Add new target_read_raw_memory function, and consolidate comments.
[deliverable/binutils-gdb.git] / bfd / elfnn-aarch64.c
CommitLineData
cec5225b
YZ
1/* AArch64-specific support for NN-bit ELF.
2 Copyright 2009-2013 Free Software Foundation, Inc.
a06ea964
NC
3 Contributed by ARM Ltd.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
20
21/* Notes on implementation:
22
23 Thread Local Store (TLS)
24
25 Overview:
26
27 The implementation currently supports both traditional TLS and TLS
28 descriptors, but only general dynamic (GD).
29
30 For traditional TLS the assembler will present us with code
31 fragments of the form:
32
33 adrp x0, :tlsgd:foo
34 R_AARCH64_TLSGD_ADR_PAGE21(foo)
35 add x0, :tlsgd_lo12:foo
36 R_AARCH64_TLSGD_ADD_LO12_NC(foo)
37 bl __tls_get_addr
38 nop
39
40 For TLS descriptors the assembler will present us with code
41 fragments of the form:
42
418009c2 43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE21(foo)
a06ea964
NC
44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo)
45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo)
46 .tlsdesccall foo
47 blr x1 R_AARCH64_TLSDESC_CALL(foo)
48
49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50 indicate that foo is thread local and should be accessed via the
51 traditional TLS mechanims.
52
a6bb11b2 53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC}
a06ea964
NC
54 against foo indicate that 'foo' is thread local and should be accessed
55 via a TLS descriptor mechanism.
56
57 The precise instruction sequence is only relevant from the
58 perspective of linker relaxation which is currently not implemented.
59
60 The static linker must detect that 'foo' is a TLS object and
61 allocate a double GOT entry. The GOT entry must be created for both
62 global and local TLS symbols. Note that this is different to none
63 TLS local objects which do not need a GOT entry.
64
65 In the traditional TLS mechanism, the double GOT entry is used to
66 provide the tls_index structure, containing module and offset
a6bb11b2 67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD
a06ea964
NC
68 on the module entry. The loader will subsequently fixup this
69 relocation with the module identity.
70
71 For global traditional TLS symbols the static linker places an
a6bb11b2 72 R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader
a06ea964
NC
73 will subsequently fixup the offset. For local TLS symbols the static
74 linker fixes up offset.
75
76 In the TLS descriptor mechanism the double GOT entry is used to
77 provide the descriptor. The static linker places the relocation
78 R_AARCH64_TLSDESC on the first GOT slot. The loader will
79 subsequently fix this up.
80
81 Implementation:
82
83 The handling of TLS symbols is implemented across a number of
84 different backend functions. The following is a top level view of
85 what processing is performed where.
86
87 The TLS implementation maintains state information for each TLS
88 symbol. The state information for local and global symbols is kept
89 in different places. Global symbols use generic BFD structures while
90 local symbols use backend specific structures that are allocated and
91 maintained entirely by the backend.
92
93 The flow:
94
cec5225b 95 elfNN_aarch64_check_relocs()
a06ea964
NC
96
97 This function is invoked for each relocation.
98
99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
a6bb11b2 100 R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are
a06ea964
NC
101 spotted. One time creation of local symbol data structures are
102 created when the first local symbol is seen.
103
104 The reference count for a symbol is incremented. The GOT type for
105 each symbol is marked as general dynamic.
106
cec5225b 107 elfNN_aarch64_allocate_dynrelocs ()
a06ea964
NC
108
109 For each global with positive reference count we allocate a double
110 GOT slot. For a traditional TLS symbol we allocate space for two
111 relocation entries on the GOT, for a TLS descriptor symbol we
112 allocate space for one relocation on the slot. Record the GOT offset
113 for this symbol.
114
cec5225b 115 elfNN_aarch64_size_dynamic_sections ()
a06ea964
NC
116
117 Iterate all input BFDS, look for in the local symbol data structure
118 constructed earlier for local TLS symbols and allocate them double
119 GOT slots along with space for a single GOT relocation. Update the
120 local symbol structure to record the GOT offset allocated.
121
cec5225b 122 elfNN_aarch64_relocate_section ()
a06ea964 123
cec5225b 124 Calls elfNN_aarch64_final_link_relocate ()
a06ea964
NC
125
126 Emit the relevant TLS relocations against the GOT for each TLS
127 symbol. For local TLS symbols emit the GOT offset directly. The GOT
128 relocations are emitted once the first time a TLS symbol is
129 encountered. The implementation uses the LSB of the GOT offset to
130 flag that the relevant GOT relocations for a symbol have been
131 emitted. All of the TLS code that uses the GOT offset needs to take
132 care to mask out this flag bit before using the offset.
133
cec5225b 134 elfNN_aarch64_final_link_relocate ()
a06ea964
NC
135
136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */
137
138#include "sysdep.h"
139#include "bfd.h"
140#include "libiberty.h"
141#include "libbfd.h"
142#include "bfd_stdint.h"
143#include "elf-bfd.h"
144#include "bfdlink.h"
1419bbe5 145#include "objalloc.h"
a06ea964 146#include "elf/aarch64.h"
caed7120 147#include "elfxx-aarch64.h"
a06ea964 148
cec5225b
YZ
149#define ARCH_SIZE NN
150
151#if ARCH_SIZE == 64
152#define AARCH64_R(NAME) R_AARCH64_ ## NAME
153#define AARCH64_R_STR(NAME) "R_AARCH64_" #NAME
a6bb11b2
YZ
154#define HOWTO64(...) HOWTO (__VA_ARGS__)
155#define HOWTO32(...) EMPTY_HOWTO (0)
cec5225b
YZ
156#define LOG_FILE_ALIGN 3
157#endif
158
159#if ARCH_SIZE == 32
160#define AARCH64_R(NAME) R_AARCH64_P32_ ## NAME
161#define AARCH64_R_STR(NAME) "R_AARCH64_P32_" #NAME
a6bb11b2
YZ
162#define HOWTO64(...) EMPTY_HOWTO (0)
163#define HOWTO32(...) HOWTO (__VA_ARGS__)
cec5225b
YZ
164#define LOG_FILE_ALIGN 2
165#endif
166
a6bb11b2
YZ
167#define IS_AARCH64_TLS_RELOC(R_TYPE) \
168 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
169 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
170 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \
171 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \
172 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
173 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \
174 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC \
175 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
176 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12 \
177 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 \
178 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC \
179 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 \
180 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 \
181 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC \
182 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0 \
183 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC \
184 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD \
185 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL \
186 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL \
a06ea964
NC
187 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
188
a6bb11b2
YZ
189#define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \
190 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
191 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
192 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
193 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC \
194 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC \
195 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC \
196 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1 \
197 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
198 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
199 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
200 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
201 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC)
a06ea964
NC
202
203#define ELIMINATE_COPY_RELOCS 0
204
a06ea964 205/* Return size of a relocation entry. HTAB is the bfd's
cec5225b
YZ
206 elf_aarch64_link_hash_entry. */
207#define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
a06ea964 208
cec5225b
YZ
209/* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */
210#define GOT_ENTRY_SIZE (ARCH_SIZE / 8)
a06ea964
NC
211#define PLT_ENTRY_SIZE (32)
212#define PLT_SMALL_ENTRY_SIZE (16)
213#define PLT_TLSDESC_ENTRY_SIZE (32)
214
a06ea964
NC
215/* Encoding of the nop instruction */
216#define INSN_NOP 0xd503201f
217
218#define aarch64_compute_jump_table_size(htab) \
219 (((htab)->root.srelplt == NULL) ? 0 \
220 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
221
222/* The first entry in a procedure linkage table looks like this
223 if the distance between the PLTGOT and the PLT is < 4GB use
224 these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
225 in x16 and needs to work out PLTGOT[1] by using an address of
cec5225b
YZ
226 [x16,#-GOT_ENTRY_SIZE]. */
227static const bfd_byte elfNN_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] =
a06ea964
NC
228{
229 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
230 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
caed7120 231#if ARCH_SIZE == 64
a06ea964
NC
232 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
233 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
caed7120
YZ
234#else
235 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
236 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
237#endif
a06ea964
NC
238 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
239 0x1f, 0x20, 0x03, 0xd5, /* nop */
240 0x1f, 0x20, 0x03, 0xd5, /* nop */
241 0x1f, 0x20, 0x03, 0xd5, /* nop */
242};
243
244/* Per function entry in a procedure linkage table looks like this
245 if the distance between the PLTGOT and the PLT is < 4GB use
246 these PLT entries. */
cec5225b 247static const bfd_byte elfNN_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] =
a06ea964
NC
248{
249 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
caed7120 250#if ARCH_SIZE == 64
a06ea964
NC
251 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
252 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
caed7120
YZ
253#else
254 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
255 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
256#endif
a06ea964
NC
257 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
258};
259
260static const bfd_byte
cec5225b 261elfNN_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] =
a06ea964
NC
262{
263 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
264 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
265 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
caed7120
YZ
266#if ARCH_SIZE == 64
267 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
a06ea964 268 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
caed7120
YZ
269#else
270 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
271 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
272#endif
273 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
a06ea964
NC
274 0x1f, 0x20, 0x03, 0xd5, /* nop */
275 0x1f, 0x20, 0x03, 0xd5, /* nop */
276};
277
cec5225b
YZ
278#define elf_info_to_howto elfNN_aarch64_info_to_howto
279#define elf_info_to_howto_rel elfNN_aarch64_info_to_howto
a06ea964
NC
280
281#define AARCH64_ELF_ABI_VERSION 0
a06ea964
NC
282
283/* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
284#define ALL_ONES (~ (bfd_vma) 0)
285
a6bb11b2
YZ
286/* Indexed by the bfd interal reloc enumerators.
287 Therefore, the table needs to be synced with BFD_RELOC_AARCH64_*
288 in reloc.c. */
a06ea964 289
a6bb11b2 290static reloc_howto_type elfNN_aarch64_howto_table[] =
a06ea964 291{
a6bb11b2 292 EMPTY_HOWTO (0),
a06ea964 293
a6bb11b2 294 /* Basic data relocations. */
a06ea964 295
a6bb11b2
YZ
296#if ARCH_SIZE == 64
297 HOWTO (R_AARCH64_NULL, /* type */
a06ea964 298 0, /* rightshift */
a6bb11b2
YZ
299 0, /* size (0 = byte, 1 = short, 2 = long) */
300 0, /* bitsize */
a06ea964
NC
301 FALSE, /* pc_relative */
302 0, /* bitpos */
303 complain_overflow_dont, /* complain_on_overflow */
304 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 305 "R_AARCH64_NULL", /* name */
a06ea964
NC
306 FALSE, /* partial_inplace */
307 0, /* src_mask */
a6bb11b2 308 0, /* dst_mask */
a06ea964 309 FALSE), /* pcrel_offset */
a6bb11b2
YZ
310#else
311 HOWTO (R_AARCH64_NONE, /* type */
a06ea964
NC
312 0, /* rightshift */
313 0, /* size (0 = byte, 1 = short, 2 = long) */
314 0, /* bitsize */
315 FALSE, /* pc_relative */
316 0, /* bitpos */
317 complain_overflow_dont, /* complain_on_overflow */
318 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 319 "R_AARCH64_NONE", /* name */
a06ea964
NC
320 FALSE, /* partial_inplace */
321 0, /* src_mask */
322 0, /* dst_mask */
323 FALSE), /* pcrel_offset */
a6bb11b2 324#endif
a06ea964
NC
325
326 /* .xword: (S+A) */
a6bb11b2 327 HOWTO64 (AARCH64_R (ABS64), /* type */
a06ea964
NC
328 0, /* rightshift */
329 4, /* size (4 = long long) */
330 64, /* bitsize */
331 FALSE, /* pc_relative */
332 0, /* bitpos */
333 complain_overflow_unsigned, /* complain_on_overflow */
334 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 335 AARCH64_R_STR (ABS64), /* name */
a06ea964
NC
336 FALSE, /* partial_inplace */
337 ALL_ONES, /* src_mask */
338 ALL_ONES, /* dst_mask */
339 FALSE), /* pcrel_offset */
340
341 /* .word: (S+A) */
a6bb11b2 342 HOWTO (AARCH64_R (ABS32), /* type */
a06ea964
NC
343 0, /* rightshift */
344 2, /* size (0 = byte, 1 = short, 2 = long) */
345 32, /* bitsize */
346 FALSE, /* pc_relative */
347 0, /* bitpos */
348 complain_overflow_unsigned, /* complain_on_overflow */
349 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 350 AARCH64_R_STR (ABS32), /* name */
a06ea964
NC
351 FALSE, /* partial_inplace */
352 0xffffffff, /* src_mask */
353 0xffffffff, /* dst_mask */
354 FALSE), /* pcrel_offset */
355
356 /* .half: (S+A) */
a6bb11b2 357 HOWTO (AARCH64_R (ABS16), /* type */
a06ea964
NC
358 0, /* rightshift */
359 1, /* size (0 = byte, 1 = short, 2 = long) */
360 16, /* bitsize */
361 FALSE, /* pc_relative */
362 0, /* bitpos */
363 complain_overflow_unsigned, /* complain_on_overflow */
364 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 365 AARCH64_R_STR (ABS16), /* name */
a06ea964
NC
366 FALSE, /* partial_inplace */
367 0xffff, /* src_mask */
368 0xffff, /* dst_mask */
369 FALSE), /* pcrel_offset */
370
371 /* .xword: (S+A-P) */
a6bb11b2 372 HOWTO64 (AARCH64_R (PREL64), /* type */
a06ea964
NC
373 0, /* rightshift */
374 4, /* size (4 = long long) */
375 64, /* bitsize */
376 TRUE, /* pc_relative */
377 0, /* bitpos */
378 complain_overflow_signed, /* complain_on_overflow */
379 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 380 AARCH64_R_STR (PREL64), /* name */
a06ea964
NC
381 FALSE, /* partial_inplace */
382 ALL_ONES, /* src_mask */
383 ALL_ONES, /* dst_mask */
384 TRUE), /* pcrel_offset */
385
386 /* .word: (S+A-P) */
a6bb11b2 387 HOWTO (AARCH64_R (PREL32), /* type */
a06ea964
NC
388 0, /* rightshift */
389 2, /* size (0 = byte, 1 = short, 2 = long) */
390 32, /* bitsize */
391 TRUE, /* pc_relative */
392 0, /* bitpos */
393 complain_overflow_signed, /* complain_on_overflow */
394 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 395 AARCH64_R_STR (PREL32), /* name */
a06ea964
NC
396 FALSE, /* partial_inplace */
397 0xffffffff, /* src_mask */
398 0xffffffff, /* dst_mask */
399 TRUE), /* pcrel_offset */
400
401 /* .half: (S+A-P) */
a6bb11b2 402 HOWTO (AARCH64_R (PREL16), /* type */
a06ea964
NC
403 0, /* rightshift */
404 1, /* size (0 = byte, 1 = short, 2 = long) */
405 16, /* bitsize */
406 TRUE, /* pc_relative */
407 0, /* bitpos */
408 complain_overflow_signed, /* complain_on_overflow */
409 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 410 AARCH64_R_STR (PREL16), /* name */
a06ea964
NC
411 FALSE, /* partial_inplace */
412 0xffff, /* src_mask */
413 0xffff, /* dst_mask */
414 TRUE), /* pcrel_offset */
415
416 /* Group relocations to create a 16, 32, 48 or 64 bit
417 unsigned data or abs address inline. */
418
419 /* MOVZ: ((S+A) >> 0) & 0xffff */
a6bb11b2 420 HOWTO (AARCH64_R (MOVW_UABS_G0), /* type */
a06ea964
NC
421 0, /* rightshift */
422 2, /* size (0 = byte, 1 = short, 2 = long) */
423 16, /* bitsize */
424 FALSE, /* pc_relative */
425 0, /* bitpos */
426 complain_overflow_unsigned, /* complain_on_overflow */
427 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 428 AARCH64_R_STR (MOVW_UABS_G0), /* name */
a06ea964
NC
429 FALSE, /* partial_inplace */
430 0xffff, /* src_mask */
431 0xffff, /* dst_mask */
432 FALSE), /* pcrel_offset */
433
434 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */
a6bb11b2 435 HOWTO (AARCH64_R (MOVW_UABS_G0_NC), /* type */
a06ea964
NC
436 0, /* rightshift */
437 2, /* size (0 = byte, 1 = short, 2 = long) */
438 16, /* bitsize */
439 FALSE, /* pc_relative */
440 0, /* bitpos */
441 complain_overflow_dont, /* complain_on_overflow */
442 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 443 AARCH64_R_STR (MOVW_UABS_G0_NC), /* name */
a06ea964
NC
444 FALSE, /* partial_inplace */
445 0xffff, /* src_mask */
446 0xffff, /* dst_mask */
447 FALSE), /* pcrel_offset */
448
449 /* MOVZ: ((S+A) >> 16) & 0xffff */
a6bb11b2 450 HOWTO (AARCH64_R (MOVW_UABS_G1), /* type */
a06ea964
NC
451 16, /* rightshift */
452 2, /* size (0 = byte, 1 = short, 2 = long) */
453 16, /* bitsize */
454 FALSE, /* pc_relative */
455 0, /* bitpos */
456 complain_overflow_unsigned, /* complain_on_overflow */
457 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 458 AARCH64_R_STR (MOVW_UABS_G1), /* name */
a06ea964
NC
459 FALSE, /* partial_inplace */
460 0xffff, /* src_mask */
461 0xffff, /* dst_mask */
462 FALSE), /* pcrel_offset */
463
464 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */
a6bb11b2 465 HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC), /* type */
a06ea964
NC
466 16, /* rightshift */
467 2, /* size (0 = byte, 1 = short, 2 = long) */
468 16, /* bitsize */
469 FALSE, /* pc_relative */
470 0, /* bitpos */
471 complain_overflow_dont, /* complain_on_overflow */
472 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 473 AARCH64_R_STR (MOVW_UABS_G1_NC), /* name */
a06ea964
NC
474 FALSE, /* partial_inplace */
475 0xffff, /* src_mask */
476 0xffff, /* dst_mask */
477 FALSE), /* pcrel_offset */
478
479 /* MOVZ: ((S+A) >> 32) & 0xffff */
a6bb11b2 480 HOWTO64 (AARCH64_R (MOVW_UABS_G2), /* type */
a06ea964
NC
481 32, /* rightshift */
482 2, /* size (0 = byte, 1 = short, 2 = long) */
483 16, /* bitsize */
484 FALSE, /* pc_relative */
485 0, /* bitpos */
486 complain_overflow_unsigned, /* complain_on_overflow */
487 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 488 AARCH64_R_STR (MOVW_UABS_G2), /* name */
a06ea964
NC
489 FALSE, /* partial_inplace */
490 0xffff, /* src_mask */
491 0xffff, /* dst_mask */
492 FALSE), /* pcrel_offset */
493
494 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */
a6bb11b2 495 HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC), /* type */
a06ea964
NC
496 32, /* rightshift */
497 2, /* size (0 = byte, 1 = short, 2 = long) */
498 16, /* bitsize */
499 FALSE, /* pc_relative */
500 0, /* bitpos */
501 complain_overflow_dont, /* complain_on_overflow */
502 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 503 AARCH64_R_STR (MOVW_UABS_G2_NC), /* name */
a06ea964
NC
504 FALSE, /* partial_inplace */
505 0xffff, /* src_mask */
506 0xffff, /* dst_mask */
507 FALSE), /* pcrel_offset */
508
509 /* MOVZ: ((S+A) >> 48) & 0xffff */
a6bb11b2 510 HOWTO64 (AARCH64_R (MOVW_UABS_G3), /* type */
a06ea964
NC
511 48, /* rightshift */
512 2, /* size (0 = byte, 1 = short, 2 = long) */
513 16, /* bitsize */
514 FALSE, /* pc_relative */
515 0, /* bitpos */
516 complain_overflow_unsigned, /* complain_on_overflow */
517 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 518 AARCH64_R_STR (MOVW_UABS_G3), /* name */
a06ea964
NC
519 FALSE, /* partial_inplace */
520 0xffff, /* src_mask */
521 0xffff, /* dst_mask */
522 FALSE), /* pcrel_offset */
523
524 /* Group relocations to create high part of a 16, 32, 48 or 64 bit
525 signed data or abs address inline. Will change instruction
526 to MOVN or MOVZ depending on sign of calculated value. */
527
528 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */
a6bb11b2 529 HOWTO (AARCH64_R (MOVW_SABS_G0), /* type */
a06ea964
NC
530 0, /* rightshift */
531 2, /* size (0 = byte, 1 = short, 2 = long) */
532 16, /* bitsize */
533 FALSE, /* pc_relative */
534 0, /* bitpos */
535 complain_overflow_signed, /* complain_on_overflow */
536 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 537 AARCH64_R_STR (MOVW_SABS_G0), /* name */
a06ea964
NC
538 FALSE, /* partial_inplace */
539 0xffff, /* src_mask */
540 0xffff, /* dst_mask */
541 FALSE), /* pcrel_offset */
542
543 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */
a6bb11b2 544 HOWTO64 (AARCH64_R (MOVW_SABS_G1), /* type */
a06ea964
NC
545 16, /* rightshift */
546 2, /* size (0 = byte, 1 = short, 2 = long) */
547 16, /* bitsize */
548 FALSE, /* pc_relative */
549 0, /* bitpos */
550 complain_overflow_signed, /* complain_on_overflow */
551 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 552 AARCH64_R_STR (MOVW_SABS_G1), /* name */
a06ea964
NC
553 FALSE, /* partial_inplace */
554 0xffff, /* src_mask */
555 0xffff, /* dst_mask */
556 FALSE), /* pcrel_offset */
557
558 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */
a6bb11b2 559 HOWTO64 (AARCH64_R (MOVW_SABS_G2), /* type */
a06ea964
NC
560 32, /* rightshift */
561 2, /* size (0 = byte, 1 = short, 2 = long) */
562 16, /* bitsize */
563 FALSE, /* pc_relative */
564 0, /* bitpos */
565 complain_overflow_signed, /* complain_on_overflow */
566 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 567 AARCH64_R_STR (MOVW_SABS_G2), /* name */
a06ea964
NC
568 FALSE, /* partial_inplace */
569 0xffff, /* src_mask */
570 0xffff, /* dst_mask */
571 FALSE), /* pcrel_offset */
572
573/* Relocations to generate 19, 21 and 33 bit PC-relative load/store
574 addresses: PG(x) is (x & ~0xfff). */
575
576 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
a6bb11b2 577 HOWTO (AARCH64_R (LD_PREL_LO19), /* type */
a06ea964
NC
578 2, /* rightshift */
579 2, /* size (0 = byte, 1 = short, 2 = long) */
580 19, /* bitsize */
581 TRUE, /* pc_relative */
582 0, /* bitpos */
583 complain_overflow_signed, /* complain_on_overflow */
584 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 585 AARCH64_R_STR (LD_PREL_LO19), /* name */
a06ea964
NC
586 FALSE, /* partial_inplace */
587 0x7ffff, /* src_mask */
588 0x7ffff, /* dst_mask */
589 TRUE), /* pcrel_offset */
590
591 /* ADR: (S+A-P) & 0x1fffff */
a6bb11b2 592 HOWTO (AARCH64_R (ADR_PREL_LO21), /* type */
a06ea964
NC
593 0, /* rightshift */
594 2, /* size (0 = byte, 1 = short, 2 = long) */
595 21, /* bitsize */
596 TRUE, /* pc_relative */
597 0, /* bitpos */
598 complain_overflow_signed, /* complain_on_overflow */
599 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 600 AARCH64_R_STR (ADR_PREL_LO21), /* name */
a06ea964
NC
601 FALSE, /* partial_inplace */
602 0x1fffff, /* src_mask */
603 0x1fffff, /* dst_mask */
604 TRUE), /* pcrel_offset */
605
606 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
a6bb11b2 607 HOWTO (AARCH64_R (ADR_PREL_PG_HI21), /* type */
a06ea964
NC
608 12, /* rightshift */
609 2, /* size (0 = byte, 1 = short, 2 = long) */
610 21, /* bitsize */
611 TRUE, /* pc_relative */
612 0, /* bitpos */
613 complain_overflow_signed, /* complain_on_overflow */
614 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 615 AARCH64_R_STR (ADR_PREL_PG_HI21), /* name */
a06ea964
NC
616 FALSE, /* partial_inplace */
617 0x1fffff, /* src_mask */
618 0x1fffff, /* dst_mask */
619 TRUE), /* pcrel_offset */
620
621 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
a6bb11b2 622 HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC), /* type */
a06ea964
NC
623 12, /* rightshift */
624 2, /* size (0 = byte, 1 = short, 2 = long) */
625 21, /* bitsize */
626 TRUE, /* pc_relative */
627 0, /* bitpos */
628 complain_overflow_dont, /* complain_on_overflow */
629 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 630 AARCH64_R_STR (ADR_PREL_PG_HI21_NC), /* name */
a06ea964
NC
631 FALSE, /* partial_inplace */
632 0x1fffff, /* src_mask */
633 0x1fffff, /* dst_mask */
634 TRUE), /* pcrel_offset */
635
636 /* ADD: (S+A) & 0xfff [no overflow check] */
a6bb11b2 637 HOWTO (AARCH64_R (ADD_ABS_LO12_NC), /* type */
a06ea964
NC
638 0, /* rightshift */
639 2, /* size (0 = byte, 1 = short, 2 = long) */
640 12, /* bitsize */
641 FALSE, /* pc_relative */
642 10, /* bitpos */
643 complain_overflow_dont, /* complain_on_overflow */
644 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 645 AARCH64_R_STR (ADD_ABS_LO12_NC), /* name */
a06ea964
NC
646 FALSE, /* partial_inplace */
647 0x3ffc00, /* src_mask */
648 0x3ffc00, /* dst_mask */
649 FALSE), /* pcrel_offset */
650
651 /* LD/ST8: (S+A) & 0xfff */
a6bb11b2 652 HOWTO (AARCH64_R (LDST8_ABS_LO12_NC), /* type */
a06ea964
NC
653 0, /* rightshift */
654 2, /* size (0 = byte, 1 = short, 2 = long) */
655 12, /* bitsize */
656 FALSE, /* pc_relative */
657 0, /* bitpos */
658 complain_overflow_dont, /* complain_on_overflow */
659 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 660 AARCH64_R_STR (LDST8_ABS_LO12_NC), /* name */
a06ea964
NC
661 FALSE, /* partial_inplace */
662 0xfff, /* src_mask */
663 0xfff, /* dst_mask */
664 FALSE), /* pcrel_offset */
665
666 /* Relocations for control-flow instructions. */
667
668 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
a6bb11b2 669 HOWTO (AARCH64_R (TSTBR14), /* type */
a06ea964
NC
670 2, /* rightshift */
671 2, /* size (0 = byte, 1 = short, 2 = long) */
672 14, /* bitsize */
673 TRUE, /* pc_relative */
674 0, /* bitpos */
675 complain_overflow_signed, /* complain_on_overflow */
676 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 677 AARCH64_R_STR (TSTBR14), /* name */
a06ea964
NC
678 FALSE, /* partial_inplace */
679 0x3fff, /* src_mask */
680 0x3fff, /* dst_mask */
681 TRUE), /* pcrel_offset */
682
683 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
a6bb11b2 684 HOWTO (AARCH64_R (CONDBR19), /* type */
a06ea964
NC
685 2, /* rightshift */
686 2, /* size (0 = byte, 1 = short, 2 = long) */
687 19, /* bitsize */
688 TRUE, /* pc_relative */
689 0, /* bitpos */
690 complain_overflow_signed, /* complain_on_overflow */
691 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 692 AARCH64_R_STR (CONDBR19), /* name */
a06ea964
NC
693 FALSE, /* partial_inplace */
694 0x7ffff, /* src_mask */
695 0x7ffff, /* dst_mask */
696 TRUE), /* pcrel_offset */
697
a06ea964 698 /* B: ((S+A-P) >> 2) & 0x3ffffff */
a6bb11b2 699 HOWTO (AARCH64_R (JUMP26), /* type */
a06ea964
NC
700 2, /* rightshift */
701 2, /* size (0 = byte, 1 = short, 2 = long) */
702 26, /* bitsize */
703 TRUE, /* pc_relative */
704 0, /* bitpos */
705 complain_overflow_signed, /* complain_on_overflow */
706 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 707 AARCH64_R_STR (JUMP26), /* name */
a06ea964
NC
708 FALSE, /* partial_inplace */
709 0x3ffffff, /* src_mask */
710 0x3ffffff, /* dst_mask */
711 TRUE), /* pcrel_offset */
712
713 /* BL: ((S+A-P) >> 2) & 0x3ffffff */
a6bb11b2 714 HOWTO (AARCH64_R (CALL26), /* type */
a06ea964
NC
715 2, /* rightshift */
716 2, /* size (0 = byte, 1 = short, 2 = long) */
717 26, /* bitsize */
718 TRUE, /* pc_relative */
719 0, /* bitpos */
720 complain_overflow_signed, /* complain_on_overflow */
721 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 722 AARCH64_R_STR (CALL26), /* name */
a06ea964
NC
723 FALSE, /* partial_inplace */
724 0x3ffffff, /* src_mask */
725 0x3ffffff, /* dst_mask */
726 TRUE), /* pcrel_offset */
727
728 /* LD/ST16: (S+A) & 0xffe */
a6bb11b2 729 HOWTO (AARCH64_R (LDST16_ABS_LO12_NC), /* type */
a06ea964
NC
730 1, /* rightshift */
731 2, /* size (0 = byte, 1 = short, 2 = long) */
732 12, /* bitsize */
733 FALSE, /* pc_relative */
734 0, /* bitpos */
735 complain_overflow_dont, /* complain_on_overflow */
736 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 737 AARCH64_R_STR (LDST16_ABS_LO12_NC), /* name */
a06ea964
NC
738 FALSE, /* partial_inplace */
739 0xffe, /* src_mask */
740 0xffe, /* dst_mask */
741 FALSE), /* pcrel_offset */
742
743 /* LD/ST32: (S+A) & 0xffc */
a6bb11b2 744 HOWTO (AARCH64_R (LDST32_ABS_LO12_NC), /* type */
a06ea964
NC
745 2, /* rightshift */
746 2, /* size (0 = byte, 1 = short, 2 = long) */
747 12, /* bitsize */
748 FALSE, /* pc_relative */
749 0, /* bitpos */
750 complain_overflow_dont, /* complain_on_overflow */
751 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 752 AARCH64_R_STR (LDST32_ABS_LO12_NC), /* name */
a06ea964
NC
753 FALSE, /* partial_inplace */
754 0xffc, /* src_mask */
755 0xffc, /* dst_mask */
756 FALSE), /* pcrel_offset */
757
758 /* LD/ST64: (S+A) & 0xff8 */
a6bb11b2 759 HOWTO (AARCH64_R (LDST64_ABS_LO12_NC), /* type */
a06ea964
NC
760 3, /* rightshift */
761 2, /* size (0 = byte, 1 = short, 2 = long) */
762 12, /* bitsize */
763 FALSE, /* pc_relative */
764 0, /* bitpos */
765 complain_overflow_dont, /* complain_on_overflow */
766 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 767 AARCH64_R_STR (LDST64_ABS_LO12_NC), /* name */
a06ea964
NC
768 FALSE, /* partial_inplace */
769 0xff8, /* src_mask */
770 0xff8, /* dst_mask */
771 FALSE), /* pcrel_offset */
772
a06ea964 773 /* LD/ST128: (S+A) & 0xff0 */
a6bb11b2 774 HOWTO (AARCH64_R (LDST128_ABS_LO12_NC), /* type */
a06ea964
NC
775 4, /* rightshift */
776 2, /* size (0 = byte, 1 = short, 2 = long) */
777 12, /* bitsize */
778 FALSE, /* pc_relative */
779 0, /* bitpos */
780 complain_overflow_dont, /* complain_on_overflow */
781 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 782 AARCH64_R_STR (LDST128_ABS_LO12_NC), /* name */
a06ea964
NC
783 FALSE, /* partial_inplace */
784 0xff0, /* src_mask */
785 0xff0, /* dst_mask */
786 FALSE), /* pcrel_offset */
787
f41aef5f
RE
788 /* Set a load-literal immediate field to bits
789 0x1FFFFC of G(S)-P */
a6bb11b2 790 HOWTO (AARCH64_R (GOT_LD_PREL19), /* type */
f41aef5f
RE
791 2, /* rightshift */
792 2, /* size (0 = byte,1 = short,2 = long) */
793 19, /* bitsize */
794 TRUE, /* pc_relative */
795 0, /* bitpos */
796 complain_overflow_signed, /* complain_on_overflow */
797 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 798 AARCH64_R_STR (GOT_LD_PREL19), /* name */
f41aef5f
RE
799 FALSE, /* partial_inplace */
800 0xffffe0, /* src_mask */
801 0xffffe0, /* dst_mask */
802 TRUE), /* pcrel_offset */
803
a06ea964
NC
804 /* Get to the page for the GOT entry for the symbol
805 (G(S) - P) using an ADRP instruction. */
a6bb11b2 806 HOWTO (AARCH64_R (ADR_GOT_PAGE), /* type */
a06ea964
NC
807 12, /* rightshift */
808 2, /* size (0 = byte, 1 = short, 2 = long) */
809 21, /* bitsize */
810 TRUE, /* pc_relative */
811 0, /* bitpos */
812 complain_overflow_dont, /* complain_on_overflow */
813 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 814 AARCH64_R_STR (ADR_GOT_PAGE), /* name */
a06ea964
NC
815 FALSE, /* partial_inplace */
816 0x1fffff, /* src_mask */
817 0x1fffff, /* dst_mask */
818 TRUE), /* pcrel_offset */
819
a6bb11b2
YZ
820 /* LD64: GOT offset G(S) & 0xff8 */
821 HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC), /* type */
a06ea964
NC
822 3, /* rightshift */
823 2, /* size (0 = byte, 1 = short, 2 = long) */
824 12, /* bitsize */
825 FALSE, /* pc_relative */
826 0, /* bitpos */
827 complain_overflow_dont, /* complain_on_overflow */
828 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 829 AARCH64_R_STR (LD64_GOT_LO12_NC), /* name */
a06ea964
NC
830 FALSE, /* partial_inplace */
831 0xff8, /* src_mask */
832 0xff8, /* dst_mask */
a6bb11b2 833 FALSE), /* pcrel_offset */
a06ea964 834
a6bb11b2
YZ
835 /* LD32: GOT offset G(S) & 0xffc */
836 HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC), /* type */
837 2, /* rightshift */
838 2, /* size (0 = byte, 1 = short, 2 = long) */
839 12, /* bitsize */
840 FALSE, /* pc_relative */
841 0, /* bitpos */
842 complain_overflow_dont, /* complain_on_overflow */
843 bfd_elf_generic_reloc, /* special_function */
844 AARCH64_R_STR (LD32_GOT_LO12_NC), /* name */
845 FALSE, /* partial_inplace */
846 0xffc, /* src_mask */
847 0xffc, /* dst_mask */
848 FALSE), /* pcrel_offset */
a06ea964
NC
849
850 /* Get to the page for the GOT entry for the symbol
851 (G(S) - P) using an ADRP instruction. */
a6bb11b2 852 HOWTO (AARCH64_R (TLSGD_ADR_PAGE21), /* type */
a06ea964
NC
853 12, /* rightshift */
854 2, /* size (0 = byte, 1 = short, 2 = long) */
855 21, /* bitsize */
856 TRUE, /* pc_relative */
857 0, /* bitpos */
858 complain_overflow_dont, /* complain_on_overflow */
859 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 860 AARCH64_R_STR (TLSGD_ADR_PAGE21), /* name */
a06ea964
NC
861 FALSE, /* partial_inplace */
862 0x1fffff, /* src_mask */
863 0x1fffff, /* dst_mask */
864 TRUE), /* pcrel_offset */
865
866 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
a6bb11b2 867 HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC), /* type */
a06ea964
NC
868 0, /* rightshift */
869 2, /* size (0 = byte, 1 = short, 2 = long) */
870 12, /* bitsize */
871 FALSE, /* pc_relative */
872 0, /* bitpos */
873 complain_overflow_dont, /* complain_on_overflow */
874 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 875 AARCH64_R_STR (TLSGD_ADD_LO12_NC), /* name */
a06ea964
NC
876 FALSE, /* partial_inplace */
877 0xfff, /* src_mask */
878 0xfff, /* dst_mask */
879 FALSE), /* pcrel_offset */
880
a6bb11b2 881 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1), /* type */
a06ea964
NC
882 16, /* rightshift */
883 2, /* size (0 = byte, 1 = short, 2 = long) */
884 16, /* bitsize */
885 FALSE, /* pc_relative */
886 0, /* bitpos */
887 complain_overflow_dont, /* complain_on_overflow */
888 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 889 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1), /* name */
a06ea964
NC
890 FALSE, /* partial_inplace */
891 0xffff, /* src_mask */
892 0xffff, /* dst_mask */
893 FALSE), /* pcrel_offset */
894
a6bb11b2 895 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC), /* type */
a06ea964
NC
896 0, /* rightshift */
897 2, /* size (0 = byte, 1 = short, 2 = long) */
898 32, /* bitsize */
899 FALSE, /* pc_relative */
900 0, /* bitpos */
901 complain_overflow_dont, /* complain_on_overflow */
902 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 903 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC), /* name */
a06ea964
NC
904 FALSE, /* partial_inplace */
905 0xffff, /* src_mask */
906 0xffff, /* dst_mask */
907 FALSE), /* pcrel_offset */
908
a6bb11b2 909 HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21), /* type */
a06ea964
NC
910 12, /* rightshift */
911 2, /* size (0 = byte, 1 = short, 2 = long) */
912 21, /* bitsize */
913 FALSE, /* pc_relative */
914 0, /* bitpos */
915 complain_overflow_dont, /* complain_on_overflow */
916 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 917 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21), /* name */
a06ea964
NC
918 FALSE, /* partial_inplace */
919 0x1fffff, /* src_mask */
920 0x1fffff, /* dst_mask */
921 FALSE), /* pcrel_offset */
922
a6bb11b2 923 HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC), /* type */
a06ea964
NC
924 3, /* rightshift */
925 2, /* size (0 = byte, 1 = short, 2 = long) */
926 12, /* bitsize */
927 FALSE, /* pc_relative */
928 0, /* bitpos */
929 complain_overflow_dont, /* complain_on_overflow */
930 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 931 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC), /* name */
a06ea964
NC
932 FALSE, /* partial_inplace */
933 0xff8, /* src_mask */
934 0xff8, /* dst_mask */
935 FALSE), /* pcrel_offset */
936
a6bb11b2
YZ
937 HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC), /* type */
938 2, /* rightshift */
939 2, /* size (0 = byte, 1 = short, 2 = long) */
940 12, /* bitsize */
941 FALSE, /* pc_relative */
942 0, /* bitpos */
943 complain_overflow_dont, /* complain_on_overflow */
944 bfd_elf_generic_reloc, /* special_function */
945 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC), /* name */
946 FALSE, /* partial_inplace */
947 0xffc, /* src_mask */
948 0xffc, /* dst_mask */
949 FALSE), /* pcrel_offset */
950
951 HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19), /* type */
bb3f9ed8 952 2, /* rightshift */
a06ea964
NC
953 2, /* size (0 = byte, 1 = short, 2 = long) */
954 21, /* bitsize */
955 FALSE, /* pc_relative */
956 0, /* bitpos */
957 complain_overflow_dont, /* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 959 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19), /* name */
a06ea964
NC
960 FALSE, /* partial_inplace */
961 0x1ffffc, /* src_mask */
962 0x1ffffc, /* dst_mask */
963 FALSE), /* pcrel_offset */
964
a6bb11b2 965 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2), /* type */
bb3f9ed8 966 32, /* rightshift */
a06ea964
NC
967 2, /* size (0 = byte, 1 = short, 2 = long) */
968 12, /* bitsize */
969 FALSE, /* pc_relative */
970 0, /* bitpos */
971 complain_overflow_dont, /* complain_on_overflow */
972 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 973 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2), /* name */
a06ea964
NC
974 FALSE, /* partial_inplace */
975 0xffff, /* src_mask */
976 0xffff, /* dst_mask */
977 FALSE), /* pcrel_offset */
978
a6bb11b2 979 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1), /* type */
bb3f9ed8 980 16, /* rightshift */
a06ea964
NC
981 2, /* size (0 = byte, 1 = short, 2 = long) */
982 12, /* bitsize */
983 FALSE, /* pc_relative */
984 0, /* bitpos */
985 complain_overflow_dont, /* complain_on_overflow */
986 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 987 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1), /* name */
a06ea964
NC
988 FALSE, /* partial_inplace */
989 0xffff, /* src_mask */
990 0xffff, /* dst_mask */
991 FALSE), /* pcrel_offset */
992
a6bb11b2 993 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC), /* type */
bb3f9ed8 994 16, /* rightshift */
a06ea964
NC
995 2, /* size (0 = byte, 1 = short, 2 = long) */
996 12, /* bitsize */
997 FALSE, /* pc_relative */
998 0, /* bitpos */
999 complain_overflow_dont, /* complain_on_overflow */
1000 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1001 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC), /* name */
a06ea964
NC
1002 FALSE, /* partial_inplace */
1003 0xffff, /* src_mask */
1004 0xffff, /* dst_mask */
1005 FALSE), /* pcrel_offset */
1006
a6bb11b2 1007 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0), /* type */
a06ea964
NC
1008 0, /* rightshift */
1009 2, /* size (0 = byte, 1 = short, 2 = long) */
1010 12, /* bitsize */
1011 FALSE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_dont, /* complain_on_overflow */
1014 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1015 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0), /* name */
a06ea964
NC
1016 FALSE, /* partial_inplace */
1017 0xffff, /* src_mask */
1018 0xffff, /* dst_mask */
1019 FALSE), /* pcrel_offset */
1020
a6bb11b2 1021 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC), /* type */
a06ea964
NC
1022 0, /* rightshift */
1023 2, /* size (0 = byte, 1 = short, 2 = long) */
1024 12, /* bitsize */
1025 FALSE, /* pc_relative */
1026 0, /* bitpos */
1027 complain_overflow_dont, /* complain_on_overflow */
1028 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1029 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC), /* name */
a06ea964
NC
1030 FALSE, /* partial_inplace */
1031 0xffff, /* src_mask */
1032 0xffff, /* dst_mask */
1033 FALSE), /* pcrel_offset */
1034
a6bb11b2 1035 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12), /* type */
bb3f9ed8 1036 12, /* rightshift */
a06ea964
NC
1037 2, /* size (0 = byte, 1 = short, 2 = long) */
1038 12, /* bitsize */
1039 FALSE, /* pc_relative */
1040 0, /* bitpos */
1041 complain_overflow_dont, /* complain_on_overflow */
1042 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1043 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12), /* name */
a06ea964
NC
1044 FALSE, /* partial_inplace */
1045 0xfff, /* src_mask */
1046 0xfff, /* dst_mask */
1047 FALSE), /* pcrel_offset */
1048
a6bb11b2 1049 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12), /* type */
a06ea964
NC
1050 0, /* rightshift */
1051 2, /* size (0 = byte, 1 = short, 2 = long) */
1052 12, /* bitsize */
1053 FALSE, /* pc_relative */
1054 0, /* bitpos */
1055 complain_overflow_dont, /* complain_on_overflow */
1056 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1057 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12), /* name */
a06ea964
NC
1058 FALSE, /* partial_inplace */
1059 0xfff, /* src_mask */
1060 0xfff, /* dst_mask */
1061 FALSE), /* pcrel_offset */
1062
a6bb11b2 1063 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC), /* type */
a06ea964
NC
1064 0, /* rightshift */
1065 2, /* size (0 = byte, 1 = short, 2 = long) */
1066 12, /* bitsize */
1067 FALSE, /* pc_relative */
1068 0, /* bitpos */
1069 complain_overflow_dont, /* complain_on_overflow */
1070 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1071 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC), /* name */
a06ea964
NC
1072 FALSE, /* partial_inplace */
1073 0xfff, /* src_mask */
1074 0xfff, /* dst_mask */
1075 FALSE), /* pcrel_offset */
a06ea964 1076
a6bb11b2 1077 HOWTO (AARCH64_R (TLSDESC_LD_PREL19), /* type */
bb3f9ed8 1078 2, /* rightshift */
a06ea964
NC
1079 2, /* size (0 = byte, 1 = short, 2 = long) */
1080 21, /* bitsize */
1081 TRUE, /* pc_relative */
1082 0, /* bitpos */
1083 complain_overflow_dont, /* complain_on_overflow */
1084 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1085 AARCH64_R_STR (TLSDESC_LD_PREL19), /* name */
a06ea964
NC
1086 FALSE, /* partial_inplace */
1087 0x1ffffc, /* src_mask */
1088 0x1ffffc, /* dst_mask */
1089 TRUE), /* pcrel_offset */
1090
a6bb11b2 1091 HOWTO (AARCH64_R (TLSDESC_ADR_PREL21), /* type */
a06ea964
NC
1092 0, /* rightshift */
1093 2, /* size (0 = byte, 1 = short, 2 = long) */
1094 21, /* bitsize */
1095 TRUE, /* pc_relative */
1096 0, /* bitpos */
1097 complain_overflow_dont, /* complain_on_overflow */
1098 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1099 AARCH64_R_STR (TLSDESC_ADR_PREL21), /* name */
a06ea964
NC
1100 FALSE, /* partial_inplace */
1101 0x1fffff, /* src_mask */
1102 0x1fffff, /* dst_mask */
1103 TRUE), /* pcrel_offset */
1104
1105 /* Get to the page for the GOT entry for the symbol
1106 (G(S) - P) using an ADRP instruction. */
a6bb11b2 1107 HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21), /* type */
a06ea964
NC
1108 12, /* rightshift */
1109 2, /* size (0 = byte, 1 = short, 2 = long) */
1110 21, /* bitsize */
1111 TRUE, /* pc_relative */
1112 0, /* bitpos */
1113 complain_overflow_dont, /* complain_on_overflow */
1114 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1115 AARCH64_R_STR (TLSDESC_ADR_PAGE21), /* name */
a06ea964
NC
1116 FALSE, /* partial_inplace */
1117 0x1fffff, /* src_mask */
1118 0x1fffff, /* dst_mask */
1119 TRUE), /* pcrel_offset */
1120
a6bb11b2
YZ
1121 /* LD64: GOT offset G(S) & 0xff8. */
1122 HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12_NC), /* type */
a06ea964
NC
1123 3, /* rightshift */
1124 2, /* size (0 = byte, 1 = short, 2 = long) */
1125 12, /* bitsize */
1126 FALSE, /* pc_relative */
1127 0, /* bitpos */
1128 complain_overflow_dont, /* complain_on_overflow */
1129 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1130 AARCH64_R_STR (TLSDESC_LD64_LO12_NC), /* name */
a06ea964 1131 FALSE, /* partial_inplace */
a6bb11b2
YZ
1132 0xff8, /* src_mask */
1133 0xff8, /* dst_mask */
1134 FALSE), /* pcrel_offset */
1135
1136 /* LD32: GOT offset G(S) & 0xffc. */
1137 HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC), /* type */
1138 2, /* rightshift */
1139 2, /* size (0 = byte, 1 = short, 2 = long) */
1140 12, /* bitsize */
1141 FALSE, /* pc_relative */
1142 0, /* bitpos */
1143 complain_overflow_dont, /* complain_on_overflow */
1144 bfd_elf_generic_reloc, /* special_function */
1145 AARCH64_R_STR (TLSDESC_LD32_LO12_NC), /* name */
1146 FALSE, /* partial_inplace */
1147 0xffc, /* src_mask */
1148 0xffc, /* dst_mask */
a06ea964
NC
1149 FALSE), /* pcrel_offset */
1150
1151 /* ADD: GOT offset G(S) & 0xfff. */
a6bb11b2 1152 HOWTO (AARCH64_R (TLSDESC_ADD_LO12_NC), /* type */
a06ea964
NC
1153 0, /* rightshift */
1154 2, /* size (0 = byte, 1 = short, 2 = long) */
1155 12, /* bitsize */
1156 FALSE, /* pc_relative */
1157 0, /* bitpos */
1158 complain_overflow_dont, /* complain_on_overflow */
1159 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1160 AARCH64_R_STR (TLSDESC_ADD_LO12_NC), /* name */
a06ea964
NC
1161 FALSE, /* partial_inplace */
1162 0xfff, /* src_mask */
1163 0xfff, /* dst_mask */
1164 FALSE), /* pcrel_offset */
1165
a6bb11b2 1166 HOWTO64 (AARCH64_R (TLSDESC_OFF_G1), /* type */
bb3f9ed8 1167 16, /* rightshift */
a06ea964
NC
1168 2, /* size (0 = byte, 1 = short, 2 = long) */
1169 12, /* bitsize */
1170 FALSE, /* pc_relative */
1171 0, /* bitpos */
1172 complain_overflow_dont, /* complain_on_overflow */
1173 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1174 AARCH64_R_STR (TLSDESC_OFF_G1), /* name */
a06ea964
NC
1175 FALSE, /* partial_inplace */
1176 0xffff, /* src_mask */
1177 0xffff, /* dst_mask */
1178 FALSE), /* pcrel_offset */
1179
a6bb11b2 1180 HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC), /* type */
a06ea964
NC
1181 0, /* rightshift */
1182 2, /* size (0 = byte, 1 = short, 2 = long) */
1183 12, /* bitsize */
1184 FALSE, /* pc_relative */
1185 0, /* bitpos */
1186 complain_overflow_dont, /* complain_on_overflow */
1187 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1188 AARCH64_R_STR (TLSDESC_OFF_G0_NC), /* name */
a06ea964
NC
1189 FALSE, /* partial_inplace */
1190 0xffff, /* src_mask */
1191 0xffff, /* dst_mask */
1192 FALSE), /* pcrel_offset */
1193
a6bb11b2 1194 HOWTO64 (AARCH64_R (TLSDESC_LDR), /* type */
a06ea964
NC
1195 0, /* rightshift */
1196 2, /* size (0 = byte, 1 = short, 2 = long) */
1197 12, /* bitsize */
1198 FALSE, /* pc_relative */
1199 0, /* bitpos */
1200 complain_overflow_dont, /* complain_on_overflow */
1201 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1202 AARCH64_R_STR (TLSDESC_LDR), /* name */
a06ea964
NC
1203 FALSE, /* partial_inplace */
1204 0x0, /* src_mask */
1205 0x0, /* dst_mask */
1206 FALSE), /* pcrel_offset */
1207
a6bb11b2 1208 HOWTO64 (AARCH64_R (TLSDESC_ADD), /* type */
a06ea964
NC
1209 0, /* rightshift */
1210 2, /* size (0 = byte, 1 = short, 2 = long) */
1211 12, /* bitsize */
1212 FALSE, /* pc_relative */
1213 0, /* bitpos */
1214 complain_overflow_dont, /* complain_on_overflow */
1215 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1216 AARCH64_R_STR (TLSDESC_ADD), /* name */
a06ea964
NC
1217 FALSE, /* partial_inplace */
1218 0x0, /* src_mask */
1219 0x0, /* dst_mask */
1220 FALSE), /* pcrel_offset */
1221
a6bb11b2 1222 HOWTO (AARCH64_R (TLSDESC_CALL), /* type */
a06ea964
NC
1223 0, /* rightshift */
1224 2, /* size (0 = byte, 1 = short, 2 = long) */
1225 12, /* bitsize */
1226 FALSE, /* pc_relative */
1227 0, /* bitpos */
1228 complain_overflow_dont, /* complain_on_overflow */
1229 bfd_elf_generic_reloc, /* special_function */
a6bb11b2 1230 AARCH64_R_STR (TLSDESC_CALL), /* name */
a06ea964
NC
1231 FALSE, /* partial_inplace */
1232 0x0, /* src_mask */
1233 0x0, /* dst_mask */
1234 FALSE), /* pcrel_offset */
a6bb11b2
YZ
1235
1236 HOWTO (AARCH64_R (COPY), /* type */
1237 0, /* rightshift */
1238 2, /* size (0 = byte, 1 = short, 2 = long) */
1239 64, /* bitsize */
1240 FALSE, /* pc_relative */
1241 0, /* bitpos */
1242 complain_overflow_bitfield, /* complain_on_overflow */
1243 bfd_elf_generic_reloc, /* special_function */
1244 AARCH64_R_STR (COPY), /* name */
1245 TRUE, /* partial_inplace */
1246 0xffffffff, /* src_mask */
1247 0xffffffff, /* dst_mask */
1248 FALSE), /* pcrel_offset */
1249
1250 HOWTO (AARCH64_R (GLOB_DAT), /* type */
1251 0, /* rightshift */
1252 2, /* size (0 = byte, 1 = short, 2 = long) */
1253 64, /* bitsize */
1254 FALSE, /* pc_relative */
1255 0, /* bitpos */
1256 complain_overflow_bitfield, /* complain_on_overflow */
1257 bfd_elf_generic_reloc, /* special_function */
1258 AARCH64_R_STR (GLOB_DAT), /* name */
1259 TRUE, /* partial_inplace */
1260 0xffffffff, /* src_mask */
1261 0xffffffff, /* dst_mask */
1262 FALSE), /* pcrel_offset */
1263
1264 HOWTO (AARCH64_R (JUMP_SLOT), /* type */
1265 0, /* rightshift */
1266 2, /* size (0 = byte, 1 = short, 2 = long) */
1267 64, /* bitsize */
1268 FALSE, /* pc_relative */
1269 0, /* bitpos */
1270 complain_overflow_bitfield, /* complain_on_overflow */
1271 bfd_elf_generic_reloc, /* special_function */
1272 AARCH64_R_STR (JUMP_SLOT), /* name */
1273 TRUE, /* partial_inplace */
1274 0xffffffff, /* src_mask */
1275 0xffffffff, /* dst_mask */
1276 FALSE), /* pcrel_offset */
1277
1278 HOWTO (AARCH64_R (RELATIVE), /* type */
1279 0, /* rightshift */
1280 2, /* size (0 = byte, 1 = short, 2 = long) */
1281 64, /* bitsize */
1282 FALSE, /* pc_relative */
1283 0, /* bitpos */
1284 complain_overflow_bitfield, /* complain_on_overflow */
1285 bfd_elf_generic_reloc, /* special_function */
1286 AARCH64_R_STR (RELATIVE), /* name */
1287 TRUE, /* partial_inplace */
1288 ALL_ONES, /* src_mask */
1289 ALL_ONES, /* dst_mask */
1290 FALSE), /* pcrel_offset */
1291
1292 HOWTO (AARCH64_R (TLS_DTPMOD), /* type */
1293 0, /* rightshift */
1294 2, /* size (0 = byte, 1 = short, 2 = long) */
1295 64, /* bitsize */
1296 FALSE, /* pc_relative */
1297 0, /* bitpos */
1298 complain_overflow_dont, /* complain_on_overflow */
1299 bfd_elf_generic_reloc, /* special_function */
da0781dc
YZ
1300#if ARCH_SIZE == 64
1301 AARCH64_R_STR (TLS_DTPMOD64), /* name */
1302#else
a6bb11b2 1303 AARCH64_R_STR (TLS_DTPMOD), /* name */
da0781dc 1304#endif
a6bb11b2
YZ
1305 FALSE, /* partial_inplace */
1306 0, /* src_mask */
1307 ALL_ONES, /* dst_mask */
1308 FALSE), /* pc_reloffset */
1309
1310 HOWTO (AARCH64_R (TLS_DTPREL), /* type */
1311 0, /* rightshift */
1312 2, /* size (0 = byte, 1 = short, 2 = long) */
1313 64, /* bitsize */
1314 FALSE, /* pc_relative */
1315 0, /* bitpos */
1316 complain_overflow_dont, /* complain_on_overflow */
1317 bfd_elf_generic_reloc, /* special_function */
da0781dc
YZ
1318#if ARCH_SIZE == 64
1319 AARCH64_R_STR (TLS_DTPREL64), /* name */
1320#else
a6bb11b2 1321 AARCH64_R_STR (TLS_DTPREL), /* name */
da0781dc 1322#endif
a6bb11b2
YZ
1323 FALSE, /* partial_inplace */
1324 0, /* src_mask */
1325 ALL_ONES, /* dst_mask */
1326 FALSE), /* pcrel_offset */
1327
1328 HOWTO (AARCH64_R (TLS_TPREL), /* type */
1329 0, /* rightshift */
1330 2, /* size (0 = byte, 1 = short, 2 = long) */
1331 64, /* bitsize */
1332 FALSE, /* pc_relative */
1333 0, /* bitpos */
1334 complain_overflow_dont, /* complain_on_overflow */
1335 bfd_elf_generic_reloc, /* special_function */
da0781dc
YZ
1336#if ARCH_SIZE == 64
1337 AARCH64_R_STR (TLS_TPREL64), /* name */
1338#else
a6bb11b2 1339 AARCH64_R_STR (TLS_TPREL), /* name */
da0781dc 1340#endif
a6bb11b2
YZ
1341 FALSE, /* partial_inplace */
1342 0, /* src_mask */
1343 ALL_ONES, /* dst_mask */
1344 FALSE), /* pcrel_offset */
1345
1346 HOWTO (AARCH64_R (TLSDESC), /* type */
1347 0, /* rightshift */
1348 2, /* size (0 = byte, 1 = short, 2 = long) */
1349 64, /* bitsize */
1350 FALSE, /* pc_relative */
1351 0, /* bitpos */
1352 complain_overflow_dont, /* complain_on_overflow */
1353 bfd_elf_generic_reloc, /* special_function */
1354 AARCH64_R_STR (TLSDESC), /* name */
1355 FALSE, /* partial_inplace */
1356 0, /* src_mask */
1357 ALL_ONES, /* dst_mask */
1358 FALSE), /* pcrel_offset */
1359
1360 HOWTO (AARCH64_R (IRELATIVE), /* type */
1361 0, /* rightshift */
1362 2, /* size (0 = byte, 1 = short, 2 = long) */
1363 64, /* bitsize */
1364 FALSE, /* pc_relative */
1365 0, /* bitpos */
1366 complain_overflow_bitfield, /* complain_on_overflow */
1367 bfd_elf_generic_reloc, /* special_function */
1368 AARCH64_R_STR (IRELATIVE), /* name */
1369 FALSE, /* partial_inplace */
1370 0, /* src_mask */
1371 ALL_ONES, /* dst_mask */
1372 FALSE), /* pcrel_offset */
1373
1374 EMPTY_HOWTO (0),
a06ea964
NC
1375};
1376
a6bb11b2
YZ
1377static reloc_howto_type elfNN_aarch64_howto_none =
1378 HOWTO (R_AARCH64_NONE, /* type */
1379 0, /* rightshift */
1380 0, /* size (0 = byte, 1 = short, 2 = long) */
1381 0, /* bitsize */
1382 FALSE, /* pc_relative */
1383 0, /* bitpos */
1384 complain_overflow_dont,/* complain_on_overflow */
1385 bfd_elf_generic_reloc, /* special_function */
1386 "R_AARCH64_NONE", /* name */
1387 FALSE, /* partial_inplace */
1388 0, /* src_mask */
1389 0, /* dst_mask */
1390 FALSE); /* pcrel_offset */
1391
1392/* Given HOWTO, return the bfd internal relocation enumerator. */
1393
1394static bfd_reloc_code_real_type
1395elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type *howto)
1396{
1397 const int size
1398 = (int) ARRAY_SIZE (elfNN_aarch64_howto_table);
1399 const ptrdiff_t offset
1400 = howto - elfNN_aarch64_howto_table;
1401
1402 if (offset > 0 && offset < size - 1)
1403 return BFD_RELOC_AARCH64_RELOC_START + offset;
1404
1405 if (howto == &elfNN_aarch64_howto_none)
1406 return BFD_RELOC_AARCH64_NONE;
1407
1408 return BFD_RELOC_AARCH64_RELOC_START;
1409}
1410
1411/* Given R_TYPE, return the bfd internal relocation enumerator. */
1412
1413static bfd_reloc_code_real_type
1414elfNN_aarch64_bfd_reloc_from_type (unsigned int r_type)
1415{
1416 static bfd_boolean initialized_p = FALSE;
1417 /* Indexed by R_TYPE, values are offsets in the howto_table. */
1418 static unsigned int offsets[R_AARCH64_end];
1419
1420 if (initialized_p == FALSE)
1421 {
1422 unsigned int i;
1423
1424 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
1425 if (elfNN_aarch64_howto_table[i].type != 0)
1426 offsets[elfNN_aarch64_howto_table[i].type] = i;
1427
1428 initialized_p = TRUE;
1429 }
1430
1431 if (r_type == R_AARCH64_NONE || r_type == R_AARCH64_NULL)
1432 return BFD_RELOC_AARCH64_NONE;
1433
1434 return BFD_RELOC_AARCH64_RELOC_START + offsets[r_type];
1435}
1436
1437struct elf_aarch64_reloc_map
1438{
1439 bfd_reloc_code_real_type from;
1440 bfd_reloc_code_real_type to;
1441};
1442
1443/* Map bfd generic reloc to AArch64-specific reloc. */
1444static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map[] =
1445{
1446 {BFD_RELOC_NONE, BFD_RELOC_AARCH64_NONE},
1447
1448 /* Basic data relocations. */
1449 {BFD_RELOC_CTOR, BFD_RELOC_AARCH64_NN},
1450 {BFD_RELOC_64, BFD_RELOC_AARCH64_64},
1451 {BFD_RELOC_32, BFD_RELOC_AARCH64_32},
1452 {BFD_RELOC_16, BFD_RELOC_AARCH64_16},
1453 {BFD_RELOC_64_PCREL, BFD_RELOC_AARCH64_64_PCREL},
1454 {BFD_RELOC_32_PCREL, BFD_RELOC_AARCH64_32_PCREL},
1455 {BFD_RELOC_16_PCREL, BFD_RELOC_AARCH64_16_PCREL},
1456};
1457
1458/* Given the bfd internal relocation enumerator in CODE, return the
1459 corresponding howto entry. */
1460
1461static reloc_howto_type *
1462elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code)
1463{
1464 unsigned int i;
1465
1466 /* Convert bfd generic reloc to AArch64-specific reloc. */
1467 if (code < BFD_RELOC_AARCH64_RELOC_START
1468 || code > BFD_RELOC_AARCH64_RELOC_END)
1469 for (i = 0; i < ARRAY_SIZE (elf_aarch64_reloc_map); i++)
1470 if (elf_aarch64_reloc_map[i].from == code)
1471 {
1472 code = elf_aarch64_reloc_map[i].to;
1473 break;
1474 }
1475
1476 if (code > BFD_RELOC_AARCH64_RELOC_START
1477 && code < BFD_RELOC_AARCH64_RELOC_END)
1478 if (elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START].type)
1479 return &elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START];
1480
54757ed1
AP
1481 if (code == BFD_RELOC_AARCH64_NONE)
1482 return &elfNN_aarch64_howto_none;
1483
a6bb11b2
YZ
1484 return NULL;
1485}
1486
a06ea964 1487static reloc_howto_type *
cec5225b 1488elfNN_aarch64_howto_from_type (unsigned int r_type)
a06ea964 1489{
a6bb11b2
YZ
1490 bfd_reloc_code_real_type val;
1491 reloc_howto_type *howto;
1492
cec5225b
YZ
1493#if ARCH_SIZE == 32
1494 if (r_type > 256)
1495 {
1496 bfd_set_error (bfd_error_bad_value);
1497 return NULL;
1498 }
1499#endif
1500
a6bb11b2
YZ
1501 if (r_type == R_AARCH64_NONE)
1502 return &elfNN_aarch64_howto_none;
a06ea964 1503
a6bb11b2
YZ
1504 val = elfNN_aarch64_bfd_reloc_from_type (r_type);
1505 howto = elfNN_aarch64_howto_from_bfd_reloc (val);
a06ea964 1506
a6bb11b2
YZ
1507 if (howto != NULL)
1508 return howto;
a06ea964 1509
a06ea964
NC
1510 bfd_set_error (bfd_error_bad_value);
1511 return NULL;
1512}
1513
1514static void
cec5225b 1515elfNN_aarch64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *bfd_reloc,
a06ea964
NC
1516 Elf_Internal_Rela *elf_reloc)
1517{
1518 unsigned int r_type;
1519
cec5225b
YZ
1520 r_type = ELFNN_R_TYPE (elf_reloc->r_info);
1521 bfd_reloc->howto = elfNN_aarch64_howto_from_type (r_type);
a06ea964
NC
1522}
1523
a06ea964 1524static reloc_howto_type *
cec5225b 1525elfNN_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
a06ea964
NC
1526 bfd_reloc_code_real_type code)
1527{
a6bb11b2 1528 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (code);
a06ea964 1529
a6bb11b2
YZ
1530 if (howto != NULL)
1531 return howto;
a06ea964
NC
1532
1533 bfd_set_error (bfd_error_bad_value);
1534 return NULL;
1535}
1536
1537static reloc_howto_type *
cec5225b 1538elfNN_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
a06ea964
NC
1539 const char *r_name)
1540{
1541 unsigned int i;
1542
a6bb11b2
YZ
1543 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
1544 if (elfNN_aarch64_howto_table[i].name != NULL
1545 && strcasecmp (elfNN_aarch64_howto_table[i].name, r_name) == 0)
1546 return &elfNN_aarch64_howto_table[i];
a06ea964
NC
1547
1548 return NULL;
1549}
1550
cec5225b
YZ
1551#define TARGET_LITTLE_SYM bfd_elfNN_littleaarch64_vec
1552#define TARGET_LITTLE_NAME "elfNN-littleaarch64"
1553#define TARGET_BIG_SYM bfd_elfNN_bigaarch64_vec
1554#define TARGET_BIG_NAME "elfNN-bigaarch64"
a06ea964 1555
a06ea964
NC
1556/* The linker script knows the section names for placement.
1557 The entry_names are used to do simple name mangling on the stubs.
1558 Given a function name, and its type, the stub can be found. The
1559 name can be changed. The only requirement is the %s be present. */
1560#define STUB_ENTRY_NAME "__%s_veneer"
1561
1562/* The name of the dynamic interpreter. This is put in the .interp
1563 section. */
1564#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
1565
1566#define AARCH64_MAX_FWD_BRANCH_OFFSET \
1567 (((1 << 25) - 1) << 2)
1568#define AARCH64_MAX_BWD_BRANCH_OFFSET \
1569 (-((1 << 25) << 2))
1570
1571#define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
1572#define AARCH64_MIN_ADRP_IMM (-(1 << 20))
1573
1574static int
1575aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place)
1576{
1577 bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12;
1578 return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM;
1579}
1580
1581static int
1582aarch64_valid_branch_p (bfd_vma value, bfd_vma place)
1583{
1584 bfd_signed_vma offset = (bfd_signed_vma) (value - place);
1585 return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET
1586 && offset >= AARCH64_MAX_BWD_BRANCH_OFFSET);
1587}
1588
1589static const uint32_t aarch64_adrp_branch_stub [] =
1590{
1591 0x90000010, /* adrp ip0, X */
1592 /* R_AARCH64_ADR_HI21_PCREL(X) */
1593 0x91000210, /* add ip0, ip0, :lo12:X */
1594 /* R_AARCH64_ADD_ABS_LO12_NC(X) */
1595 0xd61f0200, /* br ip0 */
1596};
1597
1598static const uint32_t aarch64_long_branch_stub[] =
1599{
cec5225b 1600#if ARCH_SIZE == 64
a06ea964 1601 0x58000090, /* ldr ip0, 1f */
cec5225b
YZ
1602#else
1603 0x18000090, /* ldr wip0, 1f */
1604#endif
a06ea964
NC
1605 0x10000011, /* adr ip1, #0 */
1606 0x8b110210, /* add ip0, ip0, ip1 */
1607 0xd61f0200, /* br ip0 */
cec5225b
YZ
1608 0x00000000, /* 1: .xword or .word
1609 R_AARCH64_PRELNN(X) + 12
a06ea964
NC
1610 */
1611 0x00000000,
1612};
1613
1614/* Section name for stubs is the associated section name plus this
1615 string. */
1616#define STUB_SUFFIX ".stub"
1617
cec5225b 1618enum elf_aarch64_stub_type
a06ea964
NC
1619{
1620 aarch64_stub_none,
1621 aarch64_stub_adrp_branch,
1622 aarch64_stub_long_branch,
1623};
1624
cec5225b 1625struct elf_aarch64_stub_hash_entry
a06ea964
NC
1626{
1627 /* Base hash table entry structure. */
1628 struct bfd_hash_entry root;
1629
1630 /* The stub section. */
1631 asection *stub_sec;
1632
1633 /* Offset within stub_sec of the beginning of this stub. */
1634 bfd_vma stub_offset;
1635
1636 /* Given the symbol's value and its section we can determine its final
1637 value when building the stubs (so the stub knows where to jump). */
1638 bfd_vma target_value;
1639 asection *target_section;
1640
cec5225b 1641 enum elf_aarch64_stub_type stub_type;
a06ea964
NC
1642
1643 /* The symbol table entry, if any, that this was derived from. */
cec5225b 1644 struct elf_aarch64_link_hash_entry *h;
a06ea964
NC
1645
1646 /* Destination symbol type */
1647 unsigned char st_type;
1648
1649 /* Where this stub is being called from, or, in the case of combined
1650 stub sections, the first input section in the group. */
1651 asection *id_sec;
1652
1653 /* The name for the local symbol at the start of this stub. The
1654 stub name in the hash table has to be unique; this does not, so
1655 it can be friendlier. */
1656 char *output_name;
1657};
1658
1659/* Used to build a map of a section. This is required for mixed-endian
1660 code/data. */
1661
cec5225b 1662typedef struct elf_elf_section_map
a06ea964
NC
1663{
1664 bfd_vma vma;
1665 char type;
1666}
cec5225b 1667elf_aarch64_section_map;
a06ea964
NC
1668
1669
1670typedef struct _aarch64_elf_section_data
1671{
1672 struct bfd_elf_section_data elf;
1673 unsigned int mapcount;
1674 unsigned int mapsize;
cec5225b 1675 elf_aarch64_section_map *map;
a06ea964
NC
1676}
1677_aarch64_elf_section_data;
1678
cec5225b 1679#define elf_aarch64_section_data(sec) \
a06ea964
NC
1680 ((_aarch64_elf_section_data *) elf_section_data (sec))
1681
4e8516b2
AP
1682/* The size of the thread control block which is defined to be two pointers. */
1683#define TCB_SIZE (ARCH_SIZE/8)*2
a06ea964
NC
1684
1685struct elf_aarch64_local_symbol
1686{
1687 unsigned int got_type;
1688 bfd_signed_vma got_refcount;
1689 bfd_vma got_offset;
1690
1691 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
1692 offset is from the end of the jump table and reserved entries
1693 within the PLTGOT.
1694
1695 The magic value (bfd_vma) -1 indicates that an offset has not be
1696 allocated. */
1697 bfd_vma tlsdesc_got_jump_table_offset;
1698};
1699
1700struct elf_aarch64_obj_tdata
1701{
1702 struct elf_obj_tdata root;
1703
1704 /* local symbol descriptors */
1705 struct elf_aarch64_local_symbol *locals;
1706
1707 /* Zero to warn when linking objects with incompatible enum sizes. */
1708 int no_enum_size_warning;
1709
1710 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
1711 int no_wchar_size_warning;
1712};
1713
1714#define elf_aarch64_tdata(bfd) \
1715 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
1716
cec5225b 1717#define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
a06ea964
NC
1718
1719#define is_aarch64_elf(bfd) \
1720 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
1721 && elf_tdata (bfd) != NULL \
1722 && elf_object_id (bfd) == AARCH64_ELF_DATA)
1723
1724static bfd_boolean
cec5225b 1725elfNN_aarch64_mkobject (bfd *abfd)
a06ea964
NC
1726{
1727 return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata),
1728 AARCH64_ELF_DATA);
1729}
1730
cec5225b
YZ
1731#define elf_aarch64_hash_entry(ent) \
1732 ((struct elf_aarch64_link_hash_entry *)(ent))
a06ea964
NC
1733
1734#define GOT_UNKNOWN 0
1735#define GOT_NORMAL 1
1736#define GOT_TLS_GD 2
1737#define GOT_TLS_IE 4
1738#define GOT_TLSDESC_GD 8
1739
1740#define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
1741
1742/* AArch64 ELF linker hash entry. */
cec5225b 1743struct elf_aarch64_link_hash_entry
a06ea964
NC
1744{
1745 struct elf_link_hash_entry root;
1746
1747 /* Track dynamic relocs copied for this symbol. */
1748 struct elf_dyn_relocs *dyn_relocs;
1749
a06ea964
NC
1750 /* Since PLT entries have variable size, we need to record the
1751 index into .got.plt instead of recomputing it from the PLT
1752 offset. */
1753 bfd_signed_vma plt_got_offset;
1754
1755 /* Bit mask representing the type of GOT entry(s) if any required by
1756 this symbol. */
1757 unsigned int got_type;
1758
1759 /* A pointer to the most recently used stub hash entry against this
1760 symbol. */
cec5225b 1761 struct elf_aarch64_stub_hash_entry *stub_cache;
a06ea964
NC
1762
1763 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset
1764 is from the end of the jump table and reserved entries within the PLTGOT.
1765
1766 The magic value (bfd_vma) -1 indicates that an offset has not
1767 be allocated. */
1768 bfd_vma tlsdesc_got_jump_table_offset;
1769};
1770
1771static unsigned int
cec5225b 1772elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry *h,
a06ea964
NC
1773 bfd *abfd,
1774 unsigned long r_symndx)
1775{
1776 if (h)
cec5225b 1777 return elf_aarch64_hash_entry (h)->got_type;
a06ea964 1778
cec5225b 1779 if (! elf_aarch64_locals (abfd))
a06ea964
NC
1780 return GOT_UNKNOWN;
1781
cec5225b 1782 return elf_aarch64_locals (abfd)[r_symndx].got_type;
a06ea964
NC
1783}
1784
a06ea964 1785/* Get the AArch64 elf linker hash table from a link_info structure. */
cec5225b
YZ
1786#define elf_aarch64_hash_table(info) \
1787 ((struct elf_aarch64_link_hash_table *) ((info)->hash))
a06ea964
NC
1788
1789#define aarch64_stub_hash_lookup(table, string, create, copy) \
cec5225b 1790 ((struct elf_aarch64_stub_hash_entry *) \
a06ea964
NC
1791 bfd_hash_lookup ((table), (string), (create), (copy)))
1792
1793/* AArch64 ELF linker hash table. */
cec5225b 1794struct elf_aarch64_link_hash_table
a06ea964
NC
1795{
1796 /* The main hash table. */
1797 struct elf_link_hash_table root;
1798
1799 /* Nonzero to force PIC branch veneers. */
1800 int pic_veneer;
1801
1802 /* The number of bytes in the initial entry in the PLT. */
1803 bfd_size_type plt_header_size;
1804
1805 /* The number of bytes in the subsequent PLT etries. */
1806 bfd_size_type plt_entry_size;
1807
1808 /* Short-cuts to get to dynamic linker sections. */
1809 asection *sdynbss;
1810 asection *srelbss;
1811
1812 /* Small local sym cache. */
1813 struct sym_cache sym_cache;
1814
1815 /* For convenience in allocate_dynrelocs. */
1816 bfd *obfd;
1817
1818 /* The amount of space used by the reserved portion of the sgotplt
1819 section, plus whatever space is used by the jump slots. */
1820 bfd_vma sgotplt_jump_table_size;
1821
1822 /* The stub hash table. */
1823 struct bfd_hash_table stub_hash_table;
1824
1825 /* Linker stub bfd. */
1826 bfd *stub_bfd;
1827
1828 /* Linker call-backs. */
1829 asection *(*add_stub_section) (const char *, asection *);
1830 void (*layout_sections_again) (void);
1831
1832 /* Array to keep track of which stub sections have been created, and
1833 information on stub grouping. */
1834 struct map_stub
1835 {
1836 /* This is the section to which stubs in the group will be
1837 attached. */
1838 asection *link_sec;
1839 /* The stub section. */
1840 asection *stub_sec;
1841 } *stub_group;
1842
cec5225b 1843 /* Assorted information used by elfNN_aarch64_size_stubs. */
a06ea964
NC
1844 unsigned int bfd_count;
1845 int top_index;
1846 asection **input_list;
1847
1848 /* The offset into splt of the PLT entry for the TLS descriptor
1849 resolver. Special values are 0, if not necessary (or not found
1850 to be necessary yet), and -1 if needed but not determined
1851 yet. */
1852 bfd_vma tlsdesc_plt;
1853
1854 /* The GOT offset for the lazy trampoline. Communicated to the
1855 loader via DT_TLSDESC_GOT. The magic value (bfd_vma) -1
1856 indicates an offset is not allocated. */
1857 bfd_vma dt_tlsdesc_got;
1419bbe5
WN
1858
1859 /* Used by local STT_GNU_IFUNC symbols. */
1860 htab_t loc_hash_table;
1861 void * loc_hash_memory;
a06ea964
NC
1862};
1863
a06ea964
NC
1864/* Create an entry in an AArch64 ELF linker hash table. */
1865
1866static struct bfd_hash_entry *
cec5225b 1867elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry,
a06ea964
NC
1868 struct bfd_hash_table *table,
1869 const char *string)
1870{
cec5225b
YZ
1871 struct elf_aarch64_link_hash_entry *ret =
1872 (struct elf_aarch64_link_hash_entry *) entry;
a06ea964
NC
1873
1874 /* Allocate the structure if it has not already been allocated by a
1875 subclass. */
1876 if (ret == NULL)
1877 ret = bfd_hash_allocate (table,
cec5225b 1878 sizeof (struct elf_aarch64_link_hash_entry));
a06ea964
NC
1879 if (ret == NULL)
1880 return (struct bfd_hash_entry *) ret;
1881
1882 /* Call the allocation method of the superclass. */
cec5225b 1883 ret = ((struct elf_aarch64_link_hash_entry *)
a06ea964
NC
1884 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1885 table, string));
1886 if (ret != NULL)
1887 {
1888 ret->dyn_relocs = NULL;
a06ea964
NC
1889 ret->got_type = GOT_UNKNOWN;
1890 ret->plt_got_offset = (bfd_vma) - 1;
1891 ret->stub_cache = NULL;
1892 ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
1893 }
1894
1895 return (struct bfd_hash_entry *) ret;
1896}
1897
1898/* Initialize an entry in the stub hash table. */
1899
1900static struct bfd_hash_entry *
1901stub_hash_newfunc (struct bfd_hash_entry *entry,
1902 struct bfd_hash_table *table, const char *string)
1903{
1904 /* Allocate the structure if it has not already been allocated by a
1905 subclass. */
1906 if (entry == NULL)
1907 {
1908 entry = bfd_hash_allocate (table,
1909 sizeof (struct
cec5225b 1910 elf_aarch64_stub_hash_entry));
a06ea964
NC
1911 if (entry == NULL)
1912 return entry;
1913 }
1914
1915 /* Call the allocation method of the superclass. */
1916 entry = bfd_hash_newfunc (entry, table, string);
1917 if (entry != NULL)
1918 {
cec5225b 1919 struct elf_aarch64_stub_hash_entry *eh;
a06ea964
NC
1920
1921 /* Initialize the local fields. */
cec5225b 1922 eh = (struct elf_aarch64_stub_hash_entry *) entry;
a06ea964
NC
1923 eh->stub_sec = NULL;
1924 eh->stub_offset = 0;
1925 eh->target_value = 0;
1926 eh->target_section = NULL;
1927 eh->stub_type = aarch64_stub_none;
1928 eh->h = NULL;
1929 eh->id_sec = NULL;
1930 }
1931
1932 return entry;
1933}
1934
1419bbe5
WN
1935/* Compute a hash of a local hash entry. We use elf_link_hash_entry
1936 for local symbol so that we can handle local STT_GNU_IFUNC symbols
1937 as global symbol. We reuse indx and dynstr_index for local symbol
1938 hash since they aren't used by global symbols in this backend. */
1939
1940static hashval_t
1941elfNN_aarch64_local_htab_hash (const void *ptr)
1942{
1943 struct elf_link_hash_entry *h
1944 = (struct elf_link_hash_entry *) ptr;
1945 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
1946}
1947
1948/* Compare local hash entries. */
1949
1950static int
1951elfNN_aarch64_local_htab_eq (const void *ptr1, const void *ptr2)
1952{
1953 struct elf_link_hash_entry *h1
1954 = (struct elf_link_hash_entry *) ptr1;
1955 struct elf_link_hash_entry *h2
1956 = (struct elf_link_hash_entry *) ptr2;
1957
1958 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
1959}
1960
1961/* Find and/or create a hash entry for local symbol. */
1962
1963static struct elf_link_hash_entry *
1964elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table *htab,
1965 bfd *abfd, const Elf_Internal_Rela *rel,
1966 bfd_boolean create)
1967{
1968 struct elf_aarch64_link_hash_entry e, *ret;
1969 asection *sec = abfd->sections;
1970 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
1971 ELFNN_R_SYM (rel->r_info));
1972 void **slot;
1973
1974 e.root.indx = sec->id;
1975 e.root.dynstr_index = ELFNN_R_SYM (rel->r_info);
1976 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
1977 create ? INSERT : NO_INSERT);
1978
1979 if (!slot)
1980 return NULL;
1981
1982 if (*slot)
1983 {
1984 ret = (struct elf_aarch64_link_hash_entry *) *slot;
1985 return &ret->root;
1986 }
1987
1988 ret = (struct elf_aarch64_link_hash_entry *)
1989 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
1990 sizeof (struct elf_aarch64_link_hash_entry));
1991 if (ret)
1992 {
1993 memset (ret, 0, sizeof (*ret));
1994 ret->root.indx = sec->id;
1995 ret->root.dynstr_index = ELFNN_R_SYM (rel->r_info);
1996 ret->root.dynindx = -1;
1997 *slot = ret;
1998 }
1999 return &ret->root;
2000}
a06ea964
NC
2001
2002/* Copy the extra info we tack onto an elf_link_hash_entry. */
2003
2004static void
cec5225b 2005elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info *info,
a06ea964
NC
2006 struct elf_link_hash_entry *dir,
2007 struct elf_link_hash_entry *ind)
2008{
cec5225b 2009 struct elf_aarch64_link_hash_entry *edir, *eind;
a06ea964 2010
cec5225b
YZ
2011 edir = (struct elf_aarch64_link_hash_entry *) dir;
2012 eind = (struct elf_aarch64_link_hash_entry *) ind;
a06ea964
NC
2013
2014 if (eind->dyn_relocs != NULL)
2015 {
2016 if (edir->dyn_relocs != NULL)
2017 {
2018 struct elf_dyn_relocs **pp;
2019 struct elf_dyn_relocs *p;
2020
2021 /* Add reloc counts against the indirect sym to the direct sym
2022 list. Merge any entries against the same section. */
2023 for (pp = &eind->dyn_relocs; (p = *pp) != NULL;)
2024 {
2025 struct elf_dyn_relocs *q;
2026
2027 for (q = edir->dyn_relocs; q != NULL; q = q->next)
2028 if (q->sec == p->sec)
2029 {
2030 q->pc_count += p->pc_count;
2031 q->count += p->count;
2032 *pp = p->next;
2033 break;
2034 }
2035 if (q == NULL)
2036 pp = &p->next;
2037 }
2038 *pp = edir->dyn_relocs;
2039 }
2040
2041 edir->dyn_relocs = eind->dyn_relocs;
2042 eind->dyn_relocs = NULL;
2043 }
2044
a06ea964
NC
2045 if (ind->root.type == bfd_link_hash_indirect)
2046 {
2047 /* Copy over PLT info. */
2048 if (dir->got.refcount <= 0)
2049 {
2050 edir->got_type = eind->got_type;
2051 eind->got_type = GOT_UNKNOWN;
2052 }
2053 }
2054
2055 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2056}
2057
2058/* Create an AArch64 elf linker hash table. */
2059
2060static struct bfd_link_hash_table *
cec5225b 2061elfNN_aarch64_link_hash_table_create (bfd *abfd)
a06ea964 2062{
cec5225b
YZ
2063 struct elf_aarch64_link_hash_table *ret;
2064 bfd_size_type amt = sizeof (struct elf_aarch64_link_hash_table);
a06ea964 2065
7bf52ea2 2066 ret = bfd_zmalloc (amt);
a06ea964
NC
2067 if (ret == NULL)
2068 return NULL;
2069
2070 if (!_bfd_elf_link_hash_table_init
cec5225b
YZ
2071 (&ret->root, abfd, elfNN_aarch64_link_hash_newfunc,
2072 sizeof (struct elf_aarch64_link_hash_entry), AARCH64_ELF_DATA))
a06ea964
NC
2073 {
2074 free (ret);
2075 return NULL;
2076 }
2077
a06ea964
NC
2078 ret->plt_header_size = PLT_ENTRY_SIZE;
2079 ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE;
a06ea964 2080 ret->obfd = abfd;
a06ea964
NC
2081 ret->dt_tlsdesc_got = (bfd_vma) - 1;
2082
2083 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
cec5225b 2084 sizeof (struct elf_aarch64_stub_hash_entry)))
a06ea964
NC
2085 {
2086 free (ret);
2087 return NULL;
2088 }
2089
1419bbe5
WN
2090 ret->loc_hash_table = htab_try_create (1024,
2091 elfNN_aarch64_local_htab_hash,
2092 elfNN_aarch64_local_htab_eq,
2093 NULL);
2094 ret->loc_hash_memory = objalloc_create ();
2095 if (!ret->loc_hash_table || !ret->loc_hash_memory)
2096 {
2097 free (ret);
2098 return NULL;
2099 }
2100
a06ea964
NC
2101 return &ret->root.root;
2102}
2103
2104/* Free the derived linker hash table. */
2105
2106static void
cec5225b 2107elfNN_aarch64_hash_table_free (struct bfd_link_hash_table *hash)
a06ea964 2108{
cec5225b
YZ
2109 struct elf_aarch64_link_hash_table *ret
2110 = (struct elf_aarch64_link_hash_table *) hash;
a06ea964 2111
1419bbe5
WN
2112 if (ret->loc_hash_table)
2113 htab_delete (ret->loc_hash_table);
2114 if (ret->loc_hash_memory)
2115 objalloc_free ((struct objalloc *) ret->loc_hash_memory);
2116
a06ea964 2117 bfd_hash_table_free (&ret->stub_hash_table);
9f7c3e5e 2118 _bfd_elf_link_hash_table_free (hash);
a06ea964
NC
2119}
2120
a06ea964
NC
2121static bfd_boolean
2122aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section,
2123 bfd_vma offset, bfd_vma value)
2124{
2125 reloc_howto_type *howto;
2126 bfd_vma place;
2127
cec5225b 2128 howto = elfNN_aarch64_howto_from_type (r_type);
a06ea964
NC
2129 place = (input_section->output_section->vma + input_section->output_offset
2130 + offset);
caed7120
YZ
2131
2132 r_type = elfNN_aarch64_bfd_reloc_from_type (r_type);
2133 value = _bfd_aarch64_elf_resolve_relocation (r_type, place, value, 0, FALSE);
2134 return _bfd_aarch64_elf_put_addend (input_bfd,
2135 input_section->contents + offset, r_type,
2136 howto, value);
a06ea964
NC
2137}
2138
cec5225b 2139static enum elf_aarch64_stub_type
a06ea964
NC
2140aarch64_select_branch_stub (bfd_vma value, bfd_vma place)
2141{
2142 if (aarch64_valid_for_adrp_p (value, place))
2143 return aarch64_stub_adrp_branch;
2144 return aarch64_stub_long_branch;
2145}
2146
2147/* Determine the type of stub needed, if any, for a call. */
2148
cec5225b 2149static enum elf_aarch64_stub_type
a06ea964
NC
2150aarch64_type_of_stub (struct bfd_link_info *info,
2151 asection *input_sec,
2152 const Elf_Internal_Rela *rel,
2153 unsigned char st_type,
cec5225b 2154 struct elf_aarch64_link_hash_entry *hash,
a06ea964
NC
2155 bfd_vma destination)
2156{
2157 bfd_vma location;
2158 bfd_signed_vma branch_offset;
2159 unsigned int r_type;
cec5225b
YZ
2160 struct elf_aarch64_link_hash_table *globals;
2161 enum elf_aarch64_stub_type stub_type = aarch64_stub_none;
a06ea964
NC
2162 bfd_boolean via_plt_p;
2163
2164 if (st_type != STT_FUNC)
2165 return stub_type;
2166
cec5225b 2167 globals = elf_aarch64_hash_table (info);
a06ea964
NC
2168 via_plt_p = (globals->root.splt != NULL && hash != NULL
2169 && hash->root.plt.offset != (bfd_vma) - 1);
2170
2171 if (via_plt_p)
2172 return stub_type;
2173
2174 /* Determine where the call point is. */
2175 location = (input_sec->output_offset
2176 + input_sec->output_section->vma + rel->r_offset);
2177
2178 branch_offset = (bfd_signed_vma) (destination - location);
2179
cec5225b 2180 r_type = ELFNN_R_TYPE (rel->r_info);
a06ea964
NC
2181
2182 /* We don't want to redirect any old unconditional jump in this way,
2183 only one which is being used for a sibcall, where it is
2184 acceptable for the IP0 and IP1 registers to be clobbered. */
a6bb11b2 2185 if ((r_type == AARCH64_R (CALL26) || r_type == AARCH64_R (JUMP26))
a06ea964
NC
2186 && (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET
2187 || branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET))
2188 {
2189 stub_type = aarch64_stub_long_branch;
2190 }
2191
2192 return stub_type;
2193}
2194
2195/* Build a name for an entry in the stub hash table. */
2196
2197static char *
cec5225b 2198elfNN_aarch64_stub_name (const asection *input_section,
a06ea964 2199 const asection *sym_sec,
cec5225b 2200 const struct elf_aarch64_link_hash_entry *hash,
a06ea964
NC
2201 const Elf_Internal_Rela *rel)
2202{
2203 char *stub_name;
2204 bfd_size_type len;
2205
2206 if (hash)
2207 {
2208 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1;
2209 stub_name = bfd_malloc (len);
2210 if (stub_name != NULL)
2211 snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x",
2212 (unsigned int) input_section->id,
2213 hash->root.root.root.string,
2214 rel->r_addend);
2215 }
2216 else
2217 {
2218 len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
2219 stub_name = bfd_malloc (len);
2220 if (stub_name != NULL)
2221 snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x",
2222 (unsigned int) input_section->id,
2223 (unsigned int) sym_sec->id,
cec5225b 2224 (unsigned int) ELFNN_R_SYM (rel->r_info),
a06ea964
NC
2225 rel->r_addend);
2226 }
2227
2228 return stub_name;
2229}
2230
2231/* Look up an entry in the stub hash. Stub entries are cached because
2232 creating the stub name takes a bit of time. */
2233
cec5225b
YZ
2234static struct elf_aarch64_stub_hash_entry *
2235elfNN_aarch64_get_stub_entry (const asection *input_section,
a06ea964
NC
2236 const asection *sym_sec,
2237 struct elf_link_hash_entry *hash,
2238 const Elf_Internal_Rela *rel,
cec5225b 2239 struct elf_aarch64_link_hash_table *htab)
a06ea964 2240{
cec5225b
YZ
2241 struct elf_aarch64_stub_hash_entry *stub_entry;
2242 struct elf_aarch64_link_hash_entry *h =
2243 (struct elf_aarch64_link_hash_entry *) hash;
a06ea964
NC
2244 const asection *id_sec;
2245
2246 if ((input_section->flags & SEC_CODE) == 0)
2247 return NULL;
2248
2249 /* If this input section is part of a group of sections sharing one
2250 stub section, then use the id of the first section in the group.
2251 Stub names need to include a section id, as there may well be
2252 more than one stub used to reach say, printf, and we need to
2253 distinguish between them. */
2254 id_sec = htab->stub_group[input_section->id].link_sec;
2255
2256 if (h != NULL && h->stub_cache != NULL
2257 && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
2258 {
2259 stub_entry = h->stub_cache;
2260 }
2261 else
2262 {
2263 char *stub_name;
2264
cec5225b 2265 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, h, rel);
a06ea964
NC
2266 if (stub_name == NULL)
2267 return NULL;
2268
2269 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table,
2270 stub_name, FALSE, FALSE);
2271 if (h != NULL)
2272 h->stub_cache = stub_entry;
2273
2274 free (stub_name);
2275 }
2276
2277 return stub_entry;
2278}
2279
2280/* Add a new stub entry to the stub hash. Not all fields of the new
2281 stub entry are initialised. */
2282
cec5225b
YZ
2283static struct elf_aarch64_stub_hash_entry *
2284elfNN_aarch64_add_stub (const char *stub_name,
a06ea964 2285 asection *section,
cec5225b 2286 struct elf_aarch64_link_hash_table *htab)
a06ea964
NC
2287{
2288 asection *link_sec;
2289 asection *stub_sec;
cec5225b 2290 struct elf_aarch64_stub_hash_entry *stub_entry;
a06ea964
NC
2291
2292 link_sec = htab->stub_group[section->id].link_sec;
2293 stub_sec = htab->stub_group[section->id].stub_sec;
2294 if (stub_sec == NULL)
2295 {
2296 stub_sec = htab->stub_group[link_sec->id].stub_sec;
2297 if (stub_sec == NULL)
2298 {
2299 size_t namelen;
2300 bfd_size_type len;
2301 char *s_name;
2302
2303 namelen = strlen (link_sec->name);
2304 len = namelen + sizeof (STUB_SUFFIX);
2305 s_name = bfd_alloc (htab->stub_bfd, len);
2306 if (s_name == NULL)
2307 return NULL;
2308
2309 memcpy (s_name, link_sec->name, namelen);
2310 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
2311 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
2312 if (stub_sec == NULL)
2313 return NULL;
2314 htab->stub_group[link_sec->id].stub_sec = stub_sec;
2315 }
2316 htab->stub_group[section->id].stub_sec = stub_sec;
2317 }
2318
2319 /* Enter this entry into the linker stub hash table. */
2320 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
2321 TRUE, FALSE);
2322 if (stub_entry == NULL)
2323 {
2324 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
2325 section->owner, stub_name);
2326 return NULL;
2327 }
2328
2329 stub_entry->stub_sec = stub_sec;
2330 stub_entry->stub_offset = 0;
2331 stub_entry->id_sec = link_sec;
2332
2333 return stub_entry;
2334}
2335
2336static bfd_boolean
2337aarch64_build_one_stub (struct bfd_hash_entry *gen_entry,
2338 void *in_arg ATTRIBUTE_UNUSED)
2339{
cec5225b 2340 struct elf_aarch64_stub_hash_entry *stub_entry;
a06ea964
NC
2341 asection *stub_sec;
2342 bfd *stub_bfd;
2343 bfd_byte *loc;
2344 bfd_vma sym_value;
2345 unsigned int template_size;
2346 const uint32_t *template;
2347 unsigned int i;
2348
2349 /* Massage our args to the form they really have. */
cec5225b 2350 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
a06ea964
NC
2351
2352 stub_sec = stub_entry->stub_sec;
2353
2354 /* Make a note of the offset within the stubs for this entry. */
2355 stub_entry->stub_offset = stub_sec->size;
2356 loc = stub_sec->contents + stub_entry->stub_offset;
2357
2358 stub_bfd = stub_sec->owner;
2359
2360 /* This is the address of the stub destination. */
2361 sym_value = (stub_entry->target_value
2362 + stub_entry->target_section->output_offset
2363 + stub_entry->target_section->output_section->vma);
2364
2365 if (stub_entry->stub_type == aarch64_stub_long_branch)
2366 {
2367 bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma
2368 + stub_sec->output_offset);
2369
2370 /* See if we can relax the stub. */
2371 if (aarch64_valid_for_adrp_p (sym_value, place))
2372 stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place);
2373 }
2374
2375 switch (stub_entry->stub_type)
2376 {
2377 case aarch64_stub_adrp_branch:
2378 template = aarch64_adrp_branch_stub;
2379 template_size = sizeof (aarch64_adrp_branch_stub);
2380 break;
2381 case aarch64_stub_long_branch:
2382 template = aarch64_long_branch_stub;
2383 template_size = sizeof (aarch64_long_branch_stub);
2384 break;
2385 default:
2386 BFD_FAIL ();
2387 return FALSE;
2388 }
2389
2390 for (i = 0; i < (template_size / sizeof template[0]); i++)
2391 {
2392 bfd_putl32 (template[i], loc);
2393 loc += 4;
2394 }
2395
2396 template_size = (template_size + 7) & ~7;
2397 stub_sec->size += template_size;
2398
2399 switch (stub_entry->stub_type)
2400 {
2401 case aarch64_stub_adrp_branch:
a6bb11b2 2402 if (aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21), stub_bfd, stub_sec,
a06ea964
NC
2403 stub_entry->stub_offset, sym_value))
2404 /* The stub would not have been relaxed if the offset was out
2405 of range. */
2406 BFD_FAIL ();
2407
2408 _bfd_final_link_relocate
a6bb11b2 2409 (elfNN_aarch64_howto_from_type (AARCH64_R (ADD_ABS_LO12_NC)),
a06ea964
NC
2410 stub_bfd,
2411 stub_sec,
2412 stub_sec->contents,
2413 stub_entry->stub_offset + 4,
2414 sym_value,
2415 0);
2416 break;
2417
2418 case aarch64_stub_long_branch:
2419 /* We want the value relative to the address 12 bytes back from the
2420 value itself. */
cec5225b 2421 _bfd_final_link_relocate (elfNN_aarch64_howto_from_type
a6bb11b2 2422 (AARCH64_R (PRELNN)), stub_bfd, stub_sec,
a06ea964
NC
2423 stub_sec->contents,
2424 stub_entry->stub_offset + 16,
2425 sym_value + 12, 0);
2426 break;
2427 default:
2428 break;
2429 }
2430
2431 return TRUE;
2432}
2433
2434/* As above, but don't actually build the stub. Just bump offset so
2435 we know stub section sizes. */
2436
2437static bfd_boolean
2438aarch64_size_one_stub (struct bfd_hash_entry *gen_entry,
2439 void *in_arg ATTRIBUTE_UNUSED)
2440{
cec5225b 2441 struct elf_aarch64_stub_hash_entry *stub_entry;
a06ea964
NC
2442 int size;
2443
2444 /* Massage our args to the form they really have. */
cec5225b 2445 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
a06ea964
NC
2446
2447 switch (stub_entry->stub_type)
2448 {
2449 case aarch64_stub_adrp_branch:
2450 size = sizeof (aarch64_adrp_branch_stub);
2451 break;
2452 case aarch64_stub_long_branch:
2453 size = sizeof (aarch64_long_branch_stub);
2454 break;
2455 default:
2456 BFD_FAIL ();
2457 return FALSE;
2458 break;
2459 }
2460
2461 size = (size + 7) & ~7;
2462 stub_entry->stub_sec->size += size;
2463 return TRUE;
2464}
2465
2466/* External entry points for sizing and building linker stubs. */
2467
2468/* Set up various things so that we can make a list of input sections
2469 for each output section included in the link. Returns -1 on error,
2470 0 when no stubs will be needed, and 1 on success. */
2471
2472int
cec5225b 2473elfNN_aarch64_setup_section_lists (bfd *output_bfd,
a06ea964
NC
2474 struct bfd_link_info *info)
2475{
2476 bfd *input_bfd;
2477 unsigned int bfd_count;
2478 int top_id, top_index;
2479 asection *section;
2480 asection **input_list, **list;
2481 bfd_size_type amt;
cec5225b
YZ
2482 struct elf_aarch64_link_hash_table *htab =
2483 elf_aarch64_hash_table (info);
a06ea964
NC
2484
2485 if (!is_elf_hash_table (htab))
2486 return 0;
2487
2488 /* Count the number of input BFDs and find the top input section id. */
2489 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2490 input_bfd != NULL; input_bfd = input_bfd->link_next)
2491 {
2492 bfd_count += 1;
2493 for (section = input_bfd->sections;
2494 section != NULL; section = section->next)
2495 {
2496 if (top_id < section->id)
2497 top_id = section->id;
2498 }
2499 }
2500 htab->bfd_count = bfd_count;
2501
2502 amt = sizeof (struct map_stub) * (top_id + 1);
2503 htab->stub_group = bfd_zmalloc (amt);
2504 if (htab->stub_group == NULL)
2505 return -1;
2506
2507 /* We can't use output_bfd->section_count here to find the top output
2508 section index as some sections may have been removed, and
2509 _bfd_strip_section_from_output doesn't renumber the indices. */
2510 for (section = output_bfd->sections, top_index = 0;
2511 section != NULL; section = section->next)
2512 {
2513 if (top_index < section->index)
2514 top_index = section->index;
2515 }
2516
2517 htab->top_index = top_index;
2518 amt = sizeof (asection *) * (top_index + 1);
2519 input_list = bfd_malloc (amt);
2520 htab->input_list = input_list;
2521 if (input_list == NULL)
2522 return -1;
2523
2524 /* For sections we aren't interested in, mark their entries with a
2525 value we can check later. */
2526 list = input_list + top_index;
2527 do
2528 *list = bfd_abs_section_ptr;
2529 while (list-- != input_list);
2530
2531 for (section = output_bfd->sections;
2532 section != NULL; section = section->next)
2533 {
2534 if ((section->flags & SEC_CODE) != 0)
2535 input_list[section->index] = NULL;
2536 }
2537
2538 return 1;
2539}
2540
cec5225b 2541/* Used by elfNN_aarch64_next_input_section and group_sections. */
a06ea964
NC
2542#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2543
2544/* The linker repeatedly calls this function for each input section,
2545 in the order that input sections are linked into output sections.
2546 Build lists of input sections to determine groupings between which
2547 we may insert linker stubs. */
2548
2549void
cec5225b 2550elfNN_aarch64_next_input_section (struct bfd_link_info *info, asection *isec)
a06ea964 2551{
cec5225b
YZ
2552 struct elf_aarch64_link_hash_table *htab =
2553 elf_aarch64_hash_table (info);
a06ea964
NC
2554
2555 if (isec->output_section->index <= htab->top_index)
2556 {
2557 asection **list = htab->input_list + isec->output_section->index;
2558
2559 if (*list != bfd_abs_section_ptr)
2560 {
2561 /* Steal the link_sec pointer for our list. */
2562 /* This happens to make the list in reverse order,
2563 which is what we want. */
2564 PREV_SEC (isec) = *list;
2565 *list = isec;
2566 }
2567 }
2568}
2569
2570/* See whether we can group stub sections together. Grouping stub
2571 sections may result in fewer stubs. More importantly, we need to
2572 put all .init* and .fini* stubs at the beginning of the .init or
2573 .fini output sections respectively, because glibc splits the
2574 _init and _fini functions into multiple parts. Putting a stub in
2575 the middle of a function is not a good idea. */
2576
2577static void
cec5225b 2578group_sections (struct elf_aarch64_link_hash_table *htab,
a06ea964
NC
2579 bfd_size_type stub_group_size,
2580 bfd_boolean stubs_always_before_branch)
2581{
2582 asection **list = htab->input_list + htab->top_index;
2583
2584 do
2585 {
2586 asection *tail = *list;
2587
2588 if (tail == bfd_abs_section_ptr)
2589 continue;
2590
2591 while (tail != NULL)
2592 {
2593 asection *curr;
2594 asection *prev;
2595 bfd_size_type total;
2596
2597 curr = tail;
2598 total = tail->size;
2599 while ((prev = PREV_SEC (curr)) != NULL
2600 && ((total += curr->output_offset - prev->output_offset)
2601 < stub_group_size))
2602 curr = prev;
2603
2604 /* OK, the size from the start of CURR to the end is less
2605 than stub_group_size and thus can be handled by one stub
2606 section. (Or the tail section is itself larger than
2607 stub_group_size, in which case we may be toast.)
2608 We should really be keeping track of the total size of
2609 stubs added here, as stubs contribute to the final output
2610 section size. */
2611 do
2612 {
2613 prev = PREV_SEC (tail);
2614 /* Set up this stub group. */
2615 htab->stub_group[tail->id].link_sec = curr;
2616 }
2617 while (tail != curr && (tail = prev) != NULL);
2618
2619 /* But wait, there's more! Input sections up to stub_group_size
2620 bytes before the stub section can be handled by it too. */
2621 if (!stubs_always_before_branch)
2622 {
2623 total = 0;
2624 while (prev != NULL
2625 && ((total += tail->output_offset - prev->output_offset)
2626 < stub_group_size))
2627 {
2628 tail = prev;
2629 prev = PREV_SEC (tail);
2630 htab->stub_group[tail->id].link_sec = curr;
2631 }
2632 }
2633 tail = prev;
2634 }
2635 }
2636 while (list-- != htab->input_list);
2637
2638 free (htab->input_list);
2639}
2640
2641#undef PREV_SEC
2642
2643/* Determine and set the size of the stub section for a final link.
2644
2645 The basic idea here is to examine all the relocations looking for
2646 PC-relative calls to a target that is unreachable with a "bl"
2647 instruction. */
2648
2649bfd_boolean
cec5225b 2650elfNN_aarch64_size_stubs (bfd *output_bfd,
a06ea964
NC
2651 bfd *stub_bfd,
2652 struct bfd_link_info *info,
2653 bfd_signed_vma group_size,
2654 asection * (*add_stub_section) (const char *,
2655 asection *),
2656 void (*layout_sections_again) (void))
2657{
2658 bfd_size_type stub_group_size;
2659 bfd_boolean stubs_always_before_branch;
2660 bfd_boolean stub_changed = 0;
cec5225b 2661 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
a06ea964
NC
2662
2663 /* Propagate mach to stub bfd, because it may not have been
2664 finalized when we created stub_bfd. */
2665 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
2666 bfd_get_mach (output_bfd));
2667
2668 /* Stash our params away. */
2669 htab->stub_bfd = stub_bfd;
2670 htab->add_stub_section = add_stub_section;
2671 htab->layout_sections_again = layout_sections_again;
2672 stubs_always_before_branch = group_size < 0;
2673 if (group_size < 0)
2674 stub_group_size = -group_size;
2675 else
2676 stub_group_size = group_size;
2677
2678 if (stub_group_size == 1)
2679 {
2680 /* Default values. */
b9eead84 2681 /* AArch64 branch range is +-128MB. The value used is 1MB less. */
a06ea964
NC
2682 stub_group_size = 127 * 1024 * 1024;
2683 }
2684
2685 group_sections (htab, stub_group_size, stubs_always_before_branch);
2686
2687 while (1)
2688 {
2689 bfd *input_bfd;
2690 unsigned int bfd_indx;
2691 asection *stub_sec;
2692
2693 for (input_bfd = info->input_bfds, bfd_indx = 0;
2694 input_bfd != NULL; input_bfd = input_bfd->link_next, bfd_indx++)
2695 {
2696 Elf_Internal_Shdr *symtab_hdr;
2697 asection *section;
2698 Elf_Internal_Sym *local_syms = NULL;
2699
2700 /* We'll need the symbol table in a second. */
2701 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2702 if (symtab_hdr->sh_info == 0)
2703 continue;
2704
2705 /* Walk over each section attached to the input bfd. */
2706 for (section = input_bfd->sections;
2707 section != NULL; section = section->next)
2708 {
2709 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2710
2711 /* If there aren't any relocs, then there's nothing more
2712 to do. */
2713 if ((section->flags & SEC_RELOC) == 0
2714 || section->reloc_count == 0
2715 || (section->flags & SEC_CODE) == 0)
2716 continue;
2717
2718 /* If this section is a link-once section that will be
2719 discarded, then don't create any stubs. */
2720 if (section->output_section == NULL
2721 || section->output_section->owner != output_bfd)
2722 continue;
2723
2724 /* Get the relocs. */
2725 internal_relocs
2726 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
2727 NULL, info->keep_memory);
2728 if (internal_relocs == NULL)
2729 goto error_ret_free_local;
2730
2731 /* Now examine each relocation. */
2732 irela = internal_relocs;
2733 irelaend = irela + section->reloc_count;
2734 for (; irela < irelaend; irela++)
2735 {
2736 unsigned int r_type, r_indx;
cec5225b
YZ
2737 enum elf_aarch64_stub_type stub_type;
2738 struct elf_aarch64_stub_hash_entry *stub_entry;
a06ea964
NC
2739 asection *sym_sec;
2740 bfd_vma sym_value;
2741 bfd_vma destination;
cec5225b 2742 struct elf_aarch64_link_hash_entry *hash;
a06ea964
NC
2743 const char *sym_name;
2744 char *stub_name;
2745 const asection *id_sec;
2746 unsigned char st_type;
2747 bfd_size_type len;
2748
cec5225b
YZ
2749 r_type = ELFNN_R_TYPE (irela->r_info);
2750 r_indx = ELFNN_R_SYM (irela->r_info);
a06ea964
NC
2751
2752 if (r_type >= (unsigned int) R_AARCH64_end)
2753 {
2754 bfd_set_error (bfd_error_bad_value);
2755 error_ret_free_internal:
2756 if (elf_section_data (section)->relocs == NULL)
2757 free (internal_relocs);
2758 goto error_ret_free_local;
2759 }
2760
2761 /* Only look for stubs on unconditional branch and
2762 branch and link instructions. */
a6bb11b2
YZ
2763 if (r_type != (unsigned int) AARCH64_R (CALL26)
2764 && r_type != (unsigned int) AARCH64_R (JUMP26))
a06ea964
NC
2765 continue;
2766
2767 /* Now determine the call target, its name, value,
2768 section. */
2769 sym_sec = NULL;
2770 sym_value = 0;
2771 destination = 0;
2772 hash = NULL;
2773 sym_name = NULL;
2774 if (r_indx < symtab_hdr->sh_info)
2775 {
2776 /* It's a local symbol. */
2777 Elf_Internal_Sym *sym;
2778 Elf_Internal_Shdr *hdr;
2779
2780 if (local_syms == NULL)
2781 {
2782 local_syms
2783 = (Elf_Internal_Sym *) symtab_hdr->contents;
2784 if (local_syms == NULL)
2785 local_syms
2786 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2787 symtab_hdr->sh_info, 0,
2788 NULL, NULL, NULL);
2789 if (local_syms == NULL)
2790 goto error_ret_free_internal;
2791 }
2792
2793 sym = local_syms + r_indx;
2794 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2795 sym_sec = hdr->bfd_section;
2796 if (!sym_sec)
2797 /* This is an undefined symbol. It can never
2798 be resolved. */
2799 continue;
2800
2801 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2802 sym_value = sym->st_value;
2803 destination = (sym_value + irela->r_addend
2804 + sym_sec->output_offset
2805 + sym_sec->output_section->vma);
2806 st_type = ELF_ST_TYPE (sym->st_info);
2807 sym_name
2808 = bfd_elf_string_from_elf_section (input_bfd,
2809 symtab_hdr->sh_link,
2810 sym->st_name);
2811 }
2812 else
2813 {
2814 int e_indx;
2815
2816 e_indx = r_indx - symtab_hdr->sh_info;
cec5225b 2817 hash = ((struct elf_aarch64_link_hash_entry *)
a06ea964
NC
2818 elf_sym_hashes (input_bfd)[e_indx]);
2819
2820 while (hash->root.root.type == bfd_link_hash_indirect
2821 || hash->root.root.type == bfd_link_hash_warning)
cec5225b 2822 hash = ((struct elf_aarch64_link_hash_entry *)
a06ea964
NC
2823 hash->root.root.u.i.link);
2824
2825 if (hash->root.root.type == bfd_link_hash_defined
2826 || hash->root.root.type == bfd_link_hash_defweak)
2827 {
cec5225b
YZ
2828 struct elf_aarch64_link_hash_table *globals =
2829 elf_aarch64_hash_table (info);
a06ea964
NC
2830 sym_sec = hash->root.root.u.def.section;
2831 sym_value = hash->root.root.u.def.value;
2832 /* For a destination in a shared library,
2833 use the PLT stub as target address to
2834 decide whether a branch stub is
2835 needed. */
2836 if (globals->root.splt != NULL && hash != NULL
2837 && hash->root.plt.offset != (bfd_vma) - 1)
2838 {
2839 sym_sec = globals->root.splt;
2840 sym_value = hash->root.plt.offset;
2841 if (sym_sec->output_section != NULL)
2842 destination = (sym_value
2843 + sym_sec->output_offset
2844 +
2845 sym_sec->output_section->vma);
2846 }
2847 else if (sym_sec->output_section != NULL)
2848 destination = (sym_value + irela->r_addend
2849 + sym_sec->output_offset
2850 + sym_sec->output_section->vma);
2851 }
2852 else if (hash->root.root.type == bfd_link_hash_undefined
2853 || (hash->root.root.type
2854 == bfd_link_hash_undefweak))
2855 {
2856 /* For a shared library, use the PLT stub as
2857 target address to decide whether a long
2858 branch stub is needed.
2859 For absolute code, they cannot be handled. */
cec5225b
YZ
2860 struct elf_aarch64_link_hash_table *globals =
2861 elf_aarch64_hash_table (info);
a06ea964
NC
2862
2863 if (globals->root.splt != NULL && hash != NULL
2864 && hash->root.plt.offset != (bfd_vma) - 1)
2865 {
2866 sym_sec = globals->root.splt;
2867 sym_value = hash->root.plt.offset;
2868 if (sym_sec->output_section != NULL)
2869 destination = (sym_value
2870 + sym_sec->output_offset
2871 +
2872 sym_sec->output_section->vma);
2873 }
2874 else
2875 continue;
2876 }
2877 else
2878 {
2879 bfd_set_error (bfd_error_bad_value);
2880 goto error_ret_free_internal;
2881 }
2882 st_type = ELF_ST_TYPE (hash->root.type);
2883 sym_name = hash->root.root.root.string;
2884 }
2885
2886 /* Determine what (if any) linker stub is needed. */
2887 stub_type = aarch64_type_of_stub
2888 (info, section, irela, st_type, hash, destination);
2889 if (stub_type == aarch64_stub_none)
2890 continue;
2891
2892 /* Support for grouping stub sections. */
2893 id_sec = htab->stub_group[section->id].link_sec;
2894
2895 /* Get the name of this stub. */
cec5225b 2896 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, hash,
a06ea964
NC
2897 irela);
2898 if (!stub_name)
2899 goto error_ret_free_internal;
2900
2901 stub_entry =
2902 aarch64_stub_hash_lookup (&htab->stub_hash_table,
2903 stub_name, FALSE, FALSE);
2904 if (stub_entry != NULL)
2905 {
2906 /* The proper stub has already been created. */
2907 free (stub_name);
2908 continue;
2909 }
2910
cec5225b 2911 stub_entry = elfNN_aarch64_add_stub (stub_name, section,
a06ea964
NC
2912 htab);
2913 if (stub_entry == NULL)
2914 {
2915 free (stub_name);
2916 goto error_ret_free_internal;
2917 }
2918
2919 stub_entry->target_value = sym_value;
2920 stub_entry->target_section = sym_sec;
2921 stub_entry->stub_type = stub_type;
2922 stub_entry->h = hash;
2923 stub_entry->st_type = st_type;
2924
2925 if (sym_name == NULL)
2926 sym_name = "unnamed";
2927 len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name);
2928 stub_entry->output_name = bfd_alloc (htab->stub_bfd, len);
2929 if (stub_entry->output_name == NULL)
2930 {
2931 free (stub_name);
2932 goto error_ret_free_internal;
2933 }
2934
2935 snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME,
2936 sym_name);
2937
2938 stub_changed = TRUE;
2939 }
2940
2941 /* We're done with the internal relocs, free them. */
2942 if (elf_section_data (section)->relocs == NULL)
2943 free (internal_relocs);
2944 }
2945 }
2946
2947 if (!stub_changed)
2948 break;
2949
2950 /* OK, we've added some stubs. Find out the new size of the
2951 stub sections. */
2952 for (stub_sec = htab->stub_bfd->sections;
2953 stub_sec != NULL; stub_sec = stub_sec->next)
2954 stub_sec->size = 0;
2955
2956 bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab);
2957
2958 /* Ask the linker to do its stuff. */
2959 (*htab->layout_sections_again) ();
2960 stub_changed = FALSE;
2961 }
2962
2963 return TRUE;
2964
2965error_ret_free_local:
2966 return FALSE;
2967}
2968
2969/* Build all the stubs associated with the current output file. The
2970 stubs are kept in a hash table attached to the main linker hash
2971 table. We also set up the .plt entries for statically linked PIC
2972 functions here. This function is called via aarch64_elf_finish in the
2973 linker. */
2974
2975bfd_boolean
cec5225b 2976elfNN_aarch64_build_stubs (struct bfd_link_info *info)
a06ea964
NC
2977{
2978 asection *stub_sec;
2979 struct bfd_hash_table *table;
cec5225b 2980 struct elf_aarch64_link_hash_table *htab;
a06ea964 2981
cec5225b 2982 htab = elf_aarch64_hash_table (info);
a06ea964
NC
2983
2984 for (stub_sec = htab->stub_bfd->sections;
2985 stub_sec != NULL; stub_sec = stub_sec->next)
2986 {
2987 bfd_size_type size;
2988
2989 /* Ignore non-stub sections. */
2990 if (!strstr (stub_sec->name, STUB_SUFFIX))
2991 continue;
2992
2993 /* Allocate memory to hold the linker stubs. */
2994 size = stub_sec->size;
2995 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
2996 if (stub_sec->contents == NULL && size != 0)
2997 return FALSE;
2998 stub_sec->size = 0;
2999 }
3000
3001 /* Build the stubs as directed by the stub hash table. */
3002 table = &htab->stub_hash_table;
3003 bfd_hash_traverse (table, aarch64_build_one_stub, info);
3004
3005 return TRUE;
3006}
3007
3008
3009/* Add an entry to the code/data map for section SEC. */
3010
3011static void
cec5225b 3012elfNN_aarch64_section_map_add (asection *sec, char type, bfd_vma vma)
a06ea964
NC
3013{
3014 struct _aarch64_elf_section_data *sec_data =
cec5225b 3015 elf_aarch64_section_data (sec);
a06ea964
NC
3016 unsigned int newidx;
3017
3018 if (sec_data->map == NULL)
3019 {
cec5225b 3020 sec_data->map = bfd_malloc (sizeof (elf_aarch64_section_map));
a06ea964
NC
3021 sec_data->mapcount = 0;
3022 sec_data->mapsize = 1;
3023 }
3024
3025 newidx = sec_data->mapcount++;
3026
3027 if (sec_data->mapcount > sec_data->mapsize)
3028 {
3029 sec_data->mapsize *= 2;
3030 sec_data->map = bfd_realloc_or_free
cec5225b 3031 (sec_data->map, sec_data->mapsize * sizeof (elf_aarch64_section_map));
a06ea964
NC
3032 }
3033
3034 if (sec_data->map)
3035 {
3036 sec_data->map[newidx].vma = vma;
3037 sec_data->map[newidx].type = type;
3038 }
3039}
3040
3041
3042/* Initialise maps of insn/data for input BFDs. */
3043void
cec5225b 3044bfd_elfNN_aarch64_init_maps (bfd *abfd)
a06ea964
NC
3045{
3046 Elf_Internal_Sym *isymbuf;
3047 Elf_Internal_Shdr *hdr;
3048 unsigned int i, localsyms;
3049
3050 /* Make sure that we are dealing with an AArch64 elf binary. */
3051 if (!is_aarch64_elf (abfd))
3052 return;
3053
3054 if ((abfd->flags & DYNAMIC) != 0)
3055 return;
3056
3057 hdr = &elf_symtab_hdr (abfd);
3058 localsyms = hdr->sh_info;
3059
3060 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
3061 should contain the number of local symbols, which should come before any
3062 global symbols. Mapping symbols are always local. */
3063 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL);
3064
3065 /* No internal symbols read? Skip this BFD. */
3066 if (isymbuf == NULL)
3067 return;
3068
3069 for (i = 0; i < localsyms; i++)
3070 {
3071 Elf_Internal_Sym *isym = &isymbuf[i];
3072 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3073 const char *name;
3074
3075 if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
3076 {
3077 name = bfd_elf_string_from_elf_section (abfd,
3078 hdr->sh_link,
3079 isym->st_name);
3080
3081 if (bfd_is_aarch64_special_symbol_name
3082 (name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP))
cec5225b 3083 elfNN_aarch64_section_map_add (sec, name[1], isym->st_value);
a06ea964
NC
3084 }
3085 }
3086}
3087
3088/* Set option values needed during linking. */
3089void
cec5225b 3090bfd_elfNN_aarch64_set_options (struct bfd *output_bfd,
a06ea964
NC
3091 struct bfd_link_info *link_info,
3092 int no_enum_warn,
3093 int no_wchar_warn, int pic_veneer)
3094{
cec5225b 3095 struct elf_aarch64_link_hash_table *globals;
a06ea964 3096
cec5225b 3097 globals = elf_aarch64_hash_table (link_info);
a06ea964
NC
3098 globals->pic_veneer = pic_veneer;
3099
3100 BFD_ASSERT (is_aarch64_elf (output_bfd));
3101 elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
3102 elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
3103}
3104
a06ea964
NC
3105static bfd_vma
3106aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h,
cec5225b 3107 struct elf_aarch64_link_hash_table
a06ea964
NC
3108 *globals, struct bfd_link_info *info,
3109 bfd_vma value, bfd *output_bfd,
3110 bfd_boolean *unresolved_reloc_p)
3111{
3112 bfd_vma off = (bfd_vma) - 1;
3113 asection *basegot = globals->root.sgot;
3114 bfd_boolean dyn = globals->root.dynamic_sections_created;
3115
3116 if (h != NULL)
3117 {
a6bb11b2 3118 BFD_ASSERT (basegot != NULL);
a06ea964
NC
3119 off = h->got.offset;
3120 BFD_ASSERT (off != (bfd_vma) - 1);
3121 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3122 || (info->shared
3123 && SYMBOL_REFERENCES_LOCAL (info, h))
3124 || (ELF_ST_VISIBILITY (h->other)
3125 && h->root.type == bfd_link_hash_undefweak))
3126 {
3127 /* This is actually a static link, or it is a -Bsymbolic link
3128 and the symbol is defined locally. We must initialize this
3129 entry in the global offset table. Since the offset must
a6bb11b2
YZ
3130 always be a multiple of 8 (4 in the case of ILP32), we use
3131 the least significant bit to record whether we have
3132 initialized it already.
a06ea964
NC
3133 When doing a dynamic link, we create a .rel(a).got relocation
3134 entry to initialize the value. This is done in the
3135 finish_dynamic_symbol routine. */
3136 if ((off & 1) != 0)
3137 off &= ~1;
3138 else
3139 {
cec5225b 3140 bfd_put_NN (output_bfd, value, basegot->contents + off);
a06ea964
NC
3141 h->got.offset |= 1;
3142 }
3143 }
3144 else
3145 *unresolved_reloc_p = FALSE;
3146
3147 off = off + basegot->output_section->vma + basegot->output_offset;
3148 }
3149
3150 return off;
3151}
3152
3153/* Change R_TYPE to a more efficient access model where possible,
3154 return the new reloc type. */
3155
a6bb11b2
YZ
3156static bfd_reloc_code_real_type
3157aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type,
a06ea964
NC
3158 struct elf_link_hash_entry *h)
3159{
3160 bfd_boolean is_local = h == NULL;
a6bb11b2 3161
a06ea964
NC
3162 switch (r_type)
3163 {
a6bb11b2
YZ
3164 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3165 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
3166 return (is_local
3167 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
3168 : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
3169
3170 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
3171 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
3172 return (is_local
3173 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
3174 : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC);
3175
3176 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
3177 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type;
3178
3179 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
3180 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type;
3181
3182 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
3183 case BFD_RELOC_AARCH64_TLSDESC_CALL:
a06ea964 3184 /* Instructions with these relocations will become NOPs. */
a6bb11b2
YZ
3185 return BFD_RELOC_AARCH64_NONE;
3186
3187 default:
3188 break;
a06ea964
NC
3189 }
3190
3191 return r_type;
3192}
3193
3194static unsigned int
a6bb11b2 3195aarch64_reloc_got_type (bfd_reloc_code_real_type r_type)
a06ea964
NC
3196{
3197 switch (r_type)
3198 {
a6bb11b2
YZ
3199 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
3200 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3201 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
3202 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
a06ea964
NC
3203 return GOT_NORMAL;
3204
a6bb11b2
YZ
3205 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3206 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
a06ea964
NC
3207 return GOT_TLS_GD;
3208
a6bb11b2
YZ
3209 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
3210 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
3211 case BFD_RELOC_AARCH64_TLSDESC_CALL:
3212 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
3213 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
a06ea964
NC
3214 return GOT_TLSDESC_GD;
3215
a6bb11b2
YZ
3216 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
3217 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
3218 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
a06ea964
NC
3219 return GOT_TLS_IE;
3220
a6bb11b2
YZ
3221 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
3222 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
3223 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
3224 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
3225 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
3226 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
3227 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
3228 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a06ea964 3229 return GOT_UNKNOWN;
a6bb11b2
YZ
3230
3231 default:
3232 break;
a06ea964
NC
3233 }
3234 return GOT_UNKNOWN;
3235}
3236
3237static bfd_boolean
3238aarch64_can_relax_tls (bfd *input_bfd,
3239 struct bfd_link_info *info,
a6bb11b2 3240 bfd_reloc_code_real_type r_type,
a06ea964
NC
3241 struct elf_link_hash_entry *h,
3242 unsigned long r_symndx)
3243{
3244 unsigned int symbol_got_type;
3245 unsigned int reloc_got_type;
3246
3247 if (! IS_AARCH64_TLS_RELOC (r_type))
3248 return FALSE;
3249
cec5225b 3250 symbol_got_type = elfNN_aarch64_symbol_got_type (h, input_bfd, r_symndx);
a06ea964
NC
3251 reloc_got_type = aarch64_reloc_got_type (r_type);
3252
3253 if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type))
3254 return TRUE;
3255
3256 if (info->shared)
3257 return FALSE;
3258
3259 if (h && h->root.type == bfd_link_hash_undefweak)
3260 return FALSE;
3261
3262 return TRUE;
3263}
3264
a6bb11b2
YZ
3265/* Given the relocation code R_TYPE, return the relaxed bfd reloc
3266 enumerator. */
3267
3268static bfd_reloc_code_real_type
a06ea964
NC
3269aarch64_tls_transition (bfd *input_bfd,
3270 struct bfd_link_info *info,
3271 unsigned int r_type,
3272 struct elf_link_hash_entry *h,
3273 unsigned long r_symndx)
3274{
a6bb11b2
YZ
3275 bfd_reloc_code_real_type bfd_r_type
3276 = elfNN_aarch64_bfd_reloc_from_type (r_type);
a06ea964 3277
a6bb11b2
YZ
3278 if (! aarch64_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx))
3279 return bfd_r_type;
3280
3281 return aarch64_tls_transition_without_check (bfd_r_type, h);
a06ea964
NC
3282}
3283
3284/* Return the base VMA address which should be subtracted from real addresses
a6bb11b2 3285 when resolving R_AARCH64_TLS_DTPREL relocation. */
a06ea964
NC
3286
3287static bfd_vma
3288dtpoff_base (struct bfd_link_info *info)
3289{
3290 /* If tls_sec is NULL, we should have signalled an error already. */
3291 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
3292 return elf_hash_table (info)->tls_sec->vma;
3293}
3294
a06ea964
NC
3295/* Return the base VMA address which should be subtracted from real addresses
3296 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */
3297
3298static bfd_vma
3299tpoff_base (struct bfd_link_info *info)
3300{
3301 struct elf_link_hash_table *htab = elf_hash_table (info);
3302
3303 /* If tls_sec is NULL, we should have signalled an error already. */
3304 if (htab->tls_sec == NULL)
3305 return 0;
3306
3307 bfd_vma base = align_power ((bfd_vma) TCB_SIZE,
3308 htab->tls_sec->alignment_power);
3309 return htab->tls_sec->vma - base;
3310}
3311
3312static bfd_vma *
3313symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
3314 unsigned long r_symndx)
3315{
3316 /* Calculate the address of the GOT entry for symbol
3317 referred to in h. */
3318 if (h != NULL)
3319 return &h->got.offset;
3320 else
3321 {
3322 /* local symbol */
3323 struct elf_aarch64_local_symbol *l;
3324
cec5225b 3325 l = elf_aarch64_locals (input_bfd);
a06ea964
NC
3326 return &l[r_symndx].got_offset;
3327 }
3328}
3329
3330static void
3331symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
3332 unsigned long r_symndx)
3333{
3334 bfd_vma *p;
3335 p = symbol_got_offset_ref (input_bfd, h, r_symndx);
3336 *p |= 1;
3337}
3338
3339static int
3340symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h,
3341 unsigned long r_symndx)
3342{
3343 bfd_vma value;
3344 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
3345 return value & 1;
3346}
3347
3348static bfd_vma
3349symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
3350 unsigned long r_symndx)
3351{
3352 bfd_vma value;
3353 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
3354 value &= ~1;
3355 return value;
3356}
3357
3358static bfd_vma *
3359symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
3360 unsigned long r_symndx)
3361{
3362 /* Calculate the address of the GOT entry for symbol
3363 referred to in h. */
3364 if (h != NULL)
3365 {
cec5225b
YZ
3366 struct elf_aarch64_link_hash_entry *eh;
3367 eh = (struct elf_aarch64_link_hash_entry *) h;
a06ea964
NC
3368 return &eh->tlsdesc_got_jump_table_offset;
3369 }
3370 else
3371 {
3372 /* local symbol */
3373 struct elf_aarch64_local_symbol *l;
3374
cec5225b 3375 l = elf_aarch64_locals (input_bfd);
a06ea964
NC
3376 return &l[r_symndx].tlsdesc_got_jump_table_offset;
3377 }
3378}
3379
3380static void
3381symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
3382 unsigned long r_symndx)
3383{
3384 bfd_vma *p;
3385 p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
3386 *p |= 1;
3387}
3388
3389static int
3390symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd,
3391 struct elf_link_hash_entry *h,
3392 unsigned long r_symndx)
3393{
3394 bfd_vma value;
3395 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
3396 return value & 1;
3397}
3398
3399static bfd_vma
3400symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
3401 unsigned long r_symndx)
3402{
3403 bfd_vma value;
3404 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
3405 value &= ~1;
3406 return value;
3407}
3408
3409/* Perform a relocation as part of a final link. */
3410static bfd_reloc_status_type
cec5225b 3411elfNN_aarch64_final_link_relocate (reloc_howto_type *howto,
a06ea964
NC
3412 bfd *input_bfd,
3413 bfd *output_bfd,
3414 asection *input_section,
3415 bfd_byte *contents,
3416 Elf_Internal_Rela *rel,
3417 bfd_vma value,
3418 struct bfd_link_info *info,
3419 asection *sym_sec,
3420 struct elf_link_hash_entry *h,
3421 bfd_boolean *unresolved_reloc_p,
3422 bfd_boolean save_addend,
1419bbe5
WN
3423 bfd_vma *saved_addend,
3424 Elf_Internal_Sym *sym)
a06ea964 3425{
1419bbe5 3426 Elf_Internal_Shdr *symtab_hdr;
a06ea964 3427 unsigned int r_type = howto->type;
a6bb11b2
YZ
3428 bfd_reloc_code_real_type bfd_r_type
3429 = elfNN_aarch64_bfd_reloc_from_howto (howto);
3430 bfd_reloc_code_real_type new_bfd_r_type;
a06ea964
NC
3431 unsigned long r_symndx;
3432 bfd_byte *hit_data = contents + rel->r_offset;
3433 bfd_vma place;
3434 bfd_signed_vma signed_addend;
cec5225b 3435 struct elf_aarch64_link_hash_table *globals;
a06ea964
NC
3436 bfd_boolean weak_undef_p;
3437
cec5225b 3438 globals = elf_aarch64_hash_table (info);
a06ea964 3439
1419bbe5
WN
3440 symtab_hdr = &elf_symtab_hdr (input_bfd);
3441
a06ea964
NC
3442 BFD_ASSERT (is_aarch64_elf (input_bfd));
3443
cec5225b 3444 r_symndx = ELFNN_R_SYM (rel->r_info);
a06ea964
NC
3445
3446 /* It is possible to have linker relaxations on some TLS access
3447 models. Update our information here. */
a6bb11b2
YZ
3448 new_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type, h, r_symndx);
3449 if (new_bfd_r_type != bfd_r_type)
3450 {
3451 bfd_r_type = new_bfd_r_type;
3452 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
3453 BFD_ASSERT (howto != NULL);
3454 r_type = howto->type;
3455 }
a06ea964
NC
3456
3457 place = input_section->output_section->vma
3458 + input_section->output_offset + rel->r_offset;
3459
3460 /* Get addend, accumulating the addend for consecutive relocs
3461 which refer to the same offset. */
3462 signed_addend = saved_addend ? *saved_addend : 0;
3463 signed_addend += rel->r_addend;
3464
3465 weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak
3466 : bfd_is_und_section (sym_sec));
a6bb11b2 3467
1419bbe5
WN
3468 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
3469 it here if it is defined in a non-shared object. */
3470 if (h != NULL
3471 && h->type == STT_GNU_IFUNC
3472 && h->def_regular)
3473 {
3474 asection *plt;
3475 const char *name;
3476 asection *base_got;
3477 bfd_vma off;
3478
3479 if ((input_section->flags & SEC_ALLOC) == 0
3480 || h->plt.offset == (bfd_vma) -1)
3481 abort ();
3482
3483 /* STT_GNU_IFUNC symbol must go through PLT. */
3484 plt = globals->root.splt ? globals->root.splt : globals->root.iplt;
3485 value = (plt->output_section->vma + plt->output_offset + h->plt.offset);
3486
3487 switch (bfd_r_type)
3488 {
3489 default:
3490 if (h->root.root.string)
3491 name = h->root.root.string;
3492 else
3493 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
3494 NULL);
3495 (*_bfd_error_handler)
3496 (_("%B: relocation %s against STT_GNU_IFUNC "
3497 "symbol `%s' isn't handled by %s"), input_bfd,
3498 howto->name, name, __FUNCTION__);
3499 bfd_set_error (bfd_error_bad_value);
3500 return FALSE;
3501
3502 case BFD_RELOC_AARCH64_NN:
3503 if (rel->r_addend != 0)
3504 {
3505 if (h->root.root.string)
3506 name = h->root.root.string;
3507 else
3508 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
3509 sym, NULL);
3510 (*_bfd_error_handler)
3511 (_("%B: relocation %s against STT_GNU_IFUNC "
3512 "symbol `%s' has non-zero addend: %d"),
3513 input_bfd, howto->name, name, rel->r_addend);
3514 bfd_set_error (bfd_error_bad_value);
3515 return FALSE;
3516 }
3517
3518 /* Generate dynamic relocation only when there is a
3519 non-GOT reference in a shared object. */
3520 if (info->shared && h->non_got_ref)
3521 {
3522 Elf_Internal_Rela outrel;
3523 asection *sreloc;
3524
3525 /* Need a dynamic relocation to get the real function
3526 address. */
3527 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
3528 info,
3529 input_section,
3530 rel->r_offset);
3531 if (outrel.r_offset == (bfd_vma) -1
3532 || outrel.r_offset == (bfd_vma) -2)
3533 abort ();
3534
3535 outrel.r_offset += (input_section->output_section->vma
3536 + input_section->output_offset);
3537
3538 if (h->dynindx == -1
3539 || h->forced_local
3540 || info->executable)
3541 {
3542 /* This symbol is resolved locally. */
3543 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
3544 outrel.r_addend = (h->root.u.def.value
3545 + h->root.u.def.section->output_section->vma
3546 + h->root.u.def.section->output_offset);
3547 }
3548 else
3549 {
3550 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
3551 outrel.r_addend = 0;
3552 }
3553
3554 sreloc = globals->root.irelifunc;
3555 elf_append_rela (output_bfd, sreloc, &outrel);
3556
3557 /* If this reloc is against an external symbol, we
3558 do not want to fiddle with the addend. Otherwise,
3559 we need to include the symbol value so that it
3560 becomes an addend for the dynamic reloc. For an
3561 internal symbol, we have updated addend. */
3562 return bfd_reloc_ok;
3563 }
3564 /* FALLTHROUGH */
3565 case BFD_RELOC_AARCH64_JUMP26:
3566 case BFD_RELOC_AARCH64_CALL26:
3567 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3568 signed_addend,
3569 weak_undef_p);
3570 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
3571 howto, value);
3572 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
3573 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3574 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
3575 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
3576 base_got = globals->root.sgot;
3577 off = h->got.offset;
3578
3579 if (base_got == NULL)
3580 abort ();
3581
3582 if (off == (bfd_vma) -1)
3583 {
3584 bfd_vma plt_index;
3585
3586 /* We can't use h->got.offset here to save state, or
3587 even just remember the offset, as finish_dynamic_symbol
3588 would use that as offset into .got. */
3589
3590 if (globals->root.splt != NULL)
3591 {
b1ee0cc4
WN
3592 plt_index = ((h->plt.offset - globals->plt_header_size) /
3593 globals->plt_entry_size);
1419bbe5
WN
3594 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3595 base_got = globals->root.sgotplt;
3596 }
3597 else
3598 {
3599 plt_index = h->plt.offset / globals->plt_entry_size;
3600 off = plt_index * GOT_ENTRY_SIZE;
3601 base_got = globals->root.igotplt;
3602 }
3603
3604 if (h->dynindx == -1
3605 || h->forced_local
3606 || info->symbolic)
3607 {
3608 /* This references the local definition. We must
3609 initialize this entry in the global offset table.
3610 Since the offset must always be a multiple of 8,
3611 we use the least significant bit to record
3612 whether we have initialized it already.
3613
3614 When doing a dynamic link, we create a .rela.got
3615 relocation entry to initialize the value. This
3616 is done in the finish_dynamic_symbol routine. */
3617 if ((off & 1) != 0)
3618 off &= ~1;
3619 else
3620 {
3621 bfd_put_NN (output_bfd, value,
3622 base_got->contents + off);
3623 /* Note that this is harmless as -1 | 1 still is -1. */
3624 h->got.offset |= 1;
3625 }
3626 }
3627 value = (base_got->output_section->vma
3628 + base_got->output_offset + off);
3629 }
3630 else
3631 value = aarch64_calculate_got_entry_vma (h, globals, info,
3632 value, output_bfd,
3633 unresolved_reloc_p);
3634 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3635 0, weak_undef_p);
3636 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, howto, value);
3637 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
3638 case BFD_RELOC_AARCH64_ADD_LO12:
3639 break;
3640 }
3641 }
3642
a6bb11b2 3643 switch (bfd_r_type)
a06ea964 3644 {
a6bb11b2
YZ
3645 case BFD_RELOC_AARCH64_NONE:
3646 case BFD_RELOC_AARCH64_TLSDESC_CALL:
a06ea964
NC
3647 *unresolved_reloc_p = FALSE;
3648 return bfd_reloc_ok;
3649
a6bb11b2 3650 case BFD_RELOC_AARCH64_NN:
a06ea964
NC
3651
3652 /* When generating a shared object or relocatable executable, these
3653 relocations are copied into the output file to be resolved at
3654 run time. */
3655 if (((info->shared == TRUE) || globals->root.is_relocatable_executable)
3656 && (input_section->flags & SEC_ALLOC)
3657 && (h == NULL
3658 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3659 || h->root.type != bfd_link_hash_undefweak))
3660 {
3661 Elf_Internal_Rela outrel;
3662 bfd_byte *loc;
3663 bfd_boolean skip, relocate;
3664 asection *sreloc;
3665
3666 *unresolved_reloc_p = FALSE;
3667
a06ea964
NC
3668 skip = FALSE;
3669 relocate = FALSE;
3670
3671 outrel.r_addend = signed_addend;
3672 outrel.r_offset =
3673 _bfd_elf_section_offset (output_bfd, info, input_section,
3674 rel->r_offset);
3675 if (outrel.r_offset == (bfd_vma) - 1)
3676 skip = TRUE;
3677 else if (outrel.r_offset == (bfd_vma) - 2)
3678 {
3679 skip = TRUE;
3680 relocate = TRUE;
3681 }
3682
3683 outrel.r_offset += (input_section->output_section->vma
3684 + input_section->output_offset);
3685
3686 if (skip)
3687 memset (&outrel, 0, sizeof outrel);
3688 else if (h != NULL
3689 && h->dynindx != -1
3690 && (!info->shared || !info->symbolic || !h->def_regular))
cec5225b 3691 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
a06ea964
NC
3692 else
3693 {
3694 int symbol;
3695
3696 /* On SVR4-ish systems, the dynamic loader cannot
3697 relocate the text and data segments independently,
3698 so the symbol does not matter. */
3699 symbol = 0;
a6bb11b2 3700 outrel.r_info = ELFNN_R_INFO (symbol, AARCH64_R (RELATIVE));
a06ea964
NC
3701 outrel.r_addend += value;
3702 }
3703
1419bbe5
WN
3704 sreloc = elf_section_data (input_section)->sreloc;
3705 if (sreloc == NULL || sreloc->contents == NULL)
3706 return bfd_reloc_notsupported;
3707
3708 loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals);
cec5225b 3709 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
a06ea964 3710
1419bbe5 3711 if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size)
a06ea964
NC
3712 {
3713 /* Sanity to check that we have previously allocated
3714 sufficient space in the relocation section for the
3715 number of relocations we actually want to emit. */
3716 abort ();
3717 }
3718
3719 /* If this reloc is against an external symbol, we do not want to
3720 fiddle with the addend. Otherwise, we need to include the symbol
3721 value so that it becomes an addend for the dynamic reloc. */
3722 if (!relocate)
3723 return bfd_reloc_ok;
3724
3725 return _bfd_final_link_relocate (howto, input_bfd, input_section,
3726 contents, rel->r_offset, value,
3727 signed_addend);
3728 }
3729 else
3730 value += signed_addend;
3731 break;
3732
a6bb11b2
YZ
3733 case BFD_RELOC_AARCH64_JUMP26:
3734 case BFD_RELOC_AARCH64_CALL26:
a06ea964
NC
3735 {
3736 asection *splt = globals->root.splt;
3737 bfd_boolean via_plt_p =
3738 splt != NULL && h != NULL && h->plt.offset != (bfd_vma) - 1;
3739
3740 /* A call to an undefined weak symbol is converted to a jump to
3741 the next instruction unless a PLT entry will be created.
3742 The jump to the next instruction is optimized as a NOP.
3743 Do the same for local undefined symbols. */
3744 if (weak_undef_p && ! via_plt_p)
3745 {
3746 bfd_putl32 (INSN_NOP, hit_data);
3747 return bfd_reloc_ok;
3748 }
3749
3750 /* If the call goes through a PLT entry, make sure to
3751 check distance to the right destination address. */
3752 if (via_plt_p)
3753 {
3754 value = (splt->output_section->vma
3755 + splt->output_offset + h->plt.offset);
3756 *unresolved_reloc_p = FALSE;
3757 }
3758
3759 /* If the target symbol is global and marked as a function the
3760 relocation applies a function call or a tail call. In this
3761 situation we can veneer out of range branches. The veneers
3762 use IP0 and IP1 hence cannot be used arbitrary out of range
3763 branches that occur within the body of a function. */
3764 if (h && h->type == STT_FUNC)
3765 {
3766 /* Check if a stub has to be inserted because the destination
3767 is too far away. */
3768 if (! aarch64_valid_branch_p (value, place))
3769 {
3770 /* The target is out of reach, so redirect the branch to
3771 the local stub for this function. */
cec5225b
YZ
3772 struct elf_aarch64_stub_hash_entry *stub_entry;
3773 stub_entry = elfNN_aarch64_get_stub_entry (input_section,
a06ea964
NC
3774 sym_sec, h,
3775 rel, globals);
3776 if (stub_entry != NULL)
3777 value = (stub_entry->stub_offset
3778 + stub_entry->stub_sec->output_offset
3779 + stub_entry->stub_sec->output_section->vma);
3780 }
3781 }
3782 }
caed7120
YZ
3783 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3784 signed_addend, weak_undef_p);
a06ea964
NC
3785 break;
3786
a6bb11b2
YZ
3787 case BFD_RELOC_AARCH64_16:
3788#if ARCH_SIZE == 64
3789 case BFD_RELOC_AARCH64_32:
3790#endif
3791 case BFD_RELOC_AARCH64_ADD_LO12:
3792 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
3793 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
3794 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
3795 case BFD_RELOC_AARCH64_BRANCH19:
3796 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
3797 case BFD_RELOC_AARCH64_LDST8_LO12:
3798 case BFD_RELOC_AARCH64_LDST16_LO12:
3799 case BFD_RELOC_AARCH64_LDST32_LO12:
3800 case BFD_RELOC_AARCH64_LDST64_LO12:
3801 case BFD_RELOC_AARCH64_LDST128_LO12:
3802 case BFD_RELOC_AARCH64_MOVW_G0_S:
3803 case BFD_RELOC_AARCH64_MOVW_G1_S:
3804 case BFD_RELOC_AARCH64_MOVW_G2_S:
3805 case BFD_RELOC_AARCH64_MOVW_G0:
3806 case BFD_RELOC_AARCH64_MOVW_G0_NC:
3807 case BFD_RELOC_AARCH64_MOVW_G1:
3808 case BFD_RELOC_AARCH64_MOVW_G1_NC:
3809 case BFD_RELOC_AARCH64_MOVW_G2:
3810 case BFD_RELOC_AARCH64_MOVW_G2_NC:
3811 case BFD_RELOC_AARCH64_MOVW_G3:
3812 case BFD_RELOC_AARCH64_16_PCREL:
3813 case BFD_RELOC_AARCH64_32_PCREL:
3814 case BFD_RELOC_AARCH64_64_PCREL:
3815 case BFD_RELOC_AARCH64_TSTBR14:
caed7120
YZ
3816 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3817 signed_addend, weak_undef_p);
a06ea964
NC
3818 break;
3819
a6bb11b2
YZ
3820 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
3821 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3822 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
3823 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
a06ea964
NC
3824 if (globals->root.sgot == NULL)
3825 BFD_ASSERT (h != NULL);
3826
3827 if (h != NULL)
3828 {
3829 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
3830 output_bfd,
3831 unresolved_reloc_p);
caed7120
YZ
3832 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3833 0, weak_undef_p);
a06ea964
NC
3834 }
3835 break;
3836
a6bb11b2
YZ
3837 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3838 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
3839 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
3840 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
3841 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
a06ea964
NC
3842 if (globals->root.sgot == NULL)
3843 return bfd_reloc_notsupported;
3844
3845 value = (symbol_got_offset (input_bfd, h, r_symndx)
3846 + globals->root.sgot->output_section->vma
3847 + globals->root.sgot->output_section->output_offset);
3848
caed7120
YZ
3849 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3850 0, weak_undef_p);
a06ea964
NC
3851 *unresolved_reloc_p = FALSE;
3852 break;
3853
a6bb11b2
YZ
3854 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
3855 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
3856 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
3857 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
3858 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
3859 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
3860 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
3861 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
caed7120
YZ
3862 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3863 signed_addend - tpoff_base (info),
3864 weak_undef_p);
a06ea964
NC
3865 *unresolved_reloc_p = FALSE;
3866 break;
3867
7bcccb57
MS
3868 case BFD_RELOC_AARCH64_TLSDESC_ADD:
3869 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
a6bb11b2 3870 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
a6bb11b2 3871 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7bcccb57 3872 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
a6bb11b2 3873 case BFD_RELOC_AARCH64_TLSDESC_LDR:
a06ea964
NC
3874 if (globals->root.sgot == NULL)
3875 return bfd_reloc_notsupported;
3876
3877 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
3878 + globals->root.sgotplt->output_section->vma
3879 + globals->root.sgotplt->output_section->output_offset
3880 + globals->sgotplt_jump_table_size);
3881
caed7120
YZ
3882 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3883 0, weak_undef_p);
a06ea964
NC
3884 *unresolved_reloc_p = FALSE;
3885 break;
3886
3887 default:
3888 return bfd_reloc_notsupported;
3889 }
3890
3891 if (saved_addend)
3892 *saved_addend = value;
3893
3894 /* Only apply the final relocation in a sequence. */
3895 if (save_addend)
3896 return bfd_reloc_continue;
3897
caed7120
YZ
3898 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
3899 howto, value);
a06ea964
NC
3900}
3901
3902/* Handle TLS relaxations. Relaxing is possible for symbols that use
3903 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
3904 link.
3905
3906 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
3907 is to then call final_link_relocate. Return other values in the
3908 case of error. */
3909
3910static bfd_reloc_status_type
cec5225b 3911elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table *globals,
a06ea964
NC
3912 bfd *input_bfd, bfd_byte *contents,
3913 Elf_Internal_Rela *rel, struct elf_link_hash_entry *h)
3914{
3915 bfd_boolean is_local = h == NULL;
cec5225b 3916 unsigned int r_type = ELFNN_R_TYPE (rel->r_info);
a06ea964
NC
3917 unsigned long insn;
3918
3919 BFD_ASSERT (globals && input_bfd && contents && rel);
3920
a6bb11b2 3921 switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
a06ea964 3922 {
a6bb11b2
YZ
3923 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3924 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
a06ea964
NC
3925 if (is_local)
3926 {
3927 /* GD->LE relaxation:
3928 adrp x0, :tlsgd:var => movz x0, :tprel_g1:var
3929 or
3930 adrp x0, :tlsdesc:var => movz x0, :tprel_g1:var
3931 */
3932 bfd_putl32 (0xd2a00000, contents + rel->r_offset);
3933 return bfd_reloc_continue;
3934 }
3935 else
3936 {
3937 /* GD->IE relaxation:
3938 adrp x0, :tlsgd:var => adrp x0, :gottprel:var
3939 or
3940 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var
3941 */
3942 insn = bfd_getl32 (contents + rel->r_offset);
3943 return bfd_reloc_continue;
3944 }
3945
a6bb11b2 3946 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
a06ea964
NC
3947 if (is_local)
3948 {
3949 /* GD->LE relaxation:
3950 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var
3951 */
3952 bfd_putl32 (0xf2800000, contents + rel->r_offset);
3953 return bfd_reloc_continue;
3954 }
3955 else
3956 {
3957 /* GD->IE relaxation:
3958 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr x0, [x0, #:gottprel_lo12:var]
3959 */
3960 insn = bfd_getl32 (contents + rel->r_offset);
3961 insn &= 0xfffffff0;
3962 bfd_putl32 (insn, contents + rel->r_offset);
3963 return bfd_reloc_continue;
3964 }
3965
a6bb11b2 3966 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
a06ea964
NC
3967 if (is_local)
3968 {
3969 /* GD->LE relaxation
3970 add x0, #:tlsgd_lo12:var => movk x0, :tprel_g0_nc:var
3971 bl __tls_get_addr => mrs x1, tpidr_el0
3972 nop => add x0, x1, x0
3973 */
3974
3975 /* First kill the tls_get_addr reloc on the bl instruction. */
3976 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
cec5225b 3977 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
a06ea964
NC
3978
3979 bfd_putl32 (0xf2800000, contents + rel->r_offset);
3980 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
3981 bfd_putl32 (0x8b000020, contents + rel->r_offset + 8);
3982 return bfd_reloc_continue;
3983 }
3984 else
3985 {
3986 /* GD->IE relaxation
3987 ADD x0, #:tlsgd_lo12:var => ldr x0, [x0, #:gottprel_lo12:var]
3988 BL __tls_get_addr => mrs x1, tpidr_el0
3989 R_AARCH64_CALL26
3990 NOP => add x0, x1, x0
3991 */
3992
a6bb11b2 3993 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
a06ea964
NC
3994
3995 /* Remove the relocation on the BL instruction. */
cec5225b 3996 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
a06ea964
NC
3997
3998 bfd_putl32 (0xf9400000, contents + rel->r_offset);
3999
4000 /* We choose to fixup the BL and NOP instructions using the
4001 offset from the second relocation to allow flexibility in
4002 scheduling instructions between the ADD and BL. */
4003 bfd_putl32 (0xd53bd041, contents + rel[1].r_offset);
4004 bfd_putl32 (0x8b000020, contents + rel[1].r_offset + 4);
4005 return bfd_reloc_continue;
4006 }
4007
a6bb11b2
YZ
4008 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
4009 case BFD_RELOC_AARCH64_TLSDESC_CALL:
a06ea964
NC
4010 /* GD->IE/LE relaxation:
4011 add x0, x0, #:tlsdesc_lo12:var => nop
4012 blr xd => nop
4013 */
4014 bfd_putl32 (INSN_NOP, contents + rel->r_offset);
4015 return bfd_reloc_ok;
4016
a6bb11b2 4017 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a06ea964
NC
4018 /* IE->LE relaxation:
4019 adrp xd, :gottprel:var => movz xd, :tprel_g1:var
4020 */
4021 if (is_local)
4022 {
4023 insn = bfd_getl32 (contents + rel->r_offset);
4024 bfd_putl32 (0xd2a00000 | (insn & 0x1f), contents + rel->r_offset);
4025 }
4026 return bfd_reloc_continue;
4027
a6bb11b2 4028 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
a06ea964
NC
4029 /* IE->LE relaxation:
4030 ldr xd, [xm, #:gottprel_lo12:var] => movk xd, :tprel_g0_nc:var
4031 */
4032 if (is_local)
4033 {
4034 insn = bfd_getl32 (contents + rel->r_offset);
4035 bfd_putl32 (0xf2800000 | (insn & 0x1f), contents + rel->r_offset);
4036 }
4037 return bfd_reloc_continue;
4038
4039 default:
4040 return bfd_reloc_continue;
4041 }
4042
4043 return bfd_reloc_ok;
4044}
4045
4046/* Relocate an AArch64 ELF section. */
4047
4048static bfd_boolean
cec5225b 4049elfNN_aarch64_relocate_section (bfd *output_bfd,
a06ea964
NC
4050 struct bfd_link_info *info,
4051 bfd *input_bfd,
4052 asection *input_section,
4053 bfd_byte *contents,
4054 Elf_Internal_Rela *relocs,
4055 Elf_Internal_Sym *local_syms,
4056 asection **local_sections)
4057{
4058 Elf_Internal_Shdr *symtab_hdr;
4059 struct elf_link_hash_entry **sym_hashes;
4060 Elf_Internal_Rela *rel;
4061 Elf_Internal_Rela *relend;
4062 const char *name;
cec5225b 4063 struct elf_aarch64_link_hash_table *globals;
a06ea964
NC
4064 bfd_boolean save_addend = FALSE;
4065 bfd_vma addend = 0;
4066
cec5225b 4067 globals = elf_aarch64_hash_table (info);
a06ea964
NC
4068
4069 symtab_hdr = &elf_symtab_hdr (input_bfd);
4070 sym_hashes = elf_sym_hashes (input_bfd);
4071
4072 rel = relocs;
4073 relend = relocs + input_section->reloc_count;
4074 for (; rel < relend; rel++)
4075 {
4076 unsigned int r_type;
a6bb11b2
YZ
4077 bfd_reloc_code_real_type bfd_r_type;
4078 bfd_reloc_code_real_type relaxed_bfd_r_type;
a06ea964
NC
4079 reloc_howto_type *howto;
4080 unsigned long r_symndx;
4081 Elf_Internal_Sym *sym;
4082 asection *sec;
4083 struct elf_link_hash_entry *h;
4084 bfd_vma relocation;
4085 bfd_reloc_status_type r;
4086 arelent bfd_reloc;
4087 char sym_type;
4088 bfd_boolean unresolved_reloc = FALSE;
4089 char *error_message = NULL;
4090
cec5225b
YZ
4091 r_symndx = ELFNN_R_SYM (rel->r_info);
4092 r_type = ELFNN_R_TYPE (rel->r_info);
a06ea964 4093
cec5225b 4094 bfd_reloc.howto = elfNN_aarch64_howto_from_type (r_type);
a06ea964
NC
4095 howto = bfd_reloc.howto;
4096
7fcfd62d
NC
4097 if (howto == NULL)
4098 {
4099 (*_bfd_error_handler)
4100 (_("%B: unrecognized relocation (0x%x) in section `%A'"),
4101 input_bfd, input_section, r_type);
4102 return FALSE;
4103 }
a6bb11b2 4104 bfd_r_type = elfNN_aarch64_bfd_reloc_from_howto (howto);
7fcfd62d 4105
a06ea964
NC
4106 h = NULL;
4107 sym = NULL;
4108 sec = NULL;
4109
4110 if (r_symndx < symtab_hdr->sh_info)
4111 {
4112 sym = local_syms + r_symndx;
cec5225b 4113 sym_type = ELFNN_ST_TYPE (sym->st_info);
a06ea964
NC
4114 sec = local_sections[r_symndx];
4115
4116 /* An object file might have a reference to a local
4117 undefined symbol. This is a daft object file, but we
4118 should at least do something about it. */
4119 if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL
4120 && bfd_is_und_section (sec)
4121 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
4122 {
4123 if (!info->callbacks->undefined_symbol
4124 (info, bfd_elf_string_from_elf_section
4125 (input_bfd, symtab_hdr->sh_link, sym->st_name),
4126 input_bfd, input_section, rel->r_offset, TRUE))
4127 return FALSE;
4128 }
4129
a06ea964 4130 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1419bbe5
WN
4131
4132 /* Relocate against local STT_GNU_IFUNC symbol. */
4133 if (!info->relocatable
4134 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
4135 {
4136 h = elfNN_aarch64_get_local_sym_hash (globals, input_bfd,
4137 rel, FALSE);
4138 if (h == NULL)
4139 abort ();
4140
4141 /* Set STT_GNU_IFUNC symbol value. */
4142 h->root.u.def.value = sym->st_value;
4143 h->root.u.def.section = sec;
4144 }
a06ea964
NC
4145 }
4146 else
4147 {
62d887d4 4148 bfd_boolean warned, ignored;
a06ea964
NC
4149
4150 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
4151 r_symndx, symtab_hdr, sym_hashes,
4152 h, sec, relocation,
62d887d4 4153 unresolved_reloc, warned, ignored);
a06ea964
NC
4154
4155 sym_type = h->type;
4156 }
4157
4158 if (sec != NULL && discarded_section (sec))
4159 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
4160 rel, 1, relend, howto, 0, contents);
4161
4162 if (info->relocatable)
4163 {
4164 /* This is a relocatable link. We don't have to change
4165 anything, unless the reloc is against a section symbol,
4166 in which case we have to adjust according to where the
4167 section symbol winds up in the output section. */
4168 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
4169 rel->r_addend += sec->output_offset;
4170 continue;
4171 }
4172
4173 if (h != NULL)
4174 name = h->root.root.string;
4175 else
4176 {
4177 name = (bfd_elf_string_from_elf_section
4178 (input_bfd, symtab_hdr->sh_link, sym->st_name));
4179 if (name == NULL || *name == '\0')
4180 name = bfd_section_name (input_bfd, sec);
4181 }
4182
4183 if (r_symndx != 0
4184 && r_type != R_AARCH64_NONE
4185 && r_type != R_AARCH64_NULL
4186 && (h == NULL
4187 || h->root.type == bfd_link_hash_defined
4188 || h->root.type == bfd_link_hash_defweak)
a6bb11b2 4189 && IS_AARCH64_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS))
a06ea964
NC
4190 {
4191 (*_bfd_error_handler)
4192 ((sym_type == STT_TLS
4193 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
4194 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
4195 input_bfd,
4196 input_section, (long) rel->r_offset, howto->name, name);
4197 }
4198
a06ea964
NC
4199 /* We relax only if we can see that there can be a valid transition
4200 from a reloc type to another.
cec5225b 4201 We call elfNN_aarch64_final_link_relocate unless we're completely
a06ea964
NC
4202 done, i.e., the relaxation produced the final output we want. */
4203
a6bb11b2
YZ
4204 relaxed_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type,
4205 h, r_symndx);
4206 if (relaxed_bfd_r_type != bfd_r_type)
a06ea964 4207 {
a6bb11b2
YZ
4208 bfd_r_type = relaxed_bfd_r_type;
4209 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
4210 BFD_ASSERT (howto != NULL);
4211 r_type = howto->type;
cec5225b 4212 r = elfNN_aarch64_tls_relax (globals, input_bfd, contents, rel, h);
a06ea964
NC
4213 unresolved_reloc = 0;
4214 }
4215 else
4216 r = bfd_reloc_continue;
4217
4218 /* There may be multiple consecutive relocations for the
4219 same offset. In that case we are supposed to treat the
4220 output of each relocation as the addend for the next. */
4221 if (rel + 1 < relend
4222 && rel->r_offset == rel[1].r_offset
cec5225b
YZ
4223 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NONE
4224 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NULL)
a06ea964
NC
4225 save_addend = TRUE;
4226 else
4227 save_addend = FALSE;
4228
4229 if (r == bfd_reloc_continue)
cec5225b 4230 r = elfNN_aarch64_final_link_relocate (howto, input_bfd, output_bfd,
a06ea964
NC
4231 input_section, contents, rel,
4232 relocation, info, sec,
4233 h, &unresolved_reloc,
1419bbe5 4234 save_addend, &addend, sym);
a06ea964 4235
a6bb11b2 4236 switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
a06ea964 4237 {
a6bb11b2
YZ
4238 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4239 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
a06ea964
NC
4240 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
4241 {
4242 bfd_boolean need_relocs = FALSE;
4243 bfd_byte *loc;
4244 int indx;
4245 bfd_vma off;
4246
4247 off = symbol_got_offset (input_bfd, h, r_symndx);
4248 indx = h && h->dynindx != -1 ? h->dynindx : 0;
4249
4250 need_relocs =
4251 (info->shared || indx != 0) &&
4252 (h == NULL
4253 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4254 || h->root.type != bfd_link_hash_undefweak);
4255
4256 BFD_ASSERT (globals->root.srelgot != NULL);
4257
4258 if (need_relocs)
4259 {
4260 Elf_Internal_Rela rela;
a6bb11b2 4261 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPMOD));
a06ea964
NC
4262 rela.r_addend = 0;
4263 rela.r_offset = globals->root.sgot->output_section->vma +
4264 globals->root.sgot->output_offset + off;
4265
4266
4267 loc = globals->root.srelgot->contents;
4268 loc += globals->root.srelgot->reloc_count++
4269 * RELOC_SIZE (htab);
cec5225b 4270 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964
NC
4271
4272 if (indx == 0)
4273 {
cec5225b 4274 bfd_put_NN (output_bfd,
a06ea964
NC
4275 relocation - dtpoff_base (info),
4276 globals->root.sgot->contents + off
4277 + GOT_ENTRY_SIZE);
4278 }
4279 else
4280 {
4281 /* This TLS symbol is global. We emit a
4282 relocation to fixup the tls offset at load
4283 time. */
4284 rela.r_info =
a6bb11b2 4285 ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPREL));
a06ea964
NC
4286 rela.r_addend = 0;
4287 rela.r_offset =
4288 (globals->root.sgot->output_section->vma
4289 + globals->root.sgot->output_offset + off
4290 + GOT_ENTRY_SIZE);
4291
4292 loc = globals->root.srelgot->contents;
4293 loc += globals->root.srelgot->reloc_count++
4294 * RELOC_SIZE (globals);
cec5225b
YZ
4295 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
4296 bfd_put_NN (output_bfd, (bfd_vma) 0,
a06ea964
NC
4297 globals->root.sgot->contents + off
4298 + GOT_ENTRY_SIZE);
4299 }
4300 }
4301 else
4302 {
cec5225b 4303 bfd_put_NN (output_bfd, (bfd_vma) 1,
a06ea964 4304 globals->root.sgot->contents + off);
cec5225b 4305 bfd_put_NN (output_bfd,
a06ea964
NC
4306 relocation - dtpoff_base (info),
4307 globals->root.sgot->contents + off
4308 + GOT_ENTRY_SIZE);
4309 }
4310
4311 symbol_got_offset_mark (input_bfd, h, r_symndx);
4312 }
4313 break;
4314
a6bb11b2
YZ
4315 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4316 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
a06ea964
NC
4317 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
4318 {
4319 bfd_boolean need_relocs = FALSE;
4320 bfd_byte *loc;
4321 int indx;
4322 bfd_vma off;
4323
4324 off = symbol_got_offset (input_bfd, h, r_symndx);
4325
4326 indx = h && h->dynindx != -1 ? h->dynindx : 0;
4327
4328 need_relocs =
4329 (info->shared || indx != 0) &&
4330 (h == NULL
4331 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4332 || h->root.type != bfd_link_hash_undefweak);
4333
4334 BFD_ASSERT (globals->root.srelgot != NULL);
4335
4336 if (need_relocs)
4337 {
4338 Elf_Internal_Rela rela;
4339
4340 if (indx == 0)
4341 rela.r_addend = relocation - dtpoff_base (info);
4342 else
4343 rela.r_addend = 0;
4344
a6bb11b2 4345 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_TPREL));
a06ea964
NC
4346 rela.r_offset = globals->root.sgot->output_section->vma +
4347 globals->root.sgot->output_offset + off;
4348
4349 loc = globals->root.srelgot->contents;
4350 loc += globals->root.srelgot->reloc_count++
4351 * RELOC_SIZE (htab);
4352
cec5225b 4353 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964 4354
cec5225b 4355 bfd_put_NN (output_bfd, rela.r_addend,
a06ea964
NC
4356 globals->root.sgot->contents + off);
4357 }
4358 else
cec5225b 4359 bfd_put_NN (output_bfd, relocation - tpoff_base (info),
a06ea964
NC
4360 globals->root.sgot->contents + off);
4361
4362 symbol_got_offset_mark (input_bfd, h, r_symndx);
4363 }
4364 break;
4365
a6bb11b2
YZ
4366 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
4367 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
4368 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
4369 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
4370 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
4371 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
4372 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
4373 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
a06ea964
NC
4374 break;
4375
7bcccb57 4376 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
a6bb11b2
YZ
4377 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4378 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
a06ea964
NC
4379 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx))
4380 {
4381 bfd_boolean need_relocs = FALSE;
4382 int indx = h && h->dynindx != -1 ? h->dynindx : 0;
4383 bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx);
4384
4385 need_relocs = (h == NULL
4386 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4387 || h->root.type != bfd_link_hash_undefweak);
4388
4389 BFD_ASSERT (globals->root.srelgot != NULL);
4390 BFD_ASSERT (globals->root.sgot != NULL);
4391
4392 if (need_relocs)
4393 {
4394 bfd_byte *loc;
4395 Elf_Internal_Rela rela;
a6bb11b2
YZ
4396 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLSDESC));
4397
a06ea964
NC
4398 rela.r_addend = 0;
4399 rela.r_offset = (globals->root.sgotplt->output_section->vma
4400 + globals->root.sgotplt->output_offset
4401 + off + globals->sgotplt_jump_table_size);
4402
4403 if (indx == 0)
4404 rela.r_addend = relocation - dtpoff_base (info);
4405
4406 /* Allocate the next available slot in the PLT reloc
4407 section to hold our R_AARCH64_TLSDESC, the next
4408 available slot is determined from reloc_count,
4409 which we step. But note, reloc_count was
4410 artifically moved down while allocating slots for
4411 real PLT relocs such that all of the PLT relocs
4412 will fit above the initial reloc_count and the
4413 extra stuff will fit below. */
4414 loc = globals->root.srelplt->contents;
4415 loc += globals->root.srelplt->reloc_count++
4416 * RELOC_SIZE (globals);
4417
cec5225b 4418 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964 4419
cec5225b 4420 bfd_put_NN (output_bfd, (bfd_vma) 0,
a06ea964
NC
4421 globals->root.sgotplt->contents + off +
4422 globals->sgotplt_jump_table_size);
cec5225b 4423 bfd_put_NN (output_bfd, (bfd_vma) 0,
a06ea964
NC
4424 globals->root.sgotplt->contents + off +
4425 globals->sgotplt_jump_table_size +
4426 GOT_ENTRY_SIZE);
4427 }
4428
4429 symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx);
4430 }
4431 break;
a6bb11b2
YZ
4432 default:
4433 break;
a06ea964
NC
4434 }
4435
4436 if (!save_addend)
4437 addend = 0;
4438
4439
4440 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
4441 because such sections are not SEC_ALLOC and thus ld.so will
4442 not process them. */
4443 if (unresolved_reloc
4444 && !((input_section->flags & SEC_DEBUGGING) != 0
4445 && h->def_dynamic)
4446 && _bfd_elf_section_offset (output_bfd, info, input_section,
4447 +rel->r_offset) != (bfd_vma) - 1)
4448 {
4449 (*_bfd_error_handler)
4450 (_
4451 ("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
4452 input_bfd, input_section, (long) rel->r_offset, howto->name,
4453 h->root.root.string);
4454 return FALSE;
4455 }
4456
4457 if (r != bfd_reloc_ok && r != bfd_reloc_continue)
4458 {
4459 switch (r)
4460 {
4461 case bfd_reloc_overflow:
4462 /* If the overflowing reloc was to an undefined symbol,
4463 we have already printed one error message and there
4464 is no point complaining again. */
4465 if ((!h ||
4466 h->root.type != bfd_link_hash_undefined)
4467 && (!((*info->callbacks->reloc_overflow)
4468 (info, (h ? &h->root : NULL), name, howto->name,
4469 (bfd_vma) 0, input_bfd, input_section,
4470 rel->r_offset))))
4471 return FALSE;
4472 break;
4473
4474 case bfd_reloc_undefined:
4475 if (!((*info->callbacks->undefined_symbol)
4476 (info, name, input_bfd, input_section,
4477 rel->r_offset, TRUE)))
4478 return FALSE;
4479 break;
4480
4481 case bfd_reloc_outofrange:
4482 error_message = _("out of range");
4483 goto common_error;
4484
4485 case bfd_reloc_notsupported:
4486 error_message = _("unsupported relocation");
4487 goto common_error;
4488
4489 case bfd_reloc_dangerous:
4490 /* error_message should already be set. */
4491 goto common_error;
4492
4493 default:
4494 error_message = _("unknown error");
4495 /* Fall through. */
4496
4497 common_error:
4498 BFD_ASSERT (error_message != NULL);
4499 if (!((*info->callbacks->reloc_dangerous)
4500 (info, error_message, input_bfd, input_section,
4501 rel->r_offset)))
4502 return FALSE;
4503 break;
4504 }
4505 }
4506 }
4507
4508 return TRUE;
4509}
4510
4511/* Set the right machine number. */
4512
4513static bfd_boolean
cec5225b 4514elfNN_aarch64_object_p (bfd *abfd)
a06ea964 4515{
cec5225b
YZ
4516#if ARCH_SIZE == 32
4517 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64_ilp32);
4518#else
a06ea964 4519 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64);
cec5225b 4520#endif
a06ea964
NC
4521 return TRUE;
4522}
4523
4524/* Function to keep AArch64 specific flags in the ELF header. */
4525
4526static bfd_boolean
cec5225b 4527elfNN_aarch64_set_private_flags (bfd *abfd, flagword flags)
a06ea964
NC
4528{
4529 if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags)
4530 {
4531 }
4532 else
4533 {
4534 elf_elfheader (abfd)->e_flags = flags;
4535 elf_flags_init (abfd) = TRUE;
4536 }
4537
4538 return TRUE;
4539}
4540
4541/* Copy backend specific data from one object module to another. */
4542
4543static bfd_boolean
cec5225b 4544elfNN_aarch64_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
a06ea964
NC
4545{
4546 flagword in_flags;
4547
4548 if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
4549 return TRUE;
4550
4551 in_flags = elf_elfheader (ibfd)->e_flags;
4552
4553 elf_elfheader (obfd)->e_flags = in_flags;
4554 elf_flags_init (obfd) = TRUE;
4555
4556 /* Also copy the EI_OSABI field. */
4557 elf_elfheader (obfd)->e_ident[EI_OSABI] =
4558 elf_elfheader (ibfd)->e_ident[EI_OSABI];
4559
4560 /* Copy object attributes. */
4561 _bfd_elf_copy_obj_attributes (ibfd, obfd);
4562
4563 return TRUE;
4564}
4565
4566/* Merge backend specific data from an object file to the output
4567 object file when linking. */
4568
4569static bfd_boolean
cec5225b 4570elfNN_aarch64_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
a06ea964
NC
4571{
4572 flagword out_flags;
4573 flagword in_flags;
4574 bfd_boolean flags_compatible = TRUE;
4575 asection *sec;
4576
4577 /* Check if we have the same endianess. */
4578 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
4579 return FALSE;
4580
4581 if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
4582 return TRUE;
4583
4584 /* The input BFD must have had its flags initialised. */
4585 /* The following seems bogus to me -- The flags are initialized in
4586 the assembler but I don't think an elf_flags_init field is
4587 written into the object. */
4588 /* BFD_ASSERT (elf_flags_init (ibfd)); */
4589
4590 in_flags = elf_elfheader (ibfd)->e_flags;
4591 out_flags = elf_elfheader (obfd)->e_flags;
4592
4593 if (!elf_flags_init (obfd))
4594 {
4595 /* If the input is the default architecture and had the default
4596 flags then do not bother setting the flags for the output
4597 architecture, instead allow future merges to do this. If no
4598 future merges ever set these flags then they will retain their
4599 uninitialised values, which surprise surprise, correspond
4600 to the default values. */
4601 if (bfd_get_arch_info (ibfd)->the_default
4602 && elf_elfheader (ibfd)->e_flags == 0)
4603 return TRUE;
4604
4605 elf_flags_init (obfd) = TRUE;
4606 elf_elfheader (obfd)->e_flags = in_flags;
4607
4608 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
4609 && bfd_get_arch_info (obfd)->the_default)
4610 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
4611 bfd_get_mach (ibfd));
4612
4613 return TRUE;
4614 }
4615
4616 /* Identical flags must be compatible. */
4617 if (in_flags == out_flags)
4618 return TRUE;
4619
4620 /* Check to see if the input BFD actually contains any sections. If
4621 not, its flags may not have been initialised either, but it
4622 cannot actually cause any incompatiblity. Do not short-circuit
4623 dynamic objects; their section list may be emptied by
4624 elf_link_add_object_symbols.
4625
4626 Also check to see if there are no code sections in the input.
4627 In this case there is no need to check for code specific flags.
4628 XXX - do we need to worry about floating-point format compatability
4629 in data sections ? */
4630 if (!(ibfd->flags & DYNAMIC))
4631 {
4632 bfd_boolean null_input_bfd = TRUE;
4633 bfd_boolean only_data_sections = TRUE;
4634
4635 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
4636 {
4637 if ((bfd_get_section_flags (ibfd, sec)
4638 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
4639 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
4640 only_data_sections = FALSE;
4641
4642 null_input_bfd = FALSE;
4643 break;
4644 }
4645
4646 if (null_input_bfd || only_data_sections)
4647 return TRUE;
4648 }
4649
4650 return flags_compatible;
4651}
4652
4653/* Display the flags field. */
4654
4655static bfd_boolean
cec5225b 4656elfNN_aarch64_print_private_bfd_data (bfd *abfd, void *ptr)
a06ea964
NC
4657{
4658 FILE *file = (FILE *) ptr;
4659 unsigned long flags;
4660
4661 BFD_ASSERT (abfd != NULL && ptr != NULL);
4662
4663 /* Print normal ELF private data. */
4664 _bfd_elf_print_private_bfd_data (abfd, ptr);
4665
4666 flags = elf_elfheader (abfd)->e_flags;
4667 /* Ignore init flag - it may not be set, despite the flags field
4668 containing valid data. */
4669
4670 /* xgettext:c-format */
4671 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
4672
4673 if (flags)
4674 fprintf (file, _("<Unrecognised flag bits set>"));
4675
4676 fputc ('\n', file);
4677
4678 return TRUE;
4679}
4680
4681/* Update the got entry reference counts for the section being removed. */
4682
4683static bfd_boolean
cec5225b 4684elfNN_aarch64_gc_sweep_hook (bfd *abfd,
cb8af559
NC
4685 struct bfd_link_info *info,
4686 asection *sec,
4687 const Elf_Internal_Rela * relocs)
a06ea964 4688{
cec5225b 4689 struct elf_aarch64_link_hash_table *htab;
59c108f7
NC
4690 Elf_Internal_Shdr *symtab_hdr;
4691 struct elf_link_hash_entry **sym_hashes;
cb8af559 4692 struct elf_aarch64_local_symbol *locals;
59c108f7
NC
4693 const Elf_Internal_Rela *rel, *relend;
4694
4695 if (info->relocatable)
4696 return TRUE;
4697
cec5225b 4698 htab = elf_aarch64_hash_table (info);
59c108f7
NC
4699
4700 if (htab == NULL)
4701 return FALSE;
4702
4703 elf_section_data (sec)->local_dynrel = NULL;
4704
4705 symtab_hdr = &elf_symtab_hdr (abfd);
4706 sym_hashes = elf_sym_hashes (abfd);
4707
cec5225b 4708 locals = elf_aarch64_locals (abfd);
59c108f7
NC
4709
4710 relend = relocs + sec->reloc_count;
4711 for (rel = relocs; rel < relend; rel++)
4712 {
4713 unsigned long r_symndx;
4714 unsigned int r_type;
4715 struct elf_link_hash_entry *h = NULL;
4716
cec5225b 4717 r_symndx = ELFNN_R_SYM (rel->r_info);
8847944f 4718
59c108f7
NC
4719 if (r_symndx >= symtab_hdr->sh_info)
4720 {
8847944f 4721
59c108f7
NC
4722 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4723 while (h->root.type == bfd_link_hash_indirect
4724 || h->root.type == bfd_link_hash_warning)
4725 h = (struct elf_link_hash_entry *) h->root.u.i.link;
59c108f7
NC
4726 }
4727 else
4728 {
4729 Elf_Internal_Sym *isym;
4730
8847944f 4731 /* A local symbol. */
59c108f7
NC
4732 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
4733 abfd, r_symndx);
1419bbe5
WN
4734
4735 /* Check relocation against local STT_GNU_IFUNC symbol. */
4736 if (isym != NULL
4737 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
4738 {
4739 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel, FALSE);
4740 if (h == NULL)
4741 abort ();
4742 }
4743 }
4744
4745 if (h)
4746 {
4747 struct elf_aarch64_link_hash_entry *eh;
4748 struct elf_dyn_relocs **pp;
4749 struct elf_dyn_relocs *p;
4750
4751 eh = (struct elf_aarch64_link_hash_entry *) h;
4752
4753 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
4754 if (p->sec == sec)
4755 {
4756 /* Everything must go for SEC. */
4757 *pp = p->next;
4758 break;
4759 }
59c108f7
NC
4760 }
4761
cec5225b 4762 r_type = ELFNN_R_TYPE (rel->r_info);
a6bb11b2 4763 switch (aarch64_tls_transition (abfd,info, r_type, h ,r_symndx))
59c108f7 4764 {
a6bb11b2 4765 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7bcccb57
MS
4766 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
4767 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
4768 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
4769 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
4770 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4771 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
4772 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
a6bb11b2 4773 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7bcccb57 4774 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
a6bb11b2 4775 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 4776 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7bcccb57 4777 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
a6bb11b2 4778 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
7bcccb57 4779 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
a6bb11b2 4780 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
a6bb11b2
YZ
4781 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
4782 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
7bcccb57
MS
4783 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
4784 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
4785 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a6bb11b2 4786 if (h != NULL)
59c108f7
NC
4787 {
4788 if (h->got.refcount > 0)
4789 h->got.refcount -= 1;
1419bbe5
WN
4790
4791 if (h->type == STT_GNU_IFUNC)
4792 {
4793 if (h->plt.refcount > 0)
4794 h->plt.refcount -= 1;
4795 }
59c108f7 4796 }
cb8af559 4797 else if (locals != NULL)
59c108f7 4798 {
cb8af559
NC
4799 if (locals[r_symndx].got_refcount > 0)
4800 locals[r_symndx].got_refcount -= 1;
59c108f7
NC
4801 }
4802 break;
4803
a6bb11b2
YZ
4804 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
4805 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
4806 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
59c108f7
NC
4807 if (h != NULL && info->executable)
4808 {
4809 if (h->plt.refcount > 0)
4810 h->plt.refcount -= 1;
4811 }
4812 break;
4813
a6bb11b2
YZ
4814 case BFD_RELOC_AARCH64_CALL26:
4815 case BFD_RELOC_AARCH64_JUMP26:
4816 /* If this is a local symbol then we resolve it
4817 directly without creating a PLT entry. */
59c108f7
NC
4818 if (h == NULL)
4819 continue;
4820
4821 if (h->plt.refcount > 0)
4822 h->plt.refcount -= 1;
4823 break;
4824
a6bb11b2 4825 case BFD_RELOC_AARCH64_NN:
8847944f 4826 if (h != NULL && info->executable)
59c108f7
NC
4827 {
4828 if (h->plt.refcount > 0)
4829 h->plt.refcount -= 1;
4830 }
4831 break;
cec5225b 4832
59c108f7
NC
4833 default:
4834 break;
4835 }
4836 }
4837
a06ea964
NC
4838 return TRUE;
4839}
4840
4841/* Adjust a symbol defined by a dynamic object and referenced by a
4842 regular object. The current definition is in some section of the
4843 dynamic object, but we're not including those sections. We have to
4844 change the definition to something the rest of the link can
4845 understand. */
4846
4847static bfd_boolean
cec5225b 4848elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info,
a06ea964
NC
4849 struct elf_link_hash_entry *h)
4850{
cec5225b 4851 struct elf_aarch64_link_hash_table *htab;
a06ea964
NC
4852 asection *s;
4853
4854 /* If this is a function, put it in the procedure linkage table. We
4855 will fill in the contents of the procedure linkage table later,
4856 when we know the address of the .got section. */
1419bbe5 4857 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
a06ea964
NC
4858 {
4859 if (h->plt.refcount <= 0
1419bbe5
WN
4860 || (h->type != STT_GNU_IFUNC
4861 && (SYMBOL_CALLS_LOCAL (info, h)
4862 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
4863 && h->root.type == bfd_link_hash_undefweak))))
a06ea964
NC
4864 {
4865 /* This case can occur if we saw a CALL26 reloc in
4866 an input file, but the symbol wasn't referred to
4867 by a dynamic object or all references were
4868 garbage collected. In which case we can end up
4869 resolving. */
4870 h->plt.offset = (bfd_vma) - 1;
4871 h->needs_plt = 0;
4872 }
4873
4874 return TRUE;
4875 }
4876 else
4877 /* It's possible that we incorrectly decided a .plt reloc was
4878 needed for an R_X86_64_PC32 reloc to a non-function sym in
4879 check_relocs. We can't decide accurately between function and
4880 non-function syms in check-relocs; Objects loaded later in
4881 the link may change h->type. So fix it now. */
4882 h->plt.offset = (bfd_vma) - 1;
4883
4884
4885 /* If this is a weak symbol, and there is a real definition, the
4886 processor independent code will have arranged for us to see the
4887 real definition first, and we can just use the same value. */
4888 if (h->u.weakdef != NULL)
4889 {
4890 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
4891 || h->u.weakdef->root.type == bfd_link_hash_defweak);
4892 h->root.u.def.section = h->u.weakdef->root.u.def.section;
4893 h->root.u.def.value = h->u.weakdef->root.u.def.value;
4894 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
4895 h->non_got_ref = h->u.weakdef->non_got_ref;
4896 return TRUE;
4897 }
4898
4899 /* If we are creating a shared library, we must presume that the
4900 only references to the symbol are via the global offset table.
4901 For such cases we need not do anything here; the relocations will
4902 be handled correctly by relocate_section. */
4903 if (info->shared)
4904 return TRUE;
4905
4906 /* If there are no references to this symbol that do not use the
4907 GOT, we don't need to generate a copy reloc. */
4908 if (!h->non_got_ref)
4909 return TRUE;
4910
4911 /* If -z nocopyreloc was given, we won't generate them either. */
4912 if (info->nocopyreloc)
4913 {
4914 h->non_got_ref = 0;
4915 return TRUE;
4916 }
4917
4918 /* We must allocate the symbol in our .dynbss section, which will
4919 become part of the .bss section of the executable. There will be
4920 an entry for this symbol in the .dynsym section. The dynamic
4921 object will contain position independent code, so all references
4922 from the dynamic object to this symbol will go through the global
4923 offset table. The dynamic linker will use the .dynsym entry to
4924 determine the address it must put in the global offset table, so
4925 both the dynamic object and the regular object will refer to the
4926 same memory location for the variable. */
4927
cec5225b 4928 htab = elf_aarch64_hash_table (info);
a06ea964
NC
4929
4930 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
4931 to copy the initial value out of the dynamic object and into the
4932 runtime process image. */
4933 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
4934 {
4935 htab->srelbss->size += RELOC_SIZE (htab);
4936 h->needs_copy = 1;
4937 }
4938
4939 s = htab->sdynbss;
4940
4941 return _bfd_elf_adjust_dynamic_copy (h, s);
4942
4943}
4944
4945static bfd_boolean
cec5225b 4946elfNN_aarch64_allocate_local_symbols (bfd *abfd, unsigned number)
a06ea964
NC
4947{
4948 struct elf_aarch64_local_symbol *locals;
cec5225b 4949 locals = elf_aarch64_locals (abfd);
a06ea964
NC
4950 if (locals == NULL)
4951 {
4952 locals = (struct elf_aarch64_local_symbol *)
4953 bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol));
4954 if (locals == NULL)
4955 return FALSE;
cec5225b 4956 elf_aarch64_locals (abfd) = locals;
a06ea964
NC
4957 }
4958 return TRUE;
4959}
4960
cc0efaa8
MS
4961/* Create the .got section to hold the global offset table. */
4962
4963static bfd_boolean
4964aarch64_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4965{
4966 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4967 flagword flags;
4968 asection *s;
4969 struct elf_link_hash_entry *h;
4970 struct elf_link_hash_table *htab = elf_hash_table (info);
4971
4972 /* This function may be called more than once. */
4973 s = bfd_get_linker_section (abfd, ".got");
4974 if (s != NULL)
4975 return TRUE;
4976
4977 flags = bed->dynamic_sec_flags;
4978
4979 s = bfd_make_section_anyway_with_flags (abfd,
4980 (bed->rela_plts_and_copies_p
4981 ? ".rela.got" : ".rel.got"),
4982 (bed->dynamic_sec_flags
4983 | SEC_READONLY));
4984 if (s == NULL
4985 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
4986 return FALSE;
4987 htab->srelgot = s;
4988
4989 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4990 if (s == NULL
4991 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
4992 return FALSE;
4993 htab->sgot = s;
4994 htab->sgot->size += GOT_ENTRY_SIZE;
4995
4996 if (bed->want_got_sym)
4997 {
4998 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
4999 (or .got.plt) section. We don't do this in the linker script
5000 because we don't want to define the symbol if we are not creating
5001 a global offset table. */
5002 h = _bfd_elf_define_linkage_sym (abfd, info, s,
5003 "_GLOBAL_OFFSET_TABLE_");
5004 elf_hash_table (info)->hgot = h;
5005 if (h == NULL)
5006 return FALSE;
5007 }
5008
5009 if (bed->want_got_plt)
5010 {
5011 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
5012 if (s == NULL
5013 || !bfd_set_section_alignment (abfd, s,
5014 bed->s->log_file_align))
5015 return FALSE;
5016 htab->sgotplt = s;
5017 }
5018
5019 /* The first bit of the global offset table is the header. */
5020 s->size += bed->got_header_size;
5021
5022 return TRUE;
5023}
5024
a06ea964
NC
5025/* Look through the relocs for a section during the first phase. */
5026
5027static bfd_boolean
cec5225b 5028elfNN_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info,
a06ea964
NC
5029 asection *sec, const Elf_Internal_Rela *relocs)
5030{
5031 Elf_Internal_Shdr *symtab_hdr;
5032 struct elf_link_hash_entry **sym_hashes;
5033 const Elf_Internal_Rela *rel;
5034 const Elf_Internal_Rela *rel_end;
5035 asection *sreloc;
5036
cec5225b 5037 struct elf_aarch64_link_hash_table *htab;
a06ea964 5038
a06ea964
NC
5039 if (info->relocatable)
5040 return TRUE;
5041
5042 BFD_ASSERT (is_aarch64_elf (abfd));
5043
cec5225b 5044 htab = elf_aarch64_hash_table (info);
a06ea964
NC
5045 sreloc = NULL;
5046
5047 symtab_hdr = &elf_symtab_hdr (abfd);
5048 sym_hashes = elf_sym_hashes (abfd);
a06ea964
NC
5049
5050 rel_end = relocs + sec->reloc_count;
5051 for (rel = relocs; rel < rel_end; rel++)
5052 {
5053 struct elf_link_hash_entry *h;
5054 unsigned long r_symndx;
5055 unsigned int r_type;
a6bb11b2 5056 bfd_reloc_code_real_type bfd_r_type;
1419bbe5 5057 Elf_Internal_Sym *isym;
a06ea964 5058
cec5225b
YZ
5059 r_symndx = ELFNN_R_SYM (rel->r_info);
5060 r_type = ELFNN_R_TYPE (rel->r_info);
a06ea964
NC
5061
5062 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
5063 {
5064 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
5065 r_symndx);
5066 return FALSE;
5067 }
5068
ed5acf27 5069 if (r_symndx < symtab_hdr->sh_info)
1419bbe5
WN
5070 {
5071 /* A local symbol. */
5072 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5073 abfd, r_symndx);
5074 if (isym == NULL)
5075 return FALSE;
5076
5077 /* Check relocation against local STT_GNU_IFUNC symbol. */
5078 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
5079 {
5080 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel,
5081 TRUE);
5082 if (h == NULL)
5083 return FALSE;
5084
5085 /* Fake a STT_GNU_IFUNC symbol. */
5086 h->type = STT_GNU_IFUNC;
5087 h->def_regular = 1;
5088 h->ref_regular = 1;
5089 h->forced_local = 1;
5090 h->root.type = bfd_link_hash_defined;
5091 }
5092 else
5093 h = NULL;
5094 }
a06ea964
NC
5095 else
5096 {
5097 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5098 while (h->root.type == bfd_link_hash_indirect
5099 || h->root.type == bfd_link_hash_warning)
5100 h = (struct elf_link_hash_entry *) h->root.u.i.link;
81fbe831
AM
5101
5102 /* PR15323, ref flags aren't set for references in the same
5103 object. */
5104 h->root.non_ir_ref = 1;
a06ea964
NC
5105 }
5106
5107 /* Could be done earlier, if h were already available. */
a6bb11b2 5108 bfd_r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx);
a06ea964 5109
1419bbe5
WN
5110 if (h != NULL)
5111 {
5112 /* Create the ifunc sections for static executables. If we
5113 never see an indirect function symbol nor we are building
5114 a static executable, those sections will be empty and
5115 won't appear in output. */
5116 switch (bfd_r_type)
5117 {
5118 default:
5119 break;
5120
5121 case BFD_RELOC_AARCH64_NN:
5122 case BFD_RELOC_AARCH64_CALL26:
5123 case BFD_RELOC_AARCH64_JUMP26:
5124 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5125 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5126 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5127 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5128 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5129 case BFD_RELOC_AARCH64_ADD_LO12:
5130 if (htab->root.dynobj == NULL)
5131 htab->root.dynobj = abfd;
5132 if (!_bfd_elf_create_ifunc_sections (htab->root.dynobj, info))
5133 return FALSE;
5134 break;
5135 }
5136
5137 /* It is referenced by a non-shared object. */
5138 h->ref_regular = 1;
5139 h->root.non_ir_ref = 1;
5140 }
5141
a6bb11b2 5142 switch (bfd_r_type)
a06ea964 5143 {
a6bb11b2 5144 case BFD_RELOC_AARCH64_NN:
a06ea964
NC
5145
5146 /* We don't need to handle relocs into sections not going into
5147 the "real" output. */
5148 if ((sec->flags & SEC_ALLOC) == 0)
5149 break;
5150
5151 if (h != NULL)
5152 {
5153 if (!info->shared)
5154 h->non_got_ref = 1;
5155
5156 h->plt.refcount += 1;
5157 h->pointer_equality_needed = 1;
5158 }
5159
5160 /* No need to do anything if we're not creating a shared
5161 object. */
5162 if (! info->shared)
5163 break;
5164
5165 {
5166 struct elf_dyn_relocs *p;
5167 struct elf_dyn_relocs **head;
5168
5169 /* We must copy these reloc types into the output file.
5170 Create a reloc section in dynobj and make room for
5171 this reloc. */
5172 if (sreloc == NULL)
5173 {
5174 if (htab->root.dynobj == NULL)
5175 htab->root.dynobj = abfd;
5176
5177 sreloc = _bfd_elf_make_dynamic_reloc_section
0608afa7 5178 (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ TRUE);
a06ea964
NC
5179
5180 if (sreloc == NULL)
5181 return FALSE;
5182 }
5183
5184 /* If this is a global symbol, we count the number of
5185 relocations we need for this symbol. */
5186 if (h != NULL)
5187 {
cec5225b
YZ
5188 struct elf_aarch64_link_hash_entry *eh;
5189 eh = (struct elf_aarch64_link_hash_entry *) h;
a06ea964
NC
5190 head = &eh->dyn_relocs;
5191 }
5192 else
5193 {
5194 /* Track dynamic relocs needed for local syms too.
5195 We really need local syms available to do this
5196 easily. Oh well. */
5197
5198 asection *s;
5199 void **vpp;
a06ea964
NC
5200
5201 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5202 abfd, r_symndx);
5203 if (isym == NULL)
5204 return FALSE;
5205
5206 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5207 if (s == NULL)
5208 s = sec;
5209
5210 /* Beware of type punned pointers vs strict aliasing
5211 rules. */
5212 vpp = &(elf_section_data (s)->local_dynrel);
5213 head = (struct elf_dyn_relocs **) vpp;
5214 }
5215
5216 p = *head;
5217 if (p == NULL || p->sec != sec)
5218 {
5219 bfd_size_type amt = sizeof *p;
5220 p = ((struct elf_dyn_relocs *)
5221 bfd_zalloc (htab->root.dynobj, amt));
5222 if (p == NULL)
5223 return FALSE;
5224 p->next = *head;
5225 *head = p;
5226 p->sec = sec;
5227 }
5228
5229 p->count += 1;
5230
5231 }
5232 break;
5233
5234 /* RR: We probably want to keep a consistency check that
5235 there are no dangling GOT_PAGE relocs. */
a6bb11b2 5236 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7bcccb57
MS
5237 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5238 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5239 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5240 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
5241 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5242 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
5243 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
a6bb11b2 5244 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7bcccb57 5245 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
a6bb11b2 5246 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 5247 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7bcccb57 5248 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
a6bb11b2 5249 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
7bcccb57 5250 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
a6bb11b2 5251 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
a6bb11b2
YZ
5252 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5253 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
7bcccb57
MS
5254 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5255 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5256 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a06ea964
NC
5257 {
5258 unsigned got_type;
5259 unsigned old_got_type;
5260
a6bb11b2 5261 got_type = aarch64_reloc_got_type (bfd_r_type);
a06ea964
NC
5262
5263 if (h)
5264 {
5265 h->got.refcount += 1;
cec5225b 5266 old_got_type = elf_aarch64_hash_entry (h)->got_type;
a06ea964
NC
5267 }
5268 else
5269 {
5270 struct elf_aarch64_local_symbol *locals;
5271
cec5225b 5272 if (!elfNN_aarch64_allocate_local_symbols
a06ea964
NC
5273 (abfd, symtab_hdr->sh_info))
5274 return FALSE;
5275
cec5225b 5276 locals = elf_aarch64_locals (abfd);
a06ea964
NC
5277 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
5278 locals[r_symndx].got_refcount += 1;
5279 old_got_type = locals[r_symndx].got_type;
5280 }
5281
5282 /* If a variable is accessed with both general dynamic TLS
5283 methods, two slots may be created. */
5284 if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type))
5285 got_type |= old_got_type;
5286
5287 /* We will already have issued an error message if there
5288 is a TLS/non-TLS mismatch, based on the symbol type.
5289 So just combine any TLS types needed. */
5290 if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL
5291 && got_type != GOT_NORMAL)
5292 got_type |= old_got_type;
5293
5294 /* If the symbol is accessed by both IE and GD methods, we
5295 are able to relax. Turn off the GD flag, without
5296 messing up with any other kind of TLS types that may be
5297 involved. */
5298 if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type))
5299 got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD);
5300
5301 if (old_got_type != got_type)
5302 {
5303 if (h != NULL)
cec5225b 5304 elf_aarch64_hash_entry (h)->got_type = got_type;
a06ea964
NC
5305 else
5306 {
5307 struct elf_aarch64_local_symbol *locals;
cec5225b 5308 locals = elf_aarch64_locals (abfd);
a06ea964
NC
5309 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
5310 locals[r_symndx].got_type = got_type;
5311 }
5312 }
5313
cc0efaa8
MS
5314 if (htab->root.dynobj == NULL)
5315 htab->root.dynobj = abfd;
5316 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
5317 return FALSE;
a06ea964
NC
5318 break;
5319 }
5320
a6bb11b2
YZ
5321 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
5322 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5323 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
a06ea964
NC
5324 if (h != NULL && info->executable)
5325 {
5326 /* If this reloc is in a read-only section, we might
5327 need a copy reloc. We can't check reliably at this
5328 stage whether the section is read-only, as input
5329 sections have not yet been mapped to output sections.
5330 Tentatively set the flag for now, and correct in
5331 adjust_dynamic_symbol. */
5332 h->non_got_ref = 1;
5333 h->plt.refcount += 1;
5334 h->pointer_equality_needed = 1;
5335 }
5336 /* FIXME:: RR need to handle these in shared libraries
5337 and essentially bomb out as these being non-PIC
5338 relocations in shared libraries. */
5339 break;
5340
a6bb11b2
YZ
5341 case BFD_RELOC_AARCH64_CALL26:
5342 case BFD_RELOC_AARCH64_JUMP26:
a06ea964
NC
5343 /* If this is a local symbol then we resolve it
5344 directly without creating a PLT entry. */
5345 if (h == NULL)
5346 continue;
5347
5348 h->needs_plt = 1;
1419bbe5
WN
5349 if (h->plt.refcount <= 0)
5350 h->plt.refcount = 1;
5351 else
5352 h->plt.refcount += 1;
a06ea964 5353 break;
a6bb11b2
YZ
5354
5355 default:
5356 break;
a06ea964
NC
5357 }
5358 }
a6bb11b2 5359
a06ea964
NC
5360 return TRUE;
5361}
5362
5363/* Treat mapping symbols as special target symbols. */
5364
5365static bfd_boolean
cec5225b 5366elfNN_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED,
a06ea964
NC
5367 asymbol *sym)
5368{
5369 return bfd_is_aarch64_special_symbol_name (sym->name,
5370 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY);
5371}
5372
5373/* This is a copy of elf_find_function () from elf.c except that
5374 AArch64 mapping symbols are ignored when looking for function names. */
5375
5376static bfd_boolean
5377aarch64_elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
5378 asection *section,
5379 asymbol **symbols,
5380 bfd_vma offset,
5381 const char **filename_ptr,
5382 const char **functionname_ptr)
5383{
5384 const char *filename = NULL;
5385 asymbol *func = NULL;
5386 bfd_vma low_func = 0;
5387 asymbol **p;
5388
5389 for (p = symbols; *p != NULL; p++)
5390 {
5391 elf_symbol_type *q;
5392
5393 q = (elf_symbol_type *) * p;
5394
5395 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
5396 {
5397 default:
5398 break;
5399 case STT_FILE:
5400 filename = bfd_asymbol_name (&q->symbol);
5401 break;
5402 case STT_FUNC:
5403 case STT_NOTYPE:
5404 /* Skip mapping symbols. */
5405 if ((q->symbol.flags & BSF_LOCAL)
5406 && (bfd_is_aarch64_special_symbol_name
5407 (q->symbol.name, BFD_AARCH64_SPECIAL_SYM_TYPE_ANY)))
5408 continue;
5409 /* Fall through. */
5410 if (bfd_get_section (&q->symbol) == section
5411 && q->symbol.value >= low_func && q->symbol.value <= offset)
5412 {
5413 func = (asymbol *) q;
5414 low_func = q->symbol.value;
5415 }
5416 break;
5417 }
5418 }
5419
5420 if (func == NULL)
5421 return FALSE;
5422
5423 if (filename_ptr)
5424 *filename_ptr = filename;
5425 if (functionname_ptr)
5426 *functionname_ptr = bfd_asymbol_name (func);
5427
5428 return TRUE;
5429}
5430
5431
5432/* Find the nearest line to a particular section and offset, for error
5433 reporting. This code is a duplicate of the code in elf.c, except
5434 that it uses aarch64_elf_find_function. */
5435
5436static bfd_boolean
cec5225b 5437elfNN_aarch64_find_nearest_line (bfd *abfd,
a06ea964
NC
5438 asection *section,
5439 asymbol **symbols,
5440 bfd_vma offset,
5441 const char **filename_ptr,
5442 const char **functionname_ptr,
5443 unsigned int *line_ptr)
5444{
5445 bfd_boolean found = FALSE;
5446
5447 /* We skip _bfd_dwarf1_find_nearest_line since no known AArch64
5448 toolchain uses it. */
5449
5450 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
5451 section, symbols, offset,
5452 filename_ptr, functionname_ptr,
5453 line_ptr, NULL, 0,
5454 &elf_tdata (abfd)->dwarf2_find_line_info))
5455 {
5456 if (!*functionname_ptr)
5457 aarch64_elf_find_function (abfd, section, symbols, offset,
5458 *filename_ptr ? NULL : filename_ptr,
5459 functionname_ptr);
5460
5461 return TRUE;
5462 }
5463
5464 if (!_bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
5465 &found, filename_ptr,
5466 functionname_ptr, line_ptr,
5467 &elf_tdata (abfd)->line_info))
5468 return FALSE;
5469
5470 if (found && (*functionname_ptr || *line_ptr))
5471 return TRUE;
5472
5473 if (symbols == NULL)
5474 return FALSE;
5475
5476 if (!aarch64_elf_find_function (abfd, section, symbols, offset,
5477 filename_ptr, functionname_ptr))
5478 return FALSE;
5479
5480 *line_ptr = 0;
5481 return TRUE;
5482}
5483
5484static bfd_boolean
cec5225b 5485elfNN_aarch64_find_inliner_info (bfd *abfd,
a06ea964
NC
5486 const char **filename_ptr,
5487 const char **functionname_ptr,
5488 unsigned int *line_ptr)
5489{
5490 bfd_boolean found;
5491 found = _bfd_dwarf2_find_inliner_info
5492 (abfd, filename_ptr,
5493 functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info);
5494 return found;
5495}
5496
5497
5498static void
cec5225b 5499elfNN_aarch64_post_process_headers (bfd *abfd,
1419bbe5 5500 struct bfd_link_info *link_info)
a06ea964
NC
5501{
5502 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
5503
5504 i_ehdrp = elf_elfheader (abfd);
a06ea964 5505 i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION;
1419bbe5
WN
5506
5507 _bfd_elf_set_osabi (abfd, link_info);
a06ea964
NC
5508}
5509
5510static enum elf_reloc_type_class
cec5225b 5511elfNN_aarch64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
7e612e98
AM
5512 const asection *rel_sec ATTRIBUTE_UNUSED,
5513 const Elf_Internal_Rela *rela)
a06ea964 5514{
cec5225b 5515 switch ((int) ELFNN_R_TYPE (rela->r_info))
a06ea964 5516 {
a6bb11b2 5517 case AARCH64_R (RELATIVE):
a06ea964 5518 return reloc_class_relative;
a6bb11b2 5519 case AARCH64_R (JUMP_SLOT):
a06ea964 5520 return reloc_class_plt;
a6bb11b2 5521 case AARCH64_R (COPY):
a06ea964
NC
5522 return reloc_class_copy;
5523 default:
5524 return reloc_class_normal;
5525 }
5526}
5527
5528/* Set the right machine number for an AArch64 ELF file. */
5529
5530static bfd_boolean
cec5225b 5531elfNN_aarch64_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
a06ea964
NC
5532{
5533 if (hdr->sh_type == SHT_NOTE)
5534 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
5535
5536 return TRUE;
5537}
5538
5539/* Handle an AArch64 specific section when reading an object file. This is
5540 called when bfd_section_from_shdr finds a section with an unknown
5541 type. */
5542
5543static bfd_boolean
cec5225b 5544elfNN_aarch64_section_from_shdr (bfd *abfd,
a06ea964
NC
5545 Elf_Internal_Shdr *hdr,
5546 const char *name, int shindex)
5547{
5548 /* There ought to be a place to keep ELF backend specific flags, but
5549 at the moment there isn't one. We just keep track of the
5550 sections by their name, instead. Fortunately, the ABI gives
5551 names for all the AArch64 specific sections, so we will probably get
5552 away with this. */
5553 switch (hdr->sh_type)
5554 {
5555 case SHT_AARCH64_ATTRIBUTES:
5556 break;
5557
5558 default:
5559 return FALSE;
5560 }
5561
5562 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5563 return FALSE;
5564
5565 return TRUE;
5566}
5567
5568/* A structure used to record a list of sections, independently
5569 of the next and prev fields in the asection structure. */
5570typedef struct section_list
5571{
5572 asection *sec;
5573 struct section_list *next;
5574 struct section_list *prev;
5575}
5576section_list;
5577
5578/* Unfortunately we need to keep a list of sections for which
5579 an _aarch64_elf_section_data structure has been allocated. This
cec5225b 5580 is because it is possible for functions like elfNN_aarch64_write_section
a06ea964
NC
5581 to be called on a section which has had an elf_data_structure
5582 allocated for it (and so the used_by_bfd field is valid) but
5583 for which the AArch64 extended version of this structure - the
5584 _aarch64_elf_section_data structure - has not been allocated. */
5585static section_list *sections_with_aarch64_elf_section_data = NULL;
5586
5587static void
5588record_section_with_aarch64_elf_section_data (asection *sec)
5589{
5590 struct section_list *entry;
5591
5592 entry = bfd_malloc (sizeof (*entry));
5593 if (entry == NULL)
5594 return;
5595 entry->sec = sec;
5596 entry->next = sections_with_aarch64_elf_section_data;
5597 entry->prev = NULL;
5598 if (entry->next != NULL)
5599 entry->next->prev = entry;
5600 sections_with_aarch64_elf_section_data = entry;
5601}
5602
5603static struct section_list *
5604find_aarch64_elf_section_entry (asection *sec)
5605{
5606 struct section_list *entry;
5607 static struct section_list *last_entry = NULL;
5608
5609 /* This is a short cut for the typical case where the sections are added
5610 to the sections_with_aarch64_elf_section_data list in forward order and
5611 then looked up here in backwards order. This makes a real difference
5612 to the ld-srec/sec64k.exp linker test. */
5613 entry = sections_with_aarch64_elf_section_data;
5614 if (last_entry != NULL)
5615 {
5616 if (last_entry->sec == sec)
5617 entry = last_entry;
5618 else if (last_entry->next != NULL && last_entry->next->sec == sec)
5619 entry = last_entry->next;
5620 }
5621
5622 for (; entry; entry = entry->next)
5623 if (entry->sec == sec)
5624 break;
5625
5626 if (entry)
5627 /* Record the entry prior to this one - it is the entry we are
5628 most likely to want to locate next time. Also this way if we
5629 have been called from
5630 unrecord_section_with_aarch64_elf_section_data () we will not
5631 be caching a pointer that is about to be freed. */
5632 last_entry = entry->prev;
5633
5634 return entry;
5635}
5636
5637static void
5638unrecord_section_with_aarch64_elf_section_data (asection *sec)
5639{
5640 struct section_list *entry;
5641
5642 entry = find_aarch64_elf_section_entry (sec);
5643
5644 if (entry)
5645 {
5646 if (entry->prev != NULL)
5647 entry->prev->next = entry->next;
5648 if (entry->next != NULL)
5649 entry->next->prev = entry->prev;
5650 if (entry == sections_with_aarch64_elf_section_data)
5651 sections_with_aarch64_elf_section_data = entry->next;
5652 free (entry);
5653 }
5654}
5655
5656
5657typedef struct
5658{
5659 void *finfo;
5660 struct bfd_link_info *info;
5661 asection *sec;
5662 int sec_shndx;
5663 int (*func) (void *, const char *, Elf_Internal_Sym *,
5664 asection *, struct elf_link_hash_entry *);
5665} output_arch_syminfo;
5666
5667enum map_symbol_type
5668{
5669 AARCH64_MAP_INSN,
5670 AARCH64_MAP_DATA
5671};
5672
5673
5674/* Output a single mapping symbol. */
5675
5676static bfd_boolean
cec5225b 5677elfNN_aarch64_output_map_sym (output_arch_syminfo *osi,
a06ea964
NC
5678 enum map_symbol_type type, bfd_vma offset)
5679{
5680 static const char *names[2] = { "$x", "$d" };
5681 Elf_Internal_Sym sym;
5682
5683 sym.st_value = (osi->sec->output_section->vma
5684 + osi->sec->output_offset + offset);
5685 sym.st_size = 0;
5686 sym.st_other = 0;
5687 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
5688 sym.st_shndx = osi->sec_shndx;
5689 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
5690}
5691
5692
5693
5694/* Output mapping symbols for PLT entries associated with H. */
5695
5696static bfd_boolean
cec5225b 5697elfNN_aarch64_output_plt_map (struct elf_link_hash_entry *h, void *inf)
a06ea964
NC
5698{
5699 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
5700 bfd_vma addr;
5701
5702 if (h->root.type == bfd_link_hash_indirect)
5703 return TRUE;
5704
5705 if (h->root.type == bfd_link_hash_warning)
5706 /* When warning symbols are created, they **replace** the "real"
5707 entry in the hash table, thus we never get to see the real
5708 symbol in a hash traversal. So look at it now. */
5709 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5710
5711 if (h->plt.offset == (bfd_vma) - 1)
5712 return TRUE;
5713
5714 addr = h->plt.offset;
5715 if (addr == 32)
5716 {
cec5225b 5717 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
a06ea964
NC
5718 return FALSE;
5719 }
5720 return TRUE;
5721}
5722
5723
5724/* Output a single local symbol for a generated stub. */
5725
5726static bfd_boolean
cec5225b 5727elfNN_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name,
a06ea964
NC
5728 bfd_vma offset, bfd_vma size)
5729{
5730 Elf_Internal_Sym sym;
5731
5732 sym.st_value = (osi->sec->output_section->vma
5733 + osi->sec->output_offset + offset);
5734 sym.st_size = size;
5735 sym.st_other = 0;
5736 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5737 sym.st_shndx = osi->sec_shndx;
5738 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
5739}
5740
5741static bfd_boolean
5742aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
5743{
cec5225b 5744 struct elf_aarch64_stub_hash_entry *stub_entry;
a06ea964
NC
5745 asection *stub_sec;
5746 bfd_vma addr;
5747 char *stub_name;
5748 output_arch_syminfo *osi;
5749
5750 /* Massage our args to the form they really have. */
cec5225b 5751 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
a06ea964
NC
5752 osi = (output_arch_syminfo *) in_arg;
5753
5754 stub_sec = stub_entry->stub_sec;
5755
5756 /* Ensure this stub is attached to the current section being
5757 processed. */
5758 if (stub_sec != osi->sec)
5759 return TRUE;
5760
5761 addr = (bfd_vma) stub_entry->stub_offset;
5762
5763 stub_name = stub_entry->output_name;
5764
5765 switch (stub_entry->stub_type)
5766 {
5767 case aarch64_stub_adrp_branch:
cec5225b 5768 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
a06ea964
NC
5769 sizeof (aarch64_adrp_branch_stub)))
5770 return FALSE;
cec5225b 5771 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
a06ea964
NC
5772 return FALSE;
5773 break;
5774 case aarch64_stub_long_branch:
cec5225b 5775 if (!elfNN_aarch64_output_stub_sym
a06ea964
NC
5776 (osi, stub_name, addr, sizeof (aarch64_long_branch_stub)))
5777 return FALSE;
cec5225b 5778 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
a06ea964 5779 return FALSE;
cec5225b 5780 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16))
a06ea964
NC
5781 return FALSE;
5782 break;
5783 default:
5784 BFD_FAIL ();
5785 }
5786
5787 return TRUE;
5788}
5789
5790/* Output mapping symbols for linker generated sections. */
5791
5792static bfd_boolean
cec5225b 5793elfNN_aarch64_output_arch_local_syms (bfd *output_bfd,
a06ea964
NC
5794 struct bfd_link_info *info,
5795 void *finfo,
5796 int (*func) (void *, const char *,
5797 Elf_Internal_Sym *,
5798 asection *,
5799 struct elf_link_hash_entry
5800 *))
5801{
5802 output_arch_syminfo osi;
cec5225b 5803 struct elf_aarch64_link_hash_table *htab;
a06ea964 5804
cec5225b 5805 htab = elf_aarch64_hash_table (info);
a06ea964
NC
5806
5807 osi.finfo = finfo;
5808 osi.info = info;
5809 osi.func = func;
5810
5811 /* Long calls stubs. */
5812 if (htab->stub_bfd && htab->stub_bfd->sections)
5813 {
5814 asection *stub_sec;
5815
5816 for (stub_sec = htab->stub_bfd->sections;
5817 stub_sec != NULL; stub_sec = stub_sec->next)
5818 {
5819 /* Ignore non-stub sections. */
5820 if (!strstr (stub_sec->name, STUB_SUFFIX))
5821 continue;
5822
5823 osi.sec = stub_sec;
5824
5825 osi.sec_shndx = _bfd_elf_section_from_bfd_section
5826 (output_bfd, osi.sec->output_section);
5827
5828 bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub,
5829 &osi);
5830 }
5831 }
5832
5833 /* Finally, output mapping symbols for the PLT. */
5834 if (!htab->root.splt || htab->root.splt->size == 0)
5835 return TRUE;
5836
5837 /* For now live without mapping symbols for the plt. */
5838 osi.sec_shndx = _bfd_elf_section_from_bfd_section
5839 (output_bfd, htab->root.splt->output_section);
5840 osi.sec = htab->root.splt;
5841
cec5225b 5842 elf_link_hash_traverse (&htab->root, elfNN_aarch64_output_plt_map,
a06ea964
NC
5843 (void *) &osi);
5844
5845 return TRUE;
5846
5847}
5848
5849/* Allocate target specific section data. */
5850
5851static bfd_boolean
cec5225b 5852elfNN_aarch64_new_section_hook (bfd *abfd, asection *sec)
a06ea964
NC
5853{
5854 if (!sec->used_by_bfd)
5855 {
5856 _aarch64_elf_section_data *sdata;
5857 bfd_size_type amt = sizeof (*sdata);
5858
5859 sdata = bfd_zalloc (abfd, amt);
5860 if (sdata == NULL)
5861 return FALSE;
5862 sec->used_by_bfd = sdata;
5863 }
5864
5865 record_section_with_aarch64_elf_section_data (sec);
5866
5867 return _bfd_elf_new_section_hook (abfd, sec);
5868}
5869
5870
5871static void
5872unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED,
5873 asection *sec,
5874 void *ignore ATTRIBUTE_UNUSED)
5875{
5876 unrecord_section_with_aarch64_elf_section_data (sec);
5877}
5878
5879static bfd_boolean
cec5225b 5880elfNN_aarch64_close_and_cleanup (bfd *abfd)
a06ea964
NC
5881{
5882 if (abfd->sections)
5883 bfd_map_over_sections (abfd,
5884 unrecord_section_via_map_over_sections, NULL);
5885
5886 return _bfd_elf_close_and_cleanup (abfd);
5887}
5888
5889static bfd_boolean
cec5225b 5890elfNN_aarch64_bfd_free_cached_info (bfd *abfd)
a06ea964
NC
5891{
5892 if (abfd->sections)
5893 bfd_map_over_sections (abfd,
5894 unrecord_section_via_map_over_sections, NULL);
5895
5896 return _bfd_free_cached_info (abfd);
5897}
5898
a06ea964
NC
5899/* Create dynamic sections. This is different from the ARM backend in that
5900 the got, plt, gotplt and their relocation sections are all created in the
5901 standard part of the bfd elf backend. */
5902
5903static bfd_boolean
cec5225b 5904elfNN_aarch64_create_dynamic_sections (bfd *dynobj,
a06ea964
NC
5905 struct bfd_link_info *info)
5906{
cec5225b 5907 struct elf_aarch64_link_hash_table *htab;
cc0efaa8
MS
5908
5909 /* We need to create .got section. */
5910 if (!aarch64_elf_create_got_section (dynobj, info))
5911 return FALSE;
a06ea964
NC
5912
5913 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
5914 return FALSE;
5915
cec5225b 5916 htab = elf_aarch64_hash_table (info);
a06ea964
NC
5917 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
5918 if (!info->shared)
5919 htab->srelbss = bfd_get_linker_section (dynobj, ".rela.bss");
5920
5921 if (!htab->sdynbss || (!info->shared && !htab->srelbss))
5922 abort ();
5923
a06ea964
NC
5924 return TRUE;
5925}
5926
5927
5928/* Allocate space in .plt, .got and associated reloc sections for
5929 dynamic relocs. */
5930
5931static bfd_boolean
cec5225b 5932elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
a06ea964
NC
5933{
5934 struct bfd_link_info *info;
cec5225b
YZ
5935 struct elf_aarch64_link_hash_table *htab;
5936 struct elf_aarch64_link_hash_entry *eh;
a06ea964
NC
5937 struct elf_dyn_relocs *p;
5938
5939 /* An example of a bfd_link_hash_indirect symbol is versioned
5940 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
5941 -> __gxx_personality_v0(bfd_link_hash_defined)
5942
5943 There is no need to process bfd_link_hash_indirect symbols here
5944 because we will also be presented with the concrete instance of
cec5225b 5945 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
a06ea964
NC
5946 called to copy all relevant data from the generic to the concrete
5947 symbol instance.
5948 */
5949 if (h->root.type == bfd_link_hash_indirect)
5950 return TRUE;
5951
5952 if (h->root.type == bfd_link_hash_warning)
5953 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5954
5955 info = (struct bfd_link_info *) inf;
cec5225b 5956 htab = elf_aarch64_hash_table (info);
a06ea964 5957
1419bbe5
WN
5958 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
5959 here if it is defined and referenced in a non-shared object. */
5960 if (h->type == STT_GNU_IFUNC
5961 && h->def_regular)
5962 return TRUE;
5963 else if (htab->root.dynamic_sections_created && h->plt.refcount > 0)
a06ea964
NC
5964 {
5965 /* Make sure this symbol is output as a dynamic symbol.
5966 Undefined weak syms won't yet be marked as dynamic. */
5967 if (h->dynindx == -1 && !h->forced_local)
5968 {
5969 if (!bfd_elf_link_record_dynamic_symbol (info, h))
5970 return FALSE;
5971 }
5972
5973 if (info->shared || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
5974 {
5975 asection *s = htab->root.splt;
5976
5977 /* If this is the first .plt entry, make room for the special
5978 first entry. */
5979 if (s->size == 0)
5980 s->size += htab->plt_header_size;
5981
5982 h->plt.offset = s->size;
5983
5984 /* If this symbol is not defined in a regular file, and we are
5985 not generating a shared library, then set the symbol to this
5986 location in the .plt. This is required to make function
5987 pointers compare as equal between the normal executable and
5988 the shared library. */
5989 if (!info->shared && !h->def_regular)
5990 {
5991 h->root.u.def.section = s;
5992 h->root.u.def.value = h->plt.offset;
5993 }
5994
5995 /* Make room for this entry. For now we only create the
5996 small model PLT entries. We later need to find a way
5997 of relaxing into these from the large model PLT entries. */
5998 s->size += PLT_SMALL_ENTRY_SIZE;
5999
6000 /* We also need to make an entry in the .got.plt section, which
6001 will be placed in the .got section by the linker script. */
6002 htab->root.sgotplt->size += GOT_ENTRY_SIZE;
6003
6004 /* We also need to make an entry in the .rela.plt section. */
6005 htab->root.srelplt->size += RELOC_SIZE (htab);
6006
6007 /* We need to ensure that all GOT entries that serve the PLT
6008 are consecutive with the special GOT slots [0] [1] and
6009 [2]. Any addtional relocations, such as
6010 R_AARCH64_TLSDESC, must be placed after the PLT related
6011 entries. We abuse the reloc_count such that during
6012 sizing we adjust reloc_count to indicate the number of
6013 PLT related reserved entries. In subsequent phases when
6014 filling in the contents of the reloc entries, PLT related
6015 entries are placed by computing their PLT index (0
6016 .. reloc_count). While other none PLT relocs are placed
6017 at the slot indicated by reloc_count and reloc_count is
6018 updated. */
6019
6020 htab->root.srelplt->reloc_count++;
6021 }
6022 else
6023 {
6024 h->plt.offset = (bfd_vma) - 1;
6025 h->needs_plt = 0;
6026 }
6027 }
6028 else
6029 {
6030 h->plt.offset = (bfd_vma) - 1;
6031 h->needs_plt = 0;
6032 }
6033
cec5225b 6034 eh = (struct elf_aarch64_link_hash_entry *) h;
a06ea964
NC
6035 eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
6036
6037 if (h->got.refcount > 0)
6038 {
6039 bfd_boolean dyn;
cec5225b 6040 unsigned got_type = elf_aarch64_hash_entry (h)->got_type;
a06ea964
NC
6041
6042 h->got.offset = (bfd_vma) - 1;
6043
6044 dyn = htab->root.dynamic_sections_created;
6045
6046 /* Make sure this symbol is output as a dynamic symbol.
6047 Undefined weak syms won't yet be marked as dynamic. */
6048 if (dyn && h->dynindx == -1 && !h->forced_local)
6049 {
6050 if (!bfd_elf_link_record_dynamic_symbol (info, h))
6051 return FALSE;
6052 }
6053
6054 if (got_type == GOT_UNKNOWN)
6055 {
6056 }
6057 else if (got_type == GOT_NORMAL)
6058 {
6059 h->got.offset = htab->root.sgot->size;
6060 htab->root.sgot->size += GOT_ENTRY_SIZE;
6061 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6062 || h->root.type != bfd_link_hash_undefweak)
6063 && (info->shared
6064 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
6065 {
6066 htab->root.srelgot->size += RELOC_SIZE (htab);
6067 }
6068 }
6069 else
6070 {
6071 int indx;
6072 if (got_type & GOT_TLSDESC_GD)
6073 {
6074 eh->tlsdesc_got_jump_table_offset =
6075 (htab->root.sgotplt->size
6076 - aarch64_compute_jump_table_size (htab));
6077 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
6078 h->got.offset = (bfd_vma) - 2;
6079 }
6080
6081 if (got_type & GOT_TLS_GD)
6082 {
6083 h->got.offset = htab->root.sgot->size;
6084 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
6085 }
6086
6087 if (got_type & GOT_TLS_IE)
6088 {
6089 h->got.offset = htab->root.sgot->size;
6090 htab->root.sgot->size += GOT_ENTRY_SIZE;
6091 }
6092
6093 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6094 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6095 || h->root.type != bfd_link_hash_undefweak)
6096 && (info->shared
6097 || indx != 0
6098 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
6099 {
6100 if (got_type & GOT_TLSDESC_GD)
6101 {
6102 htab->root.srelplt->size += RELOC_SIZE (htab);
6103 /* Note reloc_count not incremented here! We have
6104 already adjusted reloc_count for this relocation
6105 type. */
6106
6107 /* TLSDESC PLT is now needed, but not yet determined. */
6108 htab->tlsdesc_plt = (bfd_vma) - 1;
6109 }
6110
6111 if (got_type & GOT_TLS_GD)
6112 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
6113
6114 if (got_type & GOT_TLS_IE)
6115 htab->root.srelgot->size += RELOC_SIZE (htab);
6116 }
6117 }
6118 }
6119 else
6120 {
6121 h->got.offset = (bfd_vma) - 1;
6122 }
6123
6124 if (eh->dyn_relocs == NULL)
6125 return TRUE;
6126
6127 /* In the shared -Bsymbolic case, discard space allocated for
6128 dynamic pc-relative relocs against symbols which turn out to be
6129 defined in regular objects. For the normal shared case, discard
6130 space for pc-relative relocs that have become local due to symbol
6131 visibility changes. */
6132
6133 if (info->shared)
6134 {
6135 /* Relocs that use pc_count are those that appear on a call
6136 insn, or certain REL relocs that can generated via assembly.
6137 We want calls to protected symbols to resolve directly to the
6138 function rather than going via the plt. If people want
6139 function pointer comparisons to work as expected then they
6140 should avoid writing weird assembly. */
6141 if (SYMBOL_CALLS_LOCAL (info, h))
6142 {
6143 struct elf_dyn_relocs **pp;
6144
6145 for (pp = &eh->dyn_relocs; (p = *pp) != NULL;)
6146 {
6147 p->count -= p->pc_count;
6148 p->pc_count = 0;
6149 if (p->count == 0)
6150 *pp = p->next;
6151 else
6152 pp = &p->next;
6153 }
6154 }
6155
6156 /* Also discard relocs on undefined weak syms with non-default
6157 visibility. */
6158 if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak)
6159 {
6160 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
6161 eh->dyn_relocs = NULL;
6162
6163 /* Make sure undefined weak symbols are output as a dynamic
6164 symbol in PIEs. */
6165 else if (h->dynindx == -1
6166 && !h->forced_local
6167 && !bfd_elf_link_record_dynamic_symbol (info, h))
6168 return FALSE;
6169 }
6170
6171 }
6172 else if (ELIMINATE_COPY_RELOCS)
6173 {
6174 /* For the non-shared case, discard space for relocs against
6175 symbols which turn out to need copy relocs or are not
6176 dynamic. */
6177
6178 if (!h->non_got_ref
6179 && ((h->def_dynamic
6180 && !h->def_regular)
6181 || (htab->root.dynamic_sections_created
6182 && (h->root.type == bfd_link_hash_undefweak
6183 || h->root.type == bfd_link_hash_undefined))))
6184 {
6185 /* Make sure this symbol is output as a dynamic symbol.
6186 Undefined weak syms won't yet be marked as dynamic. */
6187 if (h->dynindx == -1
6188 && !h->forced_local
6189 && !bfd_elf_link_record_dynamic_symbol (info, h))
6190 return FALSE;
6191
6192 /* If that succeeded, we know we'll be keeping all the
6193 relocs. */
6194 if (h->dynindx != -1)
6195 goto keep;
6196 }
6197
6198 eh->dyn_relocs = NULL;
6199
6200 keep:;
6201 }
6202
6203 /* Finally, allocate space. */
6204 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6205 {
6206 asection *sreloc;
6207
6208 sreloc = elf_section_data (p->sec)->sreloc;
6209
6210 BFD_ASSERT (sreloc != NULL);
6211
6212 sreloc->size += p->count * RELOC_SIZE (htab);
6213 }
6214
6215 return TRUE;
6216}
6217
1419bbe5
WN
6218/* Allocate space in .plt, .got and associated reloc sections for
6219 ifunc dynamic relocs. */
6220
6221static bfd_boolean
6222elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h,
6223 void *inf)
6224{
6225 struct bfd_link_info *info;
6226 struct elf_aarch64_link_hash_table *htab;
6227 struct elf_aarch64_link_hash_entry *eh;
6228
6229 /* An example of a bfd_link_hash_indirect symbol is versioned
6230 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
6231 -> __gxx_personality_v0(bfd_link_hash_defined)
6232
6233 There is no need to process bfd_link_hash_indirect symbols here
6234 because we will also be presented with the concrete instance of
6235 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
6236 called to copy all relevant data from the generic to the concrete
6237 symbol instance.
6238 */
6239 if (h->root.type == bfd_link_hash_indirect)
6240 return TRUE;
6241
6242 if (h->root.type == bfd_link_hash_warning)
6243 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6244
6245 info = (struct bfd_link_info *) inf;
6246 htab = elf_aarch64_hash_table (info);
6247
6248 eh = (struct elf_aarch64_link_hash_entry *) h;
6249
6250 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
6251 here if it is defined and referenced in a non-shared object. */
6252 if (h->type == STT_GNU_IFUNC
6253 && h->def_regular)
6254 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
6255 &eh->dyn_relocs,
6256 htab->plt_entry_size,
6257 htab->plt_header_size,
6258 GOT_ENTRY_SIZE);
6259 return TRUE;
6260}
6261
6262/* Allocate space in .plt, .got and associated reloc sections for
6263 local dynamic relocs. */
6264
6265static bfd_boolean
6266elfNN_aarch64_allocate_local_dynrelocs (void **slot, void *inf)
6267{
6268 struct elf_link_hash_entry *h
6269 = (struct elf_link_hash_entry *) *slot;
6270
6271 if (h->type != STT_GNU_IFUNC
6272 || !h->def_regular
6273 || !h->ref_regular
6274 || !h->forced_local
6275 || h->root.type != bfd_link_hash_defined)
6276 abort ();
6277
6278 return elfNN_aarch64_allocate_dynrelocs (h, inf);
6279}
6280
6281/* Allocate space in .plt, .got and associated reloc sections for
6282 local ifunc dynamic relocs. */
6283
6284static bfd_boolean
6285elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot, void *inf)
6286{
6287 struct elf_link_hash_entry *h
6288 = (struct elf_link_hash_entry *) *slot;
6289
6290 if (h->type != STT_GNU_IFUNC
6291 || !h->def_regular
6292 || !h->ref_regular
6293 || !h->forced_local
6294 || h->root.type != bfd_link_hash_defined)
6295 abort ();
6296
6297 return elfNN_aarch64_allocate_ifunc_dynrelocs (h, inf);
6298}
a06ea964 6299
a06ea964
NC
6300/* This is the most important function of all . Innocuosly named
6301 though ! */
6302static bfd_boolean
cec5225b 6303elfNN_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
a06ea964
NC
6304 struct bfd_link_info *info)
6305{
cec5225b 6306 struct elf_aarch64_link_hash_table *htab;
a06ea964
NC
6307 bfd *dynobj;
6308 asection *s;
6309 bfd_boolean relocs;
6310 bfd *ibfd;
6311
cec5225b 6312 htab = elf_aarch64_hash_table ((info));
a06ea964
NC
6313 dynobj = htab->root.dynobj;
6314
6315 BFD_ASSERT (dynobj != NULL);
6316
6317 if (htab->root.dynamic_sections_created)
6318 {
6319 if (info->executable)
6320 {
6321 s = bfd_get_linker_section (dynobj, ".interp");
6322 if (s == NULL)
6323 abort ();
6324 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
6325 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
6326 }
6327 }
6328
6329 /* Set up .got offsets for local syms, and space for local dynamic
6330 relocs. */
6331 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6332 {
6333 struct elf_aarch64_local_symbol *locals = NULL;
6334 Elf_Internal_Shdr *symtab_hdr;
6335 asection *srel;
6336 unsigned int i;
6337
6338 if (!is_aarch64_elf (ibfd))
6339 continue;
6340
6341 for (s = ibfd->sections; s != NULL; s = s->next)
6342 {
6343 struct elf_dyn_relocs *p;
6344
6345 for (p = (struct elf_dyn_relocs *)
6346 (elf_section_data (s)->local_dynrel); p != NULL; p = p->next)
6347 {
6348 if (!bfd_is_abs_section (p->sec)
6349 && bfd_is_abs_section (p->sec->output_section))
6350 {
6351 /* Input section has been discarded, either because
6352 it is a copy of a linkonce section or due to
6353 linker script /DISCARD/, so we'll be discarding
6354 the relocs too. */
6355 }
6356 else if (p->count != 0)
6357 {
6358 srel = elf_section_data (p->sec)->sreloc;
6359 srel->size += p->count * RELOC_SIZE (htab);
6360 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
6361 info->flags |= DF_TEXTREL;
6362 }
6363 }
6364 }
6365
cec5225b 6366 locals = elf_aarch64_locals (ibfd);
a06ea964
NC
6367 if (!locals)
6368 continue;
6369
6370 symtab_hdr = &elf_symtab_hdr (ibfd);
6371 srel = htab->root.srelgot;
6372 for (i = 0; i < symtab_hdr->sh_info; i++)
6373 {
6374 locals[i].got_offset = (bfd_vma) - 1;
6375 locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
6376 if (locals[i].got_refcount > 0)
6377 {
6378 unsigned got_type = locals[i].got_type;
6379 if (got_type & GOT_TLSDESC_GD)
6380 {
6381 locals[i].tlsdesc_got_jump_table_offset =
6382 (htab->root.sgotplt->size
6383 - aarch64_compute_jump_table_size (htab));
6384 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
6385 locals[i].got_offset = (bfd_vma) - 2;
6386 }
6387
6388 if (got_type & GOT_TLS_GD)
6389 {
6390 locals[i].got_offset = htab->root.sgot->size;
6391 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
6392 }
6393
6394 if (got_type & GOT_TLS_IE)
6395 {
6396 locals[i].got_offset = htab->root.sgot->size;
6397 htab->root.sgot->size += GOT_ENTRY_SIZE;
6398 }
6399
6400 if (got_type == GOT_UNKNOWN)
6401 {
6402 }
6403
6404 if (got_type == GOT_NORMAL)
6405 {
6406 }
6407
6408 if (info->shared)
6409 {
6410 if (got_type & GOT_TLSDESC_GD)
6411 {
6412 htab->root.srelplt->size += RELOC_SIZE (htab);
6413 /* Note RELOC_COUNT not incremented here! */
6414 htab->tlsdesc_plt = (bfd_vma) - 1;
6415 }
6416
6417 if (got_type & GOT_TLS_GD)
6418 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
6419
6420 if (got_type & GOT_TLS_IE)
6421 htab->root.srelgot->size += RELOC_SIZE (htab);
6422 }
6423 }
6424 else
6425 {
6426 locals[i].got_refcount = (bfd_vma) - 1;
6427 }
6428 }
6429 }
6430
6431
6432 /* Allocate global sym .plt and .got entries, and space for global
6433 sym dynamic relocs. */
cec5225b 6434 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_dynrelocs,
a06ea964
NC
6435 info);
6436
1419bbe5
WN
6437 /* Allocate global ifunc sym .plt and .got entries, and space for global
6438 ifunc sym dynamic relocs. */
6439 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_ifunc_dynrelocs,
6440 info);
6441
6442 /* Allocate .plt and .got entries, and space for local symbols. */
6443 htab_traverse (htab->loc_hash_table,
6444 elfNN_aarch64_allocate_local_dynrelocs,
6445 info);
6446
6447 /* Allocate .plt and .got entries, and space for local ifunc symbols. */
6448 htab_traverse (htab->loc_hash_table,
6449 elfNN_aarch64_allocate_local_ifunc_dynrelocs,
6450 info);
a06ea964
NC
6451
6452 /* For every jump slot reserved in the sgotplt, reloc_count is
6453 incremented. However, when we reserve space for TLS descriptors,
6454 it's not incremented, so in order to compute the space reserved
6455 for them, it suffices to multiply the reloc count by the jump
6456 slot size. */
6457
6458 if (htab->root.srelplt)
8847944f 6459 htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab);
a06ea964
NC
6460
6461 if (htab->tlsdesc_plt)
6462 {
6463 if (htab->root.splt->size == 0)
6464 htab->root.splt->size += PLT_ENTRY_SIZE;
6465
6466 htab->tlsdesc_plt = htab->root.splt->size;
6467 htab->root.splt->size += PLT_TLSDESC_ENTRY_SIZE;
6468
6469 /* If we're not using lazy TLS relocations, don't generate the
6470 GOT entry required. */
6471 if (!(info->flags & DF_BIND_NOW))
6472 {
6473 htab->dt_tlsdesc_got = htab->root.sgot->size;
6474 htab->root.sgot->size += GOT_ENTRY_SIZE;
6475 }
6476 }
6477
6478 /* We now have determined the sizes of the various dynamic sections.
6479 Allocate memory for them. */
6480 relocs = FALSE;
6481 for (s = dynobj->sections; s != NULL; s = s->next)
6482 {
6483 if ((s->flags & SEC_LINKER_CREATED) == 0)
6484 continue;
6485
6486 if (s == htab->root.splt
6487 || s == htab->root.sgot
6488 || s == htab->root.sgotplt
6489 || s == htab->root.iplt
6490 || s == htab->root.igotplt || s == htab->sdynbss)
6491 {
6492 /* Strip this section if we don't need it; see the
6493 comment below. */
6494 }
6495 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
6496 {
6497 if (s->size != 0 && s != htab->root.srelplt)
6498 relocs = TRUE;
6499
6500 /* We use the reloc_count field as a counter if we need
6501 to copy relocs into the output file. */
6502 if (s != htab->root.srelplt)
6503 s->reloc_count = 0;
6504 }
6505 else
6506 {
6507 /* It's not one of our sections, so don't allocate space. */
6508 continue;
6509 }
6510
6511 if (s->size == 0)
6512 {
6513 /* If we don't need this section, strip it from the
6514 output file. This is mostly to handle .rela.bss and
6515 .rela.plt. We must create both sections in
6516 create_dynamic_sections, because they must be created
6517 before the linker maps input sections to output
6518 sections. The linker does that before
6519 adjust_dynamic_symbol is called, and it is that
6520 function which decides whether anything needs to go
6521 into these sections. */
6522
6523 s->flags |= SEC_EXCLUDE;
6524 continue;
6525 }
6526
6527 if ((s->flags & SEC_HAS_CONTENTS) == 0)
6528 continue;
6529
6530 /* Allocate memory for the section contents. We use bfd_zalloc
6531 here in case unused entries are not reclaimed before the
6532 section's contents are written out. This should not happen,
6533 but this way if it does, we get a R_AARCH64_NONE reloc instead
6534 of garbage. */
6535 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
6536 if (s->contents == NULL)
6537 return FALSE;
6538 }
6539
6540 if (htab->root.dynamic_sections_created)
6541 {
6542 /* Add some entries to the .dynamic section. We fill in the
cec5225b 6543 values later, in elfNN_aarch64_finish_dynamic_sections, but we
a06ea964
NC
6544 must add the entries now so that we get the correct size for
6545 the .dynamic section. The DT_DEBUG entry is filled in by the
6546 dynamic linker and used by the debugger. */
6547#define add_dynamic_entry(TAG, VAL) \
6548 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
6549
6550 if (info->executable)
6551 {
6552 if (!add_dynamic_entry (DT_DEBUG, 0))
6553 return FALSE;
6554 }
6555
6556 if (htab->root.splt->size != 0)
6557 {
6558 if (!add_dynamic_entry (DT_PLTGOT, 0)
6559 || !add_dynamic_entry (DT_PLTRELSZ, 0)
6560 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
6561 || !add_dynamic_entry (DT_JMPREL, 0))
6562 return FALSE;
6563
6564 if (htab->tlsdesc_plt
6565 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
6566 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
6567 return FALSE;
6568 }
6569
6570 if (relocs)
6571 {
6572 if (!add_dynamic_entry (DT_RELA, 0)
6573 || !add_dynamic_entry (DT_RELASZ, 0)
6574 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
6575 return FALSE;
6576
6577 /* If any dynamic relocs apply to a read-only section,
6578 then we need a DT_TEXTREL entry. */
6579 if ((info->flags & DF_TEXTREL) != 0)
6580 {
6581 if (!add_dynamic_entry (DT_TEXTREL, 0))
6582 return FALSE;
6583 }
6584 }
6585 }
6586#undef add_dynamic_entry
6587
6588 return TRUE;
a06ea964
NC
6589}
6590
6591static inline void
caed7120
YZ
6592elf_aarch64_update_plt_entry (bfd *output_bfd,
6593 bfd_reloc_code_real_type r_type,
6594 bfd_byte *plt_entry, bfd_vma value)
a06ea964 6595{
caed7120
YZ
6596 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (r_type);
6597
6598 _bfd_aarch64_elf_put_addend (output_bfd, plt_entry, r_type, howto, value);
a06ea964
NC
6599}
6600
6601static void
cec5225b
YZ
6602elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h,
6603 struct elf_aarch64_link_hash_table
1419bbe5
WN
6604 *htab, bfd *output_bfd,
6605 struct bfd_link_info *info)
a06ea964
NC
6606{
6607 bfd_byte *plt_entry;
6608 bfd_vma plt_index;
6609 bfd_vma got_offset;
6610 bfd_vma gotplt_entry_address;
6611 bfd_vma plt_entry_address;
6612 Elf_Internal_Rela rela;
6613 bfd_byte *loc;
1419bbe5
WN
6614 asection *plt, *gotplt, *relplt;
6615
6616 /* When building a static executable, use .iplt, .igot.plt and
6617 .rela.iplt sections for STT_GNU_IFUNC symbols. */
6618 if (htab->root.splt != NULL)
6619 {
6620 plt = htab->root.splt;
6621 gotplt = htab->root.sgotplt;
6622 relplt = htab->root.srelplt;
6623 }
6624 else
6625 {
6626 plt = htab->root.iplt;
6627 gotplt = htab->root.igotplt;
6628 relplt = htab->root.irelplt;
6629 }
6630
6631 /* Get the index in the procedure linkage table which
6632 corresponds to this symbol. This is the index of this symbol
6633 in all the symbols for which we are making plt entries. The
6634 first entry in the procedure linkage table is reserved.
a06ea964 6635
1419bbe5
WN
6636 Get the offset into the .got table of the entry that
6637 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
6638 bytes. The first three are reserved for the dynamic linker.
692e2b8b 6639
1419bbe5
WN
6640 For static executables, we don't reserve anything. */
6641
6642 if (plt == htab->root.splt)
6643 {
6644 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
6645 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
6646 }
6647 else
6648 {
6649 plt_index = h->plt.offset / htab->plt_entry_size;
6650 got_offset = plt_index * GOT_ENTRY_SIZE;
6651 }
6652
6653 plt_entry = plt->contents + h->plt.offset;
6654 plt_entry_address = plt->output_section->vma
6655 + plt->output_section->output_offset + h->plt.offset;
6656 gotplt_entry_address = gotplt->output_section->vma +
6657 gotplt->output_offset + got_offset;
a06ea964
NC
6658
6659 /* Copy in the boiler-plate for the PLTn entry. */
cec5225b 6660 memcpy (plt_entry, elfNN_aarch64_small_plt_entry, PLT_SMALL_ENTRY_SIZE);
a06ea964
NC
6661
6662 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
6663 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
caed7120
YZ
6664 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
6665 plt_entry,
6666 PG (gotplt_entry_address) -
6667 PG (plt_entry_address));
a06ea964
NC
6668
6669 /* Fill in the lo12 bits for the load from the pltgot. */
caed7120
YZ
6670 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
6671 plt_entry + 4,
6672 PG_OFFSET (gotplt_entry_address));
a06ea964 6673
9aff4b7a 6674 /* Fill in the lo12 bits for the add from the pltgot entry. */
caed7120
YZ
6675 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
6676 plt_entry + 8,
6677 PG_OFFSET (gotplt_entry_address));
a06ea964
NC
6678
6679 /* All the GOTPLT Entries are essentially initialized to PLT0. */
cec5225b 6680 bfd_put_NN (output_bfd,
1419bbe5
WN
6681 plt->output_section->vma + plt->output_offset,
6682 gotplt->contents + got_offset);
a06ea964 6683
a06ea964 6684 rela.r_offset = gotplt_entry_address;
1419bbe5
WN
6685
6686 if (h->dynindx == -1
6687 || ((info->executable
6688 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
6689 && h->def_regular
6690 && h->type == STT_GNU_IFUNC))
6691 {
6692 /* If an STT_GNU_IFUNC symbol is locally defined, generate
6693 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT. */
6694 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
6695 rela.r_addend = (h->root.u.def.value
6696 + h->root.u.def.section->output_section->vma
6697 + h->root.u.def.section->output_offset);
6698 }
6699 else
6700 {
6701 /* Fill in the entry in the .rela.plt section. */
6702 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (JUMP_SLOT));
6703 rela.r_addend = 0;
6704 }
a06ea964
NC
6705
6706 /* Compute the relocation entry to used based on PLT index and do
6707 not adjust reloc_count. The reloc_count has already been adjusted
6708 to account for this entry. */
1419bbe5 6709 loc = relplt->contents + plt_index * RELOC_SIZE (htab);
cec5225b 6710 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964
NC
6711}
6712
6713/* Size sections even though they're not dynamic. We use it to setup
6714 _TLS_MODULE_BASE_, if needed. */
6715
6716static bfd_boolean
cec5225b 6717elfNN_aarch64_always_size_sections (bfd *output_bfd,
a06ea964
NC
6718 struct bfd_link_info *info)
6719{
6720 asection *tls_sec;
6721
6722 if (info->relocatable)
6723 return TRUE;
6724
6725 tls_sec = elf_hash_table (info)->tls_sec;
6726
6727 if (tls_sec)
6728 {
6729 struct elf_link_hash_entry *tlsbase;
6730
6731 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
6732 "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
6733
6734 if (tlsbase)
6735 {
6736 struct bfd_link_hash_entry *h = NULL;
6737 const struct elf_backend_data *bed =
6738 get_elf_backend_data (output_bfd);
6739
6740 if (!(_bfd_generic_link_add_one_symbol
6741 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
6742 tls_sec, 0, NULL, FALSE, bed->collect, &h)))
6743 return FALSE;
6744
6745 tlsbase->type = STT_TLS;
6746 tlsbase = (struct elf_link_hash_entry *) h;
6747 tlsbase->def_regular = 1;
6748 tlsbase->other = STV_HIDDEN;
6749 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
6750 }
6751 }
6752
6753 return TRUE;
6754}
6755
6756/* Finish up dynamic symbol handling. We set the contents of various
6757 dynamic sections here. */
6758static bfd_boolean
cec5225b 6759elfNN_aarch64_finish_dynamic_symbol (bfd *output_bfd,
a06ea964
NC
6760 struct bfd_link_info *info,
6761 struct elf_link_hash_entry *h,
6762 Elf_Internal_Sym *sym)
6763{
cec5225b
YZ
6764 struct elf_aarch64_link_hash_table *htab;
6765 htab = elf_aarch64_hash_table (info);
a06ea964
NC
6766
6767 if (h->plt.offset != (bfd_vma) - 1)
6768 {
1419bbe5
WN
6769 asection *plt, *gotplt, *relplt;
6770
a06ea964
NC
6771 /* This symbol has an entry in the procedure linkage table. Set
6772 it up. */
6773
1419bbe5
WN
6774 /* When building a static executable, use .iplt, .igot.plt and
6775 .rela.iplt sections for STT_GNU_IFUNC symbols. */
6776 if (htab->root.splt != NULL)
6777 {
6778 plt = htab->root.splt;
6779 gotplt = htab->root.sgotplt;
6780 relplt = htab->root.srelplt;
6781 }
6782 else
6783 {
6784 plt = htab->root.iplt;
6785 gotplt = htab->root.igotplt;
6786 relplt = htab->root.irelplt;
6787 }
6788
6789 /* This symbol has an entry in the procedure linkage table. Set
6790 it up. */
6791 if ((h->dynindx == -1
6792 && !((h->forced_local || info->executable)
6793 && h->def_regular
6794 && h->type == STT_GNU_IFUNC))
6795 || plt == NULL
6796 || gotplt == NULL
6797 || relplt == NULL)
a06ea964
NC
6798 abort ();
6799
1419bbe5 6800 elfNN_aarch64_create_small_pltn_entry (h, htab, output_bfd, info);
a06ea964
NC
6801 if (!h->def_regular)
6802 {
6803 /* Mark the symbol as undefined, rather than as defined in
6804 the .plt section. Leave the value alone. This is a clue
6805 for the dynamic linker, to make function pointer
6806 comparisons work between an application and shared
6807 library. */
6808 sym->st_shndx = SHN_UNDEF;
6809 }
6810 }
6811
6812 if (h->got.offset != (bfd_vma) - 1
cec5225b 6813 && elf_aarch64_hash_entry (h)->got_type == GOT_NORMAL)
a06ea964
NC
6814 {
6815 Elf_Internal_Rela rela;
6816 bfd_byte *loc;
6817
6818 /* This symbol has an entry in the global offset table. Set it
6819 up. */
6820 if (htab->root.sgot == NULL || htab->root.srelgot == NULL)
6821 abort ();
6822
6823 rela.r_offset = (htab->root.sgot->output_section->vma
6824 + htab->root.sgot->output_offset
6825 + (h->got.offset & ~(bfd_vma) 1));
6826
49206388
WN
6827 if (h->def_regular
6828 && h->type == STT_GNU_IFUNC)
6829 {
6830 if (info->shared)
6831 {
6832 /* Generate R_AARCH64_GLOB_DAT. */
6833 goto do_glob_dat;
6834 }
6835 else
6836 {
6837 asection *plt;
6838
6839 if (!h->pointer_equality_needed)
6840 abort ();
6841
6842 /* For non-shared object, we can't use .got.plt, which
6843 contains the real function address if we need pointer
6844 equality. We load the GOT entry with the PLT entry. */
6845 plt = htab->root.splt ? htab->root.splt : htab->root.iplt;
6846 bfd_put_NN (output_bfd, (plt->output_section->vma
6847 + plt->output_offset
6848 + h->plt.offset),
6849 htab->root.sgot->contents
6850 + (h->got.offset & ~(bfd_vma) 1));
6851 return TRUE;
6852 }
6853 }
6854 else if (info->shared && SYMBOL_REFERENCES_LOCAL (info, h))
a06ea964
NC
6855 {
6856 if (!h->def_regular)
6857 return FALSE;
6858
6859 BFD_ASSERT ((h->got.offset & 1) != 0);
a6bb11b2 6860 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
a06ea964
NC
6861 rela.r_addend = (h->root.u.def.value
6862 + h->root.u.def.section->output_section->vma
6863 + h->root.u.def.section->output_offset);
6864 }
6865 else
6866 {
49206388 6867do_glob_dat:
a06ea964 6868 BFD_ASSERT ((h->got.offset & 1) == 0);
cec5225b 6869 bfd_put_NN (output_bfd, (bfd_vma) 0,
a06ea964 6870 htab->root.sgot->contents + h->got.offset);
a6bb11b2 6871 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (GLOB_DAT));
a06ea964
NC
6872 rela.r_addend = 0;
6873 }
6874
6875 loc = htab->root.srelgot->contents;
6876 loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab);
cec5225b 6877 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964
NC
6878 }
6879
6880 if (h->needs_copy)
6881 {
6882 Elf_Internal_Rela rela;
6883 bfd_byte *loc;
6884
6885 /* This symbol needs a copy reloc. Set it up. */
6886
6887 if (h->dynindx == -1
6888 || (h->root.type != bfd_link_hash_defined
6889 && h->root.type != bfd_link_hash_defweak)
6890 || htab->srelbss == NULL)
6891 abort ();
6892
6893 rela.r_offset = (h->root.u.def.value
6894 + h->root.u.def.section->output_section->vma
6895 + h->root.u.def.section->output_offset);
a6bb11b2 6896 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (COPY));
a06ea964
NC
6897 rela.r_addend = 0;
6898 loc = htab->srelbss->contents;
6899 loc += htab->srelbss->reloc_count++ * RELOC_SIZE (htab);
cec5225b 6900 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
a06ea964
NC
6901 }
6902
6903 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
6904 be NULL for local symbols. */
6905 if (sym != NULL
9637f6ef 6906 && (h == elf_hash_table (info)->hdynamic
a06ea964
NC
6907 || h == elf_hash_table (info)->hgot))
6908 sym->st_shndx = SHN_ABS;
6909
6910 return TRUE;
6911}
6912
1419bbe5
WN
6913/* Finish up local dynamic symbol handling. We set the contents of
6914 various dynamic sections here. */
6915
6916static bfd_boolean
6917elfNN_aarch64_finish_local_dynamic_symbol (void **slot, void *inf)
6918{
6919 struct elf_link_hash_entry *h
6920 = (struct elf_link_hash_entry *) *slot;
6921 struct bfd_link_info *info
6922 = (struct bfd_link_info *) inf;
6923
6924 return elfNN_aarch64_finish_dynamic_symbol (info->output_bfd,
6925 info, h, NULL);
6926}
6927
a06ea964 6928static void
cec5225b
YZ
6929elfNN_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED,
6930 struct elf_aarch64_link_hash_table
a06ea964
NC
6931 *htab)
6932{
6933 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
6934 small and large plts and at the minute just generates
6935 the small PLT. */
6936
cec5225b 6937 /* PLT0 of the small PLT looks like this in ELF64 -
a06ea964
NC
6938 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack.
6939 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT
6940 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
6941 // symbol resolver
6942 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the
6943 // GOTPLT entry for this.
6944 br x17
cec5225b
YZ
6945 PLT0 will be slightly different in ELF32 due to different got entry
6946 size.
a06ea964 6947 */
caed7120 6948 bfd_vma plt_got_2nd_ent; /* Address of GOT[2]. */
a06ea964
NC
6949 bfd_vma plt_base;
6950
6951
cec5225b 6952 memcpy (htab->root.splt->contents, elfNN_aarch64_small_plt0_entry,
a06ea964
NC
6953 PLT_ENTRY_SIZE);
6954 elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize =
6955 PLT_ENTRY_SIZE;
6956
caed7120
YZ
6957 plt_got_2nd_ent = (htab->root.sgotplt->output_section->vma
6958 + htab->root.sgotplt->output_offset
6959 + GOT_ENTRY_SIZE * 2);
a06ea964
NC
6960
6961 plt_base = htab->root.splt->output_section->vma +
6962 htab->root.splt->output_section->output_offset;
6963
6964 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
6965 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
caed7120
YZ
6966 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
6967 htab->root.splt->contents + 4,
6968 PG (plt_got_2nd_ent) - PG (plt_base + 4));
a06ea964 6969
caed7120
YZ
6970 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
6971 htab->root.splt->contents + 8,
6972 PG_OFFSET (plt_got_2nd_ent));
a06ea964 6973
caed7120
YZ
6974 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
6975 htab->root.splt->contents + 12,
6976 PG_OFFSET (plt_got_2nd_ent));
a06ea964
NC
6977}
6978
6979static bfd_boolean
cec5225b 6980elfNN_aarch64_finish_dynamic_sections (bfd *output_bfd,
a06ea964
NC
6981 struct bfd_link_info *info)
6982{
cec5225b 6983 struct elf_aarch64_link_hash_table *htab;
a06ea964
NC
6984 bfd *dynobj;
6985 asection *sdyn;
6986
cec5225b 6987 htab = elf_aarch64_hash_table (info);
a06ea964
NC
6988 dynobj = htab->root.dynobj;
6989 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
6990
6991 if (htab->root.dynamic_sections_created)
6992 {
cec5225b 6993 ElfNN_External_Dyn *dyncon, *dynconend;
a06ea964
NC
6994
6995 if (sdyn == NULL || htab->root.sgot == NULL)
6996 abort ();
6997
cec5225b
YZ
6998 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
6999 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
a06ea964
NC
7000 for (; dyncon < dynconend; dyncon++)
7001 {
7002 Elf_Internal_Dyn dyn;
7003 asection *s;
7004
cec5225b 7005 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
a06ea964
NC
7006
7007 switch (dyn.d_tag)
7008 {
7009 default:
7010 continue;
7011
7012 case DT_PLTGOT:
7013 s = htab->root.sgotplt;
7014 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
7015 break;
7016
7017 case DT_JMPREL:
7018 dyn.d_un.d_ptr = htab->root.srelplt->output_section->vma;
7019 break;
7020
7021 case DT_PLTRELSZ:
7022 s = htab->root.srelplt->output_section;
7023 dyn.d_un.d_val = s->size;
7024 break;
7025
7026 case DT_RELASZ:
7027 /* The procedure linkage table relocs (DT_JMPREL) should
7028 not be included in the overall relocs (DT_RELA).
7029 Therefore, we override the DT_RELASZ entry here to
7030 make it not include the JMPREL relocs. Since the
7031 linker script arranges for .rela.plt to follow all
7032 other relocation sections, we don't have to worry
7033 about changing the DT_RELA entry. */
7034 if (htab->root.srelplt != NULL)
7035 {
7036 s = htab->root.srelplt->output_section;
7037 dyn.d_un.d_val -= s->size;
7038 }
7039 break;
7040
7041 case DT_TLSDESC_PLT:
7042 s = htab->root.splt;
7043 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
7044 + htab->tlsdesc_plt;
7045 break;
7046
7047 case DT_TLSDESC_GOT:
7048 s = htab->root.sgot;
7049 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
7050 + htab->dt_tlsdesc_got;
7051 break;
7052 }
7053
cec5225b 7054 bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon);
a06ea964
NC
7055 }
7056
7057 }
7058
7059 /* Fill in the special first entry in the procedure linkage table. */
7060 if (htab->root.splt && htab->root.splt->size > 0)
7061 {
cec5225b 7062 elfNN_aarch64_init_small_plt0_entry (output_bfd, htab);
a06ea964
NC
7063
7064 elf_section_data (htab->root.splt->output_section)->
7065 this_hdr.sh_entsize = htab->plt_entry_size;
7066
7067
7068 if (htab->tlsdesc_plt)
7069 {
cec5225b 7070 bfd_put_NN (output_bfd, (bfd_vma) 0,
a06ea964
NC
7071 htab->root.sgot->contents + htab->dt_tlsdesc_got);
7072
7073 memcpy (htab->root.splt->contents + htab->tlsdesc_plt,
cec5225b
YZ
7074 elfNN_aarch64_tlsdesc_small_plt_entry,
7075 sizeof (elfNN_aarch64_tlsdesc_small_plt_entry));
a06ea964
NC
7076
7077 {
7078 bfd_vma adrp1_addr =
7079 htab->root.splt->output_section->vma
7080 + htab->root.splt->output_offset + htab->tlsdesc_plt + 4;
7081
caed7120 7082 bfd_vma adrp2_addr = adrp1_addr + 4;
a06ea964
NC
7083
7084 bfd_vma got_addr =
7085 htab->root.sgot->output_section->vma
7086 + htab->root.sgot->output_offset;
7087
7088 bfd_vma pltgot_addr =
7089 htab->root.sgotplt->output_section->vma
7090 + htab->root.sgotplt->output_offset;
7091
7092 bfd_vma dt_tlsdesc_got = got_addr + htab->dt_tlsdesc_got;
caed7120
YZ
7093
7094 bfd_byte *plt_entry =
7095 htab->root.splt->contents + htab->tlsdesc_plt;
a06ea964
NC
7096
7097 /* adrp x2, DT_TLSDESC_GOT */
caed7120
YZ
7098 elf_aarch64_update_plt_entry (output_bfd,
7099 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
7100 plt_entry + 4,
7101 (PG (dt_tlsdesc_got)
7102 - PG (adrp1_addr)));
a06ea964
NC
7103
7104 /* adrp x3, 0 */
caed7120
YZ
7105 elf_aarch64_update_plt_entry (output_bfd,
7106 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
7107 plt_entry + 8,
7108 (PG (pltgot_addr)
7109 - PG (adrp2_addr)));
a06ea964
NC
7110
7111 /* ldr x2, [x2, #0] */
caed7120
YZ
7112 elf_aarch64_update_plt_entry (output_bfd,
7113 BFD_RELOC_AARCH64_LDSTNN_LO12,
7114 plt_entry + 12,
7115 PG_OFFSET (dt_tlsdesc_got));
a06ea964
NC
7116
7117 /* add x3, x3, 0 */
caed7120
YZ
7118 elf_aarch64_update_plt_entry (output_bfd,
7119 BFD_RELOC_AARCH64_ADD_LO12,
7120 plt_entry + 16,
7121 PG_OFFSET (pltgot_addr));
a06ea964
NC
7122 }
7123 }
7124 }
7125
7126 if (htab->root.sgotplt)
7127 {
7128 if (bfd_is_abs_section (htab->root.sgotplt->output_section))
7129 {
7130 (*_bfd_error_handler)
7131 (_("discarded output section: `%A'"), htab->root.sgotplt);
7132 return FALSE;
7133 }
7134
7135 /* Fill in the first three entries in the global offset table. */
7136 if (htab->root.sgotplt->size > 0)
7137 {
8db339a6
MS
7138 bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents);
7139
a06ea964 7140 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
cec5225b 7141 bfd_put_NN (output_bfd,
a06ea964
NC
7142 (bfd_vma) 0,
7143 htab->root.sgotplt->contents + GOT_ENTRY_SIZE);
cec5225b 7144 bfd_put_NN (output_bfd,
a06ea964
NC
7145 (bfd_vma) 0,
7146 htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2);
7147 }
7148
8db339a6
MS
7149 if (htab->root.sgot)
7150 {
7151 if (htab->root.sgot->size > 0)
7152 {
7153 bfd_vma addr =
7154 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0;
7155 bfd_put_NN (output_bfd, addr, htab->root.sgot->contents);
7156 }
7157 }
7158
a06ea964
NC
7159 elf_section_data (htab->root.sgotplt->output_section)->
7160 this_hdr.sh_entsize = GOT_ENTRY_SIZE;
7161 }
7162
7163 if (htab->root.sgot && htab->root.sgot->size > 0)
7164 elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize
7165 = GOT_ENTRY_SIZE;
7166
1419bbe5
WN
7167 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
7168 htab_traverse (htab->loc_hash_table,
7169 elfNN_aarch64_finish_local_dynamic_symbol,
7170 info);
7171
a06ea964
NC
7172 return TRUE;
7173}
7174
7175/* Return address for Ith PLT stub in section PLT, for relocation REL
7176 or (bfd_vma) -1 if it should not be included. */
7177
7178static bfd_vma
cec5225b 7179elfNN_aarch64_plt_sym_val (bfd_vma i, const asection *plt,
a06ea964
NC
7180 const arelent *rel ATTRIBUTE_UNUSED)
7181{
7182 return plt->vma + PLT_ENTRY_SIZE + i * PLT_SMALL_ENTRY_SIZE;
7183}
7184
7185
7186/* We use this so we can override certain functions
7187 (though currently we don't). */
7188
cec5225b 7189const struct elf_size_info elfNN_aarch64_size_info =
a06ea964 7190{
cec5225b
YZ
7191 sizeof (ElfNN_External_Ehdr),
7192 sizeof (ElfNN_External_Phdr),
7193 sizeof (ElfNN_External_Shdr),
7194 sizeof (ElfNN_External_Rel),
7195 sizeof (ElfNN_External_Rela),
7196 sizeof (ElfNN_External_Sym),
7197 sizeof (ElfNN_External_Dyn),
a06ea964
NC
7198 sizeof (Elf_External_Note),
7199 4, /* Hash table entry size. */
7200 1, /* Internal relocs per external relocs. */
cec5225b
YZ
7201 ARCH_SIZE, /* Arch size. */
7202 LOG_FILE_ALIGN, /* Log_file_align. */
7203 ELFCLASSNN, EV_CURRENT,
7204 bfd_elfNN_write_out_phdrs,
7205 bfd_elfNN_write_shdrs_and_ehdr,
7206 bfd_elfNN_checksum_contents,
7207 bfd_elfNN_write_relocs,
7208 bfd_elfNN_swap_symbol_in,
7209 bfd_elfNN_swap_symbol_out,
7210 bfd_elfNN_slurp_reloc_table,
7211 bfd_elfNN_slurp_symbol_table,
7212 bfd_elfNN_swap_dyn_in,
7213 bfd_elfNN_swap_dyn_out,
7214 bfd_elfNN_swap_reloc_in,
7215 bfd_elfNN_swap_reloc_out,
7216 bfd_elfNN_swap_reloca_in,
7217 bfd_elfNN_swap_reloca_out
a06ea964
NC
7218};
7219
7220#define ELF_ARCH bfd_arch_aarch64
7221#define ELF_MACHINE_CODE EM_AARCH64
7222#define ELF_MAXPAGESIZE 0x10000
7223#define ELF_MINPAGESIZE 0x1000
7224#define ELF_COMMONPAGESIZE 0x1000
7225
cec5225b
YZ
7226#define bfd_elfNN_close_and_cleanup \
7227 elfNN_aarch64_close_and_cleanup
a06ea964 7228
cec5225b
YZ
7229#define bfd_elfNN_bfd_copy_private_bfd_data \
7230 elfNN_aarch64_copy_private_bfd_data
a06ea964 7231
cec5225b
YZ
7232#define bfd_elfNN_bfd_free_cached_info \
7233 elfNN_aarch64_bfd_free_cached_info
a06ea964 7234
cec5225b
YZ
7235#define bfd_elfNN_bfd_is_target_special_symbol \
7236 elfNN_aarch64_is_target_special_symbol
a06ea964 7237
cec5225b
YZ
7238#define bfd_elfNN_bfd_link_hash_table_create \
7239 elfNN_aarch64_link_hash_table_create
a06ea964 7240
cec5225b
YZ
7241#define bfd_elfNN_bfd_link_hash_table_free \
7242 elfNN_aarch64_hash_table_free
a06ea964 7243
cec5225b
YZ
7244#define bfd_elfNN_bfd_merge_private_bfd_data \
7245 elfNN_aarch64_merge_private_bfd_data
a06ea964 7246
cec5225b
YZ
7247#define bfd_elfNN_bfd_print_private_bfd_data \
7248 elfNN_aarch64_print_private_bfd_data
a06ea964 7249
cec5225b
YZ
7250#define bfd_elfNN_bfd_reloc_type_lookup \
7251 elfNN_aarch64_reloc_type_lookup
a06ea964 7252
cec5225b
YZ
7253#define bfd_elfNN_bfd_reloc_name_lookup \
7254 elfNN_aarch64_reloc_name_lookup
a06ea964 7255
cec5225b
YZ
7256#define bfd_elfNN_bfd_set_private_flags \
7257 elfNN_aarch64_set_private_flags
a06ea964 7258
cec5225b
YZ
7259#define bfd_elfNN_find_inliner_info \
7260 elfNN_aarch64_find_inliner_info
a06ea964 7261
cec5225b
YZ
7262#define bfd_elfNN_find_nearest_line \
7263 elfNN_aarch64_find_nearest_line
a06ea964 7264
cec5225b
YZ
7265#define bfd_elfNN_mkobject \
7266 elfNN_aarch64_mkobject
a06ea964 7267
cec5225b
YZ
7268#define bfd_elfNN_new_section_hook \
7269 elfNN_aarch64_new_section_hook
a06ea964
NC
7270
7271#define elf_backend_adjust_dynamic_symbol \
cec5225b 7272 elfNN_aarch64_adjust_dynamic_symbol
a06ea964
NC
7273
7274#define elf_backend_always_size_sections \
cec5225b 7275 elfNN_aarch64_always_size_sections
a06ea964
NC
7276
7277#define elf_backend_check_relocs \
cec5225b 7278 elfNN_aarch64_check_relocs
a06ea964
NC
7279
7280#define elf_backend_copy_indirect_symbol \
cec5225b 7281 elfNN_aarch64_copy_indirect_symbol
a06ea964
NC
7282
7283/* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
7284 to them in our hash. */
7285#define elf_backend_create_dynamic_sections \
cec5225b 7286 elfNN_aarch64_create_dynamic_sections
a06ea964
NC
7287
7288#define elf_backend_init_index_section \
7289 _bfd_elf_init_2_index_sections
7290
a06ea964 7291#define elf_backend_finish_dynamic_sections \
cec5225b 7292 elfNN_aarch64_finish_dynamic_sections
a06ea964
NC
7293
7294#define elf_backend_finish_dynamic_symbol \
cec5225b 7295 elfNN_aarch64_finish_dynamic_symbol
a06ea964
NC
7296
7297#define elf_backend_gc_sweep_hook \
cec5225b 7298 elfNN_aarch64_gc_sweep_hook
a06ea964
NC
7299
7300#define elf_backend_object_p \
cec5225b 7301 elfNN_aarch64_object_p
a06ea964
NC
7302
7303#define elf_backend_output_arch_local_syms \
cec5225b 7304 elfNN_aarch64_output_arch_local_syms
a06ea964
NC
7305
7306#define elf_backend_plt_sym_val \
cec5225b 7307 elfNN_aarch64_plt_sym_val
a06ea964
NC
7308
7309#define elf_backend_post_process_headers \
cec5225b 7310 elfNN_aarch64_post_process_headers
a06ea964
NC
7311
7312#define elf_backend_relocate_section \
cec5225b 7313 elfNN_aarch64_relocate_section
a06ea964
NC
7314
7315#define elf_backend_reloc_type_class \
cec5225b 7316 elfNN_aarch64_reloc_type_class
a06ea964
NC
7317
7318#define elf_backend_section_flags \
cec5225b 7319 elfNN_aarch64_section_flags
a06ea964
NC
7320
7321#define elf_backend_section_from_shdr \
cec5225b 7322 elfNN_aarch64_section_from_shdr
a06ea964
NC
7323
7324#define elf_backend_size_dynamic_sections \
cec5225b 7325 elfNN_aarch64_size_dynamic_sections
a06ea964
NC
7326
7327#define elf_backend_size_info \
cec5225b 7328 elfNN_aarch64_size_info
a06ea964
NC
7329
7330#define elf_backend_can_refcount 1
59c108f7 7331#define elf_backend_can_gc_sections 1
a06ea964
NC
7332#define elf_backend_plt_readonly 1
7333#define elf_backend_want_got_plt 1
7334#define elf_backend_want_plt_sym 0
7335#define elf_backend_may_use_rel_p 0
7336#define elf_backend_may_use_rela_p 1
7337#define elf_backend_default_use_rela_p 1
7338#define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
c495064d 7339#define elf_backend_default_execstack 0
a06ea964
NC
7340
7341#undef elf_backend_obj_attrs_section
7342#define elf_backend_obj_attrs_section ".ARM.attributes"
7343
cec5225b 7344#include "elfNN-target.h"
This page took 0.429428 seconds and 4 git commands to generate.