Correctly handle Vtentry relocs.
[deliverable/binutils-gdb.git] / bfd / elflink.h
CommitLineData
252b5132
RH
1/* ELF linker support.
2 Copyright 1995, 1996, 1997, 1998, 1999 Free Software Foundation, Inc.
3
4This file is part of BFD, the Binary File Descriptor library.
5
6This program is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2 of the License, or
9(at your option) any later version.
10
11This program is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with this program; if not, write to the Free Software
18Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20/* ELF linker code. */
21
22/* This struct is used to pass information to routines called via
23 elf_link_hash_traverse which must return failure. */
24
25struct elf_info_failed
26{
27 boolean failed;
28 struct bfd_link_info *info;
29};
30
31static boolean elf_link_add_object_symbols
32 PARAMS ((bfd *, struct bfd_link_info *));
33static boolean elf_link_add_archive_symbols
34 PARAMS ((bfd *, struct bfd_link_info *));
35static boolean elf_merge_symbol
36 PARAMS ((bfd *, struct bfd_link_info *, const char *, Elf_Internal_Sym *,
37 asection **, bfd_vma *, struct elf_link_hash_entry **,
38 boolean *, boolean *, boolean *));
39static boolean elf_export_symbol
40 PARAMS ((struct elf_link_hash_entry *, PTR));
41static boolean elf_fix_symbol_flags
42 PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
43static boolean elf_adjust_dynamic_symbol
44 PARAMS ((struct elf_link_hash_entry *, PTR));
45static boolean elf_link_find_version_dependencies
46 PARAMS ((struct elf_link_hash_entry *, PTR));
47static boolean elf_link_find_version_dependencies
48 PARAMS ((struct elf_link_hash_entry *, PTR));
49static boolean elf_link_assign_sym_version
50 PARAMS ((struct elf_link_hash_entry *, PTR));
252b5132
RH
51static boolean elf_collect_hash_codes
52 PARAMS ((struct elf_link_hash_entry *, PTR));
6b5bd373
MM
53static boolean elf_link_read_relocs_from_section
54 PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *));
23bc299b
MM
55static void elf_link_output_relocs
56 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *));
57static boolean elf_link_size_reloc_section
58 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
31367b81
MM
59static void elf_link_adjust_relocs
60 PARAMS ((bfd *, Elf_Internal_Shdr *, unsigned int,
61 struct elf_link_hash_entry **));
252b5132
RH
62
63/* Given an ELF BFD, add symbols to the global hash table as
64 appropriate. */
65
66boolean
67elf_bfd_link_add_symbols (abfd, info)
68 bfd *abfd;
69 struct bfd_link_info *info;
70{
71 switch (bfd_get_format (abfd))
72 {
73 case bfd_object:
74 return elf_link_add_object_symbols (abfd, info);
75 case bfd_archive:
76 return elf_link_add_archive_symbols (abfd, info);
77 default:
78 bfd_set_error (bfd_error_wrong_format);
79 return false;
80 }
81}
82\f
83
84/* Add symbols from an ELF archive file to the linker hash table. We
85 don't use _bfd_generic_link_add_archive_symbols because of a
86 problem which arises on UnixWare. The UnixWare libc.so is an
87 archive which includes an entry libc.so.1 which defines a bunch of
88 symbols. The libc.so archive also includes a number of other
89 object files, which also define symbols, some of which are the same
90 as those defined in libc.so.1. Correct linking requires that we
91 consider each object file in turn, and include it if it defines any
92 symbols we need. _bfd_generic_link_add_archive_symbols does not do
93 this; it looks through the list of undefined symbols, and includes
94 any object file which defines them. When this algorithm is used on
95 UnixWare, it winds up pulling in libc.so.1 early and defining a
96 bunch of symbols. This means that some of the other objects in the
97 archive are not included in the link, which is incorrect since they
98 precede libc.so.1 in the archive.
99
100 Fortunately, ELF archive handling is simpler than that done by
101 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
102 oddities. In ELF, if we find a symbol in the archive map, and the
103 symbol is currently undefined, we know that we must pull in that
104 object file.
105
106 Unfortunately, we do have to make multiple passes over the symbol
107 table until nothing further is resolved. */
108
109static boolean
110elf_link_add_archive_symbols (abfd, info)
111 bfd *abfd;
112 struct bfd_link_info *info;
113{
114 symindex c;
115 boolean *defined = NULL;
116 boolean *included = NULL;
117 carsym *symdefs;
118 boolean loop;
119
120 if (! bfd_has_map (abfd))
121 {
122 /* An empty archive is a special case. */
123 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
124 return true;
125 bfd_set_error (bfd_error_no_armap);
126 return false;
127 }
128
129 /* Keep track of all symbols we know to be already defined, and all
130 files we know to be already included. This is to speed up the
131 second and subsequent passes. */
132 c = bfd_ardata (abfd)->symdef_count;
133 if (c == 0)
134 return true;
135 defined = (boolean *) bfd_malloc (c * sizeof (boolean));
136 included = (boolean *) bfd_malloc (c * sizeof (boolean));
137 if (defined == (boolean *) NULL || included == (boolean *) NULL)
138 goto error_return;
139 memset (defined, 0, c * sizeof (boolean));
140 memset (included, 0, c * sizeof (boolean));
141
142 symdefs = bfd_ardata (abfd)->symdefs;
143
144 do
145 {
146 file_ptr last;
147 symindex i;
148 carsym *symdef;
149 carsym *symdefend;
150
151 loop = false;
152 last = -1;
153
154 symdef = symdefs;
155 symdefend = symdef + c;
156 for (i = 0; symdef < symdefend; symdef++, i++)
157 {
158 struct elf_link_hash_entry *h;
159 bfd *element;
160 struct bfd_link_hash_entry *undefs_tail;
161 symindex mark;
162
163 if (defined[i] || included[i])
164 continue;
165 if (symdef->file_offset == last)
166 {
167 included[i] = true;
168 continue;
169 }
170
171 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
172 false, false, false);
173
174 if (h == NULL)
175 {
176 char *p, *copy;
177
178 /* If this is a default version (the name contains @@),
179 look up the symbol again without the version. The
180 effect is that references to the symbol without the
181 version will be matched by the default symbol in the
182 archive. */
183
184 p = strchr (symdef->name, ELF_VER_CHR);
185 if (p == NULL || p[1] != ELF_VER_CHR)
186 continue;
187
188 copy = bfd_alloc (abfd, p - symdef->name + 1);
189 if (copy == NULL)
190 goto error_return;
191 memcpy (copy, symdef->name, p - symdef->name);
192 copy[p - symdef->name] = '\0';
193
194 h = elf_link_hash_lookup (elf_hash_table (info), copy,
195 false, false, false);
196
197 bfd_release (abfd, copy);
198 }
199
200 if (h == NULL)
201 continue;
202
203 if (h->root.type != bfd_link_hash_undefined)
204 {
205 if (h->root.type != bfd_link_hash_undefweak)
206 defined[i] = true;
207 continue;
208 }
209
210 /* We need to include this archive member. */
211
212 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
213 if (element == (bfd *) NULL)
214 goto error_return;
215
216 if (! bfd_check_format (element, bfd_object))
217 goto error_return;
218
219 /* Doublecheck that we have not included this object
220 already--it should be impossible, but there may be
221 something wrong with the archive. */
222 if (element->archive_pass != 0)
223 {
224 bfd_set_error (bfd_error_bad_value);
225 goto error_return;
226 }
227 element->archive_pass = 1;
228
229 undefs_tail = info->hash->undefs_tail;
230
231 if (! (*info->callbacks->add_archive_element) (info, element,
232 symdef->name))
233 goto error_return;
234 if (! elf_link_add_object_symbols (element, info))
235 goto error_return;
236
237 /* If there are any new undefined symbols, we need to make
238 another pass through the archive in order to see whether
239 they can be defined. FIXME: This isn't perfect, because
240 common symbols wind up on undefs_tail and because an
241 undefined symbol which is defined later on in this pass
242 does not require another pass. This isn't a bug, but it
243 does make the code less efficient than it could be. */
244 if (undefs_tail != info->hash->undefs_tail)
245 loop = true;
246
247 /* Look backward to mark all symbols from this object file
248 which we have already seen in this pass. */
249 mark = i;
250 do
251 {
252 included[mark] = true;
253 if (mark == 0)
254 break;
255 --mark;
256 }
257 while (symdefs[mark].file_offset == symdef->file_offset);
258
259 /* We mark subsequent symbols from this object file as we go
260 on through the loop. */
261 last = symdef->file_offset;
262 }
263 }
264 while (loop);
265
266 free (defined);
267 free (included);
268
269 return true;
270
271 error_return:
272 if (defined != (boolean *) NULL)
273 free (defined);
274 if (included != (boolean *) NULL)
275 free (included);
276 return false;
277}
278
279/* This function is called when we want to define a new symbol. It
280 handles the various cases which arise when we find a definition in
281 a dynamic object, or when there is already a definition in a
282 dynamic object. The new symbol is described by NAME, SYM, PSEC,
283 and PVALUE. We set SYM_HASH to the hash table entry. We set
284 OVERRIDE if the old symbol is overriding a new definition. We set
285 TYPE_CHANGE_OK if it is OK for the type to change. We set
286 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
287 change, we mean that we shouldn't warn if the type or size does
288 change. */
289
290static boolean
291elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
292 override, type_change_ok, size_change_ok)
293 bfd *abfd;
294 struct bfd_link_info *info;
295 const char *name;
296 Elf_Internal_Sym *sym;
297 asection **psec;
298 bfd_vma *pvalue;
299 struct elf_link_hash_entry **sym_hash;
300 boolean *override;
301 boolean *type_change_ok;
302 boolean *size_change_ok;
303{
304 asection *sec;
305 struct elf_link_hash_entry *h;
306 int bind;
307 bfd *oldbfd;
308 boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
309
310 *override = false;
311
312 sec = *psec;
313 bind = ELF_ST_BIND (sym->st_info);
314
315 if (! bfd_is_und_section (sec))
316 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
317 else
318 h = ((struct elf_link_hash_entry *)
319 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
320 if (h == NULL)
321 return false;
322 *sym_hash = h;
323
324 /* This code is for coping with dynamic objects, and is only useful
325 if we are doing an ELF link. */
326 if (info->hash->creator != abfd->xvec)
327 return true;
328
329 /* For merging, we only care about real symbols. */
330
331 while (h->root.type == bfd_link_hash_indirect
332 || h->root.type == bfd_link_hash_warning)
333 h = (struct elf_link_hash_entry *) h->root.u.i.link;
334
335 /* If we just created the symbol, mark it as being an ELF symbol.
336 Other than that, there is nothing to do--there is no merge issue
337 with a newly defined symbol--so we just return. */
338
339 if (h->root.type == bfd_link_hash_new)
340 {
341 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
342 return true;
343 }
344
345 /* OLDBFD is a BFD associated with the existing symbol. */
346
347 switch (h->root.type)
348 {
349 default:
350 oldbfd = NULL;
351 break;
352
353 case bfd_link_hash_undefined:
354 case bfd_link_hash_undefweak:
355 oldbfd = h->root.u.undef.abfd;
356 break;
357
358 case bfd_link_hash_defined:
359 case bfd_link_hash_defweak:
360 oldbfd = h->root.u.def.section->owner;
361 break;
362
363 case bfd_link_hash_common:
364 oldbfd = h->root.u.c.p->section->owner;
365 break;
366 }
367
b4536acd
ILT
368 /* In cases involving weak versioned symbols, we may wind up trying
369 to merge a symbol with itself. Catch that here, to avoid the
370 confusion that results if we try to override a symbol with
accc7f69
ILT
371 itself. The additional tests catch cases like
372 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
373 dynamic object, which we do want to handle here. */
374 if (abfd == oldbfd
375 && ((abfd->flags & DYNAMIC) == 0
376 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
b4536acd
ILT
377 return true;
378
252b5132
RH
379 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
380 respectively, is from a dynamic object. */
381
382 if ((abfd->flags & DYNAMIC) != 0)
383 newdyn = true;
384 else
385 newdyn = false;
386
387 if (oldbfd == NULL || (oldbfd->flags & DYNAMIC) == 0)
388 olddyn = false;
389 else
390 olddyn = true;
391
392 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
393 respectively, appear to be a definition rather than reference. */
394
395 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
396 newdef = false;
397 else
398 newdef = true;
399
400 if (h->root.type == bfd_link_hash_undefined
401 || h->root.type == bfd_link_hash_undefweak
402 || h->root.type == bfd_link_hash_common)
403 olddef = false;
404 else
405 olddef = true;
406
407 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
408 symbol, respectively, appears to be a common symbol in a dynamic
409 object. If a symbol appears in an uninitialized section, and is
410 not weak, and is not a function, then it may be a common symbol
411 which was resolved when the dynamic object was created. We want
412 to treat such symbols specially, because they raise special
413 considerations when setting the symbol size: if the symbol
414 appears as a common symbol in a regular object, and the size in
415 the regular object is larger, we must make sure that we use the
416 larger size. This problematic case can always be avoided in C,
417 but it must be handled correctly when using Fortran shared
418 libraries.
419
420 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
421 likewise for OLDDYNCOMMON and OLDDEF.
422
423 Note that this test is just a heuristic, and that it is quite
424 possible to have an uninitialized symbol in a shared object which
425 is really a definition, rather than a common symbol. This could
426 lead to some minor confusion when the symbol really is a common
427 symbol in some regular object. However, I think it will be
428 harmless. */
429
430 if (newdyn
431 && newdef
432 && (sec->flags & SEC_ALLOC) != 0
433 && (sec->flags & SEC_LOAD) == 0
434 && sym->st_size > 0
435 && bind != STB_WEAK
436 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
437 newdyncommon = true;
438 else
439 newdyncommon = false;
440
441 if (olddyn
442 && olddef
443 && h->root.type == bfd_link_hash_defined
444 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
445 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
446 && (h->root.u.def.section->flags & SEC_LOAD) == 0
447 && h->size > 0
448 && h->type != STT_FUNC)
449 olddyncommon = true;
450 else
451 olddyncommon = false;
452
453 /* It's OK to change the type if either the existing symbol or the
454 new symbol is weak. */
455
456 if (h->root.type == bfd_link_hash_defweak
457 || h->root.type == bfd_link_hash_undefweak
458 || bind == STB_WEAK)
459 *type_change_ok = true;
460
461 /* It's OK to change the size if either the existing symbol or the
462 new symbol is weak, or if the old symbol is undefined. */
463
464 if (*type_change_ok
465 || h->root.type == bfd_link_hash_undefined)
466 *size_change_ok = true;
467
468 /* If both the old and the new symbols look like common symbols in a
469 dynamic object, set the size of the symbol to the larger of the
470 two. */
471
472 if (olddyncommon
473 && newdyncommon
474 && sym->st_size != h->size)
475 {
476 /* Since we think we have two common symbols, issue a multiple
477 common warning if desired. Note that we only warn if the
478 size is different. If the size is the same, we simply let
479 the old symbol override the new one as normally happens with
480 symbols defined in dynamic objects. */
481
482 if (! ((*info->callbacks->multiple_common)
483 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
484 h->size, abfd, bfd_link_hash_common, sym->st_size)))
485 return false;
486
487 if (sym->st_size > h->size)
488 h->size = sym->st_size;
489
490 *size_change_ok = true;
491 }
492
493 /* If we are looking at a dynamic object, and we have found a
494 definition, we need to see if the symbol was already defined by
495 some other object. If so, we want to use the existing
496 definition, and we do not want to report a multiple symbol
497 definition error; we do this by clobbering *PSEC to be
498 bfd_und_section_ptr.
499
500 We treat a common symbol as a definition if the symbol in the
501 shared library is a function, since common symbols always
502 represent variables; this can cause confusion in principle, but
503 any such confusion would seem to indicate an erroneous program or
504 shared library. We also permit a common symbol in a regular
0525d26e
ILT
505 object to override a weak symbol in a shared object.
506
507 We prefer a non-weak definition in a shared library to a weak
508 definition in the executable. */
252b5132
RH
509
510 if (newdyn
511 && newdef
512 && (olddef
513 || (h->root.type == bfd_link_hash_common
514 && (bind == STB_WEAK
0525d26e
ILT
515 || ELF_ST_TYPE (sym->st_info) == STT_FUNC)))
516 && (h->root.type != bfd_link_hash_defweak
517 || bind == STB_WEAK))
252b5132
RH
518 {
519 *override = true;
520 newdef = false;
521 newdyncommon = false;
522
523 *psec = sec = bfd_und_section_ptr;
524 *size_change_ok = true;
525
526 /* If we get here when the old symbol is a common symbol, then
527 we are explicitly letting it override a weak symbol or
528 function in a dynamic object, and we don't want to warn about
529 a type change. If the old symbol is a defined symbol, a type
530 change warning may still be appropriate. */
531
532 if (h->root.type == bfd_link_hash_common)
533 *type_change_ok = true;
534 }
535
536 /* Handle the special case of an old common symbol merging with a
537 new symbol which looks like a common symbol in a shared object.
538 We change *PSEC and *PVALUE to make the new symbol look like a
539 common symbol, and let _bfd_generic_link_add_one_symbol will do
540 the right thing. */
541
542 if (newdyncommon
543 && h->root.type == bfd_link_hash_common)
544 {
545 *override = true;
546 newdef = false;
547 newdyncommon = false;
548 *pvalue = sym->st_size;
549 *psec = sec = bfd_com_section_ptr;
550 *size_change_ok = true;
551 }
552
553 /* If the old symbol is from a dynamic object, and the new symbol is
554 a definition which is not from a dynamic object, then the new
555 symbol overrides the old symbol. Symbols from regular files
556 always take precedence over symbols from dynamic objects, even if
557 they are defined after the dynamic object in the link.
558
559 As above, we again permit a common symbol in a regular object to
560 override a definition in a shared object if the shared object
0525d26e
ILT
561 symbol is a function or is weak.
562
563 As above, we permit a non-weak definition in a shared object to
564 override a weak definition in a regular object. */
252b5132
RH
565
566 if (! newdyn
567 && (newdef
568 || (bfd_is_com_section (sec)
569 && (h->root.type == bfd_link_hash_defweak
570 || h->type == STT_FUNC)))
571 && olddyn
572 && olddef
0525d26e
ILT
573 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
574 && (bind != STB_WEAK
575 || h->root.type == bfd_link_hash_defweak))
252b5132
RH
576 {
577 /* Change the hash table entry to undefined, and let
578 _bfd_generic_link_add_one_symbol do the right thing with the
579 new definition. */
580
581 h->root.type = bfd_link_hash_undefined;
582 h->root.u.undef.abfd = h->root.u.def.section->owner;
583 *size_change_ok = true;
584
585 olddef = false;
586 olddyncommon = false;
587
588 /* We again permit a type change when a common symbol may be
589 overriding a function. */
590
591 if (bfd_is_com_section (sec))
592 *type_change_ok = true;
593
594 /* This union may have been set to be non-NULL when this symbol
595 was seen in a dynamic object. We must force the union to be
596 NULL, so that it is correct for a regular symbol. */
597
598 h->verinfo.vertree = NULL;
599
600 /* In this special case, if H is the target of an indirection,
601 we want the caller to frob with H rather than with the
602 indirect symbol. That will permit the caller to redefine the
603 target of the indirection, rather than the indirect symbol
604 itself. FIXME: This will break the -y option if we store a
605 symbol with a different name. */
606 *sym_hash = h;
607 }
608
609 /* Handle the special case of a new common symbol merging with an
610 old symbol that looks like it might be a common symbol defined in
611 a shared object. Note that we have already handled the case in
612 which a new common symbol should simply override the definition
613 in the shared library. */
614
615 if (! newdyn
616 && bfd_is_com_section (sec)
617 && olddyncommon)
618 {
619 /* It would be best if we could set the hash table entry to a
620 common symbol, but we don't know what to use for the section
621 or the alignment. */
622 if (! ((*info->callbacks->multiple_common)
623 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
624 h->size, abfd, bfd_link_hash_common, sym->st_size)))
625 return false;
626
627 /* If the predumed common symbol in the dynamic object is
628 larger, pretend that the new symbol has its size. */
629
630 if (h->size > *pvalue)
631 *pvalue = h->size;
632
633 /* FIXME: We no longer know the alignment required by the symbol
634 in the dynamic object, so we just wind up using the one from
635 the regular object. */
636
637 olddef = false;
638 olddyncommon = false;
639
640 h->root.type = bfd_link_hash_undefined;
641 h->root.u.undef.abfd = h->root.u.def.section->owner;
642
643 *size_change_ok = true;
644 *type_change_ok = true;
645
646 h->verinfo.vertree = NULL;
647 }
648
0525d26e
ILT
649 /* Handle the special case of a weak definition in a regular object
650 followed by a non-weak definition in a shared object. In this
b4536acd 651 case, we prefer the definition in the shared object. */
0525d26e 652 if (olddef
0525d26e
ILT
653 && h->root.type == bfd_link_hash_defweak
654 && newdef
655 && newdyn
656 && bind != STB_WEAK)
b4536acd
ILT
657 {
658 /* To make this work we have to frob the flags so that the rest
659 of the code does not think we are using the regular
660 definition. */
661 h->elf_link_hash_flags &= ~ ELF_LINK_HASH_DEF_REGULAR;
662 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
663
664 /* If H is the target of an indirection, we want the caller to
665 use H rather than the indirect symbol. Otherwise if we are
666 defining a new indirect symbol we will wind up attaching it
667 to the entry we are overriding. */
668 *sym_hash = h;
669 }
0525d26e
ILT
670
671 /* Handle the special case of a non-weak definition in a shared
672 object followed by a weak definition in a regular object. In
673 this case we prefer to definition in the shared object. To make
674 this work we have to tell the caller to not treat the new symbol
675 as a definition. */
676 if (olddef
677 && olddyn
678 && h->root.type != bfd_link_hash_defweak
679 && newdef
680 && ! newdyn
681 && bind == STB_WEAK)
682 *override = true;
683
252b5132
RH
684 return true;
685}
686
687/* Add symbols from an ELF object file to the linker hash table. */
688
689static boolean
690elf_link_add_object_symbols (abfd, info)
691 bfd *abfd;
692 struct bfd_link_info *info;
693{
694 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
695 const Elf_Internal_Sym *,
696 const char **, flagword *,
697 asection **, bfd_vma *));
698 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
699 asection *, const Elf_Internal_Rela *));
700 boolean collect;
701 Elf_Internal_Shdr *hdr;
702 size_t symcount;
703 size_t extsymcount;
704 size_t extsymoff;
705 Elf_External_Sym *buf = NULL;
706 struct elf_link_hash_entry **sym_hash;
707 boolean dynamic;
708 bfd_byte *dynver = NULL;
709 Elf_External_Versym *extversym = NULL;
710 Elf_External_Versym *ever;
711 Elf_External_Dyn *dynbuf = NULL;
712 struct elf_link_hash_entry *weaks;
713 Elf_External_Sym *esym;
714 Elf_External_Sym *esymend;
715
716 add_symbol_hook = get_elf_backend_data (abfd)->elf_add_symbol_hook;
717 collect = get_elf_backend_data (abfd)->collect;
718
719 if ((abfd->flags & DYNAMIC) == 0)
720 dynamic = false;
721 else
722 {
723 dynamic = true;
724
725 /* You can't use -r against a dynamic object. Also, there's no
726 hope of using a dynamic object which does not exactly match
727 the format of the output file. */
728 if (info->relocateable || info->hash->creator != abfd->xvec)
729 {
730 bfd_set_error (bfd_error_invalid_operation);
731 goto error_return;
732 }
733 }
734
735 /* As a GNU extension, any input sections which are named
736 .gnu.warning.SYMBOL are treated as warning symbols for the given
737 symbol. This differs from .gnu.warning sections, which generate
738 warnings when they are included in an output file. */
739 if (! info->shared)
740 {
741 asection *s;
742
743 for (s = abfd->sections; s != NULL; s = s->next)
744 {
745 const char *name;
746
747 name = bfd_get_section_name (abfd, s);
748 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
749 {
750 char *msg;
751 bfd_size_type sz;
752
753 name += sizeof ".gnu.warning." - 1;
754
755 /* If this is a shared object, then look up the symbol
756 in the hash table. If it is there, and it is already
757 been defined, then we will not be using the entry
758 from this shared object, so we don't need to warn.
759 FIXME: If we see the definition in a regular object
760 later on, we will warn, but we shouldn't. The only
761 fix is to keep track of what warnings we are supposed
762 to emit, and then handle them all at the end of the
763 link. */
764 if (dynamic && abfd->xvec == info->hash->creator)
765 {
766 struct elf_link_hash_entry *h;
767
768 h = elf_link_hash_lookup (elf_hash_table (info), name,
769 false, false, true);
770
771 /* FIXME: What about bfd_link_hash_common? */
772 if (h != NULL
773 && (h->root.type == bfd_link_hash_defined
774 || h->root.type == bfd_link_hash_defweak))
775 {
776 /* We don't want to issue this warning. Clobber
777 the section size so that the warning does not
778 get copied into the output file. */
779 s->_raw_size = 0;
780 continue;
781 }
782 }
783
784 sz = bfd_section_size (abfd, s);
785 msg = (char *) bfd_alloc (abfd, sz + 1);
786 if (msg == NULL)
787 goto error_return;
788
789 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
790 goto error_return;
791
792 msg[sz] = '\0';
793
794 if (! (_bfd_generic_link_add_one_symbol
795 (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
796 false, collect, (struct bfd_link_hash_entry **) NULL)))
797 goto error_return;
798
799 if (! info->relocateable)
800 {
801 /* Clobber the section size so that the warning does
802 not get copied into the output file. */
803 s->_raw_size = 0;
804 }
805 }
806 }
807 }
808
809 /* If this is a dynamic object, we always link against the .dynsym
810 symbol table, not the .symtab symbol table. The dynamic linker
811 will only see the .dynsym symbol table, so there is no reason to
812 look at .symtab for a dynamic object. */
813
814 if (! dynamic || elf_dynsymtab (abfd) == 0)
815 hdr = &elf_tdata (abfd)->symtab_hdr;
816 else
817 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
818
819 if (dynamic)
820 {
821 /* Read in any version definitions. */
822
823 if (! _bfd_elf_slurp_version_tables (abfd))
824 goto error_return;
825
826 /* Read in the symbol versions, but don't bother to convert them
827 to internal format. */
828 if (elf_dynversym (abfd) != 0)
829 {
830 Elf_Internal_Shdr *versymhdr;
831
832 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
833 extversym = (Elf_External_Versym *) bfd_malloc (hdr->sh_size);
834 if (extversym == NULL)
835 goto error_return;
836 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
837 || (bfd_read ((PTR) extversym, 1, versymhdr->sh_size, abfd)
838 != versymhdr->sh_size))
839 goto error_return;
840 }
841 }
842
843 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
844
845 /* The sh_info field of the symtab header tells us where the
846 external symbols start. We don't care about the local symbols at
847 this point. */
848 if (elf_bad_symtab (abfd))
849 {
850 extsymcount = symcount;
851 extsymoff = 0;
852 }
853 else
854 {
855 extsymcount = symcount - hdr->sh_info;
856 extsymoff = hdr->sh_info;
857 }
858
859 buf = ((Elf_External_Sym *)
860 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
861 if (buf == NULL && extsymcount != 0)
862 goto error_return;
863
864 /* We store a pointer to the hash table entry for each external
865 symbol. */
866 sym_hash = ((struct elf_link_hash_entry **)
867 bfd_alloc (abfd,
868 extsymcount * sizeof (struct elf_link_hash_entry *)));
869 if (sym_hash == NULL)
870 goto error_return;
871 elf_sym_hashes (abfd) = sym_hash;
872
873 if (! dynamic)
874 {
875 /* If we are creating a shared library, create all the dynamic
876 sections immediately. We need to attach them to something,
877 so we attach them to this BFD, provided it is the right
878 format. FIXME: If there are no input BFD's of the same
879 format as the output, we can't make a shared library. */
880 if (info->shared
881 && ! elf_hash_table (info)->dynamic_sections_created
882 && abfd->xvec == info->hash->creator)
883 {
884 if (! elf_link_create_dynamic_sections (abfd, info))
885 goto error_return;
886 }
887 }
888 else
889 {
890 asection *s;
891 boolean add_needed;
892 const char *name;
893 bfd_size_type oldsize;
894 bfd_size_type strindex;
895
896 /* Find the name to use in a DT_NEEDED entry that refers to this
897 object. If the object has a DT_SONAME entry, we use it.
898 Otherwise, if the generic linker stuck something in
899 elf_dt_name, we use that. Otherwise, we just use the file
900 name. If the generic linker put a null string into
901 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
902 there is a DT_SONAME entry. */
903 add_needed = true;
904 name = bfd_get_filename (abfd);
905 if (elf_dt_name (abfd) != NULL)
906 {
907 name = elf_dt_name (abfd);
908 if (*name == '\0')
909 add_needed = false;
910 }
911 s = bfd_get_section_by_name (abfd, ".dynamic");
912 if (s != NULL)
913 {
914 Elf_External_Dyn *extdyn;
915 Elf_External_Dyn *extdynend;
916 int elfsec;
917 unsigned long link;
918
919 dynbuf = (Elf_External_Dyn *) bfd_malloc ((size_t) s->_raw_size);
920 if (dynbuf == NULL)
921 goto error_return;
922
923 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
924 (file_ptr) 0, s->_raw_size))
925 goto error_return;
926
927 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
928 if (elfsec == -1)
929 goto error_return;
930 link = elf_elfsections (abfd)[elfsec]->sh_link;
931
932 extdyn = dynbuf;
933 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
934 for (; extdyn < extdynend; extdyn++)
935 {
936 Elf_Internal_Dyn dyn;
937
938 elf_swap_dyn_in (abfd, extdyn, &dyn);
939 if (dyn.d_tag == DT_SONAME)
940 {
941 name = bfd_elf_string_from_elf_section (abfd, link,
942 dyn.d_un.d_val);
943 if (name == NULL)
944 goto error_return;
945 }
946 if (dyn.d_tag == DT_NEEDED)
947 {
948 struct bfd_link_needed_list *n, **pn;
949 char *fnm, *anm;
950
951 n = ((struct bfd_link_needed_list *)
952 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
953 fnm = bfd_elf_string_from_elf_section (abfd, link,
954 dyn.d_un.d_val);
955 if (n == NULL || fnm == NULL)
956 goto error_return;
957 anm = bfd_alloc (abfd, strlen (fnm) + 1);
958 if (anm == NULL)
959 goto error_return;
960 strcpy (anm, fnm);
961 n->name = anm;
962 n->by = abfd;
963 n->next = NULL;
964 for (pn = &elf_hash_table (info)->needed;
965 *pn != NULL;
966 pn = &(*pn)->next)
967 ;
968 *pn = n;
969 }
970 }
971
972 free (dynbuf);
973 dynbuf = NULL;
974 }
975
976 /* We do not want to include any of the sections in a dynamic
977 object in the output file. We hack by simply clobbering the
978 list of sections in the BFD. This could be handled more
979 cleanly by, say, a new section flag; the existing
980 SEC_NEVER_LOAD flag is not the one we want, because that one
981 still implies that the section takes up space in the output
982 file. */
983 abfd->sections = NULL;
984 abfd->section_count = 0;
985
986 /* If this is the first dynamic object found in the link, create
987 the special sections required for dynamic linking. */
988 if (! elf_hash_table (info)->dynamic_sections_created)
989 {
990 if (! elf_link_create_dynamic_sections (abfd, info))
991 goto error_return;
992 }
993
994 if (add_needed)
995 {
996 /* Add a DT_NEEDED entry for this dynamic object. */
997 oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
998 strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name,
999 true, false);
1000 if (strindex == (bfd_size_type) -1)
1001 goto error_return;
1002
1003 if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
1004 {
1005 asection *sdyn;
1006 Elf_External_Dyn *dyncon, *dynconend;
1007
1008 /* The hash table size did not change, which means that
1009 the dynamic object name was already entered. If we
1010 have already included this dynamic object in the
1011 link, just ignore it. There is no reason to include
1012 a particular dynamic object more than once. */
1013 sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
1014 ".dynamic");
1015 BFD_ASSERT (sdyn != NULL);
1016
1017 dyncon = (Elf_External_Dyn *) sdyn->contents;
1018 dynconend = (Elf_External_Dyn *) (sdyn->contents +
1019 sdyn->_raw_size);
1020 for (; dyncon < dynconend; dyncon++)
1021 {
1022 Elf_Internal_Dyn dyn;
1023
1024 elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon,
1025 &dyn);
1026 if (dyn.d_tag == DT_NEEDED
1027 && dyn.d_un.d_val == strindex)
1028 {
1029 if (buf != NULL)
1030 free (buf);
1031 if (extversym != NULL)
1032 free (extversym);
1033 return true;
1034 }
1035 }
1036 }
1037
1038 if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
1039 goto error_return;
1040 }
1041
1042 /* Save the SONAME, if there is one, because sometimes the
1043 linker emulation code will need to know it. */
1044 if (*name == '\0')
1045 name = bfd_get_filename (abfd);
1046 elf_dt_name (abfd) = name;
1047 }
1048
1049 if (bfd_seek (abfd,
1050 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
1051 SEEK_SET) != 0
1052 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
1053 != extsymcount * sizeof (Elf_External_Sym)))
1054 goto error_return;
1055
1056 weaks = NULL;
1057
1058 ever = extversym != NULL ? extversym + extsymoff : NULL;
1059 esymend = buf + extsymcount;
1060 for (esym = buf;
1061 esym < esymend;
1062 esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
1063 {
1064 Elf_Internal_Sym sym;
1065 int bind;
1066 bfd_vma value;
1067 asection *sec;
1068 flagword flags;
1069 const char *name;
1070 struct elf_link_hash_entry *h;
1071 boolean definition;
1072 boolean size_change_ok, type_change_ok;
1073 boolean new_weakdef;
1074 unsigned int old_alignment;
1075
1076 elf_swap_symbol_in (abfd, esym, &sym);
1077
1078 flags = BSF_NO_FLAGS;
1079 sec = NULL;
1080 value = sym.st_value;
1081 *sym_hash = NULL;
1082
1083 bind = ELF_ST_BIND (sym.st_info);
1084 if (bind == STB_LOCAL)
1085 {
1086 /* This should be impossible, since ELF requires that all
1087 global symbols follow all local symbols, and that sh_info
1088 point to the first global symbol. Unfortunatealy, Irix 5
1089 screws this up. */
1090 continue;
1091 }
1092 else if (bind == STB_GLOBAL)
1093 {
1094 if (sym.st_shndx != SHN_UNDEF
1095 && sym.st_shndx != SHN_COMMON)
1096 flags = BSF_GLOBAL;
1097 else
1098 flags = 0;
1099 }
1100 else if (bind == STB_WEAK)
1101 flags = BSF_WEAK;
1102 else
1103 {
1104 /* Leave it up to the processor backend. */
1105 }
1106
1107 if (sym.st_shndx == SHN_UNDEF)
1108 sec = bfd_und_section_ptr;
1109 else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE)
1110 {
1111 sec = section_from_elf_index (abfd, sym.st_shndx);
1112 if (sec == NULL)
1113 sec = bfd_abs_section_ptr;
1114 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
1115 value -= sec->vma;
1116 }
1117 else if (sym.st_shndx == SHN_ABS)
1118 sec = bfd_abs_section_ptr;
1119 else if (sym.st_shndx == SHN_COMMON)
1120 {
1121 sec = bfd_com_section_ptr;
1122 /* What ELF calls the size we call the value. What ELF
1123 calls the value we call the alignment. */
1124 value = sym.st_size;
1125 }
1126 else
1127 {
1128 /* Leave it up to the processor backend. */
1129 }
1130
1131 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
1132 if (name == (const char *) NULL)
1133 goto error_return;
1134
1135 if (add_symbol_hook)
1136 {
1137 if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
1138 &value))
1139 goto error_return;
1140
1141 /* The hook function sets the name to NULL if this symbol
1142 should be skipped for some reason. */
1143 if (name == (const char *) NULL)
1144 continue;
1145 }
1146
1147 /* Sanity check that all possibilities were handled. */
1148 if (sec == (asection *) NULL)
1149 {
1150 bfd_set_error (bfd_error_bad_value);
1151 goto error_return;
1152 }
1153
1154 if (bfd_is_und_section (sec)
1155 || bfd_is_com_section (sec))
1156 definition = false;
1157 else
1158 definition = true;
1159
1160 size_change_ok = false;
1161 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
1162 old_alignment = 0;
1163 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1164 {
1165 Elf_Internal_Versym iver;
1166 unsigned int vernum = 0;
1167 boolean override;
1168
1169 if (ever != NULL)
1170 {
1171 _bfd_elf_swap_versym_in (abfd, ever, &iver);
1172 vernum = iver.vs_vers & VERSYM_VERSION;
1173
1174 /* If this is a hidden symbol, or if it is not version
1175 1, we append the version name to the symbol name.
1176 However, we do not modify a non-hidden absolute
1177 symbol, because it might be the version symbol
1178 itself. FIXME: What if it isn't? */
1179 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
1180 || (vernum > 1 && ! bfd_is_abs_section (sec)))
1181 {
1182 const char *verstr;
1183 int namelen, newlen;
1184 char *newname, *p;
1185
1186 if (sym.st_shndx != SHN_UNDEF)
1187 {
1188 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
1189 {
1190 (*_bfd_error_handler)
1191 (_("%s: %s: invalid version %u (max %d)"),
1192 bfd_get_filename (abfd), name, vernum,
1193 elf_tdata (abfd)->dynverdef_hdr.sh_info);
1194 bfd_set_error (bfd_error_bad_value);
1195 goto error_return;
1196 }
1197 else if (vernum > 1)
1198 verstr =
1199 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1200 else
1201 verstr = "";
1202 }
1203 else
1204 {
1205 /* We cannot simply test for the number of
1206 entries in the VERNEED section since the
1207 numbers for the needed versions do not start
1208 at 0. */
1209 Elf_Internal_Verneed *t;
1210
1211 verstr = NULL;
1212 for (t = elf_tdata (abfd)->verref;
1213 t != NULL;
1214 t = t->vn_nextref)
1215 {
1216 Elf_Internal_Vernaux *a;
1217
1218 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1219 {
1220 if (a->vna_other == vernum)
1221 {
1222 verstr = a->vna_nodename;
1223 break;
1224 }
1225 }
1226 if (a != NULL)
1227 break;
1228 }
1229 if (verstr == NULL)
1230 {
1231 (*_bfd_error_handler)
1232 (_("%s: %s: invalid needed version %d"),
1233 bfd_get_filename (abfd), name, vernum);
1234 bfd_set_error (bfd_error_bad_value);
1235 goto error_return;
1236 }
1237 }
1238
1239 namelen = strlen (name);
1240 newlen = namelen + strlen (verstr) + 2;
1241 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1242 ++newlen;
1243
1244 newname = (char *) bfd_alloc (abfd, newlen);
1245 if (newname == NULL)
1246 goto error_return;
1247 strcpy (newname, name);
1248 p = newname + namelen;
1249 *p++ = ELF_VER_CHR;
1250 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1251 *p++ = ELF_VER_CHR;
1252 strcpy (p, verstr);
1253
1254 name = newname;
1255 }
1256 }
1257
1258 if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value,
1259 sym_hash, &override, &type_change_ok,
1260 &size_change_ok))
1261 goto error_return;
1262
1263 if (override)
1264 definition = false;
1265
1266 h = *sym_hash;
1267 while (h->root.type == bfd_link_hash_indirect
1268 || h->root.type == bfd_link_hash_warning)
1269 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1270
1271 /* Remember the old alignment if this is a common symbol, so
1272 that we don't reduce the alignment later on. We can't
1273 check later, because _bfd_generic_link_add_one_symbol
1274 will set a default for the alignment which we want to
1275 override. */
1276 if (h->root.type == bfd_link_hash_common)
1277 old_alignment = h->root.u.c.p->alignment_power;
1278
1279 if (elf_tdata (abfd)->verdef != NULL
1280 && ! override
1281 && vernum > 1
1282 && definition)
1283 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
1284 }
1285
1286 if (! (_bfd_generic_link_add_one_symbol
1287 (info, abfd, name, flags, sec, value, (const char *) NULL,
1288 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
1289 goto error_return;
1290
1291 h = *sym_hash;
1292 while (h->root.type == bfd_link_hash_indirect
1293 || h->root.type == bfd_link_hash_warning)
1294 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1295 *sym_hash = h;
1296
1297 new_weakdef = false;
1298 if (dynamic
1299 && definition
1300 && (flags & BSF_WEAK) != 0
1301 && ELF_ST_TYPE (sym.st_info) != STT_FUNC
1302 && info->hash->creator->flavour == bfd_target_elf_flavour
1303 && h->weakdef == NULL)
1304 {
1305 /* Keep a list of all weak defined non function symbols from
1306 a dynamic object, using the weakdef field. Later in this
1307 function we will set the weakdef field to the correct
1308 value. We only put non-function symbols from dynamic
1309 objects on this list, because that happens to be the only
1310 time we need to know the normal symbol corresponding to a
1311 weak symbol, and the information is time consuming to
1312 figure out. If the weakdef field is not already NULL,
1313 then this symbol was already defined by some previous
1314 dynamic object, and we will be using that previous
1315 definition anyhow. */
1316
1317 h->weakdef = weaks;
1318 weaks = h;
1319 new_weakdef = true;
1320 }
1321
1322 /* Set the alignment of a common symbol. */
1323 if (sym.st_shndx == SHN_COMMON
1324 && h->root.type == bfd_link_hash_common)
1325 {
1326 unsigned int align;
1327
1328 align = bfd_log2 (sym.st_value);
1329 if (align > old_alignment)
1330 h->root.u.c.p->alignment_power = align;
1331 }
1332
1333 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1334 {
1335 int old_flags;
1336 boolean dynsym;
1337 int new_flag;
1338
1339 /* Remember the symbol size and type. */
1340 if (sym.st_size != 0
1341 && (definition || h->size == 0))
1342 {
1343 if (h->size != 0 && h->size != sym.st_size && ! size_change_ok)
1344 (*_bfd_error_handler)
1345 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1346 name, (unsigned long) h->size, (unsigned long) sym.st_size,
1347 bfd_get_filename (abfd));
1348
1349 h->size = sym.st_size;
1350 }
1351
1352 /* If this is a common symbol, then we always want H->SIZE
1353 to be the size of the common symbol. The code just above
1354 won't fix the size if a common symbol becomes larger. We
1355 don't warn about a size change here, because that is
1356 covered by --warn-common. */
1357 if (h->root.type == bfd_link_hash_common)
1358 h->size = h->root.u.c.size;
1359
1360 if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE
1361 && (definition || h->type == STT_NOTYPE))
1362 {
1363 if (h->type != STT_NOTYPE
1364 && h->type != ELF_ST_TYPE (sym.st_info)
1365 && ! type_change_ok)
1366 (*_bfd_error_handler)
1367 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1368 name, h->type, ELF_ST_TYPE (sym.st_info),
1369 bfd_get_filename (abfd));
1370
1371 h->type = ELF_ST_TYPE (sym.st_info);
1372 }
1373
1374 if (sym.st_other != 0
1375 && (definition || h->other == 0))
1376 h->other = sym.st_other;
1377
1378 /* Set a flag in the hash table entry indicating the type of
1379 reference or definition we just found. Keep a count of
1380 the number of dynamic symbols we find. A dynamic symbol
1381 is one which is referenced or defined by both a regular
1382 object and a shared object. */
1383 old_flags = h->elf_link_hash_flags;
1384 dynsym = false;
1385 if (! dynamic)
1386 {
1387 if (! definition)
1388 {
1389 new_flag = ELF_LINK_HASH_REF_REGULAR;
1390 if (bind != STB_WEAK)
1391 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
1392 }
1393 else
1394 new_flag = ELF_LINK_HASH_DEF_REGULAR;
1395 if (info->shared
1396 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
1397 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
1398 dynsym = true;
1399 }
1400 else
1401 {
1402 if (! definition)
1403 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
1404 else
1405 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
1406 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
1407 | ELF_LINK_HASH_REF_REGULAR)) != 0
1408 || (h->weakdef != NULL
1409 && ! new_weakdef
1410 && h->weakdef->dynindx != -1))
1411 dynsym = true;
1412 }
1413
1414 h->elf_link_hash_flags |= new_flag;
1415
1416 /* If this symbol has a version, and it is the default
1417 version, we create an indirect symbol from the default
1418 name to the fully decorated name. This will cause
1419 external references which do not specify a version to be
1420 bound to this version of the symbol. */
1421 if (definition)
1422 {
1423 char *p;
1424
1425 p = strchr (name, ELF_VER_CHR);
1426 if (p != NULL && p[1] == ELF_VER_CHR)
1427 {
1428 char *shortname;
1429 struct elf_link_hash_entry *hi;
1430 boolean override;
1431
1432 shortname = bfd_hash_allocate (&info->hash->table,
1433 p - name + 1);
1434 if (shortname == NULL)
1435 goto error_return;
1436 strncpy (shortname, name, p - name);
1437 shortname[p - name] = '\0';
1438
1439 /* We are going to create a new symbol. Merge it
1440 with any existing symbol with this name. For the
1441 purposes of the merge, act as though we were
1442 defining the symbol we just defined, although we
1443 actually going to define an indirect symbol. */
1444 type_change_ok = false;
1445 size_change_ok = false;
1446 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1447 &value, &hi, &override,
1448 &type_change_ok, &size_change_ok))
1449 goto error_return;
1450
1451 if (! override)
1452 {
1453 if (! (_bfd_generic_link_add_one_symbol
1454 (info, abfd, shortname, BSF_INDIRECT,
1455 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1456 collect, (struct bfd_link_hash_entry **) &hi)))
1457 goto error_return;
1458 }
1459 else
1460 {
1461 /* In this case the symbol named SHORTNAME is
1462 overriding the indirect symbol we want to
1463 add. We were planning on making SHORTNAME an
1464 indirect symbol referring to NAME. SHORTNAME
1465 is the name without a version. NAME is the
1466 fully versioned name, and it is the default
1467 version.
1468
1469 Overriding means that we already saw a
1470 definition for the symbol SHORTNAME in a
1471 regular object, and it is overriding the
1472 symbol defined in the dynamic object.
1473
1474 When this happens, we actually want to change
1475 NAME, the symbol we just added, to refer to
1476 SHORTNAME. This will cause references to
1477 NAME in the shared object to become
1478 references to SHORTNAME in the regular
1479 object. This is what we expect when we
1480 override a function in a shared object: that
1481 the references in the shared object will be
1482 mapped to the definition in the regular
1483 object. */
1484
1485 while (hi->root.type == bfd_link_hash_indirect
1486 || hi->root.type == bfd_link_hash_warning)
1487 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1488
1489 h->root.type = bfd_link_hash_indirect;
1490 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1491 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1492 {
1493 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1494 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1495 if (hi->elf_link_hash_flags
1496 & (ELF_LINK_HASH_REF_REGULAR
1497 | ELF_LINK_HASH_DEF_REGULAR))
1498 {
1499 if (! _bfd_elf_link_record_dynamic_symbol (info,
1500 hi))
1501 goto error_return;
1502 }
1503 }
1504
1505 /* Now set HI to H, so that the following code
1506 will set the other fields correctly. */
1507 hi = h;
1508 }
1509
1510 /* If there is a duplicate definition somewhere,
1511 then HI may not point to an indirect symbol. We
1512 will have reported an error to the user in that
1513 case. */
1514
1515 if (hi->root.type == bfd_link_hash_indirect)
1516 {
1517 struct elf_link_hash_entry *ht;
1518
1519 /* If the symbol became indirect, then we assume
1520 that we have not seen a definition before. */
1521 BFD_ASSERT ((hi->elf_link_hash_flags
1522 & (ELF_LINK_HASH_DEF_DYNAMIC
1523 | ELF_LINK_HASH_DEF_REGULAR))
1524 == 0);
1525
1526 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1527
1528 /* Copy down any references that we may have
1529 already seen to the symbol which just became
1530 indirect. */
1531 ht->elf_link_hash_flags |=
1532 (hi->elf_link_hash_flags
1533 & (ELF_LINK_HASH_REF_DYNAMIC
1534 | ELF_LINK_HASH_REF_REGULAR
1535 | ELF_LINK_HASH_REF_REGULAR_NONWEAK));
1536
1537 /* Copy over the global and procedure linkage table
1538 offset entries. These may have been already set
1539 up by a check_relocs routine. */
1540 if (ht->got.offset == (bfd_vma) -1)
1541 {
1542 ht->got.offset = hi->got.offset;
1543 hi->got.offset = (bfd_vma) -1;
1544 }
1545 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1546
1547 if (ht->plt.offset == (bfd_vma) -1)
1548 {
1549 ht->plt.offset = hi->plt.offset;
1550 hi->plt.offset = (bfd_vma) -1;
1551 }
1552 BFD_ASSERT (hi->plt.offset == (bfd_vma) -1);
1553
1554 if (ht->dynindx == -1)
1555 {
1556 ht->dynindx = hi->dynindx;
1557 ht->dynstr_index = hi->dynstr_index;
1558 hi->dynindx = -1;
1559 hi->dynstr_index = 0;
1560 }
1561 BFD_ASSERT (hi->dynindx == -1);
1562
1563 /* FIXME: There may be other information to copy
1564 over for particular targets. */
1565
1566 /* See if the new flags lead us to realize that
1567 the symbol must be dynamic. */
1568 if (! dynsym)
1569 {
1570 if (! dynamic)
1571 {
1572 if (info->shared
1573 || ((hi->elf_link_hash_flags
1574 & ELF_LINK_HASH_REF_DYNAMIC)
1575 != 0))
1576 dynsym = true;
1577 }
1578 else
1579 {
1580 if ((hi->elf_link_hash_flags
1581 & ELF_LINK_HASH_REF_REGULAR) != 0)
1582 dynsym = true;
1583 }
1584 }
1585 }
1586
1587 /* We also need to define an indirection from the
1588 nondefault version of the symbol. */
1589
1590 shortname = bfd_hash_allocate (&info->hash->table,
1591 strlen (name));
1592 if (shortname == NULL)
1593 goto error_return;
1594 strncpy (shortname, name, p - name);
1595 strcpy (shortname + (p - name), p + 1);
1596
1597 /* Once again, merge with any existing symbol. */
1598 type_change_ok = false;
1599 size_change_ok = false;
1600 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1601 &value, &hi, &override,
1602 &type_change_ok, &size_change_ok))
1603 goto error_return;
1604
1605 if (override)
1606 {
1607 /* Here SHORTNAME is a versioned name, so we
1608 don't expect to see the type of override we
1609 do in the case above. */
1610 (*_bfd_error_handler)
1611 (_("%s: warning: unexpected redefinition of `%s'"),
1612 bfd_get_filename (abfd), shortname);
1613 }
1614 else
1615 {
1616 if (! (_bfd_generic_link_add_one_symbol
1617 (info, abfd, shortname, BSF_INDIRECT,
1618 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1619 collect, (struct bfd_link_hash_entry **) &hi)))
1620 goto error_return;
1621
1622 /* If there is a duplicate definition somewhere,
1623 then HI may not point to an indirect symbol.
1624 We will have reported an error to the user in
1625 that case. */
1626
1627 if (hi->root.type == bfd_link_hash_indirect)
1628 {
1629 /* If the symbol became indirect, then we
1630 assume that we have not seen a definition
1631 before. */
1632 BFD_ASSERT ((hi->elf_link_hash_flags
1633 & (ELF_LINK_HASH_DEF_DYNAMIC
1634 | ELF_LINK_HASH_DEF_REGULAR))
1635 == 0);
1636
1637 /* Copy down any references that we may have
1638 already seen to the symbol which just
1639 became indirect. */
1640 h->elf_link_hash_flags |=
1641 (hi->elf_link_hash_flags
1642 & (ELF_LINK_HASH_REF_DYNAMIC
1643 | ELF_LINK_HASH_REF_REGULAR
1644 | ELF_LINK_HASH_REF_REGULAR_NONWEAK));
1645
1646 /* Copy over the global and procedure linkage
1647 table offset entries. These may have been
1648 already set up by a check_relocs routine. */
1649 if (h->got.offset == (bfd_vma) -1)
1650 {
1651 h->got.offset = hi->got.offset;
1652 hi->got.offset = (bfd_vma) -1;
1653 }
1654 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1655
1656 if (h->plt.offset == (bfd_vma) -1)
1657 {
1658 h->plt.offset = hi->plt.offset;
1659 hi->plt.offset = (bfd_vma) -1;
1660 }
1661 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1662
1663 if (h->dynindx == -1)
1664 {
1665 h->dynindx = hi->dynindx;
1666 h->dynstr_index = hi->dynstr_index;
1667 hi->dynindx = -1;
1668 hi->dynstr_index = 0;
1669 }
1670 BFD_ASSERT (hi->dynindx == -1);
1671
1672 /* FIXME: There may be other information to
1673 copy over for particular targets. */
1674
1675 /* See if the new flags lead us to realize
1676 that the symbol must be dynamic. */
1677 if (! dynsym)
1678 {
1679 if (! dynamic)
1680 {
1681 if (info->shared
1682 || ((hi->elf_link_hash_flags
1683 & ELF_LINK_HASH_REF_DYNAMIC)
1684 != 0))
1685 dynsym = true;
1686 }
1687 else
1688 {
1689 if ((hi->elf_link_hash_flags
1690 & ELF_LINK_HASH_REF_REGULAR) != 0)
1691 dynsym = true;
1692 }
1693 }
1694 }
1695 }
1696 }
1697 }
1698
1699 if (dynsym && h->dynindx == -1)
1700 {
1701 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1702 goto error_return;
1703 if (h->weakdef != NULL
1704 && ! new_weakdef
1705 && h->weakdef->dynindx == -1)
1706 {
1707 if (! _bfd_elf_link_record_dynamic_symbol (info,
1708 h->weakdef))
1709 goto error_return;
1710 }
1711 }
1712 }
1713 }
1714
1715 /* Now set the weakdefs field correctly for all the weak defined
1716 symbols we found. The only way to do this is to search all the
1717 symbols. Since we only need the information for non functions in
1718 dynamic objects, that's the only time we actually put anything on
1719 the list WEAKS. We need this information so that if a regular
1720 object refers to a symbol defined weakly in a dynamic object, the
1721 real symbol in the dynamic object is also put in the dynamic
1722 symbols; we also must arrange for both symbols to point to the
1723 same memory location. We could handle the general case of symbol
1724 aliasing, but a general symbol alias can only be generated in
1725 assembler code, handling it correctly would be very time
1726 consuming, and other ELF linkers don't handle general aliasing
1727 either. */
1728 while (weaks != NULL)
1729 {
1730 struct elf_link_hash_entry *hlook;
1731 asection *slook;
1732 bfd_vma vlook;
1733 struct elf_link_hash_entry **hpp;
1734 struct elf_link_hash_entry **hppend;
1735
1736 hlook = weaks;
1737 weaks = hlook->weakdef;
1738 hlook->weakdef = NULL;
1739
1740 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
1741 || hlook->root.type == bfd_link_hash_defweak
1742 || hlook->root.type == bfd_link_hash_common
1743 || hlook->root.type == bfd_link_hash_indirect);
1744 slook = hlook->root.u.def.section;
1745 vlook = hlook->root.u.def.value;
1746
1747 hpp = elf_sym_hashes (abfd);
1748 hppend = hpp + extsymcount;
1749 for (; hpp < hppend; hpp++)
1750 {
1751 struct elf_link_hash_entry *h;
1752
1753 h = *hpp;
1754 if (h != NULL && h != hlook
1755 && h->root.type == bfd_link_hash_defined
1756 && h->root.u.def.section == slook
1757 && h->root.u.def.value == vlook)
1758 {
1759 hlook->weakdef = h;
1760
1761 /* If the weak definition is in the list of dynamic
1762 symbols, make sure the real definition is put there
1763 as well. */
1764 if (hlook->dynindx != -1
1765 && h->dynindx == -1)
1766 {
1767 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1768 goto error_return;
1769 }
1770
1771 /* If the real definition is in the list of dynamic
1772 symbols, make sure the weak definition is put there
1773 as well. If we don't do this, then the dynamic
1774 loader might not merge the entries for the real
1775 definition and the weak definition. */
1776 if (h->dynindx != -1
1777 && hlook->dynindx == -1)
1778 {
1779 if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
1780 goto error_return;
1781 }
1782
1783 break;
1784 }
1785 }
1786 }
1787
1788 if (buf != NULL)
1789 {
1790 free (buf);
1791 buf = NULL;
1792 }
1793
1794 if (extversym != NULL)
1795 {
1796 free (extversym);
1797 extversym = NULL;
1798 }
1799
1800 /* If this object is the same format as the output object, and it is
1801 not a shared library, then let the backend look through the
1802 relocs.
1803
1804 This is required to build global offset table entries and to
1805 arrange for dynamic relocs. It is not required for the
1806 particular common case of linking non PIC code, even when linking
1807 against shared libraries, but unfortunately there is no way of
1808 knowing whether an object file has been compiled PIC or not.
1809 Looking through the relocs is not particularly time consuming.
1810 The problem is that we must either (1) keep the relocs in memory,
1811 which causes the linker to require additional runtime memory or
1812 (2) read the relocs twice from the input file, which wastes time.
1813 This would be a good case for using mmap.
1814
1815 I have no idea how to handle linking PIC code into a file of a
1816 different format. It probably can't be done. */
1817 check_relocs = get_elf_backend_data (abfd)->check_relocs;
1818 if (! dynamic
1819 && abfd->xvec == info->hash->creator
1820 && check_relocs != NULL)
1821 {
1822 asection *o;
1823
1824 for (o = abfd->sections; o != NULL; o = o->next)
1825 {
1826 Elf_Internal_Rela *internal_relocs;
1827 boolean ok;
1828
1829 if ((o->flags & SEC_RELOC) == 0
1830 || o->reloc_count == 0
1831 || ((info->strip == strip_all || info->strip == strip_debugger)
1832 && (o->flags & SEC_DEBUGGING) != 0)
1833 || bfd_is_abs_section (o->output_section))
1834 continue;
1835
1836 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
1837 (abfd, o, (PTR) NULL,
1838 (Elf_Internal_Rela *) NULL,
1839 info->keep_memory));
1840 if (internal_relocs == NULL)
1841 goto error_return;
1842
1843 ok = (*check_relocs) (abfd, info, o, internal_relocs);
1844
1845 if (! info->keep_memory)
1846 free (internal_relocs);
1847
1848 if (! ok)
1849 goto error_return;
1850 }
1851 }
1852
1853 /* If this is a non-traditional, non-relocateable link, try to
1854 optimize the handling of the .stab/.stabstr sections. */
1855 if (! dynamic
1856 && ! info->relocateable
1857 && ! info->traditional_format
1858 && info->hash->creator->flavour == bfd_target_elf_flavour
1859 && (info->strip != strip_all && info->strip != strip_debugger))
1860 {
1861 asection *stab, *stabstr;
1862
1863 stab = bfd_get_section_by_name (abfd, ".stab");
1864 if (stab != NULL)
1865 {
1866 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
1867
1868 if (stabstr != NULL)
1869 {
1870 struct bfd_elf_section_data *secdata;
1871
1872 secdata = elf_section_data (stab);
1873 if (! _bfd_link_section_stabs (abfd,
1874 &elf_hash_table (info)->stab_info,
1875 stab, stabstr,
1876 &secdata->stab_info))
1877 goto error_return;
1878 }
1879 }
1880 }
1881
1882 return true;
1883
1884 error_return:
1885 if (buf != NULL)
1886 free (buf);
1887 if (dynbuf != NULL)
1888 free (dynbuf);
1889 if (dynver != NULL)
1890 free (dynver);
1891 if (extversym != NULL)
1892 free (extversym);
1893 return false;
1894}
1895
1896/* Create some sections which will be filled in with dynamic linking
1897 information. ABFD is an input file which requires dynamic sections
1898 to be created. The dynamic sections take up virtual memory space
1899 when the final executable is run, so we need to create them before
1900 addresses are assigned to the output sections. We work out the
1901 actual contents and size of these sections later. */
1902
1903boolean
1904elf_link_create_dynamic_sections (abfd, info)
1905 bfd *abfd;
1906 struct bfd_link_info *info;
1907{
1908 flagword flags;
1909 register asection *s;
1910 struct elf_link_hash_entry *h;
1911 struct elf_backend_data *bed;
1912
1913 if (elf_hash_table (info)->dynamic_sections_created)
1914 return true;
1915
1916 /* Make sure that all dynamic sections use the same input BFD. */
1917 if (elf_hash_table (info)->dynobj == NULL)
1918 elf_hash_table (info)->dynobj = abfd;
1919 else
1920 abfd = elf_hash_table (info)->dynobj;
1921
1922 /* Note that we set the SEC_IN_MEMORY flag for all of these
1923 sections. */
1924 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
1925 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1926
1927 /* A dynamically linked executable has a .interp section, but a
1928 shared library does not. */
1929 if (! info->shared)
1930 {
1931 s = bfd_make_section (abfd, ".interp");
1932 if (s == NULL
1933 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
1934 return false;
1935 }
1936
1937 /* Create sections to hold version informations. These are removed
1938 if they are not needed. */
1939 s = bfd_make_section (abfd, ".gnu.version_d");
1940 if (s == NULL
1941 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1942 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1943 return false;
1944
1945 s = bfd_make_section (abfd, ".gnu.version");
1946 if (s == NULL
1947 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1948 || ! bfd_set_section_alignment (abfd, s, 1))
1949 return false;
1950
1951 s = bfd_make_section (abfd, ".gnu.version_r");
1952 if (s == NULL
1953 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1954 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1955 return false;
1956
1957 s = bfd_make_section (abfd, ".dynsym");
1958 if (s == NULL
1959 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1960 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1961 return false;
1962
1963 s = bfd_make_section (abfd, ".dynstr");
1964 if (s == NULL
1965 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
1966 return false;
1967
1968 /* Create a strtab to hold the dynamic symbol names. */
1969 if (elf_hash_table (info)->dynstr == NULL)
1970 {
1971 elf_hash_table (info)->dynstr = elf_stringtab_init ();
1972 if (elf_hash_table (info)->dynstr == NULL)
1973 return false;
1974 }
1975
1976 s = bfd_make_section (abfd, ".dynamic");
1977 if (s == NULL
1978 || ! bfd_set_section_flags (abfd, s, flags)
1979 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1980 return false;
1981
1982 /* The special symbol _DYNAMIC is always set to the start of the
1983 .dynamic section. This call occurs before we have processed the
1984 symbols for any dynamic object, so we don't have to worry about
1985 overriding a dynamic definition. We could set _DYNAMIC in a
1986 linker script, but we only want to define it if we are, in fact,
1987 creating a .dynamic section. We don't want to define it if there
1988 is no .dynamic section, since on some ELF platforms the start up
1989 code examines it to decide how to initialize the process. */
1990 h = NULL;
1991 if (! (_bfd_generic_link_add_one_symbol
1992 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
1993 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
1994 (struct bfd_link_hash_entry **) &h)))
1995 return false;
1996 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
1997 h->type = STT_OBJECT;
1998
1999 if (info->shared
2000 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
2001 return false;
2002
c7ac6ff8
MM
2003 bed = get_elf_backend_data (abfd);
2004
252b5132
RH
2005 s = bfd_make_section (abfd, ".hash");
2006 if (s == NULL
2007 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2008 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2009 return false;
c7ac6ff8 2010 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
252b5132
RH
2011
2012 /* Let the backend create the rest of the sections. This lets the
2013 backend set the right flags. The backend will normally create
2014 the .got and .plt sections. */
252b5132
RH
2015 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
2016 return false;
2017
2018 elf_hash_table (info)->dynamic_sections_created = true;
2019
2020 return true;
2021}
2022
2023/* Add an entry to the .dynamic table. */
2024
2025boolean
2026elf_add_dynamic_entry (info, tag, val)
2027 struct bfd_link_info *info;
2028 bfd_vma tag;
2029 bfd_vma val;
2030{
2031 Elf_Internal_Dyn dyn;
2032 bfd *dynobj;
2033 asection *s;
2034 size_t newsize;
2035 bfd_byte *newcontents;
2036
2037 dynobj = elf_hash_table (info)->dynobj;
2038
2039 s = bfd_get_section_by_name (dynobj, ".dynamic");
2040 BFD_ASSERT (s != NULL);
2041
2042 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
2043 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
2044 if (newcontents == NULL)
2045 return false;
2046
2047 dyn.d_tag = tag;
2048 dyn.d_un.d_val = val;
2049 elf_swap_dyn_out (dynobj, &dyn,
2050 (Elf_External_Dyn *) (newcontents + s->_raw_size));
2051
2052 s->_raw_size = newsize;
2053 s->contents = newcontents;
2054
2055 return true;
2056}
30b30c21
RH
2057
2058/* Record a new local dynamic symbol. */
2059
2060boolean
2061elf_link_record_local_dynamic_symbol (info, input_bfd, input_indx)
2062 struct bfd_link_info *info;
2063 bfd *input_bfd;
2064 long input_indx;
2065{
2066 struct elf_link_local_dynamic_entry *entry;
2067 struct elf_link_hash_table *eht;
2068 struct bfd_strtab_hash *dynstr;
2069 Elf_External_Sym esym;
2070 unsigned long dynstr_index;
2071 char *name;
30b30c21
RH
2072
2073 /* See if the entry exists already. */
2074 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
2075 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
2076 return true;
2077
2078 entry = (struct elf_link_local_dynamic_entry *)
2079 bfd_alloc (input_bfd, sizeof (*entry));
2080 if (entry == NULL)
2081 return false;
2082
2083 /* Go find the symbol, so that we can find it's name. */
2084 if (bfd_seek (input_bfd,
2085 (elf_tdata (input_bfd)->symtab_hdr.sh_offset
2086 + input_indx * sizeof (Elf_External_Sym)),
2087 SEEK_SET) != 0
2088 || (bfd_read (&esym, sizeof (Elf_External_Sym), 1, input_bfd)
2089 != sizeof (Elf_External_Sym)))
2090 return false;
2091 elf_swap_symbol_in (input_bfd, &esym, &entry->isym);
2092
2093 name = (bfd_elf_string_from_elf_section
2094 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
2095 entry->isym.st_name));
2096
2097 dynstr = elf_hash_table (info)->dynstr;
2098 if (dynstr == NULL)
2099 {
2100 /* Create a strtab to hold the dynamic symbol names. */
2101 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_stringtab_init ();
2102 if (dynstr == NULL)
2103 return false;
2104 }
2105
2106 dynstr_index = _bfd_stringtab_add (dynstr, name, true, false);
2107 if (dynstr_index == (unsigned long) -1)
2108 return false;
2109 entry->isym.st_name = dynstr_index;
2110
2111 eht = elf_hash_table (info);
2112
2113 entry->next = eht->dynlocal;
2114 eht->dynlocal = entry;
2115 entry->input_bfd = input_bfd;
2116 entry->input_indx = input_indx;
2117 eht->dynsymcount++;
2118
2119 /* The dynindx will be set at the end of size_dynamic_sections. */
2120
2121 return true;
2122}
252b5132
RH
2123\f
2124
6b5bd373
MM
2125/* Read and swap the relocs from the section indicated by SHDR. This
2126 may be either a REL or a RELA section. The relocations are
2127 translated into RELA relocations and stored in INTERNAL_RELOCS,
2128 which should have already been allocated to contain enough space.
2129 The EXTERNAL_RELOCS are a buffer where the external form of the
2130 relocations should be stored.
2131
2132 Returns false if something goes wrong. */
2133
2134static boolean
2135elf_link_read_relocs_from_section (abfd, shdr, external_relocs,
2136 internal_relocs)
2137 bfd *abfd;
2138 Elf_Internal_Shdr *shdr;
2139 PTR external_relocs;
2140 Elf_Internal_Rela *internal_relocs;
2141{
c7ac6ff8
MM
2142 struct elf_backend_data *bed;
2143
6b5bd373
MM
2144 /* If there aren't any relocations, that's OK. */
2145 if (!shdr)
2146 return true;
2147
2148 /* Position ourselves at the start of the section. */
2149 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2150 return false;
2151
2152 /* Read the relocations. */
2153 if (bfd_read (external_relocs, 1, shdr->sh_size, abfd)
2154 != shdr->sh_size)
2155 return false;
2156
c7ac6ff8
MM
2157 bed = get_elf_backend_data (abfd);
2158
6b5bd373
MM
2159 /* Convert the external relocations to the internal format. */
2160 if (shdr->sh_entsize == sizeof (Elf_External_Rel))
2161 {
2162 Elf_External_Rel *erel;
2163 Elf_External_Rel *erelend;
2164 Elf_Internal_Rela *irela;
c7ac6ff8 2165 Elf_Internal_Rel *irel;
6b5bd373
MM
2166
2167 erel = (Elf_External_Rel *) external_relocs;
2168 erelend = erel + shdr->sh_size / shdr->sh_entsize;
2169 irela = internal_relocs;
c7ac6ff8
MM
2170 irel = bfd_alloc (abfd, (bed->s->int_rels_per_ext_rel
2171 * sizeof (Elf_Internal_Rel)));
2172 for (; erel < erelend; erel++, irela += bed->s->int_rels_per_ext_rel)
6b5bd373 2173 {
65388f2d 2174 unsigned char i;
c7ac6ff8
MM
2175
2176 if (bed->s->swap_reloc_in)
2177 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
2178 else
2179 elf_swap_reloc_in (abfd, erel, irel);
6b5bd373 2180
c7ac6ff8
MM
2181 for (i = 0; i < bed->s->int_rels_per_ext_rel; ++i)
2182 {
2183 irela[i].r_offset = irel[i].r_offset;
2184 irela[i].r_info = irel[i].r_info;
2185 irela[i].r_addend = 0;
2186 }
6b5bd373
MM
2187 }
2188 }
2189 else
2190 {
2191 Elf_External_Rela *erela;
2192 Elf_External_Rela *erelaend;
2193 Elf_Internal_Rela *irela;
2194
2195 BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela));
2196
2197 erela = (Elf_External_Rela *) external_relocs;
2198 erelaend = erela + shdr->sh_size / shdr->sh_entsize;
2199 irela = internal_relocs;
c7ac6ff8
MM
2200 for (; erela < erelaend; erela++, irela += bed->s->int_rels_per_ext_rel)
2201 {
2202 if (bed->s->swap_reloca_in)
2203 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
2204 else
2205 elf_swap_reloca_in (abfd, erela, irela);
2206 }
6b5bd373
MM
2207 }
2208
2209 return true;
2210}
2211
23bc299b
MM
2212/* Read and swap the relocs for a section O. They may have been
2213 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2214 not NULL, they are used as buffers to read into. They are known to
2215 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2216 the return value is allocated using either malloc or bfd_alloc,
2217 according to the KEEP_MEMORY argument. If O has two relocation
2218 sections (both REL and RELA relocations), then the REL_HDR
2219 relocations will appear first in INTERNAL_RELOCS, followed by the
2220 REL_HDR2 relocations. */
252b5132
RH
2221
2222Elf_Internal_Rela *
2223NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
2224 keep_memory)
2225 bfd *abfd;
2226 asection *o;
2227 PTR external_relocs;
2228 Elf_Internal_Rela *internal_relocs;
2229 boolean keep_memory;
2230{
2231 Elf_Internal_Shdr *rel_hdr;
2232 PTR alloc1 = NULL;
2233 Elf_Internal_Rela *alloc2 = NULL;
c7ac6ff8 2234 struct elf_backend_data *bed = get_elf_backend_data (abfd);
252b5132
RH
2235
2236 if (elf_section_data (o)->relocs != NULL)
2237 return elf_section_data (o)->relocs;
2238
2239 if (o->reloc_count == 0)
2240 return NULL;
2241
2242 rel_hdr = &elf_section_data (o)->rel_hdr;
2243
2244 if (internal_relocs == NULL)
2245 {
2246 size_t size;
2247
c7ac6ff8
MM
2248 size = (o->reloc_count * bed->s->int_rels_per_ext_rel
2249 * sizeof (Elf_Internal_Rela));
252b5132
RH
2250 if (keep_memory)
2251 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2252 else
2253 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2254 if (internal_relocs == NULL)
2255 goto error_return;
2256 }
2257
2258 if (external_relocs == NULL)
2259 {
6b5bd373
MM
2260 size_t size = (size_t) rel_hdr->sh_size;
2261
2262 if (elf_section_data (o)->rel_hdr2)
2263 size += (size_t) elf_section_data (o)->rel_hdr2->sh_size;
2264 alloc1 = (PTR) bfd_malloc (size);
252b5132
RH
2265 if (alloc1 == NULL)
2266 goto error_return;
2267 external_relocs = alloc1;
2268 }
2269
6b5bd373
MM
2270 if (!elf_link_read_relocs_from_section (abfd, rel_hdr,
2271 external_relocs,
2272 internal_relocs))
2273 goto error_return;
2274 if (!elf_link_read_relocs_from_section
2275 (abfd,
2276 elf_section_data (o)->rel_hdr2,
2f5116e2 2277 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
c7ac6ff8
MM
2278 internal_relocs + (rel_hdr->sh_size / rel_hdr->sh_entsize
2279 * bed->s->int_rels_per_ext_rel)))
252b5132 2280 goto error_return;
252b5132
RH
2281
2282 /* Cache the results for next time, if we can. */
2283 if (keep_memory)
2284 elf_section_data (o)->relocs = internal_relocs;
2285
2286 if (alloc1 != NULL)
2287 free (alloc1);
2288
2289 /* Don't free alloc2, since if it was allocated we are passing it
2290 back (under the name of internal_relocs). */
2291
2292 return internal_relocs;
2293
2294 error_return:
2295 if (alloc1 != NULL)
2296 free (alloc1);
2297 if (alloc2 != NULL)
2298 free (alloc2);
2299 return NULL;
2300}
2301\f
2302
2303/* Record an assignment to a symbol made by a linker script. We need
2304 this in case some dynamic object refers to this symbol. */
2305
2306/*ARGSUSED*/
2307boolean
2308NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
7442e600 2309 bfd *output_bfd ATTRIBUTE_UNUSED;
252b5132
RH
2310 struct bfd_link_info *info;
2311 const char *name;
2312 boolean provide;
2313{
2314 struct elf_link_hash_entry *h;
2315
2316 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2317 return true;
2318
2319 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
2320 if (h == NULL)
2321 return false;
2322
2323 if (h->root.type == bfd_link_hash_new)
2324 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
2325
2326 /* If this symbol is being provided by the linker script, and it is
2327 currently defined by a dynamic object, but not by a regular
2328 object, then mark it as undefined so that the generic linker will
2329 force the correct value. */
2330 if (provide
2331 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2332 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2333 h->root.type = bfd_link_hash_undefined;
2334
2335 /* If this symbol is not being provided by the linker script, and it is
2336 currently defined by a dynamic object, but not by a regular object,
2337 then clear out any version information because the symbol will not be
2338 associated with the dynamic object any more. */
2339 if (!provide
2340 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2341 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2342 h->verinfo.verdef = NULL;
2343
2344 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2345 h->type = STT_OBJECT;
2346
2347 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2348 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
2349 || info->shared)
2350 && h->dynindx == -1)
2351 {
2352 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2353 return false;
2354
2355 /* If this is a weak defined symbol, and we know a corresponding
2356 real symbol from the same dynamic object, make sure the real
2357 symbol is also made into a dynamic symbol. */
2358 if (h->weakdef != NULL
2359 && h->weakdef->dynindx == -1)
2360 {
2361 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2362 return false;
2363 }
2364 }
2365
2366 return true;
2367}
2368\f
2369/* This structure is used to pass information to
2370 elf_link_assign_sym_version. */
2371
2372struct elf_assign_sym_version_info
2373{
2374 /* Output BFD. */
2375 bfd *output_bfd;
2376 /* General link information. */
2377 struct bfd_link_info *info;
2378 /* Version tree. */
2379 struct bfd_elf_version_tree *verdefs;
2380 /* Whether we are exporting all dynamic symbols. */
2381 boolean export_dynamic;
252b5132
RH
2382 /* Whether we had a failure. */
2383 boolean failed;
2384};
2385
2386/* This structure is used to pass information to
2387 elf_link_find_version_dependencies. */
2388
2389struct elf_find_verdep_info
2390{
2391 /* Output BFD. */
2392 bfd *output_bfd;
2393 /* General link information. */
2394 struct bfd_link_info *info;
2395 /* The number of dependencies. */
2396 unsigned int vers;
2397 /* Whether we had a failure. */
2398 boolean failed;
2399};
2400
2401/* Array used to determine the number of hash table buckets to use
2402 based on the number of symbols there are. If there are fewer than
2403 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2404 fewer than 37 we use 17 buckets, and so forth. We never use more
2405 than 32771 buckets. */
2406
2407static const size_t elf_buckets[] =
2408{
2409 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2410 16411, 32771, 0
2411};
2412
2413/* Compute bucket count for hashing table. We do not use a static set
2414 of possible tables sizes anymore. Instead we determine for all
2415 possible reasonable sizes of the table the outcome (i.e., the
2416 number of collisions etc) and choose the best solution. The
2417 weighting functions are not too simple to allow the table to grow
2418 without bounds. Instead one of the weighting factors is the size.
2419 Therefore the result is always a good payoff between few collisions
2420 (= short chain lengths) and table size. */
2421static size_t
2422compute_bucket_count (info)
2423 struct bfd_link_info *info;
2424{
2425 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
7442e600 2426 size_t best_size = 0;
252b5132
RH
2427 unsigned long int *hashcodes;
2428 unsigned long int *hashcodesp;
2429 unsigned long int i;
2430
2431 /* Compute the hash values for all exported symbols. At the same
2432 time store the values in an array so that we could use them for
2433 optimizations. */
2434 hashcodes = (unsigned long int *) bfd_malloc (dynsymcount
2435 * sizeof (unsigned long int));
2436 if (hashcodes == NULL)
2437 return 0;
2438 hashcodesp = hashcodes;
2439
2440 /* Put all hash values in HASHCODES. */
2441 elf_link_hash_traverse (elf_hash_table (info),
2442 elf_collect_hash_codes, &hashcodesp);
2443
2444/* We have a problem here. The following code to optimize the table
2445 size requires an integer type with more the 32 bits. If
2446 BFD_HOST_U_64_BIT is set we know about such a type. */
2447#ifdef BFD_HOST_U_64_BIT
2448 if (info->optimize == true)
2449 {
2450 unsigned long int nsyms = hashcodesp - hashcodes;
2451 size_t minsize;
2452 size_t maxsize;
2453 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
2454 unsigned long int *counts ;
2455
2456 /* Possible optimization parameters: if we have NSYMS symbols we say
2457 that the hashing table must at least have NSYMS/4 and at most
2458 2*NSYMS buckets. */
2459 minsize = nsyms / 4;
2460 if (minsize == 0)
2461 minsize = 1;
2462 best_size = maxsize = nsyms * 2;
2463
2464 /* Create array where we count the collisions in. We must use bfd_malloc
2465 since the size could be large. */
2466 counts = (unsigned long int *) bfd_malloc (maxsize
2467 * sizeof (unsigned long int));
2468 if (counts == NULL)
2469 {
2470 free (hashcodes);
2471 return 0;
2472 }
2473
2474 /* Compute the "optimal" size for the hash table. The criteria is a
2475 minimal chain length. The minor criteria is (of course) the size
2476 of the table. */
2477 for (i = minsize; i < maxsize; ++i)
2478 {
2479 /* Walk through the array of hashcodes and count the collisions. */
2480 BFD_HOST_U_64_BIT max;
2481 unsigned long int j;
2482 unsigned long int fact;
2483
2484 memset (counts, '\0', i * sizeof (unsigned long int));
2485
2486 /* Determine how often each hash bucket is used. */
2487 for (j = 0; j < nsyms; ++j)
2488 ++counts[hashcodes[j] % i];
2489
2490 /* For the weight function we need some information about the
2491 pagesize on the target. This is information need not be 100%
2492 accurate. Since this information is not available (so far) we
2493 define it here to a reasonable default value. If it is crucial
2494 to have a better value some day simply define this value. */
2495# ifndef BFD_TARGET_PAGESIZE
2496# define BFD_TARGET_PAGESIZE (4096)
2497# endif
2498
2499 /* We in any case need 2 + NSYMS entries for the size values and
2500 the chains. */
2501 max = (2 + nsyms) * (ARCH_SIZE / 8);
2502
2503# if 1
2504 /* Variant 1: optimize for short chains. We add the squares
2505 of all the chain lengths (which favous many small chain
2506 over a few long chains). */
2507 for (j = 0; j < i; ++j)
2508 max += counts[j] * counts[j];
2509
2510 /* This adds penalties for the overall size of the table. */
2511 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2512 max *= fact * fact;
2513# else
2514 /* Variant 2: Optimize a lot more for small table. Here we
2515 also add squares of the size but we also add penalties for
2516 empty slots (the +1 term). */
2517 for (j = 0; j < i; ++j)
2518 max += (1 + counts[j]) * (1 + counts[j]);
2519
2520 /* The overall size of the table is considered, but not as
2521 strong as in variant 1, where it is squared. */
2522 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2523 max *= fact;
2524# endif
2525
2526 /* Compare with current best results. */
2527 if (max < best_chlen)
2528 {
2529 best_chlen = max;
2530 best_size = i;
2531 }
2532 }
2533
2534 free (counts);
2535 }
2536 else
2537#endif /* defined (BFD_HOST_U_64_BIT) */
2538 {
2539 /* This is the fallback solution if no 64bit type is available or if we
2540 are not supposed to spend much time on optimizations. We select the
2541 bucket count using a fixed set of numbers. */
2542 for (i = 0; elf_buckets[i] != 0; i++)
2543 {
2544 best_size = elf_buckets[i];
2545 if (dynsymcount < elf_buckets[i + 1])
2546 break;
2547 }
2548 }
2549
2550 /* Free the arrays we needed. */
2551 free (hashcodes);
2552
2553 return best_size;
2554}
2555
2556/* Set up the sizes and contents of the ELF dynamic sections. This is
2557 called by the ELF linker emulation before_allocation routine. We
2558 must set the sizes of the sections before the linker sets the
2559 addresses of the various sections. */
2560
2561boolean
2562NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
2563 export_dynamic, filter_shlib,
2564 auxiliary_filters, info, sinterpptr,
2565 verdefs)
2566 bfd *output_bfd;
2567 const char *soname;
2568 const char *rpath;
2569 boolean export_dynamic;
2570 const char *filter_shlib;
2571 const char * const *auxiliary_filters;
2572 struct bfd_link_info *info;
2573 asection **sinterpptr;
2574 struct bfd_elf_version_tree *verdefs;
2575{
2576 bfd_size_type soname_indx;
2577 bfd *dynobj;
2578 struct elf_backend_data *bed;
252b5132
RH
2579 struct elf_assign_sym_version_info asvinfo;
2580
2581 *sinterpptr = NULL;
2582
2583 soname_indx = (bfd_size_type) -1;
2584
2585 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2586 return true;
2587
2588 /* The backend may have to create some sections regardless of whether
2589 we're dynamic or not. */
2590 bed = get_elf_backend_data (output_bfd);
2591 if (bed->elf_backend_always_size_sections
2592 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
2593 return false;
2594
2595 dynobj = elf_hash_table (info)->dynobj;
2596
2597 /* If there were no dynamic objects in the link, there is nothing to
2598 do here. */
2599 if (dynobj == NULL)
2600 return true;
2601
2602 /* If we are supposed to export all symbols into the dynamic symbol
2603 table (this is not the normal case), then do so. */
2604 if (export_dynamic)
2605 {
2606 struct elf_info_failed eif;
2607
2608 eif.failed = false;
2609 eif.info = info;
2610 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
2611 (PTR) &eif);
2612 if (eif.failed)
2613 return false;
2614 }
2615
2616 if (elf_hash_table (info)->dynamic_sections_created)
2617 {
2618 struct elf_info_failed eif;
2619 struct elf_link_hash_entry *h;
2620 bfd_size_type strsize;
2621
2622 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
2623 BFD_ASSERT (*sinterpptr != NULL || info->shared);
2624
2625 if (soname != NULL)
2626 {
2627 soname_indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2628 soname, true, true);
2629 if (soname_indx == (bfd_size_type) -1
2630 || ! elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
2631 return false;
2632 }
2633
2634 if (info->symbolic)
2635 {
2636 if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
2637 return false;
2638 }
2639
2640 if (rpath != NULL)
2641 {
2642 bfd_size_type indx;
2643
2644 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath,
2645 true, true);
2646 if (indx == (bfd_size_type) -1
2647 || ! elf_add_dynamic_entry (info, DT_RPATH, indx))
2648 return false;
2649 }
2650
2651 if (filter_shlib != NULL)
2652 {
2653 bfd_size_type indx;
2654
2655 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2656 filter_shlib, true, true);
2657 if (indx == (bfd_size_type) -1
2658 || ! elf_add_dynamic_entry (info, DT_FILTER, indx))
2659 return false;
2660 }
2661
2662 if (auxiliary_filters != NULL)
2663 {
2664 const char * const *p;
2665
2666 for (p = auxiliary_filters; *p != NULL; p++)
2667 {
2668 bfd_size_type indx;
2669
2670 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2671 *p, true, true);
2672 if (indx == (bfd_size_type) -1
2673 || ! elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
2674 return false;
2675 }
2676 }
2677
2678 /* Attach all the symbols to their version information. */
2679 asvinfo.output_bfd = output_bfd;
2680 asvinfo.info = info;
2681 asvinfo.verdefs = verdefs;
2682 asvinfo.export_dynamic = export_dynamic;
252b5132
RH
2683 asvinfo.failed = false;
2684
2685 elf_link_hash_traverse (elf_hash_table (info),
2686 elf_link_assign_sym_version,
2687 (PTR) &asvinfo);
2688 if (asvinfo.failed)
2689 return false;
2690
2691 /* Find all symbols which were defined in a dynamic object and make
2692 the backend pick a reasonable value for them. */
2693 eif.failed = false;
2694 eif.info = info;
2695 elf_link_hash_traverse (elf_hash_table (info),
2696 elf_adjust_dynamic_symbol,
2697 (PTR) &eif);
2698 if (eif.failed)
2699 return false;
2700
2701 /* Add some entries to the .dynamic section. We fill in some of the
2702 values later, in elf_bfd_final_link, but we must add the entries
2703 now so that we know the final size of the .dynamic section. */
f0c2e336
MM
2704
2705 /* If there are initialization and/or finalization functions to
2706 call then add the corresponding DT_INIT/DT_FINI entries. */
2707 h = (info->init_function
2708 ? elf_link_hash_lookup (elf_hash_table (info),
2709 info->init_function, false,
2710 false, false)
2711 : NULL);
252b5132
RH
2712 if (h != NULL
2713 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2714 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
2715 {
2716 if (! elf_add_dynamic_entry (info, DT_INIT, 0))
2717 return false;
2718 }
f0c2e336
MM
2719 h = (info->fini_function
2720 ? elf_link_hash_lookup (elf_hash_table (info),
2721 info->fini_function, false,
2722 false, false)
2723 : NULL);
252b5132
RH
2724 if (h != NULL
2725 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2726 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
2727 {
2728 if (! elf_add_dynamic_entry (info, DT_FINI, 0))
2729 return false;
2730 }
f0c2e336 2731
252b5132
RH
2732 strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
2733 if (! elf_add_dynamic_entry (info, DT_HASH, 0)
2734 || ! elf_add_dynamic_entry (info, DT_STRTAB, 0)
2735 || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0)
2736 || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize)
2737 || ! elf_add_dynamic_entry (info, DT_SYMENT,
2738 sizeof (Elf_External_Sym)))
2739 return false;
2740 }
2741
2742 /* The backend must work out the sizes of all the other dynamic
2743 sections. */
252b5132
RH
2744 if (bed->elf_backend_size_dynamic_sections
2745 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
2746 return false;
2747
2748 if (elf_hash_table (info)->dynamic_sections_created)
2749 {
2750 size_t dynsymcount;
2751 asection *s;
2752 size_t bucketcount = 0;
2753 Elf_Internal_Sym isym;
c7ac6ff8 2754 size_t hash_entry_size;
252b5132
RH
2755
2756 /* Set up the version definition section. */
2757 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
2758 BFD_ASSERT (s != NULL);
2759
2760 /* We may have created additional version definitions if we are
2761 just linking a regular application. */
2762 verdefs = asvinfo.verdefs;
2763
2764 if (verdefs == NULL)
30b30c21 2765 _bfd_strip_section_from_output (s);
252b5132
RH
2766 else
2767 {
2768 unsigned int cdefs;
2769 bfd_size_type size;
2770 struct bfd_elf_version_tree *t;
2771 bfd_byte *p;
2772 Elf_Internal_Verdef def;
2773 Elf_Internal_Verdaux defaux;
2774
252b5132
RH
2775 cdefs = 0;
2776 size = 0;
2777
2778 /* Make space for the base version. */
2779 size += sizeof (Elf_External_Verdef);
2780 size += sizeof (Elf_External_Verdaux);
2781 ++cdefs;
2782
2783 for (t = verdefs; t != NULL; t = t->next)
2784 {
2785 struct bfd_elf_version_deps *n;
2786
2787 size += sizeof (Elf_External_Verdef);
2788 size += sizeof (Elf_External_Verdaux);
2789 ++cdefs;
2790
2791 for (n = t->deps; n != NULL; n = n->next)
2792 size += sizeof (Elf_External_Verdaux);
2793 }
2794
2795 s->_raw_size = size;
2796 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
2797 if (s->contents == NULL && s->_raw_size != 0)
2798 return false;
2799
2800 /* Fill in the version definition section. */
2801
2802 p = s->contents;
2803
2804 def.vd_version = VER_DEF_CURRENT;
2805 def.vd_flags = VER_FLG_BASE;
2806 def.vd_ndx = 1;
2807 def.vd_cnt = 1;
2808 def.vd_aux = sizeof (Elf_External_Verdef);
2809 def.vd_next = (sizeof (Elf_External_Verdef)
2810 + sizeof (Elf_External_Verdaux));
2811
2812 if (soname_indx != (bfd_size_type) -1)
2813 {
3a99b017 2814 def.vd_hash = bfd_elf_hash (soname);
252b5132
RH
2815 defaux.vda_name = soname_indx;
2816 }
2817 else
2818 {
2819 const char *name;
2820 bfd_size_type indx;
2821
2822 name = output_bfd->filename;
3a99b017 2823 def.vd_hash = bfd_elf_hash (name);
252b5132
RH
2824 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2825 name, true, false);
2826 if (indx == (bfd_size_type) -1)
2827 return false;
2828 defaux.vda_name = indx;
2829 }
2830 defaux.vda_next = 0;
2831
2832 _bfd_elf_swap_verdef_out (output_bfd, &def,
2833 (Elf_External_Verdef *)p);
2834 p += sizeof (Elf_External_Verdef);
2835 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2836 (Elf_External_Verdaux *) p);
2837 p += sizeof (Elf_External_Verdaux);
2838
2839 for (t = verdefs; t != NULL; t = t->next)
2840 {
2841 unsigned int cdeps;
2842 struct bfd_elf_version_deps *n;
2843 struct elf_link_hash_entry *h;
2844
2845 cdeps = 0;
2846 for (n = t->deps; n != NULL; n = n->next)
2847 ++cdeps;
2848
2849 /* Add a symbol representing this version. */
2850 h = NULL;
2851 if (! (_bfd_generic_link_add_one_symbol
2852 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
2853 (bfd_vma) 0, (const char *) NULL, false,
2854 get_elf_backend_data (dynobj)->collect,
2855 (struct bfd_link_hash_entry **) &h)))
2856 return false;
2857 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
2858 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2859 h->type = STT_OBJECT;
2860 h->verinfo.vertree = t;
2861
2862 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2863 return false;
2864
2865 def.vd_version = VER_DEF_CURRENT;
2866 def.vd_flags = 0;
2867 if (t->globals == NULL && t->locals == NULL && ! t->used)
2868 def.vd_flags |= VER_FLG_WEAK;
2869 def.vd_ndx = t->vernum + 1;
2870 def.vd_cnt = cdeps + 1;
3a99b017 2871 def.vd_hash = bfd_elf_hash (t->name);
252b5132
RH
2872 def.vd_aux = sizeof (Elf_External_Verdef);
2873 if (t->next != NULL)
2874 def.vd_next = (sizeof (Elf_External_Verdef)
2875 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
2876 else
2877 def.vd_next = 0;
2878
2879 _bfd_elf_swap_verdef_out (output_bfd, &def,
2880 (Elf_External_Verdef *) p);
2881 p += sizeof (Elf_External_Verdef);
2882
2883 defaux.vda_name = h->dynstr_index;
2884 if (t->deps == NULL)
2885 defaux.vda_next = 0;
2886 else
2887 defaux.vda_next = sizeof (Elf_External_Verdaux);
2888 t->name_indx = defaux.vda_name;
2889
2890 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2891 (Elf_External_Verdaux *) p);
2892 p += sizeof (Elf_External_Verdaux);
2893
2894 for (n = t->deps; n != NULL; n = n->next)
2895 {
2896 if (n->version_needed == NULL)
2897 {
2898 /* This can happen if there was an error in the
2899 version script. */
2900 defaux.vda_name = 0;
2901 }
2902 else
2903 defaux.vda_name = n->version_needed->name_indx;
2904 if (n->next == NULL)
2905 defaux.vda_next = 0;
2906 else
2907 defaux.vda_next = sizeof (Elf_External_Verdaux);
2908
2909 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2910 (Elf_External_Verdaux *) p);
2911 p += sizeof (Elf_External_Verdaux);
2912 }
2913 }
2914
2915 if (! elf_add_dynamic_entry (info, DT_VERDEF, 0)
2916 || ! elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
2917 return false;
2918
2919 elf_tdata (output_bfd)->cverdefs = cdefs;
2920 }
2921
2922 /* Work out the size of the version reference section. */
2923
2924 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
2925 BFD_ASSERT (s != NULL);
2926 {
2927 struct elf_find_verdep_info sinfo;
2928
2929 sinfo.output_bfd = output_bfd;
2930 sinfo.info = info;
2931 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
2932 if (sinfo.vers == 0)
2933 sinfo.vers = 1;
2934 sinfo.failed = false;
2935
2936 elf_link_hash_traverse (elf_hash_table (info),
2937 elf_link_find_version_dependencies,
2938 (PTR) &sinfo);
2939
2940 if (elf_tdata (output_bfd)->verref == NULL)
30b30c21 2941 _bfd_strip_section_from_output (s);
252b5132
RH
2942 else
2943 {
2944 Elf_Internal_Verneed *t;
2945 unsigned int size;
2946 unsigned int crefs;
2947 bfd_byte *p;
2948
2949 /* Build the version definition section. */
2950 size = 0;
2951 crefs = 0;
2952 for (t = elf_tdata (output_bfd)->verref;
2953 t != NULL;
2954 t = t->vn_nextref)
2955 {
2956 Elf_Internal_Vernaux *a;
2957
2958 size += sizeof (Elf_External_Verneed);
2959 ++crefs;
2960 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2961 size += sizeof (Elf_External_Vernaux);
2962 }
2963
2964 s->_raw_size = size;
2965 s->contents = (bfd_byte *) bfd_alloc (output_bfd, size);
2966 if (s->contents == NULL)
2967 return false;
2968
2969 p = s->contents;
2970 for (t = elf_tdata (output_bfd)->verref;
2971 t != NULL;
2972 t = t->vn_nextref)
2973 {
2974 unsigned int caux;
2975 Elf_Internal_Vernaux *a;
2976 bfd_size_type indx;
2977
2978 caux = 0;
2979 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2980 ++caux;
2981
2982 t->vn_version = VER_NEED_CURRENT;
2983 t->vn_cnt = caux;
2984 if (elf_dt_name (t->vn_bfd) != NULL)
2985 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2986 elf_dt_name (t->vn_bfd),
2987 true, false);
2988 else
2989 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2990 t->vn_bfd->filename, true, false);
2991 if (indx == (bfd_size_type) -1)
2992 return false;
2993 t->vn_file = indx;
2994 t->vn_aux = sizeof (Elf_External_Verneed);
2995 if (t->vn_nextref == NULL)
2996 t->vn_next = 0;
2997 else
2998 t->vn_next = (sizeof (Elf_External_Verneed)
2999 + caux * sizeof (Elf_External_Vernaux));
3000
3001 _bfd_elf_swap_verneed_out (output_bfd, t,
3002 (Elf_External_Verneed *) p);
3003 p += sizeof (Elf_External_Verneed);
3004
3005 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3006 {
3a99b017 3007 a->vna_hash = bfd_elf_hash (a->vna_nodename);
252b5132
RH
3008 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3009 a->vna_nodename, true, false);
3010 if (indx == (bfd_size_type) -1)
3011 return false;
3012 a->vna_name = indx;
3013 if (a->vna_nextptr == NULL)
3014 a->vna_next = 0;
3015 else
3016 a->vna_next = sizeof (Elf_External_Vernaux);
3017
3018 _bfd_elf_swap_vernaux_out (output_bfd, a,
3019 (Elf_External_Vernaux *) p);
3020 p += sizeof (Elf_External_Vernaux);
3021 }
3022 }
3023
3024 if (! elf_add_dynamic_entry (info, DT_VERNEED, 0)
3025 || ! elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
3026 return false;
3027
3028 elf_tdata (output_bfd)->cverrefs = crefs;
3029 }
3030 }
3031
30b30c21
RH
3032 /* Assign dynsym indicies. In a shared library we generate a
3033 section symbol for each output section, which come first.
3034 Next come all of the back-end allocated local dynamic syms,
3035 followed by the rest of the global symbols. */
3036
3037 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
252b5132
RH
3038
3039 /* Work out the size of the symbol version section. */
3040 s = bfd_get_section_by_name (dynobj, ".gnu.version");
3041 BFD_ASSERT (s != NULL);
3042 if (dynsymcount == 0
3043 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
3044 {
30b30c21 3045 _bfd_strip_section_from_output (s);
42751cf3
MM
3046 /* The DYNSYMCOUNT might have changed if we were going to
3047 output a dynamic symbol table entry for S. */
30b30c21 3048 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
252b5132
RH
3049 }
3050 else
3051 {
3052 s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
3053 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
3054 if (s->contents == NULL)
3055 return false;
3056
3057 if (! elf_add_dynamic_entry (info, DT_VERSYM, 0))
3058 return false;
3059 }
3060
3061 /* Set the size of the .dynsym and .hash sections. We counted
3062 the number of dynamic symbols in elf_link_add_object_symbols.
3063 We will build the contents of .dynsym and .hash when we build
3064 the final symbol table, because until then we do not know the
3065 correct value to give the symbols. We built the .dynstr
3066 section as we went along in elf_link_add_object_symbols. */
3067 s = bfd_get_section_by_name (dynobj, ".dynsym");
3068 BFD_ASSERT (s != NULL);
3069 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
3070 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3071 if (s->contents == NULL && s->_raw_size != 0)
3072 return false;
3073
3074 /* The first entry in .dynsym is a dummy symbol. */
3075 isym.st_value = 0;
3076 isym.st_size = 0;
3077 isym.st_name = 0;
3078 isym.st_info = 0;
3079 isym.st_other = 0;
3080 isym.st_shndx = 0;
3081 elf_swap_symbol_out (output_bfd, &isym,
3082 (PTR) (Elf_External_Sym *) s->contents);
3083
3084 /* Compute the size of the hashing table. As a side effect this
3085 computes the hash values for all the names we export. */
3086 bucketcount = compute_bucket_count (info);
3087
3088 s = bfd_get_section_by_name (dynobj, ".hash");
3089 BFD_ASSERT (s != NULL);
c7ac6ff8
MM
3090 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
3091 s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
252b5132
RH
3092 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3093 if (s->contents == NULL)
3094 return false;
3095 memset (s->contents, 0, (size_t) s->_raw_size);
3096
c7ac6ff8
MM
3097 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
3098 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
3099 s->contents + hash_entry_size);
252b5132
RH
3100
3101 elf_hash_table (info)->bucketcount = bucketcount;
3102
3103 s = bfd_get_section_by_name (dynobj, ".dynstr");
3104 BFD_ASSERT (s != NULL);
3105 s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
3106
3107 if (! elf_add_dynamic_entry (info, DT_NULL, 0))
3108 return false;
3109 }
3110
3111 return true;
3112}
3113\f
3114/* Fix up the flags for a symbol. This handles various cases which
3115 can only be fixed after all the input files are seen. This is
3116 currently called by both adjust_dynamic_symbol and
3117 assign_sym_version, which is unnecessary but perhaps more robust in
3118 the face of future changes. */
3119
3120static boolean
3121elf_fix_symbol_flags (h, eif)
3122 struct elf_link_hash_entry *h;
3123 struct elf_info_failed *eif;
3124{
3125 /* If this symbol was mentioned in a non-ELF file, try to set
3126 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
3127 permit a non-ELF file to correctly refer to a symbol defined in
3128 an ELF dynamic object. */
3129 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
3130 {
3131 if (h->root.type != bfd_link_hash_defined
3132 && h->root.type != bfd_link_hash_defweak)
3133 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3134 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3135 else
3136 {
3137 if (h->root.u.def.section->owner != NULL
3138 && (bfd_get_flavour (h->root.u.def.section->owner)
3139 == bfd_target_elf_flavour))
3140 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3141 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3142 else
3143 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3144 }
3145
3146 if (h->dynindx == -1
3147 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3148 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
3149 {
3150 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3151 {
3152 eif->failed = true;
3153 return false;
3154 }
3155 }
3156 }
3157 else
3158 {
3159 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
3160 was first seen in a non-ELF file. Fortunately, if the symbol
3161 was first seen in an ELF file, we're probably OK unless the
3162 symbol was defined in a non-ELF file. Catch that case here.
3163 FIXME: We're still in trouble if the symbol was first seen in
3164 a dynamic object, and then later in a non-ELF regular object. */
3165 if ((h->root.type == bfd_link_hash_defined
3166 || h->root.type == bfd_link_hash_defweak)
3167 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3168 && (h->root.u.def.section->owner != NULL
3169 ? (bfd_get_flavour (h->root.u.def.section->owner)
3170 != bfd_target_elf_flavour)
3171 : (bfd_is_abs_section (h->root.u.def.section)
3172 && (h->elf_link_hash_flags
3173 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
3174 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3175 }
3176
3177 /* If this is a final link, and the symbol was defined as a common
3178 symbol in a regular object file, and there was no definition in
3179 any dynamic object, then the linker will have allocated space for
3180 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3181 flag will not have been set. */
3182 if (h->root.type == bfd_link_hash_defined
3183 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3184 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
3185 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3186 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3187 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3188
3189 /* If -Bsymbolic was used (which means to bind references to global
3190 symbols to the definition within the shared object), and this
3191 symbol was defined in a regular object, then it actually doesn't
3192 need a PLT entry. */
3193 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
3194 && eif->info->shared
3195 && eif->info->symbolic
3196 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3197 {
3198 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3199 h->plt.offset = (bfd_vma) -1;
3200 }
3201
3202 return true;
3203}
3204
3205/* Make the backend pick a good value for a dynamic symbol. This is
3206 called via elf_link_hash_traverse, and also calls itself
3207 recursively. */
3208
3209static boolean
3210elf_adjust_dynamic_symbol (h, data)
3211 struct elf_link_hash_entry *h;
3212 PTR data;
3213{
3214 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3215 bfd *dynobj;
3216 struct elf_backend_data *bed;
3217
3218 /* Ignore indirect symbols. These are added by the versioning code. */
3219 if (h->root.type == bfd_link_hash_indirect)
3220 return true;
3221
3222 /* Fix the symbol flags. */
3223 if (! elf_fix_symbol_flags (h, eif))
3224 return false;
3225
3226 /* If this symbol does not require a PLT entry, and it is not
3227 defined by a dynamic object, or is not referenced by a regular
3228 object, ignore it. We do have to handle a weak defined symbol,
3229 even if no regular object refers to it, if we decided to add it
3230 to the dynamic symbol table. FIXME: Do we normally need to worry
3231 about symbols which are defined by one dynamic object and
3232 referenced by another one? */
3233 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
3234 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3235 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3236 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
3237 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
3238 {
3239 h->plt.offset = (bfd_vma) -1;
3240 return true;
3241 }
3242
3243 /* If we've already adjusted this symbol, don't do it again. This
3244 can happen via a recursive call. */
3245 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
3246 return true;
3247
3248 /* Don't look at this symbol again. Note that we must set this
3249 after checking the above conditions, because we may look at a
3250 symbol once, decide not to do anything, and then get called
3251 recursively later after REF_REGULAR is set below. */
3252 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
3253
3254 /* If this is a weak definition, and we know a real definition, and
3255 the real symbol is not itself defined by a regular object file,
3256 then get a good value for the real definition. We handle the
3257 real symbol first, for the convenience of the backend routine.
3258
3259 Note that there is a confusing case here. If the real definition
3260 is defined by a regular object file, we don't get the real symbol
3261 from the dynamic object, but we do get the weak symbol. If the
3262 processor backend uses a COPY reloc, then if some routine in the
3263 dynamic object changes the real symbol, we will not see that
3264 change in the corresponding weak symbol. This is the way other
3265 ELF linkers work as well, and seems to be a result of the shared
3266 library model.
3267
3268 I will clarify this issue. Most SVR4 shared libraries define the
3269 variable _timezone and define timezone as a weak synonym. The
3270 tzset call changes _timezone. If you write
3271 extern int timezone;
3272 int _timezone = 5;
3273 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3274 you might expect that, since timezone is a synonym for _timezone,
3275 the same number will print both times. However, if the processor
3276 backend uses a COPY reloc, then actually timezone will be copied
3277 into your process image, and, since you define _timezone
3278 yourself, _timezone will not. Thus timezone and _timezone will
3279 wind up at different memory locations. The tzset call will set
3280 _timezone, leaving timezone unchanged. */
3281
3282 if (h->weakdef != NULL)
3283 {
3284 struct elf_link_hash_entry *weakdef;
3285
3286 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3287 || h->root.type == bfd_link_hash_defweak);
3288 weakdef = h->weakdef;
3289 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
3290 || weakdef->root.type == bfd_link_hash_defweak);
3291 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
3292 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3293 {
3294 /* This symbol is defined by a regular object file, so we
3295 will not do anything special. Clear weakdef for the
3296 convenience of the processor backend. */
3297 h->weakdef = NULL;
3298 }
3299 else
3300 {
3301 /* There is an implicit reference by a regular object file
3302 via the weak symbol. */
3303 weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
3304 if (h->weakdef->elf_link_hash_flags
3305 & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
3306 weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
3307 if (! elf_adjust_dynamic_symbol (weakdef, (PTR) eif))
3308 return false;
3309 }
3310 }
3311
3312 /* If a symbol has no type and no size and does not require a PLT
3313 entry, then we are probably about to do the wrong thing here: we
3314 are probably going to create a COPY reloc for an empty object.
3315 This case can arise when a shared object is built with assembly
3316 code, and the assembly code fails to set the symbol type. */
3317 if (h->size == 0
3318 && h->type == STT_NOTYPE
3319 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
3320 (*_bfd_error_handler)
3321 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3322 h->root.root.string);
3323
3324 dynobj = elf_hash_table (eif->info)->dynobj;
3325 bed = get_elf_backend_data (dynobj);
3326 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3327 {
3328 eif->failed = true;
3329 return false;
3330 }
3331
3332 return true;
3333}
3334\f
3335/* This routine is used to export all defined symbols into the dynamic
3336 symbol table. It is called via elf_link_hash_traverse. */
3337
3338static boolean
3339elf_export_symbol (h, data)
3340 struct elf_link_hash_entry *h;
3341 PTR data;
3342{
3343 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3344
3345 /* Ignore indirect symbols. These are added by the versioning code. */
3346 if (h->root.type == bfd_link_hash_indirect)
3347 return true;
3348
3349 if (h->dynindx == -1
3350 && (h->elf_link_hash_flags
3351 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
3352 {
3353 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3354 {
3355 eif->failed = true;
3356 return false;
3357 }
3358 }
3359
3360 return true;
3361}
3362\f
3363/* Look through the symbols which are defined in other shared
3364 libraries and referenced here. Update the list of version
3365 dependencies. This will be put into the .gnu.version_r section.
3366 This function is called via elf_link_hash_traverse. */
3367
3368static boolean
3369elf_link_find_version_dependencies (h, data)
3370 struct elf_link_hash_entry *h;
3371 PTR data;
3372{
3373 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
3374 Elf_Internal_Verneed *t;
3375 Elf_Internal_Vernaux *a;
3376
3377 /* We only care about symbols defined in shared objects with version
3378 information. */
3379 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3380 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3381 || h->dynindx == -1
3382 || h->verinfo.verdef == NULL)
3383 return true;
3384
3385 /* See if we already know about this version. */
3386 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
3387 {
3388 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
3389 continue;
3390
3391 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3392 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
3393 return true;
3394
3395 break;
3396 }
3397
3398 /* This is a new version. Add it to tree we are building. */
3399
3400 if (t == NULL)
3401 {
3402 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, sizeof *t);
3403 if (t == NULL)
3404 {
3405 rinfo->failed = true;
3406 return false;
3407 }
3408
3409 t->vn_bfd = h->verinfo.verdef->vd_bfd;
3410 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
3411 elf_tdata (rinfo->output_bfd)->verref = t;
3412 }
3413
3414 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, sizeof *a);
3415
3416 /* Note that we are copying a string pointer here, and testing it
3417 above. If bfd_elf_string_from_elf_section is ever changed to
3418 discard the string data when low in memory, this will have to be
3419 fixed. */
3420 a->vna_nodename = h->verinfo.verdef->vd_nodename;
3421
3422 a->vna_flags = h->verinfo.verdef->vd_flags;
3423 a->vna_nextptr = t->vn_auxptr;
3424
3425 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
3426 ++rinfo->vers;
3427
3428 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
3429
3430 t->vn_auxptr = a;
3431
3432 return true;
3433}
3434
3435/* Figure out appropriate versions for all the symbols. We may not
3436 have the version number script until we have read all of the input
3437 files, so until that point we don't know which symbols should be
3438 local. This function is called via elf_link_hash_traverse. */
3439
3440static boolean
3441elf_link_assign_sym_version (h, data)
3442 struct elf_link_hash_entry *h;
3443 PTR data;
3444{
3445 struct elf_assign_sym_version_info *sinfo =
3446 (struct elf_assign_sym_version_info *) data;
3447 struct bfd_link_info *info = sinfo->info;
3448 struct elf_info_failed eif;
3449 char *p;
3450
3451 /* Fix the symbol flags. */
3452 eif.failed = false;
3453 eif.info = info;
3454 if (! elf_fix_symbol_flags (h, &eif))
3455 {
3456 if (eif.failed)
3457 sinfo->failed = true;
3458 return false;
3459 }
3460
3461 /* We only need version numbers for symbols defined in regular
3462 objects. */
3463 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3464 return true;
3465
3466 p = strchr (h->root.root.string, ELF_VER_CHR);
3467 if (p != NULL && h->verinfo.vertree == NULL)
3468 {
3469 struct bfd_elf_version_tree *t;
3470 boolean hidden;
3471
3472 hidden = true;
3473
3474 /* There are two consecutive ELF_VER_CHR characters if this is
3475 not a hidden symbol. */
3476 ++p;
3477 if (*p == ELF_VER_CHR)
3478 {
3479 hidden = false;
3480 ++p;
3481 }
3482
3483 /* If there is no version string, we can just return out. */
3484 if (*p == '\0')
3485 {
3486 if (hidden)
3487 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3488 return true;
3489 }
3490
3491 /* Look for the version. If we find it, it is no longer weak. */
3492 for (t = sinfo->verdefs; t != NULL; t = t->next)
3493 {
3494 if (strcmp (t->name, p) == 0)
3495 {
3496 int len;
3497 char *alc;
3498 struct bfd_elf_version_expr *d;
3499
3500 len = p - h->root.root.string;
3501 alc = bfd_alloc (sinfo->output_bfd, len);
3502 if (alc == NULL)
3503 return false;
3504 strncpy (alc, h->root.root.string, len - 1);
3505 alc[len - 1] = '\0';
3506 if (alc[len - 2] == ELF_VER_CHR)
3507 alc[len - 2] = '\0';
3508
3509 h->verinfo.vertree = t;
3510 t->used = true;
3511 d = NULL;
3512
3513 if (t->globals != NULL)
3514 {
3515 for (d = t->globals; d != NULL; d = d->next)
3516 if ((*d->match) (d, alc))
3517 break;
3518 }
3519
3520 /* See if there is anything to force this symbol to
3521 local scope. */
3522 if (d == NULL && t->locals != NULL)
3523 {
3524 for (d = t->locals; d != NULL; d = d->next)
3525 {
3526 if ((*d->match) (d, alc))
3527 {
3528 if (h->dynindx != -1
3529 && info->shared
3530 && ! sinfo->export_dynamic)
3531 {
252b5132
RH
3532 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3533 h->elf_link_hash_flags &=~
3534 ELF_LINK_HASH_NEEDS_PLT;
3535 h->dynindx = -1;
3536 h->plt.offset = (bfd_vma) -1;
3537 /* FIXME: The name of the symbol has
3538 already been recorded in the dynamic
3539 string table section. */
3540 }
3541
3542 break;
3543 }
3544 }
3545 }
3546
3547 bfd_release (sinfo->output_bfd, alc);
3548 break;
3549 }
3550 }
3551
3552 /* If we are building an application, we need to create a
3553 version node for this version. */
3554 if (t == NULL && ! info->shared)
3555 {
3556 struct bfd_elf_version_tree **pp;
3557 int version_index;
3558
3559 /* If we aren't going to export this symbol, we don't need
3560 to worry about it. */
3561 if (h->dynindx == -1)
3562 return true;
3563
3564 t = ((struct bfd_elf_version_tree *)
3565 bfd_alloc (sinfo->output_bfd, sizeof *t));
3566 if (t == NULL)
3567 {
3568 sinfo->failed = true;
3569 return false;
3570 }
3571
3572 t->next = NULL;
3573 t->name = p;
3574 t->globals = NULL;
3575 t->locals = NULL;
3576 t->deps = NULL;
3577 t->name_indx = (unsigned int) -1;
3578 t->used = true;
3579
3580 version_index = 1;
3581 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
3582 ++version_index;
3583 t->vernum = version_index;
3584
3585 *pp = t;
3586
3587 h->verinfo.vertree = t;
3588 }
3589 else if (t == NULL)
3590 {
3591 /* We could not find the version for a symbol when
3592 generating a shared archive. Return an error. */
3593 (*_bfd_error_handler)
3594 (_("%s: undefined versioned symbol name %s"),
3595 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
3596 bfd_set_error (bfd_error_bad_value);
3597 sinfo->failed = true;
3598 return false;
3599 }
3600
3601 if (hidden)
3602 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3603 }
3604
3605 /* If we don't have a version for this symbol, see if we can find
3606 something. */
3607 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
3608 {
3609 struct bfd_elf_version_tree *t;
3610 struct bfd_elf_version_tree *deflt;
3611 struct bfd_elf_version_expr *d;
3612
3613 /* See if can find what version this symbol is in. If the
3614 symbol is supposed to be local, then don't actually register
3615 it. */
3616 deflt = NULL;
3617 for (t = sinfo->verdefs; t != NULL; t = t->next)
3618 {
3619 if (t->globals != NULL)
3620 {
3621 for (d = t->globals; d != NULL; d = d->next)
3622 {
3623 if ((*d->match) (d, h->root.root.string))
3624 {
3625 h->verinfo.vertree = t;
3626 break;
3627 }
3628 }
3629
3630 if (d != NULL)
3631 break;
3632 }
3633
3634 if (t->locals != NULL)
3635 {
3636 for (d = t->locals; d != NULL; d = d->next)
3637 {
3638 if (d->pattern[0] == '*' && d->pattern[1] == '\0')
3639 deflt = t;
3640 else if ((*d->match) (d, h->root.root.string))
3641 {
3642 h->verinfo.vertree = t;
3643 if (h->dynindx != -1
3644 && info->shared
3645 && ! sinfo->export_dynamic)
3646 {
252b5132
RH
3647 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3648 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3649 h->dynindx = -1;
3650 h->plt.offset = (bfd_vma) -1;
3651 /* FIXME: The name of the symbol has already
3652 been recorded in the dynamic string table
3653 section. */
3654 }
3655 break;
3656 }
3657 }
3658
3659 if (d != NULL)
3660 break;
3661 }
3662 }
3663
3664 if (deflt != NULL && h->verinfo.vertree == NULL)
3665 {
3666 h->verinfo.vertree = deflt;
3667 if (h->dynindx != -1
3668 && info->shared
3669 && ! sinfo->export_dynamic)
3670 {
252b5132
RH
3671 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3672 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3673 h->dynindx = -1;
3674 h->plt.offset = (bfd_vma) -1;
3675 /* FIXME: The name of the symbol has already been
3676 recorded in the dynamic string table section. */
3677 }
3678 }
3679 }
3680
3681 return true;
3682}
252b5132
RH
3683\f
3684/* Final phase of ELF linker. */
3685
3686/* A structure we use to avoid passing large numbers of arguments. */
3687
3688struct elf_final_link_info
3689{
3690 /* General link information. */
3691 struct bfd_link_info *info;
3692 /* Output BFD. */
3693 bfd *output_bfd;
3694 /* Symbol string table. */
3695 struct bfd_strtab_hash *symstrtab;
3696 /* .dynsym section. */
3697 asection *dynsym_sec;
3698 /* .hash section. */
3699 asection *hash_sec;
3700 /* symbol version section (.gnu.version). */
3701 asection *symver_sec;
3702 /* Buffer large enough to hold contents of any section. */
3703 bfd_byte *contents;
3704 /* Buffer large enough to hold external relocs of any section. */
3705 PTR external_relocs;
3706 /* Buffer large enough to hold internal relocs of any section. */
3707 Elf_Internal_Rela *internal_relocs;
3708 /* Buffer large enough to hold external local symbols of any input
3709 BFD. */
3710 Elf_External_Sym *external_syms;
3711 /* Buffer large enough to hold internal local symbols of any input
3712 BFD. */
3713 Elf_Internal_Sym *internal_syms;
3714 /* Array large enough to hold a symbol index for each local symbol
3715 of any input BFD. */
3716 long *indices;
3717 /* Array large enough to hold a section pointer for each local
3718 symbol of any input BFD. */
3719 asection **sections;
3720 /* Buffer to hold swapped out symbols. */
3721 Elf_External_Sym *symbuf;
3722 /* Number of swapped out symbols in buffer. */
3723 size_t symbuf_count;
3724 /* Number of symbols which fit in symbuf. */
3725 size_t symbuf_size;
3726};
3727
3728static boolean elf_link_output_sym
3729 PARAMS ((struct elf_final_link_info *, const char *,
3730 Elf_Internal_Sym *, asection *));
3731static boolean elf_link_flush_output_syms
3732 PARAMS ((struct elf_final_link_info *));
3733static boolean elf_link_output_extsym
3734 PARAMS ((struct elf_link_hash_entry *, PTR));
3735static boolean elf_link_input_bfd
3736 PARAMS ((struct elf_final_link_info *, bfd *));
3737static boolean elf_reloc_link_order
3738 PARAMS ((bfd *, struct bfd_link_info *, asection *,
3739 struct bfd_link_order *));
3740
3741/* This struct is used to pass information to elf_link_output_extsym. */
3742
3743struct elf_outext_info
3744{
3745 boolean failed;
3746 boolean localsyms;
3747 struct elf_final_link_info *finfo;
3748};
3749
23bc299b
MM
3750/* Compute the size of, and allocate space for, REL_HDR which is the
3751 section header for a section containing relocations for O. */
3752
3753static boolean
3754elf_link_size_reloc_section (abfd, rel_hdr, o)
3755 bfd *abfd;
3756 Elf_Internal_Shdr *rel_hdr;
3757 asection *o;
3758{
3759 register struct elf_link_hash_entry **p, **pend;
3760
3761 /* We are overestimating the size required for the relocation
3762 sections, in the case that we are using both REL and RELA
3763 relocations for a single section. In that case, RELOC_COUNT will
3764 be the total number of relocations required, and we allocate
3765 space for that many REL relocations as well as that many RELA
3766 relocations. This approximation is wasteful of disk space.
3767 However, until we keep track of how many of each kind of
3768 relocation is required, it's difficult to calculate the right
3769 value. */
3770 rel_hdr->sh_size = rel_hdr->sh_entsize * o->reloc_count;
3771
3772 /* The contents field must last into write_object_contents, so we
3773 allocate it with bfd_alloc rather than malloc. */
3774 rel_hdr->contents = (PTR) bfd_alloc (abfd, rel_hdr->sh_size);
3775 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
3776 return false;
3777
3778 p = ((struct elf_link_hash_entry **)
3779 bfd_malloc (o->reloc_count
3780 * sizeof (struct elf_link_hash_entry *)));
3781 if (p == NULL && o->reloc_count != 0)
3782 return false;
3783
3784 elf_section_data (o)->rel_hashes = p;
3785 pend = p + o->reloc_count;
3786 for (; p < pend; p++)
3787 *p = NULL;
3788
3789 return true;
3790}
3791
31367b81
MM
3792/* When performing a relocateable link, the input relocations are
3793 preserved. But, if they reference global symbols, the indices
3794 referenced must be updated. Update all the relocations in
3795 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
3796
3797static void
3798elf_link_adjust_relocs (abfd, rel_hdr, count, rel_hash)
3799 bfd *abfd;
3800 Elf_Internal_Shdr *rel_hdr;
3801 unsigned int count;
3802 struct elf_link_hash_entry **rel_hash;
3803{
3804 unsigned int i;
3805
3806 for (i = 0; i < count; i++, rel_hash++)
3807 {
3808 if (*rel_hash == NULL)
3809 continue;
3810
3811 BFD_ASSERT ((*rel_hash)->indx >= 0);
3812
3813 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
3814 {
3815 Elf_External_Rel *erel;
3816 Elf_Internal_Rel irel;
3817
3818 erel = (Elf_External_Rel *) rel_hdr->contents + i;
3819 elf_swap_reloc_in (abfd, erel, &irel);
3820 irel.r_info = ELF_R_INFO ((*rel_hash)->indx,
3821 ELF_R_TYPE (irel.r_info));
3822 elf_swap_reloc_out (abfd, &irel, erel);
3823 }
3824 else
3825 {
3826 Elf_External_Rela *erela;
3827 Elf_Internal_Rela irela;
3828
3829 BFD_ASSERT (rel_hdr->sh_entsize
3830 == sizeof (Elf_External_Rela));
3831
3832 erela = (Elf_External_Rela *) rel_hdr->contents + i;
3833 elf_swap_reloca_in (abfd, erela, &irela);
3834 irela.r_info = ELF_R_INFO ((*rel_hash)->indx,
3835 ELF_R_TYPE (irela.r_info));
3836 elf_swap_reloca_out (abfd, &irela, erela);
3837 }
3838 }
3839}
3840
252b5132
RH
3841/* Do the final step of an ELF link. */
3842
3843boolean
3844elf_bfd_final_link (abfd, info)
3845 bfd *abfd;
3846 struct bfd_link_info *info;
3847{
3848 boolean dynamic;
3849 bfd *dynobj;
3850 struct elf_final_link_info finfo;
3851 register asection *o;
3852 register struct bfd_link_order *p;
3853 register bfd *sub;
3854 size_t max_contents_size;
3855 size_t max_external_reloc_size;
3856 size_t max_internal_reloc_count;
3857 size_t max_sym_count;
3858 file_ptr off;
3859 Elf_Internal_Sym elfsym;
3860 unsigned int i;
3861 Elf_Internal_Shdr *symtab_hdr;
3862 Elf_Internal_Shdr *symstrtab_hdr;
3863 struct elf_backend_data *bed = get_elf_backend_data (abfd);
3864 struct elf_outext_info eoinfo;
3865
3866 if (info->shared)
3867 abfd->flags |= DYNAMIC;
3868
3869 dynamic = elf_hash_table (info)->dynamic_sections_created;
3870 dynobj = elf_hash_table (info)->dynobj;
3871
3872 finfo.info = info;
3873 finfo.output_bfd = abfd;
3874 finfo.symstrtab = elf_stringtab_init ();
3875 if (finfo.symstrtab == NULL)
3876 return false;
3877
3878 if (! dynamic)
3879 {
3880 finfo.dynsym_sec = NULL;
3881 finfo.hash_sec = NULL;
3882 finfo.symver_sec = NULL;
3883 }
3884 else
3885 {
3886 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
3887 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
3888 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
3889 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
3890 /* Note that it is OK if symver_sec is NULL. */
3891 }
3892
3893 finfo.contents = NULL;
3894 finfo.external_relocs = NULL;
3895 finfo.internal_relocs = NULL;
3896 finfo.external_syms = NULL;
3897 finfo.internal_syms = NULL;
3898 finfo.indices = NULL;
3899 finfo.sections = NULL;
3900 finfo.symbuf = NULL;
3901 finfo.symbuf_count = 0;
3902
3903 /* Count up the number of relocations we will output for each output
3904 section, so that we know the sizes of the reloc sections. We
3905 also figure out some maximum sizes. */
3906 max_contents_size = 0;
3907 max_external_reloc_size = 0;
3908 max_internal_reloc_count = 0;
3909 max_sym_count = 0;
3910 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
3911 {
3912 o->reloc_count = 0;
3913
3914 for (p = o->link_order_head; p != NULL; p = p->next)
3915 {
3916 if (p->type == bfd_section_reloc_link_order
3917 || p->type == bfd_symbol_reloc_link_order)
3918 ++o->reloc_count;
3919 else if (p->type == bfd_indirect_link_order)
3920 {
3921 asection *sec;
3922
3923 sec = p->u.indirect.section;
3924
3925 /* Mark all sections which are to be included in the
3926 link. This will normally be every section. We need
3927 to do this so that we can identify any sections which
3928 the linker has decided to not include. */
3929 sec->linker_mark = true;
3930
3931 if (info->relocateable)
3932 o->reloc_count += sec->reloc_count;
3933
3934 if (sec->_raw_size > max_contents_size)
3935 max_contents_size = sec->_raw_size;
3936 if (sec->_cooked_size > max_contents_size)
3937 max_contents_size = sec->_cooked_size;
3938
3939 /* We are interested in just local symbols, not all
3940 symbols. */
3941 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
3942 && (sec->owner->flags & DYNAMIC) == 0)
3943 {
3944 size_t sym_count;
3945
3946 if (elf_bad_symtab (sec->owner))
3947 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
3948 / sizeof (Elf_External_Sym));
3949 else
3950 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
3951
3952 if (sym_count > max_sym_count)
3953 max_sym_count = sym_count;
3954
3955 if ((sec->flags & SEC_RELOC) != 0)
3956 {
3957 size_t ext_size;
3958
3959 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
3960 if (ext_size > max_external_reloc_size)
3961 max_external_reloc_size = ext_size;
3962 if (sec->reloc_count > max_internal_reloc_count)
3963 max_internal_reloc_count = sec->reloc_count;
3964 }
3965 }
3966 }
3967 }
3968
3969 if (o->reloc_count > 0)
3970 o->flags |= SEC_RELOC;
3971 else
3972 {
3973 /* Explicitly clear the SEC_RELOC flag. The linker tends to
3974 set it (this is probably a bug) and if it is set
3975 assign_section_numbers will create a reloc section. */
3976 o->flags &=~ SEC_RELOC;
3977 }
3978
3979 /* If the SEC_ALLOC flag is not set, force the section VMA to
3980 zero. This is done in elf_fake_sections as well, but forcing
3981 the VMA to 0 here will ensure that relocs against these
3982 sections are handled correctly. */
3983 if ((o->flags & SEC_ALLOC) == 0
3984 && ! o->user_set_vma)
3985 o->vma = 0;
3986 }
3987
3988 /* Figure out the file positions for everything but the symbol table
3989 and the relocs. We set symcount to force assign_section_numbers
3990 to create a symbol table. */
3991 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
3992 BFD_ASSERT (! abfd->output_has_begun);
3993 if (! _bfd_elf_compute_section_file_positions (abfd, info))
3994 goto error_return;
3995
3996 /* That created the reloc sections. Set their sizes, and assign
3997 them file positions, and allocate some buffers. */
3998 for (o = abfd->sections; o != NULL; o = o->next)
3999 {
4000 if ((o->flags & SEC_RELOC) != 0)
4001 {
23bc299b
MM
4002 if (!elf_link_size_reloc_section (abfd,
4003 &elf_section_data (o)->rel_hdr,
4004 o))
252b5132
RH
4005 goto error_return;
4006
23bc299b
MM
4007 if (elf_section_data (o)->rel_hdr2
4008 && !elf_link_size_reloc_section (abfd,
4009 elf_section_data (o)->rel_hdr2,
4010 o))
252b5132 4011 goto error_return;
252b5132
RH
4012 }
4013 }
4014
4015 _bfd_elf_assign_file_positions_for_relocs (abfd);
4016
4017 /* We have now assigned file positions for all the sections except
4018 .symtab and .strtab. We start the .symtab section at the current
4019 file position, and write directly to it. We build the .strtab
4020 section in memory. */
4021 bfd_get_symcount (abfd) = 0;
4022 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4023 /* sh_name is set in prep_headers. */
4024 symtab_hdr->sh_type = SHT_SYMTAB;
4025 symtab_hdr->sh_flags = 0;
4026 symtab_hdr->sh_addr = 0;
4027 symtab_hdr->sh_size = 0;
4028 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
4029 /* sh_link is set in assign_section_numbers. */
4030 /* sh_info is set below. */
4031 /* sh_offset is set just below. */
4032 symtab_hdr->sh_addralign = 4; /* FIXME: system dependent? */
4033
4034 off = elf_tdata (abfd)->next_file_pos;
4035 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
4036
4037 /* Note that at this point elf_tdata (abfd)->next_file_pos is
4038 incorrect. We do not yet know the size of the .symtab section.
4039 We correct next_file_pos below, after we do know the size. */
4040
4041 /* Allocate a buffer to hold swapped out symbols. This is to avoid
4042 continuously seeking to the right position in the file. */
4043 if (! info->keep_memory || max_sym_count < 20)
4044 finfo.symbuf_size = 20;
4045 else
4046 finfo.symbuf_size = max_sym_count;
4047 finfo.symbuf = ((Elf_External_Sym *)
4048 bfd_malloc (finfo.symbuf_size * sizeof (Elf_External_Sym)));
4049 if (finfo.symbuf == NULL)
4050 goto error_return;
4051
4052 /* Start writing out the symbol table. The first symbol is always a
4053 dummy symbol. */
4054 if (info->strip != strip_all || info->relocateable)
4055 {
4056 elfsym.st_value = 0;
4057 elfsym.st_size = 0;
4058 elfsym.st_info = 0;
4059 elfsym.st_other = 0;
4060 elfsym.st_shndx = SHN_UNDEF;
4061 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4062 &elfsym, bfd_und_section_ptr))
4063 goto error_return;
4064 }
4065
4066#if 0
4067 /* Some standard ELF linkers do this, but we don't because it causes
4068 bootstrap comparison failures. */
4069 /* Output a file symbol for the output file as the second symbol.
4070 We output this even if we are discarding local symbols, although
4071 I'm not sure if this is correct. */
4072 elfsym.st_value = 0;
4073 elfsym.st_size = 0;
4074 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
4075 elfsym.st_other = 0;
4076 elfsym.st_shndx = SHN_ABS;
4077 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
4078 &elfsym, bfd_abs_section_ptr))
4079 goto error_return;
4080#endif
4081
4082 /* Output a symbol for each section. We output these even if we are
4083 discarding local symbols, since they are used for relocs. These
4084 symbols have no names. We store the index of each one in the
4085 index field of the section, so that we can find it again when
4086 outputting relocs. */
4087 if (info->strip != strip_all || info->relocateable)
4088 {
4089 elfsym.st_size = 0;
4090 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4091 elfsym.st_other = 0;
4092 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4093 {
4094 o = section_from_elf_index (abfd, i);
4095 if (o != NULL)
4096 o->target_index = bfd_get_symcount (abfd);
4097 elfsym.st_shndx = i;
4098 if (info->relocateable || o == NULL)
4099 elfsym.st_value = 0;
4100 else
4101 elfsym.st_value = o->vma;
4102 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4103 &elfsym, o))
4104 goto error_return;
4105 }
4106 }
4107
4108 /* Allocate some memory to hold information read in from the input
4109 files. */
4110 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
4111 finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
4112 finfo.internal_relocs = ((Elf_Internal_Rela *)
4113 bfd_malloc (max_internal_reloc_count
c7ac6ff8
MM
4114 * sizeof (Elf_Internal_Rela)
4115 * bed->s->int_rels_per_ext_rel));
252b5132
RH
4116 finfo.external_syms = ((Elf_External_Sym *)
4117 bfd_malloc (max_sym_count
4118 * sizeof (Elf_External_Sym)));
4119 finfo.internal_syms = ((Elf_Internal_Sym *)
4120 bfd_malloc (max_sym_count
4121 * sizeof (Elf_Internal_Sym)));
4122 finfo.indices = (long *) bfd_malloc (max_sym_count * sizeof (long));
4123 finfo.sections = ((asection **)
4124 bfd_malloc (max_sym_count * sizeof (asection *)));
4125 if ((finfo.contents == NULL && max_contents_size != 0)
4126 || (finfo.external_relocs == NULL && max_external_reloc_size != 0)
4127 || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0)
4128 || (finfo.external_syms == NULL && max_sym_count != 0)
4129 || (finfo.internal_syms == NULL && max_sym_count != 0)
4130 || (finfo.indices == NULL && max_sym_count != 0)
4131 || (finfo.sections == NULL && max_sym_count != 0))
4132 goto error_return;
4133
4134 /* Since ELF permits relocations to be against local symbols, we
4135 must have the local symbols available when we do the relocations.
4136 Since we would rather only read the local symbols once, and we
4137 would rather not keep them in memory, we handle all the
4138 relocations for a single input file at the same time.
4139
4140 Unfortunately, there is no way to know the total number of local
4141 symbols until we have seen all of them, and the local symbol
4142 indices precede the global symbol indices. This means that when
4143 we are generating relocateable output, and we see a reloc against
4144 a global symbol, we can not know the symbol index until we have
4145 finished examining all the local symbols to see which ones we are
4146 going to output. To deal with this, we keep the relocations in
4147 memory, and don't output them until the end of the link. This is
4148 an unfortunate waste of memory, but I don't see a good way around
4149 it. Fortunately, it only happens when performing a relocateable
4150 link, which is not the common case. FIXME: If keep_memory is set
4151 we could write the relocs out and then read them again; I don't
4152 know how bad the memory loss will be. */
4153
4154 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4155 sub->output_has_begun = false;
4156 for (o = abfd->sections; o != NULL; o = o->next)
4157 {
4158 for (p = o->link_order_head; p != NULL; p = p->next)
4159 {
4160 if (p->type == bfd_indirect_link_order
4161 && (bfd_get_flavour (p->u.indirect.section->owner)
4162 == bfd_target_elf_flavour))
4163 {
4164 sub = p->u.indirect.section->owner;
4165 if (! sub->output_has_begun)
4166 {
4167 if (! elf_link_input_bfd (&finfo, sub))
4168 goto error_return;
4169 sub->output_has_begun = true;
4170 }
4171 }
4172 else if (p->type == bfd_section_reloc_link_order
4173 || p->type == bfd_symbol_reloc_link_order)
4174 {
4175 if (! elf_reloc_link_order (abfd, info, o, p))
4176 goto error_return;
4177 }
4178 else
4179 {
4180 if (! _bfd_default_link_order (abfd, info, o, p))
4181 goto error_return;
4182 }
4183 }
4184 }
4185
4186 /* That wrote out all the local symbols. Finish up the symbol table
4187 with the global symbols. */
4188
4189 if (info->strip != strip_all && info->shared)
4190 {
4191 /* Output any global symbols that got converted to local in a
4192 version script. We do this in a separate step since ELF
4193 requires all local symbols to appear prior to any global
4194 symbols. FIXME: We should only do this if some global
4195 symbols were, in fact, converted to become local. FIXME:
4196 Will this work correctly with the Irix 5 linker? */
4197 eoinfo.failed = false;
4198 eoinfo.finfo = &finfo;
4199 eoinfo.localsyms = true;
4200 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4201 (PTR) &eoinfo);
4202 if (eoinfo.failed)
4203 return false;
4204 }
4205
30b30c21 4206 /* The sh_info field records the index of the first non local symbol. */
252b5132 4207 symtab_hdr->sh_info = bfd_get_symcount (abfd);
30b30c21 4208
252b5132 4209 if (dynamic)
30b30c21
RH
4210 {
4211 Elf_Internal_Sym sym;
4212 Elf_External_Sym *dynsym =
4213 (Elf_External_Sym *)finfo.dynsym_sec->contents;
4214 unsigned long last_local = 0;
4215
4216 /* Write out the section symbols for the output sections. */
4217 if (info->shared)
4218 {
4219 asection *s;
4220
4221 sym.st_size = 0;
4222 sym.st_name = 0;
4223 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4224 sym.st_other = 0;
4225
4226 for (s = abfd->sections; s != NULL; s = s->next)
4227 {
4228 int indx;
4229 indx = elf_section_data (s)->this_idx;
4230 BFD_ASSERT (indx > 0);
4231 sym.st_shndx = indx;
4232 sym.st_value = s->vma;
4233
4234 elf_swap_symbol_out (abfd, &sym,
4235 dynsym + elf_section_data (s)->dynindx);
4236 }
4237
4238 last_local = bfd_count_sections (abfd);
4239 }
4240
4241 /* Write out the local dynsyms. */
4242 if (elf_hash_table (info)->dynlocal)
4243 {
4244 struct elf_link_local_dynamic_entry *e;
4245 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
4246 {
318da145 4247 asection *s;
30b30c21
RH
4248
4249 sym.st_size = e->isym.st_size;
4250 sym.st_other = e->isym.st_other;
4251
4252 /* Note that we saved a word of storage and overwrote
4253 the original st_name with the dynstr_index. */
4254 sym.st_name = e->isym.st_name;
4255
4256 /* Whatever binding the symbol had before, it's now local. */
4257 sym.st_info = ELF_ST_INFO (STB_LOCAL,
4258 ELF_ST_TYPE (e->isym.st_info));
4259
4260 s = bfd_section_from_elf_index (e->input_bfd, e->isym.st_shndx);
4261
4262 sym.st_shndx = elf_section_data (s->output_section)->this_idx;
4263 sym.st_value = (s->output_section->vma
4264 + s->output_offset
4265 + e->isym.st_value);
4266
4267 if (last_local < e->dynindx)
4268 last_local = e->dynindx;
4269
4270 elf_swap_symbol_out (abfd, &sym, dynsym + e->dynindx);
4271 }
4272 }
4273
4274 elf_section_data (finfo.dynsym_sec->output_section)
4275 ->this_hdr.sh_info = last_local;
4276 }
252b5132
RH
4277
4278 /* We get the global symbols from the hash table. */
4279 eoinfo.failed = false;
4280 eoinfo.localsyms = false;
4281 eoinfo.finfo = &finfo;
4282 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4283 (PTR) &eoinfo);
4284 if (eoinfo.failed)
4285 return false;
4286
4287 /* Flush all symbols to the file. */
4288 if (! elf_link_flush_output_syms (&finfo))
4289 return false;
4290
4291 /* Now we know the size of the symtab section. */
4292 off += symtab_hdr->sh_size;
4293
4294 /* Finish up and write out the symbol string table (.strtab)
4295 section. */
4296 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
4297 /* sh_name was set in prep_headers. */
4298 symstrtab_hdr->sh_type = SHT_STRTAB;
4299 symstrtab_hdr->sh_flags = 0;
4300 symstrtab_hdr->sh_addr = 0;
4301 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
4302 symstrtab_hdr->sh_entsize = 0;
4303 symstrtab_hdr->sh_link = 0;
4304 symstrtab_hdr->sh_info = 0;
4305 /* sh_offset is set just below. */
4306 symstrtab_hdr->sh_addralign = 1;
4307
4308 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
4309 elf_tdata (abfd)->next_file_pos = off;
4310
4311 if (bfd_get_symcount (abfd) > 0)
4312 {
4313 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
4314 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
4315 return false;
4316 }
4317
4318 /* Adjust the relocs to have the correct symbol indices. */
4319 for (o = abfd->sections; o != NULL; o = o->next)
4320 {
252b5132
RH
4321 if ((o->flags & SEC_RELOC) == 0)
4322 continue;
4323
31367b81
MM
4324 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
4325 elf_section_data (o)->rel_count,
4326 elf_section_data (o)->rel_hashes);
4327 if (elf_section_data (o)->rel_hdr2 != NULL)
4328 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
4329 elf_section_data (o)->rel_count2,
4330 (elf_section_data (o)->rel_hashes
4331 + elf_section_data (o)->rel_count));
252b5132
RH
4332
4333 /* Set the reloc_count field to 0 to prevent write_relocs from
4334 trying to swap the relocs out itself. */
4335 o->reloc_count = 0;
4336 }
4337
4338 /* If we are linking against a dynamic object, or generating a
4339 shared library, finish up the dynamic linking information. */
4340 if (dynamic)
4341 {
4342 Elf_External_Dyn *dyncon, *dynconend;
4343
4344 /* Fix up .dynamic entries. */
4345 o = bfd_get_section_by_name (dynobj, ".dynamic");
4346 BFD_ASSERT (o != NULL);
4347
4348 dyncon = (Elf_External_Dyn *) o->contents;
4349 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
4350 for (; dyncon < dynconend; dyncon++)
4351 {
4352 Elf_Internal_Dyn dyn;
4353 const char *name;
4354 unsigned int type;
4355
4356 elf_swap_dyn_in (dynobj, dyncon, &dyn);
4357
4358 switch (dyn.d_tag)
4359 {
4360 default:
4361 break;
252b5132 4362 case DT_INIT:
f0c2e336 4363 name = info->init_function;
252b5132
RH
4364 goto get_sym;
4365 case DT_FINI:
f0c2e336 4366 name = info->fini_function;
252b5132
RH
4367 get_sym:
4368 {
4369 struct elf_link_hash_entry *h;
4370
4371 h = elf_link_hash_lookup (elf_hash_table (info), name,
4372 false, false, true);
4373 if (h != NULL
4374 && (h->root.type == bfd_link_hash_defined
4375 || h->root.type == bfd_link_hash_defweak))
4376 {
4377 dyn.d_un.d_val = h->root.u.def.value;
4378 o = h->root.u.def.section;
4379 if (o->output_section != NULL)
4380 dyn.d_un.d_val += (o->output_section->vma
4381 + o->output_offset);
4382 else
4383 {
4384 /* The symbol is imported from another shared
4385 library and does not apply to this one. */
4386 dyn.d_un.d_val = 0;
4387 }
4388
4389 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4390 }
4391 }
4392 break;
4393
4394 case DT_HASH:
4395 name = ".hash";
4396 goto get_vma;
4397 case DT_STRTAB:
4398 name = ".dynstr";
4399 goto get_vma;
4400 case DT_SYMTAB:
4401 name = ".dynsym";
4402 goto get_vma;
4403 case DT_VERDEF:
4404 name = ".gnu.version_d";
4405 goto get_vma;
4406 case DT_VERNEED:
4407 name = ".gnu.version_r";
4408 goto get_vma;
4409 case DT_VERSYM:
4410 name = ".gnu.version";
4411 get_vma:
4412 o = bfd_get_section_by_name (abfd, name);
4413 BFD_ASSERT (o != NULL);
4414 dyn.d_un.d_ptr = o->vma;
4415 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4416 break;
4417
4418 case DT_REL:
4419 case DT_RELA:
4420 case DT_RELSZ:
4421 case DT_RELASZ:
4422 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
4423 type = SHT_REL;
4424 else
4425 type = SHT_RELA;
4426 dyn.d_un.d_val = 0;
4427 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4428 {
4429 Elf_Internal_Shdr *hdr;
4430
4431 hdr = elf_elfsections (abfd)[i];
4432 if (hdr->sh_type == type
4433 && (hdr->sh_flags & SHF_ALLOC) != 0)
4434 {
4435 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
4436 dyn.d_un.d_val += hdr->sh_size;
4437 else
4438 {
4439 if (dyn.d_un.d_val == 0
4440 || hdr->sh_addr < dyn.d_un.d_val)
4441 dyn.d_un.d_val = hdr->sh_addr;
4442 }
4443 }
4444 }
4445 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4446 break;
4447 }
4448 }
4449 }
4450
4451 /* If we have created any dynamic sections, then output them. */
4452 if (dynobj != NULL)
4453 {
4454 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
4455 goto error_return;
4456
4457 for (o = dynobj->sections; o != NULL; o = o->next)
4458 {
4459 if ((o->flags & SEC_HAS_CONTENTS) == 0
4460 || o->_raw_size == 0)
4461 continue;
4462 if ((o->flags & SEC_LINKER_CREATED) == 0)
4463 {
4464 /* At this point, we are only interested in sections
4465 created by elf_link_create_dynamic_sections. */
4466 continue;
4467 }
4468 if ((elf_section_data (o->output_section)->this_hdr.sh_type
4469 != SHT_STRTAB)
4470 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
4471 {
4472 if (! bfd_set_section_contents (abfd, o->output_section,
4473 o->contents, o->output_offset,
4474 o->_raw_size))
4475 goto error_return;
4476 }
4477 else
4478 {
4479 file_ptr off;
4480
4481 /* The contents of the .dynstr section are actually in a
4482 stringtab. */
4483 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
4484 if (bfd_seek (abfd, off, SEEK_SET) != 0
4485 || ! _bfd_stringtab_emit (abfd,
4486 elf_hash_table (info)->dynstr))
4487 goto error_return;
4488 }
4489 }
4490 }
4491
4492 /* If we have optimized stabs strings, output them. */
4493 if (elf_hash_table (info)->stab_info != NULL)
4494 {
4495 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
4496 goto error_return;
4497 }
4498
4499 if (finfo.symstrtab != NULL)
4500 _bfd_stringtab_free (finfo.symstrtab);
4501 if (finfo.contents != NULL)
4502 free (finfo.contents);
4503 if (finfo.external_relocs != NULL)
4504 free (finfo.external_relocs);
4505 if (finfo.internal_relocs != NULL)
4506 free (finfo.internal_relocs);
4507 if (finfo.external_syms != NULL)
4508 free (finfo.external_syms);
4509 if (finfo.internal_syms != NULL)
4510 free (finfo.internal_syms);
4511 if (finfo.indices != NULL)
4512 free (finfo.indices);
4513 if (finfo.sections != NULL)
4514 free (finfo.sections);
4515 if (finfo.symbuf != NULL)
4516 free (finfo.symbuf);
4517 for (o = abfd->sections; o != NULL; o = o->next)
4518 {
4519 if ((o->flags & SEC_RELOC) != 0
4520 && elf_section_data (o)->rel_hashes != NULL)
4521 free (elf_section_data (o)->rel_hashes);
4522 }
4523
4524 elf_tdata (abfd)->linker = true;
4525
4526 return true;
4527
4528 error_return:
4529 if (finfo.symstrtab != NULL)
4530 _bfd_stringtab_free (finfo.symstrtab);
4531 if (finfo.contents != NULL)
4532 free (finfo.contents);
4533 if (finfo.external_relocs != NULL)
4534 free (finfo.external_relocs);
4535 if (finfo.internal_relocs != NULL)
4536 free (finfo.internal_relocs);
4537 if (finfo.external_syms != NULL)
4538 free (finfo.external_syms);
4539 if (finfo.internal_syms != NULL)
4540 free (finfo.internal_syms);
4541 if (finfo.indices != NULL)
4542 free (finfo.indices);
4543 if (finfo.sections != NULL)
4544 free (finfo.sections);
4545 if (finfo.symbuf != NULL)
4546 free (finfo.symbuf);
4547 for (o = abfd->sections; o != NULL; o = o->next)
4548 {
4549 if ((o->flags & SEC_RELOC) != 0
4550 && elf_section_data (o)->rel_hashes != NULL)
4551 free (elf_section_data (o)->rel_hashes);
4552 }
4553
4554 return false;
4555}
4556
4557/* Add a symbol to the output symbol table. */
4558
4559static boolean
4560elf_link_output_sym (finfo, name, elfsym, input_sec)
4561 struct elf_final_link_info *finfo;
4562 const char *name;
4563 Elf_Internal_Sym *elfsym;
4564 asection *input_sec;
4565{
4566 boolean (*output_symbol_hook) PARAMS ((bfd *,
4567 struct bfd_link_info *info,
4568 const char *,
4569 Elf_Internal_Sym *,
4570 asection *));
4571
4572 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
4573 elf_backend_link_output_symbol_hook;
4574 if (output_symbol_hook != NULL)
4575 {
4576 if (! ((*output_symbol_hook)
4577 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
4578 return false;
4579 }
4580
4581 if (name == (const char *) NULL || *name == '\0')
4582 elfsym->st_name = 0;
4583 else if (input_sec->flags & SEC_EXCLUDE)
4584 elfsym->st_name = 0;
4585 else
4586 {
4587 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
4588 name, true,
4589 false);
4590 if (elfsym->st_name == (unsigned long) -1)
4591 return false;
4592 }
4593
4594 if (finfo->symbuf_count >= finfo->symbuf_size)
4595 {
4596 if (! elf_link_flush_output_syms (finfo))
4597 return false;
4598 }
4599
4600 elf_swap_symbol_out (finfo->output_bfd, elfsym,
4601 (PTR) (finfo->symbuf + finfo->symbuf_count));
4602 ++finfo->symbuf_count;
4603
4604 ++ bfd_get_symcount (finfo->output_bfd);
4605
4606 return true;
4607}
4608
4609/* Flush the output symbols to the file. */
4610
4611static boolean
4612elf_link_flush_output_syms (finfo)
4613 struct elf_final_link_info *finfo;
4614{
4615 if (finfo->symbuf_count > 0)
4616 {
4617 Elf_Internal_Shdr *symtab;
4618
4619 symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr;
4620
4621 if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size,
4622 SEEK_SET) != 0
4623 || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count,
4624 sizeof (Elf_External_Sym), finfo->output_bfd)
4625 != finfo->symbuf_count * sizeof (Elf_External_Sym)))
4626 return false;
4627
4628 symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym);
4629
4630 finfo->symbuf_count = 0;
4631 }
4632
4633 return true;
4634}
4635
4636/* Add an external symbol to the symbol table. This is called from
4637 the hash table traversal routine. When generating a shared object,
4638 we go through the symbol table twice. The first time we output
4639 anything that might have been forced to local scope in a version
4640 script. The second time we output the symbols that are still
4641 global symbols. */
4642
4643static boolean
4644elf_link_output_extsym (h, data)
4645 struct elf_link_hash_entry *h;
4646 PTR data;
4647{
4648 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
4649 struct elf_final_link_info *finfo = eoinfo->finfo;
4650 boolean strip;
4651 Elf_Internal_Sym sym;
4652 asection *input_sec;
4653
4654 /* Decide whether to output this symbol in this pass. */
4655 if (eoinfo->localsyms)
4656 {
4657 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
4658 return true;
4659 }
4660 else
4661 {
4662 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4663 return true;
4664 }
4665
4666 /* If we are not creating a shared library, and this symbol is
4667 referenced by a shared library but is not defined anywhere, then
4668 warn that it is undefined. If we do not do this, the runtime
4669 linker will complain that the symbol is undefined when the
4670 program is run. We don't have to worry about symbols that are
4671 referenced by regular files, because we will already have issued
4672 warnings for them. */
4673 if (! finfo->info->relocateable
4674 && ! (finfo->info->shared
252b5132
RH
4675 && !finfo->info->no_undefined)
4676 && h->root.type == bfd_link_hash_undefined
4677 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
4678 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4679 {
4680 if (! ((*finfo->info->callbacks->undefined_symbol)
4681 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
4682 (asection *) NULL, 0)))
4683 {
4684 eoinfo->failed = true;
4685 return false;
4686 }
4687 }
4688
4689 /* We don't want to output symbols that have never been mentioned by
4690 a regular file, or that we have been told to strip. However, if
4691 h->indx is set to -2, the symbol is used by a reloc and we must
4692 output it. */
4693 if (h->indx == -2)
4694 strip = false;
4695 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
4696 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
4697 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
4698 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4699 strip = true;
4700 else if (finfo->info->strip == strip_all
4701 || (finfo->info->strip == strip_some
4702 && bfd_hash_lookup (finfo->info->keep_hash,
4703 h->root.root.string,
4704 false, false) == NULL))
4705 strip = true;
4706 else
4707 strip = false;
4708
4709 /* If we're stripping it, and it's not a dynamic symbol, there's
4710 nothing else to do. */
4711 if (strip && h->dynindx == -1)
4712 return true;
4713
4714 sym.st_value = 0;
4715 sym.st_size = h->size;
4716 sym.st_other = h->other;
4717 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4718 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
4719 else if (h->root.type == bfd_link_hash_undefweak
4720 || h->root.type == bfd_link_hash_defweak)
4721 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
4722 else
4723 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
4724
4725 switch (h->root.type)
4726 {
4727 default:
4728 case bfd_link_hash_new:
4729 abort ();
4730 return false;
4731
4732 case bfd_link_hash_undefined:
4733 input_sec = bfd_und_section_ptr;
4734 sym.st_shndx = SHN_UNDEF;
4735 break;
4736
4737 case bfd_link_hash_undefweak:
4738 input_sec = bfd_und_section_ptr;
4739 sym.st_shndx = SHN_UNDEF;
4740 break;
4741
4742 case bfd_link_hash_defined:
4743 case bfd_link_hash_defweak:
4744 {
4745 input_sec = h->root.u.def.section;
4746 if (input_sec->output_section != NULL)
4747 {
4748 sym.st_shndx =
4749 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
4750 input_sec->output_section);
4751 if (sym.st_shndx == (unsigned short) -1)
4752 {
4753 (*_bfd_error_handler)
4754 (_("%s: could not find output section %s for input section %s"),
4755 bfd_get_filename (finfo->output_bfd),
4756 input_sec->output_section->name,
4757 input_sec->name);
4758 eoinfo->failed = true;
4759 return false;
4760 }
4761
4762 /* ELF symbols in relocateable files are section relative,
4763 but in nonrelocateable files they are virtual
4764 addresses. */
4765 sym.st_value = h->root.u.def.value + input_sec->output_offset;
4766 if (! finfo->info->relocateable)
4767 sym.st_value += input_sec->output_section->vma;
4768 }
4769 else
4770 {
4771 BFD_ASSERT (input_sec->owner == NULL
4772 || (input_sec->owner->flags & DYNAMIC) != 0);
4773 sym.st_shndx = SHN_UNDEF;
4774 input_sec = bfd_und_section_ptr;
4775 }
4776 }
4777 break;
4778
4779 case bfd_link_hash_common:
4780 input_sec = h->root.u.c.p->section;
4781 sym.st_shndx = SHN_COMMON;
4782 sym.st_value = 1 << h->root.u.c.p->alignment_power;
4783 break;
4784
4785 case bfd_link_hash_indirect:
4786 /* These symbols are created by symbol versioning. They point
4787 to the decorated version of the name. For example, if the
4788 symbol foo@@GNU_1.2 is the default, which should be used when
4789 foo is used with no version, then we add an indirect symbol
4790 foo which points to foo@@GNU_1.2. We ignore these symbols,
4791 since the indirected symbol is already in the hash table. If
4792 the indirect symbol is non-ELF, fall through and output it. */
4793 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) == 0)
4794 return true;
4795
4796 /* Fall through. */
4797 case bfd_link_hash_warning:
4798 /* We can't represent these symbols in ELF, although a warning
4799 symbol may have come from a .gnu.warning.SYMBOL section. We
4800 just put the target symbol in the hash table. If the target
4801 symbol does not really exist, don't do anything. */
4802 if (h->root.u.i.link->type == bfd_link_hash_new)
4803 return true;
4804 return (elf_link_output_extsym
4805 ((struct elf_link_hash_entry *) h->root.u.i.link, data));
4806 }
4807
4808 /* Give the processor backend a chance to tweak the symbol value,
4809 and also to finish up anything that needs to be done for this
4810 symbol. */
4811 if ((h->dynindx != -1
4812 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4813 && elf_hash_table (finfo->info)->dynamic_sections_created)
4814 {
4815 struct elf_backend_data *bed;
4816
4817 bed = get_elf_backend_data (finfo->output_bfd);
4818 if (! ((*bed->elf_backend_finish_dynamic_symbol)
4819 (finfo->output_bfd, finfo->info, h, &sym)))
4820 {
4821 eoinfo->failed = true;
4822 return false;
4823 }
4824 }
4825
4826 /* If we are marking the symbol as undefined, and there are no
4827 non-weak references to this symbol from a regular object, then
4828 mark the symbol as weak undefined. We can't do this earlier,
4829 because it might not be marked as undefined until the
4830 finish_dynamic_symbol routine gets through with it. */
4831 if (sym.st_shndx == SHN_UNDEF
4832 && sym.st_info == ELF_ST_INFO (STB_GLOBAL, h->type)
4833 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
4834 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) == 0)
4835 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
4836
4837 /* If this symbol should be put in the .dynsym section, then put it
4838 there now. We have already know the symbol index. We also fill
4839 in the entry in the .hash section. */
4840 if (h->dynindx != -1
4841 && elf_hash_table (finfo->info)->dynamic_sections_created)
4842 {
4843 size_t bucketcount;
4844 size_t bucket;
c7ac6ff8 4845 size_t hash_entry_size;
252b5132
RH
4846 bfd_byte *bucketpos;
4847 bfd_vma chain;
4848
4849 sym.st_name = h->dynstr_index;
4850
4851 elf_swap_symbol_out (finfo->output_bfd, &sym,
4852 (PTR) (((Elf_External_Sym *)
4853 finfo->dynsym_sec->contents)
4854 + h->dynindx));
4855
4856 bucketcount = elf_hash_table (finfo->info)->bucketcount;
4857 bucket = h->elf_hash_value % bucketcount;
c7ac6ff8
MM
4858 hash_entry_size
4859 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
252b5132 4860 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
c7ac6ff8
MM
4861 + (bucket + 2) * hash_entry_size);
4862 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
4863 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
4864 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
4865 ((bfd_byte *) finfo->hash_sec->contents
4866 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
252b5132
RH
4867
4868 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
4869 {
4870 Elf_Internal_Versym iversym;
4871
4872 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4873 {
4874 if (h->verinfo.verdef == NULL)
4875 iversym.vs_vers = 0;
4876 else
4877 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
4878 }
4879 else
4880 {
4881 if (h->verinfo.vertree == NULL)
4882 iversym.vs_vers = 1;
4883 else
4884 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
4885 }
4886
4887 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
4888 iversym.vs_vers |= VERSYM_HIDDEN;
4889
4890 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym,
4891 (((Elf_External_Versym *)
4892 finfo->symver_sec->contents)
4893 + h->dynindx));
4894 }
4895 }
4896
4897 /* If we're stripping it, then it was just a dynamic symbol, and
4898 there's nothing else to do. */
4899 if (strip)
4900 return true;
4901
4902 h->indx = bfd_get_symcount (finfo->output_bfd);
4903
4904 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
4905 {
4906 eoinfo->failed = true;
4907 return false;
4908 }
4909
4910 return true;
4911}
4912
23bc299b
MM
4913/* Copy the relocations indicated by the INTERNAL_RELOCS (which
4914 originated from the section given by INPUT_REL_HDR) to the
4915 OUTPUT_BFD. */
4916
4917static void
4918elf_link_output_relocs (output_bfd, input_section, input_rel_hdr,
4919 internal_relocs)
4920 bfd *output_bfd;
4921 asection *input_section;
4922 Elf_Internal_Shdr *input_rel_hdr;
4923 Elf_Internal_Rela *internal_relocs;
4924{
4925 Elf_Internal_Rela *irela;
4926 Elf_Internal_Rela *irelaend;
4927 Elf_Internal_Shdr *output_rel_hdr;
4928 asection *output_section;
7442e600 4929 unsigned int *rel_countp = NULL;
23bc299b
MM
4930
4931 output_section = input_section->output_section;
4932 output_rel_hdr = NULL;
4933
4934 if (elf_section_data (output_section)->rel_hdr.sh_entsize
4935 == input_rel_hdr->sh_entsize)
4936 {
4937 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
4938 rel_countp = &elf_section_data (output_section)->rel_count;
4939 }
4940 else if (elf_section_data (output_section)->rel_hdr2
4941 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
4942 == input_rel_hdr->sh_entsize))
4943 {
4944 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
4945 rel_countp = &elf_section_data (output_section)->rel_count2;
4946 }
4947
4948 BFD_ASSERT (output_rel_hdr != NULL);
4949
4950 irela = internal_relocs;
4951 irelaend = irela + input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
4952 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
4953 {
4954 Elf_External_Rel *erel;
4955
4956 erel = ((Elf_External_Rel *) output_rel_hdr->contents + *rel_countp);
4957 for (; irela < irelaend; irela++, erel++)
4958 {
4959 Elf_Internal_Rel irel;
4960
4961 irel.r_offset = irela->r_offset;
4962 irel.r_info = irela->r_info;
4963 BFD_ASSERT (irela->r_addend == 0);
4964 elf_swap_reloc_out (output_bfd, &irel, erel);
4965 }
4966 }
4967 else
4968 {
4969 Elf_External_Rela *erela;
4970
4971 BFD_ASSERT (input_rel_hdr->sh_entsize
4972 == sizeof (Elf_External_Rela));
4973 erela = ((Elf_External_Rela *) output_rel_hdr->contents + *rel_countp);
4974 for (; irela < irelaend; irela++, erela++)
4975 elf_swap_reloca_out (output_bfd, irela, erela);
4976 }
4977
4978 /* Bump the counter, so that we know where to add the next set of
4979 relocations. */
4980 *rel_countp += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
4981}
4982
252b5132
RH
4983/* Link an input file into the linker output file. This function
4984 handles all the sections and relocations of the input file at once.
4985 This is so that we only have to read the local symbols once, and
4986 don't have to keep them in memory. */
4987
4988static boolean
4989elf_link_input_bfd (finfo, input_bfd)
4990 struct elf_final_link_info *finfo;
4991 bfd *input_bfd;
4992{
4993 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
4994 bfd *, asection *, bfd_byte *,
4995 Elf_Internal_Rela *,
4996 Elf_Internal_Sym *, asection **));
4997 bfd *output_bfd;
4998 Elf_Internal_Shdr *symtab_hdr;
4999 size_t locsymcount;
5000 size_t extsymoff;
5001 Elf_External_Sym *external_syms;
5002 Elf_External_Sym *esym;
5003 Elf_External_Sym *esymend;
5004 Elf_Internal_Sym *isym;
5005 long *pindex;
5006 asection **ppsection;
5007 asection *o;
c7ac6ff8 5008 struct elf_backend_data *bed;
252b5132
RH
5009
5010 output_bfd = finfo->output_bfd;
c7ac6ff8
MM
5011 bed = get_elf_backend_data (output_bfd);
5012 relocate_section = bed->elf_backend_relocate_section;
252b5132
RH
5013
5014 /* If this is a dynamic object, we don't want to do anything here:
5015 we don't want the local symbols, and we don't want the section
5016 contents. */
5017 if ((input_bfd->flags & DYNAMIC) != 0)
5018 return true;
5019
5020 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5021 if (elf_bad_symtab (input_bfd))
5022 {
5023 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
5024 extsymoff = 0;
5025 }
5026 else
5027 {
5028 locsymcount = symtab_hdr->sh_info;
5029 extsymoff = symtab_hdr->sh_info;
5030 }
5031
5032 /* Read the local symbols. */
5033 if (symtab_hdr->contents != NULL)
5034 external_syms = (Elf_External_Sym *) symtab_hdr->contents;
5035 else if (locsymcount == 0)
5036 external_syms = NULL;
5037 else
5038 {
5039 external_syms = finfo->external_syms;
5040 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
5041 || (bfd_read (external_syms, sizeof (Elf_External_Sym),
5042 locsymcount, input_bfd)
5043 != locsymcount * sizeof (Elf_External_Sym)))
5044 return false;
5045 }
5046
5047 /* Swap in the local symbols and write out the ones which we know
5048 are going into the output file. */
5049 esym = external_syms;
5050 esymend = esym + locsymcount;
5051 isym = finfo->internal_syms;
5052 pindex = finfo->indices;
5053 ppsection = finfo->sections;
5054 for (; esym < esymend; esym++, isym++, pindex++, ppsection++)
5055 {
5056 asection *isec;
5057 const char *name;
5058 Elf_Internal_Sym osym;
5059
5060 elf_swap_symbol_in (input_bfd, esym, isym);
5061 *pindex = -1;
5062
5063 if (elf_bad_symtab (input_bfd))
5064 {
5065 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
5066 {
5067 *ppsection = NULL;
5068 continue;
5069 }
5070 }
5071
5072 if (isym->st_shndx == SHN_UNDEF)
5073 isec = bfd_und_section_ptr;
5074 else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE)
5075 isec = section_from_elf_index (input_bfd, isym->st_shndx);
5076 else if (isym->st_shndx == SHN_ABS)
5077 isec = bfd_abs_section_ptr;
5078 else if (isym->st_shndx == SHN_COMMON)
5079 isec = bfd_com_section_ptr;
5080 else
5081 {
5082 /* Who knows? */
5083 isec = NULL;
5084 }
5085
5086 *ppsection = isec;
5087
5088 /* Don't output the first, undefined, symbol. */
5089 if (esym == external_syms)
5090 continue;
5091
5092 /* If we are stripping all symbols, we don't want to output this
5093 one. */
5094 if (finfo->info->strip == strip_all)
5095 continue;
5096
5097 /* We never output section symbols. Instead, we use the section
5098 symbol of the corresponding section in the output file. */
5099 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5100 continue;
5101
5102 /* If we are discarding all local symbols, we don't want to
5103 output this one. If we are generating a relocateable output
5104 file, then some of the local symbols may be required by
5105 relocs; we output them below as we discover that they are
5106 needed. */
5107 if (finfo->info->discard == discard_all)
5108 continue;
5109
5110 /* If this symbol is defined in a section which we are
5111 discarding, we don't need to keep it, but note that
5112 linker_mark is only reliable for sections that have contents.
5113 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
5114 as well as linker_mark. */
5115 if (isym->st_shndx > 0
5116 && isym->st_shndx < SHN_LORESERVE
5117 && isec != NULL
5118 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
5119 || (! finfo->info->relocateable
5120 && (isec->flags & SEC_EXCLUDE) != 0)))
5121 continue;
5122
5123 /* Get the name of the symbol. */
5124 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
5125 isym->st_name);
5126 if (name == NULL)
5127 return false;
5128
5129 /* See if we are discarding symbols with this name. */
5130 if ((finfo->info->strip == strip_some
5131 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
5132 == NULL))
5133 || (finfo->info->discard == discard_l
5134 && bfd_is_local_label_name (input_bfd, name)))
5135 continue;
5136
5137 /* If we get here, we are going to output this symbol. */
5138
5139 osym = *isym;
5140
5141 /* Adjust the section index for the output file. */
5142 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
5143 isec->output_section);
5144 if (osym.st_shndx == (unsigned short) -1)
5145 return false;
5146
5147 *pindex = bfd_get_symcount (output_bfd);
5148
5149 /* ELF symbols in relocateable files are section relative, but
5150 in executable files they are virtual addresses. Note that
5151 this code assumes that all ELF sections have an associated
5152 BFD section with a reasonable value for output_offset; below
5153 we assume that they also have a reasonable value for
5154 output_section. Any special sections must be set up to meet
5155 these requirements. */
5156 osym.st_value += isec->output_offset;
5157 if (! finfo->info->relocateable)
5158 osym.st_value += isec->output_section->vma;
5159
5160 if (! elf_link_output_sym (finfo, name, &osym, isec))
5161 return false;
5162 }
5163
5164 /* Relocate the contents of each section. */
5165 for (o = input_bfd->sections; o != NULL; o = o->next)
5166 {
5167 bfd_byte *contents;
5168
5169 if (! o->linker_mark)
5170 {
5171 /* This section was omitted from the link. */
5172 continue;
5173 }
5174
5175 if ((o->flags & SEC_HAS_CONTENTS) == 0
5176 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
5177 continue;
5178
5179 if ((o->flags & SEC_LINKER_CREATED) != 0)
5180 {
5181 /* Section was created by elf_link_create_dynamic_sections
5182 or somesuch. */
5183 continue;
5184 }
5185
5186 /* Get the contents of the section. They have been cached by a
5187 relaxation routine. Note that o is a section in an input
5188 file, so the contents field will not have been set by any of
5189 the routines which work on output files. */
5190 if (elf_section_data (o)->this_hdr.contents != NULL)
5191 contents = elf_section_data (o)->this_hdr.contents;
5192 else
5193 {
5194 contents = finfo->contents;
5195 if (! bfd_get_section_contents (input_bfd, o, contents,
5196 (file_ptr) 0, o->_raw_size))
5197 return false;
5198 }
5199
5200 if ((o->flags & SEC_RELOC) != 0)
5201 {
5202 Elf_Internal_Rela *internal_relocs;
5203
5204 /* Get the swapped relocs. */
5205 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
5206 (input_bfd, o, finfo->external_relocs,
5207 finfo->internal_relocs, false));
5208 if (internal_relocs == NULL
5209 && o->reloc_count > 0)
5210 return false;
5211
5212 /* Relocate the section by invoking a back end routine.
5213
5214 The back end routine is responsible for adjusting the
5215 section contents as necessary, and (if using Rela relocs
5216 and generating a relocateable output file) adjusting the
5217 reloc addend as necessary.
5218
5219 The back end routine does not have to worry about setting
5220 the reloc address or the reloc symbol index.
5221
5222 The back end routine is given a pointer to the swapped in
5223 internal symbols, and can access the hash table entries
5224 for the external symbols via elf_sym_hashes (input_bfd).
5225
5226 When generating relocateable output, the back end routine
5227 must handle STB_LOCAL/STT_SECTION symbols specially. The
5228 output symbol is going to be a section symbol
5229 corresponding to the output section, which will require
5230 the addend to be adjusted. */
5231
5232 if (! (*relocate_section) (output_bfd, finfo->info,
5233 input_bfd, o, contents,
5234 internal_relocs,
5235 finfo->internal_syms,
5236 finfo->sections))
5237 return false;
5238
5239 if (finfo->info->relocateable)
5240 {
5241 Elf_Internal_Rela *irela;
5242 Elf_Internal_Rela *irelaend;
5243 struct elf_link_hash_entry **rel_hash;
5244 Elf_Internal_Shdr *input_rel_hdr;
252b5132
RH
5245
5246 /* Adjust the reloc addresses and symbol indices. */
5247
5248 irela = internal_relocs;
c7ac6ff8
MM
5249 irelaend =
5250 irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
252b5132 5251 rel_hash = (elf_section_data (o->output_section)->rel_hashes
31367b81
MM
5252 + elf_section_data (o->output_section)->rel_count
5253 + elf_section_data (o->output_section)->rel_count2);
252b5132
RH
5254 for (; irela < irelaend; irela++, rel_hash++)
5255 {
5256 unsigned long r_symndx;
5257 Elf_Internal_Sym *isym;
5258 asection *sec;
5259
5260 irela->r_offset += o->output_offset;
5261
5262 r_symndx = ELF_R_SYM (irela->r_info);
5263
5264 if (r_symndx == 0)
5265 continue;
5266
5267 if (r_symndx >= locsymcount
5268 || (elf_bad_symtab (input_bfd)
5269 && finfo->sections[r_symndx] == NULL))
5270 {
5271 struct elf_link_hash_entry *rh;
5272 long indx;
5273
5274 /* This is a reloc against a global symbol. We
5275 have not yet output all the local symbols, so
5276 we do not know the symbol index of any global
5277 symbol. We set the rel_hash entry for this
5278 reloc to point to the global hash table entry
5279 for this symbol. The symbol index is then
5280 set at the end of elf_bfd_final_link. */
5281 indx = r_symndx - extsymoff;
5282 rh = elf_sym_hashes (input_bfd)[indx];
5283 while (rh->root.type == bfd_link_hash_indirect
5284 || rh->root.type == bfd_link_hash_warning)
5285 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
5286
5287 /* Setting the index to -2 tells
5288 elf_link_output_extsym that this symbol is
5289 used by a reloc. */
5290 BFD_ASSERT (rh->indx < 0);
5291 rh->indx = -2;
5292
5293 *rel_hash = rh;
5294
5295 continue;
5296 }
5297
5298 /* This is a reloc against a local symbol. */
5299
5300 *rel_hash = NULL;
5301 isym = finfo->internal_syms + r_symndx;
5302 sec = finfo->sections[r_symndx];
5303 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5304 {
5305 /* I suppose the backend ought to fill in the
5306 section of any STT_SECTION symbol against a
5307 processor specific section. If we have
5308 discarded a section, the output_section will
5309 be the absolute section. */
5310 if (sec != NULL
5311 && (bfd_is_abs_section (sec)
5312 || (sec->output_section != NULL
5313 && bfd_is_abs_section (sec->output_section))))
5314 r_symndx = 0;
5315 else if (sec == NULL || sec->owner == NULL)
5316 {
5317 bfd_set_error (bfd_error_bad_value);
5318 return false;
5319 }
5320 else
5321 {
5322 r_symndx = sec->output_section->target_index;
5323 BFD_ASSERT (r_symndx != 0);
5324 }
5325 }
5326 else
5327 {
5328 if (finfo->indices[r_symndx] == -1)
5329 {
5330 unsigned long link;
5331 const char *name;
5332 asection *osec;
5333
5334 if (finfo->info->strip == strip_all)
5335 {
5336 /* You can't do ld -r -s. */
5337 bfd_set_error (bfd_error_invalid_operation);
5338 return false;
5339 }
5340
5341 /* This symbol was skipped earlier, but
5342 since it is needed by a reloc, we
5343 must output it now. */
5344 link = symtab_hdr->sh_link;
5345 name = bfd_elf_string_from_elf_section (input_bfd,
5346 link,
5347 isym->st_name);
5348 if (name == NULL)
5349 return false;
5350
5351 osec = sec->output_section;
5352 isym->st_shndx =
5353 _bfd_elf_section_from_bfd_section (output_bfd,
5354 osec);
5355 if (isym->st_shndx == (unsigned short) -1)
5356 return false;
5357
5358 isym->st_value += sec->output_offset;
5359 if (! finfo->info->relocateable)
5360 isym->st_value += osec->vma;
5361
5362 finfo->indices[r_symndx] = bfd_get_symcount (output_bfd);
5363
5364 if (! elf_link_output_sym (finfo, name, isym, sec))
5365 return false;
5366 }
5367
5368 r_symndx = finfo->indices[r_symndx];
5369 }
5370
5371 irela->r_info = ELF_R_INFO (r_symndx,
5372 ELF_R_TYPE (irela->r_info));
5373 }
5374
5375 /* Swap out the relocs. */
5376 input_rel_hdr = &elf_section_data (o)->rel_hdr;
23bc299b
MM
5377 elf_link_output_relocs (output_bfd, o,
5378 input_rel_hdr,
5379 internal_relocs);
5380 internal_relocs
5381 += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5382 input_rel_hdr = elf_section_data (o)->rel_hdr2;
5383 if (input_rel_hdr)
5384 elf_link_output_relocs (output_bfd, o,
5385 input_rel_hdr,
5386 internal_relocs);
252b5132
RH
5387 }
5388 }
5389
5390 /* Write out the modified section contents. */
5391 if (elf_section_data (o)->stab_info == NULL)
5392 {
5393 if (! (o->flags & SEC_EXCLUDE) &&
5394 ! bfd_set_section_contents (output_bfd, o->output_section,
5395 contents, o->output_offset,
5396 (o->_cooked_size != 0
5397 ? o->_cooked_size
5398 : o->_raw_size)))
5399 return false;
5400 }
5401 else
5402 {
5403 if (! (_bfd_write_section_stabs
5404 (output_bfd, &elf_hash_table (finfo->info)->stab_info,
5405 o, &elf_section_data (o)->stab_info, contents)))
5406 return false;
5407 }
5408 }
5409
5410 return true;
5411}
5412
5413/* Generate a reloc when linking an ELF file. This is a reloc
5414 requested by the linker, and does come from any input file. This
5415 is used to build constructor and destructor tables when linking
5416 with -Ur. */
5417
5418static boolean
5419elf_reloc_link_order (output_bfd, info, output_section, link_order)
5420 bfd *output_bfd;
5421 struct bfd_link_info *info;
5422 asection *output_section;
5423 struct bfd_link_order *link_order;
5424{
5425 reloc_howto_type *howto;
5426 long indx;
5427 bfd_vma offset;
5428 bfd_vma addend;
5429 struct elf_link_hash_entry **rel_hash_ptr;
5430 Elf_Internal_Shdr *rel_hdr;
5431
5432 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
5433 if (howto == NULL)
5434 {
5435 bfd_set_error (bfd_error_bad_value);
5436 return false;
5437 }
5438
5439 addend = link_order->u.reloc.p->addend;
5440
5441 /* Figure out the symbol index. */
5442 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
31367b81
MM
5443 + elf_section_data (output_section)->rel_count
5444 + elf_section_data (output_section)->rel_count2);
252b5132
RH
5445 if (link_order->type == bfd_section_reloc_link_order)
5446 {
5447 indx = link_order->u.reloc.p->u.section->target_index;
5448 BFD_ASSERT (indx != 0);
5449 *rel_hash_ptr = NULL;
5450 }
5451 else
5452 {
5453 struct elf_link_hash_entry *h;
5454
5455 /* Treat a reloc against a defined symbol as though it were
5456 actually against the section. */
5457 h = ((struct elf_link_hash_entry *)
5458 bfd_wrapped_link_hash_lookup (output_bfd, info,
5459 link_order->u.reloc.p->u.name,
5460 false, false, true));
5461 if (h != NULL
5462 && (h->root.type == bfd_link_hash_defined
5463 || h->root.type == bfd_link_hash_defweak))
5464 {
5465 asection *section;
5466
5467 section = h->root.u.def.section;
5468 indx = section->output_section->target_index;
5469 *rel_hash_ptr = NULL;
5470 /* It seems that we ought to add the symbol value to the
5471 addend here, but in practice it has already been added
5472 because it was passed to constructor_callback. */
5473 addend += section->output_section->vma + section->output_offset;
5474 }
5475 else if (h != NULL)
5476 {
5477 /* Setting the index to -2 tells elf_link_output_extsym that
5478 this symbol is used by a reloc. */
5479 h->indx = -2;
5480 *rel_hash_ptr = h;
5481 indx = 0;
5482 }
5483 else
5484 {
5485 if (! ((*info->callbacks->unattached_reloc)
5486 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
5487 (asection *) NULL, (bfd_vma) 0)))
5488 return false;
5489 indx = 0;
5490 }
5491 }
5492
5493 /* If this is an inplace reloc, we must write the addend into the
5494 object file. */
5495 if (howto->partial_inplace && addend != 0)
5496 {
5497 bfd_size_type size;
5498 bfd_reloc_status_type rstat;
5499 bfd_byte *buf;
5500 boolean ok;
5501
5502 size = bfd_get_reloc_size (howto);
5503 buf = (bfd_byte *) bfd_zmalloc (size);
5504 if (buf == (bfd_byte *) NULL)
5505 return false;
5506 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
5507 switch (rstat)
5508 {
5509 case bfd_reloc_ok:
5510 break;
5511 default:
5512 case bfd_reloc_outofrange:
5513 abort ();
5514 case bfd_reloc_overflow:
5515 if (! ((*info->callbacks->reloc_overflow)
5516 (info,
5517 (link_order->type == bfd_section_reloc_link_order
5518 ? bfd_section_name (output_bfd,
5519 link_order->u.reloc.p->u.section)
5520 : link_order->u.reloc.p->u.name),
5521 howto->name, addend, (bfd *) NULL, (asection *) NULL,
5522 (bfd_vma) 0)))
5523 {
5524 free (buf);
5525 return false;
5526 }
5527 break;
5528 }
5529 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
5530 (file_ptr) link_order->offset, size);
5531 free (buf);
5532 if (! ok)
5533 return false;
5534 }
5535
5536 /* The address of a reloc is relative to the section in a
5537 relocateable file, and is a virtual address in an executable
5538 file. */
5539 offset = link_order->offset;
5540 if (! info->relocateable)
5541 offset += output_section->vma;
5542
5543 rel_hdr = &elf_section_data (output_section)->rel_hdr;
5544
5545 if (rel_hdr->sh_type == SHT_REL)
5546 {
5547 Elf_Internal_Rel irel;
5548 Elf_External_Rel *erel;
5549
5550 irel.r_offset = offset;
5551 irel.r_info = ELF_R_INFO (indx, howto->type);
5552 erel = ((Elf_External_Rel *) rel_hdr->contents
0525d26e 5553 + elf_section_data (output_section)->rel_count);
252b5132
RH
5554 elf_swap_reloc_out (output_bfd, &irel, erel);
5555 }
5556 else
5557 {
5558 Elf_Internal_Rela irela;
5559 Elf_External_Rela *erela;
5560
5561 irela.r_offset = offset;
5562 irela.r_info = ELF_R_INFO (indx, howto->type);
5563 irela.r_addend = addend;
5564 erela = ((Elf_External_Rela *) rel_hdr->contents
0525d26e 5565 + elf_section_data (output_section)->rel_count);
252b5132
RH
5566 elf_swap_reloca_out (output_bfd, &irela, erela);
5567 }
5568
0525d26e 5569 ++elf_section_data (output_section)->rel_count;
252b5132
RH
5570
5571 return true;
5572}
5573
5574\f
5575/* Allocate a pointer to live in a linker created section. */
5576
5577boolean
5578elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
5579 bfd *abfd;
5580 struct bfd_link_info *info;
5581 elf_linker_section_t *lsect;
5582 struct elf_link_hash_entry *h;
5583 const Elf_Internal_Rela *rel;
5584{
5585 elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
5586 elf_linker_section_pointers_t *linker_section_ptr;
5587 unsigned long r_symndx = ELF_R_SYM (rel->r_info);;
5588
5589 BFD_ASSERT (lsect != NULL);
5590
5591 /* Is this a global symbol? */
5592 if (h != NULL)
5593 {
5594 /* Has this symbol already been allocated, if so, our work is done */
5595 if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
5596 rel->r_addend,
5597 lsect->which))
5598 return true;
5599
5600 ptr_linker_section_ptr = &h->linker_section_pointer;
5601 /* Make sure this symbol is output as a dynamic symbol. */
5602 if (h->dynindx == -1)
5603 {
5604 if (! elf_link_record_dynamic_symbol (info, h))
5605 return false;
5606 }
5607
5608 if (lsect->rel_section)
5609 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
5610 }
5611
5612 else /* Allocation of a pointer to a local symbol */
5613 {
5614 elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
5615
5616 /* Allocate a table to hold the local symbols if first time */
5617 if (!ptr)
5618 {
5619 unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
5620 register unsigned int i;
5621
5622 ptr = (elf_linker_section_pointers_t **)
5623 bfd_alloc (abfd, num_symbols * sizeof (elf_linker_section_pointers_t *));
5624
5625 if (!ptr)
5626 return false;
5627
5628 elf_local_ptr_offsets (abfd) = ptr;
5629 for (i = 0; i < num_symbols; i++)
5630 ptr[i] = (elf_linker_section_pointers_t *)0;
5631 }
5632
5633 /* Has this symbol already been allocated, if so, our work is done */
5634 if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
5635 rel->r_addend,
5636 lsect->which))
5637 return true;
5638
5639 ptr_linker_section_ptr = &ptr[r_symndx];
5640
5641 if (info->shared)
5642 {
5643 /* If we are generating a shared object, we need to
5644 output a R_<xxx>_RELATIVE reloc so that the
5645 dynamic linker can adjust this GOT entry. */
5646 BFD_ASSERT (lsect->rel_section != NULL);
5647 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
5648 }
5649 }
5650
5651 /* Allocate space for a pointer in the linker section, and allocate a new pointer record
5652 from internal memory. */
5653 BFD_ASSERT (ptr_linker_section_ptr != NULL);
5654 linker_section_ptr = (elf_linker_section_pointers_t *)
5655 bfd_alloc (abfd, sizeof (elf_linker_section_pointers_t));
5656
5657 if (!linker_section_ptr)
5658 return false;
5659
5660 linker_section_ptr->next = *ptr_linker_section_ptr;
5661 linker_section_ptr->addend = rel->r_addend;
5662 linker_section_ptr->which = lsect->which;
5663 linker_section_ptr->written_address_p = false;
5664 *ptr_linker_section_ptr = linker_section_ptr;
5665
5666#if 0
5667 if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
5668 {
5669 linker_section_ptr->offset = lsect->section->_raw_size - lsect->hole_size + (ARCH_SIZE / 8);
5670 lsect->hole_offset += ARCH_SIZE / 8;
5671 lsect->sym_offset += ARCH_SIZE / 8;
5672 if (lsect->sym_hash) /* Bump up symbol value if needed */
5673 {
5674 lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
5675#ifdef DEBUG
5676 fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
5677 lsect->sym_hash->root.root.string,
5678 (long)ARCH_SIZE / 8,
5679 (long)lsect->sym_hash->root.u.def.value);
5680#endif
5681 }
5682 }
5683 else
5684#endif
5685 linker_section_ptr->offset = lsect->section->_raw_size;
5686
5687 lsect->section->_raw_size += ARCH_SIZE / 8;
5688
5689#ifdef DEBUG
5690 fprintf (stderr, "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
5691 lsect->name, (long)linker_section_ptr->offset, (long)lsect->section->_raw_size);
5692#endif
5693
5694 return true;
5695}
5696
5697\f
5698#if ARCH_SIZE==64
5699#define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
5700#endif
5701#if ARCH_SIZE==32
5702#define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
5703#endif
5704
5705/* Fill in the address for a pointer generated in alinker section. */
5706
5707bfd_vma
5708elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h, relocation, rel, relative_reloc)
5709 bfd *output_bfd;
5710 bfd *input_bfd;
5711 struct bfd_link_info *info;
5712 elf_linker_section_t *lsect;
5713 struct elf_link_hash_entry *h;
5714 bfd_vma relocation;
5715 const Elf_Internal_Rela *rel;
5716 int relative_reloc;
5717{
5718 elf_linker_section_pointers_t *linker_section_ptr;
5719
5720 BFD_ASSERT (lsect != NULL);
5721
5722 if (h != NULL) /* global symbol */
5723 {
5724 linker_section_ptr = _bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
5725 rel->r_addend,
5726 lsect->which);
5727
5728 BFD_ASSERT (linker_section_ptr != NULL);
5729
5730 if (! elf_hash_table (info)->dynamic_sections_created
5731 || (info->shared
5732 && info->symbolic
5733 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
5734 {
5735 /* This is actually a static link, or it is a
5736 -Bsymbolic link and the symbol is defined
5737 locally. We must initialize this entry in the
5738 global section.
5739
5740 When doing a dynamic link, we create a .rela.<xxx>
5741 relocation entry to initialize the value. This
5742 is done in the finish_dynamic_symbol routine. */
5743 if (!linker_section_ptr->written_address_p)
5744 {
5745 linker_section_ptr->written_address_p = true;
5746 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
5747 lsect->section->contents + linker_section_ptr->offset);
5748 }
5749 }
5750 }
5751 else /* local symbol */
5752 {
5753 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
5754 BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
5755 BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
5756 linker_section_ptr = _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd)[r_symndx],
5757 rel->r_addend,
5758 lsect->which);
5759
5760 BFD_ASSERT (linker_section_ptr != NULL);
5761
5762 /* Write out pointer if it hasn't been rewritten out before */
5763 if (!linker_section_ptr->written_address_p)
5764 {
5765 linker_section_ptr->written_address_p = true;
5766 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
5767 lsect->section->contents + linker_section_ptr->offset);
5768
5769 if (info->shared)
5770 {
5771 asection *srel = lsect->rel_section;
5772 Elf_Internal_Rela outrel;
5773
5774 /* We need to generate a relative reloc for the dynamic linker. */
5775 if (!srel)
5776 lsect->rel_section = srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
5777 lsect->rel_name);
5778
5779 BFD_ASSERT (srel != NULL);
5780
5781 outrel.r_offset = (lsect->section->output_section->vma
5782 + lsect->section->output_offset
5783 + linker_section_ptr->offset);
5784 outrel.r_info = ELF_R_INFO (0, relative_reloc);
5785 outrel.r_addend = 0;
5786 elf_swap_reloca_out (output_bfd, &outrel,
5787 (((Elf_External_Rela *)
5788 lsect->section->contents)
0525d26e
ILT
5789 + elf_section_data (lsect->section)->rel_count));
5790 ++elf_section_data (lsect->section)->rel_count;
252b5132
RH
5791 }
5792 }
5793 }
5794
5795 relocation = (lsect->section->output_offset
5796 + linker_section_ptr->offset
5797 - lsect->hole_offset
5798 - lsect->sym_offset);
5799
5800#ifdef DEBUG
5801 fprintf (stderr, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
5802 lsect->name, (long)relocation, (long)relocation);
5803#endif
5804
5805 /* Subtract out the addend, because it will get added back in by the normal
5806 processing. */
5807 return relocation - linker_section_ptr->addend;
5808}
5809\f
5810/* Garbage collect unused sections. */
5811
5812static boolean elf_gc_mark
5813 PARAMS ((struct bfd_link_info *info, asection *sec,
5814 asection * (*gc_mark_hook)
5815 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
5816 struct elf_link_hash_entry *, Elf_Internal_Sym *))));
5817
5818static boolean elf_gc_sweep
5819 PARAMS ((struct bfd_link_info *info,
5820 boolean (*gc_sweep_hook)
5821 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
5822 const Elf_Internal_Rela *relocs))));
5823
5824static boolean elf_gc_sweep_symbol
5825 PARAMS ((struct elf_link_hash_entry *h, PTR idxptr));
5826
5827static boolean elf_gc_allocate_got_offsets
5828 PARAMS ((struct elf_link_hash_entry *h, PTR offarg));
5829
5830static boolean elf_gc_propagate_vtable_entries_used
5831 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
5832
5833static boolean elf_gc_smash_unused_vtentry_relocs
5834 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
5835
5836/* The mark phase of garbage collection. For a given section, mark
5837 it, and all the sections which define symbols to which it refers. */
5838
5839static boolean
5840elf_gc_mark (info, sec, gc_mark_hook)
5841 struct bfd_link_info *info;
5842 asection *sec;
5843 asection * (*gc_mark_hook)
5844 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
5845 struct elf_link_hash_entry *, Elf_Internal_Sym *));
5846{
5847 boolean ret = true;
5848
5849 sec->gc_mark = 1;
5850
5851 /* Look through the section relocs. */
5852
5853 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
5854 {
5855 Elf_Internal_Rela *relstart, *rel, *relend;
5856 Elf_Internal_Shdr *symtab_hdr;
5857 struct elf_link_hash_entry **sym_hashes;
5858 size_t nlocsyms;
5859 size_t extsymoff;
5860 Elf_External_Sym *locsyms, *freesyms = NULL;
5861 bfd *input_bfd = sec->owner;
c7ac6ff8 5862 struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
252b5132
RH
5863
5864 /* GCFIXME: how to arrange so that relocs and symbols are not
5865 reread continually? */
5866
5867 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5868 sym_hashes = elf_sym_hashes (input_bfd);
5869
5870 /* Read the local symbols. */
5871 if (elf_bad_symtab (input_bfd))
5872 {
5873 nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
5874 extsymoff = 0;
5875 }
5876 else
5877 extsymoff = nlocsyms = symtab_hdr->sh_info;
5878 if (symtab_hdr->contents)
5879 locsyms = (Elf_External_Sym *) symtab_hdr->contents;
5880 else if (nlocsyms == 0)
5881 locsyms = NULL;
5882 else
5883 {
5884 locsyms = freesyms =
5885 bfd_malloc (nlocsyms * sizeof (Elf_External_Sym));
5886 if (freesyms == NULL
5887 || bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
5888 || (bfd_read (locsyms, sizeof (Elf_External_Sym),
5889 nlocsyms, input_bfd)
5890 != nlocsyms * sizeof (Elf_External_Sym)))
5891 {
5892 ret = false;
5893 goto out1;
5894 }
5895 }
5896
5897 /* Read the relocations. */
5898 relstart = (NAME(_bfd_elf,link_read_relocs)
5899 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL,
5900 info->keep_memory));
5901 if (relstart == NULL)
5902 {
5903 ret = false;
5904 goto out1;
5905 }
c7ac6ff8 5906 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
252b5132
RH
5907
5908 for (rel = relstart; rel < relend; rel++)
5909 {
5910 unsigned long r_symndx;
5911 asection *rsec;
5912 struct elf_link_hash_entry *h;
5913 Elf_Internal_Sym s;
5914
5915 r_symndx = ELF_R_SYM (rel->r_info);
5916 if (r_symndx == 0)
5917 continue;
5918
5919 if (elf_bad_symtab (sec->owner))
5920 {
5921 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
5922 if (ELF_ST_BIND (s.st_info) == STB_LOCAL)
5923 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
5924 else
5925 {
5926 h = sym_hashes[r_symndx - extsymoff];
5927 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
5928 }
5929 }
5930 else if (r_symndx >= nlocsyms)
5931 {
5932 h = sym_hashes[r_symndx - extsymoff];
5933 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
5934 }
5935 else
5936 {
5937 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
5938 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
5939 }
5940
5941 if (rsec && !rsec->gc_mark)
5942 if (!elf_gc_mark (info, rsec, gc_mark_hook))
5943 {
5944 ret = false;
5945 goto out2;
5946 }
5947 }
5948
5949 out2:
5950 if (!info->keep_memory)
5951 free (relstart);
5952 out1:
5953 if (freesyms)
5954 free (freesyms);
5955 }
5956
5957 return ret;
5958}
5959
5960/* The sweep phase of garbage collection. Remove all garbage sections. */
5961
5962static boolean
5963elf_gc_sweep (info, gc_sweep_hook)
5964 struct bfd_link_info *info;
5965 boolean (*gc_sweep_hook)
5966 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
5967 const Elf_Internal_Rela *relocs));
5968{
5969 bfd *sub;
5970
5971 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
5972 {
5973 asection *o;
5974
5975 for (o = sub->sections; o != NULL; o = o->next)
5976 {
5977 /* Keep special sections. Keep .debug sections. */
5978 if ((o->flags & SEC_LINKER_CREATED)
5979 || (o->flags & SEC_DEBUGGING))
5980 o->gc_mark = 1;
5981
5982 if (o->gc_mark)
5983 continue;
5984
5985 /* Skip sweeping sections already excluded. */
5986 if (o->flags & SEC_EXCLUDE)
5987 continue;
5988
5989 /* Since this is early in the link process, it is simple
5990 to remove a section from the output. */
5991 o->flags |= SEC_EXCLUDE;
5992
5993 /* But we also have to update some of the relocation
5994 info we collected before. */
5995 if (gc_sweep_hook
5996 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
5997 {
5998 Elf_Internal_Rela *internal_relocs;
5999 boolean r;
6000
6001 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
6002 (o->owner, o, NULL, NULL, info->keep_memory));
6003 if (internal_relocs == NULL)
6004 return false;
6005
6006 r = (*gc_sweep_hook)(o->owner, info, o, internal_relocs);
6007
6008 if (!info->keep_memory)
6009 free (internal_relocs);
6010
6011 if (!r)
6012 return false;
6013 }
6014 }
6015 }
6016
6017 /* Remove the symbols that were in the swept sections from the dynamic
6018 symbol table. GCFIXME: Anyone know how to get them out of the
6019 static symbol table as well? */
6020 {
6021 int i = 0;
6022
6023 elf_link_hash_traverse (elf_hash_table (info),
6024 elf_gc_sweep_symbol,
6025 (PTR) &i);
6026
6027 elf_hash_table (info)->dynsymcount = i;
6028 }
6029
6030 return true;
6031}
6032
6033/* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6034
6035static boolean
6036elf_gc_sweep_symbol (h, idxptr)
6037 struct elf_link_hash_entry *h;
6038 PTR idxptr;
6039{
6040 int *idx = (int *) idxptr;
6041
6042 if (h->dynindx != -1
6043 && ((h->root.type != bfd_link_hash_defined
6044 && h->root.type != bfd_link_hash_defweak)
6045 || h->root.u.def.section->gc_mark))
6046 h->dynindx = (*idx)++;
6047
6048 return true;
6049}
6050
6051/* Propogate collected vtable information. This is called through
6052 elf_link_hash_traverse. */
6053
6054static boolean
6055elf_gc_propagate_vtable_entries_used (h, okp)
6056 struct elf_link_hash_entry *h;
6057 PTR okp;
6058{
6059 /* Those that are not vtables. */
6060 if (h->vtable_parent == NULL)
6061 return true;
6062
6063 /* Those vtables that do not have parents, we cannot merge. */
6064 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
6065 return true;
6066
6067 /* If we've already been done, exit. */
6068 if (h->vtable_entries_used && h->vtable_entries_used[-1])
6069 return true;
6070
6071 /* Make sure the parent's table is up to date. */
6072 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
6073
6074 if (h->vtable_entries_used == NULL)
6075 {
6076 /* None of this table's entries were referenced. Re-use the
6077 parent's table. */
6078 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
6079 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
6080 }
6081 else
6082 {
6083 size_t n;
6084 boolean *cu, *pu;
6085
6086 /* Or the parent's entries into ours. */
6087 cu = h->vtable_entries_used;
6088 cu[-1] = true;
6089 pu = h->vtable_parent->vtable_entries_used;
6090 if (pu != NULL)
6091 {
6092 n = h->vtable_parent->vtable_entries_size / FILE_ALIGN;
6093 while (--n != 0)
6094 {
6095 if (*pu) *cu = true;
6096 pu++, cu++;
6097 }
6098 }
6099 }
6100
6101 return true;
6102}
6103
6104static boolean
6105elf_gc_smash_unused_vtentry_relocs (h, okp)
6106 struct elf_link_hash_entry *h;
6107 PTR okp;
6108{
6109 asection *sec;
6110 bfd_vma hstart, hend;
6111 Elf_Internal_Rela *relstart, *relend, *rel;
c7ac6ff8 6112 struct elf_backend_data *bed;
252b5132
RH
6113
6114 /* Take care of both those symbols that do not describe vtables as
6115 well as those that are not loaded. */
6116 if (h->vtable_parent == NULL)
6117 return true;
6118
6119 BFD_ASSERT (h->root.type == bfd_link_hash_defined
6120 || h->root.type == bfd_link_hash_defweak);
6121
6122 sec = h->root.u.def.section;
6123 hstart = h->root.u.def.value;
6124 hend = hstart + h->size;
6125
6126 relstart = (NAME(_bfd_elf,link_read_relocs)
6127 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
6128 if (!relstart)
6129 return *(boolean *)okp = false;
c7ac6ff8
MM
6130 bed = get_elf_backend_data (sec->owner);
6131 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
252b5132
RH
6132
6133 for (rel = relstart; rel < relend; ++rel)
6134 if (rel->r_offset >= hstart && rel->r_offset < hend)
6135 {
6136 /* If the entry is in use, do nothing. */
6137 if (h->vtable_entries_used
6138 && (rel->r_offset - hstart) < h->vtable_entries_size)
6139 {
6140 bfd_vma entry = (rel->r_offset - hstart) / FILE_ALIGN;
6141 if (h->vtable_entries_used[entry])
6142 continue;
6143 }
6144 /* Otherwise, kill it. */
6145 rel->r_offset = rel->r_info = rel->r_addend = 0;
6146 }
6147
6148 return true;
6149}
6150
6151/* Do mark and sweep of unused sections. */
6152
6153boolean
6154elf_gc_sections (abfd, info)
6155 bfd *abfd;
6156 struct bfd_link_info *info;
6157{
6158 boolean ok = true;
6159 bfd *sub;
6160 asection * (*gc_mark_hook)
6161 PARAMS ((bfd *abfd, struct bfd_link_info *, Elf_Internal_Rela *,
6162 struct elf_link_hash_entry *h, Elf_Internal_Sym *));
6163
6164 if (!get_elf_backend_data (abfd)->can_gc_sections
6165 || info->relocateable
6166 || elf_hash_table (info)->dynamic_sections_created)
6167 return true;
6168
6169 /* Apply transitive closure to the vtable entry usage info. */
6170 elf_link_hash_traverse (elf_hash_table (info),
6171 elf_gc_propagate_vtable_entries_used,
6172 (PTR) &ok);
6173 if (!ok)
6174 return false;
6175
6176 /* Kill the vtable relocations that were not used. */
6177 elf_link_hash_traverse (elf_hash_table (info),
6178 elf_gc_smash_unused_vtentry_relocs,
6179 (PTR) &ok);
6180 if (!ok)
6181 return false;
6182
6183 /* Grovel through relocs to find out who stays ... */
6184
6185 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
6186 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6187 {
6188 asection *o;
6189 for (o = sub->sections; o != NULL; o = o->next)
6190 {
6191 if (o->flags & SEC_KEEP)
6192 if (!elf_gc_mark (info, o, gc_mark_hook))
6193 return false;
6194 }
6195 }
6196
6197 /* ... and mark SEC_EXCLUDE for those that go. */
6198 if (!elf_gc_sweep(info, get_elf_backend_data (abfd)->gc_sweep_hook))
6199 return false;
6200
6201 return true;
6202}
6203\f
6204/* Called from check_relocs to record the existance of a VTINHERIT reloc. */
6205
6206boolean
6207elf_gc_record_vtinherit (abfd, sec, h, offset)
6208 bfd *abfd;
6209 asection *sec;
6210 struct elf_link_hash_entry *h;
6211 bfd_vma offset;
6212{
6213 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
6214 struct elf_link_hash_entry **search, *child;
6215 bfd_size_type extsymcount;
6216
6217 /* The sh_info field of the symtab header tells us where the
6218 external symbols start. We don't care about the local symbols at
6219 this point. */
6220 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
6221 if (!elf_bad_symtab (abfd))
6222 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
6223
6224 sym_hashes = elf_sym_hashes (abfd);
6225 sym_hashes_end = sym_hashes + extsymcount;
6226
6227 /* Hunt down the child symbol, which is in this section at the same
6228 offset as the relocation. */
6229 for (search = sym_hashes; search != sym_hashes_end; ++search)
6230 {
6231 if ((child = *search) != NULL
6232 && (child->root.type == bfd_link_hash_defined
6233 || child->root.type == bfd_link_hash_defweak)
6234 && child->root.u.def.section == sec
6235 && child->root.u.def.value == offset)
6236 goto win;
6237 }
6238
6239 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
6240 bfd_get_filename (abfd), sec->name,
6241 (unsigned long)offset);
6242 bfd_set_error (bfd_error_invalid_operation);
6243 return false;
6244
6245win:
6246 if (!h)
6247 {
6248 /* This *should* only be the absolute section. It could potentially
6249 be that someone has defined a non-global vtable though, which
6250 would be bad. It isn't worth paging in the local symbols to be
6251 sure though; that case should simply be handled by the assembler. */
6252
6253 child->vtable_parent = (struct elf_link_hash_entry *) -1;
6254 }
6255 else
6256 child->vtable_parent = h;
6257
6258 return true;
6259}
6260
6261/* Called from check_relocs to record the existance of a VTENTRY reloc. */
6262
6263boolean
6264elf_gc_record_vtentry (abfd, sec, h, addend)
7442e600
ILT
6265 bfd *abfd ATTRIBUTE_UNUSED;
6266 asection *sec ATTRIBUTE_UNUSED;
252b5132
RH
6267 struct elf_link_hash_entry *h;
6268 bfd_vma addend;
6269{
6270 if (addend >= h->vtable_entries_size)
6271 {
6272 size_t size, bytes;
6273 boolean *ptr = h->vtable_entries_used;
6274
6275 /* While the symbol is undefined, we have to be prepared to handle
6276 a zero size. */
6277 if (h->root.type == bfd_link_hash_undefined)
6278 size = addend;
6279 else
6280 {
6281 size = h->size;
6282 if (size < addend)
6283 {
6284 /* Oops! We've got a reference past the defined end of
6285 the table. This is probably a bug -- shall we warn? */
6286 size = addend;
6287 }
6288 }
6289
6290 /* Allocate one extra entry for use as a "done" flag for the
6291 consolidation pass. */
6292 bytes = (size / FILE_ALIGN + 1) * sizeof(boolean);
6293
6294 if (ptr)
6295 {
6296 size_t oldbytes;
6297
6298 ptr = realloc (ptr-1, bytes);
6299 if (ptr == NULL)
6300 return false;
6301
6302 oldbytes = (h->vtable_entries_size/FILE_ALIGN + 1) * sizeof(boolean);
6303 memset (ptr + oldbytes, 0, bytes - oldbytes);
6304 }
6305 else
6306 {
6307 ptr = calloc (1, bytes);
6308 if (ptr == NULL)
6309 return false;
6310 }
6311
6312 /* And arrange for that done flag to be at index -1. */
6313 h->vtable_entries_used = ptr+1;
6314 h->vtable_entries_size = size;
6315 }
6316 h->vtable_entries_used[addend / FILE_ALIGN] = true;
6317
6318 return true;
6319}
6320
6321/* And an accompanying bit to work out final got entry offsets once
6322 we're done. Should be called from final_link. */
6323
6324boolean
6325elf_gc_common_finalize_got_offsets (abfd, info)
6326 bfd *abfd;
6327 struct bfd_link_info *info;
6328{
6329 bfd *i;
6330 struct elf_backend_data *bed = get_elf_backend_data (abfd);
6331 bfd_vma gotoff;
6332
6333 /* The GOT offset is relative to the .got section, but the GOT header is
6334 put into the .got.plt section, if the backend uses it. */
6335 if (bed->want_got_plt)
6336 gotoff = 0;
6337 else
6338 gotoff = bed->got_header_size;
6339
6340 /* Do the local .got entries first. */
6341 for (i = info->input_bfds; i; i = i->link_next)
6342 {
6343 bfd_signed_vma *local_got = elf_local_got_refcounts (i);
6344 bfd_size_type j, locsymcount;
6345 Elf_Internal_Shdr *symtab_hdr;
6346
6347 if (!local_got)
6348 continue;
6349
6350 symtab_hdr = &elf_tdata (i)->symtab_hdr;
6351 if (elf_bad_symtab (i))
6352 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6353 else
6354 locsymcount = symtab_hdr->sh_info;
6355
6356 for (j = 0; j < locsymcount; ++j)
6357 {
6358 if (local_got[j] > 0)
6359 {
6360 local_got[j] = gotoff;
6361 gotoff += ARCH_SIZE / 8;
6362 }
6363 else
6364 local_got[j] = (bfd_vma) -1;
6365 }
6366 }
6367
6368 /* Then the global .got and .plt entries. */
6369 elf_link_hash_traverse (elf_hash_table (info),
6370 elf_gc_allocate_got_offsets,
6371 (PTR) &gotoff);
6372 return true;
6373}
6374
6375/* We need a special top-level link routine to convert got reference counts
6376 to real got offsets. */
6377
6378static boolean
6379elf_gc_allocate_got_offsets (h, offarg)
6380 struct elf_link_hash_entry *h;
6381 PTR offarg;
6382{
6383 bfd_vma *off = (bfd_vma *) offarg;
6384
6385 if (h->got.refcount > 0)
6386 {
6387 h->got.offset = off[0];
6388 off[0] += ARCH_SIZE / 8;
6389 }
6390 else
6391 h->got.offset = (bfd_vma) -1;
6392
6393 return true;
6394}
6395
6396/* Many folk need no more in the way of final link than this, once
6397 got entry reference counting is enabled. */
6398
6399boolean
6400elf_gc_common_final_link (abfd, info)
6401 bfd *abfd;
6402 struct bfd_link_info *info;
6403{
6404 if (!elf_gc_common_finalize_got_offsets (abfd, info))
6405 return false;
6406
6407 /* Invoke the regular ELF backend linker to do all the work. */
6408 return elf_bfd_final_link (abfd, info);
6409}
6410
6411/* This function will be called though elf_link_hash_traverse to store
6412 all hash value of the exported symbols in an array. */
6413
6414static boolean
6415elf_collect_hash_codes (h, data)
6416 struct elf_link_hash_entry *h;
6417 PTR data;
6418{
6419 unsigned long **valuep = (unsigned long **) data;
6420 const char *name;
6421 char *p;
6422 unsigned long ha;
6423 char *alc = NULL;
6424
6425 /* Ignore indirect symbols. These are added by the versioning code. */
6426 if (h->dynindx == -1)
6427 return true;
6428
6429 name = h->root.root.string;
6430 p = strchr (name, ELF_VER_CHR);
6431 if (p != NULL)
6432 {
6433 alc = bfd_malloc (p - name + 1);
6434 memcpy (alc, name, p - name);
6435 alc[p - name] = '\0';
6436 name = alc;
6437 }
6438
6439 /* Compute the hash value. */
6440 ha = bfd_elf_hash (name);
6441
6442 /* Store the found hash value in the array given as the argument. */
6443 *(*valuep)++ = ha;
6444
6445 /* And store it in the struct so that we can put it in the hash table
6446 later. */
6447 h->elf_hash_value = ha;
6448
6449 if (alc != NULL)
6450 free (alc);
6451
6452 return true;
6453}
This page took 0.285239 seconds and 4 git commands to generate.