gas: Fix ip2k-elf and xstormy16-elf build
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
b3adc24a 2 Copyright (C) 1993-2020 Free Software Foundation, Inc.
b49e97c9
TS
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
ae9a127f 11 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 12
ae9a127f
NC
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
cd123cb7 15 the Free Software Foundation; either version 3 of the License, or
ae9a127f 16 (at your option) any later version.
b49e97c9 17
ae9a127f
NC
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
b49e97c9 22
ae9a127f
NC
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
cd123cb7
NC
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
b49e97c9
TS
28
29/* This file handles functionality common to the different MIPS ABI's. */
30
b49e97c9 31#include "sysdep.h"
3db64b00 32#include "bfd.h"
b49e97c9 33#include "libbfd.h"
64543e1a 34#include "libiberty.h"
b49e97c9 35#include "elf-bfd.h"
0ba9378a 36#include "ecoff-bfd.h"
b49e97c9
TS
37#include "elfxx-mips.h"
38#include "elf/mips.h"
0a44bf69 39#include "elf-vxworks.h"
2f0c68f2 40#include "dwarf2.h"
b49e97c9
TS
41
42/* Get the ECOFF swapping routines. */
43#include "coff/sym.h"
44#include "coff/symconst.h"
45#include "coff/ecoff.h"
46#include "coff/mips.h"
47
b15e6682
AO
48#include "hashtab.h"
49
9ab066b4
RS
50/* Types of TLS GOT entry. */
51enum mips_got_tls_type {
52 GOT_TLS_NONE,
53 GOT_TLS_GD,
54 GOT_TLS_LDM,
55 GOT_TLS_IE
56};
57
ead49a57 58/* This structure is used to hold information about one GOT entry.
3dff0dd1
RS
59 There are four types of entry:
60
61 (1) an absolute address
62 requires: abfd == NULL
63 fields: d.address
64
65 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
66 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
67 fields: abfd, symndx, d.addend, tls_type
68
69 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
70 requires: abfd != NULL, symndx == -1
71 fields: d.h, tls_type
72
73 (4) a TLS LDM slot
74 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
75 fields: none; there's only one of these per GOT. */
b15e6682
AO
76struct mips_got_entry
77{
3dff0dd1 78 /* One input bfd that needs the GOT entry. */
b15e6682 79 bfd *abfd;
f4416af6
AO
80 /* The index of the symbol, as stored in the relocation r_info, if
81 we have a local symbol; -1 otherwise. */
82 long symndx;
83 union
84 {
85 /* If abfd == NULL, an address that must be stored in the got. */
86 bfd_vma address;
87 /* If abfd != NULL && symndx != -1, the addend of the relocation
88 that should be added to the symbol value. */
89 bfd_vma addend;
90 /* If abfd != NULL && symndx == -1, the hash table entry
3dff0dd1 91 corresponding to a symbol in the GOT. The symbol's entry
020d7251
RS
92 is in the local area if h->global_got_area is GGA_NONE,
93 otherwise it is in the global area. */
f4416af6
AO
94 struct mips_elf_link_hash_entry *h;
95 } d;
0f20cc35 96
9ab066b4
RS
97 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
98 symbol entry with r_symndx == 0. */
0f20cc35
DJ
99 unsigned char tls_type;
100
9ab066b4
RS
101 /* True if we have filled in the GOT contents for a TLS entry,
102 and created the associated relocations. */
103 unsigned char tls_initialized;
104
b15e6682 105 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
106 corresponding to this symbol+addend. If it's a global symbol
107 whose offset is yet to be decided, it's going to be -1. */
108 long gotidx;
b15e6682
AO
109};
110
13db6b44
RS
111/* This structure represents a GOT page reference from an input bfd.
112 Each instance represents a symbol + ADDEND, where the representation
113 of the symbol depends on whether it is local to the input bfd.
114 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
115 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
116
117 Page references with SYMNDX >= 0 always become page references
118 in the output. Page references with SYMNDX < 0 only become page
119 references if the symbol binds locally; in other cases, the page
120 reference decays to a global GOT reference. */
121struct mips_got_page_ref
122{
123 long symndx;
124 union
125 {
126 struct mips_elf_link_hash_entry *h;
127 bfd *abfd;
128 } u;
129 bfd_vma addend;
130};
131
c224138d
RS
132/* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
133 The structures form a non-overlapping list that is sorted by increasing
134 MIN_ADDEND. */
135struct mips_got_page_range
136{
137 struct mips_got_page_range *next;
138 bfd_signed_vma min_addend;
139 bfd_signed_vma max_addend;
140};
141
142/* This structure describes the range of addends that are applied to page
13db6b44 143 relocations against a given section. */
c224138d
RS
144struct mips_got_page_entry
145{
13db6b44
RS
146 /* The section that these entries are based on. */
147 asection *sec;
c224138d
RS
148 /* The ranges for this page entry. */
149 struct mips_got_page_range *ranges;
150 /* The maximum number of page entries needed for RANGES. */
151 bfd_vma num_pages;
152};
153
f0abc2a1 154/* This structure is used to hold .got information when linking. */
b49e97c9
TS
155
156struct mips_got_info
157{
b49e97c9
TS
158 /* The number of global .got entries. */
159 unsigned int global_gotno;
23cc69b6
RS
160 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
161 unsigned int reloc_only_gotno;
0f20cc35
DJ
162 /* The number of .got slots used for TLS. */
163 unsigned int tls_gotno;
164 /* The first unused TLS .got entry. Used only during
165 mips_elf_initialize_tls_index. */
166 unsigned int tls_assigned_gotno;
c224138d 167 /* The number of local .got entries, eventually including page entries. */
b49e97c9 168 unsigned int local_gotno;
c224138d
RS
169 /* The maximum number of page entries needed. */
170 unsigned int page_gotno;
ab361d49
RS
171 /* The number of relocations needed for the GOT entries. */
172 unsigned int relocs;
cb22ccf4
KCY
173 /* The first unused local .got entry. */
174 unsigned int assigned_low_gotno;
175 /* The last unused local .got entry. */
176 unsigned int assigned_high_gotno;
b15e6682
AO
177 /* A hash table holding members of the got. */
178 struct htab *got_entries;
13db6b44
RS
179 /* A hash table holding mips_got_page_ref structures. */
180 struct htab *got_page_refs;
c224138d
RS
181 /* A hash table of mips_got_page_entry structures. */
182 struct htab *got_page_entries;
f4416af6
AO
183 /* In multi-got links, a pointer to the next got (err, rather, most
184 of the time, it points to the previous got). */
185 struct mips_got_info *next;
186};
187
d7206569 188/* Structure passed when merging bfds' gots. */
f4416af6
AO
189
190struct mips_elf_got_per_bfd_arg
191{
f4416af6
AO
192 /* The output bfd. */
193 bfd *obfd;
194 /* The link information. */
195 struct bfd_link_info *info;
196 /* A pointer to the primary got, i.e., the one that's going to get
197 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
198 DT_MIPS_GOTSYM. */
199 struct mips_got_info *primary;
200 /* A non-primary got we're trying to merge with other input bfd's
201 gots. */
202 struct mips_got_info *current;
203 /* The maximum number of got entries that can be addressed with a
204 16-bit offset. */
205 unsigned int max_count;
c224138d
RS
206 /* The maximum number of page entries needed by each got. */
207 unsigned int max_pages;
0f20cc35
DJ
208 /* The total number of global entries which will live in the
209 primary got and be automatically relocated. This includes
210 those not referenced by the primary GOT but included in
211 the "master" GOT. */
212 unsigned int global_count;
f4416af6
AO
213};
214
ab361d49
RS
215/* A structure used to pass information to htab_traverse callbacks
216 when laying out the GOT. */
f4416af6 217
ab361d49 218struct mips_elf_traverse_got_arg
f4416af6 219{
ab361d49 220 struct bfd_link_info *info;
f4416af6
AO
221 struct mips_got_info *g;
222 int value;
0f20cc35
DJ
223};
224
f0abc2a1
AM
225struct _mips_elf_section_data
226{
227 struct bfd_elf_section_data elf;
228 union
229 {
f0abc2a1
AM
230 bfd_byte *tdata;
231 } u;
232};
233
234#define mips_elf_section_data(sec) \
68bfbfcc 235 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 236
d5eaccd7
RS
237#define is_mips_elf(bfd) \
238 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
239 && elf_tdata (bfd) != NULL \
4dfe6ac6 240 && elf_object_id (bfd) == MIPS_ELF_DATA)
d5eaccd7 241
634835ae
RS
242/* The ABI says that every symbol used by dynamic relocations must have
243 a global GOT entry. Among other things, this provides the dynamic
244 linker with a free, directly-indexed cache. The GOT can therefore
245 contain symbols that are not referenced by GOT relocations themselves
246 (in other words, it may have symbols that are not referenced by things
247 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
248
249 GOT relocations are less likely to overflow if we put the associated
250 GOT entries towards the beginning. We therefore divide the global
251 GOT entries into two areas: "normal" and "reloc-only". Entries in
252 the first area can be used for both dynamic relocations and GP-relative
253 accesses, while those in the "reloc-only" area are for dynamic
254 relocations only.
255
256 These GGA_* ("Global GOT Area") values are organised so that lower
257 values are more general than higher values. Also, non-GGA_NONE
258 values are ordered by the position of the area in the GOT. */
259#define GGA_NORMAL 0
260#define GGA_RELOC_ONLY 1
261#define GGA_NONE 2
262
861fb55a
DJ
263/* Information about a non-PIC interface to a PIC function. There are
264 two ways of creating these interfaces. The first is to add:
265
266 lui $25,%hi(func)
267 addiu $25,$25,%lo(func)
268
269 immediately before a PIC function "func". The second is to add:
270
271 lui $25,%hi(func)
272 j func
273 addiu $25,$25,%lo(func)
274
275 to a separate trampoline section.
276
277 Stubs of the first kind go in a new section immediately before the
278 target function. Stubs of the second kind go in a single section
279 pointed to by the hash table's "strampoline" field. */
280struct mips_elf_la25_stub {
281 /* The generated section that contains this stub. */
282 asection *stub_section;
283
284 /* The offset of the stub from the start of STUB_SECTION. */
285 bfd_vma offset;
286
287 /* One symbol for the original function. Its location is available
288 in H->root.root.u.def. */
289 struct mips_elf_link_hash_entry *h;
290};
291
292/* Macros for populating a mips_elf_la25_stub. */
293
294#define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
295#define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
3734320d 296#define LA25_BC(VAL) (0xc8000000 | (((VAL) >> 2) & 0x3ffffff)) /* bc VAL */
861fb55a 297#define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
d21911ea
MR
298#define LA25_LUI_MICROMIPS(VAL) \
299 (0x41b90000 | (VAL)) /* lui t9,VAL */
300#define LA25_J_MICROMIPS(VAL) \
301 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
302#define LA25_ADDIU_MICROMIPS(VAL) \
303 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
861fb55a 304
b49e97c9
TS
305/* This structure is passed to mips_elf_sort_hash_table_f when sorting
306 the dynamic symbols. */
307
308struct mips_elf_hash_sort_data
309{
310 /* The symbol in the global GOT with the lowest dynamic symbol table
311 index. */
312 struct elf_link_hash_entry *low;
0f20cc35
DJ
313 /* The least dynamic symbol table index corresponding to a non-TLS
314 symbol with a GOT entry. */
55f8b9d2 315 bfd_size_type min_got_dynindx;
f4416af6
AO
316 /* The greatest dynamic symbol table index corresponding to a symbol
317 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 318 with dynamic relocations pointing to it from non-primary GOTs). */
55f8b9d2 319 bfd_size_type max_unref_got_dynindx;
e17b0c35
MR
320 /* The greatest dynamic symbol table index corresponding to a local
321 symbol. */
322 bfd_size_type max_local_dynindx;
323 /* The greatest dynamic symbol table index corresponding to an external
b49e97c9 324 symbol without a GOT entry. */
55f8b9d2 325 bfd_size_type max_non_got_dynindx;
f16a9783
MS
326 /* If non-NULL, output BFD for .MIPS.xhash finalization. */
327 bfd *output_bfd;
328 /* If non-NULL, pointer to contents of .MIPS.xhash for filling in
329 real final dynindx. */
330 bfd_byte *mipsxhash;
b49e97c9
TS
331};
332
1bbce132
MR
333/* We make up to two PLT entries if needed, one for standard MIPS code
334 and one for compressed code, either a MIPS16 or microMIPS one. We
335 keep a separate record of traditional lazy-binding stubs, for easier
336 processing. */
337
338struct plt_entry
339{
340 /* Traditional SVR4 stub offset, or -1 if none. */
341 bfd_vma stub_offset;
342
343 /* Standard PLT entry offset, or -1 if none. */
344 bfd_vma mips_offset;
345
346 /* Compressed PLT entry offset, or -1 if none. */
347 bfd_vma comp_offset;
348
349 /* The corresponding .got.plt index, or -1 if none. */
350 bfd_vma gotplt_index;
351
352 /* Whether we need a standard PLT entry. */
353 unsigned int need_mips : 1;
354
355 /* Whether we need a compressed PLT entry. */
356 unsigned int need_comp : 1;
357};
358
b49e97c9
TS
359/* The MIPS ELF linker needs additional information for each symbol in
360 the global hash table. */
361
362struct mips_elf_link_hash_entry
363{
364 struct elf_link_hash_entry root;
365
366 /* External symbol information. */
367 EXTR esym;
368
861fb55a
DJ
369 /* The la25 stub we have created for ths symbol, if any. */
370 struct mips_elf_la25_stub *la25_stub;
371
b49e97c9
TS
372 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
373 this symbol. */
374 unsigned int possibly_dynamic_relocs;
375
b49e97c9
TS
376 /* If there is a stub that 32 bit functions should use to call this
377 16 bit function, this points to the section containing the stub. */
378 asection *fn_stub;
379
b49e97c9
TS
380 /* If there is a stub that 16 bit functions should use to call this
381 32 bit function, this points to the section containing the stub. */
382 asection *call_stub;
383
384 /* This is like the call_stub field, but it is used if the function
385 being called returns a floating point value. */
386 asection *call_fp_stub;
7c5fcef7 387
f16a9783
MS
388 /* If non-zero, location in .MIPS.xhash to write real final dynindx. */
389 bfd_vma mipsxhash_loc;
390
634835ae
RS
391 /* The highest GGA_* value that satisfies all references to this symbol. */
392 unsigned int global_got_area : 2;
393
6ccf4795
RS
394 /* True if all GOT relocations against this symbol are for calls. This is
395 a looser condition than no_fn_stub below, because there may be other
396 non-call non-GOT relocations against the symbol. */
397 unsigned int got_only_for_calls : 1;
398
71782a75
RS
399 /* True if one of the relocations described by possibly_dynamic_relocs
400 is against a readonly section. */
401 unsigned int readonly_reloc : 1;
402
861fb55a
DJ
403 /* True if there is a relocation against this symbol that must be
404 resolved by the static linker (in other words, if the relocation
405 cannot possibly be made dynamic). */
406 unsigned int has_static_relocs : 1;
407
71782a75
RS
408 /* True if we must not create a .MIPS.stubs entry for this symbol.
409 This is set, for example, if there are relocations related to
410 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
411 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
412 unsigned int no_fn_stub : 1;
413
414 /* Whether we need the fn_stub; this is true if this symbol appears
415 in any relocs other than a 16 bit call. */
416 unsigned int need_fn_stub : 1;
417
861fb55a
DJ
418 /* True if this symbol is referenced by branch relocations from
419 any non-PIC input file. This is used to determine whether an
420 la25 stub is required. */
421 unsigned int has_nonpic_branches : 1;
33bb52fb
RS
422
423 /* Does this symbol need a traditional MIPS lazy-binding stub
424 (as opposed to a PLT entry)? */
425 unsigned int needs_lazy_stub : 1;
1bbce132
MR
426
427 /* Does this symbol resolve to a PLT entry? */
428 unsigned int use_plt_entry : 1;
b49e97c9
TS
429};
430
431/* MIPS ELF linker hash table. */
432
433struct mips_elf_link_hash_table
434{
435 struct elf_link_hash_table root;
861fb55a 436
b49e97c9
TS
437 /* The number of .rtproc entries. */
438 bfd_size_type procedure_count;
861fb55a 439
b49e97c9
TS
440 /* The size of the .compact_rel section (if SGI_COMPAT). */
441 bfd_size_type compact_rel_size;
861fb55a 442
e6aea42d
MR
443 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
444 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
b34976b6 445 bfd_boolean use_rld_obj_head;
861fb55a 446
b4082c70
DD
447 /* The __rld_map or __rld_obj_head symbol. */
448 struct elf_link_hash_entry *rld_symbol;
861fb55a 449
b49e97c9 450 /* This is set if we see any mips16 stub sections. */
b34976b6 451 bfd_boolean mips16_stubs_seen;
861fb55a
DJ
452
453 /* True if we can generate copy relocs and PLTs. */
454 bfd_boolean use_plts_and_copy_relocs;
455
833794fc
MR
456 /* True if we can only use 32-bit microMIPS instructions. */
457 bfd_boolean insn32;
458
8b10b0b3
MR
459 /* True if we suppress checks for invalid branches between ISA modes. */
460 bfd_boolean ignore_branch_isa;
461
3734320d
MF
462 /* True if we are targetting R6 compact branches. */
463 bfd_boolean compact_branches;
464
0a44bf69
RS
465 /* True if we're generating code for VxWorks. */
466 bfd_boolean is_vxworks;
861fb55a 467
0e53d9da
AN
468 /* True if we already reported the small-data section overflow. */
469 bfd_boolean small_data_overflow_reported;
861fb55a 470
47275900
MR
471 /* True if we use the special `__gnu_absolute_zero' symbol. */
472 bfd_boolean use_absolute_zero;
473
474 /* True if we have been configured for a GNU target. */
475 bfd_boolean gnu_target;
476
0a44bf69
RS
477 /* Shortcuts to some dynamic sections, or NULL if they are not
478 being used. */
0a44bf69 479 asection *srelplt2;
4e41d0d7 480 asection *sstubs;
861fb55a 481
a8028dd0
RS
482 /* The master GOT information. */
483 struct mips_got_info *got_info;
861fb55a 484
d222d210
RS
485 /* The global symbol in the GOT with the lowest index in the dynamic
486 symbol table. */
487 struct elf_link_hash_entry *global_gotsym;
488
861fb55a 489 /* The size of the PLT header in bytes. */
0a44bf69 490 bfd_vma plt_header_size;
861fb55a 491
1bbce132
MR
492 /* The size of a standard PLT entry in bytes. */
493 bfd_vma plt_mips_entry_size;
494
495 /* The size of a compressed PLT entry in bytes. */
496 bfd_vma plt_comp_entry_size;
497
498 /* The offset of the next standard PLT entry to create. */
499 bfd_vma plt_mips_offset;
500
501 /* The offset of the next compressed PLT entry to create. */
502 bfd_vma plt_comp_offset;
503
504 /* The index of the next .got.plt entry to create. */
505 bfd_vma plt_got_index;
861fb55a 506
33bb52fb
RS
507 /* The number of functions that need a lazy-binding stub. */
508 bfd_vma lazy_stub_count;
861fb55a 509
5108fc1b
RS
510 /* The size of a function stub entry in bytes. */
511 bfd_vma function_stub_size;
861fb55a
DJ
512
513 /* The number of reserved entries at the beginning of the GOT. */
514 unsigned int reserved_gotno;
515
516 /* The section used for mips_elf_la25_stub trampolines.
517 See the comment above that structure for details. */
518 asection *strampoline;
519
520 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
521 pairs. */
522 htab_t la25_stubs;
523
524 /* A function FN (NAME, IS, OS) that creates a new input section
525 called NAME and links it to output section OS. If IS is nonnull,
526 the new section should go immediately before it, otherwise it
527 should go at the (current) beginning of OS.
528
529 The function returns the new section on success, otherwise it
530 returns null. */
531 asection *(*add_stub_section) (const char *, asection *, asection *);
13db6b44
RS
532
533 /* Small local sym cache. */
534 struct sym_cache sym_cache;
1bbce132
MR
535
536 /* Is the PLT header compressed? */
537 unsigned int plt_header_is_comp : 1;
861fb55a
DJ
538};
539
4dfe6ac6
NC
540/* Get the MIPS ELF linker hash table from a link_info structure. */
541
542#define mips_elf_hash_table(p) \
543 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
544 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
545
861fb55a 546/* A structure used to communicate with htab_traverse callbacks. */
4dfe6ac6
NC
547struct mips_htab_traverse_info
548{
861fb55a
DJ
549 /* The usual link-wide information. */
550 struct bfd_link_info *info;
551 bfd *output_bfd;
552
553 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
554 bfd_boolean error;
b49e97c9
TS
555};
556
6ae68ba3
MR
557/* MIPS ELF private object data. */
558
559struct mips_elf_obj_tdata
560{
561 /* Generic ELF private object data. */
562 struct elf_obj_tdata root;
563
564 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
565 bfd *abi_fp_bfd;
ee227692 566
b60bf9be
CF
567 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
568 bfd *abi_msa_bfd;
569
351cdf24
MF
570 /* The abiflags for this object. */
571 Elf_Internal_ABIFlags_v0 abiflags;
572 bfd_boolean abiflags_valid;
573
ee227692
RS
574 /* The GOT requirements of input bfds. */
575 struct mips_got_info *got;
698600e4
AM
576
577 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
578 included directly in this one, but there's no point to wasting
579 the memory just for the infrequently called find_nearest_line. */
580 struct mips_elf_find_line *find_line_info;
581
582 /* An array of stub sections indexed by symbol number. */
583 asection **local_stubs;
584 asection **local_call_stubs;
585
586 /* The Irix 5 support uses two virtual sections, which represent
587 text/data symbols defined in dynamic objects. */
588 asymbol *elf_data_symbol;
589 asymbol *elf_text_symbol;
590 asection *elf_data_section;
591 asection *elf_text_section;
6ae68ba3
MR
592};
593
594/* Get MIPS ELF private object data from BFD's tdata. */
595
596#define mips_elf_tdata(bfd) \
597 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
598
0f20cc35
DJ
599#define TLS_RELOC_P(r_type) \
600 (r_type == R_MIPS_TLS_DTPMOD32 \
601 || r_type == R_MIPS_TLS_DTPMOD64 \
602 || r_type == R_MIPS_TLS_DTPREL32 \
603 || r_type == R_MIPS_TLS_DTPREL64 \
604 || r_type == R_MIPS_TLS_GD \
605 || r_type == R_MIPS_TLS_LDM \
606 || r_type == R_MIPS_TLS_DTPREL_HI16 \
607 || r_type == R_MIPS_TLS_DTPREL_LO16 \
608 || r_type == R_MIPS_TLS_GOTTPREL \
609 || r_type == R_MIPS_TLS_TPREL32 \
610 || r_type == R_MIPS_TLS_TPREL64 \
611 || r_type == R_MIPS_TLS_TPREL_HI16 \
df58fc94 612 || r_type == R_MIPS_TLS_TPREL_LO16 \
d0f13682
CLT
613 || r_type == R_MIPS16_TLS_GD \
614 || r_type == R_MIPS16_TLS_LDM \
615 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
616 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
617 || r_type == R_MIPS16_TLS_GOTTPREL \
618 || r_type == R_MIPS16_TLS_TPREL_HI16 \
619 || r_type == R_MIPS16_TLS_TPREL_LO16 \
df58fc94
RS
620 || r_type == R_MICROMIPS_TLS_GD \
621 || r_type == R_MICROMIPS_TLS_LDM \
622 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
623 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
624 || r_type == R_MICROMIPS_TLS_GOTTPREL \
625 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
626 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
0f20cc35 627
b49e97c9
TS
628/* Structure used to pass information to mips_elf_output_extsym. */
629
630struct extsym_info
631{
9e4aeb93
RS
632 bfd *abfd;
633 struct bfd_link_info *info;
b49e97c9
TS
634 struct ecoff_debug_info *debug;
635 const struct ecoff_debug_swap *swap;
b34976b6 636 bfd_boolean failed;
b49e97c9
TS
637};
638
8dc1a139 639/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
640
641static const char * const mips_elf_dynsym_rtproc_names[] =
642{
643 "_procedure_table",
644 "_procedure_string_table",
645 "_procedure_table_size",
646 NULL
647};
648
649/* These structures are used to generate the .compact_rel section on
8dc1a139 650 IRIX5. */
b49e97c9
TS
651
652typedef struct
653{
654 unsigned long id1; /* Always one? */
655 unsigned long num; /* Number of compact relocation entries. */
656 unsigned long id2; /* Always two? */
657 unsigned long offset; /* The file offset of the first relocation. */
658 unsigned long reserved0; /* Zero? */
659 unsigned long reserved1; /* Zero? */
660} Elf32_compact_rel;
661
662typedef struct
663{
664 bfd_byte id1[4];
665 bfd_byte num[4];
666 bfd_byte id2[4];
667 bfd_byte offset[4];
668 bfd_byte reserved0[4];
669 bfd_byte reserved1[4];
670} Elf32_External_compact_rel;
671
672typedef struct
673{
674 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
675 unsigned int rtype : 4; /* Relocation types. See below. */
676 unsigned int dist2to : 8;
677 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
678 unsigned long konst; /* KONST field. See below. */
679 unsigned long vaddr; /* VADDR to be relocated. */
680} Elf32_crinfo;
681
682typedef struct
683{
684 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
685 unsigned int rtype : 4; /* Relocation types. See below. */
686 unsigned int dist2to : 8;
687 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
688 unsigned long konst; /* KONST field. See below. */
689} Elf32_crinfo2;
690
691typedef struct
692{
693 bfd_byte info[4];
694 bfd_byte konst[4];
695 bfd_byte vaddr[4];
696} Elf32_External_crinfo;
697
698typedef struct
699{
700 bfd_byte info[4];
701 bfd_byte konst[4];
702} Elf32_External_crinfo2;
703
704/* These are the constants used to swap the bitfields in a crinfo. */
705
706#define CRINFO_CTYPE (0x1)
707#define CRINFO_CTYPE_SH (31)
708#define CRINFO_RTYPE (0xf)
709#define CRINFO_RTYPE_SH (27)
710#define CRINFO_DIST2TO (0xff)
711#define CRINFO_DIST2TO_SH (19)
712#define CRINFO_RELVADDR (0x7ffff)
713#define CRINFO_RELVADDR_SH (0)
714
715/* A compact relocation info has long (3 words) or short (2 words)
716 formats. A short format doesn't have VADDR field and relvaddr
717 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
718#define CRF_MIPS_LONG 1
719#define CRF_MIPS_SHORT 0
720
721/* There are 4 types of compact relocation at least. The value KONST
722 has different meaning for each type:
723
724 (type) (konst)
725 CT_MIPS_REL32 Address in data
726 CT_MIPS_WORD Address in word (XXX)
727 CT_MIPS_GPHI_LO GP - vaddr
728 CT_MIPS_JMPAD Address to jump
729 */
730
731#define CRT_MIPS_REL32 0xa
732#define CRT_MIPS_WORD 0xb
733#define CRT_MIPS_GPHI_LO 0xc
734#define CRT_MIPS_JMPAD 0xd
735
736#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
737#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
738#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
739#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
740\f
741/* The structure of the runtime procedure descriptor created by the
742 loader for use by the static exception system. */
743
744typedef struct runtime_pdr {
ae9a127f
NC
745 bfd_vma adr; /* Memory address of start of procedure. */
746 long regmask; /* Save register mask. */
747 long regoffset; /* Save register offset. */
748 long fregmask; /* Save floating point register mask. */
749 long fregoffset; /* Save floating point register offset. */
750 long frameoffset; /* Frame size. */
751 short framereg; /* Frame pointer register. */
752 short pcreg; /* Offset or reg of return pc. */
753 long irpss; /* Index into the runtime string table. */
b49e97c9 754 long reserved;
ae9a127f 755 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
756} RPDR, *pRPDR;
757#define cbRPDR sizeof (RPDR)
758#define rpdNil ((pRPDR) 0)
759\f
b15e6682 760static struct mips_got_entry *mips_elf_create_local_got_entry
a8028dd0
RS
761 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
762 struct mips_elf_link_hash_entry *, int);
b34976b6 763static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 764 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
765static bfd_vma mips_elf_high
766 (bfd_vma);
b34976b6 767static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
768 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
769 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
770 bfd_vma *, asection *);
f4416af6 771static bfd_vma mips_elf_adjust_gp
9719ad41 772 (bfd *, struct mips_got_info *, bfd *);
f4416af6 773
b49e97c9
TS
774/* This will be used when we sort the dynamic relocation records. */
775static bfd *reldyn_sorting_bfd;
776
6d30f5b2
NC
777/* True if ABFD is for CPUs with load interlocking that include
778 non-MIPS1 CPUs and R3900. */
779#define LOAD_INTERLOCKS_P(abfd) \
780 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
781 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
782
cd8d5a82
CF
783/* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
784 This should be safe for all architectures. We enable this predicate
785 for RM9000 for now. */
786#define JAL_TO_BAL_P(abfd) \
787 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
788
789/* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
790 This should be safe for all architectures. We enable this predicate for
791 all CPUs. */
792#define JALR_TO_BAL_P(abfd) 1
793
38a7df63
CF
794/* True if ABFD is for CPUs that are faster if JR is converted to B.
795 This should be safe for all architectures. We enable this predicate for
796 all CPUs. */
797#define JR_TO_B_P(abfd) 1
798
861fb55a
DJ
799/* True if ABFD is a PIC object. */
800#define PIC_OBJECT_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
802
351cdf24
MF
803/* Nonzero if ABFD is using the O32 ABI. */
804#define ABI_O32_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
806
b49e97c9 807/* Nonzero if ABFD is using the N32 ABI. */
b49e97c9
TS
808#define ABI_N32_P(abfd) \
809 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
810
4a14403c 811/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 812#define ABI_64_P(abfd) \
141ff970 813 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 814
4a14403c
TS
815/* Nonzero if ABFD is using NewABI conventions. */
816#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
817
e8faf7d1
MR
818/* Nonzero if ABFD has microMIPS code. */
819#define MICROMIPS_P(abfd) \
820 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
821
7361da2c
AB
822/* Nonzero if ABFD is MIPS R6. */
823#define MIPSR6_P(abfd) \
824 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
825 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
826
4a14403c 827/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
828#define IRIX_COMPAT(abfd) \
829 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
830
b49e97c9
TS
831/* Whether we are trying to be compatible with IRIX at all. */
832#define SGI_COMPAT(abfd) \
833 (IRIX_COMPAT (abfd) != ict_none)
834
835/* The name of the options section. */
836#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 837 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 838
cc2e31b9
RS
839/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
840 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
841#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
842 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
843
351cdf24
MF
844/* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
845#define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
846 (strcmp (NAME, ".MIPS.abiflags") == 0)
847
943284cc
DJ
848/* Whether the section is readonly. */
849#define MIPS_ELF_READONLY_SECTION(sec) \
850 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
851 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
852
b49e97c9 853/* The name of the stub section. */
ca07892d 854#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
855
856/* The size of an external REL relocation. */
857#define MIPS_ELF_REL_SIZE(abfd) \
858 (get_elf_backend_data (abfd)->s->sizeof_rel)
859
0a44bf69
RS
860/* The size of an external RELA relocation. */
861#define MIPS_ELF_RELA_SIZE(abfd) \
862 (get_elf_backend_data (abfd)->s->sizeof_rela)
863
b49e97c9
TS
864/* The size of an external dynamic table entry. */
865#define MIPS_ELF_DYN_SIZE(abfd) \
866 (get_elf_backend_data (abfd)->s->sizeof_dyn)
867
868/* The size of a GOT entry. */
869#define MIPS_ELF_GOT_SIZE(abfd) \
870 (get_elf_backend_data (abfd)->s->arch_size / 8)
871
b4082c70
DD
872/* The size of the .rld_map section. */
873#define MIPS_ELF_RLD_MAP_SIZE(abfd) \
874 (get_elf_backend_data (abfd)->s->arch_size / 8)
875
b49e97c9
TS
876/* The size of a symbol-table entry. */
877#define MIPS_ELF_SYM_SIZE(abfd) \
878 (get_elf_backend_data (abfd)->s->sizeof_sym)
879
880/* The default alignment for sections, as a power of two. */
881#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 882 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
883
884/* Get word-sized data. */
885#define MIPS_ELF_GET_WORD(abfd, ptr) \
886 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
887
888/* Put out word-sized data. */
889#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
07d6d2b8
AM
890 (ABI_64_P (abfd) \
891 ? bfd_put_64 (abfd, val, ptr) \
b49e97c9
TS
892 : bfd_put_32 (abfd, val, ptr))
893
861fb55a
DJ
894/* The opcode for word-sized loads (LW or LD). */
895#define MIPS_ELF_LOAD_WORD(abfd) \
896 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
897
b49e97c9 898/* Add a dynamic symbol table-entry. */
9719ad41 899#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 900 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
901
902#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
0aa13fee 903 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela))
b49e97c9 904
0a44bf69
RS
905/* The name of the dynamic relocation section. */
906#define MIPS_ELF_REL_DYN_NAME(INFO) \
907 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
908
b49e97c9
TS
909/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
910 from smaller values. Start with zero, widen, *then* decrement. */
911#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 912#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9 913
51e38d68
RS
914/* The value to write into got[1] for SVR4 targets, to identify it is
915 a GNU object. The dynamic linker can then use got[1] to store the
916 module pointer. */
917#define MIPS_ELF_GNU_GOT1_MASK(abfd) \
918 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
919
f4416af6 920/* The offset of $gp from the beginning of the .got section. */
0a44bf69
RS
921#define ELF_MIPS_GP_OFFSET(INFO) \
922 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
f4416af6
AO
923
924/* The maximum size of the GOT for it to be addressable using 16-bit
925 offsets from $gp. */
0a44bf69 926#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
f4416af6 927
6a691779 928/* Instructions which appear in a stub. */
3d6746ca
DD
929#define STUB_LW(abfd) \
930 ((ABI_64_P (abfd) \
931 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
07d6d2b8 932 : 0x8f998010)) /* lw t9,0x8010(gp) */
40fc1451 933#define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
3d6746ca 934#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
a18a2a34 935#define STUB_JALR 0x0320f809 /* jalr ra,t9 */
3734320d 936#define STUB_JALRC 0xf8190000 /* jalrc ra,t9 */
5108fc1b
RS
937#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
938#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
3d6746ca
DD
939#define STUB_LI16S(abfd, VAL) \
940 ((ABI_64_P (abfd) \
941 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
942 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
943
1bbce132
MR
944/* Likewise for the microMIPS ASE. */
945#define STUB_LW_MICROMIPS(abfd) \
946 (ABI_64_P (abfd) \
947 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
948 : 0xff3c8010) /* lw t9,0x8010(gp) */
949#define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
40fc1451 950#define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
1bbce132
MR
951#define STUB_LUI_MICROMIPS(VAL) \
952 (0x41b80000 + (VAL)) /* lui t8,VAL */
953#define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
833794fc 954#define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
1bbce132
MR
955#define STUB_ORI_MICROMIPS(VAL) \
956 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
957#define STUB_LI16U_MICROMIPS(VAL) \
958 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
959#define STUB_LI16S_MICROMIPS(abfd, VAL) \
960 (ABI_64_P (abfd) \
961 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
962 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
963
5108fc1b
RS
964#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
965#define MIPS_FUNCTION_STUB_BIG_SIZE 20
1bbce132
MR
966#define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
967#define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
833794fc
MR
968#define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
969#define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
b49e97c9
TS
970
971/* The name of the dynamic interpreter. This is put in the .interp
972 section. */
973
07d6d2b8
AM
974#define ELF_DYNAMIC_INTERPRETER(abfd) \
975 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
976 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
b49e97c9
TS
977 : "/usr/lib/libc.so.1")
978
979#ifdef BFD64
ee6423ed
AO
980#define MNAME(bfd,pre,pos) \
981 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
982#define ELF_R_SYM(bfd, i) \
983 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
984#define ELF_R_TYPE(bfd, i) \
985 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
986#define ELF_R_INFO(bfd, s, t) \
987 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
988#else
ee6423ed 989#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
990#define ELF_R_SYM(bfd, i) \
991 (ELF32_R_SYM (i))
992#define ELF_R_TYPE(bfd, i) \
993 (ELF32_R_TYPE (i))
994#define ELF_R_INFO(bfd, s, t) \
995 (ELF32_R_INFO (s, t))
996#endif
997\f
998 /* The mips16 compiler uses a couple of special sections to handle
999 floating point arguments.
1000
1001 Section names that look like .mips16.fn.FNNAME contain stubs that
1002 copy floating point arguments from the fp regs to the gp regs and
1003 then jump to FNNAME. If any 32 bit function calls FNNAME, the
1004 call should be redirected to the stub instead. If no 32 bit
1005 function calls FNNAME, the stub should be discarded. We need to
1006 consider any reference to the function, not just a call, because
1007 if the address of the function is taken we will need the stub,
1008 since the address might be passed to a 32 bit function.
1009
1010 Section names that look like .mips16.call.FNNAME contain stubs
1011 that copy floating point arguments from the gp regs to the fp
1012 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
1013 then any 16 bit function that calls FNNAME should be redirected
1014 to the stub instead. If FNNAME is not a 32 bit function, the
1015 stub should be discarded.
1016
1017 .mips16.call.fp.FNNAME sections are similar, but contain stubs
1018 which call FNNAME and then copy the return value from the fp regs
1019 to the gp regs. These stubs store the return value in $18 while
1020 calling FNNAME; any function which might call one of these stubs
1021 must arrange to save $18 around the call. (This case is not
1022 needed for 32 bit functions that call 16 bit functions, because
1023 16 bit functions always return floating point values in both
1024 $f0/$f1 and $2/$3.)
1025
1026 Note that in all cases FNNAME might be defined statically.
1027 Therefore, FNNAME is not used literally. Instead, the relocation
1028 information will indicate which symbol the section is for.
1029
1030 We record any stubs that we find in the symbol table. */
1031
1032#define FN_STUB ".mips16.fn."
1033#define CALL_STUB ".mips16.call."
1034#define CALL_FP_STUB ".mips16.call.fp."
b9d58d71
TS
1035
1036#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1037#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1038#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
b49e97c9 1039\f
861fb55a 1040/* The format of the first PLT entry in an O32 executable. */
6d30f5b2
NC
1041static const bfd_vma mips_o32_exec_plt0_entry[] =
1042{
861fb55a
DJ
1043 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1044 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1045 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1046 0x031cc023, /* subu $24, $24, $28 */
40fc1451 1047 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1048 0x0018c082, /* srl $24, $24, 2 */
1049 0x0320f809, /* jalr $25 */
1050 0x2718fffe /* subu $24, $24, 2 */
1051};
1052
3734320d
MF
1053/* The format of the first PLT entry in an O32 executable using compact
1054 jumps. */
1055static const bfd_vma mipsr6_o32_exec_plt0_entry_compact[] =
1056{
1057 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1058 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1059 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1060 0x031cc023, /* subu $24, $24, $28 */
1061 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1062 0x0018c082, /* srl $24, $24, 2 */
1063 0x2718fffe, /* subu $24, $24, 2 */
1064 0xf8190000 /* jalrc $25 */
1065};
1066
861fb55a
DJ
1067/* The format of the first PLT entry in an N32 executable. Different
1068 because gp ($28) is not available; we use t2 ($14) instead. */
6d30f5b2
NC
1069static const bfd_vma mips_n32_exec_plt0_entry[] =
1070{
861fb55a
DJ
1071 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1072 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1073 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1074 0x030ec023, /* subu $24, $24, $14 */
40fc1451 1075 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1076 0x0018c082, /* srl $24, $24, 2 */
1077 0x0320f809, /* jalr $25 */
1078 0x2718fffe /* subu $24, $24, 2 */
1079};
1080
3734320d
MF
1081/* The format of the first PLT entry in an N32 executable using compact
1082 jumps. Different because gp ($28) is not available; we use t2 ($14)
1083 instead. */
1084static const bfd_vma mipsr6_n32_exec_plt0_entry_compact[] =
1085{
1086 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1087 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1088 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1089 0x030ec023, /* subu $24, $24, $14 */
1090 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1091 0x0018c082, /* srl $24, $24, 2 */
1092 0x2718fffe, /* subu $24, $24, 2 */
1093 0xf8190000 /* jalrc $25 */
1094};
1095
861fb55a
DJ
1096/* The format of the first PLT entry in an N64 executable. Different
1097 from N32 because of the increased size of GOT entries. */
6d30f5b2
NC
1098static const bfd_vma mips_n64_exec_plt0_entry[] =
1099{
861fb55a
DJ
1100 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1101 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1102 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1103 0x030ec023, /* subu $24, $24, $14 */
40fc1451 1104 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1105 0x0018c0c2, /* srl $24, $24, 3 */
1106 0x0320f809, /* jalr $25 */
1107 0x2718fffe /* subu $24, $24, 2 */
1108};
1109
3734320d
MF
1110/* The format of the first PLT entry in an N64 executable using compact
1111 jumps. Different from N32 because of the increased size of GOT
1112 entries. */
1113static const bfd_vma mipsr6_n64_exec_plt0_entry_compact[] =
1114{
1115 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1116 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1117 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1118 0x030ec023, /* subu $24, $24, $14 */
1119 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
1120 0x0018c0c2, /* srl $24, $24, 3 */
1121 0x2718fffe, /* subu $24, $24, 2 */
1122 0xf8190000 /* jalrc $25 */
1123};
1124
1125
1bbce132
MR
1126/* The format of the microMIPS first PLT entry in an O32 executable.
1127 We rely on v0 ($2) rather than t8 ($24) to contain the address
1128 of the GOTPLT entry handled, so this stub may only be used when
1129 all the subsequent PLT entries are microMIPS code too.
1130
1131 The trailing NOP is for alignment and correct disassembly only. */
1132static const bfd_vma micromips_o32_exec_plt0_entry[] =
1133{
1134 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1135 0xff23, 0x0000, /* lw $25, 0($3) */
1136 0x0535, /* subu $2, $2, $3 */
1137 0x2525, /* srl $2, $2, 2 */
1138 0x3302, 0xfffe, /* subu $24, $2, 2 */
1139 0x0dff, /* move $15, $31 */
1140 0x45f9, /* jalrs $25 */
1141 0x0f83, /* move $28, $3 */
1142 0x0c00 /* nop */
1143};
1144
833794fc
MR
1145/* The format of the microMIPS first PLT entry in an O32 executable
1146 in the insn32 mode. */
1147static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1148{
1149 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1150 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1151 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1152 0x0398, 0xc1d0, /* subu $24, $24, $28 */
40fc1451 1153 0x001f, 0x7a90, /* or $15, $31, zero */
833794fc
MR
1154 0x0318, 0x1040, /* srl $24, $24, 2 */
1155 0x03f9, 0x0f3c, /* jalr $25 */
1156 0x3318, 0xfffe /* subu $24, $24, 2 */
1157};
1158
1bbce132 1159/* The format of subsequent standard PLT entries. */
6d30f5b2
NC
1160static const bfd_vma mips_exec_plt_entry[] =
1161{
861fb55a
DJ
1162 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1163 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1164 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1165 0x03200008 /* jr $25 */
1166};
1167
7361da2c
AB
1168static const bfd_vma mipsr6_exec_plt_entry[] =
1169{
1170 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1171 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1172 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1173 0x03200009 /* jr $25 */
1174};
1175
3734320d
MF
1176static const bfd_vma mipsr6_exec_plt_entry_compact[] =
1177{
1178 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1179 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1180 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1181 0xd8190000 /* jic $25, 0 */
1182};
1183
1bbce132
MR
1184/* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1185 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1186 directly addressable. */
1187static const bfd_vma mips16_o32_exec_plt_entry[] =
1188{
1189 0xb203, /* lw $2, 12($pc) */
1190 0x9a60, /* lw $3, 0($2) */
1191 0x651a, /* move $24, $2 */
1192 0xeb00, /* jr $3 */
1193 0x653b, /* move $25, $3 */
1194 0x6500, /* nop */
1195 0x0000, 0x0000 /* .word (.got.plt entry) */
1196};
1197
1198/* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1199 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1200static const bfd_vma micromips_o32_exec_plt_entry[] =
1201{
1202 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1203 0xff22, 0x0000, /* lw $25, 0($2) */
1204 0x4599, /* jr $25 */
1205 0x0f02 /* move $24, $2 */
1206};
1207
833794fc
MR
1208/* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1209static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1210{
1211 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1212 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1213 0x0019, 0x0f3c, /* jr $25 */
1214 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1215};
1216
0a44bf69 1217/* The format of the first PLT entry in a VxWorks executable. */
6d30f5b2
NC
1218static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1219{
0a44bf69
RS
1220 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1221 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1222 0x8f390008, /* lw t9, 8(t9) */
1223 0x00000000, /* nop */
1224 0x03200008, /* jr t9 */
1225 0x00000000 /* nop */
1226};
1227
1228/* The format of subsequent PLT entries. */
6d30f5b2
NC
1229static const bfd_vma mips_vxworks_exec_plt_entry[] =
1230{
0a44bf69
RS
1231 0x10000000, /* b .PLT_resolver */
1232 0x24180000, /* li t8, <pltindex> */
1233 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1234 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1235 0x8f390000, /* lw t9, 0(t9) */
1236 0x00000000, /* nop */
1237 0x03200008, /* jr t9 */
1238 0x00000000 /* nop */
1239};
1240
1241/* The format of the first PLT entry in a VxWorks shared object. */
6d30f5b2
NC
1242static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1243{
0a44bf69
RS
1244 0x8f990008, /* lw t9, 8(gp) */
1245 0x00000000, /* nop */
1246 0x03200008, /* jr t9 */
1247 0x00000000, /* nop */
1248 0x00000000, /* nop */
1249 0x00000000 /* nop */
1250};
1251
1252/* The format of subsequent PLT entries. */
6d30f5b2
NC
1253static const bfd_vma mips_vxworks_shared_plt_entry[] =
1254{
0a44bf69
RS
1255 0x10000000, /* b .PLT_resolver */
1256 0x24180000 /* li t8, <pltindex> */
1257};
1258\f
d21911ea
MR
1259/* microMIPS 32-bit opcode helper installer. */
1260
1261static void
1262bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1263{
1264 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
07d6d2b8 1265 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
d21911ea
MR
1266}
1267
1268/* microMIPS 32-bit opcode helper retriever. */
1269
1270static bfd_vma
1271bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1272{
1273 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1274}
1275\f
b49e97c9
TS
1276/* Look up an entry in a MIPS ELF linker hash table. */
1277
1278#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1279 ((struct mips_elf_link_hash_entry *) \
1280 elf_link_hash_lookup (&(table)->root, (string), (create), \
1281 (copy), (follow)))
1282
1283/* Traverse a MIPS ELF linker hash table. */
1284
1285#define mips_elf_link_hash_traverse(table, func, info) \
1286 (elf_link_hash_traverse \
1287 (&(table)->root, \
9719ad41 1288 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
1289 (info)))
1290
0f20cc35
DJ
1291/* Find the base offsets for thread-local storage in this object,
1292 for GD/LD and IE/LE respectively. */
1293
1294#define TP_OFFSET 0x7000
1295#define DTP_OFFSET 0x8000
1296
1297static bfd_vma
1298dtprel_base (struct bfd_link_info *info)
1299{
1300 /* If tls_sec is NULL, we should have signalled an error already. */
1301 if (elf_hash_table (info)->tls_sec == NULL)
1302 return 0;
1303 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1304}
1305
1306static bfd_vma
1307tprel_base (struct bfd_link_info *info)
1308{
1309 /* If tls_sec is NULL, we should have signalled an error already. */
1310 if (elf_hash_table (info)->tls_sec == NULL)
1311 return 0;
1312 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1313}
1314
b49e97c9
TS
1315/* Create an entry in a MIPS ELF linker hash table. */
1316
1317static struct bfd_hash_entry *
9719ad41
RS
1318mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1319 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
1320{
1321 struct mips_elf_link_hash_entry *ret =
1322 (struct mips_elf_link_hash_entry *) entry;
1323
1324 /* Allocate the structure if it has not already been allocated by a
1325 subclass. */
9719ad41
RS
1326 if (ret == NULL)
1327 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1328 if (ret == NULL)
b49e97c9
TS
1329 return (struct bfd_hash_entry *) ret;
1330
1331 /* Call the allocation method of the superclass. */
1332 ret = ((struct mips_elf_link_hash_entry *)
1333 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1334 table, string));
9719ad41 1335 if (ret != NULL)
b49e97c9
TS
1336 {
1337 /* Set local fields. */
1338 memset (&ret->esym, 0, sizeof (EXTR));
1339 /* We use -2 as a marker to indicate that the information has
1340 not been set. -1 means there is no associated ifd. */
1341 ret->esym.ifd = -2;
861fb55a 1342 ret->la25_stub = 0;
b49e97c9 1343 ret->possibly_dynamic_relocs = 0;
b49e97c9 1344 ret->fn_stub = NULL;
b49e97c9
TS
1345 ret->call_stub = NULL;
1346 ret->call_fp_stub = NULL;
f16a9783 1347 ret->mipsxhash_loc = 0;
634835ae 1348 ret->global_got_area = GGA_NONE;
6ccf4795 1349 ret->got_only_for_calls = TRUE;
71782a75 1350 ret->readonly_reloc = FALSE;
861fb55a 1351 ret->has_static_relocs = FALSE;
71782a75
RS
1352 ret->no_fn_stub = FALSE;
1353 ret->need_fn_stub = FALSE;
861fb55a 1354 ret->has_nonpic_branches = FALSE;
33bb52fb 1355 ret->needs_lazy_stub = FALSE;
1bbce132 1356 ret->use_plt_entry = FALSE;
b49e97c9
TS
1357 }
1358
1359 return (struct bfd_hash_entry *) ret;
1360}
f0abc2a1 1361
6ae68ba3
MR
1362/* Allocate MIPS ELF private object data. */
1363
1364bfd_boolean
1365_bfd_mips_elf_mkobject (bfd *abfd)
1366{
1367 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1368 MIPS_ELF_DATA);
1369}
1370
f0abc2a1 1371bfd_boolean
9719ad41 1372_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 1373{
f592407e
AM
1374 if (!sec->used_by_bfd)
1375 {
1376 struct _mips_elf_section_data *sdata;
986f0783 1377 size_t amt = sizeof (*sdata);
f0abc2a1 1378
f592407e
AM
1379 sdata = bfd_zalloc (abfd, amt);
1380 if (sdata == NULL)
1381 return FALSE;
1382 sec->used_by_bfd = sdata;
1383 }
f0abc2a1
AM
1384
1385 return _bfd_elf_new_section_hook (abfd, sec);
1386}
b49e97c9
TS
1387\f
1388/* Read ECOFF debugging information from a .mdebug section into a
1389 ecoff_debug_info structure. */
1390
b34976b6 1391bfd_boolean
9719ad41
RS
1392_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1393 struct ecoff_debug_info *debug)
b49e97c9
TS
1394{
1395 HDRR *symhdr;
1396 const struct ecoff_debug_swap *swap;
9719ad41 1397 char *ext_hdr;
b49e97c9
TS
1398
1399 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1400 memset (debug, 0, sizeof (*debug));
1401
9719ad41 1402 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
1403 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1404 goto error_return;
1405
9719ad41 1406 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 1407 swap->external_hdr_size))
b49e97c9
TS
1408 goto error_return;
1409
1410 symhdr = &debug->symbolic_header;
1411 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1412
1413 /* The symbolic header contains absolute file offsets and sizes to
1414 read. */
1415#define READ(ptr, offset, count, size, type) \
1f4361a7 1416 do \
b49e97c9 1417 { \
1f4361a7
AM
1418 size_t amt; \
1419 debug->ptr = NULL; \
1420 if (symhdr->count == 0) \
1421 break; \
1422 if (_bfd_mul_overflow (size, symhdr->count, &amt)) \
1423 { \
1424 bfd_set_error (bfd_error_file_too_big); \
1425 goto error_return; \
1426 } \
2bb3687b 1427 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0) \
b49e97c9 1428 goto error_return; \
2bb3687b
AM
1429 debug->ptr = (type) _bfd_malloc_and_read (abfd, amt, amt); \
1430 if (debug->ptr == NULL) \
b49e97c9 1431 goto error_return; \
1f4361a7 1432 } while (0)
b49e97c9
TS
1433
1434 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
1435 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1436 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1437 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1438 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
1439 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1440 union aux_ext *);
1441 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1442 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
1443 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1444 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1445 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
1446#undef READ
1447
1448 debug->fdr = NULL;
b49e97c9 1449
b34976b6 1450 return TRUE;
b49e97c9
TS
1451
1452 error_return:
c9594989
AM
1453 free (ext_hdr);
1454 free (debug->line);
1455 free (debug->external_dnr);
1456 free (debug->external_pdr);
1457 free (debug->external_sym);
1458 free (debug->external_opt);
1459 free (debug->external_aux);
1460 free (debug->ss);
1461 free (debug->ssext);
1462 free (debug->external_fdr);
1463 free (debug->external_rfd);
1464 free (debug->external_ext);
b34976b6 1465 return FALSE;
b49e97c9
TS
1466}
1467\f
1468/* Swap RPDR (runtime procedure table entry) for output. */
1469
1470static void
9719ad41 1471ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
1472{
1473 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1474 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1475 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1476 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1477 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1478 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1479
1480 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1481 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1482
1483 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
1484}
1485
1486/* Create a runtime procedure table from the .mdebug section. */
1487
b34976b6 1488static bfd_boolean
9719ad41
RS
1489mips_elf_create_procedure_table (void *handle, bfd *abfd,
1490 struct bfd_link_info *info, asection *s,
1491 struct ecoff_debug_info *debug)
b49e97c9
TS
1492{
1493 const struct ecoff_debug_swap *swap;
1494 HDRR *hdr = &debug->symbolic_header;
1495 RPDR *rpdr, *rp;
1496 struct rpdr_ext *erp;
9719ad41 1497 void *rtproc;
b49e97c9
TS
1498 struct pdr_ext *epdr;
1499 struct sym_ext *esym;
1500 char *ss, **sv;
1501 char *str;
1502 bfd_size_type size;
1503 bfd_size_type count;
1504 unsigned long sindex;
1505 unsigned long i;
1506 PDR pdr;
1507 SYMR sym;
1508 const char *no_name_func = _("static procedure (no name)");
1509
1510 epdr = NULL;
1511 rpdr = NULL;
1512 esym = NULL;
1513 ss = NULL;
1514 sv = NULL;
1515
1516 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1517
1518 sindex = strlen (no_name_func) + 1;
1519 count = hdr->ipdMax;
1520 if (count > 0)
1521 {
1522 size = swap->external_pdr_size;
1523
9719ad41 1524 epdr = bfd_malloc (size * count);
b49e97c9
TS
1525 if (epdr == NULL)
1526 goto error_return;
1527
9719ad41 1528 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
1529 goto error_return;
1530
1531 size = sizeof (RPDR);
9719ad41 1532 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
1533 if (rpdr == NULL)
1534 goto error_return;
1535
1536 size = sizeof (char *);
9719ad41 1537 sv = bfd_malloc (size * count);
b49e97c9
TS
1538 if (sv == NULL)
1539 goto error_return;
1540
1541 count = hdr->isymMax;
1542 size = swap->external_sym_size;
9719ad41 1543 esym = bfd_malloc (size * count);
b49e97c9
TS
1544 if (esym == NULL)
1545 goto error_return;
1546
9719ad41 1547 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
1548 goto error_return;
1549
1550 count = hdr->issMax;
9719ad41 1551 ss = bfd_malloc (count);
b49e97c9
TS
1552 if (ss == NULL)
1553 goto error_return;
f075ee0c 1554 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
1555 goto error_return;
1556
1557 count = hdr->ipdMax;
1558 for (i = 0; i < (unsigned long) count; i++, rp++)
1559 {
9719ad41
RS
1560 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1561 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
1562 rp->adr = sym.value;
1563 rp->regmask = pdr.regmask;
1564 rp->regoffset = pdr.regoffset;
1565 rp->fregmask = pdr.fregmask;
1566 rp->fregoffset = pdr.fregoffset;
1567 rp->frameoffset = pdr.frameoffset;
1568 rp->framereg = pdr.framereg;
1569 rp->pcreg = pdr.pcreg;
1570 rp->irpss = sindex;
1571 sv[i] = ss + sym.iss;
1572 sindex += strlen (sv[i]) + 1;
1573 }
1574 }
1575
1576 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1577 size = BFD_ALIGN (size, 16);
9719ad41 1578 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
1579 if (rtproc == NULL)
1580 {
1581 mips_elf_hash_table (info)->procedure_count = 0;
1582 goto error_return;
1583 }
1584
1585 mips_elf_hash_table (info)->procedure_count = count + 2;
1586
9719ad41 1587 erp = rtproc;
b49e97c9
TS
1588 memset (erp, 0, sizeof (struct rpdr_ext));
1589 erp++;
1590 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1591 strcpy (str, no_name_func);
1592 str += strlen (no_name_func) + 1;
1593 for (i = 0; i < count; i++)
1594 {
1595 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1596 strcpy (str, sv[i]);
1597 str += strlen (sv[i]) + 1;
1598 }
1599 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1600
1601 /* Set the size and contents of .rtproc section. */
eea6121a 1602 s->size = size;
9719ad41 1603 s->contents = rtproc;
b49e97c9
TS
1604
1605 /* Skip this section later on (I don't think this currently
1606 matters, but someday it might). */
8423293d 1607 s->map_head.link_order = NULL;
b49e97c9 1608
c9594989
AM
1609 free (epdr);
1610 free (rpdr);
1611 free (esym);
1612 free (ss);
1613 free (sv);
b34976b6 1614 return TRUE;
b49e97c9
TS
1615
1616 error_return:
c9594989
AM
1617 free (epdr);
1618 free (rpdr);
1619 free (esym);
1620 free (ss);
1621 free (sv);
b34976b6 1622 return FALSE;
b49e97c9 1623}
738e5348 1624\f
861fb55a
DJ
1625/* We're going to create a stub for H. Create a symbol for the stub's
1626 value and size, to help make the disassembly easier to read. */
1627
1628static bfd_boolean
1629mips_elf_create_stub_symbol (struct bfd_link_info *info,
1630 struct mips_elf_link_hash_entry *h,
1631 const char *prefix, asection *s, bfd_vma value,
1632 bfd_vma size)
1633{
a848a227 1634 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
861fb55a
DJ
1635 struct bfd_link_hash_entry *bh;
1636 struct elf_link_hash_entry *elfh;
e1fa0163
NC
1637 char *name;
1638 bfd_boolean res;
861fb55a 1639
a848a227 1640 if (micromips_p)
df58fc94
RS
1641 value |= 1;
1642
861fb55a 1643 /* Create a new symbol. */
e1fa0163 1644 name = concat (prefix, h->root.root.root.string, NULL);
861fb55a 1645 bh = NULL;
e1fa0163
NC
1646 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1647 BSF_LOCAL, s, value, NULL,
1648 TRUE, FALSE, &bh);
1649 free (name);
1650 if (! res)
861fb55a
DJ
1651 return FALSE;
1652
1653 /* Make it a local function. */
1654 elfh = (struct elf_link_hash_entry *) bh;
1655 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1656 elfh->size = size;
1657 elfh->forced_local = 1;
a848a227
MR
1658 if (micromips_p)
1659 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
861fb55a
DJ
1660 return TRUE;
1661}
1662
738e5348
RS
1663/* We're about to redefine H. Create a symbol to represent H's
1664 current value and size, to help make the disassembly easier
1665 to read. */
1666
1667static bfd_boolean
1668mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1669 struct mips_elf_link_hash_entry *h,
1670 const char *prefix)
1671{
1672 struct bfd_link_hash_entry *bh;
1673 struct elf_link_hash_entry *elfh;
e1fa0163 1674 char *name;
738e5348
RS
1675 asection *s;
1676 bfd_vma value;
e1fa0163 1677 bfd_boolean res;
738e5348
RS
1678
1679 /* Read the symbol's value. */
1680 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1681 || h->root.root.type == bfd_link_hash_defweak);
1682 s = h->root.root.u.def.section;
1683 value = h->root.root.u.def.value;
1684
1685 /* Create a new symbol. */
e1fa0163 1686 name = concat (prefix, h->root.root.root.string, NULL);
738e5348 1687 bh = NULL;
e1fa0163
NC
1688 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1689 BSF_LOCAL, s, value, NULL,
1690 TRUE, FALSE, &bh);
1691 free (name);
1692 if (! res)
738e5348
RS
1693 return FALSE;
1694
1695 /* Make it local and copy the other attributes from H. */
1696 elfh = (struct elf_link_hash_entry *) bh;
1697 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1698 elfh->other = h->root.other;
1699 elfh->size = h->root.size;
1700 elfh->forced_local = 1;
1701 return TRUE;
1702}
1703
1704/* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1705 function rather than to a hard-float stub. */
1706
1707static bfd_boolean
1708section_allows_mips16_refs_p (asection *section)
1709{
1710 const char *name;
1711
fd361982 1712 name = bfd_section_name (section);
738e5348
RS
1713 return (FN_STUB_P (name)
1714 || CALL_STUB_P (name)
1715 || CALL_FP_STUB_P (name)
1716 || strcmp (name, ".pdr") == 0);
1717}
1718
1719/* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1720 stub section of some kind. Return the R_SYMNDX of the target
1721 function, or 0 if we can't decide which function that is. */
1722
1723static unsigned long
cb4437b8
MR
1724mips16_stub_symndx (const struct elf_backend_data *bed,
1725 asection *sec ATTRIBUTE_UNUSED,
502e814e 1726 const Elf_Internal_Rela *relocs,
738e5348
RS
1727 const Elf_Internal_Rela *relend)
1728{
cb4437b8 1729 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
738e5348
RS
1730 const Elf_Internal_Rela *rel;
1731
cb4437b8
MR
1732 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1733 one in a compound relocation. */
1734 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
738e5348
RS
1735 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1736 return ELF_R_SYM (sec->owner, rel->r_info);
1737
1738 /* Otherwise trust the first relocation, whatever its kind. This is
1739 the traditional behavior. */
1740 if (relocs < relend)
1741 return ELF_R_SYM (sec->owner, relocs->r_info);
1742
1743 return 0;
1744}
b49e97c9
TS
1745
1746/* Check the mips16 stubs for a particular symbol, and see if we can
1747 discard them. */
1748
861fb55a
DJ
1749static void
1750mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1751 struct mips_elf_link_hash_entry *h)
b49e97c9 1752{
738e5348
RS
1753 /* Dynamic symbols must use the standard call interface, in case other
1754 objects try to call them. */
1755 if (h->fn_stub != NULL
1756 && h->root.dynindx != -1)
1757 {
1758 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1759 h->need_fn_stub = TRUE;
1760 }
1761
b49e97c9
TS
1762 if (h->fn_stub != NULL
1763 && ! h->need_fn_stub)
1764 {
1765 /* We don't need the fn_stub; the only references to this symbol
07d6d2b8
AM
1766 are 16 bit calls. Clobber the size to 0 to prevent it from
1767 being included in the link. */
eea6121a 1768 h->fn_stub->size = 0;
b49e97c9
TS
1769 h->fn_stub->flags &= ~SEC_RELOC;
1770 h->fn_stub->reloc_count = 0;
1771 h->fn_stub->flags |= SEC_EXCLUDE;
ca9584fb 1772 h->fn_stub->output_section = bfd_abs_section_ptr;
b49e97c9
TS
1773 }
1774
1775 if (h->call_stub != NULL
30c09090 1776 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1777 {
1778 /* We don't need the call_stub; this is a 16 bit function, so
07d6d2b8
AM
1779 calls from other 16 bit functions are OK. Clobber the size
1780 to 0 to prevent it from being included in the link. */
eea6121a 1781 h->call_stub->size = 0;
b49e97c9
TS
1782 h->call_stub->flags &= ~SEC_RELOC;
1783 h->call_stub->reloc_count = 0;
1784 h->call_stub->flags |= SEC_EXCLUDE;
ca9584fb 1785 h->call_stub->output_section = bfd_abs_section_ptr;
b49e97c9
TS
1786 }
1787
1788 if (h->call_fp_stub != NULL
30c09090 1789 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1790 {
1791 /* We don't need the call_stub; this is a 16 bit function, so
07d6d2b8
AM
1792 calls from other 16 bit functions are OK. Clobber the size
1793 to 0 to prevent it from being included in the link. */
eea6121a 1794 h->call_fp_stub->size = 0;
b49e97c9
TS
1795 h->call_fp_stub->flags &= ~SEC_RELOC;
1796 h->call_fp_stub->reloc_count = 0;
1797 h->call_fp_stub->flags |= SEC_EXCLUDE;
ca9584fb 1798 h->call_fp_stub->output_section = bfd_abs_section_ptr;
b49e97c9 1799 }
861fb55a
DJ
1800}
1801
1802/* Hashtable callbacks for mips_elf_la25_stubs. */
1803
1804static hashval_t
1805mips_elf_la25_stub_hash (const void *entry_)
1806{
1807 const struct mips_elf_la25_stub *entry;
1808
1809 entry = (struct mips_elf_la25_stub *) entry_;
1810 return entry->h->root.root.u.def.section->id
1811 + entry->h->root.root.u.def.value;
1812}
1813
1814static int
1815mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1816{
1817 const struct mips_elf_la25_stub *entry1, *entry2;
1818
1819 entry1 = (struct mips_elf_la25_stub *) entry1_;
1820 entry2 = (struct mips_elf_la25_stub *) entry2_;
1821 return ((entry1->h->root.root.u.def.section
1822 == entry2->h->root.root.u.def.section)
1823 && (entry1->h->root.root.u.def.value
1824 == entry2->h->root.root.u.def.value));
1825}
1826
1827/* Called by the linker to set up the la25 stub-creation code. FN is
1828 the linker's implementation of add_stub_function. Return true on
1829 success. */
1830
1831bfd_boolean
1832_bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1833 asection *(*fn) (const char *, asection *,
1834 asection *))
1835{
1836 struct mips_elf_link_hash_table *htab;
1837
1838 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1839 if (htab == NULL)
1840 return FALSE;
1841
861fb55a
DJ
1842 htab->add_stub_section = fn;
1843 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1844 mips_elf_la25_stub_eq, NULL);
1845 if (htab->la25_stubs == NULL)
1846 return FALSE;
1847
1848 return TRUE;
1849}
1850
1851/* Return true if H is a locally-defined PIC function, in the sense
8f0c309a
CLT
1852 that it or its fn_stub might need $25 to be valid on entry.
1853 Note that MIPS16 functions set up $gp using PC-relative instructions,
1854 so they themselves never need $25 to be valid. Only non-MIPS16
1855 entry points are of interest here. */
861fb55a
DJ
1856
1857static bfd_boolean
1858mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1859{
1860 return ((h->root.root.type == bfd_link_hash_defined
1861 || h->root.root.type == bfd_link_hash_defweak)
1862 && h->root.def_regular
1863 && !bfd_is_abs_section (h->root.root.u.def.section)
f02cb058 1864 && !bfd_is_und_section (h->root.root.u.def.section)
8f0c309a
CLT
1865 && (!ELF_ST_IS_MIPS16 (h->root.other)
1866 || (h->fn_stub && h->need_fn_stub))
861fb55a
DJ
1867 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1868 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1869}
1870
8f0c309a
CLT
1871/* Set *SEC to the input section that contains the target of STUB.
1872 Return the offset of the target from the start of that section. */
1873
1874static bfd_vma
1875mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1876 asection **sec)
1877{
1878 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1879 {
1880 BFD_ASSERT (stub->h->need_fn_stub);
1881 *sec = stub->h->fn_stub;
1882 return 0;
1883 }
1884 else
1885 {
1886 *sec = stub->h->root.root.u.def.section;
1887 return stub->h->root.root.u.def.value;
1888 }
1889}
1890
861fb55a
DJ
1891/* STUB describes an la25 stub that we have decided to implement
1892 by inserting an LUI/ADDIU pair before the target function.
1893 Create the section and redirect the function symbol to it. */
1894
1895static bfd_boolean
1896mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1897 struct bfd_link_info *info)
1898{
1899 struct mips_elf_link_hash_table *htab;
1900 char *name;
1901 asection *s, *input_section;
1902 unsigned int align;
1903
1904 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1905 if (htab == NULL)
1906 return FALSE;
861fb55a
DJ
1907
1908 /* Create a unique name for the new section. */
1909 name = bfd_malloc (11 + sizeof (".text.stub."));
1910 if (name == NULL)
1911 return FALSE;
1912 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1913
1914 /* Create the section. */
8f0c309a 1915 mips_elf_get_la25_target (stub, &input_section);
861fb55a
DJ
1916 s = htab->add_stub_section (name, input_section,
1917 input_section->output_section);
1918 if (s == NULL)
1919 return FALSE;
1920
1921 /* Make sure that any padding goes before the stub. */
1922 align = input_section->alignment_power;
fd361982 1923 if (!bfd_set_section_alignment (s, align))
861fb55a
DJ
1924 return FALSE;
1925 if (align > 3)
1926 s->size = (1 << align) - 8;
1927
1928 /* Create a symbol for the stub. */
1929 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1930 stub->stub_section = s;
1931 stub->offset = s->size;
1932
1933 /* Allocate room for it. */
1934 s->size += 8;
1935 return TRUE;
1936}
1937
1938/* STUB describes an la25 stub that we have decided to implement
1939 with a separate trampoline. Allocate room for it and redirect
1940 the function symbol to it. */
1941
1942static bfd_boolean
1943mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1944 struct bfd_link_info *info)
1945{
1946 struct mips_elf_link_hash_table *htab;
1947 asection *s;
1948
1949 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1950 if (htab == NULL)
1951 return FALSE;
861fb55a
DJ
1952
1953 /* Create a trampoline section, if we haven't already. */
1954 s = htab->strampoline;
1955 if (s == NULL)
1956 {
1957 asection *input_section = stub->h->root.root.u.def.section;
1958 s = htab->add_stub_section (".text", NULL,
1959 input_section->output_section);
fd361982 1960 if (s == NULL || !bfd_set_section_alignment (s, 4))
861fb55a
DJ
1961 return FALSE;
1962 htab->strampoline = s;
1963 }
1964
1965 /* Create a symbol for the stub. */
1966 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1967 stub->stub_section = s;
1968 stub->offset = s->size;
1969
1970 /* Allocate room for it. */
1971 s->size += 16;
1972 return TRUE;
1973}
1974
1975/* H describes a symbol that needs an la25 stub. Make sure that an
1976 appropriate stub exists and point H at it. */
1977
1978static bfd_boolean
1979mips_elf_add_la25_stub (struct bfd_link_info *info,
1980 struct mips_elf_link_hash_entry *h)
1981{
1982 struct mips_elf_link_hash_table *htab;
1983 struct mips_elf_la25_stub search, *stub;
1984 bfd_boolean use_trampoline_p;
1985 asection *s;
1986 bfd_vma value;
1987 void **slot;
1988
861fb55a
DJ
1989 /* Describe the stub we want. */
1990 search.stub_section = NULL;
1991 search.offset = 0;
1992 search.h = h;
1993
1994 /* See if we've already created an equivalent stub. */
1995 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1996 if (htab == NULL)
1997 return FALSE;
1998
861fb55a
DJ
1999 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
2000 if (slot == NULL)
2001 return FALSE;
2002
2003 stub = (struct mips_elf_la25_stub *) *slot;
2004 if (stub != NULL)
2005 {
2006 /* We can reuse the existing stub. */
2007 h->la25_stub = stub;
2008 return TRUE;
2009 }
2010
2011 /* Create a permanent copy of ENTRY and add it to the hash table. */
2012 stub = bfd_malloc (sizeof (search));
2013 if (stub == NULL)
2014 return FALSE;
2015 *stub = search;
2016 *slot = stub;
2017
8f0c309a
CLT
2018 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
2019 of the section and if we would need no more than 2 nops. */
2020 value = mips_elf_get_la25_target (stub, &s);
fe152e64
MR
2021 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
2022 value &= ~1;
8f0c309a
CLT
2023 use_trampoline_p = (value != 0 || s->alignment_power > 4);
2024
861fb55a
DJ
2025 h->la25_stub = stub;
2026 return (use_trampoline_p
2027 ? mips_elf_add_la25_trampoline (stub, info)
2028 : mips_elf_add_la25_intro (stub, info));
2029}
2030
2031/* A mips_elf_link_hash_traverse callback that is called before sizing
2032 sections. DATA points to a mips_htab_traverse_info structure. */
2033
2034static bfd_boolean
2035mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
2036{
2037 struct mips_htab_traverse_info *hti;
2038
2039 hti = (struct mips_htab_traverse_info *) data;
0e1862bb 2040 if (!bfd_link_relocatable (hti->info))
861fb55a 2041 mips_elf_check_mips16_stubs (hti->info, h);
b49e97c9 2042
861fb55a
DJ
2043 if (mips_elf_local_pic_function_p (h))
2044 {
ba85c43e
NC
2045 /* PR 12845: If H is in a section that has been garbage
2046 collected it will have its output section set to *ABS*. */
2047 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
2048 return TRUE;
2049
861fb55a
DJ
2050 /* H is a function that might need $25 to be valid on entry.
2051 If we're creating a non-PIC relocatable object, mark H as
2052 being PIC. If we're creating a non-relocatable object with
2053 non-PIC branches and jumps to H, make sure that H has an la25
2054 stub. */
0e1862bb 2055 if (bfd_link_relocatable (hti->info))
861fb55a
DJ
2056 {
2057 if (!PIC_OBJECT_P (hti->output_bfd))
2058 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2059 }
2060 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2061 {
2062 hti->error = TRUE;
2063 return FALSE;
2064 }
2065 }
b34976b6 2066 return TRUE;
b49e97c9
TS
2067}
2068\f
d6f16593
MR
2069/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2070 Most mips16 instructions are 16 bits, but these instructions
2071 are 32 bits.
2072
2073 The format of these instructions is:
2074
2075 +--------------+--------------------------------+
2076 | JALX | X| Imm 20:16 | Imm 25:21 |
2077 +--------------+--------------------------------+
07d6d2b8 2078 | Immediate 15:0 |
d6f16593
MR
2079 +-----------------------------------------------+
2080
2081 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2082 Note that the immediate value in the first word is swapped.
2083
2084 When producing a relocatable object file, R_MIPS16_26 is
2085 handled mostly like R_MIPS_26. In particular, the addend is
2086 stored as a straight 26-bit value in a 32-bit instruction.
2087 (gas makes life simpler for itself by never adjusting a
2088 R_MIPS16_26 reloc to be against a section, so the addend is
2089 always zero). However, the 32 bit instruction is stored as 2
2090 16-bit values, rather than a single 32-bit value. In a
2091 big-endian file, the result is the same; in a little-endian
2092 file, the two 16-bit halves of the 32 bit value are swapped.
2093 This is so that a disassembler can recognize the jal
2094 instruction.
2095
2096 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2097 instruction stored as two 16-bit values. The addend A is the
2098 contents of the targ26 field. The calculation is the same as
2099 R_MIPS_26. When storing the calculated value, reorder the
2100 immediate value as shown above, and don't forget to store the
2101 value as two 16-bit values.
2102
2103 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2104 defined as
2105
2106 big-endian:
2107 +--------+----------------------+
07d6d2b8
AM
2108 | | |
2109 | | targ26-16 |
2110 |31 26|25 0|
d6f16593
MR
2111 +--------+----------------------+
2112
2113 little-endian:
2114 +----------+------+-------------+
07d6d2b8
AM
2115 | | | |
2116 | sub1 | | sub2 |
2117 |0 9|10 15|16 31|
d6f16593
MR
2118 +----------+--------------------+
2119 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2120 ((sub1 << 16) | sub2)).
2121
2122 When producing a relocatable object file, the calculation is
2123 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2124 When producing a fully linked file, the calculation is
2125 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2126 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2127
738e5348
RS
2128 The table below lists the other MIPS16 instruction relocations.
2129 Each one is calculated in the same way as the non-MIPS16 relocation
2130 given on the right, but using the extended MIPS16 layout of 16-bit
2131 immediate fields:
2132
2133 R_MIPS16_GPREL R_MIPS_GPREL16
2134 R_MIPS16_GOT16 R_MIPS_GOT16
2135 R_MIPS16_CALL16 R_MIPS_CALL16
2136 R_MIPS16_HI16 R_MIPS_HI16
2137 R_MIPS16_LO16 R_MIPS_LO16
2138
2139 A typical instruction will have a format like this:
d6f16593
MR
2140
2141 +--------------+--------------------------------+
2142 | EXTEND | Imm 10:5 | Imm 15:11 |
2143 +--------------+--------------------------------+
2144 | Major | rx | ry | Imm 4:0 |
2145 +--------------+--------------------------------+
2146
2147 EXTEND is the five bit value 11110. Major is the instruction
2148 opcode.
2149
738e5348
RS
2150 All we need to do here is shuffle the bits appropriately.
2151 As above, the two 16-bit halves must be swapped on a
c9775dde
MR
2152 little-endian system.
2153
2154 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2155 relocatable field is shifted by 1 rather than 2 and the same bit
2156 shuffling is done as with the relocations above. */
738e5348
RS
2157
2158static inline bfd_boolean
2159mips16_reloc_p (int r_type)
2160{
2161 switch (r_type)
2162 {
2163 case R_MIPS16_26:
2164 case R_MIPS16_GPREL:
2165 case R_MIPS16_GOT16:
2166 case R_MIPS16_CALL16:
2167 case R_MIPS16_HI16:
2168 case R_MIPS16_LO16:
d0f13682
CLT
2169 case R_MIPS16_TLS_GD:
2170 case R_MIPS16_TLS_LDM:
2171 case R_MIPS16_TLS_DTPREL_HI16:
2172 case R_MIPS16_TLS_DTPREL_LO16:
2173 case R_MIPS16_TLS_GOTTPREL:
2174 case R_MIPS16_TLS_TPREL_HI16:
2175 case R_MIPS16_TLS_TPREL_LO16:
c9775dde 2176 case R_MIPS16_PC16_S1:
738e5348
RS
2177 return TRUE;
2178
2179 default:
2180 return FALSE;
2181 }
2182}
2183
df58fc94
RS
2184/* Check if a microMIPS reloc. */
2185
2186static inline bfd_boolean
2187micromips_reloc_p (unsigned int r_type)
2188{
2189 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2190}
2191
2192/* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2193 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2194 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2195
2196static inline bfd_boolean
2197micromips_reloc_shuffle_p (unsigned int r_type)
2198{
2199 return (micromips_reloc_p (r_type)
2200 && r_type != R_MICROMIPS_PC7_S1
2201 && r_type != R_MICROMIPS_PC10_S1);
2202}
2203
738e5348
RS
2204static inline bfd_boolean
2205got16_reloc_p (int r_type)
2206{
df58fc94
RS
2207 return (r_type == R_MIPS_GOT16
2208 || r_type == R_MIPS16_GOT16
2209 || r_type == R_MICROMIPS_GOT16);
738e5348
RS
2210}
2211
2212static inline bfd_boolean
2213call16_reloc_p (int r_type)
2214{
df58fc94
RS
2215 return (r_type == R_MIPS_CALL16
2216 || r_type == R_MIPS16_CALL16
2217 || r_type == R_MICROMIPS_CALL16);
2218}
2219
2220static inline bfd_boolean
2221got_disp_reloc_p (unsigned int r_type)
2222{
2223 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2224}
2225
2226static inline bfd_boolean
2227got_page_reloc_p (unsigned int r_type)
2228{
2229 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2230}
2231
df58fc94
RS
2232static inline bfd_boolean
2233got_lo16_reloc_p (unsigned int r_type)
2234{
2235 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2236}
2237
2238static inline bfd_boolean
2239call_hi16_reloc_p (unsigned int r_type)
2240{
2241 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2242}
2243
2244static inline bfd_boolean
2245call_lo16_reloc_p (unsigned int r_type)
2246{
2247 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
738e5348
RS
2248}
2249
2250static inline bfd_boolean
2251hi16_reloc_p (int r_type)
2252{
df58fc94
RS
2253 return (r_type == R_MIPS_HI16
2254 || r_type == R_MIPS16_HI16
7361da2c
AB
2255 || r_type == R_MICROMIPS_HI16
2256 || r_type == R_MIPS_PCHI16);
738e5348 2257}
d6f16593 2258
738e5348
RS
2259static inline bfd_boolean
2260lo16_reloc_p (int r_type)
2261{
df58fc94
RS
2262 return (r_type == R_MIPS_LO16
2263 || r_type == R_MIPS16_LO16
7361da2c
AB
2264 || r_type == R_MICROMIPS_LO16
2265 || r_type == R_MIPS_PCLO16);
738e5348
RS
2266}
2267
2268static inline bfd_boolean
2269mips16_call_reloc_p (int r_type)
2270{
2271 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2272}
d6f16593 2273
38a7df63
CF
2274static inline bfd_boolean
2275jal_reloc_p (int r_type)
2276{
df58fc94
RS
2277 return (r_type == R_MIPS_26
2278 || r_type == R_MIPS16_26
2279 || r_type == R_MICROMIPS_26_S1);
2280}
2281
99aefae6
MR
2282static inline bfd_boolean
2283b_reloc_p (int r_type)
2284{
2285 return (r_type == R_MIPS_PC26_S2
2286 || r_type == R_MIPS_PC21_S2
2287 || r_type == R_MIPS_PC16
c9775dde 2288 || r_type == R_MIPS_GNU_REL16_S2
9d862524
MR
2289 || r_type == R_MIPS16_PC16_S1
2290 || r_type == R_MICROMIPS_PC16_S1
2291 || r_type == R_MICROMIPS_PC10_S1
2292 || r_type == R_MICROMIPS_PC7_S1);
99aefae6
MR
2293}
2294
7361da2c
AB
2295static inline bfd_boolean
2296aligned_pcrel_reloc_p (int r_type)
2297{
2298 return (r_type == R_MIPS_PC18_S3
2299 || r_type == R_MIPS_PC19_S2);
2300}
2301
9d862524
MR
2302static inline bfd_boolean
2303branch_reloc_p (int r_type)
2304{
2305 return (r_type == R_MIPS_26
2306 || r_type == R_MIPS_PC26_S2
2307 || r_type == R_MIPS_PC21_S2
2308 || r_type == R_MIPS_PC16
2309 || r_type == R_MIPS_GNU_REL16_S2);
2310}
2311
c9775dde
MR
2312static inline bfd_boolean
2313mips16_branch_reloc_p (int r_type)
2314{
2315 return (r_type == R_MIPS16_26
2316 || r_type == R_MIPS16_PC16_S1);
2317}
2318
df58fc94
RS
2319static inline bfd_boolean
2320micromips_branch_reloc_p (int r_type)
2321{
2322 return (r_type == R_MICROMIPS_26_S1
2323 || r_type == R_MICROMIPS_PC16_S1
2324 || r_type == R_MICROMIPS_PC10_S1
2325 || r_type == R_MICROMIPS_PC7_S1);
2326}
2327
2328static inline bfd_boolean
2329tls_gd_reloc_p (unsigned int r_type)
2330{
d0f13682
CLT
2331 return (r_type == R_MIPS_TLS_GD
2332 || r_type == R_MIPS16_TLS_GD
2333 || r_type == R_MICROMIPS_TLS_GD);
df58fc94
RS
2334}
2335
2336static inline bfd_boolean
2337tls_ldm_reloc_p (unsigned int r_type)
2338{
d0f13682
CLT
2339 return (r_type == R_MIPS_TLS_LDM
2340 || r_type == R_MIPS16_TLS_LDM
2341 || r_type == R_MICROMIPS_TLS_LDM);
df58fc94
RS
2342}
2343
2344static inline bfd_boolean
2345tls_gottprel_reloc_p (unsigned int r_type)
2346{
d0f13682
CLT
2347 return (r_type == R_MIPS_TLS_GOTTPREL
2348 || r_type == R_MIPS16_TLS_GOTTPREL
2349 || r_type == R_MICROMIPS_TLS_GOTTPREL);
38a7df63
CF
2350}
2351
d6f16593 2352void
df58fc94
RS
2353_bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2354 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2355{
df58fc94 2356 bfd_vma first, second, val;
d6f16593 2357
df58fc94 2358 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2359 return;
2360
df58fc94
RS
2361 /* Pick up the first and second halfwords of the instruction. */
2362 first = bfd_get_16 (abfd, data);
2363 second = bfd_get_16 (abfd, data + 2);
2364 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2365 val = first << 16 | second;
2366 else if (r_type != R_MIPS16_26)
2367 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2368 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
d6f16593 2369 else
df58fc94
RS
2370 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2371 | ((first & 0x1f) << 21) | second);
d6f16593
MR
2372 bfd_put_32 (abfd, val, data);
2373}
2374
2375void
df58fc94
RS
2376_bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2377 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2378{
df58fc94 2379 bfd_vma first, second, val;
d6f16593 2380
df58fc94 2381 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2382 return;
2383
2384 val = bfd_get_32 (abfd, data);
df58fc94 2385 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
d6f16593 2386 {
df58fc94
RS
2387 second = val & 0xffff;
2388 first = val >> 16;
2389 }
2390 else if (r_type != R_MIPS16_26)
2391 {
2392 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2393 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
d6f16593
MR
2394 }
2395 else
2396 {
df58fc94
RS
2397 second = val & 0xffff;
2398 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2399 | ((val >> 21) & 0x1f);
d6f16593 2400 }
df58fc94
RS
2401 bfd_put_16 (abfd, second, data + 2);
2402 bfd_put_16 (abfd, first, data);
d6f16593
MR
2403}
2404
b49e97c9 2405bfd_reloc_status_type
9719ad41
RS
2406_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2407 arelent *reloc_entry, asection *input_section,
2408 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
2409{
2410 bfd_vma relocation;
a7ebbfdf 2411 bfd_signed_vma val;
30ac9238 2412 bfd_reloc_status_type status;
b49e97c9
TS
2413
2414 if (bfd_is_com_section (symbol->section))
2415 relocation = 0;
2416 else
2417 relocation = symbol->value;
2418
2419 relocation += symbol->section->output_section->vma;
2420 relocation += symbol->section->output_offset;
2421
07515404 2422 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
2423 return bfd_reloc_outofrange;
2424
b49e97c9 2425 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
2426 val = reloc_entry->addend;
2427
30ac9238 2428 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 2429
b49e97c9 2430 /* Adjust val for the final section location and GP value. If we
1049f94e 2431 are producing relocatable output, we don't want to do this for
b49e97c9 2432 an external symbol. */
1049f94e 2433 if (! relocatable
b49e97c9
TS
2434 || (symbol->flags & BSF_SECTION_SYM) != 0)
2435 val += relocation - gp;
2436
a7ebbfdf
TS
2437 if (reloc_entry->howto->partial_inplace)
2438 {
30ac9238
RS
2439 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2440 (bfd_byte *) data
2441 + reloc_entry->address);
2442 if (status != bfd_reloc_ok)
2443 return status;
a7ebbfdf
TS
2444 }
2445 else
2446 reloc_entry->addend = val;
b49e97c9 2447
1049f94e 2448 if (relocatable)
b49e97c9 2449 reloc_entry->address += input_section->output_offset;
30ac9238
RS
2450
2451 return bfd_reloc_ok;
2452}
2453
2454/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2455 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2456 that contains the relocation field and DATA points to the start of
2457 INPUT_SECTION. */
2458
2459struct mips_hi16
2460{
2461 struct mips_hi16 *next;
2462 bfd_byte *data;
2463 asection *input_section;
2464 arelent rel;
2465};
2466
2467/* FIXME: This should not be a static variable. */
2468
2469static struct mips_hi16 *mips_hi16_list;
2470
2471/* A howto special_function for REL *HI16 relocations. We can only
2472 calculate the correct value once we've seen the partnering
2473 *LO16 relocation, so just save the information for later.
2474
2475 The ABI requires that the *LO16 immediately follow the *HI16.
2476 However, as a GNU extension, we permit an arbitrary number of
2477 *HI16s to be associated with a single *LO16. This significantly
2478 simplies the relocation handling in gcc. */
2479
2480bfd_reloc_status_type
2481_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2482 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2483 asection *input_section, bfd *output_bfd,
2484 char **error_message ATTRIBUTE_UNUSED)
2485{
2486 struct mips_hi16 *n;
2487
07515404 2488 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2489 return bfd_reloc_outofrange;
2490
2491 n = bfd_malloc (sizeof *n);
2492 if (n == NULL)
2493 return bfd_reloc_outofrange;
2494
2495 n->next = mips_hi16_list;
2496 n->data = data;
2497 n->input_section = input_section;
2498 n->rel = *reloc_entry;
2499 mips_hi16_list = n;
2500
2501 if (output_bfd != NULL)
2502 reloc_entry->address += input_section->output_offset;
2503
2504 return bfd_reloc_ok;
2505}
2506
738e5348 2507/* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
30ac9238
RS
2508 like any other 16-bit relocation when applied to global symbols, but is
2509 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2510
2511bfd_reloc_status_type
2512_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2513 void *data, asection *input_section,
2514 bfd *output_bfd, char **error_message)
2515{
2516 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
e6f7f6d1
AM
2517 || bfd_is_und_section (bfd_asymbol_section (symbol))
2518 || bfd_is_com_section (bfd_asymbol_section (symbol)))
30ac9238
RS
2519 /* The relocation is against a global symbol. */
2520 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2521 input_section, output_bfd,
2522 error_message);
2523
2524 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2525 input_section, output_bfd, error_message);
2526}
2527
2528/* A howto special_function for REL *LO16 relocations. The *LO16 itself
2529 is a straightforward 16 bit inplace relocation, but we must deal with
2530 any partnering high-part relocations as well. */
2531
2532bfd_reloc_status_type
2533_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2534 void *data, asection *input_section,
2535 bfd *output_bfd, char **error_message)
2536{
2537 bfd_vma vallo;
d6f16593 2538 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 2539
07515404 2540 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2541 return bfd_reloc_outofrange;
2542
df58fc94 2543 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
d6f16593 2544 location);
df58fc94
RS
2545 vallo = bfd_get_32 (abfd, location);
2546 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2547 location);
d6f16593 2548
30ac9238
RS
2549 while (mips_hi16_list != NULL)
2550 {
2551 bfd_reloc_status_type ret;
2552 struct mips_hi16 *hi;
2553
2554 hi = mips_hi16_list;
2555
738e5348
RS
2556 /* R_MIPS*_GOT16 relocations are something of a special case. We
2557 want to install the addend in the same way as for a R_MIPS*_HI16
30ac9238
RS
2558 relocation (with a rightshift of 16). However, since GOT16
2559 relocations can also be used with global symbols, their howto
2560 has a rightshift of 0. */
2561 if (hi->rel.howto->type == R_MIPS_GOT16)
2562 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
738e5348
RS
2563 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2564 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
df58fc94
RS
2565 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2566 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
30ac9238
RS
2567
2568 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2569 carry or borrow will induce a change of +1 or -1 in the high part. */
2570 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2571
30ac9238
RS
2572 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2573 hi->input_section, output_bfd,
2574 error_message);
2575 if (ret != bfd_reloc_ok)
2576 return ret;
2577
2578 mips_hi16_list = hi->next;
2579 free (hi);
2580 }
2581
2582 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2583 input_section, output_bfd,
2584 error_message);
2585}
2586
2587/* A generic howto special_function. This calculates and installs the
2588 relocation itself, thus avoiding the oft-discussed problems in
2589 bfd_perform_relocation and bfd_install_relocation. */
2590
2591bfd_reloc_status_type
2592_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2593 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2594 asection *input_section, bfd *output_bfd,
2595 char **error_message ATTRIBUTE_UNUSED)
2596{
2597 bfd_signed_vma val;
2598 bfd_reloc_status_type status;
2599 bfd_boolean relocatable;
2600
2601 relocatable = (output_bfd != NULL);
2602
07515404 2603 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2604 return bfd_reloc_outofrange;
2605
2606 /* Build up the field adjustment in VAL. */
2607 val = 0;
2608 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2609 {
2610 /* Either we're calculating the final field value or we have a
2611 relocation against a section symbol. Add in the section's
2612 offset or address. */
2613 val += symbol->section->output_section->vma;
2614 val += symbol->section->output_offset;
2615 }
2616
2617 if (!relocatable)
2618 {
2619 /* We're calculating the final field value. Add in the symbol's value
2620 and, if pc-relative, subtract the address of the field itself. */
2621 val += symbol->value;
2622 if (reloc_entry->howto->pc_relative)
2623 {
2624 val -= input_section->output_section->vma;
2625 val -= input_section->output_offset;
2626 val -= reloc_entry->address;
2627 }
2628 }
2629
2630 /* VAL is now the final adjustment. If we're keeping this relocation
2631 in the output file, and if the relocation uses a separate addend,
2632 we just need to add VAL to that addend. Otherwise we need to add
2633 VAL to the relocation field itself. */
2634 if (relocatable && !reloc_entry->howto->partial_inplace)
2635 reloc_entry->addend += val;
2636 else
2637 {
d6f16593
MR
2638 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2639
30ac9238
RS
2640 /* Add in the separate addend, if any. */
2641 val += reloc_entry->addend;
2642
2643 /* Add VAL to the relocation field. */
df58fc94
RS
2644 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2645 location);
30ac9238 2646 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593 2647 location);
df58fc94
RS
2648 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2649 location);
d6f16593 2650
30ac9238
RS
2651 if (status != bfd_reloc_ok)
2652 return status;
2653 }
2654
2655 if (relocatable)
2656 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
2657
2658 return bfd_reloc_ok;
2659}
2660\f
2661/* Swap an entry in a .gptab section. Note that these routines rely
2662 on the equivalence of the two elements of the union. */
2663
2664static void
9719ad41
RS
2665bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2666 Elf32_gptab *in)
b49e97c9
TS
2667{
2668 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2669 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2670}
2671
2672static void
9719ad41
RS
2673bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2674 Elf32_External_gptab *ex)
b49e97c9
TS
2675{
2676 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2677 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2678}
2679
2680static void
9719ad41
RS
2681bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2682 Elf32_External_compact_rel *ex)
b49e97c9
TS
2683{
2684 H_PUT_32 (abfd, in->id1, ex->id1);
2685 H_PUT_32 (abfd, in->num, ex->num);
2686 H_PUT_32 (abfd, in->id2, ex->id2);
2687 H_PUT_32 (abfd, in->offset, ex->offset);
2688 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2689 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2690}
2691
2692static void
9719ad41
RS
2693bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2694 Elf32_External_crinfo *ex)
b49e97c9
TS
2695{
2696 unsigned long l;
2697
2698 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2699 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2700 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2701 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2702 H_PUT_32 (abfd, l, ex->info);
2703 H_PUT_32 (abfd, in->konst, ex->konst);
2704 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2705}
b49e97c9
TS
2706\f
2707/* A .reginfo section holds a single Elf32_RegInfo structure. These
2708 routines swap this structure in and out. They are used outside of
2709 BFD, so they are globally visible. */
2710
2711void
9719ad41
RS
2712bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2713 Elf32_RegInfo *in)
b49e97c9
TS
2714{
2715 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2716 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2717 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2718 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2719 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2720 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2721}
2722
2723void
9719ad41
RS
2724bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2725 Elf32_External_RegInfo *ex)
b49e97c9
TS
2726{
2727 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2728 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2729 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2730 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2731 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2732 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2733}
2734
2735/* In the 64 bit ABI, the .MIPS.options section holds register
2736 information in an Elf64_Reginfo structure. These routines swap
2737 them in and out. They are globally visible because they are used
2738 outside of BFD. These routines are here so that gas can call them
2739 without worrying about whether the 64 bit ABI has been included. */
2740
2741void
9719ad41
RS
2742bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2743 Elf64_Internal_RegInfo *in)
b49e97c9
TS
2744{
2745 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2746 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2747 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2748 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2749 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2750 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2751 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2752}
2753
2754void
9719ad41
RS
2755bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2756 Elf64_External_RegInfo *ex)
b49e97c9
TS
2757{
2758 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2759 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2760 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2761 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2762 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2763 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2764 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2765}
2766
2767/* Swap in an options header. */
2768
2769void
9719ad41
RS
2770bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2771 Elf_Internal_Options *in)
b49e97c9
TS
2772{
2773 in->kind = H_GET_8 (abfd, ex->kind);
2774 in->size = H_GET_8 (abfd, ex->size);
2775 in->section = H_GET_16 (abfd, ex->section);
2776 in->info = H_GET_32 (abfd, ex->info);
2777}
2778
2779/* Swap out an options header. */
2780
2781void
9719ad41
RS
2782bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2783 Elf_External_Options *ex)
b49e97c9
TS
2784{
2785 H_PUT_8 (abfd, in->kind, ex->kind);
2786 H_PUT_8 (abfd, in->size, ex->size);
2787 H_PUT_16 (abfd, in->section, ex->section);
2788 H_PUT_32 (abfd, in->info, ex->info);
2789}
351cdf24
MF
2790
2791/* Swap in an abiflags structure. */
2792
2793void
2794bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2795 const Elf_External_ABIFlags_v0 *ex,
2796 Elf_Internal_ABIFlags_v0 *in)
2797{
2798 in->version = H_GET_16 (abfd, ex->version);
2799 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2800 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2801 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2802 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2803 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2804 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2805 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2806 in->ases = H_GET_32 (abfd, ex->ases);
2807 in->flags1 = H_GET_32 (abfd, ex->flags1);
2808 in->flags2 = H_GET_32 (abfd, ex->flags2);
2809}
2810
2811/* Swap out an abiflags structure. */
2812
2813void
2814bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2815 const Elf_Internal_ABIFlags_v0 *in,
2816 Elf_External_ABIFlags_v0 *ex)
2817{
2818 H_PUT_16 (abfd, in->version, ex->version);
2819 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2820 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2821 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2822 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2823 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2824 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2825 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2826 H_PUT_32 (abfd, in->ases, ex->ases);
2827 H_PUT_32 (abfd, in->flags1, ex->flags1);
2828 H_PUT_32 (abfd, in->flags2, ex->flags2);
2829}
b49e97c9
TS
2830\f
2831/* This function is called via qsort() to sort the dynamic relocation
2832 entries by increasing r_symndx value. */
2833
2834static int
9719ad41 2835sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 2836{
947216bf
AM
2837 Elf_Internal_Rela int_reloc1;
2838 Elf_Internal_Rela int_reloc2;
6870500c 2839 int diff;
b49e97c9 2840
947216bf
AM
2841 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2842 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 2843
6870500c
RS
2844 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2845 if (diff != 0)
2846 return diff;
2847
2848 if (int_reloc1.r_offset < int_reloc2.r_offset)
2849 return -1;
2850 if (int_reloc1.r_offset > int_reloc2.r_offset)
2851 return 1;
2852 return 0;
b49e97c9
TS
2853}
2854
f4416af6
AO
2855/* Like sort_dynamic_relocs, but used for elf64 relocations. */
2856
2857static int
7e3102a7
AM
2858sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2859 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 2860{
7e3102a7 2861#ifdef BFD64
f4416af6
AO
2862 Elf_Internal_Rela int_reloc1[3];
2863 Elf_Internal_Rela int_reloc2[3];
2864
2865 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2866 (reldyn_sorting_bfd, arg1, int_reloc1);
2867 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2868 (reldyn_sorting_bfd, arg2, int_reloc2);
2869
6870500c
RS
2870 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2871 return -1;
2872 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2873 return 1;
2874
2875 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2876 return -1;
2877 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2878 return 1;
2879 return 0;
7e3102a7
AM
2880#else
2881 abort ();
2882#endif
f4416af6
AO
2883}
2884
2885
b49e97c9
TS
2886/* This routine is used to write out ECOFF debugging external symbol
2887 information. It is called via mips_elf_link_hash_traverse. The
2888 ECOFF external symbol information must match the ELF external
2889 symbol information. Unfortunately, at this point we don't know
2890 whether a symbol is required by reloc information, so the two
2891 tables may wind up being different. We must sort out the external
2892 symbol information before we can set the final size of the .mdebug
2893 section, and we must set the size of the .mdebug section before we
2894 can relocate any sections, and we can't know which symbols are
2895 required by relocation until we relocate the sections.
2896 Fortunately, it is relatively unlikely that any symbol will be
2897 stripped but required by a reloc. In particular, it can not happen
2898 when generating a final executable. */
2899
b34976b6 2900static bfd_boolean
9719ad41 2901mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2902{
9719ad41 2903 struct extsym_info *einfo = data;
b34976b6 2904 bfd_boolean strip;
b49e97c9
TS
2905 asection *sec, *output_section;
2906
b49e97c9 2907 if (h->root.indx == -2)
b34976b6 2908 strip = FALSE;
f5385ebf 2909 else if ((h->root.def_dynamic
77cfaee6
AM
2910 || h->root.ref_dynamic
2911 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
2912 && !h->root.def_regular
2913 && !h->root.ref_regular)
b34976b6 2914 strip = TRUE;
b49e97c9
TS
2915 else if (einfo->info->strip == strip_all
2916 || (einfo->info->strip == strip_some
2917 && bfd_hash_lookup (einfo->info->keep_hash,
2918 h->root.root.root.string,
b34976b6
AM
2919 FALSE, FALSE) == NULL))
2920 strip = TRUE;
b49e97c9 2921 else
b34976b6 2922 strip = FALSE;
b49e97c9
TS
2923
2924 if (strip)
b34976b6 2925 return TRUE;
b49e97c9
TS
2926
2927 if (h->esym.ifd == -2)
2928 {
2929 h->esym.jmptbl = 0;
2930 h->esym.cobol_main = 0;
2931 h->esym.weakext = 0;
2932 h->esym.reserved = 0;
2933 h->esym.ifd = ifdNil;
2934 h->esym.asym.value = 0;
2935 h->esym.asym.st = stGlobal;
2936
2937 if (h->root.root.type == bfd_link_hash_undefined
2938 || h->root.root.type == bfd_link_hash_undefweak)
2939 {
2940 const char *name;
2941
2942 /* Use undefined class. Also, set class and type for some
07d6d2b8 2943 special symbols. */
b49e97c9
TS
2944 name = h->root.root.root.string;
2945 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2946 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2947 {
2948 h->esym.asym.sc = scData;
2949 h->esym.asym.st = stLabel;
2950 h->esym.asym.value = 0;
2951 }
2952 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2953 {
2954 h->esym.asym.sc = scAbs;
2955 h->esym.asym.st = stLabel;
2956 h->esym.asym.value =
2957 mips_elf_hash_table (einfo->info)->procedure_count;
2958 }
b49e97c9
TS
2959 else
2960 h->esym.asym.sc = scUndefined;
2961 }
2962 else if (h->root.root.type != bfd_link_hash_defined
2963 && h->root.root.type != bfd_link_hash_defweak)
2964 h->esym.asym.sc = scAbs;
2965 else
2966 {
2967 const char *name;
2968
2969 sec = h->root.root.u.def.section;
2970 output_section = sec->output_section;
2971
2972 /* When making a shared library and symbol h is the one from
2973 the another shared library, OUTPUT_SECTION may be null. */
2974 if (output_section == NULL)
2975 h->esym.asym.sc = scUndefined;
2976 else
2977 {
fd361982 2978 name = bfd_section_name (output_section);
b49e97c9
TS
2979
2980 if (strcmp (name, ".text") == 0)
2981 h->esym.asym.sc = scText;
2982 else if (strcmp (name, ".data") == 0)
2983 h->esym.asym.sc = scData;
2984 else if (strcmp (name, ".sdata") == 0)
2985 h->esym.asym.sc = scSData;
2986 else if (strcmp (name, ".rodata") == 0
2987 || strcmp (name, ".rdata") == 0)
2988 h->esym.asym.sc = scRData;
2989 else if (strcmp (name, ".bss") == 0)
2990 h->esym.asym.sc = scBss;
2991 else if (strcmp (name, ".sbss") == 0)
2992 h->esym.asym.sc = scSBss;
2993 else if (strcmp (name, ".init") == 0)
2994 h->esym.asym.sc = scInit;
2995 else if (strcmp (name, ".fini") == 0)
2996 h->esym.asym.sc = scFini;
2997 else
2998 h->esym.asym.sc = scAbs;
2999 }
3000 }
3001
3002 h->esym.asym.reserved = 0;
3003 h->esym.asym.index = indexNil;
3004 }
3005
3006 if (h->root.root.type == bfd_link_hash_common)
3007 h->esym.asym.value = h->root.root.u.c.size;
3008 else if (h->root.root.type == bfd_link_hash_defined
3009 || h->root.root.type == bfd_link_hash_defweak)
3010 {
3011 if (h->esym.asym.sc == scCommon)
3012 h->esym.asym.sc = scBss;
3013 else if (h->esym.asym.sc == scSCommon)
3014 h->esym.asym.sc = scSBss;
3015
3016 sec = h->root.root.u.def.section;
3017 output_section = sec->output_section;
3018 if (output_section != NULL)
3019 h->esym.asym.value = (h->root.root.u.def.value
3020 + sec->output_offset
3021 + output_section->vma);
3022 else
3023 h->esym.asym.value = 0;
3024 }
33bb52fb 3025 else
b49e97c9
TS
3026 {
3027 struct mips_elf_link_hash_entry *hd = h;
b49e97c9
TS
3028
3029 while (hd->root.root.type == bfd_link_hash_indirect)
33bb52fb 3030 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
b49e97c9 3031
33bb52fb 3032 if (hd->needs_lazy_stub)
b49e97c9 3033 {
1bbce132
MR
3034 BFD_ASSERT (hd->root.plt.plist != NULL);
3035 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
b49e97c9
TS
3036 /* Set type and value for a symbol with a function stub. */
3037 h->esym.asym.st = stProc;
3038 sec = hd->root.root.u.def.section;
3039 if (sec == NULL)
3040 h->esym.asym.value = 0;
3041 else
3042 {
3043 output_section = sec->output_section;
3044 if (output_section != NULL)
1bbce132 3045 h->esym.asym.value = (hd->root.plt.plist->stub_offset
b49e97c9
TS
3046 + sec->output_offset
3047 + output_section->vma);
3048 else
3049 h->esym.asym.value = 0;
3050 }
b49e97c9
TS
3051 }
3052 }
3053
3054 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3055 h->root.root.root.string,
3056 &h->esym))
3057 {
b34976b6
AM
3058 einfo->failed = TRUE;
3059 return FALSE;
b49e97c9
TS
3060 }
3061
b34976b6 3062 return TRUE;
b49e97c9
TS
3063}
3064
3065/* A comparison routine used to sort .gptab entries. */
3066
3067static int
9719ad41 3068gptab_compare (const void *p1, const void *p2)
b49e97c9 3069{
9719ad41
RS
3070 const Elf32_gptab *a1 = p1;
3071 const Elf32_gptab *a2 = p2;
b49e97c9
TS
3072
3073 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3074}
3075\f
b15e6682 3076/* Functions to manage the got entry hash table. */
f4416af6
AO
3077
3078/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3079 hash number. */
3080
3081static INLINE hashval_t
9719ad41 3082mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
3083{
3084#ifdef BFD64
3085 return addr + (addr >> 32);
3086#else
3087 return addr;
3088#endif
3089}
3090
f4416af6 3091static hashval_t
d9bf376d 3092mips_elf_got_entry_hash (const void *entry_)
f4416af6
AO
3093{
3094 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3095
e641e783 3096 return (entry->symndx
9ab066b4
RS
3097 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3098 + (entry->tls_type == GOT_TLS_LDM ? 0
e641e783
RS
3099 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3100 : entry->symndx >= 0 ? (entry->abfd->id
3101 + mips_elf_hash_bfd_vma (entry->d.addend))
3102 : entry->d.h->root.root.root.hash));
f4416af6
AO
3103}
3104
3105static int
3dff0dd1 3106mips_elf_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
3107{
3108 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3109 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3110
e641e783 3111 return (e1->symndx == e2->symndx
9ab066b4
RS
3112 && e1->tls_type == e2->tls_type
3113 && (e1->tls_type == GOT_TLS_LDM ? TRUE
e641e783
RS
3114 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3115 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3116 && e1->d.addend == e2->d.addend)
3117 : e2->abfd && e1->d.h == e2->d.h));
b15e6682 3118}
c224138d 3119
13db6b44
RS
3120static hashval_t
3121mips_got_page_ref_hash (const void *ref_)
3122{
3123 const struct mips_got_page_ref *ref;
3124
3125 ref = (const struct mips_got_page_ref *) ref_;
3126 return ((ref->symndx >= 0
3127 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3128 : ref->u.h->root.root.root.hash)
3129 + mips_elf_hash_bfd_vma (ref->addend));
3130}
3131
3132static int
3133mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3134{
3135 const struct mips_got_page_ref *ref1, *ref2;
3136
3137 ref1 = (const struct mips_got_page_ref *) ref1_;
3138 ref2 = (const struct mips_got_page_ref *) ref2_;
3139 return (ref1->symndx == ref2->symndx
3140 && (ref1->symndx < 0
3141 ? ref1->u.h == ref2->u.h
3142 : ref1->u.abfd == ref2->u.abfd)
3143 && ref1->addend == ref2->addend);
3144}
3145
c224138d
RS
3146static hashval_t
3147mips_got_page_entry_hash (const void *entry_)
3148{
3149 const struct mips_got_page_entry *entry;
3150
3151 entry = (const struct mips_got_page_entry *) entry_;
13db6b44 3152 return entry->sec->id;
c224138d
RS
3153}
3154
3155static int
3156mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3157{
3158 const struct mips_got_page_entry *entry1, *entry2;
3159
3160 entry1 = (const struct mips_got_page_entry *) entry1_;
3161 entry2 = (const struct mips_got_page_entry *) entry2_;
13db6b44 3162 return entry1->sec == entry2->sec;
c224138d 3163}
b15e6682 3164\f
3dff0dd1 3165/* Create and return a new mips_got_info structure. */
5334aa52
RS
3166
3167static struct mips_got_info *
3dff0dd1 3168mips_elf_create_got_info (bfd *abfd)
5334aa52
RS
3169{
3170 struct mips_got_info *g;
3171
3172 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3173 if (g == NULL)
3174 return NULL;
3175
3dff0dd1
RS
3176 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3177 mips_elf_got_entry_eq, NULL);
5334aa52
RS
3178 if (g->got_entries == NULL)
3179 return NULL;
3180
13db6b44
RS
3181 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3182 mips_got_page_ref_eq, NULL);
3183 if (g->got_page_refs == NULL)
5334aa52
RS
3184 return NULL;
3185
3186 return g;
3187}
3188
ee227692
RS
3189/* Return the GOT info for input bfd ABFD, trying to create a new one if
3190 CREATE_P and if ABFD doesn't already have a GOT. */
3191
3192static struct mips_got_info *
3193mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3194{
3195 struct mips_elf_obj_tdata *tdata;
3196
3197 if (!is_mips_elf (abfd))
3198 return NULL;
3199
3200 tdata = mips_elf_tdata (abfd);
3201 if (!tdata->got && create_p)
3dff0dd1 3202 tdata->got = mips_elf_create_got_info (abfd);
ee227692
RS
3203 return tdata->got;
3204}
3205
d7206569
RS
3206/* Record that ABFD should use output GOT G. */
3207
3208static void
3209mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3210{
3211 struct mips_elf_obj_tdata *tdata;
3212
3213 BFD_ASSERT (is_mips_elf (abfd));
3214 tdata = mips_elf_tdata (abfd);
3215 if (tdata->got)
3216 {
3217 /* The GOT structure itself and the hash table entries are
3218 allocated to a bfd, but the hash tables aren't. */
3219 htab_delete (tdata->got->got_entries);
13db6b44
RS
3220 htab_delete (tdata->got->got_page_refs);
3221 if (tdata->got->got_page_entries)
3222 htab_delete (tdata->got->got_page_entries);
d7206569
RS
3223 }
3224 tdata->got = g;
3225}
3226
0a44bf69
RS
3227/* Return the dynamic relocation section. If it doesn't exist, try to
3228 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3229 if creation fails. */
f4416af6
AO
3230
3231static asection *
0a44bf69 3232mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
f4416af6 3233{
0a44bf69 3234 const char *dname;
f4416af6 3235 asection *sreloc;
0a44bf69 3236 bfd *dynobj;
f4416af6 3237
0a44bf69
RS
3238 dname = MIPS_ELF_REL_DYN_NAME (info);
3239 dynobj = elf_hash_table (info)->dynobj;
3d4d4302 3240 sreloc = bfd_get_linker_section (dynobj, dname);
f4416af6
AO
3241 if (sreloc == NULL && create_p)
3242 {
3d4d4302
AM
3243 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3244 (SEC_ALLOC
3245 | SEC_LOAD
3246 | SEC_HAS_CONTENTS
3247 | SEC_IN_MEMORY
3248 | SEC_LINKER_CREATED
3249 | SEC_READONLY));
f4416af6 3250 if (sreloc == NULL
fd361982
AM
3251 || !bfd_set_section_alignment (sreloc,
3252 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
3253 return NULL;
3254 }
3255 return sreloc;
3256}
3257
e641e783
RS
3258/* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3259
3260static int
3261mips_elf_reloc_tls_type (unsigned int r_type)
3262{
3263 if (tls_gd_reloc_p (r_type))
3264 return GOT_TLS_GD;
3265
3266 if (tls_ldm_reloc_p (r_type))
3267 return GOT_TLS_LDM;
3268
3269 if (tls_gottprel_reloc_p (r_type))
3270 return GOT_TLS_IE;
3271
9ab066b4 3272 return GOT_TLS_NONE;
e641e783
RS
3273}
3274
3275/* Return the number of GOT slots needed for GOT TLS type TYPE. */
3276
3277static int
3278mips_tls_got_entries (unsigned int type)
3279{
3280 switch (type)
3281 {
3282 case GOT_TLS_GD:
3283 case GOT_TLS_LDM:
3284 return 2;
3285
3286 case GOT_TLS_IE:
3287 return 1;
3288
9ab066b4 3289 case GOT_TLS_NONE:
e641e783
RS
3290 return 0;
3291 }
3292 abort ();
3293}
3294
0f20cc35
DJ
3295/* Count the number of relocations needed for a TLS GOT entry, with
3296 access types from TLS_TYPE, and symbol H (or a local symbol if H
3297 is NULL). */
3298
3299static int
3300mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3301 struct elf_link_hash_entry *h)
3302{
3303 int indx = 0;
0f20cc35
DJ
3304 bfd_boolean need_relocs = FALSE;
3305 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3306
1cb83cac
MR
3307 if (h != NULL
3308 && h->dynindx != -1
3309 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3310 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
0f20cc35
DJ
3311 indx = h->dynindx;
3312
9143e72c 3313 if ((bfd_link_dll (info) || indx != 0)
0f20cc35
DJ
3314 && (h == NULL
3315 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3316 || h->root.type != bfd_link_hash_undefweak))
3317 need_relocs = TRUE;
3318
3319 if (!need_relocs)
e641e783 3320 return 0;
0f20cc35 3321
9ab066b4 3322 switch (tls_type)
0f20cc35 3323 {
e641e783
RS
3324 case GOT_TLS_GD:
3325 return indx != 0 ? 2 : 1;
0f20cc35 3326
e641e783
RS
3327 case GOT_TLS_IE:
3328 return 1;
0f20cc35 3329
e641e783 3330 case GOT_TLS_LDM:
9143e72c 3331 return bfd_link_dll (info) ? 1 : 0;
0f20cc35 3332
e641e783
RS
3333 default:
3334 return 0;
3335 }
0f20cc35
DJ
3336}
3337
ab361d49
RS
3338/* Add the number of GOT entries and TLS relocations required by ENTRY
3339 to G. */
0f20cc35 3340
ab361d49
RS
3341static void
3342mips_elf_count_got_entry (struct bfd_link_info *info,
3343 struct mips_got_info *g,
3344 struct mips_got_entry *entry)
0f20cc35 3345{
9ab066b4 3346 if (entry->tls_type)
ab361d49 3347 {
9ab066b4
RS
3348 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3349 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
ab361d49
RS
3350 entry->symndx < 0
3351 ? &entry->d.h->root : NULL);
3352 }
3353 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3354 g->local_gotno += 1;
3355 else
3356 g->global_gotno += 1;
0f20cc35
DJ
3357}
3358
0f20cc35
DJ
3359/* Output a simple dynamic relocation into SRELOC. */
3360
3361static void
3362mips_elf_output_dynamic_relocation (bfd *output_bfd,
3363 asection *sreloc,
861fb55a 3364 unsigned long reloc_index,
0f20cc35
DJ
3365 unsigned long indx,
3366 int r_type,
3367 bfd_vma offset)
3368{
3369 Elf_Internal_Rela rel[3];
3370
3371 memset (rel, 0, sizeof (rel));
3372
3373 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3374 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3375
3376 if (ABI_64_P (output_bfd))
3377 {
3378 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3379 (output_bfd, &rel[0],
3380 (sreloc->contents
861fb55a 3381 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
0f20cc35
DJ
3382 }
3383 else
3384 bfd_elf32_swap_reloc_out
3385 (output_bfd, &rel[0],
3386 (sreloc->contents
861fb55a 3387 + reloc_index * sizeof (Elf32_External_Rel)));
0f20cc35
DJ
3388}
3389
3390/* Initialize a set of TLS GOT entries for one symbol. */
3391
3392static void
9ab066b4
RS
3393mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3394 struct mips_got_entry *entry,
0f20cc35
DJ
3395 struct mips_elf_link_hash_entry *h,
3396 bfd_vma value)
3397{
1cb83cac 3398 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
23cc69b6 3399 struct mips_elf_link_hash_table *htab;
0f20cc35
DJ
3400 int indx;
3401 asection *sreloc, *sgot;
9ab066b4 3402 bfd_vma got_offset, got_offset2;
0f20cc35
DJ
3403 bfd_boolean need_relocs = FALSE;
3404
23cc69b6 3405 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3406 if (htab == NULL)
3407 return;
3408
ce558b89 3409 sgot = htab->root.sgot;
0f20cc35
DJ
3410
3411 indx = 0;
1cb83cac
MR
3412 if (h != NULL
3413 && h->root.dynindx != -1
3414 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), &h->root)
3415 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3416 indx = h->root.dynindx;
0f20cc35 3417
9ab066b4 3418 if (entry->tls_initialized)
0f20cc35
DJ
3419 return;
3420
9143e72c 3421 if ((bfd_link_dll (info) || indx != 0)
0f20cc35
DJ
3422 && (h == NULL
3423 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3424 || h->root.type != bfd_link_hash_undefweak))
3425 need_relocs = TRUE;
3426
3427 /* MINUS_ONE means the symbol is not defined in this object. It may not
3428 be defined at all; assume that the value doesn't matter in that
3429 case. Otherwise complain if we would use the value. */
3430 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3431 || h->root.root.type == bfd_link_hash_undefweak);
3432
3433 /* Emit necessary relocations. */
0a44bf69 3434 sreloc = mips_elf_rel_dyn_section (info, FALSE);
9ab066b4 3435 got_offset = entry->gotidx;
0f20cc35 3436
9ab066b4 3437 switch (entry->tls_type)
0f20cc35 3438 {
e641e783
RS
3439 case GOT_TLS_GD:
3440 /* General Dynamic. */
3441 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
0f20cc35
DJ
3442
3443 if (need_relocs)
3444 {
3445 mips_elf_output_dynamic_relocation
861fb55a 3446 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3447 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
e641e783 3448 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3449
3450 if (indx)
3451 mips_elf_output_dynamic_relocation
861fb55a 3452 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3453 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
e641e783 3454 sgot->output_offset + sgot->output_section->vma + got_offset2);
0f20cc35
DJ
3455 else
3456 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3457 sgot->contents + got_offset2);
0f20cc35
DJ
3458 }
3459 else
3460 {
3461 MIPS_ELF_PUT_WORD (abfd, 1,
e641e783 3462 sgot->contents + got_offset);
0f20cc35 3463 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3464 sgot->contents + got_offset2);
0f20cc35 3465 }
e641e783 3466 break;
0f20cc35 3467
e641e783
RS
3468 case GOT_TLS_IE:
3469 /* Initial Exec model. */
0f20cc35
DJ
3470 if (need_relocs)
3471 {
3472 if (indx == 0)
3473 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
e641e783 3474 sgot->contents + got_offset);
0f20cc35
DJ
3475 else
3476 MIPS_ELF_PUT_WORD (abfd, 0,
e641e783 3477 sgot->contents + got_offset);
0f20cc35
DJ
3478
3479 mips_elf_output_dynamic_relocation
861fb55a 3480 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3481 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
e641e783 3482 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3483 }
3484 else
3485 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
e641e783
RS
3486 sgot->contents + got_offset);
3487 break;
0f20cc35 3488
e641e783 3489 case GOT_TLS_LDM:
0f20cc35
DJ
3490 /* The initial offset is zero, and the LD offsets will include the
3491 bias by DTP_OFFSET. */
3492 MIPS_ELF_PUT_WORD (abfd, 0,
3493 sgot->contents + got_offset
3494 + MIPS_ELF_GOT_SIZE (abfd));
3495
9143e72c 3496 if (!bfd_link_dll (info))
0f20cc35
DJ
3497 MIPS_ELF_PUT_WORD (abfd, 1,
3498 sgot->contents + got_offset);
3499 else
3500 mips_elf_output_dynamic_relocation
861fb55a 3501 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
3502 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3503 sgot->output_offset + sgot->output_section->vma + got_offset);
e641e783
RS
3504 break;
3505
3506 default:
3507 abort ();
0f20cc35
DJ
3508 }
3509
9ab066b4 3510 entry->tls_initialized = TRUE;
e641e783 3511}
0f20cc35 3512
0a44bf69
RS
3513/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3514 for global symbol H. .got.plt comes before the GOT, so the offset
3515 will be negative. */
3516
3517static bfd_vma
3518mips_elf_gotplt_index (struct bfd_link_info *info,
3519 struct elf_link_hash_entry *h)
3520{
1bbce132 3521 bfd_vma got_address, got_value;
0a44bf69
RS
3522 struct mips_elf_link_hash_table *htab;
3523
3524 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3525 BFD_ASSERT (htab != NULL);
3526
1bbce132
MR
3527 BFD_ASSERT (h->plt.plist != NULL);
3528 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
0a44bf69
RS
3529
3530 /* Calculate the address of the associated .got.plt entry. */
ce558b89
AM
3531 got_address = (htab->root.sgotplt->output_section->vma
3532 + htab->root.sgotplt->output_offset
1bbce132
MR
3533 + (h->plt.plist->gotplt_index
3534 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
0a44bf69
RS
3535
3536 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3537 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3538 + htab->root.hgot->root.u.def.section->output_offset
3539 + htab->root.hgot->root.u.def.value);
3540
3541 return got_address - got_value;
3542}
3543
5c18022e 3544/* Return the GOT offset for address VALUE. If there is not yet a GOT
0a44bf69
RS
3545 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3546 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3547 offset can be found. */
b49e97c9
TS
3548
3549static bfd_vma
9719ad41 3550mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3551 bfd_vma value, unsigned long r_symndx,
0f20cc35 3552 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9 3553{
a8028dd0 3554 struct mips_elf_link_hash_table *htab;
b15e6682 3555 struct mips_got_entry *entry;
b49e97c9 3556
a8028dd0 3557 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3558 BFD_ASSERT (htab != NULL);
3559
a8028dd0
RS
3560 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3561 r_symndx, h, r_type);
0f20cc35 3562 if (!entry)
b15e6682 3563 return MINUS_ONE;
0f20cc35 3564
e641e783 3565 if (entry->tls_type)
9ab066b4
RS
3566 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3567 return entry->gotidx;
b49e97c9
TS
3568}
3569
13fbec83 3570/* Return the GOT index of global symbol H in the primary GOT. */
b49e97c9
TS
3571
3572static bfd_vma
13fbec83
RS
3573mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3574 struct elf_link_hash_entry *h)
3575{
3576 struct mips_elf_link_hash_table *htab;
3577 long global_got_dynindx;
3578 struct mips_got_info *g;
3579 bfd_vma got_index;
3580
3581 htab = mips_elf_hash_table (info);
3582 BFD_ASSERT (htab != NULL);
3583
3584 global_got_dynindx = 0;
3585 if (htab->global_gotsym != NULL)
3586 global_got_dynindx = htab->global_gotsym->dynindx;
3587
3588 /* Once we determine the global GOT entry with the lowest dynamic
3589 symbol table index, we must put all dynamic symbols with greater
3590 indices into the primary GOT. That makes it easy to calculate the
3591 GOT offset. */
3592 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3593 g = mips_elf_bfd_got (obfd, FALSE);
3594 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3595 * MIPS_ELF_GOT_SIZE (obfd));
ce558b89 3596 BFD_ASSERT (got_index < htab->root.sgot->size);
13fbec83
RS
3597
3598 return got_index;
3599}
3600
3601/* Return the GOT index for the global symbol indicated by H, which is
3602 referenced by a relocation of type R_TYPE in IBFD. */
3603
3604static bfd_vma
3605mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3606 struct elf_link_hash_entry *h, int r_type)
b49e97c9 3607{
a8028dd0 3608 struct mips_elf_link_hash_table *htab;
6c42ddb9
RS
3609 struct mips_got_info *g;
3610 struct mips_got_entry lookup, *entry;
3611 bfd_vma gotidx;
b49e97c9 3612
a8028dd0 3613 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3614 BFD_ASSERT (htab != NULL);
3615
6c42ddb9
RS
3616 g = mips_elf_bfd_got (ibfd, FALSE);
3617 BFD_ASSERT (g);
f4416af6 3618
6c42ddb9
RS
3619 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3620 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3621 return mips_elf_primary_global_got_index (obfd, info, h);
f4416af6 3622
6c42ddb9
RS
3623 lookup.abfd = ibfd;
3624 lookup.symndx = -1;
3625 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3626 entry = htab_find (g->got_entries, &lookup);
3627 BFD_ASSERT (entry);
0f20cc35 3628
6c42ddb9 3629 gotidx = entry->gotidx;
ce558b89 3630 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
f4416af6 3631
6c42ddb9 3632 if (lookup.tls_type)
0f20cc35 3633 {
0f20cc35
DJ
3634 bfd_vma value = MINUS_ONE;
3635
3636 if ((h->root.type == bfd_link_hash_defined
3637 || h->root.type == bfd_link_hash_defweak)
3638 && h->root.u.def.section->output_section)
3639 value = (h->root.u.def.value
3640 + h->root.u.def.section->output_offset
3641 + h->root.u.def.section->output_section->vma);
3642
9ab066b4 3643 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
0f20cc35 3644 }
6c42ddb9 3645 return gotidx;
b49e97c9
TS
3646}
3647
5c18022e
RS
3648/* Find a GOT page entry that points to within 32KB of VALUE. These
3649 entries are supposed to be placed at small offsets in the GOT, i.e.,
3650 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3651 entry could be created. If OFFSETP is nonnull, use it to return the
0a44bf69 3652 offset of the GOT entry from VALUE. */
b49e97c9
TS
3653
3654static bfd_vma
9719ad41 3655mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3656 bfd_vma value, bfd_vma *offsetp)
b49e97c9 3657{
91d6fa6a 3658 bfd_vma page, got_index;
b15e6682 3659 struct mips_got_entry *entry;
b49e97c9 3660
0a44bf69 3661 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
a8028dd0
RS
3662 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3663 NULL, R_MIPS_GOT_PAGE);
b49e97c9 3664
b15e6682
AO
3665 if (!entry)
3666 return MINUS_ONE;
143d77c5 3667
91d6fa6a 3668 got_index = entry->gotidx;
b49e97c9
TS
3669
3670 if (offsetp)
f4416af6 3671 *offsetp = value - entry->d.address;
b49e97c9 3672
91d6fa6a 3673 return got_index;
b49e97c9
TS
3674}
3675
738e5348 3676/* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
020d7251
RS
3677 EXTERNAL is true if the relocation was originally against a global
3678 symbol that binds locally. */
b49e97c9
TS
3679
3680static bfd_vma
9719ad41 3681mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3682 bfd_vma value, bfd_boolean external)
b49e97c9 3683{
b15e6682 3684 struct mips_got_entry *entry;
b49e97c9 3685
0a44bf69
RS
3686 /* GOT16 relocations against local symbols are followed by a LO16
3687 relocation; those against global symbols are not. Thus if the
3688 symbol was originally local, the GOT16 relocation should load the
3689 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
b49e97c9 3690 if (! external)
0a44bf69 3691 value = mips_elf_high (value) << 16;
b49e97c9 3692
738e5348
RS
3693 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3694 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3695 same in all cases. */
a8028dd0
RS
3696 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3697 NULL, R_MIPS_GOT16);
b15e6682
AO
3698 if (entry)
3699 return entry->gotidx;
3700 else
3701 return MINUS_ONE;
b49e97c9
TS
3702}
3703
3704/* Returns the offset for the entry at the INDEXth position
3705 in the GOT. */
3706
3707static bfd_vma
a8028dd0 3708mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
91d6fa6a 3709 bfd *input_bfd, bfd_vma got_index)
b49e97c9 3710{
a8028dd0 3711 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3712 asection *sgot;
3713 bfd_vma gp;
3714
a8028dd0 3715 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3716 BFD_ASSERT (htab != NULL);
3717
ce558b89 3718 sgot = htab->root.sgot;
f4416af6 3719 gp = _bfd_get_gp_value (output_bfd)
a8028dd0 3720 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
143d77c5 3721
91d6fa6a 3722 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
b49e97c9
TS
3723}
3724
0a44bf69
RS
3725/* Create and return a local GOT entry for VALUE, which was calculated
3726 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3727 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3728 instead. */
b49e97c9 3729
b15e6682 3730static struct mips_got_entry *
0a44bf69 3731mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
a8028dd0 3732 bfd *ibfd, bfd_vma value,
5c18022e 3733 unsigned long r_symndx,
0f20cc35
DJ
3734 struct mips_elf_link_hash_entry *h,
3735 int r_type)
b49e97c9 3736{
ebc53538
RS
3737 struct mips_got_entry lookup, *entry;
3738 void **loc;
f4416af6 3739 struct mips_got_info *g;
0a44bf69 3740 struct mips_elf_link_hash_table *htab;
6c42ddb9 3741 bfd_vma gotidx;
0a44bf69
RS
3742
3743 htab = mips_elf_hash_table (info);
4dfe6ac6 3744 BFD_ASSERT (htab != NULL);
b15e6682 3745
d7206569 3746 g = mips_elf_bfd_got (ibfd, FALSE);
f4416af6
AO
3747 if (g == NULL)
3748 {
d7206569 3749 g = mips_elf_bfd_got (abfd, FALSE);
f4416af6
AO
3750 BFD_ASSERT (g != NULL);
3751 }
b15e6682 3752
020d7251
RS
3753 /* This function shouldn't be called for symbols that live in the global
3754 area of the GOT. */
3755 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
0f20cc35 3756
ebc53538
RS
3757 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3758 if (lookup.tls_type)
3759 {
3760 lookup.abfd = ibfd;
df58fc94 3761 if (tls_ldm_reloc_p (r_type))
0f20cc35 3762 {
ebc53538
RS
3763 lookup.symndx = 0;
3764 lookup.d.addend = 0;
0f20cc35
DJ
3765 }
3766 else if (h == NULL)
3767 {
ebc53538
RS
3768 lookup.symndx = r_symndx;
3769 lookup.d.addend = 0;
0f20cc35
DJ
3770 }
3771 else
ebc53538
RS
3772 {
3773 lookup.symndx = -1;
3774 lookup.d.h = h;
3775 }
0f20cc35 3776
ebc53538
RS
3777 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3778 BFD_ASSERT (entry);
0f20cc35 3779
6c42ddb9 3780 gotidx = entry->gotidx;
ce558b89 3781 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
6c42ddb9 3782
ebc53538 3783 return entry;
0f20cc35
DJ
3784 }
3785
ebc53538
RS
3786 lookup.abfd = NULL;
3787 lookup.symndx = -1;
3788 lookup.d.address = value;
3789 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3790 if (!loc)
b15e6682 3791 return NULL;
143d77c5 3792
ebc53538
RS
3793 entry = (struct mips_got_entry *) *loc;
3794 if (entry)
3795 return entry;
b15e6682 3796
cb22ccf4 3797 if (g->assigned_low_gotno > g->assigned_high_gotno)
b49e97c9
TS
3798 {
3799 /* We didn't allocate enough space in the GOT. */
4eca0228 3800 _bfd_error_handler
b49e97c9
TS
3801 (_("not enough GOT space for local GOT entries"));
3802 bfd_set_error (bfd_error_bad_value);
b15e6682 3803 return NULL;
b49e97c9
TS
3804 }
3805
ebc53538
RS
3806 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3807 if (!entry)
3808 return NULL;
3809
cb22ccf4
KCY
3810 if (got16_reloc_p (r_type)
3811 || call16_reloc_p (r_type)
3812 || got_page_reloc_p (r_type)
3813 || got_disp_reloc_p (r_type))
3814 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3815 else
3816 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3817
ebc53538
RS
3818 *entry = lookup;
3819 *loc = entry;
3820
ce558b89 3821 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
b15e6682 3822
5c18022e 3823 /* These GOT entries need a dynamic relocation on VxWorks. */
0a44bf69
RS
3824 if (htab->is_vxworks)
3825 {
3826 Elf_Internal_Rela outrel;
5c18022e 3827 asection *s;
91d6fa6a 3828 bfd_byte *rloc;
0a44bf69 3829 bfd_vma got_address;
0a44bf69
RS
3830
3831 s = mips_elf_rel_dyn_section (info, FALSE);
ce558b89
AM
3832 got_address = (htab->root.sgot->output_section->vma
3833 + htab->root.sgot->output_offset
ebc53538 3834 + entry->gotidx);
0a44bf69 3835
91d6fa6a 3836 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
0a44bf69 3837 outrel.r_offset = got_address;
5c18022e
RS
3838 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3839 outrel.r_addend = value;
91d6fa6a 3840 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
0a44bf69
RS
3841 }
3842
ebc53538 3843 return entry;
b49e97c9
TS
3844}
3845
d4596a51
RS
3846/* Return the number of dynamic section symbols required by OUTPUT_BFD.
3847 The number might be exact or a worst-case estimate, depending on how
3848 much information is available to elf_backend_omit_section_dynsym at
3849 the current linking stage. */
3850
3851static bfd_size_type
3852count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3853{
3854 bfd_size_type count;
3855
3856 count = 0;
0e1862bb
L
3857 if (bfd_link_pic (info)
3858 || elf_hash_table (info)->is_relocatable_executable)
d4596a51
RS
3859 {
3860 asection *p;
3861 const struct elf_backend_data *bed;
3862
3863 bed = get_elf_backend_data (output_bfd);
3864 for (p = output_bfd->sections; p ; p = p->next)
3865 if ((p->flags & SEC_EXCLUDE) == 0
3866 && (p->flags & SEC_ALLOC) != 0
7f923b7f 3867 && elf_hash_table (info)->dynamic_relocs
d4596a51
RS
3868 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3869 ++count;
3870 }
3871 return count;
3872}
3873
b49e97c9 3874/* Sort the dynamic symbol table so that symbols that need GOT entries
d4596a51 3875 appear towards the end. */
b49e97c9 3876
b34976b6 3877static bfd_boolean
d4596a51 3878mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
b49e97c9 3879{
a8028dd0 3880 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3881 struct mips_elf_hash_sort_data hsd;
3882 struct mips_got_info *g;
b49e97c9 3883
a8028dd0 3884 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3885 BFD_ASSERT (htab != NULL);
3886
0f8c4b60 3887 if (htab->root.dynsymcount == 0)
17a80fa8
MR
3888 return TRUE;
3889
a8028dd0 3890 g = htab->got_info;
d4596a51
RS
3891 if (g == NULL)
3892 return TRUE;
f4416af6 3893
b49e97c9 3894 hsd.low = NULL;
23cc69b6
RS
3895 hsd.max_unref_got_dynindx
3896 = hsd.min_got_dynindx
0f8c4b60 3897 = (htab->root.dynsymcount - g->reloc_only_gotno);
e17b0c35
MR
3898 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3899 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3900 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3901 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
f16a9783
MS
3902 hsd.output_bfd = abfd;
3903 if (htab->root.dynobj != NULL
3904 && htab->root.dynamic_sections_created
3905 && info->emit_gnu_hash)
3906 {
3907 asection *s = bfd_get_linker_section (htab->root.dynobj, ".MIPS.xhash");
3908 BFD_ASSERT (s != NULL);
3909 hsd.mipsxhash = s->contents;
3910 BFD_ASSERT (hsd.mipsxhash != NULL);
3911 }
3912 else
3913 hsd.mipsxhash = NULL;
0f8c4b60 3914 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
b49e97c9
TS
3915
3916 /* There should have been enough room in the symbol table to
44c410de 3917 accommodate both the GOT and non-GOT symbols. */
e17b0c35 3918 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
b49e97c9 3919 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
55f8b9d2 3920 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
0f8c4b60 3921 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
b49e97c9
TS
3922
3923 /* Now we know which dynamic symbol has the lowest dynamic symbol
3924 table index in the GOT. */
d222d210 3925 htab->global_gotsym = hsd.low;
b49e97c9 3926
b34976b6 3927 return TRUE;
b49e97c9
TS
3928}
3929
3930/* If H needs a GOT entry, assign it the highest available dynamic
3931 index. Otherwise, assign it the lowest available dynamic
3932 index. */
3933
b34976b6 3934static bfd_boolean
9719ad41 3935mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 3936{
9719ad41 3937 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9 3938
b49e97c9
TS
3939 /* Symbols without dynamic symbol table entries aren't interesting
3940 at all. */
3941 if (h->root.dynindx == -1)
b34976b6 3942 return TRUE;
b49e97c9 3943
634835ae 3944 switch (h->global_got_area)
f4416af6 3945 {
634835ae 3946 case GGA_NONE:
e17b0c35
MR
3947 if (h->root.forced_local)
3948 h->root.dynindx = hsd->max_local_dynindx++;
3949 else
3950 h->root.dynindx = hsd->max_non_got_dynindx++;
634835ae 3951 break;
0f20cc35 3952
634835ae 3953 case GGA_NORMAL:
b49e97c9
TS
3954 h->root.dynindx = --hsd->min_got_dynindx;
3955 hsd->low = (struct elf_link_hash_entry *) h;
634835ae
RS
3956 break;
3957
3958 case GGA_RELOC_ONLY:
634835ae
RS
3959 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3960 hsd->low = (struct elf_link_hash_entry *) h;
3961 h->root.dynindx = hsd->max_unref_got_dynindx++;
3962 break;
b49e97c9
TS
3963 }
3964
f16a9783
MS
3965 /* Populate the .MIPS.xhash translation table entry with
3966 the symbol dynindx. */
3967 if (h->mipsxhash_loc != 0 && hsd->mipsxhash != NULL)
3968 bfd_put_32 (hsd->output_bfd, h->root.dynindx,
3969 hsd->mipsxhash + h->mipsxhash_loc);
3970
b34976b6 3971 return TRUE;
b49e97c9
TS
3972}
3973
ee227692
RS
3974/* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3975 (which is owned by the caller and shouldn't be added to the
3976 hash table directly). */
3977
3978static bfd_boolean
3979mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3980 struct mips_got_entry *lookup)
3981{
3982 struct mips_elf_link_hash_table *htab;
3983 struct mips_got_entry *entry;
3984 struct mips_got_info *g;
3985 void **loc, **bfd_loc;
3986
3987 /* Make sure there's a slot for this entry in the master GOT. */
3988 htab = mips_elf_hash_table (info);
3989 g = htab->got_info;
3990 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3991 if (!loc)
3992 return FALSE;
3993
3994 /* Populate the entry if it isn't already. */
3995 entry = (struct mips_got_entry *) *loc;
3996 if (!entry)
3997 {
3998 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3999 if (!entry)
4000 return FALSE;
4001
9ab066b4 4002 lookup->tls_initialized = FALSE;
ee227692
RS
4003 lookup->gotidx = -1;
4004 *entry = *lookup;
4005 *loc = entry;
4006 }
4007
4008 /* Reuse the same GOT entry for the BFD's GOT. */
4009 g = mips_elf_bfd_got (abfd, TRUE);
4010 if (!g)
4011 return FALSE;
4012
4013 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
4014 if (!bfd_loc)
4015 return FALSE;
4016
4017 if (!*bfd_loc)
4018 *bfd_loc = entry;
4019 return TRUE;
4020}
4021
e641e783
RS
4022/* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
4023 entry for it. FOR_CALL is true if the caller is only interested in
6ccf4795 4024 using the GOT entry for calls. */
b49e97c9 4025
b34976b6 4026static bfd_boolean
9719ad41
RS
4027mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
4028 bfd *abfd, struct bfd_link_info *info,
e641e783 4029 bfd_boolean for_call, int r_type)
b49e97c9 4030{
a8028dd0 4031 struct mips_elf_link_hash_table *htab;
634835ae 4032 struct mips_elf_link_hash_entry *hmips;
ee227692
RS
4033 struct mips_got_entry entry;
4034 unsigned char tls_type;
a8028dd0
RS
4035
4036 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4037 BFD_ASSERT (htab != NULL);
4038
634835ae 4039 hmips = (struct mips_elf_link_hash_entry *) h;
6ccf4795
RS
4040 if (!for_call)
4041 hmips->got_only_for_calls = FALSE;
f4416af6 4042
b49e97c9
TS
4043 /* A global symbol in the GOT must also be in the dynamic symbol
4044 table. */
7c5fcef7
L
4045 if (h->dynindx == -1)
4046 {
4047 switch (ELF_ST_VISIBILITY (h->other))
4048 {
4049 case STV_INTERNAL:
4050 case STV_HIDDEN:
47275900 4051 _bfd_mips_elf_hide_symbol (info, h, TRUE);
7c5fcef7
L
4052 break;
4053 }
c152c796 4054 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 4055 return FALSE;
7c5fcef7 4056 }
b49e97c9 4057
ee227692 4058 tls_type = mips_elf_reloc_tls_type (r_type);
9ab066b4 4059 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
ee227692 4060 hmips->global_got_area = GGA_NORMAL;
86324f90 4061
f4416af6
AO
4062 entry.abfd = abfd;
4063 entry.symndx = -1;
4064 entry.d.h = (struct mips_elf_link_hash_entry *) h;
ee227692
RS
4065 entry.tls_type = tls_type;
4066 return mips_elf_record_got_entry (info, abfd, &entry);
b49e97c9 4067}
f4416af6 4068
e641e783
RS
4069/* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4070 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
f4416af6
AO
4071
4072static bfd_boolean
9719ad41 4073mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
e641e783 4074 struct bfd_link_info *info, int r_type)
f4416af6 4075{
a8028dd0
RS
4076 struct mips_elf_link_hash_table *htab;
4077 struct mips_got_info *g;
ee227692 4078 struct mips_got_entry entry;
f4416af6 4079
a8028dd0 4080 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4081 BFD_ASSERT (htab != NULL);
4082
a8028dd0
RS
4083 g = htab->got_info;
4084 BFD_ASSERT (g != NULL);
4085
f4416af6
AO
4086 entry.abfd = abfd;
4087 entry.symndx = symndx;
4088 entry.d.addend = addend;
e641e783 4089 entry.tls_type = mips_elf_reloc_tls_type (r_type);
ee227692 4090 return mips_elf_record_got_entry (info, abfd, &entry);
f4416af6 4091}
c224138d 4092
13db6b44
RS
4093/* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4094 H is the symbol's hash table entry, or null if SYMNDX is local
4095 to ABFD. */
c224138d
RS
4096
4097static bfd_boolean
13db6b44
RS
4098mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4099 long symndx, struct elf_link_hash_entry *h,
4100 bfd_signed_vma addend)
c224138d 4101{
a8028dd0 4102 struct mips_elf_link_hash_table *htab;
ee227692 4103 struct mips_got_info *g1, *g2;
13db6b44 4104 struct mips_got_page_ref lookup, *entry;
ee227692 4105 void **loc, **bfd_loc;
c224138d 4106
a8028dd0 4107 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4108 BFD_ASSERT (htab != NULL);
4109
ee227692
RS
4110 g1 = htab->got_info;
4111 BFD_ASSERT (g1 != NULL);
a8028dd0 4112
13db6b44
RS
4113 if (h)
4114 {
4115 lookup.symndx = -1;
4116 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4117 }
4118 else
4119 {
4120 lookup.symndx = symndx;
4121 lookup.u.abfd = abfd;
4122 }
4123 lookup.addend = addend;
4124 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
c224138d
RS
4125 if (loc == NULL)
4126 return FALSE;
4127
13db6b44 4128 entry = (struct mips_got_page_ref *) *loc;
c224138d
RS
4129 if (!entry)
4130 {
4131 entry = bfd_alloc (abfd, sizeof (*entry));
4132 if (!entry)
4133 return FALSE;
4134
13db6b44 4135 *entry = lookup;
c224138d
RS
4136 *loc = entry;
4137 }
4138
ee227692
RS
4139 /* Add the same entry to the BFD's GOT. */
4140 g2 = mips_elf_bfd_got (abfd, TRUE);
4141 if (!g2)
4142 return FALSE;
4143
13db6b44 4144 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
ee227692
RS
4145 if (!bfd_loc)
4146 return FALSE;
4147
4148 if (!*bfd_loc)
4149 *bfd_loc = entry;
4150
c224138d
RS
4151 return TRUE;
4152}
33bb52fb
RS
4153
4154/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4155
4156static void
4157mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4158 unsigned int n)
4159{
4160 asection *s;
4161 struct mips_elf_link_hash_table *htab;
4162
4163 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4164 BFD_ASSERT (htab != NULL);
4165
33bb52fb
RS
4166 s = mips_elf_rel_dyn_section (info, FALSE);
4167 BFD_ASSERT (s != NULL);
4168
4169 if (htab->is_vxworks)
4170 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4171 else
4172 {
4173 if (s->size == 0)
4174 {
4175 /* Make room for a null element. */
4176 s->size += MIPS_ELF_REL_SIZE (abfd);
4177 ++s->reloc_count;
4178 }
4179 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4180 }
4181}
4182\f
476366af
RS
4183/* A htab_traverse callback for GOT entries, with DATA pointing to a
4184 mips_elf_traverse_got_arg structure. Count the number of GOT
4185 entries and TLS relocs. Set DATA->value to true if we need
4186 to resolve indirect or warning symbols and then recreate the GOT. */
33bb52fb
RS
4187
4188static int
4189mips_elf_check_recreate_got (void **entryp, void *data)
4190{
4191 struct mips_got_entry *entry;
476366af 4192 struct mips_elf_traverse_got_arg *arg;
33bb52fb
RS
4193
4194 entry = (struct mips_got_entry *) *entryp;
476366af 4195 arg = (struct mips_elf_traverse_got_arg *) data;
33bb52fb
RS
4196 if (entry->abfd != NULL && entry->symndx == -1)
4197 {
4198 struct mips_elf_link_hash_entry *h;
4199
4200 h = entry->d.h;
4201 if (h->root.root.type == bfd_link_hash_indirect
4202 || h->root.root.type == bfd_link_hash_warning)
4203 {
476366af 4204 arg->value = TRUE;
33bb52fb
RS
4205 return 0;
4206 }
4207 }
476366af 4208 mips_elf_count_got_entry (arg->info, arg->g, entry);
33bb52fb
RS
4209 return 1;
4210}
4211
476366af
RS
4212/* A htab_traverse callback for GOT entries, with DATA pointing to a
4213 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4214 converting entries for indirect and warning symbols into entries
4215 for the target symbol. Set DATA->g to null on error. */
33bb52fb
RS
4216
4217static int
4218mips_elf_recreate_got (void **entryp, void *data)
4219{
72e7511a 4220 struct mips_got_entry new_entry, *entry;
476366af 4221 struct mips_elf_traverse_got_arg *arg;
33bb52fb
RS
4222 void **slot;
4223
33bb52fb 4224 entry = (struct mips_got_entry *) *entryp;
476366af 4225 arg = (struct mips_elf_traverse_got_arg *) data;
72e7511a
RS
4226 if (entry->abfd != NULL
4227 && entry->symndx == -1
4228 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4229 || entry->d.h->root.root.type == bfd_link_hash_warning))
33bb52fb
RS
4230 {
4231 struct mips_elf_link_hash_entry *h;
4232
72e7511a
RS
4233 new_entry = *entry;
4234 entry = &new_entry;
33bb52fb 4235 h = entry->d.h;
72e7511a 4236 do
634835ae
RS
4237 {
4238 BFD_ASSERT (h->global_got_area == GGA_NONE);
4239 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4240 }
72e7511a
RS
4241 while (h->root.root.type == bfd_link_hash_indirect
4242 || h->root.root.type == bfd_link_hash_warning);
33bb52fb
RS
4243 entry->d.h = h;
4244 }
476366af 4245 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
33bb52fb
RS
4246 if (slot == NULL)
4247 {
476366af 4248 arg->g = NULL;
33bb52fb
RS
4249 return 0;
4250 }
4251 if (*slot == NULL)
72e7511a
RS
4252 {
4253 if (entry == &new_entry)
4254 {
4255 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4256 if (!entry)
4257 {
476366af 4258 arg->g = NULL;
72e7511a
RS
4259 return 0;
4260 }
4261 *entry = new_entry;
4262 }
4263 *slot = entry;
476366af 4264 mips_elf_count_got_entry (arg->info, arg->g, entry);
72e7511a 4265 }
33bb52fb
RS
4266 return 1;
4267}
4268
13db6b44
RS
4269/* Return the maximum number of GOT page entries required for RANGE. */
4270
4271static bfd_vma
4272mips_elf_pages_for_range (const struct mips_got_page_range *range)
4273{
4274 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4275}
4276
4277/* Record that G requires a page entry that can reach SEC + ADDEND. */
4278
4279static bfd_boolean
b75d42bc 4280mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
13db6b44
RS
4281 asection *sec, bfd_signed_vma addend)
4282{
b75d42bc 4283 struct mips_got_info *g = arg->g;
13db6b44
RS
4284 struct mips_got_page_entry lookup, *entry;
4285 struct mips_got_page_range **range_ptr, *range;
4286 bfd_vma old_pages, new_pages;
4287 void **loc;
4288
4289 /* Find the mips_got_page_entry hash table entry for this section. */
4290 lookup.sec = sec;
4291 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4292 if (loc == NULL)
4293 return FALSE;
4294
4295 /* Create a mips_got_page_entry if this is the first time we've
4296 seen the section. */
4297 entry = (struct mips_got_page_entry *) *loc;
4298 if (!entry)
4299 {
b75d42bc 4300 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
13db6b44
RS
4301 if (!entry)
4302 return FALSE;
4303
4304 entry->sec = sec;
4305 *loc = entry;
4306 }
4307
4308 /* Skip over ranges whose maximum extent cannot share a page entry
4309 with ADDEND. */
4310 range_ptr = &entry->ranges;
4311 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4312 range_ptr = &(*range_ptr)->next;
4313
4314 /* If we scanned to the end of the list, or found a range whose
4315 minimum extent cannot share a page entry with ADDEND, create
4316 a new singleton range. */
4317 range = *range_ptr;
4318 if (!range || addend < range->min_addend - 0xffff)
4319 {
b75d42bc 4320 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
13db6b44
RS
4321 if (!range)
4322 return FALSE;
4323
4324 range->next = *range_ptr;
4325 range->min_addend = addend;
4326 range->max_addend = addend;
4327
4328 *range_ptr = range;
4329 entry->num_pages++;
4330 g->page_gotno++;
4331 return TRUE;
4332 }
4333
4334 /* Remember how many pages the old range contributed. */
4335 old_pages = mips_elf_pages_for_range (range);
4336
4337 /* Update the ranges. */
4338 if (addend < range->min_addend)
4339 range->min_addend = addend;
4340 else if (addend > range->max_addend)
4341 {
4342 if (range->next && addend >= range->next->min_addend - 0xffff)
4343 {
4344 old_pages += mips_elf_pages_for_range (range->next);
4345 range->max_addend = range->next->max_addend;
4346 range->next = range->next->next;
4347 }
4348 else
4349 range->max_addend = addend;
4350 }
4351
4352 /* Record any change in the total estimate. */
4353 new_pages = mips_elf_pages_for_range (range);
4354 if (old_pages != new_pages)
4355 {
4356 entry->num_pages += new_pages - old_pages;
4357 g->page_gotno += new_pages - old_pages;
4358 }
4359
4360 return TRUE;
4361}
4362
4363/* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4364 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4365 whether the page reference described by *REFP needs a GOT page entry,
4366 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4367
4368static bfd_boolean
4369mips_elf_resolve_got_page_ref (void **refp, void *data)
4370{
4371 struct mips_got_page_ref *ref;
4372 struct mips_elf_traverse_got_arg *arg;
4373 struct mips_elf_link_hash_table *htab;
4374 asection *sec;
4375 bfd_vma addend;
4376
4377 ref = (struct mips_got_page_ref *) *refp;
4378 arg = (struct mips_elf_traverse_got_arg *) data;
4379 htab = mips_elf_hash_table (arg->info);
4380
4381 if (ref->symndx < 0)
4382 {
4383 struct mips_elf_link_hash_entry *h;
4384
4385 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4386 h = ref->u.h;
4387 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4388 return 1;
4389
4390 /* Ignore undefined symbols; we'll issue an error later if
4391 appropriate. */
4392 if (!((h->root.root.type == bfd_link_hash_defined
4393 || h->root.root.type == bfd_link_hash_defweak)
4394 && h->root.root.u.def.section))
4395 return 1;
4396
4397 sec = h->root.root.u.def.section;
4398 addend = h->root.root.u.def.value + ref->addend;
4399 }
4400 else
4401 {
4402 Elf_Internal_Sym *isym;
4403
4404 /* Read in the symbol. */
4405 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4406 ref->symndx);
4407 if (isym == NULL)
4408 {
4409 arg->g = NULL;
4410 return 0;
4411 }
4412
4413 /* Get the associated input section. */
4414 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4415 if (sec == NULL)
4416 {
4417 arg->g = NULL;
4418 return 0;
4419 }
4420
4421 /* If this is a mergable section, work out the section and offset
4422 of the merged data. For section symbols, the addend specifies
4423 of the offset _of_ the first byte in the data, otherwise it
4424 specifies the offset _from_ the first byte. */
4425 if (sec->flags & SEC_MERGE)
4426 {
4427 void *secinfo;
4428
4429 secinfo = elf_section_data (sec)->sec_info;
4430 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4431 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4432 isym->st_value + ref->addend);
4433 else
4434 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4435 isym->st_value) + ref->addend;
4436 }
4437 else
4438 addend = isym->st_value + ref->addend;
4439 }
b75d42bc 4440 if (!mips_elf_record_got_page_entry (arg, sec, addend))
13db6b44
RS
4441 {
4442 arg->g = NULL;
4443 return 0;
4444 }
4445 return 1;
4446}
4447
33bb52fb 4448/* If any entries in G->got_entries are for indirect or warning symbols,
13db6b44
RS
4449 replace them with entries for the target symbol. Convert g->got_page_refs
4450 into got_page_entry structures and estimate the number of page entries
4451 that they require. */
33bb52fb
RS
4452
4453static bfd_boolean
476366af
RS
4454mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4455 struct mips_got_info *g)
33bb52fb 4456{
476366af
RS
4457 struct mips_elf_traverse_got_arg tga;
4458 struct mips_got_info oldg;
4459
4460 oldg = *g;
33bb52fb 4461
476366af
RS
4462 tga.info = info;
4463 tga.g = g;
4464 tga.value = FALSE;
4465 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4466 if (tga.value)
33bb52fb 4467 {
476366af
RS
4468 *g = oldg;
4469 g->got_entries = htab_create (htab_size (oldg.got_entries),
4470 mips_elf_got_entry_hash,
4471 mips_elf_got_entry_eq, NULL);
4472 if (!g->got_entries)
33bb52fb
RS
4473 return FALSE;
4474
476366af
RS
4475 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4476 if (!tga.g)
4477 return FALSE;
4478
4479 htab_delete (oldg.got_entries);
33bb52fb 4480 }
13db6b44
RS
4481
4482 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4483 mips_got_page_entry_eq, NULL);
4484 if (g->got_page_entries == NULL)
4485 return FALSE;
4486
4487 tga.info = info;
4488 tga.g = g;
4489 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4490
33bb52fb
RS
4491 return TRUE;
4492}
4493
c5d6fa44
RS
4494/* Return true if a GOT entry for H should live in the local rather than
4495 global GOT area. */
4496
4497static bfd_boolean
4498mips_use_local_got_p (struct bfd_link_info *info,
4499 struct mips_elf_link_hash_entry *h)
4500{
4501 /* Symbols that aren't in the dynamic symbol table must live in the
4502 local GOT. This includes symbols that are completely undefined
4503 and which therefore don't bind locally. We'll report undefined
4504 symbols later if appropriate. */
4505 if (h->root.dynindx == -1)
4506 return TRUE;
4507
47275900
MR
4508 /* Absolute symbols, if ever they need a GOT entry, cannot ever go
4509 to the local GOT, as they would be implicitly relocated by the
4510 base address by the dynamic loader. */
4511 if (bfd_is_abs_symbol (&h->root.root))
4512 return FALSE;
4513
c5d6fa44
RS
4514 /* Symbols that bind locally can (and in the case of forced-local
4515 symbols, must) live in the local GOT. */
4516 if (h->got_only_for_calls
4517 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4518 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4519 return TRUE;
4520
4521 /* If this is an executable that must provide a definition of the symbol,
4522 either though PLTs or copy relocations, then that address should go in
4523 the local rather than global GOT. */
0e1862bb 4524 if (bfd_link_executable (info) && h->has_static_relocs)
c5d6fa44
RS
4525 return TRUE;
4526
4527 return FALSE;
4528}
4529
6c42ddb9
RS
4530/* A mips_elf_link_hash_traverse callback for which DATA points to the
4531 link_info structure. Decide whether the hash entry needs an entry in
4532 the global part of the primary GOT, setting global_got_area accordingly.
4533 Count the number of global symbols that are in the primary GOT only
4534 because they have relocations against them (reloc_only_gotno). */
33bb52fb
RS
4535
4536static int
d4596a51 4537mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb 4538{
020d7251 4539 struct bfd_link_info *info;
6ccf4795 4540 struct mips_elf_link_hash_table *htab;
33bb52fb
RS
4541 struct mips_got_info *g;
4542
020d7251 4543 info = (struct bfd_link_info *) data;
6ccf4795
RS
4544 htab = mips_elf_hash_table (info);
4545 g = htab->got_info;
d4596a51 4546 if (h->global_got_area != GGA_NONE)
33bb52fb 4547 {
020d7251 4548 /* Make a final decision about whether the symbol belongs in the
c5d6fa44
RS
4549 local or global GOT. */
4550 if (mips_use_local_got_p (info, h))
6c42ddb9
RS
4551 /* The symbol belongs in the local GOT. We no longer need this
4552 entry if it was only used for relocations; those relocations
4553 will be against the null or section symbol instead of H. */
4554 h->global_got_area = GGA_NONE;
6ccf4795
RS
4555 else if (htab->is_vxworks
4556 && h->got_only_for_calls
1bbce132 4557 && h->root.plt.plist->mips_offset != MINUS_ONE)
6ccf4795
RS
4558 /* On VxWorks, calls can refer directly to the .got.plt entry;
4559 they don't need entries in the regular GOT. .got.plt entries
4560 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4561 h->global_got_area = GGA_NONE;
6c42ddb9 4562 else if (h->global_got_area == GGA_RELOC_ONLY)
23cc69b6 4563 {
6c42ddb9 4564 g->reloc_only_gotno++;
23cc69b6 4565 g->global_gotno++;
23cc69b6 4566 }
33bb52fb
RS
4567 }
4568 return 1;
4569}
f4416af6 4570\f
d7206569
RS
4571/* A htab_traverse callback for GOT entries. Add each one to the GOT
4572 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
f4416af6
AO
4573
4574static int
d7206569 4575mips_elf_add_got_entry (void **entryp, void *data)
f4416af6 4576{
d7206569
RS
4577 struct mips_got_entry *entry;
4578 struct mips_elf_traverse_got_arg *arg;
4579 void **slot;
f4416af6 4580
d7206569
RS
4581 entry = (struct mips_got_entry *) *entryp;
4582 arg = (struct mips_elf_traverse_got_arg *) data;
4583 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4584 if (!slot)
f4416af6 4585 {
d7206569
RS
4586 arg->g = NULL;
4587 return 0;
f4416af6 4588 }
d7206569 4589 if (!*slot)
c224138d 4590 {
d7206569
RS
4591 *slot = entry;
4592 mips_elf_count_got_entry (arg->info, arg->g, entry);
c224138d 4593 }
f4416af6
AO
4594 return 1;
4595}
4596
d7206569
RS
4597/* A htab_traverse callback for GOT page entries. Add each one to the GOT
4598 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
c224138d
RS
4599
4600static int
d7206569 4601mips_elf_add_got_page_entry (void **entryp, void *data)
c224138d 4602{
d7206569
RS
4603 struct mips_got_page_entry *entry;
4604 struct mips_elf_traverse_got_arg *arg;
4605 void **slot;
c224138d 4606
d7206569
RS
4607 entry = (struct mips_got_page_entry *) *entryp;
4608 arg = (struct mips_elf_traverse_got_arg *) data;
4609 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4610 if (!slot)
c224138d 4611 {
d7206569 4612 arg->g = NULL;
c224138d
RS
4613 return 0;
4614 }
d7206569
RS
4615 if (!*slot)
4616 {
4617 *slot = entry;
4618 arg->g->page_gotno += entry->num_pages;
4619 }
c224138d
RS
4620 return 1;
4621}
4622
d7206569
RS
4623/* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4624 this would lead to overflow, 1 if they were merged successfully,
4625 and 0 if a merge failed due to lack of memory. (These values are chosen
4626 so that nonnegative return values can be returned by a htab_traverse
4627 callback.) */
c224138d
RS
4628
4629static int
d7206569 4630mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
c224138d
RS
4631 struct mips_got_info *to,
4632 struct mips_elf_got_per_bfd_arg *arg)
4633{
d7206569 4634 struct mips_elf_traverse_got_arg tga;
c224138d
RS
4635 unsigned int estimate;
4636
4637 /* Work out how many page entries we would need for the combined GOT. */
4638 estimate = arg->max_pages;
4639 if (estimate >= from->page_gotno + to->page_gotno)
4640 estimate = from->page_gotno + to->page_gotno;
4641
e2ece73c 4642 /* And conservatively estimate how many local and TLS entries
c224138d 4643 would be needed. */
e2ece73c
RS
4644 estimate += from->local_gotno + to->local_gotno;
4645 estimate += from->tls_gotno + to->tls_gotno;
4646
17214937
RS
4647 /* If we're merging with the primary got, any TLS relocations will
4648 come after the full set of global entries. Otherwise estimate those
e2ece73c 4649 conservatively as well. */
17214937 4650 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
e2ece73c
RS
4651 estimate += arg->global_count;
4652 else
4653 estimate += from->global_gotno + to->global_gotno;
c224138d
RS
4654
4655 /* Bail out if the combined GOT might be too big. */
4656 if (estimate > arg->max_count)
4657 return -1;
4658
c224138d 4659 /* Transfer the bfd's got information from FROM to TO. */
d7206569
RS
4660 tga.info = arg->info;
4661 tga.g = to;
4662 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4663 if (!tga.g)
c224138d
RS
4664 return 0;
4665
d7206569
RS
4666 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4667 if (!tga.g)
c224138d
RS
4668 return 0;
4669
d7206569 4670 mips_elf_replace_bfd_got (abfd, to);
c224138d
RS
4671 return 1;
4672}
4673
d7206569 4674/* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
f4416af6
AO
4675 as possible of the primary got, since it doesn't require explicit
4676 dynamic relocations, but don't use bfds that would reference global
4677 symbols out of the addressable range. Failing the primary got,
4678 attempt to merge with the current got, or finish the current got
4679 and then make make the new got current. */
4680
d7206569
RS
4681static bfd_boolean
4682mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4683 struct mips_elf_got_per_bfd_arg *arg)
f4416af6 4684{
c224138d
RS
4685 unsigned int estimate;
4686 int result;
4687
476366af 4688 if (!mips_elf_resolve_final_got_entries (arg->info, g))
d7206569
RS
4689 return FALSE;
4690
c224138d
RS
4691 /* Work out the number of page, local and TLS entries. */
4692 estimate = arg->max_pages;
4693 if (estimate > g->page_gotno)
4694 estimate = g->page_gotno;
4695 estimate += g->local_gotno + g->tls_gotno;
0f20cc35
DJ
4696
4697 /* We place TLS GOT entries after both locals and globals. The globals
4698 for the primary GOT may overflow the normal GOT size limit, so be
4699 sure not to merge a GOT which requires TLS with the primary GOT in that
4700 case. This doesn't affect non-primary GOTs. */
c224138d 4701 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
143d77c5 4702
c224138d 4703 if (estimate <= arg->max_count)
f4416af6 4704 {
c224138d
RS
4705 /* If we don't have a primary GOT, use it as
4706 a starting point for the primary GOT. */
4707 if (!arg->primary)
4708 {
d7206569
RS
4709 arg->primary = g;
4710 return TRUE;
c224138d 4711 }
f4416af6 4712
c224138d 4713 /* Try merging with the primary GOT. */
d7206569 4714 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
c224138d
RS
4715 if (result >= 0)
4716 return result;
f4416af6 4717 }
c224138d 4718
f4416af6 4719 /* If we can merge with the last-created got, do it. */
c224138d 4720 if (arg->current)
f4416af6 4721 {
d7206569 4722 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
c224138d
RS
4723 if (result >= 0)
4724 return result;
f4416af6 4725 }
c224138d 4726
f4416af6
AO
4727 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4728 fits; if it turns out that it doesn't, we'll get relocation
4729 overflows anyway. */
c224138d
RS
4730 g->next = arg->current;
4731 arg->current = g;
0f20cc35 4732
d7206569 4733 return TRUE;
0f20cc35
DJ
4734}
4735
72e7511a
RS
4736/* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4737 to GOTIDX, duplicating the entry if it has already been assigned
4738 an index in a different GOT. */
4739
4740static bfd_boolean
4741mips_elf_set_gotidx (void **entryp, long gotidx)
4742{
4743 struct mips_got_entry *entry;
4744
4745 entry = (struct mips_got_entry *) *entryp;
4746 if (entry->gotidx > 0)
4747 {
4748 struct mips_got_entry *new_entry;
4749
4750 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4751 if (!new_entry)
4752 return FALSE;
4753
4754 *new_entry = *entry;
4755 *entryp = new_entry;
4756 entry = new_entry;
4757 }
4758 entry->gotidx = gotidx;
4759 return TRUE;
4760}
4761
4762/* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4763 mips_elf_traverse_got_arg in which DATA->value is the size of one
4764 GOT entry. Set DATA->g to null on failure. */
0f20cc35
DJ
4765
4766static int
72e7511a 4767mips_elf_initialize_tls_index (void **entryp, void *data)
0f20cc35 4768{
72e7511a
RS
4769 struct mips_got_entry *entry;
4770 struct mips_elf_traverse_got_arg *arg;
0f20cc35
DJ
4771
4772 /* We're only interested in TLS symbols. */
72e7511a 4773 entry = (struct mips_got_entry *) *entryp;
9ab066b4 4774 if (entry->tls_type == GOT_TLS_NONE)
0f20cc35
DJ
4775 return 1;
4776
72e7511a 4777 arg = (struct mips_elf_traverse_got_arg *) data;
6c42ddb9 4778 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
ead49a57 4779 {
6c42ddb9
RS
4780 arg->g = NULL;
4781 return 0;
f4416af6
AO
4782 }
4783
ead49a57 4784 /* Account for the entries we've just allocated. */
9ab066b4 4785 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
f4416af6
AO
4786 return 1;
4787}
4788
ab361d49
RS
4789/* A htab_traverse callback for GOT entries, where DATA points to a
4790 mips_elf_traverse_got_arg. Set the global_got_area of each global
4791 symbol to DATA->value. */
f4416af6 4792
f4416af6 4793static int
ab361d49 4794mips_elf_set_global_got_area (void **entryp, void *data)
f4416af6 4795{
ab361d49
RS
4796 struct mips_got_entry *entry;
4797 struct mips_elf_traverse_got_arg *arg;
f4416af6 4798
ab361d49
RS
4799 entry = (struct mips_got_entry *) *entryp;
4800 arg = (struct mips_elf_traverse_got_arg *) data;
4801 if (entry->abfd != NULL
4802 && entry->symndx == -1
4803 && entry->d.h->global_got_area != GGA_NONE)
4804 entry->d.h->global_got_area = arg->value;
4805 return 1;
4806}
4807
4808/* A htab_traverse callback for secondary GOT entries, where DATA points
4809 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4810 and record the number of relocations they require. DATA->value is
72e7511a 4811 the size of one GOT entry. Set DATA->g to null on failure. */
ab361d49
RS
4812
4813static int
4814mips_elf_set_global_gotidx (void **entryp, void *data)
4815{
4816 struct mips_got_entry *entry;
4817 struct mips_elf_traverse_got_arg *arg;
0f20cc35 4818
ab361d49
RS
4819 entry = (struct mips_got_entry *) *entryp;
4820 arg = (struct mips_elf_traverse_got_arg *) data;
634835ae
RS
4821 if (entry->abfd != NULL
4822 && entry->symndx == -1
4823 && entry->d.h->global_got_area != GGA_NONE)
f4416af6 4824 {
cb22ccf4 4825 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
72e7511a
RS
4826 {
4827 arg->g = NULL;
4828 return 0;
4829 }
cb22ccf4 4830 arg->g->assigned_low_gotno += 1;
72e7511a 4831
0e1862bb 4832 if (bfd_link_pic (arg->info)
ab361d49
RS
4833 || (elf_hash_table (arg->info)->dynamic_sections_created
4834 && entry->d.h->root.def_dynamic
4835 && !entry->d.h->root.def_regular))
4836 arg->g->relocs += 1;
f4416af6
AO
4837 }
4838
4839 return 1;
4840}
4841
33bb52fb
RS
4842/* A htab_traverse callback for GOT entries for which DATA is the
4843 bfd_link_info. Forbid any global symbols from having traditional
4844 lazy-binding stubs. */
4845
0626d451 4846static int
33bb52fb 4847mips_elf_forbid_lazy_stubs (void **entryp, void *data)
0626d451 4848{
33bb52fb
RS
4849 struct bfd_link_info *info;
4850 struct mips_elf_link_hash_table *htab;
4851 struct mips_got_entry *entry;
0626d451 4852
33bb52fb
RS
4853 entry = (struct mips_got_entry *) *entryp;
4854 info = (struct bfd_link_info *) data;
4855 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4856 BFD_ASSERT (htab != NULL);
4857
0626d451
RS
4858 if (entry->abfd != NULL
4859 && entry->symndx == -1
33bb52fb 4860 && entry->d.h->needs_lazy_stub)
f4416af6 4861 {
33bb52fb
RS
4862 entry->d.h->needs_lazy_stub = FALSE;
4863 htab->lazy_stub_count--;
f4416af6 4864 }
143d77c5 4865
f4416af6
AO
4866 return 1;
4867}
4868
f4416af6
AO
4869/* Return the offset of an input bfd IBFD's GOT from the beginning of
4870 the primary GOT. */
4871static bfd_vma
9719ad41 4872mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6 4873{
d7206569 4874 if (!g->next)
f4416af6
AO
4875 return 0;
4876
d7206569 4877 g = mips_elf_bfd_got (ibfd, FALSE);
f4416af6
AO
4878 if (! g)
4879 return 0;
4880
4881 BFD_ASSERT (g->next);
4882
4883 g = g->next;
143d77c5 4884
0f20cc35
DJ
4885 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4886 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
4887}
4888
4889/* Turn a single GOT that is too big for 16-bit addressing into
4890 a sequence of GOTs, each one 16-bit addressable. */
4891
4892static bfd_boolean
9719ad41 4893mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
a8028dd0 4894 asection *got, bfd_size_type pages)
f4416af6 4895{
a8028dd0 4896 struct mips_elf_link_hash_table *htab;
f4416af6 4897 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
ab361d49 4898 struct mips_elf_traverse_got_arg tga;
a8028dd0 4899 struct mips_got_info *g, *gg;
33bb52fb 4900 unsigned int assign, needed_relocs;
d7206569 4901 bfd *dynobj, *ibfd;
f4416af6 4902
33bb52fb 4903 dynobj = elf_hash_table (info)->dynobj;
a8028dd0 4904 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4905 BFD_ASSERT (htab != NULL);
4906
a8028dd0 4907 g = htab->got_info;
f4416af6 4908
f4416af6
AO
4909 got_per_bfd_arg.obfd = abfd;
4910 got_per_bfd_arg.info = info;
f4416af6
AO
4911 got_per_bfd_arg.current = NULL;
4912 got_per_bfd_arg.primary = NULL;
0a44bf69 4913 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
f4416af6 4914 / MIPS_ELF_GOT_SIZE (abfd))
861fb55a 4915 - htab->reserved_gotno);
c224138d 4916 got_per_bfd_arg.max_pages = pages;
0f20cc35 4917 /* The number of globals that will be included in the primary GOT.
ab361d49 4918 See the calls to mips_elf_set_global_got_area below for more
0f20cc35
DJ
4919 information. */
4920 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
4921
4922 /* Try to merge the GOTs of input bfds together, as long as they
4923 don't seem to exceed the maximum GOT size, choosing one of them
4924 to be the primary GOT. */
c72f2fb2 4925 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
d7206569
RS
4926 {
4927 gg = mips_elf_bfd_got (ibfd, FALSE);
4928 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4929 return FALSE;
4930 }
f4416af6 4931
0f20cc35 4932 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6 4933 if (got_per_bfd_arg.primary == NULL)
3dff0dd1 4934 g->next = mips_elf_create_got_info (abfd);
f4416af6
AO
4935 else
4936 g->next = got_per_bfd_arg.primary;
4937 g->next->next = got_per_bfd_arg.current;
4938
4939 /* GG is now the master GOT, and G is the primary GOT. */
4940 gg = g;
4941 g = g->next;
4942
4943 /* Map the output bfd to the primary got. That's what we're going
4944 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4945 didn't mark in check_relocs, and we want a quick way to find it.
4946 We can't just use gg->next because we're going to reverse the
4947 list. */
d7206569 4948 mips_elf_replace_bfd_got (abfd, g);
f4416af6 4949
634835ae
RS
4950 /* Every symbol that is referenced in a dynamic relocation must be
4951 present in the primary GOT, so arrange for them to appear after
4952 those that are actually referenced. */
23cc69b6 4953 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
634835ae 4954 g->global_gotno = gg->global_gotno;
f4416af6 4955
ab361d49
RS
4956 tga.info = info;
4957 tga.value = GGA_RELOC_ONLY;
4958 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4959 tga.value = GGA_NORMAL;
4960 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
f4416af6
AO
4961
4962 /* Now go through the GOTs assigning them offset ranges.
cb22ccf4 4963 [assigned_low_gotno, local_gotno[ will be set to the range of local
f4416af6
AO
4964 entries in each GOT. We can then compute the end of a GOT by
4965 adding local_gotno to global_gotno. We reverse the list and make
4966 it circular since then we'll be able to quickly compute the
4967 beginning of a GOT, by computing the end of its predecessor. To
4968 avoid special cases for the primary GOT, while still preserving
4969 assertions that are valid for both single- and multi-got links,
4970 we arrange for the main got struct to have the right number of
4971 global entries, but set its local_gotno such that the initial
4972 offset of the primary GOT is zero. Remember that the primary GOT
4973 will become the last item in the circular linked list, so it
4974 points back to the master GOT. */
4975 gg->local_gotno = -g->global_gotno;
4976 gg->global_gotno = g->global_gotno;
0f20cc35 4977 gg->tls_gotno = 0;
f4416af6
AO
4978 assign = 0;
4979 gg->next = gg;
4980
4981 do
4982 {
4983 struct mips_got_info *gn;
4984
861fb55a 4985 assign += htab->reserved_gotno;
cb22ccf4 4986 g->assigned_low_gotno = assign;
c224138d
RS
4987 g->local_gotno += assign;
4988 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
cb22ccf4 4989 g->assigned_high_gotno = g->local_gotno - 1;
0f20cc35
DJ
4990 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4991
ead49a57
RS
4992 /* Take g out of the direct list, and push it onto the reversed
4993 list that gg points to. g->next is guaranteed to be nonnull after
4994 this operation, as required by mips_elf_initialize_tls_index. */
4995 gn = g->next;
4996 g->next = gg->next;
4997 gg->next = g;
4998
0f20cc35
DJ
4999 /* Set up any TLS entries. We always place the TLS entries after
5000 all non-TLS entries. */
5001 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
72e7511a
RS
5002 tga.g = g;
5003 tga.value = MIPS_ELF_GOT_SIZE (abfd);
5004 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
5005 if (!tga.g)
5006 return FALSE;
1fd20d70 5007 BFD_ASSERT (g->tls_assigned_gotno == assign);
f4416af6 5008
ead49a57 5009 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
f4416af6 5010 g = gn;
0626d451 5011
33bb52fb
RS
5012 /* Forbid global symbols in every non-primary GOT from having
5013 lazy-binding stubs. */
0626d451 5014 if (g)
33bb52fb 5015 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
f4416af6
AO
5016 }
5017 while (g);
5018
59b08994 5019 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
33bb52fb
RS
5020
5021 needed_relocs = 0;
33bb52fb
RS
5022 for (g = gg->next; g && g->next != gg; g = g->next)
5023 {
5024 unsigned int save_assign;
5025
ab361d49
RS
5026 /* Assign offsets to global GOT entries and count how many
5027 relocations they need. */
cb22ccf4
KCY
5028 save_assign = g->assigned_low_gotno;
5029 g->assigned_low_gotno = g->local_gotno;
ab361d49
RS
5030 tga.info = info;
5031 tga.value = MIPS_ELF_GOT_SIZE (abfd);
5032 tga.g = g;
5033 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
72e7511a
RS
5034 if (!tga.g)
5035 return FALSE;
cb22ccf4
KCY
5036 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
5037 g->assigned_low_gotno = save_assign;
72e7511a 5038
0e1862bb 5039 if (bfd_link_pic (info))
33bb52fb 5040 {
cb22ccf4
KCY
5041 g->relocs += g->local_gotno - g->assigned_low_gotno;
5042 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
33bb52fb
RS
5043 + g->next->global_gotno
5044 + g->next->tls_gotno
861fb55a 5045 + htab->reserved_gotno);
33bb52fb 5046 }
ab361d49 5047 needed_relocs += g->relocs;
33bb52fb 5048 }
ab361d49 5049 needed_relocs += g->relocs;
33bb52fb
RS
5050
5051 if (needed_relocs)
5052 mips_elf_allocate_dynamic_relocations (dynobj, info,
5053 needed_relocs);
143d77c5 5054
f4416af6
AO
5055 return TRUE;
5056}
143d77c5 5057
b49e97c9
TS
5058\f
5059/* Returns the first relocation of type r_type found, beginning with
5060 RELOCATION. RELEND is one-past-the-end of the relocation table. */
5061
5062static const Elf_Internal_Rela *
9719ad41
RS
5063mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
5064 const Elf_Internal_Rela *relocation,
5065 const Elf_Internal_Rela *relend)
b49e97c9 5066{
c000e262
TS
5067 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
5068
b49e97c9
TS
5069 while (relocation < relend)
5070 {
c000e262
TS
5071 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
5072 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
b49e97c9
TS
5073 return relocation;
5074
5075 ++relocation;
5076 }
5077
5078 /* We didn't find it. */
b49e97c9
TS
5079 return NULL;
5080}
5081
020d7251 5082/* Return whether an input relocation is against a local symbol. */
b49e97c9 5083
b34976b6 5084static bfd_boolean
9719ad41
RS
5085mips_elf_local_relocation_p (bfd *input_bfd,
5086 const Elf_Internal_Rela *relocation,
020d7251 5087 asection **local_sections)
b49e97c9
TS
5088{
5089 unsigned long r_symndx;
5090 Elf_Internal_Shdr *symtab_hdr;
b49e97c9
TS
5091 size_t extsymoff;
5092
5093 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5094 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5095 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5096
5097 if (r_symndx < extsymoff)
b34976b6 5098 return TRUE;
b49e97c9 5099 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 5100 return TRUE;
b49e97c9 5101
b34976b6 5102 return FALSE;
b49e97c9
TS
5103}
5104\f
5105/* Sign-extend VALUE, which has the indicated number of BITS. */
5106
a7ebbfdf 5107bfd_vma
9719ad41 5108_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
5109{
5110 if (value & ((bfd_vma) 1 << (bits - 1)))
5111 /* VALUE is negative. */
5112 value |= ((bfd_vma) - 1) << bits;
5113
5114 return value;
5115}
5116
5117/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 5118 range expressible by a signed number with the indicated number of
b49e97c9
TS
5119 BITS. */
5120
b34976b6 5121static bfd_boolean
9719ad41 5122mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
5123{
5124 bfd_signed_vma svalue = (bfd_signed_vma) value;
5125
5126 if (svalue > (1 << (bits - 1)) - 1)
5127 /* The value is too big. */
b34976b6 5128 return TRUE;
b49e97c9
TS
5129 else if (svalue < -(1 << (bits - 1)))
5130 /* The value is too small. */
b34976b6 5131 return TRUE;
b49e97c9
TS
5132
5133 /* All is well. */
b34976b6 5134 return FALSE;
b49e97c9
TS
5135}
5136
5137/* Calculate the %high function. */
5138
5139static bfd_vma
9719ad41 5140mips_elf_high (bfd_vma value)
b49e97c9
TS
5141{
5142 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5143}
5144
5145/* Calculate the %higher function. */
5146
5147static bfd_vma
9719ad41 5148mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
5149{
5150#ifdef BFD64
5151 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5152#else
5153 abort ();
c5ae1840 5154 return MINUS_ONE;
b49e97c9
TS
5155#endif
5156}
5157
5158/* Calculate the %highest function. */
5159
5160static bfd_vma
9719ad41 5161mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
5162{
5163#ifdef BFD64
b15e6682 5164 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
5165#else
5166 abort ();
c5ae1840 5167 return MINUS_ONE;
b49e97c9
TS
5168#endif
5169}
5170\f
5171/* Create the .compact_rel section. */
5172
b34976b6 5173static bfd_boolean
9719ad41
RS
5174mips_elf_create_compact_rel_section
5175 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
5176{
5177 flagword flags;
5178 register asection *s;
5179
3d4d4302 5180 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
b49e97c9
TS
5181 {
5182 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5183 | SEC_READONLY);
5184
3d4d4302 5185 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
b49e97c9 5186 if (s == NULL
fd361982 5187 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5188 return FALSE;
b49e97c9 5189
eea6121a 5190 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
5191 }
5192
b34976b6 5193 return TRUE;
b49e97c9
TS
5194}
5195
5196/* Create the .got section to hold the global offset table. */
5197
b34976b6 5198static bfd_boolean
23cc69b6 5199mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
5200{
5201 flagword flags;
5202 register asection *s;
5203 struct elf_link_hash_entry *h;
14a793b2 5204 struct bfd_link_hash_entry *bh;
0a44bf69
RS
5205 struct mips_elf_link_hash_table *htab;
5206
5207 htab = mips_elf_hash_table (info);
4dfe6ac6 5208 BFD_ASSERT (htab != NULL);
b49e97c9
TS
5209
5210 /* This function may be called more than once. */
ce558b89 5211 if (htab->root.sgot)
23cc69b6 5212 return TRUE;
b49e97c9
TS
5213
5214 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5215 | SEC_LINKER_CREATED);
5216
72b4917c
TS
5217 /* We have to use an alignment of 2**4 here because this is hardcoded
5218 in the function stub generation and in the linker script. */
87e0a731 5219 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
b49e97c9 5220 if (s == NULL
fd361982 5221 || !bfd_set_section_alignment (s, 4))
b34976b6 5222 return FALSE;
ce558b89 5223 htab->root.sgot = s;
b49e97c9
TS
5224
5225 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5226 linker script because we don't want to define the symbol if we
5227 are not creating a global offset table. */
14a793b2 5228 bh = NULL;
b49e97c9
TS
5229 if (! (_bfd_generic_link_add_one_symbol
5230 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 5231 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5232 return FALSE;
14a793b2
AM
5233
5234 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5235 h->non_elf = 0;
5236 h->def_regular = 1;
b49e97c9 5237 h->type = STT_OBJECT;
2f9efdfc 5238 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
d329bcd1 5239 elf_hash_table (info)->hgot = h;
b49e97c9 5240
0e1862bb 5241 if (bfd_link_pic (info)
c152c796 5242 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5243 return FALSE;
b49e97c9 5244
3dff0dd1 5245 htab->got_info = mips_elf_create_got_info (abfd);
f0abc2a1 5246 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
5247 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5248
861fb55a 5249 /* We also need a .got.plt section when generating PLTs. */
87e0a731
AM
5250 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5251 SEC_ALLOC | SEC_LOAD
5252 | SEC_HAS_CONTENTS
5253 | SEC_IN_MEMORY
5254 | SEC_LINKER_CREATED);
861fb55a
DJ
5255 if (s == NULL)
5256 return FALSE;
ce558b89 5257 htab->root.sgotplt = s;
0a44bf69 5258
b34976b6 5259 return TRUE;
b49e97c9 5260}
b49e97c9 5261\f
0a44bf69
RS
5262/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5263 __GOTT_INDEX__ symbols. These symbols are only special for
5264 shared objects; they are not used in executables. */
5265
5266static bfd_boolean
5267is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5268{
5269 return (mips_elf_hash_table (info)->is_vxworks
0e1862bb 5270 && bfd_link_pic (info)
0a44bf69
RS
5271 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5272 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5273}
861fb55a
DJ
5274
5275/* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5276 require an la25 stub. See also mips_elf_local_pic_function_p,
5277 which determines whether the destination function ever requires a
5278 stub. */
5279
5280static bfd_boolean
8f0c309a
CLT
5281mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5282 bfd_boolean target_is_16_bit_code_p)
861fb55a
DJ
5283{
5284 /* We specifically ignore branches and jumps from EF_PIC objects,
5285 where the onus is on the compiler or programmer to perform any
5286 necessary initialization of $25. Sometimes such initialization
5287 is unnecessary; for example, -mno-shared functions do not use
5288 the incoming value of $25, and may therefore be called directly. */
5289 if (PIC_OBJECT_P (input_bfd))
5290 return FALSE;
5291
5292 switch (r_type)
5293 {
5294 case R_MIPS_26:
5295 case R_MIPS_PC16:
7361da2c
AB
5296 case R_MIPS_PC21_S2:
5297 case R_MIPS_PC26_S2:
df58fc94
RS
5298 case R_MICROMIPS_26_S1:
5299 case R_MICROMIPS_PC7_S1:
5300 case R_MICROMIPS_PC10_S1:
5301 case R_MICROMIPS_PC16_S1:
5302 case R_MICROMIPS_PC23_S2:
861fb55a
DJ
5303 return TRUE;
5304
8f0c309a
CLT
5305 case R_MIPS16_26:
5306 return !target_is_16_bit_code_p;
5307
861fb55a
DJ
5308 default:
5309 return FALSE;
5310 }
5311}
0a44bf69 5312\f
47275900
MR
5313/* Obtain the field relocated by RELOCATION. */
5314
5315static bfd_vma
5316mips_elf_obtain_contents (reloc_howto_type *howto,
5317 const Elf_Internal_Rela *relocation,
5318 bfd *input_bfd, bfd_byte *contents)
5319{
5320 bfd_vma x = 0;
5321 bfd_byte *location = contents + relocation->r_offset;
5322 unsigned int size = bfd_get_reloc_size (howto);
5323
5324 /* Obtain the bytes. */
5325 if (size != 0)
5326 x = bfd_get (8 * size, input_bfd, location);
5327
5328 return x;
5329}
5330
98e10ffa
MR
5331/* Store the field relocated by RELOCATION. */
5332
5333static void
5334mips_elf_store_contents (reloc_howto_type *howto,
5335 const Elf_Internal_Rela *relocation,
5336 bfd *input_bfd, bfd_byte *contents, bfd_vma x)
5337{
5338 bfd_byte *location = contents + relocation->r_offset;
5339 unsigned int size = bfd_get_reloc_size (howto);
5340
5341 /* Put the value into the output. */
5342 if (size != 0)
5343 bfd_put (8 * size, input_bfd, x, location);
5344}
5345
47275900
MR
5346/* Try to patch a load from GOT instruction in CONTENTS pointed to by
5347 RELOCATION described by HOWTO, with a move of 0 to the load target
5348 register, returning TRUE if that is successful and FALSE otherwise.
5349 If DOIT is FALSE, then only determine it patching is possible and
5350 return status without actually changing CONTENTS.
5351*/
5352
5353static bfd_boolean
5354mips_elf_nullify_got_load (bfd *input_bfd, bfd_byte *contents,
5355 const Elf_Internal_Rela *relocation,
5356 reloc_howto_type *howto, bfd_boolean doit)
5357{
5358 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5359 bfd_byte *location = contents + relocation->r_offset;
5360 bfd_boolean nullified = TRUE;
5361 bfd_vma x;
5362
5363 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5364
5365 /* Obtain the current value. */
5366 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5367
5368 /* Note that in the unshuffled MIPS16 encoding RX is at bits [21:19]
5369 while RY is at bits [18:16] of the combined 32-bit instruction word. */
5370 if (mips16_reloc_p (r_type)
5371 && (((x >> 22) & 0x3ff) == 0x3d3 /* LW */
5372 || ((x >> 22) & 0x3ff) == 0x3c7)) /* LD */
5373 x = (0x3cd << 22) | (x & (7 << 16)) << 3; /* LI */
5374 else if (micromips_reloc_p (r_type)
5375 && ((x >> 26) & 0x37) == 0x37) /* LW/LD */
5376 x = (0xc << 26) | (x & (0x1f << 21)); /* ADDIU */
5377 else if (((x >> 26) & 0x3f) == 0x23 /* LW */
5378 || ((x >> 26) & 0x3f) == 0x37) /* LD */
5379 x = (0x9 << 26) | (x & (0x1f << 16)); /* ADDIU */
5380 else
5381 nullified = FALSE;
5382
5383 /* Put the value into the output. */
5384 if (doit && nullified)
5385 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
5386
5387 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, FALSE, location);
5388
5389 return nullified;
5390}
5391
b49e97c9
TS
5392/* Calculate the value produced by the RELOCATION (which comes from
5393 the INPUT_BFD). The ADDEND is the addend to use for this
5394 RELOCATION; RELOCATION->R_ADDEND is ignored.
5395
5396 The result of the relocation calculation is stored in VALUEP.
38a7df63 5397 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
df58fc94 5398 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9
TS
5399
5400 This function returns bfd_reloc_continue if the caller need take no
5401 further action regarding this relocation, bfd_reloc_notsupported if
5402 something goes dramatically wrong, bfd_reloc_overflow if an
5403 overflow occurs, and bfd_reloc_ok to indicate success. */
5404
5405static bfd_reloc_status_type
9719ad41 5406mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
47275900 5407 asection *input_section, bfd_byte *contents,
9719ad41
RS
5408 struct bfd_link_info *info,
5409 const Elf_Internal_Rela *relocation,
5410 bfd_vma addend, reloc_howto_type *howto,
5411 Elf_Internal_Sym *local_syms,
5412 asection **local_sections, bfd_vma *valuep,
38a7df63
CF
5413 const char **namep,
5414 bfd_boolean *cross_mode_jump_p,
9719ad41 5415 bfd_boolean save_addend)
b49e97c9
TS
5416{
5417 /* The eventual value we will return. */
5418 bfd_vma value;
5419 /* The address of the symbol against which the relocation is
5420 occurring. */
5421 bfd_vma symbol = 0;
5422 /* The final GP value to be used for the relocatable, executable, or
5423 shared object file being produced. */
0a61c8c2 5424 bfd_vma gp;
b49e97c9
TS
5425 /* The place (section offset or address) of the storage unit being
5426 relocated. */
5427 bfd_vma p;
5428 /* The value of GP used to create the relocatable object. */
0a61c8c2 5429 bfd_vma gp0;
b49e97c9
TS
5430 /* The offset into the global offset table at which the address of
5431 the relocation entry symbol, adjusted by the addend, resides
5432 during execution. */
5433 bfd_vma g = MINUS_ONE;
5434 /* The section in which the symbol referenced by the relocation is
5435 located. */
5436 asection *sec = NULL;
5437 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 5438 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 5439 symbol. */
b34976b6 5440 bfd_boolean local_p, was_local_p;
77434823
MR
5441 /* TRUE if the symbol referred to by this relocation is a section
5442 symbol. */
5443 bfd_boolean section_p = FALSE;
b34976b6
AM
5444 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5445 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
5446 /* TRUE if the symbol referred to by this relocation is
5447 "__gnu_local_gp". */
5448 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
5449 Elf_Internal_Shdr *symtab_hdr;
5450 size_t extsymoff;
5451 unsigned long r_symndx;
5452 int r_type;
b34976b6 5453 /* TRUE if overflow occurred during the calculation of the
b49e97c9 5454 relocation value. */
b34976b6
AM
5455 bfd_boolean overflowed_p;
5456 /* TRUE if this relocation refers to a MIPS16 function. */
5457 bfd_boolean target_is_16_bit_code_p = FALSE;
df58fc94 5458 bfd_boolean target_is_micromips_code_p = FALSE;
0a44bf69
RS
5459 struct mips_elf_link_hash_table *htab;
5460 bfd *dynobj;
ad951203 5461 bfd_boolean resolved_to_zero;
0a44bf69
RS
5462
5463 dynobj = elf_hash_table (info)->dynobj;
5464 htab = mips_elf_hash_table (info);
4dfe6ac6 5465 BFD_ASSERT (htab != NULL);
b49e97c9
TS
5466
5467 /* Parse the relocation. */
5468 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5469 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5470 p = (input_section->output_section->vma
5471 + input_section->output_offset
5472 + relocation->r_offset);
5473
5474 /* Assume that there will be no overflow. */
b34976b6 5475 overflowed_p = FALSE;
b49e97c9
TS
5476
5477 /* Figure out whether or not the symbol is local, and get the offset
5478 used in the array of hash table entries. */
5479 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5480 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
020d7251 5481 local_sections);
bce03d3d 5482 was_local_p = local_p;
b49e97c9
TS
5483 if (! elf_bad_symtab (input_bfd))
5484 extsymoff = symtab_hdr->sh_info;
5485 else
5486 {
5487 /* The symbol table does not follow the rule that local symbols
5488 must come before globals. */
5489 extsymoff = 0;
5490 }
5491
5492 /* Figure out the value of the symbol. */
5493 if (local_p)
5494 {
9d862524 5495 bfd_boolean micromips_p = MICROMIPS_P (abfd);
b49e97c9
TS
5496 Elf_Internal_Sym *sym;
5497
5498 sym = local_syms + r_symndx;
5499 sec = local_sections[r_symndx];
5500
77434823
MR
5501 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5502
b49e97c9 5503 symbol = sec->output_section->vma + sec->output_offset;
77434823 5504 if (!section_p || (sec->flags & SEC_MERGE))
b49e97c9 5505 symbol += sym->st_value;
77434823 5506 if ((sec->flags & SEC_MERGE) && section_p)
d4df96e6
L
5507 {
5508 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5509 addend -= symbol;
5510 addend += sec->output_section->vma + sec->output_offset;
5511 }
b49e97c9 5512
df58fc94
RS
5513 /* MIPS16/microMIPS text labels should be treated as odd. */
5514 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
5515 ++symbol;
5516
5517 /* Record the name of this symbol, for our caller. */
5518 *namep = bfd_elf_string_from_elf_section (input_bfd,
5519 symtab_hdr->sh_link,
5520 sym->st_name);
ceab86af 5521 if (*namep == NULL || **namep == '\0')
fd361982 5522 *namep = bfd_section_name (sec);
b49e97c9 5523
9d862524 5524 /* For relocations against a section symbol and ones against no
07d6d2b8 5525 symbol (absolute relocations) infer the ISA mode from the addend. */
9d862524
MR
5526 if (section_p || r_symndx == STN_UNDEF)
5527 {
5528 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5529 target_is_micromips_code_p = (addend & 1) && micromips_p;
5530 }
5531 /* For relocations against an absolute symbol infer the ISA mode
07d6d2b8 5532 from the value of the symbol plus addend. */
9d862524
MR
5533 else if (bfd_is_abs_section (sec))
5534 {
5535 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5536 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5537 }
5538 /* Otherwise just use the regular symbol annotation available. */
5539 else
5540 {
5541 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5542 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5543 }
b49e97c9
TS
5544 }
5545 else
5546 {
560e09e9
NC
5547 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5548
b49e97c9
TS
5549 /* For global symbols we look up the symbol in the hash-table. */
5550 h = ((struct mips_elf_link_hash_entry *)
5551 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5552 /* Find the real hash-table entry for this symbol. */
5553 while (h->root.root.type == bfd_link_hash_indirect
5554 || h->root.root.type == bfd_link_hash_warning)
5555 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5556
5557 /* Record the name of this symbol, for our caller. */
5558 *namep = h->root.root.root.string;
5559
5560 /* See if this is the special _gp_disp symbol. Note that such a
5561 symbol must always be a global symbol. */
560e09e9 5562 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
5563 && ! NEWABI_P (input_bfd))
5564 {
5565 /* Relocations against _gp_disp are permitted only with
5566 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
738e5348 5567 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
b49e97c9
TS
5568 return bfd_reloc_notsupported;
5569
b34976b6 5570 gp_disp_p = TRUE;
b49e97c9 5571 }
bbe506e8
TS
5572 /* See if this is the special _gp symbol. Note that such a
5573 symbol must always be a global symbol. */
5574 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5575 gnu_local_gp_p = TRUE;
5576
5577
b49e97c9
TS
5578 /* If this symbol is defined, calculate its address. Note that
5579 _gp_disp is a magic symbol, always implicitly defined by the
5580 linker, so it's inappropriate to check to see whether or not
5581 its defined. */
5582 else if ((h->root.root.type == bfd_link_hash_defined
5583 || h->root.root.type == bfd_link_hash_defweak)
5584 && h->root.root.u.def.section)
5585 {
5586 sec = h->root.root.u.def.section;
5587 if (sec->output_section)
5588 symbol = (h->root.root.u.def.value
5589 + sec->output_section->vma
5590 + sec->output_offset);
5591 else
5592 symbol = h->root.root.u.def.value;
5593 }
5594 else if (h->root.root.type == bfd_link_hash_undefweak)
5595 /* We allow relocations against undefined weak symbols, giving
5596 it the value zero, so that you can undefined weak functions
5597 and check to see if they exist by looking at their
5598 addresses. */
5599 symbol = 0;
59c2e50f 5600 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
5601 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5602 symbol = 0;
a4d0f181
TS
5603 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5604 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
5605 {
5606 /* If this is a dynamic link, we should have created a
5607 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
de194d85 5608 in _bfd_mips_elf_create_dynamic_sections.
b49e97c9
TS
5609 Otherwise, we should define the symbol with a value of 0.
5610 FIXME: It should probably get into the symbol table
5611 somehow as well. */
0e1862bb 5612 BFD_ASSERT (! bfd_link_pic (info));
b49e97c9
TS
5613 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5614 symbol = 0;
5615 }
5e2b0d47
NC
5616 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5617 {
5618 /* This is an optional symbol - an Irix specific extension to the
5619 ELF spec. Ignore it for now.
5620 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5621 than simply ignoring them, but we do not handle this for now.
5622 For information see the "64-bit ELF Object File Specification"
5623 which is available from here:
5624 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5625 symbol = 0;
5626 }
b49e97c9
TS
5627 else
5628 {
95a51568
FS
5629 bfd_boolean reject_undefined
5630 = (info->unresolved_syms_in_objects == RM_DIAGNOSE
5631 && !info->warn_unresolved_syms)
5632 || ELF_ST_VISIBILITY (h->root.other) != STV_DEFAULT;
dfb93f11 5633
95a51568 5634 info->callbacks->undefined_symbol
1a72702b 5635 (info, h->root.root.root.string, input_bfd,
dfb93f11
JC
5636 input_section, relocation->r_offset, reject_undefined);
5637
5638 if (reject_undefined)
5639 return bfd_reloc_undefined;
5640
5641 symbol = 0;
b49e97c9
TS
5642 }
5643
30c09090 5644 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
1bbce132 5645 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
b49e97c9
TS
5646 }
5647
738e5348
RS
5648 /* If this is a reference to a 16-bit function with a stub, we need
5649 to redirect the relocation to the stub unless:
5650
5651 (a) the relocation is for a MIPS16 JAL;
5652
5653 (b) the relocation is for a MIPS16 PIC call, and there are no
5654 non-MIPS16 uses of the GOT slot; or
5655
5656 (c) the section allows direct references to MIPS16 functions. */
5657 if (r_type != R_MIPS16_26
0e1862bb 5658 && !bfd_link_relocatable (info)
738e5348
RS
5659 && ((h != NULL
5660 && h->fn_stub != NULL
5661 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
b9d58d71 5662 || (local_p
698600e4
AM
5663 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5664 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
738e5348 5665 && !section_allows_mips16_refs_p (input_section))
b49e97c9
TS
5666 {
5667 /* This is a 32- or 64-bit call to a 16-bit function. We should
5668 have already noticed that we were going to need the
5669 stub. */
5670 if (local_p)
8f0c309a 5671 {
698600e4 5672 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
8f0c309a
CLT
5673 value = 0;
5674 }
b49e97c9
TS
5675 else
5676 {
5677 BFD_ASSERT (h->need_fn_stub);
8f0c309a
CLT
5678 if (h->la25_stub)
5679 {
5680 /* If a LA25 header for the stub itself exists, point to the
5681 prepended LUI/ADDIU sequence. */
5682 sec = h->la25_stub->stub_section;
5683 value = h->la25_stub->offset;
5684 }
5685 else
5686 {
5687 sec = h->fn_stub;
5688 value = 0;
5689 }
b49e97c9
TS
5690 }
5691
8f0c309a 5692 symbol = sec->output_section->vma + sec->output_offset + value;
f38c2df5
TS
5693 /* The target is 16-bit, but the stub isn't. */
5694 target_is_16_bit_code_p = FALSE;
b49e97c9 5695 }
1bbce132
MR
5696 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5697 to a standard MIPS function, we need to redirect the call to the stub.
5698 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5699 indirect calls should use an indirect stub instead. */
0e1862bb 5700 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
b314ec0e 5701 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
b9d58d71 5702 || (local_p
698600e4
AM
5703 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5704 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
1bbce132 5705 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
b49e97c9 5706 {
b9d58d71 5707 if (local_p)
698600e4 5708 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
b9d58d71 5709 else
b49e97c9 5710 {
b9d58d71
TS
5711 /* If both call_stub and call_fp_stub are defined, we can figure
5712 out which one to use by checking which one appears in the input
5713 file. */
5714 if (h->call_stub != NULL && h->call_fp_stub != NULL)
b49e97c9 5715 {
b9d58d71 5716 asection *o;
68ffbac6 5717
b9d58d71
TS
5718 sec = NULL;
5719 for (o = input_bfd->sections; o != NULL; o = o->next)
b49e97c9 5720 {
fd361982 5721 if (CALL_FP_STUB_P (bfd_section_name (o)))
b9d58d71
TS
5722 {
5723 sec = h->call_fp_stub;
5724 break;
5725 }
b49e97c9 5726 }
b9d58d71
TS
5727 if (sec == NULL)
5728 sec = h->call_stub;
b49e97c9 5729 }
b9d58d71 5730 else if (h->call_stub != NULL)
b49e97c9 5731 sec = h->call_stub;
b9d58d71
TS
5732 else
5733 sec = h->call_fp_stub;
07d6d2b8 5734 }
b49e97c9 5735
eea6121a 5736 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
5737 symbol = sec->output_section->vma + sec->output_offset;
5738 }
861fb55a
DJ
5739 /* If this is a direct call to a PIC function, redirect to the
5740 non-PIC stub. */
5741 else if (h != NULL && h->la25_stub
8f0c309a
CLT
5742 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5743 target_is_16_bit_code_p))
c7318def
MR
5744 {
5745 symbol = (h->la25_stub->stub_section->output_section->vma
5746 + h->la25_stub->stub_section->output_offset
5747 + h->la25_stub->offset);
5748 if (ELF_ST_IS_MICROMIPS (h->root.other))
5749 symbol |= 1;
5750 }
1bbce132
MR
5751 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5752 entry is used if a standard PLT entry has also been made. In this
5753 case the symbol will have been set by mips_elf_set_plt_sym_value
5754 to point to the standard PLT entry, so redirect to the compressed
5755 one. */
54806ffa
MR
5756 else if ((mips16_branch_reloc_p (r_type)
5757 || micromips_branch_reloc_p (r_type))
0e1862bb 5758 && !bfd_link_relocatable (info)
1bbce132
MR
5759 && h != NULL
5760 && h->use_plt_entry
5761 && h->root.plt.plist->comp_offset != MINUS_ONE
5762 && h->root.plt.plist->mips_offset != MINUS_ONE)
5763 {
5764 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5765
ce558b89 5766 sec = htab->root.splt;
1bbce132
MR
5767 symbol = (sec->output_section->vma
5768 + sec->output_offset
5769 + htab->plt_header_size
5770 + htab->plt_mips_offset
5771 + h->root.plt.plist->comp_offset
5772 + 1);
5773
5774 target_is_16_bit_code_p = !micromips_p;
5775 target_is_micromips_code_p = micromips_p;
5776 }
b49e97c9 5777
df58fc94 5778 /* Make sure MIPS16 and microMIPS are not used together. */
c9775dde 5779 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
df58fc94
RS
5780 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5781 {
4eca0228 5782 _bfd_error_handler
df58fc94
RS
5783 (_("MIPS16 and microMIPS functions cannot call each other"));
5784 return bfd_reloc_notsupported;
5785 }
5786
b49e97c9 5787 /* Calls from 16-bit code to 32-bit code and vice versa require the
df58fc94
RS
5788 mode change. However, we can ignore calls to undefined weak symbols,
5789 which should never be executed at runtime. This exception is important
5790 because the assembly writer may have "known" that any definition of the
5791 symbol would be 16-bit code, and that direct jumps were therefore
5792 acceptable. */
0e1862bb 5793 *cross_mode_jump_p = (!bfd_link_relocatable (info)
df58fc94 5794 && !(h && h->root.root.type == bfd_link_hash_undefweak)
9d862524
MR
5795 && ((mips16_branch_reloc_p (r_type)
5796 && !target_is_16_bit_code_p)
5797 || (micromips_branch_reloc_p (r_type)
df58fc94 5798 && !target_is_micromips_code_p)
9d862524
MR
5799 || ((branch_reloc_p (r_type)
5800 || r_type == R_MIPS_JALR)
df58fc94
RS
5801 && (target_is_16_bit_code_p
5802 || target_is_micromips_code_p))));
b49e97c9 5803
47275900
MR
5804 resolved_to_zero = (h != NULL
5805 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->root));
5806
5807 switch (r_type)
5808 {
5809 case R_MIPS16_CALL16:
5810 case R_MIPS16_GOT16:
5811 case R_MIPS_CALL16:
5812 case R_MIPS_GOT16:
5813 case R_MIPS_GOT_PAGE:
5814 case R_MIPS_GOT_DISP:
5815 case R_MIPS_GOT_LO16:
5816 case R_MIPS_CALL_LO16:
5817 case R_MICROMIPS_CALL16:
5818 case R_MICROMIPS_GOT16:
5819 case R_MICROMIPS_GOT_PAGE:
5820 case R_MICROMIPS_GOT_DISP:
5821 case R_MICROMIPS_GOT_LO16:
5822 case R_MICROMIPS_CALL_LO16:
5823 if (resolved_to_zero
5824 && !bfd_link_relocatable (info)
5825 && mips_elf_nullify_got_load (input_bfd, contents,
5826 relocation, howto, TRUE))
5827 return bfd_reloc_continue;
5828
5829 /* Fall through. */
5830 case R_MIPS_GOT_HI16:
5831 case R_MIPS_CALL_HI16:
5832 case R_MICROMIPS_GOT_HI16:
5833 case R_MICROMIPS_CALL_HI16:
5834 if (resolved_to_zero
5835 && htab->use_absolute_zero
5836 && bfd_link_pic (info))
5837 {
5838 /* Redirect to the special `__gnu_absolute_zero' symbol. */
5839 h = mips_elf_link_hash_lookup (htab, "__gnu_absolute_zero",
5840 FALSE, FALSE, FALSE);
5841 BFD_ASSERT (h != NULL);
5842 }
5843 break;
5844 }
5845
c5d6fa44 5846 local_p = (h == NULL || mips_use_local_got_p (info, h));
b49e97c9 5847
0a61c8c2
RS
5848 gp0 = _bfd_get_gp_value (input_bfd);
5849 gp = _bfd_get_gp_value (abfd);
23cc69b6 5850 if (htab->got_info)
a8028dd0 5851 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
0a61c8c2
RS
5852
5853 if (gnu_local_gp_p)
5854 symbol = gp;
5855
df58fc94
RS
5856 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5857 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5858 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5859 if (got_page_reloc_p (r_type) && !local_p)
020d7251 5860 {
df58fc94
RS
5861 r_type = (micromips_reloc_p (r_type)
5862 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
020d7251
RS
5863 addend = 0;
5864 }
5865
e77760d2 5866 /* If we haven't already determined the GOT offset, and we're going
0a61c8c2 5867 to need it, get it now. */
b49e97c9
TS
5868 switch (r_type)
5869 {
738e5348
RS
5870 case R_MIPS16_CALL16:
5871 case R_MIPS16_GOT16:
b49e97c9
TS
5872 case R_MIPS_CALL16:
5873 case R_MIPS_GOT16:
5874 case R_MIPS_GOT_DISP:
5875 case R_MIPS_GOT_HI16:
5876 case R_MIPS_CALL_HI16:
5877 case R_MIPS_GOT_LO16:
5878 case R_MIPS_CALL_LO16:
df58fc94
RS
5879 case R_MICROMIPS_CALL16:
5880 case R_MICROMIPS_GOT16:
5881 case R_MICROMIPS_GOT_DISP:
5882 case R_MICROMIPS_GOT_HI16:
5883 case R_MICROMIPS_CALL_HI16:
5884 case R_MICROMIPS_GOT_LO16:
5885 case R_MICROMIPS_CALL_LO16:
0f20cc35
DJ
5886 case R_MIPS_TLS_GD:
5887 case R_MIPS_TLS_GOTTPREL:
5888 case R_MIPS_TLS_LDM:
d0f13682
CLT
5889 case R_MIPS16_TLS_GD:
5890 case R_MIPS16_TLS_GOTTPREL:
5891 case R_MIPS16_TLS_LDM:
df58fc94
RS
5892 case R_MICROMIPS_TLS_GD:
5893 case R_MICROMIPS_TLS_GOTTPREL:
5894 case R_MICROMIPS_TLS_LDM:
b49e97c9 5895 /* Find the index into the GOT where this value is located. */
df58fc94 5896 if (tls_ldm_reloc_p (r_type))
0f20cc35 5897 {
0a44bf69 5898 g = mips_elf_local_got_index (abfd, input_bfd, info,
5c18022e 5899 0, 0, NULL, r_type);
0f20cc35
DJ
5900 if (g == MINUS_ONE)
5901 return bfd_reloc_outofrange;
5902 }
5903 else if (!local_p)
b49e97c9 5904 {
0a44bf69
RS
5905 /* On VxWorks, CALL relocations should refer to the .got.plt
5906 entry, which is initialized to point at the PLT stub. */
5907 if (htab->is_vxworks
df58fc94
RS
5908 && (call_hi16_reloc_p (r_type)
5909 || call_lo16_reloc_p (r_type)
738e5348 5910 || call16_reloc_p (r_type)))
0a44bf69
RS
5911 {
5912 BFD_ASSERT (addend == 0);
5913 BFD_ASSERT (h->root.needs_plt);
5914 g = mips_elf_gotplt_index (info, &h->root);
5915 }
5916 else
b49e97c9 5917 {
020d7251 5918 BFD_ASSERT (addend == 0);
13fbec83
RS
5919 g = mips_elf_global_got_index (abfd, info, input_bfd,
5920 &h->root, r_type);
e641e783 5921 if (!TLS_RELOC_P (r_type)
020d7251
RS
5922 && !elf_hash_table (info)->dynamic_sections_created)
5923 /* This is a static link. We must initialize the GOT entry. */
ce558b89 5924 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
b49e97c9
TS
5925 }
5926 }
0a44bf69 5927 else if (!htab->is_vxworks
738e5348 5928 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
0a44bf69 5929 /* The calculation below does not involve "g". */
b49e97c9
TS
5930 break;
5931 else
5932 {
5c18022e 5933 g = mips_elf_local_got_index (abfd, input_bfd, info,
0a44bf69 5934 symbol + addend, r_symndx, h, r_type);
b49e97c9
TS
5935 if (g == MINUS_ONE)
5936 return bfd_reloc_outofrange;
5937 }
5938
5939 /* Convert GOT indices to actual offsets. */
a8028dd0 5940 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
b49e97c9 5941 break;
b49e97c9
TS
5942 }
5943
0a44bf69
RS
5944 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5945 symbols are resolved by the loader. Add them to .rela.dyn. */
5946 if (h != NULL && is_gott_symbol (info, &h->root))
5947 {
5948 Elf_Internal_Rela outrel;
5949 bfd_byte *loc;
5950 asection *s;
5951
5952 s = mips_elf_rel_dyn_section (info, FALSE);
5953 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5954
5955 outrel.r_offset = (input_section->output_section->vma
5956 + input_section->output_offset
5957 + relocation->r_offset);
5958 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5959 outrel.r_addend = addend;
5960 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
9e3313ae
RS
5961
5962 /* If we've written this relocation for a readonly section,
5963 we need to set DF_TEXTREL again, so that we do not delete the
5964 DT_TEXTREL tag. */
5965 if (MIPS_ELF_READONLY_SECTION (input_section))
5966 info->flags |= DF_TEXTREL;
5967
0a44bf69
RS
5968 *valuep = 0;
5969 return bfd_reloc_ok;
5970 }
5971
b49e97c9
TS
5972 /* Figure out what kind of relocation is being performed. */
5973 switch (r_type)
5974 {
5975 case R_MIPS_NONE:
5976 return bfd_reloc_continue;
5977
5978 case R_MIPS_16:
c3eb94b4
MF
5979 if (howto->partial_inplace)
5980 addend = _bfd_mips_elf_sign_extend (addend, 16);
5981 value = symbol + addend;
b49e97c9
TS
5982 overflowed_p = mips_elf_overflow_p (value, 16);
5983 break;
5984
5985 case R_MIPS_32:
5986 case R_MIPS_REL32:
5987 case R_MIPS_64:
0e1862bb 5988 if ((bfd_link_pic (info)
861fb55a 5989 || (htab->root.dynamic_sections_created
b49e97c9 5990 && h != NULL
f5385ebf 5991 && h->root.def_dynamic
861fb55a
DJ
5992 && !h->root.def_regular
5993 && !h->has_static_relocs))
cf35638d 5994 && r_symndx != STN_UNDEF
9a59ad6b
DJ
5995 && (h == NULL
5996 || h->root.root.type != bfd_link_hash_undefweak
ad951203
L
5997 || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
5998 && !resolved_to_zero))
b49e97c9
TS
5999 && (input_section->flags & SEC_ALLOC) != 0)
6000 {
861fb55a 6001 /* If we're creating a shared library, then we can't know
b49e97c9
TS
6002 where the symbol will end up. So, we create a relocation
6003 record in the output, and leave the job up to the dynamic
861fb55a
DJ
6004 linker. We must do the same for executable references to
6005 shared library symbols, unless we've decided to use copy
6006 relocs or PLTs instead. */
b49e97c9
TS
6007 value = addend;
6008 if (!mips_elf_create_dynamic_relocation (abfd,
6009 info,
6010 relocation,
6011 h,
6012 sec,
6013 symbol,
6014 &value,
6015 input_section))
6016 return bfd_reloc_undefined;
6017 }
6018 else
6019 {
6020 if (r_type != R_MIPS_REL32)
6021 value = symbol + addend;
6022 else
6023 value = addend;
6024 }
6025 value &= howto->dst_mask;
092dcd75
CD
6026 break;
6027
6028 case R_MIPS_PC32:
6029 value = symbol + addend - p;
6030 value &= howto->dst_mask;
b49e97c9
TS
6031 break;
6032
b49e97c9
TS
6033 case R_MIPS16_26:
6034 /* The calculation for R_MIPS16_26 is just the same as for an
6035 R_MIPS_26. It's only the storage of the relocated field into
6036 the output file that's different. That's handled in
6037 mips_elf_perform_relocation. So, we just fall through to the
6038 R_MIPS_26 case here. */
6039 case R_MIPS_26:
df58fc94
RS
6040 case R_MICROMIPS_26_S1:
6041 {
6042 unsigned int shift;
6043
df58fc94
RS
6044 /* Shift is 2, unusually, for microMIPS JALX. */
6045 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
6046
77434823 6047 if (howto->partial_inplace && !section_p)
df58fc94 6048 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
c3eb94b4
MF
6049 else
6050 value = addend;
bc27bb05
MR
6051 value += symbol;
6052
9d862524
MR
6053 /* Make sure the target of a jump is suitably aligned. Bit 0 must
6054 be the correct ISA mode selector except for weak undefined
6055 symbols. */
6056 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6057 && (*cross_mode_jump_p
6058 ? (value & 3) != (r_type == R_MIPS_26)
07d6d2b8 6059 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
bc27bb05
MR
6060 return bfd_reloc_outofrange;
6061
6062 value >>= shift;
77434823 6063 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
df58fc94
RS
6064 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
6065 value &= howto->dst_mask;
6066 }
b49e97c9
TS
6067 break;
6068
0f20cc35 6069 case R_MIPS_TLS_DTPREL_HI16:
d0f13682 6070 case R_MIPS16_TLS_DTPREL_HI16:
df58fc94 6071 case R_MICROMIPS_TLS_DTPREL_HI16:
0f20cc35
DJ
6072 value = (mips_elf_high (addend + symbol - dtprel_base (info))
6073 & howto->dst_mask);
6074 break;
6075
6076 case R_MIPS_TLS_DTPREL_LO16:
741d6ea8
JM
6077 case R_MIPS_TLS_DTPREL32:
6078 case R_MIPS_TLS_DTPREL64:
d0f13682 6079 case R_MIPS16_TLS_DTPREL_LO16:
df58fc94 6080 case R_MICROMIPS_TLS_DTPREL_LO16:
0f20cc35
DJ
6081 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
6082 break;
6083
6084 case R_MIPS_TLS_TPREL_HI16:
d0f13682 6085 case R_MIPS16_TLS_TPREL_HI16:
df58fc94 6086 case R_MICROMIPS_TLS_TPREL_HI16:
0f20cc35
DJ
6087 value = (mips_elf_high (addend + symbol - tprel_base (info))
6088 & howto->dst_mask);
6089 break;
6090
6091 case R_MIPS_TLS_TPREL_LO16:
d0f13682
CLT
6092 case R_MIPS_TLS_TPREL32:
6093 case R_MIPS_TLS_TPREL64:
6094 case R_MIPS16_TLS_TPREL_LO16:
df58fc94 6095 case R_MICROMIPS_TLS_TPREL_LO16:
0f20cc35
DJ
6096 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
6097 break;
6098
b49e97c9 6099 case R_MIPS_HI16:
d6f16593 6100 case R_MIPS16_HI16:
df58fc94 6101 case R_MICROMIPS_HI16:
b49e97c9
TS
6102 if (!gp_disp_p)
6103 {
6104 value = mips_elf_high (addend + symbol);
6105 value &= howto->dst_mask;
6106 }
6107 else
6108 {
d6f16593 6109 /* For MIPS16 ABI code we generate this sequence
07d6d2b8
AM
6110 0: li $v0,%hi(_gp_disp)
6111 4: addiupc $v1,%lo(_gp_disp)
6112 8: sll $v0,16
d6f16593
MR
6113 12: addu $v0,$v1
6114 14: move $gp,$v0
6115 So the offsets of hi and lo relocs are the same, but the
888b9c01
CLT
6116 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
6117 ADDIUPC clears the low two bits of the instruction address,
6118 so the base is ($t9 + 4) & ~3. */
d6f16593 6119 if (r_type == R_MIPS16_HI16)
888b9c01 6120 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
df58fc94
RS
6121 /* The microMIPS .cpload sequence uses the same assembly
6122 instructions as the traditional psABI version, but the
6123 incoming $t9 has the low bit set. */
6124 else if (r_type == R_MICROMIPS_HI16)
6125 value = mips_elf_high (addend + gp - p - 1);
d6f16593
MR
6126 else
6127 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
6128 }
6129 break;
6130
6131 case R_MIPS_LO16:
d6f16593 6132 case R_MIPS16_LO16:
df58fc94
RS
6133 case R_MICROMIPS_LO16:
6134 case R_MICROMIPS_HI0_LO16:
b49e97c9
TS
6135 if (!gp_disp_p)
6136 value = (symbol + addend) & howto->dst_mask;
6137 else
6138 {
d6f16593
MR
6139 /* See the comment for R_MIPS16_HI16 above for the reason
6140 for this conditional. */
6141 if (r_type == R_MIPS16_LO16)
888b9c01 6142 value = addend + gp - (p & ~(bfd_vma) 0x3);
df58fc94
RS
6143 else if (r_type == R_MICROMIPS_LO16
6144 || r_type == R_MICROMIPS_HI0_LO16)
6145 value = addend + gp - p + 3;
d6f16593
MR
6146 else
6147 value = addend + gp - p + 4;
b49e97c9 6148 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 6149 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
6150 _gp_disp are normally generated from the .cpload
6151 pseudo-op. It generates code that normally looks like
6152 this:
6153
6154 lui $gp,%hi(_gp_disp)
6155 addiu $gp,$gp,%lo(_gp_disp)
6156 addu $gp,$gp,$t9
6157
6158 Here $t9 holds the address of the function being called,
6159 as required by the MIPS ELF ABI. The R_MIPS_LO16
6160 relocation can easily overflow in this situation, but the
6161 R_MIPS_HI16 relocation will handle the overflow.
6162 Therefore, we consider this a bug in the MIPS ABI, and do
6163 not check for overflow here. */
6164 }
6165 break;
6166
6167 case R_MIPS_LITERAL:
df58fc94 6168 case R_MICROMIPS_LITERAL:
b49e97c9
TS
6169 /* Because we don't merge literal sections, we can handle this
6170 just like R_MIPS_GPREL16. In the long run, we should merge
6171 shared literals, and then we will need to additional work
6172 here. */
6173
6174 /* Fall through. */
6175
6176 case R_MIPS16_GPREL:
6177 /* The R_MIPS16_GPREL performs the same calculation as
6178 R_MIPS_GPREL16, but stores the relocated bits in a different
6179 order. We don't need to do anything special here; the
6180 differences are handled in mips_elf_perform_relocation. */
6181 case R_MIPS_GPREL16:
df58fc94
RS
6182 case R_MICROMIPS_GPREL7_S2:
6183 case R_MICROMIPS_GPREL16:
bce03d3d
AO
6184 /* Only sign-extend the addend if it was extracted from the
6185 instruction. If the addend was separate, leave it alone,
6186 otherwise we may lose significant bits. */
6187 if (howto->partial_inplace)
a7ebbfdf 6188 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
6189 value = symbol + addend - gp;
6190 /* If the symbol was local, any earlier relocatable links will
6191 have adjusted its addend with the gp offset, so compensate
6192 for that now. Don't do it for symbols forced local in this
6193 link, though, since they won't have had the gp offset applied
6194 to them before. */
6195 if (was_local_p)
6196 value += gp0;
538baf8b
AB
6197 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6198 overflowed_p = mips_elf_overflow_p (value, 16);
b49e97c9
TS
6199 break;
6200
738e5348
RS
6201 case R_MIPS16_GOT16:
6202 case R_MIPS16_CALL16:
b49e97c9
TS
6203 case R_MIPS_GOT16:
6204 case R_MIPS_CALL16:
df58fc94
RS
6205 case R_MICROMIPS_GOT16:
6206 case R_MICROMIPS_CALL16:
0a44bf69 6207 /* VxWorks does not have separate local and global semantics for
738e5348 6208 R_MIPS*_GOT16; every relocation evaluates to "G". */
0a44bf69 6209 if (!htab->is_vxworks && local_p)
b49e97c9 6210 {
5c18022e 6211 value = mips_elf_got16_entry (abfd, input_bfd, info,
020d7251 6212 symbol + addend, !was_local_p);
b49e97c9
TS
6213 if (value == MINUS_ONE)
6214 return bfd_reloc_outofrange;
6215 value
a8028dd0 6216 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
6217 overflowed_p = mips_elf_overflow_p (value, 16);
6218 break;
6219 }
6220
6221 /* Fall through. */
6222
0f20cc35
DJ
6223 case R_MIPS_TLS_GD:
6224 case R_MIPS_TLS_GOTTPREL:
6225 case R_MIPS_TLS_LDM:
b49e97c9 6226 case R_MIPS_GOT_DISP:
d0f13682
CLT
6227 case R_MIPS16_TLS_GD:
6228 case R_MIPS16_TLS_GOTTPREL:
6229 case R_MIPS16_TLS_LDM:
df58fc94
RS
6230 case R_MICROMIPS_TLS_GD:
6231 case R_MICROMIPS_TLS_GOTTPREL:
6232 case R_MICROMIPS_TLS_LDM:
6233 case R_MICROMIPS_GOT_DISP:
b49e97c9
TS
6234 value = g;
6235 overflowed_p = mips_elf_overflow_p (value, 16);
6236 break;
6237
6238 case R_MIPS_GPREL32:
bce03d3d
AO
6239 value = (addend + symbol + gp0 - gp);
6240 if (!save_addend)
6241 value &= howto->dst_mask;
b49e97c9
TS
6242 break;
6243
6244 case R_MIPS_PC16:
bad36eac 6245 case R_MIPS_GNU_REL16_S2:
c3eb94b4
MF
6246 if (howto->partial_inplace)
6247 addend = _bfd_mips_elf_sign_extend (addend, 18);
6248
9d862524 6249 /* No need to exclude weak undefined symbols here as they resolve
07d6d2b8
AM
6250 to 0 and never set `*cross_mode_jump_p', so this alignment check
6251 will never trigger for them. */
9d862524
MR
6252 if (*cross_mode_jump_p
6253 ? ((symbol + addend) & 3) != 1
6254 : ((symbol + addend) & 3) != 0)
c3eb94b4
MF
6255 return bfd_reloc_outofrange;
6256
6257 value = symbol + addend - p;
538baf8b
AB
6258 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6259 overflowed_p = mips_elf_overflow_p (value, 18);
37caec6b
TS
6260 value >>= howto->rightshift;
6261 value &= howto->dst_mask;
b49e97c9
TS
6262 break;
6263
c9775dde
MR
6264 case R_MIPS16_PC16_S1:
6265 if (howto->partial_inplace)
6266 addend = _bfd_mips_elf_sign_extend (addend, 17);
6267
6268 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
9d862524
MR
6269 && (*cross_mode_jump_p
6270 ? ((symbol + addend) & 3) != 0
6271 : ((symbol + addend) & 1) == 0))
c9775dde
MR
6272 return bfd_reloc_outofrange;
6273
6274 value = symbol + addend - p;
6275 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6276 overflowed_p = mips_elf_overflow_p (value, 17);
6277 value >>= howto->rightshift;
6278 value &= howto->dst_mask;
6279 break;
6280
7361da2c
AB
6281 case R_MIPS_PC21_S2:
6282 if (howto->partial_inplace)
6283 addend = _bfd_mips_elf_sign_extend (addend, 23);
6284
6285 if ((symbol + addend) & 3)
6286 return bfd_reloc_outofrange;
6287
6288 value = symbol + addend - p;
538baf8b
AB
6289 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6290 overflowed_p = mips_elf_overflow_p (value, 23);
7361da2c
AB
6291 value >>= howto->rightshift;
6292 value &= howto->dst_mask;
6293 break;
6294
6295 case R_MIPS_PC26_S2:
6296 if (howto->partial_inplace)
6297 addend = _bfd_mips_elf_sign_extend (addend, 28);
6298
6299 if ((symbol + addend) & 3)
6300 return bfd_reloc_outofrange;
6301
6302 value = symbol + addend - p;
538baf8b
AB
6303 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6304 overflowed_p = mips_elf_overflow_p (value, 28);
7361da2c
AB
6305 value >>= howto->rightshift;
6306 value &= howto->dst_mask;
6307 break;
6308
6309 case R_MIPS_PC18_S3:
6310 if (howto->partial_inplace)
6311 addend = _bfd_mips_elf_sign_extend (addend, 21);
6312
6313 if ((symbol + addend) & 7)
6314 return bfd_reloc_outofrange;
6315
6316 value = symbol + addend - ((p | 7) ^ 7);
538baf8b
AB
6317 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6318 overflowed_p = mips_elf_overflow_p (value, 21);
7361da2c
AB
6319 value >>= howto->rightshift;
6320 value &= howto->dst_mask;
6321 break;
6322
6323 case R_MIPS_PC19_S2:
6324 if (howto->partial_inplace)
6325 addend = _bfd_mips_elf_sign_extend (addend, 21);
6326
6327 if ((symbol + addend) & 3)
6328 return bfd_reloc_outofrange;
6329
6330 value = symbol + addend - p;
538baf8b
AB
6331 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6332 overflowed_p = mips_elf_overflow_p (value, 21);
7361da2c
AB
6333 value >>= howto->rightshift;
6334 value &= howto->dst_mask;
6335 break;
6336
6337 case R_MIPS_PCHI16:
6338 value = mips_elf_high (symbol + addend - p);
7361da2c
AB
6339 value &= howto->dst_mask;
6340 break;
6341
6342 case R_MIPS_PCLO16:
6343 if (howto->partial_inplace)
6344 addend = _bfd_mips_elf_sign_extend (addend, 16);
6345 value = symbol + addend - p;
6346 value &= howto->dst_mask;
6347 break;
6348
df58fc94 6349 case R_MICROMIPS_PC7_S1:
c3eb94b4
MF
6350 if (howto->partial_inplace)
6351 addend = _bfd_mips_elf_sign_extend (addend, 8);
9d862524
MR
6352
6353 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6354 && (*cross_mode_jump_p
6355 ? ((symbol + addend + 2) & 3) != 0
6356 : ((symbol + addend + 2) & 1) == 0))
6357 return bfd_reloc_outofrange;
6358
c3eb94b4 6359 value = symbol + addend - p;
538baf8b
AB
6360 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6361 overflowed_p = mips_elf_overflow_p (value, 8);
df58fc94
RS
6362 value >>= howto->rightshift;
6363 value &= howto->dst_mask;
6364 break;
6365
6366 case R_MICROMIPS_PC10_S1:
c3eb94b4
MF
6367 if (howto->partial_inplace)
6368 addend = _bfd_mips_elf_sign_extend (addend, 11);
9d862524
MR
6369
6370 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6371 && (*cross_mode_jump_p
6372 ? ((symbol + addend + 2) & 3) != 0
6373 : ((symbol + addend + 2) & 1) == 0))
6374 return bfd_reloc_outofrange;
6375
c3eb94b4 6376 value = symbol + addend - p;
538baf8b
AB
6377 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6378 overflowed_p = mips_elf_overflow_p (value, 11);
df58fc94
RS
6379 value >>= howto->rightshift;
6380 value &= howto->dst_mask;
6381 break;
6382
6383 case R_MICROMIPS_PC16_S1:
c3eb94b4
MF
6384 if (howto->partial_inplace)
6385 addend = _bfd_mips_elf_sign_extend (addend, 17);
9d862524
MR
6386
6387 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6388 && (*cross_mode_jump_p
6389 ? ((symbol + addend) & 3) != 0
6390 : ((symbol + addend) & 1) == 0))
6391 return bfd_reloc_outofrange;
6392
c3eb94b4 6393 value = symbol + addend - p;
538baf8b
AB
6394 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6395 overflowed_p = mips_elf_overflow_p (value, 17);
df58fc94
RS
6396 value >>= howto->rightshift;
6397 value &= howto->dst_mask;
6398 break;
6399
6400 case R_MICROMIPS_PC23_S2:
c3eb94b4
MF
6401 if (howto->partial_inplace)
6402 addend = _bfd_mips_elf_sign_extend (addend, 25);
6403 value = symbol + addend - ((p | 3) ^ 3);
538baf8b
AB
6404 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6405 overflowed_p = mips_elf_overflow_p (value, 25);
df58fc94
RS
6406 value >>= howto->rightshift;
6407 value &= howto->dst_mask;
6408 break;
6409
b49e97c9
TS
6410 case R_MIPS_GOT_HI16:
6411 case R_MIPS_CALL_HI16:
df58fc94
RS
6412 case R_MICROMIPS_GOT_HI16:
6413 case R_MICROMIPS_CALL_HI16:
b49e97c9
TS
6414 /* We're allowed to handle these two relocations identically.
6415 The dynamic linker is allowed to handle the CALL relocations
6416 differently by creating a lazy evaluation stub. */
6417 value = g;
6418 value = mips_elf_high (value);
6419 value &= howto->dst_mask;
6420 break;
6421
6422 case R_MIPS_GOT_LO16:
6423 case R_MIPS_CALL_LO16:
df58fc94
RS
6424 case R_MICROMIPS_GOT_LO16:
6425 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
6426 value = g & howto->dst_mask;
6427 break;
6428
6429 case R_MIPS_GOT_PAGE:
df58fc94 6430 case R_MICROMIPS_GOT_PAGE:
5c18022e 6431 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
6432 if (value == MINUS_ONE)
6433 return bfd_reloc_outofrange;
a8028dd0 6434 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
6435 overflowed_p = mips_elf_overflow_p (value, 16);
6436 break;
6437
6438 case R_MIPS_GOT_OFST:
df58fc94 6439 case R_MICROMIPS_GOT_OFST:
93a2b7ae 6440 if (local_p)
5c18022e 6441 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
0fdc1bf1
AO
6442 else
6443 value = addend;
b49e97c9
TS
6444 overflowed_p = mips_elf_overflow_p (value, 16);
6445 break;
6446
6447 case R_MIPS_SUB:
df58fc94 6448 case R_MICROMIPS_SUB:
b49e97c9
TS
6449 value = symbol - addend;
6450 value &= howto->dst_mask;
6451 break;
6452
6453 case R_MIPS_HIGHER:
df58fc94 6454 case R_MICROMIPS_HIGHER:
b49e97c9
TS
6455 value = mips_elf_higher (addend + symbol);
6456 value &= howto->dst_mask;
6457 break;
6458
6459 case R_MIPS_HIGHEST:
df58fc94 6460 case R_MICROMIPS_HIGHEST:
b49e97c9
TS
6461 value = mips_elf_highest (addend + symbol);
6462 value &= howto->dst_mask;
6463 break;
6464
6465 case R_MIPS_SCN_DISP:
df58fc94 6466 case R_MICROMIPS_SCN_DISP:
b49e97c9
TS
6467 value = symbol + addend - sec->output_offset;
6468 value &= howto->dst_mask;
6469 break;
6470
b49e97c9 6471 case R_MIPS_JALR:
df58fc94 6472 case R_MICROMIPS_JALR:
1367d393
ILT
6473 /* This relocation is only a hint. In some cases, we optimize
6474 it into a bal instruction. But we don't try to optimize
5bbc5ae7
AN
6475 when the symbol does not resolve locally. */
6476 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
1367d393 6477 return bfd_reloc_continue;
c1556ecd
MR
6478 /* We can't optimize cross-mode jumps either. */
6479 if (*cross_mode_jump_p)
6480 return bfd_reloc_continue;
1367d393 6481 value = symbol + addend;
c1556ecd
MR
6482 /* Neither we can non-instruction-aligned targets. */
6483 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6484 return bfd_reloc_continue;
1367d393 6485 break;
b49e97c9 6486
1367d393 6487 case R_MIPS_PJUMP:
b49e97c9
TS
6488 case R_MIPS_GNU_VTINHERIT:
6489 case R_MIPS_GNU_VTENTRY:
6490 /* We don't do anything with these at present. */
6491 return bfd_reloc_continue;
6492
6493 default:
6494 /* An unrecognized relocation type. */
6495 return bfd_reloc_notsupported;
6496 }
6497
6498 /* Store the VALUE for our caller. */
6499 *valuep = value;
6500 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6501}
6502
b49e97c9
TS
6503/* It has been determined that the result of the RELOCATION is the
6504 VALUE. Use HOWTO to place VALUE into the output file at the
6505 appropriate position. The SECTION is the section to which the
68ffbac6 6506 relocation applies.
38a7df63 6507 CROSS_MODE_JUMP_P is true if the relocation field
df58fc94 6508 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9 6509
b34976b6 6510 Returns FALSE if anything goes wrong. */
b49e97c9 6511
b34976b6 6512static bfd_boolean
9719ad41
RS
6513mips_elf_perform_relocation (struct bfd_link_info *info,
6514 reloc_howto_type *howto,
6515 const Elf_Internal_Rela *relocation,
6516 bfd_vma value, bfd *input_bfd,
6517 asection *input_section, bfd_byte *contents,
38a7df63 6518 bfd_boolean cross_mode_jump_p)
b49e97c9
TS
6519{
6520 bfd_vma x;
6521 bfd_byte *location;
6522 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6523
6524 /* Figure out where the relocation is occurring. */
6525 location = contents + relocation->r_offset;
6526
df58fc94 6527 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
d6f16593 6528
b49e97c9
TS
6529 /* Obtain the current value. */
6530 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6531
6532 /* Clear the field we are setting. */
6533 x &= ~howto->dst_mask;
6534
b49e97c9
TS
6535 /* Set the field. */
6536 x |= (value & howto->dst_mask);
6537
a6ebf616 6538 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
9d862524
MR
6539 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6540 {
6541 bfd_vma opcode = x >> 26;
6542
6543 if (r_type == R_MIPS16_26 ? opcode == 0x7
6544 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6545 : opcode == 0x1d)
6546 {
6547 info->callbacks->einfo
2c1c9679 6548 (_("%X%H: unsupported JALX to the same ISA mode\n"),
9d862524
MR
6549 input_bfd, input_section, relocation->r_offset);
6550 return TRUE;
6551 }
6552 }
38a7df63 6553 if (cross_mode_jump_p && jal_reloc_p (r_type))
b49e97c9 6554 {
b34976b6 6555 bfd_boolean ok;
b49e97c9
TS
6556 bfd_vma opcode = x >> 26;
6557 bfd_vma jalx_opcode;
6558
6559 /* Check to see if the opcode is already JAL or JALX. */
6560 if (r_type == R_MIPS16_26)
6561 {
6562 ok = ((opcode == 0x6) || (opcode == 0x7));
6563 jalx_opcode = 0x7;
6564 }
df58fc94
RS
6565 else if (r_type == R_MICROMIPS_26_S1)
6566 {
6567 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6568 jalx_opcode = 0x3c;
6569 }
b49e97c9
TS
6570 else
6571 {
6572 ok = ((opcode == 0x3) || (opcode == 0x1d));
6573 jalx_opcode = 0x1d;
6574 }
6575
3bdf9505 6576 /* If the opcode is not JAL or JALX, there's a problem. We cannot
07d6d2b8 6577 convert J or JALS to JALX. */
b49e97c9
TS
6578 if (!ok)
6579 {
5f68df25 6580 info->callbacks->einfo
2c1c9679 6581 (_("%X%H: unsupported jump between ISA modes; "
5f68df25
MR
6582 "consider recompiling with interlinking enabled\n"),
6583 input_bfd, input_section, relocation->r_offset);
6584 return TRUE;
b49e97c9
TS
6585 }
6586
6587 /* Make this the JALX opcode. */
2365f8d7 6588 x = (x & ~(0x3fu << 26)) | (jalx_opcode << 26);
b49e97c9 6589 }
9d862524
MR
6590 else if (cross_mode_jump_p && b_reloc_p (r_type))
6591 {
a6ebf616
MR
6592 bfd_boolean ok = FALSE;
6593 bfd_vma opcode = x >> 16;
6594 bfd_vma jalx_opcode = 0;
70e65ca8 6595 bfd_vma sign_bit = 0;
a6ebf616
MR
6596 bfd_vma addr;
6597 bfd_vma dest;
6598
6599 if (r_type == R_MICROMIPS_PC16_S1)
6600 {
6601 ok = opcode == 0x4060;
6602 jalx_opcode = 0x3c;
70e65ca8 6603 sign_bit = 0x10000;
a6ebf616
MR
6604 value <<= 1;
6605 }
6606 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6607 {
6608 ok = opcode == 0x411;
6609 jalx_opcode = 0x1d;
70e65ca8 6610 sign_bit = 0x20000;
a6ebf616
MR
6611 value <<= 2;
6612 }
6613
8b10b0b3 6614 if (ok && !bfd_link_pic (info))
a6ebf616 6615 {
8b10b0b3
MR
6616 addr = (input_section->output_section->vma
6617 + input_section->output_offset
6618 + relocation->r_offset
6619 + 4);
70e65ca8
MR
6620 dest = (addr
6621 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
a6ebf616 6622
8b10b0b3
MR
6623 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6624 {
6625 info->callbacks->einfo
2c1c9679 6626 (_("%X%H: cannot convert branch between ISA modes "
8b10b0b3
MR
6627 "to JALX: relocation out of range\n"),
6628 input_bfd, input_section, relocation->r_offset);
6629 return TRUE;
6630 }
a6ebf616 6631
8b10b0b3
MR
6632 /* Make this the JALX opcode. */
6633 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6634 }
6635 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
a6ebf616
MR
6636 {
6637 info->callbacks->einfo
2c1c9679 6638 (_("%X%H: unsupported branch between ISA modes\n"),
a6ebf616
MR
6639 input_bfd, input_section, relocation->r_offset);
6640 return TRUE;
6641 }
9d862524 6642 }
b49e97c9 6643
38a7df63
CF
6644 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6645 range. */
0e1862bb 6646 if (!bfd_link_relocatable (info)
38a7df63 6647 && !cross_mode_jump_p
cd8d5a82
CF
6648 && ((JAL_TO_BAL_P (input_bfd)
6649 && r_type == R_MIPS_26
0e392101 6650 && (x >> 26) == 0x3) /* jal addr */
cd8d5a82
CF
6651 || (JALR_TO_BAL_P (input_bfd)
6652 && r_type == R_MIPS_JALR
0e392101 6653 && x == 0x0320f809) /* jalr t9 */
38a7df63
CF
6654 || (JR_TO_B_P (input_bfd)
6655 && r_type == R_MIPS_JALR
0e392101 6656 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
1367d393
ILT
6657 {
6658 bfd_vma addr;
6659 bfd_vma dest;
6660 bfd_signed_vma off;
6661
6662 addr = (input_section->output_section->vma
6663 + input_section->output_offset
6664 + relocation->r_offset
6665 + 4);
6666 if (r_type == R_MIPS_26)
6667 dest = (value << 2) | ((addr >> 28) << 28);
6668 else
6669 dest = value;
6670 off = dest - addr;
6671 if (off <= 0x1ffff && off >= -0x20000)
38a7df63 6672 {
0e392101 6673 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
38a7df63
CF
6674 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6675 else
6676 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6677 }
1367d393
ILT
6678 }
6679
b49e97c9 6680 /* Put the value into the output. */
98e10ffa 6681 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
d6f16593 6682
0e1862bb 6683 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
df58fc94 6684 location);
d6f16593 6685
b34976b6 6686 return TRUE;
b49e97c9 6687}
b49e97c9 6688\f
b49e97c9
TS
6689/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6690 is the original relocation, which is now being transformed into a
6691 dynamic relocation. The ADDENDP is adjusted if necessary; the
6692 caller should store the result in place of the original addend. */
6693
b34976b6 6694static bfd_boolean
9719ad41
RS
6695mips_elf_create_dynamic_relocation (bfd *output_bfd,
6696 struct bfd_link_info *info,
6697 const Elf_Internal_Rela *rel,
6698 struct mips_elf_link_hash_entry *h,
6699 asection *sec, bfd_vma symbol,
6700 bfd_vma *addendp, asection *input_section)
b49e97c9 6701{
947216bf 6702 Elf_Internal_Rela outrel[3];
b49e97c9
TS
6703 asection *sreloc;
6704 bfd *dynobj;
6705 int r_type;
5d41f0b6
RS
6706 long indx;
6707 bfd_boolean defined_p;
0a44bf69 6708 struct mips_elf_link_hash_table *htab;
b49e97c9 6709
0a44bf69 6710 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
6711 BFD_ASSERT (htab != NULL);
6712
b49e97c9
TS
6713 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6714 dynobj = elf_hash_table (info)->dynobj;
0a44bf69 6715 sreloc = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
6716 BFD_ASSERT (sreloc != NULL);
6717 BFD_ASSERT (sreloc->contents != NULL);
6718 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 6719 < sreloc->size);
b49e97c9 6720
b49e97c9
TS
6721 outrel[0].r_offset =
6722 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
9ddf8309
TS
6723 if (ABI_64_P (output_bfd))
6724 {
6725 outrel[1].r_offset =
6726 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6727 outrel[2].r_offset =
6728 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6729 }
b49e97c9 6730
c5ae1840 6731 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 6732 /* The relocation field has been deleted. */
5d41f0b6
RS
6733 return TRUE;
6734
6735 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
6736 {
6737 /* The relocation field has been converted into a relative value of
6738 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6739 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 6740 *addendp += symbol;
5d41f0b6 6741 return TRUE;
0d591ff7 6742 }
b49e97c9 6743
5d41f0b6
RS
6744 /* We must now calculate the dynamic symbol table index to use
6745 in the relocation. */
d4a77f3f 6746 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
5d41f0b6 6747 {
020d7251 6748 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
5d41f0b6
RS
6749 indx = h->root.dynindx;
6750 if (SGI_COMPAT (output_bfd))
6751 defined_p = h->root.def_regular;
6752 else
6753 /* ??? glibc's ld.so just adds the final GOT entry to the
6754 relocation field. It therefore treats relocs against
6755 defined symbols in the same way as relocs against
6756 undefined symbols. */
6757 defined_p = FALSE;
6758 }
b49e97c9
TS
6759 else
6760 {
5d41f0b6
RS
6761 if (sec != NULL && bfd_is_abs_section (sec))
6762 indx = 0;
6763 else if (sec == NULL || sec->owner == NULL)
fdd07405 6764 {
5d41f0b6
RS
6765 bfd_set_error (bfd_error_bad_value);
6766 return FALSE;
b49e97c9
TS
6767 }
6768 else
6769 {
5d41f0b6 6770 indx = elf_section_data (sec->output_section)->dynindx;
74541ad4
AM
6771 if (indx == 0)
6772 {
6773 asection *osec = htab->root.text_index_section;
6774 indx = elf_section_data (osec)->dynindx;
6775 }
5d41f0b6
RS
6776 if (indx == 0)
6777 abort ();
b49e97c9
TS
6778 }
6779
5d41f0b6
RS
6780 /* Instead of generating a relocation using the section
6781 symbol, we may as well make it a fully relative
6782 relocation. We want to avoid generating relocations to
6783 local symbols because we used to generate them
6784 incorrectly, without adding the original symbol value,
6785 which is mandated by the ABI for section symbols. In
6786 order to give dynamic loaders and applications time to
6787 phase out the incorrect use, we refrain from emitting
6788 section-relative relocations. It's not like they're
6789 useful, after all. This should be a bit more efficient
6790 as well. */
6791 /* ??? Although this behavior is compatible with glibc's ld.so,
6792 the ABI says that relocations against STN_UNDEF should have
6793 a symbol value of 0. Irix rld honors this, so relocations
6794 against STN_UNDEF have no effect. */
6795 if (!SGI_COMPAT (output_bfd))
6796 indx = 0;
6797 defined_p = TRUE;
b49e97c9
TS
6798 }
6799
5d41f0b6
RS
6800 /* If the relocation was previously an absolute relocation and
6801 this symbol will not be referred to by the relocation, we must
6802 adjust it by the value we give it in the dynamic symbol table.
6803 Otherwise leave the job up to the dynamic linker. */
6804 if (defined_p && r_type != R_MIPS_REL32)
6805 *addendp += symbol;
6806
0a44bf69
RS
6807 if (htab->is_vxworks)
6808 /* VxWorks uses non-relative relocations for this. */
6809 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6810 else
6811 /* The relocation is always an REL32 relocation because we don't
6812 know where the shared library will wind up at load-time. */
6813 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6814 R_MIPS_REL32);
6815
5d41f0b6
RS
6816 /* For strict adherence to the ABI specification, we should
6817 generate a R_MIPS_64 relocation record by itself before the
6818 _REL32/_64 record as well, such that the addend is read in as
6819 a 64-bit value (REL32 is a 32-bit relocation, after all).
6820 However, since none of the existing ELF64 MIPS dynamic
6821 loaders seems to care, we don't waste space with these
6822 artificial relocations. If this turns out to not be true,
6823 mips_elf_allocate_dynamic_relocation() should be tweaked so
6824 as to make room for a pair of dynamic relocations per
6825 invocation if ABI_64_P, and here we should generate an
6826 additional relocation record with R_MIPS_64 by itself for a
6827 NULL symbol before this relocation record. */
6828 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6829 ABI_64_P (output_bfd)
6830 ? R_MIPS_64
6831 : R_MIPS_NONE);
6832 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6833
6834 /* Adjust the output offset of the relocation to reference the
6835 correct location in the output file. */
6836 outrel[0].r_offset += (input_section->output_section->vma
6837 + input_section->output_offset);
6838 outrel[1].r_offset += (input_section->output_section->vma
6839 + input_section->output_offset);
6840 outrel[2].r_offset += (input_section->output_section->vma
6841 + input_section->output_offset);
6842
b49e97c9
TS
6843 /* Put the relocation back out. We have to use the special
6844 relocation outputter in the 64-bit case since the 64-bit
6845 relocation format is non-standard. */
6846 if (ABI_64_P (output_bfd))
6847 {
6848 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6849 (output_bfd, &outrel[0],
6850 (sreloc->contents
6851 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6852 }
0a44bf69
RS
6853 else if (htab->is_vxworks)
6854 {
6855 /* VxWorks uses RELA rather than REL dynamic relocations. */
6856 outrel[0].r_addend = *addendp;
6857 bfd_elf32_swap_reloca_out
6858 (output_bfd, &outrel[0],
6859 (sreloc->contents
6860 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6861 }
b49e97c9 6862 else
947216bf
AM
6863 bfd_elf32_swap_reloc_out
6864 (output_bfd, &outrel[0],
6865 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 6866
b49e97c9
TS
6867 /* We've now added another relocation. */
6868 ++sreloc->reloc_count;
6869
6870 /* Make sure the output section is writable. The dynamic linker
6871 will be writing to it. */
6872 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6873 |= SHF_WRITE;
6874
6875 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 6876 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9 6877 {
3d4d4302 6878 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
6879 bfd_byte *cr;
6880
6881 if (scpt)
6882 {
6883 Elf32_crinfo cptrel;
6884
6885 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6886 cptrel.vaddr = (rel->r_offset
6887 + input_section->output_section->vma
6888 + input_section->output_offset);
6889 if (r_type == R_MIPS_REL32)
6890 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6891 else
6892 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6893 mips_elf_set_cr_dist2to (cptrel, 0);
6894 cptrel.konst = *addendp;
6895
6896 cr = (scpt->contents
6897 + sizeof (Elf32_External_compact_rel));
abc0f8d0 6898 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
6899 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6900 ((Elf32_External_crinfo *) cr
6901 + scpt->reloc_count));
6902 ++scpt->reloc_count;
6903 }
6904 }
6905
943284cc
DJ
6906 /* If we've written this relocation for a readonly section,
6907 we need to set DF_TEXTREL again, so that we do not delete the
6908 DT_TEXTREL tag. */
6909 if (MIPS_ELF_READONLY_SECTION (input_section))
6910 info->flags |= DF_TEXTREL;
6911
b34976b6 6912 return TRUE;
b49e97c9
TS
6913}
6914\f
b49e97c9
TS
6915/* Return the MACH for a MIPS e_flags value. */
6916
6917unsigned long
9719ad41 6918_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
6919{
6920 switch (flags & EF_MIPS_MACH)
6921 {
6922 case E_MIPS_MACH_3900:
6923 return bfd_mach_mips3900;
6924
6925 case E_MIPS_MACH_4010:
6926 return bfd_mach_mips4010;
6927
6928 case E_MIPS_MACH_4100:
6929 return bfd_mach_mips4100;
6930
6931 case E_MIPS_MACH_4111:
6932 return bfd_mach_mips4111;
6933
00707a0e
RS
6934 case E_MIPS_MACH_4120:
6935 return bfd_mach_mips4120;
6936
b49e97c9
TS
6937 case E_MIPS_MACH_4650:
6938 return bfd_mach_mips4650;
6939
00707a0e
RS
6940 case E_MIPS_MACH_5400:
6941 return bfd_mach_mips5400;
6942
6943 case E_MIPS_MACH_5500:
6944 return bfd_mach_mips5500;
6945
e407c74b
NC
6946 case E_MIPS_MACH_5900:
6947 return bfd_mach_mips5900;
6948
0d2e43ed
ILT
6949 case E_MIPS_MACH_9000:
6950 return bfd_mach_mips9000;
6951
b49e97c9
TS
6952 case E_MIPS_MACH_SB1:
6953 return bfd_mach_mips_sb1;
6954
350cc38d
MS
6955 case E_MIPS_MACH_LS2E:
6956 return bfd_mach_mips_loongson_2e;
6957
6958 case E_MIPS_MACH_LS2F:
6959 return bfd_mach_mips_loongson_2f;
6960
ac8cb70f
CX
6961 case E_MIPS_MACH_GS464:
6962 return bfd_mach_mips_gs464;
fd503541 6963
bd782c07
CX
6964 case E_MIPS_MACH_GS464E:
6965 return bfd_mach_mips_gs464e;
6966
9108bc33
CX
6967 case E_MIPS_MACH_GS264E:
6968 return bfd_mach_mips_gs264e;
6969
2c629856
N
6970 case E_MIPS_MACH_OCTEON3:
6971 return bfd_mach_mips_octeon3;
6972
432233b3
AP
6973 case E_MIPS_MACH_OCTEON2:
6974 return bfd_mach_mips_octeon2;
6975
6f179bd0
AN
6976 case E_MIPS_MACH_OCTEON:
6977 return bfd_mach_mips_octeon;
6978
52b6b6b9
JM
6979 case E_MIPS_MACH_XLR:
6980 return bfd_mach_mips_xlr;
6981
38bf472a
MR
6982 case E_MIPS_MACH_IAMR2:
6983 return bfd_mach_mips_interaptiv_mr2;
6984
b49e97c9
TS
6985 default:
6986 switch (flags & EF_MIPS_ARCH)
6987 {
6988 default:
6989 case E_MIPS_ARCH_1:
6990 return bfd_mach_mips3000;
b49e97c9
TS
6991
6992 case E_MIPS_ARCH_2:
6993 return bfd_mach_mips6000;
b49e97c9
TS
6994
6995 case E_MIPS_ARCH_3:
6996 return bfd_mach_mips4000;
b49e97c9
TS
6997
6998 case E_MIPS_ARCH_4:
6999 return bfd_mach_mips8000;
b49e97c9
TS
7000
7001 case E_MIPS_ARCH_5:
7002 return bfd_mach_mips5;
b49e97c9
TS
7003
7004 case E_MIPS_ARCH_32:
7005 return bfd_mach_mipsisa32;
b49e97c9
TS
7006
7007 case E_MIPS_ARCH_64:
7008 return bfd_mach_mipsisa64;
af7ee8bf
CD
7009
7010 case E_MIPS_ARCH_32R2:
7011 return bfd_mach_mipsisa32r2;
5f74bc13
CD
7012
7013 case E_MIPS_ARCH_64R2:
7014 return bfd_mach_mipsisa64r2;
7361da2c
AB
7015
7016 case E_MIPS_ARCH_32R6:
7017 return bfd_mach_mipsisa32r6;
7018
7019 case E_MIPS_ARCH_64R6:
7020 return bfd_mach_mipsisa64r6;
b49e97c9
TS
7021 }
7022 }
7023
7024 return 0;
7025}
7026
7027/* Return printable name for ABI. */
7028
7029static INLINE char *
9719ad41 7030elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
7031{
7032 flagword flags;
7033
7034 flags = elf_elfheader (abfd)->e_flags;
7035 switch (flags & EF_MIPS_ABI)
7036 {
7037 case 0:
7038 if (ABI_N32_P (abfd))
7039 return "N32";
7040 else if (ABI_64_P (abfd))
7041 return "64";
7042 else
7043 return "none";
7044 case E_MIPS_ABI_O32:
7045 return "O32";
7046 case E_MIPS_ABI_O64:
7047 return "O64";
7048 case E_MIPS_ABI_EABI32:
7049 return "EABI32";
7050 case E_MIPS_ABI_EABI64:
7051 return "EABI64";
7052 default:
7053 return "unknown abi";
7054 }
7055}
7056\f
7057/* MIPS ELF uses two common sections. One is the usual one, and the
7058 other is for small objects. All the small objects are kept
7059 together, and then referenced via the gp pointer, which yields
7060 faster assembler code. This is what we use for the small common
7061 section. This approach is copied from ecoff.c. */
7062static asection mips_elf_scom_section;
7063static asymbol mips_elf_scom_symbol;
7064static asymbol *mips_elf_scom_symbol_ptr;
7065
7066/* MIPS ELF also uses an acommon section, which represents an
7067 allocated common symbol which may be overridden by a
7068 definition in a shared library. */
7069static asection mips_elf_acom_section;
7070static asymbol mips_elf_acom_symbol;
7071static asymbol *mips_elf_acom_symbol_ptr;
7072
738e5348 7073/* This is used for both the 32-bit and the 64-bit ABI. */
b49e97c9
TS
7074
7075void
9719ad41 7076_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
7077{
7078 elf_symbol_type *elfsym;
7079
738e5348 7080 /* Handle the special MIPS section numbers that a symbol may use. */
b49e97c9
TS
7081 elfsym = (elf_symbol_type *) asym;
7082 switch (elfsym->internal_elf_sym.st_shndx)
7083 {
7084 case SHN_MIPS_ACOMMON:
7085 /* This section is used in a dynamically linked executable file.
7086 It is an allocated common section. The dynamic linker can
7087 either resolve these symbols to something in a shared
7088 library, or it can just leave them here. For our purposes,
7089 we can consider these symbols to be in a new section. */
7090 if (mips_elf_acom_section.name == NULL)
7091 {
7092 /* Initialize the acommon section. */
7093 mips_elf_acom_section.name = ".acommon";
7094 mips_elf_acom_section.flags = SEC_ALLOC;
7095 mips_elf_acom_section.output_section = &mips_elf_acom_section;
7096 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
7097 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
7098 mips_elf_acom_symbol.name = ".acommon";
7099 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
7100 mips_elf_acom_symbol.section = &mips_elf_acom_section;
7101 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
7102 }
7103 asym->section = &mips_elf_acom_section;
7104 break;
7105
7106 case SHN_COMMON:
7107 /* Common symbols less than the GP size are automatically
7108 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
7109 if (asym->value > elf_gp_size (abfd)
b59eed79 7110 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
b49e97c9
TS
7111 || IRIX_COMPAT (abfd) == ict_irix6)
7112 break;
7113 /* Fall through. */
7114 case SHN_MIPS_SCOMMON:
7115 if (mips_elf_scom_section.name == NULL)
7116 {
7117 /* Initialize the small common section. */
7118 mips_elf_scom_section.name = ".scommon";
7119 mips_elf_scom_section.flags = SEC_IS_COMMON;
7120 mips_elf_scom_section.output_section = &mips_elf_scom_section;
7121 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
7122 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
7123 mips_elf_scom_symbol.name = ".scommon";
7124 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
7125 mips_elf_scom_symbol.section = &mips_elf_scom_section;
7126 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
7127 }
7128 asym->section = &mips_elf_scom_section;
7129 asym->value = elfsym->internal_elf_sym.st_size;
7130 break;
7131
7132 case SHN_MIPS_SUNDEFINED:
7133 asym->section = bfd_und_section_ptr;
7134 break;
7135
b49e97c9 7136 case SHN_MIPS_TEXT:
00b4930b
TS
7137 {
7138 asection *section = bfd_get_section_by_name (abfd, ".text");
7139
00b4930b
TS
7140 if (section != NULL)
7141 {
7142 asym->section = section;
7143 /* MIPS_TEXT is a bit special, the address is not an offset
de194d85 7144 to the base of the .text section. So subtract the section
00b4930b
TS
7145 base address to make it an offset. */
7146 asym->value -= section->vma;
7147 }
7148 }
b49e97c9
TS
7149 break;
7150
7151 case SHN_MIPS_DATA:
00b4930b
TS
7152 {
7153 asection *section = bfd_get_section_by_name (abfd, ".data");
7154
00b4930b
TS
7155 if (section != NULL)
7156 {
7157 asym->section = section;
7158 /* MIPS_DATA is a bit special, the address is not an offset
de194d85 7159 to the base of the .data section. So subtract the section
00b4930b
TS
7160 base address to make it an offset. */
7161 asym->value -= section->vma;
7162 }
7163 }
b49e97c9 7164 break;
b49e97c9 7165 }
738e5348 7166
df58fc94
RS
7167 /* If this is an odd-valued function symbol, assume it's a MIPS16
7168 or microMIPS one. */
738e5348
RS
7169 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
7170 && (asym->value & 1) != 0)
7171 {
7172 asym->value--;
e8faf7d1 7173 if (MICROMIPS_P (abfd))
df58fc94
RS
7174 elfsym->internal_elf_sym.st_other
7175 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
7176 else
7177 elfsym->internal_elf_sym.st_other
7178 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
738e5348 7179 }
b49e97c9
TS
7180}
7181\f
8c946ed5
RS
7182/* Implement elf_backend_eh_frame_address_size. This differs from
7183 the default in the way it handles EABI64.
7184
7185 EABI64 was originally specified as an LP64 ABI, and that is what
7186 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7187 historically accepted the combination of -mabi=eabi and -mlong32,
7188 and this ILP32 variation has become semi-official over time.
7189 Both forms use elf32 and have pointer-sized FDE addresses.
7190
7191 If an EABI object was generated by GCC 4.0 or above, it will have
7192 an empty .gcc_compiled_longXX section, where XX is the size of longs
7193 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7194 have no special marking to distinguish them from LP64 objects.
7195
7196 We don't want users of the official LP64 ABI to be punished for the
7197 existence of the ILP32 variant, but at the same time, we don't want
7198 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7199 We therefore take the following approach:
7200
7201 - If ABFD contains a .gcc_compiled_longXX section, use it to
07d6d2b8 7202 determine the pointer size.
8c946ed5
RS
7203
7204 - Otherwise check the type of the first relocation. Assume that
07d6d2b8 7205 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
8c946ed5
RS
7206
7207 - Otherwise punt.
7208
7209 The second check is enough to detect LP64 objects generated by pre-4.0
7210 compilers because, in the kind of output generated by those compilers,
7211 the first relocation will be associated with either a CIE personality
7212 routine or an FDE start address. Furthermore, the compilers never
7213 used a special (non-pointer) encoding for this ABI.
7214
7215 Checking the relocation type should also be safe because there is no
7216 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7217 did so. */
7218
7219unsigned int
76c20d54 7220_bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
8c946ed5
RS
7221{
7222 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7223 return 8;
7224 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7225 {
7226 bfd_boolean long32_p, long64_p;
7227
7228 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7229 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7230 if (long32_p && long64_p)
7231 return 0;
7232 if (long32_p)
7233 return 4;
7234 if (long64_p)
7235 return 8;
7236
7237 if (sec->reloc_count > 0
7238 && elf_section_data (sec)->relocs != NULL
7239 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7240 == R_MIPS_64))
7241 return 8;
7242
7243 return 0;
7244 }
7245 return 4;
7246}
7247\f
174fd7f9
RS
7248/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7249 relocations against two unnamed section symbols to resolve to the
7250 same address. For example, if we have code like:
7251
7252 lw $4,%got_disp(.data)($gp)
7253 lw $25,%got_disp(.text)($gp)
7254 jalr $25
7255
7256 then the linker will resolve both relocations to .data and the program
7257 will jump there rather than to .text.
7258
7259 We can work around this problem by giving names to local section symbols.
7260 This is also what the MIPSpro tools do. */
7261
7262bfd_boolean
7263_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7264{
7265 return SGI_COMPAT (abfd);
7266}
7267\f
b49e97c9
TS
7268/* Work over a section just before writing it out. This routine is
7269 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7270 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7271 a better way. */
7272
b34976b6 7273bfd_boolean
9719ad41 7274_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
7275{
7276 if (hdr->sh_type == SHT_MIPS_REGINFO
7277 && hdr->sh_size > 0)
7278 {
7279 bfd_byte buf[4];
7280
b49e97c9
TS
7281 BFD_ASSERT (hdr->contents == NULL);
7282
2d6dda71
MR
7283 if (hdr->sh_size != sizeof (Elf32_External_RegInfo))
7284 {
7285 _bfd_error_handler
2c1c9679 7286 (_("%pB: incorrect `.reginfo' section size; "
2dcf00ce
AM
7287 "expected %" PRIu64 ", got %" PRIu64),
7288 abfd, (uint64_t) sizeof (Elf32_External_RegInfo),
7289 (uint64_t) hdr->sh_size);
2d6dda71
MR
7290 bfd_set_error (bfd_error_bad_value);
7291 return FALSE;
7292 }
7293
b49e97c9
TS
7294 if (bfd_seek (abfd,
7295 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7296 SEEK_SET) != 0)
b34976b6 7297 return FALSE;
b49e97c9 7298 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 7299 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 7300 return FALSE;
b49e97c9
TS
7301 }
7302
7303 if (hdr->sh_type == SHT_MIPS_OPTIONS
7304 && hdr->bfd_section != NULL
f0abc2a1
AM
7305 && mips_elf_section_data (hdr->bfd_section) != NULL
7306 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
7307 {
7308 bfd_byte *contents, *l, *lend;
7309
f0abc2a1
AM
7310 /* We stored the section contents in the tdata field in the
7311 set_section_contents routine. We save the section contents
7312 so that we don't have to read them again.
b49e97c9
TS
7313 At this point we know that elf_gp is set, so we can look
7314 through the section contents to see if there is an
7315 ODK_REGINFO structure. */
7316
f0abc2a1 7317 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
7318 l = contents;
7319 lend = contents + hdr->sh_size;
7320 while (l + sizeof (Elf_External_Options) <= lend)
7321 {
7322 Elf_Internal_Options intopt;
7323
7324 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7325 &intopt);
1bc8074d
MR
7326 if (intopt.size < sizeof (Elf_External_Options))
7327 {
4eca0228 7328 _bfd_error_handler
695344c0 7329 /* xgettext:c-format */
2c1c9679 7330 (_("%pB: warning: bad `%s' option size %u smaller than"
63a5468a 7331 " its header"),
1bc8074d
MR
7332 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7333 break;
7334 }
b49e97c9
TS
7335 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7336 {
7337 bfd_byte buf[8];
7338
7339 if (bfd_seek (abfd,
7340 (hdr->sh_offset
7341 + (l - contents)
7342 + sizeof (Elf_External_Options)
7343 + (sizeof (Elf64_External_RegInfo) - 8)),
7344 SEEK_SET) != 0)
b34976b6 7345 return FALSE;
b49e97c9 7346 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 7347 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 7348 return FALSE;
b49e97c9
TS
7349 }
7350 else if (intopt.kind == ODK_REGINFO)
7351 {
7352 bfd_byte buf[4];
7353
7354 if (bfd_seek (abfd,
7355 (hdr->sh_offset
7356 + (l - contents)
7357 + sizeof (Elf_External_Options)
7358 + (sizeof (Elf32_External_RegInfo) - 4)),
7359 SEEK_SET) != 0)
b34976b6 7360 return FALSE;
b49e97c9 7361 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 7362 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 7363 return FALSE;
b49e97c9
TS
7364 }
7365 l += intopt.size;
7366 }
7367 }
7368
7369 if (hdr->bfd_section != NULL)
7370 {
fd361982 7371 const char *name = bfd_section_name (hdr->bfd_section);
b49e97c9 7372
2d0f9ad9
JM
7373 /* .sbss is not handled specially here because the GNU/Linux
7374 prelinker can convert .sbss from NOBITS to PROGBITS and
7375 changing it back to NOBITS breaks the binary. The entry in
7376 _bfd_mips_elf_special_sections will ensure the correct flags
7377 are set on .sbss if BFD creates it without reading it from an
7378 input file, and without special handling here the flags set
7379 on it in an input file will be followed. */
b49e97c9
TS
7380 if (strcmp (name, ".sdata") == 0
7381 || strcmp (name, ".lit8") == 0
7382 || strcmp (name, ".lit4") == 0)
fd6f9d17 7383 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
b49e97c9 7384 else if (strcmp (name, ".srdata") == 0)
fd6f9d17 7385 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
b49e97c9 7386 else if (strcmp (name, ".compact_rel") == 0)
fd6f9d17 7387 hdr->sh_flags = 0;
b49e97c9
TS
7388 else if (strcmp (name, ".rtproc") == 0)
7389 {
7390 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7391 {
7392 unsigned int adjust;
7393
7394 adjust = hdr->sh_size % hdr->sh_addralign;
7395 if (adjust != 0)
7396 hdr->sh_size += hdr->sh_addralign - adjust;
7397 }
7398 }
7399 }
7400
b34976b6 7401 return TRUE;
b49e97c9
TS
7402}
7403
7404/* Handle a MIPS specific section when reading an object file. This
7405 is called when elfcode.h finds a section with an unknown type.
bf577467 7406 This routine supports both the 32-bit and 64-bit ELF ABI. */
b49e97c9 7407
b34976b6 7408bfd_boolean
6dc132d9
L
7409_bfd_mips_elf_section_from_shdr (bfd *abfd,
7410 Elf_Internal_Shdr *hdr,
7411 const char *name,
7412 int shindex)
b49e97c9
TS
7413{
7414 flagword flags = 0;
7415
7416 /* There ought to be a place to keep ELF backend specific flags, but
7417 at the moment there isn't one. We just keep track of the
7418 sections by their name, instead. Fortunately, the ABI gives
7419 suggested names for all the MIPS specific sections, so we will
7420 probably get away with this. */
7421 switch (hdr->sh_type)
7422 {
7423 case SHT_MIPS_LIBLIST:
7424 if (strcmp (name, ".liblist") != 0)
b34976b6 7425 return FALSE;
b49e97c9
TS
7426 break;
7427 case SHT_MIPS_MSYM:
7428 if (strcmp (name, ".msym") != 0)
b34976b6 7429 return FALSE;
b49e97c9
TS
7430 break;
7431 case SHT_MIPS_CONFLICT:
7432 if (strcmp (name, ".conflict") != 0)
b34976b6 7433 return FALSE;
b49e97c9
TS
7434 break;
7435 case SHT_MIPS_GPTAB:
0112cd26 7436 if (! CONST_STRNEQ (name, ".gptab."))
b34976b6 7437 return FALSE;
b49e97c9
TS
7438 break;
7439 case SHT_MIPS_UCODE:
7440 if (strcmp (name, ".ucode") != 0)
b34976b6 7441 return FALSE;
b49e97c9
TS
7442 break;
7443 case SHT_MIPS_DEBUG:
7444 if (strcmp (name, ".mdebug") != 0)
b34976b6 7445 return FALSE;
b49e97c9
TS
7446 flags = SEC_DEBUGGING;
7447 break;
7448 case SHT_MIPS_REGINFO:
7449 if (strcmp (name, ".reginfo") != 0
7450 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 7451 return FALSE;
b49e97c9
TS
7452 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7453 break;
7454 case SHT_MIPS_IFACE:
7455 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 7456 return FALSE;
b49e97c9
TS
7457 break;
7458 case SHT_MIPS_CONTENT:
0112cd26 7459 if (! CONST_STRNEQ (name, ".MIPS.content"))
b34976b6 7460 return FALSE;
b49e97c9
TS
7461 break;
7462 case SHT_MIPS_OPTIONS:
cc2e31b9 7463 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 7464 return FALSE;
b49e97c9 7465 break;
351cdf24
MF
7466 case SHT_MIPS_ABIFLAGS:
7467 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7468 return FALSE;
7469 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7470 break;
b49e97c9 7471 case SHT_MIPS_DWARF:
1b315056 7472 if (! CONST_STRNEQ (name, ".debug_")
07d6d2b8 7473 && ! CONST_STRNEQ (name, ".zdebug_"))
b34976b6 7474 return FALSE;
b49e97c9
TS
7475 break;
7476 case SHT_MIPS_SYMBOL_LIB:
7477 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 7478 return FALSE;
b49e97c9
TS
7479 break;
7480 case SHT_MIPS_EVENTS:
0112cd26
NC
7481 if (! CONST_STRNEQ (name, ".MIPS.events")
7482 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
b34976b6 7483 return FALSE;
b49e97c9 7484 break;
f16a9783
MS
7485 case SHT_MIPS_XHASH:
7486 if (strcmp (name, ".MIPS.xhash") != 0)
7487 return FALSE;
b49e97c9 7488 default:
cc2e31b9 7489 break;
b49e97c9
TS
7490 }
7491
6dc132d9 7492 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 7493 return FALSE;
b49e97c9 7494
bf577467
AM
7495 if (hdr->sh_flags & SHF_MIPS_GPREL)
7496 flags |= SEC_SMALL_DATA;
7497
b49e97c9
TS
7498 if (flags)
7499 {
fd361982
AM
7500 if (!bfd_set_section_flags (hdr->bfd_section,
7501 (bfd_section_flags (hdr->bfd_section)
7502 | flags)))
b34976b6 7503 return FALSE;
b49e97c9
TS
7504 }
7505
351cdf24
MF
7506 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7507 {
7508 Elf_External_ABIFlags_v0 ext;
7509
7510 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7511 &ext, 0, sizeof ext))
7512 return FALSE;
7513 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7514 &mips_elf_tdata (abfd)->abiflags);
7515 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7516 return FALSE;
7517 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7518 }
7519
b49e97c9
TS
7520 /* FIXME: We should record sh_info for a .gptab section. */
7521
7522 /* For a .reginfo section, set the gp value in the tdata information
7523 from the contents of this section. We need the gp value while
7524 processing relocs, so we just get it now. The .reginfo section
7525 is not used in the 64-bit MIPS ELF ABI. */
7526 if (hdr->sh_type == SHT_MIPS_REGINFO)
7527 {
7528 Elf32_External_RegInfo ext;
7529 Elf32_RegInfo s;
7530
9719ad41
RS
7531 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7532 &ext, 0, sizeof ext))
b34976b6 7533 return FALSE;
b49e97c9
TS
7534 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7535 elf_gp (abfd) = s.ri_gp_value;
7536 }
7537
7538 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7539 set the gp value based on what we find. We may see both
7540 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7541 they should agree. */
7542 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7543 {
7544 bfd_byte *contents, *l, *lend;
7545
9719ad41 7546 contents = bfd_malloc (hdr->sh_size);
b49e97c9 7547 if (contents == NULL)
b34976b6 7548 return FALSE;
b49e97c9 7549 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 7550 0, hdr->sh_size))
b49e97c9
TS
7551 {
7552 free (contents);
b34976b6 7553 return FALSE;
b49e97c9
TS
7554 }
7555 l = contents;
7556 lend = contents + hdr->sh_size;
7557 while (l + sizeof (Elf_External_Options) <= lend)
7558 {
7559 Elf_Internal_Options intopt;
7560
7561 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7562 &intopt);
1bc8074d
MR
7563 if (intopt.size < sizeof (Elf_External_Options))
7564 {
4eca0228 7565 _bfd_error_handler
695344c0 7566 /* xgettext:c-format */
2c1c9679 7567 (_("%pB: warning: bad `%s' option size %u smaller than"
63a5468a 7568 " its header"),
1bc8074d
MR
7569 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7570 break;
7571 }
b49e97c9
TS
7572 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7573 {
7574 Elf64_Internal_RegInfo intreg;
7575
7576 bfd_mips_elf64_swap_reginfo_in
7577 (abfd,
7578 ((Elf64_External_RegInfo *)
7579 (l + sizeof (Elf_External_Options))),
7580 &intreg);
7581 elf_gp (abfd) = intreg.ri_gp_value;
7582 }
7583 else if (intopt.kind == ODK_REGINFO)
7584 {
7585 Elf32_RegInfo intreg;
7586
7587 bfd_mips_elf32_swap_reginfo_in
7588 (abfd,
7589 ((Elf32_External_RegInfo *)
7590 (l + sizeof (Elf_External_Options))),
7591 &intreg);
7592 elf_gp (abfd) = intreg.ri_gp_value;
7593 }
7594 l += intopt.size;
7595 }
7596 free (contents);
7597 }
7598
b34976b6 7599 return TRUE;
b49e97c9
TS
7600}
7601
7602/* Set the correct type for a MIPS ELF section. We do this by the
7603 section name, which is a hack, but ought to work. This routine is
7604 used by both the 32-bit and the 64-bit ABI. */
7605
b34976b6 7606bfd_boolean
9719ad41 7607_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9 7608{
fd361982 7609 const char *name = bfd_section_name (sec);
b49e97c9
TS
7610
7611 if (strcmp (name, ".liblist") == 0)
7612 {
7613 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 7614 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
7615 /* The sh_link field is set in final_write_processing. */
7616 }
7617 else if (strcmp (name, ".conflict") == 0)
7618 hdr->sh_type = SHT_MIPS_CONFLICT;
0112cd26 7619 else if (CONST_STRNEQ (name, ".gptab."))
b49e97c9
TS
7620 {
7621 hdr->sh_type = SHT_MIPS_GPTAB;
7622 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7623 /* The sh_info field is set in final_write_processing. */
7624 }
7625 else if (strcmp (name, ".ucode") == 0)
7626 hdr->sh_type = SHT_MIPS_UCODE;
7627 else if (strcmp (name, ".mdebug") == 0)
7628 {
7629 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 7630 /* In a shared object on IRIX 5.3, the .mdebug section has an
07d6d2b8 7631 entsize of 0. FIXME: Does this matter? */
b49e97c9
TS
7632 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7633 hdr->sh_entsize = 0;
7634 else
7635 hdr->sh_entsize = 1;
7636 }
7637 else if (strcmp (name, ".reginfo") == 0)
7638 {
7639 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 7640 /* In a shared object on IRIX 5.3, the .reginfo section has an
07d6d2b8 7641 entsize of 0x18. FIXME: Does this matter? */
b49e97c9
TS
7642 if (SGI_COMPAT (abfd))
7643 {
7644 if ((abfd->flags & DYNAMIC) != 0)
7645 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7646 else
7647 hdr->sh_entsize = 1;
7648 }
7649 else
7650 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7651 }
7652 else if (SGI_COMPAT (abfd)
7653 && (strcmp (name, ".hash") == 0
7654 || strcmp (name, ".dynamic") == 0
7655 || strcmp (name, ".dynstr") == 0))
7656 {
7657 if (SGI_COMPAT (abfd))
7658 hdr->sh_entsize = 0;
7659#if 0
8dc1a139 7660 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
7661 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7662#endif
7663 }
7664 else if (strcmp (name, ".got") == 0
7665 || strcmp (name, ".srdata") == 0
7666 || strcmp (name, ".sdata") == 0
7667 || strcmp (name, ".sbss") == 0
7668 || strcmp (name, ".lit4") == 0
7669 || strcmp (name, ".lit8") == 0)
7670 hdr->sh_flags |= SHF_MIPS_GPREL;
7671 else if (strcmp (name, ".MIPS.interfaces") == 0)
7672 {
7673 hdr->sh_type = SHT_MIPS_IFACE;
7674 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7675 }
0112cd26 7676 else if (CONST_STRNEQ (name, ".MIPS.content"))
b49e97c9
TS
7677 {
7678 hdr->sh_type = SHT_MIPS_CONTENT;
7679 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7680 /* The sh_info field is set in final_write_processing. */
7681 }
cc2e31b9 7682 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
7683 {
7684 hdr->sh_type = SHT_MIPS_OPTIONS;
7685 hdr->sh_entsize = 1;
7686 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7687 }
351cdf24
MF
7688 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7689 {
7690 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7691 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7692 }
1b315056 7693 else if (CONST_STRNEQ (name, ".debug_")
07d6d2b8 7694 || CONST_STRNEQ (name, ".zdebug_"))
b5482f21
NC
7695 {
7696 hdr->sh_type = SHT_MIPS_DWARF;
7697
7698 /* Irix facilities such as libexc expect a single .debug_frame
7699 per executable, the system ones have NOSTRIP set and the linker
7700 doesn't merge sections with different flags so ... */
7701 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7702 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7703 }
b49e97c9
TS
7704 else if (strcmp (name, ".MIPS.symlib") == 0)
7705 {
7706 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7707 /* The sh_link and sh_info fields are set in
07d6d2b8 7708 final_write_processing. */
b49e97c9 7709 }
0112cd26
NC
7710 else if (CONST_STRNEQ (name, ".MIPS.events")
7711 || CONST_STRNEQ (name, ".MIPS.post_rel"))
b49e97c9
TS
7712 {
7713 hdr->sh_type = SHT_MIPS_EVENTS;
7714 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7715 /* The sh_link field is set in final_write_processing. */
7716 }
7717 else if (strcmp (name, ".msym") == 0)
7718 {
7719 hdr->sh_type = SHT_MIPS_MSYM;
7720 hdr->sh_flags |= SHF_ALLOC;
7721 hdr->sh_entsize = 8;
7722 }
f16a9783
MS
7723 else if (strcmp (name, ".MIPS.xhash") == 0)
7724 {
7725 hdr->sh_type = SHT_MIPS_XHASH;
7726 hdr->sh_flags |= SHF_ALLOC;
7727 hdr->sh_entsize = get_elf_backend_data(abfd)->s->arch_size == 64 ? 0 : 4;
7728 }
b49e97c9 7729
7a79a000
TS
7730 /* The generic elf_fake_sections will set up REL_HDR using the default
7731 kind of relocations. We used to set up a second header for the
7732 non-default kind of relocations here, but only NewABI would use
7733 these, and the IRIX ld doesn't like resulting empty RELA sections.
7734 Thus we create those header only on demand now. */
b49e97c9 7735
b34976b6 7736 return TRUE;
b49e97c9
TS
7737}
7738
7739/* Given a BFD section, try to locate the corresponding ELF section
7740 index. This is used by both the 32-bit and the 64-bit ABI.
7741 Actually, it's not clear to me that the 64-bit ABI supports these,
7742 but for non-PIC objects we will certainly want support for at least
7743 the .scommon section. */
7744
b34976b6 7745bfd_boolean
9719ad41
RS
7746_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7747 asection *sec, int *retval)
b49e97c9 7748{
fd361982 7749 if (strcmp (bfd_section_name (sec), ".scommon") == 0)
b49e97c9
TS
7750 {
7751 *retval = SHN_MIPS_SCOMMON;
b34976b6 7752 return TRUE;
b49e97c9 7753 }
fd361982 7754 if (strcmp (bfd_section_name (sec), ".acommon") == 0)
b49e97c9
TS
7755 {
7756 *retval = SHN_MIPS_ACOMMON;
b34976b6 7757 return TRUE;
b49e97c9 7758 }
b34976b6 7759 return FALSE;
b49e97c9
TS
7760}
7761\f
7762/* Hook called by the linker routine which adds symbols from an object
7763 file. We must handle the special MIPS section numbers here. */
7764
b34976b6 7765bfd_boolean
9719ad41 7766_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 7767 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
7768 flagword *flagsp ATTRIBUTE_UNUSED,
7769 asection **secp, bfd_vma *valp)
b49e97c9
TS
7770{
7771 if (SGI_COMPAT (abfd)
7772 && (abfd->flags & DYNAMIC) != 0
7773 && strcmp (*namep, "_rld_new_interface") == 0)
7774 {
8dc1a139 7775 /* Skip IRIX5 rld entry name. */
b49e97c9 7776 *namep = NULL;
b34976b6 7777 return TRUE;
b49e97c9
TS
7778 }
7779
eedecc07
DD
7780 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7781 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7782 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7783 a magic symbol resolved by the linker, we ignore this bogus definition
7784 of _gp_disp. New ABI objects do not suffer from this problem so this
7785 is not done for them. */
7786 if (!NEWABI_P(abfd)
7787 && (sym->st_shndx == SHN_ABS)
7788 && (strcmp (*namep, "_gp_disp") == 0))
7789 {
7790 *namep = NULL;
7791 return TRUE;
7792 }
7793
b49e97c9
TS
7794 switch (sym->st_shndx)
7795 {
7796 case SHN_COMMON:
7797 /* Common symbols less than the GP size are automatically
7798 treated as SHN_MIPS_SCOMMON symbols. */
7799 if (sym->st_size > elf_gp_size (abfd)
b59eed79 7800 || ELF_ST_TYPE (sym->st_info) == STT_TLS
b49e97c9
TS
7801 || IRIX_COMPAT (abfd) == ict_irix6)
7802 break;
7803 /* Fall through. */
7804 case SHN_MIPS_SCOMMON:
7805 *secp = bfd_make_section_old_way (abfd, ".scommon");
7806 (*secp)->flags |= SEC_IS_COMMON;
7807 *valp = sym->st_size;
7808 break;
7809
7810 case SHN_MIPS_TEXT:
7811 /* This section is used in a shared object. */
698600e4 7812 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
b49e97c9
TS
7813 {
7814 asymbol *elf_text_symbol;
7815 asection *elf_text_section;
986f0783 7816 size_t amt = sizeof (asection);
b49e97c9
TS
7817
7818 elf_text_section = bfd_zalloc (abfd, amt);
7819 if (elf_text_section == NULL)
b34976b6 7820 return FALSE;
b49e97c9
TS
7821
7822 amt = sizeof (asymbol);
7823 elf_text_symbol = bfd_zalloc (abfd, amt);
7824 if (elf_text_symbol == NULL)
b34976b6 7825 return FALSE;
b49e97c9
TS
7826
7827 /* Initialize the section. */
7828
698600e4
AM
7829 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7830 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
b49e97c9
TS
7831
7832 elf_text_section->symbol = elf_text_symbol;
698600e4 7833 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
b49e97c9
TS
7834
7835 elf_text_section->name = ".text";
7836 elf_text_section->flags = SEC_NO_FLAGS;
7837 elf_text_section->output_section = NULL;
7838 elf_text_section->owner = abfd;
7839 elf_text_symbol->name = ".text";
7840 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7841 elf_text_symbol->section = elf_text_section;
7842 }
7843 /* This code used to do *secp = bfd_und_section_ptr if
07d6d2b8
AM
7844 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7845 so I took it out. */
698600e4 7846 *secp = mips_elf_tdata (abfd)->elf_text_section;
b49e97c9
TS
7847 break;
7848
7849 case SHN_MIPS_ACOMMON:
7850 /* Fall through. XXX Can we treat this as allocated data? */
7851 case SHN_MIPS_DATA:
7852 /* This section is used in a shared object. */
698600e4 7853 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
b49e97c9
TS
7854 {
7855 asymbol *elf_data_symbol;
7856 asection *elf_data_section;
986f0783 7857 size_t amt = sizeof (asection);
b49e97c9
TS
7858
7859 elf_data_section = bfd_zalloc (abfd, amt);
7860 if (elf_data_section == NULL)
b34976b6 7861 return FALSE;
b49e97c9
TS
7862
7863 amt = sizeof (asymbol);
7864 elf_data_symbol = bfd_zalloc (abfd, amt);
7865 if (elf_data_symbol == NULL)
b34976b6 7866 return FALSE;
b49e97c9
TS
7867
7868 /* Initialize the section. */
7869
698600e4
AM
7870 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7871 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
b49e97c9
TS
7872
7873 elf_data_section->symbol = elf_data_symbol;
698600e4 7874 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
b49e97c9
TS
7875
7876 elf_data_section->name = ".data";
7877 elf_data_section->flags = SEC_NO_FLAGS;
7878 elf_data_section->output_section = NULL;
7879 elf_data_section->owner = abfd;
7880 elf_data_symbol->name = ".data";
7881 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7882 elf_data_symbol->section = elf_data_section;
7883 }
7884 /* This code used to do *secp = bfd_und_section_ptr if
07d6d2b8
AM
7885 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7886 so I took it out. */
698600e4 7887 *secp = mips_elf_tdata (abfd)->elf_data_section;
b49e97c9
TS
7888 break;
7889
7890 case SHN_MIPS_SUNDEFINED:
7891 *secp = bfd_und_section_ptr;
7892 break;
7893 }
7894
7895 if (SGI_COMPAT (abfd)
0e1862bb 7896 && ! bfd_link_pic (info)
f13a99db 7897 && info->output_bfd->xvec == abfd->xvec
b49e97c9
TS
7898 && strcmp (*namep, "__rld_obj_head") == 0)
7899 {
7900 struct elf_link_hash_entry *h;
14a793b2 7901 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7902
7903 /* Mark __rld_obj_head as dynamic. */
14a793b2 7904 bh = NULL;
b49e97c9 7905 if (! (_bfd_generic_link_add_one_symbol
9719ad41 7906 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 7907 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7908 return FALSE;
14a793b2
AM
7909
7910 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7911 h->non_elf = 0;
7912 h->def_regular = 1;
b49e97c9
TS
7913 h->type = STT_OBJECT;
7914
c152c796 7915 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7916 return FALSE;
b49e97c9 7917
b34976b6 7918 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b4082c70 7919 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7920 }
7921
7922 /* If this is a mips16 text symbol, add 1 to the value to make it
7923 odd. This will cause something like .word SYM to come up with
7924 the right value when it is loaded into the PC. */
df58fc94 7925 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
7926 ++*valp;
7927
b34976b6 7928 return TRUE;
b49e97c9
TS
7929}
7930
7931/* This hook function is called before the linker writes out a global
7932 symbol. We mark symbols as small common if appropriate. This is
7933 also where we undo the increment of the value for a mips16 symbol. */
7934
6e0b88f1 7935int
9719ad41
RS
7936_bfd_mips_elf_link_output_symbol_hook
7937 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7938 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7939 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
7940{
7941 /* If we see a common symbol, which implies a relocatable link, then
7942 if a symbol was small common in an input file, mark it as small
7943 common in the output file. */
7944 if (sym->st_shndx == SHN_COMMON
7945 && strcmp (input_sec->name, ".scommon") == 0)
7946 sym->st_shndx = SHN_MIPS_SCOMMON;
7947
df58fc94 7948 if (ELF_ST_IS_COMPRESSED (sym->st_other))
79cda7cf 7949 sym->st_value &= ~1;
b49e97c9 7950
6e0b88f1 7951 return 1;
b49e97c9
TS
7952}
7953\f
7954/* Functions for the dynamic linker. */
7955
7956/* Create dynamic sections when linking against a dynamic object. */
7957
b34976b6 7958bfd_boolean
9719ad41 7959_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
7960{
7961 struct elf_link_hash_entry *h;
14a793b2 7962 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7963 flagword flags;
7964 register asection *s;
7965 const char * const *namep;
0a44bf69 7966 struct mips_elf_link_hash_table *htab;
b49e97c9 7967
0a44bf69 7968 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
7969 BFD_ASSERT (htab != NULL);
7970
b49e97c9
TS
7971 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7972 | SEC_LINKER_CREATED | SEC_READONLY);
7973
0a44bf69
RS
7974 /* The psABI requires a read-only .dynamic section, but the VxWorks
7975 EABI doesn't. */
7976 if (!htab->is_vxworks)
b49e97c9 7977 {
3d4d4302 7978 s = bfd_get_linker_section (abfd, ".dynamic");
0a44bf69
RS
7979 if (s != NULL)
7980 {
fd361982 7981 if (!bfd_set_section_flags (s, flags))
0a44bf69
RS
7982 return FALSE;
7983 }
b49e97c9
TS
7984 }
7985
7986 /* We need to create .got section. */
23cc69b6 7987 if (!mips_elf_create_got_section (abfd, info))
f4416af6
AO
7988 return FALSE;
7989
0a44bf69 7990 if (! mips_elf_rel_dyn_section (info, TRUE))
b34976b6 7991 return FALSE;
b49e97c9 7992
b49e97c9 7993 /* Create .stub section. */
3d4d4302
AM
7994 s = bfd_make_section_anyway_with_flags (abfd,
7995 MIPS_ELF_STUB_SECTION_NAME (abfd),
7996 flags | SEC_CODE);
4e41d0d7 7997 if (s == NULL
fd361982 7998 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4e41d0d7
RS
7999 return FALSE;
8000 htab->sstubs = s;
b49e97c9 8001
e6aea42d 8002 if (!mips_elf_hash_table (info)->use_rld_obj_head
0e1862bb 8003 && bfd_link_executable (info)
3d4d4302 8004 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
b49e97c9 8005 {
3d4d4302
AM
8006 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
8007 flags &~ (flagword) SEC_READONLY);
b49e97c9 8008 if (s == NULL
fd361982 8009 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 8010 return FALSE;
b49e97c9
TS
8011 }
8012
f16a9783
MS
8013 /* Create .MIPS.xhash section. */
8014 if (info->emit_gnu_hash)
8015 s = bfd_make_section_anyway_with_flags (abfd, ".MIPS.xhash",
8016 flags | SEC_READONLY);
8017
b49e97c9
TS
8018 /* On IRIX5, we adjust add some additional symbols and change the
8019 alignments of several sections. There is no ABI documentation
8020 indicating that this is necessary on IRIX6, nor any evidence that
8021 the linker takes such action. */
8022 if (IRIX_COMPAT (abfd) == ict_irix5)
8023 {
8024 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
8025 {
14a793b2 8026 bh = NULL;
b49e97c9 8027 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
8028 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
8029 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 8030 return FALSE;
14a793b2
AM
8031
8032 h = (struct elf_link_hash_entry *) bh;
12f09816 8033 h->mark = 1;
f5385ebf
AM
8034 h->non_elf = 0;
8035 h->def_regular = 1;
b49e97c9
TS
8036 h->type = STT_SECTION;
8037
c152c796 8038 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 8039 return FALSE;
b49e97c9
TS
8040 }
8041
8042 /* We need to create a .compact_rel section. */
8043 if (SGI_COMPAT (abfd))
8044 {
8045 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 8046 return FALSE;
b49e97c9
TS
8047 }
8048
44c410de 8049 /* Change alignments of some sections. */
3d4d4302 8050 s = bfd_get_linker_section (abfd, ".hash");
b49e97c9 8051 if (s != NULL)
fd361982 8052 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
a253d456 8053
3d4d4302 8054 s = bfd_get_linker_section (abfd, ".dynsym");
b49e97c9 8055 if (s != NULL)
fd361982 8056 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
a253d456 8057
3d4d4302 8058 s = bfd_get_linker_section (abfd, ".dynstr");
b49e97c9 8059 if (s != NULL)
fd361982 8060 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
a253d456 8061
3d4d4302 8062 /* ??? */
b49e97c9
TS
8063 s = bfd_get_section_by_name (abfd, ".reginfo");
8064 if (s != NULL)
fd361982 8065 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
a253d456 8066
3d4d4302 8067 s = bfd_get_linker_section (abfd, ".dynamic");
b49e97c9 8068 if (s != NULL)
fd361982 8069 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
8070 }
8071
0e1862bb 8072 if (bfd_link_executable (info))
b49e97c9 8073 {
14a793b2
AM
8074 const char *name;
8075
8076 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
8077 bh = NULL;
8078 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
8079 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
8080 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 8081 return FALSE;
14a793b2
AM
8082
8083 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
8084 h->non_elf = 0;
8085 h->def_regular = 1;
b49e97c9
TS
8086 h->type = STT_SECTION;
8087
c152c796 8088 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 8089 return FALSE;
b49e97c9
TS
8090
8091 if (! mips_elf_hash_table (info)->use_rld_obj_head)
8092 {
8093 /* __rld_map is a four byte word located in the .data section
8094 and is filled in by the rtld to contain a pointer to
8095 the _r_debug structure. Its symbol value will be set in
8096 _bfd_mips_elf_finish_dynamic_symbol. */
3d4d4302 8097 s = bfd_get_linker_section (abfd, ".rld_map");
0abfb97a 8098 BFD_ASSERT (s != NULL);
14a793b2 8099
0abfb97a
L
8100 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
8101 bh = NULL;
8102 if (!(_bfd_generic_link_add_one_symbol
8103 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
8104 get_elf_backend_data (abfd)->collect, &bh)))
8105 return FALSE;
b49e97c9 8106
0abfb97a
L
8107 h = (struct elf_link_hash_entry *) bh;
8108 h->non_elf = 0;
8109 h->def_regular = 1;
8110 h->type = STT_OBJECT;
8111
8112 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8113 return FALSE;
b4082c70 8114 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
8115 }
8116 }
8117
861fb55a 8118 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
c164a95d 8119 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
861fb55a
DJ
8120 if (!_bfd_elf_create_dynamic_sections (abfd, info))
8121 return FALSE;
8122
1bbce132
MR
8123 /* Do the usual VxWorks handling. */
8124 if (htab->is_vxworks
8125 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
8126 return FALSE;
0a44bf69 8127
b34976b6 8128 return TRUE;
b49e97c9
TS
8129}
8130\f
c224138d
RS
8131/* Return true if relocation REL against section SEC is a REL rather than
8132 RELA relocation. RELOCS is the first relocation in the section and
8133 ABFD is the bfd that contains SEC. */
8134
8135static bfd_boolean
8136mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
8137 const Elf_Internal_Rela *relocs,
8138 const Elf_Internal_Rela *rel)
8139{
8140 Elf_Internal_Shdr *rel_hdr;
8141 const struct elf_backend_data *bed;
8142
d4730f92
BS
8143 /* To determine which flavor of relocation this is, we depend on the
8144 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
8145 rel_hdr = elf_section_data (sec)->rel.hdr;
8146 if (rel_hdr == NULL)
8147 return FALSE;
c224138d 8148 bed = get_elf_backend_data (abfd);
d4730f92
BS
8149 return ((size_t) (rel - relocs)
8150 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
c224138d
RS
8151}
8152
8153/* Read the addend for REL relocation REL, which belongs to bfd ABFD.
8154 HOWTO is the relocation's howto and CONTENTS points to the contents
8155 of the section that REL is against. */
8156
8157static bfd_vma
8158mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
8159 reloc_howto_type *howto, bfd_byte *contents)
8160{
8161 bfd_byte *location;
8162 unsigned int r_type;
8163 bfd_vma addend;
17c6c9d9 8164 bfd_vma bytes;
c224138d
RS
8165
8166 r_type = ELF_R_TYPE (abfd, rel->r_info);
8167 location = contents + rel->r_offset;
8168
8169 /* Get the addend, which is stored in the input file. */
df58fc94 8170 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
17c6c9d9 8171 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
df58fc94 8172 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
c224138d 8173
17c6c9d9
MR
8174 addend = bytes & howto->src_mask;
8175
8176 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
8177 accordingly. */
8178 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
8179 addend <<= 1;
8180
8181 return addend;
c224138d
RS
8182}
8183
8184/* REL is a relocation in ABFD that needs a partnering LO16 relocation
8185 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
8186 and update *ADDEND with the final addend. Return true on success
8187 or false if the LO16 could not be found. RELEND is the exclusive
8188 upper bound on the relocations for REL's section. */
8189
8190static bfd_boolean
8191mips_elf_add_lo16_rel_addend (bfd *abfd,
8192 const Elf_Internal_Rela *rel,
8193 const Elf_Internal_Rela *relend,
8194 bfd_byte *contents, bfd_vma *addend)
8195{
8196 unsigned int r_type, lo16_type;
8197 const Elf_Internal_Rela *lo16_relocation;
8198 reloc_howto_type *lo16_howto;
8199 bfd_vma l;
8200
8201 r_type = ELF_R_TYPE (abfd, rel->r_info);
738e5348 8202 if (mips16_reloc_p (r_type))
c224138d 8203 lo16_type = R_MIPS16_LO16;
df58fc94
RS
8204 else if (micromips_reloc_p (r_type))
8205 lo16_type = R_MICROMIPS_LO16;
7361da2c
AB
8206 else if (r_type == R_MIPS_PCHI16)
8207 lo16_type = R_MIPS_PCLO16;
c224138d
RS
8208 else
8209 lo16_type = R_MIPS_LO16;
8210
8211 /* The combined value is the sum of the HI16 addend, left-shifted by
8212 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8213 code does a `lui' of the HI16 value, and then an `addiu' of the
8214 LO16 value.)
8215
8216 Scan ahead to find a matching LO16 relocation.
8217
8218 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8219 be immediately following. However, for the IRIX6 ABI, the next
8220 relocation may be a composed relocation consisting of several
8221 relocations for the same address. In that case, the R_MIPS_LO16
8222 relocation may occur as one of these. We permit a similar
8223 extension in general, as that is useful for GCC.
8224
8225 In some cases GCC dead code elimination removes the LO16 but keeps
8226 the corresponding HI16. This is strictly speaking a violation of
8227 the ABI but not immediately harmful. */
8228 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8229 if (lo16_relocation == NULL)
8230 return FALSE;
8231
8232 /* Obtain the addend kept there. */
8233 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8234 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8235
8236 l <<= lo16_howto->rightshift;
8237 l = _bfd_mips_elf_sign_extend (l, 16);
8238
8239 *addend <<= 16;
8240 *addend += l;
8241 return TRUE;
8242}
8243
8244/* Try to read the contents of section SEC in bfd ABFD. Return true and
8245 store the contents in *CONTENTS on success. Assume that *CONTENTS
8246 already holds the contents if it is nonull on entry. */
8247
8248static bfd_boolean
8249mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8250{
8251 if (*contents)
8252 return TRUE;
8253
8254 /* Get cached copy if it exists. */
8255 if (elf_section_data (sec)->this_hdr.contents != NULL)
8256 {
8257 *contents = elf_section_data (sec)->this_hdr.contents;
8258 return TRUE;
8259 }
8260
8261 return bfd_malloc_and_get_section (abfd, sec, contents);
8262}
8263
1bbce132
MR
8264/* Make a new PLT record to keep internal data. */
8265
8266static struct plt_entry *
8267mips_elf_make_plt_record (bfd *abfd)
8268{
8269 struct plt_entry *entry;
8270
8271 entry = bfd_zalloc (abfd, sizeof (*entry));
8272 if (entry == NULL)
8273 return NULL;
8274
8275 entry->stub_offset = MINUS_ONE;
8276 entry->mips_offset = MINUS_ONE;
8277 entry->comp_offset = MINUS_ONE;
8278 entry->gotplt_index = MINUS_ONE;
8279 return entry;
8280}
8281
47275900
MR
8282/* Define the special `__gnu_absolute_zero' symbol. We only need this
8283 for PIC code, as otherwise there is no load-time relocation involved
8284 and local GOT entries whose value is zero at static link time will
8285 retain their value at load time. */
8286
8287static bfd_boolean
8288mips_elf_define_absolute_zero (bfd *abfd, struct bfd_link_info *info,
8289 struct mips_elf_link_hash_table *htab,
8290 unsigned int r_type)
8291{
8292 union
8293 {
8294 struct elf_link_hash_entry *eh;
8295 struct bfd_link_hash_entry *bh;
8296 }
8297 hzero;
8298
8299 BFD_ASSERT (!htab->use_absolute_zero);
8300 BFD_ASSERT (bfd_link_pic (info));
8301
8302 hzero.bh = NULL;
8303 if (!_bfd_generic_link_add_one_symbol (info, abfd, "__gnu_absolute_zero",
8304 BSF_GLOBAL, bfd_abs_section_ptr, 0,
8305 NULL, FALSE, FALSE, &hzero.bh))
8306 return FALSE;
8307
8308 BFD_ASSERT (hzero.bh != NULL);
8309 hzero.eh->size = 0;
8310 hzero.eh->type = STT_NOTYPE;
8311 hzero.eh->other = STV_PROTECTED;
8312 hzero.eh->def_regular = 1;
8313 hzero.eh->non_elf = 0;
8314
8315 if (!mips_elf_record_global_got_symbol (hzero.eh, abfd, info, TRUE, r_type))
8316 return FALSE;
8317
8318 htab->use_absolute_zero = TRUE;
8319
8320 return TRUE;
8321}
8322
b49e97c9 8323/* Look through the relocs for a section during the first phase, and
1bbce132
MR
8324 allocate space in the global offset table and record the need for
8325 standard MIPS and compressed procedure linkage table entries. */
b49e97c9 8326
b34976b6 8327bfd_boolean
9719ad41
RS
8328_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8329 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
8330{
8331 const char *name;
8332 bfd *dynobj;
8333 Elf_Internal_Shdr *symtab_hdr;
8334 struct elf_link_hash_entry **sym_hashes;
b49e97c9
TS
8335 size_t extsymoff;
8336 const Elf_Internal_Rela *rel;
8337 const Elf_Internal_Rela *rel_end;
b49e97c9 8338 asection *sreloc;
9c5bfbb7 8339 const struct elf_backend_data *bed;
0a44bf69 8340 struct mips_elf_link_hash_table *htab;
c224138d
RS
8341 bfd_byte *contents;
8342 bfd_vma addend;
8343 reloc_howto_type *howto;
b49e97c9 8344
0e1862bb 8345 if (bfd_link_relocatable (info))
b34976b6 8346 return TRUE;
b49e97c9 8347
0a44bf69 8348 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8349 BFD_ASSERT (htab != NULL);
8350
b49e97c9
TS
8351 dynobj = elf_hash_table (info)->dynobj;
8352 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8353 sym_hashes = elf_sym_hashes (abfd);
8354 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8355
738e5348 8356 bed = get_elf_backend_data (abfd);
056bafd4 8357 rel_end = relocs + sec->reloc_count;
738e5348 8358
b49e97c9
TS
8359 /* Check for the mips16 stub sections. */
8360
fd361982 8361 name = bfd_section_name (sec);
b9d58d71 8362 if (FN_STUB_P (name))
b49e97c9
TS
8363 {
8364 unsigned long r_symndx;
8365
8366 /* Look at the relocation information to figure out which symbol
07d6d2b8 8367 this is for. */
b49e97c9 8368
cb4437b8 8369 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
8370 if (r_symndx == 0)
8371 {
4eca0228 8372 _bfd_error_handler
695344c0 8373 /* xgettext:c-format */
2c1c9679 8374 (_("%pB: warning: cannot determine the target function for"
738e5348
RS
8375 " stub section `%s'"),
8376 abfd, name);
8377 bfd_set_error (bfd_error_bad_value);
8378 return FALSE;
8379 }
b49e97c9
TS
8380
8381 if (r_symndx < extsymoff
8382 || sym_hashes[r_symndx - extsymoff] == NULL)
8383 {
8384 asection *o;
8385
8386 /* This stub is for a local symbol. This stub will only be
07d6d2b8
AM
8387 needed if there is some relocation in this BFD, other
8388 than a 16 bit function call, which refers to this symbol. */
b49e97c9
TS
8389 for (o = abfd->sections; o != NULL; o = o->next)
8390 {
8391 Elf_Internal_Rela *sec_relocs;
8392 const Elf_Internal_Rela *r, *rend;
8393
8394 /* We can ignore stub sections when looking for relocs. */
8395 if ((o->flags & SEC_RELOC) == 0
8396 || o->reloc_count == 0
738e5348 8397 || section_allows_mips16_refs_p (o))
b49e97c9
TS
8398 continue;
8399
45d6a902 8400 sec_relocs
9719ad41 8401 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 8402 info->keep_memory);
b49e97c9 8403 if (sec_relocs == NULL)
b34976b6 8404 return FALSE;
b49e97c9
TS
8405
8406 rend = sec_relocs + o->reloc_count;
8407 for (r = sec_relocs; r < rend; r++)
8408 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
738e5348 8409 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
b49e97c9
TS
8410 break;
8411
6cdc0ccc 8412 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
8413 free (sec_relocs);
8414
8415 if (r < rend)
8416 break;
8417 }
8418
8419 if (o == NULL)
8420 {
8421 /* There is no non-call reloc for this stub, so we do
07d6d2b8
AM
8422 not need it. Since this function is called before
8423 the linker maps input sections to output sections, we
8424 can easily discard it by setting the SEC_EXCLUDE
8425 flag. */
b49e97c9 8426 sec->flags |= SEC_EXCLUDE;
b34976b6 8427 return TRUE;
b49e97c9
TS
8428 }
8429
8430 /* Record this stub in an array of local symbol stubs for
07d6d2b8 8431 this BFD. */
698600e4 8432 if (mips_elf_tdata (abfd)->local_stubs == NULL)
b49e97c9
TS
8433 {
8434 unsigned long symcount;
8435 asection **n;
8436 bfd_size_type amt;
8437
8438 if (elf_bad_symtab (abfd))
8439 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8440 else
8441 symcount = symtab_hdr->sh_info;
8442 amt = symcount * sizeof (asection *);
9719ad41 8443 n = bfd_zalloc (abfd, amt);
b49e97c9 8444 if (n == NULL)
b34976b6 8445 return FALSE;
698600e4 8446 mips_elf_tdata (abfd)->local_stubs = n;
b49e97c9
TS
8447 }
8448
b9d58d71 8449 sec->flags |= SEC_KEEP;
698600e4 8450 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
b49e97c9
TS
8451
8452 /* We don't need to set mips16_stubs_seen in this case.
07d6d2b8
AM
8453 That flag is used to see whether we need to look through
8454 the global symbol table for stubs. We don't need to set
8455 it here, because we just have a local stub. */
b49e97c9
TS
8456 }
8457 else
8458 {
8459 struct mips_elf_link_hash_entry *h;
8460
8461 h = ((struct mips_elf_link_hash_entry *)
8462 sym_hashes[r_symndx - extsymoff]);
8463
973a3492
L
8464 while (h->root.root.type == bfd_link_hash_indirect
8465 || h->root.root.type == bfd_link_hash_warning)
8466 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8467
b49e97c9
TS
8468 /* H is the symbol this stub is for. */
8469
b9d58d71
TS
8470 /* If we already have an appropriate stub for this function, we
8471 don't need another one, so we can discard this one. Since
8472 this function is called before the linker maps input sections
8473 to output sections, we can easily discard it by setting the
8474 SEC_EXCLUDE flag. */
8475 if (h->fn_stub != NULL)
8476 {
8477 sec->flags |= SEC_EXCLUDE;
8478 return TRUE;
8479 }
8480
8481 sec->flags |= SEC_KEEP;
b49e97c9 8482 h->fn_stub = sec;
b34976b6 8483 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
8484 }
8485 }
b9d58d71 8486 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
b49e97c9
TS
8487 {
8488 unsigned long r_symndx;
8489 struct mips_elf_link_hash_entry *h;
8490 asection **loc;
8491
8492 /* Look at the relocation information to figure out which symbol
07d6d2b8 8493 this is for. */
b49e97c9 8494
cb4437b8 8495 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
8496 if (r_symndx == 0)
8497 {
4eca0228 8498 _bfd_error_handler
695344c0 8499 /* xgettext:c-format */
2c1c9679 8500 (_("%pB: warning: cannot determine the target function for"
738e5348
RS
8501 " stub section `%s'"),
8502 abfd, name);
8503 bfd_set_error (bfd_error_bad_value);
8504 return FALSE;
8505 }
b49e97c9
TS
8506
8507 if (r_symndx < extsymoff
8508 || sym_hashes[r_symndx - extsymoff] == NULL)
8509 {
b9d58d71 8510 asection *o;
b49e97c9 8511
b9d58d71 8512 /* This stub is for a local symbol. This stub will only be
07d6d2b8
AM
8513 needed if there is some relocation (R_MIPS16_26) in this BFD
8514 that refers to this symbol. */
b9d58d71
TS
8515 for (o = abfd->sections; o != NULL; o = o->next)
8516 {
8517 Elf_Internal_Rela *sec_relocs;
8518 const Elf_Internal_Rela *r, *rend;
8519
8520 /* We can ignore stub sections when looking for relocs. */
8521 if ((o->flags & SEC_RELOC) == 0
8522 || o->reloc_count == 0
738e5348 8523 || section_allows_mips16_refs_p (o))
b9d58d71
TS
8524 continue;
8525
8526 sec_relocs
8527 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8528 info->keep_memory);
8529 if (sec_relocs == NULL)
8530 return FALSE;
8531
8532 rend = sec_relocs + o->reloc_count;
8533 for (r = sec_relocs; r < rend; r++)
8534 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8535 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8536 break;
8537
8538 if (elf_section_data (o)->relocs != sec_relocs)
8539 free (sec_relocs);
8540
8541 if (r < rend)
8542 break;
8543 }
8544
8545 if (o == NULL)
8546 {
8547 /* There is no non-call reloc for this stub, so we do
07d6d2b8
AM
8548 not need it. Since this function is called before
8549 the linker maps input sections to output sections, we
8550 can easily discard it by setting the SEC_EXCLUDE
8551 flag. */
b9d58d71
TS
8552 sec->flags |= SEC_EXCLUDE;
8553 return TRUE;
8554 }
8555
8556 /* Record this stub in an array of local symbol call_stubs for
07d6d2b8 8557 this BFD. */
698600e4 8558 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
b9d58d71
TS
8559 {
8560 unsigned long symcount;
8561 asection **n;
8562 bfd_size_type amt;
8563
8564 if (elf_bad_symtab (abfd))
8565 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8566 else
8567 symcount = symtab_hdr->sh_info;
8568 amt = symcount * sizeof (asection *);
8569 n = bfd_zalloc (abfd, amt);
8570 if (n == NULL)
8571 return FALSE;
698600e4 8572 mips_elf_tdata (abfd)->local_call_stubs = n;
b9d58d71 8573 }
b49e97c9 8574
b9d58d71 8575 sec->flags |= SEC_KEEP;
698600e4 8576 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
b49e97c9 8577
b9d58d71 8578 /* We don't need to set mips16_stubs_seen in this case.
07d6d2b8
AM
8579 That flag is used to see whether we need to look through
8580 the global symbol table for stubs. We don't need to set
8581 it here, because we just have a local stub. */
b9d58d71 8582 }
b49e97c9 8583 else
b49e97c9 8584 {
b9d58d71
TS
8585 h = ((struct mips_elf_link_hash_entry *)
8586 sym_hashes[r_symndx - extsymoff]);
68ffbac6 8587
b9d58d71 8588 /* H is the symbol this stub is for. */
68ffbac6 8589
b9d58d71
TS
8590 if (CALL_FP_STUB_P (name))
8591 loc = &h->call_fp_stub;
8592 else
8593 loc = &h->call_stub;
68ffbac6 8594
b9d58d71
TS
8595 /* If we already have an appropriate stub for this function, we
8596 don't need another one, so we can discard this one. Since
8597 this function is called before the linker maps input sections
8598 to output sections, we can easily discard it by setting the
8599 SEC_EXCLUDE flag. */
8600 if (*loc != NULL)
8601 {
8602 sec->flags |= SEC_EXCLUDE;
8603 return TRUE;
8604 }
b49e97c9 8605
b9d58d71
TS
8606 sec->flags |= SEC_KEEP;
8607 *loc = sec;
8608 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8609 }
b49e97c9
TS
8610 }
8611
b49e97c9 8612 sreloc = NULL;
c224138d 8613 contents = NULL;
b49e97c9
TS
8614 for (rel = relocs; rel < rel_end; ++rel)
8615 {
8616 unsigned long r_symndx;
8617 unsigned int r_type;
8618 struct elf_link_hash_entry *h;
861fb55a 8619 bfd_boolean can_make_dynamic_p;
c5d6fa44
RS
8620 bfd_boolean call_reloc_p;
8621 bfd_boolean constrain_symbol_p;
b49e97c9
TS
8622
8623 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8624 r_type = ELF_R_TYPE (abfd, rel->r_info);
8625
8626 if (r_symndx < extsymoff)
8627 h = NULL;
8628 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8629 {
4eca0228 8630 _bfd_error_handler
695344c0 8631 /* xgettext:c-format */
2c1c9679 8632 (_("%pB: malformed reloc detected for section %s"),
d003868e 8633 abfd, name);
b49e97c9 8634 bfd_set_error (bfd_error_bad_value);
b34976b6 8635 return FALSE;
b49e97c9
TS
8636 }
8637 else
8638 {
8639 h = sym_hashes[r_symndx - extsymoff];
81fbe831
AM
8640 if (h != NULL)
8641 {
8642 while (h->root.type == bfd_link_hash_indirect
8643 || h->root.type == bfd_link_hash_warning)
8644 h = (struct elf_link_hash_entry *) h->root.u.i.link;
81fbe831 8645 }
861fb55a 8646 }
b49e97c9 8647
861fb55a
DJ
8648 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8649 relocation into a dynamic one. */
8650 can_make_dynamic_p = FALSE;
c5d6fa44
RS
8651
8652 /* Set CALL_RELOC_P to true if the relocation is for a call,
8653 and if pointer equality therefore doesn't matter. */
8654 call_reloc_p = FALSE;
8655
8656 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
c4b126b8
L
8657 into account when deciding how to define the symbol. */
8658 constrain_symbol_p = TRUE;
c5d6fa44 8659
861fb55a
DJ
8660 switch (r_type)
8661 {
861fb55a
DJ
8662 case R_MIPS_CALL16:
8663 case R_MIPS_CALL_HI16:
8664 case R_MIPS_CALL_LO16:
c5d6fa44
RS
8665 case R_MIPS16_CALL16:
8666 case R_MICROMIPS_CALL16:
8667 case R_MICROMIPS_CALL_HI16:
8668 case R_MICROMIPS_CALL_LO16:
8669 call_reloc_p = TRUE;
8670 /* Fall through. */
8671
8672 case R_MIPS_GOT16:
861fb55a
DJ
8673 case R_MIPS_GOT_LO16:
8674 case R_MIPS_GOT_PAGE:
861fb55a 8675 case R_MIPS_GOT_DISP:
47275900
MR
8676 case R_MIPS16_GOT16:
8677 case R_MICROMIPS_GOT16:
8678 case R_MICROMIPS_GOT_LO16:
8679 case R_MICROMIPS_GOT_PAGE:
8680 case R_MICROMIPS_GOT_DISP:
8681 /* If we have a symbol that will resolve to zero at static link
8682 time and it is used by a GOT relocation applied to code we
8683 cannot relax to an immediate zero load, then we will be using
8684 the special `__gnu_absolute_zero' symbol whose value is zero
8685 at dynamic load time. We ignore HI16-type GOT relocations at
8686 this stage, because their handling will depend entirely on
8687 the corresponding LO16-type GOT relocation. */
8688 if (!call_hi16_reloc_p (r_type)
8689 && h != NULL
8690 && bfd_link_pic (info)
8691 && !htab->use_absolute_zero
8692 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8693 {
8694 bfd_boolean rel_reloc;
8695
8696 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8697 return FALSE;
8698
8699 rel_reloc = mips_elf_rel_relocation_p (abfd, sec, relocs, rel);
8700 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, !rel_reloc);
8701
8702 if (!mips_elf_nullify_got_load (abfd, contents, rel, howto,
8703 FALSE))
8704 if (!mips_elf_define_absolute_zero (abfd, info, htab, r_type))
8705 return FALSE;
8706 }
8707
8708 /* Fall through. */
8709 case R_MIPS_GOT_HI16:
8710 case R_MIPS_GOT_OFST:
861fb55a
DJ
8711 case R_MIPS_TLS_GOTTPREL:
8712 case R_MIPS_TLS_GD:
8713 case R_MIPS_TLS_LDM:
d0f13682
CLT
8714 case R_MIPS16_TLS_GOTTPREL:
8715 case R_MIPS16_TLS_GD:
8716 case R_MIPS16_TLS_LDM:
df58fc94 8717 case R_MICROMIPS_GOT_HI16:
df58fc94 8718 case R_MICROMIPS_GOT_OFST:
df58fc94
RS
8719 case R_MICROMIPS_TLS_GOTTPREL:
8720 case R_MICROMIPS_TLS_GD:
8721 case R_MICROMIPS_TLS_LDM:
861fb55a
DJ
8722 if (dynobj == NULL)
8723 elf_hash_table (info)->dynobj = dynobj = abfd;
8724 if (!mips_elf_create_got_section (dynobj, info))
8725 return FALSE;
0e1862bb 8726 if (htab->is_vxworks && !bfd_link_pic (info))
b49e97c9 8727 {
4eca0228 8728 _bfd_error_handler
695344c0 8729 /* xgettext:c-format */
2dcf00ce
AM
8730 (_("%pB: GOT reloc at %#" PRIx64 " not expected in executables"),
8731 abfd, (uint64_t) rel->r_offset);
861fb55a
DJ
8732 bfd_set_error (bfd_error_bad_value);
8733 return FALSE;
b49e97c9 8734 }
c5d6fa44 8735 can_make_dynamic_p = TRUE;
861fb55a 8736 break;
b49e97c9 8737
c5d6fa44 8738 case R_MIPS_NONE:
99da6b5f 8739 case R_MIPS_JALR:
df58fc94 8740 case R_MICROMIPS_JALR:
c5d6fa44
RS
8741 /* These relocations have empty fields and are purely there to
8742 provide link information. The symbol value doesn't matter. */
8743 constrain_symbol_p = FALSE;
8744 break;
8745
8746 case R_MIPS_GPREL16:
8747 case R_MIPS_GPREL32:
8748 case R_MIPS16_GPREL:
8749 case R_MICROMIPS_GPREL16:
8750 /* GP-relative relocations always resolve to a definition in a
8751 regular input file, ignoring the one-definition rule. This is
8752 important for the GP setup sequence in NewABI code, which
8753 always resolves to a local function even if other relocations
8754 against the symbol wouldn't. */
8755 constrain_symbol_p = FALSE;
99da6b5f
AN
8756 break;
8757
861fb55a
DJ
8758 case R_MIPS_32:
8759 case R_MIPS_REL32:
8760 case R_MIPS_64:
8761 /* In VxWorks executables, references to external symbols
8762 must be handled using copy relocs or PLT entries; it is not
8763 possible to convert this relocation into a dynamic one.
8764
8765 For executables that use PLTs and copy-relocs, we have a
8766 choice between converting the relocation into a dynamic
8767 one or using copy relocations or PLT entries. It is
8768 usually better to do the former, unless the relocation is
8769 against a read-only section. */
0e1862bb 8770 if ((bfd_link_pic (info)
861fb55a
DJ
8771 || (h != NULL
8772 && !htab->is_vxworks
8773 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8774 && !(!info->nocopyreloc
8775 && !PIC_OBJECT_P (abfd)
8776 && MIPS_ELF_READONLY_SECTION (sec))))
8777 && (sec->flags & SEC_ALLOC) != 0)
b49e97c9 8778 {
861fb55a 8779 can_make_dynamic_p = TRUE;
b49e97c9
TS
8780 if (dynobj == NULL)
8781 elf_hash_table (info)->dynobj = dynobj = abfd;
861fb55a 8782 }
c5d6fa44 8783 break;
b49e97c9 8784
861fb55a
DJ
8785 case R_MIPS_26:
8786 case R_MIPS_PC16:
7361da2c
AB
8787 case R_MIPS_PC21_S2:
8788 case R_MIPS_PC26_S2:
861fb55a 8789 case R_MIPS16_26:
c9775dde 8790 case R_MIPS16_PC16_S1:
df58fc94
RS
8791 case R_MICROMIPS_26_S1:
8792 case R_MICROMIPS_PC7_S1:
8793 case R_MICROMIPS_PC10_S1:
8794 case R_MICROMIPS_PC16_S1:
8795 case R_MICROMIPS_PC23_S2:
c5d6fa44 8796 call_reloc_p = TRUE;
861fb55a 8797 break;
b49e97c9
TS
8798 }
8799
0a44bf69
RS
8800 if (h)
8801 {
c5d6fa44
RS
8802 if (constrain_symbol_p)
8803 {
8804 if (!can_make_dynamic_p)
8805 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8806
8807 if (!call_reloc_p)
8808 h->pointer_equality_needed = 1;
8809
8810 /* We must not create a stub for a symbol that has
8811 relocations related to taking the function's address.
8812 This doesn't apply to VxWorks, where CALL relocs refer
8813 to a .got.plt entry instead of a normal .got entry. */
8814 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8815 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8816 }
8817
0a44bf69
RS
8818 /* Relocations against the special VxWorks __GOTT_BASE__ and
8819 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8820 room for them in .rela.dyn. */
8821 if (is_gott_symbol (info, h))
8822 {
8823 if (sreloc == NULL)
8824 {
8825 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8826 if (sreloc == NULL)
8827 return FALSE;
8828 }
8829 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9e3313ae
RS
8830 if (MIPS_ELF_READONLY_SECTION (sec))
8831 /* We tell the dynamic linker that there are
8832 relocations against the text segment. */
8833 info->flags |= DF_TEXTREL;
0a44bf69
RS
8834 }
8835 }
df58fc94
RS
8836 else if (call_lo16_reloc_p (r_type)
8837 || got_lo16_reloc_p (r_type)
8838 || got_disp_reloc_p (r_type)
738e5348 8839 || (got16_reloc_p (r_type) && htab->is_vxworks))
b49e97c9
TS
8840 {
8841 /* We may need a local GOT entry for this relocation. We
8842 don't count R_MIPS_GOT_PAGE because we can estimate the
8843 maximum number of pages needed by looking at the size of
738e5348
RS
8844 the segment. Similar comments apply to R_MIPS*_GOT16 and
8845 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
0a44bf69 8846 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
b49e97c9 8847 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 8848 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
a8028dd0 8849 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
e641e783 8850 rel->r_addend, info, r_type))
f4416af6 8851 return FALSE;
b49e97c9
TS
8852 }
8853
8f0c309a
CLT
8854 if (h != NULL
8855 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8856 ELF_ST_IS_MIPS16 (h->other)))
861fb55a
DJ
8857 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8858
b49e97c9
TS
8859 switch (r_type)
8860 {
8861 case R_MIPS_CALL16:
738e5348 8862 case R_MIPS16_CALL16:
df58fc94 8863 case R_MICROMIPS_CALL16:
b49e97c9
TS
8864 if (h == NULL)
8865 {
4eca0228 8866 _bfd_error_handler
695344c0 8867 /* xgettext:c-format */
2dcf00ce
AM
8868 (_("%pB: CALL16 reloc at %#" PRIx64 " not against global symbol"),
8869 abfd, (uint64_t) rel->r_offset);
b49e97c9 8870 bfd_set_error (bfd_error_bad_value);
b34976b6 8871 return FALSE;
b49e97c9
TS
8872 }
8873 /* Fall through. */
8874
8875 case R_MIPS_CALL_HI16:
8876 case R_MIPS_CALL_LO16:
df58fc94
RS
8877 case R_MICROMIPS_CALL_HI16:
8878 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
8879 if (h != NULL)
8880 {
6ccf4795
RS
8881 /* Make sure there is room in the regular GOT to hold the
8882 function's address. We may eliminate it in favour of
8883 a .got.plt entry later; see mips_elf_count_got_symbols. */
e641e783
RS
8884 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8885 r_type))
b34976b6 8886 return FALSE;
b49e97c9
TS
8887
8888 /* We need a stub, not a plt entry for the undefined
8889 function. But we record it as if it needs plt. See
c152c796 8890 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 8891 h->needs_plt = 1;
b49e97c9
TS
8892 h->type = STT_FUNC;
8893 }
8894 break;
8895
0fdc1bf1 8896 case R_MIPS_GOT_PAGE:
df58fc94 8897 case R_MICROMIPS_GOT_PAGE:
738e5348 8898 case R_MIPS16_GOT16:
b49e97c9
TS
8899 case R_MIPS_GOT16:
8900 case R_MIPS_GOT_HI16:
8901 case R_MIPS_GOT_LO16:
df58fc94
RS
8902 case R_MICROMIPS_GOT16:
8903 case R_MICROMIPS_GOT_HI16:
8904 case R_MICROMIPS_GOT_LO16:
8905 if (!h || got_page_reloc_p (r_type))
c224138d 8906 {
3a3b6725
DJ
8907 /* This relocation needs (or may need, if h != NULL) a
8908 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8909 know for sure until we know whether the symbol is
8910 preemptible. */
c224138d
RS
8911 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8912 {
8913 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8914 return FALSE;
8915 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8916 addend = mips_elf_read_rel_addend (abfd, rel,
8917 howto, contents);
9684f078 8918 if (got16_reloc_p (r_type))
c224138d
RS
8919 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8920 contents, &addend);
8921 else
8922 addend <<= howto->rightshift;
8923 }
8924 else
8925 addend = rel->r_addend;
13db6b44
RS
8926 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8927 h, addend))
c224138d 8928 return FALSE;
13db6b44
RS
8929
8930 if (h)
8931 {
8932 struct mips_elf_link_hash_entry *hmips =
8933 (struct mips_elf_link_hash_entry *) h;
8934
8935 /* This symbol is definitely not overridable. */
8936 if (hmips->root.def_regular
0e1862bb 8937 && ! (bfd_link_pic (info) && ! info->symbolic
13db6b44
RS
8938 && ! hmips->root.forced_local))
8939 h = NULL;
8940 }
c224138d 8941 }
13db6b44
RS
8942 /* If this is a global, overridable symbol, GOT_PAGE will
8943 decay to GOT_DISP, so we'll need a GOT entry for it. */
c224138d
RS
8944 /* Fall through. */
8945
b49e97c9 8946 case R_MIPS_GOT_DISP:
df58fc94 8947 case R_MICROMIPS_GOT_DISP:
6ccf4795 8948 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
e641e783 8949 FALSE, r_type))
b34976b6 8950 return FALSE;
b49e97c9
TS
8951 break;
8952
0f20cc35 8953 case R_MIPS_TLS_GOTTPREL:
d0f13682 8954 case R_MIPS16_TLS_GOTTPREL:
df58fc94 8955 case R_MICROMIPS_TLS_GOTTPREL:
0e1862bb 8956 if (bfd_link_pic (info))
0f20cc35
DJ
8957 info->flags |= DF_STATIC_TLS;
8958 /* Fall through */
8959
8960 case R_MIPS_TLS_LDM:
d0f13682 8961 case R_MIPS16_TLS_LDM:
df58fc94
RS
8962 case R_MICROMIPS_TLS_LDM:
8963 if (tls_ldm_reloc_p (r_type))
0f20cc35 8964 {
cf35638d 8965 r_symndx = STN_UNDEF;
0f20cc35
DJ
8966 h = NULL;
8967 }
8968 /* Fall through */
8969
8970 case R_MIPS_TLS_GD:
d0f13682 8971 case R_MIPS16_TLS_GD:
df58fc94 8972 case R_MICROMIPS_TLS_GD:
0f20cc35
DJ
8973 /* This symbol requires a global offset table entry, or two
8974 for TLS GD relocations. */
e641e783
RS
8975 if (h != NULL)
8976 {
8977 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8978 FALSE, r_type))
8979 return FALSE;
8980 }
8981 else
8982 {
8983 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8984 rel->r_addend,
8985 info, r_type))
8986 return FALSE;
8987 }
0f20cc35
DJ
8988 break;
8989
b49e97c9
TS
8990 case R_MIPS_32:
8991 case R_MIPS_REL32:
8992 case R_MIPS_64:
0a44bf69
RS
8993 /* In VxWorks executables, references to external symbols
8994 are handled using copy relocs or PLT stubs, so there's
8995 no need to add a .rela.dyn entry for this relocation. */
861fb55a 8996 if (can_make_dynamic_p)
b49e97c9
TS
8997 {
8998 if (sreloc == NULL)
8999 {
0a44bf69 9000 sreloc = mips_elf_rel_dyn_section (info, TRUE);
b49e97c9 9001 if (sreloc == NULL)
f4416af6 9002 return FALSE;
b49e97c9 9003 }
0e1862bb 9004 if (bfd_link_pic (info) && h == NULL)
82f0cfbd
EC
9005 {
9006 /* When creating a shared object, we must copy these
9007 reloc types into the output file as R_MIPS_REL32
0a44bf69
RS
9008 relocs. Make room for this reloc in .rel(a).dyn. */
9009 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
943284cc 9010 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
9011 /* We tell the dynamic linker that there are
9012 relocations against the text segment. */
9013 info->flags |= DF_TEXTREL;
9014 }
b49e97c9
TS
9015 else
9016 {
9017 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 9018
9a59ad6b
DJ
9019 /* For a shared object, we must copy this relocation
9020 unless the symbol turns out to be undefined and
9021 weak with non-default visibility, in which case
9022 it will be left as zero.
9023
9024 We could elide R_MIPS_REL32 for locally binding symbols
9025 in shared libraries, but do not yet do so.
9026
9027 For an executable, we only need to copy this
9028 reloc if the symbol is defined in a dynamic
9029 object. */
b49e97c9
TS
9030 hmips = (struct mips_elf_link_hash_entry *) h;
9031 ++hmips->possibly_dynamic_relocs;
943284cc 9032 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
9033 /* We need it to tell the dynamic linker if there
9034 are relocations against the text segment. */
9035 hmips->readonly_reloc = TRUE;
b49e97c9 9036 }
b49e97c9
TS
9037 }
9038
9039 if (SGI_COMPAT (abfd))
9040 mips_elf_hash_table (info)->compact_rel_size +=
9041 sizeof (Elf32_External_crinfo);
9042 break;
9043
9044 case R_MIPS_26:
9045 case R_MIPS_GPREL16:
9046 case R_MIPS_LITERAL:
9047 case R_MIPS_GPREL32:
df58fc94
RS
9048 case R_MICROMIPS_26_S1:
9049 case R_MICROMIPS_GPREL16:
9050 case R_MICROMIPS_LITERAL:
9051 case R_MICROMIPS_GPREL7_S2:
b49e97c9
TS
9052 if (SGI_COMPAT (abfd))
9053 mips_elf_hash_table (info)->compact_rel_size +=
9054 sizeof (Elf32_External_crinfo);
9055 break;
9056
9057 /* This relocation describes the C++ object vtable hierarchy.
9058 Reconstruct it for later use during GC. */
9059 case R_MIPS_GNU_VTINHERIT:
c152c796 9060 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 9061 return FALSE;
b49e97c9
TS
9062 break;
9063
9064 /* This relocation describes which C++ vtable entries are actually
9065 used. Record for later use during GC. */
9066 case R_MIPS_GNU_VTENTRY:
a0ea3a14 9067 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 9068 return FALSE;
b49e97c9
TS
9069 break;
9070
9071 default:
9072 break;
9073 }
9074
1bbce132 9075 /* Record the need for a PLT entry. At this point we don't know
07d6d2b8
AM
9076 yet if we are going to create a PLT in the first place, but
9077 we only record whether the relocation requires a standard MIPS
9078 or a compressed code entry anyway. If we don't make a PLT after
9079 all, then we'll just ignore these arrangements. Likewise if
9080 a PLT entry is not created because the symbol is satisfied
9081 locally. */
1bbce132 9082 if (h != NULL
54806ffa
MR
9083 && (branch_reloc_p (r_type)
9084 || mips16_branch_reloc_p (r_type)
9085 || micromips_branch_reloc_p (r_type))
1bbce132
MR
9086 && !SYMBOL_CALLS_LOCAL (info, h))
9087 {
9088 if (h->plt.plist == NULL)
9089 h->plt.plist = mips_elf_make_plt_record (abfd);
9090 if (h->plt.plist == NULL)
9091 return FALSE;
9092
54806ffa 9093 if (branch_reloc_p (r_type))
1bbce132
MR
9094 h->plt.plist->need_mips = TRUE;
9095 else
9096 h->plt.plist->need_comp = TRUE;
9097 }
9098
738e5348
RS
9099 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
9100 if there is one. We only need to handle global symbols here;
9101 we decide whether to keep or delete stubs for local symbols
9102 when processing the stub's relocations. */
b49e97c9 9103 if (h != NULL
738e5348
RS
9104 && !mips16_call_reloc_p (r_type)
9105 && !section_allows_mips16_refs_p (sec))
b49e97c9
TS
9106 {
9107 struct mips_elf_link_hash_entry *mh;
9108
9109 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 9110 mh->need_fn_stub = TRUE;
b49e97c9 9111 }
861fb55a
DJ
9112
9113 /* Refuse some position-dependent relocations when creating a
9114 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
9115 not PIC, but we can create dynamic relocations and the result
9116 will be fine. Also do not refuse R_MIPS_LO16, which can be
9117 combined with R_MIPS_GOT16. */
0e1862bb 9118 if (bfd_link_pic (info))
861fb55a
DJ
9119 {
9120 switch (r_type)
9121 {
b474a202
FS
9122 case R_MIPS_TLS_TPREL_HI16:
9123 case R_MIPS16_TLS_TPREL_HI16:
9124 case R_MICROMIPS_TLS_TPREL_HI16:
9125 case R_MIPS_TLS_TPREL_LO16:
9126 case R_MIPS16_TLS_TPREL_LO16:
9127 case R_MICROMIPS_TLS_TPREL_LO16:
9128 /* These are okay in PIE, but not in a shared library. */
9129 if (bfd_link_executable (info))
9130 break;
9131
9132 /* FALLTHROUGH */
9133
861fb55a
DJ
9134 case R_MIPS16_HI16:
9135 case R_MIPS_HI16:
9136 case R_MIPS_HIGHER:
9137 case R_MIPS_HIGHEST:
df58fc94
RS
9138 case R_MICROMIPS_HI16:
9139 case R_MICROMIPS_HIGHER:
9140 case R_MICROMIPS_HIGHEST:
861fb55a
DJ
9141 /* Don't refuse a high part relocation if it's against
9142 no symbol (e.g. part of a compound relocation). */
cf35638d 9143 if (r_symndx == STN_UNDEF)
861fb55a
DJ
9144 break;
9145
3c7687b9 9146 /* Likewise an absolute symbol. */
304f09d0 9147 if (h != NULL && bfd_is_abs_symbol (&h->root))
3c7687b9
MR
9148 break;
9149
861fb55a
DJ
9150 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
9151 and has a special meaning. */
9152 if (!NEWABI_P (abfd) && h != NULL
9153 && strcmp (h->root.root.string, "_gp_disp") == 0)
9154 break;
9155
0fc1eb3c
RS
9156 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
9157 if (is_gott_symbol (info, h))
9158 break;
9159
861fb55a
DJ
9160 /* FALLTHROUGH */
9161
9162 case R_MIPS16_26:
9163 case R_MIPS_26:
df58fc94 9164 case R_MICROMIPS_26_S1:
304f09d0
FS
9165 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, NEWABI_P (abfd));
9166 /* An error for unsupported relocations is raised as part
9167 of the above search, so we can skip the following. */
9168 if (howto != NULL)
9169 info->callbacks->einfo
9170 /* xgettext:c-format */
9171 (_("%X%H: relocation %s against `%s' cannot be used"
9172 " when making a shared object; recompile with -fPIC\n"),
9173 abfd, sec, rel->r_offset, howto->name,
9174 (h) ? h->root.root.string : "a local symbol");
aff68bd0 9175 break;
861fb55a
DJ
9176 default:
9177 break;
9178 }
9179 }
b49e97c9
TS
9180 }
9181
b34976b6 9182 return TRUE;
b49e97c9
TS
9183}
9184\f
9a59ad6b
DJ
9185/* Allocate space for global sym dynamic relocs. */
9186
9187static bfd_boolean
9188allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9189{
9190 struct bfd_link_info *info = inf;
9191 bfd *dynobj;
9192 struct mips_elf_link_hash_entry *hmips;
9193 struct mips_elf_link_hash_table *htab;
9194
9195 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9196 BFD_ASSERT (htab != NULL);
9197
9a59ad6b
DJ
9198 dynobj = elf_hash_table (info)->dynobj;
9199 hmips = (struct mips_elf_link_hash_entry *) h;
9200
9201 /* VxWorks executables are handled elsewhere; we only need to
9202 allocate relocations in shared objects. */
0e1862bb 9203 if (htab->is_vxworks && !bfd_link_pic (info))
9a59ad6b
DJ
9204 return TRUE;
9205
7686d77d
AM
9206 /* Ignore indirect symbols. All relocations against such symbols
9207 will be redirected to the target symbol. */
9208 if (h->root.type == bfd_link_hash_indirect)
63897e2c
RS
9209 return TRUE;
9210
9a59ad6b
DJ
9211 /* If this symbol is defined in a dynamic object, or we are creating
9212 a shared library, we will need to copy any R_MIPS_32 or
9213 R_MIPS_REL32 relocs against it into the output file. */
0e1862bb 9214 if (! bfd_link_relocatable (info)
9a59ad6b
DJ
9215 && hmips->possibly_dynamic_relocs != 0
9216 && (h->root.type == bfd_link_hash_defweak
625ef6dc 9217 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
0e1862bb 9218 || bfd_link_pic (info)))
9a59ad6b
DJ
9219 {
9220 bfd_boolean do_copy = TRUE;
9221
9222 if (h->root.type == bfd_link_hash_undefweak)
9223 {
262e07d0
MR
9224 /* Do not copy relocations for undefined weak symbols that
9225 we are not going to export. */
9226 if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9a59ad6b
DJ
9227 do_copy = FALSE;
9228
9229 /* Make sure undefined weak symbols are output as a dynamic
9230 symbol in PIEs. */
9231 else if (h->dynindx == -1 && !h->forced_local)
9232 {
9233 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9234 return FALSE;
9235 }
9236 }
9237
9238 if (do_copy)
9239 {
aff469fa 9240 /* Even though we don't directly need a GOT entry for this symbol,
f7ff1106
RS
9241 the SVR4 psABI requires it to have a dynamic symbol table
9242 index greater that DT_MIPS_GOTSYM if there are dynamic
9243 relocations against it.
9244
9245 VxWorks does not enforce the same mapping between the GOT
9246 and the symbol table, so the same requirement does not
9247 apply there. */
6ccf4795
RS
9248 if (!htab->is_vxworks)
9249 {
9250 if (hmips->global_got_area > GGA_RELOC_ONLY)
9251 hmips->global_got_area = GGA_RELOC_ONLY;
9252 hmips->got_only_for_calls = FALSE;
9253 }
aff469fa 9254
9a59ad6b
DJ
9255 mips_elf_allocate_dynamic_relocations
9256 (dynobj, info, hmips->possibly_dynamic_relocs);
9257 if (hmips->readonly_reloc)
9258 /* We tell the dynamic linker that there are relocations
9259 against the text segment. */
9260 info->flags |= DF_TEXTREL;
9261 }
9262 }
9263
9264 return TRUE;
9265}
9266
b49e97c9
TS
9267/* Adjust a symbol defined by a dynamic object and referenced by a
9268 regular object. The current definition is in some section of the
9269 dynamic object, but we're not including those sections. We have to
9270 change the definition to something the rest of the link can
9271 understand. */
9272
b34976b6 9273bfd_boolean
9719ad41
RS
9274_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9275 struct elf_link_hash_entry *h)
b49e97c9
TS
9276{
9277 bfd *dynobj;
9278 struct mips_elf_link_hash_entry *hmips;
5108fc1b 9279 struct mips_elf_link_hash_table *htab;
5474d94f 9280 asection *s, *srel;
b49e97c9 9281
5108fc1b 9282 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9283 BFD_ASSERT (htab != NULL);
9284
b49e97c9 9285 dynobj = elf_hash_table (info)->dynobj;
861fb55a 9286 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9
TS
9287
9288 /* Make sure we know what is going on here. */
8e4979ac
NC
9289 if (dynobj == NULL
9290 || (! h->needs_plt
9291 && ! h->is_weakalias
9292 && (! h->def_dynamic
9293 || ! h->ref_regular
9294 || h->def_regular)))
9295 {
9296 if (h->type == STT_GNU_IFUNC)
9297 _bfd_error_handler (_("IFUNC symbol %s in dynamic symbol table - IFUNCS are not supported"),
9298 h->root.root.string);
9299 else
9300 _bfd_error_handler (_("non-dynamic symbol %s in dynamic symbol table"),
9301 h->root.root.string);
9302 return TRUE;
9303 }
b49e97c9 9304
b49e97c9 9305 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 9306
861fb55a
DJ
9307 /* If there are call relocations against an externally-defined symbol,
9308 see whether we can create a MIPS lazy-binding stub for it. We can
9309 only do this if all references to the function are through call
9310 relocations, and in that case, the traditional lazy-binding stubs
9311 are much more efficient than PLT entries.
9312
9313 Traditional stubs are only available on SVR4 psABI-based systems;
9314 VxWorks always uses PLTs instead. */
9315 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
b49e97c9
TS
9316 {
9317 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 9318 return TRUE;
b49e97c9
TS
9319
9320 /* If this symbol is not defined in a regular file, then set
9321 the symbol to the stub location. This is required to make
9322 function pointers compare as equal between the normal
9323 executable and the shared library. */
4b8377e7
MR
9324 if (!h->def_regular
9325 && !bfd_is_abs_section (htab->sstubs->output_section))
b49e97c9 9326 {
33bb52fb
RS
9327 hmips->needs_lazy_stub = TRUE;
9328 htab->lazy_stub_count++;
b34976b6 9329 return TRUE;
b49e97c9
TS
9330 }
9331 }
861fb55a
DJ
9332 /* As above, VxWorks requires PLT entries for externally-defined
9333 functions that are only accessed through call relocations.
b49e97c9 9334
861fb55a
DJ
9335 Both VxWorks and non-VxWorks targets also need PLT entries if there
9336 are static-only relocations against an externally-defined function.
9337 This can technically occur for shared libraries if there are
9338 branches to the symbol, although it is unlikely that this will be
9339 used in practice due to the short ranges involved. It can occur
9340 for any relative or absolute relocation in executables; in that
9341 case, the PLT entry becomes the function's canonical address. */
9342 else if (((h->needs_plt && !hmips->no_fn_stub)
9343 || (h->type == STT_FUNC && hmips->has_static_relocs))
9344 && htab->use_plts_and_copy_relocs
9345 && !SYMBOL_CALLS_LOCAL (info, h)
9346 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9347 && h->root.type == bfd_link_hash_undefweak))
b49e97c9 9348 {
1bbce132
MR
9349 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9350 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9351
9352 /* If this is the first symbol to need a PLT entry, then make some
07d6d2b8
AM
9353 basic setup. Also work out PLT entry sizes. We'll need them
9354 for PLT offset calculations. */
1bbce132 9355 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
861fb55a 9356 {
ce558b89 9357 BFD_ASSERT (htab->root.sgotplt->size == 0);
1bbce132 9358 BFD_ASSERT (htab->plt_got_index == 0);
0a44bf69 9359
861fb55a
DJ
9360 /* If we're using the PLT additions to the psABI, each PLT
9361 entry is 16 bytes and the PLT0 entry is 32 bytes.
9362 Encourage better cache usage by aligning. We do this
9363 lazily to avoid pessimizing traditional objects. */
9364 if (!htab->is_vxworks
fd361982 9365 && !bfd_set_section_alignment (htab->root.splt, 5))
861fb55a 9366 return FALSE;
0a44bf69 9367
861fb55a
DJ
9368 /* Make sure that .got.plt is word-aligned. We do this lazily
9369 for the same reason as above. */
fd361982 9370 if (!bfd_set_section_alignment (htab->root.sgotplt,
861fb55a
DJ
9371 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9372 return FALSE;
0a44bf69 9373
861fb55a
DJ
9374 /* On non-VxWorks targets, the first two entries in .got.plt
9375 are reserved. */
9376 if (!htab->is_vxworks)
1bbce132
MR
9377 htab->plt_got_index
9378 += (get_elf_backend_data (dynobj)->got_header_size
9379 / MIPS_ELF_GOT_SIZE (dynobj));
0a44bf69 9380
861fb55a
DJ
9381 /* On VxWorks, also allocate room for the header's
9382 .rela.plt.unloaded entries. */
0e1862bb 9383 if (htab->is_vxworks && !bfd_link_pic (info))
0a44bf69 9384 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
1bbce132
MR
9385
9386 /* Now work out the sizes of individual PLT entries. */
0e1862bb 9387 if (htab->is_vxworks && bfd_link_pic (info))
1bbce132
MR
9388 htab->plt_mips_entry_size
9389 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9390 else if (htab->is_vxworks)
9391 htab->plt_mips_entry_size
9392 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9393 else if (newabi_p)
9394 htab->plt_mips_entry_size
9395 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
833794fc 9396 else if (!micromips_p)
1bbce132
MR
9397 {
9398 htab->plt_mips_entry_size
9399 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9400 htab->plt_comp_entry_size
833794fc
MR
9401 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9402 }
9403 else if (htab->insn32)
9404 {
9405 htab->plt_mips_entry_size
9406 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9407 htab->plt_comp_entry_size
9408 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
1bbce132
MR
9409 }
9410 else
9411 {
9412 htab->plt_mips_entry_size
9413 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9414 htab->plt_comp_entry_size
833794fc 9415 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
1bbce132 9416 }
0a44bf69
RS
9417 }
9418
1bbce132
MR
9419 if (h->plt.plist == NULL)
9420 h->plt.plist = mips_elf_make_plt_record (dynobj);
9421 if (h->plt.plist == NULL)
9422 return FALSE;
9423
9424 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
07d6d2b8 9425 n32 or n64, so always use a standard entry there.
1bbce132 9426
07d6d2b8
AM
9427 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9428 all MIPS16 calls will go via that stub, and there is no benefit
9429 to having a MIPS16 entry. And in the case of call_stub a
9430 standard entry actually has to be used as the stub ends with a J
9431 instruction. */
1bbce132
MR
9432 if (newabi_p
9433 || htab->is_vxworks
9434 || hmips->call_stub
9435 || hmips->call_fp_stub)
9436 {
9437 h->plt.plist->need_mips = TRUE;
9438 h->plt.plist->need_comp = FALSE;
9439 }
9440
9441 /* Otherwise, if there are no direct calls to the function, we
07d6d2b8
AM
9442 have a free choice of whether to use standard or compressed
9443 entries. Prefer microMIPS entries if the object is known to
9444 contain microMIPS code, so that it becomes possible to create
9445 pure microMIPS binaries. Prefer standard entries otherwise,
9446 because MIPS16 ones are no smaller and are usually slower. */
1bbce132
MR
9447 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9448 {
9449 if (micromips_p)
9450 h->plt.plist->need_comp = TRUE;
9451 else
9452 h->plt.plist->need_mips = TRUE;
9453 }
9454
9455 if (h->plt.plist->need_mips)
9456 {
9457 h->plt.plist->mips_offset = htab->plt_mips_offset;
9458 htab->plt_mips_offset += htab->plt_mips_entry_size;
9459 }
9460 if (h->plt.plist->need_comp)
9461 {
9462 h->plt.plist->comp_offset = htab->plt_comp_offset;
9463 htab->plt_comp_offset += htab->plt_comp_entry_size;
9464 }
9465
9466 /* Reserve the corresponding .got.plt entry now too. */
9467 h->plt.plist->gotplt_index = htab->plt_got_index++;
0a44bf69
RS
9468
9469 /* If the output file has no definition of the symbol, set the
861fb55a 9470 symbol's value to the address of the stub. */
0e1862bb 9471 if (!bfd_link_pic (info) && !h->def_regular)
1bbce132 9472 hmips->use_plt_entry = TRUE;
0a44bf69 9473
1bbce132 9474 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
ce558b89
AM
9475 htab->root.srelplt->size += (htab->is_vxworks
9476 ? MIPS_ELF_RELA_SIZE (dynobj)
9477 : MIPS_ELF_REL_SIZE (dynobj));
0a44bf69
RS
9478
9479 /* Make room for the .rela.plt.unloaded relocations. */
0e1862bb 9480 if (htab->is_vxworks && !bfd_link_pic (info))
0a44bf69
RS
9481 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9482
861fb55a
DJ
9483 /* All relocations against this symbol that could have been made
9484 dynamic will now refer to the PLT entry instead. */
9485 hmips->possibly_dynamic_relocs = 0;
0a44bf69 9486
0a44bf69
RS
9487 return TRUE;
9488 }
9489
9490 /* If this is a weak symbol, and there is a real definition, the
9491 processor independent code will have arranged for us to see the
9492 real definition first, and we can just use the same value. */
60d67dc8 9493 if (h->is_weakalias)
0a44bf69 9494 {
60d67dc8
AM
9495 struct elf_link_hash_entry *def = weakdef (h);
9496 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
9497 h->root.u.def.section = def->root.u.def.section;
9498 h->root.u.def.value = def->root.u.def.value;
0a44bf69
RS
9499 return TRUE;
9500 }
9501
861fb55a
DJ
9502 /* Otherwise, there is nothing further to do for symbols defined
9503 in regular objects. */
9504 if (h->def_regular)
0a44bf69
RS
9505 return TRUE;
9506
861fb55a
DJ
9507 /* There's also nothing more to do if we'll convert all relocations
9508 against this symbol into dynamic relocations. */
9509 if (!hmips->has_static_relocs)
9510 return TRUE;
9511
9512 /* We're now relying on copy relocations. Complain if we have
9513 some that we can't convert. */
0e1862bb 9514 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
861fb55a 9515 {
4eca0228
AM
9516 _bfd_error_handler (_("non-dynamic relocations refer to "
9517 "dynamic symbol %s"),
9518 h->root.root.string);
861fb55a
DJ
9519 bfd_set_error (bfd_error_bad_value);
9520 return FALSE;
9521 }
9522
0a44bf69
RS
9523 /* We must allocate the symbol in our .dynbss section, which will
9524 become part of the .bss section of the executable. There will be
9525 an entry for this symbol in the .dynsym section. The dynamic
9526 object will contain position independent code, so all references
9527 from the dynamic object to this symbol will go through the global
9528 offset table. The dynamic linker will use the .dynsym entry to
9529 determine the address it must put in the global offset table, so
9530 both the dynamic object and the regular object will refer to the
9531 same memory location for the variable. */
9532
5474d94f
AM
9533 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9534 {
9535 s = htab->root.sdynrelro;
9536 srel = htab->root.sreldynrelro;
9537 }
9538 else
9539 {
9540 s = htab->root.sdynbss;
9541 srel = htab->root.srelbss;
9542 }
0a44bf69
RS
9543 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9544 {
861fb55a 9545 if (htab->is_vxworks)
5474d94f 9546 srel->size += sizeof (Elf32_External_Rela);
861fb55a
DJ
9547 else
9548 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
0a44bf69
RS
9549 h->needs_copy = 1;
9550 }
9551
861fb55a
DJ
9552 /* All relocations against this symbol that could have been made
9553 dynamic will now refer to the local copy instead. */
9554 hmips->possibly_dynamic_relocs = 0;
9555
5474d94f 9556 return _bfd_elf_adjust_dynamic_copy (info, h, s);
0a44bf69 9557}
b49e97c9
TS
9558\f
9559/* This function is called after all the input files have been read,
9560 and the input sections have been assigned to output sections. We
9561 check for any mips16 stub sections that we can discard. */
9562
b34976b6 9563bfd_boolean
9719ad41
RS
9564_bfd_mips_elf_always_size_sections (bfd *output_bfd,
9565 struct bfd_link_info *info)
b49e97c9 9566{
351cdf24 9567 asection *sect;
0a44bf69 9568 struct mips_elf_link_hash_table *htab;
861fb55a 9569 struct mips_htab_traverse_info hti;
0a44bf69
RS
9570
9571 htab = mips_elf_hash_table (info);
4dfe6ac6 9572 BFD_ASSERT (htab != NULL);
f4416af6 9573
b49e97c9 9574 /* The .reginfo section has a fixed size. */
351cdf24
MF
9575 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9576 if (sect != NULL)
6798f8bf 9577 {
fd361982 9578 bfd_set_section_size (sect, sizeof (Elf32_External_RegInfo));
6798f8bf
MR
9579 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9580 }
351cdf24
MF
9581
9582 /* The .MIPS.abiflags section has a fixed size. */
9583 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9584 if (sect != NULL)
6798f8bf 9585 {
fd361982 9586 bfd_set_section_size (sect, sizeof (Elf_External_ABIFlags_v0));
6798f8bf
MR
9587 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9588 }
b49e97c9 9589
861fb55a
DJ
9590 hti.info = info;
9591 hti.output_bfd = output_bfd;
9592 hti.error = FALSE;
9593 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9594 mips_elf_check_symbols, &hti);
9595 if (hti.error)
9596 return FALSE;
f4416af6 9597
33bb52fb
RS
9598 return TRUE;
9599}
9600
9601/* If the link uses a GOT, lay it out and work out its size. */
9602
9603static bfd_boolean
9604mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9605{
9606 bfd *dynobj;
9607 asection *s;
9608 struct mips_got_info *g;
33bb52fb
RS
9609 bfd_size_type loadable_size = 0;
9610 bfd_size_type page_gotno;
d7206569 9611 bfd *ibfd;
ab361d49 9612 struct mips_elf_traverse_got_arg tga;
33bb52fb
RS
9613 struct mips_elf_link_hash_table *htab;
9614
9615 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9616 BFD_ASSERT (htab != NULL);
9617
ce558b89 9618 s = htab->root.sgot;
f4416af6 9619 if (s == NULL)
b34976b6 9620 return TRUE;
b49e97c9 9621
33bb52fb 9622 dynobj = elf_hash_table (info)->dynobj;
a8028dd0
RS
9623 g = htab->got_info;
9624
861fb55a
DJ
9625 /* Allocate room for the reserved entries. VxWorks always reserves
9626 3 entries; other objects only reserve 2 entries. */
cb22ccf4 9627 BFD_ASSERT (g->assigned_low_gotno == 0);
861fb55a
DJ
9628 if (htab->is_vxworks)
9629 htab->reserved_gotno = 3;
9630 else
9631 htab->reserved_gotno = 2;
9632 g->local_gotno += htab->reserved_gotno;
cb22ccf4 9633 g->assigned_low_gotno = htab->reserved_gotno;
861fb55a 9634
6c42ddb9
RS
9635 /* Decide which symbols need to go in the global part of the GOT and
9636 count the number of reloc-only GOT symbols. */
020d7251 9637 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
f4416af6 9638
13db6b44
RS
9639 if (!mips_elf_resolve_final_got_entries (info, g))
9640 return FALSE;
9641
33bb52fb
RS
9642 /* Calculate the total loadable size of the output. That
9643 will give us the maximum number of GOT_PAGE entries
9644 required. */
c72f2fb2 9645 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
33bb52fb
RS
9646 {
9647 asection *subsection;
5108fc1b 9648
d7206569 9649 for (subsection = ibfd->sections;
33bb52fb
RS
9650 subsection;
9651 subsection = subsection->next)
9652 {
9653 if ((subsection->flags & SEC_ALLOC) == 0)
9654 continue;
9655 loadable_size += ((subsection->size + 0xf)
9656 &~ (bfd_size_type) 0xf);
9657 }
9658 }
f4416af6 9659
0a44bf69 9660 if (htab->is_vxworks)
738e5348 9661 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
0a44bf69
RS
9662 relocations against local symbols evaluate to "G", and the EABI does
9663 not include R_MIPS_GOT_PAGE. */
c224138d 9664 page_gotno = 0;
0a44bf69
RS
9665 else
9666 /* Assume there are two loadable segments consisting of contiguous
9667 sections. Is 5 enough? */
c224138d
RS
9668 page_gotno = (loadable_size >> 16) + 5;
9669
13db6b44 9670 /* Choose the smaller of the two page estimates; both are intended to be
c224138d
RS
9671 conservative. */
9672 if (page_gotno > g->page_gotno)
9673 page_gotno = g->page_gotno;
f4416af6 9674
c224138d 9675 g->local_gotno += page_gotno;
cb22ccf4 9676 g->assigned_high_gotno = g->local_gotno - 1;
ab361d49 9677
ab361d49
RS
9678 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9679 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
0f20cc35
DJ
9680 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9681
0a44bf69
RS
9682 /* VxWorks does not support multiple GOTs. It initializes $gp to
9683 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9684 dynamic loader. */
57093f5e 9685 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
0f20cc35 9686 {
a8028dd0 9687 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
0f20cc35
DJ
9688 return FALSE;
9689 }
9690 else
9691 {
d7206569
RS
9692 /* Record that all bfds use G. This also has the effect of freeing
9693 the per-bfd GOTs, which we no longer need. */
c72f2fb2 9694 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
d7206569
RS
9695 if (mips_elf_bfd_got (ibfd, FALSE))
9696 mips_elf_replace_bfd_got (ibfd, g);
9697 mips_elf_replace_bfd_got (output_bfd, g);
9698
33bb52fb 9699 /* Set up TLS entries. */
0f20cc35 9700 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
72e7511a
RS
9701 tga.info = info;
9702 tga.g = g;
9703 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9704 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9705 if (!tga.g)
9706 return FALSE;
1fd20d70
RS
9707 BFD_ASSERT (g->tls_assigned_gotno
9708 == g->global_gotno + g->local_gotno + g->tls_gotno);
33bb52fb 9709
57093f5e 9710 /* Each VxWorks GOT entry needs an explicit relocation. */
0e1862bb 9711 if (htab->is_vxworks && bfd_link_pic (info))
57093f5e
RS
9712 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9713
33bb52fb 9714 /* Allocate room for the TLS relocations. */
ab361d49
RS
9715 if (g->relocs)
9716 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
0f20cc35 9717 }
b49e97c9 9718
b34976b6 9719 return TRUE;
b49e97c9
TS
9720}
9721
33bb52fb
RS
9722/* Estimate the size of the .MIPS.stubs section. */
9723
9724static void
9725mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9726{
9727 struct mips_elf_link_hash_table *htab;
9728 bfd_size_type dynsymcount;
9729
9730 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9731 BFD_ASSERT (htab != NULL);
9732
33bb52fb
RS
9733 if (htab->lazy_stub_count == 0)
9734 return;
9735
9736 /* IRIX rld assumes that a function stub isn't at the end of the .text
9737 section, so add a dummy entry to the end. */
9738 htab->lazy_stub_count++;
9739
9740 /* Get a worst-case estimate of the number of dynamic symbols needed.
9741 At this point, dynsymcount does not account for section symbols
9742 and count_section_dynsyms may overestimate the number that will
9743 be needed. */
9744 dynsymcount = (elf_hash_table (info)->dynsymcount
9745 + count_section_dynsyms (output_bfd, info));
9746
1bbce132
MR
9747 /* Determine the size of one stub entry. There's no disadvantage
9748 from using microMIPS code here, so for the sake of pure-microMIPS
9749 binaries we prefer it whenever there's any microMIPS code in
9750 output produced at all. This has a benefit of stubs being
833794fc
MR
9751 shorter by 4 bytes each too, unless in the insn32 mode. */
9752 if (!MICROMIPS_P (output_bfd))
1bbce132
MR
9753 htab->function_stub_size = (dynsymcount > 0x10000
9754 ? MIPS_FUNCTION_STUB_BIG_SIZE
9755 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
833794fc
MR
9756 else if (htab->insn32)
9757 htab->function_stub_size = (dynsymcount > 0x10000
9758 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9759 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9760 else
9761 htab->function_stub_size = (dynsymcount > 0x10000
9762 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9763 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
33bb52fb
RS
9764
9765 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9766}
9767
1bbce132
MR
9768/* A mips_elf_link_hash_traverse callback for which DATA points to a
9769 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9770 stub, allocate an entry in the stubs section. */
33bb52fb
RS
9771
9772static bfd_boolean
af924177 9773mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb 9774{
1bbce132 9775 struct mips_htab_traverse_info *hti = data;
33bb52fb 9776 struct mips_elf_link_hash_table *htab;
1bbce132
MR
9777 struct bfd_link_info *info;
9778 bfd *output_bfd;
9779
9780 info = hti->info;
9781 output_bfd = hti->output_bfd;
9782 htab = mips_elf_hash_table (info);
9783 BFD_ASSERT (htab != NULL);
33bb52fb 9784
33bb52fb
RS
9785 if (h->needs_lazy_stub)
9786 {
1bbce132
MR
9787 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9788 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9789 bfd_vma isa_bit = micromips_p;
9790
9791 BFD_ASSERT (htab->root.dynobj != NULL);
9792 if (h->root.plt.plist == NULL)
9793 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9794 if (h->root.plt.plist == NULL)
9795 {
9796 hti->error = TRUE;
9797 return FALSE;
9798 }
33bb52fb 9799 h->root.root.u.def.section = htab->sstubs;
1bbce132
MR
9800 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9801 h->root.plt.plist->stub_offset = htab->sstubs->size;
9802 h->root.other = other;
33bb52fb
RS
9803 htab->sstubs->size += htab->function_stub_size;
9804 }
9805 return TRUE;
9806}
9807
9808/* Allocate offsets in the stubs section to each symbol that needs one.
9809 Set the final size of the .MIPS.stub section. */
9810
1bbce132 9811static bfd_boolean
33bb52fb
RS
9812mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9813{
1bbce132
MR
9814 bfd *output_bfd = info->output_bfd;
9815 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9816 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9817 bfd_vma isa_bit = micromips_p;
33bb52fb 9818 struct mips_elf_link_hash_table *htab;
1bbce132
MR
9819 struct mips_htab_traverse_info hti;
9820 struct elf_link_hash_entry *h;
9821 bfd *dynobj;
33bb52fb
RS
9822
9823 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9824 BFD_ASSERT (htab != NULL);
9825
33bb52fb 9826 if (htab->lazy_stub_count == 0)
1bbce132 9827 return TRUE;
33bb52fb
RS
9828
9829 htab->sstubs->size = 0;
1bbce132
MR
9830 hti.info = info;
9831 hti.output_bfd = output_bfd;
9832 hti.error = FALSE;
9833 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9834 if (hti.error)
9835 return FALSE;
33bb52fb
RS
9836 htab->sstubs->size += htab->function_stub_size;
9837 BFD_ASSERT (htab->sstubs->size
9838 == htab->lazy_stub_count * htab->function_stub_size);
1bbce132
MR
9839
9840 dynobj = elf_hash_table (info)->dynobj;
9841 BFD_ASSERT (dynobj != NULL);
9842 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9843 if (h == NULL)
9844 return FALSE;
9845 h->root.u.def.value = isa_bit;
9846 h->other = other;
9847 h->type = STT_FUNC;
9848
9849 return TRUE;
9850}
9851
9852/* A mips_elf_link_hash_traverse callback for which DATA points to a
9853 bfd_link_info. If H uses the address of a PLT entry as the value
9854 of the symbol, then set the entry in the symbol table now. Prefer
9855 a standard MIPS PLT entry. */
9856
9857static bfd_boolean
9858mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9859{
9860 struct bfd_link_info *info = data;
9861 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9862 struct mips_elf_link_hash_table *htab;
9863 unsigned int other;
9864 bfd_vma isa_bit;
9865 bfd_vma val;
9866
9867 htab = mips_elf_hash_table (info);
9868 BFD_ASSERT (htab != NULL);
9869
9870 if (h->use_plt_entry)
9871 {
9872 BFD_ASSERT (h->root.plt.plist != NULL);
9873 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9874 || h->root.plt.plist->comp_offset != MINUS_ONE);
9875
9876 val = htab->plt_header_size;
9877 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9878 {
9879 isa_bit = 0;
9880 val += h->root.plt.plist->mips_offset;
9881 other = 0;
9882 }
9883 else
9884 {
9885 isa_bit = 1;
9886 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9887 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9888 }
9889 val += isa_bit;
9890 /* For VxWorks, point at the PLT load stub rather than the lazy
07d6d2b8
AM
9891 resolution stub; this stub will become the canonical function
9892 address. */
1bbce132
MR
9893 if (htab->is_vxworks)
9894 val += 8;
9895
ce558b89 9896 h->root.root.u.def.section = htab->root.splt;
1bbce132
MR
9897 h->root.root.u.def.value = val;
9898 h->root.other = other;
9899 }
9900
9901 return TRUE;
33bb52fb
RS
9902}
9903
b49e97c9
TS
9904/* Set the sizes of the dynamic sections. */
9905
b34976b6 9906bfd_boolean
9719ad41
RS
9907_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9908 struct bfd_link_info *info)
b49e97c9
TS
9909{
9910 bfd *dynobj;
861fb55a 9911 asection *s, *sreldyn;
b34976b6 9912 bfd_boolean reltext;
0a44bf69 9913 struct mips_elf_link_hash_table *htab;
b49e97c9 9914
0a44bf69 9915 htab = mips_elf_hash_table (info);
4dfe6ac6 9916 BFD_ASSERT (htab != NULL);
b49e97c9
TS
9917 dynobj = elf_hash_table (info)->dynobj;
9918 BFD_ASSERT (dynobj != NULL);
9919
9920 if (elf_hash_table (info)->dynamic_sections_created)
9921 {
9922 /* Set the contents of the .interp section to the interpreter. */
9b8b325a 9923 if (bfd_link_executable (info) && !info->nointerp)
b49e97c9 9924 {
3d4d4302 9925 s = bfd_get_linker_section (dynobj, ".interp");
b49e97c9 9926 BFD_ASSERT (s != NULL);
eea6121a 9927 s->size
b49e97c9
TS
9928 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9929 s->contents
9930 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9931 }
861fb55a 9932
1bbce132 9933 /* Figure out the size of the PLT header if we know that we
07d6d2b8
AM
9934 are using it. For the sake of cache alignment always use
9935 a standard header whenever any standard entries are present
9936 even if microMIPS entries are present as well. This also
9937 lets the microMIPS header rely on the value of $v0 only set
9938 by microMIPS entries, for a small size reduction.
1bbce132 9939
07d6d2b8
AM
9940 Set symbol table entry values for symbols that use the
9941 address of their PLT entry now that we can calculate it.
1bbce132 9942
07d6d2b8
AM
9943 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9944 haven't already in _bfd_elf_create_dynamic_sections. */
ce558b89 9945 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
861fb55a 9946 {
1bbce132
MR
9947 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9948 && !htab->plt_mips_offset);
9949 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9950 bfd_vma isa_bit = micromips_p;
861fb55a 9951 struct elf_link_hash_entry *h;
1bbce132 9952 bfd_vma size;
861fb55a
DJ
9953
9954 BFD_ASSERT (htab->use_plts_and_copy_relocs);
ce558b89
AM
9955 BFD_ASSERT (htab->root.sgotplt->size == 0);
9956 BFD_ASSERT (htab->root.splt->size == 0);
1bbce132 9957
0e1862bb 9958 if (htab->is_vxworks && bfd_link_pic (info))
1bbce132
MR
9959 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9960 else if (htab->is_vxworks)
9961 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9962 else if (ABI_64_P (output_bfd))
9963 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9964 else if (ABI_N32_P (output_bfd))
9965 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9966 else if (!micromips_p)
9967 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
833794fc
MR
9968 else if (htab->insn32)
9969 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
1bbce132
MR
9970 else
9971 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
861fb55a 9972
1bbce132
MR
9973 htab->plt_header_is_comp = micromips_p;
9974 htab->plt_header_size = size;
ce558b89
AM
9975 htab->root.splt->size = (size
9976 + htab->plt_mips_offset
9977 + htab->plt_comp_offset);
9978 htab->root.sgotplt->size = (htab->plt_got_index
9979 * MIPS_ELF_GOT_SIZE (dynobj));
1bbce132
MR
9980
9981 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9982
9983 if (htab->root.hplt == NULL)
9984 {
ce558b89 9985 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
1bbce132
MR
9986 "_PROCEDURE_LINKAGE_TABLE_");
9987 htab->root.hplt = h;
9988 if (h == NULL)
9989 return FALSE;
9990 }
9991
9992 h = htab->root.hplt;
9993 h->root.u.def.value = isa_bit;
9994 h->other = other;
861fb55a
DJ
9995 h->type = STT_FUNC;
9996 }
9997 }
4e41d0d7 9998
9a59ad6b 9999 /* Allocate space for global sym dynamic relocs. */
2c3fc389 10000 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9a59ad6b 10001
33bb52fb
RS
10002 mips_elf_estimate_stub_size (output_bfd, info);
10003
10004 if (!mips_elf_lay_out_got (output_bfd, info))
10005 return FALSE;
10006
10007 mips_elf_lay_out_lazy_stubs (info);
10008
b49e97c9
TS
10009 /* The check_relocs and adjust_dynamic_symbol entry points have
10010 determined the sizes of the various dynamic sections. Allocate
10011 memory for them. */
b34976b6 10012 reltext = FALSE;
b49e97c9
TS
10013 for (s = dynobj->sections; s != NULL; s = s->next)
10014 {
10015 const char *name;
b49e97c9
TS
10016
10017 /* It's OK to base decisions on the section name, because none
10018 of the dynobj section names depend upon the input files. */
fd361982 10019 name = bfd_section_name (s);
b49e97c9
TS
10020
10021 if ((s->flags & SEC_LINKER_CREATED) == 0)
10022 continue;
10023
0112cd26 10024 if (CONST_STRNEQ (name, ".rel"))
b49e97c9 10025 {
c456f082 10026 if (s->size != 0)
b49e97c9
TS
10027 {
10028 const char *outname;
10029 asection *target;
10030
10031 /* If this relocation section applies to a read only
07d6d2b8
AM
10032 section, then we probably need a DT_TEXTREL entry.
10033 If the relocation section is .rel(a).dyn, we always
10034 assert a DT_TEXTREL entry rather than testing whether
10035 there exists a relocation to a read only section or
10036 not. */
fd361982 10037 outname = bfd_section_name (s->output_section);
b49e97c9
TS
10038 target = bfd_get_section_by_name (output_bfd, outname + 4);
10039 if ((target != NULL
10040 && (target->flags & SEC_READONLY) != 0
10041 && (target->flags & SEC_ALLOC) != 0)
0a44bf69 10042 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
b34976b6 10043 reltext = TRUE;
b49e97c9
TS
10044
10045 /* We use the reloc_count field as a counter if we need
10046 to copy relocs into the output file. */
0a44bf69 10047 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
b49e97c9 10048 s->reloc_count = 0;
f4416af6
AO
10049
10050 /* If combreloc is enabled, elf_link_sort_relocs() will
10051 sort relocations, but in a different way than we do,
10052 and before we're done creating relocations. Also, it
10053 will move them around between input sections'
10054 relocation's contents, so our sorting would be
10055 broken, so don't let it run. */
10056 info->combreloc = 0;
b49e97c9
TS
10057 }
10058 }
0e1862bb 10059 else if (bfd_link_executable (info)
b49e97c9 10060 && ! mips_elf_hash_table (info)->use_rld_obj_head
0112cd26 10061 && CONST_STRNEQ (name, ".rld_map"))
b49e97c9 10062 {
5108fc1b 10063 /* We add a room for __rld_map. It will be filled in by the
b49e97c9 10064 rtld to contain a pointer to the _r_debug structure. */
b4082c70 10065 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
b49e97c9
TS
10066 }
10067 else if (SGI_COMPAT (output_bfd)
0112cd26 10068 && CONST_STRNEQ (name, ".compact_rel"))
eea6121a 10069 s->size += mips_elf_hash_table (info)->compact_rel_size;
ce558b89 10070 else if (s == htab->root.splt)
861fb55a
DJ
10071 {
10072 /* If the last PLT entry has a branch delay slot, allocate
6d30f5b2
NC
10073 room for an extra nop to fill the delay slot. This is
10074 for CPUs without load interlocking. */
10075 if (! LOAD_INTERLOCKS_P (output_bfd)
10076 && ! htab->is_vxworks && s->size > 0)
861fb55a
DJ
10077 s->size += 4;
10078 }
0112cd26 10079 else if (! CONST_STRNEQ (name, ".init")
ce558b89
AM
10080 && s != htab->root.sgot
10081 && s != htab->root.sgotplt
861fb55a 10082 && s != htab->sstubs
5474d94f
AM
10083 && s != htab->root.sdynbss
10084 && s != htab->root.sdynrelro)
b49e97c9
TS
10085 {
10086 /* It's not one of our sections, so don't allocate space. */
10087 continue;
10088 }
10089
c456f082 10090 if (s->size == 0)
b49e97c9 10091 {
8423293d 10092 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
10093 continue;
10094 }
10095
c456f082
AM
10096 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10097 continue;
10098
b49e97c9 10099 /* Allocate memory for the section contents. */
eea6121a 10100 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 10101 if (s->contents == NULL)
b49e97c9
TS
10102 {
10103 bfd_set_error (bfd_error_no_memory);
b34976b6 10104 return FALSE;
b49e97c9
TS
10105 }
10106 }
10107
10108 if (elf_hash_table (info)->dynamic_sections_created)
10109 {
10110 /* Add some entries to the .dynamic section. We fill in the
10111 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
10112 must add the entries now so that we get the correct size for
5750dcec 10113 the .dynamic section. */
af5978fb
RS
10114
10115 /* SGI object has the equivalence of DT_DEBUG in the
5750dcec 10116 DT_MIPS_RLD_MAP entry. This must come first because glibc
6e6be592
MR
10117 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
10118 may only look at the first one they see. */
0e1862bb 10119 if (!bfd_link_pic (info)
af5978fb
RS
10120 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
10121 return FALSE;
b49e97c9 10122
0e1862bb 10123 if (bfd_link_executable (info)
a5499fa4
MF
10124 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
10125 return FALSE;
10126
5750dcec
DJ
10127 /* The DT_DEBUG entry may be filled in by the dynamic linker and
10128 used by the debugger. */
0e1862bb 10129 if (bfd_link_executable (info)
5750dcec
DJ
10130 && !SGI_COMPAT (output_bfd)
10131 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
10132 return FALSE;
10133
0a44bf69 10134 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
b49e97c9
TS
10135 info->flags |= DF_TEXTREL;
10136
10137 if ((info->flags & DF_TEXTREL) != 0)
10138 {
10139 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 10140 return FALSE;
943284cc
DJ
10141
10142 /* Clear the DF_TEXTREL flag. It will be set again if we
10143 write out an actual text relocation; we may not, because
10144 at this point we do not know whether e.g. any .eh_frame
10145 absolute relocations have been converted to PC-relative. */
10146 info->flags &= ~DF_TEXTREL;
b49e97c9
TS
10147 }
10148
10149 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 10150 return FALSE;
b49e97c9 10151
861fb55a 10152 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
0a44bf69 10153 if (htab->is_vxworks)
b49e97c9 10154 {
0a44bf69
RS
10155 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
10156 use any of the DT_MIPS_* tags. */
861fb55a 10157 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
10158 {
10159 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
10160 return FALSE;
b49e97c9 10161
0a44bf69
RS
10162 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
10163 return FALSE;
b49e97c9 10164
0a44bf69
RS
10165 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
10166 return FALSE;
10167 }
b49e97c9 10168 }
0a44bf69
RS
10169 else
10170 {
db841b6f
MR
10171 if (sreldyn && sreldyn->size > 0
10172 && !bfd_is_abs_section (sreldyn->output_section))
0a44bf69
RS
10173 {
10174 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
10175 return FALSE;
b49e97c9 10176
0a44bf69
RS
10177 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
10178 return FALSE;
b49e97c9 10179
0a44bf69
RS
10180 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
10181 return FALSE;
10182 }
b49e97c9 10183
0a44bf69
RS
10184 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
10185 return FALSE;
b49e97c9 10186
0a44bf69
RS
10187 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
10188 return FALSE;
b49e97c9 10189
0a44bf69
RS
10190 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
10191 return FALSE;
b49e97c9 10192
0a44bf69
RS
10193 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
10194 return FALSE;
b49e97c9 10195
0a44bf69
RS
10196 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
10197 return FALSE;
b49e97c9 10198
0a44bf69
RS
10199 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
10200 return FALSE;
b49e97c9 10201
0a44bf69
RS
10202 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
10203 return FALSE;
10204
f16a9783
MS
10205 if (info->emit_gnu_hash
10206 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_XHASH, 0))
10207 return FALSE;
10208
0a44bf69
RS
10209 if (IRIX_COMPAT (dynobj) == ict_irix5
10210 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
10211 return FALSE;
10212
10213 if (IRIX_COMPAT (dynobj) == ict_irix6
10214 && (bfd_get_section_by_name
af0edeb8 10215 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
0a44bf69
RS
10216 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
10217 return FALSE;
10218 }
ce558b89 10219 if (htab->root.splt->size > 0)
861fb55a
DJ
10220 {
10221 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
10222 return FALSE;
10223
10224 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
10225 return FALSE;
10226
10227 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
10228 return FALSE;
10229
10230 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
10231 return FALSE;
10232 }
7a2b07ff
NS
10233 if (htab->is_vxworks
10234 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10235 return FALSE;
b49e97c9
TS
10236 }
10237
b34976b6 10238 return TRUE;
b49e97c9
TS
10239}
10240\f
81d43bff
RS
10241/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10242 Adjust its R_ADDEND field so that it is correct for the output file.
10243 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10244 and sections respectively; both use symbol indexes. */
10245
10246static void
10247mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
10248 bfd *input_bfd, Elf_Internal_Sym *local_syms,
10249 asection **local_sections, Elf_Internal_Rela *rel)
10250{
10251 unsigned int r_type, r_symndx;
10252 Elf_Internal_Sym *sym;
10253 asection *sec;
10254
020d7251 10255 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
81d43bff
RS
10256 {
10257 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
df58fc94 10258 if (gprel16_reloc_p (r_type)
81d43bff 10259 || r_type == R_MIPS_GPREL32
df58fc94 10260 || literal_reloc_p (r_type))
81d43bff
RS
10261 {
10262 rel->r_addend += _bfd_get_gp_value (input_bfd);
10263 rel->r_addend -= _bfd_get_gp_value (output_bfd);
10264 }
10265
10266 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
10267 sym = local_syms + r_symndx;
10268
10269 /* Adjust REL's addend to account for section merging. */
0e1862bb 10270 if (!bfd_link_relocatable (info))
81d43bff
RS
10271 {
10272 sec = local_sections[r_symndx];
10273 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10274 }
10275
10276 /* This would normally be done by the rela_normal code in elflink.c. */
10277 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10278 rel->r_addend += local_sections[r_symndx]->output_offset;
10279 }
10280}
10281
545fd46b
MR
10282/* Handle relocations against symbols from removed linkonce sections,
10283 or sections discarded by a linker script. We use this wrapper around
10284 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10285 on 64-bit ELF targets. In this case for any relocation handled, which
10286 always be the first in a triplet, the remaining two have to be processed
10287 together with the first, even if they are R_MIPS_NONE. It is the symbol
10288 index referred by the first reloc that applies to all the three and the
10289 remaining two never refer to an object symbol. And it is the final
10290 relocation (the last non-null one) that determines the output field of
10291 the whole relocation so retrieve the corresponding howto structure for
10292 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10293
10294 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10295 and therefore requires to be pasted in a loop. It also defines a block
10296 and does not protect any of its arguments, hence the extra brackets. */
10297
10298static void
10299mips_reloc_against_discarded_section (bfd *output_bfd,
10300 struct bfd_link_info *info,
10301 bfd *input_bfd, asection *input_section,
10302 Elf_Internal_Rela **rel,
10303 const Elf_Internal_Rela **relend,
10304 bfd_boolean rel_reloc,
10305 reloc_howto_type *howto,
10306 bfd_byte *contents)
10307{
10308 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10309 int count = bed->s->int_rels_per_ext_rel;
10310 unsigned int r_type;
10311 int i;
10312
10313 for (i = count - 1; i > 0; i--)
10314 {
10315 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10316 if (r_type != R_MIPS_NONE)
10317 {
10318 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10319 break;
10320 }
10321 }
10322 do
10323 {
10324 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10325 (*rel), count, (*relend),
10326 howto, i, contents);
10327 }
10328 while (0);
10329}
10330
b49e97c9
TS
10331/* Relocate a MIPS ELF section. */
10332
b34976b6 10333bfd_boolean
9719ad41
RS
10334_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10335 bfd *input_bfd, asection *input_section,
10336 bfd_byte *contents, Elf_Internal_Rela *relocs,
10337 Elf_Internal_Sym *local_syms,
10338 asection **local_sections)
b49e97c9
TS
10339{
10340 Elf_Internal_Rela *rel;
10341 const Elf_Internal_Rela *relend;
10342 bfd_vma addend = 0;
b34976b6 10343 bfd_boolean use_saved_addend_p = FALSE;
b49e97c9 10344
056bafd4 10345 relend = relocs + input_section->reloc_count;
b49e97c9
TS
10346 for (rel = relocs; rel < relend; ++rel)
10347 {
10348 const char *name;
c9adbffe 10349 bfd_vma value = 0;
b49e97c9 10350 reloc_howto_type *howto;
ad3d9127 10351 bfd_boolean cross_mode_jump_p = FALSE;
b34976b6 10352 /* TRUE if the relocation is a RELA relocation, rather than a
07d6d2b8 10353 REL relocation. */
b34976b6 10354 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 10355 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 10356 const char *msg;
ab96bf03
AM
10357 unsigned long r_symndx;
10358 asection *sec;
749b8d9d
L
10359 Elf_Internal_Shdr *symtab_hdr;
10360 struct elf_link_hash_entry *h;
d4730f92 10361 bfd_boolean rel_reloc;
b49e97c9 10362
d4730f92
BS
10363 rel_reloc = (NEWABI_P (input_bfd)
10364 && mips_elf_rel_relocation_p (input_bfd, input_section,
10365 relocs, rel));
b49e97c9 10366 /* Find the relocation howto for this relocation. */
d4730f92 10367 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
ab96bf03
AM
10368
10369 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
749b8d9d 10370 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
020d7251 10371 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
749b8d9d
L
10372 {
10373 sec = local_sections[r_symndx];
10374 h = NULL;
10375 }
ab96bf03
AM
10376 else
10377 {
ab96bf03 10378 unsigned long extsymoff;
ab96bf03 10379
ab96bf03
AM
10380 extsymoff = 0;
10381 if (!elf_bad_symtab (input_bfd))
10382 extsymoff = symtab_hdr->sh_info;
10383 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10384 while (h->root.type == bfd_link_hash_indirect
10385 || h->root.type == bfd_link_hash_warning)
10386 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10387
10388 sec = NULL;
10389 if (h->root.type == bfd_link_hash_defined
10390 || h->root.type == bfd_link_hash_defweak)
10391 sec = h->root.u.def.section;
10392 }
10393
dbaa2011 10394 if (sec != NULL && discarded_section (sec))
545fd46b
MR
10395 {
10396 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10397 input_section, &rel, &relend,
10398 rel_reloc, howto, contents);
10399 continue;
10400 }
ab96bf03 10401
4a14403c 10402 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
10403 {
10404 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10405 64-bit code, but make sure all their addresses are in the
10406 lowermost or uppermost 32-bit section of the 64-bit address
10407 space. Thus, when they use an R_MIPS_64 they mean what is
10408 usually meant by R_MIPS_32, with the exception that the
10409 stored value is sign-extended to 64 bits. */
b34976b6 10410 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
10411
10412 /* On big-endian systems, we need to lie about the position
10413 of the reloc. */
10414 if (bfd_big_endian (input_bfd))
10415 rel->r_offset += 4;
10416 }
b49e97c9
TS
10417
10418 if (!use_saved_addend_p)
10419 {
b49e97c9
TS
10420 /* If these relocations were originally of the REL variety,
10421 we must pull the addend out of the field that will be
10422 relocated. Otherwise, we simply use the contents of the
c224138d
RS
10423 RELA relocation. */
10424 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10425 relocs, rel))
b49e97c9 10426 {
b34976b6 10427 rela_relocation_p = FALSE;
c224138d
RS
10428 addend = mips_elf_read_rel_addend (input_bfd, rel,
10429 howto, contents);
738e5348
RS
10430 if (hi16_reloc_p (r_type)
10431 || (got16_reloc_p (r_type)
b49e97c9 10432 && mips_elf_local_relocation_p (input_bfd, rel,
020d7251 10433 local_sections)))
b49e97c9 10434 {
c224138d
RS
10435 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10436 contents, &addend))
749b8d9d 10437 {
749b8d9d
L
10438 if (h)
10439 name = h->root.root.string;
10440 else
10441 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10442 local_syms + r_symndx,
10443 sec);
4eca0228 10444 _bfd_error_handler
695344c0 10445 /* xgettext:c-format */
2c1c9679 10446 (_("%pB: can't find matching LO16 reloc against `%s'"
2dcf00ce 10447 " for %s at %#" PRIx64 " in section `%pA'"),
c08bb8dd 10448 input_bfd, name,
2dcf00ce 10449 howto->name, (uint64_t) rel->r_offset, input_section);
749b8d9d 10450 }
b49e97c9 10451 }
30ac9238
RS
10452 else
10453 addend <<= howto->rightshift;
b49e97c9
TS
10454 }
10455 else
10456 addend = rel->r_addend;
81d43bff
RS
10457 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10458 local_syms, local_sections, rel);
b49e97c9
TS
10459 }
10460
0e1862bb 10461 if (bfd_link_relocatable (info))
b49e97c9 10462 {
4a14403c 10463 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
10464 && bfd_big_endian (input_bfd))
10465 rel->r_offset -= 4;
10466
81d43bff 10467 if (!rela_relocation_p && rel->r_addend)
5a659663 10468 {
81d43bff 10469 addend += rel->r_addend;
738e5348 10470 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
5a659663
TS
10471 addend = mips_elf_high (addend);
10472 else if (r_type == R_MIPS_HIGHER)
10473 addend = mips_elf_higher (addend);
10474 else if (r_type == R_MIPS_HIGHEST)
10475 addend = mips_elf_highest (addend);
30ac9238
RS
10476 else
10477 addend >>= howto->rightshift;
b49e97c9 10478
30ac9238
RS
10479 /* We use the source mask, rather than the destination
10480 mask because the place to which we are writing will be
10481 source of the addend in the final link. */
b49e97c9
TS
10482 addend &= howto->src_mask;
10483
5a659663 10484 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10485 /* See the comment above about using R_MIPS_64 in the 32-bit
10486 ABI. Here, we need to update the addend. It would be
10487 possible to get away with just using the R_MIPS_32 reloc
10488 but for endianness. */
10489 {
10490 bfd_vma sign_bits;
10491 bfd_vma low_bits;
10492 bfd_vma high_bits;
10493
10494 if (addend & ((bfd_vma) 1 << 31))
10495#ifdef BFD64
10496 sign_bits = ((bfd_vma) 1 << 32) - 1;
10497#else
10498 sign_bits = -1;
10499#endif
10500 else
10501 sign_bits = 0;
10502
10503 /* If we don't know that we have a 64-bit type,
10504 do two separate stores. */
10505 if (bfd_big_endian (input_bfd))
10506 {
10507 /* Store the sign-bits (which are most significant)
10508 first. */
10509 low_bits = sign_bits;
10510 high_bits = addend;
10511 }
10512 else
10513 {
10514 low_bits = addend;
10515 high_bits = sign_bits;
10516 }
10517 bfd_put_32 (input_bfd, low_bits,
10518 contents + rel->r_offset);
10519 bfd_put_32 (input_bfd, high_bits,
10520 contents + rel->r_offset + 4);
10521 continue;
10522 }
10523
10524 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10525 input_bfd, input_section,
b34976b6
AM
10526 contents, FALSE))
10527 return FALSE;
b49e97c9
TS
10528 }
10529
10530 /* Go on to the next relocation. */
10531 continue;
10532 }
10533
10534 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10535 relocations for the same offset. In that case we are
10536 supposed to treat the output of each relocation as the addend
10537 for the next. */
10538 if (rel + 1 < relend
10539 && rel->r_offset == rel[1].r_offset
10540 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 10541 use_saved_addend_p = TRUE;
b49e97c9 10542 else
b34976b6 10543 use_saved_addend_p = FALSE;
b49e97c9
TS
10544
10545 /* Figure out what value we are supposed to relocate. */
10546 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
47275900
MR
10547 input_section, contents,
10548 info, rel, addend, howto,
10549 local_syms, local_sections,
10550 &value, &name, &cross_mode_jump_p,
bce03d3d 10551 use_saved_addend_p))
b49e97c9
TS
10552 {
10553 case bfd_reloc_continue:
10554 /* There's nothing to do. */
10555 continue;
10556
10557 case bfd_reloc_undefined:
10558 /* mips_elf_calculate_relocation already called the
10559 undefined_symbol callback. There's no real point in
10560 trying to perform the relocation at this point, so we
10561 just skip ahead to the next relocation. */
10562 continue;
10563
10564 case bfd_reloc_notsupported:
10565 msg = _("internal error: unsupported relocation error");
10566 info->callbacks->warning
10567 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 10568 return FALSE;
b49e97c9
TS
10569
10570 case bfd_reloc_overflow:
10571 if (use_saved_addend_p)
10572 /* Ignore overflow until we reach the last relocation for
10573 a given location. */
10574 ;
10575 else
10576 {
0e53d9da
AN
10577 struct mips_elf_link_hash_table *htab;
10578
10579 htab = mips_elf_hash_table (info);
4dfe6ac6 10580 BFD_ASSERT (htab != NULL);
b49e97c9 10581 BFD_ASSERT (name != NULL);
0e53d9da 10582 if (!htab->small_data_overflow_reported
9684f078 10583 && (gprel16_reloc_p (howto->type)
df58fc94 10584 || literal_reloc_p (howto->type)))
0e53d9da 10585 {
91d6fa6a
NC
10586 msg = _("small-data section exceeds 64KB;"
10587 " lower small-data size limit (see option -G)");
0e53d9da
AN
10588
10589 htab->small_data_overflow_reported = TRUE;
10590 (*info->callbacks->einfo) ("%P: %s\n", msg);
10591 }
1a72702b
AM
10592 (*info->callbacks->reloc_overflow)
10593 (info, NULL, name, howto->name, (bfd_vma) 0,
10594 input_bfd, input_section, rel->r_offset);
b49e97c9
TS
10595 }
10596 break;
10597
10598 case bfd_reloc_ok:
10599 break;
10600
df58fc94 10601 case bfd_reloc_outofrange:
7db9a74e 10602 msg = NULL;
df58fc94 10603 if (jal_reloc_p (howto->type))
9d862524 10604 msg = (cross_mode_jump_p
2c1c9679 10605 ? _("cannot convert a jump to JALX "
9d862524
MR
10606 "for a non-word-aligned address")
10607 : (howto->type == R_MIPS16_26
2c1c9679
AM
10608 ? _("jump to a non-word-aligned address")
10609 : _("jump to a non-instruction-aligned address")));
99aefae6 10610 else if (b_reloc_p (howto->type))
a6ebf616 10611 msg = (cross_mode_jump_p
2c1c9679 10612 ? _("cannot convert a branch to JALX "
a6ebf616 10613 "for a non-word-aligned address")
2c1c9679 10614 : _("branch to a non-instruction-aligned address"));
7db9a74e
MR
10615 else if (aligned_pcrel_reloc_p (howto->type))
10616 msg = _("PC-relative load from unaligned address");
10617 if (msg)
df58fc94 10618 {
de341542 10619 info->callbacks->einfo
ed53407e
MR
10620 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10621 break;
7361da2c 10622 }
df58fc94
RS
10623 /* Fall through. */
10624
b49e97c9
TS
10625 default:
10626 abort ();
10627 break;
10628 }
10629
10630 /* If we've got another relocation for the address, keep going
10631 until we reach the last one. */
10632 if (use_saved_addend_p)
10633 {
10634 addend = value;
10635 continue;
10636 }
10637
4a14403c 10638 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10639 /* See the comment above about using R_MIPS_64 in the 32-bit
10640 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10641 that calculated the right value. Now, however, we
10642 sign-extend the 32-bit result to 64-bits, and store it as a
10643 64-bit value. We are especially generous here in that we
10644 go to extreme lengths to support this usage on systems with
10645 only a 32-bit VMA. */
10646 {
10647 bfd_vma sign_bits;
10648 bfd_vma low_bits;
10649 bfd_vma high_bits;
10650
10651 if (value & ((bfd_vma) 1 << 31))
10652#ifdef BFD64
10653 sign_bits = ((bfd_vma) 1 << 32) - 1;
10654#else
10655 sign_bits = -1;
10656#endif
10657 else
10658 sign_bits = 0;
10659
10660 /* If we don't know that we have a 64-bit type,
10661 do two separate stores. */
10662 if (bfd_big_endian (input_bfd))
10663 {
10664 /* Undo what we did above. */
10665 rel->r_offset -= 4;
10666 /* Store the sign-bits (which are most significant)
10667 first. */
10668 low_bits = sign_bits;
10669 high_bits = value;
10670 }
10671 else
10672 {
10673 low_bits = value;
10674 high_bits = sign_bits;
10675 }
10676 bfd_put_32 (input_bfd, low_bits,
10677 contents + rel->r_offset);
10678 bfd_put_32 (input_bfd, high_bits,
10679 contents + rel->r_offset + 4);
10680 continue;
10681 }
10682
10683 /* Actually perform the relocation. */
10684 if (! mips_elf_perform_relocation (info, howto, rel, value,
10685 input_bfd, input_section,
38a7df63 10686 contents, cross_mode_jump_p))
b34976b6 10687 return FALSE;
b49e97c9
TS
10688 }
10689
b34976b6 10690 return TRUE;
b49e97c9
TS
10691}
10692\f
861fb55a
DJ
10693/* A function that iterates over each entry in la25_stubs and fills
10694 in the code for each one. DATA points to a mips_htab_traverse_info. */
10695
10696static int
10697mips_elf_create_la25_stub (void **slot, void *data)
10698{
10699 struct mips_htab_traverse_info *hti;
10700 struct mips_elf_link_hash_table *htab;
10701 struct mips_elf_la25_stub *stub;
10702 asection *s;
10703 bfd_byte *loc;
10704 bfd_vma offset, target, target_high, target_low;
3734320d
MF
10705 bfd_vma branch_pc;
10706 bfd_signed_vma pcrel_offset = 0;
861fb55a
DJ
10707
10708 stub = (struct mips_elf_la25_stub *) *slot;
10709 hti = (struct mips_htab_traverse_info *) data;
10710 htab = mips_elf_hash_table (hti->info);
4dfe6ac6 10711 BFD_ASSERT (htab != NULL);
861fb55a
DJ
10712
10713 /* Create the section contents, if we haven't already. */
10714 s = stub->stub_section;
10715 loc = s->contents;
10716 if (loc == NULL)
10717 {
10718 loc = bfd_malloc (s->size);
10719 if (loc == NULL)
10720 {
10721 hti->error = TRUE;
10722 return FALSE;
10723 }
10724 s->contents = loc;
10725 }
10726
10727 /* Work out where in the section this stub should go. */
10728 offset = stub->offset;
10729
3734320d
MF
10730 /* We add 8 here to account for the LUI/ADDIU instructions
10731 before the branch instruction. This cannot be moved down to
10732 where pcrel_offset is calculated as 's' is updated in
10733 mips_elf_get_la25_target. */
10734 branch_pc = s->output_section->vma + s->output_offset + offset + 8;
10735
861fb55a 10736 /* Work out the target address. */
8f0c309a
CLT
10737 target = mips_elf_get_la25_target (stub, &s);
10738 target += s->output_section->vma + s->output_offset;
10739
861fb55a
DJ
10740 target_high = ((target + 0x8000) >> 16) & 0xffff;
10741 target_low = (target & 0xffff);
10742
3734320d
MF
10743 /* Calculate the PC of the compact branch instruction (for the case where
10744 compact branches are used for either microMIPSR6 or MIPSR6 with
10745 compact branches. Add 4-bytes to account for BC using the PC of the
10746 next instruction as the base. */
10747 pcrel_offset = target - (branch_pc + 4);
10748
861fb55a
DJ
10749 if (stub->stub_section != htab->strampoline)
10750 {
df58fc94 10751 /* This is a simple LUI/ADDIU stub. Zero out the beginning
861fb55a
DJ
10752 of the section and write the two instructions at the end. */
10753 memset (loc, 0, offset);
10754 loc += offset;
df58fc94
RS
10755 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10756 {
d21911ea
MR
10757 bfd_put_micromips_32 (hti->output_bfd,
10758 LA25_LUI_MICROMIPS (target_high),
10759 loc);
10760 bfd_put_micromips_32 (hti->output_bfd,
10761 LA25_ADDIU_MICROMIPS (target_low),
10762 loc + 4);
df58fc94
RS
10763 }
10764 else
10765 {
10766 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10767 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10768 }
861fb55a
DJ
10769 }
10770 else
10771 {
10772 /* This is trampoline. */
10773 loc += offset;
df58fc94
RS
10774 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10775 {
d21911ea
MR
10776 bfd_put_micromips_32 (hti->output_bfd,
10777 LA25_LUI_MICROMIPS (target_high), loc);
10778 bfd_put_micromips_32 (hti->output_bfd,
10779 LA25_J_MICROMIPS (target), loc + 4);
10780 bfd_put_micromips_32 (hti->output_bfd,
10781 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
df58fc94
RS
10782 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10783 }
10784 else
10785 {
10786 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
3734320d
MF
10787 if (MIPSR6_P (hti->output_bfd) && htab->compact_branches)
10788 {
10789 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10790 bfd_put_32 (hti->output_bfd, LA25_BC (pcrel_offset), loc + 8);
10791 }
10792 else
10793 {
10794 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10795 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10796 }
df58fc94
RS
10797 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10798 }
861fb55a
DJ
10799 }
10800 return TRUE;
10801}
10802
b49e97c9
TS
10803/* If NAME is one of the special IRIX6 symbols defined by the linker,
10804 adjust it appropriately now. */
10805
10806static void
9719ad41
RS
10807mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10808 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
10809{
10810 /* The linker script takes care of providing names and values for
10811 these, but we must place them into the right sections. */
10812 static const char* const text_section_symbols[] = {
10813 "_ftext",
10814 "_etext",
10815 "__dso_displacement",
10816 "__elf_header",
10817 "__program_header_table",
10818 NULL
10819 };
10820
10821 static const char* const data_section_symbols[] = {
10822 "_fdata",
10823 "_edata",
10824 "_end",
10825 "_fbss",
10826 NULL
10827 };
10828
10829 const char* const *p;
10830 int i;
10831
10832 for (i = 0; i < 2; ++i)
10833 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10834 *p;
10835 ++p)
10836 if (strcmp (*p, name) == 0)
10837 {
10838 /* All of these symbols are given type STT_SECTION by the
10839 IRIX6 linker. */
10840 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 10841 sym->st_other = STO_PROTECTED;
b49e97c9
TS
10842
10843 /* The IRIX linker puts these symbols in special sections. */
10844 if (i == 0)
10845 sym->st_shndx = SHN_MIPS_TEXT;
10846 else
10847 sym->st_shndx = SHN_MIPS_DATA;
10848
10849 break;
10850 }
10851}
10852
10853/* Finish up dynamic symbol handling. We set the contents of various
10854 dynamic sections here. */
10855
b34976b6 10856bfd_boolean
9719ad41
RS
10857_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10858 struct bfd_link_info *info,
10859 struct elf_link_hash_entry *h,
10860 Elf_Internal_Sym *sym)
b49e97c9
TS
10861{
10862 bfd *dynobj;
b49e97c9 10863 asection *sgot;
f4416af6 10864 struct mips_got_info *g, *gg;
b49e97c9 10865 const char *name;
3d6746ca 10866 int idx;
5108fc1b 10867 struct mips_elf_link_hash_table *htab;
738e5348 10868 struct mips_elf_link_hash_entry *hmips;
b49e97c9 10869
5108fc1b 10870 htab = mips_elf_hash_table (info);
4dfe6ac6 10871 BFD_ASSERT (htab != NULL);
b49e97c9 10872 dynobj = elf_hash_table (info)->dynobj;
738e5348 10873 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 10874
861fb55a
DJ
10875 BFD_ASSERT (!htab->is_vxworks);
10876
1bbce132
MR
10877 if (h->plt.plist != NULL
10878 && (h->plt.plist->mips_offset != MINUS_ONE
10879 || h->plt.plist->comp_offset != MINUS_ONE))
861fb55a
DJ
10880 {
10881 /* We've decided to create a PLT entry for this symbol. */
10882 bfd_byte *loc;
1bbce132 10883 bfd_vma header_address, got_address;
861fb55a 10884 bfd_vma got_address_high, got_address_low, load;
1bbce132
MR
10885 bfd_vma got_index;
10886 bfd_vma isa_bit;
10887
10888 got_index = h->plt.plist->gotplt_index;
861fb55a
DJ
10889
10890 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10891 BFD_ASSERT (h->dynindx != -1);
ce558b89 10892 BFD_ASSERT (htab->root.splt != NULL);
1bbce132 10893 BFD_ASSERT (got_index != MINUS_ONE);
861fb55a
DJ
10894 BFD_ASSERT (!h->def_regular);
10895
10896 /* Calculate the address of the PLT header. */
1bbce132 10897 isa_bit = htab->plt_header_is_comp;
ce558b89
AM
10898 header_address = (htab->root.splt->output_section->vma
10899 + htab->root.splt->output_offset + isa_bit);
861fb55a
DJ
10900
10901 /* Calculate the address of the .got.plt entry. */
ce558b89
AM
10902 got_address = (htab->root.sgotplt->output_section->vma
10903 + htab->root.sgotplt->output_offset
1bbce132
MR
10904 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10905
861fb55a
DJ
10906 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10907 got_address_low = got_address & 0xffff;
10908
789ff5b6
MR
10909 /* The PLT sequence is not safe for N64 if .got.plt entry's address
10910 cannot be loaded in two instructions. */
10911 if (ABI_64_P (output_bfd)
10912 && ((got_address + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
10913 {
10914 _bfd_error_handler
10915 /* xgettext:c-format */
10916 (_("%pB: `%pA' entry VMA of %#" PRIx64 " outside the 32-bit range "
10917 "supported; consider using `-Ttext-segment=...'"),
10918 output_bfd,
10919 htab->root.sgotplt->output_section,
10920 (int64_t) got_address);
10921 bfd_set_error (bfd_error_no_error);
10922 return FALSE;
10923 }
10924
861fb55a 10925 /* Initially point the .got.plt entry at the PLT header. */
6a382bce
MR
10926 loc = (htab->root.sgotplt->contents
10927 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
861fb55a
DJ
10928 if (ABI_64_P (output_bfd))
10929 bfd_put_64 (output_bfd, header_address, loc);
10930 else
10931 bfd_put_32 (output_bfd, header_address, loc);
10932
1bbce132 10933 /* Now handle the PLT itself. First the standard entry (the order
07d6d2b8 10934 does not matter, we just have to pick one). */
1bbce132
MR
10935 if (h->plt.plist->mips_offset != MINUS_ONE)
10936 {
10937 const bfd_vma *plt_entry;
10938 bfd_vma plt_offset;
861fb55a 10939
1bbce132 10940 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
861fb55a 10941
ce558b89 10942 BFD_ASSERT (plt_offset <= htab->root.splt->size);
6d30f5b2 10943
1bbce132 10944 /* Find out where the .plt entry should go. */
ce558b89 10945 loc = htab->root.splt->contents + plt_offset;
1bbce132
MR
10946
10947 /* Pick the load opcode. */
10948 load = MIPS_ELF_LOAD_WORD (output_bfd);
10949
10950 /* Fill in the PLT entry itself. */
7361da2c
AB
10951
10952 if (MIPSR6_P (output_bfd))
3734320d
MF
10953 plt_entry = htab->compact_branches ? mipsr6_exec_plt_entry_compact
10954 : mipsr6_exec_plt_entry;
7361da2c
AB
10955 else
10956 plt_entry = mips_exec_plt_entry;
1bbce132
MR
10957 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10958 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10959 loc + 4);
10960
3734320d
MF
10961 if (! LOAD_INTERLOCKS_P (output_bfd)
10962 || (MIPSR6_P (output_bfd) && htab->compact_branches))
1bbce132
MR
10963 {
10964 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10965 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10966 }
10967 else
10968 {
10969 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10970 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10971 loc + 12);
10972 }
6d30f5b2 10973 }
1bbce132
MR
10974
10975 /* Now the compressed entry. They come after any standard ones. */
10976 if (h->plt.plist->comp_offset != MINUS_ONE)
6d30f5b2 10977 {
1bbce132
MR
10978 bfd_vma plt_offset;
10979
10980 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10981 + h->plt.plist->comp_offset);
10982
ce558b89 10983 BFD_ASSERT (plt_offset <= htab->root.splt->size);
1bbce132
MR
10984
10985 /* Find out where the .plt entry should go. */
ce558b89 10986 loc = htab->root.splt->contents + plt_offset;
1bbce132
MR
10987
10988 /* Fill in the PLT entry itself. */
833794fc
MR
10989 if (!MICROMIPS_P (output_bfd))
10990 {
10991 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10992
10993 bfd_put_16 (output_bfd, plt_entry[0], loc);
10994 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10995 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10996 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10997 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10998 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10999 bfd_put_32 (output_bfd, got_address, loc + 12);
11000 }
11001 else if (htab->insn32)
11002 {
11003 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
11004
11005 bfd_put_16 (output_bfd, plt_entry[0], loc);
11006 bfd_put_16 (output_bfd, got_address_high, loc + 2);
11007 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11008 bfd_put_16 (output_bfd, got_address_low, loc + 6);
11009 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11010 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11011 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
11012 bfd_put_16 (output_bfd, got_address_low, loc + 14);
11013 }
11014 else
1bbce132
MR
11015 {
11016 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
11017 bfd_signed_vma gotpc_offset;
11018 bfd_vma loc_address;
11019
11020 BFD_ASSERT (got_address % 4 == 0);
11021
ce558b89
AM
11022 loc_address = (htab->root.splt->output_section->vma
11023 + htab->root.splt->output_offset + plt_offset);
1bbce132
MR
11024 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
11025
11026 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11027 if (gotpc_offset + 0x1000000 >= 0x2000000)
11028 {
4eca0228 11029 _bfd_error_handler
695344c0 11030 /* xgettext:c-format */
2dcf00ce 11031 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
1bbce132
MR
11032 "beyond the range of ADDIUPC"),
11033 output_bfd,
ce558b89 11034 htab->root.sgotplt->output_section,
2dcf00ce 11035 (int64_t) gotpc_offset,
c08bb8dd 11036 htab->root.splt->output_section);
1bbce132
MR
11037 bfd_set_error (bfd_error_no_error);
11038 return FALSE;
11039 }
11040 bfd_put_16 (output_bfd,
11041 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11042 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11043 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11044 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
11045 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11046 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11047 }
6d30f5b2 11048 }
861fb55a
DJ
11049
11050 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
ce558b89 11051 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
1bbce132 11052 got_index - 2, h->dynindx,
861fb55a
DJ
11053 R_MIPS_JUMP_SLOT, got_address);
11054
11055 /* We distinguish between PLT entries and lazy-binding stubs by
11056 giving the former an st_other value of STO_MIPS_PLT. Set the
11057 flag and leave the value if there are any relocations in the
11058 binary where pointer equality matters. */
11059 sym->st_shndx = SHN_UNDEF;
11060 if (h->pointer_equality_needed)
1bbce132 11061 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
861fb55a 11062 else
1bbce132
MR
11063 {
11064 sym->st_value = 0;
11065 sym->st_other = 0;
11066 }
861fb55a 11067 }
1bbce132
MR
11068
11069 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
b49e97c9 11070 {
861fb55a 11071 /* We've decided to create a lazy-binding stub. */
1bbce132
MR
11072 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
11073 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
11074 bfd_vma stub_size = htab->function_stub_size;
5108fc1b 11075 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
1bbce132
MR
11076 bfd_vma isa_bit = micromips_p;
11077 bfd_vma stub_big_size;
11078
833794fc 11079 if (!micromips_p)
1bbce132 11080 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
833794fc
MR
11081 else if (htab->insn32)
11082 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
11083 else
11084 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
b49e97c9
TS
11085
11086 /* This symbol has a stub. Set it up. */
11087
11088 BFD_ASSERT (h->dynindx != -1);
11089
1bbce132 11090 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
3d6746ca
DD
11091
11092 /* Values up to 2^31 - 1 are allowed. Larger values would cause
5108fc1b
RS
11093 sign extension at runtime in the stub, resulting in a negative
11094 index value. */
11095 if (h->dynindx & ~0x7fffffff)
b34976b6 11096 return FALSE;
b49e97c9
TS
11097
11098 /* Fill the stub. */
1bbce132
MR
11099 if (micromips_p)
11100 {
11101 idx = 0;
11102 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
11103 stub + idx);
11104 idx += 4;
833794fc
MR
11105 if (htab->insn32)
11106 {
11107 bfd_put_micromips_32 (output_bfd,
40fc1451 11108 STUB_MOVE32_MICROMIPS, stub + idx);
833794fc
MR
11109 idx += 4;
11110 }
11111 else
11112 {
11113 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
11114 idx += 2;
11115 }
1bbce132
MR
11116 if (stub_size == stub_big_size)
11117 {
11118 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
11119
11120 bfd_put_micromips_32 (output_bfd,
11121 STUB_LUI_MICROMIPS (dynindx_hi),
11122 stub + idx);
11123 idx += 4;
11124 }
833794fc
MR
11125 if (htab->insn32)
11126 {
11127 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
11128 stub + idx);
11129 idx += 4;
11130 }
11131 else
11132 {
11133 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
11134 idx += 2;
11135 }
1bbce132
MR
11136
11137 /* If a large stub is not required and sign extension is not a
11138 problem, then use legacy code in the stub. */
11139 if (stub_size == stub_big_size)
11140 bfd_put_micromips_32 (output_bfd,
11141 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
11142 stub + idx);
11143 else if (h->dynindx & ~0x7fff)
11144 bfd_put_micromips_32 (output_bfd,
11145 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
11146 stub + idx);
11147 else
11148 bfd_put_micromips_32 (output_bfd,
11149 STUB_LI16S_MICROMIPS (output_bfd,
11150 h->dynindx),
11151 stub + idx);
11152 }
3d6746ca 11153 else
1bbce132
MR
11154 {
11155 idx = 0;
11156 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
11157 idx += 4;
40fc1451 11158 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
1bbce132
MR
11159 idx += 4;
11160 if (stub_size == stub_big_size)
11161 {
11162 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
11163 stub + idx);
11164 idx += 4;
11165 }
3734320d
MF
11166
11167 if (!(MIPSR6_P (output_bfd) && htab->compact_branches))
11168 {
11169 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
11170 idx += 4;
11171 }
1bbce132
MR
11172
11173 /* If a large stub is not required and sign extension is not a
11174 problem, then use legacy code in the stub. */
11175 if (stub_size == stub_big_size)
11176 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
11177 stub + idx);
11178 else if (h->dynindx & ~0x7fff)
11179 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
11180 stub + idx);
11181 else
11182 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
11183 stub + idx);
3734320d
MF
11184 idx += 4;
11185
11186 if (MIPSR6_P (output_bfd) && htab->compact_branches)
11187 bfd_put_32 (output_bfd, STUB_JALRC, stub + idx);
1bbce132 11188 }
5108fc1b 11189
1bbce132
MR
11190 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
11191 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
11192 stub, stub_size);
b49e97c9 11193
1bbce132 11194 /* Mark the symbol as undefined. stub_offset != -1 occurs
b49e97c9
TS
11195 only for the referenced symbol. */
11196 sym->st_shndx = SHN_UNDEF;
11197
11198 /* The run-time linker uses the st_value field of the symbol
11199 to reset the global offset table entry for this external
11200 to its stub address when unlinking a shared object. */
4e41d0d7
RS
11201 sym->st_value = (htab->sstubs->output_section->vma
11202 + htab->sstubs->output_offset
1bbce132
MR
11203 + h->plt.plist->stub_offset
11204 + isa_bit);
11205 sym->st_other = other;
b49e97c9
TS
11206 }
11207
738e5348
RS
11208 /* If we have a MIPS16 function with a stub, the dynamic symbol must
11209 refer to the stub, since only the stub uses the standard calling
11210 conventions. */
11211 if (h->dynindx != -1 && hmips->fn_stub != NULL)
11212 {
11213 BFD_ASSERT (hmips->need_fn_stub);
11214 sym->st_value = (hmips->fn_stub->output_section->vma
11215 + hmips->fn_stub->output_offset);
11216 sym->st_size = hmips->fn_stub->size;
11217 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
11218 }
11219
b49e97c9 11220 BFD_ASSERT (h->dynindx != -1
f5385ebf 11221 || h->forced_local);
b49e97c9 11222
ce558b89 11223 sgot = htab->root.sgot;
a8028dd0 11224 g = htab->got_info;
b49e97c9
TS
11225 BFD_ASSERT (g != NULL);
11226
11227 /* Run through the global symbol table, creating GOT entries for all
11228 the symbols that need them. */
020d7251 11229 if (hmips->global_got_area != GGA_NONE)
b49e97c9
TS
11230 {
11231 bfd_vma offset;
11232 bfd_vma value;
11233
6eaa6adc 11234 value = sym->st_value;
13fbec83 11235 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
b49e97c9
TS
11236 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
11237 }
11238
e641e783 11239 if (hmips->global_got_area != GGA_NONE && g->next)
f4416af6
AO
11240 {
11241 struct mips_got_entry e, *p;
0626d451 11242 bfd_vma entry;
f4416af6 11243 bfd_vma offset;
f4416af6
AO
11244
11245 gg = g;
11246
11247 e.abfd = output_bfd;
11248 e.symndx = -1;
738e5348 11249 e.d.h = hmips;
9ab066b4 11250 e.tls_type = GOT_TLS_NONE;
143d77c5 11251
f4416af6
AO
11252 for (g = g->next; g->next != gg; g = g->next)
11253 {
11254 if (g->got_entries
11255 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
11256 &e)))
11257 {
11258 offset = p->gotidx;
ce558b89 11259 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
0e1862bb 11260 if (bfd_link_pic (info)
0626d451
RS
11261 || (elf_hash_table (info)->dynamic_sections_created
11262 && p->d.h != NULL
f5385ebf
AM
11263 && p->d.h->root.def_dynamic
11264 && !p->d.h->root.def_regular))
0626d451
RS
11265 {
11266 /* Create an R_MIPS_REL32 relocation for this entry. Due to
11267 the various compatibility problems, it's easier to mock
11268 up an R_MIPS_32 or R_MIPS_64 relocation and leave
11269 mips_elf_create_dynamic_relocation to calculate the
11270 appropriate addend. */
11271 Elf_Internal_Rela rel[3];
11272
11273 memset (rel, 0, sizeof (rel));
11274 if (ABI_64_P (output_bfd))
11275 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
11276 else
11277 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
11278 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
11279
11280 entry = 0;
11281 if (! (mips_elf_create_dynamic_relocation
11282 (output_bfd, info, rel,
11283 e.d.h, NULL, sym->st_value, &entry, sgot)))
11284 return FALSE;
11285 }
11286 else
11287 entry = sym->st_value;
11288 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
11289 }
11290 }
11291 }
11292
b49e97c9
TS
11293 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
11294 name = h->root.root.string;
9637f6ef 11295 if (h == elf_hash_table (info)->hdynamic
22edb2f1 11296 || h == elf_hash_table (info)->hgot)
b49e97c9
TS
11297 sym->st_shndx = SHN_ABS;
11298 else if (strcmp (name, "_DYNAMIC_LINK") == 0
11299 || strcmp (name, "_DYNAMIC_LINKING") == 0)
11300 {
11301 sym->st_shndx = SHN_ABS;
11302 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11303 sym->st_value = 1;
11304 }
b49e97c9
TS
11305 else if (SGI_COMPAT (output_bfd))
11306 {
11307 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
11308 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
11309 {
11310 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11311 sym->st_other = STO_PROTECTED;
11312 sym->st_value = 0;
11313 sym->st_shndx = SHN_MIPS_DATA;
11314 }
11315 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11316 {
11317 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11318 sym->st_other = STO_PROTECTED;
11319 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11320 sym->st_shndx = SHN_ABS;
11321 }
11322 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11323 {
11324 if (h->type == STT_FUNC)
11325 sym->st_shndx = SHN_MIPS_TEXT;
11326 else if (h->type == STT_OBJECT)
11327 sym->st_shndx = SHN_MIPS_DATA;
11328 }
11329 }
11330
861fb55a
DJ
11331 /* Emit a copy reloc, if needed. */
11332 if (h->needs_copy)
11333 {
11334 asection *s;
11335 bfd_vma symval;
11336
11337 BFD_ASSERT (h->dynindx != -1);
11338 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11339
11340 s = mips_elf_rel_dyn_section (info, FALSE);
11341 symval = (h->root.u.def.section->output_section->vma
11342 + h->root.u.def.section->output_offset
11343 + h->root.u.def.value);
11344 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11345 h->dynindx, R_MIPS_COPY, symval);
11346 }
11347
b49e97c9
TS
11348 /* Handle the IRIX6-specific symbols. */
11349 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11350 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11351
cbf8d970
MR
11352 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11353 to treat compressed symbols like any other. */
30c09090 11354 if (ELF_ST_IS_MIPS16 (sym->st_other))
738e5348
RS
11355 {
11356 BFD_ASSERT (sym->st_value & 1);
11357 sym->st_other -= STO_MIPS16;
11358 }
cbf8d970
MR
11359 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11360 {
11361 BFD_ASSERT (sym->st_value & 1);
11362 sym->st_other -= STO_MICROMIPS;
11363 }
b49e97c9 11364
b34976b6 11365 return TRUE;
b49e97c9
TS
11366}
11367
0a44bf69
RS
11368/* Likewise, for VxWorks. */
11369
11370bfd_boolean
11371_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11372 struct bfd_link_info *info,
11373 struct elf_link_hash_entry *h,
11374 Elf_Internal_Sym *sym)
11375{
11376 bfd *dynobj;
11377 asection *sgot;
11378 struct mips_got_info *g;
11379 struct mips_elf_link_hash_table *htab;
020d7251 11380 struct mips_elf_link_hash_entry *hmips;
0a44bf69
RS
11381
11382 htab = mips_elf_hash_table (info);
4dfe6ac6 11383 BFD_ASSERT (htab != NULL);
0a44bf69 11384 dynobj = elf_hash_table (info)->dynobj;
020d7251 11385 hmips = (struct mips_elf_link_hash_entry *) h;
0a44bf69 11386
1bbce132 11387 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
0a44bf69 11388 {
6d79d2ed 11389 bfd_byte *loc;
1bbce132 11390 bfd_vma plt_address, got_address, got_offset, branch_offset;
0a44bf69
RS
11391 Elf_Internal_Rela rel;
11392 static const bfd_vma *plt_entry;
1bbce132
MR
11393 bfd_vma gotplt_index;
11394 bfd_vma plt_offset;
11395
11396 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11397 gotplt_index = h->plt.plist->gotplt_index;
0a44bf69
RS
11398
11399 BFD_ASSERT (h->dynindx != -1);
ce558b89 11400 BFD_ASSERT (htab->root.splt != NULL);
1bbce132 11401 BFD_ASSERT (gotplt_index != MINUS_ONE);
ce558b89 11402 BFD_ASSERT (plt_offset <= htab->root.splt->size);
0a44bf69
RS
11403
11404 /* Calculate the address of the .plt entry. */
ce558b89
AM
11405 plt_address = (htab->root.splt->output_section->vma
11406 + htab->root.splt->output_offset
1bbce132 11407 + plt_offset);
0a44bf69
RS
11408
11409 /* Calculate the address of the .got.plt entry. */
ce558b89
AM
11410 got_address = (htab->root.sgotplt->output_section->vma
11411 + htab->root.sgotplt->output_offset
1bbce132 11412 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
0a44bf69
RS
11413
11414 /* Calculate the offset of the .got.plt entry from
11415 _GLOBAL_OFFSET_TABLE_. */
11416 got_offset = mips_elf_gotplt_index (info, h);
11417
11418 /* Calculate the offset for the branch at the start of the PLT
11419 entry. The branch jumps to the beginning of .plt. */
1bbce132 11420 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
0a44bf69
RS
11421
11422 /* Fill in the initial value of the .got.plt entry. */
11423 bfd_put_32 (output_bfd, plt_address,
ce558b89 11424 (htab->root.sgotplt->contents
1bbce132 11425 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
0a44bf69
RS
11426
11427 /* Find out where the .plt entry should go. */
ce558b89 11428 loc = htab->root.splt->contents + plt_offset;
0a44bf69 11429
0e1862bb 11430 if (bfd_link_pic (info))
0a44bf69
RS
11431 {
11432 plt_entry = mips_vxworks_shared_plt_entry;
11433 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
1bbce132 11434 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
0a44bf69
RS
11435 }
11436 else
11437 {
11438 bfd_vma got_address_high, got_address_low;
11439
11440 plt_entry = mips_vxworks_exec_plt_entry;
11441 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11442 got_address_low = got_address & 0xffff;
11443
11444 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
1bbce132 11445 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
0a44bf69
RS
11446 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11447 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11448 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11449 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11450 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11451 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11452
11453 loc = (htab->srelplt2->contents
1bbce132 11454 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
0a44bf69
RS
11455
11456 /* Emit a relocation for the .got.plt entry. */
11457 rel.r_offset = got_address;
11458 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
1bbce132 11459 rel.r_addend = plt_offset;
0a44bf69
RS
11460 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11461
11462 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11463 loc += sizeof (Elf32_External_Rela);
11464 rel.r_offset = plt_address + 8;
11465 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11466 rel.r_addend = got_offset;
11467 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11468
11469 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11470 loc += sizeof (Elf32_External_Rela);
11471 rel.r_offset += 4;
11472 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11473 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11474 }
11475
11476 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
ce558b89 11477 loc = (htab->root.srelplt->contents
1bbce132 11478 + gotplt_index * sizeof (Elf32_External_Rela));
0a44bf69
RS
11479 rel.r_offset = got_address;
11480 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11481 rel.r_addend = 0;
11482 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11483
11484 if (!h->def_regular)
11485 sym->st_shndx = SHN_UNDEF;
11486 }
11487
11488 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11489
ce558b89 11490 sgot = htab->root.sgot;
a8028dd0 11491 g = htab->got_info;
0a44bf69
RS
11492 BFD_ASSERT (g != NULL);
11493
11494 /* See if this symbol has an entry in the GOT. */
020d7251 11495 if (hmips->global_got_area != GGA_NONE)
0a44bf69
RS
11496 {
11497 bfd_vma offset;
11498 Elf_Internal_Rela outrel;
11499 bfd_byte *loc;
11500 asection *s;
11501
11502 /* Install the symbol value in the GOT. */
13fbec83 11503 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
0a44bf69
RS
11504 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11505
11506 /* Add a dynamic relocation for it. */
11507 s = mips_elf_rel_dyn_section (info, FALSE);
11508 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11509 outrel.r_offset = (sgot->output_section->vma
11510 + sgot->output_offset
11511 + offset);
11512 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11513 outrel.r_addend = 0;
11514 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11515 }
11516
11517 /* Emit a copy reloc, if needed. */
11518 if (h->needs_copy)
11519 {
11520 Elf_Internal_Rela rel;
5474d94f
AM
11521 asection *srel;
11522 bfd_byte *loc;
0a44bf69
RS
11523
11524 BFD_ASSERT (h->dynindx != -1);
11525
11526 rel.r_offset = (h->root.u.def.section->output_section->vma
11527 + h->root.u.def.section->output_offset
11528 + h->root.u.def.value);
11529 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11530 rel.r_addend = 0;
afbf7e8e 11531 if (h->root.u.def.section == htab->root.sdynrelro)
5474d94f
AM
11532 srel = htab->root.sreldynrelro;
11533 else
11534 srel = htab->root.srelbss;
11535 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11536 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11537 ++srel->reloc_count;
0a44bf69
RS
11538 }
11539
df58fc94
RS
11540 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11541 if (ELF_ST_IS_COMPRESSED (sym->st_other))
0a44bf69
RS
11542 sym->st_value &= ~1;
11543
11544 return TRUE;
11545}
11546
861fb55a
DJ
11547/* Write out a plt0 entry to the beginning of .plt. */
11548
1bbce132 11549static bfd_boolean
861fb55a
DJ
11550mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11551{
11552 bfd_byte *loc;
11553 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11554 static const bfd_vma *plt_entry;
11555 struct mips_elf_link_hash_table *htab;
11556
11557 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11558 BFD_ASSERT (htab != NULL);
11559
861fb55a 11560 if (ABI_64_P (output_bfd))
3734320d
MF
11561 plt_entry = (htab->compact_branches
11562 ? mipsr6_n64_exec_plt0_entry_compact
11563 : mips_n64_exec_plt0_entry);
861fb55a 11564 else if (ABI_N32_P (output_bfd))
3734320d
MF
11565 plt_entry = (htab->compact_branches
11566 ? mipsr6_n32_exec_plt0_entry_compact
11567 : mips_n32_exec_plt0_entry);
833794fc 11568 else if (!htab->plt_header_is_comp)
3734320d
MF
11569 plt_entry = (htab->compact_branches
11570 ? mipsr6_o32_exec_plt0_entry_compact
11571 : mips_o32_exec_plt0_entry);
833794fc
MR
11572 else if (htab->insn32)
11573 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11574 else
11575 plt_entry = micromips_o32_exec_plt0_entry;
861fb55a
DJ
11576
11577 /* Calculate the value of .got.plt. */
ce558b89
AM
11578 gotplt_value = (htab->root.sgotplt->output_section->vma
11579 + htab->root.sgotplt->output_offset);
861fb55a
DJ
11580 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11581 gotplt_value_low = gotplt_value & 0xffff;
11582
11583 /* The PLT sequence is not safe for N64 if .got.plt's address can
11584 not be loaded in two instructions. */
789ff5b6
MR
11585 if (ABI_64_P (output_bfd)
11586 && ((gotplt_value + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
11587 {
11588 _bfd_error_handler
11589 /* xgettext:c-format */
11590 (_("%pB: `%pA' start VMA of %#" PRIx64 " outside the 32-bit range "
11591 "supported; consider using `-Ttext-segment=...'"),
11592 output_bfd,
11593 htab->root.sgotplt->output_section,
11594 (int64_t) gotplt_value);
11595 bfd_set_error (bfd_error_no_error);
11596 return FALSE;
11597 }
861fb55a
DJ
11598
11599 /* Install the PLT header. */
ce558b89 11600 loc = htab->root.splt->contents;
1bbce132
MR
11601 if (plt_entry == micromips_o32_exec_plt0_entry)
11602 {
11603 bfd_vma gotpc_offset;
11604 bfd_vma loc_address;
11605 size_t i;
11606
11607 BFD_ASSERT (gotplt_value % 4 == 0);
11608
ce558b89
AM
11609 loc_address = (htab->root.splt->output_section->vma
11610 + htab->root.splt->output_offset);
1bbce132
MR
11611 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11612
11613 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11614 if (gotpc_offset + 0x1000000 >= 0x2000000)
11615 {
4eca0228 11616 _bfd_error_handler
695344c0 11617 /* xgettext:c-format */
2dcf00ce
AM
11618 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11619 "beyond the range of ADDIUPC"),
1bbce132 11620 output_bfd,
ce558b89 11621 htab->root.sgotplt->output_section,
2dcf00ce 11622 (int64_t) gotpc_offset,
c08bb8dd 11623 htab->root.splt->output_section);
1bbce132
MR
11624 bfd_set_error (bfd_error_no_error);
11625 return FALSE;
11626 }
11627 bfd_put_16 (output_bfd,
11628 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11629 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11630 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11631 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11632 }
833794fc
MR
11633 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11634 {
11635 size_t i;
11636
11637 bfd_put_16 (output_bfd, plt_entry[0], loc);
11638 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11639 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11640 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11641 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11642 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11643 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11644 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11645 }
1bbce132
MR
11646 else
11647 {
11648 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11649 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11650 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11651 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11652 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11653 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11654 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11655 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11656 }
11657
11658 return TRUE;
861fb55a
DJ
11659}
11660
0a44bf69
RS
11661/* Install the PLT header for a VxWorks executable and finalize the
11662 contents of .rela.plt.unloaded. */
11663
11664static void
11665mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11666{
11667 Elf_Internal_Rela rela;
11668 bfd_byte *loc;
11669 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11670 static const bfd_vma *plt_entry;
11671 struct mips_elf_link_hash_table *htab;
11672
11673 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11674 BFD_ASSERT (htab != NULL);
11675
0a44bf69
RS
11676 plt_entry = mips_vxworks_exec_plt0_entry;
11677
11678 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11679 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11680 + htab->root.hgot->root.u.def.section->output_offset
11681 + htab->root.hgot->root.u.def.value);
11682
11683 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11684 got_value_low = got_value & 0xffff;
11685
11686 /* Calculate the address of the PLT header. */
ce558b89
AM
11687 plt_address = (htab->root.splt->output_section->vma
11688 + htab->root.splt->output_offset);
0a44bf69
RS
11689
11690 /* Install the PLT header. */
ce558b89 11691 loc = htab->root.splt->contents;
0a44bf69
RS
11692 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11693 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11694 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11695 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11696 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11697 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11698
11699 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11700 loc = htab->srelplt2->contents;
11701 rela.r_offset = plt_address;
11702 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11703 rela.r_addend = 0;
11704 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11705 loc += sizeof (Elf32_External_Rela);
11706
11707 /* Output the relocation for the following addiu of
11708 %lo(_GLOBAL_OFFSET_TABLE_). */
11709 rela.r_offset += 4;
11710 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11711 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11712 loc += sizeof (Elf32_External_Rela);
11713
11714 /* Fix up the remaining relocations. They may have the wrong
11715 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11716 in which symbols were output. */
11717 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11718 {
11719 Elf_Internal_Rela rel;
11720
11721 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11722 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11723 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11724 loc += sizeof (Elf32_External_Rela);
11725
11726 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11727 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11728 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11729 loc += sizeof (Elf32_External_Rela);
11730
11731 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11732 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11733 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11734 loc += sizeof (Elf32_External_Rela);
11735 }
11736}
11737
11738/* Install the PLT header for a VxWorks shared library. */
11739
11740static void
11741mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11742{
11743 unsigned int i;
11744 struct mips_elf_link_hash_table *htab;
11745
11746 htab = mips_elf_hash_table (info);
4dfe6ac6 11747 BFD_ASSERT (htab != NULL);
0a44bf69
RS
11748
11749 /* We just need to copy the entry byte-by-byte. */
11750 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11751 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
ce558b89 11752 htab->root.splt->contents + i * 4);
0a44bf69
RS
11753}
11754
b49e97c9
TS
11755/* Finish up the dynamic sections. */
11756
b34976b6 11757bfd_boolean
9719ad41
RS
11758_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11759 struct bfd_link_info *info)
b49e97c9
TS
11760{
11761 bfd *dynobj;
11762 asection *sdyn;
11763 asection *sgot;
f4416af6 11764 struct mips_got_info *gg, *g;
0a44bf69 11765 struct mips_elf_link_hash_table *htab;
b49e97c9 11766
0a44bf69 11767 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11768 BFD_ASSERT (htab != NULL);
11769
b49e97c9
TS
11770 dynobj = elf_hash_table (info)->dynobj;
11771
3d4d4302 11772 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
b49e97c9 11773
ce558b89 11774 sgot = htab->root.sgot;
23cc69b6 11775 gg = htab->got_info;
b49e97c9
TS
11776
11777 if (elf_hash_table (info)->dynamic_sections_created)
11778 {
11779 bfd_byte *b;
943284cc 11780 int dyn_to_skip = 0, dyn_skipped = 0;
b49e97c9
TS
11781
11782 BFD_ASSERT (sdyn != NULL);
23cc69b6
RS
11783 BFD_ASSERT (gg != NULL);
11784
d7206569 11785 g = mips_elf_bfd_got (output_bfd, FALSE);
b49e97c9
TS
11786 BFD_ASSERT (g != NULL);
11787
11788 for (b = sdyn->contents;
eea6121a 11789 b < sdyn->contents + sdyn->size;
b49e97c9
TS
11790 b += MIPS_ELF_DYN_SIZE (dynobj))
11791 {
11792 Elf_Internal_Dyn dyn;
11793 const char *name;
11794 size_t elemsize;
11795 asection *s;
b34976b6 11796 bfd_boolean swap_out_p;
b49e97c9
TS
11797
11798 /* Read in the current dynamic entry. */
11799 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11800
11801 /* Assume that we're going to modify it and write it out. */
b34976b6 11802 swap_out_p = TRUE;
b49e97c9
TS
11803
11804 switch (dyn.d_tag)
11805 {
11806 case DT_RELENT:
b49e97c9
TS
11807 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11808 break;
11809
0a44bf69
RS
11810 case DT_RELAENT:
11811 BFD_ASSERT (htab->is_vxworks);
11812 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11813 break;
11814
b49e97c9
TS
11815 case DT_STRSZ:
11816 /* Rewrite DT_STRSZ. */
11817 dyn.d_un.d_val =
11818 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11819 break;
11820
11821 case DT_PLTGOT:
ce558b89 11822 s = htab->root.sgot;
861fb55a
DJ
11823 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11824 break;
11825
11826 case DT_MIPS_PLTGOT:
ce558b89 11827 s = htab->root.sgotplt;
861fb55a 11828 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
b49e97c9
TS
11829 break;
11830
11831 case DT_MIPS_RLD_VERSION:
11832 dyn.d_un.d_val = 1; /* XXX */
11833 break;
11834
11835 case DT_MIPS_FLAGS:
11836 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11837 break;
11838
b49e97c9 11839 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
11840 {
11841 time_t t;
11842 time (&t);
11843 dyn.d_un.d_val = t;
11844 }
b49e97c9
TS
11845 break;
11846
11847 case DT_MIPS_ICHECKSUM:
11848 /* XXX FIXME: */
b34976b6 11849 swap_out_p = FALSE;
b49e97c9
TS
11850 break;
11851
11852 case DT_MIPS_IVERSION:
11853 /* XXX FIXME: */
b34976b6 11854 swap_out_p = FALSE;
b49e97c9
TS
11855 break;
11856
11857 case DT_MIPS_BASE_ADDRESS:
11858 s = output_bfd->sections;
11859 BFD_ASSERT (s != NULL);
11860 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11861 break;
11862
11863 case DT_MIPS_LOCAL_GOTNO:
11864 dyn.d_un.d_val = g->local_gotno;
11865 break;
11866
11867 case DT_MIPS_UNREFEXTNO:
11868 /* The index into the dynamic symbol table which is the
11869 entry of the first external symbol that is not
11870 referenced within the same object. */
11871 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11872 break;
11873
11874 case DT_MIPS_GOTSYM:
d222d210 11875 if (htab->global_gotsym)
b49e97c9 11876 {
d222d210 11877 dyn.d_un.d_val = htab->global_gotsym->dynindx;
b49e97c9
TS
11878 break;
11879 }
11880 /* In case if we don't have global got symbols we default
11881 to setting DT_MIPS_GOTSYM to the same value as
1a0670f3
AM
11882 DT_MIPS_SYMTABNO. */
11883 /* Fall through. */
b49e97c9
TS
11884
11885 case DT_MIPS_SYMTABNO:
11886 name = ".dynsym";
11887 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
4ade44b7 11888 s = bfd_get_linker_section (dynobj, name);
b49e97c9 11889
131e2f8e
MF
11890 if (s != NULL)
11891 dyn.d_un.d_val = s->size / elemsize;
11892 else
11893 dyn.d_un.d_val = 0;
b49e97c9
TS
11894 break;
11895
11896 case DT_MIPS_HIPAGENO:
861fb55a 11897 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
b49e97c9
TS
11898 break;
11899
11900 case DT_MIPS_RLD_MAP:
b4082c70
DD
11901 {
11902 struct elf_link_hash_entry *h;
11903 h = mips_elf_hash_table (info)->rld_symbol;
11904 if (!h)
11905 {
11906 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11907 swap_out_p = FALSE;
11908 break;
11909 }
11910 s = h->root.u.def.section;
a5499fa4
MF
11911
11912 /* The MIPS_RLD_MAP tag stores the absolute address of the
11913 debug pointer. */
b4082c70
DD
11914 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11915 + h->root.u.def.value);
11916 }
b49e97c9
TS
11917 break;
11918
a5499fa4
MF
11919 case DT_MIPS_RLD_MAP_REL:
11920 {
11921 struct elf_link_hash_entry *h;
11922 bfd_vma dt_addr, rld_addr;
11923 h = mips_elf_hash_table (info)->rld_symbol;
11924 if (!h)
11925 {
11926 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11927 swap_out_p = FALSE;
11928 break;
11929 }
11930 s = h->root.u.def.section;
11931
11932 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11933 pointer, relative to the address of the tag. */
11934 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
d5cff5df 11935 + (b - sdyn->contents));
a5499fa4
MF
11936 rld_addr = (s->output_section->vma + s->output_offset
11937 + h->root.u.def.value);
11938 dyn.d_un.d_ptr = rld_addr - dt_addr;
11939 }
11940 break;
11941
b49e97c9
TS
11942 case DT_MIPS_OPTIONS:
11943 s = (bfd_get_section_by_name
11944 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11945 dyn.d_un.d_ptr = s->vma;
11946 break;
11947
0a44bf69 11948 case DT_PLTREL:
861fb55a
DJ
11949 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11950 if (htab->is_vxworks)
11951 dyn.d_un.d_val = DT_RELA;
11952 else
11953 dyn.d_un.d_val = DT_REL;
0a44bf69
RS
11954 break;
11955
11956 case DT_PLTRELSZ:
861fb55a 11957 BFD_ASSERT (htab->use_plts_and_copy_relocs);
ce558b89 11958 dyn.d_un.d_val = htab->root.srelplt->size;
0a44bf69
RS
11959 break;
11960
11961 case DT_JMPREL:
861fb55a 11962 BFD_ASSERT (htab->use_plts_and_copy_relocs);
ce558b89
AM
11963 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11964 + htab->root.srelplt->output_offset);
0a44bf69
RS
11965 break;
11966
943284cc
DJ
11967 case DT_TEXTREL:
11968 /* If we didn't need any text relocations after all, delete
11969 the dynamic tag. */
11970 if (!(info->flags & DF_TEXTREL))
11971 {
11972 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11973 swap_out_p = FALSE;
11974 }
11975 break;
11976
11977 case DT_FLAGS:
11978 /* If we didn't need any text relocations after all, clear
11979 DF_TEXTREL from DT_FLAGS. */
11980 if (!(info->flags & DF_TEXTREL))
11981 dyn.d_un.d_val &= ~DF_TEXTREL;
11982 else
11983 swap_out_p = FALSE;
11984 break;
11985
f16a9783
MS
11986 case DT_MIPS_XHASH:
11987 name = ".MIPS.xhash";
11988 s = bfd_get_linker_section (dynobj, name);
11989 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11990 break;
11991
b49e97c9 11992 default:
b34976b6 11993 swap_out_p = FALSE;
7a2b07ff
NS
11994 if (htab->is_vxworks
11995 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11996 swap_out_p = TRUE;
b49e97c9
TS
11997 break;
11998 }
11999
943284cc 12000 if (swap_out_p || dyn_skipped)
b49e97c9 12001 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
943284cc
DJ
12002 (dynobj, &dyn, b - dyn_skipped);
12003
12004 if (dyn_to_skip)
12005 {
12006 dyn_skipped += dyn_to_skip;
12007 dyn_to_skip = 0;
12008 }
b49e97c9 12009 }
943284cc
DJ
12010
12011 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
12012 if (dyn_skipped > 0)
12013 memset (b - dyn_skipped, 0, dyn_skipped);
b49e97c9
TS
12014 }
12015
b55fd4d4
DJ
12016 if (sgot != NULL && sgot->size > 0
12017 && !bfd_is_abs_section (sgot->output_section))
b49e97c9 12018 {
0a44bf69
RS
12019 if (htab->is_vxworks)
12020 {
12021 /* The first entry of the global offset table points to the
12022 ".dynamic" section. The second is initialized by the
12023 loader and contains the shared library identifier.
12024 The third is also initialized by the loader and points
12025 to the lazy resolution stub. */
12026 MIPS_ELF_PUT_WORD (output_bfd,
12027 sdyn->output_offset + sdyn->output_section->vma,
12028 sgot->contents);
12029 MIPS_ELF_PUT_WORD (output_bfd, 0,
12030 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
12031 MIPS_ELF_PUT_WORD (output_bfd, 0,
12032 sgot->contents
12033 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
12034 }
12035 else
12036 {
12037 /* The first entry of the global offset table will be filled at
12038 runtime. The second entry will be used by some runtime loaders.
12039 This isn't the case of IRIX rld. */
12040 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
51e38d68 12041 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
0a44bf69
RS
12042 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
12043 }
b49e97c9 12044
54938e2a
TS
12045 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
12046 = MIPS_ELF_GOT_SIZE (output_bfd);
12047 }
b49e97c9 12048
f4416af6
AO
12049 /* Generate dynamic relocations for the non-primary gots. */
12050 if (gg != NULL && gg->next)
12051 {
12052 Elf_Internal_Rela rel[3];
12053 bfd_vma addend = 0;
12054
12055 memset (rel, 0, sizeof (rel));
12056 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
12057
12058 for (g = gg->next; g->next != gg; g = g->next)
12059 {
91d6fa6a 12060 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
0f20cc35 12061 + g->next->tls_gotno;
f4416af6 12062
9719ad41 12063 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
91d6fa6a 12064 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
51e38d68
RS
12065 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
12066 sgot->contents
91d6fa6a 12067 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
f4416af6 12068
0e1862bb 12069 if (! bfd_link_pic (info))
f4416af6
AO
12070 continue;
12071
cb22ccf4 12072 for (; got_index < g->local_gotno; got_index++)
f4416af6 12073 {
cb22ccf4
KCY
12074 if (got_index >= g->assigned_low_gotno
12075 && got_index <= g->assigned_high_gotno)
12076 continue;
12077
f4416af6 12078 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
cb22ccf4 12079 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
12080 if (!(mips_elf_create_dynamic_relocation
12081 (output_bfd, info, rel, NULL,
12082 bfd_abs_section_ptr,
12083 0, &addend, sgot)))
12084 return FALSE;
12085 BFD_ASSERT (addend == 0);
12086 }
12087 }
12088 }
12089
3133ddbf
DJ
12090 /* The generation of dynamic relocations for the non-primary gots
12091 adds more dynamic relocations. We cannot count them until
12092 here. */
12093
12094 if (elf_hash_table (info)->dynamic_sections_created)
12095 {
12096 bfd_byte *b;
12097 bfd_boolean swap_out_p;
12098
12099 BFD_ASSERT (sdyn != NULL);
12100
12101 for (b = sdyn->contents;
12102 b < sdyn->contents + sdyn->size;
12103 b += MIPS_ELF_DYN_SIZE (dynobj))
12104 {
12105 Elf_Internal_Dyn dyn;
12106 asection *s;
12107
12108 /* Read in the current dynamic entry. */
12109 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
12110
12111 /* Assume that we're going to modify it and write it out. */
12112 swap_out_p = TRUE;
12113
12114 switch (dyn.d_tag)
12115 {
12116 case DT_RELSZ:
12117 /* Reduce DT_RELSZ to account for any relocations we
12118 decided not to make. This is for the n64 irix rld,
12119 which doesn't seem to apply any relocations if there
12120 are trailing null entries. */
0a44bf69 12121 s = mips_elf_rel_dyn_section (info, FALSE);
3133ddbf
DJ
12122 dyn.d_un.d_val = (s->reloc_count
12123 * (ABI_64_P (output_bfd)
12124 ? sizeof (Elf64_Mips_External_Rel)
12125 : sizeof (Elf32_External_Rel)));
bcfdf036
RS
12126 /* Adjust the section size too. Tools like the prelinker
12127 can reasonably expect the values to the same. */
db841b6f 12128 BFD_ASSERT (!bfd_is_abs_section (s->output_section));
bcfdf036
RS
12129 elf_section_data (s->output_section)->this_hdr.sh_size
12130 = dyn.d_un.d_val;
3133ddbf
DJ
12131 break;
12132
12133 default:
12134 swap_out_p = FALSE;
12135 break;
12136 }
12137
12138 if (swap_out_p)
12139 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
12140 (dynobj, &dyn, b);
12141 }
12142 }
12143
b49e97c9 12144 {
b49e97c9
TS
12145 asection *s;
12146 Elf32_compact_rel cpt;
12147
b49e97c9
TS
12148 if (SGI_COMPAT (output_bfd))
12149 {
12150 /* Write .compact_rel section out. */
3d4d4302 12151 s = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
12152 if (s != NULL)
12153 {
12154 cpt.id1 = 1;
12155 cpt.num = s->reloc_count;
12156 cpt.id2 = 2;
12157 cpt.offset = (s->output_section->filepos
12158 + sizeof (Elf32_External_compact_rel));
12159 cpt.reserved0 = 0;
12160 cpt.reserved1 = 0;
12161 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
12162 ((Elf32_External_compact_rel *)
12163 s->contents));
12164
12165 /* Clean up a dummy stub function entry in .text. */
4e41d0d7 12166 if (htab->sstubs != NULL)
b49e97c9
TS
12167 {
12168 file_ptr dummy_offset;
12169
4e41d0d7
RS
12170 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
12171 dummy_offset = htab->sstubs->size - htab->function_stub_size;
12172 memset (htab->sstubs->contents + dummy_offset, 0,
5108fc1b 12173 htab->function_stub_size);
b49e97c9
TS
12174 }
12175 }
12176 }
12177
0a44bf69
RS
12178 /* The psABI says that the dynamic relocations must be sorted in
12179 increasing order of r_symndx. The VxWorks EABI doesn't require
12180 this, and because the code below handles REL rather than RELA
12181 relocations, using it for VxWorks would be outright harmful. */
12182 if (!htab->is_vxworks)
b49e97c9 12183 {
0a44bf69
RS
12184 s = mips_elf_rel_dyn_section (info, FALSE);
12185 if (s != NULL
12186 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
12187 {
12188 reldyn_sorting_bfd = output_bfd;
b49e97c9 12189
0a44bf69
RS
12190 if (ABI_64_P (output_bfd))
12191 qsort ((Elf64_External_Rel *) s->contents + 1,
12192 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
12193 sort_dynamic_relocs_64);
12194 else
12195 qsort ((Elf32_External_Rel *) s->contents + 1,
12196 s->reloc_count - 1, sizeof (Elf32_External_Rel),
12197 sort_dynamic_relocs);
12198 }
b49e97c9 12199 }
b49e97c9
TS
12200 }
12201
ce558b89 12202 if (htab->root.splt && htab->root.splt->size > 0)
0a44bf69 12203 {
861fb55a
DJ
12204 if (htab->is_vxworks)
12205 {
0e1862bb 12206 if (bfd_link_pic (info))
861fb55a
DJ
12207 mips_vxworks_finish_shared_plt (output_bfd, info);
12208 else
12209 mips_vxworks_finish_exec_plt (output_bfd, info);
12210 }
0a44bf69 12211 else
861fb55a 12212 {
0e1862bb 12213 BFD_ASSERT (!bfd_link_pic (info));
1bbce132
MR
12214 if (!mips_finish_exec_plt (output_bfd, info))
12215 return FALSE;
861fb55a 12216 }
0a44bf69 12217 }
b34976b6 12218 return TRUE;
b49e97c9
TS
12219}
12220
b49e97c9 12221
64543e1a
RS
12222/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
12223
12224static void
9719ad41 12225mips_set_isa_flags (bfd *abfd)
b49e97c9 12226{
64543e1a 12227 flagword val;
b49e97c9
TS
12228
12229 switch (bfd_get_mach (abfd))
12230 {
12231 default:
c7c860d2
YS
12232 if (ABI_N32_P (abfd) || ABI_64_P (abfd))
12233 val = E_MIPS_ARCH_3;
12234 else
12235 val = E_MIPS_ARCH_1;
12236 break;
12237
b49e97c9
TS
12238 case bfd_mach_mips3000:
12239 val = E_MIPS_ARCH_1;
12240 break;
12241
12242 case bfd_mach_mips3900:
12243 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
12244 break;
12245
12246 case bfd_mach_mips6000:
12247 val = E_MIPS_ARCH_2;
12248 break;
12249
b417536f
MR
12250 case bfd_mach_mips4010:
12251 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
12252 break;
12253
b49e97c9
TS
12254 case bfd_mach_mips4000:
12255 case bfd_mach_mips4300:
12256 case bfd_mach_mips4400:
12257 case bfd_mach_mips4600:
12258 val = E_MIPS_ARCH_3;
12259 break;
12260
b49e97c9
TS
12261 case bfd_mach_mips4100:
12262 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
12263 break;
12264
12265 case bfd_mach_mips4111:
12266 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
12267 break;
12268
00707a0e
RS
12269 case bfd_mach_mips4120:
12270 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
12271 break;
12272
b49e97c9
TS
12273 case bfd_mach_mips4650:
12274 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
12275 break;
12276
00707a0e
RS
12277 case bfd_mach_mips5400:
12278 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
12279 break;
12280
12281 case bfd_mach_mips5500:
12282 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
12283 break;
12284
e407c74b
NC
12285 case bfd_mach_mips5900:
12286 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
12287 break;
12288
0d2e43ed
ILT
12289 case bfd_mach_mips9000:
12290 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
12291 break;
12292
b49e97c9 12293 case bfd_mach_mips5000:
5a7ea749 12294 case bfd_mach_mips7000:
b49e97c9
TS
12295 case bfd_mach_mips8000:
12296 case bfd_mach_mips10000:
12297 case bfd_mach_mips12000:
3aa3176b
TS
12298 case bfd_mach_mips14000:
12299 case bfd_mach_mips16000:
b49e97c9
TS
12300 val = E_MIPS_ARCH_4;
12301 break;
12302
12303 case bfd_mach_mips5:
12304 val = E_MIPS_ARCH_5;
12305 break;
12306
350cc38d
MS
12307 case bfd_mach_mips_loongson_2e:
12308 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
12309 break;
12310
12311 case bfd_mach_mips_loongson_2f:
12312 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
12313 break;
12314
b49e97c9
TS
12315 case bfd_mach_mips_sb1:
12316 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
12317 break;
12318
ac8cb70f
CX
12319 case bfd_mach_mips_gs464:
12320 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464;
d051516a
NC
12321 break;
12322
bd782c07
CX
12323 case bfd_mach_mips_gs464e:
12324 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464E;
12325 break;
12326
9108bc33
CX
12327 case bfd_mach_mips_gs264e:
12328 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS264E;
12329 break;
12330
6f179bd0 12331 case bfd_mach_mips_octeon:
dd6a37e7 12332 case bfd_mach_mips_octeonp:
6f179bd0
AN
12333 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12334 break;
12335
2c629856
N
12336 case bfd_mach_mips_octeon3:
12337 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12338 break;
12339
52b6b6b9
JM
12340 case bfd_mach_mips_xlr:
12341 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12342 break;
12343
432233b3
AP
12344 case bfd_mach_mips_octeon2:
12345 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12346 break;
12347
b49e97c9
TS
12348 case bfd_mach_mipsisa32:
12349 val = E_MIPS_ARCH_32;
12350 break;
12351
12352 case bfd_mach_mipsisa64:
12353 val = E_MIPS_ARCH_64;
af7ee8bf
CD
12354 break;
12355
12356 case bfd_mach_mipsisa32r2:
ae52f483
AB
12357 case bfd_mach_mipsisa32r3:
12358 case bfd_mach_mipsisa32r5:
af7ee8bf
CD
12359 val = E_MIPS_ARCH_32R2;
12360 break;
5f74bc13 12361
38bf472a
MR
12362 case bfd_mach_mips_interaptiv_mr2:
12363 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
12364 break;
12365
5f74bc13 12366 case bfd_mach_mipsisa64r2:
ae52f483
AB
12367 case bfd_mach_mipsisa64r3:
12368 case bfd_mach_mipsisa64r5:
5f74bc13
CD
12369 val = E_MIPS_ARCH_64R2;
12370 break;
7361da2c
AB
12371
12372 case bfd_mach_mipsisa32r6:
12373 val = E_MIPS_ARCH_32R6;
12374 break;
12375
12376 case bfd_mach_mipsisa64r6:
12377 val = E_MIPS_ARCH_64R6;
12378 break;
b49e97c9 12379 }
b49e97c9
TS
12380 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12381 elf_elfheader (abfd)->e_flags |= val;
12382
64543e1a
RS
12383}
12384
12385
28dbcedc
AM
12386/* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12387 Don't do so for code sections. We want to keep ordering of HI16/LO16
12388 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12389 relocs to be sorted. */
12390
12391bfd_boolean
12392_bfd_mips_elf_sort_relocs_p (asection *sec)
12393{
12394 return (sec->flags & SEC_CODE) == 0;
12395}
12396
12397
64543e1a
RS
12398/* The final processing done just before writing out a MIPS ELF object
12399 file. This gets the MIPS architecture right based on the machine
12400 number. This is used by both the 32-bit and the 64-bit ABI. */
12401
12402void
cc364be6 12403_bfd_mips_final_write_processing (bfd *abfd)
64543e1a
RS
12404{
12405 unsigned int i;
12406 Elf_Internal_Shdr **hdrpp;
12407 const char *name;
12408 asection *sec;
12409
12410 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12411 is nonzero. This is for compatibility with old objects, which used
12412 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12413 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12414 mips_set_isa_flags (abfd);
12415
b49e97c9
TS
12416 /* Set the sh_info field for .gptab sections and other appropriate
12417 info for each special section. */
12418 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12419 i < elf_numsections (abfd);
12420 i++, hdrpp++)
12421 {
12422 switch ((*hdrpp)->sh_type)
12423 {
12424 case SHT_MIPS_MSYM:
12425 case SHT_MIPS_LIBLIST:
12426 sec = bfd_get_section_by_name (abfd, ".dynstr");
12427 if (sec != NULL)
12428 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12429 break;
12430
12431 case SHT_MIPS_GPTAB:
12432 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
fd361982 12433 name = bfd_section_name ((*hdrpp)->bfd_section);
b49e97c9 12434 BFD_ASSERT (name != NULL
0112cd26 12435 && CONST_STRNEQ (name, ".gptab."));
b49e97c9
TS
12436 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12437 BFD_ASSERT (sec != NULL);
12438 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12439 break;
12440
12441 case SHT_MIPS_CONTENT:
12442 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
fd361982 12443 name = bfd_section_name ((*hdrpp)->bfd_section);
b49e97c9 12444 BFD_ASSERT (name != NULL
0112cd26 12445 && CONST_STRNEQ (name, ".MIPS.content"));
b49e97c9
TS
12446 sec = bfd_get_section_by_name (abfd,
12447 name + sizeof ".MIPS.content" - 1);
12448 BFD_ASSERT (sec != NULL);
12449 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12450 break;
12451
12452 case SHT_MIPS_SYMBOL_LIB:
12453 sec = bfd_get_section_by_name (abfd, ".dynsym");
12454 if (sec != NULL)
12455 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12456 sec = bfd_get_section_by_name (abfd, ".liblist");
12457 if (sec != NULL)
12458 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12459 break;
12460
12461 case SHT_MIPS_EVENTS:
12462 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
fd361982 12463 name = bfd_section_name ((*hdrpp)->bfd_section);
b49e97c9 12464 BFD_ASSERT (name != NULL);
0112cd26 12465 if (CONST_STRNEQ (name, ".MIPS.events"))
b49e97c9
TS
12466 sec = bfd_get_section_by_name (abfd,
12467 name + sizeof ".MIPS.events" - 1);
12468 else
12469 {
0112cd26 12470 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
b49e97c9
TS
12471 sec = bfd_get_section_by_name (abfd,
12472 (name
12473 + sizeof ".MIPS.post_rel" - 1));
12474 }
12475 BFD_ASSERT (sec != NULL);
12476 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12477 break;
12478
f16a9783
MS
12479 case SHT_MIPS_XHASH:
12480 sec = bfd_get_section_by_name (abfd, ".dynsym");
12481 if (sec != NULL)
12482 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
b49e97c9
TS
12483 }
12484 }
12485}
06f44071 12486
cc364be6
AM
12487bfd_boolean
12488_bfd_mips_elf_final_write_processing (bfd *abfd)
06f44071 12489{
cc364be6
AM
12490 _bfd_mips_final_write_processing (abfd);
12491 return _bfd_elf_final_write_processing (abfd);
06f44071 12492}
b49e97c9 12493\f
8dc1a139 12494/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
12495 segments. */
12496
12497int
a6b96beb
AM
12498_bfd_mips_elf_additional_program_headers (bfd *abfd,
12499 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
12500{
12501 asection *s;
12502 int ret = 0;
12503
12504 /* See if we need a PT_MIPS_REGINFO segment. */
12505 s = bfd_get_section_by_name (abfd, ".reginfo");
12506 if (s && (s->flags & SEC_LOAD))
12507 ++ret;
12508
351cdf24
MF
12509 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12510 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12511 ++ret;
12512
b49e97c9
TS
12513 /* See if we need a PT_MIPS_OPTIONS segment. */
12514 if (IRIX_COMPAT (abfd) == ict_irix6
12515 && bfd_get_section_by_name (abfd,
12516 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12517 ++ret;
12518
12519 /* See if we need a PT_MIPS_RTPROC segment. */
12520 if (IRIX_COMPAT (abfd) == ict_irix5
12521 && bfd_get_section_by_name (abfd, ".dynamic")
12522 && bfd_get_section_by_name (abfd, ".mdebug"))
12523 ++ret;
12524
98c904a8
RS
12525 /* Allocate a PT_NULL header in dynamic objects. See
12526 _bfd_mips_elf_modify_segment_map for details. */
12527 if (!SGI_COMPAT (abfd)
12528 && bfd_get_section_by_name (abfd, ".dynamic"))
12529 ++ret;
12530
b49e97c9
TS
12531 return ret;
12532}
12533
8dc1a139 12534/* Modify the segment map for an IRIX5 executable. */
b49e97c9 12535
b34976b6 12536bfd_boolean
9719ad41 12537_bfd_mips_elf_modify_segment_map (bfd *abfd,
7c8b76cc 12538 struct bfd_link_info *info)
b49e97c9
TS
12539{
12540 asection *s;
12541 struct elf_segment_map *m, **pm;
986f0783 12542 size_t amt;
b49e97c9
TS
12543
12544 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12545 segment. */
12546 s = bfd_get_section_by_name (abfd, ".reginfo");
12547 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12548 {
12bd6957 12549 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
b49e97c9
TS
12550 if (m->p_type == PT_MIPS_REGINFO)
12551 break;
12552 if (m == NULL)
12553 {
12554 amt = sizeof *m;
9719ad41 12555 m = bfd_zalloc (abfd, amt);
b49e97c9 12556 if (m == NULL)
b34976b6 12557 return FALSE;
b49e97c9
TS
12558
12559 m->p_type = PT_MIPS_REGINFO;
12560 m->count = 1;
12561 m->sections[0] = s;
12562
12563 /* We want to put it after the PHDR and INTERP segments. */
12bd6957 12564 pm = &elf_seg_map (abfd);
b49e97c9
TS
12565 while (*pm != NULL
12566 && ((*pm)->p_type == PT_PHDR
12567 || (*pm)->p_type == PT_INTERP))
12568 pm = &(*pm)->next;
12569
12570 m->next = *pm;
12571 *pm = m;
12572 }
12573 }
12574
351cdf24
MF
12575 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12576 segment. */
12577 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12578 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12579 {
12580 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12581 if (m->p_type == PT_MIPS_ABIFLAGS)
12582 break;
12583 if (m == NULL)
12584 {
12585 amt = sizeof *m;
12586 m = bfd_zalloc (abfd, amt);
12587 if (m == NULL)
12588 return FALSE;
12589
12590 m->p_type = PT_MIPS_ABIFLAGS;
12591 m->count = 1;
12592 m->sections[0] = s;
12593
12594 /* We want to put it after the PHDR and INTERP segments. */
12595 pm = &elf_seg_map (abfd);
12596 while (*pm != NULL
12597 && ((*pm)->p_type == PT_PHDR
12598 || (*pm)->p_type == PT_INTERP))
12599 pm = &(*pm)->next;
12600
12601 m->next = *pm;
12602 *pm = m;
12603 }
12604 }
12605
b49e97c9
TS
12606 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12607 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 12608 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 12609 table. */
c1fd6598
AO
12610 if (NEWABI_P (abfd)
12611 /* On non-IRIX6 new abi, we'll have already created a segment
12612 for this section, so don't create another. I'm not sure this
12613 is not also the case for IRIX 6, but I can't test it right
12614 now. */
12615 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
12616 {
12617 for (s = abfd->sections; s; s = s->next)
12618 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12619 break;
12620
12621 if (s)
12622 {
12623 struct elf_segment_map *options_segment;
12624
12bd6957 12625 pm = &elf_seg_map (abfd);
98a8deaf
RS
12626 while (*pm != NULL
12627 && ((*pm)->p_type == PT_PHDR
12628 || (*pm)->p_type == PT_INTERP))
12629 pm = &(*pm)->next;
b49e97c9 12630
8ded5a0f
AM
12631 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12632 {
12633 amt = sizeof (struct elf_segment_map);
12634 options_segment = bfd_zalloc (abfd, amt);
12635 options_segment->next = *pm;
12636 options_segment->p_type = PT_MIPS_OPTIONS;
12637 options_segment->p_flags = PF_R;
12638 options_segment->p_flags_valid = TRUE;
12639 options_segment->count = 1;
12640 options_segment->sections[0] = s;
12641 *pm = options_segment;
12642 }
b49e97c9
TS
12643 }
12644 }
12645 else
12646 {
12647 if (IRIX_COMPAT (abfd) == ict_irix5)
12648 {
12649 /* If there are .dynamic and .mdebug sections, we make a room
12650 for the RTPROC header. FIXME: Rewrite without section names. */
12651 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12652 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12653 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12654 {
12bd6957 12655 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
b49e97c9
TS
12656 if (m->p_type == PT_MIPS_RTPROC)
12657 break;
12658 if (m == NULL)
12659 {
12660 amt = sizeof *m;
9719ad41 12661 m = bfd_zalloc (abfd, amt);
b49e97c9 12662 if (m == NULL)
b34976b6 12663 return FALSE;
b49e97c9
TS
12664
12665 m->p_type = PT_MIPS_RTPROC;
12666
12667 s = bfd_get_section_by_name (abfd, ".rtproc");
12668 if (s == NULL)
12669 {
12670 m->count = 0;
12671 m->p_flags = 0;
12672 m->p_flags_valid = 1;
12673 }
12674 else
12675 {
12676 m->count = 1;
12677 m->sections[0] = s;
12678 }
12679
12680 /* We want to put it after the DYNAMIC segment. */
12bd6957 12681 pm = &elf_seg_map (abfd);
b49e97c9
TS
12682 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12683 pm = &(*pm)->next;
12684 if (*pm != NULL)
12685 pm = &(*pm)->next;
12686
12687 m->next = *pm;
12688 *pm = m;
12689 }
12690 }
12691 }
8dc1a139 12692 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
12693 .dynstr, .dynsym, and .hash sections, and everything in
12694 between. */
12bd6957 12695 for (pm = &elf_seg_map (abfd); *pm != NULL;
b49e97c9
TS
12696 pm = &(*pm)->next)
12697 if ((*pm)->p_type == PT_DYNAMIC)
12698 break;
12699 m = *pm;
f6f62d6f
RS
12700 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12701 glibc's dynamic linker has traditionally derived the number of
12702 tags from the p_filesz field, and sometimes allocates stack
12703 arrays of that size. An overly-big PT_DYNAMIC segment can
12704 be actively harmful in such cases. Making PT_DYNAMIC contain
12705 other sections can also make life hard for the prelinker,
12706 which might move one of the other sections to a different
12707 PT_LOAD segment. */
12708 if (SGI_COMPAT (abfd)
12709 && m != NULL
12710 && m->count == 1
12711 && strcmp (m->sections[0]->name, ".dynamic") == 0)
b49e97c9
TS
12712 {
12713 static const char *sec_names[] =
12714 {
12715 ".dynamic", ".dynstr", ".dynsym", ".hash"
12716 };
12717 bfd_vma low, high;
12718 unsigned int i, c;
12719 struct elf_segment_map *n;
12720
792b4a53 12721 low = ~(bfd_vma) 0;
b49e97c9
TS
12722 high = 0;
12723 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12724 {
12725 s = bfd_get_section_by_name (abfd, sec_names[i]);
12726 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12727 {
12728 bfd_size_type sz;
12729
12730 if (low > s->vma)
12731 low = s->vma;
eea6121a 12732 sz = s->size;
b49e97c9
TS
12733 if (high < s->vma + sz)
12734 high = s->vma + sz;
12735 }
12736 }
12737
12738 c = 0;
12739 for (s = abfd->sections; s != NULL; s = s->next)
12740 if ((s->flags & SEC_LOAD) != 0
12741 && s->vma >= low
eea6121a 12742 && s->vma + s->size <= high)
b49e97c9
TS
12743 ++c;
12744
986f0783 12745 amt = sizeof *n - sizeof (asection *) + c * sizeof (asection *);
9719ad41 12746 n = bfd_zalloc (abfd, amt);
b49e97c9 12747 if (n == NULL)
b34976b6 12748 return FALSE;
b49e97c9
TS
12749 *n = *m;
12750 n->count = c;
12751
12752 i = 0;
12753 for (s = abfd->sections; s != NULL; s = s->next)
12754 {
12755 if ((s->flags & SEC_LOAD) != 0
12756 && s->vma >= low
eea6121a 12757 && s->vma + s->size <= high)
b49e97c9
TS
12758 {
12759 n->sections[i] = s;
12760 ++i;
12761 }
12762 }
12763
12764 *pm = n;
12765 }
12766 }
12767
98c904a8
RS
12768 /* Allocate a spare program header in dynamic objects so that tools
12769 like the prelinker can add an extra PT_LOAD entry.
12770
12771 If the prelinker needs to make room for a new PT_LOAD entry, its
12772 standard procedure is to move the first (read-only) sections into
12773 the new (writable) segment. However, the MIPS ABI requires
12774 .dynamic to be in a read-only segment, and the section will often
12775 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12776
12777 Although the prelinker could in principle move .dynamic to a
12778 writable segment, it seems better to allocate a spare program
12779 header instead, and avoid the need to move any sections.
12780 There is a long tradition of allocating spare dynamic tags,
12781 so allocating a spare program header seems like a natural
7c8b76cc
JM
12782 extension.
12783
12784 If INFO is NULL, we may be copying an already prelinked binary
12785 with objcopy or strip, so do not add this header. */
12786 if (info != NULL
12787 && !SGI_COMPAT (abfd)
98c904a8
RS
12788 && bfd_get_section_by_name (abfd, ".dynamic"))
12789 {
12bd6957 12790 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
98c904a8
RS
12791 if ((*pm)->p_type == PT_NULL)
12792 break;
12793 if (*pm == NULL)
12794 {
12795 m = bfd_zalloc (abfd, sizeof (*m));
12796 if (m == NULL)
12797 return FALSE;
12798
12799 m->p_type = PT_NULL;
12800 *pm = m;
12801 }
12802 }
12803
b34976b6 12804 return TRUE;
b49e97c9
TS
12805}
12806\f
12807/* Return the section that should be marked against GC for a given
12808 relocation. */
12809
12810asection *
9719ad41 12811_bfd_mips_elf_gc_mark_hook (asection *sec,
07adf181 12812 struct bfd_link_info *info,
9719ad41
RS
12813 Elf_Internal_Rela *rel,
12814 struct elf_link_hash_entry *h,
12815 Elf_Internal_Sym *sym)
b49e97c9
TS
12816{
12817 /* ??? Do mips16 stub sections need to be handled special? */
12818
12819 if (h != NULL)
07adf181
AM
12820 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12821 {
12822 case R_MIPS_GNU_VTINHERIT:
12823 case R_MIPS_GNU_VTENTRY:
12824 return NULL;
12825 }
b49e97c9 12826
07adf181 12827 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
b49e97c9
TS
12828}
12829
351cdf24
MF
12830/* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12831
12832bfd_boolean
12833_bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12834 elf_gc_mark_hook_fn gc_mark_hook)
12835{
12836 bfd *sub;
12837
12838 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12839
12840 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12841 {
12842 asection *o;
12843
12844 if (! is_mips_elf (sub))
12845 continue;
12846
12847 for (o = sub->sections; o != NULL; o = o->next)
12848 if (!o->gc_mark
fd361982 12849 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P (bfd_section_name (o)))
351cdf24
MF
12850 {
12851 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12852 return FALSE;
12853 }
12854 }
12855
12856 return TRUE;
12857}
b49e97c9
TS
12858\f
12859/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12860 hiding the old indirect symbol. Process additional relocation
12861 information. Also called for weakdefs, in which case we just let
12862 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12863
12864void
fcfa13d2 12865_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
12866 struct elf_link_hash_entry *dir,
12867 struct elf_link_hash_entry *ind)
b49e97c9
TS
12868{
12869 struct mips_elf_link_hash_entry *dirmips, *indmips;
12870
fcfa13d2 12871 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9 12872
861fb55a
DJ
12873 dirmips = (struct mips_elf_link_hash_entry *) dir;
12874 indmips = (struct mips_elf_link_hash_entry *) ind;
12875 /* Any absolute non-dynamic relocations against an indirect or weak
12876 definition will be against the target symbol. */
12877 if (indmips->has_static_relocs)
12878 dirmips->has_static_relocs = TRUE;
12879
b49e97c9
TS
12880 if (ind->root.type != bfd_link_hash_indirect)
12881 return;
12882
b49e97c9
TS
12883 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12884 if (indmips->readonly_reloc)
b34976b6 12885 dirmips->readonly_reloc = TRUE;
b49e97c9 12886 if (indmips->no_fn_stub)
b34976b6 12887 dirmips->no_fn_stub = TRUE;
61b0a4af
RS
12888 if (indmips->fn_stub)
12889 {
12890 dirmips->fn_stub = indmips->fn_stub;
12891 indmips->fn_stub = NULL;
12892 }
12893 if (indmips->need_fn_stub)
12894 {
12895 dirmips->need_fn_stub = TRUE;
12896 indmips->need_fn_stub = FALSE;
12897 }
12898 if (indmips->call_stub)
12899 {
12900 dirmips->call_stub = indmips->call_stub;
12901 indmips->call_stub = NULL;
12902 }
12903 if (indmips->call_fp_stub)
12904 {
12905 dirmips->call_fp_stub = indmips->call_fp_stub;
12906 indmips->call_fp_stub = NULL;
12907 }
634835ae
RS
12908 if (indmips->global_got_area < dirmips->global_got_area)
12909 dirmips->global_got_area = indmips->global_got_area;
12910 if (indmips->global_got_area < GGA_NONE)
12911 indmips->global_got_area = GGA_NONE;
861fb55a
DJ
12912 if (indmips->has_nonpic_branches)
12913 dirmips->has_nonpic_branches = TRUE;
b49e97c9 12914}
47275900
MR
12915
12916/* Take care of the special `__gnu_absolute_zero' symbol and ignore attempts
12917 to hide it. It has to remain global (it will also be protected) so as to
12918 be assigned a global GOT entry, which will then remain unchanged at load
12919 time. */
12920
12921void
12922_bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
12923 struct elf_link_hash_entry *entry,
12924 bfd_boolean force_local)
12925{
12926 struct mips_elf_link_hash_table *htab;
12927
12928 htab = mips_elf_hash_table (info);
12929 BFD_ASSERT (htab != NULL);
12930 if (htab->use_absolute_zero
12931 && strcmp (entry->root.root.string, "__gnu_absolute_zero") == 0)
12932 return;
12933
12934 _bfd_elf_link_hash_hide_symbol (info, entry, force_local);
12935}
b49e97c9 12936\f
d01414a5
TS
12937#define PDR_SIZE 32
12938
b34976b6 12939bfd_boolean
9719ad41
RS
12940_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12941 struct bfd_link_info *info)
d01414a5
TS
12942{
12943 asection *o;
b34976b6 12944 bfd_boolean ret = FALSE;
d01414a5
TS
12945 unsigned char *tdata;
12946 size_t i, skip;
12947
12948 o = bfd_get_section_by_name (abfd, ".pdr");
12949 if (! o)
b34976b6 12950 return FALSE;
eea6121a 12951 if (o->size == 0)
b34976b6 12952 return FALSE;
eea6121a 12953 if (o->size % PDR_SIZE != 0)
b34976b6 12954 return FALSE;
d01414a5
TS
12955 if (o->output_section != NULL
12956 && bfd_is_abs_section (o->output_section))
b34976b6 12957 return FALSE;
d01414a5 12958
eea6121a 12959 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 12960 if (! tdata)
b34976b6 12961 return FALSE;
d01414a5 12962
9719ad41 12963 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 12964 info->keep_memory);
d01414a5
TS
12965 if (!cookie->rels)
12966 {
12967 free (tdata);
b34976b6 12968 return FALSE;
d01414a5
TS
12969 }
12970
12971 cookie->rel = cookie->rels;
12972 cookie->relend = cookie->rels + o->reloc_count;
12973
eea6121a 12974 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 12975 {
c152c796 12976 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
12977 {
12978 tdata[i] = 1;
12979 skip ++;
12980 }
12981 }
12982
12983 if (skip != 0)
12984 {
f0abc2a1 12985 mips_elf_section_data (o)->u.tdata = tdata;
e034b2cc
MR
12986 if (o->rawsize == 0)
12987 o->rawsize = o->size;
eea6121a 12988 o->size -= skip * PDR_SIZE;
b34976b6 12989 ret = TRUE;
d01414a5
TS
12990 }
12991 else
12992 free (tdata);
12993
12994 if (! info->keep_memory)
12995 free (cookie->rels);
12996
12997 return ret;
12998}
12999
b34976b6 13000bfd_boolean
9719ad41 13001_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
13002{
13003 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
13004 return TRUE;
13005 return FALSE;
53bfd6b4 13006}
d01414a5 13007
b34976b6 13008bfd_boolean
c7b8f16e
JB
13009_bfd_mips_elf_write_section (bfd *output_bfd,
13010 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
07d6d2b8 13011 asection *sec, bfd_byte *contents)
d01414a5
TS
13012{
13013 bfd_byte *to, *from, *end;
13014 int i;
13015
13016 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 13017 return FALSE;
d01414a5 13018
f0abc2a1 13019 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 13020 return FALSE;
d01414a5
TS
13021
13022 to = contents;
eea6121a 13023 end = contents + sec->size;
d01414a5
TS
13024 for (from = contents, i = 0;
13025 from < end;
13026 from += PDR_SIZE, i++)
13027 {
f0abc2a1 13028 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
13029 continue;
13030 if (to != from)
13031 memcpy (to, from, PDR_SIZE);
13032 to += PDR_SIZE;
13033 }
13034 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 13035 sec->output_offset, sec->size);
b34976b6 13036 return TRUE;
d01414a5 13037}
53bfd6b4 13038\f
df58fc94
RS
13039/* microMIPS code retains local labels for linker relaxation. Omit them
13040 from output by default for clarity. */
13041
13042bfd_boolean
13043_bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
13044{
13045 return _bfd_elf_is_local_label_name (abfd, sym->name);
13046}
13047
b49e97c9
TS
13048/* MIPS ELF uses a special find_nearest_line routine in order the
13049 handle the ECOFF debugging information. */
13050
13051struct mips_elf_find_line
13052{
13053 struct ecoff_debug_info d;
13054 struct ecoff_find_line i;
13055};
13056
b34976b6 13057bfd_boolean
fb167eb2
AM
13058_bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
13059 asection *section, bfd_vma offset,
9719ad41
RS
13060 const char **filename_ptr,
13061 const char **functionname_ptr,
fb167eb2
AM
13062 unsigned int *line_ptr,
13063 unsigned int *discriminator_ptr)
b49e97c9
TS
13064{
13065 asection *msec;
13066
fb167eb2 13067 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
b49e97c9 13068 filename_ptr, functionname_ptr,
fb167eb2
AM
13069 line_ptr, discriminator_ptr,
13070 dwarf_debug_sections,
7f3bf384
AM
13071 &elf_tdata (abfd)->dwarf2_find_line_info)
13072 == 1)
e7679060 13073 return TRUE;
46d09186 13074
e7679060
AM
13075 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
13076 filename_ptr, functionname_ptr,
13077 line_ptr))
13078 {
13079 if (!*functionname_ptr)
13080 _bfd_elf_find_function (abfd, symbols, section, offset,
13081 *filename_ptr ? NULL : filename_ptr,
13082 functionname_ptr);
46d09186
NC
13083 return TRUE;
13084 }
b49e97c9
TS
13085
13086 msec = bfd_get_section_by_name (abfd, ".mdebug");
13087 if (msec != NULL)
13088 {
13089 flagword origflags;
13090 struct mips_elf_find_line *fi;
13091 const struct ecoff_debug_swap * const swap =
13092 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
13093
13094 /* If we are called during a link, mips_elf_final_link may have
13095 cleared the SEC_HAS_CONTENTS field. We force it back on here
13096 if appropriate (which it normally will be). */
13097 origflags = msec->flags;
13098 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
13099 msec->flags |= SEC_HAS_CONTENTS;
13100
698600e4 13101 fi = mips_elf_tdata (abfd)->find_line_info;
b49e97c9
TS
13102 if (fi == NULL)
13103 {
13104 bfd_size_type external_fdr_size;
13105 char *fraw_src;
13106 char *fraw_end;
13107 struct fdr *fdr_ptr;
13108 bfd_size_type amt = sizeof (struct mips_elf_find_line);
13109
9719ad41 13110 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
13111 if (fi == NULL)
13112 {
13113 msec->flags = origflags;
b34976b6 13114 return FALSE;
b49e97c9
TS
13115 }
13116
13117 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
13118 {
13119 msec->flags = origflags;
b34976b6 13120 return FALSE;
b49e97c9
TS
13121 }
13122
13123 /* Swap in the FDR information. */
13124 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 13125 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
13126 if (fi->d.fdr == NULL)
13127 {
13128 msec->flags = origflags;
b34976b6 13129 return FALSE;
b49e97c9
TS
13130 }
13131 external_fdr_size = swap->external_fdr_size;
13132 fdr_ptr = fi->d.fdr;
13133 fraw_src = (char *) fi->d.external_fdr;
13134 fraw_end = (fraw_src
13135 + fi->d.symbolic_header.ifdMax * external_fdr_size);
13136 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 13137 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9 13138
698600e4 13139 mips_elf_tdata (abfd)->find_line_info = fi;
b49e97c9
TS
13140
13141 /* Note that we don't bother to ever free this information.
07d6d2b8
AM
13142 find_nearest_line is either called all the time, as in
13143 objdump -l, so the information should be saved, or it is
13144 rarely called, as in ld error messages, so the memory
13145 wasted is unimportant. Still, it would probably be a
13146 good idea for free_cached_info to throw it away. */
b49e97c9
TS
13147 }
13148
13149 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
13150 &fi->i, filename_ptr, functionname_ptr,
13151 line_ptr))
13152 {
13153 msec->flags = origflags;
b34976b6 13154 return TRUE;
b49e97c9
TS
13155 }
13156
13157 msec->flags = origflags;
13158 }
13159
13160 /* Fall back on the generic ELF find_nearest_line routine. */
13161
fb167eb2 13162 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
b49e97c9 13163 filename_ptr, functionname_ptr,
fb167eb2 13164 line_ptr, discriminator_ptr);
b49e97c9 13165}
4ab527b0
FF
13166
13167bfd_boolean
13168_bfd_mips_elf_find_inliner_info (bfd *abfd,
13169 const char **filename_ptr,
13170 const char **functionname_ptr,
13171 unsigned int *line_ptr)
13172{
13173 bfd_boolean found;
13174 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
13175 functionname_ptr, line_ptr,
13176 & elf_tdata (abfd)->dwarf2_find_line_info);
13177 return found;
13178}
13179
b49e97c9
TS
13180\f
13181/* When are writing out the .options or .MIPS.options section,
13182 remember the bytes we are writing out, so that we can install the
13183 GP value in the section_processing routine. */
13184
b34976b6 13185bfd_boolean
9719ad41
RS
13186_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
13187 const void *location,
13188 file_ptr offset, bfd_size_type count)
b49e97c9 13189{
cc2e31b9 13190 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
13191 {
13192 bfd_byte *c;
13193
13194 if (elf_section_data (section) == NULL)
13195 {
986f0783 13196 size_t amt = sizeof (struct bfd_elf_section_data);
9719ad41 13197 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 13198 if (elf_section_data (section) == NULL)
b34976b6 13199 return FALSE;
b49e97c9 13200 }
f0abc2a1 13201 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
13202 if (c == NULL)
13203 {
eea6121a 13204 c = bfd_zalloc (abfd, section->size);
b49e97c9 13205 if (c == NULL)
b34976b6 13206 return FALSE;
f0abc2a1 13207 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
13208 }
13209
9719ad41 13210 memcpy (c + offset, location, count);
b49e97c9
TS
13211 }
13212
13213 return _bfd_elf_set_section_contents (abfd, section, location, offset,
13214 count);
13215}
13216
13217/* This is almost identical to bfd_generic_get_... except that some
13218 MIPS relocations need to be handled specially. Sigh. */
13219
13220bfd_byte *
9719ad41
RS
13221_bfd_elf_mips_get_relocated_section_contents
13222 (bfd *abfd,
13223 struct bfd_link_info *link_info,
13224 struct bfd_link_order *link_order,
13225 bfd_byte *data,
13226 bfd_boolean relocatable,
13227 asymbol **symbols)
b49e97c9
TS
13228{
13229 /* Get enough memory to hold the stuff */
13230 bfd *input_bfd = link_order->u.indirect.section->owner;
13231 asection *input_section = link_order->u.indirect.section;
eea6121a 13232 bfd_size_type sz;
b49e97c9
TS
13233
13234 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
13235 arelent **reloc_vector = NULL;
13236 long reloc_count;
13237
13238 if (reloc_size < 0)
13239 goto error_return;
13240
9719ad41 13241 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
13242 if (reloc_vector == NULL && reloc_size != 0)
13243 goto error_return;
13244
13245 /* read in the section */
eea6121a
AM
13246 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
13247 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
13248 goto error_return;
13249
b49e97c9
TS
13250 reloc_count = bfd_canonicalize_reloc (input_bfd,
13251 input_section,
13252 reloc_vector,
13253 symbols);
13254 if (reloc_count < 0)
13255 goto error_return;
13256
13257 if (reloc_count > 0)
13258 {
13259 arelent **parent;
13260 /* for mips */
13261 int gp_found;
13262 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
13263
13264 {
13265 struct bfd_hash_entry *h;
13266 struct bfd_link_hash_entry *lh;
13267 /* Skip all this stuff if we aren't mixing formats. */
13268 if (abfd && input_bfd
13269 && abfd->xvec == input_bfd->xvec)
13270 lh = 0;
13271 else
13272 {
b34976b6 13273 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
13274 lh = (struct bfd_link_hash_entry *) h;
13275 }
13276 lookup:
13277 if (lh)
13278 {
13279 switch (lh->type)
13280 {
13281 case bfd_link_hash_undefined:
13282 case bfd_link_hash_undefweak:
13283 case bfd_link_hash_common:
13284 gp_found = 0;
13285 break;
13286 case bfd_link_hash_defined:
13287 case bfd_link_hash_defweak:
13288 gp_found = 1;
13289 gp = lh->u.def.value;
13290 break;
13291 case bfd_link_hash_indirect:
13292 case bfd_link_hash_warning:
13293 lh = lh->u.i.link;
13294 /* @@FIXME ignoring warning for now */
13295 goto lookup;
13296 case bfd_link_hash_new:
13297 default:
13298 abort ();
13299 }
13300 }
13301 else
13302 gp_found = 0;
13303 }
13304 /* end mips */
9719ad41 13305 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 13306 {
9719ad41 13307 char *error_message = NULL;
b49e97c9
TS
13308 bfd_reloc_status_type r;
13309
13310 /* Specific to MIPS: Deal with relocation types that require
13311 knowing the gp of the output bfd. */
13312 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 13313
8236346f
EC
13314 /* If we've managed to find the gp and have a special
13315 function for the relocation then go ahead, else default
13316 to the generic handling. */
13317 if (gp_found
13318 && (*parent)->howto->special_function
13319 == _bfd_mips_elf32_gprel16_reloc)
13320 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
13321 input_section, relocatable,
13322 data, gp);
13323 else
86324f90 13324 r = bfd_perform_relocation (input_bfd, *parent, data,
8236346f
EC
13325 input_section,
13326 relocatable ? abfd : NULL,
13327 &error_message);
b49e97c9 13328
1049f94e 13329 if (relocatable)
b49e97c9
TS
13330 {
13331 asection *os = input_section->output_section;
13332
13333 /* A partial link, so keep the relocs */
13334 os->orelocation[os->reloc_count] = *parent;
13335 os->reloc_count++;
13336 }
13337
13338 if (r != bfd_reloc_ok)
13339 {
13340 switch (r)
13341 {
13342 case bfd_reloc_undefined:
1a72702b
AM
13343 (*link_info->callbacks->undefined_symbol)
13344 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13345 input_bfd, input_section, (*parent)->address, TRUE);
b49e97c9
TS
13346 break;
13347 case bfd_reloc_dangerous:
9719ad41 13348 BFD_ASSERT (error_message != NULL);
1a72702b
AM
13349 (*link_info->callbacks->reloc_dangerous)
13350 (link_info, error_message,
13351 input_bfd, input_section, (*parent)->address);
b49e97c9
TS
13352 break;
13353 case bfd_reloc_overflow:
1a72702b
AM
13354 (*link_info->callbacks->reloc_overflow)
13355 (link_info, NULL,
13356 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13357 (*parent)->howto->name, (*parent)->addend,
13358 input_bfd, input_section, (*parent)->address);
b49e97c9
TS
13359 break;
13360 case bfd_reloc_outofrange:
13361 default:
13362 abort ();
13363 break;
13364 }
13365
13366 }
13367 }
13368 }
c9594989 13369 free (reloc_vector);
b49e97c9
TS
13370 return data;
13371
dc1e8a47 13372 error_return:
c9594989 13373 free (reloc_vector);
b49e97c9
TS
13374 return NULL;
13375}
13376\f
df58fc94
RS
13377static bfd_boolean
13378mips_elf_relax_delete_bytes (bfd *abfd,
13379 asection *sec, bfd_vma addr, int count)
13380{
13381 Elf_Internal_Shdr *symtab_hdr;
13382 unsigned int sec_shndx;
13383 bfd_byte *contents;
13384 Elf_Internal_Rela *irel, *irelend;
13385 Elf_Internal_Sym *isym;
13386 Elf_Internal_Sym *isymend;
13387 struct elf_link_hash_entry **sym_hashes;
13388 struct elf_link_hash_entry **end_hashes;
13389 struct elf_link_hash_entry **start_hashes;
13390 unsigned int symcount;
13391
13392 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13393 contents = elf_section_data (sec)->this_hdr.contents;
13394
13395 irel = elf_section_data (sec)->relocs;
13396 irelend = irel + sec->reloc_count;
13397
13398 /* Actually delete the bytes. */
13399 memmove (contents + addr, contents + addr + count,
13400 (size_t) (sec->size - addr - count));
13401 sec->size -= count;
13402
13403 /* Adjust all the relocs. */
13404 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13405 {
13406 /* Get the new reloc address. */
13407 if (irel->r_offset > addr)
13408 irel->r_offset -= count;
13409 }
13410
13411 BFD_ASSERT (addr % 2 == 0);
13412 BFD_ASSERT (count % 2 == 0);
13413
13414 /* Adjust the local symbols defined in this section. */
13415 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13416 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13417 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
2309ddf2 13418 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
df58fc94
RS
13419 isym->st_value -= count;
13420
13421 /* Now adjust the global symbols defined in this section. */
13422 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13423 - symtab_hdr->sh_info);
13424 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13425 end_hashes = sym_hashes + symcount;
13426
13427 for (; sym_hashes < end_hashes; sym_hashes++)
13428 {
13429 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13430
13431 if ((sym_hash->root.type == bfd_link_hash_defined
13432 || sym_hash->root.type == bfd_link_hash_defweak)
13433 && sym_hash->root.u.def.section == sec)
13434 {
2309ddf2 13435 bfd_vma value = sym_hash->root.u.def.value;
df58fc94 13436
df58fc94
RS
13437 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13438 value &= MINUS_TWO;
13439 if (value > addr)
13440 sym_hash->root.u.def.value -= count;
13441 }
13442 }
13443
13444 return TRUE;
13445}
13446
13447
13448/* Opcodes needed for microMIPS relaxation as found in
13449 opcodes/micromips-opc.c. */
13450
13451struct opcode_descriptor {
13452 unsigned long match;
13453 unsigned long mask;
13454};
13455
13456/* The $ra register aka $31. */
13457
13458#define RA 31
13459
13460/* 32-bit instruction format register fields. */
13461
13462#define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13463#define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13464
13465/* Check if a 5-bit register index can be abbreviated to 3 bits. */
13466
13467#define OP16_VALID_REG(r) \
13468 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13469
13470
13471/* 32-bit and 16-bit branches. */
13472
13473static const struct opcode_descriptor b_insns_32[] = {
13474 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13475 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13476 { 0, 0 } /* End marker for find_match(). */
13477};
13478
13479static const struct opcode_descriptor bc_insn_32 =
13480 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13481
13482static const struct opcode_descriptor bz_insn_32 =
13483 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13484
13485static const struct opcode_descriptor bzal_insn_32 =
13486 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13487
13488static const struct opcode_descriptor beq_insn_32 =
13489 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13490
13491static const struct opcode_descriptor b_insn_16 =
13492 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13493
13494static const struct opcode_descriptor bz_insn_16 =
c088dedf 13495 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
df58fc94
RS
13496
13497
13498/* 32-bit and 16-bit branch EQ and NE zero. */
13499
13500/* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13501 eq and second the ne. This convention is used when replacing a
13502 32-bit BEQ/BNE with the 16-bit version. */
13503
13504#define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13505
13506static const struct opcode_descriptor bz_rs_insns_32[] = {
13507 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13508 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13509 { 0, 0 } /* End marker for find_match(). */
13510};
13511
13512static const struct opcode_descriptor bz_rt_insns_32[] = {
13513 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13514 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13515 { 0, 0 } /* End marker for find_match(). */
13516};
13517
13518static const struct opcode_descriptor bzc_insns_32[] = {
13519 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13520 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13521 { 0, 0 } /* End marker for find_match(). */
13522};
13523
13524static const struct opcode_descriptor bz_insns_16[] = {
13525 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13526 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13527 { 0, 0 } /* End marker for find_match(). */
13528};
13529
13530/* Switch between a 5-bit register index and its 3-bit shorthand. */
13531
e67f83e5 13532#define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
eb6b0cf4 13533#define BZ16_REG_FIELD(r) (((r) & 7) << 7)
df58fc94
RS
13534
13535
13536/* 32-bit instructions with a delay slot. */
13537
13538static const struct opcode_descriptor jal_insn_32_bd16 =
13539 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13540
13541static const struct opcode_descriptor jal_insn_32_bd32 =
13542 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13543
13544static const struct opcode_descriptor jal_x_insn_32_bd32 =
13545 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13546
13547static const struct opcode_descriptor j_insn_32 =
13548 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13549
13550static const struct opcode_descriptor jalr_insn_32 =
13551 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13552
13553/* This table can be compacted, because no opcode replacement is made. */
13554
13555static const struct opcode_descriptor ds_insns_32_bd16[] = {
13556 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13557
13558 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13559 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13560
13561 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13562 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13563 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13564 { 0, 0 } /* End marker for find_match(). */
13565};
13566
13567/* This table can be compacted, because no opcode replacement is made. */
13568
13569static const struct opcode_descriptor ds_insns_32_bd32[] = {
13570 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13571
13572 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13573 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13574 { 0, 0 } /* End marker for find_match(). */
13575};
13576
13577
13578/* 16-bit instructions with a delay slot. */
13579
13580static const struct opcode_descriptor jalr_insn_16_bd16 =
13581 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13582
13583static const struct opcode_descriptor jalr_insn_16_bd32 =
13584 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13585
13586static const struct opcode_descriptor jr_insn_16 =
13587 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13588
13589#define JR16_REG(opcode) ((opcode) & 0x1f)
13590
13591/* This table can be compacted, because no opcode replacement is made. */
13592
13593static const struct opcode_descriptor ds_insns_16_bd16[] = {
13594 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13595
13596 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13597 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13598 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13599 { 0, 0 } /* End marker for find_match(). */
13600};
13601
13602
13603/* LUI instruction. */
13604
13605static const struct opcode_descriptor lui_insn =
13606 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13607
13608
13609/* ADDIU instruction. */
13610
13611static const struct opcode_descriptor addiu_insn =
13612 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13613
13614static const struct opcode_descriptor addiupc_insn =
13615 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13616
13617#define ADDIUPC_REG_FIELD(r) \
13618 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13619
13620
13621/* Relaxable instructions in a JAL delay slot: MOVE. */
13622
13623/* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13624 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13625#define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13626#define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13627
13628#define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13629#define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13630
13631static const struct opcode_descriptor move_insns_32[] = {
df58fc94 13632 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
40fc1451 13633 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
df58fc94
RS
13634 { 0, 0 } /* End marker for find_match(). */
13635};
13636
13637static const struct opcode_descriptor move_insn_16 =
13638 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13639
13640
13641/* NOP instructions. */
13642
13643static const struct opcode_descriptor nop_insn_32 =
13644 { /* "nop", "", */ 0x00000000, 0xffffffff };
13645
13646static const struct opcode_descriptor nop_insn_16 =
13647 { /* "nop", "", */ 0x0c00, 0xffff };
13648
13649
13650/* Instruction match support. */
13651
13652#define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13653
13654static int
13655find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13656{
13657 unsigned long indx;
13658
13659 for (indx = 0; insn[indx].mask != 0; indx++)
13660 if (MATCH (opcode, insn[indx]))
13661 return indx;
13662
13663 return -1;
13664}
13665
13666
13667/* Branch and delay slot decoding support. */
13668
13669/* If PTR points to what *might* be a 16-bit branch or jump, then
13670 return the minimum length of its delay slot, otherwise return 0.
13671 Non-zero results are not definitive as we might be checking against
13672 the second half of another instruction. */
13673
13674static int
13675check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13676{
13677 unsigned long opcode;
13678 int bdsize;
13679
13680 opcode = bfd_get_16 (abfd, ptr);
13681 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13682 /* 16-bit branch/jump with a 32-bit delay slot. */
13683 bdsize = 4;
13684 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13685 || find_match (opcode, ds_insns_16_bd16) >= 0)
13686 /* 16-bit branch/jump with a 16-bit delay slot. */
13687 bdsize = 2;
13688 else
13689 /* No delay slot. */
13690 bdsize = 0;
13691
13692 return bdsize;
13693}
13694
13695/* If PTR points to what *might* be a 32-bit branch or jump, then
13696 return the minimum length of its delay slot, otherwise return 0.
13697 Non-zero results are not definitive as we might be checking against
13698 the second half of another instruction. */
13699
13700static int
13701check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13702{
13703 unsigned long opcode;
13704 int bdsize;
13705
d21911ea 13706 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13707 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13708 /* 32-bit branch/jump with a 32-bit delay slot. */
13709 bdsize = 4;
13710 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13711 /* 32-bit branch/jump with a 16-bit delay slot. */
13712 bdsize = 2;
13713 else
13714 /* No delay slot. */
13715 bdsize = 0;
13716
13717 return bdsize;
13718}
13719
13720/* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13721 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13722
13723static bfd_boolean
13724check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13725{
13726 unsigned long opcode;
13727
13728 opcode = bfd_get_16 (abfd, ptr);
13729 if (MATCH (opcode, b_insn_16)
13730 /* B16 */
13731 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13732 /* JR16 */
13733 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13734 /* BEQZ16, BNEZ16 */
13735 || (MATCH (opcode, jalr_insn_16_bd32)
13736 /* JALR16 */
13737 && reg != JR16_REG (opcode) && reg != RA))
13738 return TRUE;
13739
13740 return FALSE;
13741}
13742
13743/* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13744 then return TRUE, otherwise FALSE. */
13745
f41e5fcc 13746static bfd_boolean
df58fc94
RS
13747check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13748{
13749 unsigned long opcode;
13750
d21911ea 13751 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13752 if (MATCH (opcode, j_insn_32)
13753 /* J */
13754 || MATCH (opcode, bc_insn_32)
13755 /* BC1F, BC1T, BC2F, BC2T */
13756 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13757 /* JAL, JALX */
13758 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13759 /* BGEZ, BGTZ, BLEZ, BLTZ */
13760 || (MATCH (opcode, bzal_insn_32)
13761 /* BGEZAL, BLTZAL */
13762 && reg != OP32_SREG (opcode) && reg != RA)
13763 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13764 /* JALR, JALR.HB, BEQ, BNE */
13765 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13766 return TRUE;
13767
13768 return FALSE;
13769}
13770
80cab405
MR
13771/* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13772 IRELEND) at OFFSET indicate that there must be a compact branch there,
13773 then return TRUE, otherwise FALSE. */
df58fc94
RS
13774
13775static bfd_boolean
80cab405
MR
13776check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13777 const Elf_Internal_Rela *internal_relocs,
13778 const Elf_Internal_Rela *irelend)
df58fc94 13779{
80cab405
MR
13780 const Elf_Internal_Rela *irel;
13781 unsigned long opcode;
13782
d21911ea 13783 opcode = bfd_get_micromips_32 (abfd, ptr);
80cab405
MR
13784 if (find_match (opcode, bzc_insns_32) < 0)
13785 return FALSE;
df58fc94
RS
13786
13787 for (irel = internal_relocs; irel < irelend; irel++)
80cab405
MR
13788 if (irel->r_offset == offset
13789 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13790 return TRUE;
13791
df58fc94
RS
13792 return FALSE;
13793}
80cab405
MR
13794
13795/* Bitsize checking. */
13796#define IS_BITSIZE(val, N) \
13797 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13798 - (1ULL << ((N) - 1))) == (val))
13799
df58fc94
RS
13800\f
13801bfd_boolean
13802_bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13803 struct bfd_link_info *link_info,
13804 bfd_boolean *again)
13805{
833794fc 13806 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
df58fc94
RS
13807 Elf_Internal_Shdr *symtab_hdr;
13808 Elf_Internal_Rela *internal_relocs;
13809 Elf_Internal_Rela *irel, *irelend;
13810 bfd_byte *contents = NULL;
13811 Elf_Internal_Sym *isymbuf = NULL;
13812
13813 /* Assume nothing changes. */
13814 *again = FALSE;
13815
13816 /* We don't have to do anything for a relocatable link, if
13817 this section does not have relocs, or if this is not a
13818 code section. */
13819
0e1862bb 13820 if (bfd_link_relocatable (link_info)
df58fc94
RS
13821 || (sec->flags & SEC_RELOC) == 0
13822 || sec->reloc_count == 0
13823 || (sec->flags & SEC_CODE) == 0)
13824 return TRUE;
13825
13826 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13827
13828 /* Get a copy of the native relocations. */
13829 internal_relocs = (_bfd_elf_link_read_relocs
2c3fc389 13830 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
df58fc94
RS
13831 link_info->keep_memory));
13832 if (internal_relocs == NULL)
13833 goto error_return;
13834
13835 /* Walk through them looking for relaxing opportunities. */
13836 irelend = internal_relocs + sec->reloc_count;
13837 for (irel = internal_relocs; irel < irelend; irel++)
13838 {
13839 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13840 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13841 bfd_boolean target_is_micromips_code_p;
13842 unsigned long opcode;
13843 bfd_vma symval;
13844 bfd_vma pcrval;
2309ddf2 13845 bfd_byte *ptr;
df58fc94
RS
13846 int fndopc;
13847
13848 /* The number of bytes to delete for relaxation and from where
07d6d2b8 13849 to delete these bytes starting at irel->r_offset. */
df58fc94
RS
13850 int delcnt = 0;
13851 int deloff = 0;
13852
13853 /* If this isn't something that can be relaxed, then ignore
07d6d2b8 13854 this reloc. */
df58fc94
RS
13855 if (r_type != R_MICROMIPS_HI16
13856 && r_type != R_MICROMIPS_PC16_S1
2309ddf2 13857 && r_type != R_MICROMIPS_26_S1)
df58fc94
RS
13858 continue;
13859
13860 /* Get the section contents if we haven't done so already. */
13861 if (contents == NULL)
13862 {
13863 /* Get cached copy if it exists. */
13864 if (elf_section_data (sec)->this_hdr.contents != NULL)
13865 contents = elf_section_data (sec)->this_hdr.contents;
13866 /* Go get them off disk. */
13867 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13868 goto error_return;
13869 }
2309ddf2 13870 ptr = contents + irel->r_offset;
df58fc94
RS
13871
13872 /* Read this BFD's local symbols if we haven't done so already. */
13873 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13874 {
13875 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13876 if (isymbuf == NULL)
13877 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13878 symtab_hdr->sh_info, 0,
13879 NULL, NULL, NULL);
13880 if (isymbuf == NULL)
13881 goto error_return;
13882 }
13883
13884 /* Get the value of the symbol referred to by the reloc. */
13885 if (r_symndx < symtab_hdr->sh_info)
13886 {
13887 /* A local symbol. */
13888 Elf_Internal_Sym *isym;
13889 asection *sym_sec;
13890
13891 isym = isymbuf + r_symndx;
13892 if (isym->st_shndx == SHN_UNDEF)
13893 sym_sec = bfd_und_section_ptr;
13894 else if (isym->st_shndx == SHN_ABS)
13895 sym_sec = bfd_abs_section_ptr;
13896 else if (isym->st_shndx == SHN_COMMON)
13897 sym_sec = bfd_com_section_ptr;
13898 else
13899 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13900 symval = (isym->st_value
13901 + sym_sec->output_section->vma
13902 + sym_sec->output_offset);
13903 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13904 }
13905 else
13906 {
13907 unsigned long indx;
13908 struct elf_link_hash_entry *h;
13909
13910 /* An external symbol. */
13911 indx = r_symndx - symtab_hdr->sh_info;
13912 h = elf_sym_hashes (abfd)[indx];
13913 BFD_ASSERT (h != NULL);
13914
13915 if (h->root.type != bfd_link_hash_defined
13916 && h->root.type != bfd_link_hash_defweak)
13917 /* This appears to be a reference to an undefined
13918 symbol. Just ignore it -- it will be caught by the
13919 regular reloc processing. */
13920 continue;
13921
13922 symval = (h->root.u.def.value
13923 + h->root.u.def.section->output_section->vma
13924 + h->root.u.def.section->output_offset);
13925 target_is_micromips_code_p = (!h->needs_plt
13926 && ELF_ST_IS_MICROMIPS (h->other));
13927 }
13928
13929
13930 /* For simplicity of coding, we are going to modify the
07d6d2b8
AM
13931 section contents, the section relocs, and the BFD symbol
13932 table. We must tell the rest of the code not to free up this
13933 information. It would be possible to instead create a table
13934 of changes which have to be made, as is done in coff-mips.c;
13935 that would be more work, but would require less memory when
13936 the linker is run. */
df58fc94
RS
13937
13938 /* Only 32-bit instructions relaxed. */
13939 if (irel->r_offset + 4 > sec->size)
13940 continue;
13941
d21911ea 13942 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13943
13944 /* This is the pc-relative distance from the instruction the
07d6d2b8 13945 relocation is applied to, to the symbol referred. */
df58fc94
RS
13946 pcrval = (symval
13947 - (sec->output_section->vma + sec->output_offset)
13948 - irel->r_offset);
13949
13950 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
07d6d2b8
AM
13951 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13952 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
df58fc94 13953
07d6d2b8 13954 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
df58fc94 13955
07d6d2b8
AM
13956 where pcrval has first to be adjusted to apply against the LO16
13957 location (we make the adjustment later on, when we have figured
13958 out the offset). */
df58fc94
RS
13959 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13960 {
80cab405 13961 bfd_boolean bzc = FALSE;
df58fc94
RS
13962 unsigned long nextopc;
13963 unsigned long reg;
13964 bfd_vma offset;
13965
13966 /* Give up if the previous reloc was a HI16 against this symbol
13967 too. */
13968 if (irel > internal_relocs
13969 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13970 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13971 continue;
13972
13973 /* Or if the next reloc is not a LO16 against this symbol. */
13974 if (irel + 1 >= irelend
13975 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13976 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13977 continue;
13978
13979 /* Or if the second next reloc is a LO16 against this symbol too. */
13980 if (irel + 2 >= irelend
13981 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13982 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13983 continue;
13984
80cab405
MR
13985 /* See if the LUI instruction *might* be in a branch delay slot.
13986 We check whether what looks like a 16-bit branch or jump is
13987 actually an immediate argument to a compact branch, and let
13988 it through if so. */
df58fc94 13989 if (irel->r_offset >= 2
2309ddf2 13990 && check_br16_dslot (abfd, ptr - 2)
df58fc94 13991 && !(irel->r_offset >= 4
80cab405
MR
13992 && (bzc = check_relocated_bzc (abfd,
13993 ptr - 4, irel->r_offset - 4,
13994 internal_relocs, irelend))))
df58fc94
RS
13995 continue;
13996 if (irel->r_offset >= 4
80cab405 13997 && !bzc
2309ddf2 13998 && check_br32_dslot (abfd, ptr - 4))
df58fc94
RS
13999 continue;
14000
14001 reg = OP32_SREG (opcode);
14002
14003 /* We only relax adjacent instructions or ones separated with
14004 a branch or jump that has a delay slot. The branch or jump
14005 must not fiddle with the register used to hold the address.
14006 Subtract 4 for the LUI itself. */
14007 offset = irel[1].r_offset - irel[0].r_offset;
14008 switch (offset - 4)
14009 {
14010 case 0:
14011 break;
14012 case 2:
2309ddf2 14013 if (check_br16 (abfd, ptr + 4, reg))
df58fc94
RS
14014 break;
14015 continue;
14016 case 4:
2309ddf2 14017 if (check_br32 (abfd, ptr + 4, reg))
df58fc94
RS
14018 break;
14019 continue;
14020 default:
14021 continue;
14022 }
14023
d21911ea 14024 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
df58fc94
RS
14025
14026 /* Give up unless the same register is used with both
14027 relocations. */
14028 if (OP32_SREG (nextopc) != reg)
14029 continue;
14030
14031 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
14032 and rounding up to take masking of the two LSBs into account. */
14033 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
14034
14035 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
14036 if (IS_BITSIZE (symval, 16))
14037 {
14038 /* Fix the relocation's type. */
14039 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
14040
14041 /* Instructions using R_MICROMIPS_LO16 have the base or
07d6d2b8
AM
14042 source register in bits 20:16. This register becomes $0
14043 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
df58fc94
RS
14044 nextopc &= ~0x001f0000;
14045 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
14046 contents + irel[1].r_offset);
14047 }
14048
14049 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
14050 We add 4 to take LUI deletion into account while checking
14051 the PC-relative distance. */
14052 else if (symval % 4 == 0
14053 && IS_BITSIZE (pcrval + 4, 25)
14054 && MATCH (nextopc, addiu_insn)
14055 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
14056 && OP16_VALID_REG (OP32_TREG (nextopc)))
14057 {
14058 /* Fix the relocation's type. */
14059 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
14060
14061 /* Replace ADDIU with the ADDIUPC version. */
14062 nextopc = (addiupc_insn.match
14063 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
14064
d21911ea
MR
14065 bfd_put_micromips_32 (abfd, nextopc,
14066 contents + irel[1].r_offset);
df58fc94
RS
14067 }
14068
14069 /* Can't do anything, give up, sigh... */
14070 else
14071 continue;
14072
14073 /* Fix the relocation's type. */
14074 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
14075
14076 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
14077 delcnt = 4;
14078 deloff = 0;
14079 }
14080
14081 /* Compact branch relaxation -- due to the multitude of macros
07d6d2b8
AM
14082 employed by the compiler/assembler, compact branches are not
14083 always generated. Obviously, this can/will be fixed elsewhere,
14084 but there is no drawback in double checking it here. */
df58fc94
RS
14085 else if (r_type == R_MICROMIPS_PC16_S1
14086 && irel->r_offset + 5 < sec->size
14087 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
14088 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
833794fc
MR
14089 && ((!insn32
14090 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
14091 nop_insn_16) ? 2 : 0))
14092 || (irel->r_offset + 7 < sec->size
14093 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
14094 ptr + 4),
14095 nop_insn_32) ? 4 : 0))))
df58fc94
RS
14096 {
14097 unsigned long reg;
14098
14099 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14100
14101 /* Replace BEQZ/BNEZ with the compact version. */
14102 opcode = (bzc_insns_32[fndopc].match
14103 | BZC32_REG_FIELD (reg)
14104 | (opcode & 0xffff)); /* Addend value. */
14105
d21911ea 14106 bfd_put_micromips_32 (abfd, opcode, ptr);
df58fc94 14107
833794fc
MR
14108 /* Delete the delay slot NOP: two or four bytes from
14109 irel->offset + 4; delcnt has already been set above. */
df58fc94
RS
14110 deloff = 4;
14111 }
14112
14113 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
07d6d2b8 14114 to check the distance from the next instruction, so subtract 2. */
833794fc
MR
14115 else if (!insn32
14116 && r_type == R_MICROMIPS_PC16_S1
df58fc94
RS
14117 && IS_BITSIZE (pcrval - 2, 11)
14118 && find_match (opcode, b_insns_32) >= 0)
14119 {
14120 /* Fix the relocation's type. */
14121 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
14122
a8685210 14123 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
14124 bfd_put_16 (abfd,
14125 (b_insn_16.match
14126 | (opcode & 0x3ff)), /* Addend value. */
2309ddf2 14127 ptr);
df58fc94
RS
14128
14129 /* Delete 2 bytes from irel->r_offset + 2. */
14130 delcnt = 2;
14131 deloff = 2;
14132 }
14133
14134 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
07d6d2b8 14135 to check the distance from the next instruction, so subtract 2. */
833794fc
MR
14136 else if (!insn32
14137 && r_type == R_MICROMIPS_PC16_S1
df58fc94
RS
14138 && IS_BITSIZE (pcrval - 2, 8)
14139 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
14140 && OP16_VALID_REG (OP32_SREG (opcode)))
14141 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
14142 && OP16_VALID_REG (OP32_TREG (opcode)))))
14143 {
14144 unsigned long reg;
14145
14146 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14147
14148 /* Fix the relocation's type. */
14149 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
14150
a8685210 14151 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
14152 bfd_put_16 (abfd,
14153 (bz_insns_16[fndopc].match
14154 | BZ16_REG_FIELD (reg)
14155 | (opcode & 0x7f)), /* Addend value. */
2309ddf2 14156 ptr);
df58fc94
RS
14157
14158 /* Delete 2 bytes from irel->r_offset + 2. */
14159 delcnt = 2;
14160 deloff = 2;
14161 }
14162
14163 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
833794fc
MR
14164 else if (!insn32
14165 && r_type == R_MICROMIPS_26_S1
df58fc94
RS
14166 && target_is_micromips_code_p
14167 && irel->r_offset + 7 < sec->size
14168 && MATCH (opcode, jal_insn_32_bd32))
14169 {
14170 unsigned long n32opc;
14171 bfd_boolean relaxed = FALSE;
14172
d21911ea 14173 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
df58fc94
RS
14174
14175 if (MATCH (n32opc, nop_insn_32))
14176 {
14177 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
2309ddf2 14178 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
df58fc94
RS
14179
14180 relaxed = TRUE;
14181 }
14182 else if (find_match (n32opc, move_insns_32) >= 0)
14183 {
14184 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
14185 bfd_put_16 (abfd,
14186 (move_insn_16.match
14187 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
14188 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
2309ddf2 14189 ptr + 4);
df58fc94
RS
14190
14191 relaxed = TRUE;
14192 }
14193 /* Other 32-bit instructions relaxable to 16-bit
14194 instructions will be handled here later. */
14195
14196 if (relaxed)
14197 {
14198 /* JAL with 32-bit delay slot that is changed to a JALS
07d6d2b8 14199 with 16-bit delay slot. */
d21911ea 14200 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
df58fc94
RS
14201
14202 /* Delete 2 bytes from irel->r_offset + 6. */
14203 delcnt = 2;
14204 deloff = 6;
14205 }
14206 }
14207
14208 if (delcnt != 0)
14209 {
14210 /* Note that we've changed the relocs, section contents, etc. */
14211 elf_section_data (sec)->relocs = internal_relocs;
14212 elf_section_data (sec)->this_hdr.contents = contents;
14213 symtab_hdr->contents = (unsigned char *) isymbuf;
14214
14215 /* Delete bytes depending on the delcnt and deloff. */
14216 if (!mips_elf_relax_delete_bytes (abfd, sec,
14217 irel->r_offset + deloff, delcnt))
14218 goto error_return;
14219
14220 /* That will change things, so we should relax again.
14221 Note that this is not required, and it may be slow. */
14222 *again = TRUE;
14223 }
14224 }
14225
14226 if (isymbuf != NULL
14227 && symtab_hdr->contents != (unsigned char *) isymbuf)
14228 {
14229 if (! link_info->keep_memory)
14230 free (isymbuf);
14231 else
14232 {
14233 /* Cache the symbols for elf_link_input_bfd. */
14234 symtab_hdr->contents = (unsigned char *) isymbuf;
14235 }
14236 }
14237
14238 if (contents != NULL
14239 && elf_section_data (sec)->this_hdr.contents != contents)
14240 {
14241 if (! link_info->keep_memory)
14242 free (contents);
14243 else
14244 {
14245 /* Cache the section contents for elf_link_input_bfd. */
14246 elf_section_data (sec)->this_hdr.contents = contents;
14247 }
14248 }
14249
c9594989 14250 if (elf_section_data (sec)->relocs != internal_relocs)
df58fc94
RS
14251 free (internal_relocs);
14252
14253 return TRUE;
14254
14255 error_return:
c9594989 14256 if (symtab_hdr->contents != (unsigned char *) isymbuf)
df58fc94 14257 free (isymbuf);
c9594989 14258 if (elf_section_data (sec)->this_hdr.contents != contents)
df58fc94 14259 free (contents);
c9594989 14260 if (elf_section_data (sec)->relocs != internal_relocs)
df58fc94
RS
14261 free (internal_relocs);
14262
14263 return FALSE;
14264}
14265\f
b49e97c9
TS
14266/* Create a MIPS ELF linker hash table. */
14267
14268struct bfd_link_hash_table *
9719ad41 14269_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
14270{
14271 struct mips_elf_link_hash_table *ret;
986f0783 14272 size_t amt = sizeof (struct mips_elf_link_hash_table);
b49e97c9 14273
7bf52ea2 14274 ret = bfd_zmalloc (amt);
9719ad41 14275 if (ret == NULL)
b49e97c9
TS
14276 return NULL;
14277
66eb6687
AM
14278 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
14279 mips_elf_link_hash_newfunc,
4dfe6ac6
NC
14280 sizeof (struct mips_elf_link_hash_entry),
14281 MIPS_ELF_DATA))
b49e97c9 14282 {
e2d34d7d 14283 free (ret);
b49e97c9
TS
14284 return NULL;
14285 }
1bbce132
MR
14286 ret->root.init_plt_refcount.plist = NULL;
14287 ret->root.init_plt_offset.plist = NULL;
b49e97c9 14288
b49e97c9
TS
14289 return &ret->root.root;
14290}
0a44bf69
RS
14291
14292/* Likewise, but indicate that the target is VxWorks. */
14293
14294struct bfd_link_hash_table *
14295_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
14296{
14297 struct bfd_link_hash_table *ret;
14298
14299 ret = _bfd_mips_elf_link_hash_table_create (abfd);
14300 if (ret)
14301 {
14302 struct mips_elf_link_hash_table *htab;
14303
14304 htab = (struct mips_elf_link_hash_table *) ret;
861fb55a
DJ
14305 htab->use_plts_and_copy_relocs = TRUE;
14306 htab->is_vxworks = TRUE;
0a44bf69
RS
14307 }
14308 return ret;
14309}
861fb55a
DJ
14310
14311/* A function that the linker calls if we are allowed to use PLTs
14312 and copy relocs. */
14313
14314void
14315_bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
14316{
14317 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
14318}
833794fc
MR
14319
14320/* A function that the linker calls to select between all or only
8b10b0b3 14321 32-bit microMIPS instructions, and between making or ignoring
47275900
MR
14322 branch relocation checks for invalid transitions between ISA modes.
14323 Also record whether we have been configured for a GNU target. */
833794fc
MR
14324
14325void
8b10b0b3 14326_bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
47275900
MR
14327 bfd_boolean ignore_branch_isa,
14328 bfd_boolean gnu_target)
833794fc 14329{
8b10b0b3
MR
14330 mips_elf_hash_table (info)->insn32 = insn32;
14331 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
47275900 14332 mips_elf_hash_table (info)->gnu_target = gnu_target;
833794fc 14333}
3734320d
MF
14334
14335/* A function that the linker calls to enable use of compact branches in
14336 linker generated code for MIPSR6. */
14337
14338void
14339_bfd_mips_elf_compact_branches (struct bfd_link_info *info, bfd_boolean on)
14340{
14341 mips_elf_hash_table (info)->compact_branches = on;
14342}
14343
b49e97c9 14344\f
c97c330b
MF
14345/* Structure for saying that BFD machine EXTENSION extends BASE. */
14346
14347struct mips_mach_extension
14348{
14349 unsigned long extension, base;
14350};
14351
14352
14353/* An array describing how BFD machines relate to one another. The entries
14354 are ordered topologically with MIPS I extensions listed last. */
14355
14356static const struct mips_mach_extension mips_mach_extensions[] =
14357{
14358 /* MIPS64r2 extensions. */
14359 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14360 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14361 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14362 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
9108bc33 14363 { bfd_mach_mips_gs264e, bfd_mach_mips_gs464e },
bd782c07 14364 { bfd_mach_mips_gs464e, bfd_mach_mips_gs464 },
ac8cb70f 14365 { bfd_mach_mips_gs464, bfd_mach_mipsisa64r2 },
c97c330b
MF
14366
14367 /* MIPS64 extensions. */
14368 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14369 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14370 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14371
14372 /* MIPS V extensions. */
14373 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14374
14375 /* R10000 extensions. */
14376 { bfd_mach_mips12000, bfd_mach_mips10000 },
14377 { bfd_mach_mips14000, bfd_mach_mips10000 },
14378 { bfd_mach_mips16000, bfd_mach_mips10000 },
14379
14380 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14381 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14382 better to allow vr5400 and vr5500 code to be merged anyway, since
14383 many libraries will just use the core ISA. Perhaps we could add
14384 some sort of ASE flag if this ever proves a problem. */
14385 { bfd_mach_mips5500, bfd_mach_mips5400 },
14386 { bfd_mach_mips5400, bfd_mach_mips5000 },
14387
14388 /* MIPS IV extensions. */
14389 { bfd_mach_mips5, bfd_mach_mips8000 },
14390 { bfd_mach_mips10000, bfd_mach_mips8000 },
14391 { bfd_mach_mips5000, bfd_mach_mips8000 },
14392 { bfd_mach_mips7000, bfd_mach_mips8000 },
14393 { bfd_mach_mips9000, bfd_mach_mips8000 },
14394
14395 /* VR4100 extensions. */
14396 { bfd_mach_mips4120, bfd_mach_mips4100 },
14397 { bfd_mach_mips4111, bfd_mach_mips4100 },
14398
14399 /* MIPS III extensions. */
14400 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14401 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14402 { bfd_mach_mips8000, bfd_mach_mips4000 },
14403 { bfd_mach_mips4650, bfd_mach_mips4000 },
14404 { bfd_mach_mips4600, bfd_mach_mips4000 },
14405 { bfd_mach_mips4400, bfd_mach_mips4000 },
14406 { bfd_mach_mips4300, bfd_mach_mips4000 },
14407 { bfd_mach_mips4100, bfd_mach_mips4000 },
c97c330b
MF
14408 { bfd_mach_mips5900, bfd_mach_mips4000 },
14409
38bf472a
MR
14410 /* MIPS32r3 extensions. */
14411 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14412
14413 /* MIPS32r2 extensions. */
14414 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14415
c97c330b
MF
14416 /* MIPS32 extensions. */
14417 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14418
14419 /* MIPS II extensions. */
14420 { bfd_mach_mips4000, bfd_mach_mips6000 },
14421 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
b417536f 14422 { bfd_mach_mips4010, bfd_mach_mips6000 },
c97c330b
MF
14423
14424 /* MIPS I extensions. */
14425 { bfd_mach_mips6000, bfd_mach_mips3000 },
14426 { bfd_mach_mips3900, bfd_mach_mips3000 }
14427};
14428
14429/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14430
14431static bfd_boolean
14432mips_mach_extends_p (unsigned long base, unsigned long extension)
14433{
14434 size_t i;
14435
14436 if (extension == base)
14437 return TRUE;
14438
14439 if (base == bfd_mach_mipsisa32
14440 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14441 return TRUE;
14442
14443 if (base == bfd_mach_mipsisa32r2
14444 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14445 return TRUE;
14446
14447 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14448 if (extension == mips_mach_extensions[i].extension)
14449 {
14450 extension = mips_mach_extensions[i].base;
14451 if (extension == base)
14452 return TRUE;
14453 }
14454
14455 return FALSE;
14456}
14457
14458/* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14459
14460static unsigned long
14461bfd_mips_isa_ext_mach (unsigned int isa_ext)
14462{
14463 switch (isa_ext)
14464 {
07d6d2b8
AM
14465 case AFL_EXT_3900: return bfd_mach_mips3900;
14466 case AFL_EXT_4010: return bfd_mach_mips4010;
14467 case AFL_EXT_4100: return bfd_mach_mips4100;
14468 case AFL_EXT_4111: return bfd_mach_mips4111;
14469 case AFL_EXT_4120: return bfd_mach_mips4120;
14470 case AFL_EXT_4650: return bfd_mach_mips4650;
14471 case AFL_EXT_5400: return bfd_mach_mips5400;
14472 case AFL_EXT_5500: return bfd_mach_mips5500;
14473 case AFL_EXT_5900: return bfd_mach_mips5900;
14474 case AFL_EXT_10000: return bfd_mach_mips10000;
c97c330b
MF
14475 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14476 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
07d6d2b8 14477 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
c97c330b
MF
14478 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14479 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14480 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
07d6d2b8
AM
14481 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14482 default: return bfd_mach_mips3000;
c97c330b
MF
14483 }
14484}
14485
351cdf24
MF
14486/* Return the .MIPS.abiflags value representing each ISA Extension. */
14487
14488unsigned int
14489bfd_mips_isa_ext (bfd *abfd)
14490{
14491 switch (bfd_get_mach (abfd))
14492 {
07d6d2b8
AM
14493 case bfd_mach_mips3900: return AFL_EXT_3900;
14494 case bfd_mach_mips4010: return AFL_EXT_4010;
14495 case bfd_mach_mips4100: return AFL_EXT_4100;
14496 case bfd_mach_mips4111: return AFL_EXT_4111;
14497 case bfd_mach_mips4120: return AFL_EXT_4120;
14498 case bfd_mach_mips4650: return AFL_EXT_4650;
14499 case bfd_mach_mips5400: return AFL_EXT_5400;
14500 case bfd_mach_mips5500: return AFL_EXT_5500;
14501 case bfd_mach_mips5900: return AFL_EXT_5900;
14502 case bfd_mach_mips10000: return AFL_EXT_10000;
c97c330b
MF
14503 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14504 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
07d6d2b8
AM
14505 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14506 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14507 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14508 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14509 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14510 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
38bf472a
MR
14511 case bfd_mach_mips_interaptiv_mr2:
14512 return AFL_EXT_INTERAPTIV_MR2;
07d6d2b8 14513 default: return 0;
c97c330b
MF
14514 }
14515}
14516
14517/* Encode ISA level and revision as a single value. */
14518#define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14519
14520/* Decode a single value into level and revision. */
14521#define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14522#define ISA_REV(LEVREV) ((LEVREV) & 0x7)
351cdf24
MF
14523
14524/* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14525
14526static void
14527update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14528{
c97c330b 14529 int new_isa = 0;
351cdf24
MF
14530 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14531 {
c97c330b
MF
14532 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14533 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14534 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14535 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14536 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14537 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14538 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14539 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14540 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14541 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14542 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
351cdf24 14543 default:
4eca0228 14544 _bfd_error_handler
695344c0 14545 /* xgettext:c-format */
2c1c9679 14546 (_("%pB: unknown architecture %s"),
351cdf24
MF
14547 abfd, bfd_printable_name (abfd));
14548 }
14549
c97c330b
MF
14550 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14551 {
14552 abiflags->isa_level = ISA_LEVEL (new_isa);
14553 abiflags->isa_rev = ISA_REV (new_isa);
14554 }
14555
14556 /* Update the isa_ext if ABFD describes a further extension. */
14557 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14558 bfd_get_mach (abfd)))
14559 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
351cdf24
MF
14560}
14561
14562/* Return true if the given ELF header flags describe a 32-bit binary. */
14563
14564static bfd_boolean
14565mips_32bit_flags_p (flagword flags)
14566{
14567 return ((flags & EF_MIPS_32BITMODE) != 0
14568 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14569 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14570 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14571 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14572 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
7361da2c
AB
14573 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14574 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
351cdf24
MF
14575}
14576
14577/* Infer the content of the ABI flags based on the elf header. */
14578
14579static void
14580infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14581{
14582 obj_attribute *in_attr;
14583
14584 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14585 update_mips_abiflags_isa (abfd, abiflags);
14586
14587 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14588 abiflags->gpr_size = AFL_REG_32;
14589 else
14590 abiflags->gpr_size = AFL_REG_64;
14591
14592 abiflags->cpr1_size = AFL_REG_NONE;
14593
14594 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14595 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14596
14597 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14598 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14599 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14600 && abiflags->gpr_size == AFL_REG_32))
14601 abiflags->cpr1_size = AFL_REG_32;
14602 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14603 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14604 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14605 abiflags->cpr1_size = AFL_REG_64;
14606
14607 abiflags->cpr2_size = AFL_REG_NONE;
14608
14609 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14610 abiflags->ases |= AFL_ASE_MDMX;
14611 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14612 abiflags->ases |= AFL_ASE_MIPS16;
14613 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14614 abiflags->ases |= AFL_ASE_MICROMIPS;
14615
14616 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14617 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14618 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14619 && abiflags->isa_level >= 32
bdc6c06e 14620 && abiflags->ases != AFL_ASE_LOONGSON_EXT)
351cdf24
MF
14621 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14622}
14623
b49e97c9
TS
14624/* We need to use a special link routine to handle the .reginfo and
14625 the .mdebug sections. We need to merge all instances of these
14626 sections together, not write them all out sequentially. */
14627
b34976b6 14628bfd_boolean
9719ad41 14629_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 14630{
b49e97c9
TS
14631 asection *o;
14632 struct bfd_link_order *p;
14633 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
351cdf24 14634 asection *rtproc_sec, *abiflags_sec;
b49e97c9
TS
14635 Elf32_RegInfo reginfo;
14636 struct ecoff_debug_info debug;
861fb55a 14637 struct mips_htab_traverse_info hti;
7a2a6943
NC
14638 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14639 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 14640 HDRR *symhdr = &debug.symbolic_header;
9719ad41 14641 void *mdebug_handle = NULL;
b49e97c9
TS
14642 asection *s;
14643 EXTR esym;
14644 unsigned int i;
14645 bfd_size_type amt;
0a44bf69 14646 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
14647
14648 static const char * const secname[] =
14649 {
14650 ".text", ".init", ".fini", ".data",
14651 ".rodata", ".sdata", ".sbss", ".bss"
14652 };
14653 static const int sc[] =
14654 {
14655 scText, scInit, scFini, scData,
14656 scRData, scSData, scSBss, scBss
14657 };
14658
0a44bf69 14659 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
14660 BFD_ASSERT (htab != NULL);
14661
64575f78
MR
14662 /* Sort the dynamic symbols so that those with GOT entries come after
14663 those without. */
d4596a51
RS
14664 if (!mips_elf_sort_hash_table (abfd, info))
14665 return FALSE;
b49e97c9 14666
861fb55a
DJ
14667 /* Create any scheduled LA25 stubs. */
14668 hti.info = info;
14669 hti.output_bfd = abfd;
14670 hti.error = FALSE;
14671 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14672 if (hti.error)
14673 return FALSE;
14674
b49e97c9
TS
14675 /* Get a value for the GP register. */
14676 if (elf_gp (abfd) == 0)
14677 {
14678 struct bfd_link_hash_entry *h;
14679
b34976b6 14680 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 14681 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
14682 elf_gp (abfd) = (h->u.def.value
14683 + h->u.def.section->output_section->vma
14684 + h->u.def.section->output_offset);
0a44bf69
RS
14685 else if (htab->is_vxworks
14686 && (h = bfd_link_hash_lookup (info->hash,
14687 "_GLOBAL_OFFSET_TABLE_",
14688 FALSE, FALSE, TRUE))
14689 && h->type == bfd_link_hash_defined)
14690 elf_gp (abfd) = (h->u.def.section->output_section->vma
14691 + h->u.def.section->output_offset
14692 + h->u.def.value);
0e1862bb 14693 else if (bfd_link_relocatable (info))
b49e97c9
TS
14694 {
14695 bfd_vma lo = MINUS_ONE;
14696
14697 /* Find the GP-relative section with the lowest offset. */
9719ad41 14698 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
14699 if (o->vma < lo
14700 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14701 lo = o->vma;
14702
14703 /* And calculate GP relative to that. */
0a44bf69 14704 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
b49e97c9
TS
14705 }
14706 else
14707 {
14708 /* If the relocate_section function needs to do a reloc
14709 involving the GP value, it should make a reloc_dangerous
14710 callback to warn that GP is not defined. */
14711 }
14712 }
14713
14714 /* Go through the sections and collect the .reginfo and .mdebug
14715 information. */
351cdf24 14716 abiflags_sec = NULL;
b49e97c9
TS
14717 reginfo_sec = NULL;
14718 mdebug_sec = NULL;
14719 gptab_data_sec = NULL;
14720 gptab_bss_sec = NULL;
9719ad41 14721 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9 14722 {
351cdf24
MF
14723 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14724 {
14725 /* We have found the .MIPS.abiflags section in the output file.
14726 Look through all the link_orders comprising it and remove them.
14727 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14728 for (p = o->map_head.link_order; p != NULL; p = p->next)
14729 {
14730 asection *input_section;
14731
14732 if (p->type != bfd_indirect_link_order)
14733 {
14734 if (p->type == bfd_data_link_order)
14735 continue;
14736 abort ();
14737 }
14738
14739 input_section = p->u.indirect.section;
14740
14741 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14742 elf_link_input_bfd ignores this section. */
14743 input_section->flags &= ~SEC_HAS_CONTENTS;
14744 }
14745
14746 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14747 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14748
14749 /* Skip this section later on (I don't think this currently
14750 matters, but someday it might). */
14751 o->map_head.link_order = NULL;
14752
14753 abiflags_sec = o;
14754 }
14755
b49e97c9
TS
14756 if (strcmp (o->name, ".reginfo") == 0)
14757 {
14758 memset (&reginfo, 0, sizeof reginfo);
14759
14760 /* We have found the .reginfo section in the output file.
14761 Look through all the link_orders comprising it and merge
14762 the information together. */
8423293d 14763 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14764 {
14765 asection *input_section;
14766 bfd *input_bfd;
14767 Elf32_External_RegInfo ext;
14768 Elf32_RegInfo sub;
6798f8bf 14769 bfd_size_type sz;
b49e97c9
TS
14770
14771 if (p->type != bfd_indirect_link_order)
14772 {
14773 if (p->type == bfd_data_link_order)
14774 continue;
14775 abort ();
14776 }
14777
14778 input_section = p->u.indirect.section;
14779 input_bfd = input_section->owner;
14780
6798f8bf
MR
14781 sz = (input_section->size < sizeof (ext)
14782 ? input_section->size : sizeof (ext));
14783 memset (&ext, 0, sizeof (ext));
b49e97c9 14784 if (! bfd_get_section_contents (input_bfd, input_section,
6798f8bf 14785 &ext, 0, sz))
b34976b6 14786 return FALSE;
b49e97c9
TS
14787
14788 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14789
14790 reginfo.ri_gprmask |= sub.ri_gprmask;
14791 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14792 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14793 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14794 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14795
14796 /* ri_gp_value is set by the function
1c5e4ee9 14797 `_bfd_mips_elf_section_processing' when the section is
b49e97c9
TS
14798 finally written out. */
14799
14800 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14801 elf_link_input_bfd ignores this section. */
14802 input_section->flags &= ~SEC_HAS_CONTENTS;
14803 }
14804
14805 /* Size has been set in _bfd_mips_elf_always_size_sections. */
b248d650 14806 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
14807
14808 /* Skip this section later on (I don't think this currently
14809 matters, but someday it might). */
8423293d 14810 o->map_head.link_order = NULL;
b49e97c9
TS
14811
14812 reginfo_sec = o;
14813 }
14814
14815 if (strcmp (o->name, ".mdebug") == 0)
14816 {
14817 struct extsym_info einfo;
14818 bfd_vma last;
14819
14820 /* We have found the .mdebug section in the output file.
14821 Look through all the link_orders comprising it and merge
14822 the information together. */
14823 symhdr->magic = swap->sym_magic;
14824 /* FIXME: What should the version stamp be? */
14825 symhdr->vstamp = 0;
14826 symhdr->ilineMax = 0;
14827 symhdr->cbLine = 0;
14828 symhdr->idnMax = 0;
14829 symhdr->ipdMax = 0;
14830 symhdr->isymMax = 0;
14831 symhdr->ioptMax = 0;
14832 symhdr->iauxMax = 0;
14833 symhdr->issMax = 0;
14834 symhdr->issExtMax = 0;
14835 symhdr->ifdMax = 0;
14836 symhdr->crfd = 0;
14837 symhdr->iextMax = 0;
14838
14839 /* We accumulate the debugging information itself in the
14840 debug_info structure. */
14841 debug.line = NULL;
14842 debug.external_dnr = NULL;
14843 debug.external_pdr = NULL;
14844 debug.external_sym = NULL;
14845 debug.external_opt = NULL;
14846 debug.external_aux = NULL;
14847 debug.ss = NULL;
14848 debug.ssext = debug.ssext_end = NULL;
14849 debug.external_fdr = NULL;
14850 debug.external_rfd = NULL;
14851 debug.external_ext = debug.external_ext_end = NULL;
14852
14853 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 14854 if (mdebug_handle == NULL)
b34976b6 14855 return FALSE;
b49e97c9
TS
14856
14857 esym.jmptbl = 0;
14858 esym.cobol_main = 0;
14859 esym.weakext = 0;
14860 esym.reserved = 0;
14861 esym.ifd = ifdNil;
14862 esym.asym.iss = issNil;
14863 esym.asym.st = stLocal;
14864 esym.asym.reserved = 0;
14865 esym.asym.index = indexNil;
14866 last = 0;
14867 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14868 {
14869 esym.asym.sc = sc[i];
14870 s = bfd_get_section_by_name (abfd, secname[i]);
14871 if (s != NULL)
14872 {
14873 esym.asym.value = s->vma;
eea6121a 14874 last = s->vma + s->size;
b49e97c9
TS
14875 }
14876 else
14877 esym.asym.value = last;
14878 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14879 secname[i], &esym))
b34976b6 14880 return FALSE;
b49e97c9
TS
14881 }
14882
8423293d 14883 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14884 {
14885 asection *input_section;
14886 bfd *input_bfd;
14887 const struct ecoff_debug_swap *input_swap;
14888 struct ecoff_debug_info input_debug;
14889 char *eraw_src;
14890 char *eraw_end;
14891
14892 if (p->type != bfd_indirect_link_order)
14893 {
14894 if (p->type == bfd_data_link_order)
14895 continue;
14896 abort ();
14897 }
14898
14899 input_section = p->u.indirect.section;
14900 input_bfd = input_section->owner;
14901
d5eaccd7 14902 if (!is_mips_elf (input_bfd))
b49e97c9
TS
14903 {
14904 /* I don't know what a non MIPS ELF bfd would be
14905 doing with a .mdebug section, but I don't really
14906 want to deal with it. */
14907 continue;
14908 }
14909
14910 input_swap = (get_elf_backend_data (input_bfd)
14911 ->elf_backend_ecoff_debug_swap);
14912
eea6121a 14913 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
14914
14915 /* The ECOFF linking code expects that we have already
14916 read in the debugging information and set up an
14917 ecoff_debug_info structure, so we do that now. */
14918 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14919 &input_debug))
b34976b6 14920 return FALSE;
b49e97c9
TS
14921
14922 if (! (bfd_ecoff_debug_accumulate
14923 (mdebug_handle, abfd, &debug, swap, input_bfd,
14924 &input_debug, input_swap, info)))
b34976b6 14925 return FALSE;
b49e97c9
TS
14926
14927 /* Loop through the external symbols. For each one with
14928 interesting information, try to find the symbol in
14929 the linker global hash table and save the information
14930 for the output external symbols. */
14931 eraw_src = input_debug.external_ext;
14932 eraw_end = (eraw_src
14933 + (input_debug.symbolic_header.iextMax
14934 * input_swap->external_ext_size));
14935 for (;
14936 eraw_src < eraw_end;
14937 eraw_src += input_swap->external_ext_size)
14938 {
14939 EXTR ext;
14940 const char *name;
14941 struct mips_elf_link_hash_entry *h;
14942
9719ad41 14943 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
14944 if (ext.asym.sc == scNil
14945 || ext.asym.sc == scUndefined
14946 || ext.asym.sc == scSUndefined)
14947 continue;
14948
14949 name = input_debug.ssext + ext.asym.iss;
14950 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 14951 name, FALSE, FALSE, TRUE);
b49e97c9
TS
14952 if (h == NULL || h->esym.ifd != -2)
14953 continue;
14954
14955 if (ext.ifd != -1)
14956 {
14957 BFD_ASSERT (ext.ifd
14958 < input_debug.symbolic_header.ifdMax);
14959 ext.ifd = input_debug.ifdmap[ext.ifd];
14960 }
14961
14962 h->esym = ext;
14963 }
14964
14965 /* Free up the information we just read. */
14966 free (input_debug.line);
14967 free (input_debug.external_dnr);
14968 free (input_debug.external_pdr);
14969 free (input_debug.external_sym);
14970 free (input_debug.external_opt);
14971 free (input_debug.external_aux);
14972 free (input_debug.ss);
14973 free (input_debug.ssext);
14974 free (input_debug.external_fdr);
14975 free (input_debug.external_rfd);
14976 free (input_debug.external_ext);
14977
14978 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14979 elf_link_input_bfd ignores this section. */
14980 input_section->flags &= ~SEC_HAS_CONTENTS;
14981 }
14982
0e1862bb 14983 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
b49e97c9
TS
14984 {
14985 /* Create .rtproc section. */
87e0a731 14986 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
b49e97c9
TS
14987 if (rtproc_sec == NULL)
14988 {
14989 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14990 | SEC_LINKER_CREATED | SEC_READONLY);
14991
87e0a731
AM
14992 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14993 ".rtproc",
14994 flags);
b49e97c9 14995 if (rtproc_sec == NULL
fd361982 14996 || !bfd_set_section_alignment (rtproc_sec, 4))
b34976b6 14997 return FALSE;
b49e97c9
TS
14998 }
14999
15000 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
15001 info, rtproc_sec,
15002 &debug))
b34976b6 15003 return FALSE;
b49e97c9
TS
15004 }
15005
15006 /* Build the external symbol information. */
15007 einfo.abfd = abfd;
15008 einfo.info = info;
15009 einfo.debug = &debug;
15010 einfo.swap = swap;
b34976b6 15011 einfo.failed = FALSE;
b49e97c9 15012 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 15013 mips_elf_output_extsym, &einfo);
b49e97c9 15014 if (einfo.failed)
b34976b6 15015 return FALSE;
b49e97c9
TS
15016
15017 /* Set the size of the .mdebug section. */
eea6121a 15018 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
15019
15020 /* Skip this section later on (I don't think this currently
15021 matters, but someday it might). */
8423293d 15022 o->map_head.link_order = NULL;
b49e97c9
TS
15023
15024 mdebug_sec = o;
15025 }
15026
0112cd26 15027 if (CONST_STRNEQ (o->name, ".gptab."))
b49e97c9
TS
15028 {
15029 const char *subname;
15030 unsigned int c;
15031 Elf32_gptab *tab;
15032 Elf32_External_gptab *ext_tab;
15033 unsigned int j;
15034
15035 /* The .gptab.sdata and .gptab.sbss sections hold
15036 information describing how the small data area would
15037 change depending upon the -G switch. These sections
15038 not used in executables files. */
0e1862bb 15039 if (! bfd_link_relocatable (info))
b49e97c9 15040 {
8423293d 15041 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
15042 {
15043 asection *input_section;
15044
15045 if (p->type != bfd_indirect_link_order)
15046 {
15047 if (p->type == bfd_data_link_order)
15048 continue;
15049 abort ();
15050 }
15051
15052 input_section = p->u.indirect.section;
15053
15054 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15055 elf_link_input_bfd ignores this section. */
15056 input_section->flags &= ~SEC_HAS_CONTENTS;
15057 }
15058
15059 /* Skip this section later on (I don't think this
15060 currently matters, but someday it might). */
8423293d 15061 o->map_head.link_order = NULL;
b49e97c9
TS
15062
15063 /* Really remove the section. */
5daa8fe7 15064 bfd_section_list_remove (abfd, o);
b49e97c9
TS
15065 --abfd->section_count;
15066
15067 continue;
15068 }
15069
15070 /* There is one gptab for initialized data, and one for
15071 uninitialized data. */
15072 if (strcmp (o->name, ".gptab.sdata") == 0)
15073 gptab_data_sec = o;
15074 else if (strcmp (o->name, ".gptab.sbss") == 0)
15075 gptab_bss_sec = o;
15076 else
15077 {
4eca0228 15078 _bfd_error_handler
695344c0 15079 /* xgettext:c-format */
871b3ab2 15080 (_("%pB: illegal section name `%pA'"), abfd, o);
b49e97c9 15081 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 15082 return FALSE;
b49e97c9
TS
15083 }
15084
15085 /* The linker script always combines .gptab.data and
15086 .gptab.sdata into .gptab.sdata, and likewise for
15087 .gptab.bss and .gptab.sbss. It is possible that there is
15088 no .sdata or .sbss section in the output file, in which
15089 case we must change the name of the output section. */
15090 subname = o->name + sizeof ".gptab" - 1;
15091 if (bfd_get_section_by_name (abfd, subname) == NULL)
15092 {
15093 if (o == gptab_data_sec)
15094 o->name = ".gptab.data";
15095 else
15096 o->name = ".gptab.bss";
15097 subname = o->name + sizeof ".gptab" - 1;
15098 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
15099 }
15100
15101 /* Set up the first entry. */
15102 c = 1;
15103 amt = c * sizeof (Elf32_gptab);
9719ad41 15104 tab = bfd_malloc (amt);
b49e97c9 15105 if (tab == NULL)
b34976b6 15106 return FALSE;
b49e97c9
TS
15107 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
15108 tab[0].gt_header.gt_unused = 0;
15109
15110 /* Combine the input sections. */
8423293d 15111 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
15112 {
15113 asection *input_section;
15114 bfd *input_bfd;
15115 bfd_size_type size;
15116 unsigned long last;
15117 bfd_size_type gpentry;
15118
15119 if (p->type != bfd_indirect_link_order)
15120 {
15121 if (p->type == bfd_data_link_order)
15122 continue;
15123 abort ();
15124 }
15125
15126 input_section = p->u.indirect.section;
15127 input_bfd = input_section->owner;
15128
15129 /* Combine the gptab entries for this input section one
15130 by one. We know that the input gptab entries are
15131 sorted by ascending -G value. */
eea6121a 15132 size = input_section->size;
b49e97c9
TS
15133 last = 0;
15134 for (gpentry = sizeof (Elf32_External_gptab);
15135 gpentry < size;
15136 gpentry += sizeof (Elf32_External_gptab))
15137 {
15138 Elf32_External_gptab ext_gptab;
15139 Elf32_gptab int_gptab;
15140 unsigned long val;
15141 unsigned long add;
b34976b6 15142 bfd_boolean exact;
b49e97c9
TS
15143 unsigned int look;
15144
15145 if (! (bfd_get_section_contents
9719ad41
RS
15146 (input_bfd, input_section, &ext_gptab, gpentry,
15147 sizeof (Elf32_External_gptab))))
b49e97c9
TS
15148 {
15149 free (tab);
b34976b6 15150 return FALSE;
b49e97c9
TS
15151 }
15152
15153 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
15154 &int_gptab);
15155 val = int_gptab.gt_entry.gt_g_value;
15156 add = int_gptab.gt_entry.gt_bytes - last;
15157
b34976b6 15158 exact = FALSE;
b49e97c9
TS
15159 for (look = 1; look < c; look++)
15160 {
15161 if (tab[look].gt_entry.gt_g_value >= val)
15162 tab[look].gt_entry.gt_bytes += add;
15163
15164 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 15165 exact = TRUE;
b49e97c9
TS
15166 }
15167
15168 if (! exact)
15169 {
15170 Elf32_gptab *new_tab;
15171 unsigned int max;
15172
15173 /* We need a new table entry. */
15174 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 15175 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
15176 if (new_tab == NULL)
15177 {
15178 free (tab);
b34976b6 15179 return FALSE;
b49e97c9
TS
15180 }
15181 tab = new_tab;
15182 tab[c].gt_entry.gt_g_value = val;
15183 tab[c].gt_entry.gt_bytes = add;
15184
15185 /* Merge in the size for the next smallest -G
15186 value, since that will be implied by this new
15187 value. */
15188 max = 0;
15189 for (look = 1; look < c; look++)
15190 {
15191 if (tab[look].gt_entry.gt_g_value < val
15192 && (max == 0
15193 || (tab[look].gt_entry.gt_g_value
15194 > tab[max].gt_entry.gt_g_value)))
15195 max = look;
15196 }
15197 if (max != 0)
15198 tab[c].gt_entry.gt_bytes +=
15199 tab[max].gt_entry.gt_bytes;
15200
15201 ++c;
15202 }
15203
15204 last = int_gptab.gt_entry.gt_bytes;
15205 }
15206
15207 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15208 elf_link_input_bfd ignores this section. */
15209 input_section->flags &= ~SEC_HAS_CONTENTS;
15210 }
15211
15212 /* The table must be sorted by -G value. */
15213 if (c > 2)
15214 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
15215
15216 /* Swap out the table. */
15217 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 15218 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
15219 if (ext_tab == NULL)
15220 {
15221 free (tab);
b34976b6 15222 return FALSE;
b49e97c9
TS
15223 }
15224
15225 for (j = 0; j < c; j++)
15226 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
15227 free (tab);
15228
eea6121a 15229 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
15230 o->contents = (bfd_byte *) ext_tab;
15231
15232 /* Skip this section later on (I don't think this currently
15233 matters, but someday it might). */
8423293d 15234 o->map_head.link_order = NULL;
b49e97c9
TS
15235 }
15236 }
15237
15238 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 15239 if (!bfd_elf_final_link (abfd, info))
b34976b6 15240 return FALSE;
b49e97c9
TS
15241
15242 /* Now write out the computed sections. */
15243
351cdf24
MF
15244 if (abiflags_sec != NULL)
15245 {
15246 Elf_External_ABIFlags_v0 ext;
15247 Elf_Internal_ABIFlags_v0 *abiflags;
15248
15249 abiflags = &mips_elf_tdata (abfd)->abiflags;
15250
15251 /* Set up the abiflags if no valid input sections were found. */
15252 if (!mips_elf_tdata (abfd)->abiflags_valid)
15253 {
15254 infer_mips_abiflags (abfd, abiflags);
15255 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
15256 }
15257 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
15258 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
15259 return FALSE;
15260 }
15261
9719ad41 15262 if (reginfo_sec != NULL)
b49e97c9
TS
15263 {
15264 Elf32_External_RegInfo ext;
15265
15266 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 15267 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 15268 return FALSE;
b49e97c9
TS
15269 }
15270
9719ad41 15271 if (mdebug_sec != NULL)
b49e97c9
TS
15272 {
15273 BFD_ASSERT (abfd->output_has_begun);
15274 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
15275 swap, info,
15276 mdebug_sec->filepos))
b34976b6 15277 return FALSE;
b49e97c9
TS
15278
15279 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
15280 }
15281
9719ad41 15282 if (gptab_data_sec != NULL)
b49e97c9
TS
15283 {
15284 if (! bfd_set_section_contents (abfd, gptab_data_sec,
15285 gptab_data_sec->contents,
eea6121a 15286 0, gptab_data_sec->size))
b34976b6 15287 return FALSE;
b49e97c9
TS
15288 }
15289
9719ad41 15290 if (gptab_bss_sec != NULL)
b49e97c9
TS
15291 {
15292 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
15293 gptab_bss_sec->contents,
eea6121a 15294 0, gptab_bss_sec->size))
b34976b6 15295 return FALSE;
b49e97c9
TS
15296 }
15297
15298 if (SGI_COMPAT (abfd))
15299 {
15300 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
15301 if (rtproc_sec != NULL)
15302 {
15303 if (! bfd_set_section_contents (abfd, rtproc_sec,
15304 rtproc_sec->contents,
eea6121a 15305 0, rtproc_sec->size))
b34976b6 15306 return FALSE;
b49e97c9
TS
15307 }
15308 }
15309
b34976b6 15310 return TRUE;
b49e97c9
TS
15311}
15312\f
b2e9744f
MR
15313/* Merge object file header flags from IBFD into OBFD. Raise an error
15314 if there are conflicting settings. */
15315
15316static bfd_boolean
50e03d47 15317mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
b2e9744f 15318{
50e03d47 15319 bfd *obfd = info->output_bfd;
b2e9744f
MR
15320 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15321 flagword old_flags;
15322 flagword new_flags;
15323 bfd_boolean ok;
15324
15325 new_flags = elf_elfheader (ibfd)->e_flags;
15326 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15327 old_flags = elf_elfheader (obfd)->e_flags;
15328
15329 /* Check flag compatibility. */
15330
15331 new_flags &= ~EF_MIPS_NOREORDER;
15332 old_flags &= ~EF_MIPS_NOREORDER;
15333
15334 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15335 doesn't seem to matter. */
15336 new_flags &= ~EF_MIPS_XGOT;
15337 old_flags &= ~EF_MIPS_XGOT;
15338
15339 /* MIPSpro generates ucode info in n64 objects. Again, we should
15340 just be able to ignore this. */
15341 new_flags &= ~EF_MIPS_UCODE;
15342 old_flags &= ~EF_MIPS_UCODE;
15343
15344 /* DSOs should only be linked with CPIC code. */
15345 if ((ibfd->flags & DYNAMIC) != 0)
15346 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15347
15348 if (new_flags == old_flags)
15349 return TRUE;
15350
15351 ok = TRUE;
15352
15353 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15354 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15355 {
4eca0228 15356 _bfd_error_handler
871b3ab2 15357 (_("%pB: warning: linking abicalls files with non-abicalls files"),
b2e9744f
MR
15358 ibfd);
15359 ok = TRUE;
15360 }
15361
15362 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15363 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15364 if (! (new_flags & EF_MIPS_PIC))
15365 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15366
15367 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15368 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15369
15370 /* Compare the ISAs. */
15371 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15372 {
4eca0228 15373 _bfd_error_handler
871b3ab2 15374 (_("%pB: linking 32-bit code with 64-bit code"),
b2e9744f
MR
15375 ibfd);
15376 ok = FALSE;
15377 }
15378 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15379 {
15380 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15381 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15382 {
15383 /* Copy the architecture info from IBFD to OBFD. Also copy
15384 the 32-bit flag (if set) so that we continue to recognise
15385 OBFD as a 32-bit binary. */
15386 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15387 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15388 elf_elfheader (obfd)->e_flags
15389 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15390
15391 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15392 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15393
15394 /* Copy across the ABI flags if OBFD doesn't use them
15395 and if that was what caused us to treat IBFD as 32-bit. */
15396 if ((old_flags & EF_MIPS_ABI) == 0
15397 && mips_32bit_flags_p (new_flags)
15398 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15399 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15400 }
15401 else
15402 {
15403 /* The ISAs aren't compatible. */
4eca0228 15404 _bfd_error_handler
695344c0 15405 /* xgettext:c-format */
871b3ab2 15406 (_("%pB: linking %s module with previous %s modules"),
b2e9744f
MR
15407 ibfd,
15408 bfd_printable_name (ibfd),
15409 bfd_printable_name (obfd));
15410 ok = FALSE;
15411 }
15412 }
15413
15414 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15415 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15416
15417 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15418 does set EI_CLASS differently from any 32-bit ABI. */
15419 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15420 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15421 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15422 {
15423 /* Only error if both are set (to different values). */
15424 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15425 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15426 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15427 {
4eca0228 15428 _bfd_error_handler
695344c0 15429 /* xgettext:c-format */
871b3ab2 15430 (_("%pB: ABI mismatch: linking %s module with previous %s modules"),
b2e9744f
MR
15431 ibfd,
15432 elf_mips_abi_name (ibfd),
15433 elf_mips_abi_name (obfd));
15434 ok = FALSE;
15435 }
15436 new_flags &= ~EF_MIPS_ABI;
15437 old_flags &= ~EF_MIPS_ABI;
15438 }
15439
15440 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15441 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15442 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15443 {
15444 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15445 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15446 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15447 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15448 int micro_mis = old_m16 && new_micro;
15449 int m16_mis = old_micro && new_m16;
15450
15451 if (m16_mis || micro_mis)
15452 {
4eca0228 15453 _bfd_error_handler
695344c0 15454 /* xgettext:c-format */
871b3ab2 15455 (_("%pB: ASE mismatch: linking %s module with previous %s modules"),
b2e9744f
MR
15456 ibfd,
15457 m16_mis ? "MIPS16" : "microMIPS",
15458 m16_mis ? "microMIPS" : "MIPS16");
15459 ok = FALSE;
15460 }
15461
15462 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15463
15464 new_flags &= ~ EF_MIPS_ARCH_ASE;
15465 old_flags &= ~ EF_MIPS_ARCH_ASE;
15466 }
15467
15468 /* Compare NaN encodings. */
15469 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15470 {
695344c0 15471 /* xgettext:c-format */
871b3ab2 15472 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
b2e9744f
MR
15473 ibfd,
15474 (new_flags & EF_MIPS_NAN2008
15475 ? "-mnan=2008" : "-mnan=legacy"),
15476 (old_flags & EF_MIPS_NAN2008
15477 ? "-mnan=2008" : "-mnan=legacy"));
15478 ok = FALSE;
15479 new_flags &= ~EF_MIPS_NAN2008;
15480 old_flags &= ~EF_MIPS_NAN2008;
15481 }
15482
15483 /* Compare FP64 state. */
15484 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15485 {
695344c0 15486 /* xgettext:c-format */
871b3ab2 15487 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
b2e9744f
MR
15488 ibfd,
15489 (new_flags & EF_MIPS_FP64
15490 ? "-mfp64" : "-mfp32"),
15491 (old_flags & EF_MIPS_FP64
15492 ? "-mfp64" : "-mfp32"));
15493 ok = FALSE;
15494 new_flags &= ~EF_MIPS_FP64;
15495 old_flags &= ~EF_MIPS_FP64;
15496 }
15497
15498 /* Warn about any other mismatches */
15499 if (new_flags != old_flags)
15500 {
695344c0 15501 /* xgettext:c-format */
4eca0228 15502 _bfd_error_handler
871b3ab2 15503 (_("%pB: uses different e_flags (%#x) fields than previous modules "
d42c267e
AM
15504 "(%#x)"),
15505 ibfd, new_flags, old_flags);
b2e9744f
MR
15506 ok = FALSE;
15507 }
15508
15509 return ok;
15510}
15511
2cf19d5c
JM
15512/* Merge object attributes from IBFD into OBFD. Raise an error if
15513 there are conflicting attributes. */
15514static bfd_boolean
50e03d47 15515mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
2cf19d5c 15516{
50e03d47 15517 bfd *obfd = info->output_bfd;
2cf19d5c
JM
15518 obj_attribute *in_attr;
15519 obj_attribute *out_attr;
6ae68ba3 15520 bfd *abi_fp_bfd;
b60bf9be 15521 bfd *abi_msa_bfd;
6ae68ba3
MR
15522
15523 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15524 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
d929bc19 15525 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
6ae68ba3 15526 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
2cf19d5c 15527
b60bf9be
CF
15528 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15529 if (!abi_msa_bfd
15530 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15531 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15532
2cf19d5c
JM
15533 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15534 {
15535 /* This is the first object. Copy the attributes. */
15536 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15537
15538 /* Use the Tag_null value to indicate the attributes have been
15539 initialized. */
15540 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15541
15542 return TRUE;
15543 }
15544
15545 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15546 non-conflicting ones. */
2cf19d5c
JM
15547 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15548 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15549 {
757a636f 15550 int out_fp, in_fp;
6ae68ba3 15551
757a636f
RS
15552 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15553 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15554 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15555 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15556 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
351cdf24
MF
15557 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15558 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15559 || in_fp == Val_GNU_MIPS_ABI_FP_64
15560 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15561 {
15562 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15563 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15564 }
15565 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15566 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15567 || out_fp == Val_GNU_MIPS_ABI_FP_64
15568 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15569 /* Keep the current setting. */;
15570 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15571 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15572 {
15573 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15574 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15575 }
15576 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15577 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15578 /* Keep the current setting. */;
757a636f
RS
15579 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15580 {
15581 const char *out_string, *in_string;
6ae68ba3 15582
757a636f
RS
15583 out_string = _bfd_mips_fp_abi_string (out_fp);
15584 in_string = _bfd_mips_fp_abi_string (in_fp);
15585 /* First warn about cases involving unrecognised ABIs. */
15586 if (!out_string && !in_string)
695344c0 15587 /* xgettext:c-format */
757a636f 15588 _bfd_error_handler
2c1c9679 15589 (_("warning: %pB uses unknown floating point ABI %d "
871b3ab2 15590 "(set by %pB), %pB uses unknown floating point ABI %d"),
c08bb8dd 15591 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
757a636f
RS
15592 else if (!out_string)
15593 _bfd_error_handler
695344c0 15594 /* xgettext:c-format */
2c1c9679 15595 (_("warning: %pB uses unknown floating point ABI %d "
871b3ab2 15596 "(set by %pB), %pB uses %s"),
c08bb8dd 15597 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
757a636f
RS
15598 else if (!in_string)
15599 _bfd_error_handler
695344c0 15600 /* xgettext:c-format */
2c1c9679 15601 (_("warning: %pB uses %s (set by %pB), "
871b3ab2 15602 "%pB uses unknown floating point ABI %d"),
c08bb8dd 15603 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
757a636f
RS
15604 else
15605 {
15606 /* If one of the bfds is soft-float, the other must be
15607 hard-float. The exact choice of hard-float ABI isn't
15608 really relevant to the error message. */
15609 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15610 out_string = "-mhard-float";
15611 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15612 in_string = "-mhard-float";
15613 _bfd_error_handler
695344c0 15614 /* xgettext:c-format */
2c1c9679 15615 (_("warning: %pB uses %s (set by %pB), %pB uses %s"),
c08bb8dd 15616 obfd, out_string, abi_fp_bfd, ibfd, in_string);
757a636f
RS
15617 }
15618 }
2cf19d5c
JM
15619 }
15620
b60bf9be
CF
15621 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15622 non-conflicting ones. */
15623 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15624 {
15625 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15626 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15627 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15628 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15629 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15630 {
15631 case Val_GNU_MIPS_ABI_MSA_128:
15632 _bfd_error_handler
695344c0 15633 /* xgettext:c-format */
2c1c9679 15634 (_("warning: %pB uses %s (set by %pB), "
871b3ab2 15635 "%pB uses unknown MSA ABI %d"),
c08bb8dd
AM
15636 obfd, "-mmsa", abi_msa_bfd,
15637 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
b60bf9be
CF
15638 break;
15639
15640 default:
15641 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15642 {
15643 case Val_GNU_MIPS_ABI_MSA_128:
15644 _bfd_error_handler
695344c0 15645 /* xgettext:c-format */
2c1c9679 15646 (_("warning: %pB uses unknown MSA ABI %d "
871b3ab2 15647 "(set by %pB), %pB uses %s"),
c08bb8dd
AM
15648 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15649 abi_msa_bfd, ibfd, "-mmsa");
b60bf9be
CF
15650 break;
15651
15652 default:
15653 _bfd_error_handler
695344c0 15654 /* xgettext:c-format */
2c1c9679 15655 (_("warning: %pB uses unknown MSA ABI %d "
871b3ab2 15656 "(set by %pB), %pB uses unknown MSA ABI %d"),
c08bb8dd
AM
15657 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15658 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
b60bf9be
CF
15659 break;
15660 }
15661 }
15662 }
15663
2cf19d5c 15664 /* Merge Tag_compatibility attributes and any common GNU ones. */
50e03d47 15665 return _bfd_elf_merge_object_attributes (ibfd, info);
2cf19d5c
JM
15666}
15667
a3dc0a7f
MR
15668/* Merge object ABI flags from IBFD into OBFD. Raise an error if
15669 there are conflicting settings. */
15670
15671static bfd_boolean
15672mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15673{
15674 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15675 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15676 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15677
15678 /* Update the output abiflags fp_abi using the computed fp_abi. */
15679 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15680
15681#define max(a, b) ((a) > (b) ? (a) : (b))
15682 /* Merge abiflags. */
15683 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15684 in_tdata->abiflags.isa_level);
15685 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15686 in_tdata->abiflags.isa_rev);
15687 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15688 in_tdata->abiflags.gpr_size);
15689 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15690 in_tdata->abiflags.cpr1_size);
15691 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15692 in_tdata->abiflags.cpr2_size);
15693#undef max
15694 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15695 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15696
15697 return TRUE;
15698}
15699
b49e97c9
TS
15700/* Merge backend specific data from an object file to the output
15701 object file when linking. */
15702
b34976b6 15703bfd_boolean
50e03d47 15704_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
b49e97c9 15705{
50e03d47 15706 bfd *obfd = info->output_bfd;
cf8502c1
MR
15707 struct mips_elf_obj_tdata *out_tdata;
15708 struct mips_elf_obj_tdata *in_tdata;
b34976b6 15709 bfd_boolean null_input_bfd = TRUE;
b49e97c9 15710 asection *sec;
d537eeb5 15711 bfd_boolean ok;
b49e97c9 15712
58238693 15713 /* Check if we have the same endianness. */
50e03d47 15714 if (! _bfd_generic_verify_endian_match (ibfd, info))
aa701218 15715 {
4eca0228 15716 _bfd_error_handler
871b3ab2 15717 (_("%pB: endianness incompatible with that of the selected emulation"),
d003868e 15718 ibfd);
aa701218
AO
15719 return FALSE;
15720 }
b49e97c9 15721
d5eaccd7 15722 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
b34976b6 15723 return TRUE;
b49e97c9 15724
cf8502c1
MR
15725 in_tdata = mips_elf_tdata (ibfd);
15726 out_tdata = mips_elf_tdata (obfd);
15727
aa701218
AO
15728 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15729 {
4eca0228 15730 _bfd_error_handler
871b3ab2 15731 (_("%pB: ABI is incompatible with that of the selected emulation"),
d003868e 15732 ibfd);
aa701218
AO
15733 return FALSE;
15734 }
15735
23ba6f18
MR
15736 /* Check to see if the input BFD actually contains any sections. If not,
15737 then it has no attributes, and its flags may not have been initialized
15738 either, but it cannot actually cause any incompatibility. */
6b728d32 15739 /* FIXME: This excludes any input shared library from consideration. */
351cdf24
MF
15740 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15741 {
15742 /* Ignore synthetic sections and empty .text, .data and .bss sections
15743 which are automatically generated by gas. Also ignore fake
15744 (s)common sections, since merely defining a common symbol does
15745 not affect compatibility. */
15746 if ((sec->flags & SEC_IS_COMMON) == 0
15747 && strcmp (sec->name, ".reginfo")
15748 && strcmp (sec->name, ".mdebug")
15749 && (sec->size != 0
15750 || (strcmp (sec->name, ".text")
15751 && strcmp (sec->name, ".data")
15752 && strcmp (sec->name, ".bss"))))
15753 {
15754 null_input_bfd = FALSE;
15755 break;
15756 }
15757 }
15758 if (null_input_bfd)
15759 return TRUE;
15760
28d45e28 15761 /* Populate abiflags using existing information. */
23ba6f18
MR
15762 if (in_tdata->abiflags_valid)
15763 {
15764 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
28d45e28
MR
15765 Elf_Internal_ABIFlags_v0 in_abiflags;
15766 Elf_Internal_ABIFlags_v0 abiflags;
15767
15768 /* Set up the FP ABI attribute from the abiflags if it is not already
07d6d2b8 15769 set. */
23ba6f18 15770 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
07d6d2b8 15771 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
23ba6f18 15772
351cdf24 15773 infer_mips_abiflags (ibfd, &abiflags);
cf8502c1 15774 in_abiflags = in_tdata->abiflags;
351cdf24
MF
15775
15776 /* It is not possible to infer the correct ISA revision
07d6d2b8 15777 for R3 or R5 so drop down to R2 for the checks. */
351cdf24
MF
15778 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15779 in_abiflags.isa_rev = 2;
15780
c97c330b
MF
15781 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15782 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
4eca0228 15783 _bfd_error_handler
2c1c9679 15784 (_("%pB: warning: inconsistent ISA between e_flags and "
351cdf24
MF
15785 ".MIPS.abiflags"), ibfd);
15786 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15787 && in_abiflags.fp_abi != abiflags.fp_abi)
4eca0228 15788 _bfd_error_handler
2c1c9679 15789 (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and "
351cdf24
MF
15790 ".MIPS.abiflags"), ibfd);
15791 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
4eca0228 15792 _bfd_error_handler
2c1c9679 15793 (_("%pB: warning: inconsistent ASEs between e_flags and "
351cdf24 15794 ".MIPS.abiflags"), ibfd);
c97c330b
MF
15795 /* The isa_ext is allowed to be an extension of what can be inferred
15796 from e_flags. */
15797 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15798 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
4eca0228 15799 _bfd_error_handler
2c1c9679 15800 (_("%pB: warning: inconsistent ISA extensions between e_flags and "
351cdf24
MF
15801 ".MIPS.abiflags"), ibfd);
15802 if (in_abiflags.flags2 != 0)
4eca0228 15803 _bfd_error_handler
2c1c9679 15804 (_("%pB: warning: unexpected flag in the flags2 field of "
351cdf24 15805 ".MIPS.abiflags (0x%lx)"), ibfd,
d42c267e 15806 in_abiflags.flags2);
351cdf24 15807 }
28d45e28
MR
15808 else
15809 {
15810 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15811 in_tdata->abiflags_valid = TRUE;
15812 }
15813
cf8502c1 15814 if (!out_tdata->abiflags_valid)
351cdf24
MF
15815 {
15816 /* Copy input abiflags if output abiflags are not already valid. */
cf8502c1
MR
15817 out_tdata->abiflags = in_tdata->abiflags;
15818 out_tdata->abiflags_valid = TRUE;
351cdf24 15819 }
b49e97c9
TS
15820
15821 if (! elf_flags_init (obfd))
15822 {
b34976b6 15823 elf_flags_init (obfd) = TRUE;
351cdf24 15824 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
b49e97c9
TS
15825 elf_elfheader (obfd)->e_ident[EI_CLASS]
15826 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15827
15828 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2907b861 15829 && (bfd_get_arch_info (obfd)->the_default
68ffbac6 15830 || mips_mach_extends_p (bfd_get_mach (obfd),
2907b861 15831 bfd_get_mach (ibfd))))
b49e97c9
TS
15832 {
15833 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15834 bfd_get_mach (ibfd)))
b34976b6 15835 return FALSE;
351cdf24
MF
15836
15837 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
cf8502c1 15838 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
b49e97c9
TS
15839 }
15840
d537eeb5 15841 ok = TRUE;
b49e97c9 15842 }
d537eeb5 15843 else
50e03d47 15844 ok = mips_elf_merge_obj_e_flags (ibfd, info);
d537eeb5 15845
50e03d47 15846 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
b49e97c9 15847
a3dc0a7f 15848 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
351cdf24 15849
d537eeb5 15850 if (!ok)
b49e97c9
TS
15851 {
15852 bfd_set_error (bfd_error_bad_value);
b34976b6 15853 return FALSE;
b49e97c9
TS
15854 }
15855
b34976b6 15856 return TRUE;
b49e97c9
TS
15857}
15858
15859/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15860
b34976b6 15861bfd_boolean
9719ad41 15862_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
15863{
15864 BFD_ASSERT (!elf_flags_init (abfd)
15865 || elf_elfheader (abfd)->e_flags == flags);
15866
15867 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
15868 elf_flags_init (abfd) = TRUE;
15869 return TRUE;
b49e97c9
TS
15870}
15871
ad9563d6
CM
15872char *
15873_bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15874{
15875 switch (dtag)
15876 {
15877 default: return "";
15878 case DT_MIPS_RLD_VERSION:
15879 return "MIPS_RLD_VERSION";
15880 case DT_MIPS_TIME_STAMP:
15881 return "MIPS_TIME_STAMP";
15882 case DT_MIPS_ICHECKSUM:
15883 return "MIPS_ICHECKSUM";
15884 case DT_MIPS_IVERSION:
15885 return "MIPS_IVERSION";
15886 case DT_MIPS_FLAGS:
15887 return "MIPS_FLAGS";
15888 case DT_MIPS_BASE_ADDRESS:
15889 return "MIPS_BASE_ADDRESS";
15890 case DT_MIPS_MSYM:
15891 return "MIPS_MSYM";
15892 case DT_MIPS_CONFLICT:
15893 return "MIPS_CONFLICT";
15894 case DT_MIPS_LIBLIST:
15895 return "MIPS_LIBLIST";
15896 case DT_MIPS_LOCAL_GOTNO:
15897 return "MIPS_LOCAL_GOTNO";
15898 case DT_MIPS_CONFLICTNO:
15899 return "MIPS_CONFLICTNO";
15900 case DT_MIPS_LIBLISTNO:
15901 return "MIPS_LIBLISTNO";
15902 case DT_MIPS_SYMTABNO:
15903 return "MIPS_SYMTABNO";
15904 case DT_MIPS_UNREFEXTNO:
15905 return "MIPS_UNREFEXTNO";
15906 case DT_MIPS_GOTSYM:
15907 return "MIPS_GOTSYM";
15908 case DT_MIPS_HIPAGENO:
15909 return "MIPS_HIPAGENO";
15910 case DT_MIPS_RLD_MAP:
15911 return "MIPS_RLD_MAP";
a5499fa4
MF
15912 case DT_MIPS_RLD_MAP_REL:
15913 return "MIPS_RLD_MAP_REL";
ad9563d6
CM
15914 case DT_MIPS_DELTA_CLASS:
15915 return "MIPS_DELTA_CLASS";
15916 case DT_MIPS_DELTA_CLASS_NO:
15917 return "MIPS_DELTA_CLASS_NO";
15918 case DT_MIPS_DELTA_INSTANCE:
15919 return "MIPS_DELTA_INSTANCE";
15920 case DT_MIPS_DELTA_INSTANCE_NO:
15921 return "MIPS_DELTA_INSTANCE_NO";
15922 case DT_MIPS_DELTA_RELOC:
15923 return "MIPS_DELTA_RELOC";
15924 case DT_MIPS_DELTA_RELOC_NO:
15925 return "MIPS_DELTA_RELOC_NO";
15926 case DT_MIPS_DELTA_SYM:
15927 return "MIPS_DELTA_SYM";
15928 case DT_MIPS_DELTA_SYM_NO:
15929 return "MIPS_DELTA_SYM_NO";
15930 case DT_MIPS_DELTA_CLASSSYM:
15931 return "MIPS_DELTA_CLASSSYM";
15932 case DT_MIPS_DELTA_CLASSSYM_NO:
15933 return "MIPS_DELTA_CLASSSYM_NO";
15934 case DT_MIPS_CXX_FLAGS:
15935 return "MIPS_CXX_FLAGS";
15936 case DT_MIPS_PIXIE_INIT:
15937 return "MIPS_PIXIE_INIT";
15938 case DT_MIPS_SYMBOL_LIB:
15939 return "MIPS_SYMBOL_LIB";
15940 case DT_MIPS_LOCALPAGE_GOTIDX:
15941 return "MIPS_LOCALPAGE_GOTIDX";
15942 case DT_MIPS_LOCAL_GOTIDX:
15943 return "MIPS_LOCAL_GOTIDX";
15944 case DT_MIPS_HIDDEN_GOTIDX:
15945 return "MIPS_HIDDEN_GOTIDX";
15946 case DT_MIPS_PROTECTED_GOTIDX:
15947 return "MIPS_PROTECTED_GOT_IDX";
15948 case DT_MIPS_OPTIONS:
15949 return "MIPS_OPTIONS";
15950 case DT_MIPS_INTERFACE:
15951 return "MIPS_INTERFACE";
15952 case DT_MIPS_DYNSTR_ALIGN:
15953 return "DT_MIPS_DYNSTR_ALIGN";
15954 case DT_MIPS_INTERFACE_SIZE:
15955 return "DT_MIPS_INTERFACE_SIZE";
15956 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15957 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15958 case DT_MIPS_PERF_SUFFIX:
15959 return "DT_MIPS_PERF_SUFFIX";
15960 case DT_MIPS_COMPACT_SIZE:
15961 return "DT_MIPS_COMPACT_SIZE";
15962 case DT_MIPS_GP_VALUE:
15963 return "DT_MIPS_GP_VALUE";
15964 case DT_MIPS_AUX_DYNAMIC:
15965 return "DT_MIPS_AUX_DYNAMIC";
861fb55a
DJ
15966 case DT_MIPS_PLTGOT:
15967 return "DT_MIPS_PLTGOT";
15968 case DT_MIPS_RWPLT:
15969 return "DT_MIPS_RWPLT";
f16a9783
MS
15970 case DT_MIPS_XHASH:
15971 return "DT_MIPS_XHASH";
ad9563d6
CM
15972 }
15973}
15974
757a636f
RS
15975/* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15976 not known. */
15977
15978const char *
15979_bfd_mips_fp_abi_string (int fp)
15980{
15981 switch (fp)
15982 {
15983 /* These strings aren't translated because they're simply
15984 option lists. */
15985 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15986 return "-mdouble-float";
15987
15988 case Val_GNU_MIPS_ABI_FP_SINGLE:
15989 return "-msingle-float";
15990
15991 case Val_GNU_MIPS_ABI_FP_SOFT:
15992 return "-msoft-float";
15993
351cdf24
MF
15994 case Val_GNU_MIPS_ABI_FP_OLD_64:
15995 return _("-mips32r2 -mfp64 (12 callee-saved)");
15996
15997 case Val_GNU_MIPS_ABI_FP_XX:
15998 return "-mfpxx";
15999
757a636f 16000 case Val_GNU_MIPS_ABI_FP_64:
351cdf24
MF
16001 return "-mgp32 -mfp64";
16002
16003 case Val_GNU_MIPS_ABI_FP_64A:
16004 return "-mgp32 -mfp64 -mno-odd-spreg";
757a636f
RS
16005
16006 default:
16007 return 0;
16008 }
16009}
16010
351cdf24
MF
16011static void
16012print_mips_ases (FILE *file, unsigned int mask)
16013{
16014 if (mask & AFL_ASE_DSP)
16015 fputs ("\n\tDSP ASE", file);
16016 if (mask & AFL_ASE_DSPR2)
16017 fputs ("\n\tDSP R2 ASE", file);
8f4f9071
MF
16018 if (mask & AFL_ASE_DSPR3)
16019 fputs ("\n\tDSP R3 ASE", file);
351cdf24
MF
16020 if (mask & AFL_ASE_EVA)
16021 fputs ("\n\tEnhanced VA Scheme", file);
16022 if (mask & AFL_ASE_MCU)
16023 fputs ("\n\tMCU (MicroController) ASE", file);
16024 if (mask & AFL_ASE_MDMX)
16025 fputs ("\n\tMDMX ASE", file);
16026 if (mask & AFL_ASE_MIPS3D)
16027 fputs ("\n\tMIPS-3D ASE", file);
16028 if (mask & AFL_ASE_MT)
16029 fputs ("\n\tMT ASE", file);
16030 if (mask & AFL_ASE_SMARTMIPS)
16031 fputs ("\n\tSmartMIPS ASE", file);
16032 if (mask & AFL_ASE_VIRT)
16033 fputs ("\n\tVZ ASE", file);
16034 if (mask & AFL_ASE_MSA)
16035 fputs ("\n\tMSA ASE", file);
16036 if (mask & AFL_ASE_MIPS16)
16037 fputs ("\n\tMIPS16 ASE", file);
16038 if (mask & AFL_ASE_MICROMIPS)
16039 fputs ("\n\tMICROMIPS ASE", file);
16040 if (mask & AFL_ASE_XPA)
16041 fputs ("\n\tXPA ASE", file);
25499ac7
MR
16042 if (mask & AFL_ASE_MIPS16E2)
16043 fputs ("\n\tMIPS16e2 ASE", file);
730c3174
SE
16044 if (mask & AFL_ASE_CRC)
16045 fputs ("\n\tCRC ASE", file);
6f20c942
FS
16046 if (mask & AFL_ASE_GINV)
16047 fputs ("\n\tGINV ASE", file);
8095d2f7
CX
16048 if (mask & AFL_ASE_LOONGSON_MMI)
16049 fputs ("\n\tLoongson MMI ASE", file);
716c08de
CX
16050 if (mask & AFL_ASE_LOONGSON_CAM)
16051 fputs ("\n\tLoongson CAM ASE", file);
bdc6c06e
CX
16052 if (mask & AFL_ASE_LOONGSON_EXT)
16053 fputs ("\n\tLoongson EXT ASE", file);
a693765e
CX
16054 if (mask & AFL_ASE_LOONGSON_EXT2)
16055 fputs ("\n\tLoongson EXT2 ASE", file);
351cdf24
MF
16056 if (mask == 0)
16057 fprintf (file, "\n\t%s", _("None"));
00ac7aa0
MF
16058 else if ((mask & ~AFL_ASE_MASK) != 0)
16059 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
351cdf24
MF
16060}
16061
16062static void
16063print_mips_isa_ext (FILE *file, unsigned int isa_ext)
16064{
16065 switch (isa_ext)
16066 {
16067 case 0:
16068 fputs (_("None"), file);
16069 break;
16070 case AFL_EXT_XLR:
16071 fputs ("RMI XLR", file);
16072 break;
2c629856
N
16073 case AFL_EXT_OCTEON3:
16074 fputs ("Cavium Networks Octeon3", file);
16075 break;
351cdf24
MF
16076 case AFL_EXT_OCTEON2:
16077 fputs ("Cavium Networks Octeon2", file);
16078 break;
16079 case AFL_EXT_OCTEONP:
16080 fputs ("Cavium Networks OcteonP", file);
16081 break;
351cdf24
MF
16082 case AFL_EXT_OCTEON:
16083 fputs ("Cavium Networks Octeon", file);
16084 break;
16085 case AFL_EXT_5900:
16086 fputs ("Toshiba R5900", file);
16087 break;
16088 case AFL_EXT_4650:
16089 fputs ("MIPS R4650", file);
16090 break;
16091 case AFL_EXT_4010:
16092 fputs ("LSI R4010", file);
16093 break;
16094 case AFL_EXT_4100:
16095 fputs ("NEC VR4100", file);
16096 break;
16097 case AFL_EXT_3900:
16098 fputs ("Toshiba R3900", file);
16099 break;
16100 case AFL_EXT_10000:
16101 fputs ("MIPS R10000", file);
16102 break;
16103 case AFL_EXT_SB1:
16104 fputs ("Broadcom SB-1", file);
16105 break;
16106 case AFL_EXT_4111:
16107 fputs ("NEC VR4111/VR4181", file);
16108 break;
16109 case AFL_EXT_4120:
16110 fputs ("NEC VR4120", file);
16111 break;
16112 case AFL_EXT_5400:
16113 fputs ("NEC VR5400", file);
16114 break;
16115 case AFL_EXT_5500:
16116 fputs ("NEC VR5500", file);
16117 break;
16118 case AFL_EXT_LOONGSON_2E:
16119 fputs ("ST Microelectronics Loongson 2E", file);
16120 break;
16121 case AFL_EXT_LOONGSON_2F:
16122 fputs ("ST Microelectronics Loongson 2F", file);
16123 break;
38bf472a
MR
16124 case AFL_EXT_INTERAPTIV_MR2:
16125 fputs ("Imagination interAptiv MR2", file);
16126 break;
351cdf24 16127 default:
00ac7aa0 16128 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
351cdf24
MF
16129 break;
16130 }
16131}
16132
16133static void
16134print_mips_fp_abi_value (FILE *file, int val)
16135{
16136 switch (val)
16137 {
16138 case Val_GNU_MIPS_ABI_FP_ANY:
16139 fprintf (file, _("Hard or soft float\n"));
16140 break;
16141 case Val_GNU_MIPS_ABI_FP_DOUBLE:
16142 fprintf (file, _("Hard float (double precision)\n"));
16143 break;
16144 case Val_GNU_MIPS_ABI_FP_SINGLE:
16145 fprintf (file, _("Hard float (single precision)\n"));
16146 break;
16147 case Val_GNU_MIPS_ABI_FP_SOFT:
16148 fprintf (file, _("Soft float\n"));
16149 break;
16150 case Val_GNU_MIPS_ABI_FP_OLD_64:
16151 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
16152 break;
16153 case Val_GNU_MIPS_ABI_FP_XX:
16154 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
16155 break;
16156 case Val_GNU_MIPS_ABI_FP_64:
16157 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
16158 break;
16159 case Val_GNU_MIPS_ABI_FP_64A:
16160 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
16161 break;
16162 default:
16163 fprintf (file, "??? (%d)\n", val);
16164 break;
16165 }
16166}
16167
16168static int
16169get_mips_reg_size (int reg_size)
16170{
16171 return (reg_size == AFL_REG_NONE) ? 0
16172 : (reg_size == AFL_REG_32) ? 32
16173 : (reg_size == AFL_REG_64) ? 64
16174 : (reg_size == AFL_REG_128) ? 128
16175 : -1;
16176}
16177
b34976b6 16178bfd_boolean
9719ad41 16179_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 16180{
9719ad41 16181 FILE *file = ptr;
b49e97c9
TS
16182
16183 BFD_ASSERT (abfd != NULL && ptr != NULL);
16184
16185 /* Print normal ELF private data. */
16186 _bfd_elf_print_private_bfd_data (abfd, ptr);
16187
16188 /* xgettext:c-format */
16189 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
16190
16191 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
16192 fprintf (file, _(" [abi=O32]"));
16193 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
16194 fprintf (file, _(" [abi=O64]"));
16195 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
16196 fprintf (file, _(" [abi=EABI32]"));
16197 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
16198 fprintf (file, _(" [abi=EABI64]"));
16199 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
16200 fprintf (file, _(" [abi unknown]"));
16201 else if (ABI_N32_P (abfd))
16202 fprintf (file, _(" [abi=N32]"));
16203 else if (ABI_64_P (abfd))
16204 fprintf (file, _(" [abi=64]"));
16205 else
16206 fprintf (file, _(" [no abi set]"));
16207
16208 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
ae0d2616 16209 fprintf (file, " [mips1]");
b49e97c9 16210 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
ae0d2616 16211 fprintf (file, " [mips2]");
b49e97c9 16212 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
ae0d2616 16213 fprintf (file, " [mips3]");
b49e97c9 16214 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
ae0d2616 16215 fprintf (file, " [mips4]");
b49e97c9 16216 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
ae0d2616 16217 fprintf (file, " [mips5]");
b49e97c9 16218 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
ae0d2616 16219 fprintf (file, " [mips32]");
b49e97c9 16220 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
ae0d2616 16221 fprintf (file, " [mips64]");
af7ee8bf 16222 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
ae0d2616 16223 fprintf (file, " [mips32r2]");
5f74bc13 16224 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
ae0d2616 16225 fprintf (file, " [mips64r2]");
7361da2c
AB
16226 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
16227 fprintf (file, " [mips32r6]");
16228 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
16229 fprintf (file, " [mips64r6]");
b49e97c9
TS
16230 else
16231 fprintf (file, _(" [unknown ISA]"));
16232
40d32fc6 16233 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
ae0d2616 16234 fprintf (file, " [mdmx]");
40d32fc6
CD
16235
16236 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
ae0d2616 16237 fprintf (file, " [mips16]");
40d32fc6 16238
df58fc94
RS
16239 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
16240 fprintf (file, " [micromips]");
16241
ba92f887
MR
16242 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
16243 fprintf (file, " [nan2008]");
16244
5baf5e34 16245 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
351cdf24 16246 fprintf (file, " [old fp64]");
5baf5e34 16247
b49e97c9 16248 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
ae0d2616 16249 fprintf (file, " [32bitmode]");
b49e97c9
TS
16250 else
16251 fprintf (file, _(" [not 32bitmode]"));
16252
c0e3f241 16253 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
ae0d2616 16254 fprintf (file, " [noreorder]");
c0e3f241
CD
16255
16256 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
ae0d2616 16257 fprintf (file, " [PIC]");
c0e3f241
CD
16258
16259 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
ae0d2616 16260 fprintf (file, " [CPIC]");
c0e3f241
CD
16261
16262 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
ae0d2616 16263 fprintf (file, " [XGOT]");
c0e3f241
CD
16264
16265 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
ae0d2616 16266 fprintf (file, " [UCODE]");
c0e3f241 16267
b49e97c9
TS
16268 fputc ('\n', file);
16269
351cdf24
MF
16270 if (mips_elf_tdata (abfd)->abiflags_valid)
16271 {
16272 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
16273 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
16274 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
16275 if (abiflags->isa_rev > 1)
16276 fprintf (file, "r%d", abiflags->isa_rev);
16277 fprintf (file, "\nGPR size: %d",
16278 get_mips_reg_size (abiflags->gpr_size));
16279 fprintf (file, "\nCPR1 size: %d",
16280 get_mips_reg_size (abiflags->cpr1_size));
16281 fprintf (file, "\nCPR2 size: %d",
16282 get_mips_reg_size (abiflags->cpr2_size));
16283 fputs ("\nFP ABI: ", file);
16284 print_mips_fp_abi_value (file, abiflags->fp_abi);
16285 fputs ("ISA Extension: ", file);
16286 print_mips_isa_ext (file, abiflags->isa_ext);
16287 fputs ("\nASEs:", file);
16288 print_mips_ases (file, abiflags->ases);
16289 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
16290 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
16291 fputc ('\n', file);
16292 }
16293
b34976b6 16294 return TRUE;
b49e97c9 16295}
2f89ff8d 16296
b35d266b 16297const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 16298{
07d6d2b8
AM
16299 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16300 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
0112cd26 16301 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
07d6d2b8 16302 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
0112cd26
NC
16303 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16304 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
f16a9783 16305 { STRING_COMMA_LEN (".MIPS.xhash"), 0, SHT_MIPS_XHASH, SHF_ALLOC },
07d6d2b8 16306 { NULL, 0, 0, 0, 0 }
2f89ff8d 16307};
5e2b0d47 16308
8992f0d7
TS
16309/* Merge non visibility st_other attributes. Ensure that the
16310 STO_OPTIONAL flag is copied into h->other, even if this is not a
16311 definiton of the symbol. */
5e2b0d47
NC
16312void
16313_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
16314 const Elf_Internal_Sym *isym,
16315 bfd_boolean definition,
16316 bfd_boolean dynamic ATTRIBUTE_UNUSED)
16317{
8992f0d7
TS
16318 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
16319 {
16320 unsigned char other;
16321
16322 other = (definition ? isym->st_other : h->other);
16323 other &= ~ELF_ST_VISIBILITY (-1);
16324 h->other = other | ELF_ST_VISIBILITY (h->other);
16325 }
16326
16327 if (!definition
5e2b0d47
NC
16328 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
16329 h->other |= STO_OPTIONAL;
16330}
12ac1cf5
NC
16331
16332/* Decide whether an undefined symbol is special and can be ignored.
16333 This is the case for OPTIONAL symbols on IRIX. */
16334bfd_boolean
16335_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
16336{
16337 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
16338}
e0764319
NC
16339
16340bfd_boolean
16341_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
16342{
16343 return (sym->st_shndx == SHN_COMMON
16344 || sym->st_shndx == SHN_MIPS_ACOMMON
16345 || sym->st_shndx == SHN_MIPS_SCOMMON);
16346}
861fb55a
DJ
16347
16348/* Return address for Ith PLT stub in section PLT, for relocation REL
16349 or (bfd_vma) -1 if it should not be included. */
16350
16351bfd_vma
16352_bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
16353 const arelent *rel ATTRIBUTE_UNUSED)
16354{
16355 return (plt->vma
16356 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
16357 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
16358}
16359
1bbce132
MR
16360/* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16361 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16362 and .got.plt and also the slots may be of a different size each we walk
16363 the PLT manually fetching instructions and matching them against known
16364 patterns. To make things easier standard MIPS slots, if any, always come
16365 first. As we don't create proper ELF symbols we use the UDATA.I member
16366 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16367 with the ST_OTHER member of the ELF symbol. */
16368
16369long
16370_bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16371 long symcount ATTRIBUTE_UNUSED,
16372 asymbol **syms ATTRIBUTE_UNUSED,
16373 long dynsymcount, asymbol **dynsyms,
16374 asymbol **ret)
16375{
16376 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16377 static const char microsuffix[] = "@micromipsplt";
16378 static const char m16suffix[] = "@mips16plt";
16379 static const char mipssuffix[] = "@plt";
16380
16381 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
16382 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16383 bfd_boolean micromips_p = MICROMIPS_P (abfd);
16384 Elf_Internal_Shdr *hdr;
16385 bfd_byte *plt_data;
16386 bfd_vma plt_offset;
16387 unsigned int other;
16388 bfd_vma entry_size;
16389 bfd_vma plt0_size;
16390 asection *relplt;
16391 bfd_vma opcode;
16392 asection *plt;
16393 asymbol *send;
16394 size_t size;
16395 char *names;
16396 long counti;
16397 arelent *p;
16398 asymbol *s;
16399 char *nend;
16400 long count;
16401 long pi;
16402 long i;
16403 long n;
16404
16405 *ret = NULL;
16406
16407 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16408 return 0;
16409
16410 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16411 if (relplt == NULL)
16412 return 0;
16413
16414 hdr = &elf_section_data (relplt)->this_hdr;
16415 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16416 return 0;
16417
16418 plt = bfd_get_section_by_name (abfd, ".plt");
16419 if (plt == NULL)
16420 return 0;
16421
16422 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16423 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16424 return -1;
16425 p = relplt->relocation;
16426
16427 /* Calculating the exact amount of space required for symbols would
16428 require two passes over the PLT, so just pessimise assuming two
16429 PLT slots per relocation. */
16430 count = relplt->size / hdr->sh_entsize;
16431 counti = count * bed->s->int_rels_per_ext_rel;
16432 size = 2 * count * sizeof (asymbol);
16433 size += count * (sizeof (mipssuffix) +
16434 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16435 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16436 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16437
16438 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16439 size += sizeof (asymbol) + sizeof (pltname);
16440
16441 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16442 return -1;
16443
16444 if (plt->size < 16)
16445 return -1;
16446
16447 s = *ret = bfd_malloc (size);
16448 if (s == NULL)
16449 return -1;
16450 send = s + 2 * count + 1;
16451
16452 names = (char *) send;
16453 nend = (char *) s + size;
16454 n = 0;
16455
16456 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16457 if (opcode == 0x3302fffe)
16458 {
16459 if (!micromips_p)
16460 return -1;
16461 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16462 other = STO_MICROMIPS;
16463 }
833794fc
MR
16464 else if (opcode == 0x0398c1d0)
16465 {
16466 if (!micromips_p)
16467 return -1;
16468 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16469 other = STO_MICROMIPS;
16470 }
1bbce132
MR
16471 else
16472 {
16473 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16474 other = 0;
16475 }
16476
16477 s->the_bfd = abfd;
16478 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16479 s->section = plt;
16480 s->value = 0;
16481 s->name = names;
16482 s->udata.i = other;
16483 memcpy (names, pltname, sizeof (pltname));
16484 names += sizeof (pltname);
16485 ++s, ++n;
16486
16487 pi = 0;
16488 for (plt_offset = plt0_size;
16489 plt_offset + 8 <= plt->size && s < send;
16490 plt_offset += entry_size)
16491 {
16492 bfd_vma gotplt_addr;
16493 const char *suffix;
16494 bfd_vma gotplt_hi;
16495 bfd_vma gotplt_lo;
16496 size_t suffixlen;
16497
16498 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16499
16500 /* Check if the second word matches the expected MIPS16 instruction. */
16501 if (opcode == 0x651aeb00)
16502 {
16503 if (micromips_p)
16504 return -1;
16505 /* Truncated table??? */
16506 if (plt_offset + 16 > plt->size)
16507 break;
16508 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16509 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16510 suffixlen = sizeof (m16suffix);
16511 suffix = m16suffix;
16512 other = STO_MIPS16;
16513 }
833794fc 16514 /* Likewise the expected microMIPS instruction (no insn32 mode). */
1bbce132
MR
16515 else if (opcode == 0xff220000)
16516 {
16517 if (!micromips_p)
16518 return -1;
16519 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16520 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16521 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16522 gotplt_lo <<= 2;
16523 gotplt_addr = gotplt_hi + gotplt_lo;
16524 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16525 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16526 suffixlen = sizeof (microsuffix);
16527 suffix = microsuffix;
16528 other = STO_MICROMIPS;
16529 }
833794fc
MR
16530 /* Likewise the expected microMIPS instruction (insn32 mode). */
16531 else if ((opcode & 0xffff0000) == 0xff2f0000)
16532 {
16533 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16534 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16535 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16536 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16537 gotplt_addr = gotplt_hi + gotplt_lo;
16538 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16539 suffixlen = sizeof (microsuffix);
16540 suffix = microsuffix;
16541 other = STO_MICROMIPS;
16542 }
1bbce132
MR
16543 /* Otherwise assume standard MIPS code. */
16544 else
16545 {
16546 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16547 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16548 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16549 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16550 gotplt_addr = gotplt_hi + gotplt_lo;
16551 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16552 suffixlen = sizeof (mipssuffix);
16553 suffix = mipssuffix;
16554 other = 0;
16555 }
16556 /* Truncated table??? */
16557 if (plt_offset + entry_size > plt->size)
16558 break;
16559
16560 for (i = 0;
16561 i < count && p[pi].address != gotplt_addr;
16562 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16563
16564 if (i < count)
16565 {
16566 size_t namelen;
16567 size_t len;
16568
16569 *s = **p[pi].sym_ptr_ptr;
16570 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16571 we are defining a symbol, ensure one of them is set. */
16572 if ((s->flags & BSF_LOCAL) == 0)
16573 s->flags |= BSF_GLOBAL;
16574 s->flags |= BSF_SYNTHETIC;
16575 s->section = plt;
16576 s->value = plt_offset;
16577 s->name = names;
16578 s->udata.i = other;
16579
16580 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16581 namelen = len + suffixlen;
16582 if (names + namelen > nend)
16583 break;
16584
16585 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16586 names += len;
16587 memcpy (names, suffix, suffixlen);
16588 names += suffixlen;
16589
16590 ++s, ++n;
16591 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16592 }
16593 }
16594
16595 free (plt_data);
16596
16597 return n;
16598}
16599
5e7fc731
MR
16600/* Return the ABI flags associated with ABFD if available. */
16601
16602Elf_Internal_ABIFlags_v0 *
16603bfd_mips_elf_get_abiflags (bfd *abfd)
16604{
16605 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16606
16607 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16608}
16609
bb29b84d
MR
16610/* MIPS libc ABI versions, used with the EI_ABIVERSION ELF file header
16611 field. Taken from `libc-abis.h' generated at GNU libc build time.
16612 Using a MIPS_ prefix as other libc targets use different values. */
16613enum
16614{
16615 MIPS_LIBC_ABI_DEFAULT = 0,
16616 MIPS_LIBC_ABI_MIPS_PLT,
16617 MIPS_LIBC_ABI_UNIQUE,
16618 MIPS_LIBC_ABI_MIPS_O32_FP64,
47275900 16619 MIPS_LIBC_ABI_ABSOLUTE,
f16a9783 16620 MIPS_LIBC_ABI_XHASH,
bb29b84d
MR
16621 MIPS_LIBC_ABI_MAX
16622};
16623
ed7e9d0b
AM
16624bfd_boolean
16625_bfd_mips_init_file_header (bfd *abfd, struct bfd_link_info *link_info)
861fb55a 16626{
47275900 16627 struct mips_elf_link_hash_table *htab = NULL;
861fb55a
DJ
16628 Elf_Internal_Ehdr *i_ehdrp;
16629
ed7e9d0b
AM
16630 if (!_bfd_elf_init_file_header (abfd, link_info))
16631 return FALSE;
16632
861fb55a
DJ
16633 i_ehdrp = elf_elfheader (abfd);
16634 if (link_info)
16635 {
16636 htab = mips_elf_hash_table (link_info);
4dfe6ac6 16637 BFD_ASSERT (htab != NULL);
861fb55a 16638 }
0af03126 16639
47275900
MR
16640 if (htab != NULL && htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16641 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_PLT;
16642
351cdf24
MF
16643 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16644 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
bb29b84d 16645 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_O32_FP64;
334cd8a7 16646
47275900
MR
16647 /* Mark that we need support for absolute symbols in the dynamic loader. */
16648 if (htab != NULL && htab->use_absolute_zero && htab->gnu_target)
16649 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_ABSOLUTE;
16650
f16a9783
MS
16651 /* Mark that we need support for .MIPS.xhash in the dynamic linker,
16652 if it is the only hash section that will be created. */
16653 if (link_info && link_info->emit_gnu_hash && !link_info->emit_hash)
16654 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_XHASH;
ed7e9d0b 16655 return TRUE;
861fb55a 16656}
2f0c68f2
CM
16657
16658int
1ced1a5f
MR
16659_bfd_mips_elf_compact_eh_encoding
16660 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
2f0c68f2
CM
16661{
16662 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16663}
16664
16665/* Return the opcode for can't unwind. */
16666
16667int
1ced1a5f
MR
16668_bfd_mips_elf_cant_unwind_opcode
16669 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
2f0c68f2
CM
16670{
16671 return COMPACT_EH_CANT_UNWIND_OPCODE;
16672}
f16a9783
MS
16673
16674/* Record a position XLAT_LOC in the xlat translation table, associated with
16675 the hash entry H. The entry in the translation table will later be
16676 populated with the real symbol dynindx. */
16677
16678void
16679_bfd_mips_elf_record_xhash_symbol (struct elf_link_hash_entry *h,
16680 bfd_vma xlat_loc)
16681{
16682 struct mips_elf_link_hash_entry *hmips;
16683
16684 hmips = (struct mips_elf_link_hash_entry *) h;
16685 hmips->mipsxhash_loc = xlat_loc;
16686}
This page took 2.479156 seconds and 4 git commands to generate.