bfd/
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
64543e1a 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
79cda7cf 3 2003, 2004 Free Software Foundation, Inc.
b49e97c9
TS
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
ae9a127f 12 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 13
ae9a127f
NC
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
b49e97c9 18
ae9a127f
NC
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
b49e97c9 23
ae9a127f
NC
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
b49e97c9
TS
27
28/* This file handles functionality common to the different MIPS ABI's. */
29
30#include "bfd.h"
31#include "sysdep.h"
32#include "libbfd.h"
64543e1a 33#include "libiberty.h"
b49e97c9
TS
34#include "elf-bfd.h"
35#include "elfxx-mips.h"
36#include "elf/mips.h"
37
38/* Get the ECOFF swapping routines. */
39#include "coff/sym.h"
40#include "coff/symconst.h"
41#include "coff/ecoff.h"
42#include "coff/mips.h"
43
b15e6682
AO
44#include "hashtab.h"
45
46/* This structure is used to hold .got entries while estimating got
47 sizes. */
48struct mips_got_entry
49{
50 /* The input bfd in which the symbol is defined. */
51 bfd *abfd;
f4416af6
AO
52 /* The index of the symbol, as stored in the relocation r_info, if
53 we have a local symbol; -1 otherwise. */
54 long symndx;
55 union
56 {
57 /* If abfd == NULL, an address that must be stored in the got. */
58 bfd_vma address;
59 /* If abfd != NULL && symndx != -1, the addend of the relocation
60 that should be added to the symbol value. */
61 bfd_vma addend;
62 /* If abfd != NULL && symndx == -1, the hash table entry
63 corresponding to a global symbol in the got (or, local, if
64 h->forced_local). */
65 struct mips_elf_link_hash_entry *h;
66 } d;
b15e6682 67 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
68 corresponding to this symbol+addend. If it's a global symbol
69 whose offset is yet to be decided, it's going to be -1. */
70 long gotidx;
b15e6682
AO
71};
72
f0abc2a1 73/* This structure is used to hold .got information when linking. */
b49e97c9
TS
74
75struct mips_got_info
76{
77 /* The global symbol in the GOT with the lowest index in the dynamic
78 symbol table. */
79 struct elf_link_hash_entry *global_gotsym;
80 /* The number of global .got entries. */
81 unsigned int global_gotno;
82 /* The number of local .got entries. */
83 unsigned int local_gotno;
84 /* The number of local .got entries we have used. */
85 unsigned int assigned_gotno;
b15e6682
AO
86 /* A hash table holding members of the got. */
87 struct htab *got_entries;
f4416af6
AO
88 /* A hash table mapping input bfds to other mips_got_info. NULL
89 unless multi-got was necessary. */
90 struct htab *bfd2got;
91 /* In multi-got links, a pointer to the next got (err, rather, most
92 of the time, it points to the previous got). */
93 struct mips_got_info *next;
94};
95
96/* Map an input bfd to a got in a multi-got link. */
97
98struct mips_elf_bfd2got_hash {
99 bfd *bfd;
100 struct mips_got_info *g;
101};
102
103/* Structure passed when traversing the bfd2got hash table, used to
104 create and merge bfd's gots. */
105
106struct mips_elf_got_per_bfd_arg
107{
108 /* A hashtable that maps bfds to gots. */
109 htab_t bfd2got;
110 /* The output bfd. */
111 bfd *obfd;
112 /* The link information. */
113 struct bfd_link_info *info;
114 /* A pointer to the primary got, i.e., the one that's going to get
115 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
116 DT_MIPS_GOTSYM. */
117 struct mips_got_info *primary;
118 /* A non-primary got we're trying to merge with other input bfd's
119 gots. */
120 struct mips_got_info *current;
121 /* The maximum number of got entries that can be addressed with a
122 16-bit offset. */
123 unsigned int max_count;
124 /* The number of local and global entries in the primary got. */
125 unsigned int primary_count;
126 /* The number of local and global entries in the current got. */
127 unsigned int current_count;
128};
129
130/* Another structure used to pass arguments for got entries traversal. */
131
132struct mips_elf_set_global_got_offset_arg
133{
134 struct mips_got_info *g;
135 int value;
136 unsigned int needed_relocs;
137 struct bfd_link_info *info;
b49e97c9
TS
138};
139
f0abc2a1
AM
140struct _mips_elf_section_data
141{
142 struct bfd_elf_section_data elf;
143 union
144 {
145 struct mips_got_info *got_info;
146 bfd_byte *tdata;
147 } u;
148};
149
150#define mips_elf_section_data(sec) \
68bfbfcc 151 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 152
b49e97c9
TS
153/* This structure is passed to mips_elf_sort_hash_table_f when sorting
154 the dynamic symbols. */
155
156struct mips_elf_hash_sort_data
157{
158 /* The symbol in the global GOT with the lowest dynamic symbol table
159 index. */
160 struct elf_link_hash_entry *low;
161 /* The least dynamic symbol table index corresponding to a symbol
162 with a GOT entry. */
163 long min_got_dynindx;
f4416af6
AO
164 /* The greatest dynamic symbol table index corresponding to a symbol
165 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 166 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 167 long max_unref_got_dynindx;
b49e97c9
TS
168 /* The greatest dynamic symbol table index not corresponding to a
169 symbol without a GOT entry. */
170 long max_non_got_dynindx;
171};
172
173/* The MIPS ELF linker needs additional information for each symbol in
174 the global hash table. */
175
176struct mips_elf_link_hash_entry
177{
178 struct elf_link_hash_entry root;
179
180 /* External symbol information. */
181 EXTR esym;
182
183 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
184 this symbol. */
185 unsigned int possibly_dynamic_relocs;
186
187 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
188 a readonly section. */
b34976b6 189 bfd_boolean readonly_reloc;
b49e97c9 190
b49e97c9
TS
191 /* We must not create a stub for a symbol that has relocations
192 related to taking the function's address, i.e. any but
193 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
194 p. 4-20. */
b34976b6 195 bfd_boolean no_fn_stub;
b49e97c9
TS
196
197 /* If there is a stub that 32 bit functions should use to call this
198 16 bit function, this points to the section containing the stub. */
199 asection *fn_stub;
200
201 /* Whether we need the fn_stub; this is set if this symbol appears
202 in any relocs other than a 16 bit call. */
b34976b6 203 bfd_boolean need_fn_stub;
b49e97c9
TS
204
205 /* If there is a stub that 16 bit functions should use to call this
206 32 bit function, this points to the section containing the stub. */
207 asection *call_stub;
208
209 /* This is like the call_stub field, but it is used if the function
210 being called returns a floating point value. */
211 asection *call_fp_stub;
7c5fcef7
L
212
213 /* Are we forced local? .*/
b34976b6 214 bfd_boolean forced_local;
b49e97c9
TS
215};
216
217/* MIPS ELF linker hash table. */
218
219struct mips_elf_link_hash_table
220{
221 struct elf_link_hash_table root;
222#if 0
223 /* We no longer use this. */
224 /* String section indices for the dynamic section symbols. */
225 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
226#endif
227 /* The number of .rtproc entries. */
228 bfd_size_type procedure_count;
229 /* The size of the .compact_rel section (if SGI_COMPAT). */
230 bfd_size_type compact_rel_size;
231 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
8dc1a139 232 entry is set to the address of __rld_obj_head as in IRIX5. */
b34976b6 233 bfd_boolean use_rld_obj_head;
b49e97c9
TS
234 /* This is the value of the __rld_map or __rld_obj_head symbol. */
235 bfd_vma rld_value;
236 /* This is set if we see any mips16 stub sections. */
b34976b6 237 bfd_boolean mips16_stubs_seen;
b49e97c9
TS
238};
239
240/* Structure used to pass information to mips_elf_output_extsym. */
241
242struct extsym_info
243{
9e4aeb93
RS
244 bfd *abfd;
245 struct bfd_link_info *info;
b49e97c9
TS
246 struct ecoff_debug_info *debug;
247 const struct ecoff_debug_swap *swap;
b34976b6 248 bfd_boolean failed;
b49e97c9
TS
249};
250
8dc1a139 251/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
252
253static const char * const mips_elf_dynsym_rtproc_names[] =
254{
255 "_procedure_table",
256 "_procedure_string_table",
257 "_procedure_table_size",
258 NULL
259};
260
261/* These structures are used to generate the .compact_rel section on
8dc1a139 262 IRIX5. */
b49e97c9
TS
263
264typedef struct
265{
266 unsigned long id1; /* Always one? */
267 unsigned long num; /* Number of compact relocation entries. */
268 unsigned long id2; /* Always two? */
269 unsigned long offset; /* The file offset of the first relocation. */
270 unsigned long reserved0; /* Zero? */
271 unsigned long reserved1; /* Zero? */
272} Elf32_compact_rel;
273
274typedef struct
275{
276 bfd_byte id1[4];
277 bfd_byte num[4];
278 bfd_byte id2[4];
279 bfd_byte offset[4];
280 bfd_byte reserved0[4];
281 bfd_byte reserved1[4];
282} Elf32_External_compact_rel;
283
284typedef struct
285{
286 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
287 unsigned int rtype : 4; /* Relocation types. See below. */
288 unsigned int dist2to : 8;
289 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
290 unsigned long konst; /* KONST field. See below. */
291 unsigned long vaddr; /* VADDR to be relocated. */
292} Elf32_crinfo;
293
294typedef struct
295{
296 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
297 unsigned int rtype : 4; /* Relocation types. See below. */
298 unsigned int dist2to : 8;
299 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
300 unsigned long konst; /* KONST field. See below. */
301} Elf32_crinfo2;
302
303typedef struct
304{
305 bfd_byte info[4];
306 bfd_byte konst[4];
307 bfd_byte vaddr[4];
308} Elf32_External_crinfo;
309
310typedef struct
311{
312 bfd_byte info[4];
313 bfd_byte konst[4];
314} Elf32_External_crinfo2;
315
316/* These are the constants used to swap the bitfields in a crinfo. */
317
318#define CRINFO_CTYPE (0x1)
319#define CRINFO_CTYPE_SH (31)
320#define CRINFO_RTYPE (0xf)
321#define CRINFO_RTYPE_SH (27)
322#define CRINFO_DIST2TO (0xff)
323#define CRINFO_DIST2TO_SH (19)
324#define CRINFO_RELVADDR (0x7ffff)
325#define CRINFO_RELVADDR_SH (0)
326
327/* A compact relocation info has long (3 words) or short (2 words)
328 formats. A short format doesn't have VADDR field and relvaddr
329 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
330#define CRF_MIPS_LONG 1
331#define CRF_MIPS_SHORT 0
332
333/* There are 4 types of compact relocation at least. The value KONST
334 has different meaning for each type:
335
336 (type) (konst)
337 CT_MIPS_REL32 Address in data
338 CT_MIPS_WORD Address in word (XXX)
339 CT_MIPS_GPHI_LO GP - vaddr
340 CT_MIPS_JMPAD Address to jump
341 */
342
343#define CRT_MIPS_REL32 0xa
344#define CRT_MIPS_WORD 0xb
345#define CRT_MIPS_GPHI_LO 0xc
346#define CRT_MIPS_JMPAD 0xd
347
348#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
349#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
350#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
351#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
352\f
353/* The structure of the runtime procedure descriptor created by the
354 loader for use by the static exception system. */
355
356typedef struct runtime_pdr {
ae9a127f
NC
357 bfd_vma adr; /* Memory address of start of procedure. */
358 long regmask; /* Save register mask. */
359 long regoffset; /* Save register offset. */
360 long fregmask; /* Save floating point register mask. */
361 long fregoffset; /* Save floating point register offset. */
362 long frameoffset; /* Frame size. */
363 short framereg; /* Frame pointer register. */
364 short pcreg; /* Offset or reg of return pc. */
365 long irpss; /* Index into the runtime string table. */
b49e97c9 366 long reserved;
ae9a127f 367 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
368} RPDR, *pRPDR;
369#define cbRPDR sizeof (RPDR)
370#define rpdNil ((pRPDR) 0)
371\f
372static struct bfd_hash_entry *mips_elf_link_hash_newfunc
9719ad41 373 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
b49e97c9 374static void ecoff_swap_rpdr_out
9719ad41 375 (bfd *, const RPDR *, struct rpdr_ext *);
b34976b6 376static bfd_boolean mips_elf_create_procedure_table
9719ad41
RS
377 (void *, bfd *, struct bfd_link_info *, asection *,
378 struct ecoff_debug_info *);
b34976b6 379static bfd_boolean mips_elf_check_mips16_stubs
9719ad41 380 (struct mips_elf_link_hash_entry *, void *);
b49e97c9 381static void bfd_mips_elf32_swap_gptab_in
9719ad41 382 (bfd *, const Elf32_External_gptab *, Elf32_gptab *);
b49e97c9 383static void bfd_mips_elf32_swap_gptab_out
9719ad41 384 (bfd *, const Elf32_gptab *, Elf32_External_gptab *);
b49e97c9 385static void bfd_elf32_swap_compact_rel_out
9719ad41 386 (bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *);
b49e97c9 387static void bfd_elf32_swap_crinfo_out
9719ad41 388 (bfd *, const Elf32_crinfo *, Elf32_External_crinfo *);
b49e97c9 389static int sort_dynamic_relocs
9719ad41 390 (const void *, const void *);
f4416af6 391static int sort_dynamic_relocs_64
9719ad41 392 (const void *, const void *);
b34976b6 393static bfd_boolean mips_elf_output_extsym
9719ad41
RS
394 (struct mips_elf_link_hash_entry *, void *);
395static int gptab_compare
396 (const void *, const void *);
397static asection *mips_elf_rel_dyn_section
398 (bfd *, bfd_boolean);
399static asection *mips_elf_got_section
400 (bfd *, bfd_boolean);
b49e97c9 401static struct mips_got_info *mips_elf_got_info
9719ad41 402 (bfd *, asection **);
b49e97c9 403static bfd_vma mips_elf_local_got_index
9719ad41 404 (bfd *, bfd *, struct bfd_link_info *, bfd_vma);
b49e97c9 405static bfd_vma mips_elf_global_got_index
9719ad41 406 (bfd *, bfd *, struct elf_link_hash_entry *);
b49e97c9 407static bfd_vma mips_elf_got_page
9719ad41 408 (bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *);
b49e97c9 409static bfd_vma mips_elf_got16_entry
9719ad41 410 (bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_boolean);
b49e97c9 411static bfd_vma mips_elf_got_offset_from_index
9719ad41 412 (bfd *, bfd *, bfd *, bfd_vma);
b15e6682 413static struct mips_got_entry *mips_elf_create_local_got_entry
9719ad41 414 (bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma);
b34976b6 415static bfd_boolean mips_elf_sort_hash_table
9719ad41 416 (struct bfd_link_info *, unsigned long);
b34976b6 417static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 418 (struct mips_elf_link_hash_entry *, void *);
f4416af6 419static bfd_boolean mips_elf_record_local_got_symbol
9719ad41 420 (bfd *, long, bfd_vma, struct mips_got_info *);
b34976b6 421static bfd_boolean mips_elf_record_global_got_symbol
9719ad41
RS
422 (struct elf_link_hash_entry *, bfd *, struct bfd_link_info *,
423 struct mips_got_info *);
b49e97c9 424static const Elf_Internal_Rela *mips_elf_next_relocation
9719ad41 425 (bfd *, unsigned int, const Elf_Internal_Rela *, const Elf_Internal_Rela *);
b34976b6 426static bfd_boolean mips_elf_local_relocation_p
9719ad41
RS
427 (bfd *, const Elf_Internal_Rela *, asection **, bfd_boolean);
428static bfd_boolean mips_elf_overflow_p
429 (bfd_vma, int);
430static bfd_vma mips_elf_high
431 (bfd_vma);
432static bfd_vma mips_elf_higher
433 (bfd_vma);
434static bfd_vma mips_elf_highest
435 (bfd_vma);
b34976b6 436static bfd_boolean mips_elf_create_compact_rel_section
9719ad41 437 (bfd *, struct bfd_link_info *);
b34976b6 438static bfd_boolean mips_elf_create_got_section
9719ad41 439 (bfd *, struct bfd_link_info *, bfd_boolean);
b49e97c9 440static bfd_reloc_status_type mips_elf_calculate_relocation
9719ad41
RS
441 (bfd *, bfd *, asection *, struct bfd_link_info *,
442 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
443 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
444 bfd_boolean *, bfd_boolean);
b49e97c9 445static bfd_vma mips_elf_obtain_contents
9719ad41 446 (reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *);
b34976b6 447static bfd_boolean mips_elf_perform_relocation
9719ad41
RS
448 (struct bfd_link_info *, reloc_howto_type *, const Elf_Internal_Rela *,
449 bfd_vma, bfd *, asection *, bfd_byte *, bfd_boolean);
b34976b6 450static bfd_boolean mips_elf_stub_section_p
9719ad41 451 (bfd *, asection *);
b49e97c9 452static void mips_elf_allocate_dynamic_relocations
9719ad41 453 (bfd *, unsigned int);
b34976b6 454static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
455 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
456 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
457 bfd_vma *, asection *);
458static void mips_set_isa_flags
459 (bfd *);
460static INLINE char *elf_mips_abi_name
461 (bfd *);
b49e97c9 462static void mips_elf_irix6_finish_dynamic_symbol
9719ad41
RS
463 (bfd *, const char *, Elf_Internal_Sym *);
464static bfd_boolean mips_mach_extends_p
465 (unsigned long, unsigned long);
466static bfd_boolean mips_32bit_flags_p
467 (flagword);
468static INLINE hashval_t mips_elf_hash_bfd_vma
469 (bfd_vma);
470static hashval_t mips_elf_got_entry_hash
471 (const void *);
472static int mips_elf_got_entry_eq
473 (const void *, const void *);
b49e97c9 474
f4416af6 475static bfd_boolean mips_elf_multi_got
9719ad41
RS
476 (bfd *, struct bfd_link_info *, struct mips_got_info *,
477 asection *, bfd_size_type);
478static hashval_t mips_elf_multi_got_entry_hash
479 (const void *);
480static int mips_elf_multi_got_entry_eq
481 (const void *, const void *);
482static hashval_t mips_elf_bfd2got_entry_hash
483 (const void *);
484static int mips_elf_bfd2got_entry_eq
485 (const void *, const void *);
486static int mips_elf_make_got_per_bfd
487 (void **, void *);
488static int mips_elf_merge_gots
489 (void **, void *);
490static int mips_elf_set_global_got_offset
491 (void **, void *);
492static int mips_elf_set_no_stub
493 (void **, void *);
494static int mips_elf_resolve_final_got_entry
495 (void **, void *);
f4416af6 496static void mips_elf_resolve_final_got_entries
9719ad41 497 (struct mips_got_info *);
f4416af6 498static bfd_vma mips_elf_adjust_gp
9719ad41 499 (bfd *, struct mips_got_info *, bfd *);
f4416af6 500static struct mips_got_info *mips_elf_got_for_ibfd
9719ad41 501 (struct mips_got_info *, bfd *);
f4416af6 502
b49e97c9
TS
503/* This will be used when we sort the dynamic relocation records. */
504static bfd *reldyn_sorting_bfd;
505
506/* Nonzero if ABFD is using the N32 ABI. */
0b25d3e6 507
b49e97c9
TS
508#define ABI_N32_P(abfd) \
509 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
510
4a14403c 511/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 512#define ABI_64_P(abfd) \
141ff970 513 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 514
4a14403c
TS
515/* Nonzero if ABFD is using NewABI conventions. */
516#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
517
518/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
519#define IRIX_COMPAT(abfd) \
520 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
521
b49e97c9
TS
522/* Whether we are trying to be compatible with IRIX at all. */
523#define SGI_COMPAT(abfd) \
524 (IRIX_COMPAT (abfd) != ict_none)
525
526/* The name of the options section. */
527#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 528 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9
TS
529
530/* The name of the stub section. */
ca07892d 531#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
532
533/* The size of an external REL relocation. */
534#define MIPS_ELF_REL_SIZE(abfd) \
535 (get_elf_backend_data (abfd)->s->sizeof_rel)
536
537/* The size of an external dynamic table entry. */
538#define MIPS_ELF_DYN_SIZE(abfd) \
539 (get_elf_backend_data (abfd)->s->sizeof_dyn)
540
541/* The size of a GOT entry. */
542#define MIPS_ELF_GOT_SIZE(abfd) \
543 (get_elf_backend_data (abfd)->s->arch_size / 8)
544
545/* The size of a symbol-table entry. */
546#define MIPS_ELF_SYM_SIZE(abfd) \
547 (get_elf_backend_data (abfd)->s->sizeof_sym)
548
549/* The default alignment for sections, as a power of two. */
550#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 551 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
552
553/* Get word-sized data. */
554#define MIPS_ELF_GET_WORD(abfd, ptr) \
555 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
556
557/* Put out word-sized data. */
558#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
559 (ABI_64_P (abfd) \
560 ? bfd_put_64 (abfd, val, ptr) \
561 : bfd_put_32 (abfd, val, ptr))
562
563/* Add a dynamic symbol table-entry. */
9719ad41 564#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 565 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
566
567#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
568 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
569
4ffba85c
AO
570/* Determine whether the internal relocation of index REL_IDX is REL
571 (zero) or RELA (non-zero). The assumption is that, if there are
572 two relocation sections for this section, one of them is REL and
573 the other is RELA. If the index of the relocation we're testing is
574 in range for the first relocation section, check that the external
575 relocation size is that for RELA. It is also assumed that, if
576 rel_idx is not in range for the first section, and this first
577 section contains REL relocs, then the relocation is in the second
578 section, that is RELA. */
579#define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
580 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
581 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
582 > (bfd_vma)(rel_idx)) \
583 == (elf_section_data (sec)->rel_hdr.sh_entsize \
584 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
585 : sizeof (Elf32_External_Rela))))
586
b49e97c9
TS
587/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
588 from smaller values. Start with zero, widen, *then* decrement. */
589#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 590#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9
TS
591
592/* The number of local .got entries we reserve. */
593#define MIPS_RESERVED_GOTNO (2)
594
f4416af6
AO
595/* The offset of $gp from the beginning of the .got section. */
596#define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)
597
598/* The maximum size of the GOT for it to be addressable using 16-bit
599 offsets from $gp. */
600#define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)
601
6a691779 602/* Instructions which appear in a stub. */
b49e97c9 603#define STUB_LW(abfd) \
f4416af6
AO
604 ((ABI_64_P (abfd) \
605 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
606 : 0x8f998010)) /* lw t9,0x8010(gp) */
b49e97c9 607#define STUB_MOVE(abfd) \
6a691779
TS
608 ((ABI_64_P (abfd) \
609 ? 0x03e0782d /* daddu t7,ra */ \
610 : 0x03e07821)) /* addu t7,ra */
611#define STUB_JALR 0x0320f809 /* jalr t9,ra */
b49e97c9 612#define STUB_LI16(abfd) \
6a691779
TS
613 ((ABI_64_P (abfd) \
614 ? 0x64180000 /* daddiu t8,zero,0 */ \
615 : 0x24180000)) /* addiu t8,zero,0 */
b49e97c9
TS
616#define MIPS_FUNCTION_STUB_SIZE (16)
617
618/* The name of the dynamic interpreter. This is put in the .interp
619 section. */
620
621#define ELF_DYNAMIC_INTERPRETER(abfd) \
622 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
623 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
624 : "/usr/lib/libc.so.1")
625
626#ifdef BFD64
ee6423ed
AO
627#define MNAME(bfd,pre,pos) \
628 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
629#define ELF_R_SYM(bfd, i) \
630 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
631#define ELF_R_TYPE(bfd, i) \
632 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
633#define ELF_R_INFO(bfd, s, t) \
634 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
635#else
ee6423ed 636#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
637#define ELF_R_SYM(bfd, i) \
638 (ELF32_R_SYM (i))
639#define ELF_R_TYPE(bfd, i) \
640 (ELF32_R_TYPE (i))
641#define ELF_R_INFO(bfd, s, t) \
642 (ELF32_R_INFO (s, t))
643#endif
644\f
645 /* The mips16 compiler uses a couple of special sections to handle
646 floating point arguments.
647
648 Section names that look like .mips16.fn.FNNAME contain stubs that
649 copy floating point arguments from the fp regs to the gp regs and
650 then jump to FNNAME. If any 32 bit function calls FNNAME, the
651 call should be redirected to the stub instead. If no 32 bit
652 function calls FNNAME, the stub should be discarded. We need to
653 consider any reference to the function, not just a call, because
654 if the address of the function is taken we will need the stub,
655 since the address might be passed to a 32 bit function.
656
657 Section names that look like .mips16.call.FNNAME contain stubs
658 that copy floating point arguments from the gp regs to the fp
659 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
660 then any 16 bit function that calls FNNAME should be redirected
661 to the stub instead. If FNNAME is not a 32 bit function, the
662 stub should be discarded.
663
664 .mips16.call.fp.FNNAME sections are similar, but contain stubs
665 which call FNNAME and then copy the return value from the fp regs
666 to the gp regs. These stubs store the return value in $18 while
667 calling FNNAME; any function which might call one of these stubs
668 must arrange to save $18 around the call. (This case is not
669 needed for 32 bit functions that call 16 bit functions, because
670 16 bit functions always return floating point values in both
671 $f0/$f1 and $2/$3.)
672
673 Note that in all cases FNNAME might be defined statically.
674 Therefore, FNNAME is not used literally. Instead, the relocation
675 information will indicate which symbol the section is for.
676
677 We record any stubs that we find in the symbol table. */
678
679#define FN_STUB ".mips16.fn."
680#define CALL_STUB ".mips16.call."
681#define CALL_FP_STUB ".mips16.call.fp."
682\f
683/* Look up an entry in a MIPS ELF linker hash table. */
684
685#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
686 ((struct mips_elf_link_hash_entry *) \
687 elf_link_hash_lookup (&(table)->root, (string), (create), \
688 (copy), (follow)))
689
690/* Traverse a MIPS ELF linker hash table. */
691
692#define mips_elf_link_hash_traverse(table, func, info) \
693 (elf_link_hash_traverse \
694 (&(table)->root, \
9719ad41 695 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
696 (info)))
697
698/* Get the MIPS ELF linker hash table from a link_info structure. */
699
700#define mips_elf_hash_table(p) \
701 ((struct mips_elf_link_hash_table *) ((p)->hash))
702
703/* Create an entry in a MIPS ELF linker hash table. */
704
705static struct bfd_hash_entry *
9719ad41
RS
706mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
707 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
708{
709 struct mips_elf_link_hash_entry *ret =
710 (struct mips_elf_link_hash_entry *) entry;
711
712 /* Allocate the structure if it has not already been allocated by a
713 subclass. */
9719ad41
RS
714 if (ret == NULL)
715 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
716 if (ret == NULL)
b49e97c9
TS
717 return (struct bfd_hash_entry *) ret;
718
719 /* Call the allocation method of the superclass. */
720 ret = ((struct mips_elf_link_hash_entry *)
721 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
722 table, string));
9719ad41 723 if (ret != NULL)
b49e97c9
TS
724 {
725 /* Set local fields. */
726 memset (&ret->esym, 0, sizeof (EXTR));
727 /* We use -2 as a marker to indicate that the information has
728 not been set. -1 means there is no associated ifd. */
729 ret->esym.ifd = -2;
730 ret->possibly_dynamic_relocs = 0;
b34976b6 731 ret->readonly_reloc = FALSE;
b34976b6 732 ret->no_fn_stub = FALSE;
b49e97c9 733 ret->fn_stub = NULL;
b34976b6 734 ret->need_fn_stub = FALSE;
b49e97c9
TS
735 ret->call_stub = NULL;
736 ret->call_fp_stub = NULL;
b34976b6 737 ret->forced_local = FALSE;
b49e97c9
TS
738 }
739
740 return (struct bfd_hash_entry *) ret;
741}
f0abc2a1
AM
742
743bfd_boolean
9719ad41 744_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1
AM
745{
746 struct _mips_elf_section_data *sdata;
747 bfd_size_type amt = sizeof (*sdata);
748
9719ad41 749 sdata = bfd_zalloc (abfd, amt);
f0abc2a1
AM
750 if (sdata == NULL)
751 return FALSE;
9719ad41 752 sec->used_by_bfd = sdata;
f0abc2a1
AM
753
754 return _bfd_elf_new_section_hook (abfd, sec);
755}
b49e97c9
TS
756\f
757/* Read ECOFF debugging information from a .mdebug section into a
758 ecoff_debug_info structure. */
759
b34976b6 760bfd_boolean
9719ad41
RS
761_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
762 struct ecoff_debug_info *debug)
b49e97c9
TS
763{
764 HDRR *symhdr;
765 const struct ecoff_debug_swap *swap;
9719ad41 766 char *ext_hdr;
b49e97c9
TS
767
768 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
769 memset (debug, 0, sizeof (*debug));
770
9719ad41 771 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
772 if (ext_hdr == NULL && swap->external_hdr_size != 0)
773 goto error_return;
774
9719ad41 775 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 776 swap->external_hdr_size))
b49e97c9
TS
777 goto error_return;
778
779 symhdr = &debug->symbolic_header;
780 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
781
782 /* The symbolic header contains absolute file offsets and sizes to
783 read. */
784#define READ(ptr, offset, count, size, type) \
785 if (symhdr->count == 0) \
786 debug->ptr = NULL; \
787 else \
788 { \
789 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 790 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
791 if (debug->ptr == NULL) \
792 goto error_return; \
9719ad41 793 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
794 || bfd_bread (debug->ptr, amt, abfd) != amt) \
795 goto error_return; \
796 }
797
798 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
799 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
800 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
801 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
802 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
803 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
804 union aux_ext *);
805 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
806 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
807 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
808 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
809 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
810#undef READ
811
812 debug->fdr = NULL;
b49e97c9 813
b34976b6 814 return TRUE;
b49e97c9
TS
815
816 error_return:
817 if (ext_hdr != NULL)
818 free (ext_hdr);
819 if (debug->line != NULL)
820 free (debug->line);
821 if (debug->external_dnr != NULL)
822 free (debug->external_dnr);
823 if (debug->external_pdr != NULL)
824 free (debug->external_pdr);
825 if (debug->external_sym != NULL)
826 free (debug->external_sym);
827 if (debug->external_opt != NULL)
828 free (debug->external_opt);
829 if (debug->external_aux != NULL)
830 free (debug->external_aux);
831 if (debug->ss != NULL)
832 free (debug->ss);
833 if (debug->ssext != NULL)
834 free (debug->ssext);
835 if (debug->external_fdr != NULL)
836 free (debug->external_fdr);
837 if (debug->external_rfd != NULL)
838 free (debug->external_rfd);
839 if (debug->external_ext != NULL)
840 free (debug->external_ext);
b34976b6 841 return FALSE;
b49e97c9
TS
842}
843\f
844/* Swap RPDR (runtime procedure table entry) for output. */
845
846static void
9719ad41 847ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
848{
849 H_PUT_S32 (abfd, in->adr, ex->p_adr);
850 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
851 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
852 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
853 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
854 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
855
856 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
857 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
858
859 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
860#if 0 /* FIXME */
861 H_PUT_S32 (abfd, in->exception_info, ex->p_exception_info);
862#endif
863}
864
865/* Create a runtime procedure table from the .mdebug section. */
866
b34976b6 867static bfd_boolean
9719ad41
RS
868mips_elf_create_procedure_table (void *handle, bfd *abfd,
869 struct bfd_link_info *info, asection *s,
870 struct ecoff_debug_info *debug)
b49e97c9
TS
871{
872 const struct ecoff_debug_swap *swap;
873 HDRR *hdr = &debug->symbolic_header;
874 RPDR *rpdr, *rp;
875 struct rpdr_ext *erp;
9719ad41 876 void *rtproc;
b49e97c9
TS
877 struct pdr_ext *epdr;
878 struct sym_ext *esym;
879 char *ss, **sv;
880 char *str;
881 bfd_size_type size;
882 bfd_size_type count;
883 unsigned long sindex;
884 unsigned long i;
885 PDR pdr;
886 SYMR sym;
887 const char *no_name_func = _("static procedure (no name)");
888
889 epdr = NULL;
890 rpdr = NULL;
891 esym = NULL;
892 ss = NULL;
893 sv = NULL;
894
895 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
896
897 sindex = strlen (no_name_func) + 1;
898 count = hdr->ipdMax;
899 if (count > 0)
900 {
901 size = swap->external_pdr_size;
902
9719ad41 903 epdr = bfd_malloc (size * count);
b49e97c9
TS
904 if (epdr == NULL)
905 goto error_return;
906
9719ad41 907 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
908 goto error_return;
909
910 size = sizeof (RPDR);
9719ad41 911 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
912 if (rpdr == NULL)
913 goto error_return;
914
915 size = sizeof (char *);
9719ad41 916 sv = bfd_malloc (size * count);
b49e97c9
TS
917 if (sv == NULL)
918 goto error_return;
919
920 count = hdr->isymMax;
921 size = swap->external_sym_size;
9719ad41 922 esym = bfd_malloc (size * count);
b49e97c9
TS
923 if (esym == NULL)
924 goto error_return;
925
9719ad41 926 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
927 goto error_return;
928
929 count = hdr->issMax;
9719ad41 930 ss = bfd_malloc (count);
b49e97c9
TS
931 if (ss == NULL)
932 goto error_return;
9719ad41 933 if (! _bfd_ecoff_get_accumulated_ss (handle, ss))
b49e97c9
TS
934 goto error_return;
935
936 count = hdr->ipdMax;
937 for (i = 0; i < (unsigned long) count; i++, rp++)
938 {
9719ad41
RS
939 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
940 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
941 rp->adr = sym.value;
942 rp->regmask = pdr.regmask;
943 rp->regoffset = pdr.regoffset;
944 rp->fregmask = pdr.fregmask;
945 rp->fregoffset = pdr.fregoffset;
946 rp->frameoffset = pdr.frameoffset;
947 rp->framereg = pdr.framereg;
948 rp->pcreg = pdr.pcreg;
949 rp->irpss = sindex;
950 sv[i] = ss + sym.iss;
951 sindex += strlen (sv[i]) + 1;
952 }
953 }
954
955 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
956 size = BFD_ALIGN (size, 16);
9719ad41 957 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
958 if (rtproc == NULL)
959 {
960 mips_elf_hash_table (info)->procedure_count = 0;
961 goto error_return;
962 }
963
964 mips_elf_hash_table (info)->procedure_count = count + 2;
965
9719ad41 966 erp = rtproc;
b49e97c9
TS
967 memset (erp, 0, sizeof (struct rpdr_ext));
968 erp++;
969 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
970 strcpy (str, no_name_func);
971 str += strlen (no_name_func) + 1;
972 for (i = 0; i < count; i++)
973 {
974 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
975 strcpy (str, sv[i]);
976 str += strlen (sv[i]) + 1;
977 }
978 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
979
980 /* Set the size and contents of .rtproc section. */
eea6121a 981 s->size = size;
9719ad41 982 s->contents = rtproc;
b49e97c9
TS
983
984 /* Skip this section later on (I don't think this currently
985 matters, but someday it might). */
9719ad41 986 s->link_order_head = NULL;
b49e97c9
TS
987
988 if (epdr != NULL)
989 free (epdr);
990 if (rpdr != NULL)
991 free (rpdr);
992 if (esym != NULL)
993 free (esym);
994 if (ss != NULL)
995 free (ss);
996 if (sv != NULL)
997 free (sv);
998
b34976b6 999 return TRUE;
b49e97c9
TS
1000
1001 error_return:
1002 if (epdr != NULL)
1003 free (epdr);
1004 if (rpdr != NULL)
1005 free (rpdr);
1006 if (esym != NULL)
1007 free (esym);
1008 if (ss != NULL)
1009 free (ss);
1010 if (sv != NULL)
1011 free (sv);
b34976b6 1012 return FALSE;
b49e97c9
TS
1013}
1014
1015/* Check the mips16 stubs for a particular symbol, and see if we can
1016 discard them. */
1017
b34976b6 1018static bfd_boolean
9719ad41
RS
1019mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1020 void *data ATTRIBUTE_UNUSED)
b49e97c9
TS
1021{
1022 if (h->root.root.type == bfd_link_hash_warning)
1023 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1024
1025 if (h->fn_stub != NULL
1026 && ! h->need_fn_stub)
1027 {
1028 /* We don't need the fn_stub; the only references to this symbol
1029 are 16 bit calls. Clobber the size to 0 to prevent it from
1030 being included in the link. */
eea6121a 1031 h->fn_stub->size = 0;
b49e97c9
TS
1032 h->fn_stub->flags &= ~SEC_RELOC;
1033 h->fn_stub->reloc_count = 0;
1034 h->fn_stub->flags |= SEC_EXCLUDE;
1035 }
1036
1037 if (h->call_stub != NULL
1038 && h->root.other == STO_MIPS16)
1039 {
1040 /* We don't need the call_stub; this is a 16 bit function, so
1041 calls from other 16 bit functions are OK. Clobber the size
1042 to 0 to prevent it from being included in the link. */
eea6121a 1043 h->call_stub->size = 0;
b49e97c9
TS
1044 h->call_stub->flags &= ~SEC_RELOC;
1045 h->call_stub->reloc_count = 0;
1046 h->call_stub->flags |= SEC_EXCLUDE;
1047 }
1048
1049 if (h->call_fp_stub != NULL
1050 && h->root.other == STO_MIPS16)
1051 {
1052 /* We don't need the call_stub; this is a 16 bit function, so
1053 calls from other 16 bit functions are OK. Clobber the size
1054 to 0 to prevent it from being included in the link. */
eea6121a 1055 h->call_fp_stub->size = 0;
b49e97c9
TS
1056 h->call_fp_stub->flags &= ~SEC_RELOC;
1057 h->call_fp_stub->reloc_count = 0;
1058 h->call_fp_stub->flags |= SEC_EXCLUDE;
1059 }
1060
b34976b6 1061 return TRUE;
b49e97c9
TS
1062}
1063\f
1064bfd_reloc_status_type
9719ad41
RS
1065_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1066 arelent *reloc_entry, asection *input_section,
1067 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
1068{
1069 bfd_vma relocation;
a7ebbfdf 1070 bfd_signed_vma val;
30ac9238 1071 bfd_reloc_status_type status;
b49e97c9
TS
1072
1073 if (bfd_is_com_section (symbol->section))
1074 relocation = 0;
1075 else
1076 relocation = symbol->value;
1077
1078 relocation += symbol->section->output_section->vma;
1079 relocation += symbol->section->output_offset;
1080
07515404 1081 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
1082 return bfd_reloc_outofrange;
1083
b49e97c9 1084 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
1085 val = reloc_entry->addend;
1086
30ac9238 1087 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 1088
b49e97c9 1089 /* Adjust val for the final section location and GP value. If we
1049f94e 1090 are producing relocatable output, we don't want to do this for
b49e97c9 1091 an external symbol. */
1049f94e 1092 if (! relocatable
b49e97c9
TS
1093 || (symbol->flags & BSF_SECTION_SYM) != 0)
1094 val += relocation - gp;
1095
a7ebbfdf
TS
1096 if (reloc_entry->howto->partial_inplace)
1097 {
30ac9238
RS
1098 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1099 (bfd_byte *) data
1100 + reloc_entry->address);
1101 if (status != bfd_reloc_ok)
1102 return status;
a7ebbfdf
TS
1103 }
1104 else
1105 reloc_entry->addend = val;
b49e97c9 1106
1049f94e 1107 if (relocatable)
b49e97c9 1108 reloc_entry->address += input_section->output_offset;
30ac9238
RS
1109
1110 return bfd_reloc_ok;
1111}
1112
1113/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1114 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1115 that contains the relocation field and DATA points to the start of
1116 INPUT_SECTION. */
1117
1118struct mips_hi16
1119{
1120 struct mips_hi16 *next;
1121 bfd_byte *data;
1122 asection *input_section;
1123 arelent rel;
1124};
1125
1126/* FIXME: This should not be a static variable. */
1127
1128static struct mips_hi16 *mips_hi16_list;
1129
1130/* A howto special_function for REL *HI16 relocations. We can only
1131 calculate the correct value once we've seen the partnering
1132 *LO16 relocation, so just save the information for later.
1133
1134 The ABI requires that the *LO16 immediately follow the *HI16.
1135 However, as a GNU extension, we permit an arbitrary number of
1136 *HI16s to be associated with a single *LO16. This significantly
1137 simplies the relocation handling in gcc. */
1138
1139bfd_reloc_status_type
1140_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1141 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1142 asection *input_section, bfd *output_bfd,
1143 char **error_message ATTRIBUTE_UNUSED)
1144{
1145 struct mips_hi16 *n;
1146
07515404 1147 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1148 return bfd_reloc_outofrange;
1149
1150 n = bfd_malloc (sizeof *n);
1151 if (n == NULL)
1152 return bfd_reloc_outofrange;
1153
1154 n->next = mips_hi16_list;
1155 n->data = data;
1156 n->input_section = input_section;
1157 n->rel = *reloc_entry;
1158 mips_hi16_list = n;
1159
1160 if (output_bfd != NULL)
1161 reloc_entry->address += input_section->output_offset;
1162
1163 return bfd_reloc_ok;
1164}
1165
1166/* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1167 like any other 16-bit relocation when applied to global symbols, but is
1168 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1169
1170bfd_reloc_status_type
1171_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1172 void *data, asection *input_section,
1173 bfd *output_bfd, char **error_message)
1174{
1175 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1176 || bfd_is_und_section (bfd_get_section (symbol))
1177 || bfd_is_com_section (bfd_get_section (symbol)))
1178 /* The relocation is against a global symbol. */
1179 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1180 input_section, output_bfd,
1181 error_message);
1182
1183 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1184 input_section, output_bfd, error_message);
1185}
1186
1187/* A howto special_function for REL *LO16 relocations. The *LO16 itself
1188 is a straightforward 16 bit inplace relocation, but we must deal with
1189 any partnering high-part relocations as well. */
1190
1191bfd_reloc_status_type
1192_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1193 void *data, asection *input_section,
1194 bfd *output_bfd, char **error_message)
1195{
1196 bfd_vma vallo;
1197
07515404 1198 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1199 return bfd_reloc_outofrange;
1200
1201 vallo = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1202 while (mips_hi16_list != NULL)
1203 {
1204 bfd_reloc_status_type ret;
1205 struct mips_hi16 *hi;
1206
1207 hi = mips_hi16_list;
1208
1209 /* R_MIPS_GOT16 relocations are something of a special case. We
1210 want to install the addend in the same way as for a R_MIPS_HI16
1211 relocation (with a rightshift of 16). However, since GOT16
1212 relocations can also be used with global symbols, their howto
1213 has a rightshift of 0. */
1214 if (hi->rel.howto->type == R_MIPS_GOT16)
1215 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1216
1217 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1218 carry or borrow will induce a change of +1 or -1 in the high part. */
1219 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1220
30ac9238
RS
1221 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1222 hi->input_section, output_bfd,
1223 error_message);
1224 if (ret != bfd_reloc_ok)
1225 return ret;
1226
1227 mips_hi16_list = hi->next;
1228 free (hi);
1229 }
1230
1231 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1232 input_section, output_bfd,
1233 error_message);
1234}
1235
1236/* A generic howto special_function. This calculates and installs the
1237 relocation itself, thus avoiding the oft-discussed problems in
1238 bfd_perform_relocation and bfd_install_relocation. */
1239
1240bfd_reloc_status_type
1241_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1242 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1243 asection *input_section, bfd *output_bfd,
1244 char **error_message ATTRIBUTE_UNUSED)
1245{
1246 bfd_signed_vma val;
1247 bfd_reloc_status_type status;
1248 bfd_boolean relocatable;
1249
1250 relocatable = (output_bfd != NULL);
1251
07515404 1252 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1253 return bfd_reloc_outofrange;
1254
1255 /* Build up the field adjustment in VAL. */
1256 val = 0;
1257 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1258 {
1259 /* Either we're calculating the final field value or we have a
1260 relocation against a section symbol. Add in the section's
1261 offset or address. */
1262 val += symbol->section->output_section->vma;
1263 val += symbol->section->output_offset;
1264 }
1265
1266 if (!relocatable)
1267 {
1268 /* We're calculating the final field value. Add in the symbol's value
1269 and, if pc-relative, subtract the address of the field itself. */
1270 val += symbol->value;
1271 if (reloc_entry->howto->pc_relative)
1272 {
1273 val -= input_section->output_section->vma;
1274 val -= input_section->output_offset;
1275 val -= reloc_entry->address;
1276 }
1277 }
1278
1279 /* VAL is now the final adjustment. If we're keeping this relocation
1280 in the output file, and if the relocation uses a separate addend,
1281 we just need to add VAL to that addend. Otherwise we need to add
1282 VAL to the relocation field itself. */
1283 if (relocatable && !reloc_entry->howto->partial_inplace)
1284 reloc_entry->addend += val;
1285 else
1286 {
1287 /* Add in the separate addend, if any. */
1288 val += reloc_entry->addend;
1289
1290 /* Add VAL to the relocation field. */
1291 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1292 (bfd_byte *) data
1293 + reloc_entry->address);
1294 if (status != bfd_reloc_ok)
1295 return status;
1296 }
1297
1298 if (relocatable)
1299 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
1300
1301 return bfd_reloc_ok;
1302}
1303\f
1304/* Swap an entry in a .gptab section. Note that these routines rely
1305 on the equivalence of the two elements of the union. */
1306
1307static void
9719ad41
RS
1308bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1309 Elf32_gptab *in)
b49e97c9
TS
1310{
1311 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1312 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1313}
1314
1315static void
9719ad41
RS
1316bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1317 Elf32_External_gptab *ex)
b49e97c9
TS
1318{
1319 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1320 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1321}
1322
1323static void
9719ad41
RS
1324bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1325 Elf32_External_compact_rel *ex)
b49e97c9
TS
1326{
1327 H_PUT_32 (abfd, in->id1, ex->id1);
1328 H_PUT_32 (abfd, in->num, ex->num);
1329 H_PUT_32 (abfd, in->id2, ex->id2);
1330 H_PUT_32 (abfd, in->offset, ex->offset);
1331 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1332 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1333}
1334
1335static void
9719ad41
RS
1336bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1337 Elf32_External_crinfo *ex)
b49e97c9
TS
1338{
1339 unsigned long l;
1340
1341 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1342 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1343 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1344 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1345 H_PUT_32 (abfd, l, ex->info);
1346 H_PUT_32 (abfd, in->konst, ex->konst);
1347 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1348}
b49e97c9
TS
1349\f
1350/* A .reginfo section holds a single Elf32_RegInfo structure. These
1351 routines swap this structure in and out. They are used outside of
1352 BFD, so they are globally visible. */
1353
1354void
9719ad41
RS
1355bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1356 Elf32_RegInfo *in)
b49e97c9
TS
1357{
1358 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1359 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1360 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1361 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1362 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1363 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1364}
1365
1366void
9719ad41
RS
1367bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1368 Elf32_External_RegInfo *ex)
b49e97c9
TS
1369{
1370 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1371 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1372 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1373 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1374 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1375 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1376}
1377
1378/* In the 64 bit ABI, the .MIPS.options section holds register
1379 information in an Elf64_Reginfo structure. These routines swap
1380 them in and out. They are globally visible because they are used
1381 outside of BFD. These routines are here so that gas can call them
1382 without worrying about whether the 64 bit ABI has been included. */
1383
1384void
9719ad41
RS
1385bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1386 Elf64_Internal_RegInfo *in)
b49e97c9
TS
1387{
1388 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1389 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1390 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1391 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1392 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1393 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1394 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1395}
1396
1397void
9719ad41
RS
1398bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1399 Elf64_External_RegInfo *ex)
b49e97c9
TS
1400{
1401 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1402 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1403 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1404 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1405 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1406 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1407 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1408}
1409
1410/* Swap in an options header. */
1411
1412void
9719ad41
RS
1413bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1414 Elf_Internal_Options *in)
b49e97c9
TS
1415{
1416 in->kind = H_GET_8 (abfd, ex->kind);
1417 in->size = H_GET_8 (abfd, ex->size);
1418 in->section = H_GET_16 (abfd, ex->section);
1419 in->info = H_GET_32 (abfd, ex->info);
1420}
1421
1422/* Swap out an options header. */
1423
1424void
9719ad41
RS
1425bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1426 Elf_External_Options *ex)
b49e97c9
TS
1427{
1428 H_PUT_8 (abfd, in->kind, ex->kind);
1429 H_PUT_8 (abfd, in->size, ex->size);
1430 H_PUT_16 (abfd, in->section, ex->section);
1431 H_PUT_32 (abfd, in->info, ex->info);
1432}
1433\f
1434/* This function is called via qsort() to sort the dynamic relocation
1435 entries by increasing r_symndx value. */
1436
1437static int
9719ad41 1438sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 1439{
947216bf
AM
1440 Elf_Internal_Rela int_reloc1;
1441 Elf_Internal_Rela int_reloc2;
b49e97c9 1442
947216bf
AM
1443 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1444 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 1445
947216bf 1446 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
b49e97c9
TS
1447}
1448
f4416af6
AO
1449/* Like sort_dynamic_relocs, but used for elf64 relocations. */
1450
1451static int
9719ad41 1452sort_dynamic_relocs_64 (const void *arg1, const void *arg2)
f4416af6
AO
1453{
1454 Elf_Internal_Rela int_reloc1[3];
1455 Elf_Internal_Rela int_reloc2[3];
1456
1457 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1458 (reldyn_sorting_bfd, arg1, int_reloc1);
1459 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1460 (reldyn_sorting_bfd, arg2, int_reloc2);
1461
1462 return (ELF64_R_SYM (int_reloc1[0].r_info)
1463 - ELF64_R_SYM (int_reloc2[0].r_info));
1464}
1465
1466
b49e97c9
TS
1467/* This routine is used to write out ECOFF debugging external symbol
1468 information. It is called via mips_elf_link_hash_traverse. The
1469 ECOFF external symbol information must match the ELF external
1470 symbol information. Unfortunately, at this point we don't know
1471 whether a symbol is required by reloc information, so the two
1472 tables may wind up being different. We must sort out the external
1473 symbol information before we can set the final size of the .mdebug
1474 section, and we must set the size of the .mdebug section before we
1475 can relocate any sections, and we can't know which symbols are
1476 required by relocation until we relocate the sections.
1477 Fortunately, it is relatively unlikely that any symbol will be
1478 stripped but required by a reloc. In particular, it can not happen
1479 when generating a final executable. */
1480
b34976b6 1481static bfd_boolean
9719ad41 1482mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 1483{
9719ad41 1484 struct extsym_info *einfo = data;
b34976b6 1485 bfd_boolean strip;
b49e97c9
TS
1486 asection *sec, *output_section;
1487
1488 if (h->root.root.type == bfd_link_hash_warning)
1489 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1490
1491 if (h->root.indx == -2)
b34976b6 1492 strip = FALSE;
f5385ebf
AM
1493 else if ((h->root.def_dynamic
1494 || h->root.ref_dynamic)
1495 && !h->root.def_regular
1496 && !h->root.ref_regular)
b34976b6 1497 strip = TRUE;
b49e97c9
TS
1498 else if (einfo->info->strip == strip_all
1499 || (einfo->info->strip == strip_some
1500 && bfd_hash_lookup (einfo->info->keep_hash,
1501 h->root.root.root.string,
b34976b6
AM
1502 FALSE, FALSE) == NULL))
1503 strip = TRUE;
b49e97c9 1504 else
b34976b6 1505 strip = FALSE;
b49e97c9
TS
1506
1507 if (strip)
b34976b6 1508 return TRUE;
b49e97c9
TS
1509
1510 if (h->esym.ifd == -2)
1511 {
1512 h->esym.jmptbl = 0;
1513 h->esym.cobol_main = 0;
1514 h->esym.weakext = 0;
1515 h->esym.reserved = 0;
1516 h->esym.ifd = ifdNil;
1517 h->esym.asym.value = 0;
1518 h->esym.asym.st = stGlobal;
1519
1520 if (h->root.root.type == bfd_link_hash_undefined
1521 || h->root.root.type == bfd_link_hash_undefweak)
1522 {
1523 const char *name;
1524
1525 /* Use undefined class. Also, set class and type for some
1526 special symbols. */
1527 name = h->root.root.root.string;
1528 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1529 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1530 {
1531 h->esym.asym.sc = scData;
1532 h->esym.asym.st = stLabel;
1533 h->esym.asym.value = 0;
1534 }
1535 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1536 {
1537 h->esym.asym.sc = scAbs;
1538 h->esym.asym.st = stLabel;
1539 h->esym.asym.value =
1540 mips_elf_hash_table (einfo->info)->procedure_count;
1541 }
4a14403c 1542 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
1543 {
1544 h->esym.asym.sc = scAbs;
1545 h->esym.asym.st = stLabel;
1546 h->esym.asym.value = elf_gp (einfo->abfd);
1547 }
1548 else
1549 h->esym.asym.sc = scUndefined;
1550 }
1551 else if (h->root.root.type != bfd_link_hash_defined
1552 && h->root.root.type != bfd_link_hash_defweak)
1553 h->esym.asym.sc = scAbs;
1554 else
1555 {
1556 const char *name;
1557
1558 sec = h->root.root.u.def.section;
1559 output_section = sec->output_section;
1560
1561 /* When making a shared library and symbol h is the one from
1562 the another shared library, OUTPUT_SECTION may be null. */
1563 if (output_section == NULL)
1564 h->esym.asym.sc = scUndefined;
1565 else
1566 {
1567 name = bfd_section_name (output_section->owner, output_section);
1568
1569 if (strcmp (name, ".text") == 0)
1570 h->esym.asym.sc = scText;
1571 else if (strcmp (name, ".data") == 0)
1572 h->esym.asym.sc = scData;
1573 else if (strcmp (name, ".sdata") == 0)
1574 h->esym.asym.sc = scSData;
1575 else if (strcmp (name, ".rodata") == 0
1576 || strcmp (name, ".rdata") == 0)
1577 h->esym.asym.sc = scRData;
1578 else if (strcmp (name, ".bss") == 0)
1579 h->esym.asym.sc = scBss;
1580 else if (strcmp (name, ".sbss") == 0)
1581 h->esym.asym.sc = scSBss;
1582 else if (strcmp (name, ".init") == 0)
1583 h->esym.asym.sc = scInit;
1584 else if (strcmp (name, ".fini") == 0)
1585 h->esym.asym.sc = scFini;
1586 else
1587 h->esym.asym.sc = scAbs;
1588 }
1589 }
1590
1591 h->esym.asym.reserved = 0;
1592 h->esym.asym.index = indexNil;
1593 }
1594
1595 if (h->root.root.type == bfd_link_hash_common)
1596 h->esym.asym.value = h->root.root.u.c.size;
1597 else if (h->root.root.type == bfd_link_hash_defined
1598 || h->root.root.type == bfd_link_hash_defweak)
1599 {
1600 if (h->esym.asym.sc == scCommon)
1601 h->esym.asym.sc = scBss;
1602 else if (h->esym.asym.sc == scSCommon)
1603 h->esym.asym.sc = scSBss;
1604
1605 sec = h->root.root.u.def.section;
1606 output_section = sec->output_section;
1607 if (output_section != NULL)
1608 h->esym.asym.value = (h->root.root.u.def.value
1609 + sec->output_offset
1610 + output_section->vma);
1611 else
1612 h->esym.asym.value = 0;
1613 }
f5385ebf 1614 else if (h->root.needs_plt)
b49e97c9
TS
1615 {
1616 struct mips_elf_link_hash_entry *hd = h;
b34976b6 1617 bfd_boolean no_fn_stub = h->no_fn_stub;
b49e97c9
TS
1618
1619 while (hd->root.root.type == bfd_link_hash_indirect)
1620 {
1621 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1622 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1623 }
1624
1625 if (!no_fn_stub)
1626 {
1627 /* Set type and value for a symbol with a function stub. */
1628 h->esym.asym.st = stProc;
1629 sec = hd->root.root.u.def.section;
1630 if (sec == NULL)
1631 h->esym.asym.value = 0;
1632 else
1633 {
1634 output_section = sec->output_section;
1635 if (output_section != NULL)
1636 h->esym.asym.value = (hd->root.plt.offset
1637 + sec->output_offset
1638 + output_section->vma);
1639 else
1640 h->esym.asym.value = 0;
1641 }
1642#if 0 /* FIXME? */
1643 h->esym.ifd = 0;
1644#endif
1645 }
1646 }
1647
1648 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1649 h->root.root.root.string,
1650 &h->esym))
1651 {
b34976b6
AM
1652 einfo->failed = TRUE;
1653 return FALSE;
b49e97c9
TS
1654 }
1655
b34976b6 1656 return TRUE;
b49e97c9
TS
1657}
1658
1659/* A comparison routine used to sort .gptab entries. */
1660
1661static int
9719ad41 1662gptab_compare (const void *p1, const void *p2)
b49e97c9 1663{
9719ad41
RS
1664 const Elf32_gptab *a1 = p1;
1665 const Elf32_gptab *a2 = p2;
b49e97c9
TS
1666
1667 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1668}
1669\f
b15e6682 1670/* Functions to manage the got entry hash table. */
f4416af6
AO
1671
1672/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1673 hash number. */
1674
1675static INLINE hashval_t
9719ad41 1676mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
1677{
1678#ifdef BFD64
1679 return addr + (addr >> 32);
1680#else
1681 return addr;
1682#endif
1683}
1684
1685/* got_entries only match if they're identical, except for gotidx, so
1686 use all fields to compute the hash, and compare the appropriate
1687 union members. */
1688
b15e6682 1689static hashval_t
9719ad41 1690mips_elf_got_entry_hash (const void *entry_)
b15e6682
AO
1691{
1692 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1693
38985a1c 1694 return entry->symndx
f4416af6 1695 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
38985a1c
AO
1696 : entry->abfd->id
1697 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1698 : entry->d.h->root.root.root.hash));
b15e6682
AO
1699}
1700
1701static int
9719ad41 1702mips_elf_got_entry_eq (const void *entry1, const void *entry2)
b15e6682
AO
1703{
1704 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1705 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1706
1707 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
f4416af6
AO
1708 && (! e1->abfd ? e1->d.address == e2->d.address
1709 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1710 : e1->d.h == e2->d.h);
1711}
1712
1713/* multi_got_entries are still a match in the case of global objects,
1714 even if the input bfd in which they're referenced differs, so the
1715 hash computation and compare functions are adjusted
1716 accordingly. */
1717
1718static hashval_t
9719ad41 1719mips_elf_multi_got_entry_hash (const void *entry_)
f4416af6
AO
1720{
1721 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1722
1723 return entry->symndx
1724 + (! entry->abfd
1725 ? mips_elf_hash_bfd_vma (entry->d.address)
1726 : entry->symndx >= 0
1727 ? (entry->abfd->id
1728 + mips_elf_hash_bfd_vma (entry->d.addend))
1729 : entry->d.h->root.root.root.hash);
1730}
1731
1732static int
9719ad41 1733mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
1734{
1735 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1736 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1737
1738 return e1->symndx == e2->symndx
1739 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
1740 : e1->abfd == NULL || e2->abfd == NULL
1741 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
1742 : e1->d.h == e2->d.h);
b15e6682
AO
1743}
1744\f
f4416af6
AO
1745/* Returns the dynamic relocation section for DYNOBJ. */
1746
1747static asection *
9719ad41 1748mips_elf_rel_dyn_section (bfd *dynobj, bfd_boolean create_p)
f4416af6
AO
1749{
1750 static const char dname[] = ".rel.dyn";
1751 asection *sreloc;
1752
1753 sreloc = bfd_get_section_by_name (dynobj, dname);
1754 if (sreloc == NULL && create_p)
1755 {
1756 sreloc = bfd_make_section (dynobj, dname);
1757 if (sreloc == NULL
1758 || ! bfd_set_section_flags (dynobj, sreloc,
1759 (SEC_ALLOC
1760 | SEC_LOAD
1761 | SEC_HAS_CONTENTS
1762 | SEC_IN_MEMORY
1763 | SEC_LINKER_CREATED
1764 | SEC_READONLY))
1765 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 1766 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
1767 return NULL;
1768 }
1769 return sreloc;
1770}
1771
b49e97c9
TS
1772/* Returns the GOT section for ABFD. */
1773
1774static asection *
9719ad41 1775mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
b49e97c9 1776{
f4416af6
AO
1777 asection *sgot = bfd_get_section_by_name (abfd, ".got");
1778 if (sgot == NULL
1779 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
1780 return NULL;
1781 return sgot;
b49e97c9
TS
1782}
1783
1784/* Returns the GOT information associated with the link indicated by
1785 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1786 section. */
1787
1788static struct mips_got_info *
9719ad41 1789mips_elf_got_info (bfd *abfd, asection **sgotp)
b49e97c9
TS
1790{
1791 asection *sgot;
1792 struct mips_got_info *g;
1793
f4416af6 1794 sgot = mips_elf_got_section (abfd, TRUE);
b49e97c9 1795 BFD_ASSERT (sgot != NULL);
f0abc2a1
AM
1796 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
1797 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
1798 BFD_ASSERT (g != NULL);
1799
1800 if (sgotp)
f4416af6
AO
1801 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
1802
b49e97c9
TS
1803 return g;
1804}
1805
1806/* Returns the GOT offset at which the indicated address can be found.
1807 If there is not yet a GOT entry for this value, create one. Returns
1808 -1 if no satisfactory GOT offset can be found. */
1809
1810static bfd_vma
9719ad41
RS
1811mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1812 bfd_vma value)
b49e97c9
TS
1813{
1814 asection *sgot;
1815 struct mips_got_info *g;
b15e6682 1816 struct mips_got_entry *entry;
b49e97c9
TS
1817
1818 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1819
f4416af6 1820 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
b15e6682
AO
1821 if (entry)
1822 return entry->gotidx;
1823 else
1824 return MINUS_ONE;
b49e97c9
TS
1825}
1826
1827/* Returns the GOT index for the global symbol indicated by H. */
1828
1829static bfd_vma
9719ad41 1830mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h)
b49e97c9
TS
1831{
1832 bfd_vma index;
1833 asection *sgot;
f4416af6 1834 struct mips_got_info *g, *gg;
d0c7ff07 1835 long global_got_dynindx = 0;
b49e97c9 1836
f4416af6
AO
1837 gg = g = mips_elf_got_info (abfd, &sgot);
1838 if (g->bfd2got && ibfd)
1839 {
1840 struct mips_got_entry e, *p;
143d77c5 1841
f4416af6
AO
1842 BFD_ASSERT (h->dynindx >= 0);
1843
1844 g = mips_elf_got_for_ibfd (g, ibfd);
1845 if (g->next != gg)
1846 {
1847 e.abfd = ibfd;
1848 e.symndx = -1;
1849 e.d.h = (struct mips_elf_link_hash_entry *)h;
1850
9719ad41 1851 p = htab_find (g->got_entries, &e);
f4416af6
AO
1852
1853 BFD_ASSERT (p->gotidx > 0);
1854 return p->gotidx;
1855 }
1856 }
1857
1858 if (gg->global_gotsym != NULL)
1859 global_got_dynindx = gg->global_gotsym->dynindx;
b49e97c9
TS
1860
1861 /* Once we determine the global GOT entry with the lowest dynamic
1862 symbol table index, we must put all dynamic symbols with greater
1863 indices into the GOT. That makes it easy to calculate the GOT
1864 offset. */
d0c7ff07
TS
1865 BFD_ASSERT (h->dynindx >= global_got_dynindx);
1866 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
b49e97c9 1867 * MIPS_ELF_GOT_SIZE (abfd));
eea6121a 1868 BFD_ASSERT (index < sgot->size);
b49e97c9
TS
1869
1870 return index;
1871}
1872
1873/* Find a GOT entry that is within 32KB of the VALUE. These entries
1874 are supposed to be placed at small offsets in the GOT, i.e.,
1875 within 32KB of GP. Return the index into the GOT for this page,
1876 and store the offset from this entry to the desired address in
1877 OFFSETP, if it is non-NULL. */
1878
1879static bfd_vma
9719ad41
RS
1880mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1881 bfd_vma value, bfd_vma *offsetp)
b49e97c9
TS
1882{
1883 asection *sgot;
1884 struct mips_got_info *g;
b15e6682
AO
1885 bfd_vma index;
1886 struct mips_got_entry *entry;
b49e97c9
TS
1887
1888 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1889
f4416af6 1890 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot,
b15e6682
AO
1891 (value + 0x8000)
1892 & (~(bfd_vma)0xffff));
b49e97c9 1893
b15e6682
AO
1894 if (!entry)
1895 return MINUS_ONE;
143d77c5 1896
b15e6682 1897 index = entry->gotidx;
b49e97c9
TS
1898
1899 if (offsetp)
f4416af6 1900 *offsetp = value - entry->d.address;
b49e97c9
TS
1901
1902 return index;
1903}
1904
1905/* Find a GOT entry whose higher-order 16 bits are the same as those
1906 for value. Return the index into the GOT for this entry. */
1907
1908static bfd_vma
9719ad41
RS
1909mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1910 bfd_vma value, bfd_boolean external)
b49e97c9
TS
1911{
1912 asection *sgot;
1913 struct mips_got_info *g;
b15e6682 1914 struct mips_got_entry *entry;
b49e97c9
TS
1915
1916 if (! external)
1917 {
1918 /* Although the ABI says that it is "the high-order 16 bits" that we
1919 want, it is really the %high value. The complete value is
1920 calculated with a `addiu' of a LO16 relocation, just as with a
1921 HI16/LO16 pair. */
1922 value = mips_elf_high (value) << 16;
1923 }
1924
1925 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1926
f4416af6 1927 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
b15e6682
AO
1928 if (entry)
1929 return entry->gotidx;
1930 else
1931 return MINUS_ONE;
b49e97c9
TS
1932}
1933
1934/* Returns the offset for the entry at the INDEXth position
1935 in the GOT. */
1936
1937static bfd_vma
9719ad41
RS
1938mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
1939 bfd *input_bfd, bfd_vma index)
b49e97c9
TS
1940{
1941 asection *sgot;
1942 bfd_vma gp;
f4416af6 1943 struct mips_got_info *g;
b49e97c9 1944
f4416af6
AO
1945 g = mips_elf_got_info (dynobj, &sgot);
1946 gp = _bfd_get_gp_value (output_bfd)
1947 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
143d77c5 1948
f4416af6 1949 return sgot->output_section->vma + sgot->output_offset + index - gp;
b49e97c9
TS
1950}
1951
1952/* Create a local GOT entry for VALUE. Return the index of the entry,
1953 or -1 if it could not be created. */
1954
b15e6682 1955static struct mips_got_entry *
9719ad41
RS
1956mips_elf_create_local_got_entry (bfd *abfd, bfd *ibfd,
1957 struct mips_got_info *gg,
1958 asection *sgot, bfd_vma value)
b49e97c9 1959{
b15e6682 1960 struct mips_got_entry entry, **loc;
f4416af6 1961 struct mips_got_info *g;
b15e6682 1962
f4416af6
AO
1963 entry.abfd = NULL;
1964 entry.symndx = -1;
1965 entry.d.address = value;
1966
1967 g = mips_elf_got_for_ibfd (gg, ibfd);
1968 if (g == NULL)
1969 {
1970 g = mips_elf_got_for_ibfd (gg, abfd);
1971 BFD_ASSERT (g != NULL);
1972 }
b15e6682
AO
1973
1974 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
1975 INSERT);
1976 if (*loc)
1977 return *loc;
143d77c5 1978
b15e6682
AO
1979 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
1980
1981 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
1982
1983 if (! *loc)
1984 return NULL;
143d77c5 1985
b15e6682
AO
1986 memcpy (*loc, &entry, sizeof entry);
1987
b49e97c9
TS
1988 if (g->assigned_gotno >= g->local_gotno)
1989 {
f4416af6 1990 (*loc)->gotidx = -1;
b49e97c9
TS
1991 /* We didn't allocate enough space in the GOT. */
1992 (*_bfd_error_handler)
1993 (_("not enough GOT space for local GOT entries"));
1994 bfd_set_error (bfd_error_bad_value);
b15e6682 1995 return NULL;
b49e97c9
TS
1996 }
1997
1998 MIPS_ELF_PUT_WORD (abfd, value,
b15e6682
AO
1999 (sgot->contents + entry.gotidx));
2000
2001 return *loc;
b49e97c9
TS
2002}
2003
2004/* Sort the dynamic symbol table so that symbols that need GOT entries
2005 appear towards the end. This reduces the amount of GOT space
2006 required. MAX_LOCAL is used to set the number of local symbols
2007 known to be in the dynamic symbol table. During
2008 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2009 section symbols are added and the count is higher. */
2010
b34976b6 2011static bfd_boolean
9719ad41 2012mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
b49e97c9
TS
2013{
2014 struct mips_elf_hash_sort_data hsd;
2015 struct mips_got_info *g;
2016 bfd *dynobj;
2017
2018 dynobj = elf_hash_table (info)->dynobj;
2019
f4416af6
AO
2020 g = mips_elf_got_info (dynobj, NULL);
2021
b49e97c9 2022 hsd.low = NULL;
143d77c5 2023 hsd.max_unref_got_dynindx =
f4416af6
AO
2024 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2025 /* In the multi-got case, assigned_gotno of the master got_info
2026 indicate the number of entries that aren't referenced in the
2027 primary GOT, but that must have entries because there are
2028 dynamic relocations that reference it. Since they aren't
2029 referenced, we move them to the end of the GOT, so that they
2030 don't prevent other entries that are referenced from getting
2031 too large offsets. */
2032 - (g->next ? g->assigned_gotno : 0);
b49e97c9
TS
2033 hsd.max_non_got_dynindx = max_local;
2034 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2035 elf_hash_table (info)),
2036 mips_elf_sort_hash_table_f,
2037 &hsd);
2038
2039 /* There should have been enough room in the symbol table to
44c410de 2040 accommodate both the GOT and non-GOT symbols. */
b49e97c9 2041 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
f4416af6
AO
2042 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2043 <= elf_hash_table (info)->dynsymcount);
b49e97c9
TS
2044
2045 /* Now we know which dynamic symbol has the lowest dynamic symbol
2046 table index in the GOT. */
b49e97c9
TS
2047 g->global_gotsym = hsd.low;
2048
b34976b6 2049 return TRUE;
b49e97c9
TS
2050}
2051
2052/* If H needs a GOT entry, assign it the highest available dynamic
2053 index. Otherwise, assign it the lowest available dynamic
2054 index. */
2055
b34976b6 2056static bfd_boolean
9719ad41 2057mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2058{
9719ad41 2059 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9
TS
2060
2061 if (h->root.root.type == bfd_link_hash_warning)
2062 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2063
2064 /* Symbols without dynamic symbol table entries aren't interesting
2065 at all. */
2066 if (h->root.dynindx == -1)
b34976b6 2067 return TRUE;
b49e97c9 2068
f4416af6
AO
2069 /* Global symbols that need GOT entries that are not explicitly
2070 referenced are marked with got offset 2. Those that are
2071 referenced get a 1, and those that don't need GOT entries get
2072 -1. */
2073 if (h->root.got.offset == 2)
2074 {
2075 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2076 hsd->low = (struct elf_link_hash_entry *) h;
2077 h->root.dynindx = hsd->max_unref_got_dynindx++;
2078 }
2079 else if (h->root.got.offset != 1)
b49e97c9
TS
2080 h->root.dynindx = hsd->max_non_got_dynindx++;
2081 else
2082 {
2083 h->root.dynindx = --hsd->min_got_dynindx;
2084 hsd->low = (struct elf_link_hash_entry *) h;
2085 }
2086
b34976b6 2087 return TRUE;
b49e97c9
TS
2088}
2089
2090/* If H is a symbol that needs a global GOT entry, but has a dynamic
2091 symbol table index lower than any we've seen to date, record it for
2092 posterity. */
2093
b34976b6 2094static bfd_boolean
9719ad41
RS
2095mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2096 bfd *abfd, struct bfd_link_info *info,
2097 struct mips_got_info *g)
b49e97c9 2098{
f4416af6
AO
2099 struct mips_got_entry entry, **loc;
2100
b49e97c9
TS
2101 /* A global symbol in the GOT must also be in the dynamic symbol
2102 table. */
7c5fcef7
L
2103 if (h->dynindx == -1)
2104 {
2105 switch (ELF_ST_VISIBILITY (h->other))
2106 {
2107 case STV_INTERNAL:
2108 case STV_HIDDEN:
b34976b6 2109 _bfd_mips_elf_hide_symbol (info, h, TRUE);
7c5fcef7
L
2110 break;
2111 }
c152c796 2112 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 2113 return FALSE;
7c5fcef7 2114 }
b49e97c9 2115
f4416af6
AO
2116 entry.abfd = abfd;
2117 entry.symndx = -1;
2118 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2119
2120 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2121 INSERT);
2122
b49e97c9
TS
2123 /* If we've already marked this entry as needing GOT space, we don't
2124 need to do it again. */
f4416af6
AO
2125 if (*loc)
2126 return TRUE;
2127
2128 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2129
2130 if (! *loc)
2131 return FALSE;
143d77c5 2132
f4416af6
AO
2133 entry.gotidx = -1;
2134 memcpy (*loc, &entry, sizeof entry);
2135
b49e97c9 2136 if (h->got.offset != MINUS_ONE)
b34976b6 2137 return TRUE;
b49e97c9
TS
2138
2139 /* By setting this to a value other than -1, we are indicating that
2140 there needs to be a GOT entry for H. Avoid using zero, as the
2141 generic ELF copy_indirect_symbol tests for <= 0. */
2142 h->got.offset = 1;
2143
b34976b6 2144 return TRUE;
b49e97c9 2145}
f4416af6
AO
2146
2147/* Reserve space in G for a GOT entry containing the value of symbol
2148 SYMNDX in input bfd ABDF, plus ADDEND. */
2149
2150static bfd_boolean
9719ad41
RS
2151mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2152 struct mips_got_info *g)
f4416af6
AO
2153{
2154 struct mips_got_entry entry, **loc;
2155
2156 entry.abfd = abfd;
2157 entry.symndx = symndx;
2158 entry.d.addend = addend;
2159 loc = (struct mips_got_entry **)
2160 htab_find_slot (g->got_entries, &entry, INSERT);
2161
2162 if (*loc)
2163 return TRUE;
2164
2165 entry.gotidx = g->local_gotno++;
2166
2167 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2168
2169 if (! *loc)
2170 return FALSE;
143d77c5 2171
f4416af6
AO
2172 memcpy (*loc, &entry, sizeof entry);
2173
2174 return TRUE;
2175}
2176\f
2177/* Compute the hash value of the bfd in a bfd2got hash entry. */
2178
2179static hashval_t
9719ad41 2180mips_elf_bfd2got_entry_hash (const void *entry_)
f4416af6
AO
2181{
2182 const struct mips_elf_bfd2got_hash *entry
2183 = (struct mips_elf_bfd2got_hash *)entry_;
2184
2185 return entry->bfd->id;
2186}
2187
2188/* Check whether two hash entries have the same bfd. */
2189
2190static int
9719ad41 2191mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2192{
2193 const struct mips_elf_bfd2got_hash *e1
2194 = (const struct mips_elf_bfd2got_hash *)entry1;
2195 const struct mips_elf_bfd2got_hash *e2
2196 = (const struct mips_elf_bfd2got_hash *)entry2;
2197
2198 return e1->bfd == e2->bfd;
2199}
2200
0b25d3e6 2201/* In a multi-got link, determine the GOT to be used for IBDF. G must
f4416af6
AO
2202 be the master GOT data. */
2203
2204static struct mips_got_info *
9719ad41 2205mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
2206{
2207 struct mips_elf_bfd2got_hash e, *p;
2208
2209 if (! g->bfd2got)
2210 return g;
2211
2212 e.bfd = ibfd;
9719ad41 2213 p = htab_find (g->bfd2got, &e);
f4416af6
AO
2214 return p ? p->g : NULL;
2215}
2216
2217/* Create one separate got for each bfd that has entries in the global
2218 got, such that we can tell how many local and global entries each
2219 bfd requires. */
2220
2221static int
9719ad41 2222mips_elf_make_got_per_bfd (void **entryp, void *p)
f4416af6
AO
2223{
2224 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2225 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2226 htab_t bfd2got = arg->bfd2got;
2227 struct mips_got_info *g;
2228 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2229 void **bfdgotp;
143d77c5 2230
f4416af6
AO
2231 /* Find the got_info for this GOT entry's input bfd. Create one if
2232 none exists. */
2233 bfdgot_entry.bfd = entry->abfd;
2234 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2235 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2236
2237 if (bfdgot != NULL)
2238 g = bfdgot->g;
2239 else
2240 {
2241 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2242 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
2243
2244 if (bfdgot == NULL)
2245 {
2246 arg->obfd = 0;
2247 return 0;
2248 }
2249
2250 *bfdgotp = bfdgot;
2251
2252 bfdgot->bfd = entry->abfd;
2253 bfdgot->g = g = (struct mips_got_info *)
2254 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
2255 if (g == NULL)
2256 {
2257 arg->obfd = 0;
2258 return 0;
2259 }
2260
2261 g->global_gotsym = NULL;
2262 g->global_gotno = 0;
2263 g->local_gotno = 0;
2264 g->assigned_gotno = -1;
2265 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
9719ad41 2266 mips_elf_multi_got_entry_eq, NULL);
f4416af6
AO
2267 if (g->got_entries == NULL)
2268 {
2269 arg->obfd = 0;
2270 return 0;
2271 }
2272
2273 g->bfd2got = NULL;
2274 g->next = NULL;
2275 }
2276
2277 /* Insert the GOT entry in the bfd's got entry hash table. */
2278 entryp = htab_find_slot (g->got_entries, entry, INSERT);
2279 if (*entryp != NULL)
2280 return 1;
143d77c5 2281
f4416af6
AO
2282 *entryp = entry;
2283
2284 if (entry->symndx >= 0 || entry->d.h->forced_local)
2285 ++g->local_gotno;
2286 else
2287 ++g->global_gotno;
2288
2289 return 1;
2290}
2291
2292/* Attempt to merge gots of different input bfds. Try to use as much
2293 as possible of the primary got, since it doesn't require explicit
2294 dynamic relocations, but don't use bfds that would reference global
2295 symbols out of the addressable range. Failing the primary got,
2296 attempt to merge with the current got, or finish the current got
2297 and then make make the new got current. */
2298
2299static int
9719ad41 2300mips_elf_merge_gots (void **bfd2got_, void *p)
f4416af6
AO
2301{
2302 struct mips_elf_bfd2got_hash *bfd2got
2303 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
2304 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2305 unsigned int lcount = bfd2got->g->local_gotno;
2306 unsigned int gcount = bfd2got->g->global_gotno;
2307 unsigned int maxcnt = arg->max_count;
143d77c5 2308
f4416af6
AO
2309 /* If we don't have a primary GOT and this is not too big, use it as
2310 a starting point for the primary GOT. */
2311 if (! arg->primary && lcount + gcount <= maxcnt)
2312 {
2313 arg->primary = bfd2got->g;
2314 arg->primary_count = lcount + gcount;
2315 }
2316 /* If it looks like we can merge this bfd's entries with those of
2317 the primary, merge them. The heuristics is conservative, but we
2318 don't have to squeeze it too hard. */
2319 else if (arg->primary
2320 && (arg->primary_count + lcount + gcount) <= maxcnt)
2321 {
2322 struct mips_got_info *g = bfd2got->g;
2323 int old_lcount = arg->primary->local_gotno;
2324 int old_gcount = arg->primary->global_gotno;
2325
2326 bfd2got->g = arg->primary;
2327
2328 htab_traverse (g->got_entries,
2329 mips_elf_make_got_per_bfd,
2330 arg);
2331 if (arg->obfd == NULL)
2332 return 0;
2333
2334 htab_delete (g->got_entries);
2335 /* We don't have to worry about releasing memory of the actual
2336 got entries, since they're all in the master got_entries hash
2337 table anyway. */
2338
caec41ff 2339 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
f4416af6
AO
2340 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
2341
2342 arg->primary_count = arg->primary->local_gotno
2343 + arg->primary->global_gotno;
2344 }
2345 /* If we can merge with the last-created got, do it. */
2346 else if (arg->current
2347 && arg->current_count + lcount + gcount <= maxcnt)
2348 {
2349 struct mips_got_info *g = bfd2got->g;
2350 int old_lcount = arg->current->local_gotno;
2351 int old_gcount = arg->current->global_gotno;
2352
2353 bfd2got->g = arg->current;
2354
2355 htab_traverse (g->got_entries,
2356 mips_elf_make_got_per_bfd,
2357 arg);
2358 if (arg->obfd == NULL)
2359 return 0;
2360
2361 htab_delete (g->got_entries);
2362
caec41ff 2363 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
f4416af6
AO
2364 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
2365
2366 arg->current_count = arg->current->local_gotno
2367 + arg->current->global_gotno;
2368 }
2369 /* Well, we couldn't merge, so create a new GOT. Don't check if it
2370 fits; if it turns out that it doesn't, we'll get relocation
2371 overflows anyway. */
2372 else
2373 {
2374 bfd2got->g->next = arg->current;
2375 arg->current = bfd2got->g;
143d77c5 2376
f4416af6
AO
2377 arg->current_count = lcount + gcount;
2378 }
2379
2380 return 1;
2381}
2382
2383/* If passed a NULL mips_got_info in the argument, set the marker used
2384 to tell whether a global symbol needs a got entry (in the primary
2385 got) to the given VALUE.
2386
2387 If passed a pointer G to a mips_got_info in the argument (it must
2388 not be the primary GOT), compute the offset from the beginning of
2389 the (primary) GOT section to the entry in G corresponding to the
2390 global symbol. G's assigned_gotno must contain the index of the
2391 first available global GOT entry in G. VALUE must contain the size
2392 of a GOT entry in bytes. For each global GOT entry that requires a
2393 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4cc11e76 2394 marked as not eligible for lazy resolution through a function
f4416af6
AO
2395 stub. */
2396static int
9719ad41 2397mips_elf_set_global_got_offset (void **entryp, void *p)
f4416af6
AO
2398{
2399 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2400 struct mips_elf_set_global_got_offset_arg *arg
2401 = (struct mips_elf_set_global_got_offset_arg *)p;
2402 struct mips_got_info *g = arg->g;
2403
2404 if (entry->abfd != NULL && entry->symndx == -1
2405 && entry->d.h->root.dynindx != -1)
2406 {
2407 if (g)
2408 {
2409 BFD_ASSERT (g->global_gotsym == NULL);
2410
2411 entry->gotidx = arg->value * (long) g->assigned_gotno++;
f4416af6
AO
2412 if (arg->info->shared
2413 || (elf_hash_table (arg->info)->dynamic_sections_created
f5385ebf
AM
2414 && entry->d.h->root.def_dynamic
2415 && !entry->d.h->root.def_regular))
f4416af6
AO
2416 ++arg->needed_relocs;
2417 }
2418 else
2419 entry->d.h->root.got.offset = arg->value;
2420 }
2421
2422 return 1;
2423}
2424
0626d451
RS
2425/* Mark any global symbols referenced in the GOT we are iterating over
2426 as inelligible for lazy resolution stubs. */
2427static int
9719ad41 2428mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
0626d451
RS
2429{
2430 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2431
2432 if (entry->abfd != NULL
2433 && entry->symndx == -1
2434 && entry->d.h->root.dynindx != -1)
2435 entry->d.h->no_fn_stub = TRUE;
2436
2437 return 1;
2438}
2439
f4416af6
AO
2440/* Follow indirect and warning hash entries so that each got entry
2441 points to the final symbol definition. P must point to a pointer
2442 to the hash table we're traversing. Since this traversal may
2443 modify the hash table, we set this pointer to NULL to indicate
2444 we've made a potentially-destructive change to the hash table, so
2445 the traversal must be restarted. */
2446static int
9719ad41 2447mips_elf_resolve_final_got_entry (void **entryp, void *p)
f4416af6
AO
2448{
2449 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2450 htab_t got_entries = *(htab_t *)p;
2451
2452 if (entry->abfd != NULL && entry->symndx == -1)
2453 {
2454 struct mips_elf_link_hash_entry *h = entry->d.h;
2455
2456 while (h->root.root.type == bfd_link_hash_indirect
2457 || h->root.root.type == bfd_link_hash_warning)
2458 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2459
2460 if (entry->d.h == h)
2461 return 1;
143d77c5 2462
f4416af6
AO
2463 entry->d.h = h;
2464
2465 /* If we can't find this entry with the new bfd hash, re-insert
2466 it, and get the traversal restarted. */
2467 if (! htab_find (got_entries, entry))
2468 {
2469 htab_clear_slot (got_entries, entryp);
2470 entryp = htab_find_slot (got_entries, entry, INSERT);
2471 if (! *entryp)
2472 *entryp = entry;
2473 /* Abort the traversal, since the whole table may have
2474 moved, and leave it up to the parent to restart the
2475 process. */
2476 *(htab_t *)p = NULL;
2477 return 0;
2478 }
2479 /* We might want to decrement the global_gotno count, but it's
2480 either too early or too late for that at this point. */
2481 }
143d77c5 2482
f4416af6
AO
2483 return 1;
2484}
2485
2486/* Turn indirect got entries in a got_entries table into their final
2487 locations. */
2488static void
9719ad41 2489mips_elf_resolve_final_got_entries (struct mips_got_info *g)
f4416af6
AO
2490{
2491 htab_t got_entries;
2492
2493 do
2494 {
2495 got_entries = g->got_entries;
2496
2497 htab_traverse (got_entries,
2498 mips_elf_resolve_final_got_entry,
2499 &got_entries);
2500 }
2501 while (got_entries == NULL);
2502}
2503
2504/* Return the offset of an input bfd IBFD's GOT from the beginning of
2505 the primary GOT. */
2506static bfd_vma
9719ad41 2507mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
2508{
2509 if (g->bfd2got == NULL)
2510 return 0;
2511
2512 g = mips_elf_got_for_ibfd (g, ibfd);
2513 if (! g)
2514 return 0;
2515
2516 BFD_ASSERT (g->next);
2517
2518 g = g->next;
143d77c5 2519
f4416af6
AO
2520 return (g->local_gotno + g->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2521}
2522
2523/* Turn a single GOT that is too big for 16-bit addressing into
2524 a sequence of GOTs, each one 16-bit addressable. */
2525
2526static bfd_boolean
9719ad41
RS
2527mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
2528 struct mips_got_info *g, asection *got,
2529 bfd_size_type pages)
f4416af6
AO
2530{
2531 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
2532 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
2533 struct mips_got_info *gg;
2534 unsigned int assign;
2535
2536 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
9719ad41 2537 mips_elf_bfd2got_entry_eq, NULL);
f4416af6
AO
2538 if (g->bfd2got == NULL)
2539 return FALSE;
2540
2541 got_per_bfd_arg.bfd2got = g->bfd2got;
2542 got_per_bfd_arg.obfd = abfd;
2543 got_per_bfd_arg.info = info;
2544
2545 /* Count how many GOT entries each input bfd requires, creating a
2546 map from bfd to got info while at that. */
2547 mips_elf_resolve_final_got_entries (g);
2548 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
2549 if (got_per_bfd_arg.obfd == NULL)
2550 return FALSE;
2551
2552 got_per_bfd_arg.current = NULL;
2553 got_per_bfd_arg.primary = NULL;
2554 /* Taking out PAGES entries is a worst-case estimate. We could
2555 compute the maximum number of pages that each separate input bfd
2556 uses, but it's probably not worth it. */
2557 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd)
2558 / MIPS_ELF_GOT_SIZE (abfd))
2559 - MIPS_RESERVED_GOTNO - pages);
2560
2561 /* Try to merge the GOTs of input bfds together, as long as they
2562 don't seem to exceed the maximum GOT size, choosing one of them
2563 to be the primary GOT. */
2564 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
2565 if (got_per_bfd_arg.obfd == NULL)
2566 return FALSE;
2567
2568 /* If we find any suitable primary GOT, create an empty one. */
2569 if (got_per_bfd_arg.primary == NULL)
2570 {
2571 g->next = (struct mips_got_info *)
2572 bfd_alloc (abfd, sizeof (struct mips_got_info));
2573 if (g->next == NULL)
2574 return FALSE;
2575
2576 g->next->global_gotsym = NULL;
2577 g->next->global_gotno = 0;
2578 g->next->local_gotno = 0;
2579 g->next->assigned_gotno = 0;
2580 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2581 mips_elf_multi_got_entry_eq,
9719ad41 2582 NULL);
f4416af6
AO
2583 if (g->next->got_entries == NULL)
2584 return FALSE;
2585 g->next->bfd2got = NULL;
2586 }
2587 else
2588 g->next = got_per_bfd_arg.primary;
2589 g->next->next = got_per_bfd_arg.current;
2590
2591 /* GG is now the master GOT, and G is the primary GOT. */
2592 gg = g;
2593 g = g->next;
2594
2595 /* Map the output bfd to the primary got. That's what we're going
2596 to use for bfds that use GOT16 or GOT_PAGE relocations that we
2597 didn't mark in check_relocs, and we want a quick way to find it.
2598 We can't just use gg->next because we're going to reverse the
2599 list. */
2600 {
2601 struct mips_elf_bfd2got_hash *bfdgot;
2602 void **bfdgotp;
143d77c5 2603
f4416af6
AO
2604 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2605 (abfd, sizeof (struct mips_elf_bfd2got_hash));
2606
2607 if (bfdgot == NULL)
2608 return FALSE;
2609
2610 bfdgot->bfd = abfd;
2611 bfdgot->g = g;
2612 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
2613
2614 BFD_ASSERT (*bfdgotp == NULL);
2615 *bfdgotp = bfdgot;
2616 }
2617
2618 /* The IRIX dynamic linker requires every symbol that is referenced
2619 in a dynamic relocation to be present in the primary GOT, so
2620 arrange for them to appear after those that are actually
2621 referenced.
2622
2623 GNU/Linux could very well do without it, but it would slow down
2624 the dynamic linker, since it would have to resolve every dynamic
2625 symbol referenced in other GOTs more than once, without help from
2626 the cache. Also, knowing that every external symbol has a GOT
2627 helps speed up the resolution of local symbols too, so GNU/Linux
2628 follows IRIX's practice.
143d77c5 2629
f4416af6
AO
2630 The number 2 is used by mips_elf_sort_hash_table_f to count
2631 global GOT symbols that are unreferenced in the primary GOT, with
2632 an initial dynamic index computed from gg->assigned_gotno, where
2633 the number of unreferenced global entries in the primary GOT is
2634 preserved. */
2635 if (1)
2636 {
2637 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
2638 g->global_gotno = gg->global_gotno;
2639 set_got_offset_arg.value = 2;
2640 }
2641 else
2642 {
2643 /* This could be used for dynamic linkers that don't optimize
2644 symbol resolution while applying relocations so as to use
2645 primary GOT entries or assuming the symbol is locally-defined.
2646 With this code, we assign lower dynamic indices to global
2647 symbols that are not referenced in the primary GOT, so that
2648 their entries can be omitted. */
2649 gg->assigned_gotno = 0;
2650 set_got_offset_arg.value = -1;
2651 }
2652
2653 /* Reorder dynamic symbols as described above (which behavior
2654 depends on the setting of VALUE). */
2655 set_got_offset_arg.g = NULL;
2656 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
2657 &set_got_offset_arg);
2658 set_got_offset_arg.value = 1;
2659 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
2660 &set_got_offset_arg);
2661 if (! mips_elf_sort_hash_table (info, 1))
2662 return FALSE;
2663
2664 /* Now go through the GOTs assigning them offset ranges.
2665 [assigned_gotno, local_gotno[ will be set to the range of local
2666 entries in each GOT. We can then compute the end of a GOT by
2667 adding local_gotno to global_gotno. We reverse the list and make
2668 it circular since then we'll be able to quickly compute the
2669 beginning of a GOT, by computing the end of its predecessor. To
2670 avoid special cases for the primary GOT, while still preserving
2671 assertions that are valid for both single- and multi-got links,
2672 we arrange for the main got struct to have the right number of
2673 global entries, but set its local_gotno such that the initial
2674 offset of the primary GOT is zero. Remember that the primary GOT
2675 will become the last item in the circular linked list, so it
2676 points back to the master GOT. */
2677 gg->local_gotno = -g->global_gotno;
2678 gg->global_gotno = g->global_gotno;
2679 assign = 0;
2680 gg->next = gg;
2681
2682 do
2683 {
2684 struct mips_got_info *gn;
2685
2686 assign += MIPS_RESERVED_GOTNO;
2687 g->assigned_gotno = assign;
2688 g->local_gotno += assign + pages;
2689 assign = g->local_gotno + g->global_gotno;
2690
2691 /* Take g out of the direct list, and push it onto the reversed
2692 list that gg points to. */
2693 gn = g->next;
2694 g->next = gg->next;
2695 gg->next = g;
2696 g = gn;
0626d451
RS
2697
2698 /* Mark global symbols in every non-primary GOT as ineligible for
2699 stubs. */
2700 if (g)
2701 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
f4416af6
AO
2702 }
2703 while (g);
2704
eea6121a 2705 got->size = (gg->next->local_gotno
f4416af6 2706 + gg->next->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
143d77c5 2707
f4416af6
AO
2708 return TRUE;
2709}
143d77c5 2710
b49e97c9
TS
2711\f
2712/* Returns the first relocation of type r_type found, beginning with
2713 RELOCATION. RELEND is one-past-the-end of the relocation table. */
2714
2715static const Elf_Internal_Rela *
9719ad41
RS
2716mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
2717 const Elf_Internal_Rela *relocation,
2718 const Elf_Internal_Rela *relend)
b49e97c9 2719{
b49e97c9
TS
2720 while (relocation < relend)
2721 {
2722 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
2723 return relocation;
2724
2725 ++relocation;
2726 }
2727
2728 /* We didn't find it. */
2729 bfd_set_error (bfd_error_bad_value);
2730 return NULL;
2731}
2732
2733/* Return whether a relocation is against a local symbol. */
2734
b34976b6 2735static bfd_boolean
9719ad41
RS
2736mips_elf_local_relocation_p (bfd *input_bfd,
2737 const Elf_Internal_Rela *relocation,
2738 asection **local_sections,
2739 bfd_boolean check_forced)
b49e97c9
TS
2740{
2741 unsigned long r_symndx;
2742 Elf_Internal_Shdr *symtab_hdr;
2743 struct mips_elf_link_hash_entry *h;
2744 size_t extsymoff;
2745
2746 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
2747 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2748 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
2749
2750 if (r_symndx < extsymoff)
b34976b6 2751 return TRUE;
b49e97c9 2752 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 2753 return TRUE;
b49e97c9
TS
2754
2755 if (check_forced)
2756 {
2757 /* Look up the hash table to check whether the symbol
2758 was forced local. */
2759 h = (struct mips_elf_link_hash_entry *)
2760 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
2761 /* Find the real hash-table entry for this symbol. */
2762 while (h->root.root.type == bfd_link_hash_indirect
2763 || h->root.root.type == bfd_link_hash_warning)
2764 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
f5385ebf 2765 if (h->root.forced_local)
b34976b6 2766 return TRUE;
b49e97c9
TS
2767 }
2768
b34976b6 2769 return FALSE;
b49e97c9
TS
2770}
2771\f
2772/* Sign-extend VALUE, which has the indicated number of BITS. */
2773
a7ebbfdf 2774bfd_vma
9719ad41 2775_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
2776{
2777 if (value & ((bfd_vma) 1 << (bits - 1)))
2778 /* VALUE is negative. */
2779 value |= ((bfd_vma) - 1) << bits;
2780
2781 return value;
2782}
2783
2784/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 2785 range expressible by a signed number with the indicated number of
b49e97c9
TS
2786 BITS. */
2787
b34976b6 2788static bfd_boolean
9719ad41 2789mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
2790{
2791 bfd_signed_vma svalue = (bfd_signed_vma) value;
2792
2793 if (svalue > (1 << (bits - 1)) - 1)
2794 /* The value is too big. */
b34976b6 2795 return TRUE;
b49e97c9
TS
2796 else if (svalue < -(1 << (bits - 1)))
2797 /* The value is too small. */
b34976b6 2798 return TRUE;
b49e97c9
TS
2799
2800 /* All is well. */
b34976b6 2801 return FALSE;
b49e97c9
TS
2802}
2803
2804/* Calculate the %high function. */
2805
2806static bfd_vma
9719ad41 2807mips_elf_high (bfd_vma value)
b49e97c9
TS
2808{
2809 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
2810}
2811
2812/* Calculate the %higher function. */
2813
2814static bfd_vma
9719ad41 2815mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
2816{
2817#ifdef BFD64
2818 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
2819#else
2820 abort ();
c5ae1840 2821 return MINUS_ONE;
b49e97c9
TS
2822#endif
2823}
2824
2825/* Calculate the %highest function. */
2826
2827static bfd_vma
9719ad41 2828mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
2829{
2830#ifdef BFD64
b15e6682 2831 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
2832#else
2833 abort ();
c5ae1840 2834 return MINUS_ONE;
b49e97c9
TS
2835#endif
2836}
2837\f
2838/* Create the .compact_rel section. */
2839
b34976b6 2840static bfd_boolean
9719ad41
RS
2841mips_elf_create_compact_rel_section
2842 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
2843{
2844 flagword flags;
2845 register asection *s;
2846
2847 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
2848 {
2849 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
2850 | SEC_READONLY);
2851
2852 s = bfd_make_section (abfd, ".compact_rel");
2853 if (s == NULL
2854 || ! bfd_set_section_flags (abfd, s, flags)
2855 || ! bfd_set_section_alignment (abfd, s,
2856 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 2857 return FALSE;
b49e97c9 2858
eea6121a 2859 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
2860 }
2861
b34976b6 2862 return TRUE;
b49e97c9
TS
2863}
2864
2865/* Create the .got section to hold the global offset table. */
2866
b34976b6 2867static bfd_boolean
9719ad41
RS
2868mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
2869 bfd_boolean maybe_exclude)
b49e97c9
TS
2870{
2871 flagword flags;
2872 register asection *s;
2873 struct elf_link_hash_entry *h;
14a793b2 2874 struct bfd_link_hash_entry *bh;
b49e97c9
TS
2875 struct mips_got_info *g;
2876 bfd_size_type amt;
2877
2878 /* This function may be called more than once. */
f4416af6
AO
2879 s = mips_elf_got_section (abfd, TRUE);
2880 if (s)
2881 {
2882 if (! maybe_exclude)
2883 s->flags &= ~SEC_EXCLUDE;
2884 return TRUE;
2885 }
b49e97c9
TS
2886
2887 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
2888 | SEC_LINKER_CREATED);
2889
f4416af6
AO
2890 if (maybe_exclude)
2891 flags |= SEC_EXCLUDE;
2892
72b4917c
TS
2893 /* We have to use an alignment of 2**4 here because this is hardcoded
2894 in the function stub generation and in the linker script. */
b49e97c9
TS
2895 s = bfd_make_section (abfd, ".got");
2896 if (s == NULL
2897 || ! bfd_set_section_flags (abfd, s, flags)
72b4917c 2898 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 2899 return FALSE;
b49e97c9
TS
2900
2901 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
2902 linker script because we don't want to define the symbol if we
2903 are not creating a global offset table. */
14a793b2 2904 bh = NULL;
b49e97c9
TS
2905 if (! (_bfd_generic_link_add_one_symbol
2906 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 2907 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 2908 return FALSE;
14a793b2
AM
2909
2910 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
2911 h->non_elf = 0;
2912 h->def_regular = 1;
b49e97c9
TS
2913 h->type = STT_OBJECT;
2914
2915 if (info->shared
c152c796 2916 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 2917 return FALSE;
b49e97c9 2918
b49e97c9 2919 amt = sizeof (struct mips_got_info);
9719ad41 2920 g = bfd_alloc (abfd, amt);
b49e97c9 2921 if (g == NULL)
b34976b6 2922 return FALSE;
b49e97c9 2923 g->global_gotsym = NULL;
e3d54347 2924 g->global_gotno = 0;
b49e97c9
TS
2925 g->local_gotno = MIPS_RESERVED_GOTNO;
2926 g->assigned_gotno = MIPS_RESERVED_GOTNO;
f4416af6
AO
2927 g->bfd2got = NULL;
2928 g->next = NULL;
b15e6682 2929 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
9719ad41 2930 mips_elf_got_entry_eq, NULL);
b15e6682
AO
2931 if (g->got_entries == NULL)
2932 return FALSE;
f0abc2a1
AM
2933 mips_elf_section_data (s)->u.got_info = g;
2934 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
2935 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
2936
b34976b6 2937 return TRUE;
b49e97c9 2938}
b49e97c9
TS
2939\f
2940/* Calculate the value produced by the RELOCATION (which comes from
2941 the INPUT_BFD). The ADDEND is the addend to use for this
2942 RELOCATION; RELOCATION->R_ADDEND is ignored.
2943
2944 The result of the relocation calculation is stored in VALUEP.
2945 REQUIRE_JALXP indicates whether or not the opcode used with this
2946 relocation must be JALX.
2947
2948 This function returns bfd_reloc_continue if the caller need take no
2949 further action regarding this relocation, bfd_reloc_notsupported if
2950 something goes dramatically wrong, bfd_reloc_overflow if an
2951 overflow occurs, and bfd_reloc_ok to indicate success. */
2952
2953static bfd_reloc_status_type
9719ad41
RS
2954mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
2955 asection *input_section,
2956 struct bfd_link_info *info,
2957 const Elf_Internal_Rela *relocation,
2958 bfd_vma addend, reloc_howto_type *howto,
2959 Elf_Internal_Sym *local_syms,
2960 asection **local_sections, bfd_vma *valuep,
2961 const char **namep, bfd_boolean *require_jalxp,
2962 bfd_boolean save_addend)
b49e97c9
TS
2963{
2964 /* The eventual value we will return. */
2965 bfd_vma value;
2966 /* The address of the symbol against which the relocation is
2967 occurring. */
2968 bfd_vma symbol = 0;
2969 /* The final GP value to be used for the relocatable, executable, or
2970 shared object file being produced. */
2971 bfd_vma gp = MINUS_ONE;
2972 /* The place (section offset or address) of the storage unit being
2973 relocated. */
2974 bfd_vma p;
2975 /* The value of GP used to create the relocatable object. */
2976 bfd_vma gp0 = MINUS_ONE;
2977 /* The offset into the global offset table at which the address of
2978 the relocation entry symbol, adjusted by the addend, resides
2979 during execution. */
2980 bfd_vma g = MINUS_ONE;
2981 /* The section in which the symbol referenced by the relocation is
2982 located. */
2983 asection *sec = NULL;
2984 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 2985 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 2986 symbol. */
b34976b6
AM
2987 bfd_boolean local_p, was_local_p;
2988 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
2989 bfd_boolean gp_disp_p = FALSE;
b49e97c9
TS
2990 Elf_Internal_Shdr *symtab_hdr;
2991 size_t extsymoff;
2992 unsigned long r_symndx;
2993 int r_type;
b34976b6 2994 /* TRUE if overflow occurred during the calculation of the
b49e97c9 2995 relocation value. */
b34976b6
AM
2996 bfd_boolean overflowed_p;
2997 /* TRUE if this relocation refers to a MIPS16 function. */
2998 bfd_boolean target_is_16_bit_code_p = FALSE;
b49e97c9
TS
2999
3000 /* Parse the relocation. */
3001 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3002 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3003 p = (input_section->output_section->vma
3004 + input_section->output_offset
3005 + relocation->r_offset);
3006
3007 /* Assume that there will be no overflow. */
b34976b6 3008 overflowed_p = FALSE;
b49e97c9
TS
3009
3010 /* Figure out whether or not the symbol is local, and get the offset
3011 used in the array of hash table entries. */
3012 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3013 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3014 local_sections, FALSE);
bce03d3d 3015 was_local_p = local_p;
b49e97c9
TS
3016 if (! elf_bad_symtab (input_bfd))
3017 extsymoff = symtab_hdr->sh_info;
3018 else
3019 {
3020 /* The symbol table does not follow the rule that local symbols
3021 must come before globals. */
3022 extsymoff = 0;
3023 }
3024
3025 /* Figure out the value of the symbol. */
3026 if (local_p)
3027 {
3028 Elf_Internal_Sym *sym;
3029
3030 sym = local_syms + r_symndx;
3031 sec = local_sections[r_symndx];
3032
3033 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
3034 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3035 || (sec->flags & SEC_MERGE))
b49e97c9 3036 symbol += sym->st_value;
d4df96e6
L
3037 if ((sec->flags & SEC_MERGE)
3038 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3039 {
3040 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3041 addend -= symbol;
3042 addend += sec->output_section->vma + sec->output_offset;
3043 }
b49e97c9
TS
3044
3045 /* MIPS16 text labels should be treated as odd. */
3046 if (sym->st_other == STO_MIPS16)
3047 ++symbol;
3048
3049 /* Record the name of this symbol, for our caller. */
3050 *namep = bfd_elf_string_from_elf_section (input_bfd,
3051 symtab_hdr->sh_link,
3052 sym->st_name);
3053 if (*namep == '\0')
3054 *namep = bfd_section_name (input_bfd, sec);
3055
3056 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3057 }
3058 else
3059 {
560e09e9
NC
3060 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3061
b49e97c9
TS
3062 /* For global symbols we look up the symbol in the hash-table. */
3063 h = ((struct mips_elf_link_hash_entry *)
3064 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3065 /* Find the real hash-table entry for this symbol. */
3066 while (h->root.root.type == bfd_link_hash_indirect
3067 || h->root.root.type == bfd_link_hash_warning)
3068 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3069
3070 /* Record the name of this symbol, for our caller. */
3071 *namep = h->root.root.root.string;
3072
3073 /* See if this is the special _gp_disp symbol. Note that such a
3074 symbol must always be a global symbol. */
560e09e9 3075 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
3076 && ! NEWABI_P (input_bfd))
3077 {
3078 /* Relocations against _gp_disp are permitted only with
3079 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3080 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
3081 return bfd_reloc_notsupported;
3082
b34976b6 3083 gp_disp_p = TRUE;
b49e97c9
TS
3084 }
3085 /* If this symbol is defined, calculate its address. Note that
3086 _gp_disp is a magic symbol, always implicitly defined by the
3087 linker, so it's inappropriate to check to see whether or not
3088 its defined. */
3089 else if ((h->root.root.type == bfd_link_hash_defined
3090 || h->root.root.type == bfd_link_hash_defweak)
3091 && h->root.root.u.def.section)
3092 {
3093 sec = h->root.root.u.def.section;
3094 if (sec->output_section)
3095 symbol = (h->root.root.u.def.value
3096 + sec->output_section->vma
3097 + sec->output_offset);
3098 else
3099 symbol = h->root.root.u.def.value;
3100 }
3101 else if (h->root.root.type == bfd_link_hash_undefweak)
3102 /* We allow relocations against undefined weak symbols, giving
3103 it the value zero, so that you can undefined weak functions
3104 and check to see if they exist by looking at their
3105 addresses. */
3106 symbol = 0;
59c2e50f 3107 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
3108 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
3109 symbol = 0;
a4d0f181
TS
3110 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
3111 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
3112 {
3113 /* If this is a dynamic link, we should have created a
3114 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
3115 in in _bfd_mips_elf_create_dynamic_sections.
3116 Otherwise, we should define the symbol with a value of 0.
3117 FIXME: It should probably get into the symbol table
3118 somehow as well. */
3119 BFD_ASSERT (! info->shared);
3120 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
3121 symbol = 0;
3122 }
3123 else
3124 {
3125 if (! ((*info->callbacks->undefined_symbol)
3126 (info, h->root.root.root.string, input_bfd,
3127 input_section, relocation->r_offset,
59c2e50f
L
3128 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
3129 || ELF_ST_VISIBILITY (h->root.other))))
b49e97c9
TS
3130 return bfd_reloc_undefined;
3131 symbol = 0;
3132 }
3133
3134 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
3135 }
3136
3137 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
3138 need to redirect the call to the stub, unless we're already *in*
3139 a stub. */
1049f94e 3140 if (r_type != R_MIPS16_26 && !info->relocatable
b49e97c9
TS
3141 && ((h != NULL && h->fn_stub != NULL)
3142 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
3143 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
3144 && !mips_elf_stub_section_p (input_bfd, input_section))
3145 {
3146 /* This is a 32- or 64-bit call to a 16-bit function. We should
3147 have already noticed that we were going to need the
3148 stub. */
3149 if (local_p)
3150 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
3151 else
3152 {
3153 BFD_ASSERT (h->need_fn_stub);
3154 sec = h->fn_stub;
3155 }
3156
3157 symbol = sec->output_section->vma + sec->output_offset;
3158 }
3159 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
3160 need to redirect the call to the stub. */
1049f94e 3161 else if (r_type == R_MIPS16_26 && !info->relocatable
b49e97c9
TS
3162 && h != NULL
3163 && (h->call_stub != NULL || h->call_fp_stub != NULL)
3164 && !target_is_16_bit_code_p)
3165 {
3166 /* If both call_stub and call_fp_stub are defined, we can figure
3167 out which one to use by seeing which one appears in the input
3168 file. */
3169 if (h->call_stub != NULL && h->call_fp_stub != NULL)
3170 {
3171 asection *o;
3172
3173 sec = NULL;
3174 for (o = input_bfd->sections; o != NULL; o = o->next)
3175 {
3176 if (strncmp (bfd_get_section_name (input_bfd, o),
3177 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
3178 {
3179 sec = h->call_fp_stub;
3180 break;
3181 }
3182 }
3183 if (sec == NULL)
3184 sec = h->call_stub;
3185 }
3186 else if (h->call_stub != NULL)
3187 sec = h->call_stub;
3188 else
3189 sec = h->call_fp_stub;
3190
eea6121a 3191 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
3192 symbol = sec->output_section->vma + sec->output_offset;
3193 }
3194
3195 /* Calls from 16-bit code to 32-bit code and vice versa require the
3196 special jalx instruction. */
1049f94e 3197 *require_jalxp = (!info->relocatable
b49e97c9
TS
3198 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
3199 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
3200
3201 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3202 local_sections, TRUE);
b49e97c9
TS
3203
3204 /* If we haven't already determined the GOT offset, or the GP value,
3205 and we're going to need it, get it now. */
3206 switch (r_type)
3207 {
0fdc1bf1 3208 case R_MIPS_GOT_PAGE:
93a2b7ae 3209 case R_MIPS_GOT_OFST:
d25aed71
RS
3210 /* We need to decay to GOT_DISP/addend if the symbol doesn't
3211 bind locally. */
3212 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
93a2b7ae 3213 if (local_p || r_type == R_MIPS_GOT_OFST)
0fdc1bf1
AO
3214 break;
3215 /* Fall through. */
3216
b49e97c9
TS
3217 case R_MIPS_CALL16:
3218 case R_MIPS_GOT16:
3219 case R_MIPS_GOT_DISP:
3220 case R_MIPS_GOT_HI16:
3221 case R_MIPS_CALL_HI16:
3222 case R_MIPS_GOT_LO16:
3223 case R_MIPS_CALL_LO16:
3224 /* Find the index into the GOT where this value is located. */
3225 if (!local_p)
3226 {
0fdc1bf1
AO
3227 /* GOT_PAGE may take a non-zero addend, that is ignored in a
3228 GOT_PAGE relocation that decays to GOT_DISP because the
3229 symbol turns out to be global. The addend is then added
3230 as GOT_OFST. */
3231 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
b49e97c9 3232 g = mips_elf_global_got_index (elf_hash_table (info)->dynobj,
f4416af6 3233 input_bfd,
b49e97c9
TS
3234 (struct elf_link_hash_entry *) h);
3235 if (! elf_hash_table(info)->dynamic_sections_created
3236 || (info->shared
3237 && (info->symbolic || h->root.dynindx == -1)
f5385ebf 3238 && h->root.def_regular))
b49e97c9
TS
3239 {
3240 /* This is a static link or a -Bsymbolic link. The
3241 symbol is defined locally, or was forced to be local.
3242 We must initialize this entry in the GOT. */
3243 bfd *tmpbfd = elf_hash_table (info)->dynobj;
f4416af6 3244 asection *sgot = mips_elf_got_section (tmpbfd, FALSE);
0fdc1bf1 3245 MIPS_ELF_PUT_WORD (tmpbfd, symbol, sgot->contents + g);
b49e97c9
TS
3246 }
3247 }
3248 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
3249 /* There's no need to create a local GOT entry here; the
3250 calculation for a local GOT16 entry does not involve G. */
3251 break;
3252 else
3253 {
f4416af6
AO
3254 g = mips_elf_local_got_index (abfd, input_bfd,
3255 info, symbol + addend);
b49e97c9
TS
3256 if (g == MINUS_ONE)
3257 return bfd_reloc_outofrange;
3258 }
3259
3260 /* Convert GOT indices to actual offsets. */
3261 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 3262 abfd, input_bfd, g);
b49e97c9
TS
3263 break;
3264
3265 case R_MIPS_HI16:
3266 case R_MIPS_LO16:
3267 case R_MIPS16_GPREL:
3268 case R_MIPS_GPREL16:
3269 case R_MIPS_GPREL32:
3270 case R_MIPS_LITERAL:
3271 gp0 = _bfd_get_gp_value (input_bfd);
3272 gp = _bfd_get_gp_value (abfd);
f4416af6
AO
3273 if (elf_hash_table (info)->dynobj)
3274 gp += mips_elf_adjust_gp (abfd,
3275 mips_elf_got_info
3276 (elf_hash_table (info)->dynobj, NULL),
3277 input_bfd);
b49e97c9
TS
3278 break;
3279
3280 default:
3281 break;
3282 }
3283
3284 /* Figure out what kind of relocation is being performed. */
3285 switch (r_type)
3286 {
3287 case R_MIPS_NONE:
3288 return bfd_reloc_continue;
3289
3290 case R_MIPS_16:
a7ebbfdf 3291 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
b49e97c9
TS
3292 overflowed_p = mips_elf_overflow_p (value, 16);
3293 break;
3294
3295 case R_MIPS_32:
3296 case R_MIPS_REL32:
3297 case R_MIPS_64:
3298 if ((info->shared
3299 || (elf_hash_table (info)->dynamic_sections_created
3300 && h != NULL
f5385ebf
AM
3301 && h->root.def_dynamic
3302 && !h->root.def_regular))
b49e97c9
TS
3303 && r_symndx != 0
3304 && (input_section->flags & SEC_ALLOC) != 0)
3305 {
3306 /* If we're creating a shared library, or this relocation is
3307 against a symbol in a shared library, then we can't know
3308 where the symbol will end up. So, we create a relocation
3309 record in the output, and leave the job up to the dynamic
3310 linker. */
3311 value = addend;
3312 if (!mips_elf_create_dynamic_relocation (abfd,
3313 info,
3314 relocation,
3315 h,
3316 sec,
3317 symbol,
3318 &value,
3319 input_section))
3320 return bfd_reloc_undefined;
3321 }
3322 else
3323 {
3324 if (r_type != R_MIPS_REL32)
3325 value = symbol + addend;
3326 else
3327 value = addend;
3328 }
3329 value &= howto->dst_mask;
092dcd75
CD
3330 break;
3331
3332 case R_MIPS_PC32:
3333 value = symbol + addend - p;
3334 value &= howto->dst_mask;
b49e97c9
TS
3335 break;
3336
0b25d3e6 3337 case R_MIPS_GNU_REL16_S2:
30ac9238 3338 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
0b25d3e6
AO
3339 overflowed_p = mips_elf_overflow_p (value, 18);
3340 value = (value >> 2) & howto->dst_mask;
3341 break;
3342
b49e97c9
TS
3343 case R_MIPS16_26:
3344 /* The calculation for R_MIPS16_26 is just the same as for an
3345 R_MIPS_26. It's only the storage of the relocated field into
3346 the output file that's different. That's handled in
3347 mips_elf_perform_relocation. So, we just fall through to the
3348 R_MIPS_26 case here. */
3349 case R_MIPS_26:
3350 if (local_p)
30ac9238 3351 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
b49e97c9 3352 else
728b2f21
ILT
3353 {
3354 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
c314987d
RS
3355 if (h->root.root.type != bfd_link_hash_undefweak)
3356 overflowed_p = (value >> 26) != ((p + 4) >> 28);
728b2f21 3357 }
b49e97c9
TS
3358 value &= howto->dst_mask;
3359 break;
3360
3361 case R_MIPS_HI16:
3362 if (!gp_disp_p)
3363 {
3364 value = mips_elf_high (addend + symbol);
3365 value &= howto->dst_mask;
3366 }
3367 else
3368 {
3369 value = mips_elf_high (addend + gp - p);
3370 overflowed_p = mips_elf_overflow_p (value, 16);
3371 }
3372 break;
3373
3374 case R_MIPS_LO16:
3375 if (!gp_disp_p)
3376 value = (symbol + addend) & howto->dst_mask;
3377 else
3378 {
3379 value = addend + gp - p + 4;
3380 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 3381 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
3382 _gp_disp are normally generated from the .cpload
3383 pseudo-op. It generates code that normally looks like
3384 this:
3385
3386 lui $gp,%hi(_gp_disp)
3387 addiu $gp,$gp,%lo(_gp_disp)
3388 addu $gp,$gp,$t9
3389
3390 Here $t9 holds the address of the function being called,
3391 as required by the MIPS ELF ABI. The R_MIPS_LO16
3392 relocation can easily overflow in this situation, but the
3393 R_MIPS_HI16 relocation will handle the overflow.
3394 Therefore, we consider this a bug in the MIPS ABI, and do
3395 not check for overflow here. */
3396 }
3397 break;
3398
3399 case R_MIPS_LITERAL:
3400 /* Because we don't merge literal sections, we can handle this
3401 just like R_MIPS_GPREL16. In the long run, we should merge
3402 shared literals, and then we will need to additional work
3403 here. */
3404
3405 /* Fall through. */
3406
3407 case R_MIPS16_GPREL:
3408 /* The R_MIPS16_GPREL performs the same calculation as
3409 R_MIPS_GPREL16, but stores the relocated bits in a different
3410 order. We don't need to do anything special here; the
3411 differences are handled in mips_elf_perform_relocation. */
3412 case R_MIPS_GPREL16:
bce03d3d
AO
3413 /* Only sign-extend the addend if it was extracted from the
3414 instruction. If the addend was separate, leave it alone,
3415 otherwise we may lose significant bits. */
3416 if (howto->partial_inplace)
a7ebbfdf 3417 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
3418 value = symbol + addend - gp;
3419 /* If the symbol was local, any earlier relocatable links will
3420 have adjusted its addend with the gp offset, so compensate
3421 for that now. Don't do it for symbols forced local in this
3422 link, though, since they won't have had the gp offset applied
3423 to them before. */
3424 if (was_local_p)
3425 value += gp0;
b49e97c9
TS
3426 overflowed_p = mips_elf_overflow_p (value, 16);
3427 break;
3428
3429 case R_MIPS_GOT16:
3430 case R_MIPS_CALL16:
3431 if (local_p)
3432 {
b34976b6 3433 bfd_boolean forced;
b49e97c9
TS
3434
3435 /* The special case is when the symbol is forced to be local. We
3436 need the full address in the GOT since no R_MIPS_LO16 relocation
3437 follows. */
3438 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3439 local_sections, FALSE);
f4416af6
AO
3440 value = mips_elf_got16_entry (abfd, input_bfd, info,
3441 symbol + addend, forced);
b49e97c9
TS
3442 if (value == MINUS_ONE)
3443 return bfd_reloc_outofrange;
3444 value
3445 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 3446 abfd, input_bfd, value);
b49e97c9
TS
3447 overflowed_p = mips_elf_overflow_p (value, 16);
3448 break;
3449 }
3450
3451 /* Fall through. */
3452
3453 case R_MIPS_GOT_DISP:
0fdc1bf1 3454 got_disp:
b49e97c9
TS
3455 value = g;
3456 overflowed_p = mips_elf_overflow_p (value, 16);
3457 break;
3458
3459 case R_MIPS_GPREL32:
bce03d3d
AO
3460 value = (addend + symbol + gp0 - gp);
3461 if (!save_addend)
3462 value &= howto->dst_mask;
b49e97c9
TS
3463 break;
3464
3465 case R_MIPS_PC16:
a7ebbfdf 3466 value = _bfd_mips_elf_sign_extend (addend, 16) + symbol - p;
0b25d3e6 3467 overflowed_p = mips_elf_overflow_p (value, 16);
b49e97c9
TS
3468 break;
3469
3470 case R_MIPS_GOT_HI16:
3471 case R_MIPS_CALL_HI16:
3472 /* We're allowed to handle these two relocations identically.
3473 The dynamic linker is allowed to handle the CALL relocations
3474 differently by creating a lazy evaluation stub. */
3475 value = g;
3476 value = mips_elf_high (value);
3477 value &= howto->dst_mask;
3478 break;
3479
3480 case R_MIPS_GOT_LO16:
3481 case R_MIPS_CALL_LO16:
3482 value = g & howto->dst_mask;
3483 break;
3484
3485 case R_MIPS_GOT_PAGE:
0fdc1bf1
AO
3486 /* GOT_PAGE relocations that reference non-local symbols decay
3487 to GOT_DISP. The corresponding GOT_OFST relocation decays to
3488 0. */
93a2b7ae 3489 if (! local_p)
0fdc1bf1 3490 goto got_disp;
f4416af6 3491 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
3492 if (value == MINUS_ONE)
3493 return bfd_reloc_outofrange;
3494 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 3495 abfd, input_bfd, value);
b49e97c9
TS
3496 overflowed_p = mips_elf_overflow_p (value, 16);
3497 break;
3498
3499 case R_MIPS_GOT_OFST:
93a2b7ae 3500 if (local_p)
0fdc1bf1
AO
3501 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
3502 else
3503 value = addend;
b49e97c9
TS
3504 overflowed_p = mips_elf_overflow_p (value, 16);
3505 break;
3506
3507 case R_MIPS_SUB:
3508 value = symbol - addend;
3509 value &= howto->dst_mask;
3510 break;
3511
3512 case R_MIPS_HIGHER:
3513 value = mips_elf_higher (addend + symbol);
3514 value &= howto->dst_mask;
3515 break;
3516
3517 case R_MIPS_HIGHEST:
3518 value = mips_elf_highest (addend + symbol);
3519 value &= howto->dst_mask;
3520 break;
3521
3522 case R_MIPS_SCN_DISP:
3523 value = symbol + addend - sec->output_offset;
3524 value &= howto->dst_mask;
3525 break;
3526
b49e97c9 3527 case R_MIPS_JALR:
1367d393
ILT
3528 /* This relocation is only a hint. In some cases, we optimize
3529 it into a bal instruction. But we don't try to optimize
3530 branches to the PLT; that will wind up wasting time. */
3531 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
3532 return bfd_reloc_continue;
3533 value = symbol + addend;
3534 break;
b49e97c9 3535
1367d393 3536 case R_MIPS_PJUMP:
b49e97c9
TS
3537 case R_MIPS_GNU_VTINHERIT:
3538 case R_MIPS_GNU_VTENTRY:
3539 /* We don't do anything with these at present. */
3540 return bfd_reloc_continue;
3541
3542 default:
3543 /* An unrecognized relocation type. */
3544 return bfd_reloc_notsupported;
3545 }
3546
3547 /* Store the VALUE for our caller. */
3548 *valuep = value;
3549 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
3550}
3551
3552/* Obtain the field relocated by RELOCATION. */
3553
3554static bfd_vma
9719ad41
RS
3555mips_elf_obtain_contents (reloc_howto_type *howto,
3556 const Elf_Internal_Rela *relocation,
3557 bfd *input_bfd, bfd_byte *contents)
b49e97c9
TS
3558{
3559 bfd_vma x;
3560 bfd_byte *location = contents + relocation->r_offset;
3561
3562 /* Obtain the bytes. */
3563 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
3564
3565 if ((ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_26
3566 || ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_GPREL)
3567 && bfd_little_endian (input_bfd))
3568 /* The two 16-bit words will be reversed on a little-endian system.
3569 See mips_elf_perform_relocation for more details. */
3570 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3571
3572 return x;
3573}
3574
3575/* It has been determined that the result of the RELOCATION is the
3576 VALUE. Use HOWTO to place VALUE into the output file at the
3577 appropriate position. The SECTION is the section to which the
b34976b6 3578 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
b49e97c9
TS
3579 for the relocation must be either JAL or JALX, and it is
3580 unconditionally converted to JALX.
3581
b34976b6 3582 Returns FALSE if anything goes wrong. */
b49e97c9 3583
b34976b6 3584static bfd_boolean
9719ad41
RS
3585mips_elf_perform_relocation (struct bfd_link_info *info,
3586 reloc_howto_type *howto,
3587 const Elf_Internal_Rela *relocation,
3588 bfd_vma value, bfd *input_bfd,
3589 asection *input_section, bfd_byte *contents,
3590 bfd_boolean require_jalx)
b49e97c9
TS
3591{
3592 bfd_vma x;
3593 bfd_byte *location;
3594 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3595
3596 /* Figure out where the relocation is occurring. */
3597 location = contents + relocation->r_offset;
3598
3599 /* Obtain the current value. */
3600 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
3601
3602 /* Clear the field we are setting. */
3603 x &= ~howto->dst_mask;
3604
3605 /* If this is the R_MIPS16_26 relocation, we must store the
3606 value in a funny way. */
3607 if (r_type == R_MIPS16_26)
3608 {
3609 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
3610 Most mips16 instructions are 16 bits, but these instructions
3611 are 32 bits.
3612
3613 The format of these instructions is:
3614
3615 +--------------+--------------------------------+
3616 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
3617 +--------------+--------------------------------+
3618 ! Immediate 15:0 !
3619 +-----------------------------------------------+
3620
3621 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
3622 Note that the immediate value in the first word is swapped.
3623
1049f94e 3624 When producing a relocatable object file, R_MIPS16_26 is
b49e97c9
TS
3625 handled mostly like R_MIPS_26. In particular, the addend is
3626 stored as a straight 26-bit value in a 32-bit instruction.
3627 (gas makes life simpler for itself by never adjusting a
3628 R_MIPS16_26 reloc to be against a section, so the addend is
3629 always zero). However, the 32 bit instruction is stored as 2
3630 16-bit values, rather than a single 32-bit value. In a
3631 big-endian file, the result is the same; in a little-endian
3632 file, the two 16-bit halves of the 32 bit value are swapped.
3633 This is so that a disassembler can recognize the jal
3634 instruction.
3635
3636 When doing a final link, R_MIPS16_26 is treated as a 32 bit
3637 instruction stored as two 16-bit values. The addend A is the
3638 contents of the targ26 field. The calculation is the same as
3639 R_MIPS_26. When storing the calculated value, reorder the
3640 immediate value as shown above, and don't forget to store the
3641 value as two 16-bit values.
3642
3643 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
3644 defined as
3645
3646 big-endian:
3647 +--------+----------------------+
3648 | | |
3649 | | targ26-16 |
3650 |31 26|25 0|
3651 +--------+----------------------+
3652
3653 little-endian:
3654 +----------+------+-------------+
3655 | | | |
3656 | sub1 | | sub2 |
3657 |0 9|10 15|16 31|
3658 +----------+--------------------+
3659 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
3660 ((sub1 << 16) | sub2)).
3661
1049f94e 3662 When producing a relocatable object file, the calculation is
b49e97c9
TS
3663 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3664 When producing a fully linked file, the calculation is
3665 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3666 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
3667
1049f94e 3668 if (!info->relocatable)
b49e97c9
TS
3669 /* Shuffle the bits according to the formula above. */
3670 value = (((value & 0x1f0000) << 5)
3671 | ((value & 0x3e00000) >> 5)
3672 | (value & 0xffff));
3673 }
3674 else if (r_type == R_MIPS16_GPREL)
3675 {
3676 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
3677 mode. A typical instruction will have a format like this:
3678
3679 +--------------+--------------------------------+
3680 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
3681 +--------------+--------------------------------+
3682 ! Major ! rx ! ry ! Imm 4:0 !
3683 +--------------+--------------------------------+
3684
3685 EXTEND is the five bit value 11110. Major is the instruction
3686 opcode.
3687
3688 This is handled exactly like R_MIPS_GPREL16, except that the
3689 addend is retrieved and stored as shown in this diagram; that
3690 is, the Imm fields above replace the V-rel16 field.
3691
3692 All we need to do here is shuffle the bits appropriately. As
3693 above, the two 16-bit halves must be swapped on a
3694 little-endian system. */
3695 value = (((value & 0x7e0) << 16)
3696 | ((value & 0xf800) << 5)
3697 | (value & 0x1f));
3698 }
3699
3700 /* Set the field. */
3701 x |= (value & howto->dst_mask);
3702
3703 /* If required, turn JAL into JALX. */
3704 if (require_jalx)
3705 {
b34976b6 3706 bfd_boolean ok;
b49e97c9
TS
3707 bfd_vma opcode = x >> 26;
3708 bfd_vma jalx_opcode;
3709
3710 /* Check to see if the opcode is already JAL or JALX. */
3711 if (r_type == R_MIPS16_26)
3712 {
3713 ok = ((opcode == 0x6) || (opcode == 0x7));
3714 jalx_opcode = 0x7;
3715 }
3716 else
3717 {
3718 ok = ((opcode == 0x3) || (opcode == 0x1d));
3719 jalx_opcode = 0x1d;
3720 }
3721
3722 /* If the opcode is not JAL or JALX, there's a problem. */
3723 if (!ok)
3724 {
3725 (*_bfd_error_handler)
d003868e
AM
3726 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
3727 input_bfd,
3728 input_section,
b49e97c9
TS
3729 (unsigned long) relocation->r_offset);
3730 bfd_set_error (bfd_error_bad_value);
b34976b6 3731 return FALSE;
b49e97c9
TS
3732 }
3733
3734 /* Make this the JALX opcode. */
3735 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
3736 }
3737
1367d393
ILT
3738 /* On the RM9000, bal is faster than jal, because bal uses branch
3739 prediction hardware. If we are linking for the RM9000, and we
3740 see jal, and bal fits, use it instead. Note that this
3741 transformation should be safe for all architectures. */
3742 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
3743 && !info->relocatable
3744 && !require_jalx
3745 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
3746 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
3747 {
3748 bfd_vma addr;
3749 bfd_vma dest;
3750 bfd_signed_vma off;
3751
3752 addr = (input_section->output_section->vma
3753 + input_section->output_offset
3754 + relocation->r_offset
3755 + 4);
3756 if (r_type == R_MIPS_26)
3757 dest = (value << 2) | ((addr >> 28) << 28);
3758 else
3759 dest = value;
3760 off = dest - addr;
3761 if (off <= 0x1ffff && off >= -0x20000)
3762 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
3763 }
3764
b49e97c9
TS
3765 /* Swap the high- and low-order 16 bits on little-endian systems
3766 when doing a MIPS16 relocation. */
3767 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
3768 && bfd_little_endian (input_bfd))
3769 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3770
3771 /* Put the value into the output. */
3772 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
b34976b6 3773 return TRUE;
b49e97c9
TS
3774}
3775
b34976b6 3776/* Returns TRUE if SECTION is a MIPS16 stub section. */
b49e97c9 3777
b34976b6 3778static bfd_boolean
9719ad41 3779mips_elf_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
b49e97c9
TS
3780{
3781 const char *name = bfd_get_section_name (abfd, section);
3782
3783 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
3784 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
3785 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
3786}
3787\f
3788/* Add room for N relocations to the .rel.dyn section in ABFD. */
3789
3790static void
9719ad41 3791mips_elf_allocate_dynamic_relocations (bfd *abfd, unsigned int n)
b49e97c9
TS
3792{
3793 asection *s;
3794
f4416af6 3795 s = mips_elf_rel_dyn_section (abfd, FALSE);
b49e97c9
TS
3796 BFD_ASSERT (s != NULL);
3797
eea6121a 3798 if (s->size == 0)
b49e97c9
TS
3799 {
3800 /* Make room for a null element. */
eea6121a 3801 s->size += MIPS_ELF_REL_SIZE (abfd);
b49e97c9
TS
3802 ++s->reloc_count;
3803 }
eea6121a 3804 s->size += n * MIPS_ELF_REL_SIZE (abfd);
b49e97c9
TS
3805}
3806
3807/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
3808 is the original relocation, which is now being transformed into a
3809 dynamic relocation. The ADDENDP is adjusted if necessary; the
3810 caller should store the result in place of the original addend. */
3811
b34976b6 3812static bfd_boolean
9719ad41
RS
3813mips_elf_create_dynamic_relocation (bfd *output_bfd,
3814 struct bfd_link_info *info,
3815 const Elf_Internal_Rela *rel,
3816 struct mips_elf_link_hash_entry *h,
3817 asection *sec, bfd_vma symbol,
3818 bfd_vma *addendp, asection *input_section)
b49e97c9 3819{
947216bf 3820 Elf_Internal_Rela outrel[3];
b49e97c9
TS
3821 asection *sreloc;
3822 bfd *dynobj;
3823 int r_type;
5d41f0b6
RS
3824 long indx;
3825 bfd_boolean defined_p;
b49e97c9
TS
3826
3827 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
3828 dynobj = elf_hash_table (info)->dynobj;
f4416af6 3829 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
b49e97c9
TS
3830 BFD_ASSERT (sreloc != NULL);
3831 BFD_ASSERT (sreloc->contents != NULL);
3832 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 3833 < sreloc->size);
b49e97c9 3834
b49e97c9
TS
3835 outrel[0].r_offset =
3836 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
3837 outrel[1].r_offset =
3838 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
3839 outrel[2].r_offset =
3840 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
3841
3842#if 0
3843 /* We begin by assuming that the offset for the dynamic relocation
3844 is the same as for the original relocation. We'll adjust this
3845 later to reflect the correct output offsets. */
a7ebbfdf 3846 if (input_section->sec_info_type != ELF_INFO_TYPE_STABS)
b49e97c9
TS
3847 {
3848 outrel[1].r_offset = rel[1].r_offset;
3849 outrel[2].r_offset = rel[2].r_offset;
3850 }
3851 else
3852 {
3853 /* Except that in a stab section things are more complex.
3854 Because we compress stab information, the offset given in the
3855 relocation may not be the one we want; we must let the stabs
3856 machinery tell us the offset. */
3857 outrel[1].r_offset = outrel[0].r_offset;
3858 outrel[2].r_offset = outrel[0].r_offset;
3859 /* If we didn't need the relocation at all, this value will be
3860 -1. */
c5ae1840 3861 if (outrel[0].r_offset == MINUS_ONE)
b34976b6 3862 skip = TRUE;
b49e97c9
TS
3863 }
3864#endif
3865
c5ae1840 3866 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 3867 /* The relocation field has been deleted. */
5d41f0b6
RS
3868 return TRUE;
3869
3870 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
3871 {
3872 /* The relocation field has been converted into a relative value of
3873 some sort. Functions like _bfd_elf_write_section_eh_frame expect
3874 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 3875 *addendp += symbol;
5d41f0b6 3876 return TRUE;
0d591ff7 3877 }
b49e97c9 3878
5d41f0b6
RS
3879 /* We must now calculate the dynamic symbol table index to use
3880 in the relocation. */
3881 if (h != NULL
3882 && (! info->symbolic || !h->root.def_regular)
3883 /* h->root.dynindx may be -1 if this symbol was marked to
3884 become local. */
3885 && h->root.dynindx != -1)
3886 {
3887 indx = h->root.dynindx;
3888 if (SGI_COMPAT (output_bfd))
3889 defined_p = h->root.def_regular;
3890 else
3891 /* ??? glibc's ld.so just adds the final GOT entry to the
3892 relocation field. It therefore treats relocs against
3893 defined symbols in the same way as relocs against
3894 undefined symbols. */
3895 defined_p = FALSE;
3896 }
b49e97c9
TS
3897 else
3898 {
5d41f0b6
RS
3899 if (sec != NULL && bfd_is_abs_section (sec))
3900 indx = 0;
3901 else if (sec == NULL || sec->owner == NULL)
fdd07405 3902 {
5d41f0b6
RS
3903 bfd_set_error (bfd_error_bad_value);
3904 return FALSE;
b49e97c9
TS
3905 }
3906 else
3907 {
5d41f0b6
RS
3908 indx = elf_section_data (sec->output_section)->dynindx;
3909 if (indx == 0)
3910 abort ();
b49e97c9
TS
3911 }
3912
5d41f0b6
RS
3913 /* Instead of generating a relocation using the section
3914 symbol, we may as well make it a fully relative
3915 relocation. We want to avoid generating relocations to
3916 local symbols because we used to generate them
3917 incorrectly, without adding the original symbol value,
3918 which is mandated by the ABI for section symbols. In
3919 order to give dynamic loaders and applications time to
3920 phase out the incorrect use, we refrain from emitting
3921 section-relative relocations. It's not like they're
3922 useful, after all. This should be a bit more efficient
3923 as well. */
3924 /* ??? Although this behavior is compatible with glibc's ld.so,
3925 the ABI says that relocations against STN_UNDEF should have
3926 a symbol value of 0. Irix rld honors this, so relocations
3927 against STN_UNDEF have no effect. */
3928 if (!SGI_COMPAT (output_bfd))
3929 indx = 0;
3930 defined_p = TRUE;
b49e97c9
TS
3931 }
3932
5d41f0b6
RS
3933 /* If the relocation was previously an absolute relocation and
3934 this symbol will not be referred to by the relocation, we must
3935 adjust it by the value we give it in the dynamic symbol table.
3936 Otherwise leave the job up to the dynamic linker. */
3937 if (defined_p && r_type != R_MIPS_REL32)
3938 *addendp += symbol;
3939
3940 /* The relocation is always an REL32 relocation because we don't
3941 know where the shared library will wind up at load-time. */
3942 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
3943 R_MIPS_REL32);
3944 /* For strict adherence to the ABI specification, we should
3945 generate a R_MIPS_64 relocation record by itself before the
3946 _REL32/_64 record as well, such that the addend is read in as
3947 a 64-bit value (REL32 is a 32-bit relocation, after all).
3948 However, since none of the existing ELF64 MIPS dynamic
3949 loaders seems to care, we don't waste space with these
3950 artificial relocations. If this turns out to not be true,
3951 mips_elf_allocate_dynamic_relocation() should be tweaked so
3952 as to make room for a pair of dynamic relocations per
3953 invocation if ABI_64_P, and here we should generate an
3954 additional relocation record with R_MIPS_64 by itself for a
3955 NULL symbol before this relocation record. */
3956 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
3957 ABI_64_P (output_bfd)
3958 ? R_MIPS_64
3959 : R_MIPS_NONE);
3960 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
3961
3962 /* Adjust the output offset of the relocation to reference the
3963 correct location in the output file. */
3964 outrel[0].r_offset += (input_section->output_section->vma
3965 + input_section->output_offset);
3966 outrel[1].r_offset += (input_section->output_section->vma
3967 + input_section->output_offset);
3968 outrel[2].r_offset += (input_section->output_section->vma
3969 + input_section->output_offset);
3970
b49e97c9
TS
3971 /* Put the relocation back out. We have to use the special
3972 relocation outputter in the 64-bit case since the 64-bit
3973 relocation format is non-standard. */
3974 if (ABI_64_P (output_bfd))
3975 {
3976 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3977 (output_bfd, &outrel[0],
3978 (sreloc->contents
3979 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
3980 }
3981 else
947216bf
AM
3982 bfd_elf32_swap_reloc_out
3983 (output_bfd, &outrel[0],
3984 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 3985
b49e97c9
TS
3986 /* We've now added another relocation. */
3987 ++sreloc->reloc_count;
3988
3989 /* Make sure the output section is writable. The dynamic linker
3990 will be writing to it. */
3991 elf_section_data (input_section->output_section)->this_hdr.sh_flags
3992 |= SHF_WRITE;
3993
3994 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 3995 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9
TS
3996 {
3997 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
3998 bfd_byte *cr;
3999
4000 if (scpt)
4001 {
4002 Elf32_crinfo cptrel;
4003
4004 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4005 cptrel.vaddr = (rel->r_offset
4006 + input_section->output_section->vma
4007 + input_section->output_offset);
4008 if (r_type == R_MIPS_REL32)
4009 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4010 else
4011 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4012 mips_elf_set_cr_dist2to (cptrel, 0);
4013 cptrel.konst = *addendp;
4014
4015 cr = (scpt->contents
4016 + sizeof (Elf32_External_compact_rel));
4017 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4018 ((Elf32_External_crinfo *) cr
4019 + scpt->reloc_count));
4020 ++scpt->reloc_count;
4021 }
4022 }
4023
b34976b6 4024 return TRUE;
b49e97c9
TS
4025}
4026\f
b49e97c9
TS
4027/* Return the MACH for a MIPS e_flags value. */
4028
4029unsigned long
9719ad41 4030_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
4031{
4032 switch (flags & EF_MIPS_MACH)
4033 {
4034 case E_MIPS_MACH_3900:
4035 return bfd_mach_mips3900;
4036
4037 case E_MIPS_MACH_4010:
4038 return bfd_mach_mips4010;
4039
4040 case E_MIPS_MACH_4100:
4041 return bfd_mach_mips4100;
4042
4043 case E_MIPS_MACH_4111:
4044 return bfd_mach_mips4111;
4045
00707a0e
RS
4046 case E_MIPS_MACH_4120:
4047 return bfd_mach_mips4120;
4048
b49e97c9
TS
4049 case E_MIPS_MACH_4650:
4050 return bfd_mach_mips4650;
4051
00707a0e
RS
4052 case E_MIPS_MACH_5400:
4053 return bfd_mach_mips5400;
4054
4055 case E_MIPS_MACH_5500:
4056 return bfd_mach_mips5500;
4057
0d2e43ed
ILT
4058 case E_MIPS_MACH_9000:
4059 return bfd_mach_mips9000;
4060
b49e97c9
TS
4061 case E_MIPS_MACH_SB1:
4062 return bfd_mach_mips_sb1;
4063
4064 default:
4065 switch (flags & EF_MIPS_ARCH)
4066 {
4067 default:
4068 case E_MIPS_ARCH_1:
4069 return bfd_mach_mips3000;
4070 break;
4071
4072 case E_MIPS_ARCH_2:
4073 return bfd_mach_mips6000;
4074 break;
4075
4076 case E_MIPS_ARCH_3:
4077 return bfd_mach_mips4000;
4078 break;
4079
4080 case E_MIPS_ARCH_4:
4081 return bfd_mach_mips8000;
4082 break;
4083
4084 case E_MIPS_ARCH_5:
4085 return bfd_mach_mips5;
4086 break;
4087
4088 case E_MIPS_ARCH_32:
4089 return bfd_mach_mipsisa32;
4090 break;
4091
4092 case E_MIPS_ARCH_64:
4093 return bfd_mach_mipsisa64;
4094 break;
af7ee8bf
CD
4095
4096 case E_MIPS_ARCH_32R2:
4097 return bfd_mach_mipsisa32r2;
4098 break;
5f74bc13
CD
4099
4100 case E_MIPS_ARCH_64R2:
4101 return bfd_mach_mipsisa64r2;
4102 break;
b49e97c9
TS
4103 }
4104 }
4105
4106 return 0;
4107}
4108
4109/* Return printable name for ABI. */
4110
4111static INLINE char *
9719ad41 4112elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
4113{
4114 flagword flags;
4115
4116 flags = elf_elfheader (abfd)->e_flags;
4117 switch (flags & EF_MIPS_ABI)
4118 {
4119 case 0:
4120 if (ABI_N32_P (abfd))
4121 return "N32";
4122 else if (ABI_64_P (abfd))
4123 return "64";
4124 else
4125 return "none";
4126 case E_MIPS_ABI_O32:
4127 return "O32";
4128 case E_MIPS_ABI_O64:
4129 return "O64";
4130 case E_MIPS_ABI_EABI32:
4131 return "EABI32";
4132 case E_MIPS_ABI_EABI64:
4133 return "EABI64";
4134 default:
4135 return "unknown abi";
4136 }
4137}
4138\f
4139/* MIPS ELF uses two common sections. One is the usual one, and the
4140 other is for small objects. All the small objects are kept
4141 together, and then referenced via the gp pointer, which yields
4142 faster assembler code. This is what we use for the small common
4143 section. This approach is copied from ecoff.c. */
4144static asection mips_elf_scom_section;
4145static asymbol mips_elf_scom_symbol;
4146static asymbol *mips_elf_scom_symbol_ptr;
4147
4148/* MIPS ELF also uses an acommon section, which represents an
4149 allocated common symbol which may be overridden by a
4150 definition in a shared library. */
4151static asection mips_elf_acom_section;
4152static asymbol mips_elf_acom_symbol;
4153static asymbol *mips_elf_acom_symbol_ptr;
4154
4155/* Handle the special MIPS section numbers that a symbol may use.
4156 This is used for both the 32-bit and the 64-bit ABI. */
4157
4158void
9719ad41 4159_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
4160{
4161 elf_symbol_type *elfsym;
4162
4163 elfsym = (elf_symbol_type *) asym;
4164 switch (elfsym->internal_elf_sym.st_shndx)
4165 {
4166 case SHN_MIPS_ACOMMON:
4167 /* This section is used in a dynamically linked executable file.
4168 It is an allocated common section. The dynamic linker can
4169 either resolve these symbols to something in a shared
4170 library, or it can just leave them here. For our purposes,
4171 we can consider these symbols to be in a new section. */
4172 if (mips_elf_acom_section.name == NULL)
4173 {
4174 /* Initialize the acommon section. */
4175 mips_elf_acom_section.name = ".acommon";
4176 mips_elf_acom_section.flags = SEC_ALLOC;
4177 mips_elf_acom_section.output_section = &mips_elf_acom_section;
4178 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
4179 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
4180 mips_elf_acom_symbol.name = ".acommon";
4181 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
4182 mips_elf_acom_symbol.section = &mips_elf_acom_section;
4183 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
4184 }
4185 asym->section = &mips_elf_acom_section;
4186 break;
4187
4188 case SHN_COMMON:
4189 /* Common symbols less than the GP size are automatically
4190 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
4191 if (asym->value > elf_gp_size (abfd)
4192 || IRIX_COMPAT (abfd) == ict_irix6)
4193 break;
4194 /* Fall through. */
4195 case SHN_MIPS_SCOMMON:
4196 if (mips_elf_scom_section.name == NULL)
4197 {
4198 /* Initialize the small common section. */
4199 mips_elf_scom_section.name = ".scommon";
4200 mips_elf_scom_section.flags = SEC_IS_COMMON;
4201 mips_elf_scom_section.output_section = &mips_elf_scom_section;
4202 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
4203 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
4204 mips_elf_scom_symbol.name = ".scommon";
4205 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
4206 mips_elf_scom_symbol.section = &mips_elf_scom_section;
4207 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
4208 }
4209 asym->section = &mips_elf_scom_section;
4210 asym->value = elfsym->internal_elf_sym.st_size;
4211 break;
4212
4213 case SHN_MIPS_SUNDEFINED:
4214 asym->section = bfd_und_section_ptr;
4215 break;
4216
b49e97c9 4217 case SHN_MIPS_TEXT:
00b4930b
TS
4218 {
4219 asection *section = bfd_get_section_by_name (abfd, ".text");
4220
4221 BFD_ASSERT (SGI_COMPAT (abfd));
4222 if (section != NULL)
4223 {
4224 asym->section = section;
4225 /* MIPS_TEXT is a bit special, the address is not an offset
4226 to the base of the .text section. So substract the section
4227 base address to make it an offset. */
4228 asym->value -= section->vma;
4229 }
4230 }
b49e97c9
TS
4231 break;
4232
4233 case SHN_MIPS_DATA:
00b4930b
TS
4234 {
4235 asection *section = bfd_get_section_by_name (abfd, ".data");
4236
4237 BFD_ASSERT (SGI_COMPAT (abfd));
4238 if (section != NULL)
4239 {
4240 asym->section = section;
4241 /* MIPS_DATA is a bit special, the address is not an offset
4242 to the base of the .data section. So substract the section
4243 base address to make it an offset. */
4244 asym->value -= section->vma;
4245 }
4246 }
b49e97c9 4247 break;
b49e97c9
TS
4248 }
4249}
4250\f
174fd7f9
RS
4251/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
4252 relocations against two unnamed section symbols to resolve to the
4253 same address. For example, if we have code like:
4254
4255 lw $4,%got_disp(.data)($gp)
4256 lw $25,%got_disp(.text)($gp)
4257 jalr $25
4258
4259 then the linker will resolve both relocations to .data and the program
4260 will jump there rather than to .text.
4261
4262 We can work around this problem by giving names to local section symbols.
4263 This is also what the MIPSpro tools do. */
4264
4265bfd_boolean
4266_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
4267{
4268 return SGI_COMPAT (abfd);
4269}
4270\f
b49e97c9
TS
4271/* Work over a section just before writing it out. This routine is
4272 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
4273 sections that need the SHF_MIPS_GPREL flag by name; there has to be
4274 a better way. */
4275
b34976b6 4276bfd_boolean
9719ad41 4277_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
4278{
4279 if (hdr->sh_type == SHT_MIPS_REGINFO
4280 && hdr->sh_size > 0)
4281 {
4282 bfd_byte buf[4];
4283
4284 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
4285 BFD_ASSERT (hdr->contents == NULL);
4286
4287 if (bfd_seek (abfd,
4288 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
4289 SEEK_SET) != 0)
b34976b6 4290 return FALSE;
b49e97c9 4291 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 4292 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 4293 return FALSE;
b49e97c9
TS
4294 }
4295
4296 if (hdr->sh_type == SHT_MIPS_OPTIONS
4297 && hdr->bfd_section != NULL
f0abc2a1
AM
4298 && mips_elf_section_data (hdr->bfd_section) != NULL
4299 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
4300 {
4301 bfd_byte *contents, *l, *lend;
4302
f0abc2a1
AM
4303 /* We stored the section contents in the tdata field in the
4304 set_section_contents routine. We save the section contents
4305 so that we don't have to read them again.
b49e97c9
TS
4306 At this point we know that elf_gp is set, so we can look
4307 through the section contents to see if there is an
4308 ODK_REGINFO structure. */
4309
f0abc2a1 4310 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
4311 l = contents;
4312 lend = contents + hdr->sh_size;
4313 while (l + sizeof (Elf_External_Options) <= lend)
4314 {
4315 Elf_Internal_Options intopt;
4316
4317 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4318 &intopt);
4319 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4320 {
4321 bfd_byte buf[8];
4322
4323 if (bfd_seek (abfd,
4324 (hdr->sh_offset
4325 + (l - contents)
4326 + sizeof (Elf_External_Options)
4327 + (sizeof (Elf64_External_RegInfo) - 8)),
4328 SEEK_SET) != 0)
b34976b6 4329 return FALSE;
b49e97c9 4330 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 4331 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 4332 return FALSE;
b49e97c9
TS
4333 }
4334 else if (intopt.kind == ODK_REGINFO)
4335 {
4336 bfd_byte buf[4];
4337
4338 if (bfd_seek (abfd,
4339 (hdr->sh_offset
4340 + (l - contents)
4341 + sizeof (Elf_External_Options)
4342 + (sizeof (Elf32_External_RegInfo) - 4)),
4343 SEEK_SET) != 0)
b34976b6 4344 return FALSE;
b49e97c9 4345 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 4346 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 4347 return FALSE;
b49e97c9
TS
4348 }
4349 l += intopt.size;
4350 }
4351 }
4352
4353 if (hdr->bfd_section != NULL)
4354 {
4355 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
4356
4357 if (strcmp (name, ".sdata") == 0
4358 || strcmp (name, ".lit8") == 0
4359 || strcmp (name, ".lit4") == 0)
4360 {
4361 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4362 hdr->sh_type = SHT_PROGBITS;
4363 }
4364 else if (strcmp (name, ".sbss") == 0)
4365 {
4366 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4367 hdr->sh_type = SHT_NOBITS;
4368 }
4369 else if (strcmp (name, ".srdata") == 0)
4370 {
4371 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
4372 hdr->sh_type = SHT_PROGBITS;
4373 }
4374 else if (strcmp (name, ".compact_rel") == 0)
4375 {
4376 hdr->sh_flags = 0;
4377 hdr->sh_type = SHT_PROGBITS;
4378 }
4379 else if (strcmp (name, ".rtproc") == 0)
4380 {
4381 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
4382 {
4383 unsigned int adjust;
4384
4385 adjust = hdr->sh_size % hdr->sh_addralign;
4386 if (adjust != 0)
4387 hdr->sh_size += hdr->sh_addralign - adjust;
4388 }
4389 }
4390 }
4391
b34976b6 4392 return TRUE;
b49e97c9
TS
4393}
4394
4395/* Handle a MIPS specific section when reading an object file. This
4396 is called when elfcode.h finds a section with an unknown type.
4397 This routine supports both the 32-bit and 64-bit ELF ABI.
4398
4399 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
4400 how to. */
4401
b34976b6 4402bfd_boolean
9719ad41
RS
4403_bfd_mips_elf_section_from_shdr (bfd *abfd, Elf_Internal_Shdr *hdr,
4404 const char *name)
b49e97c9
TS
4405{
4406 flagword flags = 0;
4407
4408 /* There ought to be a place to keep ELF backend specific flags, but
4409 at the moment there isn't one. We just keep track of the
4410 sections by their name, instead. Fortunately, the ABI gives
4411 suggested names for all the MIPS specific sections, so we will
4412 probably get away with this. */
4413 switch (hdr->sh_type)
4414 {
4415 case SHT_MIPS_LIBLIST:
4416 if (strcmp (name, ".liblist") != 0)
b34976b6 4417 return FALSE;
b49e97c9
TS
4418 break;
4419 case SHT_MIPS_MSYM:
4420 if (strcmp (name, ".msym") != 0)
b34976b6 4421 return FALSE;
b49e97c9
TS
4422 break;
4423 case SHT_MIPS_CONFLICT:
4424 if (strcmp (name, ".conflict") != 0)
b34976b6 4425 return FALSE;
b49e97c9
TS
4426 break;
4427 case SHT_MIPS_GPTAB:
4428 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
b34976b6 4429 return FALSE;
b49e97c9
TS
4430 break;
4431 case SHT_MIPS_UCODE:
4432 if (strcmp (name, ".ucode") != 0)
b34976b6 4433 return FALSE;
b49e97c9
TS
4434 break;
4435 case SHT_MIPS_DEBUG:
4436 if (strcmp (name, ".mdebug") != 0)
b34976b6 4437 return FALSE;
b49e97c9
TS
4438 flags = SEC_DEBUGGING;
4439 break;
4440 case SHT_MIPS_REGINFO:
4441 if (strcmp (name, ".reginfo") != 0
4442 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 4443 return FALSE;
b49e97c9
TS
4444 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
4445 break;
4446 case SHT_MIPS_IFACE:
4447 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 4448 return FALSE;
b49e97c9
TS
4449 break;
4450 case SHT_MIPS_CONTENT:
4451 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
b34976b6 4452 return FALSE;
b49e97c9
TS
4453 break;
4454 case SHT_MIPS_OPTIONS:
4455 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
b34976b6 4456 return FALSE;
b49e97c9
TS
4457 break;
4458 case SHT_MIPS_DWARF:
4459 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
b34976b6 4460 return FALSE;
b49e97c9
TS
4461 break;
4462 case SHT_MIPS_SYMBOL_LIB:
4463 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 4464 return FALSE;
b49e97c9
TS
4465 break;
4466 case SHT_MIPS_EVENTS:
4467 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
4468 && strncmp (name, ".MIPS.post_rel",
4469 sizeof ".MIPS.post_rel" - 1) != 0)
b34976b6 4470 return FALSE;
b49e97c9
TS
4471 break;
4472 default:
b34976b6 4473 return FALSE;
b49e97c9
TS
4474 }
4475
4476 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
b34976b6 4477 return FALSE;
b49e97c9
TS
4478
4479 if (flags)
4480 {
4481 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
4482 (bfd_get_section_flags (abfd,
4483 hdr->bfd_section)
4484 | flags)))
b34976b6 4485 return FALSE;
b49e97c9
TS
4486 }
4487
4488 /* FIXME: We should record sh_info for a .gptab section. */
4489
4490 /* For a .reginfo section, set the gp value in the tdata information
4491 from the contents of this section. We need the gp value while
4492 processing relocs, so we just get it now. The .reginfo section
4493 is not used in the 64-bit MIPS ELF ABI. */
4494 if (hdr->sh_type == SHT_MIPS_REGINFO)
4495 {
4496 Elf32_External_RegInfo ext;
4497 Elf32_RegInfo s;
4498
9719ad41
RS
4499 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
4500 &ext, 0, sizeof ext))
b34976b6 4501 return FALSE;
b49e97c9
TS
4502 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
4503 elf_gp (abfd) = s.ri_gp_value;
4504 }
4505
4506 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
4507 set the gp value based on what we find. We may see both
4508 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
4509 they should agree. */
4510 if (hdr->sh_type == SHT_MIPS_OPTIONS)
4511 {
4512 bfd_byte *contents, *l, *lend;
4513
9719ad41 4514 contents = bfd_malloc (hdr->sh_size);
b49e97c9 4515 if (contents == NULL)
b34976b6 4516 return FALSE;
b49e97c9 4517 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 4518 0, hdr->sh_size))
b49e97c9
TS
4519 {
4520 free (contents);
b34976b6 4521 return FALSE;
b49e97c9
TS
4522 }
4523 l = contents;
4524 lend = contents + hdr->sh_size;
4525 while (l + sizeof (Elf_External_Options) <= lend)
4526 {
4527 Elf_Internal_Options intopt;
4528
4529 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4530 &intopt);
4531 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4532 {
4533 Elf64_Internal_RegInfo intreg;
4534
4535 bfd_mips_elf64_swap_reginfo_in
4536 (abfd,
4537 ((Elf64_External_RegInfo *)
4538 (l + sizeof (Elf_External_Options))),
4539 &intreg);
4540 elf_gp (abfd) = intreg.ri_gp_value;
4541 }
4542 else if (intopt.kind == ODK_REGINFO)
4543 {
4544 Elf32_RegInfo intreg;
4545
4546 bfd_mips_elf32_swap_reginfo_in
4547 (abfd,
4548 ((Elf32_External_RegInfo *)
4549 (l + sizeof (Elf_External_Options))),
4550 &intreg);
4551 elf_gp (abfd) = intreg.ri_gp_value;
4552 }
4553 l += intopt.size;
4554 }
4555 free (contents);
4556 }
4557
b34976b6 4558 return TRUE;
b49e97c9
TS
4559}
4560
4561/* Set the correct type for a MIPS ELF section. We do this by the
4562 section name, which is a hack, but ought to work. This routine is
4563 used by both the 32-bit and the 64-bit ABI. */
4564
b34976b6 4565bfd_boolean
9719ad41 4566_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9
TS
4567{
4568 register const char *name;
4569
4570 name = bfd_get_section_name (abfd, sec);
4571
4572 if (strcmp (name, ".liblist") == 0)
4573 {
4574 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 4575 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
4576 /* The sh_link field is set in final_write_processing. */
4577 }
4578 else if (strcmp (name, ".conflict") == 0)
4579 hdr->sh_type = SHT_MIPS_CONFLICT;
4580 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
4581 {
4582 hdr->sh_type = SHT_MIPS_GPTAB;
4583 hdr->sh_entsize = sizeof (Elf32_External_gptab);
4584 /* The sh_info field is set in final_write_processing. */
4585 }
4586 else if (strcmp (name, ".ucode") == 0)
4587 hdr->sh_type = SHT_MIPS_UCODE;
4588 else if (strcmp (name, ".mdebug") == 0)
4589 {
4590 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 4591 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
4592 entsize of 0. FIXME: Does this matter? */
4593 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
4594 hdr->sh_entsize = 0;
4595 else
4596 hdr->sh_entsize = 1;
4597 }
4598 else if (strcmp (name, ".reginfo") == 0)
4599 {
4600 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 4601 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
4602 entsize of 0x18. FIXME: Does this matter? */
4603 if (SGI_COMPAT (abfd))
4604 {
4605 if ((abfd->flags & DYNAMIC) != 0)
4606 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4607 else
4608 hdr->sh_entsize = 1;
4609 }
4610 else
4611 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4612 }
4613 else if (SGI_COMPAT (abfd)
4614 && (strcmp (name, ".hash") == 0
4615 || strcmp (name, ".dynamic") == 0
4616 || strcmp (name, ".dynstr") == 0))
4617 {
4618 if (SGI_COMPAT (abfd))
4619 hdr->sh_entsize = 0;
4620#if 0
8dc1a139 4621 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
4622 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
4623#endif
4624 }
4625 else if (strcmp (name, ".got") == 0
4626 || strcmp (name, ".srdata") == 0
4627 || strcmp (name, ".sdata") == 0
4628 || strcmp (name, ".sbss") == 0
4629 || strcmp (name, ".lit4") == 0
4630 || strcmp (name, ".lit8") == 0)
4631 hdr->sh_flags |= SHF_MIPS_GPREL;
4632 else if (strcmp (name, ".MIPS.interfaces") == 0)
4633 {
4634 hdr->sh_type = SHT_MIPS_IFACE;
4635 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4636 }
4637 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
4638 {
4639 hdr->sh_type = SHT_MIPS_CONTENT;
4640 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4641 /* The sh_info field is set in final_write_processing. */
4642 }
4643 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4644 {
4645 hdr->sh_type = SHT_MIPS_OPTIONS;
4646 hdr->sh_entsize = 1;
4647 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4648 }
4649 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
4650 hdr->sh_type = SHT_MIPS_DWARF;
4651 else if (strcmp (name, ".MIPS.symlib") == 0)
4652 {
4653 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
4654 /* The sh_link and sh_info fields are set in
4655 final_write_processing. */
4656 }
4657 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
4658 || strncmp (name, ".MIPS.post_rel",
4659 sizeof ".MIPS.post_rel" - 1) == 0)
4660 {
4661 hdr->sh_type = SHT_MIPS_EVENTS;
4662 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4663 /* The sh_link field is set in final_write_processing. */
4664 }
4665 else if (strcmp (name, ".msym") == 0)
4666 {
4667 hdr->sh_type = SHT_MIPS_MSYM;
4668 hdr->sh_flags |= SHF_ALLOC;
4669 hdr->sh_entsize = 8;
4670 }
4671
7a79a000
TS
4672 /* The generic elf_fake_sections will set up REL_HDR using the default
4673 kind of relocations. We used to set up a second header for the
4674 non-default kind of relocations here, but only NewABI would use
4675 these, and the IRIX ld doesn't like resulting empty RELA sections.
4676 Thus we create those header only on demand now. */
b49e97c9 4677
b34976b6 4678 return TRUE;
b49e97c9
TS
4679}
4680
4681/* Given a BFD section, try to locate the corresponding ELF section
4682 index. This is used by both the 32-bit and the 64-bit ABI.
4683 Actually, it's not clear to me that the 64-bit ABI supports these,
4684 but for non-PIC objects we will certainly want support for at least
4685 the .scommon section. */
4686
b34976b6 4687bfd_boolean
9719ad41
RS
4688_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
4689 asection *sec, int *retval)
b49e97c9
TS
4690{
4691 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
4692 {
4693 *retval = SHN_MIPS_SCOMMON;
b34976b6 4694 return TRUE;
b49e97c9
TS
4695 }
4696 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
4697 {
4698 *retval = SHN_MIPS_ACOMMON;
b34976b6 4699 return TRUE;
b49e97c9 4700 }
b34976b6 4701 return FALSE;
b49e97c9
TS
4702}
4703\f
4704/* Hook called by the linker routine which adds symbols from an object
4705 file. We must handle the special MIPS section numbers here. */
4706
b34976b6 4707bfd_boolean
9719ad41 4708_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 4709 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
4710 flagword *flagsp ATTRIBUTE_UNUSED,
4711 asection **secp, bfd_vma *valp)
b49e97c9
TS
4712{
4713 if (SGI_COMPAT (abfd)
4714 && (abfd->flags & DYNAMIC) != 0
4715 && strcmp (*namep, "_rld_new_interface") == 0)
4716 {
8dc1a139 4717 /* Skip IRIX5 rld entry name. */
b49e97c9 4718 *namep = NULL;
b34976b6 4719 return TRUE;
b49e97c9
TS
4720 }
4721
4722 switch (sym->st_shndx)
4723 {
4724 case SHN_COMMON:
4725 /* Common symbols less than the GP size are automatically
4726 treated as SHN_MIPS_SCOMMON symbols. */
4727 if (sym->st_size > elf_gp_size (abfd)
4728 || IRIX_COMPAT (abfd) == ict_irix6)
4729 break;
4730 /* Fall through. */
4731 case SHN_MIPS_SCOMMON:
4732 *secp = bfd_make_section_old_way (abfd, ".scommon");
4733 (*secp)->flags |= SEC_IS_COMMON;
4734 *valp = sym->st_size;
4735 break;
4736
4737 case SHN_MIPS_TEXT:
4738 /* This section is used in a shared object. */
4739 if (elf_tdata (abfd)->elf_text_section == NULL)
4740 {
4741 asymbol *elf_text_symbol;
4742 asection *elf_text_section;
4743 bfd_size_type amt = sizeof (asection);
4744
4745 elf_text_section = bfd_zalloc (abfd, amt);
4746 if (elf_text_section == NULL)
b34976b6 4747 return FALSE;
b49e97c9
TS
4748
4749 amt = sizeof (asymbol);
4750 elf_text_symbol = bfd_zalloc (abfd, amt);
4751 if (elf_text_symbol == NULL)
b34976b6 4752 return FALSE;
b49e97c9
TS
4753
4754 /* Initialize the section. */
4755
4756 elf_tdata (abfd)->elf_text_section = elf_text_section;
4757 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4758
4759 elf_text_section->symbol = elf_text_symbol;
4760 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4761
4762 elf_text_section->name = ".text";
4763 elf_text_section->flags = SEC_NO_FLAGS;
4764 elf_text_section->output_section = NULL;
4765 elf_text_section->owner = abfd;
4766 elf_text_symbol->name = ".text";
4767 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4768 elf_text_symbol->section = elf_text_section;
4769 }
4770 /* This code used to do *secp = bfd_und_section_ptr if
4771 info->shared. I don't know why, and that doesn't make sense,
4772 so I took it out. */
4773 *secp = elf_tdata (abfd)->elf_text_section;
4774 break;
4775
4776 case SHN_MIPS_ACOMMON:
4777 /* Fall through. XXX Can we treat this as allocated data? */
4778 case SHN_MIPS_DATA:
4779 /* This section is used in a shared object. */
4780 if (elf_tdata (abfd)->elf_data_section == NULL)
4781 {
4782 asymbol *elf_data_symbol;
4783 asection *elf_data_section;
4784 bfd_size_type amt = sizeof (asection);
4785
4786 elf_data_section = bfd_zalloc (abfd, amt);
4787 if (elf_data_section == NULL)
b34976b6 4788 return FALSE;
b49e97c9
TS
4789
4790 amt = sizeof (asymbol);
4791 elf_data_symbol = bfd_zalloc (abfd, amt);
4792 if (elf_data_symbol == NULL)
b34976b6 4793 return FALSE;
b49e97c9
TS
4794
4795 /* Initialize the section. */
4796
4797 elf_tdata (abfd)->elf_data_section = elf_data_section;
4798 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4799
4800 elf_data_section->symbol = elf_data_symbol;
4801 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4802
4803 elf_data_section->name = ".data";
4804 elf_data_section->flags = SEC_NO_FLAGS;
4805 elf_data_section->output_section = NULL;
4806 elf_data_section->owner = abfd;
4807 elf_data_symbol->name = ".data";
4808 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4809 elf_data_symbol->section = elf_data_section;
4810 }
4811 /* This code used to do *secp = bfd_und_section_ptr if
4812 info->shared. I don't know why, and that doesn't make sense,
4813 so I took it out. */
4814 *secp = elf_tdata (abfd)->elf_data_section;
4815 break;
4816
4817 case SHN_MIPS_SUNDEFINED:
4818 *secp = bfd_und_section_ptr;
4819 break;
4820 }
4821
4822 if (SGI_COMPAT (abfd)
4823 && ! info->shared
4824 && info->hash->creator == abfd->xvec
4825 && strcmp (*namep, "__rld_obj_head") == 0)
4826 {
4827 struct elf_link_hash_entry *h;
14a793b2 4828 struct bfd_link_hash_entry *bh;
b49e97c9
TS
4829
4830 /* Mark __rld_obj_head as dynamic. */
14a793b2 4831 bh = NULL;
b49e97c9 4832 if (! (_bfd_generic_link_add_one_symbol
9719ad41 4833 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 4834 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4835 return FALSE;
14a793b2
AM
4836
4837 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
4838 h->non_elf = 0;
4839 h->def_regular = 1;
b49e97c9
TS
4840 h->type = STT_OBJECT;
4841
c152c796 4842 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 4843 return FALSE;
b49e97c9 4844
b34976b6 4845 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b49e97c9
TS
4846 }
4847
4848 /* If this is a mips16 text symbol, add 1 to the value to make it
4849 odd. This will cause something like .word SYM to come up with
4850 the right value when it is loaded into the PC. */
4851 if (sym->st_other == STO_MIPS16)
4852 ++*valp;
4853
b34976b6 4854 return TRUE;
b49e97c9
TS
4855}
4856
4857/* This hook function is called before the linker writes out a global
4858 symbol. We mark symbols as small common if appropriate. This is
4859 also where we undo the increment of the value for a mips16 symbol. */
4860
b34976b6 4861bfd_boolean
9719ad41
RS
4862_bfd_mips_elf_link_output_symbol_hook
4863 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
4864 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
4865 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
4866{
4867 /* If we see a common symbol, which implies a relocatable link, then
4868 if a symbol was small common in an input file, mark it as small
4869 common in the output file. */
4870 if (sym->st_shndx == SHN_COMMON
4871 && strcmp (input_sec->name, ".scommon") == 0)
4872 sym->st_shndx = SHN_MIPS_SCOMMON;
4873
79cda7cf
FF
4874 if (sym->st_other == STO_MIPS16)
4875 sym->st_value &= ~1;
b49e97c9 4876
b34976b6 4877 return TRUE;
b49e97c9
TS
4878}
4879\f
4880/* Functions for the dynamic linker. */
4881
4882/* Create dynamic sections when linking against a dynamic object. */
4883
b34976b6 4884bfd_boolean
9719ad41 4885_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
4886{
4887 struct elf_link_hash_entry *h;
14a793b2 4888 struct bfd_link_hash_entry *bh;
b49e97c9
TS
4889 flagword flags;
4890 register asection *s;
4891 const char * const *namep;
4892
4893 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4894 | SEC_LINKER_CREATED | SEC_READONLY);
4895
4896 /* Mips ABI requests the .dynamic section to be read only. */
4897 s = bfd_get_section_by_name (abfd, ".dynamic");
4898 if (s != NULL)
4899 {
4900 if (! bfd_set_section_flags (abfd, s, flags))
b34976b6 4901 return FALSE;
b49e97c9
TS
4902 }
4903
4904 /* We need to create .got section. */
f4416af6
AO
4905 if (! mips_elf_create_got_section (abfd, info, FALSE))
4906 return FALSE;
4907
4908 if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE))
b34976b6 4909 return FALSE;
b49e97c9 4910
b49e97c9
TS
4911 /* Create .stub section. */
4912 if (bfd_get_section_by_name (abfd,
4913 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
4914 {
4915 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
4916 if (s == NULL
4917 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
4918 || ! bfd_set_section_alignment (abfd, s,
4919 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 4920 return FALSE;
b49e97c9
TS
4921 }
4922
4923 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
4924 && !info->shared
4925 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
4926 {
4927 s = bfd_make_section (abfd, ".rld_map");
4928 if (s == NULL
4929 || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY)
4930 || ! bfd_set_section_alignment (abfd, s,
4931 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 4932 return FALSE;
b49e97c9
TS
4933 }
4934
4935 /* On IRIX5, we adjust add some additional symbols and change the
4936 alignments of several sections. There is no ABI documentation
4937 indicating that this is necessary on IRIX6, nor any evidence that
4938 the linker takes such action. */
4939 if (IRIX_COMPAT (abfd) == ict_irix5)
4940 {
4941 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
4942 {
14a793b2 4943 bh = NULL;
b49e97c9 4944 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
4945 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
4946 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4947 return FALSE;
14a793b2
AM
4948
4949 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
4950 h->non_elf = 0;
4951 h->def_regular = 1;
b49e97c9
TS
4952 h->type = STT_SECTION;
4953
c152c796 4954 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 4955 return FALSE;
b49e97c9
TS
4956 }
4957
4958 /* We need to create a .compact_rel section. */
4959 if (SGI_COMPAT (abfd))
4960 {
4961 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 4962 return FALSE;
b49e97c9
TS
4963 }
4964
44c410de 4965 /* Change alignments of some sections. */
b49e97c9
TS
4966 s = bfd_get_section_by_name (abfd, ".hash");
4967 if (s != NULL)
d80dcc6a 4968 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
4969 s = bfd_get_section_by_name (abfd, ".dynsym");
4970 if (s != NULL)
d80dcc6a 4971 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
4972 s = bfd_get_section_by_name (abfd, ".dynstr");
4973 if (s != NULL)
d80dcc6a 4974 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
4975 s = bfd_get_section_by_name (abfd, ".reginfo");
4976 if (s != NULL)
d80dcc6a 4977 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
4978 s = bfd_get_section_by_name (abfd, ".dynamic");
4979 if (s != NULL)
d80dcc6a 4980 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
4981 }
4982
4983 if (!info->shared)
4984 {
14a793b2
AM
4985 const char *name;
4986
4987 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
4988 bh = NULL;
4989 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
4990 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
4991 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4992 return FALSE;
14a793b2
AM
4993
4994 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
4995 h->non_elf = 0;
4996 h->def_regular = 1;
b49e97c9
TS
4997 h->type = STT_SECTION;
4998
c152c796 4999 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5000 return FALSE;
b49e97c9
TS
5001
5002 if (! mips_elf_hash_table (info)->use_rld_obj_head)
5003 {
5004 /* __rld_map is a four byte word located in the .data section
5005 and is filled in by the rtld to contain a pointer to
5006 the _r_debug structure. Its symbol value will be set in
5007 _bfd_mips_elf_finish_dynamic_symbol. */
5008 s = bfd_get_section_by_name (abfd, ".rld_map");
5009 BFD_ASSERT (s != NULL);
5010
14a793b2
AM
5011 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
5012 bh = NULL;
5013 if (!(_bfd_generic_link_add_one_symbol
9719ad41 5014 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
14a793b2 5015 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5016 return FALSE;
14a793b2
AM
5017
5018 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5019 h->non_elf = 0;
5020 h->def_regular = 1;
b49e97c9
TS
5021 h->type = STT_OBJECT;
5022
c152c796 5023 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5024 return FALSE;
b49e97c9
TS
5025 }
5026 }
5027
b34976b6 5028 return TRUE;
b49e97c9
TS
5029}
5030\f
5031/* Look through the relocs for a section during the first phase, and
5032 allocate space in the global offset table. */
5033
b34976b6 5034bfd_boolean
9719ad41
RS
5035_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
5036 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
5037{
5038 const char *name;
5039 bfd *dynobj;
5040 Elf_Internal_Shdr *symtab_hdr;
5041 struct elf_link_hash_entry **sym_hashes;
5042 struct mips_got_info *g;
5043 size_t extsymoff;
5044 const Elf_Internal_Rela *rel;
5045 const Elf_Internal_Rela *rel_end;
5046 asection *sgot;
5047 asection *sreloc;
9c5bfbb7 5048 const struct elf_backend_data *bed;
b49e97c9 5049
1049f94e 5050 if (info->relocatable)
b34976b6 5051 return TRUE;
b49e97c9
TS
5052
5053 dynobj = elf_hash_table (info)->dynobj;
5054 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5055 sym_hashes = elf_sym_hashes (abfd);
5056 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5057
5058 /* Check for the mips16 stub sections. */
5059
5060 name = bfd_get_section_name (abfd, sec);
5061 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
5062 {
5063 unsigned long r_symndx;
5064
5065 /* Look at the relocation information to figure out which symbol
5066 this is for. */
5067
5068 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5069
5070 if (r_symndx < extsymoff
5071 || sym_hashes[r_symndx - extsymoff] == NULL)
5072 {
5073 asection *o;
5074
5075 /* This stub is for a local symbol. This stub will only be
5076 needed if there is some relocation in this BFD, other
5077 than a 16 bit function call, which refers to this symbol. */
5078 for (o = abfd->sections; o != NULL; o = o->next)
5079 {
5080 Elf_Internal_Rela *sec_relocs;
5081 const Elf_Internal_Rela *r, *rend;
5082
5083 /* We can ignore stub sections when looking for relocs. */
5084 if ((o->flags & SEC_RELOC) == 0
5085 || o->reloc_count == 0
5086 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
5087 sizeof FN_STUB - 1) == 0
5088 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
5089 sizeof CALL_STUB - 1) == 0
5090 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
5091 sizeof CALL_FP_STUB - 1) == 0)
5092 continue;
5093
45d6a902 5094 sec_relocs
9719ad41 5095 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 5096 info->keep_memory);
b49e97c9 5097 if (sec_relocs == NULL)
b34976b6 5098 return FALSE;
b49e97c9
TS
5099
5100 rend = sec_relocs + o->reloc_count;
5101 for (r = sec_relocs; r < rend; r++)
5102 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
5103 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
5104 break;
5105
6cdc0ccc 5106 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
5107 free (sec_relocs);
5108
5109 if (r < rend)
5110 break;
5111 }
5112
5113 if (o == NULL)
5114 {
5115 /* There is no non-call reloc for this stub, so we do
5116 not need it. Since this function is called before
5117 the linker maps input sections to output sections, we
5118 can easily discard it by setting the SEC_EXCLUDE
5119 flag. */
5120 sec->flags |= SEC_EXCLUDE;
b34976b6 5121 return TRUE;
b49e97c9
TS
5122 }
5123
5124 /* Record this stub in an array of local symbol stubs for
5125 this BFD. */
5126 if (elf_tdata (abfd)->local_stubs == NULL)
5127 {
5128 unsigned long symcount;
5129 asection **n;
5130 bfd_size_type amt;
5131
5132 if (elf_bad_symtab (abfd))
5133 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
5134 else
5135 symcount = symtab_hdr->sh_info;
5136 amt = symcount * sizeof (asection *);
9719ad41 5137 n = bfd_zalloc (abfd, amt);
b49e97c9 5138 if (n == NULL)
b34976b6 5139 return FALSE;
b49e97c9
TS
5140 elf_tdata (abfd)->local_stubs = n;
5141 }
5142
5143 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
5144
5145 /* We don't need to set mips16_stubs_seen in this case.
5146 That flag is used to see whether we need to look through
5147 the global symbol table for stubs. We don't need to set
5148 it here, because we just have a local stub. */
5149 }
5150 else
5151 {
5152 struct mips_elf_link_hash_entry *h;
5153
5154 h = ((struct mips_elf_link_hash_entry *)
5155 sym_hashes[r_symndx - extsymoff]);
5156
5157 /* H is the symbol this stub is for. */
5158
5159 h->fn_stub = sec;
b34976b6 5160 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
5161 }
5162 }
5163 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
5164 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5165 {
5166 unsigned long r_symndx;
5167 struct mips_elf_link_hash_entry *h;
5168 asection **loc;
5169
5170 /* Look at the relocation information to figure out which symbol
5171 this is for. */
5172
5173 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5174
5175 if (r_symndx < extsymoff
5176 || sym_hashes[r_symndx - extsymoff] == NULL)
5177 {
5178 /* This stub was actually built for a static symbol defined
5179 in the same file. We assume that all static symbols in
5180 mips16 code are themselves mips16, so we can simply
5181 discard this stub. Since this function is called before
5182 the linker maps input sections to output sections, we can
5183 easily discard it by setting the SEC_EXCLUDE flag. */
5184 sec->flags |= SEC_EXCLUDE;
b34976b6 5185 return TRUE;
b49e97c9
TS
5186 }
5187
5188 h = ((struct mips_elf_link_hash_entry *)
5189 sym_hashes[r_symndx - extsymoff]);
5190
5191 /* H is the symbol this stub is for. */
5192
5193 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5194 loc = &h->call_fp_stub;
5195 else
5196 loc = &h->call_stub;
5197
5198 /* If we already have an appropriate stub for this function, we
5199 don't need another one, so we can discard this one. Since
5200 this function is called before the linker maps input sections
5201 to output sections, we can easily discard it by setting the
5202 SEC_EXCLUDE flag. We can also discard this section if we
5203 happen to already know that this is a mips16 function; it is
5204 not necessary to check this here, as it is checked later, but
5205 it is slightly faster to check now. */
5206 if (*loc != NULL || h->root.other == STO_MIPS16)
5207 {
5208 sec->flags |= SEC_EXCLUDE;
b34976b6 5209 return TRUE;
b49e97c9
TS
5210 }
5211
5212 *loc = sec;
b34976b6 5213 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
5214 }
5215
5216 if (dynobj == NULL)
5217 {
5218 sgot = NULL;
5219 g = NULL;
5220 }
5221 else
5222 {
f4416af6 5223 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9
TS
5224 if (sgot == NULL)
5225 g = NULL;
5226 else
5227 {
f0abc2a1
AM
5228 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
5229 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
5230 BFD_ASSERT (g != NULL);
5231 }
5232 }
5233
5234 sreloc = NULL;
5235 bed = get_elf_backend_data (abfd);
5236 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
5237 for (rel = relocs; rel < rel_end; ++rel)
5238 {
5239 unsigned long r_symndx;
5240 unsigned int r_type;
5241 struct elf_link_hash_entry *h;
5242
5243 r_symndx = ELF_R_SYM (abfd, rel->r_info);
5244 r_type = ELF_R_TYPE (abfd, rel->r_info);
5245
5246 if (r_symndx < extsymoff)
5247 h = NULL;
5248 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
5249 {
5250 (*_bfd_error_handler)
d003868e
AM
5251 (_("%B: Malformed reloc detected for section %s"),
5252 abfd, name);
b49e97c9 5253 bfd_set_error (bfd_error_bad_value);
b34976b6 5254 return FALSE;
b49e97c9
TS
5255 }
5256 else
5257 {
5258 h = sym_hashes[r_symndx - extsymoff];
5259
5260 /* This may be an indirect symbol created because of a version. */
5261 if (h != NULL)
5262 {
5263 while (h->root.type == bfd_link_hash_indirect)
5264 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5265 }
5266 }
5267
5268 /* Some relocs require a global offset table. */
5269 if (dynobj == NULL || sgot == NULL)
5270 {
5271 switch (r_type)
5272 {
5273 case R_MIPS_GOT16:
5274 case R_MIPS_CALL16:
5275 case R_MIPS_CALL_HI16:
5276 case R_MIPS_CALL_LO16:
5277 case R_MIPS_GOT_HI16:
5278 case R_MIPS_GOT_LO16:
5279 case R_MIPS_GOT_PAGE:
5280 case R_MIPS_GOT_OFST:
5281 case R_MIPS_GOT_DISP:
5282 if (dynobj == NULL)
5283 elf_hash_table (info)->dynobj = dynobj = abfd;
f4416af6 5284 if (! mips_elf_create_got_section (dynobj, info, FALSE))
b34976b6 5285 return FALSE;
b49e97c9
TS
5286 g = mips_elf_got_info (dynobj, &sgot);
5287 break;
5288
5289 case R_MIPS_32:
5290 case R_MIPS_REL32:
5291 case R_MIPS_64:
5292 if (dynobj == NULL
5293 && (info->shared || h != NULL)
5294 && (sec->flags & SEC_ALLOC) != 0)
5295 elf_hash_table (info)->dynobj = dynobj = abfd;
5296 break;
5297
5298 default:
5299 break;
5300 }
5301 }
5302
5303 if (!h && (r_type == R_MIPS_CALL_LO16
5304 || r_type == R_MIPS_GOT_LO16
5305 || r_type == R_MIPS_GOT_DISP))
5306 {
5307 /* We may need a local GOT entry for this relocation. We
5308 don't count R_MIPS_GOT_PAGE because we can estimate the
5309 maximum number of pages needed by looking at the size of
5310 the segment. Similar comments apply to R_MIPS_GOT16 and
5311 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
5312 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 5313 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
f4416af6
AO
5314 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
5315 rel->r_addend, g))
5316 return FALSE;
b49e97c9
TS
5317 }
5318
5319 switch (r_type)
5320 {
5321 case R_MIPS_CALL16:
5322 if (h == NULL)
5323 {
5324 (*_bfd_error_handler)
d003868e
AM
5325 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
5326 abfd, (unsigned long) rel->r_offset);
b49e97c9 5327 bfd_set_error (bfd_error_bad_value);
b34976b6 5328 return FALSE;
b49e97c9
TS
5329 }
5330 /* Fall through. */
5331
5332 case R_MIPS_CALL_HI16:
5333 case R_MIPS_CALL_LO16:
5334 if (h != NULL)
5335 {
5336 /* This symbol requires a global offset table entry. */
f4416af6 5337 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
b34976b6 5338 return FALSE;
b49e97c9
TS
5339
5340 /* We need a stub, not a plt entry for the undefined
5341 function. But we record it as if it needs plt. See
c152c796 5342 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 5343 h->needs_plt = 1;
b49e97c9
TS
5344 h->type = STT_FUNC;
5345 }
5346 break;
5347
0fdc1bf1
AO
5348 case R_MIPS_GOT_PAGE:
5349 /* If this is a global, overridable symbol, GOT_PAGE will
5350 decay to GOT_DISP, so we'll need a GOT entry for it. */
5351 if (h == NULL)
5352 break;
5353 else
5354 {
5355 struct mips_elf_link_hash_entry *hmips =
5356 (struct mips_elf_link_hash_entry *) h;
143d77c5 5357
0fdc1bf1
AO
5358 while (hmips->root.root.type == bfd_link_hash_indirect
5359 || hmips->root.root.type == bfd_link_hash_warning)
5360 hmips = (struct mips_elf_link_hash_entry *)
5361 hmips->root.root.u.i.link;
143d77c5 5362
f5385ebf 5363 if (hmips->root.def_regular
0fdc1bf1 5364 && ! (info->shared && ! info->symbolic
f5385ebf 5365 && ! hmips->root.forced_local))
0fdc1bf1
AO
5366 break;
5367 }
5368 /* Fall through. */
5369
b49e97c9
TS
5370 case R_MIPS_GOT16:
5371 case R_MIPS_GOT_HI16:
5372 case R_MIPS_GOT_LO16:
5373 case R_MIPS_GOT_DISP:
5374 /* This symbol requires a global offset table entry. */
f4416af6 5375 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g))
b34976b6 5376 return FALSE;
b49e97c9
TS
5377 break;
5378
5379 case R_MIPS_32:
5380 case R_MIPS_REL32:
5381 case R_MIPS_64:
5382 if ((info->shared || h != NULL)
5383 && (sec->flags & SEC_ALLOC) != 0)
5384 {
5385 if (sreloc == NULL)
5386 {
f4416af6 5387 sreloc = mips_elf_rel_dyn_section (dynobj, TRUE);
b49e97c9 5388 if (sreloc == NULL)
f4416af6 5389 return FALSE;
b49e97c9
TS
5390 }
5391#define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
5392 if (info->shared)
5393 {
5394 /* When creating a shared object, we must copy these
5395 reloc types into the output file as R_MIPS_REL32
5396 relocs. We make room for this reloc in the
5397 .rel.dyn reloc section. */
5398 mips_elf_allocate_dynamic_relocations (dynobj, 1);
5399 if ((sec->flags & MIPS_READONLY_SECTION)
5400 == MIPS_READONLY_SECTION)
5401 /* We tell the dynamic linker that there are
5402 relocations against the text segment. */
5403 info->flags |= DF_TEXTREL;
5404 }
5405 else
5406 {
5407 struct mips_elf_link_hash_entry *hmips;
5408
5409 /* We only need to copy this reloc if the symbol is
5410 defined in a dynamic object. */
5411 hmips = (struct mips_elf_link_hash_entry *) h;
5412 ++hmips->possibly_dynamic_relocs;
5413 if ((sec->flags & MIPS_READONLY_SECTION)
5414 == MIPS_READONLY_SECTION)
5415 /* We need it to tell the dynamic linker if there
5416 are relocations against the text segment. */
b34976b6 5417 hmips->readonly_reloc = TRUE;
b49e97c9
TS
5418 }
5419
5420 /* Even though we don't directly need a GOT entry for
5421 this symbol, a symbol must have a dynamic symbol
5422 table index greater that DT_MIPS_GOTSYM if there are
5423 dynamic relocations against it. */
f4416af6
AO
5424 if (h != NULL)
5425 {
5426 if (dynobj == NULL)
5427 elf_hash_table (info)->dynobj = dynobj = abfd;
5428 if (! mips_elf_create_got_section (dynobj, info, TRUE))
5429 return FALSE;
5430 g = mips_elf_got_info (dynobj, &sgot);
5431 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5432 return FALSE;
5433 }
b49e97c9
TS
5434 }
5435
5436 if (SGI_COMPAT (abfd))
5437 mips_elf_hash_table (info)->compact_rel_size +=
5438 sizeof (Elf32_External_crinfo);
5439 break;
5440
5441 case R_MIPS_26:
5442 case R_MIPS_GPREL16:
5443 case R_MIPS_LITERAL:
5444 case R_MIPS_GPREL32:
5445 if (SGI_COMPAT (abfd))
5446 mips_elf_hash_table (info)->compact_rel_size +=
5447 sizeof (Elf32_External_crinfo);
5448 break;
5449
5450 /* This relocation describes the C++ object vtable hierarchy.
5451 Reconstruct it for later use during GC. */
5452 case R_MIPS_GNU_VTINHERIT:
c152c796 5453 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 5454 return FALSE;
b49e97c9
TS
5455 break;
5456
5457 /* This relocation describes which C++ vtable entries are actually
5458 used. Record for later use during GC. */
5459 case R_MIPS_GNU_VTENTRY:
c152c796 5460 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 5461 return FALSE;
b49e97c9
TS
5462 break;
5463
5464 default:
5465 break;
5466 }
5467
5468 /* We must not create a stub for a symbol that has relocations
5469 related to taking the function's address. */
5470 switch (r_type)
5471 {
5472 default:
5473 if (h != NULL)
5474 {
5475 struct mips_elf_link_hash_entry *mh;
5476
5477 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 5478 mh->no_fn_stub = TRUE;
b49e97c9
TS
5479 }
5480 break;
5481 case R_MIPS_CALL16:
5482 case R_MIPS_CALL_HI16:
5483 case R_MIPS_CALL_LO16:
2b86c02e 5484 case R_MIPS_JALR:
b49e97c9
TS
5485 break;
5486 }
5487
5488 /* If this reloc is not a 16 bit call, and it has a global
5489 symbol, then we will need the fn_stub if there is one.
5490 References from a stub section do not count. */
5491 if (h != NULL
5492 && r_type != R_MIPS16_26
5493 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
5494 sizeof FN_STUB - 1) != 0
5495 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
5496 sizeof CALL_STUB - 1) != 0
5497 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
5498 sizeof CALL_FP_STUB - 1) != 0)
5499 {
5500 struct mips_elf_link_hash_entry *mh;
5501
5502 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 5503 mh->need_fn_stub = TRUE;
b49e97c9
TS
5504 }
5505 }
5506
b34976b6 5507 return TRUE;
b49e97c9
TS
5508}
5509\f
d0647110 5510bfd_boolean
9719ad41
RS
5511_bfd_mips_relax_section (bfd *abfd, asection *sec,
5512 struct bfd_link_info *link_info,
5513 bfd_boolean *again)
d0647110
AO
5514{
5515 Elf_Internal_Rela *internal_relocs;
5516 Elf_Internal_Rela *irel, *irelend;
5517 Elf_Internal_Shdr *symtab_hdr;
5518 bfd_byte *contents = NULL;
d0647110
AO
5519 size_t extsymoff;
5520 bfd_boolean changed_contents = FALSE;
5521 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
5522 Elf_Internal_Sym *isymbuf = NULL;
5523
5524 /* We are not currently changing any sizes, so only one pass. */
5525 *again = FALSE;
5526
1049f94e 5527 if (link_info->relocatable)
d0647110
AO
5528 return TRUE;
5529
9719ad41 5530 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
45d6a902 5531 link_info->keep_memory);
d0647110
AO
5532 if (internal_relocs == NULL)
5533 return TRUE;
5534
5535 irelend = internal_relocs + sec->reloc_count
5536 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
5537 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5538 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5539
5540 for (irel = internal_relocs; irel < irelend; irel++)
5541 {
5542 bfd_vma symval;
5543 bfd_signed_vma sym_offset;
5544 unsigned int r_type;
5545 unsigned long r_symndx;
5546 asection *sym_sec;
5547 unsigned long instruction;
5548
5549 /* Turn jalr into bgezal, and jr into beq, if they're marked
5550 with a JALR relocation, that indicate where they jump to.
5551 This saves some pipeline bubbles. */
5552 r_type = ELF_R_TYPE (abfd, irel->r_info);
5553 if (r_type != R_MIPS_JALR)
5554 continue;
5555
5556 r_symndx = ELF_R_SYM (abfd, irel->r_info);
5557 /* Compute the address of the jump target. */
5558 if (r_symndx >= extsymoff)
5559 {
5560 struct mips_elf_link_hash_entry *h
5561 = ((struct mips_elf_link_hash_entry *)
5562 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
5563
5564 while (h->root.root.type == bfd_link_hash_indirect
5565 || h->root.root.type == bfd_link_hash_warning)
5566 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 5567
d0647110
AO
5568 /* If a symbol is undefined, or if it may be overridden,
5569 skip it. */
5570 if (! ((h->root.root.type == bfd_link_hash_defined
5571 || h->root.root.type == bfd_link_hash_defweak)
5572 && h->root.root.u.def.section)
5573 || (link_info->shared && ! link_info->symbolic
f5385ebf 5574 && !h->root.forced_local))
d0647110
AO
5575 continue;
5576
5577 sym_sec = h->root.root.u.def.section;
5578 if (sym_sec->output_section)
5579 symval = (h->root.root.u.def.value
5580 + sym_sec->output_section->vma
5581 + sym_sec->output_offset);
5582 else
5583 symval = h->root.root.u.def.value;
5584 }
5585 else
5586 {
5587 Elf_Internal_Sym *isym;
5588
5589 /* Read this BFD's symbols if we haven't done so already. */
5590 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
5591 {
5592 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5593 if (isymbuf == NULL)
5594 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
5595 symtab_hdr->sh_info, 0,
5596 NULL, NULL, NULL);
5597 if (isymbuf == NULL)
5598 goto relax_return;
5599 }
5600
5601 isym = isymbuf + r_symndx;
5602 if (isym->st_shndx == SHN_UNDEF)
5603 continue;
5604 else if (isym->st_shndx == SHN_ABS)
5605 sym_sec = bfd_abs_section_ptr;
5606 else if (isym->st_shndx == SHN_COMMON)
5607 sym_sec = bfd_com_section_ptr;
5608 else
5609 sym_sec
5610 = bfd_section_from_elf_index (abfd, isym->st_shndx);
5611 symval = isym->st_value
5612 + sym_sec->output_section->vma
5613 + sym_sec->output_offset;
5614 }
5615
5616 /* Compute branch offset, from delay slot of the jump to the
5617 branch target. */
5618 sym_offset = (symval + irel->r_addend)
5619 - (sec_start + irel->r_offset + 4);
5620
5621 /* Branch offset must be properly aligned. */
5622 if ((sym_offset & 3) != 0)
5623 continue;
5624
5625 sym_offset >>= 2;
5626
5627 /* Check that it's in range. */
5628 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
5629 continue;
143d77c5 5630
d0647110
AO
5631 /* Get the section contents if we haven't done so already. */
5632 if (contents == NULL)
5633 {
5634 /* Get cached copy if it exists. */
5635 if (elf_section_data (sec)->this_hdr.contents != NULL)
5636 contents = elf_section_data (sec)->this_hdr.contents;
5637 else
5638 {
eea6121a 5639 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
d0647110
AO
5640 goto relax_return;
5641 }
5642 }
5643
5644 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
5645
5646 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
5647 if ((instruction & 0xfc1fffff) == 0x0000f809)
5648 instruction = 0x04110000;
5649 /* If it was jr <reg>, turn it into b <target>. */
5650 else if ((instruction & 0xfc1fffff) == 0x00000008)
5651 instruction = 0x10000000;
5652 else
5653 continue;
5654
5655 instruction |= (sym_offset & 0xffff);
5656 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
5657 changed_contents = TRUE;
5658 }
5659
5660 if (contents != NULL
5661 && elf_section_data (sec)->this_hdr.contents != contents)
5662 {
5663 if (!changed_contents && !link_info->keep_memory)
5664 free (contents);
5665 else
5666 {
5667 /* Cache the section contents for elf_link_input_bfd. */
5668 elf_section_data (sec)->this_hdr.contents = contents;
5669 }
5670 }
5671 return TRUE;
5672
143d77c5 5673 relax_return:
eea6121a
AM
5674 if (contents != NULL
5675 && elf_section_data (sec)->this_hdr.contents != contents)
5676 free (contents);
d0647110
AO
5677 return FALSE;
5678}
5679\f
b49e97c9
TS
5680/* Adjust a symbol defined by a dynamic object and referenced by a
5681 regular object. The current definition is in some section of the
5682 dynamic object, but we're not including those sections. We have to
5683 change the definition to something the rest of the link can
5684 understand. */
5685
b34976b6 5686bfd_boolean
9719ad41
RS
5687_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
5688 struct elf_link_hash_entry *h)
b49e97c9
TS
5689{
5690 bfd *dynobj;
5691 struct mips_elf_link_hash_entry *hmips;
5692 asection *s;
5693
5694 dynobj = elf_hash_table (info)->dynobj;
5695
5696 /* Make sure we know what is going on here. */
5697 BFD_ASSERT (dynobj != NULL
f5385ebf 5698 && (h->needs_plt
f6e332e6 5699 || h->u.weakdef != NULL
f5385ebf
AM
5700 || (h->def_dynamic
5701 && h->ref_regular
5702 && !h->def_regular)));
b49e97c9
TS
5703
5704 /* If this symbol is defined in a dynamic object, we need to copy
5705 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
5706 file. */
5707 hmips = (struct mips_elf_link_hash_entry *) h;
1049f94e 5708 if (! info->relocatable
b49e97c9
TS
5709 && hmips->possibly_dynamic_relocs != 0
5710 && (h->root.type == bfd_link_hash_defweak
f5385ebf 5711 || !h->def_regular))
b49e97c9
TS
5712 {
5713 mips_elf_allocate_dynamic_relocations (dynobj,
5714 hmips->possibly_dynamic_relocs);
5715 if (hmips->readonly_reloc)
5716 /* We tell the dynamic linker that there are relocations
5717 against the text segment. */
5718 info->flags |= DF_TEXTREL;
5719 }
5720
5721 /* For a function, create a stub, if allowed. */
5722 if (! hmips->no_fn_stub
f5385ebf 5723 && h->needs_plt)
b49e97c9
TS
5724 {
5725 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 5726 return TRUE;
b49e97c9
TS
5727
5728 /* If this symbol is not defined in a regular file, then set
5729 the symbol to the stub location. This is required to make
5730 function pointers compare as equal between the normal
5731 executable and the shared library. */
f5385ebf 5732 if (!h->def_regular)
b49e97c9
TS
5733 {
5734 /* We need .stub section. */
5735 s = bfd_get_section_by_name (dynobj,
5736 MIPS_ELF_STUB_SECTION_NAME (dynobj));
5737 BFD_ASSERT (s != NULL);
5738
5739 h->root.u.def.section = s;
eea6121a 5740 h->root.u.def.value = s->size;
b49e97c9
TS
5741
5742 /* XXX Write this stub address somewhere. */
eea6121a 5743 h->plt.offset = s->size;
b49e97c9
TS
5744
5745 /* Make room for this stub code. */
eea6121a 5746 s->size += MIPS_FUNCTION_STUB_SIZE;
b49e97c9
TS
5747
5748 /* The last half word of the stub will be filled with the index
5749 of this symbol in .dynsym section. */
b34976b6 5750 return TRUE;
b49e97c9
TS
5751 }
5752 }
5753 else if ((h->type == STT_FUNC)
f5385ebf 5754 && !h->needs_plt)
b49e97c9
TS
5755 {
5756 /* This will set the entry for this symbol in the GOT to 0, and
5757 the dynamic linker will take care of this. */
5758 h->root.u.def.value = 0;
b34976b6 5759 return TRUE;
b49e97c9
TS
5760 }
5761
5762 /* If this is a weak symbol, and there is a real definition, the
5763 processor independent code will have arranged for us to see the
5764 real definition first, and we can just use the same value. */
f6e332e6 5765 if (h->u.weakdef != NULL)
b49e97c9 5766 {
f6e332e6
AM
5767 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
5768 || h->u.weakdef->root.type == bfd_link_hash_defweak);
5769 h->root.u.def.section = h->u.weakdef->root.u.def.section;
5770 h->root.u.def.value = h->u.weakdef->root.u.def.value;
b34976b6 5771 return TRUE;
b49e97c9
TS
5772 }
5773
5774 /* This is a reference to a symbol defined by a dynamic object which
5775 is not a function. */
5776
b34976b6 5777 return TRUE;
b49e97c9
TS
5778}
5779\f
5780/* This function is called after all the input files have been read,
5781 and the input sections have been assigned to output sections. We
5782 check for any mips16 stub sections that we can discard. */
5783
b34976b6 5784bfd_boolean
9719ad41
RS
5785_bfd_mips_elf_always_size_sections (bfd *output_bfd,
5786 struct bfd_link_info *info)
b49e97c9
TS
5787{
5788 asection *ri;
5789
f4416af6
AO
5790 bfd *dynobj;
5791 asection *s;
5792 struct mips_got_info *g;
5793 int i;
5794 bfd_size_type loadable_size = 0;
5795 bfd_size_type local_gotno;
5796 bfd *sub;
5797
b49e97c9
TS
5798 /* The .reginfo section has a fixed size. */
5799 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
5800 if (ri != NULL)
9719ad41 5801 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
b49e97c9 5802
1049f94e 5803 if (! (info->relocatable
f4416af6
AO
5804 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
5805 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 5806 mips_elf_check_mips16_stubs, NULL);
f4416af6
AO
5807
5808 dynobj = elf_hash_table (info)->dynobj;
5809 if (dynobj == NULL)
5810 /* Relocatable links don't have it. */
5811 return TRUE;
143d77c5 5812
f4416af6
AO
5813 g = mips_elf_got_info (dynobj, &s);
5814 if (s == NULL)
b34976b6 5815 return TRUE;
b49e97c9 5816
f4416af6
AO
5817 /* Calculate the total loadable size of the output. That
5818 will give us the maximum number of GOT_PAGE entries
5819 required. */
5820 for (sub = info->input_bfds; sub; sub = sub->link_next)
5821 {
5822 asection *subsection;
5823
5824 for (subsection = sub->sections;
5825 subsection;
5826 subsection = subsection->next)
5827 {
5828 if ((subsection->flags & SEC_ALLOC) == 0)
5829 continue;
eea6121a 5830 loadable_size += ((subsection->size + 0xf)
f4416af6
AO
5831 &~ (bfd_size_type) 0xf);
5832 }
5833 }
5834
5835 /* There has to be a global GOT entry for every symbol with
5836 a dynamic symbol table index of DT_MIPS_GOTSYM or
5837 higher. Therefore, it make sense to put those symbols
5838 that need GOT entries at the end of the symbol table. We
5839 do that here. */
5840 if (! mips_elf_sort_hash_table (info, 1))
5841 return FALSE;
5842
5843 if (g->global_gotsym != NULL)
5844 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
5845 else
5846 /* If there are no global symbols, or none requiring
5847 relocations, then GLOBAL_GOTSYM will be NULL. */
5848 i = 0;
5849
5850 /* In the worst case, we'll get one stub per dynamic symbol, plus
5851 one to account for the dummy entry at the end required by IRIX
5852 rld. */
5853 loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);
5854
5855 /* Assume there are two loadable segments consisting of
5856 contiguous sections. Is 5 enough? */
5857 local_gotno = (loadable_size >> 16) + 5;
5858
5859 g->local_gotno += local_gotno;
eea6121a 5860 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
5861
5862 g->global_gotno = i;
eea6121a 5863 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6 5864
eea6121a 5865 if (s->size > MIPS_ELF_GOT_MAX_SIZE (output_bfd)
f4416af6
AO
5866 && ! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
5867 return FALSE;
b49e97c9 5868
b34976b6 5869 return TRUE;
b49e97c9
TS
5870}
5871
5872/* Set the sizes of the dynamic sections. */
5873
b34976b6 5874bfd_boolean
9719ad41
RS
5875_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
5876 struct bfd_link_info *info)
b49e97c9
TS
5877{
5878 bfd *dynobj;
5879 asection *s;
b34976b6 5880 bfd_boolean reltext;
b49e97c9
TS
5881
5882 dynobj = elf_hash_table (info)->dynobj;
5883 BFD_ASSERT (dynobj != NULL);
5884
5885 if (elf_hash_table (info)->dynamic_sections_created)
5886 {
5887 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 5888 if (info->executable)
b49e97c9
TS
5889 {
5890 s = bfd_get_section_by_name (dynobj, ".interp");
5891 BFD_ASSERT (s != NULL);
eea6121a 5892 s->size
b49e97c9
TS
5893 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
5894 s->contents
5895 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
5896 }
5897 }
5898
5899 /* The check_relocs and adjust_dynamic_symbol entry points have
5900 determined the sizes of the various dynamic sections. Allocate
5901 memory for them. */
b34976b6 5902 reltext = FALSE;
b49e97c9
TS
5903 for (s = dynobj->sections; s != NULL; s = s->next)
5904 {
5905 const char *name;
b34976b6 5906 bfd_boolean strip;
b49e97c9
TS
5907
5908 /* It's OK to base decisions on the section name, because none
5909 of the dynobj section names depend upon the input files. */
5910 name = bfd_get_section_name (dynobj, s);
5911
5912 if ((s->flags & SEC_LINKER_CREATED) == 0)
5913 continue;
5914
b34976b6 5915 strip = FALSE;
b49e97c9
TS
5916
5917 if (strncmp (name, ".rel", 4) == 0)
5918 {
eea6121a 5919 if (s->size == 0)
b49e97c9
TS
5920 {
5921 /* We only strip the section if the output section name
5922 has the same name. Otherwise, there might be several
5923 input sections for this output section. FIXME: This
5924 code is probably not needed these days anyhow, since
5925 the linker now does not create empty output sections. */
5926 if (s->output_section != NULL
5927 && strcmp (name,
5928 bfd_get_section_name (s->output_section->owner,
5929 s->output_section)) == 0)
b34976b6 5930 strip = TRUE;
b49e97c9
TS
5931 }
5932 else
5933 {
5934 const char *outname;
5935 asection *target;
5936
5937 /* If this relocation section applies to a read only
5938 section, then we probably need a DT_TEXTREL entry.
5939 If the relocation section is .rel.dyn, we always
5940 assert a DT_TEXTREL entry rather than testing whether
5941 there exists a relocation to a read only section or
5942 not. */
5943 outname = bfd_get_section_name (output_bfd,
5944 s->output_section);
5945 target = bfd_get_section_by_name (output_bfd, outname + 4);
5946 if ((target != NULL
5947 && (target->flags & SEC_READONLY) != 0
5948 && (target->flags & SEC_ALLOC) != 0)
5949 || strcmp (outname, ".rel.dyn") == 0)
b34976b6 5950 reltext = TRUE;
b49e97c9
TS
5951
5952 /* We use the reloc_count field as a counter if we need
5953 to copy relocs into the output file. */
5954 if (strcmp (name, ".rel.dyn") != 0)
5955 s->reloc_count = 0;
f4416af6
AO
5956
5957 /* If combreloc is enabled, elf_link_sort_relocs() will
5958 sort relocations, but in a different way than we do,
5959 and before we're done creating relocations. Also, it
5960 will move them around between input sections'
5961 relocation's contents, so our sorting would be
5962 broken, so don't let it run. */
5963 info->combreloc = 0;
b49e97c9
TS
5964 }
5965 }
5966 else if (strncmp (name, ".got", 4) == 0)
5967 {
f4416af6
AO
5968 /* _bfd_mips_elf_always_size_sections() has already done
5969 most of the work, but some symbols may have been mapped
5970 to versions that we must now resolve in the got_entries
5971 hash tables. */
5972 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
5973 struct mips_got_info *g = gg;
5974 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
5975 unsigned int needed_relocs = 0;
143d77c5 5976
f4416af6 5977 if (gg->next)
b49e97c9 5978 {
f4416af6
AO
5979 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
5980 set_got_offset_arg.info = info;
b49e97c9 5981
f4416af6
AO
5982 mips_elf_resolve_final_got_entries (gg);
5983 for (g = gg->next; g && g->next != gg; g = g->next)
b49e97c9 5984 {
f4416af6
AO
5985 unsigned int save_assign;
5986
5987 mips_elf_resolve_final_got_entries (g);
5988
5989 /* Assign offsets to global GOT entries. */
5990 save_assign = g->assigned_gotno;
5991 g->assigned_gotno = g->local_gotno;
5992 set_got_offset_arg.g = g;
5993 set_got_offset_arg.needed_relocs = 0;
5994 htab_traverse (g->got_entries,
5995 mips_elf_set_global_got_offset,
5996 &set_got_offset_arg);
5997 needed_relocs += set_got_offset_arg.needed_relocs;
5998 BFD_ASSERT (g->assigned_gotno - g->local_gotno
5999 <= g->global_gotno);
6000
6001 g->assigned_gotno = save_assign;
6002 if (info->shared)
6003 {
6004 needed_relocs += g->local_gotno - g->assigned_gotno;
6005 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
6006 + g->next->global_gotno
6007 + MIPS_RESERVED_GOTNO);
6008 }
b49e97c9 6009 }
b49e97c9 6010
f4416af6
AO
6011 if (needed_relocs)
6012 mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs);
6013 }
b49e97c9
TS
6014 }
6015 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
6016 {
8dc1a139 6017 /* IRIX rld assumes that the function stub isn't at the end
b49e97c9 6018 of .text section. So put a dummy. XXX */
eea6121a 6019 s->size += MIPS_FUNCTION_STUB_SIZE;
b49e97c9
TS
6020 }
6021 else if (! info->shared
6022 && ! mips_elf_hash_table (info)->use_rld_obj_head
6023 && strncmp (name, ".rld_map", 8) == 0)
6024 {
6025 /* We add a room for __rld_map. It will be filled in by the
6026 rtld to contain a pointer to the _r_debug structure. */
eea6121a 6027 s->size += 4;
b49e97c9
TS
6028 }
6029 else if (SGI_COMPAT (output_bfd)
6030 && strncmp (name, ".compact_rel", 12) == 0)
eea6121a 6031 s->size += mips_elf_hash_table (info)->compact_rel_size;
b49e97c9
TS
6032 else if (strncmp (name, ".init", 5) != 0)
6033 {
6034 /* It's not one of our sections, so don't allocate space. */
6035 continue;
6036 }
6037
6038 if (strip)
6039 {
6040 _bfd_strip_section_from_output (info, s);
6041 continue;
6042 }
6043
6044 /* Allocate memory for the section contents. */
eea6121a
AM
6045 s->contents = bfd_zalloc (dynobj, s->size);
6046 if (s->contents == NULL && s->size != 0)
b49e97c9
TS
6047 {
6048 bfd_set_error (bfd_error_no_memory);
b34976b6 6049 return FALSE;
b49e97c9
TS
6050 }
6051 }
6052
6053 if (elf_hash_table (info)->dynamic_sections_created)
6054 {
6055 /* Add some entries to the .dynamic section. We fill in the
6056 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
6057 must add the entries now so that we get the correct size for
6058 the .dynamic section. The DT_DEBUG entry is filled in by the
6059 dynamic linker and used by the debugger. */
6060 if (! info->shared)
6061 {
6062 /* SGI object has the equivalence of DT_DEBUG in the
6063 DT_MIPS_RLD_MAP entry. */
6064 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
b34976b6 6065 return FALSE;
b49e97c9
TS
6066 if (!SGI_COMPAT (output_bfd))
6067 {
6068 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
b34976b6 6069 return FALSE;
b49e97c9
TS
6070 }
6071 }
6072 else
6073 {
6074 /* Shared libraries on traditional mips have DT_DEBUG. */
6075 if (!SGI_COMPAT (output_bfd))
6076 {
6077 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
b34976b6 6078 return FALSE;
b49e97c9
TS
6079 }
6080 }
6081
6082 if (reltext && SGI_COMPAT (output_bfd))
6083 info->flags |= DF_TEXTREL;
6084
6085 if ((info->flags & DF_TEXTREL) != 0)
6086 {
6087 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 6088 return FALSE;
b49e97c9
TS
6089 }
6090
6091 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 6092 return FALSE;
b49e97c9 6093
f4416af6 6094 if (mips_elf_rel_dyn_section (dynobj, FALSE))
b49e97c9
TS
6095 {
6096 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
b34976b6 6097 return FALSE;
b49e97c9
TS
6098
6099 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
b34976b6 6100 return FALSE;
b49e97c9
TS
6101
6102 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
b34976b6 6103 return FALSE;
b49e97c9
TS
6104 }
6105
b49e97c9 6106 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
b34976b6 6107 return FALSE;
b49e97c9
TS
6108
6109 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
b34976b6 6110 return FALSE;
b49e97c9
TS
6111
6112#if 0
6113 /* Time stamps in executable files are a bad idea. */
6114 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
b34976b6 6115 return FALSE;
b49e97c9
TS
6116#endif
6117
6118#if 0 /* FIXME */
6119 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
b34976b6 6120 return FALSE;
b49e97c9
TS
6121#endif
6122
6123#if 0 /* FIXME */
6124 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
b34976b6 6125 return FALSE;
b49e97c9
TS
6126#endif
6127
6128 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
b34976b6 6129 return FALSE;
b49e97c9
TS
6130
6131 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
b34976b6 6132 return FALSE;
b49e97c9
TS
6133
6134 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
b34976b6 6135 return FALSE;
b49e97c9
TS
6136
6137 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
b34976b6 6138 return FALSE;
b49e97c9
TS
6139
6140 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
b34976b6 6141 return FALSE;
b49e97c9
TS
6142
6143 if (IRIX_COMPAT (dynobj) == ict_irix5
6144 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
b34976b6 6145 return FALSE;
b49e97c9
TS
6146
6147 if (IRIX_COMPAT (dynobj) == ict_irix6
6148 && (bfd_get_section_by_name
6149 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
6150 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
b34976b6 6151 return FALSE;
b49e97c9
TS
6152 }
6153
b34976b6 6154 return TRUE;
b49e97c9
TS
6155}
6156\f
6157/* Relocate a MIPS ELF section. */
6158
b34976b6 6159bfd_boolean
9719ad41
RS
6160_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
6161 bfd *input_bfd, asection *input_section,
6162 bfd_byte *contents, Elf_Internal_Rela *relocs,
6163 Elf_Internal_Sym *local_syms,
6164 asection **local_sections)
b49e97c9
TS
6165{
6166 Elf_Internal_Rela *rel;
6167 const Elf_Internal_Rela *relend;
6168 bfd_vma addend = 0;
b34976b6 6169 bfd_boolean use_saved_addend_p = FALSE;
9c5bfbb7 6170 const struct elf_backend_data *bed;
b49e97c9
TS
6171
6172 bed = get_elf_backend_data (output_bfd);
6173 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6174 for (rel = relocs; rel < relend; ++rel)
6175 {
6176 const char *name;
6177 bfd_vma value;
6178 reloc_howto_type *howto;
b34976b6
AM
6179 bfd_boolean require_jalx;
6180 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 6181 REL relocation. */
b34976b6 6182 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 6183 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 6184 const char *msg;
b49e97c9
TS
6185
6186 /* Find the relocation howto for this relocation. */
4a14403c 6187 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
6188 {
6189 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6190 64-bit code, but make sure all their addresses are in the
6191 lowermost or uppermost 32-bit section of the 64-bit address
6192 space. Thus, when they use an R_MIPS_64 they mean what is
6193 usually meant by R_MIPS_32, with the exception that the
6194 stored value is sign-extended to 64 bits. */
b34976b6 6195 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
6196
6197 /* On big-endian systems, we need to lie about the position
6198 of the reloc. */
6199 if (bfd_big_endian (input_bfd))
6200 rel->r_offset += 4;
6201 }
6202 else
6203 /* NewABI defaults to RELA relocations. */
6204 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
4ffba85c
AO
6205 NEWABI_P (input_bfd)
6206 && (MIPS_RELOC_RELA_P
6207 (input_bfd, input_section,
6208 rel - relocs)));
b49e97c9
TS
6209
6210 if (!use_saved_addend_p)
6211 {
6212 Elf_Internal_Shdr *rel_hdr;
6213
6214 /* If these relocations were originally of the REL variety,
6215 we must pull the addend out of the field that will be
6216 relocated. Otherwise, we simply use the contents of the
6217 RELA relocation. To determine which flavor or relocation
6218 this is, we depend on the fact that the INPUT_SECTION's
6219 REL_HDR is read before its REL_HDR2. */
6220 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6221 if ((size_t) (rel - relocs)
6222 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6223 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6224 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6225 {
6226 /* Note that this is a REL relocation. */
b34976b6 6227 rela_relocation_p = FALSE;
b49e97c9
TS
6228
6229 /* Get the addend, which is stored in the input file. */
6230 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
6231 contents);
6232 addend &= howto->src_mask;
6233
6234 /* For some kinds of relocations, the ADDEND is a
6235 combination of the addend stored in two different
6236 relocations. */
6237 if (r_type == R_MIPS_HI16
b49e97c9
TS
6238 || (r_type == R_MIPS_GOT16
6239 && mips_elf_local_relocation_p (input_bfd, rel,
b34976b6 6240 local_sections, FALSE)))
b49e97c9
TS
6241 {
6242 bfd_vma l;
6243 const Elf_Internal_Rela *lo16_relocation;
6244 reloc_howto_type *lo16_howto;
b49e97c9
TS
6245
6246 /* The combined value is the sum of the HI16 addend,
6247 left-shifted by sixteen bits, and the LO16
6248 addend, sign extended. (Usually, the code does
6249 a `lui' of the HI16 value, and then an `addiu' of
6250 the LO16 value.)
6251
4030e8f6
CD
6252 Scan ahead to find a matching LO16 relocation.
6253
6254 According to the MIPS ELF ABI, the R_MIPS_LO16
6255 relocation must be immediately following.
6256 However, for the IRIX6 ABI, the next relocation
6257 may be a composed relocation consisting of
6258 several relocations for the same address. In
6259 that case, the R_MIPS_LO16 relocation may occur
6260 as one of these. We permit a similar extension
6261 in general, as that is useful for GCC. */
6262 lo16_relocation = mips_elf_next_relocation (input_bfd,
6263 R_MIPS_LO16,
b49e97c9
TS
6264 rel, relend);
6265 if (lo16_relocation == NULL)
b34976b6 6266 return FALSE;
b49e97c9
TS
6267
6268 /* Obtain the addend kept there. */
4030e8f6
CD
6269 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
6270 R_MIPS_LO16, FALSE);
b49e97c9
TS
6271 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
6272 input_bfd, contents);
6273 l &= lo16_howto->src_mask;
5a659663 6274 l <<= lo16_howto->rightshift;
a7ebbfdf 6275 l = _bfd_mips_elf_sign_extend (l, 16);
b49e97c9
TS
6276
6277 addend <<= 16;
6278
6279 /* Compute the combined addend. */
6280 addend += l;
b49e97c9
TS
6281 }
6282 else if (r_type == R_MIPS16_GPREL)
6283 {
6284 /* The addend is scrambled in the object file. See
6285 mips_elf_perform_relocation for details on the
6286 format. */
6287 addend = (((addend & 0x1f0000) >> 5)
6288 | ((addend & 0x7e00000) >> 16)
6289 | (addend & 0x1f));
6290 }
30ac9238
RS
6291 else
6292 addend <<= howto->rightshift;
b49e97c9
TS
6293 }
6294 else
6295 addend = rel->r_addend;
6296 }
6297
1049f94e 6298 if (info->relocatable)
b49e97c9
TS
6299 {
6300 Elf_Internal_Sym *sym;
6301 unsigned long r_symndx;
6302
4a14403c 6303 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
6304 && bfd_big_endian (input_bfd))
6305 rel->r_offset -= 4;
6306
6307 /* Since we're just relocating, all we need to do is copy
6308 the relocations back out to the object file, unless
6309 they're against a section symbol, in which case we need
6310 to adjust by the section offset, or unless they're GP
6311 relative in which case we need to adjust by the amount
1049f94e 6312 that we're adjusting GP in this relocatable object. */
b49e97c9
TS
6313
6314 if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections,
b34976b6 6315 FALSE))
b49e97c9
TS
6316 /* There's nothing to do for non-local relocations. */
6317 continue;
6318
6319 if (r_type == R_MIPS16_GPREL
6320 || r_type == R_MIPS_GPREL16
6321 || r_type == R_MIPS_GPREL32
6322 || r_type == R_MIPS_LITERAL)
6323 addend -= (_bfd_get_gp_value (output_bfd)
6324 - _bfd_get_gp_value (input_bfd));
b49e97c9
TS
6325
6326 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
6327 sym = local_syms + r_symndx;
6328 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6329 /* Adjust the addend appropriately. */
6330 addend += local_sections[r_symndx]->output_offset;
6331
30ac9238
RS
6332 if (rela_relocation_p)
6333 /* If this is a RELA relocation, just update the addend. */
6334 rel->r_addend = addend;
6335 else
5a659663 6336 {
30ac9238 6337 if (r_type == R_MIPS_HI16
4030e8f6 6338 || r_type == R_MIPS_GOT16)
5a659663
TS
6339 addend = mips_elf_high (addend);
6340 else if (r_type == R_MIPS_HIGHER)
6341 addend = mips_elf_higher (addend);
6342 else if (r_type == R_MIPS_HIGHEST)
6343 addend = mips_elf_highest (addend);
30ac9238
RS
6344 else
6345 addend >>= howto->rightshift;
b49e97c9 6346
30ac9238
RS
6347 /* We use the source mask, rather than the destination
6348 mask because the place to which we are writing will be
6349 source of the addend in the final link. */
b49e97c9
TS
6350 addend &= howto->src_mask;
6351
5a659663 6352 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
6353 /* See the comment above about using R_MIPS_64 in the 32-bit
6354 ABI. Here, we need to update the addend. It would be
6355 possible to get away with just using the R_MIPS_32 reloc
6356 but for endianness. */
6357 {
6358 bfd_vma sign_bits;
6359 bfd_vma low_bits;
6360 bfd_vma high_bits;
6361
6362 if (addend & ((bfd_vma) 1 << 31))
6363#ifdef BFD64
6364 sign_bits = ((bfd_vma) 1 << 32) - 1;
6365#else
6366 sign_bits = -1;
6367#endif
6368 else
6369 sign_bits = 0;
6370
6371 /* If we don't know that we have a 64-bit type,
6372 do two separate stores. */
6373 if (bfd_big_endian (input_bfd))
6374 {
6375 /* Store the sign-bits (which are most significant)
6376 first. */
6377 low_bits = sign_bits;
6378 high_bits = addend;
6379 }
6380 else
6381 {
6382 low_bits = addend;
6383 high_bits = sign_bits;
6384 }
6385 bfd_put_32 (input_bfd, low_bits,
6386 contents + rel->r_offset);
6387 bfd_put_32 (input_bfd, high_bits,
6388 contents + rel->r_offset + 4);
6389 continue;
6390 }
6391
6392 if (! mips_elf_perform_relocation (info, howto, rel, addend,
6393 input_bfd, input_section,
b34976b6
AM
6394 contents, FALSE))
6395 return FALSE;
b49e97c9
TS
6396 }
6397
6398 /* Go on to the next relocation. */
6399 continue;
6400 }
6401
6402 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6403 relocations for the same offset. In that case we are
6404 supposed to treat the output of each relocation as the addend
6405 for the next. */
6406 if (rel + 1 < relend
6407 && rel->r_offset == rel[1].r_offset
6408 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 6409 use_saved_addend_p = TRUE;
b49e97c9 6410 else
b34976b6 6411 use_saved_addend_p = FALSE;
b49e97c9
TS
6412
6413 /* Figure out what value we are supposed to relocate. */
6414 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
6415 input_section, info, rel,
6416 addend, howto, local_syms,
6417 local_sections, &value,
bce03d3d
AO
6418 &name, &require_jalx,
6419 use_saved_addend_p))
b49e97c9
TS
6420 {
6421 case bfd_reloc_continue:
6422 /* There's nothing to do. */
6423 continue;
6424
6425 case bfd_reloc_undefined:
6426 /* mips_elf_calculate_relocation already called the
6427 undefined_symbol callback. There's no real point in
6428 trying to perform the relocation at this point, so we
6429 just skip ahead to the next relocation. */
6430 continue;
6431
6432 case bfd_reloc_notsupported:
6433 msg = _("internal error: unsupported relocation error");
6434 info->callbacks->warning
6435 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 6436 return FALSE;
b49e97c9
TS
6437
6438 case bfd_reloc_overflow:
6439 if (use_saved_addend_p)
6440 /* Ignore overflow until we reach the last relocation for
6441 a given location. */
6442 ;
6443 else
6444 {
6445 BFD_ASSERT (name != NULL);
6446 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f 6447 (info, NULL, name, howto->name, (bfd_vma) 0,
b49e97c9 6448 input_bfd, input_section, rel->r_offset)))
b34976b6 6449 return FALSE;
b49e97c9
TS
6450 }
6451 break;
6452
6453 case bfd_reloc_ok:
6454 break;
6455
6456 default:
6457 abort ();
6458 break;
6459 }
6460
6461 /* If we've got another relocation for the address, keep going
6462 until we reach the last one. */
6463 if (use_saved_addend_p)
6464 {
6465 addend = value;
6466 continue;
6467 }
6468
4a14403c 6469 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
6470 /* See the comment above about using R_MIPS_64 in the 32-bit
6471 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6472 that calculated the right value. Now, however, we
6473 sign-extend the 32-bit result to 64-bits, and store it as a
6474 64-bit value. We are especially generous here in that we
6475 go to extreme lengths to support this usage on systems with
6476 only a 32-bit VMA. */
6477 {
6478 bfd_vma sign_bits;
6479 bfd_vma low_bits;
6480 bfd_vma high_bits;
6481
6482 if (value & ((bfd_vma) 1 << 31))
6483#ifdef BFD64
6484 sign_bits = ((bfd_vma) 1 << 32) - 1;
6485#else
6486 sign_bits = -1;
6487#endif
6488 else
6489 sign_bits = 0;
6490
6491 /* If we don't know that we have a 64-bit type,
6492 do two separate stores. */
6493 if (bfd_big_endian (input_bfd))
6494 {
6495 /* Undo what we did above. */
6496 rel->r_offset -= 4;
6497 /* Store the sign-bits (which are most significant)
6498 first. */
6499 low_bits = sign_bits;
6500 high_bits = value;
6501 }
6502 else
6503 {
6504 low_bits = value;
6505 high_bits = sign_bits;
6506 }
6507 bfd_put_32 (input_bfd, low_bits,
6508 contents + rel->r_offset);
6509 bfd_put_32 (input_bfd, high_bits,
6510 contents + rel->r_offset + 4);
6511 continue;
6512 }
6513
6514 /* Actually perform the relocation. */
6515 if (! mips_elf_perform_relocation (info, howto, rel, value,
6516 input_bfd, input_section,
6517 contents, require_jalx))
b34976b6 6518 return FALSE;
b49e97c9
TS
6519 }
6520
b34976b6 6521 return TRUE;
b49e97c9
TS
6522}
6523\f
6524/* If NAME is one of the special IRIX6 symbols defined by the linker,
6525 adjust it appropriately now. */
6526
6527static void
9719ad41
RS
6528mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
6529 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
6530{
6531 /* The linker script takes care of providing names and values for
6532 these, but we must place them into the right sections. */
6533 static const char* const text_section_symbols[] = {
6534 "_ftext",
6535 "_etext",
6536 "__dso_displacement",
6537 "__elf_header",
6538 "__program_header_table",
6539 NULL
6540 };
6541
6542 static const char* const data_section_symbols[] = {
6543 "_fdata",
6544 "_edata",
6545 "_end",
6546 "_fbss",
6547 NULL
6548 };
6549
6550 const char* const *p;
6551 int i;
6552
6553 for (i = 0; i < 2; ++i)
6554 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
6555 *p;
6556 ++p)
6557 if (strcmp (*p, name) == 0)
6558 {
6559 /* All of these symbols are given type STT_SECTION by the
6560 IRIX6 linker. */
6561 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 6562 sym->st_other = STO_PROTECTED;
b49e97c9
TS
6563
6564 /* The IRIX linker puts these symbols in special sections. */
6565 if (i == 0)
6566 sym->st_shndx = SHN_MIPS_TEXT;
6567 else
6568 sym->st_shndx = SHN_MIPS_DATA;
6569
6570 break;
6571 }
6572}
6573
6574/* Finish up dynamic symbol handling. We set the contents of various
6575 dynamic sections here. */
6576
b34976b6 6577bfd_boolean
9719ad41
RS
6578_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
6579 struct bfd_link_info *info,
6580 struct elf_link_hash_entry *h,
6581 Elf_Internal_Sym *sym)
b49e97c9
TS
6582{
6583 bfd *dynobj;
b49e97c9 6584 asection *sgot;
f4416af6 6585 struct mips_got_info *g, *gg;
b49e97c9 6586 const char *name;
b49e97c9
TS
6587
6588 dynobj = elf_hash_table (info)->dynobj;
b49e97c9 6589
c5ae1840 6590 if (h->plt.offset != MINUS_ONE)
b49e97c9
TS
6591 {
6592 asection *s;
6593 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
6594
6595 /* This symbol has a stub. Set it up. */
6596
6597 BFD_ASSERT (h->dynindx != -1);
6598
6599 s = bfd_get_section_by_name (dynobj,
6600 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6601 BFD_ASSERT (s != NULL);
6602
6603 /* FIXME: Can h->dynindex be more than 64K? */
6604 if (h->dynindx & 0xffff0000)
b34976b6 6605 return FALSE;
b49e97c9
TS
6606
6607 /* Fill the stub. */
6608 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
6609 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
6610 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
6611 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
6612
eea6121a 6613 BFD_ASSERT (h->plt.offset <= s->size);
b49e97c9
TS
6614 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
6615
6616 /* Mark the symbol as undefined. plt.offset != -1 occurs
6617 only for the referenced symbol. */
6618 sym->st_shndx = SHN_UNDEF;
6619
6620 /* The run-time linker uses the st_value field of the symbol
6621 to reset the global offset table entry for this external
6622 to its stub address when unlinking a shared object. */
c5ae1840
TS
6623 sym->st_value = (s->output_section->vma + s->output_offset
6624 + h->plt.offset);
b49e97c9
TS
6625 }
6626
6627 BFD_ASSERT (h->dynindx != -1
f5385ebf 6628 || h->forced_local);
b49e97c9 6629
f4416af6 6630 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 6631 BFD_ASSERT (sgot != NULL);
f4416af6 6632 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
f0abc2a1 6633 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
6634 BFD_ASSERT (g != NULL);
6635
6636 /* Run through the global symbol table, creating GOT entries for all
6637 the symbols that need them. */
6638 if (g->global_gotsym != NULL
6639 && h->dynindx >= g->global_gotsym->dynindx)
6640 {
6641 bfd_vma offset;
6642 bfd_vma value;
6643
6eaa6adc 6644 value = sym->st_value;
f4416af6 6645 offset = mips_elf_global_got_index (dynobj, output_bfd, h);
b49e97c9
TS
6646 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6647 }
6648
f4416af6
AO
6649 if (g->next && h->dynindx != -1)
6650 {
6651 struct mips_got_entry e, *p;
0626d451 6652 bfd_vma entry;
f4416af6 6653 bfd_vma offset;
f4416af6
AO
6654
6655 gg = g;
6656
6657 e.abfd = output_bfd;
6658 e.symndx = -1;
6659 e.d.h = (struct mips_elf_link_hash_entry *)h;
143d77c5 6660
f4416af6
AO
6661 for (g = g->next; g->next != gg; g = g->next)
6662 {
6663 if (g->got_entries
6664 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
6665 &e)))
6666 {
6667 offset = p->gotidx;
0626d451
RS
6668 if (info->shared
6669 || (elf_hash_table (info)->dynamic_sections_created
6670 && p->d.h != NULL
f5385ebf
AM
6671 && p->d.h->root.def_dynamic
6672 && !p->d.h->root.def_regular))
0626d451
RS
6673 {
6674 /* Create an R_MIPS_REL32 relocation for this entry. Due to
6675 the various compatibility problems, it's easier to mock
6676 up an R_MIPS_32 or R_MIPS_64 relocation and leave
6677 mips_elf_create_dynamic_relocation to calculate the
6678 appropriate addend. */
6679 Elf_Internal_Rela rel[3];
6680
6681 memset (rel, 0, sizeof (rel));
6682 if (ABI_64_P (output_bfd))
6683 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
6684 else
6685 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
6686 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
6687
6688 entry = 0;
6689 if (! (mips_elf_create_dynamic_relocation
6690 (output_bfd, info, rel,
6691 e.d.h, NULL, sym->st_value, &entry, sgot)))
6692 return FALSE;
6693 }
6694 else
6695 entry = sym->st_value;
6696 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
6697 }
6698 }
6699 }
6700
b49e97c9
TS
6701 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
6702 name = h->root.root.string;
6703 if (strcmp (name, "_DYNAMIC") == 0
6704 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
6705 sym->st_shndx = SHN_ABS;
6706 else if (strcmp (name, "_DYNAMIC_LINK") == 0
6707 || strcmp (name, "_DYNAMIC_LINKING") == 0)
6708 {
6709 sym->st_shndx = SHN_ABS;
6710 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6711 sym->st_value = 1;
6712 }
4a14403c 6713 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
6714 {
6715 sym->st_shndx = SHN_ABS;
6716 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6717 sym->st_value = elf_gp (output_bfd);
6718 }
6719 else if (SGI_COMPAT (output_bfd))
6720 {
6721 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
6722 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
6723 {
6724 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6725 sym->st_other = STO_PROTECTED;
6726 sym->st_value = 0;
6727 sym->st_shndx = SHN_MIPS_DATA;
6728 }
6729 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
6730 {
6731 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6732 sym->st_other = STO_PROTECTED;
6733 sym->st_value = mips_elf_hash_table (info)->procedure_count;
6734 sym->st_shndx = SHN_ABS;
6735 }
6736 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
6737 {
6738 if (h->type == STT_FUNC)
6739 sym->st_shndx = SHN_MIPS_TEXT;
6740 else if (h->type == STT_OBJECT)
6741 sym->st_shndx = SHN_MIPS_DATA;
6742 }
6743 }
6744
6745 /* Handle the IRIX6-specific symbols. */
6746 if (IRIX_COMPAT (output_bfd) == ict_irix6)
6747 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
6748
6749 if (! info->shared)
6750 {
6751 if (! mips_elf_hash_table (info)->use_rld_obj_head
6752 && (strcmp (name, "__rld_map") == 0
6753 || strcmp (name, "__RLD_MAP") == 0))
6754 {
6755 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
6756 BFD_ASSERT (s != NULL);
6757 sym->st_value = s->output_section->vma + s->output_offset;
9719ad41 6758 bfd_put_32 (output_bfd, 0, s->contents);
b49e97c9
TS
6759 if (mips_elf_hash_table (info)->rld_value == 0)
6760 mips_elf_hash_table (info)->rld_value = sym->st_value;
6761 }
6762 else if (mips_elf_hash_table (info)->use_rld_obj_head
6763 && strcmp (name, "__rld_obj_head") == 0)
6764 {
6765 /* IRIX6 does not use a .rld_map section. */
6766 if (IRIX_COMPAT (output_bfd) == ict_irix5
6767 || IRIX_COMPAT (output_bfd) == ict_none)
6768 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
6769 != NULL);
6770 mips_elf_hash_table (info)->rld_value = sym->st_value;
6771 }
6772 }
6773
6774 /* If this is a mips16 symbol, force the value to be even. */
79cda7cf
FF
6775 if (sym->st_other == STO_MIPS16)
6776 sym->st_value &= ~1;
b49e97c9 6777
b34976b6 6778 return TRUE;
b49e97c9
TS
6779}
6780
6781/* Finish up the dynamic sections. */
6782
b34976b6 6783bfd_boolean
9719ad41
RS
6784_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
6785 struct bfd_link_info *info)
b49e97c9
TS
6786{
6787 bfd *dynobj;
6788 asection *sdyn;
6789 asection *sgot;
f4416af6 6790 struct mips_got_info *gg, *g;
b49e97c9
TS
6791
6792 dynobj = elf_hash_table (info)->dynobj;
6793
6794 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
6795
f4416af6 6796 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 6797 if (sgot == NULL)
f4416af6 6798 gg = g = NULL;
b49e97c9
TS
6799 else
6800 {
f4416af6
AO
6801 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6802 gg = mips_elf_section_data (sgot)->u.got_info;
6803 BFD_ASSERT (gg != NULL);
6804 g = mips_elf_got_for_ibfd (gg, output_bfd);
b49e97c9
TS
6805 BFD_ASSERT (g != NULL);
6806 }
6807
6808 if (elf_hash_table (info)->dynamic_sections_created)
6809 {
6810 bfd_byte *b;
6811
6812 BFD_ASSERT (sdyn != NULL);
6813 BFD_ASSERT (g != NULL);
6814
6815 for (b = sdyn->contents;
eea6121a 6816 b < sdyn->contents + sdyn->size;
b49e97c9
TS
6817 b += MIPS_ELF_DYN_SIZE (dynobj))
6818 {
6819 Elf_Internal_Dyn dyn;
6820 const char *name;
6821 size_t elemsize;
6822 asection *s;
b34976b6 6823 bfd_boolean swap_out_p;
b49e97c9
TS
6824
6825 /* Read in the current dynamic entry. */
6826 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
6827
6828 /* Assume that we're going to modify it and write it out. */
b34976b6 6829 swap_out_p = TRUE;
b49e97c9
TS
6830
6831 switch (dyn.d_tag)
6832 {
6833 case DT_RELENT:
f4416af6 6834 s = mips_elf_rel_dyn_section (dynobj, FALSE);
b49e97c9
TS
6835 BFD_ASSERT (s != NULL);
6836 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
6837 break;
6838
6839 case DT_STRSZ:
6840 /* Rewrite DT_STRSZ. */
6841 dyn.d_un.d_val =
6842 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6843 break;
6844
6845 case DT_PLTGOT:
6846 name = ".got";
b49e97c9
TS
6847 s = bfd_get_section_by_name (output_bfd, name);
6848 BFD_ASSERT (s != NULL);
6849 dyn.d_un.d_ptr = s->vma;
6850 break;
6851
6852 case DT_MIPS_RLD_VERSION:
6853 dyn.d_un.d_val = 1; /* XXX */
6854 break;
6855
6856 case DT_MIPS_FLAGS:
6857 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
6858 break;
6859
b49e97c9
TS
6860 case DT_MIPS_TIME_STAMP:
6861 time ((time_t *) &dyn.d_un.d_val);
6862 break;
6863
6864 case DT_MIPS_ICHECKSUM:
6865 /* XXX FIXME: */
b34976b6 6866 swap_out_p = FALSE;
b49e97c9
TS
6867 break;
6868
6869 case DT_MIPS_IVERSION:
6870 /* XXX FIXME: */
b34976b6 6871 swap_out_p = FALSE;
b49e97c9
TS
6872 break;
6873
6874 case DT_MIPS_BASE_ADDRESS:
6875 s = output_bfd->sections;
6876 BFD_ASSERT (s != NULL);
6877 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
6878 break;
6879
6880 case DT_MIPS_LOCAL_GOTNO:
6881 dyn.d_un.d_val = g->local_gotno;
6882 break;
6883
6884 case DT_MIPS_UNREFEXTNO:
6885 /* The index into the dynamic symbol table which is the
6886 entry of the first external symbol that is not
6887 referenced within the same object. */
6888 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
6889 break;
6890
6891 case DT_MIPS_GOTSYM:
f4416af6 6892 if (gg->global_gotsym)
b49e97c9 6893 {
f4416af6 6894 dyn.d_un.d_val = gg->global_gotsym->dynindx;
b49e97c9
TS
6895 break;
6896 }
6897 /* In case if we don't have global got symbols we default
6898 to setting DT_MIPS_GOTSYM to the same value as
6899 DT_MIPS_SYMTABNO, so we just fall through. */
6900
6901 case DT_MIPS_SYMTABNO:
6902 name = ".dynsym";
6903 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
6904 s = bfd_get_section_by_name (output_bfd, name);
6905 BFD_ASSERT (s != NULL);
6906
eea6121a 6907 dyn.d_un.d_val = s->size / elemsize;
b49e97c9
TS
6908 break;
6909
6910 case DT_MIPS_HIPAGENO:
6911 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
6912 break;
6913
6914 case DT_MIPS_RLD_MAP:
6915 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
6916 break;
6917
6918 case DT_MIPS_OPTIONS:
6919 s = (bfd_get_section_by_name
6920 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
6921 dyn.d_un.d_ptr = s->vma;
6922 break;
6923
98a8deaf
RS
6924 case DT_RELSZ:
6925 /* Reduce DT_RELSZ to account for any relocations we
6926 decided not to make. This is for the n64 irix rld,
6927 which doesn't seem to apply any relocations if there
6928 are trailing null entries. */
6929 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6930 dyn.d_un.d_val = (s->reloc_count
6931 * (ABI_64_P (output_bfd)
6932 ? sizeof (Elf64_Mips_External_Rel)
6933 : sizeof (Elf32_External_Rel)));
b49e97c9
TS
6934 break;
6935
6936 default:
b34976b6 6937 swap_out_p = FALSE;
b49e97c9
TS
6938 break;
6939 }
6940
6941 if (swap_out_p)
6942 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
6943 (dynobj, &dyn, b);
6944 }
6945 }
6946
6947 /* The first entry of the global offset table will be filled at
6948 runtime. The second entry will be used by some runtime loaders.
8dc1a139 6949 This isn't the case of IRIX rld. */
eea6121a 6950 if (sgot != NULL && sgot->size > 0)
b49e97c9 6951 {
9719ad41
RS
6952 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents);
6953 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000,
b49e97c9
TS
6954 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
6955 }
6956
6957 if (sgot != NULL)
6958 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
6959 = MIPS_ELF_GOT_SIZE (output_bfd);
6960
f4416af6
AO
6961 /* Generate dynamic relocations for the non-primary gots. */
6962 if (gg != NULL && gg->next)
6963 {
6964 Elf_Internal_Rela rel[3];
6965 bfd_vma addend = 0;
6966
6967 memset (rel, 0, sizeof (rel));
6968 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
6969
6970 for (g = gg->next; g->next != gg; g = g->next)
6971 {
6972 bfd_vma index = g->next->local_gotno + g->next->global_gotno;
6973
9719ad41 6974 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
f4416af6 6975 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
9719ad41 6976 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
f4416af6
AO
6977 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
6978
6979 if (! info->shared)
6980 continue;
6981
6982 while (index < g->assigned_gotno)
6983 {
6984 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
6985 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
6986 if (!(mips_elf_create_dynamic_relocation
6987 (output_bfd, info, rel, NULL,
6988 bfd_abs_section_ptr,
6989 0, &addend, sgot)))
6990 return FALSE;
6991 BFD_ASSERT (addend == 0);
6992 }
6993 }
6994 }
6995
b49e97c9 6996 {
b49e97c9
TS
6997 asection *s;
6998 Elf32_compact_rel cpt;
6999
b49e97c9
TS
7000 if (SGI_COMPAT (output_bfd))
7001 {
7002 /* Write .compact_rel section out. */
7003 s = bfd_get_section_by_name (dynobj, ".compact_rel");
7004 if (s != NULL)
7005 {
7006 cpt.id1 = 1;
7007 cpt.num = s->reloc_count;
7008 cpt.id2 = 2;
7009 cpt.offset = (s->output_section->filepos
7010 + sizeof (Elf32_External_compact_rel));
7011 cpt.reserved0 = 0;
7012 cpt.reserved1 = 0;
7013 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
7014 ((Elf32_External_compact_rel *)
7015 s->contents));
7016
7017 /* Clean up a dummy stub function entry in .text. */
7018 s = bfd_get_section_by_name (dynobj,
7019 MIPS_ELF_STUB_SECTION_NAME (dynobj));
7020 if (s != NULL)
7021 {
7022 file_ptr dummy_offset;
7023
eea6121a
AM
7024 BFD_ASSERT (s->size >= MIPS_FUNCTION_STUB_SIZE);
7025 dummy_offset = s->size - MIPS_FUNCTION_STUB_SIZE;
b49e97c9
TS
7026 memset (s->contents + dummy_offset, 0,
7027 MIPS_FUNCTION_STUB_SIZE);
7028 }
7029 }
7030 }
7031
7032 /* We need to sort the entries of the dynamic relocation section. */
7033
f4416af6
AO
7034 s = mips_elf_rel_dyn_section (dynobj, FALSE);
7035
7036 if (s != NULL
eea6121a 7037 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
b49e97c9 7038 {
f4416af6 7039 reldyn_sorting_bfd = output_bfd;
b49e97c9 7040
f4416af6 7041 if (ABI_64_P (output_bfd))
9719ad41 7042 qsort ((Elf64_External_Rel *) s->contents + 1, s->reloc_count - 1,
f4416af6
AO
7043 sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64);
7044 else
9719ad41 7045 qsort ((Elf32_External_Rel *) s->contents + 1, s->reloc_count - 1,
f4416af6 7046 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
b49e97c9 7047 }
b49e97c9
TS
7048 }
7049
b34976b6 7050 return TRUE;
b49e97c9
TS
7051}
7052
b49e97c9 7053
64543e1a
RS
7054/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
7055
7056static void
9719ad41 7057mips_set_isa_flags (bfd *abfd)
b49e97c9 7058{
64543e1a 7059 flagword val;
b49e97c9
TS
7060
7061 switch (bfd_get_mach (abfd))
7062 {
7063 default:
7064 case bfd_mach_mips3000:
7065 val = E_MIPS_ARCH_1;
7066 break;
7067
7068 case bfd_mach_mips3900:
7069 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
7070 break;
7071
7072 case bfd_mach_mips6000:
7073 val = E_MIPS_ARCH_2;
7074 break;
7075
7076 case bfd_mach_mips4000:
7077 case bfd_mach_mips4300:
7078 case bfd_mach_mips4400:
7079 case bfd_mach_mips4600:
7080 val = E_MIPS_ARCH_3;
7081 break;
7082
7083 case bfd_mach_mips4010:
7084 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
7085 break;
7086
7087 case bfd_mach_mips4100:
7088 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
7089 break;
7090
7091 case bfd_mach_mips4111:
7092 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
7093 break;
7094
00707a0e
RS
7095 case bfd_mach_mips4120:
7096 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
7097 break;
7098
b49e97c9
TS
7099 case bfd_mach_mips4650:
7100 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
7101 break;
7102
00707a0e
RS
7103 case bfd_mach_mips5400:
7104 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
7105 break;
7106
7107 case bfd_mach_mips5500:
7108 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
7109 break;
7110
0d2e43ed
ILT
7111 case bfd_mach_mips9000:
7112 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
7113 break;
7114
b49e97c9 7115 case bfd_mach_mips5000:
5a7ea749 7116 case bfd_mach_mips7000:
b49e97c9
TS
7117 case bfd_mach_mips8000:
7118 case bfd_mach_mips10000:
7119 case bfd_mach_mips12000:
7120 val = E_MIPS_ARCH_4;
7121 break;
7122
7123 case bfd_mach_mips5:
7124 val = E_MIPS_ARCH_5;
7125 break;
7126
7127 case bfd_mach_mips_sb1:
7128 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
7129 break;
7130
7131 case bfd_mach_mipsisa32:
7132 val = E_MIPS_ARCH_32;
7133 break;
7134
7135 case bfd_mach_mipsisa64:
7136 val = E_MIPS_ARCH_64;
af7ee8bf
CD
7137 break;
7138
7139 case bfd_mach_mipsisa32r2:
7140 val = E_MIPS_ARCH_32R2;
7141 break;
5f74bc13
CD
7142
7143 case bfd_mach_mipsisa64r2:
7144 val = E_MIPS_ARCH_64R2;
7145 break;
b49e97c9 7146 }
b49e97c9
TS
7147 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
7148 elf_elfheader (abfd)->e_flags |= val;
7149
64543e1a
RS
7150}
7151
7152
7153/* The final processing done just before writing out a MIPS ELF object
7154 file. This gets the MIPS architecture right based on the machine
7155 number. This is used by both the 32-bit and the 64-bit ABI. */
7156
7157void
9719ad41
RS
7158_bfd_mips_elf_final_write_processing (bfd *abfd,
7159 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
7160{
7161 unsigned int i;
7162 Elf_Internal_Shdr **hdrpp;
7163 const char *name;
7164 asection *sec;
7165
7166 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
7167 is nonzero. This is for compatibility with old objects, which used
7168 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
7169 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
7170 mips_set_isa_flags (abfd);
7171
b49e97c9
TS
7172 /* Set the sh_info field for .gptab sections and other appropriate
7173 info for each special section. */
7174 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
7175 i < elf_numsections (abfd);
7176 i++, hdrpp++)
7177 {
7178 switch ((*hdrpp)->sh_type)
7179 {
7180 case SHT_MIPS_MSYM:
7181 case SHT_MIPS_LIBLIST:
7182 sec = bfd_get_section_by_name (abfd, ".dynstr");
7183 if (sec != NULL)
7184 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7185 break;
7186
7187 case SHT_MIPS_GPTAB:
7188 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7189 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7190 BFD_ASSERT (name != NULL
7191 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
7192 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
7193 BFD_ASSERT (sec != NULL);
7194 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7195 break;
7196
7197 case SHT_MIPS_CONTENT:
7198 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7199 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7200 BFD_ASSERT (name != NULL
7201 && strncmp (name, ".MIPS.content",
7202 sizeof ".MIPS.content" - 1) == 0);
7203 sec = bfd_get_section_by_name (abfd,
7204 name + sizeof ".MIPS.content" - 1);
7205 BFD_ASSERT (sec != NULL);
7206 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7207 break;
7208
7209 case SHT_MIPS_SYMBOL_LIB:
7210 sec = bfd_get_section_by_name (abfd, ".dynsym");
7211 if (sec != NULL)
7212 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7213 sec = bfd_get_section_by_name (abfd, ".liblist");
7214 if (sec != NULL)
7215 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7216 break;
7217
7218 case SHT_MIPS_EVENTS:
7219 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7220 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7221 BFD_ASSERT (name != NULL);
7222 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
7223 sec = bfd_get_section_by_name (abfd,
7224 name + sizeof ".MIPS.events" - 1);
7225 else
7226 {
7227 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
7228 sizeof ".MIPS.post_rel" - 1) == 0);
7229 sec = bfd_get_section_by_name (abfd,
7230 (name
7231 + sizeof ".MIPS.post_rel" - 1));
7232 }
7233 BFD_ASSERT (sec != NULL);
7234 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7235 break;
7236
7237 }
7238 }
7239}
7240\f
8dc1a139 7241/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
7242 segments. */
7243
7244int
9719ad41 7245_bfd_mips_elf_additional_program_headers (bfd *abfd)
b49e97c9
TS
7246{
7247 asection *s;
7248 int ret = 0;
7249
7250 /* See if we need a PT_MIPS_REGINFO segment. */
7251 s = bfd_get_section_by_name (abfd, ".reginfo");
7252 if (s && (s->flags & SEC_LOAD))
7253 ++ret;
7254
7255 /* See if we need a PT_MIPS_OPTIONS segment. */
7256 if (IRIX_COMPAT (abfd) == ict_irix6
7257 && bfd_get_section_by_name (abfd,
7258 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
7259 ++ret;
7260
7261 /* See if we need a PT_MIPS_RTPROC segment. */
7262 if (IRIX_COMPAT (abfd) == ict_irix5
7263 && bfd_get_section_by_name (abfd, ".dynamic")
7264 && bfd_get_section_by_name (abfd, ".mdebug"))
7265 ++ret;
7266
7267 return ret;
7268}
7269
8dc1a139 7270/* Modify the segment map for an IRIX5 executable. */
b49e97c9 7271
b34976b6 7272bfd_boolean
9719ad41
RS
7273_bfd_mips_elf_modify_segment_map (bfd *abfd,
7274 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
7275{
7276 asection *s;
7277 struct elf_segment_map *m, **pm;
7278 bfd_size_type amt;
7279
7280 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
7281 segment. */
7282 s = bfd_get_section_by_name (abfd, ".reginfo");
7283 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7284 {
7285 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7286 if (m->p_type == PT_MIPS_REGINFO)
7287 break;
7288 if (m == NULL)
7289 {
7290 amt = sizeof *m;
9719ad41 7291 m = bfd_zalloc (abfd, amt);
b49e97c9 7292 if (m == NULL)
b34976b6 7293 return FALSE;
b49e97c9
TS
7294
7295 m->p_type = PT_MIPS_REGINFO;
7296 m->count = 1;
7297 m->sections[0] = s;
7298
7299 /* We want to put it after the PHDR and INTERP segments. */
7300 pm = &elf_tdata (abfd)->segment_map;
7301 while (*pm != NULL
7302 && ((*pm)->p_type == PT_PHDR
7303 || (*pm)->p_type == PT_INTERP))
7304 pm = &(*pm)->next;
7305
7306 m->next = *pm;
7307 *pm = m;
7308 }
7309 }
7310
7311 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
7312 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 7313 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 7314 table. */
c1fd6598
AO
7315 if (NEWABI_P (abfd)
7316 /* On non-IRIX6 new abi, we'll have already created a segment
7317 for this section, so don't create another. I'm not sure this
7318 is not also the case for IRIX 6, but I can't test it right
7319 now. */
7320 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
7321 {
7322 for (s = abfd->sections; s; s = s->next)
7323 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
7324 break;
7325
7326 if (s)
7327 {
7328 struct elf_segment_map *options_segment;
7329
98a8deaf
RS
7330 pm = &elf_tdata (abfd)->segment_map;
7331 while (*pm != NULL
7332 && ((*pm)->p_type == PT_PHDR
7333 || (*pm)->p_type == PT_INTERP))
7334 pm = &(*pm)->next;
b49e97c9
TS
7335
7336 amt = sizeof (struct elf_segment_map);
7337 options_segment = bfd_zalloc (abfd, amt);
7338 options_segment->next = *pm;
7339 options_segment->p_type = PT_MIPS_OPTIONS;
7340 options_segment->p_flags = PF_R;
b34976b6 7341 options_segment->p_flags_valid = TRUE;
b49e97c9
TS
7342 options_segment->count = 1;
7343 options_segment->sections[0] = s;
7344 *pm = options_segment;
7345 }
7346 }
7347 else
7348 {
7349 if (IRIX_COMPAT (abfd) == ict_irix5)
7350 {
7351 /* If there are .dynamic and .mdebug sections, we make a room
7352 for the RTPROC header. FIXME: Rewrite without section names. */
7353 if (bfd_get_section_by_name (abfd, ".interp") == NULL
7354 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
7355 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
7356 {
7357 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7358 if (m->p_type == PT_MIPS_RTPROC)
7359 break;
7360 if (m == NULL)
7361 {
7362 amt = sizeof *m;
9719ad41 7363 m = bfd_zalloc (abfd, amt);
b49e97c9 7364 if (m == NULL)
b34976b6 7365 return FALSE;
b49e97c9
TS
7366
7367 m->p_type = PT_MIPS_RTPROC;
7368
7369 s = bfd_get_section_by_name (abfd, ".rtproc");
7370 if (s == NULL)
7371 {
7372 m->count = 0;
7373 m->p_flags = 0;
7374 m->p_flags_valid = 1;
7375 }
7376 else
7377 {
7378 m->count = 1;
7379 m->sections[0] = s;
7380 }
7381
7382 /* We want to put it after the DYNAMIC segment. */
7383 pm = &elf_tdata (abfd)->segment_map;
7384 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
7385 pm = &(*pm)->next;
7386 if (*pm != NULL)
7387 pm = &(*pm)->next;
7388
7389 m->next = *pm;
7390 *pm = m;
7391 }
7392 }
7393 }
8dc1a139 7394 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
7395 .dynstr, .dynsym, and .hash sections, and everything in
7396 between. */
7397 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
7398 pm = &(*pm)->next)
7399 if ((*pm)->p_type == PT_DYNAMIC)
7400 break;
7401 m = *pm;
7402 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
7403 {
7404 /* For a normal mips executable the permissions for the PT_DYNAMIC
7405 segment are read, write and execute. We do that here since
7406 the code in elf.c sets only the read permission. This matters
7407 sometimes for the dynamic linker. */
7408 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
7409 {
7410 m->p_flags = PF_R | PF_W | PF_X;
7411 m->p_flags_valid = 1;
7412 }
7413 }
7414 if (m != NULL
7415 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
7416 {
7417 static const char *sec_names[] =
7418 {
7419 ".dynamic", ".dynstr", ".dynsym", ".hash"
7420 };
7421 bfd_vma low, high;
7422 unsigned int i, c;
7423 struct elf_segment_map *n;
7424
792b4a53 7425 low = ~(bfd_vma) 0;
b49e97c9
TS
7426 high = 0;
7427 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
7428 {
7429 s = bfd_get_section_by_name (abfd, sec_names[i]);
7430 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7431 {
7432 bfd_size_type sz;
7433
7434 if (low > s->vma)
7435 low = s->vma;
eea6121a 7436 sz = s->size;
b49e97c9
TS
7437 if (high < s->vma + sz)
7438 high = s->vma + sz;
7439 }
7440 }
7441
7442 c = 0;
7443 for (s = abfd->sections; s != NULL; s = s->next)
7444 if ((s->flags & SEC_LOAD) != 0
7445 && s->vma >= low
eea6121a 7446 && s->vma + s->size <= high)
b49e97c9
TS
7447 ++c;
7448
7449 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 7450 n = bfd_zalloc (abfd, amt);
b49e97c9 7451 if (n == NULL)
b34976b6 7452 return FALSE;
b49e97c9
TS
7453 *n = *m;
7454 n->count = c;
7455
7456 i = 0;
7457 for (s = abfd->sections; s != NULL; s = s->next)
7458 {
7459 if ((s->flags & SEC_LOAD) != 0
7460 && s->vma >= low
eea6121a 7461 && s->vma + s->size <= high)
b49e97c9
TS
7462 {
7463 n->sections[i] = s;
7464 ++i;
7465 }
7466 }
7467
7468 *pm = n;
7469 }
7470 }
7471
b34976b6 7472 return TRUE;
b49e97c9
TS
7473}
7474\f
7475/* Return the section that should be marked against GC for a given
7476 relocation. */
7477
7478asection *
9719ad41
RS
7479_bfd_mips_elf_gc_mark_hook (asection *sec,
7480 struct bfd_link_info *info ATTRIBUTE_UNUSED,
7481 Elf_Internal_Rela *rel,
7482 struct elf_link_hash_entry *h,
7483 Elf_Internal_Sym *sym)
b49e97c9
TS
7484{
7485 /* ??? Do mips16 stub sections need to be handled special? */
7486
7487 if (h != NULL)
7488 {
1e2f5b6e 7489 switch (ELF_R_TYPE (sec->owner, rel->r_info))
b49e97c9
TS
7490 {
7491 case R_MIPS_GNU_VTINHERIT:
7492 case R_MIPS_GNU_VTENTRY:
7493 break;
7494
7495 default:
7496 switch (h->root.type)
7497 {
7498 case bfd_link_hash_defined:
7499 case bfd_link_hash_defweak:
7500 return h->root.u.def.section;
7501
7502 case bfd_link_hash_common:
7503 return h->root.u.c.p->section;
7504
7505 default:
7506 break;
7507 }
7508 }
7509 }
7510 else
1e2f5b6e 7511 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
b49e97c9
TS
7512
7513 return NULL;
7514}
7515
7516/* Update the got entry reference counts for the section being removed. */
7517
b34976b6 7518bfd_boolean
9719ad41
RS
7519_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
7520 struct bfd_link_info *info ATTRIBUTE_UNUSED,
7521 asection *sec ATTRIBUTE_UNUSED,
7522 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
7523{
7524#if 0
7525 Elf_Internal_Shdr *symtab_hdr;
7526 struct elf_link_hash_entry **sym_hashes;
7527 bfd_signed_vma *local_got_refcounts;
7528 const Elf_Internal_Rela *rel, *relend;
7529 unsigned long r_symndx;
7530 struct elf_link_hash_entry *h;
7531
7532 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7533 sym_hashes = elf_sym_hashes (abfd);
7534 local_got_refcounts = elf_local_got_refcounts (abfd);
7535
7536 relend = relocs + sec->reloc_count;
7537 for (rel = relocs; rel < relend; rel++)
7538 switch (ELF_R_TYPE (abfd, rel->r_info))
7539 {
7540 case R_MIPS_GOT16:
7541 case R_MIPS_CALL16:
7542 case R_MIPS_CALL_HI16:
7543 case R_MIPS_CALL_LO16:
7544 case R_MIPS_GOT_HI16:
7545 case R_MIPS_GOT_LO16:
4a14403c
TS
7546 case R_MIPS_GOT_DISP:
7547 case R_MIPS_GOT_PAGE:
7548 case R_MIPS_GOT_OFST:
b49e97c9
TS
7549 /* ??? It would seem that the existing MIPS code does no sort
7550 of reference counting or whatnot on its GOT and PLT entries,
7551 so it is not possible to garbage collect them at this time. */
7552 break;
7553
7554 default:
7555 break;
7556 }
7557#endif
7558
b34976b6 7559 return TRUE;
b49e97c9
TS
7560}
7561\f
7562/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
7563 hiding the old indirect symbol. Process additional relocation
7564 information. Also called for weakdefs, in which case we just let
7565 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
7566
7567void
9719ad41
RS
7568_bfd_mips_elf_copy_indirect_symbol (const struct elf_backend_data *bed,
7569 struct elf_link_hash_entry *dir,
7570 struct elf_link_hash_entry *ind)
b49e97c9
TS
7571{
7572 struct mips_elf_link_hash_entry *dirmips, *indmips;
7573
b48fa14c 7574 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
b49e97c9
TS
7575
7576 if (ind->root.type != bfd_link_hash_indirect)
7577 return;
7578
7579 dirmips = (struct mips_elf_link_hash_entry *) dir;
7580 indmips = (struct mips_elf_link_hash_entry *) ind;
7581 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
7582 if (indmips->readonly_reloc)
b34976b6 7583 dirmips->readonly_reloc = TRUE;
b49e97c9 7584 if (indmips->no_fn_stub)
b34976b6 7585 dirmips->no_fn_stub = TRUE;
b49e97c9
TS
7586}
7587
7588void
9719ad41
RS
7589_bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
7590 struct elf_link_hash_entry *entry,
7591 bfd_boolean force_local)
b49e97c9
TS
7592{
7593 bfd *dynobj;
7594 asection *got;
7595 struct mips_got_info *g;
7596 struct mips_elf_link_hash_entry *h;
7c5fcef7 7597
b49e97c9 7598 h = (struct mips_elf_link_hash_entry *) entry;
7c5fcef7
L
7599 if (h->forced_local)
7600 return;
4b555070 7601 h->forced_local = force_local;
7c5fcef7 7602
b49e97c9 7603 dynobj = elf_hash_table (info)->dynobj;
4b555070 7604 if (dynobj != NULL && force_local)
f4416af6 7605 {
c45a316a
AM
7606 got = mips_elf_got_section (dynobj, FALSE);
7607 g = mips_elf_section_data (got)->u.got_info;
f4416af6 7608
c45a316a
AM
7609 if (g->next)
7610 {
7611 struct mips_got_entry e;
7612 struct mips_got_info *gg = g;
7613
7614 /* Since we're turning what used to be a global symbol into a
7615 local one, bump up the number of local entries of each GOT
7616 that had an entry for it. This will automatically decrease
7617 the number of global entries, since global_gotno is actually
7618 the upper limit of global entries. */
7619 e.abfd = dynobj;
7620 e.symndx = -1;
7621 e.d.h = h;
7622
7623 for (g = g->next; g != gg; g = g->next)
7624 if (htab_find (g->got_entries, &e))
7625 {
7626 BFD_ASSERT (g->global_gotno > 0);
7627 g->local_gotno++;
7628 g->global_gotno--;
7629 }
b49e97c9 7630
c45a316a
AM
7631 /* If this was a global symbol forced into the primary GOT, we
7632 no longer need an entry for it. We can't release the entry
7633 at this point, but we must at least stop counting it as one
7634 of the symbols that required a forced got entry. */
7635 if (h->root.got.offset == 2)
7636 {
7637 BFD_ASSERT (gg->assigned_gotno > 0);
7638 gg->assigned_gotno--;
7639 }
7640 }
7641 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
7642 /* If we haven't got through GOT allocation yet, just bump up the
7643 number of local entries, as this symbol won't be counted as
7644 global. */
7645 g->local_gotno++;
7646 else if (h->root.got.offset == 1)
f4416af6 7647 {
c45a316a
AM
7648 /* If we're past non-multi-GOT allocation and this symbol had
7649 been marked for a global got entry, give it a local entry
7650 instead. */
7651 BFD_ASSERT (g->global_gotno > 0);
7652 g->local_gotno++;
7653 g->global_gotno--;
f4416af6
AO
7654 }
7655 }
f4416af6
AO
7656
7657 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
b49e97c9
TS
7658}
7659\f
d01414a5
TS
7660#define PDR_SIZE 32
7661
b34976b6 7662bfd_boolean
9719ad41
RS
7663_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
7664 struct bfd_link_info *info)
d01414a5
TS
7665{
7666 asection *o;
b34976b6 7667 bfd_boolean ret = FALSE;
d01414a5
TS
7668 unsigned char *tdata;
7669 size_t i, skip;
7670
7671 o = bfd_get_section_by_name (abfd, ".pdr");
7672 if (! o)
b34976b6 7673 return FALSE;
eea6121a 7674 if (o->size == 0)
b34976b6 7675 return FALSE;
eea6121a 7676 if (o->size % PDR_SIZE != 0)
b34976b6 7677 return FALSE;
d01414a5
TS
7678 if (o->output_section != NULL
7679 && bfd_is_abs_section (o->output_section))
b34976b6 7680 return FALSE;
d01414a5 7681
eea6121a 7682 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 7683 if (! tdata)
b34976b6 7684 return FALSE;
d01414a5 7685
9719ad41 7686 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 7687 info->keep_memory);
d01414a5
TS
7688 if (!cookie->rels)
7689 {
7690 free (tdata);
b34976b6 7691 return FALSE;
d01414a5
TS
7692 }
7693
7694 cookie->rel = cookie->rels;
7695 cookie->relend = cookie->rels + o->reloc_count;
7696
eea6121a 7697 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 7698 {
c152c796 7699 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
7700 {
7701 tdata[i] = 1;
7702 skip ++;
7703 }
7704 }
7705
7706 if (skip != 0)
7707 {
f0abc2a1 7708 mips_elf_section_data (o)->u.tdata = tdata;
eea6121a 7709 o->size -= skip * PDR_SIZE;
b34976b6 7710 ret = TRUE;
d01414a5
TS
7711 }
7712 else
7713 free (tdata);
7714
7715 if (! info->keep_memory)
7716 free (cookie->rels);
7717
7718 return ret;
7719}
7720
b34976b6 7721bfd_boolean
9719ad41 7722_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
7723{
7724 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
7725 return TRUE;
7726 return FALSE;
53bfd6b4 7727}
d01414a5 7728
b34976b6 7729bfd_boolean
9719ad41
RS
7730_bfd_mips_elf_write_section (bfd *output_bfd, asection *sec,
7731 bfd_byte *contents)
d01414a5
TS
7732{
7733 bfd_byte *to, *from, *end;
7734 int i;
7735
7736 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 7737 return FALSE;
d01414a5 7738
f0abc2a1 7739 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 7740 return FALSE;
d01414a5
TS
7741
7742 to = contents;
eea6121a 7743 end = contents + sec->size;
d01414a5
TS
7744 for (from = contents, i = 0;
7745 from < end;
7746 from += PDR_SIZE, i++)
7747 {
f0abc2a1 7748 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
7749 continue;
7750 if (to != from)
7751 memcpy (to, from, PDR_SIZE);
7752 to += PDR_SIZE;
7753 }
7754 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 7755 sec->output_offset, sec->size);
b34976b6 7756 return TRUE;
d01414a5 7757}
53bfd6b4 7758\f
b49e97c9
TS
7759/* MIPS ELF uses a special find_nearest_line routine in order the
7760 handle the ECOFF debugging information. */
7761
7762struct mips_elf_find_line
7763{
7764 struct ecoff_debug_info d;
7765 struct ecoff_find_line i;
7766};
7767
b34976b6 7768bfd_boolean
9719ad41
RS
7769_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
7770 asymbol **symbols, bfd_vma offset,
7771 const char **filename_ptr,
7772 const char **functionname_ptr,
7773 unsigned int *line_ptr)
b49e97c9
TS
7774{
7775 asection *msec;
7776
7777 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7778 filename_ptr, functionname_ptr,
7779 line_ptr))
b34976b6 7780 return TRUE;
b49e97c9
TS
7781
7782 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7783 filename_ptr, functionname_ptr,
9719ad41 7784 line_ptr, ABI_64_P (abfd) ? 8 : 0,
b49e97c9 7785 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 7786 return TRUE;
b49e97c9
TS
7787
7788 msec = bfd_get_section_by_name (abfd, ".mdebug");
7789 if (msec != NULL)
7790 {
7791 flagword origflags;
7792 struct mips_elf_find_line *fi;
7793 const struct ecoff_debug_swap * const swap =
7794 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
7795
7796 /* If we are called during a link, mips_elf_final_link may have
7797 cleared the SEC_HAS_CONTENTS field. We force it back on here
7798 if appropriate (which it normally will be). */
7799 origflags = msec->flags;
7800 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
7801 msec->flags |= SEC_HAS_CONTENTS;
7802
7803 fi = elf_tdata (abfd)->find_line_info;
7804 if (fi == NULL)
7805 {
7806 bfd_size_type external_fdr_size;
7807 char *fraw_src;
7808 char *fraw_end;
7809 struct fdr *fdr_ptr;
7810 bfd_size_type amt = sizeof (struct mips_elf_find_line);
7811
9719ad41 7812 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
7813 if (fi == NULL)
7814 {
7815 msec->flags = origflags;
b34976b6 7816 return FALSE;
b49e97c9
TS
7817 }
7818
7819 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
7820 {
7821 msec->flags = origflags;
b34976b6 7822 return FALSE;
b49e97c9
TS
7823 }
7824
7825 /* Swap in the FDR information. */
7826 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 7827 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
7828 if (fi->d.fdr == NULL)
7829 {
7830 msec->flags = origflags;
b34976b6 7831 return FALSE;
b49e97c9
TS
7832 }
7833 external_fdr_size = swap->external_fdr_size;
7834 fdr_ptr = fi->d.fdr;
7835 fraw_src = (char *) fi->d.external_fdr;
7836 fraw_end = (fraw_src
7837 + fi->d.symbolic_header.ifdMax * external_fdr_size);
7838 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 7839 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9
TS
7840
7841 elf_tdata (abfd)->find_line_info = fi;
7842
7843 /* Note that we don't bother to ever free this information.
7844 find_nearest_line is either called all the time, as in
7845 objdump -l, so the information should be saved, or it is
7846 rarely called, as in ld error messages, so the memory
7847 wasted is unimportant. Still, it would probably be a
7848 good idea for free_cached_info to throw it away. */
7849 }
7850
7851 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
7852 &fi->i, filename_ptr, functionname_ptr,
7853 line_ptr))
7854 {
7855 msec->flags = origflags;
b34976b6 7856 return TRUE;
b49e97c9
TS
7857 }
7858
7859 msec->flags = origflags;
7860 }
7861
7862 /* Fall back on the generic ELF find_nearest_line routine. */
7863
7864 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
7865 filename_ptr, functionname_ptr,
7866 line_ptr);
7867}
7868\f
7869/* When are writing out the .options or .MIPS.options section,
7870 remember the bytes we are writing out, so that we can install the
7871 GP value in the section_processing routine. */
7872
b34976b6 7873bfd_boolean
9719ad41
RS
7874_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
7875 const void *location,
7876 file_ptr offset, bfd_size_type count)
b49e97c9
TS
7877{
7878 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
7879 {
7880 bfd_byte *c;
7881
7882 if (elf_section_data (section) == NULL)
7883 {
7884 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 7885 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 7886 if (elf_section_data (section) == NULL)
b34976b6 7887 return FALSE;
b49e97c9 7888 }
f0abc2a1 7889 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
7890 if (c == NULL)
7891 {
eea6121a 7892 c = bfd_zalloc (abfd, section->size);
b49e97c9 7893 if (c == NULL)
b34976b6 7894 return FALSE;
f0abc2a1 7895 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
7896 }
7897
9719ad41 7898 memcpy (c + offset, location, count);
b49e97c9
TS
7899 }
7900
7901 return _bfd_elf_set_section_contents (abfd, section, location, offset,
7902 count);
7903}
7904
7905/* This is almost identical to bfd_generic_get_... except that some
7906 MIPS relocations need to be handled specially. Sigh. */
7907
7908bfd_byte *
9719ad41
RS
7909_bfd_elf_mips_get_relocated_section_contents
7910 (bfd *abfd,
7911 struct bfd_link_info *link_info,
7912 struct bfd_link_order *link_order,
7913 bfd_byte *data,
7914 bfd_boolean relocatable,
7915 asymbol **symbols)
b49e97c9
TS
7916{
7917 /* Get enough memory to hold the stuff */
7918 bfd *input_bfd = link_order->u.indirect.section->owner;
7919 asection *input_section = link_order->u.indirect.section;
eea6121a 7920 bfd_size_type sz;
b49e97c9
TS
7921
7922 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
7923 arelent **reloc_vector = NULL;
7924 long reloc_count;
7925
7926 if (reloc_size < 0)
7927 goto error_return;
7928
9719ad41 7929 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
7930 if (reloc_vector == NULL && reloc_size != 0)
7931 goto error_return;
7932
7933 /* read in the section */
eea6121a
AM
7934 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
7935 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
7936 goto error_return;
7937
b49e97c9
TS
7938 reloc_count = bfd_canonicalize_reloc (input_bfd,
7939 input_section,
7940 reloc_vector,
7941 symbols);
7942 if (reloc_count < 0)
7943 goto error_return;
7944
7945 if (reloc_count > 0)
7946 {
7947 arelent **parent;
7948 /* for mips */
7949 int gp_found;
7950 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
7951
7952 {
7953 struct bfd_hash_entry *h;
7954 struct bfd_link_hash_entry *lh;
7955 /* Skip all this stuff if we aren't mixing formats. */
7956 if (abfd && input_bfd
7957 && abfd->xvec == input_bfd->xvec)
7958 lh = 0;
7959 else
7960 {
b34976b6 7961 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
7962 lh = (struct bfd_link_hash_entry *) h;
7963 }
7964 lookup:
7965 if (lh)
7966 {
7967 switch (lh->type)
7968 {
7969 case bfd_link_hash_undefined:
7970 case bfd_link_hash_undefweak:
7971 case bfd_link_hash_common:
7972 gp_found = 0;
7973 break;
7974 case bfd_link_hash_defined:
7975 case bfd_link_hash_defweak:
7976 gp_found = 1;
7977 gp = lh->u.def.value;
7978 break;
7979 case bfd_link_hash_indirect:
7980 case bfd_link_hash_warning:
7981 lh = lh->u.i.link;
7982 /* @@FIXME ignoring warning for now */
7983 goto lookup;
7984 case bfd_link_hash_new:
7985 default:
7986 abort ();
7987 }
7988 }
7989 else
7990 gp_found = 0;
7991 }
7992 /* end mips */
9719ad41 7993 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 7994 {
9719ad41 7995 char *error_message = NULL;
b49e97c9
TS
7996 bfd_reloc_status_type r;
7997
7998 /* Specific to MIPS: Deal with relocation types that require
7999 knowing the gp of the output bfd. */
8000 asymbol *sym = *(*parent)->sym_ptr_ptr;
8001 if (bfd_is_abs_section (sym->section) && abfd)
8002 {
44c410de 8003 /* The special_function wouldn't get called anyway. */
b49e97c9
TS
8004 }
8005 else if (!gp_found)
8006 {
8007 /* The gp isn't there; let the special function code
8008 fall over on its own. */
8009 }
8010 else if ((*parent)->howto->special_function
8011 == _bfd_mips_elf32_gprel16_reloc)
8012 {
8013 /* bypass special_function call */
8014 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
1049f94e 8015 input_section, relocatable,
9719ad41 8016 data, gp);
b49e97c9
TS
8017 goto skip_bfd_perform_relocation;
8018 }
8019 /* end mips specific stuff */
8020
9719ad41
RS
8021 r = bfd_perform_relocation (input_bfd, *parent, data, input_section,
8022 relocatable ? abfd : NULL,
b49e97c9
TS
8023 &error_message);
8024 skip_bfd_perform_relocation:
8025
1049f94e 8026 if (relocatable)
b49e97c9
TS
8027 {
8028 asection *os = input_section->output_section;
8029
8030 /* A partial link, so keep the relocs */
8031 os->orelocation[os->reloc_count] = *parent;
8032 os->reloc_count++;
8033 }
8034
8035 if (r != bfd_reloc_ok)
8036 {
8037 switch (r)
8038 {
8039 case bfd_reloc_undefined:
8040 if (!((*link_info->callbacks->undefined_symbol)
8041 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8042 input_bfd, input_section, (*parent)->address,
b34976b6 8043 TRUE)))
b49e97c9
TS
8044 goto error_return;
8045 break;
8046 case bfd_reloc_dangerous:
9719ad41 8047 BFD_ASSERT (error_message != NULL);
b49e97c9
TS
8048 if (!((*link_info->callbacks->reloc_dangerous)
8049 (link_info, error_message, input_bfd, input_section,
8050 (*parent)->address)))
8051 goto error_return;
8052 break;
8053 case bfd_reloc_overflow:
8054 if (!((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
8055 (link_info, NULL,
8056 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
b49e97c9
TS
8057 (*parent)->howto->name, (*parent)->addend,
8058 input_bfd, input_section, (*parent)->address)))
8059 goto error_return;
8060 break;
8061 case bfd_reloc_outofrange:
8062 default:
8063 abort ();
8064 break;
8065 }
8066
8067 }
8068 }
8069 }
8070 if (reloc_vector != NULL)
8071 free (reloc_vector);
8072 return data;
8073
8074error_return:
8075 if (reloc_vector != NULL)
8076 free (reloc_vector);
8077 return NULL;
8078}
8079\f
8080/* Create a MIPS ELF linker hash table. */
8081
8082struct bfd_link_hash_table *
9719ad41 8083_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
8084{
8085 struct mips_elf_link_hash_table *ret;
8086 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
8087
9719ad41
RS
8088 ret = bfd_malloc (amt);
8089 if (ret == NULL)
b49e97c9
TS
8090 return NULL;
8091
8092 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
8093 mips_elf_link_hash_newfunc))
8094 {
e2d34d7d 8095 free (ret);
b49e97c9
TS
8096 return NULL;
8097 }
8098
8099#if 0
8100 /* We no longer use this. */
8101 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
8102 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
8103#endif
8104 ret->procedure_count = 0;
8105 ret->compact_rel_size = 0;
b34976b6 8106 ret->use_rld_obj_head = FALSE;
b49e97c9 8107 ret->rld_value = 0;
b34976b6 8108 ret->mips16_stubs_seen = FALSE;
b49e97c9
TS
8109
8110 return &ret->root.root;
8111}
8112\f
8113/* We need to use a special link routine to handle the .reginfo and
8114 the .mdebug sections. We need to merge all instances of these
8115 sections together, not write them all out sequentially. */
8116
b34976b6 8117bfd_boolean
9719ad41 8118_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
8119{
8120 asection **secpp;
8121 asection *o;
8122 struct bfd_link_order *p;
8123 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
8124 asection *rtproc_sec;
8125 Elf32_RegInfo reginfo;
8126 struct ecoff_debug_info debug;
7a2a6943
NC
8127 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8128 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 8129 HDRR *symhdr = &debug.symbolic_header;
9719ad41 8130 void *mdebug_handle = NULL;
b49e97c9
TS
8131 asection *s;
8132 EXTR esym;
8133 unsigned int i;
8134 bfd_size_type amt;
8135
8136 static const char * const secname[] =
8137 {
8138 ".text", ".init", ".fini", ".data",
8139 ".rodata", ".sdata", ".sbss", ".bss"
8140 };
8141 static const int sc[] =
8142 {
8143 scText, scInit, scFini, scData,
8144 scRData, scSData, scSBss, scBss
8145 };
8146
b49e97c9
TS
8147 /* We'd carefully arranged the dynamic symbol indices, and then the
8148 generic size_dynamic_sections renumbered them out from under us.
8149 Rather than trying somehow to prevent the renumbering, just do
8150 the sort again. */
8151 if (elf_hash_table (info)->dynamic_sections_created)
8152 {
8153 bfd *dynobj;
8154 asection *got;
8155 struct mips_got_info *g;
7a2a6943 8156 bfd_size_type dynsecsymcount;
b49e97c9
TS
8157
8158 /* When we resort, we must tell mips_elf_sort_hash_table what
8159 the lowest index it may use is. That's the number of section
8160 symbols we're going to add. The generic ELF linker only
8161 adds these symbols when building a shared object. Note that
8162 we count the sections after (possibly) removing the .options
8163 section above. */
7a2a6943
NC
8164
8165 dynsecsymcount = 0;
8166 if (info->shared)
8167 {
8168 asection * p;
8169
8170 for (p = abfd->sections; p ; p = p->next)
8171 if ((p->flags & SEC_EXCLUDE) == 0
8172 && (p->flags & SEC_ALLOC) != 0
8173 && !(*bed->elf_backend_omit_section_dynsym) (abfd, info, p))
8174 ++ dynsecsymcount;
8175 }
8176
8177 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
b34976b6 8178 return FALSE;
b49e97c9
TS
8179
8180 /* Make sure we didn't grow the global .got region. */
8181 dynobj = elf_hash_table (info)->dynobj;
f4416af6 8182 got = mips_elf_got_section (dynobj, FALSE);
f0abc2a1 8183 g = mips_elf_section_data (got)->u.got_info;
b49e97c9
TS
8184
8185 if (g->global_gotsym != NULL)
8186 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
8187 - g->global_gotsym->dynindx)
8188 <= g->global_gotno);
8189 }
8190
a902ee94
SC
8191#if 0
8192 /* We want to set the GP value for ld -r. */
b49e97c9
TS
8193 /* On IRIX5, we omit the .options section. On IRIX6, however, we
8194 include it, even though we don't process it quite right. (Some
8195 entries are supposed to be merged.) Empirically, we seem to be
8196 better off including it then not. */
8197 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
8198 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8199 {
8200 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
8201 {
8202 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8203 if (p->type == bfd_indirect_link_order)
8204 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
8205 (*secpp)->link_order_head = NULL;
8206 bfd_section_list_remove (abfd, secpp);
8207 --abfd->section_count;
8208
8209 break;
8210 }
8211 }
8212
8213 /* We include .MIPS.options, even though we don't process it quite right.
8214 (Some entries are supposed to be merged.) At IRIX6 empirically we seem
8215 to be better off including it than not. */
8216 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8217 {
8218 if (strcmp ((*secpp)->name, ".MIPS.options") == 0)
8219 {
8220 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8221 if (p->type == bfd_indirect_link_order)
8222 p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS;
8223 (*secpp)->link_order_head = NULL;
8224 bfd_section_list_remove (abfd, secpp);
8225 --abfd->section_count;
b34976b6 8226
b49e97c9
TS
8227 break;
8228 }
8229 }
a902ee94 8230#endif
b49e97c9
TS
8231
8232 /* Get a value for the GP register. */
8233 if (elf_gp (abfd) == 0)
8234 {
8235 struct bfd_link_hash_entry *h;
8236
b34976b6 8237 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 8238 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
8239 elf_gp (abfd) = (h->u.def.value
8240 + h->u.def.section->output_section->vma
8241 + h->u.def.section->output_offset);
1049f94e 8242 else if (info->relocatable)
b49e97c9
TS
8243 {
8244 bfd_vma lo = MINUS_ONE;
8245
8246 /* Find the GP-relative section with the lowest offset. */
9719ad41 8247 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
8248 if (o->vma < lo
8249 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
8250 lo = o->vma;
8251
8252 /* And calculate GP relative to that. */
8253 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
8254 }
8255 else
8256 {
8257 /* If the relocate_section function needs to do a reloc
8258 involving the GP value, it should make a reloc_dangerous
8259 callback to warn that GP is not defined. */
8260 }
8261 }
8262
8263 /* Go through the sections and collect the .reginfo and .mdebug
8264 information. */
8265 reginfo_sec = NULL;
8266 mdebug_sec = NULL;
8267 gptab_data_sec = NULL;
8268 gptab_bss_sec = NULL;
9719ad41 8269 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
8270 {
8271 if (strcmp (o->name, ".reginfo") == 0)
8272 {
8273 memset (&reginfo, 0, sizeof reginfo);
8274
8275 /* We have found the .reginfo section in the output file.
8276 Look through all the link_orders comprising it and merge
8277 the information together. */
9719ad41 8278 for (p = o->link_order_head; p != NULL; p = p->next)
b49e97c9
TS
8279 {
8280 asection *input_section;
8281 bfd *input_bfd;
8282 Elf32_External_RegInfo ext;
8283 Elf32_RegInfo sub;
8284
8285 if (p->type != bfd_indirect_link_order)
8286 {
8287 if (p->type == bfd_data_link_order)
8288 continue;
8289 abort ();
8290 }
8291
8292 input_section = p->u.indirect.section;
8293 input_bfd = input_section->owner;
8294
b49e97c9 8295 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 8296 &ext, 0, sizeof ext))
b34976b6 8297 return FALSE;
b49e97c9
TS
8298
8299 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
8300
8301 reginfo.ri_gprmask |= sub.ri_gprmask;
8302 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
8303 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
8304 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
8305 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
8306
8307 /* ri_gp_value is set by the function
8308 mips_elf32_section_processing when the section is
8309 finally written out. */
8310
8311 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8312 elf_link_input_bfd ignores this section. */
8313 input_section->flags &= ~SEC_HAS_CONTENTS;
8314 }
8315
8316 /* Size has been set in _bfd_mips_elf_always_size_sections. */
eea6121a 8317 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
8318
8319 /* Skip this section later on (I don't think this currently
8320 matters, but someday it might). */
9719ad41 8321 o->link_order_head = NULL;
b49e97c9
TS
8322
8323 reginfo_sec = o;
8324 }
8325
8326 if (strcmp (o->name, ".mdebug") == 0)
8327 {
8328 struct extsym_info einfo;
8329 bfd_vma last;
8330
8331 /* We have found the .mdebug section in the output file.
8332 Look through all the link_orders comprising it and merge
8333 the information together. */
8334 symhdr->magic = swap->sym_magic;
8335 /* FIXME: What should the version stamp be? */
8336 symhdr->vstamp = 0;
8337 symhdr->ilineMax = 0;
8338 symhdr->cbLine = 0;
8339 symhdr->idnMax = 0;
8340 symhdr->ipdMax = 0;
8341 symhdr->isymMax = 0;
8342 symhdr->ioptMax = 0;
8343 symhdr->iauxMax = 0;
8344 symhdr->issMax = 0;
8345 symhdr->issExtMax = 0;
8346 symhdr->ifdMax = 0;
8347 symhdr->crfd = 0;
8348 symhdr->iextMax = 0;
8349
8350 /* We accumulate the debugging information itself in the
8351 debug_info structure. */
8352 debug.line = NULL;
8353 debug.external_dnr = NULL;
8354 debug.external_pdr = NULL;
8355 debug.external_sym = NULL;
8356 debug.external_opt = NULL;
8357 debug.external_aux = NULL;
8358 debug.ss = NULL;
8359 debug.ssext = debug.ssext_end = NULL;
8360 debug.external_fdr = NULL;
8361 debug.external_rfd = NULL;
8362 debug.external_ext = debug.external_ext_end = NULL;
8363
8364 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 8365 if (mdebug_handle == NULL)
b34976b6 8366 return FALSE;
b49e97c9
TS
8367
8368 esym.jmptbl = 0;
8369 esym.cobol_main = 0;
8370 esym.weakext = 0;
8371 esym.reserved = 0;
8372 esym.ifd = ifdNil;
8373 esym.asym.iss = issNil;
8374 esym.asym.st = stLocal;
8375 esym.asym.reserved = 0;
8376 esym.asym.index = indexNil;
8377 last = 0;
8378 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
8379 {
8380 esym.asym.sc = sc[i];
8381 s = bfd_get_section_by_name (abfd, secname[i]);
8382 if (s != NULL)
8383 {
8384 esym.asym.value = s->vma;
eea6121a 8385 last = s->vma + s->size;
b49e97c9
TS
8386 }
8387 else
8388 esym.asym.value = last;
8389 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
8390 secname[i], &esym))
b34976b6 8391 return FALSE;
b49e97c9
TS
8392 }
8393
9719ad41 8394 for (p = o->link_order_head; p != NULL; p = p->next)
b49e97c9
TS
8395 {
8396 asection *input_section;
8397 bfd *input_bfd;
8398 const struct ecoff_debug_swap *input_swap;
8399 struct ecoff_debug_info input_debug;
8400 char *eraw_src;
8401 char *eraw_end;
8402
8403 if (p->type != bfd_indirect_link_order)
8404 {
8405 if (p->type == bfd_data_link_order)
8406 continue;
8407 abort ();
8408 }
8409
8410 input_section = p->u.indirect.section;
8411 input_bfd = input_section->owner;
8412
8413 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
8414 || (get_elf_backend_data (input_bfd)
8415 ->elf_backend_ecoff_debug_swap) == NULL)
8416 {
8417 /* I don't know what a non MIPS ELF bfd would be
8418 doing with a .mdebug section, but I don't really
8419 want to deal with it. */
8420 continue;
8421 }
8422
8423 input_swap = (get_elf_backend_data (input_bfd)
8424 ->elf_backend_ecoff_debug_swap);
8425
eea6121a 8426 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
8427
8428 /* The ECOFF linking code expects that we have already
8429 read in the debugging information and set up an
8430 ecoff_debug_info structure, so we do that now. */
8431 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
8432 &input_debug))
b34976b6 8433 return FALSE;
b49e97c9
TS
8434
8435 if (! (bfd_ecoff_debug_accumulate
8436 (mdebug_handle, abfd, &debug, swap, input_bfd,
8437 &input_debug, input_swap, info)))
b34976b6 8438 return FALSE;
b49e97c9
TS
8439
8440 /* Loop through the external symbols. For each one with
8441 interesting information, try to find the symbol in
8442 the linker global hash table and save the information
8443 for the output external symbols. */
8444 eraw_src = input_debug.external_ext;
8445 eraw_end = (eraw_src
8446 + (input_debug.symbolic_header.iextMax
8447 * input_swap->external_ext_size));
8448 for (;
8449 eraw_src < eraw_end;
8450 eraw_src += input_swap->external_ext_size)
8451 {
8452 EXTR ext;
8453 const char *name;
8454 struct mips_elf_link_hash_entry *h;
8455
9719ad41 8456 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
8457 if (ext.asym.sc == scNil
8458 || ext.asym.sc == scUndefined
8459 || ext.asym.sc == scSUndefined)
8460 continue;
8461
8462 name = input_debug.ssext + ext.asym.iss;
8463 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 8464 name, FALSE, FALSE, TRUE);
b49e97c9
TS
8465 if (h == NULL || h->esym.ifd != -2)
8466 continue;
8467
8468 if (ext.ifd != -1)
8469 {
8470 BFD_ASSERT (ext.ifd
8471 < input_debug.symbolic_header.ifdMax);
8472 ext.ifd = input_debug.ifdmap[ext.ifd];
8473 }
8474
8475 h->esym = ext;
8476 }
8477
8478 /* Free up the information we just read. */
8479 free (input_debug.line);
8480 free (input_debug.external_dnr);
8481 free (input_debug.external_pdr);
8482 free (input_debug.external_sym);
8483 free (input_debug.external_opt);
8484 free (input_debug.external_aux);
8485 free (input_debug.ss);
8486 free (input_debug.ssext);
8487 free (input_debug.external_fdr);
8488 free (input_debug.external_rfd);
8489 free (input_debug.external_ext);
8490
8491 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8492 elf_link_input_bfd ignores this section. */
8493 input_section->flags &= ~SEC_HAS_CONTENTS;
8494 }
8495
8496 if (SGI_COMPAT (abfd) && info->shared)
8497 {
8498 /* Create .rtproc section. */
8499 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8500 if (rtproc_sec == NULL)
8501 {
8502 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
8503 | SEC_LINKER_CREATED | SEC_READONLY);
8504
8505 rtproc_sec = bfd_make_section (abfd, ".rtproc");
8506 if (rtproc_sec == NULL
8507 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
8508 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 8509 return FALSE;
b49e97c9
TS
8510 }
8511
8512 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
8513 info, rtproc_sec,
8514 &debug))
b34976b6 8515 return FALSE;
b49e97c9
TS
8516 }
8517
8518 /* Build the external symbol information. */
8519 einfo.abfd = abfd;
8520 einfo.info = info;
8521 einfo.debug = &debug;
8522 einfo.swap = swap;
b34976b6 8523 einfo.failed = FALSE;
b49e97c9 8524 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 8525 mips_elf_output_extsym, &einfo);
b49e97c9 8526 if (einfo.failed)
b34976b6 8527 return FALSE;
b49e97c9
TS
8528
8529 /* Set the size of the .mdebug section. */
eea6121a 8530 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
8531
8532 /* Skip this section later on (I don't think this currently
8533 matters, but someday it might). */
9719ad41 8534 o->link_order_head = NULL;
b49e97c9
TS
8535
8536 mdebug_sec = o;
8537 }
8538
8539 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
8540 {
8541 const char *subname;
8542 unsigned int c;
8543 Elf32_gptab *tab;
8544 Elf32_External_gptab *ext_tab;
8545 unsigned int j;
8546
8547 /* The .gptab.sdata and .gptab.sbss sections hold
8548 information describing how the small data area would
8549 change depending upon the -G switch. These sections
8550 not used in executables files. */
1049f94e 8551 if (! info->relocatable)
b49e97c9 8552 {
9719ad41 8553 for (p = o->link_order_head; p != NULL; p = p->next)
b49e97c9
TS
8554 {
8555 asection *input_section;
8556
8557 if (p->type != bfd_indirect_link_order)
8558 {
8559 if (p->type == bfd_data_link_order)
8560 continue;
8561 abort ();
8562 }
8563
8564 input_section = p->u.indirect.section;
8565
8566 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8567 elf_link_input_bfd ignores this section. */
8568 input_section->flags &= ~SEC_HAS_CONTENTS;
8569 }
8570
8571 /* Skip this section later on (I don't think this
8572 currently matters, but someday it might). */
9719ad41 8573 o->link_order_head = NULL;
b49e97c9
TS
8574
8575 /* Really remove the section. */
8576 for (secpp = &abfd->sections;
8577 *secpp != o;
8578 secpp = &(*secpp)->next)
8579 ;
8580 bfd_section_list_remove (abfd, secpp);
8581 --abfd->section_count;
8582
8583 continue;
8584 }
8585
8586 /* There is one gptab for initialized data, and one for
8587 uninitialized data. */
8588 if (strcmp (o->name, ".gptab.sdata") == 0)
8589 gptab_data_sec = o;
8590 else if (strcmp (o->name, ".gptab.sbss") == 0)
8591 gptab_bss_sec = o;
8592 else
8593 {
8594 (*_bfd_error_handler)
8595 (_("%s: illegal section name `%s'"),
8596 bfd_get_filename (abfd), o->name);
8597 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 8598 return FALSE;
b49e97c9
TS
8599 }
8600
8601 /* The linker script always combines .gptab.data and
8602 .gptab.sdata into .gptab.sdata, and likewise for
8603 .gptab.bss and .gptab.sbss. It is possible that there is
8604 no .sdata or .sbss section in the output file, in which
8605 case we must change the name of the output section. */
8606 subname = o->name + sizeof ".gptab" - 1;
8607 if (bfd_get_section_by_name (abfd, subname) == NULL)
8608 {
8609 if (o == gptab_data_sec)
8610 o->name = ".gptab.data";
8611 else
8612 o->name = ".gptab.bss";
8613 subname = o->name + sizeof ".gptab" - 1;
8614 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
8615 }
8616
8617 /* Set up the first entry. */
8618 c = 1;
8619 amt = c * sizeof (Elf32_gptab);
9719ad41 8620 tab = bfd_malloc (amt);
b49e97c9 8621 if (tab == NULL)
b34976b6 8622 return FALSE;
b49e97c9
TS
8623 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
8624 tab[0].gt_header.gt_unused = 0;
8625
8626 /* Combine the input sections. */
9719ad41 8627 for (p = o->link_order_head; p != NULL; p = p->next)
b49e97c9
TS
8628 {
8629 asection *input_section;
8630 bfd *input_bfd;
8631 bfd_size_type size;
8632 unsigned long last;
8633 bfd_size_type gpentry;
8634
8635 if (p->type != bfd_indirect_link_order)
8636 {
8637 if (p->type == bfd_data_link_order)
8638 continue;
8639 abort ();
8640 }
8641
8642 input_section = p->u.indirect.section;
8643 input_bfd = input_section->owner;
8644
8645 /* Combine the gptab entries for this input section one
8646 by one. We know that the input gptab entries are
8647 sorted by ascending -G value. */
eea6121a 8648 size = input_section->size;
b49e97c9
TS
8649 last = 0;
8650 for (gpentry = sizeof (Elf32_External_gptab);
8651 gpentry < size;
8652 gpentry += sizeof (Elf32_External_gptab))
8653 {
8654 Elf32_External_gptab ext_gptab;
8655 Elf32_gptab int_gptab;
8656 unsigned long val;
8657 unsigned long add;
b34976b6 8658 bfd_boolean exact;
b49e97c9
TS
8659 unsigned int look;
8660
8661 if (! (bfd_get_section_contents
9719ad41
RS
8662 (input_bfd, input_section, &ext_gptab, gpentry,
8663 sizeof (Elf32_External_gptab))))
b49e97c9
TS
8664 {
8665 free (tab);
b34976b6 8666 return FALSE;
b49e97c9
TS
8667 }
8668
8669 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
8670 &int_gptab);
8671 val = int_gptab.gt_entry.gt_g_value;
8672 add = int_gptab.gt_entry.gt_bytes - last;
8673
b34976b6 8674 exact = FALSE;
b49e97c9
TS
8675 for (look = 1; look < c; look++)
8676 {
8677 if (tab[look].gt_entry.gt_g_value >= val)
8678 tab[look].gt_entry.gt_bytes += add;
8679
8680 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 8681 exact = TRUE;
b49e97c9
TS
8682 }
8683
8684 if (! exact)
8685 {
8686 Elf32_gptab *new_tab;
8687 unsigned int max;
8688
8689 /* We need a new table entry. */
8690 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 8691 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
8692 if (new_tab == NULL)
8693 {
8694 free (tab);
b34976b6 8695 return FALSE;
b49e97c9
TS
8696 }
8697 tab = new_tab;
8698 tab[c].gt_entry.gt_g_value = val;
8699 tab[c].gt_entry.gt_bytes = add;
8700
8701 /* Merge in the size for the next smallest -G
8702 value, since that will be implied by this new
8703 value. */
8704 max = 0;
8705 for (look = 1; look < c; look++)
8706 {
8707 if (tab[look].gt_entry.gt_g_value < val
8708 && (max == 0
8709 || (tab[look].gt_entry.gt_g_value
8710 > tab[max].gt_entry.gt_g_value)))
8711 max = look;
8712 }
8713 if (max != 0)
8714 tab[c].gt_entry.gt_bytes +=
8715 tab[max].gt_entry.gt_bytes;
8716
8717 ++c;
8718 }
8719
8720 last = int_gptab.gt_entry.gt_bytes;
8721 }
8722
8723 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8724 elf_link_input_bfd ignores this section. */
8725 input_section->flags &= ~SEC_HAS_CONTENTS;
8726 }
8727
8728 /* The table must be sorted by -G value. */
8729 if (c > 2)
8730 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
8731
8732 /* Swap out the table. */
8733 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 8734 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
8735 if (ext_tab == NULL)
8736 {
8737 free (tab);
b34976b6 8738 return FALSE;
b49e97c9
TS
8739 }
8740
8741 for (j = 0; j < c; j++)
8742 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
8743 free (tab);
8744
eea6121a 8745 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
8746 o->contents = (bfd_byte *) ext_tab;
8747
8748 /* Skip this section later on (I don't think this currently
8749 matters, but someday it might). */
9719ad41 8750 o->link_order_head = NULL;
b49e97c9
TS
8751 }
8752 }
8753
8754 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 8755 if (!bfd_elf_final_link (abfd, info))
b34976b6 8756 return FALSE;
b49e97c9
TS
8757
8758 /* Now write out the computed sections. */
8759
9719ad41 8760 if (reginfo_sec != NULL)
b49e97c9
TS
8761 {
8762 Elf32_External_RegInfo ext;
8763
8764 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 8765 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 8766 return FALSE;
b49e97c9
TS
8767 }
8768
9719ad41 8769 if (mdebug_sec != NULL)
b49e97c9
TS
8770 {
8771 BFD_ASSERT (abfd->output_has_begun);
8772 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
8773 swap, info,
8774 mdebug_sec->filepos))
b34976b6 8775 return FALSE;
b49e97c9
TS
8776
8777 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
8778 }
8779
9719ad41 8780 if (gptab_data_sec != NULL)
b49e97c9
TS
8781 {
8782 if (! bfd_set_section_contents (abfd, gptab_data_sec,
8783 gptab_data_sec->contents,
eea6121a 8784 0, gptab_data_sec->size))
b34976b6 8785 return FALSE;
b49e97c9
TS
8786 }
8787
9719ad41 8788 if (gptab_bss_sec != NULL)
b49e97c9
TS
8789 {
8790 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
8791 gptab_bss_sec->contents,
eea6121a 8792 0, gptab_bss_sec->size))
b34976b6 8793 return FALSE;
b49e97c9
TS
8794 }
8795
8796 if (SGI_COMPAT (abfd))
8797 {
8798 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8799 if (rtproc_sec != NULL)
8800 {
8801 if (! bfd_set_section_contents (abfd, rtproc_sec,
8802 rtproc_sec->contents,
eea6121a 8803 0, rtproc_sec->size))
b34976b6 8804 return FALSE;
b49e97c9
TS
8805 }
8806 }
8807
b34976b6 8808 return TRUE;
b49e97c9
TS
8809}
8810\f
64543e1a
RS
8811/* Structure for saying that BFD machine EXTENSION extends BASE. */
8812
8813struct mips_mach_extension {
8814 unsigned long extension, base;
8815};
8816
8817
8818/* An array describing how BFD machines relate to one another. The entries
8819 are ordered topologically with MIPS I extensions listed last. */
8820
8821static const struct mips_mach_extension mips_mach_extensions[] = {
8822 /* MIPS64 extensions. */
5f74bc13 8823 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
64543e1a
RS
8824 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
8825
8826 /* MIPS V extensions. */
8827 { bfd_mach_mipsisa64, bfd_mach_mips5 },
8828
8829 /* R10000 extensions. */
8830 { bfd_mach_mips12000, bfd_mach_mips10000 },
8831
8832 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
8833 vr5400 ISA, but doesn't include the multimedia stuff. It seems
8834 better to allow vr5400 and vr5500 code to be merged anyway, since
8835 many libraries will just use the core ISA. Perhaps we could add
8836 some sort of ASE flag if this ever proves a problem. */
8837 { bfd_mach_mips5500, bfd_mach_mips5400 },
8838 { bfd_mach_mips5400, bfd_mach_mips5000 },
8839
8840 /* MIPS IV extensions. */
8841 { bfd_mach_mips5, bfd_mach_mips8000 },
8842 { bfd_mach_mips10000, bfd_mach_mips8000 },
8843 { bfd_mach_mips5000, bfd_mach_mips8000 },
5a7ea749 8844 { bfd_mach_mips7000, bfd_mach_mips8000 },
0d2e43ed 8845 { bfd_mach_mips9000, bfd_mach_mips8000 },
64543e1a
RS
8846
8847 /* VR4100 extensions. */
8848 { bfd_mach_mips4120, bfd_mach_mips4100 },
8849 { bfd_mach_mips4111, bfd_mach_mips4100 },
8850
8851 /* MIPS III extensions. */
8852 { bfd_mach_mips8000, bfd_mach_mips4000 },
8853 { bfd_mach_mips4650, bfd_mach_mips4000 },
8854 { bfd_mach_mips4600, bfd_mach_mips4000 },
8855 { bfd_mach_mips4400, bfd_mach_mips4000 },
8856 { bfd_mach_mips4300, bfd_mach_mips4000 },
8857 { bfd_mach_mips4100, bfd_mach_mips4000 },
8858 { bfd_mach_mips4010, bfd_mach_mips4000 },
8859
8860 /* MIPS32 extensions. */
8861 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
8862
8863 /* MIPS II extensions. */
8864 { bfd_mach_mips4000, bfd_mach_mips6000 },
8865 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
8866
8867 /* MIPS I extensions. */
8868 { bfd_mach_mips6000, bfd_mach_mips3000 },
8869 { bfd_mach_mips3900, bfd_mach_mips3000 }
8870};
8871
8872
8873/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
8874
8875static bfd_boolean
9719ad41 8876mips_mach_extends_p (unsigned long base, unsigned long extension)
64543e1a
RS
8877{
8878 size_t i;
8879
8880 for (i = 0; extension != base && i < ARRAY_SIZE (mips_mach_extensions); i++)
8881 if (extension == mips_mach_extensions[i].extension)
8882 extension = mips_mach_extensions[i].base;
8883
8884 return extension == base;
8885}
8886
8887
8888/* Return true if the given ELF header flags describe a 32-bit binary. */
00707a0e 8889
b34976b6 8890static bfd_boolean
9719ad41 8891mips_32bit_flags_p (flagword flags)
00707a0e 8892{
64543e1a
RS
8893 return ((flags & EF_MIPS_32BITMODE) != 0
8894 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
8895 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
8896 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
8897 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
8898 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
8899 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
00707a0e
RS
8900}
8901
64543e1a 8902
b49e97c9
TS
8903/* Merge backend specific data from an object file to the output
8904 object file when linking. */
8905
b34976b6 8906bfd_boolean
9719ad41 8907_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
b49e97c9
TS
8908{
8909 flagword old_flags;
8910 flagword new_flags;
b34976b6
AM
8911 bfd_boolean ok;
8912 bfd_boolean null_input_bfd = TRUE;
b49e97c9
TS
8913 asection *sec;
8914
8915 /* Check if we have the same endianess */
82e51918 8916 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
aa701218
AO
8917 {
8918 (*_bfd_error_handler)
d003868e
AM
8919 (_("%B: endianness incompatible with that of the selected emulation"),
8920 ibfd);
aa701218
AO
8921 return FALSE;
8922 }
b49e97c9
TS
8923
8924 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
8925 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
b34976b6 8926 return TRUE;
b49e97c9 8927
aa701218
AO
8928 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
8929 {
8930 (*_bfd_error_handler)
d003868e
AM
8931 (_("%B: ABI is incompatible with that of the selected emulation"),
8932 ibfd);
aa701218
AO
8933 return FALSE;
8934 }
8935
b49e97c9
TS
8936 new_flags = elf_elfheader (ibfd)->e_flags;
8937 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
8938 old_flags = elf_elfheader (obfd)->e_flags;
8939
8940 if (! elf_flags_init (obfd))
8941 {
b34976b6 8942 elf_flags_init (obfd) = TRUE;
b49e97c9
TS
8943 elf_elfheader (obfd)->e_flags = new_flags;
8944 elf_elfheader (obfd)->e_ident[EI_CLASS]
8945 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
8946
8947 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
8948 && bfd_get_arch_info (obfd)->the_default)
8949 {
8950 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
8951 bfd_get_mach (ibfd)))
b34976b6 8952 return FALSE;
b49e97c9
TS
8953 }
8954
b34976b6 8955 return TRUE;
b49e97c9
TS
8956 }
8957
8958 /* Check flag compatibility. */
8959
8960 new_flags &= ~EF_MIPS_NOREORDER;
8961 old_flags &= ~EF_MIPS_NOREORDER;
8962
f4416af6
AO
8963 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
8964 doesn't seem to matter. */
8965 new_flags &= ~EF_MIPS_XGOT;
8966 old_flags &= ~EF_MIPS_XGOT;
8967
98a8deaf
RS
8968 /* MIPSpro generates ucode info in n64 objects. Again, we should
8969 just be able to ignore this. */
8970 new_flags &= ~EF_MIPS_UCODE;
8971 old_flags &= ~EF_MIPS_UCODE;
8972
b49e97c9 8973 if (new_flags == old_flags)
b34976b6 8974 return TRUE;
b49e97c9
TS
8975
8976 /* Check to see if the input BFD actually contains any sections.
8977 If not, its flags may not have been initialised either, but it cannot
8978 actually cause any incompatibility. */
8979 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8980 {
8981 /* Ignore synthetic sections and empty .text, .data and .bss sections
8982 which are automatically generated by gas. */
8983 if (strcmp (sec->name, ".reginfo")
8984 && strcmp (sec->name, ".mdebug")
eea6121a 8985 && (sec->size != 0
d13d89fa
NS
8986 || (strcmp (sec->name, ".text")
8987 && strcmp (sec->name, ".data")
8988 && strcmp (sec->name, ".bss"))))
b49e97c9 8989 {
b34976b6 8990 null_input_bfd = FALSE;
b49e97c9
TS
8991 break;
8992 }
8993 }
8994 if (null_input_bfd)
b34976b6 8995 return TRUE;
b49e97c9 8996
b34976b6 8997 ok = TRUE;
b49e97c9 8998
143d77c5
EC
8999 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
9000 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
b49e97c9 9001 {
b49e97c9 9002 (*_bfd_error_handler)
d003868e
AM
9003 (_("%B: warning: linking PIC files with non-PIC files"),
9004 ibfd);
143d77c5 9005 ok = TRUE;
b49e97c9
TS
9006 }
9007
143d77c5
EC
9008 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
9009 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
9010 if (! (new_flags & EF_MIPS_PIC))
9011 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
9012
9013 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
9014 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
b49e97c9 9015
64543e1a
RS
9016 /* Compare the ISAs. */
9017 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
b49e97c9 9018 {
64543e1a 9019 (*_bfd_error_handler)
d003868e
AM
9020 (_("%B: linking 32-bit code with 64-bit code"),
9021 ibfd);
64543e1a
RS
9022 ok = FALSE;
9023 }
9024 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
9025 {
9026 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
9027 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
b49e97c9 9028 {
64543e1a
RS
9029 /* Copy the architecture info from IBFD to OBFD. Also copy
9030 the 32-bit flag (if set) so that we continue to recognise
9031 OBFD as a 32-bit binary. */
9032 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
9033 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9034 elf_elfheader (obfd)->e_flags
9035 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9036
9037 /* Copy across the ABI flags if OBFD doesn't use them
9038 and if that was what caused us to treat IBFD as 32-bit. */
9039 if ((old_flags & EF_MIPS_ABI) == 0
9040 && mips_32bit_flags_p (new_flags)
9041 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
9042 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
b49e97c9
TS
9043 }
9044 else
9045 {
64543e1a 9046 /* The ISAs aren't compatible. */
b49e97c9 9047 (*_bfd_error_handler)
d003868e
AM
9048 (_("%B: linking %s module with previous %s modules"),
9049 ibfd,
64543e1a
RS
9050 bfd_printable_name (ibfd),
9051 bfd_printable_name (obfd));
b34976b6 9052 ok = FALSE;
b49e97c9 9053 }
b49e97c9
TS
9054 }
9055
64543e1a
RS
9056 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9057 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9058
9059 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
b49e97c9
TS
9060 does set EI_CLASS differently from any 32-bit ABI. */
9061 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
9062 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9063 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9064 {
9065 /* Only error if both are set (to different values). */
9066 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
9067 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9068 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9069 {
9070 (*_bfd_error_handler)
d003868e
AM
9071 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
9072 ibfd,
b49e97c9
TS
9073 elf_mips_abi_name (ibfd),
9074 elf_mips_abi_name (obfd));
b34976b6 9075 ok = FALSE;
b49e97c9
TS
9076 }
9077 new_flags &= ~EF_MIPS_ABI;
9078 old_flags &= ~EF_MIPS_ABI;
9079 }
9080
fb39dac1
RS
9081 /* For now, allow arbitrary mixing of ASEs (retain the union). */
9082 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
9083 {
9084 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
9085
9086 new_flags &= ~ EF_MIPS_ARCH_ASE;
9087 old_flags &= ~ EF_MIPS_ARCH_ASE;
9088 }
9089
b49e97c9
TS
9090 /* Warn about any other mismatches */
9091 if (new_flags != old_flags)
9092 {
9093 (*_bfd_error_handler)
d003868e
AM
9094 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
9095 ibfd, (unsigned long) new_flags,
b49e97c9 9096 (unsigned long) old_flags);
b34976b6 9097 ok = FALSE;
b49e97c9
TS
9098 }
9099
9100 if (! ok)
9101 {
9102 bfd_set_error (bfd_error_bad_value);
b34976b6 9103 return FALSE;
b49e97c9
TS
9104 }
9105
b34976b6 9106 return TRUE;
b49e97c9
TS
9107}
9108
9109/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
9110
b34976b6 9111bfd_boolean
9719ad41 9112_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
9113{
9114 BFD_ASSERT (!elf_flags_init (abfd)
9115 || elf_elfheader (abfd)->e_flags == flags);
9116
9117 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
9118 elf_flags_init (abfd) = TRUE;
9119 return TRUE;
b49e97c9
TS
9120}
9121
b34976b6 9122bfd_boolean
9719ad41 9123_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 9124{
9719ad41 9125 FILE *file = ptr;
b49e97c9
TS
9126
9127 BFD_ASSERT (abfd != NULL && ptr != NULL);
9128
9129 /* Print normal ELF private data. */
9130 _bfd_elf_print_private_bfd_data (abfd, ptr);
9131
9132 /* xgettext:c-format */
9133 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9134
9135 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
9136 fprintf (file, _(" [abi=O32]"));
9137 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
9138 fprintf (file, _(" [abi=O64]"));
9139 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
9140 fprintf (file, _(" [abi=EABI32]"));
9141 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
9142 fprintf (file, _(" [abi=EABI64]"));
9143 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
9144 fprintf (file, _(" [abi unknown]"));
9145 else if (ABI_N32_P (abfd))
9146 fprintf (file, _(" [abi=N32]"));
9147 else if (ABI_64_P (abfd))
9148 fprintf (file, _(" [abi=64]"));
9149 else
9150 fprintf (file, _(" [no abi set]"));
9151
9152 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
9153 fprintf (file, _(" [mips1]"));
9154 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
9155 fprintf (file, _(" [mips2]"));
9156 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
9157 fprintf (file, _(" [mips3]"));
9158 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
9159 fprintf (file, _(" [mips4]"));
9160 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
9161 fprintf (file, _(" [mips5]"));
9162 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
9163 fprintf (file, _(" [mips32]"));
9164 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
9165 fprintf (file, _(" [mips64]"));
af7ee8bf
CD
9166 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
9167 fprintf (file, _(" [mips32r2]"));
5f74bc13
CD
9168 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
9169 fprintf (file, _(" [mips64r2]"));
b49e97c9
TS
9170 else
9171 fprintf (file, _(" [unknown ISA]"));
9172
40d32fc6
CD
9173 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
9174 fprintf (file, _(" [mdmx]"));
9175
9176 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
9177 fprintf (file, _(" [mips16]"));
9178
b49e97c9
TS
9179 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
9180 fprintf (file, _(" [32bitmode]"));
9181 else
9182 fprintf (file, _(" [not 32bitmode]"));
9183
9184 fputc ('\n', file);
9185
b34976b6 9186 return TRUE;
b49e97c9 9187}
2f89ff8d
L
9188
9189struct bfd_elf_special_section const _bfd_mips_elf_special_sections[]=
9190{
7dcb9820
AM
9191 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9192 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9193 { ".lit4", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9194 { ".lit8", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9195 { ".ucode", 6, 0, SHT_MIPS_UCODE, 0 },
9196 { ".mdebug", 7, 0, SHT_MIPS_DEBUG, 0 },
9197 { NULL, 0, 0, 0, 0 }
2f89ff8d 9198};
This page took 0.659658 seconds and 4 git commands to generate.