converted to local in a
4028 version script. We do this in a separate step since ELF
4029 requires all local symbols to appear prior to any global
4030 symbols. FIXME: We should only do this if some global
4031 symbols were, in fact, converted to become local. FIXME:
4032 Will this work correctly with the Irix 5 linker? */
4033 eoinfo.failed = false;
4034 eoinfo.finfo = &finfo;
4035 eoinfo.localsyms = true;
4036 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4037 (PTR) &eoinfo);
4038 if (eoinfo.failed)
4039 return false;
4040 }
4041
4042 /* The sh_info field records the index of the first non local
4043 symbol. */
4044 symtab_hdr->sh_info = bfd_get_symcount (abfd);
4045 if (dynamic)
4046 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info = 1;
4047
4048 /* We get the global symbols from the hash table. */
4049 eoinfo.failed = false;
4050 eoinfo.localsyms = false;
4051 eoinfo.finfo = &finfo;
4052 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4053 (PTR) &eoinfo);
4054 if (eoinfo.failed)
4055 return false;
4056
4057 /* Flush all symbols to the file. */
4058 if (! elf_link_flush_output_syms (&finfo))
4059 return false;
4060
4061 /* Now we know the size of the symtab section. */
4062 off += symtab_hdr->sh_size;
4063
4064 /* Finish up and write out the symbol string table (.strtab)
4065 section. */
4066 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
4067 /* sh_name was set in prep_headers. */
4068 symstrtab_hdr->sh_type = SHT_STRTAB;
4069 symstrtab_hdr->sh_flags = 0;
4070 symstrtab_hdr->sh_addr = 0;
4071 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
4072 symstrtab_hdr->sh_entsize = 0;
4073 symstrtab_hdr->sh_link = 0;
4074 symstrtab_hdr->sh_info = 0;
4075 /* sh_offset is set just below. */
4076 symstrtab_hdr->sh_addralign = 1;
4077
4078 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
4079 elf_tdata (abfd)->next_file_pos = off;
4080
4081 if (bfd_get_symcount (abfd) > 0)
4082 {
4083 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
4084 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
4085 return false;
4086 }
4087
4088 /* Adjust the relocs to have the correct symbol indices. */
4089 for (o = abfd->sections; o != NULL; o = o->next)
4090 {
4091 struct elf_link_hash_entry **rel_hash;
4092 Elf_Internal_Shdr *rel_hdr;
4093
4094 if ((o->flags & SEC_RELOC) == 0)
4095 continue;
4096
4097 rel_hash = elf_section_data (o)->rel_hashes;
4098 rel_hdr = &elf_section_data (o)->rel_hdr;
4099 for (i = 0; i < o->reloc_count; i++, rel_hash++)
4100 {
4101 if (*rel_hash == NULL)
4102 continue;
4103
4104 BFD_ASSERT ((*rel_hash)->indx >= 0);
4105
4106 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
4107 {
4108 Elf_External_Rel *erel;
4109 Elf_Internal_Rel irel;
4110
4111 erel = (Elf_External_Rel *) rel_hdr->contents + i;
4112 elf_swap_reloc_in (abfd, erel, &irel);
4113 irel.r_info = ELF_R_INFO ((*rel_hash)->indx,
4114 ELF_R_TYPE (irel.r_info));
4115 elf_swap_reloc_out (abfd, &irel, erel);
4116 }
4117 else
4118 {
4119 Elf_External_Rela *erela;
4120 Elf_Internal_Rela irela;
4121
4122 BFD_ASSERT (rel_hdr->sh_entsize
4123 == sizeof (Elf_External_Rela));
4124
4125 erela = (Elf_External_Rela *) rel_hdr->contents + i;
4126 elf_swap_reloca_in (abfd, erela, &irela);
4127 irela.r_info = ELF_R_INFO ((*rel_hash)->indx,
4128 ELF_R_TYPE (irela.r_info));
4129 elf_swap_reloca_out (abfd, &irela, erela);
4130 }
4131 }
4132
4133 /* Set the reloc_count field to 0 to prevent write_relocs from
4134 trying to swap the relocs out itself. */
4135 o->reloc_count = 0;
4136 }
4137
4138 /* If we are linking against a dynamic object, or generating a
4139 shared library, finish up the dynamic linking information. */
4140 if (dynamic)
4141 {
4142 Elf_External_Dyn *dyncon, *dynconend;
4143
4144 /* Fix up .dynamic entries. */
4145 o = bfd_get_section_by_name (dynobj, ".dynamic");
4146 BFD_ASSERT (o != NULL);
4147
4148 dyncon = (Elf_External_Dyn *) o->contents;
4149 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
4150 for (; dyncon < dynconend; dyncon++)
4151 {
4152 Elf_Internal_Dyn dyn;
4153 const char *name;
4154 unsigned int type;
4155
4156 elf_swap_dyn_in (dynobj, dyncon, &dyn);
4157
4158 switch (dyn.d_tag)
4159 {
4160 default:
4161 break;
4162
4163 /* SVR4 linkers seem to set DT_INIT and DT_FINI based on
4164 magic _init and _fini symbols. This is pretty ugly,
4165 but we are compatible. */
4166 case DT_INIT:
4167 name = "_init";
4168 goto get_sym;
4169 case DT_FINI:
4170 name = "_fini";
4171 get_sym:
4172 {
4173 struct elf_link_hash_entry *h;
4174
4175 h = elf_link_hash_lookup (elf_hash_table (info), name,
4176 false, false, true);
4177 if (h != NULL
4178 && (h->root.type == bfd_link_hash_defined
4179 || h->root.type == bfd_link_hash_defweak))
4180 {
4181 dyn.d_un.d_val = h->root.u.def.value;
4182 o = h->root.u.def.section;
4183 if (o->output_section != NULL)
4184 dyn.d_un.d_val += (o->output_section->vma
4185 + o->output_offset);
4186 else
4187 {
4188 /* The symbol is imported from another shared
4189 library and does not apply to this one. */
4190 dyn.d_un.d_val = 0;
4191 }
4192
4193 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4194 }
4195 }
4196 break;
4197
4198 case DT_HASH:
4199 name = ".hash";
4200 goto get_vma;
4201 case DT_STRTAB:
4202 name = ".dynstr";
4203 goto get_vma;
4204 case DT_SYMTAB:
4205 name = ".dynsym";
4206 goto get_vma;
4207 case DT_VERDEF:
4208 name = ".gnu.version_d";
4209 goto get_vma;
4210 case DT_VERNEED:
4211 name = ".gnu.version_r";
4212 goto get_vma;
4213 case DT_VERSYM:
4214 name = ".gnu.version";
4215 get_vma:
4216 o = bfd_get_section_by_name (abfd, name);
4217 BFD_ASSERT (o != NULL);
4218 dyn.d_un.d_ptr = o->vma;
4219 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4220 break;
4221
4222 case DT_REL:
4223 case DT_RELA:
4224 case DT_RELSZ:
4225 case DT_RELASZ:
4226 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
4227 type = SHT_REL;
4228 else
4229 type = SHT_RELA;
4230 dyn.d_un.d_val = 0;
4231 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4232 {
4233 Elf_Internal_Shdr *hdr;
4234
4235 hdr = elf_elfsections (abfd)[i];
4236 if (hdr->sh_type == type
4237 && (hdr->sh_flags & SHF_ALLOC) != 0)
4238 {
4239 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
4240 dyn.d_un.d_val += hdr->sh_size;
4241 else
4242 {
4243 if (dyn.d_un.d_val == 0
4244 || hdr->sh_addr < dyn.d_un.d_val)
4245 dyn.d_un.d_val = hdr->sh_addr;
4246 }
4247 }
4248 }
4249 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4250 break;
4251 }
4252 }
4253 }
4254
4255 /* If we have created any dynamic sections, then output them. */
4256 if (dynobj != NULL)
4257 {
4258 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
4259 goto error_return;
4260
4261 for (o = dynobj->sections; o != NULL; o = o->next)
4262 {
4263 if ((o->flags & SEC_HAS_CONTENTS) == 0
4264 || o->_raw_size == 0)
4265 continue;
4266 if ((o->flags & SEC_LINKER_CREATED) == 0)
4267 {
4268 /* At this point, we are only interested in sections
4269 created by elf_link_create_dynamic_sections. */
4270 continue;
4271 }
4272 if ((elf_section_data (o->output_section)->this_hdr.sh_type
4273 != SHT_STRTAB)
4274 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
4275 {
4276 if (! bfd_set_section_contents (abfd, o->output_section,
4277 o->contents, o->output_offset,
4278 o->_raw_size))
4279 goto error_return;
4280 }
4281 else
4282 {
4283 file_ptr off;
4284
4285 /* The contents of the .dynstr section are actually in a
4286 stringtab. */
4287 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
4288 if (bfd_seek (abfd, off, SEEK_SET) != 0
4289 || ! _bfd_stringtab_emit (abfd,
4290 elf_hash_table (info)->dynstr))
4291 goto error_return;
4292 }
4293 }
4294 }
4295
4296 /* If we have optimized stabs strings, output them. */
4297 if (elf_hash_table (info)->stab_info != NULL)
4298 {
4299 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
4300 goto error_return;
4301 }
4302
4303 if (finfo.symstrtab != NULL)
4304 _bfd_stringtab_free (finfo.symstrtab);
4305 if (finfo.contents != NULL)
4306 free (finfo.contents);
4307 if (finfo.external_relocs != NULL)
4308 free (finfo.external_relocs);
4309 if (finfo.internal_relocs != NULL)
4310 free (finfo.internal_relocs);
4311 if (finfo.external_syms != NULL)
4312 free (finfo.external_syms);
4313 if (finfo.internal_syms != NULL)
4314 free (finfo.internal_syms);
4315 if (finfo.indices != NULL)
4316 free (finfo.indices);
4317 if (finfo.sections != NULL)
4318 free (finfo.sections);
4319 if (finfo.symbuf != NULL)
4320 free (finfo.symbuf);
4321 for (o = abfd->sections; o != NULL; o = o->next)
4322 {
4323 if ((o->flags & SEC_RELOC) != 0
4324 && elf_section_data (o)->rel_hashes != NULL)
4325 free (elf_section_data (o)->rel_hashes);
4326 }
4327
4328 elf_tdata (abfd)->linker = true;
4329
4330 return true;
4331
4332 error_return:
4333 if (finfo.symstrtab != NULL)
4334 _bfd_stringtab_free (finfo.symstrtab);
4335 if (finfo.contents != NULL)
4336 free (finfo.contents);
4337 if (finfo.external_relocs != NULL)
4338 free (finfo.external_relocs);
4339 if (finfo.internal_relocs != NULL)
4340 free (finfo.internal_relocs);
4341 if (finfo.external_syms != NULL)
4342 free (finfo.external_syms);
4343 if (finfo.internal_syms != NULL)
4344 free (finfo.internal_syms);
4345 if (finfo.indices != NULL)
4346 free (finfo.indices);
4347 if (finfo.sections != NULL)
4348 free (finfo.sections);
4349 if (finfo.symbuf != NULL)
4350 free (finfo.symbuf);
4351 for (o = abfd->sections; o != NULL; o = o->next)
4352 {
4353 if ((o->flags & SEC_RELOC) != 0
4354 && elf_section_data (o)->rel_hashes != NULL)
4355 free (elf_section_data (o)->rel_hashes);
4356 }
4357
4358 return false;
4359}
4360
4361/* Add a symbol to the output symbol table. */
4362
4363static boolean
4364elf_link_output_sym (finfo, name, elfsym, input_sec)
4365 struct elf_final_link_info *finfo;
4366 const char *name;
4367 Elf_Internal_Sym *elfsym;
4368 asection *input_sec;
4369{
4370 boolean (*output_symbol_hook) PARAMS ((bfd *,
4371 struct bfd_link_info *info,
4372 const char *,
4373 Elf_Internal_Sym *,
4374 asection *));
4375
4376 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
4377 elf_backend_link_output_symbol_hook;
4378 if (output_symbol_hook != NULL)
4379 {
4380 if (! ((*output_symbol_hook)
4381 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
4382 return false;
4383 }
4384
4385 if (name == (const char *) NULL || *name == '\0')
4386 elfsym->st_name = 0;
4387 else if (input_sec->flags & SEC_EXCLUDE)
4388 elfsym->st_name = 0;
4389 else
4390 {
4391 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
4392 name, true,
4393 false);
4394 if (elfsym->st_name == (unsigned long) -1)
4395 return false;
4396 }
4397
4398 if (finfo->symbuf_count >= finfo->symbuf_size)
4399 {
4400 if (! elf_link_flush_output_syms (finfo))
4401 return false;
4402 }
4403
4404 elf_swap_symbol_out (finfo->output_bfd, elfsym,
4405 (PTR) (finfo->symbuf + finfo->symbuf_count));
4406 ++finfo->symbuf_count;
4407
4408 ++ bfd_get_symcount (finfo->output_bfd);
4409
4410 return true;
4411}
4412
4413/* Flush the output symbols to the file. */
4414
4415static boolean
4416elf_link_flush_output_syms (finfo)
4417 struct elf_final_link_info *finfo;
4418{
4419 if (finfo->symbuf_count > 0)
4420 {
4421 Elf_Internal_Shdr *symtab;
4422
4423 symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr;
4424
4425 if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size,
4426 SEEK_SET) != 0
4427 || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count,
4428 sizeof (Elf_External_Sym), finfo->output_bfd)
4429 != finfo->symbuf_count * sizeof (Elf_External_Sym)))
4430 return false;
4431
4432 symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym);
4433
4434 finfo->symbuf_count = 0;
4435 }
4436
4437 return true;
4438}
4439
4440/* Add an external symbol to the symbol table. This is called from
4441 the hash table traversal routine. When generating a shared object,
4442 we go through the symbol table twice. The first time we output
4443 anything that might have been forced to local scope in a version
4444 script. The second time we output the symbols that are still
4445 global symbols. */
4446
4447static boolean
4448elf_link_output_extsym (h, data)
4449 struct elf_link_hash_entry *h;
4450 PTR data;
4451{
4452 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
4453 struct elf_final_link_info *finfo = eoinfo->finfo;
4454 boolean strip;
4455 Elf_Internal_Sym sym;
4456 asection *input_sec;
4457
4458 /* Decide whether to output this symbol in this pass. */
4459 if (eoinfo->localsyms)
4460 {
4461 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
4462 return true;
4463 }
4464 else
4465 {
4466 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4467 return true;
4468 }
4469
4470 /* If we are not creating a shared library, and this symbol is
4471 referenced by a shared library but is not defined anywhere, then
4472 warn that it is undefined. If we do not do this, the runtime
4473 linker will complain that the symbol is undefined when the
4474 program is run. We don't have to worry about symbols that are
4475 referenced by regular files, because we will already have issued
4476 warnings for them. */
4477 if (! finfo->info->relocateable
4478 && ! (finfo->info->shared
4479 && !finfo->info->symbolic
4480 && !finfo->info->no_undefined)
4481 && h->root.type == bfd_link_hash_undefined
4482 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
4483 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4484 {
4485 if (! ((*finfo->info->callbacks->undefined_symbol)
4486 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
4487 (asection *) NULL, 0)))
4488 {
4489 eoinfo->failed = true;
4490 return false;
4491 }
4492 }
4493
4494 /* We don't want to output symbols that have never been mentioned by
4495 a regular file, or that we have been told to strip. However, if
4496 h->indx is set to -2, the symbol is used by a reloc and we must
4497 output it. */
4498 if (h->indx == -2)
4499 strip = false;
4500 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
4501 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
4502 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
4503 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4504 strip = true;
4505 else if (finfo->info->strip == strip_all
4506 || (finfo->info->strip == strip_some
4507 && bfd_hash_lookup (finfo->info->keep_hash,
4508 h->root.root.string,
4509 false, false) == NULL))
4510 strip = true;
4511 else
4512 strip = false;
4513
4514 /* If we're stripping it, and it's not a dynamic symbol, there's
4515 nothing else to do. */
4516 if (strip && h->dynindx == -1)
4517 return true;
4518
4519 sym.st_value = 0;
4520 sym.st_size = h->size;
4521 sym.st_other = h->other;
4522 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4523 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
4524 else if (h->root.type == bfd_link_hash_undefweak
4525 || h->root.type == bfd_link_hash_defweak)
4526 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
4527 else
4528 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
4529
4530 switch (h->root.type)
4531 {
4532 default:
4533 case bfd_link_hash_new:
4534 abort ();
4535 return false;
4536
4537 case bfd_link_hash_undefined:
4538 input_sec = bfd_und_section_ptr;
4539 sym.st_shndx = SHN_UNDEF;
4540 break;
4541
4542 case bfd_link_hash_undefweak:
4543 input_sec = bfd_und_section_ptr;
4544 sym.st_shndx = SHN_UNDEF;
4545 break;
4546
4547 case bfd_link_hash_defined:
4548 case bfd_link_hash_defweak:
4549 {
4550 input_sec = h->root.u.def.section;
4551 if (input_sec->output_section != NULL)
4552 {
4553 sym.st_shndx =
4554 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
4555 input_sec->output_section);
4556 if (sym.st_shndx == (unsigned short) -1)
4557 {
4558 (*_bfd_error_handler)
4559 (_("%s: could not find output section %s for input section %s"),
4560 bfd_get_filename (finfo->output_bfd),
4561 input_sec->output_section->name,
4562 input_sec->name);
4563 eoinfo->failed = true;
4564 return false;
4565 }
4566
4567 /* ELF symbols in relocateable files are section relative,
4568 but in nonrelocateable files they are virtual
4569 addresses. */
4570 sym.st_value = h->root.u.def.value + input_sec->output_offset;
4571 if (! finfo->info->relocateable)
4572 sym.st_value += input_sec->output_section->vma;
4573 }
4574 else
4575 {
4576 BFD_ASSERT (input_sec->owner == NULL
4577 || (input_sec->owner->flags & DYNAMIC) != 0);
4578 sym.st_shndx = SHN_UNDEF;
4579 input_sec = bfd_und_section_ptr;
4580 }
4581 }
4582 break;
4583
4584 case bfd_link_hash_common:
4585 input_sec = h->root.u.c.p->section;
4586 sym.st_shndx = SHN_COMMON;
4587 sym.st_value = 1 << h->root.u.c.p->alignment_power;
4588 break;
4589
4590 case bfd_link_hash_indirect:
4591 /* These symbols are created by symbol versioning. They point
4592 to the decorated version of the name. For example, if the
4593 symbol foo@@GNU_1.2 is the default, which should be used when
4594 foo is used with no version, then we add an indirect symbol
4595 foo which points to foo@@GNU_1.2. We ignore these symbols,
4596 since the indirected symbol is already in the hash table. If
4597 the indirect symbol is non-ELF, fall through and output it. */
4598 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) == 0)
4599 return true;
4600
4601 /* Fall through. */
4602 case bfd_link_hash_warning:
4603 /* We can't represent these symbols in ELF, although a warning
4604 symbol may have come from a .gnu.warning.SYMBOL section. We
4605 just put the target symbol in the hash table. If the target
4606 symbol does not really exist, don't do anything. */
4607 if (h->root.u.i.link->type == bfd_link_hash_new)
4608 return true;
4609 return (elf_link_output_extsym
4610 ((struct elf_link_hash_entry *) h->root.u.i.link, data));
4611 }
4612
4613 /* Give the processor backend a chance to tweak the symbol value,
4614 and also to finish up anything that needs to be done for this
4615 symbol. */
4616 if ((h->dynindx != -1
4617 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4618 && elf_hash_table (finfo->info)->dynamic_sections_created)
4619 {
4620 struct elf_backend_data *bed;
4621
4622 bed = get_elf_backend_data (finfo->output_bfd);
4623 if (! ((*bed->elf_backend_finish_dynamic_symbol)
4624 (finfo->output_bfd, finfo->info, h, &sym)))
4625 {
4626 eoinfo->failed = true;
4627 return false;
4628 }
4629 }
4630
4631 /* If we are marking the symbol as undefined, and there are no
4632 non-weak references to this symbol from a regular object, then
4633 mark the symbol as weak undefined. We can't do this earlier,
4634 because it might not be marked as undefined until the
4635 finish_dynamic_symbol routine gets through with it. */
4636 if (sym.st_shndx == SHN_UNDEF
4637 && sym.st_info == ELF_ST_INFO (STB_GLOBAL, h->type)
4638 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
4639 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) == 0)
4640 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
4641
4642 /* If this symbol should be put in the .dynsym section, then put it
4643 there now. We have already know the symbol index. We also fill
4644 in the entry in the .hash section. */
4645 if (h->dynindx != -1
4646 && elf_hash_table (finfo->info)->dynamic_sections_created)
4647 {
4648 size_t bucketcount;
4649 size_t bucket;
4650 bfd_byte *bucketpos;
4651 bfd_vma chain;
4652
4653 sym.st_name = h->dynstr_index;
4654
4655 elf_swap_symbol_out (finfo->output_bfd, &sym,
4656 (PTR) (((Elf_External_Sym *)
4657 finfo->dynsym_sec->contents)
4658 + h->dynindx));
4659
4660 bucketcount = elf_hash_table (finfo->info)->bucketcount;
4661 bucket = h->elf_hash_value % bucketcount;
4662 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
4663 + (bucket + 2) * (ARCH_SIZE / 8));
4664 chain = get_word (finfo->output_bfd, bucketpos);
4665 put_word (finfo->output_bfd, h->dynindx, bucketpos);
4666 put_word (finfo->output_bfd, chain,
4667 ((bfd_byte *) finfo->hash_sec->contents
4668 + (bucketcount + 2 + h->dynindx) * (ARCH_SIZE / 8)));
4669
4670 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
4671 {
4672 Elf_Internal_Versym iversym;
4673
4674 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4675 {
4676 if (h->verinfo.verdef == NULL)
4677 iversym.vs_vers = 0;
4678 else
4679 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
4680 }
4681 else
4682 {
4683 if (h->verinfo.vertree == NULL)
4684 iversym.vs_vers = 1;
4685 else
4686 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
4687 }
4688
4689 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
4690 iversym.vs_vers |= VERSYM_HIDDEN;
4691
4692 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym,
4693 (((Elf_External_Versym *)
4694 finfo->symver_sec->contents)
4695 + h->dynindx));
4696 }
4697 }
4698
4699 /* If we're stripping it, then it was just a dynamic symbol, and
4700 there's nothing else to do. */
4701 if (strip)
4702 return true;
4703
4704 h->indx = bfd_get_symcount (finfo->output_bfd);
4705
4706 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
4707 {
4708 eoinfo->failed = true;
4709 return false;
4710 }
4711
4712 return true;
4713}
4714
4715/* Link an input file into the linker output file. This function
4716 handles all the sections and relocations of the input file at once.
4717 This is so that we only have to read the local symbols once, and
4718 don't have to keep them in memory. */
4719
4720static boolean
4721elf_link_input_bfd (finfo, input_bfd)
4722 struct elf_final_link_info *finfo;
4723 bfd *input_bfd;
4724{
4725 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
4726 bfd *, asection *, bfd_byte *,
4727 Elf_Internal_Rela *,
4728 Elf_Internal_Sym *, asection **));
4729 bfd *output_bfd;
4730 Elf_Internal_Shdr *symtab_hdr;
4731 size_t locsymcount;
4732 size_t extsymoff;
4733 Elf_External_Sym *external_syms;
4734 Elf_External_Sym *esym;
4735 Elf_External_Sym *esymend;
4736 Elf_Internal_Sym *isym;
4737 long *pindex;
4738 asection **ppsection;
4739 asection *o;
4740
4741 output_bfd = finfo->output_bfd;
4742 relocate_section =
4743 get_elf_backend_data (output_bfd)->elf_backend_relocate_section;
4744
4745 /* If this is a dynamic object, we don't want to do anything here:
4746 we don't want the local symbols, and we don't want the section
4747 contents. */
4748 if ((input_bfd->flags & DYNAMIC) != 0)
4749 return true;
4750
4751 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4752 if (elf_bad_symtab (input_bfd))
4753 {
4754 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
4755 extsymoff = 0;
4756 }
4757 else
4758 {
4759 locsymcount = symtab_hdr->sh_info;
4760 extsymoff = symtab_hdr->sh_info;
4761 }
4762
4763 /* Read the local symbols. */
4764 if (symtab_hdr->contents != NULL)
4765 external_syms = (Elf_External_Sym *) symtab_hdr->contents;
4766 else if (locsymcount == 0)
4767 external_syms = NULL;
4768 else
4769 {
4770 external_syms = finfo->external_syms;
4771 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
4772 || (bfd_read (external_syms, sizeof (Elf_External_Sym),
4773 locsymcount, input_bfd)
4774 != locsymcount * sizeof (Elf_External_Sym)))
4775 return false;
4776 }
4777
4778 /* Swap in the local symbols and write out the ones which we know
4779 are going into the output file. */
4780 esym = external_syms;
4781 esymend = esym + locsymcount;
4782 isym = finfo->internal_syms;
4783 pindex = finfo->indices;
4784 ppsection = finfo->sections;
4785 for (; esym < esymend; esym++, isym++, pindex++, ppsection++)
4786 {
4787 asection *isec;
4788 const char *name;
4789 Elf_Internal_Sym osym;
4790
4791 elf_swap_symbol_in (input_bfd, esym, isym);
4792 *pindex = -1;
4793
4794 if (elf_bad_symtab (input_bfd))
4795 {
4796 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
4797 {
4798 *ppsection = NULL;
4799 continue;
4800 }
4801 }
4802
4803 if (isym->st_shndx == SHN_UNDEF)
4804 isec = bfd_und_section_ptr;
4805 else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE)
4806 isec = section_from_elf_index (input_bfd, isym->st_shndx);
4807 else if (isym->st_shndx == SHN_ABS)
4808 isec = bfd_abs_section_ptr;
4809 else if (isym->st_shndx == SHN_COMMON)
4810 isec = bfd_com_section_ptr;
4811 else
4812 {
4813 /* Who knows? */
4814 isec = NULL;
4815 }
4816
4817 *ppsection = isec;
4818
4819 /* Don't output the first, undefined, symbol. */
4820 if (esym == external_syms)
4821 continue;
4822
4823 /* If we are stripping all symbols, we don't want to output this
4824 one. */
4825 if (finfo->info->strip == strip_all)
4826 continue;
4827
4828 /* We never output section symbols. Instead, we use the section
4829 symbol of the corresponding section in the output file. */
4830 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4831 continue;
4832
4833 /* If we are discarding all local symbols, we don't want to
4834 output this one. If we are generating a relocateable output
4835 file, then some of the local symbols may be required by
4836 relocs; we output them below as we discover that they are
4837 needed. */
4838 if (finfo->info->discard == discard_all)
4839 continue;
4840
4841 /* If this symbol is defined in a section which we are
4842 discarding, we don't need to keep it, but note that
4843 linker_mark is only reliable for sections that have contents.
4844 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
4845 as well as linker_mark. */
4846 if (isym->st_shndx > 0
4847 && isym->st_shndx < SHN_LORESERVE
4848 && isec != NULL
4849 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
4850 || (! finfo->info->relocateable
4851 && (isec->flags & SEC_EXCLUDE) != 0)))
4852 continue;
4853
4854 /* Get the name of the symbol. */
4855 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
4856 isym->st_name);
4857 if (name == NULL)
4858 return false;
4859
4860 /* See if we are discarding symbols with this name. */
4861 if ((finfo->info->strip == strip_some
4862 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
4863 == NULL))
4864 || (finfo->info->discard == discard_l
4865 && bfd_is_local_label_name (input_bfd, name)))
4866 continue;
4867
4868 /* If we get here, we are going to output this symbol. */
4869
4870 osym = *isym;
4871
4872 /* Adjust the section index for the output file. */
4873 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
4874 isec->output_section);
4875 if (osym.st_shndx == (unsigned short) -1)
4876 return false;
4877
4878 *pindex = bfd_get_symcount (output_bfd);
4879
4880 /* ELF symbols in relocateable files are section relative, but
4881 in executable files they are virtual addresses. Note that
4882 this code assumes that all ELF sections have an associated
4883 BFD section with a reasonable value for output_offset; below
4884 we assume that they also have a reasonable value for
4885 output_section. Any special sections must be set up to meet
4886 these requirements. */
4887 osym.st_value += isec->output_offset;
4888 if (! finfo->info->relocateable)
4889 osym.st_value += isec->output_section->vma;
4890
4891 if (! elf_link_output_sym (finfo, name, &osym, isec))
4892 return false;
4893 }
4894
4895 /* Relocate the contents of each section. */
4896 for (o = input_bfd->sections; o != NULL; o = o->next)
4897 {
4898 bfd_byte *contents;
4899
4900 if (! o->linker_mark)
4901 {
4902 /* This section was omitted from the link. */
4903 continue;
4904 }
4905
4906 if ((o->flags & SEC_HAS_CONTENTS) == 0
4907 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
4908 continue;
4909
4910 if ((o->flags & SEC_LINKER_CREATED) != 0)
4911 {
4912 /* Section was created by elf_link_create_dynamic_sections
4913 or somesuch. */
4914 continue;
4915 }
4916
4917 /* Get the contents of the section. They have been cached by a
4918 relaxation routine. Note that o is a section in an input
4919 file, so the contents field will not have been set by any of
4920 the routines which work on output files. */
4921 if (elf_section_data (o)->this_hdr.contents != NULL)
4922 contents = elf_section_data (o)->this_hdr.contents;
4923 else
4924 {
4925 contents = finfo->contents;
4926 if (! bfd_get_section_contents (input_bfd, o, contents,
4927 (file_ptr) 0, o->_raw_size))
4928 return false;
4929 }
4930
4931 if ((o->flags & SEC_RELOC) != 0)
4932 {
4933 Elf_Internal_Rela *internal_relocs;
4934
4935 /* Get the swapped relocs. */
4936 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
4937 (input_bfd, o, finfo->external_relocs,
4938 finfo->internal_relocs, false));
4939 if (internal_relocs == NULL
4940 && o->reloc_count > 0)
4941 return false;
4942
4943 /* Relocate the section by invoking a back end routine.
4944
4945 The back end routine is responsible for adjusting the
4946 section contents as necessary, and (if using Rela relocs
4947 and generating a relocateable output file) adjusting the
4948 reloc addend as necessary.
4949
4950 The back end routine does not have to worry about setting
4951 the reloc address or the reloc symbol index.
4952
4953 The back end routine is given a pointer to the swapped in
4954 internal symbols, and can access the hash table entries
4955 for the external symbols via elf_sym_hashes (input_bfd).
4956
4957 When generating relocateable output, the back end routine
4958 must handle STB_LOCAL/STT_SECTION symbols specially. The
4959 output symbol is going to be a section symbol
4960 corresponding to the output section, which will require
4961 the addend to be adjusted. */
4962
4963 if (! (*relocate_section) (output_bfd, finfo->info,
4964 input_bfd, o, contents,
4965 internal_relocs,
4966 finfo->internal_syms,
4967 finfo->sections))
4968 return false;
4969
4970 if (finfo->info->relocateable)
4971 {
4972 Elf_Internal_Rela *irela;
4973 Elf_Internal_Rela *irelaend;
4974 struct elf_link_hash_entry **rel_hash;
4975 Elf_Internal_Shdr *input_rel_hdr;
4976 Elf_Internal_Shdr *output_rel_hdr;
4977
4978 /* Adjust the reloc addresses and symbol indices. */
4979
4980 irela = internal_relocs;
4981 irelaend = irela + o->reloc_count;
4982 rel_hash = (elf_section_data (o->output_section)->rel_hashes
4983 + o->output_section->reloc_count);
4984 for (; irela < irelaend; irela++, rel_hash++)
4985 {
4986 unsigned long r_symndx;
4987 Elf_Internal_Sym *isym;
4988 asection *sec;
4989
4990 irela->r_offset += o->output_offset;
4991
4992 r_symndx = ELF_R_SYM (irela->r_info);
4993
4994 if (r_symndx == 0)
4995 continue;
4996
4997 if (r_symndx >= locsymcount
4998 || (elf_bad_symtab (input_bfd)
4999 && finfo->sections[r_symndx] == NULL))
5000 {
5001 struct elf_link_hash_entry *rh;
5002 long indx;
5003
5004 /* This is a reloc against a global symbol. We
5005 have not yet output all the local symbols, so
5006 we do not know the symbol index of any global
5007 symbol. We set the rel_hash entry for this
5008 reloc to point to the global hash table entry
5009 for this symbol. The symbol index is then
5010 set at the end of elf_bfd_final_link. */
5011 indx = r_symndx - extsymoff;
5012 rh = elf_sym_hashes (input_bfd)[indx];
5013 while (rh->root.type == bfd_link_hash_indirect
5014 || rh->root.type == bfd_link_hash_warning)
5015 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
5016
5017 /* Setting the index to -2 tells
5018 elf_link_output_extsym that this symbol is
5019 used by a reloc. */
5020 BFD_ASSERT (rh->indx < 0);
5021 rh->indx = -2;
5022
5023 *rel_hash = rh;
5024
5025 continue;
5026 }
5027
5028 /* This is a reloc against a local symbol. */
5029
5030 *rel_hash = NULL;
5031 isym = finfo->internal_syms + r_symndx;
5032 sec = finfo->sections[r_symndx];
5033 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5034 {
5035 /* I suppose the backend ought to fill in the
5036 section of any STT_SECTION symbol against a
5037 processor specific section. If we have
5038 discarded a section, the output_section will
5039 be the absolute section. */
5040 if (sec != NULL
5041 && (bfd_is_abs_section (sec)
5042 || (sec->output_section != NULL
5043 && bfd_is_abs_section (sec->output_section))))
5044 r_symndx = 0;
5045 else if (sec == NULL || sec->owner == NULL)
5046 {
5047 bfd_set_error (bfd_error_bad_value);
5048 return false;
5049 }
5050 else
5051 {
5052 r_symndx = sec->output_section->target_index;
5053 BFD_ASSERT (r_symndx != 0);
5054 }
5055 }
5056 else
5057 {
5058 if (finfo->indices[r_symndx] == -1)
5059 {
5060 unsigned long link;
5061 const char *name;
5062 asection *osec;
5063
5064 if (finfo->info->strip == strip_all)
5065 {
5066 /* You can't do ld -r -s. */
5067 bfd_set_error (bfd_error_invalid_operation);
5068 return false;
5069 }
5070
5071 /* This symbol was skipped earlier, but
5072 since it is needed by a reloc, we
5073 must output it now. */
5074 link = symtab_hdr->sh_link;
5075 name = bfd_elf_string_from_elf_section (input_bfd,
5076 link,
5077 isym->st_name);
5078 if (name == NULL)
5079 return false;
5080
5081 osec = sec->output_section;
5082 isym->st_shndx =
5083 _bfd_elf_section_from_bfd_section (output_bfd,
5084 osec);
5085 if (isym->st_shndx == (unsigned short) -1)
5086 return false;
5087
5088 isym->st_value += sec->output_offset;
5089 if (! finfo->info->relocateable)
5090 isym->st_value += osec->vma;
5091
5092 finfo->indices[r_symndx] = bfd_get_symcount (output_bfd);
5093
5094 if (! elf_link_output_sym (finfo, name, isym, sec))
5095 return false;
5096 }
5097
5098 r_symndx = finfo->indices[r_symndx];
5099 }
5100
5101 irela->r_info = ELF_R_INFO (r_symndx,
5102 ELF_R_TYPE (irela->r_info));
5103 }
5104
5105 /* Swap out the relocs. */
5106 input_rel_hdr = &elf_section_data (o)->rel_hdr;
5107 output_rel_hdr = &elf_section_data (o->output_section)->rel_hdr;
5108 BFD_ASSERT (output_rel_hdr->sh_entsize
5109 == input_rel_hdr->sh_entsize);
5110 irela = internal_relocs;
5111 irelaend = irela + o->reloc_count;
5112 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
5113 {
5114 Elf_External_Rel *erel;
5115
5116 erel = ((Elf_External_Rel *) output_rel_hdr->contents
5117 + o->output_section->reloc_count);
5118 for (; irela < irelaend; irela++, erel++)
5119 {
5120 Elf_Internal_Rel irel;
5121
5122 irel.r_offset = irela->r_offset;
5123 irel.r_info = irela->r_info;
5124 BFD_ASSERT (irela->r_addend == 0);
5125 elf_swap_reloc_out (output_bfd, &irel, erel);
5126 }
5127 }
5128 else
5129 {
5130 Elf_External_Rela *erela;
5131
5132 BFD_ASSERT (input_rel_hdr->sh_entsize
5133 == sizeof (Elf_External_Rela));
5134 erela = ((Elf_External_Rela *) output_rel_hdr->contents
5135 + o->output_section->reloc_count);
5136 for (; irela < irelaend; irela++, erela++)
5137 elf_swap_reloca_out (output_bfd, irela, erela);
5138 }
5139
5140 o->output_section->reloc_count += o->reloc_count;
5141 }
5142 }
5143
5144 /* Write out the modified section contents. */
5145 if (elf_section_data (o)->stab_info == NULL)
5146 {
5147 if (! (o->flags & SEC_EXCLUDE) &&
5148 ! bfd_set_section_contents (output_bfd, o->output_section,
5149 contents, o->output_offset,
5150 (o->_cooked_size != 0
5151 ? o->_cooked_size
5152 : o->_raw_size)))
5153 return false;
5154 }
5155 else
5156 {
5157 if (! (_bfd_write_section_stabs
5158 (output_bfd, &elf_hash_table (finfo->info)->stab_info,
5159 o, &elf_section_data (o)->stab_info, contents)))
5160 return false;
5161 }
5162 }
5163
5164 return true;
5165}
5166
5167/* Generate a reloc when linking an ELF file. This is a reloc
5168 requested by the linker, and does come from any input file. This
5169 is used to build constructor and destructor tables when linking
5170 with -Ur. */
5171
5172static boolean
5173elf_reloc_link_order (output_bfd, info, output_section, link_order)
5174 bfd *output_bfd;
5175 struct bfd_link_info *info;
5176 asection *output_section;
5177 struct bfd_link_order *link_order;
5178{
5179 reloc_howto_type *howto;
5180 long indx;
5181 bfd_vma offset;
5182 bfd_vma addend;
5183 struct elf_link_hash_entry **rel_hash_ptr;
5184 Elf_Internal_Shdr *rel_hdr;
5185
5186 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
5187 if (howto == NULL)
5188 {
5189 bfd_set_error (bfd_error_bad_value);
5190 return false;
5191 }
5192
5193 addend = link_order->u.reloc.p->addend;
5194
5195 /* Figure out the symbol index. */
5196 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
5197 + output_section->reloc_count);
5198 if (link_order->type == bfd_section_reloc_link_order)
5199 {
5200 indx = link_order->u.reloc.p->u.section->target_index;
5201 BFD_ASSERT (indx != 0);
5202 *rel_hash_ptr = NULL;
5203 }
5204 else
5205 {
5206 struct elf_link_hash_entry *h;
5207
5208 /* Treat a reloc against a defined symbol as though it were
5209 actually against the section. */
5210 h = ((struct elf_link_hash_entry *)
5211 bfd_wrapped_link_hash_lookup (output_bfd, info,
5212 link_order->u.reloc.p->u.name,
5213 false, false, true));
5214 if (h != NULL
5215 && (h->root.type == bfd_link_hash_defined
5216 || h->root.type == bfd_link_hash_defweak))
5217 {
5218 asection *section;
5219
5220 section = h->root.u.def.section;
5221 indx = section->output_section->target_index;
5222 *rel_hash_ptr = NULL;
5223 /* It seems that we ought to add the symbol value to the
5224 addend here, but in practice it has already been added
5225 because it was passed to constructor_callback. */
5226 addend += section->output_section->vma + section->output_offset;
5227 }
5228 else if (h != NULL)
5229 {
5230 /* Setting the index to -2 tells elf_link_output_extsym that
5231 this symbol is used by a reloc. */
5232 h->indx = -2;
5233 *rel_hash_ptr = h;
5234 indx = 0;
5235 }
5236 else
5237 {
5238 if (! ((*info->callbacks->unattached_reloc)
5239 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
5240 (asection *) NULL, (bfd_vma) 0)))
5241 return false;
5242 indx = 0;
5243 }
5244 }
5245
5246 /* If this is an inplace reloc, we must write the addend into the
5247 object file. */
5248 if (howto->partial_inplace && addend != 0)
5249 {
5250 bfd_size_type size;
5251 bfd_reloc_status_type rstat;
5252 bfd_byte *buf;
5253 boolean ok;
5254
5255 size = bfd_get_reloc_size (howto);
5256 buf = (bfd_byte *) bfd_zmalloc (size);
5257 if (buf == (bfd_byte *) NULL)
5258 return false;
5259 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
5260 switch (rstat)
5261 {
5262 case bfd_reloc_ok:
5263 break;
5264 default:
5265 case bfd_reloc_outofrange:
5266 abort ();
5267 case bfd_reloc_overflow:
5268 if (! ((*info->callbacks->reloc_overflow)
5269 (info,
5270 (link_order->type == bfd_section_reloc_link_order
5271 ? bfd_section_name (output_bfd,
5272 link_order->u.reloc.p->u.section)
5273 : link_order->u.reloc.p->u.name),
5274 howto->name, addend, (bfd *) NULL, (asection *) NULL,
5275 (bfd_vma) 0)))
5276 {
5277 free (buf);
5278 return false;
5279 }
5280 break;
5281 }
5282 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
5283 (file_ptr) link_order->offset, size);
5284 free (buf);
5285 if (! ok)
5286 return false;
5287 }
5288
5289 /* The address of a reloc is relative to the section in a
5290 relocateable file, and is a virtual address in an executable
5291 file. */
5292 offset = link_order->offset;
5293 if (! info->relocateable)
5294 offset += output_section->vma;
5295
5296 rel_hdr = &elf_section_data (output_section)->rel_hdr;
5297
5298 if (rel_hdr->sh_type == SHT_REL)
5299 {
5300 Elf_Internal_Rel irel;
5301 Elf_External_Rel *erel;
5302
5303 irel.r_offset = offset;
5304 irel.r_info = ELF_R_INFO (indx, howto->type);
5305 erel = ((Elf_External_Rel *) rel_hdr->contents
5306 + output_section->reloc_count);
5307 elf_swap_reloc_out (output_bfd, &irel, erel);
5308 }
5309 else
5310 {
5311 Elf_Internal_Rela irela;
5312 Elf_External_Rela *erela;
5313
5314 irela.r_offset = offset;
5315 irela.r_info = ELF_R_INFO (indx, howto->type);
5316 irela.r_addend = addend;
5317 erela = ((Elf_External_Rela *) rel_hdr->contents
5318 + output_section->reloc_count);
5319 elf_swap_reloca_out (output_bfd, &irela, erela);
5320 }
5321
5322 ++output_section->reloc_count;
5323
5324 return true;
5325}
5326
5327\f
5328/* Allocate a pointer to live in a linker created section. */
5329
5330boolean
5331elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
5332 bfd *abfd;
5333 struct bfd_link_info *info;
5334 elf_linker_section_t *lsect;
5335 struct elf_link_hash_entry *h;
5336 const Elf_Internal_Rela *rel;
5337{
5338 elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
5339 elf_linker_section_pointers_t *linker_section_ptr;
5340 unsigned long r_symndx = ELF_R_SYM (rel->r_info);;
5341
5342 BFD_ASSERT (lsect != NULL);
5343
5344 /* Is this a global symbol? */
5345 if (h != NULL)
5346 {
5347 /* Has this symbol already been allocated, if so, our work is done */
5348 if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
5349 rel->r_addend,
5350 lsect->which))
5351 return true;
5352
5353 ptr_linker_section_ptr = &h->linker_section_pointer;
5354 /* Make sure this symbol is output as a dynamic symbol. */
5355 if (h->dynindx == -1)
5356 {
5357 if (! elf_link_record_dynamic_symbol (info, h))
5358 return false;
5359 }
5360
5361 if (lsect->rel_section)
5362 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
5363 }
5364
5365 else /* Allocation of a pointer to a local symbol */
5366 {
5367 elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
5368
5369 /* Allocate a table to hold the local symbols if first time */
5370 if (!ptr)
5371 {
5372 unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
5373 register unsigned int i;
5374
5375 ptr = (elf_linker_section_pointers_t **)
5376 bfd_alloc (abfd, num_symbols * sizeof (elf_linker_section_pointers_t *));
5377
5378 if (!ptr)
5379 return false;
5380
5381 elf_local_ptr_offsets (abfd) = ptr;
5382 for (i = 0; i < num_symbols; i++)
5383 ptr[i] = (elf_linker_section_pointers_t *)0;
5384 }
5385
5386 /* Has this symbol already been allocated, if so, our work is done */
5387 if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
5388 rel->r_addend,
5389 lsect->which))
5390 return true;
5391
5392 ptr_linker_section_ptr = &ptr[r_symndx];
5393
5394 if (info->shared)
5395 {
5396 /* If we are generating a shared object, we need to
5397 output a R_<xxx>_RELATIVE reloc so that the
5398 dynamic linker can adjust this GOT entry. */
5399 BFD_ASSERT (lsect->rel_section != NULL);
5400 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
5401 }
5402 }
5403
5404 /* Allocate space for a pointer in the linker section, and allocate a new pointer record
5405 from internal memory. */
5406 BFD_ASSERT (ptr_linker_section_ptr != NULL);
5407 linker_section_ptr = (elf_linker_section_pointers_t *)
5408 bfd_alloc (abfd, sizeof (elf_linker_section_pointers_t));
5409
5410 if (!linker_section_ptr)
5411 return false;
5412
5413 linker_section_ptr->next = *ptr_linker_section_ptr;
5414 linker_section_ptr->addend = rel->r_addend;
5415 linker_section_ptr->which = lsect->which;
5416 linker_section_ptr->written_address_p = false;
5417 *ptr_linker_section_ptr = linker_section_ptr;
5418
5419#if 0
5420 if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
5421 {
5422 linker_section_ptr->offset = lsect->section->_raw_size - lsect->hole_size + (ARCH_SIZE / 8);
5423 lsect->hole_offset += ARCH_SIZE / 8;
5424 lsect->sym_offset += ARCH_SIZE / 8;
5425 if (lsect->sym_hash) /* Bump up symbol value if needed */
5426 {
5427 lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
5428#ifdef DEBUG
5429 fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
5430 lsect->sym_hash->root.root.string,
5431 (long)ARCH_SIZE / 8,
5432 (long)lsect->sym_hash->root.u.def.value);
5433#endif
5434 }
5435 }
5436 else
5437#endif
5438 linker_section_ptr->offset = lsect->section->_raw_size;
5439
5440 lsect->section->_raw_size += ARCH_SIZE / 8;
5441
5442#ifdef DEBUG
5443 fprintf (stderr, "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
5444 lsect->name, (long)linker_section_ptr->offset, (long)lsect->section->_raw_size);
5445#endif
5446
5447 return true;
5448}
5449
5450\f
5451#if ARCH_SIZE==64
5452#define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
5453#endif
5454#if ARCH_SIZE==32
5455#define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
5456#endif
5457
5458/* Fill in the address for a pointer generated in alinker section. */
5459
5460bfd_vma
5461elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h, relocation, rel, relative_reloc)
5462 bfd *output_bfd;
5463 bfd *input_bfd;
5464 struct bfd_link_info *info;
5465 elf_linker_section_t *lsect;
5466 struct elf_link_hash_entry *h;
5467 bfd_vma relocation;
5468 const Elf_Internal_Rela *rel;
5469 int relative_reloc;
5470{
5471 elf_linker_section_pointers_t *linker_section_ptr;
5472
5473 BFD_ASSERT (lsect != NULL);
5474
5475 if (h != NULL) /* global symbol */
5476 {
5477 linker_section_ptr = _bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
5478 rel->r_addend,
5479 lsect->which);
5480
5481 BFD_ASSERT (linker_section_ptr != NULL);
5482
5483 if (! elf_hash_table (info)->dynamic_sections_created
5484 || (info->shared
5485 && info->symbolic
5486 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
5487 {
5488 /* This is actually a static link, or it is a
5489 -Bsymbolic link and the symbol is defined
5490 locally. We must initialize this entry in the
5491 global section.
5492
5493 When doing a dynamic link, we create a .rela.<xxx>
5494 relocation entry to initialize the value. This
5495 is done in the finish_dynamic_symbol routine. */
5496 if (!linker_section_ptr->written_address_p)
5497 {
5498 linker_section_ptr->written_address_p = true;
5499 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
5500 lsect->section->contents + linker_section_ptr->offset);
5501 }
5502 }
5503 }
5504 else /* local symbol */
5505 {
5506 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
5507 BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
5508 BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
5509 linker_section_ptr = _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd)[r_symndx],
5510 rel->r_addend,
5511 lsect->which);
5512
5513 BFD_ASSERT (linker_section_ptr != NULL);
5514
5515 /* Write out pointer if it hasn't been rewritten out before */
5516 if (!linker_section_ptr->written_address_p)
5517 {
5518 linker_section_ptr->written_address_p = true;
5519 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
5520 lsect->section->contents + linker_section_ptr->offset);
5521
5522 if (info->shared)
5523 {
5524 asection *srel = lsect->rel_section;
5525 Elf_Internal_Rela outrel;
5526
5527 /* We need to generate a relative reloc for the dynamic linker. */
5528 if (!srel)
5529 lsect->rel_section = srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
5530 lsect->rel_name);
5531
5532 BFD_ASSERT (srel != NULL);
5533
5534 outrel.r_offset = (lsect->section->output_section->vma
5535 + lsect->section->output_offset
5536 + linker_section_ptr->offset);
5537 outrel.r_info = ELF_R_INFO (0, relative_reloc);
5538 outrel.r_addend = 0;
5539 elf_swap_reloca_out (output_bfd, &outrel,
5540 (((Elf_External_Rela *)
5541 lsect->section->contents)
5542 + lsect->section->reloc_count));
5543 ++lsect->section->reloc_count;
5544 }
5545 }
5546 }
5547
5548 relocation = (lsect->section->output_offset
5549 + linker_section_ptr->offset
5550 - lsect->hole_offset
5551 - lsect->sym_offset);
5552
5553#ifdef DEBUG
5554 fprintf (stderr, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
5555 lsect->name, (long)relocation, (long)relocation);
5556#endif
5557
5558 /* Subtract out the addend, because it will get added back in by the normal
5559 processing. */
5560 return relocation - linker_section_ptr->addend;
5561}
5562\f
5563/* Garbage collect unused sections. */
5564
5565static boolean elf_gc_mark
5566 PARAMS ((struct bfd_link_info *info, asection *sec,
5567 asection * (*gc_mark_hook)
5568 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
5569 struct elf_link_hash_entry *, Elf_Internal_Sym *))));
5570
5571static boolean elf_gc_sweep
5572 PARAMS ((struct bfd_link_info *info,
5573 boolean (*gc_sweep_hook)
5574 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
5575 const Elf_Internal_Rela *relocs))));
5576
5577static boolean elf_gc_sweep_symbol
5578 PARAMS ((struct elf_link_hash_entry *h, PTR idxptr));
5579
5580static boolean elf_gc_allocate_got_offsets
5581 PARAMS ((struct elf_link_hash_entry *h, PTR offarg));
5582
5583static boolean elf_gc_propagate_vtable_entries_used
5584 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
5585
5586static boolean elf_gc_smash_unused_vtentry_relocs
5587 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
5588
5589/* The mark phase of garbage collection. For a given section, mark
5590 it, and all the sections which define symbols to which it refers. */
5591
5592static boolean
5593elf_gc_mark (info, sec, gc_mark_hook)
5594 struct bfd_link_info *info;
5595 asection *sec;
5596 asection * (*gc_mark_hook)
5597 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
5598 struct elf_link_hash_entry *, Elf_Internal_Sym *));
5599{
5600 boolean ret = true;
5601
5602 sec->gc_mark = 1;
5603
5604 /* Look through the section relocs. */
5605
5606 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
5607 {
5608 Elf_Internal_Rela *relstart, *rel, *relend;
5609 Elf_Internal_Shdr *symtab_hdr;
5610 struct elf_link_hash_entry **sym_hashes;
5611 size_t nlocsyms;
5612 size_t extsymoff;
5613 Elf_External_Sym *locsyms, *freesyms = NULL;
5614 bfd *input_bfd = sec->owner;
5615
5616 /* GCFIXME: how to arrange so that relocs and symbols are not
5617 reread continually? */
5618
5619 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5620 sym_hashes = elf_sym_hashes (input_bfd);
5621
5622 /* Read the local symbols. */
5623 if (elf_bad_symtab (input_bfd))
5624 {
5625 nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
5626 extsymoff = 0;
5627 }
5628 else
5629 extsymoff = nlocsyms = symtab_hdr->sh_info;
5630 if (symtab_hdr->contents)
5631 locsyms = (Elf_External_Sym *) symtab_hdr->contents;
5632 else if (nlocsyms == 0)
5633 locsyms = NULL;
5634 else
5635 {
5636 locsyms = freesyms =
5637 bfd_malloc (nlocsyms * sizeof (Elf_External_Sym));
5638 if (freesyms == NULL
5639 || bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
5640 || (bfd_read (locsyms, sizeof (Elf_External_Sym),
5641 nlocsyms, input_bfd)
5642 != nlocsyms * sizeof (Elf_External_Sym)))
5643 {
5644 ret = false;
5645 goto out1;
5646 }
5647 }
5648
5649 /* Read the relocations. */
5650 relstart = (NAME(_bfd_elf,link_read_relocs)
5651 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL,
5652 info->keep_memory));
5653 if (relstart == NULL)
5654 {
5655 ret = false;
5656 goto out1;
5657 }
5658 relend = relstart + sec->reloc_count;
5659
5660 for (rel = relstart; rel < relend; rel++)
5661 {
5662 unsigned long r_symndx;
5663 asection *rsec;
5664 struct elf_link_hash_entry *h;
5665 Elf_Internal_Sym s;
5666
5667 r_symndx = ELF_R_SYM (rel->r_info);
5668 if (r_symndx == 0)
5669 continue;
5670
5671 if (elf_bad_symtab (sec->owner))
5672 {
5673 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
5674 if (ELF_ST_BIND (s.st_info) == STB_LOCAL)
5675 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
5676 else
5677 {
5678 h = sym_hashes[r_symndx - extsymoff];
5679 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
5680 }
5681 }
5682 else if (r_symndx >= nlocsyms)
5683 {
5684 h = sym_hashes[r_symndx - extsymoff];
5685 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
5686 }
5687 else
5688 {
5689 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
5690 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
5691 }
5692
5693 if (rsec && !rsec->gc_mark)
5694 if (!elf_gc_mark (info, rsec, gc_mark_hook))
5695 {
5696 ret = false;
5697 goto out2;
5698 }
5699 }
5700
5701 out2:
5702 if (!info->keep_memory)
5703 free (relstart);
5704 out1:
5705 if (freesyms)
5706 free (freesyms);
5707 }
5708
5709 return ret;
5710}
5711
5712/* The sweep phase of garbage collection. Remove all garbage sections. */
5713
5714static boolean
5715elf_gc_sweep (info, gc_sweep_hook)
5716 struct bfd_link_info *info;
5717 boolean (*gc_sweep_hook)
5718 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
5719 const Elf_Internal_Rela *relocs));
5720{
5721 bfd *sub;
5722
5723 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
5724 {
5725 asection *o;
5726
5727 for (o = sub->sections; o != NULL; o = o->next)
5728 {
5729 /* Keep special sections. Keep .debug sections. */
5730 if ((o->flags & SEC_LINKER_CREATED)
5731 || (o->flags & SEC_DEBUGGING))
5732 o->gc_mark = 1;
5733
5734 if (o->gc_mark)
5735 continue;
5736
5737 /* Skip sweeping sections already excluded. */
5738 if (o->flags & SEC_EXCLUDE)
5739 continue;
5740
5741 /* Since this is early in the link process, it is simple
5742 to remove a section from the output. */
5743 o->flags |= SEC_EXCLUDE;
5744
5745 /* But we also have to update some of the relocation
5746 info we collected before. */
5747 if (gc_sweep_hook
5748 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
5749 {
5750 Elf_Internal_Rela *internal_relocs;
5751 boolean r;
5752
5753 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
5754 (o->owner, o, NULL, NULL, info->keep_memory));
5755 if (internal_relocs == NULL)
5756 return false;
5757
5758 r = (*gc_sweep_hook)(o->owner, info, o, internal_relocs);
5759
5760 if (!info->keep_memory)
5761 free (internal_relocs);
5762
5763 if (!r)
5764 return false;
5765 }
5766 }
5767 }
5768
5769 /* Remove the symbols that were in the swept sections from the dynamic
5770 symbol table. GCFIXME: Anyone know how to get them out of the
5771 static symbol table as well? */
5772 {
5773 int i = 0;
5774
5775 elf_link_hash_traverse (elf_hash_table (info),
5776 elf_gc_sweep_symbol,
5777 (PTR) &i);
5778
5779 elf_hash_table (info)->dynsymcount = i;
5780 }
5781
5782 return true;
5783}
5784
5785/* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
5786
5787static boolean
5788elf_gc_sweep_symbol (h, idxptr)
5789 struct elf_link_hash_entry *h;
5790 PTR idxptr;
5791{
5792 int *idx = (int *) idxptr;
5793
5794 if (h->dynindx != -1
5795 && ((h->root.type != bfd_link_hash_defined
5796 && h->root.type != bfd_link_hash_defweak)
5797 || h->root.u.def.section->gc_mark))
5798 h->dynindx = (*idx)++;
5799
5800 return true;
5801}
5802
5803/* Propogate collected vtable information. This is called through
5804 elf_link_hash_traverse. */
5805
5806static boolean
5807elf_gc_propagate_vtable_entries_used (h, okp)
5808 struct elf_link_hash_entry *h;
5809 PTR okp;
5810{
5811 /* Those that are not vtables. */
5812 if (h->vtable_parent == NULL)
5813 return true;
5814
5815 /* Those vtables that do not have parents, we cannot merge. */
5816 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
5817 return true;
5818
5819 /* If we've already been done, exit. */
5820 if (h->vtable_entries_used && h->vtable_entries_used[-1])
5821 return true;
5822
5823 /* Make sure the parent's table is up to date. */
5824 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
5825
5826 if (h->vtable_entries_used == NULL)
5827 {
5828 /* None of this table's entries were referenced. Re-use the
5829 parent's table. */
5830 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
5831 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
5832 }
5833 else
5834 {
5835 size_t n;
5836 boolean *cu, *pu;
5837
5838 /* Or the parent's entries into ours. */
5839 cu = h->vtable_entries_used;
5840 cu[-1] = true;
5841 pu = h->vtable_parent->vtable_entries_used;
5842 if (pu != NULL)
5843 {
5844 n = h->vtable_parent->vtable_entries_size / FILE_ALIGN;
5845 while (--n != 0)
5846 {
5847 if (*pu) *cu = true;
5848 pu++, cu++;
5849 }
5850 }
5851 }
5852
5853 return true;
5854}
5855
5856static boolean
5857elf_gc_smash_unused_vtentry_relocs (h, okp)
5858 struct elf_link_hash_entry *h;
5859 PTR okp;
5860{
5861 asection *sec;
5862 bfd_vma hstart, hend;
5863 Elf_Internal_Rela *relstart, *relend, *rel;
5864
5865 /* Take care of both those symbols that do not describe vtables as
5866 well as those that are not loaded. */
5867 if (h->vtable_parent == NULL)
5868 return true;
5869
5870 BFD_ASSERT (h->root.type == bfd_link_hash_defined
5871 || h->root.type == bfd_link_hash_defweak);
5872
5873 sec = h->root.u.def.section;
5874 hstart = h->root.u.def.value;
5875 hend = hstart + h->size;
5876
5877 relstart = (NAME(_bfd_elf,link_read_relocs)
5878 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
5879 if (!relstart)
5880 return *(boolean *)okp = false;
5881 relend = relstart + sec->reloc_count;
5882
5883 for (rel = relstart; rel < relend; ++rel)
5884 if (rel->r_offset >= hstart && rel->r_offset < hend)
5885 {
5886 /* If the entry is in use, do nothing. */
5887 if (h->vtable_entries_used
5888 && (rel->r_offset - hstart) < h->vtable_entries_size)
5889 {
5890 bfd_vma entry = (rel->r_offset - hstart) / FILE_ALIGN;
5891 if (h->vtable_entries_used[entry])
5892 continue;
5893 }
5894 /* Otherwise, kill it. */
5895 rel->r_offset = rel->r_info = rel->r_addend = 0;
5896 }
5897
5898 return true;
5899}
5900
5901/* Do mark and sweep of unused sections. */
5902
5903boolean
5904elf_gc_sections (abfd, info)
5905 bfd *abfd;
5906 struct bfd_link_info *info;
5907{
5908 boolean ok = true;
5909 bfd *sub;
5910 asection * (*gc_mark_hook)
5911 PARAMS ((bfd *abfd, struct bfd_link_info *, Elf_Internal_Rela *,
5912 struct elf_link_hash_entry *h, Elf_Internal_Sym *));
5913
5914 if (!get_elf_backend_data (abfd)->can_gc_sections
5915 || info->relocateable
5916 || elf_hash_table (info)->dynamic_sections_created)
5917 return true;
5918
5919 /* Apply transitive closure to the vtable entry usage info. */
5920 elf_link_hash_traverse (elf_hash_table (info),
5921 elf_gc_propagate_vtable_entries_used,
5922 (PTR) &ok);
5923 if (!ok)
5924 return false;
5925
5926 /* Kill the vtable relocations that were not used. */
5927 elf_link_hash_traverse (elf_hash_table (info),
5928 elf_gc_smash_unused_vtentry_relocs,
5929 (PTR) &ok);
5930 if (!ok)
5931 return false;
5932
5933 /* Grovel through relocs to find out who stays ... */
5934
5935 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
5936 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
5937 {
5938 asection *o;
5939 for (o = sub->sections; o != NULL; o = o->next)
5940 {
5941 if (o->flags & SEC_KEEP)
5942 if (!elf_gc_mark (info, o, gc_mark_hook))
5943 return false;
5944 }
5945 }
5946
5947 /* ... and mark SEC_EXCLUDE for those that go. */
5948 if (!elf_gc_sweep(info, get_elf_backend_data (abfd)->gc_sweep_hook))
5949 return false;
5950
5951 return true;
5952}
5953\f
5954/* Called from check_relocs to record the existance of a VTINHERIT reloc. */
5955
5956boolean
5957elf_gc_record_vtinherit (abfd, sec, h, offset)
5958 bfd *abfd;
5959 asection *sec;
5960 struct elf_link_hash_entry *h;
5961 bfd_vma offset;
5962{
5963 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
5964 struct elf_link_hash_entry **search, *child;
5965 bfd_size_type extsymcount;
5966
5967 /* The sh_info field of the symtab header tells us where the
5968 external symbols start. We don't care about the local symbols at
5969 this point. */
5970 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
5971 if (!elf_bad_symtab (abfd))
5972 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
5973
5974 sym_hashes = elf_sym_hashes (abfd);
5975 sym_hashes_end = sym_hashes + extsymcount;
5976
5977 /* Hunt down the child symbol, which is in this section at the same
5978 offset as the relocation. */
5979 for (search = sym_hashes; search != sym_hashes_end; ++search)
5980 {
5981 if ((child = *search) != NULL
5982 && (child->root.type == bfd_link_hash_defined
5983 || child->root.type == bfd_link_hash_defweak)
5984 && child->root.u.def.section == sec
5985 && child->root.u.def.value == offset)
5986 goto win;
5987 }
5988
5989 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
5990 bfd_get_filename (abfd), sec->name,
5991 (unsigned long)offset);
5992 bfd_set_error (bfd_error_invalid_operation);
5993 return false;
5994
5995win:
5996 if (!h)
5997 {
5998 /* This *should* only be the absolute section. It could potentially
5999 be that someone has defined a non-global vtable though, which
6000 would be bad. It isn't worth paging in the local symbols to be
6001 sure though; that case should simply be handled by the assembler. */
6002
6003 child->vtable_parent = (struct elf_link_hash_entry *) -1;
6004 }
6005 else
6006 child->vtable_parent = h;
6007
6008 return true;
6009}
6010
6011/* Called from check_relocs to record the existance of a VTENTRY reloc. */
6012
6013boolean
6014elf_gc_record_vtentry (abfd, sec, h, addend)
6015 bfd *abfd;
6016 asection *sec;
6017 struct elf_link_hash_entry *h;
6018 bfd_vma addend;
6019{
6020 if (addend >= h->vtable_entries_size)
6021 {
6022 size_t size, bytes;
6023 boolean *ptr = h->vtable_entries_used;
6024
6025 /* While the symbol is undefined, we have to be prepared to handle
6026 a zero size. */
6027 if (h->root.type == bfd_link_hash_undefined)
6028 size = addend;
6029 else
6030 {
6031 size = h->size;
6032 if (size < addend)
6033 {
6034 /* Oops! We've got a reference past the defined end of
6035 the table. This is probably a bug -- shall we warn? */
6036 size = addend;
6037 }
6038 }
6039
6040 /* Allocate one extra entry for use as a "done" flag for the
6041 consolidation pass. */
6042 bytes = (size / FILE_ALIGN + 1) * sizeof(boolean);
6043
6044 if (ptr)
6045 {
6046 size_t oldbytes;
6047
6048 ptr = realloc (ptr-1, bytes);
6049 if (ptr == NULL)
6050 return false;
6051
6052 oldbytes = (h->vtable_entries_size/FILE_ALIGN + 1) * sizeof(boolean);
6053 memset (ptr + oldbytes, 0, bytes - oldbytes);
6054 }
6055 else
6056 {
6057 ptr = calloc (1, bytes);
6058 if (ptr == NULL)
6059 return false;
6060 }
6061
6062 /* And arrange for that done flag to be at index -1. */
6063 h->vtable_entries_used = ptr+1;
6064 h->vtable_entries_size = size;
6065 }
6066 h->vtable_entries_used[addend / FILE_ALIGN] = true;
6067
6068 return true;
6069}
6070
6071/* And an accompanying bit to work out final got entry offsets once
6072 we're done. Should be called from final_link. */
6073
6074boolean
6075elf_gc_common_finalize_got_offsets (abfd, info)
6076 bfd *abfd;
6077 struct bfd_link_info *info;
6078{
6079 bfd *i;
6080 struct elf_backend_data *bed = get_elf_backend_data (abfd);
6081 bfd_vma gotoff;
6082
6083 /* The GOT offset is relative to the .got section, but the GOT header is
6084 put into the .got.plt section, if the backend uses it. */
6085 if (bed->want_got_plt)
6086 gotoff = 0;
6087 else
6088 gotoff = bed->got_header_size;
6089
6090 /* Do the local .got entries first. */
6091 for (i = info->input_bfds; i; i = i->link_next)
6092 {
6093 bfd_signed_vma *local_got = elf_local_got_refcounts (i);
6094 bfd_size_type j, locsymcount;
6095 Elf_Internal_Shdr *symtab_hdr;
6096
6097 if (!local_got)
6098 continue;
6099
6100 symtab_hdr = &elf_tdata (i)->symtab_hdr;
6101 if (elf_bad_symtab (i))
6102 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6103 else
6104 locsymcount = symtab_hdr->sh_info;
6105
6106 for (j = 0; j < locsymcount; ++j)
6107 {
6108 if (local_got[j] > 0)
6109 {
6110 local_got[j] = gotoff;
6111 gotoff += ARCH_SIZE / 8;
6112 }
6113 else
6114 local_got[j] = (bfd_vma) -1;
6115 }
6116 }
6117
6118 /* Then the global .got and .plt entries. */
6119 elf_link_hash_traverse (elf_hash_table (info),
6120 elf_gc_allocate_got_offsets,
6121 (PTR) &gotoff);
6122 return true;
6123}
6124
6125/* We need a special top-level link routine to convert got reference counts
6126 to real got offsets. */
6127
6128static boolean
6129elf_gc_allocate_got_offsets (h, offarg)
6130 struct elf_link_hash_entry *h;
6131 PTR offarg;
6132{
6133 bfd_vma *off = (bfd_vma *) offarg;
6134
6135 if (h->got.refcount > 0)
6136 {
6137 h->got.offset = off[0];
6138 off[0] += ARCH_SIZE / 8;
6139 }
6140 else
6141 h->got.offset = (bfd_vma) -1;
6142
6143 return true;
6144}
6145
6146/* Many folk need no more in the way of final link than this, once
6147 got entry reference counting is enabled. */
6148
6149boolean
6150elf_gc_common_final_link (abfd, info)
6151 bfd *abfd;
6152 struct bfd_link_info *info;
6153{
6154 if (!elf_gc_common_finalize_got_offsets (abfd, info))
6155 return false;
6156
6157 /* Invoke the regular ELF backend linker to do all the work. */
6158 return elf_bfd_final_link (abfd, info);
6159}
6160
6161/* This function will be called though elf_link_hash_traverse to store
6162 all hash value of the exported symbols in an array. */
6163
6164static boolean
6165elf_collect_hash_codes (h, data)
6166 struct elf_link_hash_entry *h;
6167 PTR data;
6168{
6169 unsigned long **valuep = (unsigned long **) data;
6170 const char *name;
6171 char *p;
6172 unsigned long ha;
6173 char *alc = NULL;
6174
6175 /* Ignore indirect symbols. These are added by the versioning code. */
6176 if (h->dynindx == -1)
6177 return true;
6178
6179 name = h->root.root.string;
6180 p = strchr (name, ELF_VER_CHR);
6181 if (p != NULL)
6182 {
6183 alc = bfd_malloc (p - name + 1);
6184 memcpy (alc, name, p - name);
6185 alc[p - name] = '\0';
6186 name = alc;
6187 }
6188
6189 /* Compute the hash value. */
6190 ha = bfd_elf_hash (name);
6191
6192 /* Store the found hash value in the array given as the argument. */
6193 *(*valuep)++ = ha;
6194
6195 /* And store it in the struct so that we can put it in the hash table
6196 later. */
6197 h->elf_hash_value = ha;
6198
6199 if (alc != NULL)
6200 free (alc);
6201
6202 return true;
6203}
This page took 0.284434 seconds and 4 git commands to generate.