(cr16c_elf_final_link_relocate): Remove duplicated return statements and
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
64543e1a 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
77cfaee6 3 2003, 2004, 2005 Free Software Foundation, Inc.
b49e97c9
TS
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
ae9a127f 12 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 13
ae9a127f
NC
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
b49e97c9 18
ae9a127f
NC
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
b49e97c9 23
ae9a127f
NC
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
b49e97c9
TS
27
28/* This file handles functionality common to the different MIPS ABI's. */
29
30#include "bfd.h"
31#include "sysdep.h"
32#include "libbfd.h"
64543e1a 33#include "libiberty.h"
b49e97c9
TS
34#include "elf-bfd.h"
35#include "elfxx-mips.h"
36#include "elf/mips.h"
37
38/* Get the ECOFF swapping routines. */
39#include "coff/sym.h"
40#include "coff/symconst.h"
41#include "coff/ecoff.h"
42#include "coff/mips.h"
43
b15e6682
AO
44#include "hashtab.h"
45
46/* This structure is used to hold .got entries while estimating got
47 sizes. */
48struct mips_got_entry
49{
50 /* The input bfd in which the symbol is defined. */
51 bfd *abfd;
f4416af6
AO
52 /* The index of the symbol, as stored in the relocation r_info, if
53 we have a local symbol; -1 otherwise. */
54 long symndx;
55 union
56 {
57 /* If abfd == NULL, an address that must be stored in the got. */
58 bfd_vma address;
59 /* If abfd != NULL && symndx != -1, the addend of the relocation
60 that should be added to the symbol value. */
61 bfd_vma addend;
62 /* If abfd != NULL && symndx == -1, the hash table entry
63 corresponding to a global symbol in the got (or, local, if
64 h->forced_local). */
65 struct mips_elf_link_hash_entry *h;
66 } d;
b15e6682 67 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
68 corresponding to this symbol+addend. If it's a global symbol
69 whose offset is yet to be decided, it's going to be -1. */
70 long gotidx;
b15e6682
AO
71};
72
f0abc2a1 73/* This structure is used to hold .got information when linking. */
b49e97c9
TS
74
75struct mips_got_info
76{
77 /* The global symbol in the GOT with the lowest index in the dynamic
78 symbol table. */
79 struct elf_link_hash_entry *global_gotsym;
80 /* The number of global .got entries. */
81 unsigned int global_gotno;
82 /* The number of local .got entries. */
83 unsigned int local_gotno;
84 /* The number of local .got entries we have used. */
85 unsigned int assigned_gotno;
b15e6682
AO
86 /* A hash table holding members of the got. */
87 struct htab *got_entries;
f4416af6
AO
88 /* A hash table mapping input bfds to other mips_got_info. NULL
89 unless multi-got was necessary. */
90 struct htab *bfd2got;
91 /* In multi-got links, a pointer to the next got (err, rather, most
92 of the time, it points to the previous got). */
93 struct mips_got_info *next;
94};
95
96/* Map an input bfd to a got in a multi-got link. */
97
98struct mips_elf_bfd2got_hash {
99 bfd *bfd;
100 struct mips_got_info *g;
101};
102
103/* Structure passed when traversing the bfd2got hash table, used to
104 create and merge bfd's gots. */
105
106struct mips_elf_got_per_bfd_arg
107{
108 /* A hashtable that maps bfds to gots. */
109 htab_t bfd2got;
110 /* The output bfd. */
111 bfd *obfd;
112 /* The link information. */
113 struct bfd_link_info *info;
114 /* A pointer to the primary got, i.e., the one that's going to get
115 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
116 DT_MIPS_GOTSYM. */
117 struct mips_got_info *primary;
118 /* A non-primary got we're trying to merge with other input bfd's
119 gots. */
120 struct mips_got_info *current;
121 /* The maximum number of got entries that can be addressed with a
122 16-bit offset. */
123 unsigned int max_count;
124 /* The number of local and global entries in the primary got. */
125 unsigned int primary_count;
126 /* The number of local and global entries in the current got. */
127 unsigned int current_count;
128};
129
130/* Another structure used to pass arguments for got entries traversal. */
131
132struct mips_elf_set_global_got_offset_arg
133{
134 struct mips_got_info *g;
135 int value;
136 unsigned int needed_relocs;
137 struct bfd_link_info *info;
b49e97c9
TS
138};
139
f0abc2a1
AM
140struct _mips_elf_section_data
141{
142 struct bfd_elf_section_data elf;
143 union
144 {
145 struct mips_got_info *got_info;
146 bfd_byte *tdata;
147 } u;
148};
149
150#define mips_elf_section_data(sec) \
68bfbfcc 151 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 152
b49e97c9
TS
153/* This structure is passed to mips_elf_sort_hash_table_f when sorting
154 the dynamic symbols. */
155
156struct mips_elf_hash_sort_data
157{
158 /* The symbol in the global GOT with the lowest dynamic symbol table
159 index. */
160 struct elf_link_hash_entry *low;
161 /* The least dynamic symbol table index corresponding to a symbol
162 with a GOT entry. */
163 long min_got_dynindx;
f4416af6
AO
164 /* The greatest dynamic symbol table index corresponding to a symbol
165 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 166 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 167 long max_unref_got_dynindx;
b49e97c9
TS
168 /* The greatest dynamic symbol table index not corresponding to a
169 symbol without a GOT entry. */
170 long max_non_got_dynindx;
171};
172
173/* The MIPS ELF linker needs additional information for each symbol in
174 the global hash table. */
175
176struct mips_elf_link_hash_entry
177{
178 struct elf_link_hash_entry root;
179
180 /* External symbol information. */
181 EXTR esym;
182
183 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
184 this symbol. */
185 unsigned int possibly_dynamic_relocs;
186
187 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
188 a readonly section. */
b34976b6 189 bfd_boolean readonly_reloc;
b49e97c9 190
b49e97c9
TS
191 /* We must not create a stub for a symbol that has relocations
192 related to taking the function's address, i.e. any but
193 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
194 p. 4-20. */
b34976b6 195 bfd_boolean no_fn_stub;
b49e97c9
TS
196
197 /* If there is a stub that 32 bit functions should use to call this
198 16 bit function, this points to the section containing the stub. */
199 asection *fn_stub;
200
201 /* Whether we need the fn_stub; this is set if this symbol appears
202 in any relocs other than a 16 bit call. */
b34976b6 203 bfd_boolean need_fn_stub;
b49e97c9
TS
204
205 /* If there is a stub that 16 bit functions should use to call this
206 32 bit function, this points to the section containing the stub. */
207 asection *call_stub;
208
209 /* This is like the call_stub field, but it is used if the function
210 being called returns a floating point value. */
211 asection *call_fp_stub;
7c5fcef7
L
212
213 /* Are we forced local? .*/
b34976b6 214 bfd_boolean forced_local;
b49e97c9
TS
215};
216
217/* MIPS ELF linker hash table. */
218
219struct mips_elf_link_hash_table
220{
221 struct elf_link_hash_table root;
222#if 0
223 /* We no longer use this. */
224 /* String section indices for the dynamic section symbols. */
225 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
226#endif
227 /* The number of .rtproc entries. */
228 bfd_size_type procedure_count;
229 /* The size of the .compact_rel section (if SGI_COMPAT). */
230 bfd_size_type compact_rel_size;
231 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
8dc1a139 232 entry is set to the address of __rld_obj_head as in IRIX5. */
b34976b6 233 bfd_boolean use_rld_obj_head;
b49e97c9
TS
234 /* This is the value of the __rld_map or __rld_obj_head symbol. */
235 bfd_vma rld_value;
236 /* This is set if we see any mips16 stub sections. */
b34976b6 237 bfd_boolean mips16_stubs_seen;
b49e97c9
TS
238};
239
240/* Structure used to pass information to mips_elf_output_extsym. */
241
242struct extsym_info
243{
9e4aeb93
RS
244 bfd *abfd;
245 struct bfd_link_info *info;
b49e97c9
TS
246 struct ecoff_debug_info *debug;
247 const struct ecoff_debug_swap *swap;
b34976b6 248 bfd_boolean failed;
b49e97c9
TS
249};
250
8dc1a139 251/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
252
253static const char * const mips_elf_dynsym_rtproc_names[] =
254{
255 "_procedure_table",
256 "_procedure_string_table",
257 "_procedure_table_size",
258 NULL
259};
260
261/* These structures are used to generate the .compact_rel section on
8dc1a139 262 IRIX5. */
b49e97c9
TS
263
264typedef struct
265{
266 unsigned long id1; /* Always one? */
267 unsigned long num; /* Number of compact relocation entries. */
268 unsigned long id2; /* Always two? */
269 unsigned long offset; /* The file offset of the first relocation. */
270 unsigned long reserved0; /* Zero? */
271 unsigned long reserved1; /* Zero? */
272} Elf32_compact_rel;
273
274typedef struct
275{
276 bfd_byte id1[4];
277 bfd_byte num[4];
278 bfd_byte id2[4];
279 bfd_byte offset[4];
280 bfd_byte reserved0[4];
281 bfd_byte reserved1[4];
282} Elf32_External_compact_rel;
283
284typedef struct
285{
286 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
287 unsigned int rtype : 4; /* Relocation types. See below. */
288 unsigned int dist2to : 8;
289 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
290 unsigned long konst; /* KONST field. See below. */
291 unsigned long vaddr; /* VADDR to be relocated. */
292} Elf32_crinfo;
293
294typedef struct
295{
296 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
297 unsigned int rtype : 4; /* Relocation types. See below. */
298 unsigned int dist2to : 8;
299 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
300 unsigned long konst; /* KONST field. See below. */
301} Elf32_crinfo2;
302
303typedef struct
304{
305 bfd_byte info[4];
306 bfd_byte konst[4];
307 bfd_byte vaddr[4];
308} Elf32_External_crinfo;
309
310typedef struct
311{
312 bfd_byte info[4];
313 bfd_byte konst[4];
314} Elf32_External_crinfo2;
315
316/* These are the constants used to swap the bitfields in a crinfo. */
317
318#define CRINFO_CTYPE (0x1)
319#define CRINFO_CTYPE_SH (31)
320#define CRINFO_RTYPE (0xf)
321#define CRINFO_RTYPE_SH (27)
322#define CRINFO_DIST2TO (0xff)
323#define CRINFO_DIST2TO_SH (19)
324#define CRINFO_RELVADDR (0x7ffff)
325#define CRINFO_RELVADDR_SH (0)
326
327/* A compact relocation info has long (3 words) or short (2 words)
328 formats. A short format doesn't have VADDR field and relvaddr
329 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
330#define CRF_MIPS_LONG 1
331#define CRF_MIPS_SHORT 0
332
333/* There are 4 types of compact relocation at least. The value KONST
334 has different meaning for each type:
335
336 (type) (konst)
337 CT_MIPS_REL32 Address in data
338 CT_MIPS_WORD Address in word (XXX)
339 CT_MIPS_GPHI_LO GP - vaddr
340 CT_MIPS_JMPAD Address to jump
341 */
342
343#define CRT_MIPS_REL32 0xa
344#define CRT_MIPS_WORD 0xb
345#define CRT_MIPS_GPHI_LO 0xc
346#define CRT_MIPS_JMPAD 0xd
347
348#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
349#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
350#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
351#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
352\f
353/* The structure of the runtime procedure descriptor created by the
354 loader for use by the static exception system. */
355
356typedef struct runtime_pdr {
ae9a127f
NC
357 bfd_vma adr; /* Memory address of start of procedure. */
358 long regmask; /* Save register mask. */
359 long regoffset; /* Save register offset. */
360 long fregmask; /* Save floating point register mask. */
361 long fregoffset; /* Save floating point register offset. */
362 long frameoffset; /* Frame size. */
363 short framereg; /* Frame pointer register. */
364 short pcreg; /* Offset or reg of return pc. */
365 long irpss; /* Index into the runtime string table. */
b49e97c9 366 long reserved;
ae9a127f 367 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
368} RPDR, *pRPDR;
369#define cbRPDR sizeof (RPDR)
370#define rpdNil ((pRPDR) 0)
371\f
b15e6682 372static struct mips_got_entry *mips_elf_create_local_got_entry
9719ad41 373 (bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma);
b34976b6 374static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 375 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
376static bfd_vma mips_elf_high
377 (bfd_vma);
b34976b6 378static bfd_boolean mips_elf_stub_section_p
9719ad41 379 (bfd *, asection *);
b34976b6 380static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
381 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
382 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
383 bfd_vma *, asection *);
9719ad41
RS
384static hashval_t mips_elf_got_entry_hash
385 (const void *);
f4416af6 386static bfd_vma mips_elf_adjust_gp
9719ad41 387 (bfd *, struct mips_got_info *, bfd *);
f4416af6 388static struct mips_got_info *mips_elf_got_for_ibfd
9719ad41 389 (struct mips_got_info *, bfd *);
f4416af6 390
b49e97c9
TS
391/* This will be used when we sort the dynamic relocation records. */
392static bfd *reldyn_sorting_bfd;
393
394/* Nonzero if ABFD is using the N32 ABI. */
0b25d3e6 395
b49e97c9
TS
396#define ABI_N32_P(abfd) \
397 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
398
4a14403c 399/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 400#define ABI_64_P(abfd) \
141ff970 401 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 402
4a14403c
TS
403/* Nonzero if ABFD is using NewABI conventions. */
404#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
405
406/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
407#define IRIX_COMPAT(abfd) \
408 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
409
b49e97c9
TS
410/* Whether we are trying to be compatible with IRIX at all. */
411#define SGI_COMPAT(abfd) \
412 (IRIX_COMPAT (abfd) != ict_none)
413
414/* The name of the options section. */
415#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 416 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9
TS
417
418/* The name of the stub section. */
ca07892d 419#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
420
421/* The size of an external REL relocation. */
422#define MIPS_ELF_REL_SIZE(abfd) \
423 (get_elf_backend_data (abfd)->s->sizeof_rel)
424
425/* The size of an external dynamic table entry. */
426#define MIPS_ELF_DYN_SIZE(abfd) \
427 (get_elf_backend_data (abfd)->s->sizeof_dyn)
428
429/* The size of a GOT entry. */
430#define MIPS_ELF_GOT_SIZE(abfd) \
431 (get_elf_backend_data (abfd)->s->arch_size / 8)
432
433/* The size of a symbol-table entry. */
434#define MIPS_ELF_SYM_SIZE(abfd) \
435 (get_elf_backend_data (abfd)->s->sizeof_sym)
436
437/* The default alignment for sections, as a power of two. */
438#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 439 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
440
441/* Get word-sized data. */
442#define MIPS_ELF_GET_WORD(abfd, ptr) \
443 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
444
445/* Put out word-sized data. */
446#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
447 (ABI_64_P (abfd) \
448 ? bfd_put_64 (abfd, val, ptr) \
449 : bfd_put_32 (abfd, val, ptr))
450
451/* Add a dynamic symbol table-entry. */
9719ad41 452#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 453 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
454
455#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
456 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
457
4ffba85c
AO
458/* Determine whether the internal relocation of index REL_IDX is REL
459 (zero) or RELA (non-zero). The assumption is that, if there are
460 two relocation sections for this section, one of them is REL and
461 the other is RELA. If the index of the relocation we're testing is
462 in range for the first relocation section, check that the external
463 relocation size is that for RELA. It is also assumed that, if
464 rel_idx is not in range for the first section, and this first
465 section contains REL relocs, then the relocation is in the second
466 section, that is RELA. */
467#define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
468 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
469 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
470 > (bfd_vma)(rel_idx)) \
471 == (elf_section_data (sec)->rel_hdr.sh_entsize \
472 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
473 : sizeof (Elf32_External_Rela))))
474
b49e97c9
TS
475/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
476 from smaller values. Start with zero, widen, *then* decrement. */
477#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 478#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9
TS
479
480/* The number of local .got entries we reserve. */
481#define MIPS_RESERVED_GOTNO (2)
482
f4416af6
AO
483/* The offset of $gp from the beginning of the .got section. */
484#define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)
485
486/* The maximum size of the GOT for it to be addressable using 16-bit
487 offsets from $gp. */
488#define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)
489
6a691779 490/* Instructions which appear in a stub. */
b49e97c9 491#define STUB_LW(abfd) \
f4416af6
AO
492 ((ABI_64_P (abfd) \
493 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
494 : 0x8f998010)) /* lw t9,0x8010(gp) */
b49e97c9 495#define STUB_MOVE(abfd) \
6a691779
TS
496 ((ABI_64_P (abfd) \
497 ? 0x03e0782d /* daddu t7,ra */ \
498 : 0x03e07821)) /* addu t7,ra */
499#define STUB_JALR 0x0320f809 /* jalr t9,ra */
b49e97c9 500#define STUB_LI16(abfd) \
6a691779
TS
501 ((ABI_64_P (abfd) \
502 ? 0x64180000 /* daddiu t8,zero,0 */ \
503 : 0x24180000)) /* addiu t8,zero,0 */
b49e97c9
TS
504#define MIPS_FUNCTION_STUB_SIZE (16)
505
506/* The name of the dynamic interpreter. This is put in the .interp
507 section. */
508
509#define ELF_DYNAMIC_INTERPRETER(abfd) \
510 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
511 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
512 : "/usr/lib/libc.so.1")
513
514#ifdef BFD64
ee6423ed
AO
515#define MNAME(bfd,pre,pos) \
516 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
517#define ELF_R_SYM(bfd, i) \
518 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
519#define ELF_R_TYPE(bfd, i) \
520 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
521#define ELF_R_INFO(bfd, s, t) \
522 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
523#else
ee6423ed 524#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
525#define ELF_R_SYM(bfd, i) \
526 (ELF32_R_SYM (i))
527#define ELF_R_TYPE(bfd, i) \
528 (ELF32_R_TYPE (i))
529#define ELF_R_INFO(bfd, s, t) \
530 (ELF32_R_INFO (s, t))
531#endif
532\f
533 /* The mips16 compiler uses a couple of special sections to handle
534 floating point arguments.
535
536 Section names that look like .mips16.fn.FNNAME contain stubs that
537 copy floating point arguments from the fp regs to the gp regs and
538 then jump to FNNAME. If any 32 bit function calls FNNAME, the
539 call should be redirected to the stub instead. If no 32 bit
540 function calls FNNAME, the stub should be discarded. We need to
541 consider any reference to the function, not just a call, because
542 if the address of the function is taken we will need the stub,
543 since the address might be passed to a 32 bit function.
544
545 Section names that look like .mips16.call.FNNAME contain stubs
546 that copy floating point arguments from the gp regs to the fp
547 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
548 then any 16 bit function that calls FNNAME should be redirected
549 to the stub instead. If FNNAME is not a 32 bit function, the
550 stub should be discarded.
551
552 .mips16.call.fp.FNNAME sections are similar, but contain stubs
553 which call FNNAME and then copy the return value from the fp regs
554 to the gp regs. These stubs store the return value in $18 while
555 calling FNNAME; any function which might call one of these stubs
556 must arrange to save $18 around the call. (This case is not
557 needed for 32 bit functions that call 16 bit functions, because
558 16 bit functions always return floating point values in both
559 $f0/$f1 and $2/$3.)
560
561 Note that in all cases FNNAME might be defined statically.
562 Therefore, FNNAME is not used literally. Instead, the relocation
563 information will indicate which symbol the section is for.
564
565 We record any stubs that we find in the symbol table. */
566
567#define FN_STUB ".mips16.fn."
568#define CALL_STUB ".mips16.call."
569#define CALL_FP_STUB ".mips16.call.fp."
570\f
571/* Look up an entry in a MIPS ELF linker hash table. */
572
573#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
574 ((struct mips_elf_link_hash_entry *) \
575 elf_link_hash_lookup (&(table)->root, (string), (create), \
576 (copy), (follow)))
577
578/* Traverse a MIPS ELF linker hash table. */
579
580#define mips_elf_link_hash_traverse(table, func, info) \
581 (elf_link_hash_traverse \
582 (&(table)->root, \
9719ad41 583 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
584 (info)))
585
586/* Get the MIPS ELF linker hash table from a link_info structure. */
587
588#define mips_elf_hash_table(p) \
589 ((struct mips_elf_link_hash_table *) ((p)->hash))
590
591/* Create an entry in a MIPS ELF linker hash table. */
592
593static struct bfd_hash_entry *
9719ad41
RS
594mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
595 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
596{
597 struct mips_elf_link_hash_entry *ret =
598 (struct mips_elf_link_hash_entry *) entry;
599
600 /* Allocate the structure if it has not already been allocated by a
601 subclass. */
9719ad41
RS
602 if (ret == NULL)
603 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
604 if (ret == NULL)
b49e97c9
TS
605 return (struct bfd_hash_entry *) ret;
606
607 /* Call the allocation method of the superclass. */
608 ret = ((struct mips_elf_link_hash_entry *)
609 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
610 table, string));
9719ad41 611 if (ret != NULL)
b49e97c9
TS
612 {
613 /* Set local fields. */
614 memset (&ret->esym, 0, sizeof (EXTR));
615 /* We use -2 as a marker to indicate that the information has
616 not been set. -1 means there is no associated ifd. */
617 ret->esym.ifd = -2;
618 ret->possibly_dynamic_relocs = 0;
b34976b6 619 ret->readonly_reloc = FALSE;
b34976b6 620 ret->no_fn_stub = FALSE;
b49e97c9 621 ret->fn_stub = NULL;
b34976b6 622 ret->need_fn_stub = FALSE;
b49e97c9
TS
623 ret->call_stub = NULL;
624 ret->call_fp_stub = NULL;
b34976b6 625 ret->forced_local = FALSE;
b49e97c9
TS
626 }
627
628 return (struct bfd_hash_entry *) ret;
629}
f0abc2a1
AM
630
631bfd_boolean
9719ad41 632_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1
AM
633{
634 struct _mips_elf_section_data *sdata;
635 bfd_size_type amt = sizeof (*sdata);
636
9719ad41 637 sdata = bfd_zalloc (abfd, amt);
f0abc2a1
AM
638 if (sdata == NULL)
639 return FALSE;
9719ad41 640 sec->used_by_bfd = sdata;
f0abc2a1
AM
641
642 return _bfd_elf_new_section_hook (abfd, sec);
643}
b49e97c9
TS
644\f
645/* Read ECOFF debugging information from a .mdebug section into a
646 ecoff_debug_info structure. */
647
b34976b6 648bfd_boolean
9719ad41
RS
649_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
650 struct ecoff_debug_info *debug)
b49e97c9
TS
651{
652 HDRR *symhdr;
653 const struct ecoff_debug_swap *swap;
9719ad41 654 char *ext_hdr;
b49e97c9
TS
655
656 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
657 memset (debug, 0, sizeof (*debug));
658
9719ad41 659 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
660 if (ext_hdr == NULL && swap->external_hdr_size != 0)
661 goto error_return;
662
9719ad41 663 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 664 swap->external_hdr_size))
b49e97c9
TS
665 goto error_return;
666
667 symhdr = &debug->symbolic_header;
668 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
669
670 /* The symbolic header contains absolute file offsets and sizes to
671 read. */
672#define READ(ptr, offset, count, size, type) \
673 if (symhdr->count == 0) \
674 debug->ptr = NULL; \
675 else \
676 { \
677 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 678 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
679 if (debug->ptr == NULL) \
680 goto error_return; \
9719ad41 681 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
682 || bfd_bread (debug->ptr, amt, abfd) != amt) \
683 goto error_return; \
684 }
685
686 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
687 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
688 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
689 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
690 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
691 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
692 union aux_ext *);
693 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
694 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
695 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
696 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
697 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
698#undef READ
699
700 debug->fdr = NULL;
b49e97c9 701
b34976b6 702 return TRUE;
b49e97c9
TS
703
704 error_return:
705 if (ext_hdr != NULL)
706 free (ext_hdr);
707 if (debug->line != NULL)
708 free (debug->line);
709 if (debug->external_dnr != NULL)
710 free (debug->external_dnr);
711 if (debug->external_pdr != NULL)
712 free (debug->external_pdr);
713 if (debug->external_sym != NULL)
714 free (debug->external_sym);
715 if (debug->external_opt != NULL)
716 free (debug->external_opt);
717 if (debug->external_aux != NULL)
718 free (debug->external_aux);
719 if (debug->ss != NULL)
720 free (debug->ss);
721 if (debug->ssext != NULL)
722 free (debug->ssext);
723 if (debug->external_fdr != NULL)
724 free (debug->external_fdr);
725 if (debug->external_rfd != NULL)
726 free (debug->external_rfd);
727 if (debug->external_ext != NULL)
728 free (debug->external_ext);
b34976b6 729 return FALSE;
b49e97c9
TS
730}
731\f
732/* Swap RPDR (runtime procedure table entry) for output. */
733
734static void
9719ad41 735ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
736{
737 H_PUT_S32 (abfd, in->adr, ex->p_adr);
738 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
739 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
740 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
741 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
742 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
743
744 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
745 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
746
747 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
748}
749
750/* Create a runtime procedure table from the .mdebug section. */
751
b34976b6 752static bfd_boolean
9719ad41
RS
753mips_elf_create_procedure_table (void *handle, bfd *abfd,
754 struct bfd_link_info *info, asection *s,
755 struct ecoff_debug_info *debug)
b49e97c9
TS
756{
757 const struct ecoff_debug_swap *swap;
758 HDRR *hdr = &debug->symbolic_header;
759 RPDR *rpdr, *rp;
760 struct rpdr_ext *erp;
9719ad41 761 void *rtproc;
b49e97c9
TS
762 struct pdr_ext *epdr;
763 struct sym_ext *esym;
764 char *ss, **sv;
765 char *str;
766 bfd_size_type size;
767 bfd_size_type count;
768 unsigned long sindex;
769 unsigned long i;
770 PDR pdr;
771 SYMR sym;
772 const char *no_name_func = _("static procedure (no name)");
773
774 epdr = NULL;
775 rpdr = NULL;
776 esym = NULL;
777 ss = NULL;
778 sv = NULL;
779
780 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
781
782 sindex = strlen (no_name_func) + 1;
783 count = hdr->ipdMax;
784 if (count > 0)
785 {
786 size = swap->external_pdr_size;
787
9719ad41 788 epdr = bfd_malloc (size * count);
b49e97c9
TS
789 if (epdr == NULL)
790 goto error_return;
791
9719ad41 792 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
793 goto error_return;
794
795 size = sizeof (RPDR);
9719ad41 796 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
797 if (rpdr == NULL)
798 goto error_return;
799
800 size = sizeof (char *);
9719ad41 801 sv = bfd_malloc (size * count);
b49e97c9
TS
802 if (sv == NULL)
803 goto error_return;
804
805 count = hdr->isymMax;
806 size = swap->external_sym_size;
9719ad41 807 esym = bfd_malloc (size * count);
b49e97c9
TS
808 if (esym == NULL)
809 goto error_return;
810
9719ad41 811 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
812 goto error_return;
813
814 count = hdr->issMax;
9719ad41 815 ss = bfd_malloc (count);
b49e97c9
TS
816 if (ss == NULL)
817 goto error_return;
f075ee0c 818 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
819 goto error_return;
820
821 count = hdr->ipdMax;
822 for (i = 0; i < (unsigned long) count; i++, rp++)
823 {
9719ad41
RS
824 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
825 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
826 rp->adr = sym.value;
827 rp->regmask = pdr.regmask;
828 rp->regoffset = pdr.regoffset;
829 rp->fregmask = pdr.fregmask;
830 rp->fregoffset = pdr.fregoffset;
831 rp->frameoffset = pdr.frameoffset;
832 rp->framereg = pdr.framereg;
833 rp->pcreg = pdr.pcreg;
834 rp->irpss = sindex;
835 sv[i] = ss + sym.iss;
836 sindex += strlen (sv[i]) + 1;
837 }
838 }
839
840 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
841 size = BFD_ALIGN (size, 16);
9719ad41 842 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
843 if (rtproc == NULL)
844 {
845 mips_elf_hash_table (info)->procedure_count = 0;
846 goto error_return;
847 }
848
849 mips_elf_hash_table (info)->procedure_count = count + 2;
850
9719ad41 851 erp = rtproc;
b49e97c9
TS
852 memset (erp, 0, sizeof (struct rpdr_ext));
853 erp++;
854 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
855 strcpy (str, no_name_func);
856 str += strlen (no_name_func) + 1;
857 for (i = 0; i < count; i++)
858 {
859 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
860 strcpy (str, sv[i]);
861 str += strlen (sv[i]) + 1;
862 }
863 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
864
865 /* Set the size and contents of .rtproc section. */
eea6121a 866 s->size = size;
9719ad41 867 s->contents = rtproc;
b49e97c9
TS
868
869 /* Skip this section later on (I don't think this currently
870 matters, but someday it might). */
9719ad41 871 s->link_order_head = NULL;
b49e97c9
TS
872
873 if (epdr != NULL)
874 free (epdr);
875 if (rpdr != NULL)
876 free (rpdr);
877 if (esym != NULL)
878 free (esym);
879 if (ss != NULL)
880 free (ss);
881 if (sv != NULL)
882 free (sv);
883
b34976b6 884 return TRUE;
b49e97c9
TS
885
886 error_return:
887 if (epdr != NULL)
888 free (epdr);
889 if (rpdr != NULL)
890 free (rpdr);
891 if (esym != NULL)
892 free (esym);
893 if (ss != NULL)
894 free (ss);
895 if (sv != NULL)
896 free (sv);
b34976b6 897 return FALSE;
b49e97c9
TS
898}
899
900/* Check the mips16 stubs for a particular symbol, and see if we can
901 discard them. */
902
b34976b6 903static bfd_boolean
9719ad41
RS
904mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
905 void *data ATTRIBUTE_UNUSED)
b49e97c9
TS
906{
907 if (h->root.root.type == bfd_link_hash_warning)
908 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
909
910 if (h->fn_stub != NULL
911 && ! h->need_fn_stub)
912 {
913 /* We don't need the fn_stub; the only references to this symbol
914 are 16 bit calls. Clobber the size to 0 to prevent it from
915 being included in the link. */
eea6121a 916 h->fn_stub->size = 0;
b49e97c9
TS
917 h->fn_stub->flags &= ~SEC_RELOC;
918 h->fn_stub->reloc_count = 0;
919 h->fn_stub->flags |= SEC_EXCLUDE;
920 }
921
922 if (h->call_stub != NULL
923 && h->root.other == STO_MIPS16)
924 {
925 /* We don't need the call_stub; this is a 16 bit function, so
926 calls from other 16 bit functions are OK. Clobber the size
927 to 0 to prevent it from being included in the link. */
eea6121a 928 h->call_stub->size = 0;
b49e97c9
TS
929 h->call_stub->flags &= ~SEC_RELOC;
930 h->call_stub->reloc_count = 0;
931 h->call_stub->flags |= SEC_EXCLUDE;
932 }
933
934 if (h->call_fp_stub != NULL
935 && h->root.other == STO_MIPS16)
936 {
937 /* We don't need the call_stub; this is a 16 bit function, so
938 calls from other 16 bit functions are OK. Clobber the size
939 to 0 to prevent it from being included in the link. */
eea6121a 940 h->call_fp_stub->size = 0;
b49e97c9
TS
941 h->call_fp_stub->flags &= ~SEC_RELOC;
942 h->call_fp_stub->reloc_count = 0;
943 h->call_fp_stub->flags |= SEC_EXCLUDE;
944 }
945
b34976b6 946 return TRUE;
b49e97c9
TS
947}
948\f
d6f16593
MR
949/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
950 Most mips16 instructions are 16 bits, but these instructions
951 are 32 bits.
952
953 The format of these instructions is:
954
955 +--------------+--------------------------------+
956 | JALX | X| Imm 20:16 | Imm 25:21 |
957 +--------------+--------------------------------+
958 | Immediate 15:0 |
959 +-----------------------------------------------+
960
961 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
962 Note that the immediate value in the first word is swapped.
963
964 When producing a relocatable object file, R_MIPS16_26 is
965 handled mostly like R_MIPS_26. In particular, the addend is
966 stored as a straight 26-bit value in a 32-bit instruction.
967 (gas makes life simpler for itself by never adjusting a
968 R_MIPS16_26 reloc to be against a section, so the addend is
969 always zero). However, the 32 bit instruction is stored as 2
970 16-bit values, rather than a single 32-bit value. In a
971 big-endian file, the result is the same; in a little-endian
972 file, the two 16-bit halves of the 32 bit value are swapped.
973 This is so that a disassembler can recognize the jal
974 instruction.
975
976 When doing a final link, R_MIPS16_26 is treated as a 32 bit
977 instruction stored as two 16-bit values. The addend A is the
978 contents of the targ26 field. The calculation is the same as
979 R_MIPS_26. When storing the calculated value, reorder the
980 immediate value as shown above, and don't forget to store the
981 value as two 16-bit values.
982
983 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
984 defined as
985
986 big-endian:
987 +--------+----------------------+
988 | | |
989 | | targ26-16 |
990 |31 26|25 0|
991 +--------+----------------------+
992
993 little-endian:
994 +----------+------+-------------+
995 | | | |
996 | sub1 | | sub2 |
997 |0 9|10 15|16 31|
998 +----------+--------------------+
999 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1000 ((sub1 << 16) | sub2)).
1001
1002 When producing a relocatable object file, the calculation is
1003 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1004 When producing a fully linked file, the calculation is
1005 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1006 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1007
1008 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1009 mode. A typical instruction will have a format like this:
1010
1011 +--------------+--------------------------------+
1012 | EXTEND | Imm 10:5 | Imm 15:11 |
1013 +--------------+--------------------------------+
1014 | Major | rx | ry | Imm 4:0 |
1015 +--------------+--------------------------------+
1016
1017 EXTEND is the five bit value 11110. Major is the instruction
1018 opcode.
1019
1020 This is handled exactly like R_MIPS_GPREL16, except that the
1021 addend is retrieved and stored as shown in this diagram; that
1022 is, the Imm fields above replace the V-rel16 field.
1023
1024 All we need to do here is shuffle the bits appropriately. As
1025 above, the two 16-bit halves must be swapped on a
1026 little-endian system.
1027
1028 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1029 access data when neither GP-relative nor PC-relative addressing
1030 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1031 except that the addend is retrieved and stored as shown above
1032 for R_MIPS16_GPREL.
1033 */
1034void
1035_bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1036 bfd_boolean jal_shuffle, bfd_byte *data)
1037{
1038 bfd_vma extend, insn, val;
1039
1040 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1041 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1042 return;
1043
1044 /* Pick up the mips16 extend instruction and the real instruction. */
1045 extend = bfd_get_16 (abfd, data);
1046 insn = bfd_get_16 (abfd, data + 2);
1047 if (r_type == R_MIPS16_26)
1048 {
1049 if (jal_shuffle)
1050 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1051 | ((extend & 0x1f) << 21) | insn;
1052 else
1053 val = extend << 16 | insn;
1054 }
1055 else
1056 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1057 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1058 bfd_put_32 (abfd, val, data);
1059}
1060
1061void
1062_bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1063 bfd_boolean jal_shuffle, bfd_byte *data)
1064{
1065 bfd_vma extend, insn, val;
1066
1067 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1068 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1069 return;
1070
1071 val = bfd_get_32 (abfd, data);
1072 if (r_type == R_MIPS16_26)
1073 {
1074 if (jal_shuffle)
1075 {
1076 insn = val & 0xffff;
1077 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1078 | ((val >> 21) & 0x1f);
1079 }
1080 else
1081 {
1082 insn = val & 0xffff;
1083 extend = val >> 16;
1084 }
1085 }
1086 else
1087 {
1088 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1089 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1090 }
1091 bfd_put_16 (abfd, insn, data + 2);
1092 bfd_put_16 (abfd, extend, data);
1093}
1094
b49e97c9 1095bfd_reloc_status_type
9719ad41
RS
1096_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1097 arelent *reloc_entry, asection *input_section,
1098 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
1099{
1100 bfd_vma relocation;
a7ebbfdf 1101 bfd_signed_vma val;
30ac9238 1102 bfd_reloc_status_type status;
b49e97c9
TS
1103
1104 if (bfd_is_com_section (symbol->section))
1105 relocation = 0;
1106 else
1107 relocation = symbol->value;
1108
1109 relocation += symbol->section->output_section->vma;
1110 relocation += symbol->section->output_offset;
1111
07515404 1112 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
1113 return bfd_reloc_outofrange;
1114
b49e97c9 1115 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
1116 val = reloc_entry->addend;
1117
30ac9238 1118 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 1119
b49e97c9 1120 /* Adjust val for the final section location and GP value. If we
1049f94e 1121 are producing relocatable output, we don't want to do this for
b49e97c9 1122 an external symbol. */
1049f94e 1123 if (! relocatable
b49e97c9
TS
1124 || (symbol->flags & BSF_SECTION_SYM) != 0)
1125 val += relocation - gp;
1126
a7ebbfdf
TS
1127 if (reloc_entry->howto->partial_inplace)
1128 {
30ac9238
RS
1129 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1130 (bfd_byte *) data
1131 + reloc_entry->address);
1132 if (status != bfd_reloc_ok)
1133 return status;
a7ebbfdf
TS
1134 }
1135 else
1136 reloc_entry->addend = val;
b49e97c9 1137
1049f94e 1138 if (relocatable)
b49e97c9 1139 reloc_entry->address += input_section->output_offset;
30ac9238
RS
1140
1141 return bfd_reloc_ok;
1142}
1143
1144/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1145 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1146 that contains the relocation field and DATA points to the start of
1147 INPUT_SECTION. */
1148
1149struct mips_hi16
1150{
1151 struct mips_hi16 *next;
1152 bfd_byte *data;
1153 asection *input_section;
1154 arelent rel;
1155};
1156
1157/* FIXME: This should not be a static variable. */
1158
1159static struct mips_hi16 *mips_hi16_list;
1160
1161/* A howto special_function for REL *HI16 relocations. We can only
1162 calculate the correct value once we've seen the partnering
1163 *LO16 relocation, so just save the information for later.
1164
1165 The ABI requires that the *LO16 immediately follow the *HI16.
1166 However, as a GNU extension, we permit an arbitrary number of
1167 *HI16s to be associated with a single *LO16. This significantly
1168 simplies the relocation handling in gcc. */
1169
1170bfd_reloc_status_type
1171_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1172 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1173 asection *input_section, bfd *output_bfd,
1174 char **error_message ATTRIBUTE_UNUSED)
1175{
1176 struct mips_hi16 *n;
1177
07515404 1178 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1179 return bfd_reloc_outofrange;
1180
1181 n = bfd_malloc (sizeof *n);
1182 if (n == NULL)
1183 return bfd_reloc_outofrange;
1184
1185 n->next = mips_hi16_list;
1186 n->data = data;
1187 n->input_section = input_section;
1188 n->rel = *reloc_entry;
1189 mips_hi16_list = n;
1190
1191 if (output_bfd != NULL)
1192 reloc_entry->address += input_section->output_offset;
1193
1194 return bfd_reloc_ok;
1195}
1196
1197/* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1198 like any other 16-bit relocation when applied to global symbols, but is
1199 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1200
1201bfd_reloc_status_type
1202_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1203 void *data, asection *input_section,
1204 bfd *output_bfd, char **error_message)
1205{
1206 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1207 || bfd_is_und_section (bfd_get_section (symbol))
1208 || bfd_is_com_section (bfd_get_section (symbol)))
1209 /* The relocation is against a global symbol. */
1210 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1211 input_section, output_bfd,
1212 error_message);
1213
1214 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1215 input_section, output_bfd, error_message);
1216}
1217
1218/* A howto special_function for REL *LO16 relocations. The *LO16 itself
1219 is a straightforward 16 bit inplace relocation, but we must deal with
1220 any partnering high-part relocations as well. */
1221
1222bfd_reloc_status_type
1223_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1224 void *data, asection *input_section,
1225 bfd *output_bfd, char **error_message)
1226{
1227 bfd_vma vallo;
d6f16593 1228 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 1229
07515404 1230 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1231 return bfd_reloc_outofrange;
1232
d6f16593
MR
1233 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1234 location);
1235 vallo = bfd_get_32 (abfd, location);
1236 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1237 location);
1238
30ac9238
RS
1239 while (mips_hi16_list != NULL)
1240 {
1241 bfd_reloc_status_type ret;
1242 struct mips_hi16 *hi;
1243
1244 hi = mips_hi16_list;
1245
1246 /* R_MIPS_GOT16 relocations are something of a special case. We
1247 want to install the addend in the same way as for a R_MIPS_HI16
1248 relocation (with a rightshift of 16). However, since GOT16
1249 relocations can also be used with global symbols, their howto
1250 has a rightshift of 0. */
1251 if (hi->rel.howto->type == R_MIPS_GOT16)
1252 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1253
1254 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1255 carry or borrow will induce a change of +1 or -1 in the high part. */
1256 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1257
30ac9238
RS
1258 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1259 hi->input_section, output_bfd,
1260 error_message);
1261 if (ret != bfd_reloc_ok)
1262 return ret;
1263
1264 mips_hi16_list = hi->next;
1265 free (hi);
1266 }
1267
1268 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1269 input_section, output_bfd,
1270 error_message);
1271}
1272
1273/* A generic howto special_function. This calculates and installs the
1274 relocation itself, thus avoiding the oft-discussed problems in
1275 bfd_perform_relocation and bfd_install_relocation. */
1276
1277bfd_reloc_status_type
1278_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1279 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1280 asection *input_section, bfd *output_bfd,
1281 char **error_message ATTRIBUTE_UNUSED)
1282{
1283 bfd_signed_vma val;
1284 bfd_reloc_status_type status;
1285 bfd_boolean relocatable;
1286
1287 relocatable = (output_bfd != NULL);
1288
07515404 1289 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1290 return bfd_reloc_outofrange;
1291
1292 /* Build up the field adjustment in VAL. */
1293 val = 0;
1294 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1295 {
1296 /* Either we're calculating the final field value or we have a
1297 relocation against a section symbol. Add in the section's
1298 offset or address. */
1299 val += symbol->section->output_section->vma;
1300 val += symbol->section->output_offset;
1301 }
1302
1303 if (!relocatable)
1304 {
1305 /* We're calculating the final field value. Add in the symbol's value
1306 and, if pc-relative, subtract the address of the field itself. */
1307 val += symbol->value;
1308 if (reloc_entry->howto->pc_relative)
1309 {
1310 val -= input_section->output_section->vma;
1311 val -= input_section->output_offset;
1312 val -= reloc_entry->address;
1313 }
1314 }
1315
1316 /* VAL is now the final adjustment. If we're keeping this relocation
1317 in the output file, and if the relocation uses a separate addend,
1318 we just need to add VAL to that addend. Otherwise we need to add
1319 VAL to the relocation field itself. */
1320 if (relocatable && !reloc_entry->howto->partial_inplace)
1321 reloc_entry->addend += val;
1322 else
1323 {
d6f16593
MR
1324 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1325
30ac9238
RS
1326 /* Add in the separate addend, if any. */
1327 val += reloc_entry->addend;
1328
1329 /* Add VAL to the relocation field. */
d6f16593
MR
1330 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1331 location);
30ac9238 1332 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593
MR
1333 location);
1334 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1335 location);
1336
30ac9238
RS
1337 if (status != bfd_reloc_ok)
1338 return status;
1339 }
1340
1341 if (relocatable)
1342 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
1343
1344 return bfd_reloc_ok;
1345}
1346\f
1347/* Swap an entry in a .gptab section. Note that these routines rely
1348 on the equivalence of the two elements of the union. */
1349
1350static void
9719ad41
RS
1351bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1352 Elf32_gptab *in)
b49e97c9
TS
1353{
1354 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1355 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1356}
1357
1358static void
9719ad41
RS
1359bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1360 Elf32_External_gptab *ex)
b49e97c9
TS
1361{
1362 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1363 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1364}
1365
1366static void
9719ad41
RS
1367bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1368 Elf32_External_compact_rel *ex)
b49e97c9
TS
1369{
1370 H_PUT_32 (abfd, in->id1, ex->id1);
1371 H_PUT_32 (abfd, in->num, ex->num);
1372 H_PUT_32 (abfd, in->id2, ex->id2);
1373 H_PUT_32 (abfd, in->offset, ex->offset);
1374 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1375 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1376}
1377
1378static void
9719ad41
RS
1379bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1380 Elf32_External_crinfo *ex)
b49e97c9
TS
1381{
1382 unsigned long l;
1383
1384 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1385 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1386 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1387 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1388 H_PUT_32 (abfd, l, ex->info);
1389 H_PUT_32 (abfd, in->konst, ex->konst);
1390 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1391}
b49e97c9
TS
1392\f
1393/* A .reginfo section holds a single Elf32_RegInfo structure. These
1394 routines swap this structure in and out. They are used outside of
1395 BFD, so they are globally visible. */
1396
1397void
9719ad41
RS
1398bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1399 Elf32_RegInfo *in)
b49e97c9
TS
1400{
1401 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1402 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1403 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1404 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1405 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1406 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1407}
1408
1409void
9719ad41
RS
1410bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1411 Elf32_External_RegInfo *ex)
b49e97c9
TS
1412{
1413 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1414 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1415 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1416 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1417 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1418 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1419}
1420
1421/* In the 64 bit ABI, the .MIPS.options section holds register
1422 information in an Elf64_Reginfo structure. These routines swap
1423 them in and out. They are globally visible because they are used
1424 outside of BFD. These routines are here so that gas can call them
1425 without worrying about whether the 64 bit ABI has been included. */
1426
1427void
9719ad41
RS
1428bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1429 Elf64_Internal_RegInfo *in)
b49e97c9
TS
1430{
1431 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1432 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1433 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1434 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1435 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1436 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1437 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1438}
1439
1440void
9719ad41
RS
1441bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1442 Elf64_External_RegInfo *ex)
b49e97c9
TS
1443{
1444 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1445 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1446 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1447 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1448 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1449 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1450 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1451}
1452
1453/* Swap in an options header. */
1454
1455void
9719ad41
RS
1456bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1457 Elf_Internal_Options *in)
b49e97c9
TS
1458{
1459 in->kind = H_GET_8 (abfd, ex->kind);
1460 in->size = H_GET_8 (abfd, ex->size);
1461 in->section = H_GET_16 (abfd, ex->section);
1462 in->info = H_GET_32 (abfd, ex->info);
1463}
1464
1465/* Swap out an options header. */
1466
1467void
9719ad41
RS
1468bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1469 Elf_External_Options *ex)
b49e97c9
TS
1470{
1471 H_PUT_8 (abfd, in->kind, ex->kind);
1472 H_PUT_8 (abfd, in->size, ex->size);
1473 H_PUT_16 (abfd, in->section, ex->section);
1474 H_PUT_32 (abfd, in->info, ex->info);
1475}
1476\f
1477/* This function is called via qsort() to sort the dynamic relocation
1478 entries by increasing r_symndx value. */
1479
1480static int
9719ad41 1481sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 1482{
947216bf
AM
1483 Elf_Internal_Rela int_reloc1;
1484 Elf_Internal_Rela int_reloc2;
b49e97c9 1485
947216bf
AM
1486 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1487 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 1488
947216bf 1489 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
b49e97c9
TS
1490}
1491
f4416af6
AO
1492/* Like sort_dynamic_relocs, but used for elf64 relocations. */
1493
1494static int
7e3102a7
AM
1495sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1496 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 1497{
7e3102a7 1498#ifdef BFD64
f4416af6
AO
1499 Elf_Internal_Rela int_reloc1[3];
1500 Elf_Internal_Rela int_reloc2[3];
1501
1502 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1503 (reldyn_sorting_bfd, arg1, int_reloc1);
1504 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1505 (reldyn_sorting_bfd, arg2, int_reloc2);
1506
1507 return (ELF64_R_SYM (int_reloc1[0].r_info)
1508 - ELF64_R_SYM (int_reloc2[0].r_info));
7e3102a7
AM
1509#else
1510 abort ();
1511#endif
f4416af6
AO
1512}
1513
1514
b49e97c9
TS
1515/* This routine is used to write out ECOFF debugging external symbol
1516 information. It is called via mips_elf_link_hash_traverse. The
1517 ECOFF external symbol information must match the ELF external
1518 symbol information. Unfortunately, at this point we don't know
1519 whether a symbol is required by reloc information, so the two
1520 tables may wind up being different. We must sort out the external
1521 symbol information before we can set the final size of the .mdebug
1522 section, and we must set the size of the .mdebug section before we
1523 can relocate any sections, and we can't know which symbols are
1524 required by relocation until we relocate the sections.
1525 Fortunately, it is relatively unlikely that any symbol will be
1526 stripped but required by a reloc. In particular, it can not happen
1527 when generating a final executable. */
1528
b34976b6 1529static bfd_boolean
9719ad41 1530mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 1531{
9719ad41 1532 struct extsym_info *einfo = data;
b34976b6 1533 bfd_boolean strip;
b49e97c9
TS
1534 asection *sec, *output_section;
1535
1536 if (h->root.root.type == bfd_link_hash_warning)
1537 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1538
1539 if (h->root.indx == -2)
b34976b6 1540 strip = FALSE;
f5385ebf 1541 else if ((h->root.def_dynamic
77cfaee6
AM
1542 || h->root.ref_dynamic
1543 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
1544 && !h->root.def_regular
1545 && !h->root.ref_regular)
b34976b6 1546 strip = TRUE;
b49e97c9
TS
1547 else if (einfo->info->strip == strip_all
1548 || (einfo->info->strip == strip_some
1549 && bfd_hash_lookup (einfo->info->keep_hash,
1550 h->root.root.root.string,
b34976b6
AM
1551 FALSE, FALSE) == NULL))
1552 strip = TRUE;
b49e97c9 1553 else
b34976b6 1554 strip = FALSE;
b49e97c9
TS
1555
1556 if (strip)
b34976b6 1557 return TRUE;
b49e97c9
TS
1558
1559 if (h->esym.ifd == -2)
1560 {
1561 h->esym.jmptbl = 0;
1562 h->esym.cobol_main = 0;
1563 h->esym.weakext = 0;
1564 h->esym.reserved = 0;
1565 h->esym.ifd = ifdNil;
1566 h->esym.asym.value = 0;
1567 h->esym.asym.st = stGlobal;
1568
1569 if (h->root.root.type == bfd_link_hash_undefined
1570 || h->root.root.type == bfd_link_hash_undefweak)
1571 {
1572 const char *name;
1573
1574 /* Use undefined class. Also, set class and type for some
1575 special symbols. */
1576 name = h->root.root.root.string;
1577 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1578 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1579 {
1580 h->esym.asym.sc = scData;
1581 h->esym.asym.st = stLabel;
1582 h->esym.asym.value = 0;
1583 }
1584 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1585 {
1586 h->esym.asym.sc = scAbs;
1587 h->esym.asym.st = stLabel;
1588 h->esym.asym.value =
1589 mips_elf_hash_table (einfo->info)->procedure_count;
1590 }
4a14403c 1591 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
1592 {
1593 h->esym.asym.sc = scAbs;
1594 h->esym.asym.st = stLabel;
1595 h->esym.asym.value = elf_gp (einfo->abfd);
1596 }
1597 else
1598 h->esym.asym.sc = scUndefined;
1599 }
1600 else if (h->root.root.type != bfd_link_hash_defined
1601 && h->root.root.type != bfd_link_hash_defweak)
1602 h->esym.asym.sc = scAbs;
1603 else
1604 {
1605 const char *name;
1606
1607 sec = h->root.root.u.def.section;
1608 output_section = sec->output_section;
1609
1610 /* When making a shared library and symbol h is the one from
1611 the another shared library, OUTPUT_SECTION may be null. */
1612 if (output_section == NULL)
1613 h->esym.asym.sc = scUndefined;
1614 else
1615 {
1616 name = bfd_section_name (output_section->owner, output_section);
1617
1618 if (strcmp (name, ".text") == 0)
1619 h->esym.asym.sc = scText;
1620 else if (strcmp (name, ".data") == 0)
1621 h->esym.asym.sc = scData;
1622 else if (strcmp (name, ".sdata") == 0)
1623 h->esym.asym.sc = scSData;
1624 else if (strcmp (name, ".rodata") == 0
1625 || strcmp (name, ".rdata") == 0)
1626 h->esym.asym.sc = scRData;
1627 else if (strcmp (name, ".bss") == 0)
1628 h->esym.asym.sc = scBss;
1629 else if (strcmp (name, ".sbss") == 0)
1630 h->esym.asym.sc = scSBss;
1631 else if (strcmp (name, ".init") == 0)
1632 h->esym.asym.sc = scInit;
1633 else if (strcmp (name, ".fini") == 0)
1634 h->esym.asym.sc = scFini;
1635 else
1636 h->esym.asym.sc = scAbs;
1637 }
1638 }
1639
1640 h->esym.asym.reserved = 0;
1641 h->esym.asym.index = indexNil;
1642 }
1643
1644 if (h->root.root.type == bfd_link_hash_common)
1645 h->esym.asym.value = h->root.root.u.c.size;
1646 else if (h->root.root.type == bfd_link_hash_defined
1647 || h->root.root.type == bfd_link_hash_defweak)
1648 {
1649 if (h->esym.asym.sc == scCommon)
1650 h->esym.asym.sc = scBss;
1651 else if (h->esym.asym.sc == scSCommon)
1652 h->esym.asym.sc = scSBss;
1653
1654 sec = h->root.root.u.def.section;
1655 output_section = sec->output_section;
1656 if (output_section != NULL)
1657 h->esym.asym.value = (h->root.root.u.def.value
1658 + sec->output_offset
1659 + output_section->vma);
1660 else
1661 h->esym.asym.value = 0;
1662 }
f5385ebf 1663 else if (h->root.needs_plt)
b49e97c9
TS
1664 {
1665 struct mips_elf_link_hash_entry *hd = h;
b34976b6 1666 bfd_boolean no_fn_stub = h->no_fn_stub;
b49e97c9
TS
1667
1668 while (hd->root.root.type == bfd_link_hash_indirect)
1669 {
1670 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1671 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1672 }
1673
1674 if (!no_fn_stub)
1675 {
1676 /* Set type and value for a symbol with a function stub. */
1677 h->esym.asym.st = stProc;
1678 sec = hd->root.root.u.def.section;
1679 if (sec == NULL)
1680 h->esym.asym.value = 0;
1681 else
1682 {
1683 output_section = sec->output_section;
1684 if (output_section != NULL)
1685 h->esym.asym.value = (hd->root.plt.offset
1686 + sec->output_offset
1687 + output_section->vma);
1688 else
1689 h->esym.asym.value = 0;
1690 }
b49e97c9
TS
1691 }
1692 }
1693
1694 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1695 h->root.root.root.string,
1696 &h->esym))
1697 {
b34976b6
AM
1698 einfo->failed = TRUE;
1699 return FALSE;
b49e97c9
TS
1700 }
1701
b34976b6 1702 return TRUE;
b49e97c9
TS
1703}
1704
1705/* A comparison routine used to sort .gptab entries. */
1706
1707static int
9719ad41 1708gptab_compare (const void *p1, const void *p2)
b49e97c9 1709{
9719ad41
RS
1710 const Elf32_gptab *a1 = p1;
1711 const Elf32_gptab *a2 = p2;
b49e97c9
TS
1712
1713 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1714}
1715\f
b15e6682 1716/* Functions to manage the got entry hash table. */
f4416af6
AO
1717
1718/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1719 hash number. */
1720
1721static INLINE hashval_t
9719ad41 1722mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
1723{
1724#ifdef BFD64
1725 return addr + (addr >> 32);
1726#else
1727 return addr;
1728#endif
1729}
1730
1731/* got_entries only match if they're identical, except for gotidx, so
1732 use all fields to compute the hash, and compare the appropriate
1733 union members. */
1734
b15e6682 1735static hashval_t
9719ad41 1736mips_elf_got_entry_hash (const void *entry_)
b15e6682
AO
1737{
1738 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1739
38985a1c 1740 return entry->symndx
f4416af6 1741 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
38985a1c
AO
1742 : entry->abfd->id
1743 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1744 : entry->d.h->root.root.root.hash));
b15e6682
AO
1745}
1746
1747static int
9719ad41 1748mips_elf_got_entry_eq (const void *entry1, const void *entry2)
b15e6682
AO
1749{
1750 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1751 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1752
1753 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
f4416af6
AO
1754 && (! e1->abfd ? e1->d.address == e2->d.address
1755 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1756 : e1->d.h == e2->d.h);
1757}
1758
1759/* multi_got_entries are still a match in the case of global objects,
1760 even if the input bfd in which they're referenced differs, so the
1761 hash computation and compare functions are adjusted
1762 accordingly. */
1763
1764static hashval_t
9719ad41 1765mips_elf_multi_got_entry_hash (const void *entry_)
f4416af6
AO
1766{
1767 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1768
1769 return entry->symndx
1770 + (! entry->abfd
1771 ? mips_elf_hash_bfd_vma (entry->d.address)
1772 : entry->symndx >= 0
1773 ? (entry->abfd->id
1774 + mips_elf_hash_bfd_vma (entry->d.addend))
1775 : entry->d.h->root.root.root.hash);
1776}
1777
1778static int
9719ad41 1779mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
1780{
1781 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1782 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1783
1784 return e1->symndx == e2->symndx
1785 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
1786 : e1->abfd == NULL || e2->abfd == NULL
1787 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
1788 : e1->d.h == e2->d.h);
b15e6682
AO
1789}
1790\f
f4416af6
AO
1791/* Returns the dynamic relocation section for DYNOBJ. */
1792
1793static asection *
9719ad41 1794mips_elf_rel_dyn_section (bfd *dynobj, bfd_boolean create_p)
f4416af6
AO
1795{
1796 static const char dname[] = ".rel.dyn";
1797 asection *sreloc;
1798
1799 sreloc = bfd_get_section_by_name (dynobj, dname);
1800 if (sreloc == NULL && create_p)
1801 {
1802 sreloc = bfd_make_section (dynobj, dname);
1803 if (sreloc == NULL
1804 || ! bfd_set_section_flags (dynobj, sreloc,
1805 (SEC_ALLOC
1806 | SEC_LOAD
1807 | SEC_HAS_CONTENTS
1808 | SEC_IN_MEMORY
1809 | SEC_LINKER_CREATED
1810 | SEC_READONLY))
1811 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 1812 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
1813 return NULL;
1814 }
1815 return sreloc;
1816}
1817
b49e97c9
TS
1818/* Returns the GOT section for ABFD. */
1819
1820static asection *
9719ad41 1821mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
b49e97c9 1822{
f4416af6
AO
1823 asection *sgot = bfd_get_section_by_name (abfd, ".got");
1824 if (sgot == NULL
1825 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
1826 return NULL;
1827 return sgot;
b49e97c9
TS
1828}
1829
1830/* Returns the GOT information associated with the link indicated by
1831 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1832 section. */
1833
1834static struct mips_got_info *
9719ad41 1835mips_elf_got_info (bfd *abfd, asection **sgotp)
b49e97c9
TS
1836{
1837 asection *sgot;
1838 struct mips_got_info *g;
1839
f4416af6 1840 sgot = mips_elf_got_section (abfd, TRUE);
b49e97c9 1841 BFD_ASSERT (sgot != NULL);
f0abc2a1
AM
1842 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
1843 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
1844 BFD_ASSERT (g != NULL);
1845
1846 if (sgotp)
f4416af6
AO
1847 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
1848
b49e97c9
TS
1849 return g;
1850}
1851
1852/* Returns the GOT offset at which the indicated address can be found.
1853 If there is not yet a GOT entry for this value, create one. Returns
1854 -1 if no satisfactory GOT offset can be found. */
1855
1856static bfd_vma
9719ad41
RS
1857mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1858 bfd_vma value)
b49e97c9
TS
1859{
1860 asection *sgot;
1861 struct mips_got_info *g;
b15e6682 1862 struct mips_got_entry *entry;
b49e97c9
TS
1863
1864 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1865
f4416af6 1866 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
b15e6682
AO
1867 if (entry)
1868 return entry->gotidx;
1869 else
1870 return MINUS_ONE;
b49e97c9
TS
1871}
1872
1873/* Returns the GOT index for the global symbol indicated by H. */
1874
1875static bfd_vma
9719ad41 1876mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h)
b49e97c9
TS
1877{
1878 bfd_vma index;
1879 asection *sgot;
f4416af6 1880 struct mips_got_info *g, *gg;
d0c7ff07 1881 long global_got_dynindx = 0;
b49e97c9 1882
f4416af6
AO
1883 gg = g = mips_elf_got_info (abfd, &sgot);
1884 if (g->bfd2got && ibfd)
1885 {
1886 struct mips_got_entry e, *p;
143d77c5 1887
f4416af6
AO
1888 BFD_ASSERT (h->dynindx >= 0);
1889
1890 g = mips_elf_got_for_ibfd (g, ibfd);
1891 if (g->next != gg)
1892 {
1893 e.abfd = ibfd;
1894 e.symndx = -1;
1895 e.d.h = (struct mips_elf_link_hash_entry *)h;
1896
9719ad41 1897 p = htab_find (g->got_entries, &e);
f4416af6
AO
1898
1899 BFD_ASSERT (p->gotidx > 0);
1900 return p->gotidx;
1901 }
1902 }
1903
1904 if (gg->global_gotsym != NULL)
1905 global_got_dynindx = gg->global_gotsym->dynindx;
b49e97c9
TS
1906
1907 /* Once we determine the global GOT entry with the lowest dynamic
1908 symbol table index, we must put all dynamic symbols with greater
1909 indices into the GOT. That makes it easy to calculate the GOT
1910 offset. */
d0c7ff07
TS
1911 BFD_ASSERT (h->dynindx >= global_got_dynindx);
1912 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
b49e97c9 1913 * MIPS_ELF_GOT_SIZE (abfd));
eea6121a 1914 BFD_ASSERT (index < sgot->size);
b49e97c9
TS
1915
1916 return index;
1917}
1918
1919/* Find a GOT entry that is within 32KB of the VALUE. These entries
1920 are supposed to be placed at small offsets in the GOT, i.e.,
1921 within 32KB of GP. Return the index into the GOT for this page,
1922 and store the offset from this entry to the desired address in
1923 OFFSETP, if it is non-NULL. */
1924
1925static bfd_vma
9719ad41
RS
1926mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1927 bfd_vma value, bfd_vma *offsetp)
b49e97c9
TS
1928{
1929 asection *sgot;
1930 struct mips_got_info *g;
b15e6682
AO
1931 bfd_vma index;
1932 struct mips_got_entry *entry;
b49e97c9
TS
1933
1934 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1935
f4416af6 1936 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot,
b15e6682
AO
1937 (value + 0x8000)
1938 & (~(bfd_vma)0xffff));
b49e97c9 1939
b15e6682
AO
1940 if (!entry)
1941 return MINUS_ONE;
143d77c5 1942
b15e6682 1943 index = entry->gotidx;
b49e97c9
TS
1944
1945 if (offsetp)
f4416af6 1946 *offsetp = value - entry->d.address;
b49e97c9
TS
1947
1948 return index;
1949}
1950
1951/* Find a GOT entry whose higher-order 16 bits are the same as those
1952 for value. Return the index into the GOT for this entry. */
1953
1954static bfd_vma
9719ad41
RS
1955mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1956 bfd_vma value, bfd_boolean external)
b49e97c9
TS
1957{
1958 asection *sgot;
1959 struct mips_got_info *g;
b15e6682 1960 struct mips_got_entry *entry;
b49e97c9
TS
1961
1962 if (! external)
1963 {
1964 /* Although the ABI says that it is "the high-order 16 bits" that we
1965 want, it is really the %high value. The complete value is
1966 calculated with a `addiu' of a LO16 relocation, just as with a
1967 HI16/LO16 pair. */
1968 value = mips_elf_high (value) << 16;
1969 }
1970
1971 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1972
f4416af6 1973 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
b15e6682
AO
1974 if (entry)
1975 return entry->gotidx;
1976 else
1977 return MINUS_ONE;
b49e97c9
TS
1978}
1979
1980/* Returns the offset for the entry at the INDEXth position
1981 in the GOT. */
1982
1983static bfd_vma
9719ad41
RS
1984mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
1985 bfd *input_bfd, bfd_vma index)
b49e97c9
TS
1986{
1987 asection *sgot;
1988 bfd_vma gp;
f4416af6 1989 struct mips_got_info *g;
b49e97c9 1990
f4416af6
AO
1991 g = mips_elf_got_info (dynobj, &sgot);
1992 gp = _bfd_get_gp_value (output_bfd)
1993 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
143d77c5 1994
f4416af6 1995 return sgot->output_section->vma + sgot->output_offset + index - gp;
b49e97c9
TS
1996}
1997
1998/* Create a local GOT entry for VALUE. Return the index of the entry,
1999 or -1 if it could not be created. */
2000
b15e6682 2001static struct mips_got_entry *
9719ad41
RS
2002mips_elf_create_local_got_entry (bfd *abfd, bfd *ibfd,
2003 struct mips_got_info *gg,
2004 asection *sgot, bfd_vma value)
b49e97c9 2005{
b15e6682 2006 struct mips_got_entry entry, **loc;
f4416af6 2007 struct mips_got_info *g;
b15e6682 2008
f4416af6
AO
2009 entry.abfd = NULL;
2010 entry.symndx = -1;
2011 entry.d.address = value;
2012
2013 g = mips_elf_got_for_ibfd (gg, ibfd);
2014 if (g == NULL)
2015 {
2016 g = mips_elf_got_for_ibfd (gg, abfd);
2017 BFD_ASSERT (g != NULL);
2018 }
b15e6682
AO
2019
2020 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2021 INSERT);
2022 if (*loc)
2023 return *loc;
143d77c5 2024
b15e6682
AO
2025 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
2026
2027 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2028
2029 if (! *loc)
2030 return NULL;
143d77c5 2031
b15e6682
AO
2032 memcpy (*loc, &entry, sizeof entry);
2033
b49e97c9
TS
2034 if (g->assigned_gotno >= g->local_gotno)
2035 {
f4416af6 2036 (*loc)->gotidx = -1;
b49e97c9
TS
2037 /* We didn't allocate enough space in the GOT. */
2038 (*_bfd_error_handler)
2039 (_("not enough GOT space for local GOT entries"));
2040 bfd_set_error (bfd_error_bad_value);
b15e6682 2041 return NULL;
b49e97c9
TS
2042 }
2043
2044 MIPS_ELF_PUT_WORD (abfd, value,
b15e6682
AO
2045 (sgot->contents + entry.gotidx));
2046
2047 return *loc;
b49e97c9
TS
2048}
2049
2050/* Sort the dynamic symbol table so that symbols that need GOT entries
2051 appear towards the end. This reduces the amount of GOT space
2052 required. MAX_LOCAL is used to set the number of local symbols
2053 known to be in the dynamic symbol table. During
2054 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2055 section symbols are added and the count is higher. */
2056
b34976b6 2057static bfd_boolean
9719ad41 2058mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
b49e97c9
TS
2059{
2060 struct mips_elf_hash_sort_data hsd;
2061 struct mips_got_info *g;
2062 bfd *dynobj;
2063
2064 dynobj = elf_hash_table (info)->dynobj;
2065
f4416af6
AO
2066 g = mips_elf_got_info (dynobj, NULL);
2067
b49e97c9 2068 hsd.low = NULL;
143d77c5 2069 hsd.max_unref_got_dynindx =
f4416af6
AO
2070 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2071 /* In the multi-got case, assigned_gotno of the master got_info
2072 indicate the number of entries that aren't referenced in the
2073 primary GOT, but that must have entries because there are
2074 dynamic relocations that reference it. Since they aren't
2075 referenced, we move them to the end of the GOT, so that they
2076 don't prevent other entries that are referenced from getting
2077 too large offsets. */
2078 - (g->next ? g->assigned_gotno : 0);
b49e97c9
TS
2079 hsd.max_non_got_dynindx = max_local;
2080 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2081 elf_hash_table (info)),
2082 mips_elf_sort_hash_table_f,
2083 &hsd);
2084
2085 /* There should have been enough room in the symbol table to
44c410de 2086 accommodate both the GOT and non-GOT symbols. */
b49e97c9 2087 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
f4416af6
AO
2088 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2089 <= elf_hash_table (info)->dynsymcount);
b49e97c9
TS
2090
2091 /* Now we know which dynamic symbol has the lowest dynamic symbol
2092 table index in the GOT. */
b49e97c9
TS
2093 g->global_gotsym = hsd.low;
2094
b34976b6 2095 return TRUE;
b49e97c9
TS
2096}
2097
2098/* If H needs a GOT entry, assign it the highest available dynamic
2099 index. Otherwise, assign it the lowest available dynamic
2100 index. */
2101
b34976b6 2102static bfd_boolean
9719ad41 2103mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2104{
9719ad41 2105 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9
TS
2106
2107 if (h->root.root.type == bfd_link_hash_warning)
2108 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2109
2110 /* Symbols without dynamic symbol table entries aren't interesting
2111 at all. */
2112 if (h->root.dynindx == -1)
b34976b6 2113 return TRUE;
b49e97c9 2114
f4416af6
AO
2115 /* Global symbols that need GOT entries that are not explicitly
2116 referenced are marked with got offset 2. Those that are
2117 referenced get a 1, and those that don't need GOT entries get
2118 -1. */
2119 if (h->root.got.offset == 2)
2120 {
2121 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2122 hsd->low = (struct elf_link_hash_entry *) h;
2123 h->root.dynindx = hsd->max_unref_got_dynindx++;
2124 }
2125 else if (h->root.got.offset != 1)
b49e97c9
TS
2126 h->root.dynindx = hsd->max_non_got_dynindx++;
2127 else
2128 {
2129 h->root.dynindx = --hsd->min_got_dynindx;
2130 hsd->low = (struct elf_link_hash_entry *) h;
2131 }
2132
b34976b6 2133 return TRUE;
b49e97c9
TS
2134}
2135
2136/* If H is a symbol that needs a global GOT entry, but has a dynamic
2137 symbol table index lower than any we've seen to date, record it for
2138 posterity. */
2139
b34976b6 2140static bfd_boolean
9719ad41
RS
2141mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2142 bfd *abfd, struct bfd_link_info *info,
2143 struct mips_got_info *g)
b49e97c9 2144{
f4416af6
AO
2145 struct mips_got_entry entry, **loc;
2146
b49e97c9
TS
2147 /* A global symbol in the GOT must also be in the dynamic symbol
2148 table. */
7c5fcef7
L
2149 if (h->dynindx == -1)
2150 {
2151 switch (ELF_ST_VISIBILITY (h->other))
2152 {
2153 case STV_INTERNAL:
2154 case STV_HIDDEN:
b34976b6 2155 _bfd_mips_elf_hide_symbol (info, h, TRUE);
7c5fcef7
L
2156 break;
2157 }
c152c796 2158 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 2159 return FALSE;
7c5fcef7 2160 }
b49e97c9 2161
f4416af6
AO
2162 entry.abfd = abfd;
2163 entry.symndx = -1;
2164 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2165
2166 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2167 INSERT);
2168
b49e97c9
TS
2169 /* If we've already marked this entry as needing GOT space, we don't
2170 need to do it again. */
f4416af6
AO
2171 if (*loc)
2172 return TRUE;
2173
2174 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2175
2176 if (! *loc)
2177 return FALSE;
143d77c5 2178
f4416af6
AO
2179 entry.gotidx = -1;
2180 memcpy (*loc, &entry, sizeof entry);
2181
b49e97c9 2182 if (h->got.offset != MINUS_ONE)
b34976b6 2183 return TRUE;
b49e97c9
TS
2184
2185 /* By setting this to a value other than -1, we are indicating that
2186 there needs to be a GOT entry for H. Avoid using zero, as the
2187 generic ELF copy_indirect_symbol tests for <= 0. */
2188 h->got.offset = 1;
2189
b34976b6 2190 return TRUE;
b49e97c9 2191}
f4416af6
AO
2192
2193/* Reserve space in G for a GOT entry containing the value of symbol
2194 SYMNDX in input bfd ABDF, plus ADDEND. */
2195
2196static bfd_boolean
9719ad41
RS
2197mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2198 struct mips_got_info *g)
f4416af6
AO
2199{
2200 struct mips_got_entry entry, **loc;
2201
2202 entry.abfd = abfd;
2203 entry.symndx = symndx;
2204 entry.d.addend = addend;
2205 loc = (struct mips_got_entry **)
2206 htab_find_slot (g->got_entries, &entry, INSERT);
2207
2208 if (*loc)
2209 return TRUE;
2210
2211 entry.gotidx = g->local_gotno++;
2212
2213 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2214
2215 if (! *loc)
2216 return FALSE;
143d77c5 2217
f4416af6
AO
2218 memcpy (*loc, &entry, sizeof entry);
2219
2220 return TRUE;
2221}
2222\f
2223/* Compute the hash value of the bfd in a bfd2got hash entry. */
2224
2225static hashval_t
9719ad41 2226mips_elf_bfd2got_entry_hash (const void *entry_)
f4416af6
AO
2227{
2228 const struct mips_elf_bfd2got_hash *entry
2229 = (struct mips_elf_bfd2got_hash *)entry_;
2230
2231 return entry->bfd->id;
2232}
2233
2234/* Check whether two hash entries have the same bfd. */
2235
2236static int
9719ad41 2237mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2238{
2239 const struct mips_elf_bfd2got_hash *e1
2240 = (const struct mips_elf_bfd2got_hash *)entry1;
2241 const struct mips_elf_bfd2got_hash *e2
2242 = (const struct mips_elf_bfd2got_hash *)entry2;
2243
2244 return e1->bfd == e2->bfd;
2245}
2246
0b25d3e6 2247/* In a multi-got link, determine the GOT to be used for IBDF. G must
f4416af6
AO
2248 be the master GOT data. */
2249
2250static struct mips_got_info *
9719ad41 2251mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
2252{
2253 struct mips_elf_bfd2got_hash e, *p;
2254
2255 if (! g->bfd2got)
2256 return g;
2257
2258 e.bfd = ibfd;
9719ad41 2259 p = htab_find (g->bfd2got, &e);
f4416af6
AO
2260 return p ? p->g : NULL;
2261}
2262
2263/* Create one separate got for each bfd that has entries in the global
2264 got, such that we can tell how many local and global entries each
2265 bfd requires. */
2266
2267static int
9719ad41 2268mips_elf_make_got_per_bfd (void **entryp, void *p)
f4416af6
AO
2269{
2270 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2271 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2272 htab_t bfd2got = arg->bfd2got;
2273 struct mips_got_info *g;
2274 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2275 void **bfdgotp;
143d77c5 2276
f4416af6
AO
2277 /* Find the got_info for this GOT entry's input bfd. Create one if
2278 none exists. */
2279 bfdgot_entry.bfd = entry->abfd;
2280 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2281 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2282
2283 if (bfdgot != NULL)
2284 g = bfdgot->g;
2285 else
2286 {
2287 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2288 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
2289
2290 if (bfdgot == NULL)
2291 {
2292 arg->obfd = 0;
2293 return 0;
2294 }
2295
2296 *bfdgotp = bfdgot;
2297
2298 bfdgot->bfd = entry->abfd;
2299 bfdgot->g = g = (struct mips_got_info *)
2300 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
2301 if (g == NULL)
2302 {
2303 arg->obfd = 0;
2304 return 0;
2305 }
2306
2307 g->global_gotsym = NULL;
2308 g->global_gotno = 0;
2309 g->local_gotno = 0;
2310 g->assigned_gotno = -1;
2311 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
9719ad41 2312 mips_elf_multi_got_entry_eq, NULL);
f4416af6
AO
2313 if (g->got_entries == NULL)
2314 {
2315 arg->obfd = 0;
2316 return 0;
2317 }
2318
2319 g->bfd2got = NULL;
2320 g->next = NULL;
2321 }
2322
2323 /* Insert the GOT entry in the bfd's got entry hash table. */
2324 entryp = htab_find_slot (g->got_entries, entry, INSERT);
2325 if (*entryp != NULL)
2326 return 1;
143d77c5 2327
f4416af6
AO
2328 *entryp = entry;
2329
2330 if (entry->symndx >= 0 || entry->d.h->forced_local)
2331 ++g->local_gotno;
2332 else
2333 ++g->global_gotno;
2334
2335 return 1;
2336}
2337
2338/* Attempt to merge gots of different input bfds. Try to use as much
2339 as possible of the primary got, since it doesn't require explicit
2340 dynamic relocations, but don't use bfds that would reference global
2341 symbols out of the addressable range. Failing the primary got,
2342 attempt to merge with the current got, or finish the current got
2343 and then make make the new got current. */
2344
2345static int
9719ad41 2346mips_elf_merge_gots (void **bfd2got_, void *p)
f4416af6
AO
2347{
2348 struct mips_elf_bfd2got_hash *bfd2got
2349 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
2350 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2351 unsigned int lcount = bfd2got->g->local_gotno;
2352 unsigned int gcount = bfd2got->g->global_gotno;
2353 unsigned int maxcnt = arg->max_count;
143d77c5 2354
f4416af6
AO
2355 /* If we don't have a primary GOT and this is not too big, use it as
2356 a starting point for the primary GOT. */
2357 if (! arg->primary && lcount + gcount <= maxcnt)
2358 {
2359 arg->primary = bfd2got->g;
2360 arg->primary_count = lcount + gcount;
2361 }
2362 /* If it looks like we can merge this bfd's entries with those of
2363 the primary, merge them. The heuristics is conservative, but we
2364 don't have to squeeze it too hard. */
2365 else if (arg->primary
2366 && (arg->primary_count + lcount + gcount) <= maxcnt)
2367 {
2368 struct mips_got_info *g = bfd2got->g;
2369 int old_lcount = arg->primary->local_gotno;
2370 int old_gcount = arg->primary->global_gotno;
2371
2372 bfd2got->g = arg->primary;
2373
2374 htab_traverse (g->got_entries,
2375 mips_elf_make_got_per_bfd,
2376 arg);
2377 if (arg->obfd == NULL)
2378 return 0;
2379
2380 htab_delete (g->got_entries);
2381 /* We don't have to worry about releasing memory of the actual
2382 got entries, since they're all in the master got_entries hash
2383 table anyway. */
2384
caec41ff 2385 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
f4416af6
AO
2386 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
2387
2388 arg->primary_count = arg->primary->local_gotno
2389 + arg->primary->global_gotno;
2390 }
2391 /* If we can merge with the last-created got, do it. */
2392 else if (arg->current
2393 && arg->current_count + lcount + gcount <= maxcnt)
2394 {
2395 struct mips_got_info *g = bfd2got->g;
2396 int old_lcount = arg->current->local_gotno;
2397 int old_gcount = arg->current->global_gotno;
2398
2399 bfd2got->g = arg->current;
2400
2401 htab_traverse (g->got_entries,
2402 mips_elf_make_got_per_bfd,
2403 arg);
2404 if (arg->obfd == NULL)
2405 return 0;
2406
2407 htab_delete (g->got_entries);
2408
caec41ff 2409 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
f4416af6
AO
2410 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
2411
2412 arg->current_count = arg->current->local_gotno
2413 + arg->current->global_gotno;
2414 }
2415 /* Well, we couldn't merge, so create a new GOT. Don't check if it
2416 fits; if it turns out that it doesn't, we'll get relocation
2417 overflows anyway. */
2418 else
2419 {
2420 bfd2got->g->next = arg->current;
2421 arg->current = bfd2got->g;
143d77c5 2422
f4416af6
AO
2423 arg->current_count = lcount + gcount;
2424 }
2425
2426 return 1;
2427}
2428
2429/* If passed a NULL mips_got_info in the argument, set the marker used
2430 to tell whether a global symbol needs a got entry (in the primary
2431 got) to the given VALUE.
2432
2433 If passed a pointer G to a mips_got_info in the argument (it must
2434 not be the primary GOT), compute the offset from the beginning of
2435 the (primary) GOT section to the entry in G corresponding to the
2436 global symbol. G's assigned_gotno must contain the index of the
2437 first available global GOT entry in G. VALUE must contain the size
2438 of a GOT entry in bytes. For each global GOT entry that requires a
2439 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4cc11e76 2440 marked as not eligible for lazy resolution through a function
f4416af6
AO
2441 stub. */
2442static int
9719ad41 2443mips_elf_set_global_got_offset (void **entryp, void *p)
f4416af6
AO
2444{
2445 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2446 struct mips_elf_set_global_got_offset_arg *arg
2447 = (struct mips_elf_set_global_got_offset_arg *)p;
2448 struct mips_got_info *g = arg->g;
2449
2450 if (entry->abfd != NULL && entry->symndx == -1
2451 && entry->d.h->root.dynindx != -1)
2452 {
2453 if (g)
2454 {
2455 BFD_ASSERT (g->global_gotsym == NULL);
2456
2457 entry->gotidx = arg->value * (long) g->assigned_gotno++;
f4416af6
AO
2458 if (arg->info->shared
2459 || (elf_hash_table (arg->info)->dynamic_sections_created
f5385ebf
AM
2460 && entry->d.h->root.def_dynamic
2461 && !entry->d.h->root.def_regular))
f4416af6
AO
2462 ++arg->needed_relocs;
2463 }
2464 else
2465 entry->d.h->root.got.offset = arg->value;
2466 }
2467
2468 return 1;
2469}
2470
0626d451
RS
2471/* Mark any global symbols referenced in the GOT we are iterating over
2472 as inelligible for lazy resolution stubs. */
2473static int
9719ad41 2474mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
0626d451
RS
2475{
2476 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2477
2478 if (entry->abfd != NULL
2479 && entry->symndx == -1
2480 && entry->d.h->root.dynindx != -1)
2481 entry->d.h->no_fn_stub = TRUE;
2482
2483 return 1;
2484}
2485
f4416af6
AO
2486/* Follow indirect and warning hash entries so that each got entry
2487 points to the final symbol definition. P must point to a pointer
2488 to the hash table we're traversing. Since this traversal may
2489 modify the hash table, we set this pointer to NULL to indicate
2490 we've made a potentially-destructive change to the hash table, so
2491 the traversal must be restarted. */
2492static int
9719ad41 2493mips_elf_resolve_final_got_entry (void **entryp, void *p)
f4416af6
AO
2494{
2495 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2496 htab_t got_entries = *(htab_t *)p;
2497
2498 if (entry->abfd != NULL && entry->symndx == -1)
2499 {
2500 struct mips_elf_link_hash_entry *h = entry->d.h;
2501
2502 while (h->root.root.type == bfd_link_hash_indirect
2503 || h->root.root.type == bfd_link_hash_warning)
2504 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2505
2506 if (entry->d.h == h)
2507 return 1;
143d77c5 2508
f4416af6
AO
2509 entry->d.h = h;
2510
2511 /* If we can't find this entry with the new bfd hash, re-insert
2512 it, and get the traversal restarted. */
2513 if (! htab_find (got_entries, entry))
2514 {
2515 htab_clear_slot (got_entries, entryp);
2516 entryp = htab_find_slot (got_entries, entry, INSERT);
2517 if (! *entryp)
2518 *entryp = entry;
2519 /* Abort the traversal, since the whole table may have
2520 moved, and leave it up to the parent to restart the
2521 process. */
2522 *(htab_t *)p = NULL;
2523 return 0;
2524 }
2525 /* We might want to decrement the global_gotno count, but it's
2526 either too early or too late for that at this point. */
2527 }
143d77c5 2528
f4416af6
AO
2529 return 1;
2530}
2531
2532/* Turn indirect got entries in a got_entries table into their final
2533 locations. */
2534static void
9719ad41 2535mips_elf_resolve_final_got_entries (struct mips_got_info *g)
f4416af6
AO
2536{
2537 htab_t got_entries;
2538
2539 do
2540 {
2541 got_entries = g->got_entries;
2542
2543 htab_traverse (got_entries,
2544 mips_elf_resolve_final_got_entry,
2545 &got_entries);
2546 }
2547 while (got_entries == NULL);
2548}
2549
2550/* Return the offset of an input bfd IBFD's GOT from the beginning of
2551 the primary GOT. */
2552static bfd_vma
9719ad41 2553mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
2554{
2555 if (g->bfd2got == NULL)
2556 return 0;
2557
2558 g = mips_elf_got_for_ibfd (g, ibfd);
2559 if (! g)
2560 return 0;
2561
2562 BFD_ASSERT (g->next);
2563
2564 g = g->next;
143d77c5 2565
f4416af6
AO
2566 return (g->local_gotno + g->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2567}
2568
2569/* Turn a single GOT that is too big for 16-bit addressing into
2570 a sequence of GOTs, each one 16-bit addressable. */
2571
2572static bfd_boolean
9719ad41
RS
2573mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
2574 struct mips_got_info *g, asection *got,
2575 bfd_size_type pages)
f4416af6
AO
2576{
2577 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
2578 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
2579 struct mips_got_info *gg;
2580 unsigned int assign;
2581
2582 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
9719ad41 2583 mips_elf_bfd2got_entry_eq, NULL);
f4416af6
AO
2584 if (g->bfd2got == NULL)
2585 return FALSE;
2586
2587 got_per_bfd_arg.bfd2got = g->bfd2got;
2588 got_per_bfd_arg.obfd = abfd;
2589 got_per_bfd_arg.info = info;
2590
2591 /* Count how many GOT entries each input bfd requires, creating a
2592 map from bfd to got info while at that. */
2593 mips_elf_resolve_final_got_entries (g);
2594 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
2595 if (got_per_bfd_arg.obfd == NULL)
2596 return FALSE;
2597
2598 got_per_bfd_arg.current = NULL;
2599 got_per_bfd_arg.primary = NULL;
2600 /* Taking out PAGES entries is a worst-case estimate. We could
2601 compute the maximum number of pages that each separate input bfd
2602 uses, but it's probably not worth it. */
2603 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd)
2604 / MIPS_ELF_GOT_SIZE (abfd))
2605 - MIPS_RESERVED_GOTNO - pages);
2606
2607 /* Try to merge the GOTs of input bfds together, as long as they
2608 don't seem to exceed the maximum GOT size, choosing one of them
2609 to be the primary GOT. */
2610 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
2611 if (got_per_bfd_arg.obfd == NULL)
2612 return FALSE;
2613
2614 /* If we find any suitable primary GOT, create an empty one. */
2615 if (got_per_bfd_arg.primary == NULL)
2616 {
2617 g->next = (struct mips_got_info *)
2618 bfd_alloc (abfd, sizeof (struct mips_got_info));
2619 if (g->next == NULL)
2620 return FALSE;
2621
2622 g->next->global_gotsym = NULL;
2623 g->next->global_gotno = 0;
2624 g->next->local_gotno = 0;
2625 g->next->assigned_gotno = 0;
2626 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2627 mips_elf_multi_got_entry_eq,
9719ad41 2628 NULL);
f4416af6
AO
2629 if (g->next->got_entries == NULL)
2630 return FALSE;
2631 g->next->bfd2got = NULL;
2632 }
2633 else
2634 g->next = got_per_bfd_arg.primary;
2635 g->next->next = got_per_bfd_arg.current;
2636
2637 /* GG is now the master GOT, and G is the primary GOT. */
2638 gg = g;
2639 g = g->next;
2640
2641 /* Map the output bfd to the primary got. That's what we're going
2642 to use for bfds that use GOT16 or GOT_PAGE relocations that we
2643 didn't mark in check_relocs, and we want a quick way to find it.
2644 We can't just use gg->next because we're going to reverse the
2645 list. */
2646 {
2647 struct mips_elf_bfd2got_hash *bfdgot;
2648 void **bfdgotp;
143d77c5 2649
f4416af6
AO
2650 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2651 (abfd, sizeof (struct mips_elf_bfd2got_hash));
2652
2653 if (bfdgot == NULL)
2654 return FALSE;
2655
2656 bfdgot->bfd = abfd;
2657 bfdgot->g = g;
2658 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
2659
2660 BFD_ASSERT (*bfdgotp == NULL);
2661 *bfdgotp = bfdgot;
2662 }
2663
2664 /* The IRIX dynamic linker requires every symbol that is referenced
2665 in a dynamic relocation to be present in the primary GOT, so
2666 arrange for them to appear after those that are actually
2667 referenced.
2668
2669 GNU/Linux could very well do without it, but it would slow down
2670 the dynamic linker, since it would have to resolve every dynamic
2671 symbol referenced in other GOTs more than once, without help from
2672 the cache. Also, knowing that every external symbol has a GOT
2673 helps speed up the resolution of local symbols too, so GNU/Linux
2674 follows IRIX's practice.
143d77c5 2675
f4416af6
AO
2676 The number 2 is used by mips_elf_sort_hash_table_f to count
2677 global GOT symbols that are unreferenced in the primary GOT, with
2678 an initial dynamic index computed from gg->assigned_gotno, where
2679 the number of unreferenced global entries in the primary GOT is
2680 preserved. */
2681 if (1)
2682 {
2683 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
2684 g->global_gotno = gg->global_gotno;
2685 set_got_offset_arg.value = 2;
2686 }
2687 else
2688 {
2689 /* This could be used for dynamic linkers that don't optimize
2690 symbol resolution while applying relocations so as to use
2691 primary GOT entries or assuming the symbol is locally-defined.
2692 With this code, we assign lower dynamic indices to global
2693 symbols that are not referenced in the primary GOT, so that
2694 their entries can be omitted. */
2695 gg->assigned_gotno = 0;
2696 set_got_offset_arg.value = -1;
2697 }
2698
2699 /* Reorder dynamic symbols as described above (which behavior
2700 depends on the setting of VALUE). */
2701 set_got_offset_arg.g = NULL;
2702 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
2703 &set_got_offset_arg);
2704 set_got_offset_arg.value = 1;
2705 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
2706 &set_got_offset_arg);
2707 if (! mips_elf_sort_hash_table (info, 1))
2708 return FALSE;
2709
2710 /* Now go through the GOTs assigning them offset ranges.
2711 [assigned_gotno, local_gotno[ will be set to the range of local
2712 entries in each GOT. We can then compute the end of a GOT by
2713 adding local_gotno to global_gotno. We reverse the list and make
2714 it circular since then we'll be able to quickly compute the
2715 beginning of a GOT, by computing the end of its predecessor. To
2716 avoid special cases for the primary GOT, while still preserving
2717 assertions that are valid for both single- and multi-got links,
2718 we arrange for the main got struct to have the right number of
2719 global entries, but set its local_gotno such that the initial
2720 offset of the primary GOT is zero. Remember that the primary GOT
2721 will become the last item in the circular linked list, so it
2722 points back to the master GOT. */
2723 gg->local_gotno = -g->global_gotno;
2724 gg->global_gotno = g->global_gotno;
2725 assign = 0;
2726 gg->next = gg;
2727
2728 do
2729 {
2730 struct mips_got_info *gn;
2731
2732 assign += MIPS_RESERVED_GOTNO;
2733 g->assigned_gotno = assign;
2734 g->local_gotno += assign + pages;
2735 assign = g->local_gotno + g->global_gotno;
2736
2737 /* Take g out of the direct list, and push it onto the reversed
2738 list that gg points to. */
2739 gn = g->next;
2740 g->next = gg->next;
2741 gg->next = g;
2742 g = gn;
0626d451
RS
2743
2744 /* Mark global symbols in every non-primary GOT as ineligible for
2745 stubs. */
2746 if (g)
2747 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
f4416af6
AO
2748 }
2749 while (g);
2750
eea6121a 2751 got->size = (gg->next->local_gotno
f4416af6 2752 + gg->next->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
143d77c5 2753
f4416af6
AO
2754 return TRUE;
2755}
143d77c5 2756
b49e97c9
TS
2757\f
2758/* Returns the first relocation of type r_type found, beginning with
2759 RELOCATION. RELEND is one-past-the-end of the relocation table. */
2760
2761static const Elf_Internal_Rela *
9719ad41
RS
2762mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
2763 const Elf_Internal_Rela *relocation,
2764 const Elf_Internal_Rela *relend)
b49e97c9 2765{
b49e97c9
TS
2766 while (relocation < relend)
2767 {
2768 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
2769 return relocation;
2770
2771 ++relocation;
2772 }
2773
2774 /* We didn't find it. */
2775 bfd_set_error (bfd_error_bad_value);
2776 return NULL;
2777}
2778
2779/* Return whether a relocation is against a local symbol. */
2780
b34976b6 2781static bfd_boolean
9719ad41
RS
2782mips_elf_local_relocation_p (bfd *input_bfd,
2783 const Elf_Internal_Rela *relocation,
2784 asection **local_sections,
2785 bfd_boolean check_forced)
b49e97c9
TS
2786{
2787 unsigned long r_symndx;
2788 Elf_Internal_Shdr *symtab_hdr;
2789 struct mips_elf_link_hash_entry *h;
2790 size_t extsymoff;
2791
2792 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
2793 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2794 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
2795
2796 if (r_symndx < extsymoff)
b34976b6 2797 return TRUE;
b49e97c9 2798 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 2799 return TRUE;
b49e97c9
TS
2800
2801 if (check_forced)
2802 {
2803 /* Look up the hash table to check whether the symbol
2804 was forced local. */
2805 h = (struct mips_elf_link_hash_entry *)
2806 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
2807 /* Find the real hash-table entry for this symbol. */
2808 while (h->root.root.type == bfd_link_hash_indirect
2809 || h->root.root.type == bfd_link_hash_warning)
2810 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
f5385ebf 2811 if (h->root.forced_local)
b34976b6 2812 return TRUE;
b49e97c9
TS
2813 }
2814
b34976b6 2815 return FALSE;
b49e97c9
TS
2816}
2817\f
2818/* Sign-extend VALUE, which has the indicated number of BITS. */
2819
a7ebbfdf 2820bfd_vma
9719ad41 2821_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
2822{
2823 if (value & ((bfd_vma) 1 << (bits - 1)))
2824 /* VALUE is negative. */
2825 value |= ((bfd_vma) - 1) << bits;
2826
2827 return value;
2828}
2829
2830/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 2831 range expressible by a signed number with the indicated number of
b49e97c9
TS
2832 BITS. */
2833
b34976b6 2834static bfd_boolean
9719ad41 2835mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
2836{
2837 bfd_signed_vma svalue = (bfd_signed_vma) value;
2838
2839 if (svalue > (1 << (bits - 1)) - 1)
2840 /* The value is too big. */
b34976b6 2841 return TRUE;
b49e97c9
TS
2842 else if (svalue < -(1 << (bits - 1)))
2843 /* The value is too small. */
b34976b6 2844 return TRUE;
b49e97c9
TS
2845
2846 /* All is well. */
b34976b6 2847 return FALSE;
b49e97c9
TS
2848}
2849
2850/* Calculate the %high function. */
2851
2852static bfd_vma
9719ad41 2853mips_elf_high (bfd_vma value)
b49e97c9
TS
2854{
2855 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
2856}
2857
2858/* Calculate the %higher function. */
2859
2860static bfd_vma
9719ad41 2861mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
2862{
2863#ifdef BFD64
2864 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
2865#else
2866 abort ();
c5ae1840 2867 return MINUS_ONE;
b49e97c9
TS
2868#endif
2869}
2870
2871/* Calculate the %highest function. */
2872
2873static bfd_vma
9719ad41 2874mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
2875{
2876#ifdef BFD64
b15e6682 2877 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
2878#else
2879 abort ();
c5ae1840 2880 return MINUS_ONE;
b49e97c9
TS
2881#endif
2882}
2883\f
2884/* Create the .compact_rel section. */
2885
b34976b6 2886static bfd_boolean
9719ad41
RS
2887mips_elf_create_compact_rel_section
2888 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
2889{
2890 flagword flags;
2891 register asection *s;
2892
2893 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
2894 {
2895 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
2896 | SEC_READONLY);
2897
2898 s = bfd_make_section (abfd, ".compact_rel");
2899 if (s == NULL
2900 || ! bfd_set_section_flags (abfd, s, flags)
2901 || ! bfd_set_section_alignment (abfd, s,
2902 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 2903 return FALSE;
b49e97c9 2904
eea6121a 2905 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
2906 }
2907
b34976b6 2908 return TRUE;
b49e97c9
TS
2909}
2910
2911/* Create the .got section to hold the global offset table. */
2912
b34976b6 2913static bfd_boolean
9719ad41
RS
2914mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
2915 bfd_boolean maybe_exclude)
b49e97c9
TS
2916{
2917 flagword flags;
2918 register asection *s;
2919 struct elf_link_hash_entry *h;
14a793b2 2920 struct bfd_link_hash_entry *bh;
b49e97c9
TS
2921 struct mips_got_info *g;
2922 bfd_size_type amt;
2923
2924 /* This function may be called more than once. */
f4416af6
AO
2925 s = mips_elf_got_section (abfd, TRUE);
2926 if (s)
2927 {
2928 if (! maybe_exclude)
2929 s->flags &= ~SEC_EXCLUDE;
2930 return TRUE;
2931 }
b49e97c9
TS
2932
2933 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
2934 | SEC_LINKER_CREATED);
2935
f4416af6
AO
2936 if (maybe_exclude)
2937 flags |= SEC_EXCLUDE;
2938
72b4917c
TS
2939 /* We have to use an alignment of 2**4 here because this is hardcoded
2940 in the function stub generation and in the linker script. */
b49e97c9
TS
2941 s = bfd_make_section (abfd, ".got");
2942 if (s == NULL
2943 || ! bfd_set_section_flags (abfd, s, flags)
72b4917c 2944 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 2945 return FALSE;
b49e97c9
TS
2946
2947 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
2948 linker script because we don't want to define the symbol if we
2949 are not creating a global offset table. */
14a793b2 2950 bh = NULL;
b49e97c9
TS
2951 if (! (_bfd_generic_link_add_one_symbol
2952 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 2953 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 2954 return FALSE;
14a793b2
AM
2955
2956 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
2957 h->non_elf = 0;
2958 h->def_regular = 1;
b49e97c9
TS
2959 h->type = STT_OBJECT;
2960
2961 if (info->shared
c152c796 2962 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 2963 return FALSE;
b49e97c9 2964
b49e97c9 2965 amt = sizeof (struct mips_got_info);
9719ad41 2966 g = bfd_alloc (abfd, amt);
b49e97c9 2967 if (g == NULL)
b34976b6 2968 return FALSE;
b49e97c9 2969 g->global_gotsym = NULL;
e3d54347 2970 g->global_gotno = 0;
b49e97c9
TS
2971 g->local_gotno = MIPS_RESERVED_GOTNO;
2972 g->assigned_gotno = MIPS_RESERVED_GOTNO;
f4416af6
AO
2973 g->bfd2got = NULL;
2974 g->next = NULL;
b15e6682 2975 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
9719ad41 2976 mips_elf_got_entry_eq, NULL);
b15e6682
AO
2977 if (g->got_entries == NULL)
2978 return FALSE;
f0abc2a1
AM
2979 mips_elf_section_data (s)->u.got_info = g;
2980 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
2981 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
2982
b34976b6 2983 return TRUE;
b49e97c9 2984}
b49e97c9
TS
2985\f
2986/* Calculate the value produced by the RELOCATION (which comes from
2987 the INPUT_BFD). The ADDEND is the addend to use for this
2988 RELOCATION; RELOCATION->R_ADDEND is ignored.
2989
2990 The result of the relocation calculation is stored in VALUEP.
2991 REQUIRE_JALXP indicates whether or not the opcode used with this
2992 relocation must be JALX.
2993
2994 This function returns bfd_reloc_continue if the caller need take no
2995 further action regarding this relocation, bfd_reloc_notsupported if
2996 something goes dramatically wrong, bfd_reloc_overflow if an
2997 overflow occurs, and bfd_reloc_ok to indicate success. */
2998
2999static bfd_reloc_status_type
9719ad41
RS
3000mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3001 asection *input_section,
3002 struct bfd_link_info *info,
3003 const Elf_Internal_Rela *relocation,
3004 bfd_vma addend, reloc_howto_type *howto,
3005 Elf_Internal_Sym *local_syms,
3006 asection **local_sections, bfd_vma *valuep,
3007 const char **namep, bfd_boolean *require_jalxp,
3008 bfd_boolean save_addend)
b49e97c9
TS
3009{
3010 /* The eventual value we will return. */
3011 bfd_vma value;
3012 /* The address of the symbol against which the relocation is
3013 occurring. */
3014 bfd_vma symbol = 0;
3015 /* The final GP value to be used for the relocatable, executable, or
3016 shared object file being produced. */
3017 bfd_vma gp = MINUS_ONE;
3018 /* The place (section offset or address) of the storage unit being
3019 relocated. */
3020 bfd_vma p;
3021 /* The value of GP used to create the relocatable object. */
3022 bfd_vma gp0 = MINUS_ONE;
3023 /* The offset into the global offset table at which the address of
3024 the relocation entry symbol, adjusted by the addend, resides
3025 during execution. */
3026 bfd_vma g = MINUS_ONE;
3027 /* The section in which the symbol referenced by the relocation is
3028 located. */
3029 asection *sec = NULL;
3030 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 3031 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 3032 symbol. */
b34976b6
AM
3033 bfd_boolean local_p, was_local_p;
3034 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3035 bfd_boolean gp_disp_p = FALSE;
b49e97c9
TS
3036 Elf_Internal_Shdr *symtab_hdr;
3037 size_t extsymoff;
3038 unsigned long r_symndx;
3039 int r_type;
b34976b6 3040 /* TRUE if overflow occurred during the calculation of the
b49e97c9 3041 relocation value. */
b34976b6
AM
3042 bfd_boolean overflowed_p;
3043 /* TRUE if this relocation refers to a MIPS16 function. */
3044 bfd_boolean target_is_16_bit_code_p = FALSE;
b49e97c9
TS
3045
3046 /* Parse the relocation. */
3047 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3048 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3049 p = (input_section->output_section->vma
3050 + input_section->output_offset
3051 + relocation->r_offset);
3052
3053 /* Assume that there will be no overflow. */
b34976b6 3054 overflowed_p = FALSE;
b49e97c9
TS
3055
3056 /* Figure out whether or not the symbol is local, and get the offset
3057 used in the array of hash table entries. */
3058 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3059 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3060 local_sections, FALSE);
bce03d3d 3061 was_local_p = local_p;
b49e97c9
TS
3062 if (! elf_bad_symtab (input_bfd))
3063 extsymoff = symtab_hdr->sh_info;
3064 else
3065 {
3066 /* The symbol table does not follow the rule that local symbols
3067 must come before globals. */
3068 extsymoff = 0;
3069 }
3070
3071 /* Figure out the value of the symbol. */
3072 if (local_p)
3073 {
3074 Elf_Internal_Sym *sym;
3075
3076 sym = local_syms + r_symndx;
3077 sec = local_sections[r_symndx];
3078
3079 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
3080 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3081 || (sec->flags & SEC_MERGE))
b49e97c9 3082 symbol += sym->st_value;
d4df96e6
L
3083 if ((sec->flags & SEC_MERGE)
3084 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3085 {
3086 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3087 addend -= symbol;
3088 addend += sec->output_section->vma + sec->output_offset;
3089 }
b49e97c9
TS
3090
3091 /* MIPS16 text labels should be treated as odd. */
3092 if (sym->st_other == STO_MIPS16)
3093 ++symbol;
3094
3095 /* Record the name of this symbol, for our caller. */
3096 *namep = bfd_elf_string_from_elf_section (input_bfd,
3097 symtab_hdr->sh_link,
3098 sym->st_name);
3099 if (*namep == '\0')
3100 *namep = bfd_section_name (input_bfd, sec);
3101
3102 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3103 }
3104 else
3105 {
560e09e9
NC
3106 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3107
b49e97c9
TS
3108 /* For global symbols we look up the symbol in the hash-table. */
3109 h = ((struct mips_elf_link_hash_entry *)
3110 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3111 /* Find the real hash-table entry for this symbol. */
3112 while (h->root.root.type == bfd_link_hash_indirect
3113 || h->root.root.type == bfd_link_hash_warning)
3114 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3115
3116 /* Record the name of this symbol, for our caller. */
3117 *namep = h->root.root.root.string;
3118
3119 /* See if this is the special _gp_disp symbol. Note that such a
3120 symbol must always be a global symbol. */
560e09e9 3121 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
3122 && ! NEWABI_P (input_bfd))
3123 {
3124 /* Relocations against _gp_disp are permitted only with
3125 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
d6f16593
MR
3126 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
3127 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
b49e97c9
TS
3128 return bfd_reloc_notsupported;
3129
b34976b6 3130 gp_disp_p = TRUE;
b49e97c9
TS
3131 }
3132 /* If this symbol is defined, calculate its address. Note that
3133 _gp_disp is a magic symbol, always implicitly defined by the
3134 linker, so it's inappropriate to check to see whether or not
3135 its defined. */
3136 else if ((h->root.root.type == bfd_link_hash_defined
3137 || h->root.root.type == bfd_link_hash_defweak)
3138 && h->root.root.u.def.section)
3139 {
3140 sec = h->root.root.u.def.section;
3141 if (sec->output_section)
3142 symbol = (h->root.root.u.def.value
3143 + sec->output_section->vma
3144 + sec->output_offset);
3145 else
3146 symbol = h->root.root.u.def.value;
3147 }
3148 else if (h->root.root.type == bfd_link_hash_undefweak)
3149 /* We allow relocations against undefined weak symbols, giving
3150 it the value zero, so that you can undefined weak functions
3151 and check to see if they exist by looking at their
3152 addresses. */
3153 symbol = 0;
59c2e50f 3154 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
3155 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
3156 symbol = 0;
a4d0f181
TS
3157 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
3158 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
3159 {
3160 /* If this is a dynamic link, we should have created a
3161 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
3162 in in _bfd_mips_elf_create_dynamic_sections.
3163 Otherwise, we should define the symbol with a value of 0.
3164 FIXME: It should probably get into the symbol table
3165 somehow as well. */
3166 BFD_ASSERT (! info->shared);
3167 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
3168 symbol = 0;
3169 }
3170 else
3171 {
3172 if (! ((*info->callbacks->undefined_symbol)
3173 (info, h->root.root.root.string, input_bfd,
3174 input_section, relocation->r_offset,
59c2e50f
L
3175 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
3176 || ELF_ST_VISIBILITY (h->root.other))))
b49e97c9
TS
3177 return bfd_reloc_undefined;
3178 symbol = 0;
3179 }
3180
3181 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
3182 }
3183
3184 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
3185 need to redirect the call to the stub, unless we're already *in*
3186 a stub. */
1049f94e 3187 if (r_type != R_MIPS16_26 && !info->relocatable
b49e97c9
TS
3188 && ((h != NULL && h->fn_stub != NULL)
3189 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
3190 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
3191 && !mips_elf_stub_section_p (input_bfd, input_section))
3192 {
3193 /* This is a 32- or 64-bit call to a 16-bit function. We should
3194 have already noticed that we were going to need the
3195 stub. */
3196 if (local_p)
3197 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
3198 else
3199 {
3200 BFD_ASSERT (h->need_fn_stub);
3201 sec = h->fn_stub;
3202 }
3203
3204 symbol = sec->output_section->vma + sec->output_offset;
3205 }
3206 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
3207 need to redirect the call to the stub. */
1049f94e 3208 else if (r_type == R_MIPS16_26 && !info->relocatable
b49e97c9
TS
3209 && h != NULL
3210 && (h->call_stub != NULL || h->call_fp_stub != NULL)
3211 && !target_is_16_bit_code_p)
3212 {
3213 /* If both call_stub and call_fp_stub are defined, we can figure
3214 out which one to use by seeing which one appears in the input
3215 file. */
3216 if (h->call_stub != NULL && h->call_fp_stub != NULL)
3217 {
3218 asection *o;
3219
3220 sec = NULL;
3221 for (o = input_bfd->sections; o != NULL; o = o->next)
3222 {
3223 if (strncmp (bfd_get_section_name (input_bfd, o),
3224 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
3225 {
3226 sec = h->call_fp_stub;
3227 break;
3228 }
3229 }
3230 if (sec == NULL)
3231 sec = h->call_stub;
3232 }
3233 else if (h->call_stub != NULL)
3234 sec = h->call_stub;
3235 else
3236 sec = h->call_fp_stub;
3237
eea6121a 3238 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
3239 symbol = sec->output_section->vma + sec->output_offset;
3240 }
3241
3242 /* Calls from 16-bit code to 32-bit code and vice versa require the
3243 special jalx instruction. */
1049f94e 3244 *require_jalxp = (!info->relocatable
b49e97c9
TS
3245 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
3246 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
3247
3248 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3249 local_sections, TRUE);
b49e97c9
TS
3250
3251 /* If we haven't already determined the GOT offset, or the GP value,
3252 and we're going to need it, get it now. */
3253 switch (r_type)
3254 {
0fdc1bf1 3255 case R_MIPS_GOT_PAGE:
93a2b7ae 3256 case R_MIPS_GOT_OFST:
d25aed71
RS
3257 /* We need to decay to GOT_DISP/addend if the symbol doesn't
3258 bind locally. */
3259 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
93a2b7ae 3260 if (local_p || r_type == R_MIPS_GOT_OFST)
0fdc1bf1
AO
3261 break;
3262 /* Fall through. */
3263
b49e97c9
TS
3264 case R_MIPS_CALL16:
3265 case R_MIPS_GOT16:
3266 case R_MIPS_GOT_DISP:
3267 case R_MIPS_GOT_HI16:
3268 case R_MIPS_CALL_HI16:
3269 case R_MIPS_GOT_LO16:
3270 case R_MIPS_CALL_LO16:
3271 /* Find the index into the GOT where this value is located. */
3272 if (!local_p)
3273 {
0fdc1bf1
AO
3274 /* GOT_PAGE may take a non-zero addend, that is ignored in a
3275 GOT_PAGE relocation that decays to GOT_DISP because the
3276 symbol turns out to be global. The addend is then added
3277 as GOT_OFST. */
3278 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
b49e97c9 3279 g = mips_elf_global_got_index (elf_hash_table (info)->dynobj,
f4416af6 3280 input_bfd,
b49e97c9
TS
3281 (struct elf_link_hash_entry *) h);
3282 if (! elf_hash_table(info)->dynamic_sections_created
3283 || (info->shared
3284 && (info->symbolic || h->root.dynindx == -1)
f5385ebf 3285 && h->root.def_regular))
b49e97c9
TS
3286 {
3287 /* This is a static link or a -Bsymbolic link. The
3288 symbol is defined locally, or was forced to be local.
3289 We must initialize this entry in the GOT. */
3290 bfd *tmpbfd = elf_hash_table (info)->dynobj;
f4416af6 3291 asection *sgot = mips_elf_got_section (tmpbfd, FALSE);
0fdc1bf1 3292 MIPS_ELF_PUT_WORD (tmpbfd, symbol, sgot->contents + g);
b49e97c9
TS
3293 }
3294 }
3295 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
3296 /* There's no need to create a local GOT entry here; the
3297 calculation for a local GOT16 entry does not involve G. */
3298 break;
3299 else
3300 {
f4416af6
AO
3301 g = mips_elf_local_got_index (abfd, input_bfd,
3302 info, symbol + addend);
b49e97c9
TS
3303 if (g == MINUS_ONE)
3304 return bfd_reloc_outofrange;
3305 }
3306
3307 /* Convert GOT indices to actual offsets. */
3308 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 3309 abfd, input_bfd, g);
b49e97c9
TS
3310 break;
3311
3312 case R_MIPS_HI16:
3313 case R_MIPS_LO16:
b49e97c9
TS
3314 case R_MIPS_GPREL16:
3315 case R_MIPS_GPREL32:
3316 case R_MIPS_LITERAL:
d6f16593
MR
3317 case R_MIPS16_HI16:
3318 case R_MIPS16_LO16:
3319 case R_MIPS16_GPREL:
b49e97c9
TS
3320 gp0 = _bfd_get_gp_value (input_bfd);
3321 gp = _bfd_get_gp_value (abfd);
f4416af6
AO
3322 if (elf_hash_table (info)->dynobj)
3323 gp += mips_elf_adjust_gp (abfd,
3324 mips_elf_got_info
3325 (elf_hash_table (info)->dynobj, NULL),
3326 input_bfd);
b49e97c9
TS
3327 break;
3328
3329 default:
3330 break;
3331 }
3332
3333 /* Figure out what kind of relocation is being performed. */
3334 switch (r_type)
3335 {
3336 case R_MIPS_NONE:
3337 return bfd_reloc_continue;
3338
3339 case R_MIPS_16:
a7ebbfdf 3340 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
b49e97c9
TS
3341 overflowed_p = mips_elf_overflow_p (value, 16);
3342 break;
3343
3344 case R_MIPS_32:
3345 case R_MIPS_REL32:
3346 case R_MIPS_64:
3347 if ((info->shared
3348 || (elf_hash_table (info)->dynamic_sections_created
3349 && h != NULL
f5385ebf
AM
3350 && h->root.def_dynamic
3351 && !h->root.def_regular))
b49e97c9
TS
3352 && r_symndx != 0
3353 && (input_section->flags & SEC_ALLOC) != 0)
3354 {
3355 /* If we're creating a shared library, or this relocation is
3356 against a symbol in a shared library, then we can't know
3357 where the symbol will end up. So, we create a relocation
3358 record in the output, and leave the job up to the dynamic
3359 linker. */
3360 value = addend;
3361 if (!mips_elf_create_dynamic_relocation (abfd,
3362 info,
3363 relocation,
3364 h,
3365 sec,
3366 symbol,
3367 &value,
3368 input_section))
3369 return bfd_reloc_undefined;
3370 }
3371 else
3372 {
3373 if (r_type != R_MIPS_REL32)
3374 value = symbol + addend;
3375 else
3376 value = addend;
3377 }
3378 value &= howto->dst_mask;
092dcd75
CD
3379 break;
3380
3381 case R_MIPS_PC32:
3382 value = symbol + addend - p;
3383 value &= howto->dst_mask;
b49e97c9
TS
3384 break;
3385
0b25d3e6 3386 case R_MIPS_GNU_REL16_S2:
30ac9238 3387 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
0b25d3e6
AO
3388 overflowed_p = mips_elf_overflow_p (value, 18);
3389 value = (value >> 2) & howto->dst_mask;
3390 break;
3391
b49e97c9
TS
3392 case R_MIPS16_26:
3393 /* The calculation for R_MIPS16_26 is just the same as for an
3394 R_MIPS_26. It's only the storage of the relocated field into
3395 the output file that's different. That's handled in
3396 mips_elf_perform_relocation. So, we just fall through to the
3397 R_MIPS_26 case here. */
3398 case R_MIPS_26:
3399 if (local_p)
30ac9238 3400 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
b49e97c9 3401 else
728b2f21
ILT
3402 {
3403 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
c314987d
RS
3404 if (h->root.root.type != bfd_link_hash_undefweak)
3405 overflowed_p = (value >> 26) != ((p + 4) >> 28);
728b2f21 3406 }
b49e97c9
TS
3407 value &= howto->dst_mask;
3408 break;
3409
3410 case R_MIPS_HI16:
d6f16593 3411 case R_MIPS16_HI16:
b49e97c9
TS
3412 if (!gp_disp_p)
3413 {
3414 value = mips_elf_high (addend + symbol);
3415 value &= howto->dst_mask;
3416 }
3417 else
3418 {
d6f16593
MR
3419 /* For MIPS16 ABI code we generate this sequence
3420 0: li $v0,%hi(_gp_disp)
3421 4: addiupc $v1,%lo(_gp_disp)
3422 8: sll $v0,16
3423 12: addu $v0,$v1
3424 14: move $gp,$v0
3425 So the offsets of hi and lo relocs are the same, but the
3426 $pc is four higher than $t9 would be, so reduce
3427 both reloc addends by 4. */
3428 if (r_type == R_MIPS16_HI16)
3429 value = mips_elf_high (addend + gp - p - 4);
3430 else
3431 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
3432 overflowed_p = mips_elf_overflow_p (value, 16);
3433 }
3434 break;
3435
3436 case R_MIPS_LO16:
d6f16593 3437 case R_MIPS16_LO16:
b49e97c9
TS
3438 if (!gp_disp_p)
3439 value = (symbol + addend) & howto->dst_mask;
3440 else
3441 {
d6f16593
MR
3442 /* See the comment for R_MIPS16_HI16 above for the reason
3443 for this conditional. */
3444 if (r_type == R_MIPS16_LO16)
3445 value = addend + gp - p;
3446 else
3447 value = addend + gp - p + 4;
b49e97c9 3448 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 3449 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
3450 _gp_disp are normally generated from the .cpload
3451 pseudo-op. It generates code that normally looks like
3452 this:
3453
3454 lui $gp,%hi(_gp_disp)
3455 addiu $gp,$gp,%lo(_gp_disp)
3456 addu $gp,$gp,$t9
3457
3458 Here $t9 holds the address of the function being called,
3459 as required by the MIPS ELF ABI. The R_MIPS_LO16
3460 relocation can easily overflow in this situation, but the
3461 R_MIPS_HI16 relocation will handle the overflow.
3462 Therefore, we consider this a bug in the MIPS ABI, and do
3463 not check for overflow here. */
3464 }
3465 break;
3466
3467 case R_MIPS_LITERAL:
3468 /* Because we don't merge literal sections, we can handle this
3469 just like R_MIPS_GPREL16. In the long run, we should merge
3470 shared literals, and then we will need to additional work
3471 here. */
3472
3473 /* Fall through. */
3474
3475 case R_MIPS16_GPREL:
3476 /* The R_MIPS16_GPREL performs the same calculation as
3477 R_MIPS_GPREL16, but stores the relocated bits in a different
3478 order. We don't need to do anything special here; the
3479 differences are handled in mips_elf_perform_relocation. */
3480 case R_MIPS_GPREL16:
bce03d3d
AO
3481 /* Only sign-extend the addend if it was extracted from the
3482 instruction. If the addend was separate, leave it alone,
3483 otherwise we may lose significant bits. */
3484 if (howto->partial_inplace)
a7ebbfdf 3485 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
3486 value = symbol + addend - gp;
3487 /* If the symbol was local, any earlier relocatable links will
3488 have adjusted its addend with the gp offset, so compensate
3489 for that now. Don't do it for symbols forced local in this
3490 link, though, since they won't have had the gp offset applied
3491 to them before. */
3492 if (was_local_p)
3493 value += gp0;
b49e97c9
TS
3494 overflowed_p = mips_elf_overflow_p (value, 16);
3495 break;
3496
3497 case R_MIPS_GOT16:
3498 case R_MIPS_CALL16:
3499 if (local_p)
3500 {
b34976b6 3501 bfd_boolean forced;
b49e97c9
TS
3502
3503 /* The special case is when the symbol is forced to be local. We
3504 need the full address in the GOT since no R_MIPS_LO16 relocation
3505 follows. */
3506 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3507 local_sections, FALSE);
f4416af6
AO
3508 value = mips_elf_got16_entry (abfd, input_bfd, info,
3509 symbol + addend, forced);
b49e97c9
TS
3510 if (value == MINUS_ONE)
3511 return bfd_reloc_outofrange;
3512 value
3513 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 3514 abfd, input_bfd, value);
b49e97c9
TS
3515 overflowed_p = mips_elf_overflow_p (value, 16);
3516 break;
3517 }
3518
3519 /* Fall through. */
3520
3521 case R_MIPS_GOT_DISP:
0fdc1bf1 3522 got_disp:
b49e97c9
TS
3523 value = g;
3524 overflowed_p = mips_elf_overflow_p (value, 16);
3525 break;
3526
3527 case R_MIPS_GPREL32:
bce03d3d
AO
3528 value = (addend + symbol + gp0 - gp);
3529 if (!save_addend)
3530 value &= howto->dst_mask;
b49e97c9
TS
3531 break;
3532
3533 case R_MIPS_PC16:
a7ebbfdf 3534 value = _bfd_mips_elf_sign_extend (addend, 16) + symbol - p;
0b25d3e6 3535 overflowed_p = mips_elf_overflow_p (value, 16);
b49e97c9
TS
3536 break;
3537
3538 case R_MIPS_GOT_HI16:
3539 case R_MIPS_CALL_HI16:
3540 /* We're allowed to handle these two relocations identically.
3541 The dynamic linker is allowed to handle the CALL relocations
3542 differently by creating a lazy evaluation stub. */
3543 value = g;
3544 value = mips_elf_high (value);
3545 value &= howto->dst_mask;
3546 break;
3547
3548 case R_MIPS_GOT_LO16:
3549 case R_MIPS_CALL_LO16:
3550 value = g & howto->dst_mask;
3551 break;
3552
3553 case R_MIPS_GOT_PAGE:
0fdc1bf1
AO
3554 /* GOT_PAGE relocations that reference non-local symbols decay
3555 to GOT_DISP. The corresponding GOT_OFST relocation decays to
3556 0. */
93a2b7ae 3557 if (! local_p)
0fdc1bf1 3558 goto got_disp;
f4416af6 3559 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
3560 if (value == MINUS_ONE)
3561 return bfd_reloc_outofrange;
3562 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 3563 abfd, input_bfd, value);
b49e97c9
TS
3564 overflowed_p = mips_elf_overflow_p (value, 16);
3565 break;
3566
3567 case R_MIPS_GOT_OFST:
93a2b7ae 3568 if (local_p)
0fdc1bf1
AO
3569 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
3570 else
3571 value = addend;
b49e97c9
TS
3572 overflowed_p = mips_elf_overflow_p (value, 16);
3573 break;
3574
3575 case R_MIPS_SUB:
3576 value = symbol - addend;
3577 value &= howto->dst_mask;
3578 break;
3579
3580 case R_MIPS_HIGHER:
3581 value = mips_elf_higher (addend + symbol);
3582 value &= howto->dst_mask;
3583 break;
3584
3585 case R_MIPS_HIGHEST:
3586 value = mips_elf_highest (addend + symbol);
3587 value &= howto->dst_mask;
3588 break;
3589
3590 case R_MIPS_SCN_DISP:
3591 value = symbol + addend - sec->output_offset;
3592 value &= howto->dst_mask;
3593 break;
3594
b49e97c9 3595 case R_MIPS_JALR:
1367d393
ILT
3596 /* This relocation is only a hint. In some cases, we optimize
3597 it into a bal instruction. But we don't try to optimize
3598 branches to the PLT; that will wind up wasting time. */
3599 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
3600 return bfd_reloc_continue;
3601 value = symbol + addend;
3602 break;
b49e97c9 3603
1367d393 3604 case R_MIPS_PJUMP:
b49e97c9
TS
3605 case R_MIPS_GNU_VTINHERIT:
3606 case R_MIPS_GNU_VTENTRY:
3607 /* We don't do anything with these at present. */
3608 return bfd_reloc_continue;
3609
3610 default:
3611 /* An unrecognized relocation type. */
3612 return bfd_reloc_notsupported;
3613 }
3614
3615 /* Store the VALUE for our caller. */
3616 *valuep = value;
3617 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
3618}
3619
3620/* Obtain the field relocated by RELOCATION. */
3621
3622static bfd_vma
9719ad41
RS
3623mips_elf_obtain_contents (reloc_howto_type *howto,
3624 const Elf_Internal_Rela *relocation,
3625 bfd *input_bfd, bfd_byte *contents)
b49e97c9
TS
3626{
3627 bfd_vma x;
3628 bfd_byte *location = contents + relocation->r_offset;
3629
3630 /* Obtain the bytes. */
3631 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
3632
b49e97c9
TS
3633 return x;
3634}
3635
3636/* It has been determined that the result of the RELOCATION is the
3637 VALUE. Use HOWTO to place VALUE into the output file at the
3638 appropriate position. The SECTION is the section to which the
b34976b6 3639 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
b49e97c9
TS
3640 for the relocation must be either JAL or JALX, and it is
3641 unconditionally converted to JALX.
3642
b34976b6 3643 Returns FALSE if anything goes wrong. */
b49e97c9 3644
b34976b6 3645static bfd_boolean
9719ad41
RS
3646mips_elf_perform_relocation (struct bfd_link_info *info,
3647 reloc_howto_type *howto,
3648 const Elf_Internal_Rela *relocation,
3649 bfd_vma value, bfd *input_bfd,
3650 asection *input_section, bfd_byte *contents,
3651 bfd_boolean require_jalx)
b49e97c9
TS
3652{
3653 bfd_vma x;
3654 bfd_byte *location;
3655 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3656
3657 /* Figure out where the relocation is occurring. */
3658 location = contents + relocation->r_offset;
3659
d6f16593
MR
3660 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
3661
b49e97c9
TS
3662 /* Obtain the current value. */
3663 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
3664
3665 /* Clear the field we are setting. */
3666 x &= ~howto->dst_mask;
3667
b49e97c9
TS
3668 /* Set the field. */
3669 x |= (value & howto->dst_mask);
3670
3671 /* If required, turn JAL into JALX. */
3672 if (require_jalx)
3673 {
b34976b6 3674 bfd_boolean ok;
b49e97c9
TS
3675 bfd_vma opcode = x >> 26;
3676 bfd_vma jalx_opcode;
3677
3678 /* Check to see if the opcode is already JAL or JALX. */
3679 if (r_type == R_MIPS16_26)
3680 {
3681 ok = ((opcode == 0x6) || (opcode == 0x7));
3682 jalx_opcode = 0x7;
3683 }
3684 else
3685 {
3686 ok = ((opcode == 0x3) || (opcode == 0x1d));
3687 jalx_opcode = 0x1d;
3688 }
3689
3690 /* If the opcode is not JAL or JALX, there's a problem. */
3691 if (!ok)
3692 {
3693 (*_bfd_error_handler)
d003868e
AM
3694 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
3695 input_bfd,
3696 input_section,
b49e97c9
TS
3697 (unsigned long) relocation->r_offset);
3698 bfd_set_error (bfd_error_bad_value);
b34976b6 3699 return FALSE;
b49e97c9
TS
3700 }
3701
3702 /* Make this the JALX opcode. */
3703 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
3704 }
3705
1367d393
ILT
3706 /* On the RM9000, bal is faster than jal, because bal uses branch
3707 prediction hardware. If we are linking for the RM9000, and we
3708 see jal, and bal fits, use it instead. Note that this
3709 transformation should be safe for all architectures. */
3710 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
3711 && !info->relocatable
3712 && !require_jalx
3713 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
3714 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
3715 {
3716 bfd_vma addr;
3717 bfd_vma dest;
3718 bfd_signed_vma off;
3719
3720 addr = (input_section->output_section->vma
3721 + input_section->output_offset
3722 + relocation->r_offset
3723 + 4);
3724 if (r_type == R_MIPS_26)
3725 dest = (value << 2) | ((addr >> 28) << 28);
3726 else
3727 dest = value;
3728 off = dest - addr;
3729 if (off <= 0x1ffff && off >= -0x20000)
3730 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
3731 }
3732
b49e97c9
TS
3733 /* Put the value into the output. */
3734 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
d6f16593
MR
3735
3736 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
3737 location);
3738
b34976b6 3739 return TRUE;
b49e97c9
TS
3740}
3741
b34976b6 3742/* Returns TRUE if SECTION is a MIPS16 stub section. */
b49e97c9 3743
b34976b6 3744static bfd_boolean
9719ad41 3745mips_elf_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
b49e97c9
TS
3746{
3747 const char *name = bfd_get_section_name (abfd, section);
3748
3749 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
3750 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
3751 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
3752}
3753\f
3754/* Add room for N relocations to the .rel.dyn section in ABFD. */
3755
3756static void
9719ad41 3757mips_elf_allocate_dynamic_relocations (bfd *abfd, unsigned int n)
b49e97c9
TS
3758{
3759 asection *s;
3760
f4416af6 3761 s = mips_elf_rel_dyn_section (abfd, FALSE);
b49e97c9
TS
3762 BFD_ASSERT (s != NULL);
3763
eea6121a 3764 if (s->size == 0)
b49e97c9
TS
3765 {
3766 /* Make room for a null element. */
eea6121a 3767 s->size += MIPS_ELF_REL_SIZE (abfd);
b49e97c9
TS
3768 ++s->reloc_count;
3769 }
eea6121a 3770 s->size += n * MIPS_ELF_REL_SIZE (abfd);
b49e97c9
TS
3771}
3772
3773/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
3774 is the original relocation, which is now being transformed into a
3775 dynamic relocation. The ADDENDP is adjusted if necessary; the
3776 caller should store the result in place of the original addend. */
3777
b34976b6 3778static bfd_boolean
9719ad41
RS
3779mips_elf_create_dynamic_relocation (bfd *output_bfd,
3780 struct bfd_link_info *info,
3781 const Elf_Internal_Rela *rel,
3782 struct mips_elf_link_hash_entry *h,
3783 asection *sec, bfd_vma symbol,
3784 bfd_vma *addendp, asection *input_section)
b49e97c9 3785{
947216bf 3786 Elf_Internal_Rela outrel[3];
b49e97c9
TS
3787 asection *sreloc;
3788 bfd *dynobj;
3789 int r_type;
5d41f0b6
RS
3790 long indx;
3791 bfd_boolean defined_p;
b49e97c9
TS
3792
3793 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
3794 dynobj = elf_hash_table (info)->dynobj;
f4416af6 3795 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
b49e97c9
TS
3796 BFD_ASSERT (sreloc != NULL);
3797 BFD_ASSERT (sreloc->contents != NULL);
3798 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 3799 < sreloc->size);
b49e97c9 3800
b49e97c9
TS
3801 outrel[0].r_offset =
3802 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
3803 outrel[1].r_offset =
3804 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
3805 outrel[2].r_offset =
3806 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
3807
c5ae1840 3808 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 3809 /* The relocation field has been deleted. */
5d41f0b6
RS
3810 return TRUE;
3811
3812 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
3813 {
3814 /* The relocation field has been converted into a relative value of
3815 some sort. Functions like _bfd_elf_write_section_eh_frame expect
3816 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 3817 *addendp += symbol;
5d41f0b6 3818 return TRUE;
0d591ff7 3819 }
b49e97c9 3820
5d41f0b6
RS
3821 /* We must now calculate the dynamic symbol table index to use
3822 in the relocation. */
3823 if (h != NULL
3824 && (! info->symbolic || !h->root.def_regular)
3825 /* h->root.dynindx may be -1 if this symbol was marked to
3826 become local. */
3827 && h->root.dynindx != -1)
3828 {
3829 indx = h->root.dynindx;
3830 if (SGI_COMPAT (output_bfd))
3831 defined_p = h->root.def_regular;
3832 else
3833 /* ??? glibc's ld.so just adds the final GOT entry to the
3834 relocation field. It therefore treats relocs against
3835 defined symbols in the same way as relocs against
3836 undefined symbols. */
3837 defined_p = FALSE;
3838 }
b49e97c9
TS
3839 else
3840 {
5d41f0b6
RS
3841 if (sec != NULL && bfd_is_abs_section (sec))
3842 indx = 0;
3843 else if (sec == NULL || sec->owner == NULL)
fdd07405 3844 {
5d41f0b6
RS
3845 bfd_set_error (bfd_error_bad_value);
3846 return FALSE;
b49e97c9
TS
3847 }
3848 else
3849 {
5d41f0b6
RS
3850 indx = elf_section_data (sec->output_section)->dynindx;
3851 if (indx == 0)
3852 abort ();
b49e97c9
TS
3853 }
3854
5d41f0b6
RS
3855 /* Instead of generating a relocation using the section
3856 symbol, we may as well make it a fully relative
3857 relocation. We want to avoid generating relocations to
3858 local symbols because we used to generate them
3859 incorrectly, without adding the original symbol value,
3860 which is mandated by the ABI for section symbols. In
3861 order to give dynamic loaders and applications time to
3862 phase out the incorrect use, we refrain from emitting
3863 section-relative relocations. It's not like they're
3864 useful, after all. This should be a bit more efficient
3865 as well. */
3866 /* ??? Although this behavior is compatible with glibc's ld.so,
3867 the ABI says that relocations against STN_UNDEF should have
3868 a symbol value of 0. Irix rld honors this, so relocations
3869 against STN_UNDEF have no effect. */
3870 if (!SGI_COMPAT (output_bfd))
3871 indx = 0;
3872 defined_p = TRUE;
b49e97c9
TS
3873 }
3874
5d41f0b6
RS
3875 /* If the relocation was previously an absolute relocation and
3876 this symbol will not be referred to by the relocation, we must
3877 adjust it by the value we give it in the dynamic symbol table.
3878 Otherwise leave the job up to the dynamic linker. */
3879 if (defined_p && r_type != R_MIPS_REL32)
3880 *addendp += symbol;
3881
3882 /* The relocation is always an REL32 relocation because we don't
3883 know where the shared library will wind up at load-time. */
3884 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
3885 R_MIPS_REL32);
3886 /* For strict adherence to the ABI specification, we should
3887 generate a R_MIPS_64 relocation record by itself before the
3888 _REL32/_64 record as well, such that the addend is read in as
3889 a 64-bit value (REL32 is a 32-bit relocation, after all).
3890 However, since none of the existing ELF64 MIPS dynamic
3891 loaders seems to care, we don't waste space with these
3892 artificial relocations. If this turns out to not be true,
3893 mips_elf_allocate_dynamic_relocation() should be tweaked so
3894 as to make room for a pair of dynamic relocations per
3895 invocation if ABI_64_P, and here we should generate an
3896 additional relocation record with R_MIPS_64 by itself for a
3897 NULL symbol before this relocation record. */
3898 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
3899 ABI_64_P (output_bfd)
3900 ? R_MIPS_64
3901 : R_MIPS_NONE);
3902 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
3903
3904 /* Adjust the output offset of the relocation to reference the
3905 correct location in the output file. */
3906 outrel[0].r_offset += (input_section->output_section->vma
3907 + input_section->output_offset);
3908 outrel[1].r_offset += (input_section->output_section->vma
3909 + input_section->output_offset);
3910 outrel[2].r_offset += (input_section->output_section->vma
3911 + input_section->output_offset);
3912
b49e97c9
TS
3913 /* Put the relocation back out. We have to use the special
3914 relocation outputter in the 64-bit case since the 64-bit
3915 relocation format is non-standard. */
3916 if (ABI_64_P (output_bfd))
3917 {
3918 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3919 (output_bfd, &outrel[0],
3920 (sreloc->contents
3921 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
3922 }
3923 else
947216bf
AM
3924 bfd_elf32_swap_reloc_out
3925 (output_bfd, &outrel[0],
3926 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 3927
b49e97c9
TS
3928 /* We've now added another relocation. */
3929 ++sreloc->reloc_count;
3930
3931 /* Make sure the output section is writable. The dynamic linker
3932 will be writing to it. */
3933 elf_section_data (input_section->output_section)->this_hdr.sh_flags
3934 |= SHF_WRITE;
3935
3936 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 3937 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9
TS
3938 {
3939 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
3940 bfd_byte *cr;
3941
3942 if (scpt)
3943 {
3944 Elf32_crinfo cptrel;
3945
3946 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
3947 cptrel.vaddr = (rel->r_offset
3948 + input_section->output_section->vma
3949 + input_section->output_offset);
3950 if (r_type == R_MIPS_REL32)
3951 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
3952 else
3953 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
3954 mips_elf_set_cr_dist2to (cptrel, 0);
3955 cptrel.konst = *addendp;
3956
3957 cr = (scpt->contents
3958 + sizeof (Elf32_External_compact_rel));
3959 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
3960 ((Elf32_External_crinfo *) cr
3961 + scpt->reloc_count));
3962 ++scpt->reloc_count;
3963 }
3964 }
3965
b34976b6 3966 return TRUE;
b49e97c9
TS
3967}
3968\f
b49e97c9
TS
3969/* Return the MACH for a MIPS e_flags value. */
3970
3971unsigned long
9719ad41 3972_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
3973{
3974 switch (flags & EF_MIPS_MACH)
3975 {
3976 case E_MIPS_MACH_3900:
3977 return bfd_mach_mips3900;
3978
3979 case E_MIPS_MACH_4010:
3980 return bfd_mach_mips4010;
3981
3982 case E_MIPS_MACH_4100:
3983 return bfd_mach_mips4100;
3984
3985 case E_MIPS_MACH_4111:
3986 return bfd_mach_mips4111;
3987
00707a0e
RS
3988 case E_MIPS_MACH_4120:
3989 return bfd_mach_mips4120;
3990
b49e97c9
TS
3991 case E_MIPS_MACH_4650:
3992 return bfd_mach_mips4650;
3993
00707a0e
RS
3994 case E_MIPS_MACH_5400:
3995 return bfd_mach_mips5400;
3996
3997 case E_MIPS_MACH_5500:
3998 return bfd_mach_mips5500;
3999
0d2e43ed
ILT
4000 case E_MIPS_MACH_9000:
4001 return bfd_mach_mips9000;
4002
b49e97c9
TS
4003 case E_MIPS_MACH_SB1:
4004 return bfd_mach_mips_sb1;
4005
4006 default:
4007 switch (flags & EF_MIPS_ARCH)
4008 {
4009 default:
4010 case E_MIPS_ARCH_1:
4011 return bfd_mach_mips3000;
4012 break;
4013
4014 case E_MIPS_ARCH_2:
4015 return bfd_mach_mips6000;
4016 break;
4017
4018 case E_MIPS_ARCH_3:
4019 return bfd_mach_mips4000;
4020 break;
4021
4022 case E_MIPS_ARCH_4:
4023 return bfd_mach_mips8000;
4024 break;
4025
4026 case E_MIPS_ARCH_5:
4027 return bfd_mach_mips5;
4028 break;
4029
4030 case E_MIPS_ARCH_32:
4031 return bfd_mach_mipsisa32;
4032 break;
4033
4034 case E_MIPS_ARCH_64:
4035 return bfd_mach_mipsisa64;
4036 break;
af7ee8bf
CD
4037
4038 case E_MIPS_ARCH_32R2:
4039 return bfd_mach_mipsisa32r2;
4040 break;
5f74bc13
CD
4041
4042 case E_MIPS_ARCH_64R2:
4043 return bfd_mach_mipsisa64r2;
4044 break;
b49e97c9
TS
4045 }
4046 }
4047
4048 return 0;
4049}
4050
4051/* Return printable name for ABI. */
4052
4053static INLINE char *
9719ad41 4054elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
4055{
4056 flagword flags;
4057
4058 flags = elf_elfheader (abfd)->e_flags;
4059 switch (flags & EF_MIPS_ABI)
4060 {
4061 case 0:
4062 if (ABI_N32_P (abfd))
4063 return "N32";
4064 else if (ABI_64_P (abfd))
4065 return "64";
4066 else
4067 return "none";
4068 case E_MIPS_ABI_O32:
4069 return "O32";
4070 case E_MIPS_ABI_O64:
4071 return "O64";
4072 case E_MIPS_ABI_EABI32:
4073 return "EABI32";
4074 case E_MIPS_ABI_EABI64:
4075 return "EABI64";
4076 default:
4077 return "unknown abi";
4078 }
4079}
4080\f
4081/* MIPS ELF uses two common sections. One is the usual one, and the
4082 other is for small objects. All the small objects are kept
4083 together, and then referenced via the gp pointer, which yields
4084 faster assembler code. This is what we use for the small common
4085 section. This approach is copied from ecoff.c. */
4086static asection mips_elf_scom_section;
4087static asymbol mips_elf_scom_symbol;
4088static asymbol *mips_elf_scom_symbol_ptr;
4089
4090/* MIPS ELF also uses an acommon section, which represents an
4091 allocated common symbol which may be overridden by a
4092 definition in a shared library. */
4093static asection mips_elf_acom_section;
4094static asymbol mips_elf_acom_symbol;
4095static asymbol *mips_elf_acom_symbol_ptr;
4096
4097/* Handle the special MIPS section numbers that a symbol may use.
4098 This is used for both the 32-bit and the 64-bit ABI. */
4099
4100void
9719ad41 4101_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
4102{
4103 elf_symbol_type *elfsym;
4104
4105 elfsym = (elf_symbol_type *) asym;
4106 switch (elfsym->internal_elf_sym.st_shndx)
4107 {
4108 case SHN_MIPS_ACOMMON:
4109 /* This section is used in a dynamically linked executable file.
4110 It is an allocated common section. The dynamic linker can
4111 either resolve these symbols to something in a shared
4112 library, or it can just leave them here. For our purposes,
4113 we can consider these symbols to be in a new section. */
4114 if (mips_elf_acom_section.name == NULL)
4115 {
4116 /* Initialize the acommon section. */
4117 mips_elf_acom_section.name = ".acommon";
4118 mips_elf_acom_section.flags = SEC_ALLOC;
4119 mips_elf_acom_section.output_section = &mips_elf_acom_section;
4120 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
4121 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
4122 mips_elf_acom_symbol.name = ".acommon";
4123 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
4124 mips_elf_acom_symbol.section = &mips_elf_acom_section;
4125 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
4126 }
4127 asym->section = &mips_elf_acom_section;
4128 break;
4129
4130 case SHN_COMMON:
4131 /* Common symbols less than the GP size are automatically
4132 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
4133 if (asym->value > elf_gp_size (abfd)
4134 || IRIX_COMPAT (abfd) == ict_irix6)
4135 break;
4136 /* Fall through. */
4137 case SHN_MIPS_SCOMMON:
4138 if (mips_elf_scom_section.name == NULL)
4139 {
4140 /* Initialize the small common section. */
4141 mips_elf_scom_section.name = ".scommon";
4142 mips_elf_scom_section.flags = SEC_IS_COMMON;
4143 mips_elf_scom_section.output_section = &mips_elf_scom_section;
4144 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
4145 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
4146 mips_elf_scom_symbol.name = ".scommon";
4147 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
4148 mips_elf_scom_symbol.section = &mips_elf_scom_section;
4149 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
4150 }
4151 asym->section = &mips_elf_scom_section;
4152 asym->value = elfsym->internal_elf_sym.st_size;
4153 break;
4154
4155 case SHN_MIPS_SUNDEFINED:
4156 asym->section = bfd_und_section_ptr;
4157 break;
4158
b49e97c9 4159 case SHN_MIPS_TEXT:
00b4930b
TS
4160 {
4161 asection *section = bfd_get_section_by_name (abfd, ".text");
4162
4163 BFD_ASSERT (SGI_COMPAT (abfd));
4164 if (section != NULL)
4165 {
4166 asym->section = section;
4167 /* MIPS_TEXT is a bit special, the address is not an offset
4168 to the base of the .text section. So substract the section
4169 base address to make it an offset. */
4170 asym->value -= section->vma;
4171 }
4172 }
b49e97c9
TS
4173 break;
4174
4175 case SHN_MIPS_DATA:
00b4930b
TS
4176 {
4177 asection *section = bfd_get_section_by_name (abfd, ".data");
4178
4179 BFD_ASSERT (SGI_COMPAT (abfd));
4180 if (section != NULL)
4181 {
4182 asym->section = section;
4183 /* MIPS_DATA is a bit special, the address is not an offset
4184 to the base of the .data section. So substract the section
4185 base address to make it an offset. */
4186 asym->value -= section->vma;
4187 }
4188 }
b49e97c9 4189 break;
b49e97c9
TS
4190 }
4191}
4192\f
8c946ed5
RS
4193/* Implement elf_backend_eh_frame_address_size. This differs from
4194 the default in the way it handles EABI64.
4195
4196 EABI64 was originally specified as an LP64 ABI, and that is what
4197 -mabi=eabi normally gives on a 64-bit target. However, gcc has
4198 historically accepted the combination of -mabi=eabi and -mlong32,
4199 and this ILP32 variation has become semi-official over time.
4200 Both forms use elf32 and have pointer-sized FDE addresses.
4201
4202 If an EABI object was generated by GCC 4.0 or above, it will have
4203 an empty .gcc_compiled_longXX section, where XX is the size of longs
4204 in bits. Unfortunately, ILP32 objects generated by earlier compilers
4205 have no special marking to distinguish them from LP64 objects.
4206
4207 We don't want users of the official LP64 ABI to be punished for the
4208 existence of the ILP32 variant, but at the same time, we don't want
4209 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
4210 We therefore take the following approach:
4211
4212 - If ABFD contains a .gcc_compiled_longXX section, use it to
4213 determine the pointer size.
4214
4215 - Otherwise check the type of the first relocation. Assume that
4216 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
4217
4218 - Otherwise punt.
4219
4220 The second check is enough to detect LP64 objects generated by pre-4.0
4221 compilers because, in the kind of output generated by those compilers,
4222 the first relocation will be associated with either a CIE personality
4223 routine or an FDE start address. Furthermore, the compilers never
4224 used a special (non-pointer) encoding for this ABI.
4225
4226 Checking the relocation type should also be safe because there is no
4227 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
4228 did so. */
4229
4230unsigned int
4231_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
4232{
4233 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
4234 return 8;
4235 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
4236 {
4237 bfd_boolean long32_p, long64_p;
4238
4239 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
4240 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
4241 if (long32_p && long64_p)
4242 return 0;
4243 if (long32_p)
4244 return 4;
4245 if (long64_p)
4246 return 8;
4247
4248 if (sec->reloc_count > 0
4249 && elf_section_data (sec)->relocs != NULL
4250 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
4251 == R_MIPS_64))
4252 return 8;
4253
4254 return 0;
4255 }
4256 return 4;
4257}
4258\f
174fd7f9
RS
4259/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
4260 relocations against two unnamed section symbols to resolve to the
4261 same address. For example, if we have code like:
4262
4263 lw $4,%got_disp(.data)($gp)
4264 lw $25,%got_disp(.text)($gp)
4265 jalr $25
4266
4267 then the linker will resolve both relocations to .data and the program
4268 will jump there rather than to .text.
4269
4270 We can work around this problem by giving names to local section symbols.
4271 This is also what the MIPSpro tools do. */
4272
4273bfd_boolean
4274_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
4275{
4276 return SGI_COMPAT (abfd);
4277}
4278\f
b49e97c9
TS
4279/* Work over a section just before writing it out. This routine is
4280 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
4281 sections that need the SHF_MIPS_GPREL flag by name; there has to be
4282 a better way. */
4283
b34976b6 4284bfd_boolean
9719ad41 4285_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
4286{
4287 if (hdr->sh_type == SHT_MIPS_REGINFO
4288 && hdr->sh_size > 0)
4289 {
4290 bfd_byte buf[4];
4291
4292 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
4293 BFD_ASSERT (hdr->contents == NULL);
4294
4295 if (bfd_seek (abfd,
4296 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
4297 SEEK_SET) != 0)
b34976b6 4298 return FALSE;
b49e97c9 4299 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 4300 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 4301 return FALSE;
b49e97c9
TS
4302 }
4303
4304 if (hdr->sh_type == SHT_MIPS_OPTIONS
4305 && hdr->bfd_section != NULL
f0abc2a1
AM
4306 && mips_elf_section_data (hdr->bfd_section) != NULL
4307 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
4308 {
4309 bfd_byte *contents, *l, *lend;
4310
f0abc2a1
AM
4311 /* We stored the section contents in the tdata field in the
4312 set_section_contents routine. We save the section contents
4313 so that we don't have to read them again.
b49e97c9
TS
4314 At this point we know that elf_gp is set, so we can look
4315 through the section contents to see if there is an
4316 ODK_REGINFO structure. */
4317
f0abc2a1 4318 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
4319 l = contents;
4320 lend = contents + hdr->sh_size;
4321 while (l + sizeof (Elf_External_Options) <= lend)
4322 {
4323 Elf_Internal_Options intopt;
4324
4325 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4326 &intopt);
4327 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4328 {
4329 bfd_byte buf[8];
4330
4331 if (bfd_seek (abfd,
4332 (hdr->sh_offset
4333 + (l - contents)
4334 + sizeof (Elf_External_Options)
4335 + (sizeof (Elf64_External_RegInfo) - 8)),
4336 SEEK_SET) != 0)
b34976b6 4337 return FALSE;
b49e97c9 4338 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 4339 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 4340 return FALSE;
b49e97c9
TS
4341 }
4342 else if (intopt.kind == ODK_REGINFO)
4343 {
4344 bfd_byte buf[4];
4345
4346 if (bfd_seek (abfd,
4347 (hdr->sh_offset
4348 + (l - contents)
4349 + sizeof (Elf_External_Options)
4350 + (sizeof (Elf32_External_RegInfo) - 4)),
4351 SEEK_SET) != 0)
b34976b6 4352 return FALSE;
b49e97c9 4353 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 4354 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 4355 return FALSE;
b49e97c9
TS
4356 }
4357 l += intopt.size;
4358 }
4359 }
4360
4361 if (hdr->bfd_section != NULL)
4362 {
4363 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
4364
4365 if (strcmp (name, ".sdata") == 0
4366 || strcmp (name, ".lit8") == 0
4367 || strcmp (name, ".lit4") == 0)
4368 {
4369 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4370 hdr->sh_type = SHT_PROGBITS;
4371 }
4372 else if (strcmp (name, ".sbss") == 0)
4373 {
4374 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4375 hdr->sh_type = SHT_NOBITS;
4376 }
4377 else if (strcmp (name, ".srdata") == 0)
4378 {
4379 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
4380 hdr->sh_type = SHT_PROGBITS;
4381 }
4382 else if (strcmp (name, ".compact_rel") == 0)
4383 {
4384 hdr->sh_flags = 0;
4385 hdr->sh_type = SHT_PROGBITS;
4386 }
4387 else if (strcmp (name, ".rtproc") == 0)
4388 {
4389 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
4390 {
4391 unsigned int adjust;
4392
4393 adjust = hdr->sh_size % hdr->sh_addralign;
4394 if (adjust != 0)
4395 hdr->sh_size += hdr->sh_addralign - adjust;
4396 }
4397 }
4398 }
4399
b34976b6 4400 return TRUE;
b49e97c9
TS
4401}
4402
4403/* Handle a MIPS specific section when reading an object file. This
4404 is called when elfcode.h finds a section with an unknown type.
4405 This routine supports both the 32-bit and 64-bit ELF ABI.
4406
4407 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
4408 how to. */
4409
b34976b6 4410bfd_boolean
9719ad41
RS
4411_bfd_mips_elf_section_from_shdr (bfd *abfd, Elf_Internal_Shdr *hdr,
4412 const char *name)
b49e97c9
TS
4413{
4414 flagword flags = 0;
4415
4416 /* There ought to be a place to keep ELF backend specific flags, but
4417 at the moment there isn't one. We just keep track of the
4418 sections by their name, instead. Fortunately, the ABI gives
4419 suggested names for all the MIPS specific sections, so we will
4420 probably get away with this. */
4421 switch (hdr->sh_type)
4422 {
4423 case SHT_MIPS_LIBLIST:
4424 if (strcmp (name, ".liblist") != 0)
b34976b6 4425 return FALSE;
b49e97c9
TS
4426 break;
4427 case SHT_MIPS_MSYM:
4428 if (strcmp (name, ".msym") != 0)
b34976b6 4429 return FALSE;
b49e97c9
TS
4430 break;
4431 case SHT_MIPS_CONFLICT:
4432 if (strcmp (name, ".conflict") != 0)
b34976b6 4433 return FALSE;
b49e97c9
TS
4434 break;
4435 case SHT_MIPS_GPTAB:
4436 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
b34976b6 4437 return FALSE;
b49e97c9
TS
4438 break;
4439 case SHT_MIPS_UCODE:
4440 if (strcmp (name, ".ucode") != 0)
b34976b6 4441 return FALSE;
b49e97c9
TS
4442 break;
4443 case SHT_MIPS_DEBUG:
4444 if (strcmp (name, ".mdebug") != 0)
b34976b6 4445 return FALSE;
b49e97c9
TS
4446 flags = SEC_DEBUGGING;
4447 break;
4448 case SHT_MIPS_REGINFO:
4449 if (strcmp (name, ".reginfo") != 0
4450 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 4451 return FALSE;
b49e97c9
TS
4452 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
4453 break;
4454 case SHT_MIPS_IFACE:
4455 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 4456 return FALSE;
b49e97c9
TS
4457 break;
4458 case SHT_MIPS_CONTENT:
4459 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
b34976b6 4460 return FALSE;
b49e97c9
TS
4461 break;
4462 case SHT_MIPS_OPTIONS:
4463 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
b34976b6 4464 return FALSE;
b49e97c9
TS
4465 break;
4466 case SHT_MIPS_DWARF:
4467 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
b34976b6 4468 return FALSE;
b49e97c9
TS
4469 break;
4470 case SHT_MIPS_SYMBOL_LIB:
4471 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 4472 return FALSE;
b49e97c9
TS
4473 break;
4474 case SHT_MIPS_EVENTS:
4475 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
4476 && strncmp (name, ".MIPS.post_rel",
4477 sizeof ".MIPS.post_rel" - 1) != 0)
b34976b6 4478 return FALSE;
b49e97c9
TS
4479 break;
4480 default:
b34976b6 4481 return FALSE;
b49e97c9
TS
4482 }
4483
4484 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
b34976b6 4485 return FALSE;
b49e97c9
TS
4486
4487 if (flags)
4488 {
4489 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
4490 (bfd_get_section_flags (abfd,
4491 hdr->bfd_section)
4492 | flags)))
b34976b6 4493 return FALSE;
b49e97c9
TS
4494 }
4495
4496 /* FIXME: We should record sh_info for a .gptab section. */
4497
4498 /* For a .reginfo section, set the gp value in the tdata information
4499 from the contents of this section. We need the gp value while
4500 processing relocs, so we just get it now. The .reginfo section
4501 is not used in the 64-bit MIPS ELF ABI. */
4502 if (hdr->sh_type == SHT_MIPS_REGINFO)
4503 {
4504 Elf32_External_RegInfo ext;
4505 Elf32_RegInfo s;
4506
9719ad41
RS
4507 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
4508 &ext, 0, sizeof ext))
b34976b6 4509 return FALSE;
b49e97c9
TS
4510 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
4511 elf_gp (abfd) = s.ri_gp_value;
4512 }
4513
4514 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
4515 set the gp value based on what we find. We may see both
4516 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
4517 they should agree. */
4518 if (hdr->sh_type == SHT_MIPS_OPTIONS)
4519 {
4520 bfd_byte *contents, *l, *lend;
4521
9719ad41 4522 contents = bfd_malloc (hdr->sh_size);
b49e97c9 4523 if (contents == NULL)
b34976b6 4524 return FALSE;
b49e97c9 4525 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 4526 0, hdr->sh_size))
b49e97c9
TS
4527 {
4528 free (contents);
b34976b6 4529 return FALSE;
b49e97c9
TS
4530 }
4531 l = contents;
4532 lend = contents + hdr->sh_size;
4533 while (l + sizeof (Elf_External_Options) <= lend)
4534 {
4535 Elf_Internal_Options intopt;
4536
4537 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4538 &intopt);
4539 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4540 {
4541 Elf64_Internal_RegInfo intreg;
4542
4543 bfd_mips_elf64_swap_reginfo_in
4544 (abfd,
4545 ((Elf64_External_RegInfo *)
4546 (l + sizeof (Elf_External_Options))),
4547 &intreg);
4548 elf_gp (abfd) = intreg.ri_gp_value;
4549 }
4550 else if (intopt.kind == ODK_REGINFO)
4551 {
4552 Elf32_RegInfo intreg;
4553
4554 bfd_mips_elf32_swap_reginfo_in
4555 (abfd,
4556 ((Elf32_External_RegInfo *)
4557 (l + sizeof (Elf_External_Options))),
4558 &intreg);
4559 elf_gp (abfd) = intreg.ri_gp_value;
4560 }
4561 l += intopt.size;
4562 }
4563 free (contents);
4564 }
4565
b34976b6 4566 return TRUE;
b49e97c9
TS
4567}
4568
4569/* Set the correct type for a MIPS ELF section. We do this by the
4570 section name, which is a hack, but ought to work. This routine is
4571 used by both the 32-bit and the 64-bit ABI. */
4572
b34976b6 4573bfd_boolean
9719ad41 4574_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9
TS
4575{
4576 register const char *name;
4577
4578 name = bfd_get_section_name (abfd, sec);
4579
4580 if (strcmp (name, ".liblist") == 0)
4581 {
4582 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 4583 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
4584 /* The sh_link field is set in final_write_processing. */
4585 }
4586 else if (strcmp (name, ".conflict") == 0)
4587 hdr->sh_type = SHT_MIPS_CONFLICT;
4588 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
4589 {
4590 hdr->sh_type = SHT_MIPS_GPTAB;
4591 hdr->sh_entsize = sizeof (Elf32_External_gptab);
4592 /* The sh_info field is set in final_write_processing. */
4593 }
4594 else if (strcmp (name, ".ucode") == 0)
4595 hdr->sh_type = SHT_MIPS_UCODE;
4596 else if (strcmp (name, ".mdebug") == 0)
4597 {
4598 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 4599 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
4600 entsize of 0. FIXME: Does this matter? */
4601 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
4602 hdr->sh_entsize = 0;
4603 else
4604 hdr->sh_entsize = 1;
4605 }
4606 else if (strcmp (name, ".reginfo") == 0)
4607 {
4608 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 4609 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
4610 entsize of 0x18. FIXME: Does this matter? */
4611 if (SGI_COMPAT (abfd))
4612 {
4613 if ((abfd->flags & DYNAMIC) != 0)
4614 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4615 else
4616 hdr->sh_entsize = 1;
4617 }
4618 else
4619 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4620 }
4621 else if (SGI_COMPAT (abfd)
4622 && (strcmp (name, ".hash") == 0
4623 || strcmp (name, ".dynamic") == 0
4624 || strcmp (name, ".dynstr") == 0))
4625 {
4626 if (SGI_COMPAT (abfd))
4627 hdr->sh_entsize = 0;
4628#if 0
8dc1a139 4629 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
4630 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
4631#endif
4632 }
4633 else if (strcmp (name, ".got") == 0
4634 || strcmp (name, ".srdata") == 0
4635 || strcmp (name, ".sdata") == 0
4636 || strcmp (name, ".sbss") == 0
4637 || strcmp (name, ".lit4") == 0
4638 || strcmp (name, ".lit8") == 0)
4639 hdr->sh_flags |= SHF_MIPS_GPREL;
4640 else if (strcmp (name, ".MIPS.interfaces") == 0)
4641 {
4642 hdr->sh_type = SHT_MIPS_IFACE;
4643 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4644 }
4645 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
4646 {
4647 hdr->sh_type = SHT_MIPS_CONTENT;
4648 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4649 /* The sh_info field is set in final_write_processing. */
4650 }
4651 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4652 {
4653 hdr->sh_type = SHT_MIPS_OPTIONS;
4654 hdr->sh_entsize = 1;
4655 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4656 }
4657 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
4658 hdr->sh_type = SHT_MIPS_DWARF;
4659 else if (strcmp (name, ".MIPS.symlib") == 0)
4660 {
4661 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
4662 /* The sh_link and sh_info fields are set in
4663 final_write_processing. */
4664 }
4665 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
4666 || strncmp (name, ".MIPS.post_rel",
4667 sizeof ".MIPS.post_rel" - 1) == 0)
4668 {
4669 hdr->sh_type = SHT_MIPS_EVENTS;
4670 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4671 /* The sh_link field is set in final_write_processing. */
4672 }
4673 else if (strcmp (name, ".msym") == 0)
4674 {
4675 hdr->sh_type = SHT_MIPS_MSYM;
4676 hdr->sh_flags |= SHF_ALLOC;
4677 hdr->sh_entsize = 8;
4678 }
4679
7a79a000
TS
4680 /* The generic elf_fake_sections will set up REL_HDR using the default
4681 kind of relocations. We used to set up a second header for the
4682 non-default kind of relocations here, but only NewABI would use
4683 these, and the IRIX ld doesn't like resulting empty RELA sections.
4684 Thus we create those header only on demand now. */
b49e97c9 4685
b34976b6 4686 return TRUE;
b49e97c9
TS
4687}
4688
4689/* Given a BFD section, try to locate the corresponding ELF section
4690 index. This is used by both the 32-bit and the 64-bit ABI.
4691 Actually, it's not clear to me that the 64-bit ABI supports these,
4692 but for non-PIC objects we will certainly want support for at least
4693 the .scommon section. */
4694
b34976b6 4695bfd_boolean
9719ad41
RS
4696_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
4697 asection *sec, int *retval)
b49e97c9
TS
4698{
4699 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
4700 {
4701 *retval = SHN_MIPS_SCOMMON;
b34976b6 4702 return TRUE;
b49e97c9
TS
4703 }
4704 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
4705 {
4706 *retval = SHN_MIPS_ACOMMON;
b34976b6 4707 return TRUE;
b49e97c9 4708 }
b34976b6 4709 return FALSE;
b49e97c9
TS
4710}
4711\f
4712/* Hook called by the linker routine which adds symbols from an object
4713 file. We must handle the special MIPS section numbers here. */
4714
b34976b6 4715bfd_boolean
9719ad41 4716_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 4717 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
4718 flagword *flagsp ATTRIBUTE_UNUSED,
4719 asection **secp, bfd_vma *valp)
b49e97c9
TS
4720{
4721 if (SGI_COMPAT (abfd)
4722 && (abfd->flags & DYNAMIC) != 0
4723 && strcmp (*namep, "_rld_new_interface") == 0)
4724 {
8dc1a139 4725 /* Skip IRIX5 rld entry name. */
b49e97c9 4726 *namep = NULL;
b34976b6 4727 return TRUE;
b49e97c9
TS
4728 }
4729
4730 switch (sym->st_shndx)
4731 {
4732 case SHN_COMMON:
4733 /* Common symbols less than the GP size are automatically
4734 treated as SHN_MIPS_SCOMMON symbols. */
4735 if (sym->st_size > elf_gp_size (abfd)
4736 || IRIX_COMPAT (abfd) == ict_irix6)
4737 break;
4738 /* Fall through. */
4739 case SHN_MIPS_SCOMMON:
4740 *secp = bfd_make_section_old_way (abfd, ".scommon");
4741 (*secp)->flags |= SEC_IS_COMMON;
4742 *valp = sym->st_size;
4743 break;
4744
4745 case SHN_MIPS_TEXT:
4746 /* This section is used in a shared object. */
4747 if (elf_tdata (abfd)->elf_text_section == NULL)
4748 {
4749 asymbol *elf_text_symbol;
4750 asection *elf_text_section;
4751 bfd_size_type amt = sizeof (asection);
4752
4753 elf_text_section = bfd_zalloc (abfd, amt);
4754 if (elf_text_section == NULL)
b34976b6 4755 return FALSE;
b49e97c9
TS
4756
4757 amt = sizeof (asymbol);
4758 elf_text_symbol = bfd_zalloc (abfd, amt);
4759 if (elf_text_symbol == NULL)
b34976b6 4760 return FALSE;
b49e97c9
TS
4761
4762 /* Initialize the section. */
4763
4764 elf_tdata (abfd)->elf_text_section = elf_text_section;
4765 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4766
4767 elf_text_section->symbol = elf_text_symbol;
4768 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4769
4770 elf_text_section->name = ".text";
4771 elf_text_section->flags = SEC_NO_FLAGS;
4772 elf_text_section->output_section = NULL;
4773 elf_text_section->owner = abfd;
4774 elf_text_symbol->name = ".text";
4775 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4776 elf_text_symbol->section = elf_text_section;
4777 }
4778 /* This code used to do *secp = bfd_und_section_ptr if
4779 info->shared. I don't know why, and that doesn't make sense,
4780 so I took it out. */
4781 *secp = elf_tdata (abfd)->elf_text_section;
4782 break;
4783
4784 case SHN_MIPS_ACOMMON:
4785 /* Fall through. XXX Can we treat this as allocated data? */
4786 case SHN_MIPS_DATA:
4787 /* This section is used in a shared object. */
4788 if (elf_tdata (abfd)->elf_data_section == NULL)
4789 {
4790 asymbol *elf_data_symbol;
4791 asection *elf_data_section;
4792 bfd_size_type amt = sizeof (asection);
4793
4794 elf_data_section = bfd_zalloc (abfd, amt);
4795 if (elf_data_section == NULL)
b34976b6 4796 return FALSE;
b49e97c9
TS
4797
4798 amt = sizeof (asymbol);
4799 elf_data_symbol = bfd_zalloc (abfd, amt);
4800 if (elf_data_symbol == NULL)
b34976b6 4801 return FALSE;
b49e97c9
TS
4802
4803 /* Initialize the section. */
4804
4805 elf_tdata (abfd)->elf_data_section = elf_data_section;
4806 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4807
4808 elf_data_section->symbol = elf_data_symbol;
4809 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4810
4811 elf_data_section->name = ".data";
4812 elf_data_section->flags = SEC_NO_FLAGS;
4813 elf_data_section->output_section = NULL;
4814 elf_data_section->owner = abfd;
4815 elf_data_symbol->name = ".data";
4816 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4817 elf_data_symbol->section = elf_data_section;
4818 }
4819 /* This code used to do *secp = bfd_und_section_ptr if
4820 info->shared. I don't know why, and that doesn't make sense,
4821 so I took it out. */
4822 *secp = elf_tdata (abfd)->elf_data_section;
4823 break;
4824
4825 case SHN_MIPS_SUNDEFINED:
4826 *secp = bfd_und_section_ptr;
4827 break;
4828 }
4829
4830 if (SGI_COMPAT (abfd)
4831 && ! info->shared
4832 && info->hash->creator == abfd->xvec
4833 && strcmp (*namep, "__rld_obj_head") == 0)
4834 {
4835 struct elf_link_hash_entry *h;
14a793b2 4836 struct bfd_link_hash_entry *bh;
b49e97c9
TS
4837
4838 /* Mark __rld_obj_head as dynamic. */
14a793b2 4839 bh = NULL;
b49e97c9 4840 if (! (_bfd_generic_link_add_one_symbol
9719ad41 4841 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 4842 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4843 return FALSE;
14a793b2
AM
4844
4845 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
4846 h->non_elf = 0;
4847 h->def_regular = 1;
b49e97c9
TS
4848 h->type = STT_OBJECT;
4849
c152c796 4850 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 4851 return FALSE;
b49e97c9 4852
b34976b6 4853 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b49e97c9
TS
4854 }
4855
4856 /* If this is a mips16 text symbol, add 1 to the value to make it
4857 odd. This will cause something like .word SYM to come up with
4858 the right value when it is loaded into the PC. */
4859 if (sym->st_other == STO_MIPS16)
4860 ++*valp;
4861
b34976b6 4862 return TRUE;
b49e97c9
TS
4863}
4864
4865/* This hook function is called before the linker writes out a global
4866 symbol. We mark symbols as small common if appropriate. This is
4867 also where we undo the increment of the value for a mips16 symbol. */
4868
b34976b6 4869bfd_boolean
9719ad41
RS
4870_bfd_mips_elf_link_output_symbol_hook
4871 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
4872 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
4873 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
4874{
4875 /* If we see a common symbol, which implies a relocatable link, then
4876 if a symbol was small common in an input file, mark it as small
4877 common in the output file. */
4878 if (sym->st_shndx == SHN_COMMON
4879 && strcmp (input_sec->name, ".scommon") == 0)
4880 sym->st_shndx = SHN_MIPS_SCOMMON;
4881
79cda7cf
FF
4882 if (sym->st_other == STO_MIPS16)
4883 sym->st_value &= ~1;
b49e97c9 4884
b34976b6 4885 return TRUE;
b49e97c9
TS
4886}
4887\f
4888/* Functions for the dynamic linker. */
4889
4890/* Create dynamic sections when linking against a dynamic object. */
4891
b34976b6 4892bfd_boolean
9719ad41 4893_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
4894{
4895 struct elf_link_hash_entry *h;
14a793b2 4896 struct bfd_link_hash_entry *bh;
b49e97c9
TS
4897 flagword flags;
4898 register asection *s;
4899 const char * const *namep;
4900
4901 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4902 | SEC_LINKER_CREATED | SEC_READONLY);
4903
4904 /* Mips ABI requests the .dynamic section to be read only. */
4905 s = bfd_get_section_by_name (abfd, ".dynamic");
4906 if (s != NULL)
4907 {
4908 if (! bfd_set_section_flags (abfd, s, flags))
b34976b6 4909 return FALSE;
b49e97c9
TS
4910 }
4911
4912 /* We need to create .got section. */
f4416af6
AO
4913 if (! mips_elf_create_got_section (abfd, info, FALSE))
4914 return FALSE;
4915
4916 if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE))
b34976b6 4917 return FALSE;
b49e97c9 4918
b49e97c9
TS
4919 /* Create .stub section. */
4920 if (bfd_get_section_by_name (abfd,
4921 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
4922 {
4923 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
4924 if (s == NULL
4925 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
4926 || ! bfd_set_section_alignment (abfd, s,
4927 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 4928 return FALSE;
b49e97c9
TS
4929 }
4930
4931 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
4932 && !info->shared
4933 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
4934 {
4935 s = bfd_make_section (abfd, ".rld_map");
4936 if (s == NULL
4937 || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY)
4938 || ! bfd_set_section_alignment (abfd, s,
4939 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 4940 return FALSE;
b49e97c9
TS
4941 }
4942
4943 /* On IRIX5, we adjust add some additional symbols and change the
4944 alignments of several sections. There is no ABI documentation
4945 indicating that this is necessary on IRIX6, nor any evidence that
4946 the linker takes such action. */
4947 if (IRIX_COMPAT (abfd) == ict_irix5)
4948 {
4949 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
4950 {
14a793b2 4951 bh = NULL;
b49e97c9 4952 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
4953 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
4954 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4955 return FALSE;
14a793b2
AM
4956
4957 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
4958 h->non_elf = 0;
4959 h->def_regular = 1;
b49e97c9
TS
4960 h->type = STT_SECTION;
4961
c152c796 4962 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 4963 return FALSE;
b49e97c9
TS
4964 }
4965
4966 /* We need to create a .compact_rel section. */
4967 if (SGI_COMPAT (abfd))
4968 {
4969 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 4970 return FALSE;
b49e97c9
TS
4971 }
4972
44c410de 4973 /* Change alignments of some sections. */
b49e97c9
TS
4974 s = bfd_get_section_by_name (abfd, ".hash");
4975 if (s != NULL)
d80dcc6a 4976 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
4977 s = bfd_get_section_by_name (abfd, ".dynsym");
4978 if (s != NULL)
d80dcc6a 4979 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
4980 s = bfd_get_section_by_name (abfd, ".dynstr");
4981 if (s != NULL)
d80dcc6a 4982 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
4983 s = bfd_get_section_by_name (abfd, ".reginfo");
4984 if (s != NULL)
d80dcc6a 4985 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
4986 s = bfd_get_section_by_name (abfd, ".dynamic");
4987 if (s != NULL)
d80dcc6a 4988 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
4989 }
4990
4991 if (!info->shared)
4992 {
14a793b2
AM
4993 const char *name;
4994
4995 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
4996 bh = NULL;
4997 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
4998 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
4999 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5000 return FALSE;
14a793b2
AM
5001
5002 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5003 h->non_elf = 0;
5004 h->def_regular = 1;
b49e97c9
TS
5005 h->type = STT_SECTION;
5006
c152c796 5007 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5008 return FALSE;
b49e97c9
TS
5009
5010 if (! mips_elf_hash_table (info)->use_rld_obj_head)
5011 {
5012 /* __rld_map is a four byte word located in the .data section
5013 and is filled in by the rtld to contain a pointer to
5014 the _r_debug structure. Its symbol value will be set in
5015 _bfd_mips_elf_finish_dynamic_symbol. */
5016 s = bfd_get_section_by_name (abfd, ".rld_map");
5017 BFD_ASSERT (s != NULL);
5018
14a793b2
AM
5019 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
5020 bh = NULL;
5021 if (!(_bfd_generic_link_add_one_symbol
9719ad41 5022 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
14a793b2 5023 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5024 return FALSE;
14a793b2
AM
5025
5026 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5027 h->non_elf = 0;
5028 h->def_regular = 1;
b49e97c9
TS
5029 h->type = STT_OBJECT;
5030
c152c796 5031 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5032 return FALSE;
b49e97c9
TS
5033 }
5034 }
5035
b34976b6 5036 return TRUE;
b49e97c9
TS
5037}
5038\f
5039/* Look through the relocs for a section during the first phase, and
5040 allocate space in the global offset table. */
5041
b34976b6 5042bfd_boolean
9719ad41
RS
5043_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
5044 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
5045{
5046 const char *name;
5047 bfd *dynobj;
5048 Elf_Internal_Shdr *symtab_hdr;
5049 struct elf_link_hash_entry **sym_hashes;
5050 struct mips_got_info *g;
5051 size_t extsymoff;
5052 const Elf_Internal_Rela *rel;
5053 const Elf_Internal_Rela *rel_end;
5054 asection *sgot;
5055 asection *sreloc;
9c5bfbb7 5056 const struct elf_backend_data *bed;
b49e97c9 5057
1049f94e 5058 if (info->relocatable)
b34976b6 5059 return TRUE;
b49e97c9
TS
5060
5061 dynobj = elf_hash_table (info)->dynobj;
5062 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5063 sym_hashes = elf_sym_hashes (abfd);
5064 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5065
5066 /* Check for the mips16 stub sections. */
5067
5068 name = bfd_get_section_name (abfd, sec);
5069 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
5070 {
5071 unsigned long r_symndx;
5072
5073 /* Look at the relocation information to figure out which symbol
5074 this is for. */
5075
5076 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5077
5078 if (r_symndx < extsymoff
5079 || sym_hashes[r_symndx - extsymoff] == NULL)
5080 {
5081 asection *o;
5082
5083 /* This stub is for a local symbol. This stub will only be
5084 needed if there is some relocation in this BFD, other
5085 than a 16 bit function call, which refers to this symbol. */
5086 for (o = abfd->sections; o != NULL; o = o->next)
5087 {
5088 Elf_Internal_Rela *sec_relocs;
5089 const Elf_Internal_Rela *r, *rend;
5090
5091 /* We can ignore stub sections when looking for relocs. */
5092 if ((o->flags & SEC_RELOC) == 0
5093 || o->reloc_count == 0
5094 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
5095 sizeof FN_STUB - 1) == 0
5096 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
5097 sizeof CALL_STUB - 1) == 0
5098 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
5099 sizeof CALL_FP_STUB - 1) == 0)
5100 continue;
5101
45d6a902 5102 sec_relocs
9719ad41 5103 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 5104 info->keep_memory);
b49e97c9 5105 if (sec_relocs == NULL)
b34976b6 5106 return FALSE;
b49e97c9
TS
5107
5108 rend = sec_relocs + o->reloc_count;
5109 for (r = sec_relocs; r < rend; r++)
5110 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
5111 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
5112 break;
5113
6cdc0ccc 5114 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
5115 free (sec_relocs);
5116
5117 if (r < rend)
5118 break;
5119 }
5120
5121 if (o == NULL)
5122 {
5123 /* There is no non-call reloc for this stub, so we do
5124 not need it. Since this function is called before
5125 the linker maps input sections to output sections, we
5126 can easily discard it by setting the SEC_EXCLUDE
5127 flag. */
5128 sec->flags |= SEC_EXCLUDE;
b34976b6 5129 return TRUE;
b49e97c9
TS
5130 }
5131
5132 /* Record this stub in an array of local symbol stubs for
5133 this BFD. */
5134 if (elf_tdata (abfd)->local_stubs == NULL)
5135 {
5136 unsigned long symcount;
5137 asection **n;
5138 bfd_size_type amt;
5139
5140 if (elf_bad_symtab (abfd))
5141 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
5142 else
5143 symcount = symtab_hdr->sh_info;
5144 amt = symcount * sizeof (asection *);
9719ad41 5145 n = bfd_zalloc (abfd, amt);
b49e97c9 5146 if (n == NULL)
b34976b6 5147 return FALSE;
b49e97c9
TS
5148 elf_tdata (abfd)->local_stubs = n;
5149 }
5150
5151 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
5152
5153 /* We don't need to set mips16_stubs_seen in this case.
5154 That flag is used to see whether we need to look through
5155 the global symbol table for stubs. We don't need to set
5156 it here, because we just have a local stub. */
5157 }
5158 else
5159 {
5160 struct mips_elf_link_hash_entry *h;
5161
5162 h = ((struct mips_elf_link_hash_entry *)
5163 sym_hashes[r_symndx - extsymoff]);
5164
5165 /* H is the symbol this stub is for. */
5166
5167 h->fn_stub = sec;
b34976b6 5168 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
5169 }
5170 }
5171 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
5172 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5173 {
5174 unsigned long r_symndx;
5175 struct mips_elf_link_hash_entry *h;
5176 asection **loc;
5177
5178 /* Look at the relocation information to figure out which symbol
5179 this is for. */
5180
5181 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5182
5183 if (r_symndx < extsymoff
5184 || sym_hashes[r_symndx - extsymoff] == NULL)
5185 {
5186 /* This stub was actually built for a static symbol defined
5187 in the same file. We assume that all static symbols in
5188 mips16 code are themselves mips16, so we can simply
5189 discard this stub. Since this function is called before
5190 the linker maps input sections to output sections, we can
5191 easily discard it by setting the SEC_EXCLUDE flag. */
5192 sec->flags |= SEC_EXCLUDE;
b34976b6 5193 return TRUE;
b49e97c9
TS
5194 }
5195
5196 h = ((struct mips_elf_link_hash_entry *)
5197 sym_hashes[r_symndx - extsymoff]);
5198
5199 /* H is the symbol this stub is for. */
5200
5201 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5202 loc = &h->call_fp_stub;
5203 else
5204 loc = &h->call_stub;
5205
5206 /* If we already have an appropriate stub for this function, we
5207 don't need another one, so we can discard this one. Since
5208 this function is called before the linker maps input sections
5209 to output sections, we can easily discard it by setting the
5210 SEC_EXCLUDE flag. We can also discard this section if we
5211 happen to already know that this is a mips16 function; it is
5212 not necessary to check this here, as it is checked later, but
5213 it is slightly faster to check now. */
5214 if (*loc != NULL || h->root.other == STO_MIPS16)
5215 {
5216 sec->flags |= SEC_EXCLUDE;
b34976b6 5217 return TRUE;
b49e97c9
TS
5218 }
5219
5220 *loc = sec;
b34976b6 5221 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
5222 }
5223
5224 if (dynobj == NULL)
5225 {
5226 sgot = NULL;
5227 g = NULL;
5228 }
5229 else
5230 {
f4416af6 5231 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9
TS
5232 if (sgot == NULL)
5233 g = NULL;
5234 else
5235 {
f0abc2a1
AM
5236 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
5237 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
5238 BFD_ASSERT (g != NULL);
5239 }
5240 }
5241
5242 sreloc = NULL;
5243 bed = get_elf_backend_data (abfd);
5244 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
5245 for (rel = relocs; rel < rel_end; ++rel)
5246 {
5247 unsigned long r_symndx;
5248 unsigned int r_type;
5249 struct elf_link_hash_entry *h;
5250
5251 r_symndx = ELF_R_SYM (abfd, rel->r_info);
5252 r_type = ELF_R_TYPE (abfd, rel->r_info);
5253
5254 if (r_symndx < extsymoff)
5255 h = NULL;
5256 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
5257 {
5258 (*_bfd_error_handler)
d003868e
AM
5259 (_("%B: Malformed reloc detected for section %s"),
5260 abfd, name);
b49e97c9 5261 bfd_set_error (bfd_error_bad_value);
b34976b6 5262 return FALSE;
b49e97c9
TS
5263 }
5264 else
5265 {
5266 h = sym_hashes[r_symndx - extsymoff];
5267
5268 /* This may be an indirect symbol created because of a version. */
5269 if (h != NULL)
5270 {
5271 while (h->root.type == bfd_link_hash_indirect)
5272 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5273 }
5274 }
5275
5276 /* Some relocs require a global offset table. */
5277 if (dynobj == NULL || sgot == NULL)
5278 {
5279 switch (r_type)
5280 {
5281 case R_MIPS_GOT16:
5282 case R_MIPS_CALL16:
5283 case R_MIPS_CALL_HI16:
5284 case R_MIPS_CALL_LO16:
5285 case R_MIPS_GOT_HI16:
5286 case R_MIPS_GOT_LO16:
5287 case R_MIPS_GOT_PAGE:
5288 case R_MIPS_GOT_OFST:
5289 case R_MIPS_GOT_DISP:
5290 if (dynobj == NULL)
5291 elf_hash_table (info)->dynobj = dynobj = abfd;
f4416af6 5292 if (! mips_elf_create_got_section (dynobj, info, FALSE))
b34976b6 5293 return FALSE;
b49e97c9
TS
5294 g = mips_elf_got_info (dynobj, &sgot);
5295 break;
5296
5297 case R_MIPS_32:
5298 case R_MIPS_REL32:
5299 case R_MIPS_64:
5300 if (dynobj == NULL
5301 && (info->shared || h != NULL)
5302 && (sec->flags & SEC_ALLOC) != 0)
5303 elf_hash_table (info)->dynobj = dynobj = abfd;
5304 break;
5305
5306 default:
5307 break;
5308 }
5309 }
5310
5311 if (!h && (r_type == R_MIPS_CALL_LO16
5312 || r_type == R_MIPS_GOT_LO16
5313 || r_type == R_MIPS_GOT_DISP))
5314 {
5315 /* We may need a local GOT entry for this relocation. We
5316 don't count R_MIPS_GOT_PAGE because we can estimate the
5317 maximum number of pages needed by looking at the size of
5318 the segment. Similar comments apply to R_MIPS_GOT16 and
5319 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
5320 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 5321 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
f4416af6
AO
5322 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
5323 rel->r_addend, g))
5324 return FALSE;
b49e97c9
TS
5325 }
5326
5327 switch (r_type)
5328 {
5329 case R_MIPS_CALL16:
5330 if (h == NULL)
5331 {
5332 (*_bfd_error_handler)
d003868e
AM
5333 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
5334 abfd, (unsigned long) rel->r_offset);
b49e97c9 5335 bfd_set_error (bfd_error_bad_value);
b34976b6 5336 return FALSE;
b49e97c9
TS
5337 }
5338 /* Fall through. */
5339
5340 case R_MIPS_CALL_HI16:
5341 case R_MIPS_CALL_LO16:
5342 if (h != NULL)
5343 {
5344 /* This symbol requires a global offset table entry. */
f4416af6 5345 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
b34976b6 5346 return FALSE;
b49e97c9
TS
5347
5348 /* We need a stub, not a plt entry for the undefined
5349 function. But we record it as if it needs plt. See
c152c796 5350 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 5351 h->needs_plt = 1;
b49e97c9
TS
5352 h->type = STT_FUNC;
5353 }
5354 break;
5355
0fdc1bf1
AO
5356 case R_MIPS_GOT_PAGE:
5357 /* If this is a global, overridable symbol, GOT_PAGE will
5358 decay to GOT_DISP, so we'll need a GOT entry for it. */
5359 if (h == NULL)
5360 break;
5361 else
5362 {
5363 struct mips_elf_link_hash_entry *hmips =
5364 (struct mips_elf_link_hash_entry *) h;
143d77c5 5365
0fdc1bf1
AO
5366 while (hmips->root.root.type == bfd_link_hash_indirect
5367 || hmips->root.root.type == bfd_link_hash_warning)
5368 hmips = (struct mips_elf_link_hash_entry *)
5369 hmips->root.root.u.i.link;
143d77c5 5370
f5385ebf 5371 if (hmips->root.def_regular
0fdc1bf1 5372 && ! (info->shared && ! info->symbolic
f5385ebf 5373 && ! hmips->root.forced_local))
0fdc1bf1
AO
5374 break;
5375 }
5376 /* Fall through. */
5377
b49e97c9
TS
5378 case R_MIPS_GOT16:
5379 case R_MIPS_GOT_HI16:
5380 case R_MIPS_GOT_LO16:
5381 case R_MIPS_GOT_DISP:
5382 /* This symbol requires a global offset table entry. */
f4416af6 5383 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g))
b34976b6 5384 return FALSE;
b49e97c9
TS
5385 break;
5386
5387 case R_MIPS_32:
5388 case R_MIPS_REL32:
5389 case R_MIPS_64:
5390 if ((info->shared || h != NULL)
5391 && (sec->flags & SEC_ALLOC) != 0)
5392 {
5393 if (sreloc == NULL)
5394 {
f4416af6 5395 sreloc = mips_elf_rel_dyn_section (dynobj, TRUE);
b49e97c9 5396 if (sreloc == NULL)
f4416af6 5397 return FALSE;
b49e97c9
TS
5398 }
5399#define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
5400 if (info->shared)
5401 {
5402 /* When creating a shared object, we must copy these
5403 reloc types into the output file as R_MIPS_REL32
5404 relocs. We make room for this reloc in the
5405 .rel.dyn reloc section. */
5406 mips_elf_allocate_dynamic_relocations (dynobj, 1);
5407 if ((sec->flags & MIPS_READONLY_SECTION)
5408 == MIPS_READONLY_SECTION)
5409 /* We tell the dynamic linker that there are
5410 relocations against the text segment. */
5411 info->flags |= DF_TEXTREL;
5412 }
5413 else
5414 {
5415 struct mips_elf_link_hash_entry *hmips;
5416
5417 /* We only need to copy this reloc if the symbol is
5418 defined in a dynamic object. */
5419 hmips = (struct mips_elf_link_hash_entry *) h;
5420 ++hmips->possibly_dynamic_relocs;
5421 if ((sec->flags & MIPS_READONLY_SECTION)
5422 == MIPS_READONLY_SECTION)
5423 /* We need it to tell the dynamic linker if there
5424 are relocations against the text segment. */
b34976b6 5425 hmips->readonly_reloc = TRUE;
b49e97c9
TS
5426 }
5427
5428 /* Even though we don't directly need a GOT entry for
5429 this symbol, a symbol must have a dynamic symbol
5430 table index greater that DT_MIPS_GOTSYM if there are
5431 dynamic relocations against it. */
f4416af6
AO
5432 if (h != NULL)
5433 {
5434 if (dynobj == NULL)
5435 elf_hash_table (info)->dynobj = dynobj = abfd;
5436 if (! mips_elf_create_got_section (dynobj, info, TRUE))
5437 return FALSE;
5438 g = mips_elf_got_info (dynobj, &sgot);
5439 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5440 return FALSE;
5441 }
b49e97c9
TS
5442 }
5443
5444 if (SGI_COMPAT (abfd))
5445 mips_elf_hash_table (info)->compact_rel_size +=
5446 sizeof (Elf32_External_crinfo);
5447 break;
5448
5449 case R_MIPS_26:
5450 case R_MIPS_GPREL16:
5451 case R_MIPS_LITERAL:
5452 case R_MIPS_GPREL32:
5453 if (SGI_COMPAT (abfd))
5454 mips_elf_hash_table (info)->compact_rel_size +=
5455 sizeof (Elf32_External_crinfo);
5456 break;
5457
5458 /* This relocation describes the C++ object vtable hierarchy.
5459 Reconstruct it for later use during GC. */
5460 case R_MIPS_GNU_VTINHERIT:
c152c796 5461 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 5462 return FALSE;
b49e97c9
TS
5463 break;
5464
5465 /* This relocation describes which C++ vtable entries are actually
5466 used. Record for later use during GC. */
5467 case R_MIPS_GNU_VTENTRY:
c152c796 5468 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 5469 return FALSE;
b49e97c9
TS
5470 break;
5471
5472 default:
5473 break;
5474 }
5475
5476 /* We must not create a stub for a symbol that has relocations
5477 related to taking the function's address. */
5478 switch (r_type)
5479 {
5480 default:
5481 if (h != NULL)
5482 {
5483 struct mips_elf_link_hash_entry *mh;
5484
5485 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 5486 mh->no_fn_stub = TRUE;
b49e97c9
TS
5487 }
5488 break;
5489 case R_MIPS_CALL16:
5490 case R_MIPS_CALL_HI16:
5491 case R_MIPS_CALL_LO16:
2b86c02e 5492 case R_MIPS_JALR:
b49e97c9
TS
5493 break;
5494 }
5495
5496 /* If this reloc is not a 16 bit call, and it has a global
5497 symbol, then we will need the fn_stub if there is one.
5498 References from a stub section do not count. */
5499 if (h != NULL
5500 && r_type != R_MIPS16_26
5501 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
5502 sizeof FN_STUB - 1) != 0
5503 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
5504 sizeof CALL_STUB - 1) != 0
5505 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
5506 sizeof CALL_FP_STUB - 1) != 0)
5507 {
5508 struct mips_elf_link_hash_entry *mh;
5509
5510 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 5511 mh->need_fn_stub = TRUE;
b49e97c9
TS
5512 }
5513 }
5514
b34976b6 5515 return TRUE;
b49e97c9
TS
5516}
5517\f
d0647110 5518bfd_boolean
9719ad41
RS
5519_bfd_mips_relax_section (bfd *abfd, asection *sec,
5520 struct bfd_link_info *link_info,
5521 bfd_boolean *again)
d0647110
AO
5522{
5523 Elf_Internal_Rela *internal_relocs;
5524 Elf_Internal_Rela *irel, *irelend;
5525 Elf_Internal_Shdr *symtab_hdr;
5526 bfd_byte *contents = NULL;
d0647110
AO
5527 size_t extsymoff;
5528 bfd_boolean changed_contents = FALSE;
5529 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
5530 Elf_Internal_Sym *isymbuf = NULL;
5531
5532 /* We are not currently changing any sizes, so only one pass. */
5533 *again = FALSE;
5534
1049f94e 5535 if (link_info->relocatable)
d0647110
AO
5536 return TRUE;
5537
9719ad41 5538 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
45d6a902 5539 link_info->keep_memory);
d0647110
AO
5540 if (internal_relocs == NULL)
5541 return TRUE;
5542
5543 irelend = internal_relocs + sec->reloc_count
5544 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
5545 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5546 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5547
5548 for (irel = internal_relocs; irel < irelend; irel++)
5549 {
5550 bfd_vma symval;
5551 bfd_signed_vma sym_offset;
5552 unsigned int r_type;
5553 unsigned long r_symndx;
5554 asection *sym_sec;
5555 unsigned long instruction;
5556
5557 /* Turn jalr into bgezal, and jr into beq, if they're marked
5558 with a JALR relocation, that indicate where they jump to.
5559 This saves some pipeline bubbles. */
5560 r_type = ELF_R_TYPE (abfd, irel->r_info);
5561 if (r_type != R_MIPS_JALR)
5562 continue;
5563
5564 r_symndx = ELF_R_SYM (abfd, irel->r_info);
5565 /* Compute the address of the jump target. */
5566 if (r_symndx >= extsymoff)
5567 {
5568 struct mips_elf_link_hash_entry *h
5569 = ((struct mips_elf_link_hash_entry *)
5570 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
5571
5572 while (h->root.root.type == bfd_link_hash_indirect
5573 || h->root.root.type == bfd_link_hash_warning)
5574 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 5575
d0647110
AO
5576 /* If a symbol is undefined, or if it may be overridden,
5577 skip it. */
5578 if (! ((h->root.root.type == bfd_link_hash_defined
5579 || h->root.root.type == bfd_link_hash_defweak)
5580 && h->root.root.u.def.section)
5581 || (link_info->shared && ! link_info->symbolic
f5385ebf 5582 && !h->root.forced_local))
d0647110
AO
5583 continue;
5584
5585 sym_sec = h->root.root.u.def.section;
5586 if (sym_sec->output_section)
5587 symval = (h->root.root.u.def.value
5588 + sym_sec->output_section->vma
5589 + sym_sec->output_offset);
5590 else
5591 symval = h->root.root.u.def.value;
5592 }
5593 else
5594 {
5595 Elf_Internal_Sym *isym;
5596
5597 /* Read this BFD's symbols if we haven't done so already. */
5598 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
5599 {
5600 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5601 if (isymbuf == NULL)
5602 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
5603 symtab_hdr->sh_info, 0,
5604 NULL, NULL, NULL);
5605 if (isymbuf == NULL)
5606 goto relax_return;
5607 }
5608
5609 isym = isymbuf + r_symndx;
5610 if (isym->st_shndx == SHN_UNDEF)
5611 continue;
5612 else if (isym->st_shndx == SHN_ABS)
5613 sym_sec = bfd_abs_section_ptr;
5614 else if (isym->st_shndx == SHN_COMMON)
5615 sym_sec = bfd_com_section_ptr;
5616 else
5617 sym_sec
5618 = bfd_section_from_elf_index (abfd, isym->st_shndx);
5619 symval = isym->st_value
5620 + sym_sec->output_section->vma
5621 + sym_sec->output_offset;
5622 }
5623
5624 /* Compute branch offset, from delay slot of the jump to the
5625 branch target. */
5626 sym_offset = (symval + irel->r_addend)
5627 - (sec_start + irel->r_offset + 4);
5628
5629 /* Branch offset must be properly aligned. */
5630 if ((sym_offset & 3) != 0)
5631 continue;
5632
5633 sym_offset >>= 2;
5634
5635 /* Check that it's in range. */
5636 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
5637 continue;
143d77c5 5638
d0647110
AO
5639 /* Get the section contents if we haven't done so already. */
5640 if (contents == NULL)
5641 {
5642 /* Get cached copy if it exists. */
5643 if (elf_section_data (sec)->this_hdr.contents != NULL)
5644 contents = elf_section_data (sec)->this_hdr.contents;
5645 else
5646 {
eea6121a 5647 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
d0647110
AO
5648 goto relax_return;
5649 }
5650 }
5651
5652 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
5653
5654 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
5655 if ((instruction & 0xfc1fffff) == 0x0000f809)
5656 instruction = 0x04110000;
5657 /* If it was jr <reg>, turn it into b <target>. */
5658 else if ((instruction & 0xfc1fffff) == 0x00000008)
5659 instruction = 0x10000000;
5660 else
5661 continue;
5662
5663 instruction |= (sym_offset & 0xffff);
5664 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
5665 changed_contents = TRUE;
5666 }
5667
5668 if (contents != NULL
5669 && elf_section_data (sec)->this_hdr.contents != contents)
5670 {
5671 if (!changed_contents && !link_info->keep_memory)
5672 free (contents);
5673 else
5674 {
5675 /* Cache the section contents for elf_link_input_bfd. */
5676 elf_section_data (sec)->this_hdr.contents = contents;
5677 }
5678 }
5679 return TRUE;
5680
143d77c5 5681 relax_return:
eea6121a
AM
5682 if (contents != NULL
5683 && elf_section_data (sec)->this_hdr.contents != contents)
5684 free (contents);
d0647110
AO
5685 return FALSE;
5686}
5687\f
b49e97c9
TS
5688/* Adjust a symbol defined by a dynamic object and referenced by a
5689 regular object. The current definition is in some section of the
5690 dynamic object, but we're not including those sections. We have to
5691 change the definition to something the rest of the link can
5692 understand. */
5693
b34976b6 5694bfd_boolean
9719ad41
RS
5695_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
5696 struct elf_link_hash_entry *h)
b49e97c9
TS
5697{
5698 bfd *dynobj;
5699 struct mips_elf_link_hash_entry *hmips;
5700 asection *s;
5701
5702 dynobj = elf_hash_table (info)->dynobj;
5703
5704 /* Make sure we know what is going on here. */
5705 BFD_ASSERT (dynobj != NULL
f5385ebf 5706 && (h->needs_plt
f6e332e6 5707 || h->u.weakdef != NULL
f5385ebf
AM
5708 || (h->def_dynamic
5709 && h->ref_regular
5710 && !h->def_regular)));
b49e97c9
TS
5711
5712 /* If this symbol is defined in a dynamic object, we need to copy
5713 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
5714 file. */
5715 hmips = (struct mips_elf_link_hash_entry *) h;
1049f94e 5716 if (! info->relocatable
b49e97c9
TS
5717 && hmips->possibly_dynamic_relocs != 0
5718 && (h->root.type == bfd_link_hash_defweak
f5385ebf 5719 || !h->def_regular))
b49e97c9
TS
5720 {
5721 mips_elf_allocate_dynamic_relocations (dynobj,
5722 hmips->possibly_dynamic_relocs);
5723 if (hmips->readonly_reloc)
5724 /* We tell the dynamic linker that there are relocations
5725 against the text segment. */
5726 info->flags |= DF_TEXTREL;
5727 }
5728
5729 /* For a function, create a stub, if allowed. */
5730 if (! hmips->no_fn_stub
f5385ebf 5731 && h->needs_plt)
b49e97c9
TS
5732 {
5733 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 5734 return TRUE;
b49e97c9
TS
5735
5736 /* If this symbol is not defined in a regular file, then set
5737 the symbol to the stub location. This is required to make
5738 function pointers compare as equal between the normal
5739 executable and the shared library. */
f5385ebf 5740 if (!h->def_regular)
b49e97c9
TS
5741 {
5742 /* We need .stub section. */
5743 s = bfd_get_section_by_name (dynobj,
5744 MIPS_ELF_STUB_SECTION_NAME (dynobj));
5745 BFD_ASSERT (s != NULL);
5746
5747 h->root.u.def.section = s;
eea6121a 5748 h->root.u.def.value = s->size;
b49e97c9
TS
5749
5750 /* XXX Write this stub address somewhere. */
eea6121a 5751 h->plt.offset = s->size;
b49e97c9
TS
5752
5753 /* Make room for this stub code. */
eea6121a 5754 s->size += MIPS_FUNCTION_STUB_SIZE;
b49e97c9
TS
5755
5756 /* The last half word of the stub will be filled with the index
5757 of this symbol in .dynsym section. */
b34976b6 5758 return TRUE;
b49e97c9
TS
5759 }
5760 }
5761 else if ((h->type == STT_FUNC)
f5385ebf 5762 && !h->needs_plt)
b49e97c9
TS
5763 {
5764 /* This will set the entry for this symbol in the GOT to 0, and
5765 the dynamic linker will take care of this. */
5766 h->root.u.def.value = 0;
b34976b6 5767 return TRUE;
b49e97c9
TS
5768 }
5769
5770 /* If this is a weak symbol, and there is a real definition, the
5771 processor independent code will have arranged for us to see the
5772 real definition first, and we can just use the same value. */
f6e332e6 5773 if (h->u.weakdef != NULL)
b49e97c9 5774 {
f6e332e6
AM
5775 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
5776 || h->u.weakdef->root.type == bfd_link_hash_defweak);
5777 h->root.u.def.section = h->u.weakdef->root.u.def.section;
5778 h->root.u.def.value = h->u.weakdef->root.u.def.value;
b34976b6 5779 return TRUE;
b49e97c9
TS
5780 }
5781
5782 /* This is a reference to a symbol defined by a dynamic object which
5783 is not a function. */
5784
b34976b6 5785 return TRUE;
b49e97c9
TS
5786}
5787\f
5788/* This function is called after all the input files have been read,
5789 and the input sections have been assigned to output sections. We
5790 check for any mips16 stub sections that we can discard. */
5791
b34976b6 5792bfd_boolean
9719ad41
RS
5793_bfd_mips_elf_always_size_sections (bfd *output_bfd,
5794 struct bfd_link_info *info)
b49e97c9
TS
5795{
5796 asection *ri;
5797
f4416af6
AO
5798 bfd *dynobj;
5799 asection *s;
5800 struct mips_got_info *g;
5801 int i;
5802 bfd_size_type loadable_size = 0;
5803 bfd_size_type local_gotno;
5804 bfd *sub;
5805
b49e97c9
TS
5806 /* The .reginfo section has a fixed size. */
5807 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
5808 if (ri != NULL)
9719ad41 5809 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
b49e97c9 5810
1049f94e 5811 if (! (info->relocatable
f4416af6
AO
5812 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
5813 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 5814 mips_elf_check_mips16_stubs, NULL);
f4416af6
AO
5815
5816 dynobj = elf_hash_table (info)->dynobj;
5817 if (dynobj == NULL)
5818 /* Relocatable links don't have it. */
5819 return TRUE;
143d77c5 5820
f4416af6
AO
5821 g = mips_elf_got_info (dynobj, &s);
5822 if (s == NULL)
b34976b6 5823 return TRUE;
b49e97c9 5824
f4416af6
AO
5825 /* Calculate the total loadable size of the output. That
5826 will give us the maximum number of GOT_PAGE entries
5827 required. */
5828 for (sub = info->input_bfds; sub; sub = sub->link_next)
5829 {
5830 asection *subsection;
5831
5832 for (subsection = sub->sections;
5833 subsection;
5834 subsection = subsection->next)
5835 {
5836 if ((subsection->flags & SEC_ALLOC) == 0)
5837 continue;
eea6121a 5838 loadable_size += ((subsection->size + 0xf)
f4416af6
AO
5839 &~ (bfd_size_type) 0xf);
5840 }
5841 }
5842
5843 /* There has to be a global GOT entry for every symbol with
5844 a dynamic symbol table index of DT_MIPS_GOTSYM or
5845 higher. Therefore, it make sense to put those symbols
5846 that need GOT entries at the end of the symbol table. We
5847 do that here. */
5848 if (! mips_elf_sort_hash_table (info, 1))
5849 return FALSE;
5850
5851 if (g->global_gotsym != NULL)
5852 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
5853 else
5854 /* If there are no global symbols, or none requiring
5855 relocations, then GLOBAL_GOTSYM will be NULL. */
5856 i = 0;
5857
5858 /* In the worst case, we'll get one stub per dynamic symbol, plus
5859 one to account for the dummy entry at the end required by IRIX
5860 rld. */
5861 loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);
5862
5863 /* Assume there are two loadable segments consisting of
5864 contiguous sections. Is 5 enough? */
5865 local_gotno = (loadable_size >> 16) + 5;
5866
5867 g->local_gotno += local_gotno;
eea6121a 5868 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
5869
5870 g->global_gotno = i;
eea6121a 5871 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6 5872
eea6121a 5873 if (s->size > MIPS_ELF_GOT_MAX_SIZE (output_bfd)
f4416af6
AO
5874 && ! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
5875 return FALSE;
b49e97c9 5876
b34976b6 5877 return TRUE;
b49e97c9
TS
5878}
5879
5880/* Set the sizes of the dynamic sections. */
5881
b34976b6 5882bfd_boolean
9719ad41
RS
5883_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
5884 struct bfd_link_info *info)
b49e97c9
TS
5885{
5886 bfd *dynobj;
5887 asection *s;
b34976b6 5888 bfd_boolean reltext;
b49e97c9
TS
5889
5890 dynobj = elf_hash_table (info)->dynobj;
5891 BFD_ASSERT (dynobj != NULL);
5892
5893 if (elf_hash_table (info)->dynamic_sections_created)
5894 {
5895 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 5896 if (info->executable)
b49e97c9
TS
5897 {
5898 s = bfd_get_section_by_name (dynobj, ".interp");
5899 BFD_ASSERT (s != NULL);
eea6121a 5900 s->size
b49e97c9
TS
5901 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
5902 s->contents
5903 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
5904 }
5905 }
5906
5907 /* The check_relocs and adjust_dynamic_symbol entry points have
5908 determined the sizes of the various dynamic sections. Allocate
5909 memory for them. */
b34976b6 5910 reltext = FALSE;
b49e97c9
TS
5911 for (s = dynobj->sections; s != NULL; s = s->next)
5912 {
5913 const char *name;
b34976b6 5914 bfd_boolean strip;
b49e97c9
TS
5915
5916 /* It's OK to base decisions on the section name, because none
5917 of the dynobj section names depend upon the input files. */
5918 name = bfd_get_section_name (dynobj, s);
5919
5920 if ((s->flags & SEC_LINKER_CREATED) == 0)
5921 continue;
5922
b34976b6 5923 strip = FALSE;
b49e97c9
TS
5924
5925 if (strncmp (name, ".rel", 4) == 0)
5926 {
eea6121a 5927 if (s->size == 0)
b49e97c9
TS
5928 {
5929 /* We only strip the section if the output section name
5930 has the same name. Otherwise, there might be several
5931 input sections for this output section. FIXME: This
5932 code is probably not needed these days anyhow, since
5933 the linker now does not create empty output sections. */
5934 if (s->output_section != NULL
5935 && strcmp (name,
5936 bfd_get_section_name (s->output_section->owner,
5937 s->output_section)) == 0)
b34976b6 5938 strip = TRUE;
b49e97c9
TS
5939 }
5940 else
5941 {
5942 const char *outname;
5943 asection *target;
5944
5945 /* If this relocation section applies to a read only
5946 section, then we probably need a DT_TEXTREL entry.
5947 If the relocation section is .rel.dyn, we always
5948 assert a DT_TEXTREL entry rather than testing whether
5949 there exists a relocation to a read only section or
5950 not. */
5951 outname = bfd_get_section_name (output_bfd,
5952 s->output_section);
5953 target = bfd_get_section_by_name (output_bfd, outname + 4);
5954 if ((target != NULL
5955 && (target->flags & SEC_READONLY) != 0
5956 && (target->flags & SEC_ALLOC) != 0)
5957 || strcmp (outname, ".rel.dyn") == 0)
b34976b6 5958 reltext = TRUE;
b49e97c9
TS
5959
5960 /* We use the reloc_count field as a counter if we need
5961 to copy relocs into the output file. */
5962 if (strcmp (name, ".rel.dyn") != 0)
5963 s->reloc_count = 0;
f4416af6
AO
5964
5965 /* If combreloc is enabled, elf_link_sort_relocs() will
5966 sort relocations, but in a different way than we do,
5967 and before we're done creating relocations. Also, it
5968 will move them around between input sections'
5969 relocation's contents, so our sorting would be
5970 broken, so don't let it run. */
5971 info->combreloc = 0;
b49e97c9
TS
5972 }
5973 }
5974 else if (strncmp (name, ".got", 4) == 0)
5975 {
f4416af6
AO
5976 /* _bfd_mips_elf_always_size_sections() has already done
5977 most of the work, but some symbols may have been mapped
5978 to versions that we must now resolve in the got_entries
5979 hash tables. */
5980 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
5981 struct mips_got_info *g = gg;
5982 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
5983 unsigned int needed_relocs = 0;
143d77c5 5984
f4416af6 5985 if (gg->next)
b49e97c9 5986 {
f4416af6
AO
5987 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
5988 set_got_offset_arg.info = info;
b49e97c9 5989
f4416af6
AO
5990 mips_elf_resolve_final_got_entries (gg);
5991 for (g = gg->next; g && g->next != gg; g = g->next)
b49e97c9 5992 {
f4416af6
AO
5993 unsigned int save_assign;
5994
5995 mips_elf_resolve_final_got_entries (g);
5996
5997 /* Assign offsets to global GOT entries. */
5998 save_assign = g->assigned_gotno;
5999 g->assigned_gotno = g->local_gotno;
6000 set_got_offset_arg.g = g;
6001 set_got_offset_arg.needed_relocs = 0;
6002 htab_traverse (g->got_entries,
6003 mips_elf_set_global_got_offset,
6004 &set_got_offset_arg);
6005 needed_relocs += set_got_offset_arg.needed_relocs;
6006 BFD_ASSERT (g->assigned_gotno - g->local_gotno
6007 <= g->global_gotno);
6008
6009 g->assigned_gotno = save_assign;
6010 if (info->shared)
6011 {
6012 needed_relocs += g->local_gotno - g->assigned_gotno;
6013 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
6014 + g->next->global_gotno
6015 + MIPS_RESERVED_GOTNO);
6016 }
b49e97c9 6017 }
b49e97c9 6018
f4416af6
AO
6019 if (needed_relocs)
6020 mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs);
6021 }
b49e97c9
TS
6022 }
6023 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
6024 {
8dc1a139 6025 /* IRIX rld assumes that the function stub isn't at the end
b49e97c9 6026 of .text section. So put a dummy. XXX */
eea6121a 6027 s->size += MIPS_FUNCTION_STUB_SIZE;
b49e97c9
TS
6028 }
6029 else if (! info->shared
6030 && ! mips_elf_hash_table (info)->use_rld_obj_head
6031 && strncmp (name, ".rld_map", 8) == 0)
6032 {
6033 /* We add a room for __rld_map. It will be filled in by the
6034 rtld to contain a pointer to the _r_debug structure. */
eea6121a 6035 s->size += 4;
b49e97c9
TS
6036 }
6037 else if (SGI_COMPAT (output_bfd)
6038 && strncmp (name, ".compact_rel", 12) == 0)
eea6121a 6039 s->size += mips_elf_hash_table (info)->compact_rel_size;
b49e97c9
TS
6040 else if (strncmp (name, ".init", 5) != 0)
6041 {
6042 /* It's not one of our sections, so don't allocate space. */
6043 continue;
6044 }
6045
6046 if (strip)
6047 {
6048 _bfd_strip_section_from_output (info, s);
6049 continue;
6050 }
6051
6052 /* Allocate memory for the section contents. */
eea6121a
AM
6053 s->contents = bfd_zalloc (dynobj, s->size);
6054 if (s->contents == NULL && s->size != 0)
b49e97c9
TS
6055 {
6056 bfd_set_error (bfd_error_no_memory);
b34976b6 6057 return FALSE;
b49e97c9
TS
6058 }
6059 }
6060
6061 if (elf_hash_table (info)->dynamic_sections_created)
6062 {
6063 /* Add some entries to the .dynamic section. We fill in the
6064 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
6065 must add the entries now so that we get the correct size for
6066 the .dynamic section. The DT_DEBUG entry is filled in by the
6067 dynamic linker and used by the debugger. */
6068 if (! info->shared)
6069 {
6070 /* SGI object has the equivalence of DT_DEBUG in the
6071 DT_MIPS_RLD_MAP entry. */
6072 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
b34976b6 6073 return FALSE;
b49e97c9
TS
6074 if (!SGI_COMPAT (output_bfd))
6075 {
6076 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
b34976b6 6077 return FALSE;
b49e97c9
TS
6078 }
6079 }
6080 else
6081 {
6082 /* Shared libraries on traditional mips have DT_DEBUG. */
6083 if (!SGI_COMPAT (output_bfd))
6084 {
6085 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
b34976b6 6086 return FALSE;
b49e97c9
TS
6087 }
6088 }
6089
6090 if (reltext && SGI_COMPAT (output_bfd))
6091 info->flags |= DF_TEXTREL;
6092
6093 if ((info->flags & DF_TEXTREL) != 0)
6094 {
6095 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 6096 return FALSE;
b49e97c9
TS
6097 }
6098
6099 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 6100 return FALSE;
b49e97c9 6101
f4416af6 6102 if (mips_elf_rel_dyn_section (dynobj, FALSE))
b49e97c9
TS
6103 {
6104 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
b34976b6 6105 return FALSE;
b49e97c9
TS
6106
6107 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
b34976b6 6108 return FALSE;
b49e97c9
TS
6109
6110 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
b34976b6 6111 return FALSE;
b49e97c9
TS
6112 }
6113
b49e97c9 6114 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
b34976b6 6115 return FALSE;
b49e97c9
TS
6116
6117 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
b34976b6 6118 return FALSE;
b49e97c9 6119
b49e97c9 6120 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
b34976b6 6121 return FALSE;
b49e97c9
TS
6122
6123 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
b34976b6 6124 return FALSE;
b49e97c9
TS
6125
6126 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
b34976b6 6127 return FALSE;
b49e97c9
TS
6128
6129 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
b34976b6 6130 return FALSE;
b49e97c9
TS
6131
6132 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
b34976b6 6133 return FALSE;
b49e97c9
TS
6134
6135 if (IRIX_COMPAT (dynobj) == ict_irix5
6136 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
b34976b6 6137 return FALSE;
b49e97c9
TS
6138
6139 if (IRIX_COMPAT (dynobj) == ict_irix6
6140 && (bfd_get_section_by_name
6141 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
6142 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
b34976b6 6143 return FALSE;
b49e97c9
TS
6144 }
6145
b34976b6 6146 return TRUE;
b49e97c9
TS
6147}
6148\f
6149/* Relocate a MIPS ELF section. */
6150
b34976b6 6151bfd_boolean
9719ad41
RS
6152_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
6153 bfd *input_bfd, asection *input_section,
6154 bfd_byte *contents, Elf_Internal_Rela *relocs,
6155 Elf_Internal_Sym *local_syms,
6156 asection **local_sections)
b49e97c9
TS
6157{
6158 Elf_Internal_Rela *rel;
6159 const Elf_Internal_Rela *relend;
6160 bfd_vma addend = 0;
b34976b6 6161 bfd_boolean use_saved_addend_p = FALSE;
9c5bfbb7 6162 const struct elf_backend_data *bed;
b49e97c9
TS
6163
6164 bed = get_elf_backend_data (output_bfd);
6165 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6166 for (rel = relocs; rel < relend; ++rel)
6167 {
6168 const char *name;
6169 bfd_vma value;
6170 reloc_howto_type *howto;
b34976b6
AM
6171 bfd_boolean require_jalx;
6172 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 6173 REL relocation. */
b34976b6 6174 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 6175 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 6176 const char *msg;
b49e97c9
TS
6177
6178 /* Find the relocation howto for this relocation. */
4a14403c 6179 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
6180 {
6181 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6182 64-bit code, but make sure all their addresses are in the
6183 lowermost or uppermost 32-bit section of the 64-bit address
6184 space. Thus, when they use an R_MIPS_64 they mean what is
6185 usually meant by R_MIPS_32, with the exception that the
6186 stored value is sign-extended to 64 bits. */
b34976b6 6187 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
6188
6189 /* On big-endian systems, we need to lie about the position
6190 of the reloc. */
6191 if (bfd_big_endian (input_bfd))
6192 rel->r_offset += 4;
6193 }
6194 else
6195 /* NewABI defaults to RELA relocations. */
6196 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
4ffba85c
AO
6197 NEWABI_P (input_bfd)
6198 && (MIPS_RELOC_RELA_P
6199 (input_bfd, input_section,
6200 rel - relocs)));
b49e97c9
TS
6201
6202 if (!use_saved_addend_p)
6203 {
6204 Elf_Internal_Shdr *rel_hdr;
6205
6206 /* If these relocations were originally of the REL variety,
6207 we must pull the addend out of the field that will be
6208 relocated. Otherwise, we simply use the contents of the
6209 RELA relocation. To determine which flavor or relocation
6210 this is, we depend on the fact that the INPUT_SECTION's
6211 REL_HDR is read before its REL_HDR2. */
6212 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6213 if ((size_t) (rel - relocs)
6214 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6215 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6216 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6217 {
d6f16593
MR
6218 bfd_byte *location = contents + rel->r_offset;
6219
b49e97c9 6220 /* Note that this is a REL relocation. */
b34976b6 6221 rela_relocation_p = FALSE;
b49e97c9
TS
6222
6223 /* Get the addend, which is stored in the input file. */
d6f16593
MR
6224 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE,
6225 location);
b49e97c9
TS
6226 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
6227 contents);
d6f16593
MR
6228 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE,
6229 location);
6230
b49e97c9
TS
6231 addend &= howto->src_mask;
6232
6233 /* For some kinds of relocations, the ADDEND is a
6234 combination of the addend stored in two different
6235 relocations. */
d6f16593 6236 if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16
b49e97c9
TS
6237 || (r_type == R_MIPS_GOT16
6238 && mips_elf_local_relocation_p (input_bfd, rel,
b34976b6 6239 local_sections, FALSE)))
b49e97c9
TS
6240 {
6241 bfd_vma l;
6242 const Elf_Internal_Rela *lo16_relocation;
6243 reloc_howto_type *lo16_howto;
d6f16593
MR
6244 bfd_byte *lo16_location;
6245 int lo16_type;
6246
6247 if (r_type == R_MIPS16_HI16)
6248 lo16_type = R_MIPS16_LO16;
6249 else
6250 lo16_type = R_MIPS_LO16;
b49e97c9
TS
6251
6252 /* The combined value is the sum of the HI16 addend,
6253 left-shifted by sixteen bits, and the LO16
6254 addend, sign extended. (Usually, the code does
6255 a `lui' of the HI16 value, and then an `addiu' of
6256 the LO16 value.)
6257
4030e8f6
CD
6258 Scan ahead to find a matching LO16 relocation.
6259
6260 According to the MIPS ELF ABI, the R_MIPS_LO16
6261 relocation must be immediately following.
6262 However, for the IRIX6 ABI, the next relocation
6263 may be a composed relocation consisting of
6264 several relocations for the same address. In
6265 that case, the R_MIPS_LO16 relocation may occur
6266 as one of these. We permit a similar extension
6267 in general, as that is useful for GCC. */
6268 lo16_relocation = mips_elf_next_relocation (input_bfd,
d6f16593 6269 lo16_type,
b49e97c9
TS
6270 rel, relend);
6271 if (lo16_relocation == NULL)
b34976b6 6272 return FALSE;
b49e97c9 6273
d6f16593
MR
6274 lo16_location = contents + lo16_relocation->r_offset;
6275
b49e97c9 6276 /* Obtain the addend kept there. */
4030e8f6 6277 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
d6f16593
MR
6278 lo16_type, FALSE);
6279 _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type, FALSE,
6280 lo16_location);
b49e97c9
TS
6281 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
6282 input_bfd, contents);
d6f16593
MR
6283 _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type, FALSE,
6284 lo16_location);
b49e97c9 6285 l &= lo16_howto->src_mask;
5a659663 6286 l <<= lo16_howto->rightshift;
a7ebbfdf 6287 l = _bfd_mips_elf_sign_extend (l, 16);
b49e97c9
TS
6288
6289 addend <<= 16;
6290
6291 /* Compute the combined addend. */
6292 addend += l;
b49e97c9 6293 }
30ac9238
RS
6294 else
6295 addend <<= howto->rightshift;
b49e97c9
TS
6296 }
6297 else
6298 addend = rel->r_addend;
6299 }
6300
1049f94e 6301 if (info->relocatable)
b49e97c9
TS
6302 {
6303 Elf_Internal_Sym *sym;
6304 unsigned long r_symndx;
6305
4a14403c 6306 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
6307 && bfd_big_endian (input_bfd))
6308 rel->r_offset -= 4;
6309
6310 /* Since we're just relocating, all we need to do is copy
6311 the relocations back out to the object file, unless
6312 they're against a section symbol, in which case we need
6313 to adjust by the section offset, or unless they're GP
6314 relative in which case we need to adjust by the amount
1049f94e 6315 that we're adjusting GP in this relocatable object. */
b49e97c9
TS
6316
6317 if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections,
b34976b6 6318 FALSE))
b49e97c9
TS
6319 /* There's nothing to do for non-local relocations. */
6320 continue;
6321
6322 if (r_type == R_MIPS16_GPREL
6323 || r_type == R_MIPS_GPREL16
6324 || r_type == R_MIPS_GPREL32
6325 || r_type == R_MIPS_LITERAL)
6326 addend -= (_bfd_get_gp_value (output_bfd)
6327 - _bfd_get_gp_value (input_bfd));
b49e97c9
TS
6328
6329 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
6330 sym = local_syms + r_symndx;
6331 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6332 /* Adjust the addend appropriately. */
6333 addend += local_sections[r_symndx]->output_offset;
6334
30ac9238
RS
6335 if (rela_relocation_p)
6336 /* If this is a RELA relocation, just update the addend. */
6337 rel->r_addend = addend;
6338 else
5a659663 6339 {
30ac9238 6340 if (r_type == R_MIPS_HI16
4030e8f6 6341 || r_type == R_MIPS_GOT16)
5a659663
TS
6342 addend = mips_elf_high (addend);
6343 else if (r_type == R_MIPS_HIGHER)
6344 addend = mips_elf_higher (addend);
6345 else if (r_type == R_MIPS_HIGHEST)
6346 addend = mips_elf_highest (addend);
30ac9238
RS
6347 else
6348 addend >>= howto->rightshift;
b49e97c9 6349
30ac9238
RS
6350 /* We use the source mask, rather than the destination
6351 mask because the place to which we are writing will be
6352 source of the addend in the final link. */
b49e97c9
TS
6353 addend &= howto->src_mask;
6354
5a659663 6355 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
6356 /* See the comment above about using R_MIPS_64 in the 32-bit
6357 ABI. Here, we need to update the addend. It would be
6358 possible to get away with just using the R_MIPS_32 reloc
6359 but for endianness. */
6360 {
6361 bfd_vma sign_bits;
6362 bfd_vma low_bits;
6363 bfd_vma high_bits;
6364
6365 if (addend & ((bfd_vma) 1 << 31))
6366#ifdef BFD64
6367 sign_bits = ((bfd_vma) 1 << 32) - 1;
6368#else
6369 sign_bits = -1;
6370#endif
6371 else
6372 sign_bits = 0;
6373
6374 /* If we don't know that we have a 64-bit type,
6375 do two separate stores. */
6376 if (bfd_big_endian (input_bfd))
6377 {
6378 /* Store the sign-bits (which are most significant)
6379 first. */
6380 low_bits = sign_bits;
6381 high_bits = addend;
6382 }
6383 else
6384 {
6385 low_bits = addend;
6386 high_bits = sign_bits;
6387 }
6388 bfd_put_32 (input_bfd, low_bits,
6389 contents + rel->r_offset);
6390 bfd_put_32 (input_bfd, high_bits,
6391 contents + rel->r_offset + 4);
6392 continue;
6393 }
6394
6395 if (! mips_elf_perform_relocation (info, howto, rel, addend,
6396 input_bfd, input_section,
b34976b6
AM
6397 contents, FALSE))
6398 return FALSE;
b49e97c9
TS
6399 }
6400
6401 /* Go on to the next relocation. */
6402 continue;
6403 }
6404
6405 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6406 relocations for the same offset. In that case we are
6407 supposed to treat the output of each relocation as the addend
6408 for the next. */
6409 if (rel + 1 < relend
6410 && rel->r_offset == rel[1].r_offset
6411 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 6412 use_saved_addend_p = TRUE;
b49e97c9 6413 else
b34976b6 6414 use_saved_addend_p = FALSE;
b49e97c9
TS
6415
6416 /* Figure out what value we are supposed to relocate. */
6417 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
6418 input_section, info, rel,
6419 addend, howto, local_syms,
6420 local_sections, &value,
bce03d3d
AO
6421 &name, &require_jalx,
6422 use_saved_addend_p))
b49e97c9
TS
6423 {
6424 case bfd_reloc_continue:
6425 /* There's nothing to do. */
6426 continue;
6427
6428 case bfd_reloc_undefined:
6429 /* mips_elf_calculate_relocation already called the
6430 undefined_symbol callback. There's no real point in
6431 trying to perform the relocation at this point, so we
6432 just skip ahead to the next relocation. */
6433 continue;
6434
6435 case bfd_reloc_notsupported:
6436 msg = _("internal error: unsupported relocation error");
6437 info->callbacks->warning
6438 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 6439 return FALSE;
b49e97c9
TS
6440
6441 case bfd_reloc_overflow:
6442 if (use_saved_addend_p)
6443 /* Ignore overflow until we reach the last relocation for
6444 a given location. */
6445 ;
6446 else
6447 {
6448 BFD_ASSERT (name != NULL);
6449 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f 6450 (info, NULL, name, howto->name, (bfd_vma) 0,
b49e97c9 6451 input_bfd, input_section, rel->r_offset)))
b34976b6 6452 return FALSE;
b49e97c9
TS
6453 }
6454 break;
6455
6456 case bfd_reloc_ok:
6457 break;
6458
6459 default:
6460 abort ();
6461 break;
6462 }
6463
6464 /* If we've got another relocation for the address, keep going
6465 until we reach the last one. */
6466 if (use_saved_addend_p)
6467 {
6468 addend = value;
6469 continue;
6470 }
6471
4a14403c 6472 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
6473 /* See the comment above about using R_MIPS_64 in the 32-bit
6474 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6475 that calculated the right value. Now, however, we
6476 sign-extend the 32-bit result to 64-bits, and store it as a
6477 64-bit value. We are especially generous here in that we
6478 go to extreme lengths to support this usage on systems with
6479 only a 32-bit VMA. */
6480 {
6481 bfd_vma sign_bits;
6482 bfd_vma low_bits;
6483 bfd_vma high_bits;
6484
6485 if (value & ((bfd_vma) 1 << 31))
6486#ifdef BFD64
6487 sign_bits = ((bfd_vma) 1 << 32) - 1;
6488#else
6489 sign_bits = -1;
6490#endif
6491 else
6492 sign_bits = 0;
6493
6494 /* If we don't know that we have a 64-bit type,
6495 do two separate stores. */
6496 if (bfd_big_endian (input_bfd))
6497 {
6498 /* Undo what we did above. */
6499 rel->r_offset -= 4;
6500 /* Store the sign-bits (which are most significant)
6501 first. */
6502 low_bits = sign_bits;
6503 high_bits = value;
6504 }
6505 else
6506 {
6507 low_bits = value;
6508 high_bits = sign_bits;
6509 }
6510 bfd_put_32 (input_bfd, low_bits,
6511 contents + rel->r_offset);
6512 bfd_put_32 (input_bfd, high_bits,
6513 contents + rel->r_offset + 4);
6514 continue;
6515 }
6516
6517 /* Actually perform the relocation. */
6518 if (! mips_elf_perform_relocation (info, howto, rel, value,
6519 input_bfd, input_section,
6520 contents, require_jalx))
b34976b6 6521 return FALSE;
b49e97c9
TS
6522 }
6523
b34976b6 6524 return TRUE;
b49e97c9
TS
6525}
6526\f
6527/* If NAME is one of the special IRIX6 symbols defined by the linker,
6528 adjust it appropriately now. */
6529
6530static void
9719ad41
RS
6531mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
6532 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
6533{
6534 /* The linker script takes care of providing names and values for
6535 these, but we must place them into the right sections. */
6536 static const char* const text_section_symbols[] = {
6537 "_ftext",
6538 "_etext",
6539 "__dso_displacement",
6540 "__elf_header",
6541 "__program_header_table",
6542 NULL
6543 };
6544
6545 static const char* const data_section_symbols[] = {
6546 "_fdata",
6547 "_edata",
6548 "_end",
6549 "_fbss",
6550 NULL
6551 };
6552
6553 const char* const *p;
6554 int i;
6555
6556 for (i = 0; i < 2; ++i)
6557 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
6558 *p;
6559 ++p)
6560 if (strcmp (*p, name) == 0)
6561 {
6562 /* All of these symbols are given type STT_SECTION by the
6563 IRIX6 linker. */
6564 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 6565 sym->st_other = STO_PROTECTED;
b49e97c9
TS
6566
6567 /* The IRIX linker puts these symbols in special sections. */
6568 if (i == 0)
6569 sym->st_shndx = SHN_MIPS_TEXT;
6570 else
6571 sym->st_shndx = SHN_MIPS_DATA;
6572
6573 break;
6574 }
6575}
6576
6577/* Finish up dynamic symbol handling. We set the contents of various
6578 dynamic sections here. */
6579
b34976b6 6580bfd_boolean
9719ad41
RS
6581_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
6582 struct bfd_link_info *info,
6583 struct elf_link_hash_entry *h,
6584 Elf_Internal_Sym *sym)
b49e97c9
TS
6585{
6586 bfd *dynobj;
b49e97c9 6587 asection *sgot;
f4416af6 6588 struct mips_got_info *g, *gg;
b49e97c9 6589 const char *name;
b49e97c9
TS
6590
6591 dynobj = elf_hash_table (info)->dynobj;
b49e97c9 6592
c5ae1840 6593 if (h->plt.offset != MINUS_ONE)
b49e97c9
TS
6594 {
6595 asection *s;
6596 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
6597
6598 /* This symbol has a stub. Set it up. */
6599
6600 BFD_ASSERT (h->dynindx != -1);
6601
6602 s = bfd_get_section_by_name (dynobj,
6603 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6604 BFD_ASSERT (s != NULL);
6605
6606 /* FIXME: Can h->dynindex be more than 64K? */
6607 if (h->dynindx & 0xffff0000)
b34976b6 6608 return FALSE;
b49e97c9
TS
6609
6610 /* Fill the stub. */
6611 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
6612 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
6613 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
6614 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
6615
eea6121a 6616 BFD_ASSERT (h->plt.offset <= s->size);
b49e97c9
TS
6617 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
6618
6619 /* Mark the symbol as undefined. plt.offset != -1 occurs
6620 only for the referenced symbol. */
6621 sym->st_shndx = SHN_UNDEF;
6622
6623 /* The run-time linker uses the st_value field of the symbol
6624 to reset the global offset table entry for this external
6625 to its stub address when unlinking a shared object. */
c5ae1840
TS
6626 sym->st_value = (s->output_section->vma + s->output_offset
6627 + h->plt.offset);
b49e97c9
TS
6628 }
6629
6630 BFD_ASSERT (h->dynindx != -1
f5385ebf 6631 || h->forced_local);
b49e97c9 6632
f4416af6 6633 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 6634 BFD_ASSERT (sgot != NULL);
f4416af6 6635 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
f0abc2a1 6636 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
6637 BFD_ASSERT (g != NULL);
6638
6639 /* Run through the global symbol table, creating GOT entries for all
6640 the symbols that need them. */
6641 if (g->global_gotsym != NULL
6642 && h->dynindx >= g->global_gotsym->dynindx)
6643 {
6644 bfd_vma offset;
6645 bfd_vma value;
6646
6eaa6adc 6647 value = sym->st_value;
f4416af6 6648 offset = mips_elf_global_got_index (dynobj, output_bfd, h);
b49e97c9
TS
6649 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6650 }
6651
f4416af6
AO
6652 if (g->next && h->dynindx != -1)
6653 {
6654 struct mips_got_entry e, *p;
0626d451 6655 bfd_vma entry;
f4416af6 6656 bfd_vma offset;
f4416af6
AO
6657
6658 gg = g;
6659
6660 e.abfd = output_bfd;
6661 e.symndx = -1;
6662 e.d.h = (struct mips_elf_link_hash_entry *)h;
143d77c5 6663
f4416af6
AO
6664 for (g = g->next; g->next != gg; g = g->next)
6665 {
6666 if (g->got_entries
6667 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
6668 &e)))
6669 {
6670 offset = p->gotidx;
0626d451
RS
6671 if (info->shared
6672 || (elf_hash_table (info)->dynamic_sections_created
6673 && p->d.h != NULL
f5385ebf
AM
6674 && p->d.h->root.def_dynamic
6675 && !p->d.h->root.def_regular))
0626d451
RS
6676 {
6677 /* Create an R_MIPS_REL32 relocation for this entry. Due to
6678 the various compatibility problems, it's easier to mock
6679 up an R_MIPS_32 or R_MIPS_64 relocation and leave
6680 mips_elf_create_dynamic_relocation to calculate the
6681 appropriate addend. */
6682 Elf_Internal_Rela rel[3];
6683
6684 memset (rel, 0, sizeof (rel));
6685 if (ABI_64_P (output_bfd))
6686 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
6687 else
6688 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
6689 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
6690
6691 entry = 0;
6692 if (! (mips_elf_create_dynamic_relocation
6693 (output_bfd, info, rel,
6694 e.d.h, NULL, sym->st_value, &entry, sgot)))
6695 return FALSE;
6696 }
6697 else
6698 entry = sym->st_value;
6699 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
6700 }
6701 }
6702 }
6703
b49e97c9
TS
6704 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
6705 name = h->root.root.string;
6706 if (strcmp (name, "_DYNAMIC") == 0
6707 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
6708 sym->st_shndx = SHN_ABS;
6709 else if (strcmp (name, "_DYNAMIC_LINK") == 0
6710 || strcmp (name, "_DYNAMIC_LINKING") == 0)
6711 {
6712 sym->st_shndx = SHN_ABS;
6713 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6714 sym->st_value = 1;
6715 }
4a14403c 6716 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
6717 {
6718 sym->st_shndx = SHN_ABS;
6719 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6720 sym->st_value = elf_gp (output_bfd);
6721 }
6722 else if (SGI_COMPAT (output_bfd))
6723 {
6724 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
6725 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
6726 {
6727 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6728 sym->st_other = STO_PROTECTED;
6729 sym->st_value = 0;
6730 sym->st_shndx = SHN_MIPS_DATA;
6731 }
6732 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
6733 {
6734 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6735 sym->st_other = STO_PROTECTED;
6736 sym->st_value = mips_elf_hash_table (info)->procedure_count;
6737 sym->st_shndx = SHN_ABS;
6738 }
6739 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
6740 {
6741 if (h->type == STT_FUNC)
6742 sym->st_shndx = SHN_MIPS_TEXT;
6743 else if (h->type == STT_OBJECT)
6744 sym->st_shndx = SHN_MIPS_DATA;
6745 }
6746 }
6747
6748 /* Handle the IRIX6-specific symbols. */
6749 if (IRIX_COMPAT (output_bfd) == ict_irix6)
6750 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
6751
6752 if (! info->shared)
6753 {
6754 if (! mips_elf_hash_table (info)->use_rld_obj_head
6755 && (strcmp (name, "__rld_map") == 0
6756 || strcmp (name, "__RLD_MAP") == 0))
6757 {
6758 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
6759 BFD_ASSERT (s != NULL);
6760 sym->st_value = s->output_section->vma + s->output_offset;
9719ad41 6761 bfd_put_32 (output_bfd, 0, s->contents);
b49e97c9
TS
6762 if (mips_elf_hash_table (info)->rld_value == 0)
6763 mips_elf_hash_table (info)->rld_value = sym->st_value;
6764 }
6765 else if (mips_elf_hash_table (info)->use_rld_obj_head
6766 && strcmp (name, "__rld_obj_head") == 0)
6767 {
6768 /* IRIX6 does not use a .rld_map section. */
6769 if (IRIX_COMPAT (output_bfd) == ict_irix5
6770 || IRIX_COMPAT (output_bfd) == ict_none)
6771 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
6772 != NULL);
6773 mips_elf_hash_table (info)->rld_value = sym->st_value;
6774 }
6775 }
6776
6777 /* If this is a mips16 symbol, force the value to be even. */
79cda7cf
FF
6778 if (sym->st_other == STO_MIPS16)
6779 sym->st_value &= ~1;
b49e97c9 6780
b34976b6 6781 return TRUE;
b49e97c9
TS
6782}
6783
6784/* Finish up the dynamic sections. */
6785
b34976b6 6786bfd_boolean
9719ad41
RS
6787_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
6788 struct bfd_link_info *info)
b49e97c9
TS
6789{
6790 bfd *dynobj;
6791 asection *sdyn;
6792 asection *sgot;
f4416af6 6793 struct mips_got_info *gg, *g;
b49e97c9
TS
6794
6795 dynobj = elf_hash_table (info)->dynobj;
6796
6797 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
6798
f4416af6 6799 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 6800 if (sgot == NULL)
f4416af6 6801 gg = g = NULL;
b49e97c9
TS
6802 else
6803 {
f4416af6
AO
6804 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6805 gg = mips_elf_section_data (sgot)->u.got_info;
6806 BFD_ASSERT (gg != NULL);
6807 g = mips_elf_got_for_ibfd (gg, output_bfd);
b49e97c9
TS
6808 BFD_ASSERT (g != NULL);
6809 }
6810
6811 if (elf_hash_table (info)->dynamic_sections_created)
6812 {
6813 bfd_byte *b;
6814
6815 BFD_ASSERT (sdyn != NULL);
6816 BFD_ASSERT (g != NULL);
6817
6818 for (b = sdyn->contents;
eea6121a 6819 b < sdyn->contents + sdyn->size;
b49e97c9
TS
6820 b += MIPS_ELF_DYN_SIZE (dynobj))
6821 {
6822 Elf_Internal_Dyn dyn;
6823 const char *name;
6824 size_t elemsize;
6825 asection *s;
b34976b6 6826 bfd_boolean swap_out_p;
b49e97c9
TS
6827
6828 /* Read in the current dynamic entry. */
6829 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
6830
6831 /* Assume that we're going to modify it and write it out. */
b34976b6 6832 swap_out_p = TRUE;
b49e97c9
TS
6833
6834 switch (dyn.d_tag)
6835 {
6836 case DT_RELENT:
f4416af6 6837 s = mips_elf_rel_dyn_section (dynobj, FALSE);
b49e97c9
TS
6838 BFD_ASSERT (s != NULL);
6839 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
6840 break;
6841
6842 case DT_STRSZ:
6843 /* Rewrite DT_STRSZ. */
6844 dyn.d_un.d_val =
6845 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6846 break;
6847
6848 case DT_PLTGOT:
6849 name = ".got";
b49e97c9
TS
6850 s = bfd_get_section_by_name (output_bfd, name);
6851 BFD_ASSERT (s != NULL);
6852 dyn.d_un.d_ptr = s->vma;
6853 break;
6854
6855 case DT_MIPS_RLD_VERSION:
6856 dyn.d_un.d_val = 1; /* XXX */
6857 break;
6858
6859 case DT_MIPS_FLAGS:
6860 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
6861 break;
6862
b49e97c9
TS
6863 case DT_MIPS_TIME_STAMP:
6864 time ((time_t *) &dyn.d_un.d_val);
6865 break;
6866
6867 case DT_MIPS_ICHECKSUM:
6868 /* XXX FIXME: */
b34976b6 6869 swap_out_p = FALSE;
b49e97c9
TS
6870 break;
6871
6872 case DT_MIPS_IVERSION:
6873 /* XXX FIXME: */
b34976b6 6874 swap_out_p = FALSE;
b49e97c9
TS
6875 break;
6876
6877 case DT_MIPS_BASE_ADDRESS:
6878 s = output_bfd->sections;
6879 BFD_ASSERT (s != NULL);
6880 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
6881 break;
6882
6883 case DT_MIPS_LOCAL_GOTNO:
6884 dyn.d_un.d_val = g->local_gotno;
6885 break;
6886
6887 case DT_MIPS_UNREFEXTNO:
6888 /* The index into the dynamic symbol table which is the
6889 entry of the first external symbol that is not
6890 referenced within the same object. */
6891 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
6892 break;
6893
6894 case DT_MIPS_GOTSYM:
f4416af6 6895 if (gg->global_gotsym)
b49e97c9 6896 {
f4416af6 6897 dyn.d_un.d_val = gg->global_gotsym->dynindx;
b49e97c9
TS
6898 break;
6899 }
6900 /* In case if we don't have global got symbols we default
6901 to setting DT_MIPS_GOTSYM to the same value as
6902 DT_MIPS_SYMTABNO, so we just fall through. */
6903
6904 case DT_MIPS_SYMTABNO:
6905 name = ".dynsym";
6906 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
6907 s = bfd_get_section_by_name (output_bfd, name);
6908 BFD_ASSERT (s != NULL);
6909
eea6121a 6910 dyn.d_un.d_val = s->size / elemsize;
b49e97c9
TS
6911 break;
6912
6913 case DT_MIPS_HIPAGENO:
6914 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
6915 break;
6916
6917 case DT_MIPS_RLD_MAP:
6918 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
6919 break;
6920
6921 case DT_MIPS_OPTIONS:
6922 s = (bfd_get_section_by_name
6923 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
6924 dyn.d_un.d_ptr = s->vma;
6925 break;
6926
98a8deaf
RS
6927 case DT_RELSZ:
6928 /* Reduce DT_RELSZ to account for any relocations we
6929 decided not to make. This is for the n64 irix rld,
6930 which doesn't seem to apply any relocations if there
6931 are trailing null entries. */
6932 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6933 dyn.d_un.d_val = (s->reloc_count
6934 * (ABI_64_P (output_bfd)
6935 ? sizeof (Elf64_Mips_External_Rel)
6936 : sizeof (Elf32_External_Rel)));
b49e97c9
TS
6937 break;
6938
6939 default:
b34976b6 6940 swap_out_p = FALSE;
b49e97c9
TS
6941 break;
6942 }
6943
6944 if (swap_out_p)
6945 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
6946 (dynobj, &dyn, b);
6947 }
6948 }
6949
6950 /* The first entry of the global offset table will be filled at
6951 runtime. The second entry will be used by some runtime loaders.
8dc1a139 6952 This isn't the case of IRIX rld. */
eea6121a 6953 if (sgot != NULL && sgot->size > 0)
b49e97c9 6954 {
9719ad41
RS
6955 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents);
6956 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000,
b49e97c9
TS
6957 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
6958 }
6959
6960 if (sgot != NULL)
6961 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
6962 = MIPS_ELF_GOT_SIZE (output_bfd);
6963
f4416af6
AO
6964 /* Generate dynamic relocations for the non-primary gots. */
6965 if (gg != NULL && gg->next)
6966 {
6967 Elf_Internal_Rela rel[3];
6968 bfd_vma addend = 0;
6969
6970 memset (rel, 0, sizeof (rel));
6971 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
6972
6973 for (g = gg->next; g->next != gg; g = g->next)
6974 {
6975 bfd_vma index = g->next->local_gotno + g->next->global_gotno;
6976
9719ad41 6977 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
f4416af6 6978 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
9719ad41 6979 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
f4416af6
AO
6980 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
6981
6982 if (! info->shared)
6983 continue;
6984
6985 while (index < g->assigned_gotno)
6986 {
6987 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
6988 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
6989 if (!(mips_elf_create_dynamic_relocation
6990 (output_bfd, info, rel, NULL,
6991 bfd_abs_section_ptr,
6992 0, &addend, sgot)))
6993 return FALSE;
6994 BFD_ASSERT (addend == 0);
6995 }
6996 }
6997 }
6998
b49e97c9 6999 {
b49e97c9
TS
7000 asection *s;
7001 Elf32_compact_rel cpt;
7002
b49e97c9
TS
7003 if (SGI_COMPAT (output_bfd))
7004 {
7005 /* Write .compact_rel section out. */
7006 s = bfd_get_section_by_name (dynobj, ".compact_rel");
7007 if (s != NULL)
7008 {
7009 cpt.id1 = 1;
7010 cpt.num = s->reloc_count;
7011 cpt.id2 = 2;
7012 cpt.offset = (s->output_section->filepos
7013 + sizeof (Elf32_External_compact_rel));
7014 cpt.reserved0 = 0;
7015 cpt.reserved1 = 0;
7016 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
7017 ((Elf32_External_compact_rel *)
7018 s->contents));
7019
7020 /* Clean up a dummy stub function entry in .text. */
7021 s = bfd_get_section_by_name (dynobj,
7022 MIPS_ELF_STUB_SECTION_NAME (dynobj));
7023 if (s != NULL)
7024 {
7025 file_ptr dummy_offset;
7026
eea6121a
AM
7027 BFD_ASSERT (s->size >= MIPS_FUNCTION_STUB_SIZE);
7028 dummy_offset = s->size - MIPS_FUNCTION_STUB_SIZE;
b49e97c9
TS
7029 memset (s->contents + dummy_offset, 0,
7030 MIPS_FUNCTION_STUB_SIZE);
7031 }
7032 }
7033 }
7034
7035 /* We need to sort the entries of the dynamic relocation section. */
7036
f4416af6
AO
7037 s = mips_elf_rel_dyn_section (dynobj, FALSE);
7038
7039 if (s != NULL
eea6121a 7040 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
b49e97c9 7041 {
f4416af6 7042 reldyn_sorting_bfd = output_bfd;
b49e97c9 7043
f4416af6 7044 if (ABI_64_P (output_bfd))
9719ad41 7045 qsort ((Elf64_External_Rel *) s->contents + 1, s->reloc_count - 1,
f4416af6
AO
7046 sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64);
7047 else
9719ad41 7048 qsort ((Elf32_External_Rel *) s->contents + 1, s->reloc_count - 1,
f4416af6 7049 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
b49e97c9 7050 }
b49e97c9
TS
7051 }
7052
b34976b6 7053 return TRUE;
b49e97c9
TS
7054}
7055
b49e97c9 7056
64543e1a
RS
7057/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
7058
7059static void
9719ad41 7060mips_set_isa_flags (bfd *abfd)
b49e97c9 7061{
64543e1a 7062 flagword val;
b49e97c9
TS
7063
7064 switch (bfd_get_mach (abfd))
7065 {
7066 default:
7067 case bfd_mach_mips3000:
7068 val = E_MIPS_ARCH_1;
7069 break;
7070
7071 case bfd_mach_mips3900:
7072 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
7073 break;
7074
7075 case bfd_mach_mips6000:
7076 val = E_MIPS_ARCH_2;
7077 break;
7078
7079 case bfd_mach_mips4000:
7080 case bfd_mach_mips4300:
7081 case bfd_mach_mips4400:
7082 case bfd_mach_mips4600:
7083 val = E_MIPS_ARCH_3;
7084 break;
7085
7086 case bfd_mach_mips4010:
7087 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
7088 break;
7089
7090 case bfd_mach_mips4100:
7091 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
7092 break;
7093
7094 case bfd_mach_mips4111:
7095 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
7096 break;
7097
00707a0e
RS
7098 case bfd_mach_mips4120:
7099 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
7100 break;
7101
b49e97c9
TS
7102 case bfd_mach_mips4650:
7103 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
7104 break;
7105
00707a0e
RS
7106 case bfd_mach_mips5400:
7107 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
7108 break;
7109
7110 case bfd_mach_mips5500:
7111 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
7112 break;
7113
0d2e43ed
ILT
7114 case bfd_mach_mips9000:
7115 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
7116 break;
7117
b49e97c9 7118 case bfd_mach_mips5000:
5a7ea749 7119 case bfd_mach_mips7000:
b49e97c9
TS
7120 case bfd_mach_mips8000:
7121 case bfd_mach_mips10000:
7122 case bfd_mach_mips12000:
7123 val = E_MIPS_ARCH_4;
7124 break;
7125
7126 case bfd_mach_mips5:
7127 val = E_MIPS_ARCH_5;
7128 break;
7129
7130 case bfd_mach_mips_sb1:
7131 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
7132 break;
7133
7134 case bfd_mach_mipsisa32:
7135 val = E_MIPS_ARCH_32;
7136 break;
7137
7138 case bfd_mach_mipsisa64:
7139 val = E_MIPS_ARCH_64;
af7ee8bf
CD
7140 break;
7141
7142 case bfd_mach_mipsisa32r2:
7143 val = E_MIPS_ARCH_32R2;
7144 break;
5f74bc13
CD
7145
7146 case bfd_mach_mipsisa64r2:
7147 val = E_MIPS_ARCH_64R2;
7148 break;
b49e97c9 7149 }
b49e97c9
TS
7150 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
7151 elf_elfheader (abfd)->e_flags |= val;
7152
64543e1a
RS
7153}
7154
7155
7156/* The final processing done just before writing out a MIPS ELF object
7157 file. This gets the MIPS architecture right based on the machine
7158 number. This is used by both the 32-bit and the 64-bit ABI. */
7159
7160void
9719ad41
RS
7161_bfd_mips_elf_final_write_processing (bfd *abfd,
7162 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
7163{
7164 unsigned int i;
7165 Elf_Internal_Shdr **hdrpp;
7166 const char *name;
7167 asection *sec;
7168
7169 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
7170 is nonzero. This is for compatibility with old objects, which used
7171 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
7172 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
7173 mips_set_isa_flags (abfd);
7174
b49e97c9
TS
7175 /* Set the sh_info field for .gptab sections and other appropriate
7176 info for each special section. */
7177 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
7178 i < elf_numsections (abfd);
7179 i++, hdrpp++)
7180 {
7181 switch ((*hdrpp)->sh_type)
7182 {
7183 case SHT_MIPS_MSYM:
7184 case SHT_MIPS_LIBLIST:
7185 sec = bfd_get_section_by_name (abfd, ".dynstr");
7186 if (sec != NULL)
7187 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7188 break;
7189
7190 case SHT_MIPS_GPTAB:
7191 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7192 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7193 BFD_ASSERT (name != NULL
7194 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
7195 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
7196 BFD_ASSERT (sec != NULL);
7197 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7198 break;
7199
7200 case SHT_MIPS_CONTENT:
7201 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7202 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7203 BFD_ASSERT (name != NULL
7204 && strncmp (name, ".MIPS.content",
7205 sizeof ".MIPS.content" - 1) == 0);
7206 sec = bfd_get_section_by_name (abfd,
7207 name + sizeof ".MIPS.content" - 1);
7208 BFD_ASSERT (sec != NULL);
7209 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7210 break;
7211
7212 case SHT_MIPS_SYMBOL_LIB:
7213 sec = bfd_get_section_by_name (abfd, ".dynsym");
7214 if (sec != NULL)
7215 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7216 sec = bfd_get_section_by_name (abfd, ".liblist");
7217 if (sec != NULL)
7218 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7219 break;
7220
7221 case SHT_MIPS_EVENTS:
7222 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7223 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7224 BFD_ASSERT (name != NULL);
7225 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
7226 sec = bfd_get_section_by_name (abfd,
7227 name + sizeof ".MIPS.events" - 1);
7228 else
7229 {
7230 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
7231 sizeof ".MIPS.post_rel" - 1) == 0);
7232 sec = bfd_get_section_by_name (abfd,
7233 (name
7234 + sizeof ".MIPS.post_rel" - 1));
7235 }
7236 BFD_ASSERT (sec != NULL);
7237 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7238 break;
7239
7240 }
7241 }
7242}
7243\f
8dc1a139 7244/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
7245 segments. */
7246
7247int
9719ad41 7248_bfd_mips_elf_additional_program_headers (bfd *abfd)
b49e97c9
TS
7249{
7250 asection *s;
7251 int ret = 0;
7252
7253 /* See if we need a PT_MIPS_REGINFO segment. */
7254 s = bfd_get_section_by_name (abfd, ".reginfo");
7255 if (s && (s->flags & SEC_LOAD))
7256 ++ret;
7257
7258 /* See if we need a PT_MIPS_OPTIONS segment. */
7259 if (IRIX_COMPAT (abfd) == ict_irix6
7260 && bfd_get_section_by_name (abfd,
7261 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
7262 ++ret;
7263
7264 /* See if we need a PT_MIPS_RTPROC segment. */
7265 if (IRIX_COMPAT (abfd) == ict_irix5
7266 && bfd_get_section_by_name (abfd, ".dynamic")
7267 && bfd_get_section_by_name (abfd, ".mdebug"))
7268 ++ret;
7269
7270 return ret;
7271}
7272
8dc1a139 7273/* Modify the segment map for an IRIX5 executable. */
b49e97c9 7274
b34976b6 7275bfd_boolean
9719ad41
RS
7276_bfd_mips_elf_modify_segment_map (bfd *abfd,
7277 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
7278{
7279 asection *s;
7280 struct elf_segment_map *m, **pm;
7281 bfd_size_type amt;
7282
7283 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
7284 segment. */
7285 s = bfd_get_section_by_name (abfd, ".reginfo");
7286 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7287 {
7288 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7289 if (m->p_type == PT_MIPS_REGINFO)
7290 break;
7291 if (m == NULL)
7292 {
7293 amt = sizeof *m;
9719ad41 7294 m = bfd_zalloc (abfd, amt);
b49e97c9 7295 if (m == NULL)
b34976b6 7296 return FALSE;
b49e97c9
TS
7297
7298 m->p_type = PT_MIPS_REGINFO;
7299 m->count = 1;
7300 m->sections[0] = s;
7301
7302 /* We want to put it after the PHDR and INTERP segments. */
7303 pm = &elf_tdata (abfd)->segment_map;
7304 while (*pm != NULL
7305 && ((*pm)->p_type == PT_PHDR
7306 || (*pm)->p_type == PT_INTERP))
7307 pm = &(*pm)->next;
7308
7309 m->next = *pm;
7310 *pm = m;
7311 }
7312 }
7313
7314 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
7315 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 7316 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 7317 table. */
c1fd6598
AO
7318 if (NEWABI_P (abfd)
7319 /* On non-IRIX6 new abi, we'll have already created a segment
7320 for this section, so don't create another. I'm not sure this
7321 is not also the case for IRIX 6, but I can't test it right
7322 now. */
7323 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
7324 {
7325 for (s = abfd->sections; s; s = s->next)
7326 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
7327 break;
7328
7329 if (s)
7330 {
7331 struct elf_segment_map *options_segment;
7332
98a8deaf
RS
7333 pm = &elf_tdata (abfd)->segment_map;
7334 while (*pm != NULL
7335 && ((*pm)->p_type == PT_PHDR
7336 || (*pm)->p_type == PT_INTERP))
7337 pm = &(*pm)->next;
b49e97c9
TS
7338
7339 amt = sizeof (struct elf_segment_map);
7340 options_segment = bfd_zalloc (abfd, amt);
7341 options_segment->next = *pm;
7342 options_segment->p_type = PT_MIPS_OPTIONS;
7343 options_segment->p_flags = PF_R;
b34976b6 7344 options_segment->p_flags_valid = TRUE;
b49e97c9
TS
7345 options_segment->count = 1;
7346 options_segment->sections[0] = s;
7347 *pm = options_segment;
7348 }
7349 }
7350 else
7351 {
7352 if (IRIX_COMPAT (abfd) == ict_irix5)
7353 {
7354 /* If there are .dynamic and .mdebug sections, we make a room
7355 for the RTPROC header. FIXME: Rewrite without section names. */
7356 if (bfd_get_section_by_name (abfd, ".interp") == NULL
7357 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
7358 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
7359 {
7360 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7361 if (m->p_type == PT_MIPS_RTPROC)
7362 break;
7363 if (m == NULL)
7364 {
7365 amt = sizeof *m;
9719ad41 7366 m = bfd_zalloc (abfd, amt);
b49e97c9 7367 if (m == NULL)
b34976b6 7368 return FALSE;
b49e97c9
TS
7369
7370 m->p_type = PT_MIPS_RTPROC;
7371
7372 s = bfd_get_section_by_name (abfd, ".rtproc");
7373 if (s == NULL)
7374 {
7375 m->count = 0;
7376 m->p_flags = 0;
7377 m->p_flags_valid = 1;
7378 }
7379 else
7380 {
7381 m->count = 1;
7382 m->sections[0] = s;
7383 }
7384
7385 /* We want to put it after the DYNAMIC segment. */
7386 pm = &elf_tdata (abfd)->segment_map;
7387 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
7388 pm = &(*pm)->next;
7389 if (*pm != NULL)
7390 pm = &(*pm)->next;
7391
7392 m->next = *pm;
7393 *pm = m;
7394 }
7395 }
7396 }
8dc1a139 7397 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
7398 .dynstr, .dynsym, and .hash sections, and everything in
7399 between. */
7400 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
7401 pm = &(*pm)->next)
7402 if ((*pm)->p_type == PT_DYNAMIC)
7403 break;
7404 m = *pm;
7405 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
7406 {
7407 /* For a normal mips executable the permissions for the PT_DYNAMIC
7408 segment are read, write and execute. We do that here since
7409 the code in elf.c sets only the read permission. This matters
7410 sometimes for the dynamic linker. */
7411 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
7412 {
7413 m->p_flags = PF_R | PF_W | PF_X;
7414 m->p_flags_valid = 1;
7415 }
7416 }
7417 if (m != NULL
7418 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
7419 {
7420 static const char *sec_names[] =
7421 {
7422 ".dynamic", ".dynstr", ".dynsym", ".hash"
7423 };
7424 bfd_vma low, high;
7425 unsigned int i, c;
7426 struct elf_segment_map *n;
7427
792b4a53 7428 low = ~(bfd_vma) 0;
b49e97c9
TS
7429 high = 0;
7430 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
7431 {
7432 s = bfd_get_section_by_name (abfd, sec_names[i]);
7433 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7434 {
7435 bfd_size_type sz;
7436
7437 if (low > s->vma)
7438 low = s->vma;
eea6121a 7439 sz = s->size;
b49e97c9
TS
7440 if (high < s->vma + sz)
7441 high = s->vma + sz;
7442 }
7443 }
7444
7445 c = 0;
7446 for (s = abfd->sections; s != NULL; s = s->next)
7447 if ((s->flags & SEC_LOAD) != 0
7448 && s->vma >= low
eea6121a 7449 && s->vma + s->size <= high)
b49e97c9
TS
7450 ++c;
7451
7452 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 7453 n = bfd_zalloc (abfd, amt);
b49e97c9 7454 if (n == NULL)
b34976b6 7455 return FALSE;
b49e97c9
TS
7456 *n = *m;
7457 n->count = c;
7458
7459 i = 0;
7460 for (s = abfd->sections; s != NULL; s = s->next)
7461 {
7462 if ((s->flags & SEC_LOAD) != 0
7463 && s->vma >= low
eea6121a 7464 && s->vma + s->size <= high)
b49e97c9
TS
7465 {
7466 n->sections[i] = s;
7467 ++i;
7468 }
7469 }
7470
7471 *pm = n;
7472 }
7473 }
7474
b34976b6 7475 return TRUE;
b49e97c9
TS
7476}
7477\f
7478/* Return the section that should be marked against GC for a given
7479 relocation. */
7480
7481asection *
9719ad41
RS
7482_bfd_mips_elf_gc_mark_hook (asection *sec,
7483 struct bfd_link_info *info ATTRIBUTE_UNUSED,
7484 Elf_Internal_Rela *rel,
7485 struct elf_link_hash_entry *h,
7486 Elf_Internal_Sym *sym)
b49e97c9
TS
7487{
7488 /* ??? Do mips16 stub sections need to be handled special? */
7489
7490 if (h != NULL)
7491 {
1e2f5b6e 7492 switch (ELF_R_TYPE (sec->owner, rel->r_info))
b49e97c9
TS
7493 {
7494 case R_MIPS_GNU_VTINHERIT:
7495 case R_MIPS_GNU_VTENTRY:
7496 break;
7497
7498 default:
7499 switch (h->root.type)
7500 {
7501 case bfd_link_hash_defined:
7502 case bfd_link_hash_defweak:
7503 return h->root.u.def.section;
7504
7505 case bfd_link_hash_common:
7506 return h->root.u.c.p->section;
7507
7508 default:
7509 break;
7510 }
7511 }
7512 }
7513 else
1e2f5b6e 7514 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
b49e97c9
TS
7515
7516 return NULL;
7517}
7518
7519/* Update the got entry reference counts for the section being removed. */
7520
b34976b6 7521bfd_boolean
9719ad41
RS
7522_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
7523 struct bfd_link_info *info ATTRIBUTE_UNUSED,
7524 asection *sec ATTRIBUTE_UNUSED,
7525 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
7526{
7527#if 0
7528 Elf_Internal_Shdr *symtab_hdr;
7529 struct elf_link_hash_entry **sym_hashes;
7530 bfd_signed_vma *local_got_refcounts;
7531 const Elf_Internal_Rela *rel, *relend;
7532 unsigned long r_symndx;
7533 struct elf_link_hash_entry *h;
7534
7535 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7536 sym_hashes = elf_sym_hashes (abfd);
7537 local_got_refcounts = elf_local_got_refcounts (abfd);
7538
7539 relend = relocs + sec->reloc_count;
7540 for (rel = relocs; rel < relend; rel++)
7541 switch (ELF_R_TYPE (abfd, rel->r_info))
7542 {
7543 case R_MIPS_GOT16:
7544 case R_MIPS_CALL16:
7545 case R_MIPS_CALL_HI16:
7546 case R_MIPS_CALL_LO16:
7547 case R_MIPS_GOT_HI16:
7548 case R_MIPS_GOT_LO16:
4a14403c
TS
7549 case R_MIPS_GOT_DISP:
7550 case R_MIPS_GOT_PAGE:
7551 case R_MIPS_GOT_OFST:
b49e97c9
TS
7552 /* ??? It would seem that the existing MIPS code does no sort
7553 of reference counting or whatnot on its GOT and PLT entries,
7554 so it is not possible to garbage collect them at this time. */
7555 break;
7556
7557 default:
7558 break;
7559 }
7560#endif
7561
b34976b6 7562 return TRUE;
b49e97c9
TS
7563}
7564\f
7565/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
7566 hiding the old indirect symbol. Process additional relocation
7567 information. Also called for weakdefs, in which case we just let
7568 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
7569
7570void
9719ad41
RS
7571_bfd_mips_elf_copy_indirect_symbol (const struct elf_backend_data *bed,
7572 struct elf_link_hash_entry *dir,
7573 struct elf_link_hash_entry *ind)
b49e97c9
TS
7574{
7575 struct mips_elf_link_hash_entry *dirmips, *indmips;
7576
b48fa14c 7577 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
b49e97c9
TS
7578
7579 if (ind->root.type != bfd_link_hash_indirect)
7580 return;
7581
7582 dirmips = (struct mips_elf_link_hash_entry *) dir;
7583 indmips = (struct mips_elf_link_hash_entry *) ind;
7584 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
7585 if (indmips->readonly_reloc)
b34976b6 7586 dirmips->readonly_reloc = TRUE;
b49e97c9 7587 if (indmips->no_fn_stub)
b34976b6 7588 dirmips->no_fn_stub = TRUE;
b49e97c9
TS
7589}
7590
7591void
9719ad41
RS
7592_bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
7593 struct elf_link_hash_entry *entry,
7594 bfd_boolean force_local)
b49e97c9
TS
7595{
7596 bfd *dynobj;
7597 asection *got;
7598 struct mips_got_info *g;
7599 struct mips_elf_link_hash_entry *h;
7c5fcef7 7600
b49e97c9 7601 h = (struct mips_elf_link_hash_entry *) entry;
7c5fcef7
L
7602 if (h->forced_local)
7603 return;
4b555070 7604 h->forced_local = force_local;
7c5fcef7 7605
b49e97c9 7606 dynobj = elf_hash_table (info)->dynobj;
4b555070 7607 if (dynobj != NULL && force_local)
f4416af6 7608 {
c45a316a
AM
7609 got = mips_elf_got_section (dynobj, FALSE);
7610 g = mips_elf_section_data (got)->u.got_info;
f4416af6 7611
c45a316a
AM
7612 if (g->next)
7613 {
7614 struct mips_got_entry e;
7615 struct mips_got_info *gg = g;
7616
7617 /* Since we're turning what used to be a global symbol into a
7618 local one, bump up the number of local entries of each GOT
7619 that had an entry for it. This will automatically decrease
7620 the number of global entries, since global_gotno is actually
7621 the upper limit of global entries. */
7622 e.abfd = dynobj;
7623 e.symndx = -1;
7624 e.d.h = h;
7625
7626 for (g = g->next; g != gg; g = g->next)
7627 if (htab_find (g->got_entries, &e))
7628 {
7629 BFD_ASSERT (g->global_gotno > 0);
7630 g->local_gotno++;
7631 g->global_gotno--;
7632 }
b49e97c9 7633
c45a316a
AM
7634 /* If this was a global symbol forced into the primary GOT, we
7635 no longer need an entry for it. We can't release the entry
7636 at this point, but we must at least stop counting it as one
7637 of the symbols that required a forced got entry. */
7638 if (h->root.got.offset == 2)
7639 {
7640 BFD_ASSERT (gg->assigned_gotno > 0);
7641 gg->assigned_gotno--;
7642 }
7643 }
7644 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
7645 /* If we haven't got through GOT allocation yet, just bump up the
7646 number of local entries, as this symbol won't be counted as
7647 global. */
7648 g->local_gotno++;
7649 else if (h->root.got.offset == 1)
f4416af6 7650 {
c45a316a
AM
7651 /* If we're past non-multi-GOT allocation and this symbol had
7652 been marked for a global got entry, give it a local entry
7653 instead. */
7654 BFD_ASSERT (g->global_gotno > 0);
7655 g->local_gotno++;
7656 g->global_gotno--;
f4416af6
AO
7657 }
7658 }
f4416af6
AO
7659
7660 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
b49e97c9
TS
7661}
7662\f
d01414a5
TS
7663#define PDR_SIZE 32
7664
b34976b6 7665bfd_boolean
9719ad41
RS
7666_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
7667 struct bfd_link_info *info)
d01414a5
TS
7668{
7669 asection *o;
b34976b6 7670 bfd_boolean ret = FALSE;
d01414a5
TS
7671 unsigned char *tdata;
7672 size_t i, skip;
7673
7674 o = bfd_get_section_by_name (abfd, ".pdr");
7675 if (! o)
b34976b6 7676 return FALSE;
eea6121a 7677 if (o->size == 0)
b34976b6 7678 return FALSE;
eea6121a 7679 if (o->size % PDR_SIZE != 0)
b34976b6 7680 return FALSE;
d01414a5
TS
7681 if (o->output_section != NULL
7682 && bfd_is_abs_section (o->output_section))
b34976b6 7683 return FALSE;
d01414a5 7684
eea6121a 7685 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 7686 if (! tdata)
b34976b6 7687 return FALSE;
d01414a5 7688
9719ad41 7689 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 7690 info->keep_memory);
d01414a5
TS
7691 if (!cookie->rels)
7692 {
7693 free (tdata);
b34976b6 7694 return FALSE;
d01414a5
TS
7695 }
7696
7697 cookie->rel = cookie->rels;
7698 cookie->relend = cookie->rels + o->reloc_count;
7699
eea6121a 7700 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 7701 {
c152c796 7702 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
7703 {
7704 tdata[i] = 1;
7705 skip ++;
7706 }
7707 }
7708
7709 if (skip != 0)
7710 {
f0abc2a1 7711 mips_elf_section_data (o)->u.tdata = tdata;
eea6121a 7712 o->size -= skip * PDR_SIZE;
b34976b6 7713 ret = TRUE;
d01414a5
TS
7714 }
7715 else
7716 free (tdata);
7717
7718 if (! info->keep_memory)
7719 free (cookie->rels);
7720
7721 return ret;
7722}
7723
b34976b6 7724bfd_boolean
9719ad41 7725_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
7726{
7727 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
7728 return TRUE;
7729 return FALSE;
53bfd6b4 7730}
d01414a5 7731
b34976b6 7732bfd_boolean
9719ad41
RS
7733_bfd_mips_elf_write_section (bfd *output_bfd, asection *sec,
7734 bfd_byte *contents)
d01414a5
TS
7735{
7736 bfd_byte *to, *from, *end;
7737 int i;
7738
7739 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 7740 return FALSE;
d01414a5 7741
f0abc2a1 7742 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 7743 return FALSE;
d01414a5
TS
7744
7745 to = contents;
eea6121a 7746 end = contents + sec->size;
d01414a5
TS
7747 for (from = contents, i = 0;
7748 from < end;
7749 from += PDR_SIZE, i++)
7750 {
f0abc2a1 7751 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
7752 continue;
7753 if (to != from)
7754 memcpy (to, from, PDR_SIZE);
7755 to += PDR_SIZE;
7756 }
7757 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 7758 sec->output_offset, sec->size);
b34976b6 7759 return TRUE;
d01414a5 7760}
53bfd6b4 7761\f
b49e97c9
TS
7762/* MIPS ELF uses a special find_nearest_line routine in order the
7763 handle the ECOFF debugging information. */
7764
7765struct mips_elf_find_line
7766{
7767 struct ecoff_debug_info d;
7768 struct ecoff_find_line i;
7769};
7770
b34976b6 7771bfd_boolean
9719ad41
RS
7772_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
7773 asymbol **symbols, bfd_vma offset,
7774 const char **filename_ptr,
7775 const char **functionname_ptr,
7776 unsigned int *line_ptr)
b49e97c9
TS
7777{
7778 asection *msec;
7779
7780 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7781 filename_ptr, functionname_ptr,
7782 line_ptr))
b34976b6 7783 return TRUE;
b49e97c9
TS
7784
7785 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7786 filename_ptr, functionname_ptr,
9719ad41 7787 line_ptr, ABI_64_P (abfd) ? 8 : 0,
b49e97c9 7788 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 7789 return TRUE;
b49e97c9
TS
7790
7791 msec = bfd_get_section_by_name (abfd, ".mdebug");
7792 if (msec != NULL)
7793 {
7794 flagword origflags;
7795 struct mips_elf_find_line *fi;
7796 const struct ecoff_debug_swap * const swap =
7797 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
7798
7799 /* If we are called during a link, mips_elf_final_link may have
7800 cleared the SEC_HAS_CONTENTS field. We force it back on here
7801 if appropriate (which it normally will be). */
7802 origflags = msec->flags;
7803 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
7804 msec->flags |= SEC_HAS_CONTENTS;
7805
7806 fi = elf_tdata (abfd)->find_line_info;
7807 if (fi == NULL)
7808 {
7809 bfd_size_type external_fdr_size;
7810 char *fraw_src;
7811 char *fraw_end;
7812 struct fdr *fdr_ptr;
7813 bfd_size_type amt = sizeof (struct mips_elf_find_line);
7814
9719ad41 7815 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
7816 if (fi == NULL)
7817 {
7818 msec->flags = origflags;
b34976b6 7819 return FALSE;
b49e97c9
TS
7820 }
7821
7822 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
7823 {
7824 msec->flags = origflags;
b34976b6 7825 return FALSE;
b49e97c9
TS
7826 }
7827
7828 /* Swap in the FDR information. */
7829 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 7830 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
7831 if (fi->d.fdr == NULL)
7832 {
7833 msec->flags = origflags;
b34976b6 7834 return FALSE;
b49e97c9
TS
7835 }
7836 external_fdr_size = swap->external_fdr_size;
7837 fdr_ptr = fi->d.fdr;
7838 fraw_src = (char *) fi->d.external_fdr;
7839 fraw_end = (fraw_src
7840 + fi->d.symbolic_header.ifdMax * external_fdr_size);
7841 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 7842 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9
TS
7843
7844 elf_tdata (abfd)->find_line_info = fi;
7845
7846 /* Note that we don't bother to ever free this information.
7847 find_nearest_line is either called all the time, as in
7848 objdump -l, so the information should be saved, or it is
7849 rarely called, as in ld error messages, so the memory
7850 wasted is unimportant. Still, it would probably be a
7851 good idea for free_cached_info to throw it away. */
7852 }
7853
7854 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
7855 &fi->i, filename_ptr, functionname_ptr,
7856 line_ptr))
7857 {
7858 msec->flags = origflags;
b34976b6 7859 return TRUE;
b49e97c9
TS
7860 }
7861
7862 msec->flags = origflags;
7863 }
7864
7865 /* Fall back on the generic ELF find_nearest_line routine. */
7866
7867 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
7868 filename_ptr, functionname_ptr,
7869 line_ptr);
7870}
7871\f
7872/* When are writing out the .options or .MIPS.options section,
7873 remember the bytes we are writing out, so that we can install the
7874 GP value in the section_processing routine. */
7875
b34976b6 7876bfd_boolean
9719ad41
RS
7877_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
7878 const void *location,
7879 file_ptr offset, bfd_size_type count)
b49e97c9
TS
7880{
7881 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
7882 {
7883 bfd_byte *c;
7884
7885 if (elf_section_data (section) == NULL)
7886 {
7887 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 7888 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 7889 if (elf_section_data (section) == NULL)
b34976b6 7890 return FALSE;
b49e97c9 7891 }
f0abc2a1 7892 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
7893 if (c == NULL)
7894 {
eea6121a 7895 c = bfd_zalloc (abfd, section->size);
b49e97c9 7896 if (c == NULL)
b34976b6 7897 return FALSE;
f0abc2a1 7898 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
7899 }
7900
9719ad41 7901 memcpy (c + offset, location, count);
b49e97c9
TS
7902 }
7903
7904 return _bfd_elf_set_section_contents (abfd, section, location, offset,
7905 count);
7906}
7907
7908/* This is almost identical to bfd_generic_get_... except that some
7909 MIPS relocations need to be handled specially. Sigh. */
7910
7911bfd_byte *
9719ad41
RS
7912_bfd_elf_mips_get_relocated_section_contents
7913 (bfd *abfd,
7914 struct bfd_link_info *link_info,
7915 struct bfd_link_order *link_order,
7916 bfd_byte *data,
7917 bfd_boolean relocatable,
7918 asymbol **symbols)
b49e97c9
TS
7919{
7920 /* Get enough memory to hold the stuff */
7921 bfd *input_bfd = link_order->u.indirect.section->owner;
7922 asection *input_section = link_order->u.indirect.section;
eea6121a 7923 bfd_size_type sz;
b49e97c9
TS
7924
7925 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
7926 arelent **reloc_vector = NULL;
7927 long reloc_count;
7928
7929 if (reloc_size < 0)
7930 goto error_return;
7931
9719ad41 7932 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
7933 if (reloc_vector == NULL && reloc_size != 0)
7934 goto error_return;
7935
7936 /* read in the section */
eea6121a
AM
7937 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
7938 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
7939 goto error_return;
7940
b49e97c9
TS
7941 reloc_count = bfd_canonicalize_reloc (input_bfd,
7942 input_section,
7943 reloc_vector,
7944 symbols);
7945 if (reloc_count < 0)
7946 goto error_return;
7947
7948 if (reloc_count > 0)
7949 {
7950 arelent **parent;
7951 /* for mips */
7952 int gp_found;
7953 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
7954
7955 {
7956 struct bfd_hash_entry *h;
7957 struct bfd_link_hash_entry *lh;
7958 /* Skip all this stuff if we aren't mixing formats. */
7959 if (abfd && input_bfd
7960 && abfd->xvec == input_bfd->xvec)
7961 lh = 0;
7962 else
7963 {
b34976b6 7964 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
7965 lh = (struct bfd_link_hash_entry *) h;
7966 }
7967 lookup:
7968 if (lh)
7969 {
7970 switch (lh->type)
7971 {
7972 case bfd_link_hash_undefined:
7973 case bfd_link_hash_undefweak:
7974 case bfd_link_hash_common:
7975 gp_found = 0;
7976 break;
7977 case bfd_link_hash_defined:
7978 case bfd_link_hash_defweak:
7979 gp_found = 1;
7980 gp = lh->u.def.value;
7981 break;
7982 case bfd_link_hash_indirect:
7983 case bfd_link_hash_warning:
7984 lh = lh->u.i.link;
7985 /* @@FIXME ignoring warning for now */
7986 goto lookup;
7987 case bfd_link_hash_new:
7988 default:
7989 abort ();
7990 }
7991 }
7992 else
7993 gp_found = 0;
7994 }
7995 /* end mips */
9719ad41 7996 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 7997 {
9719ad41 7998 char *error_message = NULL;
b49e97c9
TS
7999 bfd_reloc_status_type r;
8000
8001 /* Specific to MIPS: Deal with relocation types that require
8002 knowing the gp of the output bfd. */
8003 asymbol *sym = *(*parent)->sym_ptr_ptr;
8004 if (bfd_is_abs_section (sym->section) && abfd)
8005 {
44c410de 8006 /* The special_function wouldn't get called anyway. */
b49e97c9
TS
8007 }
8008 else if (!gp_found)
8009 {
8010 /* The gp isn't there; let the special function code
8011 fall over on its own. */
8012 }
8013 else if ((*parent)->howto->special_function
8014 == _bfd_mips_elf32_gprel16_reloc)
8015 {
8016 /* bypass special_function call */
8017 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
1049f94e 8018 input_section, relocatable,
9719ad41 8019 data, gp);
b49e97c9
TS
8020 goto skip_bfd_perform_relocation;
8021 }
8022 /* end mips specific stuff */
8023
9719ad41
RS
8024 r = bfd_perform_relocation (input_bfd, *parent, data, input_section,
8025 relocatable ? abfd : NULL,
b49e97c9
TS
8026 &error_message);
8027 skip_bfd_perform_relocation:
8028
1049f94e 8029 if (relocatable)
b49e97c9
TS
8030 {
8031 asection *os = input_section->output_section;
8032
8033 /* A partial link, so keep the relocs */
8034 os->orelocation[os->reloc_count] = *parent;
8035 os->reloc_count++;
8036 }
8037
8038 if (r != bfd_reloc_ok)
8039 {
8040 switch (r)
8041 {
8042 case bfd_reloc_undefined:
8043 if (!((*link_info->callbacks->undefined_symbol)
8044 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8045 input_bfd, input_section, (*parent)->address,
b34976b6 8046 TRUE)))
b49e97c9
TS
8047 goto error_return;
8048 break;
8049 case bfd_reloc_dangerous:
9719ad41 8050 BFD_ASSERT (error_message != NULL);
b49e97c9
TS
8051 if (!((*link_info->callbacks->reloc_dangerous)
8052 (link_info, error_message, input_bfd, input_section,
8053 (*parent)->address)))
8054 goto error_return;
8055 break;
8056 case bfd_reloc_overflow:
8057 if (!((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
8058 (link_info, NULL,
8059 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
b49e97c9
TS
8060 (*parent)->howto->name, (*parent)->addend,
8061 input_bfd, input_section, (*parent)->address)))
8062 goto error_return;
8063 break;
8064 case bfd_reloc_outofrange:
8065 default:
8066 abort ();
8067 break;
8068 }
8069
8070 }
8071 }
8072 }
8073 if (reloc_vector != NULL)
8074 free (reloc_vector);
8075 return data;
8076
8077error_return:
8078 if (reloc_vector != NULL)
8079 free (reloc_vector);
8080 return NULL;
8081}
8082\f
8083/* Create a MIPS ELF linker hash table. */
8084
8085struct bfd_link_hash_table *
9719ad41 8086_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
8087{
8088 struct mips_elf_link_hash_table *ret;
8089 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
8090
9719ad41
RS
8091 ret = bfd_malloc (amt);
8092 if (ret == NULL)
b49e97c9
TS
8093 return NULL;
8094
8095 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
8096 mips_elf_link_hash_newfunc))
8097 {
e2d34d7d 8098 free (ret);
b49e97c9
TS
8099 return NULL;
8100 }
8101
8102#if 0
8103 /* We no longer use this. */
8104 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
8105 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
8106#endif
8107 ret->procedure_count = 0;
8108 ret->compact_rel_size = 0;
b34976b6 8109 ret->use_rld_obj_head = FALSE;
b49e97c9 8110 ret->rld_value = 0;
b34976b6 8111 ret->mips16_stubs_seen = FALSE;
b49e97c9
TS
8112
8113 return &ret->root.root;
8114}
8115\f
8116/* We need to use a special link routine to handle the .reginfo and
8117 the .mdebug sections. We need to merge all instances of these
8118 sections together, not write them all out sequentially. */
8119
b34976b6 8120bfd_boolean
9719ad41 8121_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
8122{
8123 asection **secpp;
8124 asection *o;
8125 struct bfd_link_order *p;
8126 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
8127 asection *rtproc_sec;
8128 Elf32_RegInfo reginfo;
8129 struct ecoff_debug_info debug;
7a2a6943
NC
8130 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8131 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 8132 HDRR *symhdr = &debug.symbolic_header;
9719ad41 8133 void *mdebug_handle = NULL;
b49e97c9
TS
8134 asection *s;
8135 EXTR esym;
8136 unsigned int i;
8137 bfd_size_type amt;
8138
8139 static const char * const secname[] =
8140 {
8141 ".text", ".init", ".fini", ".data",
8142 ".rodata", ".sdata", ".sbss", ".bss"
8143 };
8144 static const int sc[] =
8145 {
8146 scText, scInit, scFini, scData,
8147 scRData, scSData, scSBss, scBss
8148 };
8149
b49e97c9
TS
8150 /* We'd carefully arranged the dynamic symbol indices, and then the
8151 generic size_dynamic_sections renumbered them out from under us.
8152 Rather than trying somehow to prevent the renumbering, just do
8153 the sort again. */
8154 if (elf_hash_table (info)->dynamic_sections_created)
8155 {
8156 bfd *dynobj;
8157 asection *got;
8158 struct mips_got_info *g;
7a2a6943 8159 bfd_size_type dynsecsymcount;
b49e97c9
TS
8160
8161 /* When we resort, we must tell mips_elf_sort_hash_table what
8162 the lowest index it may use is. That's the number of section
8163 symbols we're going to add. The generic ELF linker only
8164 adds these symbols when building a shared object. Note that
8165 we count the sections after (possibly) removing the .options
8166 section above. */
7a2a6943
NC
8167
8168 dynsecsymcount = 0;
8169 if (info->shared)
8170 {
8171 asection * p;
8172
8173 for (p = abfd->sections; p ; p = p->next)
8174 if ((p->flags & SEC_EXCLUDE) == 0
8175 && (p->flags & SEC_ALLOC) != 0
8176 && !(*bed->elf_backend_omit_section_dynsym) (abfd, info, p))
8177 ++ dynsecsymcount;
8178 }
8179
8180 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
b34976b6 8181 return FALSE;
b49e97c9
TS
8182
8183 /* Make sure we didn't grow the global .got region. */
8184 dynobj = elf_hash_table (info)->dynobj;
f4416af6 8185 got = mips_elf_got_section (dynobj, FALSE);
f0abc2a1 8186 g = mips_elf_section_data (got)->u.got_info;
b49e97c9
TS
8187
8188 if (g->global_gotsym != NULL)
8189 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
8190 - g->global_gotsym->dynindx)
8191 <= g->global_gotno);
8192 }
8193
b49e97c9
TS
8194 /* Get a value for the GP register. */
8195 if (elf_gp (abfd) == 0)
8196 {
8197 struct bfd_link_hash_entry *h;
8198
b34976b6 8199 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 8200 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
8201 elf_gp (abfd) = (h->u.def.value
8202 + h->u.def.section->output_section->vma
8203 + h->u.def.section->output_offset);
1049f94e 8204 else if (info->relocatable)
b49e97c9
TS
8205 {
8206 bfd_vma lo = MINUS_ONE;
8207
8208 /* Find the GP-relative section with the lowest offset. */
9719ad41 8209 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
8210 if (o->vma < lo
8211 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
8212 lo = o->vma;
8213
8214 /* And calculate GP relative to that. */
8215 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
8216 }
8217 else
8218 {
8219 /* If the relocate_section function needs to do a reloc
8220 involving the GP value, it should make a reloc_dangerous
8221 callback to warn that GP is not defined. */
8222 }
8223 }
8224
8225 /* Go through the sections and collect the .reginfo and .mdebug
8226 information. */
8227 reginfo_sec = NULL;
8228 mdebug_sec = NULL;
8229 gptab_data_sec = NULL;
8230 gptab_bss_sec = NULL;
9719ad41 8231 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
8232 {
8233 if (strcmp (o->name, ".reginfo") == 0)
8234 {
8235 memset (&reginfo, 0, sizeof reginfo);
8236
8237 /* We have found the .reginfo section in the output file.
8238 Look through all the link_orders comprising it and merge
8239 the information together. */
9719ad41 8240 for (p = o->link_order_head; p != NULL; p = p->next)
b49e97c9
TS
8241 {
8242 asection *input_section;
8243 bfd *input_bfd;
8244 Elf32_External_RegInfo ext;
8245 Elf32_RegInfo sub;
8246
8247 if (p->type != bfd_indirect_link_order)
8248 {
8249 if (p->type == bfd_data_link_order)
8250 continue;
8251 abort ();
8252 }
8253
8254 input_section = p->u.indirect.section;
8255 input_bfd = input_section->owner;
8256
b49e97c9 8257 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 8258 &ext, 0, sizeof ext))
b34976b6 8259 return FALSE;
b49e97c9
TS
8260
8261 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
8262
8263 reginfo.ri_gprmask |= sub.ri_gprmask;
8264 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
8265 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
8266 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
8267 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
8268
8269 /* ri_gp_value is set by the function
8270 mips_elf32_section_processing when the section is
8271 finally written out. */
8272
8273 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8274 elf_link_input_bfd ignores this section. */
8275 input_section->flags &= ~SEC_HAS_CONTENTS;
8276 }
8277
8278 /* Size has been set in _bfd_mips_elf_always_size_sections. */
eea6121a 8279 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
8280
8281 /* Skip this section later on (I don't think this currently
8282 matters, but someday it might). */
9719ad41 8283 o->link_order_head = NULL;
b49e97c9
TS
8284
8285 reginfo_sec = o;
8286 }
8287
8288 if (strcmp (o->name, ".mdebug") == 0)
8289 {
8290 struct extsym_info einfo;
8291 bfd_vma last;
8292
8293 /* We have found the .mdebug section in the output file.
8294 Look through all the link_orders comprising it and merge
8295 the information together. */
8296 symhdr->magic = swap->sym_magic;
8297 /* FIXME: What should the version stamp be? */
8298 symhdr->vstamp = 0;
8299 symhdr->ilineMax = 0;
8300 symhdr->cbLine = 0;
8301 symhdr->idnMax = 0;
8302 symhdr->ipdMax = 0;
8303 symhdr->isymMax = 0;
8304 symhdr->ioptMax = 0;
8305 symhdr->iauxMax = 0;
8306 symhdr->issMax = 0;
8307 symhdr->issExtMax = 0;
8308 symhdr->ifdMax = 0;
8309 symhdr->crfd = 0;
8310 symhdr->iextMax = 0;
8311
8312 /* We accumulate the debugging information itself in the
8313 debug_info structure. */
8314 debug.line = NULL;
8315 debug.external_dnr = NULL;
8316 debug.external_pdr = NULL;
8317 debug.external_sym = NULL;
8318 debug.external_opt = NULL;
8319 debug.external_aux = NULL;
8320 debug.ss = NULL;
8321 debug.ssext = debug.ssext_end = NULL;
8322 debug.external_fdr = NULL;
8323 debug.external_rfd = NULL;
8324 debug.external_ext = debug.external_ext_end = NULL;
8325
8326 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 8327 if (mdebug_handle == NULL)
b34976b6 8328 return FALSE;
b49e97c9
TS
8329
8330 esym.jmptbl = 0;
8331 esym.cobol_main = 0;
8332 esym.weakext = 0;
8333 esym.reserved = 0;
8334 esym.ifd = ifdNil;
8335 esym.asym.iss = issNil;
8336 esym.asym.st = stLocal;
8337 esym.asym.reserved = 0;
8338 esym.asym.index = indexNil;
8339 last = 0;
8340 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
8341 {
8342 esym.asym.sc = sc[i];
8343 s = bfd_get_section_by_name (abfd, secname[i]);
8344 if (s != NULL)
8345 {
8346 esym.asym.value = s->vma;
eea6121a 8347 last = s->vma + s->size;
b49e97c9
TS
8348 }
8349 else
8350 esym.asym.value = last;
8351 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
8352 secname[i], &esym))
b34976b6 8353 return FALSE;
b49e97c9
TS
8354 }
8355
9719ad41 8356 for (p = o->link_order_head; p != NULL; p = p->next)
b49e97c9
TS
8357 {
8358 asection *input_section;
8359 bfd *input_bfd;
8360 const struct ecoff_debug_swap *input_swap;
8361 struct ecoff_debug_info input_debug;
8362 char *eraw_src;
8363 char *eraw_end;
8364
8365 if (p->type != bfd_indirect_link_order)
8366 {
8367 if (p->type == bfd_data_link_order)
8368 continue;
8369 abort ();
8370 }
8371
8372 input_section = p->u.indirect.section;
8373 input_bfd = input_section->owner;
8374
8375 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
8376 || (get_elf_backend_data (input_bfd)
8377 ->elf_backend_ecoff_debug_swap) == NULL)
8378 {
8379 /* I don't know what a non MIPS ELF bfd would be
8380 doing with a .mdebug section, but I don't really
8381 want to deal with it. */
8382 continue;
8383 }
8384
8385 input_swap = (get_elf_backend_data (input_bfd)
8386 ->elf_backend_ecoff_debug_swap);
8387
eea6121a 8388 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
8389
8390 /* The ECOFF linking code expects that we have already
8391 read in the debugging information and set up an
8392 ecoff_debug_info structure, so we do that now. */
8393 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
8394 &input_debug))
b34976b6 8395 return FALSE;
b49e97c9
TS
8396
8397 if (! (bfd_ecoff_debug_accumulate
8398 (mdebug_handle, abfd, &debug, swap, input_bfd,
8399 &input_debug, input_swap, info)))
b34976b6 8400 return FALSE;
b49e97c9
TS
8401
8402 /* Loop through the external symbols. For each one with
8403 interesting information, try to find the symbol in
8404 the linker global hash table and save the information
8405 for the output external symbols. */
8406 eraw_src = input_debug.external_ext;
8407 eraw_end = (eraw_src
8408 + (input_debug.symbolic_header.iextMax
8409 * input_swap->external_ext_size));
8410 for (;
8411 eraw_src < eraw_end;
8412 eraw_src += input_swap->external_ext_size)
8413 {
8414 EXTR ext;
8415 const char *name;
8416 struct mips_elf_link_hash_entry *h;
8417
9719ad41 8418 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
8419 if (ext.asym.sc == scNil
8420 || ext.asym.sc == scUndefined
8421 || ext.asym.sc == scSUndefined)
8422 continue;
8423
8424 name = input_debug.ssext + ext.asym.iss;
8425 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 8426 name, FALSE, FALSE, TRUE);
b49e97c9
TS
8427 if (h == NULL || h->esym.ifd != -2)
8428 continue;
8429
8430 if (ext.ifd != -1)
8431 {
8432 BFD_ASSERT (ext.ifd
8433 < input_debug.symbolic_header.ifdMax);
8434 ext.ifd = input_debug.ifdmap[ext.ifd];
8435 }
8436
8437 h->esym = ext;
8438 }
8439
8440 /* Free up the information we just read. */
8441 free (input_debug.line);
8442 free (input_debug.external_dnr);
8443 free (input_debug.external_pdr);
8444 free (input_debug.external_sym);
8445 free (input_debug.external_opt);
8446 free (input_debug.external_aux);
8447 free (input_debug.ss);
8448 free (input_debug.ssext);
8449 free (input_debug.external_fdr);
8450 free (input_debug.external_rfd);
8451 free (input_debug.external_ext);
8452
8453 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8454 elf_link_input_bfd ignores this section. */
8455 input_section->flags &= ~SEC_HAS_CONTENTS;
8456 }
8457
8458 if (SGI_COMPAT (abfd) && info->shared)
8459 {
8460 /* Create .rtproc section. */
8461 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8462 if (rtproc_sec == NULL)
8463 {
8464 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
8465 | SEC_LINKER_CREATED | SEC_READONLY);
8466
8467 rtproc_sec = bfd_make_section (abfd, ".rtproc");
8468 if (rtproc_sec == NULL
8469 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
8470 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 8471 return FALSE;
b49e97c9
TS
8472 }
8473
8474 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
8475 info, rtproc_sec,
8476 &debug))
b34976b6 8477 return FALSE;
b49e97c9
TS
8478 }
8479
8480 /* Build the external symbol information. */
8481 einfo.abfd = abfd;
8482 einfo.info = info;
8483 einfo.debug = &debug;
8484 einfo.swap = swap;
b34976b6 8485 einfo.failed = FALSE;
b49e97c9 8486 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 8487 mips_elf_output_extsym, &einfo);
b49e97c9 8488 if (einfo.failed)
b34976b6 8489 return FALSE;
b49e97c9
TS
8490
8491 /* Set the size of the .mdebug section. */
eea6121a 8492 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
8493
8494 /* Skip this section later on (I don't think this currently
8495 matters, but someday it might). */
9719ad41 8496 o->link_order_head = NULL;
b49e97c9
TS
8497
8498 mdebug_sec = o;
8499 }
8500
8501 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
8502 {
8503 const char *subname;
8504 unsigned int c;
8505 Elf32_gptab *tab;
8506 Elf32_External_gptab *ext_tab;
8507 unsigned int j;
8508
8509 /* The .gptab.sdata and .gptab.sbss sections hold
8510 information describing how the small data area would
8511 change depending upon the -G switch. These sections
8512 not used in executables files. */
1049f94e 8513 if (! info->relocatable)
b49e97c9 8514 {
9719ad41 8515 for (p = o->link_order_head; p != NULL; p = p->next)
b49e97c9
TS
8516 {
8517 asection *input_section;
8518
8519 if (p->type != bfd_indirect_link_order)
8520 {
8521 if (p->type == bfd_data_link_order)
8522 continue;
8523 abort ();
8524 }
8525
8526 input_section = p->u.indirect.section;
8527
8528 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8529 elf_link_input_bfd ignores this section. */
8530 input_section->flags &= ~SEC_HAS_CONTENTS;
8531 }
8532
8533 /* Skip this section later on (I don't think this
8534 currently matters, but someday it might). */
9719ad41 8535 o->link_order_head = NULL;
b49e97c9
TS
8536
8537 /* Really remove the section. */
8538 for (secpp = &abfd->sections;
8539 *secpp != o;
8540 secpp = &(*secpp)->next)
8541 ;
8542 bfd_section_list_remove (abfd, secpp);
8543 --abfd->section_count;
8544
8545 continue;
8546 }
8547
8548 /* There is one gptab for initialized data, and one for
8549 uninitialized data. */
8550 if (strcmp (o->name, ".gptab.sdata") == 0)
8551 gptab_data_sec = o;
8552 else if (strcmp (o->name, ".gptab.sbss") == 0)
8553 gptab_bss_sec = o;
8554 else
8555 {
8556 (*_bfd_error_handler)
8557 (_("%s: illegal section name `%s'"),
8558 bfd_get_filename (abfd), o->name);
8559 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 8560 return FALSE;
b49e97c9
TS
8561 }
8562
8563 /* The linker script always combines .gptab.data and
8564 .gptab.sdata into .gptab.sdata, and likewise for
8565 .gptab.bss and .gptab.sbss. It is possible that there is
8566 no .sdata or .sbss section in the output file, in which
8567 case we must change the name of the output section. */
8568 subname = o->name + sizeof ".gptab" - 1;
8569 if (bfd_get_section_by_name (abfd, subname) == NULL)
8570 {
8571 if (o == gptab_data_sec)
8572 o->name = ".gptab.data";
8573 else
8574 o->name = ".gptab.bss";
8575 subname = o->name + sizeof ".gptab" - 1;
8576 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
8577 }
8578
8579 /* Set up the first entry. */
8580 c = 1;
8581 amt = c * sizeof (Elf32_gptab);
9719ad41 8582 tab = bfd_malloc (amt);
b49e97c9 8583 if (tab == NULL)
b34976b6 8584 return FALSE;
b49e97c9
TS
8585 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
8586 tab[0].gt_header.gt_unused = 0;
8587
8588 /* Combine the input sections. */
9719ad41 8589 for (p = o->link_order_head; p != NULL; p = p->next)
b49e97c9
TS
8590 {
8591 asection *input_section;
8592 bfd *input_bfd;
8593 bfd_size_type size;
8594 unsigned long last;
8595 bfd_size_type gpentry;
8596
8597 if (p->type != bfd_indirect_link_order)
8598 {
8599 if (p->type == bfd_data_link_order)
8600 continue;
8601 abort ();
8602 }
8603
8604 input_section = p->u.indirect.section;
8605 input_bfd = input_section->owner;
8606
8607 /* Combine the gptab entries for this input section one
8608 by one. We know that the input gptab entries are
8609 sorted by ascending -G value. */
eea6121a 8610 size = input_section->size;
b49e97c9
TS
8611 last = 0;
8612 for (gpentry = sizeof (Elf32_External_gptab);
8613 gpentry < size;
8614 gpentry += sizeof (Elf32_External_gptab))
8615 {
8616 Elf32_External_gptab ext_gptab;
8617 Elf32_gptab int_gptab;
8618 unsigned long val;
8619 unsigned long add;
b34976b6 8620 bfd_boolean exact;
b49e97c9
TS
8621 unsigned int look;
8622
8623 if (! (bfd_get_section_contents
9719ad41
RS
8624 (input_bfd, input_section, &ext_gptab, gpentry,
8625 sizeof (Elf32_External_gptab))))
b49e97c9
TS
8626 {
8627 free (tab);
b34976b6 8628 return FALSE;
b49e97c9
TS
8629 }
8630
8631 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
8632 &int_gptab);
8633 val = int_gptab.gt_entry.gt_g_value;
8634 add = int_gptab.gt_entry.gt_bytes - last;
8635
b34976b6 8636 exact = FALSE;
b49e97c9
TS
8637 for (look = 1; look < c; look++)
8638 {
8639 if (tab[look].gt_entry.gt_g_value >= val)
8640 tab[look].gt_entry.gt_bytes += add;
8641
8642 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 8643 exact = TRUE;
b49e97c9
TS
8644 }
8645
8646 if (! exact)
8647 {
8648 Elf32_gptab *new_tab;
8649 unsigned int max;
8650
8651 /* We need a new table entry. */
8652 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 8653 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
8654 if (new_tab == NULL)
8655 {
8656 free (tab);
b34976b6 8657 return FALSE;
b49e97c9
TS
8658 }
8659 tab = new_tab;
8660 tab[c].gt_entry.gt_g_value = val;
8661 tab[c].gt_entry.gt_bytes = add;
8662
8663 /* Merge in the size for the next smallest -G
8664 value, since that will be implied by this new
8665 value. */
8666 max = 0;
8667 for (look = 1; look < c; look++)
8668 {
8669 if (tab[look].gt_entry.gt_g_value < val
8670 && (max == 0
8671 || (tab[look].gt_entry.gt_g_value
8672 > tab[max].gt_entry.gt_g_value)))
8673 max = look;
8674 }
8675 if (max != 0)
8676 tab[c].gt_entry.gt_bytes +=
8677 tab[max].gt_entry.gt_bytes;
8678
8679 ++c;
8680 }
8681
8682 last = int_gptab.gt_entry.gt_bytes;
8683 }
8684
8685 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8686 elf_link_input_bfd ignores this section. */
8687 input_section->flags &= ~SEC_HAS_CONTENTS;
8688 }
8689
8690 /* The table must be sorted by -G value. */
8691 if (c > 2)
8692 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
8693
8694 /* Swap out the table. */
8695 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 8696 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
8697 if (ext_tab == NULL)
8698 {
8699 free (tab);
b34976b6 8700 return FALSE;
b49e97c9
TS
8701 }
8702
8703 for (j = 0; j < c; j++)
8704 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
8705 free (tab);
8706
eea6121a 8707 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
8708 o->contents = (bfd_byte *) ext_tab;
8709
8710 /* Skip this section later on (I don't think this currently
8711 matters, but someday it might). */
9719ad41 8712 o->link_order_head = NULL;
b49e97c9
TS
8713 }
8714 }
8715
8716 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 8717 if (!bfd_elf_final_link (abfd, info))
b34976b6 8718 return FALSE;
b49e97c9
TS
8719
8720 /* Now write out the computed sections. */
8721
9719ad41 8722 if (reginfo_sec != NULL)
b49e97c9
TS
8723 {
8724 Elf32_External_RegInfo ext;
8725
8726 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 8727 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 8728 return FALSE;
b49e97c9
TS
8729 }
8730
9719ad41 8731 if (mdebug_sec != NULL)
b49e97c9
TS
8732 {
8733 BFD_ASSERT (abfd->output_has_begun);
8734 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
8735 swap, info,
8736 mdebug_sec->filepos))
b34976b6 8737 return FALSE;
b49e97c9
TS
8738
8739 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
8740 }
8741
9719ad41 8742 if (gptab_data_sec != NULL)
b49e97c9
TS
8743 {
8744 if (! bfd_set_section_contents (abfd, gptab_data_sec,
8745 gptab_data_sec->contents,
eea6121a 8746 0, gptab_data_sec->size))
b34976b6 8747 return FALSE;
b49e97c9
TS
8748 }
8749
9719ad41 8750 if (gptab_bss_sec != NULL)
b49e97c9
TS
8751 {
8752 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
8753 gptab_bss_sec->contents,
eea6121a 8754 0, gptab_bss_sec->size))
b34976b6 8755 return FALSE;
b49e97c9
TS
8756 }
8757
8758 if (SGI_COMPAT (abfd))
8759 {
8760 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8761 if (rtproc_sec != NULL)
8762 {
8763 if (! bfd_set_section_contents (abfd, rtproc_sec,
8764 rtproc_sec->contents,
eea6121a 8765 0, rtproc_sec->size))
b34976b6 8766 return FALSE;
b49e97c9
TS
8767 }
8768 }
8769
b34976b6 8770 return TRUE;
b49e97c9
TS
8771}
8772\f
64543e1a
RS
8773/* Structure for saying that BFD machine EXTENSION extends BASE. */
8774
8775struct mips_mach_extension {
8776 unsigned long extension, base;
8777};
8778
8779
8780/* An array describing how BFD machines relate to one another. The entries
8781 are ordered topologically with MIPS I extensions listed last. */
8782
8783static const struct mips_mach_extension mips_mach_extensions[] = {
8784 /* MIPS64 extensions. */
5f74bc13 8785 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
64543e1a
RS
8786 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
8787
8788 /* MIPS V extensions. */
8789 { bfd_mach_mipsisa64, bfd_mach_mips5 },
8790
8791 /* R10000 extensions. */
8792 { bfd_mach_mips12000, bfd_mach_mips10000 },
8793
8794 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
8795 vr5400 ISA, but doesn't include the multimedia stuff. It seems
8796 better to allow vr5400 and vr5500 code to be merged anyway, since
8797 many libraries will just use the core ISA. Perhaps we could add
8798 some sort of ASE flag if this ever proves a problem. */
8799 { bfd_mach_mips5500, bfd_mach_mips5400 },
8800 { bfd_mach_mips5400, bfd_mach_mips5000 },
8801
8802 /* MIPS IV extensions. */
8803 { bfd_mach_mips5, bfd_mach_mips8000 },
8804 { bfd_mach_mips10000, bfd_mach_mips8000 },
8805 { bfd_mach_mips5000, bfd_mach_mips8000 },
5a7ea749 8806 { bfd_mach_mips7000, bfd_mach_mips8000 },
0d2e43ed 8807 { bfd_mach_mips9000, bfd_mach_mips8000 },
64543e1a
RS
8808
8809 /* VR4100 extensions. */
8810 { bfd_mach_mips4120, bfd_mach_mips4100 },
8811 { bfd_mach_mips4111, bfd_mach_mips4100 },
8812
8813 /* MIPS III extensions. */
8814 { bfd_mach_mips8000, bfd_mach_mips4000 },
8815 { bfd_mach_mips4650, bfd_mach_mips4000 },
8816 { bfd_mach_mips4600, bfd_mach_mips4000 },
8817 { bfd_mach_mips4400, bfd_mach_mips4000 },
8818 { bfd_mach_mips4300, bfd_mach_mips4000 },
8819 { bfd_mach_mips4100, bfd_mach_mips4000 },
8820 { bfd_mach_mips4010, bfd_mach_mips4000 },
8821
8822 /* MIPS32 extensions. */
8823 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
8824
8825 /* MIPS II extensions. */
8826 { bfd_mach_mips4000, bfd_mach_mips6000 },
8827 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
8828
8829 /* MIPS I extensions. */
8830 { bfd_mach_mips6000, bfd_mach_mips3000 },
8831 { bfd_mach_mips3900, bfd_mach_mips3000 }
8832};
8833
8834
8835/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
8836
8837static bfd_boolean
9719ad41 8838mips_mach_extends_p (unsigned long base, unsigned long extension)
64543e1a
RS
8839{
8840 size_t i;
8841
8842 for (i = 0; extension != base && i < ARRAY_SIZE (mips_mach_extensions); i++)
8843 if (extension == mips_mach_extensions[i].extension)
8844 extension = mips_mach_extensions[i].base;
8845
8846 return extension == base;
8847}
8848
8849
8850/* Return true if the given ELF header flags describe a 32-bit binary. */
00707a0e 8851
b34976b6 8852static bfd_boolean
9719ad41 8853mips_32bit_flags_p (flagword flags)
00707a0e 8854{
64543e1a
RS
8855 return ((flags & EF_MIPS_32BITMODE) != 0
8856 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
8857 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
8858 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
8859 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
8860 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
8861 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
00707a0e
RS
8862}
8863
64543e1a 8864
b49e97c9
TS
8865/* Merge backend specific data from an object file to the output
8866 object file when linking. */
8867
b34976b6 8868bfd_boolean
9719ad41 8869_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
b49e97c9
TS
8870{
8871 flagword old_flags;
8872 flagword new_flags;
b34976b6
AM
8873 bfd_boolean ok;
8874 bfd_boolean null_input_bfd = TRUE;
b49e97c9
TS
8875 asection *sec;
8876
8877 /* Check if we have the same endianess */
82e51918 8878 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
aa701218
AO
8879 {
8880 (*_bfd_error_handler)
d003868e
AM
8881 (_("%B: endianness incompatible with that of the selected emulation"),
8882 ibfd);
aa701218
AO
8883 return FALSE;
8884 }
b49e97c9
TS
8885
8886 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
8887 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
b34976b6 8888 return TRUE;
b49e97c9 8889
aa701218
AO
8890 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
8891 {
8892 (*_bfd_error_handler)
d003868e
AM
8893 (_("%B: ABI is incompatible with that of the selected emulation"),
8894 ibfd);
aa701218
AO
8895 return FALSE;
8896 }
8897
b49e97c9
TS
8898 new_flags = elf_elfheader (ibfd)->e_flags;
8899 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
8900 old_flags = elf_elfheader (obfd)->e_flags;
8901
8902 if (! elf_flags_init (obfd))
8903 {
b34976b6 8904 elf_flags_init (obfd) = TRUE;
b49e97c9
TS
8905 elf_elfheader (obfd)->e_flags = new_flags;
8906 elf_elfheader (obfd)->e_ident[EI_CLASS]
8907 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
8908
8909 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
8910 && bfd_get_arch_info (obfd)->the_default)
8911 {
8912 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
8913 bfd_get_mach (ibfd)))
b34976b6 8914 return FALSE;
b49e97c9
TS
8915 }
8916
b34976b6 8917 return TRUE;
b49e97c9
TS
8918 }
8919
8920 /* Check flag compatibility. */
8921
8922 new_flags &= ~EF_MIPS_NOREORDER;
8923 old_flags &= ~EF_MIPS_NOREORDER;
8924
f4416af6
AO
8925 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
8926 doesn't seem to matter. */
8927 new_flags &= ~EF_MIPS_XGOT;
8928 old_flags &= ~EF_MIPS_XGOT;
8929
98a8deaf
RS
8930 /* MIPSpro generates ucode info in n64 objects. Again, we should
8931 just be able to ignore this. */
8932 new_flags &= ~EF_MIPS_UCODE;
8933 old_flags &= ~EF_MIPS_UCODE;
8934
b49e97c9 8935 if (new_flags == old_flags)
b34976b6 8936 return TRUE;
b49e97c9
TS
8937
8938 /* Check to see if the input BFD actually contains any sections.
8939 If not, its flags may not have been initialised either, but it cannot
8940 actually cause any incompatibility. */
8941 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8942 {
8943 /* Ignore synthetic sections and empty .text, .data and .bss sections
8944 which are automatically generated by gas. */
8945 if (strcmp (sec->name, ".reginfo")
8946 && strcmp (sec->name, ".mdebug")
eea6121a 8947 && (sec->size != 0
d13d89fa
NS
8948 || (strcmp (sec->name, ".text")
8949 && strcmp (sec->name, ".data")
8950 && strcmp (sec->name, ".bss"))))
b49e97c9 8951 {
b34976b6 8952 null_input_bfd = FALSE;
b49e97c9
TS
8953 break;
8954 }
8955 }
8956 if (null_input_bfd)
b34976b6 8957 return TRUE;
b49e97c9 8958
b34976b6 8959 ok = TRUE;
b49e97c9 8960
143d77c5
EC
8961 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
8962 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
b49e97c9 8963 {
b49e97c9 8964 (*_bfd_error_handler)
d003868e
AM
8965 (_("%B: warning: linking PIC files with non-PIC files"),
8966 ibfd);
143d77c5 8967 ok = TRUE;
b49e97c9
TS
8968 }
8969
143d77c5
EC
8970 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
8971 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
8972 if (! (new_flags & EF_MIPS_PIC))
8973 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
8974
8975 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
8976 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
b49e97c9 8977
64543e1a
RS
8978 /* Compare the ISAs. */
8979 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
b49e97c9 8980 {
64543e1a 8981 (*_bfd_error_handler)
d003868e
AM
8982 (_("%B: linking 32-bit code with 64-bit code"),
8983 ibfd);
64543e1a
RS
8984 ok = FALSE;
8985 }
8986 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
8987 {
8988 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
8989 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
b49e97c9 8990 {
64543e1a
RS
8991 /* Copy the architecture info from IBFD to OBFD. Also copy
8992 the 32-bit flag (if set) so that we continue to recognise
8993 OBFD as a 32-bit binary. */
8994 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
8995 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
8996 elf_elfheader (obfd)->e_flags
8997 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
8998
8999 /* Copy across the ABI flags if OBFD doesn't use them
9000 and if that was what caused us to treat IBFD as 32-bit. */
9001 if ((old_flags & EF_MIPS_ABI) == 0
9002 && mips_32bit_flags_p (new_flags)
9003 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
9004 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
b49e97c9
TS
9005 }
9006 else
9007 {
64543e1a 9008 /* The ISAs aren't compatible. */
b49e97c9 9009 (*_bfd_error_handler)
d003868e
AM
9010 (_("%B: linking %s module with previous %s modules"),
9011 ibfd,
64543e1a
RS
9012 bfd_printable_name (ibfd),
9013 bfd_printable_name (obfd));
b34976b6 9014 ok = FALSE;
b49e97c9 9015 }
b49e97c9
TS
9016 }
9017
64543e1a
RS
9018 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9019 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9020
9021 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
b49e97c9
TS
9022 does set EI_CLASS differently from any 32-bit ABI. */
9023 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
9024 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9025 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9026 {
9027 /* Only error if both are set (to different values). */
9028 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
9029 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9030 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9031 {
9032 (*_bfd_error_handler)
d003868e
AM
9033 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
9034 ibfd,
b49e97c9
TS
9035 elf_mips_abi_name (ibfd),
9036 elf_mips_abi_name (obfd));
b34976b6 9037 ok = FALSE;
b49e97c9
TS
9038 }
9039 new_flags &= ~EF_MIPS_ABI;
9040 old_flags &= ~EF_MIPS_ABI;
9041 }
9042
fb39dac1
RS
9043 /* For now, allow arbitrary mixing of ASEs (retain the union). */
9044 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
9045 {
9046 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
9047
9048 new_flags &= ~ EF_MIPS_ARCH_ASE;
9049 old_flags &= ~ EF_MIPS_ARCH_ASE;
9050 }
9051
b49e97c9
TS
9052 /* Warn about any other mismatches */
9053 if (new_flags != old_flags)
9054 {
9055 (*_bfd_error_handler)
d003868e
AM
9056 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
9057 ibfd, (unsigned long) new_flags,
b49e97c9 9058 (unsigned long) old_flags);
b34976b6 9059 ok = FALSE;
b49e97c9
TS
9060 }
9061
9062 if (! ok)
9063 {
9064 bfd_set_error (bfd_error_bad_value);
b34976b6 9065 return FALSE;
b49e97c9
TS
9066 }
9067
b34976b6 9068 return TRUE;
b49e97c9
TS
9069}
9070
9071/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
9072
b34976b6 9073bfd_boolean
9719ad41 9074_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
9075{
9076 BFD_ASSERT (!elf_flags_init (abfd)
9077 || elf_elfheader (abfd)->e_flags == flags);
9078
9079 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
9080 elf_flags_init (abfd) = TRUE;
9081 return TRUE;
b49e97c9
TS
9082}
9083
b34976b6 9084bfd_boolean
9719ad41 9085_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 9086{
9719ad41 9087 FILE *file = ptr;
b49e97c9
TS
9088
9089 BFD_ASSERT (abfd != NULL && ptr != NULL);
9090
9091 /* Print normal ELF private data. */
9092 _bfd_elf_print_private_bfd_data (abfd, ptr);
9093
9094 /* xgettext:c-format */
9095 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9096
9097 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
9098 fprintf (file, _(" [abi=O32]"));
9099 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
9100 fprintf (file, _(" [abi=O64]"));
9101 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
9102 fprintf (file, _(" [abi=EABI32]"));
9103 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
9104 fprintf (file, _(" [abi=EABI64]"));
9105 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
9106 fprintf (file, _(" [abi unknown]"));
9107 else if (ABI_N32_P (abfd))
9108 fprintf (file, _(" [abi=N32]"));
9109 else if (ABI_64_P (abfd))
9110 fprintf (file, _(" [abi=64]"));
9111 else
9112 fprintf (file, _(" [no abi set]"));
9113
9114 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
9115 fprintf (file, _(" [mips1]"));
9116 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
9117 fprintf (file, _(" [mips2]"));
9118 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
9119 fprintf (file, _(" [mips3]"));
9120 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
9121 fprintf (file, _(" [mips4]"));
9122 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
9123 fprintf (file, _(" [mips5]"));
9124 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
9125 fprintf (file, _(" [mips32]"));
9126 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
9127 fprintf (file, _(" [mips64]"));
af7ee8bf
CD
9128 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
9129 fprintf (file, _(" [mips32r2]"));
5f74bc13
CD
9130 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
9131 fprintf (file, _(" [mips64r2]"));
b49e97c9
TS
9132 else
9133 fprintf (file, _(" [unknown ISA]"));
9134
40d32fc6
CD
9135 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
9136 fprintf (file, _(" [mdmx]"));
9137
9138 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
9139 fprintf (file, _(" [mips16]"));
9140
b49e97c9
TS
9141 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
9142 fprintf (file, _(" [32bitmode]"));
9143 else
9144 fprintf (file, _(" [not 32bitmode]"));
9145
9146 fputc ('\n', file);
9147
b34976b6 9148 return TRUE;
b49e97c9 9149}
2f89ff8d
L
9150
9151struct bfd_elf_special_section const _bfd_mips_elf_special_sections[]=
9152{
7dcb9820
AM
9153 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9154 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9155 { ".lit4", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9156 { ".lit8", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9157 { ".ucode", 6, 0, SHT_MIPS_UCODE, 0 },
9158 { ".mdebug", 7, 0, SHT_MIPS_DEBUG, 0 },
9159 { NULL, 0, 0, 0, 0 }
2f89ff8d 9160};
This page took 1.116201 seconds and 4 git commands to generate.