bfd/ChangeLog:
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
64543e1a 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
77cfaee6 3 2003, 2004, 2005 Free Software Foundation, Inc.
b49e97c9
TS
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
ae9a127f 12 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 13
ae9a127f
NC
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
b49e97c9 18
ae9a127f
NC
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
b49e97c9 23
ae9a127f
NC
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
b49e97c9
TS
27
28/* This file handles functionality common to the different MIPS ABI's. */
29
30#include "bfd.h"
31#include "sysdep.h"
32#include "libbfd.h"
64543e1a 33#include "libiberty.h"
b49e97c9
TS
34#include "elf-bfd.h"
35#include "elfxx-mips.h"
36#include "elf/mips.h"
37
38/* Get the ECOFF swapping routines. */
39#include "coff/sym.h"
40#include "coff/symconst.h"
41#include "coff/ecoff.h"
42#include "coff/mips.h"
43
b15e6682
AO
44#include "hashtab.h"
45
46/* This structure is used to hold .got entries while estimating got
47 sizes. */
48struct mips_got_entry
49{
50 /* The input bfd in which the symbol is defined. */
51 bfd *abfd;
f4416af6
AO
52 /* The index of the symbol, as stored in the relocation r_info, if
53 we have a local symbol; -1 otherwise. */
54 long symndx;
55 union
56 {
57 /* If abfd == NULL, an address that must be stored in the got. */
58 bfd_vma address;
59 /* If abfd != NULL && symndx != -1, the addend of the relocation
60 that should be added to the symbol value. */
61 bfd_vma addend;
62 /* If abfd != NULL && symndx == -1, the hash table entry
63 corresponding to a global symbol in the got (or, local, if
64 h->forced_local). */
65 struct mips_elf_link_hash_entry *h;
66 } d;
0f20cc35
DJ
67
68 /* The TLS types included in this GOT entry (specifically, GD and
69 IE). The GD and IE flags can be added as we encounter new
70 relocations. LDM can also be set; it will always be alone, not
71 combined with any GD or IE flags. An LDM GOT entry will be
72 a local symbol entry with r_symndx == 0. */
73 unsigned char tls_type;
74
b15e6682 75 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
76 corresponding to this symbol+addend. If it's a global symbol
77 whose offset is yet to be decided, it's going to be -1. */
78 long gotidx;
b15e6682
AO
79};
80
f0abc2a1 81/* This structure is used to hold .got information when linking. */
b49e97c9
TS
82
83struct mips_got_info
84{
85 /* The global symbol in the GOT with the lowest index in the dynamic
86 symbol table. */
87 struct elf_link_hash_entry *global_gotsym;
88 /* The number of global .got entries. */
89 unsigned int global_gotno;
0f20cc35
DJ
90 /* The number of .got slots used for TLS. */
91 unsigned int tls_gotno;
92 /* The first unused TLS .got entry. Used only during
93 mips_elf_initialize_tls_index. */
94 unsigned int tls_assigned_gotno;
b49e97c9
TS
95 /* The number of local .got entries. */
96 unsigned int local_gotno;
97 /* The number of local .got entries we have used. */
98 unsigned int assigned_gotno;
b15e6682
AO
99 /* A hash table holding members of the got. */
100 struct htab *got_entries;
f4416af6
AO
101 /* A hash table mapping input bfds to other mips_got_info. NULL
102 unless multi-got was necessary. */
103 struct htab *bfd2got;
104 /* In multi-got links, a pointer to the next got (err, rather, most
105 of the time, it points to the previous got). */
106 struct mips_got_info *next;
0f20cc35
DJ
107 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
108 for none, or MINUS_TWO for not yet assigned. This is needed
109 because a single-GOT link may have multiple hash table entries
110 for the LDM. It does not get initialized in multi-GOT mode. */
111 bfd_vma tls_ldm_offset;
f4416af6
AO
112};
113
114/* Map an input bfd to a got in a multi-got link. */
115
116struct mips_elf_bfd2got_hash {
117 bfd *bfd;
118 struct mips_got_info *g;
119};
120
121/* Structure passed when traversing the bfd2got hash table, used to
122 create and merge bfd's gots. */
123
124struct mips_elf_got_per_bfd_arg
125{
126 /* A hashtable that maps bfds to gots. */
127 htab_t bfd2got;
128 /* The output bfd. */
129 bfd *obfd;
130 /* The link information. */
131 struct bfd_link_info *info;
132 /* A pointer to the primary got, i.e., the one that's going to get
133 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
134 DT_MIPS_GOTSYM. */
135 struct mips_got_info *primary;
136 /* A non-primary got we're trying to merge with other input bfd's
137 gots. */
138 struct mips_got_info *current;
139 /* The maximum number of got entries that can be addressed with a
140 16-bit offset. */
141 unsigned int max_count;
142 /* The number of local and global entries in the primary got. */
143 unsigned int primary_count;
144 /* The number of local and global entries in the current got. */
145 unsigned int current_count;
0f20cc35
DJ
146 /* The total number of global entries which will live in the
147 primary got and be automatically relocated. This includes
148 those not referenced by the primary GOT but included in
149 the "master" GOT. */
150 unsigned int global_count;
f4416af6
AO
151};
152
153/* Another structure used to pass arguments for got entries traversal. */
154
155struct mips_elf_set_global_got_offset_arg
156{
157 struct mips_got_info *g;
158 int value;
159 unsigned int needed_relocs;
160 struct bfd_link_info *info;
b49e97c9
TS
161};
162
0f20cc35
DJ
163/* A structure used to count TLS relocations or GOT entries, for GOT
164 entry or ELF symbol table traversal. */
165
166struct mips_elf_count_tls_arg
167{
168 struct bfd_link_info *info;
169 unsigned int needed;
170};
171
f0abc2a1
AM
172struct _mips_elf_section_data
173{
174 struct bfd_elf_section_data elf;
175 union
176 {
177 struct mips_got_info *got_info;
178 bfd_byte *tdata;
179 } u;
180};
181
182#define mips_elf_section_data(sec) \
68bfbfcc 183 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 184
b49e97c9
TS
185/* This structure is passed to mips_elf_sort_hash_table_f when sorting
186 the dynamic symbols. */
187
188struct mips_elf_hash_sort_data
189{
190 /* The symbol in the global GOT with the lowest dynamic symbol table
191 index. */
192 struct elf_link_hash_entry *low;
0f20cc35
DJ
193 /* The least dynamic symbol table index corresponding to a non-TLS
194 symbol with a GOT entry. */
b49e97c9 195 long min_got_dynindx;
f4416af6
AO
196 /* The greatest dynamic symbol table index corresponding to a symbol
197 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 198 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 199 long max_unref_got_dynindx;
b49e97c9
TS
200 /* The greatest dynamic symbol table index not corresponding to a
201 symbol without a GOT entry. */
202 long max_non_got_dynindx;
203};
204
205/* The MIPS ELF linker needs additional information for each symbol in
206 the global hash table. */
207
208struct mips_elf_link_hash_entry
209{
210 struct elf_link_hash_entry root;
211
212 /* External symbol information. */
213 EXTR esym;
214
215 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
216 this symbol. */
217 unsigned int possibly_dynamic_relocs;
218
219 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
220 a readonly section. */
b34976b6 221 bfd_boolean readonly_reloc;
b49e97c9 222
b49e97c9
TS
223 /* We must not create a stub for a symbol that has relocations
224 related to taking the function's address, i.e. any but
225 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
226 p. 4-20. */
b34976b6 227 bfd_boolean no_fn_stub;
b49e97c9
TS
228
229 /* If there is a stub that 32 bit functions should use to call this
230 16 bit function, this points to the section containing the stub. */
231 asection *fn_stub;
232
233 /* Whether we need the fn_stub; this is set if this symbol appears
234 in any relocs other than a 16 bit call. */
b34976b6 235 bfd_boolean need_fn_stub;
b49e97c9
TS
236
237 /* If there is a stub that 16 bit functions should use to call this
238 32 bit function, this points to the section containing the stub. */
239 asection *call_stub;
240
241 /* This is like the call_stub field, but it is used if the function
242 being called returns a floating point value. */
243 asection *call_fp_stub;
7c5fcef7
L
244
245 /* Are we forced local? .*/
b34976b6 246 bfd_boolean forced_local;
0f20cc35
DJ
247
248#define GOT_NORMAL 0
249#define GOT_TLS_GD 1
250#define GOT_TLS_LDM 2
251#define GOT_TLS_IE 4
252#define GOT_TLS_OFFSET_DONE 0x40
253#define GOT_TLS_DONE 0x80
254 unsigned char tls_type;
255 /* This is only used in single-GOT mode; in multi-GOT mode there
256 is one mips_got_entry per GOT entry, so the offset is stored
257 there. In single-GOT mode there may be many mips_got_entry
258 structures all referring to the same GOT slot. It might be
259 possible to use root.got.offset instead, but that field is
260 overloaded already. */
261 bfd_vma tls_got_offset;
b49e97c9
TS
262};
263
264/* MIPS ELF linker hash table. */
265
266struct mips_elf_link_hash_table
267{
268 struct elf_link_hash_table root;
269#if 0
270 /* We no longer use this. */
271 /* String section indices for the dynamic section symbols. */
272 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
273#endif
274 /* The number of .rtproc entries. */
275 bfd_size_type procedure_count;
276 /* The size of the .compact_rel section (if SGI_COMPAT). */
277 bfd_size_type compact_rel_size;
278 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
8dc1a139 279 entry is set to the address of __rld_obj_head as in IRIX5. */
b34976b6 280 bfd_boolean use_rld_obj_head;
b49e97c9
TS
281 /* This is the value of the __rld_map or __rld_obj_head symbol. */
282 bfd_vma rld_value;
283 /* This is set if we see any mips16 stub sections. */
b34976b6 284 bfd_boolean mips16_stubs_seen;
b49e97c9
TS
285};
286
0f20cc35
DJ
287#define TLS_RELOC_P(r_type) \
288 (r_type == R_MIPS_TLS_DTPMOD32 \
289 || r_type == R_MIPS_TLS_DTPMOD64 \
290 || r_type == R_MIPS_TLS_DTPREL32 \
291 || r_type == R_MIPS_TLS_DTPREL64 \
292 || r_type == R_MIPS_TLS_GD \
293 || r_type == R_MIPS_TLS_LDM \
294 || r_type == R_MIPS_TLS_DTPREL_HI16 \
295 || r_type == R_MIPS_TLS_DTPREL_LO16 \
296 || r_type == R_MIPS_TLS_GOTTPREL \
297 || r_type == R_MIPS_TLS_TPREL32 \
298 || r_type == R_MIPS_TLS_TPREL64 \
299 || r_type == R_MIPS_TLS_TPREL_HI16 \
300 || r_type == R_MIPS_TLS_TPREL_LO16)
301
b49e97c9
TS
302/* Structure used to pass information to mips_elf_output_extsym. */
303
304struct extsym_info
305{
9e4aeb93
RS
306 bfd *abfd;
307 struct bfd_link_info *info;
b49e97c9
TS
308 struct ecoff_debug_info *debug;
309 const struct ecoff_debug_swap *swap;
b34976b6 310 bfd_boolean failed;
b49e97c9
TS
311};
312
8dc1a139 313/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
314
315static const char * const mips_elf_dynsym_rtproc_names[] =
316{
317 "_procedure_table",
318 "_procedure_string_table",
319 "_procedure_table_size",
320 NULL
321};
322
323/* These structures are used to generate the .compact_rel section on
8dc1a139 324 IRIX5. */
b49e97c9
TS
325
326typedef struct
327{
328 unsigned long id1; /* Always one? */
329 unsigned long num; /* Number of compact relocation entries. */
330 unsigned long id2; /* Always two? */
331 unsigned long offset; /* The file offset of the first relocation. */
332 unsigned long reserved0; /* Zero? */
333 unsigned long reserved1; /* Zero? */
334} Elf32_compact_rel;
335
336typedef struct
337{
338 bfd_byte id1[4];
339 bfd_byte num[4];
340 bfd_byte id2[4];
341 bfd_byte offset[4];
342 bfd_byte reserved0[4];
343 bfd_byte reserved1[4];
344} Elf32_External_compact_rel;
345
346typedef struct
347{
348 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
349 unsigned int rtype : 4; /* Relocation types. See below. */
350 unsigned int dist2to : 8;
351 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
352 unsigned long konst; /* KONST field. See below. */
353 unsigned long vaddr; /* VADDR to be relocated. */
354} Elf32_crinfo;
355
356typedef struct
357{
358 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
359 unsigned int rtype : 4; /* Relocation types. See below. */
360 unsigned int dist2to : 8;
361 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
362 unsigned long konst; /* KONST field. See below. */
363} Elf32_crinfo2;
364
365typedef struct
366{
367 bfd_byte info[4];
368 bfd_byte konst[4];
369 bfd_byte vaddr[4];
370} Elf32_External_crinfo;
371
372typedef struct
373{
374 bfd_byte info[4];
375 bfd_byte konst[4];
376} Elf32_External_crinfo2;
377
378/* These are the constants used to swap the bitfields in a crinfo. */
379
380#define CRINFO_CTYPE (0x1)
381#define CRINFO_CTYPE_SH (31)
382#define CRINFO_RTYPE (0xf)
383#define CRINFO_RTYPE_SH (27)
384#define CRINFO_DIST2TO (0xff)
385#define CRINFO_DIST2TO_SH (19)
386#define CRINFO_RELVADDR (0x7ffff)
387#define CRINFO_RELVADDR_SH (0)
388
389/* A compact relocation info has long (3 words) or short (2 words)
390 formats. A short format doesn't have VADDR field and relvaddr
391 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
392#define CRF_MIPS_LONG 1
393#define CRF_MIPS_SHORT 0
394
395/* There are 4 types of compact relocation at least. The value KONST
396 has different meaning for each type:
397
398 (type) (konst)
399 CT_MIPS_REL32 Address in data
400 CT_MIPS_WORD Address in word (XXX)
401 CT_MIPS_GPHI_LO GP - vaddr
402 CT_MIPS_JMPAD Address to jump
403 */
404
405#define CRT_MIPS_REL32 0xa
406#define CRT_MIPS_WORD 0xb
407#define CRT_MIPS_GPHI_LO 0xc
408#define CRT_MIPS_JMPAD 0xd
409
410#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
411#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
412#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
413#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
414\f
415/* The structure of the runtime procedure descriptor created by the
416 loader for use by the static exception system. */
417
418typedef struct runtime_pdr {
ae9a127f
NC
419 bfd_vma adr; /* Memory address of start of procedure. */
420 long regmask; /* Save register mask. */
421 long regoffset; /* Save register offset. */
422 long fregmask; /* Save floating point register mask. */
423 long fregoffset; /* Save floating point register offset. */
424 long frameoffset; /* Frame size. */
425 short framereg; /* Frame pointer register. */
426 short pcreg; /* Offset or reg of return pc. */
427 long irpss; /* Index into the runtime string table. */
b49e97c9 428 long reserved;
ae9a127f 429 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
430} RPDR, *pRPDR;
431#define cbRPDR sizeof (RPDR)
432#define rpdNil ((pRPDR) 0)
433\f
b15e6682 434static struct mips_got_entry *mips_elf_create_local_got_entry
0f20cc35
DJ
435 (bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma, unsigned long,
436 struct mips_elf_link_hash_entry *, int);
b34976b6 437static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 438 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
439static bfd_vma mips_elf_high
440 (bfd_vma);
b34976b6 441static bfd_boolean mips_elf_stub_section_p
9719ad41 442 (bfd *, asection *);
b34976b6 443static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
444 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
445 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
446 bfd_vma *, asection *);
9719ad41
RS
447static hashval_t mips_elf_got_entry_hash
448 (const void *);
f4416af6 449static bfd_vma mips_elf_adjust_gp
9719ad41 450 (bfd *, struct mips_got_info *, bfd *);
f4416af6 451static struct mips_got_info *mips_elf_got_for_ibfd
9719ad41 452 (struct mips_got_info *, bfd *);
f4416af6 453
b49e97c9
TS
454/* This will be used when we sort the dynamic relocation records. */
455static bfd *reldyn_sorting_bfd;
456
457/* Nonzero if ABFD is using the N32 ABI. */
0b25d3e6 458
b49e97c9
TS
459#define ABI_N32_P(abfd) \
460 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
461
4a14403c 462/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 463#define ABI_64_P(abfd) \
141ff970 464 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 465
4a14403c
TS
466/* Nonzero if ABFD is using NewABI conventions. */
467#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
468
469/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
470#define IRIX_COMPAT(abfd) \
471 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
472
b49e97c9
TS
473/* Whether we are trying to be compatible with IRIX at all. */
474#define SGI_COMPAT(abfd) \
475 (IRIX_COMPAT (abfd) != ict_none)
476
477/* The name of the options section. */
478#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 479 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 480
cc27e1dc
EC
481/* Whether the section is readonly. */
482#define MIPS_ELF_READONLY_SECTION(sec) \
483 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
484 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
485
b49e97c9 486/* The name of the stub section. */
ca07892d 487#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
488
489/* The size of an external REL relocation. */
490#define MIPS_ELF_REL_SIZE(abfd) \
491 (get_elf_backend_data (abfd)->s->sizeof_rel)
492
493/* The size of an external dynamic table entry. */
494#define MIPS_ELF_DYN_SIZE(abfd) \
495 (get_elf_backend_data (abfd)->s->sizeof_dyn)
496
497/* The size of a GOT entry. */
498#define MIPS_ELF_GOT_SIZE(abfd) \
499 (get_elf_backend_data (abfd)->s->arch_size / 8)
500
501/* The size of a symbol-table entry. */
502#define MIPS_ELF_SYM_SIZE(abfd) \
503 (get_elf_backend_data (abfd)->s->sizeof_sym)
504
505/* The default alignment for sections, as a power of two. */
506#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 507 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
508
509/* Get word-sized data. */
510#define MIPS_ELF_GET_WORD(abfd, ptr) \
511 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
512
513/* Put out word-sized data. */
514#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
515 (ABI_64_P (abfd) \
516 ? bfd_put_64 (abfd, val, ptr) \
517 : bfd_put_32 (abfd, val, ptr))
518
519/* Add a dynamic symbol table-entry. */
9719ad41 520#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 521 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
522
523#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
524 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
525
4ffba85c
AO
526/* Determine whether the internal relocation of index REL_IDX is REL
527 (zero) or RELA (non-zero). The assumption is that, if there are
528 two relocation sections for this section, one of them is REL and
529 the other is RELA. If the index of the relocation we're testing is
530 in range for the first relocation section, check that the external
531 relocation size is that for RELA. It is also assumed that, if
532 rel_idx is not in range for the first section, and this first
533 section contains REL relocs, then the relocation is in the second
534 section, that is RELA. */
535#define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
536 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
537 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
538 > (bfd_vma)(rel_idx)) \
539 == (elf_section_data (sec)->rel_hdr.sh_entsize \
540 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
541 : sizeof (Elf32_External_Rela))))
542
b49e97c9
TS
543/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
544 from smaller values. Start with zero, widen, *then* decrement. */
545#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 546#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9
TS
547
548/* The number of local .got entries we reserve. */
549#define MIPS_RESERVED_GOTNO (2)
550
f4416af6
AO
551/* The offset of $gp from the beginning of the .got section. */
552#define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)
553
554/* The maximum size of the GOT for it to be addressable using 16-bit
555 offsets from $gp. */
556#define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)
557
6a691779 558/* Instructions which appear in a stub. */
b49e97c9 559#define STUB_LW(abfd) \
f4416af6
AO
560 ((ABI_64_P (abfd) \
561 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
562 : 0x8f998010)) /* lw t9,0x8010(gp) */
b49e97c9 563#define STUB_MOVE(abfd) \
6a691779
TS
564 ((ABI_64_P (abfd) \
565 ? 0x03e0782d /* daddu t7,ra */ \
566 : 0x03e07821)) /* addu t7,ra */
567#define STUB_JALR 0x0320f809 /* jalr t9,ra */
b49e97c9 568#define STUB_LI16(abfd) \
6a691779
TS
569 ((ABI_64_P (abfd) \
570 ? 0x64180000 /* daddiu t8,zero,0 */ \
571 : 0x24180000)) /* addiu t8,zero,0 */
b49e97c9
TS
572#define MIPS_FUNCTION_STUB_SIZE (16)
573
574/* The name of the dynamic interpreter. This is put in the .interp
575 section. */
576
577#define ELF_DYNAMIC_INTERPRETER(abfd) \
578 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
579 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
580 : "/usr/lib/libc.so.1")
581
582#ifdef BFD64
ee6423ed
AO
583#define MNAME(bfd,pre,pos) \
584 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
585#define ELF_R_SYM(bfd, i) \
586 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
587#define ELF_R_TYPE(bfd, i) \
588 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
589#define ELF_R_INFO(bfd, s, t) \
590 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
591#else
ee6423ed 592#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
593#define ELF_R_SYM(bfd, i) \
594 (ELF32_R_SYM (i))
595#define ELF_R_TYPE(bfd, i) \
596 (ELF32_R_TYPE (i))
597#define ELF_R_INFO(bfd, s, t) \
598 (ELF32_R_INFO (s, t))
599#endif
600\f
601 /* The mips16 compiler uses a couple of special sections to handle
602 floating point arguments.
603
604 Section names that look like .mips16.fn.FNNAME contain stubs that
605 copy floating point arguments from the fp regs to the gp regs and
606 then jump to FNNAME. If any 32 bit function calls FNNAME, the
607 call should be redirected to the stub instead. If no 32 bit
608 function calls FNNAME, the stub should be discarded. We need to
609 consider any reference to the function, not just a call, because
610 if the address of the function is taken we will need the stub,
611 since the address might be passed to a 32 bit function.
612
613 Section names that look like .mips16.call.FNNAME contain stubs
614 that copy floating point arguments from the gp regs to the fp
615 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
616 then any 16 bit function that calls FNNAME should be redirected
617 to the stub instead. If FNNAME is not a 32 bit function, the
618 stub should be discarded.
619
620 .mips16.call.fp.FNNAME sections are similar, but contain stubs
621 which call FNNAME and then copy the return value from the fp regs
622 to the gp regs. These stubs store the return value in $18 while
623 calling FNNAME; any function which might call one of these stubs
624 must arrange to save $18 around the call. (This case is not
625 needed for 32 bit functions that call 16 bit functions, because
626 16 bit functions always return floating point values in both
627 $f0/$f1 and $2/$3.)
628
629 Note that in all cases FNNAME might be defined statically.
630 Therefore, FNNAME is not used literally. Instead, the relocation
631 information will indicate which symbol the section is for.
632
633 We record any stubs that we find in the symbol table. */
634
635#define FN_STUB ".mips16.fn."
636#define CALL_STUB ".mips16.call."
637#define CALL_FP_STUB ".mips16.call.fp."
638\f
639/* Look up an entry in a MIPS ELF linker hash table. */
640
641#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
642 ((struct mips_elf_link_hash_entry *) \
643 elf_link_hash_lookup (&(table)->root, (string), (create), \
644 (copy), (follow)))
645
646/* Traverse a MIPS ELF linker hash table. */
647
648#define mips_elf_link_hash_traverse(table, func, info) \
649 (elf_link_hash_traverse \
650 (&(table)->root, \
9719ad41 651 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
652 (info)))
653
654/* Get the MIPS ELF linker hash table from a link_info structure. */
655
656#define mips_elf_hash_table(p) \
657 ((struct mips_elf_link_hash_table *) ((p)->hash))
658
0f20cc35
DJ
659/* Find the base offsets for thread-local storage in this object,
660 for GD/LD and IE/LE respectively. */
661
662#define TP_OFFSET 0x7000
663#define DTP_OFFSET 0x8000
664
665static bfd_vma
666dtprel_base (struct bfd_link_info *info)
667{
668 /* If tls_sec is NULL, we should have signalled an error already. */
669 if (elf_hash_table (info)->tls_sec == NULL)
670 return 0;
671 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
672}
673
674static bfd_vma
675tprel_base (struct bfd_link_info *info)
676{
677 /* If tls_sec is NULL, we should have signalled an error already. */
678 if (elf_hash_table (info)->tls_sec == NULL)
679 return 0;
680 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
681}
682
b49e97c9
TS
683/* Create an entry in a MIPS ELF linker hash table. */
684
685static struct bfd_hash_entry *
9719ad41
RS
686mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
687 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
688{
689 struct mips_elf_link_hash_entry *ret =
690 (struct mips_elf_link_hash_entry *) entry;
691
692 /* Allocate the structure if it has not already been allocated by a
693 subclass. */
9719ad41
RS
694 if (ret == NULL)
695 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
696 if (ret == NULL)
b49e97c9
TS
697 return (struct bfd_hash_entry *) ret;
698
699 /* Call the allocation method of the superclass. */
700 ret = ((struct mips_elf_link_hash_entry *)
701 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
702 table, string));
9719ad41 703 if (ret != NULL)
b49e97c9
TS
704 {
705 /* Set local fields. */
706 memset (&ret->esym, 0, sizeof (EXTR));
707 /* We use -2 as a marker to indicate that the information has
708 not been set. -1 means there is no associated ifd. */
709 ret->esym.ifd = -2;
710 ret->possibly_dynamic_relocs = 0;
b34976b6 711 ret->readonly_reloc = FALSE;
b34976b6 712 ret->no_fn_stub = FALSE;
b49e97c9 713 ret->fn_stub = NULL;
b34976b6 714 ret->need_fn_stub = FALSE;
b49e97c9
TS
715 ret->call_stub = NULL;
716 ret->call_fp_stub = NULL;
b34976b6 717 ret->forced_local = FALSE;
0f20cc35 718 ret->tls_type = GOT_NORMAL;
b49e97c9
TS
719 }
720
721 return (struct bfd_hash_entry *) ret;
722}
f0abc2a1
AM
723
724bfd_boolean
9719ad41 725_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1
AM
726{
727 struct _mips_elf_section_data *sdata;
728 bfd_size_type amt = sizeof (*sdata);
729
9719ad41 730 sdata = bfd_zalloc (abfd, amt);
f0abc2a1
AM
731 if (sdata == NULL)
732 return FALSE;
9719ad41 733 sec->used_by_bfd = sdata;
f0abc2a1
AM
734
735 return _bfd_elf_new_section_hook (abfd, sec);
736}
b49e97c9
TS
737\f
738/* Read ECOFF debugging information from a .mdebug section into a
739 ecoff_debug_info structure. */
740
b34976b6 741bfd_boolean
9719ad41
RS
742_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
743 struct ecoff_debug_info *debug)
b49e97c9
TS
744{
745 HDRR *symhdr;
746 const struct ecoff_debug_swap *swap;
9719ad41 747 char *ext_hdr;
b49e97c9
TS
748
749 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
750 memset (debug, 0, sizeof (*debug));
751
9719ad41 752 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
753 if (ext_hdr == NULL && swap->external_hdr_size != 0)
754 goto error_return;
755
9719ad41 756 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 757 swap->external_hdr_size))
b49e97c9
TS
758 goto error_return;
759
760 symhdr = &debug->symbolic_header;
761 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
762
763 /* The symbolic header contains absolute file offsets and sizes to
764 read. */
765#define READ(ptr, offset, count, size, type) \
766 if (symhdr->count == 0) \
767 debug->ptr = NULL; \
768 else \
769 { \
770 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 771 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
772 if (debug->ptr == NULL) \
773 goto error_return; \
9719ad41 774 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
775 || bfd_bread (debug->ptr, amt, abfd) != amt) \
776 goto error_return; \
777 }
778
779 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
780 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
781 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
782 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
783 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
784 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
785 union aux_ext *);
786 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
787 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
788 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
789 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
790 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
791#undef READ
792
793 debug->fdr = NULL;
b49e97c9 794
b34976b6 795 return TRUE;
b49e97c9
TS
796
797 error_return:
798 if (ext_hdr != NULL)
799 free (ext_hdr);
800 if (debug->line != NULL)
801 free (debug->line);
802 if (debug->external_dnr != NULL)
803 free (debug->external_dnr);
804 if (debug->external_pdr != NULL)
805 free (debug->external_pdr);
806 if (debug->external_sym != NULL)
807 free (debug->external_sym);
808 if (debug->external_opt != NULL)
809 free (debug->external_opt);
810 if (debug->external_aux != NULL)
811 free (debug->external_aux);
812 if (debug->ss != NULL)
813 free (debug->ss);
814 if (debug->ssext != NULL)
815 free (debug->ssext);
816 if (debug->external_fdr != NULL)
817 free (debug->external_fdr);
818 if (debug->external_rfd != NULL)
819 free (debug->external_rfd);
820 if (debug->external_ext != NULL)
821 free (debug->external_ext);
b34976b6 822 return FALSE;
b49e97c9
TS
823}
824\f
825/* Swap RPDR (runtime procedure table entry) for output. */
826
827static void
9719ad41 828ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
829{
830 H_PUT_S32 (abfd, in->adr, ex->p_adr);
831 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
832 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
833 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
834 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
835 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
836
837 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
838 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
839
840 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
841}
842
843/* Create a runtime procedure table from the .mdebug section. */
844
b34976b6 845static bfd_boolean
9719ad41
RS
846mips_elf_create_procedure_table (void *handle, bfd *abfd,
847 struct bfd_link_info *info, asection *s,
848 struct ecoff_debug_info *debug)
b49e97c9
TS
849{
850 const struct ecoff_debug_swap *swap;
851 HDRR *hdr = &debug->symbolic_header;
852 RPDR *rpdr, *rp;
853 struct rpdr_ext *erp;
9719ad41 854 void *rtproc;
b49e97c9
TS
855 struct pdr_ext *epdr;
856 struct sym_ext *esym;
857 char *ss, **sv;
858 char *str;
859 bfd_size_type size;
860 bfd_size_type count;
861 unsigned long sindex;
862 unsigned long i;
863 PDR pdr;
864 SYMR sym;
865 const char *no_name_func = _("static procedure (no name)");
866
867 epdr = NULL;
868 rpdr = NULL;
869 esym = NULL;
870 ss = NULL;
871 sv = NULL;
872
873 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
874
875 sindex = strlen (no_name_func) + 1;
876 count = hdr->ipdMax;
877 if (count > 0)
878 {
879 size = swap->external_pdr_size;
880
9719ad41 881 epdr = bfd_malloc (size * count);
b49e97c9
TS
882 if (epdr == NULL)
883 goto error_return;
884
9719ad41 885 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
886 goto error_return;
887
888 size = sizeof (RPDR);
9719ad41 889 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
890 if (rpdr == NULL)
891 goto error_return;
892
893 size = sizeof (char *);
9719ad41 894 sv = bfd_malloc (size * count);
b49e97c9
TS
895 if (sv == NULL)
896 goto error_return;
897
898 count = hdr->isymMax;
899 size = swap->external_sym_size;
9719ad41 900 esym = bfd_malloc (size * count);
b49e97c9
TS
901 if (esym == NULL)
902 goto error_return;
903
9719ad41 904 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
905 goto error_return;
906
907 count = hdr->issMax;
9719ad41 908 ss = bfd_malloc (count);
b49e97c9
TS
909 if (ss == NULL)
910 goto error_return;
f075ee0c 911 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
912 goto error_return;
913
914 count = hdr->ipdMax;
915 for (i = 0; i < (unsigned long) count; i++, rp++)
916 {
9719ad41
RS
917 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
918 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
919 rp->adr = sym.value;
920 rp->regmask = pdr.regmask;
921 rp->regoffset = pdr.regoffset;
922 rp->fregmask = pdr.fregmask;
923 rp->fregoffset = pdr.fregoffset;
924 rp->frameoffset = pdr.frameoffset;
925 rp->framereg = pdr.framereg;
926 rp->pcreg = pdr.pcreg;
927 rp->irpss = sindex;
928 sv[i] = ss + sym.iss;
929 sindex += strlen (sv[i]) + 1;
930 }
931 }
932
933 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
934 size = BFD_ALIGN (size, 16);
9719ad41 935 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
936 if (rtproc == NULL)
937 {
938 mips_elf_hash_table (info)->procedure_count = 0;
939 goto error_return;
940 }
941
942 mips_elf_hash_table (info)->procedure_count = count + 2;
943
9719ad41 944 erp = rtproc;
b49e97c9
TS
945 memset (erp, 0, sizeof (struct rpdr_ext));
946 erp++;
947 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
948 strcpy (str, no_name_func);
949 str += strlen (no_name_func) + 1;
950 for (i = 0; i < count; i++)
951 {
952 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
953 strcpy (str, sv[i]);
954 str += strlen (sv[i]) + 1;
955 }
956 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
957
958 /* Set the size and contents of .rtproc section. */
eea6121a 959 s->size = size;
9719ad41 960 s->contents = rtproc;
b49e97c9
TS
961
962 /* Skip this section later on (I don't think this currently
963 matters, but someday it might). */
9719ad41 964 s->link_order_head = NULL;
b49e97c9
TS
965
966 if (epdr != NULL)
967 free (epdr);
968 if (rpdr != NULL)
969 free (rpdr);
970 if (esym != NULL)
971 free (esym);
972 if (ss != NULL)
973 free (ss);
974 if (sv != NULL)
975 free (sv);
976
b34976b6 977 return TRUE;
b49e97c9
TS
978
979 error_return:
980 if (epdr != NULL)
981 free (epdr);
982 if (rpdr != NULL)
983 free (rpdr);
984 if (esym != NULL)
985 free (esym);
986 if (ss != NULL)
987 free (ss);
988 if (sv != NULL)
989 free (sv);
b34976b6 990 return FALSE;
b49e97c9
TS
991}
992
993/* Check the mips16 stubs for a particular symbol, and see if we can
994 discard them. */
995
b34976b6 996static bfd_boolean
9719ad41
RS
997mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
998 void *data ATTRIBUTE_UNUSED)
b49e97c9
TS
999{
1000 if (h->root.root.type == bfd_link_hash_warning)
1001 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1002
1003 if (h->fn_stub != NULL
1004 && ! h->need_fn_stub)
1005 {
1006 /* We don't need the fn_stub; the only references to this symbol
1007 are 16 bit calls. Clobber the size to 0 to prevent it from
1008 being included in the link. */
eea6121a 1009 h->fn_stub->size = 0;
b49e97c9
TS
1010 h->fn_stub->flags &= ~SEC_RELOC;
1011 h->fn_stub->reloc_count = 0;
1012 h->fn_stub->flags |= SEC_EXCLUDE;
1013 }
1014
1015 if (h->call_stub != NULL
1016 && h->root.other == STO_MIPS16)
1017 {
1018 /* We don't need the call_stub; this is a 16 bit function, so
1019 calls from other 16 bit functions are OK. Clobber the size
1020 to 0 to prevent it from being included in the link. */
eea6121a 1021 h->call_stub->size = 0;
b49e97c9
TS
1022 h->call_stub->flags &= ~SEC_RELOC;
1023 h->call_stub->reloc_count = 0;
1024 h->call_stub->flags |= SEC_EXCLUDE;
1025 }
1026
1027 if (h->call_fp_stub != NULL
1028 && h->root.other == STO_MIPS16)
1029 {
1030 /* We don't need the call_stub; this is a 16 bit function, so
1031 calls from other 16 bit functions are OK. Clobber the size
1032 to 0 to prevent it from being included in the link. */
eea6121a 1033 h->call_fp_stub->size = 0;
b49e97c9
TS
1034 h->call_fp_stub->flags &= ~SEC_RELOC;
1035 h->call_fp_stub->reloc_count = 0;
1036 h->call_fp_stub->flags |= SEC_EXCLUDE;
1037 }
1038
b34976b6 1039 return TRUE;
b49e97c9
TS
1040}
1041\f
d6f16593
MR
1042/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1043 Most mips16 instructions are 16 bits, but these instructions
1044 are 32 bits.
1045
1046 The format of these instructions is:
1047
1048 +--------------+--------------------------------+
1049 | JALX | X| Imm 20:16 | Imm 25:21 |
1050 +--------------+--------------------------------+
1051 | Immediate 15:0 |
1052 +-----------------------------------------------+
1053
1054 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1055 Note that the immediate value in the first word is swapped.
1056
1057 When producing a relocatable object file, R_MIPS16_26 is
1058 handled mostly like R_MIPS_26. In particular, the addend is
1059 stored as a straight 26-bit value in a 32-bit instruction.
1060 (gas makes life simpler for itself by never adjusting a
1061 R_MIPS16_26 reloc to be against a section, so the addend is
1062 always zero). However, the 32 bit instruction is stored as 2
1063 16-bit values, rather than a single 32-bit value. In a
1064 big-endian file, the result is the same; in a little-endian
1065 file, the two 16-bit halves of the 32 bit value are swapped.
1066 This is so that a disassembler can recognize the jal
1067 instruction.
1068
1069 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1070 instruction stored as two 16-bit values. The addend A is the
1071 contents of the targ26 field. The calculation is the same as
1072 R_MIPS_26. When storing the calculated value, reorder the
1073 immediate value as shown above, and don't forget to store the
1074 value as two 16-bit values.
1075
1076 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1077 defined as
1078
1079 big-endian:
1080 +--------+----------------------+
1081 | | |
1082 | | targ26-16 |
1083 |31 26|25 0|
1084 +--------+----------------------+
1085
1086 little-endian:
1087 +----------+------+-------------+
1088 | | | |
1089 | sub1 | | sub2 |
1090 |0 9|10 15|16 31|
1091 +----------+--------------------+
1092 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1093 ((sub1 << 16) | sub2)).
1094
1095 When producing a relocatable object file, the calculation is
1096 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1097 When producing a fully linked file, the calculation is
1098 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1099 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1100
1101 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1102 mode. A typical instruction will have a format like this:
1103
1104 +--------------+--------------------------------+
1105 | EXTEND | Imm 10:5 | Imm 15:11 |
1106 +--------------+--------------------------------+
1107 | Major | rx | ry | Imm 4:0 |
1108 +--------------+--------------------------------+
1109
1110 EXTEND is the five bit value 11110. Major is the instruction
1111 opcode.
1112
1113 This is handled exactly like R_MIPS_GPREL16, except that the
1114 addend is retrieved and stored as shown in this diagram; that
1115 is, the Imm fields above replace the V-rel16 field.
1116
1117 All we need to do here is shuffle the bits appropriately. As
1118 above, the two 16-bit halves must be swapped on a
1119 little-endian system.
1120
1121 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1122 access data when neither GP-relative nor PC-relative addressing
1123 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1124 except that the addend is retrieved and stored as shown above
1125 for R_MIPS16_GPREL.
1126 */
1127void
1128_bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1129 bfd_boolean jal_shuffle, bfd_byte *data)
1130{
1131 bfd_vma extend, insn, val;
1132
1133 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1134 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1135 return;
1136
1137 /* Pick up the mips16 extend instruction and the real instruction. */
1138 extend = bfd_get_16 (abfd, data);
1139 insn = bfd_get_16 (abfd, data + 2);
1140 if (r_type == R_MIPS16_26)
1141 {
1142 if (jal_shuffle)
1143 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1144 | ((extend & 0x1f) << 21) | insn;
1145 else
1146 val = extend << 16 | insn;
1147 }
1148 else
1149 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1150 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1151 bfd_put_32 (abfd, val, data);
1152}
1153
1154void
1155_bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1156 bfd_boolean jal_shuffle, bfd_byte *data)
1157{
1158 bfd_vma extend, insn, val;
1159
1160 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1161 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1162 return;
1163
1164 val = bfd_get_32 (abfd, data);
1165 if (r_type == R_MIPS16_26)
1166 {
1167 if (jal_shuffle)
1168 {
1169 insn = val & 0xffff;
1170 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1171 | ((val >> 21) & 0x1f);
1172 }
1173 else
1174 {
1175 insn = val & 0xffff;
1176 extend = val >> 16;
1177 }
1178 }
1179 else
1180 {
1181 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1182 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1183 }
1184 bfd_put_16 (abfd, insn, data + 2);
1185 bfd_put_16 (abfd, extend, data);
1186}
1187
b49e97c9 1188bfd_reloc_status_type
9719ad41
RS
1189_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1190 arelent *reloc_entry, asection *input_section,
1191 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
1192{
1193 bfd_vma relocation;
a7ebbfdf 1194 bfd_signed_vma val;
30ac9238 1195 bfd_reloc_status_type status;
b49e97c9
TS
1196
1197 if (bfd_is_com_section (symbol->section))
1198 relocation = 0;
1199 else
1200 relocation = symbol->value;
1201
1202 relocation += symbol->section->output_section->vma;
1203 relocation += symbol->section->output_offset;
1204
07515404 1205 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
1206 return bfd_reloc_outofrange;
1207
b49e97c9 1208 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
1209 val = reloc_entry->addend;
1210
30ac9238 1211 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 1212
b49e97c9 1213 /* Adjust val for the final section location and GP value. If we
1049f94e 1214 are producing relocatable output, we don't want to do this for
b49e97c9 1215 an external symbol. */
1049f94e 1216 if (! relocatable
b49e97c9
TS
1217 || (symbol->flags & BSF_SECTION_SYM) != 0)
1218 val += relocation - gp;
1219
a7ebbfdf
TS
1220 if (reloc_entry->howto->partial_inplace)
1221 {
30ac9238
RS
1222 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1223 (bfd_byte *) data
1224 + reloc_entry->address);
1225 if (status != bfd_reloc_ok)
1226 return status;
a7ebbfdf
TS
1227 }
1228 else
1229 reloc_entry->addend = val;
b49e97c9 1230
1049f94e 1231 if (relocatable)
b49e97c9 1232 reloc_entry->address += input_section->output_offset;
30ac9238
RS
1233
1234 return bfd_reloc_ok;
1235}
1236
1237/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1238 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1239 that contains the relocation field and DATA points to the start of
1240 INPUT_SECTION. */
1241
1242struct mips_hi16
1243{
1244 struct mips_hi16 *next;
1245 bfd_byte *data;
1246 asection *input_section;
1247 arelent rel;
1248};
1249
1250/* FIXME: This should not be a static variable. */
1251
1252static struct mips_hi16 *mips_hi16_list;
1253
1254/* A howto special_function for REL *HI16 relocations. We can only
1255 calculate the correct value once we've seen the partnering
1256 *LO16 relocation, so just save the information for later.
1257
1258 The ABI requires that the *LO16 immediately follow the *HI16.
1259 However, as a GNU extension, we permit an arbitrary number of
1260 *HI16s to be associated with a single *LO16. This significantly
1261 simplies the relocation handling in gcc. */
1262
1263bfd_reloc_status_type
1264_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1265 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1266 asection *input_section, bfd *output_bfd,
1267 char **error_message ATTRIBUTE_UNUSED)
1268{
1269 struct mips_hi16 *n;
1270
07515404 1271 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1272 return bfd_reloc_outofrange;
1273
1274 n = bfd_malloc (sizeof *n);
1275 if (n == NULL)
1276 return bfd_reloc_outofrange;
1277
1278 n->next = mips_hi16_list;
1279 n->data = data;
1280 n->input_section = input_section;
1281 n->rel = *reloc_entry;
1282 mips_hi16_list = n;
1283
1284 if (output_bfd != NULL)
1285 reloc_entry->address += input_section->output_offset;
1286
1287 return bfd_reloc_ok;
1288}
1289
1290/* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1291 like any other 16-bit relocation when applied to global symbols, but is
1292 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1293
1294bfd_reloc_status_type
1295_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1296 void *data, asection *input_section,
1297 bfd *output_bfd, char **error_message)
1298{
1299 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1300 || bfd_is_und_section (bfd_get_section (symbol))
1301 || bfd_is_com_section (bfd_get_section (symbol)))
1302 /* The relocation is against a global symbol. */
1303 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1304 input_section, output_bfd,
1305 error_message);
1306
1307 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1308 input_section, output_bfd, error_message);
1309}
1310
1311/* A howto special_function for REL *LO16 relocations. The *LO16 itself
1312 is a straightforward 16 bit inplace relocation, but we must deal with
1313 any partnering high-part relocations as well. */
1314
1315bfd_reloc_status_type
1316_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1317 void *data, asection *input_section,
1318 bfd *output_bfd, char **error_message)
1319{
1320 bfd_vma vallo;
d6f16593 1321 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 1322
07515404 1323 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1324 return bfd_reloc_outofrange;
1325
d6f16593
MR
1326 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1327 location);
1328 vallo = bfd_get_32 (abfd, location);
1329 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1330 location);
1331
30ac9238
RS
1332 while (mips_hi16_list != NULL)
1333 {
1334 bfd_reloc_status_type ret;
1335 struct mips_hi16 *hi;
1336
1337 hi = mips_hi16_list;
1338
1339 /* R_MIPS_GOT16 relocations are something of a special case. We
1340 want to install the addend in the same way as for a R_MIPS_HI16
1341 relocation (with a rightshift of 16). However, since GOT16
1342 relocations can also be used with global symbols, their howto
1343 has a rightshift of 0. */
1344 if (hi->rel.howto->type == R_MIPS_GOT16)
1345 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1346
1347 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1348 carry or borrow will induce a change of +1 or -1 in the high part. */
1349 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1350
30ac9238
RS
1351 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1352 hi->input_section, output_bfd,
1353 error_message);
1354 if (ret != bfd_reloc_ok)
1355 return ret;
1356
1357 mips_hi16_list = hi->next;
1358 free (hi);
1359 }
1360
1361 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1362 input_section, output_bfd,
1363 error_message);
1364}
1365
1366/* A generic howto special_function. This calculates and installs the
1367 relocation itself, thus avoiding the oft-discussed problems in
1368 bfd_perform_relocation and bfd_install_relocation. */
1369
1370bfd_reloc_status_type
1371_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1372 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1373 asection *input_section, bfd *output_bfd,
1374 char **error_message ATTRIBUTE_UNUSED)
1375{
1376 bfd_signed_vma val;
1377 bfd_reloc_status_type status;
1378 bfd_boolean relocatable;
1379
1380 relocatable = (output_bfd != NULL);
1381
07515404 1382 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1383 return bfd_reloc_outofrange;
1384
1385 /* Build up the field adjustment in VAL. */
1386 val = 0;
1387 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1388 {
1389 /* Either we're calculating the final field value or we have a
1390 relocation against a section symbol. Add in the section's
1391 offset or address. */
1392 val += symbol->section->output_section->vma;
1393 val += symbol->section->output_offset;
1394 }
1395
1396 if (!relocatable)
1397 {
1398 /* We're calculating the final field value. Add in the symbol's value
1399 and, if pc-relative, subtract the address of the field itself. */
1400 val += symbol->value;
1401 if (reloc_entry->howto->pc_relative)
1402 {
1403 val -= input_section->output_section->vma;
1404 val -= input_section->output_offset;
1405 val -= reloc_entry->address;
1406 }
1407 }
1408
1409 /* VAL is now the final adjustment. If we're keeping this relocation
1410 in the output file, and if the relocation uses a separate addend,
1411 we just need to add VAL to that addend. Otherwise we need to add
1412 VAL to the relocation field itself. */
1413 if (relocatable && !reloc_entry->howto->partial_inplace)
1414 reloc_entry->addend += val;
1415 else
1416 {
d6f16593
MR
1417 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1418
30ac9238
RS
1419 /* Add in the separate addend, if any. */
1420 val += reloc_entry->addend;
1421
1422 /* Add VAL to the relocation field. */
d6f16593
MR
1423 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1424 location);
30ac9238 1425 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593
MR
1426 location);
1427 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1428 location);
1429
30ac9238
RS
1430 if (status != bfd_reloc_ok)
1431 return status;
1432 }
1433
1434 if (relocatable)
1435 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
1436
1437 return bfd_reloc_ok;
1438}
1439\f
1440/* Swap an entry in a .gptab section. Note that these routines rely
1441 on the equivalence of the two elements of the union. */
1442
1443static void
9719ad41
RS
1444bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1445 Elf32_gptab *in)
b49e97c9
TS
1446{
1447 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1448 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1449}
1450
1451static void
9719ad41
RS
1452bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1453 Elf32_External_gptab *ex)
b49e97c9
TS
1454{
1455 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1456 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1457}
1458
1459static void
9719ad41
RS
1460bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1461 Elf32_External_compact_rel *ex)
b49e97c9
TS
1462{
1463 H_PUT_32 (abfd, in->id1, ex->id1);
1464 H_PUT_32 (abfd, in->num, ex->num);
1465 H_PUT_32 (abfd, in->id2, ex->id2);
1466 H_PUT_32 (abfd, in->offset, ex->offset);
1467 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1468 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1469}
1470
1471static void
9719ad41
RS
1472bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1473 Elf32_External_crinfo *ex)
b49e97c9
TS
1474{
1475 unsigned long l;
1476
1477 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1478 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1479 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1480 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1481 H_PUT_32 (abfd, l, ex->info);
1482 H_PUT_32 (abfd, in->konst, ex->konst);
1483 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1484}
b49e97c9
TS
1485\f
1486/* A .reginfo section holds a single Elf32_RegInfo structure. These
1487 routines swap this structure in and out. They are used outside of
1488 BFD, so they are globally visible. */
1489
1490void
9719ad41
RS
1491bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1492 Elf32_RegInfo *in)
b49e97c9
TS
1493{
1494 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1495 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1496 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1497 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1498 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1499 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1500}
1501
1502void
9719ad41
RS
1503bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1504 Elf32_External_RegInfo *ex)
b49e97c9
TS
1505{
1506 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1507 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1508 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1509 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1510 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1511 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1512}
1513
1514/* In the 64 bit ABI, the .MIPS.options section holds register
1515 information in an Elf64_Reginfo structure. These routines swap
1516 them in and out. They are globally visible because they are used
1517 outside of BFD. These routines are here so that gas can call them
1518 without worrying about whether the 64 bit ABI has been included. */
1519
1520void
9719ad41
RS
1521bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1522 Elf64_Internal_RegInfo *in)
b49e97c9
TS
1523{
1524 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1525 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1526 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1527 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1528 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1529 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1530 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1531}
1532
1533void
9719ad41
RS
1534bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1535 Elf64_External_RegInfo *ex)
b49e97c9
TS
1536{
1537 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1538 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1539 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1540 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1541 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1542 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1543 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1544}
1545
1546/* Swap in an options header. */
1547
1548void
9719ad41
RS
1549bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1550 Elf_Internal_Options *in)
b49e97c9
TS
1551{
1552 in->kind = H_GET_8 (abfd, ex->kind);
1553 in->size = H_GET_8 (abfd, ex->size);
1554 in->section = H_GET_16 (abfd, ex->section);
1555 in->info = H_GET_32 (abfd, ex->info);
1556}
1557
1558/* Swap out an options header. */
1559
1560void
9719ad41
RS
1561bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1562 Elf_External_Options *ex)
b49e97c9
TS
1563{
1564 H_PUT_8 (abfd, in->kind, ex->kind);
1565 H_PUT_8 (abfd, in->size, ex->size);
1566 H_PUT_16 (abfd, in->section, ex->section);
1567 H_PUT_32 (abfd, in->info, ex->info);
1568}
1569\f
1570/* This function is called via qsort() to sort the dynamic relocation
1571 entries by increasing r_symndx value. */
1572
1573static int
9719ad41 1574sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 1575{
947216bf
AM
1576 Elf_Internal_Rela int_reloc1;
1577 Elf_Internal_Rela int_reloc2;
b49e97c9 1578
947216bf
AM
1579 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1580 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 1581
947216bf 1582 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
b49e97c9
TS
1583}
1584
f4416af6
AO
1585/* Like sort_dynamic_relocs, but used for elf64 relocations. */
1586
1587static int
7e3102a7
AM
1588sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1589 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 1590{
7e3102a7 1591#ifdef BFD64
f4416af6
AO
1592 Elf_Internal_Rela int_reloc1[3];
1593 Elf_Internal_Rela int_reloc2[3];
1594
1595 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1596 (reldyn_sorting_bfd, arg1, int_reloc1);
1597 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1598 (reldyn_sorting_bfd, arg2, int_reloc2);
1599
1600 return (ELF64_R_SYM (int_reloc1[0].r_info)
1601 - ELF64_R_SYM (int_reloc2[0].r_info));
7e3102a7
AM
1602#else
1603 abort ();
1604#endif
f4416af6
AO
1605}
1606
1607
b49e97c9
TS
1608/* This routine is used to write out ECOFF debugging external symbol
1609 information. It is called via mips_elf_link_hash_traverse. The
1610 ECOFF external symbol information must match the ELF external
1611 symbol information. Unfortunately, at this point we don't know
1612 whether a symbol is required by reloc information, so the two
1613 tables may wind up being different. We must sort out the external
1614 symbol information before we can set the final size of the .mdebug
1615 section, and we must set the size of the .mdebug section before we
1616 can relocate any sections, and we can't know which symbols are
1617 required by relocation until we relocate the sections.
1618 Fortunately, it is relatively unlikely that any symbol will be
1619 stripped but required by a reloc. In particular, it can not happen
1620 when generating a final executable. */
1621
b34976b6 1622static bfd_boolean
9719ad41 1623mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 1624{
9719ad41 1625 struct extsym_info *einfo = data;
b34976b6 1626 bfd_boolean strip;
b49e97c9
TS
1627 asection *sec, *output_section;
1628
1629 if (h->root.root.type == bfd_link_hash_warning)
1630 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1631
1632 if (h->root.indx == -2)
b34976b6 1633 strip = FALSE;
f5385ebf 1634 else if ((h->root.def_dynamic
77cfaee6
AM
1635 || h->root.ref_dynamic
1636 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
1637 && !h->root.def_regular
1638 && !h->root.ref_regular)
b34976b6 1639 strip = TRUE;
b49e97c9
TS
1640 else if (einfo->info->strip == strip_all
1641 || (einfo->info->strip == strip_some
1642 && bfd_hash_lookup (einfo->info->keep_hash,
1643 h->root.root.root.string,
b34976b6
AM
1644 FALSE, FALSE) == NULL))
1645 strip = TRUE;
b49e97c9 1646 else
b34976b6 1647 strip = FALSE;
b49e97c9
TS
1648
1649 if (strip)
b34976b6 1650 return TRUE;
b49e97c9
TS
1651
1652 if (h->esym.ifd == -2)
1653 {
1654 h->esym.jmptbl = 0;
1655 h->esym.cobol_main = 0;
1656 h->esym.weakext = 0;
1657 h->esym.reserved = 0;
1658 h->esym.ifd = ifdNil;
1659 h->esym.asym.value = 0;
1660 h->esym.asym.st = stGlobal;
1661
1662 if (h->root.root.type == bfd_link_hash_undefined
1663 || h->root.root.type == bfd_link_hash_undefweak)
1664 {
1665 const char *name;
1666
1667 /* Use undefined class. Also, set class and type for some
1668 special symbols. */
1669 name = h->root.root.root.string;
1670 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1671 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1672 {
1673 h->esym.asym.sc = scData;
1674 h->esym.asym.st = stLabel;
1675 h->esym.asym.value = 0;
1676 }
1677 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1678 {
1679 h->esym.asym.sc = scAbs;
1680 h->esym.asym.st = stLabel;
1681 h->esym.asym.value =
1682 mips_elf_hash_table (einfo->info)->procedure_count;
1683 }
4a14403c 1684 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
1685 {
1686 h->esym.asym.sc = scAbs;
1687 h->esym.asym.st = stLabel;
1688 h->esym.asym.value = elf_gp (einfo->abfd);
1689 }
1690 else
1691 h->esym.asym.sc = scUndefined;
1692 }
1693 else if (h->root.root.type != bfd_link_hash_defined
1694 && h->root.root.type != bfd_link_hash_defweak)
1695 h->esym.asym.sc = scAbs;
1696 else
1697 {
1698 const char *name;
1699
1700 sec = h->root.root.u.def.section;
1701 output_section = sec->output_section;
1702
1703 /* When making a shared library and symbol h is the one from
1704 the another shared library, OUTPUT_SECTION may be null. */
1705 if (output_section == NULL)
1706 h->esym.asym.sc = scUndefined;
1707 else
1708 {
1709 name = bfd_section_name (output_section->owner, output_section);
1710
1711 if (strcmp (name, ".text") == 0)
1712 h->esym.asym.sc = scText;
1713 else if (strcmp (name, ".data") == 0)
1714 h->esym.asym.sc = scData;
1715 else if (strcmp (name, ".sdata") == 0)
1716 h->esym.asym.sc = scSData;
1717 else if (strcmp (name, ".rodata") == 0
1718 || strcmp (name, ".rdata") == 0)
1719 h->esym.asym.sc = scRData;
1720 else if (strcmp (name, ".bss") == 0)
1721 h->esym.asym.sc = scBss;
1722 else if (strcmp (name, ".sbss") == 0)
1723 h->esym.asym.sc = scSBss;
1724 else if (strcmp (name, ".init") == 0)
1725 h->esym.asym.sc = scInit;
1726 else if (strcmp (name, ".fini") == 0)
1727 h->esym.asym.sc = scFini;
1728 else
1729 h->esym.asym.sc = scAbs;
1730 }
1731 }
1732
1733 h->esym.asym.reserved = 0;
1734 h->esym.asym.index = indexNil;
1735 }
1736
1737 if (h->root.root.type == bfd_link_hash_common)
1738 h->esym.asym.value = h->root.root.u.c.size;
1739 else if (h->root.root.type == bfd_link_hash_defined
1740 || h->root.root.type == bfd_link_hash_defweak)
1741 {
1742 if (h->esym.asym.sc == scCommon)
1743 h->esym.asym.sc = scBss;
1744 else if (h->esym.asym.sc == scSCommon)
1745 h->esym.asym.sc = scSBss;
1746
1747 sec = h->root.root.u.def.section;
1748 output_section = sec->output_section;
1749 if (output_section != NULL)
1750 h->esym.asym.value = (h->root.root.u.def.value
1751 + sec->output_offset
1752 + output_section->vma);
1753 else
1754 h->esym.asym.value = 0;
1755 }
f5385ebf 1756 else if (h->root.needs_plt)
b49e97c9
TS
1757 {
1758 struct mips_elf_link_hash_entry *hd = h;
b34976b6 1759 bfd_boolean no_fn_stub = h->no_fn_stub;
b49e97c9
TS
1760
1761 while (hd->root.root.type == bfd_link_hash_indirect)
1762 {
1763 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1764 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1765 }
1766
1767 if (!no_fn_stub)
1768 {
1769 /* Set type and value for a symbol with a function stub. */
1770 h->esym.asym.st = stProc;
1771 sec = hd->root.root.u.def.section;
1772 if (sec == NULL)
1773 h->esym.asym.value = 0;
1774 else
1775 {
1776 output_section = sec->output_section;
1777 if (output_section != NULL)
1778 h->esym.asym.value = (hd->root.plt.offset
1779 + sec->output_offset
1780 + output_section->vma);
1781 else
1782 h->esym.asym.value = 0;
1783 }
b49e97c9
TS
1784 }
1785 }
1786
1787 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1788 h->root.root.root.string,
1789 &h->esym))
1790 {
b34976b6
AM
1791 einfo->failed = TRUE;
1792 return FALSE;
b49e97c9
TS
1793 }
1794
b34976b6 1795 return TRUE;
b49e97c9
TS
1796}
1797
1798/* A comparison routine used to sort .gptab entries. */
1799
1800static int
9719ad41 1801gptab_compare (const void *p1, const void *p2)
b49e97c9 1802{
9719ad41
RS
1803 const Elf32_gptab *a1 = p1;
1804 const Elf32_gptab *a2 = p2;
b49e97c9
TS
1805
1806 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1807}
1808\f
b15e6682 1809/* Functions to manage the got entry hash table. */
f4416af6
AO
1810
1811/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1812 hash number. */
1813
1814static INLINE hashval_t
9719ad41 1815mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
1816{
1817#ifdef BFD64
1818 return addr + (addr >> 32);
1819#else
1820 return addr;
1821#endif
1822}
1823
1824/* got_entries only match if they're identical, except for gotidx, so
1825 use all fields to compute the hash, and compare the appropriate
1826 union members. */
1827
b15e6682 1828static hashval_t
9719ad41 1829mips_elf_got_entry_hash (const void *entry_)
b15e6682
AO
1830{
1831 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1832
38985a1c 1833 return entry->symndx
0f20cc35 1834 + ((entry->tls_type & GOT_TLS_LDM) << 17)
f4416af6 1835 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
38985a1c
AO
1836 : entry->abfd->id
1837 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1838 : entry->d.h->root.root.root.hash));
b15e6682
AO
1839}
1840
1841static int
9719ad41 1842mips_elf_got_entry_eq (const void *entry1, const void *entry2)
b15e6682
AO
1843{
1844 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1845 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1846
0f20cc35
DJ
1847 /* An LDM entry can only match another LDM entry. */
1848 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1849 return 0;
1850
b15e6682 1851 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
f4416af6
AO
1852 && (! e1->abfd ? e1->d.address == e2->d.address
1853 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1854 : e1->d.h == e2->d.h);
1855}
1856
1857/* multi_got_entries are still a match in the case of global objects,
1858 even if the input bfd in which they're referenced differs, so the
1859 hash computation and compare functions are adjusted
1860 accordingly. */
1861
1862static hashval_t
9719ad41 1863mips_elf_multi_got_entry_hash (const void *entry_)
f4416af6
AO
1864{
1865 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1866
1867 return entry->symndx
1868 + (! entry->abfd
1869 ? mips_elf_hash_bfd_vma (entry->d.address)
1870 : entry->symndx >= 0
0f20cc35
DJ
1871 ? ((entry->tls_type & GOT_TLS_LDM)
1872 ? (GOT_TLS_LDM << 17)
1873 : (entry->abfd->id
1874 + mips_elf_hash_bfd_vma (entry->d.addend)))
f4416af6
AO
1875 : entry->d.h->root.root.root.hash);
1876}
1877
1878static int
9719ad41 1879mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
1880{
1881 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1882 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1883
0f20cc35
DJ
1884 /* Any two LDM entries match. */
1885 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
1886 return 1;
1887
1888 /* Nothing else matches an LDM entry. */
1889 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1890 return 0;
1891
f4416af6
AO
1892 return e1->symndx == e2->symndx
1893 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
1894 : e1->abfd == NULL || e2->abfd == NULL
1895 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
1896 : e1->d.h == e2->d.h);
b15e6682
AO
1897}
1898\f
f4416af6
AO
1899/* Returns the dynamic relocation section for DYNOBJ. */
1900
1901static asection *
9719ad41 1902mips_elf_rel_dyn_section (bfd *dynobj, bfd_boolean create_p)
f4416af6
AO
1903{
1904 static const char dname[] = ".rel.dyn";
1905 asection *sreloc;
1906
1907 sreloc = bfd_get_section_by_name (dynobj, dname);
1908 if (sreloc == NULL && create_p)
1909 {
1910 sreloc = bfd_make_section (dynobj, dname);
1911 if (sreloc == NULL
1912 || ! bfd_set_section_flags (dynobj, sreloc,
1913 (SEC_ALLOC
1914 | SEC_LOAD
1915 | SEC_HAS_CONTENTS
1916 | SEC_IN_MEMORY
1917 | SEC_LINKER_CREATED
1918 | SEC_READONLY))
1919 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 1920 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
1921 return NULL;
1922 }
1923 return sreloc;
1924}
1925
b49e97c9
TS
1926/* Returns the GOT section for ABFD. */
1927
1928static asection *
9719ad41 1929mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
b49e97c9 1930{
f4416af6
AO
1931 asection *sgot = bfd_get_section_by_name (abfd, ".got");
1932 if (sgot == NULL
1933 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
1934 return NULL;
1935 return sgot;
b49e97c9
TS
1936}
1937
1938/* Returns the GOT information associated with the link indicated by
1939 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1940 section. */
1941
1942static struct mips_got_info *
9719ad41 1943mips_elf_got_info (bfd *abfd, asection **sgotp)
b49e97c9
TS
1944{
1945 asection *sgot;
1946 struct mips_got_info *g;
1947
f4416af6 1948 sgot = mips_elf_got_section (abfd, TRUE);
b49e97c9 1949 BFD_ASSERT (sgot != NULL);
f0abc2a1
AM
1950 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
1951 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
1952 BFD_ASSERT (g != NULL);
1953
1954 if (sgotp)
f4416af6
AO
1955 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
1956
b49e97c9
TS
1957 return g;
1958}
1959
0f20cc35
DJ
1960/* Count the number of relocations needed for a TLS GOT entry, with
1961 access types from TLS_TYPE, and symbol H (or a local symbol if H
1962 is NULL). */
1963
1964static int
1965mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
1966 struct elf_link_hash_entry *h)
1967{
1968 int indx = 0;
1969 int ret = 0;
1970 bfd_boolean need_relocs = FALSE;
1971 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
1972
1973 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
1974 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
1975 indx = h->dynindx;
1976
1977 if ((info->shared || indx != 0)
1978 && (h == NULL
1979 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
1980 || h->root.type != bfd_link_hash_undefweak))
1981 need_relocs = TRUE;
1982
1983 if (!need_relocs)
1984 return FALSE;
1985
1986 if (tls_type & GOT_TLS_GD)
1987 {
1988 ret++;
1989 if (indx != 0)
1990 ret++;
1991 }
1992
1993 if (tls_type & GOT_TLS_IE)
1994 ret++;
1995
1996 if ((tls_type & GOT_TLS_LDM) && info->shared)
1997 ret++;
1998
1999 return ret;
2000}
2001
2002/* Count the number of TLS relocations required for the GOT entry in
2003 ARG1, if it describes a local symbol. */
2004
2005static int
2006mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2007{
2008 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2009 struct mips_elf_count_tls_arg *arg = arg2;
2010
2011 if (entry->abfd != NULL && entry->symndx != -1)
2012 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2013
2014 return 1;
2015}
2016
2017/* Count the number of TLS GOT entries required for the global (or
2018 forced-local) symbol in ARG1. */
2019
2020static int
2021mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2022{
2023 struct mips_elf_link_hash_entry *hm
2024 = (struct mips_elf_link_hash_entry *) arg1;
2025 struct mips_elf_count_tls_arg *arg = arg2;
2026
2027 if (hm->tls_type & GOT_TLS_GD)
2028 arg->needed += 2;
2029 if (hm->tls_type & GOT_TLS_IE)
2030 arg->needed += 1;
2031
2032 return 1;
2033}
2034
2035/* Count the number of TLS relocations required for the global (or
2036 forced-local) symbol in ARG1. */
2037
2038static int
2039mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2040{
2041 struct mips_elf_link_hash_entry *hm
2042 = (struct mips_elf_link_hash_entry *) arg1;
2043 struct mips_elf_count_tls_arg *arg = arg2;
2044
2045 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2046
2047 return 1;
2048}
2049
2050/* Output a simple dynamic relocation into SRELOC. */
2051
2052static void
2053mips_elf_output_dynamic_relocation (bfd *output_bfd,
2054 asection *sreloc,
2055 unsigned long indx,
2056 int r_type,
2057 bfd_vma offset)
2058{
2059 Elf_Internal_Rela rel[3];
2060
2061 memset (rel, 0, sizeof (rel));
2062
2063 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2064 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2065
2066 if (ABI_64_P (output_bfd))
2067 {
2068 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2069 (output_bfd, &rel[0],
2070 (sreloc->contents
2071 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2072 }
2073 else
2074 bfd_elf32_swap_reloc_out
2075 (output_bfd, &rel[0],
2076 (sreloc->contents
2077 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2078 ++sreloc->reloc_count;
2079}
2080
2081/* Initialize a set of TLS GOT entries for one symbol. */
2082
2083static void
2084mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2085 unsigned char *tls_type_p,
2086 struct bfd_link_info *info,
2087 struct mips_elf_link_hash_entry *h,
2088 bfd_vma value)
2089{
2090 int indx;
2091 asection *sreloc, *sgot;
2092 bfd_vma offset, offset2;
2093 bfd *dynobj;
2094 bfd_boolean need_relocs = FALSE;
2095
2096 dynobj = elf_hash_table (info)->dynobj;
2097 sgot = mips_elf_got_section (dynobj, FALSE);
2098
2099 indx = 0;
2100 if (h != NULL)
2101 {
2102 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2103
2104 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2105 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2106 indx = h->root.dynindx;
2107 }
2108
2109 if (*tls_type_p & GOT_TLS_DONE)
2110 return;
2111
2112 if ((info->shared || indx != 0)
2113 && (h == NULL
2114 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2115 || h->root.type != bfd_link_hash_undefweak))
2116 need_relocs = TRUE;
2117
2118 /* MINUS_ONE means the symbol is not defined in this object. It may not
2119 be defined at all; assume that the value doesn't matter in that
2120 case. Otherwise complain if we would use the value. */
2121 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2122 || h->root.root.type == bfd_link_hash_undefweak);
2123
2124 /* Emit necessary relocations. */
2125 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
2126
2127 /* General Dynamic. */
2128 if (*tls_type_p & GOT_TLS_GD)
2129 {
2130 offset = got_offset;
2131 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2132
2133 if (need_relocs)
2134 {
2135 mips_elf_output_dynamic_relocation
2136 (abfd, sreloc, indx,
2137 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2138 sgot->output_offset + sgot->output_section->vma + offset);
2139
2140 if (indx)
2141 mips_elf_output_dynamic_relocation
2142 (abfd, sreloc, indx,
2143 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2144 sgot->output_offset + sgot->output_section->vma + offset2);
2145 else
2146 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2147 sgot->contents + offset2);
2148 }
2149 else
2150 {
2151 MIPS_ELF_PUT_WORD (abfd, 1,
2152 sgot->contents + offset);
2153 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2154 sgot->contents + offset2);
2155 }
2156
2157 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2158 }
2159
2160 /* Initial Exec model. */
2161 if (*tls_type_p & GOT_TLS_IE)
2162 {
2163 offset = got_offset;
2164
2165 if (need_relocs)
2166 {
2167 if (indx == 0)
2168 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2169 sgot->contents + offset);
2170 else
2171 MIPS_ELF_PUT_WORD (abfd, 0,
2172 sgot->contents + offset);
2173
2174 mips_elf_output_dynamic_relocation
2175 (abfd, sreloc, indx,
2176 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2177 sgot->output_offset + sgot->output_section->vma + offset);
2178 }
2179 else
2180 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2181 sgot->contents + offset);
2182 }
2183
2184 if (*tls_type_p & GOT_TLS_LDM)
2185 {
2186 /* The initial offset is zero, and the LD offsets will include the
2187 bias by DTP_OFFSET. */
2188 MIPS_ELF_PUT_WORD (abfd, 0,
2189 sgot->contents + got_offset
2190 + MIPS_ELF_GOT_SIZE (abfd));
2191
2192 if (!info->shared)
2193 MIPS_ELF_PUT_WORD (abfd, 1,
2194 sgot->contents + got_offset);
2195 else
2196 mips_elf_output_dynamic_relocation
2197 (abfd, sreloc, indx,
2198 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2199 sgot->output_offset + sgot->output_section->vma + got_offset);
2200 }
2201
2202 *tls_type_p |= GOT_TLS_DONE;
2203}
2204
2205/* Return the GOT index to use for a relocation of type R_TYPE against
2206 a symbol accessed using TLS_TYPE models. The GOT entries for this
2207 symbol in this GOT start at GOT_INDEX. This function initializes the
2208 GOT entries and corresponding relocations. */
2209
2210static bfd_vma
2211mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2212 int r_type, struct bfd_link_info *info,
2213 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2214{
2215 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2216 || r_type == R_MIPS_TLS_LDM);
2217
2218 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2219
2220 if (r_type == R_MIPS_TLS_GOTTPREL)
2221 {
2222 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2223 if (*tls_type & GOT_TLS_GD)
2224 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2225 else
2226 return got_index;
2227 }
2228
2229 if (r_type == R_MIPS_TLS_GD)
2230 {
2231 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2232 return got_index;
2233 }
2234
2235 if (r_type == R_MIPS_TLS_LDM)
2236 {
2237 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2238 return got_index;
2239 }
2240
2241 return got_index;
2242}
2243
b49e97c9 2244/* Returns the GOT offset at which the indicated address can be found.
0f20cc35
DJ
2245 If there is not yet a GOT entry for this value, create one. If
2246 R_SYMNDX refers to a TLS symbol, create a TLS GOT entry instead.
2247 Returns -1 if no satisfactory GOT offset can be found. */
b49e97c9
TS
2248
2249static bfd_vma
9719ad41 2250mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
0f20cc35
DJ
2251 bfd_vma value, unsigned long r_symndx,
2252 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9
TS
2253{
2254 asection *sgot;
2255 struct mips_got_info *g;
b15e6682 2256 struct mips_got_entry *entry;
b49e97c9
TS
2257
2258 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2259
0f20cc35
DJ
2260 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value,
2261 r_symndx, h, r_type);
2262 if (!entry)
b15e6682 2263 return MINUS_ONE;
0f20cc35
DJ
2264
2265 if (TLS_RELOC_P (r_type))
2266 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type, r_type,
2267 info, h, value);
2268 else
2269 return entry->gotidx;
b49e97c9
TS
2270}
2271
2272/* Returns the GOT index for the global symbol indicated by H. */
2273
2274static bfd_vma
0f20cc35
DJ
2275mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2276 int r_type, struct bfd_link_info *info)
b49e97c9
TS
2277{
2278 bfd_vma index;
2279 asection *sgot;
f4416af6 2280 struct mips_got_info *g, *gg;
d0c7ff07 2281 long global_got_dynindx = 0;
b49e97c9 2282
f4416af6
AO
2283 gg = g = mips_elf_got_info (abfd, &sgot);
2284 if (g->bfd2got && ibfd)
2285 {
2286 struct mips_got_entry e, *p;
143d77c5 2287
f4416af6
AO
2288 BFD_ASSERT (h->dynindx >= 0);
2289
2290 g = mips_elf_got_for_ibfd (g, ibfd);
0f20cc35 2291 if (g->next != gg || TLS_RELOC_P (r_type))
f4416af6
AO
2292 {
2293 e.abfd = ibfd;
2294 e.symndx = -1;
2295 e.d.h = (struct mips_elf_link_hash_entry *)h;
0f20cc35 2296 e.tls_type = 0;
f4416af6 2297
9719ad41 2298 p = htab_find (g->got_entries, &e);
f4416af6
AO
2299
2300 BFD_ASSERT (p->gotidx > 0);
0f20cc35
DJ
2301
2302 if (TLS_RELOC_P (r_type))
2303 {
2304 bfd_vma value = MINUS_ONE;
2305 if ((h->root.type == bfd_link_hash_defined
2306 || h->root.type == bfd_link_hash_defweak)
2307 && h->root.u.def.section->output_section)
2308 value = (h->root.u.def.value
2309 + h->root.u.def.section->output_offset
2310 + h->root.u.def.section->output_section->vma);
2311
2312 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2313 info, e.d.h, value);
2314 }
2315 else
2316 return p->gotidx;
f4416af6
AO
2317 }
2318 }
2319
2320 if (gg->global_gotsym != NULL)
2321 global_got_dynindx = gg->global_gotsym->dynindx;
b49e97c9 2322
0f20cc35
DJ
2323 if (TLS_RELOC_P (r_type))
2324 {
2325 struct mips_elf_link_hash_entry *hm
2326 = (struct mips_elf_link_hash_entry *) h;
2327 bfd_vma value = MINUS_ONE;
2328
2329 if ((h->root.type == bfd_link_hash_defined
2330 || h->root.type == bfd_link_hash_defweak)
2331 && h->root.u.def.section->output_section)
2332 value = (h->root.u.def.value
2333 + h->root.u.def.section->output_offset
2334 + h->root.u.def.section->output_section->vma);
2335
2336 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2337 r_type, info, hm, value);
2338 }
2339 else
2340 {
2341 /* Once we determine the global GOT entry with the lowest dynamic
2342 symbol table index, we must put all dynamic symbols with greater
2343 indices into the GOT. That makes it easy to calculate the GOT
2344 offset. */
2345 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2346 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2347 * MIPS_ELF_GOT_SIZE (abfd));
2348 }
eea6121a 2349 BFD_ASSERT (index < sgot->size);
b49e97c9
TS
2350
2351 return index;
2352}
2353
2354/* Find a GOT entry that is within 32KB of the VALUE. These entries
2355 are supposed to be placed at small offsets in the GOT, i.e.,
2356 within 32KB of GP. Return the index into the GOT for this page,
2357 and store the offset from this entry to the desired address in
2358 OFFSETP, if it is non-NULL. */
2359
2360static bfd_vma
9719ad41
RS
2361mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2362 bfd_vma value, bfd_vma *offsetp)
b49e97c9
TS
2363{
2364 asection *sgot;
2365 struct mips_got_info *g;
b15e6682
AO
2366 bfd_vma index;
2367 struct mips_got_entry *entry;
b49e97c9
TS
2368
2369 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2370
f4416af6 2371 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot,
b15e6682 2372 (value + 0x8000)
0f20cc35
DJ
2373 & (~(bfd_vma)0xffff), 0,
2374 NULL, R_MIPS_GOT_PAGE);
b49e97c9 2375
b15e6682
AO
2376 if (!entry)
2377 return MINUS_ONE;
143d77c5 2378
b15e6682 2379 index = entry->gotidx;
b49e97c9
TS
2380
2381 if (offsetp)
f4416af6 2382 *offsetp = value - entry->d.address;
b49e97c9
TS
2383
2384 return index;
2385}
2386
2387/* Find a GOT entry whose higher-order 16 bits are the same as those
2388 for value. Return the index into the GOT for this entry. */
2389
2390static bfd_vma
9719ad41
RS
2391mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2392 bfd_vma value, bfd_boolean external)
b49e97c9
TS
2393{
2394 asection *sgot;
2395 struct mips_got_info *g;
b15e6682 2396 struct mips_got_entry *entry;
b49e97c9
TS
2397
2398 if (! external)
2399 {
2400 /* Although the ABI says that it is "the high-order 16 bits" that we
2401 want, it is really the %high value. The complete value is
2402 calculated with a `addiu' of a LO16 relocation, just as with a
2403 HI16/LO16 pair. */
2404 value = mips_elf_high (value) << 16;
2405 }
2406
2407 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2408
0f20cc35
DJ
2409 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value, 0, NULL,
2410 R_MIPS_GOT16);
b15e6682
AO
2411 if (entry)
2412 return entry->gotidx;
2413 else
2414 return MINUS_ONE;
b49e97c9
TS
2415}
2416
2417/* Returns the offset for the entry at the INDEXth position
2418 in the GOT. */
2419
2420static bfd_vma
9719ad41
RS
2421mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2422 bfd *input_bfd, bfd_vma index)
b49e97c9
TS
2423{
2424 asection *sgot;
2425 bfd_vma gp;
f4416af6 2426 struct mips_got_info *g;
b49e97c9 2427
f4416af6
AO
2428 g = mips_elf_got_info (dynobj, &sgot);
2429 gp = _bfd_get_gp_value (output_bfd)
2430 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
143d77c5 2431
f4416af6 2432 return sgot->output_section->vma + sgot->output_offset + index - gp;
b49e97c9
TS
2433}
2434
2435/* Create a local GOT entry for VALUE. Return the index of the entry,
0f20cc35
DJ
2436 or -1 if it could not be created. If R_SYMNDX refers to a TLS symbol,
2437 create a TLS entry instead. */
b49e97c9 2438
b15e6682 2439static struct mips_got_entry *
9719ad41
RS
2440mips_elf_create_local_got_entry (bfd *abfd, bfd *ibfd,
2441 struct mips_got_info *gg,
0f20cc35
DJ
2442 asection *sgot, bfd_vma value,
2443 unsigned long r_symndx,
2444 struct mips_elf_link_hash_entry *h,
2445 int r_type)
b49e97c9 2446{
b15e6682 2447 struct mips_got_entry entry, **loc;
f4416af6 2448 struct mips_got_info *g;
b15e6682 2449
f4416af6
AO
2450 entry.abfd = NULL;
2451 entry.symndx = -1;
2452 entry.d.address = value;
0f20cc35 2453 entry.tls_type = 0;
f4416af6
AO
2454
2455 g = mips_elf_got_for_ibfd (gg, ibfd);
2456 if (g == NULL)
2457 {
2458 g = mips_elf_got_for_ibfd (gg, abfd);
2459 BFD_ASSERT (g != NULL);
2460 }
b15e6682 2461
0f20cc35
DJ
2462 /* We might have a symbol, H, if it has been forced local. Use the
2463 global entry then. It doesn't matter whether an entry is local
2464 or global for TLS, since the dynamic linker does not
2465 automatically relocate TLS GOT entries. */
2466 BFD_ASSERT (h == NULL || h->forced_local);
2467 if (TLS_RELOC_P (r_type))
2468 {
2469 struct mips_got_entry *p;
2470
2471 entry.abfd = ibfd;
2472 if (r_type == R_MIPS_TLS_LDM)
2473 {
2474 entry.tls_type = GOT_TLS_LDM;
2475 entry.symndx = 0;
2476 entry.d.addend = 0;
2477 }
2478 else if (h == NULL)
2479 {
2480 entry.symndx = r_symndx;
2481 entry.d.addend = 0;
2482 }
2483 else
2484 entry.d.h = h;
2485
2486 p = (struct mips_got_entry *)
2487 htab_find (g->got_entries, &entry);
2488
2489 BFD_ASSERT (p);
2490 return p;
2491 }
2492
b15e6682
AO
2493 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2494 INSERT);
2495 if (*loc)
2496 return *loc;
143d77c5 2497
b15e6682 2498 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
0f20cc35 2499 entry.tls_type = 0;
b15e6682
AO
2500
2501 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2502
2503 if (! *loc)
2504 return NULL;
143d77c5 2505
b15e6682
AO
2506 memcpy (*loc, &entry, sizeof entry);
2507
b49e97c9
TS
2508 if (g->assigned_gotno >= g->local_gotno)
2509 {
f4416af6 2510 (*loc)->gotidx = -1;
b49e97c9
TS
2511 /* We didn't allocate enough space in the GOT. */
2512 (*_bfd_error_handler)
2513 (_("not enough GOT space for local GOT entries"));
2514 bfd_set_error (bfd_error_bad_value);
b15e6682 2515 return NULL;
b49e97c9
TS
2516 }
2517
2518 MIPS_ELF_PUT_WORD (abfd, value,
b15e6682
AO
2519 (sgot->contents + entry.gotidx));
2520
2521 return *loc;
b49e97c9
TS
2522}
2523
2524/* Sort the dynamic symbol table so that symbols that need GOT entries
2525 appear towards the end. This reduces the amount of GOT space
2526 required. MAX_LOCAL is used to set the number of local symbols
2527 known to be in the dynamic symbol table. During
2528 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2529 section symbols are added and the count is higher. */
2530
b34976b6 2531static bfd_boolean
9719ad41 2532mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
b49e97c9
TS
2533{
2534 struct mips_elf_hash_sort_data hsd;
2535 struct mips_got_info *g;
2536 bfd *dynobj;
2537
2538 dynobj = elf_hash_table (info)->dynobj;
2539
f4416af6
AO
2540 g = mips_elf_got_info (dynobj, NULL);
2541
b49e97c9 2542 hsd.low = NULL;
143d77c5 2543 hsd.max_unref_got_dynindx =
f4416af6
AO
2544 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2545 /* In the multi-got case, assigned_gotno of the master got_info
2546 indicate the number of entries that aren't referenced in the
2547 primary GOT, but that must have entries because there are
2548 dynamic relocations that reference it. Since they aren't
2549 referenced, we move them to the end of the GOT, so that they
2550 don't prevent other entries that are referenced from getting
2551 too large offsets. */
2552 - (g->next ? g->assigned_gotno : 0);
b49e97c9
TS
2553 hsd.max_non_got_dynindx = max_local;
2554 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2555 elf_hash_table (info)),
2556 mips_elf_sort_hash_table_f,
2557 &hsd);
2558
2559 /* There should have been enough room in the symbol table to
44c410de 2560 accommodate both the GOT and non-GOT symbols. */
b49e97c9 2561 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
f4416af6
AO
2562 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2563 <= elf_hash_table (info)->dynsymcount);
b49e97c9
TS
2564
2565 /* Now we know which dynamic symbol has the lowest dynamic symbol
2566 table index in the GOT. */
b49e97c9
TS
2567 g->global_gotsym = hsd.low;
2568
b34976b6 2569 return TRUE;
b49e97c9
TS
2570}
2571
2572/* If H needs a GOT entry, assign it the highest available dynamic
2573 index. Otherwise, assign it the lowest available dynamic
2574 index. */
2575
b34976b6 2576static bfd_boolean
9719ad41 2577mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2578{
9719ad41 2579 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9
TS
2580
2581 if (h->root.root.type == bfd_link_hash_warning)
2582 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2583
2584 /* Symbols without dynamic symbol table entries aren't interesting
2585 at all. */
2586 if (h->root.dynindx == -1)
b34976b6 2587 return TRUE;
b49e97c9 2588
f4416af6
AO
2589 /* Global symbols that need GOT entries that are not explicitly
2590 referenced are marked with got offset 2. Those that are
2591 referenced get a 1, and those that don't need GOT entries get
2592 -1. */
2593 if (h->root.got.offset == 2)
2594 {
0f20cc35
DJ
2595 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2596
f4416af6
AO
2597 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2598 hsd->low = (struct elf_link_hash_entry *) h;
2599 h->root.dynindx = hsd->max_unref_got_dynindx++;
2600 }
2601 else if (h->root.got.offset != 1)
b49e97c9
TS
2602 h->root.dynindx = hsd->max_non_got_dynindx++;
2603 else
2604 {
0f20cc35
DJ
2605 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2606
b49e97c9
TS
2607 h->root.dynindx = --hsd->min_got_dynindx;
2608 hsd->low = (struct elf_link_hash_entry *) h;
2609 }
2610
b34976b6 2611 return TRUE;
b49e97c9
TS
2612}
2613
2614/* If H is a symbol that needs a global GOT entry, but has a dynamic
2615 symbol table index lower than any we've seen to date, record it for
2616 posterity. */
2617
b34976b6 2618static bfd_boolean
9719ad41
RS
2619mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2620 bfd *abfd, struct bfd_link_info *info,
0f20cc35
DJ
2621 struct mips_got_info *g,
2622 unsigned char tls_flag)
b49e97c9 2623{
f4416af6
AO
2624 struct mips_got_entry entry, **loc;
2625
b49e97c9
TS
2626 /* A global symbol in the GOT must also be in the dynamic symbol
2627 table. */
7c5fcef7
L
2628 if (h->dynindx == -1)
2629 {
2630 switch (ELF_ST_VISIBILITY (h->other))
2631 {
2632 case STV_INTERNAL:
2633 case STV_HIDDEN:
b34976b6 2634 _bfd_mips_elf_hide_symbol (info, h, TRUE);
7c5fcef7
L
2635 break;
2636 }
c152c796 2637 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 2638 return FALSE;
7c5fcef7 2639 }
b49e97c9 2640
f4416af6
AO
2641 entry.abfd = abfd;
2642 entry.symndx = -1;
2643 entry.d.h = (struct mips_elf_link_hash_entry *) h;
0f20cc35 2644 entry.tls_type = 0;
f4416af6
AO
2645
2646 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2647 INSERT);
2648
b49e97c9
TS
2649 /* If we've already marked this entry as needing GOT space, we don't
2650 need to do it again. */
f4416af6 2651 if (*loc)
0f20cc35
DJ
2652 {
2653 (*loc)->tls_type |= tls_flag;
2654 return TRUE;
2655 }
f4416af6
AO
2656
2657 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2658
2659 if (! *loc)
2660 return FALSE;
143d77c5 2661
f4416af6 2662 entry.gotidx = -1;
0f20cc35
DJ
2663 entry.tls_type = tls_flag;
2664
f4416af6
AO
2665 memcpy (*loc, &entry, sizeof entry);
2666
b49e97c9 2667 if (h->got.offset != MINUS_ONE)
b34976b6 2668 return TRUE;
b49e97c9
TS
2669
2670 /* By setting this to a value other than -1, we are indicating that
2671 there needs to be a GOT entry for H. Avoid using zero, as the
2672 generic ELF copy_indirect_symbol tests for <= 0. */
0f20cc35
DJ
2673 if (tls_flag == 0)
2674 h->got.offset = 1;
b49e97c9 2675
b34976b6 2676 return TRUE;
b49e97c9 2677}
f4416af6
AO
2678
2679/* Reserve space in G for a GOT entry containing the value of symbol
2680 SYMNDX in input bfd ABDF, plus ADDEND. */
2681
2682static bfd_boolean
9719ad41 2683mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
0f20cc35
DJ
2684 struct mips_got_info *g,
2685 unsigned char tls_flag)
f4416af6
AO
2686{
2687 struct mips_got_entry entry, **loc;
2688
2689 entry.abfd = abfd;
2690 entry.symndx = symndx;
2691 entry.d.addend = addend;
0f20cc35 2692 entry.tls_type = tls_flag;
f4416af6
AO
2693 loc = (struct mips_got_entry **)
2694 htab_find_slot (g->got_entries, &entry, INSERT);
2695
2696 if (*loc)
0f20cc35
DJ
2697 {
2698 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2699 {
2700 g->tls_gotno += 2;
2701 (*loc)->tls_type |= tls_flag;
2702 }
2703 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2704 {
2705 g->tls_gotno += 1;
2706 (*loc)->tls_type |= tls_flag;
2707 }
2708 return TRUE;
2709 }
f4416af6 2710
0f20cc35
DJ
2711 if (tls_flag != 0)
2712 {
2713 entry.gotidx = -1;
2714 entry.tls_type = tls_flag;
2715 if (tls_flag == GOT_TLS_IE)
2716 g->tls_gotno += 1;
2717 else if (tls_flag == GOT_TLS_GD)
2718 g->tls_gotno += 2;
2719 else if (g->tls_ldm_offset == MINUS_ONE)
2720 {
2721 g->tls_ldm_offset = MINUS_TWO;
2722 g->tls_gotno += 2;
2723 }
2724 }
2725 else
2726 {
2727 entry.gotidx = g->local_gotno++;
2728 entry.tls_type = 0;
2729 }
f4416af6
AO
2730
2731 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2732
2733 if (! *loc)
2734 return FALSE;
143d77c5 2735
f4416af6
AO
2736 memcpy (*loc, &entry, sizeof entry);
2737
2738 return TRUE;
2739}
2740\f
2741/* Compute the hash value of the bfd in a bfd2got hash entry. */
2742
2743static hashval_t
9719ad41 2744mips_elf_bfd2got_entry_hash (const void *entry_)
f4416af6
AO
2745{
2746 const struct mips_elf_bfd2got_hash *entry
2747 = (struct mips_elf_bfd2got_hash *)entry_;
2748
2749 return entry->bfd->id;
2750}
2751
2752/* Check whether two hash entries have the same bfd. */
2753
2754static int
9719ad41 2755mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2756{
2757 const struct mips_elf_bfd2got_hash *e1
2758 = (const struct mips_elf_bfd2got_hash *)entry1;
2759 const struct mips_elf_bfd2got_hash *e2
2760 = (const struct mips_elf_bfd2got_hash *)entry2;
2761
2762 return e1->bfd == e2->bfd;
2763}
2764
0b25d3e6 2765/* In a multi-got link, determine the GOT to be used for IBDF. G must
f4416af6
AO
2766 be the master GOT data. */
2767
2768static struct mips_got_info *
9719ad41 2769mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
2770{
2771 struct mips_elf_bfd2got_hash e, *p;
2772
2773 if (! g->bfd2got)
2774 return g;
2775
2776 e.bfd = ibfd;
9719ad41 2777 p = htab_find (g->bfd2got, &e);
f4416af6
AO
2778 return p ? p->g : NULL;
2779}
2780
2781/* Create one separate got for each bfd that has entries in the global
2782 got, such that we can tell how many local and global entries each
2783 bfd requires. */
2784
2785static int
9719ad41 2786mips_elf_make_got_per_bfd (void **entryp, void *p)
f4416af6
AO
2787{
2788 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2789 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2790 htab_t bfd2got = arg->bfd2got;
2791 struct mips_got_info *g;
2792 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2793 void **bfdgotp;
143d77c5 2794
f4416af6
AO
2795 /* Find the got_info for this GOT entry's input bfd. Create one if
2796 none exists. */
2797 bfdgot_entry.bfd = entry->abfd;
2798 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2799 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2800
2801 if (bfdgot != NULL)
2802 g = bfdgot->g;
2803 else
2804 {
2805 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2806 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
2807
2808 if (bfdgot == NULL)
2809 {
2810 arg->obfd = 0;
2811 return 0;
2812 }
2813
2814 *bfdgotp = bfdgot;
2815
2816 bfdgot->bfd = entry->abfd;
2817 bfdgot->g = g = (struct mips_got_info *)
2818 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
2819 if (g == NULL)
2820 {
2821 arg->obfd = 0;
2822 return 0;
2823 }
2824
2825 g->global_gotsym = NULL;
2826 g->global_gotno = 0;
2827 g->local_gotno = 0;
2828 g->assigned_gotno = -1;
0f20cc35
DJ
2829 g->tls_gotno = 0;
2830 g->tls_assigned_gotno = 0;
2831 g->tls_ldm_offset = MINUS_ONE;
f4416af6 2832 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
9719ad41 2833 mips_elf_multi_got_entry_eq, NULL);
f4416af6
AO
2834 if (g->got_entries == NULL)
2835 {
2836 arg->obfd = 0;
2837 return 0;
2838 }
2839
2840 g->bfd2got = NULL;
2841 g->next = NULL;
2842 }
2843
2844 /* Insert the GOT entry in the bfd's got entry hash table. */
2845 entryp = htab_find_slot (g->got_entries, entry, INSERT);
2846 if (*entryp != NULL)
2847 return 1;
143d77c5 2848
f4416af6
AO
2849 *entryp = entry;
2850
0f20cc35
DJ
2851 if (entry->tls_type)
2852 {
2853 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
2854 g->tls_gotno += 2;
2855 if (entry->tls_type & GOT_TLS_IE)
2856 g->tls_gotno += 1;
2857 }
2858 else if (entry->symndx >= 0 || entry->d.h->forced_local)
f4416af6
AO
2859 ++g->local_gotno;
2860 else
2861 ++g->global_gotno;
2862
2863 return 1;
2864}
2865
2866/* Attempt to merge gots of different input bfds. Try to use as much
2867 as possible of the primary got, since it doesn't require explicit
2868 dynamic relocations, but don't use bfds that would reference global
2869 symbols out of the addressable range. Failing the primary got,
2870 attempt to merge with the current got, or finish the current got
2871 and then make make the new got current. */
2872
2873static int
9719ad41 2874mips_elf_merge_gots (void **bfd2got_, void *p)
f4416af6
AO
2875{
2876 struct mips_elf_bfd2got_hash *bfd2got
2877 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
2878 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2879 unsigned int lcount = bfd2got->g->local_gotno;
2880 unsigned int gcount = bfd2got->g->global_gotno;
0f20cc35 2881 unsigned int tcount = bfd2got->g->tls_gotno;
f4416af6 2882 unsigned int maxcnt = arg->max_count;
0f20cc35
DJ
2883 bfd_boolean too_many_for_tls = FALSE;
2884
2885 /* We place TLS GOT entries after both locals and globals. The globals
2886 for the primary GOT may overflow the normal GOT size limit, so be
2887 sure not to merge a GOT which requires TLS with the primary GOT in that
2888 case. This doesn't affect non-primary GOTs. */
2889 if (tcount > 0)
2890 {
2891 unsigned int primary_total = lcount + tcount + arg->global_count;
2892 if (primary_total * MIPS_ELF_GOT_SIZE (bfd2got->bfd)
2893 >= MIPS_ELF_GOT_MAX_SIZE (bfd2got->bfd))
2894 too_many_for_tls = TRUE;
2895 }
143d77c5 2896
f4416af6
AO
2897 /* If we don't have a primary GOT and this is not too big, use it as
2898 a starting point for the primary GOT. */
0f20cc35
DJ
2899 if (! arg->primary && lcount + gcount + tcount <= maxcnt
2900 && ! too_many_for_tls)
f4416af6
AO
2901 {
2902 arg->primary = bfd2got->g;
2903 arg->primary_count = lcount + gcount;
2904 }
2905 /* If it looks like we can merge this bfd's entries with those of
2906 the primary, merge them. The heuristics is conservative, but we
2907 don't have to squeeze it too hard. */
0f20cc35
DJ
2908 else if (arg->primary && ! too_many_for_tls
2909 && (arg->primary_count + lcount + gcount + tcount) <= maxcnt)
f4416af6
AO
2910 {
2911 struct mips_got_info *g = bfd2got->g;
2912 int old_lcount = arg->primary->local_gotno;
2913 int old_gcount = arg->primary->global_gotno;
0f20cc35 2914 int old_tcount = arg->primary->tls_gotno;
f4416af6
AO
2915
2916 bfd2got->g = arg->primary;
2917
2918 htab_traverse (g->got_entries,
2919 mips_elf_make_got_per_bfd,
2920 arg);
2921 if (arg->obfd == NULL)
2922 return 0;
2923
2924 htab_delete (g->got_entries);
2925 /* We don't have to worry about releasing memory of the actual
2926 got entries, since they're all in the master got_entries hash
2927 table anyway. */
2928
caec41ff 2929 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
f4416af6 2930 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
0f20cc35 2931 BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno);
f4416af6
AO
2932
2933 arg->primary_count = arg->primary->local_gotno
0f20cc35 2934 + arg->primary->global_gotno + arg->primary->tls_gotno;
f4416af6
AO
2935 }
2936 /* If we can merge with the last-created got, do it. */
2937 else if (arg->current
0f20cc35 2938 && arg->current_count + lcount + gcount + tcount <= maxcnt)
f4416af6
AO
2939 {
2940 struct mips_got_info *g = bfd2got->g;
2941 int old_lcount = arg->current->local_gotno;
2942 int old_gcount = arg->current->global_gotno;
0f20cc35 2943 int old_tcount = arg->current->tls_gotno;
f4416af6
AO
2944
2945 bfd2got->g = arg->current;
2946
2947 htab_traverse (g->got_entries,
2948 mips_elf_make_got_per_bfd,
2949 arg);
2950 if (arg->obfd == NULL)
2951 return 0;
2952
2953 htab_delete (g->got_entries);
2954
caec41ff 2955 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
f4416af6 2956 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
0f20cc35 2957 BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno);
f4416af6
AO
2958
2959 arg->current_count = arg->current->local_gotno
0f20cc35 2960 + arg->current->global_gotno + arg->current->tls_gotno;
f4416af6
AO
2961 }
2962 /* Well, we couldn't merge, so create a new GOT. Don't check if it
2963 fits; if it turns out that it doesn't, we'll get relocation
2964 overflows anyway. */
2965 else
2966 {
2967 bfd2got->g->next = arg->current;
2968 arg->current = bfd2got->g;
143d77c5 2969
0f20cc35
DJ
2970 arg->current_count = lcount + gcount + 2 * tcount;
2971 }
2972
2973 return 1;
2974}
2975
2976/* Set the TLS GOT index for the GOT entry in ENTRYP. */
2977
2978static int
2979mips_elf_initialize_tls_index (void **entryp, void *p)
2980{
2981 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2982 struct mips_got_info *g = p;
2983
2984 /* We're only interested in TLS symbols. */
2985 if (entry->tls_type == 0)
2986 return 1;
2987
2988 if (entry->symndx == -1)
2989 {
2990 /* There may be multiple mips_got_entry structs for a global variable
2991 if there is just one GOT. Just do this once. */
2992 if (g->next == NULL)
2993 {
2994 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
2995 return 1;
2996 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
2997 }
2998 }
2999 else if (entry->tls_type & GOT_TLS_LDM)
3000 {
3001 /* Similarly, there may be multiple structs for the LDM entry. */
3002 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
3003 {
3004 entry->gotidx = g->tls_ldm_offset;
3005 return 1;
3006 }
f4416af6
AO
3007 }
3008
0f20cc35
DJ
3009 /* Initialize the GOT offset. */
3010 entry->gotidx = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3011 if (g->next == NULL && entry->symndx == -1)
3012 entry->d.h->tls_got_offset = entry->gotidx;
3013
3014 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3015 g->tls_assigned_gotno += 2;
3016 if (entry->tls_type & GOT_TLS_IE)
3017 g->tls_assigned_gotno += 1;
3018
3019 if (entry->tls_type & GOT_TLS_LDM)
3020 g->tls_ldm_offset = entry->gotidx;
3021
f4416af6
AO
3022 return 1;
3023}
3024
3025/* If passed a NULL mips_got_info in the argument, set the marker used
3026 to tell whether a global symbol needs a got entry (in the primary
3027 got) to the given VALUE.
3028
3029 If passed a pointer G to a mips_got_info in the argument (it must
3030 not be the primary GOT), compute the offset from the beginning of
3031 the (primary) GOT section to the entry in G corresponding to the
3032 global symbol. G's assigned_gotno must contain the index of the
3033 first available global GOT entry in G. VALUE must contain the size
3034 of a GOT entry in bytes. For each global GOT entry that requires a
3035 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4cc11e76 3036 marked as not eligible for lazy resolution through a function
f4416af6
AO
3037 stub. */
3038static int
9719ad41 3039mips_elf_set_global_got_offset (void **entryp, void *p)
f4416af6
AO
3040{
3041 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3042 struct mips_elf_set_global_got_offset_arg *arg
3043 = (struct mips_elf_set_global_got_offset_arg *)p;
3044 struct mips_got_info *g = arg->g;
3045
0f20cc35
DJ
3046 if (g && entry->tls_type != GOT_NORMAL)
3047 arg->needed_relocs +=
3048 mips_tls_got_relocs (arg->info, entry->tls_type,
3049 entry->symndx == -1 ? &entry->d.h->root : NULL);
3050
f4416af6 3051 if (entry->abfd != NULL && entry->symndx == -1
0f20cc35
DJ
3052 && entry->d.h->root.dynindx != -1
3053 && entry->d.h->tls_type == GOT_NORMAL)
f4416af6
AO
3054 {
3055 if (g)
3056 {
3057 BFD_ASSERT (g->global_gotsym == NULL);
3058
3059 entry->gotidx = arg->value * (long) g->assigned_gotno++;
f4416af6
AO
3060 if (arg->info->shared
3061 || (elf_hash_table (arg->info)->dynamic_sections_created
f5385ebf
AM
3062 && entry->d.h->root.def_dynamic
3063 && !entry->d.h->root.def_regular))
f4416af6
AO
3064 ++arg->needed_relocs;
3065 }
3066 else
3067 entry->d.h->root.got.offset = arg->value;
3068 }
3069
3070 return 1;
3071}
3072
0626d451
RS
3073/* Mark any global symbols referenced in the GOT we are iterating over
3074 as inelligible for lazy resolution stubs. */
3075static int
9719ad41 3076mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
0626d451
RS
3077{
3078 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3079
3080 if (entry->abfd != NULL
3081 && entry->symndx == -1
3082 && entry->d.h->root.dynindx != -1)
3083 entry->d.h->no_fn_stub = TRUE;
3084
3085 return 1;
3086}
3087
f4416af6
AO
3088/* Follow indirect and warning hash entries so that each got entry
3089 points to the final symbol definition. P must point to a pointer
3090 to the hash table we're traversing. Since this traversal may
3091 modify the hash table, we set this pointer to NULL to indicate
3092 we've made a potentially-destructive change to the hash table, so
3093 the traversal must be restarted. */
3094static int
9719ad41 3095mips_elf_resolve_final_got_entry (void **entryp, void *p)
f4416af6
AO
3096{
3097 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3098 htab_t got_entries = *(htab_t *)p;
3099
3100 if (entry->abfd != NULL && entry->symndx == -1)
3101 {
3102 struct mips_elf_link_hash_entry *h = entry->d.h;
3103
3104 while (h->root.root.type == bfd_link_hash_indirect
3105 || h->root.root.type == bfd_link_hash_warning)
3106 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3107
3108 if (entry->d.h == h)
3109 return 1;
143d77c5 3110
f4416af6
AO
3111 entry->d.h = h;
3112
3113 /* If we can't find this entry with the new bfd hash, re-insert
3114 it, and get the traversal restarted. */
3115 if (! htab_find (got_entries, entry))
3116 {
3117 htab_clear_slot (got_entries, entryp);
3118 entryp = htab_find_slot (got_entries, entry, INSERT);
3119 if (! *entryp)
3120 *entryp = entry;
3121 /* Abort the traversal, since the whole table may have
3122 moved, and leave it up to the parent to restart the
3123 process. */
3124 *(htab_t *)p = NULL;
3125 return 0;
3126 }
3127 /* We might want to decrement the global_gotno count, but it's
3128 either too early or too late for that at this point. */
3129 }
143d77c5 3130
f4416af6
AO
3131 return 1;
3132}
3133
3134/* Turn indirect got entries in a got_entries table into their final
3135 locations. */
3136static void
9719ad41 3137mips_elf_resolve_final_got_entries (struct mips_got_info *g)
f4416af6
AO
3138{
3139 htab_t got_entries;
3140
3141 do
3142 {
3143 got_entries = g->got_entries;
3144
3145 htab_traverse (got_entries,
3146 mips_elf_resolve_final_got_entry,
3147 &got_entries);
3148 }
3149 while (got_entries == NULL);
3150}
3151
3152/* Return the offset of an input bfd IBFD's GOT from the beginning of
3153 the primary GOT. */
3154static bfd_vma
9719ad41 3155mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
3156{
3157 if (g->bfd2got == NULL)
3158 return 0;
3159
3160 g = mips_elf_got_for_ibfd (g, ibfd);
3161 if (! g)
3162 return 0;
3163
3164 BFD_ASSERT (g->next);
3165
3166 g = g->next;
143d77c5 3167
0f20cc35
DJ
3168 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3169 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
3170}
3171
3172/* Turn a single GOT that is too big for 16-bit addressing into
3173 a sequence of GOTs, each one 16-bit addressable. */
3174
3175static bfd_boolean
9719ad41
RS
3176mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3177 struct mips_got_info *g, asection *got,
3178 bfd_size_type pages)
f4416af6
AO
3179{
3180 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3181 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3182 struct mips_got_info *gg;
3183 unsigned int assign;
3184
3185 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
9719ad41 3186 mips_elf_bfd2got_entry_eq, NULL);
f4416af6
AO
3187 if (g->bfd2got == NULL)
3188 return FALSE;
3189
3190 got_per_bfd_arg.bfd2got = g->bfd2got;
3191 got_per_bfd_arg.obfd = abfd;
3192 got_per_bfd_arg.info = info;
3193
3194 /* Count how many GOT entries each input bfd requires, creating a
3195 map from bfd to got info while at that. */
f4416af6
AO
3196 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3197 if (got_per_bfd_arg.obfd == NULL)
3198 return FALSE;
3199
3200 got_per_bfd_arg.current = NULL;
3201 got_per_bfd_arg.primary = NULL;
3202 /* Taking out PAGES entries is a worst-case estimate. We could
3203 compute the maximum number of pages that each separate input bfd
3204 uses, but it's probably not worth it. */
3205 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd)
3206 / MIPS_ELF_GOT_SIZE (abfd))
3207 - MIPS_RESERVED_GOTNO - pages);
0f20cc35
DJ
3208 /* The number of globals that will be included in the primary GOT.
3209 See the calls to mips_elf_set_global_got_offset below for more
3210 information. */
3211 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
3212
3213 /* Try to merge the GOTs of input bfds together, as long as they
3214 don't seem to exceed the maximum GOT size, choosing one of them
3215 to be the primary GOT. */
3216 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3217 if (got_per_bfd_arg.obfd == NULL)
3218 return FALSE;
3219
0f20cc35 3220 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6
AO
3221 if (got_per_bfd_arg.primary == NULL)
3222 {
3223 g->next = (struct mips_got_info *)
3224 bfd_alloc (abfd, sizeof (struct mips_got_info));
3225 if (g->next == NULL)
3226 return FALSE;
3227
3228 g->next->global_gotsym = NULL;
3229 g->next->global_gotno = 0;
3230 g->next->local_gotno = 0;
0f20cc35 3231 g->next->tls_gotno = 0;
f4416af6 3232 g->next->assigned_gotno = 0;
0f20cc35
DJ
3233 g->next->tls_assigned_gotno = 0;
3234 g->next->tls_ldm_offset = MINUS_ONE;
f4416af6
AO
3235 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3236 mips_elf_multi_got_entry_eq,
9719ad41 3237 NULL);
f4416af6
AO
3238 if (g->next->got_entries == NULL)
3239 return FALSE;
3240 g->next->bfd2got = NULL;
3241 }
3242 else
3243 g->next = got_per_bfd_arg.primary;
3244 g->next->next = got_per_bfd_arg.current;
3245
3246 /* GG is now the master GOT, and G is the primary GOT. */
3247 gg = g;
3248 g = g->next;
3249
3250 /* Map the output bfd to the primary got. That's what we're going
3251 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3252 didn't mark in check_relocs, and we want a quick way to find it.
3253 We can't just use gg->next because we're going to reverse the
3254 list. */
3255 {
3256 struct mips_elf_bfd2got_hash *bfdgot;
3257 void **bfdgotp;
143d77c5 3258
f4416af6
AO
3259 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3260 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3261
3262 if (bfdgot == NULL)
3263 return FALSE;
3264
3265 bfdgot->bfd = abfd;
3266 bfdgot->g = g;
3267 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3268
3269 BFD_ASSERT (*bfdgotp == NULL);
3270 *bfdgotp = bfdgot;
3271 }
3272
3273 /* The IRIX dynamic linker requires every symbol that is referenced
3274 in a dynamic relocation to be present in the primary GOT, so
3275 arrange for them to appear after those that are actually
3276 referenced.
3277
3278 GNU/Linux could very well do without it, but it would slow down
3279 the dynamic linker, since it would have to resolve every dynamic
3280 symbol referenced in other GOTs more than once, without help from
3281 the cache. Also, knowing that every external symbol has a GOT
3282 helps speed up the resolution of local symbols too, so GNU/Linux
3283 follows IRIX's practice.
143d77c5 3284
f4416af6
AO
3285 The number 2 is used by mips_elf_sort_hash_table_f to count
3286 global GOT symbols that are unreferenced in the primary GOT, with
3287 an initial dynamic index computed from gg->assigned_gotno, where
3288 the number of unreferenced global entries in the primary GOT is
3289 preserved. */
3290 if (1)
3291 {
3292 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3293 g->global_gotno = gg->global_gotno;
3294 set_got_offset_arg.value = 2;
3295 }
3296 else
3297 {
3298 /* This could be used for dynamic linkers that don't optimize
3299 symbol resolution while applying relocations so as to use
3300 primary GOT entries or assuming the symbol is locally-defined.
3301 With this code, we assign lower dynamic indices to global
3302 symbols that are not referenced in the primary GOT, so that
3303 their entries can be omitted. */
3304 gg->assigned_gotno = 0;
3305 set_got_offset_arg.value = -1;
3306 }
3307
3308 /* Reorder dynamic symbols as described above (which behavior
3309 depends on the setting of VALUE). */
3310 set_got_offset_arg.g = NULL;
3311 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3312 &set_got_offset_arg);
3313 set_got_offset_arg.value = 1;
3314 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3315 &set_got_offset_arg);
3316 if (! mips_elf_sort_hash_table (info, 1))
3317 return FALSE;
3318
3319 /* Now go through the GOTs assigning them offset ranges.
3320 [assigned_gotno, local_gotno[ will be set to the range of local
3321 entries in each GOT. We can then compute the end of a GOT by
3322 adding local_gotno to global_gotno. We reverse the list and make
3323 it circular since then we'll be able to quickly compute the
3324 beginning of a GOT, by computing the end of its predecessor. To
3325 avoid special cases for the primary GOT, while still preserving
3326 assertions that are valid for both single- and multi-got links,
3327 we arrange for the main got struct to have the right number of
3328 global entries, but set its local_gotno such that the initial
3329 offset of the primary GOT is zero. Remember that the primary GOT
3330 will become the last item in the circular linked list, so it
3331 points back to the master GOT. */
3332 gg->local_gotno = -g->global_gotno;
3333 gg->global_gotno = g->global_gotno;
0f20cc35 3334 gg->tls_gotno = 0;
f4416af6
AO
3335 assign = 0;
3336 gg->next = gg;
3337
3338 do
3339 {
3340 struct mips_got_info *gn;
3341
3342 assign += MIPS_RESERVED_GOTNO;
3343 g->assigned_gotno = assign;
3344 g->local_gotno += assign + pages;
0f20cc35
DJ
3345 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3346
3347 /* Set up any TLS entries. We always place the TLS entries after
3348 all non-TLS entries. */
3349 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3350 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
f4416af6
AO
3351
3352 /* Take g out of the direct list, and push it onto the reversed
3353 list that gg points to. */
3354 gn = g->next;
3355 g->next = gg->next;
3356 gg->next = g;
3357 g = gn;
0626d451
RS
3358
3359 /* Mark global symbols in every non-primary GOT as ineligible for
3360 stubs. */
3361 if (g)
3362 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
f4416af6
AO
3363 }
3364 while (g);
3365
eea6121a 3366 got->size = (gg->next->local_gotno
0f20cc35
DJ
3367 + gg->next->global_gotno
3368 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
143d77c5 3369
f4416af6
AO
3370 return TRUE;
3371}
143d77c5 3372
b49e97c9
TS
3373\f
3374/* Returns the first relocation of type r_type found, beginning with
3375 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3376
3377static const Elf_Internal_Rela *
9719ad41
RS
3378mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3379 const Elf_Internal_Rela *relocation,
3380 const Elf_Internal_Rela *relend)
b49e97c9 3381{
b49e97c9
TS
3382 while (relocation < relend)
3383 {
3384 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
3385 return relocation;
3386
3387 ++relocation;
3388 }
3389
3390 /* We didn't find it. */
3391 bfd_set_error (bfd_error_bad_value);
3392 return NULL;
3393}
3394
3395/* Return whether a relocation is against a local symbol. */
3396
b34976b6 3397static bfd_boolean
9719ad41
RS
3398mips_elf_local_relocation_p (bfd *input_bfd,
3399 const Elf_Internal_Rela *relocation,
3400 asection **local_sections,
3401 bfd_boolean check_forced)
b49e97c9
TS
3402{
3403 unsigned long r_symndx;
3404 Elf_Internal_Shdr *symtab_hdr;
3405 struct mips_elf_link_hash_entry *h;
3406 size_t extsymoff;
3407
3408 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3409 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3410 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3411
3412 if (r_symndx < extsymoff)
b34976b6 3413 return TRUE;
b49e97c9 3414 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 3415 return TRUE;
b49e97c9
TS
3416
3417 if (check_forced)
3418 {
3419 /* Look up the hash table to check whether the symbol
3420 was forced local. */
3421 h = (struct mips_elf_link_hash_entry *)
3422 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3423 /* Find the real hash-table entry for this symbol. */
3424 while (h->root.root.type == bfd_link_hash_indirect
3425 || h->root.root.type == bfd_link_hash_warning)
3426 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
f5385ebf 3427 if (h->root.forced_local)
b34976b6 3428 return TRUE;
b49e97c9
TS
3429 }
3430
b34976b6 3431 return FALSE;
b49e97c9
TS
3432}
3433\f
3434/* Sign-extend VALUE, which has the indicated number of BITS. */
3435
a7ebbfdf 3436bfd_vma
9719ad41 3437_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
3438{
3439 if (value & ((bfd_vma) 1 << (bits - 1)))
3440 /* VALUE is negative. */
3441 value |= ((bfd_vma) - 1) << bits;
3442
3443 return value;
3444}
3445
3446/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 3447 range expressible by a signed number with the indicated number of
b49e97c9
TS
3448 BITS. */
3449
b34976b6 3450static bfd_boolean
9719ad41 3451mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
3452{
3453 bfd_signed_vma svalue = (bfd_signed_vma) value;
3454
3455 if (svalue > (1 << (bits - 1)) - 1)
3456 /* The value is too big. */
b34976b6 3457 return TRUE;
b49e97c9
TS
3458 else if (svalue < -(1 << (bits - 1)))
3459 /* The value is too small. */
b34976b6 3460 return TRUE;
b49e97c9
TS
3461
3462 /* All is well. */
b34976b6 3463 return FALSE;
b49e97c9
TS
3464}
3465
3466/* Calculate the %high function. */
3467
3468static bfd_vma
9719ad41 3469mips_elf_high (bfd_vma value)
b49e97c9
TS
3470{
3471 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3472}
3473
3474/* Calculate the %higher function. */
3475
3476static bfd_vma
9719ad41 3477mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
3478{
3479#ifdef BFD64
3480 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3481#else
3482 abort ();
c5ae1840 3483 return MINUS_ONE;
b49e97c9
TS
3484#endif
3485}
3486
3487/* Calculate the %highest function. */
3488
3489static bfd_vma
9719ad41 3490mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
3491{
3492#ifdef BFD64
b15e6682 3493 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
3494#else
3495 abort ();
c5ae1840 3496 return MINUS_ONE;
b49e97c9
TS
3497#endif
3498}
3499\f
3500/* Create the .compact_rel section. */
3501
b34976b6 3502static bfd_boolean
9719ad41
RS
3503mips_elf_create_compact_rel_section
3504 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
3505{
3506 flagword flags;
3507 register asection *s;
3508
3509 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3510 {
3511 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3512 | SEC_READONLY);
3513
3514 s = bfd_make_section (abfd, ".compact_rel");
3515 if (s == NULL
3516 || ! bfd_set_section_flags (abfd, s, flags)
3517 || ! bfd_set_section_alignment (abfd, s,
3518 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 3519 return FALSE;
b49e97c9 3520
eea6121a 3521 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
3522 }
3523
b34976b6 3524 return TRUE;
b49e97c9
TS
3525}
3526
3527/* Create the .got section to hold the global offset table. */
3528
b34976b6 3529static bfd_boolean
9719ad41
RS
3530mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3531 bfd_boolean maybe_exclude)
b49e97c9
TS
3532{
3533 flagword flags;
3534 register asection *s;
3535 struct elf_link_hash_entry *h;
14a793b2 3536 struct bfd_link_hash_entry *bh;
b49e97c9
TS
3537 struct mips_got_info *g;
3538 bfd_size_type amt;
3539
3540 /* This function may be called more than once. */
f4416af6
AO
3541 s = mips_elf_got_section (abfd, TRUE);
3542 if (s)
3543 {
3544 if (! maybe_exclude)
3545 s->flags &= ~SEC_EXCLUDE;
3546 return TRUE;
3547 }
b49e97c9
TS
3548
3549 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3550 | SEC_LINKER_CREATED);
3551
f4416af6
AO
3552 if (maybe_exclude)
3553 flags |= SEC_EXCLUDE;
3554
72b4917c
TS
3555 /* We have to use an alignment of 2**4 here because this is hardcoded
3556 in the function stub generation and in the linker script. */
b49e97c9
TS
3557 s = bfd_make_section (abfd, ".got");
3558 if (s == NULL
3559 || ! bfd_set_section_flags (abfd, s, flags)
72b4917c 3560 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 3561 return FALSE;
b49e97c9
TS
3562
3563 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3564 linker script because we don't want to define the symbol if we
3565 are not creating a global offset table. */
14a793b2 3566 bh = NULL;
b49e97c9
TS
3567 if (! (_bfd_generic_link_add_one_symbol
3568 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 3569 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 3570 return FALSE;
14a793b2
AM
3571
3572 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
3573 h->non_elf = 0;
3574 h->def_regular = 1;
b49e97c9
TS
3575 h->type = STT_OBJECT;
3576
3577 if (info->shared
c152c796 3578 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 3579 return FALSE;
b49e97c9 3580
b49e97c9 3581 amt = sizeof (struct mips_got_info);
9719ad41 3582 g = bfd_alloc (abfd, amt);
b49e97c9 3583 if (g == NULL)
b34976b6 3584 return FALSE;
b49e97c9 3585 g->global_gotsym = NULL;
e3d54347 3586 g->global_gotno = 0;
0f20cc35 3587 g->tls_gotno = 0;
b49e97c9
TS
3588 g->local_gotno = MIPS_RESERVED_GOTNO;
3589 g->assigned_gotno = MIPS_RESERVED_GOTNO;
f4416af6
AO
3590 g->bfd2got = NULL;
3591 g->next = NULL;
0f20cc35 3592 g->tls_ldm_offset = MINUS_ONE;
b15e6682 3593 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
9719ad41 3594 mips_elf_got_entry_eq, NULL);
b15e6682
AO
3595 if (g->got_entries == NULL)
3596 return FALSE;
f0abc2a1
AM
3597 mips_elf_section_data (s)->u.got_info = g;
3598 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
3599 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3600
b34976b6 3601 return TRUE;
b49e97c9 3602}
b49e97c9
TS
3603\f
3604/* Calculate the value produced by the RELOCATION (which comes from
3605 the INPUT_BFD). The ADDEND is the addend to use for this
3606 RELOCATION; RELOCATION->R_ADDEND is ignored.
3607
3608 The result of the relocation calculation is stored in VALUEP.
3609 REQUIRE_JALXP indicates whether or not the opcode used with this
3610 relocation must be JALX.
3611
3612 This function returns bfd_reloc_continue if the caller need take no
3613 further action regarding this relocation, bfd_reloc_notsupported if
3614 something goes dramatically wrong, bfd_reloc_overflow if an
3615 overflow occurs, and bfd_reloc_ok to indicate success. */
3616
3617static bfd_reloc_status_type
9719ad41
RS
3618mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3619 asection *input_section,
3620 struct bfd_link_info *info,
3621 const Elf_Internal_Rela *relocation,
3622 bfd_vma addend, reloc_howto_type *howto,
3623 Elf_Internal_Sym *local_syms,
3624 asection **local_sections, bfd_vma *valuep,
3625 const char **namep, bfd_boolean *require_jalxp,
3626 bfd_boolean save_addend)
b49e97c9
TS
3627{
3628 /* The eventual value we will return. */
3629 bfd_vma value;
3630 /* The address of the symbol against which the relocation is
3631 occurring. */
3632 bfd_vma symbol = 0;
3633 /* The final GP value to be used for the relocatable, executable, or
3634 shared object file being produced. */
3635 bfd_vma gp = MINUS_ONE;
3636 /* The place (section offset or address) of the storage unit being
3637 relocated. */
3638 bfd_vma p;
3639 /* The value of GP used to create the relocatable object. */
3640 bfd_vma gp0 = MINUS_ONE;
3641 /* The offset into the global offset table at which the address of
3642 the relocation entry symbol, adjusted by the addend, resides
3643 during execution. */
3644 bfd_vma g = MINUS_ONE;
3645 /* The section in which the symbol referenced by the relocation is
3646 located. */
3647 asection *sec = NULL;
3648 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 3649 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 3650 symbol. */
b34976b6
AM
3651 bfd_boolean local_p, was_local_p;
3652 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3653 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
3654 /* TRUE if the symbol referred to by this relocation is
3655 "__gnu_local_gp". */
3656 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
3657 Elf_Internal_Shdr *symtab_hdr;
3658 size_t extsymoff;
3659 unsigned long r_symndx;
3660 int r_type;
b34976b6 3661 /* TRUE if overflow occurred during the calculation of the
b49e97c9 3662 relocation value. */
b34976b6
AM
3663 bfd_boolean overflowed_p;
3664 /* TRUE if this relocation refers to a MIPS16 function. */
3665 bfd_boolean target_is_16_bit_code_p = FALSE;
b49e97c9
TS
3666
3667 /* Parse the relocation. */
3668 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3669 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3670 p = (input_section->output_section->vma
3671 + input_section->output_offset
3672 + relocation->r_offset);
3673
3674 /* Assume that there will be no overflow. */
b34976b6 3675 overflowed_p = FALSE;
b49e97c9
TS
3676
3677 /* Figure out whether or not the symbol is local, and get the offset
3678 used in the array of hash table entries. */
3679 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3680 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3681 local_sections, FALSE);
bce03d3d 3682 was_local_p = local_p;
b49e97c9
TS
3683 if (! elf_bad_symtab (input_bfd))
3684 extsymoff = symtab_hdr->sh_info;
3685 else
3686 {
3687 /* The symbol table does not follow the rule that local symbols
3688 must come before globals. */
3689 extsymoff = 0;
3690 }
3691
3692 /* Figure out the value of the symbol. */
3693 if (local_p)
3694 {
3695 Elf_Internal_Sym *sym;
3696
3697 sym = local_syms + r_symndx;
3698 sec = local_sections[r_symndx];
3699
3700 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
3701 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3702 || (sec->flags & SEC_MERGE))
b49e97c9 3703 symbol += sym->st_value;
d4df96e6
L
3704 if ((sec->flags & SEC_MERGE)
3705 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3706 {
3707 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3708 addend -= symbol;
3709 addend += sec->output_section->vma + sec->output_offset;
3710 }
b49e97c9
TS
3711
3712 /* MIPS16 text labels should be treated as odd. */
3713 if (sym->st_other == STO_MIPS16)
3714 ++symbol;
3715
3716 /* Record the name of this symbol, for our caller. */
3717 *namep = bfd_elf_string_from_elf_section (input_bfd,
3718 symtab_hdr->sh_link,
3719 sym->st_name);
3720 if (*namep == '\0')
3721 *namep = bfd_section_name (input_bfd, sec);
3722
3723 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3724 }
3725 else
3726 {
560e09e9
NC
3727 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3728
b49e97c9
TS
3729 /* For global symbols we look up the symbol in the hash-table. */
3730 h = ((struct mips_elf_link_hash_entry *)
3731 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3732 /* Find the real hash-table entry for this symbol. */
3733 while (h->root.root.type == bfd_link_hash_indirect
3734 || h->root.root.type == bfd_link_hash_warning)
3735 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3736
3737 /* Record the name of this symbol, for our caller. */
3738 *namep = h->root.root.root.string;
3739
3740 /* See if this is the special _gp_disp symbol. Note that such a
3741 symbol must always be a global symbol. */
560e09e9 3742 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
3743 && ! NEWABI_P (input_bfd))
3744 {
3745 /* Relocations against _gp_disp are permitted only with
3746 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
d6f16593
MR
3747 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
3748 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
b49e97c9
TS
3749 return bfd_reloc_notsupported;
3750
b34976b6 3751 gp_disp_p = TRUE;
b49e97c9 3752 }
bbe506e8
TS
3753 /* See if this is the special _gp symbol. Note that such a
3754 symbol must always be a global symbol. */
3755 else if (strcmp (*namep, "__gnu_local_gp") == 0)
3756 gnu_local_gp_p = TRUE;
3757
3758
b49e97c9
TS
3759 /* If this symbol is defined, calculate its address. Note that
3760 _gp_disp is a magic symbol, always implicitly defined by the
3761 linker, so it's inappropriate to check to see whether or not
3762 its defined. */
3763 else if ((h->root.root.type == bfd_link_hash_defined
3764 || h->root.root.type == bfd_link_hash_defweak)
3765 && h->root.root.u.def.section)
3766 {
3767 sec = h->root.root.u.def.section;
3768 if (sec->output_section)
3769 symbol = (h->root.root.u.def.value
3770 + sec->output_section->vma
3771 + sec->output_offset);
3772 else
3773 symbol = h->root.root.u.def.value;
3774 }
3775 else if (h->root.root.type == bfd_link_hash_undefweak)
3776 /* We allow relocations against undefined weak symbols, giving
3777 it the value zero, so that you can undefined weak functions
3778 and check to see if they exist by looking at their
3779 addresses. */
3780 symbol = 0;
59c2e50f 3781 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
3782 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
3783 symbol = 0;
a4d0f181
TS
3784 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
3785 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
3786 {
3787 /* If this is a dynamic link, we should have created a
3788 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
3789 in in _bfd_mips_elf_create_dynamic_sections.
3790 Otherwise, we should define the symbol with a value of 0.
3791 FIXME: It should probably get into the symbol table
3792 somehow as well. */
3793 BFD_ASSERT (! info->shared);
3794 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
3795 symbol = 0;
3796 }
3797 else
3798 {
3799 if (! ((*info->callbacks->undefined_symbol)
3800 (info, h->root.root.root.string, input_bfd,
3801 input_section, relocation->r_offset,
59c2e50f
L
3802 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
3803 || ELF_ST_VISIBILITY (h->root.other))))
b49e97c9
TS
3804 return bfd_reloc_undefined;
3805 symbol = 0;
3806 }
3807
3808 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
3809 }
3810
3811 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
3812 need to redirect the call to the stub, unless we're already *in*
3813 a stub. */
1049f94e 3814 if (r_type != R_MIPS16_26 && !info->relocatable
b49e97c9
TS
3815 && ((h != NULL && h->fn_stub != NULL)
3816 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
3817 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
3818 && !mips_elf_stub_section_p (input_bfd, input_section))
3819 {
3820 /* This is a 32- or 64-bit call to a 16-bit function. We should
3821 have already noticed that we were going to need the
3822 stub. */
3823 if (local_p)
3824 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
3825 else
3826 {
3827 BFD_ASSERT (h->need_fn_stub);
3828 sec = h->fn_stub;
3829 }
3830
3831 symbol = sec->output_section->vma + sec->output_offset;
3832 }
3833 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
3834 need to redirect the call to the stub. */
1049f94e 3835 else if (r_type == R_MIPS16_26 && !info->relocatable
b49e97c9
TS
3836 && h != NULL
3837 && (h->call_stub != NULL || h->call_fp_stub != NULL)
3838 && !target_is_16_bit_code_p)
3839 {
3840 /* If both call_stub and call_fp_stub are defined, we can figure
3841 out which one to use by seeing which one appears in the input
3842 file. */
3843 if (h->call_stub != NULL && h->call_fp_stub != NULL)
3844 {
3845 asection *o;
3846
3847 sec = NULL;
3848 for (o = input_bfd->sections; o != NULL; o = o->next)
3849 {
3850 if (strncmp (bfd_get_section_name (input_bfd, o),
3851 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
3852 {
3853 sec = h->call_fp_stub;
3854 break;
3855 }
3856 }
3857 if (sec == NULL)
3858 sec = h->call_stub;
3859 }
3860 else if (h->call_stub != NULL)
3861 sec = h->call_stub;
3862 else
3863 sec = h->call_fp_stub;
3864
eea6121a 3865 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
3866 symbol = sec->output_section->vma + sec->output_offset;
3867 }
3868
3869 /* Calls from 16-bit code to 32-bit code and vice versa require the
3870 special jalx instruction. */
1049f94e 3871 *require_jalxp = (!info->relocatable
b49e97c9
TS
3872 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
3873 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
3874
3875 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3876 local_sections, TRUE);
b49e97c9
TS
3877
3878 /* If we haven't already determined the GOT offset, or the GP value,
3879 and we're going to need it, get it now. */
3880 switch (r_type)
3881 {
0fdc1bf1 3882 case R_MIPS_GOT_PAGE:
93a2b7ae 3883 case R_MIPS_GOT_OFST:
d25aed71
RS
3884 /* We need to decay to GOT_DISP/addend if the symbol doesn't
3885 bind locally. */
3886 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
93a2b7ae 3887 if (local_p || r_type == R_MIPS_GOT_OFST)
0fdc1bf1
AO
3888 break;
3889 /* Fall through. */
3890
b49e97c9
TS
3891 case R_MIPS_CALL16:
3892 case R_MIPS_GOT16:
3893 case R_MIPS_GOT_DISP:
3894 case R_MIPS_GOT_HI16:
3895 case R_MIPS_CALL_HI16:
3896 case R_MIPS_GOT_LO16:
3897 case R_MIPS_CALL_LO16:
0f20cc35
DJ
3898 case R_MIPS_TLS_GD:
3899 case R_MIPS_TLS_GOTTPREL:
3900 case R_MIPS_TLS_LDM:
b49e97c9 3901 /* Find the index into the GOT where this value is located. */
0f20cc35
DJ
3902 if (r_type == R_MIPS_TLS_LDM)
3903 {
3904 g = mips_elf_local_got_index (abfd, input_bfd, info, 0, 0, NULL,
3905 r_type);
3906 if (g == MINUS_ONE)
3907 return bfd_reloc_outofrange;
3908 }
3909 else if (!local_p)
b49e97c9 3910 {
0fdc1bf1
AO
3911 /* GOT_PAGE may take a non-zero addend, that is ignored in a
3912 GOT_PAGE relocation that decays to GOT_DISP because the
3913 symbol turns out to be global. The addend is then added
3914 as GOT_OFST. */
3915 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
b49e97c9 3916 g = mips_elf_global_got_index (elf_hash_table (info)->dynobj,
f4416af6 3917 input_bfd,
0f20cc35
DJ
3918 (struct elf_link_hash_entry *) h,
3919 r_type, info);
3920 if (h->tls_type == GOT_NORMAL
3921 && (! elf_hash_table(info)->dynamic_sections_created
3922 || (info->shared
3923 && (info->symbolic || h->root.dynindx == -1)
3924 && h->root.def_regular)))
b49e97c9
TS
3925 {
3926 /* This is a static link or a -Bsymbolic link. The
3927 symbol is defined locally, or was forced to be local.
3928 We must initialize this entry in the GOT. */
3929 bfd *tmpbfd = elf_hash_table (info)->dynobj;
f4416af6 3930 asection *sgot = mips_elf_got_section (tmpbfd, FALSE);
0fdc1bf1 3931 MIPS_ELF_PUT_WORD (tmpbfd, symbol, sgot->contents + g);
b49e97c9
TS
3932 }
3933 }
3934 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
3935 /* There's no need to create a local GOT entry here; the
3936 calculation for a local GOT16 entry does not involve G. */
3937 break;
3938 else
3939 {
f4416af6 3940 g = mips_elf_local_got_index (abfd, input_bfd,
0f20cc35
DJ
3941 info, symbol + addend, r_symndx, h,
3942 r_type);
b49e97c9
TS
3943 if (g == MINUS_ONE)
3944 return bfd_reloc_outofrange;
3945 }
3946
3947 /* Convert GOT indices to actual offsets. */
3948 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 3949 abfd, input_bfd, g);
b49e97c9
TS
3950 break;
3951
3952 case R_MIPS_HI16:
3953 case R_MIPS_LO16:
b49e97c9
TS
3954 case R_MIPS_GPREL16:
3955 case R_MIPS_GPREL32:
3956 case R_MIPS_LITERAL:
d6f16593
MR
3957 case R_MIPS16_HI16:
3958 case R_MIPS16_LO16:
3959 case R_MIPS16_GPREL:
b49e97c9
TS
3960 gp0 = _bfd_get_gp_value (input_bfd);
3961 gp = _bfd_get_gp_value (abfd);
f4416af6
AO
3962 if (elf_hash_table (info)->dynobj)
3963 gp += mips_elf_adjust_gp (abfd,
3964 mips_elf_got_info
3965 (elf_hash_table (info)->dynobj, NULL),
3966 input_bfd);
b49e97c9
TS
3967 break;
3968
3969 default:
3970 break;
3971 }
3972
bbe506e8
TS
3973 if (gnu_local_gp_p)
3974 symbol = gp;
3975
b49e97c9
TS
3976 /* Figure out what kind of relocation is being performed. */
3977 switch (r_type)
3978 {
3979 case R_MIPS_NONE:
3980 return bfd_reloc_continue;
3981
3982 case R_MIPS_16:
a7ebbfdf 3983 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
b49e97c9
TS
3984 overflowed_p = mips_elf_overflow_p (value, 16);
3985 break;
3986
3987 case R_MIPS_32:
3988 case R_MIPS_REL32:
3989 case R_MIPS_64:
3990 if ((info->shared
3991 || (elf_hash_table (info)->dynamic_sections_created
3992 && h != NULL
f5385ebf
AM
3993 && h->root.def_dynamic
3994 && !h->root.def_regular))
b49e97c9
TS
3995 && r_symndx != 0
3996 && (input_section->flags & SEC_ALLOC) != 0)
3997 {
3998 /* If we're creating a shared library, or this relocation is
3999 against a symbol in a shared library, then we can't know
4000 where the symbol will end up. So, we create a relocation
4001 record in the output, and leave the job up to the dynamic
4002 linker. */
4003 value = addend;
4004 if (!mips_elf_create_dynamic_relocation (abfd,
4005 info,
4006 relocation,
4007 h,
4008 sec,
4009 symbol,
4010 &value,
4011 input_section))
4012 return bfd_reloc_undefined;
cc27e1dc
EC
4013
4014 /* If we've written this we need to set DF_TEXTREL here. */
4015 if (MIPS_ELF_READONLY_SECTION (input_section))
4016 info->flags |= DF_TEXTREL;
b49e97c9
TS
4017 }
4018 else
4019 {
4020 if (r_type != R_MIPS_REL32)
4021 value = symbol + addend;
4022 else
4023 value = addend;
4024 }
4025 value &= howto->dst_mask;
092dcd75
CD
4026 break;
4027
4028 case R_MIPS_PC32:
4029 value = symbol + addend - p;
4030 value &= howto->dst_mask;
b49e97c9
TS
4031 break;
4032
0b25d3e6 4033 case R_MIPS_GNU_REL16_S2:
30ac9238 4034 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
0b25d3e6
AO
4035 overflowed_p = mips_elf_overflow_p (value, 18);
4036 value = (value >> 2) & howto->dst_mask;
4037 break;
4038
b49e97c9
TS
4039 case R_MIPS16_26:
4040 /* The calculation for R_MIPS16_26 is just the same as for an
4041 R_MIPS_26. It's only the storage of the relocated field into
4042 the output file that's different. That's handled in
4043 mips_elf_perform_relocation. So, we just fall through to the
4044 R_MIPS_26 case here. */
4045 case R_MIPS_26:
4046 if (local_p)
30ac9238 4047 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
b49e97c9 4048 else
728b2f21
ILT
4049 {
4050 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
c314987d
RS
4051 if (h->root.root.type != bfd_link_hash_undefweak)
4052 overflowed_p = (value >> 26) != ((p + 4) >> 28);
728b2f21 4053 }
b49e97c9
TS
4054 value &= howto->dst_mask;
4055 break;
4056
0f20cc35
DJ
4057 case R_MIPS_TLS_DTPREL_HI16:
4058 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4059 & howto->dst_mask);
4060 break;
4061
4062 case R_MIPS_TLS_DTPREL_LO16:
4063 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4064 break;
4065
4066 case R_MIPS_TLS_TPREL_HI16:
4067 value = (mips_elf_high (addend + symbol - tprel_base (info))
4068 & howto->dst_mask);
4069 break;
4070
4071 case R_MIPS_TLS_TPREL_LO16:
4072 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4073 break;
4074
b49e97c9 4075 case R_MIPS_HI16:
d6f16593 4076 case R_MIPS16_HI16:
b49e97c9
TS
4077 if (!gp_disp_p)
4078 {
4079 value = mips_elf_high (addend + symbol);
4080 value &= howto->dst_mask;
4081 }
4082 else
4083 {
d6f16593
MR
4084 /* For MIPS16 ABI code we generate this sequence
4085 0: li $v0,%hi(_gp_disp)
4086 4: addiupc $v1,%lo(_gp_disp)
4087 8: sll $v0,16
4088 12: addu $v0,$v1
4089 14: move $gp,$v0
4090 So the offsets of hi and lo relocs are the same, but the
4091 $pc is four higher than $t9 would be, so reduce
4092 both reloc addends by 4. */
4093 if (r_type == R_MIPS16_HI16)
4094 value = mips_elf_high (addend + gp - p - 4);
4095 else
4096 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
4097 overflowed_p = mips_elf_overflow_p (value, 16);
4098 }
4099 break;
4100
4101 case R_MIPS_LO16:
d6f16593 4102 case R_MIPS16_LO16:
b49e97c9
TS
4103 if (!gp_disp_p)
4104 value = (symbol + addend) & howto->dst_mask;
4105 else
4106 {
d6f16593
MR
4107 /* See the comment for R_MIPS16_HI16 above for the reason
4108 for this conditional. */
4109 if (r_type == R_MIPS16_LO16)
4110 value = addend + gp - p;
4111 else
4112 value = addend + gp - p + 4;
b49e97c9 4113 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 4114 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
4115 _gp_disp are normally generated from the .cpload
4116 pseudo-op. It generates code that normally looks like
4117 this:
4118
4119 lui $gp,%hi(_gp_disp)
4120 addiu $gp,$gp,%lo(_gp_disp)
4121 addu $gp,$gp,$t9
4122
4123 Here $t9 holds the address of the function being called,
4124 as required by the MIPS ELF ABI. The R_MIPS_LO16
4125 relocation can easily overflow in this situation, but the
4126 R_MIPS_HI16 relocation will handle the overflow.
4127 Therefore, we consider this a bug in the MIPS ABI, and do
4128 not check for overflow here. */
4129 }
4130 break;
4131
4132 case R_MIPS_LITERAL:
4133 /* Because we don't merge literal sections, we can handle this
4134 just like R_MIPS_GPREL16. In the long run, we should merge
4135 shared literals, and then we will need to additional work
4136 here. */
4137
4138 /* Fall through. */
4139
4140 case R_MIPS16_GPREL:
4141 /* The R_MIPS16_GPREL performs the same calculation as
4142 R_MIPS_GPREL16, but stores the relocated bits in a different
4143 order. We don't need to do anything special here; the
4144 differences are handled in mips_elf_perform_relocation. */
4145 case R_MIPS_GPREL16:
bce03d3d
AO
4146 /* Only sign-extend the addend if it was extracted from the
4147 instruction. If the addend was separate, leave it alone,
4148 otherwise we may lose significant bits. */
4149 if (howto->partial_inplace)
a7ebbfdf 4150 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
4151 value = symbol + addend - gp;
4152 /* If the symbol was local, any earlier relocatable links will
4153 have adjusted its addend with the gp offset, so compensate
4154 for that now. Don't do it for symbols forced local in this
4155 link, though, since they won't have had the gp offset applied
4156 to them before. */
4157 if (was_local_p)
4158 value += gp0;
b49e97c9
TS
4159 overflowed_p = mips_elf_overflow_p (value, 16);
4160 break;
4161
4162 case R_MIPS_GOT16:
4163 case R_MIPS_CALL16:
4164 if (local_p)
4165 {
b34976b6 4166 bfd_boolean forced;
b49e97c9
TS
4167
4168 /* The special case is when the symbol is forced to be local. We
4169 need the full address in the GOT since no R_MIPS_LO16 relocation
4170 follows. */
4171 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 4172 local_sections, FALSE);
f4416af6
AO
4173 value = mips_elf_got16_entry (abfd, input_bfd, info,
4174 symbol + addend, forced);
b49e97c9
TS
4175 if (value == MINUS_ONE)
4176 return bfd_reloc_outofrange;
4177 value
4178 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 4179 abfd, input_bfd, value);
b49e97c9
TS
4180 overflowed_p = mips_elf_overflow_p (value, 16);
4181 break;
4182 }
4183
4184 /* Fall through. */
4185
0f20cc35
DJ
4186 case R_MIPS_TLS_GD:
4187 case R_MIPS_TLS_GOTTPREL:
4188 case R_MIPS_TLS_LDM:
b49e97c9 4189 case R_MIPS_GOT_DISP:
0fdc1bf1 4190 got_disp:
b49e97c9
TS
4191 value = g;
4192 overflowed_p = mips_elf_overflow_p (value, 16);
4193 break;
4194
4195 case R_MIPS_GPREL32:
bce03d3d
AO
4196 value = (addend + symbol + gp0 - gp);
4197 if (!save_addend)
4198 value &= howto->dst_mask;
b49e97c9
TS
4199 break;
4200
4201 case R_MIPS_PC16:
a7ebbfdf 4202 value = _bfd_mips_elf_sign_extend (addend, 16) + symbol - p;
0b25d3e6 4203 overflowed_p = mips_elf_overflow_p (value, 16);
b49e97c9
TS
4204 break;
4205
4206 case R_MIPS_GOT_HI16:
4207 case R_MIPS_CALL_HI16:
4208 /* We're allowed to handle these two relocations identically.
4209 The dynamic linker is allowed to handle the CALL relocations
4210 differently by creating a lazy evaluation stub. */
4211 value = g;
4212 value = mips_elf_high (value);
4213 value &= howto->dst_mask;
4214 break;
4215
4216 case R_MIPS_GOT_LO16:
4217 case R_MIPS_CALL_LO16:
4218 value = g & howto->dst_mask;
4219 break;
4220
4221 case R_MIPS_GOT_PAGE:
0fdc1bf1
AO
4222 /* GOT_PAGE relocations that reference non-local symbols decay
4223 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4224 0. */
93a2b7ae 4225 if (! local_p)
0fdc1bf1 4226 goto got_disp;
f4416af6 4227 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
4228 if (value == MINUS_ONE)
4229 return bfd_reloc_outofrange;
4230 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 4231 abfd, input_bfd, value);
b49e97c9
TS
4232 overflowed_p = mips_elf_overflow_p (value, 16);
4233 break;
4234
4235 case R_MIPS_GOT_OFST:
93a2b7ae 4236 if (local_p)
0fdc1bf1
AO
4237 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
4238 else
4239 value = addend;
b49e97c9
TS
4240 overflowed_p = mips_elf_overflow_p (value, 16);
4241 break;
4242
4243 case R_MIPS_SUB:
4244 value = symbol - addend;
4245 value &= howto->dst_mask;
4246 break;
4247
4248 case R_MIPS_HIGHER:
4249 value = mips_elf_higher (addend + symbol);
4250 value &= howto->dst_mask;
4251 break;
4252
4253 case R_MIPS_HIGHEST:
4254 value = mips_elf_highest (addend + symbol);
4255 value &= howto->dst_mask;
4256 break;
4257
4258 case R_MIPS_SCN_DISP:
4259 value = symbol + addend - sec->output_offset;
4260 value &= howto->dst_mask;
4261 break;
4262
b49e97c9 4263 case R_MIPS_JALR:
1367d393
ILT
4264 /* This relocation is only a hint. In some cases, we optimize
4265 it into a bal instruction. But we don't try to optimize
4266 branches to the PLT; that will wind up wasting time. */
4267 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4268 return bfd_reloc_continue;
4269 value = symbol + addend;
4270 break;
b49e97c9 4271
1367d393 4272 case R_MIPS_PJUMP:
b49e97c9
TS
4273 case R_MIPS_GNU_VTINHERIT:
4274 case R_MIPS_GNU_VTENTRY:
4275 /* We don't do anything with these at present. */
4276 return bfd_reloc_continue;
4277
4278 default:
4279 /* An unrecognized relocation type. */
4280 return bfd_reloc_notsupported;
4281 }
4282
4283 /* Store the VALUE for our caller. */
4284 *valuep = value;
4285 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4286}
4287
4288/* Obtain the field relocated by RELOCATION. */
4289
4290static bfd_vma
9719ad41
RS
4291mips_elf_obtain_contents (reloc_howto_type *howto,
4292 const Elf_Internal_Rela *relocation,
4293 bfd *input_bfd, bfd_byte *contents)
b49e97c9
TS
4294{
4295 bfd_vma x;
4296 bfd_byte *location = contents + relocation->r_offset;
4297
4298 /* Obtain the bytes. */
4299 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4300
b49e97c9
TS
4301 return x;
4302}
4303
4304/* It has been determined that the result of the RELOCATION is the
4305 VALUE. Use HOWTO to place VALUE into the output file at the
4306 appropriate position. The SECTION is the section to which the
b34976b6 4307 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
b49e97c9
TS
4308 for the relocation must be either JAL or JALX, and it is
4309 unconditionally converted to JALX.
4310
b34976b6 4311 Returns FALSE if anything goes wrong. */
b49e97c9 4312
b34976b6 4313static bfd_boolean
9719ad41
RS
4314mips_elf_perform_relocation (struct bfd_link_info *info,
4315 reloc_howto_type *howto,
4316 const Elf_Internal_Rela *relocation,
4317 bfd_vma value, bfd *input_bfd,
4318 asection *input_section, bfd_byte *contents,
4319 bfd_boolean require_jalx)
b49e97c9
TS
4320{
4321 bfd_vma x;
4322 bfd_byte *location;
4323 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4324
4325 /* Figure out where the relocation is occurring. */
4326 location = contents + relocation->r_offset;
4327
d6f16593
MR
4328 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4329
b49e97c9
TS
4330 /* Obtain the current value. */
4331 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4332
4333 /* Clear the field we are setting. */
4334 x &= ~howto->dst_mask;
4335
b49e97c9
TS
4336 /* Set the field. */
4337 x |= (value & howto->dst_mask);
4338
4339 /* If required, turn JAL into JALX. */
4340 if (require_jalx)
4341 {
b34976b6 4342 bfd_boolean ok;
b49e97c9
TS
4343 bfd_vma opcode = x >> 26;
4344 bfd_vma jalx_opcode;
4345
4346 /* Check to see if the opcode is already JAL or JALX. */
4347 if (r_type == R_MIPS16_26)
4348 {
4349 ok = ((opcode == 0x6) || (opcode == 0x7));
4350 jalx_opcode = 0x7;
4351 }
4352 else
4353 {
4354 ok = ((opcode == 0x3) || (opcode == 0x1d));
4355 jalx_opcode = 0x1d;
4356 }
4357
4358 /* If the opcode is not JAL or JALX, there's a problem. */
4359 if (!ok)
4360 {
4361 (*_bfd_error_handler)
d003868e
AM
4362 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4363 input_bfd,
4364 input_section,
b49e97c9
TS
4365 (unsigned long) relocation->r_offset);
4366 bfd_set_error (bfd_error_bad_value);
b34976b6 4367 return FALSE;
b49e97c9
TS
4368 }
4369
4370 /* Make this the JALX opcode. */
4371 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4372 }
4373
1367d393
ILT
4374 /* On the RM9000, bal is faster than jal, because bal uses branch
4375 prediction hardware. If we are linking for the RM9000, and we
4376 see jal, and bal fits, use it instead. Note that this
4377 transformation should be safe for all architectures. */
4378 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4379 && !info->relocatable
4380 && !require_jalx
4381 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
4382 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
4383 {
4384 bfd_vma addr;
4385 bfd_vma dest;
4386 bfd_signed_vma off;
4387
4388 addr = (input_section->output_section->vma
4389 + input_section->output_offset
4390 + relocation->r_offset
4391 + 4);
4392 if (r_type == R_MIPS_26)
4393 dest = (value << 2) | ((addr >> 28) << 28);
4394 else
4395 dest = value;
4396 off = dest - addr;
4397 if (off <= 0x1ffff && off >= -0x20000)
4398 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
4399 }
4400
b49e97c9
TS
4401 /* Put the value into the output. */
4402 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
d6f16593
MR
4403
4404 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4405 location);
4406
b34976b6 4407 return TRUE;
b49e97c9
TS
4408}
4409
b34976b6 4410/* Returns TRUE if SECTION is a MIPS16 stub section. */
b49e97c9 4411
b34976b6 4412static bfd_boolean
9719ad41 4413mips_elf_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
b49e97c9
TS
4414{
4415 const char *name = bfd_get_section_name (abfd, section);
4416
4417 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
4418 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
4419 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
4420}
4421\f
4422/* Add room for N relocations to the .rel.dyn section in ABFD. */
4423
4424static void
9719ad41 4425mips_elf_allocate_dynamic_relocations (bfd *abfd, unsigned int n)
b49e97c9
TS
4426{
4427 asection *s;
4428
f4416af6 4429 s = mips_elf_rel_dyn_section (abfd, FALSE);
b49e97c9
TS
4430 BFD_ASSERT (s != NULL);
4431
eea6121a 4432 if (s->size == 0)
b49e97c9
TS
4433 {
4434 /* Make room for a null element. */
eea6121a 4435 s->size += MIPS_ELF_REL_SIZE (abfd);
b49e97c9
TS
4436 ++s->reloc_count;
4437 }
eea6121a 4438 s->size += n * MIPS_ELF_REL_SIZE (abfd);
b49e97c9
TS
4439}
4440
4441/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4442 is the original relocation, which is now being transformed into a
4443 dynamic relocation. The ADDENDP is adjusted if necessary; the
4444 caller should store the result in place of the original addend. */
4445
b34976b6 4446static bfd_boolean
9719ad41
RS
4447mips_elf_create_dynamic_relocation (bfd *output_bfd,
4448 struct bfd_link_info *info,
4449 const Elf_Internal_Rela *rel,
4450 struct mips_elf_link_hash_entry *h,
4451 asection *sec, bfd_vma symbol,
4452 bfd_vma *addendp, asection *input_section)
b49e97c9 4453{
947216bf 4454 Elf_Internal_Rela outrel[3];
b49e97c9
TS
4455 asection *sreloc;
4456 bfd *dynobj;
4457 int r_type;
5d41f0b6
RS
4458 long indx;
4459 bfd_boolean defined_p;
b49e97c9
TS
4460
4461 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4462 dynobj = elf_hash_table (info)->dynobj;
f4416af6 4463 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
b49e97c9
TS
4464 BFD_ASSERT (sreloc != NULL);
4465 BFD_ASSERT (sreloc->contents != NULL);
4466 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 4467 < sreloc->size);
b49e97c9 4468
b49e97c9
TS
4469 outrel[0].r_offset =
4470 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
4471 outrel[1].r_offset =
4472 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
4473 outrel[2].r_offset =
4474 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
4475
c5ae1840 4476 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 4477 /* The relocation field has been deleted. */
5d41f0b6
RS
4478 return TRUE;
4479
4480 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
4481 {
4482 /* The relocation field has been converted into a relative value of
4483 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4484 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 4485 *addendp += symbol;
5d41f0b6 4486 return TRUE;
0d591ff7 4487 }
b49e97c9 4488
5d41f0b6
RS
4489 /* We must now calculate the dynamic symbol table index to use
4490 in the relocation. */
4491 if (h != NULL
4492 && (! info->symbolic || !h->root.def_regular)
4493 /* h->root.dynindx may be -1 if this symbol was marked to
4494 become local. */
4495 && h->root.dynindx != -1)
4496 {
4497 indx = h->root.dynindx;
4498 if (SGI_COMPAT (output_bfd))
4499 defined_p = h->root.def_regular;
4500 else
4501 /* ??? glibc's ld.so just adds the final GOT entry to the
4502 relocation field. It therefore treats relocs against
4503 defined symbols in the same way as relocs against
4504 undefined symbols. */
4505 defined_p = FALSE;
4506 }
b49e97c9
TS
4507 else
4508 {
5d41f0b6
RS
4509 if (sec != NULL && bfd_is_abs_section (sec))
4510 indx = 0;
4511 else if (sec == NULL || sec->owner == NULL)
fdd07405 4512 {
5d41f0b6
RS
4513 bfd_set_error (bfd_error_bad_value);
4514 return FALSE;
b49e97c9
TS
4515 }
4516 else
4517 {
5d41f0b6
RS
4518 indx = elf_section_data (sec->output_section)->dynindx;
4519 if (indx == 0)
4520 abort ();
b49e97c9
TS
4521 }
4522
5d41f0b6
RS
4523 /* Instead of generating a relocation using the section
4524 symbol, we may as well make it a fully relative
4525 relocation. We want to avoid generating relocations to
4526 local symbols because we used to generate them
4527 incorrectly, without adding the original symbol value,
4528 which is mandated by the ABI for section symbols. In
4529 order to give dynamic loaders and applications time to
4530 phase out the incorrect use, we refrain from emitting
4531 section-relative relocations. It's not like they're
4532 useful, after all. This should be a bit more efficient
4533 as well. */
4534 /* ??? Although this behavior is compatible with glibc's ld.so,
4535 the ABI says that relocations against STN_UNDEF should have
4536 a symbol value of 0. Irix rld honors this, so relocations
4537 against STN_UNDEF have no effect. */
4538 if (!SGI_COMPAT (output_bfd))
4539 indx = 0;
4540 defined_p = TRUE;
b49e97c9
TS
4541 }
4542
5d41f0b6
RS
4543 /* If the relocation was previously an absolute relocation and
4544 this symbol will not be referred to by the relocation, we must
4545 adjust it by the value we give it in the dynamic symbol table.
4546 Otherwise leave the job up to the dynamic linker. */
4547 if (defined_p && r_type != R_MIPS_REL32)
4548 *addendp += symbol;
4549
4550 /* The relocation is always an REL32 relocation because we don't
4551 know where the shared library will wind up at load-time. */
4552 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
4553 R_MIPS_REL32);
4554 /* For strict adherence to the ABI specification, we should
4555 generate a R_MIPS_64 relocation record by itself before the
4556 _REL32/_64 record as well, such that the addend is read in as
4557 a 64-bit value (REL32 is a 32-bit relocation, after all).
4558 However, since none of the existing ELF64 MIPS dynamic
4559 loaders seems to care, we don't waste space with these
4560 artificial relocations. If this turns out to not be true,
4561 mips_elf_allocate_dynamic_relocation() should be tweaked so
4562 as to make room for a pair of dynamic relocations per
4563 invocation if ABI_64_P, and here we should generate an
4564 additional relocation record with R_MIPS_64 by itself for a
4565 NULL symbol before this relocation record. */
4566 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
4567 ABI_64_P (output_bfd)
4568 ? R_MIPS_64
4569 : R_MIPS_NONE);
4570 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
4571
4572 /* Adjust the output offset of the relocation to reference the
4573 correct location in the output file. */
4574 outrel[0].r_offset += (input_section->output_section->vma
4575 + input_section->output_offset);
4576 outrel[1].r_offset += (input_section->output_section->vma
4577 + input_section->output_offset);
4578 outrel[2].r_offset += (input_section->output_section->vma
4579 + input_section->output_offset);
4580
b49e97c9
TS
4581 /* Put the relocation back out. We have to use the special
4582 relocation outputter in the 64-bit case since the 64-bit
4583 relocation format is non-standard. */
4584 if (ABI_64_P (output_bfd))
4585 {
4586 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4587 (output_bfd, &outrel[0],
4588 (sreloc->contents
4589 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4590 }
4591 else
947216bf
AM
4592 bfd_elf32_swap_reloc_out
4593 (output_bfd, &outrel[0],
4594 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 4595
b49e97c9
TS
4596 /* We've now added another relocation. */
4597 ++sreloc->reloc_count;
4598
4599 /* Make sure the output section is writable. The dynamic linker
4600 will be writing to it. */
4601 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4602 |= SHF_WRITE;
4603
4604 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 4605 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9
TS
4606 {
4607 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4608 bfd_byte *cr;
4609
4610 if (scpt)
4611 {
4612 Elf32_crinfo cptrel;
4613
4614 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4615 cptrel.vaddr = (rel->r_offset
4616 + input_section->output_section->vma
4617 + input_section->output_offset);
4618 if (r_type == R_MIPS_REL32)
4619 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4620 else
4621 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4622 mips_elf_set_cr_dist2to (cptrel, 0);
4623 cptrel.konst = *addendp;
4624
4625 cr = (scpt->contents
4626 + sizeof (Elf32_External_compact_rel));
abc0f8d0 4627 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
4628 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4629 ((Elf32_External_crinfo *) cr
4630 + scpt->reloc_count));
4631 ++scpt->reloc_count;
4632 }
4633 }
4634
b34976b6 4635 return TRUE;
b49e97c9
TS
4636}
4637\f
b49e97c9
TS
4638/* Return the MACH for a MIPS e_flags value. */
4639
4640unsigned long
9719ad41 4641_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
4642{
4643 switch (flags & EF_MIPS_MACH)
4644 {
4645 case E_MIPS_MACH_3900:
4646 return bfd_mach_mips3900;
4647
4648 case E_MIPS_MACH_4010:
4649 return bfd_mach_mips4010;
4650
4651 case E_MIPS_MACH_4100:
4652 return bfd_mach_mips4100;
4653
4654 case E_MIPS_MACH_4111:
4655 return bfd_mach_mips4111;
4656
00707a0e
RS
4657 case E_MIPS_MACH_4120:
4658 return bfd_mach_mips4120;
4659
b49e97c9
TS
4660 case E_MIPS_MACH_4650:
4661 return bfd_mach_mips4650;
4662
00707a0e
RS
4663 case E_MIPS_MACH_5400:
4664 return bfd_mach_mips5400;
4665
4666 case E_MIPS_MACH_5500:
4667 return bfd_mach_mips5500;
4668
0d2e43ed
ILT
4669 case E_MIPS_MACH_9000:
4670 return bfd_mach_mips9000;
4671
b49e97c9
TS
4672 case E_MIPS_MACH_SB1:
4673 return bfd_mach_mips_sb1;
4674
4675 default:
4676 switch (flags & EF_MIPS_ARCH)
4677 {
4678 default:
4679 case E_MIPS_ARCH_1:
4680 return bfd_mach_mips3000;
4681 break;
4682
4683 case E_MIPS_ARCH_2:
4684 return bfd_mach_mips6000;
4685 break;
4686
4687 case E_MIPS_ARCH_3:
4688 return bfd_mach_mips4000;
4689 break;
4690
4691 case E_MIPS_ARCH_4:
4692 return bfd_mach_mips8000;
4693 break;
4694
4695 case E_MIPS_ARCH_5:
4696 return bfd_mach_mips5;
4697 break;
4698
4699 case E_MIPS_ARCH_32:
4700 return bfd_mach_mipsisa32;
4701 break;
4702
4703 case E_MIPS_ARCH_64:
4704 return bfd_mach_mipsisa64;
4705 break;
af7ee8bf
CD
4706
4707 case E_MIPS_ARCH_32R2:
4708 return bfd_mach_mipsisa32r2;
4709 break;
5f74bc13
CD
4710
4711 case E_MIPS_ARCH_64R2:
4712 return bfd_mach_mipsisa64r2;
4713 break;
b49e97c9
TS
4714 }
4715 }
4716
4717 return 0;
4718}
4719
4720/* Return printable name for ABI. */
4721
4722static INLINE char *
9719ad41 4723elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
4724{
4725 flagword flags;
4726
4727 flags = elf_elfheader (abfd)->e_flags;
4728 switch (flags & EF_MIPS_ABI)
4729 {
4730 case 0:
4731 if (ABI_N32_P (abfd))
4732 return "N32";
4733 else if (ABI_64_P (abfd))
4734 return "64";
4735 else
4736 return "none";
4737 case E_MIPS_ABI_O32:
4738 return "O32";
4739 case E_MIPS_ABI_O64:
4740 return "O64";
4741 case E_MIPS_ABI_EABI32:
4742 return "EABI32";
4743 case E_MIPS_ABI_EABI64:
4744 return "EABI64";
4745 default:
4746 return "unknown abi";
4747 }
4748}
4749\f
4750/* MIPS ELF uses two common sections. One is the usual one, and the
4751 other is for small objects. All the small objects are kept
4752 together, and then referenced via the gp pointer, which yields
4753 faster assembler code. This is what we use for the small common
4754 section. This approach is copied from ecoff.c. */
4755static asection mips_elf_scom_section;
4756static asymbol mips_elf_scom_symbol;
4757static asymbol *mips_elf_scom_symbol_ptr;
4758
4759/* MIPS ELF also uses an acommon section, which represents an
4760 allocated common symbol which may be overridden by a
4761 definition in a shared library. */
4762static asection mips_elf_acom_section;
4763static asymbol mips_elf_acom_symbol;
4764static asymbol *mips_elf_acom_symbol_ptr;
4765
4766/* Handle the special MIPS section numbers that a symbol may use.
4767 This is used for both the 32-bit and the 64-bit ABI. */
4768
4769void
9719ad41 4770_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
4771{
4772 elf_symbol_type *elfsym;
4773
4774 elfsym = (elf_symbol_type *) asym;
4775 switch (elfsym->internal_elf_sym.st_shndx)
4776 {
4777 case SHN_MIPS_ACOMMON:
4778 /* This section is used in a dynamically linked executable file.
4779 It is an allocated common section. The dynamic linker can
4780 either resolve these symbols to something in a shared
4781 library, or it can just leave them here. For our purposes,
4782 we can consider these symbols to be in a new section. */
4783 if (mips_elf_acom_section.name == NULL)
4784 {
4785 /* Initialize the acommon section. */
4786 mips_elf_acom_section.name = ".acommon";
4787 mips_elf_acom_section.flags = SEC_ALLOC;
4788 mips_elf_acom_section.output_section = &mips_elf_acom_section;
4789 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
4790 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
4791 mips_elf_acom_symbol.name = ".acommon";
4792 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
4793 mips_elf_acom_symbol.section = &mips_elf_acom_section;
4794 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
4795 }
4796 asym->section = &mips_elf_acom_section;
4797 break;
4798
4799 case SHN_COMMON:
4800 /* Common symbols less than the GP size are automatically
4801 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
4802 if (asym->value > elf_gp_size (abfd)
4803 || IRIX_COMPAT (abfd) == ict_irix6)
4804 break;
4805 /* Fall through. */
4806 case SHN_MIPS_SCOMMON:
4807 if (mips_elf_scom_section.name == NULL)
4808 {
4809 /* Initialize the small common section. */
4810 mips_elf_scom_section.name = ".scommon";
4811 mips_elf_scom_section.flags = SEC_IS_COMMON;
4812 mips_elf_scom_section.output_section = &mips_elf_scom_section;
4813 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
4814 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
4815 mips_elf_scom_symbol.name = ".scommon";
4816 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
4817 mips_elf_scom_symbol.section = &mips_elf_scom_section;
4818 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
4819 }
4820 asym->section = &mips_elf_scom_section;
4821 asym->value = elfsym->internal_elf_sym.st_size;
4822 break;
4823
4824 case SHN_MIPS_SUNDEFINED:
4825 asym->section = bfd_und_section_ptr;
4826 break;
4827
b49e97c9 4828 case SHN_MIPS_TEXT:
00b4930b
TS
4829 {
4830 asection *section = bfd_get_section_by_name (abfd, ".text");
4831
4832 BFD_ASSERT (SGI_COMPAT (abfd));
4833 if (section != NULL)
4834 {
4835 asym->section = section;
4836 /* MIPS_TEXT is a bit special, the address is not an offset
4837 to the base of the .text section. So substract the section
4838 base address to make it an offset. */
4839 asym->value -= section->vma;
4840 }
4841 }
b49e97c9
TS
4842 break;
4843
4844 case SHN_MIPS_DATA:
00b4930b
TS
4845 {
4846 asection *section = bfd_get_section_by_name (abfd, ".data");
4847
4848 BFD_ASSERT (SGI_COMPAT (abfd));
4849 if (section != NULL)
4850 {
4851 asym->section = section;
4852 /* MIPS_DATA is a bit special, the address is not an offset
4853 to the base of the .data section. So substract the section
4854 base address to make it an offset. */
4855 asym->value -= section->vma;
4856 }
4857 }
b49e97c9 4858 break;
b49e97c9
TS
4859 }
4860}
4861\f
8c946ed5
RS
4862/* Implement elf_backend_eh_frame_address_size. This differs from
4863 the default in the way it handles EABI64.
4864
4865 EABI64 was originally specified as an LP64 ABI, and that is what
4866 -mabi=eabi normally gives on a 64-bit target. However, gcc has
4867 historically accepted the combination of -mabi=eabi and -mlong32,
4868 and this ILP32 variation has become semi-official over time.
4869 Both forms use elf32 and have pointer-sized FDE addresses.
4870
4871 If an EABI object was generated by GCC 4.0 or above, it will have
4872 an empty .gcc_compiled_longXX section, where XX is the size of longs
4873 in bits. Unfortunately, ILP32 objects generated by earlier compilers
4874 have no special marking to distinguish them from LP64 objects.
4875
4876 We don't want users of the official LP64 ABI to be punished for the
4877 existence of the ILP32 variant, but at the same time, we don't want
4878 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
4879 We therefore take the following approach:
4880
4881 - If ABFD contains a .gcc_compiled_longXX section, use it to
4882 determine the pointer size.
4883
4884 - Otherwise check the type of the first relocation. Assume that
4885 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
4886
4887 - Otherwise punt.
4888
4889 The second check is enough to detect LP64 objects generated by pre-4.0
4890 compilers because, in the kind of output generated by those compilers,
4891 the first relocation will be associated with either a CIE personality
4892 routine or an FDE start address. Furthermore, the compilers never
4893 used a special (non-pointer) encoding for this ABI.
4894
4895 Checking the relocation type should also be safe because there is no
4896 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
4897 did so. */
4898
4899unsigned int
4900_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
4901{
4902 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
4903 return 8;
4904 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
4905 {
4906 bfd_boolean long32_p, long64_p;
4907
4908 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
4909 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
4910 if (long32_p && long64_p)
4911 return 0;
4912 if (long32_p)
4913 return 4;
4914 if (long64_p)
4915 return 8;
4916
4917 if (sec->reloc_count > 0
4918 && elf_section_data (sec)->relocs != NULL
4919 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
4920 == R_MIPS_64))
4921 return 8;
4922
4923 return 0;
4924 }
4925 return 4;
4926}
4927\f
174fd7f9
RS
4928/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
4929 relocations against two unnamed section symbols to resolve to the
4930 same address. For example, if we have code like:
4931
4932 lw $4,%got_disp(.data)($gp)
4933 lw $25,%got_disp(.text)($gp)
4934 jalr $25
4935
4936 then the linker will resolve both relocations to .data and the program
4937 will jump there rather than to .text.
4938
4939 We can work around this problem by giving names to local section symbols.
4940 This is also what the MIPSpro tools do. */
4941
4942bfd_boolean
4943_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
4944{
4945 return SGI_COMPAT (abfd);
4946}
4947\f
b49e97c9
TS
4948/* Work over a section just before writing it out. This routine is
4949 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
4950 sections that need the SHF_MIPS_GPREL flag by name; there has to be
4951 a better way. */
4952
b34976b6 4953bfd_boolean
9719ad41 4954_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
4955{
4956 if (hdr->sh_type == SHT_MIPS_REGINFO
4957 && hdr->sh_size > 0)
4958 {
4959 bfd_byte buf[4];
4960
4961 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
4962 BFD_ASSERT (hdr->contents == NULL);
4963
4964 if (bfd_seek (abfd,
4965 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
4966 SEEK_SET) != 0)
b34976b6 4967 return FALSE;
b49e97c9 4968 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 4969 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 4970 return FALSE;
b49e97c9
TS
4971 }
4972
4973 if (hdr->sh_type == SHT_MIPS_OPTIONS
4974 && hdr->bfd_section != NULL
f0abc2a1
AM
4975 && mips_elf_section_data (hdr->bfd_section) != NULL
4976 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
4977 {
4978 bfd_byte *contents, *l, *lend;
4979
f0abc2a1
AM
4980 /* We stored the section contents in the tdata field in the
4981 set_section_contents routine. We save the section contents
4982 so that we don't have to read them again.
b49e97c9
TS
4983 At this point we know that elf_gp is set, so we can look
4984 through the section contents to see if there is an
4985 ODK_REGINFO structure. */
4986
f0abc2a1 4987 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
4988 l = contents;
4989 lend = contents + hdr->sh_size;
4990 while (l + sizeof (Elf_External_Options) <= lend)
4991 {
4992 Elf_Internal_Options intopt;
4993
4994 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4995 &intopt);
4996 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4997 {
4998 bfd_byte buf[8];
4999
5000 if (bfd_seek (abfd,
5001 (hdr->sh_offset
5002 + (l - contents)
5003 + sizeof (Elf_External_Options)
5004 + (sizeof (Elf64_External_RegInfo) - 8)),
5005 SEEK_SET) != 0)
b34976b6 5006 return FALSE;
b49e97c9 5007 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 5008 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 5009 return FALSE;
b49e97c9
TS
5010 }
5011 else if (intopt.kind == ODK_REGINFO)
5012 {
5013 bfd_byte buf[4];
5014
5015 if (bfd_seek (abfd,
5016 (hdr->sh_offset
5017 + (l - contents)
5018 + sizeof (Elf_External_Options)
5019 + (sizeof (Elf32_External_RegInfo) - 4)),
5020 SEEK_SET) != 0)
b34976b6 5021 return FALSE;
b49e97c9 5022 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 5023 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 5024 return FALSE;
b49e97c9
TS
5025 }
5026 l += intopt.size;
5027 }
5028 }
5029
5030 if (hdr->bfd_section != NULL)
5031 {
5032 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5033
5034 if (strcmp (name, ".sdata") == 0
5035 || strcmp (name, ".lit8") == 0
5036 || strcmp (name, ".lit4") == 0)
5037 {
5038 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5039 hdr->sh_type = SHT_PROGBITS;
5040 }
5041 else if (strcmp (name, ".sbss") == 0)
5042 {
5043 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5044 hdr->sh_type = SHT_NOBITS;
5045 }
5046 else if (strcmp (name, ".srdata") == 0)
5047 {
5048 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5049 hdr->sh_type = SHT_PROGBITS;
5050 }
5051 else if (strcmp (name, ".compact_rel") == 0)
5052 {
5053 hdr->sh_flags = 0;
5054 hdr->sh_type = SHT_PROGBITS;
5055 }
5056 else if (strcmp (name, ".rtproc") == 0)
5057 {
5058 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5059 {
5060 unsigned int adjust;
5061
5062 adjust = hdr->sh_size % hdr->sh_addralign;
5063 if (adjust != 0)
5064 hdr->sh_size += hdr->sh_addralign - adjust;
5065 }
5066 }
5067 }
5068
b34976b6 5069 return TRUE;
b49e97c9
TS
5070}
5071
5072/* Handle a MIPS specific section when reading an object file. This
5073 is called when elfcode.h finds a section with an unknown type.
5074 This routine supports both the 32-bit and 64-bit ELF ABI.
5075
5076 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5077 how to. */
5078
b34976b6 5079bfd_boolean
6dc132d9
L
5080_bfd_mips_elf_section_from_shdr (bfd *abfd,
5081 Elf_Internal_Shdr *hdr,
5082 const char *name,
5083 int shindex)
b49e97c9
TS
5084{
5085 flagword flags = 0;
5086
5087 /* There ought to be a place to keep ELF backend specific flags, but
5088 at the moment there isn't one. We just keep track of the
5089 sections by their name, instead. Fortunately, the ABI gives
5090 suggested names for all the MIPS specific sections, so we will
5091 probably get away with this. */
5092 switch (hdr->sh_type)
5093 {
5094 case SHT_MIPS_LIBLIST:
5095 if (strcmp (name, ".liblist") != 0)
b34976b6 5096 return FALSE;
b49e97c9
TS
5097 break;
5098 case SHT_MIPS_MSYM:
5099 if (strcmp (name, ".msym") != 0)
b34976b6 5100 return FALSE;
b49e97c9
TS
5101 break;
5102 case SHT_MIPS_CONFLICT:
5103 if (strcmp (name, ".conflict") != 0)
b34976b6 5104 return FALSE;
b49e97c9
TS
5105 break;
5106 case SHT_MIPS_GPTAB:
5107 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
b34976b6 5108 return FALSE;
b49e97c9
TS
5109 break;
5110 case SHT_MIPS_UCODE:
5111 if (strcmp (name, ".ucode") != 0)
b34976b6 5112 return FALSE;
b49e97c9
TS
5113 break;
5114 case SHT_MIPS_DEBUG:
5115 if (strcmp (name, ".mdebug") != 0)
b34976b6 5116 return FALSE;
b49e97c9
TS
5117 flags = SEC_DEBUGGING;
5118 break;
5119 case SHT_MIPS_REGINFO:
5120 if (strcmp (name, ".reginfo") != 0
5121 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 5122 return FALSE;
b49e97c9
TS
5123 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5124 break;
5125 case SHT_MIPS_IFACE:
5126 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 5127 return FALSE;
b49e97c9
TS
5128 break;
5129 case SHT_MIPS_CONTENT:
5130 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
b34976b6 5131 return FALSE;
b49e97c9
TS
5132 break;
5133 case SHT_MIPS_OPTIONS:
5134 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
b34976b6 5135 return FALSE;
b49e97c9
TS
5136 break;
5137 case SHT_MIPS_DWARF:
5138 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
b34976b6 5139 return FALSE;
b49e97c9
TS
5140 break;
5141 case SHT_MIPS_SYMBOL_LIB:
5142 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 5143 return FALSE;
b49e97c9
TS
5144 break;
5145 case SHT_MIPS_EVENTS:
5146 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
5147 && strncmp (name, ".MIPS.post_rel",
5148 sizeof ".MIPS.post_rel" - 1) != 0)
b34976b6 5149 return FALSE;
b49e97c9
TS
5150 break;
5151 default:
b34976b6 5152 return FALSE;
b49e97c9
TS
5153 }
5154
6dc132d9 5155 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 5156 return FALSE;
b49e97c9
TS
5157
5158 if (flags)
5159 {
5160 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5161 (bfd_get_section_flags (abfd,
5162 hdr->bfd_section)
5163 | flags)))
b34976b6 5164 return FALSE;
b49e97c9
TS
5165 }
5166
5167 /* FIXME: We should record sh_info for a .gptab section. */
5168
5169 /* For a .reginfo section, set the gp value in the tdata information
5170 from the contents of this section. We need the gp value while
5171 processing relocs, so we just get it now. The .reginfo section
5172 is not used in the 64-bit MIPS ELF ABI. */
5173 if (hdr->sh_type == SHT_MIPS_REGINFO)
5174 {
5175 Elf32_External_RegInfo ext;
5176 Elf32_RegInfo s;
5177
9719ad41
RS
5178 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5179 &ext, 0, sizeof ext))
b34976b6 5180 return FALSE;
b49e97c9
TS
5181 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5182 elf_gp (abfd) = s.ri_gp_value;
5183 }
5184
5185 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5186 set the gp value based on what we find. We may see both
5187 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5188 they should agree. */
5189 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5190 {
5191 bfd_byte *contents, *l, *lend;
5192
9719ad41 5193 contents = bfd_malloc (hdr->sh_size);
b49e97c9 5194 if (contents == NULL)
b34976b6 5195 return FALSE;
b49e97c9 5196 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 5197 0, hdr->sh_size))
b49e97c9
TS
5198 {
5199 free (contents);
b34976b6 5200 return FALSE;
b49e97c9
TS
5201 }
5202 l = contents;
5203 lend = contents + hdr->sh_size;
5204 while (l + sizeof (Elf_External_Options) <= lend)
5205 {
5206 Elf_Internal_Options intopt;
5207
5208 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5209 &intopt);
5210 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5211 {
5212 Elf64_Internal_RegInfo intreg;
5213
5214 bfd_mips_elf64_swap_reginfo_in
5215 (abfd,
5216 ((Elf64_External_RegInfo *)
5217 (l + sizeof (Elf_External_Options))),
5218 &intreg);
5219 elf_gp (abfd) = intreg.ri_gp_value;
5220 }
5221 else if (intopt.kind == ODK_REGINFO)
5222 {
5223 Elf32_RegInfo intreg;
5224
5225 bfd_mips_elf32_swap_reginfo_in
5226 (abfd,
5227 ((Elf32_External_RegInfo *)
5228 (l + sizeof (Elf_External_Options))),
5229 &intreg);
5230 elf_gp (abfd) = intreg.ri_gp_value;
5231 }
5232 l += intopt.size;
5233 }
5234 free (contents);
5235 }
5236
b34976b6 5237 return TRUE;
b49e97c9
TS
5238}
5239
5240/* Set the correct type for a MIPS ELF section. We do this by the
5241 section name, which is a hack, but ought to work. This routine is
5242 used by both the 32-bit and the 64-bit ABI. */
5243
b34976b6 5244bfd_boolean
9719ad41 5245_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9
TS
5246{
5247 register const char *name;
5248
5249 name = bfd_get_section_name (abfd, sec);
5250
5251 if (strcmp (name, ".liblist") == 0)
5252 {
5253 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 5254 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
5255 /* The sh_link field is set in final_write_processing. */
5256 }
5257 else if (strcmp (name, ".conflict") == 0)
5258 hdr->sh_type = SHT_MIPS_CONFLICT;
5259 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
5260 {
5261 hdr->sh_type = SHT_MIPS_GPTAB;
5262 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5263 /* The sh_info field is set in final_write_processing. */
5264 }
5265 else if (strcmp (name, ".ucode") == 0)
5266 hdr->sh_type = SHT_MIPS_UCODE;
5267 else if (strcmp (name, ".mdebug") == 0)
5268 {
5269 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 5270 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
5271 entsize of 0. FIXME: Does this matter? */
5272 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5273 hdr->sh_entsize = 0;
5274 else
5275 hdr->sh_entsize = 1;
5276 }
5277 else if (strcmp (name, ".reginfo") == 0)
5278 {
5279 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 5280 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
5281 entsize of 0x18. FIXME: Does this matter? */
5282 if (SGI_COMPAT (abfd))
5283 {
5284 if ((abfd->flags & DYNAMIC) != 0)
5285 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5286 else
5287 hdr->sh_entsize = 1;
5288 }
5289 else
5290 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5291 }
5292 else if (SGI_COMPAT (abfd)
5293 && (strcmp (name, ".hash") == 0
5294 || strcmp (name, ".dynamic") == 0
5295 || strcmp (name, ".dynstr") == 0))
5296 {
5297 if (SGI_COMPAT (abfd))
5298 hdr->sh_entsize = 0;
5299#if 0
8dc1a139 5300 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
5301 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5302#endif
5303 }
5304 else if (strcmp (name, ".got") == 0
5305 || strcmp (name, ".srdata") == 0
5306 || strcmp (name, ".sdata") == 0
5307 || strcmp (name, ".sbss") == 0
5308 || strcmp (name, ".lit4") == 0
5309 || strcmp (name, ".lit8") == 0)
5310 hdr->sh_flags |= SHF_MIPS_GPREL;
5311 else if (strcmp (name, ".MIPS.interfaces") == 0)
5312 {
5313 hdr->sh_type = SHT_MIPS_IFACE;
5314 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5315 }
5316 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
5317 {
5318 hdr->sh_type = SHT_MIPS_CONTENT;
5319 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5320 /* The sh_info field is set in final_write_processing. */
5321 }
5322 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
5323 {
5324 hdr->sh_type = SHT_MIPS_OPTIONS;
5325 hdr->sh_entsize = 1;
5326 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5327 }
5328 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
5329 hdr->sh_type = SHT_MIPS_DWARF;
5330 else if (strcmp (name, ".MIPS.symlib") == 0)
5331 {
5332 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5333 /* The sh_link and sh_info fields are set in
5334 final_write_processing. */
5335 }
5336 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
5337 || strncmp (name, ".MIPS.post_rel",
5338 sizeof ".MIPS.post_rel" - 1) == 0)
5339 {
5340 hdr->sh_type = SHT_MIPS_EVENTS;
5341 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5342 /* The sh_link field is set in final_write_processing. */
5343 }
5344 else if (strcmp (name, ".msym") == 0)
5345 {
5346 hdr->sh_type = SHT_MIPS_MSYM;
5347 hdr->sh_flags |= SHF_ALLOC;
5348 hdr->sh_entsize = 8;
5349 }
5350
7a79a000
TS
5351 /* The generic elf_fake_sections will set up REL_HDR using the default
5352 kind of relocations. We used to set up a second header for the
5353 non-default kind of relocations here, but only NewABI would use
5354 these, and the IRIX ld doesn't like resulting empty RELA sections.
5355 Thus we create those header only on demand now. */
b49e97c9 5356
b34976b6 5357 return TRUE;
b49e97c9
TS
5358}
5359
5360/* Given a BFD section, try to locate the corresponding ELF section
5361 index. This is used by both the 32-bit and the 64-bit ABI.
5362 Actually, it's not clear to me that the 64-bit ABI supports these,
5363 but for non-PIC objects we will certainly want support for at least
5364 the .scommon section. */
5365
b34976b6 5366bfd_boolean
9719ad41
RS
5367_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5368 asection *sec, int *retval)
b49e97c9
TS
5369{
5370 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5371 {
5372 *retval = SHN_MIPS_SCOMMON;
b34976b6 5373 return TRUE;
b49e97c9
TS
5374 }
5375 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5376 {
5377 *retval = SHN_MIPS_ACOMMON;
b34976b6 5378 return TRUE;
b49e97c9 5379 }
b34976b6 5380 return FALSE;
b49e97c9
TS
5381}
5382\f
5383/* Hook called by the linker routine which adds symbols from an object
5384 file. We must handle the special MIPS section numbers here. */
5385
b34976b6 5386bfd_boolean
9719ad41 5387_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 5388 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
5389 flagword *flagsp ATTRIBUTE_UNUSED,
5390 asection **secp, bfd_vma *valp)
b49e97c9
TS
5391{
5392 if (SGI_COMPAT (abfd)
5393 && (abfd->flags & DYNAMIC) != 0
5394 && strcmp (*namep, "_rld_new_interface") == 0)
5395 {
8dc1a139 5396 /* Skip IRIX5 rld entry name. */
b49e97c9 5397 *namep = NULL;
b34976b6 5398 return TRUE;
b49e97c9
TS
5399 }
5400
5401 switch (sym->st_shndx)
5402 {
5403 case SHN_COMMON:
5404 /* Common symbols less than the GP size are automatically
5405 treated as SHN_MIPS_SCOMMON symbols. */
5406 if (sym->st_size > elf_gp_size (abfd)
5407 || IRIX_COMPAT (abfd) == ict_irix6)
5408 break;
5409 /* Fall through. */
5410 case SHN_MIPS_SCOMMON:
5411 *secp = bfd_make_section_old_way (abfd, ".scommon");
5412 (*secp)->flags |= SEC_IS_COMMON;
5413 *valp = sym->st_size;
5414 break;
5415
5416 case SHN_MIPS_TEXT:
5417 /* This section is used in a shared object. */
5418 if (elf_tdata (abfd)->elf_text_section == NULL)
5419 {
5420 asymbol *elf_text_symbol;
5421 asection *elf_text_section;
5422 bfd_size_type amt = sizeof (asection);
5423
5424 elf_text_section = bfd_zalloc (abfd, amt);
5425 if (elf_text_section == NULL)
b34976b6 5426 return FALSE;
b49e97c9
TS
5427
5428 amt = sizeof (asymbol);
5429 elf_text_symbol = bfd_zalloc (abfd, amt);
5430 if (elf_text_symbol == NULL)
b34976b6 5431 return FALSE;
b49e97c9
TS
5432
5433 /* Initialize the section. */
5434
5435 elf_tdata (abfd)->elf_text_section = elf_text_section;
5436 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
5437
5438 elf_text_section->symbol = elf_text_symbol;
5439 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
5440
5441 elf_text_section->name = ".text";
5442 elf_text_section->flags = SEC_NO_FLAGS;
5443 elf_text_section->output_section = NULL;
5444 elf_text_section->owner = abfd;
5445 elf_text_symbol->name = ".text";
5446 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5447 elf_text_symbol->section = elf_text_section;
5448 }
5449 /* This code used to do *secp = bfd_und_section_ptr if
5450 info->shared. I don't know why, and that doesn't make sense,
5451 so I took it out. */
5452 *secp = elf_tdata (abfd)->elf_text_section;
5453 break;
5454
5455 case SHN_MIPS_ACOMMON:
5456 /* Fall through. XXX Can we treat this as allocated data? */
5457 case SHN_MIPS_DATA:
5458 /* This section is used in a shared object. */
5459 if (elf_tdata (abfd)->elf_data_section == NULL)
5460 {
5461 asymbol *elf_data_symbol;
5462 asection *elf_data_section;
5463 bfd_size_type amt = sizeof (asection);
5464
5465 elf_data_section = bfd_zalloc (abfd, amt);
5466 if (elf_data_section == NULL)
b34976b6 5467 return FALSE;
b49e97c9
TS
5468
5469 amt = sizeof (asymbol);
5470 elf_data_symbol = bfd_zalloc (abfd, amt);
5471 if (elf_data_symbol == NULL)
b34976b6 5472 return FALSE;
b49e97c9
TS
5473
5474 /* Initialize the section. */
5475
5476 elf_tdata (abfd)->elf_data_section = elf_data_section;
5477 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
5478
5479 elf_data_section->symbol = elf_data_symbol;
5480 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
5481
5482 elf_data_section->name = ".data";
5483 elf_data_section->flags = SEC_NO_FLAGS;
5484 elf_data_section->output_section = NULL;
5485 elf_data_section->owner = abfd;
5486 elf_data_symbol->name = ".data";
5487 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5488 elf_data_symbol->section = elf_data_section;
5489 }
5490 /* This code used to do *secp = bfd_und_section_ptr if
5491 info->shared. I don't know why, and that doesn't make sense,
5492 so I took it out. */
5493 *secp = elf_tdata (abfd)->elf_data_section;
5494 break;
5495
5496 case SHN_MIPS_SUNDEFINED:
5497 *secp = bfd_und_section_ptr;
5498 break;
5499 }
5500
5501 if (SGI_COMPAT (abfd)
5502 && ! info->shared
5503 && info->hash->creator == abfd->xvec
5504 && strcmp (*namep, "__rld_obj_head") == 0)
5505 {
5506 struct elf_link_hash_entry *h;
14a793b2 5507 struct bfd_link_hash_entry *bh;
b49e97c9
TS
5508
5509 /* Mark __rld_obj_head as dynamic. */
14a793b2 5510 bh = NULL;
b49e97c9 5511 if (! (_bfd_generic_link_add_one_symbol
9719ad41 5512 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 5513 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5514 return FALSE;
14a793b2
AM
5515
5516 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5517 h->non_elf = 0;
5518 h->def_regular = 1;
b49e97c9
TS
5519 h->type = STT_OBJECT;
5520
c152c796 5521 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5522 return FALSE;
b49e97c9 5523
b34976b6 5524 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b49e97c9
TS
5525 }
5526
5527 /* If this is a mips16 text symbol, add 1 to the value to make it
5528 odd. This will cause something like .word SYM to come up with
5529 the right value when it is loaded into the PC. */
5530 if (sym->st_other == STO_MIPS16)
5531 ++*valp;
5532
b34976b6 5533 return TRUE;
b49e97c9
TS
5534}
5535
5536/* This hook function is called before the linker writes out a global
5537 symbol. We mark symbols as small common if appropriate. This is
5538 also where we undo the increment of the value for a mips16 symbol. */
5539
b34976b6 5540bfd_boolean
9719ad41
RS
5541_bfd_mips_elf_link_output_symbol_hook
5542 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5543 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
5544 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
5545{
5546 /* If we see a common symbol, which implies a relocatable link, then
5547 if a symbol was small common in an input file, mark it as small
5548 common in the output file. */
5549 if (sym->st_shndx == SHN_COMMON
5550 && strcmp (input_sec->name, ".scommon") == 0)
5551 sym->st_shndx = SHN_MIPS_SCOMMON;
5552
79cda7cf
FF
5553 if (sym->st_other == STO_MIPS16)
5554 sym->st_value &= ~1;
b49e97c9 5555
b34976b6 5556 return TRUE;
b49e97c9
TS
5557}
5558\f
5559/* Functions for the dynamic linker. */
5560
5561/* Create dynamic sections when linking against a dynamic object. */
5562
b34976b6 5563bfd_boolean
9719ad41 5564_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
5565{
5566 struct elf_link_hash_entry *h;
14a793b2 5567 struct bfd_link_hash_entry *bh;
b49e97c9
TS
5568 flagword flags;
5569 register asection *s;
5570 const char * const *namep;
5571
5572 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5573 | SEC_LINKER_CREATED | SEC_READONLY);
5574
5575 /* Mips ABI requests the .dynamic section to be read only. */
5576 s = bfd_get_section_by_name (abfd, ".dynamic");
5577 if (s != NULL)
5578 {
5579 if (! bfd_set_section_flags (abfd, s, flags))
b34976b6 5580 return FALSE;
b49e97c9
TS
5581 }
5582
5583 /* We need to create .got section. */
f4416af6
AO
5584 if (! mips_elf_create_got_section (abfd, info, FALSE))
5585 return FALSE;
5586
5587 if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE))
b34976b6 5588 return FALSE;
b49e97c9 5589
b49e97c9
TS
5590 /* Create .stub section. */
5591 if (bfd_get_section_by_name (abfd,
5592 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
5593 {
5594 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
5595 if (s == NULL
5596 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
5597 || ! bfd_set_section_alignment (abfd, s,
5598 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5599 return FALSE;
b49e97c9
TS
5600 }
5601
5602 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5603 && !info->shared
5604 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
5605 {
5606 s = bfd_make_section (abfd, ".rld_map");
5607 if (s == NULL
5608 || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY)
5609 || ! bfd_set_section_alignment (abfd, s,
5610 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5611 return FALSE;
b49e97c9
TS
5612 }
5613
5614 /* On IRIX5, we adjust add some additional symbols and change the
5615 alignments of several sections. There is no ABI documentation
5616 indicating that this is necessary on IRIX6, nor any evidence that
5617 the linker takes such action. */
5618 if (IRIX_COMPAT (abfd) == ict_irix5)
5619 {
5620 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
5621 {
14a793b2 5622 bh = NULL;
b49e97c9 5623 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
5624 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
5625 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5626 return FALSE;
14a793b2
AM
5627
5628 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5629 h->non_elf = 0;
5630 h->def_regular = 1;
b49e97c9
TS
5631 h->type = STT_SECTION;
5632
c152c796 5633 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5634 return FALSE;
b49e97c9
TS
5635 }
5636
5637 /* We need to create a .compact_rel section. */
5638 if (SGI_COMPAT (abfd))
5639 {
5640 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 5641 return FALSE;
b49e97c9
TS
5642 }
5643
44c410de 5644 /* Change alignments of some sections. */
b49e97c9
TS
5645 s = bfd_get_section_by_name (abfd, ".hash");
5646 if (s != NULL)
d80dcc6a 5647 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5648 s = bfd_get_section_by_name (abfd, ".dynsym");
5649 if (s != NULL)
d80dcc6a 5650 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5651 s = bfd_get_section_by_name (abfd, ".dynstr");
5652 if (s != NULL)
d80dcc6a 5653 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5654 s = bfd_get_section_by_name (abfd, ".reginfo");
5655 if (s != NULL)
d80dcc6a 5656 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5657 s = bfd_get_section_by_name (abfd, ".dynamic");
5658 if (s != NULL)
d80dcc6a 5659 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5660 }
5661
5662 if (!info->shared)
5663 {
14a793b2
AM
5664 const char *name;
5665
5666 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
5667 bh = NULL;
5668 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
5669 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
5670 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5671 return FALSE;
14a793b2
AM
5672
5673 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5674 h->non_elf = 0;
5675 h->def_regular = 1;
b49e97c9
TS
5676 h->type = STT_SECTION;
5677
c152c796 5678 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5679 return FALSE;
b49e97c9
TS
5680
5681 if (! mips_elf_hash_table (info)->use_rld_obj_head)
5682 {
5683 /* __rld_map is a four byte word located in the .data section
5684 and is filled in by the rtld to contain a pointer to
5685 the _r_debug structure. Its symbol value will be set in
5686 _bfd_mips_elf_finish_dynamic_symbol. */
5687 s = bfd_get_section_by_name (abfd, ".rld_map");
5688 BFD_ASSERT (s != NULL);
5689
14a793b2
AM
5690 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
5691 bh = NULL;
5692 if (!(_bfd_generic_link_add_one_symbol
9719ad41 5693 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
14a793b2 5694 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5695 return FALSE;
14a793b2
AM
5696
5697 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5698 h->non_elf = 0;
5699 h->def_regular = 1;
b49e97c9
TS
5700 h->type = STT_OBJECT;
5701
c152c796 5702 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5703 return FALSE;
b49e97c9
TS
5704 }
5705 }
5706
b34976b6 5707 return TRUE;
b49e97c9
TS
5708}
5709\f
5710/* Look through the relocs for a section during the first phase, and
5711 allocate space in the global offset table. */
5712
b34976b6 5713bfd_boolean
9719ad41
RS
5714_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
5715 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
5716{
5717 const char *name;
5718 bfd *dynobj;
5719 Elf_Internal_Shdr *symtab_hdr;
5720 struct elf_link_hash_entry **sym_hashes;
5721 struct mips_got_info *g;
5722 size_t extsymoff;
5723 const Elf_Internal_Rela *rel;
5724 const Elf_Internal_Rela *rel_end;
5725 asection *sgot;
5726 asection *sreloc;
9c5bfbb7 5727 const struct elf_backend_data *bed;
b49e97c9 5728
1049f94e 5729 if (info->relocatable)
b34976b6 5730 return TRUE;
b49e97c9
TS
5731
5732 dynobj = elf_hash_table (info)->dynobj;
5733 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5734 sym_hashes = elf_sym_hashes (abfd);
5735 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5736
5737 /* Check for the mips16 stub sections. */
5738
5739 name = bfd_get_section_name (abfd, sec);
5740 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
5741 {
5742 unsigned long r_symndx;
5743
5744 /* Look at the relocation information to figure out which symbol
5745 this is for. */
5746
5747 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5748
5749 if (r_symndx < extsymoff
5750 || sym_hashes[r_symndx - extsymoff] == NULL)
5751 {
5752 asection *o;
5753
5754 /* This stub is for a local symbol. This stub will only be
5755 needed if there is some relocation in this BFD, other
5756 than a 16 bit function call, which refers to this symbol. */
5757 for (o = abfd->sections; o != NULL; o = o->next)
5758 {
5759 Elf_Internal_Rela *sec_relocs;
5760 const Elf_Internal_Rela *r, *rend;
5761
5762 /* We can ignore stub sections when looking for relocs. */
5763 if ((o->flags & SEC_RELOC) == 0
5764 || o->reloc_count == 0
5765 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
5766 sizeof FN_STUB - 1) == 0
5767 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
5768 sizeof CALL_STUB - 1) == 0
5769 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
5770 sizeof CALL_FP_STUB - 1) == 0)
5771 continue;
5772
45d6a902 5773 sec_relocs
9719ad41 5774 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 5775 info->keep_memory);
b49e97c9 5776 if (sec_relocs == NULL)
b34976b6 5777 return FALSE;
b49e97c9
TS
5778
5779 rend = sec_relocs + o->reloc_count;
5780 for (r = sec_relocs; r < rend; r++)
5781 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
5782 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
5783 break;
5784
6cdc0ccc 5785 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
5786 free (sec_relocs);
5787
5788 if (r < rend)
5789 break;
5790 }
5791
5792 if (o == NULL)
5793 {
5794 /* There is no non-call reloc for this stub, so we do
5795 not need it. Since this function is called before
5796 the linker maps input sections to output sections, we
5797 can easily discard it by setting the SEC_EXCLUDE
5798 flag. */
5799 sec->flags |= SEC_EXCLUDE;
b34976b6 5800 return TRUE;
b49e97c9
TS
5801 }
5802
5803 /* Record this stub in an array of local symbol stubs for
5804 this BFD. */
5805 if (elf_tdata (abfd)->local_stubs == NULL)
5806 {
5807 unsigned long symcount;
5808 asection **n;
5809 bfd_size_type amt;
5810
5811 if (elf_bad_symtab (abfd))
5812 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
5813 else
5814 symcount = symtab_hdr->sh_info;
5815 amt = symcount * sizeof (asection *);
9719ad41 5816 n = bfd_zalloc (abfd, amt);
b49e97c9 5817 if (n == NULL)
b34976b6 5818 return FALSE;
b49e97c9
TS
5819 elf_tdata (abfd)->local_stubs = n;
5820 }
5821
5822 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
5823
5824 /* We don't need to set mips16_stubs_seen in this case.
5825 That flag is used to see whether we need to look through
5826 the global symbol table for stubs. We don't need to set
5827 it here, because we just have a local stub. */
5828 }
5829 else
5830 {
5831 struct mips_elf_link_hash_entry *h;
5832
5833 h = ((struct mips_elf_link_hash_entry *)
5834 sym_hashes[r_symndx - extsymoff]);
5835
5836 /* H is the symbol this stub is for. */
5837
5838 h->fn_stub = sec;
b34976b6 5839 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
5840 }
5841 }
5842 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
5843 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5844 {
5845 unsigned long r_symndx;
5846 struct mips_elf_link_hash_entry *h;
5847 asection **loc;
5848
5849 /* Look at the relocation information to figure out which symbol
5850 this is for. */
5851
5852 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5853
5854 if (r_symndx < extsymoff
5855 || sym_hashes[r_symndx - extsymoff] == NULL)
5856 {
5857 /* This stub was actually built for a static symbol defined
5858 in the same file. We assume that all static symbols in
5859 mips16 code are themselves mips16, so we can simply
5860 discard this stub. Since this function is called before
5861 the linker maps input sections to output sections, we can
5862 easily discard it by setting the SEC_EXCLUDE flag. */
5863 sec->flags |= SEC_EXCLUDE;
b34976b6 5864 return TRUE;
b49e97c9
TS
5865 }
5866
5867 h = ((struct mips_elf_link_hash_entry *)
5868 sym_hashes[r_symndx - extsymoff]);
5869
5870 /* H is the symbol this stub is for. */
5871
5872 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5873 loc = &h->call_fp_stub;
5874 else
5875 loc = &h->call_stub;
5876
5877 /* If we already have an appropriate stub for this function, we
5878 don't need another one, so we can discard this one. Since
5879 this function is called before the linker maps input sections
5880 to output sections, we can easily discard it by setting the
5881 SEC_EXCLUDE flag. We can also discard this section if we
5882 happen to already know that this is a mips16 function; it is
5883 not necessary to check this here, as it is checked later, but
5884 it is slightly faster to check now. */
5885 if (*loc != NULL || h->root.other == STO_MIPS16)
5886 {
5887 sec->flags |= SEC_EXCLUDE;
b34976b6 5888 return TRUE;
b49e97c9
TS
5889 }
5890
5891 *loc = sec;
b34976b6 5892 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
5893 }
5894
5895 if (dynobj == NULL)
5896 {
5897 sgot = NULL;
5898 g = NULL;
5899 }
5900 else
5901 {
f4416af6 5902 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9
TS
5903 if (sgot == NULL)
5904 g = NULL;
5905 else
5906 {
f0abc2a1
AM
5907 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
5908 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
5909 BFD_ASSERT (g != NULL);
5910 }
5911 }
5912
5913 sreloc = NULL;
5914 bed = get_elf_backend_data (abfd);
5915 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
5916 for (rel = relocs; rel < rel_end; ++rel)
5917 {
5918 unsigned long r_symndx;
5919 unsigned int r_type;
5920 struct elf_link_hash_entry *h;
5921
5922 r_symndx = ELF_R_SYM (abfd, rel->r_info);
5923 r_type = ELF_R_TYPE (abfd, rel->r_info);
5924
5925 if (r_symndx < extsymoff)
5926 h = NULL;
5927 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
5928 {
5929 (*_bfd_error_handler)
d003868e
AM
5930 (_("%B: Malformed reloc detected for section %s"),
5931 abfd, name);
b49e97c9 5932 bfd_set_error (bfd_error_bad_value);
b34976b6 5933 return FALSE;
b49e97c9
TS
5934 }
5935 else
5936 {
5937 h = sym_hashes[r_symndx - extsymoff];
5938
5939 /* This may be an indirect symbol created because of a version. */
5940 if (h != NULL)
5941 {
5942 while (h->root.type == bfd_link_hash_indirect)
5943 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5944 }
5945 }
5946
5947 /* Some relocs require a global offset table. */
5948 if (dynobj == NULL || sgot == NULL)
5949 {
5950 switch (r_type)
5951 {
5952 case R_MIPS_GOT16:
5953 case R_MIPS_CALL16:
5954 case R_MIPS_CALL_HI16:
5955 case R_MIPS_CALL_LO16:
5956 case R_MIPS_GOT_HI16:
5957 case R_MIPS_GOT_LO16:
5958 case R_MIPS_GOT_PAGE:
5959 case R_MIPS_GOT_OFST:
5960 case R_MIPS_GOT_DISP:
0f20cc35
DJ
5961 case R_MIPS_TLS_GD:
5962 case R_MIPS_TLS_LDM:
b49e97c9
TS
5963 if (dynobj == NULL)
5964 elf_hash_table (info)->dynobj = dynobj = abfd;
f4416af6 5965 if (! mips_elf_create_got_section (dynobj, info, FALSE))
b34976b6 5966 return FALSE;
b49e97c9
TS
5967 g = mips_elf_got_info (dynobj, &sgot);
5968 break;
5969
5970 case R_MIPS_32:
5971 case R_MIPS_REL32:
5972 case R_MIPS_64:
5973 if (dynobj == NULL
5974 && (info->shared || h != NULL)
5975 && (sec->flags & SEC_ALLOC) != 0)
5976 elf_hash_table (info)->dynobj = dynobj = abfd;
5977 break;
5978
5979 default:
5980 break;
5981 }
5982 }
5983
5984 if (!h && (r_type == R_MIPS_CALL_LO16
5985 || r_type == R_MIPS_GOT_LO16
5986 || r_type == R_MIPS_GOT_DISP))
5987 {
5988 /* We may need a local GOT entry for this relocation. We
5989 don't count R_MIPS_GOT_PAGE because we can estimate the
5990 maximum number of pages needed by looking at the size of
5991 the segment. Similar comments apply to R_MIPS_GOT16 and
5992 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
5993 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 5994 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
f4416af6 5995 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
0f20cc35 5996 rel->r_addend, g, 0))
f4416af6 5997 return FALSE;
b49e97c9
TS
5998 }
5999
6000 switch (r_type)
6001 {
6002 case R_MIPS_CALL16:
6003 if (h == NULL)
6004 {
6005 (*_bfd_error_handler)
d003868e
AM
6006 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6007 abfd, (unsigned long) rel->r_offset);
b49e97c9 6008 bfd_set_error (bfd_error_bad_value);
b34976b6 6009 return FALSE;
b49e97c9
TS
6010 }
6011 /* Fall through. */
6012
6013 case R_MIPS_CALL_HI16:
6014 case R_MIPS_CALL_LO16:
6015 if (h != NULL)
6016 {
6017 /* This symbol requires a global offset table entry. */
0f20cc35 6018 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
b34976b6 6019 return FALSE;
b49e97c9
TS
6020
6021 /* We need a stub, not a plt entry for the undefined
6022 function. But we record it as if it needs plt. See
c152c796 6023 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 6024 h->needs_plt = 1;
b49e97c9
TS
6025 h->type = STT_FUNC;
6026 }
6027 break;
6028
0fdc1bf1
AO
6029 case R_MIPS_GOT_PAGE:
6030 /* If this is a global, overridable symbol, GOT_PAGE will
6031 decay to GOT_DISP, so we'll need a GOT entry for it. */
6032 if (h == NULL)
6033 break;
6034 else
6035 {
6036 struct mips_elf_link_hash_entry *hmips =
6037 (struct mips_elf_link_hash_entry *) h;
143d77c5 6038
0fdc1bf1
AO
6039 while (hmips->root.root.type == bfd_link_hash_indirect
6040 || hmips->root.root.type == bfd_link_hash_warning)
6041 hmips = (struct mips_elf_link_hash_entry *)
6042 hmips->root.root.u.i.link;
143d77c5 6043
f5385ebf 6044 if (hmips->root.def_regular
0fdc1bf1 6045 && ! (info->shared && ! info->symbolic
f5385ebf 6046 && ! hmips->root.forced_local))
0fdc1bf1
AO
6047 break;
6048 }
6049 /* Fall through. */
6050
b49e97c9
TS
6051 case R_MIPS_GOT16:
6052 case R_MIPS_GOT_HI16:
6053 case R_MIPS_GOT_LO16:
6054 case R_MIPS_GOT_DISP:
0f20cc35 6055 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
b34976b6 6056 return FALSE;
b49e97c9
TS
6057 break;
6058
0f20cc35
DJ
6059 case R_MIPS_TLS_GOTTPREL:
6060 if (info->shared)
6061 info->flags |= DF_STATIC_TLS;
6062 /* Fall through */
6063
6064 case R_MIPS_TLS_LDM:
6065 if (r_type == R_MIPS_TLS_LDM)
6066 {
6067 r_symndx = 0;
6068 h = NULL;
6069 }
6070 /* Fall through */
6071
6072 case R_MIPS_TLS_GD:
6073 /* This symbol requires a global offset table entry, or two
6074 for TLS GD relocations. */
6075 {
6076 unsigned char flag = (r_type == R_MIPS_TLS_GD
6077 ? GOT_TLS_GD
6078 : r_type == R_MIPS_TLS_LDM
6079 ? GOT_TLS_LDM
6080 : GOT_TLS_IE);
6081 if (h != NULL)
6082 {
6083 struct mips_elf_link_hash_entry *hmips =
6084 (struct mips_elf_link_hash_entry *) h;
6085 hmips->tls_type |= flag;
6086
6087 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6088 return FALSE;
6089 }
6090 else
6091 {
6092 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
6093
6094 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6095 rel->r_addend, g, flag))
6096 return FALSE;
6097 }
6098 }
6099 break;
6100
b49e97c9
TS
6101 case R_MIPS_32:
6102 case R_MIPS_REL32:
6103 case R_MIPS_64:
6104 if ((info->shared || h != NULL)
6105 && (sec->flags & SEC_ALLOC) != 0)
6106 {
6107 if (sreloc == NULL)
6108 {
f4416af6 6109 sreloc = mips_elf_rel_dyn_section (dynobj, TRUE);
b49e97c9 6110 if (sreloc == NULL)
f4416af6 6111 return FALSE;
b49e97c9 6112 }
cc27e1dc 6113
b49e97c9 6114 if (info->shared)
cc27e1dc
EC
6115 /* When creating a shared object, we must copy these
6116 reloc types into the output file as R_MIPS_REL32
6117 relocs. We make room for this reloc in the
6118 .rel.dyn reloc section. */
6119 mips_elf_allocate_dynamic_relocations (dynobj, 1);
b49e97c9
TS
6120 else
6121 {
6122 struct mips_elf_link_hash_entry *hmips;
cc27e1dc 6123
b49e97c9
TS
6124 /* We only need to copy this reloc if the symbol is
6125 defined in a dynamic object. */
6126 hmips = (struct mips_elf_link_hash_entry *) h;
6127 ++hmips->possibly_dynamic_relocs;
b49e97c9
TS
6128 }
6129
6130 /* Even though we don't directly need a GOT entry for
6131 this symbol, a symbol must have a dynamic symbol
6132 table index greater that DT_MIPS_GOTSYM if there are
6133 dynamic relocations against it. */
f4416af6
AO
6134 if (h != NULL)
6135 {
6136 if (dynobj == NULL)
6137 elf_hash_table (info)->dynobj = dynobj = abfd;
6138 if (! mips_elf_create_got_section (dynobj, info, TRUE))
6139 return FALSE;
6140 g = mips_elf_got_info (dynobj, &sgot);
0f20cc35 6141 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
f4416af6
AO
6142 return FALSE;
6143 }
b49e97c9
TS
6144 }
6145
6146 if (SGI_COMPAT (abfd))
6147 mips_elf_hash_table (info)->compact_rel_size +=
6148 sizeof (Elf32_External_crinfo);
6149 break;
6150
6151 case R_MIPS_26:
6152 case R_MIPS_GPREL16:
6153 case R_MIPS_LITERAL:
6154 case R_MIPS_GPREL32:
6155 if (SGI_COMPAT (abfd))
6156 mips_elf_hash_table (info)->compact_rel_size +=
6157 sizeof (Elf32_External_crinfo);
6158 break;
6159
6160 /* This relocation describes the C++ object vtable hierarchy.
6161 Reconstruct it for later use during GC. */
6162 case R_MIPS_GNU_VTINHERIT:
c152c796 6163 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 6164 return FALSE;
b49e97c9
TS
6165 break;
6166
6167 /* This relocation describes which C++ vtable entries are actually
6168 used. Record for later use during GC. */
6169 case R_MIPS_GNU_VTENTRY:
c152c796 6170 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 6171 return FALSE;
b49e97c9
TS
6172 break;
6173
6174 default:
6175 break;
6176 }
6177
6178 /* We must not create a stub for a symbol that has relocations
6179 related to taking the function's address. */
6180 switch (r_type)
6181 {
6182 default:
6183 if (h != NULL)
6184 {
6185 struct mips_elf_link_hash_entry *mh;
6186
6187 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 6188 mh->no_fn_stub = TRUE;
b49e97c9
TS
6189 }
6190 break;
6191 case R_MIPS_CALL16:
6192 case R_MIPS_CALL_HI16:
6193 case R_MIPS_CALL_LO16:
2b86c02e 6194 case R_MIPS_JALR:
b49e97c9
TS
6195 break;
6196 }
6197
6198 /* If this reloc is not a 16 bit call, and it has a global
6199 symbol, then we will need the fn_stub if there is one.
6200 References from a stub section do not count. */
6201 if (h != NULL
6202 && r_type != R_MIPS16_26
6203 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
6204 sizeof FN_STUB - 1) != 0
6205 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
6206 sizeof CALL_STUB - 1) != 0
6207 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
6208 sizeof CALL_FP_STUB - 1) != 0)
6209 {
6210 struct mips_elf_link_hash_entry *mh;
6211
6212 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 6213 mh->need_fn_stub = TRUE;
b49e97c9
TS
6214 }
6215 }
6216
b34976b6 6217 return TRUE;
b49e97c9
TS
6218}
6219\f
d0647110 6220bfd_boolean
9719ad41
RS
6221_bfd_mips_relax_section (bfd *abfd, asection *sec,
6222 struct bfd_link_info *link_info,
6223 bfd_boolean *again)
d0647110
AO
6224{
6225 Elf_Internal_Rela *internal_relocs;
6226 Elf_Internal_Rela *irel, *irelend;
6227 Elf_Internal_Shdr *symtab_hdr;
6228 bfd_byte *contents = NULL;
d0647110
AO
6229 size_t extsymoff;
6230 bfd_boolean changed_contents = FALSE;
6231 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
6232 Elf_Internal_Sym *isymbuf = NULL;
6233
6234 /* We are not currently changing any sizes, so only one pass. */
6235 *again = FALSE;
6236
1049f94e 6237 if (link_info->relocatable)
d0647110
AO
6238 return TRUE;
6239
9719ad41 6240 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
45d6a902 6241 link_info->keep_memory);
d0647110
AO
6242 if (internal_relocs == NULL)
6243 return TRUE;
6244
6245 irelend = internal_relocs + sec->reloc_count
6246 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
6247 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6248 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6249
6250 for (irel = internal_relocs; irel < irelend; irel++)
6251 {
6252 bfd_vma symval;
6253 bfd_signed_vma sym_offset;
6254 unsigned int r_type;
6255 unsigned long r_symndx;
6256 asection *sym_sec;
6257 unsigned long instruction;
6258
6259 /* Turn jalr into bgezal, and jr into beq, if they're marked
6260 with a JALR relocation, that indicate where they jump to.
6261 This saves some pipeline bubbles. */
6262 r_type = ELF_R_TYPE (abfd, irel->r_info);
6263 if (r_type != R_MIPS_JALR)
6264 continue;
6265
6266 r_symndx = ELF_R_SYM (abfd, irel->r_info);
6267 /* Compute the address of the jump target. */
6268 if (r_symndx >= extsymoff)
6269 {
6270 struct mips_elf_link_hash_entry *h
6271 = ((struct mips_elf_link_hash_entry *)
6272 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
6273
6274 while (h->root.root.type == bfd_link_hash_indirect
6275 || h->root.root.type == bfd_link_hash_warning)
6276 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 6277
d0647110
AO
6278 /* If a symbol is undefined, or if it may be overridden,
6279 skip it. */
6280 if (! ((h->root.root.type == bfd_link_hash_defined
6281 || h->root.root.type == bfd_link_hash_defweak)
6282 && h->root.root.u.def.section)
6283 || (link_info->shared && ! link_info->symbolic
f5385ebf 6284 && !h->root.forced_local))
d0647110
AO
6285 continue;
6286
6287 sym_sec = h->root.root.u.def.section;
6288 if (sym_sec->output_section)
6289 symval = (h->root.root.u.def.value
6290 + sym_sec->output_section->vma
6291 + sym_sec->output_offset);
6292 else
6293 symval = h->root.root.u.def.value;
6294 }
6295 else
6296 {
6297 Elf_Internal_Sym *isym;
6298
6299 /* Read this BFD's symbols if we haven't done so already. */
6300 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
6301 {
6302 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6303 if (isymbuf == NULL)
6304 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
6305 symtab_hdr->sh_info, 0,
6306 NULL, NULL, NULL);
6307 if (isymbuf == NULL)
6308 goto relax_return;
6309 }
6310
6311 isym = isymbuf + r_symndx;
6312 if (isym->st_shndx == SHN_UNDEF)
6313 continue;
6314 else if (isym->st_shndx == SHN_ABS)
6315 sym_sec = bfd_abs_section_ptr;
6316 else if (isym->st_shndx == SHN_COMMON)
6317 sym_sec = bfd_com_section_ptr;
6318 else
6319 sym_sec
6320 = bfd_section_from_elf_index (abfd, isym->st_shndx);
6321 symval = isym->st_value
6322 + sym_sec->output_section->vma
6323 + sym_sec->output_offset;
6324 }
6325
6326 /* Compute branch offset, from delay slot of the jump to the
6327 branch target. */
6328 sym_offset = (symval + irel->r_addend)
6329 - (sec_start + irel->r_offset + 4);
6330
6331 /* Branch offset must be properly aligned. */
6332 if ((sym_offset & 3) != 0)
6333 continue;
6334
6335 sym_offset >>= 2;
6336
6337 /* Check that it's in range. */
6338 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
6339 continue;
143d77c5 6340
d0647110
AO
6341 /* Get the section contents if we haven't done so already. */
6342 if (contents == NULL)
6343 {
6344 /* Get cached copy if it exists. */
6345 if (elf_section_data (sec)->this_hdr.contents != NULL)
6346 contents = elf_section_data (sec)->this_hdr.contents;
6347 else
6348 {
eea6121a 6349 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
d0647110
AO
6350 goto relax_return;
6351 }
6352 }
6353
6354 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
6355
6356 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6357 if ((instruction & 0xfc1fffff) == 0x0000f809)
6358 instruction = 0x04110000;
6359 /* If it was jr <reg>, turn it into b <target>. */
6360 else if ((instruction & 0xfc1fffff) == 0x00000008)
6361 instruction = 0x10000000;
6362 else
6363 continue;
6364
6365 instruction |= (sym_offset & 0xffff);
6366 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
6367 changed_contents = TRUE;
6368 }
6369
6370 if (contents != NULL
6371 && elf_section_data (sec)->this_hdr.contents != contents)
6372 {
6373 if (!changed_contents && !link_info->keep_memory)
6374 free (contents);
6375 else
6376 {
6377 /* Cache the section contents for elf_link_input_bfd. */
6378 elf_section_data (sec)->this_hdr.contents = contents;
6379 }
6380 }
6381 return TRUE;
6382
143d77c5 6383 relax_return:
eea6121a
AM
6384 if (contents != NULL
6385 && elf_section_data (sec)->this_hdr.contents != contents)
6386 free (contents);
d0647110
AO
6387 return FALSE;
6388}
6389\f
b49e97c9
TS
6390/* Adjust a symbol defined by a dynamic object and referenced by a
6391 regular object. The current definition is in some section of the
6392 dynamic object, but we're not including those sections. We have to
6393 change the definition to something the rest of the link can
6394 understand. */
6395
b34976b6 6396bfd_boolean
9719ad41
RS
6397_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6398 struct elf_link_hash_entry *h)
b49e97c9
TS
6399{
6400 bfd *dynobj;
6401 struct mips_elf_link_hash_entry *hmips;
6402 asection *s;
6403
6404 dynobj = elf_hash_table (info)->dynobj;
6405
6406 /* Make sure we know what is going on here. */
6407 BFD_ASSERT (dynobj != NULL
f5385ebf 6408 && (h->needs_plt
f6e332e6 6409 || h->u.weakdef != NULL
f5385ebf
AM
6410 || (h->def_dynamic
6411 && h->ref_regular
6412 && !h->def_regular)));
b49e97c9
TS
6413
6414 /* If this symbol is defined in a dynamic object, we need to copy
6415 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6416 file. */
6417 hmips = (struct mips_elf_link_hash_entry *) h;
1049f94e 6418 if (! info->relocatable
b49e97c9
TS
6419 && hmips->possibly_dynamic_relocs != 0
6420 && (h->root.type == bfd_link_hash_defweak
f5385ebf 6421 || !h->def_regular))
b49e97c9 6422 {
cc27e1dc
EC
6423 asection *sec;
6424 sec = mips_elf_rel_dyn_section (dynobj, FALSE);
b49e97c9
TS
6425 mips_elf_allocate_dynamic_relocations (dynobj,
6426 hmips->possibly_dynamic_relocs);
cc27e1dc
EC
6427
6428 if (MIPS_ELF_READONLY_SECTION (sec))
b49e97c9
TS
6429 /* We tell the dynamic linker that there are relocations
6430 against the text segment. */
6431 info->flags |= DF_TEXTREL;
6432 }
6433
6434 /* For a function, create a stub, if allowed. */
6435 if (! hmips->no_fn_stub
f5385ebf 6436 && h->needs_plt)
b49e97c9
TS
6437 {
6438 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 6439 return TRUE;
b49e97c9
TS
6440
6441 /* If this symbol is not defined in a regular file, then set
6442 the symbol to the stub location. This is required to make
6443 function pointers compare as equal between the normal
6444 executable and the shared library. */
f5385ebf 6445 if (!h->def_regular)
b49e97c9
TS
6446 {
6447 /* We need .stub section. */
6448 s = bfd_get_section_by_name (dynobj,
6449 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6450 BFD_ASSERT (s != NULL);
6451
6452 h->root.u.def.section = s;
eea6121a 6453 h->root.u.def.value = s->size;
b49e97c9
TS
6454
6455 /* XXX Write this stub address somewhere. */
eea6121a 6456 h->plt.offset = s->size;
b49e97c9
TS
6457
6458 /* Make room for this stub code. */
eea6121a 6459 s->size += MIPS_FUNCTION_STUB_SIZE;
b49e97c9
TS
6460
6461 /* The last half word of the stub will be filled with the index
6462 of this symbol in .dynsym section. */
b34976b6 6463 return TRUE;
b49e97c9
TS
6464 }
6465 }
6466 else if ((h->type == STT_FUNC)
f5385ebf 6467 && !h->needs_plt)
b49e97c9
TS
6468 {
6469 /* This will set the entry for this symbol in the GOT to 0, and
6470 the dynamic linker will take care of this. */
6471 h->root.u.def.value = 0;
b34976b6 6472 return TRUE;
b49e97c9
TS
6473 }
6474
6475 /* If this is a weak symbol, and there is a real definition, the
6476 processor independent code will have arranged for us to see the
6477 real definition first, and we can just use the same value. */
f6e332e6 6478 if (h->u.weakdef != NULL)
b49e97c9 6479 {
f6e332e6
AM
6480 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6481 || h->u.weakdef->root.type == bfd_link_hash_defweak);
6482 h->root.u.def.section = h->u.weakdef->root.u.def.section;
6483 h->root.u.def.value = h->u.weakdef->root.u.def.value;
b34976b6 6484 return TRUE;
b49e97c9
TS
6485 }
6486
6487 /* This is a reference to a symbol defined by a dynamic object which
6488 is not a function. */
6489
b34976b6 6490 return TRUE;
b49e97c9
TS
6491}
6492\f
6493/* This function is called after all the input files have been read,
6494 and the input sections have been assigned to output sections. We
6495 check for any mips16 stub sections that we can discard. */
6496
b34976b6 6497bfd_boolean
9719ad41
RS
6498_bfd_mips_elf_always_size_sections (bfd *output_bfd,
6499 struct bfd_link_info *info)
b49e97c9
TS
6500{
6501 asection *ri;
6502
f4416af6
AO
6503 bfd *dynobj;
6504 asection *s;
6505 struct mips_got_info *g;
6506 int i;
6507 bfd_size_type loadable_size = 0;
6508 bfd_size_type local_gotno;
6509 bfd *sub;
0f20cc35 6510 struct mips_elf_count_tls_arg count_tls_arg;
f4416af6 6511
b49e97c9
TS
6512 /* The .reginfo section has a fixed size. */
6513 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
6514 if (ri != NULL)
9719ad41 6515 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
b49e97c9 6516
1049f94e 6517 if (! (info->relocatable
f4416af6
AO
6518 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
6519 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 6520 mips_elf_check_mips16_stubs, NULL);
f4416af6
AO
6521
6522 dynobj = elf_hash_table (info)->dynobj;
6523 if (dynobj == NULL)
6524 /* Relocatable links don't have it. */
6525 return TRUE;
143d77c5 6526
f4416af6
AO
6527 g = mips_elf_got_info (dynobj, &s);
6528 if (s == NULL)
b34976b6 6529 return TRUE;
b49e97c9 6530
f4416af6
AO
6531 /* Calculate the total loadable size of the output. That
6532 will give us the maximum number of GOT_PAGE entries
6533 required. */
6534 for (sub = info->input_bfds; sub; sub = sub->link_next)
6535 {
6536 asection *subsection;
6537
6538 for (subsection = sub->sections;
6539 subsection;
6540 subsection = subsection->next)
6541 {
6542 if ((subsection->flags & SEC_ALLOC) == 0)
6543 continue;
eea6121a 6544 loadable_size += ((subsection->size + 0xf)
f4416af6
AO
6545 &~ (bfd_size_type) 0xf);
6546 }
6547 }
6548
6549 /* There has to be a global GOT entry for every symbol with
6550 a dynamic symbol table index of DT_MIPS_GOTSYM or
6551 higher. Therefore, it make sense to put those symbols
6552 that need GOT entries at the end of the symbol table. We
6553 do that here. */
6554 if (! mips_elf_sort_hash_table (info, 1))
6555 return FALSE;
6556
6557 if (g->global_gotsym != NULL)
6558 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
6559 else
6560 /* If there are no global symbols, or none requiring
6561 relocations, then GLOBAL_GOTSYM will be NULL. */
6562 i = 0;
6563
6564 /* In the worst case, we'll get one stub per dynamic symbol, plus
6565 one to account for the dummy entry at the end required by IRIX
6566 rld. */
6567 loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);
6568
6569 /* Assume there are two loadable segments consisting of
6570 contiguous sections. Is 5 enough? */
6571 local_gotno = (loadable_size >> 16) + 5;
6572
6573 g->local_gotno += local_gotno;
eea6121a 6574 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
6575
6576 g->global_gotno = i;
eea6121a 6577 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6 6578
0f20cc35
DJ
6579 /* We need to calculate tls_gotno for global symbols at this point
6580 instead of building it up earlier, to avoid doublecounting
6581 entries for one global symbol from multiple input files. */
6582 count_tls_arg.info = info;
6583 count_tls_arg.needed = 0;
6584 elf_link_hash_traverse (elf_hash_table (info),
6585 mips_elf_count_global_tls_entries,
6586 &count_tls_arg);
6587 g->tls_gotno += count_tls_arg.needed;
6588 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
6589
6590 mips_elf_resolve_final_got_entries (g);
6591
6592 if (s->size > MIPS_ELF_GOT_MAX_SIZE (output_bfd))
6593 {
6594 if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
6595 return FALSE;
6596 }
6597 else
6598 {
6599 /* Set up TLS entries for the first GOT. */
6600 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
6601 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
6602 }
b49e97c9 6603
b34976b6 6604 return TRUE;
b49e97c9
TS
6605}
6606
6607/* Set the sizes of the dynamic sections. */
6608
b34976b6 6609bfd_boolean
9719ad41
RS
6610_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
6611 struct bfd_link_info *info)
b49e97c9
TS
6612{
6613 bfd *dynobj;
6614 asection *s;
b34976b6 6615 bfd_boolean reltext;
b49e97c9
TS
6616
6617 dynobj = elf_hash_table (info)->dynobj;
6618 BFD_ASSERT (dynobj != NULL);
6619
6620 if (elf_hash_table (info)->dynamic_sections_created)
6621 {
6622 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 6623 if (info->executable)
b49e97c9
TS
6624 {
6625 s = bfd_get_section_by_name (dynobj, ".interp");
6626 BFD_ASSERT (s != NULL);
eea6121a 6627 s->size
b49e97c9
TS
6628 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
6629 s->contents
6630 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
6631 }
6632 }
6633
6634 /* The check_relocs and adjust_dynamic_symbol entry points have
6635 determined the sizes of the various dynamic sections. Allocate
6636 memory for them. */
b34976b6 6637 reltext = FALSE;
b49e97c9
TS
6638 for (s = dynobj->sections; s != NULL; s = s->next)
6639 {
6640 const char *name;
b34976b6 6641 bfd_boolean strip;
b49e97c9
TS
6642
6643 /* It's OK to base decisions on the section name, because none
6644 of the dynobj section names depend upon the input files. */
6645 name = bfd_get_section_name (dynobj, s);
6646
6647 if ((s->flags & SEC_LINKER_CREATED) == 0)
6648 continue;
6649
b34976b6 6650 strip = FALSE;
b49e97c9
TS
6651
6652 if (strncmp (name, ".rel", 4) == 0)
6653 {
eea6121a 6654 if (s->size == 0)
b49e97c9
TS
6655 {
6656 /* We only strip the section if the output section name
6657 has the same name. Otherwise, there might be several
6658 input sections for this output section. FIXME: This
6659 code is probably not needed these days anyhow, since
6660 the linker now does not create empty output sections. */
6661 if (s->output_section != NULL
6662 && strcmp (name,
6663 bfd_get_section_name (s->output_section->owner,
6664 s->output_section)) == 0)
b34976b6 6665 strip = TRUE;
b49e97c9
TS
6666 }
6667 else
6668 {
6669 const char *outname;
6670 asection *target;
6671
6672 /* If this relocation section applies to a read only
6673 section, then we probably need a DT_TEXTREL entry.
6674 If the relocation section is .rel.dyn, we always
6675 assert a DT_TEXTREL entry rather than testing whether
6676 there exists a relocation to a read only section or
6677 not. */
6678 outname = bfd_get_section_name (output_bfd,
6679 s->output_section);
6680 target = bfd_get_section_by_name (output_bfd, outname + 4);
6681 if ((target != NULL
6682 && (target->flags & SEC_READONLY) != 0
6683 && (target->flags & SEC_ALLOC) != 0)
6684 || strcmp (outname, ".rel.dyn") == 0)
b34976b6 6685 reltext = TRUE;
b49e97c9
TS
6686
6687 /* We use the reloc_count field as a counter if we need
6688 to copy relocs into the output file. */
6689 if (strcmp (name, ".rel.dyn") != 0)
6690 s->reloc_count = 0;
f4416af6
AO
6691
6692 /* If combreloc is enabled, elf_link_sort_relocs() will
6693 sort relocations, but in a different way than we do,
6694 and before we're done creating relocations. Also, it
6695 will move them around between input sections'
6696 relocation's contents, so our sorting would be
6697 broken, so don't let it run. */
6698 info->combreloc = 0;
b49e97c9
TS
6699 }
6700 }
6701 else if (strncmp (name, ".got", 4) == 0)
6702 {
f4416af6
AO
6703 /* _bfd_mips_elf_always_size_sections() has already done
6704 most of the work, but some symbols may have been mapped
6705 to versions that we must now resolve in the got_entries
6706 hash tables. */
6707 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
6708 struct mips_got_info *g = gg;
6709 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
6710 unsigned int needed_relocs = 0;
143d77c5 6711
f4416af6 6712 if (gg->next)
b49e97c9 6713 {
f4416af6
AO
6714 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
6715 set_got_offset_arg.info = info;
b49e97c9 6716
0f20cc35
DJ
6717 /* NOTE 2005-02-03: How can this call, or the next, ever
6718 find any indirect entries to resolve? They were all
6719 resolved in mips_elf_multi_got. */
f4416af6
AO
6720 mips_elf_resolve_final_got_entries (gg);
6721 for (g = gg->next; g && g->next != gg; g = g->next)
b49e97c9 6722 {
f4416af6
AO
6723 unsigned int save_assign;
6724
6725 mips_elf_resolve_final_got_entries (g);
6726
6727 /* Assign offsets to global GOT entries. */
6728 save_assign = g->assigned_gotno;
6729 g->assigned_gotno = g->local_gotno;
6730 set_got_offset_arg.g = g;
6731 set_got_offset_arg.needed_relocs = 0;
6732 htab_traverse (g->got_entries,
6733 mips_elf_set_global_got_offset,
6734 &set_got_offset_arg);
6735 needed_relocs += set_got_offset_arg.needed_relocs;
6736 BFD_ASSERT (g->assigned_gotno - g->local_gotno
6737 <= g->global_gotno);
6738
6739 g->assigned_gotno = save_assign;
6740 if (info->shared)
6741 {
6742 needed_relocs += g->local_gotno - g->assigned_gotno;
6743 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
6744 + g->next->global_gotno
0f20cc35 6745 + g->next->tls_gotno
f4416af6
AO
6746 + MIPS_RESERVED_GOTNO);
6747 }
b49e97c9 6748 }
0f20cc35
DJ
6749 }
6750 else
6751 {
6752 struct mips_elf_count_tls_arg arg;
6753 arg.info = info;
6754 arg.needed = 0;
b49e97c9 6755
0f20cc35
DJ
6756 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
6757 &arg);
6758 elf_link_hash_traverse (elf_hash_table (info),
6759 mips_elf_count_global_tls_relocs,
6760 &arg);
6761
6762 needed_relocs += arg.needed;
f4416af6 6763 }
0f20cc35
DJ
6764
6765 if (needed_relocs)
6766 mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs);
b49e97c9
TS
6767 }
6768 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
6769 {
8dc1a139 6770 /* IRIX rld assumes that the function stub isn't at the end
b49e97c9 6771 of .text section. So put a dummy. XXX */
eea6121a 6772 s->size += MIPS_FUNCTION_STUB_SIZE;
b49e97c9
TS
6773 }
6774 else if (! info->shared
6775 && ! mips_elf_hash_table (info)->use_rld_obj_head
6776 && strncmp (name, ".rld_map", 8) == 0)
6777 {
6778 /* We add a room for __rld_map. It will be filled in by the
6779 rtld to contain a pointer to the _r_debug structure. */
eea6121a 6780 s->size += 4;
b49e97c9
TS
6781 }
6782 else if (SGI_COMPAT (output_bfd)
6783 && strncmp (name, ".compact_rel", 12) == 0)
eea6121a 6784 s->size += mips_elf_hash_table (info)->compact_rel_size;
b49e97c9
TS
6785 else if (strncmp (name, ".init", 5) != 0)
6786 {
6787 /* It's not one of our sections, so don't allocate space. */
6788 continue;
6789 }
6790
6791 if (strip)
6792 {
6793 _bfd_strip_section_from_output (info, s);
6794 continue;
6795 }
6796
6797 /* Allocate memory for the section contents. */
eea6121a
AM
6798 s->contents = bfd_zalloc (dynobj, s->size);
6799 if (s->contents == NULL && s->size != 0)
b49e97c9
TS
6800 {
6801 bfd_set_error (bfd_error_no_memory);
b34976b6 6802 return FALSE;
b49e97c9
TS
6803 }
6804 }
6805
6806 if (elf_hash_table (info)->dynamic_sections_created)
6807 {
6808 /* Add some entries to the .dynamic section. We fill in the
6809 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
6810 must add the entries now so that we get the correct size for
6811 the .dynamic section. The DT_DEBUG entry is filled in by the
6812 dynamic linker and used by the debugger. */
6813 if (! info->shared)
6814 {
6815 /* SGI object has the equivalence of DT_DEBUG in the
6816 DT_MIPS_RLD_MAP entry. */
6817 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
b34976b6 6818 return FALSE;
b49e97c9
TS
6819 if (!SGI_COMPAT (output_bfd))
6820 {
6821 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
b34976b6 6822 return FALSE;
b49e97c9
TS
6823 }
6824 }
6825 else
6826 {
6827 /* Shared libraries on traditional mips have DT_DEBUG. */
6828 if (!SGI_COMPAT (output_bfd))
6829 {
6830 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
b34976b6 6831 return FALSE;
b49e97c9
TS
6832 }
6833 }
6834
6835 if (reltext && SGI_COMPAT (output_bfd))
6836 info->flags |= DF_TEXTREL;
6837
6838 if ((info->flags & DF_TEXTREL) != 0)
6839 {
6840 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 6841 return FALSE;
b49e97c9
TS
6842 }
6843
6844 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 6845 return FALSE;
b49e97c9 6846
f4416af6 6847 if (mips_elf_rel_dyn_section (dynobj, FALSE))
b49e97c9
TS
6848 {
6849 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
b34976b6 6850 return FALSE;
b49e97c9
TS
6851
6852 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
b34976b6 6853 return FALSE;
b49e97c9
TS
6854
6855 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
b34976b6 6856 return FALSE;
b49e97c9
TS
6857 }
6858
b49e97c9 6859 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
b34976b6 6860 return FALSE;
b49e97c9
TS
6861
6862 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
b34976b6 6863 return FALSE;
b49e97c9 6864
b49e97c9 6865 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
b34976b6 6866 return FALSE;
b49e97c9
TS
6867
6868 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
b34976b6 6869 return FALSE;
b49e97c9
TS
6870
6871 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
b34976b6 6872 return FALSE;
b49e97c9
TS
6873
6874 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
b34976b6 6875 return FALSE;
b49e97c9
TS
6876
6877 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
b34976b6 6878 return FALSE;
b49e97c9
TS
6879
6880 if (IRIX_COMPAT (dynobj) == ict_irix5
6881 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
b34976b6 6882 return FALSE;
b49e97c9
TS
6883
6884 if (IRIX_COMPAT (dynobj) == ict_irix6
6885 && (bfd_get_section_by_name
6886 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
6887 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
b34976b6 6888 return FALSE;
b49e97c9
TS
6889 }
6890
b34976b6 6891 return TRUE;
b49e97c9
TS
6892}
6893\f
6894/* Relocate a MIPS ELF section. */
6895
b34976b6 6896bfd_boolean
9719ad41
RS
6897_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
6898 bfd *input_bfd, asection *input_section,
6899 bfd_byte *contents, Elf_Internal_Rela *relocs,
6900 Elf_Internal_Sym *local_syms,
6901 asection **local_sections)
b49e97c9
TS
6902{
6903 Elf_Internal_Rela *rel;
6904 const Elf_Internal_Rela *relend;
6905 bfd_vma addend = 0;
b34976b6 6906 bfd_boolean use_saved_addend_p = FALSE;
9c5bfbb7 6907 const struct elf_backend_data *bed;
b49e97c9
TS
6908
6909 bed = get_elf_backend_data (output_bfd);
6910 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6911 for (rel = relocs; rel < relend; ++rel)
6912 {
6913 const char *name;
6914 bfd_vma value;
6915 reloc_howto_type *howto;
b34976b6
AM
6916 bfd_boolean require_jalx;
6917 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 6918 REL relocation. */
b34976b6 6919 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 6920 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 6921 const char *msg;
b49e97c9
TS
6922
6923 /* Find the relocation howto for this relocation. */
4a14403c 6924 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
6925 {
6926 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6927 64-bit code, but make sure all their addresses are in the
6928 lowermost or uppermost 32-bit section of the 64-bit address
6929 space. Thus, when they use an R_MIPS_64 they mean what is
6930 usually meant by R_MIPS_32, with the exception that the
6931 stored value is sign-extended to 64 bits. */
b34976b6 6932 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
6933
6934 /* On big-endian systems, we need to lie about the position
6935 of the reloc. */
6936 if (bfd_big_endian (input_bfd))
6937 rel->r_offset += 4;
6938 }
6939 else
6940 /* NewABI defaults to RELA relocations. */
6941 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
4ffba85c
AO
6942 NEWABI_P (input_bfd)
6943 && (MIPS_RELOC_RELA_P
6944 (input_bfd, input_section,
6945 rel - relocs)));
b49e97c9
TS
6946
6947 if (!use_saved_addend_p)
6948 {
6949 Elf_Internal_Shdr *rel_hdr;
6950
6951 /* If these relocations were originally of the REL variety,
6952 we must pull the addend out of the field that will be
6953 relocated. Otherwise, we simply use the contents of the
6954 RELA relocation. To determine which flavor or relocation
6955 this is, we depend on the fact that the INPUT_SECTION's
6956 REL_HDR is read before its REL_HDR2. */
6957 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6958 if ((size_t) (rel - relocs)
6959 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6960 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6961 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6962 {
d6f16593
MR
6963 bfd_byte *location = contents + rel->r_offset;
6964
b49e97c9 6965 /* Note that this is a REL relocation. */
b34976b6 6966 rela_relocation_p = FALSE;
b49e97c9
TS
6967
6968 /* Get the addend, which is stored in the input file. */
d6f16593
MR
6969 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE,
6970 location);
b49e97c9
TS
6971 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
6972 contents);
d6f16593
MR
6973 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE,
6974 location);
6975
b49e97c9
TS
6976 addend &= howto->src_mask;
6977
6978 /* For some kinds of relocations, the ADDEND is a
6979 combination of the addend stored in two different
6980 relocations. */
d6f16593 6981 if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16
b49e97c9
TS
6982 || (r_type == R_MIPS_GOT16
6983 && mips_elf_local_relocation_p (input_bfd, rel,
b34976b6 6984 local_sections, FALSE)))
b49e97c9
TS
6985 {
6986 bfd_vma l;
6987 const Elf_Internal_Rela *lo16_relocation;
6988 reloc_howto_type *lo16_howto;
d6f16593
MR
6989 bfd_byte *lo16_location;
6990 int lo16_type;
6991
6992 if (r_type == R_MIPS16_HI16)
6993 lo16_type = R_MIPS16_LO16;
6994 else
6995 lo16_type = R_MIPS_LO16;
b49e97c9
TS
6996
6997 /* The combined value is the sum of the HI16 addend,
6998 left-shifted by sixteen bits, and the LO16
6999 addend, sign extended. (Usually, the code does
7000 a `lui' of the HI16 value, and then an `addiu' of
7001 the LO16 value.)
7002
4030e8f6
CD
7003 Scan ahead to find a matching LO16 relocation.
7004
7005 According to the MIPS ELF ABI, the R_MIPS_LO16
7006 relocation must be immediately following.
7007 However, for the IRIX6 ABI, the next relocation
7008 may be a composed relocation consisting of
7009 several relocations for the same address. In
7010 that case, the R_MIPS_LO16 relocation may occur
7011 as one of these. We permit a similar extension
7012 in general, as that is useful for GCC. */
7013 lo16_relocation = mips_elf_next_relocation (input_bfd,
d6f16593 7014 lo16_type,
b49e97c9
TS
7015 rel, relend);
7016 if (lo16_relocation == NULL)
b34976b6 7017 return FALSE;
b49e97c9 7018
d6f16593
MR
7019 lo16_location = contents + lo16_relocation->r_offset;
7020
b49e97c9 7021 /* Obtain the addend kept there. */
4030e8f6 7022 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
d6f16593
MR
7023 lo16_type, FALSE);
7024 _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type, FALSE,
7025 lo16_location);
b49e97c9
TS
7026 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
7027 input_bfd, contents);
d6f16593
MR
7028 _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type, FALSE,
7029 lo16_location);
b49e97c9 7030 l &= lo16_howto->src_mask;
5a659663 7031 l <<= lo16_howto->rightshift;
a7ebbfdf 7032 l = _bfd_mips_elf_sign_extend (l, 16);
b49e97c9
TS
7033
7034 addend <<= 16;
7035
7036 /* Compute the combined addend. */
7037 addend += l;
b49e97c9 7038 }
30ac9238
RS
7039 else
7040 addend <<= howto->rightshift;
b49e97c9
TS
7041 }
7042 else
7043 addend = rel->r_addend;
7044 }
7045
1049f94e 7046 if (info->relocatable)
b49e97c9
TS
7047 {
7048 Elf_Internal_Sym *sym;
7049 unsigned long r_symndx;
7050
4a14403c 7051 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
7052 && bfd_big_endian (input_bfd))
7053 rel->r_offset -= 4;
7054
7055 /* Since we're just relocating, all we need to do is copy
7056 the relocations back out to the object file, unless
7057 they're against a section symbol, in which case we need
7058 to adjust by the section offset, or unless they're GP
7059 relative in which case we need to adjust by the amount
1049f94e 7060 that we're adjusting GP in this relocatable object. */
b49e97c9
TS
7061
7062 if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections,
b34976b6 7063 FALSE))
b49e97c9
TS
7064 /* There's nothing to do for non-local relocations. */
7065 continue;
7066
7067 if (r_type == R_MIPS16_GPREL
7068 || r_type == R_MIPS_GPREL16
7069 || r_type == R_MIPS_GPREL32
7070 || r_type == R_MIPS_LITERAL)
7071 addend -= (_bfd_get_gp_value (output_bfd)
7072 - _bfd_get_gp_value (input_bfd));
b49e97c9
TS
7073
7074 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
7075 sym = local_syms + r_symndx;
7076 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7077 /* Adjust the addend appropriately. */
7078 addend += local_sections[r_symndx]->output_offset;
7079
30ac9238
RS
7080 if (rela_relocation_p)
7081 /* If this is a RELA relocation, just update the addend. */
7082 rel->r_addend = addend;
7083 else
5a659663 7084 {
30ac9238 7085 if (r_type == R_MIPS_HI16
4030e8f6 7086 || r_type == R_MIPS_GOT16)
5a659663
TS
7087 addend = mips_elf_high (addend);
7088 else if (r_type == R_MIPS_HIGHER)
7089 addend = mips_elf_higher (addend);
7090 else if (r_type == R_MIPS_HIGHEST)
7091 addend = mips_elf_highest (addend);
30ac9238
RS
7092 else
7093 addend >>= howto->rightshift;
b49e97c9 7094
30ac9238
RS
7095 /* We use the source mask, rather than the destination
7096 mask because the place to which we are writing will be
7097 source of the addend in the final link. */
b49e97c9
TS
7098 addend &= howto->src_mask;
7099
5a659663 7100 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
7101 /* See the comment above about using R_MIPS_64 in the 32-bit
7102 ABI. Here, we need to update the addend. It would be
7103 possible to get away with just using the R_MIPS_32 reloc
7104 but for endianness. */
7105 {
7106 bfd_vma sign_bits;
7107 bfd_vma low_bits;
7108 bfd_vma high_bits;
7109
7110 if (addend & ((bfd_vma) 1 << 31))
7111#ifdef BFD64
7112 sign_bits = ((bfd_vma) 1 << 32) - 1;
7113#else
7114 sign_bits = -1;
7115#endif
7116 else
7117 sign_bits = 0;
7118
7119 /* If we don't know that we have a 64-bit type,
7120 do two separate stores. */
7121 if (bfd_big_endian (input_bfd))
7122 {
7123 /* Store the sign-bits (which are most significant)
7124 first. */
7125 low_bits = sign_bits;
7126 high_bits = addend;
7127 }
7128 else
7129 {
7130 low_bits = addend;
7131 high_bits = sign_bits;
7132 }
7133 bfd_put_32 (input_bfd, low_bits,
7134 contents + rel->r_offset);
7135 bfd_put_32 (input_bfd, high_bits,
7136 contents + rel->r_offset + 4);
7137 continue;
7138 }
7139
7140 if (! mips_elf_perform_relocation (info, howto, rel, addend,
7141 input_bfd, input_section,
b34976b6
AM
7142 contents, FALSE))
7143 return FALSE;
b49e97c9
TS
7144 }
7145
7146 /* Go on to the next relocation. */
7147 continue;
7148 }
7149
7150 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7151 relocations for the same offset. In that case we are
7152 supposed to treat the output of each relocation as the addend
7153 for the next. */
7154 if (rel + 1 < relend
7155 && rel->r_offset == rel[1].r_offset
7156 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 7157 use_saved_addend_p = TRUE;
b49e97c9 7158 else
b34976b6 7159 use_saved_addend_p = FALSE;
b49e97c9
TS
7160
7161 /* Figure out what value we are supposed to relocate. */
7162 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
7163 input_section, info, rel,
7164 addend, howto, local_syms,
7165 local_sections, &value,
bce03d3d
AO
7166 &name, &require_jalx,
7167 use_saved_addend_p))
b49e97c9
TS
7168 {
7169 case bfd_reloc_continue:
7170 /* There's nothing to do. */
7171 continue;
7172
7173 case bfd_reloc_undefined:
7174 /* mips_elf_calculate_relocation already called the
7175 undefined_symbol callback. There's no real point in
7176 trying to perform the relocation at this point, so we
7177 just skip ahead to the next relocation. */
7178 continue;
7179
7180 case bfd_reloc_notsupported:
7181 msg = _("internal error: unsupported relocation error");
7182 info->callbacks->warning
7183 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 7184 return FALSE;
b49e97c9
TS
7185
7186 case bfd_reloc_overflow:
7187 if (use_saved_addend_p)
7188 /* Ignore overflow until we reach the last relocation for
7189 a given location. */
7190 ;
7191 else
7192 {
7193 BFD_ASSERT (name != NULL);
7194 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f 7195 (info, NULL, name, howto->name, (bfd_vma) 0,
b49e97c9 7196 input_bfd, input_section, rel->r_offset)))
b34976b6 7197 return FALSE;
b49e97c9
TS
7198 }
7199 break;
7200
7201 case bfd_reloc_ok:
7202 break;
7203
7204 default:
7205 abort ();
7206 break;
7207 }
7208
7209 /* If we've got another relocation for the address, keep going
7210 until we reach the last one. */
7211 if (use_saved_addend_p)
7212 {
7213 addend = value;
7214 continue;
7215 }
7216
4a14403c 7217 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
7218 /* See the comment above about using R_MIPS_64 in the 32-bit
7219 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
7220 that calculated the right value. Now, however, we
7221 sign-extend the 32-bit result to 64-bits, and store it as a
7222 64-bit value. We are especially generous here in that we
7223 go to extreme lengths to support this usage on systems with
7224 only a 32-bit VMA. */
7225 {
7226 bfd_vma sign_bits;
7227 bfd_vma low_bits;
7228 bfd_vma high_bits;
7229
7230 if (value & ((bfd_vma) 1 << 31))
7231#ifdef BFD64
7232 sign_bits = ((bfd_vma) 1 << 32) - 1;
7233#else
7234 sign_bits = -1;
7235#endif
7236 else
7237 sign_bits = 0;
7238
7239 /* If we don't know that we have a 64-bit type,
7240 do two separate stores. */
7241 if (bfd_big_endian (input_bfd))
7242 {
7243 /* Undo what we did above. */
7244 rel->r_offset -= 4;
7245 /* Store the sign-bits (which are most significant)
7246 first. */
7247 low_bits = sign_bits;
7248 high_bits = value;
7249 }
7250 else
7251 {
7252 low_bits = value;
7253 high_bits = sign_bits;
7254 }
7255 bfd_put_32 (input_bfd, low_bits,
7256 contents + rel->r_offset);
7257 bfd_put_32 (input_bfd, high_bits,
7258 contents + rel->r_offset + 4);
7259 continue;
7260 }
7261
7262 /* Actually perform the relocation. */
7263 if (! mips_elf_perform_relocation (info, howto, rel, value,
7264 input_bfd, input_section,
7265 contents, require_jalx))
b34976b6 7266 return FALSE;
b49e97c9
TS
7267 }
7268
b34976b6 7269 return TRUE;
b49e97c9
TS
7270}
7271\f
7272/* If NAME is one of the special IRIX6 symbols defined by the linker,
7273 adjust it appropriately now. */
7274
7275static void
9719ad41
RS
7276mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
7277 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
7278{
7279 /* The linker script takes care of providing names and values for
7280 these, but we must place them into the right sections. */
7281 static const char* const text_section_symbols[] = {
7282 "_ftext",
7283 "_etext",
7284 "__dso_displacement",
7285 "__elf_header",
7286 "__program_header_table",
7287 NULL
7288 };
7289
7290 static const char* const data_section_symbols[] = {
7291 "_fdata",
7292 "_edata",
7293 "_end",
7294 "_fbss",
7295 NULL
7296 };
7297
7298 const char* const *p;
7299 int i;
7300
7301 for (i = 0; i < 2; ++i)
7302 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
7303 *p;
7304 ++p)
7305 if (strcmp (*p, name) == 0)
7306 {
7307 /* All of these symbols are given type STT_SECTION by the
7308 IRIX6 linker. */
7309 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 7310 sym->st_other = STO_PROTECTED;
b49e97c9
TS
7311
7312 /* The IRIX linker puts these symbols in special sections. */
7313 if (i == 0)
7314 sym->st_shndx = SHN_MIPS_TEXT;
7315 else
7316 sym->st_shndx = SHN_MIPS_DATA;
7317
7318 break;
7319 }
7320}
7321
7322/* Finish up dynamic symbol handling. We set the contents of various
7323 dynamic sections here. */
7324
b34976b6 7325bfd_boolean
9719ad41
RS
7326_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
7327 struct bfd_link_info *info,
7328 struct elf_link_hash_entry *h,
7329 Elf_Internal_Sym *sym)
b49e97c9
TS
7330{
7331 bfd *dynobj;
b49e97c9 7332 asection *sgot;
f4416af6 7333 struct mips_got_info *g, *gg;
b49e97c9 7334 const char *name;
b49e97c9
TS
7335
7336 dynobj = elf_hash_table (info)->dynobj;
b49e97c9 7337
c5ae1840 7338 if (h->plt.offset != MINUS_ONE)
b49e97c9
TS
7339 {
7340 asection *s;
7341 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
7342
7343 /* This symbol has a stub. Set it up. */
7344
7345 BFD_ASSERT (h->dynindx != -1);
7346
7347 s = bfd_get_section_by_name (dynobj,
7348 MIPS_ELF_STUB_SECTION_NAME (dynobj));
7349 BFD_ASSERT (s != NULL);
7350
7351 /* FIXME: Can h->dynindex be more than 64K? */
7352 if (h->dynindx & 0xffff0000)
b34976b6 7353 return FALSE;
b49e97c9
TS
7354
7355 /* Fill the stub. */
7356 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
7357 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
7358 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
7359 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
7360
eea6121a 7361 BFD_ASSERT (h->plt.offset <= s->size);
b49e97c9
TS
7362 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
7363
7364 /* Mark the symbol as undefined. plt.offset != -1 occurs
7365 only for the referenced symbol. */
7366 sym->st_shndx = SHN_UNDEF;
7367
7368 /* The run-time linker uses the st_value field of the symbol
7369 to reset the global offset table entry for this external
7370 to its stub address when unlinking a shared object. */
c5ae1840
TS
7371 sym->st_value = (s->output_section->vma + s->output_offset
7372 + h->plt.offset);
b49e97c9
TS
7373 }
7374
7375 BFD_ASSERT (h->dynindx != -1
f5385ebf 7376 || h->forced_local);
b49e97c9 7377
f4416af6 7378 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 7379 BFD_ASSERT (sgot != NULL);
f4416af6 7380 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
f0abc2a1 7381 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
7382 BFD_ASSERT (g != NULL);
7383
7384 /* Run through the global symbol table, creating GOT entries for all
7385 the symbols that need them. */
7386 if (g->global_gotsym != NULL
7387 && h->dynindx >= g->global_gotsym->dynindx)
7388 {
7389 bfd_vma offset;
7390 bfd_vma value;
7391
6eaa6adc 7392 value = sym->st_value;
0f20cc35 7393 offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
b49e97c9
TS
7394 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
7395 }
7396
0f20cc35 7397 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
f4416af6
AO
7398 {
7399 struct mips_got_entry e, *p;
0626d451 7400 bfd_vma entry;
f4416af6 7401 bfd_vma offset;
f4416af6
AO
7402
7403 gg = g;
7404
7405 e.abfd = output_bfd;
7406 e.symndx = -1;
7407 e.d.h = (struct mips_elf_link_hash_entry *)h;
0f20cc35 7408 e.tls_type = 0;
143d77c5 7409
f4416af6
AO
7410 for (g = g->next; g->next != gg; g = g->next)
7411 {
7412 if (g->got_entries
7413 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
7414 &e)))
7415 {
7416 offset = p->gotidx;
0626d451
RS
7417 if (info->shared
7418 || (elf_hash_table (info)->dynamic_sections_created
7419 && p->d.h != NULL
f5385ebf
AM
7420 && p->d.h->root.def_dynamic
7421 && !p->d.h->root.def_regular))
0626d451
RS
7422 {
7423 /* Create an R_MIPS_REL32 relocation for this entry. Due to
7424 the various compatibility problems, it's easier to mock
7425 up an R_MIPS_32 or R_MIPS_64 relocation and leave
7426 mips_elf_create_dynamic_relocation to calculate the
7427 appropriate addend. */
7428 Elf_Internal_Rela rel[3];
7429
7430 memset (rel, 0, sizeof (rel));
7431 if (ABI_64_P (output_bfd))
7432 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
7433 else
7434 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
7435 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
7436
7437 entry = 0;
7438 if (! (mips_elf_create_dynamic_relocation
7439 (output_bfd, info, rel,
7440 e.d.h, NULL, sym->st_value, &entry, sgot)))
7441 return FALSE;
7442 }
7443 else
7444 entry = sym->st_value;
7445 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
7446 }
7447 }
7448 }
7449
b49e97c9
TS
7450 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
7451 name = h->root.root.string;
7452 if (strcmp (name, "_DYNAMIC") == 0
7453 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
7454 sym->st_shndx = SHN_ABS;
7455 else if (strcmp (name, "_DYNAMIC_LINK") == 0
7456 || strcmp (name, "_DYNAMIC_LINKING") == 0)
7457 {
7458 sym->st_shndx = SHN_ABS;
7459 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7460 sym->st_value = 1;
7461 }
4a14403c 7462 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
7463 {
7464 sym->st_shndx = SHN_ABS;
7465 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7466 sym->st_value = elf_gp (output_bfd);
7467 }
7468 else if (SGI_COMPAT (output_bfd))
7469 {
7470 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
7471 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
7472 {
7473 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7474 sym->st_other = STO_PROTECTED;
7475 sym->st_value = 0;
7476 sym->st_shndx = SHN_MIPS_DATA;
7477 }
7478 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
7479 {
7480 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7481 sym->st_other = STO_PROTECTED;
7482 sym->st_value = mips_elf_hash_table (info)->procedure_count;
7483 sym->st_shndx = SHN_ABS;
7484 }
7485 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
7486 {
7487 if (h->type == STT_FUNC)
7488 sym->st_shndx = SHN_MIPS_TEXT;
7489 else if (h->type == STT_OBJECT)
7490 sym->st_shndx = SHN_MIPS_DATA;
7491 }
7492 }
7493
7494 /* Handle the IRIX6-specific symbols. */
7495 if (IRIX_COMPAT (output_bfd) == ict_irix6)
7496 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
7497
7498 if (! info->shared)
7499 {
7500 if (! mips_elf_hash_table (info)->use_rld_obj_head
7501 && (strcmp (name, "__rld_map") == 0
7502 || strcmp (name, "__RLD_MAP") == 0))
7503 {
7504 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
7505 BFD_ASSERT (s != NULL);
7506 sym->st_value = s->output_section->vma + s->output_offset;
9719ad41 7507 bfd_put_32 (output_bfd, 0, s->contents);
b49e97c9
TS
7508 if (mips_elf_hash_table (info)->rld_value == 0)
7509 mips_elf_hash_table (info)->rld_value = sym->st_value;
7510 }
7511 else if (mips_elf_hash_table (info)->use_rld_obj_head
7512 && strcmp (name, "__rld_obj_head") == 0)
7513 {
7514 /* IRIX6 does not use a .rld_map section. */
7515 if (IRIX_COMPAT (output_bfd) == ict_irix5
7516 || IRIX_COMPAT (output_bfd) == ict_none)
7517 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
7518 != NULL);
7519 mips_elf_hash_table (info)->rld_value = sym->st_value;
7520 }
7521 }
7522
7523 /* If this is a mips16 symbol, force the value to be even. */
79cda7cf
FF
7524 if (sym->st_other == STO_MIPS16)
7525 sym->st_value &= ~1;
b49e97c9 7526
b34976b6 7527 return TRUE;
b49e97c9
TS
7528}
7529
7530/* Finish up the dynamic sections. */
7531
b34976b6 7532bfd_boolean
9719ad41
RS
7533_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
7534 struct bfd_link_info *info)
b49e97c9
TS
7535{
7536 bfd *dynobj;
7537 asection *sdyn;
7538 asection *sgot;
f4416af6 7539 struct mips_got_info *gg, *g;
b49e97c9
TS
7540
7541 dynobj = elf_hash_table (info)->dynobj;
7542
7543 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
7544
f4416af6 7545 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 7546 if (sgot == NULL)
f4416af6 7547 gg = g = NULL;
b49e97c9
TS
7548 else
7549 {
f4416af6
AO
7550 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
7551 gg = mips_elf_section_data (sgot)->u.got_info;
7552 BFD_ASSERT (gg != NULL);
7553 g = mips_elf_got_for_ibfd (gg, output_bfd);
b49e97c9
TS
7554 BFD_ASSERT (g != NULL);
7555 }
7556
7557 if (elf_hash_table (info)->dynamic_sections_created)
7558 {
7559 bfd_byte *b;
7560
7561 BFD_ASSERT (sdyn != NULL);
7562 BFD_ASSERT (g != NULL);
7563
7564 for (b = sdyn->contents;
eea6121a 7565 b < sdyn->contents + sdyn->size;
b49e97c9
TS
7566 b += MIPS_ELF_DYN_SIZE (dynobj))
7567 {
7568 Elf_Internal_Dyn dyn;
7569 const char *name;
7570 size_t elemsize;
7571 asection *s;
b34976b6 7572 bfd_boolean swap_out_p;
b49e97c9
TS
7573
7574 /* Read in the current dynamic entry. */
7575 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
7576
7577 /* Assume that we're going to modify it and write it out. */
b34976b6 7578 swap_out_p = TRUE;
b49e97c9
TS
7579
7580 switch (dyn.d_tag)
7581 {
7582 case DT_RELENT:
f4416af6 7583 s = mips_elf_rel_dyn_section (dynobj, FALSE);
b49e97c9
TS
7584 BFD_ASSERT (s != NULL);
7585 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
7586 break;
7587
7588 case DT_STRSZ:
7589 /* Rewrite DT_STRSZ. */
7590 dyn.d_un.d_val =
7591 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7592 break;
7593
7594 case DT_PLTGOT:
7595 name = ".got";
b49e97c9
TS
7596 s = bfd_get_section_by_name (output_bfd, name);
7597 BFD_ASSERT (s != NULL);
7598 dyn.d_un.d_ptr = s->vma;
7599 break;
7600
7601 case DT_MIPS_RLD_VERSION:
7602 dyn.d_un.d_val = 1; /* XXX */
7603 break;
7604
7605 case DT_MIPS_FLAGS:
7606 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
7607 break;
7608
b49e97c9
TS
7609 case DT_MIPS_TIME_STAMP:
7610 time ((time_t *) &dyn.d_un.d_val);
7611 break;
7612
7613 case DT_MIPS_ICHECKSUM:
7614 /* XXX FIXME: */
b34976b6 7615 swap_out_p = FALSE;
b49e97c9
TS
7616 break;
7617
7618 case DT_MIPS_IVERSION:
7619 /* XXX FIXME: */
b34976b6 7620 swap_out_p = FALSE;
b49e97c9
TS
7621 break;
7622
7623 case DT_MIPS_BASE_ADDRESS:
7624 s = output_bfd->sections;
7625 BFD_ASSERT (s != NULL);
7626 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
7627 break;
7628
7629 case DT_MIPS_LOCAL_GOTNO:
7630 dyn.d_un.d_val = g->local_gotno;
7631 break;
7632
7633 case DT_MIPS_UNREFEXTNO:
7634 /* The index into the dynamic symbol table which is the
7635 entry of the first external symbol that is not
7636 referenced within the same object. */
7637 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
7638 break;
7639
7640 case DT_MIPS_GOTSYM:
f4416af6 7641 if (gg->global_gotsym)
b49e97c9 7642 {
f4416af6 7643 dyn.d_un.d_val = gg->global_gotsym->dynindx;
b49e97c9
TS
7644 break;
7645 }
7646 /* In case if we don't have global got symbols we default
7647 to setting DT_MIPS_GOTSYM to the same value as
7648 DT_MIPS_SYMTABNO, so we just fall through. */
7649
7650 case DT_MIPS_SYMTABNO:
7651 name = ".dynsym";
7652 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
7653 s = bfd_get_section_by_name (output_bfd, name);
7654 BFD_ASSERT (s != NULL);
7655
eea6121a 7656 dyn.d_un.d_val = s->size / elemsize;
b49e97c9
TS
7657 break;
7658
7659 case DT_MIPS_HIPAGENO:
7660 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
7661 break;
7662
7663 case DT_MIPS_RLD_MAP:
7664 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
7665 break;
7666
7667 case DT_MIPS_OPTIONS:
7668 s = (bfd_get_section_by_name
7669 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
7670 dyn.d_un.d_ptr = s->vma;
7671 break;
7672
98a8deaf
RS
7673 case DT_RELSZ:
7674 /* Reduce DT_RELSZ to account for any relocations we
7675 decided not to make. This is for the n64 irix rld,
7676 which doesn't seem to apply any relocations if there
7677 are trailing null entries. */
7678 s = mips_elf_rel_dyn_section (dynobj, FALSE);
7679 dyn.d_un.d_val = (s->reloc_count
7680 * (ABI_64_P (output_bfd)
7681 ? sizeof (Elf64_Mips_External_Rel)
7682 : sizeof (Elf32_External_Rel)));
b49e97c9
TS
7683 break;
7684
7685 default:
b34976b6 7686 swap_out_p = FALSE;
b49e97c9
TS
7687 break;
7688 }
7689
7690 if (swap_out_p)
7691 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
7692 (dynobj, &dyn, b);
7693 }
7694 }
7695
7696 /* The first entry of the global offset table will be filled at
7697 runtime. The second entry will be used by some runtime loaders.
8dc1a139 7698 This isn't the case of IRIX rld. */
eea6121a 7699 if (sgot != NULL && sgot->size > 0)
b49e97c9 7700 {
9719ad41
RS
7701 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents);
7702 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000,
b49e97c9
TS
7703 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
7704 }
7705
7706 if (sgot != NULL)
7707 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
7708 = MIPS_ELF_GOT_SIZE (output_bfd);
7709
f4416af6
AO
7710 /* Generate dynamic relocations for the non-primary gots. */
7711 if (gg != NULL && gg->next)
7712 {
7713 Elf_Internal_Rela rel[3];
7714 bfd_vma addend = 0;
7715
7716 memset (rel, 0, sizeof (rel));
7717 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
7718
7719 for (g = gg->next; g->next != gg; g = g->next)
7720 {
0f20cc35
DJ
7721 bfd_vma index = g->next->local_gotno + g->next->global_gotno
7722 + g->next->tls_gotno;
f4416af6 7723
9719ad41 7724 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
f4416af6 7725 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
9719ad41 7726 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
f4416af6
AO
7727 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
7728
7729 if (! info->shared)
7730 continue;
7731
7732 while (index < g->assigned_gotno)
7733 {
7734 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
7735 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
7736 if (!(mips_elf_create_dynamic_relocation
7737 (output_bfd, info, rel, NULL,
7738 bfd_abs_section_ptr,
7739 0, &addend, sgot)))
7740 return FALSE;
7741 BFD_ASSERT (addend == 0);
7742 }
7743 }
7744 }
7745
b49e97c9 7746 {
b49e97c9
TS
7747 asection *s;
7748 Elf32_compact_rel cpt;
7749
b49e97c9
TS
7750 if (SGI_COMPAT (output_bfd))
7751 {
7752 /* Write .compact_rel section out. */
7753 s = bfd_get_section_by_name (dynobj, ".compact_rel");
7754 if (s != NULL)
7755 {
7756 cpt.id1 = 1;
7757 cpt.num = s->reloc_count;
7758 cpt.id2 = 2;
7759 cpt.offset = (s->output_section->filepos
7760 + sizeof (Elf32_External_compact_rel));
7761 cpt.reserved0 = 0;
7762 cpt.reserved1 = 0;
7763 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
7764 ((Elf32_External_compact_rel *)
7765 s->contents));
7766
7767 /* Clean up a dummy stub function entry in .text. */
7768 s = bfd_get_section_by_name (dynobj,
7769 MIPS_ELF_STUB_SECTION_NAME (dynobj));
7770 if (s != NULL)
7771 {
7772 file_ptr dummy_offset;
7773
eea6121a
AM
7774 BFD_ASSERT (s->size >= MIPS_FUNCTION_STUB_SIZE);
7775 dummy_offset = s->size - MIPS_FUNCTION_STUB_SIZE;
b49e97c9
TS
7776 memset (s->contents + dummy_offset, 0,
7777 MIPS_FUNCTION_STUB_SIZE);
7778 }
7779 }
7780 }
7781
7782 /* We need to sort the entries of the dynamic relocation section. */
7783
f4416af6
AO
7784 s = mips_elf_rel_dyn_section (dynobj, FALSE);
7785
7786 if (s != NULL
eea6121a 7787 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
b49e97c9 7788 {
f4416af6 7789 reldyn_sorting_bfd = output_bfd;
b49e97c9 7790
f4416af6 7791 if (ABI_64_P (output_bfd))
9719ad41 7792 qsort ((Elf64_External_Rel *) s->contents + 1, s->reloc_count - 1,
f4416af6
AO
7793 sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64);
7794 else
9719ad41 7795 qsort ((Elf32_External_Rel *) s->contents + 1, s->reloc_count - 1,
f4416af6 7796 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
b49e97c9 7797 }
b49e97c9
TS
7798 }
7799
b34976b6 7800 return TRUE;
b49e97c9
TS
7801}
7802
b49e97c9 7803
64543e1a
RS
7804/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
7805
7806static void
9719ad41 7807mips_set_isa_flags (bfd *abfd)
b49e97c9 7808{
64543e1a 7809 flagword val;
b49e97c9
TS
7810
7811 switch (bfd_get_mach (abfd))
7812 {
7813 default:
7814 case bfd_mach_mips3000:
7815 val = E_MIPS_ARCH_1;
7816 break;
7817
7818 case bfd_mach_mips3900:
7819 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
7820 break;
7821
7822 case bfd_mach_mips6000:
7823 val = E_MIPS_ARCH_2;
7824 break;
7825
7826 case bfd_mach_mips4000:
7827 case bfd_mach_mips4300:
7828 case bfd_mach_mips4400:
7829 case bfd_mach_mips4600:
7830 val = E_MIPS_ARCH_3;
7831 break;
7832
7833 case bfd_mach_mips4010:
7834 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
7835 break;
7836
7837 case bfd_mach_mips4100:
7838 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
7839 break;
7840
7841 case bfd_mach_mips4111:
7842 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
7843 break;
7844
00707a0e
RS
7845 case bfd_mach_mips4120:
7846 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
7847 break;
7848
b49e97c9
TS
7849 case bfd_mach_mips4650:
7850 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
7851 break;
7852
00707a0e
RS
7853 case bfd_mach_mips5400:
7854 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
7855 break;
7856
7857 case bfd_mach_mips5500:
7858 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
7859 break;
7860
0d2e43ed
ILT
7861 case bfd_mach_mips9000:
7862 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
7863 break;
7864
b49e97c9 7865 case bfd_mach_mips5000:
5a7ea749 7866 case bfd_mach_mips7000:
b49e97c9
TS
7867 case bfd_mach_mips8000:
7868 case bfd_mach_mips10000:
7869 case bfd_mach_mips12000:
7870 val = E_MIPS_ARCH_4;
7871 break;
7872
7873 case bfd_mach_mips5:
7874 val = E_MIPS_ARCH_5;
7875 break;
7876
7877 case bfd_mach_mips_sb1:
7878 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
7879 break;
7880
7881 case bfd_mach_mipsisa32:
7882 val = E_MIPS_ARCH_32;
7883 break;
7884
7885 case bfd_mach_mipsisa64:
7886 val = E_MIPS_ARCH_64;
af7ee8bf
CD
7887 break;
7888
7889 case bfd_mach_mipsisa32r2:
7890 val = E_MIPS_ARCH_32R2;
7891 break;
5f74bc13
CD
7892
7893 case bfd_mach_mipsisa64r2:
7894 val = E_MIPS_ARCH_64R2;
7895 break;
b49e97c9 7896 }
b49e97c9
TS
7897 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
7898 elf_elfheader (abfd)->e_flags |= val;
7899
64543e1a
RS
7900}
7901
7902
7903/* The final processing done just before writing out a MIPS ELF object
7904 file. This gets the MIPS architecture right based on the machine
7905 number. This is used by both the 32-bit and the 64-bit ABI. */
7906
7907void
9719ad41
RS
7908_bfd_mips_elf_final_write_processing (bfd *abfd,
7909 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
7910{
7911 unsigned int i;
7912 Elf_Internal_Shdr **hdrpp;
7913 const char *name;
7914 asection *sec;
7915
7916 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
7917 is nonzero. This is for compatibility with old objects, which used
7918 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
7919 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
7920 mips_set_isa_flags (abfd);
7921
b49e97c9
TS
7922 /* Set the sh_info field for .gptab sections and other appropriate
7923 info for each special section. */
7924 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
7925 i < elf_numsections (abfd);
7926 i++, hdrpp++)
7927 {
7928 switch ((*hdrpp)->sh_type)
7929 {
7930 case SHT_MIPS_MSYM:
7931 case SHT_MIPS_LIBLIST:
7932 sec = bfd_get_section_by_name (abfd, ".dynstr");
7933 if (sec != NULL)
7934 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7935 break;
7936
7937 case SHT_MIPS_GPTAB:
7938 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7939 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7940 BFD_ASSERT (name != NULL
7941 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
7942 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
7943 BFD_ASSERT (sec != NULL);
7944 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7945 break;
7946
7947 case SHT_MIPS_CONTENT:
7948 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7949 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7950 BFD_ASSERT (name != NULL
7951 && strncmp (name, ".MIPS.content",
7952 sizeof ".MIPS.content" - 1) == 0);
7953 sec = bfd_get_section_by_name (abfd,
7954 name + sizeof ".MIPS.content" - 1);
7955 BFD_ASSERT (sec != NULL);
7956 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7957 break;
7958
7959 case SHT_MIPS_SYMBOL_LIB:
7960 sec = bfd_get_section_by_name (abfd, ".dynsym");
7961 if (sec != NULL)
7962 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7963 sec = bfd_get_section_by_name (abfd, ".liblist");
7964 if (sec != NULL)
7965 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7966 break;
7967
7968 case SHT_MIPS_EVENTS:
7969 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7970 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7971 BFD_ASSERT (name != NULL);
7972 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
7973 sec = bfd_get_section_by_name (abfd,
7974 name + sizeof ".MIPS.events" - 1);
7975 else
7976 {
7977 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
7978 sizeof ".MIPS.post_rel" - 1) == 0);
7979 sec = bfd_get_section_by_name (abfd,
7980 (name
7981 + sizeof ".MIPS.post_rel" - 1));
7982 }
7983 BFD_ASSERT (sec != NULL);
7984 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7985 break;
7986
7987 }
7988 }
7989}
7990\f
8dc1a139 7991/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
7992 segments. */
7993
7994int
9719ad41 7995_bfd_mips_elf_additional_program_headers (bfd *abfd)
b49e97c9
TS
7996{
7997 asection *s;
7998 int ret = 0;
7999
8000 /* See if we need a PT_MIPS_REGINFO segment. */
8001 s = bfd_get_section_by_name (abfd, ".reginfo");
8002 if (s && (s->flags & SEC_LOAD))
8003 ++ret;
8004
8005 /* See if we need a PT_MIPS_OPTIONS segment. */
8006 if (IRIX_COMPAT (abfd) == ict_irix6
8007 && bfd_get_section_by_name (abfd,
8008 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
8009 ++ret;
8010
8011 /* See if we need a PT_MIPS_RTPROC segment. */
8012 if (IRIX_COMPAT (abfd) == ict_irix5
8013 && bfd_get_section_by_name (abfd, ".dynamic")
8014 && bfd_get_section_by_name (abfd, ".mdebug"))
8015 ++ret;
8016
8017 return ret;
8018}
8019
8dc1a139 8020/* Modify the segment map for an IRIX5 executable. */
b49e97c9 8021
b34976b6 8022bfd_boolean
9719ad41
RS
8023_bfd_mips_elf_modify_segment_map (bfd *abfd,
8024 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
8025{
8026 asection *s;
8027 struct elf_segment_map *m, **pm;
8028 bfd_size_type amt;
8029
8030 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
8031 segment. */
8032 s = bfd_get_section_by_name (abfd, ".reginfo");
8033 if (s != NULL && (s->flags & SEC_LOAD) != 0)
8034 {
8035 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
8036 if (m->p_type == PT_MIPS_REGINFO)
8037 break;
8038 if (m == NULL)
8039 {
8040 amt = sizeof *m;
9719ad41 8041 m = bfd_zalloc (abfd, amt);
b49e97c9 8042 if (m == NULL)
b34976b6 8043 return FALSE;
b49e97c9
TS
8044
8045 m->p_type = PT_MIPS_REGINFO;
8046 m->count = 1;
8047 m->sections[0] = s;
8048
8049 /* We want to put it after the PHDR and INTERP segments. */
8050 pm = &elf_tdata (abfd)->segment_map;
8051 while (*pm != NULL
8052 && ((*pm)->p_type == PT_PHDR
8053 || (*pm)->p_type == PT_INTERP))
8054 pm = &(*pm)->next;
8055
8056 m->next = *pm;
8057 *pm = m;
8058 }
8059 }
8060
8061 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
8062 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 8063 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 8064 table. */
c1fd6598
AO
8065 if (NEWABI_P (abfd)
8066 /* On non-IRIX6 new abi, we'll have already created a segment
8067 for this section, so don't create another. I'm not sure this
8068 is not also the case for IRIX 6, but I can't test it right
8069 now. */
8070 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
8071 {
8072 for (s = abfd->sections; s; s = s->next)
8073 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
8074 break;
8075
8076 if (s)
8077 {
8078 struct elf_segment_map *options_segment;
8079
98a8deaf
RS
8080 pm = &elf_tdata (abfd)->segment_map;
8081 while (*pm != NULL
8082 && ((*pm)->p_type == PT_PHDR
8083 || (*pm)->p_type == PT_INTERP))
8084 pm = &(*pm)->next;
b49e97c9
TS
8085
8086 amt = sizeof (struct elf_segment_map);
8087 options_segment = bfd_zalloc (abfd, amt);
8088 options_segment->next = *pm;
8089 options_segment->p_type = PT_MIPS_OPTIONS;
8090 options_segment->p_flags = PF_R;
b34976b6 8091 options_segment->p_flags_valid = TRUE;
b49e97c9
TS
8092 options_segment->count = 1;
8093 options_segment->sections[0] = s;
8094 *pm = options_segment;
8095 }
8096 }
8097 else
8098 {
8099 if (IRIX_COMPAT (abfd) == ict_irix5)
8100 {
8101 /* If there are .dynamic and .mdebug sections, we make a room
8102 for the RTPROC header. FIXME: Rewrite without section names. */
8103 if (bfd_get_section_by_name (abfd, ".interp") == NULL
8104 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
8105 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
8106 {
8107 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
8108 if (m->p_type == PT_MIPS_RTPROC)
8109 break;
8110 if (m == NULL)
8111 {
8112 amt = sizeof *m;
9719ad41 8113 m = bfd_zalloc (abfd, amt);
b49e97c9 8114 if (m == NULL)
b34976b6 8115 return FALSE;
b49e97c9
TS
8116
8117 m->p_type = PT_MIPS_RTPROC;
8118
8119 s = bfd_get_section_by_name (abfd, ".rtproc");
8120 if (s == NULL)
8121 {
8122 m->count = 0;
8123 m->p_flags = 0;
8124 m->p_flags_valid = 1;
8125 }
8126 else
8127 {
8128 m->count = 1;
8129 m->sections[0] = s;
8130 }
8131
8132 /* We want to put it after the DYNAMIC segment. */
8133 pm = &elf_tdata (abfd)->segment_map;
8134 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
8135 pm = &(*pm)->next;
8136 if (*pm != NULL)
8137 pm = &(*pm)->next;
8138
8139 m->next = *pm;
8140 *pm = m;
8141 }
8142 }
8143 }
8dc1a139 8144 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
8145 .dynstr, .dynsym, and .hash sections, and everything in
8146 between. */
8147 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
8148 pm = &(*pm)->next)
8149 if ((*pm)->p_type == PT_DYNAMIC)
8150 break;
8151 m = *pm;
8152 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
8153 {
8154 /* For a normal mips executable the permissions for the PT_DYNAMIC
8155 segment are read, write and execute. We do that here since
8156 the code in elf.c sets only the read permission. This matters
8157 sometimes for the dynamic linker. */
8158 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
8159 {
8160 m->p_flags = PF_R | PF_W | PF_X;
8161 m->p_flags_valid = 1;
8162 }
8163 }
8164 if (m != NULL
8165 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
8166 {
8167 static const char *sec_names[] =
8168 {
8169 ".dynamic", ".dynstr", ".dynsym", ".hash"
8170 };
8171 bfd_vma low, high;
8172 unsigned int i, c;
8173 struct elf_segment_map *n;
8174
792b4a53 8175 low = ~(bfd_vma) 0;
b49e97c9
TS
8176 high = 0;
8177 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
8178 {
8179 s = bfd_get_section_by_name (abfd, sec_names[i]);
8180 if (s != NULL && (s->flags & SEC_LOAD) != 0)
8181 {
8182 bfd_size_type sz;
8183
8184 if (low > s->vma)
8185 low = s->vma;
eea6121a 8186 sz = s->size;
b49e97c9
TS
8187 if (high < s->vma + sz)
8188 high = s->vma + sz;
8189 }
8190 }
8191
8192 c = 0;
8193 for (s = abfd->sections; s != NULL; s = s->next)
8194 if ((s->flags & SEC_LOAD) != 0
8195 && s->vma >= low
eea6121a 8196 && s->vma + s->size <= high)
b49e97c9
TS
8197 ++c;
8198
8199 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 8200 n = bfd_zalloc (abfd, amt);
b49e97c9 8201 if (n == NULL)
b34976b6 8202 return FALSE;
b49e97c9
TS
8203 *n = *m;
8204 n->count = c;
8205
8206 i = 0;
8207 for (s = abfd->sections; s != NULL; s = s->next)
8208 {
8209 if ((s->flags & SEC_LOAD) != 0
8210 && s->vma >= low
eea6121a 8211 && s->vma + s->size <= high)
b49e97c9
TS
8212 {
8213 n->sections[i] = s;
8214 ++i;
8215 }
8216 }
8217
8218 *pm = n;
8219 }
8220 }
8221
b34976b6 8222 return TRUE;
b49e97c9
TS
8223}
8224\f
8225/* Return the section that should be marked against GC for a given
8226 relocation. */
8227
8228asection *
9719ad41
RS
8229_bfd_mips_elf_gc_mark_hook (asection *sec,
8230 struct bfd_link_info *info ATTRIBUTE_UNUSED,
8231 Elf_Internal_Rela *rel,
8232 struct elf_link_hash_entry *h,
8233 Elf_Internal_Sym *sym)
b49e97c9
TS
8234{
8235 /* ??? Do mips16 stub sections need to be handled special? */
8236
8237 if (h != NULL)
8238 {
1e2f5b6e 8239 switch (ELF_R_TYPE (sec->owner, rel->r_info))
b49e97c9
TS
8240 {
8241 case R_MIPS_GNU_VTINHERIT:
8242 case R_MIPS_GNU_VTENTRY:
8243 break;
8244
8245 default:
8246 switch (h->root.type)
8247 {
8248 case bfd_link_hash_defined:
8249 case bfd_link_hash_defweak:
8250 return h->root.u.def.section;
8251
8252 case bfd_link_hash_common:
8253 return h->root.u.c.p->section;
8254
8255 default:
8256 break;
8257 }
8258 }
8259 }
8260 else
1e2f5b6e 8261 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
b49e97c9
TS
8262
8263 return NULL;
8264}
8265
8266/* Update the got entry reference counts for the section being removed. */
8267
b34976b6 8268bfd_boolean
9719ad41
RS
8269_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
8270 struct bfd_link_info *info ATTRIBUTE_UNUSED,
8271 asection *sec ATTRIBUTE_UNUSED,
8272 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
8273{
8274#if 0
8275 Elf_Internal_Shdr *symtab_hdr;
8276 struct elf_link_hash_entry **sym_hashes;
8277 bfd_signed_vma *local_got_refcounts;
8278 const Elf_Internal_Rela *rel, *relend;
8279 unsigned long r_symndx;
8280 struct elf_link_hash_entry *h;
8281
8282 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8283 sym_hashes = elf_sym_hashes (abfd);
8284 local_got_refcounts = elf_local_got_refcounts (abfd);
8285
8286 relend = relocs + sec->reloc_count;
8287 for (rel = relocs; rel < relend; rel++)
8288 switch (ELF_R_TYPE (abfd, rel->r_info))
8289 {
8290 case R_MIPS_GOT16:
8291 case R_MIPS_CALL16:
8292 case R_MIPS_CALL_HI16:
8293 case R_MIPS_CALL_LO16:
8294 case R_MIPS_GOT_HI16:
8295 case R_MIPS_GOT_LO16:
4a14403c
TS
8296 case R_MIPS_GOT_DISP:
8297 case R_MIPS_GOT_PAGE:
8298 case R_MIPS_GOT_OFST:
b49e97c9
TS
8299 /* ??? It would seem that the existing MIPS code does no sort
8300 of reference counting or whatnot on its GOT and PLT entries,
8301 so it is not possible to garbage collect them at this time. */
8302 break;
8303
8304 default:
8305 break;
8306 }
8307#endif
8308
b34976b6 8309 return TRUE;
b49e97c9
TS
8310}
8311\f
8312/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
8313 hiding the old indirect symbol. Process additional relocation
8314 information. Also called for weakdefs, in which case we just let
8315 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
8316
8317void
9719ad41
RS
8318_bfd_mips_elf_copy_indirect_symbol (const struct elf_backend_data *bed,
8319 struct elf_link_hash_entry *dir,
8320 struct elf_link_hash_entry *ind)
b49e97c9
TS
8321{
8322 struct mips_elf_link_hash_entry *dirmips, *indmips;
8323
b48fa14c 8324 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
b49e97c9
TS
8325
8326 if (ind->root.type != bfd_link_hash_indirect)
8327 return;
8328
8329 dirmips = (struct mips_elf_link_hash_entry *) dir;
8330 indmips = (struct mips_elf_link_hash_entry *) ind;
8331 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
8332 if (indmips->readonly_reloc)
b34976b6 8333 dirmips->readonly_reloc = TRUE;
b49e97c9 8334 if (indmips->no_fn_stub)
b34976b6 8335 dirmips->no_fn_stub = TRUE;
0f20cc35
DJ
8336
8337 if (dirmips->tls_type == 0)
8338 dirmips->tls_type = indmips->tls_type;
8339 else
8340 BFD_ASSERT (indmips->tls_type == 0);
b49e97c9
TS
8341}
8342
8343void
9719ad41
RS
8344_bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
8345 struct elf_link_hash_entry *entry,
8346 bfd_boolean force_local)
b49e97c9
TS
8347{
8348 bfd *dynobj;
8349 asection *got;
8350 struct mips_got_info *g;
8351 struct mips_elf_link_hash_entry *h;
7c5fcef7 8352
b49e97c9 8353 h = (struct mips_elf_link_hash_entry *) entry;
7c5fcef7
L
8354 if (h->forced_local)
8355 return;
4b555070 8356 h->forced_local = force_local;
7c5fcef7 8357
b49e97c9 8358 dynobj = elf_hash_table (info)->dynobj;
0f20cc35 8359 if (dynobj != NULL && force_local && h->root.type != STT_TLS)
f4416af6 8360 {
c45a316a
AM
8361 got = mips_elf_got_section (dynobj, FALSE);
8362 g = mips_elf_section_data (got)->u.got_info;
f4416af6 8363
c45a316a
AM
8364 if (g->next)
8365 {
8366 struct mips_got_entry e;
8367 struct mips_got_info *gg = g;
8368
8369 /* Since we're turning what used to be a global symbol into a
8370 local one, bump up the number of local entries of each GOT
8371 that had an entry for it. This will automatically decrease
8372 the number of global entries, since global_gotno is actually
8373 the upper limit of global entries. */
8374 e.abfd = dynobj;
8375 e.symndx = -1;
8376 e.d.h = h;
0f20cc35 8377 e.tls_type = 0;
c45a316a
AM
8378
8379 for (g = g->next; g != gg; g = g->next)
8380 if (htab_find (g->got_entries, &e))
8381 {
8382 BFD_ASSERT (g->global_gotno > 0);
8383 g->local_gotno++;
8384 g->global_gotno--;
8385 }
b49e97c9 8386
c45a316a
AM
8387 /* If this was a global symbol forced into the primary GOT, we
8388 no longer need an entry for it. We can't release the entry
8389 at this point, but we must at least stop counting it as one
8390 of the symbols that required a forced got entry. */
8391 if (h->root.got.offset == 2)
8392 {
8393 BFD_ASSERT (gg->assigned_gotno > 0);
8394 gg->assigned_gotno--;
8395 }
8396 }
8397 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
8398 /* If we haven't got through GOT allocation yet, just bump up the
8399 number of local entries, as this symbol won't be counted as
8400 global. */
8401 g->local_gotno++;
8402 else if (h->root.got.offset == 1)
f4416af6 8403 {
c45a316a
AM
8404 /* If we're past non-multi-GOT allocation and this symbol had
8405 been marked for a global got entry, give it a local entry
8406 instead. */
8407 BFD_ASSERT (g->global_gotno > 0);
8408 g->local_gotno++;
8409 g->global_gotno--;
f4416af6
AO
8410 }
8411 }
f4416af6
AO
8412
8413 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
b49e97c9
TS
8414}
8415\f
d01414a5
TS
8416#define PDR_SIZE 32
8417
b34976b6 8418bfd_boolean
9719ad41
RS
8419_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
8420 struct bfd_link_info *info)
d01414a5
TS
8421{
8422 asection *o;
b34976b6 8423 bfd_boolean ret = FALSE;
d01414a5
TS
8424 unsigned char *tdata;
8425 size_t i, skip;
8426
8427 o = bfd_get_section_by_name (abfd, ".pdr");
8428 if (! o)
b34976b6 8429 return FALSE;
eea6121a 8430 if (o->size == 0)
b34976b6 8431 return FALSE;
eea6121a 8432 if (o->size % PDR_SIZE != 0)
b34976b6 8433 return FALSE;
d01414a5
TS
8434 if (o->output_section != NULL
8435 && bfd_is_abs_section (o->output_section))
b34976b6 8436 return FALSE;
d01414a5 8437
eea6121a 8438 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 8439 if (! tdata)
b34976b6 8440 return FALSE;
d01414a5 8441
9719ad41 8442 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 8443 info->keep_memory);
d01414a5
TS
8444 if (!cookie->rels)
8445 {
8446 free (tdata);
b34976b6 8447 return FALSE;
d01414a5
TS
8448 }
8449
8450 cookie->rel = cookie->rels;
8451 cookie->relend = cookie->rels + o->reloc_count;
8452
eea6121a 8453 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 8454 {
c152c796 8455 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
8456 {
8457 tdata[i] = 1;
8458 skip ++;
8459 }
8460 }
8461
8462 if (skip != 0)
8463 {
f0abc2a1 8464 mips_elf_section_data (o)->u.tdata = tdata;
eea6121a 8465 o->size -= skip * PDR_SIZE;
b34976b6 8466 ret = TRUE;
d01414a5
TS
8467 }
8468 else
8469 free (tdata);
8470
8471 if (! info->keep_memory)
8472 free (cookie->rels);
8473
8474 return ret;
8475}
8476
b34976b6 8477bfd_boolean
9719ad41 8478_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
8479{
8480 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
8481 return TRUE;
8482 return FALSE;
53bfd6b4 8483}
d01414a5 8484
b34976b6 8485bfd_boolean
9719ad41
RS
8486_bfd_mips_elf_write_section (bfd *output_bfd, asection *sec,
8487 bfd_byte *contents)
d01414a5
TS
8488{
8489 bfd_byte *to, *from, *end;
8490 int i;
8491
8492 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 8493 return FALSE;
d01414a5 8494
f0abc2a1 8495 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 8496 return FALSE;
d01414a5
TS
8497
8498 to = contents;
eea6121a 8499 end = contents + sec->size;
d01414a5
TS
8500 for (from = contents, i = 0;
8501 from < end;
8502 from += PDR_SIZE, i++)
8503 {
f0abc2a1 8504 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
8505 continue;
8506 if (to != from)
8507 memcpy (to, from, PDR_SIZE);
8508 to += PDR_SIZE;
8509 }
8510 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 8511 sec->output_offset, sec->size);
b34976b6 8512 return TRUE;
d01414a5 8513}
53bfd6b4 8514\f
b49e97c9
TS
8515/* MIPS ELF uses a special find_nearest_line routine in order the
8516 handle the ECOFF debugging information. */
8517
8518struct mips_elf_find_line
8519{
8520 struct ecoff_debug_info d;
8521 struct ecoff_find_line i;
8522};
8523
b34976b6 8524bfd_boolean
9719ad41
RS
8525_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
8526 asymbol **symbols, bfd_vma offset,
8527 const char **filename_ptr,
8528 const char **functionname_ptr,
8529 unsigned int *line_ptr)
b49e97c9
TS
8530{
8531 asection *msec;
8532
8533 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
8534 filename_ptr, functionname_ptr,
8535 line_ptr))
b34976b6 8536 return TRUE;
b49e97c9
TS
8537
8538 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
8539 filename_ptr, functionname_ptr,
9719ad41 8540 line_ptr, ABI_64_P (abfd) ? 8 : 0,
b49e97c9 8541 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 8542 return TRUE;
b49e97c9
TS
8543
8544 msec = bfd_get_section_by_name (abfd, ".mdebug");
8545 if (msec != NULL)
8546 {
8547 flagword origflags;
8548 struct mips_elf_find_line *fi;
8549 const struct ecoff_debug_swap * const swap =
8550 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
8551
8552 /* If we are called during a link, mips_elf_final_link may have
8553 cleared the SEC_HAS_CONTENTS field. We force it back on here
8554 if appropriate (which it normally will be). */
8555 origflags = msec->flags;
8556 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
8557 msec->flags |= SEC_HAS_CONTENTS;
8558
8559 fi = elf_tdata (abfd)->find_line_info;
8560 if (fi == NULL)
8561 {
8562 bfd_size_type external_fdr_size;
8563 char *fraw_src;
8564 char *fraw_end;
8565 struct fdr *fdr_ptr;
8566 bfd_size_type amt = sizeof (struct mips_elf_find_line);
8567
9719ad41 8568 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
8569 if (fi == NULL)
8570 {
8571 msec->flags = origflags;
b34976b6 8572 return FALSE;
b49e97c9
TS
8573 }
8574
8575 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
8576 {
8577 msec->flags = origflags;
b34976b6 8578 return FALSE;
b49e97c9
TS
8579 }
8580
8581 /* Swap in the FDR information. */
8582 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 8583 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
8584 if (fi->d.fdr == NULL)
8585 {
8586 msec->flags = origflags;
b34976b6 8587 return FALSE;
b49e97c9
TS
8588 }
8589 external_fdr_size = swap->external_fdr_size;
8590 fdr_ptr = fi->d.fdr;
8591 fraw_src = (char *) fi->d.external_fdr;
8592 fraw_end = (fraw_src
8593 + fi->d.symbolic_header.ifdMax * external_fdr_size);
8594 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 8595 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9
TS
8596
8597 elf_tdata (abfd)->find_line_info = fi;
8598
8599 /* Note that we don't bother to ever free this information.
8600 find_nearest_line is either called all the time, as in
8601 objdump -l, so the information should be saved, or it is
8602 rarely called, as in ld error messages, so the memory
8603 wasted is unimportant. Still, it would probably be a
8604 good idea for free_cached_info to throw it away. */
8605 }
8606
8607 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
8608 &fi->i, filename_ptr, functionname_ptr,
8609 line_ptr))
8610 {
8611 msec->flags = origflags;
b34976b6 8612 return TRUE;
b49e97c9
TS
8613 }
8614
8615 msec->flags = origflags;
8616 }
8617
8618 /* Fall back on the generic ELF find_nearest_line routine. */
8619
8620 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
8621 filename_ptr, functionname_ptr,
8622 line_ptr);
8623}
8624\f
8625/* When are writing out the .options or .MIPS.options section,
8626 remember the bytes we are writing out, so that we can install the
8627 GP value in the section_processing routine. */
8628
b34976b6 8629bfd_boolean
9719ad41
RS
8630_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
8631 const void *location,
8632 file_ptr offset, bfd_size_type count)
b49e97c9
TS
8633{
8634 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
8635 {
8636 bfd_byte *c;
8637
8638 if (elf_section_data (section) == NULL)
8639 {
8640 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 8641 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 8642 if (elf_section_data (section) == NULL)
b34976b6 8643 return FALSE;
b49e97c9 8644 }
f0abc2a1 8645 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
8646 if (c == NULL)
8647 {
eea6121a 8648 c = bfd_zalloc (abfd, section->size);
b49e97c9 8649 if (c == NULL)
b34976b6 8650 return FALSE;
f0abc2a1 8651 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
8652 }
8653
9719ad41 8654 memcpy (c + offset, location, count);
b49e97c9
TS
8655 }
8656
8657 return _bfd_elf_set_section_contents (abfd, section, location, offset,
8658 count);
8659}
8660
8661/* This is almost identical to bfd_generic_get_... except that some
8662 MIPS relocations need to be handled specially. Sigh. */
8663
8664bfd_byte *
9719ad41
RS
8665_bfd_elf_mips_get_relocated_section_contents
8666 (bfd *abfd,
8667 struct bfd_link_info *link_info,
8668 struct bfd_link_order *link_order,
8669 bfd_byte *data,
8670 bfd_boolean relocatable,
8671 asymbol **symbols)
b49e97c9
TS
8672{
8673 /* Get enough memory to hold the stuff */
8674 bfd *input_bfd = link_order->u.indirect.section->owner;
8675 asection *input_section = link_order->u.indirect.section;
eea6121a 8676 bfd_size_type sz;
b49e97c9
TS
8677
8678 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
8679 arelent **reloc_vector = NULL;
8680 long reloc_count;
8681
8682 if (reloc_size < 0)
8683 goto error_return;
8684
9719ad41 8685 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
8686 if (reloc_vector == NULL && reloc_size != 0)
8687 goto error_return;
8688
8689 /* read in the section */
eea6121a
AM
8690 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
8691 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
8692 goto error_return;
8693
b49e97c9
TS
8694 reloc_count = bfd_canonicalize_reloc (input_bfd,
8695 input_section,
8696 reloc_vector,
8697 symbols);
8698 if (reloc_count < 0)
8699 goto error_return;
8700
8701 if (reloc_count > 0)
8702 {
8703 arelent **parent;
8704 /* for mips */
8705 int gp_found;
8706 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
8707
8708 {
8709 struct bfd_hash_entry *h;
8710 struct bfd_link_hash_entry *lh;
8711 /* Skip all this stuff if we aren't mixing formats. */
8712 if (abfd && input_bfd
8713 && abfd->xvec == input_bfd->xvec)
8714 lh = 0;
8715 else
8716 {
b34976b6 8717 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
8718 lh = (struct bfd_link_hash_entry *) h;
8719 }
8720 lookup:
8721 if (lh)
8722 {
8723 switch (lh->type)
8724 {
8725 case bfd_link_hash_undefined:
8726 case bfd_link_hash_undefweak:
8727 case bfd_link_hash_common:
8728 gp_found = 0;
8729 break;
8730 case bfd_link_hash_defined:
8731 case bfd_link_hash_defweak:
8732 gp_found = 1;
8733 gp = lh->u.def.value;
8734 break;
8735 case bfd_link_hash_indirect:
8736 case bfd_link_hash_warning:
8737 lh = lh->u.i.link;
8738 /* @@FIXME ignoring warning for now */
8739 goto lookup;
8740 case bfd_link_hash_new:
8741 default:
8742 abort ();
8743 }
8744 }
8745 else
8746 gp_found = 0;
8747 }
8748 /* end mips */
9719ad41 8749 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 8750 {
9719ad41 8751 char *error_message = NULL;
b49e97c9
TS
8752 bfd_reloc_status_type r;
8753
8754 /* Specific to MIPS: Deal with relocation types that require
8755 knowing the gp of the output bfd. */
8756 asymbol *sym = *(*parent)->sym_ptr_ptr;
8757 if (bfd_is_abs_section (sym->section) && abfd)
8758 {
44c410de 8759 /* The special_function wouldn't get called anyway. */
b49e97c9
TS
8760 }
8761 else if (!gp_found)
8762 {
8763 /* The gp isn't there; let the special function code
8764 fall over on its own. */
8765 }
8766 else if ((*parent)->howto->special_function
8767 == _bfd_mips_elf32_gprel16_reloc)
8768 {
8769 /* bypass special_function call */
8770 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
1049f94e 8771 input_section, relocatable,
9719ad41 8772 data, gp);
b49e97c9
TS
8773 goto skip_bfd_perform_relocation;
8774 }
8775 /* end mips specific stuff */
8776
9719ad41
RS
8777 r = bfd_perform_relocation (input_bfd, *parent, data, input_section,
8778 relocatable ? abfd : NULL,
b49e97c9
TS
8779 &error_message);
8780 skip_bfd_perform_relocation:
8781
1049f94e 8782 if (relocatable)
b49e97c9
TS
8783 {
8784 asection *os = input_section->output_section;
8785
8786 /* A partial link, so keep the relocs */
8787 os->orelocation[os->reloc_count] = *parent;
8788 os->reloc_count++;
8789 }
8790
8791 if (r != bfd_reloc_ok)
8792 {
8793 switch (r)
8794 {
8795 case bfd_reloc_undefined:
8796 if (!((*link_info->callbacks->undefined_symbol)
8797 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8798 input_bfd, input_section, (*parent)->address,
b34976b6 8799 TRUE)))
b49e97c9
TS
8800 goto error_return;
8801 break;
8802 case bfd_reloc_dangerous:
9719ad41 8803 BFD_ASSERT (error_message != NULL);
b49e97c9
TS
8804 if (!((*link_info->callbacks->reloc_dangerous)
8805 (link_info, error_message, input_bfd, input_section,
8806 (*parent)->address)))
8807 goto error_return;
8808 break;
8809 case bfd_reloc_overflow:
8810 if (!((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
8811 (link_info, NULL,
8812 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
b49e97c9
TS
8813 (*parent)->howto->name, (*parent)->addend,
8814 input_bfd, input_section, (*parent)->address)))
8815 goto error_return;
8816 break;
8817 case bfd_reloc_outofrange:
8818 default:
8819 abort ();
8820 break;
8821 }
8822
8823 }
8824 }
8825 }
8826 if (reloc_vector != NULL)
8827 free (reloc_vector);
8828 return data;
8829
8830error_return:
8831 if (reloc_vector != NULL)
8832 free (reloc_vector);
8833 return NULL;
8834}
8835\f
8836/* Create a MIPS ELF linker hash table. */
8837
8838struct bfd_link_hash_table *
9719ad41 8839_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
8840{
8841 struct mips_elf_link_hash_table *ret;
8842 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
8843
9719ad41
RS
8844 ret = bfd_malloc (amt);
8845 if (ret == NULL)
b49e97c9
TS
8846 return NULL;
8847
8848 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
8849 mips_elf_link_hash_newfunc))
8850 {
e2d34d7d 8851 free (ret);
b49e97c9
TS
8852 return NULL;
8853 }
8854
8855#if 0
8856 /* We no longer use this. */
8857 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
8858 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
8859#endif
8860 ret->procedure_count = 0;
8861 ret->compact_rel_size = 0;
b34976b6 8862 ret->use_rld_obj_head = FALSE;
b49e97c9 8863 ret->rld_value = 0;
b34976b6 8864 ret->mips16_stubs_seen = FALSE;
b49e97c9
TS
8865
8866 return &ret->root.root;
8867}
8868\f
8869/* We need to use a special link routine to handle the .reginfo and
8870 the .mdebug sections. We need to merge all instances of these
8871 sections together, not write them all out sequentially. */
8872
b34976b6 8873bfd_boolean
9719ad41 8874_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
8875{
8876 asection **secpp;
8877 asection *o;
8878 struct bfd_link_order *p;
8879 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
8880 asection *rtproc_sec;
8881 Elf32_RegInfo reginfo;
8882 struct ecoff_debug_info debug;
7a2a6943
NC
8883 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8884 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 8885 HDRR *symhdr = &debug.symbolic_header;
9719ad41 8886 void *mdebug_handle = NULL;
b49e97c9
TS
8887 asection *s;
8888 EXTR esym;
8889 unsigned int i;
8890 bfd_size_type amt;
8891
8892 static const char * const secname[] =
8893 {
8894 ".text", ".init", ".fini", ".data",
8895 ".rodata", ".sdata", ".sbss", ".bss"
8896 };
8897 static const int sc[] =
8898 {
8899 scText, scInit, scFini, scData,
8900 scRData, scSData, scSBss, scBss
8901 };
8902
b49e97c9
TS
8903 /* We'd carefully arranged the dynamic symbol indices, and then the
8904 generic size_dynamic_sections renumbered them out from under us.
8905 Rather than trying somehow to prevent the renumbering, just do
8906 the sort again. */
8907 if (elf_hash_table (info)->dynamic_sections_created)
8908 {
8909 bfd *dynobj;
8910 asection *got;
8911 struct mips_got_info *g;
7a2a6943 8912 bfd_size_type dynsecsymcount;
b49e97c9
TS
8913
8914 /* When we resort, we must tell mips_elf_sort_hash_table what
8915 the lowest index it may use is. That's the number of section
8916 symbols we're going to add. The generic ELF linker only
8917 adds these symbols when building a shared object. Note that
8918 we count the sections after (possibly) removing the .options
8919 section above. */
7a2a6943
NC
8920
8921 dynsecsymcount = 0;
8922 if (info->shared)
8923 {
8924 asection * p;
8925
8926 for (p = abfd->sections; p ; p = p->next)
8927 if ((p->flags & SEC_EXCLUDE) == 0
8928 && (p->flags & SEC_ALLOC) != 0
8929 && !(*bed->elf_backend_omit_section_dynsym) (abfd, info, p))
8930 ++ dynsecsymcount;
8931 }
8932
8933 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
b34976b6 8934 return FALSE;
b49e97c9
TS
8935
8936 /* Make sure we didn't grow the global .got region. */
8937 dynobj = elf_hash_table (info)->dynobj;
f4416af6 8938 got = mips_elf_got_section (dynobj, FALSE);
f0abc2a1 8939 g = mips_elf_section_data (got)->u.got_info;
b49e97c9
TS
8940
8941 if (g->global_gotsym != NULL)
8942 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
8943 - g->global_gotsym->dynindx)
8944 <= g->global_gotno);
8945 }
8946
b49e97c9
TS
8947 /* Get a value for the GP register. */
8948 if (elf_gp (abfd) == 0)
8949 {
8950 struct bfd_link_hash_entry *h;
8951
b34976b6 8952 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 8953 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
8954 elf_gp (abfd) = (h->u.def.value
8955 + h->u.def.section->output_section->vma
8956 + h->u.def.section->output_offset);
1049f94e 8957 else if (info->relocatable)
b49e97c9
TS
8958 {
8959 bfd_vma lo = MINUS_ONE;
8960
8961 /* Find the GP-relative section with the lowest offset. */
9719ad41 8962 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
8963 if (o->vma < lo
8964 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
8965 lo = o->vma;
8966
8967 /* And calculate GP relative to that. */
8968 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
8969 }
8970 else
8971 {
8972 /* If the relocate_section function needs to do a reloc
8973 involving the GP value, it should make a reloc_dangerous
8974 callback to warn that GP is not defined. */
8975 }
8976 }
8977
8978 /* Go through the sections and collect the .reginfo and .mdebug
8979 information. */
8980 reginfo_sec = NULL;
8981 mdebug_sec = NULL;
8982 gptab_data_sec = NULL;
8983 gptab_bss_sec = NULL;
9719ad41 8984 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
8985 {
8986 if (strcmp (o->name, ".reginfo") == 0)
8987 {
8988 memset (&reginfo, 0, sizeof reginfo);
8989
8990 /* We have found the .reginfo section in the output file.
8991 Look through all the link_orders comprising it and merge
8992 the information together. */
9719ad41 8993 for (p = o->link_order_head; p != NULL; p = p->next)
b49e97c9
TS
8994 {
8995 asection *input_section;
8996 bfd *input_bfd;
8997 Elf32_External_RegInfo ext;
8998 Elf32_RegInfo sub;
8999
9000 if (p->type != bfd_indirect_link_order)
9001 {
9002 if (p->type == bfd_data_link_order)
9003 continue;
9004 abort ();
9005 }
9006
9007 input_section = p->u.indirect.section;
9008 input_bfd = input_section->owner;
9009
b49e97c9 9010 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 9011 &ext, 0, sizeof ext))
b34976b6 9012 return FALSE;
b49e97c9
TS
9013
9014 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
9015
9016 reginfo.ri_gprmask |= sub.ri_gprmask;
9017 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
9018 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
9019 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
9020 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
9021
9022 /* ri_gp_value is set by the function
9023 mips_elf32_section_processing when the section is
9024 finally written out. */
9025
9026 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9027 elf_link_input_bfd ignores this section. */
9028 input_section->flags &= ~SEC_HAS_CONTENTS;
9029 }
9030
9031 /* Size has been set in _bfd_mips_elf_always_size_sections. */
eea6121a 9032 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
9033
9034 /* Skip this section later on (I don't think this currently
9035 matters, but someday it might). */
9719ad41 9036 o->link_order_head = NULL;
b49e97c9
TS
9037
9038 reginfo_sec = o;
9039 }
9040
9041 if (strcmp (o->name, ".mdebug") == 0)
9042 {
9043 struct extsym_info einfo;
9044 bfd_vma last;
9045
9046 /* We have found the .mdebug section in the output file.
9047 Look through all the link_orders comprising it and merge
9048 the information together. */
9049 symhdr->magic = swap->sym_magic;
9050 /* FIXME: What should the version stamp be? */
9051 symhdr->vstamp = 0;
9052 symhdr->ilineMax = 0;
9053 symhdr->cbLine = 0;
9054 symhdr->idnMax = 0;
9055 symhdr->ipdMax = 0;
9056 symhdr->isymMax = 0;
9057 symhdr->ioptMax = 0;
9058 symhdr->iauxMax = 0;
9059 symhdr->issMax = 0;
9060 symhdr->issExtMax = 0;
9061 symhdr->ifdMax = 0;
9062 symhdr->crfd = 0;
9063 symhdr->iextMax = 0;
9064
9065 /* We accumulate the debugging information itself in the
9066 debug_info structure. */
9067 debug.line = NULL;
9068 debug.external_dnr = NULL;
9069 debug.external_pdr = NULL;
9070 debug.external_sym = NULL;
9071 debug.external_opt = NULL;
9072 debug.external_aux = NULL;
9073 debug.ss = NULL;
9074 debug.ssext = debug.ssext_end = NULL;
9075 debug.external_fdr = NULL;
9076 debug.external_rfd = NULL;
9077 debug.external_ext = debug.external_ext_end = NULL;
9078
9079 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 9080 if (mdebug_handle == NULL)
b34976b6 9081 return FALSE;
b49e97c9
TS
9082
9083 esym.jmptbl = 0;
9084 esym.cobol_main = 0;
9085 esym.weakext = 0;
9086 esym.reserved = 0;
9087 esym.ifd = ifdNil;
9088 esym.asym.iss = issNil;
9089 esym.asym.st = stLocal;
9090 esym.asym.reserved = 0;
9091 esym.asym.index = indexNil;
9092 last = 0;
9093 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
9094 {
9095 esym.asym.sc = sc[i];
9096 s = bfd_get_section_by_name (abfd, secname[i]);
9097 if (s != NULL)
9098 {
9099 esym.asym.value = s->vma;
eea6121a 9100 last = s->vma + s->size;
b49e97c9
TS
9101 }
9102 else
9103 esym.asym.value = last;
9104 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
9105 secname[i], &esym))
b34976b6 9106 return FALSE;
b49e97c9
TS
9107 }
9108
9719ad41 9109 for (p = o->link_order_head; p != NULL; p = p->next)
b49e97c9
TS
9110 {
9111 asection *input_section;
9112 bfd *input_bfd;
9113 const struct ecoff_debug_swap *input_swap;
9114 struct ecoff_debug_info input_debug;
9115 char *eraw_src;
9116 char *eraw_end;
9117
9118 if (p->type != bfd_indirect_link_order)
9119 {
9120 if (p->type == bfd_data_link_order)
9121 continue;
9122 abort ();
9123 }
9124
9125 input_section = p->u.indirect.section;
9126 input_bfd = input_section->owner;
9127
9128 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
9129 || (get_elf_backend_data (input_bfd)
9130 ->elf_backend_ecoff_debug_swap) == NULL)
9131 {
9132 /* I don't know what a non MIPS ELF bfd would be
9133 doing with a .mdebug section, but I don't really
9134 want to deal with it. */
9135 continue;
9136 }
9137
9138 input_swap = (get_elf_backend_data (input_bfd)
9139 ->elf_backend_ecoff_debug_swap);
9140
eea6121a 9141 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
9142
9143 /* The ECOFF linking code expects that we have already
9144 read in the debugging information and set up an
9145 ecoff_debug_info structure, so we do that now. */
9146 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
9147 &input_debug))
b34976b6 9148 return FALSE;
b49e97c9
TS
9149
9150 if (! (bfd_ecoff_debug_accumulate
9151 (mdebug_handle, abfd, &debug, swap, input_bfd,
9152 &input_debug, input_swap, info)))
b34976b6 9153 return FALSE;
b49e97c9
TS
9154
9155 /* Loop through the external symbols. For each one with
9156 interesting information, try to find the symbol in
9157 the linker global hash table and save the information
9158 for the output external symbols. */
9159 eraw_src = input_debug.external_ext;
9160 eraw_end = (eraw_src
9161 + (input_debug.symbolic_header.iextMax
9162 * input_swap->external_ext_size));
9163 for (;
9164 eraw_src < eraw_end;
9165 eraw_src += input_swap->external_ext_size)
9166 {
9167 EXTR ext;
9168 const char *name;
9169 struct mips_elf_link_hash_entry *h;
9170
9719ad41 9171 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
9172 if (ext.asym.sc == scNil
9173 || ext.asym.sc == scUndefined
9174 || ext.asym.sc == scSUndefined)
9175 continue;
9176
9177 name = input_debug.ssext + ext.asym.iss;
9178 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 9179 name, FALSE, FALSE, TRUE);
b49e97c9
TS
9180 if (h == NULL || h->esym.ifd != -2)
9181 continue;
9182
9183 if (ext.ifd != -1)
9184 {
9185 BFD_ASSERT (ext.ifd
9186 < input_debug.symbolic_header.ifdMax);
9187 ext.ifd = input_debug.ifdmap[ext.ifd];
9188 }
9189
9190 h->esym = ext;
9191 }
9192
9193 /* Free up the information we just read. */
9194 free (input_debug.line);
9195 free (input_debug.external_dnr);
9196 free (input_debug.external_pdr);
9197 free (input_debug.external_sym);
9198 free (input_debug.external_opt);
9199 free (input_debug.external_aux);
9200 free (input_debug.ss);
9201 free (input_debug.ssext);
9202 free (input_debug.external_fdr);
9203 free (input_debug.external_rfd);
9204 free (input_debug.external_ext);
9205
9206 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9207 elf_link_input_bfd ignores this section. */
9208 input_section->flags &= ~SEC_HAS_CONTENTS;
9209 }
9210
9211 if (SGI_COMPAT (abfd) && info->shared)
9212 {
9213 /* Create .rtproc section. */
9214 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
9215 if (rtproc_sec == NULL)
9216 {
9217 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
9218 | SEC_LINKER_CREATED | SEC_READONLY);
9219
9220 rtproc_sec = bfd_make_section (abfd, ".rtproc");
9221 if (rtproc_sec == NULL
9222 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
9223 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 9224 return FALSE;
b49e97c9
TS
9225 }
9226
9227 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
9228 info, rtproc_sec,
9229 &debug))
b34976b6 9230 return FALSE;
b49e97c9
TS
9231 }
9232
9233 /* Build the external symbol information. */
9234 einfo.abfd = abfd;
9235 einfo.info = info;
9236 einfo.debug = &debug;
9237 einfo.swap = swap;
b34976b6 9238 einfo.failed = FALSE;
b49e97c9 9239 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 9240 mips_elf_output_extsym, &einfo);
b49e97c9 9241 if (einfo.failed)
b34976b6 9242 return FALSE;
b49e97c9
TS
9243
9244 /* Set the size of the .mdebug section. */
eea6121a 9245 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
9246
9247 /* Skip this section later on (I don't think this currently
9248 matters, but someday it might). */
9719ad41 9249 o->link_order_head = NULL;
b49e97c9
TS
9250
9251 mdebug_sec = o;
9252 }
9253
9254 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
9255 {
9256 const char *subname;
9257 unsigned int c;
9258 Elf32_gptab *tab;
9259 Elf32_External_gptab *ext_tab;
9260 unsigned int j;
9261
9262 /* The .gptab.sdata and .gptab.sbss sections hold
9263 information describing how the small data area would
9264 change depending upon the -G switch. These sections
9265 not used in executables files. */
1049f94e 9266 if (! info->relocatable)
b49e97c9 9267 {
9719ad41 9268 for (p = o->link_order_head; p != NULL; p = p->next)
b49e97c9
TS
9269 {
9270 asection *input_section;
9271
9272 if (p->type != bfd_indirect_link_order)
9273 {
9274 if (p->type == bfd_data_link_order)
9275 continue;
9276 abort ();
9277 }
9278
9279 input_section = p->u.indirect.section;
9280
9281 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9282 elf_link_input_bfd ignores this section. */
9283 input_section->flags &= ~SEC_HAS_CONTENTS;
9284 }
9285
9286 /* Skip this section later on (I don't think this
9287 currently matters, but someday it might). */
9719ad41 9288 o->link_order_head = NULL;
b49e97c9
TS
9289
9290 /* Really remove the section. */
9291 for (secpp = &abfd->sections;
9292 *secpp != o;
9293 secpp = &(*secpp)->next)
9294 ;
9295 bfd_section_list_remove (abfd, secpp);
9296 --abfd->section_count;
9297
9298 continue;
9299 }
9300
9301 /* There is one gptab for initialized data, and one for
9302 uninitialized data. */
9303 if (strcmp (o->name, ".gptab.sdata") == 0)
9304 gptab_data_sec = o;
9305 else if (strcmp (o->name, ".gptab.sbss") == 0)
9306 gptab_bss_sec = o;
9307 else
9308 {
9309 (*_bfd_error_handler)
9310 (_("%s: illegal section name `%s'"),
9311 bfd_get_filename (abfd), o->name);
9312 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 9313 return FALSE;
b49e97c9
TS
9314 }
9315
9316 /* The linker script always combines .gptab.data and
9317 .gptab.sdata into .gptab.sdata, and likewise for
9318 .gptab.bss and .gptab.sbss. It is possible that there is
9319 no .sdata or .sbss section in the output file, in which
9320 case we must change the name of the output section. */
9321 subname = o->name + sizeof ".gptab" - 1;
9322 if (bfd_get_section_by_name (abfd, subname) == NULL)
9323 {
9324 if (o == gptab_data_sec)
9325 o->name = ".gptab.data";
9326 else
9327 o->name = ".gptab.bss";
9328 subname = o->name + sizeof ".gptab" - 1;
9329 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
9330 }
9331
9332 /* Set up the first entry. */
9333 c = 1;
9334 amt = c * sizeof (Elf32_gptab);
9719ad41 9335 tab = bfd_malloc (amt);
b49e97c9 9336 if (tab == NULL)
b34976b6 9337 return FALSE;
b49e97c9
TS
9338 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
9339 tab[0].gt_header.gt_unused = 0;
9340
9341 /* Combine the input sections. */
9719ad41 9342 for (p = o->link_order_head; p != NULL; p = p->next)
b49e97c9
TS
9343 {
9344 asection *input_section;
9345 bfd *input_bfd;
9346 bfd_size_type size;
9347 unsigned long last;
9348 bfd_size_type gpentry;
9349
9350 if (p->type != bfd_indirect_link_order)
9351 {
9352 if (p->type == bfd_data_link_order)
9353 continue;
9354 abort ();
9355 }
9356
9357 input_section = p->u.indirect.section;
9358 input_bfd = input_section->owner;
9359
9360 /* Combine the gptab entries for this input section one
9361 by one. We know that the input gptab entries are
9362 sorted by ascending -G value. */
eea6121a 9363 size = input_section->size;
b49e97c9
TS
9364 last = 0;
9365 for (gpentry = sizeof (Elf32_External_gptab);
9366 gpentry < size;
9367 gpentry += sizeof (Elf32_External_gptab))
9368 {
9369 Elf32_External_gptab ext_gptab;
9370 Elf32_gptab int_gptab;
9371 unsigned long val;
9372 unsigned long add;
b34976b6 9373 bfd_boolean exact;
b49e97c9
TS
9374 unsigned int look;
9375
9376 if (! (bfd_get_section_contents
9719ad41
RS
9377 (input_bfd, input_section, &ext_gptab, gpentry,
9378 sizeof (Elf32_External_gptab))))
b49e97c9
TS
9379 {
9380 free (tab);
b34976b6 9381 return FALSE;
b49e97c9
TS
9382 }
9383
9384 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
9385 &int_gptab);
9386 val = int_gptab.gt_entry.gt_g_value;
9387 add = int_gptab.gt_entry.gt_bytes - last;
9388
b34976b6 9389 exact = FALSE;
b49e97c9
TS
9390 for (look = 1; look < c; look++)
9391 {
9392 if (tab[look].gt_entry.gt_g_value >= val)
9393 tab[look].gt_entry.gt_bytes += add;
9394
9395 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 9396 exact = TRUE;
b49e97c9
TS
9397 }
9398
9399 if (! exact)
9400 {
9401 Elf32_gptab *new_tab;
9402 unsigned int max;
9403
9404 /* We need a new table entry. */
9405 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 9406 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
9407 if (new_tab == NULL)
9408 {
9409 free (tab);
b34976b6 9410 return FALSE;
b49e97c9
TS
9411 }
9412 tab = new_tab;
9413 tab[c].gt_entry.gt_g_value = val;
9414 tab[c].gt_entry.gt_bytes = add;
9415
9416 /* Merge in the size for the next smallest -G
9417 value, since that will be implied by this new
9418 value. */
9419 max = 0;
9420 for (look = 1; look < c; look++)
9421 {
9422 if (tab[look].gt_entry.gt_g_value < val
9423 && (max == 0
9424 || (tab[look].gt_entry.gt_g_value
9425 > tab[max].gt_entry.gt_g_value)))
9426 max = look;
9427 }
9428 if (max != 0)
9429 tab[c].gt_entry.gt_bytes +=
9430 tab[max].gt_entry.gt_bytes;
9431
9432 ++c;
9433 }
9434
9435 last = int_gptab.gt_entry.gt_bytes;
9436 }
9437
9438 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9439 elf_link_input_bfd ignores this section. */
9440 input_section->flags &= ~SEC_HAS_CONTENTS;
9441 }
9442
9443 /* The table must be sorted by -G value. */
9444 if (c > 2)
9445 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
9446
9447 /* Swap out the table. */
9448 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 9449 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
9450 if (ext_tab == NULL)
9451 {
9452 free (tab);
b34976b6 9453 return FALSE;
b49e97c9
TS
9454 }
9455
9456 for (j = 0; j < c; j++)
9457 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
9458 free (tab);
9459
eea6121a 9460 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
9461 o->contents = (bfd_byte *) ext_tab;
9462
9463 /* Skip this section later on (I don't think this currently
9464 matters, but someday it might). */
9719ad41 9465 o->link_order_head = NULL;
b49e97c9
TS
9466 }
9467 }
9468
9469 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 9470 if (!bfd_elf_final_link (abfd, info))
b34976b6 9471 return FALSE;
b49e97c9
TS
9472
9473 /* Now write out the computed sections. */
9474
9719ad41 9475 if (reginfo_sec != NULL)
b49e97c9
TS
9476 {
9477 Elf32_External_RegInfo ext;
9478
9479 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 9480 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 9481 return FALSE;
b49e97c9
TS
9482 }
9483
9719ad41 9484 if (mdebug_sec != NULL)
b49e97c9
TS
9485 {
9486 BFD_ASSERT (abfd->output_has_begun);
9487 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
9488 swap, info,
9489 mdebug_sec->filepos))
b34976b6 9490 return FALSE;
b49e97c9
TS
9491
9492 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
9493 }
9494
9719ad41 9495 if (gptab_data_sec != NULL)
b49e97c9
TS
9496 {
9497 if (! bfd_set_section_contents (abfd, gptab_data_sec,
9498 gptab_data_sec->contents,
eea6121a 9499 0, gptab_data_sec->size))
b34976b6 9500 return FALSE;
b49e97c9
TS
9501 }
9502
9719ad41 9503 if (gptab_bss_sec != NULL)
b49e97c9
TS
9504 {
9505 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
9506 gptab_bss_sec->contents,
eea6121a 9507 0, gptab_bss_sec->size))
b34976b6 9508 return FALSE;
b49e97c9
TS
9509 }
9510
9511 if (SGI_COMPAT (abfd))
9512 {
9513 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
9514 if (rtproc_sec != NULL)
9515 {
9516 if (! bfd_set_section_contents (abfd, rtproc_sec,
9517 rtproc_sec->contents,
eea6121a 9518 0, rtproc_sec->size))
b34976b6 9519 return FALSE;
b49e97c9
TS
9520 }
9521 }
9522
b34976b6 9523 return TRUE;
b49e97c9
TS
9524}
9525\f
64543e1a
RS
9526/* Structure for saying that BFD machine EXTENSION extends BASE. */
9527
9528struct mips_mach_extension {
9529 unsigned long extension, base;
9530};
9531
9532
9533/* An array describing how BFD machines relate to one another. The entries
9534 are ordered topologically with MIPS I extensions listed last. */
9535
9536static const struct mips_mach_extension mips_mach_extensions[] = {
9537 /* MIPS64 extensions. */
5f74bc13 9538 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
64543e1a
RS
9539 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
9540
9541 /* MIPS V extensions. */
9542 { bfd_mach_mipsisa64, bfd_mach_mips5 },
9543
9544 /* R10000 extensions. */
9545 { bfd_mach_mips12000, bfd_mach_mips10000 },
9546
9547 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
9548 vr5400 ISA, but doesn't include the multimedia stuff. It seems
9549 better to allow vr5400 and vr5500 code to be merged anyway, since
9550 many libraries will just use the core ISA. Perhaps we could add
9551 some sort of ASE flag if this ever proves a problem. */
9552 { bfd_mach_mips5500, bfd_mach_mips5400 },
9553 { bfd_mach_mips5400, bfd_mach_mips5000 },
9554
9555 /* MIPS IV extensions. */
9556 { bfd_mach_mips5, bfd_mach_mips8000 },
9557 { bfd_mach_mips10000, bfd_mach_mips8000 },
9558 { bfd_mach_mips5000, bfd_mach_mips8000 },
5a7ea749 9559 { bfd_mach_mips7000, bfd_mach_mips8000 },
0d2e43ed 9560 { bfd_mach_mips9000, bfd_mach_mips8000 },
64543e1a
RS
9561
9562 /* VR4100 extensions. */
9563 { bfd_mach_mips4120, bfd_mach_mips4100 },
9564 { bfd_mach_mips4111, bfd_mach_mips4100 },
9565
9566 /* MIPS III extensions. */
9567 { bfd_mach_mips8000, bfd_mach_mips4000 },
9568 { bfd_mach_mips4650, bfd_mach_mips4000 },
9569 { bfd_mach_mips4600, bfd_mach_mips4000 },
9570 { bfd_mach_mips4400, bfd_mach_mips4000 },
9571 { bfd_mach_mips4300, bfd_mach_mips4000 },
9572 { bfd_mach_mips4100, bfd_mach_mips4000 },
9573 { bfd_mach_mips4010, bfd_mach_mips4000 },
9574
9575 /* MIPS32 extensions. */
9576 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
9577
9578 /* MIPS II extensions. */
9579 { bfd_mach_mips4000, bfd_mach_mips6000 },
9580 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
9581
9582 /* MIPS I extensions. */
9583 { bfd_mach_mips6000, bfd_mach_mips3000 },
9584 { bfd_mach_mips3900, bfd_mach_mips3000 }
9585};
9586
9587
9588/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
9589
9590static bfd_boolean
9719ad41 9591mips_mach_extends_p (unsigned long base, unsigned long extension)
64543e1a
RS
9592{
9593 size_t i;
9594
9595 for (i = 0; extension != base && i < ARRAY_SIZE (mips_mach_extensions); i++)
9596 if (extension == mips_mach_extensions[i].extension)
9597 extension = mips_mach_extensions[i].base;
9598
9599 return extension == base;
9600}
9601
9602
9603/* Return true if the given ELF header flags describe a 32-bit binary. */
00707a0e 9604
b34976b6 9605static bfd_boolean
9719ad41 9606mips_32bit_flags_p (flagword flags)
00707a0e 9607{
64543e1a
RS
9608 return ((flags & EF_MIPS_32BITMODE) != 0
9609 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
9610 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
9611 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
9612 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
9613 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
9614 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
00707a0e
RS
9615}
9616
64543e1a 9617
b49e97c9
TS
9618/* Merge backend specific data from an object file to the output
9619 object file when linking. */
9620
b34976b6 9621bfd_boolean
9719ad41 9622_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
b49e97c9
TS
9623{
9624 flagword old_flags;
9625 flagword new_flags;
b34976b6
AM
9626 bfd_boolean ok;
9627 bfd_boolean null_input_bfd = TRUE;
b49e97c9
TS
9628 asection *sec;
9629
9630 /* Check if we have the same endianess */
82e51918 9631 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
aa701218
AO
9632 {
9633 (*_bfd_error_handler)
d003868e
AM
9634 (_("%B: endianness incompatible with that of the selected emulation"),
9635 ibfd);
aa701218
AO
9636 return FALSE;
9637 }
b49e97c9
TS
9638
9639 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
9640 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
b34976b6 9641 return TRUE;
b49e97c9 9642
aa701218
AO
9643 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
9644 {
9645 (*_bfd_error_handler)
d003868e
AM
9646 (_("%B: ABI is incompatible with that of the selected emulation"),
9647 ibfd);
aa701218
AO
9648 return FALSE;
9649 }
9650
b49e97c9
TS
9651 new_flags = elf_elfheader (ibfd)->e_flags;
9652 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
9653 old_flags = elf_elfheader (obfd)->e_flags;
9654
9655 if (! elf_flags_init (obfd))
9656 {
b34976b6 9657 elf_flags_init (obfd) = TRUE;
b49e97c9
TS
9658 elf_elfheader (obfd)->e_flags = new_flags;
9659 elf_elfheader (obfd)->e_ident[EI_CLASS]
9660 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
9661
9662 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
9663 && bfd_get_arch_info (obfd)->the_default)
9664 {
9665 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
9666 bfd_get_mach (ibfd)))
b34976b6 9667 return FALSE;
b49e97c9
TS
9668 }
9669
b34976b6 9670 return TRUE;
b49e97c9
TS
9671 }
9672
9673 /* Check flag compatibility. */
9674
9675 new_flags &= ~EF_MIPS_NOREORDER;
9676 old_flags &= ~EF_MIPS_NOREORDER;
9677
f4416af6
AO
9678 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
9679 doesn't seem to matter. */
9680 new_flags &= ~EF_MIPS_XGOT;
9681 old_flags &= ~EF_MIPS_XGOT;
9682
98a8deaf
RS
9683 /* MIPSpro generates ucode info in n64 objects. Again, we should
9684 just be able to ignore this. */
9685 new_flags &= ~EF_MIPS_UCODE;
9686 old_flags &= ~EF_MIPS_UCODE;
9687
b49e97c9 9688 if (new_flags == old_flags)
b34976b6 9689 return TRUE;
b49e97c9
TS
9690
9691 /* Check to see if the input BFD actually contains any sections.
9692 If not, its flags may not have been initialised either, but it cannot
9693 actually cause any incompatibility. */
9694 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9695 {
9696 /* Ignore synthetic sections and empty .text, .data and .bss sections
9697 which are automatically generated by gas. */
9698 if (strcmp (sec->name, ".reginfo")
9699 && strcmp (sec->name, ".mdebug")
eea6121a 9700 && (sec->size != 0
d13d89fa
NS
9701 || (strcmp (sec->name, ".text")
9702 && strcmp (sec->name, ".data")
9703 && strcmp (sec->name, ".bss"))))
b49e97c9 9704 {
b34976b6 9705 null_input_bfd = FALSE;
b49e97c9
TS
9706 break;
9707 }
9708 }
9709 if (null_input_bfd)
b34976b6 9710 return TRUE;
b49e97c9 9711
b34976b6 9712 ok = TRUE;
b49e97c9 9713
143d77c5
EC
9714 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
9715 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
b49e97c9 9716 {
b49e97c9 9717 (*_bfd_error_handler)
d003868e
AM
9718 (_("%B: warning: linking PIC files with non-PIC files"),
9719 ibfd);
143d77c5 9720 ok = TRUE;
b49e97c9
TS
9721 }
9722
143d77c5
EC
9723 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
9724 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
9725 if (! (new_flags & EF_MIPS_PIC))
9726 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
9727
9728 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
9729 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
b49e97c9 9730
64543e1a
RS
9731 /* Compare the ISAs. */
9732 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
b49e97c9 9733 {
64543e1a 9734 (*_bfd_error_handler)
d003868e
AM
9735 (_("%B: linking 32-bit code with 64-bit code"),
9736 ibfd);
64543e1a
RS
9737 ok = FALSE;
9738 }
9739 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
9740 {
9741 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
9742 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
b49e97c9 9743 {
64543e1a
RS
9744 /* Copy the architecture info from IBFD to OBFD. Also copy
9745 the 32-bit flag (if set) so that we continue to recognise
9746 OBFD as a 32-bit binary. */
9747 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
9748 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9749 elf_elfheader (obfd)->e_flags
9750 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9751
9752 /* Copy across the ABI flags if OBFD doesn't use them
9753 and if that was what caused us to treat IBFD as 32-bit. */
9754 if ((old_flags & EF_MIPS_ABI) == 0
9755 && mips_32bit_flags_p (new_flags)
9756 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
9757 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
b49e97c9
TS
9758 }
9759 else
9760 {
64543e1a 9761 /* The ISAs aren't compatible. */
b49e97c9 9762 (*_bfd_error_handler)
d003868e
AM
9763 (_("%B: linking %s module with previous %s modules"),
9764 ibfd,
64543e1a
RS
9765 bfd_printable_name (ibfd),
9766 bfd_printable_name (obfd));
b34976b6 9767 ok = FALSE;
b49e97c9 9768 }
b49e97c9
TS
9769 }
9770
64543e1a
RS
9771 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9772 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9773
9774 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
b49e97c9
TS
9775 does set EI_CLASS differently from any 32-bit ABI. */
9776 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
9777 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9778 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9779 {
9780 /* Only error if both are set (to different values). */
9781 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
9782 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9783 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9784 {
9785 (*_bfd_error_handler)
d003868e
AM
9786 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
9787 ibfd,
b49e97c9
TS
9788 elf_mips_abi_name (ibfd),
9789 elf_mips_abi_name (obfd));
b34976b6 9790 ok = FALSE;
b49e97c9
TS
9791 }
9792 new_flags &= ~EF_MIPS_ABI;
9793 old_flags &= ~EF_MIPS_ABI;
9794 }
9795
fb39dac1
RS
9796 /* For now, allow arbitrary mixing of ASEs (retain the union). */
9797 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
9798 {
9799 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
9800
9801 new_flags &= ~ EF_MIPS_ARCH_ASE;
9802 old_flags &= ~ EF_MIPS_ARCH_ASE;
9803 }
9804
b49e97c9
TS
9805 /* Warn about any other mismatches */
9806 if (new_flags != old_flags)
9807 {
9808 (*_bfd_error_handler)
d003868e
AM
9809 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
9810 ibfd, (unsigned long) new_flags,
b49e97c9 9811 (unsigned long) old_flags);
b34976b6 9812 ok = FALSE;
b49e97c9
TS
9813 }
9814
9815 if (! ok)
9816 {
9817 bfd_set_error (bfd_error_bad_value);
b34976b6 9818 return FALSE;
b49e97c9
TS
9819 }
9820
b34976b6 9821 return TRUE;
b49e97c9
TS
9822}
9823
9824/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
9825
b34976b6 9826bfd_boolean
9719ad41 9827_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
9828{
9829 BFD_ASSERT (!elf_flags_init (abfd)
9830 || elf_elfheader (abfd)->e_flags == flags);
9831
9832 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
9833 elf_flags_init (abfd) = TRUE;
9834 return TRUE;
b49e97c9
TS
9835}
9836
b34976b6 9837bfd_boolean
9719ad41 9838_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 9839{
9719ad41 9840 FILE *file = ptr;
b49e97c9
TS
9841
9842 BFD_ASSERT (abfd != NULL && ptr != NULL);
9843
9844 /* Print normal ELF private data. */
9845 _bfd_elf_print_private_bfd_data (abfd, ptr);
9846
9847 /* xgettext:c-format */
9848 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9849
9850 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
9851 fprintf (file, _(" [abi=O32]"));
9852 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
9853 fprintf (file, _(" [abi=O64]"));
9854 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
9855 fprintf (file, _(" [abi=EABI32]"));
9856 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
9857 fprintf (file, _(" [abi=EABI64]"));
9858 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
9859 fprintf (file, _(" [abi unknown]"));
9860 else if (ABI_N32_P (abfd))
9861 fprintf (file, _(" [abi=N32]"));
9862 else if (ABI_64_P (abfd))
9863 fprintf (file, _(" [abi=64]"));
9864 else
9865 fprintf (file, _(" [no abi set]"));
9866
9867 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
9868 fprintf (file, _(" [mips1]"));
9869 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
9870 fprintf (file, _(" [mips2]"));
9871 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
9872 fprintf (file, _(" [mips3]"));
9873 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
9874 fprintf (file, _(" [mips4]"));
9875 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
9876 fprintf (file, _(" [mips5]"));
9877 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
9878 fprintf (file, _(" [mips32]"));
9879 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
9880 fprintf (file, _(" [mips64]"));
af7ee8bf
CD
9881 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
9882 fprintf (file, _(" [mips32r2]"));
5f74bc13
CD
9883 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
9884 fprintf (file, _(" [mips64r2]"));
b49e97c9
TS
9885 else
9886 fprintf (file, _(" [unknown ISA]"));
9887
40d32fc6
CD
9888 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
9889 fprintf (file, _(" [mdmx]"));
9890
9891 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
9892 fprintf (file, _(" [mips16]"));
9893
b49e97c9
TS
9894 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
9895 fprintf (file, _(" [32bitmode]"));
9896 else
9897 fprintf (file, _(" [not 32bitmode]"));
9898
9899 fputc ('\n', file);
9900
b34976b6 9901 return TRUE;
b49e97c9 9902}
2f89ff8d
L
9903
9904struct bfd_elf_special_section const _bfd_mips_elf_special_sections[]=
9905{
7dcb9820
AM
9906 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9907 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9908 { ".lit4", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9909 { ".lit8", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9910 { ".ucode", 6, 0, SHT_MIPS_UCODE, 0 },
9911 { ".mdebug", 7, 0, SHT_MIPS_DEBUG, 0 },
9912 { NULL, 0, 0, 0, 0 }
2f89ff8d 9913};
This page took 0.721115 seconds and 4 git commands to generate.