Add R_X86_64_PC32_BND and R_X86_64_PLT32_BND
[deliverable/binutils-gdb.git] / bfd / elfnn-aarch64.c
CommitLineData
cec5225b
YZ
1/* AArch64-specific support for NN-bit ELF.
2 Copyright 2009-2013 Free Software Foundation, Inc.
a06ea964
NC
3 Contributed by ARM Ltd.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
20
21/* Notes on implementation:
22
23 Thread Local Store (TLS)
24
25 Overview:
26
27 The implementation currently supports both traditional TLS and TLS
28 descriptors, but only general dynamic (GD).
29
30 For traditional TLS the assembler will present us with code
31 fragments of the form:
32
33 adrp x0, :tlsgd:foo
34 R_AARCH64_TLSGD_ADR_PAGE21(foo)
35 add x0, :tlsgd_lo12:foo
36 R_AARCH64_TLSGD_ADD_LO12_NC(foo)
37 bl __tls_get_addr
38 nop
39
40 For TLS descriptors the assembler will present us with code
41 fragments of the form:
42
418009c2 43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE21(foo)
a06ea964
NC
44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo)
45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo)
46 .tlsdesccall foo
47 blr x1 R_AARCH64_TLSDESC_CALL(foo)
48
49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50 indicate that foo is thread local and should be accessed via the
51 traditional TLS mechanims.
52
a6bb11b2 53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC}
a06ea964
NC
54 against foo indicate that 'foo' is thread local and should be accessed
55 via a TLS descriptor mechanism.
56
57 The precise instruction sequence is only relevant from the
58 perspective of linker relaxation which is currently not implemented.
59
60 The static linker must detect that 'foo' is a TLS object and
61 allocate a double GOT entry. The GOT entry must be created for both
62 global and local TLS symbols. Note that this is different to none
63 TLS local objects which do not need a GOT entry.
64
65 In the traditional TLS mechanism, the double GOT entry is used to
66 provide the tls_index structure, containing module and offset
a6bb11b2 67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD
a06ea964
NC
68 on the module entry. The loader will subsequently fixup this
69 relocation with the module identity.
70
71 For global traditional TLS symbols the static linker places an
a6bb11b2 72 R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader
a06ea964
NC
73 will subsequently fixup the offset. For local TLS symbols the static
74 linker fixes up offset.
75
76 In the TLS descriptor mechanism the double GOT entry is used to
77 provide the descriptor. The static linker places the relocation
78 R_AARCH64_TLSDESC on the first GOT slot. The loader will
79 subsequently fix this up.
80
81 Implementation:
82
83 The handling of TLS symbols is implemented across a number of
84 different backend functions. The following is a top level view of
85 what processing is performed where.
86
87 The TLS implementation maintains state information for each TLS
88 symbol. The state information for local and global symbols is kept
89 in different places. Global symbols use generic BFD structures while
90 local symbols use backend specific structures that are allocated and
91 maintained entirely by the backend.
92
93 The flow:
94
cec5225b 95 elfNN_aarch64_check_relocs()
a06ea964
NC
96
97 This function is invoked for each relocation.
98
99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
a6bb11b2 100 R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are
a06ea964
NC
101 spotted. One time creation of local symbol data structures are
102 created when the first local symbol is seen.
103
104 The reference count for a symbol is incremented. The GOT type for
105 each symbol is marked as general dynamic.
106
cec5225b 107 elfNN_aarch64_allocate_dynrelocs ()
a06ea964
NC
108
109 For each global with positive reference count we allocate a double
110 GOT slot. For a traditional TLS symbol we allocate space for two
111 relocation entries on the GOT, for a TLS descriptor symbol we
112 allocate space for one relocation on the slot. Record the GOT offset
113 for this symbol.
114
cec5225b 115 elfNN_aarch64_size_dynamic_sections ()
a06ea964
NC
116
117 Iterate all input BFDS, look for in the local symbol data structure
118 constructed earlier for local TLS symbols and allocate them double
119 GOT slots along with space for a single GOT relocation. Update the
120 local symbol structure to record the GOT offset allocated.
121
cec5225b 122 elfNN_aarch64_relocate_section ()
a06ea964 123
cec5225b 124 Calls elfNN_aarch64_final_link_relocate ()
a06ea964
NC
125
126 Emit the relevant TLS relocations against the GOT for each TLS
127 symbol. For local TLS symbols emit the GOT offset directly. The GOT
128 relocations are emitted once the first time a TLS symbol is
129 encountered. The implementation uses the LSB of the GOT offset to
130 flag that the relevant GOT relocations for a symbol have been
131 emitted. All of the TLS code that uses the GOT offset needs to take
132 care to mask out this flag bit before using the offset.
133
cec5225b 134 elfNN_aarch64_final_link_relocate ()
a06ea964
NC
135
136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */
137
138#include "sysdep.h"
139#include "bfd.h"
140#include "libiberty.h"
141#include "libbfd.h"
142#include "bfd_stdint.h"
143#include "elf-bfd.h"
144#include "bfdlink.h"
1419bbe5 145#include "objalloc.h"
a06ea964 146#include "elf/aarch64.h"
caed7120 147#include "elfxx-aarch64.h"
a06ea964 148
cec5225b
YZ
149#define ARCH_SIZE NN
150
151#if ARCH_SIZE == 64
152#define AARCH64_R(NAME) R_AARCH64_ ## NAME
153#define AARCH64_R_STR(NAME) "R_AARCH64_" #NAME
a6bb11b2
YZ
154#define HOWTO64(...) HOWTO (__VA_ARGS__)
155#define HOWTO32(...) EMPTY_HOWTO (0)
cec5225b
YZ
156#define LOG_FILE_ALIGN 3
157#endif
158
159#if ARCH_SIZE == 32
160#define AARCH64_R(NAME) R_AARCH64_P32_ ## NAME
161#define AARCH64_R_STR(NAME) "R_AARCH64_P32_" #NAME
a6bb11b2
YZ
162#define HOWTO64(...) EMPTY_HOWTO (0)
163#define HOWTO32(...) HOWTO (__VA_ARGS__)
cec5225b
YZ
164#define LOG_FILE_ALIGN 2
165#endif
166
a6bb11b2
YZ
167#define IS_AARCH64_TLS_RELOC(R_TYPE) \
168 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
169 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
170 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \
171 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \
172 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
173 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \
174 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC \
175 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
176 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12 \
177 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 \
178 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC \
179 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 \
180 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 \
181 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC \
182 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0 \
183 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC \
184 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD \
185 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL \
186 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL \
a06ea964
NC
187 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
188
a6bb11b2
YZ
189#define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \
190 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
191 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
192 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
193 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC \
194 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC \
195 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC \
196 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1 \
197 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
198 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
199 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
200 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
201 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC)
a06ea964
NC
202
203#define ELIMINATE_COPY_RELOCS 0
204
a06ea964 205/* Return size of a relocation entry. HTAB is the bfd's
cec5225b
YZ
206 elf_aarch64_link_hash_entry. */
207#define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
a06ea964 208
cec5225b
YZ
209/* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */
210#define GOT_ENTRY_SIZE (ARCH_SIZE / 8)
a06ea964
NC
211#define PLT_ENTRY_SIZE (32)
212#define PLT_SMALL_ENTRY_SIZE (16)
213#define PLT_TLSDESC_ENTRY_SIZE (32)
214
a06ea964
NC
215/* Encoding of the nop instruction */
216#define INSN_NOP 0xd503201f
217
218#define aarch64_compute_jump_table_size(htab) \
219 (((htab)->root.srelplt == NULL) ? 0 \
220 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
221
222/* The first entry in a procedure linkage table looks like this
223 if the distance between the PLTGOT and the PLT is < 4GB use
224 these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
225 in x16 and needs to work out PLTGOT[1] by using an address of
cec5225b
YZ
226 [x16,#-GOT_ENTRY_SIZE]. */
227static const bfd_byte elfNN_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] =
a06ea964
NC
228{
229 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
230 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
caed7120 231#if ARCH_SIZE == 64
a06ea964
NC
232 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
233 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
caed7120
YZ
234#else
235 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
236 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
237#endif
a06ea964
NC
238 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
239 0x1f, 0x20, 0x03, 0xd5, /* nop */
240 0x1f, 0x20, 0x03, 0xd5, /* nop */
241 0x1f, 0x20, 0x03, 0xd5, /* nop */
242};
243
244/* Per function entry in a procedure linkage table looks like this
245 if the distance between the PLTGOT and the PLT is < 4GB use
246 these PLT entries. */
cec5225b 247static const bfd_byte elfNN_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] =
a06ea964
NC
248{
249 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
caed7120 250#if ARCH_SIZE == 64
a06ea964
NC
251 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
252 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
caed7120
YZ
253#else
254 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
255 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
256#endif
a06ea964
NC
257 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
258};
259
260static const bfd_byte
cec5225b 261elfNN_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] =
a06ea964
NC
262{
263 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
264 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
265 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
caed7120
YZ
266#if ARCH_SIZE == 64
267 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
a06ea964 268 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
caed7120
YZ
269#else
270 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
271 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
272#endif
273 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
a06ea964
NC
274 0x1f, 0x20, 0x03, 0xd5, /* nop */
275 0x1f, 0x20, 0x03, 0xd5, /* nop */
276};
277
cec5225b
YZ
278#define elf_info_to_howto elfNN_aarch64_info_to_howto
279#define elf_info_to_howto_rel elfNN_aarch64_info_to_howto
a06ea964
NC
280
281#define AARCH64_ELF_ABI_VERSION 0
a06ea964
NC
282
283/* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
284#define ALL_ONES (~ (bfd_vma) 0)
285
a6bb11b2
YZ
286/* Indexed by the bfd interal reloc enumerators.
287 Therefore, the table needs to be synced with BFD_RELOC_AARCH64_*
288 in reloc.c. */
a06ea964 289
a6bb11b2 290static reloc_howto_type elfNN_aarch64_howto_table[] =
a06ea964 291{
a6bb11b2 292 EMPTY_HOWTO (0),
a06ea964 293
a6bb11b2 294 /* Basic data relocations. */
a06ea964 295
a6bb11b2
YZ
296#if ARCH_SIZE == 64
297 HOWTO (R_AARCH64_NULL, /* type */
a06ea964 298 0, /* rightshift */
a6bb11b2
YZ
299 0, /* size (0 = byte, 1 = short, 2 = long) */
300 0, /* bitsize */
a06ea964
NC
301 FALSE, /* pc_relative */
302 0, /* bitpos */
303 complain_overflow_dont, /* complain_on_overflow */
304 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 305 "R_AARCH64_NULL", /* name */
a06ea964
NC
306 FALSE, /* partial_inplace */
307 0, /* src_mask */
a6bb11b2 308 0, /* dst_mask */
a06ea964 309 FALSE), /* pcrel_offset */
a6bb11b2
YZ
310#else
311 HOWTO (R_AARCH64_NONE, /* type */
a06ea964
NC
312 0, /* rightshift */
313 0, /* size (0 = byte, 1 = short, 2 = long) */
314 0, /* bitsize */
315 FALSE, /* pc_relative */
316 0, /* bitpos */
317 complain_overflow_dont, /* complain_on_overflow */
318 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 319 "R_AARCH64_NONE", /* name */
a06ea964
NC
320 FALSE, /* partial_inplace */
321 0, /* src_mask */
322 0, /* dst_mask */
323 FALSE), /* pcrel_offset */
a6bb11b2 324#endif
a06ea964
NC
325
326 /* .xword: (S+A) */
a6bb11b2 327 HOWTO64 (AARCH64_R (ABS64), /* type */
a06ea964
NC
328 0, /* rightshift */
329 4, /* size (4 = long long) */
330 64, /* bitsize */
331 FALSE, /* pc_relative */
332 0, /* bitpos */
333 complain_overflow_unsigned, /* complain_on_overflow */
334 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 335 AARCH64_R_STR (ABS64), /* name */
a06ea964
NC
336 FALSE, /* partial_inplace */
337 ALL_ONES, /* src_mask */
338 ALL_ONES, /* dst_mask */
339 FALSE), /* pcrel_offset */
340
341 /* .word: (S+A) */
a6bb11b2 342 HOWTO (AARCH64_R (ABS32), /* type */
a06ea964
NC
343 0, /* rightshift */
344 2, /* size (0 = byte, 1 = short, 2 = long) */
345 32, /* bitsize */
346 FALSE, /* pc_relative */
347 0, /* bitpos */
348 complain_overflow_unsigned, /* complain_on_overflow */
349 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 350 AARCH64_R_STR (ABS32), /* name */
a06ea964
NC
351 FALSE, /* partial_inplace */
352 0xffffffff, /* src_mask */
353 0xffffffff, /* dst_mask */
354 FALSE), /* pcrel_offset */
355
356 /* .half: (S+A) */
a6bb11b2 357 HOWTO (AARCH64_R (ABS16), /* type */
a06ea964
NC
358 0, /* rightshift */
359 1, /* size (0 = byte, 1 = short, 2 = long) */
360 16, /* bitsize */
361 FALSE, /* pc_relative */
362 0, /* bitpos */
363 complain_overflow_unsigned, /* complain_on_overflow */
364 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 365 AARCH64_R_STR (ABS16), /* name */
a06ea964
NC
366 FALSE, /* partial_inplace */
367 0xffff, /* src_mask */
368 0xffff, /* dst_mask */
369 FALSE), /* pcrel_offset */
370
371 /* .xword: (S+A-P) */
a6bb11b2 372 HOWTO64 (AARCH64_R (PREL64), /* type */
a06ea964
NC
373 0, /* rightshift */
374 4, /* size (4 = long long) */
375 64, /* bitsize */
376 TRUE, /* pc_relative */
377 0, /* bitpos */
378 complain_overflow_signed, /* complain_on_overflow */
379 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 380 AARCH64_R_STR (PREL64), /* name */
a06ea964
NC
381 FALSE, /* partial_inplace */
382 ALL_ONES, /* src_mask */
383 ALL_ONES, /* dst_mask */
384 TRUE), /* pcrel_offset */
385
386 /* .word: (S+A-P) */
a6bb11b2 387 HOWTO (AARCH64_R (PREL32), /* type */
a06ea964
NC
388 0, /* rightshift */
389 2, /* size (0 = byte, 1 = short, 2 = long) */
390 32, /* bitsize */
391 TRUE, /* pc_relative */
392 0, /* bitpos */
393 complain_overflow_signed, /* complain_on_overflow */
394 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 395 AARCH64_R_STR (PREL32), /* name */
a06ea964
NC
396 FALSE, /* partial_inplace */
397 0xffffffff, /* src_mask */
398 0xffffffff, /* dst_mask */
399 TRUE), /* pcrel_offset */
400
401 /* .half: (S+A-P) */
a6bb11b2 402 HOWTO (AARCH64_R (PREL16), /* type */
a06ea964
NC
403 0, /* rightshift */
404 1, /* size (0 = byte, 1 = short, 2 = long) */
405 16, /* bitsize */
406 TRUE, /* pc_relative */
407 0, /* bitpos */
408 complain_overflow_signed, /* complain_on_overflow */
409 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 410 AARCH64_R_STR (PREL16), /* name */
a06ea964
NC
411 FALSE, /* partial_inplace */
412 0xffff, /* src_mask */
413 0xffff, /* dst_mask */
414 TRUE), /* pcrel_offset */
415
416 /* Group relocations to create a 16, 32, 48 or 64 bit
417 unsigned data or abs address inline. */
418
419 /* MOVZ: ((S+A) >> 0) & 0xffff */
a6bb11b2 420 HOWTO (AARCH64_R (MOVW_UABS_G0), /* type */
a06ea964
NC
421 0, /* rightshift */
422 2, /* size (0 = byte, 1 = short, 2 = long) */
423 16, /* bitsize */
424 FALSE, /* pc_relative */
425 0, /* bitpos */
426 complain_overflow_unsigned, /* complain_on_overflow */
427 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 428 AARCH64_R_STR (MOVW_UABS_G0), /* name */
a06ea964
NC
429 FALSE, /* partial_inplace */
430 0xffff, /* src_mask */
431 0xffff, /* dst_mask */
432 FALSE), /* pcrel_offset */
433
434 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */
a6bb11b2 435 HOWTO (AARCH64_R (MOVW_UABS_G0_NC), /* type */
a06ea964
NC
436 0, /* rightshift */
437 2, /* size (0 = byte, 1 = short, 2 = long) */
438 16, /* bitsize */
439 FALSE, /* pc_relative */
440 0, /* bitpos */
441 complain_overflow_dont, /* complain_on_overflow */
442 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 443 AARCH64_R_STR (MOVW_UABS_G0_NC), /* name */
a06ea964
NC
444 FALSE, /* partial_inplace */
445 0xffff, /* src_mask */
446 0xffff, /* dst_mask */
447 FALSE), /* pcrel_offset */
448
449 /* MOVZ: ((S+A) >> 16) & 0xffff */
a6bb11b2 450 HOWTO (AARCH64_R (MOVW_UABS_G1), /* type */
a06ea964
NC
451 16, /* rightshift */
452 2, /* size (0 = byte, 1 = short, 2 = long) */
453 16, /* bitsize */
454 FALSE, /* pc_relative */
455 0, /* bitpos */
456 complain_overflow_unsigned, /* complain_on_overflow */
457 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 458 AARCH64_R_STR (MOVW_UABS_G1), /* name */
a06ea964
NC
459 FALSE, /* partial_inplace */
460 0xffff, /* src_mask */
461 0xffff, /* dst_mask */
462 FALSE), /* pcrel_offset */
463
464 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */
a6bb11b2 465 HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC), /* type */
a06ea964
NC
466 16, /* rightshift */
467 2, /* size (0 = byte, 1 = short, 2 = long) */
468 16, /* bitsize */
469 FALSE, /* pc_relative */
470 0, /* bitpos */
471 complain_overflow_dont, /* complain_on_overflow */
472 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 473 AARCH64_R_STR (MOVW_UABS_G1_NC), /* name */
a06ea964
NC
474 FALSE, /* partial_inplace */
475 0xffff, /* src_mask */
476 0xffff, /* dst_mask */
477 FALSE), /* pcrel_offset */
478
479 /* MOVZ: ((S+A) >> 32) & 0xffff */
a6bb11b2 480 HOWTO64 (AARCH64_R (MOVW_UABS_G2), /* type */
a06ea964
NC
481 32, /* rightshift */
482 2, /* size (0 = byte, 1 = short, 2 = long) */
483 16, /* bitsize */
484 FALSE, /* pc_relative */
485 0, /* bitpos */
486 complain_overflow_unsigned, /* complain_on_overflow */
487 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 488 AARCH64_R_STR (MOVW_UABS_G2), /* name */
a06ea964
NC
489 FALSE, /* partial_inplace */
490 0xffff, /* src_mask */
491 0xffff, /* dst_mask */
492 FALSE), /* pcrel_offset */
493
494 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */
a6bb11b2 495 HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC), /* type */
a06ea964
NC
496 32, /* rightshift */
497 2, /* size (0 = byte, 1 = short, 2 = long) */
498 16, /* bitsize */
499 FALSE, /* pc_relative */
500 0, /* bitpos */
501 complain_overflow_dont, /* complain_on_overflow */
502 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 503 AARCH64_R_STR (MOVW_UABS_G2_NC), /* name */
a06ea964
NC
504 FALSE, /* partial_inplace */
505 0xffff, /* src_mask */
506 0xffff, /* dst_mask */
507 FALSE), /* pcrel_offset */
508
509 /* MOVZ: ((S+A) >> 48) & 0xffff */
a6bb11b2 510 HOWTO64 (AARCH64_R (MOVW_UABS_G3), /* type */
a06ea964
NC
511 48, /* rightshift */
512 2, /* size (0 = byte, 1 = short, 2 = long) */
513 16, /* bitsize */
514 FALSE, /* pc_relative */
515 0, /* bitpos */
516 complain_overflow_unsigned, /* complain_on_overflow */
517 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 518 AARCH64_R_STR (MOVW_UABS_G3), /* name */
a06ea964
NC
519 FALSE, /* partial_inplace */
520 0xffff, /* src_mask */
521 0xffff, /* dst_mask */
522 FALSE), /* pcrel_offset */
523
524 /* Group relocations to create high part of a 16, 32, 48 or 64 bit
525 signed data or abs address inline. Will change instruction
526 to MOVN or MOVZ depending on sign of calculated value. */
527
528 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */
a6bb11b2 529 HOWTO (AARCH64_R (MOVW_SABS_G0), /* type */
a06ea964
NC
530 0, /* rightshift */
531 2, /* size (0 = byte, 1 = short, 2 = long) */
532 16, /* bitsize */
533 FALSE, /* pc_relative */
534 0, /* bitpos */
535 complain_overflow_signed, /* complain_on_overflow */
536 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 537 AARCH64_R_STR (MOVW_SABS_G0), /* name */
a06ea964
NC
538 FALSE, /* partial_inplace */
539 0xffff, /* src_mask */
540 0xffff, /* dst_mask */
541 FALSE), /* pcrel_offset */
542
543 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */
a6bb11b2 544 HOWTO64 (AARCH64_R (MOVW_SABS_G1), /* type */
a06ea964
NC
545 16, /* rightshift */
546 2, /* size (0 = byte, 1 = short, 2 = long) */
547 16, /* bitsize */
548 FALSE, /* pc_relative */
549 0, /* bitpos */
550 complain_overflow_signed, /* complain_on_overflow */
551 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 552 AARCH64_R_STR (MOVW_SABS_G1), /* name */
a06ea964
NC
553 FALSE, /* partial_inplace */
554 0xffff, /* src_mask */
555 0xffff, /* dst_mask */
556 FALSE), /* pcrel_offset */
557
558 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */
a6bb11b2 559 HOWTO64 (AARCH64_R (MOVW_SABS_G2), /* type */
a06ea964
NC
560 32, /* rightshift */
561 2, /* size (0 = byte, 1 = short, 2 = long) */
562 16, /* bitsize */
563 FALSE, /* pc_relative */
564 0, /* bitpos */
565 complain_overflow_signed, /* complain_on_overflow */
566 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 567 AARCH64_R_STR (MOVW_SABS_G2), /* name */
a06ea964
NC
568 FALSE, /* partial_inplace */
569 0xffff, /* src_mask */
570 0xffff, /* dst_mask */
571 FALSE), /* pcrel_offset */
572
573/* Relocations to generate 19, 21 and 33 bit PC-relative load/store
574 addresses: PG(x) is (x & ~0xfff). */
575
576 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
a6bb11b2 577 HOWTO (AARCH64_R (LD_PREL_LO19), /* type */
a06ea964
NC
578 2, /* rightshift */
579 2, /* size (0 = byte, 1 = short, 2 = long) */
580 19, /* bitsize */
581 TRUE, /* pc_relative */
582 0, /* bitpos */
583 complain_overflow_signed, /* complain_on_overflow */
584 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 585 AARCH64_R_STR (LD_PREL_LO19), /* name */
a06ea964
NC
586 FALSE, /* partial_inplace */
587 0x7ffff, /* src_mask */
588 0x7ffff, /* dst_mask */
589 TRUE), /* pcrel_offset */
590
591 /* ADR: (S+A-P) & 0x1fffff */
a6bb11b2 592 HOWTO (AARCH64_R (ADR_PREL_LO21), /* type */
a06ea964
NC
593 0, /* rightshift */
594 2, /* size (0 = byte, 1 = short, 2 = long) */
595 21, /* bitsize */
596 TRUE, /* pc_relative */
597 0, /* bitpos */
598 complain_overflow_signed, /* complain_on_overflow */
599 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 600 AARCH64_R_STR (ADR_PREL_LO21), /* name */
a06ea964
NC
601 FALSE, /* partial_inplace */
602 0x1fffff, /* src_mask */
603 0x1fffff, /* dst_mask */
604 TRUE), /* pcrel_offset */
605
606 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
a6bb11b2 607 HOWTO (AARCH64_R (ADR_PREL_PG_HI21), /* type */
a06ea964
NC
608 12, /* rightshift */
609 2, /* size (0 = byte, 1 = short, 2 = long) */
610 21, /* bitsize */
611 TRUE, /* pc_relative */
612 0, /* bitpos */
613 complain_overflow_signed, /* complain_on_overflow */
614 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 615 AARCH64_R_STR (ADR_PREL_PG_HI21), /* name */
a06ea964
NC
616 FALSE, /* partial_inplace */
617 0x1fffff, /* src_mask */
618 0x1fffff, /* dst_mask */
619 TRUE), /* pcrel_offset */
620
621 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
a6bb11b2 622 HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC), /* type */
a06ea964
NC
623 12, /* rightshift */
624 2, /* size (0 = byte, 1 = short, 2 = long) */
625 21, /* bitsize */
626 TRUE, /* pc_relative */
627 0, /* bitpos */
628 complain_overflow_dont, /* complain_on_overflow */
629 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 630 AARCH64_R_STR (ADR_PREL_PG_HI21_NC), /* name */
a06ea964
NC
631 FALSE, /* partial_inplace */
632 0x1fffff, /* src_mask */
633 0x1fffff, /* dst_mask */
634 TRUE), /* pcrel_offset */
635
636 /* ADD: (S+A) & 0xfff [no overflow check] */
a6bb11b2 637 HOWTO (AARCH64_R (ADD_ABS_LO12_NC), /* type */
a06ea964
NC
638 0, /* rightshift */
639 2, /* size (0 = byte, 1 = short, 2 = long) */
640 12, /* bitsize */
641 FALSE, /* pc_relative */
642 10, /* bitpos */
643 complain_overflow_dont, /* complain_on_overflow */
644 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 645 AARCH64_R_STR (ADD_ABS_LO12_NC), /* name */
a06ea964
NC
646 FALSE, /* partial_inplace */
647 0x3ffc00, /* src_mask */
648 0x3ffc00, /* dst_mask */
649 FALSE), /* pcrel_offset */
650
651 /* LD/ST8: (S+A) & 0xfff */
a6bb11b2 652 HOWTO (AARCH64_R (LDST8_ABS_LO12_NC), /* type */
a06ea964
NC
653 0, /* rightshift */
654 2, /* size (0 = byte, 1 = short, 2 = long) */
655 12, /* bitsize */
656 FALSE, /* pc_relative */
657 0, /* bitpos */
658 complain_overflow_dont, /* complain_on_overflow */
659 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 660 AARCH64_R_STR (LDST8_ABS_LO12_NC), /* name */
a06ea964
NC
661 FALSE, /* partial_inplace */
662 0xfff, /* src_mask */
663 0xfff, /* dst_mask */
664 FALSE), /* pcrel_offset */
665
666 /* Relocations for control-flow instructions. */
667
668 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
a6bb11b2 669 HOWTO (AARCH64_R (TSTBR14), /* type */
a06ea964
NC
670 2, /* rightshift */
671 2, /* size (0 = byte, 1 = short, 2 = long) */
672 14, /* bitsize */
673 TRUE, /* pc_relative */
674 0, /* bitpos */
675 complain_overflow_signed, /* complain_on_overflow */
676 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 677 AARCH64_R_STR (TSTBR14), /* name */
a06ea964
NC
678 FALSE, /* partial_inplace */
679 0x3fff, /* src_mask */
680 0x3fff, /* dst_mask */
681 TRUE), /* pcrel_offset */
682
683 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
a6bb11b2 684 HOWTO (AARCH64_R (CONDBR19), /* type */
a06ea964
NC
685 2, /* rightshift */
686 2, /* size (0 = byte, 1 = short, 2 = long) */
687 19, /* bitsize */
688 TRUE, /* pc_relative */
689 0, /* bitpos */
690 complain_overflow_signed, /* complain_on_overflow */
691 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 692 AARCH64_R_STR (CONDBR19), /* name */
a06ea964
NC
693 FALSE, /* partial_inplace */
694 0x7ffff, /* src_mask */
695 0x7ffff, /* dst_mask */
696 TRUE), /* pcrel_offset */
697
a06ea964 698 /* B: ((S+A-P) >> 2) & 0x3ffffff */
a6bb11b2 699 HOWTO (AARCH64_R (JUMP26), /* type */
a06ea964
NC
700 2, /* rightshift */
701 2, /* size (0 = byte, 1 = short, 2 = long) */
702 26, /* bitsize */
703 TRUE, /* pc_relative */
704 0, /* bitpos */
705 complain_overflow_signed, /* complain_on_overflow */
706 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 707 AARCH64_R_STR (JUMP26), /* name */
a06ea964
NC
708 FALSE, /* partial_inplace */
709 0x3ffffff, /* src_mask */
710 0x3ffffff, /* dst_mask */
711 TRUE), /* pcrel_offset */
712
713 /* BL: ((S+A-P) >> 2) & 0x3ffffff */
a6bb11b2 714 HOWTO (AARCH64_R (CALL26), /* type */
a06ea964
NC
715 2, /* rightshift */
716 2, /* size (0 = byte, 1 = short, 2 = long) */
717 26, /* bitsize */
718 TRUE, /* pc_relative */
719 0, /* bitpos */
720 complain_overflow_signed, /* complain_on_overflow */
721 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 722 AARCH64_R_STR (CALL26), /* name */
a06ea964
NC
723 FALSE, /* partial_inplace */
724 0x3ffffff, /* src_mask */
725 0x3ffffff, /* dst_mask */
726 TRUE), /* pcrel_offset */
727
728 /* LD/ST16: (S+A) & 0xffe */
a6bb11b2 729 HOWTO (AARCH64_R (LDST16_ABS_LO12_NC), /* type */
a06ea964
NC
730 1, /* rightshift */
731 2, /* size (0 = byte, 1 = short, 2 = long) */
732 12, /* bitsize */
733 FALSE, /* pc_relative */
734 0, /* bitpos */
735 complain_overflow_dont, /* complain_on_overflow */
736 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 737 AARCH64_R_STR (LDST16_ABS_LO12_NC), /* name */
a06ea964
NC
738 FALSE, /* partial_inplace */
739 0xffe, /* src_mask */
740 0xffe, /* dst_mask */
741 FALSE), /* pcrel_offset */
742
743 /* LD/ST32: (S+A) & 0xffc */
a6bb11b2 744 HOWTO (AARCH64_R (LDST32_ABS_LO12_NC), /* type */
a06ea964
NC
745 2, /* rightshift */
746 2, /* size (0 = byte, 1 = short, 2 = long) */
747 12, /* bitsize */
748 FALSE, /* pc_relative */
749 0, /* bitpos */
750 complain_overflow_dont, /* complain_on_overflow */
751 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 752 AARCH64_R_STR (LDST32_ABS_LO12_NC), /* name */
a06ea964
NC
753 FALSE, /* partial_inplace */
754 0xffc, /* src_mask */
755 0xffc, /* dst_mask */
756 FALSE), /* pcrel_offset */
757
758 /* LD/ST64: (S+A) & 0xff8 */
a6bb11b2 759 HOWTO (AARCH64_R (LDST64_ABS_LO12_NC), /* type */
a06ea964
NC
760 3, /* rightshift */
761 2, /* size (0 = byte, 1 = short, 2 = long) */
762 12, /* bitsize */
763 FALSE, /* pc_relative */
764 0, /* bitpos */
765 complain_overflow_dont, /* complain_on_overflow */
766 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 767 AARCH64_R_STR (LDST64_ABS_LO12_NC), /* name */
a06ea964
NC
768 FALSE, /* partial_inplace */
769 0xff8, /* src_mask */
770 0xff8, /* dst_mask */
771 FALSE), /* pcrel_offset */
772
a06ea964 773 /* LD/ST128: (S+A) & 0xff0 */
a6bb11b2 774 HOWTO (AARCH64_R (LDST128_ABS_LO12_NC), /* type */
a06ea964
NC
775 4, /* rightshift */
776 2, /* size (0 = byte, 1 = short, 2 = long) */
777 12, /* bitsize */
778 FALSE, /* pc_relative */
779 0, /* bitpos */
780 complain_overflow_dont, /* complain_on_overflow */
781 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 782 AARCH64_R_STR (LDST128_ABS_LO12_NC), /* name */
a06ea964
NC
783 FALSE, /* partial_inplace */
784 0xff0, /* src_mask */
785 0xff0, /* dst_mask */
786 FALSE), /* pcrel_offset */
787
f41aef5f
RE
788 /* Set a load-literal immediate field to bits
789 0x1FFFFC of G(S)-P */
a6bb11b2 790 HOWTO (AARCH64_R (GOT_LD_PREL19), /* type */
f41aef5f
RE
791 2, /* rightshift */
792 2, /* size (0 = byte,1 = short,2 = long) */
793 19, /* bitsize */
794 TRUE, /* pc_relative */
795 0, /* bitpos */
796 complain_overflow_signed, /* complain_on_overflow */
797 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 798 AARCH64_R_STR (GOT_LD_PREL19), /* name */
f41aef5f
RE
799 FALSE, /* partial_inplace */
800 0xffffe0, /* src_mask */
801 0xffffe0, /* dst_mask */
802 TRUE), /* pcrel_offset */
803
a06ea964
NC
804 /* Get to the page for the GOT entry for the symbol
805 (G(S) - P) using an ADRP instruction. */
a6bb11b2 806 HOWTO (AARCH64_R (ADR_GOT_PAGE), /* type */
a06ea964
NC
807 12, /* rightshift */
808 2, /* size (0 = byte, 1 = short, 2 = long) */
809 21, /* bitsize */
810 TRUE, /* pc_relative */
811 0, /* bitpos */
812 complain_overflow_dont, /* complain_on_overflow */
813 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 814 AARCH64_R_STR (ADR_GOT_PAGE), /* name */
a06ea964
NC
815 FALSE, /* partial_inplace */
816 0x1fffff, /* src_mask */
817 0x1fffff, /* dst_mask */
818 TRUE), /* pcrel_offset */
819
a6bb11b2
YZ
820 /* LD64: GOT offset G(S) & 0xff8 */
821 HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC), /* type */
a06ea964
NC
822 3, /* rightshift */
823 2, /* size (0 = byte, 1 = short, 2 = long) */
824 12, /* bitsize */
825 FALSE, /* pc_relative */
826 0, /* bitpos */
827 complain_overflow_dont, /* complain_on_overflow */
828 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 829 AARCH64_R_STR (LD64_GOT_LO12_NC), /* name */
a06ea964
NC
830 FALSE, /* partial_inplace */
831 0xff8, /* src_mask */
832 0xff8, /* dst_mask */
a6bb11b2 833 FALSE), /* pcrel_offset */
a06ea964 834
a6bb11b2
YZ
835 /* LD32: GOT offset G(S) & 0xffc */
836 HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC), /* type */
837 2, /* rightshift */
838 2, /* size (0 = byte, 1 = short, 2 = long) */
839 12, /* bitsize */
840 FALSE, /* pc_relative */
841 0, /* bitpos */
842 complain_overflow_dont, /* complain_on_overflow */
843 bfd_elf_generic_reloc, /* special_function */
844 AARCH64_R_STR (LD32_GOT_LO12_NC), /* name */
845 FALSE, /* partial_inplace */
846 0xffc, /* src_mask */
847 0xffc, /* dst_mask */
848 FALSE), /* pcrel_offset */
a06ea964
NC
849
850 /* Get to the page for the GOT entry for the symbol
851 (G(S) - P) using an ADRP instruction. */
a6bb11b2 852 HOWTO (AARCH64_R (TLSGD_ADR_PAGE21), /* type */
a06ea964
NC
853 12, /* rightshift */
854 2, /* size (0 = byte, 1 = short, 2 = long) */
855 21, /* bitsize */
856 TRUE, /* pc_relative */
857 0, /* bitpos */
858 complain_overflow_dont, /* complain_on_overflow */
859 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 860 AARCH64_R_STR (TLSGD_ADR_PAGE21), /* name */
a06ea964
NC
861 FALSE, /* partial_inplace */
862 0x1fffff, /* src_mask */
863 0x1fffff, /* dst_mask */
864 TRUE), /* pcrel_offset */
865
866 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
a6bb11b2 867 HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC), /* type */
a06ea964
NC
868 0, /* rightshift */
869 2, /* size (0 = byte, 1 = short, 2 = long) */
870 12, /* bitsize */
871 FALSE, /* pc_relative */
872 0, /* bitpos */
873 complain_overflow_dont, /* complain_on_overflow */
874 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 875 AARCH64_R_STR (TLSGD_ADD_LO12_NC), /* name */
a06ea964
NC
876 FALSE, /* partial_inplace */
877 0xfff, /* src_mask */
878 0xfff, /* dst_mask */
879 FALSE), /* pcrel_offset */
880
a6bb11b2 881 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1), /* type */
a06ea964
NC
882 16, /* rightshift */
883 2, /* size (0 = byte, 1 = short, 2 = long) */
884 16, /* bitsize */
885 FALSE, /* pc_relative */
886 0, /* bitpos */
887 complain_overflow_dont, /* complain_on_overflow */
888 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 889 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1), /* name */
a06ea964
NC
890 FALSE, /* partial_inplace */
891 0xffff, /* src_mask */
892 0xffff, /* dst_mask */
893 FALSE), /* pcrel_offset */
894
a6bb11b2 895 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC), /* type */
a06ea964
NC
896 0, /* rightshift */
897 2, /* size (0 = byte, 1 = short, 2 = long) */
898 32, /* bitsize */
899 FALSE, /* pc_relative */
900 0, /* bitpos */
901 complain_overflow_dont, /* complain_on_overflow */
902 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 903 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC), /* name */
a06ea964
NC
904 FALSE, /* partial_inplace */
905 0xffff, /* src_mask */
906 0xffff, /* dst_mask */
907 FALSE), /* pcrel_offset */
908
a6bb11b2 909 HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21), /* type */
a06ea964
NC
910 12, /* rightshift */
911 2, /* size (0 = byte, 1 = short, 2 = long) */
912 21, /* bitsize */
913 FALSE, /* pc_relative */
914 0, /* bitpos */
915 complain_overflow_dont, /* complain_on_overflow */
916 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 917 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21), /* name */
a06ea964
NC
918 FALSE, /* partial_inplace */
919 0x1fffff, /* src_mask */
920 0x1fffff, /* dst_mask */
921 FALSE), /* pcrel_offset */
922
a6bb11b2 923 HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC), /* type */
a06ea964
NC
924 3, /* rightshift */
925 2, /* size (0 = byte, 1 = short, 2 = long) */
926 12, /* bitsize */
927 FALSE, /* pc_relative */
928 0, /* bitpos */
929 complain_overflow_dont, /* complain_on_overflow */
930 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 931 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC), /* name */
a06ea964
NC
932 FALSE, /* partial_inplace */
933 0xff8, /* src_mask */
934 0xff8, /* dst_mask */
935 FALSE), /* pcrel_offset */
936
a6bb11b2
YZ
937 HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC), /* type */
938 2, /* rightshift */
939 2, /* size (0 = byte, 1 = short, 2 = long) */
940 12, /* bitsize */
941 FALSE, /* pc_relative */
942 0, /* bitpos */
943 complain_overflow_dont, /* complain_on_overflow */
944 bfd_elf_generic_reloc, /* special_function */
945 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC), /* name */
946 FALSE, /* partial_inplace */
947 0xffc, /* src_mask */
948 0xffc, /* dst_mask */
949 FALSE), /* pcrel_offset */
950
951 HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19), /* type */
bb3f9ed8 952 2, /* rightshift */
a06ea964
NC
953 2, /* size (0 = byte, 1 = short, 2 = long) */
954 21, /* bitsize */
955 FALSE, /* pc_relative */
956 0, /* bitpos */
957 complain_overflow_dont, /* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 959 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19), /* name */
a06ea964
NC
960 FALSE, /* partial_inplace */
961 0x1ffffc, /* src_mask */
962 0x1ffffc, /* dst_mask */
963 FALSE), /* pcrel_offset */
964
a6bb11b2 965 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2), /* type */
bb3f9ed8 966 32, /* rightshift */
a06ea964
NC
967 2, /* size (0 = byte, 1 = short, 2 = long) */
968 12, /* bitsize */
969 FALSE, /* pc_relative */
970 0, /* bitpos */
971 complain_overflow_dont, /* complain_on_overflow */
972 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 973 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2), /* name */
a06ea964
NC
974 FALSE, /* partial_inplace */
975 0xffff, /* src_mask */
976 0xffff, /* dst_mask */
977 FALSE), /* pcrel_offset */
978
a6bb11b2 979 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1), /* type */
bb3f9ed8 980 16, /* rightshift */
a06ea964
NC
981 2, /* size (0 = byte, 1 = short, 2 = long) */
982 12, /* bitsize */
983 FALSE, /* pc_relative */
984 0, /* bitpos */
985 complain_overflow_dont, /* complain_on_overflow */
986 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 987 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1), /* name */
a06ea964
NC
988 FALSE, /* partial_inplace */
989 0xffff, /* src_mask */
990 0xffff, /* dst_mask */
991 FALSE), /* pcrel_offset */
992
a6bb11b2 993 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC), /* type */
bb3f9ed8 994 16, /* rightshift */
a06ea964
NC
995 2, /* size (0 = byte, 1 = short, 2 = long) */
996 12, /* bitsize */
997 FALSE, /* pc_relative */
998 0, /* bitpos */
999 complain_overflow_dont, /* complain_on_overflow */
1000 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1001 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC), /* name */
a06ea964
NC
1002 FALSE, /* partial_inplace */
1003 0xffff, /* src_mask */
1004 0xffff, /* dst_mask */
1005 FALSE), /* pcrel_offset */
1006
a6bb11b2 1007 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0), /* type */
a06ea964
NC
1008 0, /* rightshift */
1009 2, /* size (0 = byte, 1 = short, 2 = long) */
1010 12, /* bitsize */
1011 FALSE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_dont, /* complain_on_overflow */
1014 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1015 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0), /* name */
a06ea964
NC
1016 FALSE, /* partial_inplace */
1017 0xffff, /* src_mask */
1018 0xffff, /* dst_mask */
1019 FALSE), /* pcrel_offset */
1020
a6bb11b2 1021 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC), /* type */
a06ea964
NC
1022 0, /* rightshift */
1023 2, /* size (0 = byte, 1 = short, 2 = long) */
1024 12, /* bitsize */
1025 FALSE, /* pc_relative */
1026 0, /* bitpos */
1027 complain_overflow_dont, /* complain_on_overflow */
1028 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1029 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC), /* name */
a06ea964
NC
1030 FALSE, /* partial_inplace */
1031 0xffff, /* src_mask */
1032 0xffff, /* dst_mask */
1033 FALSE), /* pcrel_offset */
1034
a6bb11b2 1035 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12), /* type */
bb3f9ed8 1036 12, /* rightshift */
a06ea964
NC
1037 2, /* size (0 = byte, 1 = short, 2 = long) */
1038 12, /* bitsize */
1039 FALSE, /* pc_relative */
1040 0, /* bitpos */
1041 complain_overflow_dont, /* complain_on_overflow */
1042 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1043 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12), /* name */
a06ea964
NC
1044 FALSE, /* partial_inplace */
1045 0xfff, /* src_mask */
1046 0xfff, /* dst_mask */
1047 FALSE), /* pcrel_offset */
1048
a6bb11b2 1049 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12), /* type */
a06ea964
NC
1050 0, /* rightshift */
1051 2, /* size (0 = byte, 1 = short, 2 = long) */
1052 12, /* bitsize */
1053 FALSE, /* pc_relative */
1054 0, /* bitpos */
1055 complain_overflow_dont, /* complain_on_overflow */
1056 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1057 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12), /* name */
a06ea964
NC
1058 FALSE, /* partial_inplace */
1059 0xfff, /* src_mask */
1060 0xfff, /* dst_mask */
1061 FALSE), /* pcrel_offset */
1062
a6bb11b2 1063 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC), /* type */
a06ea964
NC
1064 0, /* rightshift */
1065 2, /* size (0 = byte, 1 = short, 2 = long) */
1066 12, /* bitsize */
1067 FALSE, /* pc_relative */
1068 0, /* bitpos */
1069 complain_overflow_dont, /* complain_on_overflow */
1070 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1071 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC), /* name */
a06ea964
NC
1072 FALSE, /* partial_inplace */
1073 0xfff, /* src_mask */
1074 0xfff, /* dst_mask */
1075 FALSE), /* pcrel_offset */
a06ea964 1076
a6bb11b2 1077 HOWTO (AARCH64_R (TLSDESC_LD_PREL19), /* type */
bb3f9ed8 1078 2, /* rightshift */
a06ea964
NC
1079 2, /* size (0 = byte, 1 = short, 2 = long) */
1080 21, /* bitsize */
1081 TRUE, /* pc_relative */
1082 0, /* bitpos */
1083 complain_overflow_dont, /* complain_on_overflow */
1084 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1085 AARCH64_R_STR (TLSDESC_LD_PREL19), /* name */
a06ea964
NC
1086 FALSE, /* partial_inplace */
1087 0x1ffffc, /* src_mask */
1088 0x1ffffc, /* dst_mask */
1089 TRUE), /* pcrel_offset */
1090
a6bb11b2 1091 HOWTO (AARCH64_R (TLSDESC_ADR_PREL21), /* type */
a06ea964
NC
1092 0, /* rightshift */
1093 2, /* size (0 = byte, 1 = short, 2 = long) */
1094 21, /* bitsize */
1095 TRUE, /* pc_relative */
1096 0, /* bitpos */
1097 complain_overflow_dont, /* complain_on_overflow */
1098 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1099 AARCH64_R_STR (TLSDESC_ADR_PREL21), /* name */
a06ea964
NC
1100 FALSE, /* partial_inplace */
1101 0x1fffff, /* src_mask */
1102 0x1fffff, /* dst_mask */
1103 TRUE), /* pcrel_offset */
1104
1105 /* Get to the page for the GOT entry for the symbol
1106 (G(S) - P) using an ADRP instruction. */
a6bb11b2 1107 HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21), /* type */
a06ea964
NC
1108 12, /* rightshift */
1109 2, /* size (0 = byte, 1 = short, 2 = long) */
1110 21, /* bitsize */
1111 TRUE, /* pc_relative */
1112 0, /* bitpos */
1113 complain_overflow_dont, /* complain_on_overflow */
1114 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1115 AARCH64_R_STR (TLSDESC_ADR_PAGE21), /* name */
a06ea964
NC
1116 FALSE, /* partial_inplace */
1117 0x1fffff, /* src_mask */
1118 0x1fffff, /* dst_mask */
1119 TRUE), /* pcrel_offset */
1120
a6bb11b2
YZ
1121 /* LD64: GOT offset G(S) & 0xff8. */
1122 HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12_NC), /* type */
a06ea964
NC
1123 3, /* rightshift */
1124 2, /* size (0 = byte, 1 = short, 2 = long) */
1125 12, /* bitsize */
1126 FALSE, /* pc_relative */
1127 0, /* bitpos */
1128 complain_overflow_dont, /* complain_on_overflow */
1129 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1130 AARCH64_R_STR (TLSDESC_LD64_LO12_NC), /* name */
a06ea964 1131 FALSE, /* partial_inplace */
a6bb11b2
YZ
1132 0xff8, /* src_mask */
1133 0xff8, /* dst_mask */
1134 FALSE), /* pcrel_offset */
1135
1136 /* LD32: GOT offset G(S) & 0xffc. */
1137 HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC), /* type */
1138 2, /* rightshift */
1139 2, /* size (0 = byte, 1 = short, 2 = long) */
1140 12, /* bitsize */
1141 FALSE, /* pc_relative */
1142 0, /* bitpos */
1143 complain_overflow_dont, /* complain_on_overflow */
1144 bfd_elf_generic_reloc, /* special_function */
1145 AARCH64_R_STR (TLSDESC_LD32_LO12_NC), /* name */
1146 FALSE, /* partial_inplace */
1147 0xffc, /* src_mask */
1148 0xffc, /* dst_mask */
a06ea964
NC
1149 FALSE), /* pcrel_offset */
1150
1151 /* ADD: GOT offset G(S) & 0xfff. */
a6bb11b2 1152 HOWTO (AARCH64_R (TLSDESC_ADD_LO12_NC), /* type */
a06ea964
NC
1153 0, /* rightshift */
1154 2, /* size (0 = byte, 1 = short, 2 = long) */
1155 12, /* bitsize */
1156 FALSE, /* pc_relative */
1157 0, /* bitpos */
1158 complain_overflow_dont, /* complain_on_overflow */
1159 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1160 AARCH64_R_STR (TLSDESC_ADD_LO12_NC), /* name */
a06ea964
NC
1161 FALSE, /* partial_inplace */
1162 0xfff, /* src_mask */
1163 0xfff, /* dst_mask */
1164 FALSE), /* pcrel_offset */
1165
a6bb11b2 1166 HOWTO64 (AARCH64_R (TLSDESC_OFF_G1), /* type */
bb3f9ed8 1167 16, /* rightshift */
a06ea964
NC
1168 2, /* size (0 = byte, 1 = short, 2 = long) */
1169 12, /* bitsize */
1170 FALSE, /* pc_relative */
1171 0, /* bitpos */
1172 complain_overflow_dont, /* complain_on_overflow */
1173 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1174 AARCH64_R_STR (TLSDESC_OFF_G1), /* name */
a06ea964
NC
1175 FALSE, /* partial_inplace */
1176 0xffff, /* src_mask */
1177 0xffff, /* dst_mask */
1178 FALSE), /* pcrel_offset */
1179
a6bb11b2 1180 HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC), /* type */
a06ea964
NC
1181 0, /* rightshift */
1182 2, /* size (0 = byte, 1 = short, 2 = long) */
1183 12, /* bitsize */
1184 FALSE, /* pc_relative */
1185 0, /* bitpos */
1186 complain_overflow_dont, /* complain_on_overflow */
1187 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1188 AARCH64_R_STR (TLSDESC_OFF_G0_NC), /* name */
a06ea964
NC
1189 FALSE, /* partial_inplace */
1190 0xffff, /* src_mask */
1191 0xffff, /* dst_mask */
1192 FALSE), /* pcrel_offset */
1193
a6bb11b2 1194 HOWTO64 (AARCH64_R (TLSDESC_LDR), /* type */
a06ea964
NC
1195 0, /* rightshift */
1196 2, /* size (0 = byte, 1 = short, 2 = long) */
1197 12, /* bitsize */
1198 FALSE, /* pc_relative */
1199 0, /* bitpos */
1200 complain_overflow_dont, /* complain_on_overflow */
1201 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1202 AARCH64_R_STR (TLSDESC_LDR), /* name */
a06ea964
NC
1203 FALSE, /* partial_inplace */
1204 0x0, /* src_mask */
1205 0x0, /* dst_mask */
1206 FALSE), /* pcrel_offset */
1207
a6bb11b2 1208 HOWTO64 (AARCH64_R (TLSDESC_ADD), /* type */
a06ea964
NC
1209 0, /* rightshift */
1210 2, /* size (0 = byte, 1 = short, 2 = long) */
1211 12, /* bitsize */
1212 FALSE, /* pc_relative */
1213 0, /* bitpos */
1214 complain_overflow_dont, /* complain_on_overflow */
1215 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1216 AARCH64_R_STR (TLSDESC_ADD), /* name */
a06ea964
NC
1217 FALSE, /* partial_inplace */
1218 0x0, /* src_mask */
1219 0x0, /* dst_mask */
1220 FALSE), /* pcrel_offset */
1221
a6bb11b2 1222 HOWTO (AARCH64_R (TLSDESC_CALL), /* type */
a06ea964
NC
1223 0, /* rightshift */
1224 2, /* size (0 = byte, 1 = short, 2 = long) */
1225 12, /* bitsize */
1226 FALSE, /* pc_relative */
1227 0, /* bitpos */
1228 complain_overflow_dont, /* complain_on_overflow */
1229 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1230 AARCH64_R_STR (TLSDESC_CALL), /* name */
a06ea964
NC
1231 FALSE, /* partial_inplace */
1232 0x0, /* src_mask */
1233 0x0, /* dst_mask */
1234 FALSE), /* pcrel_offset */
a6bb11b2
YZ
1235
1236 HOWTO (AARCH64_R (COPY), /* type */
1237 0, /* rightshift */
1238 2, /* size (0 = byte, 1 = short, 2 = long) */
1239 64, /* bitsize */
1240 FALSE, /* pc_relative */
1241 0, /* bitpos */
1242 complain_overflow_bitfield, /* complain_on_overflow */
1243 bfd_elf_generic_reloc, /* special_function */
1244 AARCH64_R_STR (COPY), /* name */
1245 TRUE, /* partial_inplace */
1246 0xffffffff, /* src_mask */
1247 0xffffffff, /* dst_mask */
1248 FALSE), /* pcrel_offset */
1249
1250 HOWTO (AARCH64_R (GLOB_DAT), /* type */
1251 0, /* rightshift */
1252 2, /* size (0 = byte, 1 = short, 2 = long) */
1253 64, /* bitsize */
1254 FALSE, /* pc_relative */
1255 0, /* bitpos */
1256 complain_overflow_bitfield, /* complain_on_overflow */
1257 bfd_elf_generic_reloc, /* special_function */
1258 AARCH64_R_STR (GLOB_DAT), /* name */
1259 TRUE, /* partial_inplace */
1260 0xffffffff, /* src_mask */
1261 0xffffffff, /* dst_mask */
1262 FALSE), /* pcrel_offset */
1263
1264 HOWTO (AARCH64_R (JUMP_SLOT), /* type */
1265 0, /* rightshift */
1266 2, /* size (0 = byte, 1 = short, 2 = long) */
1267 64, /* bitsize */
1268 FALSE, /* pc_relative */
1269 0, /* bitpos */
1270 complain_overflow_bitfield, /* complain_on_overflow */
1271 bfd_elf_generic_reloc, /* special_function */
1272 AARCH64_R_STR (JUMP_SLOT), /* name */
1273 TRUE, /* partial_inplace */
1274 0xffffffff, /* src_mask */
1275 0xffffffff, /* dst_mask */
1276 FALSE), /* pcrel_offset */
1277
1278 HOWTO (AARCH64_R (RELATIVE), /* type */
1279 0, /* rightshift */
1280 2, /* size (0 = byte, 1 = short, 2 = long) */
1281 64, /* bitsize */
1282 FALSE, /* pc_relative */
1283 0, /* bitpos */
1284 complain_overflow_bitfield, /* complain_on_overflow */
1285 bfd_elf_generic_reloc, /* special_function */
1286 AARCH64_R_STR (RELATIVE), /* name */
1287 TRUE, /* partial_inplace */
1288 ALL_ONES, /* src_mask */
1289 ALL_ONES, /* dst_mask */
1290 FALSE), /* pcrel_offset */
1291
1292 HOWTO (AARCH64_R (TLS_DTPMOD), /* type */
1293 0, /* rightshift */
1294 2, /* size (0 = byte, 1 = short, 2 = long) */
1295 64, /* bitsize */
1296 FALSE, /* pc_relative */
1297 0, /* bitpos */
1298 complain_overflow_dont, /* complain_on_overflow */
1299 bfd_elf_generic_reloc, /* special_function */
da0781dc
YZ
1300#if ARCH_SIZE == 64
1301 AARCH64_R_STR (TLS_DTPMOD64), /* name */
1302#else
a6bb11b2 1303 AARCH64_R_STR (TLS_DTPMOD), /* name */
da0781dc 1304#endif
a6bb11b2
YZ
1305 FALSE, /* partial_inplace */
1306 0, /* src_mask */
1307 ALL_ONES, /* dst_mask */
1308 FALSE), /* pc_reloffset */
1309
1310 HOWTO (AARCH64_R (TLS_DTPREL), /* type */
1311 0, /* rightshift */
1312 2, /* size (0 = byte, 1 = short, 2 = long) */
1313 64, /* bitsize */
1314 FALSE, /* pc_relative */
1315 0, /* bitpos */
1316 complain_overflow_dont, /* complain_on_overflow */
1317 bfd_elf_generic_reloc, /* special_function */
da0781dc
YZ
1318#if ARCH_SIZE == 64
1319 AARCH64_R_STR (TLS_DTPREL64), /* name */
1320#else
a6bb11b2 1321 AARCH64_R_STR (TLS_DTPREL), /* name */
da0781dc 1322#endif
a6bb11b2
YZ
1323 FALSE, /* partial_inplace */
1324 0, /* src_mask */
1325 ALL_ONES, /* dst_mask */
1326 FALSE), /* pcrel_offset */
1327
1328 HOWTO (AARCH64_R (TLS_TPREL), /* type */
1329 0, /* rightshift */
1330 2, /* size (0 = byte, 1 = short, 2 = long) */
1331 64, /* bitsize */
1332 FALSE, /* pc_relative */
1333 0, /* bitpos */
1334 complain_overflow_dont, /* complain_on_overflow */
1335 bfd_elf_generic_reloc, /* special_function */
da0781dc
YZ
1336#if ARCH_SIZE == 64
1337 AARCH64_R_STR (TLS_TPREL64), /* name */
1338#else
a6bb11b2 1339 AARCH64_R_STR (TLS_TPREL), /* name */
da0781dc 1340#endif
a6bb11b2
YZ
1341 FALSE, /* partial_inplace */
1342 0, /* src_mask */
1343 ALL_ONES, /* dst_mask */
1344 FALSE), /* pcrel_offset */
1345
1346 HOWTO (AARCH64_R (TLSDESC), /* type */
1347 0, /* rightshift */
1348 2, /* size (0 = byte, 1 = short, 2 = long) */
1349 64, /* bitsize */
1350 FALSE, /* pc_relative */
1351 0, /* bitpos */
1352 complain_overflow_dont, /* complain_on_overflow */
1353 bfd_elf_generic_reloc, /* special_function */
1354 AARCH64_R_STR (TLSDESC), /* name */
1355 FALSE, /* partial_inplace */
1356 0, /* src_mask */
1357 ALL_ONES, /* dst_mask */
1358 FALSE), /* pcrel_offset */
1359
1360 HOWTO (AARCH64_R (IRELATIVE), /* type */
1361 0, /* rightshift */
1362 2, /* size (0 = byte, 1 = short, 2 = long) */
1363 64, /* bitsize */
1364 FALSE, /* pc_relative */
1365 0, /* bitpos */
1366 complain_overflow_bitfield, /* complain_on_overflow */
1367 bfd_elf_generic_reloc, /* special_function */
1368 AARCH64_R_STR (IRELATIVE), /* name */
1369 FALSE, /* partial_inplace */
1370 0, /* src_mask */
1371 ALL_ONES, /* dst_mask */
1372 FALSE), /* pcrel_offset */
1373
1374 EMPTY_HOWTO (0),
a06ea964
NC
1375};
1376
a6bb11b2
YZ
1377static reloc_howto_type elfNN_aarch64_howto_none =
1378 HOWTO (R_AARCH64_NONE, /* type */
1379 0, /* rightshift */
1380 0, /* size (0 = byte, 1 = short, 2 = long) */
1381 0, /* bitsize */
1382 FALSE, /* pc_relative */
1383 0, /* bitpos */
1384 complain_overflow_dont,/* complain_on_overflow */
1385 bfd_elf_generic_reloc, /* special_function */
1386 "R_AARCH64_NONE", /* name */
1387 FALSE, /* partial_inplace */
1388 0, /* src_mask */
1389 0, /* dst_mask */
1390 FALSE); /* pcrel_offset */
1391
1392/* Given HOWTO, return the bfd internal relocation enumerator. */
1393
1394static bfd_reloc_code_real_type
1395elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type *howto)
1396{
1397 const int size
1398 = (int) ARRAY_SIZE (elfNN_aarch64_howto_table);
1399 const ptrdiff_t offset
1400 = howto - elfNN_aarch64_howto_table;
1401
1402 if (offset > 0 && offset < size - 1)
1403 return BFD_RELOC_AARCH64_RELOC_START + offset;
1404
1405 if (howto == &elfNN_aarch64_howto_none)
1406 return BFD_RELOC_AARCH64_NONE;
1407
1408 return BFD_RELOC_AARCH64_RELOC_START;
1409}
1410
1411/* Given R_TYPE, return the bfd internal relocation enumerator. */
1412
1413static bfd_reloc_code_real_type
1414elfNN_aarch64_bfd_reloc_from_type (unsigned int r_type)
1415{
1416 static bfd_boolean initialized_p = FALSE;
1417 /* Indexed by R_TYPE, values are offsets in the howto_table. */
1418 static unsigned int offsets[R_AARCH64_end];
1419
1420 if (initialized_p == FALSE)
1421 {
1422 unsigned int i;
1423
1424 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
1425 if (elfNN_aarch64_howto_table[i].type != 0)
1426 offsets[elfNN_aarch64_howto_table[i].type] = i;
1427
1428 initialized_p = TRUE;
1429 }
1430
1431 if (r_type == R_AARCH64_NONE || r_type == R_AARCH64_NULL)
1432 return BFD_RELOC_AARCH64_NONE;
1433
1434 return BFD_RELOC_AARCH64_RELOC_START + offsets[r_type];
1435}
1436
1437struct elf_aarch64_reloc_map
1438{
1439 bfd_reloc_code_real_type from;
1440 bfd_reloc_code_real_type to;
1441};
1442
1443/* Map bfd generic reloc to AArch64-specific reloc. */
1444static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map[] =
1445{
1446 {BFD_RELOC_NONE, BFD_RELOC_AARCH64_NONE},
1447
1448 /* Basic data relocations. */
1449 {BFD_RELOC_CTOR, BFD_RELOC_AARCH64_NN},
1450 {BFD_RELOC_64, BFD_RELOC_AARCH64_64},
1451 {BFD_RELOC_32, BFD_RELOC_AARCH64_32},
1452 {BFD_RELOC_16, BFD_RELOC_AARCH64_16},
1453 {BFD_RELOC_64_PCREL, BFD_RELOC_AARCH64_64_PCREL},
1454 {BFD_RELOC_32_PCREL, BFD_RELOC_AARCH64_32_PCREL},
1455 {BFD_RELOC_16_PCREL, BFD_RELOC_AARCH64_16_PCREL},
1456};
1457
1458/* Given the bfd internal relocation enumerator in CODE, return the
1459 corresponding howto entry. */
1460
1461static reloc_howto_type *
1462elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code)
1463{
1464 unsigned int i;
1465
1466 /* Convert bfd generic reloc to AArch64-specific reloc. */
1467 if (code < BFD_RELOC_AARCH64_RELOC_START
1468 || code > BFD_RELOC_AARCH64_RELOC_END)
1469 for (i = 0; i < ARRAY_SIZE (elf_aarch64_reloc_map); i++)
1470 if (elf_aarch64_reloc_map[i].from == code)
1471 {
1472 code = elf_aarch64_reloc_map[i].to;
1473 break;
1474 }
1475
1476 if (code > BFD_RELOC_AARCH64_RELOC_START
1477 && code < BFD_RELOC_AARCH64_RELOC_END)
1478 if (elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START].type)
1479 return &elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START];
1480
54757ed1
AP
1481 if (code == BFD_RELOC_AARCH64_NONE)
1482 return &elfNN_aarch64_howto_none;
1483
a6bb11b2
YZ
1484 return NULL;
1485}
1486
a06ea964 1487static reloc_howto_type *
cec5225b 1488elfNN_aarch64_howto_from_type (unsigned int r_type)
a06ea964 1489{
a6bb11b2
YZ
1490 bfd_reloc_code_real_type val;
1491 reloc_howto_type *howto;
1492
cec5225b
YZ
1493#if ARCH_SIZE == 32
1494 if (r_type > 256)
1495 {
1496 bfd_set_error (bfd_error_bad_value);
1497 return NULL;
1498 }
1499#endif
1500
a6bb11b2
YZ
1501 if (r_type == R_AARCH64_NONE)
1502 return &elfNN_aarch64_howto_none;
a06ea964 1503
a6bb11b2
YZ
1504 val = elfNN_aarch64_bfd_reloc_from_type (r_type);
1505 howto = elfNN_aarch64_howto_from_bfd_reloc (val);
a06ea964 1506
a6bb11b2
YZ
1507 if (howto != NULL)
1508 return howto;
a06ea964 1509
a06ea964
NC
1510 bfd_set_error (bfd_error_bad_value);
1511 return NULL;
1512}
1513
1514static void
cec5225b 1515elfNN_aarch64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *bfd_reloc,
a06ea964
NC
1516 Elf_Internal_Rela *elf_reloc)
1517{
1518 unsigned int r_type;
1519
cec5225b
YZ
1520 r_type = ELFNN_R_TYPE (elf_reloc->r_info);
1521 bfd_reloc->howto = elfNN_aarch64_howto_from_type (r_type);
a06ea964
NC
1522}
1523
a06ea964 1524static reloc_howto_type *
cec5225b 1525elfNN_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
a06ea964
NC
1526 bfd_reloc_code_real_type code)
1527{
a6bb11b2 1528 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (code);
a06ea964 1529
a6bb11b2
YZ
1530 if (howto != NULL)
1531 return howto;
a06ea964
NC
1532
1533 bfd_set_error (bfd_error_bad_value);
1534 return NULL;
1535}
1536
1537static reloc_howto_type *
cec5225b 1538elfNN_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
a06ea964
NC
1539 const char *r_name)
1540{
1541 unsigned int i;
1542
a6bb11b2
YZ
1543 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
1544 if (elfNN_aarch64_howto_table[i].name != NULL
1545 && strcasecmp (elfNN_aarch64_howto_table[i].name, r_name) == 0)
1546 return &elfNN_aarch64_howto_table[i];
a06ea964
NC
1547
1548 return NULL;
1549}
1550
cec5225b
YZ
1551#define TARGET_LITTLE_SYM bfd_elfNN_littleaarch64_vec
1552#define TARGET_LITTLE_NAME "elfNN-littleaarch64"
1553#define TARGET_BIG_SYM bfd_elfNN_bigaarch64_vec
1554#define TARGET_BIG_NAME "elfNN-bigaarch64"
a06ea964 1555
a06ea964
NC
1556/* The linker script knows the section names for placement.
1557 The entry_names are used to do simple name mangling on the stubs.
1558 Given a function name, and its type, the stub can be found. The
1559 name can be changed. The only requirement is the %s be present. */
1560#define STUB_ENTRY_NAME "__%s_veneer"
1561
1562/* The name of the dynamic interpreter. This is put in the .interp
1563 section. */
1564#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
1565
1566#define AARCH64_MAX_FWD_BRANCH_OFFSET \
1567 (((1 << 25) - 1) << 2)
1568#define AARCH64_MAX_BWD_BRANCH_OFFSET \
1569 (-((1 << 25) << 2))
1570
1571#define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
1572#define AARCH64_MIN_ADRP_IMM (-(1 << 20))
1573
1574static int
1575aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place)
1576{
1577 bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12;
1578 return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM;
1579}
1580
1581static int
1582aarch64_valid_branch_p (bfd_vma value, bfd_vma place)
1583{
1584 bfd_signed_vma offset = (bfd_signed_vma) (value - place);
1585 return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET
1586 && offset >= AARCH64_MAX_BWD_BRANCH_OFFSET);
1587}
1588
1589static const uint32_t aarch64_adrp_branch_stub [] =
1590{
1591 0x90000010, /* adrp ip0, X */
1592 /* R_AARCH64_ADR_HI21_PCREL(X) */
1593 0x91000210, /* add ip0, ip0, :lo12:X */
1594 /* R_AARCH64_ADD_ABS_LO12_NC(X) */
1595 0xd61f0200, /* br ip0 */
1596};
1597
1598static const uint32_t aarch64_long_branch_stub[] =
1599{
cec5225b 1600#if ARCH_SIZE == 64
a06ea964 1601 0x58000090, /* ldr ip0, 1f */
cec5225b
YZ
1602#else
1603 0x18000090, /* ldr wip0, 1f */
1604#endif
a06ea964
NC
1605 0x10000011, /* adr ip1, #0 */
1606 0x8b110210, /* add ip0, ip0, ip1 */
1607 0xd61f0200, /* br ip0 */
cec5225b
YZ
1608 0x00000000, /* 1: .xword or .word
1609 R_AARCH64_PRELNN(X) + 12
a06ea964
NC
1610 */
1611 0x00000000,
1612};
1613
1614/* Section name for stubs is the associated section name plus this
1615 string. */
1616#define STUB_SUFFIX ".stub"
1617
cec5225b 1618enum elf_aarch64_stub_type
a06ea964
NC
1619{
1620 aarch64_stub_none,
1621 aarch64_stub_adrp_branch,
1622 aarch64_stub_long_branch,
1623};
1624
cec5225b 1625struct elf_aarch64_stub_hash_entry
a06ea964
NC
1626{
1627 /* Base hash table entry structure. */
1628 struct bfd_hash_entry root;
1629
1630 /* The stub section. */
1631 asection *stub_sec;
1632
1633 /* Offset within stub_sec of the beginning of this stub. */
1634 bfd_vma stub_offset;
1635
1636 /* Given the symbol's value and its section we can determine its final
1637 value when building the stubs (so the stub knows where to jump). */
1638 bfd_vma target_value;
1639 asection *target_section;
1640
cec5225b 1641 enum elf_aarch64_stub_type stub_type;
a06ea964
NC
1642
1643 /* The symbol table entry, if any, that this was derived from. */
cec5225b 1644 struct elf_aarch64_link_hash_entry *h;
a06ea964
NC
1645
1646 /* Destination symbol type */
1647 unsigned char st_type;
1648
1649 /* Where this stub is being called from, or, in the case of combined
1650 stub sections, the first input section in the group. */
1651 asection *id_sec;
1652
1653 /* The name for the local symbol at the start of this stub. The
1654 stub name in the hash table has to be unique; this does not, so
1655 it can be friendlier. */
1656 char *output_name;
1657};
1658
1659/* Used to build a map of a section. This is required for mixed-endian
1660 code/data. */
1661
cec5225b 1662typedef struct elf_elf_section_map
a06ea964
NC
1663{
1664 bfd_vma vma;
1665 char type;
1666}
cec5225b 1667elf_aarch64_section_map;
a06ea964
NC
1668
1669
1670typedef struct _aarch64_elf_section_data
1671{
1672 struct bfd_elf_section_data elf;
1673 unsigned int mapcount;
1674 unsigned int mapsize;
cec5225b 1675 elf_aarch64_section_map *map;
a06ea964
NC
1676}
1677_aarch64_elf_section_data;
1678
cec5225b 1679#define elf_aarch64_section_data(sec) \
a06ea964
NC
1680 ((_aarch64_elf_section_data *) elf_section_data (sec))
1681
4e8516b2
AP
1682/* The size of the thread control block which is defined to be two pointers. */
1683#define TCB_SIZE (ARCH_SIZE/8)*2
a06ea964
NC
1684
1685struct elf_aarch64_local_symbol
1686{
1687 unsigned int got_type;
1688 bfd_signed_vma got_refcount;
1689 bfd_vma got_offset;
1690
1691 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
1692 offset is from the end of the jump table and reserved entries
1693 within the PLTGOT.
1694
1695 The magic value (bfd_vma) -1 indicates that an offset has not be
1696 allocated. */
1697 bfd_vma tlsdesc_got_jump_table_offset;
1698};
1699
1700struct elf_aarch64_obj_tdata
1701{
1702 struct elf_obj_tdata root;
1703
1704 /* local symbol descriptors */
1705 struct elf_aarch64_local_symbol *locals;
1706
1707 /* Zero to warn when linking objects with incompatible enum sizes. */
1708 int no_enum_size_warning;
1709
1710 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
1711 int no_wchar_size_warning;
1712};
1713
1714#define elf_aarch64_tdata(bfd) \
1715 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
1716
cec5225b 1717#define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
a06ea964
NC
1718
1719#define is_aarch64_elf(bfd) \
1720 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
1721 && elf_tdata (bfd) != NULL \
1722 && elf_object_id (bfd) == AARCH64_ELF_DATA)
1723
1724static bfd_boolean
cec5225b 1725elfNN_aarch64_mkobject (bfd *abfd)
a06ea964
NC
1726{
1727 return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata),
1728 AARCH64_ELF_DATA);
1729}
1730
cec5225b
YZ
1731#define elf_aarch64_hash_entry(ent) \
1732 ((struct elf_aarch64_link_hash_entry *)(ent))
a06ea964
NC
1733
1734#define GOT_UNKNOWN 0
1735#define GOT_NORMAL 1
1736#define GOT_TLS_GD 2
1737#define GOT_TLS_IE 4
1738#define GOT_TLSDESC_GD 8
1739
1740#define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
1741
1742/* AArch64 ELF linker hash entry. */
cec5225b 1743struct elf_aarch64_link_hash_entry
a06ea964
NC
1744{
1745 struct elf_link_hash_entry root;
1746
1747 /* Track dynamic relocs copied for this symbol. */
1748 struct elf_dyn_relocs *dyn_relocs;
1749
a06ea964
NC
1750 /* Since PLT entries have variable size, we need to record the
1751 index into .got.plt instead of recomputing it from the PLT
1752 offset. */
1753 bfd_signed_vma plt_got_offset;
1754
1755 /* Bit mask representing the type of GOT entry(s) if any required by
1756 this symbol. */
1757 unsigned int got_type;
1758
1759 /* A pointer to the most recently used stub hash entry against this
1760 symbol. */
cec5225b 1761 struct elf_aarch64_stub_hash_entry *stub_cache;
a06ea964
NC
1762
1763 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset
1764 is from the end of the jump table and reserved entries within the PLTGOT.
1765
1766 The magic value (bfd_vma) -1 indicates that an offset has not
1767 be allocated. */
1768 bfd_vma tlsdesc_got_jump_table_offset;
1769};
1770
1771static unsigned int
cec5225b 1772elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry *h,
a06ea964
NC
1773 bfd *abfd,
1774 unsigned long r_symndx)
1775{
1776 if (h)
cec5225b 1777 return elf_aarch64_hash_entry (h)->got_type;
a06ea964 1778
cec5225b 1779 if (! elf_aarch64_locals (abfd))
a06ea964
NC
1780 return GOT_UNKNOWN;
1781
cec5225b 1782 return elf_aarch64_locals (abfd)[r_symndx].got_type;
a06ea964
NC
1783}
1784
a06ea964 1785/* Get the AArch64 elf linker hash table from a link_info structure. */
cec5225b
YZ
1786#define elf_aarch64_hash_table(info) \
1787 ((struct elf_aarch64_link_hash_table *) ((info)->hash))
a06ea964
NC
1788
1789#define aarch64_stub_hash_lookup(table, string, create, copy) \
cec5225b 1790 ((struct elf_aarch64_stub_hash_entry *) \
a06ea964
NC
1791 bfd_hash_lookup ((table), (string), (create), (copy)))
1792
1793/* AArch64 ELF linker hash table. */
cec5225b 1794struct elf_aarch64_link_hash_table
a06ea964
NC
1795{
1796 /* The main hash table. */
1797 struct elf_link_hash_table root;
1798
1799 /* Nonzero to force PIC branch veneers. */
1800 int pic_veneer;
1801
1802 /* The number of bytes in the initial entry in the PLT. */
1803 bfd_size_type plt_header_size;
1804
1805 /* The number of bytes in the subsequent PLT etries. */
1806 bfd_size_type plt_entry_size;
1807
1808 /* Short-cuts to get to dynamic linker sections. */
1809 asection *sdynbss;
1810 asection *srelbss;
1811
1812 /* Small local sym cache. */
1813 struct sym_cache sym_cache;
1814
1815 /* For convenience in allocate_dynrelocs. */
1816 bfd *obfd;
1817
1818 /* The amount of space used by the reserved portion of the sgotplt
1819 section, plus whatever space is used by the jump slots. */
1820 bfd_vma sgotplt_jump_table_size;
1821
1822 /* The stub hash table. */
1823 struct bfd_hash_table stub_hash_table;
1824
1825 /* Linker stub bfd. */
1826 bfd *stub_bfd;
1827
1828 /* Linker call-backs. */
1829 asection *(*add_stub_section) (const char *, asection *);
1830 void (*layout_sections_again) (void);
1831
1832 /* Array to keep track of which stub sections have been created, and
1833 information on stub grouping. */
1834 struct map_stub
1835 {
1836 /* This is the section to which stubs in the group will be
1837 attached. */
1838 asection *link_sec;
1839 /* The stub section. */
1840 asection *stub_sec;
1841 } *stub_group;
1842
cec5225b 1843 /* Assorted information used by elfNN_aarch64_size_stubs. */
a06ea964
NC
1844 unsigned int bfd_count;
1845 int top_index;
1846 asection **input_list;
1847
1848 /* The offset into splt of the PLT entry for the TLS descriptor
1849 resolver. Special values are 0, if not necessary (or not found
1850 to be necessary yet), and -1 if needed but not determined
1851 yet. */
1852 bfd_vma tlsdesc_plt;
1853
1854 /* The GOT offset for the lazy trampoline. Communicated to the
1855 loader via DT_TLSDESC_GOT. The magic value (bfd_vma) -1
1856 indicates an offset is not allocated. */
1857 bfd_vma dt_tlsdesc_got;
1419bbe5
WN
1858
1859 /* Used by local STT_GNU_IFUNC symbols. */
1860 htab_t loc_hash_table;
1861 void * loc_hash_memory;
a06ea964
NC
1862};
1863
a06ea964
NC
1864/* Create an entry in an AArch64 ELF linker hash table. */
1865
1866static struct bfd_hash_entry *
cec5225b 1867elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry,
a06ea964
NC
1868 struct bfd_hash_table *table,
1869 const char *string)
1870{
cec5225b
YZ
1871 struct elf_aarch64_link_hash_entry *ret =
1872 (struct elf_aarch64_link_hash_entry *) entry;
a06ea964
NC
1873
1874 /* Allocate the structure if it has not already been allocated by a
1875 subclass. */
1876 if (ret == NULL)
1877 ret = bfd_hash_allocate (table,
cec5225b 1878 sizeof (struct elf_aarch64_link_hash_entry));
a06ea964
NC
1879 if (ret == NULL)
1880 return (struct bfd_hash_entry *) ret;
1881
1882 /* Call the allocation method of the superclass. */
cec5225b 1883 ret = ((struct elf_aarch64_link_hash_entry *)
a06ea964
NC
1884 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1885 table, string));
1886 if (ret != NULL)
1887 {
1888 ret->dyn_relocs = NULL;
a06ea964
NC
1889 ret->got_type = GOT_UNKNOWN;
1890 ret->plt_got_offset = (bfd_vma) - 1;
1891 ret->stub_cache = NULL;
1892 ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
1893 }
1894
1895 return (struct bfd_hash_entry *) ret;
1896}
1897
1898/* Initialize an entry in the stub hash table. */
1899
1900static struct bfd_hash_entry *
1901stub_hash_newfunc (struct bfd_hash_entry *entry,
1902 struct bfd_hash_table *table, const char *string)
1903{
1904 /* Allocate the structure if it has not already been allocated by a
1905 subclass. */
1906 if (entry == NULL)
1907 {
1908 entry = bfd_hash_allocate (table,
1909 sizeof (struct
cec5225b 1910 elf_aarch64_stub_hash_entry));
a06ea964
NC
1911 if (entry == NULL)
1912 return entry;
1913 }
1914
1915 /* Call the allocation method of the superclass. */
1916 entry = bfd_hash_newfunc (entry, table, string);
1917 if (entry != NULL)
1918 {
cec5225b 1919 struct elf_aarch64_stub_hash_entry *eh;
a06ea964
NC
1920
1921 /* Initialize the local fields. */
cec5225b 1922 eh = (struct elf_aarch64_stub_hash_entry *) entry;
a06ea964
NC
1923 eh->stub_sec = NULL;
1924 eh->stub_offset = 0;
1925 eh->target_value = 0;
1926 eh->target_section = NULL;
1927 eh->stub_type = aarch64_stub_none;
1928 eh->h = NULL;
1929 eh->id_sec = NULL;
1930 }
1931
1932 return entry;
1933}
1934
1419bbe5
WN
1935/* Compute a hash of a local hash entry. We use elf_link_hash_entry
1936 for local symbol so that we can handle local STT_GNU_IFUNC symbols
1937 as global symbol. We reuse indx and dynstr_index for local symbol
1938 hash since they aren't used by global symbols in this backend. */
1939
1940static hashval_t
1941elfNN_aarch64_local_htab_hash (const void *ptr)
1942{
1943 struct elf_link_hash_entry *h
1944 = (struct elf_link_hash_entry *) ptr;
1945 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
1946}
1947
1948/* Compare local hash entries. */
1949
1950static int
1951elfNN_aarch64_local_htab_eq (const void *ptr1, const void *ptr2)
1952{
1953 struct elf_link_hash_entry *h1
1954 = (struct elf_link_hash_entry *) ptr1;
1955 struct elf_link_hash_entry *h2
1956 = (struct elf_link_hash_entry *) ptr2;
1957
1958 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
1959}
1960
1961/* Find and/or create a hash entry for local symbol. */
1962
1963static struct elf_link_hash_entry *
1964elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table *htab,
1965 bfd *abfd, const Elf_Internal_Rela *rel,
1966 bfd_boolean create)
1967{
1968 struct elf_aarch64_link_hash_entry e, *ret;
1969 asection *sec = abfd->sections;
1970 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
1971 ELFNN_R_SYM (rel->r_info));
1972 void **slot;
1973
1974 e.root.indx = sec->id;
1975 e.root.dynstr_index = ELFNN_R_SYM (rel->r_info);
1976 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
1977 create ? INSERT : NO_INSERT);
1978
1979 if (!slot)
1980 return NULL;
1981
1982 if (*slot)
1983 {
1984 ret = (struct elf_aarch64_link_hash_entry *) *slot;
1985 return &ret->root;
1986 }
1987
1988 ret = (struct elf_aarch64_link_hash_entry *)
1989 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
1990 sizeof (struct elf_aarch64_link_hash_entry));
1991 if (ret)
1992 {
1993 memset (ret, 0, sizeof (*ret));
1994 ret->root.indx = sec->id;
1995 ret->root.dynstr_index = ELFNN_R_SYM (rel->r_info);
1996 ret->root.dynindx = -1;
1997 *slot = ret;
1998 }
1999 return &ret->root;
2000}
a06ea964
NC
2001
2002/* Copy the extra info we tack onto an elf_link_hash_entry. */
2003
2004static void
cec5225b 2005elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info *info,
a06ea964
NC
2006 struct elf_link_hash_entry *dir,
2007 struct elf_link_hash_entry *ind)
2008{
cec5225b 2009 struct elf_aarch64_link_hash_entry *edir, *eind;
a06ea964 2010
cec5225b
YZ
2011 edir = (struct elf_aarch64_link_hash_entry *) dir;
2012 eind = (struct elf_aarch64_link_hash_entry *) ind;
a06ea964
NC
2013
2014 if (eind->dyn_relocs != NULL)
2015 {
2016 if (edir->dyn_relocs != NULL)
2017 {
2018 struct elf_dyn_relocs **pp;
2019 struct elf_dyn_relocs *p;
2020
2021 /* Add reloc counts against the indirect sym to the direct sym
2022 list. Merge any entries against the same section. */
2023 for (pp = &eind->dyn_relocs; (p = *pp) != NULL;)
2024 {
2025 struct elf_dyn_relocs *q;
2026
2027 for (q = edir->dyn_relocs; q != NULL; q = q->next)
2028 if (q->sec == p->sec)
2029 {
2030 q->pc_count += p->pc_count;
2031 q->count += p->count;
2032 *pp = p->next;
2033 break;
2034 }
2035 if (q == NULL)
2036 pp = &p->next;
2037 }
2038 *pp = edir->dyn_relocs;
2039 }
2040
2041 edir->dyn_relocs = eind->dyn_relocs;
2042 eind->dyn_relocs = NULL;
2043 }
2044
a06ea964
NC
2045 if (ind->root.type == bfd_link_hash_indirect)
2046 {
2047 /* Copy over PLT info. */
2048 if (dir->got.refcount <= 0)
2049 {
2050 edir->got_type = eind->got_type;
2051 eind->got_type = GOT_UNKNOWN;
2052 }
2053 }
2054
2055 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2056}
2057
2058/* Create an AArch64 elf linker hash table. */
2059
2060static struct bfd_link_hash_table *
cec5225b 2061elfNN_aarch64_link_hash_table_create (bfd *abfd)
a06ea964 2062{
cec5225b
YZ
2063 struct elf_aarch64_link_hash_table *ret;
2064 bfd_size_type amt = sizeof (struct elf_aarch64_link_hash_table);
a06ea964 2065
7bf52ea2 2066 ret = bfd_zmalloc (amt);
a06ea964
NC
2067 if (ret == NULL)
2068 return NULL;
2069
2070 if (!_bfd_elf_link_hash_table_init
cec5225b
YZ
2071 (&ret->root, abfd, elfNN_aarch64_link_hash_newfunc,
2072 sizeof (struct elf_aarch64_link_hash_entry), AARCH64_ELF_DATA))
a06ea964
NC
2073 {
2074 free (ret);
2075 return NULL;
2076 }
2077
a06ea964
NC
2078 ret->plt_header_size = PLT_ENTRY_SIZE;
2079 ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE;
a06ea964 2080 ret->obfd = abfd;
a06ea964
NC
2081 ret->dt_tlsdesc_got = (bfd_vma) - 1;
2082
2083 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
cec5225b 2084 sizeof (struct elf_aarch64_stub_hash_entry)))
a06ea964
NC
2085 {
2086 free (ret);
2087 return NULL;
2088 }
2089
1419bbe5
WN
2090 ret->loc_hash_table = htab_try_create (1024,
2091 elfNN_aarch64_local_htab_hash,
2092 elfNN_aarch64_local_htab_eq,
2093 NULL);
2094 ret->loc_hash_memory = objalloc_create ();
2095 if (!ret->loc_hash_table || !ret->loc_hash_memory)
2096 {
2097 free (ret);
2098 return NULL;
2099 }
2100
a06ea964
NC
2101 return &ret->root.root;
2102}
2103
2104/* Free the derived linker hash table. */
2105
2106static void
cec5225b 2107elfNN_aarch64_hash_table_free (struct bfd_link_hash_table *hash)
a06ea964 2108{
cec5225b
YZ
2109 struct elf_aarch64_link_hash_table *ret
2110 = (struct elf_aarch64_link_hash_table *) hash;
a06ea964 2111
1419bbe5
WN
2112 if (ret->loc_hash_table)
2113 htab_delete (ret->loc_hash_table);
2114 if (ret->loc_hash_memory)
2115 objalloc_free ((struct objalloc *) ret->loc_hash_memory);
2116
a06ea964 2117 bfd_hash_table_free (&ret->stub_hash_table);
9f7c3e5e 2118 _bfd_elf_link_hash_table_free (hash);
a06ea964
NC
2119}
2120
a06ea964
NC
2121static bfd_boolean
2122aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section,
2123 bfd_vma offset, bfd_vma value)
2124{
2125 reloc_howto_type *howto;
2126 bfd_vma place;
2127
cec5225b 2128 howto = elfNN_aarch64_howto_from_type (r_type);
a06ea964
NC
2129 place = (input_section->output_section->vma + input_section->output_offset
2130 + offset);
caed7120
YZ
2131
2132 r_type = elfNN_aarch64_bfd_reloc_from_type (r_type);
2133 value = _bfd_aarch64_elf_resolve_relocation (r_type, place, value, 0, FALSE);
2134 return _bfd_aarch64_elf_put_addend (input_bfd,
2135 input_section->contents + offset, r_type,
2136 howto, value);
a06ea964
NC
2137}
2138
cec5225b 2139static enum elf_aarch64_stub_type
a06ea964
NC
2140aarch64_select_branch_stub (bfd_vma value, bfd_vma place)
2141{
2142 if (aarch64_valid_for_adrp_p (value, place))
2143 return aarch64_stub_adrp_branch;
2144 return aarch64_stub_long_branch;
2145}
2146
2147/* Determine the type of stub needed, if any, for a call. */
2148
cec5225b 2149static enum elf_aarch64_stub_type
a06ea964
NC
2150aarch64_type_of_stub (struct bfd_link_info *info,
2151 asection *input_sec,
2152 const Elf_Internal_Rela *rel,
2153 unsigned char st_type,
cec5225b 2154 struct elf_aarch64_link_hash_entry *hash,
a06ea964
NC
2155 bfd_vma destination)
2156{
2157 bfd_vma location;
2158 bfd_signed_vma branch_offset;
2159 unsigned int r_type;
cec5225b
YZ
2160 struct elf_aarch64_link_hash_table *globals;
2161 enum elf_aarch64_stub_type stub_type = aarch64_stub_none;
a06ea964
NC
2162 bfd_boolean via_plt_p;
2163
2164 if (st_type != STT_FUNC)
2165 return stub_type;
2166
cec5225b 2167 globals = elf_aarch64_hash_table (info);
a06ea964
NC
2168 via_plt_p = (globals->root.splt != NULL && hash != NULL
2169 && hash->root.plt.offset != (bfd_vma) - 1);
2170
2171 if (via_plt_p)
2172 return stub_type;
2173
2174 /* Determine where the call point is. */
2175 location = (input_sec->output_offset
2176 + input_sec->output_section->vma + rel->r_offset);
2177
2178 branch_offset = (bfd_signed_vma) (destination - location);
2179
cec5225b 2180 r_type = ELFNN_R_TYPE (rel->r_info);
a06ea964
NC
2181
2182 /* We don't want to redirect any old unconditional jump in this way,
2183 only one which is being used for a sibcall, where it is
2184 acceptable for the IP0 and IP1 registers to be clobbered. */
a6bb11b2 2185 if ((r_type == AARCH64_R (CALL26) || r_type == AARCH64_R (JUMP26))
a06ea964
NC
2186 && (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET
2187 || branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET))
2188 {
2189 stub_type = aarch64_stub_long_branch;
2190 }
2191
2192 return stub_type;
2193}
2194
2195/* Build a name for an entry in the stub hash table. */
2196
2197static char *
cec5225b 2198elfNN_aarch64_stub_name (const asection *input_section,
a06ea964 2199 const asection *sym_sec,
cec5225b 2200 const struct elf_aarch64_link_hash_entry *hash,
a06ea964
NC
2201 const Elf_Internal_Rela *rel)
2202{
2203 char *stub_name;
2204 bfd_size_type len;
2205
2206 if (hash)
2207 {
2208 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1;
2209 stub_name = bfd_malloc (len);
2210 if (stub_name != NULL)
2211 snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x",
2212 (unsigned int) input_section->id,
2213 hash->root.root.root.string,
2214 rel->r_addend);
2215 }
2216 else
2217 {
2218 len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
2219 stub_name = bfd_malloc (len);
2220 if (stub_name != NULL)
2221 snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x",
2222 (unsigned int) input_section->id,
2223 (unsigned int) sym_sec->id,
cec5225b 2224 (unsigned int) ELFNN_R_SYM (rel->r_info),
a06ea964
NC
2225 rel->r_addend);
2226 }
2227
2228 return stub_name;
2229}
2230
2231/* Look up an entry in the stub hash. Stub entries are cached because
2232 creating the stub name takes a bit of time. */
2233
cec5225b
YZ
2234static struct elf_aarch64_stub_hash_entry *
2235elfNN_aarch64_get_stub_entry (const asection *input_section,
a06ea964
NC
2236 const asection *sym_sec,
2237 struct elf_link_hash_entry *hash,
2238 const Elf_Internal_Rela *rel,
cec5225b 2239 struct elf_aarch64_link_hash_table *htab)
a06ea964 2240{
cec5225b
YZ
2241 struct elf_aarch64_stub_hash_entry *stub_entry;
2242 struct elf_aarch64_link_hash_entry *h =
2243 (struct elf_aarch64_link_hash_entry *) hash;
a06ea964
NC
2244 const asection *id_sec;
2245
2246 if ((input_section->flags & SEC_CODE) == 0)
2247 return NULL;
2248
2249 /* If this input section is part of a group of sections sharing one
2250 stub section, then use the id of the first section in the group.
2251 Stub names need to include a section id, as there may well be
2252 more than one stub used to reach say, printf, and we need to
2253 distinguish between them. */
2254 id_sec = htab->stub_group[input_section->id].link_sec;
2255
2256 if (h != NULL && h->stub_cache != NULL
2257 && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
2258 {
2259 stub_entry = h->stub_cache;
2260 }
2261 else
2262 {
2263 char *stub_name;
2264
cec5225b 2265 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, h, rel);
a06ea964
NC
2266 if (stub_name == NULL)
2267 return NULL;
2268
2269 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table,
2270 stub_name, FALSE, FALSE);
2271 if (h != NULL)
2272 h->stub_cache = stub_entry;
2273
2274 free (stub_name);
2275 }
2276
2277 return stub_entry;
2278}
2279
2280/* Add a new stub entry to the stub hash. Not all fields of the new
2281 stub entry are initialised. */
2282
cec5225b
YZ
2283static struct elf_aarch64_stub_hash_entry *
2284elfNN_aarch64_add_stub (const char *stub_name,
a06ea964 2285 asection *section,
cec5225b 2286 struct elf_aarch64_link_hash_table *htab)
a06ea964
NC
2287{
2288 asection *link_sec;
2289 asection *stub_sec;
cec5225b 2290 struct elf_aarch64_stub_hash_entry *stub_entry;
a06ea964
NC
2291
2292 link_sec = htab->stub_group[section->id].link_sec;
2293 stub_sec = htab->stub_group[section->id].stub_sec;
2294 if (stub_sec == NULL)
2295 {
2296 stub_sec = htab->stub_group[link_sec->id].stub_sec;
2297 if (stub_sec == NULL)
2298 {
2299 size_t namelen;
2300 bfd_size_type len;
2301 char *s_name;
2302
2303 namelen = strlen (link_sec->name);
2304 len = namelen + sizeof (STUB_SUFFIX);
2305 s_name = bfd_alloc (htab->stub_bfd, len);
2306 if (s_name == NULL)
2307 return NULL;
2308
2309 memcpy (s_name, link_sec->name, namelen);
2310 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
2311 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
2312 if (stub_sec == NULL)
2313 return NULL;
2314 htab->stub_group[link_sec->id].stub_sec = stub_sec;
2315 }
2316 htab->stub_group[section->id].stub_sec = stub_sec;
2317 }
2318
2319 /* Enter this entry into the linker stub hash table. */
2320 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
2321 TRUE, FALSE);
2322 if (stub_entry == NULL)
2323 {
2324 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
2325 section->owner, stub_name);
2326 return NULL;
2327 }
2328
2329 stub_entry->stub_sec = stub_sec;
2330 stub_entry->stub_offset = 0;
2331 stub_entry->id_sec = link_sec;
2332
2333 return stub_entry;
2334}
2335
2336static bfd_boolean
2337aarch64_build_one_stub (struct bfd_hash_entry *gen_entry,
2338 void *in_arg ATTRIBUTE_UNUSED)
2339{
cec5225b 2340 struct elf_aarch64_stub_hash_entry *stub_entry;
a06ea964
NC
2341 asection *stub_sec;
2342 bfd *stub_bfd;
2343 bfd_byte *loc;
2344 bfd_vma sym_value;
2345 unsigned int template_size;
2346 const uint32_t *template;
2347 unsigned int i;
2348
2349 /* Massage our args to the form they really have. */
cec5225b 2350 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
a06ea964
NC
2351
2352 stub_sec = stub_entry->stub_sec;
2353
2354 /* Make a note of the offset within the stubs for this entry. */
2355 stub_entry->stub_offset = stub_sec->size;
2356 loc = stub_sec->contents + stub_entry->stub_offset;
2357
2358 stub_bfd = stub_sec->owner;
2359
2360 /* This is the address of the stub destination. */
2361 sym_value = (stub_entry->target_value
2362 + stub_entry->target_section->output_offset
2363 + stub_entry->target_section->output_section->vma);
2364
2365 if (stub_entry->stub_type == aarch64_stub_long_branch)
2366 {
2367 bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma
2368 + stub_sec->output_offset);
2369
2370 /* See if we can relax the stub. */
2371 if (aarch64_valid_for_adrp_p (sym_value, place))
2372 stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place);
2373 }
2374
2375 switch (stub_entry->stub_type)
2376 {
2377 case aarch64_stub_adrp_branch:
2378 template = aarch64_adrp_branch_stub;
2379 template_size = sizeof (aarch64_adrp_branch_stub);
2380 break;
2381 case aarch64_stub_long_branch:
2382 template = aarch64_long_branch_stub;
2383 template_size = sizeof (aarch64_long_branch_stub);
2384 break;
2385 default:
2386 BFD_FAIL ();
2387 return FALSE;
2388 }
2389
2390 for (i = 0; i < (template_size / sizeof template[0]); i++)
2391 {
2392 bfd_putl32 (template[i], loc);
2393 loc += 4;
2394 }
2395
2396 template_size = (template_size + 7) & ~7;
2397 stub_sec->size += template_size;
2398
2399 switch (stub_entry->stub_type)
2400 {
2401 case aarch64_stub_adrp_branch:
a6bb11b2 2402 if (aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21), stub_bfd, stub_sec,
a06ea964
NC
2403 stub_entry->stub_offset, sym_value))
2404 /* The stub would not have been relaxed if the offset was out
2405 of range. */
2406 BFD_FAIL ();
2407
2408 _bfd_final_link_relocate
a6bb11b2 2409 (elfNN_aarch64_howto_from_type (AARCH64_R (ADD_ABS_LO12_NC)),
a06ea964
NC
2410 stub_bfd,
2411 stub_sec,
2412 stub_sec->contents,
2413 stub_entry->stub_offset + 4,
2414 sym_value,
2415 0);
2416 break;
2417
2418 case aarch64_stub_long_branch:
2419 /* We want the value relative to the address 12 bytes back from the
2420 value itself. */
cec5225b 2421 _bfd_final_link_relocate (elfNN_aarch64_howto_from_type
a6bb11b2 2422 (AARCH64_R (PRELNN)), stub_bfd, stub_sec,
a06ea964
NC
2423 stub_sec->contents,
2424 stub_entry->stub_offset + 16,
2425 sym_value + 12, 0);
2426 break;
2427 default:
2428 break;
2429 }
2430
2431 return TRUE;
2432}
2433
2434/* As above, but don't actually build the stub. Just bump offset so
2435 we know stub section sizes. */
2436
2437static bfd_boolean
2438aarch64_size_one_stub (struct bfd_hash_entry *gen_entry,
2439 void *in_arg ATTRIBUTE_UNUSED)
2440{
cec5225b 2441 struct elf_aarch64_stub_hash_entry *stub_entry;
a06ea964
NC
2442 int size;
2443
2444 /* Massage our args to the form they really have. */
cec5225b 2445 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
a06ea964
NC
2446
2447 switch (stub_entry->stub_type)
2448 {
2449 case aarch64_stub_adrp_branch:
2450 size = sizeof (aarch64_adrp_branch_stub);
2451 break;
2452 case aarch64_stub_long_branch:
2453 size = sizeof (aarch64_long_branch_stub);
2454 break;
2455 default:
2456 BFD_FAIL ();
2457 return FALSE;
2458 break;
2459 }
2460
2461 size = (size + 7) & ~7;
2462 stub_entry->stub_sec->size += size;
2463 return TRUE;
2464}
2465
2466/* External entry points for sizing and building linker stubs. */
2467
2468/* Set up various things so that we can make a list of input sections
2469 for each output section included in the link. Returns -1 on error,
2470 0 when no stubs will be needed, and 1 on success. */
2471
2472int
cec5225b 2473elfNN_aarch64_setup_section_lists (bfd *output_bfd,
a06ea964
NC
2474 struct bfd_link_info *info)
2475{
2476 bfd *input_bfd;
2477 unsigned int bfd_count;
2478 int top_id, top_index;
2479 asection *section;
2480 asection **input_list, **list;
2481 bfd_size_type amt;
cec5225b
YZ
2482 struct elf_aarch64_link_hash_table *htab =
2483 elf_aarch64_hash_table (info);
a06ea964
NC
2484
2485 if (!is_elf_hash_table (htab))
2486 return 0;
2487
2488 /* Count the number of input BFDs and find the top input section id. */
2489 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2490 input_bfd != NULL; input_bfd = input_bfd->link_next)
2491 {
2492 bfd_count += 1;
2493 for (section = input_bfd->sections;
2494 section != NULL; section = section->next)
2495 {
2496 if (top_id < section->id)
2497 top_id = section->id;
2498 }
2499 }
2500 htab->bfd_count = bfd_count;
2501
2502 amt = sizeof (struct map_stub) * (top_id + 1);
2503 htab->stub_group = bfd_zmalloc (amt);
2504 if (htab->stub_group == NULL)
2505 return -1;
2506
2507 /* We can't use output_bfd->section_count here to find the top output
2508 section index as some sections may have been removed, and
2509 _bfd_strip_section_from_output doesn't renumber the indices. */
2510 for (section = output_bfd->sections, top_index = 0;
2511 section != NULL; section = section->next)
2512 {
2513 if (top_index < section->index)
2514 top_index = section->index;
2515 }
2516
2517 htab->top_index = top_index;
2518 amt = sizeof (asection *) * (top_index + 1);
2519 input_list = bfd_malloc (amt);
2520 htab->input_list = input_list;
2521 if (input_list == NULL)
2522 return -1;
2523
2524 /* For sections we aren't interested in, mark their entries with a
2525 value we can check later. */
2526 list = input_list + top_index;
2527 do
2528 *list = bfd_abs_section_ptr;
2529 while (list-- != input_list);
2530
2531 for (section = output_bfd->sections;
2532 section != NULL; section = section->next)
2533 {
2534 if ((section->flags & SEC_CODE) != 0)
2535 input_list[section->index] = NULL;
2536 }
2537
2538 return 1;
2539}
2540
cec5225b 2541/* Used by elfNN_aarch64_next_input_section and group_sections. */
a06ea964
NC
2542#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2543
2544/* The linker repeatedly calls this function for each input section,
2545 in the order that input sections are linked into output sections.
2546 Build lists of input sections to determine groupings between which
2547 we may insert linker stubs. */
2548
2549void
cec5225b 2550elfNN_aarch64_next_input_section (struct bfd_link_info *info, asection *isec)
a06ea964 2551{
cec5225b
YZ
2552 struct elf_aarch64_link_hash_table *htab =
2553 elf_aarch64_hash_table (info);
a06ea964
NC
2554
2555 if (isec->output_section->index <= htab->top_index)
2556 {
2557 asection **list = htab->input_list + isec->output_section->index;
2558
2559 if (*list != bfd_abs_section_ptr)
2560 {
2561 /* Steal the link_sec pointer for our list. */
2562 /* This happens to make the list in reverse order,
2563 which is what we want. */
2564 PREV_SEC (isec) = *list;
2565 *list = isec;
2566 }
2567 }
2568}
2569
2570/* See whether we can group stub sections together. Grouping stub
2571 sections may result in fewer stubs. More importantly, we need to
2572 put all .init* and .fini* stubs at the beginning of the .init or
2573 .fini output sections respectively, because glibc splits the
2574 _init and _fini functions into multiple parts. Putting a stub in
2575 the middle of a function is not a good idea. */
2576
2577static void
cec5225b 2578group_sections (struct elf_aarch64_link_hash_table *htab,
a06ea964
NC
2579 bfd_size_type stub_group_size,
2580 bfd_boolean stubs_always_before_branch)
2581{
2582 asection **list = htab->input_list + htab->top_index;
2583
2584 do
2585 {
2586 asection *tail = *list;
2587
2588 if (tail == bfd_abs_section_ptr)
2589 continue;
2590
2591 while (tail != NULL)
2592 {
2593 asection *curr;
2594 asection *prev;
2595 bfd_size_type total;
2596
2597 curr = tail;
2598 total = tail->size;
2599 while ((prev = PREV_SEC (curr)) != NULL
2600 && ((total += curr->output_offset - prev->output_offset)
2601 < stub_group_size))
2602 curr = prev;
2603
2604 /* OK, the size from the start of CURR to the end is less
2605 than stub_group_size and thus can be handled by one stub
2606 section. (Or the tail section is itself larger than
2607 stub_group_size, in which case we may be toast.)
2608 We should really be keeping track of the total size of
2609 stubs added here, as stubs contribute to the final output
2610 section size. */
2611 do
2612 {
2613 prev = PREV_SEC (tail);
2614 /* Set up this stub group. */
2615 htab->stub_group[tail->id].link_sec = curr;
2616 }
2617 while (tail != curr && (tail = prev) != NULL);
2618
2619 /* But wait, there's more! Input sections up to stub_group_size
2620 bytes before the stub section can be handled by it too. */
2621 if (!stubs_always_before_branch)
2622 {
2623 total = 0;
2624 while (prev != NULL
2625 && ((total += tail->output_offset - prev->output_offset)
2626 < stub_group_size))
2627 {
2628 tail = prev;
2629 prev = PREV_SEC (tail);
2630 htab->stub_group[tail->id].link_sec = curr;
2631 }
2632 }
2633 tail = prev;
2634 }
2635 }
2636 while (list-- != htab->input_list);
2637
2638 free (htab->input_list);
2639}
2640
2641#undef PREV_SEC
2642
2643/* Determine and set the size of the stub section for a final link.
2644
2645 The basic idea here is to examine all the relocations looking for
2646 PC-relative calls to a target that is unreachable with a "bl"
2647 instruction. */
2648
2649bfd_boolean
cec5225b 2650elfNN_aarch64_size_stubs (bfd *output_bfd,
a06ea964
NC
2651 bfd *stub_bfd,
2652 struct bfd_link_info *info,
2653 bfd_signed_vma group_size,
2654 asection * (*add_stub_section) (const char *,
2655 asection *),
2656 void (*layout_sections_again) (void))
2657{
2658 bfd_size_type stub_group_size;
2659 bfd_boolean stubs_always_before_branch;
2660 bfd_boolean stub_changed = 0;
cec5225b 2661 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
a06ea964
NC
2662
2663 /* Propagate mach to stub bfd, because it may not have been
2664 finalized when we created stub_bfd. */
2665 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
2666 bfd_get_mach (output_bfd));
2667
2668 /* Stash our params away. */
2669 htab->stub_bfd = stub_bfd;
2670 htab->add_stub_section = add_stub_section;
2671 htab->layout_sections_again = layout_sections_again;
2672 stubs_always_before_branch = group_size < 0;
2673 if (group_size < 0)
2674 stub_group_size = -group_size;
2675 else
2676 stub_group_size = group_size;
2677
2678 if (stub_group_size == 1)
2679 {
2680 /* Default values. */
b9eead84 2681 /* AArch64 branch range is +-128MB. The value used is 1MB less. */
a06ea964
NC
2682 stub_group_size = 127 * 1024 * 1024;
2683 }
2684
2685 group_sections (htab, stub_group_size, stubs_always_before_branch);
2686
2687 while (1)
2688 {
2689 bfd *input_bfd;
2690 unsigned int bfd_indx;
2691 asection *stub_sec;
2692
2693 for (input_bfd = info->input_bfds, bfd_indx = 0;
2694 input_bfd != NULL; input_bfd = input_bfd->link_next, bfd_indx++)
2695 {
2696 Elf_Internal_Shdr *symtab_hdr;
2697 asection *section;
2698 Elf_Internal_Sym *local_syms = NULL;
2699
2700 /* We'll need the symbol table in a second. */
2701 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2702 if (symtab_hdr->sh_info == 0)
2703 continue;
2704
2705 /* Walk over each section attached to the input bfd. */
2706 for (section = input_bfd->sections;
2707 section != NULL; section = section->next)
2708 {
2709 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2710
2711 /* If there aren't any relocs, then there's nothing more
2712 to do. */
2713 if ((section->flags & SEC_RELOC) == 0
2714 || section->reloc_count == 0
2715 || (section->flags & SEC_CODE) == 0)
2716 continue;
2717
2718 /* If this section is a link-once section that will be
2719 discarded, then don't create any stubs. */
2720 if (section->output_section == NULL
2721 || section->output_section->owner != output_bfd)
2722 continue;
2723
2724 /* Get the relocs. */
2725 internal_relocs
2726 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
2727 NULL, info->keep_memory);
2728 if (internal_relocs == NULL)
2729 goto error_ret_free_local;
2730
2731 /* Now examine each relocation. */
2732 irela = internal_relocs;
2733 irelaend = irela + section->reloc_count;
2734 for (; irela < irelaend; irela++)
2735 {
2736 unsigned int r_type, r_indx;
cec5225b
YZ
2737 enum elf_aarch64_stub_type stub_type;
2738 struct elf_aarch64_stub_hash_entry *stub_entry;
a06ea964
NC
2739 asection *sym_sec;
2740 bfd_vma sym_value;
2741 bfd_vma destination;
cec5225b 2742 struct elf_aarch64_link_hash_entry *hash;
a06ea964
NC
2743 const char *sym_name;
2744 char *stub_name;
2745 const asection *id_sec;
2746 unsigned char st_type;
2747 bfd_size_type len;
2748
cec5225b
YZ
2749 r_type = ELFNN_R_TYPE (irela->r_info);
2750 r_indx = ELFNN_R_SYM (irela->r_info);
a06ea964
NC
2751
2752 if (r_type >= (unsigned int) R_AARCH64_end)
2753 {
2754 bfd_set_error (bfd_error_bad_value);
2755 error_ret_free_internal:
2756 if (elf_section_data (section)->relocs == NULL)
2757 free (internal_relocs);
2758 goto error_ret_free_local;
2759 }
2760
2761 /* Only look for stubs on unconditional branch and
2762 branch and link instructions. */
a6bb11b2
YZ
2763 if (r_type != (unsigned int) AARCH64_R (CALL26)
2764 && r_type != (unsigned int) AARCH64_R (JUMP26))
a06ea964
NC
2765 continue;
2766
2767 /* Now determine the call target, its name, value,
2768 section. */
2769 sym_sec = NULL;
2770 sym_value = 0;
2771 destination = 0;
2772 hash = NULL;
2773 sym_name = NULL;
2774 if (r_indx < symtab_hdr->sh_info)
2775 {
2776 /* It's a local symbol. */
2777 Elf_Internal_Sym *sym;
2778 Elf_Internal_Shdr *hdr;
2779
2780 if (local_syms == NULL)
2781 {
2782 local_syms
2783 = (Elf_Internal_Sym *) symtab_hdr->contents;
2784 if (local_syms == NULL)
2785 local_syms
2786 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2787 symtab_hdr->sh_info, 0,
2788 NULL, NULL, NULL);
2789 if (local_syms == NULL)
2790 goto error_ret_free_internal;
2791 }
2792
2793 sym = local_syms + r_indx;
2794 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2795 sym_sec = hdr->bfd_section;
2796 if (!sym_sec)
2797 /* This is an undefined symbol. It can never
2798 be resolved. */
2799 continue;
2800
2801 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2802 sym_value = sym->st_value;
2803 destination = (sym_value + irela->r_addend
2804 + sym_sec->output_offset
2805 + sym_sec->output_section->vma);
2806 st_type = ELF_ST_TYPE (sym->st_info);
2807 sym_name
2808 = bfd_elf_string_from_elf_section (input_bfd,
2809 symtab_hdr->sh_link,
2810 sym->st_name);
2811 }
2812 else
2813 {
2814 int e_indx;
2815
2816 e_indx = r_indx - symtab_hdr->sh_info;
cec5225b 2817 hash = ((struct elf_aarch64_link_hash_entry *)
a06ea964
NC
2818 elf_sym_hashes (input_bfd)[e_indx]);
2819
2820 while (hash->root.root.type == bfd_link_hash_indirect
2821 || hash->root.root.type == bfd_link_hash_warning)
cec5225b 2822 hash = ((struct elf_aarch64_link_hash_entry *)
a06ea964
NC
2823 hash->root.root.u.i.link);
2824
2825 if (hash->root.root.type == bfd_link_hash_defined
2826 || hash->root.root.type == bfd_link_hash_defweak)
2827 {
cec5225b
YZ
2828 struct elf_aarch64_link_hash_table *globals =
2829 elf_aarch64_hash_table (info);
a06ea964
NC
2830 sym_sec = hash->root.root.u.def.section;
2831 sym_value = hash->root.root.u.def.value;
2832 /* For a destination in a shared library,
2833 use the PLT stub as target address to
2834 decide whether a branch stub is
2835 needed. */
2836 if (globals->root.splt != NULL && hash != NULL
2837 && hash->root.plt.offset != (bfd_vma) - 1)
2838 {
2839 sym_sec = globals->root.splt;
2840 sym_value = hash->root.plt.offset;
2841 if (sym_sec->output_section != NULL)
2842 destination = (sym_value
2843 + sym_sec->output_offset
2844 +
2845 sym_sec->output_section->vma);
2846 }
2847 else if (sym_sec->output_section != NULL)
2848 destination = (sym_value + irela->r_addend
2849 + sym_sec->output_offset
2850 + sym_sec->output_section->vma);
2851 }
2852 else if (hash->root.root.type == bfd_link_hash_undefined
2853 || (hash->root.root.type
2854 == bfd_link_hash_undefweak))
2855 {
2856 /* For a shared library, use the PLT stub as
2857 target address to decide whether a long
2858 branch stub is needed.
2859 For absolute code, they cannot be handled. */
cec5225b
YZ
2860 struct elf_aarch64_link_hash_table *globals =
2861 elf_aarch64_hash_table (info);
a06ea964
NC
2862
2863 if (globals->root.splt != NULL && hash != NULL
2864 && hash->root.plt.offset != (bfd_vma) - 1)
2865 {
2866 sym_sec = globals->root.splt;
2867 sym_value = hash->root.plt.offset;
2868 if (sym_sec->output_section != NULL)
2869 destination = (sym_value
2870 + sym_sec->output_offset
2871 +
2872 sym_sec->output_section->vma);
2873 }
2874 else
2875 continue;
2876 }
2877 else
2878 {
2879 bfd_set_error (bfd_error_bad_value);
2880 goto error_ret_free_internal;
2881 }
2882 st_type = ELF_ST_TYPE (hash->root.type);
2883 sym_name = hash->root.root.root.string;
2884 }
2885
2886 /* Determine what (if any) linker stub is needed. */
2887 stub_type = aarch64_type_of_stub
2888 (info, section, irela, st_type, hash, destination);
2889 if (stub_type == aarch64_stub_none)
2890 continue;
2891
2892 /* Support for grouping stub sections. */
2893 id_sec = htab->stub_group[section->id].link_sec;
2894
2895 /* Get the name of this stub. */
cec5225b 2896 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, hash,
a06ea964
NC
2897 irela);
2898 if (!stub_name)
2899 goto error_ret_free_internal;
2900
2901 stub_entry =
2902 aarch64_stub_hash_lookup (&htab->stub_hash_table,
2903 stub_name, FALSE, FALSE);
2904 if (stub_entry != NULL)
2905 {
2906 /* The proper stub has already been created. */
2907 free (stub_name);
2908 continue;
2909 }
2910
cec5225b 2911 stub_entry = elfNN_aarch64_add_stub (stub_name, section,
a06ea964
NC
2912 htab);
2913 if (stub_entry == NULL)
2914 {
2915 free (stub_name);
2916 goto error_ret_free_internal;
2917 }
2918
2919 stub_entry->target_value = sym_value;
2920 stub_entry->target_section = sym_sec;
2921 stub_entry->stub_type = stub_type;
2922 stub_entry->h = hash;
2923 stub_entry->st_type = st_type;
2924
2925 if (sym_name == NULL)
2926 sym_name = "unnamed";
2927 len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name);
2928 stub_entry->output_name = bfd_alloc (htab->stub_bfd, len);
2929 if (stub_entry->output_name == NULL)
2930 {
2931 free (stub_name);
2932 goto error_ret_free_internal;
2933 }
2934
2935 snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME,
2936 sym_name);
2937
2938 stub_changed = TRUE;
2939 }
2940
2941 /* We're done with the internal relocs, free them. */
2942 if (elf_section_data (section)->relocs == NULL)
2943 free (internal_relocs);
2944 }
2945 }
2946
2947 if (!stub_changed)
2948 break;
2949
2950 /* OK, we've added some stubs. Find out the new size of the
2951 stub sections. */
2952 for (stub_sec = htab->stub_bfd->sections;
2953 stub_sec != NULL; stub_sec = stub_sec->next)
2954 stub_sec->size = 0;
2955
2956 bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab);
2957
2958 /* Ask the linker to do its stuff. */
2959 (*htab->layout_sections_again) ();
2960 stub_changed = FALSE;
2961 }
2962
2963 return TRUE;
2964
2965error_ret_free_local:
2966 return FALSE;
2967}
2968
2969/* Build all the stubs associated with the current output file. The
2970 stubs are kept in a hash table attached to the main linker hash
2971 table. We also set up the .plt entries for statically linked PIC
2972 functions here. This function is called via aarch64_elf_finish in the
2973 linker. */
2974
2975bfd_boolean
cec5225b 2976elfNN_aarch64_build_stubs (struct bfd_link_info *info)
a06ea964
NC
2977{
2978 asection *stub_sec;
2979 struct bfd_hash_table *table;
cec5225b 2980 struct elf_aarch64_link_hash_table *htab;
a06ea964 2981
cec5225b 2982 htab = elf_aarch64_hash_table (info);
a06ea964
NC
2983
2984 for (stub_sec = htab->stub_bfd->sections;
2985 stub_sec != NULL; stub_sec = stub_sec->next)
2986 {
2987 bfd_size_type size;
2988
2989 /* Ignore non-stub sections. */
2990 if (!strstr (stub_sec->name, STUB_SUFFIX))
2991 continue;
2992
2993 /* Allocate memory to hold the linker stubs. */
2994 size = stub_sec->size;
2995 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
2996 if (stub_sec->contents == NULL && size != 0)
2997 return FALSE;
2998 stub_sec->size = 0;
2999 }
3000
3001 /* Build the stubs as directed by the stub hash table. */
3002 table = &htab->stub_hash_table;
3003 bfd_hash_traverse (table, aarch64_build_one_stub, info);
3004
3005 return TRUE;
3006}
3007
3008
3009/* Add an entry to the code/data map for section SEC. */
3010
3011static void
cec5225b 3012elfNN_aarch64_section_map_add (asection *sec, char type, bfd_vma vma)
a06ea964
NC
3013{
3014 struct _aarch64_elf_section_data *sec_data =
cec5225b 3015 elf_aarch64_section_data (sec);
a06ea964
NC
3016 unsigned int newidx;
3017
3018 if (sec_data->map == NULL)
3019 {
cec5225b 3020 sec_data->map = bfd_malloc (sizeof (elf_aarch64_section_map));
a06ea964
NC
3021 sec_data->mapcount = 0;
3022 sec_data->mapsize = 1;
3023 }
3024
3025 newidx = sec_data->mapcount++;
3026
3027 if (sec_data->mapcount > sec_data->mapsize)
3028 {
3029 sec_data->mapsize *= 2;
3030 sec_data->map = bfd_realloc_or_free
cec5225b 3031 (sec_data->map, sec_data->mapsize * sizeof (elf_aarch64_section_map));
a06ea964
NC
3032 }
3033
3034 if (sec_data->map)
3035 {
3036 sec_data->map[newidx].vma = vma;
3037 sec_data->map[newidx].type = type;
3038 }
3039}
3040
3041
3042/* Initialise maps of insn/data for input BFDs. */
3043void
cec5225b 3044bfd_elfNN_aarch64_init_maps (bfd *abfd)
a06ea964
NC
3045{
3046 Elf_Internal_Sym *isymbuf;
3047 Elf_Internal_Shdr *hdr;
3048 unsigned int i, localsyms;
3049
3050 /* Make sure that we are dealing with an AArch64 elf binary. */
3051 if (!is_aarch64_elf (abfd))
3052 return;
3053
3054 if ((abfd->flags & DYNAMIC) != 0)
3055 return;
3056
3057 hdr = &elf_symtab_hdr (abfd);
3058 localsyms = hdr->sh_info;
3059
3060 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
3061 should contain the number of local symbols, which should come before any
3062 global symbols. Mapping symbols are always local. */
3063 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL);
3064
3065 /* No internal symbols read? Skip this BFD. */
3066 if (isymbuf == NULL)
3067 return;
3068
3069 for (i = 0; i < localsyms; i++)
3070 {
3071 Elf_Internal_Sym *isym = &isymbuf[i];
3072 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3073 const char *name;
3074
3075 if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
3076 {
3077 name = bfd_elf_string_from_elf_section (abfd,
3078 hdr->sh_link,
3079 isym->st_name);
3080
3081 if (bfd_is_aarch64_special_symbol_name
3082 (name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP))
cec5225b 3083 elfNN_aarch64_section_map_add (sec, name[1], isym->st_value);
a06ea964
NC
3084 }
3085 }
3086}
3087
3088/* Set option values needed during linking. */
3089void
cec5225b 3090bfd_elfNN_aarch64_set_options (struct bfd *output_bfd,
a06ea964
NC
3091 struct bfd_link_info *link_info,
3092 int no_enum_warn,
3093 int no_wchar_warn, int pic_veneer)
3094{
cec5225b 3095 struct elf_aarch64_link_hash_table *globals;
a06ea964 3096
cec5225b 3097 globals = elf_aarch64_hash_table (link_info);
a06ea964
NC
3098 globals->pic_veneer = pic_veneer;
3099
3100 BFD_ASSERT (is_aarch64_elf (output_bfd));
3101 elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
3102 elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
3103}
3104
a06ea964
NC
3105static bfd_vma
3106aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h,
cec5225b 3107 struct elf_aarch64_link_hash_table
a06ea964
NC
3108 *globals, struct bfd_link_info *info,
3109 bfd_vma value, bfd *output_bfd,
3110 bfd_boolean *unresolved_reloc_p)
3111{
3112 bfd_vma off = (bfd_vma) - 1;
3113 asection *basegot = globals->root.sgot;
3114 bfd_boolean dyn = globals->root.dynamic_sections_created;
3115
3116 if (h != NULL)
3117 {
a6bb11b2 3118 BFD_ASSERT (basegot != NULL);
a06ea964
NC
3119 off = h->got.offset;
3120 BFD_ASSERT (off != (bfd_vma) - 1);
3121 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3122 || (info->shared
3123 && SYMBOL_REFERENCES_LOCAL (info, h))
3124 || (ELF_ST_VISIBILITY (h->other)
3125 && h->root.type == bfd_link_hash_undefweak))
3126 {
3127 /* This is actually a static link, or it is a -Bsymbolic link
3128 and the symbol is defined locally. We must initialize this
3129 entry in the global offset table. Since the offset must
a6bb11b2
YZ
3130 always be a multiple of 8 (4 in the case of ILP32), we use
3131 the least significant bit to record whether we have
3132 initialized it already.
a06ea964
NC
3133 When doing a dynamic link, we create a .rel(a).got relocation
3134 entry to initialize the value. This is done in the
3135 finish_dynamic_symbol routine. */
3136 if ((off & 1) != 0)
3137 off &= ~1;
3138 else
3139 {
cec5225b 3140 bfd_put_NN (output_bfd, value, basegot->contents + off);
a06ea964
NC
3141 h->got.offset |= 1;
3142 }
3143 }
3144 else
3145 *unresolved_reloc_p = FALSE;
3146
3147 off = off + basegot->output_section->vma + basegot->output_offset;
3148 }
3149
3150 return off;
3151}
3152
3153/* Change R_TYPE to a more efficient access model where possible,
3154 return the new reloc type. */
3155
a6bb11b2
YZ
3156static bfd_reloc_code_real_type
3157aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type,
a06ea964
NC
3158 struct elf_link_hash_entry *h)
3159{
3160 bfd_boolean is_local = h == NULL;
a6bb11b2 3161
a06ea964
NC
3162 switch (r_type)
3163 {
a6bb11b2
YZ
3164 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3165 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
3166 return (is_local
3167 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
3168 : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
3169
3170 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
3171 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
3172 return (is_local
3173 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
3174 : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC);
3175
3176 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
3177 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type;
3178
3179 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
3180 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type;
3181
3182 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
3183 case BFD_RELOC_AARCH64_TLSDESC_CALL:
a06ea964 3184 /* Instructions with these relocations will become NOPs. */
a6bb11b2
YZ
3185 return BFD_RELOC_AARCH64_NONE;
3186
3187 default:
3188 break;
a06ea964
NC
3189 }
3190
3191 return r_type;
3192}
3193
3194static unsigned int
a6bb11b2 3195aarch64_reloc_got_type (bfd_reloc_code_real_type r_type)
a06ea964
NC
3196{
3197 switch (r_type)
3198 {
a6bb11b2
YZ
3199 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
3200 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3201 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
3202 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
a06ea964
NC
3203 return GOT_NORMAL;
3204
a6bb11b2
YZ
3205 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3206 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
a06ea964
NC
3207 return GOT_TLS_GD;
3208
a6bb11b2
YZ
3209 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
3210 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
3211 case BFD_RELOC_AARCH64_TLSDESC_CALL:
3212 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
3213 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
a06ea964
NC
3214 return GOT_TLSDESC_GD;
3215
a6bb11b2
YZ
3216 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
3217 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
3218 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
a06ea964
NC
3219 return GOT_TLS_IE;
3220
a6bb11b2
YZ
3221 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
3222 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
3223 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
3224 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
3225 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
3226 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
3227 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
3228 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a06ea964 3229 return GOT_UNKNOWN;
a6bb11b2
YZ
3230
3231 default:
3232 break;
a06ea964
NC
3233 }
3234 return GOT_UNKNOWN;
3235}
3236
3237static bfd_boolean
3238aarch64_can_relax_tls (bfd *input_bfd,
3239 struct bfd_link_info *info,
a6bb11b2 3240 bfd_reloc_code_real_type r_type,
a06ea964
NC
3241 struct elf_link_hash_entry *h,
3242 unsigned long r_symndx)
3243{
3244 unsigned int symbol_got_type;
3245 unsigned int reloc_got_type;
3246
3247 if (! IS_AARCH64_TLS_RELOC (r_type))
3248 return FALSE;
3249
cec5225b 3250 symbol_got_type = elfNN_aarch64_symbol_got_type (h, input_bfd, r_symndx);
a06ea964
NC
3251 reloc_got_type = aarch64_reloc_got_type (r_type);
3252
3253 if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type))
3254 return TRUE;
3255
3256 if (info->shared)
3257 return FALSE;
3258
3259 if (h && h->root.type == bfd_link_hash_undefweak)
3260 return FALSE;
3261
3262 return TRUE;
3263}
3264
a6bb11b2
YZ
3265/* Given the relocation code R_TYPE, return the relaxed bfd reloc
3266 enumerator. */
3267
3268static bfd_reloc_code_real_type
a06ea964
NC
3269aarch64_tls_transition (bfd *input_bfd,
3270 struct bfd_link_info *info,
3271 unsigned int r_type,
3272 struct elf_link_hash_entry *h,
3273 unsigned long r_symndx)
3274{
a6bb11b2
YZ
3275 bfd_reloc_code_real_type bfd_r_type
3276 = elfNN_aarch64_bfd_reloc_from_type (r_type);
a06ea964 3277
a6bb11b2
YZ
3278 if (! aarch64_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx))
3279 return bfd_r_type;
3280
3281 return aarch64_tls_transition_without_check (bfd_r_type, h);
a06ea964
NC
3282}
3283
3284/* Return the base VMA address which should be subtracted from real addresses
a6bb11b2 3285 when resolving R_AARCH64_TLS_DTPREL relocation. */
a06ea964
NC
3286
3287static bfd_vma
3288dtpoff_base (struct bfd_link_info *info)
3289{
3290 /* If tls_sec is NULL, we should have signalled an error already. */
3291 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
3292 return elf_hash_table (info)->tls_sec->vma;
3293}
3294
a06ea964
NC
3295/* Return the base VMA address which should be subtracted from real addresses
3296 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */
3297
3298static bfd_vma
3299tpoff_base (struct bfd_link_info *info)
3300{
3301 struct elf_link_hash_table *htab = elf_hash_table (info);
3302
3303 /* If tls_sec is NULL, we should have signalled an error already. */
3304 if (htab->tls_sec == NULL)
3305 return 0;
3306
3307 bfd_vma base = align_power ((bfd_vma) TCB_SIZE,
3308 htab->tls_sec->alignment_power);
3309 return htab->tls_sec->vma - base;
3310}
3311
3312static bfd_vma *
3313symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
3314 unsigned long r_symndx)
3315{
3316 /* Calculate the address of the GOT entry for symbol
3317 referred to in h. */
3318 if (h != NULL)
3319 return &h->got.offset;
3320 else
3321 {
3322 /* local symbol */
3323 struct elf_aarch64_local_symbol *l;
3324
cec5225b 3325 l = elf_aarch64_locals (input_bfd);
a06ea964
NC
3326 return &l[r_symndx].got_offset;
3327 }
3328}
3329
3330static void
3331symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
3332 unsigned long r_symndx)
3333{
3334 bfd_vma *p;
3335 p = symbol_got_offset_ref (input_bfd, h, r_symndx);
3336 *p |= 1;
3337}
3338
3339static int
3340symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h,
3341 unsigned long r_symndx)
3342{
3343 bfd_vma value;
3344 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
3345 return value & 1;
3346}
3347
3348static bfd_vma
3349symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
3350 unsigned long r_symndx)
3351{
3352 bfd_vma value;
3353 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
3354 value &= ~1;
3355 return value;
3356}
3357
3358static bfd_vma *
3359symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
3360 unsigned long r_symndx)
3361{
3362 /* Calculate the address of the GOT entry for symbol
3363 referred to in h. */
3364 if (h != NULL)
3365 {
cec5225b
YZ
3366 struct elf_aarch64_link_hash_entry *eh;
3367 eh = (struct elf_aarch64_link_hash_entry *) h;
a06ea964
NC
3368 return &eh->tlsdesc_got_jump_table_offset;
3369 }
3370 else
3371 {
3372 /* local symbol */
3373 struct elf_aarch64_local_symbol *l;
3374
cec5225b 3375 l = elf_aarch64_locals (input_bfd);
a06ea964
NC
3376 return &l[r_symndx].tlsdesc_got_jump_table_offset;
3377 }
3378}
3379
3380static void
3381symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
3382 unsigned long r_symndx)
3383{
3384 bfd_vma *p;
3385 p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
3386 *p |= 1;
3387}
3388
3389static int
3390symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd,
3391 struct elf_link_hash_entry *h,
3392 unsigned long r_symndx)
3393{
3394 bfd_vma value;
3395 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
3396 return value & 1;
3397}
3398
3399static bfd_vma
3400symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
3401 unsigned long r_symndx)
3402{
3403 bfd_vma value;
3404 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
3405 value &= ~1;
3406 return value;
3407}
3408
3409/* Perform a relocation as part of a final link. */
3410static bfd_reloc_status_type
cec5225b 3411elfNN_aarch64_final_link_relocate (reloc_howto_type *howto,
a06ea964
NC
3412 bfd *input_bfd,
3413 bfd *output_bfd,
3414 asection *input_section,
3415 bfd_byte *contents,
3416 Elf_Internal_Rela *rel,
3417 bfd_vma value,
3418 struct bfd_link_info *info,
3419 asection *sym_sec,
3420 struct elf_link_hash_entry *h,
3421 bfd_boolean *unresolved_reloc_p,
3422 bfd_boolean save_addend,
1419bbe5
WN
3423 bfd_vma *saved_addend,
3424 Elf_Internal_Sym *sym)
a06ea964 3425{
1419bbe5 3426 Elf_Internal_Shdr *symtab_hdr;
a06ea964 3427 unsigned int r_type = howto->type;
a6bb11b2
YZ
3428 bfd_reloc_code_real_type bfd_r_type
3429 = elfNN_aarch64_bfd_reloc_from_howto (howto);
3430 bfd_reloc_code_real_type new_bfd_r_type;
a06ea964
NC
3431 unsigned long r_symndx;
3432 bfd_byte *hit_data = contents + rel->r_offset;
3433 bfd_vma place;
3434 bfd_signed_vma signed_addend;
cec5225b 3435 struct elf_aarch64_link_hash_table *globals;
a06ea964
NC
3436 bfd_boolean weak_undef_p;
3437
cec5225b 3438 globals = elf_aarch64_hash_table (info);
a06ea964 3439
1419bbe5
WN
3440 symtab_hdr = &elf_symtab_hdr (input_bfd);
3441
a06ea964
NC
3442 BFD_ASSERT (is_aarch64_elf (input_bfd));
3443
cec5225b 3444 r_symndx = ELFNN_R_SYM (rel->r_info);
a06ea964
NC
3445
3446 /* It is possible to have linker relaxations on some TLS access
3447 models. Update our information here. */
a6bb11b2
YZ
3448 new_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type, h, r_symndx);
3449 if (new_bfd_r_type != bfd_r_type)
3450 {
3451 bfd_r_type = new_bfd_r_type;
3452 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
3453 BFD_ASSERT (howto != NULL);
3454 r_type = howto->type;
3455 }
a06ea964
NC
3456
3457 place = input_section->output_section->vma
3458 + input_section->output_offset + rel->r_offset;
3459
3460 /* Get addend, accumulating the addend for consecutive relocs
3461 which refer to the same offset. */
3462 signed_addend = saved_addend ? *saved_addend : 0;
3463 signed_addend += rel->r_addend;
3464
3465 weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak
3466 : bfd_is_und_section (sym_sec));
a6bb11b2 3467
1419bbe5
WN
3468 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
3469 it here if it is defined in a non-shared object. */
3470 if (h != NULL
3471 && h->type == STT_GNU_IFUNC
3472 && h->def_regular)
3473 {
3474 asection *plt;
3475 const char *name;
3476 asection *base_got;
3477 bfd_vma off;
3478
3479 if ((input_section->flags & SEC_ALLOC) == 0
3480 || h->plt.offset == (bfd_vma) -1)
3481 abort ();
3482
3483 /* STT_GNU_IFUNC symbol must go through PLT. */
3484 plt = globals->root.splt ? globals->root.splt : globals->root.iplt;
3485 value = (plt->output_section->vma + plt->output_offset + h->plt.offset);
3486
3487 switch (bfd_r_type)
3488 {
3489 default:
3490 if (h->root.root.string)
3491 name = h->root.root.string;
3492 else
3493 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
3494 NULL);
3495 (*_bfd_error_handler)
3496 (_("%B: relocation %s against STT_GNU_IFUNC "
3497 "symbol `%s' isn't handled by %s"), input_bfd,
3498 howto->name, name, __FUNCTION__);
3499 bfd_set_error (bfd_error_bad_value);
3500 return FALSE;
3501
3502 case BFD_RELOC_AARCH64_NN:
3503 if (rel->r_addend != 0)
3504 {
3505 if (h->root.root.string)
3506 name = h->root.root.string;
3507 else
3508 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
3509 sym, NULL);
3510 (*_bfd_error_handler)
3511 (_("%B: relocation %s against STT_GNU_IFUNC "
3512 "symbol `%s' has non-zero addend: %d"),
3513 input_bfd, howto->name, name, rel->r_addend);
3514 bfd_set_error (bfd_error_bad_value);
3515 return FALSE;
3516 }
3517
3518 /* Generate dynamic relocation only when there is a
3519 non-GOT reference in a shared object. */
3520 if (info->shared && h->non_got_ref)
3521 {
3522 Elf_Internal_Rela outrel;
3523 asection *sreloc;
3524
3525 /* Need a dynamic relocation to get the real function
3526 address. */
3527 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
3528 info,
3529 input_section,
3530 rel->r_offset);
3531 if (outrel.r_offset == (bfd_vma) -1
3532 || outrel.r_offset == (bfd_vma) -2)
3533 abort ();
3534
3535 outrel.r_offset += (input_section->output_section->vma
3536 + input_section->output_offset);
3537
3538 if (h->dynindx == -1
3539 || h->forced_local
3540 || info->executable)
3541 {
3542 /* This symbol is resolved locally. */
3543 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
3544 outrel.r_addend = (h->root.u.def.value
3545 + h->root.u.def.section->output_section->vma
3546 + h->root.u.def.section->output_offset);
3547 }
3548 else
3549 {
3550 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
3551 outrel.r_addend = 0;
3552 }
3553
3554 sreloc = globals->root.irelifunc;
3555 elf_append_rela (output_bfd, sreloc, &outrel);
3556
3557 /* If this reloc is against an external symbol, we
3558 do not want to fiddle with the addend. Otherwise,
3559 we need to include the symbol value so that it
3560 becomes an addend for the dynamic reloc. For an
3561 internal symbol, we have updated addend. */
3562 return bfd_reloc_ok;
3563 }
3564 /* FALLTHROUGH */
3565 case BFD_RELOC_AARCH64_JUMP26:
3566 case BFD_RELOC_AARCH64_CALL26:
3567 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3568 signed_addend,
3569 weak_undef_p);
3570 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
3571 howto, value);
3572 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
3573 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3574 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
3575 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
3576 base_got = globals->root.sgot;
3577 off = h->got.offset;
3578
3579 if (base_got == NULL)
3580 abort ();
3581
3582 if (off == (bfd_vma) -1)
3583 {
3584 bfd_vma plt_index;
3585
3586 /* We can't use h->got.offset here to save state, or
3587 even just remember the offset, as finish_dynamic_symbol
3588 would use that as offset into .got. */
3589
3590 if (globals->root.splt != NULL)
3591 {
3592 plt_index = h->plt.offset / globals->plt_entry_size - 1;
3593 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3594 base_got = globals->root.sgotplt;
3595 }
3596 else
3597 {
3598 plt_index = h->plt.offset / globals->plt_entry_size;
3599 off = plt_index * GOT_ENTRY_SIZE;
3600 base_got = globals->root.igotplt;
3601 }
3602
3603 if (h->dynindx == -1
3604 || h->forced_local
3605 || info->symbolic)
3606 {
3607 /* This references the local definition. We must
3608 initialize this entry in the global offset table.
3609 Since the offset must always be a multiple of 8,
3610 we use the least significant bit to record
3611 whether we have initialized it already.
3612
3613 When doing a dynamic link, we create a .rela.got
3614 relocation entry to initialize the value. This
3615 is done in the finish_dynamic_symbol routine. */
3616 if ((off & 1) != 0)
3617 off &= ~1;
3618 else
3619 {
3620 bfd_put_NN (output_bfd, value,
3621 base_got->contents + off);
3622 /* Note that this is harmless as -1 | 1 still is -1. */
3623 h->got.offset |= 1;
3624 }
3625 }
3626 value = (base_got->output_section->vma
3627 + base_got->output_offset + off);
3628 }
3629 else
3630 value = aarch64_calculate_got_entry_vma (h, globals, info,
3631 value, output_bfd,
3632 unresolved_reloc_p);
3633 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3634 0, weak_undef_p);
3635 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, howto, value);
3636 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
3637 case BFD_RELOC_AARCH64_ADD_LO12:
3638 break;
3639 }
3640 }
3641
a6bb11b2 3642 switch (bfd_r_type)
a06ea964 3643 {
a6bb11b2
YZ
3644 case BFD_RELOC_AARCH64_NONE:
3645 case BFD_RELOC_AARCH64_TLSDESC_CALL:
a06ea964
NC
3646 *unresolved_reloc_p = FALSE;
3647 return bfd_reloc_ok;
3648
a6bb11b2 3649 case BFD_RELOC_AARCH64_NN:
a06ea964
NC
3650
3651 /* When generating a shared object or relocatable executable, these
3652 relocations are copied into the output file to be resolved at
3653 run time. */
3654 if (((info->shared == TRUE) || globals->root.is_relocatable_executable)
3655 && (input_section->flags & SEC_ALLOC)
3656 && (h == NULL
3657 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3658 || h->root.type != bfd_link_hash_undefweak))
3659 {
3660 Elf_Internal_Rela outrel;
3661 bfd_byte *loc;
3662 bfd_boolean skip, relocate;
3663 asection *sreloc;
3664
3665 *unresolved_reloc_p = FALSE;
3666
a06ea964
NC
3667 skip = FALSE;
3668 relocate = FALSE;
3669
3670 outrel.r_addend = signed_addend;
3671 outrel.r_offset =
3672 _bfd_elf_section_offset (output_bfd, info, input_section,
3673 rel->r_offset);
3674 if (outrel.r_offset == (bfd_vma) - 1)
3675 skip = TRUE;
3676 else if (outrel.r_offset == (bfd_vma) - 2)
3677 {
3678 skip = TRUE;
3679 relocate = TRUE;
3680 }
3681
3682 outrel.r_offset += (input_section->output_section->vma
3683 + input_section->output_offset);
3684
3685 if (skip)
3686 memset (&outrel, 0, sizeof outrel);
3687 else if (h != NULL
3688 && h->dynindx != -1
3689 && (!info->shared || !info->symbolic || !h->def_regular))
cec5225b 3690 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
a06ea964
NC
3691 else
3692 {
3693 int symbol;
3694
3695 /* On SVR4-ish systems, the dynamic loader cannot
3696 relocate the text and data segments independently,
3697 so the symbol does not matter. */
3698 symbol = 0;
a6bb11b2 3699 outrel.r_info = ELFNN_R_INFO (symbol, AARCH64_R (RELATIVE));
a06ea964
NC
3700 outrel.r_addend += value;
3701 }
3702
1419bbe5
WN
3703 sreloc = elf_section_data (input_section)->sreloc;
3704 if (sreloc == NULL || sreloc->contents == NULL)
3705 return bfd_reloc_notsupported;
3706
3707 loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals);
cec5225b 3708 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
a06ea964 3709
1419bbe5 3710 if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size)
a06ea964
NC
3711 {
3712 /* Sanity to check that we have previously allocated
3713 sufficient space in the relocation section for the
3714 number of relocations we actually want to emit. */
3715 abort ();
3716 }
3717
3718 /* If this reloc is against an external symbol, we do not want to
3719 fiddle with the addend. Otherwise, we need to include the symbol
3720 value so that it becomes an addend for the dynamic reloc. */
3721 if (!relocate)
3722 return bfd_reloc_ok;
3723
3724 return _bfd_final_link_relocate (howto, input_bfd, input_section,
3725 contents, rel->r_offset, value,
3726 signed_addend);
3727 }
3728 else
3729 value += signed_addend;
3730 break;
3731
a6bb11b2
YZ
3732 case BFD_RELOC_AARCH64_JUMP26:
3733 case BFD_RELOC_AARCH64_CALL26:
a06ea964
NC
3734 {
3735 asection *splt = globals->root.splt;
3736 bfd_boolean via_plt_p =
3737 splt != NULL && h != NULL && h->plt.offset != (bfd_vma) - 1;
3738
3739 /* A call to an undefined weak symbol is converted to a jump to
3740 the next instruction unless a PLT entry will be created.
3741 The jump to the next instruction is optimized as a NOP.
3742 Do the same for local undefined symbols. */
3743 if (weak_undef_p && ! via_plt_p)
3744 {
3745 bfd_putl32 (INSN_NOP, hit_data);
3746 return bfd_reloc_ok;
3747 }
3748
3749 /* If the call goes through a PLT entry, make sure to
3750 check distance to the right destination address. */
3751 if (via_plt_p)
3752 {
3753 value = (splt->output_section->vma
3754 + splt->output_offset + h->plt.offset);
3755 *unresolved_reloc_p = FALSE;
3756 }
3757
3758 /* If the target symbol is global and marked as a function the
3759 relocation applies a function call or a tail call. In this
3760 situation we can veneer out of range branches. The veneers
3761 use IP0 and IP1 hence cannot be used arbitrary out of range
3762 branches that occur within the body of a function. */
3763 if (h && h->type == STT_FUNC)
3764 {
3765 /* Check if a stub has to be inserted because the destination
3766 is too far away. */
3767 if (! aarch64_valid_branch_p (value, place))
3768 {
3769 /* The target is out of reach, so redirect the branch to
3770 the local stub for this function. */
cec5225b
YZ
3771 struct elf_aarch64_stub_hash_entry *stub_entry;
3772 stub_entry = elfNN_aarch64_get_stub_entry (input_section,
a06ea964
NC
3773 sym_sec, h,
3774 rel, globals);
3775 if (stub_entry != NULL)
3776 value = (stub_entry->stub_offset
3777 + stub_entry->stub_sec->output_offset
3778 + stub_entry->stub_sec->output_section->vma);
3779 }
3780 }
3781 }
caed7120
YZ
3782 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3783 signed_addend, weak_undef_p);
a06ea964
NC
3784 break;
3785
a6bb11b2
YZ
3786 case BFD_RELOC_AARCH64_16:
3787#if ARCH_SIZE == 64
3788 case BFD_RELOC_AARCH64_32:
3789#endif
3790 case BFD_RELOC_AARCH64_ADD_LO12:
3791 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
3792 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
3793 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
3794 case BFD_RELOC_AARCH64_BRANCH19:
3795 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
3796 case BFD_RELOC_AARCH64_LDST8_LO12:
3797 case BFD_RELOC_AARCH64_LDST16_LO12:
3798 case BFD_RELOC_AARCH64_LDST32_LO12:
3799 case BFD_RELOC_AARCH64_LDST64_LO12:
3800 case BFD_RELOC_AARCH64_LDST128_LO12:
3801 case BFD_RELOC_AARCH64_MOVW_G0_S:
3802 case BFD_RELOC_AARCH64_MOVW_G1_S:
3803 case BFD_RELOC_AARCH64_MOVW_G2_S:
3804 case BFD_RELOC_AARCH64_MOVW_G0:
3805 case BFD_RELOC_AARCH64_MOVW_G0_NC:
3806 case BFD_RELOC_AARCH64_MOVW_G1:
3807 case BFD_RELOC_AARCH64_MOVW_G1_NC:
3808 case BFD_RELOC_AARCH64_MOVW_G2:
3809 case BFD_RELOC_AARCH64_MOVW_G2_NC:
3810 case BFD_RELOC_AARCH64_MOVW_G3:
3811 case BFD_RELOC_AARCH64_16_PCREL:
3812 case BFD_RELOC_AARCH64_32_PCREL:
3813 case BFD_RELOC_AARCH64_64_PCREL:
3814 case BFD_RELOC_AARCH64_TSTBR14:
caed7120
YZ
3815 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3816 signed_addend, weak_undef_p);
a06ea964
NC
3817 break;
3818
a6bb11b2
YZ
3819 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
3820 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3821 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
3822 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
a06ea964
NC
3823 if (globals->root.sgot == NULL)
3824 BFD_ASSERT (h != NULL);
3825
3826 if (h != NULL)
3827 {
3828 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
3829 output_bfd,
3830 unresolved_reloc_p);
caed7120
YZ
3831 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3832 0, weak_undef_p);
a06ea964
NC
3833 }
3834 break;
3835
a6bb11b2
YZ
3836 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3837 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
3838 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
3839 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
3840 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
a06ea964
NC
3841 if (globals->root.sgot == NULL)
3842 return bfd_reloc_notsupported;
3843
3844 value = (symbol_got_offset (input_bfd, h, r_symndx)
3845 + globals->root.sgot->output_section->vma
3846 + globals->root.sgot->output_section->output_offset);
3847
caed7120
YZ
3848 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3849 0, weak_undef_p);
a06ea964
NC
3850 *unresolved_reloc_p = FALSE;
3851 break;
3852
a6bb11b2
YZ
3853 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
3854 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
3855 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
3856 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
3857 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
3858 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
3859 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
3860 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
caed7120
YZ
3861 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3862 signed_addend - tpoff_base (info),
3863 weak_undef_p);
a06ea964
NC
3864 *unresolved_reloc_p = FALSE;
3865 break;
3866
7bcccb57
MS
3867 case BFD_RELOC_AARCH64_TLSDESC_ADD:
3868 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
a6bb11b2 3869 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
a6bb11b2 3870 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7bcccb57 3871 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
a6bb11b2 3872 case BFD_RELOC_AARCH64_TLSDESC_LDR:
a06ea964
NC
3873 if (globals->root.sgot == NULL)
3874 return bfd_reloc_notsupported;
3875
3876 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
3877 + globals->root.sgotplt->output_section->vma
3878 + globals->root.sgotplt->output_section->output_offset
3879 + globals->sgotplt_jump_table_size);
3880
caed7120
YZ
3881 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3882 0, weak_undef_p);
a06ea964
NC
3883 *unresolved_reloc_p = FALSE;
3884 break;
3885
3886 default:
3887 return bfd_reloc_notsupported;
3888 }
3889
3890 if (saved_addend)
3891 *saved_addend = value;
3892
3893 /* Only apply the final relocation in a sequence. */
3894 if (save_addend)
3895 return bfd_reloc_continue;
3896
caed7120
YZ
3897 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
3898 howto, value);
a06ea964
NC
3899}
3900
3901/* Handle TLS relaxations. Relaxing is possible for symbols that use
3902 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
3903 link.
3904
3905 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
3906 is to then call final_link_relocate. Return other values in the
3907 case of error. */
3908
3909static bfd_reloc_status_type
cec5225b 3910elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table *globals,
a06ea964
NC
3911 bfd *input_bfd, bfd_byte *contents,
3912 Elf_Internal_Rela *rel, struct elf_link_hash_entry *h)
3913{
3914 bfd_boolean is_local = h == NULL;
cec5225b 3915 unsigned int r_type = ELFNN_R_TYPE (rel->r_info);
a06ea964
NC
3916 unsigned long insn;
3917
3918 BFD_ASSERT (globals && input_bfd && contents && rel);
3919
a6bb11b2 3920 switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
a06ea964 3921 {
a6bb11b2
YZ
3922 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3923 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
a06ea964
NC
3924 if (is_local)
3925 {
3926 /* GD->LE relaxation:
3927 adrp x0, :tlsgd:var => movz x0, :tprel_g1:var
3928 or
3929 adrp x0, :tlsdesc:var => movz x0, :tprel_g1:var
3930 */
3931 bfd_putl32 (0xd2a00000, contents + rel->r_offset);
3932 return bfd_reloc_continue;
3933 }
3934 else
3935 {
3936 /* GD->IE relaxation:
3937 adrp x0, :tlsgd:var => adrp x0, :gottprel:var
3938 or
3939 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var
3940 */
3941 insn = bfd_getl32 (contents + rel->r_offset);
3942 return bfd_reloc_continue;
3943 }
3944
a6bb11b2 3945 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
a06ea964
NC
3946 if (is_local)
3947 {
3948 /* GD->LE relaxation:
3949 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var
3950 */
3951 bfd_putl32 (0xf2800000, contents + rel->r_offset);
3952 return bfd_reloc_continue;
3953 }
3954 else
3955 {
3956 /* GD->IE relaxation:
3957 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr x0, [x0, #:gottprel_lo12:var]
3958 */
3959 insn = bfd_getl32 (contents + rel->r_offset);
3960 insn &= 0xfffffff0;
3961 bfd_putl32 (insn, contents + rel->r_offset);
3962 return bfd_reloc_continue;
3963 }
3964
a6bb11b2 3965 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
a06ea964
NC
3966 if (is_local)
3967 {
3968 /* GD->LE relaxation
3969 add x0, #:tlsgd_lo12:var => movk x0, :tprel_g0_nc:var
3970 bl __tls_get_addr => mrs x1, tpidr_el0
3971 nop => add x0, x1, x0
3972 */
3973
3974 /* First kill the tls_get_addr reloc on the bl instruction. */
3975 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
cec5225b 3976 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
a06ea964
NC
3977
3978 bfd_putl32 (0xf2800000, contents + rel->r_offset);
3979 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
3980 bfd_putl32 (0x8b000020, contents + rel->r_offset + 8);
3981 return bfd_reloc_continue;
3982 }
3983 else
3984 {
3985 /* GD->IE relaxation
3986 ADD x0, #:tlsgd_lo12:var => ldr x0, [x0, #:gottprel_lo12:var]
3987 BL __tls_get_addr => mrs x1, tpidr_el0
3988 R_AARCH64_CALL26
3989 NOP => add x0, x1, x0
3990 */
3991
a6bb11b2 3992 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
a06ea964
NC
3993
3994 /* Remove the relocation on the BL instruction. */
cec5225b 3995 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
a06ea964
NC
3996
3997 bfd_putl32 (0xf9400000, contents + rel->r_offset);
3998
3999 /* We choose to fixup the BL and NOP instructions using the
4000 offset from the second relocation to allow flexibility in
4001 scheduling instructions between the ADD and BL. */
4002 bfd_putl32 (0xd53bd041, contents + rel[1].r_offset);
4003 bfd_putl32 (0x8b000020, contents + rel[1].r_offset + 4);
4004 return bfd_reloc_continue;
4005 }
4006
a6bb11b2
YZ
4007 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
4008 case BFD_RELOC_AARCH64_TLSDESC_CALL:
a06ea964
NC
4009 /* GD->IE/LE relaxation:
4010 add x0, x0, #:tlsdesc_lo12:var => nop
4011 blr xd => nop
4012 */
4013 bfd_putl32 (INSN_NOP, contents + rel->r_offset);
4014 return bfd_reloc_ok;
4015
a6bb11b2 4016 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a06ea964
NC
4017 /* IE->LE relaxation:
4018 adrp xd, :gottprel:var => movz xd, :tprel_g1:var
4019 */
4020 if (is_local)
4021 {
4022 insn = bfd_getl32 (contents + rel->r_offset);
4023 bfd_putl32 (0xd2a00000 | (insn & 0x1f), contents + rel->r_offset);
4024 }
4025 return bfd_reloc_continue;
4026
a6bb11b2 4027 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
a06ea964
NC
4028 /* IE->LE relaxation:
4029 ldr xd, [xm, #:gottprel_lo12:var] => movk xd, :tprel_g0_nc:var
4030 */
4031 if (is_local)
4032 {
4033 insn = bfd_getl32 (contents + rel->r_offset);
4034 bfd_putl32 (0xf2800000 | (insn & 0x1f), contents + rel->r_offset);
4035 }
4036 return bfd_reloc_continue;
4037
4038 default:
4039 return bfd_reloc_continue;
4040 }
4041
4042 return bfd_reloc_ok;
4043}
4044
4045/* Relocate an AArch64 ELF section. */
4046
4047static bfd_boolean
cec5225b 4048elfNN_aarch64_relocate_section (bfd *output_bfd,
a06ea964
NC
4049 struct bfd_link_info *info,
4050 bfd *input_bfd,
4051 asection *input_section,
4052 bfd_byte *contents,
4053 Elf_Internal_Rela *relocs,
4054 Elf_Internal_Sym *local_syms,
4055 asection **local_sections)
4056{
4057 Elf_Internal_Shdr *symtab_hdr;
4058 struct elf_link_hash_entry **sym_hashes;
4059 Elf_Internal_Rela *rel;
4060 Elf_Internal_Rela *relend;
4061 const char *name;
cec5225b 4062 struct elf_aarch64_link_hash_table *globals;
a06ea964
NC
4063 bfd_boolean save_addend = FALSE;
4064 bfd_vma addend = 0;
4065
cec5225b 4066 globals = elf_aarch64_hash_table (info);
a06ea964
NC
4067
4068 symtab_hdr = &elf_symtab_hdr (input_bfd);
4069 sym_hashes = elf_sym_hashes (input_bfd);
4070
4071 rel = relocs;
4072 relend = relocs + input_section->reloc_count;
4073 for (; rel < relend; rel++)
4074 {
4075 unsigned int r_type;
a6bb11b2
YZ
4076 bfd_reloc_code_real_type bfd_r_type;
4077 bfd_reloc_code_real_type relaxed_bfd_r_type;
a06ea964
NC
4078 reloc_howto_type *howto;
4079 unsigned long r_symndx;
4080 Elf_Internal_Sym *sym;
4081 asection *sec;
4082 struct elf_link_hash_entry *h;
4083 bfd_vma relocation;
4084 bfd_reloc_status_type r;
4085 arelent bfd_reloc;
4086 char sym_type;
4087 bfd_boolean unresolved_reloc = FALSE;
4088 char *error_message = NULL;
4089
cec5225b
YZ
4090 r_symndx = ELFNN_R_SYM (rel->r_info);
4091 r_type = ELFNN_R_TYPE (rel->r_info);
a06ea964 4092
cec5225b 4093 bfd_reloc.howto = elfNN_aarch64_howto_from_type (r_type);
a06ea964
NC
4094 howto = bfd_reloc.howto;
4095
7fcfd62d
NC
4096 if (howto == NULL)
4097 {
4098 (*_bfd_error_handler)
4099 (_("%B: unrecognized relocation (0x%x) in section `%A'"),
4100 input_bfd, input_section, r_type);
4101 return FALSE;
4102 }
a6bb11b2 4103 bfd_r_type = elfNN_aarch64_bfd_reloc_from_howto (howto);
7fcfd62d 4104
a06ea964
NC
4105 h = NULL;
4106 sym = NULL;
4107 sec = NULL;
4108
4109 if (r_symndx < symtab_hdr->sh_info)
4110 {
4111 sym = local_syms + r_symndx;
cec5225b 4112 sym_type = ELFNN_ST_TYPE (sym->st_info);
a06ea964
NC
4113 sec = local_sections[r_symndx];
4114
4115 /* An object file might have a reference to a local
4116 undefined symbol. This is a daft object file, but we
4117 should at least do something about it. */
4118 if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL
4119 && bfd_is_und_section (sec)
4120 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
4121 {
4122 if (!info->callbacks->undefined_symbol
4123 (info, bfd_elf_string_from_elf_section
4124 (input_bfd, symtab_hdr->sh_link, sym->st_name),
4125 input_bfd, input_section, rel->r_offset, TRUE))
4126 return FALSE;
4127 }
4128
a06ea964 4129 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1419bbe5
WN
4130
4131 /* Relocate against local STT_GNU_IFUNC symbol. */
4132 if (!info->relocatable
4133 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
4134 {
4135 h = elfNN_aarch64_get_local_sym_hash (globals, input_bfd,
4136 rel, FALSE);
4137 if (h == NULL)
4138 abort ();
4139
4140 /* Set STT_GNU_IFUNC symbol value. */
4141 h->root.u.def.value = sym->st_value;
4142 h->root.u.def.section = sec;
4143 }
a06ea964
NC
4144 }
4145 else
4146 {
62d887d4 4147 bfd_boolean warned, ignored;
a06ea964
NC
4148
4149 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
4150 r_symndx, symtab_hdr, sym_hashes,
4151 h, sec, relocation,
62d887d4 4152 unresolved_reloc, warned, ignored);
a06ea964
NC
4153
4154 sym_type = h->type;
4155 }
4156
4157 if (sec != NULL && discarded_section (sec))
4158 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
4159 rel, 1, relend, howto, 0, contents);
4160
4161 if (info->relocatable)
4162 {
4163 /* This is a relocatable link. We don't have to change
4164 anything, unless the reloc is against a section symbol,
4165 in which case we have to adjust according to where the
4166 section symbol winds up in the output section. */
4167 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
4168 rel->r_addend += sec->output_offset;
4169 continue;
4170 }
4171
4172 if (h != NULL)
4173 name = h->root.root.string;
4174 else
4175 {
4176 name = (bfd_elf_string_from_elf_section
4177 (input_bfd, symtab_hdr->sh_link, sym->st_name));
4178 if (name == NULL || *name == '\0')
4179 name = bfd_section_name (input_bfd, sec);
4180 }
4181
4182 if (r_symndx != 0
4183 && r_type != R_AARCH64_NONE
4184 && r_type != R_AARCH64_NULL
4185 && (h == NULL
4186 || h->root.type == bfd_link_hash_defined
4187 || h->root.type == bfd_link_hash_defweak)
a6bb11b2 4188 && IS_AARCH64_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS))
a06ea964
NC
4189 {
4190 (*_bfd_error_handler)
4191 ((sym_type == STT_TLS
4192 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
4193 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
4194 input_bfd,
4195 input_section, (long) rel->r_offset, howto->name, name);
4196 }
4197
a06ea964
NC
4198 /* We relax only if we can see that there can be a valid transition
4199 from a reloc type to another.
cec5225b 4200 We call elfNN_aarch64_final_link_relocate unless we're completely
a06ea964
NC
4201 done, i.e., the relaxation produced the final output we want. */
4202
a6bb11b2
YZ
4203 relaxed_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type,
4204 h, r_symndx);
4205 if (relaxed_bfd_r_type != bfd_r_type)
a06ea964 4206 {
a6bb11b2
YZ
4207 bfd_r_type = relaxed_bfd_r_type;
4208 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
4209 BFD_ASSERT (howto != NULL);
4210 r_type = howto->type;
cec5225b 4211 r = elfNN_aarch64_tls_relax (globals, input_bfd, contents, rel, h);
a06ea964
NC
4212 unresolved_reloc = 0;
4213 }
4214 else
4215 r = bfd_reloc_continue;
4216
4217 /* There may be multiple consecutive relocations for the
4218 same offset. In that case we are supposed to treat the
4219 output of each relocation as the addend for the next. */
4220 if (rel + 1 < relend
4221 && rel->r_offset == rel[1].r_offset
cec5225b
YZ
4222 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NONE
4223 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NULL)
a06ea964
NC
4224 save_addend = TRUE;
4225 else
4226 save_addend = FALSE;
4227
4228 if (r == bfd_reloc_continue)
cec5225b 4229 r = elfNN_aarch64_final_link_relocate (howto, input_bfd, output_bfd,
a06ea964
NC
4230 input_section, contents, rel,
4231 relocation, info, sec,
4232 h, &unresolved_reloc,
1419bbe5 4233 save_addend, &addend, sym);
a06ea964 4234
a6bb11b2 4235 switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
a06ea964 4236 {
a6bb11b2
YZ
4237 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4238 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
a06ea964
NC
4239 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
4240 {
4241 bfd_boolean need_relocs = FALSE;
4242 bfd_byte *loc;
4243 int indx;
4244 bfd_vma off;
4245
4246 off = symbol_got_offset (input_bfd, h, r_symndx);
4247 indx = h && h->dynindx != -1 ? h->dynindx : 0;
4248
4249 need_relocs =
4250 (info->shared || indx != 0) &&
4251 (h == NULL
4252 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4253 || h->root.type != bfd_link_hash_undefweak);
4254
4255 BFD_ASSERT (globals->root.srelgot != NULL);
4256
4257 if (need_relocs)
4258 {
4259 Elf_Internal_Rela rela;
a6bb11b2 4260 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPMOD));
a06ea964
NC
4261 rela.r_addend = 0;
4262 rela.r_offset = globals->root.sgot->output_section->vma +
4263 globals->root.sgot->output_offset + off;
4264
4265
4266 loc = globals->root.srelgot->contents;
4267 loc += globals->root.srelgot->reloc_count++
4268 * RELOC_SIZE (htab);
cec5225b 4269 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964
NC
4270
4271 if (indx == 0)
4272 {
cec5225b 4273 bfd_put_NN (output_bfd,
a06ea964
NC
4274 relocation - dtpoff_base (info),
4275 globals->root.sgot->contents + off
4276 + GOT_ENTRY_SIZE);
4277 }
4278 else
4279 {
4280 /* This TLS symbol is global. We emit a
4281 relocation to fixup the tls offset at load
4282 time. */
4283 rela.r_info =
a6bb11b2 4284 ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPREL));
a06ea964
NC
4285 rela.r_addend = 0;
4286 rela.r_offset =
4287 (globals->root.sgot->output_section->vma
4288 + globals->root.sgot->output_offset + off
4289 + GOT_ENTRY_SIZE);
4290
4291 loc = globals->root.srelgot->contents;
4292 loc += globals->root.srelgot->reloc_count++
4293 * RELOC_SIZE (globals);
cec5225b
YZ
4294 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
4295 bfd_put_NN (output_bfd, (bfd_vma) 0,
a06ea964
NC
4296 globals->root.sgot->contents + off
4297 + GOT_ENTRY_SIZE);
4298 }
4299 }
4300 else
4301 {
cec5225b 4302 bfd_put_NN (output_bfd, (bfd_vma) 1,
a06ea964 4303 globals->root.sgot->contents + off);
cec5225b 4304 bfd_put_NN (output_bfd,
a06ea964
NC
4305 relocation - dtpoff_base (info),
4306 globals->root.sgot->contents + off
4307 + GOT_ENTRY_SIZE);
4308 }
4309
4310 symbol_got_offset_mark (input_bfd, h, r_symndx);
4311 }
4312 break;
4313
a6bb11b2
YZ
4314 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4315 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
a06ea964
NC
4316 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
4317 {
4318 bfd_boolean need_relocs = FALSE;
4319 bfd_byte *loc;
4320 int indx;
4321 bfd_vma off;
4322
4323 off = symbol_got_offset (input_bfd, h, r_symndx);
4324
4325 indx = h && h->dynindx != -1 ? h->dynindx : 0;
4326
4327 need_relocs =
4328 (info->shared || indx != 0) &&
4329 (h == NULL
4330 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4331 || h->root.type != bfd_link_hash_undefweak);
4332
4333 BFD_ASSERT (globals->root.srelgot != NULL);
4334
4335 if (need_relocs)
4336 {
4337 Elf_Internal_Rela rela;
4338
4339 if (indx == 0)
4340 rela.r_addend = relocation - dtpoff_base (info);
4341 else
4342 rela.r_addend = 0;
4343
a6bb11b2 4344 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_TPREL));
a06ea964
NC
4345 rela.r_offset = globals->root.sgot->output_section->vma +
4346 globals->root.sgot->output_offset + off;
4347
4348 loc = globals->root.srelgot->contents;
4349 loc += globals->root.srelgot->reloc_count++
4350 * RELOC_SIZE (htab);
4351
cec5225b 4352 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964 4353
cec5225b 4354 bfd_put_NN (output_bfd, rela.r_addend,
a06ea964
NC
4355 globals->root.sgot->contents + off);
4356 }
4357 else
cec5225b 4358 bfd_put_NN (output_bfd, relocation - tpoff_base (info),
a06ea964
NC
4359 globals->root.sgot->contents + off);
4360
4361 symbol_got_offset_mark (input_bfd, h, r_symndx);
4362 }
4363 break;
4364
a6bb11b2
YZ
4365 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
4366 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
4367 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
4368 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
4369 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
4370 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
4371 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
4372 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
a06ea964
NC
4373 break;
4374
7bcccb57 4375 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
a6bb11b2
YZ
4376 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4377 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
a06ea964
NC
4378 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx))
4379 {
4380 bfd_boolean need_relocs = FALSE;
4381 int indx = h && h->dynindx != -1 ? h->dynindx : 0;
4382 bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx);
4383
4384 need_relocs = (h == NULL
4385 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4386 || h->root.type != bfd_link_hash_undefweak);
4387
4388 BFD_ASSERT (globals->root.srelgot != NULL);
4389 BFD_ASSERT (globals->root.sgot != NULL);
4390
4391 if (need_relocs)
4392 {
4393 bfd_byte *loc;
4394 Elf_Internal_Rela rela;
a6bb11b2
YZ
4395 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLSDESC));
4396
a06ea964
NC
4397 rela.r_addend = 0;
4398 rela.r_offset = (globals->root.sgotplt->output_section->vma
4399 + globals->root.sgotplt->output_offset
4400 + off + globals->sgotplt_jump_table_size);
4401
4402 if (indx == 0)
4403 rela.r_addend = relocation - dtpoff_base (info);
4404
4405 /* Allocate the next available slot in the PLT reloc
4406 section to hold our R_AARCH64_TLSDESC, the next
4407 available slot is determined from reloc_count,
4408 which we step. But note, reloc_count was
4409 artifically moved down while allocating slots for
4410 real PLT relocs such that all of the PLT relocs
4411 will fit above the initial reloc_count and the
4412 extra stuff will fit below. */
4413 loc = globals->root.srelplt->contents;
4414 loc += globals->root.srelplt->reloc_count++
4415 * RELOC_SIZE (globals);
4416
cec5225b 4417 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964 4418
cec5225b 4419 bfd_put_NN (output_bfd, (bfd_vma) 0,
a06ea964
NC
4420 globals->root.sgotplt->contents + off +
4421 globals->sgotplt_jump_table_size);
cec5225b 4422 bfd_put_NN (output_bfd, (bfd_vma) 0,
a06ea964
NC
4423 globals->root.sgotplt->contents + off +
4424 globals->sgotplt_jump_table_size +
4425 GOT_ENTRY_SIZE);
4426 }
4427
4428 symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx);
4429 }
4430 break;
a6bb11b2
YZ
4431 default:
4432 break;
a06ea964
NC
4433 }
4434
4435 if (!save_addend)
4436 addend = 0;
4437
4438
4439 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
4440 because such sections are not SEC_ALLOC and thus ld.so will
4441 not process them. */
4442 if (unresolved_reloc
4443 && !((input_section->flags & SEC_DEBUGGING) != 0
4444 && h->def_dynamic)
4445 && _bfd_elf_section_offset (output_bfd, info, input_section,
4446 +rel->r_offset) != (bfd_vma) - 1)
4447 {
4448 (*_bfd_error_handler)
4449 (_
4450 ("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
4451 input_bfd, input_section, (long) rel->r_offset, howto->name,
4452 h->root.root.string);
4453 return FALSE;
4454 }
4455
4456 if (r != bfd_reloc_ok && r != bfd_reloc_continue)
4457 {
4458 switch (r)
4459 {
4460 case bfd_reloc_overflow:
4461 /* If the overflowing reloc was to an undefined symbol,
4462 we have already printed one error message and there
4463 is no point complaining again. */
4464 if ((!h ||
4465 h->root.type != bfd_link_hash_undefined)
4466 && (!((*info->callbacks->reloc_overflow)
4467 (info, (h ? &h->root : NULL), name, howto->name,
4468 (bfd_vma) 0, input_bfd, input_section,
4469 rel->r_offset))))
4470 return FALSE;
4471 break;
4472
4473 case bfd_reloc_undefined:
4474 if (!((*info->callbacks->undefined_symbol)
4475 (info, name, input_bfd, input_section,
4476 rel->r_offset, TRUE)))
4477 return FALSE;
4478 break;
4479
4480 case bfd_reloc_outofrange:
4481 error_message = _("out of range");
4482 goto common_error;
4483
4484 case bfd_reloc_notsupported:
4485 error_message = _("unsupported relocation");
4486 goto common_error;
4487
4488 case bfd_reloc_dangerous:
4489 /* error_message should already be set. */
4490 goto common_error;
4491
4492 default:
4493 error_message = _("unknown error");
4494 /* Fall through. */
4495
4496 common_error:
4497 BFD_ASSERT (error_message != NULL);
4498 if (!((*info->callbacks->reloc_dangerous)
4499 (info, error_message, input_bfd, input_section,
4500 rel->r_offset)))
4501 return FALSE;
4502 break;
4503 }
4504 }
4505 }
4506
4507 return TRUE;
4508}
4509
4510/* Set the right machine number. */
4511
4512static bfd_boolean
cec5225b 4513elfNN_aarch64_object_p (bfd *abfd)
a06ea964 4514{
cec5225b
YZ
4515#if ARCH_SIZE == 32
4516 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64_ilp32);
4517#else
a06ea964 4518 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64);
cec5225b 4519#endif
a06ea964
NC
4520 return TRUE;
4521}
4522
4523/* Function to keep AArch64 specific flags in the ELF header. */
4524
4525static bfd_boolean
cec5225b 4526elfNN_aarch64_set_private_flags (bfd *abfd, flagword flags)
a06ea964
NC
4527{
4528 if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags)
4529 {
4530 }
4531 else
4532 {
4533 elf_elfheader (abfd)->e_flags = flags;
4534 elf_flags_init (abfd) = TRUE;
4535 }
4536
4537 return TRUE;
4538}
4539
4540/* Copy backend specific data from one object module to another. */
4541
4542static bfd_boolean
cec5225b 4543elfNN_aarch64_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
a06ea964
NC
4544{
4545 flagword in_flags;
4546
4547 if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
4548 return TRUE;
4549
4550 in_flags = elf_elfheader (ibfd)->e_flags;
4551
4552 elf_elfheader (obfd)->e_flags = in_flags;
4553 elf_flags_init (obfd) = TRUE;
4554
4555 /* Also copy the EI_OSABI field. */
4556 elf_elfheader (obfd)->e_ident[EI_OSABI] =
4557 elf_elfheader (ibfd)->e_ident[EI_OSABI];
4558
4559 /* Copy object attributes. */
4560 _bfd_elf_copy_obj_attributes (ibfd, obfd);
4561
4562 return TRUE;
4563}
4564
4565/* Merge backend specific data from an object file to the output
4566 object file when linking. */
4567
4568static bfd_boolean
cec5225b 4569elfNN_aarch64_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
a06ea964
NC
4570{
4571 flagword out_flags;
4572 flagword in_flags;
4573 bfd_boolean flags_compatible = TRUE;
4574 asection *sec;
4575
4576 /* Check if we have the same endianess. */
4577 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
4578 return FALSE;
4579
4580 if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
4581 return TRUE;
4582
4583 /* The input BFD must have had its flags initialised. */
4584 /* The following seems bogus to me -- The flags are initialized in
4585 the assembler but I don't think an elf_flags_init field is
4586 written into the object. */
4587 /* BFD_ASSERT (elf_flags_init (ibfd)); */
4588
4589 in_flags = elf_elfheader (ibfd)->e_flags;
4590 out_flags = elf_elfheader (obfd)->e_flags;
4591
4592 if (!elf_flags_init (obfd))
4593 {
4594 /* If the input is the default architecture and had the default
4595 flags then do not bother setting the flags for the output
4596 architecture, instead allow future merges to do this. If no
4597 future merges ever set these flags then they will retain their
4598 uninitialised values, which surprise surprise, correspond
4599 to the default values. */
4600 if (bfd_get_arch_info (ibfd)->the_default
4601 && elf_elfheader (ibfd)->e_flags == 0)
4602 return TRUE;
4603
4604 elf_flags_init (obfd) = TRUE;
4605 elf_elfheader (obfd)->e_flags = in_flags;
4606
4607 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
4608 && bfd_get_arch_info (obfd)->the_default)
4609 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
4610 bfd_get_mach (ibfd));
4611
4612 return TRUE;
4613 }
4614
4615 /* Identical flags must be compatible. */
4616 if (in_flags == out_flags)
4617 return TRUE;
4618
4619 /* Check to see if the input BFD actually contains any sections. If
4620 not, its flags may not have been initialised either, but it
4621 cannot actually cause any incompatiblity. Do not short-circuit
4622 dynamic objects; their section list may be emptied by
4623 elf_link_add_object_symbols.
4624
4625 Also check to see if there are no code sections in the input.
4626 In this case there is no need to check for code specific flags.
4627 XXX - do we need to worry about floating-point format compatability
4628 in data sections ? */
4629 if (!(ibfd->flags & DYNAMIC))
4630 {
4631 bfd_boolean null_input_bfd = TRUE;
4632 bfd_boolean only_data_sections = TRUE;
4633
4634 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
4635 {
4636 if ((bfd_get_section_flags (ibfd, sec)
4637 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
4638 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
4639 only_data_sections = FALSE;
4640
4641 null_input_bfd = FALSE;
4642 break;
4643 }
4644
4645 if (null_input_bfd || only_data_sections)
4646 return TRUE;
4647 }
4648
4649 return flags_compatible;
4650}
4651
4652/* Display the flags field. */
4653
4654static bfd_boolean
cec5225b 4655elfNN_aarch64_print_private_bfd_data (bfd *abfd, void *ptr)
a06ea964
NC
4656{
4657 FILE *file = (FILE *) ptr;
4658 unsigned long flags;
4659
4660 BFD_ASSERT (abfd != NULL && ptr != NULL);
4661
4662 /* Print normal ELF private data. */
4663 _bfd_elf_print_private_bfd_data (abfd, ptr);
4664
4665 flags = elf_elfheader (abfd)->e_flags;
4666 /* Ignore init flag - it may not be set, despite the flags field
4667 containing valid data. */
4668
4669 /* xgettext:c-format */
4670 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
4671
4672 if (flags)
4673 fprintf (file, _("<Unrecognised flag bits set>"));
4674
4675 fputc ('\n', file);
4676
4677 return TRUE;
4678}
4679
4680/* Update the got entry reference counts for the section being removed. */
4681
4682static bfd_boolean
cec5225b 4683elfNN_aarch64_gc_sweep_hook (bfd *abfd,
cb8af559
NC
4684 struct bfd_link_info *info,
4685 asection *sec,
4686 const Elf_Internal_Rela * relocs)
a06ea964 4687{
cec5225b 4688 struct elf_aarch64_link_hash_table *htab;
59c108f7
NC
4689 Elf_Internal_Shdr *symtab_hdr;
4690 struct elf_link_hash_entry **sym_hashes;
cb8af559 4691 struct elf_aarch64_local_symbol *locals;
59c108f7
NC
4692 const Elf_Internal_Rela *rel, *relend;
4693
4694 if (info->relocatable)
4695 return TRUE;
4696
cec5225b 4697 htab = elf_aarch64_hash_table (info);
59c108f7
NC
4698
4699 if (htab == NULL)
4700 return FALSE;
4701
4702 elf_section_data (sec)->local_dynrel = NULL;
4703
4704 symtab_hdr = &elf_symtab_hdr (abfd);
4705 sym_hashes = elf_sym_hashes (abfd);
4706
cec5225b 4707 locals = elf_aarch64_locals (abfd);
59c108f7
NC
4708
4709 relend = relocs + sec->reloc_count;
4710 for (rel = relocs; rel < relend; rel++)
4711 {
4712 unsigned long r_symndx;
4713 unsigned int r_type;
4714 struct elf_link_hash_entry *h = NULL;
4715
cec5225b 4716 r_symndx = ELFNN_R_SYM (rel->r_info);
8847944f 4717
59c108f7
NC
4718 if (r_symndx >= symtab_hdr->sh_info)
4719 {
8847944f 4720
59c108f7
NC
4721 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4722 while (h->root.type == bfd_link_hash_indirect
4723 || h->root.type == bfd_link_hash_warning)
4724 h = (struct elf_link_hash_entry *) h->root.u.i.link;
59c108f7
NC
4725 }
4726 else
4727 {
4728 Elf_Internal_Sym *isym;
4729
8847944f 4730 /* A local symbol. */
59c108f7
NC
4731 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
4732 abfd, r_symndx);
1419bbe5
WN
4733
4734 /* Check relocation against local STT_GNU_IFUNC symbol. */
4735 if (isym != NULL
4736 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
4737 {
4738 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel, FALSE);
4739 if (h == NULL)
4740 abort ();
4741 }
4742 }
4743
4744 if (h)
4745 {
4746 struct elf_aarch64_link_hash_entry *eh;
4747 struct elf_dyn_relocs **pp;
4748 struct elf_dyn_relocs *p;
4749
4750 eh = (struct elf_aarch64_link_hash_entry *) h;
4751
4752 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
4753 if (p->sec == sec)
4754 {
4755 /* Everything must go for SEC. */
4756 *pp = p->next;
4757 break;
4758 }
59c108f7
NC
4759 }
4760
cec5225b 4761 r_type = ELFNN_R_TYPE (rel->r_info);
a6bb11b2 4762 switch (aarch64_tls_transition (abfd,info, r_type, h ,r_symndx))
59c108f7 4763 {
a6bb11b2 4764 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7bcccb57
MS
4765 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
4766 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
4767 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
4768 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
4769 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4770 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
4771 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
a6bb11b2 4772 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7bcccb57 4773 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
a6bb11b2 4774 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 4775 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7bcccb57 4776 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
a6bb11b2 4777 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
7bcccb57 4778 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
a6bb11b2 4779 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
a6bb11b2
YZ
4780 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
4781 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
7bcccb57
MS
4782 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
4783 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
4784 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a6bb11b2 4785 if (h != NULL)
59c108f7
NC
4786 {
4787 if (h->got.refcount > 0)
4788 h->got.refcount -= 1;
1419bbe5
WN
4789
4790 if (h->type == STT_GNU_IFUNC)
4791 {
4792 if (h->plt.refcount > 0)
4793 h->plt.refcount -= 1;
4794 }
59c108f7 4795 }
cb8af559 4796 else if (locals != NULL)
59c108f7 4797 {
cb8af559
NC
4798 if (locals[r_symndx].got_refcount > 0)
4799 locals[r_symndx].got_refcount -= 1;
59c108f7
NC
4800 }
4801 break;
4802
a6bb11b2
YZ
4803 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
4804 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
4805 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
59c108f7
NC
4806 if (h != NULL && info->executable)
4807 {
4808 if (h->plt.refcount > 0)
4809 h->plt.refcount -= 1;
4810 }
4811 break;
4812
a6bb11b2
YZ
4813 case BFD_RELOC_AARCH64_CALL26:
4814 case BFD_RELOC_AARCH64_JUMP26:
4815 /* If this is a local symbol then we resolve it
4816 directly without creating a PLT entry. */
59c108f7
NC
4817 if (h == NULL)
4818 continue;
4819
4820 if (h->plt.refcount > 0)
4821 h->plt.refcount -= 1;
4822 break;
4823
a6bb11b2 4824 case BFD_RELOC_AARCH64_NN:
8847944f 4825 if (h != NULL && info->executable)
59c108f7
NC
4826 {
4827 if (h->plt.refcount > 0)
4828 h->plt.refcount -= 1;
4829 }
4830 break;
cec5225b 4831
59c108f7
NC
4832 default:
4833 break;
4834 }
4835 }
4836
a06ea964
NC
4837 return TRUE;
4838}
4839
4840/* Adjust a symbol defined by a dynamic object and referenced by a
4841 regular object. The current definition is in some section of the
4842 dynamic object, but we're not including those sections. We have to
4843 change the definition to something the rest of the link can
4844 understand. */
4845
4846static bfd_boolean
cec5225b 4847elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info,
a06ea964
NC
4848 struct elf_link_hash_entry *h)
4849{
cec5225b 4850 struct elf_aarch64_link_hash_table *htab;
a06ea964
NC
4851 asection *s;
4852
4853 /* If this is a function, put it in the procedure linkage table. We
4854 will fill in the contents of the procedure linkage table later,
4855 when we know the address of the .got section. */
1419bbe5 4856 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
a06ea964
NC
4857 {
4858 if (h->plt.refcount <= 0
1419bbe5
WN
4859 || (h->type != STT_GNU_IFUNC
4860 && (SYMBOL_CALLS_LOCAL (info, h)
4861 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
4862 && h->root.type == bfd_link_hash_undefweak))))
a06ea964
NC
4863 {
4864 /* This case can occur if we saw a CALL26 reloc in
4865 an input file, but the symbol wasn't referred to
4866 by a dynamic object or all references were
4867 garbage collected. In which case we can end up
4868 resolving. */
4869 h->plt.offset = (bfd_vma) - 1;
4870 h->needs_plt = 0;
4871 }
4872
4873 return TRUE;
4874 }
4875 else
4876 /* It's possible that we incorrectly decided a .plt reloc was
4877 needed for an R_X86_64_PC32 reloc to a non-function sym in
4878 check_relocs. We can't decide accurately between function and
4879 non-function syms in check-relocs; Objects loaded later in
4880 the link may change h->type. So fix it now. */
4881 h->plt.offset = (bfd_vma) - 1;
4882
4883
4884 /* If this is a weak symbol, and there is a real definition, the
4885 processor independent code will have arranged for us to see the
4886 real definition first, and we can just use the same value. */
4887 if (h->u.weakdef != NULL)
4888 {
4889 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
4890 || h->u.weakdef->root.type == bfd_link_hash_defweak);
4891 h->root.u.def.section = h->u.weakdef->root.u.def.section;
4892 h->root.u.def.value = h->u.weakdef->root.u.def.value;
4893 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
4894 h->non_got_ref = h->u.weakdef->non_got_ref;
4895 return TRUE;
4896 }
4897
4898 /* If we are creating a shared library, we must presume that the
4899 only references to the symbol are via the global offset table.
4900 For such cases we need not do anything here; the relocations will
4901 be handled correctly by relocate_section. */
4902 if (info->shared)
4903 return TRUE;
4904
4905 /* If there are no references to this symbol that do not use the
4906 GOT, we don't need to generate a copy reloc. */
4907 if (!h->non_got_ref)
4908 return TRUE;
4909
4910 /* If -z nocopyreloc was given, we won't generate them either. */
4911 if (info->nocopyreloc)
4912 {
4913 h->non_got_ref = 0;
4914 return TRUE;
4915 }
4916
4917 /* We must allocate the symbol in our .dynbss section, which will
4918 become part of the .bss section of the executable. There will be
4919 an entry for this symbol in the .dynsym section. The dynamic
4920 object will contain position independent code, so all references
4921 from the dynamic object to this symbol will go through the global
4922 offset table. The dynamic linker will use the .dynsym entry to
4923 determine the address it must put in the global offset table, so
4924 both the dynamic object and the regular object will refer to the
4925 same memory location for the variable. */
4926
cec5225b 4927 htab = elf_aarch64_hash_table (info);
a06ea964
NC
4928
4929 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
4930 to copy the initial value out of the dynamic object and into the
4931 runtime process image. */
4932 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
4933 {
4934 htab->srelbss->size += RELOC_SIZE (htab);
4935 h->needs_copy = 1;
4936 }
4937
4938 s = htab->sdynbss;
4939
4940 return _bfd_elf_adjust_dynamic_copy (h, s);
4941
4942}
4943
4944static bfd_boolean
cec5225b 4945elfNN_aarch64_allocate_local_symbols (bfd *abfd, unsigned number)
a06ea964
NC
4946{
4947 struct elf_aarch64_local_symbol *locals;
cec5225b 4948 locals = elf_aarch64_locals (abfd);
a06ea964
NC
4949 if (locals == NULL)
4950 {
4951 locals = (struct elf_aarch64_local_symbol *)
4952 bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol));
4953 if (locals == NULL)
4954 return FALSE;
cec5225b 4955 elf_aarch64_locals (abfd) = locals;
a06ea964
NC
4956 }
4957 return TRUE;
4958}
4959
cc0efaa8
MS
4960/* Create the .got section to hold the global offset table. */
4961
4962static bfd_boolean
4963aarch64_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4964{
4965 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4966 flagword flags;
4967 asection *s;
4968 struct elf_link_hash_entry *h;
4969 struct elf_link_hash_table *htab = elf_hash_table (info);
4970
4971 /* This function may be called more than once. */
4972 s = bfd_get_linker_section (abfd, ".got");
4973 if (s != NULL)
4974 return TRUE;
4975
4976 flags = bed->dynamic_sec_flags;
4977
4978 s = bfd_make_section_anyway_with_flags (abfd,
4979 (bed->rela_plts_and_copies_p
4980 ? ".rela.got" : ".rel.got"),
4981 (bed->dynamic_sec_flags
4982 | SEC_READONLY));
4983 if (s == NULL
4984 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
4985 return FALSE;
4986 htab->srelgot = s;
4987
4988 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4989 if (s == NULL
4990 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
4991 return FALSE;
4992 htab->sgot = s;
4993 htab->sgot->size += GOT_ENTRY_SIZE;
4994
4995 if (bed->want_got_sym)
4996 {
4997 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
4998 (or .got.plt) section. We don't do this in the linker script
4999 because we don't want to define the symbol if we are not creating
5000 a global offset table. */
5001 h = _bfd_elf_define_linkage_sym (abfd, info, s,
5002 "_GLOBAL_OFFSET_TABLE_");
5003 elf_hash_table (info)->hgot = h;
5004 if (h == NULL)
5005 return FALSE;
5006 }
5007
5008 if (bed->want_got_plt)
5009 {
5010 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
5011 if (s == NULL
5012 || !bfd_set_section_alignment (abfd, s,
5013 bed->s->log_file_align))
5014 return FALSE;
5015 htab->sgotplt = s;
5016 }
5017
5018 /* The first bit of the global offset table is the header. */
5019 s->size += bed->got_header_size;
5020
5021 return TRUE;
5022}
5023
a06ea964
NC
5024/* Look through the relocs for a section during the first phase. */
5025
5026static bfd_boolean
cec5225b 5027elfNN_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info,
a06ea964
NC
5028 asection *sec, const Elf_Internal_Rela *relocs)
5029{
5030 Elf_Internal_Shdr *symtab_hdr;
5031 struct elf_link_hash_entry **sym_hashes;
5032 const Elf_Internal_Rela *rel;
5033 const Elf_Internal_Rela *rel_end;
5034 asection *sreloc;
5035
cec5225b 5036 struct elf_aarch64_link_hash_table *htab;
a06ea964 5037
a06ea964
NC
5038 if (info->relocatable)
5039 return TRUE;
5040
5041 BFD_ASSERT (is_aarch64_elf (abfd));
5042
cec5225b 5043 htab = elf_aarch64_hash_table (info);
a06ea964
NC
5044 sreloc = NULL;
5045
5046 symtab_hdr = &elf_symtab_hdr (abfd);
5047 sym_hashes = elf_sym_hashes (abfd);
a06ea964
NC
5048
5049 rel_end = relocs + sec->reloc_count;
5050 for (rel = relocs; rel < rel_end; rel++)
5051 {
5052 struct elf_link_hash_entry *h;
5053 unsigned long r_symndx;
5054 unsigned int r_type;
a6bb11b2 5055 bfd_reloc_code_real_type bfd_r_type;
1419bbe5 5056 Elf_Internal_Sym *isym;
a06ea964 5057
cec5225b
YZ
5058 r_symndx = ELFNN_R_SYM (rel->r_info);
5059 r_type = ELFNN_R_TYPE (rel->r_info);
a06ea964
NC
5060
5061 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
5062 {
5063 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
5064 r_symndx);
5065 return FALSE;
5066 }
5067
ed5acf27 5068 if (r_symndx < symtab_hdr->sh_info)
1419bbe5
WN
5069 {
5070 /* A local symbol. */
5071 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5072 abfd, r_symndx);
5073 if (isym == NULL)
5074 return FALSE;
5075
5076 /* Check relocation against local STT_GNU_IFUNC symbol. */
5077 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
5078 {
5079 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel,
5080 TRUE);
5081 if (h == NULL)
5082 return FALSE;
5083
5084 /* Fake a STT_GNU_IFUNC symbol. */
5085 h->type = STT_GNU_IFUNC;
5086 h->def_regular = 1;
5087 h->ref_regular = 1;
5088 h->forced_local = 1;
5089 h->root.type = bfd_link_hash_defined;
5090 }
5091 else
5092 h = NULL;
5093 }
a06ea964
NC
5094 else
5095 {
5096 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5097 while (h->root.type == bfd_link_hash_indirect
5098 || h->root.type == bfd_link_hash_warning)
5099 h = (struct elf_link_hash_entry *) h->root.u.i.link;
81fbe831
AM
5100
5101 /* PR15323, ref flags aren't set for references in the same
5102 object. */
5103 h->root.non_ir_ref = 1;
a06ea964
NC
5104 }
5105
5106 /* Could be done earlier, if h were already available. */
a6bb11b2 5107 bfd_r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx);
a06ea964 5108
1419bbe5
WN
5109 if (h != NULL)
5110 {
5111 /* Create the ifunc sections for static executables. If we
5112 never see an indirect function symbol nor we are building
5113 a static executable, those sections will be empty and
5114 won't appear in output. */
5115 switch (bfd_r_type)
5116 {
5117 default:
5118 break;
5119
5120 case BFD_RELOC_AARCH64_NN:
5121 case BFD_RELOC_AARCH64_CALL26:
5122 case BFD_RELOC_AARCH64_JUMP26:
5123 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5124 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5125 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5126 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5127 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5128 case BFD_RELOC_AARCH64_ADD_LO12:
5129 if (htab->root.dynobj == NULL)
5130 htab->root.dynobj = abfd;
5131 if (!_bfd_elf_create_ifunc_sections (htab->root.dynobj, info))
5132 return FALSE;
5133 break;
5134 }
5135
5136 /* It is referenced by a non-shared object. */
5137 h->ref_regular = 1;
5138 h->root.non_ir_ref = 1;
5139 }
5140
a6bb11b2 5141 switch (bfd_r_type)
a06ea964 5142 {
a6bb11b2 5143 case BFD_RELOC_AARCH64_NN:
a06ea964
NC
5144
5145 /* We don't need to handle relocs into sections not going into
5146 the "real" output. */
5147 if ((sec->flags & SEC_ALLOC) == 0)
5148 break;
5149
5150 if (h != NULL)
5151 {
5152 if (!info->shared)
5153 h->non_got_ref = 1;
5154
5155 h->plt.refcount += 1;
5156 h->pointer_equality_needed = 1;
5157 }
5158
5159 /* No need to do anything if we're not creating a shared
5160 object. */
5161 if (! info->shared)
5162 break;
5163
5164 {
5165 struct elf_dyn_relocs *p;
5166 struct elf_dyn_relocs **head;
5167
5168 /* We must copy these reloc types into the output file.
5169 Create a reloc section in dynobj and make room for
5170 this reloc. */
5171 if (sreloc == NULL)
5172 {
5173 if (htab->root.dynobj == NULL)
5174 htab->root.dynobj = abfd;
5175
5176 sreloc = _bfd_elf_make_dynamic_reloc_section
0608afa7 5177 (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ TRUE);
a06ea964
NC
5178
5179 if (sreloc == NULL)
5180 return FALSE;
5181 }
5182
5183 /* If this is a global symbol, we count the number of
5184 relocations we need for this symbol. */
5185 if (h != NULL)
5186 {
cec5225b
YZ
5187 struct elf_aarch64_link_hash_entry *eh;
5188 eh = (struct elf_aarch64_link_hash_entry *) h;
a06ea964
NC
5189 head = &eh->dyn_relocs;
5190 }
5191 else
5192 {
5193 /* Track dynamic relocs needed for local syms too.
5194 We really need local syms available to do this
5195 easily. Oh well. */
5196
5197 asection *s;
5198 void **vpp;
a06ea964
NC
5199
5200 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5201 abfd, r_symndx);
5202 if (isym == NULL)
5203 return FALSE;
5204
5205 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5206 if (s == NULL)
5207 s = sec;
5208
5209 /* Beware of type punned pointers vs strict aliasing
5210 rules. */
5211 vpp = &(elf_section_data (s)->local_dynrel);
5212 head = (struct elf_dyn_relocs **) vpp;
5213 }
5214
5215 p = *head;
5216 if (p == NULL || p->sec != sec)
5217 {
5218 bfd_size_type amt = sizeof *p;
5219 p = ((struct elf_dyn_relocs *)
5220 bfd_zalloc (htab->root.dynobj, amt));
5221 if (p == NULL)
5222 return FALSE;
5223 p->next = *head;
5224 *head = p;
5225 p->sec = sec;
5226 }
5227
5228 p->count += 1;
5229
5230 }
5231 break;
5232
5233 /* RR: We probably want to keep a consistency check that
5234 there are no dangling GOT_PAGE relocs. */
a6bb11b2 5235 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7bcccb57
MS
5236 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5237 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5238 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5239 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
5240 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5241 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
5242 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
a6bb11b2 5243 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7bcccb57 5244 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
a6bb11b2 5245 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 5246 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7bcccb57 5247 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
a6bb11b2 5248 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
7bcccb57 5249 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
a6bb11b2 5250 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
a6bb11b2
YZ
5251 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5252 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
7bcccb57
MS
5253 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5254 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5255 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a06ea964
NC
5256 {
5257 unsigned got_type;
5258 unsigned old_got_type;
5259
a6bb11b2 5260 got_type = aarch64_reloc_got_type (bfd_r_type);
a06ea964
NC
5261
5262 if (h)
5263 {
5264 h->got.refcount += 1;
cec5225b 5265 old_got_type = elf_aarch64_hash_entry (h)->got_type;
a06ea964
NC
5266 }
5267 else
5268 {
5269 struct elf_aarch64_local_symbol *locals;
5270
cec5225b 5271 if (!elfNN_aarch64_allocate_local_symbols
a06ea964
NC
5272 (abfd, symtab_hdr->sh_info))
5273 return FALSE;
5274
cec5225b 5275 locals = elf_aarch64_locals (abfd);
a06ea964
NC
5276 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
5277 locals[r_symndx].got_refcount += 1;
5278 old_got_type = locals[r_symndx].got_type;
5279 }
5280
5281 /* If a variable is accessed with both general dynamic TLS
5282 methods, two slots may be created. */
5283 if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type))
5284 got_type |= old_got_type;
5285
5286 /* We will already have issued an error message if there
5287 is a TLS/non-TLS mismatch, based on the symbol type.
5288 So just combine any TLS types needed. */
5289 if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL
5290 && got_type != GOT_NORMAL)
5291 got_type |= old_got_type;
5292
5293 /* If the symbol is accessed by both IE and GD methods, we
5294 are able to relax. Turn off the GD flag, without
5295 messing up with any other kind of TLS types that may be
5296 involved. */
5297 if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type))
5298 got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD);
5299
5300 if (old_got_type != got_type)
5301 {
5302 if (h != NULL)
cec5225b 5303 elf_aarch64_hash_entry (h)->got_type = got_type;
a06ea964
NC
5304 else
5305 {
5306 struct elf_aarch64_local_symbol *locals;
cec5225b 5307 locals = elf_aarch64_locals (abfd);
a06ea964
NC
5308 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
5309 locals[r_symndx].got_type = got_type;
5310 }
5311 }
5312
cc0efaa8
MS
5313 if (htab->root.dynobj == NULL)
5314 htab->root.dynobj = abfd;
5315 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
5316 return FALSE;
a06ea964
NC
5317 break;
5318 }
5319
a6bb11b2
YZ
5320 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
5321 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5322 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
a06ea964
NC
5323 if (h != NULL && info->executable)
5324 {
5325 /* If this reloc is in a read-only section, we might
5326 need a copy reloc. We can't check reliably at this
5327 stage whether the section is read-only, as input
5328 sections have not yet been mapped to output sections.
5329 Tentatively set the flag for now, and correct in
5330 adjust_dynamic_symbol. */
5331 h->non_got_ref = 1;
5332 h->plt.refcount += 1;
5333 h->pointer_equality_needed = 1;
5334 }
5335 /* FIXME:: RR need to handle these in shared libraries
5336 and essentially bomb out as these being non-PIC
5337 relocations in shared libraries. */
5338 break;
5339
a6bb11b2
YZ
5340 case BFD_RELOC_AARCH64_CALL26:
5341 case BFD_RELOC_AARCH64_JUMP26:
a06ea964
NC
5342 /* If this is a local symbol then we resolve it
5343 directly without creating a PLT entry. */
5344 if (h == NULL)
5345 continue;
5346
5347 h->needs_plt = 1;
1419bbe5
WN
5348 if (h->plt.refcount <= 0)
5349 h->plt.refcount = 1;
5350 else
5351 h->plt.refcount += 1;
a06ea964 5352 break;
a6bb11b2
YZ
5353
5354 default:
5355 break;
a06ea964
NC
5356 }
5357 }
a6bb11b2 5358
a06ea964
NC
5359 return TRUE;
5360}
5361
5362/* Treat mapping symbols as special target symbols. */
5363
5364static bfd_boolean
cec5225b 5365elfNN_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED,
a06ea964
NC
5366 asymbol *sym)
5367{
5368 return bfd_is_aarch64_special_symbol_name (sym->name,
5369 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY);
5370}
5371
5372/* This is a copy of elf_find_function () from elf.c except that
5373 AArch64 mapping symbols are ignored when looking for function names. */
5374
5375static bfd_boolean
5376aarch64_elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
5377 asection *section,
5378 asymbol **symbols,
5379 bfd_vma offset,
5380 const char **filename_ptr,
5381 const char **functionname_ptr)
5382{
5383 const char *filename = NULL;
5384 asymbol *func = NULL;
5385 bfd_vma low_func = 0;
5386 asymbol **p;
5387
5388 for (p = symbols; *p != NULL; p++)
5389 {
5390 elf_symbol_type *q;
5391
5392 q = (elf_symbol_type *) * p;
5393
5394 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
5395 {
5396 default:
5397 break;
5398 case STT_FILE:
5399 filename = bfd_asymbol_name (&q->symbol);
5400 break;
5401 case STT_FUNC:
5402 case STT_NOTYPE:
5403 /* Skip mapping symbols. */
5404 if ((q->symbol.flags & BSF_LOCAL)
5405 && (bfd_is_aarch64_special_symbol_name
5406 (q->symbol.name, BFD_AARCH64_SPECIAL_SYM_TYPE_ANY)))
5407 continue;
5408 /* Fall through. */
5409 if (bfd_get_section (&q->symbol) == section
5410 && q->symbol.value >= low_func && q->symbol.value <= offset)
5411 {
5412 func = (asymbol *) q;
5413 low_func = q->symbol.value;
5414 }
5415 break;
5416 }
5417 }
5418
5419 if (func == NULL)
5420 return FALSE;
5421
5422 if (filename_ptr)
5423 *filename_ptr = filename;
5424 if (functionname_ptr)
5425 *functionname_ptr = bfd_asymbol_name (func);
5426
5427 return TRUE;
5428}
5429
5430
5431/* Find the nearest line to a particular section and offset, for error
5432 reporting. This code is a duplicate of the code in elf.c, except
5433 that it uses aarch64_elf_find_function. */
5434
5435static bfd_boolean
cec5225b 5436elfNN_aarch64_find_nearest_line (bfd *abfd,
a06ea964
NC
5437 asection *section,
5438 asymbol **symbols,
5439 bfd_vma offset,
5440 const char **filename_ptr,
5441 const char **functionname_ptr,
5442 unsigned int *line_ptr)
5443{
5444 bfd_boolean found = FALSE;
5445
5446 /* We skip _bfd_dwarf1_find_nearest_line since no known AArch64
5447 toolchain uses it. */
5448
5449 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
5450 section, symbols, offset,
5451 filename_ptr, functionname_ptr,
5452 line_ptr, NULL, 0,
5453 &elf_tdata (abfd)->dwarf2_find_line_info))
5454 {
5455 if (!*functionname_ptr)
5456 aarch64_elf_find_function (abfd, section, symbols, offset,
5457 *filename_ptr ? NULL : filename_ptr,
5458 functionname_ptr);
5459
5460 return TRUE;
5461 }
5462
5463 if (!_bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
5464 &found, filename_ptr,
5465 functionname_ptr, line_ptr,
5466 &elf_tdata (abfd)->line_info))
5467 return FALSE;
5468
5469 if (found && (*functionname_ptr || *line_ptr))
5470 return TRUE;
5471
5472 if (symbols == NULL)
5473 return FALSE;
5474
5475 if (!aarch64_elf_find_function (abfd, section, symbols, offset,
5476 filename_ptr, functionname_ptr))
5477 return FALSE;
5478
5479 *line_ptr = 0;
5480 return TRUE;
5481}
5482
5483static bfd_boolean
cec5225b 5484elfNN_aarch64_find_inliner_info (bfd *abfd,
a06ea964
NC
5485 const char **filename_ptr,
5486 const char **functionname_ptr,
5487 unsigned int *line_ptr)
5488{
5489 bfd_boolean found;
5490 found = _bfd_dwarf2_find_inliner_info
5491 (abfd, filename_ptr,
5492 functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info);
5493 return found;
5494}
5495
5496
5497static void
cec5225b 5498elfNN_aarch64_post_process_headers (bfd *abfd,
1419bbe5 5499 struct bfd_link_info *link_info)
a06ea964
NC
5500{
5501 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
5502
5503 i_ehdrp = elf_elfheader (abfd);
a06ea964 5504 i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION;
1419bbe5
WN
5505
5506 _bfd_elf_set_osabi (abfd, link_info);
a06ea964
NC
5507}
5508
5509static enum elf_reloc_type_class
cec5225b 5510elfNN_aarch64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
7e612e98
AM
5511 const asection *rel_sec ATTRIBUTE_UNUSED,
5512 const Elf_Internal_Rela *rela)
a06ea964 5513{
cec5225b 5514 switch ((int) ELFNN_R_TYPE (rela->r_info))
a06ea964 5515 {
a6bb11b2 5516 case AARCH64_R (RELATIVE):
a06ea964 5517 return reloc_class_relative;
a6bb11b2 5518 case AARCH64_R (JUMP_SLOT):
a06ea964 5519 return reloc_class_plt;
a6bb11b2 5520 case AARCH64_R (COPY):
a06ea964
NC
5521 return reloc_class_copy;
5522 default:
5523 return reloc_class_normal;
5524 }
5525}
5526
5527/* Set the right machine number for an AArch64 ELF file. */
5528
5529static bfd_boolean
cec5225b 5530elfNN_aarch64_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
a06ea964
NC
5531{
5532 if (hdr->sh_type == SHT_NOTE)
5533 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
5534
5535 return TRUE;
5536}
5537
5538/* Handle an AArch64 specific section when reading an object file. This is
5539 called when bfd_section_from_shdr finds a section with an unknown
5540 type. */
5541
5542static bfd_boolean
cec5225b 5543elfNN_aarch64_section_from_shdr (bfd *abfd,
a06ea964
NC
5544 Elf_Internal_Shdr *hdr,
5545 const char *name, int shindex)
5546{
5547 /* There ought to be a place to keep ELF backend specific flags, but
5548 at the moment there isn't one. We just keep track of the
5549 sections by their name, instead. Fortunately, the ABI gives
5550 names for all the AArch64 specific sections, so we will probably get
5551 away with this. */
5552 switch (hdr->sh_type)
5553 {
5554 case SHT_AARCH64_ATTRIBUTES:
5555 break;
5556
5557 default:
5558 return FALSE;
5559 }
5560
5561 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5562 return FALSE;
5563
5564 return TRUE;
5565}
5566
5567/* A structure used to record a list of sections, independently
5568 of the next and prev fields in the asection structure. */
5569typedef struct section_list
5570{
5571 asection *sec;
5572 struct section_list *next;
5573 struct section_list *prev;
5574}
5575section_list;
5576
5577/* Unfortunately we need to keep a list of sections for which
5578 an _aarch64_elf_section_data structure has been allocated. This
cec5225b 5579 is because it is possible for functions like elfNN_aarch64_write_section
a06ea964
NC
5580 to be called on a section which has had an elf_data_structure
5581 allocated for it (and so the used_by_bfd field is valid) but
5582 for which the AArch64 extended version of this structure - the
5583 _aarch64_elf_section_data structure - has not been allocated. */
5584static section_list *sections_with_aarch64_elf_section_data = NULL;
5585
5586static void
5587record_section_with_aarch64_elf_section_data (asection *sec)
5588{
5589 struct section_list *entry;
5590
5591 entry = bfd_malloc (sizeof (*entry));
5592 if (entry == NULL)
5593 return;
5594 entry->sec = sec;
5595 entry->next = sections_with_aarch64_elf_section_data;
5596 entry->prev = NULL;
5597 if (entry->next != NULL)
5598 entry->next->prev = entry;
5599 sections_with_aarch64_elf_section_data = entry;
5600}
5601
5602static struct section_list *
5603find_aarch64_elf_section_entry (asection *sec)
5604{
5605 struct section_list *entry;
5606 static struct section_list *last_entry = NULL;
5607
5608 /* This is a short cut for the typical case where the sections are added
5609 to the sections_with_aarch64_elf_section_data list in forward order and
5610 then looked up here in backwards order. This makes a real difference
5611 to the ld-srec/sec64k.exp linker test. */
5612 entry = sections_with_aarch64_elf_section_data;
5613 if (last_entry != NULL)
5614 {
5615 if (last_entry->sec == sec)
5616 entry = last_entry;
5617 else if (last_entry->next != NULL && last_entry->next->sec == sec)
5618 entry = last_entry->next;
5619 }
5620
5621 for (; entry; entry = entry->next)
5622 if (entry->sec == sec)
5623 break;
5624
5625 if (entry)
5626 /* Record the entry prior to this one - it is the entry we are
5627 most likely to want to locate next time. Also this way if we
5628 have been called from
5629 unrecord_section_with_aarch64_elf_section_data () we will not
5630 be caching a pointer that is about to be freed. */
5631 last_entry = entry->prev;
5632
5633 return entry;
5634}
5635
5636static void
5637unrecord_section_with_aarch64_elf_section_data (asection *sec)
5638{
5639 struct section_list *entry;
5640
5641 entry = find_aarch64_elf_section_entry (sec);
5642
5643 if (entry)
5644 {
5645 if (entry->prev != NULL)
5646 entry->prev->next = entry->next;
5647 if (entry->next != NULL)
5648 entry->next->prev = entry->prev;
5649 if (entry == sections_with_aarch64_elf_section_data)
5650 sections_with_aarch64_elf_section_data = entry->next;
5651 free (entry);
5652 }
5653}
5654
5655
5656typedef struct
5657{
5658 void *finfo;
5659 struct bfd_link_info *info;
5660 asection *sec;
5661 int sec_shndx;
5662 int (*func) (void *, const char *, Elf_Internal_Sym *,
5663 asection *, struct elf_link_hash_entry *);
5664} output_arch_syminfo;
5665
5666enum map_symbol_type
5667{
5668 AARCH64_MAP_INSN,
5669 AARCH64_MAP_DATA
5670};
5671
5672
5673/* Output a single mapping symbol. */
5674
5675static bfd_boolean
cec5225b 5676elfNN_aarch64_output_map_sym (output_arch_syminfo *osi,
a06ea964
NC
5677 enum map_symbol_type type, bfd_vma offset)
5678{
5679 static const char *names[2] = { "$x", "$d" };
5680 Elf_Internal_Sym sym;
5681
5682 sym.st_value = (osi->sec->output_section->vma
5683 + osi->sec->output_offset + offset);
5684 sym.st_size = 0;
5685 sym.st_other = 0;
5686 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
5687 sym.st_shndx = osi->sec_shndx;
5688 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
5689}
5690
5691
5692
5693/* Output mapping symbols for PLT entries associated with H. */
5694
5695static bfd_boolean
cec5225b 5696elfNN_aarch64_output_plt_map (struct elf_link_hash_entry *h, void *inf)
a06ea964
NC
5697{
5698 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
5699 bfd_vma addr;
5700
5701 if (h->root.type == bfd_link_hash_indirect)
5702 return TRUE;
5703
5704 if (h->root.type == bfd_link_hash_warning)
5705 /* When warning symbols are created, they **replace** the "real"
5706 entry in the hash table, thus we never get to see the real
5707 symbol in a hash traversal. So look at it now. */
5708 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5709
5710 if (h->plt.offset == (bfd_vma) - 1)
5711 return TRUE;
5712
5713 addr = h->plt.offset;
5714 if (addr == 32)
5715 {
cec5225b 5716 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
a06ea964
NC
5717 return FALSE;
5718 }
5719 return TRUE;
5720}
5721
5722
5723/* Output a single local symbol for a generated stub. */
5724
5725static bfd_boolean
cec5225b 5726elfNN_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name,
a06ea964
NC
5727 bfd_vma offset, bfd_vma size)
5728{
5729 Elf_Internal_Sym sym;
5730
5731 sym.st_value = (osi->sec->output_section->vma
5732 + osi->sec->output_offset + offset);
5733 sym.st_size = size;
5734 sym.st_other = 0;
5735 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5736 sym.st_shndx = osi->sec_shndx;
5737 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
5738}
5739
5740static bfd_boolean
5741aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
5742{
cec5225b 5743 struct elf_aarch64_stub_hash_entry *stub_entry;
a06ea964
NC
5744 asection *stub_sec;
5745 bfd_vma addr;
5746 char *stub_name;
5747 output_arch_syminfo *osi;
5748
5749 /* Massage our args to the form they really have. */
cec5225b 5750 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
a06ea964
NC
5751 osi = (output_arch_syminfo *) in_arg;
5752
5753 stub_sec = stub_entry->stub_sec;
5754
5755 /* Ensure this stub is attached to the current section being
5756 processed. */
5757 if (stub_sec != osi->sec)
5758 return TRUE;
5759
5760 addr = (bfd_vma) stub_entry->stub_offset;
5761
5762 stub_name = stub_entry->output_name;
5763
5764 switch (stub_entry->stub_type)
5765 {
5766 case aarch64_stub_adrp_branch:
cec5225b 5767 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
a06ea964
NC
5768 sizeof (aarch64_adrp_branch_stub)))
5769 return FALSE;
cec5225b 5770 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
a06ea964
NC
5771 return FALSE;
5772 break;
5773 case aarch64_stub_long_branch:
cec5225b 5774 if (!elfNN_aarch64_output_stub_sym
a06ea964
NC
5775 (osi, stub_name, addr, sizeof (aarch64_long_branch_stub)))
5776 return FALSE;
cec5225b 5777 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
a06ea964 5778 return FALSE;
cec5225b 5779 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16))
a06ea964
NC
5780 return FALSE;
5781 break;
5782 default:
5783 BFD_FAIL ();
5784 }
5785
5786 return TRUE;
5787}
5788
5789/* Output mapping symbols for linker generated sections. */
5790
5791static bfd_boolean
cec5225b 5792elfNN_aarch64_output_arch_local_syms (bfd *output_bfd,
a06ea964
NC
5793 struct bfd_link_info *info,
5794 void *finfo,
5795 int (*func) (void *, const char *,
5796 Elf_Internal_Sym *,
5797 asection *,
5798 struct elf_link_hash_entry
5799 *))
5800{
5801 output_arch_syminfo osi;
cec5225b 5802 struct elf_aarch64_link_hash_table *htab;
a06ea964 5803
cec5225b 5804 htab = elf_aarch64_hash_table (info);
a06ea964
NC
5805
5806 osi.finfo = finfo;
5807 osi.info = info;
5808 osi.func = func;
5809
5810 /* Long calls stubs. */
5811 if (htab->stub_bfd && htab->stub_bfd->sections)
5812 {
5813 asection *stub_sec;
5814
5815 for (stub_sec = htab->stub_bfd->sections;
5816 stub_sec != NULL; stub_sec = stub_sec->next)
5817 {
5818 /* Ignore non-stub sections. */
5819 if (!strstr (stub_sec->name, STUB_SUFFIX))
5820 continue;
5821
5822 osi.sec = stub_sec;
5823
5824 osi.sec_shndx = _bfd_elf_section_from_bfd_section
5825 (output_bfd, osi.sec->output_section);
5826
5827 bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub,
5828 &osi);
5829 }
5830 }
5831
5832 /* Finally, output mapping symbols for the PLT. */
5833 if (!htab->root.splt || htab->root.splt->size == 0)
5834 return TRUE;
5835
5836 /* For now live without mapping symbols for the plt. */
5837 osi.sec_shndx = _bfd_elf_section_from_bfd_section
5838 (output_bfd, htab->root.splt->output_section);
5839 osi.sec = htab->root.splt;
5840
cec5225b 5841 elf_link_hash_traverse (&htab->root, elfNN_aarch64_output_plt_map,
a06ea964
NC
5842 (void *) &osi);
5843
5844 return TRUE;
5845
5846}
5847
5848/* Allocate target specific section data. */
5849
5850static bfd_boolean
cec5225b 5851elfNN_aarch64_new_section_hook (bfd *abfd, asection *sec)
a06ea964
NC
5852{
5853 if (!sec->used_by_bfd)
5854 {
5855 _aarch64_elf_section_data *sdata;
5856 bfd_size_type amt = sizeof (*sdata);
5857
5858 sdata = bfd_zalloc (abfd, amt);
5859 if (sdata == NULL)
5860 return FALSE;
5861 sec->used_by_bfd = sdata;
5862 }
5863
5864 record_section_with_aarch64_elf_section_data (sec);
5865
5866 return _bfd_elf_new_section_hook (abfd, sec);
5867}
5868
5869
5870static void
5871unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED,
5872 asection *sec,
5873 void *ignore ATTRIBUTE_UNUSED)
5874{
5875 unrecord_section_with_aarch64_elf_section_data (sec);
5876}
5877
5878static bfd_boolean
cec5225b 5879elfNN_aarch64_close_and_cleanup (bfd *abfd)
a06ea964
NC
5880{
5881 if (abfd->sections)
5882 bfd_map_over_sections (abfd,
5883 unrecord_section_via_map_over_sections, NULL);
5884
5885 return _bfd_elf_close_and_cleanup (abfd);
5886}
5887
5888static bfd_boolean
cec5225b 5889elfNN_aarch64_bfd_free_cached_info (bfd *abfd)
a06ea964
NC
5890{
5891 if (abfd->sections)
5892 bfd_map_over_sections (abfd,
5893 unrecord_section_via_map_over_sections, NULL);
5894
5895 return _bfd_free_cached_info (abfd);
5896}
5897
a06ea964
NC
5898/* Create dynamic sections. This is different from the ARM backend in that
5899 the got, plt, gotplt and their relocation sections are all created in the
5900 standard part of the bfd elf backend. */
5901
5902static bfd_boolean
cec5225b 5903elfNN_aarch64_create_dynamic_sections (bfd *dynobj,
a06ea964
NC
5904 struct bfd_link_info *info)
5905{
cec5225b 5906 struct elf_aarch64_link_hash_table *htab;
cc0efaa8
MS
5907
5908 /* We need to create .got section. */
5909 if (!aarch64_elf_create_got_section (dynobj, info))
5910 return FALSE;
a06ea964
NC
5911
5912 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
5913 return FALSE;
5914
cec5225b 5915 htab = elf_aarch64_hash_table (info);
a06ea964
NC
5916 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
5917 if (!info->shared)
5918 htab->srelbss = bfd_get_linker_section (dynobj, ".rela.bss");
5919
5920 if (!htab->sdynbss || (!info->shared && !htab->srelbss))
5921 abort ();
5922
a06ea964
NC
5923 return TRUE;
5924}
5925
5926
5927/* Allocate space in .plt, .got and associated reloc sections for
5928 dynamic relocs. */
5929
5930static bfd_boolean
cec5225b 5931elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
a06ea964
NC
5932{
5933 struct bfd_link_info *info;
cec5225b
YZ
5934 struct elf_aarch64_link_hash_table *htab;
5935 struct elf_aarch64_link_hash_entry *eh;
a06ea964
NC
5936 struct elf_dyn_relocs *p;
5937
5938 /* An example of a bfd_link_hash_indirect symbol is versioned
5939 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
5940 -> __gxx_personality_v0(bfd_link_hash_defined)
5941
5942 There is no need to process bfd_link_hash_indirect symbols here
5943 because we will also be presented with the concrete instance of
cec5225b 5944 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
a06ea964
NC
5945 called to copy all relevant data from the generic to the concrete
5946 symbol instance.
5947 */
5948 if (h->root.type == bfd_link_hash_indirect)
5949 return TRUE;
5950
5951 if (h->root.type == bfd_link_hash_warning)
5952 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5953
5954 info = (struct bfd_link_info *) inf;
cec5225b 5955 htab = elf_aarch64_hash_table (info);
a06ea964 5956
1419bbe5
WN
5957 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
5958 here if it is defined and referenced in a non-shared object. */
5959 if (h->type == STT_GNU_IFUNC
5960 && h->def_regular)
5961 return TRUE;
5962 else if (htab->root.dynamic_sections_created && h->plt.refcount > 0)
a06ea964
NC
5963 {
5964 /* Make sure this symbol is output as a dynamic symbol.
5965 Undefined weak syms won't yet be marked as dynamic. */
5966 if (h->dynindx == -1 && !h->forced_local)
5967 {
5968 if (!bfd_elf_link_record_dynamic_symbol (info, h))
5969 return FALSE;
5970 }
5971
5972 if (info->shared || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
5973 {
5974 asection *s = htab->root.splt;
5975
5976 /* If this is the first .plt entry, make room for the special
5977 first entry. */
5978 if (s->size == 0)
5979 s->size += htab->plt_header_size;
5980
5981 h->plt.offset = s->size;
5982
5983 /* If this symbol is not defined in a regular file, and we are
5984 not generating a shared library, then set the symbol to this
5985 location in the .plt. This is required to make function
5986 pointers compare as equal between the normal executable and
5987 the shared library. */
5988 if (!info->shared && !h->def_regular)
5989 {
5990 h->root.u.def.section = s;
5991 h->root.u.def.value = h->plt.offset;
5992 }
5993
5994 /* Make room for this entry. For now we only create the
5995 small model PLT entries. We later need to find a way
5996 of relaxing into these from the large model PLT entries. */
5997 s->size += PLT_SMALL_ENTRY_SIZE;
5998
5999 /* We also need to make an entry in the .got.plt section, which
6000 will be placed in the .got section by the linker script. */
6001 htab->root.sgotplt->size += GOT_ENTRY_SIZE;
6002
6003 /* We also need to make an entry in the .rela.plt section. */
6004 htab->root.srelplt->size += RELOC_SIZE (htab);
6005
6006 /* We need to ensure that all GOT entries that serve the PLT
6007 are consecutive with the special GOT slots [0] [1] and
6008 [2]. Any addtional relocations, such as
6009 R_AARCH64_TLSDESC, must be placed after the PLT related
6010 entries. We abuse the reloc_count such that during
6011 sizing we adjust reloc_count to indicate the number of
6012 PLT related reserved entries. In subsequent phases when
6013 filling in the contents of the reloc entries, PLT related
6014 entries are placed by computing their PLT index (0
6015 .. reloc_count). While other none PLT relocs are placed
6016 at the slot indicated by reloc_count and reloc_count is
6017 updated. */
6018
6019 htab->root.srelplt->reloc_count++;
6020 }
6021 else
6022 {
6023 h->plt.offset = (bfd_vma) - 1;
6024 h->needs_plt = 0;
6025 }
6026 }
6027 else
6028 {
6029 h->plt.offset = (bfd_vma) - 1;
6030 h->needs_plt = 0;
6031 }
6032
cec5225b 6033 eh = (struct elf_aarch64_link_hash_entry *) h;
a06ea964
NC
6034 eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
6035
6036 if (h->got.refcount > 0)
6037 {
6038 bfd_boolean dyn;
cec5225b 6039 unsigned got_type = elf_aarch64_hash_entry (h)->got_type;
a06ea964
NC
6040
6041 h->got.offset = (bfd_vma) - 1;
6042
6043 dyn = htab->root.dynamic_sections_created;
6044
6045 /* Make sure this symbol is output as a dynamic symbol.
6046 Undefined weak syms won't yet be marked as dynamic. */
6047 if (dyn && h->dynindx == -1 && !h->forced_local)
6048 {
6049 if (!bfd_elf_link_record_dynamic_symbol (info, h))
6050 return FALSE;
6051 }
6052
6053 if (got_type == GOT_UNKNOWN)
6054 {
6055 }
6056 else if (got_type == GOT_NORMAL)
6057 {
6058 h->got.offset = htab->root.sgot->size;
6059 htab->root.sgot->size += GOT_ENTRY_SIZE;
6060 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6061 || h->root.type != bfd_link_hash_undefweak)
6062 && (info->shared
6063 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
6064 {
6065 htab->root.srelgot->size += RELOC_SIZE (htab);
6066 }
6067 }
6068 else
6069 {
6070 int indx;
6071 if (got_type & GOT_TLSDESC_GD)
6072 {
6073 eh->tlsdesc_got_jump_table_offset =
6074 (htab->root.sgotplt->size
6075 - aarch64_compute_jump_table_size (htab));
6076 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
6077 h->got.offset = (bfd_vma) - 2;
6078 }
6079
6080 if (got_type & GOT_TLS_GD)
6081 {
6082 h->got.offset = htab->root.sgot->size;
6083 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
6084 }
6085
6086 if (got_type & GOT_TLS_IE)
6087 {
6088 h->got.offset = htab->root.sgot->size;
6089 htab->root.sgot->size += GOT_ENTRY_SIZE;
6090 }
6091
6092 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6093 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6094 || h->root.type != bfd_link_hash_undefweak)
6095 && (info->shared
6096 || indx != 0
6097 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
6098 {
6099 if (got_type & GOT_TLSDESC_GD)
6100 {
6101 htab->root.srelplt->size += RELOC_SIZE (htab);
6102 /* Note reloc_count not incremented here! We have
6103 already adjusted reloc_count for this relocation
6104 type. */
6105
6106 /* TLSDESC PLT is now needed, but not yet determined. */
6107 htab->tlsdesc_plt = (bfd_vma) - 1;
6108 }
6109
6110 if (got_type & GOT_TLS_GD)
6111 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
6112
6113 if (got_type & GOT_TLS_IE)
6114 htab->root.srelgot->size += RELOC_SIZE (htab);
6115 }
6116 }
6117 }
6118 else
6119 {
6120 h->got.offset = (bfd_vma) - 1;
6121 }
6122
6123 if (eh->dyn_relocs == NULL)
6124 return TRUE;
6125
6126 /* In the shared -Bsymbolic case, discard space allocated for
6127 dynamic pc-relative relocs against symbols which turn out to be
6128 defined in regular objects. For the normal shared case, discard
6129 space for pc-relative relocs that have become local due to symbol
6130 visibility changes. */
6131
6132 if (info->shared)
6133 {
6134 /* Relocs that use pc_count are those that appear on a call
6135 insn, or certain REL relocs that can generated via assembly.
6136 We want calls to protected symbols to resolve directly to the
6137 function rather than going via the plt. If people want
6138 function pointer comparisons to work as expected then they
6139 should avoid writing weird assembly. */
6140 if (SYMBOL_CALLS_LOCAL (info, h))
6141 {
6142 struct elf_dyn_relocs **pp;
6143
6144 for (pp = &eh->dyn_relocs; (p = *pp) != NULL;)
6145 {
6146 p->count -= p->pc_count;
6147 p->pc_count = 0;
6148 if (p->count == 0)
6149 *pp = p->next;
6150 else
6151 pp = &p->next;
6152 }
6153 }
6154
6155 /* Also discard relocs on undefined weak syms with non-default
6156 visibility. */
6157 if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak)
6158 {
6159 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
6160 eh->dyn_relocs = NULL;
6161
6162 /* Make sure undefined weak symbols are output as a dynamic
6163 symbol in PIEs. */
6164 else if (h->dynindx == -1
6165 && !h->forced_local
6166 && !bfd_elf_link_record_dynamic_symbol (info, h))
6167 return FALSE;
6168 }
6169
6170 }
6171 else if (ELIMINATE_COPY_RELOCS)
6172 {
6173 /* For the non-shared case, discard space for relocs against
6174 symbols which turn out to need copy relocs or are not
6175 dynamic. */
6176
6177 if (!h->non_got_ref
6178 && ((h->def_dynamic
6179 && !h->def_regular)
6180 || (htab->root.dynamic_sections_created
6181 && (h->root.type == bfd_link_hash_undefweak
6182 || h->root.type == bfd_link_hash_undefined))))
6183 {
6184 /* Make sure this symbol is output as a dynamic symbol.
6185 Undefined weak syms won't yet be marked as dynamic. */
6186 if (h->dynindx == -1
6187 && !h->forced_local
6188 && !bfd_elf_link_record_dynamic_symbol (info, h))
6189 return FALSE;
6190
6191 /* If that succeeded, we know we'll be keeping all the
6192 relocs. */
6193 if (h->dynindx != -1)
6194 goto keep;
6195 }
6196
6197 eh->dyn_relocs = NULL;
6198
6199 keep:;
6200 }
6201
6202 /* Finally, allocate space. */
6203 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6204 {
6205 asection *sreloc;
6206
6207 sreloc = elf_section_data (p->sec)->sreloc;
6208
6209 BFD_ASSERT (sreloc != NULL);
6210
6211 sreloc->size += p->count * RELOC_SIZE (htab);
6212 }
6213
6214 return TRUE;
6215}
6216
1419bbe5
WN
6217/* Allocate space in .plt, .got and associated reloc sections for
6218 ifunc dynamic relocs. */
6219
6220static bfd_boolean
6221elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h,
6222 void *inf)
6223{
6224 struct bfd_link_info *info;
6225 struct elf_aarch64_link_hash_table *htab;
6226 struct elf_aarch64_link_hash_entry *eh;
6227
6228 /* An example of a bfd_link_hash_indirect symbol is versioned
6229 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
6230 -> __gxx_personality_v0(bfd_link_hash_defined)
6231
6232 There is no need to process bfd_link_hash_indirect symbols here
6233 because we will also be presented with the concrete instance of
6234 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
6235 called to copy all relevant data from the generic to the concrete
6236 symbol instance.
6237 */
6238 if (h->root.type == bfd_link_hash_indirect)
6239 return TRUE;
6240
6241 if (h->root.type == bfd_link_hash_warning)
6242 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6243
6244 info = (struct bfd_link_info *) inf;
6245 htab = elf_aarch64_hash_table (info);
6246
6247 eh = (struct elf_aarch64_link_hash_entry *) h;
6248
6249 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
6250 here if it is defined and referenced in a non-shared object. */
6251 if (h->type == STT_GNU_IFUNC
6252 && h->def_regular)
6253 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
6254 &eh->dyn_relocs,
6255 htab->plt_entry_size,
6256 htab->plt_header_size,
6257 GOT_ENTRY_SIZE);
6258 return TRUE;
6259}
6260
6261/* Allocate space in .plt, .got and associated reloc sections for
6262 local dynamic relocs. */
6263
6264static bfd_boolean
6265elfNN_aarch64_allocate_local_dynrelocs (void **slot, void *inf)
6266{
6267 struct elf_link_hash_entry *h
6268 = (struct elf_link_hash_entry *) *slot;
6269
6270 if (h->type != STT_GNU_IFUNC
6271 || !h->def_regular
6272 || !h->ref_regular
6273 || !h->forced_local
6274 || h->root.type != bfd_link_hash_defined)
6275 abort ();
6276
6277 return elfNN_aarch64_allocate_dynrelocs (h, inf);
6278}
6279
6280/* Allocate space in .plt, .got and associated reloc sections for
6281 local ifunc dynamic relocs. */
6282
6283static bfd_boolean
6284elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot, void *inf)
6285{
6286 struct elf_link_hash_entry *h
6287 = (struct elf_link_hash_entry *) *slot;
6288
6289 if (h->type != STT_GNU_IFUNC
6290 || !h->def_regular
6291 || !h->ref_regular
6292 || !h->forced_local
6293 || h->root.type != bfd_link_hash_defined)
6294 abort ();
6295
6296 return elfNN_aarch64_allocate_ifunc_dynrelocs (h, inf);
6297}
a06ea964 6298
a06ea964
NC
6299/* This is the most important function of all . Innocuosly named
6300 though ! */
6301static bfd_boolean
cec5225b 6302elfNN_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
a06ea964
NC
6303 struct bfd_link_info *info)
6304{
cec5225b 6305 struct elf_aarch64_link_hash_table *htab;
a06ea964
NC
6306 bfd *dynobj;
6307 asection *s;
6308 bfd_boolean relocs;
6309 bfd *ibfd;
6310
cec5225b 6311 htab = elf_aarch64_hash_table ((info));
a06ea964
NC
6312 dynobj = htab->root.dynobj;
6313
6314 BFD_ASSERT (dynobj != NULL);
6315
6316 if (htab->root.dynamic_sections_created)
6317 {
6318 if (info->executable)
6319 {
6320 s = bfd_get_linker_section (dynobj, ".interp");
6321 if (s == NULL)
6322 abort ();
6323 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
6324 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
6325 }
6326 }
6327
6328 /* Set up .got offsets for local syms, and space for local dynamic
6329 relocs. */
6330 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6331 {
6332 struct elf_aarch64_local_symbol *locals = NULL;
6333 Elf_Internal_Shdr *symtab_hdr;
6334 asection *srel;
6335 unsigned int i;
6336
6337 if (!is_aarch64_elf (ibfd))
6338 continue;
6339
6340 for (s = ibfd->sections; s != NULL; s = s->next)
6341 {
6342 struct elf_dyn_relocs *p;
6343
6344 for (p = (struct elf_dyn_relocs *)
6345 (elf_section_data (s)->local_dynrel); p != NULL; p = p->next)
6346 {
6347 if (!bfd_is_abs_section (p->sec)
6348 && bfd_is_abs_section (p->sec->output_section))
6349 {
6350 /* Input section has been discarded, either because
6351 it is a copy of a linkonce section or due to
6352 linker script /DISCARD/, so we'll be discarding
6353 the relocs too. */
6354 }
6355 else if (p->count != 0)
6356 {
6357 srel = elf_section_data (p->sec)->sreloc;
6358 srel->size += p->count * RELOC_SIZE (htab);
6359 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
6360 info->flags |= DF_TEXTREL;
6361 }
6362 }
6363 }
6364
cec5225b 6365 locals = elf_aarch64_locals (ibfd);
a06ea964
NC
6366 if (!locals)
6367 continue;
6368
6369 symtab_hdr = &elf_symtab_hdr (ibfd);
6370 srel = htab->root.srelgot;
6371 for (i = 0; i < symtab_hdr->sh_info; i++)
6372 {
6373 locals[i].got_offset = (bfd_vma) - 1;
6374 locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
6375 if (locals[i].got_refcount > 0)
6376 {
6377 unsigned got_type = locals[i].got_type;
6378 if (got_type & GOT_TLSDESC_GD)
6379 {
6380 locals[i].tlsdesc_got_jump_table_offset =
6381 (htab->root.sgotplt->size
6382 - aarch64_compute_jump_table_size (htab));
6383 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
6384 locals[i].got_offset = (bfd_vma) - 2;
6385 }
6386
6387 if (got_type & GOT_TLS_GD)
6388 {
6389 locals[i].got_offset = htab->root.sgot->size;
6390 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
6391 }
6392
6393 if (got_type & GOT_TLS_IE)
6394 {
6395 locals[i].got_offset = htab->root.sgot->size;
6396 htab->root.sgot->size += GOT_ENTRY_SIZE;
6397 }
6398
6399 if (got_type == GOT_UNKNOWN)
6400 {
6401 }
6402
6403 if (got_type == GOT_NORMAL)
6404 {
6405 }
6406
6407 if (info->shared)
6408 {
6409 if (got_type & GOT_TLSDESC_GD)
6410 {
6411 htab->root.srelplt->size += RELOC_SIZE (htab);
6412 /* Note RELOC_COUNT not incremented here! */
6413 htab->tlsdesc_plt = (bfd_vma) - 1;
6414 }
6415
6416 if (got_type & GOT_TLS_GD)
6417 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
6418
6419 if (got_type & GOT_TLS_IE)
6420 htab->root.srelgot->size += RELOC_SIZE (htab);
6421 }
6422 }
6423 else
6424 {
6425 locals[i].got_refcount = (bfd_vma) - 1;
6426 }
6427 }
6428 }
6429
6430
6431 /* Allocate global sym .plt and .got entries, and space for global
6432 sym dynamic relocs. */
cec5225b 6433 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_dynrelocs,
a06ea964
NC
6434 info);
6435
1419bbe5
WN
6436 /* Allocate global ifunc sym .plt and .got entries, and space for global
6437 ifunc sym dynamic relocs. */
6438 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_ifunc_dynrelocs,
6439 info);
6440
6441 /* Allocate .plt and .got entries, and space for local symbols. */
6442 htab_traverse (htab->loc_hash_table,
6443 elfNN_aarch64_allocate_local_dynrelocs,
6444 info);
6445
6446 /* Allocate .plt and .got entries, and space for local ifunc symbols. */
6447 htab_traverse (htab->loc_hash_table,
6448 elfNN_aarch64_allocate_local_ifunc_dynrelocs,
6449 info);
a06ea964
NC
6450
6451 /* For every jump slot reserved in the sgotplt, reloc_count is
6452 incremented. However, when we reserve space for TLS descriptors,
6453 it's not incremented, so in order to compute the space reserved
6454 for them, it suffices to multiply the reloc count by the jump
6455 slot size. */
6456
6457 if (htab->root.srelplt)
8847944f 6458 htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab);
a06ea964
NC
6459
6460 if (htab->tlsdesc_plt)
6461 {
6462 if (htab->root.splt->size == 0)
6463 htab->root.splt->size += PLT_ENTRY_SIZE;
6464
6465 htab->tlsdesc_plt = htab->root.splt->size;
6466 htab->root.splt->size += PLT_TLSDESC_ENTRY_SIZE;
6467
6468 /* If we're not using lazy TLS relocations, don't generate the
6469 GOT entry required. */
6470 if (!(info->flags & DF_BIND_NOW))
6471 {
6472 htab->dt_tlsdesc_got = htab->root.sgot->size;
6473 htab->root.sgot->size += GOT_ENTRY_SIZE;
6474 }
6475 }
6476
6477 /* We now have determined the sizes of the various dynamic sections.
6478 Allocate memory for them. */
6479 relocs = FALSE;
6480 for (s = dynobj->sections; s != NULL; s = s->next)
6481 {
6482 if ((s->flags & SEC_LINKER_CREATED) == 0)
6483 continue;
6484
6485 if (s == htab->root.splt
6486 || s == htab->root.sgot
6487 || s == htab->root.sgotplt
6488 || s == htab->root.iplt
6489 || s == htab->root.igotplt || s == htab->sdynbss)
6490 {
6491 /* Strip this section if we don't need it; see the
6492 comment below. */
6493 }
6494 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
6495 {
6496 if (s->size != 0 && s != htab->root.srelplt)
6497 relocs = TRUE;
6498
6499 /* We use the reloc_count field as a counter if we need
6500 to copy relocs into the output file. */
6501 if (s != htab->root.srelplt)
6502 s->reloc_count = 0;
6503 }
6504 else
6505 {
6506 /* It's not one of our sections, so don't allocate space. */
6507 continue;
6508 }
6509
6510 if (s->size == 0)
6511 {
6512 /* If we don't need this section, strip it from the
6513 output file. This is mostly to handle .rela.bss and
6514 .rela.plt. We must create both sections in
6515 create_dynamic_sections, because they must be created
6516 before the linker maps input sections to output
6517 sections. The linker does that before
6518 adjust_dynamic_symbol is called, and it is that
6519 function which decides whether anything needs to go
6520 into these sections. */
6521
6522 s->flags |= SEC_EXCLUDE;
6523 continue;
6524 }
6525
6526 if ((s->flags & SEC_HAS_CONTENTS) == 0)
6527 continue;
6528
6529 /* Allocate memory for the section contents. We use bfd_zalloc
6530 here in case unused entries are not reclaimed before the
6531 section's contents are written out. This should not happen,
6532 but this way if it does, we get a R_AARCH64_NONE reloc instead
6533 of garbage. */
6534 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
6535 if (s->contents == NULL)
6536 return FALSE;
6537 }
6538
6539 if (htab->root.dynamic_sections_created)
6540 {
6541 /* Add some entries to the .dynamic section. We fill in the
cec5225b 6542 values later, in elfNN_aarch64_finish_dynamic_sections, but we
a06ea964
NC
6543 must add the entries now so that we get the correct size for
6544 the .dynamic section. The DT_DEBUG entry is filled in by the
6545 dynamic linker and used by the debugger. */
6546#define add_dynamic_entry(TAG, VAL) \
6547 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
6548
6549 if (info->executable)
6550 {
6551 if (!add_dynamic_entry (DT_DEBUG, 0))
6552 return FALSE;
6553 }
6554
6555 if (htab->root.splt->size != 0)
6556 {
6557 if (!add_dynamic_entry (DT_PLTGOT, 0)
6558 || !add_dynamic_entry (DT_PLTRELSZ, 0)
6559 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
6560 || !add_dynamic_entry (DT_JMPREL, 0))
6561 return FALSE;
6562
6563 if (htab->tlsdesc_plt
6564 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
6565 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
6566 return FALSE;
6567 }
6568
6569 if (relocs)
6570 {
6571 if (!add_dynamic_entry (DT_RELA, 0)
6572 || !add_dynamic_entry (DT_RELASZ, 0)
6573 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
6574 return FALSE;
6575
6576 /* If any dynamic relocs apply to a read-only section,
6577 then we need a DT_TEXTREL entry. */
6578 if ((info->flags & DF_TEXTREL) != 0)
6579 {
6580 if (!add_dynamic_entry (DT_TEXTREL, 0))
6581 return FALSE;
6582 }
6583 }
6584 }
6585#undef add_dynamic_entry
6586
6587 return TRUE;
a06ea964
NC
6588}
6589
6590static inline void
caed7120
YZ
6591elf_aarch64_update_plt_entry (bfd *output_bfd,
6592 bfd_reloc_code_real_type r_type,
6593 bfd_byte *plt_entry, bfd_vma value)
a06ea964 6594{
caed7120
YZ
6595 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (r_type);
6596
6597 _bfd_aarch64_elf_put_addend (output_bfd, plt_entry, r_type, howto, value);
a06ea964
NC
6598}
6599
6600static void
cec5225b
YZ
6601elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h,
6602 struct elf_aarch64_link_hash_table
1419bbe5
WN
6603 *htab, bfd *output_bfd,
6604 struct bfd_link_info *info)
a06ea964
NC
6605{
6606 bfd_byte *plt_entry;
6607 bfd_vma plt_index;
6608 bfd_vma got_offset;
6609 bfd_vma gotplt_entry_address;
6610 bfd_vma plt_entry_address;
6611 Elf_Internal_Rela rela;
6612 bfd_byte *loc;
1419bbe5
WN
6613 asection *plt, *gotplt, *relplt;
6614
6615 /* When building a static executable, use .iplt, .igot.plt and
6616 .rela.iplt sections for STT_GNU_IFUNC symbols. */
6617 if (htab->root.splt != NULL)
6618 {
6619 plt = htab->root.splt;
6620 gotplt = htab->root.sgotplt;
6621 relplt = htab->root.srelplt;
6622 }
6623 else
6624 {
6625 plt = htab->root.iplt;
6626 gotplt = htab->root.igotplt;
6627 relplt = htab->root.irelplt;
6628 }
6629
6630 /* Get the index in the procedure linkage table which
6631 corresponds to this symbol. This is the index of this symbol
6632 in all the symbols for which we are making plt entries. The
6633 first entry in the procedure linkage table is reserved.
a06ea964 6634
1419bbe5
WN
6635 Get the offset into the .got table of the entry that
6636 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
6637 bytes. The first three are reserved for the dynamic linker.
692e2b8b 6638
1419bbe5
WN
6639 For static executables, we don't reserve anything. */
6640
6641 if (plt == htab->root.splt)
6642 {
6643 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
6644 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
6645 }
6646 else
6647 {
6648 plt_index = h->plt.offset / htab->plt_entry_size;
6649 got_offset = plt_index * GOT_ENTRY_SIZE;
6650 }
6651
6652 plt_entry = plt->contents + h->plt.offset;
6653 plt_entry_address = plt->output_section->vma
6654 + plt->output_section->output_offset + h->plt.offset;
6655 gotplt_entry_address = gotplt->output_section->vma +
6656 gotplt->output_offset + got_offset;
a06ea964
NC
6657
6658 /* Copy in the boiler-plate for the PLTn entry. */
cec5225b 6659 memcpy (plt_entry, elfNN_aarch64_small_plt_entry, PLT_SMALL_ENTRY_SIZE);
a06ea964
NC
6660
6661 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
6662 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
caed7120
YZ
6663 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
6664 plt_entry,
6665 PG (gotplt_entry_address) -
6666 PG (plt_entry_address));
a06ea964
NC
6667
6668 /* Fill in the lo12 bits for the load from the pltgot. */
caed7120
YZ
6669 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
6670 plt_entry + 4,
6671 PG_OFFSET (gotplt_entry_address));
a06ea964 6672
9aff4b7a 6673 /* Fill in the lo12 bits for the add from the pltgot entry. */
caed7120
YZ
6674 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
6675 plt_entry + 8,
6676 PG_OFFSET (gotplt_entry_address));
a06ea964
NC
6677
6678 /* All the GOTPLT Entries are essentially initialized to PLT0. */
cec5225b 6679 bfd_put_NN (output_bfd,
1419bbe5
WN
6680 plt->output_section->vma + plt->output_offset,
6681 gotplt->contents + got_offset);
a06ea964 6682
a06ea964 6683 rela.r_offset = gotplt_entry_address;
1419bbe5
WN
6684
6685 if (h->dynindx == -1
6686 || ((info->executable
6687 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
6688 && h->def_regular
6689 && h->type == STT_GNU_IFUNC))
6690 {
6691 /* If an STT_GNU_IFUNC symbol is locally defined, generate
6692 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT. */
6693 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
6694 rela.r_addend = (h->root.u.def.value
6695 + h->root.u.def.section->output_section->vma
6696 + h->root.u.def.section->output_offset);
6697 }
6698 else
6699 {
6700 /* Fill in the entry in the .rela.plt section. */
6701 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (JUMP_SLOT));
6702 rela.r_addend = 0;
6703 }
a06ea964
NC
6704
6705 /* Compute the relocation entry to used based on PLT index and do
6706 not adjust reloc_count. The reloc_count has already been adjusted
6707 to account for this entry. */
1419bbe5 6708 loc = relplt->contents + plt_index * RELOC_SIZE (htab);
cec5225b 6709 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964
NC
6710}
6711
6712/* Size sections even though they're not dynamic. We use it to setup
6713 _TLS_MODULE_BASE_, if needed. */
6714
6715static bfd_boolean
cec5225b 6716elfNN_aarch64_always_size_sections (bfd *output_bfd,
a06ea964
NC
6717 struct bfd_link_info *info)
6718{
6719 asection *tls_sec;
6720
6721 if (info->relocatable)
6722 return TRUE;
6723
6724 tls_sec = elf_hash_table (info)->tls_sec;
6725
6726 if (tls_sec)
6727 {
6728 struct elf_link_hash_entry *tlsbase;
6729
6730 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
6731 "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
6732
6733 if (tlsbase)
6734 {
6735 struct bfd_link_hash_entry *h = NULL;
6736 const struct elf_backend_data *bed =
6737 get_elf_backend_data (output_bfd);
6738
6739 if (!(_bfd_generic_link_add_one_symbol
6740 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
6741 tls_sec, 0, NULL, FALSE, bed->collect, &h)))
6742 return FALSE;
6743
6744 tlsbase->type = STT_TLS;
6745 tlsbase = (struct elf_link_hash_entry *) h;
6746 tlsbase->def_regular = 1;
6747 tlsbase->other = STV_HIDDEN;
6748 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
6749 }
6750 }
6751
6752 return TRUE;
6753}
6754
6755/* Finish up dynamic symbol handling. We set the contents of various
6756 dynamic sections here. */
6757static bfd_boolean
cec5225b 6758elfNN_aarch64_finish_dynamic_symbol (bfd *output_bfd,
a06ea964
NC
6759 struct bfd_link_info *info,
6760 struct elf_link_hash_entry *h,
6761 Elf_Internal_Sym *sym)
6762{
cec5225b
YZ
6763 struct elf_aarch64_link_hash_table *htab;
6764 htab = elf_aarch64_hash_table (info);
a06ea964
NC
6765
6766 if (h->plt.offset != (bfd_vma) - 1)
6767 {
1419bbe5
WN
6768 asection *plt, *gotplt, *relplt;
6769
a06ea964
NC
6770 /* This symbol has an entry in the procedure linkage table. Set
6771 it up. */
6772
1419bbe5
WN
6773 /* When building a static executable, use .iplt, .igot.plt and
6774 .rela.iplt sections for STT_GNU_IFUNC symbols. */
6775 if (htab->root.splt != NULL)
6776 {
6777 plt = htab->root.splt;
6778 gotplt = htab->root.sgotplt;
6779 relplt = htab->root.srelplt;
6780 }
6781 else
6782 {
6783 plt = htab->root.iplt;
6784 gotplt = htab->root.igotplt;
6785 relplt = htab->root.irelplt;
6786 }
6787
6788 /* This symbol has an entry in the procedure linkage table. Set
6789 it up. */
6790 if ((h->dynindx == -1
6791 && !((h->forced_local || info->executable)
6792 && h->def_regular
6793 && h->type == STT_GNU_IFUNC))
6794 || plt == NULL
6795 || gotplt == NULL
6796 || relplt == NULL)
a06ea964
NC
6797 abort ();
6798
1419bbe5 6799 elfNN_aarch64_create_small_pltn_entry (h, htab, output_bfd, info);
a06ea964
NC
6800 if (!h->def_regular)
6801 {
6802 /* Mark the symbol as undefined, rather than as defined in
6803 the .plt section. Leave the value alone. This is a clue
6804 for the dynamic linker, to make function pointer
6805 comparisons work between an application and shared
6806 library. */
6807 sym->st_shndx = SHN_UNDEF;
6808 }
6809 }
6810
6811 if (h->got.offset != (bfd_vma) - 1
cec5225b 6812 && elf_aarch64_hash_entry (h)->got_type == GOT_NORMAL)
a06ea964
NC
6813 {
6814 Elf_Internal_Rela rela;
6815 bfd_byte *loc;
6816
6817 /* This symbol has an entry in the global offset table. Set it
6818 up. */
6819 if (htab->root.sgot == NULL || htab->root.srelgot == NULL)
6820 abort ();
6821
6822 rela.r_offset = (htab->root.sgot->output_section->vma
6823 + htab->root.sgot->output_offset
6824 + (h->got.offset & ~(bfd_vma) 1));
6825
6826 if (info->shared && SYMBOL_REFERENCES_LOCAL (info, h))
6827 {
6828 if (!h->def_regular)
6829 return FALSE;
6830
6831 BFD_ASSERT ((h->got.offset & 1) != 0);
a6bb11b2 6832 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
a06ea964
NC
6833 rela.r_addend = (h->root.u.def.value
6834 + h->root.u.def.section->output_section->vma
6835 + h->root.u.def.section->output_offset);
6836 }
6837 else
6838 {
6839 BFD_ASSERT ((h->got.offset & 1) == 0);
cec5225b 6840 bfd_put_NN (output_bfd, (bfd_vma) 0,
a06ea964 6841 htab->root.sgot->contents + h->got.offset);
a6bb11b2 6842 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (GLOB_DAT));
a06ea964
NC
6843 rela.r_addend = 0;
6844 }
6845
6846 loc = htab->root.srelgot->contents;
6847 loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab);
cec5225b 6848 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964
NC
6849 }
6850
6851 if (h->needs_copy)
6852 {
6853 Elf_Internal_Rela rela;
6854 bfd_byte *loc;
6855
6856 /* This symbol needs a copy reloc. Set it up. */
6857
6858 if (h->dynindx == -1
6859 || (h->root.type != bfd_link_hash_defined
6860 && h->root.type != bfd_link_hash_defweak)
6861 || htab->srelbss == NULL)
6862 abort ();
6863
6864 rela.r_offset = (h->root.u.def.value
6865 + h->root.u.def.section->output_section->vma
6866 + h->root.u.def.section->output_offset);
a6bb11b2 6867 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (COPY));
a06ea964
NC
6868 rela.r_addend = 0;
6869 loc = htab->srelbss->contents;
6870 loc += htab->srelbss->reloc_count++ * RELOC_SIZE (htab);
cec5225b 6871 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964
NC
6872 }
6873
6874 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
6875 be NULL for local symbols. */
6876 if (sym != NULL
9637f6ef 6877 && (h == elf_hash_table (info)->hdynamic
a06ea964
NC
6878 || h == elf_hash_table (info)->hgot))
6879 sym->st_shndx = SHN_ABS;
6880
6881 return TRUE;
6882}
6883
1419bbe5
WN
6884/* Finish up local dynamic symbol handling. We set the contents of
6885 various dynamic sections here. */
6886
6887static bfd_boolean
6888elfNN_aarch64_finish_local_dynamic_symbol (void **slot, void *inf)
6889{
6890 struct elf_link_hash_entry *h
6891 = (struct elf_link_hash_entry *) *slot;
6892 struct bfd_link_info *info
6893 = (struct bfd_link_info *) inf;
6894
6895 return elfNN_aarch64_finish_dynamic_symbol (info->output_bfd,
6896 info, h, NULL);
6897}
6898
a06ea964 6899static void
cec5225b
YZ
6900elfNN_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED,
6901 struct elf_aarch64_link_hash_table
a06ea964
NC
6902 *htab)
6903{
6904 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
6905 small and large plts and at the minute just generates
6906 the small PLT. */
6907
cec5225b 6908 /* PLT0 of the small PLT looks like this in ELF64 -
a06ea964
NC
6909 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack.
6910 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT
6911 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
6912 // symbol resolver
6913 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the
6914 // GOTPLT entry for this.
6915 br x17
cec5225b
YZ
6916 PLT0 will be slightly different in ELF32 due to different got entry
6917 size.
a06ea964 6918 */
caed7120 6919 bfd_vma plt_got_2nd_ent; /* Address of GOT[2]. */
a06ea964
NC
6920 bfd_vma plt_base;
6921
6922
cec5225b 6923 memcpy (htab->root.splt->contents, elfNN_aarch64_small_plt0_entry,
a06ea964
NC
6924 PLT_ENTRY_SIZE);
6925 elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize =
6926 PLT_ENTRY_SIZE;
6927
caed7120
YZ
6928 plt_got_2nd_ent = (htab->root.sgotplt->output_section->vma
6929 + htab->root.sgotplt->output_offset
6930 + GOT_ENTRY_SIZE * 2);
a06ea964
NC
6931
6932 plt_base = htab->root.splt->output_section->vma +
6933 htab->root.splt->output_section->output_offset;
6934
6935 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
6936 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
caed7120
YZ
6937 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
6938 htab->root.splt->contents + 4,
6939 PG (plt_got_2nd_ent) - PG (plt_base + 4));
a06ea964 6940
caed7120
YZ
6941 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
6942 htab->root.splt->contents + 8,
6943 PG_OFFSET (plt_got_2nd_ent));
a06ea964 6944
caed7120
YZ
6945 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
6946 htab->root.splt->contents + 12,
6947 PG_OFFSET (plt_got_2nd_ent));
a06ea964
NC
6948}
6949
6950static bfd_boolean
cec5225b 6951elfNN_aarch64_finish_dynamic_sections (bfd *output_bfd,
a06ea964
NC
6952 struct bfd_link_info *info)
6953{
cec5225b 6954 struct elf_aarch64_link_hash_table *htab;
a06ea964
NC
6955 bfd *dynobj;
6956 asection *sdyn;
6957
cec5225b 6958 htab = elf_aarch64_hash_table (info);
a06ea964
NC
6959 dynobj = htab->root.dynobj;
6960 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
6961
6962 if (htab->root.dynamic_sections_created)
6963 {
cec5225b 6964 ElfNN_External_Dyn *dyncon, *dynconend;
a06ea964
NC
6965
6966 if (sdyn == NULL || htab->root.sgot == NULL)
6967 abort ();
6968
cec5225b
YZ
6969 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
6970 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
a06ea964
NC
6971 for (; dyncon < dynconend; dyncon++)
6972 {
6973 Elf_Internal_Dyn dyn;
6974 asection *s;
6975
cec5225b 6976 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
a06ea964
NC
6977
6978 switch (dyn.d_tag)
6979 {
6980 default:
6981 continue;
6982
6983 case DT_PLTGOT:
6984 s = htab->root.sgotplt;
6985 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
6986 break;
6987
6988 case DT_JMPREL:
6989 dyn.d_un.d_ptr = htab->root.srelplt->output_section->vma;
6990 break;
6991
6992 case DT_PLTRELSZ:
6993 s = htab->root.srelplt->output_section;
6994 dyn.d_un.d_val = s->size;
6995 break;
6996
6997 case DT_RELASZ:
6998 /* The procedure linkage table relocs (DT_JMPREL) should
6999 not be included in the overall relocs (DT_RELA).
7000 Therefore, we override the DT_RELASZ entry here to
7001 make it not include the JMPREL relocs. Since the
7002 linker script arranges for .rela.plt to follow all
7003 other relocation sections, we don't have to worry
7004 about changing the DT_RELA entry. */
7005 if (htab->root.srelplt != NULL)
7006 {
7007 s = htab->root.srelplt->output_section;
7008 dyn.d_un.d_val -= s->size;
7009 }
7010 break;
7011
7012 case DT_TLSDESC_PLT:
7013 s = htab->root.splt;
7014 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
7015 + htab->tlsdesc_plt;
7016 break;
7017
7018 case DT_TLSDESC_GOT:
7019 s = htab->root.sgot;
7020 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
7021 + htab->dt_tlsdesc_got;
7022 break;
7023 }
7024
cec5225b 7025 bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon);
a06ea964
NC
7026 }
7027
7028 }
7029
7030 /* Fill in the special first entry in the procedure linkage table. */
7031 if (htab->root.splt && htab->root.splt->size > 0)
7032 {
cec5225b 7033 elfNN_aarch64_init_small_plt0_entry (output_bfd, htab);
a06ea964
NC
7034
7035 elf_section_data (htab->root.splt->output_section)->
7036 this_hdr.sh_entsize = htab->plt_entry_size;
7037
7038
7039 if (htab->tlsdesc_plt)
7040 {
cec5225b 7041 bfd_put_NN (output_bfd, (bfd_vma) 0,
a06ea964
NC
7042 htab->root.sgot->contents + htab->dt_tlsdesc_got);
7043
7044 memcpy (htab->root.splt->contents + htab->tlsdesc_plt,
cec5225b
YZ
7045 elfNN_aarch64_tlsdesc_small_plt_entry,
7046 sizeof (elfNN_aarch64_tlsdesc_small_plt_entry));
a06ea964
NC
7047
7048 {
7049 bfd_vma adrp1_addr =
7050 htab->root.splt->output_section->vma
7051 + htab->root.splt->output_offset + htab->tlsdesc_plt + 4;
7052
caed7120 7053 bfd_vma adrp2_addr = adrp1_addr + 4;
a06ea964
NC
7054
7055 bfd_vma got_addr =
7056 htab->root.sgot->output_section->vma
7057 + htab->root.sgot->output_offset;
7058
7059 bfd_vma pltgot_addr =
7060 htab->root.sgotplt->output_section->vma
7061 + htab->root.sgotplt->output_offset;
7062
7063 bfd_vma dt_tlsdesc_got = got_addr + htab->dt_tlsdesc_got;
caed7120
YZ
7064
7065 bfd_byte *plt_entry =
7066 htab->root.splt->contents + htab->tlsdesc_plt;
a06ea964
NC
7067
7068 /* adrp x2, DT_TLSDESC_GOT */
caed7120
YZ
7069 elf_aarch64_update_plt_entry (output_bfd,
7070 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
7071 plt_entry + 4,
7072 (PG (dt_tlsdesc_got)
7073 - PG (adrp1_addr)));
a06ea964
NC
7074
7075 /* adrp x3, 0 */
caed7120
YZ
7076 elf_aarch64_update_plt_entry (output_bfd,
7077 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
7078 plt_entry + 8,
7079 (PG (pltgot_addr)
7080 - PG (adrp2_addr)));
a06ea964
NC
7081
7082 /* ldr x2, [x2, #0] */
caed7120
YZ
7083 elf_aarch64_update_plt_entry (output_bfd,
7084 BFD_RELOC_AARCH64_LDSTNN_LO12,
7085 plt_entry + 12,
7086 PG_OFFSET (dt_tlsdesc_got));
a06ea964
NC
7087
7088 /* add x3, x3, 0 */
caed7120
YZ
7089 elf_aarch64_update_plt_entry (output_bfd,
7090 BFD_RELOC_AARCH64_ADD_LO12,
7091 plt_entry + 16,
7092 PG_OFFSET (pltgot_addr));
a06ea964
NC
7093 }
7094 }
7095 }
7096
7097 if (htab->root.sgotplt)
7098 {
7099 if (bfd_is_abs_section (htab->root.sgotplt->output_section))
7100 {
7101 (*_bfd_error_handler)
7102 (_("discarded output section: `%A'"), htab->root.sgotplt);
7103 return FALSE;
7104 }
7105
7106 /* Fill in the first three entries in the global offset table. */
7107 if (htab->root.sgotplt->size > 0)
7108 {
8db339a6
MS
7109 bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents);
7110
a06ea964 7111 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
cec5225b 7112 bfd_put_NN (output_bfd,
a06ea964
NC
7113 (bfd_vma) 0,
7114 htab->root.sgotplt->contents + GOT_ENTRY_SIZE);
cec5225b 7115 bfd_put_NN (output_bfd,
a06ea964
NC
7116 (bfd_vma) 0,
7117 htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2);
7118 }
7119
8db339a6
MS
7120 if (htab->root.sgot)
7121 {
7122 if (htab->root.sgot->size > 0)
7123 {
7124 bfd_vma addr =
7125 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0;
7126 bfd_put_NN (output_bfd, addr, htab->root.sgot->contents);
7127 }
7128 }
7129
a06ea964
NC
7130 elf_section_data (htab->root.sgotplt->output_section)->
7131 this_hdr.sh_entsize = GOT_ENTRY_SIZE;
7132 }
7133
7134 if (htab->root.sgot && htab->root.sgot->size > 0)
7135 elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize
7136 = GOT_ENTRY_SIZE;
7137
1419bbe5
WN
7138 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
7139 htab_traverse (htab->loc_hash_table,
7140 elfNN_aarch64_finish_local_dynamic_symbol,
7141 info);
7142
a06ea964
NC
7143 return TRUE;
7144}
7145
7146/* Return address for Ith PLT stub in section PLT, for relocation REL
7147 or (bfd_vma) -1 if it should not be included. */
7148
7149static bfd_vma
cec5225b 7150elfNN_aarch64_plt_sym_val (bfd_vma i, const asection *plt,
a06ea964
NC
7151 const arelent *rel ATTRIBUTE_UNUSED)
7152{
7153 return plt->vma + PLT_ENTRY_SIZE + i * PLT_SMALL_ENTRY_SIZE;
7154}
7155
7156
7157/* We use this so we can override certain functions
7158 (though currently we don't). */
7159
cec5225b 7160const struct elf_size_info elfNN_aarch64_size_info =
a06ea964 7161{
cec5225b
YZ
7162 sizeof (ElfNN_External_Ehdr),
7163 sizeof (ElfNN_External_Phdr),
7164 sizeof (ElfNN_External_Shdr),
7165 sizeof (ElfNN_External_Rel),
7166 sizeof (ElfNN_External_Rela),
7167 sizeof (ElfNN_External_Sym),
7168 sizeof (ElfNN_External_Dyn),
a06ea964
NC
7169 sizeof (Elf_External_Note),
7170 4, /* Hash table entry size. */
7171 1, /* Internal relocs per external relocs. */
cec5225b
YZ
7172 ARCH_SIZE, /* Arch size. */
7173 LOG_FILE_ALIGN, /* Log_file_align. */
7174 ELFCLASSNN, EV_CURRENT,
7175 bfd_elfNN_write_out_phdrs,
7176 bfd_elfNN_write_shdrs_and_ehdr,
7177 bfd_elfNN_checksum_contents,
7178 bfd_elfNN_write_relocs,
7179 bfd_elfNN_swap_symbol_in,
7180 bfd_elfNN_swap_symbol_out,
7181 bfd_elfNN_slurp_reloc_table,
7182 bfd_elfNN_slurp_symbol_table,
7183 bfd_elfNN_swap_dyn_in,
7184 bfd_elfNN_swap_dyn_out,
7185 bfd_elfNN_swap_reloc_in,
7186 bfd_elfNN_swap_reloc_out,
7187 bfd_elfNN_swap_reloca_in,
7188 bfd_elfNN_swap_reloca_out
a06ea964
NC
7189};
7190
7191#define ELF_ARCH bfd_arch_aarch64
7192#define ELF_MACHINE_CODE EM_AARCH64
7193#define ELF_MAXPAGESIZE 0x10000
7194#define ELF_MINPAGESIZE 0x1000
7195#define ELF_COMMONPAGESIZE 0x1000
7196
cec5225b
YZ
7197#define bfd_elfNN_close_and_cleanup \
7198 elfNN_aarch64_close_and_cleanup
a06ea964 7199
cec5225b
YZ
7200#define bfd_elfNN_bfd_copy_private_bfd_data \
7201 elfNN_aarch64_copy_private_bfd_data
a06ea964 7202
cec5225b
YZ
7203#define bfd_elfNN_bfd_free_cached_info \
7204 elfNN_aarch64_bfd_free_cached_info
a06ea964 7205
cec5225b
YZ
7206#define bfd_elfNN_bfd_is_target_special_symbol \
7207 elfNN_aarch64_is_target_special_symbol
a06ea964 7208
cec5225b
YZ
7209#define bfd_elfNN_bfd_link_hash_table_create \
7210 elfNN_aarch64_link_hash_table_create
a06ea964 7211
cec5225b
YZ
7212#define bfd_elfNN_bfd_link_hash_table_free \
7213 elfNN_aarch64_hash_table_free
a06ea964 7214
cec5225b
YZ
7215#define bfd_elfNN_bfd_merge_private_bfd_data \
7216 elfNN_aarch64_merge_private_bfd_data
a06ea964 7217
cec5225b
YZ
7218#define bfd_elfNN_bfd_print_private_bfd_data \
7219 elfNN_aarch64_print_private_bfd_data
a06ea964 7220
cec5225b
YZ
7221#define bfd_elfNN_bfd_reloc_type_lookup \
7222 elfNN_aarch64_reloc_type_lookup
a06ea964 7223
cec5225b
YZ
7224#define bfd_elfNN_bfd_reloc_name_lookup \
7225 elfNN_aarch64_reloc_name_lookup
a06ea964 7226
cec5225b
YZ
7227#define bfd_elfNN_bfd_set_private_flags \
7228 elfNN_aarch64_set_private_flags
a06ea964 7229
cec5225b
YZ
7230#define bfd_elfNN_find_inliner_info \
7231 elfNN_aarch64_find_inliner_info
a06ea964 7232
cec5225b
YZ
7233#define bfd_elfNN_find_nearest_line \
7234 elfNN_aarch64_find_nearest_line
a06ea964 7235
cec5225b
YZ
7236#define bfd_elfNN_mkobject \
7237 elfNN_aarch64_mkobject
a06ea964 7238
cec5225b
YZ
7239#define bfd_elfNN_new_section_hook \
7240 elfNN_aarch64_new_section_hook
a06ea964
NC
7241
7242#define elf_backend_adjust_dynamic_symbol \
cec5225b 7243 elfNN_aarch64_adjust_dynamic_symbol
a06ea964
NC
7244
7245#define elf_backend_always_size_sections \
cec5225b 7246 elfNN_aarch64_always_size_sections
a06ea964
NC
7247
7248#define elf_backend_check_relocs \
cec5225b 7249 elfNN_aarch64_check_relocs
a06ea964
NC
7250
7251#define elf_backend_copy_indirect_symbol \
cec5225b 7252 elfNN_aarch64_copy_indirect_symbol
a06ea964
NC
7253
7254/* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
7255 to them in our hash. */
7256#define elf_backend_create_dynamic_sections \
cec5225b 7257 elfNN_aarch64_create_dynamic_sections
a06ea964
NC
7258
7259#define elf_backend_init_index_section \
7260 _bfd_elf_init_2_index_sections
7261
a06ea964 7262#define elf_backend_finish_dynamic_sections \
cec5225b 7263 elfNN_aarch64_finish_dynamic_sections
a06ea964
NC
7264
7265#define elf_backend_finish_dynamic_symbol \
cec5225b 7266 elfNN_aarch64_finish_dynamic_symbol
a06ea964
NC
7267
7268#define elf_backend_gc_sweep_hook \
cec5225b 7269 elfNN_aarch64_gc_sweep_hook
a06ea964
NC
7270
7271#define elf_backend_object_p \
cec5225b 7272 elfNN_aarch64_object_p
a06ea964
NC
7273
7274#define elf_backend_output_arch_local_syms \
cec5225b 7275 elfNN_aarch64_output_arch_local_syms
a06ea964
NC
7276
7277#define elf_backend_plt_sym_val \
cec5225b 7278 elfNN_aarch64_plt_sym_val
a06ea964
NC
7279
7280#define elf_backend_post_process_headers \
cec5225b 7281 elfNN_aarch64_post_process_headers
a06ea964
NC
7282
7283#define elf_backend_relocate_section \
cec5225b 7284 elfNN_aarch64_relocate_section
a06ea964
NC
7285
7286#define elf_backend_reloc_type_class \
cec5225b 7287 elfNN_aarch64_reloc_type_class
a06ea964
NC
7288
7289#define elf_backend_section_flags \
cec5225b 7290 elfNN_aarch64_section_flags
a06ea964
NC
7291
7292#define elf_backend_section_from_shdr \
cec5225b 7293 elfNN_aarch64_section_from_shdr
a06ea964
NC
7294
7295#define elf_backend_size_dynamic_sections \
cec5225b 7296 elfNN_aarch64_size_dynamic_sections
a06ea964
NC
7297
7298#define elf_backend_size_info \
cec5225b 7299 elfNN_aarch64_size_info
a06ea964
NC
7300
7301#define elf_backend_can_refcount 1
59c108f7 7302#define elf_backend_can_gc_sections 1
a06ea964
NC
7303#define elf_backend_plt_readonly 1
7304#define elf_backend_want_got_plt 1
7305#define elf_backend_want_plt_sym 0
7306#define elf_backend_may_use_rel_p 0
7307#define elf_backend_may_use_rela_p 1
7308#define elf_backend_default_use_rela_p 1
7309#define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
c495064d 7310#define elf_backend_default_execstack 0
a06ea964
NC
7311
7312#undef elf_backend_obj_attrs_section
7313#define elf_backend_obj_attrs_section ".ARM.attributes"
7314
cec5225b 7315#include "elfNN-target.h"
This page took 0.437869 seconds and 4 git commands to generate.